Switch the license of all .c files to GPLv3.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61
62 #include "memory-map.h"
63
64 /* The size to align memory write packets, when practical. The protocol
65 does not guarantee any alignment, and gdb will generate short
66 writes and unaligned writes, but even as a best-effort attempt this
67 can improve bulk transfers. For instance, if a write is misaligned
68 relative to the target's data bus, the stub may need to make an extra
69 round trip fetching data from the target. This doesn't make a
70 huge difference, but it's easy to do, so we try to be helpful.
71
72 The alignment chosen is arbitrary; usually data bus width is
73 important here, not the possibly larger cache line size. */
74 enum { REMOTE_ALIGN_WRITES = 16 };
75
76 /* Prototypes for local functions. */
77 static void cleanup_sigint_signal_handler (void *dummy);
78 static void initialize_sigint_signal_handler (void);
79 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
80
81 static void handle_remote_sigint (int);
82 static void handle_remote_sigint_twice (int);
83 static void async_remote_interrupt (gdb_client_data);
84 void async_remote_interrupt_twice (gdb_client_data);
85
86 static void remote_files_info (struct target_ops *ignore);
87
88 static void remote_prepare_to_store (struct regcache *regcache);
89
90 static void remote_fetch_registers (struct regcache *regcache, int regno);
91
92 static void remote_resume (ptid_t ptid, int step,
93 enum target_signal siggnal);
94 static void remote_async_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_open (char *name, int from_tty);
97 static void remote_async_open (char *name, int from_tty);
98
99 static void extended_remote_open (char *name, int from_tty);
100 static void extended_remote_async_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
103 int async_p);
104
105 static void remote_close (int quitting);
106
107 static void remote_store_registers (struct regcache *regcache, int regno);
108
109 static void remote_mourn (void);
110 static void remote_async_mourn (void);
111
112 static void extended_remote_restart (void);
113
114 static void extended_remote_mourn (void);
115
116 static void remote_mourn_1 (struct target_ops *);
117
118 static void remote_send (char **buf, long *sizeof_buf_p);
119
120 static int readchar (int timeout);
121
122 static ptid_t remote_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124 static ptid_t remote_async_wait (ptid_t ptid,
125 struct target_waitstatus *status);
126
127 static void remote_kill (void);
128 static void remote_async_kill (void);
129
130 static int tohex (int nib);
131
132 static void remote_detach (char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_thread (int, int);
141
142 static int remote_thread_alive (ptid_t);
143
144 static void get_offsets (void);
145
146 static void skip_frame (void);
147
148 static long read_frame (char **buf_p, long *sizeof_buf);
149
150 static int hexnumlen (ULONGEST num);
151
152 static void init_remote_ops (void);
153
154 static void init_extended_remote_ops (void);
155
156 static void remote_stop (void);
157
158 static int ishex (int ch, int *val);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (char *);
169
170 static unsigned long crc32 (unsigned char *, int, unsigned int);
171
172 static void compare_sections_command (char *, int);
173
174 static void packet_command (char *, int);
175
176 static int stub_unpack_int (char *buff, int fieldlength);
177
178 static ptid_t remote_current_thread (ptid_t oldptid);
179
180 static void remote_find_new_threads (void);
181
182 static void record_currthread (int currthread);
183
184 static int fromhex (int a);
185
186 static int hex2bin (const char *hex, gdb_byte *bin, int count);
187
188 static int bin2hex (const gdb_byte *bin, char *hex, int count);
189
190 static int putpkt_binary (char *buf, int cnt);
191
192 static void check_binary_download (CORE_ADDR addr);
193
194 struct packet_config;
195
196 static void show_packet_config_cmd (struct packet_config *config);
197
198 static void update_packet_config (struct packet_config *config);
199
200 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
201 struct cmd_list_element *c);
202
203 static void show_remote_protocol_packet_cmd (struct ui_file *file,
204 int from_tty,
205 struct cmd_list_element *c,
206 const char *value);
207
208 void _initialize_remote (void);
209
210 /* For "set remote" and "show remote". */
211
212 static struct cmd_list_element *remote_set_cmdlist;
213 static struct cmd_list_element *remote_show_cmdlist;
214
215 /* Description of the remote protocol state for the currently
216 connected target. This is per-target state, and independent of the
217 selected architecture. */
218
219 struct remote_state
220 {
221 /* A buffer to use for incoming packets, and its current size. The
222 buffer is grown dynamically for larger incoming packets.
223 Outgoing packets may also be constructed in this buffer.
224 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
225 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
226 packets. */
227 char *buf;
228 long buf_size;
229
230 /* If we negotiated packet size explicitly (and thus can bypass
231 heuristics for the largest packet size that will not overflow
232 a buffer in the stub), this will be set to that packet size.
233 Otherwise zero, meaning to use the guessed size. */
234 long explicit_packet_size;
235 };
236
237 /* This data could be associated with a target, but we do not always
238 have access to the current target when we need it, so for now it is
239 static. This will be fine for as long as only one target is in use
240 at a time. */
241 static struct remote_state remote_state;
242
243 static struct remote_state *
244 get_remote_state_raw (void)
245 {
246 return &remote_state;
247 }
248
249 /* Description of the remote protocol for a given architecture. */
250
251 struct packet_reg
252 {
253 long offset; /* Offset into G packet. */
254 long regnum; /* GDB's internal register number. */
255 LONGEST pnum; /* Remote protocol register number. */
256 int in_g_packet; /* Always part of G packet. */
257 /* long size in bytes; == register_size (current_gdbarch, regnum);
258 at present. */
259 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
260 at present. */
261 };
262
263 struct remote_arch_state
264 {
265 /* Description of the remote protocol registers. */
266 long sizeof_g_packet;
267
268 /* Description of the remote protocol registers indexed by REGNUM
269 (making an array gdbarch_num_regs in size). */
270 struct packet_reg *regs;
271
272 /* This is the size (in chars) of the first response to the ``g''
273 packet. It is used as a heuristic when determining the maximum
274 size of memory-read and memory-write packets. A target will
275 typically only reserve a buffer large enough to hold the ``g''
276 packet. The size does not include packet overhead (headers and
277 trailers). */
278 long actual_register_packet_size;
279
280 /* This is the maximum size (in chars) of a non read/write packet.
281 It is also used as a cap on the size of read/write packets. */
282 long remote_packet_size;
283 };
284
285
286 /* Handle for retreving the remote protocol data from gdbarch. */
287 static struct gdbarch_data *remote_gdbarch_data_handle;
288
289 static struct remote_arch_state *
290 get_remote_arch_state (void)
291 {
292 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
293 }
294
295 /* Fetch the global remote target state. */
296
297 static struct remote_state *
298 get_remote_state (void)
299 {
300 /* Make sure that the remote architecture state has been
301 initialized, because doing so might reallocate rs->buf. Any
302 function which calls getpkt also needs to be mindful of changes
303 to rs->buf, but this call limits the number of places which run
304 into trouble. */
305 get_remote_arch_state ();
306
307 return get_remote_state_raw ();
308 }
309
310 static int
311 compare_pnums (const void *lhs_, const void *rhs_)
312 {
313 const struct packet_reg * const *lhs = lhs_;
314 const struct packet_reg * const *rhs = rhs_;
315
316 if ((*lhs)->pnum < (*rhs)->pnum)
317 return -1;
318 else if ((*lhs)->pnum == (*rhs)->pnum)
319 return 0;
320 else
321 return 1;
322 }
323
324 static void *
325 init_remote_state (struct gdbarch *gdbarch)
326 {
327 int regnum, num_remote_regs, offset;
328 struct remote_state *rs = get_remote_state_raw ();
329 struct remote_arch_state *rsa;
330 struct packet_reg **remote_regs;
331
332 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
333
334 /* Use the architecture to build a regnum<->pnum table, which will be
335 1:1 unless a feature set specifies otherwise. */
336 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
337 gdbarch_num_regs (current_gdbarch),
338 struct packet_reg);
339 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
340 {
341 struct packet_reg *r = &rsa->regs[regnum];
342
343 if (register_size (current_gdbarch, regnum) == 0)
344 /* Do not try to fetch zero-sized (placeholder) registers. */
345 r->pnum = -1;
346 else
347 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
348
349 r->regnum = regnum;
350 }
351
352 /* Define the g/G packet format as the contents of each register
353 with a remote protocol number, in order of ascending protocol
354 number. */
355
356 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
357 * sizeof (struct packet_reg *));
358 for (num_remote_regs = 0, regnum = 0;
359 regnum < gdbarch_num_regs (current_gdbarch);
360 regnum++)
361 if (rsa->regs[regnum].pnum != -1)
362 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
363
364 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
365 compare_pnums);
366
367 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
368 {
369 remote_regs[regnum]->in_g_packet = 1;
370 remote_regs[regnum]->offset = offset;
371 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
372 }
373
374 /* Record the maximum possible size of the g packet - it may turn out
375 to be smaller. */
376 rsa->sizeof_g_packet = offset;
377
378 /* Default maximum number of characters in a packet body. Many
379 remote stubs have a hardwired buffer size of 400 bytes
380 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
381 as the maximum packet-size to ensure that the packet and an extra
382 NUL character can always fit in the buffer. This stops GDB
383 trashing stubs that try to squeeze an extra NUL into what is
384 already a full buffer (As of 1999-12-04 that was most stubs). */
385 rsa->remote_packet_size = 400 - 1;
386
387 /* This one is filled in when a ``g'' packet is received. */
388 rsa->actual_register_packet_size = 0;
389
390 /* Should rsa->sizeof_g_packet needs more space than the
391 default, adjust the size accordingly. Remember that each byte is
392 encoded as two characters. 32 is the overhead for the packet
393 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
394 (``$NN:G...#NN'') is a better guess, the below has been padded a
395 little. */
396 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
397 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
398
399 /* Make sure that the packet buffer is plenty big enough for
400 this architecture. */
401 if (rs->buf_size < rsa->remote_packet_size)
402 {
403 rs->buf_size = 2 * rsa->remote_packet_size;
404 rs->buf = xrealloc (rs->buf, rs->buf_size);
405 }
406
407 return rsa;
408 }
409
410 /* Return the current allowed size of a remote packet. This is
411 inferred from the current architecture, and should be used to
412 limit the length of outgoing packets. */
413 static long
414 get_remote_packet_size (void)
415 {
416 struct remote_state *rs = get_remote_state ();
417 struct remote_arch_state *rsa = get_remote_arch_state ();
418
419 if (rs->explicit_packet_size)
420 return rs->explicit_packet_size;
421
422 return rsa->remote_packet_size;
423 }
424
425 static struct packet_reg *
426 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
427 {
428 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
429 return NULL;
430 else
431 {
432 struct packet_reg *r = &rsa->regs[regnum];
433 gdb_assert (r->regnum == regnum);
434 return r;
435 }
436 }
437
438 static struct packet_reg *
439 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
440 {
441 int i;
442 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
443 {
444 struct packet_reg *r = &rsa->regs[i];
445 if (r->pnum == pnum)
446 return r;
447 }
448 return NULL;
449 }
450
451 /* FIXME: graces/2002-08-08: These variables should eventually be
452 bound to an instance of the target object (as in gdbarch-tdep()),
453 when such a thing exists. */
454
455 /* This is set to the data address of the access causing the target
456 to stop for a watchpoint. */
457 static CORE_ADDR remote_watch_data_address;
458
459 /* This is non-zero if target stopped for a watchpoint. */
460 static int remote_stopped_by_watchpoint_p;
461
462 static struct target_ops remote_ops;
463
464 static struct target_ops extended_remote_ops;
465
466 /* Temporary target ops. Just like the remote_ops and
467 extended_remote_ops, but with asynchronous support. */
468 static struct target_ops remote_async_ops;
469
470 static struct target_ops extended_async_remote_ops;
471
472 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
473 ``forever'' still use the normal timeout mechanism. This is
474 currently used by the ASYNC code to guarentee that target reads
475 during the initial connect always time-out. Once getpkt has been
476 modified to return a timeout indication and, in turn
477 remote_wait()/wait_for_inferior() have gained a timeout parameter
478 this can go away. */
479 static int wait_forever_enabled_p = 1;
480
481
482 /* This variable chooses whether to send a ^C or a break when the user
483 requests program interruption. Although ^C is usually what remote
484 systems expect, and that is the default here, sometimes a break is
485 preferable instead. */
486
487 static int remote_break;
488
489 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
490 remote_open knows that we don't have a file open when the program
491 starts. */
492 static struct serial *remote_desc = NULL;
493
494 /* This variable sets the number of bits in an address that are to be
495 sent in a memory ("M" or "m") packet. Normally, after stripping
496 leading zeros, the entire address would be sent. This variable
497 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
498 initial implementation of remote.c restricted the address sent in
499 memory packets to ``host::sizeof long'' bytes - (typically 32
500 bits). Consequently, for 64 bit targets, the upper 32 bits of an
501 address was never sent. Since fixing this bug may cause a break in
502 some remote targets this variable is principly provided to
503 facilitate backward compatibility. */
504
505 static int remote_address_size;
506
507 /* Tempoary to track who currently owns the terminal. See
508 target_async_terminal_* for more details. */
509
510 static int remote_async_terminal_ours_p;
511
512 \f
513 /* User configurable variables for the number of characters in a
514 memory read/write packet. MIN (rsa->remote_packet_size,
515 rsa->sizeof_g_packet) is the default. Some targets need smaller
516 values (fifo overruns, et.al.) and some users need larger values
517 (speed up transfers). The variables ``preferred_*'' (the user
518 request), ``current_*'' (what was actually set) and ``forced_*''
519 (Positive - a soft limit, negative - a hard limit). */
520
521 struct memory_packet_config
522 {
523 char *name;
524 long size;
525 int fixed_p;
526 };
527
528 /* Compute the current size of a read/write packet. Since this makes
529 use of ``actual_register_packet_size'' the computation is dynamic. */
530
531 static long
532 get_memory_packet_size (struct memory_packet_config *config)
533 {
534 struct remote_state *rs = get_remote_state ();
535 struct remote_arch_state *rsa = get_remote_arch_state ();
536
537 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
538 law?) that some hosts don't cope very well with large alloca()
539 calls. Eventually the alloca() code will be replaced by calls to
540 xmalloc() and make_cleanups() allowing this restriction to either
541 be lifted or removed. */
542 #ifndef MAX_REMOTE_PACKET_SIZE
543 #define MAX_REMOTE_PACKET_SIZE 16384
544 #endif
545 /* NOTE: 20 ensures we can write at least one byte. */
546 #ifndef MIN_REMOTE_PACKET_SIZE
547 #define MIN_REMOTE_PACKET_SIZE 20
548 #endif
549 long what_they_get;
550 if (config->fixed_p)
551 {
552 if (config->size <= 0)
553 what_they_get = MAX_REMOTE_PACKET_SIZE;
554 else
555 what_they_get = config->size;
556 }
557 else
558 {
559 what_they_get = get_remote_packet_size ();
560 /* Limit the packet to the size specified by the user. */
561 if (config->size > 0
562 && what_they_get > config->size)
563 what_they_get = config->size;
564
565 /* Limit it to the size of the targets ``g'' response unless we have
566 permission from the stub to use a larger packet size. */
567 if (rs->explicit_packet_size == 0
568 && rsa->actual_register_packet_size > 0
569 && what_they_get > rsa->actual_register_packet_size)
570 what_they_get = rsa->actual_register_packet_size;
571 }
572 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
573 what_they_get = MAX_REMOTE_PACKET_SIZE;
574 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
575 what_they_get = MIN_REMOTE_PACKET_SIZE;
576
577 /* Make sure there is room in the global buffer for this packet
578 (including its trailing NUL byte). */
579 if (rs->buf_size < what_they_get + 1)
580 {
581 rs->buf_size = 2 * what_they_get;
582 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
583 }
584
585 return what_they_get;
586 }
587
588 /* Update the size of a read/write packet. If they user wants
589 something really big then do a sanity check. */
590
591 static void
592 set_memory_packet_size (char *args, struct memory_packet_config *config)
593 {
594 int fixed_p = config->fixed_p;
595 long size = config->size;
596 if (args == NULL)
597 error (_("Argument required (integer, `fixed' or `limited')."));
598 else if (strcmp (args, "hard") == 0
599 || strcmp (args, "fixed") == 0)
600 fixed_p = 1;
601 else if (strcmp (args, "soft") == 0
602 || strcmp (args, "limit") == 0)
603 fixed_p = 0;
604 else
605 {
606 char *end;
607 size = strtoul (args, &end, 0);
608 if (args == end)
609 error (_("Invalid %s (bad syntax)."), config->name);
610 #if 0
611 /* Instead of explicitly capping the size of a packet to
612 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
613 instead allowed to set the size to something arbitrarily
614 large. */
615 if (size > MAX_REMOTE_PACKET_SIZE)
616 error (_("Invalid %s (too large)."), config->name);
617 #endif
618 }
619 /* Extra checks? */
620 if (fixed_p && !config->fixed_p)
621 {
622 if (! query (_("The target may not be able to correctly handle a %s\n"
623 "of %ld bytes. Change the packet size? "),
624 config->name, size))
625 error (_("Packet size not changed."));
626 }
627 /* Update the config. */
628 config->fixed_p = fixed_p;
629 config->size = size;
630 }
631
632 static void
633 show_memory_packet_size (struct memory_packet_config *config)
634 {
635 printf_filtered (_("The %s is %ld. "), config->name, config->size);
636 if (config->fixed_p)
637 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
638 get_memory_packet_size (config));
639 else
640 printf_filtered (_("Packets are limited to %ld bytes.\n"),
641 get_memory_packet_size (config));
642 }
643
644 static struct memory_packet_config memory_write_packet_config =
645 {
646 "memory-write-packet-size",
647 };
648
649 static void
650 set_memory_write_packet_size (char *args, int from_tty)
651 {
652 set_memory_packet_size (args, &memory_write_packet_config);
653 }
654
655 static void
656 show_memory_write_packet_size (char *args, int from_tty)
657 {
658 show_memory_packet_size (&memory_write_packet_config);
659 }
660
661 static long
662 get_memory_write_packet_size (void)
663 {
664 return get_memory_packet_size (&memory_write_packet_config);
665 }
666
667 static struct memory_packet_config memory_read_packet_config =
668 {
669 "memory-read-packet-size",
670 };
671
672 static void
673 set_memory_read_packet_size (char *args, int from_tty)
674 {
675 set_memory_packet_size (args, &memory_read_packet_config);
676 }
677
678 static void
679 show_memory_read_packet_size (char *args, int from_tty)
680 {
681 show_memory_packet_size (&memory_read_packet_config);
682 }
683
684 static long
685 get_memory_read_packet_size (void)
686 {
687 long size = get_memory_packet_size (&memory_read_packet_config);
688 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
689 extra buffer size argument before the memory read size can be
690 increased beyond this. */
691 if (size > get_remote_packet_size ())
692 size = get_remote_packet_size ();
693 return size;
694 }
695
696 \f
697 /* Generic configuration support for packets the stub optionally
698 supports. Allows the user to specify the use of the packet as well
699 as allowing GDB to auto-detect support in the remote stub. */
700
701 enum packet_support
702 {
703 PACKET_SUPPORT_UNKNOWN = 0,
704 PACKET_ENABLE,
705 PACKET_DISABLE
706 };
707
708 struct packet_config
709 {
710 const char *name;
711 const char *title;
712 enum auto_boolean detect;
713 enum packet_support support;
714 };
715
716 /* Analyze a packet's return value and update the packet config
717 accordingly. */
718
719 enum packet_result
720 {
721 PACKET_ERROR,
722 PACKET_OK,
723 PACKET_UNKNOWN
724 };
725
726 static void
727 update_packet_config (struct packet_config *config)
728 {
729 switch (config->detect)
730 {
731 case AUTO_BOOLEAN_TRUE:
732 config->support = PACKET_ENABLE;
733 break;
734 case AUTO_BOOLEAN_FALSE:
735 config->support = PACKET_DISABLE;
736 break;
737 case AUTO_BOOLEAN_AUTO:
738 config->support = PACKET_SUPPORT_UNKNOWN;
739 break;
740 }
741 }
742
743 static void
744 show_packet_config_cmd (struct packet_config *config)
745 {
746 char *support = "internal-error";
747 switch (config->support)
748 {
749 case PACKET_ENABLE:
750 support = "enabled";
751 break;
752 case PACKET_DISABLE:
753 support = "disabled";
754 break;
755 case PACKET_SUPPORT_UNKNOWN:
756 support = "unknown";
757 break;
758 }
759 switch (config->detect)
760 {
761 case AUTO_BOOLEAN_AUTO:
762 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
763 config->name, support);
764 break;
765 case AUTO_BOOLEAN_TRUE:
766 case AUTO_BOOLEAN_FALSE:
767 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
768 config->name, support);
769 break;
770 }
771 }
772
773 static void
774 add_packet_config_cmd (struct packet_config *config, const char *name,
775 const char *title, int legacy)
776 {
777 char *set_doc;
778 char *show_doc;
779 char *cmd_name;
780
781 config->name = name;
782 config->title = title;
783 config->detect = AUTO_BOOLEAN_AUTO;
784 config->support = PACKET_SUPPORT_UNKNOWN;
785 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
786 name, title);
787 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
788 name, title);
789 /* set/show TITLE-packet {auto,on,off} */
790 cmd_name = xstrprintf ("%s-packet", title);
791 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
792 &config->detect, set_doc, show_doc, NULL, /* help_doc */
793 set_remote_protocol_packet_cmd,
794 show_remote_protocol_packet_cmd,
795 &remote_set_cmdlist, &remote_show_cmdlist);
796 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
797 if (legacy)
798 {
799 char *legacy_name;
800 legacy_name = xstrprintf ("%s-packet", name);
801 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
802 &remote_set_cmdlist);
803 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
804 &remote_show_cmdlist);
805 }
806 }
807
808 static enum packet_result
809 packet_check_result (const char *buf)
810 {
811 if (buf[0] != '\0')
812 {
813 /* The stub recognized the packet request. Check that the
814 operation succeeded. */
815 if (buf[0] == 'E'
816 && isxdigit (buf[1]) && isxdigit (buf[2])
817 && buf[3] == '\0')
818 /* "Enn" - definitly an error. */
819 return PACKET_ERROR;
820
821 /* Always treat "E." as an error. This will be used for
822 more verbose error messages, such as E.memtypes. */
823 if (buf[0] == 'E' && buf[1] == '.')
824 return PACKET_ERROR;
825
826 /* The packet may or may not be OK. Just assume it is. */
827 return PACKET_OK;
828 }
829 else
830 /* The stub does not support the packet. */
831 return PACKET_UNKNOWN;
832 }
833
834 static enum packet_result
835 packet_ok (const char *buf, struct packet_config *config)
836 {
837 enum packet_result result;
838
839 result = packet_check_result (buf);
840 switch (result)
841 {
842 case PACKET_OK:
843 case PACKET_ERROR:
844 /* The stub recognized the packet request. */
845 switch (config->support)
846 {
847 case PACKET_SUPPORT_UNKNOWN:
848 if (remote_debug)
849 fprintf_unfiltered (gdb_stdlog,
850 "Packet %s (%s) is supported\n",
851 config->name, config->title);
852 config->support = PACKET_ENABLE;
853 break;
854 case PACKET_DISABLE:
855 internal_error (__FILE__, __LINE__,
856 _("packet_ok: attempt to use a disabled packet"));
857 break;
858 case PACKET_ENABLE:
859 break;
860 }
861 break;
862 case PACKET_UNKNOWN:
863 /* The stub does not support the packet. */
864 switch (config->support)
865 {
866 case PACKET_ENABLE:
867 if (config->detect == AUTO_BOOLEAN_AUTO)
868 /* If the stub previously indicated that the packet was
869 supported then there is a protocol error.. */
870 error (_("Protocol error: %s (%s) conflicting enabled responses."),
871 config->name, config->title);
872 else
873 /* The user set it wrong. */
874 error (_("Enabled packet %s (%s) not recognized by stub"),
875 config->name, config->title);
876 break;
877 case PACKET_SUPPORT_UNKNOWN:
878 if (remote_debug)
879 fprintf_unfiltered (gdb_stdlog,
880 "Packet %s (%s) is NOT supported\n",
881 config->name, config->title);
882 config->support = PACKET_DISABLE;
883 break;
884 case PACKET_DISABLE:
885 break;
886 }
887 break;
888 }
889
890 return result;
891 }
892
893 enum {
894 PACKET_vCont = 0,
895 PACKET_X,
896 PACKET_qSymbol,
897 PACKET_P,
898 PACKET_p,
899 PACKET_Z0,
900 PACKET_Z1,
901 PACKET_Z2,
902 PACKET_Z3,
903 PACKET_Z4,
904 PACKET_qXfer_auxv,
905 PACKET_qXfer_features,
906 PACKET_qXfer_libraries,
907 PACKET_qXfer_memory_map,
908 PACKET_qXfer_spu_read,
909 PACKET_qXfer_spu_write,
910 PACKET_qGetTLSAddr,
911 PACKET_qSupported,
912 PACKET_QPassSignals,
913 PACKET_MAX
914 };
915
916 static struct packet_config remote_protocol_packets[PACKET_MAX];
917
918 static void
919 set_remote_protocol_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 struct packet_config *packet;
923
924 for (packet = remote_protocol_packets;
925 packet < &remote_protocol_packets[PACKET_MAX];
926 packet++)
927 {
928 if (&packet->detect == c->var)
929 {
930 update_packet_config (packet);
931 return;
932 }
933 }
934 internal_error (__FILE__, __LINE__, "Could not find config for %s",
935 c->name);
936 }
937
938 static void
939 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
940 struct cmd_list_element *c,
941 const char *value)
942 {
943 struct packet_config *packet;
944
945 for (packet = remote_protocol_packets;
946 packet < &remote_protocol_packets[PACKET_MAX];
947 packet++)
948 {
949 if (&packet->detect == c->var)
950 {
951 show_packet_config_cmd (packet);
952 return;
953 }
954 }
955 internal_error (__FILE__, __LINE__, "Could not find config for %s",
956 c->name);
957 }
958
959 /* Should we try one of the 'Z' requests? */
960
961 enum Z_packet_type
962 {
963 Z_PACKET_SOFTWARE_BP,
964 Z_PACKET_HARDWARE_BP,
965 Z_PACKET_WRITE_WP,
966 Z_PACKET_READ_WP,
967 Z_PACKET_ACCESS_WP,
968 NR_Z_PACKET_TYPES
969 };
970
971 /* For compatibility with older distributions. Provide a ``set remote
972 Z-packet ...'' command that updates all the Z packet types. */
973
974 static enum auto_boolean remote_Z_packet_detect;
975
976 static void
977 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
978 struct cmd_list_element *c)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
984 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
985 }
986 }
987
988 static void
989 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
991 const char *value)
992 {
993 int i;
994 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
995 {
996 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
997 }
998 }
999
1000 /* Should we try the 'ThreadInfo' query packet?
1001
1002 This variable (NOT available to the user: auto-detect only!)
1003 determines whether GDB will use the new, simpler "ThreadInfo"
1004 query or the older, more complex syntax for thread queries.
1005 This is an auto-detect variable (set to true at each connect,
1006 and set to false when the target fails to recognize it). */
1007
1008 static int use_threadinfo_query;
1009 static int use_threadextra_query;
1010
1011 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1012 static struct async_signal_handler *sigint_remote_twice_token;
1013 static struct async_signal_handler *sigint_remote_token;
1014
1015 /* These are pointers to hook functions that may be set in order to
1016 modify resume/wait behavior for a particular architecture. */
1017
1018 void (*deprecated_target_resume_hook) (void);
1019 void (*deprecated_target_wait_loop_hook) (void);
1020 \f
1021
1022
1023 /* These are the threads which we last sent to the remote system.
1024 -1 for all or -2 for not sent yet. */
1025 static int general_thread;
1026 static int continue_thread;
1027
1028 /* Call this function as a result of
1029 1) A halt indication (T packet) containing a thread id
1030 2) A direct query of currthread
1031 3) Successful execution of set thread
1032 */
1033
1034 static void
1035 record_currthread (int currthread)
1036 {
1037 general_thread = currthread;
1038
1039 /* If this is a new thread, add it to GDB's thread list.
1040 If we leave it up to WFI to do this, bad things will happen. */
1041 if (!in_thread_list (pid_to_ptid (currthread)))
1042 {
1043 add_thread (pid_to_ptid (currthread));
1044 ui_out_text (uiout, "[New ");
1045 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1046 ui_out_text (uiout, "]\n");
1047 }
1048 }
1049
1050 static char *last_pass_packet;
1051
1052 /* If 'QPassSignals' is supported, tell the remote stub what signals
1053 it can simply pass through to the inferior without reporting. */
1054
1055 static void
1056 remote_pass_signals (void)
1057 {
1058 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1059 {
1060 char *pass_packet, *p;
1061 int numsigs = (int) TARGET_SIGNAL_LAST;
1062 int count = 0, i;
1063
1064 gdb_assert (numsigs < 256);
1065 for (i = 0; i < numsigs; i++)
1066 {
1067 if (signal_stop_state (i) == 0
1068 && signal_print_state (i) == 0
1069 && signal_pass_state (i) == 1)
1070 count++;
1071 }
1072 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1073 strcpy (pass_packet, "QPassSignals:");
1074 p = pass_packet + strlen (pass_packet);
1075 for (i = 0; i < numsigs; i++)
1076 {
1077 if (signal_stop_state (i) == 0
1078 && signal_print_state (i) == 0
1079 && signal_pass_state (i) == 1)
1080 {
1081 if (i >= 16)
1082 *p++ = tohex (i >> 4);
1083 *p++ = tohex (i & 15);
1084 if (count)
1085 *p++ = ';';
1086 else
1087 break;
1088 count--;
1089 }
1090 }
1091 *p = 0;
1092 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1093 {
1094 struct remote_state *rs = get_remote_state ();
1095 char *buf = rs->buf;
1096
1097 putpkt (pass_packet);
1098 getpkt (&rs->buf, &rs->buf_size, 0);
1099 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1100 if (last_pass_packet)
1101 xfree (last_pass_packet);
1102 last_pass_packet = pass_packet;
1103 }
1104 else
1105 xfree (pass_packet);
1106 }
1107 }
1108
1109 #define MAGIC_NULL_PID 42000
1110
1111 static void
1112 set_thread (int th, int gen)
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116 int state = gen ? general_thread : continue_thread;
1117
1118 if (state == th)
1119 return;
1120
1121 buf[0] = 'H';
1122 buf[1] = gen ? 'g' : 'c';
1123 if (th == MAGIC_NULL_PID)
1124 {
1125 buf[2] = '0';
1126 buf[3] = '\0';
1127 }
1128 else if (th < 0)
1129 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1130 else
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1132 putpkt (buf);
1133 getpkt (&rs->buf, &rs->buf_size, 0);
1134 if (gen)
1135 general_thread = th;
1136 else
1137 continue_thread = th;
1138 }
1139 \f
1140 /* Return nonzero if the thread TH is still alive on the remote system. */
1141
1142 static int
1143 remote_thread_alive (ptid_t ptid)
1144 {
1145 struct remote_state *rs = get_remote_state ();
1146 int tid = PIDGET (ptid);
1147
1148 if (tid < 0)
1149 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1150 else
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1152 putpkt (rs->buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1155 }
1156
1157 /* About these extended threadlist and threadinfo packets. They are
1158 variable length packets but, the fields within them are often fixed
1159 length. They are redundent enough to send over UDP as is the
1160 remote protocol in general. There is a matching unit test module
1161 in libstub. */
1162
1163 #define OPAQUETHREADBYTES 8
1164
1165 /* a 64 bit opaque identifier */
1166 typedef unsigned char threadref[OPAQUETHREADBYTES];
1167
1168 /* WARNING: This threadref data structure comes from the remote O.S.,
1169 libstub protocol encoding, and remote.c. it is not particularly
1170 changable. */
1171
1172 /* Right now, the internal structure is int. We want it to be bigger.
1173 Plan to fix this.
1174 */
1175
1176 typedef int gdb_threadref; /* Internal GDB thread reference. */
1177
1178 /* gdb_ext_thread_info is an internal GDB data structure which is
1179 equivalent to the reply of the remote threadinfo packet. */
1180
1181 struct gdb_ext_thread_info
1182 {
1183 threadref threadid; /* External form of thread reference. */
1184 int active; /* Has state interesting to GDB?
1185 regs, stack. */
1186 char display[256]; /* Brief state display, name,
1187 blocked/suspended. */
1188 char shortname[32]; /* To be used to name threads. */
1189 char more_display[256]; /* Long info, statistics, queue depth,
1190 whatever. */
1191 };
1192
1193 /* The volume of remote transfers can be limited by submitting
1194 a mask containing bits specifying the desired information.
1195 Use a union of these values as the 'selection' parameter to
1196 get_thread_info. FIXME: Make these TAG names more thread specific.
1197 */
1198
1199 #define TAG_THREADID 1
1200 #define TAG_EXISTS 2
1201 #define TAG_DISPLAY 4
1202 #define TAG_THREADNAME 8
1203 #define TAG_MOREDISPLAY 16
1204
1205 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1206
1207 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1208
1209 static char *unpack_nibble (char *buf, int *val);
1210
1211 static char *pack_nibble (char *buf, int nibble);
1212
1213 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1214
1215 static char *unpack_byte (char *buf, int *value);
1216
1217 static char *pack_int (char *buf, int value);
1218
1219 static char *unpack_int (char *buf, int *value);
1220
1221 static char *unpack_string (char *src, char *dest, int length);
1222
1223 static char *pack_threadid (char *pkt, threadref *id);
1224
1225 static char *unpack_threadid (char *inbuf, threadref *id);
1226
1227 void int_to_threadref (threadref *id, int value);
1228
1229 static int threadref_to_int (threadref *ref);
1230
1231 static void copy_threadref (threadref *dest, threadref *src);
1232
1233 static int threadmatch (threadref *dest, threadref *src);
1234
1235 static char *pack_threadinfo_request (char *pkt, int mode,
1236 threadref *id);
1237
1238 static int remote_unpack_thread_info_response (char *pkt,
1239 threadref *expectedref,
1240 struct gdb_ext_thread_info
1241 *info);
1242
1243
1244 static int remote_get_threadinfo (threadref *threadid,
1245 int fieldset, /*TAG mask */
1246 struct gdb_ext_thread_info *info);
1247
1248 static char *pack_threadlist_request (char *pkt, int startflag,
1249 int threadcount,
1250 threadref *nextthread);
1251
1252 static int parse_threadlist_response (char *pkt,
1253 int result_limit,
1254 threadref *original_echo,
1255 threadref *resultlist,
1256 int *doneflag);
1257
1258 static int remote_get_threadlist (int startflag,
1259 threadref *nextthread,
1260 int result_limit,
1261 int *done,
1262 int *result_count,
1263 threadref *threadlist);
1264
1265 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1266
1267 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1268 void *context, int looplimit);
1269
1270 static int remote_newthread_step (threadref *ref, void *context);
1271
1272 /* Encode 64 bits in 16 chars of hex. */
1273
1274 static const char hexchars[] = "0123456789abcdef";
1275
1276 static int
1277 ishex (int ch, int *val)
1278 {
1279 if ((ch >= 'a') && (ch <= 'f'))
1280 {
1281 *val = ch - 'a' + 10;
1282 return 1;
1283 }
1284 if ((ch >= 'A') && (ch <= 'F'))
1285 {
1286 *val = ch - 'A' + 10;
1287 return 1;
1288 }
1289 if ((ch >= '0') && (ch <= '9'))
1290 {
1291 *val = ch - '0';
1292 return 1;
1293 }
1294 return 0;
1295 }
1296
1297 static int
1298 stubhex (int ch)
1299 {
1300 if (ch >= 'a' && ch <= 'f')
1301 return ch - 'a' + 10;
1302 if (ch >= '0' && ch <= '9')
1303 return ch - '0';
1304 if (ch >= 'A' && ch <= 'F')
1305 return ch - 'A' + 10;
1306 return -1;
1307 }
1308
1309 static int
1310 stub_unpack_int (char *buff, int fieldlength)
1311 {
1312 int nibble;
1313 int retval = 0;
1314
1315 while (fieldlength)
1316 {
1317 nibble = stubhex (*buff++);
1318 retval |= nibble;
1319 fieldlength--;
1320 if (fieldlength)
1321 retval = retval << 4;
1322 }
1323 return retval;
1324 }
1325
1326 char *
1327 unpack_varlen_hex (char *buff, /* packet to parse */
1328 ULONGEST *result)
1329 {
1330 int nibble;
1331 ULONGEST retval = 0;
1332
1333 while (ishex (*buff, &nibble))
1334 {
1335 buff++;
1336 retval = retval << 4;
1337 retval |= nibble & 0x0f;
1338 }
1339 *result = retval;
1340 return buff;
1341 }
1342
1343 static char *
1344 unpack_nibble (char *buf, int *val)
1345 {
1346 ishex (*buf++, val);
1347 return buf;
1348 }
1349
1350 static char *
1351 pack_nibble (char *buf, int nibble)
1352 {
1353 *buf++ = hexchars[(nibble & 0x0f)];
1354 return buf;
1355 }
1356
1357 static char *
1358 pack_hex_byte (char *pkt, int byte)
1359 {
1360 *pkt++ = hexchars[(byte >> 4) & 0xf];
1361 *pkt++ = hexchars[(byte & 0xf)];
1362 return pkt;
1363 }
1364
1365 static char *
1366 unpack_byte (char *buf, int *value)
1367 {
1368 *value = stub_unpack_int (buf, 2);
1369 return buf + 2;
1370 }
1371
1372 static char *
1373 pack_int (char *buf, int value)
1374 {
1375 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1376 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1377 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1378 buf = pack_hex_byte (buf, (value & 0xff));
1379 return buf;
1380 }
1381
1382 static char *
1383 unpack_int (char *buf, int *value)
1384 {
1385 *value = stub_unpack_int (buf, 8);
1386 return buf + 8;
1387 }
1388
1389 #if 0 /* Currently unused, uncomment when needed. */
1390 static char *pack_string (char *pkt, char *string);
1391
1392 static char *
1393 pack_string (char *pkt, char *string)
1394 {
1395 char ch;
1396 int len;
1397
1398 len = strlen (string);
1399 if (len > 200)
1400 len = 200; /* Bigger than most GDB packets, junk??? */
1401 pkt = pack_hex_byte (pkt, len);
1402 while (len-- > 0)
1403 {
1404 ch = *string++;
1405 if ((ch == '\0') || (ch == '#'))
1406 ch = '*'; /* Protect encapsulation. */
1407 *pkt++ = ch;
1408 }
1409 return pkt;
1410 }
1411 #endif /* 0 (unused) */
1412
1413 static char *
1414 unpack_string (char *src, char *dest, int length)
1415 {
1416 while (length--)
1417 *dest++ = *src++;
1418 *dest = '\0';
1419 return src;
1420 }
1421
1422 static char *
1423 pack_threadid (char *pkt, threadref *id)
1424 {
1425 char *limit;
1426 unsigned char *altid;
1427
1428 altid = (unsigned char *) id;
1429 limit = pkt + BUF_THREAD_ID_SIZE;
1430 while (pkt < limit)
1431 pkt = pack_hex_byte (pkt, *altid++);
1432 return pkt;
1433 }
1434
1435
1436 static char *
1437 unpack_threadid (char *inbuf, threadref *id)
1438 {
1439 char *altref;
1440 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1441 int x, y;
1442
1443 altref = (char *) id;
1444
1445 while (inbuf < limit)
1446 {
1447 x = stubhex (*inbuf++);
1448 y = stubhex (*inbuf++);
1449 *altref++ = (x << 4) | y;
1450 }
1451 return inbuf;
1452 }
1453
1454 /* Externally, threadrefs are 64 bits but internally, they are still
1455 ints. This is due to a mismatch of specifications. We would like
1456 to use 64bit thread references internally. This is an adapter
1457 function. */
1458
1459 void
1460 int_to_threadref (threadref *id, int value)
1461 {
1462 unsigned char *scan;
1463
1464 scan = (unsigned char *) id;
1465 {
1466 int i = 4;
1467 while (i--)
1468 *scan++ = 0;
1469 }
1470 *scan++ = (value >> 24) & 0xff;
1471 *scan++ = (value >> 16) & 0xff;
1472 *scan++ = (value >> 8) & 0xff;
1473 *scan++ = (value & 0xff);
1474 }
1475
1476 static int
1477 threadref_to_int (threadref *ref)
1478 {
1479 int i, value = 0;
1480 unsigned char *scan;
1481
1482 scan = *ref;
1483 scan += 4;
1484 i = 4;
1485 while (i-- > 0)
1486 value = (value << 8) | ((*scan++) & 0xff);
1487 return value;
1488 }
1489
1490 static void
1491 copy_threadref (threadref *dest, threadref *src)
1492 {
1493 int i;
1494 unsigned char *csrc, *cdest;
1495
1496 csrc = (unsigned char *) src;
1497 cdest = (unsigned char *) dest;
1498 i = 8;
1499 while (i--)
1500 *cdest++ = *csrc++;
1501 }
1502
1503 static int
1504 threadmatch (threadref *dest, threadref *src)
1505 {
1506 /* Things are broken right now, so just assume we got a match. */
1507 #if 0
1508 unsigned char *srcp, *destp;
1509 int i, result;
1510 srcp = (char *) src;
1511 destp = (char *) dest;
1512
1513 result = 1;
1514 while (i-- > 0)
1515 result &= (*srcp++ == *destp++) ? 1 : 0;
1516 return result;
1517 #endif
1518 return 1;
1519 }
1520
1521 /*
1522 threadid:1, # always request threadid
1523 context_exists:2,
1524 display:4,
1525 unique_name:8,
1526 more_display:16
1527 */
1528
1529 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1530
1531 static char *
1532 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1533 {
1534 *pkt++ = 'q'; /* Info Query */
1535 *pkt++ = 'P'; /* process or thread info */
1536 pkt = pack_int (pkt, mode); /* mode */
1537 pkt = pack_threadid (pkt, id); /* threadid */
1538 *pkt = '\0'; /* terminate */
1539 return pkt;
1540 }
1541
1542 /* These values tag the fields in a thread info response packet. */
1543 /* Tagging the fields allows us to request specific fields and to
1544 add more fields as time goes by. */
1545
1546 #define TAG_THREADID 1 /* Echo the thread identifier. */
1547 #define TAG_EXISTS 2 /* Is this process defined enough to
1548 fetch registers and its stack? */
1549 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1550 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1551 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1552 the process. */
1553
1554 static int
1555 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int mask, length;
1560 int tag;
1561 threadref ref;
1562 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1563 int retval = 1;
1564
1565 /* info->threadid = 0; FIXME: implement zero_threadref. */
1566 info->active = 0;
1567 info->display[0] = '\0';
1568 info->shortname[0] = '\0';
1569 info->more_display[0] = '\0';
1570
1571 /* Assume the characters indicating the packet type have been
1572 stripped. */
1573 pkt = unpack_int (pkt, &mask); /* arg mask */
1574 pkt = unpack_threadid (pkt, &ref);
1575
1576 if (mask == 0)
1577 warning (_("Incomplete response to threadinfo request."));
1578 if (!threadmatch (&ref, expectedref))
1579 { /* This is an answer to a different request. */
1580 warning (_("ERROR RMT Thread info mismatch."));
1581 return 0;
1582 }
1583 copy_threadref (&info->threadid, &ref);
1584
1585 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1586
1587 /* Packets are terminated with nulls. */
1588 while ((pkt < limit) && mask && *pkt)
1589 {
1590 pkt = unpack_int (pkt, &tag); /* tag */
1591 pkt = unpack_byte (pkt, &length); /* length */
1592 if (!(tag & mask)) /* Tags out of synch with mask. */
1593 {
1594 warning (_("ERROR RMT: threadinfo tag mismatch."));
1595 retval = 0;
1596 break;
1597 }
1598 if (tag == TAG_THREADID)
1599 {
1600 if (length != 16)
1601 {
1602 warning (_("ERROR RMT: length of threadid is not 16."));
1603 retval = 0;
1604 break;
1605 }
1606 pkt = unpack_threadid (pkt, &ref);
1607 mask = mask & ~TAG_THREADID;
1608 continue;
1609 }
1610 if (tag == TAG_EXISTS)
1611 {
1612 info->active = stub_unpack_int (pkt, length);
1613 pkt += length;
1614 mask = mask & ~(TAG_EXISTS);
1615 if (length > 8)
1616 {
1617 warning (_("ERROR RMT: 'exists' length too long."));
1618 retval = 0;
1619 break;
1620 }
1621 continue;
1622 }
1623 if (tag == TAG_THREADNAME)
1624 {
1625 pkt = unpack_string (pkt, &info->shortname[0], length);
1626 mask = mask & ~TAG_THREADNAME;
1627 continue;
1628 }
1629 if (tag == TAG_DISPLAY)
1630 {
1631 pkt = unpack_string (pkt, &info->display[0], length);
1632 mask = mask & ~TAG_DISPLAY;
1633 continue;
1634 }
1635 if (tag == TAG_MOREDISPLAY)
1636 {
1637 pkt = unpack_string (pkt, &info->more_display[0], length);
1638 mask = mask & ~TAG_MOREDISPLAY;
1639 continue;
1640 }
1641 warning (_("ERROR RMT: unknown thread info tag."));
1642 break; /* Not a tag we know about. */
1643 }
1644 return retval;
1645 }
1646
1647 static int
1648 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1649 struct gdb_ext_thread_info *info)
1650 {
1651 struct remote_state *rs = get_remote_state ();
1652 int result;
1653
1654 pack_threadinfo_request (rs->buf, fieldset, threadid);
1655 putpkt (rs->buf);
1656 getpkt (&rs->buf, &rs->buf_size, 0);
1657 result = remote_unpack_thread_info_response (rs->buf + 2,
1658 threadid, info);
1659 return result;
1660 }
1661
1662 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1663
1664 static char *
1665 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1666 threadref *nextthread)
1667 {
1668 *pkt++ = 'q'; /* info query packet */
1669 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1670 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1671 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1672 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1673 *pkt = '\0';
1674 return pkt;
1675 }
1676
1677 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1678
1679 static int
1680 parse_threadlist_response (char *pkt, int result_limit,
1681 threadref *original_echo, threadref *resultlist,
1682 int *doneflag)
1683 {
1684 struct remote_state *rs = get_remote_state ();
1685 char *limit;
1686 int count, resultcount, done;
1687
1688 resultcount = 0;
1689 /* Assume the 'q' and 'M chars have been stripped. */
1690 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1691 /* done parse past here */
1692 pkt = unpack_byte (pkt, &count); /* count field */
1693 pkt = unpack_nibble (pkt, &done);
1694 /* The first threadid is the argument threadid. */
1695 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1696 while ((count-- > 0) && (pkt < limit))
1697 {
1698 pkt = unpack_threadid (pkt, resultlist++);
1699 if (resultcount++ >= result_limit)
1700 break;
1701 }
1702 if (doneflag)
1703 *doneflag = done;
1704 return resultcount;
1705 }
1706
1707 static int
1708 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1709 int *done, int *result_count, threadref *threadlist)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712 static threadref echo_nextthread;
1713 int result = 1;
1714
1715 /* Trancate result limit to be smaller than the packet size. */
1716 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1717 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1718
1719 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1720 putpkt (rs->buf);
1721 getpkt (&rs->buf, &rs->buf_size, 0);
1722
1723 *result_count =
1724 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1725 threadlist, done);
1726
1727 if (!threadmatch (&echo_nextthread, nextthread))
1728 {
1729 /* FIXME: This is a good reason to drop the packet. */
1730 /* Possably, there is a duplicate response. */
1731 /* Possabilities :
1732 retransmit immediatly - race conditions
1733 retransmit after timeout - yes
1734 exit
1735 wait for packet, then exit
1736 */
1737 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1738 return 0; /* I choose simply exiting. */
1739 }
1740 if (*result_count <= 0)
1741 {
1742 if (*done != 1)
1743 {
1744 warning (_("RMT ERROR : failed to get remote thread list."));
1745 result = 0;
1746 }
1747 return result; /* break; */
1748 }
1749 if (*result_count > result_limit)
1750 {
1751 *result_count = 0;
1752 warning (_("RMT ERROR: threadlist response longer than requested."));
1753 return 0;
1754 }
1755 return result;
1756 }
1757
1758 /* This is the interface between remote and threads, remotes upper
1759 interface. */
1760
1761 /* remote_find_new_threads retrieves the thread list and for each
1762 thread in the list, looks up the thread in GDB's internal list,
1763 ading the thread if it does not already exist. This involves
1764 getting partial thread lists from the remote target so, polling the
1765 quit_flag is required. */
1766
1767
1768 /* About this many threadisds fit in a packet. */
1769
1770 #define MAXTHREADLISTRESULTS 32
1771
1772 static int
1773 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1774 int looplimit)
1775 {
1776 int done, i, result_count;
1777 int startflag = 1;
1778 int result = 1;
1779 int loopcount = 0;
1780 static threadref nextthread;
1781 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1782
1783 done = 0;
1784 while (!done)
1785 {
1786 if (loopcount++ > looplimit)
1787 {
1788 result = 0;
1789 warning (_("Remote fetch threadlist -infinite loop-."));
1790 break;
1791 }
1792 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1793 &done, &result_count, resultthreadlist))
1794 {
1795 result = 0;
1796 break;
1797 }
1798 /* Clear for later iterations. */
1799 startflag = 0;
1800 /* Setup to resume next batch of thread references, set nextthread. */
1801 if (result_count >= 1)
1802 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1803 i = 0;
1804 while (result_count--)
1805 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1806 break;
1807 }
1808 return result;
1809 }
1810
1811 static int
1812 remote_newthread_step (threadref *ref, void *context)
1813 {
1814 ptid_t ptid;
1815
1816 ptid = pid_to_ptid (threadref_to_int (ref));
1817
1818 if (!in_thread_list (ptid))
1819 add_thread (ptid);
1820 return 1; /* continue iterator */
1821 }
1822
1823 #define CRAZY_MAX_THREADS 1000
1824
1825 static ptid_t
1826 remote_current_thread (ptid_t oldpid)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829
1830 putpkt ("qC");
1831 getpkt (&rs->buf, &rs->buf_size, 0);
1832 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1833 /* Use strtoul here, so we'll correctly parse values whose highest
1834 bit is set. The protocol carries them as a simple series of
1835 hex digits; in the absence of a sign, strtol will see such
1836 values as positive numbers out of range for signed 'long', and
1837 return LONG_MAX to indicate an overflow. */
1838 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1839 else
1840 return oldpid;
1841 }
1842
1843 /* Find new threads for info threads command.
1844 * Original version, using John Metzler's thread protocol.
1845 */
1846
1847 static void
1848 remote_find_new_threads (void)
1849 {
1850 remote_threadlist_iterator (remote_newthread_step, 0,
1851 CRAZY_MAX_THREADS);
1852 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1853 inferior_ptid = remote_current_thread (inferior_ptid);
1854 }
1855
1856 /*
1857 * Find all threads for info threads command.
1858 * Uses new thread protocol contributed by Cisco.
1859 * Falls back and attempts to use the older method (above)
1860 * if the target doesn't respond to the new method.
1861 */
1862
1863 static void
1864 remote_threads_info (void)
1865 {
1866 struct remote_state *rs = get_remote_state ();
1867 char *bufp;
1868 int tid;
1869
1870 if (remote_desc == 0) /* paranoia */
1871 error (_("Command can only be used when connected to the remote target."));
1872
1873 if (use_threadinfo_query)
1874 {
1875 putpkt ("qfThreadInfo");
1876 getpkt (&rs->buf, &rs->buf_size, 0);
1877 bufp = rs->buf;
1878 if (bufp[0] != '\0') /* q packet recognized */
1879 {
1880 while (*bufp++ == 'm') /* reply contains one or more TID */
1881 {
1882 do
1883 {
1884 /* Use strtoul here, so we'll correctly parse values
1885 whose highest bit is set. The protocol carries
1886 them as a simple series of hex digits; in the
1887 absence of a sign, strtol will see such values as
1888 positive numbers out of range for signed 'long',
1889 and return LONG_MAX to indicate an overflow. */
1890 tid = strtoul (bufp, &bufp, 16);
1891 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1892 add_thread (pid_to_ptid (tid));
1893 }
1894 while (*bufp++ == ','); /* comma-separated list */
1895 putpkt ("qsThreadInfo");
1896 getpkt (&rs->buf, &rs->buf_size, 0);
1897 bufp = rs->buf;
1898 }
1899 return; /* done */
1900 }
1901 }
1902
1903 /* Else fall back to old method based on jmetzler protocol. */
1904 use_threadinfo_query = 0;
1905 remote_find_new_threads ();
1906 return;
1907 }
1908
1909 /*
1910 * Collect a descriptive string about the given thread.
1911 * The target may say anything it wants to about the thread
1912 * (typically info about its blocked / runnable state, name, etc.).
1913 * This string will appear in the info threads display.
1914 *
1915 * Optional: targets are not required to implement this function.
1916 */
1917
1918 static char *
1919 remote_threads_extra_info (struct thread_info *tp)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int result;
1923 int set;
1924 threadref id;
1925 struct gdb_ext_thread_info threadinfo;
1926 static char display_buf[100]; /* arbitrary... */
1927 int n = 0; /* position in display_buf */
1928
1929 if (remote_desc == 0) /* paranoia */
1930 internal_error (__FILE__, __LINE__,
1931 _("remote_threads_extra_info"));
1932
1933 if (use_threadextra_query)
1934 {
1935 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1936 PIDGET (tp->ptid));
1937 putpkt (rs->buf);
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 if (rs->buf[0] != 0)
1940 {
1941 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1942 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1943 display_buf [result] = '\0';
1944 return display_buf;
1945 }
1946 }
1947
1948 /* If the above query fails, fall back to the old method. */
1949 use_threadextra_query = 0;
1950 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1951 | TAG_MOREDISPLAY | TAG_DISPLAY;
1952 int_to_threadref (&id, PIDGET (tp->ptid));
1953 if (remote_get_threadinfo (&id, set, &threadinfo))
1954 if (threadinfo.active)
1955 {
1956 if (*threadinfo.shortname)
1957 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1958 " Name: %s,", threadinfo.shortname);
1959 if (*threadinfo.display)
1960 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1961 " State: %s,", threadinfo.display);
1962 if (*threadinfo.more_display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " Priority: %s", threadinfo.more_display);
1965
1966 if (n > 0)
1967 {
1968 /* For purely cosmetic reasons, clear up trailing commas. */
1969 if (',' == display_buf[n-1])
1970 display_buf[n-1] = ' ';
1971 return display_buf;
1972 }
1973 }
1974 return NULL;
1975 }
1976 \f
1977
1978 /* Restart the remote side; this is an extended protocol operation. */
1979
1980 static void
1981 extended_remote_restart (void)
1982 {
1983 struct remote_state *rs = get_remote_state ();
1984
1985 /* Send the restart command; for reasons I don't understand the
1986 remote side really expects a number after the "R". */
1987 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1988 putpkt (rs->buf);
1989
1990 remote_fileio_reset ();
1991
1992 /* Now query for status so this looks just like we restarted
1993 gdbserver from scratch. */
1994 putpkt ("?");
1995 getpkt (&rs->buf, &rs->buf_size, 0);
1996 }
1997 \f
1998 /* Clean up connection to a remote debugger. */
1999
2000 static void
2001 remote_close (int quitting)
2002 {
2003 if (remote_desc)
2004 serial_close (remote_desc);
2005 remote_desc = NULL;
2006 }
2007
2008 /* Query the remote side for the text, data and bss offsets. */
2009
2010 static void
2011 get_offsets (void)
2012 {
2013 struct remote_state *rs = get_remote_state ();
2014 char *buf;
2015 char *ptr;
2016 int lose, num_segments = 0, do_sections, do_segments;
2017 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2018 struct section_offsets *offs;
2019 struct symfile_segment_data *data;
2020
2021 if (symfile_objfile == NULL)
2022 return;
2023
2024 putpkt ("qOffsets");
2025 getpkt (&rs->buf, &rs->buf_size, 0);
2026 buf = rs->buf;
2027
2028 if (buf[0] == '\000')
2029 return; /* Return silently. Stub doesn't support
2030 this command. */
2031 if (buf[0] == 'E')
2032 {
2033 warning (_("Remote failure reply: %s"), buf);
2034 return;
2035 }
2036
2037 /* Pick up each field in turn. This used to be done with scanf, but
2038 scanf will make trouble if CORE_ADDR size doesn't match
2039 conversion directives correctly. The following code will work
2040 with any size of CORE_ADDR. */
2041 text_addr = data_addr = bss_addr = 0;
2042 ptr = buf;
2043 lose = 0;
2044
2045 if (strncmp (ptr, "Text=", 5) == 0)
2046 {
2047 ptr += 5;
2048 /* Don't use strtol, could lose on big values. */
2049 while (*ptr && *ptr != ';')
2050 text_addr = (text_addr << 4) + fromhex (*ptr++);
2051
2052 if (strncmp (ptr, ";Data=", 6) == 0)
2053 {
2054 ptr += 6;
2055 while (*ptr && *ptr != ';')
2056 data_addr = (data_addr << 4) + fromhex (*ptr++);
2057 }
2058 else
2059 lose = 1;
2060
2061 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2062 {
2063 ptr += 5;
2064 while (*ptr && *ptr != ';')
2065 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2066
2067 if (bss_addr != data_addr)
2068 warning (_("Target reported unsupported offsets: %s"), buf);
2069 }
2070 else
2071 lose = 1;
2072 }
2073 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2074 {
2075 ptr += 8;
2076 /* Don't use strtol, could lose on big values. */
2077 while (*ptr && *ptr != ';')
2078 text_addr = (text_addr << 4) + fromhex (*ptr++);
2079 num_segments = 1;
2080
2081 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2082 {
2083 ptr += 9;
2084 while (*ptr && *ptr != ';')
2085 data_addr = (data_addr << 4) + fromhex (*ptr++);
2086 num_segments++;
2087 }
2088 }
2089 else
2090 lose = 1;
2091
2092 if (lose)
2093 error (_("Malformed response to offset query, %s"), buf);
2094 else if (*ptr != '\0')
2095 warning (_("Target reported unsupported offsets: %s"), buf);
2096
2097 offs = ((struct section_offsets *)
2098 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2099 memcpy (offs, symfile_objfile->section_offsets,
2100 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2101
2102 data = get_symfile_segment_data (symfile_objfile->obfd);
2103 do_segments = (data != NULL);
2104 do_sections = num_segments == 0;
2105
2106 /* Text= and Data= specify offsets for the text and data sections,
2107 but symfile_map_offsets_to_segments expects base addresses
2108 instead of offsets. If we have two segments, we can still
2109 try to relocate the whole segments instead of just ".text"
2110 and ".data". */
2111 if (num_segments == 0)
2112 {
2113 do_sections = 1;
2114 if (data == NULL || data->num_segments != 2)
2115 do_segments = 0;
2116 else
2117 {
2118 segments[0] = data->segment_bases[0] + text_addr;
2119 segments[1] = data->segment_bases[1] + data_addr;
2120 }
2121 }
2122 else
2123 {
2124 do_sections = 0;
2125 segments[0] = text_addr;
2126 segments[1] = data_addr;
2127 }
2128
2129 if (do_segments)
2130 {
2131 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2132 offs, num_segments, segments);
2133
2134 if (ret == 0 && !do_sections)
2135 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2136
2137 if (ret > 0)
2138 do_sections = 0;
2139 }
2140
2141 free_symfile_segment_data (data);
2142
2143 if (do_sections)
2144 {
2145 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2146
2147 /* This is a temporary kludge to force data and bss to use the same offsets
2148 because that's what nlmconv does now. The real solution requires changes
2149 to the stub and remote.c that I don't have time to do right now. */
2150
2151 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2152 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2153 }
2154
2155 objfile_relocate (symfile_objfile, offs);
2156 }
2157
2158 /* Stub for catch_exception. */
2159
2160 static void
2161 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2162 {
2163 int from_tty = * (int *) from_tty_p;
2164
2165 immediate_quit++; /* Allow user to interrupt it. */
2166
2167 /* Ack any packet which the remote side has already sent. */
2168 serial_write (remote_desc, "+", 1);
2169
2170 /* Let the stub know that we want it to return the thread. */
2171 set_thread (-1, 0);
2172
2173 inferior_ptid = remote_current_thread (inferior_ptid);
2174
2175 get_offsets (); /* Get text, data & bss offsets. */
2176
2177 putpkt ("?"); /* Initiate a query from remote machine. */
2178 immediate_quit--;
2179
2180 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2181 }
2182
2183 /* Open a connection to a remote debugger.
2184 NAME is the filename used for communication. */
2185
2186 static void
2187 remote_open (char *name, int from_tty)
2188 {
2189 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2190 }
2191
2192 /* Just like remote_open, but with asynchronous support. */
2193 static void
2194 remote_async_open (char *name, int from_tty)
2195 {
2196 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2197 }
2198
2199 /* Open a connection to a remote debugger using the extended
2200 remote gdb protocol. NAME is the filename used for communication. */
2201
2202 static void
2203 extended_remote_open (char *name, int from_tty)
2204 {
2205 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2206 0 /* async_p */);
2207 }
2208
2209 /* Just like extended_remote_open, but with asynchronous support. */
2210 static void
2211 extended_remote_async_open (char *name, int from_tty)
2212 {
2213 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2214 1 /*extended_p */, 1 /* async_p */);
2215 }
2216
2217 /* Generic code for opening a connection to a remote target. */
2218
2219 static void
2220 init_all_packet_configs (void)
2221 {
2222 int i;
2223 for (i = 0; i < PACKET_MAX; i++)
2224 update_packet_config (&remote_protocol_packets[i]);
2225 }
2226
2227 /* Symbol look-up. */
2228
2229 static void
2230 remote_check_symbols (struct objfile *objfile)
2231 {
2232 struct remote_state *rs = get_remote_state ();
2233 char *msg, *reply, *tmp;
2234 struct minimal_symbol *sym;
2235 int end;
2236
2237 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2238 return;
2239
2240 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2241 because we need both at the same time. */
2242 msg = alloca (get_remote_packet_size ());
2243
2244 /* Invite target to request symbol lookups. */
2245
2246 putpkt ("qSymbol::");
2247 getpkt (&rs->buf, &rs->buf_size, 0);
2248 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2249 reply = rs->buf;
2250
2251 while (strncmp (reply, "qSymbol:", 8) == 0)
2252 {
2253 tmp = &reply[8];
2254 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2255 msg[end] = '\0';
2256 sym = lookup_minimal_symbol (msg, NULL, NULL);
2257 if (sym == NULL)
2258 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2259 else
2260 {
2261 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2262
2263 /* If this is a function address, return the start of code
2264 instead of any data function descriptor. */
2265 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2266 sym_addr,
2267 &current_target);
2268
2269 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2270 paddr_nz (sym_addr), &reply[8]);
2271 }
2272
2273 putpkt (msg);
2274 getpkt (&rs->buf, &rs->buf_size, 0);
2275 reply = rs->buf;
2276 }
2277 }
2278
2279 static struct serial *
2280 remote_serial_open (char *name)
2281 {
2282 static int udp_warning = 0;
2283
2284 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2285 of in ser-tcp.c, because it is the remote protocol assuming that the
2286 serial connection is reliable and not the serial connection promising
2287 to be. */
2288 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2289 {
2290 warning (_("\
2291 The remote protocol may be unreliable over UDP.\n\
2292 Some events may be lost, rendering further debugging impossible."));
2293 udp_warning = 1;
2294 }
2295
2296 return serial_open (name);
2297 }
2298
2299 /* This type describes each known response to the qSupported
2300 packet. */
2301 struct protocol_feature
2302 {
2303 /* The name of this protocol feature. */
2304 const char *name;
2305
2306 /* The default for this protocol feature. */
2307 enum packet_support default_support;
2308
2309 /* The function to call when this feature is reported, or after
2310 qSupported processing if the feature is not supported.
2311 The first argument points to this structure. The second
2312 argument indicates whether the packet requested support be
2313 enabled, disabled, or probed (or the default, if this function
2314 is being called at the end of processing and this feature was
2315 not reported). The third argument may be NULL; if not NULL, it
2316 is a NUL-terminated string taken from the packet following
2317 this feature's name and an equals sign. */
2318 void (*func) (const struct protocol_feature *, enum packet_support,
2319 const char *);
2320
2321 /* The corresponding packet for this feature. Only used if
2322 FUNC is remote_supported_packet. */
2323 int packet;
2324 };
2325
2326 static void
2327 remote_supported_packet (const struct protocol_feature *feature,
2328 enum packet_support support,
2329 const char *argument)
2330 {
2331 if (argument)
2332 {
2333 warning (_("Remote qSupported response supplied an unexpected value for"
2334 " \"%s\"."), feature->name);
2335 return;
2336 }
2337
2338 if (remote_protocol_packets[feature->packet].support
2339 == PACKET_SUPPORT_UNKNOWN)
2340 remote_protocol_packets[feature->packet].support = support;
2341 }
2342
2343 static void
2344 remote_packet_size (const struct protocol_feature *feature,
2345 enum packet_support support, const char *value)
2346 {
2347 struct remote_state *rs = get_remote_state ();
2348
2349 int packet_size;
2350 char *value_end;
2351
2352 if (support != PACKET_ENABLE)
2353 return;
2354
2355 if (value == NULL || *value == '\0')
2356 {
2357 warning (_("Remote target reported \"%s\" without a size."),
2358 feature->name);
2359 return;
2360 }
2361
2362 errno = 0;
2363 packet_size = strtol (value, &value_end, 16);
2364 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2365 {
2366 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2367 feature->name, value);
2368 return;
2369 }
2370
2371 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2372 {
2373 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2374 packet_size, MAX_REMOTE_PACKET_SIZE);
2375 packet_size = MAX_REMOTE_PACKET_SIZE;
2376 }
2377
2378 /* Record the new maximum packet size. */
2379 rs->explicit_packet_size = packet_size;
2380 }
2381
2382 static struct protocol_feature remote_protocol_features[] = {
2383 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2384 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2385 PACKET_qXfer_auxv },
2386 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2387 PACKET_qXfer_features },
2388 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2389 PACKET_qXfer_libraries },
2390 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2391 PACKET_qXfer_memory_map },
2392 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2393 PACKET_qXfer_spu_read },
2394 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2395 PACKET_qXfer_spu_write },
2396 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2397 PACKET_QPassSignals },
2398 };
2399
2400 static void
2401 remote_query_supported (void)
2402 {
2403 struct remote_state *rs = get_remote_state ();
2404 char *next;
2405 int i;
2406 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2407
2408 /* The packet support flags are handled differently for this packet
2409 than for most others. We treat an error, a disabled packet, and
2410 an empty response identically: any features which must be reported
2411 to be used will be automatically disabled. An empty buffer
2412 accomplishes this, since that is also the representation for a list
2413 containing no features. */
2414
2415 rs->buf[0] = 0;
2416 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2417 {
2418 putpkt ("qSupported");
2419 getpkt (&rs->buf, &rs->buf_size, 0);
2420
2421 /* If an error occured, warn, but do not return - just reset the
2422 buffer to empty and go on to disable features. */
2423 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2424 == PACKET_ERROR)
2425 {
2426 warning (_("Remote failure reply: %s"), rs->buf);
2427 rs->buf[0] = 0;
2428 }
2429 }
2430
2431 memset (seen, 0, sizeof (seen));
2432
2433 next = rs->buf;
2434 while (*next)
2435 {
2436 enum packet_support is_supported;
2437 char *p, *end, *name_end, *value;
2438
2439 /* First separate out this item from the rest of the packet. If
2440 there's another item after this, we overwrite the separator
2441 (terminated strings are much easier to work with). */
2442 p = next;
2443 end = strchr (p, ';');
2444 if (end == NULL)
2445 {
2446 end = p + strlen (p);
2447 next = end;
2448 }
2449 else
2450 {
2451 *end = '\0';
2452 next = end + 1;
2453
2454 if (end == p)
2455 {
2456 warning (_("empty item in \"qSupported\" response"));
2457 continue;
2458 }
2459 }
2460
2461 name_end = strchr (p, '=');
2462 if (name_end)
2463 {
2464 /* This is a name=value entry. */
2465 is_supported = PACKET_ENABLE;
2466 value = name_end + 1;
2467 *name_end = '\0';
2468 }
2469 else
2470 {
2471 value = NULL;
2472 switch (end[-1])
2473 {
2474 case '+':
2475 is_supported = PACKET_ENABLE;
2476 break;
2477
2478 case '-':
2479 is_supported = PACKET_DISABLE;
2480 break;
2481
2482 case '?':
2483 is_supported = PACKET_SUPPORT_UNKNOWN;
2484 break;
2485
2486 default:
2487 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2488 continue;
2489 }
2490 end[-1] = '\0';
2491 }
2492
2493 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2494 if (strcmp (remote_protocol_features[i].name, p) == 0)
2495 {
2496 const struct protocol_feature *feature;
2497
2498 seen[i] = 1;
2499 feature = &remote_protocol_features[i];
2500 feature->func (feature, is_supported, value);
2501 break;
2502 }
2503 }
2504
2505 /* If we increased the packet size, make sure to increase the global
2506 buffer size also. We delay this until after parsing the entire
2507 qSupported packet, because this is the same buffer we were
2508 parsing. */
2509 if (rs->buf_size < rs->explicit_packet_size)
2510 {
2511 rs->buf_size = rs->explicit_packet_size;
2512 rs->buf = xrealloc (rs->buf, rs->buf_size);
2513 }
2514
2515 /* Handle the defaults for unmentioned features. */
2516 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2517 if (!seen[i])
2518 {
2519 const struct protocol_feature *feature;
2520
2521 feature = &remote_protocol_features[i];
2522 feature->func (feature, feature->default_support, NULL);
2523 }
2524 }
2525
2526
2527 static void
2528 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2529 int extended_p, int async_p)
2530 {
2531 struct remote_state *rs = get_remote_state ();
2532 if (name == 0)
2533 error (_("To open a remote debug connection, you need to specify what\n"
2534 "serial device is attached to the remote system\n"
2535 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2536
2537 /* See FIXME above. */
2538 if (!async_p)
2539 wait_forever_enabled_p = 1;
2540
2541 target_preopen (from_tty);
2542
2543 unpush_target (target);
2544
2545 /* Make sure we send the passed signals list the next time we resume. */
2546 xfree (last_pass_packet);
2547 last_pass_packet = NULL;
2548
2549 remote_fileio_reset ();
2550 reopen_exec_file ();
2551 reread_symbols ();
2552
2553 remote_desc = remote_serial_open (name);
2554 if (!remote_desc)
2555 perror_with_name (name);
2556
2557 if (baud_rate != -1)
2558 {
2559 if (serial_setbaudrate (remote_desc, baud_rate))
2560 {
2561 /* The requested speed could not be set. Error out to
2562 top level after closing remote_desc. Take care to
2563 set remote_desc to NULL to avoid closing remote_desc
2564 more than once. */
2565 serial_close (remote_desc);
2566 remote_desc = NULL;
2567 perror_with_name (name);
2568 }
2569 }
2570
2571 serial_raw (remote_desc);
2572
2573 /* If there is something sitting in the buffer we might take it as a
2574 response to a command, which would be bad. */
2575 serial_flush_input (remote_desc);
2576
2577 if (from_tty)
2578 {
2579 puts_filtered ("Remote debugging using ");
2580 puts_filtered (name);
2581 puts_filtered ("\n");
2582 }
2583 push_target (target); /* Switch to using remote target now. */
2584
2585 /* Reset the target state; these things will be queried either by
2586 remote_query_supported or as they are needed. */
2587 init_all_packet_configs ();
2588 rs->explicit_packet_size = 0;
2589
2590 general_thread = -2;
2591 continue_thread = -2;
2592
2593 /* Probe for ability to use "ThreadInfo" query, as required. */
2594 use_threadinfo_query = 1;
2595 use_threadextra_query = 1;
2596
2597 /* The first packet we send to the target is the optional "supported
2598 packets" request. If the target can answer this, it will tell us
2599 which later probes to skip. */
2600 remote_query_supported ();
2601
2602 /* Next, if the target can specify a description, read it. We do
2603 this before anything involving memory or registers. */
2604 target_find_description ();
2605
2606 /* Without this, some commands which require an active target (such
2607 as kill) won't work. This variable serves (at least) double duty
2608 as both the pid of the target process (if it has such), and as a
2609 flag indicating that a target is active. These functions should
2610 be split out into seperate variables, especially since GDB will
2611 someday have a notion of debugging several processes. */
2612
2613 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2614
2615 if (async_p)
2616 {
2617 /* With this target we start out by owning the terminal. */
2618 remote_async_terminal_ours_p = 1;
2619
2620 /* FIXME: cagney/1999-09-23: During the initial connection it is
2621 assumed that the target is already ready and able to respond to
2622 requests. Unfortunately remote_start_remote() eventually calls
2623 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2624 around this. Eventually a mechanism that allows
2625 wait_for_inferior() to expect/get timeouts will be
2626 implemented. */
2627 wait_forever_enabled_p = 0;
2628 }
2629
2630 /* First delete any symbols previously loaded from shared libraries. */
2631 no_shared_libraries (NULL, 0);
2632
2633 /* Start the remote connection. If error() or QUIT, discard this
2634 target (we'd otherwise be in an inconsistent state) and then
2635 propogate the error on up the exception chain. This ensures that
2636 the caller doesn't stumble along blindly assuming that the
2637 function succeeded. The CLI doesn't have this problem but other
2638 UI's, such as MI do.
2639
2640 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2641 this function should return an error indication letting the
2642 caller restore the previous state. Unfortunately the command
2643 ``target remote'' is directly wired to this function making that
2644 impossible. On a positive note, the CLI side of this problem has
2645 been fixed - the function set_cmd_context() makes it possible for
2646 all the ``target ....'' commands to share a common callback
2647 function. See cli-dump.c. */
2648 {
2649 struct gdb_exception ex
2650 = catch_exception (uiout, remote_start_remote, &from_tty,
2651 RETURN_MASK_ALL);
2652 if (ex.reason < 0)
2653 {
2654 pop_target ();
2655 if (async_p)
2656 wait_forever_enabled_p = 1;
2657 throw_exception (ex);
2658 }
2659 }
2660
2661 if (async_p)
2662 wait_forever_enabled_p = 1;
2663
2664 if (extended_p)
2665 {
2666 /* Tell the remote that we are using the extended protocol. */
2667 putpkt ("!");
2668 getpkt (&rs->buf, &rs->buf_size, 0);
2669 }
2670
2671 if (exec_bfd) /* No use without an exec file. */
2672 remote_check_symbols (symfile_objfile);
2673 }
2674
2675 /* This takes a program previously attached to and detaches it. After
2676 this is done, GDB can be used to debug some other program. We
2677 better not have left any breakpoints in the target program or it'll
2678 die when it hits one. */
2679
2680 static void
2681 remote_detach (char *args, int from_tty)
2682 {
2683 struct remote_state *rs = get_remote_state ();
2684
2685 if (args)
2686 error (_("Argument given to \"detach\" when remotely debugging."));
2687
2688 /* Tell the remote target to detach. */
2689 strcpy (rs->buf, "D");
2690 putpkt (rs->buf);
2691 getpkt (&rs->buf, &rs->buf_size, 0);
2692
2693 if (rs->buf[0] == 'E')
2694 error (_("Can't detach process."));
2695
2696 /* Unregister the file descriptor from the event loop. */
2697 if (target_is_async_p ())
2698 serial_async (remote_desc, NULL, 0);
2699
2700 target_mourn_inferior ();
2701 if (from_tty)
2702 puts_filtered ("Ending remote debugging.\n");
2703 }
2704
2705 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2706
2707 static void
2708 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2709 {
2710 if (args)
2711 error (_("Argument given to \"detach\" when remotely debugging."));
2712
2713 /* Unregister the file descriptor from the event loop. */
2714 if (target_is_async_p ())
2715 serial_async (remote_desc, NULL, 0);
2716
2717 target_mourn_inferior ();
2718 if (from_tty)
2719 puts_filtered ("Ending remote debugging.\n");
2720 }
2721
2722 /* Convert hex digit A to a number. */
2723
2724 static int
2725 fromhex (int a)
2726 {
2727 if (a >= '0' && a <= '9')
2728 return a - '0';
2729 else if (a >= 'a' && a <= 'f')
2730 return a - 'a' + 10;
2731 else if (a >= 'A' && a <= 'F')
2732 return a - 'A' + 10;
2733 else
2734 error (_("Reply contains invalid hex digit %d"), a);
2735 }
2736
2737 static int
2738 hex2bin (const char *hex, gdb_byte *bin, int count)
2739 {
2740 int i;
2741
2742 for (i = 0; i < count; i++)
2743 {
2744 if (hex[0] == 0 || hex[1] == 0)
2745 {
2746 /* Hex string is short, or of uneven length.
2747 Return the count that has been converted so far. */
2748 return i;
2749 }
2750 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2751 hex += 2;
2752 }
2753 return i;
2754 }
2755
2756 /* Convert number NIB to a hex digit. */
2757
2758 static int
2759 tohex (int nib)
2760 {
2761 if (nib < 10)
2762 return '0' + nib;
2763 else
2764 return 'a' + nib - 10;
2765 }
2766
2767 static int
2768 bin2hex (const gdb_byte *bin, char *hex, int count)
2769 {
2770 int i;
2771 /* May use a length, or a nul-terminated string as input. */
2772 if (count == 0)
2773 count = strlen ((char *) bin);
2774
2775 for (i = 0; i < count; i++)
2776 {
2777 *hex++ = tohex ((*bin >> 4) & 0xf);
2778 *hex++ = tohex (*bin++ & 0xf);
2779 }
2780 *hex = 0;
2781 return i;
2782 }
2783 \f
2784 /* Check for the availability of vCont. This function should also check
2785 the response. */
2786
2787 static void
2788 remote_vcont_probe (struct remote_state *rs)
2789 {
2790 char *buf;
2791
2792 strcpy (rs->buf, "vCont?");
2793 putpkt (rs->buf);
2794 getpkt (&rs->buf, &rs->buf_size, 0);
2795 buf = rs->buf;
2796
2797 /* Make sure that the features we assume are supported. */
2798 if (strncmp (buf, "vCont", 5) == 0)
2799 {
2800 char *p = &buf[5];
2801 int support_s, support_S, support_c, support_C;
2802
2803 support_s = 0;
2804 support_S = 0;
2805 support_c = 0;
2806 support_C = 0;
2807 while (p && *p == ';')
2808 {
2809 p++;
2810 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2811 support_s = 1;
2812 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2813 support_S = 1;
2814 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2815 support_c = 1;
2816 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2817 support_C = 1;
2818
2819 p = strchr (p, ';');
2820 }
2821
2822 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2823 BUF will make packet_ok disable the packet. */
2824 if (!support_s || !support_S || !support_c || !support_C)
2825 buf[0] = 0;
2826 }
2827
2828 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2829 }
2830
2831 /* Resume the remote inferior by using a "vCont" packet. The thread
2832 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2833 resumed thread should be single-stepped and/or signalled. If PTID's
2834 PID is -1, then all threads are resumed; the thread to be stepped and/or
2835 signalled is given in the global INFERIOR_PTID. This function returns
2836 non-zero iff it resumes the inferior.
2837
2838 This function issues a strict subset of all possible vCont commands at the
2839 moment. */
2840
2841 static int
2842 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2843 {
2844 struct remote_state *rs = get_remote_state ();
2845 int pid = PIDGET (ptid);
2846 char *buf = NULL, *outbuf;
2847 struct cleanup *old_cleanup;
2848
2849 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2850 remote_vcont_probe (rs);
2851
2852 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2853 return 0;
2854
2855 /* If we could generate a wider range of packets, we'd have to worry
2856 about overflowing BUF. Should there be a generic
2857 "multi-part-packet" packet? */
2858
2859 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2860 {
2861 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2862 don't have any PID numbers the inferior will understand. Make sure
2863 to only send forms that do not specify a PID. */
2864 if (step && siggnal != TARGET_SIGNAL_0)
2865 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2866 else if (step)
2867 outbuf = xstrprintf ("vCont;s");
2868 else if (siggnal != TARGET_SIGNAL_0)
2869 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2870 else
2871 outbuf = xstrprintf ("vCont;c");
2872 }
2873 else if (pid == -1)
2874 {
2875 /* Resume all threads, with preference for INFERIOR_PTID. */
2876 if (step && siggnal != TARGET_SIGNAL_0)
2877 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2878 PIDGET (inferior_ptid));
2879 else if (step)
2880 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2881 else if (siggnal != TARGET_SIGNAL_0)
2882 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2883 PIDGET (inferior_ptid));
2884 else
2885 outbuf = xstrprintf ("vCont;c");
2886 }
2887 else
2888 {
2889 /* Scheduler locking; resume only PTID. */
2890 if (step && siggnal != TARGET_SIGNAL_0)
2891 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2892 else if (step)
2893 outbuf = xstrprintf ("vCont;s:%x", pid);
2894 else if (siggnal != TARGET_SIGNAL_0)
2895 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2896 else
2897 outbuf = xstrprintf ("vCont;c:%x", pid);
2898 }
2899
2900 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2901 old_cleanup = make_cleanup (xfree, outbuf);
2902
2903 putpkt (outbuf);
2904
2905 do_cleanups (old_cleanup);
2906
2907 return 1;
2908 }
2909
2910 /* Tell the remote machine to resume. */
2911
2912 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2913
2914 static int last_sent_step;
2915
2916 static void
2917 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2918 {
2919 struct remote_state *rs = get_remote_state ();
2920 char *buf;
2921 int pid = PIDGET (ptid);
2922
2923 last_sent_signal = siggnal;
2924 last_sent_step = step;
2925
2926 /* A hook for when we need to do something at the last moment before
2927 resumption. */
2928 if (deprecated_target_resume_hook)
2929 (*deprecated_target_resume_hook) ();
2930
2931 /* Update the inferior on signals to silently pass, if they've changed. */
2932 remote_pass_signals ();
2933
2934 /* The vCont packet doesn't need to specify threads via Hc. */
2935 if (remote_vcont_resume (ptid, step, siggnal))
2936 return;
2937
2938 /* All other supported resume packets do use Hc, so call set_thread. */
2939 if (pid == -1)
2940 set_thread (0, 0); /* Run any thread. */
2941 else
2942 set_thread (pid, 0); /* Run this thread. */
2943
2944 buf = rs->buf;
2945 if (siggnal != TARGET_SIGNAL_0)
2946 {
2947 buf[0] = step ? 'S' : 'C';
2948 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2949 buf[2] = tohex (((int) siggnal) & 0xf);
2950 buf[3] = '\0';
2951 }
2952 else
2953 strcpy (buf, step ? "s" : "c");
2954
2955 putpkt (buf);
2956 }
2957
2958 /* Same as remote_resume, but with async support. */
2959 static void
2960 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2961 {
2962 remote_resume (ptid, step, siggnal);
2963
2964 /* We are about to start executing the inferior, let's register it
2965 with the event loop. NOTE: this is the one place where all the
2966 execution commands end up. We could alternatively do this in each
2967 of the execution commands in infcmd.c. */
2968 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2969 into infcmd.c in order to allow inferior function calls to work
2970 NOT asynchronously. */
2971 if (target_can_async_p ())
2972 target_async (inferior_event_handler, 0);
2973 /* Tell the world that the target is now executing. */
2974 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2975 this? Instead, should the client of target just assume (for
2976 async targets) that the target is going to start executing? Is
2977 this information already found in the continuation block? */
2978 if (target_is_async_p ())
2979 target_executing = 1;
2980 }
2981 \f
2982
2983 /* Set up the signal handler for SIGINT, while the target is
2984 executing, ovewriting the 'regular' SIGINT signal handler. */
2985 static void
2986 initialize_sigint_signal_handler (void)
2987 {
2988 sigint_remote_token =
2989 create_async_signal_handler (async_remote_interrupt, NULL);
2990 signal (SIGINT, handle_remote_sigint);
2991 }
2992
2993 /* Signal handler for SIGINT, while the target is executing. */
2994 static void
2995 handle_remote_sigint (int sig)
2996 {
2997 signal (sig, handle_remote_sigint_twice);
2998 sigint_remote_twice_token =
2999 create_async_signal_handler (async_remote_interrupt_twice, NULL);
3000 mark_async_signal_handler_wrapper (sigint_remote_token);
3001 }
3002
3003 /* Signal handler for SIGINT, installed after SIGINT has already been
3004 sent once. It will take effect the second time that the user sends
3005 a ^C. */
3006 static void
3007 handle_remote_sigint_twice (int sig)
3008 {
3009 signal (sig, handle_sigint);
3010 sigint_remote_twice_token =
3011 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3012 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3013 }
3014
3015 /* Perform the real interruption of the target execution, in response
3016 to a ^C. */
3017 static void
3018 async_remote_interrupt (gdb_client_data arg)
3019 {
3020 if (remote_debug)
3021 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3022
3023 target_stop ();
3024 }
3025
3026 /* Perform interrupt, if the first attempt did not succeed. Just give
3027 up on the target alltogether. */
3028 void
3029 async_remote_interrupt_twice (gdb_client_data arg)
3030 {
3031 if (remote_debug)
3032 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3033 /* Do something only if the target was not killed by the previous
3034 cntl-C. */
3035 if (target_executing)
3036 {
3037 interrupt_query ();
3038 signal (SIGINT, handle_remote_sigint);
3039 }
3040 }
3041
3042 /* Reinstall the usual SIGINT handlers, after the target has
3043 stopped. */
3044 static void
3045 cleanup_sigint_signal_handler (void *dummy)
3046 {
3047 signal (SIGINT, handle_sigint);
3048 if (sigint_remote_twice_token)
3049 delete_async_signal_handler (&sigint_remote_twice_token);
3050 if (sigint_remote_token)
3051 delete_async_signal_handler (&sigint_remote_token);
3052 }
3053
3054 /* Send ^C to target to halt it. Target will respond, and send us a
3055 packet. */
3056 static void (*ofunc) (int);
3057
3058 /* The command line interface's stop routine. This function is installed
3059 as a signal handler for SIGINT. The first time a user requests a
3060 stop, we call remote_stop to send a break or ^C. If there is no
3061 response from the target (it didn't stop when the user requested it),
3062 we ask the user if he'd like to detach from the target. */
3063 static void
3064 remote_interrupt (int signo)
3065 {
3066 /* If this doesn't work, try more severe steps. */
3067 signal (signo, remote_interrupt_twice);
3068
3069 if (remote_debug)
3070 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3071
3072 target_stop ();
3073 }
3074
3075 /* The user typed ^C twice. */
3076
3077 static void
3078 remote_interrupt_twice (int signo)
3079 {
3080 signal (signo, ofunc);
3081 interrupt_query ();
3082 signal (signo, remote_interrupt);
3083 }
3084
3085 /* This is the generic stop called via the target vector. When a target
3086 interrupt is requested, either by the command line or the GUI, we
3087 will eventually end up here. */
3088 static void
3089 remote_stop (void)
3090 {
3091 /* Send a break or a ^C, depending on user preference. */
3092 if (remote_debug)
3093 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3094
3095 if (remote_break)
3096 serial_send_break (remote_desc);
3097 else
3098 serial_write (remote_desc, "\003", 1);
3099 }
3100
3101 /* Ask the user what to do when an interrupt is received. */
3102
3103 static void
3104 interrupt_query (void)
3105 {
3106 target_terminal_ours ();
3107
3108 if (query ("Interrupted while waiting for the program.\n\
3109 Give up (and stop debugging it)? "))
3110 {
3111 target_mourn_inferior ();
3112 deprecated_throw_reason (RETURN_QUIT);
3113 }
3114
3115 target_terminal_inferior ();
3116 }
3117
3118 /* Enable/disable target terminal ownership. Most targets can use
3119 terminal groups to control terminal ownership. Remote targets are
3120 different in that explicit transfer of ownership to/from GDB/target
3121 is required. */
3122
3123 static void
3124 remote_async_terminal_inferior (void)
3125 {
3126 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3127 sync_execution here. This function should only be called when
3128 GDB is resuming the inferior in the forground. A background
3129 resume (``run&'') should leave GDB in control of the terminal and
3130 consequently should not call this code. */
3131 if (!sync_execution)
3132 return;
3133 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3134 calls target_terminal_*() idenpotent. The event-loop GDB talking
3135 to an asynchronous target with a synchronous command calls this
3136 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3137 stops trying to transfer the terminal to the target when it
3138 shouldn't this guard can go away. */
3139 if (!remote_async_terminal_ours_p)
3140 return;
3141 delete_file_handler (input_fd);
3142 remote_async_terminal_ours_p = 0;
3143 initialize_sigint_signal_handler ();
3144 /* NOTE: At this point we could also register our selves as the
3145 recipient of all input. Any characters typed could then be
3146 passed on down to the target. */
3147 }
3148
3149 static void
3150 remote_async_terminal_ours (void)
3151 {
3152 /* See FIXME in remote_async_terminal_inferior. */
3153 if (!sync_execution)
3154 return;
3155 /* See FIXME in remote_async_terminal_inferior. */
3156 if (remote_async_terminal_ours_p)
3157 return;
3158 cleanup_sigint_signal_handler (NULL);
3159 add_file_handler (input_fd, stdin_event_handler, 0);
3160 remote_async_terminal_ours_p = 1;
3161 }
3162
3163 /* If nonzero, ignore the next kill. */
3164
3165 int kill_kludge;
3166
3167 void
3168 remote_console_output (char *msg)
3169 {
3170 char *p;
3171
3172 for (p = msg; p[0] && p[1]; p += 2)
3173 {
3174 char tb[2];
3175 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3176 tb[0] = c;
3177 tb[1] = 0;
3178 fputs_unfiltered (tb, gdb_stdtarg);
3179 }
3180 gdb_flush (gdb_stdtarg);
3181 }
3182
3183 /* Wait until the remote machine stops, then return,
3184 storing status in STATUS just as `wait' would.
3185 Returns "pid", which in the case of a multi-threaded
3186 remote OS, is the thread-id. */
3187
3188 static ptid_t
3189 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3190 {
3191 struct remote_state *rs = get_remote_state ();
3192 struct remote_arch_state *rsa = get_remote_arch_state ();
3193 ULONGEST thread_num = -1;
3194 ULONGEST addr;
3195 int solibs_changed = 0;
3196
3197 status->kind = TARGET_WAITKIND_EXITED;
3198 status->value.integer = 0;
3199
3200 while (1)
3201 {
3202 char *buf, *p;
3203
3204 ofunc = signal (SIGINT, remote_interrupt);
3205 getpkt (&rs->buf, &rs->buf_size, 1);
3206 signal (SIGINT, ofunc);
3207
3208 buf = rs->buf;
3209
3210 /* This is a hook for when we need to do something (perhaps the
3211 collection of trace data) every time the target stops. */
3212 if (deprecated_target_wait_loop_hook)
3213 (*deprecated_target_wait_loop_hook) ();
3214
3215 remote_stopped_by_watchpoint_p = 0;
3216
3217 switch (buf[0])
3218 {
3219 case 'E': /* Error of some sort. */
3220 warning (_("Remote failure reply: %s"), buf);
3221 continue;
3222 case 'F': /* File-I/O request. */
3223 remote_fileio_request (buf);
3224 continue;
3225 case 'T': /* Status with PC, SP, FP, ... */
3226 {
3227 gdb_byte regs[MAX_REGISTER_SIZE];
3228
3229 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3230 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3231 ss = signal number
3232 n... = register number
3233 r... = register contents
3234 */
3235 p = &buf[3]; /* after Txx */
3236
3237 while (*p)
3238 {
3239 char *p1;
3240 char *p_temp;
3241 int fieldsize;
3242 LONGEST pnum = 0;
3243
3244 /* If the packet contains a register number save it in
3245 pnum and set p1 to point to the character following
3246 it. Otherwise p1 points to p. */
3247
3248 /* If this packet is an awatch packet, don't parse the
3249 'a' as a register number. */
3250
3251 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3252 {
3253 /* Read the ``P'' register number. */
3254 pnum = strtol (p, &p_temp, 16);
3255 p1 = p_temp;
3256 }
3257 else
3258 p1 = p;
3259
3260 if (p1 == p) /* No register number present here. */
3261 {
3262 p1 = strchr (p, ':');
3263 if (p1 == NULL)
3264 error (_("Malformed packet(a) (missing colon): %s\n\
3265 Packet: '%s'\n"),
3266 p, buf);
3267 if (strncmp (p, "thread", p1 - p) == 0)
3268 {
3269 p_temp = unpack_varlen_hex (++p1, &thread_num);
3270 record_currthread (thread_num);
3271 p = p_temp;
3272 }
3273 else if ((strncmp (p, "watch", p1 - p) == 0)
3274 || (strncmp (p, "rwatch", p1 - p) == 0)
3275 || (strncmp (p, "awatch", p1 - p) == 0))
3276 {
3277 remote_stopped_by_watchpoint_p = 1;
3278 p = unpack_varlen_hex (++p1, &addr);
3279 remote_watch_data_address = (CORE_ADDR)addr;
3280 }
3281 else if (strncmp (p, "library", p1 - p) == 0)
3282 {
3283 p1++;
3284 p_temp = p1;
3285 while (*p_temp && *p_temp != ';')
3286 p_temp++;
3287
3288 solibs_changed = 1;
3289 p = p_temp;
3290 }
3291 else
3292 {
3293 /* Silently skip unknown optional info. */
3294 p_temp = strchr (p1 + 1, ';');
3295 if (p_temp)
3296 p = p_temp;
3297 }
3298 }
3299 else
3300 {
3301 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3302 p = p1;
3303
3304 if (*p++ != ':')
3305 error (_("Malformed packet(b) (missing colon): %s\n\
3306 Packet: '%s'\n"),
3307 p, buf);
3308
3309 if (reg == NULL)
3310 error (_("Remote sent bad register number %s: %s\n\
3311 Packet: '%s'\n"),
3312 phex_nz (pnum, 0), p, buf);
3313
3314 fieldsize = hex2bin (p, regs,
3315 register_size (current_gdbarch,
3316 reg->regnum));
3317 p += 2 * fieldsize;
3318 if (fieldsize < register_size (current_gdbarch,
3319 reg->regnum))
3320 warning (_("Remote reply is too short: %s"), buf);
3321 regcache_raw_supply (get_current_regcache (),
3322 reg->regnum, regs);
3323 }
3324
3325 if (*p++ != ';')
3326 error (_("Remote register badly formatted: %s\nhere: %s"),
3327 buf, p);
3328 }
3329 }
3330 /* fall through */
3331 case 'S': /* Old style status, just signal only. */
3332 if (solibs_changed)
3333 status->kind = TARGET_WAITKIND_LOADED;
3334 else
3335 {
3336 status->kind = TARGET_WAITKIND_STOPPED;
3337 status->value.sig = (enum target_signal)
3338 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3339 }
3340
3341 if (buf[3] == 'p')
3342 {
3343 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3344 record_currthread (thread_num);
3345 }
3346 goto got_status;
3347 case 'W': /* Target exited. */
3348 {
3349 /* The remote process exited. */
3350 status->kind = TARGET_WAITKIND_EXITED;
3351 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3352 goto got_status;
3353 }
3354 case 'X':
3355 status->kind = TARGET_WAITKIND_SIGNALLED;
3356 status->value.sig = (enum target_signal)
3357 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3358 kill_kludge = 1;
3359
3360 goto got_status;
3361 case 'O': /* Console output. */
3362 remote_console_output (buf + 1);
3363 continue;
3364 case '\0':
3365 if (last_sent_signal != TARGET_SIGNAL_0)
3366 {
3367 /* Zero length reply means that we tried 'S' or 'C' and
3368 the remote system doesn't support it. */
3369 target_terminal_ours_for_output ();
3370 printf_filtered
3371 ("Can't send signals to this remote system. %s not sent.\n",
3372 target_signal_to_name (last_sent_signal));
3373 last_sent_signal = TARGET_SIGNAL_0;
3374 target_terminal_inferior ();
3375
3376 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3377 putpkt ((char *) buf);
3378 continue;
3379 }
3380 /* else fallthrough */
3381 default:
3382 warning (_("Invalid remote reply: %s"), buf);
3383 continue;
3384 }
3385 }
3386 got_status:
3387 if (thread_num != -1)
3388 {
3389 return pid_to_ptid (thread_num);
3390 }
3391 return inferior_ptid;
3392 }
3393
3394 /* Async version of remote_wait. */
3395 static ptid_t
3396 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3397 {
3398 struct remote_state *rs = get_remote_state ();
3399 struct remote_arch_state *rsa = get_remote_arch_state ();
3400 ULONGEST thread_num = -1;
3401 ULONGEST addr;
3402 int solibs_changed = 0;
3403
3404 status->kind = TARGET_WAITKIND_EXITED;
3405 status->value.integer = 0;
3406
3407 remote_stopped_by_watchpoint_p = 0;
3408
3409 while (1)
3410 {
3411 char *buf, *p;
3412
3413 if (!target_is_async_p ())
3414 ofunc = signal (SIGINT, remote_interrupt);
3415 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3416 _never_ wait for ever -> test on target_is_async_p().
3417 However, before we do that we need to ensure that the caller
3418 knows how to take the target into/out of async mode. */
3419 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3420 if (!target_is_async_p ())
3421 signal (SIGINT, ofunc);
3422
3423 buf = rs->buf;
3424
3425 /* This is a hook for when we need to do something (perhaps the
3426 collection of trace data) every time the target stops. */
3427 if (deprecated_target_wait_loop_hook)
3428 (*deprecated_target_wait_loop_hook) ();
3429
3430 switch (buf[0])
3431 {
3432 case 'E': /* Error of some sort. */
3433 warning (_("Remote failure reply: %s"), buf);
3434 continue;
3435 case 'F': /* File-I/O request. */
3436 remote_fileio_request (buf);
3437 continue;
3438 case 'T': /* Status with PC, SP, FP, ... */
3439 {
3440 gdb_byte regs[MAX_REGISTER_SIZE];
3441
3442 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3443 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3444 ss = signal number
3445 n... = register number
3446 r... = register contents
3447 */
3448 p = &buf[3]; /* after Txx */
3449
3450 while (*p)
3451 {
3452 char *p1;
3453 char *p_temp;
3454 int fieldsize;
3455 long pnum = 0;
3456
3457 /* If the packet contains a register number, save it
3458 in pnum and set p1 to point to the character
3459 following it. Otherwise p1 points to p. */
3460
3461 /* If this packet is an awatch packet, don't parse the 'a'
3462 as a register number. */
3463
3464 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3465 {
3466 /* Read the register number. */
3467 pnum = strtol (p, &p_temp, 16);
3468 p1 = p_temp;
3469 }
3470 else
3471 p1 = p;
3472
3473 if (p1 == p) /* No register number present here. */
3474 {
3475 p1 = strchr (p, ':');
3476 if (p1 == NULL)
3477 error (_("Malformed packet(a) (missing colon): %s\n\
3478 Packet: '%s'\n"),
3479 p, buf);
3480 if (strncmp (p, "thread", p1 - p) == 0)
3481 {
3482 p_temp = unpack_varlen_hex (++p1, &thread_num);
3483 record_currthread (thread_num);
3484 p = p_temp;
3485 }
3486 else if ((strncmp (p, "watch", p1 - p) == 0)
3487 || (strncmp (p, "rwatch", p1 - p) == 0)
3488 || (strncmp (p, "awatch", p1 - p) == 0))
3489 {
3490 remote_stopped_by_watchpoint_p = 1;
3491 p = unpack_varlen_hex (++p1, &addr);
3492 remote_watch_data_address = (CORE_ADDR)addr;
3493 }
3494 else if (strncmp (p, "library", p1 - p) == 0)
3495 {
3496 p1++;
3497 p_temp = p1;
3498 while (*p_temp && *p_temp != ';')
3499 p_temp++;
3500
3501 solibs_changed = 1;
3502 p = p_temp;
3503 }
3504 else
3505 {
3506 /* Silently skip unknown optional info. */
3507 p_temp = strchr (p1 + 1, ';');
3508 if (p_temp)
3509 p = p_temp;
3510 }
3511 }
3512
3513 else
3514 {
3515 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3516 p = p1;
3517 if (*p++ != ':')
3518 error (_("Malformed packet(b) (missing colon): %s\n\
3519 Packet: '%s'\n"),
3520 p, buf);
3521
3522 if (reg == NULL)
3523 error (_("Remote sent bad register number %ld: %s\n\
3524 Packet: '%s'\n"),
3525 pnum, p, buf);
3526
3527 fieldsize = hex2bin (p, regs,
3528 register_size (current_gdbarch,
3529 reg->regnum));
3530 p += 2 * fieldsize;
3531 if (fieldsize < register_size (current_gdbarch,
3532 reg->regnum))
3533 warning (_("Remote reply is too short: %s"), buf);
3534 regcache_raw_supply (get_current_regcache (),
3535 reg->regnum, regs);
3536 }
3537
3538 if (*p++ != ';')
3539 error (_("Remote register badly formatted: %s\nhere: %s"),
3540 buf, p);
3541 }
3542 }
3543 /* fall through */
3544 case 'S': /* Old style status, just signal only. */
3545 if (solibs_changed)
3546 status->kind = TARGET_WAITKIND_LOADED;
3547 else
3548 {
3549 status->kind = TARGET_WAITKIND_STOPPED;
3550 status->value.sig = (enum target_signal)
3551 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3552 }
3553
3554 if (buf[3] == 'p')
3555 {
3556 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3557 record_currthread (thread_num);
3558 }
3559 goto got_status;
3560 case 'W': /* Target exited. */
3561 {
3562 /* The remote process exited. */
3563 status->kind = TARGET_WAITKIND_EXITED;
3564 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3565 goto got_status;
3566 }
3567 case 'X':
3568 status->kind = TARGET_WAITKIND_SIGNALLED;
3569 status->value.sig = (enum target_signal)
3570 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3571 kill_kludge = 1;
3572
3573 goto got_status;
3574 case 'O': /* Console output. */
3575 remote_console_output (buf + 1);
3576 /* Return immediately to the event loop. The event loop will
3577 still be waiting on the inferior afterwards. */
3578 status->kind = TARGET_WAITKIND_IGNORE;
3579 goto got_status;
3580 case '\0':
3581 if (last_sent_signal != TARGET_SIGNAL_0)
3582 {
3583 /* Zero length reply means that we tried 'S' or 'C' and
3584 the remote system doesn't support it. */
3585 target_terminal_ours_for_output ();
3586 printf_filtered
3587 ("Can't send signals to this remote system. %s not sent.\n",
3588 target_signal_to_name (last_sent_signal));
3589 last_sent_signal = TARGET_SIGNAL_0;
3590 target_terminal_inferior ();
3591
3592 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3593 putpkt ((char *) buf);
3594 continue;
3595 }
3596 /* else fallthrough */
3597 default:
3598 warning (_("Invalid remote reply: %s"), buf);
3599 continue;
3600 }
3601 }
3602 got_status:
3603 if (thread_num != -1)
3604 {
3605 return pid_to_ptid (thread_num);
3606 }
3607 return inferior_ptid;
3608 }
3609
3610 /* Fetch a single register using a 'p' packet. */
3611
3612 static int
3613 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3614 {
3615 struct remote_state *rs = get_remote_state ();
3616 char *buf, *p;
3617 char regp[MAX_REGISTER_SIZE];
3618 int i;
3619
3620 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3621 return 0;
3622
3623 if (reg->pnum == -1)
3624 return 0;
3625
3626 p = rs->buf;
3627 *p++ = 'p';
3628 p += hexnumstr (p, reg->pnum);
3629 *p++ = '\0';
3630 remote_send (&rs->buf, &rs->buf_size);
3631
3632 buf = rs->buf;
3633
3634 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3635 {
3636 case PACKET_OK:
3637 break;
3638 case PACKET_UNKNOWN:
3639 return 0;
3640 case PACKET_ERROR:
3641 error (_("Could not fetch register \"%s\""),
3642 gdbarch_register_name (current_gdbarch, reg->regnum));
3643 }
3644
3645 /* If this register is unfetchable, tell the regcache. */
3646 if (buf[0] == 'x')
3647 {
3648 regcache_raw_supply (regcache, reg->regnum, NULL);
3649 return 1;
3650 }
3651
3652 /* Otherwise, parse and supply the value. */
3653 p = buf;
3654 i = 0;
3655 while (p[0] != 0)
3656 {
3657 if (p[1] == 0)
3658 error (_("fetch_register_using_p: early buf termination"));
3659
3660 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3661 p += 2;
3662 }
3663 regcache_raw_supply (regcache, reg->regnum, regp);
3664 return 1;
3665 }
3666
3667 /* Fetch the registers included in the target's 'g' packet. */
3668
3669 static int
3670 send_g_packet (void)
3671 {
3672 struct remote_state *rs = get_remote_state ();
3673 int i, buf_len;
3674 char *p;
3675 char *regs;
3676
3677 sprintf (rs->buf, "g");
3678 remote_send (&rs->buf, &rs->buf_size);
3679
3680 /* We can get out of synch in various cases. If the first character
3681 in the buffer is not a hex character, assume that has happened
3682 and try to fetch another packet to read. */
3683 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3684 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3685 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3686 && rs->buf[0] != 'x') /* New: unavailable register value. */
3687 {
3688 if (remote_debug)
3689 fprintf_unfiltered (gdb_stdlog,
3690 "Bad register packet; fetching a new packet\n");
3691 getpkt (&rs->buf, &rs->buf_size, 0);
3692 }
3693
3694 buf_len = strlen (rs->buf);
3695
3696 /* Sanity check the received packet. */
3697 if (buf_len % 2 != 0)
3698 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3699
3700 return buf_len / 2;
3701 }
3702
3703 static void
3704 process_g_packet (struct regcache *regcache)
3705 {
3706 struct remote_state *rs = get_remote_state ();
3707 struct remote_arch_state *rsa = get_remote_arch_state ();
3708 int i, buf_len;
3709 char *p;
3710 char *regs;
3711
3712 buf_len = strlen (rs->buf);
3713
3714 /* Further sanity checks, with knowledge of the architecture. */
3715 if (buf_len > 2 * rsa->sizeof_g_packet)
3716 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3717
3718 /* Save the size of the packet sent to us by the target. It is used
3719 as a heuristic when determining the max size of packets that the
3720 target can safely receive. */
3721 if (rsa->actual_register_packet_size == 0)
3722 rsa->actual_register_packet_size = buf_len;
3723
3724 /* If this is smaller than we guessed the 'g' packet would be,
3725 update our records. A 'g' reply that doesn't include a register's
3726 value implies either that the register is not available, or that
3727 the 'p' packet must be used. */
3728 if (buf_len < 2 * rsa->sizeof_g_packet)
3729 {
3730 rsa->sizeof_g_packet = buf_len / 2;
3731
3732 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3733 {
3734 if (rsa->regs[i].pnum == -1)
3735 continue;
3736
3737 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3738 rsa->regs[i].in_g_packet = 0;
3739 else
3740 rsa->regs[i].in_g_packet = 1;
3741 }
3742 }
3743
3744 regs = alloca (rsa->sizeof_g_packet);
3745
3746 /* Unimplemented registers read as all bits zero. */
3747 memset (regs, 0, rsa->sizeof_g_packet);
3748
3749 /* Reply describes registers byte by byte, each byte encoded as two
3750 hex characters. Suck them all up, then supply them to the
3751 register cacheing/storage mechanism. */
3752
3753 p = rs->buf;
3754 for (i = 0; i < rsa->sizeof_g_packet; i++)
3755 {
3756 if (p[0] == 0 || p[1] == 0)
3757 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3758 internal_error (__FILE__, __LINE__,
3759 "unexpected end of 'g' packet reply");
3760
3761 if (p[0] == 'x' && p[1] == 'x')
3762 regs[i] = 0; /* 'x' */
3763 else
3764 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3765 p += 2;
3766 }
3767
3768 {
3769 int i;
3770 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3771 {
3772 struct packet_reg *r = &rsa->regs[i];
3773 if (r->in_g_packet)
3774 {
3775 if (r->offset * 2 >= strlen (rs->buf))
3776 /* This shouldn't happen - we adjusted in_g_packet above. */
3777 internal_error (__FILE__, __LINE__,
3778 "unexpected end of 'g' packet reply");
3779 else if (rs->buf[r->offset * 2] == 'x')
3780 {
3781 gdb_assert (r->offset * 2 < strlen (rs->buf));
3782 /* The register isn't available, mark it as such (at
3783 the same time setting the value to zero). */
3784 regcache_raw_supply (regcache, r->regnum, NULL);
3785 }
3786 else
3787 regcache_raw_supply (regcache, r->regnum,
3788 regs + r->offset);
3789 }
3790 }
3791 }
3792 }
3793
3794 static void
3795 fetch_registers_using_g (struct regcache *regcache)
3796 {
3797 send_g_packet ();
3798 process_g_packet (regcache);
3799 }
3800
3801 static void
3802 remote_fetch_registers (struct regcache *regcache, int regnum)
3803 {
3804 struct remote_state *rs = get_remote_state ();
3805 struct remote_arch_state *rsa = get_remote_arch_state ();
3806 int i;
3807
3808 set_thread (PIDGET (inferior_ptid), 1);
3809
3810 if (regnum >= 0)
3811 {
3812 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3813 gdb_assert (reg != NULL);
3814
3815 /* If this register might be in the 'g' packet, try that first -
3816 we are likely to read more than one register. If this is the
3817 first 'g' packet, we might be overly optimistic about its
3818 contents, so fall back to 'p'. */
3819 if (reg->in_g_packet)
3820 {
3821 fetch_registers_using_g (regcache);
3822 if (reg->in_g_packet)
3823 return;
3824 }
3825
3826 if (fetch_register_using_p (regcache, reg))
3827 return;
3828
3829 /* This register is not available. */
3830 regcache_raw_supply (regcache, reg->regnum, NULL);
3831
3832 return;
3833 }
3834
3835 fetch_registers_using_g (regcache);
3836
3837 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3838 if (!rsa->regs[i].in_g_packet)
3839 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3840 {
3841 /* This register is not available. */
3842 regcache_raw_supply (regcache, i, NULL);
3843 }
3844 }
3845
3846 /* Prepare to store registers. Since we may send them all (using a
3847 'G' request), we have to read out the ones we don't want to change
3848 first. */
3849
3850 static void
3851 remote_prepare_to_store (struct regcache *regcache)
3852 {
3853 struct remote_arch_state *rsa = get_remote_arch_state ();
3854 int i;
3855 gdb_byte buf[MAX_REGISTER_SIZE];
3856
3857 /* Make sure the entire registers array is valid. */
3858 switch (remote_protocol_packets[PACKET_P].support)
3859 {
3860 case PACKET_DISABLE:
3861 case PACKET_SUPPORT_UNKNOWN:
3862 /* Make sure all the necessary registers are cached. */
3863 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3864 if (rsa->regs[i].in_g_packet)
3865 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3866 break;
3867 case PACKET_ENABLE:
3868 break;
3869 }
3870 }
3871
3872 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3873 packet was not recognized. */
3874
3875 static int
3876 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3877 {
3878 struct remote_state *rs = get_remote_state ();
3879 struct remote_arch_state *rsa = get_remote_arch_state ();
3880 /* Try storing a single register. */
3881 char *buf = rs->buf;
3882 gdb_byte regp[MAX_REGISTER_SIZE];
3883 char *p;
3884
3885 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3886 return 0;
3887
3888 if (reg->pnum == -1)
3889 return 0;
3890
3891 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3892 p = buf + strlen (buf);
3893 regcache_raw_collect (regcache, reg->regnum, regp);
3894 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3895 remote_send (&rs->buf, &rs->buf_size);
3896
3897 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3898 {
3899 case PACKET_OK:
3900 return 1;
3901 case PACKET_ERROR:
3902 error (_("Could not write register \"%s\""),
3903 gdbarch_register_name (current_gdbarch, reg->regnum));
3904 case PACKET_UNKNOWN:
3905 return 0;
3906 default:
3907 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3908 }
3909 }
3910
3911 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3912 contents of the register cache buffer. FIXME: ignores errors. */
3913
3914 static void
3915 store_registers_using_G (const struct regcache *regcache)
3916 {
3917 struct remote_state *rs = get_remote_state ();
3918 struct remote_arch_state *rsa = get_remote_arch_state ();
3919 gdb_byte *regs;
3920 char *p;
3921
3922 /* Extract all the registers in the regcache copying them into a
3923 local buffer. */
3924 {
3925 int i;
3926 regs = alloca (rsa->sizeof_g_packet);
3927 memset (regs, 0, rsa->sizeof_g_packet);
3928 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3929 {
3930 struct packet_reg *r = &rsa->regs[i];
3931 if (r->in_g_packet)
3932 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3933 }
3934 }
3935
3936 /* Command describes registers byte by byte,
3937 each byte encoded as two hex characters. */
3938 p = rs->buf;
3939 *p++ = 'G';
3940 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3941 updated. */
3942 bin2hex (regs, p, rsa->sizeof_g_packet);
3943 remote_send (&rs->buf, &rs->buf_size);
3944 }
3945
3946 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3947 of the register cache buffer. FIXME: ignores errors. */
3948
3949 static void
3950 remote_store_registers (struct regcache *regcache, int regnum)
3951 {
3952 struct remote_state *rs = get_remote_state ();
3953 struct remote_arch_state *rsa = get_remote_arch_state ();
3954 int i;
3955
3956 set_thread (PIDGET (inferior_ptid), 1);
3957
3958 if (regnum >= 0)
3959 {
3960 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3961 gdb_assert (reg != NULL);
3962
3963 /* Always prefer to store registers using the 'P' packet if
3964 possible; we often change only a small number of registers.
3965 Sometimes we change a larger number; we'd need help from a
3966 higher layer to know to use 'G'. */
3967 if (store_register_using_P (regcache, reg))
3968 return;
3969
3970 /* For now, don't complain if we have no way to write the
3971 register. GDB loses track of unavailable registers too
3972 easily. Some day, this may be an error. We don't have
3973 any way to read the register, either... */
3974 if (!reg->in_g_packet)
3975 return;
3976
3977 store_registers_using_G (regcache);
3978 return;
3979 }
3980
3981 store_registers_using_G (regcache);
3982
3983 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3984 if (!rsa->regs[i].in_g_packet)
3985 if (!store_register_using_P (regcache, &rsa->regs[i]))
3986 /* See above for why we do not issue an error here. */
3987 continue;
3988 }
3989 \f
3990
3991 /* Return the number of hex digits in num. */
3992
3993 static int
3994 hexnumlen (ULONGEST num)
3995 {
3996 int i;
3997
3998 for (i = 0; num != 0; i++)
3999 num >>= 4;
4000
4001 return max (i, 1);
4002 }
4003
4004 /* Set BUF to the minimum number of hex digits representing NUM. */
4005
4006 static int
4007 hexnumstr (char *buf, ULONGEST num)
4008 {
4009 int len = hexnumlen (num);
4010 return hexnumnstr (buf, num, len);
4011 }
4012
4013
4014 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4015
4016 static int
4017 hexnumnstr (char *buf, ULONGEST num, int width)
4018 {
4019 int i;
4020
4021 buf[width] = '\0';
4022
4023 for (i = width - 1; i >= 0; i--)
4024 {
4025 buf[i] = "0123456789abcdef"[(num & 0xf)];
4026 num >>= 4;
4027 }
4028
4029 return width;
4030 }
4031
4032 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4033
4034 static CORE_ADDR
4035 remote_address_masked (CORE_ADDR addr)
4036 {
4037 int address_size = remote_address_size;
4038 /* If "remoteaddresssize" was not set, default to target address size. */
4039 if (!address_size)
4040 address_size = gdbarch_addr_bit (current_gdbarch);
4041
4042 if (address_size > 0
4043 && address_size < (sizeof (ULONGEST) * 8))
4044 {
4045 /* Only create a mask when that mask can safely be constructed
4046 in a ULONGEST variable. */
4047 ULONGEST mask = 1;
4048 mask = (mask << address_size) - 1;
4049 addr &= mask;
4050 }
4051 return addr;
4052 }
4053
4054 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4055 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4056 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4057 (which may be more than *OUT_LEN due to escape characters). The
4058 total number of bytes in the output buffer will be at most
4059 OUT_MAXLEN. */
4060
4061 static int
4062 remote_escape_output (const gdb_byte *buffer, int len,
4063 gdb_byte *out_buf, int *out_len,
4064 int out_maxlen)
4065 {
4066 int input_index, output_index;
4067
4068 output_index = 0;
4069 for (input_index = 0; input_index < len; input_index++)
4070 {
4071 gdb_byte b = buffer[input_index];
4072
4073 if (b == '$' || b == '#' || b == '}')
4074 {
4075 /* These must be escaped. */
4076 if (output_index + 2 > out_maxlen)
4077 break;
4078 out_buf[output_index++] = '}';
4079 out_buf[output_index++] = b ^ 0x20;
4080 }
4081 else
4082 {
4083 if (output_index + 1 > out_maxlen)
4084 break;
4085 out_buf[output_index++] = b;
4086 }
4087 }
4088
4089 *out_len = input_index;
4090 return output_index;
4091 }
4092
4093 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4094 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4095 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4096
4097 This function reverses remote_escape_output. It allows more
4098 escaped characters than that function does, in particular because
4099 '*' must be escaped to avoid the run-length encoding processing
4100 in reading packets. */
4101
4102 static int
4103 remote_unescape_input (const gdb_byte *buffer, int len,
4104 gdb_byte *out_buf, int out_maxlen)
4105 {
4106 int input_index, output_index;
4107 int escaped;
4108
4109 output_index = 0;
4110 escaped = 0;
4111 for (input_index = 0; input_index < len; input_index++)
4112 {
4113 gdb_byte b = buffer[input_index];
4114
4115 if (output_index + 1 > out_maxlen)
4116 {
4117 warning (_("Received too much data from remote target;"
4118 " ignoring overflow."));
4119 return output_index;
4120 }
4121
4122 if (escaped)
4123 {
4124 out_buf[output_index++] = b ^ 0x20;
4125 escaped = 0;
4126 }
4127 else if (b == '}')
4128 escaped = 1;
4129 else
4130 out_buf[output_index++] = b;
4131 }
4132
4133 if (escaped)
4134 error (_("Unmatched escape character in target response."));
4135
4136 return output_index;
4137 }
4138
4139 /* Determine whether the remote target supports binary downloading.
4140 This is accomplished by sending a no-op memory write of zero length
4141 to the target at the specified address. It does not suffice to send
4142 the whole packet, since many stubs strip the eighth bit and
4143 subsequently compute a wrong checksum, which causes real havoc with
4144 remote_write_bytes.
4145
4146 NOTE: This can still lose if the serial line is not eight-bit
4147 clean. In cases like this, the user should clear "remote
4148 X-packet". */
4149
4150 static void
4151 check_binary_download (CORE_ADDR addr)
4152 {
4153 struct remote_state *rs = get_remote_state ();
4154
4155 switch (remote_protocol_packets[PACKET_X].support)
4156 {
4157 case PACKET_DISABLE:
4158 break;
4159 case PACKET_ENABLE:
4160 break;
4161 case PACKET_SUPPORT_UNKNOWN:
4162 {
4163 char *p;
4164
4165 p = rs->buf;
4166 *p++ = 'X';
4167 p += hexnumstr (p, (ULONGEST) addr);
4168 *p++ = ',';
4169 p += hexnumstr (p, (ULONGEST) 0);
4170 *p++ = ':';
4171 *p = '\0';
4172
4173 putpkt_binary (rs->buf, (int) (p - rs->buf));
4174 getpkt (&rs->buf, &rs->buf_size, 0);
4175
4176 if (rs->buf[0] == '\0')
4177 {
4178 if (remote_debug)
4179 fprintf_unfiltered (gdb_stdlog,
4180 "binary downloading NOT suppported by target\n");
4181 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4182 }
4183 else
4184 {
4185 if (remote_debug)
4186 fprintf_unfiltered (gdb_stdlog,
4187 "binary downloading suppported by target\n");
4188 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4189 }
4190 break;
4191 }
4192 }
4193 }
4194
4195 /* Write memory data directly to the remote machine.
4196 This does not inform the data cache; the data cache uses this.
4197 HEADER is the starting part of the packet.
4198 MEMADDR is the address in the remote memory space.
4199 MYADDR is the address of the buffer in our space.
4200 LEN is the number of bytes.
4201 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4202 should send data as binary ('X'), or hex-encoded ('M').
4203
4204 The function creates packet of the form
4205 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4206
4207 where encoding of <DATA> is termined by PACKET_FORMAT.
4208
4209 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4210 are omitted.
4211
4212 Returns the number of bytes transferred, or 0 (setting errno) for
4213 error. Only transfer a single packet. */
4214
4215 static int
4216 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4217 const gdb_byte *myaddr, int len,
4218 char packet_format, int use_length)
4219 {
4220 struct remote_state *rs = get_remote_state ();
4221 char *p;
4222 char *plen = NULL;
4223 int plenlen = 0;
4224 int todo;
4225 int nr_bytes;
4226 int payload_size;
4227 int payload_length;
4228 int header_length;
4229
4230 if (packet_format != 'X' && packet_format != 'M')
4231 internal_error (__FILE__, __LINE__,
4232 "remote_write_bytes_aux: bad packet format");
4233
4234 if (len <= 0)
4235 return 0;
4236
4237 payload_size = get_memory_write_packet_size ();
4238
4239 /* The packet buffer will be large enough for the payload;
4240 get_memory_packet_size ensures this. */
4241 rs->buf[0] = '\0';
4242
4243 /* Compute the size of the actual payload by subtracting out the
4244 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4245 */
4246 payload_size -= strlen ("$,:#NN");
4247 if (!use_length)
4248 /* The comma won't be used. */
4249 payload_size += 1;
4250 header_length = strlen (header);
4251 payload_size -= header_length;
4252 payload_size -= hexnumlen (memaddr);
4253
4254 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4255
4256 strcat (rs->buf, header);
4257 p = rs->buf + strlen (header);
4258
4259 /* Compute a best guess of the number of bytes actually transfered. */
4260 if (packet_format == 'X')
4261 {
4262 /* Best guess at number of bytes that will fit. */
4263 todo = min (len, payload_size);
4264 if (use_length)
4265 payload_size -= hexnumlen (todo);
4266 todo = min (todo, payload_size);
4267 }
4268 else
4269 {
4270 /* Num bytes that will fit. */
4271 todo = min (len, payload_size / 2);
4272 if (use_length)
4273 payload_size -= hexnumlen (todo);
4274 todo = min (todo, payload_size / 2);
4275 }
4276
4277 if (todo <= 0)
4278 internal_error (__FILE__, __LINE__,
4279 _("minumum packet size too small to write data"));
4280
4281 /* If we already need another packet, then try to align the end
4282 of this packet to a useful boundary. */
4283 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4284 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4285
4286 /* Append "<memaddr>". */
4287 memaddr = remote_address_masked (memaddr);
4288 p += hexnumstr (p, (ULONGEST) memaddr);
4289
4290 if (use_length)
4291 {
4292 /* Append ",". */
4293 *p++ = ',';
4294
4295 /* Append <len>. Retain the location/size of <len>. It may need to
4296 be adjusted once the packet body has been created. */
4297 plen = p;
4298 plenlen = hexnumstr (p, (ULONGEST) todo);
4299 p += plenlen;
4300 }
4301
4302 /* Append ":". */
4303 *p++ = ':';
4304 *p = '\0';
4305
4306 /* Append the packet body. */
4307 if (packet_format == 'X')
4308 {
4309 /* Binary mode. Send target system values byte by byte, in
4310 increasing byte addresses. Only escape certain critical
4311 characters. */
4312 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4313 payload_size);
4314
4315 /* If not all TODO bytes fit, then we'll need another packet. Make
4316 a second try to keep the end of the packet aligned. Don't do
4317 this if the packet is tiny. */
4318 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4319 {
4320 int new_nr_bytes;
4321
4322 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4323 - memaddr);
4324 if (new_nr_bytes != nr_bytes)
4325 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4326 p, &nr_bytes,
4327 payload_size);
4328 }
4329
4330 p += payload_length;
4331 if (use_length && nr_bytes < todo)
4332 {
4333 /* Escape chars have filled up the buffer prematurely,
4334 and we have actually sent fewer bytes than planned.
4335 Fix-up the length field of the packet. Use the same
4336 number of characters as before. */
4337 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4338 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4339 }
4340 }
4341 else
4342 {
4343 /* Normal mode: Send target system values byte by byte, in
4344 increasing byte addresses. Each byte is encoded as a two hex
4345 value. */
4346 nr_bytes = bin2hex (myaddr, p, todo);
4347 p += 2 * nr_bytes;
4348 }
4349
4350 putpkt_binary (rs->buf, (int) (p - rs->buf));
4351 getpkt (&rs->buf, &rs->buf_size, 0);
4352
4353 if (rs->buf[0] == 'E')
4354 {
4355 /* There is no correspondance between what the remote protocol
4356 uses for errors and errno codes. We would like a cleaner way
4357 of representing errors (big enough to include errno codes,
4358 bfd_error codes, and others). But for now just return EIO. */
4359 errno = EIO;
4360 return 0;
4361 }
4362
4363 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4364 fewer bytes than we'd planned. */
4365 return nr_bytes;
4366 }
4367
4368 /* Write memory data directly to the remote machine.
4369 This does not inform the data cache; the data cache uses this.
4370 MEMADDR is the address in the remote memory space.
4371 MYADDR is the address of the buffer in our space.
4372 LEN is the number of bytes.
4373
4374 Returns number of bytes transferred, or 0 (setting errno) for
4375 error. Only transfer a single packet. */
4376
4377 int
4378 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4379 {
4380 char *packet_format = 0;
4381
4382 /* Check whether the target supports binary download. */
4383 check_binary_download (memaddr);
4384
4385 switch (remote_protocol_packets[PACKET_X].support)
4386 {
4387 case PACKET_ENABLE:
4388 packet_format = "X";
4389 break;
4390 case PACKET_DISABLE:
4391 packet_format = "M";
4392 break;
4393 case PACKET_SUPPORT_UNKNOWN:
4394 internal_error (__FILE__, __LINE__,
4395 _("remote_write_bytes: bad internal state"));
4396 default:
4397 internal_error (__FILE__, __LINE__, _("bad switch"));
4398 }
4399
4400 return remote_write_bytes_aux (packet_format,
4401 memaddr, myaddr, len, packet_format[0], 1);
4402 }
4403
4404 /* Read memory data directly from the remote machine.
4405 This does not use the data cache; the data cache uses this.
4406 MEMADDR is the address in the remote memory space.
4407 MYADDR is the address of the buffer in our space.
4408 LEN is the number of bytes.
4409
4410 Returns number of bytes transferred, or 0 for error. */
4411
4412 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4413 remote targets) shouldn't attempt to read the entire buffer.
4414 Instead it should read a single packet worth of data and then
4415 return the byte size of that packet to the caller. The caller (its
4416 caller and its callers caller ;-) already contains code for
4417 handling partial reads. */
4418
4419 int
4420 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4421 {
4422 struct remote_state *rs = get_remote_state ();
4423 int max_buf_size; /* Max size of packet output buffer. */
4424 int origlen;
4425
4426 if (len <= 0)
4427 return 0;
4428
4429 max_buf_size = get_memory_read_packet_size ();
4430 /* The packet buffer will be large enough for the payload;
4431 get_memory_packet_size ensures this. */
4432
4433 origlen = len;
4434 while (len > 0)
4435 {
4436 char *p;
4437 int todo;
4438 int i;
4439
4440 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4441
4442 /* construct "m"<memaddr>","<len>" */
4443 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4444 memaddr = remote_address_masked (memaddr);
4445 p = rs->buf;
4446 *p++ = 'm';
4447 p += hexnumstr (p, (ULONGEST) memaddr);
4448 *p++ = ',';
4449 p += hexnumstr (p, (ULONGEST) todo);
4450 *p = '\0';
4451
4452 putpkt (rs->buf);
4453 getpkt (&rs->buf, &rs->buf_size, 0);
4454
4455 if (rs->buf[0] == 'E'
4456 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4457 && rs->buf[3] == '\0')
4458 {
4459 /* There is no correspondance between what the remote
4460 protocol uses for errors and errno codes. We would like
4461 a cleaner way of representing errors (big enough to
4462 include errno codes, bfd_error codes, and others). But
4463 for now just return EIO. */
4464 errno = EIO;
4465 return 0;
4466 }
4467
4468 /* Reply describes memory byte by byte,
4469 each byte encoded as two hex characters. */
4470
4471 p = rs->buf;
4472 if ((i = hex2bin (p, myaddr, todo)) < todo)
4473 {
4474 /* Reply is short. This means that we were able to read
4475 only part of what we wanted to. */
4476 return i + (origlen - len);
4477 }
4478 myaddr += todo;
4479 memaddr += todo;
4480 len -= todo;
4481 }
4482 return origlen;
4483 }
4484 \f
4485 /* Read or write LEN bytes from inferior memory at MEMADDR,
4486 transferring to or from debugger address BUFFER. Write to inferior
4487 if SHOULD_WRITE is nonzero. Returns length of data written or
4488 read; 0 for error. TARGET is unused. */
4489
4490 static int
4491 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4492 int should_write, struct mem_attrib *attrib,
4493 struct target_ops *target)
4494 {
4495 int res;
4496
4497 if (should_write)
4498 res = remote_write_bytes (mem_addr, buffer, mem_len);
4499 else
4500 res = remote_read_bytes (mem_addr, buffer, mem_len);
4501
4502 return res;
4503 }
4504
4505 /* Sends a packet with content determined by the printf format string
4506 FORMAT and the remaining arguments, then gets the reply. Returns
4507 whether the packet was a success, a failure, or unknown. */
4508
4509 enum packet_result
4510 remote_send_printf (const char *format, ...)
4511 {
4512 struct remote_state *rs = get_remote_state ();
4513 int max_size = get_remote_packet_size ();
4514
4515 va_list ap;
4516 va_start (ap, format);
4517
4518 rs->buf[0] = '\0';
4519 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4520 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4521
4522 if (putpkt (rs->buf) < 0)
4523 error (_("Communication problem with target."));
4524
4525 rs->buf[0] = '\0';
4526 getpkt (&rs->buf, &rs->buf_size, 0);
4527
4528 return packet_check_result (rs->buf);
4529 }
4530
4531 static void
4532 restore_remote_timeout (void *p)
4533 {
4534 int value = *(int *)p;
4535 remote_timeout = value;
4536 }
4537
4538 /* Flash writing can take quite some time. We'll set
4539 effectively infinite timeout for flash operations.
4540 In future, we'll need to decide on a better approach. */
4541 static const int remote_flash_timeout = 1000;
4542
4543 static void
4544 remote_flash_erase (struct target_ops *ops,
4545 ULONGEST address, LONGEST length)
4546 {
4547 int saved_remote_timeout = remote_timeout;
4548 enum packet_result ret;
4549
4550 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4551 &saved_remote_timeout);
4552 remote_timeout = remote_flash_timeout;
4553
4554 ret = remote_send_printf ("vFlashErase:%s,%s",
4555 paddr (address),
4556 phex (length, 4));
4557 switch (ret)
4558 {
4559 case PACKET_UNKNOWN:
4560 error (_("Remote target does not support flash erase"));
4561 case PACKET_ERROR:
4562 error (_("Error erasing flash with vFlashErase packet"));
4563 default:
4564 break;
4565 }
4566
4567 do_cleanups (back_to);
4568 }
4569
4570 static LONGEST
4571 remote_flash_write (struct target_ops *ops,
4572 ULONGEST address, LONGEST length,
4573 const gdb_byte *data)
4574 {
4575 int saved_remote_timeout = remote_timeout;
4576 int ret;
4577 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4578 &saved_remote_timeout);
4579
4580 remote_timeout = remote_flash_timeout;
4581 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4582 do_cleanups (back_to);
4583
4584 return ret;
4585 }
4586
4587 static void
4588 remote_flash_done (struct target_ops *ops)
4589 {
4590 int saved_remote_timeout = remote_timeout;
4591 int ret;
4592 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4593 &saved_remote_timeout);
4594
4595 remote_timeout = remote_flash_timeout;
4596 ret = remote_send_printf ("vFlashDone");
4597 do_cleanups (back_to);
4598
4599 switch (ret)
4600 {
4601 case PACKET_UNKNOWN:
4602 error (_("Remote target does not support vFlashDone"));
4603 case PACKET_ERROR:
4604 error (_("Error finishing flash operation"));
4605 default:
4606 break;
4607 }
4608 }
4609
4610 static void
4611 remote_files_info (struct target_ops *ignore)
4612 {
4613 puts_filtered ("Debugging a target over a serial line.\n");
4614 }
4615 \f
4616 /* Stuff for dealing with the packets which are part of this protocol.
4617 See comment at top of file for details. */
4618
4619 /* Read a single character from the remote end. */
4620
4621 static int
4622 readchar (int timeout)
4623 {
4624 int ch;
4625
4626 ch = serial_readchar (remote_desc, timeout);
4627
4628 if (ch >= 0)
4629 return ch;
4630
4631 switch ((enum serial_rc) ch)
4632 {
4633 case SERIAL_EOF:
4634 target_mourn_inferior ();
4635 error (_("Remote connection closed"));
4636 /* no return */
4637 case SERIAL_ERROR:
4638 perror_with_name (_("Remote communication error"));
4639 /* no return */
4640 case SERIAL_TIMEOUT:
4641 break;
4642 }
4643 return ch;
4644 }
4645
4646 /* Send the command in *BUF to the remote machine, and read the reply
4647 into *BUF. Report an error if we get an error reply. Resize
4648 *BUF using xrealloc if necessary to hold the result, and update
4649 *SIZEOF_BUF. */
4650
4651 static void
4652 remote_send (char **buf,
4653 long *sizeof_buf)
4654 {
4655 putpkt (*buf);
4656 getpkt (buf, sizeof_buf, 0);
4657
4658 if ((*buf)[0] == 'E')
4659 error (_("Remote failure reply: %s"), *buf);
4660 }
4661
4662 /* Display a null-terminated packet on stdout, for debugging, using C
4663 string notation. */
4664
4665 static void
4666 print_packet (char *buf)
4667 {
4668 puts_filtered ("\"");
4669 fputstr_filtered (buf, '"', gdb_stdout);
4670 puts_filtered ("\"");
4671 }
4672
4673 int
4674 putpkt (char *buf)
4675 {
4676 return putpkt_binary (buf, strlen (buf));
4677 }
4678
4679 /* Send a packet to the remote machine, with error checking. The data
4680 of the packet is in BUF. The string in BUF can be at most
4681 get_remote_packet_size () - 5 to account for the $, # and checksum,
4682 and for a possible /0 if we are debugging (remote_debug) and want
4683 to print the sent packet as a string. */
4684
4685 static int
4686 putpkt_binary (char *buf, int cnt)
4687 {
4688 int i;
4689 unsigned char csum = 0;
4690 char *buf2 = alloca (cnt + 6);
4691
4692 int ch;
4693 int tcount = 0;
4694 char *p;
4695
4696 /* Copy the packet into buffer BUF2, encapsulating it
4697 and giving it a checksum. */
4698
4699 p = buf2;
4700 *p++ = '$';
4701
4702 for (i = 0; i < cnt; i++)
4703 {
4704 csum += buf[i];
4705 *p++ = buf[i];
4706 }
4707 *p++ = '#';
4708 *p++ = tohex ((csum >> 4) & 0xf);
4709 *p++ = tohex (csum & 0xf);
4710
4711 /* Send it over and over until we get a positive ack. */
4712
4713 while (1)
4714 {
4715 int started_error_output = 0;
4716
4717 if (remote_debug)
4718 {
4719 *p = '\0';
4720 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4721 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4722 fprintf_unfiltered (gdb_stdlog, "...");
4723 gdb_flush (gdb_stdlog);
4724 }
4725 if (serial_write (remote_desc, buf2, p - buf2))
4726 perror_with_name (_("putpkt: write failed"));
4727
4728 /* Read until either a timeout occurs (-2) or '+' is read. */
4729 while (1)
4730 {
4731 ch = readchar (remote_timeout);
4732
4733 if (remote_debug)
4734 {
4735 switch (ch)
4736 {
4737 case '+':
4738 case '-':
4739 case SERIAL_TIMEOUT:
4740 case '$':
4741 if (started_error_output)
4742 {
4743 putchar_unfiltered ('\n');
4744 started_error_output = 0;
4745 }
4746 }
4747 }
4748
4749 switch (ch)
4750 {
4751 case '+':
4752 if (remote_debug)
4753 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4754 return 1;
4755 case '-':
4756 if (remote_debug)
4757 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4758 case SERIAL_TIMEOUT:
4759 tcount++;
4760 if (tcount > 3)
4761 return 0;
4762 break; /* Retransmit buffer. */
4763 case '$':
4764 {
4765 if (remote_debug)
4766 fprintf_unfiltered (gdb_stdlog,
4767 "Packet instead of Ack, ignoring it\n");
4768 /* It's probably an old response sent because an ACK
4769 was lost. Gobble up the packet and ack it so it
4770 doesn't get retransmitted when we resend this
4771 packet. */
4772 skip_frame ();
4773 serial_write (remote_desc, "+", 1);
4774 continue; /* Now, go look for +. */
4775 }
4776 default:
4777 if (remote_debug)
4778 {
4779 if (!started_error_output)
4780 {
4781 started_error_output = 1;
4782 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4783 }
4784 fputc_unfiltered (ch & 0177, gdb_stdlog);
4785 }
4786 continue;
4787 }
4788 break; /* Here to retransmit. */
4789 }
4790
4791 #if 0
4792 /* This is wrong. If doing a long backtrace, the user should be
4793 able to get out next time we call QUIT, without anything as
4794 violent as interrupt_query. If we want to provide a way out of
4795 here without getting to the next QUIT, it should be based on
4796 hitting ^C twice as in remote_wait. */
4797 if (quit_flag)
4798 {
4799 quit_flag = 0;
4800 interrupt_query ();
4801 }
4802 #endif
4803 }
4804 }
4805
4806 /* Come here after finding the start of a frame when we expected an
4807 ack. Do our best to discard the rest of this packet. */
4808
4809 static void
4810 skip_frame (void)
4811 {
4812 int c;
4813
4814 while (1)
4815 {
4816 c = readchar (remote_timeout);
4817 switch (c)
4818 {
4819 case SERIAL_TIMEOUT:
4820 /* Nothing we can do. */
4821 return;
4822 case '#':
4823 /* Discard the two bytes of checksum and stop. */
4824 c = readchar (remote_timeout);
4825 if (c >= 0)
4826 c = readchar (remote_timeout);
4827
4828 return;
4829 case '*': /* Run length encoding. */
4830 /* Discard the repeat count. */
4831 c = readchar (remote_timeout);
4832 if (c < 0)
4833 return;
4834 break;
4835 default:
4836 /* A regular character. */
4837 break;
4838 }
4839 }
4840 }
4841
4842 /* Come here after finding the start of the frame. Collect the rest
4843 into *BUF, verifying the checksum, length, and handling run-length
4844 compression. NUL terminate the buffer. If there is not enough room,
4845 expand *BUF using xrealloc.
4846
4847 Returns -1 on error, number of characters in buffer (ignoring the
4848 trailing NULL) on success. (could be extended to return one of the
4849 SERIAL status indications). */
4850
4851 static long
4852 read_frame (char **buf_p,
4853 long *sizeof_buf)
4854 {
4855 unsigned char csum;
4856 long bc;
4857 int c;
4858 char *buf = *buf_p;
4859
4860 csum = 0;
4861 bc = 0;
4862
4863 while (1)
4864 {
4865 c = readchar (remote_timeout);
4866 switch (c)
4867 {
4868 case SERIAL_TIMEOUT:
4869 if (remote_debug)
4870 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4871 return -1;
4872 case '$':
4873 if (remote_debug)
4874 fputs_filtered ("Saw new packet start in middle of old one\n",
4875 gdb_stdlog);
4876 return -1; /* Start a new packet, count retries. */
4877 case '#':
4878 {
4879 unsigned char pktcsum;
4880 int check_0 = 0;
4881 int check_1 = 0;
4882
4883 buf[bc] = '\0';
4884
4885 check_0 = readchar (remote_timeout);
4886 if (check_0 >= 0)
4887 check_1 = readchar (remote_timeout);
4888
4889 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4890 {
4891 if (remote_debug)
4892 fputs_filtered ("Timeout in checksum, retrying\n",
4893 gdb_stdlog);
4894 return -1;
4895 }
4896 else if (check_0 < 0 || check_1 < 0)
4897 {
4898 if (remote_debug)
4899 fputs_filtered ("Communication error in checksum\n",
4900 gdb_stdlog);
4901 return -1;
4902 }
4903
4904 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4905 if (csum == pktcsum)
4906 return bc;
4907
4908 if (remote_debug)
4909 {
4910 fprintf_filtered (gdb_stdlog,
4911 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4912 pktcsum, csum);
4913 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4914 fputs_filtered ("\n", gdb_stdlog);
4915 }
4916 /* Number of characters in buffer ignoring trailing
4917 NULL. */
4918 return -1;
4919 }
4920 case '*': /* Run length encoding. */
4921 {
4922 int repeat;
4923 csum += c;
4924
4925 c = readchar (remote_timeout);
4926 csum += c;
4927 repeat = c - ' ' + 3; /* Compute repeat count. */
4928
4929 /* The character before ``*'' is repeated. */
4930
4931 if (repeat > 0 && repeat <= 255 && bc > 0)
4932 {
4933 if (bc + repeat - 1 >= *sizeof_buf - 1)
4934 {
4935 /* Make some more room in the buffer. */
4936 *sizeof_buf += repeat;
4937 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4938 buf = *buf_p;
4939 }
4940
4941 memset (&buf[bc], buf[bc - 1], repeat);
4942 bc += repeat;
4943 continue;
4944 }
4945
4946 buf[bc] = '\0';
4947 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4948 return -1;
4949 }
4950 default:
4951 if (bc >= *sizeof_buf - 1)
4952 {
4953 /* Make some more room in the buffer. */
4954 *sizeof_buf *= 2;
4955 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4956 buf = *buf_p;
4957 }
4958
4959 buf[bc++] = c;
4960 csum += c;
4961 continue;
4962 }
4963 }
4964 }
4965
4966 /* Read a packet from the remote machine, with error checking, and
4967 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4968 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4969 rather than timing out; this is used (in synchronous mode) to wait
4970 for a target that is is executing user code to stop. */
4971 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4972 don't have to change all the calls to getpkt to deal with the
4973 return value, because at the moment I don't know what the right
4974 thing to do it for those. */
4975 void
4976 getpkt (char **buf,
4977 long *sizeof_buf,
4978 int forever)
4979 {
4980 int timed_out;
4981
4982 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4983 }
4984
4985
4986 /* Read a packet from the remote machine, with error checking, and
4987 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4988 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4989 rather than timing out; this is used (in synchronous mode) to wait
4990 for a target that is is executing user code to stop. If FOREVER ==
4991 0, this function is allowed to time out gracefully and return an
4992 indication of this to the caller. Otherwise return the number
4993 of bytes read. */
4994 static int
4995 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4996 {
4997 int c;
4998 int tries;
4999 int timeout;
5000 int val;
5001
5002 strcpy (*buf, "timeout");
5003
5004 if (forever)
5005 {
5006 timeout = watchdog > 0 ? watchdog : -1;
5007 }
5008
5009 else
5010 timeout = remote_timeout;
5011
5012 #define MAX_TRIES 3
5013
5014 for (tries = 1; tries <= MAX_TRIES; tries++)
5015 {
5016 /* This can loop forever if the remote side sends us characters
5017 continuously, but if it pauses, we'll get a zero from
5018 readchar because of timeout. Then we'll count that as a
5019 retry. */
5020
5021 /* Note that we will only wait forever prior to the start of a
5022 packet. After that, we expect characters to arrive at a
5023 brisk pace. They should show up within remote_timeout
5024 intervals. */
5025
5026 do
5027 {
5028 c = readchar (timeout);
5029
5030 if (c == SERIAL_TIMEOUT)
5031 {
5032 if (forever) /* Watchdog went off? Kill the target. */
5033 {
5034 QUIT;
5035 target_mourn_inferior ();
5036 error (_("Watchdog has expired. Target detached."));
5037 }
5038 if (remote_debug)
5039 fputs_filtered ("Timed out.\n", gdb_stdlog);
5040 goto retry;
5041 }
5042 }
5043 while (c != '$');
5044
5045 /* We've found the start of a packet, now collect the data. */
5046
5047 val = read_frame (buf, sizeof_buf);
5048
5049 if (val >= 0)
5050 {
5051 if (remote_debug)
5052 {
5053 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5054 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5055 fprintf_unfiltered (gdb_stdlog, "\n");
5056 }
5057 serial_write (remote_desc, "+", 1);
5058 return val;
5059 }
5060
5061 /* Try the whole thing again. */
5062 retry:
5063 serial_write (remote_desc, "-", 1);
5064 }
5065
5066 /* We have tried hard enough, and just can't receive the packet.
5067 Give up. */
5068
5069 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5070 serial_write (remote_desc, "+", 1);
5071 return -1;
5072 }
5073 \f
5074 static void
5075 remote_kill (void)
5076 {
5077 /* For some mysterious reason, wait_for_inferior calls kill instead of
5078 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5079 if (kill_kludge)
5080 {
5081 kill_kludge = 0;
5082 target_mourn_inferior ();
5083 return;
5084 }
5085
5086 /* Use catch_errors so the user can quit from gdb even when we aren't on
5087 speaking terms with the remote system. */
5088 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5089
5090 /* Don't wait for it to die. I'm not really sure it matters whether
5091 we do or not. For the existing stubs, kill is a noop. */
5092 target_mourn_inferior ();
5093 }
5094
5095 /* Async version of remote_kill. */
5096 static void
5097 remote_async_kill (void)
5098 {
5099 /* Unregister the file descriptor from the event loop. */
5100 if (target_is_async_p ())
5101 serial_async (remote_desc, NULL, 0);
5102
5103 /* For some mysterious reason, wait_for_inferior calls kill instead of
5104 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5105 if (kill_kludge)
5106 {
5107 kill_kludge = 0;
5108 target_mourn_inferior ();
5109 return;
5110 }
5111
5112 /* Use catch_errors so the user can quit from gdb even when we
5113 aren't on speaking terms with the remote system. */
5114 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5115
5116 /* Don't wait for it to die. I'm not really sure it matters whether
5117 we do or not. For the existing stubs, kill is a noop. */
5118 target_mourn_inferior ();
5119 }
5120
5121 static void
5122 remote_mourn (void)
5123 {
5124 remote_mourn_1 (&remote_ops);
5125 }
5126
5127 static void
5128 remote_async_mourn (void)
5129 {
5130 remote_mourn_1 (&remote_async_ops);
5131 }
5132
5133 static void
5134 extended_remote_mourn (void)
5135 {
5136 /* We do _not_ want to mourn the target like this; this will
5137 remove the extended remote target from the target stack,
5138 and the next time the user says "run" it'll fail.
5139
5140 FIXME: What is the right thing to do here? */
5141 #if 0
5142 remote_mourn_1 (&extended_remote_ops);
5143 #endif
5144 }
5145
5146 /* Worker function for remote_mourn. */
5147 static void
5148 remote_mourn_1 (struct target_ops *target)
5149 {
5150 unpush_target (target);
5151 generic_mourn_inferior ();
5152 }
5153
5154 /* In the extended protocol we want to be able to do things like
5155 "run" and have them basically work as expected. So we need
5156 a special create_inferior function.
5157
5158 FIXME: One day add support for changing the exec file
5159 we're debugging, arguments and an environment. */
5160
5161 static void
5162 extended_remote_create_inferior (char *exec_file, char *args,
5163 char **env, int from_tty)
5164 {
5165 /* Rip out the breakpoints; we'll reinsert them after restarting
5166 the remote server. */
5167 remove_breakpoints ();
5168
5169 /* Now restart the remote server. */
5170 extended_remote_restart ();
5171
5172 /* NOTE: We don't need to recheck for a target description here; but
5173 if we gain the ability to switch the remote executable we may
5174 need to, if for instance we are running a process which requested
5175 different emulated hardware from the operating system. A
5176 concrete example of this is ARM GNU/Linux, where some binaries
5177 will have a legacy FPA coprocessor emulated and others may have
5178 access to a hardware VFP unit. */
5179
5180 /* Now put the breakpoints back in. This way we're safe if the
5181 restart function works via a unix fork on the remote side. */
5182 insert_breakpoints ();
5183
5184 /* Clean up from the last time we were running. */
5185 clear_proceed_status ();
5186 }
5187
5188 /* Async version of extended_remote_create_inferior. */
5189 static void
5190 extended_remote_async_create_inferior (char *exec_file, char *args,
5191 char **env, int from_tty)
5192 {
5193 /* Rip out the breakpoints; we'll reinsert them after restarting
5194 the remote server. */
5195 remove_breakpoints ();
5196
5197 /* If running asynchronously, register the target file descriptor
5198 with the event loop. */
5199 if (target_can_async_p ())
5200 target_async (inferior_event_handler, 0);
5201
5202 /* Now restart the remote server. */
5203 extended_remote_restart ();
5204
5205 /* NOTE: We don't need to recheck for a target description here; but
5206 if we gain the ability to switch the remote executable we may
5207 need to, if for instance we are running a process which requested
5208 different emulated hardware from the operating system. A
5209 concrete example of this is ARM GNU/Linux, where some binaries
5210 will have a legacy FPA coprocessor emulated and others may have
5211 access to a hardware VFP unit. */
5212
5213 /* Now put the breakpoints back in. This way we're safe if the
5214 restart function works via a unix fork on the remote side. */
5215 insert_breakpoints ();
5216
5217 /* Clean up from the last time we were running. */
5218 clear_proceed_status ();
5219 }
5220 \f
5221
5222 /* Insert a breakpoint. On targets that have software breakpoint
5223 support, we ask the remote target to do the work; on targets
5224 which don't, we insert a traditional memory breakpoint. */
5225
5226 static int
5227 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5228 {
5229 CORE_ADDR addr = bp_tgt->placed_address;
5230 struct remote_state *rs = get_remote_state ();
5231
5232 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5233 If it succeeds, then set the support to PACKET_ENABLE. If it
5234 fails, and the user has explicitly requested the Z support then
5235 report an error, otherwise, mark it disabled and go on. */
5236
5237 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5238 {
5239 char *p = rs->buf;
5240
5241 *(p++) = 'Z';
5242 *(p++) = '0';
5243 *(p++) = ',';
5244 gdbarch_breakpoint_from_pc
5245 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5246 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5247 p += hexnumstr (p, addr);
5248 sprintf (p, ",%d", bp_tgt->placed_size);
5249
5250 putpkt (rs->buf);
5251 getpkt (&rs->buf, &rs->buf_size, 0);
5252
5253 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5254 {
5255 case PACKET_ERROR:
5256 return -1;
5257 case PACKET_OK:
5258 return 0;
5259 case PACKET_UNKNOWN:
5260 break;
5261 }
5262 }
5263
5264 return memory_insert_breakpoint (bp_tgt);
5265 }
5266
5267 static int
5268 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5269 {
5270 CORE_ADDR addr = bp_tgt->placed_address;
5271 struct remote_state *rs = get_remote_state ();
5272 int bp_size;
5273
5274 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5275 {
5276 char *p = rs->buf;
5277
5278 *(p++) = 'z';
5279 *(p++) = '0';
5280 *(p++) = ',';
5281
5282 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5283 p += hexnumstr (p, addr);
5284 sprintf (p, ",%d", bp_tgt->placed_size);
5285
5286 putpkt (rs->buf);
5287 getpkt (&rs->buf, &rs->buf_size, 0);
5288
5289 return (rs->buf[0] == 'E');
5290 }
5291
5292 return memory_remove_breakpoint (bp_tgt);
5293 }
5294
5295 static int
5296 watchpoint_to_Z_packet (int type)
5297 {
5298 switch (type)
5299 {
5300 case hw_write:
5301 return Z_PACKET_WRITE_WP;
5302 break;
5303 case hw_read:
5304 return Z_PACKET_READ_WP;
5305 break;
5306 case hw_access:
5307 return Z_PACKET_ACCESS_WP;
5308 break;
5309 default:
5310 internal_error (__FILE__, __LINE__,
5311 _("hw_bp_to_z: bad watchpoint type %d"), type);
5312 }
5313 }
5314
5315 static int
5316 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5317 {
5318 struct remote_state *rs = get_remote_state ();
5319 char *p;
5320 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5321
5322 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5323 return -1;
5324
5325 sprintf (rs->buf, "Z%x,", packet);
5326 p = strchr (rs->buf, '\0');
5327 addr = remote_address_masked (addr);
5328 p += hexnumstr (p, (ULONGEST) addr);
5329 sprintf (p, ",%x", len);
5330
5331 putpkt (rs->buf);
5332 getpkt (&rs->buf, &rs->buf_size, 0);
5333
5334 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5335 {
5336 case PACKET_ERROR:
5337 case PACKET_UNKNOWN:
5338 return -1;
5339 case PACKET_OK:
5340 return 0;
5341 }
5342 internal_error (__FILE__, __LINE__,
5343 _("remote_insert_watchpoint: reached end of function"));
5344 }
5345
5346
5347 static int
5348 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5349 {
5350 struct remote_state *rs = get_remote_state ();
5351 char *p;
5352 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5353
5354 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5355 return -1;
5356
5357 sprintf (rs->buf, "z%x,", packet);
5358 p = strchr (rs->buf, '\0');
5359 addr = remote_address_masked (addr);
5360 p += hexnumstr (p, (ULONGEST) addr);
5361 sprintf (p, ",%x", len);
5362 putpkt (rs->buf);
5363 getpkt (&rs->buf, &rs->buf_size, 0);
5364
5365 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5366 {
5367 case PACKET_ERROR:
5368 case PACKET_UNKNOWN:
5369 return -1;
5370 case PACKET_OK:
5371 return 0;
5372 }
5373 internal_error (__FILE__, __LINE__,
5374 _("remote_remove_watchpoint: reached end of function"));
5375 }
5376
5377
5378 int remote_hw_watchpoint_limit = -1;
5379 int remote_hw_breakpoint_limit = -1;
5380
5381 static int
5382 remote_check_watch_resources (int type, int cnt, int ot)
5383 {
5384 if (type == bp_hardware_breakpoint)
5385 {
5386 if (remote_hw_breakpoint_limit == 0)
5387 return 0;
5388 else if (remote_hw_breakpoint_limit < 0)
5389 return 1;
5390 else if (cnt <= remote_hw_breakpoint_limit)
5391 return 1;
5392 }
5393 else
5394 {
5395 if (remote_hw_watchpoint_limit == 0)
5396 return 0;
5397 else if (remote_hw_watchpoint_limit < 0)
5398 return 1;
5399 else if (ot)
5400 return -1;
5401 else if (cnt <= remote_hw_watchpoint_limit)
5402 return 1;
5403 }
5404 return -1;
5405 }
5406
5407 static int
5408 remote_stopped_by_watchpoint (void)
5409 {
5410 return remote_stopped_by_watchpoint_p;
5411 }
5412
5413 extern int stepped_after_stopped_by_watchpoint;
5414
5415 static int
5416 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5417 {
5418 int rc = 0;
5419 if (remote_stopped_by_watchpoint ()
5420 || stepped_after_stopped_by_watchpoint)
5421 {
5422 *addr_p = remote_watch_data_address;
5423 rc = 1;
5424 }
5425
5426 return rc;
5427 }
5428
5429
5430 static int
5431 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5432 {
5433 CORE_ADDR addr;
5434 struct remote_state *rs = get_remote_state ();
5435 char *p = rs->buf;
5436
5437 /* The length field should be set to the size of a breakpoint
5438 instruction, even though we aren't inserting one ourselves. */
5439
5440 gdbarch_breakpoint_from_pc
5441 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5442
5443 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5444 return -1;
5445
5446 *(p++) = 'Z';
5447 *(p++) = '1';
5448 *(p++) = ',';
5449
5450 addr = remote_address_masked (bp_tgt->placed_address);
5451 p += hexnumstr (p, (ULONGEST) addr);
5452 sprintf (p, ",%x", bp_tgt->placed_size);
5453
5454 putpkt (rs->buf);
5455 getpkt (&rs->buf, &rs->buf_size, 0);
5456
5457 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5458 {
5459 case PACKET_ERROR:
5460 case PACKET_UNKNOWN:
5461 return -1;
5462 case PACKET_OK:
5463 return 0;
5464 }
5465 internal_error (__FILE__, __LINE__,
5466 _("remote_insert_hw_breakpoint: reached end of function"));
5467 }
5468
5469
5470 static int
5471 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5472 {
5473 CORE_ADDR addr;
5474 struct remote_state *rs = get_remote_state ();
5475 char *p = rs->buf;
5476
5477 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5478 return -1;
5479
5480 *(p++) = 'z';
5481 *(p++) = '1';
5482 *(p++) = ',';
5483
5484 addr = remote_address_masked (bp_tgt->placed_address);
5485 p += hexnumstr (p, (ULONGEST) addr);
5486 sprintf (p, ",%x", bp_tgt->placed_size);
5487
5488 putpkt (rs->buf);
5489 getpkt (&rs->buf, &rs->buf_size, 0);
5490
5491 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5492 {
5493 case PACKET_ERROR:
5494 case PACKET_UNKNOWN:
5495 return -1;
5496 case PACKET_OK:
5497 return 0;
5498 }
5499 internal_error (__FILE__, __LINE__,
5500 _("remote_remove_hw_breakpoint: reached end of function"));
5501 }
5502
5503 /* Some targets are only capable of doing downloads, and afterwards
5504 they switch to the remote serial protocol. This function provides
5505 a clean way to get from the download target to the remote target.
5506 It's basically just a wrapper so that we don't have to expose any
5507 of the internal workings of remote.c.
5508
5509 Prior to calling this routine, you should shutdown the current
5510 target code, else you will get the "A program is being debugged
5511 already..." message. Usually a call to pop_target() suffices. */
5512
5513 void
5514 push_remote_target (char *name, int from_tty)
5515 {
5516 printf_filtered (_("Switching to remote protocol\n"));
5517 remote_open (name, from_tty);
5518 }
5519
5520 /* Table used by the crc32 function to calcuate the checksum. */
5521
5522 static unsigned long crc32_table[256] =
5523 {0, 0};
5524
5525 static unsigned long
5526 crc32 (unsigned char *buf, int len, unsigned int crc)
5527 {
5528 if (!crc32_table[1])
5529 {
5530 /* Initialize the CRC table and the decoding table. */
5531 int i, j;
5532 unsigned int c;
5533
5534 for (i = 0; i < 256; i++)
5535 {
5536 for (c = i << 24, j = 8; j > 0; --j)
5537 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5538 crc32_table[i] = c;
5539 }
5540 }
5541
5542 while (len--)
5543 {
5544 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5545 buf++;
5546 }
5547 return crc;
5548 }
5549
5550 /* compare-sections command
5551
5552 With no arguments, compares each loadable section in the exec bfd
5553 with the same memory range on the target, and reports mismatches.
5554 Useful for verifying the image on the target against the exec file.
5555 Depends on the target understanding the new "qCRC:" request. */
5556
5557 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5558 target method (target verify memory) and generic version of the
5559 actual command. This will allow other high-level code (especially
5560 generic_load()) to make use of this target functionality. */
5561
5562 static void
5563 compare_sections_command (char *args, int from_tty)
5564 {
5565 struct remote_state *rs = get_remote_state ();
5566 asection *s;
5567 unsigned long host_crc, target_crc;
5568 extern bfd *exec_bfd;
5569 struct cleanup *old_chain;
5570 char *tmp;
5571 char *sectdata;
5572 const char *sectname;
5573 bfd_size_type size;
5574 bfd_vma lma;
5575 int matched = 0;
5576 int mismatched = 0;
5577
5578 if (!exec_bfd)
5579 error (_("command cannot be used without an exec file"));
5580 if (!current_target.to_shortname ||
5581 strcmp (current_target.to_shortname, "remote") != 0)
5582 error (_("command can only be used with remote target"));
5583
5584 for (s = exec_bfd->sections; s; s = s->next)
5585 {
5586 if (!(s->flags & SEC_LOAD))
5587 continue; /* skip non-loadable section */
5588
5589 size = bfd_get_section_size (s);
5590 if (size == 0)
5591 continue; /* skip zero-length section */
5592
5593 sectname = bfd_get_section_name (exec_bfd, s);
5594 if (args && strcmp (args, sectname) != 0)
5595 continue; /* not the section selected by user */
5596
5597 matched = 1; /* do this section */
5598 lma = s->lma;
5599 /* FIXME: assumes lma can fit into long. */
5600 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5601 (long) lma, (long) size);
5602 putpkt (rs->buf);
5603
5604 /* Be clever; compute the host_crc before waiting for target
5605 reply. */
5606 sectdata = xmalloc (size);
5607 old_chain = make_cleanup (xfree, sectdata);
5608 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5609 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5610
5611 getpkt (&rs->buf, &rs->buf_size, 0);
5612 if (rs->buf[0] == 'E')
5613 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5614 sectname, paddr (lma), paddr (lma + size));
5615 if (rs->buf[0] != 'C')
5616 error (_("remote target does not support this operation"));
5617
5618 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5619 target_crc = target_crc * 16 + fromhex (*tmp);
5620
5621 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5622 sectname, paddr (lma), paddr (lma + size));
5623 if (host_crc == target_crc)
5624 printf_filtered ("matched.\n");
5625 else
5626 {
5627 printf_filtered ("MIS-MATCHED!\n");
5628 mismatched++;
5629 }
5630
5631 do_cleanups (old_chain);
5632 }
5633 if (mismatched > 0)
5634 warning (_("One or more sections of the remote executable does not match\n\
5635 the loaded file\n"));
5636 if (args && !matched)
5637 printf_filtered (_("No loaded section named '%s'.\n"), args);
5638 }
5639
5640 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5641 into remote target. The number of bytes written to the remote
5642 target is returned, or -1 for error. */
5643
5644 static LONGEST
5645 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5646 const char *annex, const gdb_byte *writebuf,
5647 ULONGEST offset, LONGEST len,
5648 struct packet_config *packet)
5649 {
5650 int i, buf_len;
5651 ULONGEST n;
5652 gdb_byte *wbuf;
5653 struct remote_state *rs = get_remote_state ();
5654 int max_size = get_memory_write_packet_size ();
5655
5656 if (packet->support == PACKET_DISABLE)
5657 return -1;
5658
5659 /* Insert header. */
5660 i = snprintf (rs->buf, max_size,
5661 "qXfer:%s:write:%s:%s:",
5662 object_name, annex ? annex : "",
5663 phex_nz (offset, sizeof offset));
5664 max_size -= (i + 1);
5665
5666 /* Escape as much data as fits into rs->buf. */
5667 buf_len = remote_escape_output
5668 (writebuf, len, (rs->buf + i), &max_size, max_size);
5669
5670 if (putpkt_binary (rs->buf, i + buf_len) < 0
5671 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5672 || packet_ok (rs->buf, packet) != PACKET_OK)
5673 return -1;
5674
5675 unpack_varlen_hex (rs->buf, &n);
5676 return n;
5677 }
5678
5679 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5680 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5681 number of bytes read is returned, or 0 for EOF, or -1 for error.
5682 The number of bytes read may be less than LEN without indicating an
5683 EOF. PACKET is checked and updated to indicate whether the remote
5684 target supports this object. */
5685
5686 static LONGEST
5687 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5688 const char *annex,
5689 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5690 struct packet_config *packet)
5691 {
5692 static char *finished_object;
5693 static char *finished_annex;
5694 static ULONGEST finished_offset;
5695
5696 struct remote_state *rs = get_remote_state ();
5697 unsigned int total = 0;
5698 LONGEST i, n, packet_len;
5699
5700 if (packet->support == PACKET_DISABLE)
5701 return -1;
5702
5703 /* Check whether we've cached an end-of-object packet that matches
5704 this request. */
5705 if (finished_object)
5706 {
5707 if (strcmp (object_name, finished_object) == 0
5708 && strcmp (annex ? annex : "", finished_annex) == 0
5709 && offset == finished_offset)
5710 return 0;
5711
5712 /* Otherwise, we're now reading something different. Discard
5713 the cache. */
5714 xfree (finished_object);
5715 xfree (finished_annex);
5716 finished_object = NULL;
5717 finished_annex = NULL;
5718 }
5719
5720 /* Request only enough to fit in a single packet. The actual data
5721 may not, since we don't know how much of it will need to be escaped;
5722 the target is free to respond with slightly less data. We subtract
5723 five to account for the response type and the protocol frame. */
5724 n = min (get_remote_packet_size () - 5, len);
5725 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5726 object_name, annex ? annex : "",
5727 phex_nz (offset, sizeof offset),
5728 phex_nz (n, sizeof n));
5729 i = putpkt (rs->buf);
5730 if (i < 0)
5731 return -1;
5732
5733 rs->buf[0] = '\0';
5734 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5735 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5736 return -1;
5737
5738 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5739 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5740
5741 /* 'm' means there is (or at least might be) more data after this
5742 batch. That does not make sense unless there's at least one byte
5743 of data in this reply. */
5744 if (rs->buf[0] == 'm' && packet_len == 1)
5745 error (_("Remote qXfer reply contained no data."));
5746
5747 /* Got some data. */
5748 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5749
5750 /* 'l' is an EOF marker, possibly including a final block of data,
5751 or possibly empty. If we have the final block of a non-empty
5752 object, record this fact to bypass a subsequent partial read. */
5753 if (rs->buf[0] == 'l' && offset + i > 0)
5754 {
5755 finished_object = xstrdup (object_name);
5756 finished_annex = xstrdup (annex ? annex : "");
5757 finished_offset = offset + i;
5758 }
5759
5760 return i;
5761 }
5762
5763 static LONGEST
5764 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5765 const char *annex, gdb_byte *readbuf,
5766 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5767 {
5768 struct remote_state *rs = get_remote_state ();
5769 int i;
5770 char *p2;
5771 char query_type;
5772
5773 /* Handle memory using the standard memory routines. */
5774 if (object == TARGET_OBJECT_MEMORY)
5775 {
5776 int xfered;
5777 errno = 0;
5778
5779 if (writebuf != NULL)
5780 xfered = remote_write_bytes (offset, writebuf, len);
5781 else
5782 xfered = remote_read_bytes (offset, readbuf, len);
5783
5784 if (xfered > 0)
5785 return xfered;
5786 else if (xfered == 0 && errno == 0)
5787 return 0;
5788 else
5789 return -1;
5790 }
5791
5792 /* Handle SPU memory using qxfer packets. */
5793 if (object == TARGET_OBJECT_SPU)
5794 {
5795 if (readbuf)
5796 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5797 &remote_protocol_packets
5798 [PACKET_qXfer_spu_read]);
5799 else
5800 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5801 &remote_protocol_packets
5802 [PACKET_qXfer_spu_write]);
5803 }
5804
5805 /* Only handle flash writes. */
5806 if (writebuf != NULL)
5807 {
5808 LONGEST xfered;
5809
5810 switch (object)
5811 {
5812 case TARGET_OBJECT_FLASH:
5813 xfered = remote_flash_write (ops, offset, len, writebuf);
5814
5815 if (xfered > 0)
5816 return xfered;
5817 else if (xfered == 0 && errno == 0)
5818 return 0;
5819 else
5820 return -1;
5821
5822 default:
5823 return -1;
5824 }
5825 }
5826
5827 /* Map pre-existing objects onto letters. DO NOT do this for new
5828 objects!!! Instead specify new query packets. */
5829 switch (object)
5830 {
5831 case TARGET_OBJECT_AVR:
5832 query_type = 'R';
5833 break;
5834
5835 case TARGET_OBJECT_AUXV:
5836 gdb_assert (annex == NULL);
5837 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5838 &remote_protocol_packets[PACKET_qXfer_auxv]);
5839
5840 case TARGET_OBJECT_AVAILABLE_FEATURES:
5841 return remote_read_qxfer
5842 (ops, "features", annex, readbuf, offset, len,
5843 &remote_protocol_packets[PACKET_qXfer_features]);
5844
5845 case TARGET_OBJECT_LIBRARIES:
5846 return remote_read_qxfer
5847 (ops, "libraries", annex, readbuf, offset, len,
5848 &remote_protocol_packets[PACKET_qXfer_libraries]);
5849
5850 case TARGET_OBJECT_MEMORY_MAP:
5851 gdb_assert (annex == NULL);
5852 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5853 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5854
5855 default:
5856 return -1;
5857 }
5858
5859 /* Note: a zero OFFSET and LEN can be used to query the minimum
5860 buffer size. */
5861 if (offset == 0 && len == 0)
5862 return (get_remote_packet_size ());
5863 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5864 large enough let the caller deal with it. */
5865 if (len < get_remote_packet_size ())
5866 return -1;
5867 len = get_remote_packet_size ();
5868
5869 /* Except for querying the minimum buffer size, target must be open. */
5870 if (!remote_desc)
5871 error (_("remote query is only available after target open"));
5872
5873 gdb_assert (annex != NULL);
5874 gdb_assert (readbuf != NULL);
5875
5876 p2 = rs->buf;
5877 *p2++ = 'q';
5878 *p2++ = query_type;
5879
5880 /* We used one buffer char for the remote protocol q command and
5881 another for the query type. As the remote protocol encapsulation
5882 uses 4 chars plus one extra in case we are debugging
5883 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5884 string. */
5885 i = 0;
5886 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5887 {
5888 /* Bad caller may have sent forbidden characters. */
5889 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5890 *p2++ = annex[i];
5891 i++;
5892 }
5893 *p2 = '\0';
5894 gdb_assert (annex[i] == '\0');
5895
5896 i = putpkt (rs->buf);
5897 if (i < 0)
5898 return i;
5899
5900 getpkt (&rs->buf, &rs->buf_size, 0);
5901 strcpy ((char *) readbuf, rs->buf);
5902
5903 return strlen ((char *) readbuf);
5904 }
5905
5906 static void
5907 remote_rcmd (char *command,
5908 struct ui_file *outbuf)
5909 {
5910 struct remote_state *rs = get_remote_state ();
5911 char *p = rs->buf;
5912
5913 if (!remote_desc)
5914 error (_("remote rcmd is only available after target open"));
5915
5916 /* Send a NULL command across as an empty command. */
5917 if (command == NULL)
5918 command = "";
5919
5920 /* The query prefix. */
5921 strcpy (rs->buf, "qRcmd,");
5922 p = strchr (rs->buf, '\0');
5923
5924 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5925 error (_("\"monitor\" command ``%s'' is too long."), command);
5926
5927 /* Encode the actual command. */
5928 bin2hex ((gdb_byte *) command, p, 0);
5929
5930 if (putpkt (rs->buf) < 0)
5931 error (_("Communication problem with target."));
5932
5933 /* get/display the response */
5934 while (1)
5935 {
5936 char *buf;
5937
5938 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5939 rs->buf[0] = '\0';
5940 getpkt (&rs->buf, &rs->buf_size, 0);
5941 buf = rs->buf;
5942 if (buf[0] == '\0')
5943 error (_("Target does not support this command."));
5944 if (buf[0] == 'O' && buf[1] != 'K')
5945 {
5946 remote_console_output (buf + 1); /* 'O' message from stub. */
5947 continue;
5948 }
5949 if (strcmp (buf, "OK") == 0)
5950 break;
5951 if (strlen (buf) == 3 && buf[0] == 'E'
5952 && isdigit (buf[1]) && isdigit (buf[2]))
5953 {
5954 error (_("Protocol error with Rcmd"));
5955 }
5956 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5957 {
5958 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5959 fputc_unfiltered (c, outbuf);
5960 }
5961 break;
5962 }
5963 }
5964
5965 static VEC(mem_region_s) *
5966 remote_memory_map (struct target_ops *ops)
5967 {
5968 VEC(mem_region_s) *result = NULL;
5969 char *text = target_read_stralloc (&current_target,
5970 TARGET_OBJECT_MEMORY_MAP, NULL);
5971
5972 if (text)
5973 {
5974 struct cleanup *back_to = make_cleanup (xfree, text);
5975 result = parse_memory_map (text);
5976 do_cleanups (back_to);
5977 }
5978
5979 return result;
5980 }
5981
5982 static void
5983 packet_command (char *args, int from_tty)
5984 {
5985 struct remote_state *rs = get_remote_state ();
5986
5987 if (!remote_desc)
5988 error (_("command can only be used with remote target"));
5989
5990 if (!args)
5991 error (_("remote-packet command requires packet text as argument"));
5992
5993 puts_filtered ("sending: ");
5994 print_packet (args);
5995 puts_filtered ("\n");
5996 putpkt (args);
5997
5998 getpkt (&rs->buf, &rs->buf_size, 0);
5999 puts_filtered ("received: ");
6000 print_packet (rs->buf);
6001 puts_filtered ("\n");
6002 }
6003
6004 #if 0
6005 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6006
6007 static void display_thread_info (struct gdb_ext_thread_info *info);
6008
6009 static void threadset_test_cmd (char *cmd, int tty);
6010
6011 static void threadalive_test (char *cmd, int tty);
6012
6013 static void threadlist_test_cmd (char *cmd, int tty);
6014
6015 int get_and_display_threadinfo (threadref *ref);
6016
6017 static void threadinfo_test_cmd (char *cmd, int tty);
6018
6019 static int thread_display_step (threadref *ref, void *context);
6020
6021 static void threadlist_update_test_cmd (char *cmd, int tty);
6022
6023 static void init_remote_threadtests (void);
6024
6025 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6026
6027 static void
6028 threadset_test_cmd (char *cmd, int tty)
6029 {
6030 int sample_thread = SAMPLE_THREAD;
6031
6032 printf_filtered (_("Remote threadset test\n"));
6033 set_thread (sample_thread, 1);
6034 }
6035
6036
6037 static void
6038 threadalive_test (char *cmd, int tty)
6039 {
6040 int sample_thread = SAMPLE_THREAD;
6041
6042 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6043 printf_filtered ("PASS: Thread alive test\n");
6044 else
6045 printf_filtered ("FAIL: Thread alive test\n");
6046 }
6047
6048 void output_threadid (char *title, threadref *ref);
6049
6050 void
6051 output_threadid (char *title, threadref *ref)
6052 {
6053 char hexid[20];
6054
6055 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6056 hexid[16] = 0;
6057 printf_filtered ("%s %s\n", title, (&hexid[0]));
6058 }
6059
6060 static void
6061 threadlist_test_cmd (char *cmd, int tty)
6062 {
6063 int startflag = 1;
6064 threadref nextthread;
6065 int done, result_count;
6066 threadref threadlist[3];
6067
6068 printf_filtered ("Remote Threadlist test\n");
6069 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6070 &result_count, &threadlist[0]))
6071 printf_filtered ("FAIL: threadlist test\n");
6072 else
6073 {
6074 threadref *scan = threadlist;
6075 threadref *limit = scan + result_count;
6076
6077 while (scan < limit)
6078 output_threadid (" thread ", scan++);
6079 }
6080 }
6081
6082 void
6083 display_thread_info (struct gdb_ext_thread_info *info)
6084 {
6085 output_threadid ("Threadid: ", &info->threadid);
6086 printf_filtered ("Name: %s\n ", info->shortname);
6087 printf_filtered ("State: %s\n", info->display);
6088 printf_filtered ("other: %s\n\n", info->more_display);
6089 }
6090
6091 int
6092 get_and_display_threadinfo (threadref *ref)
6093 {
6094 int result;
6095 int set;
6096 struct gdb_ext_thread_info threadinfo;
6097
6098 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6099 | TAG_MOREDISPLAY | TAG_DISPLAY;
6100 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6101 display_thread_info (&threadinfo);
6102 return result;
6103 }
6104
6105 static void
6106 threadinfo_test_cmd (char *cmd, int tty)
6107 {
6108 int athread = SAMPLE_THREAD;
6109 threadref thread;
6110 int set;
6111
6112 int_to_threadref (&thread, athread);
6113 printf_filtered ("Remote Threadinfo test\n");
6114 if (!get_and_display_threadinfo (&thread))
6115 printf_filtered ("FAIL cannot get thread info\n");
6116 }
6117
6118 static int
6119 thread_display_step (threadref *ref, void *context)
6120 {
6121 /* output_threadid(" threadstep ",ref); *//* simple test */
6122 return get_and_display_threadinfo (ref);
6123 }
6124
6125 static void
6126 threadlist_update_test_cmd (char *cmd, int tty)
6127 {
6128 printf_filtered ("Remote Threadlist update test\n");
6129 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6130 }
6131
6132 static void
6133 init_remote_threadtests (void)
6134 {
6135 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6136 Fetch and print the remote list of thread identifiers, one pkt only"));
6137 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6138 _("Fetch and display info about one thread"));
6139 add_com ("tset", class_obscure, threadset_test_cmd,
6140 _("Test setting to a different thread"));
6141 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6142 _("Iterate through updating all remote thread info"));
6143 add_com ("talive", class_obscure, threadalive_test,
6144 _(" Remote thread alive test "));
6145 }
6146
6147 #endif /* 0 */
6148
6149 /* Convert a thread ID to a string. Returns the string in a static
6150 buffer. */
6151
6152 static char *
6153 remote_pid_to_str (ptid_t ptid)
6154 {
6155 static char buf[32];
6156
6157 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6158 return buf;
6159 }
6160
6161 /* Get the address of the thread local variable in OBJFILE which is
6162 stored at OFFSET within the thread local storage for thread PTID. */
6163
6164 static CORE_ADDR
6165 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6166 {
6167 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6168 {
6169 struct remote_state *rs = get_remote_state ();
6170 char *p = rs->buf;
6171 enum packet_result result;
6172
6173 strcpy (p, "qGetTLSAddr:");
6174 p += strlen (p);
6175 p += hexnumstr (p, PIDGET (ptid));
6176 *p++ = ',';
6177 p += hexnumstr (p, offset);
6178 *p++ = ',';
6179 p += hexnumstr (p, lm);
6180 *p++ = '\0';
6181
6182 putpkt (rs->buf);
6183 getpkt (&rs->buf, &rs->buf_size, 0);
6184 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6185 if (result == PACKET_OK)
6186 {
6187 ULONGEST result;
6188
6189 unpack_varlen_hex (rs->buf, &result);
6190 return result;
6191 }
6192 else if (result == PACKET_UNKNOWN)
6193 throw_error (TLS_GENERIC_ERROR,
6194 _("Remote target doesn't support qGetTLSAddr packet"));
6195 else
6196 throw_error (TLS_GENERIC_ERROR,
6197 _("Remote target failed to process qGetTLSAddr request"));
6198 }
6199 else
6200 throw_error (TLS_GENERIC_ERROR,
6201 _("TLS not supported or disabled on this target"));
6202 /* Not reached. */
6203 return 0;
6204 }
6205
6206 /* Support for inferring a target description based on the current
6207 architecture and the size of a 'g' packet. While the 'g' packet
6208 can have any size (since optional registers can be left off the
6209 end), some sizes are easily recognizable given knowledge of the
6210 approximate architecture. */
6211
6212 struct remote_g_packet_guess
6213 {
6214 int bytes;
6215 const struct target_desc *tdesc;
6216 };
6217 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6218 DEF_VEC_O(remote_g_packet_guess_s);
6219
6220 struct remote_g_packet_data
6221 {
6222 VEC(remote_g_packet_guess_s) *guesses;
6223 };
6224
6225 static struct gdbarch_data *remote_g_packet_data_handle;
6226
6227 static void *
6228 remote_g_packet_data_init (struct obstack *obstack)
6229 {
6230 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6231 }
6232
6233 void
6234 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6235 const struct target_desc *tdesc)
6236 {
6237 struct remote_g_packet_data *data
6238 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6239 struct remote_g_packet_guess new_guess, *guess;
6240 int ix;
6241
6242 gdb_assert (tdesc != NULL);
6243
6244 for (ix = 0;
6245 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6246 ix++)
6247 if (guess->bytes == bytes)
6248 internal_error (__FILE__, __LINE__,
6249 "Duplicate g packet description added for size %d",
6250 bytes);
6251
6252 new_guess.bytes = bytes;
6253 new_guess.tdesc = tdesc;
6254 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6255 }
6256
6257 static const struct target_desc *
6258 remote_read_description (struct target_ops *target)
6259 {
6260 struct remote_g_packet_data *data
6261 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6262
6263 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6264 {
6265 struct remote_g_packet_guess *guess;
6266 int ix;
6267 int bytes = send_g_packet ();
6268
6269 for (ix = 0;
6270 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6271 ix++)
6272 if (guess->bytes == bytes)
6273 return guess->tdesc;
6274
6275 /* We discard the g packet. A minor optimization would be to
6276 hold on to it, and fill the register cache once we have selected
6277 an architecture, but it's too tricky to do safely. */
6278 }
6279
6280 return NULL;
6281 }
6282
6283 static void
6284 init_remote_ops (void)
6285 {
6286 remote_ops.to_shortname = "remote";
6287 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6288 remote_ops.to_doc =
6289 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6290 Specify the serial device it is connected to\n\
6291 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6292 remote_ops.to_open = remote_open;
6293 remote_ops.to_close = remote_close;
6294 remote_ops.to_detach = remote_detach;
6295 remote_ops.to_disconnect = remote_disconnect;
6296 remote_ops.to_resume = remote_resume;
6297 remote_ops.to_wait = remote_wait;
6298 remote_ops.to_fetch_registers = remote_fetch_registers;
6299 remote_ops.to_store_registers = remote_store_registers;
6300 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6301 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6302 remote_ops.to_files_info = remote_files_info;
6303 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6304 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6305 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6306 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6307 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6308 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6309 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6310 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6311 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6312 remote_ops.to_kill = remote_kill;
6313 remote_ops.to_load = generic_load;
6314 remote_ops.to_mourn_inferior = remote_mourn;
6315 remote_ops.to_thread_alive = remote_thread_alive;
6316 remote_ops.to_find_new_threads = remote_threads_info;
6317 remote_ops.to_pid_to_str = remote_pid_to_str;
6318 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6319 remote_ops.to_stop = remote_stop;
6320 remote_ops.to_xfer_partial = remote_xfer_partial;
6321 remote_ops.to_rcmd = remote_rcmd;
6322 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6323 remote_ops.to_stratum = process_stratum;
6324 remote_ops.to_has_all_memory = 1;
6325 remote_ops.to_has_memory = 1;
6326 remote_ops.to_has_stack = 1;
6327 remote_ops.to_has_registers = 1;
6328 remote_ops.to_has_execution = 1;
6329 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6330 remote_ops.to_magic = OPS_MAGIC;
6331 remote_ops.to_memory_map = remote_memory_map;
6332 remote_ops.to_flash_erase = remote_flash_erase;
6333 remote_ops.to_flash_done = remote_flash_done;
6334 remote_ops.to_read_description = remote_read_description;
6335 }
6336
6337 /* Set up the extended remote vector by making a copy of the standard
6338 remote vector and adding to it. */
6339
6340 static void
6341 init_extended_remote_ops (void)
6342 {
6343 extended_remote_ops = remote_ops;
6344
6345 extended_remote_ops.to_shortname = "extended-remote";
6346 extended_remote_ops.to_longname =
6347 "Extended remote serial target in gdb-specific protocol";
6348 extended_remote_ops.to_doc =
6349 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6350 Specify the serial device it is connected to (e.g. /dev/ttya).",
6351 extended_remote_ops.to_open = extended_remote_open;
6352 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6353 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6354 }
6355
6356 static int
6357 remote_can_async_p (void)
6358 {
6359 /* We're async whenever the serial device is. */
6360 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6361 }
6362
6363 static int
6364 remote_is_async_p (void)
6365 {
6366 /* We're async whenever the serial device is. */
6367 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6368 }
6369
6370 /* Pass the SERIAL event on and up to the client. One day this code
6371 will be able to delay notifying the client of an event until the
6372 point where an entire packet has been received. */
6373
6374 static void (*async_client_callback) (enum inferior_event_type event_type,
6375 void *context);
6376 static void *async_client_context;
6377 static serial_event_ftype remote_async_serial_handler;
6378
6379 static void
6380 remote_async_serial_handler (struct serial *scb, void *context)
6381 {
6382 /* Don't propogate error information up to the client. Instead let
6383 the client find out about the error by querying the target. */
6384 async_client_callback (INF_REG_EVENT, async_client_context);
6385 }
6386
6387 static void
6388 remote_async (void (*callback) (enum inferior_event_type event_type,
6389 void *context), void *context)
6390 {
6391 if (current_target.to_async_mask_value == 0)
6392 internal_error (__FILE__, __LINE__,
6393 _("Calling remote_async when async is masked"));
6394
6395 if (callback != NULL)
6396 {
6397 serial_async (remote_desc, remote_async_serial_handler, NULL);
6398 async_client_callback = callback;
6399 async_client_context = context;
6400 }
6401 else
6402 serial_async (remote_desc, NULL, NULL);
6403 }
6404
6405 /* Target async and target extended-async.
6406
6407 This are temporary targets, until it is all tested. Eventually
6408 async support will be incorporated int the usual 'remote'
6409 target. */
6410
6411 static void
6412 init_remote_async_ops (void)
6413 {
6414 remote_async_ops.to_shortname = "async";
6415 remote_async_ops.to_longname =
6416 "Remote serial target in async version of the gdb-specific protocol";
6417 remote_async_ops.to_doc =
6418 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6419 Specify the serial device it is connected to (e.g. /dev/ttya).";
6420 remote_async_ops.to_open = remote_async_open;
6421 remote_async_ops.to_close = remote_close;
6422 remote_async_ops.to_detach = remote_detach;
6423 remote_async_ops.to_disconnect = remote_disconnect;
6424 remote_async_ops.to_resume = remote_async_resume;
6425 remote_async_ops.to_wait = remote_async_wait;
6426 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6427 remote_async_ops.to_store_registers = remote_store_registers;
6428 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6429 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6430 remote_async_ops.to_files_info = remote_files_info;
6431 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6432 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6433 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6434 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6435 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6436 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6437 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6438 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6439 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6440 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6441 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6442 remote_async_ops.to_kill = remote_async_kill;
6443 remote_async_ops.to_load = generic_load;
6444 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6445 remote_async_ops.to_thread_alive = remote_thread_alive;
6446 remote_async_ops.to_find_new_threads = remote_threads_info;
6447 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6448 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6449 remote_async_ops.to_stop = remote_stop;
6450 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6451 remote_async_ops.to_rcmd = remote_rcmd;
6452 remote_async_ops.to_stratum = process_stratum;
6453 remote_async_ops.to_has_all_memory = 1;
6454 remote_async_ops.to_has_memory = 1;
6455 remote_async_ops.to_has_stack = 1;
6456 remote_async_ops.to_has_registers = 1;
6457 remote_async_ops.to_has_execution = 1;
6458 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6459 remote_async_ops.to_can_async_p = remote_can_async_p;
6460 remote_async_ops.to_is_async_p = remote_is_async_p;
6461 remote_async_ops.to_async = remote_async;
6462 remote_async_ops.to_async_mask_value = 1;
6463 remote_async_ops.to_magic = OPS_MAGIC;
6464 remote_async_ops.to_memory_map = remote_memory_map;
6465 remote_async_ops.to_flash_erase = remote_flash_erase;
6466 remote_async_ops.to_flash_done = remote_flash_done;
6467 remote_async_ops.to_read_description = remote_read_description;
6468 }
6469
6470 /* Set up the async extended remote vector by making a copy of the standard
6471 remote vector and adding to it. */
6472
6473 static void
6474 init_extended_async_remote_ops (void)
6475 {
6476 extended_async_remote_ops = remote_async_ops;
6477
6478 extended_async_remote_ops.to_shortname = "extended-async";
6479 extended_async_remote_ops.to_longname =
6480 "Extended remote serial target in async gdb-specific protocol";
6481 extended_async_remote_ops.to_doc =
6482 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6483 Specify the serial device it is connected to (e.g. /dev/ttya).",
6484 extended_async_remote_ops.to_open = extended_remote_async_open;
6485 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6486 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6487 }
6488
6489 static void
6490 set_remote_cmd (char *args, int from_tty)
6491 {
6492 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6493 }
6494
6495 static void
6496 show_remote_cmd (char *args, int from_tty)
6497 {
6498 /* We can't just use cmd_show_list here, because we want to skip
6499 the redundant "show remote Z-packet" and the legacy aliases. */
6500 struct cleanup *showlist_chain;
6501 struct cmd_list_element *list = remote_show_cmdlist;
6502
6503 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6504 for (; list != NULL; list = list->next)
6505 if (strcmp (list->name, "Z-packet") == 0)
6506 continue;
6507 else if (list->type == not_set_cmd)
6508 /* Alias commands are exactly like the original, except they
6509 don't have the normal type. */
6510 continue;
6511 else
6512 {
6513 struct cleanup *option_chain
6514 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6515 ui_out_field_string (uiout, "name", list->name);
6516 ui_out_text (uiout, ": ");
6517 if (list->type == show_cmd)
6518 do_setshow_command ((char *) NULL, from_tty, list);
6519 else
6520 cmd_func (list, NULL, from_tty);
6521 /* Close the tuple. */
6522 do_cleanups (option_chain);
6523 }
6524
6525 /* Close the tuple. */
6526 do_cleanups (showlist_chain);
6527 }
6528
6529
6530 /* Function to be called whenever a new objfile (shlib) is detected. */
6531 static void
6532 remote_new_objfile (struct objfile *objfile)
6533 {
6534 if (remote_desc != 0) /* Have a remote connection. */
6535 remote_check_symbols (objfile);
6536 }
6537
6538 void
6539 _initialize_remote (void)
6540 {
6541 struct remote_state *rs;
6542
6543 /* architecture specific data */
6544 remote_gdbarch_data_handle =
6545 gdbarch_data_register_post_init (init_remote_state);
6546 remote_g_packet_data_handle =
6547 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6548
6549 /* Initialize the per-target state. At the moment there is only one
6550 of these, not one per target. Only one target is active at a
6551 time. The default buffer size is unimportant; it will be expanded
6552 whenever a larger buffer is needed. */
6553 rs = get_remote_state_raw ();
6554 rs->buf_size = 400;
6555 rs->buf = xmalloc (rs->buf_size);
6556
6557 init_remote_ops ();
6558 add_target (&remote_ops);
6559
6560 init_extended_remote_ops ();
6561 add_target (&extended_remote_ops);
6562
6563 init_remote_async_ops ();
6564 add_target (&remote_async_ops);
6565
6566 init_extended_async_remote_ops ();
6567 add_target (&extended_async_remote_ops);
6568
6569 /* Hook into new objfile notification. */
6570 observer_attach_new_objfile (remote_new_objfile);
6571
6572 #if 0
6573 init_remote_threadtests ();
6574 #endif
6575
6576 /* set/show remote ... */
6577
6578 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6579 Remote protocol specific variables\n\
6580 Configure various remote-protocol specific variables such as\n\
6581 the packets being used"),
6582 &remote_set_cmdlist, "set remote ",
6583 0 /* allow-unknown */, &setlist);
6584 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6585 Remote protocol specific variables\n\
6586 Configure various remote-protocol specific variables such as\n\
6587 the packets being used"),
6588 &remote_show_cmdlist, "show remote ",
6589 0 /* allow-unknown */, &showlist);
6590
6591 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6592 Compare section data on target to the exec file.\n\
6593 Argument is a single section name (default: all loaded sections)."),
6594 &cmdlist);
6595
6596 add_cmd ("packet", class_maintenance, packet_command, _("\
6597 Send an arbitrary packet to a remote target.\n\
6598 maintenance packet TEXT\n\
6599 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6600 this command sends the string TEXT to the inferior, and displays the\n\
6601 response packet. GDB supplies the initial `$' character, and the\n\
6602 terminating `#' character and checksum."),
6603 &maintenancelist);
6604
6605 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6606 Set whether to send break if interrupted."), _("\
6607 Show whether to send break if interrupted."), _("\
6608 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6609 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6610 &setlist, &showlist);
6611
6612 /* Install commands for configuring memory read/write packets. */
6613
6614 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6615 Set the maximum number of bytes per memory write packet (deprecated)."),
6616 &setlist);
6617 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6618 Show the maximum number of bytes per memory write packet (deprecated)."),
6619 &showlist);
6620 add_cmd ("memory-write-packet-size", no_class,
6621 set_memory_write_packet_size, _("\
6622 Set the maximum number of bytes per memory-write packet.\n\
6623 Specify the number of bytes in a packet or 0 (zero) for the\n\
6624 default packet size. The actual limit is further reduced\n\
6625 dependent on the target. Specify ``fixed'' to disable the\n\
6626 further restriction and ``limit'' to enable that restriction."),
6627 &remote_set_cmdlist);
6628 add_cmd ("memory-read-packet-size", no_class,
6629 set_memory_read_packet_size, _("\
6630 Set the maximum number of bytes per memory-read packet.\n\
6631 Specify the number of bytes in a packet or 0 (zero) for the\n\
6632 default packet size. The actual limit is further reduced\n\
6633 dependent on the target. Specify ``fixed'' to disable the\n\
6634 further restriction and ``limit'' to enable that restriction."),
6635 &remote_set_cmdlist);
6636 add_cmd ("memory-write-packet-size", no_class,
6637 show_memory_write_packet_size,
6638 _("Show the maximum number of bytes per memory-write packet."),
6639 &remote_show_cmdlist);
6640 add_cmd ("memory-read-packet-size", no_class,
6641 show_memory_read_packet_size,
6642 _("Show the maximum number of bytes per memory-read packet."),
6643 &remote_show_cmdlist);
6644
6645 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6646 &remote_hw_watchpoint_limit, _("\
6647 Set the maximum number of target hardware watchpoints."), _("\
6648 Show the maximum number of target hardware watchpoints."), _("\
6649 Specify a negative limit for unlimited."),
6650 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6651 &remote_set_cmdlist, &remote_show_cmdlist);
6652 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6653 &remote_hw_breakpoint_limit, _("\
6654 Set the maximum number of target hardware breakpoints."), _("\
6655 Show the maximum number of target hardware breakpoints."), _("\
6656 Specify a negative limit for unlimited."),
6657 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6658 &remote_set_cmdlist, &remote_show_cmdlist);
6659
6660 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6661 &remote_address_size, _("\
6662 Set the maximum size of the address (in bits) in a memory packet."), _("\
6663 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6664 NULL,
6665 NULL, /* FIXME: i18n: */
6666 &setlist, &showlist);
6667
6668 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6669 "X", "binary-download", 1);
6670
6671 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6672 "vCont", "verbose-resume", 0);
6673
6674 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6675 "QPassSignals", "pass-signals", 0);
6676
6677 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6678 "qSymbol", "symbol-lookup", 0);
6679
6680 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6681 "P", "set-register", 1);
6682
6683 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6684 "p", "fetch-register", 1);
6685
6686 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6687 "Z0", "software-breakpoint", 0);
6688
6689 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6690 "Z1", "hardware-breakpoint", 0);
6691
6692 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6693 "Z2", "write-watchpoint", 0);
6694
6695 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6696 "Z3", "read-watchpoint", 0);
6697
6698 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6699 "Z4", "access-watchpoint", 0);
6700
6701 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6702 "qXfer:auxv:read", "read-aux-vector", 0);
6703
6704 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6705 "qXfer:features:read", "target-features", 0);
6706
6707 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
6708 "qXfer:libraries:read", "library-info", 0);
6709
6710 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6711 "qXfer:memory-map:read", "memory-map", 0);
6712
6713 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6714 "qXfer:spu:read", "read-spu-object", 0);
6715
6716 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6717 "qXfer:spu:write", "write-spu-object", 0);
6718
6719 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6720 "qGetTLSAddr", "get-thread-local-storage-address",
6721 0);
6722
6723 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6724 "qSupported", "supported-packets", 0);
6725
6726 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6727 Z sub-packet has its own set and show commands, but users may
6728 have sets to this variable in their .gdbinit files (or in their
6729 documentation). */
6730 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6731 &remote_Z_packet_detect, _("\
6732 Set use of remote protocol `Z' packets"), _("\
6733 Show use of remote protocol `Z' packets "), _("\
6734 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6735 packets."),
6736 set_remote_protocol_Z_packet_cmd,
6737 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6738 &remote_set_cmdlist, &remote_show_cmdlist);
6739
6740 /* Eventually initialize fileio. See fileio.c */
6741 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6742 }
This page took 0.668625 seconds and 4 git commands to generate.