*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46
47 #include <ctype.h>
48 #include <sys/time.h>
49
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include "inf-loop.h"
53
54 #include <signal.h>
55 #include "serial.h"
56
57 #include "gdbcore.h" /* for exec_bfd */
58
59 #include "remote-fileio.h"
60
61 /* Prototypes for local functions. */
62 static void cleanup_sigint_signal_handler (void *dummy);
63 static void initialize_sigint_signal_handler (void);
64 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
65
66 static void handle_remote_sigint (int);
67 static void handle_remote_sigint_twice (int);
68 static void async_remote_interrupt (gdb_client_data);
69 void async_remote_interrupt_twice (gdb_client_data);
70
71 static void build_remote_gdbarch_data (void);
72
73 static void remote_files_info (struct target_ops *ignore);
74
75 static void remote_prepare_to_store (void);
76
77 static void remote_fetch_registers (int regno);
78
79 static void remote_resume (ptid_t ptid, int step,
80 enum target_signal siggnal);
81 static void remote_async_resume (ptid_t ptid, int step,
82 enum target_signal siggnal);
83 static void remote_open (char *name, int from_tty);
84 static void remote_async_open (char *name, int from_tty);
85
86 static void extended_remote_open (char *name, int from_tty);
87 static void extended_remote_async_open (char *name, int from_tty);
88
89 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
90 int async_p);
91
92 static void remote_close (int quitting);
93
94 static void remote_store_registers (int regno);
95
96 static void remote_mourn (void);
97 static void remote_async_mourn (void);
98
99 static void extended_remote_restart (void);
100
101 static void extended_remote_mourn (void);
102
103 static void remote_mourn_1 (struct target_ops *);
104
105 static void remote_send (char *buf, long sizeof_buf);
106
107 static int readchar (int timeout);
108
109 static ptid_t remote_wait (ptid_t ptid,
110 struct target_waitstatus *status);
111 static ptid_t remote_async_wait (ptid_t ptid,
112 struct target_waitstatus *status);
113
114 static void remote_kill (void);
115 static void remote_async_kill (void);
116
117 static int tohex (int nib);
118
119 static void remote_detach (char *args, int from_tty);
120
121 static void remote_interrupt (int signo);
122
123 static void remote_interrupt_twice (int signo);
124
125 static void interrupt_query (void);
126
127 static void set_thread (int, int);
128
129 static int remote_thread_alive (ptid_t);
130
131 static void get_offsets (void);
132
133 static long read_frame (char *buf, long sizeof_buf);
134
135 static int remote_insert_breakpoint (CORE_ADDR, bfd_byte *);
136
137 static int remote_remove_breakpoint (CORE_ADDR, bfd_byte *);
138
139 static int hexnumlen (ULONGEST num);
140
141 static void init_remote_ops (void);
142
143 static void init_extended_remote_ops (void);
144
145 static void remote_stop (void);
146
147 static int ishex (int ch, int *val);
148
149 static int stubhex (int ch);
150
151 static int hexnumstr (char *, ULONGEST);
152
153 static int hexnumnstr (char *, ULONGEST, int);
154
155 static CORE_ADDR remote_address_masked (CORE_ADDR);
156
157 static void print_packet (char *);
158
159 static unsigned long crc32 (unsigned char *, int, unsigned int);
160
161 static void compare_sections_command (char *, int);
162
163 static void packet_command (char *, int);
164
165 static int stub_unpack_int (char *buff, int fieldlength);
166
167 static ptid_t remote_current_thread (ptid_t oldptid);
168
169 static void remote_find_new_threads (void);
170
171 static void record_currthread (int currthread);
172
173 static int fromhex (int a);
174
175 static int hex2bin (const char *hex, char *bin, int count);
176
177 static int bin2hex (const char *bin, char *hex, int count);
178
179 static int putpkt_binary (char *buf, int cnt);
180
181 static void check_binary_download (CORE_ADDR addr);
182
183 struct packet_config;
184
185 static void show_packet_config_cmd (struct packet_config *config);
186
187 static void update_packet_config (struct packet_config *config);
188
189 void _initialize_remote (void);
190
191 /* Description of the remote protocol. Strictly speaking, when the
192 target is open()ed, remote.c should create a per-target description
193 of the remote protocol using that target's architecture.
194 Unfortunately, the target stack doesn't include local state. For
195 the moment keep the information in the target's architecture
196 object. Sigh.. */
197
198 struct packet_reg
199 {
200 long offset; /* Offset into G packet. */
201 long regnum; /* GDB's internal register number. */
202 LONGEST pnum; /* Remote protocol register number. */
203 int in_g_packet; /* Always part of G packet. */
204 /* long size in bytes; == register_size (current_gdbarch, regnum);
205 at present. */
206 /* char *name; == REGISTER_NAME (regnum); at present. */
207 };
208
209 struct remote_state
210 {
211 /* Description of the remote protocol registers. */
212 long sizeof_g_packet;
213
214 /* Description of the remote protocol registers indexed by REGNUM
215 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
216 struct packet_reg *regs;
217
218 /* This is the size (in chars) of the first response to the ``g''
219 packet. It is used as a heuristic when determining the maximum
220 size of memory-read and memory-write packets. A target will
221 typically only reserve a buffer large enough to hold the ``g''
222 packet. The size does not include packet overhead (headers and
223 trailers). */
224 long actual_register_packet_size;
225
226 /* This is the maximum size (in chars) of a non read/write packet.
227 It is also used as a cap on the size of read/write packets. */
228 long remote_packet_size;
229 };
230
231
232 /* Handle for retreving the remote protocol data from gdbarch. */
233 static struct gdbarch_data *remote_gdbarch_data_handle;
234
235 static struct remote_state *
236 get_remote_state (void)
237 {
238 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
239 }
240
241 static void *
242 init_remote_state (struct gdbarch *gdbarch)
243 {
244 int regnum;
245 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
246
247 rs->sizeof_g_packet = 0;
248
249 /* Assume a 1:1 regnum<->pnum table. */
250 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
251 struct packet_reg);
252 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
253 {
254 struct packet_reg *r = &rs->regs[regnum];
255 r->pnum = regnum;
256 r->regnum = regnum;
257 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
258 r->in_g_packet = (regnum < NUM_REGS);
259 /* ...name = REGISTER_NAME (regnum); */
260
261 /* Compute packet size by accumulating the size of all registers. */
262 if (regnum < NUM_REGS)
263 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
264 }
265
266 /* Default maximum number of characters in a packet body. Many
267 remote stubs have a hardwired buffer size of 400 bytes
268 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
269 as the maximum packet-size to ensure that the packet and an extra
270 NUL character can always fit in the buffer. This stops GDB
271 trashing stubs that try to squeeze an extra NUL into what is
272 already a full buffer (As of 1999-12-04 that was most stubs. */
273 rs->remote_packet_size = 400 - 1;
274
275 /* Should rs->sizeof_g_packet needs more space than the
276 default, adjust the size accordingly. Remember that each byte is
277 encoded as two characters. 32 is the overhead for the packet
278 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
279 (``$NN:G...#NN'') is a better guess, the below has been padded a
280 little. */
281 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
282 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
283
284 /* This one is filled in when a ``g'' packet is received. */
285 rs->actual_register_packet_size = 0;
286
287 return rs;
288 }
289
290 static struct packet_reg *
291 packet_reg_from_regnum (struct remote_state *rs, long regnum)
292 {
293 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
294 return NULL;
295 else
296 {
297 struct packet_reg *r = &rs->regs[regnum];
298 gdb_assert (r->regnum == regnum);
299 return r;
300 }
301 }
302
303 static struct packet_reg *
304 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
305 {
306 int i;
307 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
308 {
309 struct packet_reg *r = &rs->regs[i];
310 if (r->pnum == pnum)
311 return r;
312 }
313 return NULL;
314 }
315
316 /* FIXME: graces/2002-08-08: These variables should eventually be
317 bound to an instance of the target object (as in gdbarch-tdep()),
318 when such a thing exists. */
319
320 /* This is set to the data address of the access causing the target
321 to stop for a watchpoint. */
322 static CORE_ADDR remote_watch_data_address;
323
324 /* This is non-zero if taregt stopped for a watchpoint. */
325 static int remote_stopped_by_watchpoint_p;
326
327
328 static struct target_ops remote_ops;
329
330 static struct target_ops extended_remote_ops;
331
332 /* Temporary target ops. Just like the remote_ops and
333 extended_remote_ops, but with asynchronous support. */
334 static struct target_ops remote_async_ops;
335
336 static struct target_ops extended_async_remote_ops;
337
338 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
339 ``forever'' still use the normal timeout mechanism. This is
340 currently used by the ASYNC code to guarentee that target reads
341 during the initial connect always time-out. Once getpkt has been
342 modified to return a timeout indication and, in turn
343 remote_wait()/wait_for_inferior() have gained a timeout parameter
344 this can go away. */
345 static int wait_forever_enabled_p = 1;
346
347
348 /* This variable chooses whether to send a ^C or a break when the user
349 requests program interruption. Although ^C is usually what remote
350 systems expect, and that is the default here, sometimes a break is
351 preferable instead. */
352
353 static int remote_break;
354
355 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
356 remote_open knows that we don't have a file open when the program
357 starts. */
358 static struct serial *remote_desc = NULL;
359
360 /* This variable sets the number of bits in an address that are to be
361 sent in a memory ("M" or "m") packet. Normally, after stripping
362 leading zeros, the entire address would be sent. This variable
363 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
364 initial implementation of remote.c restricted the address sent in
365 memory packets to ``host::sizeof long'' bytes - (typically 32
366 bits). Consequently, for 64 bit targets, the upper 32 bits of an
367 address was never sent. Since fixing this bug may cause a break in
368 some remote targets this variable is principly provided to
369 facilitate backward compatibility. */
370
371 static int remote_address_size;
372
373 /* Tempoary to track who currently owns the terminal. See
374 target_async_terminal_* for more details. */
375
376 static int remote_async_terminal_ours_p;
377
378 \f
379 /* User configurable variables for the number of characters in a
380 memory read/write packet. MIN ((rs->remote_packet_size),
381 rs->sizeof_g_packet) is the default. Some targets need smaller
382 values (fifo overruns, et.al.) and some users need larger values
383 (speed up transfers). The variables ``preferred_*'' (the user
384 request), ``current_*'' (what was actually set) and ``forced_*''
385 (Positive - a soft limit, negative - a hard limit). */
386
387 struct memory_packet_config
388 {
389 char *name;
390 long size;
391 int fixed_p;
392 };
393
394 /* Compute the current size of a read/write packet. Since this makes
395 use of ``actual_register_packet_size'' the computation is dynamic. */
396
397 static long
398 get_memory_packet_size (struct memory_packet_config *config)
399 {
400 struct remote_state *rs = get_remote_state ();
401 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
402 law?) that some hosts don't cope very well with large alloca()
403 calls. Eventually the alloca() code will be replaced by calls to
404 xmalloc() and make_cleanups() allowing this restriction to either
405 be lifted or removed. */
406 #ifndef MAX_REMOTE_PACKET_SIZE
407 #define MAX_REMOTE_PACKET_SIZE 16384
408 #endif
409 /* NOTE: 20 ensures we can write at least one byte. */
410 #ifndef MIN_REMOTE_PACKET_SIZE
411 #define MIN_REMOTE_PACKET_SIZE 20
412 #endif
413 long what_they_get;
414 if (config->fixed_p)
415 {
416 if (config->size <= 0)
417 what_they_get = MAX_REMOTE_PACKET_SIZE;
418 else
419 what_they_get = config->size;
420 }
421 else
422 {
423 what_they_get = (rs->remote_packet_size);
424 /* Limit the packet to the size specified by the user. */
425 if (config->size > 0
426 && what_they_get > config->size)
427 what_they_get = config->size;
428 /* Limit it to the size of the targets ``g'' response. */
429 if ((rs->actual_register_packet_size) > 0
430 && what_they_get > (rs->actual_register_packet_size))
431 what_they_get = (rs->actual_register_packet_size);
432 }
433 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
434 what_they_get = MAX_REMOTE_PACKET_SIZE;
435 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
436 what_they_get = MIN_REMOTE_PACKET_SIZE;
437 return what_they_get;
438 }
439
440 /* Update the size of a read/write packet. If they user wants
441 something really big then do a sanity check. */
442
443 static void
444 set_memory_packet_size (char *args, struct memory_packet_config *config)
445 {
446 int fixed_p = config->fixed_p;
447 long size = config->size;
448 if (args == NULL)
449 error (_("Argument required (integer, `fixed' or `limited')."));
450 else if (strcmp (args, "hard") == 0
451 || strcmp (args, "fixed") == 0)
452 fixed_p = 1;
453 else if (strcmp (args, "soft") == 0
454 || strcmp (args, "limit") == 0)
455 fixed_p = 0;
456 else
457 {
458 char *end;
459 size = strtoul (args, &end, 0);
460 if (args == end)
461 error (_("Invalid %s (bad syntax)."), config->name);
462 #if 0
463 /* Instead of explicitly capping the size of a packet to
464 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
465 instead allowed to set the size to something arbitrarily
466 large. */
467 if (size > MAX_REMOTE_PACKET_SIZE)
468 error (_("Invalid %s (too large)."), config->name);
469 #endif
470 }
471 /* Extra checks? */
472 if (fixed_p && !config->fixed_p)
473 {
474 if (! query (_("The target may not be able to correctly handle a %s\n"
475 "of %ld bytes. Change the packet size? "),
476 config->name, size))
477 error (_("Packet size not changed."));
478 }
479 /* Update the config. */
480 config->fixed_p = fixed_p;
481 config->size = size;
482 }
483
484 static void
485 show_memory_packet_size (struct memory_packet_config *config)
486 {
487 printf_filtered (_("The %s is %ld. "), config->name, config->size);
488 if (config->fixed_p)
489 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
490 get_memory_packet_size (config));
491 else
492 printf_filtered (_("Packets are limited to %ld bytes.\n"),
493 get_memory_packet_size (config));
494 }
495
496 static struct memory_packet_config memory_write_packet_config =
497 {
498 "memory-write-packet-size",
499 };
500
501 static void
502 set_memory_write_packet_size (char *args, int from_tty)
503 {
504 set_memory_packet_size (args, &memory_write_packet_config);
505 }
506
507 static void
508 show_memory_write_packet_size (char *args, int from_tty)
509 {
510 show_memory_packet_size (&memory_write_packet_config);
511 }
512
513 static long
514 get_memory_write_packet_size (void)
515 {
516 return get_memory_packet_size (&memory_write_packet_config);
517 }
518
519 static struct memory_packet_config memory_read_packet_config =
520 {
521 "memory-read-packet-size",
522 };
523
524 static void
525 set_memory_read_packet_size (char *args, int from_tty)
526 {
527 set_memory_packet_size (args, &memory_read_packet_config);
528 }
529
530 static void
531 show_memory_read_packet_size (char *args, int from_tty)
532 {
533 show_memory_packet_size (&memory_read_packet_config);
534 }
535
536 static long
537 get_memory_read_packet_size (void)
538 {
539 struct remote_state *rs = get_remote_state ();
540 long size = get_memory_packet_size (&memory_read_packet_config);
541 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
542 extra buffer size argument before the memory read size can be
543 increased beyond (rs->remote_packet_size). */
544 if (size > (rs->remote_packet_size))
545 size = (rs->remote_packet_size);
546 return size;
547 }
548
549 \f
550 /* Generic configuration support for packets the stub optionally
551 supports. Allows the user to specify the use of the packet as well
552 as allowing GDB to auto-detect support in the remote stub. */
553
554 enum packet_support
555 {
556 PACKET_SUPPORT_UNKNOWN = 0,
557 PACKET_ENABLE,
558 PACKET_DISABLE
559 };
560
561 struct packet_config
562 {
563 char *name;
564 char *title;
565 enum auto_boolean detect;
566 enum packet_support support;
567 };
568
569 /* Analyze a packet's return value and update the packet config
570 accordingly. */
571
572 enum packet_result
573 {
574 PACKET_ERROR,
575 PACKET_OK,
576 PACKET_UNKNOWN
577 };
578
579 static void
580 update_packet_config (struct packet_config *config)
581 {
582 switch (config->detect)
583 {
584 case AUTO_BOOLEAN_TRUE:
585 config->support = PACKET_ENABLE;
586 break;
587 case AUTO_BOOLEAN_FALSE:
588 config->support = PACKET_DISABLE;
589 break;
590 case AUTO_BOOLEAN_AUTO:
591 config->support = PACKET_SUPPORT_UNKNOWN;
592 break;
593 }
594 }
595
596 static void
597 show_packet_config_cmd (struct packet_config *config)
598 {
599 char *support = "internal-error";
600 switch (config->support)
601 {
602 case PACKET_ENABLE:
603 support = "enabled";
604 break;
605 case PACKET_DISABLE:
606 support = "disabled";
607 break;
608 case PACKET_SUPPORT_UNKNOWN:
609 support = "unknown";
610 break;
611 }
612 switch (config->detect)
613 {
614 case AUTO_BOOLEAN_AUTO:
615 printf_filtered (_("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n"),
616 config->name, config->title, support);
617 break;
618 case AUTO_BOOLEAN_TRUE:
619 case AUTO_BOOLEAN_FALSE:
620 printf_filtered (_("Support for remote protocol `%s' (%s) packet is currently %s.\n"),
621 config->name, config->title, support);
622 break;
623 }
624 }
625
626 static void
627 add_packet_config_cmd (struct packet_config *config,
628 char *name,
629 char *title,
630 cmd_sfunc_ftype *set_func,
631 show_value_ftype *show_func,
632 struct cmd_list_element **set_remote_list,
633 struct cmd_list_element **show_remote_list,
634 int legacy)
635 {
636 char *set_doc;
637 char *show_doc;
638 char *cmd_name;
639
640 config->name = name;
641 config->title = title;
642 config->detect = AUTO_BOOLEAN_AUTO;
643 config->support = PACKET_SUPPORT_UNKNOWN;
644 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
645 name, title);
646 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
647 name, title);
648 /* set/show TITLE-packet {auto,on,off} */
649 cmd_name = xstrprintf ("%s-packet", title);
650 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
651 &config->detect, set_doc, show_doc, NULL, /* help_doc */
652 set_func, show_func,
653 set_remote_list, show_remote_list);
654 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
655 if (legacy)
656 {
657 char *legacy_name;
658 legacy_name = xstrprintf ("%s-packet", name);
659 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
660 set_remote_list);
661 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
662 show_remote_list);
663 }
664 }
665
666 static enum packet_result
667 packet_ok (const char *buf, struct packet_config *config)
668 {
669 if (buf[0] != '\0')
670 {
671 /* The stub recognized the packet request. Check that the
672 operation succeeded. */
673 switch (config->support)
674 {
675 case PACKET_SUPPORT_UNKNOWN:
676 if (remote_debug)
677 fprintf_unfiltered (gdb_stdlog,
678 "Packet %s (%s) is supported\n",
679 config->name, config->title);
680 config->support = PACKET_ENABLE;
681 break;
682 case PACKET_DISABLE:
683 internal_error (__FILE__, __LINE__,
684 _("packet_ok: attempt to use a disabled packet"));
685 break;
686 case PACKET_ENABLE:
687 break;
688 }
689 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
690 /* "OK" - definitly OK. */
691 return PACKET_OK;
692 if (buf[0] == 'E'
693 && isxdigit (buf[1]) && isxdigit (buf[2])
694 && buf[3] == '\0')
695 /* "Enn" - definitly an error. */
696 return PACKET_ERROR;
697 /* The packet may or may not be OK. Just assume it is. */
698 return PACKET_OK;
699 }
700 else
701 {
702 /* The stub does not support the packet. */
703 switch (config->support)
704 {
705 case PACKET_ENABLE:
706 if (config->detect == AUTO_BOOLEAN_AUTO)
707 /* If the stub previously indicated that the packet was
708 supported then there is a protocol error.. */
709 error (_("Protocol error: %s (%s) conflicting enabled responses."),
710 config->name, config->title);
711 else
712 /* The user set it wrong. */
713 error (_("Enabled packet %s (%s) not recognized by stub"),
714 config->name, config->title);
715 break;
716 case PACKET_SUPPORT_UNKNOWN:
717 if (remote_debug)
718 fprintf_unfiltered (gdb_stdlog,
719 "Packet %s (%s) is NOT supported\n",
720 config->name, config->title);
721 config->support = PACKET_DISABLE;
722 break;
723 case PACKET_DISABLE:
724 break;
725 }
726 return PACKET_UNKNOWN;
727 }
728 }
729
730 /* Should we try the 'vCont' (descriptive resume) request? */
731 static struct packet_config remote_protocol_vcont;
732
733 static void
734 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
735 struct cmd_list_element *c)
736 {
737 update_packet_config (&remote_protocol_vcont);
738 }
739
740 static void
741 show_remote_protocol_vcont_packet_cmd (struct ui_file *file, int from_tty,
742 struct cmd_list_element *c,
743 const char *value)
744 {
745 show_packet_config_cmd (&remote_protocol_vcont);
746 }
747
748 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
749 static struct packet_config remote_protocol_qSymbol;
750
751 static void
752 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
753 struct cmd_list_element *c)
754 {
755 update_packet_config (&remote_protocol_qSymbol);
756 }
757
758 static void
759 show_remote_protocol_qSymbol_packet_cmd (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c,
761 const char *value)
762 {
763 show_packet_config_cmd (&remote_protocol_qSymbol);
764 }
765
766 /* Should we try the 'P' (set register) request? */
767
768 static struct packet_config remote_protocol_P;
769
770 static void
771 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 update_packet_config (&remote_protocol_P);
775 }
776
777 static void
778 show_remote_protocol_P_packet_cmd (struct ui_file *file, int from_tty,
779 struct cmd_list_element *c,
780 const char *value)
781 {
782 show_packet_config_cmd (&remote_protocol_P);
783 }
784
785 /* Should we try one of the 'Z' requests? */
786
787 enum Z_packet_type
788 {
789 Z_PACKET_SOFTWARE_BP,
790 Z_PACKET_HARDWARE_BP,
791 Z_PACKET_WRITE_WP,
792 Z_PACKET_READ_WP,
793 Z_PACKET_ACCESS_WP,
794 NR_Z_PACKET_TYPES
795 };
796
797 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
798
799 /* FIXME: Instead of having all these boiler plate functions, the
800 command callback should include a context argument. */
801
802 static void
803 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
804 struct cmd_list_element *c)
805 {
806 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
807 }
808
809 static void
810 show_remote_protocol_Z_software_bp_packet_cmd (struct ui_file *file, int from_tty,
811 struct cmd_list_element *c,
812 const char *value)
813 {
814 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
815 }
816
817 static void
818 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
819 struct cmd_list_element *c)
820 {
821 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
822 }
823
824 static void
825 show_remote_protocol_Z_hardware_bp_packet_cmd (struct ui_file *file, int from_tty,
826 struct cmd_list_element *c,
827 const char *value)
828 {
829 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
830 }
831
832 static void
833 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
834 struct cmd_list_element *c)
835 {
836 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
837 }
838
839 static void
840 show_remote_protocol_Z_write_wp_packet_cmd (struct ui_file *file, int from_tty,
841 struct cmd_list_element *c,
842 const char *value)
843 {
844 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
845 }
846
847 static void
848 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
852 }
853
854 static void
855 show_remote_protocol_Z_read_wp_packet_cmd (struct ui_file *file, int from_tty,
856 struct cmd_list_element *c,
857 const char *value)
858 {
859 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
860 }
861
862 static void
863 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
864 struct cmd_list_element *c)
865 {
866 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
867 }
868
869 static void
870 show_remote_protocol_Z_access_wp_packet_cmd (struct ui_file *file, int from_tty,
871 struct cmd_list_element *c,
872 const char *value)
873 {
874 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
875 }
876
877 /* For compatibility with older distributions. Provide a ``set remote
878 Z-packet ...'' command that updates all the Z packet types. */
879
880 static enum auto_boolean remote_Z_packet_detect;
881
882 static void
883 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
884 struct cmd_list_element *c)
885 {
886 int i;
887 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
888 {
889 remote_protocol_Z[i].detect = remote_Z_packet_detect;
890 update_packet_config (&remote_protocol_Z[i]);
891 }
892 }
893
894 static void
895 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
896 struct cmd_list_element *c,
897 const char *value)
898 {
899 int i;
900 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
901 {
902 show_packet_config_cmd (&remote_protocol_Z[i]);
903 }
904 }
905
906 /* Should we try the 'X' (remote binary download) packet?
907
908 This variable (available to the user via "set remote X-packet")
909 dictates whether downloads are sent in binary (via the 'X' packet).
910 We assume that the stub can, and attempt to do it. This will be
911 cleared if the stub does not understand it. This switch is still
912 needed, though in cases when the packet is supported in the stub,
913 but the connection does not allow it (i.e., 7-bit serial connection
914 only). */
915
916 static struct packet_config remote_protocol_binary_download;
917
918 /* Should we try the 'ThreadInfo' query packet?
919
920 This variable (NOT available to the user: auto-detect only!)
921 determines whether GDB will use the new, simpler "ThreadInfo"
922 query or the older, more complex syntax for thread queries.
923 This is an auto-detect variable (set to true at each connect,
924 and set to false when the target fails to recognize it). */
925
926 static int use_threadinfo_query;
927 static int use_threadextra_query;
928
929 static void
930 set_remote_protocol_binary_download_cmd (char *args,
931 int from_tty,
932 struct cmd_list_element *c)
933 {
934 update_packet_config (&remote_protocol_binary_download);
935 }
936
937 static void
938 show_remote_protocol_binary_download_cmd (struct ui_file *file, int from_tty,
939 struct cmd_list_element *c,
940 const char *value)
941 {
942 show_packet_config_cmd (&remote_protocol_binary_download);
943 }
944
945 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
946 static struct packet_config remote_protocol_qPart_auxv;
947
948 static void
949 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
950 struct cmd_list_element *c)
951 {
952 update_packet_config (&remote_protocol_qPart_auxv);
953 }
954
955 static void
956 show_remote_protocol_qPart_auxv_packet_cmd (struct ui_file *file, int from_tty,
957 struct cmd_list_element *c,
958 const char *value)
959 {
960 show_packet_config_cmd (&remote_protocol_qPart_auxv);
961 }
962
963 /* Should we try the 'qGetTLSAddr' (Get Thread Local Storage Address) request? */
964 static struct packet_config remote_protocol_qGetTLSAddr;
965
966 static void
967 set_remote_protocol_qGetTLSAddr_packet_cmd (char *args, int from_tty,
968 struct cmd_list_element *c)
969 {
970 update_packet_config (&remote_protocol_qGetTLSAddr);
971 }
972
973 static void
974 show_remote_protocol_qGetTLSAddr_packet_cmd (struct ui_file *file, int from_tty,
975 struct cmd_list_element *c,
976 const char *value)
977 {
978 show_packet_config_cmd (&remote_protocol_qGetTLSAddr);
979 }
980
981 static struct packet_config remote_protocol_p;
982
983 static void
984 set_remote_protocol_p_packet_cmd (char *args, int from_tty,
985 struct cmd_list_element *c)
986 {
987 update_packet_config (&remote_protocol_p);
988 }
989
990 static void
991 show_remote_protocol_p_packet_cmd (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
993 const char *value)
994 {
995 show_packet_config_cmd (&remote_protocol_p);
996 }
997
998
999
1000 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1001 static void *sigint_remote_twice_token;
1002 static void *sigint_remote_token;
1003
1004 /* These are pointers to hook functions that may be set in order to
1005 modify resume/wait behavior for a particular architecture. */
1006
1007 void (*deprecated_target_resume_hook) (void);
1008 void (*deprecated_target_wait_loop_hook) (void);
1009 \f
1010
1011
1012 /* These are the threads which we last sent to the remote system.
1013 -1 for all or -2 for not sent yet. */
1014 static int general_thread;
1015 static int continue_thread;
1016
1017 /* Call this function as a result of
1018 1) A halt indication (T packet) containing a thread id
1019 2) A direct query of currthread
1020 3) Successful execution of set thread
1021 */
1022
1023 static void
1024 record_currthread (int currthread)
1025 {
1026 general_thread = currthread;
1027
1028 /* If this is a new thread, add it to GDB's thread list.
1029 If we leave it up to WFI to do this, bad things will happen. */
1030 if (!in_thread_list (pid_to_ptid (currthread)))
1031 {
1032 add_thread (pid_to_ptid (currthread));
1033 ui_out_text (uiout, "[New ");
1034 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1035 ui_out_text (uiout, "]\n");
1036 }
1037 }
1038
1039 #define MAGIC_NULL_PID 42000
1040
1041 static void
1042 set_thread (int th, int gen)
1043 {
1044 struct remote_state *rs = get_remote_state ();
1045 char *buf = alloca (rs->remote_packet_size);
1046 int state = gen ? general_thread : continue_thread;
1047
1048 if (state == th)
1049 return;
1050
1051 buf[0] = 'H';
1052 buf[1] = gen ? 'g' : 'c';
1053 if (th == MAGIC_NULL_PID)
1054 {
1055 buf[2] = '0';
1056 buf[3] = '\0';
1057 }
1058 else if (th < 0)
1059 xsnprintf (&buf[2], rs->remote_packet_size - 2, "-%x", -th);
1060 else
1061 xsnprintf (&buf[2], rs->remote_packet_size - 2, "%x", th);
1062 putpkt (buf);
1063 getpkt (buf, (rs->remote_packet_size), 0);
1064 if (gen)
1065 general_thread = th;
1066 else
1067 continue_thread = th;
1068 }
1069 \f
1070 /* Return nonzero if the thread TH is still alive on the remote system. */
1071
1072 static int
1073 remote_thread_alive (ptid_t ptid)
1074 {
1075 int tid = PIDGET (ptid);
1076 char buf[16];
1077
1078 if (tid < 0)
1079 xsnprintf (buf, sizeof (buf), "T-%08x", -tid);
1080 else
1081 xsnprintf (buf, sizeof (buf), "T%08x", tid);
1082 putpkt (buf);
1083 getpkt (buf, sizeof (buf), 0);
1084 return (buf[0] == 'O' && buf[1] == 'K');
1085 }
1086
1087 /* About these extended threadlist and threadinfo packets. They are
1088 variable length packets but, the fields within them are often fixed
1089 length. They are redundent enough to send over UDP as is the
1090 remote protocol in general. There is a matching unit test module
1091 in libstub. */
1092
1093 #define OPAQUETHREADBYTES 8
1094
1095 /* a 64 bit opaque identifier */
1096 typedef unsigned char threadref[OPAQUETHREADBYTES];
1097
1098 /* WARNING: This threadref data structure comes from the remote O.S.,
1099 libstub protocol encoding, and remote.c. it is not particularly
1100 changable. */
1101
1102 /* Right now, the internal structure is int. We want it to be bigger.
1103 Plan to fix this.
1104 */
1105
1106 typedef int gdb_threadref; /* Internal GDB thread reference. */
1107
1108 /* gdb_ext_thread_info is an internal GDB data structure which is
1109 equivalint to the reply of the remote threadinfo packet. */
1110
1111 struct gdb_ext_thread_info
1112 {
1113 threadref threadid; /* External form of thread reference. */
1114 int active; /* Has state interesting to GDB?
1115 regs, stack. */
1116 char display[256]; /* Brief state display, name,
1117 blocked/suspended. */
1118 char shortname[32]; /* To be used to name threads. */
1119 char more_display[256]; /* Long info, statistics, queue depth,
1120 whatever. */
1121 };
1122
1123 /* The volume of remote transfers can be limited by submitting
1124 a mask containing bits specifying the desired information.
1125 Use a union of these values as the 'selection' parameter to
1126 get_thread_info. FIXME: Make these TAG names more thread specific.
1127 */
1128
1129 #define TAG_THREADID 1
1130 #define TAG_EXISTS 2
1131 #define TAG_DISPLAY 4
1132 #define TAG_THREADNAME 8
1133 #define TAG_MOREDISPLAY 16
1134
1135 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1136
1137 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1138
1139 static char *unpack_nibble (char *buf, int *val);
1140
1141 static char *pack_nibble (char *buf, int nibble);
1142
1143 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1144
1145 static char *unpack_byte (char *buf, int *value);
1146
1147 static char *pack_int (char *buf, int value);
1148
1149 static char *unpack_int (char *buf, int *value);
1150
1151 static char *unpack_string (char *src, char *dest, int length);
1152
1153 static char *pack_threadid (char *pkt, threadref *id);
1154
1155 static char *unpack_threadid (char *inbuf, threadref *id);
1156
1157 void int_to_threadref (threadref *id, int value);
1158
1159 static int threadref_to_int (threadref *ref);
1160
1161 static void copy_threadref (threadref *dest, threadref *src);
1162
1163 static int threadmatch (threadref *dest, threadref *src);
1164
1165 static char *pack_threadinfo_request (char *pkt, int mode,
1166 threadref *id);
1167
1168 static int remote_unpack_thread_info_response (char *pkt,
1169 threadref *expectedref,
1170 struct gdb_ext_thread_info
1171 *info);
1172
1173
1174 static int remote_get_threadinfo (threadref *threadid,
1175 int fieldset, /*TAG mask */
1176 struct gdb_ext_thread_info *info);
1177
1178 static char *pack_threadlist_request (char *pkt, int startflag,
1179 int threadcount,
1180 threadref *nextthread);
1181
1182 static int parse_threadlist_response (char *pkt,
1183 int result_limit,
1184 threadref *original_echo,
1185 threadref *resultlist,
1186 int *doneflag);
1187
1188 static int remote_get_threadlist (int startflag,
1189 threadref *nextthread,
1190 int result_limit,
1191 int *done,
1192 int *result_count,
1193 threadref *threadlist);
1194
1195 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1196
1197 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1198 void *context, int looplimit);
1199
1200 static int remote_newthread_step (threadref *ref, void *context);
1201
1202 /* Encode 64 bits in 16 chars of hex. */
1203
1204 static const char hexchars[] = "0123456789abcdef";
1205
1206 static int
1207 ishex (int ch, int *val)
1208 {
1209 if ((ch >= 'a') && (ch <= 'f'))
1210 {
1211 *val = ch - 'a' + 10;
1212 return 1;
1213 }
1214 if ((ch >= 'A') && (ch <= 'F'))
1215 {
1216 *val = ch - 'A' + 10;
1217 return 1;
1218 }
1219 if ((ch >= '0') && (ch <= '9'))
1220 {
1221 *val = ch - '0';
1222 return 1;
1223 }
1224 return 0;
1225 }
1226
1227 static int
1228 stubhex (int ch)
1229 {
1230 if (ch >= 'a' && ch <= 'f')
1231 return ch - 'a' + 10;
1232 if (ch >= '0' && ch <= '9')
1233 return ch - '0';
1234 if (ch >= 'A' && ch <= 'F')
1235 return ch - 'A' + 10;
1236 return -1;
1237 }
1238
1239 static int
1240 stub_unpack_int (char *buff, int fieldlength)
1241 {
1242 int nibble;
1243 int retval = 0;
1244
1245 while (fieldlength)
1246 {
1247 nibble = stubhex (*buff++);
1248 retval |= nibble;
1249 fieldlength--;
1250 if (fieldlength)
1251 retval = retval << 4;
1252 }
1253 return retval;
1254 }
1255
1256 char *
1257 unpack_varlen_hex (char *buff, /* packet to parse */
1258 ULONGEST *result)
1259 {
1260 int nibble;
1261 int retval = 0;
1262
1263 while (ishex (*buff, &nibble))
1264 {
1265 buff++;
1266 retval = retval << 4;
1267 retval |= nibble & 0x0f;
1268 }
1269 *result = retval;
1270 return buff;
1271 }
1272
1273 static char *
1274 unpack_nibble (char *buf, int *val)
1275 {
1276 ishex (*buf++, val);
1277 return buf;
1278 }
1279
1280 static char *
1281 pack_nibble (char *buf, int nibble)
1282 {
1283 *buf++ = hexchars[(nibble & 0x0f)];
1284 return buf;
1285 }
1286
1287 static char *
1288 pack_hex_byte (char *pkt, int byte)
1289 {
1290 *pkt++ = hexchars[(byte >> 4) & 0xf];
1291 *pkt++ = hexchars[(byte & 0xf)];
1292 return pkt;
1293 }
1294
1295 static char *
1296 unpack_byte (char *buf, int *value)
1297 {
1298 *value = stub_unpack_int (buf, 2);
1299 return buf + 2;
1300 }
1301
1302 static char *
1303 pack_int (char *buf, int value)
1304 {
1305 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1306 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1307 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1308 buf = pack_hex_byte (buf, (value & 0xff));
1309 return buf;
1310 }
1311
1312 static char *
1313 unpack_int (char *buf, int *value)
1314 {
1315 *value = stub_unpack_int (buf, 8);
1316 return buf + 8;
1317 }
1318
1319 #if 0 /* Currently unused, uncomment when needed. */
1320 static char *pack_string (char *pkt, char *string);
1321
1322 static char *
1323 pack_string (char *pkt, char *string)
1324 {
1325 char ch;
1326 int len;
1327
1328 len = strlen (string);
1329 if (len > 200)
1330 len = 200; /* Bigger than most GDB packets, junk??? */
1331 pkt = pack_hex_byte (pkt, len);
1332 while (len-- > 0)
1333 {
1334 ch = *string++;
1335 if ((ch == '\0') || (ch == '#'))
1336 ch = '*'; /* Protect encapsulation. */
1337 *pkt++ = ch;
1338 }
1339 return pkt;
1340 }
1341 #endif /* 0 (unused) */
1342
1343 static char *
1344 unpack_string (char *src, char *dest, int length)
1345 {
1346 while (length--)
1347 *dest++ = *src++;
1348 *dest = '\0';
1349 return src;
1350 }
1351
1352 static char *
1353 pack_threadid (char *pkt, threadref *id)
1354 {
1355 char *limit;
1356 unsigned char *altid;
1357
1358 altid = (unsigned char *) id;
1359 limit = pkt + BUF_THREAD_ID_SIZE;
1360 while (pkt < limit)
1361 pkt = pack_hex_byte (pkt, *altid++);
1362 return pkt;
1363 }
1364
1365
1366 static char *
1367 unpack_threadid (char *inbuf, threadref *id)
1368 {
1369 char *altref;
1370 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1371 int x, y;
1372
1373 altref = (char *) id;
1374
1375 while (inbuf < limit)
1376 {
1377 x = stubhex (*inbuf++);
1378 y = stubhex (*inbuf++);
1379 *altref++ = (x << 4) | y;
1380 }
1381 return inbuf;
1382 }
1383
1384 /* Externally, threadrefs are 64 bits but internally, they are still
1385 ints. This is due to a mismatch of specifications. We would like
1386 to use 64bit thread references internally. This is an adapter
1387 function. */
1388
1389 void
1390 int_to_threadref (threadref *id, int value)
1391 {
1392 unsigned char *scan;
1393
1394 scan = (unsigned char *) id;
1395 {
1396 int i = 4;
1397 while (i--)
1398 *scan++ = 0;
1399 }
1400 *scan++ = (value >> 24) & 0xff;
1401 *scan++ = (value >> 16) & 0xff;
1402 *scan++ = (value >> 8) & 0xff;
1403 *scan++ = (value & 0xff);
1404 }
1405
1406 static int
1407 threadref_to_int (threadref *ref)
1408 {
1409 int i, value = 0;
1410 unsigned char *scan;
1411
1412 scan = (char *) ref;
1413 scan += 4;
1414 i = 4;
1415 while (i-- > 0)
1416 value = (value << 8) | ((*scan++) & 0xff);
1417 return value;
1418 }
1419
1420 static void
1421 copy_threadref (threadref *dest, threadref *src)
1422 {
1423 int i;
1424 unsigned char *csrc, *cdest;
1425
1426 csrc = (unsigned char *) src;
1427 cdest = (unsigned char *) dest;
1428 i = 8;
1429 while (i--)
1430 *cdest++ = *csrc++;
1431 }
1432
1433 static int
1434 threadmatch (threadref *dest, threadref *src)
1435 {
1436 /* Things are broken right now, so just assume we got a match. */
1437 #if 0
1438 unsigned char *srcp, *destp;
1439 int i, result;
1440 srcp = (char *) src;
1441 destp = (char *) dest;
1442
1443 result = 1;
1444 while (i-- > 0)
1445 result &= (*srcp++ == *destp++) ? 1 : 0;
1446 return result;
1447 #endif
1448 return 1;
1449 }
1450
1451 /*
1452 threadid:1, # always request threadid
1453 context_exists:2,
1454 display:4,
1455 unique_name:8,
1456 more_display:16
1457 */
1458
1459 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1460
1461 static char *
1462 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1463 {
1464 *pkt++ = 'q'; /* Info Query */
1465 *pkt++ = 'P'; /* process or thread info */
1466 pkt = pack_int (pkt, mode); /* mode */
1467 pkt = pack_threadid (pkt, id); /* threadid */
1468 *pkt = '\0'; /* terminate */
1469 return pkt;
1470 }
1471
1472 /* These values tag the fields in a thread info response packet. */
1473 /* Tagging the fields allows us to request specific fields and to
1474 add more fields as time goes by. */
1475
1476 #define TAG_THREADID 1 /* Echo the thread identifier. */
1477 #define TAG_EXISTS 2 /* Is this process defined enough to
1478 fetch registers and its stack? */
1479 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1480 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1481 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1482 the process. */
1483
1484 static int
1485 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1486 struct gdb_ext_thread_info *info)
1487 {
1488 struct remote_state *rs = get_remote_state ();
1489 int mask, length;
1490 unsigned int tag;
1491 threadref ref;
1492 char *limit = pkt + (rs->remote_packet_size); /* plausible parsing limit */
1493 int retval = 1;
1494
1495 /* info->threadid = 0; FIXME: implement zero_threadref. */
1496 info->active = 0;
1497 info->display[0] = '\0';
1498 info->shortname[0] = '\0';
1499 info->more_display[0] = '\0';
1500
1501 /* Assume the characters indicating the packet type have been
1502 stripped. */
1503 pkt = unpack_int (pkt, &mask); /* arg mask */
1504 pkt = unpack_threadid (pkt, &ref);
1505
1506 if (mask == 0)
1507 warning (_("Incomplete response to threadinfo request."));
1508 if (!threadmatch (&ref, expectedref))
1509 { /* This is an answer to a different request. */
1510 warning (_("ERROR RMT Thread info mismatch."));
1511 return 0;
1512 }
1513 copy_threadref (&info->threadid, &ref);
1514
1515 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1516
1517 /* Packets are terminated with nulls. */
1518 while ((pkt < limit) && mask && *pkt)
1519 {
1520 pkt = unpack_int (pkt, &tag); /* tag */
1521 pkt = unpack_byte (pkt, &length); /* length */
1522 if (!(tag & mask)) /* Tags out of synch with mask. */
1523 {
1524 warning (_("ERROR RMT: threadinfo tag mismatch."));
1525 retval = 0;
1526 break;
1527 }
1528 if (tag == TAG_THREADID)
1529 {
1530 if (length != 16)
1531 {
1532 warning (_("ERROR RMT: length of threadid is not 16."));
1533 retval = 0;
1534 break;
1535 }
1536 pkt = unpack_threadid (pkt, &ref);
1537 mask = mask & ~TAG_THREADID;
1538 continue;
1539 }
1540 if (tag == TAG_EXISTS)
1541 {
1542 info->active = stub_unpack_int (pkt, length);
1543 pkt += length;
1544 mask = mask & ~(TAG_EXISTS);
1545 if (length > 8)
1546 {
1547 warning (_("ERROR RMT: 'exists' length too long."));
1548 retval = 0;
1549 break;
1550 }
1551 continue;
1552 }
1553 if (tag == TAG_THREADNAME)
1554 {
1555 pkt = unpack_string (pkt, &info->shortname[0], length);
1556 mask = mask & ~TAG_THREADNAME;
1557 continue;
1558 }
1559 if (tag == TAG_DISPLAY)
1560 {
1561 pkt = unpack_string (pkt, &info->display[0], length);
1562 mask = mask & ~TAG_DISPLAY;
1563 continue;
1564 }
1565 if (tag == TAG_MOREDISPLAY)
1566 {
1567 pkt = unpack_string (pkt, &info->more_display[0], length);
1568 mask = mask & ~TAG_MOREDISPLAY;
1569 continue;
1570 }
1571 warning (_("ERROR RMT: unknown thread info tag."));
1572 break; /* Not a tag we know about. */
1573 }
1574 return retval;
1575 }
1576
1577 static int
1578 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1579 struct gdb_ext_thread_info *info)
1580 {
1581 struct remote_state *rs = get_remote_state ();
1582 int result;
1583 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1584
1585 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1586 putpkt (threadinfo_pkt);
1587 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1588 result = remote_unpack_thread_info_response (threadinfo_pkt + 2,
1589 threadid, info);
1590 return result;
1591 }
1592
1593 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1594
1595 static char *
1596 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1597 threadref *nextthread)
1598 {
1599 *pkt++ = 'q'; /* info query packet */
1600 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1601 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1602 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1603 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1604 *pkt = '\0';
1605 return pkt;
1606 }
1607
1608 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1609
1610 static int
1611 parse_threadlist_response (char *pkt, int result_limit,
1612 threadref *original_echo, threadref *resultlist,
1613 int *doneflag)
1614 {
1615 struct remote_state *rs = get_remote_state ();
1616 char *limit;
1617 int count, resultcount, done;
1618
1619 resultcount = 0;
1620 /* Assume the 'q' and 'M chars have been stripped. */
1621 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE);
1622 /* done parse past here */
1623 pkt = unpack_byte (pkt, &count); /* count field */
1624 pkt = unpack_nibble (pkt, &done);
1625 /* The first threadid is the argument threadid. */
1626 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1627 while ((count-- > 0) && (pkt < limit))
1628 {
1629 pkt = unpack_threadid (pkt, resultlist++);
1630 if (resultcount++ >= result_limit)
1631 break;
1632 }
1633 if (doneflag)
1634 *doneflag = done;
1635 return resultcount;
1636 }
1637
1638 static int
1639 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1640 int *done, int *result_count, threadref *threadlist)
1641 {
1642 struct remote_state *rs = get_remote_state ();
1643 static threadref echo_nextthread;
1644 char *threadlist_packet = alloca (rs->remote_packet_size);
1645 char *t_response = alloca (rs->remote_packet_size);
1646 int result = 1;
1647
1648 /* Trancate result limit to be smaller than the packet size. */
1649 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1650 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1651
1652 pack_threadlist_request (threadlist_packet,
1653 startflag, result_limit, nextthread);
1654 putpkt (threadlist_packet);
1655 getpkt (t_response, (rs->remote_packet_size), 0);
1656
1657 *result_count =
1658 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1659 threadlist, done);
1660
1661 if (!threadmatch (&echo_nextthread, nextthread))
1662 {
1663 /* FIXME: This is a good reason to drop the packet. */
1664 /* Possably, there is a duplicate response. */
1665 /* Possabilities :
1666 retransmit immediatly - race conditions
1667 retransmit after timeout - yes
1668 exit
1669 wait for packet, then exit
1670 */
1671 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1672 return 0; /* I choose simply exiting. */
1673 }
1674 if (*result_count <= 0)
1675 {
1676 if (*done != 1)
1677 {
1678 warning (_("RMT ERROR : failed to get remote thread list."));
1679 result = 0;
1680 }
1681 return result; /* break; */
1682 }
1683 if (*result_count > result_limit)
1684 {
1685 *result_count = 0;
1686 warning (_("RMT ERROR: threadlist response longer than requested."));
1687 return 0;
1688 }
1689 return result;
1690 }
1691
1692 /* This is the interface between remote and threads, remotes upper
1693 interface. */
1694
1695 /* remote_find_new_threads retrieves the thread list and for each
1696 thread in the list, looks up the thread in GDB's internal list,
1697 ading the thread if it does not already exist. This involves
1698 getting partial thread lists from the remote target so, polling the
1699 quit_flag is required. */
1700
1701
1702 /* About this many threadisds fit in a packet. */
1703
1704 #define MAXTHREADLISTRESULTS 32
1705
1706 static int
1707 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1708 int looplimit)
1709 {
1710 int done, i, result_count;
1711 int startflag = 1;
1712 int result = 1;
1713 int loopcount = 0;
1714 static threadref nextthread;
1715 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1716
1717 done = 0;
1718 while (!done)
1719 {
1720 if (loopcount++ > looplimit)
1721 {
1722 result = 0;
1723 warning (_("Remote fetch threadlist -infinite loop-."));
1724 break;
1725 }
1726 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1727 &done, &result_count, resultthreadlist))
1728 {
1729 result = 0;
1730 break;
1731 }
1732 /* Clear for later iterations. */
1733 startflag = 0;
1734 /* Setup to resume next batch of thread references, set nextthread. */
1735 if (result_count >= 1)
1736 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1737 i = 0;
1738 while (result_count--)
1739 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1740 break;
1741 }
1742 return result;
1743 }
1744
1745 static int
1746 remote_newthread_step (threadref *ref, void *context)
1747 {
1748 ptid_t ptid;
1749
1750 ptid = pid_to_ptid (threadref_to_int (ref));
1751
1752 if (!in_thread_list (ptid))
1753 add_thread (ptid);
1754 return 1; /* continue iterator */
1755 }
1756
1757 #define CRAZY_MAX_THREADS 1000
1758
1759 static ptid_t
1760 remote_current_thread (ptid_t oldpid)
1761 {
1762 struct remote_state *rs = get_remote_state ();
1763 char *buf = alloca (rs->remote_packet_size);
1764
1765 putpkt ("qC");
1766 getpkt (buf, (rs->remote_packet_size), 0);
1767 if (buf[0] == 'Q' && buf[1] == 'C')
1768 /* Use strtoul here, so we'll correctly parse values whose highest
1769 bit is set. The protocol carries them as a simple series of
1770 hex digits; in the absence of a sign, strtol will see such
1771 values as positive numbers out of range for signed 'long', and
1772 return LONG_MAX to indicate an overflow. */
1773 return pid_to_ptid (strtoul (&buf[2], NULL, 16));
1774 else
1775 return oldpid;
1776 }
1777
1778 /* Find new threads for info threads command.
1779 * Original version, using John Metzler's thread protocol.
1780 */
1781
1782 static void
1783 remote_find_new_threads (void)
1784 {
1785 remote_threadlist_iterator (remote_newthread_step, 0,
1786 CRAZY_MAX_THREADS);
1787 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1788 inferior_ptid = remote_current_thread (inferior_ptid);
1789 }
1790
1791 /*
1792 * Find all threads for info threads command.
1793 * Uses new thread protocol contributed by Cisco.
1794 * Falls back and attempts to use the older method (above)
1795 * if the target doesn't respond to the new method.
1796 */
1797
1798 static void
1799 remote_threads_info (void)
1800 {
1801 struct remote_state *rs = get_remote_state ();
1802 char *buf = alloca (rs->remote_packet_size);
1803 char *bufp;
1804 int tid;
1805
1806 if (remote_desc == 0) /* paranoia */
1807 error (_("Command can only be used when connected to the remote target."));
1808
1809 if (use_threadinfo_query)
1810 {
1811 putpkt ("qfThreadInfo");
1812 bufp = buf;
1813 getpkt (bufp, (rs->remote_packet_size), 0);
1814 if (bufp[0] != '\0') /* q packet recognized */
1815 {
1816 while (*bufp++ == 'm') /* reply contains one or more TID */
1817 {
1818 do
1819 {
1820 /* Use strtoul here, so we'll correctly parse values
1821 whose highest bit is set. The protocol carries
1822 them as a simple series of hex digits; in the
1823 absence of a sign, strtol will see such values as
1824 positive numbers out of range for signed 'long',
1825 and return LONG_MAX to indicate an overflow. */
1826 tid = strtoul (bufp, &bufp, 16);
1827 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1828 add_thread (pid_to_ptid (tid));
1829 }
1830 while (*bufp++ == ','); /* comma-separated list */
1831 putpkt ("qsThreadInfo");
1832 bufp = buf;
1833 getpkt (bufp, (rs->remote_packet_size), 0);
1834 }
1835 return; /* done */
1836 }
1837 }
1838
1839 /* Else fall back to old method based on jmetzler protocol. */
1840 use_threadinfo_query = 0;
1841 remote_find_new_threads ();
1842 return;
1843 }
1844
1845 /*
1846 * Collect a descriptive string about the given thread.
1847 * The target may say anything it wants to about the thread
1848 * (typically info about its blocked / runnable state, name, etc.).
1849 * This string will appear in the info threads display.
1850 *
1851 * Optional: targets are not required to implement this function.
1852 */
1853
1854 static char *
1855 remote_threads_extra_info (struct thread_info *tp)
1856 {
1857 struct remote_state *rs = get_remote_state ();
1858 int result;
1859 int set;
1860 threadref id;
1861 struct gdb_ext_thread_info threadinfo;
1862 static char display_buf[100]; /* arbitrary... */
1863 char *bufp = alloca (rs->remote_packet_size);
1864 int n = 0; /* position in display_buf */
1865
1866 if (remote_desc == 0) /* paranoia */
1867 internal_error (__FILE__, __LINE__,
1868 _("remote_threads_extra_info"));
1869
1870 if (use_threadextra_query)
1871 {
1872 xsnprintf (bufp, rs->remote_packet_size, "qThreadExtraInfo,%x",
1873 PIDGET (tp->ptid));
1874 putpkt (bufp);
1875 getpkt (bufp, (rs->remote_packet_size), 0);
1876 if (bufp[0] != 0)
1877 {
1878 n = min (strlen (bufp) / 2, sizeof (display_buf));
1879 result = hex2bin (bufp, display_buf, n);
1880 display_buf [result] = '\0';
1881 return display_buf;
1882 }
1883 }
1884
1885 /* If the above query fails, fall back to the old method. */
1886 use_threadextra_query = 0;
1887 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1888 | TAG_MOREDISPLAY | TAG_DISPLAY;
1889 int_to_threadref (&id, PIDGET (tp->ptid));
1890 if (remote_get_threadinfo (&id, set, &threadinfo))
1891 if (threadinfo.active)
1892 {
1893 if (*threadinfo.shortname)
1894 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1895 " Name: %s,", threadinfo.shortname);
1896 if (*threadinfo.display)
1897 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1898 " State: %s,", threadinfo.display);
1899 if (*threadinfo.more_display)
1900 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1901 " Priority: %s", threadinfo.more_display);
1902
1903 if (n > 0)
1904 {
1905 /* For purely cosmetic reasons, clear up trailing commas. */
1906 if (',' == display_buf[n-1])
1907 display_buf[n-1] = ' ';
1908 return display_buf;
1909 }
1910 }
1911 return NULL;
1912 }
1913
1914 \f
1915
1916 /* Restart the remote side; this is an extended protocol operation. */
1917
1918 static void
1919 extended_remote_restart (void)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 char *buf = alloca (rs->remote_packet_size);
1923
1924 /* Send the restart command; for reasons I don't understand the
1925 remote side really expects a number after the "R". */
1926 xsnprintf (buf, rs->remote_packet_size, "R%x", 0);
1927 putpkt (buf);
1928
1929 /* Now query for status so this looks just like we restarted
1930 gdbserver from scratch. */
1931 putpkt ("?");
1932 getpkt (buf, (rs->remote_packet_size), 0);
1933 }
1934 \f
1935 /* Clean up connection to a remote debugger. */
1936
1937 static void
1938 remote_close (int quitting)
1939 {
1940 if (remote_desc)
1941 serial_close (remote_desc);
1942 remote_desc = NULL;
1943 }
1944
1945 /* Query the remote side for the text, data and bss offsets. */
1946
1947 static void
1948 get_offsets (void)
1949 {
1950 struct remote_state *rs = get_remote_state ();
1951 char *buf = alloca (rs->remote_packet_size);
1952 char *ptr;
1953 int lose;
1954 CORE_ADDR text_addr, data_addr, bss_addr;
1955 struct section_offsets *offs;
1956
1957 putpkt ("qOffsets");
1958
1959 getpkt (buf, (rs->remote_packet_size), 0);
1960
1961 if (buf[0] == '\000')
1962 return; /* Return silently. Stub doesn't support
1963 this command. */
1964 if (buf[0] == 'E')
1965 {
1966 warning (_("Remote failure reply: %s"), buf);
1967 return;
1968 }
1969
1970 /* Pick up each field in turn. This used to be done with scanf, but
1971 scanf will make trouble if CORE_ADDR size doesn't match
1972 conversion directives correctly. The following code will work
1973 with any size of CORE_ADDR. */
1974 text_addr = data_addr = bss_addr = 0;
1975 ptr = buf;
1976 lose = 0;
1977
1978 if (strncmp (ptr, "Text=", 5) == 0)
1979 {
1980 ptr += 5;
1981 /* Don't use strtol, could lose on big values. */
1982 while (*ptr && *ptr != ';')
1983 text_addr = (text_addr << 4) + fromhex (*ptr++);
1984 }
1985 else
1986 lose = 1;
1987
1988 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1989 {
1990 ptr += 6;
1991 while (*ptr && *ptr != ';')
1992 data_addr = (data_addr << 4) + fromhex (*ptr++);
1993 }
1994 else
1995 lose = 1;
1996
1997 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1998 {
1999 ptr += 5;
2000 while (*ptr && *ptr != ';')
2001 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2002 }
2003 else
2004 lose = 1;
2005
2006 if (lose)
2007 error (_("Malformed response to offset query, %s"), buf);
2008
2009 if (symfile_objfile == NULL)
2010 return;
2011
2012 offs = ((struct section_offsets *)
2013 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2014 memcpy (offs, symfile_objfile->section_offsets,
2015 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2016
2017 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2018
2019 /* This is a temporary kludge to force data and bss to use the same offsets
2020 because that's what nlmconv does now. The real solution requires changes
2021 to the stub and remote.c that I don't have time to do right now. */
2022
2023 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2024 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2025
2026 objfile_relocate (symfile_objfile, offs);
2027 }
2028
2029 /* Stub for catch_errors. */
2030
2031 static int
2032 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2033 {
2034 start_remote (); /* Initialize gdb process mechanisms. */
2035 /* NOTE: Return something >=0. A -ve value is reserved for
2036 catch_exceptions. */
2037 return 1;
2038 }
2039
2040 static void
2041 remote_start_remote (struct ui_out *uiout, void *dummy)
2042 {
2043 immediate_quit++; /* Allow user to interrupt it. */
2044
2045 /* Ack any packet which the remote side has already sent. */
2046 serial_write (remote_desc, "+", 1);
2047
2048 /* Let the stub know that we want it to return the thread. */
2049 set_thread (-1, 0);
2050
2051 inferior_ptid = remote_current_thread (inferior_ptid);
2052
2053 get_offsets (); /* Get text, data & bss offsets. */
2054
2055 putpkt ("?"); /* Initiate a query from remote machine. */
2056 immediate_quit--;
2057
2058 remote_start_remote_dummy (uiout, dummy);
2059 }
2060
2061 /* Open a connection to a remote debugger.
2062 NAME is the filename used for communication. */
2063
2064 static void
2065 remote_open (char *name, int from_tty)
2066 {
2067 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2068 }
2069
2070 /* Just like remote_open, but with asynchronous support. */
2071 static void
2072 remote_async_open (char *name, int from_tty)
2073 {
2074 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2075 }
2076
2077 /* Open a connection to a remote debugger using the extended
2078 remote gdb protocol. NAME is the filename used for communication. */
2079
2080 static void
2081 extended_remote_open (char *name, int from_tty)
2082 {
2083 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2084 0 /* async_p */);
2085 }
2086
2087 /* Just like extended_remote_open, but with asynchronous support. */
2088 static void
2089 extended_remote_async_open (char *name, int from_tty)
2090 {
2091 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2092 1 /*extended_p */, 1 /* async_p */);
2093 }
2094
2095 /* Generic code for opening a connection to a remote target. */
2096
2097 static void
2098 init_all_packet_configs (void)
2099 {
2100 int i;
2101 update_packet_config (&remote_protocol_P);
2102 update_packet_config (&remote_protocol_p);
2103 update_packet_config (&remote_protocol_qSymbol);
2104 update_packet_config (&remote_protocol_vcont);
2105 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2106 update_packet_config (&remote_protocol_Z[i]);
2107 /* Force remote_write_bytes to check whether target supports binary
2108 downloading. */
2109 update_packet_config (&remote_protocol_binary_download);
2110 update_packet_config (&remote_protocol_qPart_auxv);
2111 update_packet_config (&remote_protocol_qGetTLSAddr);
2112 }
2113
2114 /* Symbol look-up. */
2115
2116 static void
2117 remote_check_symbols (struct objfile *objfile)
2118 {
2119 struct remote_state *rs = get_remote_state ();
2120 char *msg, *reply, *tmp;
2121 struct minimal_symbol *sym;
2122 int end;
2123
2124 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2125 return;
2126
2127 msg = alloca (rs->remote_packet_size);
2128 reply = alloca (rs->remote_packet_size);
2129
2130 /* Invite target to request symbol lookups. */
2131
2132 putpkt ("qSymbol::");
2133 getpkt (reply, (rs->remote_packet_size), 0);
2134 packet_ok (reply, &remote_protocol_qSymbol);
2135
2136 while (strncmp (reply, "qSymbol:", 8) == 0)
2137 {
2138 tmp = &reply[8];
2139 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2140 msg[end] = '\0';
2141 sym = lookup_minimal_symbol (msg, NULL, NULL);
2142 if (sym == NULL)
2143 xsnprintf (msg, rs->remote_packet_size, "qSymbol::%s", &reply[8]);
2144 else
2145 xsnprintf (msg, rs->remote_packet_size, "qSymbol:%s:%s",
2146 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2147 &reply[8]);
2148 putpkt (msg);
2149 getpkt (reply, (rs->remote_packet_size), 0);
2150 }
2151 }
2152
2153 static struct serial *
2154 remote_serial_open (char *name)
2155 {
2156 static int udp_warning = 0;
2157
2158 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2159 of in ser-tcp.c, because it is the remote protocol assuming that the
2160 serial connection is reliable and not the serial connection promising
2161 to be. */
2162 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2163 {
2164 warning (_("\
2165 The remote protocol may be unreliable over UDP.\n\
2166 Some events may be lost, rendering further debugging impossible."));
2167 udp_warning = 1;
2168 }
2169
2170 return serial_open (name);
2171 }
2172
2173 static void
2174 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2175 int extended_p, int async_p)
2176 {
2177 struct remote_state *rs = get_remote_state ();
2178 if (name == 0)
2179 error (_("To open a remote debug connection, you need to specify what\n"
2180 "serial device is attached to the remote system\n"
2181 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2182
2183 /* See FIXME above. */
2184 if (!async_p)
2185 wait_forever_enabled_p = 1;
2186
2187 reopen_exec_file ();
2188 reread_symbols ();
2189
2190 target_preopen (from_tty);
2191
2192 unpush_target (target);
2193
2194 remote_desc = remote_serial_open (name);
2195 if (!remote_desc)
2196 perror_with_name (name);
2197
2198 if (baud_rate != -1)
2199 {
2200 if (serial_setbaudrate (remote_desc, baud_rate))
2201 {
2202 /* The requested speed could not be set. Error out to
2203 top level after closing remote_desc. Take care to
2204 set remote_desc to NULL to avoid closing remote_desc
2205 more than once. */
2206 serial_close (remote_desc);
2207 remote_desc = NULL;
2208 perror_with_name (name);
2209 }
2210 }
2211
2212 serial_raw (remote_desc);
2213
2214 /* If there is something sitting in the buffer we might take it as a
2215 response to a command, which would be bad. */
2216 serial_flush_input (remote_desc);
2217
2218 if (from_tty)
2219 {
2220 puts_filtered ("Remote debugging using ");
2221 puts_filtered (name);
2222 puts_filtered ("\n");
2223 }
2224 push_target (target); /* Switch to using remote target now. */
2225
2226 init_all_packet_configs ();
2227
2228 general_thread = -2;
2229 continue_thread = -2;
2230
2231 /* Probe for ability to use "ThreadInfo" query, as required. */
2232 use_threadinfo_query = 1;
2233 use_threadextra_query = 1;
2234
2235 /* Without this, some commands which require an active target (such
2236 as kill) won't work. This variable serves (at least) double duty
2237 as both the pid of the target process (if it has such), and as a
2238 flag indicating that a target is active. These functions should
2239 be split out into seperate variables, especially since GDB will
2240 someday have a notion of debugging several processes. */
2241
2242 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2243
2244 if (async_p)
2245 {
2246 /* With this target we start out by owning the terminal. */
2247 remote_async_terminal_ours_p = 1;
2248
2249 /* FIXME: cagney/1999-09-23: During the initial connection it is
2250 assumed that the target is already ready and able to respond to
2251 requests. Unfortunately remote_start_remote() eventually calls
2252 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2253 around this. Eventually a mechanism that allows
2254 wait_for_inferior() to expect/get timeouts will be
2255 implemented. */
2256 wait_forever_enabled_p = 0;
2257 }
2258
2259 /* First delete any symbols previously loaded from shared libraries. */
2260 no_shared_libraries (NULL, 0);
2261
2262 /* Start the remote connection. If error() or QUIT, discard this
2263 target (we'd otherwise be in an inconsistent state) and then
2264 propogate the error on up the exception chain. This ensures that
2265 the caller doesn't stumble along blindly assuming that the
2266 function succeeded. The CLI doesn't have this problem but other
2267 UI's, such as MI do.
2268
2269 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2270 this function should return an error indication letting the
2271 caller restore the previous state. Unfortunately the command
2272 ``target remote'' is directly wired to this function making that
2273 impossible. On a positive note, the CLI side of this problem has
2274 been fixed - the function set_cmd_context() makes it possible for
2275 all the ``target ....'' commands to share a common callback
2276 function. See cli-dump.c. */
2277 {
2278 struct gdb_exception ex
2279 = catch_exception (uiout, remote_start_remote, NULL, RETURN_MASK_ALL);
2280 if (ex.reason < 0)
2281 {
2282 pop_target ();
2283 if (async_p)
2284 wait_forever_enabled_p = 1;
2285 throw_exception (ex);
2286 }
2287 }
2288
2289 if (async_p)
2290 wait_forever_enabled_p = 1;
2291
2292 if (extended_p)
2293 {
2294 /* Tell the remote that we are using the extended protocol. */
2295 char *buf = alloca (rs->remote_packet_size);
2296 putpkt ("!");
2297 getpkt (buf, (rs->remote_packet_size), 0);
2298 }
2299
2300 /* FIXME: need a master target_open vector from which all
2301 remote_opens can be called, so that stuff like this can
2302 go there. Failing that, the following code must be copied
2303 to the open function for any remote target that wants to
2304 support svr4 shared libraries. */
2305
2306 /* Set up to detect and load shared libraries. */
2307 if (exec_bfd) /* No use without an exec file. */
2308 {
2309 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2310 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2311 #else
2312 solib_create_inferior_hook ();
2313 #endif
2314 remote_check_symbols (symfile_objfile);
2315 }
2316
2317 observer_notify_inferior_created (&current_target, from_tty);
2318 }
2319
2320 /* This takes a program previously attached to and detaches it. After
2321 this is done, GDB can be used to debug some other program. We
2322 better not have left any breakpoints in the target program or it'll
2323 die when it hits one. */
2324
2325 static void
2326 remote_detach (char *args, int from_tty)
2327 {
2328 struct remote_state *rs = get_remote_state ();
2329 char *buf = alloca (rs->remote_packet_size);
2330
2331 if (args)
2332 error (_("Argument given to \"detach\" when remotely debugging."));
2333
2334 /* Tell the remote target to detach. */
2335 strcpy (buf, "D");
2336 remote_send (buf, (rs->remote_packet_size));
2337
2338 /* Unregister the file descriptor from the event loop. */
2339 if (target_is_async_p ())
2340 serial_async (remote_desc, NULL, 0);
2341
2342 target_mourn_inferior ();
2343 if (from_tty)
2344 puts_filtered ("Ending remote debugging.\n");
2345 }
2346
2347 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2348
2349 static void
2350 remote_disconnect (char *args, int from_tty)
2351 {
2352 if (args)
2353 error (_("Argument given to \"detach\" when remotely debugging."));
2354
2355 /* Unregister the file descriptor from the event loop. */
2356 if (target_is_async_p ())
2357 serial_async (remote_desc, NULL, 0);
2358
2359 target_mourn_inferior ();
2360 if (from_tty)
2361 puts_filtered ("Ending remote debugging.\n");
2362 }
2363
2364 /* Convert hex digit A to a number. */
2365
2366 static int
2367 fromhex (int a)
2368 {
2369 if (a >= '0' && a <= '9')
2370 return a - '0';
2371 else if (a >= 'a' && a <= 'f')
2372 return a - 'a' + 10;
2373 else if (a >= 'A' && a <= 'F')
2374 return a - 'A' + 10;
2375 else
2376 error (_("Reply contains invalid hex digit %d"), a);
2377 }
2378
2379 static int
2380 hex2bin (const char *hex, char *bin, int count)
2381 {
2382 int i;
2383
2384 for (i = 0; i < count; i++)
2385 {
2386 if (hex[0] == 0 || hex[1] == 0)
2387 {
2388 /* Hex string is short, or of uneven length.
2389 Return the count that has been converted so far. */
2390 return i;
2391 }
2392 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2393 hex += 2;
2394 }
2395 return i;
2396 }
2397
2398 /* Convert number NIB to a hex digit. */
2399
2400 static int
2401 tohex (int nib)
2402 {
2403 if (nib < 10)
2404 return '0' + nib;
2405 else
2406 return 'a' + nib - 10;
2407 }
2408
2409 static int
2410 bin2hex (const char *bin, char *hex, int count)
2411 {
2412 int i;
2413 /* May use a length, or a nul-terminated string as input. */
2414 if (count == 0)
2415 count = strlen (bin);
2416
2417 for (i = 0; i < count; i++)
2418 {
2419 *hex++ = tohex ((*bin >> 4) & 0xf);
2420 *hex++ = tohex (*bin++ & 0xf);
2421 }
2422 *hex = 0;
2423 return i;
2424 }
2425 \f
2426 /* Check for the availability of vCont. This function should also check
2427 the response. */
2428
2429 static void
2430 remote_vcont_probe (struct remote_state *rs, char *buf)
2431 {
2432 strcpy (buf, "vCont?");
2433 putpkt (buf);
2434 getpkt (buf, rs->remote_packet_size, 0);
2435
2436 /* Make sure that the features we assume are supported. */
2437 if (strncmp (buf, "vCont", 5) == 0)
2438 {
2439 char *p = &buf[5];
2440 int support_s, support_S, support_c, support_C;
2441
2442 support_s = 0;
2443 support_S = 0;
2444 support_c = 0;
2445 support_C = 0;
2446 while (p && *p == ';')
2447 {
2448 p++;
2449 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2450 support_s = 1;
2451 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2452 support_S = 1;
2453 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2454 support_c = 1;
2455 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2456 support_C = 1;
2457
2458 p = strchr (p, ';');
2459 }
2460
2461 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2462 BUF will make packet_ok disable the packet. */
2463 if (!support_s || !support_S || !support_c || !support_C)
2464 buf[0] = 0;
2465 }
2466
2467 packet_ok (buf, &remote_protocol_vcont);
2468 }
2469
2470 /* Resume the remote inferior by using a "vCont" packet. The thread
2471 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2472 resumed thread should be single-stepped and/or signalled. If PTID's
2473 PID is -1, then all threads are resumed; the thread to be stepped and/or
2474 signalled is given in the global INFERIOR_PTID. This function returns
2475 non-zero iff it resumes the inferior.
2476
2477 This function issues a strict subset of all possible vCont commands at the
2478 moment. */
2479
2480 static int
2481 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2482 {
2483 struct remote_state *rs = get_remote_state ();
2484 int pid = PIDGET (ptid);
2485 char *buf = NULL, *outbuf;
2486 struct cleanup *old_cleanup;
2487
2488 buf = xmalloc (rs->remote_packet_size);
2489 old_cleanup = make_cleanup (xfree, buf);
2490
2491 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2492 remote_vcont_probe (rs, buf);
2493
2494 if (remote_protocol_vcont.support == PACKET_DISABLE)
2495 {
2496 do_cleanups (old_cleanup);
2497 return 0;
2498 }
2499
2500 /* If we could generate a wider range of packets, we'd have to worry
2501 about overflowing BUF. Should there be a generic
2502 "multi-part-packet" packet? */
2503
2504 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2505 {
2506 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2507 don't have any PID numbers the inferior will understand. Make sure
2508 to only send forms that do not specify a PID. */
2509 if (step && siggnal != TARGET_SIGNAL_0)
2510 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2511 else if (step)
2512 outbuf = xstrprintf ("vCont;s");
2513 else if (siggnal != TARGET_SIGNAL_0)
2514 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2515 else
2516 outbuf = xstrprintf ("vCont;c");
2517 }
2518 else if (pid == -1)
2519 {
2520 /* Resume all threads, with preference for INFERIOR_PTID. */
2521 if (step && siggnal != TARGET_SIGNAL_0)
2522 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2523 PIDGET (inferior_ptid));
2524 else if (step)
2525 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2526 else if (siggnal != TARGET_SIGNAL_0)
2527 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2528 PIDGET (inferior_ptid));
2529 else
2530 outbuf = xstrprintf ("vCont;c");
2531 }
2532 else
2533 {
2534 /* Scheduler locking; resume only PTID. */
2535 if (step && siggnal != TARGET_SIGNAL_0)
2536 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2537 else if (step)
2538 outbuf = xstrprintf ("vCont;s:%x", pid);
2539 else if (siggnal != TARGET_SIGNAL_0)
2540 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2541 else
2542 outbuf = xstrprintf ("vCont;c:%x", pid);
2543 }
2544
2545 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2546 make_cleanup (xfree, outbuf);
2547
2548 putpkt (outbuf);
2549
2550 do_cleanups (old_cleanup);
2551
2552 return 1;
2553 }
2554
2555 /* Tell the remote machine to resume. */
2556
2557 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2558
2559 static int last_sent_step;
2560
2561 static void
2562 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2563 {
2564 struct remote_state *rs = get_remote_state ();
2565 char *buf = alloca (rs->remote_packet_size);
2566 int pid = PIDGET (ptid);
2567
2568 last_sent_signal = siggnal;
2569 last_sent_step = step;
2570
2571 /* A hook for when we need to do something at the last moment before
2572 resumption. */
2573 if (deprecated_target_resume_hook)
2574 (*deprecated_target_resume_hook) ();
2575
2576 /* The vCont packet doesn't need to specify threads via Hc. */
2577 if (remote_vcont_resume (ptid, step, siggnal))
2578 return;
2579
2580 /* All other supported resume packets do use Hc, so call set_thread. */
2581 if (pid == -1)
2582 set_thread (0, 0); /* Run any thread. */
2583 else
2584 set_thread (pid, 0); /* Run this thread. */
2585
2586 if (siggnal != TARGET_SIGNAL_0)
2587 {
2588 buf[0] = step ? 'S' : 'C';
2589 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2590 buf[2] = tohex (((int) siggnal) & 0xf);
2591 buf[3] = '\0';
2592 }
2593 else
2594 strcpy (buf, step ? "s" : "c");
2595
2596 putpkt (buf);
2597 }
2598
2599 /* Same as remote_resume, but with async support. */
2600 static void
2601 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2602 {
2603 remote_resume (ptid, step, siggnal);
2604
2605 /* We are about to start executing the inferior, let's register it
2606 with the event loop. NOTE: this is the one place where all the
2607 execution commands end up. We could alternatively do this in each
2608 of the execution commands in infcmd.c. */
2609 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2610 into infcmd.c in order to allow inferior function calls to work
2611 NOT asynchronously. */
2612 if (target_can_async_p ())
2613 target_async (inferior_event_handler, 0);
2614 /* Tell the world that the target is now executing. */
2615 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2616 this? Instead, should the client of target just assume (for
2617 async targets) that the target is going to start executing? Is
2618 this information already found in the continuation block? */
2619 if (target_is_async_p ())
2620 target_executing = 1;
2621 }
2622 \f
2623
2624 /* Set up the signal handler for SIGINT, while the target is
2625 executing, ovewriting the 'regular' SIGINT signal handler. */
2626 static void
2627 initialize_sigint_signal_handler (void)
2628 {
2629 sigint_remote_token =
2630 create_async_signal_handler (async_remote_interrupt, NULL);
2631 signal (SIGINT, handle_remote_sigint);
2632 }
2633
2634 /* Signal handler for SIGINT, while the target is executing. */
2635 static void
2636 handle_remote_sigint (int sig)
2637 {
2638 signal (sig, handle_remote_sigint_twice);
2639 sigint_remote_twice_token =
2640 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2641 mark_async_signal_handler_wrapper (sigint_remote_token);
2642 }
2643
2644 /* Signal handler for SIGINT, installed after SIGINT has already been
2645 sent once. It will take effect the second time that the user sends
2646 a ^C. */
2647 static void
2648 handle_remote_sigint_twice (int sig)
2649 {
2650 signal (sig, handle_sigint);
2651 sigint_remote_twice_token =
2652 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2653 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2654 }
2655
2656 /* Perform the real interruption of the target execution, in response
2657 to a ^C. */
2658 static void
2659 async_remote_interrupt (gdb_client_data arg)
2660 {
2661 if (remote_debug)
2662 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2663
2664 target_stop ();
2665 }
2666
2667 /* Perform interrupt, if the first attempt did not succeed. Just give
2668 up on the target alltogether. */
2669 void
2670 async_remote_interrupt_twice (gdb_client_data arg)
2671 {
2672 if (remote_debug)
2673 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2674 /* Do something only if the target was not killed by the previous
2675 cntl-C. */
2676 if (target_executing)
2677 {
2678 interrupt_query ();
2679 signal (SIGINT, handle_remote_sigint);
2680 }
2681 }
2682
2683 /* Reinstall the usual SIGINT handlers, after the target has
2684 stopped. */
2685 static void
2686 cleanup_sigint_signal_handler (void *dummy)
2687 {
2688 signal (SIGINT, handle_sigint);
2689 if (sigint_remote_twice_token)
2690 delete_async_signal_handler ((struct async_signal_handler **)
2691 &sigint_remote_twice_token);
2692 if (sigint_remote_token)
2693 delete_async_signal_handler ((struct async_signal_handler **)
2694 &sigint_remote_token);
2695 }
2696
2697 /* Send ^C to target to halt it. Target will respond, and send us a
2698 packet. */
2699 static void (*ofunc) (int);
2700
2701 /* The command line interface's stop routine. This function is installed
2702 as a signal handler for SIGINT. The first time a user requests a
2703 stop, we call remote_stop to send a break or ^C. If there is no
2704 response from the target (it didn't stop when the user requested it),
2705 we ask the user if he'd like to detach from the target. */
2706 static void
2707 remote_interrupt (int signo)
2708 {
2709 /* If this doesn't work, try more severe steps. */
2710 signal (signo, remote_interrupt_twice);
2711
2712 if (remote_debug)
2713 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2714
2715 target_stop ();
2716 }
2717
2718 /* The user typed ^C twice. */
2719
2720 static void
2721 remote_interrupt_twice (int signo)
2722 {
2723 signal (signo, ofunc);
2724 interrupt_query ();
2725 signal (signo, remote_interrupt);
2726 }
2727
2728 /* This is the generic stop called via the target vector. When a target
2729 interrupt is requested, either by the command line or the GUI, we
2730 will eventually end up here. */
2731 static void
2732 remote_stop (void)
2733 {
2734 /* Send a break or a ^C, depending on user preference. */
2735 if (remote_debug)
2736 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2737
2738 if (remote_break)
2739 serial_send_break (remote_desc);
2740 else
2741 serial_write (remote_desc, "\003", 1);
2742 }
2743
2744 /* Ask the user what to do when an interrupt is received. */
2745
2746 static void
2747 interrupt_query (void)
2748 {
2749 target_terminal_ours ();
2750
2751 if (query ("Interrupted while waiting for the program.\n\
2752 Give up (and stop debugging it)? "))
2753 {
2754 target_mourn_inferior ();
2755 deprecated_throw_reason (RETURN_QUIT);
2756 }
2757
2758 target_terminal_inferior ();
2759 }
2760
2761 /* Enable/disable target terminal ownership. Most targets can use
2762 terminal groups to control terminal ownership. Remote targets are
2763 different in that explicit transfer of ownership to/from GDB/target
2764 is required. */
2765
2766 static void
2767 remote_async_terminal_inferior (void)
2768 {
2769 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2770 sync_execution here. This function should only be called when
2771 GDB is resuming the inferior in the forground. A background
2772 resume (``run&'') should leave GDB in control of the terminal and
2773 consequently should not call this code. */
2774 if (!sync_execution)
2775 return;
2776 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2777 calls target_terminal_*() idenpotent. The event-loop GDB talking
2778 to an asynchronous target with a synchronous command calls this
2779 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2780 stops trying to transfer the terminal to the target when it
2781 shouldn't this guard can go away. */
2782 if (!remote_async_terminal_ours_p)
2783 return;
2784 delete_file_handler (input_fd);
2785 remote_async_terminal_ours_p = 0;
2786 initialize_sigint_signal_handler ();
2787 /* NOTE: At this point we could also register our selves as the
2788 recipient of all input. Any characters typed could then be
2789 passed on down to the target. */
2790 }
2791
2792 static void
2793 remote_async_terminal_ours (void)
2794 {
2795 /* See FIXME in remote_async_terminal_inferior. */
2796 if (!sync_execution)
2797 return;
2798 /* See FIXME in remote_async_terminal_inferior. */
2799 if (remote_async_terminal_ours_p)
2800 return;
2801 cleanup_sigint_signal_handler (NULL);
2802 add_file_handler (input_fd, stdin_event_handler, 0);
2803 remote_async_terminal_ours_p = 1;
2804 }
2805
2806 /* If nonzero, ignore the next kill. */
2807
2808 int kill_kludge;
2809
2810 void
2811 remote_console_output (char *msg)
2812 {
2813 char *p;
2814
2815 for (p = msg; p[0] && p[1]; p += 2)
2816 {
2817 char tb[2];
2818 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2819 tb[0] = c;
2820 tb[1] = 0;
2821 fputs_unfiltered (tb, gdb_stdtarg);
2822 }
2823 gdb_flush (gdb_stdtarg);
2824 }
2825
2826 /* Wait until the remote machine stops, then return,
2827 storing status in STATUS just as `wait' would.
2828 Returns "pid", which in the case of a multi-threaded
2829 remote OS, is the thread-id. */
2830
2831 static ptid_t
2832 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2833 {
2834 struct remote_state *rs = get_remote_state ();
2835 unsigned char *buf = alloca (rs->remote_packet_size);
2836 ULONGEST thread_num = -1;
2837 ULONGEST addr;
2838
2839 status->kind = TARGET_WAITKIND_EXITED;
2840 status->value.integer = 0;
2841
2842 while (1)
2843 {
2844 unsigned char *p;
2845
2846 ofunc = signal (SIGINT, remote_interrupt);
2847 getpkt (buf, (rs->remote_packet_size), 1);
2848 signal (SIGINT, ofunc);
2849
2850 /* This is a hook for when we need to do something (perhaps the
2851 collection of trace data) every time the target stops. */
2852 if (deprecated_target_wait_loop_hook)
2853 (*deprecated_target_wait_loop_hook) ();
2854
2855 remote_stopped_by_watchpoint_p = 0;
2856
2857 switch (buf[0])
2858 {
2859 case 'E': /* Error of some sort. */
2860 warning (_("Remote failure reply: %s"), buf);
2861 continue;
2862 case 'F': /* File-I/O request. */
2863 remote_fileio_request (buf);
2864 continue;
2865 case 'T': /* Status with PC, SP, FP, ... */
2866 {
2867 char regs[MAX_REGISTER_SIZE];
2868
2869 /* Expedited reply, containing Signal, {regno, reg} repeat. */
2870 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2871 ss = signal number
2872 n... = register number
2873 r... = register contents
2874 */
2875 p = &buf[3]; /* after Txx */
2876
2877 while (*p)
2878 {
2879 unsigned char *p1;
2880 char *p_temp;
2881 int fieldsize;
2882 LONGEST pnum = 0;
2883
2884 /* If the packet contains a register number save it in
2885 pnum and set p1 to point to the character following
2886 it. Otherwise p1 points to p. */
2887
2888 /* If this packet is an awatch packet, don't parse the
2889 'a' as a register number. */
2890
2891 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2892 {
2893 /* Read the ``P'' register number. */
2894 pnum = strtol (p, &p_temp, 16);
2895 p1 = (unsigned char *) p_temp;
2896 }
2897 else
2898 p1 = p;
2899
2900 if (p1 == p) /* No register number present here. */
2901 {
2902 p1 = (unsigned char *) strchr (p, ':');
2903 if (p1 == NULL)
2904 warning (_("Malformed packet(a) (missing colon): %s\n\
2905 Packet: '%s'\n"),
2906 p, buf);
2907 if (strncmp (p, "thread", p1 - p) == 0)
2908 {
2909 p_temp = unpack_varlen_hex (++p1, &thread_num);
2910 record_currthread (thread_num);
2911 p = (unsigned char *) p_temp;
2912 }
2913 else if ((strncmp (p, "watch", p1 - p) == 0)
2914 || (strncmp (p, "rwatch", p1 - p) == 0)
2915 || (strncmp (p, "awatch", p1 - p) == 0))
2916 {
2917 remote_stopped_by_watchpoint_p = 1;
2918 p = unpack_varlen_hex (++p1, &addr);
2919 remote_watch_data_address = (CORE_ADDR)addr;
2920 }
2921 else
2922 {
2923 /* Silently skip unknown optional info. */
2924 p_temp = strchr (p1 + 1, ';');
2925 if (p_temp)
2926 p = (unsigned char *) p_temp;
2927 }
2928 }
2929 else
2930 {
2931 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2932 p = p1;
2933
2934 if (*p++ != ':')
2935 error (_("Malformed packet(b) (missing colon): %s\n\
2936 Packet: '%s'\n"),
2937 p, buf);
2938
2939 if (reg == NULL)
2940 error (_("Remote sent bad register number %s: %s\n\
2941 Packet: '%s'\n"),
2942 phex_nz (pnum, 0), p, buf);
2943
2944 fieldsize = hex2bin (p, regs,
2945 register_size (current_gdbarch,
2946 reg->regnum));
2947 p += 2 * fieldsize;
2948 if (fieldsize < register_size (current_gdbarch,
2949 reg->regnum))
2950 warning (_("Remote reply is too short: %s"), buf);
2951 regcache_raw_supply (current_regcache,
2952 reg->regnum, regs);
2953 }
2954
2955 if (*p++ != ';')
2956 error (_("Remote register badly formatted: %s\nhere: %s"),
2957 buf, p);
2958 }
2959 }
2960 /* fall through */
2961 case 'S': /* Old style status, just signal only. */
2962 status->kind = TARGET_WAITKIND_STOPPED;
2963 status->value.sig = (enum target_signal)
2964 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2965
2966 if (buf[3] == 'p')
2967 {
2968 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2969 record_currthread (thread_num);
2970 }
2971 goto got_status;
2972 case 'W': /* Target exited. */
2973 {
2974 /* The remote process exited. */
2975 status->kind = TARGET_WAITKIND_EXITED;
2976 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2977 goto got_status;
2978 }
2979 case 'X':
2980 status->kind = TARGET_WAITKIND_SIGNALLED;
2981 status->value.sig = (enum target_signal)
2982 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2983 kill_kludge = 1;
2984
2985 goto got_status;
2986 case 'O': /* Console output. */
2987 remote_console_output (buf + 1);
2988 continue;
2989 case '\0':
2990 if (last_sent_signal != TARGET_SIGNAL_0)
2991 {
2992 /* Zero length reply means that we tried 'S' or 'C' and
2993 the remote system doesn't support it. */
2994 target_terminal_ours_for_output ();
2995 printf_filtered
2996 ("Can't send signals to this remote system. %s not sent.\n",
2997 target_signal_to_name (last_sent_signal));
2998 last_sent_signal = TARGET_SIGNAL_0;
2999 target_terminal_inferior ();
3000
3001 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3002 putpkt ((char *) buf);
3003 continue;
3004 }
3005 /* else fallthrough */
3006 default:
3007 warning (_("Invalid remote reply: %s"), buf);
3008 continue;
3009 }
3010 }
3011 got_status:
3012 if (thread_num != -1)
3013 {
3014 return pid_to_ptid (thread_num);
3015 }
3016 return inferior_ptid;
3017 }
3018
3019 /* Async version of remote_wait. */
3020 static ptid_t
3021 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3022 {
3023 struct remote_state *rs = get_remote_state ();
3024 unsigned char *buf = alloca (rs->remote_packet_size);
3025 ULONGEST thread_num = -1;
3026 ULONGEST addr;
3027
3028 status->kind = TARGET_WAITKIND_EXITED;
3029 status->value.integer = 0;
3030
3031 remote_stopped_by_watchpoint_p = 0;
3032
3033 while (1)
3034 {
3035 unsigned char *p;
3036
3037 if (!target_is_async_p ())
3038 ofunc = signal (SIGINT, remote_interrupt);
3039 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3040 _never_ wait for ever -> test on target_is_async_p().
3041 However, before we do that we need to ensure that the caller
3042 knows how to take the target into/out of async mode. */
3043 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3044 if (!target_is_async_p ())
3045 signal (SIGINT, ofunc);
3046
3047 /* This is a hook for when we need to do something (perhaps the
3048 collection of trace data) every time the target stops. */
3049 if (deprecated_target_wait_loop_hook)
3050 (*deprecated_target_wait_loop_hook) ();
3051
3052 switch (buf[0])
3053 {
3054 case 'E': /* Error of some sort. */
3055 warning (_("Remote failure reply: %s"), buf);
3056 continue;
3057 case 'F': /* File-I/O request. */
3058 remote_fileio_request (buf);
3059 continue;
3060 case 'T': /* Status with PC, SP, FP, ... */
3061 {
3062 char regs[MAX_REGISTER_SIZE];
3063
3064 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3065 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3066 ss = signal number
3067 n... = register number
3068 r... = register contents
3069 */
3070 p = &buf[3]; /* after Txx */
3071
3072 while (*p)
3073 {
3074 unsigned char *p1;
3075 char *p_temp;
3076 int fieldsize;
3077 long pnum = 0;
3078
3079 /* If the packet contains a register number, save it
3080 in pnum and set p1 to point to the character
3081 following it. Otherwise p1 points to p. */
3082
3083 /* If this packet is an awatch packet, don't parse the 'a'
3084 as a register number. */
3085
3086 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3087 {
3088 /* Read the register number. */
3089 pnum = strtol (p, &p_temp, 16);
3090 p1 = (unsigned char *) p_temp;
3091 }
3092 else
3093 p1 = p;
3094
3095 if (p1 == p) /* No register number present here. */
3096 {
3097 p1 = (unsigned char *) strchr (p, ':');
3098 if (p1 == NULL)
3099 error (_("Malformed packet(a) (missing colon): %s\n\
3100 Packet: '%s'\n"),
3101 p, buf);
3102 if (strncmp (p, "thread", p1 - p) == 0)
3103 {
3104 p_temp = unpack_varlen_hex (++p1, &thread_num);
3105 record_currthread (thread_num);
3106 p = (unsigned char *) p_temp;
3107 }
3108 else if ((strncmp (p, "watch", p1 - p) == 0)
3109 || (strncmp (p, "rwatch", p1 - p) == 0)
3110 || (strncmp (p, "awatch", p1 - p) == 0))
3111 {
3112 remote_stopped_by_watchpoint_p = 1;
3113 p = unpack_varlen_hex (++p1, &addr);
3114 remote_watch_data_address = (CORE_ADDR)addr;
3115 }
3116 else
3117 {
3118 /* Silently skip unknown optional info. */
3119 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3120 if (p_temp)
3121 p = p_temp;
3122 }
3123 }
3124
3125 else
3126 {
3127 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3128 p = p1;
3129 if (*p++ != ':')
3130 error (_("Malformed packet(b) (missing colon): %s\n\
3131 Packet: '%s'\n"),
3132 p, buf);
3133
3134 if (reg == NULL)
3135 error (_("Remote sent bad register number %ld: %s\n\
3136 Packet: '%s'\n"),
3137 pnum, p, buf);
3138
3139 fieldsize = hex2bin (p, regs,
3140 register_size (current_gdbarch,
3141 reg->regnum));
3142 p += 2 * fieldsize;
3143 if (fieldsize < register_size (current_gdbarch,
3144 reg->regnum))
3145 warning (_("Remote reply is too short: %s"), buf);
3146 regcache_raw_supply (current_regcache, reg->regnum, regs);
3147 }
3148
3149 if (*p++ != ';')
3150 error (_("Remote register badly formatted: %s\nhere: %s"),
3151 buf, p);
3152 }
3153 }
3154 /* fall through */
3155 case 'S': /* Old style status, just signal only. */
3156 status->kind = TARGET_WAITKIND_STOPPED;
3157 status->value.sig = (enum target_signal)
3158 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3159
3160 if (buf[3] == 'p')
3161 {
3162 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3163 record_currthread (thread_num);
3164 }
3165 goto got_status;
3166 case 'W': /* Target exited. */
3167 {
3168 /* The remote process exited. */
3169 status->kind = TARGET_WAITKIND_EXITED;
3170 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3171 goto got_status;
3172 }
3173 case 'X':
3174 status->kind = TARGET_WAITKIND_SIGNALLED;
3175 status->value.sig = (enum target_signal)
3176 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3177 kill_kludge = 1;
3178
3179 goto got_status;
3180 case 'O': /* Console output. */
3181 remote_console_output (buf + 1);
3182 /* Return immediately to the event loop. The event loop will
3183 still be waiting on the inferior afterwards. */
3184 status->kind = TARGET_WAITKIND_IGNORE;
3185 goto got_status;
3186 case '\0':
3187 if (last_sent_signal != TARGET_SIGNAL_0)
3188 {
3189 /* Zero length reply means that we tried 'S' or 'C' and
3190 the remote system doesn't support it. */
3191 target_terminal_ours_for_output ();
3192 printf_filtered
3193 ("Can't send signals to this remote system. %s not sent.\n",
3194 target_signal_to_name (last_sent_signal));
3195 last_sent_signal = TARGET_SIGNAL_0;
3196 target_terminal_inferior ();
3197
3198 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3199 putpkt ((char *) buf);
3200 continue;
3201 }
3202 /* else fallthrough */
3203 default:
3204 warning (_("Invalid remote reply: %s"), buf);
3205 continue;
3206 }
3207 }
3208 got_status:
3209 if (thread_num != -1)
3210 {
3211 return pid_to_ptid (thread_num);
3212 }
3213 return inferior_ptid;
3214 }
3215
3216 /* Number of bytes of registers this stub implements. */
3217
3218 static int register_bytes_found;
3219
3220 /* Read the remote registers into the block REGS. */
3221 /* Currently we just read all the registers, so we don't use regnum. */
3222
3223 static int
3224 fetch_register_using_p (int regnum)
3225 {
3226 struct remote_state *rs = get_remote_state ();
3227 char *buf = alloca (rs->remote_packet_size), *p;
3228 char regp[MAX_REGISTER_SIZE];
3229 int i;
3230
3231 p = buf;
3232 *p++ = 'p';
3233 p += hexnumstr (p, regnum);
3234 *p++ = '\0';
3235 remote_send (buf, rs->remote_packet_size);
3236
3237 /* If the stub didn't recognize the packet, or if we got an error,
3238 tell our caller. */
3239 if (buf[0] == '\0' || buf[0] == 'E')
3240 return 0;
3241
3242 /* If this register is unfetchable, tell the regcache. */
3243 if (buf[0] == 'x')
3244 {
3245 regcache_raw_supply (current_regcache, regnum, NULL);
3246 set_register_cached (regnum, -1);
3247 return 1;
3248 }
3249
3250 /* Otherwise, parse and supply the value. */
3251 p = buf;
3252 i = 0;
3253 while (p[0] != 0)
3254 {
3255 if (p[1] == 0)
3256 {
3257 error (_("fetch_register_using_p: early buf termination"));
3258 return 0;
3259 }
3260
3261 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3262 p += 2;
3263 }
3264 regcache_raw_supply (current_regcache, regnum, regp);
3265 return 1;
3266 }
3267
3268 static void
3269 remote_fetch_registers (int regnum)
3270 {
3271 struct remote_state *rs = get_remote_state ();
3272 char *buf = alloca (rs->remote_packet_size);
3273 int i;
3274 char *p;
3275 char *regs = alloca (rs->sizeof_g_packet);
3276
3277 set_thread (PIDGET (inferior_ptid), 1);
3278
3279 if (regnum >= 0)
3280 {
3281 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3282 gdb_assert (reg != NULL);
3283 if (!reg->in_g_packet)
3284 internal_error (__FILE__, __LINE__,
3285 _("Attempt to fetch a non G-packet register when this "
3286 "remote.c does not support the p-packet."));
3287 }
3288 switch (remote_protocol_p.support)
3289 {
3290 case PACKET_DISABLE:
3291 break;
3292 case PACKET_ENABLE:
3293 if (fetch_register_using_p (regnum))
3294 return;
3295 else
3296 error (_("Protocol error: p packet not recognized by stub"));
3297 case PACKET_SUPPORT_UNKNOWN:
3298 if (fetch_register_using_p (regnum))
3299 {
3300 /* The stub recognized the 'p' packet. Remember this. */
3301 remote_protocol_p.support = PACKET_ENABLE;
3302 return;
3303 }
3304 else
3305 {
3306 /* The stub does not support the 'P' packet. Use 'G'
3307 instead, and don't try using 'P' in the future (it
3308 will just waste our time). */
3309 remote_protocol_p.support = PACKET_DISABLE;
3310 break;
3311 }
3312 }
3313
3314 sprintf (buf, "g");
3315 remote_send (buf, (rs->remote_packet_size));
3316
3317 /* Save the size of the packet sent to us by the target. Its used
3318 as a heuristic when determining the max size of packets that the
3319 target can safely receive. */
3320 if ((rs->actual_register_packet_size) == 0)
3321 (rs->actual_register_packet_size) = strlen (buf);
3322
3323 /* Unimplemented registers read as all bits zero. */
3324 memset (regs, 0, rs->sizeof_g_packet);
3325
3326 /* We can get out of synch in various cases. If the first character
3327 in the buffer is not a hex character, assume that has happened
3328 and try to fetch another packet to read. */
3329 while ((buf[0] < '0' || buf[0] > '9')
3330 && (buf[0] < 'A' || buf[0] > 'F')
3331 && (buf[0] < 'a' || buf[0] > 'f')
3332 && buf[0] != 'x') /* New: unavailable register value. */
3333 {
3334 if (remote_debug)
3335 fprintf_unfiltered (gdb_stdlog,
3336 "Bad register packet; fetching a new packet\n");
3337 getpkt (buf, (rs->remote_packet_size), 0);
3338 }
3339
3340 /* Reply describes registers byte by byte, each byte encoded as two
3341 hex characters. Suck them all up, then supply them to the
3342 register cacheing/storage mechanism. */
3343
3344 p = buf;
3345 for (i = 0; i < rs->sizeof_g_packet; i++)
3346 {
3347 if (p[0] == 0)
3348 break;
3349 if (p[1] == 0)
3350 {
3351 warning (_("Remote reply is of odd length: %s"), buf);
3352 /* Don't change register_bytes_found in this case, and don't
3353 print a second warning. */
3354 goto supply_them;
3355 }
3356 if (p[0] == 'x' && p[1] == 'x')
3357 regs[i] = 0; /* 'x' */
3358 else
3359 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3360 p += 2;
3361 }
3362
3363 if (i != register_bytes_found)
3364 {
3365 register_bytes_found = i;
3366 if (REGISTER_BYTES_OK_P ()
3367 && !REGISTER_BYTES_OK (i))
3368 warning (_("Remote reply is too short: %s"), buf);
3369 }
3370
3371 supply_them:
3372 {
3373 int i;
3374 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3375 {
3376 struct packet_reg *r = &rs->regs[i];
3377 if (r->in_g_packet)
3378 {
3379 if (r->offset * 2 >= strlen (buf))
3380 /* A short packet that didn't include the register's
3381 value, this implies that the register is zero (and
3382 not that the register is unavailable). Supply that
3383 zero value. */
3384 regcache_raw_supply (current_regcache, r->regnum, NULL);
3385 else if (buf[r->offset * 2] == 'x')
3386 {
3387 gdb_assert (r->offset * 2 < strlen (buf));
3388 /* The register isn't available, mark it as such (at
3389 the same time setting the value to zero). */
3390 regcache_raw_supply (current_regcache, r->regnum, NULL);
3391 set_register_cached (i, -1);
3392 }
3393 else
3394 regcache_raw_supply (current_regcache, r->regnum,
3395 regs + r->offset);
3396 }
3397 }
3398 }
3399 }
3400
3401 /* Prepare to store registers. Since we may send them all (using a
3402 'G' request), we have to read out the ones we don't want to change
3403 first. */
3404
3405 static void
3406 remote_prepare_to_store (void)
3407 {
3408 struct remote_state *rs = get_remote_state ();
3409 int i;
3410 char buf[MAX_REGISTER_SIZE];
3411
3412 /* Make sure the entire registers array is valid. */
3413 switch (remote_protocol_P.support)
3414 {
3415 case PACKET_DISABLE:
3416 case PACKET_SUPPORT_UNKNOWN:
3417 /* Make sure all the necessary registers are cached. */
3418 for (i = 0; i < NUM_REGS; i++)
3419 if (rs->regs[i].in_g_packet)
3420 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3421 break;
3422 case PACKET_ENABLE:
3423 break;
3424 }
3425 }
3426
3427 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3428 packet was not recognized. */
3429
3430 static int
3431 store_register_using_P (int regnum)
3432 {
3433 struct remote_state *rs = get_remote_state ();
3434 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3435 /* Try storing a single register. */
3436 char *buf = alloca (rs->remote_packet_size);
3437 char regp[MAX_REGISTER_SIZE];
3438 char *p;
3439
3440 xsnprintf (buf, rs->remote_packet_size, "P%s=", phex_nz (reg->pnum, 0));
3441 p = buf + strlen (buf);
3442 regcache_raw_collect (current_regcache, reg->regnum, regp);
3443 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3444 remote_send (buf, rs->remote_packet_size);
3445
3446 return buf[0] != '\0';
3447 }
3448
3449
3450 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3451 contents of the register cache buffer. FIXME: ignores errors. */
3452
3453 static void
3454 remote_store_registers (int regnum)
3455 {
3456 struct remote_state *rs = get_remote_state ();
3457 char *buf;
3458 char *regs;
3459 char *p;
3460
3461 set_thread (PIDGET (inferior_ptid), 1);
3462
3463 if (regnum >= 0)
3464 {
3465 switch (remote_protocol_P.support)
3466 {
3467 case PACKET_DISABLE:
3468 break;
3469 case PACKET_ENABLE:
3470 if (store_register_using_P (regnum))
3471 return;
3472 else
3473 error (_("Protocol error: P packet not recognized by stub"));
3474 case PACKET_SUPPORT_UNKNOWN:
3475 if (store_register_using_P (regnum))
3476 {
3477 /* The stub recognized the 'P' packet. Remember this. */
3478 remote_protocol_P.support = PACKET_ENABLE;
3479 return;
3480 }
3481 else
3482 {
3483 /* The stub does not support the 'P' packet. Use 'G'
3484 instead, and don't try using 'P' in the future (it
3485 will just waste our time). */
3486 remote_protocol_P.support = PACKET_DISABLE;
3487 break;
3488 }
3489 }
3490 }
3491
3492 /* Extract all the registers in the regcache copying them into a
3493 local buffer. */
3494 {
3495 int i;
3496 regs = alloca (rs->sizeof_g_packet);
3497 memset (regs, 0, rs->sizeof_g_packet);
3498 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3499 {
3500 struct packet_reg *r = &rs->regs[i];
3501 if (r->in_g_packet)
3502 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3503 }
3504 }
3505
3506 /* Command describes registers byte by byte,
3507 each byte encoded as two hex characters. */
3508 buf = alloca (rs->remote_packet_size);
3509 p = buf;
3510 *p++ = 'G';
3511 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3512 bin2hex (regs, p, register_bytes_found);
3513 remote_send (buf, (rs->remote_packet_size));
3514 }
3515 \f
3516
3517 /* Return the number of hex digits in num. */
3518
3519 static int
3520 hexnumlen (ULONGEST num)
3521 {
3522 int i;
3523
3524 for (i = 0; num != 0; i++)
3525 num >>= 4;
3526
3527 return max (i, 1);
3528 }
3529
3530 /* Set BUF to the minimum number of hex digits representing NUM. */
3531
3532 static int
3533 hexnumstr (char *buf, ULONGEST num)
3534 {
3535 int len = hexnumlen (num);
3536 return hexnumnstr (buf, num, len);
3537 }
3538
3539
3540 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3541
3542 static int
3543 hexnumnstr (char *buf, ULONGEST num, int width)
3544 {
3545 int i;
3546
3547 buf[width] = '\0';
3548
3549 for (i = width - 1; i >= 0; i--)
3550 {
3551 buf[i] = "0123456789abcdef"[(num & 0xf)];
3552 num >>= 4;
3553 }
3554
3555 return width;
3556 }
3557
3558 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3559
3560 static CORE_ADDR
3561 remote_address_masked (CORE_ADDR addr)
3562 {
3563 if (remote_address_size > 0
3564 && remote_address_size < (sizeof (ULONGEST) * 8))
3565 {
3566 /* Only create a mask when that mask can safely be constructed
3567 in a ULONGEST variable. */
3568 ULONGEST mask = 1;
3569 mask = (mask << remote_address_size) - 1;
3570 addr &= mask;
3571 }
3572 return addr;
3573 }
3574
3575 /* Determine whether the remote target supports binary downloading.
3576 This is accomplished by sending a no-op memory write of zero length
3577 to the target at the specified address. It does not suffice to send
3578 the whole packet, since many stubs strip the eighth bit and
3579 subsequently compute a wrong checksum, which causes real havoc with
3580 remote_write_bytes.
3581
3582 NOTE: This can still lose if the serial line is not eight-bit
3583 clean. In cases like this, the user should clear "remote
3584 X-packet". */
3585
3586 static void
3587 check_binary_download (CORE_ADDR addr)
3588 {
3589 struct remote_state *rs = get_remote_state ();
3590 switch (remote_protocol_binary_download.support)
3591 {
3592 case PACKET_DISABLE:
3593 break;
3594 case PACKET_ENABLE:
3595 break;
3596 case PACKET_SUPPORT_UNKNOWN:
3597 {
3598 char *buf = alloca (rs->remote_packet_size);
3599 char *p;
3600
3601 p = buf;
3602 *p++ = 'X';
3603 p += hexnumstr (p, (ULONGEST) addr);
3604 *p++ = ',';
3605 p += hexnumstr (p, (ULONGEST) 0);
3606 *p++ = ':';
3607 *p = '\0';
3608
3609 putpkt_binary (buf, (int) (p - buf));
3610 getpkt (buf, (rs->remote_packet_size), 0);
3611
3612 if (buf[0] == '\0')
3613 {
3614 if (remote_debug)
3615 fprintf_unfiltered (gdb_stdlog,
3616 "binary downloading NOT suppported by target\n");
3617 remote_protocol_binary_download.support = PACKET_DISABLE;
3618 }
3619 else
3620 {
3621 if (remote_debug)
3622 fprintf_unfiltered (gdb_stdlog,
3623 "binary downloading suppported by target\n");
3624 remote_protocol_binary_download.support = PACKET_ENABLE;
3625 }
3626 break;
3627 }
3628 }
3629 }
3630
3631 /* Write memory data directly to the remote machine.
3632 This does not inform the data cache; the data cache uses this.
3633 MEMADDR is the address in the remote memory space.
3634 MYADDR is the address of the buffer in our space.
3635 LEN is the number of bytes.
3636
3637 Returns number of bytes transferred, or 0 (setting errno) for
3638 error. Only transfer a single packet. */
3639
3640 int
3641 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3642 {
3643 unsigned char *buf;
3644 unsigned char *p;
3645 unsigned char *plen;
3646 long sizeof_buf;
3647 int plenlen;
3648 int todo;
3649 int nr_bytes;
3650 int payload_size;
3651 unsigned char *payload_start;
3652
3653 /* Verify that the target can support a binary download. */
3654 check_binary_download (memaddr);
3655
3656 payload_size = get_memory_write_packet_size ();
3657
3658 /* Compute the size, and then allocate space for the largest
3659 possible packet. Include space for an extra trailing NUL. */
3660 sizeof_buf = payload_size + 1;
3661 buf = alloca (sizeof_buf);
3662
3663 /* Compute the size of the actual payload by subtracting out the
3664 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
3665 */
3666 payload_size -= strlen ("$M,:#NN");
3667 payload_size -= hexnumlen (memaddr);
3668
3669 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3670
3671 /* Append "[XM]". Compute a best guess of the number of bytes
3672 actually transfered. */
3673 p = buf;
3674 switch (remote_protocol_binary_download.support)
3675 {
3676 case PACKET_ENABLE:
3677 *p++ = 'X';
3678 /* Best guess at number of bytes that will fit. */
3679 todo = min (len, payload_size);
3680 payload_size -= hexnumlen (todo);
3681 todo = min (todo, payload_size);
3682 break;
3683 case PACKET_DISABLE:
3684 *p++ = 'M';
3685 /* Num bytes that will fit. */
3686 todo = min (len, payload_size / 2);
3687 payload_size -= hexnumlen (todo);
3688 todo = min (todo, payload_size / 2);
3689 break;
3690 case PACKET_SUPPORT_UNKNOWN:
3691 internal_error (__FILE__, __LINE__,
3692 _("remote_write_bytes: bad internal state"));
3693 default:
3694 internal_error (__FILE__, __LINE__, _("bad switch"));
3695 }
3696 if (todo <= 0)
3697 internal_error (__FILE__, __LINE__,
3698 _("minumum packet size too small to write data"));
3699
3700 /* Append "<memaddr>". */
3701 memaddr = remote_address_masked (memaddr);
3702 p += hexnumstr (p, (ULONGEST) memaddr);
3703
3704 /* Append ",". */
3705 *p++ = ',';
3706
3707 /* Append <len>. Retain the location/size of <len>. It may need to
3708 be adjusted once the packet body has been created. */
3709 plen = p;
3710 plenlen = hexnumstr (p, (ULONGEST) todo);
3711 p += plenlen;
3712
3713 /* Append ":". */
3714 *p++ = ':';
3715 *p = '\0';
3716
3717 /* Append the packet body. */
3718 payload_start = p;
3719 switch (remote_protocol_binary_download.support)
3720 {
3721 case PACKET_ENABLE:
3722 /* Binary mode. Send target system values byte by byte, in
3723 increasing byte addresses. Only escape certain critical
3724 characters. */
3725 for (nr_bytes = 0;
3726 (nr_bytes < todo) && (p - payload_start) < payload_size;
3727 nr_bytes++)
3728 {
3729 switch (myaddr[nr_bytes] & 0xff)
3730 {
3731 case '$':
3732 case '#':
3733 case 0x7d:
3734 /* These must be escaped. */
3735 *p++ = 0x7d;
3736 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3737 break;
3738 default:
3739 *p++ = myaddr[nr_bytes] & 0xff;
3740 break;
3741 }
3742 }
3743 if (nr_bytes < todo)
3744 {
3745 /* Escape chars have filled up the buffer prematurely,
3746 and we have actually sent fewer bytes than planned.
3747 Fix-up the length field of the packet. Use the same
3748 number of characters as before. */
3749 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3750 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3751 }
3752 break;
3753 case PACKET_DISABLE:
3754 /* Normal mode: Send target system values byte by byte, in
3755 increasing byte addresses. Each byte is encoded as a two hex
3756 value. */
3757 nr_bytes = bin2hex (myaddr, p, todo);
3758 p += 2 * nr_bytes;
3759 break;
3760 case PACKET_SUPPORT_UNKNOWN:
3761 internal_error (__FILE__, __LINE__,
3762 _("remote_write_bytes: bad internal state"));
3763 default:
3764 internal_error (__FILE__, __LINE__, _("bad switch"));
3765 }
3766
3767 putpkt_binary (buf, (int) (p - buf));
3768 getpkt (buf, sizeof_buf, 0);
3769
3770 if (buf[0] == 'E')
3771 {
3772 /* There is no correspondance between what the remote protocol
3773 uses for errors and errno codes. We would like a cleaner way
3774 of representing errors (big enough to include errno codes,
3775 bfd_error codes, and others). But for now just return EIO. */
3776 errno = EIO;
3777 return 0;
3778 }
3779
3780 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
3781 fewer bytes than we'd planned. */
3782 return nr_bytes;
3783 }
3784
3785 /* Read memory data directly from the remote machine.
3786 This does not use the data cache; the data cache uses this.
3787 MEMADDR is the address in the remote memory space.
3788 MYADDR is the address of the buffer in our space.
3789 LEN is the number of bytes.
3790
3791 Returns number of bytes transferred, or 0 for error. */
3792
3793 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3794 remote targets) shouldn't attempt to read the entire buffer.
3795 Instead it should read a single packet worth of data and then
3796 return the byte size of that packet to the caller. The caller (its
3797 caller and its callers caller ;-) already contains code for
3798 handling partial reads. */
3799
3800 int
3801 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3802 {
3803 char *buf;
3804 int max_buf_size; /* Max size of packet output buffer. */
3805 long sizeof_buf;
3806 int origlen;
3807
3808 /* Create a buffer big enough for this packet. */
3809 max_buf_size = get_memory_read_packet_size ();
3810 sizeof_buf = max_buf_size + 1; /* Space for trailing NULL. */
3811 buf = alloca (sizeof_buf);
3812
3813 origlen = len;
3814 while (len > 0)
3815 {
3816 char *p;
3817 int todo;
3818 int i;
3819
3820 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3821
3822 /* construct "m"<memaddr>","<len>" */
3823 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3824 memaddr = remote_address_masked (memaddr);
3825 p = buf;
3826 *p++ = 'm';
3827 p += hexnumstr (p, (ULONGEST) memaddr);
3828 *p++ = ',';
3829 p += hexnumstr (p, (ULONGEST) todo);
3830 *p = '\0';
3831
3832 putpkt (buf);
3833 getpkt (buf, sizeof_buf, 0);
3834
3835 if (buf[0] == 'E'
3836 && isxdigit (buf[1]) && isxdigit (buf[2])
3837 && buf[3] == '\0')
3838 {
3839 /* There is no correspondance between what the remote
3840 protocol uses for errors and errno codes. We would like
3841 a cleaner way of representing errors (big enough to
3842 include errno codes, bfd_error codes, and others). But
3843 for now just return EIO. */
3844 errno = EIO;
3845 return 0;
3846 }
3847
3848 /* Reply describes memory byte by byte,
3849 each byte encoded as two hex characters. */
3850
3851 p = buf;
3852 if ((i = hex2bin (p, myaddr, todo)) < todo)
3853 {
3854 /* Reply is short. This means that we were able to read
3855 only part of what we wanted to. */
3856 return i + (origlen - len);
3857 }
3858 myaddr += todo;
3859 memaddr += todo;
3860 len -= todo;
3861 }
3862 return origlen;
3863 }
3864 \f
3865 /* Read or write LEN bytes from inferior memory at MEMADDR,
3866 transferring to or from debugger address BUFFER. Write to inferior
3867 if SHOULD_WRITE is nonzero. Returns length of data written or
3868 read; 0 for error. TARGET is unused. */
3869
3870 static int
3871 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
3872 int should_write, struct mem_attrib *attrib,
3873 struct target_ops *target)
3874 {
3875 CORE_ADDR targ_addr;
3876 int targ_len;
3877 int res;
3878
3879 /* Should this be the selected frame? */
3880 gdbarch_remote_translate_xfer_address (current_gdbarch,
3881 current_regcache,
3882 mem_addr, mem_len,
3883 &targ_addr, &targ_len);
3884 if (targ_len <= 0)
3885 return 0;
3886
3887 if (should_write)
3888 res = remote_write_bytes (targ_addr, buffer, targ_len);
3889 else
3890 res = remote_read_bytes (targ_addr, buffer, targ_len);
3891
3892 return res;
3893 }
3894
3895 static void
3896 remote_files_info (struct target_ops *ignore)
3897 {
3898 puts_filtered ("Debugging a target over a serial line.\n");
3899 }
3900 \f
3901 /* Stuff for dealing with the packets which are part of this protocol.
3902 See comment at top of file for details. */
3903
3904 /* Read a single character from the remote end, masking it down to 7
3905 bits. */
3906
3907 static int
3908 readchar (int timeout)
3909 {
3910 int ch;
3911
3912 ch = serial_readchar (remote_desc, timeout);
3913
3914 if (ch >= 0)
3915 return (ch & 0x7f);
3916
3917 switch ((enum serial_rc) ch)
3918 {
3919 case SERIAL_EOF:
3920 target_mourn_inferior ();
3921 error (_("Remote connection closed"));
3922 /* no return */
3923 case SERIAL_ERROR:
3924 perror_with_name (_("Remote communication error"));
3925 /* no return */
3926 case SERIAL_TIMEOUT:
3927 break;
3928 }
3929 return ch;
3930 }
3931
3932 /* Send the command in BUF to the remote machine, and read the reply
3933 into BUF. Report an error if we get an error reply. */
3934
3935 static void
3936 remote_send (char *buf,
3937 long sizeof_buf)
3938 {
3939 putpkt (buf);
3940 getpkt (buf, sizeof_buf, 0);
3941
3942 if (buf[0] == 'E')
3943 error (_("Remote failure reply: %s"), buf);
3944 }
3945
3946 /* Display a null-terminated packet on stdout, for debugging, using C
3947 string notation. */
3948
3949 static void
3950 print_packet (char *buf)
3951 {
3952 puts_filtered ("\"");
3953 fputstr_filtered (buf, '"', gdb_stdout);
3954 puts_filtered ("\"");
3955 }
3956
3957 int
3958 putpkt (char *buf)
3959 {
3960 return putpkt_binary (buf, strlen (buf));
3961 }
3962
3963 /* Send a packet to the remote machine, with error checking. The data
3964 of the packet is in BUF. The string in BUF can be at most
3965 (rs->remote_packet_size) - 5 to account for the $, # and checksum,
3966 and for a possible /0 if we are debugging (remote_debug) and want
3967 to print the sent packet as a string. */
3968
3969 static int
3970 putpkt_binary (char *buf, int cnt)
3971 {
3972 struct remote_state *rs = get_remote_state ();
3973 int i;
3974 unsigned char csum = 0;
3975 char *buf2 = alloca (cnt + 6);
3976 long sizeof_junkbuf = (rs->remote_packet_size);
3977 char *junkbuf = alloca (sizeof_junkbuf);
3978
3979 int ch;
3980 int tcount = 0;
3981 char *p;
3982
3983 /* Copy the packet into buffer BUF2, encapsulating it
3984 and giving it a checksum. */
3985
3986 p = buf2;
3987 *p++ = '$';
3988
3989 for (i = 0; i < cnt; i++)
3990 {
3991 csum += buf[i];
3992 *p++ = buf[i];
3993 }
3994 *p++ = '#';
3995 *p++ = tohex ((csum >> 4) & 0xf);
3996 *p++ = tohex (csum & 0xf);
3997
3998 /* Send it over and over until we get a positive ack. */
3999
4000 while (1)
4001 {
4002 int started_error_output = 0;
4003
4004 if (remote_debug)
4005 {
4006 *p = '\0';
4007 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4008 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4009 fprintf_unfiltered (gdb_stdlog, "...");
4010 gdb_flush (gdb_stdlog);
4011 }
4012 if (serial_write (remote_desc, buf2, p - buf2))
4013 perror_with_name (_("putpkt: write failed"));
4014
4015 /* Read until either a timeout occurs (-2) or '+' is read. */
4016 while (1)
4017 {
4018 ch = readchar (remote_timeout);
4019
4020 if (remote_debug)
4021 {
4022 switch (ch)
4023 {
4024 case '+':
4025 case '-':
4026 case SERIAL_TIMEOUT:
4027 case '$':
4028 if (started_error_output)
4029 {
4030 putchar_unfiltered ('\n');
4031 started_error_output = 0;
4032 }
4033 }
4034 }
4035
4036 switch (ch)
4037 {
4038 case '+':
4039 if (remote_debug)
4040 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4041 return 1;
4042 case '-':
4043 if (remote_debug)
4044 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4045 case SERIAL_TIMEOUT:
4046 tcount++;
4047 if (tcount > 3)
4048 return 0;
4049 break; /* Retransmit buffer. */
4050 case '$':
4051 {
4052 if (remote_debug)
4053 fprintf_unfiltered (gdb_stdlog,
4054 "Packet instead of Ack, ignoring it\n");
4055 /* It's probably an old response sent because an ACK
4056 was lost. Gobble up the packet and ack it so it
4057 doesn't get retransmitted when we resend this
4058 packet. */
4059 read_frame (junkbuf, sizeof_junkbuf);
4060 serial_write (remote_desc, "+", 1);
4061 continue; /* Now, go look for +. */
4062 }
4063 default:
4064 if (remote_debug)
4065 {
4066 if (!started_error_output)
4067 {
4068 started_error_output = 1;
4069 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4070 }
4071 fputc_unfiltered (ch & 0177, gdb_stdlog);
4072 }
4073 continue;
4074 }
4075 break; /* Here to retransmit. */
4076 }
4077
4078 #if 0
4079 /* This is wrong. If doing a long backtrace, the user should be
4080 able to get out next time we call QUIT, without anything as
4081 violent as interrupt_query. If we want to provide a way out of
4082 here without getting to the next QUIT, it should be based on
4083 hitting ^C twice as in remote_wait. */
4084 if (quit_flag)
4085 {
4086 quit_flag = 0;
4087 interrupt_query ();
4088 }
4089 #endif
4090 }
4091 }
4092
4093 /* Come here after finding the start of the frame. Collect the rest
4094 into BUF, verifying the checksum, length, and handling run-length
4095 compression. No more than sizeof_buf-1 characters are read so that
4096 the buffer can be NUL terminated.
4097
4098 Returns -1 on error, number of characters in buffer (ignoring the
4099 trailing NULL) on success. (could be extended to return one of the
4100 SERIAL status indications). */
4101
4102 static long
4103 read_frame (char *buf,
4104 long sizeof_buf)
4105 {
4106 unsigned char csum;
4107 long bc;
4108 int c;
4109
4110 csum = 0;
4111 bc = 0;
4112
4113 while (1)
4114 {
4115 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NULL. */
4116 c = readchar (remote_timeout);
4117 switch (c)
4118 {
4119 case SERIAL_TIMEOUT:
4120 if (remote_debug)
4121 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4122 return -1;
4123 case '$':
4124 if (remote_debug)
4125 fputs_filtered ("Saw new packet start in middle of old one\n",
4126 gdb_stdlog);
4127 return -1; /* Start a new packet, count retries. */
4128 case '#':
4129 {
4130 unsigned char pktcsum;
4131 int check_0 = 0;
4132 int check_1 = 0;
4133
4134 buf[bc] = '\0';
4135
4136 check_0 = readchar (remote_timeout);
4137 if (check_0 >= 0)
4138 check_1 = readchar (remote_timeout);
4139
4140 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4141 {
4142 if (remote_debug)
4143 fputs_filtered ("Timeout in checksum, retrying\n",
4144 gdb_stdlog);
4145 return -1;
4146 }
4147 else if (check_0 < 0 || check_1 < 0)
4148 {
4149 if (remote_debug)
4150 fputs_filtered ("Communication error in checksum\n",
4151 gdb_stdlog);
4152 return -1;
4153 }
4154
4155 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4156 if (csum == pktcsum)
4157 return bc;
4158
4159 if (remote_debug)
4160 {
4161 fprintf_filtered (gdb_stdlog,
4162 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4163 pktcsum, csum);
4164 fputs_filtered (buf, gdb_stdlog);
4165 fputs_filtered ("\n", gdb_stdlog);
4166 }
4167 /* Number of characters in buffer ignoring trailing
4168 NULL. */
4169 return -1;
4170 }
4171 case '*': /* Run length encoding. */
4172 {
4173 int repeat;
4174 csum += c;
4175
4176 c = readchar (remote_timeout);
4177 csum += c;
4178 repeat = c - ' ' + 3; /* Compute repeat count. */
4179
4180 /* The character before ``*'' is repeated. */
4181
4182 if (repeat > 0 && repeat <= 255
4183 && bc > 0
4184 && bc + repeat - 1 < sizeof_buf - 1)
4185 {
4186 memset (&buf[bc], buf[bc - 1], repeat);
4187 bc += repeat;
4188 continue;
4189 }
4190
4191 buf[bc] = '\0';
4192 printf_filtered (_("Repeat count %d too large for buffer: "),
4193 repeat);
4194 puts_filtered (buf);
4195 puts_filtered ("\n");
4196 return -1;
4197 }
4198 default:
4199 if (bc < sizeof_buf - 1)
4200 {
4201 buf[bc++] = c;
4202 csum += c;
4203 continue;
4204 }
4205
4206 buf[bc] = '\0';
4207 puts_filtered ("Remote packet too long: ");
4208 puts_filtered (buf);
4209 puts_filtered ("\n");
4210
4211 return -1;
4212 }
4213 }
4214 }
4215
4216 /* Read a packet from the remote machine, with error checking, and
4217 store it in BUF. If FOREVER, wait forever rather than timing out;
4218 this is used (in synchronous mode) to wait for a target that is is
4219 executing user code to stop. */
4220 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4221 don't have to change all the calls to getpkt to deal with the
4222 return value, because at the moment I don't know what the right
4223 thing to do it for those. */
4224 void
4225 getpkt (char *buf,
4226 long sizeof_buf,
4227 int forever)
4228 {
4229 int timed_out;
4230
4231 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4232 }
4233
4234
4235 /* Read a packet from the remote machine, with error checking, and
4236 store it in BUF. If FOREVER, wait forever rather than timing out;
4237 this is used (in synchronous mode) to wait for a target that is is
4238 executing user code to stop. If FOREVER == 0, this function is
4239 allowed to time out gracefully and return an indication of this to
4240 the caller. */
4241 static int
4242 getpkt_sane (char *buf,
4243 long sizeof_buf,
4244 int forever)
4245 {
4246 int c;
4247 int tries;
4248 int timeout;
4249 int val;
4250
4251 strcpy (buf, "timeout");
4252
4253 if (forever)
4254 {
4255 timeout = watchdog > 0 ? watchdog : -1;
4256 }
4257
4258 else
4259 timeout = remote_timeout;
4260
4261 #define MAX_TRIES 3
4262
4263 for (tries = 1; tries <= MAX_TRIES; tries++)
4264 {
4265 /* This can loop forever if the remote side sends us characters
4266 continuously, but if it pauses, we'll get a zero from
4267 readchar because of timeout. Then we'll count that as a
4268 retry. */
4269
4270 /* Note that we will only wait forever prior to the start of a
4271 packet. After that, we expect characters to arrive at a
4272 brisk pace. They should show up within remote_timeout
4273 intervals. */
4274
4275 do
4276 {
4277 c = readchar (timeout);
4278
4279 if (c == SERIAL_TIMEOUT)
4280 {
4281 if (forever) /* Watchdog went off? Kill the target. */
4282 {
4283 QUIT;
4284 target_mourn_inferior ();
4285 error (_("Watchdog has expired. Target detached."));
4286 }
4287 if (remote_debug)
4288 fputs_filtered ("Timed out.\n", gdb_stdlog);
4289 goto retry;
4290 }
4291 }
4292 while (c != '$');
4293
4294 /* We've found the start of a packet, now collect the data. */
4295
4296 val = read_frame (buf, sizeof_buf);
4297
4298 if (val >= 0)
4299 {
4300 if (remote_debug)
4301 {
4302 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4303 fputstr_unfiltered (buf, 0, gdb_stdlog);
4304 fprintf_unfiltered (gdb_stdlog, "\n");
4305 }
4306 serial_write (remote_desc, "+", 1);
4307 return 0;
4308 }
4309
4310 /* Try the whole thing again. */
4311 retry:
4312 serial_write (remote_desc, "-", 1);
4313 }
4314
4315 /* We have tried hard enough, and just can't receive the packet.
4316 Give up. */
4317
4318 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4319 serial_write (remote_desc, "+", 1);
4320 return 1;
4321 }
4322 \f
4323 static void
4324 remote_kill (void)
4325 {
4326 /* For some mysterious reason, wait_for_inferior calls kill instead of
4327 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4328 if (kill_kludge)
4329 {
4330 kill_kludge = 0;
4331 target_mourn_inferior ();
4332 return;
4333 }
4334
4335 /* Use catch_errors so the user can quit from gdb even when we aren't on
4336 speaking terms with the remote system. */
4337 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4338
4339 /* Don't wait for it to die. I'm not really sure it matters whether
4340 we do or not. For the existing stubs, kill is a noop. */
4341 target_mourn_inferior ();
4342 }
4343
4344 /* Async version of remote_kill. */
4345 static void
4346 remote_async_kill (void)
4347 {
4348 /* Unregister the file descriptor from the event loop. */
4349 if (target_is_async_p ())
4350 serial_async (remote_desc, NULL, 0);
4351
4352 /* For some mysterious reason, wait_for_inferior calls kill instead of
4353 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4354 if (kill_kludge)
4355 {
4356 kill_kludge = 0;
4357 target_mourn_inferior ();
4358 return;
4359 }
4360
4361 /* Use catch_errors so the user can quit from gdb even when we
4362 aren't on speaking terms with the remote system. */
4363 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4364
4365 /* Don't wait for it to die. I'm not really sure it matters whether
4366 we do or not. For the existing stubs, kill is a noop. */
4367 target_mourn_inferior ();
4368 }
4369
4370 static void
4371 remote_mourn (void)
4372 {
4373 remote_mourn_1 (&remote_ops);
4374 }
4375
4376 static void
4377 remote_async_mourn (void)
4378 {
4379 remote_mourn_1 (&remote_async_ops);
4380 }
4381
4382 static void
4383 extended_remote_mourn (void)
4384 {
4385 /* We do _not_ want to mourn the target like this; this will
4386 remove the extended remote target from the target stack,
4387 and the next time the user says "run" it'll fail.
4388
4389 FIXME: What is the right thing to do here? */
4390 #if 0
4391 remote_mourn_1 (&extended_remote_ops);
4392 #endif
4393 }
4394
4395 /* Worker function for remote_mourn. */
4396 static void
4397 remote_mourn_1 (struct target_ops *target)
4398 {
4399 unpush_target (target);
4400 generic_mourn_inferior ();
4401 }
4402
4403 /* In the extended protocol we want to be able to do things like
4404 "run" and have them basically work as expected. So we need
4405 a special create_inferior function.
4406
4407 FIXME: One day add support for changing the exec file
4408 we're debugging, arguments and an environment. */
4409
4410 static void
4411 extended_remote_create_inferior (char *exec_file, char *args,
4412 char **env, int from_tty)
4413 {
4414 /* Rip out the breakpoints; we'll reinsert them after restarting
4415 the remote server. */
4416 remove_breakpoints ();
4417
4418 /* Now restart the remote server. */
4419 extended_remote_restart ();
4420
4421 /* Now put the breakpoints back in. This way we're safe if the
4422 restart function works via a unix fork on the remote side. */
4423 insert_breakpoints ();
4424
4425 /* Clean up from the last time we were running. */
4426 clear_proceed_status ();
4427
4428 /* Let the remote process run. */
4429 proceed (-1, TARGET_SIGNAL_0, 0);
4430 }
4431
4432 /* Async version of extended_remote_create_inferior. */
4433 static void
4434 extended_remote_async_create_inferior (char *exec_file, char *args,
4435 char **env, int from_tty)
4436 {
4437 /* Rip out the breakpoints; we'll reinsert them after restarting
4438 the remote server. */
4439 remove_breakpoints ();
4440
4441 /* If running asynchronously, register the target file descriptor
4442 with the event loop. */
4443 if (target_can_async_p ())
4444 target_async (inferior_event_handler, 0);
4445
4446 /* Now restart the remote server. */
4447 extended_remote_restart ();
4448
4449 /* Now put the breakpoints back in. This way we're safe if the
4450 restart function works via a unix fork on the remote side. */
4451 insert_breakpoints ();
4452
4453 /* Clean up from the last time we were running. */
4454 clear_proceed_status ();
4455
4456 /* Let the remote process run. */
4457 proceed (-1, TARGET_SIGNAL_0, 0);
4458 }
4459 \f
4460
4461 /* On some machines, e.g. 68k, we may use a different breakpoint
4462 instruction than other targets; in those use
4463 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4464 Also, bi-endian targets may define
4465 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4466 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4467 just call the standard routines that are in mem-break.c. */
4468
4469 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4470 target should use an identical BREAKPOINT_FROM_PC. As for native,
4471 the ARCH-OS-tdep.c code can override the default. */
4472
4473 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4474 #define DEPRECATED_REMOTE_BREAKPOINT
4475 #endif
4476
4477 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4478
4479 /* If the target isn't bi-endian, just pretend it is. */
4480 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4481 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4482 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4483 #endif
4484
4485 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4486 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4487
4488 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4489
4490 /* Insert a breakpoint on targets that don't have any better
4491 breakpoint support. We read the contents of the target location
4492 and stash it, then overwrite it with a breakpoint instruction.
4493 ADDR is the target location in the target machine. CONTENTS_CACHE
4494 is a pointer to memory allocated for saving the target contents.
4495 It is guaranteed by the caller to be long enough to save the number
4496 of bytes returned by BREAKPOINT_FROM_PC. */
4497
4498 static int
4499 remote_insert_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
4500 {
4501 struct remote_state *rs = get_remote_state ();
4502 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4503 int val;
4504 #endif
4505 int bp_size;
4506
4507 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4508 If it succeeds, then set the support to PACKET_ENABLE. If it
4509 fails, and the user has explicitly requested the Z support then
4510 report an error, otherwise, mark it disabled and go on. */
4511
4512 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4513 {
4514 char *buf = alloca (rs->remote_packet_size);
4515 char *p = buf;
4516
4517 addr = remote_address_masked (addr);
4518 *(p++) = 'Z';
4519 *(p++) = '0';
4520 *(p++) = ',';
4521 p += hexnumstr (p, (ULONGEST) addr);
4522 BREAKPOINT_FROM_PC (&addr, &bp_size);
4523 sprintf (p, ",%d", bp_size);
4524
4525 putpkt (buf);
4526 getpkt (buf, (rs->remote_packet_size), 0);
4527
4528 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4529 {
4530 case PACKET_ERROR:
4531 return -1;
4532 case PACKET_OK:
4533 return 0;
4534 case PACKET_UNKNOWN:
4535 break;
4536 }
4537 }
4538
4539 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4540 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4541
4542 if (val == 0)
4543 {
4544 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4545 val = target_write_memory (addr, (char *) big_break_insn,
4546 sizeof big_break_insn);
4547 else
4548 val = target_write_memory (addr, (char *) little_break_insn,
4549 sizeof little_break_insn);
4550 }
4551
4552 return val;
4553 #else
4554 return memory_insert_breakpoint (addr, contents_cache);
4555 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4556 }
4557
4558 static int
4559 remote_remove_breakpoint (CORE_ADDR addr, bfd_byte *contents_cache)
4560 {
4561 struct remote_state *rs = get_remote_state ();
4562 int bp_size;
4563
4564 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4565 {
4566 char *buf = alloca (rs->remote_packet_size);
4567 char *p = buf;
4568
4569 *(p++) = 'z';
4570 *(p++) = '0';
4571 *(p++) = ',';
4572
4573 addr = remote_address_masked (addr);
4574 p += hexnumstr (p, (ULONGEST) addr);
4575 BREAKPOINT_FROM_PC (&addr, &bp_size);
4576 sprintf (p, ",%d", bp_size);
4577
4578 putpkt (buf);
4579 getpkt (buf, (rs->remote_packet_size), 0);
4580
4581 return (buf[0] == 'E');
4582 }
4583
4584 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4585 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4586 #else
4587 return memory_remove_breakpoint (addr, contents_cache);
4588 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4589 }
4590
4591 static int
4592 watchpoint_to_Z_packet (int type)
4593 {
4594 switch (type)
4595 {
4596 case hw_write:
4597 return 2;
4598 break;
4599 case hw_read:
4600 return 3;
4601 break;
4602 case hw_access:
4603 return 4;
4604 break;
4605 default:
4606 internal_error (__FILE__, __LINE__,
4607 _("hw_bp_to_z: bad watchpoint type %d"), type);
4608 }
4609 }
4610
4611 static int
4612 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4613 {
4614 struct remote_state *rs = get_remote_state ();
4615 char *buf = alloca (rs->remote_packet_size);
4616 char *p;
4617 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4618
4619 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4620 error (_("Can't set hardware watchpoints without the '%s' (%s) packet."),
4621 remote_protocol_Z[packet].name,
4622 remote_protocol_Z[packet].title);
4623
4624 sprintf (buf, "Z%x,", packet);
4625 p = strchr (buf, '\0');
4626 addr = remote_address_masked (addr);
4627 p += hexnumstr (p, (ULONGEST) addr);
4628 sprintf (p, ",%x", len);
4629
4630 putpkt (buf);
4631 getpkt (buf, (rs->remote_packet_size), 0);
4632
4633 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4634 {
4635 case PACKET_ERROR:
4636 case PACKET_UNKNOWN:
4637 return -1;
4638 case PACKET_OK:
4639 return 0;
4640 }
4641 internal_error (__FILE__, __LINE__,
4642 _("remote_insert_watchpoint: reached end of function"));
4643 }
4644
4645
4646 static int
4647 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4648 {
4649 struct remote_state *rs = get_remote_state ();
4650 char *buf = alloca (rs->remote_packet_size);
4651 char *p;
4652 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4653
4654 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4655 error (_("Can't clear hardware watchpoints without the '%s' (%s) packet."),
4656 remote_protocol_Z[packet].name,
4657 remote_protocol_Z[packet].title);
4658
4659 sprintf (buf, "z%x,", packet);
4660 p = strchr (buf, '\0');
4661 addr = remote_address_masked (addr);
4662 p += hexnumstr (p, (ULONGEST) addr);
4663 sprintf (p, ",%x", len);
4664 putpkt (buf);
4665 getpkt (buf, (rs->remote_packet_size), 0);
4666
4667 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4668 {
4669 case PACKET_ERROR:
4670 case PACKET_UNKNOWN:
4671 return -1;
4672 case PACKET_OK:
4673 return 0;
4674 }
4675 internal_error (__FILE__, __LINE__,
4676 _("remote_remove_watchpoint: reached end of function"));
4677 }
4678
4679
4680 int remote_hw_watchpoint_limit = -1;
4681 int remote_hw_breakpoint_limit = -1;
4682
4683 static int
4684 remote_check_watch_resources (int type, int cnt, int ot)
4685 {
4686 if (type == bp_hardware_breakpoint)
4687 {
4688 if (remote_hw_breakpoint_limit == 0)
4689 return 0;
4690 else if (remote_hw_breakpoint_limit < 0)
4691 return 1;
4692 else if (cnt <= remote_hw_breakpoint_limit)
4693 return 1;
4694 }
4695 else
4696 {
4697 if (remote_hw_watchpoint_limit == 0)
4698 return 0;
4699 else if (remote_hw_watchpoint_limit < 0)
4700 return 1;
4701 else if (ot)
4702 return -1;
4703 else if (cnt <= remote_hw_watchpoint_limit)
4704 return 1;
4705 }
4706 return -1;
4707 }
4708
4709 static int
4710 remote_stopped_by_watchpoint (void)
4711 {
4712 return remote_stopped_by_watchpoint_p;
4713 }
4714
4715 extern int stepped_after_stopped_by_watchpoint;
4716
4717 static int
4718 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
4719 {
4720 int rc = 0;
4721 if (remote_stopped_by_watchpoint ()
4722 || stepped_after_stopped_by_watchpoint)
4723 {
4724 *addr_p = remote_watch_data_address;
4725 rc = 1;
4726 }
4727
4728 return rc;
4729 }
4730
4731
4732 static int
4733 remote_insert_hw_breakpoint (CORE_ADDR addr, gdb_byte *shadow)
4734 {
4735 int len = 0;
4736 struct remote_state *rs = get_remote_state ();
4737 char *buf = alloca (rs->remote_packet_size);
4738 char *p = buf;
4739
4740 /* The length field should be set to the size of a breakpoint
4741 instruction. */
4742
4743 BREAKPOINT_FROM_PC (&addr, &len);
4744
4745 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4746 error (_("Can't set hardware breakpoint without the '%s' (%s) packet."),
4747 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4748 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4749
4750 *(p++) = 'Z';
4751 *(p++) = '1';
4752 *(p++) = ',';
4753
4754 addr = remote_address_masked (addr);
4755 p += hexnumstr (p, (ULONGEST) addr);
4756 sprintf (p, ",%x", len);
4757
4758 putpkt (buf);
4759 getpkt (buf, (rs->remote_packet_size), 0);
4760
4761 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4762 {
4763 case PACKET_ERROR:
4764 case PACKET_UNKNOWN:
4765 return -1;
4766 case PACKET_OK:
4767 return 0;
4768 }
4769 internal_error (__FILE__, __LINE__,
4770 _("remote_insert_hw_breakpoint: reached end of function"));
4771 }
4772
4773
4774 static int
4775 remote_remove_hw_breakpoint (CORE_ADDR addr, gdb_byte *shadow)
4776 {
4777 int len;
4778 struct remote_state *rs = get_remote_state ();
4779 char *buf = alloca (rs->remote_packet_size);
4780 char *p = buf;
4781
4782 /* The length field should be set to the size of a breakpoint
4783 instruction. */
4784
4785 BREAKPOINT_FROM_PC (&addr, &len);
4786
4787 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4788 error (_("Can't clear hardware breakpoint without the '%s' (%s) packet."),
4789 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4790 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4791
4792 *(p++) = 'z';
4793 *(p++) = '1';
4794 *(p++) = ',';
4795
4796 addr = remote_address_masked (addr);
4797 p += hexnumstr (p, (ULONGEST) addr);
4798 sprintf (p, ",%x", len);
4799
4800 putpkt(buf);
4801 getpkt (buf, (rs->remote_packet_size), 0);
4802
4803 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4804 {
4805 case PACKET_ERROR:
4806 case PACKET_UNKNOWN:
4807 return -1;
4808 case PACKET_OK:
4809 return 0;
4810 }
4811 internal_error (__FILE__, __LINE__,
4812 _("remote_remove_hw_breakpoint: reached end of function"));
4813 }
4814
4815 /* Some targets are only capable of doing downloads, and afterwards
4816 they switch to the remote serial protocol. This function provides
4817 a clean way to get from the download target to the remote target.
4818 It's basically just a wrapper so that we don't have to expose any
4819 of the internal workings of remote.c.
4820
4821 Prior to calling this routine, you should shutdown the current
4822 target code, else you will get the "A program is being debugged
4823 already..." message. Usually a call to pop_target() suffices. */
4824
4825 void
4826 push_remote_target (char *name, int from_tty)
4827 {
4828 printf_filtered (_("Switching to remote protocol\n"));
4829 remote_open (name, from_tty);
4830 }
4831
4832 /* Table used by the crc32 function to calcuate the checksum. */
4833
4834 static unsigned long crc32_table[256] =
4835 {0, 0};
4836
4837 static unsigned long
4838 crc32 (unsigned char *buf, int len, unsigned int crc)
4839 {
4840 if (!crc32_table[1])
4841 {
4842 /* Initialize the CRC table and the decoding table. */
4843 int i, j;
4844 unsigned int c;
4845
4846 for (i = 0; i < 256; i++)
4847 {
4848 for (c = i << 24, j = 8; j > 0; --j)
4849 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4850 crc32_table[i] = c;
4851 }
4852 }
4853
4854 while (len--)
4855 {
4856 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4857 buf++;
4858 }
4859 return crc;
4860 }
4861
4862 /* compare-sections command
4863
4864 With no arguments, compares each loadable section in the exec bfd
4865 with the same memory range on the target, and reports mismatches.
4866 Useful for verifying the image on the target against the exec file.
4867 Depends on the target understanding the new "qCRC:" request. */
4868
4869 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4870 target method (target verify memory) and generic version of the
4871 actual command. This will allow other high-level code (especially
4872 generic_load()) to make use of this target functionality. */
4873
4874 static void
4875 compare_sections_command (char *args, int from_tty)
4876 {
4877 struct remote_state *rs = get_remote_state ();
4878 asection *s;
4879 unsigned long host_crc, target_crc;
4880 extern bfd *exec_bfd;
4881 struct cleanup *old_chain;
4882 char *tmp;
4883 char *sectdata;
4884 const char *sectname;
4885 char *buf = alloca (rs->remote_packet_size);
4886 bfd_size_type size;
4887 bfd_vma lma;
4888 int matched = 0;
4889 int mismatched = 0;
4890
4891 if (!exec_bfd)
4892 error (_("command cannot be used without an exec file"));
4893 if (!current_target.to_shortname ||
4894 strcmp (current_target.to_shortname, "remote") != 0)
4895 error (_("command can only be used with remote target"));
4896
4897 for (s = exec_bfd->sections; s; s = s->next)
4898 {
4899 if (!(s->flags & SEC_LOAD))
4900 continue; /* skip non-loadable section */
4901
4902 size = bfd_get_section_size (s);
4903 if (size == 0)
4904 continue; /* skip zero-length section */
4905
4906 sectname = bfd_get_section_name (exec_bfd, s);
4907 if (args && strcmp (args, sectname) != 0)
4908 continue; /* not the section selected by user */
4909
4910 matched = 1; /* do this section */
4911 lma = s->lma;
4912 /* FIXME: assumes lma can fit into long. */
4913 xsnprintf (buf, rs->remote_packet_size, "qCRC:%lx,%lx",
4914 (long) lma, (long) size);
4915 putpkt (buf);
4916
4917 /* Be clever; compute the host_crc before waiting for target
4918 reply. */
4919 sectdata = xmalloc (size);
4920 old_chain = make_cleanup (xfree, sectdata);
4921 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4922 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4923
4924 getpkt (buf, (rs->remote_packet_size), 0);
4925 if (buf[0] == 'E')
4926 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
4927 sectname, paddr (lma), paddr (lma + size));
4928 if (buf[0] != 'C')
4929 error (_("remote target does not support this operation"));
4930
4931 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4932 target_crc = target_crc * 16 + fromhex (*tmp);
4933
4934 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4935 sectname, paddr (lma), paddr (lma + size));
4936 if (host_crc == target_crc)
4937 printf_filtered ("matched.\n");
4938 else
4939 {
4940 printf_filtered ("MIS-MATCHED!\n");
4941 mismatched++;
4942 }
4943
4944 do_cleanups (old_chain);
4945 }
4946 if (mismatched > 0)
4947 warning (_("One or more sections of the remote executable does not match\n\
4948 the loaded file\n"));
4949 if (args && !matched)
4950 printf_filtered (_("No loaded section named '%s'.\n"), args);
4951 }
4952
4953 static LONGEST
4954 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4955 const char *annex, gdb_byte *readbuf,
4956 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4957 {
4958 struct remote_state *rs = get_remote_state ();
4959 int i;
4960 char *buf2 = alloca (rs->remote_packet_size);
4961 char *p2 = &buf2[0];
4962 char query_type;
4963
4964 /* Handle memory using remote_xfer_memory. */
4965 if (object == TARGET_OBJECT_MEMORY)
4966 {
4967 int xfered;
4968 errno = 0;
4969
4970 if (writebuf != NULL)
4971 {
4972 void *buffer = xmalloc (len);
4973 struct cleanup *cleanup = make_cleanup (xfree, buffer);
4974 memcpy (buffer, writebuf, len);
4975 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
4976 do_cleanups (cleanup);
4977 }
4978 else
4979 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
4980
4981 if (xfered > 0)
4982 return xfered;
4983 else if (xfered == 0 && errno == 0)
4984 return 0;
4985 else
4986 return -1;
4987 }
4988
4989 /* Only handle reads. */
4990 if (writebuf != NULL || readbuf == NULL)
4991 return -1;
4992
4993 /* Map pre-existing objects onto letters. DO NOT do this for new
4994 objects!!! Instead specify new query packets. */
4995 switch (object)
4996 {
4997 case TARGET_OBJECT_KOD:
4998 query_type = 'K';
4999 break;
5000 case TARGET_OBJECT_AVR:
5001 query_type = 'R';
5002 break;
5003
5004 case TARGET_OBJECT_AUXV:
5005 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
5006 {
5007 unsigned int total = 0;
5008 while (len > 0)
5009 {
5010 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
5011 snprintf (buf2, rs->remote_packet_size,
5012 "qPart:auxv:read::%s,%s",
5013 phex_nz (offset, sizeof offset),
5014 phex_nz (n, sizeof n));
5015 i = putpkt (buf2);
5016 if (i < 0)
5017 return total > 0 ? total : i;
5018 buf2[0] = '\0';
5019 getpkt (buf2, rs->remote_packet_size, 0);
5020 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
5021 return total > 0 ? total : -1;
5022 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
5023 break; /* Got EOF indicator. */
5024 /* Got some data. */
5025 i = hex2bin (buf2, readbuf, len);
5026 if (i > 0)
5027 {
5028 readbuf = (void *) ((char *) readbuf + i);
5029 offset += i;
5030 len -= i;
5031 total += i;
5032 }
5033 }
5034 return total;
5035 }
5036 return -1;
5037
5038 default:
5039 return -1;
5040 }
5041
5042 /* Note: a zero OFFSET and LEN can be used to query the minimum
5043 buffer size. */
5044 if (offset == 0 && len == 0)
5045 return (rs->remote_packet_size);
5046 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
5047 not large enough let the caller. */
5048 if (len < (rs->remote_packet_size))
5049 return -1;
5050 len = rs->remote_packet_size;
5051
5052 /* Except for querying the minimum buffer size, target must be open. */
5053 if (!remote_desc)
5054 error (_("remote query is only available after target open"));
5055
5056 gdb_assert (annex != NULL);
5057 gdb_assert (readbuf != NULL);
5058
5059 *p2++ = 'q';
5060 *p2++ = query_type;
5061
5062 /* We used one buffer char for the remote protocol q command and
5063 another for the query type. As the remote protocol encapsulation
5064 uses 4 chars plus one extra in case we are debugging
5065 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5066 string. */
5067 i = 0;
5068 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5069 {
5070 /* Bad caller may have sent forbidden characters. */
5071 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5072 *p2++ = annex[i];
5073 i++;
5074 }
5075 *p2 = '\0';
5076 gdb_assert (annex[i] == '\0');
5077
5078 i = putpkt (buf2);
5079 if (i < 0)
5080 return i;
5081
5082 getpkt (readbuf, len, 0);
5083
5084 return strlen (readbuf);
5085 }
5086
5087 static void
5088 remote_rcmd (char *command,
5089 struct ui_file *outbuf)
5090 {
5091 struct remote_state *rs = get_remote_state ();
5092 char *buf = alloca (rs->remote_packet_size);
5093 char *p = buf;
5094
5095 if (!remote_desc)
5096 error (_("remote rcmd is only available after target open"));
5097
5098 /* Send a NULL command across as an empty command. */
5099 if (command == NULL)
5100 command = "";
5101
5102 /* The query prefix. */
5103 strcpy (buf, "qRcmd,");
5104 p = strchr (buf, '\0');
5105
5106 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5107 error (_("\"monitor\" command ``%s'' is too long."), command);
5108
5109 /* Encode the actual command. */
5110 bin2hex (command, p, 0);
5111
5112 if (putpkt (buf) < 0)
5113 error (_("Communication problem with target."));
5114
5115 /* get/display the response */
5116 while (1)
5117 {
5118 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5119 buf[0] = '\0';
5120 getpkt (buf, (rs->remote_packet_size), 0);
5121 if (buf[0] == '\0')
5122 error (_("Target does not support this command."));
5123 if (buf[0] == 'O' && buf[1] != 'K')
5124 {
5125 remote_console_output (buf + 1); /* 'O' message from stub. */
5126 continue;
5127 }
5128 if (strcmp (buf, "OK") == 0)
5129 break;
5130 if (strlen (buf) == 3 && buf[0] == 'E'
5131 && isdigit (buf[1]) && isdigit (buf[2]))
5132 {
5133 error (_("Protocol error with Rcmd"));
5134 }
5135 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5136 {
5137 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5138 fputc_unfiltered (c, outbuf);
5139 }
5140 break;
5141 }
5142 }
5143
5144 static void
5145 packet_command (char *args, int from_tty)
5146 {
5147 struct remote_state *rs = get_remote_state ();
5148 char *buf = alloca (rs->remote_packet_size);
5149
5150 if (!remote_desc)
5151 error (_("command can only be used with remote target"));
5152
5153 if (!args)
5154 error (_("remote-packet command requires packet text as argument"));
5155
5156 puts_filtered ("sending: ");
5157 print_packet (args);
5158 puts_filtered ("\n");
5159 putpkt (args);
5160
5161 getpkt (buf, (rs->remote_packet_size), 0);
5162 puts_filtered ("received: ");
5163 print_packet (buf);
5164 puts_filtered ("\n");
5165 }
5166
5167 #if 0
5168 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5169
5170 static void display_thread_info (struct gdb_ext_thread_info *info);
5171
5172 static void threadset_test_cmd (char *cmd, int tty);
5173
5174 static void threadalive_test (char *cmd, int tty);
5175
5176 static void threadlist_test_cmd (char *cmd, int tty);
5177
5178 int get_and_display_threadinfo (threadref *ref);
5179
5180 static void threadinfo_test_cmd (char *cmd, int tty);
5181
5182 static int thread_display_step (threadref *ref, void *context);
5183
5184 static void threadlist_update_test_cmd (char *cmd, int tty);
5185
5186 static void init_remote_threadtests (void);
5187
5188 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5189
5190 static void
5191 threadset_test_cmd (char *cmd, int tty)
5192 {
5193 int sample_thread = SAMPLE_THREAD;
5194
5195 printf_filtered (_("Remote threadset test\n"));
5196 set_thread (sample_thread, 1);
5197 }
5198
5199
5200 static void
5201 threadalive_test (char *cmd, int tty)
5202 {
5203 int sample_thread = SAMPLE_THREAD;
5204
5205 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5206 printf_filtered ("PASS: Thread alive test\n");
5207 else
5208 printf_filtered ("FAIL: Thread alive test\n");
5209 }
5210
5211 void output_threadid (char *title, threadref *ref);
5212
5213 void
5214 output_threadid (char *title, threadref *ref)
5215 {
5216 char hexid[20];
5217
5218 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5219 hexid[16] = 0;
5220 printf_filtered ("%s %s\n", title, (&hexid[0]));
5221 }
5222
5223 static void
5224 threadlist_test_cmd (char *cmd, int tty)
5225 {
5226 int startflag = 1;
5227 threadref nextthread;
5228 int done, result_count;
5229 threadref threadlist[3];
5230
5231 printf_filtered ("Remote Threadlist test\n");
5232 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5233 &result_count, &threadlist[0]))
5234 printf_filtered ("FAIL: threadlist test\n");
5235 else
5236 {
5237 threadref *scan = threadlist;
5238 threadref *limit = scan + result_count;
5239
5240 while (scan < limit)
5241 output_threadid (" thread ", scan++);
5242 }
5243 }
5244
5245 void
5246 display_thread_info (struct gdb_ext_thread_info *info)
5247 {
5248 output_threadid ("Threadid: ", &info->threadid);
5249 printf_filtered ("Name: %s\n ", info->shortname);
5250 printf_filtered ("State: %s\n", info->display);
5251 printf_filtered ("other: %s\n\n", info->more_display);
5252 }
5253
5254 int
5255 get_and_display_threadinfo (threadref *ref)
5256 {
5257 int result;
5258 int set;
5259 struct gdb_ext_thread_info threadinfo;
5260
5261 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5262 | TAG_MOREDISPLAY | TAG_DISPLAY;
5263 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5264 display_thread_info (&threadinfo);
5265 return result;
5266 }
5267
5268 static void
5269 threadinfo_test_cmd (char *cmd, int tty)
5270 {
5271 int athread = SAMPLE_THREAD;
5272 threadref thread;
5273 int set;
5274
5275 int_to_threadref (&thread, athread);
5276 printf_filtered ("Remote Threadinfo test\n");
5277 if (!get_and_display_threadinfo (&thread))
5278 printf_filtered ("FAIL cannot get thread info\n");
5279 }
5280
5281 static int
5282 thread_display_step (threadref *ref, void *context)
5283 {
5284 /* output_threadid(" threadstep ",ref); *//* simple test */
5285 return get_and_display_threadinfo (ref);
5286 }
5287
5288 static void
5289 threadlist_update_test_cmd (char *cmd, int tty)
5290 {
5291 printf_filtered ("Remote Threadlist update test\n");
5292 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5293 }
5294
5295 static void
5296 init_remote_threadtests (void)
5297 {
5298 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5299 Fetch and print the remote list of thread identifiers, one pkt only"));
5300 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5301 _("Fetch and display info about one thread"));
5302 add_com ("tset", class_obscure, threadset_test_cmd,
5303 _("Test setting to a different thread"));
5304 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5305 _("Iterate through updating all remote thread info"));
5306 add_com ("talive", class_obscure, threadalive_test,
5307 _(" Remote thread alive test "));
5308 }
5309
5310 #endif /* 0 */
5311
5312 /* Convert a thread ID to a string. Returns the string in a static
5313 buffer. */
5314
5315 static char *
5316 remote_pid_to_str (ptid_t ptid)
5317 {
5318 static char buf[32];
5319 int size;
5320
5321 size = snprintf (buf, sizeof buf, "thread %d", ptid_get_pid (ptid));
5322 gdb_assert (size < sizeof buf);
5323 return buf;
5324 }
5325
5326 /* Get the address of the thread local variable in OBJFILE which is
5327 stored at OFFSET within the thread local storage for thread PTID. */
5328
5329 static CORE_ADDR
5330 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5331 {
5332 if (remote_protocol_qGetTLSAddr.support != PACKET_DISABLE)
5333 {
5334 struct remote_state *rs = get_remote_state ();
5335 char *buf = alloca (rs->remote_packet_size);
5336 char *p = buf;
5337 enum packet_result result;
5338
5339 strcpy (p, "qGetTLSAddr:");
5340 p += strlen (p);
5341 p += hexnumstr (p, PIDGET (ptid));
5342 *p++ = ',';
5343 p += hexnumstr (p, offset);
5344 *p++ = ',';
5345 p += hexnumstr (p, lm);
5346 *p++ = '\0';
5347
5348 putpkt (buf);
5349 getpkt (buf, rs->remote_packet_size, 0);
5350 result = packet_ok (buf, &remote_protocol_qGetTLSAddr);
5351 if (result == PACKET_OK)
5352 {
5353 ULONGEST result;
5354
5355 unpack_varlen_hex (buf, &result);
5356 return result;
5357 }
5358 else if (result == PACKET_UNKNOWN)
5359 throw_error (TLS_GENERIC_ERROR,
5360 _("Remote target doesn't support qGetTLSAddr packet"));
5361 else
5362 throw_error (TLS_GENERIC_ERROR,
5363 _("Remote target failed to process qGetTLSAddr request"));
5364 }
5365 else
5366 throw_error (TLS_GENERIC_ERROR,
5367 _("TLS not supported or disabled on this target"));
5368 /* Not reached. */
5369 return 0;
5370 }
5371
5372 static void
5373 init_remote_ops (void)
5374 {
5375 remote_ops.to_shortname = "remote";
5376 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5377 remote_ops.to_doc =
5378 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5379 Specify the serial device it is connected to\n\
5380 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5381 remote_ops.to_open = remote_open;
5382 remote_ops.to_close = remote_close;
5383 remote_ops.to_detach = remote_detach;
5384 remote_ops.to_disconnect = remote_disconnect;
5385 remote_ops.to_resume = remote_resume;
5386 remote_ops.to_wait = remote_wait;
5387 remote_ops.to_fetch_registers = remote_fetch_registers;
5388 remote_ops.to_store_registers = remote_store_registers;
5389 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5390 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5391 remote_ops.to_files_info = remote_files_info;
5392 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5393 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5394 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5395 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5396 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5397 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5398 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5399 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5400 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5401 remote_ops.to_kill = remote_kill;
5402 remote_ops.to_load = generic_load;
5403 remote_ops.to_mourn_inferior = remote_mourn;
5404 remote_ops.to_thread_alive = remote_thread_alive;
5405 remote_ops.to_find_new_threads = remote_threads_info;
5406 remote_ops.to_pid_to_str = remote_pid_to_str;
5407 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5408 remote_ops.to_stop = remote_stop;
5409 remote_ops.to_xfer_partial = remote_xfer_partial;
5410 remote_ops.to_rcmd = remote_rcmd;
5411 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
5412 remote_ops.to_stratum = process_stratum;
5413 remote_ops.to_has_all_memory = 1;
5414 remote_ops.to_has_memory = 1;
5415 remote_ops.to_has_stack = 1;
5416 remote_ops.to_has_registers = 1;
5417 remote_ops.to_has_execution = 1;
5418 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5419 remote_ops.to_magic = OPS_MAGIC;
5420 }
5421
5422 /* Set up the extended remote vector by making a copy of the standard
5423 remote vector and adding to it. */
5424
5425 static void
5426 init_extended_remote_ops (void)
5427 {
5428 extended_remote_ops = remote_ops;
5429
5430 extended_remote_ops.to_shortname = "extended-remote";
5431 extended_remote_ops.to_longname =
5432 "Extended remote serial target in gdb-specific protocol";
5433 extended_remote_ops.to_doc =
5434 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5435 Specify the serial device it is connected to (e.g. /dev/ttya).",
5436 extended_remote_ops.to_open = extended_remote_open;
5437 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5438 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5439 }
5440
5441 static int
5442 remote_can_async_p (void)
5443 {
5444 /* We're async whenever the serial device is. */
5445 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5446 }
5447
5448 static int
5449 remote_is_async_p (void)
5450 {
5451 /* We're async whenever the serial device is. */
5452 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5453 }
5454
5455 /* Pass the SERIAL event on and up to the client. One day this code
5456 will be able to delay notifying the client of an event until the
5457 point where an entire packet has been received. */
5458
5459 static void (*async_client_callback) (enum inferior_event_type event_type,
5460 void *context);
5461 static void *async_client_context;
5462 static serial_event_ftype remote_async_serial_handler;
5463
5464 static void
5465 remote_async_serial_handler (struct serial *scb, void *context)
5466 {
5467 /* Don't propogate error information up to the client. Instead let
5468 the client find out about the error by querying the target. */
5469 async_client_callback (INF_REG_EVENT, async_client_context);
5470 }
5471
5472 static void
5473 remote_async (void (*callback) (enum inferior_event_type event_type,
5474 void *context), void *context)
5475 {
5476 if (current_target.to_async_mask_value == 0)
5477 internal_error (__FILE__, __LINE__,
5478 _("Calling remote_async when async is masked"));
5479
5480 if (callback != NULL)
5481 {
5482 serial_async (remote_desc, remote_async_serial_handler, NULL);
5483 async_client_callback = callback;
5484 async_client_context = context;
5485 }
5486 else
5487 serial_async (remote_desc, NULL, NULL);
5488 }
5489
5490 /* Target async and target extended-async.
5491
5492 This are temporary targets, until it is all tested. Eventually
5493 async support will be incorporated int the usual 'remote'
5494 target. */
5495
5496 static void
5497 init_remote_async_ops (void)
5498 {
5499 remote_async_ops.to_shortname = "async";
5500 remote_async_ops.to_longname =
5501 "Remote serial target in async version of the gdb-specific protocol";
5502 remote_async_ops.to_doc =
5503 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5504 Specify the serial device it is connected to (e.g. /dev/ttya).";
5505 remote_async_ops.to_open = remote_async_open;
5506 remote_async_ops.to_close = remote_close;
5507 remote_async_ops.to_detach = remote_detach;
5508 remote_async_ops.to_disconnect = remote_disconnect;
5509 remote_async_ops.to_resume = remote_async_resume;
5510 remote_async_ops.to_wait = remote_async_wait;
5511 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5512 remote_async_ops.to_store_registers = remote_store_registers;
5513 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5514 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
5515 remote_async_ops.to_files_info = remote_files_info;
5516 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5517 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5518 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5519 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5520 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5521 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5522 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5523 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5524 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5525 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5526 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5527 remote_async_ops.to_kill = remote_async_kill;
5528 remote_async_ops.to_load = generic_load;
5529 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5530 remote_async_ops.to_thread_alive = remote_thread_alive;
5531 remote_async_ops.to_find_new_threads = remote_threads_info;
5532 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5533 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5534 remote_async_ops.to_stop = remote_stop;
5535 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5536 remote_async_ops.to_rcmd = remote_rcmd;
5537 remote_async_ops.to_stratum = process_stratum;
5538 remote_async_ops.to_has_all_memory = 1;
5539 remote_async_ops.to_has_memory = 1;
5540 remote_async_ops.to_has_stack = 1;
5541 remote_async_ops.to_has_registers = 1;
5542 remote_async_ops.to_has_execution = 1;
5543 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5544 remote_async_ops.to_can_async_p = remote_can_async_p;
5545 remote_async_ops.to_is_async_p = remote_is_async_p;
5546 remote_async_ops.to_async = remote_async;
5547 remote_async_ops.to_async_mask_value = 1;
5548 remote_async_ops.to_magic = OPS_MAGIC;
5549 }
5550
5551 /* Set up the async extended remote vector by making a copy of the standard
5552 remote vector and adding to it. */
5553
5554 static void
5555 init_extended_async_remote_ops (void)
5556 {
5557 extended_async_remote_ops = remote_async_ops;
5558
5559 extended_async_remote_ops.to_shortname = "extended-async";
5560 extended_async_remote_ops.to_longname =
5561 "Extended remote serial target in async gdb-specific protocol";
5562 extended_async_remote_ops.to_doc =
5563 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5564 Specify the serial device it is connected to (e.g. /dev/ttya).",
5565 extended_async_remote_ops.to_open = extended_remote_async_open;
5566 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5567 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5568 }
5569
5570 static void
5571 set_remote_cmd (char *args, int from_tty)
5572 {
5573 }
5574
5575 static void
5576 show_remote_cmd (char *args, int from_tty)
5577 {
5578 /* FIXME: cagney/2002-06-15: This function should iterate over
5579 remote_show_cmdlist for a list of sub commands to show. */
5580 show_remote_protocol_Z_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5581 show_remote_protocol_P_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5582 show_remote_protocol_p_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5583 show_remote_protocol_qSymbol_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5584 show_remote_protocol_vcont_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5585 show_remote_protocol_binary_download_cmd (gdb_stdout, from_tty, NULL, NULL);
5586 show_remote_protocol_qPart_auxv_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5587 show_remote_protocol_qGetTLSAddr_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5588 }
5589
5590 static void
5591 build_remote_gdbarch_data (void)
5592 {
5593 remote_address_size = TARGET_ADDR_BIT;
5594 }
5595
5596 /* Saved pointer to previous owner of the new_objfile event. */
5597 static void (*remote_new_objfile_chain) (struct objfile *);
5598
5599 /* Function to be called whenever a new objfile (shlib) is detected. */
5600 static void
5601 remote_new_objfile (struct objfile *objfile)
5602 {
5603 if (remote_desc != 0) /* Have a remote connection. */
5604 {
5605 remote_check_symbols (objfile);
5606 }
5607 /* Call predecessor on chain, if any. */
5608 if (remote_new_objfile_chain != 0 &&
5609 remote_desc == 0)
5610 remote_new_objfile_chain (objfile);
5611 }
5612
5613 void
5614 _initialize_remote (void)
5615 {
5616 static struct cmd_list_element *remote_set_cmdlist;
5617 static struct cmd_list_element *remote_show_cmdlist;
5618
5619 /* architecture specific data */
5620 remote_gdbarch_data_handle =
5621 gdbarch_data_register_post_init (init_remote_state);
5622
5623 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5624 that the remote protocol has been initialized. */
5625 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5626 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5627
5628 init_remote_ops ();
5629 add_target (&remote_ops);
5630
5631 init_extended_remote_ops ();
5632 add_target (&extended_remote_ops);
5633
5634 init_remote_async_ops ();
5635 add_target (&remote_async_ops);
5636
5637 init_extended_async_remote_ops ();
5638 add_target (&extended_async_remote_ops);
5639
5640 /* Hook into new objfile notification. */
5641 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5642 deprecated_target_new_objfile_hook = remote_new_objfile;
5643
5644 #if 0
5645 init_remote_threadtests ();
5646 #endif
5647
5648 /* set/show remote ... */
5649
5650 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
5651 Remote protocol specific variables\n\
5652 Configure various remote-protocol specific variables such as\n\
5653 the packets being used"),
5654 &remote_set_cmdlist, "set remote ",
5655 0 /* allow-unknown */, &setlist);
5656 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
5657 Remote protocol specific variables\n\
5658 Configure various remote-protocol specific variables such as\n\
5659 the packets being used"),
5660 &remote_show_cmdlist, "show remote ",
5661 0 /* allow-unknown */, &showlist);
5662
5663 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
5664 Compare section data on target to the exec file.\n\
5665 Argument is a single section name (default: all loaded sections)."),
5666 &cmdlist);
5667
5668 add_cmd ("packet", class_maintenance, packet_command, _("\
5669 Send an arbitrary packet to a remote target.\n\
5670 maintenance packet TEXT\n\
5671 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5672 this command sends the string TEXT to the inferior, and displays the\n\
5673 response packet. GDB supplies the initial `$' character, and the\n\
5674 terminating `#' character and checksum."),
5675 &maintenancelist);
5676
5677 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
5678 Set whether to send break if interrupted."), _("\
5679 Show whether to send break if interrupted."), _("\
5680 If set, a break, instead of a cntrl-c, is sent to the remote target."),
5681 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
5682 &setlist, &showlist);
5683
5684 /* Install commands for configuring memory read/write packets. */
5685
5686 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
5687 Set the maximum number of bytes per memory write packet (deprecated)."),
5688 &setlist);
5689 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
5690 Show the maximum number of bytes per memory write packet (deprecated)."),
5691 &showlist);
5692 add_cmd ("memory-write-packet-size", no_class,
5693 set_memory_write_packet_size, _("\
5694 Set the maximum number of bytes per memory-write packet.\n\
5695 Specify the number of bytes in a packet or 0 (zero) for the\n\
5696 default packet size. The actual limit is further reduced\n\
5697 dependent on the target. Specify ``fixed'' to disable the\n\
5698 further restriction and ``limit'' to enable that restriction."),
5699 &remote_set_cmdlist);
5700 add_cmd ("memory-read-packet-size", no_class,
5701 set_memory_read_packet_size, _("\
5702 Set the maximum number of bytes per memory-read packet.\n\
5703 Specify the number of bytes in a packet or 0 (zero) for the\n\
5704 default packet size. The actual limit is further reduced\n\
5705 dependent on the target. Specify ``fixed'' to disable the\n\
5706 further restriction and ``limit'' to enable that restriction."),
5707 &remote_set_cmdlist);
5708 add_cmd ("memory-write-packet-size", no_class,
5709 show_memory_write_packet_size,
5710 _("Show the maximum number of bytes per memory-write packet."),
5711 &remote_show_cmdlist);
5712 add_cmd ("memory-read-packet-size", no_class,
5713 show_memory_read_packet_size,
5714 _("Show the maximum number of bytes per memory-read packet."),
5715 &remote_show_cmdlist);
5716
5717 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5718 &remote_hw_watchpoint_limit, _("\
5719 Set the maximum number of target hardware watchpoints."), _("\
5720 Show the maximum number of target hardware watchpoints."), _("\
5721 Specify a negative limit for unlimited."),
5722 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
5723 &remote_set_cmdlist, &remote_show_cmdlist);
5724 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5725 &remote_hw_breakpoint_limit, _("\
5726 Set the maximum number of target hardware breakpoints."), _("\
5727 Show the maximum number of target hardware breakpoints."), _("\
5728 Specify a negative limit for unlimited."),
5729 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
5730 &remote_set_cmdlist, &remote_show_cmdlist);
5731
5732 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
5733 &remote_address_size, _("\
5734 Set the maximum size of the address (in bits) in a memory packet."), _("\
5735 Show the maximum size of the address (in bits) in a memory packet."), NULL,
5736 NULL,
5737 NULL, /* FIXME: i18n: */
5738 &setlist, &showlist);
5739
5740 add_packet_config_cmd (&remote_protocol_binary_download,
5741 "X", "binary-download",
5742 set_remote_protocol_binary_download_cmd,
5743 show_remote_protocol_binary_download_cmd,
5744 &remote_set_cmdlist, &remote_show_cmdlist,
5745 1);
5746
5747 add_packet_config_cmd (&remote_protocol_vcont,
5748 "vCont", "verbose-resume",
5749 set_remote_protocol_vcont_packet_cmd,
5750 show_remote_protocol_vcont_packet_cmd,
5751 &remote_set_cmdlist, &remote_show_cmdlist,
5752 0);
5753
5754 add_packet_config_cmd (&remote_protocol_qSymbol,
5755 "qSymbol", "symbol-lookup",
5756 set_remote_protocol_qSymbol_packet_cmd,
5757 show_remote_protocol_qSymbol_packet_cmd,
5758 &remote_set_cmdlist, &remote_show_cmdlist,
5759 0);
5760
5761 add_packet_config_cmd (&remote_protocol_P,
5762 "P", "set-register",
5763 set_remote_protocol_P_packet_cmd,
5764 show_remote_protocol_P_packet_cmd,
5765 &remote_set_cmdlist, &remote_show_cmdlist,
5766 1);
5767
5768 add_packet_config_cmd (&remote_protocol_p,
5769 "p", "fetch-register",
5770 set_remote_protocol_p_packet_cmd,
5771 show_remote_protocol_p_packet_cmd,
5772 &remote_set_cmdlist, &remote_show_cmdlist,
5773 1);
5774
5775 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5776 "Z0", "software-breakpoint",
5777 set_remote_protocol_Z_software_bp_packet_cmd,
5778 show_remote_protocol_Z_software_bp_packet_cmd,
5779 &remote_set_cmdlist, &remote_show_cmdlist,
5780 0);
5781
5782 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5783 "Z1", "hardware-breakpoint",
5784 set_remote_protocol_Z_hardware_bp_packet_cmd,
5785 show_remote_protocol_Z_hardware_bp_packet_cmd,
5786 &remote_set_cmdlist, &remote_show_cmdlist,
5787 0);
5788
5789 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5790 "Z2", "write-watchpoint",
5791 set_remote_protocol_Z_write_wp_packet_cmd,
5792 show_remote_protocol_Z_write_wp_packet_cmd,
5793 &remote_set_cmdlist, &remote_show_cmdlist,
5794 0);
5795
5796 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5797 "Z3", "read-watchpoint",
5798 set_remote_protocol_Z_read_wp_packet_cmd,
5799 show_remote_protocol_Z_read_wp_packet_cmd,
5800 &remote_set_cmdlist, &remote_show_cmdlist,
5801 0);
5802
5803 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5804 "Z4", "access-watchpoint",
5805 set_remote_protocol_Z_access_wp_packet_cmd,
5806 show_remote_protocol_Z_access_wp_packet_cmd,
5807 &remote_set_cmdlist, &remote_show_cmdlist,
5808 0);
5809
5810 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5811 "qPart_auxv", "read-aux-vector",
5812 set_remote_protocol_qPart_auxv_packet_cmd,
5813 show_remote_protocol_qPart_auxv_packet_cmd,
5814 &remote_set_cmdlist, &remote_show_cmdlist,
5815 0);
5816
5817 add_packet_config_cmd (&remote_protocol_qGetTLSAddr,
5818 "qGetTLSAddr", "get-thread-local-storage-address",
5819 set_remote_protocol_qGetTLSAddr_packet_cmd,
5820 show_remote_protocol_qGetTLSAddr_packet_cmd,
5821 &remote_set_cmdlist, &remote_show_cmdlist,
5822 0);
5823
5824 /* Keep the old ``set remote Z-packet ...'' working. */
5825 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5826 &remote_Z_packet_detect, _("\
5827 Set use of remote protocol `Z' packets"), _("\
5828 Show use of remote protocol `Z' packets "), _("\
5829 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5830 packets."),
5831 set_remote_protocol_Z_packet_cmd,
5832 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
5833 &remote_set_cmdlist, &remote_show_cmdlist);
5834
5835 /* Eventually initialize fileio. See fileio.c */
5836 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5837 }
This page took 0.157146 seconds and 4 git commands to generate.