Fix gdb build on 32-bit hosts w/ --enable-64-bit-bfd
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45 #include "gdb_bfd.h"
46 #include "filestuff.h"
47 #include "rsp-low.h"
48 #include "disasm.h"
49 #include "location.h"
50
51 #include "gdb_sys_time.h"
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63 #include "gdb/fileio.h"
64 #include <sys/stat.h>
65 #include "xml-support.h"
66
67 #include "memory-map.h"
68
69 #include "tracepoint.h"
70 #include "ax.h"
71 #include "ax-gdb.h"
72 #include "agent.h"
73 #include "btrace.h"
74 #include "record-btrace.h"
75 #include <algorithm>
76 #include "common/scoped_restore.h"
77 #include "environ.h"
78 #include "common/byte-vector.h"
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 static void stop_reply_xfree (struct stop_reply *);
101
102 struct stop_reply_deleter
103 {
104 void operator() (stop_reply *r) const
105 {
106 stop_reply_xfree (r);
107 }
108 };
109
110 typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
111
112 /* Generic configuration support for packets the stub optionally
113 supports. Allows the user to specify the use of the packet as well
114 as allowing GDB to auto-detect support in the remote stub. */
115
116 enum packet_support
117 {
118 PACKET_SUPPORT_UNKNOWN = 0,
119 PACKET_ENABLE,
120 PACKET_DISABLE
121 };
122
123 /* Analyze a packet's return value and update the packet config
124 accordingly. */
125
126 enum packet_result
127 {
128 PACKET_ERROR,
129 PACKET_OK,
130 PACKET_UNKNOWN
131 };
132
133 struct threads_listing_context;
134
135 /* Stub vCont actions support.
136
137 Each field is a boolean flag indicating whether the stub reports
138 support for the corresponding action. */
139
140 struct vCont_action_support
141 {
142 /* vCont;t */
143 bool t = false;
144
145 /* vCont;r */
146 bool r = false;
147
148 /* vCont;s */
149 bool s = false;
150
151 /* vCont;S */
152 bool S = false;
153 };
154
155 /* About this many threadisds fit in a packet. */
156
157 #define MAXTHREADLISTRESULTS 32
158
159 /* Data for the vFile:pread readahead cache. */
160
161 struct readahead_cache
162 {
163 /* Invalidate the readahead cache. */
164 void invalidate ();
165
166 /* Invalidate the readahead cache if it is holding data for FD. */
167 void invalidate_fd (int fd);
168
169 /* Serve pread from the readahead cache. Returns number of bytes
170 read, or 0 if the request can't be served from the cache. */
171 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
172
173 /* The file descriptor for the file that is being cached. -1 if the
174 cache is invalid. */
175 int fd = -1;
176
177 /* The offset into the file that the cache buffer corresponds
178 to. */
179 ULONGEST offset = 0;
180
181 /* The buffer holding the cache contents. */
182 gdb_byte *buf = nullptr;
183 /* The buffer's size. We try to read as much as fits into a packet
184 at a time. */
185 size_t bufsize = 0;
186
187 /* Cache hit and miss counters. */
188 ULONGEST hit_count = 0;
189 ULONGEST miss_count = 0;
190 };
191
192 /* Description of the remote protocol for a given architecture. */
193
194 struct packet_reg
195 {
196 long offset; /* Offset into G packet. */
197 long regnum; /* GDB's internal register number. */
198 LONGEST pnum; /* Remote protocol register number. */
199 int in_g_packet; /* Always part of G packet. */
200 /* long size in bytes; == register_size (target_gdbarch (), regnum);
201 at present. */
202 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
203 at present. */
204 };
205
206 struct remote_arch_state
207 {
208 explicit remote_arch_state (struct gdbarch *gdbarch);
209
210 /* Description of the remote protocol registers. */
211 long sizeof_g_packet;
212
213 /* Description of the remote protocol registers indexed by REGNUM
214 (making an array gdbarch_num_regs in size). */
215 std::unique_ptr<packet_reg[]> regs;
216
217 /* This is the size (in chars) of the first response to the ``g''
218 packet. It is used as a heuristic when determining the maximum
219 size of memory-read and memory-write packets. A target will
220 typically only reserve a buffer large enough to hold the ``g''
221 packet. The size does not include packet overhead (headers and
222 trailers). */
223 long actual_register_packet_size;
224
225 /* This is the maximum size (in chars) of a non read/write packet.
226 It is also used as a cap on the size of read/write packets. */
227 long remote_packet_size;
228 };
229
230 /* Description of the remote protocol state for the currently
231 connected target. This is per-target state, and independent of the
232 selected architecture. */
233
234 class remote_state
235 {
236 public:
237
238 remote_state ();
239 ~remote_state ();
240
241 /* Get the remote arch state for GDBARCH. */
242 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
243
244 public: /* data */
245
246 /* A buffer to use for incoming packets, and its current size. The
247 buffer is grown dynamically for larger incoming packets.
248 Outgoing packets may also be constructed in this buffer.
249 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
250 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
251 packets. */
252 char *buf;
253 long buf_size;
254
255 /* True if we're going through initial connection setup (finding out
256 about the remote side's threads, relocating symbols, etc.). */
257 bool starting_up = false;
258
259 /* If we negotiated packet size explicitly (and thus can bypass
260 heuristics for the largest packet size that will not overflow
261 a buffer in the stub), this will be set to that packet size.
262 Otherwise zero, meaning to use the guessed size. */
263 long explicit_packet_size = 0;
264
265 /* remote_wait is normally called when the target is running and
266 waits for a stop reply packet. But sometimes we need to call it
267 when the target is already stopped. We can send a "?" packet
268 and have remote_wait read the response. Or, if we already have
269 the response, we can stash it in BUF and tell remote_wait to
270 skip calling getpkt. This flag is set when BUF contains a
271 stop reply packet and the target is not waiting. */
272 int cached_wait_status = 0;
273
274 /* True, if in no ack mode. That is, neither GDB nor the stub will
275 expect acks from each other. The connection is assumed to be
276 reliable. */
277 bool noack_mode = false;
278
279 /* True if we're connected in extended remote mode. */
280 bool extended = false;
281
282 /* True if we resumed the target and we're waiting for the target to
283 stop. In the mean time, we can't start another command/query.
284 The remote server wouldn't be ready to process it, so we'd
285 timeout waiting for a reply that would never come and eventually
286 we'd close the connection. This can happen in asynchronous mode
287 because we allow GDB commands while the target is running. */
288 bool waiting_for_stop_reply = false;
289
290 /* The status of the stub support for the various vCont actions. */
291 vCont_action_support supports_vCont;
292
293 /* True if the user has pressed Ctrl-C, but the target hasn't
294 responded to that. */
295 bool ctrlc_pending_p = false;
296
297 /* True if we saw a Ctrl-C while reading or writing from/to the
298 remote descriptor. At that point it is not safe to send a remote
299 interrupt packet, so we instead remember we saw the Ctrl-C and
300 process it once we're done with sending/receiving the current
301 packet, which should be shortly. If however that takes too long,
302 and the user presses Ctrl-C again, we offer to disconnect. */
303 bool got_ctrlc_during_io = false;
304
305 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
306 remote_open knows that we don't have a file open when the program
307 starts. */
308 struct serial *remote_desc = nullptr;
309
310 /* These are the threads which we last sent to the remote system. The
311 TID member will be -1 for all or -2 for not sent yet. */
312 ptid_t general_thread = null_ptid;
313 ptid_t continue_thread = null_ptid;
314
315 /* This is the traceframe which we last selected on the remote system.
316 It will be -1 if no traceframe is selected. */
317 int remote_traceframe_number = -1;
318
319 char *last_pass_packet = nullptr;
320
321 /* The last QProgramSignals packet sent to the target. We bypass
322 sending a new program signals list down to the target if the new
323 packet is exactly the same as the last we sent. IOW, we only let
324 the target know about program signals list changes. */
325 char *last_program_signals_packet = nullptr;
326
327 gdb_signal last_sent_signal = GDB_SIGNAL_0;
328
329 bool last_sent_step = false;
330
331 /* The execution direction of the last resume we got. */
332 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
333
334 char *finished_object = nullptr;
335 char *finished_annex = nullptr;
336 ULONGEST finished_offset = 0;
337
338 /* Should we try the 'ThreadInfo' query packet?
339
340 This variable (NOT available to the user: auto-detect only!)
341 determines whether GDB will use the new, simpler "ThreadInfo"
342 query or the older, more complex syntax for thread queries.
343 This is an auto-detect variable (set to true at each connect,
344 and set to false when the target fails to recognize it). */
345 bool use_threadinfo_query = false;
346 bool use_threadextra_query = false;
347
348 threadref echo_nextthread {};
349 threadref nextthread {};
350 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
351
352 /* The state of remote notification. */
353 struct remote_notif_state *notif_state = nullptr;
354
355 /* The branch trace configuration. */
356 struct btrace_config btrace_config {};
357
358 /* The argument to the last "vFile:setfs:" packet we sent, used
359 to avoid sending repeated unnecessary "vFile:setfs:" packets.
360 Initialized to -1 to indicate that no "vFile:setfs:" packet
361 has yet been sent. */
362 int fs_pid = -1;
363
364 /* A readahead cache for vFile:pread. Often, reading a binary
365 involves a sequence of small reads. E.g., when parsing an ELF
366 file. A readahead cache helps mostly the case of remote
367 debugging on a connection with higher latency, due to the
368 request/reply nature of the RSP. We only cache data for a single
369 file descriptor at a time. */
370 struct readahead_cache readahead_cache;
371
372 /* The list of already fetched and acknowledged stop events. This
373 queue is used for notification Stop, and other notifications
374 don't need queue for their events, because the notification
375 events of Stop can't be consumed immediately, so that events
376 should be queued first, and be consumed by remote_wait_{ns,as}
377 one per time. Other notifications can consume their events
378 immediately, so queue is not needed for them. */
379 std::vector<stop_reply_up> stop_reply_queue;
380
381 /* Asynchronous signal handle registered as event loop source for
382 when we have pending events ready to be passed to the core. */
383 struct async_event_handler *remote_async_inferior_event_token = nullptr;
384
385 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
386 ``forever'' still use the normal timeout mechanism. This is
387 currently used by the ASYNC code to guarentee that target reads
388 during the initial connect always time-out. Once getpkt has been
389 modified to return a timeout indication and, in turn
390 remote_wait()/wait_for_inferior() have gained a timeout parameter
391 this can go away. */
392 int wait_forever_enabled_p = 1;
393
394 private:
395 /* Mapping of remote protocol data for each gdbarch. Usually there
396 is only one entry here, though we may see more with stubs that
397 support multi-process. */
398 std::unordered_map<struct gdbarch *, remote_arch_state>
399 m_arch_states;
400 };
401
402 static const target_info remote_target_info = {
403 "remote",
404 N_("Remote serial target in gdb-specific protocol"),
405 remote_doc
406 };
407
408 class remote_target : public process_stratum_target
409 {
410 public:
411 remote_target () = default;
412 ~remote_target () override;
413
414 const target_info &info () const override
415 { return remote_target_info; }
416
417 thread_control_capabilities get_thread_control_capabilities () override
418 { return tc_schedlock; }
419
420 /* Open a remote connection. */
421 static void open (const char *, int);
422
423 void close () override;
424
425 void detach (inferior *, int) override;
426 void disconnect (const char *, int) override;
427
428 void commit_resume () override;
429 void resume (ptid_t, int, enum gdb_signal) override;
430 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
431
432 void fetch_registers (struct regcache *, int) override;
433 void store_registers (struct regcache *, int) override;
434 void prepare_to_store (struct regcache *) override;
435
436 void files_info () override;
437
438 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
439
440 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
441 enum remove_bp_reason) override;
442
443
444 bool stopped_by_sw_breakpoint () override;
445 bool supports_stopped_by_sw_breakpoint () override;
446
447 bool stopped_by_hw_breakpoint () override;
448
449 bool supports_stopped_by_hw_breakpoint () override;
450
451 bool stopped_by_watchpoint () override;
452
453 bool stopped_data_address (CORE_ADDR *) override;
454
455 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
456
457 int can_use_hw_breakpoint (enum bptype, int, int) override;
458
459 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
464
465 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
466 struct expression *) override;
467
468 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
469 struct expression *) override;
470
471 void kill () override;
472
473 void load (const char *, int) override;
474
475 void mourn_inferior () override;
476
477 void pass_signals (int, unsigned char *) override;
478
479 int set_syscall_catchpoint (int, bool, int,
480 gdb::array_view<const int>) override;
481
482 void program_signals (int, unsigned char *) override;
483
484 bool thread_alive (ptid_t ptid) override;
485
486 const char *thread_name (struct thread_info *) override;
487
488 void update_thread_list () override;
489
490 const char *pid_to_str (ptid_t) override;
491
492 const char *extra_thread_info (struct thread_info *) override;
493
494 ptid_t get_ada_task_ptid (long lwp, long thread) override;
495
496 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
497 int handle_len,
498 inferior *inf) override;
499
500 void stop (ptid_t) override;
501
502 void interrupt () override;
503
504 void pass_ctrlc () override;
505
506 enum target_xfer_status xfer_partial (enum target_object object,
507 const char *annex,
508 gdb_byte *readbuf,
509 const gdb_byte *writebuf,
510 ULONGEST offset, ULONGEST len,
511 ULONGEST *xfered_len) override;
512
513 ULONGEST get_memory_xfer_limit () override;
514
515 void rcmd (const char *command, struct ui_file *output) override;
516
517 char *pid_to_exec_file (int pid) override;
518
519 void log_command (const char *cmd) override
520 {
521 serial_log_command (this, cmd);
522 }
523
524 CORE_ADDR get_thread_local_address (ptid_t ptid,
525 CORE_ADDR load_module_addr,
526 CORE_ADDR offset) override;
527
528 bool can_execute_reverse () override;
529
530 std::vector<mem_region> memory_map () override;
531
532 void flash_erase (ULONGEST address, LONGEST length) override;
533
534 void flash_done () override;
535
536 const struct target_desc *read_description () override;
537
538 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
539 const gdb_byte *pattern, ULONGEST pattern_len,
540 CORE_ADDR *found_addrp) override;
541
542 bool can_async_p () override;
543
544 bool is_async_p () override;
545
546 void async (int) override;
547
548 void thread_events (int) override;
549
550 int can_do_single_step () override;
551
552 void terminal_inferior () override;
553
554 void terminal_ours () override;
555
556 bool supports_non_stop () override;
557
558 bool supports_multi_process () override;
559
560 bool supports_disable_randomization () override;
561
562 bool filesystem_is_local () override;
563
564
565 int fileio_open (struct inferior *inf, const char *filename,
566 int flags, int mode, int warn_if_slow,
567 int *target_errno) override;
568
569 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
570 ULONGEST offset, int *target_errno) override;
571
572 int fileio_pread (int fd, gdb_byte *read_buf, int len,
573 ULONGEST offset, int *target_errno) override;
574
575 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
576
577 int fileio_close (int fd, int *target_errno) override;
578
579 int fileio_unlink (struct inferior *inf,
580 const char *filename,
581 int *target_errno) override;
582
583 gdb::optional<std::string>
584 fileio_readlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 bool supports_enable_disable_tracepoint () override;
589
590 bool supports_string_tracing () override;
591
592 bool supports_evaluation_of_breakpoint_conditions () override;
593
594 bool can_run_breakpoint_commands () override;
595
596 void trace_init () override;
597
598 void download_tracepoint (struct bp_location *location) override;
599
600 bool can_download_tracepoint () override;
601
602 void download_trace_state_variable (const trace_state_variable &tsv) override;
603
604 void enable_tracepoint (struct bp_location *location) override;
605
606 void disable_tracepoint (struct bp_location *location) override;
607
608 void trace_set_readonly_regions () override;
609
610 void trace_start () override;
611
612 int get_trace_status (struct trace_status *ts) override;
613
614 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
615 override;
616
617 void trace_stop () override;
618
619 int trace_find (enum trace_find_type type, int num,
620 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
621
622 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
623
624 int save_trace_data (const char *filename) override;
625
626 int upload_tracepoints (struct uploaded_tp **utpp) override;
627
628 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
629
630 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
631
632 int get_min_fast_tracepoint_insn_len () override;
633
634 void set_disconnected_tracing (int val) override;
635
636 void set_circular_trace_buffer (int val) override;
637
638 void set_trace_buffer_size (LONGEST val) override;
639
640 bool set_trace_notes (const char *user, const char *notes,
641 const char *stopnotes) override;
642
643 int core_of_thread (ptid_t ptid) override;
644
645 int verify_memory (const gdb_byte *data,
646 CORE_ADDR memaddr, ULONGEST size) override;
647
648
649 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
650
651 void set_permissions () override;
652
653 bool static_tracepoint_marker_at (CORE_ADDR,
654 struct static_tracepoint_marker *marker)
655 override;
656
657 std::vector<static_tracepoint_marker>
658 static_tracepoint_markers_by_strid (const char *id) override;
659
660 traceframe_info_up traceframe_info () override;
661
662 bool use_agent (bool use) override;
663 bool can_use_agent () override;
664
665 struct btrace_target_info *enable_btrace (ptid_t ptid,
666 const struct btrace_config *conf) override;
667
668 void disable_btrace (struct btrace_target_info *tinfo) override;
669
670 void teardown_btrace (struct btrace_target_info *tinfo) override;
671
672 enum btrace_error read_btrace (struct btrace_data *data,
673 struct btrace_target_info *btinfo,
674 enum btrace_read_type type) override;
675
676 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
677 bool augmented_libraries_svr4_read () override;
678 int follow_fork (int, int) override;
679 void follow_exec (struct inferior *, char *) override;
680 int insert_fork_catchpoint (int) override;
681 int remove_fork_catchpoint (int) override;
682 int insert_vfork_catchpoint (int) override;
683 int remove_vfork_catchpoint (int) override;
684 int insert_exec_catchpoint (int) override;
685 int remove_exec_catchpoint (int) override;
686 enum exec_direction_kind execution_direction () override;
687
688 public: /* Remote specific methods. */
689
690 void remote_download_command_source (int num, ULONGEST addr,
691 struct command_line *cmds);
692
693 void remote_file_put (const char *local_file, const char *remote_file,
694 int from_tty);
695 void remote_file_get (const char *remote_file, const char *local_file,
696 int from_tty);
697 void remote_file_delete (const char *remote_file, int from_tty);
698
699 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
702 ULONGEST offset, int *remote_errno);
703 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
704 ULONGEST offset, int *remote_errno);
705
706 int remote_hostio_send_command (int command_bytes, int which_packet,
707 int *remote_errno, char **attachment,
708 int *attachment_len);
709 int remote_hostio_set_filesystem (struct inferior *inf,
710 int *remote_errno);
711 /* We should get rid of this and use fileio_open directly. */
712 int remote_hostio_open (struct inferior *inf, const char *filename,
713 int flags, int mode, int warn_if_slow,
714 int *remote_errno);
715 int remote_hostio_close (int fd, int *remote_errno);
716
717 int remote_hostio_unlink (inferior *inf, const char *filename,
718 int *remote_errno);
719
720 struct remote_state *get_remote_state ();
721
722 long get_remote_packet_size (void);
723 long get_memory_packet_size (struct memory_packet_config *config);
724
725 long get_memory_write_packet_size ();
726 long get_memory_read_packet_size ();
727
728 char *append_pending_thread_resumptions (char *p, char *endp,
729 ptid_t ptid);
730 static void open_1 (const char *name, int from_tty, int extended_p);
731 void start_remote (int from_tty, int extended_p);
732 void remote_detach_1 (struct inferior *inf, int from_tty);
733
734 char *append_resumption (char *p, char *endp,
735 ptid_t ptid, int step, gdb_signal siggnal);
736 int remote_resume_with_vcont (ptid_t ptid, int step,
737 gdb_signal siggnal);
738
739 void add_current_inferior_and_thread (char *wait_status);
740
741 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
742 int options);
743 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
744 int options);
745
746 ptid_t process_stop_reply (struct stop_reply *stop_reply,
747 target_waitstatus *status);
748
749 void remote_notice_new_inferior (ptid_t currthread, int executing);
750
751 void process_initial_stop_replies (int from_tty);
752
753 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
754
755 void btrace_sync_conf (const btrace_config *conf);
756
757 void remote_btrace_maybe_reopen ();
758
759 void remove_new_fork_children (threads_listing_context *context);
760 void kill_new_fork_children (int pid);
761 void discard_pending_stop_replies (struct inferior *inf);
762 int stop_reply_queue_length ();
763
764 void check_pending_events_prevent_wildcard_vcont
765 (int *may_global_wildcard_vcont);
766
767 void discard_pending_stop_replies_in_queue ();
768 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
769 struct stop_reply *queued_stop_reply (ptid_t ptid);
770 int peek_stop_reply (ptid_t ptid);
771 void remote_parse_stop_reply (char *buf, stop_reply *event);
772
773 void remote_stop_ns (ptid_t ptid);
774 void remote_interrupt_as ();
775 void remote_interrupt_ns ();
776
777 char *remote_get_noisy_reply ();
778 int remote_query_attached (int pid);
779 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
780 int try_open_exec);
781
782 ptid_t remote_current_thread (ptid_t oldpid);
783 ptid_t get_current_thread (char *wait_status);
784
785 void set_thread (ptid_t ptid, int gen);
786 void set_general_thread (ptid_t ptid);
787 void set_continue_thread (ptid_t ptid);
788 void set_general_process ();
789
790 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
791
792 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
793 gdb_ext_thread_info *info);
794 int remote_get_threadinfo (threadref *threadid, int fieldset,
795 gdb_ext_thread_info *info);
796
797 int parse_threadlist_response (char *pkt, int result_limit,
798 threadref *original_echo,
799 threadref *resultlist,
800 int *doneflag);
801 int remote_get_threadlist (int startflag, threadref *nextthread,
802 int result_limit, int *done, int *result_count,
803 threadref *threadlist);
804
805 int remote_threadlist_iterator (rmt_thread_action stepfunction,
806 void *context, int looplimit);
807
808 int remote_get_threads_with_ql (threads_listing_context *context);
809 int remote_get_threads_with_qxfer (threads_listing_context *context);
810 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
811
812 void extended_remote_restart ();
813
814 void get_offsets ();
815
816 void remote_check_symbols ();
817
818 void remote_supported_packet (const struct protocol_feature *feature,
819 enum packet_support support,
820 const char *argument);
821
822 void remote_query_supported ();
823
824 void remote_packet_size (const protocol_feature *feature,
825 packet_support support, const char *value);
826
827 void remote_serial_quit_handler ();
828
829 void remote_detach_pid (int pid);
830
831 void remote_vcont_probe ();
832
833 void remote_resume_with_hc (ptid_t ptid, int step,
834 gdb_signal siggnal);
835
836 void send_interrupt_sequence ();
837 void interrupt_query ();
838
839 void remote_notif_get_pending_events (notif_client *nc);
840
841 int fetch_register_using_p (struct regcache *regcache,
842 packet_reg *reg);
843 int send_g_packet ();
844 void process_g_packet (struct regcache *regcache);
845 void fetch_registers_using_g (struct regcache *regcache);
846 int store_register_using_P (const struct regcache *regcache,
847 packet_reg *reg);
848 void store_registers_using_G (const struct regcache *regcache);
849
850 void set_remote_traceframe ();
851
852 void check_binary_download (CORE_ADDR addr);
853
854 target_xfer_status remote_write_bytes_aux (const char *header,
855 CORE_ADDR memaddr,
856 const gdb_byte *myaddr,
857 ULONGEST len_units,
858 int unit_size,
859 ULONGEST *xfered_len_units,
860 char packet_format,
861 int use_length);
862
863 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
864 const gdb_byte *myaddr, ULONGEST len,
865 int unit_size, ULONGEST *xfered_len);
866
867 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
868 ULONGEST len_units,
869 int unit_size, ULONGEST *xfered_len_units);
870
871 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
872 ULONGEST memaddr,
873 ULONGEST len,
874 int unit_size,
875 ULONGEST *xfered_len);
876
877 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
878 gdb_byte *myaddr, ULONGEST len,
879 int unit_size,
880 ULONGEST *xfered_len);
881
882 packet_result remote_send_printf (const char *format, ...)
883 ATTRIBUTE_PRINTF (2, 3);
884
885 target_xfer_status remote_flash_write (ULONGEST address,
886 ULONGEST length, ULONGEST *xfered_len,
887 const gdb_byte *data);
888
889 int readchar (int timeout);
890
891 void remote_serial_write (const char *str, int len);
892
893 int putpkt (const char *buf);
894 int putpkt_binary (const char *buf, int cnt);
895
896 void skip_frame ();
897 long read_frame (char **buf_p, long *sizeof_buf);
898 void getpkt (char **buf, long *sizeof_buf, int forever);
899 int getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
900 int expecting_notif, int *is_notif);
901 int getpkt_sane (char **buf, long *sizeof_buf, int forever);
902 int getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
903 int *is_notif);
904 int remote_vkill (int pid);
905 void remote_kill_k ();
906
907 void extended_remote_disable_randomization (int val);
908 int extended_remote_run (const std::string &args);
909
910 void send_environment_packet (const char *action,
911 const char *packet,
912 const char *value);
913
914 void extended_remote_environment_support ();
915 void extended_remote_set_inferior_cwd ();
916
917 target_xfer_status remote_write_qxfer (const char *object_name,
918 const char *annex,
919 const gdb_byte *writebuf,
920 ULONGEST offset, LONGEST len,
921 ULONGEST *xfered_len,
922 struct packet_config *packet);
923
924 target_xfer_status remote_read_qxfer (const char *object_name,
925 const char *annex,
926 gdb_byte *readbuf, ULONGEST offset,
927 LONGEST len,
928 ULONGEST *xfered_len,
929 struct packet_config *packet);
930
931 void push_stop_reply (struct stop_reply *new_event);
932
933 bool vcont_r_supported ();
934
935 void packet_command (const char *args, int from_tty);
936
937 private: /* data fields */
938
939 /* The remote state. Don't reference this directly. Use the
940 get_remote_state method instead. */
941 remote_state m_remote_state;
942 };
943
944 static const target_info extended_remote_target_info = {
945 "extended-remote",
946 N_("Extended remote serial target in gdb-specific protocol"),
947 remote_doc
948 };
949
950 /* Set up the extended remote target by extending the standard remote
951 target and adding to it. */
952
953 class extended_remote_target final : public remote_target
954 {
955 public:
956 const target_info &info () const override
957 { return extended_remote_target_info; }
958
959 /* Open an extended-remote connection. */
960 static void open (const char *, int);
961
962 bool can_create_inferior () override { return true; }
963 void create_inferior (const char *, const std::string &,
964 char **, int) override;
965
966 void detach (inferior *, int) override;
967
968 bool can_attach () override { return true; }
969 void attach (const char *, int) override;
970
971 void post_attach (int) override;
972 bool supports_disable_randomization () override;
973 };
974
975 /* Per-program-space data key. */
976 static const struct program_space_data *remote_pspace_data;
977
978 /* The variable registered as the control variable used by the
979 remote exec-file commands. While the remote exec-file setting is
980 per-program-space, the set/show machinery uses this as the
981 location of the remote exec-file value. */
982 static char *remote_exec_file_var;
983
984 /* The size to align memory write packets, when practical. The protocol
985 does not guarantee any alignment, and gdb will generate short
986 writes and unaligned writes, but even as a best-effort attempt this
987 can improve bulk transfers. For instance, if a write is misaligned
988 relative to the target's data bus, the stub may need to make an extra
989 round trip fetching data from the target. This doesn't make a
990 huge difference, but it's easy to do, so we try to be helpful.
991
992 The alignment chosen is arbitrary; usually data bus width is
993 important here, not the possibly larger cache line size. */
994 enum { REMOTE_ALIGN_WRITES = 16 };
995
996 /* Prototypes for local functions. */
997
998 static int hexnumlen (ULONGEST num);
999
1000 static int stubhex (int ch);
1001
1002 static int hexnumstr (char *, ULONGEST);
1003
1004 static int hexnumnstr (char *, ULONGEST, int);
1005
1006 static CORE_ADDR remote_address_masked (CORE_ADDR);
1007
1008 static void print_packet (const char *);
1009
1010 static int stub_unpack_int (char *buff, int fieldlength);
1011
1012 struct packet_config;
1013
1014 static void show_packet_config_cmd (struct packet_config *config);
1015
1016 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1017 int from_tty,
1018 struct cmd_list_element *c,
1019 const char *value);
1020
1021 static ptid_t read_ptid (const char *buf, const char **obuf);
1022
1023 static void remote_async_inferior_event_handler (gdb_client_data);
1024
1025 static bool remote_read_description_p (struct target_ops *target);
1026
1027 static void remote_console_output (char *msg);
1028
1029 static void remote_btrace_reset (remote_state *rs);
1030
1031 static void remote_unpush_and_throw (void);
1032
1033 /* For "remote". */
1034
1035 static struct cmd_list_element *remote_cmdlist;
1036
1037 /* For "set remote" and "show remote". */
1038
1039 static struct cmd_list_element *remote_set_cmdlist;
1040 static struct cmd_list_element *remote_show_cmdlist;
1041
1042 /* Controls whether GDB is willing to use range stepping. */
1043
1044 static int use_range_stepping = 1;
1045
1046 /* The max number of chars in debug output. The rest of chars are
1047 omitted. */
1048
1049 #define REMOTE_DEBUG_MAX_CHAR 512
1050
1051 /* Private data that we'll store in (struct thread_info)->priv. */
1052 struct remote_thread_info : public private_thread_info
1053 {
1054 std::string extra;
1055 std::string name;
1056 int core = -1;
1057
1058 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1059 sequence of bytes. */
1060 gdb::byte_vector thread_handle;
1061
1062 /* Whether the target stopped for a breakpoint/watchpoint. */
1063 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1064
1065 /* This is set to the data address of the access causing the target
1066 to stop for a watchpoint. */
1067 CORE_ADDR watch_data_address = 0;
1068
1069 /* Fields used by the vCont action coalescing implemented in
1070 remote_resume / remote_commit_resume. remote_resume stores each
1071 thread's last resume request in these fields, so that a later
1072 remote_commit_resume knows which is the proper action for this
1073 thread to include in the vCont packet. */
1074
1075 /* True if the last target_resume call for this thread was a step
1076 request, false if a continue request. */
1077 int last_resume_step = 0;
1078
1079 /* The signal specified in the last target_resume call for this
1080 thread. */
1081 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1082
1083 /* Whether this thread was already vCont-resumed on the remote
1084 side. */
1085 int vcont_resumed = 0;
1086 };
1087
1088 remote_state::remote_state ()
1089 {
1090 /* The default buffer size is unimportant; it will be expanded
1091 whenever a larger buffer is needed. */
1092 this->buf_size = 400;
1093 this->buf = (char *) xmalloc (this->buf_size);
1094 }
1095
1096 remote_state::~remote_state ()
1097 {
1098 xfree (this->last_pass_packet);
1099 xfree (this->last_program_signals_packet);
1100 xfree (this->buf);
1101 xfree (this->finished_object);
1102 xfree (this->finished_annex);
1103 }
1104
1105 /* Utility: generate error from an incoming stub packet. */
1106 static void
1107 trace_error (char *buf)
1108 {
1109 if (*buf++ != 'E')
1110 return; /* not an error msg */
1111 switch (*buf)
1112 {
1113 case '1': /* malformed packet error */
1114 if (*++buf == '0') /* general case: */
1115 error (_("remote.c: error in outgoing packet."));
1116 else
1117 error (_("remote.c: error in outgoing packet at field #%ld."),
1118 strtol (buf, NULL, 16));
1119 default:
1120 error (_("Target returns error code '%s'."), buf);
1121 }
1122 }
1123
1124 /* Utility: wait for reply from stub, while accepting "O" packets. */
1125
1126 char *
1127 remote_target::remote_get_noisy_reply ()
1128 {
1129 struct remote_state *rs = get_remote_state ();
1130
1131 do /* Loop on reply from remote stub. */
1132 {
1133 char *buf;
1134
1135 QUIT; /* Allow user to bail out with ^C. */
1136 getpkt (&rs->buf, &rs->buf_size, 0);
1137 buf = rs->buf;
1138 if (buf[0] == 'E')
1139 trace_error (buf);
1140 else if (startswith (buf, "qRelocInsn:"))
1141 {
1142 ULONGEST ul;
1143 CORE_ADDR from, to, org_to;
1144 const char *p, *pp;
1145 int adjusted_size = 0;
1146 int relocated = 0;
1147
1148 p = buf + strlen ("qRelocInsn:");
1149 pp = unpack_varlen_hex (p, &ul);
1150 if (*pp != ';')
1151 error (_("invalid qRelocInsn packet: %s"), buf);
1152 from = ul;
1153
1154 p = pp + 1;
1155 unpack_varlen_hex (p, &ul);
1156 to = ul;
1157
1158 org_to = to;
1159
1160 TRY
1161 {
1162 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1163 relocated = 1;
1164 }
1165 CATCH (ex, RETURN_MASK_ALL)
1166 {
1167 if (ex.error == MEMORY_ERROR)
1168 {
1169 /* Propagate memory errors silently back to the
1170 target. The stub may have limited the range of
1171 addresses we can write to, for example. */
1172 }
1173 else
1174 {
1175 /* Something unexpectedly bad happened. Be verbose
1176 so we can tell what, and propagate the error back
1177 to the stub, so it doesn't get stuck waiting for
1178 a response. */
1179 exception_fprintf (gdb_stderr, ex,
1180 _("warning: relocating instruction: "));
1181 }
1182 putpkt ("E01");
1183 }
1184 END_CATCH
1185
1186 if (relocated)
1187 {
1188 adjusted_size = to - org_to;
1189
1190 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
1191 putpkt (buf);
1192 }
1193 }
1194 else if (buf[0] == 'O' && buf[1] != 'K')
1195 remote_console_output (buf + 1); /* 'O' message from stub */
1196 else
1197 return buf; /* Here's the actual reply. */
1198 }
1199 while (1);
1200 }
1201
1202 struct remote_arch_state *
1203 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1204 {
1205 remote_arch_state *rsa;
1206
1207 auto it = this->m_arch_states.find (gdbarch);
1208 if (it == this->m_arch_states.end ())
1209 {
1210 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1211 std::forward_as_tuple (gdbarch),
1212 std::forward_as_tuple (gdbarch));
1213 rsa = &p.first->second;
1214
1215 /* Make sure that the packet buffer is plenty big enough for
1216 this architecture. */
1217 if (this->buf_size < rsa->remote_packet_size)
1218 {
1219 this->buf_size = 2 * rsa->remote_packet_size;
1220 this->buf = (char *) xrealloc (this->buf, this->buf_size);
1221 }
1222 }
1223 else
1224 rsa = &it->second;
1225
1226 return rsa;
1227 }
1228
1229 /* Fetch the global remote target state. */
1230
1231 remote_state *
1232 remote_target::get_remote_state ()
1233 {
1234 /* Make sure that the remote architecture state has been
1235 initialized, because doing so might reallocate rs->buf. Any
1236 function which calls getpkt also needs to be mindful of changes
1237 to rs->buf, but this call limits the number of places which run
1238 into trouble. */
1239 m_remote_state.get_remote_arch_state (target_gdbarch ());
1240
1241 return &m_remote_state;
1242 }
1243
1244 /* Cleanup routine for the remote module's pspace data. */
1245
1246 static void
1247 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1248 {
1249 char *remote_exec_file = (char *) arg;
1250
1251 xfree (remote_exec_file);
1252 }
1253
1254 /* Fetch the remote exec-file from the current program space. */
1255
1256 static const char *
1257 get_remote_exec_file (void)
1258 {
1259 char *remote_exec_file;
1260
1261 remote_exec_file
1262 = (char *) program_space_data (current_program_space,
1263 remote_pspace_data);
1264 if (remote_exec_file == NULL)
1265 return "";
1266
1267 return remote_exec_file;
1268 }
1269
1270 /* Set the remote exec file for PSPACE. */
1271
1272 static void
1273 set_pspace_remote_exec_file (struct program_space *pspace,
1274 char *remote_exec_file)
1275 {
1276 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1277
1278 xfree (old_file);
1279 set_program_space_data (pspace, remote_pspace_data,
1280 xstrdup (remote_exec_file));
1281 }
1282
1283 /* The "set/show remote exec-file" set command hook. */
1284
1285 static void
1286 set_remote_exec_file (const char *ignored, int from_tty,
1287 struct cmd_list_element *c)
1288 {
1289 gdb_assert (remote_exec_file_var != NULL);
1290 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1291 }
1292
1293 /* The "set/show remote exec-file" show command hook. */
1294
1295 static void
1296 show_remote_exec_file (struct ui_file *file, int from_tty,
1297 struct cmd_list_element *cmd, const char *value)
1298 {
1299 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1300 }
1301
1302 static int
1303 compare_pnums (const void *lhs_, const void *rhs_)
1304 {
1305 const struct packet_reg * const *lhs
1306 = (const struct packet_reg * const *) lhs_;
1307 const struct packet_reg * const *rhs
1308 = (const struct packet_reg * const *) rhs_;
1309
1310 if ((*lhs)->pnum < (*rhs)->pnum)
1311 return -1;
1312 else if ((*lhs)->pnum == (*rhs)->pnum)
1313 return 0;
1314 else
1315 return 1;
1316 }
1317
1318 static int
1319 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1320 {
1321 int regnum, num_remote_regs, offset;
1322 struct packet_reg **remote_regs;
1323
1324 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1325 {
1326 struct packet_reg *r = &regs[regnum];
1327
1328 if (register_size (gdbarch, regnum) == 0)
1329 /* Do not try to fetch zero-sized (placeholder) registers. */
1330 r->pnum = -1;
1331 else
1332 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1333
1334 r->regnum = regnum;
1335 }
1336
1337 /* Define the g/G packet format as the contents of each register
1338 with a remote protocol number, in order of ascending protocol
1339 number. */
1340
1341 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1342 for (num_remote_regs = 0, regnum = 0;
1343 regnum < gdbarch_num_regs (gdbarch);
1344 regnum++)
1345 if (regs[regnum].pnum != -1)
1346 remote_regs[num_remote_regs++] = &regs[regnum];
1347
1348 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1349 compare_pnums);
1350
1351 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1352 {
1353 remote_regs[regnum]->in_g_packet = 1;
1354 remote_regs[regnum]->offset = offset;
1355 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1356 }
1357
1358 return offset;
1359 }
1360
1361 /* Given the architecture described by GDBARCH, return the remote
1362 protocol register's number and the register's offset in the g/G
1363 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1364 If the target does not have a mapping for REGNUM, return false,
1365 otherwise, return true. */
1366
1367 int
1368 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1369 int *pnum, int *poffset)
1370 {
1371 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1372
1373 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1374
1375 map_regcache_remote_table (gdbarch, regs.data ());
1376
1377 *pnum = regs[regnum].pnum;
1378 *poffset = regs[regnum].offset;
1379
1380 return *pnum != -1;
1381 }
1382
1383 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1384 {
1385 /* Use the architecture to build a regnum<->pnum table, which will be
1386 1:1 unless a feature set specifies otherwise. */
1387 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1388
1389 /* Record the maximum possible size of the g packet - it may turn out
1390 to be smaller. */
1391 this->sizeof_g_packet
1392 = map_regcache_remote_table (gdbarch, this->regs.get ());
1393
1394 /* Default maximum number of characters in a packet body. Many
1395 remote stubs have a hardwired buffer size of 400 bytes
1396 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1397 as the maximum packet-size to ensure that the packet and an extra
1398 NUL character can always fit in the buffer. This stops GDB
1399 trashing stubs that try to squeeze an extra NUL into what is
1400 already a full buffer (As of 1999-12-04 that was most stubs). */
1401 this->remote_packet_size = 400 - 1;
1402
1403 /* This one is filled in when a ``g'' packet is received. */
1404 this->actual_register_packet_size = 0;
1405
1406 /* Should rsa->sizeof_g_packet needs more space than the
1407 default, adjust the size accordingly. Remember that each byte is
1408 encoded as two characters. 32 is the overhead for the packet
1409 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1410 (``$NN:G...#NN'') is a better guess, the below has been padded a
1411 little. */
1412 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1413 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1414 }
1415
1416 /* Get a pointer to the current remote target. If not connected to a
1417 remote target, return NULL. */
1418
1419 static remote_target *
1420 get_current_remote_target ()
1421 {
1422 target_ops *proc_target = find_target_at (process_stratum);
1423 return dynamic_cast<remote_target *> (proc_target);
1424 }
1425
1426 /* Return the current allowed size of a remote packet. This is
1427 inferred from the current architecture, and should be used to
1428 limit the length of outgoing packets. */
1429 long
1430 remote_target::get_remote_packet_size ()
1431 {
1432 struct remote_state *rs = get_remote_state ();
1433 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1434
1435 if (rs->explicit_packet_size)
1436 return rs->explicit_packet_size;
1437
1438 return rsa->remote_packet_size;
1439 }
1440
1441 static struct packet_reg *
1442 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1443 long regnum)
1444 {
1445 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1446 return NULL;
1447 else
1448 {
1449 struct packet_reg *r = &rsa->regs[regnum];
1450
1451 gdb_assert (r->regnum == regnum);
1452 return r;
1453 }
1454 }
1455
1456 static struct packet_reg *
1457 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1458 LONGEST pnum)
1459 {
1460 int i;
1461
1462 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1463 {
1464 struct packet_reg *r = &rsa->regs[i];
1465
1466 if (r->pnum == pnum)
1467 return r;
1468 }
1469 return NULL;
1470 }
1471
1472 /* Allow the user to specify what sequence to send to the remote
1473 when he requests a program interruption: Although ^C is usually
1474 what remote systems expect (this is the default, here), it is
1475 sometimes preferable to send a break. On other systems such
1476 as the Linux kernel, a break followed by g, which is Magic SysRq g
1477 is required in order to interrupt the execution. */
1478 const char interrupt_sequence_control_c[] = "Ctrl-C";
1479 const char interrupt_sequence_break[] = "BREAK";
1480 const char interrupt_sequence_break_g[] = "BREAK-g";
1481 static const char *const interrupt_sequence_modes[] =
1482 {
1483 interrupt_sequence_control_c,
1484 interrupt_sequence_break,
1485 interrupt_sequence_break_g,
1486 NULL
1487 };
1488 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1489
1490 static void
1491 show_interrupt_sequence (struct ui_file *file, int from_tty,
1492 struct cmd_list_element *c,
1493 const char *value)
1494 {
1495 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1496 fprintf_filtered (file,
1497 _("Send the ASCII ETX character (Ctrl-c) "
1498 "to the remote target to interrupt the "
1499 "execution of the program.\n"));
1500 else if (interrupt_sequence_mode == interrupt_sequence_break)
1501 fprintf_filtered (file,
1502 _("send a break signal to the remote target "
1503 "to interrupt the execution of the program.\n"));
1504 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1505 fprintf_filtered (file,
1506 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1507 "the remote target to interrupt the execution "
1508 "of Linux kernel.\n"));
1509 else
1510 internal_error (__FILE__, __LINE__,
1511 _("Invalid value for interrupt_sequence_mode: %s."),
1512 interrupt_sequence_mode);
1513 }
1514
1515 /* This boolean variable specifies whether interrupt_sequence is sent
1516 to the remote target when gdb connects to it.
1517 This is mostly needed when you debug the Linux kernel: The Linux kernel
1518 expects BREAK g which is Magic SysRq g for connecting gdb. */
1519 static int interrupt_on_connect = 0;
1520
1521 /* This variable is used to implement the "set/show remotebreak" commands.
1522 Since these commands are now deprecated in favor of "set/show remote
1523 interrupt-sequence", it no longer has any effect on the code. */
1524 static int remote_break;
1525
1526 static void
1527 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1528 {
1529 if (remote_break)
1530 interrupt_sequence_mode = interrupt_sequence_break;
1531 else
1532 interrupt_sequence_mode = interrupt_sequence_control_c;
1533 }
1534
1535 static void
1536 show_remotebreak (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539 {
1540 }
1541
1542 /* This variable sets the number of bits in an address that are to be
1543 sent in a memory ("M" or "m") packet. Normally, after stripping
1544 leading zeros, the entire address would be sent. This variable
1545 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1546 initial implementation of remote.c restricted the address sent in
1547 memory packets to ``host::sizeof long'' bytes - (typically 32
1548 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1549 address was never sent. Since fixing this bug may cause a break in
1550 some remote targets this variable is principly provided to
1551 facilitate backward compatibility. */
1552
1553 static unsigned int remote_address_size;
1554
1555 \f
1556 /* User configurable variables for the number of characters in a
1557 memory read/write packet. MIN (rsa->remote_packet_size,
1558 rsa->sizeof_g_packet) is the default. Some targets need smaller
1559 values (fifo overruns, et.al.) and some users need larger values
1560 (speed up transfers). The variables ``preferred_*'' (the user
1561 request), ``current_*'' (what was actually set) and ``forced_*''
1562 (Positive - a soft limit, negative - a hard limit). */
1563
1564 struct memory_packet_config
1565 {
1566 const char *name;
1567 long size;
1568 int fixed_p;
1569 };
1570
1571 /* The default max memory-write-packet-size, when the setting is
1572 "fixed". The 16k is historical. (It came from older GDB's using
1573 alloca for buffers and the knowledge (folklore?) that some hosts
1574 don't cope very well with large alloca calls.) */
1575 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1576
1577 /* The minimum remote packet size for memory transfers. Ensures we
1578 can write at least one byte. */
1579 #define MIN_MEMORY_PACKET_SIZE 20
1580
1581 /* Get the memory packet size, assuming it is fixed. */
1582
1583 static long
1584 get_fixed_memory_packet_size (struct memory_packet_config *config)
1585 {
1586 gdb_assert (config->fixed_p);
1587
1588 if (config->size <= 0)
1589 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1590 else
1591 return config->size;
1592 }
1593
1594 /* Compute the current size of a read/write packet. Since this makes
1595 use of ``actual_register_packet_size'' the computation is dynamic. */
1596
1597 long
1598 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1599 {
1600 struct remote_state *rs = get_remote_state ();
1601 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1602
1603 long what_they_get;
1604 if (config->fixed_p)
1605 what_they_get = get_fixed_memory_packet_size (config);
1606 else
1607 {
1608 what_they_get = get_remote_packet_size ();
1609 /* Limit the packet to the size specified by the user. */
1610 if (config->size > 0
1611 && what_they_get > config->size)
1612 what_they_get = config->size;
1613
1614 /* Limit it to the size of the targets ``g'' response unless we have
1615 permission from the stub to use a larger packet size. */
1616 if (rs->explicit_packet_size == 0
1617 && rsa->actual_register_packet_size > 0
1618 && what_they_get > rsa->actual_register_packet_size)
1619 what_they_get = rsa->actual_register_packet_size;
1620 }
1621 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1622 what_they_get = MIN_MEMORY_PACKET_SIZE;
1623
1624 /* Make sure there is room in the global buffer for this packet
1625 (including its trailing NUL byte). */
1626 if (rs->buf_size < what_they_get + 1)
1627 {
1628 rs->buf_size = 2 * what_they_get;
1629 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1630 }
1631
1632 return what_they_get;
1633 }
1634
1635 /* Update the size of a read/write packet. If they user wants
1636 something really big then do a sanity check. */
1637
1638 static void
1639 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1640 {
1641 int fixed_p = config->fixed_p;
1642 long size = config->size;
1643
1644 if (args == NULL)
1645 error (_("Argument required (integer, `fixed' or `limited')."));
1646 else if (strcmp (args, "hard") == 0
1647 || strcmp (args, "fixed") == 0)
1648 fixed_p = 1;
1649 else if (strcmp (args, "soft") == 0
1650 || strcmp (args, "limit") == 0)
1651 fixed_p = 0;
1652 else
1653 {
1654 char *end;
1655
1656 size = strtoul (args, &end, 0);
1657 if (args == end)
1658 error (_("Invalid %s (bad syntax)."), config->name);
1659
1660 /* Instead of explicitly capping the size of a packet to or
1661 disallowing it, the user is allowed to set the size to
1662 something arbitrarily large. */
1663 }
1664
1665 /* Extra checks? */
1666 if (fixed_p && !config->fixed_p)
1667 {
1668 /* So that the query shows the correct value. */
1669 long query_size = (size <= 0
1670 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1671 : size);
1672
1673 if (! query (_("The target may not be able to correctly handle a %s\n"
1674 "of %ld bytes. Change the packet size? "),
1675 config->name, query_size))
1676 error (_("Packet size not changed."));
1677 }
1678 /* Update the config. */
1679 config->fixed_p = fixed_p;
1680 config->size = size;
1681 }
1682
1683 static void
1684 show_memory_packet_size (struct memory_packet_config *config)
1685 {
1686 if (config->size == 0)
1687 printf_filtered (_("The %s is 0 (default). "), config->name);
1688 else
1689 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1690 if (config->fixed_p)
1691 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1692 get_fixed_memory_packet_size (config));
1693 else
1694 {
1695 remote_target *remote = get_current_remote_target ();
1696
1697 if (remote != NULL)
1698 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1699 remote->get_memory_packet_size (config));
1700 else
1701 puts_filtered ("The actual limit will be further reduced "
1702 "dependent on the target.\n");
1703 }
1704 }
1705
1706 static struct memory_packet_config memory_write_packet_config =
1707 {
1708 "memory-write-packet-size",
1709 };
1710
1711 static void
1712 set_memory_write_packet_size (const char *args, int from_tty)
1713 {
1714 set_memory_packet_size (args, &memory_write_packet_config);
1715 }
1716
1717 static void
1718 show_memory_write_packet_size (const char *args, int from_tty)
1719 {
1720 show_memory_packet_size (&memory_write_packet_config);
1721 }
1722
1723 /* Show the number of hardware watchpoints that can be used. */
1724
1725 static void
1726 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1727 struct cmd_list_element *c,
1728 const char *value)
1729 {
1730 fprintf_filtered (file, _("The maximum number of target hardware "
1731 "watchpoints is %s.\n"), value);
1732 }
1733
1734 /* Show the length limit (in bytes) for hardware watchpoints. */
1735
1736 static void
1737 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1738 struct cmd_list_element *c,
1739 const char *value)
1740 {
1741 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1742 "hardware watchpoint is %s.\n"), value);
1743 }
1744
1745 /* Show the number of hardware breakpoints that can be used. */
1746
1747 static void
1748 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1749 struct cmd_list_element *c,
1750 const char *value)
1751 {
1752 fprintf_filtered (file, _("The maximum number of target hardware "
1753 "breakpoints is %s.\n"), value);
1754 }
1755
1756 long
1757 remote_target::get_memory_write_packet_size ()
1758 {
1759 return get_memory_packet_size (&memory_write_packet_config);
1760 }
1761
1762 static struct memory_packet_config memory_read_packet_config =
1763 {
1764 "memory-read-packet-size",
1765 };
1766
1767 static void
1768 set_memory_read_packet_size (const char *args, int from_tty)
1769 {
1770 set_memory_packet_size (args, &memory_read_packet_config);
1771 }
1772
1773 static void
1774 show_memory_read_packet_size (const char *args, int from_tty)
1775 {
1776 show_memory_packet_size (&memory_read_packet_config);
1777 }
1778
1779 long
1780 remote_target::get_memory_read_packet_size ()
1781 {
1782 long size = get_memory_packet_size (&memory_read_packet_config);
1783
1784 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1785 extra buffer size argument before the memory read size can be
1786 increased beyond this. */
1787 if (size > get_remote_packet_size ())
1788 size = get_remote_packet_size ();
1789 return size;
1790 }
1791
1792 \f
1793
1794 struct packet_config
1795 {
1796 const char *name;
1797 const char *title;
1798
1799 /* If auto, GDB auto-detects support for this packet or feature,
1800 either through qSupported, or by trying the packet and looking
1801 at the response. If true, GDB assumes the target supports this
1802 packet. If false, the packet is disabled. Configs that don't
1803 have an associated command always have this set to auto. */
1804 enum auto_boolean detect;
1805
1806 /* Does the target support this packet? */
1807 enum packet_support support;
1808 };
1809
1810 static enum packet_support packet_config_support (struct packet_config *config);
1811 static enum packet_support packet_support (int packet);
1812
1813 static void
1814 show_packet_config_cmd (struct packet_config *config)
1815 {
1816 const char *support = "internal-error";
1817
1818 switch (packet_config_support (config))
1819 {
1820 case PACKET_ENABLE:
1821 support = "enabled";
1822 break;
1823 case PACKET_DISABLE:
1824 support = "disabled";
1825 break;
1826 case PACKET_SUPPORT_UNKNOWN:
1827 support = "unknown";
1828 break;
1829 }
1830 switch (config->detect)
1831 {
1832 case AUTO_BOOLEAN_AUTO:
1833 printf_filtered (_("Support for the `%s' packet "
1834 "is auto-detected, currently %s.\n"),
1835 config->name, support);
1836 break;
1837 case AUTO_BOOLEAN_TRUE:
1838 case AUTO_BOOLEAN_FALSE:
1839 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1840 config->name, support);
1841 break;
1842 }
1843 }
1844
1845 static void
1846 add_packet_config_cmd (struct packet_config *config, const char *name,
1847 const char *title, int legacy)
1848 {
1849 char *set_doc;
1850 char *show_doc;
1851 char *cmd_name;
1852
1853 config->name = name;
1854 config->title = title;
1855 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1856 name, title);
1857 show_doc = xstrprintf ("Show current use of remote "
1858 "protocol `%s' (%s) packet",
1859 name, title);
1860 /* set/show TITLE-packet {auto,on,off} */
1861 cmd_name = xstrprintf ("%s-packet", title);
1862 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1863 &config->detect, set_doc,
1864 show_doc, NULL, /* help_doc */
1865 NULL,
1866 show_remote_protocol_packet_cmd,
1867 &remote_set_cmdlist, &remote_show_cmdlist);
1868 /* The command code copies the documentation strings. */
1869 xfree (set_doc);
1870 xfree (show_doc);
1871 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1872 if (legacy)
1873 {
1874 char *legacy_name;
1875
1876 legacy_name = xstrprintf ("%s-packet", name);
1877 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1878 &remote_set_cmdlist);
1879 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1880 &remote_show_cmdlist);
1881 }
1882 }
1883
1884 static enum packet_result
1885 packet_check_result (const char *buf)
1886 {
1887 if (buf[0] != '\0')
1888 {
1889 /* The stub recognized the packet request. Check that the
1890 operation succeeded. */
1891 if (buf[0] == 'E'
1892 && isxdigit (buf[1]) && isxdigit (buf[2])
1893 && buf[3] == '\0')
1894 /* "Enn" - definitly an error. */
1895 return PACKET_ERROR;
1896
1897 /* Always treat "E." as an error. This will be used for
1898 more verbose error messages, such as E.memtypes. */
1899 if (buf[0] == 'E' && buf[1] == '.')
1900 return PACKET_ERROR;
1901
1902 /* The packet may or may not be OK. Just assume it is. */
1903 return PACKET_OK;
1904 }
1905 else
1906 /* The stub does not support the packet. */
1907 return PACKET_UNKNOWN;
1908 }
1909
1910 static enum packet_result
1911 packet_ok (const char *buf, struct packet_config *config)
1912 {
1913 enum packet_result result;
1914
1915 if (config->detect != AUTO_BOOLEAN_TRUE
1916 && config->support == PACKET_DISABLE)
1917 internal_error (__FILE__, __LINE__,
1918 _("packet_ok: attempt to use a disabled packet"));
1919
1920 result = packet_check_result (buf);
1921 switch (result)
1922 {
1923 case PACKET_OK:
1924 case PACKET_ERROR:
1925 /* The stub recognized the packet request. */
1926 if (config->support == PACKET_SUPPORT_UNKNOWN)
1927 {
1928 if (remote_debug)
1929 fprintf_unfiltered (gdb_stdlog,
1930 "Packet %s (%s) is supported\n",
1931 config->name, config->title);
1932 config->support = PACKET_ENABLE;
1933 }
1934 break;
1935 case PACKET_UNKNOWN:
1936 /* The stub does not support the packet. */
1937 if (config->detect == AUTO_BOOLEAN_AUTO
1938 && config->support == PACKET_ENABLE)
1939 {
1940 /* If the stub previously indicated that the packet was
1941 supported then there is a protocol error. */
1942 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1943 config->name, config->title);
1944 }
1945 else if (config->detect == AUTO_BOOLEAN_TRUE)
1946 {
1947 /* The user set it wrong. */
1948 error (_("Enabled packet %s (%s) not recognized by stub"),
1949 config->name, config->title);
1950 }
1951
1952 if (remote_debug)
1953 fprintf_unfiltered (gdb_stdlog,
1954 "Packet %s (%s) is NOT supported\n",
1955 config->name, config->title);
1956 config->support = PACKET_DISABLE;
1957 break;
1958 }
1959
1960 return result;
1961 }
1962
1963 enum {
1964 PACKET_vCont = 0,
1965 PACKET_X,
1966 PACKET_qSymbol,
1967 PACKET_P,
1968 PACKET_p,
1969 PACKET_Z0,
1970 PACKET_Z1,
1971 PACKET_Z2,
1972 PACKET_Z3,
1973 PACKET_Z4,
1974 PACKET_vFile_setfs,
1975 PACKET_vFile_open,
1976 PACKET_vFile_pread,
1977 PACKET_vFile_pwrite,
1978 PACKET_vFile_close,
1979 PACKET_vFile_unlink,
1980 PACKET_vFile_readlink,
1981 PACKET_vFile_fstat,
1982 PACKET_qXfer_auxv,
1983 PACKET_qXfer_features,
1984 PACKET_qXfer_exec_file,
1985 PACKET_qXfer_libraries,
1986 PACKET_qXfer_libraries_svr4,
1987 PACKET_qXfer_memory_map,
1988 PACKET_qXfer_spu_read,
1989 PACKET_qXfer_spu_write,
1990 PACKET_qXfer_osdata,
1991 PACKET_qXfer_threads,
1992 PACKET_qXfer_statictrace_read,
1993 PACKET_qXfer_traceframe_info,
1994 PACKET_qXfer_uib,
1995 PACKET_qGetTIBAddr,
1996 PACKET_qGetTLSAddr,
1997 PACKET_qSupported,
1998 PACKET_qTStatus,
1999 PACKET_QPassSignals,
2000 PACKET_QCatchSyscalls,
2001 PACKET_QProgramSignals,
2002 PACKET_QSetWorkingDir,
2003 PACKET_QStartupWithShell,
2004 PACKET_QEnvironmentHexEncoded,
2005 PACKET_QEnvironmentReset,
2006 PACKET_QEnvironmentUnset,
2007 PACKET_qCRC,
2008 PACKET_qSearch_memory,
2009 PACKET_vAttach,
2010 PACKET_vRun,
2011 PACKET_QStartNoAckMode,
2012 PACKET_vKill,
2013 PACKET_qXfer_siginfo_read,
2014 PACKET_qXfer_siginfo_write,
2015 PACKET_qAttached,
2016
2017 /* Support for conditional tracepoints. */
2018 PACKET_ConditionalTracepoints,
2019
2020 /* Support for target-side breakpoint conditions. */
2021 PACKET_ConditionalBreakpoints,
2022
2023 /* Support for target-side breakpoint commands. */
2024 PACKET_BreakpointCommands,
2025
2026 /* Support for fast tracepoints. */
2027 PACKET_FastTracepoints,
2028
2029 /* Support for static tracepoints. */
2030 PACKET_StaticTracepoints,
2031
2032 /* Support for installing tracepoints while a trace experiment is
2033 running. */
2034 PACKET_InstallInTrace,
2035
2036 PACKET_bc,
2037 PACKET_bs,
2038 PACKET_TracepointSource,
2039 PACKET_QAllow,
2040 PACKET_qXfer_fdpic,
2041 PACKET_QDisableRandomization,
2042 PACKET_QAgent,
2043 PACKET_QTBuffer_size,
2044 PACKET_Qbtrace_off,
2045 PACKET_Qbtrace_bts,
2046 PACKET_Qbtrace_pt,
2047 PACKET_qXfer_btrace,
2048
2049 /* Support for the QNonStop packet. */
2050 PACKET_QNonStop,
2051
2052 /* Support for the QThreadEvents packet. */
2053 PACKET_QThreadEvents,
2054
2055 /* Support for multi-process extensions. */
2056 PACKET_multiprocess_feature,
2057
2058 /* Support for enabling and disabling tracepoints while a trace
2059 experiment is running. */
2060 PACKET_EnableDisableTracepoints_feature,
2061
2062 /* Support for collecting strings using the tracenz bytecode. */
2063 PACKET_tracenz_feature,
2064
2065 /* Support for continuing to run a trace experiment while GDB is
2066 disconnected. */
2067 PACKET_DisconnectedTracing_feature,
2068
2069 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2070 PACKET_augmented_libraries_svr4_read_feature,
2071
2072 /* Support for the qXfer:btrace-conf:read packet. */
2073 PACKET_qXfer_btrace_conf,
2074
2075 /* Support for the Qbtrace-conf:bts:size packet. */
2076 PACKET_Qbtrace_conf_bts_size,
2077
2078 /* Support for swbreak+ feature. */
2079 PACKET_swbreak_feature,
2080
2081 /* Support for hwbreak+ feature. */
2082 PACKET_hwbreak_feature,
2083
2084 /* Support for fork events. */
2085 PACKET_fork_event_feature,
2086
2087 /* Support for vfork events. */
2088 PACKET_vfork_event_feature,
2089
2090 /* Support for the Qbtrace-conf:pt:size packet. */
2091 PACKET_Qbtrace_conf_pt_size,
2092
2093 /* Support for exec events. */
2094 PACKET_exec_event_feature,
2095
2096 /* Support for query supported vCont actions. */
2097 PACKET_vContSupported,
2098
2099 /* Support remote CTRL-C. */
2100 PACKET_vCtrlC,
2101
2102 /* Support TARGET_WAITKIND_NO_RESUMED. */
2103 PACKET_no_resumed,
2104
2105 PACKET_MAX
2106 };
2107
2108 static struct packet_config remote_protocol_packets[PACKET_MAX];
2109
2110 /* Returns the packet's corresponding "set remote foo-packet" command
2111 state. See struct packet_config for more details. */
2112
2113 static enum auto_boolean
2114 packet_set_cmd_state (int packet)
2115 {
2116 return remote_protocol_packets[packet].detect;
2117 }
2118
2119 /* Returns whether a given packet or feature is supported. This takes
2120 into account the state of the corresponding "set remote foo-packet"
2121 command, which may be used to bypass auto-detection. */
2122
2123 static enum packet_support
2124 packet_config_support (struct packet_config *config)
2125 {
2126 switch (config->detect)
2127 {
2128 case AUTO_BOOLEAN_TRUE:
2129 return PACKET_ENABLE;
2130 case AUTO_BOOLEAN_FALSE:
2131 return PACKET_DISABLE;
2132 case AUTO_BOOLEAN_AUTO:
2133 return config->support;
2134 default:
2135 gdb_assert_not_reached (_("bad switch"));
2136 }
2137 }
2138
2139 /* Same as packet_config_support, but takes the packet's enum value as
2140 argument. */
2141
2142 static enum packet_support
2143 packet_support (int packet)
2144 {
2145 struct packet_config *config = &remote_protocol_packets[packet];
2146
2147 return packet_config_support (config);
2148 }
2149
2150 static void
2151 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2152 struct cmd_list_element *c,
2153 const char *value)
2154 {
2155 struct packet_config *packet;
2156
2157 for (packet = remote_protocol_packets;
2158 packet < &remote_protocol_packets[PACKET_MAX];
2159 packet++)
2160 {
2161 if (&packet->detect == c->var)
2162 {
2163 show_packet_config_cmd (packet);
2164 return;
2165 }
2166 }
2167 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2168 c->name);
2169 }
2170
2171 /* Should we try one of the 'Z' requests? */
2172
2173 enum Z_packet_type
2174 {
2175 Z_PACKET_SOFTWARE_BP,
2176 Z_PACKET_HARDWARE_BP,
2177 Z_PACKET_WRITE_WP,
2178 Z_PACKET_READ_WP,
2179 Z_PACKET_ACCESS_WP,
2180 NR_Z_PACKET_TYPES
2181 };
2182
2183 /* For compatibility with older distributions. Provide a ``set remote
2184 Z-packet ...'' command that updates all the Z packet types. */
2185
2186 static enum auto_boolean remote_Z_packet_detect;
2187
2188 static void
2189 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2190 struct cmd_list_element *c)
2191 {
2192 int i;
2193
2194 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2195 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2196 }
2197
2198 static void
2199 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2200 struct cmd_list_element *c,
2201 const char *value)
2202 {
2203 int i;
2204
2205 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2206 {
2207 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2208 }
2209 }
2210
2211 /* Returns true if the multi-process extensions are in effect. */
2212
2213 static int
2214 remote_multi_process_p (struct remote_state *rs)
2215 {
2216 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2217 }
2218
2219 /* Returns true if fork events are supported. */
2220
2221 static int
2222 remote_fork_event_p (struct remote_state *rs)
2223 {
2224 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2225 }
2226
2227 /* Returns true if vfork events are supported. */
2228
2229 static int
2230 remote_vfork_event_p (struct remote_state *rs)
2231 {
2232 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2233 }
2234
2235 /* Returns true if exec events are supported. */
2236
2237 static int
2238 remote_exec_event_p (struct remote_state *rs)
2239 {
2240 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2241 }
2242
2243 /* Insert fork catchpoint target routine. If fork events are enabled
2244 then return success, nothing more to do. */
2245
2246 int
2247 remote_target::insert_fork_catchpoint (int pid)
2248 {
2249 struct remote_state *rs = get_remote_state ();
2250
2251 return !remote_fork_event_p (rs);
2252 }
2253
2254 /* Remove fork catchpoint target routine. Nothing to do, just
2255 return success. */
2256
2257 int
2258 remote_target::remove_fork_catchpoint (int pid)
2259 {
2260 return 0;
2261 }
2262
2263 /* Insert vfork catchpoint target routine. If vfork events are enabled
2264 then return success, nothing more to do. */
2265
2266 int
2267 remote_target::insert_vfork_catchpoint (int pid)
2268 {
2269 struct remote_state *rs = get_remote_state ();
2270
2271 return !remote_vfork_event_p (rs);
2272 }
2273
2274 /* Remove vfork catchpoint target routine. Nothing to do, just
2275 return success. */
2276
2277 int
2278 remote_target::remove_vfork_catchpoint (int pid)
2279 {
2280 return 0;
2281 }
2282
2283 /* Insert exec catchpoint target routine. If exec events are
2284 enabled, just return success. */
2285
2286 int
2287 remote_target::insert_exec_catchpoint (int pid)
2288 {
2289 struct remote_state *rs = get_remote_state ();
2290
2291 return !remote_exec_event_p (rs);
2292 }
2293
2294 /* Remove exec catchpoint target routine. Nothing to do, just
2295 return success. */
2296
2297 int
2298 remote_target::remove_exec_catchpoint (int pid)
2299 {
2300 return 0;
2301 }
2302
2303 \f
2304
2305 static ptid_t magic_null_ptid;
2306 static ptid_t not_sent_ptid;
2307 static ptid_t any_thread_ptid;
2308
2309 /* Find out if the stub attached to PID (and hence GDB should offer to
2310 detach instead of killing it when bailing out). */
2311
2312 int
2313 remote_target::remote_query_attached (int pid)
2314 {
2315 struct remote_state *rs = get_remote_state ();
2316 size_t size = get_remote_packet_size ();
2317
2318 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2319 return 0;
2320
2321 if (remote_multi_process_p (rs))
2322 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2323 else
2324 xsnprintf (rs->buf, size, "qAttached");
2325
2326 putpkt (rs->buf);
2327 getpkt (&rs->buf, &rs->buf_size, 0);
2328
2329 switch (packet_ok (rs->buf,
2330 &remote_protocol_packets[PACKET_qAttached]))
2331 {
2332 case PACKET_OK:
2333 if (strcmp (rs->buf, "1") == 0)
2334 return 1;
2335 break;
2336 case PACKET_ERROR:
2337 warning (_("Remote failure reply: %s"), rs->buf);
2338 break;
2339 case PACKET_UNKNOWN:
2340 break;
2341 }
2342
2343 return 0;
2344 }
2345
2346 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2347 has been invented by GDB, instead of reported by the target. Since
2348 we can be connected to a remote system before before knowing about
2349 any inferior, mark the target with execution when we find the first
2350 inferior. If ATTACHED is 1, then we had just attached to this
2351 inferior. If it is 0, then we just created this inferior. If it
2352 is -1, then try querying the remote stub to find out if it had
2353 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2354 attempt to open this inferior's executable as the main executable
2355 if no main executable is open already. */
2356
2357 inferior *
2358 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2359 int try_open_exec)
2360 {
2361 struct inferior *inf;
2362
2363 /* Check whether this process we're learning about is to be
2364 considered attached, or if is to be considered to have been
2365 spawned by the stub. */
2366 if (attached == -1)
2367 attached = remote_query_attached (pid);
2368
2369 if (gdbarch_has_global_solist (target_gdbarch ()))
2370 {
2371 /* If the target shares code across all inferiors, then every
2372 attach adds a new inferior. */
2373 inf = add_inferior (pid);
2374
2375 /* ... and every inferior is bound to the same program space.
2376 However, each inferior may still have its own address
2377 space. */
2378 inf->aspace = maybe_new_address_space ();
2379 inf->pspace = current_program_space;
2380 }
2381 else
2382 {
2383 /* In the traditional debugging scenario, there's a 1-1 match
2384 between program/address spaces. We simply bind the inferior
2385 to the program space's address space. */
2386 inf = current_inferior ();
2387 inferior_appeared (inf, pid);
2388 }
2389
2390 inf->attach_flag = attached;
2391 inf->fake_pid_p = fake_pid_p;
2392
2393 /* If no main executable is currently open then attempt to
2394 open the file that was executed to create this inferior. */
2395 if (try_open_exec && get_exec_file (0) == NULL)
2396 exec_file_locate_attach (pid, 0, 1);
2397
2398 return inf;
2399 }
2400
2401 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2402 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2403
2404 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2405 according to RUNNING. */
2406
2407 thread_info *
2408 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2409 {
2410 struct remote_state *rs = get_remote_state ();
2411 struct thread_info *thread;
2412
2413 /* GDB historically didn't pull threads in the initial connection
2414 setup. If the remote target doesn't even have a concept of
2415 threads (e.g., a bare-metal target), even if internally we
2416 consider that a single-threaded target, mentioning a new thread
2417 might be confusing to the user. Be silent then, preserving the
2418 age old behavior. */
2419 if (rs->starting_up)
2420 thread = add_thread_silent (ptid);
2421 else
2422 thread = add_thread (ptid);
2423
2424 get_remote_thread_info (thread)->vcont_resumed = executing;
2425 set_executing (ptid, executing);
2426 set_running (ptid, running);
2427
2428 return thread;
2429 }
2430
2431 /* Come here when we learn about a thread id from the remote target.
2432 It may be the first time we hear about such thread, so take the
2433 opportunity to add it to GDB's thread list. In case this is the
2434 first time we're noticing its corresponding inferior, add it to
2435 GDB's inferior list as well. EXECUTING indicates whether the
2436 thread is (internally) executing or stopped. */
2437
2438 void
2439 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2440 {
2441 /* In non-stop mode, we assume new found threads are (externally)
2442 running until proven otherwise with a stop reply. In all-stop,
2443 we can only get here if all threads are stopped. */
2444 int running = target_is_non_stop_p () ? 1 : 0;
2445
2446 /* If this is a new thread, add it to GDB's thread list.
2447 If we leave it up to WFI to do this, bad things will happen. */
2448
2449 thread_info *tp = find_thread_ptid (currthread);
2450 if (tp != NULL && tp->state == THREAD_EXITED)
2451 {
2452 /* We're seeing an event on a thread id we knew had exited.
2453 This has to be a new thread reusing the old id. Add it. */
2454 remote_add_thread (currthread, running, executing);
2455 return;
2456 }
2457
2458 if (!in_thread_list (currthread))
2459 {
2460 struct inferior *inf = NULL;
2461 int pid = currthread.pid ();
2462
2463 if (inferior_ptid.is_pid ()
2464 && pid == inferior_ptid.pid ())
2465 {
2466 /* inferior_ptid has no thread member yet. This can happen
2467 with the vAttach -> remote_wait,"TAAthread:" path if the
2468 stub doesn't support qC. This is the first stop reported
2469 after an attach, so this is the main thread. Update the
2470 ptid in the thread list. */
2471 if (in_thread_list (ptid_t (pid)))
2472 thread_change_ptid (inferior_ptid, currthread);
2473 else
2474 {
2475 remote_add_thread (currthread, running, executing);
2476 inferior_ptid = currthread;
2477 }
2478 return;
2479 }
2480
2481 if (magic_null_ptid == inferior_ptid)
2482 {
2483 /* inferior_ptid is not set yet. This can happen with the
2484 vRun -> remote_wait,"TAAthread:" path if the stub
2485 doesn't support qC. This is the first stop reported
2486 after an attach, so this is the main thread. Update the
2487 ptid in the thread list. */
2488 thread_change_ptid (inferior_ptid, currthread);
2489 return;
2490 }
2491
2492 /* When connecting to a target remote, or to a target
2493 extended-remote which already was debugging an inferior, we
2494 may not know about it yet. Add it before adding its child
2495 thread, so notifications are emitted in a sensible order. */
2496 if (find_inferior_pid (currthread.pid ()) == NULL)
2497 {
2498 struct remote_state *rs = get_remote_state ();
2499 int fake_pid_p = !remote_multi_process_p (rs);
2500
2501 inf = remote_add_inferior (fake_pid_p,
2502 currthread.pid (), -1, 1);
2503 }
2504
2505 /* This is really a new thread. Add it. */
2506 thread_info *new_thr
2507 = remote_add_thread (currthread, running, executing);
2508
2509 /* If we found a new inferior, let the common code do whatever
2510 it needs to with it (e.g., read shared libraries, insert
2511 breakpoints), unless we're just setting up an all-stop
2512 connection. */
2513 if (inf != NULL)
2514 {
2515 struct remote_state *rs = get_remote_state ();
2516
2517 if (!rs->starting_up)
2518 notice_new_inferior (new_thr, executing, 0);
2519 }
2520 }
2521 }
2522
2523 /* Return THREAD's private thread data, creating it if necessary. */
2524
2525 static remote_thread_info *
2526 get_remote_thread_info (thread_info *thread)
2527 {
2528 gdb_assert (thread != NULL);
2529
2530 if (thread->priv == NULL)
2531 thread->priv.reset (new remote_thread_info);
2532
2533 return static_cast<remote_thread_info *> (thread->priv.get ());
2534 }
2535
2536 static remote_thread_info *
2537 get_remote_thread_info (ptid_t ptid)
2538 {
2539 thread_info *thr = find_thread_ptid (ptid);
2540 return get_remote_thread_info (thr);
2541 }
2542
2543 /* Call this function as a result of
2544 1) A halt indication (T packet) containing a thread id
2545 2) A direct query of currthread
2546 3) Successful execution of set thread */
2547
2548 static void
2549 record_currthread (struct remote_state *rs, ptid_t currthread)
2550 {
2551 rs->general_thread = currthread;
2552 }
2553
2554 /* If 'QPassSignals' is supported, tell the remote stub what signals
2555 it can simply pass through to the inferior without reporting. */
2556
2557 void
2558 remote_target::pass_signals (int numsigs, unsigned char *pass_signals)
2559 {
2560 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2561 {
2562 char *pass_packet, *p;
2563 int count = 0, i;
2564 struct remote_state *rs = get_remote_state ();
2565
2566 gdb_assert (numsigs < 256);
2567 for (i = 0; i < numsigs; i++)
2568 {
2569 if (pass_signals[i])
2570 count++;
2571 }
2572 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2573 strcpy (pass_packet, "QPassSignals:");
2574 p = pass_packet + strlen (pass_packet);
2575 for (i = 0; i < numsigs; i++)
2576 {
2577 if (pass_signals[i])
2578 {
2579 if (i >= 16)
2580 *p++ = tohex (i >> 4);
2581 *p++ = tohex (i & 15);
2582 if (count)
2583 *p++ = ';';
2584 else
2585 break;
2586 count--;
2587 }
2588 }
2589 *p = 0;
2590 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2591 {
2592 putpkt (pass_packet);
2593 getpkt (&rs->buf, &rs->buf_size, 0);
2594 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2595 if (rs->last_pass_packet)
2596 xfree (rs->last_pass_packet);
2597 rs->last_pass_packet = pass_packet;
2598 }
2599 else
2600 xfree (pass_packet);
2601 }
2602 }
2603
2604 /* If 'QCatchSyscalls' is supported, tell the remote stub
2605 to report syscalls to GDB. */
2606
2607 int
2608 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2609 gdb::array_view<const int> syscall_counts)
2610 {
2611 const char *catch_packet;
2612 enum packet_result result;
2613 int n_sysno = 0;
2614
2615 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2616 {
2617 /* Not supported. */
2618 return 1;
2619 }
2620
2621 if (needed && any_count == 0)
2622 {
2623 /* Count how many syscalls are to be caught. */
2624 for (size_t i = 0; i < syscall_counts.size (); i++)
2625 {
2626 if (syscall_counts[i] != 0)
2627 n_sysno++;
2628 }
2629 }
2630
2631 if (remote_debug)
2632 {
2633 fprintf_unfiltered (gdb_stdlog,
2634 "remote_set_syscall_catchpoint "
2635 "pid %d needed %d any_count %d n_sysno %d\n",
2636 pid, needed, any_count, n_sysno);
2637 }
2638
2639 std::string built_packet;
2640 if (needed)
2641 {
2642 /* Prepare a packet with the sysno list, assuming max 8+1
2643 characters for a sysno. If the resulting packet size is too
2644 big, fallback on the non-selective packet. */
2645 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2646 built_packet.reserve (maxpktsz);
2647 built_packet = "QCatchSyscalls:1";
2648 if (any_count == 0)
2649 {
2650 /* Add in each syscall to be caught. */
2651 for (size_t i = 0; i < syscall_counts.size (); i++)
2652 {
2653 if (syscall_counts[i] != 0)
2654 string_appendf (built_packet, ";%zx", i);
2655 }
2656 }
2657 if (built_packet.size () > get_remote_packet_size ())
2658 {
2659 /* catch_packet too big. Fallback to less efficient
2660 non selective mode, with GDB doing the filtering. */
2661 catch_packet = "QCatchSyscalls:1";
2662 }
2663 else
2664 catch_packet = built_packet.c_str ();
2665 }
2666 else
2667 catch_packet = "QCatchSyscalls:0";
2668
2669 struct remote_state *rs = get_remote_state ();
2670
2671 putpkt (catch_packet);
2672 getpkt (&rs->buf, &rs->buf_size, 0);
2673 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2674 if (result == PACKET_OK)
2675 return 0;
2676 else
2677 return -1;
2678 }
2679
2680 /* If 'QProgramSignals' is supported, tell the remote stub what
2681 signals it should pass through to the inferior when detaching. */
2682
2683 void
2684 remote_target::program_signals (int numsigs, unsigned char *signals)
2685 {
2686 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2687 {
2688 char *packet, *p;
2689 int count = 0, i;
2690 struct remote_state *rs = get_remote_state ();
2691
2692 gdb_assert (numsigs < 256);
2693 for (i = 0; i < numsigs; i++)
2694 {
2695 if (signals[i])
2696 count++;
2697 }
2698 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2699 strcpy (packet, "QProgramSignals:");
2700 p = packet + strlen (packet);
2701 for (i = 0; i < numsigs; i++)
2702 {
2703 if (signal_pass_state (i))
2704 {
2705 if (i >= 16)
2706 *p++ = tohex (i >> 4);
2707 *p++ = tohex (i & 15);
2708 if (count)
2709 *p++ = ';';
2710 else
2711 break;
2712 count--;
2713 }
2714 }
2715 *p = 0;
2716 if (!rs->last_program_signals_packet
2717 || strcmp (rs->last_program_signals_packet, packet) != 0)
2718 {
2719 putpkt (packet);
2720 getpkt (&rs->buf, &rs->buf_size, 0);
2721 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2722 xfree (rs->last_program_signals_packet);
2723 rs->last_program_signals_packet = packet;
2724 }
2725 else
2726 xfree (packet);
2727 }
2728 }
2729
2730 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2731 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2732 thread. If GEN is set, set the general thread, if not, then set
2733 the step/continue thread. */
2734 void
2735 remote_target::set_thread (ptid_t ptid, int gen)
2736 {
2737 struct remote_state *rs = get_remote_state ();
2738 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2739 char *buf = rs->buf;
2740 char *endbuf = rs->buf + get_remote_packet_size ();
2741
2742 if (state == ptid)
2743 return;
2744
2745 *buf++ = 'H';
2746 *buf++ = gen ? 'g' : 'c';
2747 if (ptid == magic_null_ptid)
2748 xsnprintf (buf, endbuf - buf, "0");
2749 else if (ptid == any_thread_ptid)
2750 xsnprintf (buf, endbuf - buf, "0");
2751 else if (ptid == minus_one_ptid)
2752 xsnprintf (buf, endbuf - buf, "-1");
2753 else
2754 write_ptid (buf, endbuf, ptid);
2755 putpkt (rs->buf);
2756 getpkt (&rs->buf, &rs->buf_size, 0);
2757 if (gen)
2758 rs->general_thread = ptid;
2759 else
2760 rs->continue_thread = ptid;
2761 }
2762
2763 void
2764 remote_target::set_general_thread (ptid_t ptid)
2765 {
2766 set_thread (ptid, 1);
2767 }
2768
2769 void
2770 remote_target::set_continue_thread (ptid_t ptid)
2771 {
2772 set_thread (ptid, 0);
2773 }
2774
2775 /* Change the remote current process. Which thread within the process
2776 ends up selected isn't important, as long as it is the same process
2777 as what INFERIOR_PTID points to.
2778
2779 This comes from that fact that there is no explicit notion of
2780 "selected process" in the protocol. The selected process for
2781 general operations is the process the selected general thread
2782 belongs to. */
2783
2784 void
2785 remote_target::set_general_process ()
2786 {
2787 struct remote_state *rs = get_remote_state ();
2788
2789 /* If the remote can't handle multiple processes, don't bother. */
2790 if (!remote_multi_process_p (rs))
2791 return;
2792
2793 /* We only need to change the remote current thread if it's pointing
2794 at some other process. */
2795 if (rs->general_thread.pid () != inferior_ptid.pid ())
2796 set_general_thread (inferior_ptid);
2797 }
2798
2799 \f
2800 /* Return nonzero if this is the main thread that we made up ourselves
2801 to model non-threaded targets as single-threaded. */
2802
2803 static int
2804 remote_thread_always_alive (ptid_t ptid)
2805 {
2806 if (ptid == magic_null_ptid)
2807 /* The main thread is always alive. */
2808 return 1;
2809
2810 if (ptid.pid () != 0 && ptid.lwp () == 0)
2811 /* The main thread is always alive. This can happen after a
2812 vAttach, if the remote side doesn't support
2813 multi-threading. */
2814 return 1;
2815
2816 return 0;
2817 }
2818
2819 /* Return nonzero if the thread PTID is still alive on the remote
2820 system. */
2821
2822 bool
2823 remote_target::thread_alive (ptid_t ptid)
2824 {
2825 struct remote_state *rs = get_remote_state ();
2826 char *p, *endp;
2827
2828 /* Check if this is a thread that we made up ourselves to model
2829 non-threaded targets as single-threaded. */
2830 if (remote_thread_always_alive (ptid))
2831 return 1;
2832
2833 p = rs->buf;
2834 endp = rs->buf + get_remote_packet_size ();
2835
2836 *p++ = 'T';
2837 write_ptid (p, endp, ptid);
2838
2839 putpkt (rs->buf);
2840 getpkt (&rs->buf, &rs->buf_size, 0);
2841 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2842 }
2843
2844 /* Return a pointer to a thread name if we know it and NULL otherwise.
2845 The thread_info object owns the memory for the name. */
2846
2847 const char *
2848 remote_target::thread_name (struct thread_info *info)
2849 {
2850 if (info->priv != NULL)
2851 {
2852 const std::string &name = get_remote_thread_info (info)->name;
2853 return !name.empty () ? name.c_str () : NULL;
2854 }
2855
2856 return NULL;
2857 }
2858
2859 /* About these extended threadlist and threadinfo packets. They are
2860 variable length packets but, the fields within them are often fixed
2861 length. They are redundent enough to send over UDP as is the
2862 remote protocol in general. There is a matching unit test module
2863 in libstub. */
2864
2865 /* WARNING: This threadref data structure comes from the remote O.S.,
2866 libstub protocol encoding, and remote.c. It is not particularly
2867 changable. */
2868
2869 /* Right now, the internal structure is int. We want it to be bigger.
2870 Plan to fix this. */
2871
2872 typedef int gdb_threadref; /* Internal GDB thread reference. */
2873
2874 /* gdb_ext_thread_info is an internal GDB data structure which is
2875 equivalent to the reply of the remote threadinfo packet. */
2876
2877 struct gdb_ext_thread_info
2878 {
2879 threadref threadid; /* External form of thread reference. */
2880 int active; /* Has state interesting to GDB?
2881 regs, stack. */
2882 char display[256]; /* Brief state display, name,
2883 blocked/suspended. */
2884 char shortname[32]; /* To be used to name threads. */
2885 char more_display[256]; /* Long info, statistics, queue depth,
2886 whatever. */
2887 };
2888
2889 /* The volume of remote transfers can be limited by submitting
2890 a mask containing bits specifying the desired information.
2891 Use a union of these values as the 'selection' parameter to
2892 get_thread_info. FIXME: Make these TAG names more thread specific. */
2893
2894 #define TAG_THREADID 1
2895 #define TAG_EXISTS 2
2896 #define TAG_DISPLAY 4
2897 #define TAG_THREADNAME 8
2898 #define TAG_MOREDISPLAY 16
2899
2900 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2901
2902 static char *unpack_nibble (char *buf, int *val);
2903
2904 static char *unpack_byte (char *buf, int *value);
2905
2906 static char *pack_int (char *buf, int value);
2907
2908 static char *unpack_int (char *buf, int *value);
2909
2910 static char *unpack_string (char *src, char *dest, int length);
2911
2912 static char *pack_threadid (char *pkt, threadref *id);
2913
2914 static char *unpack_threadid (char *inbuf, threadref *id);
2915
2916 void int_to_threadref (threadref *id, int value);
2917
2918 static int threadref_to_int (threadref *ref);
2919
2920 static void copy_threadref (threadref *dest, threadref *src);
2921
2922 static int threadmatch (threadref *dest, threadref *src);
2923
2924 static char *pack_threadinfo_request (char *pkt, int mode,
2925 threadref *id);
2926
2927 static char *pack_threadlist_request (char *pkt, int startflag,
2928 int threadcount,
2929 threadref *nextthread);
2930
2931 static int remote_newthread_step (threadref *ref, void *context);
2932
2933
2934 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2935 buffer we're allowed to write to. Returns
2936 BUF+CHARACTERS_WRITTEN. */
2937
2938 char *
2939 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2940 {
2941 int pid, tid;
2942 struct remote_state *rs = get_remote_state ();
2943
2944 if (remote_multi_process_p (rs))
2945 {
2946 pid = ptid.pid ();
2947 if (pid < 0)
2948 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2949 else
2950 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2951 }
2952 tid = ptid.lwp ();
2953 if (tid < 0)
2954 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2955 else
2956 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2957
2958 return buf;
2959 }
2960
2961 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2962 last parsed char. Returns null_ptid if no thread id is found, and
2963 throws an error if the thread id has an invalid format. */
2964
2965 static ptid_t
2966 read_ptid (const char *buf, const char **obuf)
2967 {
2968 const char *p = buf;
2969 const char *pp;
2970 ULONGEST pid = 0, tid = 0;
2971
2972 if (*p == 'p')
2973 {
2974 /* Multi-process ptid. */
2975 pp = unpack_varlen_hex (p + 1, &pid);
2976 if (*pp != '.')
2977 error (_("invalid remote ptid: %s"), p);
2978
2979 p = pp;
2980 pp = unpack_varlen_hex (p + 1, &tid);
2981 if (obuf)
2982 *obuf = pp;
2983 return ptid_t (pid, tid, 0);
2984 }
2985
2986 /* No multi-process. Just a tid. */
2987 pp = unpack_varlen_hex (p, &tid);
2988
2989 /* Return null_ptid when no thread id is found. */
2990 if (p == pp)
2991 {
2992 if (obuf)
2993 *obuf = pp;
2994 return null_ptid;
2995 }
2996
2997 /* Since the stub is not sending a process id, then default to
2998 what's in inferior_ptid, unless it's null at this point. If so,
2999 then since there's no way to know the pid of the reported
3000 threads, use the magic number. */
3001 if (inferior_ptid == null_ptid)
3002 pid = magic_null_ptid.pid ();
3003 else
3004 pid = inferior_ptid.pid ();
3005
3006 if (obuf)
3007 *obuf = pp;
3008 return ptid_t (pid, tid, 0);
3009 }
3010
3011 static int
3012 stubhex (int ch)
3013 {
3014 if (ch >= 'a' && ch <= 'f')
3015 return ch - 'a' + 10;
3016 if (ch >= '0' && ch <= '9')
3017 return ch - '0';
3018 if (ch >= 'A' && ch <= 'F')
3019 return ch - 'A' + 10;
3020 return -1;
3021 }
3022
3023 static int
3024 stub_unpack_int (char *buff, int fieldlength)
3025 {
3026 int nibble;
3027 int retval = 0;
3028
3029 while (fieldlength)
3030 {
3031 nibble = stubhex (*buff++);
3032 retval |= nibble;
3033 fieldlength--;
3034 if (fieldlength)
3035 retval = retval << 4;
3036 }
3037 return retval;
3038 }
3039
3040 static char *
3041 unpack_nibble (char *buf, int *val)
3042 {
3043 *val = fromhex (*buf++);
3044 return buf;
3045 }
3046
3047 static char *
3048 unpack_byte (char *buf, int *value)
3049 {
3050 *value = stub_unpack_int (buf, 2);
3051 return buf + 2;
3052 }
3053
3054 static char *
3055 pack_int (char *buf, int value)
3056 {
3057 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3058 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3059 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3060 buf = pack_hex_byte (buf, (value & 0xff));
3061 return buf;
3062 }
3063
3064 static char *
3065 unpack_int (char *buf, int *value)
3066 {
3067 *value = stub_unpack_int (buf, 8);
3068 return buf + 8;
3069 }
3070
3071 #if 0 /* Currently unused, uncomment when needed. */
3072 static char *pack_string (char *pkt, char *string);
3073
3074 static char *
3075 pack_string (char *pkt, char *string)
3076 {
3077 char ch;
3078 int len;
3079
3080 len = strlen (string);
3081 if (len > 200)
3082 len = 200; /* Bigger than most GDB packets, junk??? */
3083 pkt = pack_hex_byte (pkt, len);
3084 while (len-- > 0)
3085 {
3086 ch = *string++;
3087 if ((ch == '\0') || (ch == '#'))
3088 ch = '*'; /* Protect encapsulation. */
3089 *pkt++ = ch;
3090 }
3091 return pkt;
3092 }
3093 #endif /* 0 (unused) */
3094
3095 static char *
3096 unpack_string (char *src, char *dest, int length)
3097 {
3098 while (length--)
3099 *dest++ = *src++;
3100 *dest = '\0';
3101 return src;
3102 }
3103
3104 static char *
3105 pack_threadid (char *pkt, threadref *id)
3106 {
3107 char *limit;
3108 unsigned char *altid;
3109
3110 altid = (unsigned char *) id;
3111 limit = pkt + BUF_THREAD_ID_SIZE;
3112 while (pkt < limit)
3113 pkt = pack_hex_byte (pkt, *altid++);
3114 return pkt;
3115 }
3116
3117
3118 static char *
3119 unpack_threadid (char *inbuf, threadref *id)
3120 {
3121 char *altref;
3122 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3123 int x, y;
3124
3125 altref = (char *) id;
3126
3127 while (inbuf < limit)
3128 {
3129 x = stubhex (*inbuf++);
3130 y = stubhex (*inbuf++);
3131 *altref++ = (x << 4) | y;
3132 }
3133 return inbuf;
3134 }
3135
3136 /* Externally, threadrefs are 64 bits but internally, they are still
3137 ints. This is due to a mismatch of specifications. We would like
3138 to use 64bit thread references internally. This is an adapter
3139 function. */
3140
3141 void
3142 int_to_threadref (threadref *id, int value)
3143 {
3144 unsigned char *scan;
3145
3146 scan = (unsigned char *) id;
3147 {
3148 int i = 4;
3149 while (i--)
3150 *scan++ = 0;
3151 }
3152 *scan++ = (value >> 24) & 0xff;
3153 *scan++ = (value >> 16) & 0xff;
3154 *scan++ = (value >> 8) & 0xff;
3155 *scan++ = (value & 0xff);
3156 }
3157
3158 static int
3159 threadref_to_int (threadref *ref)
3160 {
3161 int i, value = 0;
3162 unsigned char *scan;
3163
3164 scan = *ref;
3165 scan += 4;
3166 i = 4;
3167 while (i-- > 0)
3168 value = (value << 8) | ((*scan++) & 0xff);
3169 return value;
3170 }
3171
3172 static void
3173 copy_threadref (threadref *dest, threadref *src)
3174 {
3175 int i;
3176 unsigned char *csrc, *cdest;
3177
3178 csrc = (unsigned char *) src;
3179 cdest = (unsigned char *) dest;
3180 i = 8;
3181 while (i--)
3182 *cdest++ = *csrc++;
3183 }
3184
3185 static int
3186 threadmatch (threadref *dest, threadref *src)
3187 {
3188 /* Things are broken right now, so just assume we got a match. */
3189 #if 0
3190 unsigned char *srcp, *destp;
3191 int i, result;
3192 srcp = (char *) src;
3193 destp = (char *) dest;
3194
3195 result = 1;
3196 while (i-- > 0)
3197 result &= (*srcp++ == *destp++) ? 1 : 0;
3198 return result;
3199 #endif
3200 return 1;
3201 }
3202
3203 /*
3204 threadid:1, # always request threadid
3205 context_exists:2,
3206 display:4,
3207 unique_name:8,
3208 more_display:16
3209 */
3210
3211 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3212
3213 static char *
3214 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3215 {
3216 *pkt++ = 'q'; /* Info Query */
3217 *pkt++ = 'P'; /* process or thread info */
3218 pkt = pack_int (pkt, mode); /* mode */
3219 pkt = pack_threadid (pkt, id); /* threadid */
3220 *pkt = '\0'; /* terminate */
3221 return pkt;
3222 }
3223
3224 /* These values tag the fields in a thread info response packet. */
3225 /* Tagging the fields allows us to request specific fields and to
3226 add more fields as time goes by. */
3227
3228 #define TAG_THREADID 1 /* Echo the thread identifier. */
3229 #define TAG_EXISTS 2 /* Is this process defined enough to
3230 fetch registers and its stack? */
3231 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3232 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3233 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3234 the process. */
3235
3236 int
3237 remote_target::remote_unpack_thread_info_response (char *pkt,
3238 threadref *expectedref,
3239 gdb_ext_thread_info *info)
3240 {
3241 struct remote_state *rs = get_remote_state ();
3242 int mask, length;
3243 int tag;
3244 threadref ref;
3245 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
3246 int retval = 1;
3247
3248 /* info->threadid = 0; FIXME: implement zero_threadref. */
3249 info->active = 0;
3250 info->display[0] = '\0';
3251 info->shortname[0] = '\0';
3252 info->more_display[0] = '\0';
3253
3254 /* Assume the characters indicating the packet type have been
3255 stripped. */
3256 pkt = unpack_int (pkt, &mask); /* arg mask */
3257 pkt = unpack_threadid (pkt, &ref);
3258
3259 if (mask == 0)
3260 warning (_("Incomplete response to threadinfo request."));
3261 if (!threadmatch (&ref, expectedref))
3262 { /* This is an answer to a different request. */
3263 warning (_("ERROR RMT Thread info mismatch."));
3264 return 0;
3265 }
3266 copy_threadref (&info->threadid, &ref);
3267
3268 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3269
3270 /* Packets are terminated with nulls. */
3271 while ((pkt < limit) && mask && *pkt)
3272 {
3273 pkt = unpack_int (pkt, &tag); /* tag */
3274 pkt = unpack_byte (pkt, &length); /* length */
3275 if (!(tag & mask)) /* Tags out of synch with mask. */
3276 {
3277 warning (_("ERROR RMT: threadinfo tag mismatch."));
3278 retval = 0;
3279 break;
3280 }
3281 if (tag == TAG_THREADID)
3282 {
3283 if (length != 16)
3284 {
3285 warning (_("ERROR RMT: length of threadid is not 16."));
3286 retval = 0;
3287 break;
3288 }
3289 pkt = unpack_threadid (pkt, &ref);
3290 mask = mask & ~TAG_THREADID;
3291 continue;
3292 }
3293 if (tag == TAG_EXISTS)
3294 {
3295 info->active = stub_unpack_int (pkt, length);
3296 pkt += length;
3297 mask = mask & ~(TAG_EXISTS);
3298 if (length > 8)
3299 {
3300 warning (_("ERROR RMT: 'exists' length too long."));
3301 retval = 0;
3302 break;
3303 }
3304 continue;
3305 }
3306 if (tag == TAG_THREADNAME)
3307 {
3308 pkt = unpack_string (pkt, &info->shortname[0], length);
3309 mask = mask & ~TAG_THREADNAME;
3310 continue;
3311 }
3312 if (tag == TAG_DISPLAY)
3313 {
3314 pkt = unpack_string (pkt, &info->display[0], length);
3315 mask = mask & ~TAG_DISPLAY;
3316 continue;
3317 }
3318 if (tag == TAG_MOREDISPLAY)
3319 {
3320 pkt = unpack_string (pkt, &info->more_display[0], length);
3321 mask = mask & ~TAG_MOREDISPLAY;
3322 continue;
3323 }
3324 warning (_("ERROR RMT: unknown thread info tag."));
3325 break; /* Not a tag we know about. */
3326 }
3327 return retval;
3328 }
3329
3330 int
3331 remote_target::remote_get_threadinfo (threadref *threadid,
3332 int fieldset,
3333 gdb_ext_thread_info *info)
3334 {
3335 struct remote_state *rs = get_remote_state ();
3336 int result;
3337
3338 pack_threadinfo_request (rs->buf, fieldset, threadid);
3339 putpkt (rs->buf);
3340 getpkt (&rs->buf, &rs->buf_size, 0);
3341
3342 if (rs->buf[0] == '\0')
3343 return 0;
3344
3345 result = remote_unpack_thread_info_response (rs->buf + 2,
3346 threadid, info);
3347 return result;
3348 }
3349
3350 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3351
3352 static char *
3353 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3354 threadref *nextthread)
3355 {
3356 *pkt++ = 'q'; /* info query packet */
3357 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3358 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3359 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3360 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3361 *pkt = '\0';
3362 return pkt;
3363 }
3364
3365 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3366
3367 int
3368 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3369 threadref *original_echo,
3370 threadref *resultlist,
3371 int *doneflag)
3372 {
3373 struct remote_state *rs = get_remote_state ();
3374 char *limit;
3375 int count, resultcount, done;
3376
3377 resultcount = 0;
3378 /* Assume the 'q' and 'M chars have been stripped. */
3379 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3380 /* done parse past here */
3381 pkt = unpack_byte (pkt, &count); /* count field */
3382 pkt = unpack_nibble (pkt, &done);
3383 /* The first threadid is the argument threadid. */
3384 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3385 while ((count-- > 0) && (pkt < limit))
3386 {
3387 pkt = unpack_threadid (pkt, resultlist++);
3388 if (resultcount++ >= result_limit)
3389 break;
3390 }
3391 if (doneflag)
3392 *doneflag = done;
3393 return resultcount;
3394 }
3395
3396 /* Fetch the next batch of threads from the remote. Returns -1 if the
3397 qL packet is not supported, 0 on error and 1 on success. */
3398
3399 int
3400 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3401 int result_limit, int *done, int *result_count,
3402 threadref *threadlist)
3403 {
3404 struct remote_state *rs = get_remote_state ();
3405 int result = 1;
3406
3407 /* Trancate result limit to be smaller than the packet size. */
3408 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3409 >= get_remote_packet_size ())
3410 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3411
3412 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3413 putpkt (rs->buf);
3414 getpkt (&rs->buf, &rs->buf_size, 0);
3415 if (*rs->buf == '\0')
3416 {
3417 /* Packet not supported. */
3418 return -1;
3419 }
3420
3421 *result_count =
3422 parse_threadlist_response (rs->buf + 2, result_limit,
3423 &rs->echo_nextthread, threadlist, done);
3424
3425 if (!threadmatch (&rs->echo_nextthread, nextthread))
3426 {
3427 /* FIXME: This is a good reason to drop the packet. */
3428 /* Possably, there is a duplicate response. */
3429 /* Possabilities :
3430 retransmit immediatly - race conditions
3431 retransmit after timeout - yes
3432 exit
3433 wait for packet, then exit
3434 */
3435 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3436 return 0; /* I choose simply exiting. */
3437 }
3438 if (*result_count <= 0)
3439 {
3440 if (*done != 1)
3441 {
3442 warning (_("RMT ERROR : failed to get remote thread list."));
3443 result = 0;
3444 }
3445 return result; /* break; */
3446 }
3447 if (*result_count > result_limit)
3448 {
3449 *result_count = 0;
3450 warning (_("RMT ERROR: threadlist response longer than requested."));
3451 return 0;
3452 }
3453 return result;
3454 }
3455
3456 /* Fetch the list of remote threads, with the qL packet, and call
3457 STEPFUNCTION for each thread found. Stops iterating and returns 1
3458 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3459 STEPFUNCTION returns false. If the packet is not supported,
3460 returns -1. */
3461
3462 int
3463 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3464 void *context, int looplimit)
3465 {
3466 struct remote_state *rs = get_remote_state ();
3467 int done, i, result_count;
3468 int startflag = 1;
3469 int result = 1;
3470 int loopcount = 0;
3471
3472 done = 0;
3473 while (!done)
3474 {
3475 if (loopcount++ > looplimit)
3476 {
3477 result = 0;
3478 warning (_("Remote fetch threadlist -infinite loop-."));
3479 break;
3480 }
3481 result = remote_get_threadlist (startflag, &rs->nextthread,
3482 MAXTHREADLISTRESULTS,
3483 &done, &result_count,
3484 rs->resultthreadlist);
3485 if (result <= 0)
3486 break;
3487 /* Clear for later iterations. */
3488 startflag = 0;
3489 /* Setup to resume next batch of thread references, set nextthread. */
3490 if (result_count >= 1)
3491 copy_threadref (&rs->nextthread,
3492 &rs->resultthreadlist[result_count - 1]);
3493 i = 0;
3494 while (result_count--)
3495 {
3496 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3497 {
3498 result = 0;
3499 break;
3500 }
3501 }
3502 }
3503 return result;
3504 }
3505
3506 /* A thread found on the remote target. */
3507
3508 struct thread_item
3509 {
3510 explicit thread_item (ptid_t ptid_)
3511 : ptid (ptid_)
3512 {}
3513
3514 thread_item (thread_item &&other) = default;
3515 thread_item &operator= (thread_item &&other) = default;
3516
3517 DISABLE_COPY_AND_ASSIGN (thread_item);
3518
3519 /* The thread's PTID. */
3520 ptid_t ptid;
3521
3522 /* The thread's extra info. */
3523 std::string extra;
3524
3525 /* The thread's name. */
3526 std::string name;
3527
3528 /* The core the thread was running on. -1 if not known. */
3529 int core = -1;
3530
3531 /* The thread handle associated with the thread. */
3532 gdb::byte_vector thread_handle;
3533 };
3534
3535 /* Context passed around to the various methods listing remote
3536 threads. As new threads are found, they're added to the ITEMS
3537 vector. */
3538
3539 struct threads_listing_context
3540 {
3541 /* Return true if this object contains an entry for a thread with ptid
3542 PTID. */
3543
3544 bool contains_thread (ptid_t ptid) const
3545 {
3546 auto match_ptid = [&] (const thread_item &item)
3547 {
3548 return item.ptid == ptid;
3549 };
3550
3551 auto it = std::find_if (this->items.begin (),
3552 this->items.end (),
3553 match_ptid);
3554
3555 return it != this->items.end ();
3556 }
3557
3558 /* Remove the thread with ptid PTID. */
3559
3560 void remove_thread (ptid_t ptid)
3561 {
3562 auto match_ptid = [&] (const thread_item &item)
3563 {
3564 return item.ptid == ptid;
3565 };
3566
3567 auto it = std::remove_if (this->items.begin (),
3568 this->items.end (),
3569 match_ptid);
3570
3571 if (it != this->items.end ())
3572 this->items.erase (it);
3573 }
3574
3575 /* The threads found on the remote target. */
3576 std::vector<thread_item> items;
3577 };
3578
3579 static int
3580 remote_newthread_step (threadref *ref, void *data)
3581 {
3582 struct threads_listing_context *context
3583 = (struct threads_listing_context *) data;
3584 int pid = inferior_ptid.pid ();
3585 int lwp = threadref_to_int (ref);
3586 ptid_t ptid (pid, lwp);
3587
3588 context->items.emplace_back (ptid);
3589
3590 return 1; /* continue iterator */
3591 }
3592
3593 #define CRAZY_MAX_THREADS 1000
3594
3595 ptid_t
3596 remote_target::remote_current_thread (ptid_t oldpid)
3597 {
3598 struct remote_state *rs = get_remote_state ();
3599
3600 putpkt ("qC");
3601 getpkt (&rs->buf, &rs->buf_size, 0);
3602 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3603 {
3604 const char *obuf;
3605 ptid_t result;
3606
3607 result = read_ptid (&rs->buf[2], &obuf);
3608 if (*obuf != '\0' && remote_debug)
3609 fprintf_unfiltered (gdb_stdlog,
3610 "warning: garbage in qC reply\n");
3611
3612 return result;
3613 }
3614 else
3615 return oldpid;
3616 }
3617
3618 /* List remote threads using the deprecated qL packet. */
3619
3620 int
3621 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3622 {
3623 if (remote_threadlist_iterator (remote_newthread_step, context,
3624 CRAZY_MAX_THREADS) >= 0)
3625 return 1;
3626
3627 return 0;
3628 }
3629
3630 #if defined(HAVE_LIBEXPAT)
3631
3632 static void
3633 start_thread (struct gdb_xml_parser *parser,
3634 const struct gdb_xml_element *element,
3635 void *user_data,
3636 std::vector<gdb_xml_value> &attributes)
3637 {
3638 struct threads_listing_context *data
3639 = (struct threads_listing_context *) user_data;
3640 struct gdb_xml_value *attr;
3641
3642 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3643 ptid_t ptid = read_ptid (id, NULL);
3644
3645 data->items.emplace_back (ptid);
3646 thread_item &item = data->items.back ();
3647
3648 attr = xml_find_attribute (attributes, "core");
3649 if (attr != NULL)
3650 item.core = *(ULONGEST *) attr->value.get ();
3651
3652 attr = xml_find_attribute (attributes, "name");
3653 if (attr != NULL)
3654 item.name = (const char *) attr->value.get ();
3655
3656 attr = xml_find_attribute (attributes, "handle");
3657 if (attr != NULL)
3658 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3659 }
3660
3661 static void
3662 end_thread (struct gdb_xml_parser *parser,
3663 const struct gdb_xml_element *element,
3664 void *user_data, const char *body_text)
3665 {
3666 struct threads_listing_context *data
3667 = (struct threads_listing_context *) user_data;
3668
3669 if (body_text != NULL && *body_text != '\0')
3670 data->items.back ().extra = body_text;
3671 }
3672
3673 const struct gdb_xml_attribute thread_attributes[] = {
3674 { "id", GDB_XML_AF_NONE, NULL, NULL },
3675 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3676 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3677 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3678 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3679 };
3680
3681 const struct gdb_xml_element thread_children[] = {
3682 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3683 };
3684
3685 const struct gdb_xml_element threads_children[] = {
3686 { "thread", thread_attributes, thread_children,
3687 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3688 start_thread, end_thread },
3689 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3690 };
3691
3692 const struct gdb_xml_element threads_elements[] = {
3693 { "threads", NULL, threads_children,
3694 GDB_XML_EF_NONE, NULL, NULL },
3695 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3696 };
3697
3698 #endif
3699
3700 /* List remote threads using qXfer:threads:read. */
3701
3702 int
3703 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3704 {
3705 #if defined(HAVE_LIBEXPAT)
3706 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3707 {
3708 gdb::optional<gdb::char_vector> xml
3709 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3710
3711 if (xml && (*xml)[0] != '\0')
3712 {
3713 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3714 threads_elements, xml->data (), context);
3715 }
3716
3717 return 1;
3718 }
3719 #endif
3720
3721 return 0;
3722 }
3723
3724 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3725
3726 int
3727 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3728 {
3729 struct remote_state *rs = get_remote_state ();
3730
3731 if (rs->use_threadinfo_query)
3732 {
3733 const char *bufp;
3734
3735 putpkt ("qfThreadInfo");
3736 getpkt (&rs->buf, &rs->buf_size, 0);
3737 bufp = rs->buf;
3738 if (bufp[0] != '\0') /* q packet recognized */
3739 {
3740 while (*bufp++ == 'm') /* reply contains one or more TID */
3741 {
3742 do
3743 {
3744 ptid_t ptid = read_ptid (bufp, &bufp);
3745 context->items.emplace_back (ptid);
3746 }
3747 while (*bufp++ == ','); /* comma-separated list */
3748 putpkt ("qsThreadInfo");
3749 getpkt (&rs->buf, &rs->buf_size, 0);
3750 bufp = rs->buf;
3751 }
3752 return 1;
3753 }
3754 else
3755 {
3756 /* Packet not recognized. */
3757 rs->use_threadinfo_query = 0;
3758 }
3759 }
3760
3761 return 0;
3762 }
3763
3764 /* Implement the to_update_thread_list function for the remote
3765 targets. */
3766
3767 void
3768 remote_target::update_thread_list ()
3769 {
3770 struct threads_listing_context context;
3771 int got_list = 0;
3772
3773 /* We have a few different mechanisms to fetch the thread list. Try
3774 them all, starting with the most preferred one first, falling
3775 back to older methods. */
3776 if (remote_get_threads_with_qxfer (&context)
3777 || remote_get_threads_with_qthreadinfo (&context)
3778 || remote_get_threads_with_ql (&context))
3779 {
3780 got_list = 1;
3781
3782 if (context.items.empty ()
3783 && remote_thread_always_alive (inferior_ptid))
3784 {
3785 /* Some targets don't really support threads, but still
3786 reply an (empty) thread list in response to the thread
3787 listing packets, instead of replying "packet not
3788 supported". Exit early so we don't delete the main
3789 thread. */
3790 return;
3791 }
3792
3793 /* CONTEXT now holds the current thread list on the remote
3794 target end. Delete GDB-side threads no longer found on the
3795 target. */
3796 for (thread_info *tp : all_threads_safe ())
3797 {
3798 if (!context.contains_thread (tp->ptid))
3799 {
3800 /* Not found. */
3801 delete_thread (tp);
3802 }
3803 }
3804
3805 /* Remove any unreported fork child threads from CONTEXT so
3806 that we don't interfere with follow fork, which is where
3807 creation of such threads is handled. */
3808 remove_new_fork_children (&context);
3809
3810 /* And now add threads we don't know about yet to our list. */
3811 for (thread_item &item : context.items)
3812 {
3813 if (item.ptid != null_ptid)
3814 {
3815 /* In non-stop mode, we assume new found threads are
3816 executing until proven otherwise with a stop reply.
3817 In all-stop, we can only get here if all threads are
3818 stopped. */
3819 int executing = target_is_non_stop_p () ? 1 : 0;
3820
3821 remote_notice_new_inferior (item.ptid, executing);
3822
3823 thread_info *tp = find_thread_ptid (item.ptid);
3824 remote_thread_info *info = get_remote_thread_info (tp);
3825 info->core = item.core;
3826 info->extra = std::move (item.extra);
3827 info->name = std::move (item.name);
3828 info->thread_handle = std::move (item.thread_handle);
3829 }
3830 }
3831 }
3832
3833 if (!got_list)
3834 {
3835 /* If no thread listing method is supported, then query whether
3836 each known thread is alive, one by one, with the T packet.
3837 If the target doesn't support threads at all, then this is a
3838 no-op. See remote_thread_alive. */
3839 prune_threads ();
3840 }
3841 }
3842
3843 /*
3844 * Collect a descriptive string about the given thread.
3845 * The target may say anything it wants to about the thread
3846 * (typically info about its blocked / runnable state, name, etc.).
3847 * This string will appear in the info threads display.
3848 *
3849 * Optional: targets are not required to implement this function.
3850 */
3851
3852 const char *
3853 remote_target::extra_thread_info (thread_info *tp)
3854 {
3855 struct remote_state *rs = get_remote_state ();
3856 int set;
3857 threadref id;
3858 struct gdb_ext_thread_info threadinfo;
3859
3860 if (rs->remote_desc == 0) /* paranoia */
3861 internal_error (__FILE__, __LINE__,
3862 _("remote_threads_extra_info"));
3863
3864 if (tp->ptid == magic_null_ptid
3865 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3866 /* This is the main thread which was added by GDB. The remote
3867 server doesn't know about it. */
3868 return NULL;
3869
3870 std::string &extra = get_remote_thread_info (tp)->extra;
3871
3872 /* If already have cached info, use it. */
3873 if (!extra.empty ())
3874 return extra.c_str ();
3875
3876 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3877 {
3878 /* If we're using qXfer:threads:read, then the extra info is
3879 included in the XML. So if we didn't have anything cached,
3880 it's because there's really no extra info. */
3881 return NULL;
3882 }
3883
3884 if (rs->use_threadextra_query)
3885 {
3886 char *b = rs->buf;
3887 char *endb = rs->buf + get_remote_packet_size ();
3888
3889 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3890 b += strlen (b);
3891 write_ptid (b, endb, tp->ptid);
3892
3893 putpkt (rs->buf);
3894 getpkt (&rs->buf, &rs->buf_size, 0);
3895 if (rs->buf[0] != 0)
3896 {
3897 extra.resize (strlen (rs->buf) / 2);
3898 hex2bin (rs->buf, (gdb_byte *) &extra[0], extra.size ());
3899 return extra.c_str ();
3900 }
3901 }
3902
3903 /* If the above query fails, fall back to the old method. */
3904 rs->use_threadextra_query = 0;
3905 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3906 | TAG_MOREDISPLAY | TAG_DISPLAY;
3907 int_to_threadref (&id, tp->ptid.lwp ());
3908 if (remote_get_threadinfo (&id, set, &threadinfo))
3909 if (threadinfo.active)
3910 {
3911 if (*threadinfo.shortname)
3912 string_appendf (extra, " Name: %s", threadinfo.shortname);
3913 if (*threadinfo.display)
3914 {
3915 if (!extra.empty ())
3916 extra += ',';
3917 string_appendf (extra, " State: %s", threadinfo.display);
3918 }
3919 if (*threadinfo.more_display)
3920 {
3921 if (!extra.empty ())
3922 extra += ',';
3923 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3924 }
3925 return extra.c_str ();
3926 }
3927 return NULL;
3928 }
3929 \f
3930
3931 bool
3932 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3933 struct static_tracepoint_marker *marker)
3934 {
3935 struct remote_state *rs = get_remote_state ();
3936 char *p = rs->buf;
3937
3938 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3939 p += strlen (p);
3940 p += hexnumstr (p, addr);
3941 putpkt (rs->buf);
3942 getpkt (&rs->buf, &rs->buf_size, 0);
3943 p = rs->buf;
3944
3945 if (*p == 'E')
3946 error (_("Remote failure reply: %s"), p);
3947
3948 if (*p++ == 'm')
3949 {
3950 parse_static_tracepoint_marker_definition (p, NULL, marker);
3951 return true;
3952 }
3953
3954 return false;
3955 }
3956
3957 std::vector<static_tracepoint_marker>
3958 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3959 {
3960 struct remote_state *rs = get_remote_state ();
3961 std::vector<static_tracepoint_marker> markers;
3962 const char *p;
3963 static_tracepoint_marker marker;
3964
3965 /* Ask for a first packet of static tracepoint marker
3966 definition. */
3967 putpkt ("qTfSTM");
3968 getpkt (&rs->buf, &rs->buf_size, 0);
3969 p = rs->buf;
3970 if (*p == 'E')
3971 error (_("Remote failure reply: %s"), p);
3972
3973 while (*p++ == 'm')
3974 {
3975 do
3976 {
3977 parse_static_tracepoint_marker_definition (p, &p, &marker);
3978
3979 if (strid == NULL || marker.str_id == strid)
3980 markers.push_back (std::move (marker));
3981 }
3982 while (*p++ == ','); /* comma-separated list */
3983 /* Ask for another packet of static tracepoint definition. */
3984 putpkt ("qTsSTM");
3985 getpkt (&rs->buf, &rs->buf_size, 0);
3986 p = rs->buf;
3987 }
3988
3989 return markers;
3990 }
3991
3992 \f
3993 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3994
3995 ptid_t
3996 remote_target::get_ada_task_ptid (long lwp, long thread)
3997 {
3998 return ptid_t (inferior_ptid.pid (), lwp, 0);
3999 }
4000 \f
4001
4002 /* Restart the remote side; this is an extended protocol operation. */
4003
4004 void
4005 remote_target::extended_remote_restart ()
4006 {
4007 struct remote_state *rs = get_remote_state ();
4008
4009 /* Send the restart command; for reasons I don't understand the
4010 remote side really expects a number after the "R". */
4011 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
4012 putpkt (rs->buf);
4013
4014 remote_fileio_reset ();
4015 }
4016 \f
4017 /* Clean up connection to a remote debugger. */
4018
4019 void
4020 remote_target::close ()
4021 {
4022 /* Make sure we leave stdin registered in the event loop. */
4023 terminal_ours ();
4024
4025 /* We don't have a connection to the remote stub anymore. Get rid
4026 of all the inferiors and their threads we were controlling.
4027 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4028 will be unable to find the thread corresponding to (pid, 0, 0). */
4029 inferior_ptid = null_ptid;
4030 discard_all_inferiors ();
4031
4032 trace_reset_local_state ();
4033
4034 delete this;
4035 }
4036
4037 remote_target::~remote_target ()
4038 {
4039 struct remote_state *rs = get_remote_state ();
4040
4041 /* Check for NULL because we may get here with a partially
4042 constructed target/connection. */
4043 if (rs->remote_desc == nullptr)
4044 return;
4045
4046 serial_close (rs->remote_desc);
4047
4048 /* We are destroying the remote target, so we should discard
4049 everything of this target. */
4050 discard_pending_stop_replies_in_queue ();
4051
4052 if (rs->remote_async_inferior_event_token)
4053 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4054
4055 remote_notif_state_xfree (rs->notif_state);
4056 }
4057
4058 /* Query the remote side for the text, data and bss offsets. */
4059
4060 void
4061 remote_target::get_offsets ()
4062 {
4063 struct remote_state *rs = get_remote_state ();
4064 char *buf;
4065 char *ptr;
4066 int lose, num_segments = 0, do_sections, do_segments;
4067 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4068 struct section_offsets *offs;
4069 struct symfile_segment_data *data;
4070
4071 if (symfile_objfile == NULL)
4072 return;
4073
4074 putpkt ("qOffsets");
4075 getpkt (&rs->buf, &rs->buf_size, 0);
4076 buf = rs->buf;
4077
4078 if (buf[0] == '\000')
4079 return; /* Return silently. Stub doesn't support
4080 this command. */
4081 if (buf[0] == 'E')
4082 {
4083 warning (_("Remote failure reply: %s"), buf);
4084 return;
4085 }
4086
4087 /* Pick up each field in turn. This used to be done with scanf, but
4088 scanf will make trouble if CORE_ADDR size doesn't match
4089 conversion directives correctly. The following code will work
4090 with any size of CORE_ADDR. */
4091 text_addr = data_addr = bss_addr = 0;
4092 ptr = buf;
4093 lose = 0;
4094
4095 if (startswith (ptr, "Text="))
4096 {
4097 ptr += 5;
4098 /* Don't use strtol, could lose on big values. */
4099 while (*ptr && *ptr != ';')
4100 text_addr = (text_addr << 4) + fromhex (*ptr++);
4101
4102 if (startswith (ptr, ";Data="))
4103 {
4104 ptr += 6;
4105 while (*ptr && *ptr != ';')
4106 data_addr = (data_addr << 4) + fromhex (*ptr++);
4107 }
4108 else
4109 lose = 1;
4110
4111 if (!lose && startswith (ptr, ";Bss="))
4112 {
4113 ptr += 5;
4114 while (*ptr && *ptr != ';')
4115 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4116
4117 if (bss_addr != data_addr)
4118 warning (_("Target reported unsupported offsets: %s"), buf);
4119 }
4120 else
4121 lose = 1;
4122 }
4123 else if (startswith (ptr, "TextSeg="))
4124 {
4125 ptr += 8;
4126 /* Don't use strtol, could lose on big values. */
4127 while (*ptr && *ptr != ';')
4128 text_addr = (text_addr << 4) + fromhex (*ptr++);
4129 num_segments = 1;
4130
4131 if (startswith (ptr, ";DataSeg="))
4132 {
4133 ptr += 9;
4134 while (*ptr && *ptr != ';')
4135 data_addr = (data_addr << 4) + fromhex (*ptr++);
4136 num_segments++;
4137 }
4138 }
4139 else
4140 lose = 1;
4141
4142 if (lose)
4143 error (_("Malformed response to offset query, %s"), buf);
4144 else if (*ptr != '\0')
4145 warning (_("Target reported unsupported offsets: %s"), buf);
4146
4147 offs = ((struct section_offsets *)
4148 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4149 memcpy (offs, symfile_objfile->section_offsets,
4150 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4151
4152 data = get_symfile_segment_data (symfile_objfile->obfd);
4153 do_segments = (data != NULL);
4154 do_sections = num_segments == 0;
4155
4156 if (num_segments > 0)
4157 {
4158 segments[0] = text_addr;
4159 segments[1] = data_addr;
4160 }
4161 /* If we have two segments, we can still try to relocate everything
4162 by assuming that the .text and .data offsets apply to the whole
4163 text and data segments. Convert the offsets given in the packet
4164 to base addresses for symfile_map_offsets_to_segments. */
4165 else if (data && data->num_segments == 2)
4166 {
4167 segments[0] = data->segment_bases[0] + text_addr;
4168 segments[1] = data->segment_bases[1] + data_addr;
4169 num_segments = 2;
4170 }
4171 /* If the object file has only one segment, assume that it is text
4172 rather than data; main programs with no writable data are rare,
4173 but programs with no code are useless. Of course the code might
4174 have ended up in the data segment... to detect that we would need
4175 the permissions here. */
4176 else if (data && data->num_segments == 1)
4177 {
4178 segments[0] = data->segment_bases[0] + text_addr;
4179 num_segments = 1;
4180 }
4181 /* There's no way to relocate by segment. */
4182 else
4183 do_segments = 0;
4184
4185 if (do_segments)
4186 {
4187 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4188 offs, num_segments, segments);
4189
4190 if (ret == 0 && !do_sections)
4191 error (_("Can not handle qOffsets TextSeg "
4192 "response with this symbol file"));
4193
4194 if (ret > 0)
4195 do_sections = 0;
4196 }
4197
4198 if (data)
4199 free_symfile_segment_data (data);
4200
4201 if (do_sections)
4202 {
4203 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4204
4205 /* This is a temporary kludge to force data and bss to use the
4206 same offsets because that's what nlmconv does now. The real
4207 solution requires changes to the stub and remote.c that I
4208 don't have time to do right now. */
4209
4210 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4211 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4212 }
4213
4214 objfile_relocate (symfile_objfile, offs);
4215 }
4216
4217 /* Send interrupt_sequence to remote target. */
4218
4219 void
4220 remote_target::send_interrupt_sequence ()
4221 {
4222 struct remote_state *rs = get_remote_state ();
4223
4224 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4225 remote_serial_write ("\x03", 1);
4226 else if (interrupt_sequence_mode == interrupt_sequence_break)
4227 serial_send_break (rs->remote_desc);
4228 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4229 {
4230 serial_send_break (rs->remote_desc);
4231 remote_serial_write ("g", 1);
4232 }
4233 else
4234 internal_error (__FILE__, __LINE__,
4235 _("Invalid value for interrupt_sequence_mode: %s."),
4236 interrupt_sequence_mode);
4237 }
4238
4239
4240 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4241 and extract the PTID. Returns NULL_PTID if not found. */
4242
4243 static ptid_t
4244 stop_reply_extract_thread (char *stop_reply)
4245 {
4246 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4247 {
4248 const char *p;
4249
4250 /* Txx r:val ; r:val (...) */
4251 p = &stop_reply[3];
4252
4253 /* Look for "register" named "thread". */
4254 while (*p != '\0')
4255 {
4256 const char *p1;
4257
4258 p1 = strchr (p, ':');
4259 if (p1 == NULL)
4260 return null_ptid;
4261
4262 if (strncmp (p, "thread", p1 - p) == 0)
4263 return read_ptid (++p1, &p);
4264
4265 p1 = strchr (p, ';');
4266 if (p1 == NULL)
4267 return null_ptid;
4268 p1++;
4269
4270 p = p1;
4271 }
4272 }
4273
4274 return null_ptid;
4275 }
4276
4277 /* Determine the remote side's current thread. If we have a stop
4278 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4279 "thread" register we can extract the current thread from. If not,
4280 ask the remote which is the current thread with qC. The former
4281 method avoids a roundtrip. */
4282
4283 ptid_t
4284 remote_target::get_current_thread (char *wait_status)
4285 {
4286 ptid_t ptid = null_ptid;
4287
4288 /* Note we don't use remote_parse_stop_reply as that makes use of
4289 the target architecture, which we haven't yet fully determined at
4290 this point. */
4291 if (wait_status != NULL)
4292 ptid = stop_reply_extract_thread (wait_status);
4293 if (ptid == null_ptid)
4294 ptid = remote_current_thread (inferior_ptid);
4295
4296 return ptid;
4297 }
4298
4299 /* Query the remote target for which is the current thread/process,
4300 add it to our tables, and update INFERIOR_PTID. The caller is
4301 responsible for setting the state such that the remote end is ready
4302 to return the current thread.
4303
4304 This function is called after handling the '?' or 'vRun' packets,
4305 whose response is a stop reply from which we can also try
4306 extracting the thread. If the target doesn't support the explicit
4307 qC query, we infer the current thread from that stop reply, passed
4308 in in WAIT_STATUS, which may be NULL. */
4309
4310 void
4311 remote_target::add_current_inferior_and_thread (char *wait_status)
4312 {
4313 struct remote_state *rs = get_remote_state ();
4314 int fake_pid_p = 0;
4315
4316 inferior_ptid = null_ptid;
4317
4318 /* Now, if we have thread information, update inferior_ptid. */
4319 ptid_t curr_ptid = get_current_thread (wait_status);
4320
4321 if (curr_ptid != null_ptid)
4322 {
4323 if (!remote_multi_process_p (rs))
4324 fake_pid_p = 1;
4325 }
4326 else
4327 {
4328 /* Without this, some commands which require an active target
4329 (such as kill) won't work. This variable serves (at least)
4330 double duty as both the pid of the target process (if it has
4331 such), and as a flag indicating that a target is active. */
4332 curr_ptid = magic_null_ptid;
4333 fake_pid_p = 1;
4334 }
4335
4336 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4337
4338 /* Add the main thread and switch to it. Don't try reading
4339 registers yet, since we haven't fetched the target description
4340 yet. */
4341 thread_info *tp = add_thread_silent (curr_ptid);
4342 switch_to_thread_no_regs (tp);
4343 }
4344
4345 /* Print info about a thread that was found already stopped on
4346 connection. */
4347
4348 static void
4349 print_one_stopped_thread (struct thread_info *thread)
4350 {
4351 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4352
4353 switch_to_thread (thread);
4354 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4355 set_current_sal_from_frame (get_current_frame ());
4356
4357 thread->suspend.waitstatus_pending_p = 0;
4358
4359 if (ws->kind == TARGET_WAITKIND_STOPPED)
4360 {
4361 enum gdb_signal sig = ws->value.sig;
4362
4363 if (signal_print_state (sig))
4364 gdb::observers::signal_received.notify (sig);
4365 }
4366 gdb::observers::normal_stop.notify (NULL, 1);
4367 }
4368
4369 /* Process all initial stop replies the remote side sent in response
4370 to the ? packet. These indicate threads that were already stopped
4371 on initial connection. We mark these threads as stopped and print
4372 their current frame before giving the user the prompt. */
4373
4374 void
4375 remote_target::process_initial_stop_replies (int from_tty)
4376 {
4377 int pending_stop_replies = stop_reply_queue_length ();
4378 struct thread_info *selected = NULL;
4379 struct thread_info *lowest_stopped = NULL;
4380 struct thread_info *first = NULL;
4381
4382 /* Consume the initial pending events. */
4383 while (pending_stop_replies-- > 0)
4384 {
4385 ptid_t waiton_ptid = minus_one_ptid;
4386 ptid_t event_ptid;
4387 struct target_waitstatus ws;
4388 int ignore_event = 0;
4389
4390 memset (&ws, 0, sizeof (ws));
4391 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4392 if (remote_debug)
4393 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4394
4395 switch (ws.kind)
4396 {
4397 case TARGET_WAITKIND_IGNORE:
4398 case TARGET_WAITKIND_NO_RESUMED:
4399 case TARGET_WAITKIND_SIGNALLED:
4400 case TARGET_WAITKIND_EXITED:
4401 /* We shouldn't see these, but if we do, just ignore. */
4402 if (remote_debug)
4403 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4404 ignore_event = 1;
4405 break;
4406
4407 case TARGET_WAITKIND_EXECD:
4408 xfree (ws.value.execd_pathname);
4409 break;
4410 default:
4411 break;
4412 }
4413
4414 if (ignore_event)
4415 continue;
4416
4417 struct thread_info *evthread = find_thread_ptid (event_ptid);
4418
4419 if (ws.kind == TARGET_WAITKIND_STOPPED)
4420 {
4421 enum gdb_signal sig = ws.value.sig;
4422
4423 /* Stubs traditionally report SIGTRAP as initial signal,
4424 instead of signal 0. Suppress it. */
4425 if (sig == GDB_SIGNAL_TRAP)
4426 sig = GDB_SIGNAL_0;
4427 evthread->suspend.stop_signal = sig;
4428 ws.value.sig = sig;
4429 }
4430
4431 evthread->suspend.waitstatus = ws;
4432
4433 if (ws.kind != TARGET_WAITKIND_STOPPED
4434 || ws.value.sig != GDB_SIGNAL_0)
4435 evthread->suspend.waitstatus_pending_p = 1;
4436
4437 set_executing (event_ptid, 0);
4438 set_running (event_ptid, 0);
4439 get_remote_thread_info (evthread)->vcont_resumed = 0;
4440 }
4441
4442 /* "Notice" the new inferiors before anything related to
4443 registers/memory. */
4444 for (inferior *inf : all_non_exited_inferiors ())
4445 {
4446 inf->needs_setup = 1;
4447
4448 if (non_stop)
4449 {
4450 thread_info *thread = any_live_thread_of_inferior (inf);
4451 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4452 from_tty);
4453 }
4454 }
4455
4456 /* If all-stop on top of non-stop, pause all threads. Note this
4457 records the threads' stop pc, so must be done after "noticing"
4458 the inferiors. */
4459 if (!non_stop)
4460 {
4461 stop_all_threads ();
4462
4463 /* If all threads of an inferior were already stopped, we
4464 haven't setup the inferior yet. */
4465 for (inferior *inf : all_non_exited_inferiors ())
4466 {
4467 if (inf->needs_setup)
4468 {
4469 thread_info *thread = any_live_thread_of_inferior (inf);
4470 switch_to_thread_no_regs (thread);
4471 setup_inferior (0);
4472 }
4473 }
4474 }
4475
4476 /* Now go over all threads that are stopped, and print their current
4477 frame. If all-stop, then if there's a signalled thread, pick
4478 that as current. */
4479 for (thread_info *thread : all_non_exited_threads ())
4480 {
4481 if (first == NULL)
4482 first = thread;
4483
4484 if (!non_stop)
4485 thread->set_running (false);
4486 else if (thread->state != THREAD_STOPPED)
4487 continue;
4488
4489 if (selected == NULL
4490 && thread->suspend.waitstatus_pending_p)
4491 selected = thread;
4492
4493 if (lowest_stopped == NULL
4494 || thread->inf->num < lowest_stopped->inf->num
4495 || thread->per_inf_num < lowest_stopped->per_inf_num)
4496 lowest_stopped = thread;
4497
4498 if (non_stop)
4499 print_one_stopped_thread (thread);
4500 }
4501
4502 /* In all-stop, we only print the status of one thread, and leave
4503 others with their status pending. */
4504 if (!non_stop)
4505 {
4506 thread_info *thread = selected;
4507 if (thread == NULL)
4508 thread = lowest_stopped;
4509 if (thread == NULL)
4510 thread = first;
4511
4512 print_one_stopped_thread (thread);
4513 }
4514
4515 /* For "info program". */
4516 thread_info *thread = inferior_thread ();
4517 if (thread->state == THREAD_STOPPED)
4518 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4519 }
4520
4521 /* Start the remote connection and sync state. */
4522
4523 void
4524 remote_target::start_remote (int from_tty, int extended_p)
4525 {
4526 struct remote_state *rs = get_remote_state ();
4527 struct packet_config *noack_config;
4528 char *wait_status = NULL;
4529
4530 /* Signal other parts that we're going through the initial setup,
4531 and so things may not be stable yet. E.g., we don't try to
4532 install tracepoints until we've relocated symbols. Also, a
4533 Ctrl-C before we're connected and synced up can't interrupt the
4534 target. Instead, it offers to drop the (potentially wedged)
4535 connection. */
4536 rs->starting_up = 1;
4537
4538 QUIT;
4539
4540 if (interrupt_on_connect)
4541 send_interrupt_sequence ();
4542
4543 /* Ack any packet which the remote side has already sent. */
4544 remote_serial_write ("+", 1);
4545
4546 /* The first packet we send to the target is the optional "supported
4547 packets" request. If the target can answer this, it will tell us
4548 which later probes to skip. */
4549 remote_query_supported ();
4550
4551 /* If the stub wants to get a QAllow, compose one and send it. */
4552 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4553 set_permissions ();
4554
4555 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4556 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4557 as a reply to known packet. For packet "vFile:setfs:" it is an
4558 invalid reply and GDB would return error in
4559 remote_hostio_set_filesystem, making remote files access impossible.
4560 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4561 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4562 {
4563 const char v_mustreplyempty[] = "vMustReplyEmpty";
4564
4565 putpkt (v_mustreplyempty);
4566 getpkt (&rs->buf, &rs->buf_size, 0);
4567 if (strcmp (rs->buf, "OK") == 0)
4568 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4569 else if (strcmp (rs->buf, "") != 0)
4570 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4571 rs->buf);
4572 }
4573
4574 /* Next, we possibly activate noack mode.
4575
4576 If the QStartNoAckMode packet configuration is set to AUTO,
4577 enable noack mode if the stub reported a wish for it with
4578 qSupported.
4579
4580 If set to TRUE, then enable noack mode even if the stub didn't
4581 report it in qSupported. If the stub doesn't reply OK, the
4582 session ends with an error.
4583
4584 If FALSE, then don't activate noack mode, regardless of what the
4585 stub claimed should be the default with qSupported. */
4586
4587 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4588 if (packet_config_support (noack_config) != PACKET_DISABLE)
4589 {
4590 putpkt ("QStartNoAckMode");
4591 getpkt (&rs->buf, &rs->buf_size, 0);
4592 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4593 rs->noack_mode = 1;
4594 }
4595
4596 if (extended_p)
4597 {
4598 /* Tell the remote that we are using the extended protocol. */
4599 putpkt ("!");
4600 getpkt (&rs->buf, &rs->buf_size, 0);
4601 }
4602
4603 /* Let the target know which signals it is allowed to pass down to
4604 the program. */
4605 update_signals_program_target ();
4606
4607 /* Next, if the target can specify a description, read it. We do
4608 this before anything involving memory or registers. */
4609 target_find_description ();
4610
4611 /* Next, now that we know something about the target, update the
4612 address spaces in the program spaces. */
4613 update_address_spaces ();
4614
4615 /* On OSs where the list of libraries is global to all
4616 processes, we fetch them early. */
4617 if (gdbarch_has_global_solist (target_gdbarch ()))
4618 solib_add (NULL, from_tty, auto_solib_add);
4619
4620 if (target_is_non_stop_p ())
4621 {
4622 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4623 error (_("Non-stop mode requested, but remote "
4624 "does not support non-stop"));
4625
4626 putpkt ("QNonStop:1");
4627 getpkt (&rs->buf, &rs->buf_size, 0);
4628
4629 if (strcmp (rs->buf, "OK") != 0)
4630 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4631
4632 /* Find about threads and processes the stub is already
4633 controlling. We default to adding them in the running state.
4634 The '?' query below will then tell us about which threads are
4635 stopped. */
4636 this->update_thread_list ();
4637 }
4638 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4639 {
4640 /* Don't assume that the stub can operate in all-stop mode.
4641 Request it explicitly. */
4642 putpkt ("QNonStop:0");
4643 getpkt (&rs->buf, &rs->buf_size, 0);
4644
4645 if (strcmp (rs->buf, "OK") != 0)
4646 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4647 }
4648
4649 /* Upload TSVs regardless of whether the target is running or not. The
4650 remote stub, such as GDBserver, may have some predefined or builtin
4651 TSVs, even if the target is not running. */
4652 if (get_trace_status (current_trace_status ()) != -1)
4653 {
4654 struct uploaded_tsv *uploaded_tsvs = NULL;
4655
4656 upload_trace_state_variables (&uploaded_tsvs);
4657 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4658 }
4659
4660 /* Check whether the target is running now. */
4661 putpkt ("?");
4662 getpkt (&rs->buf, &rs->buf_size, 0);
4663
4664 if (!target_is_non_stop_p ())
4665 {
4666 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4667 {
4668 if (!extended_p)
4669 error (_("The target is not running (try extended-remote?)"));
4670
4671 /* We're connected, but not running. Drop out before we
4672 call start_remote. */
4673 rs->starting_up = 0;
4674 return;
4675 }
4676 else
4677 {
4678 /* Save the reply for later. */
4679 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4680 strcpy (wait_status, rs->buf);
4681 }
4682
4683 /* Fetch thread list. */
4684 target_update_thread_list ();
4685
4686 /* Let the stub know that we want it to return the thread. */
4687 set_continue_thread (minus_one_ptid);
4688
4689 if (thread_count () == 0)
4690 {
4691 /* Target has no concept of threads at all. GDB treats
4692 non-threaded target as single-threaded; add a main
4693 thread. */
4694 add_current_inferior_and_thread (wait_status);
4695 }
4696 else
4697 {
4698 /* We have thread information; select the thread the target
4699 says should be current. If we're reconnecting to a
4700 multi-threaded program, this will ideally be the thread
4701 that last reported an event before GDB disconnected. */
4702 inferior_ptid = get_current_thread (wait_status);
4703 if (inferior_ptid == null_ptid)
4704 {
4705 /* Odd... The target was able to list threads, but not
4706 tell us which thread was current (no "thread"
4707 register in T stop reply?). Just pick the first
4708 thread in the thread list then. */
4709
4710 if (remote_debug)
4711 fprintf_unfiltered (gdb_stdlog,
4712 "warning: couldn't determine remote "
4713 "current thread; picking first in list.\n");
4714
4715 inferior_ptid = inferior_list->thread_list->ptid;
4716 }
4717 }
4718
4719 /* init_wait_for_inferior should be called before get_offsets in order
4720 to manage `inserted' flag in bp loc in a correct state.
4721 breakpoint_init_inferior, called from init_wait_for_inferior, set
4722 `inserted' flag to 0, while before breakpoint_re_set, called from
4723 start_remote, set `inserted' flag to 1. In the initialization of
4724 inferior, breakpoint_init_inferior should be called first, and then
4725 breakpoint_re_set can be called. If this order is broken, state of
4726 `inserted' flag is wrong, and cause some problems on breakpoint
4727 manipulation. */
4728 init_wait_for_inferior ();
4729
4730 get_offsets (); /* Get text, data & bss offsets. */
4731
4732 /* If we could not find a description using qXfer, and we know
4733 how to do it some other way, try again. This is not
4734 supported for non-stop; it could be, but it is tricky if
4735 there are no stopped threads when we connect. */
4736 if (remote_read_description_p (this)
4737 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4738 {
4739 target_clear_description ();
4740 target_find_description ();
4741 }
4742
4743 /* Use the previously fetched status. */
4744 gdb_assert (wait_status != NULL);
4745 strcpy (rs->buf, wait_status);
4746 rs->cached_wait_status = 1;
4747
4748 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4749 }
4750 else
4751 {
4752 /* Clear WFI global state. Do this before finding about new
4753 threads and inferiors, and setting the current inferior.
4754 Otherwise we would clear the proceed status of the current
4755 inferior when we want its stop_soon state to be preserved
4756 (see notice_new_inferior). */
4757 init_wait_for_inferior ();
4758
4759 /* In non-stop, we will either get an "OK", meaning that there
4760 are no stopped threads at this time; or, a regular stop
4761 reply. In the latter case, there may be more than one thread
4762 stopped --- we pull them all out using the vStopped
4763 mechanism. */
4764 if (strcmp (rs->buf, "OK") != 0)
4765 {
4766 struct notif_client *notif = &notif_client_stop;
4767
4768 /* remote_notif_get_pending_replies acks this one, and gets
4769 the rest out. */
4770 rs->notif_state->pending_event[notif_client_stop.id]
4771 = remote_notif_parse (this, notif, rs->buf);
4772 remote_notif_get_pending_events (notif);
4773 }
4774
4775 if (thread_count () == 0)
4776 {
4777 if (!extended_p)
4778 error (_("The target is not running (try extended-remote?)"));
4779
4780 /* We're connected, but not running. Drop out before we
4781 call start_remote. */
4782 rs->starting_up = 0;
4783 return;
4784 }
4785
4786 /* In non-stop mode, any cached wait status will be stored in
4787 the stop reply queue. */
4788 gdb_assert (wait_status == NULL);
4789
4790 /* Report all signals during attach/startup. */
4791 pass_signals (0, NULL);
4792
4793 /* If there are already stopped threads, mark them stopped and
4794 report their stops before giving the prompt to the user. */
4795 process_initial_stop_replies (from_tty);
4796
4797 if (target_can_async_p ())
4798 target_async (1);
4799 }
4800
4801 /* If we connected to a live target, do some additional setup. */
4802 if (target_has_execution)
4803 {
4804 if (symfile_objfile) /* No use without a symbol-file. */
4805 remote_check_symbols ();
4806 }
4807
4808 /* Possibly the target has been engaged in a trace run started
4809 previously; find out where things are at. */
4810 if (get_trace_status (current_trace_status ()) != -1)
4811 {
4812 struct uploaded_tp *uploaded_tps = NULL;
4813
4814 if (current_trace_status ()->running)
4815 printf_filtered (_("Trace is already running on the target.\n"));
4816
4817 upload_tracepoints (&uploaded_tps);
4818
4819 merge_uploaded_tracepoints (&uploaded_tps);
4820 }
4821
4822 /* Possibly the target has been engaged in a btrace record started
4823 previously; find out where things are at. */
4824 remote_btrace_maybe_reopen ();
4825
4826 /* The thread and inferior lists are now synchronized with the
4827 target, our symbols have been relocated, and we're merged the
4828 target's tracepoints with ours. We're done with basic start
4829 up. */
4830 rs->starting_up = 0;
4831
4832 /* Maybe breakpoints are global and need to be inserted now. */
4833 if (breakpoints_should_be_inserted_now ())
4834 insert_breakpoints ();
4835 }
4836
4837 /* Open a connection to a remote debugger.
4838 NAME is the filename used for communication. */
4839
4840 void
4841 remote_target::open (const char *name, int from_tty)
4842 {
4843 open_1 (name, from_tty, 0);
4844 }
4845
4846 /* Open a connection to a remote debugger using the extended
4847 remote gdb protocol. NAME is the filename used for communication. */
4848
4849 void
4850 extended_remote_target::open (const char *name, int from_tty)
4851 {
4852 open_1 (name, from_tty, 1 /*extended_p */);
4853 }
4854
4855 /* Reset all packets back to "unknown support". Called when opening a
4856 new connection to a remote target. */
4857
4858 static void
4859 reset_all_packet_configs_support (void)
4860 {
4861 int i;
4862
4863 for (i = 0; i < PACKET_MAX; i++)
4864 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4865 }
4866
4867 /* Initialize all packet configs. */
4868
4869 static void
4870 init_all_packet_configs (void)
4871 {
4872 int i;
4873
4874 for (i = 0; i < PACKET_MAX; i++)
4875 {
4876 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4877 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4878 }
4879 }
4880
4881 /* Symbol look-up. */
4882
4883 void
4884 remote_target::remote_check_symbols ()
4885 {
4886 char *msg, *reply, *tmp;
4887 int end;
4888 long reply_size;
4889 struct cleanup *old_chain;
4890
4891 /* The remote side has no concept of inferiors that aren't running
4892 yet, it only knows about running processes. If we're connected
4893 but our current inferior is not running, we should not invite the
4894 remote target to request symbol lookups related to its
4895 (unrelated) current process. */
4896 if (!target_has_execution)
4897 return;
4898
4899 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4900 return;
4901
4902 /* Make sure the remote is pointing at the right process. Note
4903 there's no way to select "no process". */
4904 set_general_process ();
4905
4906 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4907 because we need both at the same time. */
4908 msg = (char *) xmalloc (get_remote_packet_size ());
4909 old_chain = make_cleanup (xfree, msg);
4910 reply = (char *) xmalloc (get_remote_packet_size ());
4911 make_cleanup (free_current_contents, &reply);
4912 reply_size = get_remote_packet_size ();
4913
4914 /* Invite target to request symbol lookups. */
4915
4916 putpkt ("qSymbol::");
4917 getpkt (&reply, &reply_size, 0);
4918 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4919
4920 while (startswith (reply, "qSymbol:"))
4921 {
4922 struct bound_minimal_symbol sym;
4923
4924 tmp = &reply[8];
4925 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4926 msg[end] = '\0';
4927 sym = lookup_minimal_symbol (msg, NULL, NULL);
4928 if (sym.minsym == NULL)
4929 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4930 else
4931 {
4932 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4933 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4934
4935 /* If this is a function address, return the start of code
4936 instead of any data function descriptor. */
4937 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4938 sym_addr,
4939 current_top_target ());
4940
4941 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4942 phex_nz (sym_addr, addr_size), &reply[8]);
4943 }
4944
4945 putpkt (msg);
4946 getpkt (&reply, &reply_size, 0);
4947 }
4948
4949 do_cleanups (old_chain);
4950 }
4951
4952 static struct serial *
4953 remote_serial_open (const char *name)
4954 {
4955 static int udp_warning = 0;
4956
4957 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4958 of in ser-tcp.c, because it is the remote protocol assuming that the
4959 serial connection is reliable and not the serial connection promising
4960 to be. */
4961 if (!udp_warning && startswith (name, "udp:"))
4962 {
4963 warning (_("The remote protocol may be unreliable over UDP.\n"
4964 "Some events may be lost, rendering further debugging "
4965 "impossible."));
4966 udp_warning = 1;
4967 }
4968
4969 return serial_open (name);
4970 }
4971
4972 /* Inform the target of our permission settings. The permission flags
4973 work without this, but if the target knows the settings, it can do
4974 a couple things. First, it can add its own check, to catch cases
4975 that somehow manage to get by the permissions checks in target
4976 methods. Second, if the target is wired to disallow particular
4977 settings (for instance, a system in the field that is not set up to
4978 be able to stop at a breakpoint), it can object to any unavailable
4979 permissions. */
4980
4981 void
4982 remote_target::set_permissions ()
4983 {
4984 struct remote_state *rs = get_remote_state ();
4985
4986 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4987 "WriteReg:%x;WriteMem:%x;"
4988 "InsertBreak:%x;InsertTrace:%x;"
4989 "InsertFastTrace:%x;Stop:%x",
4990 may_write_registers, may_write_memory,
4991 may_insert_breakpoints, may_insert_tracepoints,
4992 may_insert_fast_tracepoints, may_stop);
4993 putpkt (rs->buf);
4994 getpkt (&rs->buf, &rs->buf_size, 0);
4995
4996 /* If the target didn't like the packet, warn the user. Do not try
4997 to undo the user's settings, that would just be maddening. */
4998 if (strcmp (rs->buf, "OK") != 0)
4999 warning (_("Remote refused setting permissions with: %s"), rs->buf);
5000 }
5001
5002 /* This type describes each known response to the qSupported
5003 packet. */
5004 struct protocol_feature
5005 {
5006 /* The name of this protocol feature. */
5007 const char *name;
5008
5009 /* The default for this protocol feature. */
5010 enum packet_support default_support;
5011
5012 /* The function to call when this feature is reported, or after
5013 qSupported processing if the feature is not supported.
5014 The first argument points to this structure. The second
5015 argument indicates whether the packet requested support be
5016 enabled, disabled, or probed (or the default, if this function
5017 is being called at the end of processing and this feature was
5018 not reported). The third argument may be NULL; if not NULL, it
5019 is a NUL-terminated string taken from the packet following
5020 this feature's name and an equals sign. */
5021 void (*func) (remote_target *remote, const struct protocol_feature *,
5022 enum packet_support, const char *);
5023
5024 /* The corresponding packet for this feature. Only used if
5025 FUNC is remote_supported_packet. */
5026 int packet;
5027 };
5028
5029 static void
5030 remote_supported_packet (remote_target *remote,
5031 const struct protocol_feature *feature,
5032 enum packet_support support,
5033 const char *argument)
5034 {
5035 if (argument)
5036 {
5037 warning (_("Remote qSupported response supplied an unexpected value for"
5038 " \"%s\"."), feature->name);
5039 return;
5040 }
5041
5042 remote_protocol_packets[feature->packet].support = support;
5043 }
5044
5045 void
5046 remote_target::remote_packet_size (const protocol_feature *feature,
5047 enum packet_support support, const char *value)
5048 {
5049 struct remote_state *rs = get_remote_state ();
5050
5051 int packet_size;
5052 char *value_end;
5053
5054 if (support != PACKET_ENABLE)
5055 return;
5056
5057 if (value == NULL || *value == '\0')
5058 {
5059 warning (_("Remote target reported \"%s\" without a size."),
5060 feature->name);
5061 return;
5062 }
5063
5064 errno = 0;
5065 packet_size = strtol (value, &value_end, 16);
5066 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5067 {
5068 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5069 feature->name, value);
5070 return;
5071 }
5072
5073 /* Record the new maximum packet size. */
5074 rs->explicit_packet_size = packet_size;
5075 }
5076
5077 void
5078 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5079 enum packet_support support, const char *value)
5080 {
5081 remote->remote_packet_size (feature, support, value);
5082 }
5083
5084 static const struct protocol_feature remote_protocol_features[] = {
5085 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5086 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_auxv },
5088 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_exec_file },
5090 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_features },
5092 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_libraries },
5094 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_libraries_svr4 },
5096 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5097 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5098 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_memory_map },
5100 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_qXfer_spu_read },
5102 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_spu_write },
5104 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_qXfer_osdata },
5106 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_qXfer_threads },
5108 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_qXfer_traceframe_info },
5110 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QPassSignals },
5112 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QCatchSyscalls },
5114 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QProgramSignals },
5116 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QSetWorkingDir },
5118 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QStartupWithShell },
5120 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QEnvironmentHexEncoded },
5122 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_QEnvironmentReset },
5124 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_QEnvironmentUnset },
5126 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_QStartNoAckMode },
5128 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5129 PACKET_multiprocess_feature },
5130 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5131 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_qXfer_siginfo_read },
5133 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_qXfer_siginfo_write },
5135 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_ConditionalTracepoints },
5137 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_ConditionalBreakpoints },
5139 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_BreakpointCommands },
5141 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_FastTracepoints },
5143 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_StaticTracepoints },
5145 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_InstallInTrace},
5147 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_DisconnectedTracing_feature },
5149 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_bc },
5151 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_bs },
5153 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_TracepointSource },
5155 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_QAllow },
5157 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_EnableDisableTracepoints_feature },
5159 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_qXfer_fdpic },
5161 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_qXfer_uib },
5163 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_QDisableRandomization },
5165 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5166 { "QTBuffer:size", PACKET_DISABLE,
5167 remote_supported_packet, PACKET_QTBuffer_size},
5168 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5169 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5170 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5171 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5172 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_qXfer_btrace },
5174 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_qXfer_btrace_conf },
5176 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_Qbtrace_conf_bts_size },
5178 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5179 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5180 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_fork_event_feature },
5182 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_vfork_event_feature },
5184 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_exec_event_feature },
5186 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_Qbtrace_conf_pt_size },
5188 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5189 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5190 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5191 };
5192
5193 static char *remote_support_xml;
5194
5195 /* Register string appended to "xmlRegisters=" in qSupported query. */
5196
5197 void
5198 register_remote_support_xml (const char *xml)
5199 {
5200 #if defined(HAVE_LIBEXPAT)
5201 if (remote_support_xml == NULL)
5202 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5203 else
5204 {
5205 char *copy = xstrdup (remote_support_xml + 13);
5206 char *p = strtok (copy, ",");
5207
5208 do
5209 {
5210 if (strcmp (p, xml) == 0)
5211 {
5212 /* already there */
5213 xfree (copy);
5214 return;
5215 }
5216 }
5217 while ((p = strtok (NULL, ",")) != NULL);
5218 xfree (copy);
5219
5220 remote_support_xml = reconcat (remote_support_xml,
5221 remote_support_xml, ",", xml,
5222 (char *) NULL);
5223 }
5224 #endif
5225 }
5226
5227 static void
5228 remote_query_supported_append (std::string *msg, const char *append)
5229 {
5230 if (!msg->empty ())
5231 msg->append (";");
5232 msg->append (append);
5233 }
5234
5235 void
5236 remote_target::remote_query_supported ()
5237 {
5238 struct remote_state *rs = get_remote_state ();
5239 char *next;
5240 int i;
5241 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5242
5243 /* The packet support flags are handled differently for this packet
5244 than for most others. We treat an error, a disabled packet, and
5245 an empty response identically: any features which must be reported
5246 to be used will be automatically disabled. An empty buffer
5247 accomplishes this, since that is also the representation for a list
5248 containing no features. */
5249
5250 rs->buf[0] = 0;
5251 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5252 {
5253 std::string q;
5254
5255 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5256 remote_query_supported_append (&q, "multiprocess+");
5257
5258 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5259 remote_query_supported_append (&q, "swbreak+");
5260 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5261 remote_query_supported_append (&q, "hwbreak+");
5262
5263 remote_query_supported_append (&q, "qRelocInsn+");
5264
5265 if (packet_set_cmd_state (PACKET_fork_event_feature)
5266 != AUTO_BOOLEAN_FALSE)
5267 remote_query_supported_append (&q, "fork-events+");
5268 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5269 != AUTO_BOOLEAN_FALSE)
5270 remote_query_supported_append (&q, "vfork-events+");
5271 if (packet_set_cmd_state (PACKET_exec_event_feature)
5272 != AUTO_BOOLEAN_FALSE)
5273 remote_query_supported_append (&q, "exec-events+");
5274
5275 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5276 remote_query_supported_append (&q, "vContSupported+");
5277
5278 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5279 remote_query_supported_append (&q, "QThreadEvents+");
5280
5281 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5282 remote_query_supported_append (&q, "no-resumed+");
5283
5284 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5285 the qSupported:xmlRegisters=i386 handling. */
5286 if (remote_support_xml != NULL
5287 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5288 remote_query_supported_append (&q, remote_support_xml);
5289
5290 q = "qSupported:" + q;
5291 putpkt (q.c_str ());
5292
5293 getpkt (&rs->buf, &rs->buf_size, 0);
5294
5295 /* If an error occured, warn, but do not return - just reset the
5296 buffer to empty and go on to disable features. */
5297 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5298 == PACKET_ERROR)
5299 {
5300 warning (_("Remote failure reply: %s"), rs->buf);
5301 rs->buf[0] = 0;
5302 }
5303 }
5304
5305 memset (seen, 0, sizeof (seen));
5306
5307 next = rs->buf;
5308 while (*next)
5309 {
5310 enum packet_support is_supported;
5311 char *p, *end, *name_end, *value;
5312
5313 /* First separate out this item from the rest of the packet. If
5314 there's another item after this, we overwrite the separator
5315 (terminated strings are much easier to work with). */
5316 p = next;
5317 end = strchr (p, ';');
5318 if (end == NULL)
5319 {
5320 end = p + strlen (p);
5321 next = end;
5322 }
5323 else
5324 {
5325 *end = '\0';
5326 next = end + 1;
5327
5328 if (end == p)
5329 {
5330 warning (_("empty item in \"qSupported\" response"));
5331 continue;
5332 }
5333 }
5334
5335 name_end = strchr (p, '=');
5336 if (name_end)
5337 {
5338 /* This is a name=value entry. */
5339 is_supported = PACKET_ENABLE;
5340 value = name_end + 1;
5341 *name_end = '\0';
5342 }
5343 else
5344 {
5345 value = NULL;
5346 switch (end[-1])
5347 {
5348 case '+':
5349 is_supported = PACKET_ENABLE;
5350 break;
5351
5352 case '-':
5353 is_supported = PACKET_DISABLE;
5354 break;
5355
5356 case '?':
5357 is_supported = PACKET_SUPPORT_UNKNOWN;
5358 break;
5359
5360 default:
5361 warning (_("unrecognized item \"%s\" "
5362 "in \"qSupported\" response"), p);
5363 continue;
5364 }
5365 end[-1] = '\0';
5366 }
5367
5368 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5369 if (strcmp (remote_protocol_features[i].name, p) == 0)
5370 {
5371 const struct protocol_feature *feature;
5372
5373 seen[i] = 1;
5374 feature = &remote_protocol_features[i];
5375 feature->func (this, feature, is_supported, value);
5376 break;
5377 }
5378 }
5379
5380 /* If we increased the packet size, make sure to increase the global
5381 buffer size also. We delay this until after parsing the entire
5382 qSupported packet, because this is the same buffer we were
5383 parsing. */
5384 if (rs->buf_size < rs->explicit_packet_size)
5385 {
5386 rs->buf_size = rs->explicit_packet_size;
5387 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5388 }
5389
5390 /* Handle the defaults for unmentioned features. */
5391 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5392 if (!seen[i])
5393 {
5394 const struct protocol_feature *feature;
5395
5396 feature = &remote_protocol_features[i];
5397 feature->func (this, feature, feature->default_support, NULL);
5398 }
5399 }
5400
5401 /* Serial QUIT handler for the remote serial descriptor.
5402
5403 Defers handling a Ctrl-C until we're done with the current
5404 command/response packet sequence, unless:
5405
5406 - We're setting up the connection. Don't send a remote interrupt
5407 request, as we're not fully synced yet. Quit immediately
5408 instead.
5409
5410 - The target has been resumed in the foreground
5411 (target_terminal::is_ours is false) with a synchronous resume
5412 packet, and we're blocked waiting for the stop reply, thus a
5413 Ctrl-C should be immediately sent to the target.
5414
5415 - We get a second Ctrl-C while still within the same serial read or
5416 write. In that case the serial is seemingly wedged --- offer to
5417 quit/disconnect.
5418
5419 - We see a second Ctrl-C without target response, after having
5420 previously interrupted the target. In that case the target/stub
5421 is probably wedged --- offer to quit/disconnect.
5422 */
5423
5424 void
5425 remote_target::remote_serial_quit_handler ()
5426 {
5427 struct remote_state *rs = get_remote_state ();
5428
5429 if (check_quit_flag ())
5430 {
5431 /* If we're starting up, we're not fully synced yet. Quit
5432 immediately. */
5433 if (rs->starting_up)
5434 quit ();
5435 else if (rs->got_ctrlc_during_io)
5436 {
5437 if (query (_("The target is not responding to GDB commands.\n"
5438 "Stop debugging it? ")))
5439 remote_unpush_and_throw ();
5440 }
5441 /* If ^C has already been sent once, offer to disconnect. */
5442 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5443 interrupt_query ();
5444 /* All-stop protocol, and blocked waiting for stop reply. Send
5445 an interrupt request. */
5446 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5447 target_interrupt ();
5448 else
5449 rs->got_ctrlc_during_io = 1;
5450 }
5451 }
5452
5453 /* The remote_target that is current while the quit handler is
5454 overridden with remote_serial_quit_handler. */
5455 static remote_target *curr_quit_handler_target;
5456
5457 static void
5458 remote_serial_quit_handler ()
5459 {
5460 curr_quit_handler_target->remote_serial_quit_handler ();
5461 }
5462
5463 /* Remove any of the remote.c targets from target stack. Upper targets depend
5464 on it so remove them first. */
5465
5466 static void
5467 remote_unpush_target (void)
5468 {
5469 pop_all_targets_at_and_above (process_stratum);
5470 }
5471
5472 static void
5473 remote_unpush_and_throw (void)
5474 {
5475 remote_unpush_target ();
5476 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5477 }
5478
5479 void
5480 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5481 {
5482 remote_target *curr_remote = get_current_remote_target ();
5483
5484 if (name == 0)
5485 error (_("To open a remote debug connection, you need to specify what\n"
5486 "serial device is attached to the remote system\n"
5487 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5488
5489 /* If we're connected to a running target, target_preopen will kill it.
5490 Ask this question first, before target_preopen has a chance to kill
5491 anything. */
5492 if (curr_remote != NULL && !have_inferiors ())
5493 {
5494 if (from_tty
5495 && !query (_("Already connected to a remote target. Disconnect? ")))
5496 error (_("Still connected."));
5497 }
5498
5499 /* Here the possibly existing remote target gets unpushed. */
5500 target_preopen (from_tty);
5501
5502 remote_fileio_reset ();
5503 reopen_exec_file ();
5504 reread_symbols ();
5505
5506 remote_target *remote
5507 = (extended_p ? new extended_remote_target () : new remote_target ());
5508 target_ops_up target_holder (remote);
5509
5510 remote_state *rs = remote->get_remote_state ();
5511
5512 /* See FIXME above. */
5513 if (!target_async_permitted)
5514 rs->wait_forever_enabled_p = 1;
5515
5516 rs->remote_desc = remote_serial_open (name);
5517 if (!rs->remote_desc)
5518 perror_with_name (name);
5519
5520 if (baud_rate != -1)
5521 {
5522 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5523 {
5524 /* The requested speed could not be set. Error out to
5525 top level after closing remote_desc. Take care to
5526 set remote_desc to NULL to avoid closing remote_desc
5527 more than once. */
5528 serial_close (rs->remote_desc);
5529 rs->remote_desc = NULL;
5530 perror_with_name (name);
5531 }
5532 }
5533
5534 serial_setparity (rs->remote_desc, serial_parity);
5535 serial_raw (rs->remote_desc);
5536
5537 /* If there is something sitting in the buffer we might take it as a
5538 response to a command, which would be bad. */
5539 serial_flush_input (rs->remote_desc);
5540
5541 if (from_tty)
5542 {
5543 puts_filtered ("Remote debugging using ");
5544 puts_filtered (name);
5545 puts_filtered ("\n");
5546 }
5547
5548 /* Switch to using the remote target now. */
5549 push_target (remote);
5550 /* The target stack owns the target now. */
5551 target_holder.release ();
5552
5553 /* Register extra event sources in the event loop. */
5554 rs->remote_async_inferior_event_token
5555 = create_async_event_handler (remote_async_inferior_event_handler,
5556 remote);
5557 rs->notif_state = remote_notif_state_allocate (remote);
5558
5559 /* Reset the target state; these things will be queried either by
5560 remote_query_supported or as they are needed. */
5561 reset_all_packet_configs_support ();
5562 rs->cached_wait_status = 0;
5563 rs->explicit_packet_size = 0;
5564 rs->noack_mode = 0;
5565 rs->extended = extended_p;
5566 rs->waiting_for_stop_reply = 0;
5567 rs->ctrlc_pending_p = 0;
5568 rs->got_ctrlc_during_io = 0;
5569
5570 rs->general_thread = not_sent_ptid;
5571 rs->continue_thread = not_sent_ptid;
5572 rs->remote_traceframe_number = -1;
5573
5574 rs->last_resume_exec_dir = EXEC_FORWARD;
5575
5576 /* Probe for ability to use "ThreadInfo" query, as required. */
5577 rs->use_threadinfo_query = 1;
5578 rs->use_threadextra_query = 1;
5579
5580 rs->readahead_cache.invalidate ();
5581
5582 if (target_async_permitted)
5583 {
5584 /* FIXME: cagney/1999-09-23: During the initial connection it is
5585 assumed that the target is already ready and able to respond to
5586 requests. Unfortunately remote_start_remote() eventually calls
5587 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5588 around this. Eventually a mechanism that allows
5589 wait_for_inferior() to expect/get timeouts will be
5590 implemented. */
5591 rs->wait_forever_enabled_p = 0;
5592 }
5593
5594 /* First delete any symbols previously loaded from shared libraries. */
5595 no_shared_libraries (NULL, 0);
5596
5597 /* Start the remote connection. If error() or QUIT, discard this
5598 target (we'd otherwise be in an inconsistent state) and then
5599 propogate the error on up the exception chain. This ensures that
5600 the caller doesn't stumble along blindly assuming that the
5601 function succeeded. The CLI doesn't have this problem but other
5602 UI's, such as MI do.
5603
5604 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5605 this function should return an error indication letting the
5606 caller restore the previous state. Unfortunately the command
5607 ``target remote'' is directly wired to this function making that
5608 impossible. On a positive note, the CLI side of this problem has
5609 been fixed - the function set_cmd_context() makes it possible for
5610 all the ``target ....'' commands to share a common callback
5611 function. See cli-dump.c. */
5612 {
5613
5614 TRY
5615 {
5616 remote->start_remote (from_tty, extended_p);
5617 }
5618 CATCH (ex, RETURN_MASK_ALL)
5619 {
5620 /* Pop the partially set up target - unless something else did
5621 already before throwing the exception. */
5622 if (ex.error != TARGET_CLOSE_ERROR)
5623 remote_unpush_target ();
5624 throw_exception (ex);
5625 }
5626 END_CATCH
5627 }
5628
5629 remote_btrace_reset (rs);
5630
5631 if (target_async_permitted)
5632 rs->wait_forever_enabled_p = 1;
5633 }
5634
5635 /* Detach the specified process. */
5636
5637 void
5638 remote_target::remote_detach_pid (int pid)
5639 {
5640 struct remote_state *rs = get_remote_state ();
5641
5642 /* This should not be necessary, but the handling for D;PID in
5643 GDBserver versions prior to 8.2 incorrectly assumes that the
5644 selected process points to the same process we're detaching,
5645 leading to misbehavior (and possibly GDBserver crashing) when it
5646 does not. Since it's easy and cheap, work around it by forcing
5647 GDBserver to select GDB's current process. */
5648 set_general_process ();
5649
5650 if (remote_multi_process_p (rs))
5651 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5652 else
5653 strcpy (rs->buf, "D");
5654
5655 putpkt (rs->buf);
5656 getpkt (&rs->buf, &rs->buf_size, 0);
5657
5658 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5659 ;
5660 else if (rs->buf[0] == '\0')
5661 error (_("Remote doesn't know how to detach"));
5662 else
5663 error (_("Can't detach process."));
5664 }
5665
5666 /* This detaches a program to which we previously attached, using
5667 inferior_ptid to identify the process. After this is done, GDB
5668 can be used to debug some other program. We better not have left
5669 any breakpoints in the target program or it'll die when it hits
5670 one. */
5671
5672 void
5673 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5674 {
5675 int pid = inferior_ptid.pid ();
5676 struct remote_state *rs = get_remote_state ();
5677 int is_fork_parent;
5678
5679 if (!target_has_execution)
5680 error (_("No process to detach from."));
5681
5682 target_announce_detach (from_tty);
5683
5684 /* Tell the remote target to detach. */
5685 remote_detach_pid (pid);
5686
5687 /* Exit only if this is the only active inferior. */
5688 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5689 puts_filtered (_("Ending remote debugging.\n"));
5690
5691 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5692
5693 /* Check to see if we are detaching a fork parent. Note that if we
5694 are detaching a fork child, tp == NULL. */
5695 is_fork_parent = (tp != NULL
5696 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5697
5698 /* If doing detach-on-fork, we don't mourn, because that will delete
5699 breakpoints that should be available for the followed inferior. */
5700 if (!is_fork_parent)
5701 {
5702 /* Save the pid as a string before mourning, since that will
5703 unpush the remote target, and we need the string after. */
5704 std::string infpid = target_pid_to_str (ptid_t (pid));
5705
5706 target_mourn_inferior (inferior_ptid);
5707 if (print_inferior_events)
5708 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5709 inf->num, infpid.c_str ());
5710 }
5711 else
5712 {
5713 inferior_ptid = null_ptid;
5714 detach_inferior (current_inferior ());
5715 }
5716 }
5717
5718 void
5719 remote_target::detach (inferior *inf, int from_tty)
5720 {
5721 remote_detach_1 (inf, from_tty);
5722 }
5723
5724 void
5725 extended_remote_target::detach (inferior *inf, int from_tty)
5726 {
5727 remote_detach_1 (inf, from_tty);
5728 }
5729
5730 /* Target follow-fork function for remote targets. On entry, and
5731 at return, the current inferior is the fork parent.
5732
5733 Note that although this is currently only used for extended-remote,
5734 it is named remote_follow_fork in anticipation of using it for the
5735 remote target as well. */
5736
5737 int
5738 remote_target::follow_fork (int follow_child, int detach_fork)
5739 {
5740 struct remote_state *rs = get_remote_state ();
5741 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5742
5743 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5744 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5745 {
5746 /* When following the parent and detaching the child, we detach
5747 the child here. For the case of following the child and
5748 detaching the parent, the detach is done in the target-
5749 independent follow fork code in infrun.c. We can't use
5750 target_detach when detaching an unfollowed child because
5751 the client side doesn't know anything about the child. */
5752 if (detach_fork && !follow_child)
5753 {
5754 /* Detach the fork child. */
5755 ptid_t child_ptid;
5756 pid_t child_pid;
5757
5758 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5759 child_pid = child_ptid.pid ();
5760
5761 remote_detach_pid (child_pid);
5762 }
5763 }
5764 return 0;
5765 }
5766
5767 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5768 in the program space of the new inferior. On entry and at return the
5769 current inferior is the exec'ing inferior. INF is the new exec'd
5770 inferior, which may be the same as the exec'ing inferior unless
5771 follow-exec-mode is "new". */
5772
5773 void
5774 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5775 {
5776 /* We know that this is a target file name, so if it has the "target:"
5777 prefix we strip it off before saving it in the program space. */
5778 if (is_target_filename (execd_pathname))
5779 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5780
5781 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5782 }
5783
5784 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5785
5786 void
5787 remote_target::disconnect (const char *args, int from_tty)
5788 {
5789 if (args)
5790 error (_("Argument given to \"disconnect\" when remotely debugging."));
5791
5792 /* Make sure we unpush even the extended remote targets. Calling
5793 target_mourn_inferior won't unpush, and remote_mourn won't
5794 unpush if there is more than one inferior left. */
5795 unpush_target (this);
5796 generic_mourn_inferior ();
5797
5798 if (from_tty)
5799 puts_filtered ("Ending remote debugging.\n");
5800 }
5801
5802 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5803 be chatty about it. */
5804
5805 void
5806 extended_remote_target::attach (const char *args, int from_tty)
5807 {
5808 struct remote_state *rs = get_remote_state ();
5809 int pid;
5810 char *wait_status = NULL;
5811
5812 pid = parse_pid_to_attach (args);
5813
5814 /* Remote PID can be freely equal to getpid, do not check it here the same
5815 way as in other targets. */
5816
5817 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5818 error (_("This target does not support attaching to a process"));
5819
5820 if (from_tty)
5821 {
5822 char *exec_file = get_exec_file (0);
5823
5824 if (exec_file)
5825 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5826 target_pid_to_str (ptid_t (pid)));
5827 else
5828 printf_unfiltered (_("Attaching to %s\n"),
5829 target_pid_to_str (ptid_t (pid)));
5830
5831 gdb_flush (gdb_stdout);
5832 }
5833
5834 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5835 putpkt (rs->buf);
5836 getpkt (&rs->buf, &rs->buf_size, 0);
5837
5838 switch (packet_ok (rs->buf,
5839 &remote_protocol_packets[PACKET_vAttach]))
5840 {
5841 case PACKET_OK:
5842 if (!target_is_non_stop_p ())
5843 {
5844 /* Save the reply for later. */
5845 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5846 strcpy (wait_status, rs->buf);
5847 }
5848 else if (strcmp (rs->buf, "OK") != 0)
5849 error (_("Attaching to %s failed with: %s"),
5850 target_pid_to_str (ptid_t (pid)),
5851 rs->buf);
5852 break;
5853 case PACKET_UNKNOWN:
5854 error (_("This target does not support attaching to a process"));
5855 default:
5856 error (_("Attaching to %s failed"),
5857 target_pid_to_str (ptid_t (pid)));
5858 }
5859
5860 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5861
5862 inferior_ptid = ptid_t (pid);
5863
5864 if (target_is_non_stop_p ())
5865 {
5866 struct thread_info *thread;
5867
5868 /* Get list of threads. */
5869 update_thread_list ();
5870
5871 thread = first_thread_of_inferior (current_inferior ());
5872 if (thread)
5873 inferior_ptid = thread->ptid;
5874 else
5875 inferior_ptid = ptid_t (pid);
5876
5877 /* Invalidate our notion of the remote current thread. */
5878 record_currthread (rs, minus_one_ptid);
5879 }
5880 else
5881 {
5882 /* Now, if we have thread information, update inferior_ptid. */
5883 inferior_ptid = remote_current_thread (inferior_ptid);
5884
5885 /* Add the main thread to the thread list. */
5886 thread_info *thr = add_thread_silent (inferior_ptid);
5887 /* Don't consider the thread stopped until we've processed the
5888 saved stop reply. */
5889 set_executing (thr->ptid, true);
5890 }
5891
5892 /* Next, if the target can specify a description, read it. We do
5893 this before anything involving memory or registers. */
5894 target_find_description ();
5895
5896 if (!target_is_non_stop_p ())
5897 {
5898 /* Use the previously fetched status. */
5899 gdb_assert (wait_status != NULL);
5900
5901 if (target_can_async_p ())
5902 {
5903 struct notif_event *reply
5904 = remote_notif_parse (this, &notif_client_stop, wait_status);
5905
5906 push_stop_reply ((struct stop_reply *) reply);
5907
5908 target_async (1);
5909 }
5910 else
5911 {
5912 gdb_assert (wait_status != NULL);
5913 strcpy (rs->buf, wait_status);
5914 rs->cached_wait_status = 1;
5915 }
5916 }
5917 else
5918 gdb_assert (wait_status == NULL);
5919 }
5920
5921 /* Implementation of the to_post_attach method. */
5922
5923 void
5924 extended_remote_target::post_attach (int pid)
5925 {
5926 /* Get text, data & bss offsets. */
5927 get_offsets ();
5928
5929 /* In certain cases GDB might not have had the chance to start
5930 symbol lookup up until now. This could happen if the debugged
5931 binary is not using shared libraries, the vsyscall page is not
5932 present (on Linux) and the binary itself hadn't changed since the
5933 debugging process was started. */
5934 if (symfile_objfile != NULL)
5935 remote_check_symbols();
5936 }
5937
5938 \f
5939 /* Check for the availability of vCont. This function should also check
5940 the response. */
5941
5942 void
5943 remote_target::remote_vcont_probe ()
5944 {
5945 remote_state *rs = get_remote_state ();
5946 char *buf;
5947
5948 strcpy (rs->buf, "vCont?");
5949 putpkt (rs->buf);
5950 getpkt (&rs->buf, &rs->buf_size, 0);
5951 buf = rs->buf;
5952
5953 /* Make sure that the features we assume are supported. */
5954 if (startswith (buf, "vCont"))
5955 {
5956 char *p = &buf[5];
5957 int support_c, support_C;
5958
5959 rs->supports_vCont.s = 0;
5960 rs->supports_vCont.S = 0;
5961 support_c = 0;
5962 support_C = 0;
5963 rs->supports_vCont.t = 0;
5964 rs->supports_vCont.r = 0;
5965 while (p && *p == ';')
5966 {
5967 p++;
5968 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5969 rs->supports_vCont.s = 1;
5970 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5971 rs->supports_vCont.S = 1;
5972 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5973 support_c = 1;
5974 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5975 support_C = 1;
5976 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5977 rs->supports_vCont.t = 1;
5978 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5979 rs->supports_vCont.r = 1;
5980
5981 p = strchr (p, ';');
5982 }
5983
5984 /* If c, and C are not all supported, we can't use vCont. Clearing
5985 BUF will make packet_ok disable the packet. */
5986 if (!support_c || !support_C)
5987 buf[0] = 0;
5988 }
5989
5990 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5991 }
5992
5993 /* Helper function for building "vCont" resumptions. Write a
5994 resumption to P. ENDP points to one-passed-the-end of the buffer
5995 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5996 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5997 resumed thread should be single-stepped and/or signalled. If PTID
5998 equals minus_one_ptid, then all threads are resumed; if PTID
5999 represents a process, then all threads of the process are resumed;
6000 the thread to be stepped and/or signalled is given in the global
6001 INFERIOR_PTID. */
6002
6003 char *
6004 remote_target::append_resumption (char *p, char *endp,
6005 ptid_t ptid, int step, gdb_signal siggnal)
6006 {
6007 struct remote_state *rs = get_remote_state ();
6008
6009 if (step && siggnal != GDB_SIGNAL_0)
6010 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6011 else if (step
6012 /* GDB is willing to range step. */
6013 && use_range_stepping
6014 /* Target supports range stepping. */
6015 && rs->supports_vCont.r
6016 /* We don't currently support range stepping multiple
6017 threads with a wildcard (though the protocol allows it,
6018 so stubs shouldn't make an active effort to forbid
6019 it). */
6020 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6021 {
6022 struct thread_info *tp;
6023
6024 if (ptid == minus_one_ptid)
6025 {
6026 /* If we don't know about the target thread's tid, then
6027 we're resuming magic_null_ptid (see caller). */
6028 tp = find_thread_ptid (magic_null_ptid);
6029 }
6030 else
6031 tp = find_thread_ptid (ptid);
6032 gdb_assert (tp != NULL);
6033
6034 if (tp->control.may_range_step)
6035 {
6036 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6037
6038 p += xsnprintf (p, endp - p, ";r%s,%s",
6039 phex_nz (tp->control.step_range_start,
6040 addr_size),
6041 phex_nz (tp->control.step_range_end,
6042 addr_size));
6043 }
6044 else
6045 p += xsnprintf (p, endp - p, ";s");
6046 }
6047 else if (step)
6048 p += xsnprintf (p, endp - p, ";s");
6049 else if (siggnal != GDB_SIGNAL_0)
6050 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6051 else
6052 p += xsnprintf (p, endp - p, ";c");
6053
6054 if (remote_multi_process_p (rs) && ptid.is_pid ())
6055 {
6056 ptid_t nptid;
6057
6058 /* All (-1) threads of process. */
6059 nptid = ptid_t (ptid.pid (), -1, 0);
6060
6061 p += xsnprintf (p, endp - p, ":");
6062 p = write_ptid (p, endp, nptid);
6063 }
6064 else if (ptid != minus_one_ptid)
6065 {
6066 p += xsnprintf (p, endp - p, ":");
6067 p = write_ptid (p, endp, ptid);
6068 }
6069
6070 return p;
6071 }
6072
6073 /* Clear the thread's private info on resume. */
6074
6075 static void
6076 resume_clear_thread_private_info (struct thread_info *thread)
6077 {
6078 if (thread->priv != NULL)
6079 {
6080 remote_thread_info *priv = get_remote_thread_info (thread);
6081
6082 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6083 priv->watch_data_address = 0;
6084 }
6085 }
6086
6087 /* Append a vCont continue-with-signal action for threads that have a
6088 non-zero stop signal. */
6089
6090 char *
6091 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6092 ptid_t ptid)
6093 {
6094 for (thread_info *thread : all_non_exited_threads (ptid))
6095 if (inferior_ptid != thread->ptid
6096 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6097 {
6098 p = append_resumption (p, endp, thread->ptid,
6099 0, thread->suspend.stop_signal);
6100 thread->suspend.stop_signal = GDB_SIGNAL_0;
6101 resume_clear_thread_private_info (thread);
6102 }
6103
6104 return p;
6105 }
6106
6107 /* Set the target running, using the packets that use Hc
6108 (c/s/C/S). */
6109
6110 void
6111 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6112 gdb_signal siggnal)
6113 {
6114 struct remote_state *rs = get_remote_state ();
6115 char *buf;
6116
6117 rs->last_sent_signal = siggnal;
6118 rs->last_sent_step = step;
6119
6120 /* The c/s/C/S resume packets use Hc, so set the continue
6121 thread. */
6122 if (ptid == minus_one_ptid)
6123 set_continue_thread (any_thread_ptid);
6124 else
6125 set_continue_thread (ptid);
6126
6127 for (thread_info *thread : all_non_exited_threads ())
6128 resume_clear_thread_private_info (thread);
6129
6130 buf = rs->buf;
6131 if (::execution_direction == EXEC_REVERSE)
6132 {
6133 /* We don't pass signals to the target in reverse exec mode. */
6134 if (info_verbose && siggnal != GDB_SIGNAL_0)
6135 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6136 siggnal);
6137
6138 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6139 error (_("Remote reverse-step not supported."));
6140 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6141 error (_("Remote reverse-continue not supported."));
6142
6143 strcpy (buf, step ? "bs" : "bc");
6144 }
6145 else if (siggnal != GDB_SIGNAL_0)
6146 {
6147 buf[0] = step ? 'S' : 'C';
6148 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6149 buf[2] = tohex (((int) siggnal) & 0xf);
6150 buf[3] = '\0';
6151 }
6152 else
6153 strcpy (buf, step ? "s" : "c");
6154
6155 putpkt (buf);
6156 }
6157
6158 /* Resume the remote inferior by using a "vCont" packet. The thread
6159 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6160 resumed thread should be single-stepped and/or signalled. If PTID
6161 equals minus_one_ptid, then all threads are resumed; the thread to
6162 be stepped and/or signalled is given in the global INFERIOR_PTID.
6163 This function returns non-zero iff it resumes the inferior.
6164
6165 This function issues a strict subset of all possible vCont commands
6166 at the moment. */
6167
6168 int
6169 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6170 enum gdb_signal siggnal)
6171 {
6172 struct remote_state *rs = get_remote_state ();
6173 char *p;
6174 char *endp;
6175
6176 /* No reverse execution actions defined for vCont. */
6177 if (::execution_direction == EXEC_REVERSE)
6178 return 0;
6179
6180 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6181 remote_vcont_probe ();
6182
6183 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6184 return 0;
6185
6186 p = rs->buf;
6187 endp = rs->buf + get_remote_packet_size ();
6188
6189 /* If we could generate a wider range of packets, we'd have to worry
6190 about overflowing BUF. Should there be a generic
6191 "multi-part-packet" packet? */
6192
6193 p += xsnprintf (p, endp - p, "vCont");
6194
6195 if (ptid == magic_null_ptid)
6196 {
6197 /* MAGIC_NULL_PTID means that we don't have any active threads,
6198 so we don't have any TID numbers the inferior will
6199 understand. Make sure to only send forms that do not specify
6200 a TID. */
6201 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6202 }
6203 else if (ptid == minus_one_ptid || ptid.is_pid ())
6204 {
6205 /* Resume all threads (of all processes, or of a single
6206 process), with preference for INFERIOR_PTID. This assumes
6207 inferior_ptid belongs to the set of all threads we are about
6208 to resume. */
6209 if (step || siggnal != GDB_SIGNAL_0)
6210 {
6211 /* Step inferior_ptid, with or without signal. */
6212 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6213 }
6214
6215 /* Also pass down any pending signaled resumption for other
6216 threads not the current. */
6217 p = append_pending_thread_resumptions (p, endp, ptid);
6218
6219 /* And continue others without a signal. */
6220 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6221 }
6222 else
6223 {
6224 /* Scheduler locking; resume only PTID. */
6225 append_resumption (p, endp, ptid, step, siggnal);
6226 }
6227
6228 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
6229 putpkt (rs->buf);
6230
6231 if (target_is_non_stop_p ())
6232 {
6233 /* In non-stop, the stub replies to vCont with "OK". The stop
6234 reply will be reported asynchronously by means of a `%Stop'
6235 notification. */
6236 getpkt (&rs->buf, &rs->buf_size, 0);
6237 if (strcmp (rs->buf, "OK") != 0)
6238 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6239 }
6240
6241 return 1;
6242 }
6243
6244 /* Tell the remote machine to resume. */
6245
6246 void
6247 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6248 {
6249 struct remote_state *rs = get_remote_state ();
6250
6251 /* When connected in non-stop mode, the core resumes threads
6252 individually. Resuming remote threads directly in target_resume
6253 would thus result in sending one packet per thread. Instead, to
6254 minimize roundtrip latency, here we just store the resume
6255 request; the actual remote resumption will be done in
6256 target_commit_resume / remote_commit_resume, where we'll be able
6257 to do vCont action coalescing. */
6258 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6259 {
6260 remote_thread_info *remote_thr;
6261
6262 if (minus_one_ptid == ptid || ptid.is_pid ())
6263 remote_thr = get_remote_thread_info (inferior_ptid);
6264 else
6265 remote_thr = get_remote_thread_info (ptid);
6266
6267 remote_thr->last_resume_step = step;
6268 remote_thr->last_resume_sig = siggnal;
6269 return;
6270 }
6271
6272 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6273 (explained in remote-notif.c:handle_notification) so
6274 remote_notif_process is not called. We need find a place where
6275 it is safe to start a 'vNotif' sequence. It is good to do it
6276 before resuming inferior, because inferior was stopped and no RSP
6277 traffic at that moment. */
6278 if (!target_is_non_stop_p ())
6279 remote_notif_process (rs->notif_state, &notif_client_stop);
6280
6281 rs->last_resume_exec_dir = ::execution_direction;
6282
6283 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6284 if (!remote_resume_with_vcont (ptid, step, siggnal))
6285 remote_resume_with_hc (ptid, step, siggnal);
6286
6287 /* We are about to start executing the inferior, let's register it
6288 with the event loop. NOTE: this is the one place where all the
6289 execution commands end up. We could alternatively do this in each
6290 of the execution commands in infcmd.c. */
6291 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6292 into infcmd.c in order to allow inferior function calls to work
6293 NOT asynchronously. */
6294 if (target_can_async_p ())
6295 target_async (1);
6296
6297 /* We've just told the target to resume. The remote server will
6298 wait for the inferior to stop, and then send a stop reply. In
6299 the mean time, we can't start another command/query ourselves
6300 because the stub wouldn't be ready to process it. This applies
6301 only to the base all-stop protocol, however. In non-stop (which
6302 only supports vCont), the stub replies with an "OK", and is
6303 immediate able to process further serial input. */
6304 if (!target_is_non_stop_p ())
6305 rs->waiting_for_stop_reply = 1;
6306 }
6307
6308 static int is_pending_fork_parent_thread (struct thread_info *thread);
6309
6310 /* Private per-inferior info for target remote processes. */
6311
6312 struct remote_inferior : public private_inferior
6313 {
6314 /* Whether we can send a wildcard vCont for this process. */
6315 bool may_wildcard_vcont = true;
6316 };
6317
6318 /* Get the remote private inferior data associated to INF. */
6319
6320 static remote_inferior *
6321 get_remote_inferior (inferior *inf)
6322 {
6323 if (inf->priv == NULL)
6324 inf->priv.reset (new remote_inferior);
6325
6326 return static_cast<remote_inferior *> (inf->priv.get ());
6327 }
6328
6329 /* Class used to track the construction of a vCont packet in the
6330 outgoing packet buffer. This is used to send multiple vCont
6331 packets if we have more actions than would fit a single packet. */
6332
6333 class vcont_builder
6334 {
6335 public:
6336 explicit vcont_builder (remote_target *remote)
6337 : m_remote (remote)
6338 {
6339 restart ();
6340 }
6341
6342 void flush ();
6343 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6344
6345 private:
6346 void restart ();
6347
6348 /* The remote target. */
6349 remote_target *m_remote;
6350
6351 /* Pointer to the first action. P points here if no action has been
6352 appended yet. */
6353 char *m_first_action;
6354
6355 /* Where the next action will be appended. */
6356 char *m_p;
6357
6358 /* The end of the buffer. Must never write past this. */
6359 char *m_endp;
6360 };
6361
6362 /* Prepare the outgoing buffer for a new vCont packet. */
6363
6364 void
6365 vcont_builder::restart ()
6366 {
6367 struct remote_state *rs = m_remote->get_remote_state ();
6368
6369 m_p = rs->buf;
6370 m_endp = rs->buf + m_remote->get_remote_packet_size ();
6371 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6372 m_first_action = m_p;
6373 }
6374
6375 /* If the vCont packet being built has any action, send it to the
6376 remote end. */
6377
6378 void
6379 vcont_builder::flush ()
6380 {
6381 struct remote_state *rs;
6382
6383 if (m_p == m_first_action)
6384 return;
6385
6386 rs = m_remote->get_remote_state ();
6387 m_remote->putpkt (rs->buf);
6388 m_remote->getpkt (&rs->buf, &rs->buf_size, 0);
6389 if (strcmp (rs->buf, "OK") != 0)
6390 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6391 }
6392
6393 /* The largest action is range-stepping, with its two addresses. This
6394 is more than sufficient. If a new, bigger action is created, it'll
6395 quickly trigger a failed assertion in append_resumption (and we'll
6396 just bump this). */
6397 #define MAX_ACTION_SIZE 200
6398
6399 /* Append a new vCont action in the outgoing packet being built. If
6400 the action doesn't fit the packet along with previous actions, push
6401 what we've got so far to the remote end and start over a new vCont
6402 packet (with the new action). */
6403
6404 void
6405 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6406 {
6407 char buf[MAX_ACTION_SIZE + 1];
6408
6409 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6410 ptid, step, siggnal);
6411
6412 /* Check whether this new action would fit in the vCont packet along
6413 with previous actions. If not, send what we've got so far and
6414 start a new vCont packet. */
6415 size_t rsize = endp - buf;
6416 if (rsize > m_endp - m_p)
6417 {
6418 flush ();
6419 restart ();
6420
6421 /* Should now fit. */
6422 gdb_assert (rsize <= m_endp - m_p);
6423 }
6424
6425 memcpy (m_p, buf, rsize);
6426 m_p += rsize;
6427 *m_p = '\0';
6428 }
6429
6430 /* to_commit_resume implementation. */
6431
6432 void
6433 remote_target::commit_resume ()
6434 {
6435 int any_process_wildcard;
6436 int may_global_wildcard_vcont;
6437
6438 /* If connected in all-stop mode, we'd send the remote resume
6439 request directly from remote_resume. Likewise if
6440 reverse-debugging, as there are no defined vCont actions for
6441 reverse execution. */
6442 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6443 return;
6444
6445 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6446 instead of resuming all threads of each process individually.
6447 However, if any thread of a process must remain halted, we can't
6448 send wildcard resumes and must send one action per thread.
6449
6450 Care must be taken to not resume threads/processes the server
6451 side already told us are stopped, but the core doesn't know about
6452 yet, because the events are still in the vStopped notification
6453 queue. For example:
6454
6455 #1 => vCont s:p1.1;c
6456 #2 <= OK
6457 #3 <= %Stopped T05 p1.1
6458 #4 => vStopped
6459 #5 <= T05 p1.2
6460 #6 => vStopped
6461 #7 <= OK
6462 #8 (infrun handles the stop for p1.1 and continues stepping)
6463 #9 => vCont s:p1.1;c
6464
6465 The last vCont above would resume thread p1.2 by mistake, because
6466 the server has no idea that the event for p1.2 had not been
6467 handled yet.
6468
6469 The server side must similarly ignore resume actions for the
6470 thread that has a pending %Stopped notification (and any other
6471 threads with events pending), until GDB acks the notification
6472 with vStopped. Otherwise, e.g., the following case is
6473 mishandled:
6474
6475 #1 => g (or any other packet)
6476 #2 <= [registers]
6477 #3 <= %Stopped T05 p1.2
6478 #4 => vCont s:p1.1;c
6479 #5 <= OK
6480
6481 Above, the server must not resume thread p1.2. GDB can't know
6482 that p1.2 stopped until it acks the %Stopped notification, and
6483 since from GDB's perspective all threads should be running, it
6484 sends a "c" action.
6485
6486 Finally, special care must also be given to handling fork/vfork
6487 events. A (v)fork event actually tells us that two processes
6488 stopped -- the parent and the child. Until we follow the fork,
6489 we must not resume the child. Therefore, if we have a pending
6490 fork follow, we must not send a global wildcard resume action
6491 (vCont;c). We can still send process-wide wildcards though. */
6492
6493 /* Start by assuming a global wildcard (vCont;c) is possible. */
6494 may_global_wildcard_vcont = 1;
6495
6496 /* And assume every process is individually wildcard-able too. */
6497 for (inferior *inf : all_non_exited_inferiors ())
6498 {
6499 remote_inferior *priv = get_remote_inferior (inf);
6500
6501 priv->may_wildcard_vcont = true;
6502 }
6503
6504 /* Check for any pending events (not reported or processed yet) and
6505 disable process and global wildcard resumes appropriately. */
6506 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6507
6508 for (thread_info *tp : all_non_exited_threads ())
6509 {
6510 /* If a thread of a process is not meant to be resumed, then we
6511 can't wildcard that process. */
6512 if (!tp->executing)
6513 {
6514 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6515
6516 /* And if we can't wildcard a process, we can't wildcard
6517 everything either. */
6518 may_global_wildcard_vcont = 0;
6519 continue;
6520 }
6521
6522 /* If a thread is the parent of an unfollowed fork, then we
6523 can't do a global wildcard, as that would resume the fork
6524 child. */
6525 if (is_pending_fork_parent_thread (tp))
6526 may_global_wildcard_vcont = 0;
6527 }
6528
6529 /* Now let's build the vCont packet(s). Actions must be appended
6530 from narrower to wider scopes (thread -> process -> global). If
6531 we end up with too many actions for a single packet vcont_builder
6532 flushes the current vCont packet to the remote side and starts a
6533 new one. */
6534 struct vcont_builder vcont_builder (this);
6535
6536 /* Threads first. */
6537 for (thread_info *tp : all_non_exited_threads ())
6538 {
6539 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6540
6541 if (!tp->executing || remote_thr->vcont_resumed)
6542 continue;
6543
6544 gdb_assert (!thread_is_in_step_over_chain (tp));
6545
6546 if (!remote_thr->last_resume_step
6547 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6548 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6549 {
6550 /* We'll send a wildcard resume instead. */
6551 remote_thr->vcont_resumed = 1;
6552 continue;
6553 }
6554
6555 vcont_builder.push_action (tp->ptid,
6556 remote_thr->last_resume_step,
6557 remote_thr->last_resume_sig);
6558 remote_thr->vcont_resumed = 1;
6559 }
6560
6561 /* Now check whether we can send any process-wide wildcard. This is
6562 to avoid sending a global wildcard in the case nothing is
6563 supposed to be resumed. */
6564 any_process_wildcard = 0;
6565
6566 for (inferior *inf : all_non_exited_inferiors ())
6567 {
6568 if (get_remote_inferior (inf)->may_wildcard_vcont)
6569 {
6570 any_process_wildcard = 1;
6571 break;
6572 }
6573 }
6574
6575 if (any_process_wildcard)
6576 {
6577 /* If all processes are wildcard-able, then send a single "c"
6578 action, otherwise, send an "all (-1) threads of process"
6579 continue action for each running process, if any. */
6580 if (may_global_wildcard_vcont)
6581 {
6582 vcont_builder.push_action (minus_one_ptid,
6583 false, GDB_SIGNAL_0);
6584 }
6585 else
6586 {
6587 for (inferior *inf : all_non_exited_inferiors ())
6588 {
6589 if (get_remote_inferior (inf)->may_wildcard_vcont)
6590 {
6591 vcont_builder.push_action (ptid_t (inf->pid),
6592 false, GDB_SIGNAL_0);
6593 }
6594 }
6595 }
6596 }
6597
6598 vcont_builder.flush ();
6599 }
6600
6601 \f
6602
6603 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6604 thread, all threads of a remote process, or all threads of all
6605 processes. */
6606
6607 void
6608 remote_target::remote_stop_ns (ptid_t ptid)
6609 {
6610 struct remote_state *rs = get_remote_state ();
6611 char *p = rs->buf;
6612 char *endp = rs->buf + get_remote_packet_size ();
6613
6614 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6615 remote_vcont_probe ();
6616
6617 if (!rs->supports_vCont.t)
6618 error (_("Remote server does not support stopping threads"));
6619
6620 if (ptid == minus_one_ptid
6621 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6622 p += xsnprintf (p, endp - p, "vCont;t");
6623 else
6624 {
6625 ptid_t nptid;
6626
6627 p += xsnprintf (p, endp - p, "vCont;t:");
6628
6629 if (ptid.is_pid ())
6630 /* All (-1) threads of process. */
6631 nptid = ptid_t (ptid.pid (), -1, 0);
6632 else
6633 {
6634 /* Small optimization: if we already have a stop reply for
6635 this thread, no use in telling the stub we want this
6636 stopped. */
6637 if (peek_stop_reply (ptid))
6638 return;
6639
6640 nptid = ptid;
6641 }
6642
6643 write_ptid (p, endp, nptid);
6644 }
6645
6646 /* In non-stop, we get an immediate OK reply. The stop reply will
6647 come in asynchronously by notification. */
6648 putpkt (rs->buf);
6649 getpkt (&rs->buf, &rs->buf_size, 0);
6650 if (strcmp (rs->buf, "OK") != 0)
6651 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6652 }
6653
6654 /* All-stop version of target_interrupt. Sends a break or a ^C to
6655 interrupt the remote target. It is undefined which thread of which
6656 process reports the interrupt. */
6657
6658 void
6659 remote_target::remote_interrupt_as ()
6660 {
6661 struct remote_state *rs = get_remote_state ();
6662
6663 rs->ctrlc_pending_p = 1;
6664
6665 /* If the inferior is stopped already, but the core didn't know
6666 about it yet, just ignore the request. The cached wait status
6667 will be collected in remote_wait. */
6668 if (rs->cached_wait_status)
6669 return;
6670
6671 /* Send interrupt_sequence to remote target. */
6672 send_interrupt_sequence ();
6673 }
6674
6675 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6676 the remote target. It is undefined which thread of which process
6677 reports the interrupt. Throws an error if the packet is not
6678 supported by the server. */
6679
6680 void
6681 remote_target::remote_interrupt_ns ()
6682 {
6683 struct remote_state *rs = get_remote_state ();
6684 char *p = rs->buf;
6685 char *endp = rs->buf + get_remote_packet_size ();
6686
6687 xsnprintf (p, endp - p, "vCtrlC");
6688
6689 /* In non-stop, we get an immediate OK reply. The stop reply will
6690 come in asynchronously by notification. */
6691 putpkt (rs->buf);
6692 getpkt (&rs->buf, &rs->buf_size, 0);
6693
6694 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6695 {
6696 case PACKET_OK:
6697 break;
6698 case PACKET_UNKNOWN:
6699 error (_("No support for interrupting the remote target."));
6700 case PACKET_ERROR:
6701 error (_("Interrupting target failed: %s"), rs->buf);
6702 }
6703 }
6704
6705 /* Implement the to_stop function for the remote targets. */
6706
6707 void
6708 remote_target::stop (ptid_t ptid)
6709 {
6710 if (remote_debug)
6711 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6712
6713 if (target_is_non_stop_p ())
6714 remote_stop_ns (ptid);
6715 else
6716 {
6717 /* We don't currently have a way to transparently pause the
6718 remote target in all-stop mode. Interrupt it instead. */
6719 remote_interrupt_as ();
6720 }
6721 }
6722
6723 /* Implement the to_interrupt function for the remote targets. */
6724
6725 void
6726 remote_target::interrupt ()
6727 {
6728 if (remote_debug)
6729 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6730
6731 if (target_is_non_stop_p ())
6732 remote_interrupt_ns ();
6733 else
6734 remote_interrupt_as ();
6735 }
6736
6737 /* Implement the to_pass_ctrlc function for the remote targets. */
6738
6739 void
6740 remote_target::pass_ctrlc ()
6741 {
6742 struct remote_state *rs = get_remote_state ();
6743
6744 if (remote_debug)
6745 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6746
6747 /* If we're starting up, we're not fully synced yet. Quit
6748 immediately. */
6749 if (rs->starting_up)
6750 quit ();
6751 /* If ^C has already been sent once, offer to disconnect. */
6752 else if (rs->ctrlc_pending_p)
6753 interrupt_query ();
6754 else
6755 target_interrupt ();
6756 }
6757
6758 /* Ask the user what to do when an interrupt is received. */
6759
6760 void
6761 remote_target::interrupt_query ()
6762 {
6763 struct remote_state *rs = get_remote_state ();
6764
6765 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6766 {
6767 if (query (_("The target is not responding to interrupt requests.\n"
6768 "Stop debugging it? ")))
6769 {
6770 remote_unpush_target ();
6771 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6772 }
6773 }
6774 else
6775 {
6776 if (query (_("Interrupted while waiting for the program.\n"
6777 "Give up waiting? ")))
6778 quit ();
6779 }
6780 }
6781
6782 /* Enable/disable target terminal ownership. Most targets can use
6783 terminal groups to control terminal ownership. Remote targets are
6784 different in that explicit transfer of ownership to/from GDB/target
6785 is required. */
6786
6787 void
6788 remote_target::terminal_inferior ()
6789 {
6790 /* NOTE: At this point we could also register our selves as the
6791 recipient of all input. Any characters typed could then be
6792 passed on down to the target. */
6793 }
6794
6795 void
6796 remote_target::terminal_ours ()
6797 {
6798 }
6799
6800 static void
6801 remote_console_output (char *msg)
6802 {
6803 char *p;
6804
6805 for (p = msg; p[0] && p[1]; p += 2)
6806 {
6807 char tb[2];
6808 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6809
6810 tb[0] = c;
6811 tb[1] = 0;
6812 fputs_unfiltered (tb, gdb_stdtarg);
6813 }
6814 gdb_flush (gdb_stdtarg);
6815 }
6816
6817 DEF_VEC_O(cached_reg_t);
6818
6819 typedef struct stop_reply
6820 {
6821 struct notif_event base;
6822
6823 /* The identifier of the thread about this event */
6824 ptid_t ptid;
6825
6826 /* The remote state this event is associated with. When the remote
6827 connection, represented by a remote_state object, is closed,
6828 all the associated stop_reply events should be released. */
6829 struct remote_state *rs;
6830
6831 struct target_waitstatus ws;
6832
6833 /* The architecture associated with the expedited registers. */
6834 gdbarch *arch;
6835
6836 /* Expedited registers. This makes remote debugging a bit more
6837 efficient for those targets that provide critical registers as
6838 part of their normal status mechanism (as another roundtrip to
6839 fetch them is avoided). */
6840 VEC(cached_reg_t) *regcache;
6841
6842 enum target_stop_reason stop_reason;
6843
6844 CORE_ADDR watch_data_address;
6845
6846 int core;
6847 } *stop_reply_p;
6848
6849 static void
6850 stop_reply_xfree (struct stop_reply *r)
6851 {
6852 notif_event_xfree ((struct notif_event *) r);
6853 }
6854
6855 /* Return the length of the stop reply queue. */
6856
6857 int
6858 remote_target::stop_reply_queue_length ()
6859 {
6860 remote_state *rs = get_remote_state ();
6861 return rs->stop_reply_queue.size ();
6862 }
6863
6864 void
6865 remote_notif_stop_parse (remote_target *remote,
6866 struct notif_client *self, char *buf,
6867 struct notif_event *event)
6868 {
6869 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6870 }
6871
6872 static void
6873 remote_notif_stop_ack (remote_target *remote,
6874 struct notif_client *self, char *buf,
6875 struct notif_event *event)
6876 {
6877 struct stop_reply *stop_reply = (struct stop_reply *) event;
6878
6879 /* acknowledge */
6880 putpkt (remote, self->ack_command);
6881
6882 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6883 {
6884 /* We got an unknown stop reply. */
6885 error (_("Unknown stop reply"));
6886 }
6887
6888 remote->push_stop_reply (stop_reply);
6889 }
6890
6891 static int
6892 remote_notif_stop_can_get_pending_events (remote_target *remote,
6893 struct notif_client *self)
6894 {
6895 /* We can't get pending events in remote_notif_process for
6896 notification stop, and we have to do this in remote_wait_ns
6897 instead. If we fetch all queued events from stub, remote stub
6898 may exit and we have no chance to process them back in
6899 remote_wait_ns. */
6900 remote_state *rs = remote->get_remote_state ();
6901 mark_async_event_handler (rs->remote_async_inferior_event_token);
6902 return 0;
6903 }
6904
6905 static void
6906 stop_reply_dtr (struct notif_event *event)
6907 {
6908 struct stop_reply *r = (struct stop_reply *) event;
6909 cached_reg_t *reg;
6910 int ix;
6911
6912 for (ix = 0;
6913 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6914 ix++)
6915 xfree (reg->data);
6916
6917 VEC_free (cached_reg_t, r->regcache);
6918 }
6919
6920 static struct notif_event *
6921 remote_notif_stop_alloc_reply (void)
6922 {
6923 /* We cast to a pointer to the "base class". */
6924 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6925
6926 r->dtr = stop_reply_dtr;
6927
6928 return r;
6929 }
6930
6931 /* A client of notification Stop. */
6932
6933 struct notif_client notif_client_stop =
6934 {
6935 "Stop",
6936 "vStopped",
6937 remote_notif_stop_parse,
6938 remote_notif_stop_ack,
6939 remote_notif_stop_can_get_pending_events,
6940 remote_notif_stop_alloc_reply,
6941 REMOTE_NOTIF_STOP,
6942 };
6943
6944 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6945 the pid of the process that owns the threads we want to check, or
6946 -1 if we want to check all threads. */
6947
6948 static int
6949 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6950 ptid_t thread_ptid)
6951 {
6952 if (ws->kind == TARGET_WAITKIND_FORKED
6953 || ws->kind == TARGET_WAITKIND_VFORKED)
6954 {
6955 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6956 return 1;
6957 }
6958
6959 return 0;
6960 }
6961
6962 /* Return the thread's pending status used to determine whether the
6963 thread is a fork parent stopped at a fork event. */
6964
6965 static struct target_waitstatus *
6966 thread_pending_fork_status (struct thread_info *thread)
6967 {
6968 if (thread->suspend.waitstatus_pending_p)
6969 return &thread->suspend.waitstatus;
6970 else
6971 return &thread->pending_follow;
6972 }
6973
6974 /* Determine if THREAD is a pending fork parent thread. */
6975
6976 static int
6977 is_pending_fork_parent_thread (struct thread_info *thread)
6978 {
6979 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6980 int pid = -1;
6981
6982 return is_pending_fork_parent (ws, pid, thread->ptid);
6983 }
6984
6985 /* If CONTEXT contains any fork child threads that have not been
6986 reported yet, remove them from the CONTEXT list. If such a
6987 thread exists it is because we are stopped at a fork catchpoint
6988 and have not yet called follow_fork, which will set up the
6989 host-side data structures for the new process. */
6990
6991 void
6992 remote_target::remove_new_fork_children (threads_listing_context *context)
6993 {
6994 int pid = -1;
6995 struct notif_client *notif = &notif_client_stop;
6996
6997 /* For any threads stopped at a fork event, remove the corresponding
6998 fork child threads from the CONTEXT list. */
6999 for (thread_info *thread : all_non_exited_threads ())
7000 {
7001 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7002
7003 if (is_pending_fork_parent (ws, pid, thread->ptid))
7004 context->remove_thread (ws->value.related_pid);
7005 }
7006
7007 /* Check for any pending fork events (not reported or processed yet)
7008 in process PID and remove those fork child threads from the
7009 CONTEXT list as well. */
7010 remote_notif_get_pending_events (notif);
7011 for (auto &event : get_remote_state ()->stop_reply_queue)
7012 if (event->ws.kind == TARGET_WAITKIND_FORKED
7013 || event->ws.kind == TARGET_WAITKIND_VFORKED
7014 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7015 context->remove_thread (event->ws.value.related_pid);
7016 }
7017
7018 /* Check whether any event pending in the vStopped queue would prevent
7019 a global or process wildcard vCont action. Clear
7020 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7021 and clear the event inferior's may_wildcard_vcont flag if we can't
7022 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7023
7024 void
7025 remote_target::check_pending_events_prevent_wildcard_vcont
7026 (int *may_global_wildcard)
7027 {
7028 struct notif_client *notif = &notif_client_stop;
7029
7030 remote_notif_get_pending_events (notif);
7031 for (auto &event : get_remote_state ()->stop_reply_queue)
7032 {
7033 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7034 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7035 continue;
7036
7037 if (event->ws.kind == TARGET_WAITKIND_FORKED
7038 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7039 *may_global_wildcard = 0;
7040
7041 struct inferior *inf = find_inferior_ptid (event->ptid);
7042
7043 /* This may be the first time we heard about this process.
7044 Regardless, we must not do a global wildcard resume, otherwise
7045 we'd resume this process too. */
7046 *may_global_wildcard = 0;
7047 if (inf != NULL)
7048 get_remote_inferior (inf)->may_wildcard_vcont = false;
7049 }
7050 }
7051
7052 /* Discard all pending stop replies of inferior INF. */
7053
7054 void
7055 remote_target::discard_pending_stop_replies (struct inferior *inf)
7056 {
7057 struct stop_reply *reply;
7058 struct remote_state *rs = get_remote_state ();
7059 struct remote_notif_state *rns = rs->notif_state;
7060
7061 /* This function can be notified when an inferior exists. When the
7062 target is not remote, the notification state is NULL. */
7063 if (rs->remote_desc == NULL)
7064 return;
7065
7066 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7067
7068 /* Discard the in-flight notification. */
7069 if (reply != NULL && reply->ptid.pid () == inf->pid)
7070 {
7071 stop_reply_xfree (reply);
7072 rns->pending_event[notif_client_stop.id] = NULL;
7073 }
7074
7075 /* Discard the stop replies we have already pulled with
7076 vStopped. */
7077 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7078 rs->stop_reply_queue.end (),
7079 [=] (const stop_reply_up &event)
7080 {
7081 return event->ptid.pid () == inf->pid;
7082 });
7083 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7084 }
7085
7086 /* Discard the stop replies for RS in stop_reply_queue. */
7087
7088 void
7089 remote_target::discard_pending_stop_replies_in_queue ()
7090 {
7091 remote_state *rs = get_remote_state ();
7092
7093 /* Discard the stop replies we have already pulled with
7094 vStopped. */
7095 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7096 rs->stop_reply_queue.end (),
7097 [=] (const stop_reply_up &event)
7098 {
7099 return event->rs == rs;
7100 });
7101 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7102 }
7103
7104 /* Remove the first reply in 'stop_reply_queue' which matches
7105 PTID. */
7106
7107 struct stop_reply *
7108 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7109 {
7110 remote_state *rs = get_remote_state ();
7111
7112 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7113 rs->stop_reply_queue.end (),
7114 [=] (const stop_reply_up &event)
7115 {
7116 return event->ptid.matches (ptid);
7117 });
7118 struct stop_reply *result;
7119 if (iter == rs->stop_reply_queue.end ())
7120 result = nullptr;
7121 else
7122 {
7123 result = iter->release ();
7124 rs->stop_reply_queue.erase (iter);
7125 }
7126
7127 if (notif_debug)
7128 fprintf_unfiltered (gdb_stdlog,
7129 "notif: discard queued event: 'Stop' in %s\n",
7130 target_pid_to_str (ptid));
7131
7132 return result;
7133 }
7134
7135 /* Look for a queued stop reply belonging to PTID. If one is found,
7136 remove it from the queue, and return it. Returns NULL if none is
7137 found. If there are still queued events left to process, tell the
7138 event loop to get back to target_wait soon. */
7139
7140 struct stop_reply *
7141 remote_target::queued_stop_reply (ptid_t ptid)
7142 {
7143 remote_state *rs = get_remote_state ();
7144 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7145
7146 if (!rs->stop_reply_queue.empty ())
7147 {
7148 /* There's still at least an event left. */
7149 mark_async_event_handler (rs->remote_async_inferior_event_token);
7150 }
7151
7152 return r;
7153 }
7154
7155 /* Push a fully parsed stop reply in the stop reply queue. Since we
7156 know that we now have at least one queued event left to pass to the
7157 core side, tell the event loop to get back to target_wait soon. */
7158
7159 void
7160 remote_target::push_stop_reply (struct stop_reply *new_event)
7161 {
7162 remote_state *rs = get_remote_state ();
7163 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7164
7165 if (notif_debug)
7166 fprintf_unfiltered (gdb_stdlog,
7167 "notif: push 'Stop' %s to queue %d\n",
7168 target_pid_to_str (new_event->ptid),
7169 int (rs->stop_reply_queue.size ()));
7170
7171 mark_async_event_handler (rs->remote_async_inferior_event_token);
7172 }
7173
7174 /* Returns true if we have a stop reply for PTID. */
7175
7176 int
7177 remote_target::peek_stop_reply (ptid_t ptid)
7178 {
7179 remote_state *rs = get_remote_state ();
7180 for (auto &event : rs->stop_reply_queue)
7181 if (ptid == event->ptid
7182 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7183 return 1;
7184 return 0;
7185 }
7186
7187 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7188 starting with P and ending with PEND matches PREFIX. */
7189
7190 static int
7191 strprefix (const char *p, const char *pend, const char *prefix)
7192 {
7193 for ( ; p < pend; p++, prefix++)
7194 if (*p != *prefix)
7195 return 0;
7196 return *prefix == '\0';
7197 }
7198
7199 /* Parse the stop reply in BUF. Either the function succeeds, and the
7200 result is stored in EVENT, or throws an error. */
7201
7202 void
7203 remote_target::remote_parse_stop_reply (char *buf, stop_reply *event)
7204 {
7205 remote_arch_state *rsa = NULL;
7206 ULONGEST addr;
7207 const char *p;
7208 int skipregs = 0;
7209
7210 event->ptid = null_ptid;
7211 event->rs = get_remote_state ();
7212 event->ws.kind = TARGET_WAITKIND_IGNORE;
7213 event->ws.value.integer = 0;
7214 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7215 event->regcache = NULL;
7216 event->core = -1;
7217
7218 switch (buf[0])
7219 {
7220 case 'T': /* Status with PC, SP, FP, ... */
7221 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7222 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7223 ss = signal number
7224 n... = register number
7225 r... = register contents
7226 */
7227
7228 p = &buf[3]; /* after Txx */
7229 while (*p)
7230 {
7231 const char *p1;
7232 int fieldsize;
7233
7234 p1 = strchr (p, ':');
7235 if (p1 == NULL)
7236 error (_("Malformed packet(a) (missing colon): %s\n\
7237 Packet: '%s'\n"),
7238 p, buf);
7239 if (p == p1)
7240 error (_("Malformed packet(a) (missing register number): %s\n\
7241 Packet: '%s'\n"),
7242 p, buf);
7243
7244 /* Some "registers" are actually extended stop information.
7245 Note if you're adding a new entry here: GDB 7.9 and
7246 earlier assume that all register "numbers" that start
7247 with an hex digit are real register numbers. Make sure
7248 the server only sends such a packet if it knows the
7249 client understands it. */
7250
7251 if (strprefix (p, p1, "thread"))
7252 event->ptid = read_ptid (++p1, &p);
7253 else if (strprefix (p, p1, "syscall_entry"))
7254 {
7255 ULONGEST sysno;
7256
7257 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7258 p = unpack_varlen_hex (++p1, &sysno);
7259 event->ws.value.syscall_number = (int) sysno;
7260 }
7261 else if (strprefix (p, p1, "syscall_return"))
7262 {
7263 ULONGEST sysno;
7264
7265 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7266 p = unpack_varlen_hex (++p1, &sysno);
7267 event->ws.value.syscall_number = (int) sysno;
7268 }
7269 else if (strprefix (p, p1, "watch")
7270 || strprefix (p, p1, "rwatch")
7271 || strprefix (p, p1, "awatch"))
7272 {
7273 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7274 p = unpack_varlen_hex (++p1, &addr);
7275 event->watch_data_address = (CORE_ADDR) addr;
7276 }
7277 else if (strprefix (p, p1, "swbreak"))
7278 {
7279 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7280
7281 /* Make sure the stub doesn't forget to indicate support
7282 with qSupported. */
7283 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7284 error (_("Unexpected swbreak stop reason"));
7285
7286 /* The value part is documented as "must be empty",
7287 though we ignore it, in case we ever decide to make
7288 use of it in a backward compatible way. */
7289 p = strchrnul (p1 + 1, ';');
7290 }
7291 else if (strprefix (p, p1, "hwbreak"))
7292 {
7293 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7294
7295 /* Make sure the stub doesn't forget to indicate support
7296 with qSupported. */
7297 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7298 error (_("Unexpected hwbreak stop reason"));
7299
7300 /* See above. */
7301 p = strchrnul (p1 + 1, ';');
7302 }
7303 else if (strprefix (p, p1, "library"))
7304 {
7305 event->ws.kind = TARGET_WAITKIND_LOADED;
7306 p = strchrnul (p1 + 1, ';');
7307 }
7308 else if (strprefix (p, p1, "replaylog"))
7309 {
7310 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7311 /* p1 will indicate "begin" or "end", but it makes
7312 no difference for now, so ignore it. */
7313 p = strchrnul (p1 + 1, ';');
7314 }
7315 else if (strprefix (p, p1, "core"))
7316 {
7317 ULONGEST c;
7318
7319 p = unpack_varlen_hex (++p1, &c);
7320 event->core = c;
7321 }
7322 else if (strprefix (p, p1, "fork"))
7323 {
7324 event->ws.value.related_pid = read_ptid (++p1, &p);
7325 event->ws.kind = TARGET_WAITKIND_FORKED;
7326 }
7327 else if (strprefix (p, p1, "vfork"))
7328 {
7329 event->ws.value.related_pid = read_ptid (++p1, &p);
7330 event->ws.kind = TARGET_WAITKIND_VFORKED;
7331 }
7332 else if (strprefix (p, p1, "vforkdone"))
7333 {
7334 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7335 p = strchrnul (p1 + 1, ';');
7336 }
7337 else if (strprefix (p, p1, "exec"))
7338 {
7339 ULONGEST ignored;
7340 char pathname[PATH_MAX];
7341 int pathlen;
7342
7343 /* Determine the length of the execd pathname. */
7344 p = unpack_varlen_hex (++p1, &ignored);
7345 pathlen = (p - p1) / 2;
7346
7347 /* Save the pathname for event reporting and for
7348 the next run command. */
7349 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7350 pathname[pathlen] = '\0';
7351
7352 /* This is freed during event handling. */
7353 event->ws.value.execd_pathname = xstrdup (pathname);
7354 event->ws.kind = TARGET_WAITKIND_EXECD;
7355
7356 /* Skip the registers included in this packet, since
7357 they may be for an architecture different from the
7358 one used by the original program. */
7359 skipregs = 1;
7360 }
7361 else if (strprefix (p, p1, "create"))
7362 {
7363 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7364 p = strchrnul (p1 + 1, ';');
7365 }
7366 else
7367 {
7368 ULONGEST pnum;
7369 const char *p_temp;
7370
7371 if (skipregs)
7372 {
7373 p = strchrnul (p1 + 1, ';');
7374 p++;
7375 continue;
7376 }
7377
7378 /* Maybe a real ``P'' register number. */
7379 p_temp = unpack_varlen_hex (p, &pnum);
7380 /* If the first invalid character is the colon, we got a
7381 register number. Otherwise, it's an unknown stop
7382 reason. */
7383 if (p_temp == p1)
7384 {
7385 /* If we haven't parsed the event's thread yet, find
7386 it now, in order to find the architecture of the
7387 reported expedited registers. */
7388 if (event->ptid == null_ptid)
7389 {
7390 const char *thr = strstr (p1 + 1, ";thread:");
7391 if (thr != NULL)
7392 event->ptid = read_ptid (thr + strlen (";thread:"),
7393 NULL);
7394 else
7395 {
7396 /* Either the current thread hasn't changed,
7397 or the inferior is not multi-threaded.
7398 The event must be for the thread we last
7399 set as (or learned as being) current. */
7400 event->ptid = event->rs->general_thread;
7401 }
7402 }
7403
7404 if (rsa == NULL)
7405 {
7406 inferior *inf = (event->ptid == null_ptid
7407 ? NULL
7408 : find_inferior_ptid (event->ptid));
7409 /* If this is the first time we learn anything
7410 about this process, skip the registers
7411 included in this packet, since we don't yet
7412 know which architecture to use to parse them.
7413 We'll determine the architecture later when
7414 we process the stop reply and retrieve the
7415 target description, via
7416 remote_notice_new_inferior ->
7417 post_create_inferior. */
7418 if (inf == NULL)
7419 {
7420 p = strchrnul (p1 + 1, ';');
7421 p++;
7422 continue;
7423 }
7424
7425 event->arch = inf->gdbarch;
7426 rsa = event->rs->get_remote_arch_state (event->arch);
7427 }
7428
7429 packet_reg *reg
7430 = packet_reg_from_pnum (event->arch, rsa, pnum);
7431 cached_reg_t cached_reg;
7432
7433 if (reg == NULL)
7434 error (_("Remote sent bad register number %s: %s\n\
7435 Packet: '%s'\n"),
7436 hex_string (pnum), p, buf);
7437
7438 cached_reg.num = reg->regnum;
7439 cached_reg.data = (gdb_byte *)
7440 xmalloc (register_size (event->arch, reg->regnum));
7441
7442 p = p1 + 1;
7443 fieldsize = hex2bin (p, cached_reg.data,
7444 register_size (event->arch, reg->regnum));
7445 p += 2 * fieldsize;
7446 if (fieldsize < register_size (event->arch, reg->regnum))
7447 warning (_("Remote reply is too short: %s"), buf);
7448
7449 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7450 }
7451 else
7452 {
7453 /* Not a number. Silently skip unknown optional
7454 info. */
7455 p = strchrnul (p1 + 1, ';');
7456 }
7457 }
7458
7459 if (*p != ';')
7460 error (_("Remote register badly formatted: %s\nhere: %s"),
7461 buf, p);
7462 ++p;
7463 }
7464
7465 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7466 break;
7467
7468 /* fall through */
7469 case 'S': /* Old style status, just signal only. */
7470 {
7471 int sig;
7472
7473 event->ws.kind = TARGET_WAITKIND_STOPPED;
7474 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7475 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7476 event->ws.value.sig = (enum gdb_signal) sig;
7477 else
7478 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7479 }
7480 break;
7481 case 'w': /* Thread exited. */
7482 {
7483 ULONGEST value;
7484
7485 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7486 p = unpack_varlen_hex (&buf[1], &value);
7487 event->ws.value.integer = value;
7488 if (*p != ';')
7489 error (_("stop reply packet badly formatted: %s"), buf);
7490 event->ptid = read_ptid (++p, NULL);
7491 break;
7492 }
7493 case 'W': /* Target exited. */
7494 case 'X':
7495 {
7496 int pid;
7497 ULONGEST value;
7498
7499 /* GDB used to accept only 2 hex chars here. Stubs should
7500 only send more if they detect GDB supports multi-process
7501 support. */
7502 p = unpack_varlen_hex (&buf[1], &value);
7503
7504 if (buf[0] == 'W')
7505 {
7506 /* The remote process exited. */
7507 event->ws.kind = TARGET_WAITKIND_EXITED;
7508 event->ws.value.integer = value;
7509 }
7510 else
7511 {
7512 /* The remote process exited with a signal. */
7513 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7514 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7515 event->ws.value.sig = (enum gdb_signal) value;
7516 else
7517 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7518 }
7519
7520 /* If no process is specified, assume inferior_ptid. */
7521 pid = inferior_ptid.pid ();
7522 if (*p == '\0')
7523 ;
7524 else if (*p == ';')
7525 {
7526 p++;
7527
7528 if (*p == '\0')
7529 ;
7530 else if (startswith (p, "process:"))
7531 {
7532 ULONGEST upid;
7533
7534 p += sizeof ("process:") - 1;
7535 unpack_varlen_hex (p, &upid);
7536 pid = upid;
7537 }
7538 else
7539 error (_("unknown stop reply packet: %s"), buf);
7540 }
7541 else
7542 error (_("unknown stop reply packet: %s"), buf);
7543 event->ptid = ptid_t (pid);
7544 }
7545 break;
7546 case 'N':
7547 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7548 event->ptid = minus_one_ptid;
7549 break;
7550 }
7551
7552 if (target_is_non_stop_p () && event->ptid == null_ptid)
7553 error (_("No process or thread specified in stop reply: %s"), buf);
7554 }
7555
7556 /* When the stub wants to tell GDB about a new notification reply, it
7557 sends a notification (%Stop, for example). Those can come it at
7558 any time, hence, we have to make sure that any pending
7559 putpkt/getpkt sequence we're making is finished, before querying
7560 the stub for more events with the corresponding ack command
7561 (vStopped, for example). E.g., if we started a vStopped sequence
7562 immediately upon receiving the notification, something like this
7563 could happen:
7564
7565 1.1) --> Hg 1
7566 1.2) <-- OK
7567 1.3) --> g
7568 1.4) <-- %Stop
7569 1.5) --> vStopped
7570 1.6) <-- (registers reply to step #1.3)
7571
7572 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7573 query.
7574
7575 To solve this, whenever we parse a %Stop notification successfully,
7576 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7577 doing whatever we were doing:
7578
7579 2.1) --> Hg 1
7580 2.2) <-- OK
7581 2.3) --> g
7582 2.4) <-- %Stop
7583 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7584 2.5) <-- (registers reply to step #2.3)
7585
7586 Eventualy after step #2.5, we return to the event loop, which
7587 notices there's an event on the
7588 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7589 associated callback --- the function below. At this point, we're
7590 always safe to start a vStopped sequence. :
7591
7592 2.6) --> vStopped
7593 2.7) <-- T05 thread:2
7594 2.8) --> vStopped
7595 2.9) --> OK
7596 */
7597
7598 void
7599 remote_target::remote_notif_get_pending_events (notif_client *nc)
7600 {
7601 struct remote_state *rs = get_remote_state ();
7602
7603 if (rs->notif_state->pending_event[nc->id] != NULL)
7604 {
7605 if (notif_debug)
7606 fprintf_unfiltered (gdb_stdlog,
7607 "notif: process: '%s' ack pending event\n",
7608 nc->name);
7609
7610 /* acknowledge */
7611 nc->ack (this, nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7612 rs->notif_state->pending_event[nc->id] = NULL;
7613
7614 while (1)
7615 {
7616 getpkt (&rs->buf, &rs->buf_size, 0);
7617 if (strcmp (rs->buf, "OK") == 0)
7618 break;
7619 else
7620 remote_notif_ack (this, nc, rs->buf);
7621 }
7622 }
7623 else
7624 {
7625 if (notif_debug)
7626 fprintf_unfiltered (gdb_stdlog,
7627 "notif: process: '%s' no pending reply\n",
7628 nc->name);
7629 }
7630 }
7631
7632 /* Wrapper around remote_target::remote_notif_get_pending_events to
7633 avoid having to export the whole remote_target class. */
7634
7635 void
7636 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7637 {
7638 remote->remote_notif_get_pending_events (nc);
7639 }
7640
7641 /* Called when it is decided that STOP_REPLY holds the info of the
7642 event that is to be returned to the core. This function always
7643 destroys STOP_REPLY. */
7644
7645 ptid_t
7646 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7647 struct target_waitstatus *status)
7648 {
7649 ptid_t ptid;
7650
7651 *status = stop_reply->ws;
7652 ptid = stop_reply->ptid;
7653
7654 /* If no thread/process was reported by the stub, assume the current
7655 inferior. */
7656 if (ptid == null_ptid)
7657 ptid = inferior_ptid;
7658
7659 if (status->kind != TARGET_WAITKIND_EXITED
7660 && status->kind != TARGET_WAITKIND_SIGNALLED
7661 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7662 {
7663 /* Expedited registers. */
7664 if (stop_reply->regcache)
7665 {
7666 struct regcache *regcache
7667 = get_thread_arch_regcache (ptid, stop_reply->arch);
7668 cached_reg_t *reg;
7669 int ix;
7670
7671 for (ix = 0;
7672 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7673 ix++)
7674 {
7675 regcache->raw_supply (reg->num, reg->data);
7676 xfree (reg->data);
7677 }
7678
7679 VEC_free (cached_reg_t, stop_reply->regcache);
7680 }
7681
7682 remote_notice_new_inferior (ptid, 0);
7683 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7684 remote_thr->core = stop_reply->core;
7685 remote_thr->stop_reason = stop_reply->stop_reason;
7686 remote_thr->watch_data_address = stop_reply->watch_data_address;
7687 remote_thr->vcont_resumed = 0;
7688 }
7689
7690 stop_reply_xfree (stop_reply);
7691 return ptid;
7692 }
7693
7694 /* The non-stop mode version of target_wait. */
7695
7696 ptid_t
7697 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7698 {
7699 struct remote_state *rs = get_remote_state ();
7700 struct stop_reply *stop_reply;
7701 int ret;
7702 int is_notif = 0;
7703
7704 /* If in non-stop mode, get out of getpkt even if a
7705 notification is received. */
7706
7707 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7708 0 /* forever */, &is_notif);
7709 while (1)
7710 {
7711 if (ret != -1 && !is_notif)
7712 switch (rs->buf[0])
7713 {
7714 case 'E': /* Error of some sort. */
7715 /* We're out of sync with the target now. Did it continue
7716 or not? We can't tell which thread it was in non-stop,
7717 so just ignore this. */
7718 warning (_("Remote failure reply: %s"), rs->buf);
7719 break;
7720 case 'O': /* Console output. */
7721 remote_console_output (rs->buf + 1);
7722 break;
7723 default:
7724 warning (_("Invalid remote reply: %s"), rs->buf);
7725 break;
7726 }
7727
7728 /* Acknowledge a pending stop reply that may have arrived in the
7729 mean time. */
7730 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7731 remote_notif_get_pending_events (&notif_client_stop);
7732
7733 /* If indeed we noticed a stop reply, we're done. */
7734 stop_reply = queued_stop_reply (ptid);
7735 if (stop_reply != NULL)
7736 return process_stop_reply (stop_reply, status);
7737
7738 /* Still no event. If we're just polling for an event, then
7739 return to the event loop. */
7740 if (options & TARGET_WNOHANG)
7741 {
7742 status->kind = TARGET_WAITKIND_IGNORE;
7743 return minus_one_ptid;
7744 }
7745
7746 /* Otherwise do a blocking wait. */
7747 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7748 1 /* forever */, &is_notif);
7749 }
7750 }
7751
7752 /* Wait until the remote machine stops, then return, storing status in
7753 STATUS just as `wait' would. */
7754
7755 ptid_t
7756 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7757 {
7758 struct remote_state *rs = get_remote_state ();
7759 ptid_t event_ptid = null_ptid;
7760 char *buf;
7761 struct stop_reply *stop_reply;
7762
7763 again:
7764
7765 status->kind = TARGET_WAITKIND_IGNORE;
7766 status->value.integer = 0;
7767
7768 stop_reply = queued_stop_reply (ptid);
7769 if (stop_reply != NULL)
7770 return process_stop_reply (stop_reply, status);
7771
7772 if (rs->cached_wait_status)
7773 /* Use the cached wait status, but only once. */
7774 rs->cached_wait_status = 0;
7775 else
7776 {
7777 int ret;
7778 int is_notif;
7779 int forever = ((options & TARGET_WNOHANG) == 0
7780 && rs->wait_forever_enabled_p);
7781
7782 if (!rs->waiting_for_stop_reply)
7783 {
7784 status->kind = TARGET_WAITKIND_NO_RESUMED;
7785 return minus_one_ptid;
7786 }
7787
7788 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7789 _never_ wait for ever -> test on target_is_async_p().
7790 However, before we do that we need to ensure that the caller
7791 knows how to take the target into/out of async mode. */
7792 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7793 forever, &is_notif);
7794
7795 /* GDB gets a notification. Return to core as this event is
7796 not interesting. */
7797 if (ret != -1 && is_notif)
7798 return minus_one_ptid;
7799
7800 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7801 return minus_one_ptid;
7802 }
7803
7804 buf = rs->buf;
7805
7806 /* Assume that the target has acknowledged Ctrl-C unless we receive
7807 an 'F' or 'O' packet. */
7808 if (buf[0] != 'F' && buf[0] != 'O')
7809 rs->ctrlc_pending_p = 0;
7810
7811 switch (buf[0])
7812 {
7813 case 'E': /* Error of some sort. */
7814 /* We're out of sync with the target now. Did it continue or
7815 not? Not is more likely, so report a stop. */
7816 rs->waiting_for_stop_reply = 0;
7817
7818 warning (_("Remote failure reply: %s"), buf);
7819 status->kind = TARGET_WAITKIND_STOPPED;
7820 status->value.sig = GDB_SIGNAL_0;
7821 break;
7822 case 'F': /* File-I/O request. */
7823 /* GDB may access the inferior memory while handling the File-I/O
7824 request, but we don't want GDB accessing memory while waiting
7825 for a stop reply. See the comments in putpkt_binary. Set
7826 waiting_for_stop_reply to 0 temporarily. */
7827 rs->waiting_for_stop_reply = 0;
7828 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7829 rs->ctrlc_pending_p = 0;
7830 /* GDB handled the File-I/O request, and the target is running
7831 again. Keep waiting for events. */
7832 rs->waiting_for_stop_reply = 1;
7833 break;
7834 case 'N': case 'T': case 'S': case 'X': case 'W':
7835 {
7836 /* There is a stop reply to handle. */
7837 rs->waiting_for_stop_reply = 0;
7838
7839 stop_reply
7840 = (struct stop_reply *) remote_notif_parse (this,
7841 &notif_client_stop,
7842 rs->buf);
7843
7844 event_ptid = process_stop_reply (stop_reply, status);
7845 break;
7846 }
7847 case 'O': /* Console output. */
7848 remote_console_output (buf + 1);
7849 break;
7850 case '\0':
7851 if (rs->last_sent_signal != GDB_SIGNAL_0)
7852 {
7853 /* Zero length reply means that we tried 'S' or 'C' and the
7854 remote system doesn't support it. */
7855 target_terminal::ours_for_output ();
7856 printf_filtered
7857 ("Can't send signals to this remote system. %s not sent.\n",
7858 gdb_signal_to_name (rs->last_sent_signal));
7859 rs->last_sent_signal = GDB_SIGNAL_0;
7860 target_terminal::inferior ();
7861
7862 strcpy (buf, rs->last_sent_step ? "s" : "c");
7863 putpkt (buf);
7864 break;
7865 }
7866 /* fallthrough */
7867 default:
7868 warning (_("Invalid remote reply: %s"), buf);
7869 break;
7870 }
7871
7872 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7873 return minus_one_ptid;
7874 else if (status->kind == TARGET_WAITKIND_IGNORE)
7875 {
7876 /* Nothing interesting happened. If we're doing a non-blocking
7877 poll, we're done. Otherwise, go back to waiting. */
7878 if (options & TARGET_WNOHANG)
7879 return minus_one_ptid;
7880 else
7881 goto again;
7882 }
7883 else if (status->kind != TARGET_WAITKIND_EXITED
7884 && status->kind != TARGET_WAITKIND_SIGNALLED)
7885 {
7886 if (event_ptid != null_ptid)
7887 record_currthread (rs, event_ptid);
7888 else
7889 event_ptid = inferior_ptid;
7890 }
7891 else
7892 /* A process exit. Invalidate our notion of current thread. */
7893 record_currthread (rs, minus_one_ptid);
7894
7895 return event_ptid;
7896 }
7897
7898 /* Wait until the remote machine stops, then return, storing status in
7899 STATUS just as `wait' would. */
7900
7901 ptid_t
7902 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7903 {
7904 ptid_t event_ptid;
7905
7906 if (target_is_non_stop_p ())
7907 event_ptid = wait_ns (ptid, status, options);
7908 else
7909 event_ptid = wait_as (ptid, status, options);
7910
7911 if (target_is_async_p ())
7912 {
7913 remote_state *rs = get_remote_state ();
7914
7915 /* If there are are events left in the queue tell the event loop
7916 to return here. */
7917 if (!rs->stop_reply_queue.empty ())
7918 mark_async_event_handler (rs->remote_async_inferior_event_token);
7919 }
7920
7921 return event_ptid;
7922 }
7923
7924 /* Fetch a single register using a 'p' packet. */
7925
7926 int
7927 remote_target::fetch_register_using_p (struct regcache *regcache,
7928 packet_reg *reg)
7929 {
7930 struct gdbarch *gdbarch = regcache->arch ();
7931 struct remote_state *rs = get_remote_state ();
7932 char *buf, *p;
7933 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7934 int i;
7935
7936 if (packet_support (PACKET_p) == PACKET_DISABLE)
7937 return 0;
7938
7939 if (reg->pnum == -1)
7940 return 0;
7941
7942 p = rs->buf;
7943 *p++ = 'p';
7944 p += hexnumstr (p, reg->pnum);
7945 *p++ = '\0';
7946 putpkt (rs->buf);
7947 getpkt (&rs->buf, &rs->buf_size, 0);
7948
7949 buf = rs->buf;
7950
7951 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7952 {
7953 case PACKET_OK:
7954 break;
7955 case PACKET_UNKNOWN:
7956 return 0;
7957 case PACKET_ERROR:
7958 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7959 gdbarch_register_name (regcache->arch (),
7960 reg->regnum),
7961 buf);
7962 }
7963
7964 /* If this register is unfetchable, tell the regcache. */
7965 if (buf[0] == 'x')
7966 {
7967 regcache->raw_supply (reg->regnum, NULL);
7968 return 1;
7969 }
7970
7971 /* Otherwise, parse and supply the value. */
7972 p = buf;
7973 i = 0;
7974 while (p[0] != 0)
7975 {
7976 if (p[1] == 0)
7977 error (_("fetch_register_using_p: early buf termination"));
7978
7979 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7980 p += 2;
7981 }
7982 regcache->raw_supply (reg->regnum, regp);
7983 return 1;
7984 }
7985
7986 /* Fetch the registers included in the target's 'g' packet. */
7987
7988 int
7989 remote_target::send_g_packet ()
7990 {
7991 struct remote_state *rs = get_remote_state ();
7992 int buf_len;
7993
7994 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7995 putpkt (rs->buf);
7996 getpkt (&rs->buf, &rs->buf_size, 0);
7997 if (packet_check_result (rs->buf) == PACKET_ERROR)
7998 error (_("Could not read registers; remote failure reply '%s'"),
7999 rs->buf);
8000
8001 /* We can get out of synch in various cases. If the first character
8002 in the buffer is not a hex character, assume that has happened
8003 and try to fetch another packet to read. */
8004 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8005 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8006 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8007 && rs->buf[0] != 'x') /* New: unavailable register value. */
8008 {
8009 if (remote_debug)
8010 fprintf_unfiltered (gdb_stdlog,
8011 "Bad register packet; fetching a new packet\n");
8012 getpkt (&rs->buf, &rs->buf_size, 0);
8013 }
8014
8015 buf_len = strlen (rs->buf);
8016
8017 /* Sanity check the received packet. */
8018 if (buf_len % 2 != 0)
8019 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
8020
8021 return buf_len / 2;
8022 }
8023
8024 void
8025 remote_target::process_g_packet (struct regcache *regcache)
8026 {
8027 struct gdbarch *gdbarch = regcache->arch ();
8028 struct remote_state *rs = get_remote_state ();
8029 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8030 int i, buf_len;
8031 char *p;
8032 char *regs;
8033
8034 buf_len = strlen (rs->buf);
8035
8036 /* Further sanity checks, with knowledge of the architecture. */
8037 if (buf_len > 2 * rsa->sizeof_g_packet)
8038 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8039 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
8040
8041 /* Save the size of the packet sent to us by the target. It is used
8042 as a heuristic when determining the max size of packets that the
8043 target can safely receive. */
8044 if (rsa->actual_register_packet_size == 0)
8045 rsa->actual_register_packet_size = buf_len;
8046
8047 /* If this is smaller than we guessed the 'g' packet would be,
8048 update our records. A 'g' reply that doesn't include a register's
8049 value implies either that the register is not available, or that
8050 the 'p' packet must be used. */
8051 if (buf_len < 2 * rsa->sizeof_g_packet)
8052 {
8053 long sizeof_g_packet = buf_len / 2;
8054
8055 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8056 {
8057 long offset = rsa->regs[i].offset;
8058 long reg_size = register_size (gdbarch, i);
8059
8060 if (rsa->regs[i].pnum == -1)
8061 continue;
8062
8063 if (offset >= sizeof_g_packet)
8064 rsa->regs[i].in_g_packet = 0;
8065 else if (offset + reg_size > sizeof_g_packet)
8066 error (_("Truncated register %d in remote 'g' packet"), i);
8067 else
8068 rsa->regs[i].in_g_packet = 1;
8069 }
8070
8071 /* Looks valid enough, we can assume this is the correct length
8072 for a 'g' packet. It's important not to adjust
8073 rsa->sizeof_g_packet if we have truncated registers otherwise
8074 this "if" won't be run the next time the method is called
8075 with a packet of the same size and one of the internal errors
8076 below will trigger instead. */
8077 rsa->sizeof_g_packet = sizeof_g_packet;
8078 }
8079
8080 regs = (char *) alloca (rsa->sizeof_g_packet);
8081
8082 /* Unimplemented registers read as all bits zero. */
8083 memset (regs, 0, rsa->sizeof_g_packet);
8084
8085 /* Reply describes registers byte by byte, each byte encoded as two
8086 hex characters. Suck them all up, then supply them to the
8087 register cacheing/storage mechanism. */
8088
8089 p = rs->buf;
8090 for (i = 0; i < rsa->sizeof_g_packet; i++)
8091 {
8092 if (p[0] == 0 || p[1] == 0)
8093 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8094 internal_error (__FILE__, __LINE__,
8095 _("unexpected end of 'g' packet reply"));
8096
8097 if (p[0] == 'x' && p[1] == 'x')
8098 regs[i] = 0; /* 'x' */
8099 else
8100 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8101 p += 2;
8102 }
8103
8104 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8105 {
8106 struct packet_reg *r = &rsa->regs[i];
8107 long reg_size = register_size (gdbarch, i);
8108
8109 if (r->in_g_packet)
8110 {
8111 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
8112 /* This shouldn't happen - we adjusted in_g_packet above. */
8113 internal_error (__FILE__, __LINE__,
8114 _("unexpected end of 'g' packet reply"));
8115 else if (rs->buf[r->offset * 2] == 'x')
8116 {
8117 gdb_assert (r->offset * 2 < strlen (rs->buf));
8118 /* The register isn't available, mark it as such (at
8119 the same time setting the value to zero). */
8120 regcache->raw_supply (r->regnum, NULL);
8121 }
8122 else
8123 regcache->raw_supply (r->regnum, regs + r->offset);
8124 }
8125 }
8126 }
8127
8128 void
8129 remote_target::fetch_registers_using_g (struct regcache *regcache)
8130 {
8131 send_g_packet ();
8132 process_g_packet (regcache);
8133 }
8134
8135 /* Make the remote selected traceframe match GDB's selected
8136 traceframe. */
8137
8138 void
8139 remote_target::set_remote_traceframe ()
8140 {
8141 int newnum;
8142 struct remote_state *rs = get_remote_state ();
8143
8144 if (rs->remote_traceframe_number == get_traceframe_number ())
8145 return;
8146
8147 /* Avoid recursion, remote_trace_find calls us again. */
8148 rs->remote_traceframe_number = get_traceframe_number ();
8149
8150 newnum = target_trace_find (tfind_number,
8151 get_traceframe_number (), 0, 0, NULL);
8152
8153 /* Should not happen. If it does, all bets are off. */
8154 if (newnum != get_traceframe_number ())
8155 warning (_("could not set remote traceframe"));
8156 }
8157
8158 void
8159 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8160 {
8161 struct gdbarch *gdbarch = regcache->arch ();
8162 struct remote_state *rs = get_remote_state ();
8163 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8164 int i;
8165
8166 set_remote_traceframe ();
8167 set_general_thread (regcache->ptid ());
8168
8169 if (regnum >= 0)
8170 {
8171 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8172
8173 gdb_assert (reg != NULL);
8174
8175 /* If this register might be in the 'g' packet, try that first -
8176 we are likely to read more than one register. If this is the
8177 first 'g' packet, we might be overly optimistic about its
8178 contents, so fall back to 'p'. */
8179 if (reg->in_g_packet)
8180 {
8181 fetch_registers_using_g (regcache);
8182 if (reg->in_g_packet)
8183 return;
8184 }
8185
8186 if (fetch_register_using_p (regcache, reg))
8187 return;
8188
8189 /* This register is not available. */
8190 regcache->raw_supply (reg->regnum, NULL);
8191
8192 return;
8193 }
8194
8195 fetch_registers_using_g (regcache);
8196
8197 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8198 if (!rsa->regs[i].in_g_packet)
8199 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8200 {
8201 /* This register is not available. */
8202 regcache->raw_supply (i, NULL);
8203 }
8204 }
8205
8206 /* Prepare to store registers. Since we may send them all (using a
8207 'G' request), we have to read out the ones we don't want to change
8208 first. */
8209
8210 void
8211 remote_target::prepare_to_store (struct regcache *regcache)
8212 {
8213 struct remote_state *rs = get_remote_state ();
8214 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8215 int i;
8216
8217 /* Make sure the entire registers array is valid. */
8218 switch (packet_support (PACKET_P))
8219 {
8220 case PACKET_DISABLE:
8221 case PACKET_SUPPORT_UNKNOWN:
8222 /* Make sure all the necessary registers are cached. */
8223 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8224 if (rsa->regs[i].in_g_packet)
8225 regcache->raw_update (rsa->regs[i].regnum);
8226 break;
8227 case PACKET_ENABLE:
8228 break;
8229 }
8230 }
8231
8232 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8233 packet was not recognized. */
8234
8235 int
8236 remote_target::store_register_using_P (const struct regcache *regcache,
8237 packet_reg *reg)
8238 {
8239 struct gdbarch *gdbarch = regcache->arch ();
8240 struct remote_state *rs = get_remote_state ();
8241 /* Try storing a single register. */
8242 char *buf = rs->buf;
8243 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8244 char *p;
8245
8246 if (packet_support (PACKET_P) == PACKET_DISABLE)
8247 return 0;
8248
8249 if (reg->pnum == -1)
8250 return 0;
8251
8252 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8253 p = buf + strlen (buf);
8254 regcache->raw_collect (reg->regnum, regp);
8255 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8256 putpkt (rs->buf);
8257 getpkt (&rs->buf, &rs->buf_size, 0);
8258
8259 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8260 {
8261 case PACKET_OK:
8262 return 1;
8263 case PACKET_ERROR:
8264 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8265 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8266 case PACKET_UNKNOWN:
8267 return 0;
8268 default:
8269 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8270 }
8271 }
8272
8273 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8274 contents of the register cache buffer. FIXME: ignores errors. */
8275
8276 void
8277 remote_target::store_registers_using_G (const struct regcache *regcache)
8278 {
8279 struct remote_state *rs = get_remote_state ();
8280 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8281 gdb_byte *regs;
8282 char *p;
8283
8284 /* Extract all the registers in the regcache copying them into a
8285 local buffer. */
8286 {
8287 int i;
8288
8289 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8290 memset (regs, 0, rsa->sizeof_g_packet);
8291 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8292 {
8293 struct packet_reg *r = &rsa->regs[i];
8294
8295 if (r->in_g_packet)
8296 regcache->raw_collect (r->regnum, regs + r->offset);
8297 }
8298 }
8299
8300 /* Command describes registers byte by byte,
8301 each byte encoded as two hex characters. */
8302 p = rs->buf;
8303 *p++ = 'G';
8304 bin2hex (regs, p, rsa->sizeof_g_packet);
8305 putpkt (rs->buf);
8306 getpkt (&rs->buf, &rs->buf_size, 0);
8307 if (packet_check_result (rs->buf) == PACKET_ERROR)
8308 error (_("Could not write registers; remote failure reply '%s'"),
8309 rs->buf);
8310 }
8311
8312 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8313 of the register cache buffer. FIXME: ignores errors. */
8314
8315 void
8316 remote_target::store_registers (struct regcache *regcache, int regnum)
8317 {
8318 struct gdbarch *gdbarch = regcache->arch ();
8319 struct remote_state *rs = get_remote_state ();
8320 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8321 int i;
8322
8323 set_remote_traceframe ();
8324 set_general_thread (regcache->ptid ());
8325
8326 if (regnum >= 0)
8327 {
8328 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8329
8330 gdb_assert (reg != NULL);
8331
8332 /* Always prefer to store registers using the 'P' packet if
8333 possible; we often change only a small number of registers.
8334 Sometimes we change a larger number; we'd need help from a
8335 higher layer to know to use 'G'. */
8336 if (store_register_using_P (regcache, reg))
8337 return;
8338
8339 /* For now, don't complain if we have no way to write the
8340 register. GDB loses track of unavailable registers too
8341 easily. Some day, this may be an error. We don't have
8342 any way to read the register, either... */
8343 if (!reg->in_g_packet)
8344 return;
8345
8346 store_registers_using_G (regcache);
8347 return;
8348 }
8349
8350 store_registers_using_G (regcache);
8351
8352 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8353 if (!rsa->regs[i].in_g_packet)
8354 if (!store_register_using_P (regcache, &rsa->regs[i]))
8355 /* See above for why we do not issue an error here. */
8356 continue;
8357 }
8358 \f
8359
8360 /* Return the number of hex digits in num. */
8361
8362 static int
8363 hexnumlen (ULONGEST num)
8364 {
8365 int i;
8366
8367 for (i = 0; num != 0; i++)
8368 num >>= 4;
8369
8370 return std::max (i, 1);
8371 }
8372
8373 /* Set BUF to the minimum number of hex digits representing NUM. */
8374
8375 static int
8376 hexnumstr (char *buf, ULONGEST num)
8377 {
8378 int len = hexnumlen (num);
8379
8380 return hexnumnstr (buf, num, len);
8381 }
8382
8383
8384 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8385
8386 static int
8387 hexnumnstr (char *buf, ULONGEST num, int width)
8388 {
8389 int i;
8390
8391 buf[width] = '\0';
8392
8393 for (i = width - 1; i >= 0; i--)
8394 {
8395 buf[i] = "0123456789abcdef"[(num & 0xf)];
8396 num >>= 4;
8397 }
8398
8399 return width;
8400 }
8401
8402 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8403
8404 static CORE_ADDR
8405 remote_address_masked (CORE_ADDR addr)
8406 {
8407 unsigned int address_size = remote_address_size;
8408
8409 /* If "remoteaddresssize" was not set, default to target address size. */
8410 if (!address_size)
8411 address_size = gdbarch_addr_bit (target_gdbarch ());
8412
8413 if (address_size > 0
8414 && address_size < (sizeof (ULONGEST) * 8))
8415 {
8416 /* Only create a mask when that mask can safely be constructed
8417 in a ULONGEST variable. */
8418 ULONGEST mask = 1;
8419
8420 mask = (mask << address_size) - 1;
8421 addr &= mask;
8422 }
8423 return addr;
8424 }
8425
8426 /* Determine whether the remote target supports binary downloading.
8427 This is accomplished by sending a no-op memory write of zero length
8428 to the target at the specified address. It does not suffice to send
8429 the whole packet, since many stubs strip the eighth bit and
8430 subsequently compute a wrong checksum, which causes real havoc with
8431 remote_write_bytes.
8432
8433 NOTE: This can still lose if the serial line is not eight-bit
8434 clean. In cases like this, the user should clear "remote
8435 X-packet". */
8436
8437 void
8438 remote_target::check_binary_download (CORE_ADDR addr)
8439 {
8440 struct remote_state *rs = get_remote_state ();
8441
8442 switch (packet_support (PACKET_X))
8443 {
8444 case PACKET_DISABLE:
8445 break;
8446 case PACKET_ENABLE:
8447 break;
8448 case PACKET_SUPPORT_UNKNOWN:
8449 {
8450 char *p;
8451
8452 p = rs->buf;
8453 *p++ = 'X';
8454 p += hexnumstr (p, (ULONGEST) addr);
8455 *p++ = ',';
8456 p += hexnumstr (p, (ULONGEST) 0);
8457 *p++ = ':';
8458 *p = '\0';
8459
8460 putpkt_binary (rs->buf, (int) (p - rs->buf));
8461 getpkt (&rs->buf, &rs->buf_size, 0);
8462
8463 if (rs->buf[0] == '\0')
8464 {
8465 if (remote_debug)
8466 fprintf_unfiltered (gdb_stdlog,
8467 "binary downloading NOT "
8468 "supported by target\n");
8469 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8470 }
8471 else
8472 {
8473 if (remote_debug)
8474 fprintf_unfiltered (gdb_stdlog,
8475 "binary downloading supported by target\n");
8476 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8477 }
8478 break;
8479 }
8480 }
8481 }
8482
8483 /* Helper function to resize the payload in order to try to get a good
8484 alignment. We try to write an amount of data such that the next write will
8485 start on an address aligned on REMOTE_ALIGN_WRITES. */
8486
8487 static int
8488 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8489 {
8490 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8491 }
8492
8493 /* Write memory data directly to the remote machine.
8494 This does not inform the data cache; the data cache uses this.
8495 HEADER is the starting part of the packet.
8496 MEMADDR is the address in the remote memory space.
8497 MYADDR is the address of the buffer in our space.
8498 LEN_UNITS is the number of addressable units to write.
8499 UNIT_SIZE is the length in bytes of an addressable unit.
8500 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8501 should send data as binary ('X'), or hex-encoded ('M').
8502
8503 The function creates packet of the form
8504 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8505
8506 where encoding of <DATA> is terminated by PACKET_FORMAT.
8507
8508 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8509 are omitted.
8510
8511 Return the transferred status, error or OK (an
8512 'enum target_xfer_status' value). Save the number of addressable units
8513 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8514
8515 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8516 exchange between gdb and the stub could look like (?? in place of the
8517 checksum):
8518
8519 -> $m1000,4#??
8520 <- aaaabbbbccccdddd
8521
8522 -> $M1000,3:eeeeffffeeee#??
8523 <- OK
8524
8525 -> $m1000,4#??
8526 <- eeeeffffeeeedddd */
8527
8528 target_xfer_status
8529 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8530 const gdb_byte *myaddr,
8531 ULONGEST len_units,
8532 int unit_size,
8533 ULONGEST *xfered_len_units,
8534 char packet_format, int use_length)
8535 {
8536 struct remote_state *rs = get_remote_state ();
8537 char *p;
8538 char *plen = NULL;
8539 int plenlen = 0;
8540 int todo_units;
8541 int units_written;
8542 int payload_capacity_bytes;
8543 int payload_length_bytes;
8544
8545 if (packet_format != 'X' && packet_format != 'M')
8546 internal_error (__FILE__, __LINE__,
8547 _("remote_write_bytes_aux: bad packet format"));
8548
8549 if (len_units == 0)
8550 return TARGET_XFER_EOF;
8551
8552 payload_capacity_bytes = get_memory_write_packet_size ();
8553
8554 /* The packet buffer will be large enough for the payload;
8555 get_memory_packet_size ensures this. */
8556 rs->buf[0] = '\0';
8557
8558 /* Compute the size of the actual payload by subtracting out the
8559 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8560
8561 payload_capacity_bytes -= strlen ("$,:#NN");
8562 if (!use_length)
8563 /* The comma won't be used. */
8564 payload_capacity_bytes += 1;
8565 payload_capacity_bytes -= strlen (header);
8566 payload_capacity_bytes -= hexnumlen (memaddr);
8567
8568 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8569
8570 strcat (rs->buf, header);
8571 p = rs->buf + strlen (header);
8572
8573 /* Compute a best guess of the number of bytes actually transfered. */
8574 if (packet_format == 'X')
8575 {
8576 /* Best guess at number of bytes that will fit. */
8577 todo_units = std::min (len_units,
8578 (ULONGEST) payload_capacity_bytes / unit_size);
8579 if (use_length)
8580 payload_capacity_bytes -= hexnumlen (todo_units);
8581 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8582 }
8583 else
8584 {
8585 /* Number of bytes that will fit. */
8586 todo_units
8587 = std::min (len_units,
8588 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8589 if (use_length)
8590 payload_capacity_bytes -= hexnumlen (todo_units);
8591 todo_units = std::min (todo_units,
8592 (payload_capacity_bytes / unit_size) / 2);
8593 }
8594
8595 if (todo_units <= 0)
8596 internal_error (__FILE__, __LINE__,
8597 _("minimum packet size too small to write data"));
8598
8599 /* If we already need another packet, then try to align the end
8600 of this packet to a useful boundary. */
8601 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8602 todo_units = align_for_efficient_write (todo_units, memaddr);
8603
8604 /* Append "<memaddr>". */
8605 memaddr = remote_address_masked (memaddr);
8606 p += hexnumstr (p, (ULONGEST) memaddr);
8607
8608 if (use_length)
8609 {
8610 /* Append ",". */
8611 *p++ = ',';
8612
8613 /* Append the length and retain its location and size. It may need to be
8614 adjusted once the packet body has been created. */
8615 plen = p;
8616 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8617 p += plenlen;
8618 }
8619
8620 /* Append ":". */
8621 *p++ = ':';
8622 *p = '\0';
8623
8624 /* Append the packet body. */
8625 if (packet_format == 'X')
8626 {
8627 /* Binary mode. Send target system values byte by byte, in
8628 increasing byte addresses. Only escape certain critical
8629 characters. */
8630 payload_length_bytes =
8631 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8632 &units_written, payload_capacity_bytes);
8633
8634 /* If not all TODO units fit, then we'll need another packet. Make
8635 a second try to keep the end of the packet aligned. Don't do
8636 this if the packet is tiny. */
8637 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8638 {
8639 int new_todo_units;
8640
8641 new_todo_units = align_for_efficient_write (units_written, memaddr);
8642
8643 if (new_todo_units != units_written)
8644 payload_length_bytes =
8645 remote_escape_output (myaddr, new_todo_units, unit_size,
8646 (gdb_byte *) p, &units_written,
8647 payload_capacity_bytes);
8648 }
8649
8650 p += payload_length_bytes;
8651 if (use_length && units_written < todo_units)
8652 {
8653 /* Escape chars have filled up the buffer prematurely,
8654 and we have actually sent fewer units than planned.
8655 Fix-up the length field of the packet. Use the same
8656 number of characters as before. */
8657 plen += hexnumnstr (plen, (ULONGEST) units_written,
8658 plenlen);
8659 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8660 }
8661 }
8662 else
8663 {
8664 /* Normal mode: Send target system values byte by byte, in
8665 increasing byte addresses. Each byte is encoded as a two hex
8666 value. */
8667 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8668 units_written = todo_units;
8669 }
8670
8671 putpkt_binary (rs->buf, (int) (p - rs->buf));
8672 getpkt (&rs->buf, &rs->buf_size, 0);
8673
8674 if (rs->buf[0] == 'E')
8675 return TARGET_XFER_E_IO;
8676
8677 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8678 send fewer units than we'd planned. */
8679 *xfered_len_units = (ULONGEST) units_written;
8680 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8681 }
8682
8683 /* Write memory data directly to the remote machine.
8684 This does not inform the data cache; the data cache uses this.
8685 MEMADDR is the address in the remote memory space.
8686 MYADDR is the address of the buffer in our space.
8687 LEN is the number of bytes.
8688
8689 Return the transferred status, error or OK (an
8690 'enum target_xfer_status' value). Save the number of bytes
8691 transferred in *XFERED_LEN. Only transfer a single packet. */
8692
8693 target_xfer_status
8694 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8695 ULONGEST len, int unit_size,
8696 ULONGEST *xfered_len)
8697 {
8698 const char *packet_format = NULL;
8699
8700 /* Check whether the target supports binary download. */
8701 check_binary_download (memaddr);
8702
8703 switch (packet_support (PACKET_X))
8704 {
8705 case PACKET_ENABLE:
8706 packet_format = "X";
8707 break;
8708 case PACKET_DISABLE:
8709 packet_format = "M";
8710 break;
8711 case PACKET_SUPPORT_UNKNOWN:
8712 internal_error (__FILE__, __LINE__,
8713 _("remote_write_bytes: bad internal state"));
8714 default:
8715 internal_error (__FILE__, __LINE__, _("bad switch"));
8716 }
8717
8718 return remote_write_bytes_aux (packet_format,
8719 memaddr, myaddr, len, unit_size, xfered_len,
8720 packet_format[0], 1);
8721 }
8722
8723 /* Read memory data directly from the remote machine.
8724 This does not use the data cache; the data cache uses this.
8725 MEMADDR is the address in the remote memory space.
8726 MYADDR is the address of the buffer in our space.
8727 LEN_UNITS is the number of addressable memory units to read..
8728 UNIT_SIZE is the length in bytes of an addressable unit.
8729
8730 Return the transferred status, error or OK (an
8731 'enum target_xfer_status' value). Save the number of bytes
8732 transferred in *XFERED_LEN_UNITS.
8733
8734 See the comment of remote_write_bytes_aux for an example of
8735 memory read/write exchange between gdb and the stub. */
8736
8737 target_xfer_status
8738 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8739 ULONGEST len_units,
8740 int unit_size, ULONGEST *xfered_len_units)
8741 {
8742 struct remote_state *rs = get_remote_state ();
8743 int buf_size_bytes; /* Max size of packet output buffer. */
8744 char *p;
8745 int todo_units;
8746 int decoded_bytes;
8747
8748 buf_size_bytes = get_memory_read_packet_size ();
8749 /* The packet buffer will be large enough for the payload;
8750 get_memory_packet_size ensures this. */
8751
8752 /* Number of units that will fit. */
8753 todo_units = std::min (len_units,
8754 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8755
8756 /* Construct "m"<memaddr>","<len>". */
8757 memaddr = remote_address_masked (memaddr);
8758 p = rs->buf;
8759 *p++ = 'm';
8760 p += hexnumstr (p, (ULONGEST) memaddr);
8761 *p++ = ',';
8762 p += hexnumstr (p, (ULONGEST) todo_units);
8763 *p = '\0';
8764 putpkt (rs->buf);
8765 getpkt (&rs->buf, &rs->buf_size, 0);
8766 if (rs->buf[0] == 'E'
8767 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8768 && rs->buf[3] == '\0')
8769 return TARGET_XFER_E_IO;
8770 /* Reply describes memory byte by byte, each byte encoded as two hex
8771 characters. */
8772 p = rs->buf;
8773 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8774 /* Return what we have. Let higher layers handle partial reads. */
8775 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8776 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8777 }
8778
8779 /* Using the set of read-only target sections of remote, read live
8780 read-only memory.
8781
8782 For interface/parameters/return description see target.h,
8783 to_xfer_partial. */
8784
8785 target_xfer_status
8786 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8787 ULONGEST memaddr,
8788 ULONGEST len,
8789 int unit_size,
8790 ULONGEST *xfered_len)
8791 {
8792 struct target_section *secp;
8793 struct target_section_table *table;
8794
8795 secp = target_section_by_addr (this, memaddr);
8796 if (secp != NULL
8797 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8798 secp->the_bfd_section)
8799 & SEC_READONLY))
8800 {
8801 struct target_section *p;
8802 ULONGEST memend = memaddr + len;
8803
8804 table = target_get_section_table (this);
8805
8806 for (p = table->sections; p < table->sections_end; p++)
8807 {
8808 if (memaddr >= p->addr)
8809 {
8810 if (memend <= p->endaddr)
8811 {
8812 /* Entire transfer is within this section. */
8813 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8814 xfered_len);
8815 }
8816 else if (memaddr >= p->endaddr)
8817 {
8818 /* This section ends before the transfer starts. */
8819 continue;
8820 }
8821 else
8822 {
8823 /* This section overlaps the transfer. Just do half. */
8824 len = p->endaddr - memaddr;
8825 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8826 xfered_len);
8827 }
8828 }
8829 }
8830 }
8831
8832 return TARGET_XFER_EOF;
8833 }
8834
8835 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8836 first if the requested memory is unavailable in traceframe.
8837 Otherwise, fall back to remote_read_bytes_1. */
8838
8839 target_xfer_status
8840 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8841 gdb_byte *myaddr, ULONGEST len, int unit_size,
8842 ULONGEST *xfered_len)
8843 {
8844 if (len == 0)
8845 return TARGET_XFER_EOF;
8846
8847 if (get_traceframe_number () != -1)
8848 {
8849 std::vector<mem_range> available;
8850
8851 /* If we fail to get the set of available memory, then the
8852 target does not support querying traceframe info, and so we
8853 attempt reading from the traceframe anyway (assuming the
8854 target implements the old QTro packet then). */
8855 if (traceframe_available_memory (&available, memaddr, len))
8856 {
8857 if (available.empty () || available[0].start != memaddr)
8858 {
8859 enum target_xfer_status res;
8860
8861 /* Don't read into the traceframe's available
8862 memory. */
8863 if (!available.empty ())
8864 {
8865 LONGEST oldlen = len;
8866
8867 len = available[0].start - memaddr;
8868 gdb_assert (len <= oldlen);
8869 }
8870
8871 /* This goes through the topmost target again. */
8872 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8873 len, unit_size, xfered_len);
8874 if (res == TARGET_XFER_OK)
8875 return TARGET_XFER_OK;
8876 else
8877 {
8878 /* No use trying further, we know some memory starting
8879 at MEMADDR isn't available. */
8880 *xfered_len = len;
8881 return (*xfered_len != 0) ?
8882 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8883 }
8884 }
8885
8886 /* Don't try to read more than how much is available, in
8887 case the target implements the deprecated QTro packet to
8888 cater for older GDBs (the target's knowledge of read-only
8889 sections may be outdated by now). */
8890 len = available[0].length;
8891 }
8892 }
8893
8894 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8895 }
8896
8897 \f
8898
8899 /* Sends a packet with content determined by the printf format string
8900 FORMAT and the remaining arguments, then gets the reply. Returns
8901 whether the packet was a success, a failure, or unknown. */
8902
8903 packet_result
8904 remote_target::remote_send_printf (const char *format, ...)
8905 {
8906 struct remote_state *rs = get_remote_state ();
8907 int max_size = get_remote_packet_size ();
8908 va_list ap;
8909
8910 va_start (ap, format);
8911
8912 rs->buf[0] = '\0';
8913 int size = vsnprintf (rs->buf, max_size, format, ap);
8914
8915 va_end (ap);
8916
8917 if (size >= max_size)
8918 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8919
8920 if (putpkt (rs->buf) < 0)
8921 error (_("Communication problem with target."));
8922
8923 rs->buf[0] = '\0';
8924 getpkt (&rs->buf, &rs->buf_size, 0);
8925
8926 return packet_check_result (rs->buf);
8927 }
8928
8929 /* Flash writing can take quite some time. We'll set
8930 effectively infinite timeout for flash operations.
8931 In future, we'll need to decide on a better approach. */
8932 static const int remote_flash_timeout = 1000;
8933
8934 void
8935 remote_target::flash_erase (ULONGEST address, LONGEST length)
8936 {
8937 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8938 enum packet_result ret;
8939 scoped_restore restore_timeout
8940 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8941
8942 ret = remote_send_printf ("vFlashErase:%s,%s",
8943 phex (address, addr_size),
8944 phex (length, 4));
8945 switch (ret)
8946 {
8947 case PACKET_UNKNOWN:
8948 error (_("Remote target does not support flash erase"));
8949 case PACKET_ERROR:
8950 error (_("Error erasing flash with vFlashErase packet"));
8951 default:
8952 break;
8953 }
8954 }
8955
8956 target_xfer_status
8957 remote_target::remote_flash_write (ULONGEST address,
8958 ULONGEST length, ULONGEST *xfered_len,
8959 const gdb_byte *data)
8960 {
8961 scoped_restore restore_timeout
8962 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8963 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8964 xfered_len,'X', 0);
8965 }
8966
8967 void
8968 remote_target::flash_done ()
8969 {
8970 int ret;
8971
8972 scoped_restore restore_timeout
8973 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8974
8975 ret = remote_send_printf ("vFlashDone");
8976
8977 switch (ret)
8978 {
8979 case PACKET_UNKNOWN:
8980 error (_("Remote target does not support vFlashDone"));
8981 case PACKET_ERROR:
8982 error (_("Error finishing flash operation"));
8983 default:
8984 break;
8985 }
8986 }
8987
8988 void
8989 remote_target::files_info ()
8990 {
8991 puts_filtered ("Debugging a target over a serial line.\n");
8992 }
8993 \f
8994 /* Stuff for dealing with the packets which are part of this protocol.
8995 See comment at top of file for details. */
8996
8997 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8998 error to higher layers. Called when a serial error is detected.
8999 The exception message is STRING, followed by a colon and a blank,
9000 the system error message for errno at function entry and final dot
9001 for output compatibility with throw_perror_with_name. */
9002
9003 static void
9004 unpush_and_perror (const char *string)
9005 {
9006 int saved_errno = errno;
9007
9008 remote_unpush_target ();
9009 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9010 safe_strerror (saved_errno));
9011 }
9012
9013 /* Read a single character from the remote end. The current quit
9014 handler is overridden to avoid quitting in the middle of packet
9015 sequence, as that would break communication with the remote server.
9016 See remote_serial_quit_handler for more detail. */
9017
9018 int
9019 remote_target::readchar (int timeout)
9020 {
9021 int ch;
9022 struct remote_state *rs = get_remote_state ();
9023
9024 {
9025 scoped_restore restore_quit_target
9026 = make_scoped_restore (&curr_quit_handler_target, this);
9027 scoped_restore restore_quit
9028 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9029
9030 rs->got_ctrlc_during_io = 0;
9031
9032 ch = serial_readchar (rs->remote_desc, timeout);
9033
9034 if (rs->got_ctrlc_during_io)
9035 set_quit_flag ();
9036 }
9037
9038 if (ch >= 0)
9039 return ch;
9040
9041 switch ((enum serial_rc) ch)
9042 {
9043 case SERIAL_EOF:
9044 remote_unpush_target ();
9045 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9046 /* no return */
9047 case SERIAL_ERROR:
9048 unpush_and_perror (_("Remote communication error. "
9049 "Target disconnected."));
9050 /* no return */
9051 case SERIAL_TIMEOUT:
9052 break;
9053 }
9054 return ch;
9055 }
9056
9057 /* Wrapper for serial_write that closes the target and throws if
9058 writing fails. The current quit handler is overridden to avoid
9059 quitting in the middle of packet sequence, as that would break
9060 communication with the remote server. See
9061 remote_serial_quit_handler for more detail. */
9062
9063 void
9064 remote_target::remote_serial_write (const char *str, int len)
9065 {
9066 struct remote_state *rs = get_remote_state ();
9067
9068 scoped_restore restore_quit_target
9069 = make_scoped_restore (&curr_quit_handler_target, this);
9070 scoped_restore restore_quit
9071 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9072
9073 rs->got_ctrlc_during_io = 0;
9074
9075 if (serial_write (rs->remote_desc, str, len))
9076 {
9077 unpush_and_perror (_("Remote communication error. "
9078 "Target disconnected."));
9079 }
9080
9081 if (rs->got_ctrlc_during_io)
9082 set_quit_flag ();
9083 }
9084
9085 /* Return a string representing an escaped version of BUF, of len N.
9086 E.g. \n is converted to \\n, \t to \\t, etc. */
9087
9088 static std::string
9089 escape_buffer (const char *buf, int n)
9090 {
9091 string_file stb;
9092
9093 stb.putstrn (buf, n, '\\');
9094 return std::move (stb.string ());
9095 }
9096
9097 /* Display a null-terminated packet on stdout, for debugging, using C
9098 string notation. */
9099
9100 static void
9101 print_packet (const char *buf)
9102 {
9103 puts_filtered ("\"");
9104 fputstr_filtered (buf, '"', gdb_stdout);
9105 puts_filtered ("\"");
9106 }
9107
9108 int
9109 remote_target::putpkt (const char *buf)
9110 {
9111 return putpkt_binary (buf, strlen (buf));
9112 }
9113
9114 /* Wrapper around remote_target::putpkt to avoid exporting
9115 remote_target. */
9116
9117 int
9118 putpkt (remote_target *remote, const char *buf)
9119 {
9120 return remote->putpkt (buf);
9121 }
9122
9123 /* Send a packet to the remote machine, with error checking. The data
9124 of the packet is in BUF. The string in BUF can be at most
9125 get_remote_packet_size () - 5 to account for the $, # and checksum,
9126 and for a possible /0 if we are debugging (remote_debug) and want
9127 to print the sent packet as a string. */
9128
9129 int
9130 remote_target::putpkt_binary (const char *buf, int cnt)
9131 {
9132 struct remote_state *rs = get_remote_state ();
9133 int i;
9134 unsigned char csum = 0;
9135 gdb::def_vector<char> data (cnt + 6);
9136 char *buf2 = data.data ();
9137
9138 int ch;
9139 int tcount = 0;
9140 char *p;
9141
9142 /* Catch cases like trying to read memory or listing threads while
9143 we're waiting for a stop reply. The remote server wouldn't be
9144 ready to handle this request, so we'd hang and timeout. We don't
9145 have to worry about this in synchronous mode, because in that
9146 case it's not possible to issue a command while the target is
9147 running. This is not a problem in non-stop mode, because in that
9148 case, the stub is always ready to process serial input. */
9149 if (!target_is_non_stop_p ()
9150 && target_is_async_p ()
9151 && rs->waiting_for_stop_reply)
9152 {
9153 error (_("Cannot execute this command while the target is running.\n"
9154 "Use the \"interrupt\" command to stop the target\n"
9155 "and then try again."));
9156 }
9157
9158 /* We're sending out a new packet. Make sure we don't look at a
9159 stale cached response. */
9160 rs->cached_wait_status = 0;
9161
9162 /* Copy the packet into buffer BUF2, encapsulating it
9163 and giving it a checksum. */
9164
9165 p = buf2;
9166 *p++ = '$';
9167
9168 for (i = 0; i < cnt; i++)
9169 {
9170 csum += buf[i];
9171 *p++ = buf[i];
9172 }
9173 *p++ = '#';
9174 *p++ = tohex ((csum >> 4) & 0xf);
9175 *p++ = tohex (csum & 0xf);
9176
9177 /* Send it over and over until we get a positive ack. */
9178
9179 while (1)
9180 {
9181 int started_error_output = 0;
9182
9183 if (remote_debug)
9184 {
9185 *p = '\0';
9186
9187 int len = (int) (p - buf2);
9188
9189 std::string str
9190 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9191
9192 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9193
9194 if (len > REMOTE_DEBUG_MAX_CHAR)
9195 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9196 len - REMOTE_DEBUG_MAX_CHAR);
9197
9198 fprintf_unfiltered (gdb_stdlog, "...");
9199
9200 gdb_flush (gdb_stdlog);
9201 }
9202 remote_serial_write (buf2, p - buf2);
9203
9204 /* If this is a no acks version of the remote protocol, send the
9205 packet and move on. */
9206 if (rs->noack_mode)
9207 break;
9208
9209 /* Read until either a timeout occurs (-2) or '+' is read.
9210 Handle any notification that arrives in the mean time. */
9211 while (1)
9212 {
9213 ch = readchar (remote_timeout);
9214
9215 if (remote_debug)
9216 {
9217 switch (ch)
9218 {
9219 case '+':
9220 case '-':
9221 case SERIAL_TIMEOUT:
9222 case '$':
9223 case '%':
9224 if (started_error_output)
9225 {
9226 putchar_unfiltered ('\n');
9227 started_error_output = 0;
9228 }
9229 }
9230 }
9231
9232 switch (ch)
9233 {
9234 case '+':
9235 if (remote_debug)
9236 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9237 return 1;
9238 case '-':
9239 if (remote_debug)
9240 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9241 /* FALLTHROUGH */
9242 case SERIAL_TIMEOUT:
9243 tcount++;
9244 if (tcount > 3)
9245 return 0;
9246 break; /* Retransmit buffer. */
9247 case '$':
9248 {
9249 if (remote_debug)
9250 fprintf_unfiltered (gdb_stdlog,
9251 "Packet instead of Ack, ignoring it\n");
9252 /* It's probably an old response sent because an ACK
9253 was lost. Gobble up the packet and ack it so it
9254 doesn't get retransmitted when we resend this
9255 packet. */
9256 skip_frame ();
9257 remote_serial_write ("+", 1);
9258 continue; /* Now, go look for +. */
9259 }
9260
9261 case '%':
9262 {
9263 int val;
9264
9265 /* If we got a notification, handle it, and go back to looking
9266 for an ack. */
9267 /* We've found the start of a notification. Now
9268 collect the data. */
9269 val = read_frame (&rs->buf, &rs->buf_size);
9270 if (val >= 0)
9271 {
9272 if (remote_debug)
9273 {
9274 std::string str = escape_buffer (rs->buf, val);
9275
9276 fprintf_unfiltered (gdb_stdlog,
9277 " Notification received: %s\n",
9278 str.c_str ());
9279 }
9280 handle_notification (rs->notif_state, rs->buf);
9281 /* We're in sync now, rewait for the ack. */
9282 tcount = 0;
9283 }
9284 else
9285 {
9286 if (remote_debug)
9287 {
9288 if (!started_error_output)
9289 {
9290 started_error_output = 1;
9291 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9292 }
9293 fputc_unfiltered (ch & 0177, gdb_stdlog);
9294 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9295 }
9296 }
9297 continue;
9298 }
9299 /* fall-through */
9300 default:
9301 if (remote_debug)
9302 {
9303 if (!started_error_output)
9304 {
9305 started_error_output = 1;
9306 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9307 }
9308 fputc_unfiltered (ch & 0177, gdb_stdlog);
9309 }
9310 continue;
9311 }
9312 break; /* Here to retransmit. */
9313 }
9314
9315 #if 0
9316 /* This is wrong. If doing a long backtrace, the user should be
9317 able to get out next time we call QUIT, without anything as
9318 violent as interrupt_query. If we want to provide a way out of
9319 here without getting to the next QUIT, it should be based on
9320 hitting ^C twice as in remote_wait. */
9321 if (quit_flag)
9322 {
9323 quit_flag = 0;
9324 interrupt_query ();
9325 }
9326 #endif
9327 }
9328
9329 return 0;
9330 }
9331
9332 /* Come here after finding the start of a frame when we expected an
9333 ack. Do our best to discard the rest of this packet. */
9334
9335 void
9336 remote_target::skip_frame ()
9337 {
9338 int c;
9339
9340 while (1)
9341 {
9342 c = readchar (remote_timeout);
9343 switch (c)
9344 {
9345 case SERIAL_TIMEOUT:
9346 /* Nothing we can do. */
9347 return;
9348 case '#':
9349 /* Discard the two bytes of checksum and stop. */
9350 c = readchar (remote_timeout);
9351 if (c >= 0)
9352 c = readchar (remote_timeout);
9353
9354 return;
9355 case '*': /* Run length encoding. */
9356 /* Discard the repeat count. */
9357 c = readchar (remote_timeout);
9358 if (c < 0)
9359 return;
9360 break;
9361 default:
9362 /* A regular character. */
9363 break;
9364 }
9365 }
9366 }
9367
9368 /* Come here after finding the start of the frame. Collect the rest
9369 into *BUF, verifying the checksum, length, and handling run-length
9370 compression. NUL terminate the buffer. If there is not enough room,
9371 expand *BUF using xrealloc.
9372
9373 Returns -1 on error, number of characters in buffer (ignoring the
9374 trailing NULL) on success. (could be extended to return one of the
9375 SERIAL status indications). */
9376
9377 long
9378 remote_target::read_frame (char **buf_p, long *sizeof_buf)
9379 {
9380 unsigned char csum;
9381 long bc;
9382 int c;
9383 char *buf = *buf_p;
9384 struct remote_state *rs = get_remote_state ();
9385
9386 csum = 0;
9387 bc = 0;
9388
9389 while (1)
9390 {
9391 c = readchar (remote_timeout);
9392 switch (c)
9393 {
9394 case SERIAL_TIMEOUT:
9395 if (remote_debug)
9396 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9397 return -1;
9398 case '$':
9399 if (remote_debug)
9400 fputs_filtered ("Saw new packet start in middle of old one\n",
9401 gdb_stdlog);
9402 return -1; /* Start a new packet, count retries. */
9403 case '#':
9404 {
9405 unsigned char pktcsum;
9406 int check_0 = 0;
9407 int check_1 = 0;
9408
9409 buf[bc] = '\0';
9410
9411 check_0 = readchar (remote_timeout);
9412 if (check_0 >= 0)
9413 check_1 = readchar (remote_timeout);
9414
9415 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9416 {
9417 if (remote_debug)
9418 fputs_filtered ("Timeout in checksum, retrying\n",
9419 gdb_stdlog);
9420 return -1;
9421 }
9422 else if (check_0 < 0 || check_1 < 0)
9423 {
9424 if (remote_debug)
9425 fputs_filtered ("Communication error in checksum\n",
9426 gdb_stdlog);
9427 return -1;
9428 }
9429
9430 /* Don't recompute the checksum; with no ack packets we
9431 don't have any way to indicate a packet retransmission
9432 is necessary. */
9433 if (rs->noack_mode)
9434 return bc;
9435
9436 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9437 if (csum == pktcsum)
9438 return bc;
9439
9440 if (remote_debug)
9441 {
9442 std::string str = escape_buffer (buf, bc);
9443
9444 fprintf_unfiltered (gdb_stdlog,
9445 "Bad checksum, sentsum=0x%x, "
9446 "csum=0x%x, buf=%s\n",
9447 pktcsum, csum, str.c_str ());
9448 }
9449 /* Number of characters in buffer ignoring trailing
9450 NULL. */
9451 return -1;
9452 }
9453 case '*': /* Run length encoding. */
9454 {
9455 int repeat;
9456
9457 csum += c;
9458 c = readchar (remote_timeout);
9459 csum += c;
9460 repeat = c - ' ' + 3; /* Compute repeat count. */
9461
9462 /* The character before ``*'' is repeated. */
9463
9464 if (repeat > 0 && repeat <= 255 && bc > 0)
9465 {
9466 if (bc + repeat - 1 >= *sizeof_buf - 1)
9467 {
9468 /* Make some more room in the buffer. */
9469 *sizeof_buf += repeat;
9470 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9471 buf = *buf_p;
9472 }
9473
9474 memset (&buf[bc], buf[bc - 1], repeat);
9475 bc += repeat;
9476 continue;
9477 }
9478
9479 buf[bc] = '\0';
9480 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9481 return -1;
9482 }
9483 default:
9484 if (bc >= *sizeof_buf - 1)
9485 {
9486 /* Make some more room in the buffer. */
9487 *sizeof_buf *= 2;
9488 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9489 buf = *buf_p;
9490 }
9491
9492 buf[bc++] = c;
9493 csum += c;
9494 continue;
9495 }
9496 }
9497 }
9498
9499 /* Read a packet from the remote machine, with error checking, and
9500 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9501 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9502 rather than timing out; this is used (in synchronous mode) to wait
9503 for a target that is is executing user code to stop. */
9504 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9505 don't have to change all the calls to getpkt to deal with the
9506 return value, because at the moment I don't know what the right
9507 thing to do it for those. */
9508
9509 void
9510 remote_target::getpkt (char **buf, long *sizeof_buf, int forever)
9511 {
9512 getpkt_sane (buf, sizeof_buf, forever);
9513 }
9514
9515
9516 /* Read a packet from the remote machine, with error checking, and
9517 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9518 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9519 rather than timing out; this is used (in synchronous mode) to wait
9520 for a target that is is executing user code to stop. If FOREVER ==
9521 0, this function is allowed to time out gracefully and return an
9522 indication of this to the caller. Otherwise return the number of
9523 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9524 enough reason to return to the caller. *IS_NOTIF is an output
9525 boolean that indicates whether *BUF holds a notification or not
9526 (a regular packet). */
9527
9528 int
9529 remote_target::getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf,
9530 int forever, int expecting_notif,
9531 int *is_notif)
9532 {
9533 struct remote_state *rs = get_remote_state ();
9534 int c;
9535 int tries;
9536 int timeout;
9537 int val = -1;
9538
9539 /* We're reading a new response. Make sure we don't look at a
9540 previously cached response. */
9541 rs->cached_wait_status = 0;
9542
9543 strcpy (*buf, "timeout");
9544
9545 if (forever)
9546 timeout = watchdog > 0 ? watchdog : -1;
9547 else if (expecting_notif)
9548 timeout = 0; /* There should already be a char in the buffer. If
9549 not, bail out. */
9550 else
9551 timeout = remote_timeout;
9552
9553 #define MAX_TRIES 3
9554
9555 /* Process any number of notifications, and then return when
9556 we get a packet. */
9557 for (;;)
9558 {
9559 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9560 times. */
9561 for (tries = 1; tries <= MAX_TRIES; tries++)
9562 {
9563 /* This can loop forever if the remote side sends us
9564 characters continuously, but if it pauses, we'll get
9565 SERIAL_TIMEOUT from readchar because of timeout. Then
9566 we'll count that as a retry.
9567
9568 Note that even when forever is set, we will only wait
9569 forever prior to the start of a packet. After that, we
9570 expect characters to arrive at a brisk pace. They should
9571 show up within remote_timeout intervals. */
9572 do
9573 c = readchar (timeout);
9574 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9575
9576 if (c == SERIAL_TIMEOUT)
9577 {
9578 if (expecting_notif)
9579 return -1; /* Don't complain, it's normal to not get
9580 anything in this case. */
9581
9582 if (forever) /* Watchdog went off? Kill the target. */
9583 {
9584 remote_unpush_target ();
9585 throw_error (TARGET_CLOSE_ERROR,
9586 _("Watchdog timeout has expired. "
9587 "Target detached."));
9588 }
9589 if (remote_debug)
9590 fputs_filtered ("Timed out.\n", gdb_stdlog);
9591 }
9592 else
9593 {
9594 /* We've found the start of a packet or notification.
9595 Now collect the data. */
9596 val = read_frame (buf, sizeof_buf);
9597 if (val >= 0)
9598 break;
9599 }
9600
9601 remote_serial_write ("-", 1);
9602 }
9603
9604 if (tries > MAX_TRIES)
9605 {
9606 /* We have tried hard enough, and just can't receive the
9607 packet/notification. Give up. */
9608 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9609
9610 /* Skip the ack char if we're in no-ack mode. */
9611 if (!rs->noack_mode)
9612 remote_serial_write ("+", 1);
9613 return -1;
9614 }
9615
9616 /* If we got an ordinary packet, return that to our caller. */
9617 if (c == '$')
9618 {
9619 if (remote_debug)
9620 {
9621 std::string str
9622 = escape_buffer (*buf,
9623 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9624
9625 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9626 str.c_str ());
9627
9628 if (val > REMOTE_DEBUG_MAX_CHAR)
9629 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9630 val - REMOTE_DEBUG_MAX_CHAR);
9631
9632 fprintf_unfiltered (gdb_stdlog, "\n");
9633 }
9634
9635 /* Skip the ack char if we're in no-ack mode. */
9636 if (!rs->noack_mode)
9637 remote_serial_write ("+", 1);
9638 if (is_notif != NULL)
9639 *is_notif = 0;
9640 return val;
9641 }
9642
9643 /* If we got a notification, handle it, and go back to looking
9644 for a packet. */
9645 else
9646 {
9647 gdb_assert (c == '%');
9648
9649 if (remote_debug)
9650 {
9651 std::string str = escape_buffer (*buf, val);
9652
9653 fprintf_unfiltered (gdb_stdlog,
9654 " Notification received: %s\n",
9655 str.c_str ());
9656 }
9657 if (is_notif != NULL)
9658 *is_notif = 1;
9659
9660 handle_notification (rs->notif_state, *buf);
9661
9662 /* Notifications require no acknowledgement. */
9663
9664 if (expecting_notif)
9665 return val;
9666 }
9667 }
9668 }
9669
9670 int
9671 remote_target::getpkt_sane (char **buf, long *sizeof_buf, int forever)
9672 {
9673 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9674 }
9675
9676 int
9677 remote_target::getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9678 int *is_notif)
9679 {
9680 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9681 is_notif);
9682 }
9683
9684 /* Kill any new fork children of process PID that haven't been
9685 processed by follow_fork. */
9686
9687 void
9688 remote_target::kill_new_fork_children (int pid)
9689 {
9690 remote_state *rs = get_remote_state ();
9691 struct notif_client *notif = &notif_client_stop;
9692
9693 /* Kill the fork child threads of any threads in process PID
9694 that are stopped at a fork event. */
9695 for (thread_info *thread : all_non_exited_threads ())
9696 {
9697 struct target_waitstatus *ws = &thread->pending_follow;
9698
9699 if (is_pending_fork_parent (ws, pid, thread->ptid))
9700 {
9701 int child_pid = ws->value.related_pid.pid ();
9702 int res;
9703
9704 res = remote_vkill (child_pid);
9705 if (res != 0)
9706 error (_("Can't kill fork child process %d"), child_pid);
9707 }
9708 }
9709
9710 /* Check for any pending fork events (not reported or processed yet)
9711 in process PID and kill those fork child threads as well. */
9712 remote_notif_get_pending_events (notif);
9713 for (auto &event : rs->stop_reply_queue)
9714 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9715 {
9716 int child_pid = event->ws.value.related_pid.pid ();
9717 int res;
9718
9719 res = remote_vkill (child_pid);
9720 if (res != 0)
9721 error (_("Can't kill fork child process %d"), child_pid);
9722 }
9723 }
9724
9725 \f
9726 /* Target hook to kill the current inferior. */
9727
9728 void
9729 remote_target::kill ()
9730 {
9731 int res = -1;
9732 int pid = inferior_ptid.pid ();
9733 struct remote_state *rs = get_remote_state ();
9734
9735 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9736 {
9737 /* If we're stopped while forking and we haven't followed yet,
9738 kill the child task. We need to do this before killing the
9739 parent task because if this is a vfork then the parent will
9740 be sleeping. */
9741 kill_new_fork_children (pid);
9742
9743 res = remote_vkill (pid);
9744 if (res == 0)
9745 {
9746 target_mourn_inferior (inferior_ptid);
9747 return;
9748 }
9749 }
9750
9751 /* If we are in 'target remote' mode and we are killing the only
9752 inferior, then we will tell gdbserver to exit and unpush the
9753 target. */
9754 if (res == -1 && !remote_multi_process_p (rs)
9755 && number_of_live_inferiors () == 1)
9756 {
9757 remote_kill_k ();
9758
9759 /* We've killed the remote end, we get to mourn it. If we are
9760 not in extended mode, mourning the inferior also unpushes
9761 remote_ops from the target stack, which closes the remote
9762 connection. */
9763 target_mourn_inferior (inferior_ptid);
9764
9765 return;
9766 }
9767
9768 error (_("Can't kill process"));
9769 }
9770
9771 /* Send a kill request to the target using the 'vKill' packet. */
9772
9773 int
9774 remote_target::remote_vkill (int pid)
9775 {
9776 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9777 return -1;
9778
9779 remote_state *rs = get_remote_state ();
9780
9781 /* Tell the remote target to detach. */
9782 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9783 putpkt (rs->buf);
9784 getpkt (&rs->buf, &rs->buf_size, 0);
9785
9786 switch (packet_ok (rs->buf,
9787 &remote_protocol_packets[PACKET_vKill]))
9788 {
9789 case PACKET_OK:
9790 return 0;
9791 case PACKET_ERROR:
9792 return 1;
9793 case PACKET_UNKNOWN:
9794 return -1;
9795 default:
9796 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9797 }
9798 }
9799
9800 /* Send a kill request to the target using the 'k' packet. */
9801
9802 void
9803 remote_target::remote_kill_k ()
9804 {
9805 /* Catch errors so the user can quit from gdb even when we
9806 aren't on speaking terms with the remote system. */
9807 TRY
9808 {
9809 putpkt ("k");
9810 }
9811 CATCH (ex, RETURN_MASK_ERROR)
9812 {
9813 if (ex.error == TARGET_CLOSE_ERROR)
9814 {
9815 /* If we got an (EOF) error that caused the target
9816 to go away, then we're done, that's what we wanted.
9817 "k" is susceptible to cause a premature EOF, given
9818 that the remote server isn't actually required to
9819 reply to "k", and it can happen that it doesn't
9820 even get to reply ACK to the "k". */
9821 return;
9822 }
9823
9824 /* Otherwise, something went wrong. We didn't actually kill
9825 the target. Just propagate the exception, and let the
9826 user or higher layers decide what to do. */
9827 throw_exception (ex);
9828 }
9829 END_CATCH
9830 }
9831
9832 void
9833 remote_target::mourn_inferior ()
9834 {
9835 struct remote_state *rs = get_remote_state ();
9836
9837 /* We're no longer interested in notification events of an inferior
9838 that exited or was killed/detached. */
9839 discard_pending_stop_replies (current_inferior ());
9840
9841 /* In 'target remote' mode with one inferior, we close the connection. */
9842 if (!rs->extended && number_of_live_inferiors () <= 1)
9843 {
9844 unpush_target (this);
9845
9846 /* remote_close takes care of doing most of the clean up. */
9847 generic_mourn_inferior ();
9848 return;
9849 }
9850
9851 /* In case we got here due to an error, but we're going to stay
9852 connected. */
9853 rs->waiting_for_stop_reply = 0;
9854
9855 /* If the current general thread belonged to the process we just
9856 detached from or has exited, the remote side current general
9857 thread becomes undefined. Considering a case like this:
9858
9859 - We just got here due to a detach.
9860 - The process that we're detaching from happens to immediately
9861 report a global breakpoint being hit in non-stop mode, in the
9862 same thread we had selected before.
9863 - GDB attaches to this process again.
9864 - This event happens to be the next event we handle.
9865
9866 GDB would consider that the current general thread didn't need to
9867 be set on the stub side (with Hg), since for all it knew,
9868 GENERAL_THREAD hadn't changed.
9869
9870 Notice that although in all-stop mode, the remote server always
9871 sets the current thread to the thread reporting the stop event,
9872 that doesn't happen in non-stop mode; in non-stop, the stub *must
9873 not* change the current thread when reporting a breakpoint hit,
9874 due to the decoupling of event reporting and event handling.
9875
9876 To keep things simple, we always invalidate our notion of the
9877 current thread. */
9878 record_currthread (rs, minus_one_ptid);
9879
9880 /* Call common code to mark the inferior as not running. */
9881 generic_mourn_inferior ();
9882
9883 if (!have_inferiors ())
9884 {
9885 if (!remote_multi_process_p (rs))
9886 {
9887 /* Check whether the target is running now - some remote stubs
9888 automatically restart after kill. */
9889 putpkt ("?");
9890 getpkt (&rs->buf, &rs->buf_size, 0);
9891
9892 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9893 {
9894 /* Assume that the target has been restarted. Set
9895 inferior_ptid so that bits of core GDB realizes
9896 there's something here, e.g., so that the user can
9897 say "kill" again. */
9898 inferior_ptid = magic_null_ptid;
9899 }
9900 }
9901 }
9902 }
9903
9904 bool
9905 extended_remote_target::supports_disable_randomization ()
9906 {
9907 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9908 }
9909
9910 void
9911 remote_target::extended_remote_disable_randomization (int val)
9912 {
9913 struct remote_state *rs = get_remote_state ();
9914 char *reply;
9915
9916 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9917 val);
9918 putpkt (rs->buf);
9919 reply = remote_get_noisy_reply ();
9920 if (*reply == '\0')
9921 error (_("Target does not support QDisableRandomization."));
9922 if (strcmp (reply, "OK") != 0)
9923 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9924 }
9925
9926 int
9927 remote_target::extended_remote_run (const std::string &args)
9928 {
9929 struct remote_state *rs = get_remote_state ();
9930 int len;
9931 const char *remote_exec_file = get_remote_exec_file ();
9932
9933 /* If the user has disabled vRun support, or we have detected that
9934 support is not available, do not try it. */
9935 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9936 return -1;
9937
9938 strcpy (rs->buf, "vRun;");
9939 len = strlen (rs->buf);
9940
9941 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9942 error (_("Remote file name too long for run packet"));
9943 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9944 strlen (remote_exec_file));
9945
9946 if (!args.empty ())
9947 {
9948 int i;
9949
9950 gdb_argv argv (args.c_str ());
9951 for (i = 0; argv[i] != NULL; i++)
9952 {
9953 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9954 error (_("Argument list too long for run packet"));
9955 rs->buf[len++] = ';';
9956 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9957 strlen (argv[i]));
9958 }
9959 }
9960
9961 rs->buf[len++] = '\0';
9962
9963 putpkt (rs->buf);
9964 getpkt (&rs->buf, &rs->buf_size, 0);
9965
9966 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9967 {
9968 case PACKET_OK:
9969 /* We have a wait response. All is well. */
9970 return 0;
9971 case PACKET_UNKNOWN:
9972 return -1;
9973 case PACKET_ERROR:
9974 if (remote_exec_file[0] == '\0')
9975 error (_("Running the default executable on the remote target failed; "
9976 "try \"set remote exec-file\"?"));
9977 else
9978 error (_("Running \"%s\" on the remote target failed"),
9979 remote_exec_file);
9980 default:
9981 gdb_assert_not_reached (_("bad switch"));
9982 }
9983 }
9984
9985 /* Helper function to send set/unset environment packets. ACTION is
9986 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9987 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9988 sent. */
9989
9990 void
9991 remote_target::send_environment_packet (const char *action,
9992 const char *packet,
9993 const char *value)
9994 {
9995 remote_state *rs = get_remote_state ();
9996
9997 /* Convert the environment variable to an hex string, which
9998 is the best format to be transmitted over the wire. */
9999 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10000 strlen (value));
10001
10002 xsnprintf (rs->buf, get_remote_packet_size (),
10003 "%s:%s", packet, encoded_value.c_str ());
10004
10005 putpkt (rs->buf);
10006 getpkt (&rs->buf, &rs->buf_size, 0);
10007 if (strcmp (rs->buf, "OK") != 0)
10008 warning (_("Unable to %s environment variable '%s' on remote."),
10009 action, value);
10010 }
10011
10012 /* Helper function to handle the QEnvironment* packets. */
10013
10014 void
10015 remote_target::extended_remote_environment_support ()
10016 {
10017 remote_state *rs = get_remote_state ();
10018
10019 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10020 {
10021 putpkt ("QEnvironmentReset");
10022 getpkt (&rs->buf, &rs->buf_size, 0);
10023 if (strcmp (rs->buf, "OK") != 0)
10024 warning (_("Unable to reset environment on remote."));
10025 }
10026
10027 gdb_environ *e = &current_inferior ()->environment;
10028
10029 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10030 for (const std::string &el : e->user_set_env ())
10031 send_environment_packet ("set", "QEnvironmentHexEncoded",
10032 el.c_str ());
10033
10034 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10035 for (const std::string &el : e->user_unset_env ())
10036 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10037 }
10038
10039 /* Helper function to set the current working directory for the
10040 inferior in the remote target. */
10041
10042 void
10043 remote_target::extended_remote_set_inferior_cwd ()
10044 {
10045 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10046 {
10047 const char *inferior_cwd = get_inferior_cwd ();
10048 remote_state *rs = get_remote_state ();
10049
10050 if (inferior_cwd != NULL)
10051 {
10052 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10053 strlen (inferior_cwd));
10054
10055 xsnprintf (rs->buf, get_remote_packet_size (),
10056 "QSetWorkingDir:%s", hexpath.c_str ());
10057 }
10058 else
10059 {
10060 /* An empty inferior_cwd means that the user wants us to
10061 reset the remote server's inferior's cwd. */
10062 xsnprintf (rs->buf, get_remote_packet_size (),
10063 "QSetWorkingDir:");
10064 }
10065
10066 putpkt (rs->buf);
10067 getpkt (&rs->buf, &rs->buf_size, 0);
10068 if (packet_ok (rs->buf,
10069 &remote_protocol_packets[PACKET_QSetWorkingDir])
10070 != PACKET_OK)
10071 error (_("\
10072 Remote replied unexpectedly while setting the inferior's working\n\
10073 directory: %s"),
10074 rs->buf);
10075
10076 }
10077 }
10078
10079 /* In the extended protocol we want to be able to do things like
10080 "run" and have them basically work as expected. So we need
10081 a special create_inferior function. We support changing the
10082 executable file and the command line arguments, but not the
10083 environment. */
10084
10085 void
10086 extended_remote_target::create_inferior (const char *exec_file,
10087 const std::string &args,
10088 char **env, int from_tty)
10089 {
10090 int run_worked;
10091 char *stop_reply;
10092 struct remote_state *rs = get_remote_state ();
10093 const char *remote_exec_file = get_remote_exec_file ();
10094
10095 /* If running asynchronously, register the target file descriptor
10096 with the event loop. */
10097 if (target_can_async_p ())
10098 target_async (1);
10099
10100 /* Disable address space randomization if requested (and supported). */
10101 if (supports_disable_randomization ())
10102 extended_remote_disable_randomization (disable_randomization);
10103
10104 /* If startup-with-shell is on, we inform gdbserver to start the
10105 remote inferior using a shell. */
10106 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10107 {
10108 xsnprintf (rs->buf, get_remote_packet_size (),
10109 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10110 putpkt (rs->buf);
10111 getpkt (&rs->buf, &rs->buf_size, 0);
10112 if (strcmp (rs->buf, "OK") != 0)
10113 error (_("\
10114 Remote replied unexpectedly while setting startup-with-shell: %s"),
10115 rs->buf);
10116 }
10117
10118 extended_remote_environment_support ();
10119
10120 extended_remote_set_inferior_cwd ();
10121
10122 /* Now restart the remote server. */
10123 run_worked = extended_remote_run (args) != -1;
10124 if (!run_worked)
10125 {
10126 /* vRun was not supported. Fail if we need it to do what the
10127 user requested. */
10128 if (remote_exec_file[0])
10129 error (_("Remote target does not support \"set remote exec-file\""));
10130 if (!args.empty ())
10131 error (_("Remote target does not support \"set args\" or run ARGS"));
10132
10133 /* Fall back to "R". */
10134 extended_remote_restart ();
10135 }
10136
10137 /* vRun's success return is a stop reply. */
10138 stop_reply = run_worked ? rs->buf : NULL;
10139 add_current_inferior_and_thread (stop_reply);
10140
10141 /* Get updated offsets, if the stub uses qOffsets. */
10142 get_offsets ();
10143 }
10144 \f
10145
10146 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10147 the list of conditions (in agent expression bytecode format), if any, the
10148 target needs to evaluate. The output is placed into the packet buffer
10149 started from BUF and ended at BUF_END. */
10150
10151 static int
10152 remote_add_target_side_condition (struct gdbarch *gdbarch,
10153 struct bp_target_info *bp_tgt, char *buf,
10154 char *buf_end)
10155 {
10156 if (bp_tgt->conditions.empty ())
10157 return 0;
10158
10159 buf += strlen (buf);
10160 xsnprintf (buf, buf_end - buf, "%s", ";");
10161 buf++;
10162
10163 /* Send conditions to the target. */
10164 for (agent_expr *aexpr : bp_tgt->conditions)
10165 {
10166 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10167 buf += strlen (buf);
10168 for (int i = 0; i < aexpr->len; ++i)
10169 buf = pack_hex_byte (buf, aexpr->buf[i]);
10170 *buf = '\0';
10171 }
10172 return 0;
10173 }
10174
10175 static void
10176 remote_add_target_side_commands (struct gdbarch *gdbarch,
10177 struct bp_target_info *bp_tgt, char *buf)
10178 {
10179 if (bp_tgt->tcommands.empty ())
10180 return;
10181
10182 buf += strlen (buf);
10183
10184 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10185 buf += strlen (buf);
10186
10187 /* Concatenate all the agent expressions that are commands into the
10188 cmds parameter. */
10189 for (agent_expr *aexpr : bp_tgt->tcommands)
10190 {
10191 sprintf (buf, "X%x,", aexpr->len);
10192 buf += strlen (buf);
10193 for (int i = 0; i < aexpr->len; ++i)
10194 buf = pack_hex_byte (buf, aexpr->buf[i]);
10195 *buf = '\0';
10196 }
10197 }
10198
10199 /* Insert a breakpoint. On targets that have software breakpoint
10200 support, we ask the remote target to do the work; on targets
10201 which don't, we insert a traditional memory breakpoint. */
10202
10203 int
10204 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10205 struct bp_target_info *bp_tgt)
10206 {
10207 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10208 If it succeeds, then set the support to PACKET_ENABLE. If it
10209 fails, and the user has explicitly requested the Z support then
10210 report an error, otherwise, mark it disabled and go on. */
10211
10212 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10213 {
10214 CORE_ADDR addr = bp_tgt->reqstd_address;
10215 struct remote_state *rs;
10216 char *p, *endbuf;
10217
10218 /* Make sure the remote is pointing at the right process, if
10219 necessary. */
10220 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10221 set_general_process ();
10222
10223 rs = get_remote_state ();
10224 p = rs->buf;
10225 endbuf = rs->buf + get_remote_packet_size ();
10226
10227 *(p++) = 'Z';
10228 *(p++) = '0';
10229 *(p++) = ',';
10230 addr = (ULONGEST) remote_address_masked (addr);
10231 p += hexnumstr (p, addr);
10232 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10233
10234 if (supports_evaluation_of_breakpoint_conditions ())
10235 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10236
10237 if (can_run_breakpoint_commands ())
10238 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10239
10240 putpkt (rs->buf);
10241 getpkt (&rs->buf, &rs->buf_size, 0);
10242
10243 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10244 {
10245 case PACKET_ERROR:
10246 return -1;
10247 case PACKET_OK:
10248 return 0;
10249 case PACKET_UNKNOWN:
10250 break;
10251 }
10252 }
10253
10254 /* If this breakpoint has target-side commands but this stub doesn't
10255 support Z0 packets, throw error. */
10256 if (!bp_tgt->tcommands.empty ())
10257 throw_error (NOT_SUPPORTED_ERROR, _("\
10258 Target doesn't support breakpoints that have target side commands."));
10259
10260 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10261 }
10262
10263 int
10264 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10265 struct bp_target_info *bp_tgt,
10266 enum remove_bp_reason reason)
10267 {
10268 CORE_ADDR addr = bp_tgt->placed_address;
10269 struct remote_state *rs = get_remote_state ();
10270
10271 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10272 {
10273 char *p = rs->buf;
10274 char *endbuf = rs->buf + get_remote_packet_size ();
10275
10276 /* Make sure the remote is pointing at the right process, if
10277 necessary. */
10278 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10279 set_general_process ();
10280
10281 *(p++) = 'z';
10282 *(p++) = '0';
10283 *(p++) = ',';
10284
10285 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10286 p += hexnumstr (p, addr);
10287 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10288
10289 putpkt (rs->buf);
10290 getpkt (&rs->buf, &rs->buf_size, 0);
10291
10292 return (rs->buf[0] == 'E');
10293 }
10294
10295 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10296 }
10297
10298 static enum Z_packet_type
10299 watchpoint_to_Z_packet (int type)
10300 {
10301 switch (type)
10302 {
10303 case hw_write:
10304 return Z_PACKET_WRITE_WP;
10305 break;
10306 case hw_read:
10307 return Z_PACKET_READ_WP;
10308 break;
10309 case hw_access:
10310 return Z_PACKET_ACCESS_WP;
10311 break;
10312 default:
10313 internal_error (__FILE__, __LINE__,
10314 _("hw_bp_to_z: bad watchpoint type %d"), type);
10315 }
10316 }
10317
10318 int
10319 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10320 enum target_hw_bp_type type, struct expression *cond)
10321 {
10322 struct remote_state *rs = get_remote_state ();
10323 char *endbuf = rs->buf + get_remote_packet_size ();
10324 char *p;
10325 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10326
10327 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10328 return 1;
10329
10330 /* Make sure the remote is pointing at the right process, if
10331 necessary. */
10332 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10333 set_general_process ();
10334
10335 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10336 p = strchr (rs->buf, '\0');
10337 addr = remote_address_masked (addr);
10338 p += hexnumstr (p, (ULONGEST) addr);
10339 xsnprintf (p, endbuf - p, ",%x", len);
10340
10341 putpkt (rs->buf);
10342 getpkt (&rs->buf, &rs->buf_size, 0);
10343
10344 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10345 {
10346 case PACKET_ERROR:
10347 return -1;
10348 case PACKET_UNKNOWN:
10349 return 1;
10350 case PACKET_OK:
10351 return 0;
10352 }
10353 internal_error (__FILE__, __LINE__,
10354 _("remote_insert_watchpoint: reached end of function"));
10355 }
10356
10357 bool
10358 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10359 CORE_ADDR start, int length)
10360 {
10361 CORE_ADDR diff = remote_address_masked (addr - start);
10362
10363 return diff < length;
10364 }
10365
10366
10367 int
10368 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10369 enum target_hw_bp_type type, struct expression *cond)
10370 {
10371 struct remote_state *rs = get_remote_state ();
10372 char *endbuf = rs->buf + get_remote_packet_size ();
10373 char *p;
10374 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10375
10376 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10377 return -1;
10378
10379 /* Make sure the remote is pointing at the right process, if
10380 necessary. */
10381 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10382 set_general_process ();
10383
10384 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10385 p = strchr (rs->buf, '\0');
10386 addr = remote_address_masked (addr);
10387 p += hexnumstr (p, (ULONGEST) addr);
10388 xsnprintf (p, endbuf - p, ",%x", len);
10389 putpkt (rs->buf);
10390 getpkt (&rs->buf, &rs->buf_size, 0);
10391
10392 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10393 {
10394 case PACKET_ERROR:
10395 case PACKET_UNKNOWN:
10396 return -1;
10397 case PACKET_OK:
10398 return 0;
10399 }
10400 internal_error (__FILE__, __LINE__,
10401 _("remote_remove_watchpoint: reached end of function"));
10402 }
10403
10404
10405 int remote_hw_watchpoint_limit = -1;
10406 int remote_hw_watchpoint_length_limit = -1;
10407 int remote_hw_breakpoint_limit = -1;
10408
10409 int
10410 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10411 {
10412 if (remote_hw_watchpoint_length_limit == 0)
10413 return 0;
10414 else if (remote_hw_watchpoint_length_limit < 0)
10415 return 1;
10416 else if (len <= remote_hw_watchpoint_length_limit)
10417 return 1;
10418 else
10419 return 0;
10420 }
10421
10422 int
10423 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10424 {
10425 if (type == bp_hardware_breakpoint)
10426 {
10427 if (remote_hw_breakpoint_limit == 0)
10428 return 0;
10429 else if (remote_hw_breakpoint_limit < 0)
10430 return 1;
10431 else if (cnt <= remote_hw_breakpoint_limit)
10432 return 1;
10433 }
10434 else
10435 {
10436 if (remote_hw_watchpoint_limit == 0)
10437 return 0;
10438 else if (remote_hw_watchpoint_limit < 0)
10439 return 1;
10440 else if (ot)
10441 return -1;
10442 else if (cnt <= remote_hw_watchpoint_limit)
10443 return 1;
10444 }
10445 return -1;
10446 }
10447
10448 /* The to_stopped_by_sw_breakpoint method of target remote. */
10449
10450 bool
10451 remote_target::stopped_by_sw_breakpoint ()
10452 {
10453 struct thread_info *thread = inferior_thread ();
10454
10455 return (thread->priv != NULL
10456 && (get_remote_thread_info (thread)->stop_reason
10457 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10458 }
10459
10460 /* The to_supports_stopped_by_sw_breakpoint method of target
10461 remote. */
10462
10463 bool
10464 remote_target::supports_stopped_by_sw_breakpoint ()
10465 {
10466 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10467 }
10468
10469 /* The to_stopped_by_hw_breakpoint method of target remote. */
10470
10471 bool
10472 remote_target::stopped_by_hw_breakpoint ()
10473 {
10474 struct thread_info *thread = inferior_thread ();
10475
10476 return (thread->priv != NULL
10477 && (get_remote_thread_info (thread)->stop_reason
10478 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10479 }
10480
10481 /* The to_supports_stopped_by_hw_breakpoint method of target
10482 remote. */
10483
10484 bool
10485 remote_target::supports_stopped_by_hw_breakpoint ()
10486 {
10487 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10488 }
10489
10490 bool
10491 remote_target::stopped_by_watchpoint ()
10492 {
10493 struct thread_info *thread = inferior_thread ();
10494
10495 return (thread->priv != NULL
10496 && (get_remote_thread_info (thread)->stop_reason
10497 == TARGET_STOPPED_BY_WATCHPOINT));
10498 }
10499
10500 bool
10501 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10502 {
10503 struct thread_info *thread = inferior_thread ();
10504
10505 if (thread->priv != NULL
10506 && (get_remote_thread_info (thread)->stop_reason
10507 == TARGET_STOPPED_BY_WATCHPOINT))
10508 {
10509 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10510 return true;
10511 }
10512
10513 return false;
10514 }
10515
10516
10517 int
10518 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10519 struct bp_target_info *bp_tgt)
10520 {
10521 CORE_ADDR addr = bp_tgt->reqstd_address;
10522 struct remote_state *rs;
10523 char *p, *endbuf;
10524 char *message;
10525
10526 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10527 return -1;
10528
10529 /* Make sure the remote is pointing at the right process, if
10530 necessary. */
10531 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10532 set_general_process ();
10533
10534 rs = get_remote_state ();
10535 p = rs->buf;
10536 endbuf = rs->buf + get_remote_packet_size ();
10537
10538 *(p++) = 'Z';
10539 *(p++) = '1';
10540 *(p++) = ',';
10541
10542 addr = remote_address_masked (addr);
10543 p += hexnumstr (p, (ULONGEST) addr);
10544 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10545
10546 if (supports_evaluation_of_breakpoint_conditions ())
10547 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10548
10549 if (can_run_breakpoint_commands ())
10550 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10551
10552 putpkt (rs->buf);
10553 getpkt (&rs->buf, &rs->buf_size, 0);
10554
10555 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10556 {
10557 case PACKET_ERROR:
10558 if (rs->buf[1] == '.')
10559 {
10560 message = strchr (rs->buf + 2, '.');
10561 if (message)
10562 error (_("Remote failure reply: %s"), message + 1);
10563 }
10564 return -1;
10565 case PACKET_UNKNOWN:
10566 return -1;
10567 case PACKET_OK:
10568 return 0;
10569 }
10570 internal_error (__FILE__, __LINE__,
10571 _("remote_insert_hw_breakpoint: reached end of function"));
10572 }
10573
10574
10575 int
10576 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10577 struct bp_target_info *bp_tgt)
10578 {
10579 CORE_ADDR addr;
10580 struct remote_state *rs = get_remote_state ();
10581 char *p = rs->buf;
10582 char *endbuf = rs->buf + get_remote_packet_size ();
10583
10584 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10585 return -1;
10586
10587 /* Make sure the remote is pointing at the right process, if
10588 necessary. */
10589 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10590 set_general_process ();
10591
10592 *(p++) = 'z';
10593 *(p++) = '1';
10594 *(p++) = ',';
10595
10596 addr = remote_address_masked (bp_tgt->placed_address);
10597 p += hexnumstr (p, (ULONGEST) addr);
10598 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10599
10600 putpkt (rs->buf);
10601 getpkt (&rs->buf, &rs->buf_size, 0);
10602
10603 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10604 {
10605 case PACKET_ERROR:
10606 case PACKET_UNKNOWN:
10607 return -1;
10608 case PACKET_OK:
10609 return 0;
10610 }
10611 internal_error (__FILE__, __LINE__,
10612 _("remote_remove_hw_breakpoint: reached end of function"));
10613 }
10614
10615 /* Verify memory using the "qCRC:" request. */
10616
10617 int
10618 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10619 {
10620 struct remote_state *rs = get_remote_state ();
10621 unsigned long host_crc, target_crc;
10622 char *tmp;
10623
10624 /* It doesn't make sense to use qCRC if the remote target is
10625 connected but not running. */
10626 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10627 {
10628 enum packet_result result;
10629
10630 /* Make sure the remote is pointing at the right process. */
10631 set_general_process ();
10632
10633 /* FIXME: assumes lma can fit into long. */
10634 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10635 (long) lma, (long) size);
10636 putpkt (rs->buf);
10637
10638 /* Be clever; compute the host_crc before waiting for target
10639 reply. */
10640 host_crc = xcrc32 (data, size, 0xffffffff);
10641
10642 getpkt (&rs->buf, &rs->buf_size, 0);
10643
10644 result = packet_ok (rs->buf,
10645 &remote_protocol_packets[PACKET_qCRC]);
10646 if (result == PACKET_ERROR)
10647 return -1;
10648 else if (result == PACKET_OK)
10649 {
10650 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10651 target_crc = target_crc * 16 + fromhex (*tmp);
10652
10653 return (host_crc == target_crc);
10654 }
10655 }
10656
10657 return simple_verify_memory (this, data, lma, size);
10658 }
10659
10660 /* compare-sections command
10661
10662 With no arguments, compares each loadable section in the exec bfd
10663 with the same memory range on the target, and reports mismatches.
10664 Useful for verifying the image on the target against the exec file. */
10665
10666 static void
10667 compare_sections_command (const char *args, int from_tty)
10668 {
10669 asection *s;
10670 const char *sectname;
10671 bfd_size_type size;
10672 bfd_vma lma;
10673 int matched = 0;
10674 int mismatched = 0;
10675 int res;
10676 int read_only = 0;
10677
10678 if (!exec_bfd)
10679 error (_("command cannot be used without an exec file"));
10680
10681 if (args != NULL && strcmp (args, "-r") == 0)
10682 {
10683 read_only = 1;
10684 args = NULL;
10685 }
10686
10687 for (s = exec_bfd->sections; s; s = s->next)
10688 {
10689 if (!(s->flags & SEC_LOAD))
10690 continue; /* Skip non-loadable section. */
10691
10692 if (read_only && (s->flags & SEC_READONLY) == 0)
10693 continue; /* Skip writeable sections */
10694
10695 size = bfd_get_section_size (s);
10696 if (size == 0)
10697 continue; /* Skip zero-length section. */
10698
10699 sectname = bfd_get_section_name (exec_bfd, s);
10700 if (args && strcmp (args, sectname) != 0)
10701 continue; /* Not the section selected by user. */
10702
10703 matched = 1; /* Do this section. */
10704 lma = s->lma;
10705
10706 gdb::byte_vector sectdata (size);
10707 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10708
10709 res = target_verify_memory (sectdata.data (), lma, size);
10710
10711 if (res == -1)
10712 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10713 paddress (target_gdbarch (), lma),
10714 paddress (target_gdbarch (), lma + size));
10715
10716 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10717 paddress (target_gdbarch (), lma),
10718 paddress (target_gdbarch (), lma + size));
10719 if (res)
10720 printf_filtered ("matched.\n");
10721 else
10722 {
10723 printf_filtered ("MIS-MATCHED!\n");
10724 mismatched++;
10725 }
10726 }
10727 if (mismatched > 0)
10728 warning (_("One or more sections of the target image does not match\n\
10729 the loaded file\n"));
10730 if (args && !matched)
10731 printf_filtered (_("No loaded section named '%s'.\n"), args);
10732 }
10733
10734 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10735 into remote target. The number of bytes written to the remote
10736 target is returned, or -1 for error. */
10737
10738 target_xfer_status
10739 remote_target::remote_write_qxfer (const char *object_name,
10740 const char *annex, const gdb_byte *writebuf,
10741 ULONGEST offset, LONGEST len,
10742 ULONGEST *xfered_len,
10743 struct packet_config *packet)
10744 {
10745 int i, buf_len;
10746 ULONGEST n;
10747 struct remote_state *rs = get_remote_state ();
10748 int max_size = get_memory_write_packet_size ();
10749
10750 if (packet_config_support (packet) == PACKET_DISABLE)
10751 return TARGET_XFER_E_IO;
10752
10753 /* Insert header. */
10754 i = snprintf (rs->buf, max_size,
10755 "qXfer:%s:write:%s:%s:",
10756 object_name, annex ? annex : "",
10757 phex_nz (offset, sizeof offset));
10758 max_size -= (i + 1);
10759
10760 /* Escape as much data as fits into rs->buf. */
10761 buf_len = remote_escape_output
10762 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10763
10764 if (putpkt_binary (rs->buf, i + buf_len) < 0
10765 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10766 || packet_ok (rs->buf, packet) != PACKET_OK)
10767 return TARGET_XFER_E_IO;
10768
10769 unpack_varlen_hex (rs->buf, &n);
10770
10771 *xfered_len = n;
10772 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10773 }
10774
10775 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10776 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10777 number of bytes read is returned, or 0 for EOF, or -1 for error.
10778 The number of bytes read may be less than LEN without indicating an
10779 EOF. PACKET is checked and updated to indicate whether the remote
10780 target supports this object. */
10781
10782 target_xfer_status
10783 remote_target::remote_read_qxfer (const char *object_name,
10784 const char *annex,
10785 gdb_byte *readbuf, ULONGEST offset,
10786 LONGEST len,
10787 ULONGEST *xfered_len,
10788 struct packet_config *packet)
10789 {
10790 struct remote_state *rs = get_remote_state ();
10791 LONGEST i, n, packet_len;
10792
10793 if (packet_config_support (packet) == PACKET_DISABLE)
10794 return TARGET_XFER_E_IO;
10795
10796 /* Check whether we've cached an end-of-object packet that matches
10797 this request. */
10798 if (rs->finished_object)
10799 {
10800 if (strcmp (object_name, rs->finished_object) == 0
10801 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10802 && offset == rs->finished_offset)
10803 return TARGET_XFER_EOF;
10804
10805
10806 /* Otherwise, we're now reading something different. Discard
10807 the cache. */
10808 xfree (rs->finished_object);
10809 xfree (rs->finished_annex);
10810 rs->finished_object = NULL;
10811 rs->finished_annex = NULL;
10812 }
10813
10814 /* Request only enough to fit in a single packet. The actual data
10815 may not, since we don't know how much of it will need to be escaped;
10816 the target is free to respond with slightly less data. We subtract
10817 five to account for the response type and the protocol frame. */
10818 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10819 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10820 object_name, annex ? annex : "",
10821 phex_nz (offset, sizeof offset),
10822 phex_nz (n, sizeof n));
10823 i = putpkt (rs->buf);
10824 if (i < 0)
10825 return TARGET_XFER_E_IO;
10826
10827 rs->buf[0] = '\0';
10828 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10829 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10830 return TARGET_XFER_E_IO;
10831
10832 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10833 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10834
10835 /* 'm' means there is (or at least might be) more data after this
10836 batch. That does not make sense unless there's at least one byte
10837 of data in this reply. */
10838 if (rs->buf[0] == 'm' && packet_len == 1)
10839 error (_("Remote qXfer reply contained no data."));
10840
10841 /* Got some data. */
10842 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10843 packet_len - 1, readbuf, n);
10844
10845 /* 'l' is an EOF marker, possibly including a final block of data,
10846 or possibly empty. If we have the final block of a non-empty
10847 object, record this fact to bypass a subsequent partial read. */
10848 if (rs->buf[0] == 'l' && offset + i > 0)
10849 {
10850 rs->finished_object = xstrdup (object_name);
10851 rs->finished_annex = xstrdup (annex ? annex : "");
10852 rs->finished_offset = offset + i;
10853 }
10854
10855 if (i == 0)
10856 return TARGET_XFER_EOF;
10857 else
10858 {
10859 *xfered_len = i;
10860 return TARGET_XFER_OK;
10861 }
10862 }
10863
10864 enum target_xfer_status
10865 remote_target::xfer_partial (enum target_object object,
10866 const char *annex, gdb_byte *readbuf,
10867 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10868 ULONGEST *xfered_len)
10869 {
10870 struct remote_state *rs;
10871 int i;
10872 char *p2;
10873 char query_type;
10874 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10875
10876 set_remote_traceframe ();
10877 set_general_thread (inferior_ptid);
10878
10879 rs = get_remote_state ();
10880
10881 /* Handle memory using the standard memory routines. */
10882 if (object == TARGET_OBJECT_MEMORY)
10883 {
10884 /* If the remote target is connected but not running, we should
10885 pass this request down to a lower stratum (e.g. the executable
10886 file). */
10887 if (!target_has_execution)
10888 return TARGET_XFER_EOF;
10889
10890 if (writebuf != NULL)
10891 return remote_write_bytes (offset, writebuf, len, unit_size,
10892 xfered_len);
10893 else
10894 return remote_read_bytes (offset, readbuf, len, unit_size,
10895 xfered_len);
10896 }
10897
10898 /* Handle SPU memory using qxfer packets. */
10899 if (object == TARGET_OBJECT_SPU)
10900 {
10901 if (readbuf)
10902 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10903 xfered_len, &remote_protocol_packets
10904 [PACKET_qXfer_spu_read]);
10905 else
10906 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10907 xfered_len, &remote_protocol_packets
10908 [PACKET_qXfer_spu_write]);
10909 }
10910
10911 /* Handle extra signal info using qxfer packets. */
10912 if (object == TARGET_OBJECT_SIGNAL_INFO)
10913 {
10914 if (readbuf)
10915 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10916 xfered_len, &remote_protocol_packets
10917 [PACKET_qXfer_siginfo_read]);
10918 else
10919 return remote_write_qxfer ("siginfo", annex,
10920 writebuf, offset, len, xfered_len,
10921 &remote_protocol_packets
10922 [PACKET_qXfer_siginfo_write]);
10923 }
10924
10925 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10926 {
10927 if (readbuf)
10928 return remote_read_qxfer ("statictrace", annex,
10929 readbuf, offset, len, xfered_len,
10930 &remote_protocol_packets
10931 [PACKET_qXfer_statictrace_read]);
10932 else
10933 return TARGET_XFER_E_IO;
10934 }
10935
10936 /* Only handle flash writes. */
10937 if (writebuf != NULL)
10938 {
10939 switch (object)
10940 {
10941 case TARGET_OBJECT_FLASH:
10942 return remote_flash_write (offset, len, xfered_len,
10943 writebuf);
10944
10945 default:
10946 return TARGET_XFER_E_IO;
10947 }
10948 }
10949
10950 /* Map pre-existing objects onto letters. DO NOT do this for new
10951 objects!!! Instead specify new query packets. */
10952 switch (object)
10953 {
10954 case TARGET_OBJECT_AVR:
10955 query_type = 'R';
10956 break;
10957
10958 case TARGET_OBJECT_AUXV:
10959 gdb_assert (annex == NULL);
10960 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10961 xfered_len,
10962 &remote_protocol_packets[PACKET_qXfer_auxv]);
10963
10964 case TARGET_OBJECT_AVAILABLE_FEATURES:
10965 return remote_read_qxfer
10966 ("features", annex, readbuf, offset, len, xfered_len,
10967 &remote_protocol_packets[PACKET_qXfer_features]);
10968
10969 case TARGET_OBJECT_LIBRARIES:
10970 return remote_read_qxfer
10971 ("libraries", annex, readbuf, offset, len, xfered_len,
10972 &remote_protocol_packets[PACKET_qXfer_libraries]);
10973
10974 case TARGET_OBJECT_LIBRARIES_SVR4:
10975 return remote_read_qxfer
10976 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10977 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10978
10979 case TARGET_OBJECT_MEMORY_MAP:
10980 gdb_assert (annex == NULL);
10981 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10982 xfered_len,
10983 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10984
10985 case TARGET_OBJECT_OSDATA:
10986 /* Should only get here if we're connected. */
10987 gdb_assert (rs->remote_desc);
10988 return remote_read_qxfer
10989 ("osdata", annex, readbuf, offset, len, xfered_len,
10990 &remote_protocol_packets[PACKET_qXfer_osdata]);
10991
10992 case TARGET_OBJECT_THREADS:
10993 gdb_assert (annex == NULL);
10994 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10995 xfered_len,
10996 &remote_protocol_packets[PACKET_qXfer_threads]);
10997
10998 case TARGET_OBJECT_TRACEFRAME_INFO:
10999 gdb_assert (annex == NULL);
11000 return remote_read_qxfer
11001 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11002 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11003
11004 case TARGET_OBJECT_FDPIC:
11005 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11006 xfered_len,
11007 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11008
11009 case TARGET_OBJECT_OPENVMS_UIB:
11010 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11011 xfered_len,
11012 &remote_protocol_packets[PACKET_qXfer_uib]);
11013
11014 case TARGET_OBJECT_BTRACE:
11015 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11016 xfered_len,
11017 &remote_protocol_packets[PACKET_qXfer_btrace]);
11018
11019 case TARGET_OBJECT_BTRACE_CONF:
11020 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11021 len, xfered_len,
11022 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11023
11024 case TARGET_OBJECT_EXEC_FILE:
11025 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11026 len, xfered_len,
11027 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11028
11029 default:
11030 return TARGET_XFER_E_IO;
11031 }
11032
11033 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11034 large enough let the caller deal with it. */
11035 if (len < get_remote_packet_size ())
11036 return TARGET_XFER_E_IO;
11037 len = get_remote_packet_size ();
11038
11039 /* Except for querying the minimum buffer size, target must be open. */
11040 if (!rs->remote_desc)
11041 error (_("remote query is only available after target open"));
11042
11043 gdb_assert (annex != NULL);
11044 gdb_assert (readbuf != NULL);
11045
11046 p2 = rs->buf;
11047 *p2++ = 'q';
11048 *p2++ = query_type;
11049
11050 /* We used one buffer char for the remote protocol q command and
11051 another for the query type. As the remote protocol encapsulation
11052 uses 4 chars plus one extra in case we are debugging
11053 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11054 string. */
11055 i = 0;
11056 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11057 {
11058 /* Bad caller may have sent forbidden characters. */
11059 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11060 *p2++ = annex[i];
11061 i++;
11062 }
11063 *p2 = '\0';
11064 gdb_assert (annex[i] == '\0');
11065
11066 i = putpkt (rs->buf);
11067 if (i < 0)
11068 return TARGET_XFER_E_IO;
11069
11070 getpkt (&rs->buf, &rs->buf_size, 0);
11071 strcpy ((char *) readbuf, rs->buf);
11072
11073 *xfered_len = strlen ((char *) readbuf);
11074 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11075 }
11076
11077 /* Implementation of to_get_memory_xfer_limit. */
11078
11079 ULONGEST
11080 remote_target::get_memory_xfer_limit ()
11081 {
11082 return get_memory_write_packet_size ();
11083 }
11084
11085 int
11086 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11087 const gdb_byte *pattern, ULONGEST pattern_len,
11088 CORE_ADDR *found_addrp)
11089 {
11090 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11091 struct remote_state *rs = get_remote_state ();
11092 int max_size = get_memory_write_packet_size ();
11093 struct packet_config *packet =
11094 &remote_protocol_packets[PACKET_qSearch_memory];
11095 /* Number of packet bytes used to encode the pattern;
11096 this could be more than PATTERN_LEN due to escape characters. */
11097 int escaped_pattern_len;
11098 /* Amount of pattern that was encodable in the packet. */
11099 int used_pattern_len;
11100 int i;
11101 int found;
11102 ULONGEST found_addr;
11103
11104 /* Don't go to the target if we don't have to. This is done before
11105 checking packet_config_support to avoid the possibility that a
11106 success for this edge case means the facility works in
11107 general. */
11108 if (pattern_len > search_space_len)
11109 return 0;
11110 if (pattern_len == 0)
11111 {
11112 *found_addrp = start_addr;
11113 return 1;
11114 }
11115
11116 /* If we already know the packet isn't supported, fall back to the simple
11117 way of searching memory. */
11118
11119 if (packet_config_support (packet) == PACKET_DISABLE)
11120 {
11121 /* Target doesn't provided special support, fall back and use the
11122 standard support (copy memory and do the search here). */
11123 return simple_search_memory (this, start_addr, search_space_len,
11124 pattern, pattern_len, found_addrp);
11125 }
11126
11127 /* Make sure the remote is pointing at the right process. */
11128 set_general_process ();
11129
11130 /* Insert header. */
11131 i = snprintf (rs->buf, max_size,
11132 "qSearch:memory:%s;%s;",
11133 phex_nz (start_addr, addr_size),
11134 phex_nz (search_space_len, sizeof (search_space_len)));
11135 max_size -= (i + 1);
11136
11137 /* Escape as much data as fits into rs->buf. */
11138 escaped_pattern_len =
11139 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
11140 &used_pattern_len, max_size);
11141
11142 /* Bail if the pattern is too large. */
11143 if (used_pattern_len != pattern_len)
11144 error (_("Pattern is too large to transmit to remote target."));
11145
11146 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
11147 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
11148 || packet_ok (rs->buf, packet) != PACKET_OK)
11149 {
11150 /* The request may not have worked because the command is not
11151 supported. If so, fall back to the simple way. */
11152 if (packet_config_support (packet) == PACKET_DISABLE)
11153 {
11154 return simple_search_memory (this, start_addr, search_space_len,
11155 pattern, pattern_len, found_addrp);
11156 }
11157 return -1;
11158 }
11159
11160 if (rs->buf[0] == '0')
11161 found = 0;
11162 else if (rs->buf[0] == '1')
11163 {
11164 found = 1;
11165 if (rs->buf[1] != ',')
11166 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11167 unpack_varlen_hex (rs->buf + 2, &found_addr);
11168 *found_addrp = found_addr;
11169 }
11170 else
11171 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11172
11173 return found;
11174 }
11175
11176 void
11177 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11178 {
11179 struct remote_state *rs = get_remote_state ();
11180 char *p = rs->buf;
11181
11182 if (!rs->remote_desc)
11183 error (_("remote rcmd is only available after target open"));
11184
11185 /* Send a NULL command across as an empty command. */
11186 if (command == NULL)
11187 command = "";
11188
11189 /* The query prefix. */
11190 strcpy (rs->buf, "qRcmd,");
11191 p = strchr (rs->buf, '\0');
11192
11193 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11194 > get_remote_packet_size ())
11195 error (_("\"monitor\" command ``%s'' is too long."), command);
11196
11197 /* Encode the actual command. */
11198 bin2hex ((const gdb_byte *) command, p, strlen (command));
11199
11200 if (putpkt (rs->buf) < 0)
11201 error (_("Communication problem with target."));
11202
11203 /* get/display the response */
11204 while (1)
11205 {
11206 char *buf;
11207
11208 /* XXX - see also remote_get_noisy_reply(). */
11209 QUIT; /* Allow user to bail out with ^C. */
11210 rs->buf[0] = '\0';
11211 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11212 {
11213 /* Timeout. Continue to (try to) read responses.
11214 This is better than stopping with an error, assuming the stub
11215 is still executing the (long) monitor command.
11216 If needed, the user can interrupt gdb using C-c, obtaining
11217 an effect similar to stop on timeout. */
11218 continue;
11219 }
11220 buf = rs->buf;
11221 if (buf[0] == '\0')
11222 error (_("Target does not support this command."));
11223 if (buf[0] == 'O' && buf[1] != 'K')
11224 {
11225 remote_console_output (buf + 1); /* 'O' message from stub. */
11226 continue;
11227 }
11228 if (strcmp (buf, "OK") == 0)
11229 break;
11230 if (strlen (buf) == 3 && buf[0] == 'E'
11231 && isdigit (buf[1]) && isdigit (buf[2]))
11232 {
11233 error (_("Protocol error with Rcmd"));
11234 }
11235 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11236 {
11237 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11238
11239 fputc_unfiltered (c, outbuf);
11240 }
11241 break;
11242 }
11243 }
11244
11245 std::vector<mem_region>
11246 remote_target::memory_map ()
11247 {
11248 std::vector<mem_region> result;
11249 gdb::optional<gdb::char_vector> text
11250 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11251
11252 if (text)
11253 result = parse_memory_map (text->data ());
11254
11255 return result;
11256 }
11257
11258 static void
11259 packet_command (const char *args, int from_tty)
11260 {
11261 remote_target *remote = get_current_remote_target ();
11262
11263 if (remote == nullptr)
11264 error (_("command can only be used with remote target"));
11265
11266 remote->packet_command (args, from_tty);
11267 }
11268
11269 void
11270 remote_target::packet_command (const char *args, int from_tty)
11271 {
11272 if (!args)
11273 error (_("remote-packet command requires packet text as argument"));
11274
11275 puts_filtered ("sending: ");
11276 print_packet (args);
11277 puts_filtered ("\n");
11278 putpkt (args);
11279
11280 remote_state *rs = get_remote_state ();
11281
11282 getpkt (&rs->buf, &rs->buf_size, 0);
11283 puts_filtered ("received: ");
11284 print_packet (rs->buf);
11285 puts_filtered ("\n");
11286 }
11287
11288 #if 0
11289 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11290
11291 static void display_thread_info (struct gdb_ext_thread_info *info);
11292
11293 static void threadset_test_cmd (char *cmd, int tty);
11294
11295 static void threadalive_test (char *cmd, int tty);
11296
11297 static void threadlist_test_cmd (char *cmd, int tty);
11298
11299 int get_and_display_threadinfo (threadref *ref);
11300
11301 static void threadinfo_test_cmd (char *cmd, int tty);
11302
11303 static int thread_display_step (threadref *ref, void *context);
11304
11305 static void threadlist_update_test_cmd (char *cmd, int tty);
11306
11307 static void init_remote_threadtests (void);
11308
11309 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11310
11311 static void
11312 threadset_test_cmd (const char *cmd, int tty)
11313 {
11314 int sample_thread = SAMPLE_THREAD;
11315
11316 printf_filtered (_("Remote threadset test\n"));
11317 set_general_thread (sample_thread);
11318 }
11319
11320
11321 static void
11322 threadalive_test (const char *cmd, int tty)
11323 {
11324 int sample_thread = SAMPLE_THREAD;
11325 int pid = inferior_ptid.pid ();
11326 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11327
11328 if (remote_thread_alive (ptid))
11329 printf_filtered ("PASS: Thread alive test\n");
11330 else
11331 printf_filtered ("FAIL: Thread alive test\n");
11332 }
11333
11334 void output_threadid (char *title, threadref *ref);
11335
11336 void
11337 output_threadid (char *title, threadref *ref)
11338 {
11339 char hexid[20];
11340
11341 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11342 hexid[16] = 0;
11343 printf_filtered ("%s %s\n", title, (&hexid[0]));
11344 }
11345
11346 static void
11347 threadlist_test_cmd (const char *cmd, int tty)
11348 {
11349 int startflag = 1;
11350 threadref nextthread;
11351 int done, result_count;
11352 threadref threadlist[3];
11353
11354 printf_filtered ("Remote Threadlist test\n");
11355 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11356 &result_count, &threadlist[0]))
11357 printf_filtered ("FAIL: threadlist test\n");
11358 else
11359 {
11360 threadref *scan = threadlist;
11361 threadref *limit = scan + result_count;
11362
11363 while (scan < limit)
11364 output_threadid (" thread ", scan++);
11365 }
11366 }
11367
11368 void
11369 display_thread_info (struct gdb_ext_thread_info *info)
11370 {
11371 output_threadid ("Threadid: ", &info->threadid);
11372 printf_filtered ("Name: %s\n ", info->shortname);
11373 printf_filtered ("State: %s\n", info->display);
11374 printf_filtered ("other: %s\n\n", info->more_display);
11375 }
11376
11377 int
11378 get_and_display_threadinfo (threadref *ref)
11379 {
11380 int result;
11381 int set;
11382 struct gdb_ext_thread_info threadinfo;
11383
11384 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11385 | TAG_MOREDISPLAY | TAG_DISPLAY;
11386 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11387 display_thread_info (&threadinfo);
11388 return result;
11389 }
11390
11391 static void
11392 threadinfo_test_cmd (const char *cmd, int tty)
11393 {
11394 int athread = SAMPLE_THREAD;
11395 threadref thread;
11396 int set;
11397
11398 int_to_threadref (&thread, athread);
11399 printf_filtered ("Remote Threadinfo test\n");
11400 if (!get_and_display_threadinfo (&thread))
11401 printf_filtered ("FAIL cannot get thread info\n");
11402 }
11403
11404 static int
11405 thread_display_step (threadref *ref, void *context)
11406 {
11407 /* output_threadid(" threadstep ",ref); *//* simple test */
11408 return get_and_display_threadinfo (ref);
11409 }
11410
11411 static void
11412 threadlist_update_test_cmd (const char *cmd, int tty)
11413 {
11414 printf_filtered ("Remote Threadlist update test\n");
11415 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11416 }
11417
11418 static void
11419 init_remote_threadtests (void)
11420 {
11421 add_com ("tlist", class_obscure, threadlist_test_cmd,
11422 _("Fetch and print the remote list of "
11423 "thread identifiers, one pkt only"));
11424 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11425 _("Fetch and display info about one thread"));
11426 add_com ("tset", class_obscure, threadset_test_cmd,
11427 _("Test setting to a different thread"));
11428 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11429 _("Iterate through updating all remote thread info"));
11430 add_com ("talive", class_obscure, threadalive_test,
11431 _(" Remote thread alive test "));
11432 }
11433
11434 #endif /* 0 */
11435
11436 /* Convert a thread ID to a string. Returns the string in a static
11437 buffer. */
11438
11439 const char *
11440 remote_target::pid_to_str (ptid_t ptid)
11441 {
11442 static char buf[64];
11443 struct remote_state *rs = get_remote_state ();
11444
11445 if (ptid == null_ptid)
11446 return normal_pid_to_str (ptid);
11447 else if (ptid.is_pid ())
11448 {
11449 /* Printing an inferior target id. */
11450
11451 /* When multi-process extensions are off, there's no way in the
11452 remote protocol to know the remote process id, if there's any
11453 at all. There's one exception --- when we're connected with
11454 target extended-remote, and we manually attached to a process
11455 with "attach PID". We don't record anywhere a flag that
11456 allows us to distinguish that case from the case of
11457 connecting with extended-remote and the stub already being
11458 attached to a process, and reporting yes to qAttached, hence
11459 no smart special casing here. */
11460 if (!remote_multi_process_p (rs))
11461 {
11462 xsnprintf (buf, sizeof buf, "Remote target");
11463 return buf;
11464 }
11465
11466 return normal_pid_to_str (ptid);
11467 }
11468 else
11469 {
11470 if (magic_null_ptid == ptid)
11471 xsnprintf (buf, sizeof buf, "Thread <main>");
11472 else if (remote_multi_process_p (rs))
11473 if (ptid.lwp () == 0)
11474 return normal_pid_to_str (ptid);
11475 else
11476 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11477 ptid.pid (), ptid.lwp ());
11478 else
11479 xsnprintf (buf, sizeof buf, "Thread %ld",
11480 ptid.lwp ());
11481 return buf;
11482 }
11483 }
11484
11485 /* Get the address of the thread local variable in OBJFILE which is
11486 stored at OFFSET within the thread local storage for thread PTID. */
11487
11488 CORE_ADDR
11489 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11490 CORE_ADDR offset)
11491 {
11492 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11493 {
11494 struct remote_state *rs = get_remote_state ();
11495 char *p = rs->buf;
11496 char *endp = rs->buf + get_remote_packet_size ();
11497 enum packet_result result;
11498
11499 strcpy (p, "qGetTLSAddr:");
11500 p += strlen (p);
11501 p = write_ptid (p, endp, ptid);
11502 *p++ = ',';
11503 p += hexnumstr (p, offset);
11504 *p++ = ',';
11505 p += hexnumstr (p, lm);
11506 *p++ = '\0';
11507
11508 putpkt (rs->buf);
11509 getpkt (&rs->buf, &rs->buf_size, 0);
11510 result = packet_ok (rs->buf,
11511 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11512 if (result == PACKET_OK)
11513 {
11514 ULONGEST addr;
11515
11516 unpack_varlen_hex (rs->buf, &addr);
11517 return addr;
11518 }
11519 else if (result == PACKET_UNKNOWN)
11520 throw_error (TLS_GENERIC_ERROR,
11521 _("Remote target doesn't support qGetTLSAddr packet"));
11522 else
11523 throw_error (TLS_GENERIC_ERROR,
11524 _("Remote target failed to process qGetTLSAddr request"));
11525 }
11526 else
11527 throw_error (TLS_GENERIC_ERROR,
11528 _("TLS not supported or disabled on this target"));
11529 /* Not reached. */
11530 return 0;
11531 }
11532
11533 /* Provide thread local base, i.e. Thread Information Block address.
11534 Returns 1 if ptid is found and thread_local_base is non zero. */
11535
11536 bool
11537 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11538 {
11539 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11540 {
11541 struct remote_state *rs = get_remote_state ();
11542 char *p = rs->buf;
11543 char *endp = rs->buf + get_remote_packet_size ();
11544 enum packet_result result;
11545
11546 strcpy (p, "qGetTIBAddr:");
11547 p += strlen (p);
11548 p = write_ptid (p, endp, ptid);
11549 *p++ = '\0';
11550
11551 putpkt (rs->buf);
11552 getpkt (&rs->buf, &rs->buf_size, 0);
11553 result = packet_ok (rs->buf,
11554 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11555 if (result == PACKET_OK)
11556 {
11557 ULONGEST val;
11558 unpack_varlen_hex (rs->buf, &val);
11559 if (addr)
11560 *addr = (CORE_ADDR) val;
11561 return true;
11562 }
11563 else if (result == PACKET_UNKNOWN)
11564 error (_("Remote target doesn't support qGetTIBAddr packet"));
11565 else
11566 error (_("Remote target failed to process qGetTIBAddr request"));
11567 }
11568 else
11569 error (_("qGetTIBAddr not supported or disabled on this target"));
11570 /* Not reached. */
11571 return false;
11572 }
11573
11574 /* Support for inferring a target description based on the current
11575 architecture and the size of a 'g' packet. While the 'g' packet
11576 can have any size (since optional registers can be left off the
11577 end), some sizes are easily recognizable given knowledge of the
11578 approximate architecture. */
11579
11580 struct remote_g_packet_guess
11581 {
11582 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11583 : bytes (bytes_),
11584 tdesc (tdesc_)
11585 {
11586 }
11587
11588 int bytes;
11589 const struct target_desc *tdesc;
11590 };
11591
11592 struct remote_g_packet_data : public allocate_on_obstack
11593 {
11594 std::vector<remote_g_packet_guess> guesses;
11595 };
11596
11597 static struct gdbarch_data *remote_g_packet_data_handle;
11598
11599 static void *
11600 remote_g_packet_data_init (struct obstack *obstack)
11601 {
11602 return new (obstack) remote_g_packet_data;
11603 }
11604
11605 void
11606 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11607 const struct target_desc *tdesc)
11608 {
11609 struct remote_g_packet_data *data
11610 = ((struct remote_g_packet_data *)
11611 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11612
11613 gdb_assert (tdesc != NULL);
11614
11615 for (const remote_g_packet_guess &guess : data->guesses)
11616 if (guess.bytes == bytes)
11617 internal_error (__FILE__, __LINE__,
11618 _("Duplicate g packet description added for size %d"),
11619 bytes);
11620
11621 data->guesses.emplace_back (bytes, tdesc);
11622 }
11623
11624 /* Return true if remote_read_description would do anything on this target
11625 and architecture, false otherwise. */
11626
11627 static bool
11628 remote_read_description_p (struct target_ops *target)
11629 {
11630 struct remote_g_packet_data *data
11631 = ((struct remote_g_packet_data *)
11632 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11633
11634 return !data->guesses.empty ();
11635 }
11636
11637 const struct target_desc *
11638 remote_target::read_description ()
11639 {
11640 struct remote_g_packet_data *data
11641 = ((struct remote_g_packet_data *)
11642 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11643
11644 /* Do not try this during initial connection, when we do not know
11645 whether there is a running but stopped thread. */
11646 if (!target_has_execution || inferior_ptid == null_ptid)
11647 return beneath ()->read_description ();
11648
11649 if (!data->guesses.empty ())
11650 {
11651 int bytes = send_g_packet ();
11652
11653 for (const remote_g_packet_guess &guess : data->guesses)
11654 if (guess.bytes == bytes)
11655 return guess.tdesc;
11656
11657 /* We discard the g packet. A minor optimization would be to
11658 hold on to it, and fill the register cache once we have selected
11659 an architecture, but it's too tricky to do safely. */
11660 }
11661
11662 return beneath ()->read_description ();
11663 }
11664
11665 /* Remote file transfer support. This is host-initiated I/O, not
11666 target-initiated; for target-initiated, see remote-fileio.c. */
11667
11668 /* If *LEFT is at least the length of STRING, copy STRING to
11669 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11670 decrease *LEFT. Otherwise raise an error. */
11671
11672 static void
11673 remote_buffer_add_string (char **buffer, int *left, const char *string)
11674 {
11675 int len = strlen (string);
11676
11677 if (len > *left)
11678 error (_("Packet too long for target."));
11679
11680 memcpy (*buffer, string, len);
11681 *buffer += len;
11682 *left -= len;
11683
11684 /* NUL-terminate the buffer as a convenience, if there is
11685 room. */
11686 if (*left)
11687 **buffer = '\0';
11688 }
11689
11690 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11691 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11692 decrease *LEFT. Otherwise raise an error. */
11693
11694 static void
11695 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11696 int len)
11697 {
11698 if (2 * len > *left)
11699 error (_("Packet too long for target."));
11700
11701 bin2hex (bytes, *buffer, len);
11702 *buffer += 2 * len;
11703 *left -= 2 * len;
11704
11705 /* NUL-terminate the buffer as a convenience, if there is
11706 room. */
11707 if (*left)
11708 **buffer = '\0';
11709 }
11710
11711 /* If *LEFT is large enough, convert VALUE to hex and add it to
11712 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11713 decrease *LEFT. Otherwise raise an error. */
11714
11715 static void
11716 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11717 {
11718 int len = hexnumlen (value);
11719
11720 if (len > *left)
11721 error (_("Packet too long for target."));
11722
11723 hexnumstr (*buffer, value);
11724 *buffer += len;
11725 *left -= len;
11726
11727 /* NUL-terminate the buffer as a convenience, if there is
11728 room. */
11729 if (*left)
11730 **buffer = '\0';
11731 }
11732
11733 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11734 value, *REMOTE_ERRNO to the remote error number or zero if none
11735 was included, and *ATTACHMENT to point to the start of the annex
11736 if any. The length of the packet isn't needed here; there may
11737 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11738
11739 Return 0 if the packet could be parsed, -1 if it could not. If
11740 -1 is returned, the other variables may not be initialized. */
11741
11742 static int
11743 remote_hostio_parse_result (char *buffer, int *retcode,
11744 int *remote_errno, char **attachment)
11745 {
11746 char *p, *p2;
11747
11748 *remote_errno = 0;
11749 *attachment = NULL;
11750
11751 if (buffer[0] != 'F')
11752 return -1;
11753
11754 errno = 0;
11755 *retcode = strtol (&buffer[1], &p, 16);
11756 if (errno != 0 || p == &buffer[1])
11757 return -1;
11758
11759 /* Check for ",errno". */
11760 if (*p == ',')
11761 {
11762 errno = 0;
11763 *remote_errno = strtol (p + 1, &p2, 16);
11764 if (errno != 0 || p + 1 == p2)
11765 return -1;
11766 p = p2;
11767 }
11768
11769 /* Check for ";attachment". If there is no attachment, the
11770 packet should end here. */
11771 if (*p == ';')
11772 {
11773 *attachment = p + 1;
11774 return 0;
11775 }
11776 else if (*p == '\0')
11777 return 0;
11778 else
11779 return -1;
11780 }
11781
11782 /* Send a prepared I/O packet to the target and read its response.
11783 The prepared packet is in the global RS->BUF before this function
11784 is called, and the answer is there when we return.
11785
11786 COMMAND_BYTES is the length of the request to send, which may include
11787 binary data. WHICH_PACKET is the packet configuration to check
11788 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11789 is set to the error number and -1 is returned. Otherwise the value
11790 returned by the function is returned.
11791
11792 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11793 attachment is expected; an error will be reported if there's a
11794 mismatch. If one is found, *ATTACHMENT will be set to point into
11795 the packet buffer and *ATTACHMENT_LEN will be set to the
11796 attachment's length. */
11797
11798 int
11799 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11800 int *remote_errno, char **attachment,
11801 int *attachment_len)
11802 {
11803 struct remote_state *rs = get_remote_state ();
11804 int ret, bytes_read;
11805 char *attachment_tmp;
11806
11807 if (packet_support (which_packet) == PACKET_DISABLE)
11808 {
11809 *remote_errno = FILEIO_ENOSYS;
11810 return -1;
11811 }
11812
11813 putpkt_binary (rs->buf, command_bytes);
11814 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11815
11816 /* If it timed out, something is wrong. Don't try to parse the
11817 buffer. */
11818 if (bytes_read < 0)
11819 {
11820 *remote_errno = FILEIO_EINVAL;
11821 return -1;
11822 }
11823
11824 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11825 {
11826 case PACKET_ERROR:
11827 *remote_errno = FILEIO_EINVAL;
11828 return -1;
11829 case PACKET_UNKNOWN:
11830 *remote_errno = FILEIO_ENOSYS;
11831 return -1;
11832 case PACKET_OK:
11833 break;
11834 }
11835
11836 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11837 &attachment_tmp))
11838 {
11839 *remote_errno = FILEIO_EINVAL;
11840 return -1;
11841 }
11842
11843 /* Make sure we saw an attachment if and only if we expected one. */
11844 if ((attachment_tmp == NULL && attachment != NULL)
11845 || (attachment_tmp != NULL && attachment == NULL))
11846 {
11847 *remote_errno = FILEIO_EINVAL;
11848 return -1;
11849 }
11850
11851 /* If an attachment was found, it must point into the packet buffer;
11852 work out how many bytes there were. */
11853 if (attachment_tmp != NULL)
11854 {
11855 *attachment = attachment_tmp;
11856 *attachment_len = bytes_read - (*attachment - rs->buf);
11857 }
11858
11859 return ret;
11860 }
11861
11862 /* See declaration.h. */
11863
11864 void
11865 readahead_cache::invalidate ()
11866 {
11867 this->fd = -1;
11868 }
11869
11870 /* See declaration.h. */
11871
11872 void
11873 readahead_cache::invalidate_fd (int fd)
11874 {
11875 if (this->fd == fd)
11876 this->fd = -1;
11877 }
11878
11879 /* Set the filesystem remote_hostio functions that take FILENAME
11880 arguments will use. Return 0 on success, or -1 if an error
11881 occurs (and set *REMOTE_ERRNO). */
11882
11883 int
11884 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11885 int *remote_errno)
11886 {
11887 struct remote_state *rs = get_remote_state ();
11888 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11889 char *p = rs->buf;
11890 int left = get_remote_packet_size () - 1;
11891 char arg[9];
11892 int ret;
11893
11894 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11895 return 0;
11896
11897 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11898 return 0;
11899
11900 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11901
11902 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11903 remote_buffer_add_string (&p, &left, arg);
11904
11905 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11906 remote_errno, NULL, NULL);
11907
11908 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11909 return 0;
11910
11911 if (ret == 0)
11912 rs->fs_pid = required_pid;
11913
11914 return ret;
11915 }
11916
11917 /* Implementation of to_fileio_open. */
11918
11919 int
11920 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11921 int flags, int mode, int warn_if_slow,
11922 int *remote_errno)
11923 {
11924 struct remote_state *rs = get_remote_state ();
11925 char *p = rs->buf;
11926 int left = get_remote_packet_size () - 1;
11927
11928 if (warn_if_slow)
11929 {
11930 static int warning_issued = 0;
11931
11932 printf_unfiltered (_("Reading %s from remote target...\n"),
11933 filename);
11934
11935 if (!warning_issued)
11936 {
11937 warning (_("File transfers from remote targets can be slow."
11938 " Use \"set sysroot\" to access files locally"
11939 " instead."));
11940 warning_issued = 1;
11941 }
11942 }
11943
11944 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11945 return -1;
11946
11947 remote_buffer_add_string (&p, &left, "vFile:open:");
11948
11949 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11950 strlen (filename));
11951 remote_buffer_add_string (&p, &left, ",");
11952
11953 remote_buffer_add_int (&p, &left, flags);
11954 remote_buffer_add_string (&p, &left, ",");
11955
11956 remote_buffer_add_int (&p, &left, mode);
11957
11958 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11959 remote_errno, NULL, NULL);
11960 }
11961
11962 int
11963 remote_target::fileio_open (struct inferior *inf, const char *filename,
11964 int flags, int mode, int warn_if_slow,
11965 int *remote_errno)
11966 {
11967 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11968 remote_errno);
11969 }
11970
11971 /* Implementation of to_fileio_pwrite. */
11972
11973 int
11974 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11975 ULONGEST offset, int *remote_errno)
11976 {
11977 struct remote_state *rs = get_remote_state ();
11978 char *p = rs->buf;
11979 int left = get_remote_packet_size ();
11980 int out_len;
11981
11982 rs->readahead_cache.invalidate_fd (fd);
11983
11984 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11985
11986 remote_buffer_add_int (&p, &left, fd);
11987 remote_buffer_add_string (&p, &left, ",");
11988
11989 remote_buffer_add_int (&p, &left, offset);
11990 remote_buffer_add_string (&p, &left, ",");
11991
11992 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11993 get_remote_packet_size () - (p - rs->buf));
11994
11995 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11996 remote_errno, NULL, NULL);
11997 }
11998
11999 int
12000 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12001 ULONGEST offset, int *remote_errno)
12002 {
12003 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12004 }
12005
12006 /* Helper for the implementation of to_fileio_pread. Read the file
12007 from the remote side with vFile:pread. */
12008
12009 int
12010 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12011 ULONGEST offset, int *remote_errno)
12012 {
12013 struct remote_state *rs = get_remote_state ();
12014 char *p = rs->buf;
12015 char *attachment;
12016 int left = get_remote_packet_size ();
12017 int ret, attachment_len;
12018 int read_len;
12019
12020 remote_buffer_add_string (&p, &left, "vFile:pread:");
12021
12022 remote_buffer_add_int (&p, &left, fd);
12023 remote_buffer_add_string (&p, &left, ",");
12024
12025 remote_buffer_add_int (&p, &left, len);
12026 remote_buffer_add_string (&p, &left, ",");
12027
12028 remote_buffer_add_int (&p, &left, offset);
12029
12030 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
12031 remote_errno, &attachment,
12032 &attachment_len);
12033
12034 if (ret < 0)
12035 return ret;
12036
12037 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12038 read_buf, len);
12039 if (read_len != ret)
12040 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12041
12042 return ret;
12043 }
12044
12045 /* See declaration.h. */
12046
12047 int
12048 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12049 ULONGEST offset)
12050 {
12051 if (this->fd == fd
12052 && this->offset <= offset
12053 && offset < this->offset + this->bufsize)
12054 {
12055 ULONGEST max = this->offset + this->bufsize;
12056
12057 if (offset + len > max)
12058 len = max - offset;
12059
12060 memcpy (read_buf, this->buf + offset - this->offset, len);
12061 return len;
12062 }
12063
12064 return 0;
12065 }
12066
12067 /* Implementation of to_fileio_pread. */
12068
12069 int
12070 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12071 ULONGEST offset, int *remote_errno)
12072 {
12073 int ret;
12074 struct remote_state *rs = get_remote_state ();
12075 readahead_cache *cache = &rs->readahead_cache;
12076
12077 ret = cache->pread (fd, read_buf, len, offset);
12078 if (ret > 0)
12079 {
12080 cache->hit_count++;
12081
12082 if (remote_debug)
12083 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12084 pulongest (cache->hit_count));
12085 return ret;
12086 }
12087
12088 cache->miss_count++;
12089 if (remote_debug)
12090 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12091 pulongest (cache->miss_count));
12092
12093 cache->fd = fd;
12094 cache->offset = offset;
12095 cache->bufsize = get_remote_packet_size ();
12096 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12097
12098 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12099 cache->offset, remote_errno);
12100 if (ret <= 0)
12101 {
12102 cache->invalidate_fd (fd);
12103 return ret;
12104 }
12105
12106 cache->bufsize = ret;
12107 return cache->pread (fd, read_buf, len, offset);
12108 }
12109
12110 int
12111 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12112 ULONGEST offset, int *remote_errno)
12113 {
12114 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12115 }
12116
12117 /* Implementation of to_fileio_close. */
12118
12119 int
12120 remote_target::remote_hostio_close (int fd, int *remote_errno)
12121 {
12122 struct remote_state *rs = get_remote_state ();
12123 char *p = rs->buf;
12124 int left = get_remote_packet_size () - 1;
12125
12126 rs->readahead_cache.invalidate_fd (fd);
12127
12128 remote_buffer_add_string (&p, &left, "vFile:close:");
12129
12130 remote_buffer_add_int (&p, &left, fd);
12131
12132 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
12133 remote_errno, NULL, NULL);
12134 }
12135
12136 int
12137 remote_target::fileio_close (int fd, int *remote_errno)
12138 {
12139 return remote_hostio_close (fd, remote_errno);
12140 }
12141
12142 /* Implementation of to_fileio_unlink. */
12143
12144 int
12145 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12146 int *remote_errno)
12147 {
12148 struct remote_state *rs = get_remote_state ();
12149 char *p = rs->buf;
12150 int left = get_remote_packet_size () - 1;
12151
12152 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12153 return -1;
12154
12155 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12156
12157 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12158 strlen (filename));
12159
12160 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
12161 remote_errno, NULL, NULL);
12162 }
12163
12164 int
12165 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12166 int *remote_errno)
12167 {
12168 return remote_hostio_unlink (inf, filename, remote_errno);
12169 }
12170
12171 /* Implementation of to_fileio_readlink. */
12172
12173 gdb::optional<std::string>
12174 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12175 int *remote_errno)
12176 {
12177 struct remote_state *rs = get_remote_state ();
12178 char *p = rs->buf;
12179 char *attachment;
12180 int left = get_remote_packet_size ();
12181 int len, attachment_len;
12182 int read_len;
12183
12184 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12185 return {};
12186
12187 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12188
12189 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12190 strlen (filename));
12191
12192 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12193 remote_errno, &attachment,
12194 &attachment_len);
12195
12196 if (len < 0)
12197 return {};
12198
12199 std::string ret (len, '\0');
12200
12201 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12202 (gdb_byte *) &ret[0], len);
12203 if (read_len != len)
12204 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12205
12206 return ret;
12207 }
12208
12209 /* Implementation of to_fileio_fstat. */
12210
12211 int
12212 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12213 {
12214 struct remote_state *rs = get_remote_state ();
12215 char *p = rs->buf;
12216 int left = get_remote_packet_size ();
12217 int attachment_len, ret;
12218 char *attachment;
12219 struct fio_stat fst;
12220 int read_len;
12221
12222 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12223
12224 remote_buffer_add_int (&p, &left, fd);
12225
12226 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12227 remote_errno, &attachment,
12228 &attachment_len);
12229 if (ret < 0)
12230 {
12231 if (*remote_errno != FILEIO_ENOSYS)
12232 return ret;
12233
12234 /* Strictly we should return -1, ENOSYS here, but when
12235 "set sysroot remote:" was implemented in August 2008
12236 BFD's need for a stat function was sidestepped with
12237 this hack. This was not remedied until March 2015
12238 so we retain the previous behavior to avoid breaking
12239 compatibility.
12240
12241 Note that the memset is a March 2015 addition; older
12242 GDBs set st_size *and nothing else* so the structure
12243 would have garbage in all other fields. This might
12244 break something but retaining the previous behavior
12245 here would be just too wrong. */
12246
12247 memset (st, 0, sizeof (struct stat));
12248 st->st_size = INT_MAX;
12249 return 0;
12250 }
12251
12252 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12253 (gdb_byte *) &fst, sizeof (fst));
12254
12255 if (read_len != ret)
12256 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12257
12258 if (read_len != sizeof (fst))
12259 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12260 read_len, (int) sizeof (fst));
12261
12262 remote_fileio_to_host_stat (&fst, st);
12263
12264 return 0;
12265 }
12266
12267 /* Implementation of to_filesystem_is_local. */
12268
12269 bool
12270 remote_target::filesystem_is_local ()
12271 {
12272 /* Valgrind GDB presents itself as a remote target but works
12273 on the local filesystem: it does not implement remote get
12274 and users are not expected to set a sysroot. To handle
12275 this case we treat the remote filesystem as local if the
12276 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12277 does not support vFile:open. */
12278 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12279 {
12280 enum packet_support ps = packet_support (PACKET_vFile_open);
12281
12282 if (ps == PACKET_SUPPORT_UNKNOWN)
12283 {
12284 int fd, remote_errno;
12285
12286 /* Try opening a file to probe support. The supplied
12287 filename is irrelevant, we only care about whether
12288 the stub recognizes the packet or not. */
12289 fd = remote_hostio_open (NULL, "just probing",
12290 FILEIO_O_RDONLY, 0700, 0,
12291 &remote_errno);
12292
12293 if (fd >= 0)
12294 remote_hostio_close (fd, &remote_errno);
12295
12296 ps = packet_support (PACKET_vFile_open);
12297 }
12298
12299 if (ps == PACKET_DISABLE)
12300 {
12301 static int warning_issued = 0;
12302
12303 if (!warning_issued)
12304 {
12305 warning (_("remote target does not support file"
12306 " transfer, attempting to access files"
12307 " from local filesystem."));
12308 warning_issued = 1;
12309 }
12310
12311 return true;
12312 }
12313 }
12314
12315 return false;
12316 }
12317
12318 static int
12319 remote_fileio_errno_to_host (int errnum)
12320 {
12321 switch (errnum)
12322 {
12323 case FILEIO_EPERM:
12324 return EPERM;
12325 case FILEIO_ENOENT:
12326 return ENOENT;
12327 case FILEIO_EINTR:
12328 return EINTR;
12329 case FILEIO_EIO:
12330 return EIO;
12331 case FILEIO_EBADF:
12332 return EBADF;
12333 case FILEIO_EACCES:
12334 return EACCES;
12335 case FILEIO_EFAULT:
12336 return EFAULT;
12337 case FILEIO_EBUSY:
12338 return EBUSY;
12339 case FILEIO_EEXIST:
12340 return EEXIST;
12341 case FILEIO_ENODEV:
12342 return ENODEV;
12343 case FILEIO_ENOTDIR:
12344 return ENOTDIR;
12345 case FILEIO_EISDIR:
12346 return EISDIR;
12347 case FILEIO_EINVAL:
12348 return EINVAL;
12349 case FILEIO_ENFILE:
12350 return ENFILE;
12351 case FILEIO_EMFILE:
12352 return EMFILE;
12353 case FILEIO_EFBIG:
12354 return EFBIG;
12355 case FILEIO_ENOSPC:
12356 return ENOSPC;
12357 case FILEIO_ESPIPE:
12358 return ESPIPE;
12359 case FILEIO_EROFS:
12360 return EROFS;
12361 case FILEIO_ENOSYS:
12362 return ENOSYS;
12363 case FILEIO_ENAMETOOLONG:
12364 return ENAMETOOLONG;
12365 }
12366 return -1;
12367 }
12368
12369 static char *
12370 remote_hostio_error (int errnum)
12371 {
12372 int host_error = remote_fileio_errno_to_host (errnum);
12373
12374 if (host_error == -1)
12375 error (_("Unknown remote I/O error %d"), errnum);
12376 else
12377 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12378 }
12379
12380 /* A RAII wrapper around a remote file descriptor. */
12381
12382 class scoped_remote_fd
12383 {
12384 public:
12385 scoped_remote_fd (remote_target *remote, int fd)
12386 : m_remote (remote), m_fd (fd)
12387 {
12388 }
12389
12390 ~scoped_remote_fd ()
12391 {
12392 if (m_fd != -1)
12393 {
12394 try
12395 {
12396 int remote_errno;
12397 m_remote->remote_hostio_close (m_fd, &remote_errno);
12398 }
12399 catch (...)
12400 {
12401 /* Swallow exception before it escapes the dtor. If
12402 something goes wrong, likely the connection is gone,
12403 and there's nothing else that can be done. */
12404 }
12405 }
12406 }
12407
12408 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12409
12410 /* Release ownership of the file descriptor, and return it. */
12411 int release () noexcept
12412 {
12413 int fd = m_fd;
12414 m_fd = -1;
12415 return fd;
12416 }
12417
12418 /* Return the owned file descriptor. */
12419 int get () const noexcept
12420 {
12421 return m_fd;
12422 }
12423
12424 private:
12425 /* The remote target. */
12426 remote_target *m_remote;
12427
12428 /* The owned remote I/O file descriptor. */
12429 int m_fd;
12430 };
12431
12432 void
12433 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12434 {
12435 remote_target *remote = get_current_remote_target ();
12436
12437 if (remote == nullptr)
12438 error (_("command can only be used with remote target"));
12439
12440 remote->remote_file_put (local_file, remote_file, from_tty);
12441 }
12442
12443 void
12444 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12445 int from_tty)
12446 {
12447 int retcode, remote_errno, bytes, io_size;
12448 int bytes_in_buffer;
12449 int saw_eof;
12450 ULONGEST offset;
12451
12452 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12453 if (file == NULL)
12454 perror_with_name (local_file);
12455
12456 scoped_remote_fd fd
12457 (this, remote_hostio_open (NULL,
12458 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12459 | FILEIO_O_TRUNC),
12460 0700, 0, &remote_errno));
12461 if (fd.get () == -1)
12462 remote_hostio_error (remote_errno);
12463
12464 /* Send up to this many bytes at once. They won't all fit in the
12465 remote packet limit, so we'll transfer slightly fewer. */
12466 io_size = get_remote_packet_size ();
12467 gdb::byte_vector buffer (io_size);
12468
12469 bytes_in_buffer = 0;
12470 saw_eof = 0;
12471 offset = 0;
12472 while (bytes_in_buffer || !saw_eof)
12473 {
12474 if (!saw_eof)
12475 {
12476 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12477 io_size - bytes_in_buffer,
12478 file.get ());
12479 if (bytes == 0)
12480 {
12481 if (ferror (file.get ()))
12482 error (_("Error reading %s."), local_file);
12483 else
12484 {
12485 /* EOF. Unless there is something still in the
12486 buffer from the last iteration, we are done. */
12487 saw_eof = 1;
12488 if (bytes_in_buffer == 0)
12489 break;
12490 }
12491 }
12492 }
12493 else
12494 bytes = 0;
12495
12496 bytes += bytes_in_buffer;
12497 bytes_in_buffer = 0;
12498
12499 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12500 offset, &remote_errno);
12501
12502 if (retcode < 0)
12503 remote_hostio_error (remote_errno);
12504 else if (retcode == 0)
12505 error (_("Remote write of %d bytes returned 0!"), bytes);
12506 else if (retcode < bytes)
12507 {
12508 /* Short write. Save the rest of the read data for the next
12509 write. */
12510 bytes_in_buffer = bytes - retcode;
12511 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12512 }
12513
12514 offset += retcode;
12515 }
12516
12517 if (remote_hostio_close (fd.release (), &remote_errno))
12518 remote_hostio_error (remote_errno);
12519
12520 if (from_tty)
12521 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12522 }
12523
12524 void
12525 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12526 {
12527 remote_target *remote = get_current_remote_target ();
12528
12529 if (remote == nullptr)
12530 error (_("command can only be used with remote target"));
12531
12532 remote->remote_file_get (remote_file, local_file, from_tty);
12533 }
12534
12535 void
12536 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12537 int from_tty)
12538 {
12539 int remote_errno, bytes, io_size;
12540 ULONGEST offset;
12541
12542 scoped_remote_fd fd
12543 (this, remote_hostio_open (NULL,
12544 remote_file, FILEIO_O_RDONLY, 0, 0,
12545 &remote_errno));
12546 if (fd.get () == -1)
12547 remote_hostio_error (remote_errno);
12548
12549 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12550 if (file == NULL)
12551 perror_with_name (local_file);
12552
12553 /* Send up to this many bytes at once. They won't all fit in the
12554 remote packet limit, so we'll transfer slightly fewer. */
12555 io_size = get_remote_packet_size ();
12556 gdb::byte_vector buffer (io_size);
12557
12558 offset = 0;
12559 while (1)
12560 {
12561 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12562 &remote_errno);
12563 if (bytes == 0)
12564 /* Success, but no bytes, means end-of-file. */
12565 break;
12566 if (bytes == -1)
12567 remote_hostio_error (remote_errno);
12568
12569 offset += bytes;
12570
12571 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12572 if (bytes == 0)
12573 perror_with_name (local_file);
12574 }
12575
12576 if (remote_hostio_close (fd.release (), &remote_errno))
12577 remote_hostio_error (remote_errno);
12578
12579 if (from_tty)
12580 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12581 }
12582
12583 void
12584 remote_file_delete (const char *remote_file, int from_tty)
12585 {
12586 remote_target *remote = get_current_remote_target ();
12587
12588 if (remote == nullptr)
12589 error (_("command can only be used with remote target"));
12590
12591 remote->remote_file_delete (remote_file, from_tty);
12592 }
12593
12594 void
12595 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12596 {
12597 int retcode, remote_errno;
12598
12599 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12600 if (retcode == -1)
12601 remote_hostio_error (remote_errno);
12602
12603 if (from_tty)
12604 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12605 }
12606
12607 static void
12608 remote_put_command (const char *args, int from_tty)
12609 {
12610 if (args == NULL)
12611 error_no_arg (_("file to put"));
12612
12613 gdb_argv argv (args);
12614 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12615 error (_("Invalid parameters to remote put"));
12616
12617 remote_file_put (argv[0], argv[1], from_tty);
12618 }
12619
12620 static void
12621 remote_get_command (const char *args, int from_tty)
12622 {
12623 if (args == NULL)
12624 error_no_arg (_("file to get"));
12625
12626 gdb_argv argv (args);
12627 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12628 error (_("Invalid parameters to remote get"));
12629
12630 remote_file_get (argv[0], argv[1], from_tty);
12631 }
12632
12633 static void
12634 remote_delete_command (const char *args, int from_tty)
12635 {
12636 if (args == NULL)
12637 error_no_arg (_("file to delete"));
12638
12639 gdb_argv argv (args);
12640 if (argv[0] == NULL || argv[1] != NULL)
12641 error (_("Invalid parameters to remote delete"));
12642
12643 remote_file_delete (argv[0], from_tty);
12644 }
12645
12646 static void
12647 remote_command (const char *args, int from_tty)
12648 {
12649 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12650 }
12651
12652 bool
12653 remote_target::can_execute_reverse ()
12654 {
12655 if (packet_support (PACKET_bs) == PACKET_ENABLE
12656 || packet_support (PACKET_bc) == PACKET_ENABLE)
12657 return true;
12658 else
12659 return false;
12660 }
12661
12662 bool
12663 remote_target::supports_non_stop ()
12664 {
12665 return true;
12666 }
12667
12668 bool
12669 remote_target::supports_disable_randomization ()
12670 {
12671 /* Only supported in extended mode. */
12672 return false;
12673 }
12674
12675 bool
12676 remote_target::supports_multi_process ()
12677 {
12678 struct remote_state *rs = get_remote_state ();
12679
12680 return remote_multi_process_p (rs);
12681 }
12682
12683 static int
12684 remote_supports_cond_tracepoints ()
12685 {
12686 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12687 }
12688
12689 bool
12690 remote_target::supports_evaluation_of_breakpoint_conditions ()
12691 {
12692 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12693 }
12694
12695 static int
12696 remote_supports_fast_tracepoints ()
12697 {
12698 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12699 }
12700
12701 static int
12702 remote_supports_static_tracepoints ()
12703 {
12704 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12705 }
12706
12707 static int
12708 remote_supports_install_in_trace ()
12709 {
12710 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12711 }
12712
12713 bool
12714 remote_target::supports_enable_disable_tracepoint ()
12715 {
12716 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12717 == PACKET_ENABLE);
12718 }
12719
12720 bool
12721 remote_target::supports_string_tracing ()
12722 {
12723 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12724 }
12725
12726 bool
12727 remote_target::can_run_breakpoint_commands ()
12728 {
12729 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12730 }
12731
12732 void
12733 remote_target::trace_init ()
12734 {
12735 struct remote_state *rs = get_remote_state ();
12736
12737 putpkt ("QTinit");
12738 remote_get_noisy_reply ();
12739 if (strcmp (rs->buf, "OK") != 0)
12740 error (_("Target does not support this command."));
12741 }
12742
12743 /* Recursive routine to walk through command list including loops, and
12744 download packets for each command. */
12745
12746 void
12747 remote_target::remote_download_command_source (int num, ULONGEST addr,
12748 struct command_line *cmds)
12749 {
12750 struct remote_state *rs = get_remote_state ();
12751 struct command_line *cmd;
12752
12753 for (cmd = cmds; cmd; cmd = cmd->next)
12754 {
12755 QUIT; /* Allow user to bail out with ^C. */
12756 strcpy (rs->buf, "QTDPsrc:");
12757 encode_source_string (num, addr, "cmd", cmd->line,
12758 rs->buf + strlen (rs->buf),
12759 rs->buf_size - strlen (rs->buf));
12760 putpkt (rs->buf);
12761 remote_get_noisy_reply ();
12762 if (strcmp (rs->buf, "OK"))
12763 warning (_("Target does not support source download."));
12764
12765 if (cmd->control_type == while_control
12766 || cmd->control_type == while_stepping_control)
12767 {
12768 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12769
12770 QUIT; /* Allow user to bail out with ^C. */
12771 strcpy (rs->buf, "QTDPsrc:");
12772 encode_source_string (num, addr, "cmd", "end",
12773 rs->buf + strlen (rs->buf),
12774 rs->buf_size - strlen (rs->buf));
12775 putpkt (rs->buf);
12776 remote_get_noisy_reply ();
12777 if (strcmp (rs->buf, "OK"))
12778 warning (_("Target does not support source download."));
12779 }
12780 }
12781 }
12782
12783 void
12784 remote_target::download_tracepoint (struct bp_location *loc)
12785 {
12786 CORE_ADDR tpaddr;
12787 char addrbuf[40];
12788 std::vector<std::string> tdp_actions;
12789 std::vector<std::string> stepping_actions;
12790 char *pkt;
12791 struct breakpoint *b = loc->owner;
12792 struct tracepoint *t = (struct tracepoint *) b;
12793 struct remote_state *rs = get_remote_state ();
12794 int ret;
12795 const char *err_msg = _("Tracepoint packet too large for target.");
12796 size_t size_left;
12797
12798 /* We use a buffer other than rs->buf because we'll build strings
12799 across multiple statements, and other statements in between could
12800 modify rs->buf. */
12801 gdb::char_vector buf (get_remote_packet_size ());
12802
12803 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12804
12805 tpaddr = loc->address;
12806 sprintf_vma (addrbuf, tpaddr);
12807 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12808 b->number, addrbuf, /* address */
12809 (b->enable_state == bp_enabled ? 'E' : 'D'),
12810 t->step_count, t->pass_count);
12811
12812 if (ret < 0 || ret >= buf.size ())
12813 error ("%s", err_msg);
12814
12815 /* Fast tracepoints are mostly handled by the target, but we can
12816 tell the target how big of an instruction block should be moved
12817 around. */
12818 if (b->type == bp_fast_tracepoint)
12819 {
12820 /* Only test for support at download time; we may not know
12821 target capabilities at definition time. */
12822 if (remote_supports_fast_tracepoints ())
12823 {
12824 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12825 NULL))
12826 {
12827 size_left = buf.size () - strlen (buf.data ());
12828 ret = snprintf (buf.data () + strlen (buf.data ()),
12829 size_left, ":F%x",
12830 gdb_insn_length (loc->gdbarch, tpaddr));
12831
12832 if (ret < 0 || ret >= size_left)
12833 error ("%s", err_msg);
12834 }
12835 else
12836 /* If it passed validation at definition but fails now,
12837 something is very wrong. */
12838 internal_error (__FILE__, __LINE__,
12839 _("Fast tracepoint not "
12840 "valid during download"));
12841 }
12842 else
12843 /* Fast tracepoints are functionally identical to regular
12844 tracepoints, so don't take lack of support as a reason to
12845 give up on the trace run. */
12846 warning (_("Target does not support fast tracepoints, "
12847 "downloading %d as regular tracepoint"), b->number);
12848 }
12849 else if (b->type == bp_static_tracepoint)
12850 {
12851 /* Only test for support at download time; we may not know
12852 target capabilities at definition time. */
12853 if (remote_supports_static_tracepoints ())
12854 {
12855 struct static_tracepoint_marker marker;
12856
12857 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12858 {
12859 size_left = buf.size () - strlen (buf.data ());
12860 ret = snprintf (buf.data () + strlen (buf.data ()),
12861 size_left, ":S");
12862
12863 if (ret < 0 || ret >= size_left)
12864 error ("%s", err_msg);
12865 }
12866 else
12867 error (_("Static tracepoint not valid during download"));
12868 }
12869 else
12870 /* Fast tracepoints are functionally identical to regular
12871 tracepoints, so don't take lack of support as a reason
12872 to give up on the trace run. */
12873 error (_("Target does not support static tracepoints"));
12874 }
12875 /* If the tracepoint has a conditional, make it into an agent
12876 expression and append to the definition. */
12877 if (loc->cond)
12878 {
12879 /* Only test support at download time, we may not know target
12880 capabilities at definition time. */
12881 if (remote_supports_cond_tracepoints ())
12882 {
12883 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12884 loc->cond.get ());
12885
12886 size_left = buf.size () - strlen (buf.data ());
12887
12888 ret = snprintf (buf.data () + strlen (buf.data ()),
12889 size_left, ":X%x,", aexpr->len);
12890
12891 if (ret < 0 || ret >= size_left)
12892 error ("%s", err_msg);
12893
12894 size_left = buf.size () - strlen (buf.data ());
12895
12896 /* Two bytes to encode each aexpr byte, plus the terminating
12897 null byte. */
12898 if (aexpr->len * 2 + 1 > size_left)
12899 error ("%s", err_msg);
12900
12901 pkt = buf.data () + strlen (buf.data ());
12902
12903 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12904 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12905 *pkt = '\0';
12906 }
12907 else
12908 warning (_("Target does not support conditional tracepoints, "
12909 "ignoring tp %d cond"), b->number);
12910 }
12911
12912 if (b->commands || *default_collect)
12913 {
12914 size_left = buf.size () - strlen (buf.data ());
12915
12916 ret = snprintf (buf.data () + strlen (buf.data ()),
12917 size_left, "-");
12918
12919 if (ret < 0 || ret >= size_left)
12920 error ("%s", err_msg);
12921 }
12922
12923 putpkt (buf.data ());
12924 remote_get_noisy_reply ();
12925 if (strcmp (rs->buf, "OK"))
12926 error (_("Target does not support tracepoints."));
12927
12928 /* do_single_steps (t); */
12929 for (auto action_it = tdp_actions.begin ();
12930 action_it != tdp_actions.end (); action_it++)
12931 {
12932 QUIT; /* Allow user to bail out with ^C. */
12933
12934 bool has_more = ((action_it + 1) != tdp_actions.end ()
12935 || !stepping_actions.empty ());
12936
12937 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12938 b->number, addrbuf, /* address */
12939 action_it->c_str (),
12940 has_more ? '-' : 0);
12941
12942 if (ret < 0 || ret >= buf.size ())
12943 error ("%s", err_msg);
12944
12945 putpkt (buf.data ());
12946 remote_get_noisy_reply ();
12947 if (strcmp (rs->buf, "OK"))
12948 error (_("Error on target while setting tracepoints."));
12949 }
12950
12951 for (auto action_it = stepping_actions.begin ();
12952 action_it != stepping_actions.end (); action_it++)
12953 {
12954 QUIT; /* Allow user to bail out with ^C. */
12955
12956 bool is_first = action_it == stepping_actions.begin ();
12957 bool has_more = (action_it + 1) != stepping_actions.end ();
12958
12959 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12960 b->number, addrbuf, /* address */
12961 is_first ? "S" : "",
12962 action_it->c_str (),
12963 has_more ? "-" : "");
12964
12965 if (ret < 0 || ret >= buf.size ())
12966 error ("%s", err_msg);
12967
12968 putpkt (buf.data ());
12969 remote_get_noisy_reply ();
12970 if (strcmp (rs->buf, "OK"))
12971 error (_("Error on target while setting tracepoints."));
12972 }
12973
12974 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12975 {
12976 if (b->location != NULL)
12977 {
12978 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12979
12980 if (ret < 0 || ret >= buf.size ())
12981 error ("%s", err_msg);
12982
12983 encode_source_string (b->number, loc->address, "at",
12984 event_location_to_string (b->location.get ()),
12985 buf.data () + strlen (buf.data ()),
12986 buf.size () - strlen (buf.data ()));
12987 putpkt (buf.data ());
12988 remote_get_noisy_reply ();
12989 if (strcmp (rs->buf, "OK"))
12990 warning (_("Target does not support source download."));
12991 }
12992 if (b->cond_string)
12993 {
12994 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12995
12996 if (ret < 0 || ret >= buf.size ())
12997 error ("%s", err_msg);
12998
12999 encode_source_string (b->number, loc->address,
13000 "cond", b->cond_string,
13001 buf.data () + strlen (buf.data ()),
13002 buf.size () - strlen (buf.data ()));
13003 putpkt (buf.data ());
13004 remote_get_noisy_reply ();
13005 if (strcmp (rs->buf, "OK"))
13006 warning (_("Target does not support source download."));
13007 }
13008 remote_download_command_source (b->number, loc->address,
13009 breakpoint_commands (b));
13010 }
13011 }
13012
13013 bool
13014 remote_target::can_download_tracepoint ()
13015 {
13016 struct remote_state *rs = get_remote_state ();
13017 struct trace_status *ts;
13018 int status;
13019
13020 /* Don't try to install tracepoints until we've relocated our
13021 symbols, and fetched and merged the target's tracepoint list with
13022 ours. */
13023 if (rs->starting_up)
13024 return false;
13025
13026 ts = current_trace_status ();
13027 status = get_trace_status (ts);
13028
13029 if (status == -1 || !ts->running_known || !ts->running)
13030 return false;
13031
13032 /* If we are in a tracing experiment, but remote stub doesn't support
13033 installing tracepoint in trace, we have to return. */
13034 if (!remote_supports_install_in_trace ())
13035 return false;
13036
13037 return true;
13038 }
13039
13040
13041 void
13042 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13043 {
13044 struct remote_state *rs = get_remote_state ();
13045 char *p;
13046
13047 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
13048 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13049 tsv.builtin);
13050 p = rs->buf + strlen (rs->buf);
13051 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
13052 error (_("Trace state variable name too long for tsv definition packet"));
13053 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13054 *p++ = '\0';
13055 putpkt (rs->buf);
13056 remote_get_noisy_reply ();
13057 if (*rs->buf == '\0')
13058 error (_("Target does not support this command."));
13059 if (strcmp (rs->buf, "OK") != 0)
13060 error (_("Error on target while downloading trace state variable."));
13061 }
13062
13063 void
13064 remote_target::enable_tracepoint (struct bp_location *location)
13065 {
13066 struct remote_state *rs = get_remote_state ();
13067 char addr_buf[40];
13068
13069 sprintf_vma (addr_buf, location->address);
13070 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
13071 location->owner->number, addr_buf);
13072 putpkt (rs->buf);
13073 remote_get_noisy_reply ();
13074 if (*rs->buf == '\0')
13075 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13076 if (strcmp (rs->buf, "OK") != 0)
13077 error (_("Error on target while enabling tracepoint."));
13078 }
13079
13080 void
13081 remote_target::disable_tracepoint (struct bp_location *location)
13082 {
13083 struct remote_state *rs = get_remote_state ();
13084 char addr_buf[40];
13085
13086 sprintf_vma (addr_buf, location->address);
13087 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
13088 location->owner->number, addr_buf);
13089 putpkt (rs->buf);
13090 remote_get_noisy_reply ();
13091 if (*rs->buf == '\0')
13092 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13093 if (strcmp (rs->buf, "OK") != 0)
13094 error (_("Error on target while disabling tracepoint."));
13095 }
13096
13097 void
13098 remote_target::trace_set_readonly_regions ()
13099 {
13100 asection *s;
13101 bfd *abfd = NULL;
13102 bfd_size_type size;
13103 bfd_vma vma;
13104 int anysecs = 0;
13105 int offset = 0;
13106
13107 if (!exec_bfd)
13108 return; /* No information to give. */
13109
13110 struct remote_state *rs = get_remote_state ();
13111
13112 strcpy (rs->buf, "QTro");
13113 offset = strlen (rs->buf);
13114 for (s = exec_bfd->sections; s; s = s->next)
13115 {
13116 char tmp1[40], tmp2[40];
13117 int sec_length;
13118
13119 if ((s->flags & SEC_LOAD) == 0 ||
13120 /* (s->flags & SEC_CODE) == 0 || */
13121 (s->flags & SEC_READONLY) == 0)
13122 continue;
13123
13124 anysecs = 1;
13125 vma = bfd_get_section_vma (abfd, s);
13126 size = bfd_get_section_size (s);
13127 sprintf_vma (tmp1, vma);
13128 sprintf_vma (tmp2, vma + size);
13129 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13130 if (offset + sec_length + 1 > rs->buf_size)
13131 {
13132 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13133 warning (_("\
13134 Too many sections for read-only sections definition packet."));
13135 break;
13136 }
13137 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
13138 tmp1, tmp2);
13139 offset += sec_length;
13140 }
13141 if (anysecs)
13142 {
13143 putpkt (rs->buf);
13144 getpkt (&rs->buf, &rs->buf_size, 0);
13145 }
13146 }
13147
13148 void
13149 remote_target::trace_start ()
13150 {
13151 struct remote_state *rs = get_remote_state ();
13152
13153 putpkt ("QTStart");
13154 remote_get_noisy_reply ();
13155 if (*rs->buf == '\0')
13156 error (_("Target does not support this command."));
13157 if (strcmp (rs->buf, "OK") != 0)
13158 error (_("Bogus reply from target: %s"), rs->buf);
13159 }
13160
13161 int
13162 remote_target::get_trace_status (struct trace_status *ts)
13163 {
13164 /* Initialize it just to avoid a GCC false warning. */
13165 char *p = NULL;
13166 /* FIXME we need to get register block size some other way. */
13167 extern int trace_regblock_size;
13168 enum packet_result result;
13169 struct remote_state *rs = get_remote_state ();
13170
13171 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13172 return -1;
13173
13174 trace_regblock_size
13175 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13176
13177 putpkt ("qTStatus");
13178
13179 TRY
13180 {
13181 p = remote_get_noisy_reply ();
13182 }
13183 CATCH (ex, RETURN_MASK_ERROR)
13184 {
13185 if (ex.error != TARGET_CLOSE_ERROR)
13186 {
13187 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13188 return -1;
13189 }
13190 throw_exception (ex);
13191 }
13192 END_CATCH
13193
13194 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13195
13196 /* If the remote target doesn't do tracing, flag it. */
13197 if (result == PACKET_UNKNOWN)
13198 return -1;
13199
13200 /* We're working with a live target. */
13201 ts->filename = NULL;
13202
13203 if (*p++ != 'T')
13204 error (_("Bogus trace status reply from target: %s"), rs->buf);
13205
13206 /* Function 'parse_trace_status' sets default value of each field of
13207 'ts' at first, so we don't have to do it here. */
13208 parse_trace_status (p, ts);
13209
13210 return ts->running;
13211 }
13212
13213 void
13214 remote_target::get_tracepoint_status (struct breakpoint *bp,
13215 struct uploaded_tp *utp)
13216 {
13217 struct remote_state *rs = get_remote_state ();
13218 char *reply;
13219 struct bp_location *loc;
13220 struct tracepoint *tp = (struct tracepoint *) bp;
13221 size_t size = get_remote_packet_size ();
13222
13223 if (tp)
13224 {
13225 tp->hit_count = 0;
13226 tp->traceframe_usage = 0;
13227 for (loc = tp->loc; loc; loc = loc->next)
13228 {
13229 /* If the tracepoint was never downloaded, don't go asking for
13230 any status. */
13231 if (tp->number_on_target == 0)
13232 continue;
13233 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
13234 phex_nz (loc->address, 0));
13235 putpkt (rs->buf);
13236 reply = remote_get_noisy_reply ();
13237 if (reply && *reply)
13238 {
13239 if (*reply == 'V')
13240 parse_tracepoint_status (reply + 1, bp, utp);
13241 }
13242 }
13243 }
13244 else if (utp)
13245 {
13246 utp->hit_count = 0;
13247 utp->traceframe_usage = 0;
13248 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
13249 phex_nz (utp->addr, 0));
13250 putpkt (rs->buf);
13251 reply = remote_get_noisy_reply ();
13252 if (reply && *reply)
13253 {
13254 if (*reply == 'V')
13255 parse_tracepoint_status (reply + 1, bp, utp);
13256 }
13257 }
13258 }
13259
13260 void
13261 remote_target::trace_stop ()
13262 {
13263 struct remote_state *rs = get_remote_state ();
13264
13265 putpkt ("QTStop");
13266 remote_get_noisy_reply ();
13267 if (*rs->buf == '\0')
13268 error (_("Target does not support this command."));
13269 if (strcmp (rs->buf, "OK") != 0)
13270 error (_("Bogus reply from target: %s"), rs->buf);
13271 }
13272
13273 int
13274 remote_target::trace_find (enum trace_find_type type, int num,
13275 CORE_ADDR addr1, CORE_ADDR addr2,
13276 int *tpp)
13277 {
13278 struct remote_state *rs = get_remote_state ();
13279 char *endbuf = rs->buf + get_remote_packet_size ();
13280 char *p, *reply;
13281 int target_frameno = -1, target_tracept = -1;
13282
13283 /* Lookups other than by absolute frame number depend on the current
13284 trace selected, so make sure it is correct on the remote end
13285 first. */
13286 if (type != tfind_number)
13287 set_remote_traceframe ();
13288
13289 p = rs->buf;
13290 strcpy (p, "QTFrame:");
13291 p = strchr (p, '\0');
13292 switch (type)
13293 {
13294 case tfind_number:
13295 xsnprintf (p, endbuf - p, "%x", num);
13296 break;
13297 case tfind_pc:
13298 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13299 break;
13300 case tfind_tp:
13301 xsnprintf (p, endbuf - p, "tdp:%x", num);
13302 break;
13303 case tfind_range:
13304 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13305 phex_nz (addr2, 0));
13306 break;
13307 case tfind_outside:
13308 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13309 phex_nz (addr2, 0));
13310 break;
13311 default:
13312 error (_("Unknown trace find type %d"), type);
13313 }
13314
13315 putpkt (rs->buf);
13316 reply = remote_get_noisy_reply ();
13317 if (*reply == '\0')
13318 error (_("Target does not support this command."));
13319
13320 while (reply && *reply)
13321 switch (*reply)
13322 {
13323 case 'F':
13324 p = ++reply;
13325 target_frameno = (int) strtol (p, &reply, 16);
13326 if (reply == p)
13327 error (_("Unable to parse trace frame number"));
13328 /* Don't update our remote traceframe number cache on failure
13329 to select a remote traceframe. */
13330 if (target_frameno == -1)
13331 return -1;
13332 break;
13333 case 'T':
13334 p = ++reply;
13335 target_tracept = (int) strtol (p, &reply, 16);
13336 if (reply == p)
13337 error (_("Unable to parse tracepoint number"));
13338 break;
13339 case 'O': /* "OK"? */
13340 if (reply[1] == 'K' && reply[2] == '\0')
13341 reply += 2;
13342 else
13343 error (_("Bogus reply from target: %s"), reply);
13344 break;
13345 default:
13346 error (_("Bogus reply from target: %s"), reply);
13347 }
13348 if (tpp)
13349 *tpp = target_tracept;
13350
13351 rs->remote_traceframe_number = target_frameno;
13352 return target_frameno;
13353 }
13354
13355 bool
13356 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13357 {
13358 struct remote_state *rs = get_remote_state ();
13359 char *reply;
13360 ULONGEST uval;
13361
13362 set_remote_traceframe ();
13363
13364 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13365 putpkt (rs->buf);
13366 reply = remote_get_noisy_reply ();
13367 if (reply && *reply)
13368 {
13369 if (*reply == 'V')
13370 {
13371 unpack_varlen_hex (reply + 1, &uval);
13372 *val = (LONGEST) uval;
13373 return true;
13374 }
13375 }
13376 return false;
13377 }
13378
13379 int
13380 remote_target::save_trace_data (const char *filename)
13381 {
13382 struct remote_state *rs = get_remote_state ();
13383 char *p, *reply;
13384
13385 p = rs->buf;
13386 strcpy (p, "QTSave:");
13387 p += strlen (p);
13388 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13389 error (_("Remote file name too long for trace save packet"));
13390 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13391 *p++ = '\0';
13392 putpkt (rs->buf);
13393 reply = remote_get_noisy_reply ();
13394 if (*reply == '\0')
13395 error (_("Target does not support this command."));
13396 if (strcmp (reply, "OK") != 0)
13397 error (_("Bogus reply from target: %s"), reply);
13398 return 0;
13399 }
13400
13401 /* This is basically a memory transfer, but needs to be its own packet
13402 because we don't know how the target actually organizes its trace
13403 memory, plus we want to be able to ask for as much as possible, but
13404 not be unhappy if we don't get as much as we ask for. */
13405
13406 LONGEST
13407 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13408 {
13409 struct remote_state *rs = get_remote_state ();
13410 char *reply;
13411 char *p;
13412 int rslt;
13413
13414 p = rs->buf;
13415 strcpy (p, "qTBuffer:");
13416 p += strlen (p);
13417 p += hexnumstr (p, offset);
13418 *p++ = ',';
13419 p += hexnumstr (p, len);
13420 *p++ = '\0';
13421
13422 putpkt (rs->buf);
13423 reply = remote_get_noisy_reply ();
13424 if (reply && *reply)
13425 {
13426 /* 'l' by itself means we're at the end of the buffer and
13427 there is nothing more to get. */
13428 if (*reply == 'l')
13429 return 0;
13430
13431 /* Convert the reply into binary. Limit the number of bytes to
13432 convert according to our passed-in buffer size, rather than
13433 what was returned in the packet; if the target is
13434 unexpectedly generous and gives us a bigger reply than we
13435 asked for, we don't want to crash. */
13436 rslt = hex2bin (reply, buf, len);
13437 return rslt;
13438 }
13439
13440 /* Something went wrong, flag as an error. */
13441 return -1;
13442 }
13443
13444 void
13445 remote_target::set_disconnected_tracing (int val)
13446 {
13447 struct remote_state *rs = get_remote_state ();
13448
13449 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13450 {
13451 char *reply;
13452
13453 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13454 putpkt (rs->buf);
13455 reply = remote_get_noisy_reply ();
13456 if (*reply == '\0')
13457 error (_("Target does not support this command."));
13458 if (strcmp (reply, "OK") != 0)
13459 error (_("Bogus reply from target: %s"), reply);
13460 }
13461 else if (val)
13462 warning (_("Target does not support disconnected tracing."));
13463 }
13464
13465 int
13466 remote_target::core_of_thread (ptid_t ptid)
13467 {
13468 struct thread_info *info = find_thread_ptid (ptid);
13469
13470 if (info != NULL && info->priv != NULL)
13471 return get_remote_thread_info (info)->core;
13472
13473 return -1;
13474 }
13475
13476 void
13477 remote_target::set_circular_trace_buffer (int val)
13478 {
13479 struct remote_state *rs = get_remote_state ();
13480 char *reply;
13481
13482 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13483 putpkt (rs->buf);
13484 reply = remote_get_noisy_reply ();
13485 if (*reply == '\0')
13486 error (_("Target does not support this command."));
13487 if (strcmp (reply, "OK") != 0)
13488 error (_("Bogus reply from target: %s"), reply);
13489 }
13490
13491 traceframe_info_up
13492 remote_target::traceframe_info ()
13493 {
13494 gdb::optional<gdb::char_vector> text
13495 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13496 NULL);
13497 if (text)
13498 return parse_traceframe_info (text->data ());
13499
13500 return NULL;
13501 }
13502
13503 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13504 instruction on which a fast tracepoint may be placed. Returns -1
13505 if the packet is not supported, and 0 if the minimum instruction
13506 length is unknown. */
13507
13508 int
13509 remote_target::get_min_fast_tracepoint_insn_len ()
13510 {
13511 struct remote_state *rs = get_remote_state ();
13512 char *reply;
13513
13514 /* If we're not debugging a process yet, the IPA can't be
13515 loaded. */
13516 if (!target_has_execution)
13517 return 0;
13518
13519 /* Make sure the remote is pointing at the right process. */
13520 set_general_process ();
13521
13522 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13523 putpkt (rs->buf);
13524 reply = remote_get_noisy_reply ();
13525 if (*reply == '\0')
13526 return -1;
13527 else
13528 {
13529 ULONGEST min_insn_len;
13530
13531 unpack_varlen_hex (reply, &min_insn_len);
13532
13533 return (int) min_insn_len;
13534 }
13535 }
13536
13537 void
13538 remote_target::set_trace_buffer_size (LONGEST val)
13539 {
13540 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13541 {
13542 struct remote_state *rs = get_remote_state ();
13543 char *buf = rs->buf;
13544 char *endbuf = rs->buf + get_remote_packet_size ();
13545 enum packet_result result;
13546
13547 gdb_assert (val >= 0 || val == -1);
13548 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13549 /* Send -1 as literal "-1" to avoid host size dependency. */
13550 if (val < 0)
13551 {
13552 *buf++ = '-';
13553 buf += hexnumstr (buf, (ULONGEST) -val);
13554 }
13555 else
13556 buf += hexnumstr (buf, (ULONGEST) val);
13557
13558 putpkt (rs->buf);
13559 remote_get_noisy_reply ();
13560 result = packet_ok (rs->buf,
13561 &remote_protocol_packets[PACKET_QTBuffer_size]);
13562
13563 if (result != PACKET_OK)
13564 warning (_("Bogus reply from target: %s"), rs->buf);
13565 }
13566 }
13567
13568 bool
13569 remote_target::set_trace_notes (const char *user, const char *notes,
13570 const char *stop_notes)
13571 {
13572 struct remote_state *rs = get_remote_state ();
13573 char *reply;
13574 char *buf = rs->buf;
13575 char *endbuf = rs->buf + get_remote_packet_size ();
13576 int nbytes;
13577
13578 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13579 if (user)
13580 {
13581 buf += xsnprintf (buf, endbuf - buf, "user:");
13582 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13583 buf += 2 * nbytes;
13584 *buf++ = ';';
13585 }
13586 if (notes)
13587 {
13588 buf += xsnprintf (buf, endbuf - buf, "notes:");
13589 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13590 buf += 2 * nbytes;
13591 *buf++ = ';';
13592 }
13593 if (stop_notes)
13594 {
13595 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13596 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13597 buf += 2 * nbytes;
13598 *buf++ = ';';
13599 }
13600 /* Ensure the buffer is terminated. */
13601 *buf = '\0';
13602
13603 putpkt (rs->buf);
13604 reply = remote_get_noisy_reply ();
13605 if (*reply == '\0')
13606 return false;
13607
13608 if (strcmp (reply, "OK") != 0)
13609 error (_("Bogus reply from target: %s"), reply);
13610
13611 return true;
13612 }
13613
13614 bool
13615 remote_target::use_agent (bool use)
13616 {
13617 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13618 {
13619 struct remote_state *rs = get_remote_state ();
13620
13621 /* If the stub supports QAgent. */
13622 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13623 putpkt (rs->buf);
13624 getpkt (&rs->buf, &rs->buf_size, 0);
13625
13626 if (strcmp (rs->buf, "OK") == 0)
13627 {
13628 ::use_agent = use;
13629 return true;
13630 }
13631 }
13632
13633 return false;
13634 }
13635
13636 bool
13637 remote_target::can_use_agent ()
13638 {
13639 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13640 }
13641
13642 struct btrace_target_info
13643 {
13644 /* The ptid of the traced thread. */
13645 ptid_t ptid;
13646
13647 /* The obtained branch trace configuration. */
13648 struct btrace_config conf;
13649 };
13650
13651 /* Reset our idea of our target's btrace configuration. */
13652
13653 static void
13654 remote_btrace_reset (remote_state *rs)
13655 {
13656 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13657 }
13658
13659 /* Synchronize the configuration with the target. */
13660
13661 void
13662 remote_target::btrace_sync_conf (const btrace_config *conf)
13663 {
13664 struct packet_config *packet;
13665 struct remote_state *rs;
13666 char *buf, *pos, *endbuf;
13667
13668 rs = get_remote_state ();
13669 buf = rs->buf;
13670 endbuf = buf + get_remote_packet_size ();
13671
13672 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13673 if (packet_config_support (packet) == PACKET_ENABLE
13674 && conf->bts.size != rs->btrace_config.bts.size)
13675 {
13676 pos = buf;
13677 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13678 conf->bts.size);
13679
13680 putpkt (buf);
13681 getpkt (&buf, &rs->buf_size, 0);
13682
13683 if (packet_ok (buf, packet) == PACKET_ERROR)
13684 {
13685 if (buf[0] == 'E' && buf[1] == '.')
13686 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13687 else
13688 error (_("Failed to configure the BTS buffer size."));
13689 }
13690
13691 rs->btrace_config.bts.size = conf->bts.size;
13692 }
13693
13694 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13695 if (packet_config_support (packet) == PACKET_ENABLE
13696 && conf->pt.size != rs->btrace_config.pt.size)
13697 {
13698 pos = buf;
13699 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13700 conf->pt.size);
13701
13702 putpkt (buf);
13703 getpkt (&buf, &rs->buf_size, 0);
13704
13705 if (packet_ok (buf, packet) == PACKET_ERROR)
13706 {
13707 if (buf[0] == 'E' && buf[1] == '.')
13708 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13709 else
13710 error (_("Failed to configure the trace buffer size."));
13711 }
13712
13713 rs->btrace_config.pt.size = conf->pt.size;
13714 }
13715 }
13716
13717 /* Read the current thread's btrace configuration from the target and
13718 store it into CONF. */
13719
13720 static void
13721 btrace_read_config (struct btrace_config *conf)
13722 {
13723 gdb::optional<gdb::char_vector> xml
13724 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13725 if (xml)
13726 parse_xml_btrace_conf (conf, xml->data ());
13727 }
13728
13729 /* Maybe reopen target btrace. */
13730
13731 void
13732 remote_target::remote_btrace_maybe_reopen ()
13733 {
13734 struct remote_state *rs = get_remote_state ();
13735 int btrace_target_pushed = 0;
13736 #if !defined (HAVE_LIBIPT)
13737 int warned = 0;
13738 #endif
13739
13740 scoped_restore_current_thread restore_thread;
13741
13742 for (thread_info *tp : all_non_exited_threads ())
13743 {
13744 set_general_thread (tp->ptid);
13745
13746 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13747 btrace_read_config (&rs->btrace_config);
13748
13749 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13750 continue;
13751
13752 #if !defined (HAVE_LIBIPT)
13753 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13754 {
13755 if (!warned)
13756 {
13757 warned = 1;
13758 warning (_("Target is recording using Intel Processor Trace "
13759 "but support was disabled at compile time."));
13760 }
13761
13762 continue;
13763 }
13764 #endif /* !defined (HAVE_LIBIPT) */
13765
13766 /* Push target, once, but before anything else happens. This way our
13767 changes to the threads will be cleaned up by unpushing the target
13768 in case btrace_read_config () throws. */
13769 if (!btrace_target_pushed)
13770 {
13771 btrace_target_pushed = 1;
13772 record_btrace_push_target ();
13773 printf_filtered (_("Target is recording using %s.\n"),
13774 btrace_format_string (rs->btrace_config.format));
13775 }
13776
13777 tp->btrace.target = XCNEW (struct btrace_target_info);
13778 tp->btrace.target->ptid = tp->ptid;
13779 tp->btrace.target->conf = rs->btrace_config;
13780 }
13781 }
13782
13783 /* Enable branch tracing. */
13784
13785 struct btrace_target_info *
13786 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13787 {
13788 struct btrace_target_info *tinfo = NULL;
13789 struct packet_config *packet = NULL;
13790 struct remote_state *rs = get_remote_state ();
13791 char *buf = rs->buf;
13792 char *endbuf = rs->buf + get_remote_packet_size ();
13793
13794 switch (conf->format)
13795 {
13796 case BTRACE_FORMAT_BTS:
13797 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13798 break;
13799
13800 case BTRACE_FORMAT_PT:
13801 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13802 break;
13803 }
13804
13805 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13806 error (_("Target does not support branch tracing."));
13807
13808 btrace_sync_conf (conf);
13809
13810 set_general_thread (ptid);
13811
13812 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13813 putpkt (rs->buf);
13814 getpkt (&rs->buf, &rs->buf_size, 0);
13815
13816 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13817 {
13818 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13819 error (_("Could not enable branch tracing for %s: %s"),
13820 target_pid_to_str (ptid), rs->buf + 2);
13821 else
13822 error (_("Could not enable branch tracing for %s."),
13823 target_pid_to_str (ptid));
13824 }
13825
13826 tinfo = XCNEW (struct btrace_target_info);
13827 tinfo->ptid = ptid;
13828
13829 /* If we fail to read the configuration, we lose some information, but the
13830 tracing itself is not impacted. */
13831 TRY
13832 {
13833 btrace_read_config (&tinfo->conf);
13834 }
13835 CATCH (err, RETURN_MASK_ERROR)
13836 {
13837 if (err.message != NULL)
13838 warning ("%s", err.message);
13839 }
13840 END_CATCH
13841
13842 return tinfo;
13843 }
13844
13845 /* Disable branch tracing. */
13846
13847 void
13848 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13849 {
13850 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13851 struct remote_state *rs = get_remote_state ();
13852 char *buf = rs->buf;
13853 char *endbuf = rs->buf + get_remote_packet_size ();
13854
13855 if (packet_config_support (packet) != PACKET_ENABLE)
13856 error (_("Target does not support branch tracing."));
13857
13858 set_general_thread (tinfo->ptid);
13859
13860 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13861 putpkt (rs->buf);
13862 getpkt (&rs->buf, &rs->buf_size, 0);
13863
13864 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13865 {
13866 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13867 error (_("Could not disable branch tracing for %s: %s"),
13868 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13869 else
13870 error (_("Could not disable branch tracing for %s."),
13871 target_pid_to_str (tinfo->ptid));
13872 }
13873
13874 xfree (tinfo);
13875 }
13876
13877 /* Teardown branch tracing. */
13878
13879 void
13880 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13881 {
13882 /* We must not talk to the target during teardown. */
13883 xfree (tinfo);
13884 }
13885
13886 /* Read the branch trace. */
13887
13888 enum btrace_error
13889 remote_target::read_btrace (struct btrace_data *btrace,
13890 struct btrace_target_info *tinfo,
13891 enum btrace_read_type type)
13892 {
13893 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13894 const char *annex;
13895
13896 if (packet_config_support (packet) != PACKET_ENABLE)
13897 error (_("Target does not support branch tracing."));
13898
13899 #if !defined(HAVE_LIBEXPAT)
13900 error (_("Cannot process branch tracing result. XML parsing not supported."));
13901 #endif
13902
13903 switch (type)
13904 {
13905 case BTRACE_READ_ALL:
13906 annex = "all";
13907 break;
13908 case BTRACE_READ_NEW:
13909 annex = "new";
13910 break;
13911 case BTRACE_READ_DELTA:
13912 annex = "delta";
13913 break;
13914 default:
13915 internal_error (__FILE__, __LINE__,
13916 _("Bad branch tracing read type: %u."),
13917 (unsigned int) type);
13918 }
13919
13920 gdb::optional<gdb::char_vector> xml
13921 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13922 if (!xml)
13923 return BTRACE_ERR_UNKNOWN;
13924
13925 parse_xml_btrace (btrace, xml->data ());
13926
13927 return BTRACE_ERR_NONE;
13928 }
13929
13930 const struct btrace_config *
13931 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13932 {
13933 return &tinfo->conf;
13934 }
13935
13936 bool
13937 remote_target::augmented_libraries_svr4_read ()
13938 {
13939 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13940 == PACKET_ENABLE);
13941 }
13942
13943 /* Implementation of to_load. */
13944
13945 void
13946 remote_target::load (const char *name, int from_tty)
13947 {
13948 generic_load (name, from_tty);
13949 }
13950
13951 /* Accepts an integer PID; returns a string representing a file that
13952 can be opened on the remote side to get the symbols for the child
13953 process. Returns NULL if the operation is not supported. */
13954
13955 char *
13956 remote_target::pid_to_exec_file (int pid)
13957 {
13958 static gdb::optional<gdb::char_vector> filename;
13959 struct inferior *inf;
13960 char *annex = NULL;
13961
13962 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13963 return NULL;
13964
13965 inf = find_inferior_pid (pid);
13966 if (inf == NULL)
13967 internal_error (__FILE__, __LINE__,
13968 _("not currently attached to process %d"), pid);
13969
13970 if (!inf->fake_pid_p)
13971 {
13972 const int annex_size = 9;
13973
13974 annex = (char *) alloca (annex_size);
13975 xsnprintf (annex, annex_size, "%x", pid);
13976 }
13977
13978 filename = target_read_stralloc (current_top_target (),
13979 TARGET_OBJECT_EXEC_FILE, annex);
13980
13981 return filename ? filename->data () : nullptr;
13982 }
13983
13984 /* Implement the to_can_do_single_step target_ops method. */
13985
13986 int
13987 remote_target::can_do_single_step ()
13988 {
13989 /* We can only tell whether target supports single step or not by
13990 supported s and S vCont actions if the stub supports vContSupported
13991 feature. If the stub doesn't support vContSupported feature,
13992 we have conservatively to think target doesn't supports single
13993 step. */
13994 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13995 {
13996 struct remote_state *rs = get_remote_state ();
13997
13998 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13999 remote_vcont_probe ();
14000
14001 return rs->supports_vCont.s && rs->supports_vCont.S;
14002 }
14003 else
14004 return 0;
14005 }
14006
14007 /* Implementation of the to_execution_direction method for the remote
14008 target. */
14009
14010 enum exec_direction_kind
14011 remote_target::execution_direction ()
14012 {
14013 struct remote_state *rs = get_remote_state ();
14014
14015 return rs->last_resume_exec_dir;
14016 }
14017
14018 /* Return pointer to the thread_info struct which corresponds to
14019 THREAD_HANDLE (having length HANDLE_LEN). */
14020
14021 thread_info *
14022 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14023 int handle_len,
14024 inferior *inf)
14025 {
14026 for (thread_info *tp : all_non_exited_threads ())
14027 {
14028 remote_thread_info *priv = get_remote_thread_info (tp);
14029
14030 if (tp->inf == inf && priv != NULL)
14031 {
14032 if (handle_len != priv->thread_handle.size ())
14033 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14034 handle_len, priv->thread_handle.size ());
14035 if (memcmp (thread_handle, priv->thread_handle.data (),
14036 handle_len) == 0)
14037 return tp;
14038 }
14039 }
14040
14041 return NULL;
14042 }
14043
14044 bool
14045 remote_target::can_async_p ()
14046 {
14047 struct remote_state *rs = get_remote_state ();
14048
14049 /* We don't go async if the user has explicitly prevented it with the
14050 "maint set target-async" command. */
14051 if (!target_async_permitted)
14052 return false;
14053
14054 /* We're async whenever the serial device is. */
14055 return serial_can_async_p (rs->remote_desc);
14056 }
14057
14058 bool
14059 remote_target::is_async_p ()
14060 {
14061 struct remote_state *rs = get_remote_state ();
14062
14063 if (!target_async_permitted)
14064 /* We only enable async when the user specifically asks for it. */
14065 return false;
14066
14067 /* We're async whenever the serial device is. */
14068 return serial_is_async_p (rs->remote_desc);
14069 }
14070
14071 /* Pass the SERIAL event on and up to the client. One day this code
14072 will be able to delay notifying the client of an event until the
14073 point where an entire packet has been received. */
14074
14075 static serial_event_ftype remote_async_serial_handler;
14076
14077 static void
14078 remote_async_serial_handler (struct serial *scb, void *context)
14079 {
14080 /* Don't propogate error information up to the client. Instead let
14081 the client find out about the error by querying the target. */
14082 inferior_event_handler (INF_REG_EVENT, NULL);
14083 }
14084
14085 static void
14086 remote_async_inferior_event_handler (gdb_client_data data)
14087 {
14088 inferior_event_handler (INF_REG_EVENT, data);
14089 }
14090
14091 void
14092 remote_target::async (int enable)
14093 {
14094 struct remote_state *rs = get_remote_state ();
14095
14096 if (enable)
14097 {
14098 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14099
14100 /* If there are pending events in the stop reply queue tell the
14101 event loop to process them. */
14102 if (!rs->stop_reply_queue.empty ())
14103 mark_async_event_handler (rs->remote_async_inferior_event_token);
14104 /* For simplicity, below we clear the pending events token
14105 without remembering whether it is marked, so here we always
14106 mark it. If there's actually no pending notification to
14107 process, this ends up being a no-op (other than a spurious
14108 event-loop wakeup). */
14109 if (target_is_non_stop_p ())
14110 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14111 }
14112 else
14113 {
14114 serial_async (rs->remote_desc, NULL, NULL);
14115 /* If the core is disabling async, it doesn't want to be
14116 disturbed with target events. Clear all async event sources
14117 too. */
14118 clear_async_event_handler (rs->remote_async_inferior_event_token);
14119 if (target_is_non_stop_p ())
14120 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14121 }
14122 }
14123
14124 /* Implementation of the to_thread_events method. */
14125
14126 void
14127 remote_target::thread_events (int enable)
14128 {
14129 struct remote_state *rs = get_remote_state ();
14130 size_t size = get_remote_packet_size ();
14131
14132 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14133 return;
14134
14135 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
14136 putpkt (rs->buf);
14137 getpkt (&rs->buf, &rs->buf_size, 0);
14138
14139 switch (packet_ok (rs->buf,
14140 &remote_protocol_packets[PACKET_QThreadEvents]))
14141 {
14142 case PACKET_OK:
14143 if (strcmp (rs->buf, "OK") != 0)
14144 error (_("Remote refused setting thread events: %s"), rs->buf);
14145 break;
14146 case PACKET_ERROR:
14147 warning (_("Remote failure reply: %s"), rs->buf);
14148 break;
14149 case PACKET_UNKNOWN:
14150 break;
14151 }
14152 }
14153
14154 static void
14155 set_remote_cmd (const char *args, int from_tty)
14156 {
14157 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14158 }
14159
14160 static void
14161 show_remote_cmd (const char *args, int from_tty)
14162 {
14163 /* We can't just use cmd_show_list here, because we want to skip
14164 the redundant "show remote Z-packet" and the legacy aliases. */
14165 struct cmd_list_element *list = remote_show_cmdlist;
14166 struct ui_out *uiout = current_uiout;
14167
14168 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14169 for (; list != NULL; list = list->next)
14170 if (strcmp (list->name, "Z-packet") == 0)
14171 continue;
14172 else if (list->type == not_set_cmd)
14173 /* Alias commands are exactly like the original, except they
14174 don't have the normal type. */
14175 continue;
14176 else
14177 {
14178 ui_out_emit_tuple option_emitter (uiout, "option");
14179
14180 uiout->field_string ("name", list->name);
14181 uiout->text (": ");
14182 if (list->type == show_cmd)
14183 do_show_command (NULL, from_tty, list);
14184 else
14185 cmd_func (list, NULL, from_tty);
14186 }
14187 }
14188
14189
14190 /* Function to be called whenever a new objfile (shlib) is detected. */
14191 static void
14192 remote_new_objfile (struct objfile *objfile)
14193 {
14194 remote_target *remote = get_current_remote_target ();
14195
14196 if (remote != NULL) /* Have a remote connection. */
14197 remote->remote_check_symbols ();
14198 }
14199
14200 /* Pull all the tracepoints defined on the target and create local
14201 data structures representing them. We don't want to create real
14202 tracepoints yet, we don't want to mess up the user's existing
14203 collection. */
14204
14205 int
14206 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14207 {
14208 struct remote_state *rs = get_remote_state ();
14209 char *p;
14210
14211 /* Ask for a first packet of tracepoint definition. */
14212 putpkt ("qTfP");
14213 getpkt (&rs->buf, &rs->buf_size, 0);
14214 p = rs->buf;
14215 while (*p && *p != 'l')
14216 {
14217 parse_tracepoint_definition (p, utpp);
14218 /* Ask for another packet of tracepoint definition. */
14219 putpkt ("qTsP");
14220 getpkt (&rs->buf, &rs->buf_size, 0);
14221 p = rs->buf;
14222 }
14223 return 0;
14224 }
14225
14226 int
14227 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14228 {
14229 struct remote_state *rs = get_remote_state ();
14230 char *p;
14231
14232 /* Ask for a first packet of variable definition. */
14233 putpkt ("qTfV");
14234 getpkt (&rs->buf, &rs->buf_size, 0);
14235 p = rs->buf;
14236 while (*p && *p != 'l')
14237 {
14238 parse_tsv_definition (p, utsvp);
14239 /* Ask for another packet of variable definition. */
14240 putpkt ("qTsV");
14241 getpkt (&rs->buf, &rs->buf_size, 0);
14242 p = rs->buf;
14243 }
14244 return 0;
14245 }
14246
14247 /* The "set/show range-stepping" show hook. */
14248
14249 static void
14250 show_range_stepping (struct ui_file *file, int from_tty,
14251 struct cmd_list_element *c,
14252 const char *value)
14253 {
14254 fprintf_filtered (file,
14255 _("Debugger's willingness to use range stepping "
14256 "is %s.\n"), value);
14257 }
14258
14259 /* Return true if the vCont;r action is supported by the remote
14260 stub. */
14261
14262 bool
14263 remote_target::vcont_r_supported ()
14264 {
14265 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14266 remote_vcont_probe ();
14267
14268 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14269 && get_remote_state ()->supports_vCont.r);
14270 }
14271
14272 /* The "set/show range-stepping" set hook. */
14273
14274 static void
14275 set_range_stepping (const char *ignore_args, int from_tty,
14276 struct cmd_list_element *c)
14277 {
14278 /* When enabling, check whether range stepping is actually supported
14279 by the target, and warn if not. */
14280 if (use_range_stepping)
14281 {
14282 remote_target *remote = get_current_remote_target ();
14283 if (remote == NULL
14284 || !remote->vcont_r_supported ())
14285 warning (_("Range stepping is not supported by the current target"));
14286 }
14287 }
14288
14289 void
14290 _initialize_remote (void)
14291 {
14292 struct cmd_list_element *cmd;
14293 const char *cmd_name;
14294
14295 /* architecture specific data */
14296 remote_g_packet_data_handle =
14297 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14298
14299 remote_pspace_data
14300 = register_program_space_data_with_cleanup (NULL,
14301 remote_pspace_data_cleanup);
14302
14303 add_target (remote_target_info, remote_target::open);
14304 add_target (extended_remote_target_info, extended_remote_target::open);
14305
14306 /* Hook into new objfile notification. */
14307 gdb::observers::new_objfile.attach (remote_new_objfile);
14308
14309 #if 0
14310 init_remote_threadtests ();
14311 #endif
14312
14313 /* set/show remote ... */
14314
14315 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14316 Remote protocol specific variables\n\
14317 Configure various remote-protocol specific variables such as\n\
14318 the packets being used"),
14319 &remote_set_cmdlist, "set remote ",
14320 0 /* allow-unknown */, &setlist);
14321 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14322 Remote protocol specific variables\n\
14323 Configure various remote-protocol specific variables such as\n\
14324 the packets being used"),
14325 &remote_show_cmdlist, "show remote ",
14326 0 /* allow-unknown */, &showlist);
14327
14328 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14329 Compare section data on target to the exec file.\n\
14330 Argument is a single section name (default: all loaded sections).\n\
14331 To compare only read-only loaded sections, specify the -r option."),
14332 &cmdlist);
14333
14334 add_cmd ("packet", class_maintenance, packet_command, _("\
14335 Send an arbitrary packet to a remote target.\n\
14336 maintenance packet TEXT\n\
14337 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14338 this command sends the string TEXT to the inferior, and displays the\n\
14339 response packet. GDB supplies the initial `$' character, and the\n\
14340 terminating `#' character and checksum."),
14341 &maintenancelist);
14342
14343 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14344 Set whether to send break if interrupted."), _("\
14345 Show whether to send break if interrupted."), _("\
14346 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14347 set_remotebreak, show_remotebreak,
14348 &setlist, &showlist);
14349 cmd_name = "remotebreak";
14350 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14351 deprecate_cmd (cmd, "set remote interrupt-sequence");
14352 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14353 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14354 deprecate_cmd (cmd, "show remote interrupt-sequence");
14355
14356 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14357 interrupt_sequence_modes, &interrupt_sequence_mode,
14358 _("\
14359 Set interrupt sequence to remote target."), _("\
14360 Show interrupt sequence to remote target."), _("\
14361 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14362 NULL, show_interrupt_sequence,
14363 &remote_set_cmdlist,
14364 &remote_show_cmdlist);
14365
14366 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14367 &interrupt_on_connect, _("\
14368 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14369 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14370 If set, interrupt sequence is sent to remote target."),
14371 NULL, NULL,
14372 &remote_set_cmdlist, &remote_show_cmdlist);
14373
14374 /* Install commands for configuring memory read/write packets. */
14375
14376 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14377 Set the maximum number of bytes per memory write packet (deprecated)."),
14378 &setlist);
14379 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14380 Show the maximum number of bytes per memory write packet (deprecated)."),
14381 &showlist);
14382 add_cmd ("memory-write-packet-size", no_class,
14383 set_memory_write_packet_size, _("\
14384 Set the maximum number of bytes per memory-write packet.\n\
14385 Specify the number of bytes in a packet or 0 (zero) for the\n\
14386 default packet size. The actual limit is further reduced\n\
14387 dependent on the target. Specify ``fixed'' to disable the\n\
14388 further restriction and ``limit'' to enable that restriction."),
14389 &remote_set_cmdlist);
14390 add_cmd ("memory-read-packet-size", no_class,
14391 set_memory_read_packet_size, _("\
14392 Set the maximum number of bytes per memory-read packet.\n\
14393 Specify the number of bytes in a packet or 0 (zero) for the\n\
14394 default packet size. The actual limit is further reduced\n\
14395 dependent on the target. Specify ``fixed'' to disable the\n\
14396 further restriction and ``limit'' to enable that restriction."),
14397 &remote_set_cmdlist);
14398 add_cmd ("memory-write-packet-size", no_class,
14399 show_memory_write_packet_size,
14400 _("Show the maximum number of bytes per memory-write packet."),
14401 &remote_show_cmdlist);
14402 add_cmd ("memory-read-packet-size", no_class,
14403 show_memory_read_packet_size,
14404 _("Show the maximum number of bytes per memory-read packet."),
14405 &remote_show_cmdlist);
14406
14407 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14408 &remote_hw_watchpoint_limit, _("\
14409 Set the maximum number of target hardware watchpoints."), _("\
14410 Show the maximum number of target hardware watchpoints."), _("\
14411 Specify \"unlimited\" for unlimited hardware watchpoints."),
14412 NULL, show_hardware_watchpoint_limit,
14413 &remote_set_cmdlist,
14414 &remote_show_cmdlist);
14415 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14416 no_class,
14417 &remote_hw_watchpoint_length_limit, _("\
14418 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14419 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14420 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14421 NULL, show_hardware_watchpoint_length_limit,
14422 &remote_set_cmdlist, &remote_show_cmdlist);
14423 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14424 &remote_hw_breakpoint_limit, _("\
14425 Set the maximum number of target hardware breakpoints."), _("\
14426 Show the maximum number of target hardware breakpoints."), _("\
14427 Specify \"unlimited\" for unlimited hardware breakpoints."),
14428 NULL, show_hardware_breakpoint_limit,
14429 &remote_set_cmdlist, &remote_show_cmdlist);
14430
14431 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14432 &remote_address_size, _("\
14433 Set the maximum size of the address (in bits) in a memory packet."), _("\
14434 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14435 NULL,
14436 NULL, /* FIXME: i18n: */
14437 &setlist, &showlist);
14438
14439 init_all_packet_configs ();
14440
14441 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14442 "X", "binary-download", 1);
14443
14444 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14445 "vCont", "verbose-resume", 0);
14446
14447 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14448 "QPassSignals", "pass-signals", 0);
14449
14450 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14451 "QCatchSyscalls", "catch-syscalls", 0);
14452
14453 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14454 "QProgramSignals", "program-signals", 0);
14455
14456 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14457 "QSetWorkingDir", "set-working-dir", 0);
14458
14459 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14460 "QStartupWithShell", "startup-with-shell", 0);
14461
14462 add_packet_config_cmd (&remote_protocol_packets
14463 [PACKET_QEnvironmentHexEncoded],
14464 "QEnvironmentHexEncoded", "environment-hex-encoded",
14465 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14468 "QEnvironmentReset", "environment-reset",
14469 0);
14470
14471 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14472 "QEnvironmentUnset", "environment-unset",
14473 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14476 "qSymbol", "symbol-lookup", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14479 "P", "set-register", 1);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14482 "p", "fetch-register", 1);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14485 "Z0", "software-breakpoint", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14488 "Z1", "hardware-breakpoint", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14491 "Z2", "write-watchpoint", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14494 "Z3", "read-watchpoint", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14497 "Z4", "access-watchpoint", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14500 "qXfer:auxv:read", "read-aux-vector", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14503 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14506 "qXfer:features:read", "target-features", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14509 "qXfer:libraries:read", "library-info", 0);
14510
14511 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14512 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14515 "qXfer:memory-map:read", "memory-map", 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14518 "qXfer:spu:read", "read-spu-object", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14521 "qXfer:spu:write", "write-spu-object", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14524 "qXfer:osdata:read", "osdata", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14527 "qXfer:threads:read", "threads", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14530 "qXfer:siginfo:read", "read-siginfo-object", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14533 "qXfer:siginfo:write", "write-siginfo-object", 0);
14534
14535 add_packet_config_cmd
14536 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14537 "qXfer:traceframe-info:read", "traceframe-info", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14540 "qXfer:uib:read", "unwind-info-block", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14543 "qGetTLSAddr", "get-thread-local-storage-address",
14544 0);
14545
14546 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14547 "qGetTIBAddr", "get-thread-information-block-address",
14548 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14551 "bc", "reverse-continue", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14554 "bs", "reverse-step", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14557 "qSupported", "supported-packets", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14560 "qSearch:memory", "search-memory", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14563 "qTStatus", "trace-status", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14566 "vFile:setfs", "hostio-setfs", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14569 "vFile:open", "hostio-open", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14572 "vFile:pread", "hostio-pread", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14575 "vFile:pwrite", "hostio-pwrite", 0);
14576
14577 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14578 "vFile:close", "hostio-close", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14581 "vFile:unlink", "hostio-unlink", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14584 "vFile:readlink", "hostio-readlink", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14587 "vFile:fstat", "hostio-fstat", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14590 "vAttach", "attach", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14593 "vRun", "run", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14596 "QStartNoAckMode", "noack", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14599 "vKill", "kill", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14602 "qAttached", "query-attached", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14605 "ConditionalTracepoints",
14606 "conditional-tracepoints", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14609 "ConditionalBreakpoints",
14610 "conditional-breakpoints", 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14613 "BreakpointCommands",
14614 "breakpoint-commands", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14617 "FastTracepoints", "fast-tracepoints", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14620 "TracepointSource", "TracepointSource", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14623 "QAllow", "allow", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14626 "StaticTracepoints", "static-tracepoints", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14629 "InstallInTrace", "install-in-trace", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14632 "qXfer:statictrace:read", "read-sdata-object", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14635 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14638 "QDisableRandomization", "disable-randomization", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14641 "QAgent", "agent", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14644 "QTBuffer:size", "trace-buffer-size", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14647 "Qbtrace:off", "disable-btrace", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14650 "Qbtrace:bts", "enable-btrace-bts", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14653 "Qbtrace:pt", "enable-btrace-pt", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14656 "qXfer:btrace", "read-btrace", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14659 "qXfer:btrace-conf", "read-btrace-conf", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14662 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14665 "multiprocess-feature", "multiprocess-feature", 0);
14666
14667 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14668 "swbreak-feature", "swbreak-feature", 0);
14669
14670 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14671 "hwbreak-feature", "hwbreak-feature", 0);
14672
14673 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14674 "fork-event-feature", "fork-event-feature", 0);
14675
14676 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14677 "vfork-event-feature", "vfork-event-feature", 0);
14678
14679 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14680 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14681
14682 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14683 "vContSupported", "verbose-resume-supported", 0);
14684
14685 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14686 "exec-event-feature", "exec-event-feature", 0);
14687
14688 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14689 "vCtrlC", "ctrl-c", 0);
14690
14691 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14692 "QThreadEvents", "thread-events", 0);
14693
14694 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14695 "N stop reply", "no-resumed-stop-reply", 0);
14696
14697 /* Assert that we've registered "set remote foo-packet" commands
14698 for all packet configs. */
14699 {
14700 int i;
14701
14702 for (i = 0; i < PACKET_MAX; i++)
14703 {
14704 /* Ideally all configs would have a command associated. Some
14705 still don't though. */
14706 int excepted;
14707
14708 switch (i)
14709 {
14710 case PACKET_QNonStop:
14711 case PACKET_EnableDisableTracepoints_feature:
14712 case PACKET_tracenz_feature:
14713 case PACKET_DisconnectedTracing_feature:
14714 case PACKET_augmented_libraries_svr4_read_feature:
14715 case PACKET_qCRC:
14716 /* Additions to this list need to be well justified:
14717 pre-existing packets are OK; new packets are not. */
14718 excepted = 1;
14719 break;
14720 default:
14721 excepted = 0;
14722 break;
14723 }
14724
14725 /* This catches both forgetting to add a config command, and
14726 forgetting to remove a packet from the exception list. */
14727 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14728 }
14729 }
14730
14731 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14732 Z sub-packet has its own set and show commands, but users may
14733 have sets to this variable in their .gdbinit files (or in their
14734 documentation). */
14735 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14736 &remote_Z_packet_detect, _("\
14737 Set use of remote protocol `Z' packets"), _("\
14738 Show use of remote protocol `Z' packets "), _("\
14739 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14740 packets."),
14741 set_remote_protocol_Z_packet_cmd,
14742 show_remote_protocol_Z_packet_cmd,
14743 /* FIXME: i18n: Use of remote protocol
14744 `Z' packets is %s. */
14745 &remote_set_cmdlist, &remote_show_cmdlist);
14746
14747 add_prefix_cmd ("remote", class_files, remote_command, _("\
14748 Manipulate files on the remote system\n\
14749 Transfer files to and from the remote target system."),
14750 &remote_cmdlist, "remote ",
14751 0 /* allow-unknown */, &cmdlist);
14752
14753 add_cmd ("put", class_files, remote_put_command,
14754 _("Copy a local file to the remote system."),
14755 &remote_cmdlist);
14756
14757 add_cmd ("get", class_files, remote_get_command,
14758 _("Copy a remote file to the local system."),
14759 &remote_cmdlist);
14760
14761 add_cmd ("delete", class_files, remote_delete_command,
14762 _("Delete a remote file."),
14763 &remote_cmdlist);
14764
14765 add_setshow_string_noescape_cmd ("exec-file", class_files,
14766 &remote_exec_file_var, _("\
14767 Set the remote pathname for \"run\""), _("\
14768 Show the remote pathname for \"run\""), NULL,
14769 set_remote_exec_file,
14770 show_remote_exec_file,
14771 &remote_set_cmdlist,
14772 &remote_show_cmdlist);
14773
14774 add_setshow_boolean_cmd ("range-stepping", class_run,
14775 &use_range_stepping, _("\
14776 Enable or disable range stepping."), _("\
14777 Show whether target-assisted range stepping is enabled."), _("\
14778 If on, and the target supports it, when stepping a source line, GDB\n\
14779 tells the target to step the corresponding range of addresses itself instead\n\
14780 of issuing multiple single-steps. This speeds up source level\n\
14781 stepping. If off, GDB always issues single-steps, even if range\n\
14782 stepping is supported by the target. The default is on."),
14783 set_range_stepping,
14784 show_range_stepping,
14785 &setlist,
14786 &showlist);
14787
14788 /* Eventually initialize fileio. See fileio.c */
14789 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14790
14791 /* Take advantage of the fact that the TID field is not used, to tag
14792 special ptids with it set to != 0. */
14793 magic_null_ptid = ptid_t (42000, -1, 1);
14794 not_sent_ptid = ptid_t (42000, -2, 1);
14795 any_thread_ptid = ptid_t (42000, 0, 1);
14796 }
This page took 0.574742 seconds and 4 git commands to generate.