* alpha-tdep.c (alpha_gdbarch_init): Use set_gdbarch_print_insn ...
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (struct ui_out *uiout, void *dummy);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
98 int async_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_store_registers (int regno);
103
104 static void remote_mourn (void);
105 static void remote_async_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void extended_remote_create_inferior (char *, char *, char **);
112 static void extended_remote_async_create_inferior (char *, char *, char **);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char *buf, long sizeof_buf);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122 static ptid_t remote_async_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124
125 static void remote_kill (void);
126 static void remote_async_kill (void);
127
128 static int tohex (int nib);
129
130 static void remote_detach (char *args, int from_tty);
131 static void remote_async_detach (char *args, int from_tty);
132
133 static void remote_interrupt (int signo);
134
135 static void remote_interrupt_twice (int signo);
136
137 static void interrupt_query (void);
138
139 static void set_thread (int, int);
140
141 static int remote_thread_alive (ptid_t);
142
143 static void get_offsets (void);
144
145 static long read_frame (char *buf, long sizeof_buf);
146
147 static int remote_insert_breakpoint (CORE_ADDR, char *);
148
149 static int remote_remove_breakpoint (CORE_ADDR, char *);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void init_remote_cisco_ops (void);
158
159 static struct target_ops remote_cisco_ops;
160
161 static void remote_stop (void);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int remote_query (int /*char */ , char *, char *, int *);
168
169 static int hexnumstr (char *, ULONGEST);
170
171 static int hexnumnstr (char *, ULONGEST, int);
172
173 static CORE_ADDR remote_address_masked (CORE_ADDR);
174
175 static void print_packet (char *);
176
177 static unsigned long crc32 (unsigned char *, int, unsigned int);
178
179 static void compare_sections_command (char *, int);
180
181 static void packet_command (char *, int);
182
183 static int stub_unpack_int (char *buff, int fieldlength);
184
185 static ptid_t remote_current_thread (ptid_t oldptid);
186
187 static void remote_find_new_threads (void);
188
189 static void record_currthread (int currthread);
190
191 static int fromhex (int a);
192
193 static int hex2bin (const char *hex, char *bin, int count);
194
195 static int bin2hex (const char *bin, char *hex, int count);
196
197 static int putpkt_binary (char *buf, int cnt);
198
199 static void check_binary_download (CORE_ADDR addr);
200
201 struct packet_config;
202
203 static void show_packet_config_cmd (struct packet_config *config);
204
205 static void update_packet_config (struct packet_config *config);
206
207 void _initialize_remote (void);
208
209 /* Description of the remote protocol. Strictly speaking, when the
210 target is open()ed, remote.c should create a per-target description
211 of the remote protocol using that target's architecture.
212 Unfortunatly, the target stack doesn't include local state. For
213 the moment keep the information in the target's architecture
214 object. Sigh.. */
215
216 struct packet_reg
217 {
218 long offset; /* Offset into G packet. */
219 long regnum; /* GDB's internal register number. */
220 LONGEST pnum; /* Remote protocol register number. */
221 int in_g_packet; /* Always part of G packet. */
222 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
223 /* char *name; == REGISTER_NAME (regnum); at present. */
224 };
225
226 struct remote_state
227 {
228 /* Description of the remote protocol registers. */
229 long sizeof_g_packet;
230
231 /* Description of the remote protocol registers indexed by REGNUM
232 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
233 struct packet_reg *regs;
234
235 /* This is the size (in chars) of the first response to the ``g''
236 packet. It is used as a heuristic when determining the maximum
237 size of memory-read and memory-write packets. A target will
238 typically only reserve a buffer large enough to hold the ``g''
239 packet. The size does not include packet overhead (headers and
240 trailers). */
241 long actual_register_packet_size;
242
243 /* This is the maximum size (in chars) of a non read/write packet.
244 It is also used as a cap on the size of read/write packets. */
245 long remote_packet_size;
246 };
247
248
249 /* Handle for retreving the remote protocol data from gdbarch. */
250 static struct gdbarch_data *remote_gdbarch_data_handle;
251
252 static struct remote_state *
253 get_remote_state (void)
254 {
255 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
256 }
257
258 static void *
259 init_remote_state (struct gdbarch *gdbarch)
260 {
261 int regnum;
262 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
263
264 /* Start out by having the remote protocol mimic the existing
265 behavour - just copy in the description of the register cache. */
266 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES; /* OK */
267
268 /* Assume a 1:1 regnum<->pnum table. */
269 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
270 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
271 {
272 struct packet_reg *r = &rs->regs[regnum];
273 r->pnum = regnum;
274 r->regnum = regnum;
275 r->offset = REGISTER_BYTE (regnum);
276 r->in_g_packet = (regnum < NUM_REGS);
277 /* ...size = REGISTER_RAW_SIZE (regnum); */
278 /* ...name = REGISTER_NAME (regnum); */
279 }
280
281 /* Default maximum number of characters in a packet body. Many
282 remote stubs have a hardwired buffer size of 400 bytes
283 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
284 as the maximum packet-size to ensure that the packet and an extra
285 NUL character can always fit in the buffer. This stops GDB
286 trashing stubs that try to squeeze an extra NUL into what is
287 already a full buffer (As of 1999-12-04 that was most stubs. */
288 rs->remote_packet_size = 400 - 1;
289
290 /* Should rs->sizeof_g_packet needs more space than the
291 default, adjust the size accordingly. Remember that each byte is
292 encoded as two characters. 32 is the overhead for the packet
293 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
294 (``$NN:G...#NN'') is a better guess, the below has been padded a
295 little. */
296 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
297 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
298
299 /* This one is filled in when a ``g'' packet is received. */
300 rs->actual_register_packet_size = 0;
301
302 return rs;
303 }
304
305 static void
306 free_remote_state (struct gdbarch *gdbarch, void *pointer)
307 {
308 struct remote_state *data = pointer;
309 xfree (data->regs);
310 xfree (data);
311 }
312
313 static struct packet_reg *
314 packet_reg_from_regnum (struct remote_state *rs, long regnum)
315 {
316 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
317 return NULL;
318 else
319 {
320 struct packet_reg *r = &rs->regs[regnum];
321 gdb_assert (r->regnum == regnum);
322 return r;
323 }
324 }
325
326 static struct packet_reg *
327 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
328 {
329 int i;
330 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
331 {
332 struct packet_reg *r = &rs->regs[i];
333 if (r->pnum == pnum)
334 return r;
335 }
336 return NULL;
337 }
338
339 /* FIXME: graces/2002-08-08: These variables should eventually be
340 bound to an instance of the target object (as in gdbarch-tdep()),
341 when such a thing exists. */
342
343 /* This is set to the data address of the access causing the target
344 to stop for a watchpoint. */
345 static CORE_ADDR remote_watch_data_address;
346
347 /* This is non-zero if taregt stopped for a watchpoint. */
348 static int remote_stopped_by_watchpoint_p;
349
350
351 static struct target_ops remote_ops;
352
353 static struct target_ops extended_remote_ops;
354
355 /* Temporary target ops. Just like the remote_ops and
356 extended_remote_ops, but with asynchronous support. */
357 static struct target_ops remote_async_ops;
358
359 static struct target_ops extended_async_remote_ops;
360
361 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
362 ``forever'' still use the normal timeout mechanism. This is
363 currently used by the ASYNC code to guarentee that target reads
364 during the initial connect always time-out. Once getpkt has been
365 modified to return a timeout indication and, in turn
366 remote_wait()/wait_for_inferior() have gained a timeout parameter
367 this can go away. */
368 static int wait_forever_enabled_p = 1;
369
370
371 /* This variable chooses whether to send a ^C or a break when the user
372 requests program interruption. Although ^C is usually what remote
373 systems expect, and that is the default here, sometimes a break is
374 preferable instead. */
375
376 static int remote_break;
377
378 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
379 remote_open knows that we don't have a file open when the program
380 starts. */
381 static struct serial *remote_desc = NULL;
382
383 /* This is set by the target (thru the 'S' message)
384 to denote that the target is in kernel mode. */
385 static int cisco_kernel_mode = 0;
386
387 /* This variable sets the number of bits in an address that are to be
388 sent in a memory ("M" or "m") packet. Normally, after stripping
389 leading zeros, the entire address would be sent. This variable
390 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
391 initial implementation of remote.c restricted the address sent in
392 memory packets to ``host::sizeof long'' bytes - (typically 32
393 bits). Consequently, for 64 bit targets, the upper 32 bits of an
394 address was never sent. Since fixing this bug may cause a break in
395 some remote targets this variable is principly provided to
396 facilitate backward compatibility. */
397
398 static int remote_address_size;
399
400 /* Tempoary to track who currently owns the terminal. See
401 target_async_terminal_* for more details. */
402
403 static int remote_async_terminal_ours_p;
404
405 \f
406 /* User configurable variables for the number of characters in a
407 memory read/write packet. MIN ((rs->remote_packet_size),
408 rs->sizeof_g_packet) is the default. Some targets need smaller
409 values (fifo overruns, et.al.) and some users need larger values
410 (speed up transfers). The variables ``preferred_*'' (the user
411 request), ``current_*'' (what was actually set) and ``forced_*''
412 (Positive - a soft limit, negative - a hard limit). */
413
414 struct memory_packet_config
415 {
416 char *name;
417 long size;
418 int fixed_p;
419 };
420
421 /* Compute the current size of a read/write packet. Since this makes
422 use of ``actual_register_packet_size'' the computation is dynamic. */
423
424 static long
425 get_memory_packet_size (struct memory_packet_config *config)
426 {
427 struct remote_state *rs = get_remote_state ();
428 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
429 law?) that some hosts don't cope very well with large alloca()
430 calls. Eventually the alloca() code will be replaced by calls to
431 xmalloc() and make_cleanups() allowing this restriction to either
432 be lifted or removed. */
433 #ifndef MAX_REMOTE_PACKET_SIZE
434 #define MAX_REMOTE_PACKET_SIZE 16384
435 #endif
436 /* NOTE: 16 is just chosen at random. */
437 #ifndef MIN_REMOTE_PACKET_SIZE
438 #define MIN_REMOTE_PACKET_SIZE 16
439 #endif
440 long what_they_get;
441 if (config->fixed_p)
442 {
443 if (config->size <= 0)
444 what_they_get = MAX_REMOTE_PACKET_SIZE;
445 else
446 what_they_get = config->size;
447 }
448 else
449 {
450 what_they_get = (rs->remote_packet_size);
451 /* Limit the packet to the size specified by the user. */
452 if (config->size > 0
453 && what_they_get > config->size)
454 what_they_get = config->size;
455 /* Limit it to the size of the targets ``g'' response. */
456 if ((rs->actual_register_packet_size) > 0
457 && what_they_get > (rs->actual_register_packet_size))
458 what_they_get = (rs->actual_register_packet_size);
459 }
460 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
461 what_they_get = MAX_REMOTE_PACKET_SIZE;
462 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
463 what_they_get = MIN_REMOTE_PACKET_SIZE;
464 return what_they_get;
465 }
466
467 /* Update the size of a read/write packet. If they user wants
468 something really big then do a sanity check. */
469
470 static void
471 set_memory_packet_size (char *args, struct memory_packet_config *config)
472 {
473 int fixed_p = config->fixed_p;
474 long size = config->size;
475 if (args == NULL)
476 error ("Argument required (integer, `fixed' or `limited').");
477 else if (strcmp (args, "hard") == 0
478 || strcmp (args, "fixed") == 0)
479 fixed_p = 1;
480 else if (strcmp (args, "soft") == 0
481 || strcmp (args, "limit") == 0)
482 fixed_p = 0;
483 else
484 {
485 char *end;
486 size = strtoul (args, &end, 0);
487 if (args == end)
488 error ("Invalid %s (bad syntax).", config->name);
489 #if 0
490 /* Instead of explicitly capping the size of a packet to
491 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
492 instead allowed to set the size to something arbitrarily
493 large. */
494 if (size > MAX_REMOTE_PACKET_SIZE)
495 error ("Invalid %s (too large).", config->name);
496 #endif
497 }
498 /* Extra checks? */
499 if (fixed_p && !config->fixed_p)
500 {
501 if (! query ("The target may not be able to correctly handle a %s\n"
502 "of %ld bytes. Change the packet size? ",
503 config->name, size))
504 error ("Packet size not changed.");
505 }
506 /* Update the config. */
507 config->fixed_p = fixed_p;
508 config->size = size;
509 }
510
511 static void
512 show_memory_packet_size (struct memory_packet_config *config)
513 {
514 printf_filtered ("The %s is %ld. ", config->name, config->size);
515 if (config->fixed_p)
516 printf_filtered ("Packets are fixed at %ld bytes.\n",
517 get_memory_packet_size (config));
518 else
519 printf_filtered ("Packets are limited to %ld bytes.\n",
520 get_memory_packet_size (config));
521 }
522
523 static struct memory_packet_config memory_write_packet_config =
524 {
525 "memory-write-packet-size",
526 };
527
528 static void
529 set_memory_write_packet_size (char *args, int from_tty)
530 {
531 set_memory_packet_size (args, &memory_write_packet_config);
532 }
533
534 static void
535 show_memory_write_packet_size (char *args, int from_tty)
536 {
537 show_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static long
541 get_memory_write_packet_size (void)
542 {
543 return get_memory_packet_size (&memory_write_packet_config);
544 }
545
546 static struct memory_packet_config memory_read_packet_config =
547 {
548 "memory-read-packet-size",
549 };
550
551 static void
552 set_memory_read_packet_size (char *args, int from_tty)
553 {
554 set_memory_packet_size (args, &memory_read_packet_config);
555 }
556
557 static void
558 show_memory_read_packet_size (char *args, int from_tty)
559 {
560 show_memory_packet_size (&memory_read_packet_config);
561 }
562
563 static long
564 get_memory_read_packet_size (void)
565 {
566 struct remote_state *rs = get_remote_state ();
567 long size = get_memory_packet_size (&memory_read_packet_config);
568 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
569 extra buffer size argument before the memory read size can be
570 increased beyond (rs->remote_packet_size). */
571 if (size > (rs->remote_packet_size))
572 size = (rs->remote_packet_size);
573 return size;
574 }
575
576 \f
577 /* Generic configuration support for packets the stub optionally
578 supports. Allows the user to specify the use of the packet as well
579 as allowing GDB to auto-detect support in the remote stub. */
580
581 enum packet_support
582 {
583 PACKET_SUPPORT_UNKNOWN = 0,
584 PACKET_ENABLE,
585 PACKET_DISABLE
586 };
587
588 struct packet_config
589 {
590 char *name;
591 char *title;
592 enum auto_boolean detect;
593 enum packet_support support;
594 };
595
596 /* Analyze a packet's return value and update the packet config
597 accordingly. */
598
599 enum packet_result
600 {
601 PACKET_ERROR,
602 PACKET_OK,
603 PACKET_UNKNOWN
604 };
605
606 static void
607 update_packet_config (struct packet_config *config)
608 {
609 switch (config->detect)
610 {
611 case AUTO_BOOLEAN_TRUE:
612 config->support = PACKET_ENABLE;
613 break;
614 case AUTO_BOOLEAN_FALSE:
615 config->support = PACKET_DISABLE;
616 break;
617 case AUTO_BOOLEAN_AUTO:
618 config->support = PACKET_SUPPORT_UNKNOWN;
619 break;
620 }
621 }
622
623 static void
624 show_packet_config_cmd (struct packet_config *config)
625 {
626 char *support = "internal-error";
627 switch (config->support)
628 {
629 case PACKET_ENABLE:
630 support = "enabled";
631 break;
632 case PACKET_DISABLE:
633 support = "disabled";
634 break;
635 case PACKET_SUPPORT_UNKNOWN:
636 support = "unknown";
637 break;
638 }
639 switch (config->detect)
640 {
641 case AUTO_BOOLEAN_AUTO:
642 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
643 config->name, config->title, support);
644 break;
645 case AUTO_BOOLEAN_TRUE:
646 case AUTO_BOOLEAN_FALSE:
647 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
648 config->name, config->title, support);
649 break;
650 }
651 }
652
653 static void
654 add_packet_config_cmd (struct packet_config *config,
655 char *name,
656 char *title,
657 cmd_sfunc_ftype *set_func,
658 cmd_sfunc_ftype *show_func,
659 struct cmd_list_element **set_remote_list,
660 struct cmd_list_element **show_remote_list,
661 int legacy)
662 {
663 struct cmd_list_element *set_cmd;
664 struct cmd_list_element *show_cmd;
665 char *set_doc;
666 char *show_doc;
667 char *cmd_name;
668 config->name = name;
669 config->title = title;
670 config->detect = AUTO_BOOLEAN_AUTO;
671 config->support = PACKET_SUPPORT_UNKNOWN;
672 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
673 name, title);
674 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
675 name, title);
676 /* set/show TITLE-packet {auto,on,off} */
677 xasprintf (&cmd_name, "%s-packet", title);
678 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
679 &config->detect, set_doc, show_doc,
680 set_func, show_func,
681 set_remote_list, show_remote_list);
682 /* set/show remote NAME-packet {auto,on,off} -- legacy */
683 if (legacy)
684 {
685 char *legacy_name;
686 xasprintf (&legacy_name, "%s-packet", name);
687 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
688 set_remote_list);
689 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
690 show_remote_list);
691 }
692 }
693
694 static enum packet_result
695 packet_ok (const char *buf, struct packet_config *config)
696 {
697 if (buf[0] != '\0')
698 {
699 /* The stub recognized the packet request. Check that the
700 operation succeeded. */
701 switch (config->support)
702 {
703 case PACKET_SUPPORT_UNKNOWN:
704 if (remote_debug)
705 fprintf_unfiltered (gdb_stdlog,
706 "Packet %s (%s) is supported\n",
707 config->name, config->title);
708 config->support = PACKET_ENABLE;
709 break;
710 case PACKET_DISABLE:
711 internal_error (__FILE__, __LINE__,
712 "packet_ok: attempt to use a disabled packet");
713 break;
714 case PACKET_ENABLE:
715 break;
716 }
717 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
718 /* "OK" - definitly OK. */
719 return PACKET_OK;
720 if (buf[0] == 'E'
721 && isxdigit (buf[1]) && isxdigit (buf[2])
722 && buf[3] == '\0')
723 /* "Enn" - definitly an error. */
724 return PACKET_ERROR;
725 /* The packet may or may not be OK. Just assume it is */
726 return PACKET_OK;
727 }
728 else
729 {
730 /* The stub does not support the packet. */
731 switch (config->support)
732 {
733 case PACKET_ENABLE:
734 if (config->detect == AUTO_BOOLEAN_AUTO)
735 /* If the stub previously indicated that the packet was
736 supported then there is a protocol error.. */
737 error ("Protocol error: %s (%s) conflicting enabled responses.",
738 config->name, config->title);
739 else
740 /* The user set it wrong. */
741 error ("Enabled packet %s (%s) not recognized by stub",
742 config->name, config->title);
743 break;
744 case PACKET_SUPPORT_UNKNOWN:
745 if (remote_debug)
746 fprintf_unfiltered (gdb_stdlog,
747 "Packet %s (%s) is NOT supported\n",
748 config->name, config->title);
749 config->support = PACKET_DISABLE;
750 break;
751 case PACKET_DISABLE:
752 break;
753 }
754 return PACKET_UNKNOWN;
755 }
756 }
757
758 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
759 static struct packet_config remote_protocol_qSymbol;
760
761 static void
762 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
763 struct cmd_list_element *c)
764 {
765 update_packet_config (&remote_protocol_qSymbol);
766 }
767
768 static void
769 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
770 struct cmd_list_element *c)
771 {
772 show_packet_config_cmd (&remote_protocol_qSymbol);
773 }
774
775 /* Should we try the 'e' (step over range) request? */
776 static struct packet_config remote_protocol_e;
777
778 static void
779 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
780 struct cmd_list_element *c)
781 {
782 update_packet_config (&remote_protocol_e);
783 }
784
785 static void
786 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
787 struct cmd_list_element *c)
788 {
789 show_packet_config_cmd (&remote_protocol_e);
790 }
791
792
793 /* Should we try the 'E' (step over range / w signal #) request? */
794 static struct packet_config remote_protocol_E;
795
796 static void
797 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
798 struct cmd_list_element *c)
799 {
800 update_packet_config (&remote_protocol_E);
801 }
802
803 static void
804 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
805 struct cmd_list_element *c)
806 {
807 show_packet_config_cmd (&remote_protocol_E);
808 }
809
810
811 /* Should we try the 'P' (set register) request? */
812
813 static struct packet_config remote_protocol_P;
814
815 static void
816 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
817 struct cmd_list_element *c)
818 {
819 update_packet_config (&remote_protocol_P);
820 }
821
822 static void
823 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
824 struct cmd_list_element *c)
825 {
826 show_packet_config_cmd (&remote_protocol_P);
827 }
828
829 /* Should we try one of the 'Z' requests? */
830
831 enum Z_packet_type
832 {
833 Z_PACKET_SOFTWARE_BP,
834 Z_PACKET_HARDWARE_BP,
835 Z_PACKET_WRITE_WP,
836 Z_PACKET_READ_WP,
837 Z_PACKET_ACCESS_WP,
838 NR_Z_PACKET_TYPES
839 };
840
841 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
842
843 /* FIXME: Instead of having all these boiler plate functions, the
844 command callback should include a context argument. */
845
846 static void
847 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
851 }
852
853 static void
854 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
855 struct cmd_list_element *c)
856 {
857 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
858 }
859
860 static void
861 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
862 struct cmd_list_element *c)
863 {
864 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
865 }
866
867 static void
868 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870 {
871 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
872 }
873
874 static void
875 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
876 struct cmd_list_element *c)
877 {
878 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
879 }
880
881 static void
882 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
883 struct cmd_list_element *c)
884 {
885 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
886 }
887
888 static void
889 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
890 struct cmd_list_element *c)
891 {
892 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
893 }
894
895 static void
896 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
897 struct cmd_list_element *c)
898 {
899 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
900 }
901
902 static void
903 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
904 struct cmd_list_element *c)
905 {
906 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
907 }
908
909 static void
910 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
911 struct cmd_list_element *c)
912 {
913 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
914 }
915
916 /* For compatibility with older distributions. Provide a ``set remote
917 Z-packet ...'' command that updates all the Z packet types. */
918
919 static enum auto_boolean remote_Z_packet_detect;
920
921 static void
922 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
923 struct cmd_list_element *c)
924 {
925 int i;
926 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
927 {
928 remote_protocol_Z[i].detect = remote_Z_packet_detect;
929 update_packet_config (&remote_protocol_Z[i]);
930 }
931 }
932
933 static void
934 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
935 struct cmd_list_element *c)
936 {
937 int i;
938 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
939 {
940 show_packet_config_cmd (&remote_protocol_Z[i]);
941 }
942 }
943
944 /* Should we try the 'X' (remote binary download) packet?
945
946 This variable (available to the user via "set remote X-packet")
947 dictates whether downloads are sent in binary (via the 'X' packet).
948 We assume that the stub can, and attempt to do it. This will be
949 cleared if the stub does not understand it. This switch is still
950 needed, though in cases when the packet is supported in the stub,
951 but the connection does not allow it (i.e., 7-bit serial connection
952 only). */
953
954 static struct packet_config remote_protocol_binary_download;
955
956 /* Should we try the 'ThreadInfo' query packet?
957
958 This variable (NOT available to the user: auto-detect only!)
959 determines whether GDB will use the new, simpler "ThreadInfo"
960 query or the older, more complex syntax for thread queries.
961 This is an auto-detect variable (set to true at each connect,
962 and set to false when the target fails to recognize it). */
963
964 static int use_threadinfo_query;
965 static int use_threadextra_query;
966
967 static void
968 set_remote_protocol_binary_download_cmd (char *args,
969 int from_tty,
970 struct cmd_list_element *c)
971 {
972 update_packet_config (&remote_protocol_binary_download);
973 }
974
975 static void
976 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
977 struct cmd_list_element *c)
978 {
979 show_packet_config_cmd (&remote_protocol_binary_download);
980 }
981
982
983 /* Tokens for use by the asynchronous signal handlers for SIGINT */
984 static void *sigint_remote_twice_token;
985 static void *sigint_remote_token;
986
987 /* These are pointers to hook functions that may be set in order to
988 modify resume/wait behavior for a particular architecture. */
989
990 void (*target_resume_hook) (void);
991 void (*target_wait_loop_hook) (void);
992 \f
993
994
995 /* These are the threads which we last sent to the remote system.
996 -1 for all or -2 for not sent yet. */
997 static int general_thread;
998 static int continue_thread;
999
1000 /* Call this function as a result of
1001 1) A halt indication (T packet) containing a thread id
1002 2) A direct query of currthread
1003 3) Successful execution of set thread
1004 */
1005
1006 static void
1007 record_currthread (int currthread)
1008 {
1009 general_thread = currthread;
1010
1011 /* If this is a new thread, add it to GDB's thread list.
1012 If we leave it up to WFI to do this, bad things will happen. */
1013 if (!in_thread_list (pid_to_ptid (currthread)))
1014 {
1015 add_thread (pid_to_ptid (currthread));
1016 ui_out_text (uiout, "[New ");
1017 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1018 ui_out_text (uiout, "]\n");
1019 }
1020 }
1021
1022 #define MAGIC_NULL_PID 42000
1023
1024 static void
1025 set_thread (int th, int gen)
1026 {
1027 struct remote_state *rs = get_remote_state ();
1028 char *buf = alloca (rs->remote_packet_size);
1029 int state = gen ? general_thread : continue_thread;
1030
1031 if (state == th)
1032 return;
1033
1034 buf[0] = 'H';
1035 buf[1] = gen ? 'g' : 'c';
1036 if (th == MAGIC_NULL_PID)
1037 {
1038 buf[2] = '0';
1039 buf[3] = '\0';
1040 }
1041 else if (th < 0)
1042 sprintf (&buf[2], "-%x", -th);
1043 else
1044 sprintf (&buf[2], "%x", th);
1045 putpkt (buf);
1046 getpkt (buf, (rs->remote_packet_size), 0);
1047 if (gen)
1048 general_thread = th;
1049 else
1050 continue_thread = th;
1051 }
1052 \f
1053 /* Return nonzero if the thread TH is still alive on the remote system. */
1054
1055 static int
1056 remote_thread_alive (ptid_t ptid)
1057 {
1058 int tid = PIDGET (ptid);
1059 char buf[16];
1060
1061 if (tid < 0)
1062 sprintf (buf, "T-%08x", -tid);
1063 else
1064 sprintf (buf, "T%08x", tid);
1065 putpkt (buf);
1066 getpkt (buf, sizeof (buf), 0);
1067 return (buf[0] == 'O' && buf[1] == 'K');
1068 }
1069
1070 /* About these extended threadlist and threadinfo packets. They are
1071 variable length packets but, the fields within them are often fixed
1072 length. They are redundent enough to send over UDP as is the
1073 remote protocol in general. There is a matching unit test module
1074 in libstub. */
1075
1076 #define OPAQUETHREADBYTES 8
1077
1078 /* a 64 bit opaque identifier */
1079 typedef unsigned char threadref[OPAQUETHREADBYTES];
1080
1081 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1082 protocol encoding, and remote.c. it is not particularly changable */
1083
1084 /* Right now, the internal structure is int. We want it to be bigger.
1085 Plan to fix this.
1086 */
1087
1088 typedef int gdb_threadref; /* internal GDB thread reference */
1089
1090 /* gdb_ext_thread_info is an internal GDB data structure which is
1091 equivalint to the reply of the remote threadinfo packet */
1092
1093 struct gdb_ext_thread_info
1094 {
1095 threadref threadid; /* External form of thread reference */
1096 int active; /* Has state interesting to GDB? , regs, stack */
1097 char display[256]; /* Brief state display, name, blocked/syspended */
1098 char shortname[32]; /* To be used to name threads */
1099 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1100 };
1101
1102 /* The volume of remote transfers can be limited by submitting
1103 a mask containing bits specifying the desired information.
1104 Use a union of these values as the 'selection' parameter to
1105 get_thread_info. FIXME: Make these TAG names more thread specific.
1106 */
1107
1108 #define TAG_THREADID 1
1109 #define TAG_EXISTS 2
1110 #define TAG_DISPLAY 4
1111 #define TAG_THREADNAME 8
1112 #define TAG_MOREDISPLAY 16
1113
1114 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1115
1116 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1117
1118 static char *unpack_nibble (char *buf, int *val);
1119
1120 static char *pack_nibble (char *buf, int nibble);
1121
1122 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1123
1124 static char *unpack_byte (char *buf, int *value);
1125
1126 static char *pack_int (char *buf, int value);
1127
1128 static char *unpack_int (char *buf, int *value);
1129
1130 static char *unpack_string (char *src, char *dest, int length);
1131
1132 static char *pack_threadid (char *pkt, threadref * id);
1133
1134 static char *unpack_threadid (char *inbuf, threadref * id);
1135
1136 void int_to_threadref (threadref * id, int value);
1137
1138 static int threadref_to_int (threadref * ref);
1139
1140 static void copy_threadref (threadref * dest, threadref * src);
1141
1142 static int threadmatch (threadref * dest, threadref * src);
1143
1144 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1145
1146 static int remote_unpack_thread_info_response (char *pkt,
1147 threadref * expectedref,
1148 struct gdb_ext_thread_info
1149 *info);
1150
1151
1152 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1153 struct gdb_ext_thread_info *info);
1154
1155 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1156 int selection,
1157 struct gdb_ext_thread_info *info);
1158
1159 static char *pack_threadlist_request (char *pkt, int startflag,
1160 int threadcount,
1161 threadref * nextthread);
1162
1163 static int parse_threadlist_response (char *pkt,
1164 int result_limit,
1165 threadref * original_echo,
1166 threadref * resultlist, int *doneflag);
1167
1168 static int remote_get_threadlist (int startflag,
1169 threadref * nextthread,
1170 int result_limit,
1171 int *done,
1172 int *result_count, threadref * threadlist);
1173
1174 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1175
1176 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1177 void *context, int looplimit);
1178
1179 static int remote_newthread_step (threadref * ref, void *context);
1180
1181 /* encode 64 bits in 16 chars of hex */
1182
1183 static const char hexchars[] = "0123456789abcdef";
1184
1185 static int
1186 ishex (int ch, int *val)
1187 {
1188 if ((ch >= 'a') && (ch <= 'f'))
1189 {
1190 *val = ch - 'a' + 10;
1191 return 1;
1192 }
1193 if ((ch >= 'A') && (ch <= 'F'))
1194 {
1195 *val = ch - 'A' + 10;
1196 return 1;
1197 }
1198 if ((ch >= '0') && (ch <= '9'))
1199 {
1200 *val = ch - '0';
1201 return 1;
1202 }
1203 return 0;
1204 }
1205
1206 static int
1207 stubhex (int ch)
1208 {
1209 if (ch >= 'a' && ch <= 'f')
1210 return ch - 'a' + 10;
1211 if (ch >= '0' && ch <= '9')
1212 return ch - '0';
1213 if (ch >= 'A' && ch <= 'F')
1214 return ch - 'A' + 10;
1215 return -1;
1216 }
1217
1218 static int
1219 stub_unpack_int (char *buff, int fieldlength)
1220 {
1221 int nibble;
1222 int retval = 0;
1223
1224 while (fieldlength)
1225 {
1226 nibble = stubhex (*buff++);
1227 retval |= nibble;
1228 fieldlength--;
1229 if (fieldlength)
1230 retval = retval << 4;
1231 }
1232 return retval;
1233 }
1234
1235 char *
1236 unpack_varlen_hex (char *buff, /* packet to parse */
1237 ULONGEST *result)
1238 {
1239 int nibble;
1240 int retval = 0;
1241
1242 while (ishex (*buff, &nibble))
1243 {
1244 buff++;
1245 retval = retval << 4;
1246 retval |= nibble & 0x0f;
1247 }
1248 *result = retval;
1249 return buff;
1250 }
1251
1252 static char *
1253 unpack_nibble (char *buf, int *val)
1254 {
1255 ishex (*buf++, val);
1256 return buf;
1257 }
1258
1259 static char *
1260 pack_nibble (char *buf, int nibble)
1261 {
1262 *buf++ = hexchars[(nibble & 0x0f)];
1263 return buf;
1264 }
1265
1266 static char *
1267 pack_hex_byte (char *pkt, int byte)
1268 {
1269 *pkt++ = hexchars[(byte >> 4) & 0xf];
1270 *pkt++ = hexchars[(byte & 0xf)];
1271 return pkt;
1272 }
1273
1274 static char *
1275 unpack_byte (char *buf, int *value)
1276 {
1277 *value = stub_unpack_int (buf, 2);
1278 return buf + 2;
1279 }
1280
1281 static char *
1282 pack_int (char *buf, int value)
1283 {
1284 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1285 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1286 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1287 buf = pack_hex_byte (buf, (value & 0xff));
1288 return buf;
1289 }
1290
1291 static char *
1292 unpack_int (char *buf, int *value)
1293 {
1294 *value = stub_unpack_int (buf, 8);
1295 return buf + 8;
1296 }
1297
1298 #if 0 /* currently unused, uncomment when needed */
1299 static char *pack_string (char *pkt, char *string);
1300
1301 static char *
1302 pack_string (char *pkt, char *string)
1303 {
1304 char ch;
1305 int len;
1306
1307 len = strlen (string);
1308 if (len > 200)
1309 len = 200; /* Bigger than most GDB packets, junk??? */
1310 pkt = pack_hex_byte (pkt, len);
1311 while (len-- > 0)
1312 {
1313 ch = *string++;
1314 if ((ch == '\0') || (ch == '#'))
1315 ch = '*'; /* Protect encapsulation */
1316 *pkt++ = ch;
1317 }
1318 return pkt;
1319 }
1320 #endif /* 0 (unused) */
1321
1322 static char *
1323 unpack_string (char *src, char *dest, int length)
1324 {
1325 while (length--)
1326 *dest++ = *src++;
1327 *dest = '\0';
1328 return src;
1329 }
1330
1331 static char *
1332 pack_threadid (char *pkt, threadref *id)
1333 {
1334 char *limit;
1335 unsigned char *altid;
1336
1337 altid = (unsigned char *) id;
1338 limit = pkt + BUF_THREAD_ID_SIZE;
1339 while (pkt < limit)
1340 pkt = pack_hex_byte (pkt, *altid++);
1341 return pkt;
1342 }
1343
1344
1345 static char *
1346 unpack_threadid (char *inbuf, threadref *id)
1347 {
1348 char *altref;
1349 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1350 int x, y;
1351
1352 altref = (char *) id;
1353
1354 while (inbuf < limit)
1355 {
1356 x = stubhex (*inbuf++);
1357 y = stubhex (*inbuf++);
1358 *altref++ = (x << 4) | y;
1359 }
1360 return inbuf;
1361 }
1362
1363 /* Externally, threadrefs are 64 bits but internally, they are still
1364 ints. This is due to a mismatch of specifications. We would like
1365 to use 64bit thread references internally. This is an adapter
1366 function. */
1367
1368 void
1369 int_to_threadref (threadref *id, int value)
1370 {
1371 unsigned char *scan;
1372
1373 scan = (unsigned char *) id;
1374 {
1375 int i = 4;
1376 while (i--)
1377 *scan++ = 0;
1378 }
1379 *scan++ = (value >> 24) & 0xff;
1380 *scan++ = (value >> 16) & 0xff;
1381 *scan++ = (value >> 8) & 0xff;
1382 *scan++ = (value & 0xff);
1383 }
1384
1385 static int
1386 threadref_to_int (threadref *ref)
1387 {
1388 int i, value = 0;
1389 unsigned char *scan;
1390
1391 scan = (char *) ref;
1392 scan += 4;
1393 i = 4;
1394 while (i-- > 0)
1395 value = (value << 8) | ((*scan++) & 0xff);
1396 return value;
1397 }
1398
1399 static void
1400 copy_threadref (threadref *dest, threadref *src)
1401 {
1402 int i;
1403 unsigned char *csrc, *cdest;
1404
1405 csrc = (unsigned char *) src;
1406 cdest = (unsigned char *) dest;
1407 i = 8;
1408 while (i--)
1409 *cdest++ = *csrc++;
1410 }
1411
1412 static int
1413 threadmatch (threadref *dest, threadref *src)
1414 {
1415 /* things are broken right now, so just assume we got a match */
1416 #if 0
1417 unsigned char *srcp, *destp;
1418 int i, result;
1419 srcp = (char *) src;
1420 destp = (char *) dest;
1421
1422 result = 1;
1423 while (i-- > 0)
1424 result &= (*srcp++ == *destp++) ? 1 : 0;
1425 return result;
1426 #endif
1427 return 1;
1428 }
1429
1430 /*
1431 threadid:1, # always request threadid
1432 context_exists:2,
1433 display:4,
1434 unique_name:8,
1435 more_display:16
1436 */
1437
1438 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1439
1440 static char *
1441 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1442 {
1443 *pkt++ = 'q'; /* Info Query */
1444 *pkt++ = 'P'; /* process or thread info */
1445 pkt = pack_int (pkt, mode); /* mode */
1446 pkt = pack_threadid (pkt, id); /* threadid */
1447 *pkt = '\0'; /* terminate */
1448 return pkt;
1449 }
1450
1451 /* These values tag the fields in a thread info response packet */
1452 /* Tagging the fields allows us to request specific fields and to
1453 add more fields as time goes by */
1454
1455 #define TAG_THREADID 1 /* Echo the thread identifier */
1456 #define TAG_EXISTS 2 /* Is this process defined enough to
1457 fetch registers and its stack */
1458 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1459 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1460 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1461 the process */
1462
1463 static int
1464 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1465 struct gdb_ext_thread_info *info)
1466 {
1467 struct remote_state *rs = get_remote_state ();
1468 int mask, length;
1469 unsigned int tag;
1470 threadref ref;
1471 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1472 int retval = 1;
1473
1474 /* info->threadid = 0; FIXME: implement zero_threadref */
1475 info->active = 0;
1476 info->display[0] = '\0';
1477 info->shortname[0] = '\0';
1478 info->more_display[0] = '\0';
1479
1480 /* Assume the characters indicating the packet type have been stripped */
1481 pkt = unpack_int (pkt, &mask); /* arg mask */
1482 pkt = unpack_threadid (pkt, &ref);
1483
1484 if (mask == 0)
1485 warning ("Incomplete response to threadinfo request\n");
1486 if (!threadmatch (&ref, expectedref))
1487 { /* This is an answer to a different request */
1488 warning ("ERROR RMT Thread info mismatch\n");
1489 return 0;
1490 }
1491 copy_threadref (&info->threadid, &ref);
1492
1493 /* Loop on tagged fields , try to bail if somthing goes wrong */
1494
1495 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1496 {
1497 pkt = unpack_int (pkt, &tag); /* tag */
1498 pkt = unpack_byte (pkt, &length); /* length */
1499 if (!(tag & mask)) /* tags out of synch with mask */
1500 {
1501 warning ("ERROR RMT: threadinfo tag mismatch\n");
1502 retval = 0;
1503 break;
1504 }
1505 if (tag == TAG_THREADID)
1506 {
1507 if (length != 16)
1508 {
1509 warning ("ERROR RMT: length of threadid is not 16\n");
1510 retval = 0;
1511 break;
1512 }
1513 pkt = unpack_threadid (pkt, &ref);
1514 mask = mask & ~TAG_THREADID;
1515 continue;
1516 }
1517 if (tag == TAG_EXISTS)
1518 {
1519 info->active = stub_unpack_int (pkt, length);
1520 pkt += length;
1521 mask = mask & ~(TAG_EXISTS);
1522 if (length > 8)
1523 {
1524 warning ("ERROR RMT: 'exists' length too long\n");
1525 retval = 0;
1526 break;
1527 }
1528 continue;
1529 }
1530 if (tag == TAG_THREADNAME)
1531 {
1532 pkt = unpack_string (pkt, &info->shortname[0], length);
1533 mask = mask & ~TAG_THREADNAME;
1534 continue;
1535 }
1536 if (tag == TAG_DISPLAY)
1537 {
1538 pkt = unpack_string (pkt, &info->display[0], length);
1539 mask = mask & ~TAG_DISPLAY;
1540 continue;
1541 }
1542 if (tag == TAG_MOREDISPLAY)
1543 {
1544 pkt = unpack_string (pkt, &info->more_display[0], length);
1545 mask = mask & ~TAG_MOREDISPLAY;
1546 continue;
1547 }
1548 warning ("ERROR RMT: unknown thread info tag\n");
1549 break; /* Not a tag we know about */
1550 }
1551 return retval;
1552 }
1553
1554 static int
1555 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int result;
1560 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1561
1562 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1563 putpkt (threadinfo_pkt);
1564 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1565 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1566 info);
1567 return result;
1568 }
1569
1570 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1571 representation of a threadid. */
1572
1573 static int
1574 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1575 struct gdb_ext_thread_info *info)
1576 {
1577 threadref lclref;
1578
1579 int_to_threadref (&lclref, *ref);
1580 return remote_get_threadinfo (&lclref, selection, info);
1581 }
1582
1583 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1584
1585 static char *
1586 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1587 threadref *nextthread)
1588 {
1589 *pkt++ = 'q'; /* info query packet */
1590 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1591 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1592 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1593 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1594 *pkt = '\0';
1595 return pkt;
1596 }
1597
1598 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1599
1600 static int
1601 parse_threadlist_response (char *pkt, int result_limit,
1602 threadref *original_echo, threadref *resultlist,
1603 int *doneflag)
1604 {
1605 struct remote_state *rs = get_remote_state ();
1606 char *limit;
1607 int count, resultcount, done;
1608
1609 resultcount = 0;
1610 /* Assume the 'q' and 'M chars have been stripped. */
1611 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1612 pkt = unpack_byte (pkt, &count); /* count field */
1613 pkt = unpack_nibble (pkt, &done);
1614 /* The first threadid is the argument threadid. */
1615 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1616 while ((count-- > 0) && (pkt < limit))
1617 {
1618 pkt = unpack_threadid (pkt, resultlist++);
1619 if (resultcount++ >= result_limit)
1620 break;
1621 }
1622 if (doneflag)
1623 *doneflag = done;
1624 return resultcount;
1625 }
1626
1627 static int
1628 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1629 int *done, int *result_count, threadref *threadlist)
1630 {
1631 struct remote_state *rs = get_remote_state ();
1632 static threadref echo_nextthread;
1633 char *threadlist_packet = alloca (rs->remote_packet_size);
1634 char *t_response = alloca (rs->remote_packet_size);
1635 int result = 1;
1636
1637 /* Trancate result limit to be smaller than the packet size */
1638 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1639 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1640
1641 pack_threadlist_request (threadlist_packet,
1642 startflag, result_limit, nextthread);
1643 putpkt (threadlist_packet);
1644 getpkt (t_response, (rs->remote_packet_size), 0);
1645
1646 *result_count =
1647 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1648 threadlist, done);
1649
1650 if (!threadmatch (&echo_nextthread, nextthread))
1651 {
1652 /* FIXME: This is a good reason to drop the packet */
1653 /* Possably, there is a duplicate response */
1654 /* Possabilities :
1655 retransmit immediatly - race conditions
1656 retransmit after timeout - yes
1657 exit
1658 wait for packet, then exit
1659 */
1660 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1661 return 0; /* I choose simply exiting */
1662 }
1663 if (*result_count <= 0)
1664 {
1665 if (*done != 1)
1666 {
1667 warning ("RMT ERROR : failed to get remote thread list\n");
1668 result = 0;
1669 }
1670 return result; /* break; */
1671 }
1672 if (*result_count > result_limit)
1673 {
1674 *result_count = 0;
1675 warning ("RMT ERROR: threadlist response longer than requested\n");
1676 return 0;
1677 }
1678 return result;
1679 }
1680
1681 /* This is the interface between remote and threads, remotes upper interface */
1682
1683 /* remote_find_new_threads retrieves the thread list and for each
1684 thread in the list, looks up the thread in GDB's internal list,
1685 ading the thread if it does not already exist. This involves
1686 getting partial thread lists from the remote target so, polling the
1687 quit_flag is required. */
1688
1689
1690 /* About this many threadisds fit in a packet. */
1691
1692 #define MAXTHREADLISTRESULTS 32
1693
1694 static int
1695 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1696 int looplimit)
1697 {
1698 int done, i, result_count;
1699 int startflag = 1;
1700 int result = 1;
1701 int loopcount = 0;
1702 static threadref nextthread;
1703 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1704
1705 done = 0;
1706 while (!done)
1707 {
1708 if (loopcount++ > looplimit)
1709 {
1710 result = 0;
1711 warning ("Remote fetch threadlist -infinite loop-\n");
1712 break;
1713 }
1714 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1715 &done, &result_count, resultthreadlist))
1716 {
1717 result = 0;
1718 break;
1719 }
1720 /* clear for later iterations */
1721 startflag = 0;
1722 /* Setup to resume next batch of thread references, set nextthread. */
1723 if (result_count >= 1)
1724 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1725 i = 0;
1726 while (result_count--)
1727 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1728 break;
1729 }
1730 return result;
1731 }
1732
1733 static int
1734 remote_newthread_step (threadref *ref, void *context)
1735 {
1736 ptid_t ptid;
1737
1738 ptid = pid_to_ptid (threadref_to_int (ref));
1739
1740 if (!in_thread_list (ptid))
1741 add_thread (ptid);
1742 return 1; /* continue iterator */
1743 }
1744
1745 #define CRAZY_MAX_THREADS 1000
1746
1747 static ptid_t
1748 remote_current_thread (ptid_t oldpid)
1749 {
1750 struct remote_state *rs = get_remote_state ();
1751 char *buf = alloca (rs->remote_packet_size);
1752
1753 putpkt ("qC");
1754 getpkt (buf, (rs->remote_packet_size), 0);
1755 if (buf[0] == 'Q' && buf[1] == 'C')
1756 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1757 else
1758 return oldpid;
1759 }
1760
1761 /* Find new threads for info threads command.
1762 * Original version, using John Metzler's thread protocol.
1763 */
1764
1765 static void
1766 remote_find_new_threads (void)
1767 {
1768 remote_threadlist_iterator (remote_newthread_step, 0,
1769 CRAZY_MAX_THREADS);
1770 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1771 inferior_ptid = remote_current_thread (inferior_ptid);
1772 }
1773
1774 /*
1775 * Find all threads for info threads command.
1776 * Uses new thread protocol contributed by Cisco.
1777 * Falls back and attempts to use the older method (above)
1778 * if the target doesn't respond to the new method.
1779 */
1780
1781 static void
1782 remote_threads_info (void)
1783 {
1784 struct remote_state *rs = get_remote_state ();
1785 char *buf = alloca (rs->remote_packet_size);
1786 char *bufp;
1787 int tid;
1788
1789 if (remote_desc == 0) /* paranoia */
1790 error ("Command can only be used when connected to the remote target.");
1791
1792 if (use_threadinfo_query)
1793 {
1794 putpkt ("qfThreadInfo");
1795 bufp = buf;
1796 getpkt (bufp, (rs->remote_packet_size), 0);
1797 if (bufp[0] != '\0') /* q packet recognized */
1798 {
1799 while (*bufp++ == 'm') /* reply contains one or more TID */
1800 {
1801 do
1802 {
1803 tid = strtol (bufp, &bufp, 16);
1804 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1805 add_thread (pid_to_ptid (tid));
1806 }
1807 while (*bufp++ == ','); /* comma-separated list */
1808 putpkt ("qsThreadInfo");
1809 bufp = buf;
1810 getpkt (bufp, (rs->remote_packet_size), 0);
1811 }
1812 return; /* done */
1813 }
1814 }
1815
1816 /* Else fall back to old method based on jmetzler protocol. */
1817 use_threadinfo_query = 0;
1818 remote_find_new_threads ();
1819 return;
1820 }
1821
1822 /*
1823 * Collect a descriptive string about the given thread.
1824 * The target may say anything it wants to about the thread
1825 * (typically info about its blocked / runnable state, name, etc.).
1826 * This string will appear in the info threads display.
1827 *
1828 * Optional: targets are not required to implement this function.
1829 */
1830
1831 static char *
1832 remote_threads_extra_info (struct thread_info *tp)
1833 {
1834 struct remote_state *rs = get_remote_state ();
1835 int result;
1836 int set;
1837 threadref id;
1838 struct gdb_ext_thread_info threadinfo;
1839 static char display_buf[100]; /* arbitrary... */
1840 char *bufp = alloca (rs->remote_packet_size);
1841 int n = 0; /* position in display_buf */
1842
1843 if (remote_desc == 0) /* paranoia */
1844 internal_error (__FILE__, __LINE__,
1845 "remote_threads_extra_info");
1846
1847 if (use_threadextra_query)
1848 {
1849 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1850 putpkt (bufp);
1851 getpkt (bufp, (rs->remote_packet_size), 0);
1852 if (bufp[0] != 0)
1853 {
1854 n = min (strlen (bufp) / 2, sizeof (display_buf));
1855 result = hex2bin (bufp, display_buf, n);
1856 display_buf [result] = '\0';
1857 return display_buf;
1858 }
1859 }
1860
1861 /* If the above query fails, fall back to the old method. */
1862 use_threadextra_query = 0;
1863 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1864 | TAG_MOREDISPLAY | TAG_DISPLAY;
1865 int_to_threadref (&id, PIDGET (tp->ptid));
1866 if (remote_get_threadinfo (&id, set, &threadinfo))
1867 if (threadinfo.active)
1868 {
1869 if (*threadinfo.shortname)
1870 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1871 if (*threadinfo.display)
1872 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1873 if (*threadinfo.more_display)
1874 n += sprintf(&display_buf[n], " Priority: %s",
1875 threadinfo.more_display);
1876
1877 if (n > 0)
1878 {
1879 /* for purely cosmetic reasons, clear up trailing commas */
1880 if (',' == display_buf[n-1])
1881 display_buf[n-1] = ' ';
1882 return display_buf;
1883 }
1884 }
1885 return NULL;
1886 }
1887
1888 \f
1889
1890 /* Restart the remote side; this is an extended protocol operation. */
1891
1892 static void
1893 extended_remote_restart (void)
1894 {
1895 struct remote_state *rs = get_remote_state ();
1896 char *buf = alloca (rs->remote_packet_size);
1897
1898 /* Send the restart command; for reasons I don't understand the
1899 remote side really expects a number after the "R". */
1900 buf[0] = 'R';
1901 sprintf (&buf[1], "%x", 0);
1902 putpkt (buf);
1903
1904 /* Now query for status so this looks just like we restarted
1905 gdbserver from scratch. */
1906 putpkt ("?");
1907 getpkt (buf, (rs->remote_packet_size), 0);
1908 }
1909 \f
1910 /* Clean up connection to a remote debugger. */
1911
1912 /* ARGSUSED */
1913 static void
1914 remote_close (int quitting)
1915 {
1916 if (remote_desc)
1917 serial_close (remote_desc);
1918 remote_desc = NULL;
1919 }
1920
1921 /* Query the remote side for the text, data and bss offsets. */
1922
1923 static void
1924 get_offsets (void)
1925 {
1926 struct remote_state *rs = get_remote_state ();
1927 char *buf = alloca (rs->remote_packet_size);
1928 char *ptr;
1929 int lose;
1930 CORE_ADDR text_addr, data_addr, bss_addr;
1931 struct section_offsets *offs;
1932
1933 putpkt ("qOffsets");
1934
1935 getpkt (buf, (rs->remote_packet_size), 0);
1936
1937 if (buf[0] == '\000')
1938 return; /* Return silently. Stub doesn't support
1939 this command. */
1940 if (buf[0] == 'E')
1941 {
1942 warning ("Remote failure reply: %s", buf);
1943 return;
1944 }
1945
1946 /* Pick up each field in turn. This used to be done with scanf, but
1947 scanf will make trouble if CORE_ADDR size doesn't match
1948 conversion directives correctly. The following code will work
1949 with any size of CORE_ADDR. */
1950 text_addr = data_addr = bss_addr = 0;
1951 ptr = buf;
1952 lose = 0;
1953
1954 if (strncmp (ptr, "Text=", 5) == 0)
1955 {
1956 ptr += 5;
1957 /* Don't use strtol, could lose on big values. */
1958 while (*ptr && *ptr != ';')
1959 text_addr = (text_addr << 4) + fromhex (*ptr++);
1960 }
1961 else
1962 lose = 1;
1963
1964 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1965 {
1966 ptr += 6;
1967 while (*ptr && *ptr != ';')
1968 data_addr = (data_addr << 4) + fromhex (*ptr++);
1969 }
1970 else
1971 lose = 1;
1972
1973 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1974 {
1975 ptr += 5;
1976 while (*ptr && *ptr != ';')
1977 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1978 }
1979 else
1980 lose = 1;
1981
1982 if (lose)
1983 error ("Malformed response to offset query, %s", buf);
1984
1985 if (symfile_objfile == NULL)
1986 return;
1987
1988 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1989 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1990
1991 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1992
1993 /* This is a temporary kludge to force data and bss to use the same offsets
1994 because that's what nlmconv does now. The real solution requires changes
1995 to the stub and remote.c that I don't have time to do right now. */
1996
1997 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1998 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1999
2000 objfile_relocate (symfile_objfile, offs);
2001 }
2002
2003 /*
2004 * Cisco version of section offsets:
2005 *
2006 * Instead of having GDB query the target for the section offsets,
2007 * Cisco lets the target volunteer the information! It's also in
2008 * a different format, so here are the functions that will decode
2009 * a section offset packet from a Cisco target.
2010 */
2011
2012 /*
2013 * Function: remote_cisco_section_offsets
2014 *
2015 * Returns: zero for success, non-zero for failure
2016 */
2017
2018 static int
2019 remote_cisco_section_offsets (bfd_vma text_addr,
2020 bfd_vma data_addr,
2021 bfd_vma bss_addr,
2022 bfd_signed_vma *text_offs,
2023 bfd_signed_vma *data_offs,
2024 bfd_signed_vma *bss_offs)
2025 {
2026 bfd_vma text_base, data_base, bss_base;
2027 struct minimal_symbol *start;
2028 asection *sect;
2029 bfd *abfd;
2030 int len;
2031
2032 if (symfile_objfile == NULL)
2033 return -1; /* no can do nothin' */
2034
2035 start = lookup_minimal_symbol ("_start", NULL, NULL);
2036 if (start == NULL)
2037 return -1; /* Can't find "_start" symbol */
2038
2039 data_base = bss_base = 0;
2040 text_base = SYMBOL_VALUE_ADDRESS (start);
2041
2042 abfd = symfile_objfile->obfd;
2043 for (sect = abfd->sections;
2044 sect != 0;
2045 sect = sect->next)
2046 {
2047 const char *p = bfd_get_section_name (abfd, sect);
2048 len = strlen (p);
2049 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2050 if (data_base == 0 ||
2051 data_base > bfd_get_section_vma (abfd, sect))
2052 data_base = bfd_get_section_vma (abfd, sect);
2053 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2054 if (bss_base == 0 ||
2055 bss_base > bfd_get_section_vma (abfd, sect))
2056 bss_base = bfd_get_section_vma (abfd, sect);
2057 }
2058 *text_offs = text_addr - text_base;
2059 *data_offs = data_addr - data_base;
2060 *bss_offs = bss_addr - bss_base;
2061 if (remote_debug)
2062 {
2063 char tmp[128];
2064
2065 sprintf (tmp, "VMA: text = 0x");
2066 sprintf_vma (tmp + strlen (tmp), text_addr);
2067 sprintf (tmp + strlen (tmp), " data = 0x");
2068 sprintf_vma (tmp + strlen (tmp), data_addr);
2069 sprintf (tmp + strlen (tmp), " bss = 0x");
2070 sprintf_vma (tmp + strlen (tmp), bss_addr);
2071 fprintf_filtered (gdb_stdlog, tmp);
2072 fprintf_filtered (gdb_stdlog,
2073 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2074 paddr_nz (*text_offs),
2075 paddr_nz (*data_offs),
2076 paddr_nz (*bss_offs));
2077 }
2078
2079 return 0;
2080 }
2081
2082 /*
2083 * Function: remote_cisco_objfile_relocate
2084 *
2085 * Relocate the symbol file for a remote target.
2086 */
2087
2088 void
2089 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2090 bfd_signed_vma bss_off)
2091 {
2092 struct section_offsets *offs;
2093
2094 if (text_off != 0 || data_off != 0 || bss_off != 0)
2095 {
2096 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2097 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2098 simple canonical representation for this stuff. */
2099
2100 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2101 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2102
2103 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2104 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2105 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2106
2107 /* First call the standard objfile_relocate. */
2108 objfile_relocate (symfile_objfile, offs);
2109
2110 /* Now we need to fix up the section entries already attached to
2111 the exec target. These entries will control memory transfers
2112 from the exec file. */
2113
2114 exec_set_section_offsets (text_off, data_off, bss_off);
2115 }
2116 }
2117
2118 /* Stub for catch_errors. */
2119
2120 static int
2121 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2122 {
2123 start_remote (); /* Initialize gdb process mechanisms */
2124 /* NOTE: Return something >=0. A -ve value is reserved for
2125 catch_exceptions. */
2126 return 1;
2127 }
2128
2129 static int
2130 remote_start_remote (struct ui_out *uiout, void *dummy)
2131 {
2132 immediate_quit++; /* Allow user to interrupt it */
2133
2134 /* Ack any packet which the remote side has already sent. */
2135 serial_write (remote_desc, "+", 1);
2136
2137 /* Let the stub know that we want it to return the thread. */
2138 set_thread (-1, 0);
2139
2140 inferior_ptid = remote_current_thread (inferior_ptid);
2141
2142 get_offsets (); /* Get text, data & bss offsets */
2143
2144 putpkt ("?"); /* initiate a query from remote machine */
2145 immediate_quit--;
2146
2147 /* NOTE: See comment above in remote_start_remote_dummy(). This
2148 function returns something >=0. */
2149 return remote_start_remote_dummy (uiout, dummy);
2150 }
2151
2152 /* Open a connection to a remote debugger.
2153 NAME is the filename used for communication. */
2154
2155 static void
2156 remote_open (char *name, int from_tty)
2157 {
2158 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2159 }
2160
2161 /* Just like remote_open, but with asynchronous support. */
2162 static void
2163 remote_async_open (char *name, int from_tty)
2164 {
2165 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2166 }
2167
2168 /* Open a connection to a remote debugger using the extended
2169 remote gdb protocol. NAME is the filename used for communication. */
2170
2171 static void
2172 extended_remote_open (char *name, int from_tty)
2173 {
2174 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2175 0 /* async_p */);
2176 }
2177
2178 /* Just like extended_remote_open, but with asynchronous support. */
2179 static void
2180 extended_remote_async_open (char *name, int from_tty)
2181 {
2182 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2183 1 /*extended_p */, 1 /* async_p */);
2184 }
2185
2186 /* Generic code for opening a connection to a remote target. */
2187
2188 static void
2189 init_all_packet_configs (void)
2190 {
2191 int i;
2192 update_packet_config (&remote_protocol_e);
2193 update_packet_config (&remote_protocol_E);
2194 update_packet_config (&remote_protocol_P);
2195 update_packet_config (&remote_protocol_qSymbol);
2196 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2197 update_packet_config (&remote_protocol_Z[i]);
2198 /* Force remote_write_bytes to check whether target supports binary
2199 downloading. */
2200 update_packet_config (&remote_protocol_binary_download);
2201 }
2202
2203 /* Symbol look-up. */
2204
2205 static void
2206 remote_check_symbols (struct objfile *objfile)
2207 {
2208 struct remote_state *rs = get_remote_state ();
2209 char *msg, *reply, *tmp;
2210 struct minimal_symbol *sym;
2211 int end;
2212
2213 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2214 return;
2215
2216 msg = alloca (rs->remote_packet_size);
2217 reply = alloca (rs->remote_packet_size);
2218
2219 /* Invite target to request symbol lookups. */
2220
2221 putpkt ("qSymbol::");
2222 getpkt (reply, (rs->remote_packet_size), 0);
2223 packet_ok (reply, &remote_protocol_qSymbol);
2224
2225 while (strncmp (reply, "qSymbol:", 8) == 0)
2226 {
2227 tmp = &reply[8];
2228 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2229 msg[end] = '\0';
2230 sym = lookup_minimal_symbol (msg, NULL, NULL);
2231 if (sym == NULL)
2232 sprintf (msg, "qSymbol::%s", &reply[8]);
2233 else
2234 sprintf (msg, "qSymbol:%s:%s",
2235 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2236 &reply[8]);
2237 putpkt (msg);
2238 getpkt (reply, (rs->remote_packet_size), 0);
2239 }
2240 }
2241
2242 static struct serial *
2243 remote_serial_open (char *name)
2244 {
2245 static int udp_warning = 0;
2246
2247 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2248 of in ser-tcp.c, because it is the remote protocol assuming that the
2249 serial connection is reliable and not the serial connection promising
2250 to be. */
2251 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2252 {
2253 warning ("The remote protocol may be unreliable over UDP.");
2254 warning ("Some events may be lost, rendering further debugging "
2255 "impossible.");
2256 udp_warning = 1;
2257 }
2258
2259 return serial_open (name);
2260 }
2261
2262 static void
2263 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2264 int extended_p, int async_p)
2265 {
2266 int ex;
2267 struct remote_state *rs = get_remote_state ();
2268 if (name == 0)
2269 error ("To open a remote debug connection, you need to specify what\n"
2270 "serial device is attached to the remote system\n"
2271 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2272
2273 /* See FIXME above */
2274 if (!async_p)
2275 wait_forever_enabled_p = 1;
2276
2277 target_preopen (from_tty);
2278
2279 unpush_target (target);
2280
2281 remote_desc = remote_serial_open (name);
2282 if (!remote_desc)
2283 perror_with_name (name);
2284
2285 if (baud_rate != -1)
2286 {
2287 if (serial_setbaudrate (remote_desc, baud_rate))
2288 {
2289 serial_close (remote_desc);
2290 perror_with_name (name);
2291 }
2292 }
2293
2294 serial_raw (remote_desc);
2295
2296 /* If there is something sitting in the buffer we might take it as a
2297 response to a command, which would be bad. */
2298 serial_flush_input (remote_desc);
2299
2300 if (from_tty)
2301 {
2302 puts_filtered ("Remote debugging using ");
2303 puts_filtered (name);
2304 puts_filtered ("\n");
2305 }
2306 push_target (target); /* Switch to using remote target now */
2307
2308 init_all_packet_configs ();
2309
2310 general_thread = -2;
2311 continue_thread = -2;
2312
2313 /* Probe for ability to use "ThreadInfo" query, as required. */
2314 use_threadinfo_query = 1;
2315 use_threadextra_query = 1;
2316
2317 /* Without this, some commands which require an active target (such
2318 as kill) won't work. This variable serves (at least) double duty
2319 as both the pid of the target process (if it has such), and as a
2320 flag indicating that a target is active. These functions should
2321 be split out into seperate variables, especially since GDB will
2322 someday have a notion of debugging several processes. */
2323
2324 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2325
2326 if (async_p)
2327 {
2328 /* With this target we start out by owning the terminal. */
2329 remote_async_terminal_ours_p = 1;
2330
2331 /* FIXME: cagney/1999-09-23: During the initial connection it is
2332 assumed that the target is already ready and able to respond to
2333 requests. Unfortunately remote_start_remote() eventually calls
2334 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2335 around this. Eventually a mechanism that allows
2336 wait_for_inferior() to expect/get timeouts will be
2337 implemented. */
2338 wait_forever_enabled_p = 0;
2339 }
2340
2341 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2342 /* First delete any symbols previously loaded from shared libraries. */
2343 no_shared_libraries (NULL, 0);
2344 #endif
2345
2346 /* Start the remote connection. If error() or QUIT, discard this
2347 target (we'd otherwise be in an inconsistent state) and then
2348 propogate the error on up the exception chain. This ensures that
2349 the caller doesn't stumble along blindly assuming that the
2350 function succeeded. The CLI doesn't have this problem but other
2351 UI's, such as MI do.
2352
2353 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2354 this function should return an error indication letting the
2355 caller restore the previous state. Unfortunatly the command
2356 ``target remote'' is directly wired to this function making that
2357 impossible. On a positive note, the CLI side of this problem has
2358 been fixed - the function set_cmd_context() makes it possible for
2359 all the ``target ....'' commands to share a common callback
2360 function. See cli-dump.c. */
2361 ex = catch_exceptions (uiout,
2362 remote_start_remote, NULL,
2363 "Couldn't establish connection to remote"
2364 " target\n",
2365 RETURN_MASK_ALL);
2366 if (ex < 0)
2367 {
2368 pop_target ();
2369 if (async_p)
2370 wait_forever_enabled_p = 1;
2371 throw_exception (ex);
2372 }
2373
2374 if (async_p)
2375 wait_forever_enabled_p = 1;
2376
2377 if (extended_p)
2378 {
2379 /* Tell the remote that we are using the extended protocol. */
2380 char *buf = alloca (rs->remote_packet_size);
2381 putpkt ("!");
2382 getpkt (buf, (rs->remote_packet_size), 0);
2383 }
2384 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2385 /* FIXME: need a master target_open vector from which all
2386 remote_opens can be called, so that stuff like this can
2387 go there. Failing that, the following code must be copied
2388 to the open function for any remote target that wants to
2389 support svr4 shared libraries. */
2390
2391 /* Set up to detect and load shared libraries. */
2392 if (exec_bfd) /* No use without an exec file. */
2393 {
2394 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2395 remote_check_symbols (symfile_objfile);
2396 }
2397 #endif
2398 }
2399
2400 /* This takes a program previously attached to and detaches it. After
2401 this is done, GDB can be used to debug some other program. We
2402 better not have left any breakpoints in the target program or it'll
2403 die when it hits one. */
2404
2405 static void
2406 remote_detach (char *args, int from_tty)
2407 {
2408 struct remote_state *rs = get_remote_state ();
2409 char *buf = alloca (rs->remote_packet_size);
2410
2411 if (args)
2412 error ("Argument given to \"detach\" when remotely debugging.");
2413
2414 /* Tell the remote target to detach. */
2415 strcpy (buf, "D");
2416 remote_send (buf, (rs->remote_packet_size));
2417
2418 target_mourn_inferior ();
2419 if (from_tty)
2420 puts_filtered ("Ending remote debugging.\n");
2421
2422 }
2423
2424 /* Same as remote_detach, but with async support. */
2425 static void
2426 remote_async_detach (char *args, int from_tty)
2427 {
2428 struct remote_state *rs = get_remote_state ();
2429 char *buf = alloca (rs->remote_packet_size);
2430
2431 if (args)
2432 error ("Argument given to \"detach\" when remotely debugging.");
2433
2434 /* Tell the remote target to detach. */
2435 strcpy (buf, "D");
2436 remote_send (buf, (rs->remote_packet_size));
2437
2438 /* Unregister the file descriptor from the event loop. */
2439 if (target_is_async_p ())
2440 serial_async (remote_desc, NULL, 0);
2441
2442 target_mourn_inferior ();
2443 if (from_tty)
2444 puts_filtered ("Ending remote debugging.\n");
2445 }
2446
2447 /* Convert hex digit A to a number. */
2448
2449 static int
2450 fromhex (int a)
2451 {
2452 if (a >= '0' && a <= '9')
2453 return a - '0';
2454 else if (a >= 'a' && a <= 'f')
2455 return a - 'a' + 10;
2456 else if (a >= 'A' && a <= 'F')
2457 return a - 'A' + 10;
2458 else
2459 error ("Reply contains invalid hex digit %d", a);
2460 }
2461
2462 static int
2463 hex2bin (const char *hex, char *bin, int count)
2464 {
2465 int i;
2466
2467 for (i = 0; i < count; i++)
2468 {
2469 if (hex[0] == 0 || hex[1] == 0)
2470 {
2471 /* Hex string is short, or of uneven length.
2472 Return the count that has been converted so far. */
2473 return i;
2474 }
2475 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2476 hex += 2;
2477 }
2478 return i;
2479 }
2480
2481 /* Convert number NIB to a hex digit. */
2482
2483 static int
2484 tohex (int nib)
2485 {
2486 if (nib < 10)
2487 return '0' + nib;
2488 else
2489 return 'a' + nib - 10;
2490 }
2491
2492 static int
2493 bin2hex (const char *bin, char *hex, int count)
2494 {
2495 int i;
2496 /* May use a length, or a nul-terminated string as input. */
2497 if (count == 0)
2498 count = strlen (bin);
2499
2500 for (i = 0; i < count; i++)
2501 {
2502 *hex++ = tohex ((*bin >> 4) & 0xf);
2503 *hex++ = tohex (*bin++ & 0xf);
2504 }
2505 *hex = 0;
2506 return i;
2507 }
2508 \f
2509 /* Tell the remote machine to resume. */
2510
2511 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2512
2513 static int last_sent_step;
2514
2515 static void
2516 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519 char *buf = alloca (rs->remote_packet_size);
2520 int pid = PIDGET (ptid);
2521 char *p;
2522
2523 if (pid == -1)
2524 set_thread (0, 0); /* run any thread */
2525 else
2526 set_thread (pid, 0); /* run this thread */
2527
2528 last_sent_signal = siggnal;
2529 last_sent_step = step;
2530
2531 /* A hook for when we need to do something at the last moment before
2532 resumption. */
2533 if (target_resume_hook)
2534 (*target_resume_hook) ();
2535
2536
2537 /* The s/S/c/C packets do not return status. So if the target does
2538 not support the S or C packets, the debug agent returns an empty
2539 string which is detected in remote_wait(). This protocol defect
2540 is fixed in the e/E packets. */
2541
2542 if (step && step_range_end)
2543 {
2544 /* If the target does not support the 'E' packet, we try the 'S'
2545 packet. Ideally we would fall back to the 'e' packet if that
2546 too is not supported. But that would require another copy of
2547 the code to issue the 'e' packet (and fall back to 's' if not
2548 supported) in remote_wait(). */
2549
2550 if (siggnal != TARGET_SIGNAL_0)
2551 {
2552 if (remote_protocol_E.support != PACKET_DISABLE)
2553 {
2554 p = buf;
2555 *p++ = 'E';
2556 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2557 *p++ = tohex (((int) siggnal) & 0xf);
2558 *p++ = ',';
2559 p += hexnumstr (p, (ULONGEST) step_range_start);
2560 *p++ = ',';
2561 p += hexnumstr (p, (ULONGEST) step_range_end);
2562 *p++ = 0;
2563
2564 putpkt (buf);
2565 getpkt (buf, (rs->remote_packet_size), 0);
2566
2567 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2568 return;
2569 }
2570 }
2571 else
2572 {
2573 if (remote_protocol_e.support != PACKET_DISABLE)
2574 {
2575 p = buf;
2576 *p++ = 'e';
2577 p += hexnumstr (p, (ULONGEST) step_range_start);
2578 *p++ = ',';
2579 p += hexnumstr (p, (ULONGEST) step_range_end);
2580 *p++ = 0;
2581
2582 putpkt (buf);
2583 getpkt (buf, (rs->remote_packet_size), 0);
2584
2585 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2586 return;
2587 }
2588 }
2589 }
2590
2591 if (siggnal != TARGET_SIGNAL_0)
2592 {
2593 buf[0] = step ? 'S' : 'C';
2594 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2595 buf[2] = tohex (((int) siggnal) & 0xf);
2596 buf[3] = '\0';
2597 }
2598 else
2599 strcpy (buf, step ? "s" : "c");
2600
2601 putpkt (buf);
2602 }
2603
2604 /* Same as remote_resume, but with async support. */
2605 static void
2606 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2607 {
2608 struct remote_state *rs = get_remote_state ();
2609 char *buf = alloca (rs->remote_packet_size);
2610 int pid = PIDGET (ptid);
2611 char *p;
2612
2613 if (pid == -1)
2614 set_thread (0, 0); /* run any thread */
2615 else
2616 set_thread (pid, 0); /* run this thread */
2617
2618 last_sent_signal = siggnal;
2619 last_sent_step = step;
2620
2621 /* A hook for when we need to do something at the last moment before
2622 resumption. */
2623 if (target_resume_hook)
2624 (*target_resume_hook) ();
2625
2626 /* The s/S/c/C packets do not return status. So if the target does
2627 not support the S or C packets, the debug agent returns an empty
2628 string which is detected in remote_wait(). This protocol defect
2629 is fixed in the e/E packets. */
2630
2631 if (step && step_range_end)
2632 {
2633 /* If the target does not support the 'E' packet, we try the 'S'
2634 packet. Ideally we would fall back to the 'e' packet if that
2635 too is not supported. But that would require another copy of
2636 the code to issue the 'e' packet (and fall back to 's' if not
2637 supported) in remote_wait(). */
2638
2639 if (siggnal != TARGET_SIGNAL_0)
2640 {
2641 if (remote_protocol_E.support != PACKET_DISABLE)
2642 {
2643 p = buf;
2644 *p++ = 'E';
2645 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2646 *p++ = tohex (((int) siggnal) & 0xf);
2647 *p++ = ',';
2648 p += hexnumstr (p, (ULONGEST) step_range_start);
2649 *p++ = ',';
2650 p += hexnumstr (p, (ULONGEST) step_range_end);
2651 *p++ = 0;
2652
2653 putpkt (buf);
2654 getpkt (buf, (rs->remote_packet_size), 0);
2655
2656 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2657 goto register_event_loop;
2658 }
2659 }
2660 else
2661 {
2662 if (remote_protocol_e.support != PACKET_DISABLE)
2663 {
2664 p = buf;
2665 *p++ = 'e';
2666 p += hexnumstr (p, (ULONGEST) step_range_start);
2667 *p++ = ',';
2668 p += hexnumstr (p, (ULONGEST) step_range_end);
2669 *p++ = 0;
2670
2671 putpkt (buf);
2672 getpkt (buf, (rs->remote_packet_size), 0);
2673
2674 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2675 goto register_event_loop;
2676 }
2677 }
2678 }
2679
2680 if (siggnal != TARGET_SIGNAL_0)
2681 {
2682 buf[0] = step ? 'S' : 'C';
2683 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2684 buf[2] = tohex ((int) siggnal & 0xf);
2685 buf[3] = '\0';
2686 }
2687 else
2688 strcpy (buf, step ? "s" : "c");
2689
2690 putpkt (buf);
2691
2692 register_event_loop:
2693 /* We are about to start executing the inferior, let's register it
2694 with the event loop. NOTE: this is the one place where all the
2695 execution commands end up. We could alternatively do this in each
2696 of the execution commands in infcmd.c.*/
2697 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2698 into infcmd.c in order to allow inferior function calls to work
2699 NOT asynchronously. */
2700 if (event_loop_p && target_can_async_p ())
2701 target_async (inferior_event_handler, 0);
2702 /* Tell the world that the target is now executing. */
2703 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2704 this? Instead, should the client of target just assume (for
2705 async targets) that the target is going to start executing? Is
2706 this information already found in the continuation block? */
2707 if (target_is_async_p ())
2708 target_executing = 1;
2709 }
2710 \f
2711
2712 /* Set up the signal handler for SIGINT, while the target is
2713 executing, ovewriting the 'regular' SIGINT signal handler. */
2714 static void
2715 initialize_sigint_signal_handler (void)
2716 {
2717 sigint_remote_token =
2718 create_async_signal_handler (async_remote_interrupt, NULL);
2719 signal (SIGINT, handle_remote_sigint);
2720 }
2721
2722 /* Signal handler for SIGINT, while the target is executing. */
2723 static void
2724 handle_remote_sigint (int sig)
2725 {
2726 signal (sig, handle_remote_sigint_twice);
2727 sigint_remote_twice_token =
2728 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2729 mark_async_signal_handler_wrapper (sigint_remote_token);
2730 }
2731
2732 /* Signal handler for SIGINT, installed after SIGINT has already been
2733 sent once. It will take effect the second time that the user sends
2734 a ^C. */
2735 static void
2736 handle_remote_sigint_twice (int sig)
2737 {
2738 signal (sig, handle_sigint);
2739 sigint_remote_twice_token =
2740 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2741 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2742 }
2743
2744 /* Perform the real interruption of the target execution, in response
2745 to a ^C. */
2746 static void
2747 async_remote_interrupt (gdb_client_data arg)
2748 {
2749 if (remote_debug)
2750 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2751
2752 target_stop ();
2753 }
2754
2755 /* Perform interrupt, if the first attempt did not succeed. Just give
2756 up on the target alltogether. */
2757 void
2758 async_remote_interrupt_twice (gdb_client_data arg)
2759 {
2760 if (remote_debug)
2761 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2762 /* Do something only if the target was not killed by the previous
2763 cntl-C. */
2764 if (target_executing)
2765 {
2766 interrupt_query ();
2767 signal (SIGINT, handle_remote_sigint);
2768 }
2769 }
2770
2771 /* Reinstall the usual SIGINT handlers, after the target has
2772 stopped. */
2773 static void
2774 cleanup_sigint_signal_handler (void *dummy)
2775 {
2776 signal (SIGINT, handle_sigint);
2777 if (sigint_remote_twice_token)
2778 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2779 if (sigint_remote_token)
2780 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2781 }
2782
2783 /* Send ^C to target to halt it. Target will respond, and send us a
2784 packet. */
2785 static void (*ofunc) (int);
2786
2787 /* The command line interface's stop routine. This function is installed
2788 as a signal handler for SIGINT. The first time a user requests a
2789 stop, we call remote_stop to send a break or ^C. If there is no
2790 response from the target (it didn't stop when the user requested it),
2791 we ask the user if he'd like to detach from the target. */
2792 static void
2793 remote_interrupt (int signo)
2794 {
2795 /* If this doesn't work, try more severe steps. */
2796 signal (signo, remote_interrupt_twice);
2797
2798 if (remote_debug)
2799 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2800
2801 target_stop ();
2802 }
2803
2804 /* The user typed ^C twice. */
2805
2806 static void
2807 remote_interrupt_twice (int signo)
2808 {
2809 signal (signo, ofunc);
2810 interrupt_query ();
2811 signal (signo, remote_interrupt);
2812 }
2813
2814 /* This is the generic stop called via the target vector. When a target
2815 interrupt is requested, either by the command line or the GUI, we
2816 will eventually end up here. */
2817 static void
2818 remote_stop (void)
2819 {
2820 /* Send a break or a ^C, depending on user preference. */
2821 if (remote_debug)
2822 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2823
2824 if (remote_break)
2825 serial_send_break (remote_desc);
2826 else
2827 serial_write (remote_desc, "\003", 1);
2828 }
2829
2830 /* Ask the user what to do when an interrupt is received. */
2831
2832 static void
2833 interrupt_query (void)
2834 {
2835 target_terminal_ours ();
2836
2837 if (query ("Interrupted while waiting for the program.\n\
2838 Give up (and stop debugging it)? "))
2839 {
2840 target_mourn_inferior ();
2841 throw_exception (RETURN_QUIT);
2842 }
2843
2844 target_terminal_inferior ();
2845 }
2846
2847 /* Enable/disable target terminal ownership. Most targets can use
2848 terminal groups to control terminal ownership. Remote targets are
2849 different in that explicit transfer of ownership to/from GDB/target
2850 is required. */
2851
2852 static void
2853 remote_async_terminal_inferior (void)
2854 {
2855 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2856 sync_execution here. This function should only be called when
2857 GDB is resuming the inferior in the forground. A background
2858 resume (``run&'') should leave GDB in control of the terminal and
2859 consequently should not call this code. */
2860 if (!sync_execution)
2861 return;
2862 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2863 calls target_terminal_*() idenpotent. The event-loop GDB talking
2864 to an asynchronous target with a synchronous command calls this
2865 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2866 stops trying to transfer the terminal to the target when it
2867 shouldn't this guard can go away. */
2868 if (!remote_async_terminal_ours_p)
2869 return;
2870 delete_file_handler (input_fd);
2871 remote_async_terminal_ours_p = 0;
2872 initialize_sigint_signal_handler ();
2873 /* NOTE: At this point we could also register our selves as the
2874 recipient of all input. Any characters typed could then be
2875 passed on down to the target. */
2876 }
2877
2878 static void
2879 remote_async_terminal_ours (void)
2880 {
2881 /* See FIXME in remote_async_terminal_inferior. */
2882 if (!sync_execution)
2883 return;
2884 /* See FIXME in remote_async_terminal_inferior. */
2885 if (remote_async_terminal_ours_p)
2886 return;
2887 cleanup_sigint_signal_handler (NULL);
2888 add_file_handler (input_fd, stdin_event_handler, 0);
2889 remote_async_terminal_ours_p = 1;
2890 }
2891
2892 /* If nonzero, ignore the next kill. */
2893
2894 int kill_kludge;
2895
2896 void
2897 remote_console_output (char *msg)
2898 {
2899 char *p;
2900
2901 for (p = msg; p[0] && p[1]; p += 2)
2902 {
2903 char tb[2];
2904 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2905 tb[0] = c;
2906 tb[1] = 0;
2907 fputs_unfiltered (tb, gdb_stdtarg);
2908 }
2909 gdb_flush (gdb_stdtarg);
2910 }
2911
2912 /* Wait until the remote machine stops, then return,
2913 storing status in STATUS just as `wait' would.
2914 Returns "pid", which in the case of a multi-threaded
2915 remote OS, is the thread-id. */
2916
2917 static ptid_t
2918 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2919 {
2920 struct remote_state *rs = get_remote_state ();
2921 unsigned char *buf = alloca (rs->remote_packet_size);
2922 ULONGEST thread_num = -1;
2923 ULONGEST addr;
2924
2925 status->kind = TARGET_WAITKIND_EXITED;
2926 status->value.integer = 0;
2927
2928 while (1)
2929 {
2930 unsigned char *p;
2931
2932 ofunc = signal (SIGINT, remote_interrupt);
2933 getpkt (buf, (rs->remote_packet_size), 1);
2934 signal (SIGINT, ofunc);
2935
2936 /* This is a hook for when we need to do something (perhaps the
2937 collection of trace data) every time the target stops. */
2938 if (target_wait_loop_hook)
2939 (*target_wait_loop_hook) ();
2940
2941 remote_stopped_by_watchpoint_p = 0;
2942
2943 switch (buf[0])
2944 {
2945 case 'E': /* Error of some sort */
2946 warning ("Remote failure reply: %s", buf);
2947 continue;
2948 case 'T': /* Status with PC, SP, FP, ... */
2949 {
2950 int i;
2951 char regs[MAX_REGISTER_SIZE];
2952
2953 /* Expedited reply, containing Signal, {regno, reg} repeat */
2954 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2955 ss = signal number
2956 n... = register number
2957 r... = register contents
2958 */
2959 p = &buf[3]; /* after Txx */
2960
2961 while (*p)
2962 {
2963 unsigned char *p1;
2964 char *p_temp;
2965 int fieldsize;
2966 LONGEST pnum = 0;
2967
2968 /* If the packet contains a register number save it in pnum
2969 and set p1 to point to the character following it.
2970 Otherwise p1 points to p. */
2971
2972 /* If this packet is an awatch packet, don't parse the 'a'
2973 as a register number. */
2974
2975 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2976 {
2977 /* Read the ``P'' register number. */
2978 pnum = strtol (p, &p_temp, 16);
2979 p1 = (unsigned char *) p_temp;
2980 }
2981 else
2982 p1 = p;
2983
2984 if (p1 == p) /* No register number present here */
2985 {
2986 p1 = (unsigned char *) strchr (p, ':');
2987 if (p1 == NULL)
2988 warning ("Malformed packet(a) (missing colon): %s\n\
2989 Packet: '%s'\n",
2990 p, buf);
2991 if (strncmp (p, "thread", p1 - p) == 0)
2992 {
2993 p_temp = unpack_varlen_hex (++p1, &thread_num);
2994 record_currthread (thread_num);
2995 p = (unsigned char *) p_temp;
2996 }
2997 else if ((strncmp (p, "watch", p1 - p) == 0)
2998 || (strncmp (p, "rwatch", p1 - p) == 0)
2999 || (strncmp (p, "awatch", p1 - p) == 0))
3000 {
3001 remote_stopped_by_watchpoint_p = 1;
3002 p = unpack_varlen_hex (++p1, &addr);
3003 remote_watch_data_address = (CORE_ADDR)addr;
3004 }
3005 else
3006 {
3007 /* Silently skip unknown optional info. */
3008 p_temp = strchr (p1 + 1, ';');
3009 if (p_temp)
3010 p = (unsigned char *) p_temp;
3011 }
3012 }
3013 else
3014 {
3015 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3016 p = p1;
3017
3018 if (*p++ != ':')
3019 warning ("Malformed packet(b) (missing colon): %s\n\
3020 Packet: '%s'\n",
3021 p, buf);
3022
3023 if (reg == NULL)
3024 warning ("Remote sent bad register number %s: %s\n\
3025 Packet: '%s'\n",
3026 phex_nz (pnum, 0), p, buf);
3027
3028 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3029 p += 2 * fieldsize;
3030 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3031 warning ("Remote reply is too short: %s", buf);
3032 supply_register (reg->regnum, regs);
3033 }
3034
3035 if (*p++ != ';')
3036 {
3037 warning ("Remote register badly formatted: %s", buf);
3038 warning (" here: %s", p);
3039 }
3040 }
3041 }
3042 /* fall through */
3043 case 'S': /* Old style status, just signal only */
3044 status->kind = TARGET_WAITKIND_STOPPED;
3045 status->value.sig = (enum target_signal)
3046 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3047
3048 if (buf[3] == 'p')
3049 {
3050 /* Export Cisco kernel mode as a convenience variable
3051 (so that it can be used in the GDB prompt if desired). */
3052
3053 if (cisco_kernel_mode == 1)
3054 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3055 value_from_string ("PDEBUG-"));
3056 cisco_kernel_mode = 0;
3057 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3058 record_currthread (thread_num);
3059 }
3060 else if (buf[3] == 'k')
3061 {
3062 /* Export Cisco kernel mode as a convenience variable
3063 (so that it can be used in the GDB prompt if desired). */
3064
3065 if (cisco_kernel_mode == 1)
3066 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3067 value_from_string ("KDEBUG-"));
3068 cisco_kernel_mode = 1;
3069 }
3070 goto got_status;
3071 case 'N': /* Cisco special: status and offsets */
3072 {
3073 bfd_vma text_addr, data_addr, bss_addr;
3074 bfd_signed_vma text_off, data_off, bss_off;
3075 unsigned char *p1;
3076
3077 status->kind = TARGET_WAITKIND_STOPPED;
3078 status->value.sig = (enum target_signal)
3079 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3080
3081 if (symfile_objfile == NULL)
3082 {
3083 warning ("Relocation packet received with no symbol file. \
3084 Packet Dropped");
3085 goto got_status;
3086 }
3087
3088 /* Relocate object file. Buffer format is NAATT;DD;BB
3089 * where AA is the signal number, TT is the new text
3090 * address, DD * is the new data address, and BB is the
3091 * new bss address. */
3092
3093 p = &buf[3];
3094 text_addr = strtoul (p, (char **) &p1, 16);
3095 if (p1 == p || *p1 != ';')
3096 warning ("Malformed relocation packet: Packet '%s'", buf);
3097 p = p1 + 1;
3098 data_addr = strtoul (p, (char **) &p1, 16);
3099 if (p1 == p || *p1 != ';')
3100 warning ("Malformed relocation packet: Packet '%s'", buf);
3101 p = p1 + 1;
3102 bss_addr = strtoul (p, (char **) &p1, 16);
3103 if (p1 == p)
3104 warning ("Malformed relocation packet: Packet '%s'", buf);
3105
3106 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3107 &text_off, &data_off, &bss_off)
3108 == 0)
3109 if (text_off != 0 || data_off != 0 || bss_off != 0)
3110 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3111
3112 goto got_status;
3113 }
3114 case 'W': /* Target exited */
3115 {
3116 /* The remote process exited. */
3117 status->kind = TARGET_WAITKIND_EXITED;
3118 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3119 goto got_status;
3120 }
3121 case 'X':
3122 status->kind = TARGET_WAITKIND_SIGNALLED;
3123 status->value.sig = (enum target_signal)
3124 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3125 kill_kludge = 1;
3126
3127 goto got_status;
3128 case 'O': /* Console output */
3129 remote_console_output (buf + 1);
3130 continue;
3131 case '\0':
3132 if (last_sent_signal != TARGET_SIGNAL_0)
3133 {
3134 /* Zero length reply means that we tried 'S' or 'C' and
3135 the remote system doesn't support it. */
3136 target_terminal_ours_for_output ();
3137 printf_filtered
3138 ("Can't send signals to this remote system. %s not sent.\n",
3139 target_signal_to_name (last_sent_signal));
3140 last_sent_signal = TARGET_SIGNAL_0;
3141 target_terminal_inferior ();
3142
3143 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3144 putpkt ((char *) buf);
3145 continue;
3146 }
3147 /* else fallthrough */
3148 default:
3149 warning ("Invalid remote reply: %s", buf);
3150 continue;
3151 }
3152 }
3153 got_status:
3154 if (thread_num != -1)
3155 {
3156 return pid_to_ptid (thread_num);
3157 }
3158 return inferior_ptid;
3159 }
3160
3161 /* Async version of remote_wait. */
3162 static ptid_t
3163 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3164 {
3165 struct remote_state *rs = get_remote_state ();
3166 unsigned char *buf = alloca (rs->remote_packet_size);
3167 ULONGEST thread_num = -1;
3168 ULONGEST addr;
3169
3170 status->kind = TARGET_WAITKIND_EXITED;
3171 status->value.integer = 0;
3172
3173 remote_stopped_by_watchpoint_p = 0;
3174
3175 while (1)
3176 {
3177 unsigned char *p;
3178
3179 if (!target_is_async_p ())
3180 ofunc = signal (SIGINT, remote_interrupt);
3181 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3182 _never_ wait for ever -> test on target_is_async_p().
3183 However, before we do that we need to ensure that the caller
3184 knows how to take the target into/out of async mode. */
3185 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3186 if (!target_is_async_p ())
3187 signal (SIGINT, ofunc);
3188
3189 /* This is a hook for when we need to do something (perhaps the
3190 collection of trace data) every time the target stops. */
3191 if (target_wait_loop_hook)
3192 (*target_wait_loop_hook) ();
3193
3194 switch (buf[0])
3195 {
3196 case 'E': /* Error of some sort */
3197 warning ("Remote failure reply: %s", buf);
3198 continue;
3199 case 'T': /* Status with PC, SP, FP, ... */
3200 {
3201 int i;
3202 char regs[MAX_REGISTER_SIZE];
3203
3204 /* Expedited reply, containing Signal, {regno, reg} repeat */
3205 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3206 ss = signal number
3207 n... = register number
3208 r... = register contents
3209 */
3210 p = &buf[3]; /* after Txx */
3211
3212 while (*p)
3213 {
3214 unsigned char *p1;
3215 char *p_temp;
3216 int fieldsize;
3217 long pnum = 0;
3218
3219 /* If the packet contains a register number, save it in pnum
3220 and set p1 to point to the character following it.
3221 Otherwise p1 points to p. */
3222
3223 /* If this packet is an awatch packet, don't parse the 'a'
3224 as a register number. */
3225
3226 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3227 {
3228 /* Read the register number. */
3229 pnum = strtol (p, &p_temp, 16);
3230 p1 = (unsigned char *) p_temp;
3231 }
3232 else
3233 p1 = p;
3234
3235 if (p1 == p) /* No register number present here */
3236 {
3237 p1 = (unsigned char *) strchr (p, ':');
3238 if (p1 == NULL)
3239 warning ("Malformed packet(a) (missing colon): %s\n\
3240 Packet: '%s'\n",
3241 p, buf);
3242 if (strncmp (p, "thread", p1 - p) == 0)
3243 {
3244 p_temp = unpack_varlen_hex (++p1, &thread_num);
3245 record_currthread (thread_num);
3246 p = (unsigned char *) p_temp;
3247 }
3248 else if ((strncmp (p, "watch", p1 - p) == 0)
3249 || (strncmp (p, "rwatch", p1 - p) == 0)
3250 || (strncmp (p, "awatch", p1 - p) == 0))
3251 {
3252 remote_stopped_by_watchpoint_p = 1;
3253 p = unpack_varlen_hex (++p1, &addr);
3254 remote_watch_data_address = (CORE_ADDR)addr;
3255 }
3256 else
3257 {
3258 /* Silently skip unknown optional info. */
3259 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3260 if (p_temp)
3261 p = p_temp;
3262 }
3263 }
3264
3265 else
3266 {
3267 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3268 p = p1;
3269 if (*p++ != ':')
3270 warning ("Malformed packet(b) (missing colon): %s\n\
3271 Packet: '%s'\n",
3272 p, buf);
3273
3274 if (reg == NULL)
3275 warning ("Remote sent bad register number %ld: %s\n\
3276 Packet: '%s'\n",
3277 pnum, p, buf);
3278
3279 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3280 p += 2 * fieldsize;
3281 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3282 warning ("Remote reply is too short: %s", buf);
3283 supply_register (reg->regnum, regs);
3284 }
3285
3286 if (*p++ != ';')
3287 {
3288 warning ("Remote register badly formatted: %s", buf);
3289 warning (" here: %s", p);
3290 }
3291 }
3292 }
3293 /* fall through */
3294 case 'S': /* Old style status, just signal only */
3295 status->kind = TARGET_WAITKIND_STOPPED;
3296 status->value.sig = (enum target_signal)
3297 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3298
3299 if (buf[3] == 'p')
3300 {
3301 /* Export Cisco kernel mode as a convenience variable
3302 (so that it can be used in the GDB prompt if desired). */
3303
3304 if (cisco_kernel_mode == 1)
3305 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3306 value_from_string ("PDEBUG-"));
3307 cisco_kernel_mode = 0;
3308 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3309 record_currthread (thread_num);
3310 }
3311 else if (buf[3] == 'k')
3312 {
3313 /* Export Cisco kernel mode as a convenience variable
3314 (so that it can be used in the GDB prompt if desired). */
3315
3316 if (cisco_kernel_mode == 1)
3317 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3318 value_from_string ("KDEBUG-"));
3319 cisco_kernel_mode = 1;
3320 }
3321 goto got_status;
3322 case 'N': /* Cisco special: status and offsets */
3323 {
3324 bfd_vma text_addr, data_addr, bss_addr;
3325 bfd_signed_vma text_off, data_off, bss_off;
3326 unsigned char *p1;
3327
3328 status->kind = TARGET_WAITKIND_STOPPED;
3329 status->value.sig = (enum target_signal)
3330 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3331
3332 if (symfile_objfile == NULL)
3333 {
3334 warning ("Relocation packet recieved with no symbol file. \
3335 Packet Dropped");
3336 goto got_status;
3337 }
3338
3339 /* Relocate object file. Buffer format is NAATT;DD;BB
3340 * where AA is the signal number, TT is the new text
3341 * address, DD * is the new data address, and BB is the
3342 * new bss address. */
3343
3344 p = &buf[3];
3345 text_addr = strtoul (p, (char **) &p1, 16);
3346 if (p1 == p || *p1 != ';')
3347 warning ("Malformed relocation packet: Packet '%s'", buf);
3348 p = p1 + 1;
3349 data_addr = strtoul (p, (char **) &p1, 16);
3350 if (p1 == p || *p1 != ';')
3351 warning ("Malformed relocation packet: Packet '%s'", buf);
3352 p = p1 + 1;
3353 bss_addr = strtoul (p, (char **) &p1, 16);
3354 if (p1 == p)
3355 warning ("Malformed relocation packet: Packet '%s'", buf);
3356
3357 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3358 &text_off, &data_off, &bss_off)
3359 == 0)
3360 if (text_off != 0 || data_off != 0 || bss_off != 0)
3361 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3362
3363 goto got_status;
3364 }
3365 case 'W': /* Target exited */
3366 {
3367 /* The remote process exited. */
3368 status->kind = TARGET_WAITKIND_EXITED;
3369 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3370 goto got_status;
3371 }
3372 case 'X':
3373 status->kind = TARGET_WAITKIND_SIGNALLED;
3374 status->value.sig = (enum target_signal)
3375 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3376 kill_kludge = 1;
3377
3378 goto got_status;
3379 case 'O': /* Console output */
3380 remote_console_output (buf + 1);
3381 /* Return immediately to the event loop. The event loop will
3382 still be waiting on the inferior afterwards. */
3383 status->kind = TARGET_WAITKIND_IGNORE;
3384 goto got_status;
3385 case '\0':
3386 if (last_sent_signal != TARGET_SIGNAL_0)
3387 {
3388 /* Zero length reply means that we tried 'S' or 'C' and
3389 the remote system doesn't support it. */
3390 target_terminal_ours_for_output ();
3391 printf_filtered
3392 ("Can't send signals to this remote system. %s not sent.\n",
3393 target_signal_to_name (last_sent_signal));
3394 last_sent_signal = TARGET_SIGNAL_0;
3395 target_terminal_inferior ();
3396
3397 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3398 putpkt ((char *) buf);
3399 continue;
3400 }
3401 /* else fallthrough */
3402 default:
3403 warning ("Invalid remote reply: %s", buf);
3404 continue;
3405 }
3406 }
3407 got_status:
3408 if (thread_num != -1)
3409 {
3410 return pid_to_ptid (thread_num);
3411 }
3412 return inferior_ptid;
3413 }
3414
3415 /* Number of bytes of registers this stub implements. */
3416
3417 static int register_bytes_found;
3418
3419 /* Read the remote registers into the block REGS. */
3420 /* Currently we just read all the registers, so we don't use regnum. */
3421
3422 /* ARGSUSED */
3423 static void
3424 remote_fetch_registers (int regnum)
3425 {
3426 struct remote_state *rs = get_remote_state ();
3427 char *buf = alloca (rs->remote_packet_size);
3428 int i;
3429 char *p;
3430 char *regs = alloca (rs->sizeof_g_packet);
3431
3432 set_thread (PIDGET (inferior_ptid), 1);
3433
3434 if (regnum >= 0)
3435 {
3436 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3437 gdb_assert (reg != NULL);
3438 if (!reg->in_g_packet)
3439 internal_error (__FILE__, __LINE__,
3440 "Attempt to fetch a non G-packet register when this "
3441 "remote.c does not support the p-packet.");
3442 }
3443
3444 sprintf (buf, "g");
3445 remote_send (buf, (rs->remote_packet_size));
3446
3447 /* Save the size of the packet sent to us by the target. Its used
3448 as a heuristic when determining the max size of packets that the
3449 target can safely receive. */
3450 if ((rs->actual_register_packet_size) == 0)
3451 (rs->actual_register_packet_size) = strlen (buf);
3452
3453 /* Unimplemented registers read as all bits zero. */
3454 memset (regs, 0, rs->sizeof_g_packet);
3455
3456 /* We can get out of synch in various cases. If the first character
3457 in the buffer is not a hex character, assume that has happened
3458 and try to fetch another packet to read. */
3459 while ((buf[0] < '0' || buf[0] > '9')
3460 && (buf[0] < 'a' || buf[0] > 'f')
3461 && buf[0] != 'x') /* New: unavailable register value */
3462 {
3463 if (remote_debug)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "Bad register packet; fetching a new packet\n");
3466 getpkt (buf, (rs->remote_packet_size), 0);
3467 }
3468
3469 /* Reply describes registers byte by byte, each byte encoded as two
3470 hex characters. Suck them all up, then supply them to the
3471 register cacheing/storage mechanism. */
3472
3473 p = buf;
3474 for (i = 0; i < rs->sizeof_g_packet; i++)
3475 {
3476 if (p[0] == 0)
3477 break;
3478 if (p[1] == 0)
3479 {
3480 warning ("Remote reply is of odd length: %s", buf);
3481 /* Don't change register_bytes_found in this case, and don't
3482 print a second warning. */
3483 goto supply_them;
3484 }
3485 if (p[0] == 'x' && p[1] == 'x')
3486 regs[i] = 0; /* 'x' */
3487 else
3488 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3489 p += 2;
3490 }
3491
3492 if (i != register_bytes_found)
3493 {
3494 register_bytes_found = i;
3495 if (REGISTER_BYTES_OK_P ()
3496 && !REGISTER_BYTES_OK (i))
3497 warning ("Remote reply is too short: %s", buf);
3498 }
3499
3500 supply_them:
3501 {
3502 int i;
3503 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3504 {
3505 struct packet_reg *r = &rs->regs[i];
3506 if (r->in_g_packet)
3507 {
3508 supply_register (r->regnum, regs + r->offset);
3509 if (buf[r->offset * 2] == 'x')
3510 set_register_cached (i, -1);
3511 }
3512 }
3513 }
3514 }
3515
3516 /* Prepare to store registers. Since we may send them all (using a
3517 'G' request), we have to read out the ones we don't want to change
3518 first. */
3519
3520 static void
3521 remote_prepare_to_store (void)
3522 {
3523 /* Make sure the entire registers array is valid. */
3524 switch (remote_protocol_P.support)
3525 {
3526 case PACKET_DISABLE:
3527 case PACKET_SUPPORT_UNKNOWN:
3528 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3529 forcing the register cache to read its and not the target
3530 registers. */
3531 deprecated_read_register_bytes (0, (char *) NULL,
3532 DEPRECATED_REGISTER_BYTES); /* OK */
3533 break;
3534 case PACKET_ENABLE:
3535 break;
3536 }
3537 }
3538
3539 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3540 packet was not recognized. */
3541
3542 static int
3543 store_register_using_P (int regnum)
3544 {
3545 struct remote_state *rs = get_remote_state ();
3546 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3547 /* Try storing a single register. */
3548 char *buf = alloca (rs->remote_packet_size);
3549 char regp[MAX_REGISTER_SIZE];
3550 char *p;
3551 int i;
3552
3553 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3554 p = buf + strlen (buf);
3555 regcache_collect (reg->regnum, regp);
3556 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3557 remote_send (buf, rs->remote_packet_size);
3558
3559 return buf[0] != '\0';
3560 }
3561
3562
3563 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3564 of the register cache buffer. FIXME: ignores errors. */
3565
3566 static void
3567 remote_store_registers (int regnum)
3568 {
3569 struct remote_state *rs = get_remote_state ();
3570 char *buf;
3571 char *regs;
3572 int i;
3573 char *p;
3574
3575 set_thread (PIDGET (inferior_ptid), 1);
3576
3577 if (regnum >= 0)
3578 {
3579 switch (remote_protocol_P.support)
3580 {
3581 case PACKET_DISABLE:
3582 break;
3583 case PACKET_ENABLE:
3584 if (store_register_using_P (regnum))
3585 return;
3586 else
3587 error ("Protocol error: P packet not recognized by stub");
3588 case PACKET_SUPPORT_UNKNOWN:
3589 if (store_register_using_P (regnum))
3590 {
3591 /* The stub recognized the 'P' packet. Remember this. */
3592 remote_protocol_P.support = PACKET_ENABLE;
3593 return;
3594 }
3595 else
3596 {
3597 /* The stub does not support the 'P' packet. Use 'G'
3598 instead, and don't try using 'P' in the future (it
3599 will just waste our time). */
3600 remote_protocol_P.support = PACKET_DISABLE;
3601 break;
3602 }
3603 }
3604 }
3605
3606 /* Extract all the registers in the regcache copying them into a
3607 local buffer. */
3608 {
3609 int i;
3610 regs = alloca (rs->sizeof_g_packet);
3611 memset (regs, rs->sizeof_g_packet, 0);
3612 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3613 {
3614 struct packet_reg *r = &rs->regs[i];
3615 if (r->in_g_packet)
3616 regcache_collect (r->regnum, regs + r->offset);
3617 }
3618 }
3619
3620 /* Command describes registers byte by byte,
3621 each byte encoded as two hex characters. */
3622 buf = alloca (rs->remote_packet_size);
3623 p = buf;
3624 *p++ = 'G';
3625 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3626 bin2hex (regs, p, register_bytes_found);
3627 remote_send (buf, (rs->remote_packet_size));
3628 }
3629 \f
3630
3631 /* Return the number of hex digits in num. */
3632
3633 static int
3634 hexnumlen (ULONGEST num)
3635 {
3636 int i;
3637
3638 for (i = 0; num != 0; i++)
3639 num >>= 4;
3640
3641 return max (i, 1);
3642 }
3643
3644 /* Set BUF to the minimum number of hex digits representing NUM. */
3645
3646 static int
3647 hexnumstr (char *buf, ULONGEST num)
3648 {
3649 int len = hexnumlen (num);
3650 return hexnumnstr (buf, num, len);
3651 }
3652
3653
3654 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3655
3656 static int
3657 hexnumnstr (char *buf, ULONGEST num, int width)
3658 {
3659 int i;
3660
3661 buf[width] = '\0';
3662
3663 for (i = width - 1; i >= 0; i--)
3664 {
3665 buf[i] = "0123456789abcdef"[(num & 0xf)];
3666 num >>= 4;
3667 }
3668
3669 return width;
3670 }
3671
3672 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3673
3674 static CORE_ADDR
3675 remote_address_masked (CORE_ADDR addr)
3676 {
3677 if (remote_address_size > 0
3678 && remote_address_size < (sizeof (ULONGEST) * 8))
3679 {
3680 /* Only create a mask when that mask can safely be constructed
3681 in a ULONGEST variable. */
3682 ULONGEST mask = 1;
3683 mask = (mask << remote_address_size) - 1;
3684 addr &= mask;
3685 }
3686 return addr;
3687 }
3688
3689 /* Determine whether the remote target supports binary downloading.
3690 This is accomplished by sending a no-op memory write of zero length
3691 to the target at the specified address. It does not suffice to send
3692 the whole packet, since many stubs strip the eighth bit and subsequently
3693 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3694
3695 NOTE: This can still lose if the serial line is not eight-bit
3696 clean. In cases like this, the user should clear "remote
3697 X-packet". */
3698
3699 static void
3700 check_binary_download (CORE_ADDR addr)
3701 {
3702 struct remote_state *rs = get_remote_state ();
3703 switch (remote_protocol_binary_download.support)
3704 {
3705 case PACKET_DISABLE:
3706 break;
3707 case PACKET_ENABLE:
3708 break;
3709 case PACKET_SUPPORT_UNKNOWN:
3710 {
3711 char *buf = alloca (rs->remote_packet_size);
3712 char *p;
3713
3714 p = buf;
3715 *p++ = 'X';
3716 p += hexnumstr (p, (ULONGEST) addr);
3717 *p++ = ',';
3718 p += hexnumstr (p, (ULONGEST) 0);
3719 *p++ = ':';
3720 *p = '\0';
3721
3722 putpkt_binary (buf, (int) (p - buf));
3723 getpkt (buf, (rs->remote_packet_size), 0);
3724
3725 if (buf[0] == '\0')
3726 {
3727 if (remote_debug)
3728 fprintf_unfiltered (gdb_stdlog,
3729 "binary downloading NOT suppported by target\n");
3730 remote_protocol_binary_download.support = PACKET_DISABLE;
3731 }
3732 else
3733 {
3734 if (remote_debug)
3735 fprintf_unfiltered (gdb_stdlog,
3736 "binary downloading suppported by target\n");
3737 remote_protocol_binary_download.support = PACKET_ENABLE;
3738 }
3739 break;
3740 }
3741 }
3742 }
3743
3744 /* Write memory data directly to the remote machine.
3745 This does not inform the data cache; the data cache uses this.
3746 MEMADDR is the address in the remote memory space.
3747 MYADDR is the address of the buffer in our space.
3748 LEN is the number of bytes.
3749
3750 Returns number of bytes transferred, or 0 (setting errno) for
3751 error. Only transfer a single packet. */
3752
3753 static int
3754 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3755 {
3756 unsigned char *buf;
3757 int max_buf_size; /* Max size of packet output buffer */
3758 unsigned char *p;
3759 unsigned char *plen;
3760 long sizeof_buf;
3761 int plenlen;
3762 int todo;
3763 int nr_bytes;
3764
3765 /* Verify that the target can support a binary download */
3766 check_binary_download (memaddr);
3767
3768 /* Determine the max packet size. */
3769 max_buf_size = get_memory_write_packet_size ();
3770 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3771 buf = alloca (sizeof_buf);
3772
3773 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3774 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3775
3776 /* construct "M"<memaddr>","<len>":" */
3777 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3778 p = buf;
3779
3780 /* Append [XM]. Compute a best guess of the number of bytes
3781 actually transfered. */
3782 switch (remote_protocol_binary_download.support)
3783 {
3784 case PACKET_ENABLE:
3785 *p++ = 'X';
3786 /* Best guess at number of bytes that will fit. */
3787 todo = min (len, max_buf_size);
3788 break;
3789 case PACKET_DISABLE:
3790 *p++ = 'M';
3791 /* num bytes that will fit */
3792 todo = min (len, max_buf_size / 2);
3793 break;
3794 case PACKET_SUPPORT_UNKNOWN:
3795 internal_error (__FILE__, __LINE__,
3796 "remote_write_bytes: bad internal state");
3797 default:
3798 internal_error (__FILE__, __LINE__, "bad switch");
3799 }
3800
3801 /* Append <memaddr> */
3802 memaddr = remote_address_masked (memaddr);
3803 p += hexnumstr (p, (ULONGEST) memaddr);
3804 *p++ = ',';
3805
3806 /* Append <len>. Retain the location/size of <len>. It may
3807 need to be adjusted once the packet body has been created. */
3808 plen = p;
3809 plenlen = hexnumstr (p, (ULONGEST) todo);
3810 p += plenlen;
3811 *p++ = ':';
3812 *p = '\0';
3813
3814 /* Append the packet body. */
3815 switch (remote_protocol_binary_download.support)
3816 {
3817 case PACKET_ENABLE:
3818 /* Binary mode. Send target system values byte by byte, in
3819 increasing byte addresses. Only escape certain critical
3820 characters. */
3821 for (nr_bytes = 0;
3822 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3823 nr_bytes++)
3824 {
3825 switch (myaddr[nr_bytes] & 0xff)
3826 {
3827 case '$':
3828 case '#':
3829 case 0x7d:
3830 /* These must be escaped */
3831 *p++ = 0x7d;
3832 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3833 break;
3834 default:
3835 *p++ = myaddr[nr_bytes] & 0xff;
3836 break;
3837 }
3838 }
3839 if (nr_bytes < todo)
3840 {
3841 /* Escape chars have filled up the buffer prematurely,
3842 and we have actually sent fewer bytes than planned.
3843 Fix-up the length field of the packet. Use the same
3844 number of characters as before. */
3845
3846 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3847 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3848 }
3849 break;
3850 case PACKET_DISABLE:
3851 /* Normal mode: Send target system values byte by byte, in
3852 increasing byte addresses. Each byte is encoded as a two hex
3853 value. */
3854 nr_bytes = bin2hex (myaddr, p, todo);
3855 p += 2 * nr_bytes;
3856 break;
3857 case PACKET_SUPPORT_UNKNOWN:
3858 internal_error (__FILE__, __LINE__,
3859 "remote_write_bytes: bad internal state");
3860 default:
3861 internal_error (__FILE__, __LINE__, "bad switch");
3862 }
3863
3864 putpkt_binary (buf, (int) (p - buf));
3865 getpkt (buf, sizeof_buf, 0);
3866
3867 if (buf[0] == 'E')
3868 {
3869 /* There is no correspondance between what the remote protocol
3870 uses for errors and errno codes. We would like a cleaner way
3871 of representing errors (big enough to include errno codes,
3872 bfd_error codes, and others). But for now just return EIO. */
3873 errno = EIO;
3874 return 0;
3875 }
3876
3877 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3878 bytes than we'd planned. */
3879 return nr_bytes;
3880 }
3881
3882 /* Read memory data directly from the remote machine.
3883 This does not use the data cache; the data cache uses this.
3884 MEMADDR is the address in the remote memory space.
3885 MYADDR is the address of the buffer in our space.
3886 LEN is the number of bytes.
3887
3888 Returns number of bytes transferred, or 0 for error. */
3889
3890 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3891 remote targets) shouldn't attempt to read the entire buffer.
3892 Instead it should read a single packet worth of data and then
3893 return the byte size of that packet to the caller. The caller (its
3894 caller and its callers caller ;-) already contains code for
3895 handling partial reads. */
3896
3897 static int
3898 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3899 {
3900 char *buf;
3901 int max_buf_size; /* Max size of packet output buffer */
3902 long sizeof_buf;
3903 int origlen;
3904
3905 /* Create a buffer big enough for this packet. */
3906 max_buf_size = get_memory_read_packet_size ();
3907 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3908 buf = alloca (sizeof_buf);
3909
3910 origlen = len;
3911 while (len > 0)
3912 {
3913 char *p;
3914 int todo;
3915 int i;
3916
3917 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3918
3919 /* construct "m"<memaddr>","<len>" */
3920 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3921 memaddr = remote_address_masked (memaddr);
3922 p = buf;
3923 *p++ = 'm';
3924 p += hexnumstr (p, (ULONGEST) memaddr);
3925 *p++ = ',';
3926 p += hexnumstr (p, (ULONGEST) todo);
3927 *p = '\0';
3928
3929 putpkt (buf);
3930 getpkt (buf, sizeof_buf, 0);
3931
3932 if (buf[0] == 'E'
3933 && isxdigit (buf[1]) && isxdigit (buf[2])
3934 && buf[3] == '\0')
3935 {
3936 /* There is no correspondance between what the remote protocol uses
3937 for errors and errno codes. We would like a cleaner way of
3938 representing errors (big enough to include errno codes, bfd_error
3939 codes, and others). But for now just return EIO. */
3940 errno = EIO;
3941 return 0;
3942 }
3943
3944 /* Reply describes memory byte by byte,
3945 each byte encoded as two hex characters. */
3946
3947 p = buf;
3948 if ((i = hex2bin (p, myaddr, todo)) < todo)
3949 {
3950 /* Reply is short. This means that we were able to read
3951 only part of what we wanted to. */
3952 return i + (origlen - len);
3953 }
3954 myaddr += todo;
3955 memaddr += todo;
3956 len -= todo;
3957 }
3958 return origlen;
3959 }
3960 \f
3961 /* Read or write LEN bytes from inferior memory at MEMADDR,
3962 transferring to or from debugger address BUFFER. Write to inferior if
3963 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3964 for error. TARGET is unused. */
3965
3966 /* ARGSUSED */
3967 static int
3968 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3969 int should_write, struct mem_attrib *attrib,
3970 struct target_ops *target)
3971 {
3972 CORE_ADDR targ_addr;
3973 int targ_len;
3974 int res;
3975
3976 /* Should this be the selected frame? */
3977 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3978 mem_addr, mem_len,
3979 &targ_addr, &targ_len);
3980 if (targ_len <= 0)
3981 return 0;
3982
3983 if (should_write)
3984 res = remote_write_bytes (targ_addr, buffer, targ_len);
3985 else
3986 res = remote_read_bytes (targ_addr, buffer, targ_len);
3987
3988 return res;
3989 }
3990
3991
3992 #if 0
3993 /* Enable after 4.12. */
3994
3995 void
3996 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3997 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3998 CORE_ADDR *addr_found, char *data_found)
3999 {
4000 if (increment == -4 && len == 4)
4001 {
4002 long mask_long, data_long;
4003 long data_found_long;
4004 CORE_ADDR addr_we_found;
4005 char *buf = alloca (rs->remote_packet_size);
4006 long returned_long[2];
4007 char *p;
4008
4009 mask_long = extract_unsigned_integer (mask, len);
4010 data_long = extract_unsigned_integer (data, len);
4011 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4012 putpkt (buf);
4013 getpkt (buf, (rs->remote_packet_size), 0);
4014 if (buf[0] == '\0')
4015 {
4016 /* The stub doesn't support the 't' request. We might want to
4017 remember this fact, but on the other hand the stub could be
4018 switched on us. Maybe we should remember it only until
4019 the next "target remote". */
4020 generic_search (len, data, mask, startaddr, increment, lorange,
4021 hirange, addr_found, data_found);
4022 return;
4023 }
4024
4025 if (buf[0] == 'E')
4026 /* There is no correspondance between what the remote protocol uses
4027 for errors and errno codes. We would like a cleaner way of
4028 representing errors (big enough to include errno codes, bfd_error
4029 codes, and others). But for now just use EIO. */
4030 memory_error (EIO, startaddr);
4031 p = buf;
4032 addr_we_found = 0;
4033 while (*p != '\0' && *p != ',')
4034 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4035 if (*p == '\0')
4036 error ("Protocol error: short return for search");
4037
4038 data_found_long = 0;
4039 while (*p != '\0' && *p != ',')
4040 data_found_long = (data_found_long << 4) + fromhex (*p++);
4041 /* Ignore anything after this comma, for future extensions. */
4042
4043 if (addr_we_found < lorange || addr_we_found >= hirange)
4044 {
4045 *addr_found = 0;
4046 return;
4047 }
4048
4049 *addr_found = addr_we_found;
4050 *data_found = store_unsigned_integer (data_we_found, len);
4051 return;
4052 }
4053 generic_search (len, data, mask, startaddr, increment, lorange,
4054 hirange, addr_found, data_found);
4055 }
4056 #endif /* 0 */
4057 \f
4058 static void
4059 remote_files_info (struct target_ops *ignore)
4060 {
4061 puts_filtered ("Debugging a target over a serial line.\n");
4062 }
4063 \f
4064 /* Stuff for dealing with the packets which are part of this protocol.
4065 See comment at top of file for details. */
4066
4067 /* Read a single character from the remote end, masking it down to 7 bits. */
4068
4069 static int
4070 readchar (int timeout)
4071 {
4072 int ch;
4073
4074 ch = serial_readchar (remote_desc, timeout);
4075
4076 if (ch >= 0)
4077 return (ch & 0x7f);
4078
4079 switch ((enum serial_rc) ch)
4080 {
4081 case SERIAL_EOF:
4082 target_mourn_inferior ();
4083 error ("Remote connection closed");
4084 /* no return */
4085 case SERIAL_ERROR:
4086 perror_with_name ("Remote communication error");
4087 /* no return */
4088 case SERIAL_TIMEOUT:
4089 break;
4090 }
4091 return ch;
4092 }
4093
4094 /* Send the command in BUF to the remote machine, and read the reply
4095 into BUF. Report an error if we get an error reply. */
4096
4097 static void
4098 remote_send (char *buf,
4099 long sizeof_buf)
4100 {
4101 putpkt (buf);
4102 getpkt (buf, sizeof_buf, 0);
4103
4104 if (buf[0] == 'E')
4105 error ("Remote failure reply: %s", buf);
4106 }
4107
4108 /* Display a null-terminated packet on stdout, for debugging, using C
4109 string notation. */
4110
4111 static void
4112 print_packet (char *buf)
4113 {
4114 puts_filtered ("\"");
4115 fputstr_filtered (buf, '"', gdb_stdout);
4116 puts_filtered ("\"");
4117 }
4118
4119 int
4120 putpkt (char *buf)
4121 {
4122 return putpkt_binary (buf, strlen (buf));
4123 }
4124
4125 /* Send a packet to the remote machine, with error checking. The data
4126 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4127 to account for the $, # and checksum, and for a possible /0 if we are
4128 debugging (remote_debug) and want to print the sent packet as a string */
4129
4130 static int
4131 putpkt_binary (char *buf, int cnt)
4132 {
4133 struct remote_state *rs = get_remote_state ();
4134 int i;
4135 unsigned char csum = 0;
4136 char *buf2 = alloca (cnt + 6);
4137 long sizeof_junkbuf = (rs->remote_packet_size);
4138 char *junkbuf = alloca (sizeof_junkbuf);
4139
4140 int ch;
4141 int tcount = 0;
4142 char *p;
4143
4144 /* Copy the packet into buffer BUF2, encapsulating it
4145 and giving it a checksum. */
4146
4147 p = buf2;
4148 *p++ = '$';
4149
4150 for (i = 0; i < cnt; i++)
4151 {
4152 csum += buf[i];
4153 *p++ = buf[i];
4154 }
4155 *p++ = '#';
4156 *p++ = tohex ((csum >> 4) & 0xf);
4157 *p++ = tohex (csum & 0xf);
4158
4159 /* Send it over and over until we get a positive ack. */
4160
4161 while (1)
4162 {
4163 int started_error_output = 0;
4164
4165 if (remote_debug)
4166 {
4167 *p = '\0';
4168 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4169 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4170 fprintf_unfiltered (gdb_stdlog, "...");
4171 gdb_flush (gdb_stdlog);
4172 }
4173 if (serial_write (remote_desc, buf2, p - buf2))
4174 perror_with_name ("putpkt: write failed");
4175
4176 /* read until either a timeout occurs (-2) or '+' is read */
4177 while (1)
4178 {
4179 ch = readchar (remote_timeout);
4180
4181 if (remote_debug)
4182 {
4183 switch (ch)
4184 {
4185 case '+':
4186 case '-':
4187 case SERIAL_TIMEOUT:
4188 case '$':
4189 if (started_error_output)
4190 {
4191 putchar_unfiltered ('\n');
4192 started_error_output = 0;
4193 }
4194 }
4195 }
4196
4197 switch (ch)
4198 {
4199 case '+':
4200 if (remote_debug)
4201 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4202 return 1;
4203 case '-':
4204 if (remote_debug)
4205 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4206 case SERIAL_TIMEOUT:
4207 tcount++;
4208 if (tcount > 3)
4209 return 0;
4210 break; /* Retransmit buffer */
4211 case '$':
4212 {
4213 if (remote_debug)
4214 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4215 /* It's probably an old response, and we're out of sync.
4216 Just gobble up the packet and ignore it. */
4217 read_frame (junkbuf, sizeof_junkbuf);
4218 continue; /* Now, go look for + */
4219 }
4220 default:
4221 if (remote_debug)
4222 {
4223 if (!started_error_output)
4224 {
4225 started_error_output = 1;
4226 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4227 }
4228 fputc_unfiltered (ch & 0177, gdb_stdlog);
4229 }
4230 continue;
4231 }
4232 break; /* Here to retransmit */
4233 }
4234
4235 #if 0
4236 /* This is wrong. If doing a long backtrace, the user should be
4237 able to get out next time we call QUIT, without anything as
4238 violent as interrupt_query. If we want to provide a way out of
4239 here without getting to the next QUIT, it should be based on
4240 hitting ^C twice as in remote_wait. */
4241 if (quit_flag)
4242 {
4243 quit_flag = 0;
4244 interrupt_query ();
4245 }
4246 #endif
4247 }
4248 }
4249
4250 static int remote_cisco_mode;
4251
4252 /* Come here after finding the start of the frame. Collect the rest
4253 into BUF, verifying the checksum, length, and handling run-length
4254 compression. No more than sizeof_buf-1 characters are read so that
4255 the buffer can be NUL terminated.
4256
4257 Returns -1 on error, number of characters in buffer (ignoring the
4258 trailing NULL) on success. (could be extended to return one of the
4259 SERIAL status indications). */
4260
4261 static long
4262 read_frame (char *buf,
4263 long sizeof_buf)
4264 {
4265 unsigned char csum;
4266 long bc;
4267 int c;
4268
4269 csum = 0;
4270 bc = 0;
4271
4272 while (1)
4273 {
4274 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4275 c = readchar (remote_timeout);
4276 switch (c)
4277 {
4278 case SERIAL_TIMEOUT:
4279 if (remote_debug)
4280 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4281 return -1;
4282 case '$':
4283 if (remote_debug)
4284 fputs_filtered ("Saw new packet start in middle of old one\n",
4285 gdb_stdlog);
4286 return -1; /* Start a new packet, count retries */
4287 case '#':
4288 {
4289 unsigned char pktcsum;
4290 int check_0 = 0;
4291 int check_1 = 0;
4292
4293 buf[bc] = '\0';
4294
4295 check_0 = readchar (remote_timeout);
4296 if (check_0 >= 0)
4297 check_1 = readchar (remote_timeout);
4298
4299 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4300 {
4301 if (remote_debug)
4302 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4303 return -1;
4304 }
4305 else if (check_0 < 0 || check_1 < 0)
4306 {
4307 if (remote_debug)
4308 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4309 return -1;
4310 }
4311
4312 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4313 if (csum == pktcsum)
4314 return bc;
4315
4316 if (remote_debug)
4317 {
4318 fprintf_filtered (gdb_stdlog,
4319 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4320 pktcsum, csum);
4321 fputs_filtered (buf, gdb_stdlog);
4322 fputs_filtered ("\n", gdb_stdlog);
4323 }
4324 /* Number of characters in buffer ignoring trailing
4325 NUL. */
4326 return -1;
4327 }
4328 case '*': /* Run length encoding */
4329 {
4330 int repeat;
4331 csum += c;
4332
4333 if (remote_cisco_mode == 0)
4334 {
4335 c = readchar (remote_timeout);
4336 csum += c;
4337 repeat = c - ' ' + 3; /* Compute repeat count */
4338 }
4339 else
4340 {
4341 /* Cisco's run-length encoding variant uses two
4342 hex chars to represent the repeat count. */
4343
4344 c = readchar (remote_timeout);
4345 csum += c;
4346 repeat = fromhex (c) << 4;
4347 c = readchar (remote_timeout);
4348 csum += c;
4349 repeat += fromhex (c);
4350 }
4351
4352 /* The character before ``*'' is repeated. */
4353
4354 if (repeat > 0 && repeat <= 255
4355 && bc > 0
4356 && bc + repeat - 1 < sizeof_buf - 1)
4357 {
4358 memset (&buf[bc], buf[bc - 1], repeat);
4359 bc += repeat;
4360 continue;
4361 }
4362
4363 buf[bc] = '\0';
4364 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4365 puts_filtered (buf);
4366 puts_filtered ("\n");
4367 return -1;
4368 }
4369 default:
4370 if (bc < sizeof_buf - 1)
4371 {
4372 buf[bc++] = c;
4373 csum += c;
4374 continue;
4375 }
4376
4377 buf[bc] = '\0';
4378 puts_filtered ("Remote packet too long: ");
4379 puts_filtered (buf);
4380 puts_filtered ("\n");
4381
4382 return -1;
4383 }
4384 }
4385 }
4386
4387 /* Read a packet from the remote machine, with error checking, and
4388 store it in BUF. If FOREVER, wait forever rather than timing out;
4389 this is used (in synchronous mode) to wait for a target that is is
4390 executing user code to stop. */
4391 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4392 don't have to change all the calls to getpkt to deal with the
4393 return value, because at the moment I don't know what the right
4394 thing to do it for those. */
4395 void
4396 getpkt (char *buf,
4397 long sizeof_buf,
4398 int forever)
4399 {
4400 int timed_out;
4401
4402 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4403 }
4404
4405
4406 /* Read a packet from the remote machine, with error checking, and
4407 store it in BUF. If FOREVER, wait forever rather than timing out;
4408 this is used (in synchronous mode) to wait for a target that is is
4409 executing user code to stop. If FOREVER == 0, this function is
4410 allowed to time out gracefully and return an indication of this to
4411 the caller. */
4412 static int
4413 getpkt_sane (char *buf,
4414 long sizeof_buf,
4415 int forever)
4416 {
4417 int c;
4418 int tries;
4419 int timeout;
4420 int val;
4421
4422 strcpy (buf, "timeout");
4423
4424 if (forever)
4425 {
4426 timeout = watchdog > 0 ? watchdog : -1;
4427 }
4428
4429 else
4430 timeout = remote_timeout;
4431
4432 #define MAX_TRIES 3
4433
4434 for (tries = 1; tries <= MAX_TRIES; tries++)
4435 {
4436 /* This can loop forever if the remote side sends us characters
4437 continuously, but if it pauses, we'll get a zero from readchar
4438 because of timeout. Then we'll count that as a retry. */
4439
4440 /* Note that we will only wait forever prior to the start of a packet.
4441 After that, we expect characters to arrive at a brisk pace. They
4442 should show up within remote_timeout intervals. */
4443
4444 do
4445 {
4446 c = readchar (timeout);
4447
4448 if (c == SERIAL_TIMEOUT)
4449 {
4450 if (forever) /* Watchdog went off? Kill the target. */
4451 {
4452 QUIT;
4453 target_mourn_inferior ();
4454 error ("Watchdog has expired. Target detached.\n");
4455 }
4456 if (remote_debug)
4457 fputs_filtered ("Timed out.\n", gdb_stdlog);
4458 goto retry;
4459 }
4460 }
4461 while (c != '$');
4462
4463 /* We've found the start of a packet, now collect the data. */
4464
4465 val = read_frame (buf, sizeof_buf);
4466
4467 if (val >= 0)
4468 {
4469 if (remote_debug)
4470 {
4471 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4472 fputstr_unfiltered (buf, 0, gdb_stdlog);
4473 fprintf_unfiltered (gdb_stdlog, "\n");
4474 }
4475 serial_write (remote_desc, "+", 1);
4476 return 0;
4477 }
4478
4479 /* Try the whole thing again. */
4480 retry:
4481 serial_write (remote_desc, "-", 1);
4482 }
4483
4484 /* We have tried hard enough, and just can't receive the packet. Give up. */
4485
4486 printf_unfiltered ("Ignoring packet error, continuing...\n");
4487 serial_write (remote_desc, "+", 1);
4488 return 1;
4489 }
4490 \f
4491 static void
4492 remote_kill (void)
4493 {
4494 /* For some mysterious reason, wait_for_inferior calls kill instead of
4495 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4496 if (kill_kludge)
4497 {
4498 kill_kludge = 0;
4499 target_mourn_inferior ();
4500 return;
4501 }
4502
4503 /* Use catch_errors so the user can quit from gdb even when we aren't on
4504 speaking terms with the remote system. */
4505 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4506
4507 /* Don't wait for it to die. I'm not really sure it matters whether
4508 we do or not. For the existing stubs, kill is a noop. */
4509 target_mourn_inferior ();
4510 }
4511
4512 /* Async version of remote_kill. */
4513 static void
4514 remote_async_kill (void)
4515 {
4516 /* Unregister the file descriptor from the event loop. */
4517 if (target_is_async_p ())
4518 serial_async (remote_desc, NULL, 0);
4519
4520 /* For some mysterious reason, wait_for_inferior calls kill instead of
4521 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4522 if (kill_kludge)
4523 {
4524 kill_kludge = 0;
4525 target_mourn_inferior ();
4526 return;
4527 }
4528
4529 /* Use catch_errors so the user can quit from gdb even when we aren't on
4530 speaking terms with the remote system. */
4531 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4532
4533 /* Don't wait for it to die. I'm not really sure it matters whether
4534 we do or not. For the existing stubs, kill is a noop. */
4535 target_mourn_inferior ();
4536 }
4537
4538 static void
4539 remote_mourn (void)
4540 {
4541 remote_mourn_1 (&remote_ops);
4542 }
4543
4544 static void
4545 remote_async_mourn (void)
4546 {
4547 remote_mourn_1 (&remote_async_ops);
4548 }
4549
4550 static void
4551 extended_remote_mourn (void)
4552 {
4553 /* We do _not_ want to mourn the target like this; this will
4554 remove the extended remote target from the target stack,
4555 and the next time the user says "run" it'll fail.
4556
4557 FIXME: What is the right thing to do here? */
4558 #if 0
4559 remote_mourn_1 (&extended_remote_ops);
4560 #endif
4561 }
4562
4563 /* Worker function for remote_mourn. */
4564 static void
4565 remote_mourn_1 (struct target_ops *target)
4566 {
4567 unpush_target (target);
4568 generic_mourn_inferior ();
4569 }
4570
4571 /* In the extended protocol we want to be able to do things like
4572 "run" and have them basically work as expected. So we need
4573 a special create_inferior function.
4574
4575 FIXME: One day add support for changing the exec file
4576 we're debugging, arguments and an environment. */
4577
4578 static void
4579 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4580 {
4581 /* Rip out the breakpoints; we'll reinsert them after restarting
4582 the remote server. */
4583 remove_breakpoints ();
4584
4585 /* Now restart the remote server. */
4586 extended_remote_restart ();
4587
4588 /* Now put the breakpoints back in. This way we're safe if the
4589 restart function works via a unix fork on the remote side. */
4590 insert_breakpoints ();
4591
4592 /* Clean up from the last time we were running. */
4593 clear_proceed_status ();
4594
4595 /* Let the remote process run. */
4596 proceed (-1, TARGET_SIGNAL_0, 0);
4597 }
4598
4599 /* Async version of extended_remote_create_inferior. */
4600 static void
4601 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4602 {
4603 /* Rip out the breakpoints; we'll reinsert them after restarting
4604 the remote server. */
4605 remove_breakpoints ();
4606
4607 /* If running asynchronously, register the target file descriptor
4608 with the event loop. */
4609 if (event_loop_p && target_can_async_p ())
4610 target_async (inferior_event_handler, 0);
4611
4612 /* Now restart the remote server. */
4613 extended_remote_restart ();
4614
4615 /* Now put the breakpoints back in. This way we're safe if the
4616 restart function works via a unix fork on the remote side. */
4617 insert_breakpoints ();
4618
4619 /* Clean up from the last time we were running. */
4620 clear_proceed_status ();
4621
4622 /* Let the remote process run. */
4623 proceed (-1, TARGET_SIGNAL_0, 0);
4624 }
4625 \f
4626
4627 /* On some machines, e.g. 68k, we may use a different breakpoint
4628 instruction than other targets; in those use REMOTE_BREAKPOINT
4629 instead of just BREAKPOINT_FROM_PC. Also, bi-endian targets may
4630 define LITTLE_REMOTE_BREAKPOINT and BIG_REMOTE_BREAKPOINT. If none
4631 of these are defined, we just call the standard routines that are
4632 in mem-break.c. */
4633
4634 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4635 the choice of breakpoint instruction affects target program design and
4636 vice versa, and by making it user-tweakable, the special code here
4637 goes away and we need fewer special GDB configurations. */
4638
4639 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4640 #define REMOTE_BREAKPOINT
4641 #endif
4642
4643 #ifdef REMOTE_BREAKPOINT
4644
4645 /* If the target isn't bi-endian, just pretend it is. */
4646 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4647 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4648 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4649 #endif
4650
4651 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4652 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4653
4654 #endif /* REMOTE_BREAKPOINT */
4655
4656 /* Insert a breakpoint on targets that don't have any better
4657 breakpoint support. We read the contents of the target location
4658 and stash it, then overwrite it with a breakpoint instruction.
4659 ADDR is the target location in the target machine. CONTENTS_CACHE
4660 is a pointer to memory allocated for saving the target contents.
4661 It is guaranteed by the caller to be long enough to save the number
4662 of bytes returned by BREAKPOINT_FROM_PC. */
4663
4664 static int
4665 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4666 {
4667 struct remote_state *rs = get_remote_state ();
4668 #ifdef REMOTE_BREAKPOINT
4669 int val;
4670 #endif
4671 int bp_size;
4672
4673 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4674 If it succeeds, then set the support to PACKET_ENABLE. If it
4675 fails, and the user has explicitly requested the Z support then
4676 report an error, otherwise, mark it disabled and go on. */
4677
4678 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4679 {
4680 char *buf = alloca (rs->remote_packet_size);
4681 char *p = buf;
4682
4683 addr = remote_address_masked (addr);
4684 *(p++) = 'Z';
4685 *(p++) = '0';
4686 *(p++) = ',';
4687 p += hexnumstr (p, (ULONGEST) addr);
4688 BREAKPOINT_FROM_PC (&addr, &bp_size);
4689 sprintf (p, ",%d", bp_size);
4690
4691 putpkt (buf);
4692 getpkt (buf, (rs->remote_packet_size), 0);
4693
4694 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4695 {
4696 case PACKET_ERROR:
4697 return -1;
4698 case PACKET_OK:
4699 return 0;
4700 case PACKET_UNKNOWN:
4701 break;
4702 }
4703 }
4704
4705 #ifdef REMOTE_BREAKPOINT
4706 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4707
4708 if (val == 0)
4709 {
4710 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4711 val = target_write_memory (addr, (char *) big_break_insn,
4712 sizeof big_break_insn);
4713 else
4714 val = target_write_memory (addr, (char *) little_break_insn,
4715 sizeof little_break_insn);
4716 }
4717
4718 return val;
4719 #else
4720 return memory_insert_breakpoint (addr, contents_cache);
4721 #endif /* REMOTE_BREAKPOINT */
4722 }
4723
4724 static int
4725 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4726 {
4727 struct remote_state *rs = get_remote_state ();
4728 int bp_size;
4729
4730 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4731 {
4732 char *buf = alloca (rs->remote_packet_size);
4733 char *p = buf;
4734
4735 *(p++) = 'z';
4736 *(p++) = '0';
4737 *(p++) = ',';
4738
4739 addr = remote_address_masked (addr);
4740 p += hexnumstr (p, (ULONGEST) addr);
4741 BREAKPOINT_FROM_PC (&addr, &bp_size);
4742 sprintf (p, ",%d", bp_size);
4743
4744 putpkt (buf);
4745 getpkt (buf, (rs->remote_packet_size), 0);
4746
4747 return (buf[0] == 'E');
4748 }
4749
4750 #ifdef REMOTE_BREAKPOINT
4751 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4752 #else
4753 return memory_remove_breakpoint (addr, contents_cache);
4754 #endif /* REMOTE_BREAKPOINT */
4755 }
4756
4757 static int
4758 watchpoint_to_Z_packet (int type)
4759 {
4760 switch (type)
4761 {
4762 case hw_write:
4763 return 2;
4764 break;
4765 case hw_read:
4766 return 3;
4767 break;
4768 case hw_access:
4769 return 4;
4770 break;
4771 default:
4772 internal_error (__FILE__, __LINE__,
4773 "hw_bp_to_z: bad watchpoint type %d", type);
4774 }
4775 }
4776
4777 static int
4778 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4779 {
4780 struct remote_state *rs = get_remote_state ();
4781 char *buf = alloca (rs->remote_packet_size);
4782 char *p;
4783 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4784
4785 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4786 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4787 remote_protocol_Z[packet].name,
4788 remote_protocol_Z[packet].title);
4789
4790 sprintf (buf, "Z%x,", packet);
4791 p = strchr (buf, '\0');
4792 addr = remote_address_masked (addr);
4793 p += hexnumstr (p, (ULONGEST) addr);
4794 sprintf (p, ",%x", len);
4795
4796 putpkt (buf);
4797 getpkt (buf, (rs->remote_packet_size), 0);
4798
4799 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4800 {
4801 case PACKET_ERROR:
4802 case PACKET_UNKNOWN:
4803 return -1;
4804 case PACKET_OK:
4805 return 0;
4806 }
4807 internal_error (__FILE__, __LINE__,
4808 "remote_insert_watchpoint: reached end of function");
4809 }
4810
4811
4812 static int
4813 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4814 {
4815 struct remote_state *rs = get_remote_state ();
4816 char *buf = alloca (rs->remote_packet_size);
4817 char *p;
4818 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4819
4820 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4821 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4822 remote_protocol_Z[packet].name,
4823 remote_protocol_Z[packet].title);
4824
4825 sprintf (buf, "z%x,", packet);
4826 p = strchr (buf, '\0');
4827 addr = remote_address_masked (addr);
4828 p += hexnumstr (p, (ULONGEST) addr);
4829 sprintf (p, ",%x", len);
4830 putpkt (buf);
4831 getpkt (buf, (rs->remote_packet_size), 0);
4832
4833 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4834 {
4835 case PACKET_ERROR:
4836 case PACKET_UNKNOWN:
4837 return -1;
4838 case PACKET_OK:
4839 return 0;
4840 }
4841 internal_error (__FILE__, __LINE__,
4842 "remote_remove_watchpoint: reached end of function");
4843 }
4844
4845
4846 int remote_hw_watchpoint_limit = -1;
4847 int remote_hw_breakpoint_limit = -1;
4848
4849 int
4850 remote_check_watch_resources (int type, int cnt, int ot)
4851 {
4852 if (type == bp_hardware_breakpoint)
4853 {
4854 if (remote_hw_breakpoint_limit == 0)
4855 return 0;
4856 else if (remote_hw_breakpoint_limit < 0)
4857 return 1;
4858 else if (cnt <= remote_hw_breakpoint_limit)
4859 return 1;
4860 }
4861 else
4862 {
4863 if (remote_hw_watchpoint_limit == 0)
4864 return 0;
4865 else if (remote_hw_watchpoint_limit < 0)
4866 return 1;
4867 else if (ot)
4868 return -1;
4869 else if (cnt <= remote_hw_watchpoint_limit)
4870 return 1;
4871 }
4872 return -1;
4873 }
4874
4875 int
4876 remote_stopped_by_watchpoint (void)
4877 {
4878 return remote_stopped_by_watchpoint_p;
4879 }
4880
4881 CORE_ADDR
4882 remote_stopped_data_address (void)
4883 {
4884 if (remote_stopped_by_watchpoint ())
4885 return remote_watch_data_address;
4886 return (CORE_ADDR)0;
4887 }
4888
4889
4890 static int
4891 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4892 {
4893 int len = 0;
4894 struct remote_state *rs = get_remote_state ();
4895 char *buf = alloca (rs->remote_packet_size);
4896 char *p = buf;
4897
4898 /* The length field should be set to the size of a breakpoint
4899 instruction. */
4900
4901 BREAKPOINT_FROM_PC (&addr, &len);
4902
4903 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4904 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4905 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4906 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4907
4908 *(p++) = 'Z';
4909 *(p++) = '1';
4910 *(p++) = ',';
4911
4912 addr = remote_address_masked (addr);
4913 p += hexnumstr (p, (ULONGEST) addr);
4914 sprintf (p, ",%x", len);
4915
4916 putpkt (buf);
4917 getpkt (buf, (rs->remote_packet_size), 0);
4918
4919 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4920 {
4921 case PACKET_ERROR:
4922 case PACKET_UNKNOWN:
4923 return -1;
4924 case PACKET_OK:
4925 return 0;
4926 }
4927 internal_error (__FILE__, __LINE__,
4928 "remote_insert_hw_breakpoint: reached end of function");
4929 }
4930
4931
4932 static int
4933 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4934 {
4935 int len;
4936 struct remote_state *rs = get_remote_state ();
4937 char *buf = alloca (rs->remote_packet_size);
4938 char *p = buf;
4939
4940 /* The length field should be set to the size of a breakpoint
4941 instruction. */
4942
4943 BREAKPOINT_FROM_PC (&addr, &len);
4944
4945 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4946 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4947 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4948 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4949
4950 *(p++) = 'z';
4951 *(p++) = '1';
4952 *(p++) = ',';
4953
4954 addr = remote_address_masked (addr);
4955 p += hexnumstr (p, (ULONGEST) addr);
4956 sprintf (p, ",%x", len);
4957
4958 putpkt(buf);
4959 getpkt (buf, (rs->remote_packet_size), 0);
4960
4961 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4962 {
4963 case PACKET_ERROR:
4964 case PACKET_UNKNOWN:
4965 return -1;
4966 case PACKET_OK:
4967 return 0;
4968 }
4969 internal_error (__FILE__, __LINE__,
4970 "remote_remove_hw_breakpoint: reached end of function");
4971 }
4972
4973 /* Some targets are only capable of doing downloads, and afterwards
4974 they switch to the remote serial protocol. This function provides
4975 a clean way to get from the download target to the remote target.
4976 It's basically just a wrapper so that we don't have to expose any
4977 of the internal workings of remote.c.
4978
4979 Prior to calling this routine, you should shutdown the current
4980 target code, else you will get the "A program is being debugged
4981 already..." message. Usually a call to pop_target() suffices. */
4982
4983 void
4984 push_remote_target (char *name, int from_tty)
4985 {
4986 printf_filtered ("Switching to remote protocol\n");
4987 remote_open (name, from_tty);
4988 }
4989
4990 /* Table used by the crc32 function to calcuate the checksum. */
4991
4992 static unsigned long crc32_table[256] =
4993 {0, 0};
4994
4995 static unsigned long
4996 crc32 (unsigned char *buf, int len, unsigned int crc)
4997 {
4998 if (!crc32_table[1])
4999 {
5000 /* Initialize the CRC table and the decoding table. */
5001 int i, j;
5002 unsigned int c;
5003
5004 for (i = 0; i < 256; i++)
5005 {
5006 for (c = i << 24, j = 8; j > 0; --j)
5007 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5008 crc32_table[i] = c;
5009 }
5010 }
5011
5012 while (len--)
5013 {
5014 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5015 buf++;
5016 }
5017 return crc;
5018 }
5019
5020 /* compare-sections command
5021
5022 With no arguments, compares each loadable section in the exec bfd
5023 with the same memory range on the target, and reports mismatches.
5024 Useful for verifying the image on the target against the exec file.
5025 Depends on the target understanding the new "qCRC:" request. */
5026
5027 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5028 target method (target verify memory) and generic version of the
5029 actual command. This will allow other high-level code (especially
5030 generic_load()) to make use of this target functionality. */
5031
5032 static void
5033 compare_sections_command (char *args, int from_tty)
5034 {
5035 struct remote_state *rs = get_remote_state ();
5036 asection *s;
5037 unsigned long host_crc, target_crc;
5038 extern bfd *exec_bfd;
5039 struct cleanup *old_chain;
5040 char *tmp;
5041 char *sectdata;
5042 const char *sectname;
5043 char *buf = alloca (rs->remote_packet_size);
5044 bfd_size_type size;
5045 bfd_vma lma;
5046 int matched = 0;
5047 int mismatched = 0;
5048
5049 if (!exec_bfd)
5050 error ("command cannot be used without an exec file");
5051 if (!current_target.to_shortname ||
5052 strcmp (current_target.to_shortname, "remote") != 0)
5053 error ("command can only be used with remote target");
5054
5055 for (s = exec_bfd->sections; s; s = s->next)
5056 {
5057 if (!(s->flags & SEC_LOAD))
5058 continue; /* skip non-loadable section */
5059
5060 size = bfd_get_section_size_before_reloc (s);
5061 if (size == 0)
5062 continue; /* skip zero-length section */
5063
5064 sectname = bfd_get_section_name (exec_bfd, s);
5065 if (args && strcmp (args, sectname) != 0)
5066 continue; /* not the section selected by user */
5067
5068 matched = 1; /* do this section */
5069 lma = s->lma;
5070 /* FIXME: assumes lma can fit into long */
5071 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5072 putpkt (buf);
5073
5074 /* be clever; compute the host_crc before waiting for target reply */
5075 sectdata = xmalloc (size);
5076 old_chain = make_cleanup (xfree, sectdata);
5077 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5078 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5079
5080 getpkt (buf, (rs->remote_packet_size), 0);
5081 if (buf[0] == 'E')
5082 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5083 sectname, paddr (lma), paddr (lma + size));
5084 if (buf[0] != 'C')
5085 error ("remote target does not support this operation");
5086
5087 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5088 target_crc = target_crc * 16 + fromhex (*tmp);
5089
5090 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5091 sectname, paddr (lma), paddr (lma + size));
5092 if (host_crc == target_crc)
5093 printf_filtered ("matched.\n");
5094 else
5095 {
5096 printf_filtered ("MIS-MATCHED!\n");
5097 mismatched++;
5098 }
5099
5100 do_cleanups (old_chain);
5101 }
5102 if (mismatched > 0)
5103 warning ("One or more sections of the remote executable does not match\n\
5104 the loaded file\n");
5105 if (args && !matched)
5106 printf_filtered ("No loaded section named '%s'.\n", args);
5107 }
5108
5109 static int
5110 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5111 {
5112 struct remote_state *rs = get_remote_state ();
5113 int i;
5114 char *buf2 = alloca (rs->remote_packet_size);
5115 char *p2 = &buf2[0];
5116
5117 if (!bufsiz)
5118 error ("null pointer to remote bufer size specified");
5119
5120 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5121 the caller know and return what the minimum size is */
5122 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5123 if (*bufsiz < (rs->remote_packet_size))
5124 {
5125 *bufsiz = (rs->remote_packet_size);
5126 return -1;
5127 }
5128
5129 /* except for querying the minimum buffer size, target must be open */
5130 if (!remote_desc)
5131 error ("remote query is only available after target open");
5132
5133 /* we only take uppercase letters as query types, at least for now */
5134 if ((query_type < 'A') || (query_type > 'Z'))
5135 error ("invalid remote query type");
5136
5137 if (!buf)
5138 error ("null remote query specified");
5139
5140 if (!outbuf)
5141 error ("remote query requires a buffer to receive data");
5142
5143 outbuf[0] = '\0';
5144
5145 *p2++ = 'q';
5146 *p2++ = query_type;
5147
5148 /* we used one buffer char for the remote protocol q command and another
5149 for the query type. As the remote protocol encapsulation uses 4 chars
5150 plus one extra in case we are debugging (remote_debug),
5151 we have PBUFZIZ - 7 left to pack the query string */
5152 i = 0;
5153 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5154 {
5155 /* bad caller may have sent forbidden characters */
5156 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5157 error ("illegal characters in query string");
5158
5159 *p2++ = buf[i];
5160 i++;
5161 }
5162 *p2 = buf[i];
5163
5164 if (buf[i])
5165 error ("query larger than available buffer");
5166
5167 i = putpkt (buf2);
5168 if (i < 0)
5169 return i;
5170
5171 getpkt (outbuf, *bufsiz, 0);
5172
5173 return 0;
5174 }
5175
5176 static void
5177 remote_rcmd (char *command,
5178 struct ui_file *outbuf)
5179 {
5180 struct remote_state *rs = get_remote_state ();
5181 int i;
5182 char *buf = alloca (rs->remote_packet_size);
5183 char *p = buf;
5184
5185 if (!remote_desc)
5186 error ("remote rcmd is only available after target open");
5187
5188 /* Send a NULL command across as an empty command */
5189 if (command == NULL)
5190 command = "";
5191
5192 /* The query prefix */
5193 strcpy (buf, "qRcmd,");
5194 p = strchr (buf, '\0');
5195
5196 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5197 error ("\"monitor\" command ``%s'' is too long\n", command);
5198
5199 /* Encode the actual command */
5200 bin2hex (command, p, 0);
5201
5202 if (putpkt (buf) < 0)
5203 error ("Communication problem with target\n");
5204
5205 /* get/display the response */
5206 while (1)
5207 {
5208 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5209 buf[0] = '\0';
5210 getpkt (buf, (rs->remote_packet_size), 0);
5211 if (buf[0] == '\0')
5212 error ("Target does not support this command\n");
5213 if (buf[0] == 'O' && buf[1] != 'K')
5214 {
5215 remote_console_output (buf + 1); /* 'O' message from stub */
5216 continue;
5217 }
5218 if (strcmp (buf, "OK") == 0)
5219 break;
5220 if (strlen (buf) == 3 && buf[0] == 'E'
5221 && isdigit (buf[1]) && isdigit (buf[2]))
5222 {
5223 error ("Protocol error with Rcmd");
5224 }
5225 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5226 {
5227 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5228 fputc_unfiltered (c, outbuf);
5229 }
5230 break;
5231 }
5232 }
5233
5234 static void
5235 packet_command (char *args, int from_tty)
5236 {
5237 struct remote_state *rs = get_remote_state ();
5238 char *buf = alloca (rs->remote_packet_size);
5239
5240 if (!remote_desc)
5241 error ("command can only be used with remote target");
5242
5243 if (!args)
5244 error ("remote-packet command requires packet text as argument");
5245
5246 puts_filtered ("sending: ");
5247 print_packet (args);
5248 puts_filtered ("\n");
5249 putpkt (args);
5250
5251 getpkt (buf, (rs->remote_packet_size), 0);
5252 puts_filtered ("received: ");
5253 print_packet (buf);
5254 puts_filtered ("\n");
5255 }
5256
5257 #if 0
5258 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5259
5260 static void display_thread_info (struct gdb_ext_thread_info *info);
5261
5262 static void threadset_test_cmd (char *cmd, int tty);
5263
5264 static void threadalive_test (char *cmd, int tty);
5265
5266 static void threadlist_test_cmd (char *cmd, int tty);
5267
5268 int get_and_display_threadinfo (threadref * ref);
5269
5270 static void threadinfo_test_cmd (char *cmd, int tty);
5271
5272 static int thread_display_step (threadref * ref, void *context);
5273
5274 static void threadlist_update_test_cmd (char *cmd, int tty);
5275
5276 static void init_remote_threadtests (void);
5277
5278 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5279
5280 static void
5281 threadset_test_cmd (char *cmd, int tty)
5282 {
5283 int sample_thread = SAMPLE_THREAD;
5284
5285 printf_filtered ("Remote threadset test\n");
5286 set_thread (sample_thread, 1);
5287 }
5288
5289
5290 static void
5291 threadalive_test (char *cmd, int tty)
5292 {
5293 int sample_thread = SAMPLE_THREAD;
5294
5295 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5296 printf_filtered ("PASS: Thread alive test\n");
5297 else
5298 printf_filtered ("FAIL: Thread alive test\n");
5299 }
5300
5301 void output_threadid (char *title, threadref * ref);
5302
5303 void
5304 output_threadid (char *title, threadref *ref)
5305 {
5306 char hexid[20];
5307
5308 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5309 hexid[16] = 0;
5310 printf_filtered ("%s %s\n", title, (&hexid[0]));
5311 }
5312
5313 static void
5314 threadlist_test_cmd (char *cmd, int tty)
5315 {
5316 int startflag = 1;
5317 threadref nextthread;
5318 int done, result_count;
5319 threadref threadlist[3];
5320
5321 printf_filtered ("Remote Threadlist test\n");
5322 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5323 &result_count, &threadlist[0]))
5324 printf_filtered ("FAIL: threadlist test\n");
5325 else
5326 {
5327 threadref *scan = threadlist;
5328 threadref *limit = scan + result_count;
5329
5330 while (scan < limit)
5331 output_threadid (" thread ", scan++);
5332 }
5333 }
5334
5335 void
5336 display_thread_info (struct gdb_ext_thread_info *info)
5337 {
5338 output_threadid ("Threadid: ", &info->threadid);
5339 printf_filtered ("Name: %s\n ", info->shortname);
5340 printf_filtered ("State: %s\n", info->display);
5341 printf_filtered ("other: %s\n\n", info->more_display);
5342 }
5343
5344 int
5345 get_and_display_threadinfo (threadref *ref)
5346 {
5347 int result;
5348 int set;
5349 struct gdb_ext_thread_info threadinfo;
5350
5351 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5352 | TAG_MOREDISPLAY | TAG_DISPLAY;
5353 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5354 display_thread_info (&threadinfo);
5355 return result;
5356 }
5357
5358 static void
5359 threadinfo_test_cmd (char *cmd, int tty)
5360 {
5361 int athread = SAMPLE_THREAD;
5362 threadref thread;
5363 int set;
5364
5365 int_to_threadref (&thread, athread);
5366 printf_filtered ("Remote Threadinfo test\n");
5367 if (!get_and_display_threadinfo (&thread))
5368 printf_filtered ("FAIL cannot get thread info\n");
5369 }
5370
5371 static int
5372 thread_display_step (threadref *ref, void *context)
5373 {
5374 /* output_threadid(" threadstep ",ref); *//* simple test */
5375 return get_and_display_threadinfo (ref);
5376 }
5377
5378 static void
5379 threadlist_update_test_cmd (char *cmd, int tty)
5380 {
5381 printf_filtered ("Remote Threadlist update test\n");
5382 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5383 }
5384
5385 static void
5386 init_remote_threadtests (void)
5387 {
5388 add_com ("tlist", class_obscure, threadlist_test_cmd,
5389 "Fetch and print the remote list of thread identifiers, one pkt only");
5390 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5391 "Fetch and display info about one thread");
5392 add_com ("tset", class_obscure, threadset_test_cmd,
5393 "Test setting to a different thread");
5394 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5395 "Iterate through updating all remote thread info");
5396 add_com ("talive", class_obscure, threadalive_test,
5397 " Remote thread alive test ");
5398 }
5399
5400 #endif /* 0 */
5401
5402 /* Convert a thread ID to a string. Returns the string in a static
5403 buffer. */
5404
5405 static char *
5406 remote_pid_to_str (ptid_t ptid)
5407 {
5408 static char buf[30];
5409
5410 sprintf (buf, "Thread %d", PIDGET (ptid));
5411 return buf;
5412 }
5413
5414 static void
5415 init_remote_ops (void)
5416 {
5417 remote_ops.to_shortname = "remote";
5418 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5419 remote_ops.to_doc =
5420 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5421 Specify the serial device it is connected to\n\
5422 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5423 remote_ops.to_open = remote_open;
5424 remote_ops.to_close = remote_close;
5425 remote_ops.to_detach = remote_detach;
5426 remote_ops.to_resume = remote_resume;
5427 remote_ops.to_wait = remote_wait;
5428 remote_ops.to_fetch_registers = remote_fetch_registers;
5429 remote_ops.to_store_registers = remote_store_registers;
5430 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5431 remote_ops.to_xfer_memory = remote_xfer_memory;
5432 remote_ops.to_files_info = remote_files_info;
5433 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5434 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5435 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5436 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5437 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5438 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5439 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5440 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5441 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5442 remote_ops.to_kill = remote_kill;
5443 remote_ops.to_load = generic_load;
5444 remote_ops.to_mourn_inferior = remote_mourn;
5445 remote_ops.to_thread_alive = remote_thread_alive;
5446 remote_ops.to_find_new_threads = remote_threads_info;
5447 remote_ops.to_pid_to_str = remote_pid_to_str;
5448 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5449 remote_ops.to_stop = remote_stop;
5450 remote_ops.to_query = remote_query;
5451 remote_ops.to_rcmd = remote_rcmd;
5452 remote_ops.to_stratum = process_stratum;
5453 remote_ops.to_has_all_memory = 1;
5454 remote_ops.to_has_memory = 1;
5455 remote_ops.to_has_stack = 1;
5456 remote_ops.to_has_registers = 1;
5457 remote_ops.to_has_execution = 1;
5458 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5459 remote_ops.to_magic = OPS_MAGIC;
5460 }
5461
5462 /* Set up the extended remote vector by making a copy of the standard
5463 remote vector and adding to it. */
5464
5465 static void
5466 init_extended_remote_ops (void)
5467 {
5468 extended_remote_ops = remote_ops;
5469
5470 extended_remote_ops.to_shortname = "extended-remote";
5471 extended_remote_ops.to_longname =
5472 "Extended remote serial target in gdb-specific protocol";
5473 extended_remote_ops.to_doc =
5474 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5475 Specify the serial device it is connected to (e.g. /dev/ttya).",
5476 extended_remote_ops.to_open = extended_remote_open;
5477 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5478 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5479 }
5480
5481 /*
5482 * Command: info remote-process
5483 *
5484 * This implements Cisco's version of the "info proc" command.
5485 *
5486 * This query allows the target stub to return an arbitrary string
5487 * (or strings) giving arbitrary information about the target process.
5488 * This is optional; the target stub isn't required to implement it.
5489 *
5490 * Syntax: qfProcessInfo request first string
5491 * qsProcessInfo request subsequent string
5492 * reply: 'O'<hex-encoded-string>
5493 * 'l' last reply (empty)
5494 */
5495
5496 static void
5497 remote_info_process (char *args, int from_tty)
5498 {
5499 struct remote_state *rs = get_remote_state ();
5500 char *buf = alloca (rs->remote_packet_size);
5501
5502 if (remote_desc == 0)
5503 error ("Command can only be used when connected to the remote target.");
5504
5505 putpkt ("qfProcessInfo");
5506 getpkt (buf, (rs->remote_packet_size), 0);
5507 if (buf[0] == 0)
5508 return; /* Silently: target does not support this feature. */
5509
5510 if (buf[0] == 'E')
5511 error ("info proc: target error.");
5512
5513 while (buf[0] == 'O') /* Capitol-O packet */
5514 {
5515 remote_console_output (&buf[1]);
5516 putpkt ("qsProcessInfo");
5517 getpkt (buf, (rs->remote_packet_size), 0);
5518 }
5519 }
5520
5521 /*
5522 * Target Cisco
5523 */
5524
5525 static void
5526 remote_cisco_open (char *name, int from_tty)
5527 {
5528 int ex;
5529 if (name == 0)
5530 error ("To open a remote debug connection, you need to specify what \n"
5531 "device is attached to the remote system (e.g. host:port).");
5532
5533 /* See FIXME above */
5534 wait_forever_enabled_p = 1;
5535
5536 target_preopen (from_tty);
5537
5538 unpush_target (&remote_cisco_ops);
5539
5540 remote_desc = remote_serial_open (name);
5541 if (!remote_desc)
5542 perror_with_name (name);
5543
5544 /*
5545 * If a baud rate was specified on the gdb command line it will
5546 * be greater than the initial value of -1. If it is, use it otherwise
5547 * default to 9600
5548 */
5549
5550 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5551 if (serial_setbaudrate (remote_desc, baud_rate))
5552 {
5553 serial_close (remote_desc);
5554 perror_with_name (name);
5555 }
5556
5557 serial_raw (remote_desc);
5558
5559 /* If there is something sitting in the buffer we might take it as a
5560 response to a command, which would be bad. */
5561 serial_flush_input (remote_desc);
5562
5563 if (from_tty)
5564 {
5565 puts_filtered ("Remote debugging using ");
5566 puts_filtered (name);
5567 puts_filtered ("\n");
5568 }
5569
5570 remote_cisco_mode = 1;
5571
5572 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5573
5574 init_all_packet_configs ();
5575
5576 general_thread = -2;
5577 continue_thread = -2;
5578
5579 /* Probe for ability to use "ThreadInfo" query, as required. */
5580 use_threadinfo_query = 1;
5581 use_threadextra_query = 1;
5582
5583 /* Without this, some commands which require an active target (such
5584 as kill) won't work. This variable serves (at least) double duty
5585 as both the pid of the target process (if it has such), and as a
5586 flag indicating that a target is active. These functions should
5587 be split out into seperate variables, especially since GDB will
5588 someday have a notion of debugging several processes. */
5589 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5590
5591 /* Start the remote connection; if error, discard this target. See
5592 the comments in remote_open_1() for further details such as the
5593 need to re-throw the exception. */
5594 ex = catch_exceptions (uiout,
5595 remote_start_remote_dummy, NULL,
5596 "Couldn't establish connection to remote"
5597 " target\n",
5598 RETURN_MASK_ALL);
5599 if (ex < 0)
5600 {
5601 pop_target ();
5602 throw_exception (ex);
5603 }
5604 }
5605
5606 static void
5607 remote_cisco_close (int quitting)
5608 {
5609 remote_cisco_mode = 0;
5610 remote_close (quitting);
5611 }
5612
5613 static void
5614 remote_cisco_mourn (void)
5615 {
5616 remote_mourn_1 (&remote_cisco_ops);
5617 }
5618
5619 enum
5620 {
5621 READ_MORE,
5622 FATAL_ERROR,
5623 ENTER_DEBUG,
5624 DISCONNECT_TELNET
5625 }
5626 minitelnet_return;
5627
5628 /* Shared between readsocket() and readtty(). The size is arbitrary,
5629 however all targets are known to support a 400 character packet. */
5630 static char tty_input[400];
5631
5632 static int escape_count;
5633 static int echo_check;
5634 extern int quit_flag;
5635
5636 static int
5637 readsocket (void)
5638 {
5639 int data;
5640
5641 /* Loop until the socket doesn't have any more data */
5642
5643 while ((data = readchar (0)) >= 0)
5644 {
5645 /* Check for the escape sequence */
5646 if (data == '|')
5647 {
5648 /* If this is the fourth escape, get out */
5649 if (++escape_count == 4)
5650 {
5651 return ENTER_DEBUG;
5652 }
5653 else
5654 { /* This is a '|', but not the fourth in a row.
5655 Continue without echoing it. If it isn't actually
5656 one of four in a row, it'll be echoed later. */
5657 continue;
5658 }
5659 }
5660 else
5661 /* Not a '|' */
5662 {
5663 /* Ensure any pending '|'s are flushed. */
5664
5665 for (; escape_count > 0; escape_count--)
5666 putchar ('|');
5667 }
5668
5669 if (data == '\r') /* If this is a return character, */
5670 continue; /* - just supress it. */
5671
5672 if (echo_check != -1) /* Check for echo of user input. */
5673 {
5674 if (tty_input[echo_check] == data)
5675 {
5676 gdb_assert (echo_check <= sizeof (tty_input));
5677 echo_check++; /* Character matched user input: */
5678 continue; /* Continue without echoing it. */
5679 }
5680 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5681 { /* End of the line (and of echo checking). */
5682 echo_check = -1; /* No more echo supression */
5683 continue; /* Continue without echoing. */
5684 }
5685 else
5686 { /* Failed check for echo of user input.
5687 We now have some suppressed output to flush! */
5688 int j;
5689
5690 for (j = 0; j < echo_check; j++)
5691 putchar (tty_input[j]);
5692 echo_check = -1;
5693 }
5694 }
5695 putchar (data); /* Default case: output the char. */
5696 }
5697
5698 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5699 return READ_MORE; /* Try to read some more */
5700 else
5701 return FATAL_ERROR; /* Trouble, bail out */
5702 }
5703
5704 static int
5705 readtty (void)
5706 {
5707 int tty_bytecount;
5708
5709 /* First, read a buffer full from the terminal */
5710 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5711 if (tty_bytecount == -1)
5712 {
5713 perror ("readtty: read failed");
5714 return FATAL_ERROR;
5715 }
5716
5717 /* Remove a quoted newline. */
5718 if (tty_input[tty_bytecount - 1] == '\n' &&
5719 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5720 {
5721 tty_input[--tty_bytecount] = 0; /* remove newline */
5722 tty_input[--tty_bytecount] = 0; /* remove backslash */
5723 }
5724
5725 /* Turn trailing newlines into returns */
5726 if (tty_input[tty_bytecount - 1] == '\n')
5727 tty_input[tty_bytecount - 1] = '\r';
5728
5729 /* If the line consists of a ~, enter debugging mode. */
5730 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5731 return ENTER_DEBUG;
5732
5733 /* Make this a zero terminated string and write it out */
5734 tty_input[tty_bytecount] = 0;
5735 if (serial_write (remote_desc, tty_input, tty_bytecount))
5736 {
5737 perror_with_name ("readtty: write failed");
5738 return FATAL_ERROR;
5739 }
5740
5741 return READ_MORE;
5742 }
5743
5744 static int
5745 minitelnet (void)
5746 {
5747 fd_set input; /* file descriptors for select */
5748 int tablesize; /* max number of FDs for select */
5749 int status;
5750 int quit_count = 0;
5751
5752 escape_count = 0;
5753 echo_check = -1;
5754
5755 tablesize = 8 * sizeof (input);
5756
5757 for (;;)
5758 {
5759 /* Check for anything from our socket - doesn't block. Note that
5760 this must be done *before* the select as there may be
5761 buffered I/O waiting to be processed. */
5762
5763 if ((status = readsocket ()) == FATAL_ERROR)
5764 {
5765 error ("Debugging terminated by communications error");
5766 }
5767 else if (status != READ_MORE)
5768 {
5769 return (status);
5770 }
5771
5772 fflush (stdout); /* Flush output before blocking */
5773
5774 /* Now block on more socket input or TTY input */
5775
5776 FD_ZERO (&input);
5777 FD_SET (fileno (stdin), &input);
5778 FD_SET (deprecated_serial_fd (remote_desc), &input);
5779
5780 status = select (tablesize, &input, 0, 0, 0);
5781 if ((status == -1) && (errno != EINTR))
5782 {
5783 error ("Communications error on select %d", errno);
5784 }
5785
5786 /* Handle Control-C typed */
5787
5788 if (quit_flag)
5789 {
5790 if ((++quit_count) == 2)
5791 {
5792 if (query ("Interrupt GDB? "))
5793 {
5794 printf_filtered ("Interrupted by user.\n");
5795 throw_exception (RETURN_QUIT);
5796 }
5797 quit_count = 0;
5798 }
5799 quit_flag = 0;
5800
5801 if (remote_break)
5802 serial_send_break (remote_desc);
5803 else
5804 serial_write (remote_desc, "\003", 1);
5805
5806 continue;
5807 }
5808
5809 /* Handle console input */
5810
5811 if (FD_ISSET (fileno (stdin), &input))
5812 {
5813 quit_count = 0;
5814 echo_check = 0;
5815 status = readtty ();
5816 if (status == READ_MORE)
5817 continue;
5818
5819 return status; /* telnet session ended */
5820 }
5821 }
5822 }
5823
5824 static ptid_t
5825 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5826 {
5827 if (minitelnet () != ENTER_DEBUG)
5828 {
5829 error ("Debugging session terminated by protocol error");
5830 }
5831 putpkt ("?");
5832 return remote_wait (ptid, status);
5833 }
5834
5835 static void
5836 init_remote_cisco_ops (void)
5837 {
5838 remote_cisco_ops.to_shortname = "cisco";
5839 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5840 remote_cisco_ops.to_doc =
5841 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5842 Specify the serial device it is connected to (e.g. host:2020).";
5843 remote_cisco_ops.to_open = remote_cisco_open;
5844 remote_cisco_ops.to_close = remote_cisco_close;
5845 remote_cisco_ops.to_detach = remote_detach;
5846 remote_cisco_ops.to_resume = remote_resume;
5847 remote_cisco_ops.to_wait = remote_cisco_wait;
5848 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5849 remote_cisco_ops.to_store_registers = remote_store_registers;
5850 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5851 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5852 remote_cisco_ops.to_files_info = remote_files_info;
5853 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5854 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5855 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5856 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5857 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5858 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5859 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5860 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5861 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5862 remote_cisco_ops.to_kill = remote_kill;
5863 remote_cisco_ops.to_load = generic_load;
5864 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5865 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5866 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5867 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5868 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5869 remote_cisco_ops.to_stratum = process_stratum;
5870 remote_cisco_ops.to_has_all_memory = 1;
5871 remote_cisco_ops.to_has_memory = 1;
5872 remote_cisco_ops.to_has_stack = 1;
5873 remote_cisco_ops.to_has_registers = 1;
5874 remote_cisco_ops.to_has_execution = 1;
5875 remote_cisco_ops.to_magic = OPS_MAGIC;
5876 }
5877
5878 static int
5879 remote_can_async_p (void)
5880 {
5881 /* We're async whenever the serial device is. */
5882 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5883 }
5884
5885 static int
5886 remote_is_async_p (void)
5887 {
5888 /* We're async whenever the serial device is. */
5889 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5890 }
5891
5892 /* Pass the SERIAL event on and up to the client. One day this code
5893 will be able to delay notifying the client of an event until the
5894 point where an entire packet has been received. */
5895
5896 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5897 static void *async_client_context;
5898 static serial_event_ftype remote_async_serial_handler;
5899
5900 static void
5901 remote_async_serial_handler (struct serial *scb, void *context)
5902 {
5903 /* Don't propogate error information up to the client. Instead let
5904 the client find out about the error by querying the target. */
5905 async_client_callback (INF_REG_EVENT, async_client_context);
5906 }
5907
5908 static void
5909 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5910 {
5911 if (current_target.to_async_mask_value == 0)
5912 internal_error (__FILE__, __LINE__,
5913 "Calling remote_async when async is masked");
5914
5915 if (callback != NULL)
5916 {
5917 serial_async (remote_desc, remote_async_serial_handler, NULL);
5918 async_client_callback = callback;
5919 async_client_context = context;
5920 }
5921 else
5922 serial_async (remote_desc, NULL, NULL);
5923 }
5924
5925 /* Target async and target extended-async.
5926
5927 This are temporary targets, until it is all tested. Eventually
5928 async support will be incorporated int the usual 'remote'
5929 target. */
5930
5931 static void
5932 init_remote_async_ops (void)
5933 {
5934 remote_async_ops.to_shortname = "async";
5935 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5936 remote_async_ops.to_doc =
5937 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5938 Specify the serial device it is connected to (e.g. /dev/ttya).";
5939 remote_async_ops.to_open = remote_async_open;
5940 remote_async_ops.to_close = remote_close;
5941 remote_async_ops.to_detach = remote_async_detach;
5942 remote_async_ops.to_resume = remote_async_resume;
5943 remote_async_ops.to_wait = remote_async_wait;
5944 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5945 remote_async_ops.to_store_registers = remote_store_registers;
5946 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5947 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5948 remote_async_ops.to_files_info = remote_files_info;
5949 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5950 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5951 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5952 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5953 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5954 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5955 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5956 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5957 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5958 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5959 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5960 remote_async_ops.to_kill = remote_async_kill;
5961 remote_async_ops.to_load = generic_load;
5962 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5963 remote_async_ops.to_thread_alive = remote_thread_alive;
5964 remote_async_ops.to_find_new_threads = remote_threads_info;
5965 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5966 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5967 remote_async_ops.to_stop = remote_stop;
5968 remote_async_ops.to_query = remote_query;
5969 remote_async_ops.to_rcmd = remote_rcmd;
5970 remote_async_ops.to_stratum = process_stratum;
5971 remote_async_ops.to_has_all_memory = 1;
5972 remote_async_ops.to_has_memory = 1;
5973 remote_async_ops.to_has_stack = 1;
5974 remote_async_ops.to_has_registers = 1;
5975 remote_async_ops.to_has_execution = 1;
5976 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5977 remote_async_ops.to_can_async_p = remote_can_async_p;
5978 remote_async_ops.to_is_async_p = remote_is_async_p;
5979 remote_async_ops.to_async = remote_async;
5980 remote_async_ops.to_async_mask_value = 1;
5981 remote_async_ops.to_magic = OPS_MAGIC;
5982 }
5983
5984 /* Set up the async extended remote vector by making a copy of the standard
5985 remote vector and adding to it. */
5986
5987 static void
5988 init_extended_async_remote_ops (void)
5989 {
5990 extended_async_remote_ops = remote_async_ops;
5991
5992 extended_async_remote_ops.to_shortname = "extended-async";
5993 extended_async_remote_ops.to_longname =
5994 "Extended remote serial target in async gdb-specific protocol";
5995 extended_async_remote_ops.to_doc =
5996 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5997 Specify the serial device it is connected to (e.g. /dev/ttya).",
5998 extended_async_remote_ops.to_open = extended_remote_async_open;
5999 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6000 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6001 }
6002
6003 static void
6004 set_remote_cmd (char *args, int from_tty)
6005 {
6006 }
6007
6008 static void
6009 show_remote_cmd (char *args, int from_tty)
6010 {
6011 /* FIXME: cagney/2002-06-15: This function should iterate over
6012 remote_show_cmdlist for a list of sub commands to show. */
6013 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6014 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6015 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6016 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6017 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6018 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6019 }
6020
6021 static void
6022 build_remote_gdbarch_data (void)
6023 {
6024 remote_address_size = TARGET_ADDR_BIT;
6025 }
6026
6027 /* Saved pointer to previous owner of the new_objfile event. */
6028 static void (*remote_new_objfile_chain) (struct objfile *);
6029
6030 /* Function to be called whenever a new objfile (shlib) is detected. */
6031 static void
6032 remote_new_objfile (struct objfile *objfile)
6033 {
6034 if (remote_desc != 0) /* Have a remote connection */
6035 {
6036 remote_check_symbols (objfile);
6037 }
6038 /* Call predecessor on chain, if any. */
6039 if (remote_new_objfile_chain != 0 &&
6040 remote_desc == 0)
6041 remote_new_objfile_chain (objfile);
6042 }
6043
6044 void
6045 _initialize_remote (void)
6046 {
6047 static struct cmd_list_element *remote_set_cmdlist;
6048 static struct cmd_list_element *remote_show_cmdlist;
6049 struct cmd_list_element *tmpcmd;
6050
6051 /* architecture specific data */
6052 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6053 free_remote_state);
6054
6055 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6056 that the remote protocol has been initialized. */
6057 register_gdbarch_swap (&remote_address_size,
6058 sizeof (&remote_address_size), NULL);
6059 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6060
6061 init_remote_ops ();
6062 add_target (&remote_ops);
6063
6064 init_extended_remote_ops ();
6065 add_target (&extended_remote_ops);
6066
6067 init_remote_async_ops ();
6068 add_target (&remote_async_ops);
6069
6070 init_extended_async_remote_ops ();
6071 add_target (&extended_async_remote_ops);
6072
6073 init_remote_cisco_ops ();
6074 add_target (&remote_cisco_ops);
6075
6076 /* Hook into new objfile notification. */
6077 remote_new_objfile_chain = target_new_objfile_hook;
6078 target_new_objfile_hook = remote_new_objfile;
6079
6080 #if 0
6081 init_remote_threadtests ();
6082 #endif
6083
6084 /* set/show remote ... */
6085
6086 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6087 Remote protocol specific variables\n\
6088 Configure various remote-protocol specific variables such as\n\
6089 the packets being used",
6090 &remote_set_cmdlist, "set remote ",
6091 0/*allow-unknown*/, &setlist);
6092 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6093 Remote protocol specific variables\n\
6094 Configure various remote-protocol specific variables such as\n\
6095 the packets being used",
6096 &remote_show_cmdlist, "show remote ",
6097 0/*allow-unknown*/, &showlist);
6098
6099 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6100 "Compare section data on target to the exec file.\n\
6101 Argument is a single section name (default: all loaded sections).",
6102 &cmdlist);
6103
6104 add_cmd ("packet", class_maintenance, packet_command,
6105 "Send an arbitrary packet to a remote target.\n\
6106 maintenance packet TEXT\n\
6107 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6108 this command sends the string TEXT to the inferior, and displays the\n\
6109 response packet. GDB supplies the initial `$' character, and the\n\
6110 terminating `#' character and checksum.",
6111 &maintenancelist);
6112
6113 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6114 "Set whether to send break if interrupted.\n",
6115 "Show whether to send break if interrupted.\n",
6116 NULL, NULL,
6117 &setlist, &showlist);
6118
6119 /* Install commands for configuring memory read/write packets. */
6120
6121 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6122 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6123 &setlist);
6124 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6125 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6126 &showlist);
6127 add_cmd ("memory-write-packet-size", no_class,
6128 set_memory_write_packet_size,
6129 "Set the maximum number of bytes per memory-write packet.\n"
6130 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6131 "default packet size. The actual limit is further reduced\n"
6132 "dependent on the target. Specify ``fixed'' to disable the\n"
6133 "further restriction and ``limit'' to enable that restriction\n",
6134 &remote_set_cmdlist);
6135 add_cmd ("memory-read-packet-size", no_class,
6136 set_memory_read_packet_size,
6137 "Set the maximum number of bytes per memory-read packet.\n"
6138 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6139 "default packet size. The actual limit is further reduced\n"
6140 "dependent on the target. Specify ``fixed'' to disable the\n"
6141 "further restriction and ``limit'' to enable that restriction\n",
6142 &remote_set_cmdlist);
6143 add_cmd ("memory-write-packet-size", no_class,
6144 show_memory_write_packet_size,
6145 "Show the maximum number of bytes per memory-write packet.\n",
6146 &remote_show_cmdlist);
6147 add_cmd ("memory-read-packet-size", no_class,
6148 show_memory_read_packet_size,
6149 "Show the maximum number of bytes per memory-read packet.\n",
6150 &remote_show_cmdlist);
6151
6152 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6153 var_zinteger, &remote_hw_watchpoint_limit, "\
6154 Set the maximum number of target hardware watchpoints.\n\
6155 Specify a negative limit for unlimited.", "\
6156 Show the maximum number of target hardware watchpoints.\n",
6157 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6158 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6159 var_zinteger, &remote_hw_breakpoint_limit, "\
6160 Set the maximum number of target hardware breakpoints.\n\
6161 Specify a negative limit for unlimited.", "\
6162 Show the maximum number of target hardware breakpoints.\n",
6163 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6164
6165 add_show_from_set
6166 (add_set_cmd ("remoteaddresssize", class_obscure,
6167 var_integer, (char *) &remote_address_size,
6168 "Set the maximum size of the address (in bits) \
6169 in a memory packet.\n",
6170 &setlist),
6171 &showlist);
6172
6173 add_packet_config_cmd (&remote_protocol_binary_download,
6174 "X", "binary-download",
6175 set_remote_protocol_binary_download_cmd,
6176 show_remote_protocol_binary_download_cmd,
6177 &remote_set_cmdlist, &remote_show_cmdlist,
6178 1);
6179 #if 0
6180 /* XXXX - should ``set remotebinarydownload'' be retained for
6181 compatibility. */
6182 add_show_from_set
6183 (add_set_cmd ("remotebinarydownload", no_class,
6184 var_boolean, (char *) &remote_binary_download,
6185 "Set binary downloads.\n", &setlist),
6186 &showlist);
6187 #endif
6188
6189 add_info ("remote-process", remote_info_process,
6190 "Query the remote system for process info.");
6191
6192 add_packet_config_cmd (&remote_protocol_qSymbol,
6193 "qSymbol", "symbol-lookup",
6194 set_remote_protocol_qSymbol_packet_cmd,
6195 show_remote_protocol_qSymbol_packet_cmd,
6196 &remote_set_cmdlist, &remote_show_cmdlist,
6197 0);
6198
6199 add_packet_config_cmd (&remote_protocol_e,
6200 "e", "step-over-range",
6201 set_remote_protocol_e_packet_cmd,
6202 show_remote_protocol_e_packet_cmd,
6203 &remote_set_cmdlist, &remote_show_cmdlist,
6204 0);
6205 /* Disable by default. The ``e'' packet has nasty interactions with
6206 the threading code - it relies on global state. */
6207 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6208 update_packet_config (&remote_protocol_e);
6209
6210 add_packet_config_cmd (&remote_protocol_E,
6211 "E", "step-over-range-w-signal",
6212 set_remote_protocol_E_packet_cmd,
6213 show_remote_protocol_E_packet_cmd,
6214 &remote_set_cmdlist, &remote_show_cmdlist,
6215 0);
6216 /* Disable by default. The ``e'' packet has nasty interactions with
6217 the threading code - it relies on global state. */
6218 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6219 update_packet_config (&remote_protocol_E);
6220
6221 add_packet_config_cmd (&remote_protocol_P,
6222 "P", "set-register",
6223 set_remote_protocol_P_packet_cmd,
6224 show_remote_protocol_P_packet_cmd,
6225 &remote_set_cmdlist, &remote_show_cmdlist,
6226 1);
6227
6228 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6229 "Z0", "software-breakpoint",
6230 set_remote_protocol_Z_software_bp_packet_cmd,
6231 show_remote_protocol_Z_software_bp_packet_cmd,
6232 &remote_set_cmdlist, &remote_show_cmdlist,
6233 0);
6234
6235 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6236 "Z1", "hardware-breakpoint",
6237 set_remote_protocol_Z_hardware_bp_packet_cmd,
6238 show_remote_protocol_Z_hardware_bp_packet_cmd,
6239 &remote_set_cmdlist, &remote_show_cmdlist,
6240 0);
6241
6242 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6243 "Z2", "write-watchpoint",
6244 set_remote_protocol_Z_write_wp_packet_cmd,
6245 show_remote_protocol_Z_write_wp_packet_cmd,
6246 &remote_set_cmdlist, &remote_show_cmdlist,
6247 0);
6248
6249 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6250 "Z3", "read-watchpoint",
6251 set_remote_protocol_Z_read_wp_packet_cmd,
6252 show_remote_protocol_Z_read_wp_packet_cmd,
6253 &remote_set_cmdlist, &remote_show_cmdlist,
6254 0);
6255
6256 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6257 "Z4", "access-watchpoint",
6258 set_remote_protocol_Z_access_wp_packet_cmd,
6259 show_remote_protocol_Z_access_wp_packet_cmd,
6260 &remote_set_cmdlist, &remote_show_cmdlist,
6261 0);
6262
6263 /* Keep the old ``set remote Z-packet ...'' working. */
6264 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6265 &remote_Z_packet_detect, "\
6266 Set use of remote protocol `Z' packets",
6267 "Show use of remote protocol `Z' packets ",
6268 set_remote_protocol_Z_packet_cmd,
6269 show_remote_protocol_Z_packet_cmd,
6270 &remote_set_cmdlist, &remote_show_cmdlist);
6271 }
This page took 0.283035 seconds and 4 git commands to generate.