* gdb.threads/print-threads.exp: Extend timeout for slower
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
138
139 static void remote_interrupt (int signo);
140
141 static void remote_interrupt_twice (int signo);
142
143 static void interrupt_query (void);
144
145 static void set_general_thread (struct ptid ptid);
146 static void set_continue_thread (struct ptid ptid);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (ptid_t);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (ptid_t currthread);
185
186 static int fromhex (int a);
187
188 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
189
190 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
204
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
206 int from_tty,
207 struct cmd_list_element *c,
208 const char *value);
209
210 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
211 static ptid_t read_ptid (char *buf, char **obuf);
212
213 static void remote_set_permissions (void);
214
215 struct remote_state;
216 static int remote_get_trace_status (struct trace_status *ts);
217
218 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
219
220 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
221
222 static void remote_query_supported (void);
223
224 static void remote_check_symbols (struct objfile *objfile);
225
226 void _initialize_remote (void);
227
228 struct stop_reply;
229 static struct stop_reply *stop_reply_xmalloc (void);
230 static void stop_reply_xfree (struct stop_reply *);
231 static void do_stop_reply_xfree (void *arg);
232 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
233 static void push_stop_reply (struct stop_reply *);
234 static void remote_get_pending_stop_replies (void);
235 static void discard_pending_stop_replies (int pid);
236 static int peek_stop_reply (ptid_t ptid);
237
238 static void remote_async_inferior_event_handler (gdb_client_data);
239 static void remote_async_get_pending_events_handler (gdb_client_data);
240
241 static void remote_terminal_ours (void);
242
243 static int remote_read_description_p (struct target_ops *target);
244
245 static void remote_console_output (char *msg);
246
247 /* The non-stop remote protocol provisions for one pending stop reply.
248 This is where we keep it until it is acknowledged. */
249
250 static struct stop_reply *pending_stop_reply = NULL;
251
252 /* For "remote". */
253
254 static struct cmd_list_element *remote_cmdlist;
255
256 /* For "set remote" and "show remote". */
257
258 static struct cmd_list_element *remote_set_cmdlist;
259 static struct cmd_list_element *remote_show_cmdlist;
260
261 /* Description of the remote protocol state for the currently
262 connected target. This is per-target state, and independent of the
263 selected architecture. */
264
265 struct remote_state
266 {
267 /* A buffer to use for incoming packets, and its current size. The
268 buffer is grown dynamically for larger incoming packets.
269 Outgoing packets may also be constructed in this buffer.
270 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
271 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
272 packets. */
273 char *buf;
274 long buf_size;
275
276 /* If we negotiated packet size explicitly (and thus can bypass
277 heuristics for the largest packet size that will not overflow
278 a buffer in the stub), this will be set to that packet size.
279 Otherwise zero, meaning to use the guessed size. */
280 long explicit_packet_size;
281
282 /* remote_wait is normally called when the target is running and
283 waits for a stop reply packet. But sometimes we need to call it
284 when the target is already stopped. We can send a "?" packet
285 and have remote_wait read the response. Or, if we already have
286 the response, we can stash it in BUF and tell remote_wait to
287 skip calling getpkt. This flag is set when BUF contains a
288 stop reply packet and the target is not waiting. */
289 int cached_wait_status;
290
291 /* True, if in no ack mode. That is, neither GDB nor the stub will
292 expect acks from each other. The connection is assumed to be
293 reliable. */
294 int noack_mode;
295
296 /* True if we're connected in extended remote mode. */
297 int extended;
298
299 /* True if the stub reported support for multi-process
300 extensions. */
301 int multi_process_aware;
302
303 /* True if we resumed the target and we're waiting for the target to
304 stop. In the mean time, we can't start another command/query.
305 The remote server wouldn't be ready to process it, so we'd
306 timeout waiting for a reply that would never come and eventually
307 we'd close the connection. This can happen in asynchronous mode
308 because we allow GDB commands while the target is running. */
309 int waiting_for_stop_reply;
310
311 /* True if the stub reports support for non-stop mode. */
312 int non_stop_aware;
313
314 /* True if the stub reports support for vCont;t. */
315 int support_vCont_t;
316
317 /* True if the stub reports support for conditional tracepoints. */
318 int cond_tracepoints;
319
320 /* True if the stub reports support for fast tracepoints. */
321 int fast_tracepoints;
322
323 /* True if the stub reports support for static tracepoints. */
324 int static_tracepoints;
325
326 /* True if the stub can continue running a trace while GDB is
327 disconnected. */
328 int disconnected_tracing;
329
330 /* True if the stub reports support for enabling and disabling
331 tracepoints while a trace experiment is running. */
332 int enable_disable_tracepoints;
333
334 /* True if the stub can collect strings using tracenz bytecode. */
335 int string_tracing;
336
337 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
338 responded to that. */
339 int ctrlc_pending_p;
340 };
341
342 /* Private data that we'll store in (struct thread_info)->private. */
343 struct private_thread_info
344 {
345 char *extra;
346 int core;
347 };
348
349 static void
350 free_private_thread_info (struct private_thread_info *info)
351 {
352 xfree (info->extra);
353 xfree (info);
354 }
355
356 /* Returns true if the multi-process extensions are in effect. */
357 static int
358 remote_multi_process_p (struct remote_state *rs)
359 {
360 return rs->extended && rs->multi_process_aware;
361 }
362
363 /* This data could be associated with a target, but we do not always
364 have access to the current target when we need it, so for now it is
365 static. This will be fine for as long as only one target is in use
366 at a time. */
367 static struct remote_state remote_state;
368
369 static struct remote_state *
370 get_remote_state_raw (void)
371 {
372 return &remote_state;
373 }
374
375 /* Description of the remote protocol for a given architecture. */
376
377 struct packet_reg
378 {
379 long offset; /* Offset into G packet. */
380 long regnum; /* GDB's internal register number. */
381 LONGEST pnum; /* Remote protocol register number. */
382 int in_g_packet; /* Always part of G packet. */
383 /* long size in bytes; == register_size (target_gdbarch, regnum);
384 at present. */
385 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
386 at present. */
387 };
388
389 struct remote_arch_state
390 {
391 /* Description of the remote protocol registers. */
392 long sizeof_g_packet;
393
394 /* Description of the remote protocol registers indexed by REGNUM
395 (making an array gdbarch_num_regs in size). */
396 struct packet_reg *regs;
397
398 /* This is the size (in chars) of the first response to the ``g''
399 packet. It is used as a heuristic when determining the maximum
400 size of memory-read and memory-write packets. A target will
401 typically only reserve a buffer large enough to hold the ``g''
402 packet. The size does not include packet overhead (headers and
403 trailers). */
404 long actual_register_packet_size;
405
406 /* This is the maximum size (in chars) of a non read/write packet.
407 It is also used as a cap on the size of read/write packets. */
408 long remote_packet_size;
409 };
410
411 long sizeof_pkt = 2000;
412
413 /* Utility: generate error from an incoming stub packet. */
414 static void
415 trace_error (char *buf)
416 {
417 if (*buf++ != 'E')
418 return; /* not an error msg */
419 switch (*buf)
420 {
421 case '1': /* malformed packet error */
422 if (*++buf == '0') /* general case: */
423 error (_("remote.c: error in outgoing packet."));
424 else
425 error (_("remote.c: error in outgoing packet at field #%ld."),
426 strtol (buf, NULL, 16));
427 case '2':
428 error (_("trace API error 0x%s."), ++buf);
429 default:
430 error (_("Target returns error code '%s'."), buf);
431 }
432 }
433
434 /* Utility: wait for reply from stub, while accepting "O" packets. */
435 static char *
436 remote_get_noisy_reply (char **buf_p,
437 long *sizeof_buf)
438 {
439 do /* Loop on reply from remote stub. */
440 {
441 char *buf;
442
443 QUIT; /* Allow user to bail out with ^C. */
444 getpkt (buf_p, sizeof_buf, 0);
445 buf = *buf_p;
446 if (buf[0] == 'E')
447 trace_error (buf);
448 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
449 {
450 ULONGEST ul;
451 CORE_ADDR from, to, org_to;
452 char *p, *pp;
453 int adjusted_size = 0;
454 volatile struct gdb_exception ex;
455
456 p = buf + strlen ("qRelocInsn:");
457 pp = unpack_varlen_hex (p, &ul);
458 if (*pp != ';')
459 error (_("invalid qRelocInsn packet: %s"), buf);
460 from = ul;
461
462 p = pp + 1;
463 unpack_varlen_hex (p, &ul);
464 to = ul;
465
466 org_to = to;
467
468 TRY_CATCH (ex, RETURN_MASK_ALL)
469 {
470 gdbarch_relocate_instruction (target_gdbarch, &to, from);
471 }
472 if (ex.reason >= 0)
473 {
474 adjusted_size = to - org_to;
475
476 sprintf (buf, "qRelocInsn:%x", adjusted_size);
477 putpkt (buf);
478 }
479 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
480 {
481 /* Propagate memory errors silently back to the target.
482 The stub may have limited the range of addresses we
483 can write to, for example. */
484 putpkt ("E01");
485 }
486 else
487 {
488 /* Something unexpectedly bad happened. Be verbose so
489 we can tell what, and propagate the error back to the
490 stub, so it doesn't get stuck waiting for a
491 response. */
492 exception_fprintf (gdb_stderr, ex,
493 _("warning: relocating instruction: "));
494 putpkt ("E01");
495 }
496 }
497 else if (buf[0] == 'O' && buf[1] != 'K')
498 remote_console_output (buf + 1); /* 'O' message from stub */
499 else
500 return buf; /* Here's the actual reply. */
501 }
502 while (1);
503 }
504
505 /* Handle for retreving the remote protocol data from gdbarch. */
506 static struct gdbarch_data *remote_gdbarch_data_handle;
507
508 static struct remote_arch_state *
509 get_remote_arch_state (void)
510 {
511 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
512 }
513
514 /* Fetch the global remote target state. */
515
516 static struct remote_state *
517 get_remote_state (void)
518 {
519 /* Make sure that the remote architecture state has been
520 initialized, because doing so might reallocate rs->buf. Any
521 function which calls getpkt also needs to be mindful of changes
522 to rs->buf, but this call limits the number of places which run
523 into trouble. */
524 get_remote_arch_state ();
525
526 return get_remote_state_raw ();
527 }
528
529 static int
530 compare_pnums (const void *lhs_, const void *rhs_)
531 {
532 const struct packet_reg * const *lhs = lhs_;
533 const struct packet_reg * const *rhs = rhs_;
534
535 if ((*lhs)->pnum < (*rhs)->pnum)
536 return -1;
537 else if ((*lhs)->pnum == (*rhs)->pnum)
538 return 0;
539 else
540 return 1;
541 }
542
543 static int
544 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
545 {
546 int regnum, num_remote_regs, offset;
547 struct packet_reg **remote_regs;
548
549 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
550 {
551 struct packet_reg *r = &regs[regnum];
552
553 if (register_size (gdbarch, regnum) == 0)
554 /* Do not try to fetch zero-sized (placeholder) registers. */
555 r->pnum = -1;
556 else
557 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
558
559 r->regnum = regnum;
560 }
561
562 /* Define the g/G packet format as the contents of each register
563 with a remote protocol number, in order of ascending protocol
564 number. */
565
566 remote_regs = alloca (gdbarch_num_regs (gdbarch)
567 * sizeof (struct packet_reg *));
568 for (num_remote_regs = 0, regnum = 0;
569 regnum < gdbarch_num_regs (gdbarch);
570 regnum++)
571 if (regs[regnum].pnum != -1)
572 remote_regs[num_remote_regs++] = &regs[regnum];
573
574 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
575 compare_pnums);
576
577 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
578 {
579 remote_regs[regnum]->in_g_packet = 1;
580 remote_regs[regnum]->offset = offset;
581 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
582 }
583
584 return offset;
585 }
586
587 /* Given the architecture described by GDBARCH, return the remote
588 protocol register's number and the register's offset in the g/G
589 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
590 If the target does not have a mapping for REGNUM, return false,
591 otherwise, return true. */
592
593 int
594 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
595 int *pnum, int *poffset)
596 {
597 int sizeof_g_packet;
598 struct packet_reg *regs;
599 struct cleanup *old_chain;
600
601 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
602
603 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
604 old_chain = make_cleanup (xfree, regs);
605
606 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
607
608 *pnum = regs[regnum].pnum;
609 *poffset = regs[regnum].offset;
610
611 do_cleanups (old_chain);
612
613 return *pnum != -1;
614 }
615
616 static void *
617 init_remote_state (struct gdbarch *gdbarch)
618 {
619 struct remote_state *rs = get_remote_state_raw ();
620 struct remote_arch_state *rsa;
621
622 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
623
624 /* Use the architecture to build a regnum<->pnum table, which will be
625 1:1 unless a feature set specifies otherwise. */
626 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
627 gdbarch_num_regs (gdbarch),
628 struct packet_reg);
629
630 /* Record the maximum possible size of the g packet - it may turn out
631 to be smaller. */
632 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
633
634 /* Default maximum number of characters in a packet body. Many
635 remote stubs have a hardwired buffer size of 400 bytes
636 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
637 as the maximum packet-size to ensure that the packet and an extra
638 NUL character can always fit in the buffer. This stops GDB
639 trashing stubs that try to squeeze an extra NUL into what is
640 already a full buffer (As of 1999-12-04 that was most stubs). */
641 rsa->remote_packet_size = 400 - 1;
642
643 /* This one is filled in when a ``g'' packet is received. */
644 rsa->actual_register_packet_size = 0;
645
646 /* Should rsa->sizeof_g_packet needs more space than the
647 default, adjust the size accordingly. Remember that each byte is
648 encoded as two characters. 32 is the overhead for the packet
649 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
650 (``$NN:G...#NN'') is a better guess, the below has been padded a
651 little. */
652 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
653 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
654
655 /* Make sure that the packet buffer is plenty big enough for
656 this architecture. */
657 if (rs->buf_size < rsa->remote_packet_size)
658 {
659 rs->buf_size = 2 * rsa->remote_packet_size;
660 rs->buf = xrealloc (rs->buf, rs->buf_size);
661 }
662
663 return rsa;
664 }
665
666 /* Return the current allowed size of a remote packet. This is
667 inferred from the current architecture, and should be used to
668 limit the length of outgoing packets. */
669 static long
670 get_remote_packet_size (void)
671 {
672 struct remote_state *rs = get_remote_state ();
673 struct remote_arch_state *rsa = get_remote_arch_state ();
674
675 if (rs->explicit_packet_size)
676 return rs->explicit_packet_size;
677
678 return rsa->remote_packet_size;
679 }
680
681 static struct packet_reg *
682 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
683 {
684 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
685 return NULL;
686 else
687 {
688 struct packet_reg *r = &rsa->regs[regnum];
689
690 gdb_assert (r->regnum == regnum);
691 return r;
692 }
693 }
694
695 static struct packet_reg *
696 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
697 {
698 int i;
699
700 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
701 {
702 struct packet_reg *r = &rsa->regs[i];
703
704 if (r->pnum == pnum)
705 return r;
706 }
707 return NULL;
708 }
709
710 /* FIXME: graces/2002-08-08: These variables should eventually be
711 bound to an instance of the target object (as in gdbarch-tdep()),
712 when such a thing exists. */
713
714 /* This is set to the data address of the access causing the target
715 to stop for a watchpoint. */
716 static CORE_ADDR remote_watch_data_address;
717
718 /* This is non-zero if target stopped for a watchpoint. */
719 static int remote_stopped_by_watchpoint_p;
720
721 static struct target_ops remote_ops;
722
723 static struct target_ops extended_remote_ops;
724
725 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
726 ``forever'' still use the normal timeout mechanism. This is
727 currently used by the ASYNC code to guarentee that target reads
728 during the initial connect always time-out. Once getpkt has been
729 modified to return a timeout indication and, in turn
730 remote_wait()/wait_for_inferior() have gained a timeout parameter
731 this can go away. */
732 static int wait_forever_enabled_p = 1;
733
734 /* Allow the user to specify what sequence to send to the remote
735 when he requests a program interruption: Although ^C is usually
736 what remote systems expect (this is the default, here), it is
737 sometimes preferable to send a break. On other systems such
738 as the Linux kernel, a break followed by g, which is Magic SysRq g
739 is required in order to interrupt the execution. */
740 const char interrupt_sequence_control_c[] = "Ctrl-C";
741 const char interrupt_sequence_break[] = "BREAK";
742 const char interrupt_sequence_break_g[] = "BREAK-g";
743 static const char *interrupt_sequence_modes[] =
744 {
745 interrupt_sequence_control_c,
746 interrupt_sequence_break,
747 interrupt_sequence_break_g,
748 NULL
749 };
750 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
751
752 static void
753 show_interrupt_sequence (struct ui_file *file, int from_tty,
754 struct cmd_list_element *c,
755 const char *value)
756 {
757 if (interrupt_sequence_mode == interrupt_sequence_control_c)
758 fprintf_filtered (file,
759 _("Send the ASCII ETX character (Ctrl-c) "
760 "to the remote target to interrupt the "
761 "execution of the program.\n"));
762 else if (interrupt_sequence_mode == interrupt_sequence_break)
763 fprintf_filtered (file,
764 _("send a break signal to the remote target "
765 "to interrupt the execution of the program.\n"));
766 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
767 fprintf_filtered (file,
768 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
769 "the remote target to interrupt the execution "
770 "of Linux kernel.\n"));
771 else
772 internal_error (__FILE__, __LINE__,
773 _("Invalid value for interrupt_sequence_mode: %s."),
774 interrupt_sequence_mode);
775 }
776
777 /* This boolean variable specifies whether interrupt_sequence is sent
778 to the remote target when gdb connects to it.
779 This is mostly needed when you debug the Linux kernel: The Linux kernel
780 expects BREAK g which is Magic SysRq g for connecting gdb. */
781 static int interrupt_on_connect = 0;
782
783 /* This variable is used to implement the "set/show remotebreak" commands.
784 Since these commands are now deprecated in favor of "set/show remote
785 interrupt-sequence", it no longer has any effect on the code. */
786 static int remote_break;
787
788 static void
789 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
790 {
791 if (remote_break)
792 interrupt_sequence_mode = interrupt_sequence_break;
793 else
794 interrupt_sequence_mode = interrupt_sequence_control_c;
795 }
796
797 static void
798 show_remotebreak (struct ui_file *file, int from_tty,
799 struct cmd_list_element *c,
800 const char *value)
801 {
802 }
803
804 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
805 remote_open knows that we don't have a file open when the program
806 starts. */
807 static struct serial *remote_desc = NULL;
808
809 /* This variable sets the number of bits in an address that are to be
810 sent in a memory ("M" or "m") packet. Normally, after stripping
811 leading zeros, the entire address would be sent. This variable
812 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
813 initial implementation of remote.c restricted the address sent in
814 memory packets to ``host::sizeof long'' bytes - (typically 32
815 bits). Consequently, for 64 bit targets, the upper 32 bits of an
816 address was never sent. Since fixing this bug may cause a break in
817 some remote targets this variable is principly provided to
818 facilitate backward compatibility. */
819
820 static int remote_address_size;
821
822 /* Temporary to track who currently owns the terminal. See
823 remote_terminal_* for more details. */
824
825 static int remote_async_terminal_ours_p;
826
827 /* The executable file to use for "run" on the remote side. */
828
829 static char *remote_exec_file = "";
830
831 \f
832 /* User configurable variables for the number of characters in a
833 memory read/write packet. MIN (rsa->remote_packet_size,
834 rsa->sizeof_g_packet) is the default. Some targets need smaller
835 values (fifo overruns, et.al.) and some users need larger values
836 (speed up transfers). The variables ``preferred_*'' (the user
837 request), ``current_*'' (what was actually set) and ``forced_*''
838 (Positive - a soft limit, negative - a hard limit). */
839
840 struct memory_packet_config
841 {
842 char *name;
843 long size;
844 int fixed_p;
845 };
846
847 /* Compute the current size of a read/write packet. Since this makes
848 use of ``actual_register_packet_size'' the computation is dynamic. */
849
850 static long
851 get_memory_packet_size (struct memory_packet_config *config)
852 {
853 struct remote_state *rs = get_remote_state ();
854 struct remote_arch_state *rsa = get_remote_arch_state ();
855
856 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
857 law?) that some hosts don't cope very well with large alloca()
858 calls. Eventually the alloca() code will be replaced by calls to
859 xmalloc() and make_cleanups() allowing this restriction to either
860 be lifted or removed. */
861 #ifndef MAX_REMOTE_PACKET_SIZE
862 #define MAX_REMOTE_PACKET_SIZE 16384
863 #endif
864 /* NOTE: 20 ensures we can write at least one byte. */
865 #ifndef MIN_REMOTE_PACKET_SIZE
866 #define MIN_REMOTE_PACKET_SIZE 20
867 #endif
868 long what_they_get;
869 if (config->fixed_p)
870 {
871 if (config->size <= 0)
872 what_they_get = MAX_REMOTE_PACKET_SIZE;
873 else
874 what_they_get = config->size;
875 }
876 else
877 {
878 what_they_get = get_remote_packet_size ();
879 /* Limit the packet to the size specified by the user. */
880 if (config->size > 0
881 && what_they_get > config->size)
882 what_they_get = config->size;
883
884 /* Limit it to the size of the targets ``g'' response unless we have
885 permission from the stub to use a larger packet size. */
886 if (rs->explicit_packet_size == 0
887 && rsa->actual_register_packet_size > 0
888 && what_they_get > rsa->actual_register_packet_size)
889 what_they_get = rsa->actual_register_packet_size;
890 }
891 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
892 what_they_get = MAX_REMOTE_PACKET_SIZE;
893 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
894 what_they_get = MIN_REMOTE_PACKET_SIZE;
895
896 /* Make sure there is room in the global buffer for this packet
897 (including its trailing NUL byte). */
898 if (rs->buf_size < what_they_get + 1)
899 {
900 rs->buf_size = 2 * what_they_get;
901 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
902 }
903
904 return what_they_get;
905 }
906
907 /* Update the size of a read/write packet. If they user wants
908 something really big then do a sanity check. */
909
910 static void
911 set_memory_packet_size (char *args, struct memory_packet_config *config)
912 {
913 int fixed_p = config->fixed_p;
914 long size = config->size;
915
916 if (args == NULL)
917 error (_("Argument required (integer, `fixed' or `limited')."));
918 else if (strcmp (args, "hard") == 0
919 || strcmp (args, "fixed") == 0)
920 fixed_p = 1;
921 else if (strcmp (args, "soft") == 0
922 || strcmp (args, "limit") == 0)
923 fixed_p = 0;
924 else
925 {
926 char *end;
927
928 size = strtoul (args, &end, 0);
929 if (args == end)
930 error (_("Invalid %s (bad syntax)."), config->name);
931 #if 0
932 /* Instead of explicitly capping the size of a packet to
933 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
934 instead allowed to set the size to something arbitrarily
935 large. */
936 if (size > MAX_REMOTE_PACKET_SIZE)
937 error (_("Invalid %s (too large)."), config->name);
938 #endif
939 }
940 /* Extra checks? */
941 if (fixed_p && !config->fixed_p)
942 {
943 if (! query (_("The target may not be able to correctly handle a %s\n"
944 "of %ld bytes. Change the packet size? "),
945 config->name, size))
946 error (_("Packet size not changed."));
947 }
948 /* Update the config. */
949 config->fixed_p = fixed_p;
950 config->size = size;
951 }
952
953 static void
954 show_memory_packet_size (struct memory_packet_config *config)
955 {
956 printf_filtered (_("The %s is %ld. "), config->name, config->size);
957 if (config->fixed_p)
958 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
959 get_memory_packet_size (config));
960 else
961 printf_filtered (_("Packets are limited to %ld bytes.\n"),
962 get_memory_packet_size (config));
963 }
964
965 static struct memory_packet_config memory_write_packet_config =
966 {
967 "memory-write-packet-size",
968 };
969
970 static void
971 set_memory_write_packet_size (char *args, int from_tty)
972 {
973 set_memory_packet_size (args, &memory_write_packet_config);
974 }
975
976 static void
977 show_memory_write_packet_size (char *args, int from_tty)
978 {
979 show_memory_packet_size (&memory_write_packet_config);
980 }
981
982 static long
983 get_memory_write_packet_size (void)
984 {
985 return get_memory_packet_size (&memory_write_packet_config);
986 }
987
988 static struct memory_packet_config memory_read_packet_config =
989 {
990 "memory-read-packet-size",
991 };
992
993 static void
994 set_memory_read_packet_size (char *args, int from_tty)
995 {
996 set_memory_packet_size (args, &memory_read_packet_config);
997 }
998
999 static void
1000 show_memory_read_packet_size (char *args, int from_tty)
1001 {
1002 show_memory_packet_size (&memory_read_packet_config);
1003 }
1004
1005 static long
1006 get_memory_read_packet_size (void)
1007 {
1008 long size = get_memory_packet_size (&memory_read_packet_config);
1009
1010 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1011 extra buffer size argument before the memory read size can be
1012 increased beyond this. */
1013 if (size > get_remote_packet_size ())
1014 size = get_remote_packet_size ();
1015 return size;
1016 }
1017
1018 \f
1019 /* Generic configuration support for packets the stub optionally
1020 supports. Allows the user to specify the use of the packet as well
1021 as allowing GDB to auto-detect support in the remote stub. */
1022
1023 enum packet_support
1024 {
1025 PACKET_SUPPORT_UNKNOWN = 0,
1026 PACKET_ENABLE,
1027 PACKET_DISABLE
1028 };
1029
1030 struct packet_config
1031 {
1032 const char *name;
1033 const char *title;
1034 enum auto_boolean detect;
1035 enum packet_support support;
1036 };
1037
1038 /* Analyze a packet's return value and update the packet config
1039 accordingly. */
1040
1041 enum packet_result
1042 {
1043 PACKET_ERROR,
1044 PACKET_OK,
1045 PACKET_UNKNOWN
1046 };
1047
1048 static void
1049 update_packet_config (struct packet_config *config)
1050 {
1051 switch (config->detect)
1052 {
1053 case AUTO_BOOLEAN_TRUE:
1054 config->support = PACKET_ENABLE;
1055 break;
1056 case AUTO_BOOLEAN_FALSE:
1057 config->support = PACKET_DISABLE;
1058 break;
1059 case AUTO_BOOLEAN_AUTO:
1060 config->support = PACKET_SUPPORT_UNKNOWN;
1061 break;
1062 }
1063 }
1064
1065 static void
1066 show_packet_config_cmd (struct packet_config *config)
1067 {
1068 char *support = "internal-error";
1069
1070 switch (config->support)
1071 {
1072 case PACKET_ENABLE:
1073 support = "enabled";
1074 break;
1075 case PACKET_DISABLE:
1076 support = "disabled";
1077 break;
1078 case PACKET_SUPPORT_UNKNOWN:
1079 support = "unknown";
1080 break;
1081 }
1082 switch (config->detect)
1083 {
1084 case AUTO_BOOLEAN_AUTO:
1085 printf_filtered (_("Support for the `%s' packet "
1086 "is auto-detected, currently %s.\n"),
1087 config->name, support);
1088 break;
1089 case AUTO_BOOLEAN_TRUE:
1090 case AUTO_BOOLEAN_FALSE:
1091 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1092 config->name, support);
1093 break;
1094 }
1095 }
1096
1097 static void
1098 add_packet_config_cmd (struct packet_config *config, const char *name,
1099 const char *title, int legacy)
1100 {
1101 char *set_doc;
1102 char *show_doc;
1103 char *cmd_name;
1104
1105 config->name = name;
1106 config->title = title;
1107 config->detect = AUTO_BOOLEAN_AUTO;
1108 config->support = PACKET_SUPPORT_UNKNOWN;
1109 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1110 name, title);
1111 show_doc = xstrprintf ("Show current use of remote "
1112 "protocol `%s' (%s) packet",
1113 name, title);
1114 /* set/show TITLE-packet {auto,on,off} */
1115 cmd_name = xstrprintf ("%s-packet", title);
1116 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1117 &config->detect, set_doc,
1118 show_doc, NULL, /* help_doc */
1119 set_remote_protocol_packet_cmd,
1120 show_remote_protocol_packet_cmd,
1121 &remote_set_cmdlist, &remote_show_cmdlist);
1122 /* The command code copies the documentation strings. */
1123 xfree (set_doc);
1124 xfree (show_doc);
1125 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1126 if (legacy)
1127 {
1128 char *legacy_name;
1129
1130 legacy_name = xstrprintf ("%s-packet", name);
1131 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1132 &remote_set_cmdlist);
1133 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1134 &remote_show_cmdlist);
1135 }
1136 }
1137
1138 static enum packet_result
1139 packet_check_result (const char *buf)
1140 {
1141 if (buf[0] != '\0')
1142 {
1143 /* The stub recognized the packet request. Check that the
1144 operation succeeded. */
1145 if (buf[0] == 'E'
1146 && isxdigit (buf[1]) && isxdigit (buf[2])
1147 && buf[3] == '\0')
1148 /* "Enn" - definitly an error. */
1149 return PACKET_ERROR;
1150
1151 /* Always treat "E." as an error. This will be used for
1152 more verbose error messages, such as E.memtypes. */
1153 if (buf[0] == 'E' && buf[1] == '.')
1154 return PACKET_ERROR;
1155
1156 /* The packet may or may not be OK. Just assume it is. */
1157 return PACKET_OK;
1158 }
1159 else
1160 /* The stub does not support the packet. */
1161 return PACKET_UNKNOWN;
1162 }
1163
1164 static enum packet_result
1165 packet_ok (const char *buf, struct packet_config *config)
1166 {
1167 enum packet_result result;
1168
1169 result = packet_check_result (buf);
1170 switch (result)
1171 {
1172 case PACKET_OK:
1173 case PACKET_ERROR:
1174 /* The stub recognized the packet request. */
1175 switch (config->support)
1176 {
1177 case PACKET_SUPPORT_UNKNOWN:
1178 if (remote_debug)
1179 fprintf_unfiltered (gdb_stdlog,
1180 "Packet %s (%s) is supported\n",
1181 config->name, config->title);
1182 config->support = PACKET_ENABLE;
1183 break;
1184 case PACKET_DISABLE:
1185 internal_error (__FILE__, __LINE__,
1186 _("packet_ok: attempt to use a disabled packet"));
1187 break;
1188 case PACKET_ENABLE:
1189 break;
1190 }
1191 break;
1192 case PACKET_UNKNOWN:
1193 /* The stub does not support the packet. */
1194 switch (config->support)
1195 {
1196 case PACKET_ENABLE:
1197 if (config->detect == AUTO_BOOLEAN_AUTO)
1198 /* If the stub previously indicated that the packet was
1199 supported then there is a protocol error.. */
1200 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1201 config->name, config->title);
1202 else
1203 /* The user set it wrong. */
1204 error (_("Enabled packet %s (%s) not recognized by stub"),
1205 config->name, config->title);
1206 break;
1207 case PACKET_SUPPORT_UNKNOWN:
1208 if (remote_debug)
1209 fprintf_unfiltered (gdb_stdlog,
1210 "Packet %s (%s) is NOT supported\n",
1211 config->name, config->title);
1212 config->support = PACKET_DISABLE;
1213 break;
1214 case PACKET_DISABLE:
1215 break;
1216 }
1217 break;
1218 }
1219
1220 return result;
1221 }
1222
1223 enum {
1224 PACKET_vCont = 0,
1225 PACKET_X,
1226 PACKET_qSymbol,
1227 PACKET_P,
1228 PACKET_p,
1229 PACKET_Z0,
1230 PACKET_Z1,
1231 PACKET_Z2,
1232 PACKET_Z3,
1233 PACKET_Z4,
1234 PACKET_vFile_open,
1235 PACKET_vFile_pread,
1236 PACKET_vFile_pwrite,
1237 PACKET_vFile_close,
1238 PACKET_vFile_unlink,
1239 PACKET_qXfer_auxv,
1240 PACKET_qXfer_features,
1241 PACKET_qXfer_libraries,
1242 PACKET_qXfer_memory_map,
1243 PACKET_qXfer_spu_read,
1244 PACKET_qXfer_spu_write,
1245 PACKET_qXfer_osdata,
1246 PACKET_qXfer_threads,
1247 PACKET_qXfer_statictrace_read,
1248 PACKET_qXfer_traceframe_info,
1249 PACKET_qGetTIBAddr,
1250 PACKET_qGetTLSAddr,
1251 PACKET_qSupported,
1252 PACKET_QPassSignals,
1253 PACKET_qSearch_memory,
1254 PACKET_vAttach,
1255 PACKET_vRun,
1256 PACKET_QStartNoAckMode,
1257 PACKET_vKill,
1258 PACKET_qXfer_siginfo_read,
1259 PACKET_qXfer_siginfo_write,
1260 PACKET_qAttached,
1261 PACKET_ConditionalTracepoints,
1262 PACKET_FastTracepoints,
1263 PACKET_StaticTracepoints,
1264 PACKET_bc,
1265 PACKET_bs,
1266 PACKET_TracepointSource,
1267 PACKET_QAllow,
1268 PACKET_qXfer_fdpic,
1269 PACKET_QDisableRandomization,
1270 PACKET_MAX
1271 };
1272
1273 static struct packet_config remote_protocol_packets[PACKET_MAX];
1274
1275 static void
1276 set_remote_protocol_packet_cmd (char *args, int from_tty,
1277 struct cmd_list_element *c)
1278 {
1279 struct packet_config *packet;
1280
1281 for (packet = remote_protocol_packets;
1282 packet < &remote_protocol_packets[PACKET_MAX];
1283 packet++)
1284 {
1285 if (&packet->detect == c->var)
1286 {
1287 update_packet_config (packet);
1288 return;
1289 }
1290 }
1291 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1292 c->name);
1293 }
1294
1295 static void
1296 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1297 struct cmd_list_element *c,
1298 const char *value)
1299 {
1300 struct packet_config *packet;
1301
1302 for (packet = remote_protocol_packets;
1303 packet < &remote_protocol_packets[PACKET_MAX];
1304 packet++)
1305 {
1306 if (&packet->detect == c->var)
1307 {
1308 show_packet_config_cmd (packet);
1309 return;
1310 }
1311 }
1312 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1313 c->name);
1314 }
1315
1316 /* Should we try one of the 'Z' requests? */
1317
1318 enum Z_packet_type
1319 {
1320 Z_PACKET_SOFTWARE_BP,
1321 Z_PACKET_HARDWARE_BP,
1322 Z_PACKET_WRITE_WP,
1323 Z_PACKET_READ_WP,
1324 Z_PACKET_ACCESS_WP,
1325 NR_Z_PACKET_TYPES
1326 };
1327
1328 /* For compatibility with older distributions. Provide a ``set remote
1329 Z-packet ...'' command that updates all the Z packet types. */
1330
1331 static enum auto_boolean remote_Z_packet_detect;
1332
1333 static void
1334 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1335 struct cmd_list_element *c)
1336 {
1337 int i;
1338
1339 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1340 {
1341 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1342 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1343 }
1344 }
1345
1346 static void
1347 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1348 struct cmd_list_element *c,
1349 const char *value)
1350 {
1351 int i;
1352
1353 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1354 {
1355 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1356 }
1357 }
1358
1359 /* Should we try the 'ThreadInfo' query packet?
1360
1361 This variable (NOT available to the user: auto-detect only!)
1362 determines whether GDB will use the new, simpler "ThreadInfo"
1363 query or the older, more complex syntax for thread queries.
1364 This is an auto-detect variable (set to true at each connect,
1365 and set to false when the target fails to recognize it). */
1366
1367 static int use_threadinfo_query;
1368 static int use_threadextra_query;
1369
1370 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1371 static struct async_signal_handler *sigint_remote_twice_token;
1372 static struct async_signal_handler *sigint_remote_token;
1373
1374 \f
1375 /* Asynchronous signal handle registered as event loop source for
1376 when we have pending events ready to be passed to the core. */
1377
1378 static struct async_event_handler *remote_async_inferior_event_token;
1379
1380 /* Asynchronous signal handle registered as event loop source for when
1381 the remote sent us a %Stop notification. The registered callback
1382 will do a vStopped sequence to pull the rest of the events out of
1383 the remote side into our event queue. */
1384
1385 static struct async_event_handler *remote_async_get_pending_events_token;
1386 \f
1387
1388 static ptid_t magic_null_ptid;
1389 static ptid_t not_sent_ptid;
1390 static ptid_t any_thread_ptid;
1391
1392 /* These are the threads which we last sent to the remote system. The
1393 TID member will be -1 for all or -2 for not sent yet. */
1394
1395 static ptid_t general_thread;
1396 static ptid_t continue_thread;
1397
1398 /* This the traceframe which we last selected on the remote system.
1399 It will be -1 if no traceframe is selected. */
1400 static int remote_traceframe_number = -1;
1401
1402 /* Find out if the stub attached to PID (and hence GDB should offer to
1403 detach instead of killing it when bailing out). */
1404
1405 static int
1406 remote_query_attached (int pid)
1407 {
1408 struct remote_state *rs = get_remote_state ();
1409
1410 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1411 return 0;
1412
1413 if (remote_multi_process_p (rs))
1414 sprintf (rs->buf, "qAttached:%x", pid);
1415 else
1416 sprintf (rs->buf, "qAttached");
1417
1418 putpkt (rs->buf);
1419 getpkt (&rs->buf, &rs->buf_size, 0);
1420
1421 switch (packet_ok (rs->buf,
1422 &remote_protocol_packets[PACKET_qAttached]))
1423 {
1424 case PACKET_OK:
1425 if (strcmp (rs->buf, "1") == 0)
1426 return 1;
1427 break;
1428 case PACKET_ERROR:
1429 warning (_("Remote failure reply: %s"), rs->buf);
1430 break;
1431 case PACKET_UNKNOWN:
1432 break;
1433 }
1434
1435 return 0;
1436 }
1437
1438 /* Add PID to GDB's inferior table. Since we can be connected to a
1439 remote system before before knowing about any inferior, mark the
1440 target with execution when we find the first inferior. If ATTACHED
1441 is 1, then we had just attached to this inferior. If it is 0, then
1442 we just created this inferior. If it is -1, then try querying the
1443 remote stub to find out if it had attached to the inferior or
1444 not. */
1445
1446 static struct inferior *
1447 remote_add_inferior (int pid, int attached)
1448 {
1449 struct inferior *inf;
1450
1451 /* Check whether this process we're learning about is to be
1452 considered attached, or if is to be considered to have been
1453 spawned by the stub. */
1454 if (attached == -1)
1455 attached = remote_query_attached (pid);
1456
1457 if (gdbarch_has_global_solist (target_gdbarch))
1458 {
1459 /* If the target shares code across all inferiors, then every
1460 attach adds a new inferior. */
1461 inf = add_inferior (pid);
1462
1463 /* ... and every inferior is bound to the same program space.
1464 However, each inferior may still have its own address
1465 space. */
1466 inf->aspace = maybe_new_address_space ();
1467 inf->pspace = current_program_space;
1468 }
1469 else
1470 {
1471 /* In the traditional debugging scenario, there's a 1-1 match
1472 between program/address spaces. We simply bind the inferior
1473 to the program space's address space. */
1474 inf = current_inferior ();
1475 inferior_appeared (inf, pid);
1476 }
1477
1478 inf->attach_flag = attached;
1479
1480 return inf;
1481 }
1482
1483 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1484 according to RUNNING. */
1485
1486 static void
1487 remote_add_thread (ptid_t ptid, int running)
1488 {
1489 add_thread (ptid);
1490
1491 set_executing (ptid, running);
1492 set_running (ptid, running);
1493 }
1494
1495 /* Come here when we learn about a thread id from the remote target.
1496 It may be the first time we hear about such thread, so take the
1497 opportunity to add it to GDB's thread list. In case this is the
1498 first time we're noticing its corresponding inferior, add it to
1499 GDB's inferior list as well. */
1500
1501 static void
1502 remote_notice_new_inferior (ptid_t currthread, int running)
1503 {
1504 /* If this is a new thread, add it to GDB's thread list.
1505 If we leave it up to WFI to do this, bad things will happen. */
1506
1507 if (in_thread_list (currthread) && is_exited (currthread))
1508 {
1509 /* We're seeing an event on a thread id we knew had exited.
1510 This has to be a new thread reusing the old id. Add it. */
1511 remote_add_thread (currthread, running);
1512 return;
1513 }
1514
1515 if (!in_thread_list (currthread))
1516 {
1517 struct inferior *inf = NULL;
1518 int pid = ptid_get_pid (currthread);
1519
1520 if (ptid_is_pid (inferior_ptid)
1521 && pid == ptid_get_pid (inferior_ptid))
1522 {
1523 /* inferior_ptid has no thread member yet. This can happen
1524 with the vAttach -> remote_wait,"TAAthread:" path if the
1525 stub doesn't support qC. This is the first stop reported
1526 after an attach, so this is the main thread. Update the
1527 ptid in the thread list. */
1528 if (in_thread_list (pid_to_ptid (pid)))
1529 thread_change_ptid (inferior_ptid, currthread);
1530 else
1531 {
1532 remote_add_thread (currthread, running);
1533 inferior_ptid = currthread;
1534 }
1535 return;
1536 }
1537
1538 if (ptid_equal (magic_null_ptid, inferior_ptid))
1539 {
1540 /* inferior_ptid is not set yet. This can happen with the
1541 vRun -> remote_wait,"TAAthread:" path if the stub
1542 doesn't support qC. This is the first stop reported
1543 after an attach, so this is the main thread. Update the
1544 ptid in the thread list. */
1545 thread_change_ptid (inferior_ptid, currthread);
1546 return;
1547 }
1548
1549 /* When connecting to a target remote, or to a target
1550 extended-remote which already was debugging an inferior, we
1551 may not know about it yet. Add it before adding its child
1552 thread, so notifications are emitted in a sensible order. */
1553 if (!in_inferior_list (ptid_get_pid (currthread)))
1554 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1555
1556 /* This is really a new thread. Add it. */
1557 remote_add_thread (currthread, running);
1558
1559 /* If we found a new inferior, let the common code do whatever
1560 it needs to with it (e.g., read shared libraries, insert
1561 breakpoints). */
1562 if (inf != NULL)
1563 notice_new_inferior (currthread, running, 0);
1564 }
1565 }
1566
1567 /* Return the private thread data, creating it if necessary. */
1568
1569 struct private_thread_info *
1570 demand_private_info (ptid_t ptid)
1571 {
1572 struct thread_info *info = find_thread_ptid (ptid);
1573
1574 gdb_assert (info);
1575
1576 if (!info->private)
1577 {
1578 info->private = xmalloc (sizeof (*(info->private)));
1579 info->private_dtor = free_private_thread_info;
1580 info->private->core = -1;
1581 info->private->extra = 0;
1582 }
1583
1584 return info->private;
1585 }
1586
1587 /* Call this function as a result of
1588 1) A halt indication (T packet) containing a thread id
1589 2) A direct query of currthread
1590 3) Successful execution of set thread */
1591
1592 static void
1593 record_currthread (ptid_t currthread)
1594 {
1595 general_thread = currthread;
1596 }
1597
1598 static char *last_pass_packet;
1599
1600 /* If 'QPassSignals' is supported, tell the remote stub what signals
1601 it can simply pass through to the inferior without reporting. */
1602
1603 static void
1604 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1605 {
1606 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1607 {
1608 char *pass_packet, *p;
1609 int count = 0, i;
1610
1611 gdb_assert (numsigs < 256);
1612 for (i = 0; i < numsigs; i++)
1613 {
1614 if (pass_signals[i])
1615 count++;
1616 }
1617 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1618 strcpy (pass_packet, "QPassSignals:");
1619 p = pass_packet + strlen (pass_packet);
1620 for (i = 0; i < numsigs; i++)
1621 {
1622 if (pass_signals[i])
1623 {
1624 if (i >= 16)
1625 *p++ = tohex (i >> 4);
1626 *p++ = tohex (i & 15);
1627 if (count)
1628 *p++ = ';';
1629 else
1630 break;
1631 count--;
1632 }
1633 }
1634 *p = 0;
1635 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1636 {
1637 struct remote_state *rs = get_remote_state ();
1638 char *buf = rs->buf;
1639
1640 putpkt (pass_packet);
1641 getpkt (&rs->buf, &rs->buf_size, 0);
1642 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1643 if (last_pass_packet)
1644 xfree (last_pass_packet);
1645 last_pass_packet = pass_packet;
1646 }
1647 else
1648 xfree (pass_packet);
1649 }
1650 }
1651
1652 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1653 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1654 thread. If GEN is set, set the general thread, if not, then set
1655 the step/continue thread. */
1656 static void
1657 set_thread (struct ptid ptid, int gen)
1658 {
1659 struct remote_state *rs = get_remote_state ();
1660 ptid_t state = gen ? general_thread : continue_thread;
1661 char *buf = rs->buf;
1662 char *endbuf = rs->buf + get_remote_packet_size ();
1663
1664 if (ptid_equal (state, ptid))
1665 return;
1666
1667 *buf++ = 'H';
1668 *buf++ = gen ? 'g' : 'c';
1669 if (ptid_equal (ptid, magic_null_ptid))
1670 xsnprintf (buf, endbuf - buf, "0");
1671 else if (ptid_equal (ptid, any_thread_ptid))
1672 xsnprintf (buf, endbuf - buf, "0");
1673 else if (ptid_equal (ptid, minus_one_ptid))
1674 xsnprintf (buf, endbuf - buf, "-1");
1675 else
1676 write_ptid (buf, endbuf, ptid);
1677 putpkt (rs->buf);
1678 getpkt (&rs->buf, &rs->buf_size, 0);
1679 if (gen)
1680 general_thread = ptid;
1681 else
1682 continue_thread = ptid;
1683 }
1684
1685 static void
1686 set_general_thread (struct ptid ptid)
1687 {
1688 set_thread (ptid, 1);
1689 }
1690
1691 static void
1692 set_continue_thread (struct ptid ptid)
1693 {
1694 set_thread (ptid, 0);
1695 }
1696
1697 /* Change the remote current process. Which thread within the process
1698 ends up selected isn't important, as long as it is the same process
1699 as what INFERIOR_PTID points to.
1700
1701 This comes from that fact that there is no explicit notion of
1702 "selected process" in the protocol. The selected process for
1703 general operations is the process the selected general thread
1704 belongs to. */
1705
1706 static void
1707 set_general_process (void)
1708 {
1709 struct remote_state *rs = get_remote_state ();
1710
1711 /* If the remote can't handle multiple processes, don't bother. */
1712 if (!remote_multi_process_p (rs))
1713 return;
1714
1715 /* We only need to change the remote current thread if it's pointing
1716 at some other process. */
1717 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1718 set_general_thread (inferior_ptid);
1719 }
1720
1721 \f
1722 /* Return nonzero if the thread PTID is still alive on the remote
1723 system. */
1724
1725 static int
1726 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1727 {
1728 struct remote_state *rs = get_remote_state ();
1729 char *p, *endp;
1730
1731 if (ptid_equal (ptid, magic_null_ptid))
1732 /* The main thread is always alive. */
1733 return 1;
1734
1735 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1736 /* The main thread is always alive. This can happen after a
1737 vAttach, if the remote side doesn't support
1738 multi-threading. */
1739 return 1;
1740
1741 p = rs->buf;
1742 endp = rs->buf + get_remote_packet_size ();
1743
1744 *p++ = 'T';
1745 write_ptid (p, endp, ptid);
1746
1747 putpkt (rs->buf);
1748 getpkt (&rs->buf, &rs->buf_size, 0);
1749 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1750 }
1751
1752 /* About these extended threadlist and threadinfo packets. They are
1753 variable length packets but, the fields within them are often fixed
1754 length. They are redundent enough to send over UDP as is the
1755 remote protocol in general. There is a matching unit test module
1756 in libstub. */
1757
1758 #define OPAQUETHREADBYTES 8
1759
1760 /* a 64 bit opaque identifier */
1761 typedef unsigned char threadref[OPAQUETHREADBYTES];
1762
1763 /* WARNING: This threadref data structure comes from the remote O.S.,
1764 libstub protocol encoding, and remote.c. It is not particularly
1765 changable. */
1766
1767 /* Right now, the internal structure is int. We want it to be bigger.
1768 Plan to fix this. */
1769
1770 typedef int gdb_threadref; /* Internal GDB thread reference. */
1771
1772 /* gdb_ext_thread_info is an internal GDB data structure which is
1773 equivalent to the reply of the remote threadinfo packet. */
1774
1775 struct gdb_ext_thread_info
1776 {
1777 threadref threadid; /* External form of thread reference. */
1778 int active; /* Has state interesting to GDB?
1779 regs, stack. */
1780 char display[256]; /* Brief state display, name,
1781 blocked/suspended. */
1782 char shortname[32]; /* To be used to name threads. */
1783 char more_display[256]; /* Long info, statistics, queue depth,
1784 whatever. */
1785 };
1786
1787 /* The volume of remote transfers can be limited by submitting
1788 a mask containing bits specifying the desired information.
1789 Use a union of these values as the 'selection' parameter to
1790 get_thread_info. FIXME: Make these TAG names more thread specific. */
1791
1792 #define TAG_THREADID 1
1793 #define TAG_EXISTS 2
1794 #define TAG_DISPLAY 4
1795 #define TAG_THREADNAME 8
1796 #define TAG_MOREDISPLAY 16
1797
1798 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1799
1800 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1801
1802 static char *unpack_nibble (char *buf, int *val);
1803
1804 static char *pack_nibble (char *buf, int nibble);
1805
1806 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1807
1808 static char *unpack_byte (char *buf, int *value);
1809
1810 static char *pack_int (char *buf, int value);
1811
1812 static char *unpack_int (char *buf, int *value);
1813
1814 static char *unpack_string (char *src, char *dest, int length);
1815
1816 static char *pack_threadid (char *pkt, threadref *id);
1817
1818 static char *unpack_threadid (char *inbuf, threadref *id);
1819
1820 void int_to_threadref (threadref *id, int value);
1821
1822 static int threadref_to_int (threadref *ref);
1823
1824 static void copy_threadref (threadref *dest, threadref *src);
1825
1826 static int threadmatch (threadref *dest, threadref *src);
1827
1828 static char *pack_threadinfo_request (char *pkt, int mode,
1829 threadref *id);
1830
1831 static int remote_unpack_thread_info_response (char *pkt,
1832 threadref *expectedref,
1833 struct gdb_ext_thread_info
1834 *info);
1835
1836
1837 static int remote_get_threadinfo (threadref *threadid,
1838 int fieldset, /*TAG mask */
1839 struct gdb_ext_thread_info *info);
1840
1841 static char *pack_threadlist_request (char *pkt, int startflag,
1842 int threadcount,
1843 threadref *nextthread);
1844
1845 static int parse_threadlist_response (char *pkt,
1846 int result_limit,
1847 threadref *original_echo,
1848 threadref *resultlist,
1849 int *doneflag);
1850
1851 static int remote_get_threadlist (int startflag,
1852 threadref *nextthread,
1853 int result_limit,
1854 int *done,
1855 int *result_count,
1856 threadref *threadlist);
1857
1858 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1859
1860 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1861 void *context, int looplimit);
1862
1863 static int remote_newthread_step (threadref *ref, void *context);
1864
1865
1866 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1867 buffer we're allowed to write to. Returns
1868 BUF+CHARACTERS_WRITTEN. */
1869
1870 static char *
1871 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1872 {
1873 int pid, tid;
1874 struct remote_state *rs = get_remote_state ();
1875
1876 if (remote_multi_process_p (rs))
1877 {
1878 pid = ptid_get_pid (ptid);
1879 if (pid < 0)
1880 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1881 else
1882 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1883 }
1884 tid = ptid_get_tid (ptid);
1885 if (tid < 0)
1886 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1887 else
1888 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1889
1890 return buf;
1891 }
1892
1893 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1894 passed the last parsed char. Returns null_ptid on error. */
1895
1896 static ptid_t
1897 read_ptid (char *buf, char **obuf)
1898 {
1899 char *p = buf;
1900 char *pp;
1901 ULONGEST pid = 0, tid = 0;
1902
1903 if (*p == 'p')
1904 {
1905 /* Multi-process ptid. */
1906 pp = unpack_varlen_hex (p + 1, &pid);
1907 if (*pp != '.')
1908 error (_("invalid remote ptid: %s"), p);
1909
1910 p = pp;
1911 pp = unpack_varlen_hex (p + 1, &tid);
1912 if (obuf)
1913 *obuf = pp;
1914 return ptid_build (pid, 0, tid);
1915 }
1916
1917 /* No multi-process. Just a tid. */
1918 pp = unpack_varlen_hex (p, &tid);
1919
1920 /* Since the stub is not sending a process id, then default to
1921 what's in inferior_ptid, unless it's null at this point. If so,
1922 then since there's no way to know the pid of the reported
1923 threads, use the magic number. */
1924 if (ptid_equal (inferior_ptid, null_ptid))
1925 pid = ptid_get_pid (magic_null_ptid);
1926 else
1927 pid = ptid_get_pid (inferior_ptid);
1928
1929 if (obuf)
1930 *obuf = pp;
1931 return ptid_build (pid, 0, tid);
1932 }
1933
1934 /* Encode 64 bits in 16 chars of hex. */
1935
1936 static const char hexchars[] = "0123456789abcdef";
1937
1938 static int
1939 ishex (int ch, int *val)
1940 {
1941 if ((ch >= 'a') && (ch <= 'f'))
1942 {
1943 *val = ch - 'a' + 10;
1944 return 1;
1945 }
1946 if ((ch >= 'A') && (ch <= 'F'))
1947 {
1948 *val = ch - 'A' + 10;
1949 return 1;
1950 }
1951 if ((ch >= '0') && (ch <= '9'))
1952 {
1953 *val = ch - '0';
1954 return 1;
1955 }
1956 return 0;
1957 }
1958
1959 static int
1960 stubhex (int ch)
1961 {
1962 if (ch >= 'a' && ch <= 'f')
1963 return ch - 'a' + 10;
1964 if (ch >= '0' && ch <= '9')
1965 return ch - '0';
1966 if (ch >= 'A' && ch <= 'F')
1967 return ch - 'A' + 10;
1968 return -1;
1969 }
1970
1971 static int
1972 stub_unpack_int (char *buff, int fieldlength)
1973 {
1974 int nibble;
1975 int retval = 0;
1976
1977 while (fieldlength)
1978 {
1979 nibble = stubhex (*buff++);
1980 retval |= nibble;
1981 fieldlength--;
1982 if (fieldlength)
1983 retval = retval << 4;
1984 }
1985 return retval;
1986 }
1987
1988 char *
1989 unpack_varlen_hex (char *buff, /* packet to parse */
1990 ULONGEST *result)
1991 {
1992 int nibble;
1993 ULONGEST retval = 0;
1994
1995 while (ishex (*buff, &nibble))
1996 {
1997 buff++;
1998 retval = retval << 4;
1999 retval |= nibble & 0x0f;
2000 }
2001 *result = retval;
2002 return buff;
2003 }
2004
2005 static char *
2006 unpack_nibble (char *buf, int *val)
2007 {
2008 *val = fromhex (*buf++);
2009 return buf;
2010 }
2011
2012 static char *
2013 pack_nibble (char *buf, int nibble)
2014 {
2015 *buf++ = hexchars[(nibble & 0x0f)];
2016 return buf;
2017 }
2018
2019 static char *
2020 pack_hex_byte (char *pkt, int byte)
2021 {
2022 *pkt++ = hexchars[(byte >> 4) & 0xf];
2023 *pkt++ = hexchars[(byte & 0xf)];
2024 return pkt;
2025 }
2026
2027 static char *
2028 unpack_byte (char *buf, int *value)
2029 {
2030 *value = stub_unpack_int (buf, 2);
2031 return buf + 2;
2032 }
2033
2034 static char *
2035 pack_int (char *buf, int value)
2036 {
2037 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2038 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2039 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2040 buf = pack_hex_byte (buf, (value & 0xff));
2041 return buf;
2042 }
2043
2044 static char *
2045 unpack_int (char *buf, int *value)
2046 {
2047 *value = stub_unpack_int (buf, 8);
2048 return buf + 8;
2049 }
2050
2051 #if 0 /* Currently unused, uncomment when needed. */
2052 static char *pack_string (char *pkt, char *string);
2053
2054 static char *
2055 pack_string (char *pkt, char *string)
2056 {
2057 char ch;
2058 int len;
2059
2060 len = strlen (string);
2061 if (len > 200)
2062 len = 200; /* Bigger than most GDB packets, junk??? */
2063 pkt = pack_hex_byte (pkt, len);
2064 while (len-- > 0)
2065 {
2066 ch = *string++;
2067 if ((ch == '\0') || (ch == '#'))
2068 ch = '*'; /* Protect encapsulation. */
2069 *pkt++ = ch;
2070 }
2071 return pkt;
2072 }
2073 #endif /* 0 (unused) */
2074
2075 static char *
2076 unpack_string (char *src, char *dest, int length)
2077 {
2078 while (length--)
2079 *dest++ = *src++;
2080 *dest = '\0';
2081 return src;
2082 }
2083
2084 static char *
2085 pack_threadid (char *pkt, threadref *id)
2086 {
2087 char *limit;
2088 unsigned char *altid;
2089
2090 altid = (unsigned char *) id;
2091 limit = pkt + BUF_THREAD_ID_SIZE;
2092 while (pkt < limit)
2093 pkt = pack_hex_byte (pkt, *altid++);
2094 return pkt;
2095 }
2096
2097
2098 static char *
2099 unpack_threadid (char *inbuf, threadref *id)
2100 {
2101 char *altref;
2102 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2103 int x, y;
2104
2105 altref = (char *) id;
2106
2107 while (inbuf < limit)
2108 {
2109 x = stubhex (*inbuf++);
2110 y = stubhex (*inbuf++);
2111 *altref++ = (x << 4) | y;
2112 }
2113 return inbuf;
2114 }
2115
2116 /* Externally, threadrefs are 64 bits but internally, they are still
2117 ints. This is due to a mismatch of specifications. We would like
2118 to use 64bit thread references internally. This is an adapter
2119 function. */
2120
2121 void
2122 int_to_threadref (threadref *id, int value)
2123 {
2124 unsigned char *scan;
2125
2126 scan = (unsigned char *) id;
2127 {
2128 int i = 4;
2129 while (i--)
2130 *scan++ = 0;
2131 }
2132 *scan++ = (value >> 24) & 0xff;
2133 *scan++ = (value >> 16) & 0xff;
2134 *scan++ = (value >> 8) & 0xff;
2135 *scan++ = (value & 0xff);
2136 }
2137
2138 static int
2139 threadref_to_int (threadref *ref)
2140 {
2141 int i, value = 0;
2142 unsigned char *scan;
2143
2144 scan = *ref;
2145 scan += 4;
2146 i = 4;
2147 while (i-- > 0)
2148 value = (value << 8) | ((*scan++) & 0xff);
2149 return value;
2150 }
2151
2152 static void
2153 copy_threadref (threadref *dest, threadref *src)
2154 {
2155 int i;
2156 unsigned char *csrc, *cdest;
2157
2158 csrc = (unsigned char *) src;
2159 cdest = (unsigned char *) dest;
2160 i = 8;
2161 while (i--)
2162 *cdest++ = *csrc++;
2163 }
2164
2165 static int
2166 threadmatch (threadref *dest, threadref *src)
2167 {
2168 /* Things are broken right now, so just assume we got a match. */
2169 #if 0
2170 unsigned char *srcp, *destp;
2171 int i, result;
2172 srcp = (char *) src;
2173 destp = (char *) dest;
2174
2175 result = 1;
2176 while (i-- > 0)
2177 result &= (*srcp++ == *destp++) ? 1 : 0;
2178 return result;
2179 #endif
2180 return 1;
2181 }
2182
2183 /*
2184 threadid:1, # always request threadid
2185 context_exists:2,
2186 display:4,
2187 unique_name:8,
2188 more_display:16
2189 */
2190
2191 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2192
2193 static char *
2194 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2195 {
2196 *pkt++ = 'q'; /* Info Query */
2197 *pkt++ = 'P'; /* process or thread info */
2198 pkt = pack_int (pkt, mode); /* mode */
2199 pkt = pack_threadid (pkt, id); /* threadid */
2200 *pkt = '\0'; /* terminate */
2201 return pkt;
2202 }
2203
2204 /* These values tag the fields in a thread info response packet. */
2205 /* Tagging the fields allows us to request specific fields and to
2206 add more fields as time goes by. */
2207
2208 #define TAG_THREADID 1 /* Echo the thread identifier. */
2209 #define TAG_EXISTS 2 /* Is this process defined enough to
2210 fetch registers and its stack? */
2211 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2212 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2213 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2214 the process. */
2215
2216 static int
2217 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2218 struct gdb_ext_thread_info *info)
2219 {
2220 struct remote_state *rs = get_remote_state ();
2221 int mask, length;
2222 int tag;
2223 threadref ref;
2224 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2225 int retval = 1;
2226
2227 /* info->threadid = 0; FIXME: implement zero_threadref. */
2228 info->active = 0;
2229 info->display[0] = '\0';
2230 info->shortname[0] = '\0';
2231 info->more_display[0] = '\0';
2232
2233 /* Assume the characters indicating the packet type have been
2234 stripped. */
2235 pkt = unpack_int (pkt, &mask); /* arg mask */
2236 pkt = unpack_threadid (pkt, &ref);
2237
2238 if (mask == 0)
2239 warning (_("Incomplete response to threadinfo request."));
2240 if (!threadmatch (&ref, expectedref))
2241 { /* This is an answer to a different request. */
2242 warning (_("ERROR RMT Thread info mismatch."));
2243 return 0;
2244 }
2245 copy_threadref (&info->threadid, &ref);
2246
2247 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2248
2249 /* Packets are terminated with nulls. */
2250 while ((pkt < limit) && mask && *pkt)
2251 {
2252 pkt = unpack_int (pkt, &tag); /* tag */
2253 pkt = unpack_byte (pkt, &length); /* length */
2254 if (!(tag & mask)) /* Tags out of synch with mask. */
2255 {
2256 warning (_("ERROR RMT: threadinfo tag mismatch."));
2257 retval = 0;
2258 break;
2259 }
2260 if (tag == TAG_THREADID)
2261 {
2262 if (length != 16)
2263 {
2264 warning (_("ERROR RMT: length of threadid is not 16."));
2265 retval = 0;
2266 break;
2267 }
2268 pkt = unpack_threadid (pkt, &ref);
2269 mask = mask & ~TAG_THREADID;
2270 continue;
2271 }
2272 if (tag == TAG_EXISTS)
2273 {
2274 info->active = stub_unpack_int (pkt, length);
2275 pkt += length;
2276 mask = mask & ~(TAG_EXISTS);
2277 if (length > 8)
2278 {
2279 warning (_("ERROR RMT: 'exists' length too long."));
2280 retval = 0;
2281 break;
2282 }
2283 continue;
2284 }
2285 if (tag == TAG_THREADNAME)
2286 {
2287 pkt = unpack_string (pkt, &info->shortname[0], length);
2288 mask = mask & ~TAG_THREADNAME;
2289 continue;
2290 }
2291 if (tag == TAG_DISPLAY)
2292 {
2293 pkt = unpack_string (pkt, &info->display[0], length);
2294 mask = mask & ~TAG_DISPLAY;
2295 continue;
2296 }
2297 if (tag == TAG_MOREDISPLAY)
2298 {
2299 pkt = unpack_string (pkt, &info->more_display[0], length);
2300 mask = mask & ~TAG_MOREDISPLAY;
2301 continue;
2302 }
2303 warning (_("ERROR RMT: unknown thread info tag."));
2304 break; /* Not a tag we know about. */
2305 }
2306 return retval;
2307 }
2308
2309 static int
2310 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2311 struct gdb_ext_thread_info *info)
2312 {
2313 struct remote_state *rs = get_remote_state ();
2314 int result;
2315
2316 pack_threadinfo_request (rs->buf, fieldset, threadid);
2317 putpkt (rs->buf);
2318 getpkt (&rs->buf, &rs->buf_size, 0);
2319
2320 if (rs->buf[0] == '\0')
2321 return 0;
2322
2323 result = remote_unpack_thread_info_response (rs->buf + 2,
2324 threadid, info);
2325 return result;
2326 }
2327
2328 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2329
2330 static char *
2331 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2332 threadref *nextthread)
2333 {
2334 *pkt++ = 'q'; /* info query packet */
2335 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2336 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2337 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2338 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2339 *pkt = '\0';
2340 return pkt;
2341 }
2342
2343 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2344
2345 static int
2346 parse_threadlist_response (char *pkt, int result_limit,
2347 threadref *original_echo, threadref *resultlist,
2348 int *doneflag)
2349 {
2350 struct remote_state *rs = get_remote_state ();
2351 char *limit;
2352 int count, resultcount, done;
2353
2354 resultcount = 0;
2355 /* Assume the 'q' and 'M chars have been stripped. */
2356 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2357 /* done parse past here */
2358 pkt = unpack_byte (pkt, &count); /* count field */
2359 pkt = unpack_nibble (pkt, &done);
2360 /* The first threadid is the argument threadid. */
2361 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2362 while ((count-- > 0) && (pkt < limit))
2363 {
2364 pkt = unpack_threadid (pkt, resultlist++);
2365 if (resultcount++ >= result_limit)
2366 break;
2367 }
2368 if (doneflag)
2369 *doneflag = done;
2370 return resultcount;
2371 }
2372
2373 static int
2374 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2375 int *done, int *result_count, threadref *threadlist)
2376 {
2377 struct remote_state *rs = get_remote_state ();
2378 static threadref echo_nextthread;
2379 int result = 1;
2380
2381 /* Trancate result limit to be smaller than the packet size. */
2382 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2383 >= get_remote_packet_size ())
2384 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2385
2386 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2387 putpkt (rs->buf);
2388 getpkt (&rs->buf, &rs->buf_size, 0);
2389
2390 if (*rs->buf == '\0')
2391 return 0;
2392 else
2393 *result_count =
2394 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2395 threadlist, done);
2396
2397 if (!threadmatch (&echo_nextthread, nextthread))
2398 {
2399 /* FIXME: This is a good reason to drop the packet. */
2400 /* Possably, there is a duplicate response. */
2401 /* Possabilities :
2402 retransmit immediatly - race conditions
2403 retransmit after timeout - yes
2404 exit
2405 wait for packet, then exit
2406 */
2407 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2408 return 0; /* I choose simply exiting. */
2409 }
2410 if (*result_count <= 0)
2411 {
2412 if (*done != 1)
2413 {
2414 warning (_("RMT ERROR : failed to get remote thread list."));
2415 result = 0;
2416 }
2417 return result; /* break; */
2418 }
2419 if (*result_count > result_limit)
2420 {
2421 *result_count = 0;
2422 warning (_("RMT ERROR: threadlist response longer than requested."));
2423 return 0;
2424 }
2425 return result;
2426 }
2427
2428 /* This is the interface between remote and threads, remotes upper
2429 interface. */
2430
2431 /* remote_find_new_threads retrieves the thread list and for each
2432 thread in the list, looks up the thread in GDB's internal list,
2433 adding the thread if it does not already exist. This involves
2434 getting partial thread lists from the remote target so, polling the
2435 quit_flag is required. */
2436
2437
2438 /* About this many threadisds fit in a packet. */
2439
2440 #define MAXTHREADLISTRESULTS 32
2441
2442 static int
2443 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2444 int looplimit)
2445 {
2446 int done, i, result_count;
2447 int startflag = 1;
2448 int result = 1;
2449 int loopcount = 0;
2450 static threadref nextthread;
2451 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2452
2453 done = 0;
2454 while (!done)
2455 {
2456 if (loopcount++ > looplimit)
2457 {
2458 result = 0;
2459 warning (_("Remote fetch threadlist -infinite loop-."));
2460 break;
2461 }
2462 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2463 &done, &result_count, resultthreadlist))
2464 {
2465 result = 0;
2466 break;
2467 }
2468 /* Clear for later iterations. */
2469 startflag = 0;
2470 /* Setup to resume next batch of thread references, set nextthread. */
2471 if (result_count >= 1)
2472 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2473 i = 0;
2474 while (result_count--)
2475 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2476 break;
2477 }
2478 return result;
2479 }
2480
2481 static int
2482 remote_newthread_step (threadref *ref, void *context)
2483 {
2484 int pid = ptid_get_pid (inferior_ptid);
2485 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2486
2487 if (!in_thread_list (ptid))
2488 add_thread (ptid);
2489 return 1; /* continue iterator */
2490 }
2491
2492 #define CRAZY_MAX_THREADS 1000
2493
2494 static ptid_t
2495 remote_current_thread (ptid_t oldpid)
2496 {
2497 struct remote_state *rs = get_remote_state ();
2498
2499 putpkt ("qC");
2500 getpkt (&rs->buf, &rs->buf_size, 0);
2501 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2502 return read_ptid (&rs->buf[2], NULL);
2503 else
2504 return oldpid;
2505 }
2506
2507 /* Find new threads for info threads command.
2508 * Original version, using John Metzler's thread protocol.
2509 */
2510
2511 static void
2512 remote_find_new_threads (void)
2513 {
2514 remote_threadlist_iterator (remote_newthread_step, 0,
2515 CRAZY_MAX_THREADS);
2516 }
2517
2518 #if defined(HAVE_LIBEXPAT)
2519
2520 typedef struct thread_item
2521 {
2522 ptid_t ptid;
2523 char *extra;
2524 int core;
2525 } thread_item_t;
2526 DEF_VEC_O(thread_item_t);
2527
2528 struct threads_parsing_context
2529 {
2530 VEC (thread_item_t) *items;
2531 };
2532
2533 static void
2534 start_thread (struct gdb_xml_parser *parser,
2535 const struct gdb_xml_element *element,
2536 void *user_data, VEC(gdb_xml_value_s) *attributes)
2537 {
2538 struct threads_parsing_context *data = user_data;
2539
2540 struct thread_item item;
2541 char *id;
2542 struct gdb_xml_value *attr;
2543
2544 id = xml_find_attribute (attributes, "id")->value;
2545 item.ptid = read_ptid (id, NULL);
2546
2547 attr = xml_find_attribute (attributes, "core");
2548 if (attr != NULL)
2549 item.core = *(ULONGEST *) attr->value;
2550 else
2551 item.core = -1;
2552
2553 item.extra = 0;
2554
2555 VEC_safe_push (thread_item_t, data->items, &item);
2556 }
2557
2558 static void
2559 end_thread (struct gdb_xml_parser *parser,
2560 const struct gdb_xml_element *element,
2561 void *user_data, const char *body_text)
2562 {
2563 struct threads_parsing_context *data = user_data;
2564
2565 if (body_text && *body_text)
2566 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2567 }
2568
2569 const struct gdb_xml_attribute thread_attributes[] = {
2570 { "id", GDB_XML_AF_NONE, NULL, NULL },
2571 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2572 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2573 };
2574
2575 const struct gdb_xml_element thread_children[] = {
2576 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2577 };
2578
2579 const struct gdb_xml_element threads_children[] = {
2580 { "thread", thread_attributes, thread_children,
2581 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2582 start_thread, end_thread },
2583 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2584 };
2585
2586 const struct gdb_xml_element threads_elements[] = {
2587 { "threads", NULL, threads_children,
2588 GDB_XML_EF_NONE, NULL, NULL },
2589 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2590 };
2591
2592 /* Discard the contents of the constructed thread info context. */
2593
2594 static void
2595 clear_threads_parsing_context (void *p)
2596 {
2597 struct threads_parsing_context *context = p;
2598 int i;
2599 struct thread_item *item;
2600
2601 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2602 xfree (item->extra);
2603
2604 VEC_free (thread_item_t, context->items);
2605 }
2606
2607 #endif
2608
2609 /*
2610 * Find all threads for info threads command.
2611 * Uses new thread protocol contributed by Cisco.
2612 * Falls back and attempts to use the older method (above)
2613 * if the target doesn't respond to the new method.
2614 */
2615
2616 static void
2617 remote_threads_info (struct target_ops *ops)
2618 {
2619 struct remote_state *rs = get_remote_state ();
2620 char *bufp;
2621 ptid_t new_thread;
2622
2623 if (remote_desc == 0) /* paranoia */
2624 error (_("Command can only be used when connected to the remote target."));
2625
2626 #if defined(HAVE_LIBEXPAT)
2627 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2628 {
2629 char *xml = target_read_stralloc (&current_target,
2630 TARGET_OBJECT_THREADS, NULL);
2631
2632 struct cleanup *back_to = make_cleanup (xfree, xml);
2633
2634 if (xml && *xml)
2635 {
2636 struct threads_parsing_context context;
2637
2638 context.items = NULL;
2639 make_cleanup (clear_threads_parsing_context, &context);
2640
2641 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2642 threads_elements, xml, &context) == 0)
2643 {
2644 int i;
2645 struct thread_item *item;
2646
2647 for (i = 0;
2648 VEC_iterate (thread_item_t, context.items, i, item);
2649 ++i)
2650 {
2651 if (!ptid_equal (item->ptid, null_ptid))
2652 {
2653 struct private_thread_info *info;
2654 /* In non-stop mode, we assume new found threads
2655 are running until proven otherwise with a
2656 stop reply. In all-stop, we can only get
2657 here if all threads are stopped. */
2658 int running = non_stop ? 1 : 0;
2659
2660 remote_notice_new_inferior (item->ptid, running);
2661
2662 info = demand_private_info (item->ptid);
2663 info->core = item->core;
2664 info->extra = item->extra;
2665 item->extra = NULL;
2666 }
2667 }
2668 }
2669 }
2670
2671 do_cleanups (back_to);
2672 return;
2673 }
2674 #endif
2675
2676 if (use_threadinfo_query)
2677 {
2678 putpkt ("qfThreadInfo");
2679 getpkt (&rs->buf, &rs->buf_size, 0);
2680 bufp = rs->buf;
2681 if (bufp[0] != '\0') /* q packet recognized */
2682 {
2683 while (*bufp++ == 'm') /* reply contains one or more TID */
2684 {
2685 do
2686 {
2687 new_thread = read_ptid (bufp, &bufp);
2688 if (!ptid_equal (new_thread, null_ptid))
2689 {
2690 /* In non-stop mode, we assume new found threads
2691 are running until proven otherwise with a
2692 stop reply. In all-stop, we can only get
2693 here if all threads are stopped. */
2694 int running = non_stop ? 1 : 0;
2695
2696 remote_notice_new_inferior (new_thread, running);
2697 }
2698 }
2699 while (*bufp++ == ','); /* comma-separated list */
2700 putpkt ("qsThreadInfo");
2701 getpkt (&rs->buf, &rs->buf_size, 0);
2702 bufp = rs->buf;
2703 }
2704 return; /* done */
2705 }
2706 }
2707
2708 /* Only qfThreadInfo is supported in non-stop mode. */
2709 if (non_stop)
2710 return;
2711
2712 /* Else fall back to old method based on jmetzler protocol. */
2713 use_threadinfo_query = 0;
2714 remote_find_new_threads ();
2715 return;
2716 }
2717
2718 /*
2719 * Collect a descriptive string about the given thread.
2720 * The target may say anything it wants to about the thread
2721 * (typically info about its blocked / runnable state, name, etc.).
2722 * This string will appear in the info threads display.
2723 *
2724 * Optional: targets are not required to implement this function.
2725 */
2726
2727 static char *
2728 remote_threads_extra_info (struct thread_info *tp)
2729 {
2730 struct remote_state *rs = get_remote_state ();
2731 int result;
2732 int set;
2733 threadref id;
2734 struct gdb_ext_thread_info threadinfo;
2735 static char display_buf[100]; /* arbitrary... */
2736 int n = 0; /* position in display_buf */
2737
2738 if (remote_desc == 0) /* paranoia */
2739 internal_error (__FILE__, __LINE__,
2740 _("remote_threads_extra_info"));
2741
2742 if (ptid_equal (tp->ptid, magic_null_ptid)
2743 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2744 /* This is the main thread which was added by GDB. The remote
2745 server doesn't know about it. */
2746 return NULL;
2747
2748 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2749 {
2750 struct thread_info *info = find_thread_ptid (tp->ptid);
2751
2752 if (info && info->private)
2753 return info->private->extra;
2754 else
2755 return NULL;
2756 }
2757
2758 if (use_threadextra_query)
2759 {
2760 char *b = rs->buf;
2761 char *endb = rs->buf + get_remote_packet_size ();
2762
2763 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2764 b += strlen (b);
2765 write_ptid (b, endb, tp->ptid);
2766
2767 putpkt (rs->buf);
2768 getpkt (&rs->buf, &rs->buf_size, 0);
2769 if (rs->buf[0] != 0)
2770 {
2771 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2772 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2773 display_buf [result] = '\0';
2774 return display_buf;
2775 }
2776 }
2777
2778 /* If the above query fails, fall back to the old method. */
2779 use_threadextra_query = 0;
2780 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2781 | TAG_MOREDISPLAY | TAG_DISPLAY;
2782 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2783 if (remote_get_threadinfo (&id, set, &threadinfo))
2784 if (threadinfo.active)
2785 {
2786 if (*threadinfo.shortname)
2787 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2788 " Name: %s,", threadinfo.shortname);
2789 if (*threadinfo.display)
2790 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2791 " State: %s,", threadinfo.display);
2792 if (*threadinfo.more_display)
2793 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2794 " Priority: %s", threadinfo.more_display);
2795
2796 if (n > 0)
2797 {
2798 /* For purely cosmetic reasons, clear up trailing commas. */
2799 if (',' == display_buf[n-1])
2800 display_buf[n-1] = ' ';
2801 return display_buf;
2802 }
2803 }
2804 return NULL;
2805 }
2806 \f
2807
2808 static int
2809 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2810 struct static_tracepoint_marker *marker)
2811 {
2812 struct remote_state *rs = get_remote_state ();
2813 char *p = rs->buf;
2814
2815 sprintf (p, "qTSTMat:");
2816 p += strlen (p);
2817 p += hexnumstr (p, addr);
2818 putpkt (rs->buf);
2819 getpkt (&rs->buf, &rs->buf_size, 0);
2820 p = rs->buf;
2821
2822 if (*p == 'E')
2823 error (_("Remote failure reply: %s"), p);
2824
2825 if (*p++ == 'm')
2826 {
2827 parse_static_tracepoint_marker_definition (p, &p, marker);
2828 return 1;
2829 }
2830
2831 return 0;
2832 }
2833
2834 static void
2835 free_current_marker (void *arg)
2836 {
2837 struct static_tracepoint_marker **marker_p = arg;
2838
2839 if (*marker_p != NULL)
2840 {
2841 release_static_tracepoint_marker (*marker_p);
2842 xfree (*marker_p);
2843 }
2844 else
2845 *marker_p = NULL;
2846 }
2847
2848 static VEC(static_tracepoint_marker_p) *
2849 remote_static_tracepoint_markers_by_strid (const char *strid)
2850 {
2851 struct remote_state *rs = get_remote_state ();
2852 VEC(static_tracepoint_marker_p) *markers = NULL;
2853 struct static_tracepoint_marker *marker = NULL;
2854 struct cleanup *old_chain;
2855 char *p;
2856
2857 /* Ask for a first packet of static tracepoint marker
2858 definition. */
2859 putpkt ("qTfSTM");
2860 getpkt (&rs->buf, &rs->buf_size, 0);
2861 p = rs->buf;
2862 if (*p == 'E')
2863 error (_("Remote failure reply: %s"), p);
2864
2865 old_chain = make_cleanup (free_current_marker, &marker);
2866
2867 while (*p++ == 'm')
2868 {
2869 if (marker == NULL)
2870 marker = XCNEW (struct static_tracepoint_marker);
2871
2872 do
2873 {
2874 parse_static_tracepoint_marker_definition (p, &p, marker);
2875
2876 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2877 {
2878 VEC_safe_push (static_tracepoint_marker_p,
2879 markers, marker);
2880 marker = NULL;
2881 }
2882 else
2883 {
2884 release_static_tracepoint_marker (marker);
2885 memset (marker, 0, sizeof (*marker));
2886 }
2887 }
2888 while (*p++ == ','); /* comma-separated list */
2889 /* Ask for another packet of static tracepoint definition. */
2890 putpkt ("qTsSTM");
2891 getpkt (&rs->buf, &rs->buf_size, 0);
2892 p = rs->buf;
2893 }
2894
2895 do_cleanups (old_chain);
2896 return markers;
2897 }
2898
2899 \f
2900 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2901
2902 static ptid_t
2903 remote_get_ada_task_ptid (long lwp, long thread)
2904 {
2905 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2906 }
2907 \f
2908
2909 /* Restart the remote side; this is an extended protocol operation. */
2910
2911 static void
2912 extended_remote_restart (void)
2913 {
2914 struct remote_state *rs = get_remote_state ();
2915
2916 /* Send the restart command; for reasons I don't understand the
2917 remote side really expects a number after the "R". */
2918 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2919 putpkt (rs->buf);
2920
2921 remote_fileio_reset ();
2922 }
2923 \f
2924 /* Clean up connection to a remote debugger. */
2925
2926 static void
2927 remote_close (int quitting)
2928 {
2929 if (remote_desc == NULL)
2930 return; /* already closed */
2931
2932 /* Make sure we leave stdin registered in the event loop, and we
2933 don't leave the async SIGINT signal handler installed. */
2934 remote_terminal_ours ();
2935
2936 serial_close (remote_desc);
2937 remote_desc = NULL;
2938
2939 /* We don't have a connection to the remote stub anymore. Get rid
2940 of all the inferiors and their threads we were controlling.
2941 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2942 will be unable to find the thread corresponding to (pid, 0, 0). */
2943 inferior_ptid = null_ptid;
2944 discard_all_inferiors ();
2945
2946 /* We're no longer interested in any of these events. */
2947 discard_pending_stop_replies (-1);
2948
2949 if (remote_async_inferior_event_token)
2950 delete_async_event_handler (&remote_async_inferior_event_token);
2951 if (remote_async_get_pending_events_token)
2952 delete_async_event_handler (&remote_async_get_pending_events_token);
2953 }
2954
2955 /* Query the remote side for the text, data and bss offsets. */
2956
2957 static void
2958 get_offsets (void)
2959 {
2960 struct remote_state *rs = get_remote_state ();
2961 char *buf;
2962 char *ptr;
2963 int lose, num_segments = 0, do_sections, do_segments;
2964 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2965 struct section_offsets *offs;
2966 struct symfile_segment_data *data;
2967
2968 if (symfile_objfile == NULL)
2969 return;
2970
2971 putpkt ("qOffsets");
2972 getpkt (&rs->buf, &rs->buf_size, 0);
2973 buf = rs->buf;
2974
2975 if (buf[0] == '\000')
2976 return; /* Return silently. Stub doesn't support
2977 this command. */
2978 if (buf[0] == 'E')
2979 {
2980 warning (_("Remote failure reply: %s"), buf);
2981 return;
2982 }
2983
2984 /* Pick up each field in turn. This used to be done with scanf, but
2985 scanf will make trouble if CORE_ADDR size doesn't match
2986 conversion directives correctly. The following code will work
2987 with any size of CORE_ADDR. */
2988 text_addr = data_addr = bss_addr = 0;
2989 ptr = buf;
2990 lose = 0;
2991
2992 if (strncmp (ptr, "Text=", 5) == 0)
2993 {
2994 ptr += 5;
2995 /* Don't use strtol, could lose on big values. */
2996 while (*ptr && *ptr != ';')
2997 text_addr = (text_addr << 4) + fromhex (*ptr++);
2998
2999 if (strncmp (ptr, ";Data=", 6) == 0)
3000 {
3001 ptr += 6;
3002 while (*ptr && *ptr != ';')
3003 data_addr = (data_addr << 4) + fromhex (*ptr++);
3004 }
3005 else
3006 lose = 1;
3007
3008 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3009 {
3010 ptr += 5;
3011 while (*ptr && *ptr != ';')
3012 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3013
3014 if (bss_addr != data_addr)
3015 warning (_("Target reported unsupported offsets: %s"), buf);
3016 }
3017 else
3018 lose = 1;
3019 }
3020 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3021 {
3022 ptr += 8;
3023 /* Don't use strtol, could lose on big values. */
3024 while (*ptr && *ptr != ';')
3025 text_addr = (text_addr << 4) + fromhex (*ptr++);
3026 num_segments = 1;
3027
3028 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3029 {
3030 ptr += 9;
3031 while (*ptr && *ptr != ';')
3032 data_addr = (data_addr << 4) + fromhex (*ptr++);
3033 num_segments++;
3034 }
3035 }
3036 else
3037 lose = 1;
3038
3039 if (lose)
3040 error (_("Malformed response to offset query, %s"), buf);
3041 else if (*ptr != '\0')
3042 warning (_("Target reported unsupported offsets: %s"), buf);
3043
3044 offs = ((struct section_offsets *)
3045 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3046 memcpy (offs, symfile_objfile->section_offsets,
3047 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3048
3049 data = get_symfile_segment_data (symfile_objfile->obfd);
3050 do_segments = (data != NULL);
3051 do_sections = num_segments == 0;
3052
3053 if (num_segments > 0)
3054 {
3055 segments[0] = text_addr;
3056 segments[1] = data_addr;
3057 }
3058 /* If we have two segments, we can still try to relocate everything
3059 by assuming that the .text and .data offsets apply to the whole
3060 text and data segments. Convert the offsets given in the packet
3061 to base addresses for symfile_map_offsets_to_segments. */
3062 else if (data && data->num_segments == 2)
3063 {
3064 segments[0] = data->segment_bases[0] + text_addr;
3065 segments[1] = data->segment_bases[1] + data_addr;
3066 num_segments = 2;
3067 }
3068 /* If the object file has only one segment, assume that it is text
3069 rather than data; main programs with no writable data are rare,
3070 but programs with no code are useless. Of course the code might
3071 have ended up in the data segment... to detect that we would need
3072 the permissions here. */
3073 else if (data && data->num_segments == 1)
3074 {
3075 segments[0] = data->segment_bases[0] + text_addr;
3076 num_segments = 1;
3077 }
3078 /* There's no way to relocate by segment. */
3079 else
3080 do_segments = 0;
3081
3082 if (do_segments)
3083 {
3084 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3085 offs, num_segments, segments);
3086
3087 if (ret == 0 && !do_sections)
3088 error (_("Can not handle qOffsets TextSeg "
3089 "response with this symbol file"));
3090
3091 if (ret > 0)
3092 do_sections = 0;
3093 }
3094
3095 if (data)
3096 free_symfile_segment_data (data);
3097
3098 if (do_sections)
3099 {
3100 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3101
3102 /* This is a temporary kludge to force data and bss to use the
3103 same offsets because that's what nlmconv does now. The real
3104 solution requires changes to the stub and remote.c that I
3105 don't have time to do right now. */
3106
3107 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3108 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3109 }
3110
3111 objfile_relocate (symfile_objfile, offs);
3112 }
3113
3114 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3115 threads we know are stopped already. This is used during the
3116 initial remote connection in non-stop mode --- threads that are
3117 reported as already being stopped are left stopped. */
3118
3119 static int
3120 set_stop_requested_callback (struct thread_info *thread, void *data)
3121 {
3122 /* If we have a stop reply for this thread, it must be stopped. */
3123 if (peek_stop_reply (thread->ptid))
3124 set_stop_requested (thread->ptid, 1);
3125
3126 return 0;
3127 }
3128
3129 /* Send interrupt_sequence to remote target. */
3130 static void
3131 send_interrupt_sequence (void)
3132 {
3133 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3134 serial_write (remote_desc, "\x03", 1);
3135 else if (interrupt_sequence_mode == interrupt_sequence_break)
3136 serial_send_break (remote_desc);
3137 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3138 {
3139 serial_send_break (remote_desc);
3140 serial_write (remote_desc, "g", 1);
3141 }
3142 else
3143 internal_error (__FILE__, __LINE__,
3144 _("Invalid value for interrupt_sequence_mode: %s."),
3145 interrupt_sequence_mode);
3146 }
3147
3148 static void
3149 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3150 {
3151 struct remote_state *rs = get_remote_state ();
3152 struct packet_config *noack_config;
3153 char *wait_status = NULL;
3154
3155 immediate_quit++; /* Allow user to interrupt it. */
3156
3157 if (interrupt_on_connect)
3158 send_interrupt_sequence ();
3159
3160 /* Ack any packet which the remote side has already sent. */
3161 serial_write (remote_desc, "+", 1);
3162
3163 /* The first packet we send to the target is the optional "supported
3164 packets" request. If the target can answer this, it will tell us
3165 which later probes to skip. */
3166 remote_query_supported ();
3167
3168 /* If the stub wants to get a QAllow, compose one and send it. */
3169 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3170 remote_set_permissions ();
3171
3172 /* Next, we possibly activate noack mode.
3173
3174 If the QStartNoAckMode packet configuration is set to AUTO,
3175 enable noack mode if the stub reported a wish for it with
3176 qSupported.
3177
3178 If set to TRUE, then enable noack mode even if the stub didn't
3179 report it in qSupported. If the stub doesn't reply OK, the
3180 session ends with an error.
3181
3182 If FALSE, then don't activate noack mode, regardless of what the
3183 stub claimed should be the default with qSupported. */
3184
3185 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3186
3187 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3188 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3189 && noack_config->support == PACKET_ENABLE))
3190 {
3191 putpkt ("QStartNoAckMode");
3192 getpkt (&rs->buf, &rs->buf_size, 0);
3193 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3194 rs->noack_mode = 1;
3195 }
3196
3197 if (extended_p)
3198 {
3199 /* Tell the remote that we are using the extended protocol. */
3200 putpkt ("!");
3201 getpkt (&rs->buf, &rs->buf_size, 0);
3202 }
3203
3204 /* Next, if the target can specify a description, read it. We do
3205 this before anything involving memory or registers. */
3206 target_find_description ();
3207
3208 /* Next, now that we know something about the target, update the
3209 address spaces in the program spaces. */
3210 update_address_spaces ();
3211
3212 /* On OSs where the list of libraries is global to all
3213 processes, we fetch them early. */
3214 if (gdbarch_has_global_solist (target_gdbarch))
3215 solib_add (NULL, from_tty, target, auto_solib_add);
3216
3217 if (non_stop)
3218 {
3219 if (!rs->non_stop_aware)
3220 error (_("Non-stop mode requested, but remote "
3221 "does not support non-stop"));
3222
3223 putpkt ("QNonStop:1");
3224 getpkt (&rs->buf, &rs->buf_size, 0);
3225
3226 if (strcmp (rs->buf, "OK") != 0)
3227 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3228
3229 /* Find about threads and processes the stub is already
3230 controlling. We default to adding them in the running state.
3231 The '?' query below will then tell us about which threads are
3232 stopped. */
3233 remote_threads_info (target);
3234 }
3235 else if (rs->non_stop_aware)
3236 {
3237 /* Don't assume that the stub can operate in all-stop mode.
3238 Request it explicitely. */
3239 putpkt ("QNonStop:0");
3240 getpkt (&rs->buf, &rs->buf_size, 0);
3241
3242 if (strcmp (rs->buf, "OK") != 0)
3243 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3244 }
3245
3246 /* Check whether the target is running now. */
3247 putpkt ("?");
3248 getpkt (&rs->buf, &rs->buf_size, 0);
3249
3250 if (!non_stop)
3251 {
3252 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3253 {
3254 if (!extended_p)
3255 error (_("The target is not running (try extended-remote?)"));
3256
3257 /* We're connected, but not running. Drop out before we
3258 call start_remote. */
3259 return;
3260 }
3261 else
3262 {
3263 /* Save the reply for later. */
3264 wait_status = alloca (strlen (rs->buf) + 1);
3265 strcpy (wait_status, rs->buf);
3266 }
3267
3268 /* Let the stub know that we want it to return the thread. */
3269 set_continue_thread (minus_one_ptid);
3270
3271 /* Without this, some commands which require an active target
3272 (such as kill) won't work. This variable serves (at least)
3273 double duty as both the pid of the target process (if it has
3274 such), and as a flag indicating that a target is active.
3275 These functions should be split out into seperate variables,
3276 especially since GDB will someday have a notion of debugging
3277 several processes. */
3278 inferior_ptid = magic_null_ptid;
3279
3280 /* Now, if we have thread information, update inferior_ptid. */
3281 inferior_ptid = remote_current_thread (inferior_ptid);
3282
3283 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3284
3285 /* Always add the main thread. */
3286 add_thread_silent (inferior_ptid);
3287
3288 /* init_wait_for_inferior should be called before get_offsets in order
3289 to manage `inserted' flag in bp loc in a correct state.
3290 breakpoint_init_inferior, called from init_wait_for_inferior, set
3291 `inserted' flag to 0, while before breakpoint_re_set, called from
3292 start_remote, set `inserted' flag to 1. In the initialization of
3293 inferior, breakpoint_init_inferior should be called first, and then
3294 breakpoint_re_set can be called. If this order is broken, state of
3295 `inserted' flag is wrong, and cause some problems on breakpoint
3296 manipulation. */
3297 init_wait_for_inferior ();
3298
3299 get_offsets (); /* Get text, data & bss offsets. */
3300
3301 /* If we could not find a description using qXfer, and we know
3302 how to do it some other way, try again. This is not
3303 supported for non-stop; it could be, but it is tricky if
3304 there are no stopped threads when we connect. */
3305 if (remote_read_description_p (target)
3306 && gdbarch_target_desc (target_gdbarch) == NULL)
3307 {
3308 target_clear_description ();
3309 target_find_description ();
3310 }
3311
3312 /* Use the previously fetched status. */
3313 gdb_assert (wait_status != NULL);
3314 strcpy (rs->buf, wait_status);
3315 rs->cached_wait_status = 1;
3316
3317 immediate_quit--;
3318 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3319 }
3320 else
3321 {
3322 /* Clear WFI global state. Do this before finding about new
3323 threads and inferiors, and setting the current inferior.
3324 Otherwise we would clear the proceed status of the current
3325 inferior when we want its stop_soon state to be preserved
3326 (see notice_new_inferior). */
3327 init_wait_for_inferior ();
3328
3329 /* In non-stop, we will either get an "OK", meaning that there
3330 are no stopped threads at this time; or, a regular stop
3331 reply. In the latter case, there may be more than one thread
3332 stopped --- we pull them all out using the vStopped
3333 mechanism. */
3334 if (strcmp (rs->buf, "OK") != 0)
3335 {
3336 struct stop_reply *stop_reply;
3337 struct cleanup *old_chain;
3338
3339 stop_reply = stop_reply_xmalloc ();
3340 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3341
3342 remote_parse_stop_reply (rs->buf, stop_reply);
3343 discard_cleanups (old_chain);
3344
3345 /* get_pending_stop_replies acks this one, and gets the rest
3346 out. */
3347 pending_stop_reply = stop_reply;
3348 remote_get_pending_stop_replies ();
3349
3350 /* Make sure that threads that were stopped remain
3351 stopped. */
3352 iterate_over_threads (set_stop_requested_callback, NULL);
3353 }
3354
3355 if (target_can_async_p ())
3356 target_async (inferior_event_handler, 0);
3357
3358 if (thread_count () == 0)
3359 {
3360 if (!extended_p)
3361 error (_("The target is not running (try extended-remote?)"));
3362
3363 /* We're connected, but not running. Drop out before we
3364 call start_remote. */
3365 return;
3366 }
3367
3368 /* Let the stub know that we want it to return the thread. */
3369
3370 /* Force the stub to choose a thread. */
3371 set_general_thread (null_ptid);
3372
3373 /* Query it. */
3374 inferior_ptid = remote_current_thread (minus_one_ptid);
3375 if (ptid_equal (inferior_ptid, minus_one_ptid))
3376 error (_("remote didn't report the current thread in non-stop mode"));
3377
3378 get_offsets (); /* Get text, data & bss offsets. */
3379
3380 /* In non-stop mode, any cached wait status will be stored in
3381 the stop reply queue. */
3382 gdb_assert (wait_status == NULL);
3383
3384 /* Report all signals during attach/startup. */
3385 remote_pass_signals (0, NULL);
3386 }
3387
3388 /* If we connected to a live target, do some additional setup. */
3389 if (target_has_execution)
3390 {
3391 if (exec_bfd) /* No use without an exec file. */
3392 remote_check_symbols (symfile_objfile);
3393 }
3394
3395 /* Possibly the target has been engaged in a trace run started
3396 previously; find out where things are at. */
3397 if (remote_get_trace_status (current_trace_status ()) != -1)
3398 {
3399 struct uploaded_tp *uploaded_tps = NULL;
3400 struct uploaded_tsv *uploaded_tsvs = NULL;
3401
3402 if (current_trace_status ()->running)
3403 printf_filtered (_("Trace is already running on the target.\n"));
3404
3405 /* Get trace state variables first, they may be checked when
3406 parsing uploaded commands. */
3407
3408 remote_upload_trace_state_variables (&uploaded_tsvs);
3409
3410 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3411
3412 remote_upload_tracepoints (&uploaded_tps);
3413
3414 merge_uploaded_tracepoints (&uploaded_tps);
3415 }
3416
3417 /* If breakpoints are global, insert them now. */
3418 if (gdbarch_has_global_breakpoints (target_gdbarch)
3419 && breakpoints_always_inserted_mode ())
3420 insert_breakpoints ();
3421 }
3422
3423 /* Open a connection to a remote debugger.
3424 NAME is the filename used for communication. */
3425
3426 static void
3427 remote_open (char *name, int from_tty)
3428 {
3429 remote_open_1 (name, from_tty, &remote_ops, 0);
3430 }
3431
3432 /* Open a connection to a remote debugger using the extended
3433 remote gdb protocol. NAME is the filename used for communication. */
3434
3435 static void
3436 extended_remote_open (char *name, int from_tty)
3437 {
3438 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3439 }
3440
3441 /* Generic code for opening a connection to a remote target. */
3442
3443 static void
3444 init_all_packet_configs (void)
3445 {
3446 int i;
3447
3448 for (i = 0; i < PACKET_MAX; i++)
3449 update_packet_config (&remote_protocol_packets[i]);
3450 }
3451
3452 /* Symbol look-up. */
3453
3454 static void
3455 remote_check_symbols (struct objfile *objfile)
3456 {
3457 struct remote_state *rs = get_remote_state ();
3458 char *msg, *reply, *tmp;
3459 struct minimal_symbol *sym;
3460 int end;
3461
3462 /* The remote side has no concept of inferiors that aren't running
3463 yet, it only knows about running processes. If we're connected
3464 but our current inferior is not running, we should not invite the
3465 remote target to request symbol lookups related to its
3466 (unrelated) current process. */
3467 if (!target_has_execution)
3468 return;
3469
3470 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3471 return;
3472
3473 /* Make sure the remote is pointing at the right process. Note
3474 there's no way to select "no process". */
3475 set_general_process ();
3476
3477 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3478 because we need both at the same time. */
3479 msg = alloca (get_remote_packet_size ());
3480
3481 /* Invite target to request symbol lookups. */
3482
3483 putpkt ("qSymbol::");
3484 getpkt (&rs->buf, &rs->buf_size, 0);
3485 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3486 reply = rs->buf;
3487
3488 while (strncmp (reply, "qSymbol:", 8) == 0)
3489 {
3490 tmp = &reply[8];
3491 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3492 msg[end] = '\0';
3493 sym = lookup_minimal_symbol (msg, NULL, NULL);
3494 if (sym == NULL)
3495 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3496 else
3497 {
3498 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3499 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3500
3501 /* If this is a function address, return the start of code
3502 instead of any data function descriptor. */
3503 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3504 sym_addr,
3505 &current_target);
3506
3507 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3508 phex_nz (sym_addr, addr_size), &reply[8]);
3509 }
3510
3511 putpkt (msg);
3512 getpkt (&rs->buf, &rs->buf_size, 0);
3513 reply = rs->buf;
3514 }
3515 }
3516
3517 static struct serial *
3518 remote_serial_open (char *name)
3519 {
3520 static int udp_warning = 0;
3521
3522 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3523 of in ser-tcp.c, because it is the remote protocol assuming that the
3524 serial connection is reliable and not the serial connection promising
3525 to be. */
3526 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3527 {
3528 warning (_("The remote protocol may be unreliable over UDP.\n"
3529 "Some events may be lost, rendering further debugging "
3530 "impossible."));
3531 udp_warning = 1;
3532 }
3533
3534 return serial_open (name);
3535 }
3536
3537 /* Inform the target of our permission settings. The permission flags
3538 work without this, but if the target knows the settings, it can do
3539 a couple things. First, it can add its own check, to catch cases
3540 that somehow manage to get by the permissions checks in target
3541 methods. Second, if the target is wired to disallow particular
3542 settings (for instance, a system in the field that is not set up to
3543 be able to stop at a breakpoint), it can object to any unavailable
3544 permissions. */
3545
3546 void
3547 remote_set_permissions (void)
3548 {
3549 struct remote_state *rs = get_remote_state ();
3550
3551 sprintf (rs->buf, "QAllow:"
3552 "WriteReg:%x;WriteMem:%x;"
3553 "InsertBreak:%x;InsertTrace:%x;"
3554 "InsertFastTrace:%x;Stop:%x",
3555 may_write_registers, may_write_memory,
3556 may_insert_breakpoints, may_insert_tracepoints,
3557 may_insert_fast_tracepoints, may_stop);
3558 putpkt (rs->buf);
3559 getpkt (&rs->buf, &rs->buf_size, 0);
3560
3561 /* If the target didn't like the packet, warn the user. Do not try
3562 to undo the user's settings, that would just be maddening. */
3563 if (strcmp (rs->buf, "OK") != 0)
3564 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3565 }
3566
3567 /* This type describes each known response to the qSupported
3568 packet. */
3569 struct protocol_feature
3570 {
3571 /* The name of this protocol feature. */
3572 const char *name;
3573
3574 /* The default for this protocol feature. */
3575 enum packet_support default_support;
3576
3577 /* The function to call when this feature is reported, or after
3578 qSupported processing if the feature is not supported.
3579 The first argument points to this structure. The second
3580 argument indicates whether the packet requested support be
3581 enabled, disabled, or probed (or the default, if this function
3582 is being called at the end of processing and this feature was
3583 not reported). The third argument may be NULL; if not NULL, it
3584 is a NUL-terminated string taken from the packet following
3585 this feature's name and an equals sign. */
3586 void (*func) (const struct protocol_feature *, enum packet_support,
3587 const char *);
3588
3589 /* The corresponding packet for this feature. Only used if
3590 FUNC is remote_supported_packet. */
3591 int packet;
3592 };
3593
3594 static void
3595 remote_supported_packet (const struct protocol_feature *feature,
3596 enum packet_support support,
3597 const char *argument)
3598 {
3599 if (argument)
3600 {
3601 warning (_("Remote qSupported response supplied an unexpected value for"
3602 " \"%s\"."), feature->name);
3603 return;
3604 }
3605
3606 if (remote_protocol_packets[feature->packet].support
3607 == PACKET_SUPPORT_UNKNOWN)
3608 remote_protocol_packets[feature->packet].support = support;
3609 }
3610
3611 static void
3612 remote_packet_size (const struct protocol_feature *feature,
3613 enum packet_support support, const char *value)
3614 {
3615 struct remote_state *rs = get_remote_state ();
3616
3617 int packet_size;
3618 char *value_end;
3619
3620 if (support != PACKET_ENABLE)
3621 return;
3622
3623 if (value == NULL || *value == '\0')
3624 {
3625 warning (_("Remote target reported \"%s\" without a size."),
3626 feature->name);
3627 return;
3628 }
3629
3630 errno = 0;
3631 packet_size = strtol (value, &value_end, 16);
3632 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3633 {
3634 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3635 feature->name, value);
3636 return;
3637 }
3638
3639 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3640 {
3641 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3642 packet_size, MAX_REMOTE_PACKET_SIZE);
3643 packet_size = MAX_REMOTE_PACKET_SIZE;
3644 }
3645
3646 /* Record the new maximum packet size. */
3647 rs->explicit_packet_size = packet_size;
3648 }
3649
3650 static void
3651 remote_multi_process_feature (const struct protocol_feature *feature,
3652 enum packet_support support, const char *value)
3653 {
3654 struct remote_state *rs = get_remote_state ();
3655
3656 rs->multi_process_aware = (support == PACKET_ENABLE);
3657 }
3658
3659 static void
3660 remote_non_stop_feature (const struct protocol_feature *feature,
3661 enum packet_support support, const char *value)
3662 {
3663 struct remote_state *rs = get_remote_state ();
3664
3665 rs->non_stop_aware = (support == PACKET_ENABLE);
3666 }
3667
3668 static void
3669 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3670 enum packet_support support,
3671 const char *value)
3672 {
3673 struct remote_state *rs = get_remote_state ();
3674
3675 rs->cond_tracepoints = (support == PACKET_ENABLE);
3676 }
3677
3678 static void
3679 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3680 enum packet_support support,
3681 const char *value)
3682 {
3683 struct remote_state *rs = get_remote_state ();
3684
3685 rs->fast_tracepoints = (support == PACKET_ENABLE);
3686 }
3687
3688 static void
3689 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3690 enum packet_support support,
3691 const char *value)
3692 {
3693 struct remote_state *rs = get_remote_state ();
3694
3695 rs->static_tracepoints = (support == PACKET_ENABLE);
3696 }
3697
3698 static void
3699 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3700 enum packet_support support,
3701 const char *value)
3702 {
3703 struct remote_state *rs = get_remote_state ();
3704
3705 rs->disconnected_tracing = (support == PACKET_ENABLE);
3706 }
3707
3708 static void
3709 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3710 enum packet_support support,
3711 const char *value)
3712 {
3713 struct remote_state *rs = get_remote_state ();
3714
3715 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3716 }
3717
3718 static void
3719 remote_string_tracing_feature (const struct protocol_feature *feature,
3720 enum packet_support support,
3721 const char *value)
3722 {
3723 struct remote_state *rs = get_remote_state ();
3724
3725 rs->string_tracing = (support == PACKET_ENABLE);
3726 }
3727
3728 static struct protocol_feature remote_protocol_features[] = {
3729 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3730 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3731 PACKET_qXfer_auxv },
3732 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3733 PACKET_qXfer_features },
3734 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3735 PACKET_qXfer_libraries },
3736 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3737 PACKET_qXfer_memory_map },
3738 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3739 PACKET_qXfer_spu_read },
3740 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3741 PACKET_qXfer_spu_write },
3742 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3743 PACKET_qXfer_osdata },
3744 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3745 PACKET_qXfer_threads },
3746 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3747 PACKET_qXfer_traceframe_info },
3748 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3749 PACKET_QPassSignals },
3750 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3751 PACKET_QStartNoAckMode },
3752 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3753 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3754 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3755 PACKET_qXfer_siginfo_read },
3756 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3757 PACKET_qXfer_siginfo_write },
3758 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3759 PACKET_ConditionalTracepoints },
3760 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3761 PACKET_FastTracepoints },
3762 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3763 PACKET_StaticTracepoints },
3764 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3765 -1 },
3766 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3767 PACKET_bc },
3768 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3769 PACKET_bs },
3770 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3771 PACKET_TracepointSource },
3772 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3773 PACKET_QAllow },
3774 { "EnableDisableTracepoints", PACKET_DISABLE,
3775 remote_enable_disable_tracepoint_feature, -1 },
3776 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3777 PACKET_qXfer_fdpic },
3778 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3779 PACKET_QDisableRandomization },
3780 { "tracenz", PACKET_DISABLE,
3781 remote_string_tracing_feature, -1 },
3782 };
3783
3784 static char *remote_support_xml;
3785
3786 /* Register string appended to "xmlRegisters=" in qSupported query. */
3787
3788 void
3789 register_remote_support_xml (const char *xml)
3790 {
3791 #if defined(HAVE_LIBEXPAT)
3792 if (remote_support_xml == NULL)
3793 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3794 else
3795 {
3796 char *copy = xstrdup (remote_support_xml + 13);
3797 char *p = strtok (copy, ",");
3798
3799 do
3800 {
3801 if (strcmp (p, xml) == 0)
3802 {
3803 /* already there */
3804 xfree (copy);
3805 return;
3806 }
3807 }
3808 while ((p = strtok (NULL, ",")) != NULL);
3809 xfree (copy);
3810
3811 remote_support_xml = reconcat (remote_support_xml,
3812 remote_support_xml, ",", xml,
3813 (char *) NULL);
3814 }
3815 #endif
3816 }
3817
3818 static char *
3819 remote_query_supported_append (char *msg, const char *append)
3820 {
3821 if (msg)
3822 return reconcat (msg, msg, ";", append, (char *) NULL);
3823 else
3824 return xstrdup (append);
3825 }
3826
3827 static void
3828 remote_query_supported (void)
3829 {
3830 struct remote_state *rs = get_remote_state ();
3831 char *next;
3832 int i;
3833 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3834
3835 /* The packet support flags are handled differently for this packet
3836 than for most others. We treat an error, a disabled packet, and
3837 an empty response identically: any features which must be reported
3838 to be used will be automatically disabled. An empty buffer
3839 accomplishes this, since that is also the representation for a list
3840 containing no features. */
3841
3842 rs->buf[0] = 0;
3843 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3844 {
3845 char *q = NULL;
3846 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3847
3848 if (rs->extended)
3849 q = remote_query_supported_append (q, "multiprocess+");
3850
3851 if (remote_support_xml)
3852 q = remote_query_supported_append (q, remote_support_xml);
3853
3854 q = remote_query_supported_append (q, "qRelocInsn+");
3855
3856 q = reconcat (q, "qSupported:", q, (char *) NULL);
3857 putpkt (q);
3858
3859 do_cleanups (old_chain);
3860
3861 getpkt (&rs->buf, &rs->buf_size, 0);
3862
3863 /* If an error occured, warn, but do not return - just reset the
3864 buffer to empty and go on to disable features. */
3865 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3866 == PACKET_ERROR)
3867 {
3868 warning (_("Remote failure reply: %s"), rs->buf);
3869 rs->buf[0] = 0;
3870 }
3871 }
3872
3873 memset (seen, 0, sizeof (seen));
3874
3875 next = rs->buf;
3876 while (*next)
3877 {
3878 enum packet_support is_supported;
3879 char *p, *end, *name_end, *value;
3880
3881 /* First separate out this item from the rest of the packet. If
3882 there's another item after this, we overwrite the separator
3883 (terminated strings are much easier to work with). */
3884 p = next;
3885 end = strchr (p, ';');
3886 if (end == NULL)
3887 {
3888 end = p + strlen (p);
3889 next = end;
3890 }
3891 else
3892 {
3893 *end = '\0';
3894 next = end + 1;
3895
3896 if (end == p)
3897 {
3898 warning (_("empty item in \"qSupported\" response"));
3899 continue;
3900 }
3901 }
3902
3903 name_end = strchr (p, '=');
3904 if (name_end)
3905 {
3906 /* This is a name=value entry. */
3907 is_supported = PACKET_ENABLE;
3908 value = name_end + 1;
3909 *name_end = '\0';
3910 }
3911 else
3912 {
3913 value = NULL;
3914 switch (end[-1])
3915 {
3916 case '+':
3917 is_supported = PACKET_ENABLE;
3918 break;
3919
3920 case '-':
3921 is_supported = PACKET_DISABLE;
3922 break;
3923
3924 case '?':
3925 is_supported = PACKET_SUPPORT_UNKNOWN;
3926 break;
3927
3928 default:
3929 warning (_("unrecognized item \"%s\" "
3930 "in \"qSupported\" response"), p);
3931 continue;
3932 }
3933 end[-1] = '\0';
3934 }
3935
3936 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3937 if (strcmp (remote_protocol_features[i].name, p) == 0)
3938 {
3939 const struct protocol_feature *feature;
3940
3941 seen[i] = 1;
3942 feature = &remote_protocol_features[i];
3943 feature->func (feature, is_supported, value);
3944 break;
3945 }
3946 }
3947
3948 /* If we increased the packet size, make sure to increase the global
3949 buffer size also. We delay this until after parsing the entire
3950 qSupported packet, because this is the same buffer we were
3951 parsing. */
3952 if (rs->buf_size < rs->explicit_packet_size)
3953 {
3954 rs->buf_size = rs->explicit_packet_size;
3955 rs->buf = xrealloc (rs->buf, rs->buf_size);
3956 }
3957
3958 /* Handle the defaults for unmentioned features. */
3959 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3960 if (!seen[i])
3961 {
3962 const struct protocol_feature *feature;
3963
3964 feature = &remote_protocol_features[i];
3965 feature->func (feature, feature->default_support, NULL);
3966 }
3967 }
3968
3969
3970 static void
3971 remote_open_1 (char *name, int from_tty,
3972 struct target_ops *target, int extended_p)
3973 {
3974 struct remote_state *rs = get_remote_state ();
3975
3976 if (name == 0)
3977 error (_("To open a remote debug connection, you need to specify what\n"
3978 "serial device is attached to the remote system\n"
3979 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3980
3981 /* See FIXME above. */
3982 if (!target_async_permitted)
3983 wait_forever_enabled_p = 1;
3984
3985 /* If we're connected to a running target, target_preopen will kill it.
3986 But if we're connected to a target system with no running process,
3987 then we will still be connected when it returns. Ask this question
3988 first, before target_preopen has a chance to kill anything. */
3989 if (remote_desc != NULL && !have_inferiors ())
3990 {
3991 if (!from_tty
3992 || query (_("Already connected to a remote target. Disconnect? ")))
3993 pop_target ();
3994 else
3995 error (_("Still connected."));
3996 }
3997
3998 target_preopen (from_tty);
3999
4000 unpush_target (target);
4001
4002 /* This time without a query. If we were connected to an
4003 extended-remote target and target_preopen killed the running
4004 process, we may still be connected. If we are starting "target
4005 remote" now, the extended-remote target will not have been
4006 removed by unpush_target. */
4007 if (remote_desc != NULL && !have_inferiors ())
4008 pop_target ();
4009
4010 /* Make sure we send the passed signals list the next time we resume. */
4011 xfree (last_pass_packet);
4012 last_pass_packet = NULL;
4013
4014 remote_fileio_reset ();
4015 reopen_exec_file ();
4016 reread_symbols ();
4017
4018 remote_desc = remote_serial_open (name);
4019 if (!remote_desc)
4020 perror_with_name (name);
4021
4022 if (baud_rate != -1)
4023 {
4024 if (serial_setbaudrate (remote_desc, baud_rate))
4025 {
4026 /* The requested speed could not be set. Error out to
4027 top level after closing remote_desc. Take care to
4028 set remote_desc to NULL to avoid closing remote_desc
4029 more than once. */
4030 serial_close (remote_desc);
4031 remote_desc = NULL;
4032 perror_with_name (name);
4033 }
4034 }
4035
4036 serial_raw (remote_desc);
4037
4038 /* If there is something sitting in the buffer we might take it as a
4039 response to a command, which would be bad. */
4040 serial_flush_input (remote_desc);
4041
4042 if (from_tty)
4043 {
4044 puts_filtered ("Remote debugging using ");
4045 puts_filtered (name);
4046 puts_filtered ("\n");
4047 }
4048 push_target (target); /* Switch to using remote target now. */
4049
4050 /* Register extra event sources in the event loop. */
4051 remote_async_inferior_event_token
4052 = create_async_event_handler (remote_async_inferior_event_handler,
4053 NULL);
4054 remote_async_get_pending_events_token
4055 = create_async_event_handler (remote_async_get_pending_events_handler,
4056 NULL);
4057
4058 /* Reset the target state; these things will be queried either by
4059 remote_query_supported or as they are needed. */
4060 init_all_packet_configs ();
4061 rs->cached_wait_status = 0;
4062 rs->explicit_packet_size = 0;
4063 rs->noack_mode = 0;
4064 rs->multi_process_aware = 0;
4065 rs->extended = extended_p;
4066 rs->non_stop_aware = 0;
4067 rs->waiting_for_stop_reply = 0;
4068 rs->ctrlc_pending_p = 0;
4069
4070 general_thread = not_sent_ptid;
4071 continue_thread = not_sent_ptid;
4072 remote_traceframe_number = -1;
4073
4074 /* Probe for ability to use "ThreadInfo" query, as required. */
4075 use_threadinfo_query = 1;
4076 use_threadextra_query = 1;
4077
4078 if (target_async_permitted)
4079 {
4080 /* With this target we start out by owning the terminal. */
4081 remote_async_terminal_ours_p = 1;
4082
4083 /* FIXME: cagney/1999-09-23: During the initial connection it is
4084 assumed that the target is already ready and able to respond to
4085 requests. Unfortunately remote_start_remote() eventually calls
4086 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4087 around this. Eventually a mechanism that allows
4088 wait_for_inferior() to expect/get timeouts will be
4089 implemented. */
4090 wait_forever_enabled_p = 0;
4091 }
4092
4093 /* First delete any symbols previously loaded from shared libraries. */
4094 no_shared_libraries (NULL, 0);
4095
4096 /* Start afresh. */
4097 init_thread_list ();
4098
4099 /* Start the remote connection. If error() or QUIT, discard this
4100 target (we'd otherwise be in an inconsistent state) and then
4101 propogate the error on up the exception chain. This ensures that
4102 the caller doesn't stumble along blindly assuming that the
4103 function succeeded. The CLI doesn't have this problem but other
4104 UI's, such as MI do.
4105
4106 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4107 this function should return an error indication letting the
4108 caller restore the previous state. Unfortunately the command
4109 ``target remote'' is directly wired to this function making that
4110 impossible. On a positive note, the CLI side of this problem has
4111 been fixed - the function set_cmd_context() makes it possible for
4112 all the ``target ....'' commands to share a common callback
4113 function. See cli-dump.c. */
4114 {
4115 volatile struct gdb_exception ex;
4116
4117 TRY_CATCH (ex, RETURN_MASK_ALL)
4118 {
4119 remote_start_remote (from_tty, target, extended_p);
4120 }
4121 if (ex.reason < 0)
4122 {
4123 /* Pop the partially set up target - unless something else did
4124 already before throwing the exception. */
4125 if (remote_desc != NULL)
4126 pop_target ();
4127 if (target_async_permitted)
4128 wait_forever_enabled_p = 1;
4129 throw_exception (ex);
4130 }
4131 }
4132
4133 if (target_async_permitted)
4134 wait_forever_enabled_p = 1;
4135 }
4136
4137 /* This takes a program previously attached to and detaches it. After
4138 this is done, GDB can be used to debug some other program. We
4139 better not have left any breakpoints in the target program or it'll
4140 die when it hits one. */
4141
4142 static void
4143 remote_detach_1 (char *args, int from_tty, int extended)
4144 {
4145 int pid = ptid_get_pid (inferior_ptid);
4146 struct remote_state *rs = get_remote_state ();
4147
4148 if (args)
4149 error (_("Argument given to \"detach\" when remotely debugging."));
4150
4151 if (!target_has_execution)
4152 error (_("No process to detach from."));
4153
4154 /* Tell the remote target to detach. */
4155 if (remote_multi_process_p (rs))
4156 sprintf (rs->buf, "D;%x", pid);
4157 else
4158 strcpy (rs->buf, "D");
4159
4160 putpkt (rs->buf);
4161 getpkt (&rs->buf, &rs->buf_size, 0);
4162
4163 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4164 ;
4165 else if (rs->buf[0] == '\0')
4166 error (_("Remote doesn't know how to detach"));
4167 else
4168 error (_("Can't detach process."));
4169
4170 if (from_tty)
4171 {
4172 if (remote_multi_process_p (rs))
4173 printf_filtered (_("Detached from remote %s.\n"),
4174 target_pid_to_str (pid_to_ptid (pid)));
4175 else
4176 {
4177 if (extended)
4178 puts_filtered (_("Detached from remote process.\n"));
4179 else
4180 puts_filtered (_("Ending remote debugging.\n"));
4181 }
4182 }
4183
4184 discard_pending_stop_replies (pid);
4185 target_mourn_inferior ();
4186 }
4187
4188 static void
4189 remote_detach (struct target_ops *ops, char *args, int from_tty)
4190 {
4191 remote_detach_1 (args, from_tty, 0);
4192 }
4193
4194 static void
4195 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4196 {
4197 remote_detach_1 (args, from_tty, 1);
4198 }
4199
4200 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4201
4202 static void
4203 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4204 {
4205 if (args)
4206 error (_("Argument given to \"disconnect\" when remotely debugging."));
4207
4208 /* Make sure we unpush even the extended remote targets; mourn
4209 won't do it. So call remote_mourn_1 directly instead of
4210 target_mourn_inferior. */
4211 remote_mourn_1 (target);
4212
4213 if (from_tty)
4214 puts_filtered ("Ending remote debugging.\n");
4215 }
4216
4217 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4218 be chatty about it. */
4219
4220 static void
4221 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4222 {
4223 struct remote_state *rs = get_remote_state ();
4224 int pid;
4225 char *wait_status = NULL;
4226
4227 pid = parse_pid_to_attach (args);
4228
4229 /* Remote PID can be freely equal to getpid, do not check it here the same
4230 way as in other targets. */
4231
4232 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4233 error (_("This target does not support attaching to a process"));
4234
4235 sprintf (rs->buf, "vAttach;%x", pid);
4236 putpkt (rs->buf);
4237 getpkt (&rs->buf, &rs->buf_size, 0);
4238
4239 if (packet_ok (rs->buf,
4240 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4241 {
4242 if (from_tty)
4243 printf_unfiltered (_("Attached to %s\n"),
4244 target_pid_to_str (pid_to_ptid (pid)));
4245
4246 if (!non_stop)
4247 {
4248 /* Save the reply for later. */
4249 wait_status = alloca (strlen (rs->buf) + 1);
4250 strcpy (wait_status, rs->buf);
4251 }
4252 else if (strcmp (rs->buf, "OK") != 0)
4253 error (_("Attaching to %s failed with: %s"),
4254 target_pid_to_str (pid_to_ptid (pid)),
4255 rs->buf);
4256 }
4257 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4258 error (_("This target does not support attaching to a process"));
4259 else
4260 error (_("Attaching to %s failed"),
4261 target_pid_to_str (pid_to_ptid (pid)));
4262
4263 set_current_inferior (remote_add_inferior (pid, 1));
4264
4265 inferior_ptid = pid_to_ptid (pid);
4266
4267 if (non_stop)
4268 {
4269 struct thread_info *thread;
4270
4271 /* Get list of threads. */
4272 remote_threads_info (target);
4273
4274 thread = first_thread_of_process (pid);
4275 if (thread)
4276 inferior_ptid = thread->ptid;
4277 else
4278 inferior_ptid = pid_to_ptid (pid);
4279
4280 /* Invalidate our notion of the remote current thread. */
4281 record_currthread (minus_one_ptid);
4282 }
4283 else
4284 {
4285 /* Now, if we have thread information, update inferior_ptid. */
4286 inferior_ptid = remote_current_thread (inferior_ptid);
4287
4288 /* Add the main thread to the thread list. */
4289 add_thread_silent (inferior_ptid);
4290 }
4291
4292 /* Next, if the target can specify a description, read it. We do
4293 this before anything involving memory or registers. */
4294 target_find_description ();
4295
4296 if (!non_stop)
4297 {
4298 /* Use the previously fetched status. */
4299 gdb_assert (wait_status != NULL);
4300
4301 if (target_can_async_p ())
4302 {
4303 struct stop_reply *stop_reply;
4304 struct cleanup *old_chain;
4305
4306 stop_reply = stop_reply_xmalloc ();
4307 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4308 remote_parse_stop_reply (wait_status, stop_reply);
4309 discard_cleanups (old_chain);
4310 push_stop_reply (stop_reply);
4311
4312 target_async (inferior_event_handler, 0);
4313 }
4314 else
4315 {
4316 gdb_assert (wait_status != NULL);
4317 strcpy (rs->buf, wait_status);
4318 rs->cached_wait_status = 1;
4319 }
4320 }
4321 else
4322 gdb_assert (wait_status == NULL);
4323 }
4324
4325 static void
4326 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4327 {
4328 extended_remote_attach_1 (ops, args, from_tty);
4329 }
4330
4331 /* Convert hex digit A to a number. */
4332
4333 static int
4334 fromhex (int a)
4335 {
4336 if (a >= '0' && a <= '9')
4337 return a - '0';
4338 else if (a >= 'a' && a <= 'f')
4339 return a - 'a' + 10;
4340 else if (a >= 'A' && a <= 'F')
4341 return a - 'A' + 10;
4342 else
4343 error (_("Reply contains invalid hex digit %d"), a);
4344 }
4345
4346 int
4347 hex2bin (const char *hex, gdb_byte *bin, int count)
4348 {
4349 int i;
4350
4351 for (i = 0; i < count; i++)
4352 {
4353 if (hex[0] == 0 || hex[1] == 0)
4354 {
4355 /* Hex string is short, or of uneven length.
4356 Return the count that has been converted so far. */
4357 return i;
4358 }
4359 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4360 hex += 2;
4361 }
4362 return i;
4363 }
4364
4365 /* Convert number NIB to a hex digit. */
4366
4367 static int
4368 tohex (int nib)
4369 {
4370 if (nib < 10)
4371 return '0' + nib;
4372 else
4373 return 'a' + nib - 10;
4374 }
4375
4376 int
4377 bin2hex (const gdb_byte *bin, char *hex, int count)
4378 {
4379 int i;
4380
4381 /* May use a length, or a nul-terminated string as input. */
4382 if (count == 0)
4383 count = strlen ((char *) bin);
4384
4385 for (i = 0; i < count; i++)
4386 {
4387 *hex++ = tohex ((*bin >> 4) & 0xf);
4388 *hex++ = tohex (*bin++ & 0xf);
4389 }
4390 *hex = 0;
4391 return i;
4392 }
4393 \f
4394 /* Check for the availability of vCont. This function should also check
4395 the response. */
4396
4397 static void
4398 remote_vcont_probe (struct remote_state *rs)
4399 {
4400 char *buf;
4401
4402 strcpy (rs->buf, "vCont?");
4403 putpkt (rs->buf);
4404 getpkt (&rs->buf, &rs->buf_size, 0);
4405 buf = rs->buf;
4406
4407 /* Make sure that the features we assume are supported. */
4408 if (strncmp (buf, "vCont", 5) == 0)
4409 {
4410 char *p = &buf[5];
4411 int support_s, support_S, support_c, support_C;
4412
4413 support_s = 0;
4414 support_S = 0;
4415 support_c = 0;
4416 support_C = 0;
4417 rs->support_vCont_t = 0;
4418 while (p && *p == ';')
4419 {
4420 p++;
4421 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4422 support_s = 1;
4423 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4424 support_S = 1;
4425 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4426 support_c = 1;
4427 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4428 support_C = 1;
4429 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4430 rs->support_vCont_t = 1;
4431
4432 p = strchr (p, ';');
4433 }
4434
4435 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4436 BUF will make packet_ok disable the packet. */
4437 if (!support_s || !support_S || !support_c || !support_C)
4438 buf[0] = 0;
4439 }
4440
4441 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4442 }
4443
4444 /* Helper function for building "vCont" resumptions. Write a
4445 resumption to P. ENDP points to one-passed-the-end of the buffer
4446 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4447 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4448 resumed thread should be single-stepped and/or signalled. If PTID
4449 equals minus_one_ptid, then all threads are resumed; if PTID
4450 represents a process, then all threads of the process are resumed;
4451 the thread to be stepped and/or signalled is given in the global
4452 INFERIOR_PTID. */
4453
4454 static char *
4455 append_resumption (char *p, char *endp,
4456 ptid_t ptid, int step, enum target_signal siggnal)
4457 {
4458 struct remote_state *rs = get_remote_state ();
4459
4460 if (step && siggnal != TARGET_SIGNAL_0)
4461 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4462 else if (step)
4463 p += xsnprintf (p, endp - p, ";s");
4464 else if (siggnal != TARGET_SIGNAL_0)
4465 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4466 else
4467 p += xsnprintf (p, endp - p, ";c");
4468
4469 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4470 {
4471 ptid_t nptid;
4472
4473 /* All (-1) threads of process. */
4474 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4475
4476 p += xsnprintf (p, endp - p, ":");
4477 p = write_ptid (p, endp, nptid);
4478 }
4479 else if (!ptid_equal (ptid, minus_one_ptid))
4480 {
4481 p += xsnprintf (p, endp - p, ":");
4482 p = write_ptid (p, endp, ptid);
4483 }
4484
4485 return p;
4486 }
4487
4488 /* Resume the remote inferior by using a "vCont" packet. The thread
4489 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4490 resumed thread should be single-stepped and/or signalled. If PTID
4491 equals minus_one_ptid, then all threads are resumed; the thread to
4492 be stepped and/or signalled is given in the global INFERIOR_PTID.
4493 This function returns non-zero iff it resumes the inferior.
4494
4495 This function issues a strict subset of all possible vCont commands at the
4496 moment. */
4497
4498 static int
4499 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4500 {
4501 struct remote_state *rs = get_remote_state ();
4502 char *p;
4503 char *endp;
4504
4505 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4506 remote_vcont_probe (rs);
4507
4508 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4509 return 0;
4510
4511 p = rs->buf;
4512 endp = rs->buf + get_remote_packet_size ();
4513
4514 /* If we could generate a wider range of packets, we'd have to worry
4515 about overflowing BUF. Should there be a generic
4516 "multi-part-packet" packet? */
4517
4518 p += xsnprintf (p, endp - p, "vCont");
4519
4520 if (ptid_equal (ptid, magic_null_ptid))
4521 {
4522 /* MAGIC_NULL_PTID means that we don't have any active threads,
4523 so we don't have any TID numbers the inferior will
4524 understand. Make sure to only send forms that do not specify
4525 a TID. */
4526 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4527 }
4528 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4529 {
4530 /* Resume all threads (of all processes, or of a single
4531 process), with preference for INFERIOR_PTID. This assumes
4532 inferior_ptid belongs to the set of all threads we are about
4533 to resume. */
4534 if (step || siggnal != TARGET_SIGNAL_0)
4535 {
4536 /* Step inferior_ptid, with or without signal. */
4537 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4538 }
4539
4540 /* And continue others without a signal. */
4541 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4542 }
4543 else
4544 {
4545 /* Scheduler locking; resume only PTID. */
4546 append_resumption (p, endp, ptid, step, siggnal);
4547 }
4548
4549 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4550 putpkt (rs->buf);
4551
4552 if (non_stop)
4553 {
4554 /* In non-stop, the stub replies to vCont with "OK". The stop
4555 reply will be reported asynchronously by means of a `%Stop'
4556 notification. */
4557 getpkt (&rs->buf, &rs->buf_size, 0);
4558 if (strcmp (rs->buf, "OK") != 0)
4559 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4560 }
4561
4562 return 1;
4563 }
4564
4565 /* Tell the remote machine to resume. */
4566
4567 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4568
4569 static int last_sent_step;
4570
4571 static void
4572 remote_resume (struct target_ops *ops,
4573 ptid_t ptid, int step, enum target_signal siggnal)
4574 {
4575 struct remote_state *rs = get_remote_state ();
4576 char *buf;
4577
4578 last_sent_signal = siggnal;
4579 last_sent_step = step;
4580
4581 /* The vCont packet doesn't need to specify threads via Hc. */
4582 /* No reverse support (yet) for vCont. */
4583 if (execution_direction != EXEC_REVERSE)
4584 if (remote_vcont_resume (ptid, step, siggnal))
4585 goto done;
4586
4587 /* All other supported resume packets do use Hc, so set the continue
4588 thread. */
4589 if (ptid_equal (ptid, minus_one_ptid))
4590 set_continue_thread (any_thread_ptid);
4591 else
4592 set_continue_thread (ptid);
4593
4594 buf = rs->buf;
4595 if (execution_direction == EXEC_REVERSE)
4596 {
4597 /* We don't pass signals to the target in reverse exec mode. */
4598 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4599 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4600 siggnal);
4601
4602 if (step
4603 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4604 error (_("Remote reverse-step not supported."));
4605 if (!step
4606 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4607 error (_("Remote reverse-continue not supported."));
4608
4609 strcpy (buf, step ? "bs" : "bc");
4610 }
4611 else if (siggnal != TARGET_SIGNAL_0)
4612 {
4613 buf[0] = step ? 'S' : 'C';
4614 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4615 buf[2] = tohex (((int) siggnal) & 0xf);
4616 buf[3] = '\0';
4617 }
4618 else
4619 strcpy (buf, step ? "s" : "c");
4620
4621 putpkt (buf);
4622
4623 done:
4624 /* We are about to start executing the inferior, let's register it
4625 with the event loop. NOTE: this is the one place where all the
4626 execution commands end up. We could alternatively do this in each
4627 of the execution commands in infcmd.c. */
4628 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4629 into infcmd.c in order to allow inferior function calls to work
4630 NOT asynchronously. */
4631 if (target_can_async_p ())
4632 target_async (inferior_event_handler, 0);
4633
4634 /* We've just told the target to resume. The remote server will
4635 wait for the inferior to stop, and then send a stop reply. In
4636 the mean time, we can't start another command/query ourselves
4637 because the stub wouldn't be ready to process it. This applies
4638 only to the base all-stop protocol, however. In non-stop (which
4639 only supports vCont), the stub replies with an "OK", and is
4640 immediate able to process further serial input. */
4641 if (!non_stop)
4642 rs->waiting_for_stop_reply = 1;
4643 }
4644 \f
4645
4646 /* Set up the signal handler for SIGINT, while the target is
4647 executing, ovewriting the 'regular' SIGINT signal handler. */
4648 static void
4649 initialize_sigint_signal_handler (void)
4650 {
4651 signal (SIGINT, handle_remote_sigint);
4652 }
4653
4654 /* Signal handler for SIGINT, while the target is executing. */
4655 static void
4656 handle_remote_sigint (int sig)
4657 {
4658 signal (sig, handle_remote_sigint_twice);
4659 mark_async_signal_handler_wrapper (sigint_remote_token);
4660 }
4661
4662 /* Signal handler for SIGINT, installed after SIGINT has already been
4663 sent once. It will take effect the second time that the user sends
4664 a ^C. */
4665 static void
4666 handle_remote_sigint_twice (int sig)
4667 {
4668 signal (sig, handle_remote_sigint);
4669 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4670 }
4671
4672 /* Perform the real interruption of the target execution, in response
4673 to a ^C. */
4674 static void
4675 async_remote_interrupt (gdb_client_data arg)
4676 {
4677 if (remote_debug)
4678 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4679
4680 target_stop (inferior_ptid);
4681 }
4682
4683 /* Perform interrupt, if the first attempt did not succeed. Just give
4684 up on the target alltogether. */
4685 void
4686 async_remote_interrupt_twice (gdb_client_data arg)
4687 {
4688 if (remote_debug)
4689 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4690
4691 interrupt_query ();
4692 }
4693
4694 /* Reinstall the usual SIGINT handlers, after the target has
4695 stopped. */
4696 static void
4697 cleanup_sigint_signal_handler (void *dummy)
4698 {
4699 signal (SIGINT, handle_sigint);
4700 }
4701
4702 /* Send ^C to target to halt it. Target will respond, and send us a
4703 packet. */
4704 static void (*ofunc) (int);
4705
4706 /* The command line interface's stop routine. This function is installed
4707 as a signal handler for SIGINT. The first time a user requests a
4708 stop, we call remote_stop to send a break or ^C. If there is no
4709 response from the target (it didn't stop when the user requested it),
4710 we ask the user if he'd like to detach from the target. */
4711 static void
4712 remote_interrupt (int signo)
4713 {
4714 /* If this doesn't work, try more severe steps. */
4715 signal (signo, remote_interrupt_twice);
4716
4717 gdb_call_async_signal_handler (sigint_remote_token, 1);
4718 }
4719
4720 /* The user typed ^C twice. */
4721
4722 static void
4723 remote_interrupt_twice (int signo)
4724 {
4725 signal (signo, ofunc);
4726 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4727 signal (signo, remote_interrupt);
4728 }
4729
4730 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4731 thread, all threads of a remote process, or all threads of all
4732 processes. */
4733
4734 static void
4735 remote_stop_ns (ptid_t ptid)
4736 {
4737 struct remote_state *rs = get_remote_state ();
4738 char *p = rs->buf;
4739 char *endp = rs->buf + get_remote_packet_size ();
4740
4741 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4742 remote_vcont_probe (rs);
4743
4744 if (!rs->support_vCont_t)
4745 error (_("Remote server does not support stopping threads"));
4746
4747 if (ptid_equal (ptid, minus_one_ptid)
4748 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4749 p += xsnprintf (p, endp - p, "vCont;t");
4750 else
4751 {
4752 ptid_t nptid;
4753
4754 p += xsnprintf (p, endp - p, "vCont;t:");
4755
4756 if (ptid_is_pid (ptid))
4757 /* All (-1) threads of process. */
4758 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4759 else
4760 {
4761 /* Small optimization: if we already have a stop reply for
4762 this thread, no use in telling the stub we want this
4763 stopped. */
4764 if (peek_stop_reply (ptid))
4765 return;
4766
4767 nptid = ptid;
4768 }
4769
4770 write_ptid (p, endp, nptid);
4771 }
4772
4773 /* In non-stop, we get an immediate OK reply. The stop reply will
4774 come in asynchronously by notification. */
4775 putpkt (rs->buf);
4776 getpkt (&rs->buf, &rs->buf_size, 0);
4777 if (strcmp (rs->buf, "OK") != 0)
4778 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4779 }
4780
4781 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4782 remote target. It is undefined which thread of which process
4783 reports the stop. */
4784
4785 static void
4786 remote_stop_as (ptid_t ptid)
4787 {
4788 struct remote_state *rs = get_remote_state ();
4789
4790 rs->ctrlc_pending_p = 1;
4791
4792 /* If the inferior is stopped already, but the core didn't know
4793 about it yet, just ignore the request. The cached wait status
4794 will be collected in remote_wait. */
4795 if (rs->cached_wait_status)
4796 return;
4797
4798 /* Send interrupt_sequence to remote target. */
4799 send_interrupt_sequence ();
4800 }
4801
4802 /* This is the generic stop called via the target vector. When a target
4803 interrupt is requested, either by the command line or the GUI, we
4804 will eventually end up here. */
4805
4806 static void
4807 remote_stop (ptid_t ptid)
4808 {
4809 if (remote_debug)
4810 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4811
4812 if (non_stop)
4813 remote_stop_ns (ptid);
4814 else
4815 remote_stop_as (ptid);
4816 }
4817
4818 /* Ask the user what to do when an interrupt is received. */
4819
4820 static void
4821 interrupt_query (void)
4822 {
4823 target_terminal_ours ();
4824
4825 if (target_can_async_p ())
4826 {
4827 signal (SIGINT, handle_sigint);
4828 deprecated_throw_reason (RETURN_QUIT);
4829 }
4830 else
4831 {
4832 if (query (_("Interrupted while waiting for the program.\n\
4833 Give up (and stop debugging it)? ")))
4834 {
4835 pop_target ();
4836 deprecated_throw_reason (RETURN_QUIT);
4837 }
4838 }
4839
4840 target_terminal_inferior ();
4841 }
4842
4843 /* Enable/disable target terminal ownership. Most targets can use
4844 terminal groups to control terminal ownership. Remote targets are
4845 different in that explicit transfer of ownership to/from GDB/target
4846 is required. */
4847
4848 static void
4849 remote_terminal_inferior (void)
4850 {
4851 if (!target_async_permitted)
4852 /* Nothing to do. */
4853 return;
4854
4855 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4856 idempotent. The event-loop GDB talking to an asynchronous target
4857 with a synchronous command calls this function from both
4858 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4859 transfer the terminal to the target when it shouldn't this guard
4860 can go away. */
4861 if (!remote_async_terminal_ours_p)
4862 return;
4863 delete_file_handler (input_fd);
4864 remote_async_terminal_ours_p = 0;
4865 initialize_sigint_signal_handler ();
4866 /* NOTE: At this point we could also register our selves as the
4867 recipient of all input. Any characters typed could then be
4868 passed on down to the target. */
4869 }
4870
4871 static void
4872 remote_terminal_ours (void)
4873 {
4874 if (!target_async_permitted)
4875 /* Nothing to do. */
4876 return;
4877
4878 /* See FIXME in remote_terminal_inferior. */
4879 if (remote_async_terminal_ours_p)
4880 return;
4881 cleanup_sigint_signal_handler (NULL);
4882 add_file_handler (input_fd, stdin_event_handler, 0);
4883 remote_async_terminal_ours_p = 1;
4884 }
4885
4886 static void
4887 remote_console_output (char *msg)
4888 {
4889 char *p;
4890
4891 for (p = msg; p[0] && p[1]; p += 2)
4892 {
4893 char tb[2];
4894 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4895
4896 tb[0] = c;
4897 tb[1] = 0;
4898 fputs_unfiltered (tb, gdb_stdtarg);
4899 }
4900 gdb_flush (gdb_stdtarg);
4901 }
4902
4903 typedef struct cached_reg
4904 {
4905 int num;
4906 gdb_byte data[MAX_REGISTER_SIZE];
4907 } cached_reg_t;
4908
4909 DEF_VEC_O(cached_reg_t);
4910
4911 struct stop_reply
4912 {
4913 struct stop_reply *next;
4914
4915 ptid_t ptid;
4916
4917 struct target_waitstatus ws;
4918
4919 /* Expedited registers. This makes remote debugging a bit more
4920 efficient for those targets that provide critical registers as
4921 part of their normal status mechanism (as another roundtrip to
4922 fetch them is avoided). */
4923 VEC(cached_reg_t) *regcache;
4924
4925 int stopped_by_watchpoint_p;
4926 CORE_ADDR watch_data_address;
4927
4928 int solibs_changed;
4929 int replay_event;
4930
4931 int core;
4932 };
4933
4934 /* The list of already fetched and acknowledged stop events. */
4935 static struct stop_reply *stop_reply_queue;
4936
4937 static struct stop_reply *
4938 stop_reply_xmalloc (void)
4939 {
4940 struct stop_reply *r = XMALLOC (struct stop_reply);
4941
4942 r->next = NULL;
4943 return r;
4944 }
4945
4946 static void
4947 stop_reply_xfree (struct stop_reply *r)
4948 {
4949 if (r != NULL)
4950 {
4951 VEC_free (cached_reg_t, r->regcache);
4952 xfree (r);
4953 }
4954 }
4955
4956 /* Discard all pending stop replies of inferior PID. If PID is -1,
4957 discard everything. */
4958
4959 static void
4960 discard_pending_stop_replies (int pid)
4961 {
4962 struct stop_reply *prev = NULL, *reply, *next;
4963
4964 /* Discard the in-flight notification. */
4965 if (pending_stop_reply != NULL
4966 && (pid == -1
4967 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4968 {
4969 stop_reply_xfree (pending_stop_reply);
4970 pending_stop_reply = NULL;
4971 }
4972
4973 /* Discard the stop replies we have already pulled with
4974 vStopped. */
4975 for (reply = stop_reply_queue; reply; reply = next)
4976 {
4977 next = reply->next;
4978 if (pid == -1
4979 || ptid_get_pid (reply->ptid) == pid)
4980 {
4981 if (reply == stop_reply_queue)
4982 stop_reply_queue = reply->next;
4983 else
4984 prev->next = reply->next;
4985
4986 stop_reply_xfree (reply);
4987 }
4988 else
4989 prev = reply;
4990 }
4991 }
4992
4993 /* Cleanup wrapper. */
4994
4995 static void
4996 do_stop_reply_xfree (void *arg)
4997 {
4998 struct stop_reply *r = arg;
4999
5000 stop_reply_xfree (r);
5001 }
5002
5003 /* Look for a queued stop reply belonging to PTID. If one is found,
5004 remove it from the queue, and return it. Returns NULL if none is
5005 found. If there are still queued events left to process, tell the
5006 event loop to get back to target_wait soon. */
5007
5008 static struct stop_reply *
5009 queued_stop_reply (ptid_t ptid)
5010 {
5011 struct stop_reply *it;
5012 struct stop_reply **it_link;
5013
5014 it = stop_reply_queue;
5015 it_link = &stop_reply_queue;
5016 while (it)
5017 {
5018 if (ptid_match (it->ptid, ptid))
5019 {
5020 *it_link = it->next;
5021 it->next = NULL;
5022 break;
5023 }
5024
5025 it_link = &it->next;
5026 it = *it_link;
5027 }
5028
5029 if (stop_reply_queue)
5030 /* There's still at least an event left. */
5031 mark_async_event_handler (remote_async_inferior_event_token);
5032
5033 return it;
5034 }
5035
5036 /* Push a fully parsed stop reply in the stop reply queue. Since we
5037 know that we now have at least one queued event left to pass to the
5038 core side, tell the event loop to get back to target_wait soon. */
5039
5040 static void
5041 push_stop_reply (struct stop_reply *new_event)
5042 {
5043 struct stop_reply *event;
5044
5045 if (stop_reply_queue)
5046 {
5047 for (event = stop_reply_queue;
5048 event && event->next;
5049 event = event->next)
5050 ;
5051
5052 event->next = new_event;
5053 }
5054 else
5055 stop_reply_queue = new_event;
5056
5057 mark_async_event_handler (remote_async_inferior_event_token);
5058 }
5059
5060 /* Returns true if we have a stop reply for PTID. */
5061
5062 static int
5063 peek_stop_reply (ptid_t ptid)
5064 {
5065 struct stop_reply *it;
5066
5067 for (it = stop_reply_queue; it; it = it->next)
5068 if (ptid_equal (ptid, it->ptid))
5069 {
5070 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5071 return 1;
5072 }
5073
5074 return 0;
5075 }
5076
5077 /* Parse the stop reply in BUF. Either the function succeeds, and the
5078 result is stored in EVENT, or throws an error. */
5079
5080 static void
5081 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5082 {
5083 struct remote_arch_state *rsa = get_remote_arch_state ();
5084 ULONGEST addr;
5085 char *p;
5086
5087 event->ptid = null_ptid;
5088 event->ws.kind = TARGET_WAITKIND_IGNORE;
5089 event->ws.value.integer = 0;
5090 event->solibs_changed = 0;
5091 event->replay_event = 0;
5092 event->stopped_by_watchpoint_p = 0;
5093 event->regcache = NULL;
5094 event->core = -1;
5095
5096 switch (buf[0])
5097 {
5098 case 'T': /* Status with PC, SP, FP, ... */
5099 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5100 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5101 ss = signal number
5102 n... = register number
5103 r... = register contents
5104 */
5105
5106 p = &buf[3]; /* after Txx */
5107 while (*p)
5108 {
5109 char *p1;
5110 char *p_temp;
5111 int fieldsize;
5112 LONGEST pnum = 0;
5113
5114 /* If the packet contains a register number, save it in
5115 pnum and set p1 to point to the character following it.
5116 Otherwise p1 points to p. */
5117
5118 /* If this packet is an awatch packet, don't parse the 'a'
5119 as a register number. */
5120
5121 if (strncmp (p, "awatch", strlen("awatch")) != 0
5122 && strncmp (p, "core", strlen ("core") != 0))
5123 {
5124 /* Read the ``P'' register number. */
5125 pnum = strtol (p, &p_temp, 16);
5126 p1 = p_temp;
5127 }
5128 else
5129 p1 = p;
5130
5131 if (p1 == p) /* No register number present here. */
5132 {
5133 p1 = strchr (p, ':');
5134 if (p1 == NULL)
5135 error (_("Malformed packet(a) (missing colon): %s\n\
5136 Packet: '%s'\n"),
5137 p, buf);
5138 if (strncmp (p, "thread", p1 - p) == 0)
5139 event->ptid = read_ptid (++p1, &p);
5140 else if ((strncmp (p, "watch", p1 - p) == 0)
5141 || (strncmp (p, "rwatch", p1 - p) == 0)
5142 || (strncmp (p, "awatch", p1 - p) == 0))
5143 {
5144 event->stopped_by_watchpoint_p = 1;
5145 p = unpack_varlen_hex (++p1, &addr);
5146 event->watch_data_address = (CORE_ADDR) addr;
5147 }
5148 else if (strncmp (p, "library", p1 - p) == 0)
5149 {
5150 p1++;
5151 p_temp = p1;
5152 while (*p_temp && *p_temp != ';')
5153 p_temp++;
5154
5155 event->solibs_changed = 1;
5156 p = p_temp;
5157 }
5158 else if (strncmp (p, "replaylog", p1 - p) == 0)
5159 {
5160 /* NO_HISTORY event.
5161 p1 will indicate "begin" or "end", but
5162 it makes no difference for now, so ignore it. */
5163 event->replay_event = 1;
5164 p_temp = strchr (p1 + 1, ';');
5165 if (p_temp)
5166 p = p_temp;
5167 }
5168 else if (strncmp (p, "core", p1 - p) == 0)
5169 {
5170 ULONGEST c;
5171
5172 p = unpack_varlen_hex (++p1, &c);
5173 event->core = c;
5174 }
5175 else
5176 {
5177 /* Silently skip unknown optional info. */
5178 p_temp = strchr (p1 + 1, ';');
5179 if (p_temp)
5180 p = p_temp;
5181 }
5182 }
5183 else
5184 {
5185 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5186 cached_reg_t cached_reg;
5187
5188 p = p1;
5189
5190 if (*p != ':')
5191 error (_("Malformed packet(b) (missing colon): %s\n\
5192 Packet: '%s'\n"),
5193 p, buf);
5194 ++p;
5195
5196 if (reg == NULL)
5197 error (_("Remote sent bad register number %s: %s\n\
5198 Packet: '%s'\n"),
5199 hex_string (pnum), p, buf);
5200
5201 cached_reg.num = reg->regnum;
5202
5203 fieldsize = hex2bin (p, cached_reg.data,
5204 register_size (target_gdbarch,
5205 reg->regnum));
5206 p += 2 * fieldsize;
5207 if (fieldsize < register_size (target_gdbarch,
5208 reg->regnum))
5209 warning (_("Remote reply is too short: %s"), buf);
5210
5211 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5212 }
5213
5214 if (*p != ';')
5215 error (_("Remote register badly formatted: %s\nhere: %s"),
5216 buf, p);
5217 ++p;
5218 }
5219 /* fall through */
5220 case 'S': /* Old style status, just signal only. */
5221 if (event->solibs_changed)
5222 event->ws.kind = TARGET_WAITKIND_LOADED;
5223 else if (event->replay_event)
5224 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5225 else
5226 {
5227 event->ws.kind = TARGET_WAITKIND_STOPPED;
5228 event->ws.value.sig = (enum target_signal)
5229 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5230 }
5231 break;
5232 case 'W': /* Target exited. */
5233 case 'X':
5234 {
5235 char *p;
5236 int pid;
5237 ULONGEST value;
5238
5239 /* GDB used to accept only 2 hex chars here. Stubs should
5240 only send more if they detect GDB supports multi-process
5241 support. */
5242 p = unpack_varlen_hex (&buf[1], &value);
5243
5244 if (buf[0] == 'W')
5245 {
5246 /* The remote process exited. */
5247 event->ws.kind = TARGET_WAITKIND_EXITED;
5248 event->ws.value.integer = value;
5249 }
5250 else
5251 {
5252 /* The remote process exited with a signal. */
5253 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5254 event->ws.value.sig = (enum target_signal) value;
5255 }
5256
5257 /* If no process is specified, assume inferior_ptid. */
5258 pid = ptid_get_pid (inferior_ptid);
5259 if (*p == '\0')
5260 ;
5261 else if (*p == ';')
5262 {
5263 p++;
5264
5265 if (p == '\0')
5266 ;
5267 else if (strncmp (p,
5268 "process:", sizeof ("process:") - 1) == 0)
5269 {
5270 ULONGEST upid;
5271
5272 p += sizeof ("process:") - 1;
5273 unpack_varlen_hex (p, &upid);
5274 pid = upid;
5275 }
5276 else
5277 error (_("unknown stop reply packet: %s"), buf);
5278 }
5279 else
5280 error (_("unknown stop reply packet: %s"), buf);
5281 event->ptid = pid_to_ptid (pid);
5282 }
5283 break;
5284 }
5285
5286 if (non_stop && ptid_equal (event->ptid, null_ptid))
5287 error (_("No process or thread specified in stop reply: %s"), buf);
5288 }
5289
5290 /* When the stub wants to tell GDB about a new stop reply, it sends a
5291 stop notification (%Stop). Those can come it at any time, hence,
5292 we have to make sure that any pending putpkt/getpkt sequence we're
5293 making is finished, before querying the stub for more events with
5294 vStopped. E.g., if we started a vStopped sequence immediatelly
5295 upon receiving the %Stop notification, something like this could
5296 happen:
5297
5298 1.1) --> Hg 1
5299 1.2) <-- OK
5300 1.3) --> g
5301 1.4) <-- %Stop
5302 1.5) --> vStopped
5303 1.6) <-- (registers reply to step #1.3)
5304
5305 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5306 query.
5307
5308 To solve this, whenever we parse a %Stop notification sucessfully,
5309 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5310 doing whatever we were doing:
5311
5312 2.1) --> Hg 1
5313 2.2) <-- OK
5314 2.3) --> g
5315 2.4) <-- %Stop
5316 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5317 2.5) <-- (registers reply to step #2.3)
5318
5319 Eventualy after step #2.5, we return to the event loop, which
5320 notices there's an event on the
5321 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5322 associated callback --- the function below. At this point, we're
5323 always safe to start a vStopped sequence. :
5324
5325 2.6) --> vStopped
5326 2.7) <-- T05 thread:2
5327 2.8) --> vStopped
5328 2.9) --> OK
5329 */
5330
5331 static void
5332 remote_get_pending_stop_replies (void)
5333 {
5334 struct remote_state *rs = get_remote_state ();
5335
5336 if (pending_stop_reply)
5337 {
5338 /* acknowledge */
5339 putpkt ("vStopped");
5340
5341 /* Now we can rely on it. */
5342 push_stop_reply (pending_stop_reply);
5343 pending_stop_reply = NULL;
5344
5345 while (1)
5346 {
5347 getpkt (&rs->buf, &rs->buf_size, 0);
5348 if (strcmp (rs->buf, "OK") == 0)
5349 break;
5350 else
5351 {
5352 struct cleanup *old_chain;
5353 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5354
5355 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5356 remote_parse_stop_reply (rs->buf, stop_reply);
5357
5358 /* acknowledge */
5359 putpkt ("vStopped");
5360
5361 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5362 {
5363 /* Now we can rely on it. */
5364 discard_cleanups (old_chain);
5365 push_stop_reply (stop_reply);
5366 }
5367 else
5368 /* We got an unknown stop reply. */
5369 do_cleanups (old_chain);
5370 }
5371 }
5372 }
5373 }
5374
5375
5376 /* Called when it is decided that STOP_REPLY holds the info of the
5377 event that is to be returned to the core. This function always
5378 destroys STOP_REPLY. */
5379
5380 static ptid_t
5381 process_stop_reply (struct stop_reply *stop_reply,
5382 struct target_waitstatus *status)
5383 {
5384 ptid_t ptid;
5385
5386 *status = stop_reply->ws;
5387 ptid = stop_reply->ptid;
5388
5389 /* If no thread/process was reported by the stub, assume the current
5390 inferior. */
5391 if (ptid_equal (ptid, null_ptid))
5392 ptid = inferior_ptid;
5393
5394 if (status->kind != TARGET_WAITKIND_EXITED
5395 && status->kind != TARGET_WAITKIND_SIGNALLED)
5396 {
5397 /* Expedited registers. */
5398 if (stop_reply->regcache)
5399 {
5400 struct regcache *regcache
5401 = get_thread_arch_regcache (ptid, target_gdbarch);
5402 cached_reg_t *reg;
5403 int ix;
5404
5405 for (ix = 0;
5406 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5407 ix++)
5408 regcache_raw_supply (regcache, reg->num, reg->data);
5409 VEC_free (cached_reg_t, stop_reply->regcache);
5410 }
5411
5412 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5413 remote_watch_data_address = stop_reply->watch_data_address;
5414
5415 remote_notice_new_inferior (ptid, 0);
5416 demand_private_info (ptid)->core = stop_reply->core;
5417 }
5418
5419 stop_reply_xfree (stop_reply);
5420 return ptid;
5421 }
5422
5423 /* The non-stop mode version of target_wait. */
5424
5425 static ptid_t
5426 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5427 {
5428 struct remote_state *rs = get_remote_state ();
5429 struct stop_reply *stop_reply;
5430 int ret;
5431
5432 /* If in non-stop mode, get out of getpkt even if a
5433 notification is received. */
5434
5435 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5436 0 /* forever */);
5437 while (1)
5438 {
5439 if (ret != -1)
5440 switch (rs->buf[0])
5441 {
5442 case 'E': /* Error of some sort. */
5443 /* We're out of sync with the target now. Did it continue
5444 or not? We can't tell which thread it was in non-stop,
5445 so just ignore this. */
5446 warning (_("Remote failure reply: %s"), rs->buf);
5447 break;
5448 case 'O': /* Console output. */
5449 remote_console_output (rs->buf + 1);
5450 break;
5451 default:
5452 warning (_("Invalid remote reply: %s"), rs->buf);
5453 break;
5454 }
5455
5456 /* Acknowledge a pending stop reply that may have arrived in the
5457 mean time. */
5458 if (pending_stop_reply != NULL)
5459 remote_get_pending_stop_replies ();
5460
5461 /* If indeed we noticed a stop reply, we're done. */
5462 stop_reply = queued_stop_reply (ptid);
5463 if (stop_reply != NULL)
5464 return process_stop_reply (stop_reply, status);
5465
5466 /* Still no event. If we're just polling for an event, then
5467 return to the event loop. */
5468 if (options & TARGET_WNOHANG)
5469 {
5470 status->kind = TARGET_WAITKIND_IGNORE;
5471 return minus_one_ptid;
5472 }
5473
5474 /* Otherwise do a blocking wait. */
5475 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5476 1 /* forever */);
5477 }
5478 }
5479
5480 /* Wait until the remote machine stops, then return, storing status in
5481 STATUS just as `wait' would. */
5482
5483 static ptid_t
5484 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5485 {
5486 struct remote_state *rs = get_remote_state ();
5487 ptid_t event_ptid = null_ptid;
5488 char *buf;
5489 struct stop_reply *stop_reply;
5490
5491 again:
5492
5493 status->kind = TARGET_WAITKIND_IGNORE;
5494 status->value.integer = 0;
5495
5496 stop_reply = queued_stop_reply (ptid);
5497 if (stop_reply != NULL)
5498 return process_stop_reply (stop_reply, status);
5499
5500 if (rs->cached_wait_status)
5501 /* Use the cached wait status, but only once. */
5502 rs->cached_wait_status = 0;
5503 else
5504 {
5505 int ret;
5506
5507 if (!target_is_async_p ())
5508 {
5509 ofunc = signal (SIGINT, remote_interrupt);
5510 /* If the user hit C-c before this packet, or between packets,
5511 pretend that it was hit right here. */
5512 if (quit_flag)
5513 {
5514 quit_flag = 0;
5515 remote_interrupt (SIGINT);
5516 }
5517 }
5518
5519 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5520 _never_ wait for ever -> test on target_is_async_p().
5521 However, before we do that we need to ensure that the caller
5522 knows how to take the target into/out of async mode. */
5523 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5524 if (!target_is_async_p ())
5525 signal (SIGINT, ofunc);
5526 }
5527
5528 buf = rs->buf;
5529
5530 remote_stopped_by_watchpoint_p = 0;
5531
5532 /* We got something. */
5533 rs->waiting_for_stop_reply = 0;
5534
5535 /* Assume that the target has acknowledged Ctrl-C unless we receive
5536 an 'F' or 'O' packet. */
5537 if (buf[0] != 'F' && buf[0] != 'O')
5538 rs->ctrlc_pending_p = 0;
5539
5540 switch (buf[0])
5541 {
5542 case 'E': /* Error of some sort. */
5543 /* We're out of sync with the target now. Did it continue or
5544 not? Not is more likely, so report a stop. */
5545 warning (_("Remote failure reply: %s"), buf);
5546 status->kind = TARGET_WAITKIND_STOPPED;
5547 status->value.sig = TARGET_SIGNAL_0;
5548 break;
5549 case 'F': /* File-I/O request. */
5550 remote_fileio_request (buf, rs->ctrlc_pending_p);
5551 rs->ctrlc_pending_p = 0;
5552 break;
5553 case 'T': case 'S': case 'X': case 'W':
5554 {
5555 struct stop_reply *stop_reply;
5556 struct cleanup *old_chain;
5557
5558 stop_reply = stop_reply_xmalloc ();
5559 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5560 remote_parse_stop_reply (buf, stop_reply);
5561 discard_cleanups (old_chain);
5562 event_ptid = process_stop_reply (stop_reply, status);
5563 break;
5564 }
5565 case 'O': /* Console output. */
5566 remote_console_output (buf + 1);
5567
5568 /* The target didn't really stop; keep waiting. */
5569 rs->waiting_for_stop_reply = 1;
5570
5571 break;
5572 case '\0':
5573 if (last_sent_signal != TARGET_SIGNAL_0)
5574 {
5575 /* Zero length reply means that we tried 'S' or 'C' and the
5576 remote system doesn't support it. */
5577 target_terminal_ours_for_output ();
5578 printf_filtered
5579 ("Can't send signals to this remote system. %s not sent.\n",
5580 target_signal_to_name (last_sent_signal));
5581 last_sent_signal = TARGET_SIGNAL_0;
5582 target_terminal_inferior ();
5583
5584 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5585 putpkt ((char *) buf);
5586
5587 /* We just told the target to resume, so a stop reply is in
5588 order. */
5589 rs->waiting_for_stop_reply = 1;
5590 break;
5591 }
5592 /* else fallthrough */
5593 default:
5594 warning (_("Invalid remote reply: %s"), buf);
5595 /* Keep waiting. */
5596 rs->waiting_for_stop_reply = 1;
5597 break;
5598 }
5599
5600 if (status->kind == TARGET_WAITKIND_IGNORE)
5601 {
5602 /* Nothing interesting happened. If we're doing a non-blocking
5603 poll, we're done. Otherwise, go back to waiting. */
5604 if (options & TARGET_WNOHANG)
5605 return minus_one_ptid;
5606 else
5607 goto again;
5608 }
5609 else if (status->kind != TARGET_WAITKIND_EXITED
5610 && status->kind != TARGET_WAITKIND_SIGNALLED)
5611 {
5612 if (!ptid_equal (event_ptid, null_ptid))
5613 record_currthread (event_ptid);
5614 else
5615 event_ptid = inferior_ptid;
5616 }
5617 else
5618 /* A process exit. Invalidate our notion of current thread. */
5619 record_currthread (minus_one_ptid);
5620
5621 return event_ptid;
5622 }
5623
5624 /* Wait until the remote machine stops, then return, storing status in
5625 STATUS just as `wait' would. */
5626
5627 static ptid_t
5628 remote_wait (struct target_ops *ops,
5629 ptid_t ptid, struct target_waitstatus *status, int options)
5630 {
5631 ptid_t event_ptid;
5632
5633 if (non_stop)
5634 event_ptid = remote_wait_ns (ptid, status, options);
5635 else
5636 event_ptid = remote_wait_as (ptid, status, options);
5637
5638 if (target_can_async_p ())
5639 {
5640 /* If there are are events left in the queue tell the event loop
5641 to return here. */
5642 if (stop_reply_queue)
5643 mark_async_event_handler (remote_async_inferior_event_token);
5644 }
5645
5646 return event_ptid;
5647 }
5648
5649 /* Fetch a single register using a 'p' packet. */
5650
5651 static int
5652 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5653 {
5654 struct remote_state *rs = get_remote_state ();
5655 char *buf, *p;
5656 char regp[MAX_REGISTER_SIZE];
5657 int i;
5658
5659 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5660 return 0;
5661
5662 if (reg->pnum == -1)
5663 return 0;
5664
5665 p = rs->buf;
5666 *p++ = 'p';
5667 p += hexnumstr (p, reg->pnum);
5668 *p++ = '\0';
5669 putpkt (rs->buf);
5670 getpkt (&rs->buf, &rs->buf_size, 0);
5671
5672 buf = rs->buf;
5673
5674 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5675 {
5676 case PACKET_OK:
5677 break;
5678 case PACKET_UNKNOWN:
5679 return 0;
5680 case PACKET_ERROR:
5681 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5682 gdbarch_register_name (get_regcache_arch (regcache),
5683 reg->regnum),
5684 buf);
5685 }
5686
5687 /* If this register is unfetchable, tell the regcache. */
5688 if (buf[0] == 'x')
5689 {
5690 regcache_raw_supply (regcache, reg->regnum, NULL);
5691 return 1;
5692 }
5693
5694 /* Otherwise, parse and supply the value. */
5695 p = buf;
5696 i = 0;
5697 while (p[0] != 0)
5698 {
5699 if (p[1] == 0)
5700 error (_("fetch_register_using_p: early buf termination"));
5701
5702 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5703 p += 2;
5704 }
5705 regcache_raw_supply (regcache, reg->regnum, regp);
5706 return 1;
5707 }
5708
5709 /* Fetch the registers included in the target's 'g' packet. */
5710
5711 static int
5712 send_g_packet (void)
5713 {
5714 struct remote_state *rs = get_remote_state ();
5715 int buf_len;
5716
5717 sprintf (rs->buf, "g");
5718 remote_send (&rs->buf, &rs->buf_size);
5719
5720 /* We can get out of synch in various cases. If the first character
5721 in the buffer is not a hex character, assume that has happened
5722 and try to fetch another packet to read. */
5723 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5724 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5725 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5726 && rs->buf[0] != 'x') /* New: unavailable register value. */
5727 {
5728 if (remote_debug)
5729 fprintf_unfiltered (gdb_stdlog,
5730 "Bad register packet; fetching a new packet\n");
5731 getpkt (&rs->buf, &rs->buf_size, 0);
5732 }
5733
5734 buf_len = strlen (rs->buf);
5735
5736 /* Sanity check the received packet. */
5737 if (buf_len % 2 != 0)
5738 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5739
5740 return buf_len / 2;
5741 }
5742
5743 static void
5744 process_g_packet (struct regcache *regcache)
5745 {
5746 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5747 struct remote_state *rs = get_remote_state ();
5748 struct remote_arch_state *rsa = get_remote_arch_state ();
5749 int i, buf_len;
5750 char *p;
5751 char *regs;
5752
5753 buf_len = strlen (rs->buf);
5754
5755 /* Further sanity checks, with knowledge of the architecture. */
5756 if (buf_len > 2 * rsa->sizeof_g_packet)
5757 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5758
5759 /* Save the size of the packet sent to us by the target. It is used
5760 as a heuristic when determining the max size of packets that the
5761 target can safely receive. */
5762 if (rsa->actual_register_packet_size == 0)
5763 rsa->actual_register_packet_size = buf_len;
5764
5765 /* If this is smaller than we guessed the 'g' packet would be,
5766 update our records. A 'g' reply that doesn't include a register's
5767 value implies either that the register is not available, or that
5768 the 'p' packet must be used. */
5769 if (buf_len < 2 * rsa->sizeof_g_packet)
5770 {
5771 rsa->sizeof_g_packet = buf_len / 2;
5772
5773 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5774 {
5775 if (rsa->regs[i].pnum == -1)
5776 continue;
5777
5778 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5779 rsa->regs[i].in_g_packet = 0;
5780 else
5781 rsa->regs[i].in_g_packet = 1;
5782 }
5783 }
5784
5785 regs = alloca (rsa->sizeof_g_packet);
5786
5787 /* Unimplemented registers read as all bits zero. */
5788 memset (regs, 0, rsa->sizeof_g_packet);
5789
5790 /* Reply describes registers byte by byte, each byte encoded as two
5791 hex characters. Suck them all up, then supply them to the
5792 register cacheing/storage mechanism. */
5793
5794 p = rs->buf;
5795 for (i = 0; i < rsa->sizeof_g_packet; i++)
5796 {
5797 if (p[0] == 0 || p[1] == 0)
5798 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5799 internal_error (__FILE__, __LINE__,
5800 _("unexpected end of 'g' packet reply"));
5801
5802 if (p[0] == 'x' && p[1] == 'x')
5803 regs[i] = 0; /* 'x' */
5804 else
5805 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5806 p += 2;
5807 }
5808
5809 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5810 {
5811 struct packet_reg *r = &rsa->regs[i];
5812
5813 if (r->in_g_packet)
5814 {
5815 if (r->offset * 2 >= strlen (rs->buf))
5816 /* This shouldn't happen - we adjusted in_g_packet above. */
5817 internal_error (__FILE__, __LINE__,
5818 _("unexpected end of 'g' packet reply"));
5819 else if (rs->buf[r->offset * 2] == 'x')
5820 {
5821 gdb_assert (r->offset * 2 < strlen (rs->buf));
5822 /* The register isn't available, mark it as such (at
5823 the same time setting the value to zero). */
5824 regcache_raw_supply (regcache, r->regnum, NULL);
5825 }
5826 else
5827 regcache_raw_supply (regcache, r->regnum,
5828 regs + r->offset);
5829 }
5830 }
5831 }
5832
5833 static void
5834 fetch_registers_using_g (struct regcache *regcache)
5835 {
5836 send_g_packet ();
5837 process_g_packet (regcache);
5838 }
5839
5840 /* Make the remote selected traceframe match GDB's selected
5841 traceframe. */
5842
5843 static void
5844 set_remote_traceframe (void)
5845 {
5846 int newnum;
5847
5848 if (remote_traceframe_number == get_traceframe_number ())
5849 return;
5850
5851 /* Avoid recursion, remote_trace_find calls us again. */
5852 remote_traceframe_number = get_traceframe_number ();
5853
5854 newnum = target_trace_find (tfind_number,
5855 get_traceframe_number (), 0, 0, NULL);
5856
5857 /* Should not happen. If it does, all bets are off. */
5858 if (newnum != get_traceframe_number ())
5859 warning (_("could not set remote traceframe"));
5860 }
5861
5862 static void
5863 remote_fetch_registers (struct target_ops *ops,
5864 struct regcache *regcache, int regnum)
5865 {
5866 struct remote_arch_state *rsa = get_remote_arch_state ();
5867 int i;
5868
5869 set_remote_traceframe ();
5870 set_general_thread (inferior_ptid);
5871
5872 if (regnum >= 0)
5873 {
5874 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5875
5876 gdb_assert (reg != NULL);
5877
5878 /* If this register might be in the 'g' packet, try that first -
5879 we are likely to read more than one register. If this is the
5880 first 'g' packet, we might be overly optimistic about its
5881 contents, so fall back to 'p'. */
5882 if (reg->in_g_packet)
5883 {
5884 fetch_registers_using_g (regcache);
5885 if (reg->in_g_packet)
5886 return;
5887 }
5888
5889 if (fetch_register_using_p (regcache, reg))
5890 return;
5891
5892 /* This register is not available. */
5893 regcache_raw_supply (regcache, reg->regnum, NULL);
5894
5895 return;
5896 }
5897
5898 fetch_registers_using_g (regcache);
5899
5900 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5901 if (!rsa->regs[i].in_g_packet)
5902 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5903 {
5904 /* This register is not available. */
5905 regcache_raw_supply (regcache, i, NULL);
5906 }
5907 }
5908
5909 /* Prepare to store registers. Since we may send them all (using a
5910 'G' request), we have to read out the ones we don't want to change
5911 first. */
5912
5913 static void
5914 remote_prepare_to_store (struct regcache *regcache)
5915 {
5916 struct remote_arch_state *rsa = get_remote_arch_state ();
5917 int i;
5918 gdb_byte buf[MAX_REGISTER_SIZE];
5919
5920 /* Make sure the entire registers array is valid. */
5921 switch (remote_protocol_packets[PACKET_P].support)
5922 {
5923 case PACKET_DISABLE:
5924 case PACKET_SUPPORT_UNKNOWN:
5925 /* Make sure all the necessary registers are cached. */
5926 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5927 if (rsa->regs[i].in_g_packet)
5928 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5929 break;
5930 case PACKET_ENABLE:
5931 break;
5932 }
5933 }
5934
5935 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5936 packet was not recognized. */
5937
5938 static int
5939 store_register_using_P (const struct regcache *regcache,
5940 struct packet_reg *reg)
5941 {
5942 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5943 struct remote_state *rs = get_remote_state ();
5944 /* Try storing a single register. */
5945 char *buf = rs->buf;
5946 gdb_byte regp[MAX_REGISTER_SIZE];
5947 char *p;
5948
5949 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5950 return 0;
5951
5952 if (reg->pnum == -1)
5953 return 0;
5954
5955 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5956 p = buf + strlen (buf);
5957 regcache_raw_collect (regcache, reg->regnum, regp);
5958 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5959 putpkt (rs->buf);
5960 getpkt (&rs->buf, &rs->buf_size, 0);
5961
5962 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5963 {
5964 case PACKET_OK:
5965 return 1;
5966 case PACKET_ERROR:
5967 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5968 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5969 case PACKET_UNKNOWN:
5970 return 0;
5971 default:
5972 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5973 }
5974 }
5975
5976 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5977 contents of the register cache buffer. FIXME: ignores errors. */
5978
5979 static void
5980 store_registers_using_G (const struct regcache *regcache)
5981 {
5982 struct remote_state *rs = get_remote_state ();
5983 struct remote_arch_state *rsa = get_remote_arch_state ();
5984 gdb_byte *regs;
5985 char *p;
5986
5987 /* Extract all the registers in the regcache copying them into a
5988 local buffer. */
5989 {
5990 int i;
5991
5992 regs = alloca (rsa->sizeof_g_packet);
5993 memset (regs, 0, rsa->sizeof_g_packet);
5994 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5995 {
5996 struct packet_reg *r = &rsa->regs[i];
5997
5998 if (r->in_g_packet)
5999 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6000 }
6001 }
6002
6003 /* Command describes registers byte by byte,
6004 each byte encoded as two hex characters. */
6005 p = rs->buf;
6006 *p++ = 'G';
6007 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6008 updated. */
6009 bin2hex (regs, p, rsa->sizeof_g_packet);
6010 putpkt (rs->buf);
6011 getpkt (&rs->buf, &rs->buf_size, 0);
6012 if (packet_check_result (rs->buf) == PACKET_ERROR)
6013 error (_("Could not write registers; remote failure reply '%s'"),
6014 rs->buf);
6015 }
6016
6017 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6018 of the register cache buffer. FIXME: ignores errors. */
6019
6020 static void
6021 remote_store_registers (struct target_ops *ops,
6022 struct regcache *regcache, int regnum)
6023 {
6024 struct remote_arch_state *rsa = get_remote_arch_state ();
6025 int i;
6026
6027 set_remote_traceframe ();
6028 set_general_thread (inferior_ptid);
6029
6030 if (regnum >= 0)
6031 {
6032 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6033
6034 gdb_assert (reg != NULL);
6035
6036 /* Always prefer to store registers using the 'P' packet if
6037 possible; we often change only a small number of registers.
6038 Sometimes we change a larger number; we'd need help from a
6039 higher layer to know to use 'G'. */
6040 if (store_register_using_P (regcache, reg))
6041 return;
6042
6043 /* For now, don't complain if we have no way to write the
6044 register. GDB loses track of unavailable registers too
6045 easily. Some day, this may be an error. We don't have
6046 any way to read the register, either... */
6047 if (!reg->in_g_packet)
6048 return;
6049
6050 store_registers_using_G (regcache);
6051 return;
6052 }
6053
6054 store_registers_using_G (regcache);
6055
6056 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6057 if (!rsa->regs[i].in_g_packet)
6058 if (!store_register_using_P (regcache, &rsa->regs[i]))
6059 /* See above for why we do not issue an error here. */
6060 continue;
6061 }
6062 \f
6063
6064 /* Return the number of hex digits in num. */
6065
6066 static int
6067 hexnumlen (ULONGEST num)
6068 {
6069 int i;
6070
6071 for (i = 0; num != 0; i++)
6072 num >>= 4;
6073
6074 return max (i, 1);
6075 }
6076
6077 /* Set BUF to the minimum number of hex digits representing NUM. */
6078
6079 static int
6080 hexnumstr (char *buf, ULONGEST num)
6081 {
6082 int len = hexnumlen (num);
6083
6084 return hexnumnstr (buf, num, len);
6085 }
6086
6087
6088 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6089
6090 static int
6091 hexnumnstr (char *buf, ULONGEST num, int width)
6092 {
6093 int i;
6094
6095 buf[width] = '\0';
6096
6097 for (i = width - 1; i >= 0; i--)
6098 {
6099 buf[i] = "0123456789abcdef"[(num & 0xf)];
6100 num >>= 4;
6101 }
6102
6103 return width;
6104 }
6105
6106 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6107
6108 static CORE_ADDR
6109 remote_address_masked (CORE_ADDR addr)
6110 {
6111 int address_size = remote_address_size;
6112
6113 /* If "remoteaddresssize" was not set, default to target address size. */
6114 if (!address_size)
6115 address_size = gdbarch_addr_bit (target_gdbarch);
6116
6117 if (address_size > 0
6118 && address_size < (sizeof (ULONGEST) * 8))
6119 {
6120 /* Only create a mask when that mask can safely be constructed
6121 in a ULONGEST variable. */
6122 ULONGEST mask = 1;
6123
6124 mask = (mask << address_size) - 1;
6125 addr &= mask;
6126 }
6127 return addr;
6128 }
6129
6130 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6131 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6132 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6133 (which may be more than *OUT_LEN due to escape characters). The
6134 total number of bytes in the output buffer will be at most
6135 OUT_MAXLEN. */
6136
6137 static int
6138 remote_escape_output (const gdb_byte *buffer, int len,
6139 gdb_byte *out_buf, int *out_len,
6140 int out_maxlen)
6141 {
6142 int input_index, output_index;
6143
6144 output_index = 0;
6145 for (input_index = 0; input_index < len; input_index++)
6146 {
6147 gdb_byte b = buffer[input_index];
6148
6149 if (b == '$' || b == '#' || b == '}')
6150 {
6151 /* These must be escaped. */
6152 if (output_index + 2 > out_maxlen)
6153 break;
6154 out_buf[output_index++] = '}';
6155 out_buf[output_index++] = b ^ 0x20;
6156 }
6157 else
6158 {
6159 if (output_index + 1 > out_maxlen)
6160 break;
6161 out_buf[output_index++] = b;
6162 }
6163 }
6164
6165 *out_len = input_index;
6166 return output_index;
6167 }
6168
6169 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6170 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6171 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6172
6173 This function reverses remote_escape_output. It allows more
6174 escaped characters than that function does, in particular because
6175 '*' must be escaped to avoid the run-length encoding processing
6176 in reading packets. */
6177
6178 static int
6179 remote_unescape_input (const gdb_byte *buffer, int len,
6180 gdb_byte *out_buf, int out_maxlen)
6181 {
6182 int input_index, output_index;
6183 int escaped;
6184
6185 output_index = 0;
6186 escaped = 0;
6187 for (input_index = 0; input_index < len; input_index++)
6188 {
6189 gdb_byte b = buffer[input_index];
6190
6191 if (output_index + 1 > out_maxlen)
6192 {
6193 warning (_("Received too much data from remote target;"
6194 " ignoring overflow."));
6195 return output_index;
6196 }
6197
6198 if (escaped)
6199 {
6200 out_buf[output_index++] = b ^ 0x20;
6201 escaped = 0;
6202 }
6203 else if (b == '}')
6204 escaped = 1;
6205 else
6206 out_buf[output_index++] = b;
6207 }
6208
6209 if (escaped)
6210 error (_("Unmatched escape character in target response."));
6211
6212 return output_index;
6213 }
6214
6215 /* Determine whether the remote target supports binary downloading.
6216 This is accomplished by sending a no-op memory write of zero length
6217 to the target at the specified address. It does not suffice to send
6218 the whole packet, since many stubs strip the eighth bit and
6219 subsequently compute a wrong checksum, which causes real havoc with
6220 remote_write_bytes.
6221
6222 NOTE: This can still lose if the serial line is not eight-bit
6223 clean. In cases like this, the user should clear "remote
6224 X-packet". */
6225
6226 static void
6227 check_binary_download (CORE_ADDR addr)
6228 {
6229 struct remote_state *rs = get_remote_state ();
6230
6231 switch (remote_protocol_packets[PACKET_X].support)
6232 {
6233 case PACKET_DISABLE:
6234 break;
6235 case PACKET_ENABLE:
6236 break;
6237 case PACKET_SUPPORT_UNKNOWN:
6238 {
6239 char *p;
6240
6241 p = rs->buf;
6242 *p++ = 'X';
6243 p += hexnumstr (p, (ULONGEST) addr);
6244 *p++ = ',';
6245 p += hexnumstr (p, (ULONGEST) 0);
6246 *p++ = ':';
6247 *p = '\0';
6248
6249 putpkt_binary (rs->buf, (int) (p - rs->buf));
6250 getpkt (&rs->buf, &rs->buf_size, 0);
6251
6252 if (rs->buf[0] == '\0')
6253 {
6254 if (remote_debug)
6255 fprintf_unfiltered (gdb_stdlog,
6256 "binary downloading NOT "
6257 "supported by target\n");
6258 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6259 }
6260 else
6261 {
6262 if (remote_debug)
6263 fprintf_unfiltered (gdb_stdlog,
6264 "binary downloading supported by target\n");
6265 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6266 }
6267 break;
6268 }
6269 }
6270 }
6271
6272 /* Write memory data directly to the remote machine.
6273 This does not inform the data cache; the data cache uses this.
6274 HEADER is the starting part of the packet.
6275 MEMADDR is the address in the remote memory space.
6276 MYADDR is the address of the buffer in our space.
6277 LEN is the number of bytes.
6278 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6279 should send data as binary ('X'), or hex-encoded ('M').
6280
6281 The function creates packet of the form
6282 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6283
6284 where encoding of <DATA> is termined by PACKET_FORMAT.
6285
6286 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6287 are omitted.
6288
6289 Returns the number of bytes transferred, or 0 (setting errno) for
6290 error. Only transfer a single packet. */
6291
6292 static int
6293 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6294 const gdb_byte *myaddr, int len,
6295 char packet_format, int use_length)
6296 {
6297 struct remote_state *rs = get_remote_state ();
6298 char *p;
6299 char *plen = NULL;
6300 int plenlen = 0;
6301 int todo;
6302 int nr_bytes;
6303 int payload_size;
6304 int payload_length;
6305 int header_length;
6306
6307 if (packet_format != 'X' && packet_format != 'M')
6308 internal_error (__FILE__, __LINE__,
6309 _("remote_write_bytes_aux: bad packet format"));
6310
6311 if (len <= 0)
6312 return 0;
6313
6314 payload_size = get_memory_write_packet_size ();
6315
6316 /* The packet buffer will be large enough for the payload;
6317 get_memory_packet_size ensures this. */
6318 rs->buf[0] = '\0';
6319
6320 /* Compute the size of the actual payload by subtracting out the
6321 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6322
6323 payload_size -= strlen ("$,:#NN");
6324 if (!use_length)
6325 /* The comma won't be used. */
6326 payload_size += 1;
6327 header_length = strlen (header);
6328 payload_size -= header_length;
6329 payload_size -= hexnumlen (memaddr);
6330
6331 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6332
6333 strcat (rs->buf, header);
6334 p = rs->buf + strlen (header);
6335
6336 /* Compute a best guess of the number of bytes actually transfered. */
6337 if (packet_format == 'X')
6338 {
6339 /* Best guess at number of bytes that will fit. */
6340 todo = min (len, payload_size);
6341 if (use_length)
6342 payload_size -= hexnumlen (todo);
6343 todo = min (todo, payload_size);
6344 }
6345 else
6346 {
6347 /* Num bytes that will fit. */
6348 todo = min (len, payload_size / 2);
6349 if (use_length)
6350 payload_size -= hexnumlen (todo);
6351 todo = min (todo, payload_size / 2);
6352 }
6353
6354 if (todo <= 0)
6355 internal_error (__FILE__, __LINE__,
6356 _("minumum packet size too small to write data"));
6357
6358 /* If we already need another packet, then try to align the end
6359 of this packet to a useful boundary. */
6360 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6361 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6362
6363 /* Append "<memaddr>". */
6364 memaddr = remote_address_masked (memaddr);
6365 p += hexnumstr (p, (ULONGEST) memaddr);
6366
6367 if (use_length)
6368 {
6369 /* Append ",". */
6370 *p++ = ',';
6371
6372 /* Append <len>. Retain the location/size of <len>. It may need to
6373 be adjusted once the packet body has been created. */
6374 plen = p;
6375 plenlen = hexnumstr (p, (ULONGEST) todo);
6376 p += plenlen;
6377 }
6378
6379 /* Append ":". */
6380 *p++ = ':';
6381 *p = '\0';
6382
6383 /* Append the packet body. */
6384 if (packet_format == 'X')
6385 {
6386 /* Binary mode. Send target system values byte by byte, in
6387 increasing byte addresses. Only escape certain critical
6388 characters. */
6389 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6390 payload_size);
6391
6392 /* If not all TODO bytes fit, then we'll need another packet. Make
6393 a second try to keep the end of the packet aligned. Don't do
6394 this if the packet is tiny. */
6395 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6396 {
6397 int new_nr_bytes;
6398
6399 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6400 - memaddr);
6401 if (new_nr_bytes != nr_bytes)
6402 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6403 p, &nr_bytes,
6404 payload_size);
6405 }
6406
6407 p += payload_length;
6408 if (use_length && nr_bytes < todo)
6409 {
6410 /* Escape chars have filled up the buffer prematurely,
6411 and we have actually sent fewer bytes than planned.
6412 Fix-up the length field of the packet. Use the same
6413 number of characters as before. */
6414 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6415 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6416 }
6417 }
6418 else
6419 {
6420 /* Normal mode: Send target system values byte by byte, in
6421 increasing byte addresses. Each byte is encoded as a two hex
6422 value. */
6423 nr_bytes = bin2hex (myaddr, p, todo);
6424 p += 2 * nr_bytes;
6425 }
6426
6427 putpkt_binary (rs->buf, (int) (p - rs->buf));
6428 getpkt (&rs->buf, &rs->buf_size, 0);
6429
6430 if (rs->buf[0] == 'E')
6431 {
6432 /* There is no correspondance between what the remote protocol
6433 uses for errors and errno codes. We would like a cleaner way
6434 of representing errors (big enough to include errno codes,
6435 bfd_error codes, and others). But for now just return EIO. */
6436 errno = EIO;
6437 return 0;
6438 }
6439
6440 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6441 fewer bytes than we'd planned. */
6442 return nr_bytes;
6443 }
6444
6445 /* Write memory data directly to the remote machine.
6446 This does not inform the data cache; the data cache uses this.
6447 MEMADDR is the address in the remote memory space.
6448 MYADDR is the address of the buffer in our space.
6449 LEN is the number of bytes.
6450
6451 Returns number of bytes transferred, or 0 (setting errno) for
6452 error. Only transfer a single packet. */
6453
6454 static int
6455 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6456 {
6457 char *packet_format = 0;
6458
6459 /* Check whether the target supports binary download. */
6460 check_binary_download (memaddr);
6461
6462 switch (remote_protocol_packets[PACKET_X].support)
6463 {
6464 case PACKET_ENABLE:
6465 packet_format = "X";
6466 break;
6467 case PACKET_DISABLE:
6468 packet_format = "M";
6469 break;
6470 case PACKET_SUPPORT_UNKNOWN:
6471 internal_error (__FILE__, __LINE__,
6472 _("remote_write_bytes: bad internal state"));
6473 default:
6474 internal_error (__FILE__, __LINE__, _("bad switch"));
6475 }
6476
6477 return remote_write_bytes_aux (packet_format,
6478 memaddr, myaddr, len, packet_format[0], 1);
6479 }
6480
6481 /* Read memory data directly from the remote machine.
6482 This does not use the data cache; the data cache uses this.
6483 MEMADDR is the address in the remote memory space.
6484 MYADDR is the address of the buffer in our space.
6485 LEN is the number of bytes.
6486
6487 Returns number of bytes transferred, or 0 for error. */
6488
6489 static int
6490 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6491 {
6492 struct remote_state *rs = get_remote_state ();
6493 int max_buf_size; /* Max size of packet output buffer. */
6494 char *p;
6495 int todo;
6496 int i;
6497
6498 if (len <= 0)
6499 return 0;
6500
6501 max_buf_size = get_memory_read_packet_size ();
6502 /* The packet buffer will be large enough for the payload;
6503 get_memory_packet_size ensures this. */
6504
6505 /* Number if bytes that will fit. */
6506 todo = min (len, max_buf_size / 2);
6507
6508 /* Construct "m"<memaddr>","<len>". */
6509 memaddr = remote_address_masked (memaddr);
6510 p = rs->buf;
6511 *p++ = 'm';
6512 p += hexnumstr (p, (ULONGEST) memaddr);
6513 *p++ = ',';
6514 p += hexnumstr (p, (ULONGEST) todo);
6515 *p = '\0';
6516 putpkt (rs->buf);
6517 getpkt (&rs->buf, &rs->buf_size, 0);
6518 if (rs->buf[0] == 'E'
6519 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6520 && rs->buf[3] == '\0')
6521 {
6522 /* There is no correspondance between what the remote protocol
6523 uses for errors and errno codes. We would like a cleaner way
6524 of representing errors (big enough to include errno codes,
6525 bfd_error codes, and others). But for now just return
6526 EIO. */
6527 errno = EIO;
6528 return 0;
6529 }
6530 /* Reply describes memory byte by byte, each byte encoded as two hex
6531 characters. */
6532 p = rs->buf;
6533 i = hex2bin (p, myaddr, todo);
6534 /* Return what we have. Let higher layers handle partial reads. */
6535 return i;
6536 }
6537 \f
6538
6539 /* Remote notification handler. */
6540
6541 static void
6542 handle_notification (char *buf, size_t length)
6543 {
6544 if (strncmp (buf, "Stop:", 5) == 0)
6545 {
6546 if (pending_stop_reply)
6547 {
6548 /* We've already parsed the in-flight stop-reply, but the
6549 stub for some reason thought we didn't, possibly due to
6550 timeout on its side. Just ignore it. */
6551 if (remote_debug)
6552 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6553 }
6554 else
6555 {
6556 struct cleanup *old_chain;
6557 struct stop_reply *reply = stop_reply_xmalloc ();
6558
6559 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6560
6561 remote_parse_stop_reply (buf + 5, reply);
6562
6563 discard_cleanups (old_chain);
6564
6565 /* Be careful to only set it after parsing, since an error
6566 may be thrown then. */
6567 pending_stop_reply = reply;
6568
6569 /* Notify the event loop there's a stop reply to acknowledge
6570 and that there may be more events to fetch. */
6571 mark_async_event_handler (remote_async_get_pending_events_token);
6572
6573 if (remote_debug)
6574 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6575 }
6576 }
6577 else
6578 /* We ignore notifications we don't recognize, for compatibility
6579 with newer stubs. */
6580 ;
6581 }
6582
6583 \f
6584 /* Read or write LEN bytes from inferior memory at MEMADDR,
6585 transferring to or from debugger address BUFFER. Write to inferior
6586 if SHOULD_WRITE is nonzero. Returns length of data written or
6587 read; 0 for error. TARGET is unused. */
6588
6589 static int
6590 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6591 int should_write, struct mem_attrib *attrib,
6592 struct target_ops *target)
6593 {
6594 int res;
6595
6596 set_remote_traceframe ();
6597 set_general_thread (inferior_ptid);
6598
6599 if (should_write)
6600 res = remote_write_bytes (mem_addr, buffer, mem_len);
6601 else
6602 res = remote_read_bytes (mem_addr, buffer, mem_len);
6603
6604 return res;
6605 }
6606
6607 /* Sends a packet with content determined by the printf format string
6608 FORMAT and the remaining arguments, then gets the reply. Returns
6609 whether the packet was a success, a failure, or unknown. */
6610
6611 static enum packet_result
6612 remote_send_printf (const char *format, ...)
6613 {
6614 struct remote_state *rs = get_remote_state ();
6615 int max_size = get_remote_packet_size ();
6616 va_list ap;
6617
6618 va_start (ap, format);
6619
6620 rs->buf[0] = '\0';
6621 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6622 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6623
6624 if (putpkt (rs->buf) < 0)
6625 error (_("Communication problem with target."));
6626
6627 rs->buf[0] = '\0';
6628 getpkt (&rs->buf, &rs->buf_size, 0);
6629
6630 return packet_check_result (rs->buf);
6631 }
6632
6633 static void
6634 restore_remote_timeout (void *p)
6635 {
6636 int value = *(int *)p;
6637
6638 remote_timeout = value;
6639 }
6640
6641 /* Flash writing can take quite some time. We'll set
6642 effectively infinite timeout for flash operations.
6643 In future, we'll need to decide on a better approach. */
6644 static const int remote_flash_timeout = 1000;
6645
6646 static void
6647 remote_flash_erase (struct target_ops *ops,
6648 ULONGEST address, LONGEST length)
6649 {
6650 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6651 int saved_remote_timeout = remote_timeout;
6652 enum packet_result ret;
6653 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6654 &saved_remote_timeout);
6655
6656 remote_timeout = remote_flash_timeout;
6657
6658 ret = remote_send_printf ("vFlashErase:%s,%s",
6659 phex (address, addr_size),
6660 phex (length, 4));
6661 switch (ret)
6662 {
6663 case PACKET_UNKNOWN:
6664 error (_("Remote target does not support flash erase"));
6665 case PACKET_ERROR:
6666 error (_("Error erasing flash with vFlashErase packet"));
6667 default:
6668 break;
6669 }
6670
6671 do_cleanups (back_to);
6672 }
6673
6674 static LONGEST
6675 remote_flash_write (struct target_ops *ops,
6676 ULONGEST address, LONGEST length,
6677 const gdb_byte *data)
6678 {
6679 int saved_remote_timeout = remote_timeout;
6680 int ret;
6681 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6682 &saved_remote_timeout);
6683
6684 remote_timeout = remote_flash_timeout;
6685 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6686 do_cleanups (back_to);
6687
6688 return ret;
6689 }
6690
6691 static void
6692 remote_flash_done (struct target_ops *ops)
6693 {
6694 int saved_remote_timeout = remote_timeout;
6695 int ret;
6696 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6697 &saved_remote_timeout);
6698
6699 remote_timeout = remote_flash_timeout;
6700 ret = remote_send_printf ("vFlashDone");
6701 do_cleanups (back_to);
6702
6703 switch (ret)
6704 {
6705 case PACKET_UNKNOWN:
6706 error (_("Remote target does not support vFlashDone"));
6707 case PACKET_ERROR:
6708 error (_("Error finishing flash operation"));
6709 default:
6710 break;
6711 }
6712 }
6713
6714 static void
6715 remote_files_info (struct target_ops *ignore)
6716 {
6717 puts_filtered ("Debugging a target over a serial line.\n");
6718 }
6719 \f
6720 /* Stuff for dealing with the packets which are part of this protocol.
6721 See comment at top of file for details. */
6722
6723 /* Read a single character from the remote end. */
6724
6725 static int
6726 readchar (int timeout)
6727 {
6728 int ch;
6729
6730 ch = serial_readchar (remote_desc, timeout);
6731
6732 if (ch >= 0)
6733 return ch;
6734
6735 switch ((enum serial_rc) ch)
6736 {
6737 case SERIAL_EOF:
6738 pop_target ();
6739 error (_("Remote connection closed"));
6740 /* no return */
6741 case SERIAL_ERROR:
6742 pop_target ();
6743 perror_with_name (_("Remote communication error. "
6744 "Target disconnected."));
6745 /* no return */
6746 case SERIAL_TIMEOUT:
6747 break;
6748 }
6749 return ch;
6750 }
6751
6752 /* Send the command in *BUF to the remote machine, and read the reply
6753 into *BUF. Report an error if we get an error reply. Resize
6754 *BUF using xrealloc if necessary to hold the result, and update
6755 *SIZEOF_BUF. */
6756
6757 static void
6758 remote_send (char **buf,
6759 long *sizeof_buf)
6760 {
6761 putpkt (*buf);
6762 getpkt (buf, sizeof_buf, 0);
6763
6764 if ((*buf)[0] == 'E')
6765 error (_("Remote failure reply: %s"), *buf);
6766 }
6767
6768 /* Return a pointer to an xmalloc'ed string representing an escaped
6769 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6770 etc. The caller is responsible for releasing the returned
6771 memory. */
6772
6773 static char *
6774 escape_buffer (const char *buf, int n)
6775 {
6776 struct cleanup *old_chain;
6777 struct ui_file *stb;
6778 char *str;
6779
6780 stb = mem_fileopen ();
6781 old_chain = make_cleanup_ui_file_delete (stb);
6782
6783 fputstrn_unfiltered (buf, n, 0, stb);
6784 str = ui_file_xstrdup (stb, NULL);
6785 do_cleanups (old_chain);
6786 return str;
6787 }
6788
6789 /* Display a null-terminated packet on stdout, for debugging, using C
6790 string notation. */
6791
6792 static void
6793 print_packet (char *buf)
6794 {
6795 puts_filtered ("\"");
6796 fputstr_filtered (buf, '"', gdb_stdout);
6797 puts_filtered ("\"");
6798 }
6799
6800 int
6801 putpkt (char *buf)
6802 {
6803 return putpkt_binary (buf, strlen (buf));
6804 }
6805
6806 /* Send a packet to the remote machine, with error checking. The data
6807 of the packet is in BUF. The string in BUF can be at most
6808 get_remote_packet_size () - 5 to account for the $, # and checksum,
6809 and for a possible /0 if we are debugging (remote_debug) and want
6810 to print the sent packet as a string. */
6811
6812 static int
6813 putpkt_binary (char *buf, int cnt)
6814 {
6815 struct remote_state *rs = get_remote_state ();
6816 int i;
6817 unsigned char csum = 0;
6818 char *buf2 = alloca (cnt + 6);
6819
6820 int ch;
6821 int tcount = 0;
6822 char *p;
6823
6824 /* Catch cases like trying to read memory or listing threads while
6825 we're waiting for a stop reply. The remote server wouldn't be
6826 ready to handle this request, so we'd hang and timeout. We don't
6827 have to worry about this in synchronous mode, because in that
6828 case it's not possible to issue a command while the target is
6829 running. This is not a problem in non-stop mode, because in that
6830 case, the stub is always ready to process serial input. */
6831 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6832 error (_("Cannot execute this command while the target is running."));
6833
6834 /* We're sending out a new packet. Make sure we don't look at a
6835 stale cached response. */
6836 rs->cached_wait_status = 0;
6837
6838 /* Copy the packet into buffer BUF2, encapsulating it
6839 and giving it a checksum. */
6840
6841 p = buf2;
6842 *p++ = '$';
6843
6844 for (i = 0; i < cnt; i++)
6845 {
6846 csum += buf[i];
6847 *p++ = buf[i];
6848 }
6849 *p++ = '#';
6850 *p++ = tohex ((csum >> 4) & 0xf);
6851 *p++ = tohex (csum & 0xf);
6852
6853 /* Send it over and over until we get a positive ack. */
6854
6855 while (1)
6856 {
6857 int started_error_output = 0;
6858
6859 if (remote_debug)
6860 {
6861 struct cleanup *old_chain;
6862 char *str;
6863
6864 *p = '\0';
6865 str = escape_buffer (buf2, p - buf2);
6866 old_chain = make_cleanup (xfree, str);
6867 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6868 gdb_flush (gdb_stdlog);
6869 do_cleanups (old_chain);
6870 }
6871 if (serial_write (remote_desc, buf2, p - buf2))
6872 perror_with_name (_("putpkt: write failed"));
6873
6874 /* If this is a no acks version of the remote protocol, send the
6875 packet and move on. */
6876 if (rs->noack_mode)
6877 break;
6878
6879 /* Read until either a timeout occurs (-2) or '+' is read.
6880 Handle any notification that arrives in the mean time. */
6881 while (1)
6882 {
6883 ch = readchar (remote_timeout);
6884
6885 if (remote_debug)
6886 {
6887 switch (ch)
6888 {
6889 case '+':
6890 case '-':
6891 case SERIAL_TIMEOUT:
6892 case '$':
6893 case '%':
6894 if (started_error_output)
6895 {
6896 putchar_unfiltered ('\n');
6897 started_error_output = 0;
6898 }
6899 }
6900 }
6901
6902 switch (ch)
6903 {
6904 case '+':
6905 if (remote_debug)
6906 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6907 return 1;
6908 case '-':
6909 if (remote_debug)
6910 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6911 /* FALLTHROUGH */
6912 case SERIAL_TIMEOUT:
6913 tcount++;
6914 if (tcount > 3)
6915 return 0;
6916 break; /* Retransmit buffer. */
6917 case '$':
6918 {
6919 if (remote_debug)
6920 fprintf_unfiltered (gdb_stdlog,
6921 "Packet instead of Ack, ignoring it\n");
6922 /* It's probably an old response sent because an ACK
6923 was lost. Gobble up the packet and ack it so it
6924 doesn't get retransmitted when we resend this
6925 packet. */
6926 skip_frame ();
6927 serial_write (remote_desc, "+", 1);
6928 continue; /* Now, go look for +. */
6929 }
6930
6931 case '%':
6932 {
6933 int val;
6934
6935 /* If we got a notification, handle it, and go back to looking
6936 for an ack. */
6937 /* We've found the start of a notification. Now
6938 collect the data. */
6939 val = read_frame (&rs->buf, &rs->buf_size);
6940 if (val >= 0)
6941 {
6942 if (remote_debug)
6943 {
6944 struct cleanup *old_chain;
6945 char *str;
6946
6947 str = escape_buffer (rs->buf, val);
6948 old_chain = make_cleanup (xfree, str);
6949 fprintf_unfiltered (gdb_stdlog,
6950 " Notification received: %s\n",
6951 str);
6952 do_cleanups (old_chain);
6953 }
6954 handle_notification (rs->buf, val);
6955 /* We're in sync now, rewait for the ack. */
6956 tcount = 0;
6957 }
6958 else
6959 {
6960 if (remote_debug)
6961 {
6962 if (!started_error_output)
6963 {
6964 started_error_output = 1;
6965 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6966 }
6967 fputc_unfiltered (ch & 0177, gdb_stdlog);
6968 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6969 }
6970 }
6971 continue;
6972 }
6973 /* fall-through */
6974 default:
6975 if (remote_debug)
6976 {
6977 if (!started_error_output)
6978 {
6979 started_error_output = 1;
6980 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6981 }
6982 fputc_unfiltered (ch & 0177, gdb_stdlog);
6983 }
6984 continue;
6985 }
6986 break; /* Here to retransmit. */
6987 }
6988
6989 #if 0
6990 /* This is wrong. If doing a long backtrace, the user should be
6991 able to get out next time we call QUIT, without anything as
6992 violent as interrupt_query. If we want to provide a way out of
6993 here without getting to the next QUIT, it should be based on
6994 hitting ^C twice as in remote_wait. */
6995 if (quit_flag)
6996 {
6997 quit_flag = 0;
6998 interrupt_query ();
6999 }
7000 #endif
7001 }
7002 return 0;
7003 }
7004
7005 /* Come here after finding the start of a frame when we expected an
7006 ack. Do our best to discard the rest of this packet. */
7007
7008 static void
7009 skip_frame (void)
7010 {
7011 int c;
7012
7013 while (1)
7014 {
7015 c = readchar (remote_timeout);
7016 switch (c)
7017 {
7018 case SERIAL_TIMEOUT:
7019 /* Nothing we can do. */
7020 return;
7021 case '#':
7022 /* Discard the two bytes of checksum and stop. */
7023 c = readchar (remote_timeout);
7024 if (c >= 0)
7025 c = readchar (remote_timeout);
7026
7027 return;
7028 case '*': /* Run length encoding. */
7029 /* Discard the repeat count. */
7030 c = readchar (remote_timeout);
7031 if (c < 0)
7032 return;
7033 break;
7034 default:
7035 /* A regular character. */
7036 break;
7037 }
7038 }
7039 }
7040
7041 /* Come here after finding the start of the frame. Collect the rest
7042 into *BUF, verifying the checksum, length, and handling run-length
7043 compression. NUL terminate the buffer. If there is not enough room,
7044 expand *BUF using xrealloc.
7045
7046 Returns -1 on error, number of characters in buffer (ignoring the
7047 trailing NULL) on success. (could be extended to return one of the
7048 SERIAL status indications). */
7049
7050 static long
7051 read_frame (char **buf_p,
7052 long *sizeof_buf)
7053 {
7054 unsigned char csum;
7055 long bc;
7056 int c;
7057 char *buf = *buf_p;
7058 struct remote_state *rs = get_remote_state ();
7059
7060 csum = 0;
7061 bc = 0;
7062
7063 while (1)
7064 {
7065 c = readchar (remote_timeout);
7066 switch (c)
7067 {
7068 case SERIAL_TIMEOUT:
7069 if (remote_debug)
7070 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7071 return -1;
7072 case '$':
7073 if (remote_debug)
7074 fputs_filtered ("Saw new packet start in middle of old one\n",
7075 gdb_stdlog);
7076 return -1; /* Start a new packet, count retries. */
7077 case '#':
7078 {
7079 unsigned char pktcsum;
7080 int check_0 = 0;
7081 int check_1 = 0;
7082
7083 buf[bc] = '\0';
7084
7085 check_0 = readchar (remote_timeout);
7086 if (check_0 >= 0)
7087 check_1 = readchar (remote_timeout);
7088
7089 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7090 {
7091 if (remote_debug)
7092 fputs_filtered ("Timeout in checksum, retrying\n",
7093 gdb_stdlog);
7094 return -1;
7095 }
7096 else if (check_0 < 0 || check_1 < 0)
7097 {
7098 if (remote_debug)
7099 fputs_filtered ("Communication error in checksum\n",
7100 gdb_stdlog);
7101 return -1;
7102 }
7103
7104 /* Don't recompute the checksum; with no ack packets we
7105 don't have any way to indicate a packet retransmission
7106 is necessary. */
7107 if (rs->noack_mode)
7108 return bc;
7109
7110 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7111 if (csum == pktcsum)
7112 return bc;
7113
7114 if (remote_debug)
7115 {
7116 struct cleanup *old_chain;
7117 char *str;
7118
7119 str = escape_buffer (buf, bc);
7120 old_chain = make_cleanup (xfree, str);
7121 fprintf_unfiltered (gdb_stdlog,
7122 "Bad checksum, sentsum=0x%x, "
7123 "csum=0x%x, buf=%s\n",
7124 pktcsum, csum, str);
7125 do_cleanups (old_chain);
7126 }
7127 /* Number of characters in buffer ignoring trailing
7128 NULL. */
7129 return -1;
7130 }
7131 case '*': /* Run length encoding. */
7132 {
7133 int repeat;
7134
7135 csum += c;
7136 c = readchar (remote_timeout);
7137 csum += c;
7138 repeat = c - ' ' + 3; /* Compute repeat count. */
7139
7140 /* The character before ``*'' is repeated. */
7141
7142 if (repeat > 0 && repeat <= 255 && bc > 0)
7143 {
7144 if (bc + repeat - 1 >= *sizeof_buf - 1)
7145 {
7146 /* Make some more room in the buffer. */
7147 *sizeof_buf += repeat;
7148 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7149 buf = *buf_p;
7150 }
7151
7152 memset (&buf[bc], buf[bc - 1], repeat);
7153 bc += repeat;
7154 continue;
7155 }
7156
7157 buf[bc] = '\0';
7158 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7159 return -1;
7160 }
7161 default:
7162 if (bc >= *sizeof_buf - 1)
7163 {
7164 /* Make some more room in the buffer. */
7165 *sizeof_buf *= 2;
7166 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7167 buf = *buf_p;
7168 }
7169
7170 buf[bc++] = c;
7171 csum += c;
7172 continue;
7173 }
7174 }
7175 }
7176
7177 /* Read a packet from the remote machine, with error checking, and
7178 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7179 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7180 rather than timing out; this is used (in synchronous mode) to wait
7181 for a target that is is executing user code to stop. */
7182 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7183 don't have to change all the calls to getpkt to deal with the
7184 return value, because at the moment I don't know what the right
7185 thing to do it for those. */
7186 void
7187 getpkt (char **buf,
7188 long *sizeof_buf,
7189 int forever)
7190 {
7191 int timed_out;
7192
7193 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7194 }
7195
7196
7197 /* Read a packet from the remote machine, with error checking, and
7198 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7199 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7200 rather than timing out; this is used (in synchronous mode) to wait
7201 for a target that is is executing user code to stop. If FOREVER ==
7202 0, this function is allowed to time out gracefully and return an
7203 indication of this to the caller. Otherwise return the number of
7204 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7205 enough reason to return to the caller. */
7206
7207 static int
7208 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7209 int expecting_notif)
7210 {
7211 struct remote_state *rs = get_remote_state ();
7212 int c;
7213 int tries;
7214 int timeout;
7215 int val = -1;
7216
7217 /* We're reading a new response. Make sure we don't look at a
7218 previously cached response. */
7219 rs->cached_wait_status = 0;
7220
7221 strcpy (*buf, "timeout");
7222
7223 if (forever)
7224 timeout = watchdog > 0 ? watchdog : -1;
7225 else if (expecting_notif)
7226 timeout = 0; /* There should already be a char in the buffer. If
7227 not, bail out. */
7228 else
7229 timeout = remote_timeout;
7230
7231 #define MAX_TRIES 3
7232
7233 /* Process any number of notifications, and then return when
7234 we get a packet. */
7235 for (;;)
7236 {
7237 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7238 times. */
7239 for (tries = 1; tries <= MAX_TRIES; tries++)
7240 {
7241 /* This can loop forever if the remote side sends us
7242 characters continuously, but if it pauses, we'll get
7243 SERIAL_TIMEOUT from readchar because of timeout. Then
7244 we'll count that as a retry.
7245
7246 Note that even when forever is set, we will only wait
7247 forever prior to the start of a packet. After that, we
7248 expect characters to arrive at a brisk pace. They should
7249 show up within remote_timeout intervals. */
7250 do
7251 c = readchar (timeout);
7252 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7253
7254 if (c == SERIAL_TIMEOUT)
7255 {
7256 if (expecting_notif)
7257 return -1; /* Don't complain, it's normal to not get
7258 anything in this case. */
7259
7260 if (forever) /* Watchdog went off? Kill the target. */
7261 {
7262 QUIT;
7263 pop_target ();
7264 error (_("Watchdog timeout has expired. Target detached."));
7265 }
7266 if (remote_debug)
7267 fputs_filtered ("Timed out.\n", gdb_stdlog);
7268 }
7269 else
7270 {
7271 /* We've found the start of a packet or notification.
7272 Now collect the data. */
7273 val = read_frame (buf, sizeof_buf);
7274 if (val >= 0)
7275 break;
7276 }
7277
7278 serial_write (remote_desc, "-", 1);
7279 }
7280
7281 if (tries > MAX_TRIES)
7282 {
7283 /* We have tried hard enough, and just can't receive the
7284 packet/notification. Give up. */
7285 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7286
7287 /* Skip the ack char if we're in no-ack mode. */
7288 if (!rs->noack_mode)
7289 serial_write (remote_desc, "+", 1);
7290 return -1;
7291 }
7292
7293 /* If we got an ordinary packet, return that to our caller. */
7294 if (c == '$')
7295 {
7296 if (remote_debug)
7297 {
7298 struct cleanup *old_chain;
7299 char *str;
7300
7301 str = escape_buffer (*buf, val);
7302 old_chain = make_cleanup (xfree, str);
7303 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7304 do_cleanups (old_chain);
7305 }
7306
7307 /* Skip the ack char if we're in no-ack mode. */
7308 if (!rs->noack_mode)
7309 serial_write (remote_desc, "+", 1);
7310 return val;
7311 }
7312
7313 /* If we got a notification, handle it, and go back to looking
7314 for a packet. */
7315 else
7316 {
7317 gdb_assert (c == '%');
7318
7319 if (remote_debug)
7320 {
7321 struct cleanup *old_chain;
7322 char *str;
7323
7324 str = escape_buffer (*buf, val);
7325 old_chain = make_cleanup (xfree, str);
7326 fprintf_unfiltered (gdb_stdlog,
7327 " Notification received: %s\n",
7328 str);
7329 do_cleanups (old_chain);
7330 }
7331
7332 handle_notification (*buf, val);
7333
7334 /* Notifications require no acknowledgement. */
7335
7336 if (expecting_notif)
7337 return -1;
7338 }
7339 }
7340 }
7341
7342 static int
7343 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7344 {
7345 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7346 }
7347
7348 static int
7349 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7350 {
7351 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7352 }
7353
7354 \f
7355 static void
7356 remote_kill (struct target_ops *ops)
7357 {
7358 /* Use catch_errors so the user can quit from gdb even when we
7359 aren't on speaking terms with the remote system. */
7360 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7361
7362 /* Don't wait for it to die. I'm not really sure it matters whether
7363 we do or not. For the existing stubs, kill is a noop. */
7364 target_mourn_inferior ();
7365 }
7366
7367 static int
7368 remote_vkill (int pid, struct remote_state *rs)
7369 {
7370 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7371 return -1;
7372
7373 /* Tell the remote target to detach. */
7374 sprintf (rs->buf, "vKill;%x", pid);
7375 putpkt (rs->buf);
7376 getpkt (&rs->buf, &rs->buf_size, 0);
7377
7378 if (packet_ok (rs->buf,
7379 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7380 return 0;
7381 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7382 return -1;
7383 else
7384 return 1;
7385 }
7386
7387 static void
7388 extended_remote_kill (struct target_ops *ops)
7389 {
7390 int res;
7391 int pid = ptid_get_pid (inferior_ptid);
7392 struct remote_state *rs = get_remote_state ();
7393
7394 res = remote_vkill (pid, rs);
7395 if (res == -1 && !remote_multi_process_p (rs))
7396 {
7397 /* Don't try 'k' on a multi-process aware stub -- it has no way
7398 to specify the pid. */
7399
7400 putpkt ("k");
7401 #if 0
7402 getpkt (&rs->buf, &rs->buf_size, 0);
7403 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7404 res = 1;
7405 #else
7406 /* Don't wait for it to die. I'm not really sure it matters whether
7407 we do or not. For the existing stubs, kill is a noop. */
7408 res = 0;
7409 #endif
7410 }
7411
7412 if (res != 0)
7413 error (_("Can't kill process"));
7414
7415 target_mourn_inferior ();
7416 }
7417
7418 static void
7419 remote_mourn (struct target_ops *ops)
7420 {
7421 remote_mourn_1 (ops);
7422 }
7423
7424 /* Worker function for remote_mourn. */
7425 static void
7426 remote_mourn_1 (struct target_ops *target)
7427 {
7428 unpush_target (target);
7429
7430 /* remote_close takes care of doing most of the clean up. */
7431 generic_mourn_inferior ();
7432 }
7433
7434 static void
7435 extended_remote_mourn_1 (struct target_ops *target)
7436 {
7437 struct remote_state *rs = get_remote_state ();
7438
7439 /* In case we got here due to an error, but we're going to stay
7440 connected. */
7441 rs->waiting_for_stop_reply = 0;
7442
7443 /* We're no longer interested in these events. */
7444 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7445
7446 /* If the current general thread belonged to the process we just
7447 detached from or has exited, the remote side current general
7448 thread becomes undefined. Considering a case like this:
7449
7450 - We just got here due to a detach.
7451 - The process that we're detaching from happens to immediately
7452 report a global breakpoint being hit in non-stop mode, in the
7453 same thread we had selected before.
7454 - GDB attaches to this process again.
7455 - This event happens to be the next event we handle.
7456
7457 GDB would consider that the current general thread didn't need to
7458 be set on the stub side (with Hg), since for all it knew,
7459 GENERAL_THREAD hadn't changed.
7460
7461 Notice that although in all-stop mode, the remote server always
7462 sets the current thread to the thread reporting the stop event,
7463 that doesn't happen in non-stop mode; in non-stop, the stub *must
7464 not* change the current thread when reporting a breakpoint hit,
7465 due to the decoupling of event reporting and event handling.
7466
7467 To keep things simple, we always invalidate our notion of the
7468 current thread. */
7469 record_currthread (minus_one_ptid);
7470
7471 /* Unlike "target remote", we do not want to unpush the target; then
7472 the next time the user says "run", we won't be connected. */
7473
7474 /* Call common code to mark the inferior as not running. */
7475 generic_mourn_inferior ();
7476
7477 if (!have_inferiors ())
7478 {
7479 if (!remote_multi_process_p (rs))
7480 {
7481 /* Check whether the target is running now - some remote stubs
7482 automatically restart after kill. */
7483 putpkt ("?");
7484 getpkt (&rs->buf, &rs->buf_size, 0);
7485
7486 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7487 {
7488 /* Assume that the target has been restarted. Set
7489 inferior_ptid so that bits of core GDB realizes
7490 there's something here, e.g., so that the user can
7491 say "kill" again. */
7492 inferior_ptid = magic_null_ptid;
7493 }
7494 }
7495 }
7496 }
7497
7498 static void
7499 extended_remote_mourn (struct target_ops *ops)
7500 {
7501 extended_remote_mourn_1 (ops);
7502 }
7503
7504 static int
7505 extended_remote_supports_disable_randomization (void)
7506 {
7507 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7508 == PACKET_ENABLE);
7509 }
7510
7511 static void
7512 extended_remote_disable_randomization (int val)
7513 {
7514 struct remote_state *rs = get_remote_state ();
7515 char *reply;
7516
7517 sprintf (rs->buf, "QDisableRandomization:%x", val);
7518 putpkt (rs->buf);
7519 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7520 if (*reply == '\0')
7521 error (_("Target does not support QDisableRandomization."));
7522 if (strcmp (reply, "OK") != 0)
7523 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7524 }
7525
7526 static int
7527 extended_remote_run (char *args)
7528 {
7529 struct remote_state *rs = get_remote_state ();
7530 int len;
7531
7532 /* If the user has disabled vRun support, or we have detected that
7533 support is not available, do not try it. */
7534 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7535 return -1;
7536
7537 strcpy (rs->buf, "vRun;");
7538 len = strlen (rs->buf);
7539
7540 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7541 error (_("Remote file name too long for run packet"));
7542 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7543
7544 gdb_assert (args != NULL);
7545 if (*args)
7546 {
7547 struct cleanup *back_to;
7548 int i;
7549 char **argv;
7550
7551 argv = gdb_buildargv (args);
7552 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7553 for (i = 0; argv[i] != NULL; i++)
7554 {
7555 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7556 error (_("Argument list too long for run packet"));
7557 rs->buf[len++] = ';';
7558 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7559 }
7560 do_cleanups (back_to);
7561 }
7562
7563 rs->buf[len++] = '\0';
7564
7565 putpkt (rs->buf);
7566 getpkt (&rs->buf, &rs->buf_size, 0);
7567
7568 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7569 {
7570 /* We have a wait response; we don't need it, though. All is well. */
7571 return 0;
7572 }
7573 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7574 /* It wasn't disabled before, but it is now. */
7575 return -1;
7576 else
7577 {
7578 if (remote_exec_file[0] == '\0')
7579 error (_("Running the default executable on the remote target failed; "
7580 "try \"set remote exec-file\"?"));
7581 else
7582 error (_("Running \"%s\" on the remote target failed"),
7583 remote_exec_file);
7584 }
7585 }
7586
7587 /* In the extended protocol we want to be able to do things like
7588 "run" and have them basically work as expected. So we need
7589 a special create_inferior function. We support changing the
7590 executable file and the command line arguments, but not the
7591 environment. */
7592
7593 static void
7594 extended_remote_create_inferior_1 (char *exec_file, char *args,
7595 char **env, int from_tty)
7596 {
7597 /* If running asynchronously, register the target file descriptor
7598 with the event loop. */
7599 if (target_can_async_p ())
7600 target_async (inferior_event_handler, 0);
7601
7602 /* Disable address space randomization if requested (and supported). */
7603 if (extended_remote_supports_disable_randomization ())
7604 extended_remote_disable_randomization (disable_randomization);
7605
7606 /* Now restart the remote server. */
7607 if (extended_remote_run (args) == -1)
7608 {
7609 /* vRun was not supported. Fail if we need it to do what the
7610 user requested. */
7611 if (remote_exec_file[0])
7612 error (_("Remote target does not support \"set remote exec-file\""));
7613 if (args[0])
7614 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7615
7616 /* Fall back to "R". */
7617 extended_remote_restart ();
7618 }
7619
7620 if (!have_inferiors ())
7621 {
7622 /* Clean up from the last time we ran, before we mark the target
7623 running again. This will mark breakpoints uninserted, and
7624 get_offsets may insert breakpoints. */
7625 init_thread_list ();
7626 init_wait_for_inferior ();
7627 }
7628
7629 /* Now mark the inferior as running before we do anything else. */
7630 inferior_ptid = magic_null_ptid;
7631
7632 /* Now, if we have thread information, update inferior_ptid. */
7633 inferior_ptid = remote_current_thread (inferior_ptid);
7634
7635 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7636 add_thread_silent (inferior_ptid);
7637
7638 /* Get updated offsets, if the stub uses qOffsets. */
7639 get_offsets ();
7640 }
7641
7642 static void
7643 extended_remote_create_inferior (struct target_ops *ops,
7644 char *exec_file, char *args,
7645 char **env, int from_tty)
7646 {
7647 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7648 }
7649 \f
7650
7651 /* Insert a breakpoint. On targets that have software breakpoint
7652 support, we ask the remote target to do the work; on targets
7653 which don't, we insert a traditional memory breakpoint. */
7654
7655 static int
7656 remote_insert_breakpoint (struct gdbarch *gdbarch,
7657 struct bp_target_info *bp_tgt)
7658 {
7659 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7660 If it succeeds, then set the support to PACKET_ENABLE. If it
7661 fails, and the user has explicitly requested the Z support then
7662 report an error, otherwise, mark it disabled and go on. */
7663
7664 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7665 {
7666 CORE_ADDR addr = bp_tgt->placed_address;
7667 struct remote_state *rs;
7668 char *p;
7669 int bpsize;
7670
7671 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7672
7673 rs = get_remote_state ();
7674 p = rs->buf;
7675
7676 *(p++) = 'Z';
7677 *(p++) = '0';
7678 *(p++) = ',';
7679 addr = (ULONGEST) remote_address_masked (addr);
7680 p += hexnumstr (p, addr);
7681 sprintf (p, ",%d", bpsize);
7682
7683 putpkt (rs->buf);
7684 getpkt (&rs->buf, &rs->buf_size, 0);
7685
7686 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7687 {
7688 case PACKET_ERROR:
7689 return -1;
7690 case PACKET_OK:
7691 bp_tgt->placed_address = addr;
7692 bp_tgt->placed_size = bpsize;
7693 return 0;
7694 case PACKET_UNKNOWN:
7695 break;
7696 }
7697 }
7698
7699 return memory_insert_breakpoint (gdbarch, bp_tgt);
7700 }
7701
7702 static int
7703 remote_remove_breakpoint (struct gdbarch *gdbarch,
7704 struct bp_target_info *bp_tgt)
7705 {
7706 CORE_ADDR addr = bp_tgt->placed_address;
7707 struct remote_state *rs = get_remote_state ();
7708
7709 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7710 {
7711 char *p = rs->buf;
7712
7713 *(p++) = 'z';
7714 *(p++) = '0';
7715 *(p++) = ',';
7716
7717 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7718 p += hexnumstr (p, addr);
7719 sprintf (p, ",%d", bp_tgt->placed_size);
7720
7721 putpkt (rs->buf);
7722 getpkt (&rs->buf, &rs->buf_size, 0);
7723
7724 return (rs->buf[0] == 'E');
7725 }
7726
7727 return memory_remove_breakpoint (gdbarch, bp_tgt);
7728 }
7729
7730 static int
7731 watchpoint_to_Z_packet (int type)
7732 {
7733 switch (type)
7734 {
7735 case hw_write:
7736 return Z_PACKET_WRITE_WP;
7737 break;
7738 case hw_read:
7739 return Z_PACKET_READ_WP;
7740 break;
7741 case hw_access:
7742 return Z_PACKET_ACCESS_WP;
7743 break;
7744 default:
7745 internal_error (__FILE__, __LINE__,
7746 _("hw_bp_to_z: bad watchpoint type %d"), type);
7747 }
7748 }
7749
7750 static int
7751 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7752 struct expression *cond)
7753 {
7754 struct remote_state *rs = get_remote_state ();
7755 char *p;
7756 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7757
7758 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7759 return 1;
7760
7761 sprintf (rs->buf, "Z%x,", packet);
7762 p = strchr (rs->buf, '\0');
7763 addr = remote_address_masked (addr);
7764 p += hexnumstr (p, (ULONGEST) addr);
7765 sprintf (p, ",%x", len);
7766
7767 putpkt (rs->buf);
7768 getpkt (&rs->buf, &rs->buf_size, 0);
7769
7770 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7771 {
7772 case PACKET_ERROR:
7773 return -1;
7774 case PACKET_UNKNOWN:
7775 return 1;
7776 case PACKET_OK:
7777 return 0;
7778 }
7779 internal_error (__FILE__, __LINE__,
7780 _("remote_insert_watchpoint: reached end of function"));
7781 }
7782
7783
7784 static int
7785 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7786 struct expression *cond)
7787 {
7788 struct remote_state *rs = get_remote_state ();
7789 char *p;
7790 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7791
7792 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7793 return -1;
7794
7795 sprintf (rs->buf, "z%x,", packet);
7796 p = strchr (rs->buf, '\0');
7797 addr = remote_address_masked (addr);
7798 p += hexnumstr (p, (ULONGEST) addr);
7799 sprintf (p, ",%x", len);
7800 putpkt (rs->buf);
7801 getpkt (&rs->buf, &rs->buf_size, 0);
7802
7803 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7804 {
7805 case PACKET_ERROR:
7806 case PACKET_UNKNOWN:
7807 return -1;
7808 case PACKET_OK:
7809 return 0;
7810 }
7811 internal_error (__FILE__, __LINE__,
7812 _("remote_remove_watchpoint: reached end of function"));
7813 }
7814
7815
7816 int remote_hw_watchpoint_limit = -1;
7817 int remote_hw_watchpoint_length_limit = -1;
7818 int remote_hw_breakpoint_limit = -1;
7819
7820 static int
7821 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
7822 {
7823 if (remote_hw_watchpoint_length_limit == 0)
7824 return 0;
7825 else if (remote_hw_watchpoint_length_limit < 0)
7826 return 1;
7827 else if (len <= remote_hw_watchpoint_length_limit)
7828 return 1;
7829 else
7830 return 0;
7831 }
7832
7833 static int
7834 remote_check_watch_resources (int type, int cnt, int ot)
7835 {
7836 if (type == bp_hardware_breakpoint)
7837 {
7838 if (remote_hw_breakpoint_limit == 0)
7839 return 0;
7840 else if (remote_hw_breakpoint_limit < 0)
7841 return 1;
7842 else if (cnt <= remote_hw_breakpoint_limit)
7843 return 1;
7844 }
7845 else
7846 {
7847 if (remote_hw_watchpoint_limit == 0)
7848 return 0;
7849 else if (remote_hw_watchpoint_limit < 0)
7850 return 1;
7851 else if (ot)
7852 return -1;
7853 else if (cnt <= remote_hw_watchpoint_limit)
7854 return 1;
7855 }
7856 return -1;
7857 }
7858
7859 static int
7860 remote_stopped_by_watchpoint (void)
7861 {
7862 return remote_stopped_by_watchpoint_p;
7863 }
7864
7865 static int
7866 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7867 {
7868 int rc = 0;
7869
7870 if (remote_stopped_by_watchpoint ())
7871 {
7872 *addr_p = remote_watch_data_address;
7873 rc = 1;
7874 }
7875
7876 return rc;
7877 }
7878
7879
7880 static int
7881 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7882 struct bp_target_info *bp_tgt)
7883 {
7884 CORE_ADDR addr;
7885 struct remote_state *rs;
7886 char *p;
7887
7888 /* The length field should be set to the size of a breakpoint
7889 instruction, even though we aren't inserting one ourselves. */
7890
7891 gdbarch_remote_breakpoint_from_pc
7892 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7893
7894 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7895 return -1;
7896
7897 rs = get_remote_state ();
7898 p = rs->buf;
7899
7900 *(p++) = 'Z';
7901 *(p++) = '1';
7902 *(p++) = ',';
7903
7904 addr = remote_address_masked (bp_tgt->placed_address);
7905 p += hexnumstr (p, (ULONGEST) addr);
7906 sprintf (p, ",%x", bp_tgt->placed_size);
7907
7908 putpkt (rs->buf);
7909 getpkt (&rs->buf, &rs->buf_size, 0);
7910
7911 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7912 {
7913 case PACKET_ERROR:
7914 case PACKET_UNKNOWN:
7915 return -1;
7916 case PACKET_OK:
7917 return 0;
7918 }
7919 internal_error (__FILE__, __LINE__,
7920 _("remote_insert_hw_breakpoint: reached end of function"));
7921 }
7922
7923
7924 static int
7925 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7926 struct bp_target_info *bp_tgt)
7927 {
7928 CORE_ADDR addr;
7929 struct remote_state *rs = get_remote_state ();
7930 char *p = rs->buf;
7931
7932 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7933 return -1;
7934
7935 *(p++) = 'z';
7936 *(p++) = '1';
7937 *(p++) = ',';
7938
7939 addr = remote_address_masked (bp_tgt->placed_address);
7940 p += hexnumstr (p, (ULONGEST) addr);
7941 sprintf (p, ",%x", bp_tgt->placed_size);
7942
7943 putpkt (rs->buf);
7944 getpkt (&rs->buf, &rs->buf_size, 0);
7945
7946 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7947 {
7948 case PACKET_ERROR:
7949 case PACKET_UNKNOWN:
7950 return -1;
7951 case PACKET_OK:
7952 return 0;
7953 }
7954 internal_error (__FILE__, __LINE__,
7955 _("remote_remove_hw_breakpoint: reached end of function"));
7956 }
7957
7958 /* Table used by the crc32 function to calcuate the checksum. */
7959
7960 static unsigned long crc32_table[256] =
7961 {0, 0};
7962
7963 static unsigned long
7964 crc32 (const unsigned char *buf, int len, unsigned int crc)
7965 {
7966 if (!crc32_table[1])
7967 {
7968 /* Initialize the CRC table and the decoding table. */
7969 int i, j;
7970 unsigned int c;
7971
7972 for (i = 0; i < 256; i++)
7973 {
7974 for (c = i << 24, j = 8; j > 0; --j)
7975 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7976 crc32_table[i] = c;
7977 }
7978 }
7979
7980 while (len--)
7981 {
7982 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7983 buf++;
7984 }
7985 return crc;
7986 }
7987
7988 /* Verify memory using the "qCRC:" request. */
7989
7990 static int
7991 remote_verify_memory (struct target_ops *ops,
7992 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7993 {
7994 struct remote_state *rs = get_remote_state ();
7995 unsigned long host_crc, target_crc;
7996 char *tmp;
7997
7998 /* FIXME: assumes lma can fit into long. */
7999 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8000 (long) lma, (long) size);
8001 putpkt (rs->buf);
8002
8003 /* Be clever; compute the host_crc before waiting for target
8004 reply. */
8005 host_crc = crc32 (data, size, 0xffffffff);
8006
8007 getpkt (&rs->buf, &rs->buf_size, 0);
8008 if (rs->buf[0] == 'E')
8009 return -1;
8010
8011 if (rs->buf[0] != 'C')
8012 error (_("remote target does not support this operation"));
8013
8014 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8015 target_crc = target_crc * 16 + fromhex (*tmp);
8016
8017 return (host_crc == target_crc);
8018 }
8019
8020 /* compare-sections command
8021
8022 With no arguments, compares each loadable section in the exec bfd
8023 with the same memory range on the target, and reports mismatches.
8024 Useful for verifying the image on the target against the exec file. */
8025
8026 static void
8027 compare_sections_command (char *args, int from_tty)
8028 {
8029 asection *s;
8030 struct cleanup *old_chain;
8031 char *sectdata;
8032 const char *sectname;
8033 bfd_size_type size;
8034 bfd_vma lma;
8035 int matched = 0;
8036 int mismatched = 0;
8037 int res;
8038
8039 if (!exec_bfd)
8040 error (_("command cannot be used without an exec file"));
8041
8042 for (s = exec_bfd->sections; s; s = s->next)
8043 {
8044 if (!(s->flags & SEC_LOAD))
8045 continue; /* Skip non-loadable section. */
8046
8047 size = bfd_get_section_size (s);
8048 if (size == 0)
8049 continue; /* Skip zero-length section. */
8050
8051 sectname = bfd_get_section_name (exec_bfd, s);
8052 if (args && strcmp (args, sectname) != 0)
8053 continue; /* Not the section selected by user. */
8054
8055 matched = 1; /* Do this section. */
8056 lma = s->lma;
8057
8058 sectdata = xmalloc (size);
8059 old_chain = make_cleanup (xfree, sectdata);
8060 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8061
8062 res = target_verify_memory (sectdata, lma, size);
8063
8064 if (res == -1)
8065 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8066 paddress (target_gdbarch, lma),
8067 paddress (target_gdbarch, lma + size));
8068
8069 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8070 paddress (target_gdbarch, lma),
8071 paddress (target_gdbarch, lma + size));
8072 if (res)
8073 printf_filtered ("matched.\n");
8074 else
8075 {
8076 printf_filtered ("MIS-MATCHED!\n");
8077 mismatched++;
8078 }
8079
8080 do_cleanups (old_chain);
8081 }
8082 if (mismatched > 0)
8083 warning (_("One or more sections of the remote executable does not match\n\
8084 the loaded file\n"));
8085 if (args && !matched)
8086 printf_filtered (_("No loaded section named '%s'.\n"), args);
8087 }
8088
8089 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8090 into remote target. The number of bytes written to the remote
8091 target is returned, or -1 for error. */
8092
8093 static LONGEST
8094 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8095 const char *annex, const gdb_byte *writebuf,
8096 ULONGEST offset, LONGEST len,
8097 struct packet_config *packet)
8098 {
8099 int i, buf_len;
8100 ULONGEST n;
8101 struct remote_state *rs = get_remote_state ();
8102 int max_size = get_memory_write_packet_size ();
8103
8104 if (packet->support == PACKET_DISABLE)
8105 return -1;
8106
8107 /* Insert header. */
8108 i = snprintf (rs->buf, max_size,
8109 "qXfer:%s:write:%s:%s:",
8110 object_name, annex ? annex : "",
8111 phex_nz (offset, sizeof offset));
8112 max_size -= (i + 1);
8113
8114 /* Escape as much data as fits into rs->buf. */
8115 buf_len = remote_escape_output
8116 (writebuf, len, (rs->buf + i), &max_size, max_size);
8117
8118 if (putpkt_binary (rs->buf, i + buf_len) < 0
8119 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8120 || packet_ok (rs->buf, packet) != PACKET_OK)
8121 return -1;
8122
8123 unpack_varlen_hex (rs->buf, &n);
8124 return n;
8125 }
8126
8127 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8128 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8129 number of bytes read is returned, or 0 for EOF, or -1 for error.
8130 The number of bytes read may be less than LEN without indicating an
8131 EOF. PACKET is checked and updated to indicate whether the remote
8132 target supports this object. */
8133
8134 static LONGEST
8135 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8136 const char *annex,
8137 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8138 struct packet_config *packet)
8139 {
8140 static char *finished_object;
8141 static char *finished_annex;
8142 static ULONGEST finished_offset;
8143
8144 struct remote_state *rs = get_remote_state ();
8145 LONGEST i, n, packet_len;
8146
8147 if (packet->support == PACKET_DISABLE)
8148 return -1;
8149
8150 /* Check whether we've cached an end-of-object packet that matches
8151 this request. */
8152 if (finished_object)
8153 {
8154 if (strcmp (object_name, finished_object) == 0
8155 && strcmp (annex ? annex : "", finished_annex) == 0
8156 && offset == finished_offset)
8157 return 0;
8158
8159 /* Otherwise, we're now reading something different. Discard
8160 the cache. */
8161 xfree (finished_object);
8162 xfree (finished_annex);
8163 finished_object = NULL;
8164 finished_annex = NULL;
8165 }
8166
8167 /* Request only enough to fit in a single packet. The actual data
8168 may not, since we don't know how much of it will need to be escaped;
8169 the target is free to respond with slightly less data. We subtract
8170 five to account for the response type and the protocol frame. */
8171 n = min (get_remote_packet_size () - 5, len);
8172 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8173 object_name, annex ? annex : "",
8174 phex_nz (offset, sizeof offset),
8175 phex_nz (n, sizeof n));
8176 i = putpkt (rs->buf);
8177 if (i < 0)
8178 return -1;
8179
8180 rs->buf[0] = '\0';
8181 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8182 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8183 return -1;
8184
8185 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8186 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8187
8188 /* 'm' means there is (or at least might be) more data after this
8189 batch. That does not make sense unless there's at least one byte
8190 of data in this reply. */
8191 if (rs->buf[0] == 'm' && packet_len == 1)
8192 error (_("Remote qXfer reply contained no data."));
8193
8194 /* Got some data. */
8195 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8196
8197 /* 'l' is an EOF marker, possibly including a final block of data,
8198 or possibly empty. If we have the final block of a non-empty
8199 object, record this fact to bypass a subsequent partial read. */
8200 if (rs->buf[0] == 'l' && offset + i > 0)
8201 {
8202 finished_object = xstrdup (object_name);
8203 finished_annex = xstrdup (annex ? annex : "");
8204 finished_offset = offset + i;
8205 }
8206
8207 return i;
8208 }
8209
8210 static LONGEST
8211 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8212 const char *annex, gdb_byte *readbuf,
8213 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8214 {
8215 struct remote_state *rs;
8216 int i;
8217 char *p2;
8218 char query_type;
8219
8220 set_remote_traceframe ();
8221 set_general_thread (inferior_ptid);
8222
8223 rs = get_remote_state ();
8224
8225 /* Handle memory using the standard memory routines. */
8226 if (object == TARGET_OBJECT_MEMORY)
8227 {
8228 int xfered;
8229
8230 errno = 0;
8231
8232 /* If the remote target is connected but not running, we should
8233 pass this request down to a lower stratum (e.g. the executable
8234 file). */
8235 if (!target_has_execution)
8236 return 0;
8237
8238 if (writebuf != NULL)
8239 xfered = remote_write_bytes (offset, writebuf, len);
8240 else
8241 xfered = remote_read_bytes (offset, readbuf, len);
8242
8243 if (xfered > 0)
8244 return xfered;
8245 else if (xfered == 0 && errno == 0)
8246 return 0;
8247 else
8248 return -1;
8249 }
8250
8251 /* Handle SPU memory using qxfer packets. */
8252 if (object == TARGET_OBJECT_SPU)
8253 {
8254 if (readbuf)
8255 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8256 &remote_protocol_packets
8257 [PACKET_qXfer_spu_read]);
8258 else
8259 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8260 &remote_protocol_packets
8261 [PACKET_qXfer_spu_write]);
8262 }
8263
8264 /* Handle extra signal info using qxfer packets. */
8265 if (object == TARGET_OBJECT_SIGNAL_INFO)
8266 {
8267 if (readbuf)
8268 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8269 &remote_protocol_packets
8270 [PACKET_qXfer_siginfo_read]);
8271 else
8272 return remote_write_qxfer (ops, "siginfo", annex,
8273 writebuf, offset, len,
8274 &remote_protocol_packets
8275 [PACKET_qXfer_siginfo_write]);
8276 }
8277
8278 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8279 {
8280 if (readbuf)
8281 return remote_read_qxfer (ops, "statictrace", annex,
8282 readbuf, offset, len,
8283 &remote_protocol_packets
8284 [PACKET_qXfer_statictrace_read]);
8285 else
8286 return -1;
8287 }
8288
8289 /* Only handle flash writes. */
8290 if (writebuf != NULL)
8291 {
8292 LONGEST xfered;
8293
8294 switch (object)
8295 {
8296 case TARGET_OBJECT_FLASH:
8297 xfered = remote_flash_write (ops, offset, len, writebuf);
8298
8299 if (xfered > 0)
8300 return xfered;
8301 else if (xfered == 0 && errno == 0)
8302 return 0;
8303 else
8304 return -1;
8305
8306 default:
8307 return -1;
8308 }
8309 }
8310
8311 /* Map pre-existing objects onto letters. DO NOT do this for new
8312 objects!!! Instead specify new query packets. */
8313 switch (object)
8314 {
8315 case TARGET_OBJECT_AVR:
8316 query_type = 'R';
8317 break;
8318
8319 case TARGET_OBJECT_AUXV:
8320 gdb_assert (annex == NULL);
8321 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8322 &remote_protocol_packets[PACKET_qXfer_auxv]);
8323
8324 case TARGET_OBJECT_AVAILABLE_FEATURES:
8325 return remote_read_qxfer
8326 (ops, "features", annex, readbuf, offset, len,
8327 &remote_protocol_packets[PACKET_qXfer_features]);
8328
8329 case TARGET_OBJECT_LIBRARIES:
8330 return remote_read_qxfer
8331 (ops, "libraries", annex, readbuf, offset, len,
8332 &remote_protocol_packets[PACKET_qXfer_libraries]);
8333
8334 case TARGET_OBJECT_MEMORY_MAP:
8335 gdb_assert (annex == NULL);
8336 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8337 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8338
8339 case TARGET_OBJECT_OSDATA:
8340 /* Should only get here if we're connected. */
8341 gdb_assert (remote_desc);
8342 return remote_read_qxfer
8343 (ops, "osdata", annex, readbuf, offset, len,
8344 &remote_protocol_packets[PACKET_qXfer_osdata]);
8345
8346 case TARGET_OBJECT_THREADS:
8347 gdb_assert (annex == NULL);
8348 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8349 &remote_protocol_packets[PACKET_qXfer_threads]);
8350
8351 case TARGET_OBJECT_TRACEFRAME_INFO:
8352 gdb_assert (annex == NULL);
8353 return remote_read_qxfer
8354 (ops, "traceframe-info", annex, readbuf, offset, len,
8355 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8356
8357 case TARGET_OBJECT_FDPIC:
8358 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8359 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8360 default:
8361 return -1;
8362 }
8363
8364 /* Note: a zero OFFSET and LEN can be used to query the minimum
8365 buffer size. */
8366 if (offset == 0 && len == 0)
8367 return (get_remote_packet_size ());
8368 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8369 large enough let the caller deal with it. */
8370 if (len < get_remote_packet_size ())
8371 return -1;
8372 len = get_remote_packet_size ();
8373
8374 /* Except for querying the minimum buffer size, target must be open. */
8375 if (!remote_desc)
8376 error (_("remote query is only available after target open"));
8377
8378 gdb_assert (annex != NULL);
8379 gdb_assert (readbuf != NULL);
8380
8381 p2 = rs->buf;
8382 *p2++ = 'q';
8383 *p2++ = query_type;
8384
8385 /* We used one buffer char for the remote protocol q command and
8386 another for the query type. As the remote protocol encapsulation
8387 uses 4 chars plus one extra in case we are debugging
8388 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8389 string. */
8390 i = 0;
8391 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8392 {
8393 /* Bad caller may have sent forbidden characters. */
8394 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8395 *p2++ = annex[i];
8396 i++;
8397 }
8398 *p2 = '\0';
8399 gdb_assert (annex[i] == '\0');
8400
8401 i = putpkt (rs->buf);
8402 if (i < 0)
8403 return i;
8404
8405 getpkt (&rs->buf, &rs->buf_size, 0);
8406 strcpy ((char *) readbuf, rs->buf);
8407
8408 return strlen ((char *) readbuf);
8409 }
8410
8411 static int
8412 remote_search_memory (struct target_ops* ops,
8413 CORE_ADDR start_addr, ULONGEST search_space_len,
8414 const gdb_byte *pattern, ULONGEST pattern_len,
8415 CORE_ADDR *found_addrp)
8416 {
8417 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8418 struct remote_state *rs = get_remote_state ();
8419 int max_size = get_memory_write_packet_size ();
8420 struct packet_config *packet =
8421 &remote_protocol_packets[PACKET_qSearch_memory];
8422 /* Number of packet bytes used to encode the pattern;
8423 this could be more than PATTERN_LEN due to escape characters. */
8424 int escaped_pattern_len;
8425 /* Amount of pattern that was encodable in the packet. */
8426 int used_pattern_len;
8427 int i;
8428 int found;
8429 ULONGEST found_addr;
8430
8431 /* Don't go to the target if we don't have to.
8432 This is done before checking packet->support to avoid the possibility that
8433 a success for this edge case means the facility works in general. */
8434 if (pattern_len > search_space_len)
8435 return 0;
8436 if (pattern_len == 0)
8437 {
8438 *found_addrp = start_addr;
8439 return 1;
8440 }
8441
8442 /* If we already know the packet isn't supported, fall back to the simple
8443 way of searching memory. */
8444
8445 if (packet->support == PACKET_DISABLE)
8446 {
8447 /* Target doesn't provided special support, fall back and use the
8448 standard support (copy memory and do the search here). */
8449 return simple_search_memory (ops, start_addr, search_space_len,
8450 pattern, pattern_len, found_addrp);
8451 }
8452
8453 /* Insert header. */
8454 i = snprintf (rs->buf, max_size,
8455 "qSearch:memory:%s;%s;",
8456 phex_nz (start_addr, addr_size),
8457 phex_nz (search_space_len, sizeof (search_space_len)));
8458 max_size -= (i + 1);
8459
8460 /* Escape as much data as fits into rs->buf. */
8461 escaped_pattern_len =
8462 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8463 &used_pattern_len, max_size);
8464
8465 /* Bail if the pattern is too large. */
8466 if (used_pattern_len != pattern_len)
8467 error (_("Pattern is too large to transmit to remote target."));
8468
8469 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8470 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8471 || packet_ok (rs->buf, packet) != PACKET_OK)
8472 {
8473 /* The request may not have worked because the command is not
8474 supported. If so, fall back to the simple way. */
8475 if (packet->support == PACKET_DISABLE)
8476 {
8477 return simple_search_memory (ops, start_addr, search_space_len,
8478 pattern, pattern_len, found_addrp);
8479 }
8480 return -1;
8481 }
8482
8483 if (rs->buf[0] == '0')
8484 found = 0;
8485 else if (rs->buf[0] == '1')
8486 {
8487 found = 1;
8488 if (rs->buf[1] != ',')
8489 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8490 unpack_varlen_hex (rs->buf + 2, &found_addr);
8491 *found_addrp = found_addr;
8492 }
8493 else
8494 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8495
8496 return found;
8497 }
8498
8499 static void
8500 remote_rcmd (char *command,
8501 struct ui_file *outbuf)
8502 {
8503 struct remote_state *rs = get_remote_state ();
8504 char *p = rs->buf;
8505
8506 if (!remote_desc)
8507 error (_("remote rcmd is only available after target open"));
8508
8509 /* Send a NULL command across as an empty command. */
8510 if (command == NULL)
8511 command = "";
8512
8513 /* The query prefix. */
8514 strcpy (rs->buf, "qRcmd,");
8515 p = strchr (rs->buf, '\0');
8516
8517 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8518 > get_remote_packet_size ())
8519 error (_("\"monitor\" command ``%s'' is too long."), command);
8520
8521 /* Encode the actual command. */
8522 bin2hex ((gdb_byte *) command, p, 0);
8523
8524 if (putpkt (rs->buf) < 0)
8525 error (_("Communication problem with target."));
8526
8527 /* get/display the response */
8528 while (1)
8529 {
8530 char *buf;
8531
8532 /* XXX - see also remote_get_noisy_reply(). */
8533 rs->buf[0] = '\0';
8534 getpkt (&rs->buf, &rs->buf_size, 0);
8535 buf = rs->buf;
8536 if (buf[0] == '\0')
8537 error (_("Target does not support this command."));
8538 if (buf[0] == 'O' && buf[1] != 'K')
8539 {
8540 remote_console_output (buf + 1); /* 'O' message from stub. */
8541 continue;
8542 }
8543 if (strcmp (buf, "OK") == 0)
8544 break;
8545 if (strlen (buf) == 3 && buf[0] == 'E'
8546 && isdigit (buf[1]) && isdigit (buf[2]))
8547 {
8548 error (_("Protocol error with Rcmd"));
8549 }
8550 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8551 {
8552 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8553
8554 fputc_unfiltered (c, outbuf);
8555 }
8556 break;
8557 }
8558 }
8559
8560 static VEC(mem_region_s) *
8561 remote_memory_map (struct target_ops *ops)
8562 {
8563 VEC(mem_region_s) *result = NULL;
8564 char *text = target_read_stralloc (&current_target,
8565 TARGET_OBJECT_MEMORY_MAP, NULL);
8566
8567 if (text)
8568 {
8569 struct cleanup *back_to = make_cleanup (xfree, text);
8570
8571 result = parse_memory_map (text);
8572 do_cleanups (back_to);
8573 }
8574
8575 return result;
8576 }
8577
8578 static void
8579 packet_command (char *args, int from_tty)
8580 {
8581 struct remote_state *rs = get_remote_state ();
8582
8583 if (!remote_desc)
8584 error (_("command can only be used with remote target"));
8585
8586 if (!args)
8587 error (_("remote-packet command requires packet text as argument"));
8588
8589 puts_filtered ("sending: ");
8590 print_packet (args);
8591 puts_filtered ("\n");
8592 putpkt (args);
8593
8594 getpkt (&rs->buf, &rs->buf_size, 0);
8595 puts_filtered ("received: ");
8596 print_packet (rs->buf);
8597 puts_filtered ("\n");
8598 }
8599
8600 #if 0
8601 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8602
8603 static void display_thread_info (struct gdb_ext_thread_info *info);
8604
8605 static void threadset_test_cmd (char *cmd, int tty);
8606
8607 static void threadalive_test (char *cmd, int tty);
8608
8609 static void threadlist_test_cmd (char *cmd, int tty);
8610
8611 int get_and_display_threadinfo (threadref *ref);
8612
8613 static void threadinfo_test_cmd (char *cmd, int tty);
8614
8615 static int thread_display_step (threadref *ref, void *context);
8616
8617 static void threadlist_update_test_cmd (char *cmd, int tty);
8618
8619 static void init_remote_threadtests (void);
8620
8621 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8622
8623 static void
8624 threadset_test_cmd (char *cmd, int tty)
8625 {
8626 int sample_thread = SAMPLE_THREAD;
8627
8628 printf_filtered (_("Remote threadset test\n"));
8629 set_general_thread (sample_thread);
8630 }
8631
8632
8633 static void
8634 threadalive_test (char *cmd, int tty)
8635 {
8636 int sample_thread = SAMPLE_THREAD;
8637 int pid = ptid_get_pid (inferior_ptid);
8638 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8639
8640 if (remote_thread_alive (ptid))
8641 printf_filtered ("PASS: Thread alive test\n");
8642 else
8643 printf_filtered ("FAIL: Thread alive test\n");
8644 }
8645
8646 void output_threadid (char *title, threadref *ref);
8647
8648 void
8649 output_threadid (char *title, threadref *ref)
8650 {
8651 char hexid[20];
8652
8653 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8654 hexid[16] = 0;
8655 printf_filtered ("%s %s\n", title, (&hexid[0]));
8656 }
8657
8658 static void
8659 threadlist_test_cmd (char *cmd, int tty)
8660 {
8661 int startflag = 1;
8662 threadref nextthread;
8663 int done, result_count;
8664 threadref threadlist[3];
8665
8666 printf_filtered ("Remote Threadlist test\n");
8667 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8668 &result_count, &threadlist[0]))
8669 printf_filtered ("FAIL: threadlist test\n");
8670 else
8671 {
8672 threadref *scan = threadlist;
8673 threadref *limit = scan + result_count;
8674
8675 while (scan < limit)
8676 output_threadid (" thread ", scan++);
8677 }
8678 }
8679
8680 void
8681 display_thread_info (struct gdb_ext_thread_info *info)
8682 {
8683 output_threadid ("Threadid: ", &info->threadid);
8684 printf_filtered ("Name: %s\n ", info->shortname);
8685 printf_filtered ("State: %s\n", info->display);
8686 printf_filtered ("other: %s\n\n", info->more_display);
8687 }
8688
8689 int
8690 get_and_display_threadinfo (threadref *ref)
8691 {
8692 int result;
8693 int set;
8694 struct gdb_ext_thread_info threadinfo;
8695
8696 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8697 | TAG_MOREDISPLAY | TAG_DISPLAY;
8698 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8699 display_thread_info (&threadinfo);
8700 return result;
8701 }
8702
8703 static void
8704 threadinfo_test_cmd (char *cmd, int tty)
8705 {
8706 int athread = SAMPLE_THREAD;
8707 threadref thread;
8708 int set;
8709
8710 int_to_threadref (&thread, athread);
8711 printf_filtered ("Remote Threadinfo test\n");
8712 if (!get_and_display_threadinfo (&thread))
8713 printf_filtered ("FAIL cannot get thread info\n");
8714 }
8715
8716 static int
8717 thread_display_step (threadref *ref, void *context)
8718 {
8719 /* output_threadid(" threadstep ",ref); *//* simple test */
8720 return get_and_display_threadinfo (ref);
8721 }
8722
8723 static void
8724 threadlist_update_test_cmd (char *cmd, int tty)
8725 {
8726 printf_filtered ("Remote Threadlist update test\n");
8727 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8728 }
8729
8730 static void
8731 init_remote_threadtests (void)
8732 {
8733 add_com ("tlist", class_obscure, threadlist_test_cmd,
8734 _("Fetch and print the remote list of "
8735 "thread identifiers, one pkt only"));
8736 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8737 _("Fetch and display info about one thread"));
8738 add_com ("tset", class_obscure, threadset_test_cmd,
8739 _("Test setting to a different thread"));
8740 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8741 _("Iterate through updating all remote thread info"));
8742 add_com ("talive", class_obscure, threadalive_test,
8743 _(" Remote thread alive test "));
8744 }
8745
8746 #endif /* 0 */
8747
8748 /* Convert a thread ID to a string. Returns the string in a static
8749 buffer. */
8750
8751 static char *
8752 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8753 {
8754 static char buf[64];
8755 struct remote_state *rs = get_remote_state ();
8756
8757 if (ptid_is_pid (ptid))
8758 {
8759 /* Printing an inferior target id. */
8760
8761 /* When multi-process extensions are off, there's no way in the
8762 remote protocol to know the remote process id, if there's any
8763 at all. There's one exception --- when we're connected with
8764 target extended-remote, and we manually attached to a process
8765 with "attach PID". We don't record anywhere a flag that
8766 allows us to distinguish that case from the case of
8767 connecting with extended-remote and the stub already being
8768 attached to a process, and reporting yes to qAttached, hence
8769 no smart special casing here. */
8770 if (!remote_multi_process_p (rs))
8771 {
8772 xsnprintf (buf, sizeof buf, "Remote target");
8773 return buf;
8774 }
8775
8776 return normal_pid_to_str (ptid);
8777 }
8778 else
8779 {
8780 if (ptid_equal (magic_null_ptid, ptid))
8781 xsnprintf (buf, sizeof buf, "Thread <main>");
8782 else if (remote_multi_process_p (rs))
8783 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8784 ptid_get_pid (ptid), ptid_get_tid (ptid));
8785 else
8786 xsnprintf (buf, sizeof buf, "Thread %ld",
8787 ptid_get_tid (ptid));
8788 return buf;
8789 }
8790 }
8791
8792 /* Get the address of the thread local variable in OBJFILE which is
8793 stored at OFFSET within the thread local storage for thread PTID. */
8794
8795 static CORE_ADDR
8796 remote_get_thread_local_address (struct target_ops *ops,
8797 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8798 {
8799 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8800 {
8801 struct remote_state *rs = get_remote_state ();
8802 char *p = rs->buf;
8803 char *endp = rs->buf + get_remote_packet_size ();
8804 enum packet_result result;
8805
8806 strcpy (p, "qGetTLSAddr:");
8807 p += strlen (p);
8808 p = write_ptid (p, endp, ptid);
8809 *p++ = ',';
8810 p += hexnumstr (p, offset);
8811 *p++ = ',';
8812 p += hexnumstr (p, lm);
8813 *p++ = '\0';
8814
8815 putpkt (rs->buf);
8816 getpkt (&rs->buf, &rs->buf_size, 0);
8817 result = packet_ok (rs->buf,
8818 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8819 if (result == PACKET_OK)
8820 {
8821 ULONGEST result;
8822
8823 unpack_varlen_hex (rs->buf, &result);
8824 return result;
8825 }
8826 else if (result == PACKET_UNKNOWN)
8827 throw_error (TLS_GENERIC_ERROR,
8828 _("Remote target doesn't support qGetTLSAddr packet"));
8829 else
8830 throw_error (TLS_GENERIC_ERROR,
8831 _("Remote target failed to process qGetTLSAddr request"));
8832 }
8833 else
8834 throw_error (TLS_GENERIC_ERROR,
8835 _("TLS not supported or disabled on this target"));
8836 /* Not reached. */
8837 return 0;
8838 }
8839
8840 /* Provide thread local base, i.e. Thread Information Block address.
8841 Returns 1 if ptid is found and thread_local_base is non zero. */
8842
8843 int
8844 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8845 {
8846 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8847 {
8848 struct remote_state *rs = get_remote_state ();
8849 char *p = rs->buf;
8850 char *endp = rs->buf + get_remote_packet_size ();
8851 enum packet_result result;
8852
8853 strcpy (p, "qGetTIBAddr:");
8854 p += strlen (p);
8855 p = write_ptid (p, endp, ptid);
8856 *p++ = '\0';
8857
8858 putpkt (rs->buf);
8859 getpkt (&rs->buf, &rs->buf_size, 0);
8860 result = packet_ok (rs->buf,
8861 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8862 if (result == PACKET_OK)
8863 {
8864 ULONGEST result;
8865
8866 unpack_varlen_hex (rs->buf, &result);
8867 if (addr)
8868 *addr = (CORE_ADDR) result;
8869 return 1;
8870 }
8871 else if (result == PACKET_UNKNOWN)
8872 error (_("Remote target doesn't support qGetTIBAddr packet"));
8873 else
8874 error (_("Remote target failed to process qGetTIBAddr request"));
8875 }
8876 else
8877 error (_("qGetTIBAddr not supported or disabled on this target"));
8878 /* Not reached. */
8879 return 0;
8880 }
8881
8882 /* Support for inferring a target description based on the current
8883 architecture and the size of a 'g' packet. While the 'g' packet
8884 can have any size (since optional registers can be left off the
8885 end), some sizes are easily recognizable given knowledge of the
8886 approximate architecture. */
8887
8888 struct remote_g_packet_guess
8889 {
8890 int bytes;
8891 const struct target_desc *tdesc;
8892 };
8893 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8894 DEF_VEC_O(remote_g_packet_guess_s);
8895
8896 struct remote_g_packet_data
8897 {
8898 VEC(remote_g_packet_guess_s) *guesses;
8899 };
8900
8901 static struct gdbarch_data *remote_g_packet_data_handle;
8902
8903 static void *
8904 remote_g_packet_data_init (struct obstack *obstack)
8905 {
8906 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8907 }
8908
8909 void
8910 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8911 const struct target_desc *tdesc)
8912 {
8913 struct remote_g_packet_data *data
8914 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8915 struct remote_g_packet_guess new_guess, *guess;
8916 int ix;
8917
8918 gdb_assert (tdesc != NULL);
8919
8920 for (ix = 0;
8921 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8922 ix++)
8923 if (guess->bytes == bytes)
8924 internal_error (__FILE__, __LINE__,
8925 _("Duplicate g packet description added for size %d"),
8926 bytes);
8927
8928 new_guess.bytes = bytes;
8929 new_guess.tdesc = tdesc;
8930 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8931 }
8932
8933 /* Return 1 if remote_read_description would do anything on this target
8934 and architecture, 0 otherwise. */
8935
8936 static int
8937 remote_read_description_p (struct target_ops *target)
8938 {
8939 struct remote_g_packet_data *data
8940 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8941
8942 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8943 return 1;
8944
8945 return 0;
8946 }
8947
8948 static const struct target_desc *
8949 remote_read_description (struct target_ops *target)
8950 {
8951 struct remote_g_packet_data *data
8952 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8953
8954 /* Do not try this during initial connection, when we do not know
8955 whether there is a running but stopped thread. */
8956 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8957 return NULL;
8958
8959 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8960 {
8961 struct remote_g_packet_guess *guess;
8962 int ix;
8963 int bytes = send_g_packet ();
8964
8965 for (ix = 0;
8966 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8967 ix++)
8968 if (guess->bytes == bytes)
8969 return guess->tdesc;
8970
8971 /* We discard the g packet. A minor optimization would be to
8972 hold on to it, and fill the register cache once we have selected
8973 an architecture, but it's too tricky to do safely. */
8974 }
8975
8976 return NULL;
8977 }
8978
8979 /* Remote file transfer support. This is host-initiated I/O, not
8980 target-initiated; for target-initiated, see remote-fileio.c. */
8981
8982 /* If *LEFT is at least the length of STRING, copy STRING to
8983 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8984 decrease *LEFT. Otherwise raise an error. */
8985
8986 static void
8987 remote_buffer_add_string (char **buffer, int *left, char *string)
8988 {
8989 int len = strlen (string);
8990
8991 if (len > *left)
8992 error (_("Packet too long for target."));
8993
8994 memcpy (*buffer, string, len);
8995 *buffer += len;
8996 *left -= len;
8997
8998 /* NUL-terminate the buffer as a convenience, if there is
8999 room. */
9000 if (*left)
9001 **buffer = '\0';
9002 }
9003
9004 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9005 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9006 decrease *LEFT. Otherwise raise an error. */
9007
9008 static void
9009 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9010 int len)
9011 {
9012 if (2 * len > *left)
9013 error (_("Packet too long for target."));
9014
9015 bin2hex (bytes, *buffer, len);
9016 *buffer += 2 * len;
9017 *left -= 2 * len;
9018
9019 /* NUL-terminate the buffer as a convenience, if there is
9020 room. */
9021 if (*left)
9022 **buffer = '\0';
9023 }
9024
9025 /* If *LEFT is large enough, convert VALUE to hex and add it to
9026 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9027 decrease *LEFT. Otherwise raise an error. */
9028
9029 static void
9030 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9031 {
9032 int len = hexnumlen (value);
9033
9034 if (len > *left)
9035 error (_("Packet too long for target."));
9036
9037 hexnumstr (*buffer, value);
9038 *buffer += len;
9039 *left -= len;
9040
9041 /* NUL-terminate the buffer as a convenience, if there is
9042 room. */
9043 if (*left)
9044 **buffer = '\0';
9045 }
9046
9047 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9048 value, *REMOTE_ERRNO to the remote error number or zero if none
9049 was included, and *ATTACHMENT to point to the start of the annex
9050 if any. The length of the packet isn't needed here; there may
9051 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9052
9053 Return 0 if the packet could be parsed, -1 if it could not. If
9054 -1 is returned, the other variables may not be initialized. */
9055
9056 static int
9057 remote_hostio_parse_result (char *buffer, int *retcode,
9058 int *remote_errno, char **attachment)
9059 {
9060 char *p, *p2;
9061
9062 *remote_errno = 0;
9063 *attachment = NULL;
9064
9065 if (buffer[0] != 'F')
9066 return -1;
9067
9068 errno = 0;
9069 *retcode = strtol (&buffer[1], &p, 16);
9070 if (errno != 0 || p == &buffer[1])
9071 return -1;
9072
9073 /* Check for ",errno". */
9074 if (*p == ',')
9075 {
9076 errno = 0;
9077 *remote_errno = strtol (p + 1, &p2, 16);
9078 if (errno != 0 || p + 1 == p2)
9079 return -1;
9080 p = p2;
9081 }
9082
9083 /* Check for ";attachment". If there is no attachment, the
9084 packet should end here. */
9085 if (*p == ';')
9086 {
9087 *attachment = p + 1;
9088 return 0;
9089 }
9090 else if (*p == '\0')
9091 return 0;
9092 else
9093 return -1;
9094 }
9095
9096 /* Send a prepared I/O packet to the target and read its response.
9097 The prepared packet is in the global RS->BUF before this function
9098 is called, and the answer is there when we return.
9099
9100 COMMAND_BYTES is the length of the request to send, which may include
9101 binary data. WHICH_PACKET is the packet configuration to check
9102 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9103 is set to the error number and -1 is returned. Otherwise the value
9104 returned by the function is returned.
9105
9106 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9107 attachment is expected; an error will be reported if there's a
9108 mismatch. If one is found, *ATTACHMENT will be set to point into
9109 the packet buffer and *ATTACHMENT_LEN will be set to the
9110 attachment's length. */
9111
9112 static int
9113 remote_hostio_send_command (int command_bytes, int which_packet,
9114 int *remote_errno, char **attachment,
9115 int *attachment_len)
9116 {
9117 struct remote_state *rs = get_remote_state ();
9118 int ret, bytes_read;
9119 char *attachment_tmp;
9120
9121 if (!remote_desc
9122 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9123 {
9124 *remote_errno = FILEIO_ENOSYS;
9125 return -1;
9126 }
9127
9128 putpkt_binary (rs->buf, command_bytes);
9129 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9130
9131 /* If it timed out, something is wrong. Don't try to parse the
9132 buffer. */
9133 if (bytes_read < 0)
9134 {
9135 *remote_errno = FILEIO_EINVAL;
9136 return -1;
9137 }
9138
9139 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9140 {
9141 case PACKET_ERROR:
9142 *remote_errno = FILEIO_EINVAL;
9143 return -1;
9144 case PACKET_UNKNOWN:
9145 *remote_errno = FILEIO_ENOSYS;
9146 return -1;
9147 case PACKET_OK:
9148 break;
9149 }
9150
9151 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9152 &attachment_tmp))
9153 {
9154 *remote_errno = FILEIO_EINVAL;
9155 return -1;
9156 }
9157
9158 /* Make sure we saw an attachment if and only if we expected one. */
9159 if ((attachment_tmp == NULL && attachment != NULL)
9160 || (attachment_tmp != NULL && attachment == NULL))
9161 {
9162 *remote_errno = FILEIO_EINVAL;
9163 return -1;
9164 }
9165
9166 /* If an attachment was found, it must point into the packet buffer;
9167 work out how many bytes there were. */
9168 if (attachment_tmp != NULL)
9169 {
9170 *attachment = attachment_tmp;
9171 *attachment_len = bytes_read - (*attachment - rs->buf);
9172 }
9173
9174 return ret;
9175 }
9176
9177 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9178 remote file descriptor, or -1 if an error occurs (and set
9179 *REMOTE_ERRNO). */
9180
9181 static int
9182 remote_hostio_open (const char *filename, int flags, int mode,
9183 int *remote_errno)
9184 {
9185 struct remote_state *rs = get_remote_state ();
9186 char *p = rs->buf;
9187 int left = get_remote_packet_size () - 1;
9188
9189 remote_buffer_add_string (&p, &left, "vFile:open:");
9190
9191 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9192 strlen (filename));
9193 remote_buffer_add_string (&p, &left, ",");
9194
9195 remote_buffer_add_int (&p, &left, flags);
9196 remote_buffer_add_string (&p, &left, ",");
9197
9198 remote_buffer_add_int (&p, &left, mode);
9199
9200 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9201 remote_errno, NULL, NULL);
9202 }
9203
9204 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9205 Return the number of bytes written, or -1 if an error occurs (and
9206 set *REMOTE_ERRNO). */
9207
9208 static int
9209 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9210 ULONGEST offset, int *remote_errno)
9211 {
9212 struct remote_state *rs = get_remote_state ();
9213 char *p = rs->buf;
9214 int left = get_remote_packet_size ();
9215 int out_len;
9216
9217 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9218
9219 remote_buffer_add_int (&p, &left, fd);
9220 remote_buffer_add_string (&p, &left, ",");
9221
9222 remote_buffer_add_int (&p, &left, offset);
9223 remote_buffer_add_string (&p, &left, ",");
9224
9225 p += remote_escape_output (write_buf, len, p, &out_len,
9226 get_remote_packet_size () - (p - rs->buf));
9227
9228 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9229 remote_errno, NULL, NULL);
9230 }
9231
9232 /* Read up to LEN bytes FD on the remote target into READ_BUF
9233 Return the number of bytes read, or -1 if an error occurs (and
9234 set *REMOTE_ERRNO). */
9235
9236 static int
9237 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9238 ULONGEST offset, int *remote_errno)
9239 {
9240 struct remote_state *rs = get_remote_state ();
9241 char *p = rs->buf;
9242 char *attachment;
9243 int left = get_remote_packet_size ();
9244 int ret, attachment_len;
9245 int read_len;
9246
9247 remote_buffer_add_string (&p, &left, "vFile:pread:");
9248
9249 remote_buffer_add_int (&p, &left, fd);
9250 remote_buffer_add_string (&p, &left, ",");
9251
9252 remote_buffer_add_int (&p, &left, len);
9253 remote_buffer_add_string (&p, &left, ",");
9254
9255 remote_buffer_add_int (&p, &left, offset);
9256
9257 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9258 remote_errno, &attachment,
9259 &attachment_len);
9260
9261 if (ret < 0)
9262 return ret;
9263
9264 read_len = remote_unescape_input (attachment, attachment_len,
9265 read_buf, len);
9266 if (read_len != ret)
9267 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9268
9269 return ret;
9270 }
9271
9272 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9273 (and set *REMOTE_ERRNO). */
9274
9275 static int
9276 remote_hostio_close (int fd, int *remote_errno)
9277 {
9278 struct remote_state *rs = get_remote_state ();
9279 char *p = rs->buf;
9280 int left = get_remote_packet_size () - 1;
9281
9282 remote_buffer_add_string (&p, &left, "vFile:close:");
9283
9284 remote_buffer_add_int (&p, &left, fd);
9285
9286 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9287 remote_errno, NULL, NULL);
9288 }
9289
9290 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9291 occurs (and set *REMOTE_ERRNO). */
9292
9293 static int
9294 remote_hostio_unlink (const char *filename, int *remote_errno)
9295 {
9296 struct remote_state *rs = get_remote_state ();
9297 char *p = rs->buf;
9298 int left = get_remote_packet_size () - 1;
9299
9300 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9301
9302 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9303 strlen (filename));
9304
9305 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9306 remote_errno, NULL, NULL);
9307 }
9308
9309 static int
9310 remote_fileio_errno_to_host (int errnum)
9311 {
9312 switch (errnum)
9313 {
9314 case FILEIO_EPERM:
9315 return EPERM;
9316 case FILEIO_ENOENT:
9317 return ENOENT;
9318 case FILEIO_EINTR:
9319 return EINTR;
9320 case FILEIO_EIO:
9321 return EIO;
9322 case FILEIO_EBADF:
9323 return EBADF;
9324 case FILEIO_EACCES:
9325 return EACCES;
9326 case FILEIO_EFAULT:
9327 return EFAULT;
9328 case FILEIO_EBUSY:
9329 return EBUSY;
9330 case FILEIO_EEXIST:
9331 return EEXIST;
9332 case FILEIO_ENODEV:
9333 return ENODEV;
9334 case FILEIO_ENOTDIR:
9335 return ENOTDIR;
9336 case FILEIO_EISDIR:
9337 return EISDIR;
9338 case FILEIO_EINVAL:
9339 return EINVAL;
9340 case FILEIO_ENFILE:
9341 return ENFILE;
9342 case FILEIO_EMFILE:
9343 return EMFILE;
9344 case FILEIO_EFBIG:
9345 return EFBIG;
9346 case FILEIO_ENOSPC:
9347 return ENOSPC;
9348 case FILEIO_ESPIPE:
9349 return ESPIPE;
9350 case FILEIO_EROFS:
9351 return EROFS;
9352 case FILEIO_ENOSYS:
9353 return ENOSYS;
9354 case FILEIO_ENAMETOOLONG:
9355 return ENAMETOOLONG;
9356 }
9357 return -1;
9358 }
9359
9360 static char *
9361 remote_hostio_error (int errnum)
9362 {
9363 int host_error = remote_fileio_errno_to_host (errnum);
9364
9365 if (host_error == -1)
9366 error (_("Unknown remote I/O error %d"), errnum);
9367 else
9368 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9369 }
9370
9371 static void
9372 remote_hostio_close_cleanup (void *opaque)
9373 {
9374 int fd = *(int *) opaque;
9375 int remote_errno;
9376
9377 remote_hostio_close (fd, &remote_errno);
9378 }
9379
9380
9381 static void *
9382 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9383 {
9384 const char *filename = bfd_get_filename (abfd);
9385 int fd, remote_errno;
9386 int *stream;
9387
9388 gdb_assert (remote_filename_p (filename));
9389
9390 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9391 if (fd == -1)
9392 {
9393 errno = remote_fileio_errno_to_host (remote_errno);
9394 bfd_set_error (bfd_error_system_call);
9395 return NULL;
9396 }
9397
9398 stream = xmalloc (sizeof (int));
9399 *stream = fd;
9400 return stream;
9401 }
9402
9403 static int
9404 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9405 {
9406 int fd = *(int *)stream;
9407 int remote_errno;
9408
9409 xfree (stream);
9410
9411 /* Ignore errors on close; these may happen if the remote
9412 connection was already torn down. */
9413 remote_hostio_close (fd, &remote_errno);
9414
9415 return 1;
9416 }
9417
9418 static file_ptr
9419 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9420 file_ptr nbytes, file_ptr offset)
9421 {
9422 int fd = *(int *)stream;
9423 int remote_errno;
9424 file_ptr pos, bytes;
9425
9426 pos = 0;
9427 while (nbytes > pos)
9428 {
9429 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9430 offset + pos, &remote_errno);
9431 if (bytes == 0)
9432 /* Success, but no bytes, means end-of-file. */
9433 break;
9434 if (bytes == -1)
9435 {
9436 errno = remote_fileio_errno_to_host (remote_errno);
9437 bfd_set_error (bfd_error_system_call);
9438 return -1;
9439 }
9440
9441 pos += bytes;
9442 }
9443
9444 return pos;
9445 }
9446
9447 static int
9448 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9449 {
9450 /* FIXME: We should probably implement remote_hostio_stat. */
9451 sb->st_size = INT_MAX;
9452 return 0;
9453 }
9454
9455 int
9456 remote_filename_p (const char *filename)
9457 {
9458 return strncmp (filename, "remote:", 7) == 0;
9459 }
9460
9461 bfd *
9462 remote_bfd_open (const char *remote_file, const char *target)
9463 {
9464 return bfd_openr_iovec (remote_file, target,
9465 remote_bfd_iovec_open, NULL,
9466 remote_bfd_iovec_pread,
9467 remote_bfd_iovec_close,
9468 remote_bfd_iovec_stat);
9469 }
9470
9471 void
9472 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9473 {
9474 struct cleanup *back_to, *close_cleanup;
9475 int retcode, fd, remote_errno, bytes, io_size;
9476 FILE *file;
9477 gdb_byte *buffer;
9478 int bytes_in_buffer;
9479 int saw_eof;
9480 ULONGEST offset;
9481
9482 if (!remote_desc)
9483 error (_("command can only be used with remote target"));
9484
9485 file = fopen (local_file, "rb");
9486 if (file == NULL)
9487 perror_with_name (local_file);
9488 back_to = make_cleanup_fclose (file);
9489
9490 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9491 | FILEIO_O_TRUNC),
9492 0700, &remote_errno);
9493 if (fd == -1)
9494 remote_hostio_error (remote_errno);
9495
9496 /* Send up to this many bytes at once. They won't all fit in the
9497 remote packet limit, so we'll transfer slightly fewer. */
9498 io_size = get_remote_packet_size ();
9499 buffer = xmalloc (io_size);
9500 make_cleanup (xfree, buffer);
9501
9502 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9503
9504 bytes_in_buffer = 0;
9505 saw_eof = 0;
9506 offset = 0;
9507 while (bytes_in_buffer || !saw_eof)
9508 {
9509 if (!saw_eof)
9510 {
9511 bytes = fread (buffer + bytes_in_buffer, 1,
9512 io_size - bytes_in_buffer,
9513 file);
9514 if (bytes == 0)
9515 {
9516 if (ferror (file))
9517 error (_("Error reading %s."), local_file);
9518 else
9519 {
9520 /* EOF. Unless there is something still in the
9521 buffer from the last iteration, we are done. */
9522 saw_eof = 1;
9523 if (bytes_in_buffer == 0)
9524 break;
9525 }
9526 }
9527 }
9528 else
9529 bytes = 0;
9530
9531 bytes += bytes_in_buffer;
9532 bytes_in_buffer = 0;
9533
9534 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9535 offset, &remote_errno);
9536
9537 if (retcode < 0)
9538 remote_hostio_error (remote_errno);
9539 else if (retcode == 0)
9540 error (_("Remote write of %d bytes returned 0!"), bytes);
9541 else if (retcode < bytes)
9542 {
9543 /* Short write. Save the rest of the read data for the next
9544 write. */
9545 bytes_in_buffer = bytes - retcode;
9546 memmove (buffer, buffer + retcode, bytes_in_buffer);
9547 }
9548
9549 offset += retcode;
9550 }
9551
9552 discard_cleanups (close_cleanup);
9553 if (remote_hostio_close (fd, &remote_errno))
9554 remote_hostio_error (remote_errno);
9555
9556 if (from_tty)
9557 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9558 do_cleanups (back_to);
9559 }
9560
9561 void
9562 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9563 {
9564 struct cleanup *back_to, *close_cleanup;
9565 int fd, remote_errno, bytes, io_size;
9566 FILE *file;
9567 gdb_byte *buffer;
9568 ULONGEST offset;
9569
9570 if (!remote_desc)
9571 error (_("command can only be used with remote target"));
9572
9573 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9574 if (fd == -1)
9575 remote_hostio_error (remote_errno);
9576
9577 file = fopen (local_file, "wb");
9578 if (file == NULL)
9579 perror_with_name (local_file);
9580 back_to = make_cleanup_fclose (file);
9581
9582 /* Send up to this many bytes at once. They won't all fit in the
9583 remote packet limit, so we'll transfer slightly fewer. */
9584 io_size = get_remote_packet_size ();
9585 buffer = xmalloc (io_size);
9586 make_cleanup (xfree, buffer);
9587
9588 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9589
9590 offset = 0;
9591 while (1)
9592 {
9593 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9594 if (bytes == 0)
9595 /* Success, but no bytes, means end-of-file. */
9596 break;
9597 if (bytes == -1)
9598 remote_hostio_error (remote_errno);
9599
9600 offset += bytes;
9601
9602 bytes = fwrite (buffer, 1, bytes, file);
9603 if (bytes == 0)
9604 perror_with_name (local_file);
9605 }
9606
9607 discard_cleanups (close_cleanup);
9608 if (remote_hostio_close (fd, &remote_errno))
9609 remote_hostio_error (remote_errno);
9610
9611 if (from_tty)
9612 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9613 do_cleanups (back_to);
9614 }
9615
9616 void
9617 remote_file_delete (const char *remote_file, int from_tty)
9618 {
9619 int retcode, remote_errno;
9620
9621 if (!remote_desc)
9622 error (_("command can only be used with remote target"));
9623
9624 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9625 if (retcode == -1)
9626 remote_hostio_error (remote_errno);
9627
9628 if (from_tty)
9629 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9630 }
9631
9632 static void
9633 remote_put_command (char *args, int from_tty)
9634 {
9635 struct cleanup *back_to;
9636 char **argv;
9637
9638 if (args == NULL)
9639 error_no_arg (_("file to put"));
9640
9641 argv = gdb_buildargv (args);
9642 back_to = make_cleanup_freeargv (argv);
9643 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9644 error (_("Invalid parameters to remote put"));
9645
9646 remote_file_put (argv[0], argv[1], from_tty);
9647
9648 do_cleanups (back_to);
9649 }
9650
9651 static void
9652 remote_get_command (char *args, int from_tty)
9653 {
9654 struct cleanup *back_to;
9655 char **argv;
9656
9657 if (args == NULL)
9658 error_no_arg (_("file to get"));
9659
9660 argv = gdb_buildargv (args);
9661 back_to = make_cleanup_freeargv (argv);
9662 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9663 error (_("Invalid parameters to remote get"));
9664
9665 remote_file_get (argv[0], argv[1], from_tty);
9666
9667 do_cleanups (back_to);
9668 }
9669
9670 static void
9671 remote_delete_command (char *args, int from_tty)
9672 {
9673 struct cleanup *back_to;
9674 char **argv;
9675
9676 if (args == NULL)
9677 error_no_arg (_("file to delete"));
9678
9679 argv = gdb_buildargv (args);
9680 back_to = make_cleanup_freeargv (argv);
9681 if (argv[0] == NULL || argv[1] != NULL)
9682 error (_("Invalid parameters to remote delete"));
9683
9684 remote_file_delete (argv[0], from_tty);
9685
9686 do_cleanups (back_to);
9687 }
9688
9689 static void
9690 remote_command (char *args, int from_tty)
9691 {
9692 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9693 }
9694
9695 static int
9696 remote_can_execute_reverse (void)
9697 {
9698 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9699 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9700 return 1;
9701 else
9702 return 0;
9703 }
9704
9705 static int
9706 remote_supports_non_stop (void)
9707 {
9708 return 1;
9709 }
9710
9711 static int
9712 remote_supports_disable_randomization (void)
9713 {
9714 /* Only supported in extended mode. */
9715 return 0;
9716 }
9717
9718 static int
9719 remote_supports_multi_process (void)
9720 {
9721 struct remote_state *rs = get_remote_state ();
9722
9723 return remote_multi_process_p (rs);
9724 }
9725
9726 int
9727 remote_supports_cond_tracepoints (void)
9728 {
9729 struct remote_state *rs = get_remote_state ();
9730
9731 return rs->cond_tracepoints;
9732 }
9733
9734 int
9735 remote_supports_fast_tracepoints (void)
9736 {
9737 struct remote_state *rs = get_remote_state ();
9738
9739 return rs->fast_tracepoints;
9740 }
9741
9742 static int
9743 remote_supports_static_tracepoints (void)
9744 {
9745 struct remote_state *rs = get_remote_state ();
9746
9747 return rs->static_tracepoints;
9748 }
9749
9750 static int
9751 remote_supports_enable_disable_tracepoint (void)
9752 {
9753 struct remote_state *rs = get_remote_state ();
9754
9755 return rs->enable_disable_tracepoints;
9756 }
9757
9758 static int
9759 remote_supports_string_tracing (void)
9760 {
9761 struct remote_state *rs = get_remote_state ();
9762
9763 return rs->string_tracing;
9764 }
9765
9766 static void
9767 remote_trace_init (void)
9768 {
9769 putpkt ("QTinit");
9770 remote_get_noisy_reply (&target_buf, &target_buf_size);
9771 if (strcmp (target_buf, "OK") != 0)
9772 error (_("Target does not support this command."));
9773 }
9774
9775 static void free_actions_list (char **actions_list);
9776 static void free_actions_list_cleanup_wrapper (void *);
9777 static void
9778 free_actions_list_cleanup_wrapper (void *al)
9779 {
9780 free_actions_list (al);
9781 }
9782
9783 static void
9784 free_actions_list (char **actions_list)
9785 {
9786 int ndx;
9787
9788 if (actions_list == 0)
9789 return;
9790
9791 for (ndx = 0; actions_list[ndx]; ndx++)
9792 xfree (actions_list[ndx]);
9793
9794 xfree (actions_list);
9795 }
9796
9797 /* Recursive routine to walk through command list including loops, and
9798 download packets for each command. */
9799
9800 static void
9801 remote_download_command_source (int num, ULONGEST addr,
9802 struct command_line *cmds)
9803 {
9804 struct remote_state *rs = get_remote_state ();
9805 struct command_line *cmd;
9806
9807 for (cmd = cmds; cmd; cmd = cmd->next)
9808 {
9809 QUIT; /* Allow user to bail out with ^C. */
9810 strcpy (rs->buf, "QTDPsrc:");
9811 encode_source_string (num, addr, "cmd", cmd->line,
9812 rs->buf + strlen (rs->buf),
9813 rs->buf_size - strlen (rs->buf));
9814 putpkt (rs->buf);
9815 remote_get_noisy_reply (&target_buf, &target_buf_size);
9816 if (strcmp (target_buf, "OK"))
9817 warning (_("Target does not support source download."));
9818
9819 if (cmd->control_type == while_control
9820 || cmd->control_type == while_stepping_control)
9821 {
9822 remote_download_command_source (num, addr, *cmd->body_list);
9823
9824 QUIT; /* Allow user to bail out with ^C. */
9825 strcpy (rs->buf, "QTDPsrc:");
9826 encode_source_string (num, addr, "cmd", "end",
9827 rs->buf + strlen (rs->buf),
9828 rs->buf_size - strlen (rs->buf));
9829 putpkt (rs->buf);
9830 remote_get_noisy_reply (&target_buf, &target_buf_size);
9831 if (strcmp (target_buf, "OK"))
9832 warning (_("Target does not support source download."));
9833 }
9834 }
9835 }
9836
9837 static void
9838 remote_download_tracepoint (struct breakpoint *b)
9839 {
9840 struct bp_location *loc;
9841 CORE_ADDR tpaddr;
9842 char addrbuf[40];
9843 char buf[2048];
9844 char **tdp_actions;
9845 char **stepping_actions;
9846 int ndx;
9847 struct cleanup *old_chain = NULL;
9848 struct agent_expr *aexpr;
9849 struct cleanup *aexpr_chain = NULL;
9850 char *pkt;
9851 struct tracepoint *t = (struct tracepoint *) b;
9852
9853 /* Iterate over all the tracepoint locations. It's up to the target to
9854 notice multiple tracepoint packets with the same number but different
9855 addresses, and treat them as multiple locations. */
9856 for (loc = b->loc; loc; loc = loc->next)
9857 {
9858 encode_actions (b, loc, &tdp_actions, &stepping_actions);
9859 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9860 tdp_actions);
9861 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9862 stepping_actions);
9863
9864 tpaddr = loc->address;
9865 sprintf_vma (addrbuf, tpaddr);
9866 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", b->number,
9867 addrbuf, /* address */
9868 (b->enable_state == bp_enabled ? 'E' : 'D'),
9869 t->step_count, t->pass_count);
9870 /* Fast tracepoints are mostly handled by the target, but we can
9871 tell the target how big of an instruction block should be moved
9872 around. */
9873 if (b->type == bp_fast_tracepoint)
9874 {
9875 /* Only test for support at download time; we may not know
9876 target capabilities at definition time. */
9877 if (remote_supports_fast_tracepoints ())
9878 {
9879 int isize;
9880
9881 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9882 tpaddr, &isize, NULL))
9883 sprintf (buf + strlen (buf), ":F%x", isize);
9884 else
9885 /* If it passed validation at definition but fails now,
9886 something is very wrong. */
9887 internal_error (__FILE__, __LINE__,
9888 _("Fast tracepoint not "
9889 "valid during download"));
9890 }
9891 else
9892 /* Fast tracepoints are functionally identical to regular
9893 tracepoints, so don't take lack of support as a reason to
9894 give up on the trace run. */
9895 warning (_("Target does not support fast tracepoints, "
9896 "downloading %d as regular tracepoint"), b->number);
9897 }
9898 else if (b->type == bp_static_tracepoint)
9899 {
9900 /* Only test for support at download time; we may not know
9901 target capabilities at definition time. */
9902 if (remote_supports_static_tracepoints ())
9903 {
9904 struct static_tracepoint_marker marker;
9905
9906 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9907 strcat (buf, ":S");
9908 else
9909 error (_("Static tracepoint not valid during download"));
9910 }
9911 else
9912 /* Fast tracepoints are functionally identical to regular
9913 tracepoints, so don't take lack of support as a reason
9914 to give up on the trace run. */
9915 error (_("Target does not support static tracepoints"));
9916 }
9917 /* If the tracepoint has a conditional, make it into an agent
9918 expression and append to the definition. */
9919 if (loc->cond)
9920 {
9921 /* Only test support at download time, we may not know target
9922 capabilities at definition time. */
9923 if (remote_supports_cond_tracepoints ())
9924 {
9925 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9926 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9927 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9928 pkt = buf + strlen (buf);
9929 for (ndx = 0; ndx < aexpr->len; ++ndx)
9930 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9931 *pkt = '\0';
9932 do_cleanups (aexpr_chain);
9933 }
9934 else
9935 warning (_("Target does not support conditional tracepoints, "
9936 "ignoring tp %d cond"), b->number);
9937 }
9938
9939 if (b->commands || *default_collect)
9940 strcat (buf, "-");
9941 putpkt (buf);
9942 remote_get_noisy_reply (&target_buf, &target_buf_size);
9943 if (strcmp (target_buf, "OK"))
9944 error (_("Target does not support tracepoints."));
9945
9946 /* do_single_steps (t); */
9947 if (tdp_actions)
9948 {
9949 for (ndx = 0; tdp_actions[ndx]; ndx++)
9950 {
9951 QUIT; /* Allow user to bail out with ^C. */
9952 sprintf (buf, "QTDP:-%x:%s:%s%c",
9953 b->number, addrbuf, /* address */
9954 tdp_actions[ndx],
9955 ((tdp_actions[ndx + 1] || stepping_actions)
9956 ? '-' : 0));
9957 putpkt (buf);
9958 remote_get_noisy_reply (&target_buf,
9959 &target_buf_size);
9960 if (strcmp (target_buf, "OK"))
9961 error (_("Error on target while setting tracepoints."));
9962 }
9963 }
9964 if (stepping_actions)
9965 {
9966 for (ndx = 0; stepping_actions[ndx]; ndx++)
9967 {
9968 QUIT; /* Allow user to bail out with ^C. */
9969 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9970 b->number, addrbuf, /* address */
9971 ((ndx == 0) ? "S" : ""),
9972 stepping_actions[ndx],
9973 (stepping_actions[ndx + 1] ? "-" : ""));
9974 putpkt (buf);
9975 remote_get_noisy_reply (&target_buf,
9976 &target_buf_size);
9977 if (strcmp (target_buf, "OK"))
9978 error (_("Error on target while setting tracepoints."));
9979 }
9980 }
9981
9982 if (remote_protocol_packets[PACKET_TracepointSource].support
9983 == PACKET_ENABLE)
9984 {
9985 if (b->addr_string)
9986 {
9987 strcpy (buf, "QTDPsrc:");
9988 encode_source_string (b->number, loc->address,
9989 "at", b->addr_string, buf + strlen (buf),
9990 2048 - strlen (buf));
9991
9992 putpkt (buf);
9993 remote_get_noisy_reply (&target_buf, &target_buf_size);
9994 if (strcmp (target_buf, "OK"))
9995 warning (_("Target does not support source download."));
9996 }
9997 if (b->cond_string)
9998 {
9999 strcpy (buf, "QTDPsrc:");
10000 encode_source_string (b->number, loc->address,
10001 "cond", b->cond_string, buf + strlen (buf),
10002 2048 - strlen (buf));
10003 putpkt (buf);
10004 remote_get_noisy_reply (&target_buf, &target_buf_size);
10005 if (strcmp (target_buf, "OK"))
10006 warning (_("Target does not support source download."));
10007 }
10008 remote_download_command_source (b->number, loc->address,
10009 breakpoint_commands (b));
10010 }
10011
10012 do_cleanups (old_chain);
10013 }
10014 }
10015
10016 static void
10017 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10018 {
10019 struct remote_state *rs = get_remote_state ();
10020 char *p;
10021
10022 sprintf (rs->buf, "QTDV:%x:%s:%x:",
10023 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
10024 p = rs->buf + strlen (rs->buf);
10025 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10026 error (_("Trace state variable name too long for tsv definition packet"));
10027 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10028 *p++ = '\0';
10029 putpkt (rs->buf);
10030 remote_get_noisy_reply (&target_buf, &target_buf_size);
10031 if (*target_buf == '\0')
10032 error (_("Target does not support this command."));
10033 if (strcmp (target_buf, "OK") != 0)
10034 error (_("Error on target while downloading trace state variable."));
10035 }
10036
10037 static void
10038 remote_enable_tracepoint (struct bp_location *location)
10039 {
10040 struct remote_state *rs = get_remote_state ();
10041 char addr_buf[40];
10042
10043 sprintf_vma (addr_buf, location->address);
10044 sprintf (rs->buf, "QTEnable:%x:%s", location->owner->number, addr_buf);
10045 putpkt (rs->buf);
10046 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10047 if (*rs->buf == '\0')
10048 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10049 if (strcmp (rs->buf, "OK") != 0)
10050 error (_("Error on target while enabling tracepoint."));
10051 }
10052
10053 static void
10054 remote_disable_tracepoint (struct bp_location *location)
10055 {
10056 struct remote_state *rs = get_remote_state ();
10057 char addr_buf[40];
10058
10059 sprintf_vma (addr_buf, location->address);
10060 sprintf (rs->buf, "QTDisable:%x:%s", location->owner->number, addr_buf);
10061 putpkt (rs->buf);
10062 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10063 if (*rs->buf == '\0')
10064 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10065 if (strcmp (rs->buf, "OK") != 0)
10066 error (_("Error on target while disabling tracepoint."));
10067 }
10068
10069 static void
10070 remote_trace_set_readonly_regions (void)
10071 {
10072 asection *s;
10073 bfd_size_type size;
10074 bfd_vma vma;
10075 int anysecs = 0;
10076 int offset = 0;
10077
10078 if (!exec_bfd)
10079 return; /* No information to give. */
10080
10081 strcpy (target_buf, "QTro");
10082 for (s = exec_bfd->sections; s; s = s->next)
10083 {
10084 char tmp1[40], tmp2[40];
10085 int sec_length;
10086
10087 if ((s->flags & SEC_LOAD) == 0 ||
10088 /* (s->flags & SEC_CODE) == 0 || */
10089 (s->flags & SEC_READONLY) == 0)
10090 continue;
10091
10092 anysecs = 1;
10093 vma = bfd_get_section_vma (,s);
10094 size = bfd_get_section_size (s);
10095 sprintf_vma (tmp1, vma);
10096 sprintf_vma (tmp2, vma + size);
10097 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10098 if (offset + sec_length + 1 > target_buf_size)
10099 {
10100 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10101 != PACKET_ENABLE)
10102 warning (_("\
10103 Too many sections for read-only sections definition packet."));
10104 break;
10105 }
10106 sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
10107 offset += sec_length;
10108 }
10109 if (anysecs)
10110 {
10111 putpkt (target_buf);
10112 getpkt (&target_buf, &target_buf_size, 0);
10113 }
10114 }
10115
10116 static void
10117 remote_trace_start (void)
10118 {
10119 putpkt ("QTStart");
10120 remote_get_noisy_reply (&target_buf, &target_buf_size);
10121 if (*target_buf == '\0')
10122 error (_("Target does not support this command."));
10123 if (strcmp (target_buf, "OK") != 0)
10124 error (_("Bogus reply from target: %s"), target_buf);
10125 }
10126
10127 static int
10128 remote_get_trace_status (struct trace_status *ts)
10129 {
10130 /* Initialize it just to avoid a GCC false warning. */
10131 char *p = NULL;
10132 /* FIXME we need to get register block size some other way. */
10133 extern int trace_regblock_size;
10134 volatile struct gdb_exception ex;
10135
10136 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10137
10138 putpkt ("qTStatus");
10139
10140 TRY_CATCH (ex, RETURN_MASK_ERROR)
10141 {
10142 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10143 }
10144 if (ex.reason < 0)
10145 {
10146 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10147 return -1;
10148 }
10149
10150 /* If the remote target doesn't do tracing, flag it. */
10151 if (*p == '\0')
10152 return -1;
10153
10154 /* We're working with a live target. */
10155 ts->from_file = 0;
10156
10157 /* Set some defaults. */
10158 ts->running_known = 0;
10159 ts->stop_reason = trace_stop_reason_unknown;
10160 ts->traceframe_count = -1;
10161 ts->buffer_free = 0;
10162
10163 if (*p++ != 'T')
10164 error (_("Bogus trace status reply from target: %s"), target_buf);
10165
10166 parse_trace_status (p, ts);
10167
10168 return ts->running;
10169 }
10170
10171 static void
10172 remote_trace_stop (void)
10173 {
10174 putpkt ("QTStop");
10175 remote_get_noisy_reply (&target_buf, &target_buf_size);
10176 if (*target_buf == '\0')
10177 error (_("Target does not support this command."));
10178 if (strcmp (target_buf, "OK") != 0)
10179 error (_("Bogus reply from target: %s"), target_buf);
10180 }
10181
10182 static int
10183 remote_trace_find (enum trace_find_type type, int num,
10184 ULONGEST addr1, ULONGEST addr2,
10185 int *tpp)
10186 {
10187 struct remote_state *rs = get_remote_state ();
10188 char *p, *reply;
10189 int target_frameno = -1, target_tracept = -1;
10190
10191 /* Lookups other than by absolute frame number depend on the current
10192 trace selected, so make sure it is correct on the remote end
10193 first. */
10194 if (type != tfind_number)
10195 set_remote_traceframe ();
10196
10197 p = rs->buf;
10198 strcpy (p, "QTFrame:");
10199 p = strchr (p, '\0');
10200 switch (type)
10201 {
10202 case tfind_number:
10203 sprintf (p, "%x", num);
10204 break;
10205 case tfind_pc:
10206 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10207 break;
10208 case tfind_tp:
10209 sprintf (p, "tdp:%x", num);
10210 break;
10211 case tfind_range:
10212 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10213 break;
10214 case tfind_outside:
10215 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10216 break;
10217 default:
10218 error (_("Unknown trace find type %d"), type);
10219 }
10220
10221 putpkt (rs->buf);
10222 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10223 if (*reply == '\0')
10224 error (_("Target does not support this command."));
10225
10226 while (reply && *reply)
10227 switch (*reply)
10228 {
10229 case 'F':
10230 p = ++reply;
10231 target_frameno = (int) strtol (p, &reply, 16);
10232 if (reply == p)
10233 error (_("Unable to parse trace frame number"));
10234 /* Don't update our remote traceframe number cache on failure
10235 to select a remote traceframe. */
10236 if (target_frameno == -1)
10237 return -1;
10238 break;
10239 case 'T':
10240 p = ++reply;
10241 target_tracept = (int) strtol (p, &reply, 16);
10242 if (reply == p)
10243 error (_("Unable to parse tracepoint number"));
10244 break;
10245 case 'O': /* "OK"? */
10246 if (reply[1] == 'K' && reply[2] == '\0')
10247 reply += 2;
10248 else
10249 error (_("Bogus reply from target: %s"), reply);
10250 break;
10251 default:
10252 error (_("Bogus reply from target: %s"), reply);
10253 }
10254 if (tpp)
10255 *tpp = target_tracept;
10256
10257 remote_traceframe_number = target_frameno;
10258 return target_frameno;
10259 }
10260
10261 static int
10262 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10263 {
10264 struct remote_state *rs = get_remote_state ();
10265 char *reply;
10266 ULONGEST uval;
10267
10268 set_remote_traceframe ();
10269
10270 sprintf (rs->buf, "qTV:%x", tsvnum);
10271 putpkt (rs->buf);
10272 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10273 if (reply && *reply)
10274 {
10275 if (*reply == 'V')
10276 {
10277 unpack_varlen_hex (reply + 1, &uval);
10278 *val = (LONGEST) uval;
10279 return 1;
10280 }
10281 }
10282 return 0;
10283 }
10284
10285 static int
10286 remote_save_trace_data (const char *filename)
10287 {
10288 struct remote_state *rs = get_remote_state ();
10289 char *p, *reply;
10290
10291 p = rs->buf;
10292 strcpy (p, "QTSave:");
10293 p += strlen (p);
10294 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10295 error (_("Remote file name too long for trace save packet"));
10296 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10297 *p++ = '\0';
10298 putpkt (rs->buf);
10299 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10300 if (*reply == '\0')
10301 error (_("Target does not support this command."));
10302 if (strcmp (reply, "OK") != 0)
10303 error (_("Bogus reply from target: %s"), reply);
10304 return 0;
10305 }
10306
10307 /* This is basically a memory transfer, but needs to be its own packet
10308 because we don't know how the target actually organizes its trace
10309 memory, plus we want to be able to ask for as much as possible, but
10310 not be unhappy if we don't get as much as we ask for. */
10311
10312 static LONGEST
10313 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10314 {
10315 struct remote_state *rs = get_remote_state ();
10316 char *reply;
10317 char *p;
10318 int rslt;
10319
10320 p = rs->buf;
10321 strcpy (p, "qTBuffer:");
10322 p += strlen (p);
10323 p += hexnumstr (p, offset);
10324 *p++ = ',';
10325 p += hexnumstr (p, len);
10326 *p++ = '\0';
10327
10328 putpkt (rs->buf);
10329 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10330 if (reply && *reply)
10331 {
10332 /* 'l' by itself means we're at the end of the buffer and
10333 there is nothing more to get. */
10334 if (*reply == 'l')
10335 return 0;
10336
10337 /* Convert the reply into binary. Limit the number of bytes to
10338 convert according to our passed-in buffer size, rather than
10339 what was returned in the packet; if the target is
10340 unexpectedly generous and gives us a bigger reply than we
10341 asked for, we don't want to crash. */
10342 rslt = hex2bin (target_buf, buf, len);
10343 return rslt;
10344 }
10345
10346 /* Something went wrong, flag as an error. */
10347 return -1;
10348 }
10349
10350 static void
10351 remote_set_disconnected_tracing (int val)
10352 {
10353 struct remote_state *rs = get_remote_state ();
10354
10355 if (rs->disconnected_tracing)
10356 {
10357 char *reply;
10358
10359 sprintf (rs->buf, "QTDisconnected:%x", val);
10360 putpkt (rs->buf);
10361 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10362 if (*reply == '\0')
10363 error (_("Target does not support this command."));
10364 if (strcmp (reply, "OK") != 0)
10365 error (_("Bogus reply from target: %s"), reply);
10366 }
10367 else if (val)
10368 warning (_("Target does not support disconnected tracing."));
10369 }
10370
10371 static int
10372 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10373 {
10374 struct thread_info *info = find_thread_ptid (ptid);
10375
10376 if (info && info->private)
10377 return info->private->core;
10378 return -1;
10379 }
10380
10381 static void
10382 remote_set_circular_trace_buffer (int val)
10383 {
10384 struct remote_state *rs = get_remote_state ();
10385 char *reply;
10386
10387 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10388 putpkt (rs->buf);
10389 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10390 if (*reply == '\0')
10391 error (_("Target does not support this command."));
10392 if (strcmp (reply, "OK") != 0)
10393 error (_("Bogus reply from target: %s"), reply);
10394 }
10395
10396 static struct traceframe_info *
10397 remote_traceframe_info (void)
10398 {
10399 char *text;
10400
10401 text = target_read_stralloc (&current_target,
10402 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10403 if (text != NULL)
10404 {
10405 struct traceframe_info *info;
10406 struct cleanup *back_to = make_cleanup (xfree, text);
10407
10408 info = parse_traceframe_info (text);
10409 do_cleanups (back_to);
10410 return info;
10411 }
10412
10413 return NULL;
10414 }
10415
10416 static void
10417 init_remote_ops (void)
10418 {
10419 remote_ops.to_shortname = "remote";
10420 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10421 remote_ops.to_doc =
10422 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10423 Specify the serial device it is connected to\n\
10424 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10425 remote_ops.to_open = remote_open;
10426 remote_ops.to_close = remote_close;
10427 remote_ops.to_detach = remote_detach;
10428 remote_ops.to_disconnect = remote_disconnect;
10429 remote_ops.to_resume = remote_resume;
10430 remote_ops.to_wait = remote_wait;
10431 remote_ops.to_fetch_registers = remote_fetch_registers;
10432 remote_ops.to_store_registers = remote_store_registers;
10433 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10434 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10435 remote_ops.to_files_info = remote_files_info;
10436 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10437 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10438 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10439 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10440 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10441 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10442 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10443 remote_ops.to_region_ok_for_hw_watchpoint
10444 = remote_region_ok_for_hw_watchpoint;
10445 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10446 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10447 remote_ops.to_kill = remote_kill;
10448 remote_ops.to_load = generic_load;
10449 remote_ops.to_mourn_inferior = remote_mourn;
10450 remote_ops.to_pass_signals = remote_pass_signals;
10451 remote_ops.to_thread_alive = remote_thread_alive;
10452 remote_ops.to_find_new_threads = remote_threads_info;
10453 remote_ops.to_pid_to_str = remote_pid_to_str;
10454 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10455 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10456 remote_ops.to_stop = remote_stop;
10457 remote_ops.to_xfer_partial = remote_xfer_partial;
10458 remote_ops.to_rcmd = remote_rcmd;
10459 remote_ops.to_log_command = serial_log_command;
10460 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10461 remote_ops.to_stratum = process_stratum;
10462 remote_ops.to_has_all_memory = default_child_has_all_memory;
10463 remote_ops.to_has_memory = default_child_has_memory;
10464 remote_ops.to_has_stack = default_child_has_stack;
10465 remote_ops.to_has_registers = default_child_has_registers;
10466 remote_ops.to_has_execution = default_child_has_execution;
10467 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10468 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10469 remote_ops.to_magic = OPS_MAGIC;
10470 remote_ops.to_memory_map = remote_memory_map;
10471 remote_ops.to_flash_erase = remote_flash_erase;
10472 remote_ops.to_flash_done = remote_flash_done;
10473 remote_ops.to_read_description = remote_read_description;
10474 remote_ops.to_search_memory = remote_search_memory;
10475 remote_ops.to_can_async_p = remote_can_async_p;
10476 remote_ops.to_is_async_p = remote_is_async_p;
10477 remote_ops.to_async = remote_async;
10478 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10479 remote_ops.to_terminal_ours = remote_terminal_ours;
10480 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10481 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10482 remote_ops.to_supports_disable_randomization
10483 = remote_supports_disable_randomization;
10484 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10485 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
10486 remote_ops.to_trace_init = remote_trace_init;
10487 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10488 remote_ops.to_download_trace_state_variable
10489 = remote_download_trace_state_variable;
10490 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10491 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10492 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10493 remote_ops.to_trace_start = remote_trace_start;
10494 remote_ops.to_get_trace_status = remote_get_trace_status;
10495 remote_ops.to_trace_stop = remote_trace_stop;
10496 remote_ops.to_trace_find = remote_trace_find;
10497 remote_ops.to_get_trace_state_variable_value
10498 = remote_get_trace_state_variable_value;
10499 remote_ops.to_save_trace_data = remote_save_trace_data;
10500 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10501 remote_ops.to_upload_trace_state_variables
10502 = remote_upload_trace_state_variables;
10503 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10504 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10505 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10506 remote_ops.to_core_of_thread = remote_core_of_thread;
10507 remote_ops.to_verify_memory = remote_verify_memory;
10508 remote_ops.to_get_tib_address = remote_get_tib_address;
10509 remote_ops.to_set_permissions = remote_set_permissions;
10510 remote_ops.to_static_tracepoint_marker_at
10511 = remote_static_tracepoint_marker_at;
10512 remote_ops.to_static_tracepoint_markers_by_strid
10513 = remote_static_tracepoint_markers_by_strid;
10514 remote_ops.to_traceframe_info = remote_traceframe_info;
10515 }
10516
10517 /* Set up the extended remote vector by making a copy of the standard
10518 remote vector and adding to it. */
10519
10520 static void
10521 init_extended_remote_ops (void)
10522 {
10523 extended_remote_ops = remote_ops;
10524
10525 extended_remote_ops.to_shortname = "extended-remote";
10526 extended_remote_ops.to_longname =
10527 "Extended remote serial target in gdb-specific protocol";
10528 extended_remote_ops.to_doc =
10529 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10530 Specify the serial device it is connected to (e.g. /dev/ttya).";
10531 extended_remote_ops.to_open = extended_remote_open;
10532 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10533 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10534 extended_remote_ops.to_detach = extended_remote_detach;
10535 extended_remote_ops.to_attach = extended_remote_attach;
10536 extended_remote_ops.to_kill = extended_remote_kill;
10537 extended_remote_ops.to_supports_disable_randomization
10538 = extended_remote_supports_disable_randomization;
10539 }
10540
10541 static int
10542 remote_can_async_p (void)
10543 {
10544 if (!target_async_permitted)
10545 /* We only enable async when the user specifically asks for it. */
10546 return 0;
10547
10548 /* We're async whenever the serial device is. */
10549 return serial_can_async_p (remote_desc);
10550 }
10551
10552 static int
10553 remote_is_async_p (void)
10554 {
10555 if (!target_async_permitted)
10556 /* We only enable async when the user specifically asks for it. */
10557 return 0;
10558
10559 /* We're async whenever the serial device is. */
10560 return serial_is_async_p (remote_desc);
10561 }
10562
10563 /* Pass the SERIAL event on and up to the client. One day this code
10564 will be able to delay notifying the client of an event until the
10565 point where an entire packet has been received. */
10566
10567 static void (*async_client_callback) (enum inferior_event_type event_type,
10568 void *context);
10569 static void *async_client_context;
10570 static serial_event_ftype remote_async_serial_handler;
10571
10572 static void
10573 remote_async_serial_handler (struct serial *scb, void *context)
10574 {
10575 /* Don't propogate error information up to the client. Instead let
10576 the client find out about the error by querying the target. */
10577 async_client_callback (INF_REG_EVENT, async_client_context);
10578 }
10579
10580 static void
10581 remote_async_inferior_event_handler (gdb_client_data data)
10582 {
10583 inferior_event_handler (INF_REG_EVENT, NULL);
10584 }
10585
10586 static void
10587 remote_async_get_pending_events_handler (gdb_client_data data)
10588 {
10589 remote_get_pending_stop_replies ();
10590 }
10591
10592 static void
10593 remote_async (void (*callback) (enum inferior_event_type event_type,
10594 void *context), void *context)
10595 {
10596 if (callback != NULL)
10597 {
10598 serial_async (remote_desc, remote_async_serial_handler, NULL);
10599 async_client_callback = callback;
10600 async_client_context = context;
10601 }
10602 else
10603 serial_async (remote_desc, NULL, NULL);
10604 }
10605
10606 static void
10607 set_remote_cmd (char *args, int from_tty)
10608 {
10609 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10610 }
10611
10612 static void
10613 show_remote_cmd (char *args, int from_tty)
10614 {
10615 /* We can't just use cmd_show_list here, because we want to skip
10616 the redundant "show remote Z-packet" and the legacy aliases. */
10617 struct cleanup *showlist_chain;
10618 struct cmd_list_element *list = remote_show_cmdlist;
10619 struct ui_out *uiout = current_uiout;
10620
10621 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10622 for (; list != NULL; list = list->next)
10623 if (strcmp (list->name, "Z-packet") == 0)
10624 continue;
10625 else if (list->type == not_set_cmd)
10626 /* Alias commands are exactly like the original, except they
10627 don't have the normal type. */
10628 continue;
10629 else
10630 {
10631 struct cleanup *option_chain
10632 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10633
10634 ui_out_field_string (uiout, "name", list->name);
10635 ui_out_text (uiout, ": ");
10636 if (list->type == show_cmd)
10637 do_setshow_command ((char *) NULL, from_tty, list);
10638 else
10639 cmd_func (list, NULL, from_tty);
10640 /* Close the tuple. */
10641 do_cleanups (option_chain);
10642 }
10643
10644 /* Close the tuple. */
10645 do_cleanups (showlist_chain);
10646 }
10647
10648
10649 /* Function to be called whenever a new objfile (shlib) is detected. */
10650 static void
10651 remote_new_objfile (struct objfile *objfile)
10652 {
10653 if (remote_desc != 0) /* Have a remote connection. */
10654 remote_check_symbols (objfile);
10655 }
10656
10657 /* Pull all the tracepoints defined on the target and create local
10658 data structures representing them. We don't want to create real
10659 tracepoints yet, we don't want to mess up the user's existing
10660 collection. */
10661
10662 static int
10663 remote_upload_tracepoints (struct uploaded_tp **utpp)
10664 {
10665 struct remote_state *rs = get_remote_state ();
10666 char *p;
10667
10668 /* Ask for a first packet of tracepoint definition. */
10669 putpkt ("qTfP");
10670 getpkt (&rs->buf, &rs->buf_size, 0);
10671 p = rs->buf;
10672 while (*p && *p != 'l')
10673 {
10674 parse_tracepoint_definition (p, utpp);
10675 /* Ask for another packet of tracepoint definition. */
10676 putpkt ("qTsP");
10677 getpkt (&rs->buf, &rs->buf_size, 0);
10678 p = rs->buf;
10679 }
10680 return 0;
10681 }
10682
10683 static int
10684 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10685 {
10686 struct remote_state *rs = get_remote_state ();
10687 char *p;
10688
10689 /* Ask for a first packet of variable definition. */
10690 putpkt ("qTfV");
10691 getpkt (&rs->buf, &rs->buf_size, 0);
10692 p = rs->buf;
10693 while (*p && *p != 'l')
10694 {
10695 parse_tsv_definition (p, utsvp);
10696 /* Ask for another packet of variable definition. */
10697 putpkt ("qTsV");
10698 getpkt (&rs->buf, &rs->buf_size, 0);
10699 p = rs->buf;
10700 }
10701 return 0;
10702 }
10703
10704 void
10705 _initialize_remote (void)
10706 {
10707 struct remote_state *rs;
10708 struct cmd_list_element *cmd;
10709 char *cmd_name;
10710
10711 /* architecture specific data */
10712 remote_gdbarch_data_handle =
10713 gdbarch_data_register_post_init (init_remote_state);
10714 remote_g_packet_data_handle =
10715 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10716
10717 /* Initialize the per-target state. At the moment there is only one
10718 of these, not one per target. Only one target is active at a
10719 time. The default buffer size is unimportant; it will be expanded
10720 whenever a larger buffer is needed. */
10721 rs = get_remote_state_raw ();
10722 rs->buf_size = 400;
10723 rs->buf = xmalloc (rs->buf_size);
10724
10725 init_remote_ops ();
10726 add_target (&remote_ops);
10727
10728 init_extended_remote_ops ();
10729 add_target (&extended_remote_ops);
10730
10731 /* Hook into new objfile notification. */
10732 observer_attach_new_objfile (remote_new_objfile);
10733
10734 /* Set up signal handlers. */
10735 sigint_remote_token =
10736 create_async_signal_handler (async_remote_interrupt, NULL);
10737 sigint_remote_twice_token =
10738 create_async_signal_handler (async_remote_interrupt_twice, NULL);
10739
10740 #if 0
10741 init_remote_threadtests ();
10742 #endif
10743
10744 /* set/show remote ... */
10745
10746 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10747 Remote protocol specific variables\n\
10748 Configure various remote-protocol specific variables such as\n\
10749 the packets being used"),
10750 &remote_set_cmdlist, "set remote ",
10751 0 /* allow-unknown */, &setlist);
10752 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10753 Remote protocol specific variables\n\
10754 Configure various remote-protocol specific variables such as\n\
10755 the packets being used"),
10756 &remote_show_cmdlist, "show remote ",
10757 0 /* allow-unknown */, &showlist);
10758
10759 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10760 Compare section data on target to the exec file.\n\
10761 Argument is a single section name (default: all loaded sections)."),
10762 &cmdlist);
10763
10764 add_cmd ("packet", class_maintenance, packet_command, _("\
10765 Send an arbitrary packet to a remote target.\n\
10766 maintenance packet TEXT\n\
10767 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10768 this command sends the string TEXT to the inferior, and displays the\n\
10769 response packet. GDB supplies the initial `$' character, and the\n\
10770 terminating `#' character and checksum."),
10771 &maintenancelist);
10772
10773 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10774 Set whether to send break if interrupted."), _("\
10775 Show whether to send break if interrupted."), _("\
10776 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10777 set_remotebreak, show_remotebreak,
10778 &setlist, &showlist);
10779 cmd_name = "remotebreak";
10780 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10781 deprecate_cmd (cmd, "set remote interrupt-sequence");
10782 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10783 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10784 deprecate_cmd (cmd, "show remote interrupt-sequence");
10785
10786 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10787 interrupt_sequence_modes, &interrupt_sequence_mode,
10788 _("\
10789 Set interrupt sequence to remote target."), _("\
10790 Show interrupt sequence to remote target."), _("\
10791 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10792 NULL, show_interrupt_sequence,
10793 &remote_set_cmdlist,
10794 &remote_show_cmdlist);
10795
10796 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10797 &interrupt_on_connect, _("\
10798 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10799 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10800 If set, interrupt sequence is sent to remote target."),
10801 NULL, NULL,
10802 &remote_set_cmdlist, &remote_show_cmdlist);
10803
10804 /* Install commands for configuring memory read/write packets. */
10805
10806 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10807 Set the maximum number of bytes per memory write packet (deprecated)."),
10808 &setlist);
10809 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10810 Show the maximum number of bytes per memory write packet (deprecated)."),
10811 &showlist);
10812 add_cmd ("memory-write-packet-size", no_class,
10813 set_memory_write_packet_size, _("\
10814 Set the maximum number of bytes per memory-write packet.\n\
10815 Specify the number of bytes in a packet or 0 (zero) for the\n\
10816 default packet size. The actual limit is further reduced\n\
10817 dependent on the target. Specify ``fixed'' to disable the\n\
10818 further restriction and ``limit'' to enable that restriction."),
10819 &remote_set_cmdlist);
10820 add_cmd ("memory-read-packet-size", no_class,
10821 set_memory_read_packet_size, _("\
10822 Set the maximum number of bytes per memory-read packet.\n\
10823 Specify the number of bytes in a packet or 0 (zero) for the\n\
10824 default packet size. The actual limit is further reduced\n\
10825 dependent on the target. Specify ``fixed'' to disable the\n\
10826 further restriction and ``limit'' to enable that restriction."),
10827 &remote_set_cmdlist);
10828 add_cmd ("memory-write-packet-size", no_class,
10829 show_memory_write_packet_size,
10830 _("Show the maximum number of bytes per memory-write packet."),
10831 &remote_show_cmdlist);
10832 add_cmd ("memory-read-packet-size", no_class,
10833 show_memory_read_packet_size,
10834 _("Show the maximum number of bytes per memory-read packet."),
10835 &remote_show_cmdlist);
10836
10837 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10838 &remote_hw_watchpoint_limit, _("\
10839 Set the maximum number of target hardware watchpoints."), _("\
10840 Show the maximum number of target hardware watchpoints."), _("\
10841 Specify a negative limit for unlimited."),
10842 NULL, NULL, /* FIXME: i18n: The maximum
10843 number of target hardware
10844 watchpoints is %s. */
10845 &remote_set_cmdlist, &remote_show_cmdlist);
10846 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
10847 &remote_hw_watchpoint_length_limit, _("\
10848 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
10849 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
10850 Specify a negative limit for unlimited."),
10851 NULL, NULL, /* FIXME: i18n: The maximum
10852 length (in bytes) of a target
10853 hardware watchpoint is %s. */
10854 &remote_set_cmdlist, &remote_show_cmdlist);
10855 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10856 &remote_hw_breakpoint_limit, _("\
10857 Set the maximum number of target hardware breakpoints."), _("\
10858 Show the maximum number of target hardware breakpoints."), _("\
10859 Specify a negative limit for unlimited."),
10860 NULL, NULL, /* FIXME: i18n: The maximum
10861 number of target hardware
10862 breakpoints is %s. */
10863 &remote_set_cmdlist, &remote_show_cmdlist);
10864
10865 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10866 &remote_address_size, _("\
10867 Set the maximum size of the address (in bits) in a memory packet."), _("\
10868 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10869 NULL,
10870 NULL, /* FIXME: i18n: */
10871 &setlist, &showlist);
10872
10873 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10874 "X", "binary-download", 1);
10875
10876 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10877 "vCont", "verbose-resume", 0);
10878
10879 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10880 "QPassSignals", "pass-signals", 0);
10881
10882 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10883 "qSymbol", "symbol-lookup", 0);
10884
10885 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10886 "P", "set-register", 1);
10887
10888 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10889 "p", "fetch-register", 1);
10890
10891 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10892 "Z0", "software-breakpoint", 0);
10893
10894 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10895 "Z1", "hardware-breakpoint", 0);
10896
10897 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10898 "Z2", "write-watchpoint", 0);
10899
10900 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10901 "Z3", "read-watchpoint", 0);
10902
10903 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10904 "Z4", "access-watchpoint", 0);
10905
10906 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10907 "qXfer:auxv:read", "read-aux-vector", 0);
10908
10909 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10910 "qXfer:features:read", "target-features", 0);
10911
10912 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10913 "qXfer:libraries:read", "library-info", 0);
10914
10915 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10916 "qXfer:memory-map:read", "memory-map", 0);
10917
10918 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10919 "qXfer:spu:read", "read-spu-object", 0);
10920
10921 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10922 "qXfer:spu:write", "write-spu-object", 0);
10923
10924 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10925 "qXfer:osdata:read", "osdata", 0);
10926
10927 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10928 "qXfer:threads:read", "threads", 0);
10929
10930 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10931 "qXfer:siginfo:read", "read-siginfo-object", 0);
10932
10933 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10934 "qXfer:siginfo:write", "write-siginfo-object", 0);
10935
10936 add_packet_config_cmd
10937 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
10938 "qXfer:trace-frame-info:read", "traceframe-info", 0);
10939
10940 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10941 "qGetTLSAddr", "get-thread-local-storage-address",
10942 0);
10943
10944 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10945 "qGetTIBAddr", "get-thread-information-block-address",
10946 0);
10947
10948 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10949 "bc", "reverse-continue", 0);
10950
10951 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10952 "bs", "reverse-step", 0);
10953
10954 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10955 "qSupported", "supported-packets", 0);
10956
10957 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10958 "qSearch:memory", "search-memory", 0);
10959
10960 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10961 "vFile:open", "hostio-open", 0);
10962
10963 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10964 "vFile:pread", "hostio-pread", 0);
10965
10966 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10967 "vFile:pwrite", "hostio-pwrite", 0);
10968
10969 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10970 "vFile:close", "hostio-close", 0);
10971
10972 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10973 "vFile:unlink", "hostio-unlink", 0);
10974
10975 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10976 "vAttach", "attach", 0);
10977
10978 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10979 "vRun", "run", 0);
10980
10981 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10982 "QStartNoAckMode", "noack", 0);
10983
10984 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10985 "vKill", "kill", 0);
10986
10987 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10988 "qAttached", "query-attached", 0);
10989
10990 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10991 "ConditionalTracepoints",
10992 "conditional-tracepoints", 0);
10993 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10994 "FastTracepoints", "fast-tracepoints", 0);
10995
10996 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10997 "TracepointSource", "TracepointSource", 0);
10998
10999 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11000 "QAllow", "allow", 0);
11001
11002 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11003 "StaticTracepoints", "static-tracepoints", 0);
11004
11005 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11006 "qXfer:statictrace:read", "read-sdata-object", 0);
11007
11008 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11009 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11010
11011 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11012 "QDisableRandomization", "disable-randomization", 0);
11013
11014 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11015 Z sub-packet has its own set and show commands, but users may
11016 have sets to this variable in their .gdbinit files (or in their
11017 documentation). */
11018 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11019 &remote_Z_packet_detect, _("\
11020 Set use of remote protocol `Z' packets"), _("\
11021 Show use of remote protocol `Z' packets "), _("\
11022 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11023 packets."),
11024 set_remote_protocol_Z_packet_cmd,
11025 show_remote_protocol_Z_packet_cmd,
11026 /* FIXME: i18n: Use of remote protocol
11027 `Z' packets is %s. */
11028 &remote_set_cmdlist, &remote_show_cmdlist);
11029
11030 add_prefix_cmd ("remote", class_files, remote_command, _("\
11031 Manipulate files on the remote system\n\
11032 Transfer files to and from the remote target system."),
11033 &remote_cmdlist, "remote ",
11034 0 /* allow-unknown */, &cmdlist);
11035
11036 add_cmd ("put", class_files, remote_put_command,
11037 _("Copy a local file to the remote system."),
11038 &remote_cmdlist);
11039
11040 add_cmd ("get", class_files, remote_get_command,
11041 _("Copy a remote file to the local system."),
11042 &remote_cmdlist);
11043
11044 add_cmd ("delete", class_files, remote_delete_command,
11045 _("Delete a remote file."),
11046 &remote_cmdlist);
11047
11048 remote_exec_file = xstrdup ("");
11049 add_setshow_string_noescape_cmd ("exec-file", class_files,
11050 &remote_exec_file, _("\
11051 Set the remote pathname for \"run\""), _("\
11052 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11053 &remote_set_cmdlist, &remote_show_cmdlist);
11054
11055 /* Eventually initialize fileio. See fileio.c */
11056 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11057
11058 /* Take advantage of the fact that the LWP field is not used, to tag
11059 special ptids with it set to != 0. */
11060 magic_null_ptid = ptid_build (42000, 1, -1);
11061 not_sent_ptid = ptid_build (42000, 1, -2);
11062 any_thread_ptid = ptid_build (42000, 1, 0);
11063
11064 target_buf_size = 2048;
11065 target_buf = xmalloc (target_buf_size);
11066 }
11067
This page took 0.272849 seconds and 4 git commands to generate.