oops - omitted from previous delta
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (struct ui_out *uiout, void *dummy);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
98 int async_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_store_registers (int regno);
103
104 static void remote_mourn (void);
105 static void remote_async_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void extended_remote_create_inferior (char *, char *, char **);
112 static void extended_remote_async_create_inferior (char *, char *, char **);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char *buf, long sizeof_buf);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122 static ptid_t remote_async_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124
125 static void remote_kill (void);
126 static void remote_async_kill (void);
127
128 static int tohex (int nib);
129
130 static void remote_detach (char *args, int from_tty);
131 static void remote_async_detach (char *args, int from_tty);
132
133 static void remote_interrupt (int signo);
134
135 static void remote_interrupt_twice (int signo);
136
137 static void interrupt_query (void);
138
139 static void set_thread (int, int);
140
141 static int remote_thread_alive (ptid_t);
142
143 static void get_offsets (void);
144
145 static long read_frame (char *buf, long sizeof_buf);
146
147 static int remote_insert_breakpoint (CORE_ADDR, char *);
148
149 static int remote_remove_breakpoint (CORE_ADDR, char *);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void init_remote_cisco_ops (void);
158
159 static struct target_ops remote_cisco_ops;
160
161 static void remote_stop (void);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int remote_query (int /*char */ , char *, char *, int *);
168
169 static int hexnumstr (char *, ULONGEST);
170
171 static int hexnumnstr (char *, ULONGEST, int);
172
173 static CORE_ADDR remote_address_masked (CORE_ADDR);
174
175 static void print_packet (char *);
176
177 static unsigned long crc32 (unsigned char *, int, unsigned int);
178
179 static void compare_sections_command (char *, int);
180
181 static void packet_command (char *, int);
182
183 static int stub_unpack_int (char *buff, int fieldlength);
184
185 static ptid_t remote_current_thread (ptid_t oldptid);
186
187 static void remote_find_new_threads (void);
188
189 static void record_currthread (int currthread);
190
191 static int fromhex (int a);
192
193 static int hex2bin (const char *hex, char *bin, int count);
194
195 static int bin2hex (const char *bin, char *hex, int count);
196
197 static int putpkt_binary (char *buf, int cnt);
198
199 static void check_binary_download (CORE_ADDR addr);
200
201 struct packet_config;
202
203 static void show_packet_config_cmd (struct packet_config *config);
204
205 static void update_packet_config (struct packet_config *config);
206
207 void _initialize_remote (void);
208
209 /* Description of the remote protocol. Strictly speaking, when the
210 target is open()ed, remote.c should create a per-target description
211 of the remote protocol using that target's architecture.
212 Unfortunatly, the target stack doesn't include local state. For
213 the moment keep the information in the target's architecture
214 object. Sigh.. */
215
216 struct packet_reg
217 {
218 long offset; /* Offset into G packet. */
219 long regnum; /* GDB's internal register number. */
220 LONGEST pnum; /* Remote protocol register number. */
221 int in_g_packet; /* Always part of G packet. */
222 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
223 /* char *name; == REGISTER_NAME (regnum); at present. */
224 };
225
226 struct remote_state
227 {
228 /* Description of the remote protocol registers. */
229 long sizeof_g_packet;
230
231 /* Description of the remote protocol registers indexed by REGNUM
232 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
233 struct packet_reg *regs;
234
235 /* This is the size (in chars) of the first response to the ``g''
236 packet. It is used as a heuristic when determining the maximum
237 size of memory-read and memory-write packets. A target will
238 typically only reserve a buffer large enough to hold the ``g''
239 packet. The size does not include packet overhead (headers and
240 trailers). */
241 long actual_register_packet_size;
242
243 /* This is the maximum size (in chars) of a non read/write packet.
244 It is also used as a cap on the size of read/write packets. */
245 long remote_packet_size;
246 };
247
248
249 /* Handle for retreving the remote protocol data from gdbarch. */
250 static struct gdbarch_data *remote_gdbarch_data_handle;
251
252 static struct remote_state *
253 get_remote_state (void)
254 {
255 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
256 }
257
258 static void *
259 init_remote_state (struct gdbarch *gdbarch)
260 {
261 int regnum;
262 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
263
264 /* Start out by having the remote protocol mimic the existing
265 behavour - just copy in the description of the register cache. */
266 rs->sizeof_g_packet = REGISTER_BYTES; /* OK use. */
267
268 /* Assume a 1:1 regnum<->pnum table. */
269 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
270 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
271 {
272 struct packet_reg *r = &rs->regs[regnum];
273 r->pnum = regnum;
274 r->regnum = regnum;
275 r->offset = REGISTER_BYTE (regnum);
276 r->in_g_packet = (regnum < NUM_REGS);
277 /* ...size = REGISTER_RAW_SIZE (regnum); */
278 /* ...name = REGISTER_NAME (regnum); */
279 }
280
281 /* Default maximum number of characters in a packet body. Many
282 remote stubs have a hardwired buffer size of 400 bytes
283 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
284 as the maximum packet-size to ensure that the packet and an extra
285 NUL character can always fit in the buffer. This stops GDB
286 trashing stubs that try to squeeze an extra NUL into what is
287 already a full buffer (As of 1999-12-04 that was most stubs. */
288 rs->remote_packet_size = 400 - 1;
289
290 /* Should rs->sizeof_g_packet needs more space than the
291 default, adjust the size accordingly. Remember that each byte is
292 encoded as two characters. 32 is the overhead for the packet
293 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
294 (``$NN:G...#NN'') is a better guess, the below has been padded a
295 little. */
296 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
297 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
298
299 /* This one is filled in when a ``g'' packet is received. */
300 rs->actual_register_packet_size = 0;
301
302 return rs;
303 }
304
305 static void
306 free_remote_state (struct gdbarch *gdbarch, void *pointer)
307 {
308 struct remote_state *data = pointer;
309 xfree (data->regs);
310 xfree (data);
311 }
312
313 static struct packet_reg *
314 packet_reg_from_regnum (struct remote_state *rs, long regnum)
315 {
316 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
317 return NULL;
318 else
319 {
320 struct packet_reg *r = &rs->regs[regnum];
321 gdb_assert (r->regnum == regnum);
322 return r;
323 }
324 }
325
326 static struct packet_reg *
327 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
328 {
329 int i;
330 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
331 {
332 struct packet_reg *r = &rs->regs[i];
333 if (r->pnum == pnum)
334 return r;
335 }
336 return NULL;
337 }
338
339 /* FIXME: graces/2002-08-08: These variables should eventually be
340 bound to an instance of the target object (as in gdbarch-tdep()),
341 when such a thing exists. */
342
343 /* This is set to the data address of the access causing the target
344 to stop for a watchpoint. */
345 static CORE_ADDR remote_watch_data_address;
346
347 /* This is non-zero if taregt stopped for a watchpoint. */
348 static int remote_stopped_by_watchpoint_p;
349
350
351 static struct target_ops remote_ops;
352
353 static struct target_ops extended_remote_ops;
354
355 /* Temporary target ops. Just like the remote_ops and
356 extended_remote_ops, but with asynchronous support. */
357 static struct target_ops remote_async_ops;
358
359 static struct target_ops extended_async_remote_ops;
360
361 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
362 ``forever'' still use the normal timeout mechanism. This is
363 currently used by the ASYNC code to guarentee that target reads
364 during the initial connect always time-out. Once getpkt has been
365 modified to return a timeout indication and, in turn
366 remote_wait()/wait_for_inferior() have gained a timeout parameter
367 this can go away. */
368 static int wait_forever_enabled_p = 1;
369
370
371 /* This variable chooses whether to send a ^C or a break when the user
372 requests program interruption. Although ^C is usually what remote
373 systems expect, and that is the default here, sometimes a break is
374 preferable instead. */
375
376 static int remote_break;
377
378 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
379 remote_open knows that we don't have a file open when the program
380 starts. */
381 static struct serial *remote_desc = NULL;
382
383 /* This is set by the target (thru the 'S' message)
384 to denote that the target is in kernel mode. */
385 static int cisco_kernel_mode = 0;
386
387 /* This variable sets the number of bits in an address that are to be
388 sent in a memory ("M" or "m") packet. Normally, after stripping
389 leading zeros, the entire address would be sent. This variable
390 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
391 initial implementation of remote.c restricted the address sent in
392 memory packets to ``host::sizeof long'' bytes - (typically 32
393 bits). Consequently, for 64 bit targets, the upper 32 bits of an
394 address was never sent. Since fixing this bug may cause a break in
395 some remote targets this variable is principly provided to
396 facilitate backward compatibility. */
397
398 static int remote_address_size;
399
400 /* Tempoary to track who currently owns the terminal. See
401 target_async_terminal_* for more details. */
402
403 static int remote_async_terminal_ours_p;
404
405 \f
406 /* User configurable variables for the number of characters in a
407 memory read/write packet. MIN ((rs->remote_packet_size),
408 rs->sizeof_g_packet) is the default. Some targets need smaller
409 values (fifo overruns, et.al.) and some users need larger values
410 (speed up transfers). The variables ``preferred_*'' (the user
411 request), ``current_*'' (what was actually set) and ``forced_*''
412 (Positive - a soft limit, negative - a hard limit). */
413
414 struct memory_packet_config
415 {
416 char *name;
417 long size;
418 int fixed_p;
419 };
420
421 /* Compute the current size of a read/write packet. Since this makes
422 use of ``actual_register_packet_size'' the computation is dynamic. */
423
424 static long
425 get_memory_packet_size (struct memory_packet_config *config)
426 {
427 struct remote_state *rs = get_remote_state ();
428 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
429 law?) that some hosts don't cope very well with large alloca()
430 calls. Eventually the alloca() code will be replaced by calls to
431 xmalloc() and make_cleanups() allowing this restriction to either
432 be lifted or removed. */
433 #ifndef MAX_REMOTE_PACKET_SIZE
434 #define MAX_REMOTE_PACKET_SIZE 16384
435 #endif
436 /* NOTE: 16 is just chosen at random. */
437 #ifndef MIN_REMOTE_PACKET_SIZE
438 #define MIN_REMOTE_PACKET_SIZE 16
439 #endif
440 long what_they_get;
441 if (config->fixed_p)
442 {
443 if (config->size <= 0)
444 what_they_get = MAX_REMOTE_PACKET_SIZE;
445 else
446 what_they_get = config->size;
447 }
448 else
449 {
450 what_they_get = (rs->remote_packet_size);
451 /* Limit the packet to the size specified by the user. */
452 if (config->size > 0
453 && what_they_get > config->size)
454 what_they_get = config->size;
455 /* Limit it to the size of the targets ``g'' response. */
456 if ((rs->actual_register_packet_size) > 0
457 && what_they_get > (rs->actual_register_packet_size))
458 what_they_get = (rs->actual_register_packet_size);
459 }
460 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
461 what_they_get = MAX_REMOTE_PACKET_SIZE;
462 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
463 what_they_get = MIN_REMOTE_PACKET_SIZE;
464 return what_they_get;
465 }
466
467 /* Update the size of a read/write packet. If they user wants
468 something really big then do a sanity check. */
469
470 static void
471 set_memory_packet_size (char *args, struct memory_packet_config *config)
472 {
473 int fixed_p = config->fixed_p;
474 long size = config->size;
475 if (args == NULL)
476 error ("Argument required (integer, `fixed' or `limited').");
477 else if (strcmp (args, "hard") == 0
478 || strcmp (args, "fixed") == 0)
479 fixed_p = 1;
480 else if (strcmp (args, "soft") == 0
481 || strcmp (args, "limit") == 0)
482 fixed_p = 0;
483 else
484 {
485 char *end;
486 size = strtoul (args, &end, 0);
487 if (args == end)
488 error ("Invalid %s (bad syntax).", config->name);
489 #if 0
490 /* Instead of explicitly capping the size of a packet to
491 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
492 instead allowed to set the size to something arbitrarily
493 large. */
494 if (size > MAX_REMOTE_PACKET_SIZE)
495 error ("Invalid %s (too large).", config->name);
496 #endif
497 }
498 /* Extra checks? */
499 if (fixed_p && !config->fixed_p)
500 {
501 if (! query ("The target may not be able to correctly handle a %s\n"
502 "of %ld bytes. Change the packet size? ",
503 config->name, size))
504 error ("Packet size not changed.");
505 }
506 /* Update the config. */
507 config->fixed_p = fixed_p;
508 config->size = size;
509 }
510
511 static void
512 show_memory_packet_size (struct memory_packet_config *config)
513 {
514 printf_filtered ("The %s is %ld. ", config->name, config->size);
515 if (config->fixed_p)
516 printf_filtered ("Packets are fixed at %ld bytes.\n",
517 get_memory_packet_size (config));
518 else
519 printf_filtered ("Packets are limited to %ld bytes.\n",
520 get_memory_packet_size (config));
521 }
522
523 static struct memory_packet_config memory_write_packet_config =
524 {
525 "memory-write-packet-size",
526 };
527
528 static void
529 set_memory_write_packet_size (char *args, int from_tty)
530 {
531 set_memory_packet_size (args, &memory_write_packet_config);
532 }
533
534 static void
535 show_memory_write_packet_size (char *args, int from_tty)
536 {
537 show_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static long
541 get_memory_write_packet_size (void)
542 {
543 return get_memory_packet_size (&memory_write_packet_config);
544 }
545
546 static struct memory_packet_config memory_read_packet_config =
547 {
548 "memory-read-packet-size",
549 };
550
551 static void
552 set_memory_read_packet_size (char *args, int from_tty)
553 {
554 set_memory_packet_size (args, &memory_read_packet_config);
555 }
556
557 static void
558 show_memory_read_packet_size (char *args, int from_tty)
559 {
560 show_memory_packet_size (&memory_read_packet_config);
561 }
562
563 static long
564 get_memory_read_packet_size (void)
565 {
566 struct remote_state *rs = get_remote_state ();
567 long size = get_memory_packet_size (&memory_read_packet_config);
568 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
569 extra buffer size argument before the memory read size can be
570 increased beyond (rs->remote_packet_size). */
571 if (size > (rs->remote_packet_size))
572 size = (rs->remote_packet_size);
573 return size;
574 }
575
576 \f
577 /* Generic configuration support for packets the stub optionally
578 supports. Allows the user to specify the use of the packet as well
579 as allowing GDB to auto-detect support in the remote stub. */
580
581 enum packet_support
582 {
583 PACKET_SUPPORT_UNKNOWN = 0,
584 PACKET_ENABLE,
585 PACKET_DISABLE
586 };
587
588 struct packet_config
589 {
590 char *name;
591 char *title;
592 enum auto_boolean detect;
593 enum packet_support support;
594 };
595
596 /* Analyze a packet's return value and update the packet config
597 accordingly. */
598
599 enum packet_result
600 {
601 PACKET_ERROR,
602 PACKET_OK,
603 PACKET_UNKNOWN
604 };
605
606 static void
607 update_packet_config (struct packet_config *config)
608 {
609 switch (config->detect)
610 {
611 case AUTO_BOOLEAN_TRUE:
612 config->support = PACKET_ENABLE;
613 break;
614 case AUTO_BOOLEAN_FALSE:
615 config->support = PACKET_DISABLE;
616 break;
617 case AUTO_BOOLEAN_AUTO:
618 config->support = PACKET_SUPPORT_UNKNOWN;
619 break;
620 }
621 }
622
623 static void
624 show_packet_config_cmd (struct packet_config *config)
625 {
626 char *support = "internal-error";
627 switch (config->support)
628 {
629 case PACKET_ENABLE:
630 support = "enabled";
631 break;
632 case PACKET_DISABLE:
633 support = "disabled";
634 break;
635 case PACKET_SUPPORT_UNKNOWN:
636 support = "unknown";
637 break;
638 }
639 switch (config->detect)
640 {
641 case AUTO_BOOLEAN_AUTO:
642 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
643 config->name, config->title, support);
644 break;
645 case AUTO_BOOLEAN_TRUE:
646 case AUTO_BOOLEAN_FALSE:
647 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
648 config->name, config->title, support);
649 break;
650 }
651 }
652
653 static void
654 add_packet_config_cmd (struct packet_config *config,
655 char *name,
656 char *title,
657 cmd_sfunc_ftype *set_func,
658 cmd_sfunc_ftype *show_func,
659 struct cmd_list_element **set_remote_list,
660 struct cmd_list_element **show_remote_list,
661 int legacy)
662 {
663 struct cmd_list_element *set_cmd;
664 struct cmd_list_element *show_cmd;
665 char *set_doc;
666 char *show_doc;
667 char *cmd_name;
668 config->name = name;
669 config->title = title;
670 config->detect = AUTO_BOOLEAN_AUTO;
671 config->support = PACKET_SUPPORT_UNKNOWN;
672 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
673 name, title);
674 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
675 name, title);
676 /* set/show TITLE-packet {auto,on,off} */
677 xasprintf (&cmd_name, "%s-packet", title);
678 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
679 &config->detect, set_doc, show_doc,
680 set_func, show_func,
681 set_remote_list, show_remote_list);
682 /* set/show remote NAME-packet {auto,on,off} -- legacy */
683 if (legacy)
684 {
685 char *legacy_name;
686 xasprintf (&legacy_name, "%s-packet", name);
687 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
688 set_remote_list);
689 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
690 show_remote_list);
691 }
692 }
693
694 static enum packet_result
695 packet_ok (const char *buf, struct packet_config *config)
696 {
697 if (buf[0] != '\0')
698 {
699 /* The stub recognized the packet request. Check that the
700 operation succeeded. */
701 switch (config->support)
702 {
703 case PACKET_SUPPORT_UNKNOWN:
704 if (remote_debug)
705 fprintf_unfiltered (gdb_stdlog,
706 "Packet %s (%s) is supported\n",
707 config->name, config->title);
708 config->support = PACKET_ENABLE;
709 break;
710 case PACKET_DISABLE:
711 internal_error (__FILE__, __LINE__,
712 "packet_ok: attempt to use a disabled packet");
713 break;
714 case PACKET_ENABLE:
715 break;
716 }
717 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
718 /* "OK" - definitly OK. */
719 return PACKET_OK;
720 if (buf[0] == 'E'
721 && isxdigit (buf[1]) && isxdigit (buf[2])
722 && buf[3] == '\0')
723 /* "Enn" - definitly an error. */
724 return PACKET_ERROR;
725 /* The packet may or may not be OK. Just assume it is */
726 return PACKET_OK;
727 }
728 else
729 {
730 /* The stub does not support the packet. */
731 switch (config->support)
732 {
733 case PACKET_ENABLE:
734 if (config->detect == AUTO_BOOLEAN_AUTO)
735 /* If the stub previously indicated that the packet was
736 supported then there is a protocol error.. */
737 error ("Protocol error: %s (%s) conflicting enabled responses.",
738 config->name, config->title);
739 else
740 /* The user set it wrong. */
741 error ("Enabled packet %s (%s) not recognized by stub",
742 config->name, config->title);
743 break;
744 case PACKET_SUPPORT_UNKNOWN:
745 if (remote_debug)
746 fprintf_unfiltered (gdb_stdlog,
747 "Packet %s (%s) is NOT supported\n",
748 config->name, config->title);
749 config->support = PACKET_DISABLE;
750 break;
751 case PACKET_DISABLE:
752 break;
753 }
754 return PACKET_UNKNOWN;
755 }
756 }
757
758 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
759 static struct packet_config remote_protocol_qSymbol;
760
761 static void
762 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
763 struct cmd_list_element *c)
764 {
765 update_packet_config (&remote_protocol_qSymbol);
766 }
767
768 static void
769 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
770 struct cmd_list_element *c)
771 {
772 show_packet_config_cmd (&remote_protocol_qSymbol);
773 }
774
775 /* Should we try the 'e' (step over range) request? */
776 static struct packet_config remote_protocol_e;
777
778 static void
779 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
780 struct cmd_list_element *c)
781 {
782 update_packet_config (&remote_protocol_e);
783 }
784
785 static void
786 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
787 struct cmd_list_element *c)
788 {
789 show_packet_config_cmd (&remote_protocol_e);
790 }
791
792
793 /* Should we try the 'E' (step over range / w signal #) request? */
794 static struct packet_config remote_protocol_E;
795
796 static void
797 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
798 struct cmd_list_element *c)
799 {
800 update_packet_config (&remote_protocol_E);
801 }
802
803 static void
804 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
805 struct cmd_list_element *c)
806 {
807 show_packet_config_cmd (&remote_protocol_E);
808 }
809
810
811 /* Should we try the 'P' (set register) request? */
812
813 static struct packet_config remote_protocol_P;
814
815 static void
816 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
817 struct cmd_list_element *c)
818 {
819 update_packet_config (&remote_protocol_P);
820 }
821
822 static void
823 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
824 struct cmd_list_element *c)
825 {
826 show_packet_config_cmd (&remote_protocol_P);
827 }
828
829 /* Should we try one of the 'Z' requests? */
830
831 enum Z_packet_type
832 {
833 Z_PACKET_SOFTWARE_BP,
834 Z_PACKET_HARDWARE_BP,
835 Z_PACKET_WRITE_WP,
836 Z_PACKET_READ_WP,
837 Z_PACKET_ACCESS_WP,
838 NR_Z_PACKET_TYPES
839 };
840
841 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
842
843 /* FIXME: Instead of having all these boiler plate functions, the
844 command callback should include a context argument. */
845
846 static void
847 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
851 }
852
853 static void
854 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
855 struct cmd_list_element *c)
856 {
857 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
858 }
859
860 static void
861 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
862 struct cmd_list_element *c)
863 {
864 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
865 }
866
867 static void
868 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870 {
871 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
872 }
873
874 static void
875 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
876 struct cmd_list_element *c)
877 {
878 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
879 }
880
881 static void
882 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
883 struct cmd_list_element *c)
884 {
885 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
886 }
887
888 static void
889 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
890 struct cmd_list_element *c)
891 {
892 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
893 }
894
895 static void
896 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
897 struct cmd_list_element *c)
898 {
899 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
900 }
901
902 static void
903 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
904 struct cmd_list_element *c)
905 {
906 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
907 }
908
909 static void
910 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
911 struct cmd_list_element *c)
912 {
913 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
914 }
915
916 /* For compatibility with older distributions. Provide a ``set remote
917 Z-packet ...'' command that updates all the Z packet types. */
918
919 static enum auto_boolean remote_Z_packet_detect;
920
921 static void
922 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
923 struct cmd_list_element *c)
924 {
925 int i;
926 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
927 {
928 remote_protocol_Z[i].detect = remote_Z_packet_detect;
929 update_packet_config (&remote_protocol_Z[i]);
930 }
931 }
932
933 static void
934 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
935 struct cmd_list_element *c)
936 {
937 int i;
938 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
939 {
940 show_packet_config_cmd (&remote_protocol_Z[i]);
941 }
942 }
943
944 /* Should we try the 'X' (remote binary download) packet?
945
946 This variable (available to the user via "set remote X-packet")
947 dictates whether downloads are sent in binary (via the 'X' packet).
948 We assume that the stub can, and attempt to do it. This will be
949 cleared if the stub does not understand it. This switch is still
950 needed, though in cases when the packet is supported in the stub,
951 but the connection does not allow it (i.e., 7-bit serial connection
952 only). */
953
954 static struct packet_config remote_protocol_binary_download;
955
956 /* Should we try the 'ThreadInfo' query packet?
957
958 This variable (NOT available to the user: auto-detect only!)
959 determines whether GDB will use the new, simpler "ThreadInfo"
960 query or the older, more complex syntax for thread queries.
961 This is an auto-detect variable (set to true at each connect,
962 and set to false when the target fails to recognize it). */
963
964 static int use_threadinfo_query;
965 static int use_threadextra_query;
966
967 static void
968 set_remote_protocol_binary_download_cmd (char *args,
969 int from_tty,
970 struct cmd_list_element *c)
971 {
972 update_packet_config (&remote_protocol_binary_download);
973 }
974
975 static void
976 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
977 struct cmd_list_element *c)
978 {
979 show_packet_config_cmd (&remote_protocol_binary_download);
980 }
981
982
983 /* Tokens for use by the asynchronous signal handlers for SIGINT */
984 static void *sigint_remote_twice_token;
985 static void *sigint_remote_token;
986
987 /* These are pointers to hook functions that may be set in order to
988 modify resume/wait behavior for a particular architecture. */
989
990 void (*target_resume_hook) (void);
991 void (*target_wait_loop_hook) (void);
992 \f
993
994
995 /* These are the threads which we last sent to the remote system.
996 -1 for all or -2 for not sent yet. */
997 static int general_thread;
998 static int continue_thread;
999
1000 /* Call this function as a result of
1001 1) A halt indication (T packet) containing a thread id
1002 2) A direct query of currthread
1003 3) Successful execution of set thread
1004 */
1005
1006 static void
1007 record_currthread (int currthread)
1008 {
1009 general_thread = currthread;
1010
1011 /* If this is a new thread, add it to GDB's thread list.
1012 If we leave it up to WFI to do this, bad things will happen. */
1013 if (!in_thread_list (pid_to_ptid (currthread)))
1014 {
1015 add_thread (pid_to_ptid (currthread));
1016 ui_out_text (uiout, "[New ");
1017 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1018 ui_out_text (uiout, "]\n");
1019 }
1020 }
1021
1022 #define MAGIC_NULL_PID 42000
1023
1024 static void
1025 set_thread (int th, int gen)
1026 {
1027 struct remote_state *rs = get_remote_state ();
1028 char *buf = alloca (rs->remote_packet_size);
1029 int state = gen ? general_thread : continue_thread;
1030
1031 if (state == th)
1032 return;
1033
1034 buf[0] = 'H';
1035 buf[1] = gen ? 'g' : 'c';
1036 if (th == MAGIC_NULL_PID)
1037 {
1038 buf[2] = '0';
1039 buf[3] = '\0';
1040 }
1041 else if (th < 0)
1042 sprintf (&buf[2], "-%x", -th);
1043 else
1044 sprintf (&buf[2], "%x", th);
1045 putpkt (buf);
1046 getpkt (buf, (rs->remote_packet_size), 0);
1047 if (gen)
1048 general_thread = th;
1049 else
1050 continue_thread = th;
1051 }
1052 \f
1053 /* Return nonzero if the thread TH is still alive on the remote system. */
1054
1055 static int
1056 remote_thread_alive (ptid_t ptid)
1057 {
1058 int tid = PIDGET (ptid);
1059 char buf[16];
1060
1061 if (tid < 0)
1062 sprintf (buf, "T-%08x", -tid);
1063 else
1064 sprintf (buf, "T%08x", tid);
1065 putpkt (buf);
1066 getpkt (buf, sizeof (buf), 0);
1067 return (buf[0] == 'O' && buf[1] == 'K');
1068 }
1069
1070 /* About these extended threadlist and threadinfo packets. They are
1071 variable length packets but, the fields within them are often fixed
1072 length. They are redundent enough to send over UDP as is the
1073 remote protocol in general. There is a matching unit test module
1074 in libstub. */
1075
1076 #define OPAQUETHREADBYTES 8
1077
1078 /* a 64 bit opaque identifier */
1079 typedef unsigned char threadref[OPAQUETHREADBYTES];
1080
1081 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1082 protocol encoding, and remote.c. it is not particularly changable */
1083
1084 /* Right now, the internal structure is int. We want it to be bigger.
1085 Plan to fix this.
1086 */
1087
1088 typedef int gdb_threadref; /* internal GDB thread reference */
1089
1090 /* gdb_ext_thread_info is an internal GDB data structure which is
1091 equivalint to the reply of the remote threadinfo packet */
1092
1093 struct gdb_ext_thread_info
1094 {
1095 threadref threadid; /* External form of thread reference */
1096 int active; /* Has state interesting to GDB? , regs, stack */
1097 char display[256]; /* Brief state display, name, blocked/syspended */
1098 char shortname[32]; /* To be used to name threads */
1099 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1100 };
1101
1102 /* The volume of remote transfers can be limited by submitting
1103 a mask containing bits specifying the desired information.
1104 Use a union of these values as the 'selection' parameter to
1105 get_thread_info. FIXME: Make these TAG names more thread specific.
1106 */
1107
1108 #define TAG_THREADID 1
1109 #define TAG_EXISTS 2
1110 #define TAG_DISPLAY 4
1111 #define TAG_THREADNAME 8
1112 #define TAG_MOREDISPLAY 16
1113
1114 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1115
1116 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1117
1118 static char *unpack_nibble (char *buf, int *val);
1119
1120 static char *pack_nibble (char *buf, int nibble);
1121
1122 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1123
1124 static char *unpack_byte (char *buf, int *value);
1125
1126 static char *pack_int (char *buf, int value);
1127
1128 static char *unpack_int (char *buf, int *value);
1129
1130 static char *unpack_string (char *src, char *dest, int length);
1131
1132 static char *pack_threadid (char *pkt, threadref * id);
1133
1134 static char *unpack_threadid (char *inbuf, threadref * id);
1135
1136 void int_to_threadref (threadref * id, int value);
1137
1138 static int threadref_to_int (threadref * ref);
1139
1140 static void copy_threadref (threadref * dest, threadref * src);
1141
1142 static int threadmatch (threadref * dest, threadref * src);
1143
1144 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1145
1146 static int remote_unpack_thread_info_response (char *pkt,
1147 threadref * expectedref,
1148 struct gdb_ext_thread_info
1149 *info);
1150
1151
1152 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1153 struct gdb_ext_thread_info *info);
1154
1155 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1156 int selection,
1157 struct gdb_ext_thread_info *info);
1158
1159 static char *pack_threadlist_request (char *pkt, int startflag,
1160 int threadcount,
1161 threadref * nextthread);
1162
1163 static int parse_threadlist_response (char *pkt,
1164 int result_limit,
1165 threadref * original_echo,
1166 threadref * resultlist, int *doneflag);
1167
1168 static int remote_get_threadlist (int startflag,
1169 threadref * nextthread,
1170 int result_limit,
1171 int *done,
1172 int *result_count, threadref * threadlist);
1173
1174 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1175
1176 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1177 void *context, int looplimit);
1178
1179 static int remote_newthread_step (threadref * ref, void *context);
1180
1181 /* encode 64 bits in 16 chars of hex */
1182
1183 static const char hexchars[] = "0123456789abcdef";
1184
1185 static int
1186 ishex (int ch, int *val)
1187 {
1188 if ((ch >= 'a') && (ch <= 'f'))
1189 {
1190 *val = ch - 'a' + 10;
1191 return 1;
1192 }
1193 if ((ch >= 'A') && (ch <= 'F'))
1194 {
1195 *val = ch - 'A' + 10;
1196 return 1;
1197 }
1198 if ((ch >= '0') && (ch <= '9'))
1199 {
1200 *val = ch - '0';
1201 return 1;
1202 }
1203 return 0;
1204 }
1205
1206 static int
1207 stubhex (int ch)
1208 {
1209 if (ch >= 'a' && ch <= 'f')
1210 return ch - 'a' + 10;
1211 if (ch >= '0' && ch <= '9')
1212 return ch - '0';
1213 if (ch >= 'A' && ch <= 'F')
1214 return ch - 'A' + 10;
1215 return -1;
1216 }
1217
1218 static int
1219 stub_unpack_int (char *buff, int fieldlength)
1220 {
1221 int nibble;
1222 int retval = 0;
1223
1224 while (fieldlength)
1225 {
1226 nibble = stubhex (*buff++);
1227 retval |= nibble;
1228 fieldlength--;
1229 if (fieldlength)
1230 retval = retval << 4;
1231 }
1232 return retval;
1233 }
1234
1235 char *
1236 unpack_varlen_hex (char *buff, /* packet to parse */
1237 ULONGEST *result)
1238 {
1239 int nibble;
1240 int retval = 0;
1241
1242 while (ishex (*buff, &nibble))
1243 {
1244 buff++;
1245 retval = retval << 4;
1246 retval |= nibble & 0x0f;
1247 }
1248 *result = retval;
1249 return buff;
1250 }
1251
1252 static char *
1253 unpack_nibble (char *buf, int *val)
1254 {
1255 ishex (*buf++, val);
1256 return buf;
1257 }
1258
1259 static char *
1260 pack_nibble (char *buf, int nibble)
1261 {
1262 *buf++ = hexchars[(nibble & 0x0f)];
1263 return buf;
1264 }
1265
1266 static char *
1267 pack_hex_byte (char *pkt, int byte)
1268 {
1269 *pkt++ = hexchars[(byte >> 4) & 0xf];
1270 *pkt++ = hexchars[(byte & 0xf)];
1271 return pkt;
1272 }
1273
1274 static char *
1275 unpack_byte (char *buf, int *value)
1276 {
1277 *value = stub_unpack_int (buf, 2);
1278 return buf + 2;
1279 }
1280
1281 static char *
1282 pack_int (char *buf, int value)
1283 {
1284 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1285 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1286 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1287 buf = pack_hex_byte (buf, (value & 0xff));
1288 return buf;
1289 }
1290
1291 static char *
1292 unpack_int (char *buf, int *value)
1293 {
1294 *value = stub_unpack_int (buf, 8);
1295 return buf + 8;
1296 }
1297
1298 #if 0 /* currently unused, uncomment when needed */
1299 static char *pack_string (char *pkt, char *string);
1300
1301 static char *
1302 pack_string (char *pkt, char *string)
1303 {
1304 char ch;
1305 int len;
1306
1307 len = strlen (string);
1308 if (len > 200)
1309 len = 200; /* Bigger than most GDB packets, junk??? */
1310 pkt = pack_hex_byte (pkt, len);
1311 while (len-- > 0)
1312 {
1313 ch = *string++;
1314 if ((ch == '\0') || (ch == '#'))
1315 ch = '*'; /* Protect encapsulation */
1316 *pkt++ = ch;
1317 }
1318 return pkt;
1319 }
1320 #endif /* 0 (unused) */
1321
1322 static char *
1323 unpack_string (char *src, char *dest, int length)
1324 {
1325 while (length--)
1326 *dest++ = *src++;
1327 *dest = '\0';
1328 return src;
1329 }
1330
1331 static char *
1332 pack_threadid (char *pkt, threadref *id)
1333 {
1334 char *limit;
1335 unsigned char *altid;
1336
1337 altid = (unsigned char *) id;
1338 limit = pkt + BUF_THREAD_ID_SIZE;
1339 while (pkt < limit)
1340 pkt = pack_hex_byte (pkt, *altid++);
1341 return pkt;
1342 }
1343
1344
1345 static char *
1346 unpack_threadid (char *inbuf, threadref *id)
1347 {
1348 char *altref;
1349 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1350 int x, y;
1351
1352 altref = (char *) id;
1353
1354 while (inbuf < limit)
1355 {
1356 x = stubhex (*inbuf++);
1357 y = stubhex (*inbuf++);
1358 *altref++ = (x << 4) | y;
1359 }
1360 return inbuf;
1361 }
1362
1363 /* Externally, threadrefs are 64 bits but internally, they are still
1364 ints. This is due to a mismatch of specifications. We would like
1365 to use 64bit thread references internally. This is an adapter
1366 function. */
1367
1368 void
1369 int_to_threadref (threadref *id, int value)
1370 {
1371 unsigned char *scan;
1372
1373 scan = (unsigned char *) id;
1374 {
1375 int i = 4;
1376 while (i--)
1377 *scan++ = 0;
1378 }
1379 *scan++ = (value >> 24) & 0xff;
1380 *scan++ = (value >> 16) & 0xff;
1381 *scan++ = (value >> 8) & 0xff;
1382 *scan++ = (value & 0xff);
1383 }
1384
1385 static int
1386 threadref_to_int (threadref *ref)
1387 {
1388 int i, value = 0;
1389 unsigned char *scan;
1390
1391 scan = (char *) ref;
1392 scan += 4;
1393 i = 4;
1394 while (i-- > 0)
1395 value = (value << 8) | ((*scan++) & 0xff);
1396 return value;
1397 }
1398
1399 static void
1400 copy_threadref (threadref *dest, threadref *src)
1401 {
1402 int i;
1403 unsigned char *csrc, *cdest;
1404
1405 csrc = (unsigned char *) src;
1406 cdest = (unsigned char *) dest;
1407 i = 8;
1408 while (i--)
1409 *cdest++ = *csrc++;
1410 }
1411
1412 static int
1413 threadmatch (threadref *dest, threadref *src)
1414 {
1415 /* things are broken right now, so just assume we got a match */
1416 #if 0
1417 unsigned char *srcp, *destp;
1418 int i, result;
1419 srcp = (char *) src;
1420 destp = (char *) dest;
1421
1422 result = 1;
1423 while (i-- > 0)
1424 result &= (*srcp++ == *destp++) ? 1 : 0;
1425 return result;
1426 #endif
1427 return 1;
1428 }
1429
1430 /*
1431 threadid:1, # always request threadid
1432 context_exists:2,
1433 display:4,
1434 unique_name:8,
1435 more_display:16
1436 */
1437
1438 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1439
1440 static char *
1441 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1442 {
1443 *pkt++ = 'q'; /* Info Query */
1444 *pkt++ = 'P'; /* process or thread info */
1445 pkt = pack_int (pkt, mode); /* mode */
1446 pkt = pack_threadid (pkt, id); /* threadid */
1447 *pkt = '\0'; /* terminate */
1448 return pkt;
1449 }
1450
1451 /* These values tag the fields in a thread info response packet */
1452 /* Tagging the fields allows us to request specific fields and to
1453 add more fields as time goes by */
1454
1455 #define TAG_THREADID 1 /* Echo the thread identifier */
1456 #define TAG_EXISTS 2 /* Is this process defined enough to
1457 fetch registers and its stack */
1458 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1459 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1460 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1461 the process */
1462
1463 static int
1464 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1465 struct gdb_ext_thread_info *info)
1466 {
1467 struct remote_state *rs = get_remote_state ();
1468 int mask, length;
1469 unsigned int tag;
1470 threadref ref;
1471 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1472 int retval = 1;
1473
1474 /* info->threadid = 0; FIXME: implement zero_threadref */
1475 info->active = 0;
1476 info->display[0] = '\0';
1477 info->shortname[0] = '\0';
1478 info->more_display[0] = '\0';
1479
1480 /* Assume the characters indicating the packet type have been stripped */
1481 pkt = unpack_int (pkt, &mask); /* arg mask */
1482 pkt = unpack_threadid (pkt, &ref);
1483
1484 if (mask == 0)
1485 warning ("Incomplete response to threadinfo request\n");
1486 if (!threadmatch (&ref, expectedref))
1487 { /* This is an answer to a different request */
1488 warning ("ERROR RMT Thread info mismatch\n");
1489 return 0;
1490 }
1491 copy_threadref (&info->threadid, &ref);
1492
1493 /* Loop on tagged fields , try to bail if somthing goes wrong */
1494
1495 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1496 {
1497 pkt = unpack_int (pkt, &tag); /* tag */
1498 pkt = unpack_byte (pkt, &length); /* length */
1499 if (!(tag & mask)) /* tags out of synch with mask */
1500 {
1501 warning ("ERROR RMT: threadinfo tag mismatch\n");
1502 retval = 0;
1503 break;
1504 }
1505 if (tag == TAG_THREADID)
1506 {
1507 if (length != 16)
1508 {
1509 warning ("ERROR RMT: length of threadid is not 16\n");
1510 retval = 0;
1511 break;
1512 }
1513 pkt = unpack_threadid (pkt, &ref);
1514 mask = mask & ~TAG_THREADID;
1515 continue;
1516 }
1517 if (tag == TAG_EXISTS)
1518 {
1519 info->active = stub_unpack_int (pkt, length);
1520 pkt += length;
1521 mask = mask & ~(TAG_EXISTS);
1522 if (length > 8)
1523 {
1524 warning ("ERROR RMT: 'exists' length too long\n");
1525 retval = 0;
1526 break;
1527 }
1528 continue;
1529 }
1530 if (tag == TAG_THREADNAME)
1531 {
1532 pkt = unpack_string (pkt, &info->shortname[0], length);
1533 mask = mask & ~TAG_THREADNAME;
1534 continue;
1535 }
1536 if (tag == TAG_DISPLAY)
1537 {
1538 pkt = unpack_string (pkt, &info->display[0], length);
1539 mask = mask & ~TAG_DISPLAY;
1540 continue;
1541 }
1542 if (tag == TAG_MOREDISPLAY)
1543 {
1544 pkt = unpack_string (pkt, &info->more_display[0], length);
1545 mask = mask & ~TAG_MOREDISPLAY;
1546 continue;
1547 }
1548 warning ("ERROR RMT: unknown thread info tag\n");
1549 break; /* Not a tag we know about */
1550 }
1551 return retval;
1552 }
1553
1554 static int
1555 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int result;
1560 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1561
1562 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1563 putpkt (threadinfo_pkt);
1564 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1565 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1566 info);
1567 return result;
1568 }
1569
1570 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1571 representation of a threadid. */
1572
1573 static int
1574 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1575 struct gdb_ext_thread_info *info)
1576 {
1577 threadref lclref;
1578
1579 int_to_threadref (&lclref, *ref);
1580 return remote_get_threadinfo (&lclref, selection, info);
1581 }
1582
1583 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1584
1585 static char *
1586 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1587 threadref *nextthread)
1588 {
1589 *pkt++ = 'q'; /* info query packet */
1590 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1591 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1592 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1593 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1594 *pkt = '\0';
1595 return pkt;
1596 }
1597
1598 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1599
1600 static int
1601 parse_threadlist_response (char *pkt, int result_limit,
1602 threadref *original_echo, threadref *resultlist,
1603 int *doneflag)
1604 {
1605 struct remote_state *rs = get_remote_state ();
1606 char *limit;
1607 int count, resultcount, done;
1608
1609 resultcount = 0;
1610 /* Assume the 'q' and 'M chars have been stripped. */
1611 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1612 pkt = unpack_byte (pkt, &count); /* count field */
1613 pkt = unpack_nibble (pkt, &done);
1614 /* The first threadid is the argument threadid. */
1615 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1616 while ((count-- > 0) && (pkt < limit))
1617 {
1618 pkt = unpack_threadid (pkt, resultlist++);
1619 if (resultcount++ >= result_limit)
1620 break;
1621 }
1622 if (doneflag)
1623 *doneflag = done;
1624 return resultcount;
1625 }
1626
1627 static int
1628 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1629 int *done, int *result_count, threadref *threadlist)
1630 {
1631 struct remote_state *rs = get_remote_state ();
1632 static threadref echo_nextthread;
1633 char *threadlist_packet = alloca (rs->remote_packet_size);
1634 char *t_response = alloca (rs->remote_packet_size);
1635 int result = 1;
1636
1637 /* Trancate result limit to be smaller than the packet size */
1638 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1639 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1640
1641 pack_threadlist_request (threadlist_packet,
1642 startflag, result_limit, nextthread);
1643 putpkt (threadlist_packet);
1644 getpkt (t_response, (rs->remote_packet_size), 0);
1645
1646 *result_count =
1647 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1648 threadlist, done);
1649
1650 if (!threadmatch (&echo_nextthread, nextthread))
1651 {
1652 /* FIXME: This is a good reason to drop the packet */
1653 /* Possably, there is a duplicate response */
1654 /* Possabilities :
1655 retransmit immediatly - race conditions
1656 retransmit after timeout - yes
1657 exit
1658 wait for packet, then exit
1659 */
1660 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1661 return 0; /* I choose simply exiting */
1662 }
1663 if (*result_count <= 0)
1664 {
1665 if (*done != 1)
1666 {
1667 warning ("RMT ERROR : failed to get remote thread list\n");
1668 result = 0;
1669 }
1670 return result; /* break; */
1671 }
1672 if (*result_count > result_limit)
1673 {
1674 *result_count = 0;
1675 warning ("RMT ERROR: threadlist response longer than requested\n");
1676 return 0;
1677 }
1678 return result;
1679 }
1680
1681 /* This is the interface between remote and threads, remotes upper interface */
1682
1683 /* remote_find_new_threads retrieves the thread list and for each
1684 thread in the list, looks up the thread in GDB's internal list,
1685 ading the thread if it does not already exist. This involves
1686 getting partial thread lists from the remote target so, polling the
1687 quit_flag is required. */
1688
1689
1690 /* About this many threadisds fit in a packet. */
1691
1692 #define MAXTHREADLISTRESULTS 32
1693
1694 static int
1695 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1696 int looplimit)
1697 {
1698 int done, i, result_count;
1699 int startflag = 1;
1700 int result = 1;
1701 int loopcount = 0;
1702 static threadref nextthread;
1703 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1704
1705 done = 0;
1706 while (!done)
1707 {
1708 if (loopcount++ > looplimit)
1709 {
1710 result = 0;
1711 warning ("Remote fetch threadlist -infinite loop-\n");
1712 break;
1713 }
1714 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1715 &done, &result_count, resultthreadlist))
1716 {
1717 result = 0;
1718 break;
1719 }
1720 /* clear for later iterations */
1721 startflag = 0;
1722 /* Setup to resume next batch of thread references, set nextthread. */
1723 if (result_count >= 1)
1724 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1725 i = 0;
1726 while (result_count--)
1727 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1728 break;
1729 }
1730 return result;
1731 }
1732
1733 static int
1734 remote_newthread_step (threadref *ref, void *context)
1735 {
1736 ptid_t ptid;
1737
1738 ptid = pid_to_ptid (threadref_to_int (ref));
1739
1740 if (!in_thread_list (ptid))
1741 add_thread (ptid);
1742 return 1; /* continue iterator */
1743 }
1744
1745 #define CRAZY_MAX_THREADS 1000
1746
1747 static ptid_t
1748 remote_current_thread (ptid_t oldpid)
1749 {
1750 struct remote_state *rs = get_remote_state ();
1751 char *buf = alloca (rs->remote_packet_size);
1752
1753 putpkt ("qC");
1754 getpkt (buf, (rs->remote_packet_size), 0);
1755 if (buf[0] == 'Q' && buf[1] == 'C')
1756 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1757 else
1758 return oldpid;
1759 }
1760
1761 /* Find new threads for info threads command.
1762 * Original version, using John Metzler's thread protocol.
1763 */
1764
1765 static void
1766 remote_find_new_threads (void)
1767 {
1768 remote_threadlist_iterator (remote_newthread_step, 0,
1769 CRAZY_MAX_THREADS);
1770 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1771 inferior_ptid = remote_current_thread (inferior_ptid);
1772 }
1773
1774 /*
1775 * Find all threads for info threads command.
1776 * Uses new thread protocol contributed by Cisco.
1777 * Falls back and attempts to use the older method (above)
1778 * if the target doesn't respond to the new method.
1779 */
1780
1781 static void
1782 remote_threads_info (void)
1783 {
1784 struct remote_state *rs = get_remote_state ();
1785 char *buf = alloca (rs->remote_packet_size);
1786 char *bufp;
1787 int tid;
1788
1789 if (remote_desc == 0) /* paranoia */
1790 error ("Command can only be used when connected to the remote target.");
1791
1792 if (use_threadinfo_query)
1793 {
1794 putpkt ("qfThreadInfo");
1795 bufp = buf;
1796 getpkt (bufp, (rs->remote_packet_size), 0);
1797 if (bufp[0] != '\0') /* q packet recognized */
1798 {
1799 while (*bufp++ == 'm') /* reply contains one or more TID */
1800 {
1801 do
1802 {
1803 tid = strtol (bufp, &bufp, 16);
1804 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1805 add_thread (pid_to_ptid (tid));
1806 }
1807 while (*bufp++ == ','); /* comma-separated list */
1808 putpkt ("qsThreadInfo");
1809 bufp = buf;
1810 getpkt (bufp, (rs->remote_packet_size), 0);
1811 }
1812 return; /* done */
1813 }
1814 }
1815
1816 /* Else fall back to old method based on jmetzler protocol. */
1817 use_threadinfo_query = 0;
1818 remote_find_new_threads ();
1819 return;
1820 }
1821
1822 /*
1823 * Collect a descriptive string about the given thread.
1824 * The target may say anything it wants to about the thread
1825 * (typically info about its blocked / runnable state, name, etc.).
1826 * This string will appear in the info threads display.
1827 *
1828 * Optional: targets are not required to implement this function.
1829 */
1830
1831 static char *
1832 remote_threads_extra_info (struct thread_info *tp)
1833 {
1834 struct remote_state *rs = get_remote_state ();
1835 int result;
1836 int set;
1837 threadref id;
1838 struct gdb_ext_thread_info threadinfo;
1839 static char display_buf[100]; /* arbitrary... */
1840 char *bufp = alloca (rs->remote_packet_size);
1841 int n = 0; /* position in display_buf */
1842
1843 if (remote_desc == 0) /* paranoia */
1844 internal_error (__FILE__, __LINE__,
1845 "remote_threads_extra_info");
1846
1847 if (use_threadextra_query)
1848 {
1849 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1850 putpkt (bufp);
1851 getpkt (bufp, (rs->remote_packet_size), 0);
1852 if (bufp[0] != 0)
1853 {
1854 n = min (strlen (bufp) / 2, sizeof (display_buf));
1855 result = hex2bin (bufp, display_buf, n);
1856 display_buf [result] = '\0';
1857 return display_buf;
1858 }
1859 }
1860
1861 /* If the above query fails, fall back to the old method. */
1862 use_threadextra_query = 0;
1863 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1864 | TAG_MOREDISPLAY | TAG_DISPLAY;
1865 int_to_threadref (&id, PIDGET (tp->ptid));
1866 if (remote_get_threadinfo (&id, set, &threadinfo))
1867 if (threadinfo.active)
1868 {
1869 if (*threadinfo.shortname)
1870 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1871 if (*threadinfo.display)
1872 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1873 if (*threadinfo.more_display)
1874 n += sprintf(&display_buf[n], " Priority: %s",
1875 threadinfo.more_display);
1876
1877 if (n > 0)
1878 {
1879 /* for purely cosmetic reasons, clear up trailing commas */
1880 if (',' == display_buf[n-1])
1881 display_buf[n-1] = ' ';
1882 return display_buf;
1883 }
1884 }
1885 return NULL;
1886 }
1887
1888 \f
1889
1890 /* Restart the remote side; this is an extended protocol operation. */
1891
1892 static void
1893 extended_remote_restart (void)
1894 {
1895 struct remote_state *rs = get_remote_state ();
1896 char *buf = alloca (rs->remote_packet_size);
1897
1898 /* Send the restart command; for reasons I don't understand the
1899 remote side really expects a number after the "R". */
1900 buf[0] = 'R';
1901 sprintf (&buf[1], "%x", 0);
1902 putpkt (buf);
1903
1904 /* Now query for status so this looks just like we restarted
1905 gdbserver from scratch. */
1906 putpkt ("?");
1907 getpkt (buf, (rs->remote_packet_size), 0);
1908 }
1909 \f
1910 /* Clean up connection to a remote debugger. */
1911
1912 /* ARGSUSED */
1913 static void
1914 remote_close (int quitting)
1915 {
1916 if (remote_desc)
1917 serial_close (remote_desc);
1918 remote_desc = NULL;
1919 }
1920
1921 /* Query the remote side for the text, data and bss offsets. */
1922
1923 static void
1924 get_offsets (void)
1925 {
1926 struct remote_state *rs = get_remote_state ();
1927 char *buf = alloca (rs->remote_packet_size);
1928 char *ptr;
1929 int lose;
1930 CORE_ADDR text_addr, data_addr, bss_addr;
1931 struct section_offsets *offs;
1932
1933 putpkt ("qOffsets");
1934
1935 getpkt (buf, (rs->remote_packet_size), 0);
1936
1937 if (buf[0] == '\000')
1938 return; /* Return silently. Stub doesn't support
1939 this command. */
1940 if (buf[0] == 'E')
1941 {
1942 warning ("Remote failure reply: %s", buf);
1943 return;
1944 }
1945
1946 /* Pick up each field in turn. This used to be done with scanf, but
1947 scanf will make trouble if CORE_ADDR size doesn't match
1948 conversion directives correctly. The following code will work
1949 with any size of CORE_ADDR. */
1950 text_addr = data_addr = bss_addr = 0;
1951 ptr = buf;
1952 lose = 0;
1953
1954 if (strncmp (ptr, "Text=", 5) == 0)
1955 {
1956 ptr += 5;
1957 /* Don't use strtol, could lose on big values. */
1958 while (*ptr && *ptr != ';')
1959 text_addr = (text_addr << 4) + fromhex (*ptr++);
1960 }
1961 else
1962 lose = 1;
1963
1964 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1965 {
1966 ptr += 6;
1967 while (*ptr && *ptr != ';')
1968 data_addr = (data_addr << 4) + fromhex (*ptr++);
1969 }
1970 else
1971 lose = 1;
1972
1973 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1974 {
1975 ptr += 5;
1976 while (*ptr && *ptr != ';')
1977 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1978 }
1979 else
1980 lose = 1;
1981
1982 if (lose)
1983 error ("Malformed response to offset query, %s", buf);
1984
1985 if (symfile_objfile == NULL)
1986 return;
1987
1988 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1989 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1990
1991 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1992
1993 /* This is a temporary kludge to force data and bss to use the same offsets
1994 because that's what nlmconv does now. The real solution requires changes
1995 to the stub and remote.c that I don't have time to do right now. */
1996
1997 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1998 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1999
2000 objfile_relocate (symfile_objfile, offs);
2001 }
2002
2003 /*
2004 * Cisco version of section offsets:
2005 *
2006 * Instead of having GDB query the target for the section offsets,
2007 * Cisco lets the target volunteer the information! It's also in
2008 * a different format, so here are the functions that will decode
2009 * a section offset packet from a Cisco target.
2010 */
2011
2012 /*
2013 * Function: remote_cisco_section_offsets
2014 *
2015 * Returns: zero for success, non-zero for failure
2016 */
2017
2018 static int
2019 remote_cisco_section_offsets (bfd_vma text_addr,
2020 bfd_vma data_addr,
2021 bfd_vma bss_addr,
2022 bfd_signed_vma *text_offs,
2023 bfd_signed_vma *data_offs,
2024 bfd_signed_vma *bss_offs)
2025 {
2026 bfd_vma text_base, data_base, bss_base;
2027 struct minimal_symbol *start;
2028 asection *sect;
2029 bfd *abfd;
2030 int len;
2031
2032 if (symfile_objfile == NULL)
2033 return -1; /* no can do nothin' */
2034
2035 start = lookup_minimal_symbol ("_start", NULL, NULL);
2036 if (start == NULL)
2037 return -1; /* Can't find "_start" symbol */
2038
2039 data_base = bss_base = 0;
2040 text_base = SYMBOL_VALUE_ADDRESS (start);
2041
2042 abfd = symfile_objfile->obfd;
2043 for (sect = abfd->sections;
2044 sect != 0;
2045 sect = sect->next)
2046 {
2047 const char *p = bfd_get_section_name (abfd, sect);
2048 len = strlen (p);
2049 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2050 if (data_base == 0 ||
2051 data_base > bfd_get_section_vma (abfd, sect))
2052 data_base = bfd_get_section_vma (abfd, sect);
2053 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2054 if (bss_base == 0 ||
2055 bss_base > bfd_get_section_vma (abfd, sect))
2056 bss_base = bfd_get_section_vma (abfd, sect);
2057 }
2058 *text_offs = text_addr - text_base;
2059 *data_offs = data_addr - data_base;
2060 *bss_offs = bss_addr - bss_base;
2061 if (remote_debug)
2062 {
2063 char tmp[128];
2064
2065 sprintf (tmp, "VMA: text = 0x");
2066 sprintf_vma (tmp + strlen (tmp), text_addr);
2067 sprintf (tmp + strlen (tmp), " data = 0x");
2068 sprintf_vma (tmp + strlen (tmp), data_addr);
2069 sprintf (tmp + strlen (tmp), " bss = 0x");
2070 sprintf_vma (tmp + strlen (tmp), bss_addr);
2071 fprintf_filtered (gdb_stdlog, tmp);
2072 fprintf_filtered (gdb_stdlog,
2073 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2074 paddr_nz (*text_offs),
2075 paddr_nz (*data_offs),
2076 paddr_nz (*bss_offs));
2077 }
2078
2079 return 0;
2080 }
2081
2082 /*
2083 * Function: remote_cisco_objfile_relocate
2084 *
2085 * Relocate the symbol file for a remote target.
2086 */
2087
2088 void
2089 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2090 bfd_signed_vma bss_off)
2091 {
2092 struct section_offsets *offs;
2093
2094 if (text_off != 0 || data_off != 0 || bss_off != 0)
2095 {
2096 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2097 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2098 simple canonical representation for this stuff. */
2099
2100 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2101 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2102
2103 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2104 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2105 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2106
2107 /* First call the standard objfile_relocate. */
2108 objfile_relocate (symfile_objfile, offs);
2109
2110 /* Now we need to fix up the section entries already attached to
2111 the exec target. These entries will control memory transfers
2112 from the exec file. */
2113
2114 exec_set_section_offsets (text_off, data_off, bss_off);
2115 }
2116 }
2117
2118 /* Stub for catch_errors. */
2119
2120 static int
2121 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2122 {
2123 start_remote (); /* Initialize gdb process mechanisms */
2124 /* NOTE: Return something >=0. A -ve value is reserved for
2125 catch_exceptions. */
2126 return 1;
2127 }
2128
2129 static int
2130 remote_start_remote (struct ui_out *uiout, void *dummy)
2131 {
2132 immediate_quit++; /* Allow user to interrupt it */
2133
2134 /* Ack any packet which the remote side has already sent. */
2135 serial_write (remote_desc, "+", 1);
2136
2137 /* Let the stub know that we want it to return the thread. */
2138 set_thread (-1, 0);
2139
2140 inferior_ptid = remote_current_thread (inferior_ptid);
2141
2142 get_offsets (); /* Get text, data & bss offsets */
2143
2144 putpkt ("?"); /* initiate a query from remote machine */
2145 immediate_quit--;
2146
2147 /* NOTE: See comment above in remote_start_remote_dummy(). This
2148 function returns something >=0. */
2149 return remote_start_remote_dummy (uiout, dummy);
2150 }
2151
2152 /* Open a connection to a remote debugger.
2153 NAME is the filename used for communication. */
2154
2155 static void
2156 remote_open (char *name, int from_tty)
2157 {
2158 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2159 }
2160
2161 /* Just like remote_open, but with asynchronous support. */
2162 static void
2163 remote_async_open (char *name, int from_tty)
2164 {
2165 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2166 }
2167
2168 /* Open a connection to a remote debugger using the extended
2169 remote gdb protocol. NAME is the filename used for communication. */
2170
2171 static void
2172 extended_remote_open (char *name, int from_tty)
2173 {
2174 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2175 0 /* async_p */);
2176 }
2177
2178 /* Just like extended_remote_open, but with asynchronous support. */
2179 static void
2180 extended_remote_async_open (char *name, int from_tty)
2181 {
2182 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2183 1 /*extended_p */, 1 /* async_p */);
2184 }
2185
2186 /* Generic code for opening a connection to a remote target. */
2187
2188 static void
2189 init_all_packet_configs (void)
2190 {
2191 int i;
2192 update_packet_config (&remote_protocol_e);
2193 update_packet_config (&remote_protocol_E);
2194 update_packet_config (&remote_protocol_P);
2195 update_packet_config (&remote_protocol_qSymbol);
2196 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2197 update_packet_config (&remote_protocol_Z[i]);
2198 /* Force remote_write_bytes to check whether target supports binary
2199 downloading. */
2200 update_packet_config (&remote_protocol_binary_download);
2201 }
2202
2203 /* Symbol look-up. */
2204
2205 static void
2206 remote_check_symbols (struct objfile *objfile)
2207 {
2208 struct remote_state *rs = get_remote_state ();
2209 char *msg, *reply, *tmp;
2210 struct minimal_symbol *sym;
2211 int end;
2212
2213 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2214 return;
2215
2216 msg = alloca (rs->remote_packet_size);
2217 reply = alloca (rs->remote_packet_size);
2218
2219 /* Invite target to request symbol lookups. */
2220
2221 putpkt ("qSymbol::");
2222 getpkt (reply, (rs->remote_packet_size), 0);
2223 packet_ok (reply, &remote_protocol_qSymbol);
2224
2225 while (strncmp (reply, "qSymbol:", 8) == 0)
2226 {
2227 tmp = &reply[8];
2228 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2229 msg[end] = '\0';
2230 sym = lookup_minimal_symbol (msg, NULL, NULL);
2231 if (sym == NULL)
2232 sprintf (msg, "qSymbol::%s", &reply[8]);
2233 else
2234 sprintf (msg, "qSymbol:%s:%s",
2235 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2236 &reply[8]);
2237 putpkt (msg);
2238 getpkt (reply, (rs->remote_packet_size), 0);
2239 }
2240 }
2241
2242 static struct serial *
2243 remote_serial_open (char *name)
2244 {
2245 static int udp_warning = 0;
2246
2247 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2248 of in ser-tcp.c, because it is the remote protocol assuming that the
2249 serial connection is reliable and not the serial connection promising
2250 to be. */
2251 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2252 {
2253 warning ("The remote protocol may be unreliable over UDP.");
2254 warning ("Some events may be lost, rendering further debugging "
2255 "impossible.");
2256 udp_warning = 1;
2257 }
2258
2259 return serial_open (name);
2260 }
2261
2262 static void
2263 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2264 int extended_p, int async_p)
2265 {
2266 int ex;
2267 struct remote_state *rs = get_remote_state ();
2268 if (name == 0)
2269 error ("To open a remote debug connection, you need to specify what\n"
2270 "serial device is attached to the remote system\n"
2271 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2272
2273 /* See FIXME above */
2274 if (!async_p)
2275 wait_forever_enabled_p = 1;
2276
2277 target_preopen (from_tty);
2278
2279 unpush_target (target);
2280
2281 remote_desc = remote_serial_open (name);
2282 if (!remote_desc)
2283 perror_with_name (name);
2284
2285 if (baud_rate != -1)
2286 {
2287 if (serial_setbaudrate (remote_desc, baud_rate))
2288 {
2289 serial_close (remote_desc);
2290 perror_with_name (name);
2291 }
2292 }
2293
2294 serial_raw (remote_desc);
2295
2296 /* If there is something sitting in the buffer we might take it as a
2297 response to a command, which would be bad. */
2298 serial_flush_input (remote_desc);
2299
2300 if (from_tty)
2301 {
2302 puts_filtered ("Remote debugging using ");
2303 puts_filtered (name);
2304 puts_filtered ("\n");
2305 }
2306 push_target (target); /* Switch to using remote target now */
2307
2308 init_all_packet_configs ();
2309
2310 general_thread = -2;
2311 continue_thread = -2;
2312
2313 /* Probe for ability to use "ThreadInfo" query, as required. */
2314 use_threadinfo_query = 1;
2315 use_threadextra_query = 1;
2316
2317 /* Without this, some commands which require an active target (such
2318 as kill) won't work. This variable serves (at least) double duty
2319 as both the pid of the target process (if it has such), and as a
2320 flag indicating that a target is active. These functions should
2321 be split out into seperate variables, especially since GDB will
2322 someday have a notion of debugging several processes. */
2323
2324 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2325
2326 if (async_p)
2327 {
2328 /* With this target we start out by owning the terminal. */
2329 remote_async_terminal_ours_p = 1;
2330
2331 /* FIXME: cagney/1999-09-23: During the initial connection it is
2332 assumed that the target is already ready and able to respond to
2333 requests. Unfortunately remote_start_remote() eventually calls
2334 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2335 around this. Eventually a mechanism that allows
2336 wait_for_inferior() to expect/get timeouts will be
2337 implemented. */
2338 wait_forever_enabled_p = 0;
2339 }
2340
2341 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2342 /* First delete any symbols previously loaded from shared libraries. */
2343 no_shared_libraries (NULL, 0);
2344 #endif
2345
2346 /* Start the remote connection. If error() or QUIT, discard this
2347 target (we'd otherwise be in an inconsistent state) and then
2348 propogate the error on up the exception chain. This ensures that
2349 the caller doesn't stumble along blindly assuming that the
2350 function succeeded. The CLI doesn't have this problem but other
2351 UI's, such as MI do.
2352
2353 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2354 this function should return an error indication letting the
2355 caller restore the previous state. Unfortunatly the command
2356 ``target remote'' is directly wired to this function making that
2357 impossible. On a positive note, the CLI side of this problem has
2358 been fixed - the function set_cmd_context() makes it possible for
2359 all the ``target ....'' commands to share a common callback
2360 function. See cli-dump.c. */
2361 ex = catch_exceptions (uiout,
2362 remote_start_remote, NULL,
2363 "Couldn't establish connection to remote"
2364 " target\n",
2365 RETURN_MASK_ALL);
2366 if (ex < 0)
2367 {
2368 pop_target ();
2369 if (async_p)
2370 wait_forever_enabled_p = 1;
2371 throw_exception (ex);
2372 }
2373
2374 if (async_p)
2375 wait_forever_enabled_p = 1;
2376
2377 if (extended_p)
2378 {
2379 /* Tell the remote that we are using the extended protocol. */
2380 char *buf = alloca (rs->remote_packet_size);
2381 putpkt ("!");
2382 getpkt (buf, (rs->remote_packet_size), 0);
2383 }
2384 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2385 /* FIXME: need a master target_open vector from which all
2386 remote_opens can be called, so that stuff like this can
2387 go there. Failing that, the following code must be copied
2388 to the open function for any remote target that wants to
2389 support svr4 shared libraries. */
2390
2391 /* Set up to detect and load shared libraries. */
2392 if (exec_bfd) /* No use without an exec file. */
2393 {
2394 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2395 remote_check_symbols (symfile_objfile);
2396 }
2397 #endif
2398 }
2399
2400 /* This takes a program previously attached to and detaches it. After
2401 this is done, GDB can be used to debug some other program. We
2402 better not have left any breakpoints in the target program or it'll
2403 die when it hits one. */
2404
2405 static void
2406 remote_detach (char *args, int from_tty)
2407 {
2408 struct remote_state *rs = get_remote_state ();
2409 char *buf = alloca (rs->remote_packet_size);
2410
2411 if (args)
2412 error ("Argument given to \"detach\" when remotely debugging.");
2413
2414 /* Tell the remote target to detach. */
2415 strcpy (buf, "D");
2416 remote_send (buf, (rs->remote_packet_size));
2417
2418 target_mourn_inferior ();
2419 if (from_tty)
2420 puts_filtered ("Ending remote debugging.\n");
2421
2422 }
2423
2424 /* Same as remote_detach, but with async support. */
2425 static void
2426 remote_async_detach (char *args, int from_tty)
2427 {
2428 struct remote_state *rs = get_remote_state ();
2429 char *buf = alloca (rs->remote_packet_size);
2430
2431 if (args)
2432 error ("Argument given to \"detach\" when remotely debugging.");
2433
2434 /* Tell the remote target to detach. */
2435 strcpy (buf, "D");
2436 remote_send (buf, (rs->remote_packet_size));
2437
2438 /* Unregister the file descriptor from the event loop. */
2439 if (target_is_async_p ())
2440 serial_async (remote_desc, NULL, 0);
2441
2442 target_mourn_inferior ();
2443 if (from_tty)
2444 puts_filtered ("Ending remote debugging.\n");
2445 }
2446
2447 /* Convert hex digit A to a number. */
2448
2449 static int
2450 fromhex (int a)
2451 {
2452 if (a >= '0' && a <= '9')
2453 return a - '0';
2454 else if (a >= 'a' && a <= 'f')
2455 return a - 'a' + 10;
2456 else if (a >= 'A' && a <= 'F')
2457 return a - 'A' + 10;
2458 else
2459 error ("Reply contains invalid hex digit %d", a);
2460 }
2461
2462 static int
2463 hex2bin (const char *hex, char *bin, int count)
2464 {
2465 int i;
2466
2467 for (i = 0; i < count; i++)
2468 {
2469 if (hex[0] == 0 || hex[1] == 0)
2470 {
2471 /* Hex string is short, or of uneven length.
2472 Return the count that has been converted so far. */
2473 return i;
2474 }
2475 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2476 hex += 2;
2477 }
2478 return i;
2479 }
2480
2481 /* Convert number NIB to a hex digit. */
2482
2483 static int
2484 tohex (int nib)
2485 {
2486 if (nib < 10)
2487 return '0' + nib;
2488 else
2489 return 'a' + nib - 10;
2490 }
2491
2492 static int
2493 bin2hex (const char *bin, char *hex, int count)
2494 {
2495 int i;
2496 /* May use a length, or a nul-terminated string as input. */
2497 if (count == 0)
2498 count = strlen (bin);
2499
2500 for (i = 0; i < count; i++)
2501 {
2502 *hex++ = tohex ((*bin >> 4) & 0xf);
2503 *hex++ = tohex (*bin++ & 0xf);
2504 }
2505 *hex = 0;
2506 return i;
2507 }
2508 \f
2509 /* Tell the remote machine to resume. */
2510
2511 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2512
2513 static int last_sent_step;
2514
2515 static void
2516 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519 char *buf = alloca (rs->remote_packet_size);
2520 int pid = PIDGET (ptid);
2521 char *p;
2522
2523 if (pid == -1)
2524 set_thread (0, 0); /* run any thread */
2525 else
2526 set_thread (pid, 0); /* run this thread */
2527
2528 last_sent_signal = siggnal;
2529 last_sent_step = step;
2530
2531 /* A hook for when we need to do something at the last moment before
2532 resumption. */
2533 if (target_resume_hook)
2534 (*target_resume_hook) ();
2535
2536
2537 /* The s/S/c/C packets do not return status. So if the target does
2538 not support the S or C packets, the debug agent returns an empty
2539 string which is detected in remote_wait(). This protocol defect
2540 is fixed in the e/E packets. */
2541
2542 if (step && step_range_end)
2543 {
2544 /* If the target does not support the 'E' packet, we try the 'S'
2545 packet. Ideally we would fall back to the 'e' packet if that
2546 too is not supported. But that would require another copy of
2547 the code to issue the 'e' packet (and fall back to 's' if not
2548 supported) in remote_wait(). */
2549
2550 if (siggnal != TARGET_SIGNAL_0)
2551 {
2552 if (remote_protocol_E.support != PACKET_DISABLE)
2553 {
2554 p = buf;
2555 *p++ = 'E';
2556 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2557 *p++ = tohex (((int) siggnal) & 0xf);
2558 *p++ = ',';
2559 p += hexnumstr (p, (ULONGEST) step_range_start);
2560 *p++ = ',';
2561 p += hexnumstr (p, (ULONGEST) step_range_end);
2562 *p++ = 0;
2563
2564 putpkt (buf);
2565 getpkt (buf, (rs->remote_packet_size), 0);
2566
2567 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2568 return;
2569 }
2570 }
2571 else
2572 {
2573 if (remote_protocol_e.support != PACKET_DISABLE)
2574 {
2575 p = buf;
2576 *p++ = 'e';
2577 p += hexnumstr (p, (ULONGEST) step_range_start);
2578 *p++ = ',';
2579 p += hexnumstr (p, (ULONGEST) step_range_end);
2580 *p++ = 0;
2581
2582 putpkt (buf);
2583 getpkt (buf, (rs->remote_packet_size), 0);
2584
2585 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2586 return;
2587 }
2588 }
2589 }
2590
2591 if (siggnal != TARGET_SIGNAL_0)
2592 {
2593 buf[0] = step ? 'S' : 'C';
2594 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2595 buf[2] = tohex (((int) siggnal) & 0xf);
2596 buf[3] = '\0';
2597 }
2598 else
2599 strcpy (buf, step ? "s" : "c");
2600
2601 putpkt (buf);
2602 }
2603
2604 /* Same as remote_resume, but with async support. */
2605 static void
2606 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2607 {
2608 struct remote_state *rs = get_remote_state ();
2609 char *buf = alloca (rs->remote_packet_size);
2610 int pid = PIDGET (ptid);
2611 char *p;
2612
2613 if (pid == -1)
2614 set_thread (0, 0); /* run any thread */
2615 else
2616 set_thread (pid, 0); /* run this thread */
2617
2618 last_sent_signal = siggnal;
2619 last_sent_step = step;
2620
2621 /* A hook for when we need to do something at the last moment before
2622 resumption. */
2623 if (target_resume_hook)
2624 (*target_resume_hook) ();
2625
2626 /* The s/S/c/C packets do not return status. So if the target does
2627 not support the S or C packets, the debug agent returns an empty
2628 string which is detected in remote_wait(). This protocol defect
2629 is fixed in the e/E packets. */
2630
2631 if (step && step_range_end)
2632 {
2633 /* If the target does not support the 'E' packet, we try the 'S'
2634 packet. Ideally we would fall back to the 'e' packet if that
2635 too is not supported. But that would require another copy of
2636 the code to issue the 'e' packet (and fall back to 's' if not
2637 supported) in remote_wait(). */
2638
2639 if (siggnal != TARGET_SIGNAL_0)
2640 {
2641 if (remote_protocol_E.support != PACKET_DISABLE)
2642 {
2643 p = buf;
2644 *p++ = 'E';
2645 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2646 *p++ = tohex (((int) siggnal) & 0xf);
2647 *p++ = ',';
2648 p += hexnumstr (p, (ULONGEST) step_range_start);
2649 *p++ = ',';
2650 p += hexnumstr (p, (ULONGEST) step_range_end);
2651 *p++ = 0;
2652
2653 putpkt (buf);
2654 getpkt (buf, (rs->remote_packet_size), 0);
2655
2656 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2657 goto register_event_loop;
2658 }
2659 }
2660 else
2661 {
2662 if (remote_protocol_e.support != PACKET_DISABLE)
2663 {
2664 p = buf;
2665 *p++ = 'e';
2666 p += hexnumstr (p, (ULONGEST) step_range_start);
2667 *p++ = ',';
2668 p += hexnumstr (p, (ULONGEST) step_range_end);
2669 *p++ = 0;
2670
2671 putpkt (buf);
2672 getpkt (buf, (rs->remote_packet_size), 0);
2673
2674 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2675 goto register_event_loop;
2676 }
2677 }
2678 }
2679
2680 if (siggnal != TARGET_SIGNAL_0)
2681 {
2682 buf[0] = step ? 'S' : 'C';
2683 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2684 buf[2] = tohex ((int) siggnal & 0xf);
2685 buf[3] = '\0';
2686 }
2687 else
2688 strcpy (buf, step ? "s" : "c");
2689
2690 putpkt (buf);
2691
2692 register_event_loop:
2693 /* We are about to start executing the inferior, let's register it
2694 with the event loop. NOTE: this is the one place where all the
2695 execution commands end up. We could alternatively do this in each
2696 of the execution commands in infcmd.c.*/
2697 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2698 into infcmd.c in order to allow inferior function calls to work
2699 NOT asynchronously. */
2700 if (event_loop_p && target_can_async_p ())
2701 target_async (inferior_event_handler, 0);
2702 /* Tell the world that the target is now executing. */
2703 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2704 this? Instead, should the client of target just assume (for
2705 async targets) that the target is going to start executing? Is
2706 this information already found in the continuation block? */
2707 if (target_is_async_p ())
2708 target_executing = 1;
2709 }
2710 \f
2711
2712 /* Set up the signal handler for SIGINT, while the target is
2713 executing, ovewriting the 'regular' SIGINT signal handler. */
2714 static void
2715 initialize_sigint_signal_handler (void)
2716 {
2717 sigint_remote_token =
2718 create_async_signal_handler (async_remote_interrupt, NULL);
2719 signal (SIGINT, handle_remote_sigint);
2720 }
2721
2722 /* Signal handler for SIGINT, while the target is executing. */
2723 static void
2724 handle_remote_sigint (int sig)
2725 {
2726 signal (sig, handle_remote_sigint_twice);
2727 sigint_remote_twice_token =
2728 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2729 mark_async_signal_handler_wrapper (sigint_remote_token);
2730 }
2731
2732 /* Signal handler for SIGINT, installed after SIGINT has already been
2733 sent once. It will take effect the second time that the user sends
2734 a ^C. */
2735 static void
2736 handle_remote_sigint_twice (int sig)
2737 {
2738 signal (sig, handle_sigint);
2739 sigint_remote_twice_token =
2740 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2741 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2742 }
2743
2744 /* Perform the real interruption of the target execution, in response
2745 to a ^C. */
2746 static void
2747 async_remote_interrupt (gdb_client_data arg)
2748 {
2749 if (remote_debug)
2750 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2751
2752 target_stop ();
2753 }
2754
2755 /* Perform interrupt, if the first attempt did not succeed. Just give
2756 up on the target alltogether. */
2757 void
2758 async_remote_interrupt_twice (gdb_client_data arg)
2759 {
2760 if (remote_debug)
2761 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2762 /* Do something only if the target was not killed by the previous
2763 cntl-C. */
2764 if (target_executing)
2765 {
2766 interrupt_query ();
2767 signal (SIGINT, handle_remote_sigint);
2768 }
2769 }
2770
2771 /* Reinstall the usual SIGINT handlers, after the target has
2772 stopped. */
2773 static void
2774 cleanup_sigint_signal_handler (void *dummy)
2775 {
2776 signal (SIGINT, handle_sigint);
2777 if (sigint_remote_twice_token)
2778 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2779 if (sigint_remote_token)
2780 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2781 }
2782
2783 /* Send ^C to target to halt it. Target will respond, and send us a
2784 packet. */
2785 static void (*ofunc) (int);
2786
2787 /* The command line interface's stop routine. This function is installed
2788 as a signal handler for SIGINT. The first time a user requests a
2789 stop, we call remote_stop to send a break or ^C. If there is no
2790 response from the target (it didn't stop when the user requested it),
2791 we ask the user if he'd like to detach from the target. */
2792 static void
2793 remote_interrupt (int signo)
2794 {
2795 /* If this doesn't work, try more severe steps. */
2796 signal (signo, remote_interrupt_twice);
2797
2798 if (remote_debug)
2799 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2800
2801 target_stop ();
2802 }
2803
2804 /* The user typed ^C twice. */
2805
2806 static void
2807 remote_interrupt_twice (int signo)
2808 {
2809 signal (signo, ofunc);
2810 interrupt_query ();
2811 signal (signo, remote_interrupt);
2812 }
2813
2814 /* This is the generic stop called via the target vector. When a target
2815 interrupt is requested, either by the command line or the GUI, we
2816 will eventually end up here. */
2817 static void
2818 remote_stop (void)
2819 {
2820 /* Send a break or a ^C, depending on user preference. */
2821 if (remote_debug)
2822 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2823
2824 if (remote_break)
2825 serial_send_break (remote_desc);
2826 else
2827 serial_write (remote_desc, "\003", 1);
2828 }
2829
2830 /* Ask the user what to do when an interrupt is received. */
2831
2832 static void
2833 interrupt_query (void)
2834 {
2835 target_terminal_ours ();
2836
2837 if (query ("Interrupted while waiting for the program.\n\
2838 Give up (and stop debugging it)? "))
2839 {
2840 target_mourn_inferior ();
2841 throw_exception (RETURN_QUIT);
2842 }
2843
2844 target_terminal_inferior ();
2845 }
2846
2847 /* Enable/disable target terminal ownership. Most targets can use
2848 terminal groups to control terminal ownership. Remote targets are
2849 different in that explicit transfer of ownership to/from GDB/target
2850 is required. */
2851
2852 static void
2853 remote_async_terminal_inferior (void)
2854 {
2855 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2856 sync_execution here. This function should only be called when
2857 GDB is resuming the inferior in the forground. A background
2858 resume (``run&'') should leave GDB in control of the terminal and
2859 consequently should not call this code. */
2860 if (!sync_execution)
2861 return;
2862 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2863 calls target_terminal_*() idenpotent. The event-loop GDB talking
2864 to an asynchronous target with a synchronous command calls this
2865 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2866 stops trying to transfer the terminal to the target when it
2867 shouldn't this guard can go away. */
2868 if (!remote_async_terminal_ours_p)
2869 return;
2870 delete_file_handler (input_fd);
2871 remote_async_terminal_ours_p = 0;
2872 initialize_sigint_signal_handler ();
2873 /* NOTE: At this point we could also register our selves as the
2874 recipient of all input. Any characters typed could then be
2875 passed on down to the target. */
2876 }
2877
2878 static void
2879 remote_async_terminal_ours (void)
2880 {
2881 /* See FIXME in remote_async_terminal_inferior. */
2882 if (!sync_execution)
2883 return;
2884 /* See FIXME in remote_async_terminal_inferior. */
2885 if (remote_async_terminal_ours_p)
2886 return;
2887 cleanup_sigint_signal_handler (NULL);
2888 add_file_handler (input_fd, stdin_event_handler, 0);
2889 remote_async_terminal_ours_p = 1;
2890 }
2891
2892 /* If nonzero, ignore the next kill. */
2893
2894 int kill_kludge;
2895
2896 void
2897 remote_console_output (char *msg)
2898 {
2899 char *p;
2900
2901 for (p = msg; p[0] && p[1]; p += 2)
2902 {
2903 char tb[2];
2904 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2905 tb[0] = c;
2906 tb[1] = 0;
2907 fputs_unfiltered (tb, gdb_stdtarg);
2908 }
2909 gdb_flush (gdb_stdtarg);
2910 }
2911
2912 /* Wait until the remote machine stops, then return,
2913 storing status in STATUS just as `wait' would.
2914 Returns "pid", which in the case of a multi-threaded
2915 remote OS, is the thread-id. */
2916
2917 static ptid_t
2918 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2919 {
2920 struct remote_state *rs = get_remote_state ();
2921 unsigned char *buf = alloca (rs->remote_packet_size);
2922 ULONGEST thread_num = -1;
2923 ULONGEST addr;
2924
2925 status->kind = TARGET_WAITKIND_EXITED;
2926 status->value.integer = 0;
2927
2928 while (1)
2929 {
2930 unsigned char *p;
2931
2932 ofunc = signal (SIGINT, remote_interrupt);
2933 getpkt (buf, (rs->remote_packet_size), 1);
2934 signal (SIGINT, ofunc);
2935
2936 /* This is a hook for when we need to do something (perhaps the
2937 collection of trace data) every time the target stops. */
2938 if (target_wait_loop_hook)
2939 (*target_wait_loop_hook) ();
2940
2941 remote_stopped_by_watchpoint_p = 0;
2942
2943 switch (buf[0])
2944 {
2945 case 'E': /* Error of some sort */
2946 warning ("Remote failure reply: %s", buf);
2947 continue;
2948 case 'T': /* Status with PC, SP, FP, ... */
2949 {
2950 int i;
2951 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2952
2953 /* Expedited reply, containing Signal, {regno, reg} repeat */
2954 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2955 ss = signal number
2956 n... = register number
2957 r... = register contents
2958 */
2959 p = &buf[3]; /* after Txx */
2960
2961 while (*p)
2962 {
2963 unsigned char *p1;
2964 char *p_temp;
2965 int fieldsize;
2966 LONGEST pnum = 0;
2967
2968 /* If the packet contains a register number save it in pnum
2969 and set p1 to point to the character following it.
2970 Otherwise p1 points to p. */
2971
2972 /* If this packet is an awatch packet, don't parse the 'a'
2973 as a register number. */
2974
2975 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2976 {
2977 /* Read the ``P'' register number. */
2978 pnum = strtol (p, &p_temp, 16);
2979 p1 = (unsigned char *) p_temp;
2980 }
2981 else
2982 p1 = p;
2983
2984 if (p1 == p) /* No register number present here */
2985 {
2986 p1 = (unsigned char *) strchr (p, ':');
2987 if (p1 == NULL)
2988 warning ("Malformed packet(a) (missing colon): %s\n\
2989 Packet: '%s'\n",
2990 p, buf);
2991 if (strncmp (p, "thread", p1 - p) == 0)
2992 {
2993 p_temp = unpack_varlen_hex (++p1, &thread_num);
2994 record_currthread (thread_num);
2995 p = (unsigned char *) p_temp;
2996 }
2997 else if ((strncmp (p, "watch", p1 - p) == 0)
2998 || (strncmp (p, "rwatch", p1 - p) == 0)
2999 || (strncmp (p, "awatch", p1 - p) == 0))
3000 {
3001 remote_stopped_by_watchpoint_p = 1;
3002 p = unpack_varlen_hex (++p1, &addr);
3003 remote_watch_data_address = (CORE_ADDR)addr;
3004 }
3005 else
3006 {
3007 /* Silently skip unknown optional info. */
3008 p_temp = strchr (p1 + 1, ';');
3009 if (p_temp)
3010 p = (unsigned char *) p_temp;
3011 }
3012 }
3013 else
3014 {
3015 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3016 p = p1;
3017
3018 if (*p++ != ':')
3019 warning ("Malformed packet(b) (missing colon): %s\n\
3020 Packet: '%s'\n",
3021 p, buf);
3022
3023 if (reg == NULL)
3024 warning ("Remote sent bad register number %s: %s\n\
3025 Packet: '%s'\n",
3026 phex_nz (pnum, 0), p, buf);
3027
3028 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3029 p += 2 * fieldsize;
3030 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3031 warning ("Remote reply is too short: %s", buf);
3032 supply_register (reg->regnum, regs);
3033 }
3034
3035 if (*p++ != ';')
3036 {
3037 warning ("Remote register badly formatted: %s", buf);
3038 warning (" here: %s", p);
3039 }
3040 }
3041 }
3042 /* fall through */
3043 case 'S': /* Old style status, just signal only */
3044 status->kind = TARGET_WAITKIND_STOPPED;
3045 status->value.sig = (enum target_signal)
3046 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3047
3048 if (buf[3] == 'p')
3049 {
3050 /* Export Cisco kernel mode as a convenience variable
3051 (so that it can be used in the GDB prompt if desired). */
3052
3053 if (cisco_kernel_mode == 1)
3054 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3055 value_from_string ("PDEBUG-"));
3056 cisco_kernel_mode = 0;
3057 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3058 record_currthread (thread_num);
3059 }
3060 else if (buf[3] == 'k')
3061 {
3062 /* Export Cisco kernel mode as a convenience variable
3063 (so that it can be used in the GDB prompt if desired). */
3064
3065 if (cisco_kernel_mode == 1)
3066 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3067 value_from_string ("KDEBUG-"));
3068 cisco_kernel_mode = 1;
3069 }
3070 goto got_status;
3071 case 'N': /* Cisco special: status and offsets */
3072 {
3073 bfd_vma text_addr, data_addr, bss_addr;
3074 bfd_signed_vma text_off, data_off, bss_off;
3075 unsigned char *p1;
3076
3077 status->kind = TARGET_WAITKIND_STOPPED;
3078 status->value.sig = (enum target_signal)
3079 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3080
3081 if (symfile_objfile == NULL)
3082 {
3083 warning ("Relocation packet received with no symbol file. \
3084 Packet Dropped");
3085 goto got_status;
3086 }
3087
3088 /* Relocate object file. Buffer format is NAATT;DD;BB
3089 * where AA is the signal number, TT is the new text
3090 * address, DD * is the new data address, and BB is the
3091 * new bss address. */
3092
3093 p = &buf[3];
3094 text_addr = strtoul (p, (char **) &p1, 16);
3095 if (p1 == p || *p1 != ';')
3096 warning ("Malformed relocation packet: Packet '%s'", buf);
3097 p = p1 + 1;
3098 data_addr = strtoul (p, (char **) &p1, 16);
3099 if (p1 == p || *p1 != ';')
3100 warning ("Malformed relocation packet: Packet '%s'", buf);
3101 p = p1 + 1;
3102 bss_addr = strtoul (p, (char **) &p1, 16);
3103 if (p1 == p)
3104 warning ("Malformed relocation packet: Packet '%s'", buf);
3105
3106 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3107 &text_off, &data_off, &bss_off)
3108 == 0)
3109 if (text_off != 0 || data_off != 0 || bss_off != 0)
3110 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3111
3112 goto got_status;
3113 }
3114 case 'W': /* Target exited */
3115 {
3116 /* The remote process exited. */
3117 status->kind = TARGET_WAITKIND_EXITED;
3118 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3119 goto got_status;
3120 }
3121 case 'X':
3122 status->kind = TARGET_WAITKIND_SIGNALLED;
3123 status->value.sig = (enum target_signal)
3124 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3125 kill_kludge = 1;
3126
3127 goto got_status;
3128 case 'O': /* Console output */
3129 remote_console_output (buf + 1);
3130 continue;
3131 case '\0':
3132 if (last_sent_signal != TARGET_SIGNAL_0)
3133 {
3134 /* Zero length reply means that we tried 'S' or 'C' and
3135 the remote system doesn't support it. */
3136 target_terminal_ours_for_output ();
3137 printf_filtered
3138 ("Can't send signals to this remote system. %s not sent.\n",
3139 target_signal_to_name (last_sent_signal));
3140 last_sent_signal = TARGET_SIGNAL_0;
3141 target_terminal_inferior ();
3142
3143 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3144 putpkt ((char *) buf);
3145 continue;
3146 }
3147 /* else fallthrough */
3148 default:
3149 warning ("Invalid remote reply: %s", buf);
3150 continue;
3151 }
3152 }
3153 got_status:
3154 if (thread_num != -1)
3155 {
3156 return pid_to_ptid (thread_num);
3157 }
3158 return inferior_ptid;
3159 }
3160
3161 /* Async version of remote_wait. */
3162 static ptid_t
3163 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3164 {
3165 struct remote_state *rs = get_remote_state ();
3166 unsigned char *buf = alloca (rs->remote_packet_size);
3167 ULONGEST thread_num = -1;
3168 ULONGEST addr;
3169
3170 status->kind = TARGET_WAITKIND_EXITED;
3171 status->value.integer = 0;
3172
3173 remote_stopped_by_watchpoint_p = 0;
3174
3175 while (1)
3176 {
3177 unsigned char *p;
3178
3179 if (!target_is_async_p ())
3180 ofunc = signal (SIGINT, remote_interrupt);
3181 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3182 _never_ wait for ever -> test on target_is_async_p().
3183 However, before we do that we need to ensure that the caller
3184 knows how to take the target into/out of async mode. */
3185 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3186 if (!target_is_async_p ())
3187 signal (SIGINT, ofunc);
3188
3189 /* This is a hook for when we need to do something (perhaps the
3190 collection of trace data) every time the target stops. */
3191 if (target_wait_loop_hook)
3192 (*target_wait_loop_hook) ();
3193
3194 switch (buf[0])
3195 {
3196 case 'E': /* Error of some sort */
3197 warning ("Remote failure reply: %s", buf);
3198 continue;
3199 case 'T': /* Status with PC, SP, FP, ... */
3200 {
3201 int i;
3202 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3203
3204 /* Expedited reply, containing Signal, {regno, reg} repeat */
3205 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3206 ss = signal number
3207 n... = register number
3208 r... = register contents
3209 */
3210 p = &buf[3]; /* after Txx */
3211
3212 while (*p)
3213 {
3214 unsigned char *p1;
3215 char *p_temp;
3216 int fieldsize;
3217 long pnum = 0;
3218
3219 /* If the packet contains a register number, save it in pnum
3220 and set p1 to point to the character following it.
3221 Otherwise p1 points to p. */
3222
3223 /* If this packet is an awatch packet, don't parse the 'a'
3224 as a register number. */
3225
3226 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3227 {
3228 /* Read the register number. */
3229 pnum = strtol (p, &p_temp, 16);
3230 p1 = (unsigned char *) p_temp;
3231 }
3232 else
3233 p1 = p;
3234
3235 if (p1 == p) /* No register number present here */
3236 {
3237 p1 = (unsigned char *) strchr (p, ':');
3238 if (p1 == NULL)
3239 warning ("Malformed packet(a) (missing colon): %s\n\
3240 Packet: '%s'\n",
3241 p, buf);
3242 if (strncmp (p, "thread", p1 - p) == 0)
3243 {
3244 p_temp = unpack_varlen_hex (++p1, &thread_num);
3245 record_currthread (thread_num);
3246 p = (unsigned char *) p_temp;
3247 }
3248 else if ((strncmp (p, "watch", p1 - p) == 0)
3249 || (strncmp (p, "rwatch", p1 - p) == 0)
3250 || (strncmp (p, "awatch", p1 - p) == 0))
3251 {
3252 remote_stopped_by_watchpoint_p = 1;
3253 p = unpack_varlen_hex (++p1, &addr);
3254 remote_watch_data_address = (CORE_ADDR)addr;
3255 }
3256 else
3257 {
3258 /* Silently skip unknown optional info. */
3259 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3260 if (p_temp)
3261 p = p_temp;
3262 }
3263 }
3264
3265 else
3266 {
3267 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3268 p = p1;
3269 if (*p++ != ':')
3270 warning ("Malformed packet(b) (missing colon): %s\n\
3271 Packet: '%s'\n",
3272 p, buf);
3273
3274 if (reg == NULL)
3275 warning ("Remote sent bad register number %ld: %s\n\
3276 Packet: '%s'\n",
3277 pnum, p, buf);
3278
3279 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3280 p += 2 * fieldsize;
3281 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3282 warning ("Remote reply is too short: %s", buf);
3283 supply_register (reg->regnum, regs);
3284 }
3285
3286 if (*p++ != ';')
3287 {
3288 warning ("Remote register badly formatted: %s", buf);
3289 warning (" here: %s", p);
3290 }
3291 }
3292 }
3293 /* fall through */
3294 case 'S': /* Old style status, just signal only */
3295 status->kind = TARGET_WAITKIND_STOPPED;
3296 status->value.sig = (enum target_signal)
3297 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3298
3299 if (buf[3] == 'p')
3300 {
3301 /* Export Cisco kernel mode as a convenience variable
3302 (so that it can be used in the GDB prompt if desired). */
3303
3304 if (cisco_kernel_mode == 1)
3305 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3306 value_from_string ("PDEBUG-"));
3307 cisco_kernel_mode = 0;
3308 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3309 record_currthread (thread_num);
3310 }
3311 else if (buf[3] == 'k')
3312 {
3313 /* Export Cisco kernel mode as a convenience variable
3314 (so that it can be used in the GDB prompt if desired). */
3315
3316 if (cisco_kernel_mode == 1)
3317 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3318 value_from_string ("KDEBUG-"));
3319 cisco_kernel_mode = 1;
3320 }
3321 goto got_status;
3322 case 'N': /* Cisco special: status and offsets */
3323 {
3324 bfd_vma text_addr, data_addr, bss_addr;
3325 bfd_signed_vma text_off, data_off, bss_off;
3326 unsigned char *p1;
3327
3328 status->kind = TARGET_WAITKIND_STOPPED;
3329 status->value.sig = (enum target_signal)
3330 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3331
3332 if (symfile_objfile == NULL)
3333 {
3334 warning ("Relocation packet recieved with no symbol file. \
3335 Packet Dropped");
3336 goto got_status;
3337 }
3338
3339 /* Relocate object file. Buffer format is NAATT;DD;BB
3340 * where AA is the signal number, TT is the new text
3341 * address, DD * is the new data address, and BB is the
3342 * new bss address. */
3343
3344 p = &buf[3];
3345 text_addr = strtoul (p, (char **) &p1, 16);
3346 if (p1 == p || *p1 != ';')
3347 warning ("Malformed relocation packet: Packet '%s'", buf);
3348 p = p1 + 1;
3349 data_addr = strtoul (p, (char **) &p1, 16);
3350 if (p1 == p || *p1 != ';')
3351 warning ("Malformed relocation packet: Packet '%s'", buf);
3352 p = p1 + 1;
3353 bss_addr = strtoul (p, (char **) &p1, 16);
3354 if (p1 == p)
3355 warning ("Malformed relocation packet: Packet '%s'", buf);
3356
3357 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3358 &text_off, &data_off, &bss_off)
3359 == 0)
3360 if (text_off != 0 || data_off != 0 || bss_off != 0)
3361 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3362
3363 goto got_status;
3364 }
3365 case 'W': /* Target exited */
3366 {
3367 /* The remote process exited. */
3368 status->kind = TARGET_WAITKIND_EXITED;
3369 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3370 goto got_status;
3371 }
3372 case 'X':
3373 status->kind = TARGET_WAITKIND_SIGNALLED;
3374 status->value.sig = (enum target_signal)
3375 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3376 kill_kludge = 1;
3377
3378 goto got_status;
3379 case 'O': /* Console output */
3380 remote_console_output (buf + 1);
3381 /* Return immediately to the event loop. The event loop will
3382 still be waiting on the inferior afterwards. */
3383 status->kind = TARGET_WAITKIND_IGNORE;
3384 goto got_status;
3385 case '\0':
3386 if (last_sent_signal != TARGET_SIGNAL_0)
3387 {
3388 /* Zero length reply means that we tried 'S' or 'C' and
3389 the remote system doesn't support it. */
3390 target_terminal_ours_for_output ();
3391 printf_filtered
3392 ("Can't send signals to this remote system. %s not sent.\n",
3393 target_signal_to_name (last_sent_signal));
3394 last_sent_signal = TARGET_SIGNAL_0;
3395 target_terminal_inferior ();
3396
3397 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3398 putpkt ((char *) buf);
3399 continue;
3400 }
3401 /* else fallthrough */
3402 default:
3403 warning ("Invalid remote reply: %s", buf);
3404 continue;
3405 }
3406 }
3407 got_status:
3408 if (thread_num != -1)
3409 {
3410 return pid_to_ptid (thread_num);
3411 }
3412 return inferior_ptid;
3413 }
3414
3415 /* Number of bytes of registers this stub implements. */
3416
3417 static int register_bytes_found;
3418
3419 /* Read the remote registers into the block REGS. */
3420 /* Currently we just read all the registers, so we don't use regnum. */
3421
3422 /* ARGSUSED */
3423 static void
3424 remote_fetch_registers (int regnum)
3425 {
3426 struct remote_state *rs = get_remote_state ();
3427 char *buf = alloca (rs->remote_packet_size);
3428 int i;
3429 char *p;
3430 char *regs = alloca (rs->sizeof_g_packet);
3431
3432 set_thread (PIDGET (inferior_ptid), 1);
3433
3434 if (regnum >= 0)
3435 {
3436 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3437 gdb_assert (reg != NULL);
3438 if (!reg->in_g_packet)
3439 internal_error (__FILE__, __LINE__,
3440 "Attempt to fetch a non G-packet register when this "
3441 "remote.c does not support the p-packet.");
3442 }
3443
3444 sprintf (buf, "g");
3445 remote_send (buf, (rs->remote_packet_size));
3446
3447 /* Save the size of the packet sent to us by the target. Its used
3448 as a heuristic when determining the max size of packets that the
3449 target can safely receive. */
3450 if ((rs->actual_register_packet_size) == 0)
3451 (rs->actual_register_packet_size) = strlen (buf);
3452
3453 /* Unimplemented registers read as all bits zero. */
3454 memset (regs, 0, rs->sizeof_g_packet);
3455
3456 /* We can get out of synch in various cases. If the first character
3457 in the buffer is not a hex character, assume that has happened
3458 and try to fetch another packet to read. */
3459 while ((buf[0] < '0' || buf[0] > '9')
3460 && (buf[0] < 'a' || buf[0] > 'f')
3461 && buf[0] != 'x') /* New: unavailable register value */
3462 {
3463 if (remote_debug)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "Bad register packet; fetching a new packet\n");
3466 getpkt (buf, (rs->remote_packet_size), 0);
3467 }
3468
3469 /* Reply describes registers byte by byte, each byte encoded as two
3470 hex characters. Suck them all up, then supply them to the
3471 register cacheing/storage mechanism. */
3472
3473 p = buf;
3474 for (i = 0; i < rs->sizeof_g_packet; i++)
3475 {
3476 if (p[0] == 0)
3477 break;
3478 if (p[1] == 0)
3479 {
3480 warning ("Remote reply is of odd length: %s", buf);
3481 /* Don't change register_bytes_found in this case, and don't
3482 print a second warning. */
3483 goto supply_them;
3484 }
3485 if (p[0] == 'x' && p[1] == 'x')
3486 regs[i] = 0; /* 'x' */
3487 else
3488 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3489 p += 2;
3490 }
3491
3492 if (i != register_bytes_found)
3493 {
3494 register_bytes_found = i;
3495 if (REGISTER_BYTES_OK_P ()
3496 && !REGISTER_BYTES_OK (i))
3497 warning ("Remote reply is too short: %s", buf);
3498 }
3499
3500 supply_them:
3501 {
3502 int i;
3503 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3504 {
3505 struct packet_reg *r = &rs->regs[i];
3506 if (r->in_g_packet)
3507 {
3508 supply_register (r->regnum, regs + r->offset);
3509 if (buf[r->offset * 2] == 'x')
3510 set_register_cached (i, -1);
3511 }
3512 }
3513 }
3514 }
3515
3516 /* Prepare to store registers. Since we may send them all (using a
3517 'G' request), we have to read out the ones we don't want to change
3518 first. */
3519
3520 static void
3521 remote_prepare_to_store (void)
3522 {
3523 /* Make sure the entire registers array is valid. */
3524 switch (remote_protocol_P.support)
3525 {
3526 case PACKET_DISABLE:
3527 case PACKET_SUPPORT_UNKNOWN:
3528 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3529 forcing the register cache to read its and not the target
3530 registers. */
3531 deprecated_read_register_bytes (0, (char *) NULL,
3532 REGISTER_BYTES); /* OK use. */
3533 break;
3534 case PACKET_ENABLE:
3535 break;
3536 }
3537 }
3538
3539 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3540 packet was not recognized. */
3541
3542 static int
3543 store_register_using_P (int regnum)
3544 {
3545 struct remote_state *rs = get_remote_state ();
3546 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3547 /* Try storing a single register. */
3548 char *buf = alloca (rs->remote_packet_size);
3549 char *regp = alloca (MAX_REGISTER_RAW_SIZE);
3550 char *p;
3551 int i;
3552
3553 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3554 p = buf + strlen (buf);
3555 regcache_collect (reg->regnum, regp);
3556 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3557 remote_send (buf, rs->remote_packet_size);
3558
3559 return buf[0] != '\0';
3560 }
3561
3562
3563 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3564 of the register cache buffer. FIXME: ignores errors. */
3565
3566 static void
3567 remote_store_registers (int regnum)
3568 {
3569 struct remote_state *rs = get_remote_state ();
3570 char *buf;
3571 char *regs;
3572 int i;
3573 char *p;
3574
3575 set_thread (PIDGET (inferior_ptid), 1);
3576
3577 if (regnum >= 0)
3578 {
3579 switch (remote_protocol_P.support)
3580 {
3581 case PACKET_DISABLE:
3582 break;
3583 case PACKET_ENABLE:
3584 if (store_register_using_P (regnum))
3585 return;
3586 else
3587 error ("Protocol error: P packet not recognized by stub");
3588 case PACKET_SUPPORT_UNKNOWN:
3589 if (store_register_using_P (regnum))
3590 {
3591 /* The stub recognized the 'P' packet. Remember this. */
3592 remote_protocol_P.support = PACKET_ENABLE;
3593 return;
3594 }
3595 else
3596 {
3597 /* The stub does not support the 'P' packet. Use 'G'
3598 instead, and don't try using 'P' in the future (it
3599 will just waste our time). */
3600 remote_protocol_P.support = PACKET_DISABLE;
3601 break;
3602 }
3603 }
3604 }
3605
3606 /* Extract all the registers in the regcache copying them into a
3607 local buffer. */
3608 {
3609 int i;
3610 regs = alloca (rs->sizeof_g_packet);
3611 memset (regs, rs->sizeof_g_packet, 0);
3612 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3613 {
3614 struct packet_reg *r = &rs->regs[i];
3615 if (r->in_g_packet)
3616 regcache_collect (r->regnum, regs + r->offset);
3617 }
3618 }
3619
3620 /* Command describes registers byte by byte,
3621 each byte encoded as two hex characters. */
3622 buf = alloca (rs->remote_packet_size);
3623 p = buf;
3624 *p++ = 'G';
3625 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3626 bin2hex (regs, p, register_bytes_found);
3627 remote_send (buf, (rs->remote_packet_size));
3628 }
3629 \f
3630
3631 /* Return the number of hex digits in num. */
3632
3633 static int
3634 hexnumlen (ULONGEST num)
3635 {
3636 int i;
3637
3638 for (i = 0; num != 0; i++)
3639 num >>= 4;
3640
3641 return max (i, 1);
3642 }
3643
3644 /* Set BUF to the minimum number of hex digits representing NUM. */
3645
3646 static int
3647 hexnumstr (char *buf, ULONGEST num)
3648 {
3649 int len = hexnumlen (num);
3650 return hexnumnstr (buf, num, len);
3651 }
3652
3653
3654 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3655
3656 static int
3657 hexnumnstr (char *buf, ULONGEST num, int width)
3658 {
3659 int i;
3660
3661 buf[width] = '\0';
3662
3663 for (i = width - 1; i >= 0; i--)
3664 {
3665 buf[i] = "0123456789abcdef"[(num & 0xf)];
3666 num >>= 4;
3667 }
3668
3669 return width;
3670 }
3671
3672 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3673
3674 static CORE_ADDR
3675 remote_address_masked (CORE_ADDR addr)
3676 {
3677 if (remote_address_size > 0
3678 && remote_address_size < (sizeof (ULONGEST) * 8))
3679 {
3680 /* Only create a mask when that mask can safely be constructed
3681 in a ULONGEST variable. */
3682 ULONGEST mask = 1;
3683 mask = (mask << remote_address_size) - 1;
3684 addr &= mask;
3685 }
3686 return addr;
3687 }
3688
3689 /* Determine whether the remote target supports binary downloading.
3690 This is accomplished by sending a no-op memory write of zero length
3691 to the target at the specified address. It does not suffice to send
3692 the whole packet, since many stubs strip the eighth bit and subsequently
3693 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3694
3695 NOTE: This can still lose if the serial line is not eight-bit
3696 clean. In cases like this, the user should clear "remote
3697 X-packet". */
3698
3699 static void
3700 check_binary_download (CORE_ADDR addr)
3701 {
3702 struct remote_state *rs = get_remote_state ();
3703 switch (remote_protocol_binary_download.support)
3704 {
3705 case PACKET_DISABLE:
3706 break;
3707 case PACKET_ENABLE:
3708 break;
3709 case PACKET_SUPPORT_UNKNOWN:
3710 {
3711 char *buf = alloca (rs->remote_packet_size);
3712 char *p;
3713
3714 p = buf;
3715 *p++ = 'X';
3716 p += hexnumstr (p, (ULONGEST) addr);
3717 *p++ = ',';
3718 p += hexnumstr (p, (ULONGEST) 0);
3719 *p++ = ':';
3720 *p = '\0';
3721
3722 putpkt_binary (buf, (int) (p - buf));
3723 getpkt (buf, (rs->remote_packet_size), 0);
3724
3725 if (buf[0] == '\0')
3726 {
3727 if (remote_debug)
3728 fprintf_unfiltered (gdb_stdlog,
3729 "binary downloading NOT suppported by target\n");
3730 remote_protocol_binary_download.support = PACKET_DISABLE;
3731 }
3732 else
3733 {
3734 if (remote_debug)
3735 fprintf_unfiltered (gdb_stdlog,
3736 "binary downloading suppported by target\n");
3737 remote_protocol_binary_download.support = PACKET_ENABLE;
3738 }
3739 break;
3740 }
3741 }
3742 }
3743
3744 /* Write memory data directly to the remote machine.
3745 This does not inform the data cache; the data cache uses this.
3746 MEMADDR is the address in the remote memory space.
3747 MYADDR is the address of the buffer in our space.
3748 LEN is the number of bytes.
3749
3750 Returns number of bytes transferred, or 0 (setting errno) for
3751 error. Only transfer a single packet. */
3752
3753 static int
3754 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3755 {
3756 unsigned char *buf;
3757 int max_buf_size; /* Max size of packet output buffer */
3758 unsigned char *p;
3759 unsigned char *plen;
3760 long sizeof_buf;
3761 int plenlen;
3762 int todo;
3763 int nr_bytes;
3764
3765 /* Verify that the target can support a binary download */
3766 check_binary_download (memaddr);
3767
3768 /* Determine the max packet size. */
3769 max_buf_size = get_memory_write_packet_size ();
3770 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3771 buf = alloca (sizeof_buf);
3772
3773 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3774 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3775
3776 /* construct "M"<memaddr>","<len>":" */
3777 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3778 p = buf;
3779
3780 /* Append [XM]. Compute a best guess of the number of bytes
3781 actually transfered. */
3782 switch (remote_protocol_binary_download.support)
3783 {
3784 case PACKET_ENABLE:
3785 *p++ = 'X';
3786 /* Best guess at number of bytes that will fit. */
3787 todo = min (len, max_buf_size);
3788 break;
3789 case PACKET_DISABLE:
3790 *p++ = 'M';
3791 /* num bytes that will fit */
3792 todo = min (len, max_buf_size / 2);
3793 break;
3794 case PACKET_SUPPORT_UNKNOWN:
3795 internal_error (__FILE__, __LINE__,
3796 "remote_write_bytes: bad internal state");
3797 default:
3798 internal_error (__FILE__, __LINE__, "bad switch");
3799 }
3800
3801 /* Append <memaddr> */
3802 memaddr = remote_address_masked (memaddr);
3803 p += hexnumstr (p, (ULONGEST) memaddr);
3804 *p++ = ',';
3805
3806 /* Append <len>. Retain the location/size of <len>. It may
3807 need to be adjusted once the packet body has been created. */
3808 plen = p;
3809 plenlen = hexnumstr (p, (ULONGEST) todo);
3810 p += plenlen;
3811 *p++ = ':';
3812 *p = '\0';
3813
3814 /* Append the packet body. */
3815 switch (remote_protocol_binary_download.support)
3816 {
3817 case PACKET_ENABLE:
3818 /* Binary mode. Send target system values byte by byte, in
3819 increasing byte addresses. Only escape certain critical
3820 characters. */
3821 for (nr_bytes = 0;
3822 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3823 nr_bytes++)
3824 {
3825 switch (myaddr[nr_bytes] & 0xff)
3826 {
3827 case '$':
3828 case '#':
3829 case 0x7d:
3830 /* These must be escaped */
3831 *p++ = 0x7d;
3832 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3833 break;
3834 default:
3835 *p++ = myaddr[nr_bytes] & 0xff;
3836 break;
3837 }
3838 }
3839 if (nr_bytes < todo)
3840 {
3841 /* Escape chars have filled up the buffer prematurely,
3842 and we have actually sent fewer bytes than planned.
3843 Fix-up the length field of the packet. Use the same
3844 number of characters as before. */
3845
3846 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3847 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3848 }
3849 break;
3850 case PACKET_DISABLE:
3851 /* Normal mode: Send target system values byte by byte, in
3852 increasing byte addresses. Each byte is encoded as a two hex
3853 value. */
3854 nr_bytes = bin2hex (myaddr, p, todo);
3855 p += 2 * nr_bytes;
3856 break;
3857 case PACKET_SUPPORT_UNKNOWN:
3858 internal_error (__FILE__, __LINE__,
3859 "remote_write_bytes: bad internal state");
3860 default:
3861 internal_error (__FILE__, __LINE__, "bad switch");
3862 }
3863
3864 putpkt_binary (buf, (int) (p - buf));
3865 getpkt (buf, sizeof_buf, 0);
3866
3867 if (buf[0] == 'E')
3868 {
3869 /* There is no correspondance between what the remote protocol
3870 uses for errors and errno codes. We would like a cleaner way
3871 of representing errors (big enough to include errno codes,
3872 bfd_error codes, and others). But for now just return EIO. */
3873 errno = EIO;
3874 return 0;
3875 }
3876
3877 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3878 bytes than we'd planned. */
3879 return nr_bytes;
3880 }
3881
3882 /* Read memory data directly from the remote machine.
3883 This does not use the data cache; the data cache uses this.
3884 MEMADDR is the address in the remote memory space.
3885 MYADDR is the address of the buffer in our space.
3886 LEN is the number of bytes.
3887
3888 Returns number of bytes transferred, or 0 for error. */
3889
3890 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3891 remote targets) shouldn't attempt to read the entire buffer.
3892 Instead it should read a single packet worth of data and then
3893 return the byte size of that packet to the caller. The caller (its
3894 caller and its callers caller ;-) already contains code for
3895 handling partial reads. */
3896
3897 static int
3898 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3899 {
3900 char *buf;
3901 int max_buf_size; /* Max size of packet output buffer */
3902 long sizeof_buf;
3903 int origlen;
3904
3905 /* Create a buffer big enough for this packet. */
3906 max_buf_size = get_memory_read_packet_size ();
3907 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3908 buf = alloca (sizeof_buf);
3909
3910 origlen = len;
3911 while (len > 0)
3912 {
3913 char *p;
3914 int todo;
3915 int i;
3916
3917 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3918
3919 /* construct "m"<memaddr>","<len>" */
3920 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3921 memaddr = remote_address_masked (memaddr);
3922 p = buf;
3923 *p++ = 'm';
3924 p += hexnumstr (p, (ULONGEST) memaddr);
3925 *p++ = ',';
3926 p += hexnumstr (p, (ULONGEST) todo);
3927 *p = '\0';
3928
3929 putpkt (buf);
3930 getpkt (buf, sizeof_buf, 0);
3931
3932 if (buf[0] == 'E'
3933 && isxdigit (buf[1]) && isxdigit (buf[2])
3934 && buf[3] == '\0')
3935 {
3936 /* There is no correspondance between what the remote protocol uses
3937 for errors and errno codes. We would like a cleaner way of
3938 representing errors (big enough to include errno codes, bfd_error
3939 codes, and others). But for now just return EIO. */
3940 errno = EIO;
3941 return 0;
3942 }
3943
3944 /* Reply describes memory byte by byte,
3945 each byte encoded as two hex characters. */
3946
3947 p = buf;
3948 if ((i = hex2bin (p, myaddr, todo)) < todo)
3949 {
3950 /* Reply is short. This means that we were able to read
3951 only part of what we wanted to. */
3952 return i + (origlen - len);
3953 }
3954 myaddr += todo;
3955 memaddr += todo;
3956 len -= todo;
3957 }
3958 return origlen;
3959 }
3960 \f
3961 /* Read or write LEN bytes from inferior memory at MEMADDR,
3962 transferring to or from debugger address BUFFER. Write to inferior if
3963 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3964 for error. TARGET is unused. */
3965
3966 /* ARGSUSED */
3967 static int
3968 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3969 int should_write, struct mem_attrib *attrib,
3970 struct target_ops *target)
3971 {
3972 CORE_ADDR targ_addr;
3973 int targ_len;
3974 int res;
3975
3976 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3977 if (targ_len <= 0)
3978 return 0;
3979
3980 if (should_write)
3981 res = remote_write_bytes (targ_addr, buffer, targ_len);
3982 else
3983 res = remote_read_bytes (targ_addr, buffer, targ_len);
3984
3985 return res;
3986 }
3987
3988
3989 #if 0
3990 /* Enable after 4.12. */
3991
3992 void
3993 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3994 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3995 CORE_ADDR *addr_found, char *data_found)
3996 {
3997 if (increment == -4 && len == 4)
3998 {
3999 long mask_long, data_long;
4000 long data_found_long;
4001 CORE_ADDR addr_we_found;
4002 char *buf = alloca (rs->remote_packet_size);
4003 long returned_long[2];
4004 char *p;
4005
4006 mask_long = extract_unsigned_integer (mask, len);
4007 data_long = extract_unsigned_integer (data, len);
4008 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4009 putpkt (buf);
4010 getpkt (buf, (rs->remote_packet_size), 0);
4011 if (buf[0] == '\0')
4012 {
4013 /* The stub doesn't support the 't' request. We might want to
4014 remember this fact, but on the other hand the stub could be
4015 switched on us. Maybe we should remember it only until
4016 the next "target remote". */
4017 generic_search (len, data, mask, startaddr, increment, lorange,
4018 hirange, addr_found, data_found);
4019 return;
4020 }
4021
4022 if (buf[0] == 'E')
4023 /* There is no correspondance between what the remote protocol uses
4024 for errors and errno codes. We would like a cleaner way of
4025 representing errors (big enough to include errno codes, bfd_error
4026 codes, and others). But for now just use EIO. */
4027 memory_error (EIO, startaddr);
4028 p = buf;
4029 addr_we_found = 0;
4030 while (*p != '\0' && *p != ',')
4031 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4032 if (*p == '\0')
4033 error ("Protocol error: short return for search");
4034
4035 data_found_long = 0;
4036 while (*p != '\0' && *p != ',')
4037 data_found_long = (data_found_long << 4) + fromhex (*p++);
4038 /* Ignore anything after this comma, for future extensions. */
4039
4040 if (addr_we_found < lorange || addr_we_found >= hirange)
4041 {
4042 *addr_found = 0;
4043 return;
4044 }
4045
4046 *addr_found = addr_we_found;
4047 *data_found = store_unsigned_integer (data_we_found, len);
4048 return;
4049 }
4050 generic_search (len, data, mask, startaddr, increment, lorange,
4051 hirange, addr_found, data_found);
4052 }
4053 #endif /* 0 */
4054 \f
4055 static void
4056 remote_files_info (struct target_ops *ignore)
4057 {
4058 puts_filtered ("Debugging a target over a serial line.\n");
4059 }
4060 \f
4061 /* Stuff for dealing with the packets which are part of this protocol.
4062 See comment at top of file for details. */
4063
4064 /* Read a single character from the remote end, masking it down to 7 bits. */
4065
4066 static int
4067 readchar (int timeout)
4068 {
4069 int ch;
4070
4071 ch = serial_readchar (remote_desc, timeout);
4072
4073 if (ch >= 0)
4074 return (ch & 0x7f);
4075
4076 switch ((enum serial_rc) ch)
4077 {
4078 case SERIAL_EOF:
4079 target_mourn_inferior ();
4080 error ("Remote connection closed");
4081 /* no return */
4082 case SERIAL_ERROR:
4083 perror_with_name ("Remote communication error");
4084 /* no return */
4085 case SERIAL_TIMEOUT:
4086 break;
4087 }
4088 return ch;
4089 }
4090
4091 /* Send the command in BUF to the remote machine, and read the reply
4092 into BUF. Report an error if we get an error reply. */
4093
4094 static void
4095 remote_send (char *buf,
4096 long sizeof_buf)
4097 {
4098 putpkt (buf);
4099 getpkt (buf, sizeof_buf, 0);
4100
4101 if (buf[0] == 'E')
4102 error ("Remote failure reply: %s", buf);
4103 }
4104
4105 /* Display a null-terminated packet on stdout, for debugging, using C
4106 string notation. */
4107
4108 static void
4109 print_packet (char *buf)
4110 {
4111 puts_filtered ("\"");
4112 fputstr_filtered (buf, '"', gdb_stdout);
4113 puts_filtered ("\"");
4114 }
4115
4116 int
4117 putpkt (char *buf)
4118 {
4119 return putpkt_binary (buf, strlen (buf));
4120 }
4121
4122 /* Send a packet to the remote machine, with error checking. The data
4123 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4124 to account for the $, # and checksum, and for a possible /0 if we are
4125 debugging (remote_debug) and want to print the sent packet as a string */
4126
4127 static int
4128 putpkt_binary (char *buf, int cnt)
4129 {
4130 struct remote_state *rs = get_remote_state ();
4131 int i;
4132 unsigned char csum = 0;
4133 char *buf2 = alloca (cnt + 6);
4134 long sizeof_junkbuf = (rs->remote_packet_size);
4135 char *junkbuf = alloca (sizeof_junkbuf);
4136
4137 int ch;
4138 int tcount = 0;
4139 char *p;
4140
4141 /* Copy the packet into buffer BUF2, encapsulating it
4142 and giving it a checksum. */
4143
4144 p = buf2;
4145 *p++ = '$';
4146
4147 for (i = 0; i < cnt; i++)
4148 {
4149 csum += buf[i];
4150 *p++ = buf[i];
4151 }
4152 *p++ = '#';
4153 *p++ = tohex ((csum >> 4) & 0xf);
4154 *p++ = tohex (csum & 0xf);
4155
4156 /* Send it over and over until we get a positive ack. */
4157
4158 while (1)
4159 {
4160 int started_error_output = 0;
4161
4162 if (remote_debug)
4163 {
4164 *p = '\0';
4165 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4166 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4167 fprintf_unfiltered (gdb_stdlog, "...");
4168 gdb_flush (gdb_stdlog);
4169 }
4170 if (serial_write (remote_desc, buf2, p - buf2))
4171 perror_with_name ("putpkt: write failed");
4172
4173 /* read until either a timeout occurs (-2) or '+' is read */
4174 while (1)
4175 {
4176 ch = readchar (remote_timeout);
4177
4178 if (remote_debug)
4179 {
4180 switch (ch)
4181 {
4182 case '+':
4183 case '-':
4184 case SERIAL_TIMEOUT:
4185 case '$':
4186 if (started_error_output)
4187 {
4188 putchar_unfiltered ('\n');
4189 started_error_output = 0;
4190 }
4191 }
4192 }
4193
4194 switch (ch)
4195 {
4196 case '+':
4197 if (remote_debug)
4198 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4199 return 1;
4200 case '-':
4201 if (remote_debug)
4202 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4203 case SERIAL_TIMEOUT:
4204 tcount++;
4205 if (tcount > 3)
4206 return 0;
4207 break; /* Retransmit buffer */
4208 case '$':
4209 {
4210 if (remote_debug)
4211 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4212 /* It's probably an old response, and we're out of sync.
4213 Just gobble up the packet and ignore it. */
4214 read_frame (junkbuf, sizeof_junkbuf);
4215 continue; /* Now, go look for + */
4216 }
4217 default:
4218 if (remote_debug)
4219 {
4220 if (!started_error_output)
4221 {
4222 started_error_output = 1;
4223 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4224 }
4225 fputc_unfiltered (ch & 0177, gdb_stdlog);
4226 }
4227 continue;
4228 }
4229 break; /* Here to retransmit */
4230 }
4231
4232 #if 0
4233 /* This is wrong. If doing a long backtrace, the user should be
4234 able to get out next time we call QUIT, without anything as
4235 violent as interrupt_query. If we want to provide a way out of
4236 here without getting to the next QUIT, it should be based on
4237 hitting ^C twice as in remote_wait. */
4238 if (quit_flag)
4239 {
4240 quit_flag = 0;
4241 interrupt_query ();
4242 }
4243 #endif
4244 }
4245 }
4246
4247 static int remote_cisco_mode;
4248
4249 /* Come here after finding the start of the frame. Collect the rest
4250 into BUF, verifying the checksum, length, and handling run-length
4251 compression. No more than sizeof_buf-1 characters are read so that
4252 the buffer can be NUL terminated.
4253
4254 Returns -1 on error, number of characters in buffer (ignoring the
4255 trailing NULL) on success. (could be extended to return one of the
4256 SERIAL status indications). */
4257
4258 static long
4259 read_frame (char *buf,
4260 long sizeof_buf)
4261 {
4262 unsigned char csum;
4263 long bc;
4264 int c;
4265
4266 csum = 0;
4267 bc = 0;
4268
4269 while (1)
4270 {
4271 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4272 c = readchar (remote_timeout);
4273 switch (c)
4274 {
4275 case SERIAL_TIMEOUT:
4276 if (remote_debug)
4277 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4278 return -1;
4279 case '$':
4280 if (remote_debug)
4281 fputs_filtered ("Saw new packet start in middle of old one\n",
4282 gdb_stdlog);
4283 return -1; /* Start a new packet, count retries */
4284 case '#':
4285 {
4286 unsigned char pktcsum;
4287 int check_0 = 0;
4288 int check_1 = 0;
4289
4290 buf[bc] = '\0';
4291
4292 check_0 = readchar (remote_timeout);
4293 if (check_0 >= 0)
4294 check_1 = readchar (remote_timeout);
4295
4296 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4297 {
4298 if (remote_debug)
4299 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4300 return -1;
4301 }
4302 else if (check_0 < 0 || check_1 < 0)
4303 {
4304 if (remote_debug)
4305 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4306 return -1;
4307 }
4308
4309 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4310 if (csum == pktcsum)
4311 return bc;
4312
4313 if (remote_debug)
4314 {
4315 fprintf_filtered (gdb_stdlog,
4316 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4317 pktcsum, csum);
4318 fputs_filtered (buf, gdb_stdlog);
4319 fputs_filtered ("\n", gdb_stdlog);
4320 }
4321 /* Number of characters in buffer ignoring trailing
4322 NUL. */
4323 return -1;
4324 }
4325 case '*': /* Run length encoding */
4326 {
4327 int repeat;
4328 csum += c;
4329
4330 if (remote_cisco_mode == 0)
4331 {
4332 c = readchar (remote_timeout);
4333 csum += c;
4334 repeat = c - ' ' + 3; /* Compute repeat count */
4335 }
4336 else
4337 {
4338 /* Cisco's run-length encoding variant uses two
4339 hex chars to represent the repeat count. */
4340
4341 c = readchar (remote_timeout);
4342 csum += c;
4343 repeat = fromhex (c) << 4;
4344 c = readchar (remote_timeout);
4345 csum += c;
4346 repeat += fromhex (c);
4347 }
4348
4349 /* The character before ``*'' is repeated. */
4350
4351 if (repeat > 0 && repeat <= 255
4352 && bc > 0
4353 && bc + repeat - 1 < sizeof_buf - 1)
4354 {
4355 memset (&buf[bc], buf[bc - 1], repeat);
4356 bc += repeat;
4357 continue;
4358 }
4359
4360 buf[bc] = '\0';
4361 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4362 puts_filtered (buf);
4363 puts_filtered ("\n");
4364 return -1;
4365 }
4366 default:
4367 if (bc < sizeof_buf - 1)
4368 {
4369 buf[bc++] = c;
4370 csum += c;
4371 continue;
4372 }
4373
4374 buf[bc] = '\0';
4375 puts_filtered ("Remote packet too long: ");
4376 puts_filtered (buf);
4377 puts_filtered ("\n");
4378
4379 return -1;
4380 }
4381 }
4382 }
4383
4384 /* Read a packet from the remote machine, with error checking, and
4385 store it in BUF. If FOREVER, wait forever rather than timing out;
4386 this is used (in synchronous mode) to wait for a target that is is
4387 executing user code to stop. */
4388 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4389 don't have to change all the calls to getpkt to deal with the
4390 return value, because at the moment I don't know what the right
4391 thing to do it for those. */
4392 void
4393 getpkt (char *buf,
4394 long sizeof_buf,
4395 int forever)
4396 {
4397 int timed_out;
4398
4399 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4400 }
4401
4402
4403 /* Read a packet from the remote machine, with error checking, and
4404 store it in BUF. If FOREVER, wait forever rather than timing out;
4405 this is used (in synchronous mode) to wait for a target that is is
4406 executing user code to stop. If FOREVER == 0, this function is
4407 allowed to time out gracefully and return an indication of this to
4408 the caller. */
4409 static int
4410 getpkt_sane (char *buf,
4411 long sizeof_buf,
4412 int forever)
4413 {
4414 int c;
4415 int tries;
4416 int timeout;
4417 int val;
4418
4419 strcpy (buf, "timeout");
4420
4421 if (forever)
4422 {
4423 timeout = watchdog > 0 ? watchdog : -1;
4424 }
4425
4426 else
4427 timeout = remote_timeout;
4428
4429 #define MAX_TRIES 3
4430
4431 for (tries = 1; tries <= MAX_TRIES; tries++)
4432 {
4433 /* This can loop forever if the remote side sends us characters
4434 continuously, but if it pauses, we'll get a zero from readchar
4435 because of timeout. Then we'll count that as a retry. */
4436
4437 /* Note that we will only wait forever prior to the start of a packet.
4438 After that, we expect characters to arrive at a brisk pace. They
4439 should show up within remote_timeout intervals. */
4440
4441 do
4442 {
4443 c = readchar (timeout);
4444
4445 if (c == SERIAL_TIMEOUT)
4446 {
4447 if (forever) /* Watchdog went off? Kill the target. */
4448 {
4449 QUIT;
4450 target_mourn_inferior ();
4451 error ("Watchdog has expired. Target detached.\n");
4452 }
4453 if (remote_debug)
4454 fputs_filtered ("Timed out.\n", gdb_stdlog);
4455 goto retry;
4456 }
4457 }
4458 while (c != '$');
4459
4460 /* We've found the start of a packet, now collect the data. */
4461
4462 val = read_frame (buf, sizeof_buf);
4463
4464 if (val >= 0)
4465 {
4466 if (remote_debug)
4467 {
4468 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4469 fputstr_unfiltered (buf, 0, gdb_stdlog);
4470 fprintf_unfiltered (gdb_stdlog, "\n");
4471 }
4472 serial_write (remote_desc, "+", 1);
4473 return 0;
4474 }
4475
4476 /* Try the whole thing again. */
4477 retry:
4478 serial_write (remote_desc, "-", 1);
4479 }
4480
4481 /* We have tried hard enough, and just can't receive the packet. Give up. */
4482
4483 printf_unfiltered ("Ignoring packet error, continuing...\n");
4484 serial_write (remote_desc, "+", 1);
4485 return 1;
4486 }
4487 \f
4488 static void
4489 remote_kill (void)
4490 {
4491 /* For some mysterious reason, wait_for_inferior calls kill instead of
4492 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4493 if (kill_kludge)
4494 {
4495 kill_kludge = 0;
4496 target_mourn_inferior ();
4497 return;
4498 }
4499
4500 /* Use catch_errors so the user can quit from gdb even when we aren't on
4501 speaking terms with the remote system. */
4502 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4503
4504 /* Don't wait for it to die. I'm not really sure it matters whether
4505 we do or not. For the existing stubs, kill is a noop. */
4506 target_mourn_inferior ();
4507 }
4508
4509 /* Async version of remote_kill. */
4510 static void
4511 remote_async_kill (void)
4512 {
4513 /* Unregister the file descriptor from the event loop. */
4514 if (target_is_async_p ())
4515 serial_async (remote_desc, NULL, 0);
4516
4517 /* For some mysterious reason, wait_for_inferior calls kill instead of
4518 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4519 if (kill_kludge)
4520 {
4521 kill_kludge = 0;
4522 target_mourn_inferior ();
4523 return;
4524 }
4525
4526 /* Use catch_errors so the user can quit from gdb even when we aren't on
4527 speaking terms with the remote system. */
4528 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4529
4530 /* Don't wait for it to die. I'm not really sure it matters whether
4531 we do or not. For the existing stubs, kill is a noop. */
4532 target_mourn_inferior ();
4533 }
4534
4535 static void
4536 remote_mourn (void)
4537 {
4538 remote_mourn_1 (&remote_ops);
4539 }
4540
4541 static void
4542 remote_async_mourn (void)
4543 {
4544 remote_mourn_1 (&remote_async_ops);
4545 }
4546
4547 static void
4548 extended_remote_mourn (void)
4549 {
4550 /* We do _not_ want to mourn the target like this; this will
4551 remove the extended remote target from the target stack,
4552 and the next time the user says "run" it'll fail.
4553
4554 FIXME: What is the right thing to do here? */
4555 #if 0
4556 remote_mourn_1 (&extended_remote_ops);
4557 #endif
4558 }
4559
4560 /* Worker function for remote_mourn. */
4561 static void
4562 remote_mourn_1 (struct target_ops *target)
4563 {
4564 unpush_target (target);
4565 generic_mourn_inferior ();
4566 }
4567
4568 /* In the extended protocol we want to be able to do things like
4569 "run" and have them basically work as expected. So we need
4570 a special create_inferior function.
4571
4572 FIXME: One day add support for changing the exec file
4573 we're debugging, arguments and an environment. */
4574
4575 static void
4576 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4577 {
4578 /* Rip out the breakpoints; we'll reinsert them after restarting
4579 the remote server. */
4580 remove_breakpoints ();
4581
4582 /* Now restart the remote server. */
4583 extended_remote_restart ();
4584
4585 /* Now put the breakpoints back in. This way we're safe if the
4586 restart function works via a unix fork on the remote side. */
4587 insert_breakpoints ();
4588
4589 /* Clean up from the last time we were running. */
4590 clear_proceed_status ();
4591
4592 /* Let the remote process run. */
4593 proceed (-1, TARGET_SIGNAL_0, 0);
4594 }
4595
4596 /* Async version of extended_remote_create_inferior. */
4597 static void
4598 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4599 {
4600 /* Rip out the breakpoints; we'll reinsert them after restarting
4601 the remote server. */
4602 remove_breakpoints ();
4603
4604 /* If running asynchronously, register the target file descriptor
4605 with the event loop. */
4606 if (event_loop_p && target_can_async_p ())
4607 target_async (inferior_event_handler, 0);
4608
4609 /* Now restart the remote server. */
4610 extended_remote_restart ();
4611
4612 /* Now put the breakpoints back in. This way we're safe if the
4613 restart function works via a unix fork on the remote side. */
4614 insert_breakpoints ();
4615
4616 /* Clean up from the last time we were running. */
4617 clear_proceed_status ();
4618
4619 /* Let the remote process run. */
4620 proceed (-1, TARGET_SIGNAL_0, 0);
4621 }
4622 \f
4623
4624 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4625 than other targets; in those use REMOTE_BREAKPOINT instead of just
4626 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4627 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4628 the standard routines that are in mem-break.c. */
4629
4630 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4631 the choice of breakpoint instruction affects target program design and
4632 vice versa, and by making it user-tweakable, the special code here
4633 goes away and we need fewer special GDB configurations. */
4634
4635 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4636 #define REMOTE_BREAKPOINT
4637 #endif
4638
4639 #ifdef REMOTE_BREAKPOINT
4640
4641 /* If the target isn't bi-endian, just pretend it is. */
4642 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4643 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4644 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4645 #endif
4646
4647 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4648 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4649
4650 #endif /* REMOTE_BREAKPOINT */
4651
4652 /* Insert a breakpoint on targets that don't have any better breakpoint
4653 support. We read the contents of the target location and stash it,
4654 then overwrite it with a breakpoint instruction. ADDR is the target
4655 location in the target machine. CONTENTS_CACHE is a pointer to
4656 memory allocated for saving the target contents. It is guaranteed
4657 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4658 is accomplished via BREAKPOINT_MAX). */
4659
4660 static int
4661 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4662 {
4663 struct remote_state *rs = get_remote_state ();
4664 #ifdef REMOTE_BREAKPOINT
4665 int val;
4666 #endif
4667 int bp_size;
4668
4669 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4670 If it succeeds, then set the support to PACKET_ENABLE. If it
4671 fails, and the user has explicitly requested the Z support then
4672 report an error, otherwise, mark it disabled and go on. */
4673
4674 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4675 {
4676 char *buf = alloca (rs->remote_packet_size);
4677 char *p = buf;
4678
4679 addr = remote_address_masked (addr);
4680 *(p++) = 'Z';
4681 *(p++) = '0';
4682 *(p++) = ',';
4683 p += hexnumstr (p, (ULONGEST) addr);
4684 BREAKPOINT_FROM_PC (&addr, &bp_size);
4685 sprintf (p, ",%d", bp_size);
4686
4687 putpkt (buf);
4688 getpkt (buf, (rs->remote_packet_size), 0);
4689
4690 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4691 {
4692 case PACKET_ERROR:
4693 return -1;
4694 case PACKET_OK:
4695 return 0;
4696 case PACKET_UNKNOWN:
4697 break;
4698 }
4699 }
4700
4701 #ifdef REMOTE_BREAKPOINT
4702 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4703
4704 if (val == 0)
4705 {
4706 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4707 val = target_write_memory (addr, (char *) big_break_insn,
4708 sizeof big_break_insn);
4709 else
4710 val = target_write_memory (addr, (char *) little_break_insn,
4711 sizeof little_break_insn);
4712 }
4713
4714 return val;
4715 #else
4716 return memory_insert_breakpoint (addr, contents_cache);
4717 #endif /* REMOTE_BREAKPOINT */
4718 }
4719
4720 static int
4721 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4722 {
4723 struct remote_state *rs = get_remote_state ();
4724 int bp_size;
4725
4726 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4727 {
4728 char *buf = alloca (rs->remote_packet_size);
4729 char *p = buf;
4730
4731 *(p++) = 'z';
4732 *(p++) = '0';
4733 *(p++) = ',';
4734
4735 addr = remote_address_masked (addr);
4736 p += hexnumstr (p, (ULONGEST) addr);
4737 BREAKPOINT_FROM_PC (&addr, &bp_size);
4738 sprintf (p, ",%d", bp_size);
4739
4740 putpkt (buf);
4741 getpkt (buf, (rs->remote_packet_size), 0);
4742
4743 return (buf[0] == 'E');
4744 }
4745
4746 #ifdef REMOTE_BREAKPOINT
4747 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4748 #else
4749 return memory_remove_breakpoint (addr, contents_cache);
4750 #endif /* REMOTE_BREAKPOINT */
4751 }
4752
4753 static int
4754 watchpoint_to_Z_packet (int type)
4755 {
4756 switch (type)
4757 {
4758 case hw_write:
4759 return 2;
4760 break;
4761 case hw_read:
4762 return 3;
4763 break;
4764 case hw_access:
4765 return 4;
4766 break;
4767 default:
4768 internal_error (__FILE__, __LINE__,
4769 "hw_bp_to_z: bad watchpoint type %d", type);
4770 }
4771 }
4772
4773 static int
4774 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4775 {
4776 struct remote_state *rs = get_remote_state ();
4777 char *buf = alloca (rs->remote_packet_size);
4778 char *p;
4779 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4780
4781 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4782 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4783 remote_protocol_Z[packet].name,
4784 remote_protocol_Z[packet].title);
4785
4786 sprintf (buf, "Z%x,", packet);
4787 p = strchr (buf, '\0');
4788 addr = remote_address_masked (addr);
4789 p += hexnumstr (p, (ULONGEST) addr);
4790 sprintf (p, ",%x", len);
4791
4792 putpkt (buf);
4793 getpkt (buf, (rs->remote_packet_size), 0);
4794
4795 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4796 {
4797 case PACKET_ERROR:
4798 case PACKET_UNKNOWN:
4799 return -1;
4800 case PACKET_OK:
4801 return 0;
4802 }
4803 internal_error (__FILE__, __LINE__,
4804 "remote_insert_watchpoint: reached end of function");
4805 }
4806
4807
4808 static int
4809 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4810 {
4811 struct remote_state *rs = get_remote_state ();
4812 char *buf = alloca (rs->remote_packet_size);
4813 char *p;
4814 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4815
4816 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4817 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4818 remote_protocol_Z[packet].name,
4819 remote_protocol_Z[packet].title);
4820
4821 sprintf (buf, "z%x,", packet);
4822 p = strchr (buf, '\0');
4823 addr = remote_address_masked (addr);
4824 p += hexnumstr (p, (ULONGEST) addr);
4825 sprintf (p, ",%x", len);
4826 putpkt (buf);
4827 getpkt (buf, (rs->remote_packet_size), 0);
4828
4829 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4830 {
4831 case PACKET_ERROR:
4832 case PACKET_UNKNOWN:
4833 return -1;
4834 case PACKET_OK:
4835 return 0;
4836 }
4837 internal_error (__FILE__, __LINE__,
4838 "remote_remove_watchpoint: reached end of function");
4839 }
4840
4841
4842 int remote_hw_watchpoint_limit = -1;
4843 int remote_hw_breakpoint_limit = -1;
4844
4845 int
4846 remote_check_watch_resources (int type, int cnt, int ot)
4847 {
4848 if (type == bp_hardware_breakpoint)
4849 {
4850 if (remote_hw_breakpoint_limit == 0)
4851 return 0;
4852 else if (remote_hw_breakpoint_limit < 0)
4853 return 1;
4854 else if (cnt <= remote_hw_breakpoint_limit)
4855 return 1;
4856 }
4857 else
4858 {
4859 if (remote_hw_watchpoint_limit == 0)
4860 return 0;
4861 else if (remote_hw_watchpoint_limit < 0)
4862 return 1;
4863 else if (ot)
4864 return -1;
4865 else if (cnt <= remote_hw_watchpoint_limit)
4866 return 1;
4867 }
4868 return -1;
4869 }
4870
4871 int
4872 remote_stopped_by_watchpoint (void)
4873 {
4874 return remote_stopped_by_watchpoint_p;
4875 }
4876
4877 CORE_ADDR
4878 remote_stopped_data_address (void)
4879 {
4880 if (remote_stopped_by_watchpoint ())
4881 return remote_watch_data_address;
4882 return (CORE_ADDR)0;
4883 }
4884
4885
4886 static int
4887 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4888 {
4889 int len = 0;
4890 struct remote_state *rs = get_remote_state ();
4891 char *buf = alloca (rs->remote_packet_size);
4892 char *p = buf;
4893
4894 /* The length field should be set to the size of a breakpoint
4895 instruction. */
4896
4897 BREAKPOINT_FROM_PC (&addr, &len);
4898
4899 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4900 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4901 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4902 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4903
4904 *(p++) = 'Z';
4905 *(p++) = '1';
4906 *(p++) = ',';
4907
4908 addr = remote_address_masked (addr);
4909 p += hexnumstr (p, (ULONGEST) addr);
4910 sprintf (p, ",%x", len);
4911
4912 putpkt (buf);
4913 getpkt (buf, (rs->remote_packet_size), 0);
4914
4915 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4916 {
4917 case PACKET_ERROR:
4918 case PACKET_UNKNOWN:
4919 return -1;
4920 case PACKET_OK:
4921 return 0;
4922 }
4923 internal_error (__FILE__, __LINE__,
4924 "remote_insert_hw_breakpoint: reached end of function");
4925 }
4926
4927
4928 static int
4929 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4930 {
4931 int len;
4932 struct remote_state *rs = get_remote_state ();
4933 char *buf = alloca (rs->remote_packet_size);
4934 char *p = buf;
4935
4936 /* The length field should be set to the size of a breakpoint
4937 instruction. */
4938
4939 BREAKPOINT_FROM_PC (&addr, &len);
4940
4941 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4942 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4943 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4944 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4945
4946 *(p++) = 'z';
4947 *(p++) = '1';
4948 *(p++) = ',';
4949
4950 addr = remote_address_masked (addr);
4951 p += hexnumstr (p, (ULONGEST) addr);
4952 sprintf (p, ",%x", len);
4953
4954 putpkt(buf);
4955 getpkt (buf, (rs->remote_packet_size), 0);
4956
4957 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4958 {
4959 case PACKET_ERROR:
4960 case PACKET_UNKNOWN:
4961 return -1;
4962 case PACKET_OK:
4963 return 0;
4964 }
4965 internal_error (__FILE__, __LINE__,
4966 "remote_remove_hw_breakpoint: reached end of function");
4967 }
4968
4969 /* Some targets are only capable of doing downloads, and afterwards
4970 they switch to the remote serial protocol. This function provides
4971 a clean way to get from the download target to the remote target.
4972 It's basically just a wrapper so that we don't have to expose any
4973 of the internal workings of remote.c.
4974
4975 Prior to calling this routine, you should shutdown the current
4976 target code, else you will get the "A program is being debugged
4977 already..." message. Usually a call to pop_target() suffices. */
4978
4979 void
4980 push_remote_target (char *name, int from_tty)
4981 {
4982 printf_filtered ("Switching to remote protocol\n");
4983 remote_open (name, from_tty);
4984 }
4985
4986 /* Table used by the crc32 function to calcuate the checksum. */
4987
4988 static unsigned long crc32_table[256] =
4989 {0, 0};
4990
4991 static unsigned long
4992 crc32 (unsigned char *buf, int len, unsigned int crc)
4993 {
4994 if (!crc32_table[1])
4995 {
4996 /* Initialize the CRC table and the decoding table. */
4997 int i, j;
4998 unsigned int c;
4999
5000 for (i = 0; i < 256; i++)
5001 {
5002 for (c = i << 24, j = 8; j > 0; --j)
5003 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5004 crc32_table[i] = c;
5005 }
5006 }
5007
5008 while (len--)
5009 {
5010 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5011 buf++;
5012 }
5013 return crc;
5014 }
5015
5016 /* compare-sections command
5017
5018 With no arguments, compares each loadable section in the exec bfd
5019 with the same memory range on the target, and reports mismatches.
5020 Useful for verifying the image on the target against the exec file.
5021 Depends on the target understanding the new "qCRC:" request. */
5022
5023 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5024 target method (target verify memory) and generic version of the
5025 actual command. This will allow other high-level code (especially
5026 generic_load()) to make use of this target functionality. */
5027
5028 static void
5029 compare_sections_command (char *args, int from_tty)
5030 {
5031 struct remote_state *rs = get_remote_state ();
5032 asection *s;
5033 unsigned long host_crc, target_crc;
5034 extern bfd *exec_bfd;
5035 struct cleanup *old_chain;
5036 char *tmp;
5037 char *sectdata;
5038 const char *sectname;
5039 char *buf = alloca (rs->remote_packet_size);
5040 bfd_size_type size;
5041 bfd_vma lma;
5042 int matched = 0;
5043 int mismatched = 0;
5044
5045 if (!exec_bfd)
5046 error ("command cannot be used without an exec file");
5047 if (!current_target.to_shortname ||
5048 strcmp (current_target.to_shortname, "remote") != 0)
5049 error ("command can only be used with remote target");
5050
5051 for (s = exec_bfd->sections; s; s = s->next)
5052 {
5053 if (!(s->flags & SEC_LOAD))
5054 continue; /* skip non-loadable section */
5055
5056 size = bfd_get_section_size_before_reloc (s);
5057 if (size == 0)
5058 continue; /* skip zero-length section */
5059
5060 sectname = bfd_get_section_name (exec_bfd, s);
5061 if (args && strcmp (args, sectname) != 0)
5062 continue; /* not the section selected by user */
5063
5064 matched = 1; /* do this section */
5065 lma = s->lma;
5066 /* FIXME: assumes lma can fit into long */
5067 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5068 putpkt (buf);
5069
5070 /* be clever; compute the host_crc before waiting for target reply */
5071 sectdata = xmalloc (size);
5072 old_chain = make_cleanup (xfree, sectdata);
5073 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5074 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5075
5076 getpkt (buf, (rs->remote_packet_size), 0);
5077 if (buf[0] == 'E')
5078 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5079 sectname, paddr (lma), paddr (lma + size));
5080 if (buf[0] != 'C')
5081 error ("remote target does not support this operation");
5082
5083 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5084 target_crc = target_crc * 16 + fromhex (*tmp);
5085
5086 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5087 sectname, paddr (lma), paddr (lma + size));
5088 if (host_crc == target_crc)
5089 printf_filtered ("matched.\n");
5090 else
5091 {
5092 printf_filtered ("MIS-MATCHED!\n");
5093 mismatched++;
5094 }
5095
5096 do_cleanups (old_chain);
5097 }
5098 if (mismatched > 0)
5099 warning ("One or more sections of the remote executable does not match\n\
5100 the loaded file\n");
5101 if (args && !matched)
5102 printf_filtered ("No loaded section named '%s'.\n", args);
5103 }
5104
5105 static int
5106 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5107 {
5108 struct remote_state *rs = get_remote_state ();
5109 int i;
5110 char *buf2 = alloca (rs->remote_packet_size);
5111 char *p2 = &buf2[0];
5112
5113 if (!bufsiz)
5114 error ("null pointer to remote bufer size specified");
5115
5116 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5117 the caller know and return what the minimum size is */
5118 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5119 if (*bufsiz < (rs->remote_packet_size))
5120 {
5121 *bufsiz = (rs->remote_packet_size);
5122 return -1;
5123 }
5124
5125 /* except for querying the minimum buffer size, target must be open */
5126 if (!remote_desc)
5127 error ("remote query is only available after target open");
5128
5129 /* we only take uppercase letters as query types, at least for now */
5130 if ((query_type < 'A') || (query_type > 'Z'))
5131 error ("invalid remote query type");
5132
5133 if (!buf)
5134 error ("null remote query specified");
5135
5136 if (!outbuf)
5137 error ("remote query requires a buffer to receive data");
5138
5139 outbuf[0] = '\0';
5140
5141 *p2++ = 'q';
5142 *p2++ = query_type;
5143
5144 /* we used one buffer char for the remote protocol q command and another
5145 for the query type. As the remote protocol encapsulation uses 4 chars
5146 plus one extra in case we are debugging (remote_debug),
5147 we have PBUFZIZ - 7 left to pack the query string */
5148 i = 0;
5149 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5150 {
5151 /* bad caller may have sent forbidden characters */
5152 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5153 error ("illegal characters in query string");
5154
5155 *p2++ = buf[i];
5156 i++;
5157 }
5158 *p2 = buf[i];
5159
5160 if (buf[i])
5161 error ("query larger than available buffer");
5162
5163 i = putpkt (buf2);
5164 if (i < 0)
5165 return i;
5166
5167 getpkt (outbuf, *bufsiz, 0);
5168
5169 return 0;
5170 }
5171
5172 static void
5173 remote_rcmd (char *command,
5174 struct ui_file *outbuf)
5175 {
5176 struct remote_state *rs = get_remote_state ();
5177 int i;
5178 char *buf = alloca (rs->remote_packet_size);
5179 char *p = buf;
5180
5181 if (!remote_desc)
5182 error ("remote rcmd is only available after target open");
5183
5184 /* Send a NULL command across as an empty command */
5185 if (command == NULL)
5186 command = "";
5187
5188 /* The query prefix */
5189 strcpy (buf, "qRcmd,");
5190 p = strchr (buf, '\0');
5191
5192 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5193 error ("\"monitor\" command ``%s'' is too long\n", command);
5194
5195 /* Encode the actual command */
5196 bin2hex (command, p, 0);
5197
5198 if (putpkt (buf) < 0)
5199 error ("Communication problem with target\n");
5200
5201 /* get/display the response */
5202 while (1)
5203 {
5204 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5205 buf[0] = '\0';
5206 getpkt (buf, (rs->remote_packet_size), 0);
5207 if (buf[0] == '\0')
5208 error ("Target does not support this command\n");
5209 if (buf[0] == 'O' && buf[1] != 'K')
5210 {
5211 remote_console_output (buf + 1); /* 'O' message from stub */
5212 continue;
5213 }
5214 if (strcmp (buf, "OK") == 0)
5215 break;
5216 if (strlen (buf) == 3 && buf[0] == 'E'
5217 && isdigit (buf[1]) && isdigit (buf[2]))
5218 {
5219 error ("Protocol error with Rcmd");
5220 }
5221 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5222 {
5223 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5224 fputc_unfiltered (c, outbuf);
5225 }
5226 break;
5227 }
5228 }
5229
5230 static void
5231 packet_command (char *args, int from_tty)
5232 {
5233 struct remote_state *rs = get_remote_state ();
5234 char *buf = alloca (rs->remote_packet_size);
5235
5236 if (!remote_desc)
5237 error ("command can only be used with remote target");
5238
5239 if (!args)
5240 error ("remote-packet command requires packet text as argument");
5241
5242 puts_filtered ("sending: ");
5243 print_packet (args);
5244 puts_filtered ("\n");
5245 putpkt (args);
5246
5247 getpkt (buf, (rs->remote_packet_size), 0);
5248 puts_filtered ("received: ");
5249 print_packet (buf);
5250 puts_filtered ("\n");
5251 }
5252
5253 #if 0
5254 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5255
5256 static void display_thread_info (struct gdb_ext_thread_info *info);
5257
5258 static void threadset_test_cmd (char *cmd, int tty);
5259
5260 static void threadalive_test (char *cmd, int tty);
5261
5262 static void threadlist_test_cmd (char *cmd, int tty);
5263
5264 int get_and_display_threadinfo (threadref * ref);
5265
5266 static void threadinfo_test_cmd (char *cmd, int tty);
5267
5268 static int thread_display_step (threadref * ref, void *context);
5269
5270 static void threadlist_update_test_cmd (char *cmd, int tty);
5271
5272 static void init_remote_threadtests (void);
5273
5274 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5275
5276 static void
5277 threadset_test_cmd (char *cmd, int tty)
5278 {
5279 int sample_thread = SAMPLE_THREAD;
5280
5281 printf_filtered ("Remote threadset test\n");
5282 set_thread (sample_thread, 1);
5283 }
5284
5285
5286 static void
5287 threadalive_test (char *cmd, int tty)
5288 {
5289 int sample_thread = SAMPLE_THREAD;
5290
5291 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5292 printf_filtered ("PASS: Thread alive test\n");
5293 else
5294 printf_filtered ("FAIL: Thread alive test\n");
5295 }
5296
5297 void output_threadid (char *title, threadref * ref);
5298
5299 void
5300 output_threadid (char *title, threadref *ref)
5301 {
5302 char hexid[20];
5303
5304 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5305 hexid[16] = 0;
5306 printf_filtered ("%s %s\n", title, (&hexid[0]));
5307 }
5308
5309 static void
5310 threadlist_test_cmd (char *cmd, int tty)
5311 {
5312 int startflag = 1;
5313 threadref nextthread;
5314 int done, result_count;
5315 threadref threadlist[3];
5316
5317 printf_filtered ("Remote Threadlist test\n");
5318 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5319 &result_count, &threadlist[0]))
5320 printf_filtered ("FAIL: threadlist test\n");
5321 else
5322 {
5323 threadref *scan = threadlist;
5324 threadref *limit = scan + result_count;
5325
5326 while (scan < limit)
5327 output_threadid (" thread ", scan++);
5328 }
5329 }
5330
5331 void
5332 display_thread_info (struct gdb_ext_thread_info *info)
5333 {
5334 output_threadid ("Threadid: ", &info->threadid);
5335 printf_filtered ("Name: %s\n ", info->shortname);
5336 printf_filtered ("State: %s\n", info->display);
5337 printf_filtered ("other: %s\n\n", info->more_display);
5338 }
5339
5340 int
5341 get_and_display_threadinfo (threadref *ref)
5342 {
5343 int result;
5344 int set;
5345 struct gdb_ext_thread_info threadinfo;
5346
5347 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5348 | TAG_MOREDISPLAY | TAG_DISPLAY;
5349 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5350 display_thread_info (&threadinfo);
5351 return result;
5352 }
5353
5354 static void
5355 threadinfo_test_cmd (char *cmd, int tty)
5356 {
5357 int athread = SAMPLE_THREAD;
5358 threadref thread;
5359 int set;
5360
5361 int_to_threadref (&thread, athread);
5362 printf_filtered ("Remote Threadinfo test\n");
5363 if (!get_and_display_threadinfo (&thread))
5364 printf_filtered ("FAIL cannot get thread info\n");
5365 }
5366
5367 static int
5368 thread_display_step (threadref *ref, void *context)
5369 {
5370 /* output_threadid(" threadstep ",ref); *//* simple test */
5371 return get_and_display_threadinfo (ref);
5372 }
5373
5374 static void
5375 threadlist_update_test_cmd (char *cmd, int tty)
5376 {
5377 printf_filtered ("Remote Threadlist update test\n");
5378 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5379 }
5380
5381 static void
5382 init_remote_threadtests (void)
5383 {
5384 add_com ("tlist", class_obscure, threadlist_test_cmd,
5385 "Fetch and print the remote list of thread identifiers, one pkt only");
5386 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5387 "Fetch and display info about one thread");
5388 add_com ("tset", class_obscure, threadset_test_cmd,
5389 "Test setting to a different thread");
5390 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5391 "Iterate through updating all remote thread info");
5392 add_com ("talive", class_obscure, threadalive_test,
5393 " Remote thread alive test ");
5394 }
5395
5396 #endif /* 0 */
5397
5398 /* Convert a thread ID to a string. Returns the string in a static
5399 buffer. */
5400
5401 static char *
5402 remote_pid_to_str (ptid_t ptid)
5403 {
5404 static char buf[30];
5405
5406 sprintf (buf, "Thread %d", PIDGET (ptid));
5407 return buf;
5408 }
5409
5410 static void
5411 init_remote_ops (void)
5412 {
5413 remote_ops.to_shortname = "remote";
5414 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5415 remote_ops.to_doc =
5416 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5417 Specify the serial device it is connected to\n\
5418 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5419 remote_ops.to_open = remote_open;
5420 remote_ops.to_close = remote_close;
5421 remote_ops.to_detach = remote_detach;
5422 remote_ops.to_resume = remote_resume;
5423 remote_ops.to_wait = remote_wait;
5424 remote_ops.to_fetch_registers = remote_fetch_registers;
5425 remote_ops.to_store_registers = remote_store_registers;
5426 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5427 remote_ops.to_xfer_memory = remote_xfer_memory;
5428 remote_ops.to_files_info = remote_files_info;
5429 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5430 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5431 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5432 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5433 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5434 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5435 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5436 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5437 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5438 remote_ops.to_kill = remote_kill;
5439 remote_ops.to_load = generic_load;
5440 remote_ops.to_mourn_inferior = remote_mourn;
5441 remote_ops.to_thread_alive = remote_thread_alive;
5442 remote_ops.to_find_new_threads = remote_threads_info;
5443 remote_ops.to_pid_to_str = remote_pid_to_str;
5444 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5445 remote_ops.to_stop = remote_stop;
5446 remote_ops.to_query = remote_query;
5447 remote_ops.to_rcmd = remote_rcmd;
5448 remote_ops.to_stratum = process_stratum;
5449 remote_ops.to_has_all_memory = 1;
5450 remote_ops.to_has_memory = 1;
5451 remote_ops.to_has_stack = 1;
5452 remote_ops.to_has_registers = 1;
5453 remote_ops.to_has_execution = 1;
5454 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5455 remote_ops.to_magic = OPS_MAGIC;
5456 }
5457
5458 /* Set up the extended remote vector by making a copy of the standard
5459 remote vector and adding to it. */
5460
5461 static void
5462 init_extended_remote_ops (void)
5463 {
5464 extended_remote_ops = remote_ops;
5465
5466 extended_remote_ops.to_shortname = "extended-remote";
5467 extended_remote_ops.to_longname =
5468 "Extended remote serial target in gdb-specific protocol";
5469 extended_remote_ops.to_doc =
5470 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5471 Specify the serial device it is connected to (e.g. /dev/ttya).",
5472 extended_remote_ops.to_open = extended_remote_open;
5473 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5474 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5475 }
5476
5477 /*
5478 * Command: info remote-process
5479 *
5480 * This implements Cisco's version of the "info proc" command.
5481 *
5482 * This query allows the target stub to return an arbitrary string
5483 * (or strings) giving arbitrary information about the target process.
5484 * This is optional; the target stub isn't required to implement it.
5485 *
5486 * Syntax: qfProcessInfo request first string
5487 * qsProcessInfo request subsequent string
5488 * reply: 'O'<hex-encoded-string>
5489 * 'l' last reply (empty)
5490 */
5491
5492 static void
5493 remote_info_process (char *args, int from_tty)
5494 {
5495 struct remote_state *rs = get_remote_state ();
5496 char *buf = alloca (rs->remote_packet_size);
5497
5498 if (remote_desc == 0)
5499 error ("Command can only be used when connected to the remote target.");
5500
5501 putpkt ("qfProcessInfo");
5502 getpkt (buf, (rs->remote_packet_size), 0);
5503 if (buf[0] == 0)
5504 return; /* Silently: target does not support this feature. */
5505
5506 if (buf[0] == 'E')
5507 error ("info proc: target error.");
5508
5509 while (buf[0] == 'O') /* Capitol-O packet */
5510 {
5511 remote_console_output (&buf[1]);
5512 putpkt ("qsProcessInfo");
5513 getpkt (buf, (rs->remote_packet_size), 0);
5514 }
5515 }
5516
5517 /*
5518 * Target Cisco
5519 */
5520
5521 static void
5522 remote_cisco_open (char *name, int from_tty)
5523 {
5524 int ex;
5525 if (name == 0)
5526 error ("To open a remote debug connection, you need to specify what \n"
5527 "device is attached to the remote system (e.g. host:port).");
5528
5529 /* See FIXME above */
5530 wait_forever_enabled_p = 1;
5531
5532 target_preopen (from_tty);
5533
5534 unpush_target (&remote_cisco_ops);
5535
5536 remote_desc = remote_serial_open (name);
5537 if (!remote_desc)
5538 perror_with_name (name);
5539
5540 /*
5541 * If a baud rate was specified on the gdb command line it will
5542 * be greater than the initial value of -1. If it is, use it otherwise
5543 * default to 9600
5544 */
5545
5546 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5547 if (serial_setbaudrate (remote_desc, baud_rate))
5548 {
5549 serial_close (remote_desc);
5550 perror_with_name (name);
5551 }
5552
5553 serial_raw (remote_desc);
5554
5555 /* If there is something sitting in the buffer we might take it as a
5556 response to a command, which would be bad. */
5557 serial_flush_input (remote_desc);
5558
5559 if (from_tty)
5560 {
5561 puts_filtered ("Remote debugging using ");
5562 puts_filtered (name);
5563 puts_filtered ("\n");
5564 }
5565
5566 remote_cisco_mode = 1;
5567
5568 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5569
5570 init_all_packet_configs ();
5571
5572 general_thread = -2;
5573 continue_thread = -2;
5574
5575 /* Probe for ability to use "ThreadInfo" query, as required. */
5576 use_threadinfo_query = 1;
5577 use_threadextra_query = 1;
5578
5579 /* Without this, some commands which require an active target (such
5580 as kill) won't work. This variable serves (at least) double duty
5581 as both the pid of the target process (if it has such), and as a
5582 flag indicating that a target is active. These functions should
5583 be split out into seperate variables, especially since GDB will
5584 someday have a notion of debugging several processes. */
5585 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5586
5587 /* Start the remote connection; if error, discard this target. See
5588 the comments in remote_open_1() for further details such as the
5589 need to re-throw the exception. */
5590 ex = catch_exceptions (uiout,
5591 remote_start_remote_dummy, NULL,
5592 "Couldn't establish connection to remote"
5593 " target\n",
5594 RETURN_MASK_ALL);
5595 if (ex < 0)
5596 {
5597 pop_target ();
5598 throw_exception (ex);
5599 }
5600 }
5601
5602 static void
5603 remote_cisco_close (int quitting)
5604 {
5605 remote_cisco_mode = 0;
5606 remote_close (quitting);
5607 }
5608
5609 static void
5610 remote_cisco_mourn (void)
5611 {
5612 remote_mourn_1 (&remote_cisco_ops);
5613 }
5614
5615 enum
5616 {
5617 READ_MORE,
5618 FATAL_ERROR,
5619 ENTER_DEBUG,
5620 DISCONNECT_TELNET
5621 }
5622 minitelnet_return;
5623
5624 /* Shared between readsocket() and readtty(). The size is arbitrary,
5625 however all targets are known to support a 400 character packet. */
5626 static char tty_input[400];
5627
5628 static int escape_count;
5629 static int echo_check;
5630 extern int quit_flag;
5631
5632 static int
5633 readsocket (void)
5634 {
5635 int data;
5636
5637 /* Loop until the socket doesn't have any more data */
5638
5639 while ((data = readchar (0)) >= 0)
5640 {
5641 /* Check for the escape sequence */
5642 if (data == '|')
5643 {
5644 /* If this is the fourth escape, get out */
5645 if (++escape_count == 4)
5646 {
5647 return ENTER_DEBUG;
5648 }
5649 else
5650 { /* This is a '|', but not the fourth in a row.
5651 Continue without echoing it. If it isn't actually
5652 one of four in a row, it'll be echoed later. */
5653 continue;
5654 }
5655 }
5656 else
5657 /* Not a '|' */
5658 {
5659 /* Ensure any pending '|'s are flushed. */
5660
5661 for (; escape_count > 0; escape_count--)
5662 putchar ('|');
5663 }
5664
5665 if (data == '\r') /* If this is a return character, */
5666 continue; /* - just supress it. */
5667
5668 if (echo_check != -1) /* Check for echo of user input. */
5669 {
5670 if (tty_input[echo_check] == data)
5671 {
5672 gdb_assert (echo_check <= sizeof (tty_input));
5673 echo_check++; /* Character matched user input: */
5674 continue; /* Continue without echoing it. */
5675 }
5676 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5677 { /* End of the line (and of echo checking). */
5678 echo_check = -1; /* No more echo supression */
5679 continue; /* Continue without echoing. */
5680 }
5681 else
5682 { /* Failed check for echo of user input.
5683 We now have some suppressed output to flush! */
5684 int j;
5685
5686 for (j = 0; j < echo_check; j++)
5687 putchar (tty_input[j]);
5688 echo_check = -1;
5689 }
5690 }
5691 putchar (data); /* Default case: output the char. */
5692 }
5693
5694 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5695 return READ_MORE; /* Try to read some more */
5696 else
5697 return FATAL_ERROR; /* Trouble, bail out */
5698 }
5699
5700 static int
5701 readtty (void)
5702 {
5703 int tty_bytecount;
5704
5705 /* First, read a buffer full from the terminal */
5706 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5707 if (tty_bytecount == -1)
5708 {
5709 perror ("readtty: read failed");
5710 return FATAL_ERROR;
5711 }
5712
5713 /* Remove a quoted newline. */
5714 if (tty_input[tty_bytecount - 1] == '\n' &&
5715 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5716 {
5717 tty_input[--tty_bytecount] = 0; /* remove newline */
5718 tty_input[--tty_bytecount] = 0; /* remove backslash */
5719 }
5720
5721 /* Turn trailing newlines into returns */
5722 if (tty_input[tty_bytecount - 1] == '\n')
5723 tty_input[tty_bytecount - 1] = '\r';
5724
5725 /* If the line consists of a ~, enter debugging mode. */
5726 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5727 return ENTER_DEBUG;
5728
5729 /* Make this a zero terminated string and write it out */
5730 tty_input[tty_bytecount] = 0;
5731 if (serial_write (remote_desc, tty_input, tty_bytecount))
5732 {
5733 perror_with_name ("readtty: write failed");
5734 return FATAL_ERROR;
5735 }
5736
5737 return READ_MORE;
5738 }
5739
5740 static int
5741 minitelnet (void)
5742 {
5743 fd_set input; /* file descriptors for select */
5744 int tablesize; /* max number of FDs for select */
5745 int status;
5746 int quit_count = 0;
5747
5748 extern int escape_count; /* global shared by readsocket */
5749 extern int echo_check; /* ditto */
5750
5751 escape_count = 0;
5752 echo_check = -1;
5753
5754 tablesize = 8 * sizeof (input);
5755
5756 for (;;)
5757 {
5758 /* Check for anything from our socket - doesn't block. Note that
5759 this must be done *before* the select as there may be
5760 buffered I/O waiting to be processed. */
5761
5762 if ((status = readsocket ()) == FATAL_ERROR)
5763 {
5764 error ("Debugging terminated by communications error");
5765 }
5766 else if (status != READ_MORE)
5767 {
5768 return (status);
5769 }
5770
5771 fflush (stdout); /* Flush output before blocking */
5772
5773 /* Now block on more socket input or TTY input */
5774
5775 FD_ZERO (&input);
5776 FD_SET (fileno (stdin), &input);
5777 FD_SET (deprecated_serial_fd (remote_desc), &input);
5778
5779 status = select (tablesize, &input, 0, 0, 0);
5780 if ((status == -1) && (errno != EINTR))
5781 {
5782 error ("Communications error on select %d", errno);
5783 }
5784
5785 /* Handle Control-C typed */
5786
5787 if (quit_flag)
5788 {
5789 if ((++quit_count) == 2)
5790 {
5791 if (query ("Interrupt GDB? "))
5792 {
5793 printf_filtered ("Interrupted by user.\n");
5794 throw_exception (RETURN_QUIT);
5795 }
5796 quit_count = 0;
5797 }
5798 quit_flag = 0;
5799
5800 if (remote_break)
5801 serial_send_break (remote_desc);
5802 else
5803 serial_write (remote_desc, "\003", 1);
5804
5805 continue;
5806 }
5807
5808 /* Handle console input */
5809
5810 if (FD_ISSET (fileno (stdin), &input))
5811 {
5812 quit_count = 0;
5813 echo_check = 0;
5814 status = readtty ();
5815 if (status == READ_MORE)
5816 continue;
5817
5818 return status; /* telnet session ended */
5819 }
5820 }
5821 }
5822
5823 static ptid_t
5824 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5825 {
5826 if (minitelnet () != ENTER_DEBUG)
5827 {
5828 error ("Debugging session terminated by protocol error");
5829 }
5830 putpkt ("?");
5831 return remote_wait (ptid, status);
5832 }
5833
5834 static void
5835 init_remote_cisco_ops (void)
5836 {
5837 remote_cisco_ops.to_shortname = "cisco";
5838 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5839 remote_cisco_ops.to_doc =
5840 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5841 Specify the serial device it is connected to (e.g. host:2020).";
5842 remote_cisco_ops.to_open = remote_cisco_open;
5843 remote_cisco_ops.to_close = remote_cisco_close;
5844 remote_cisco_ops.to_detach = remote_detach;
5845 remote_cisco_ops.to_resume = remote_resume;
5846 remote_cisco_ops.to_wait = remote_cisco_wait;
5847 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5848 remote_cisco_ops.to_store_registers = remote_store_registers;
5849 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5850 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5851 remote_cisco_ops.to_files_info = remote_files_info;
5852 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5853 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5854 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5855 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5856 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5857 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5858 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5859 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5860 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5861 remote_cisco_ops.to_kill = remote_kill;
5862 remote_cisco_ops.to_load = generic_load;
5863 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5864 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5865 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5866 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5867 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5868 remote_cisco_ops.to_stratum = process_stratum;
5869 remote_cisco_ops.to_has_all_memory = 1;
5870 remote_cisco_ops.to_has_memory = 1;
5871 remote_cisco_ops.to_has_stack = 1;
5872 remote_cisco_ops.to_has_registers = 1;
5873 remote_cisco_ops.to_has_execution = 1;
5874 remote_cisco_ops.to_magic = OPS_MAGIC;
5875 }
5876
5877 static int
5878 remote_can_async_p (void)
5879 {
5880 /* We're async whenever the serial device is. */
5881 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5882 }
5883
5884 static int
5885 remote_is_async_p (void)
5886 {
5887 /* We're async whenever the serial device is. */
5888 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5889 }
5890
5891 /* Pass the SERIAL event on and up to the client. One day this code
5892 will be able to delay notifying the client of an event until the
5893 point where an entire packet has been received. */
5894
5895 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5896 static void *async_client_context;
5897 static serial_event_ftype remote_async_serial_handler;
5898
5899 static void
5900 remote_async_serial_handler (struct serial *scb, void *context)
5901 {
5902 /* Don't propogate error information up to the client. Instead let
5903 the client find out about the error by querying the target. */
5904 async_client_callback (INF_REG_EVENT, async_client_context);
5905 }
5906
5907 static void
5908 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5909 {
5910 if (current_target.to_async_mask_value == 0)
5911 internal_error (__FILE__, __LINE__,
5912 "Calling remote_async when async is masked");
5913
5914 if (callback != NULL)
5915 {
5916 serial_async (remote_desc, remote_async_serial_handler, NULL);
5917 async_client_callback = callback;
5918 async_client_context = context;
5919 }
5920 else
5921 serial_async (remote_desc, NULL, NULL);
5922 }
5923
5924 /* Target async and target extended-async.
5925
5926 This are temporary targets, until it is all tested. Eventually
5927 async support will be incorporated int the usual 'remote'
5928 target. */
5929
5930 static void
5931 init_remote_async_ops (void)
5932 {
5933 remote_async_ops.to_shortname = "async";
5934 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5935 remote_async_ops.to_doc =
5936 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5937 Specify the serial device it is connected to (e.g. /dev/ttya).";
5938 remote_async_ops.to_open = remote_async_open;
5939 remote_async_ops.to_close = remote_close;
5940 remote_async_ops.to_detach = remote_async_detach;
5941 remote_async_ops.to_resume = remote_async_resume;
5942 remote_async_ops.to_wait = remote_async_wait;
5943 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5944 remote_async_ops.to_store_registers = remote_store_registers;
5945 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5946 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5947 remote_async_ops.to_files_info = remote_files_info;
5948 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5949 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5950 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5951 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5952 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5953 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5954 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5955 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5956 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5957 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5958 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5959 remote_async_ops.to_kill = remote_async_kill;
5960 remote_async_ops.to_load = generic_load;
5961 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5962 remote_async_ops.to_thread_alive = remote_thread_alive;
5963 remote_async_ops.to_find_new_threads = remote_threads_info;
5964 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5965 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5966 remote_async_ops.to_stop = remote_stop;
5967 remote_async_ops.to_query = remote_query;
5968 remote_async_ops.to_rcmd = remote_rcmd;
5969 remote_async_ops.to_stratum = process_stratum;
5970 remote_async_ops.to_has_all_memory = 1;
5971 remote_async_ops.to_has_memory = 1;
5972 remote_async_ops.to_has_stack = 1;
5973 remote_async_ops.to_has_registers = 1;
5974 remote_async_ops.to_has_execution = 1;
5975 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5976 remote_async_ops.to_can_async_p = remote_can_async_p;
5977 remote_async_ops.to_is_async_p = remote_is_async_p;
5978 remote_async_ops.to_async = remote_async;
5979 remote_async_ops.to_async_mask_value = 1;
5980 remote_async_ops.to_magic = OPS_MAGIC;
5981 }
5982
5983 /* Set up the async extended remote vector by making a copy of the standard
5984 remote vector and adding to it. */
5985
5986 static void
5987 init_extended_async_remote_ops (void)
5988 {
5989 extended_async_remote_ops = remote_async_ops;
5990
5991 extended_async_remote_ops.to_shortname = "extended-async";
5992 extended_async_remote_ops.to_longname =
5993 "Extended remote serial target in async gdb-specific protocol";
5994 extended_async_remote_ops.to_doc =
5995 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5996 Specify the serial device it is connected to (e.g. /dev/ttya).",
5997 extended_async_remote_ops.to_open = extended_remote_async_open;
5998 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5999 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6000 }
6001
6002 static void
6003 set_remote_cmd (char *args, int from_tty)
6004 {
6005 }
6006
6007 static void
6008 show_remote_cmd (char *args, int from_tty)
6009 {
6010 /* FIXME: cagney/2002-06-15: This function should iterate over
6011 remote_show_cmdlist for a list of sub commands to show. */
6012 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6013 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6014 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6015 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6016 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6017 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6018 }
6019
6020 static void
6021 build_remote_gdbarch_data (void)
6022 {
6023 remote_address_size = TARGET_ADDR_BIT;
6024 }
6025
6026 /* Saved pointer to previous owner of the new_objfile event. */
6027 static void (*remote_new_objfile_chain) (struct objfile *);
6028
6029 /* Function to be called whenever a new objfile (shlib) is detected. */
6030 static void
6031 remote_new_objfile (struct objfile *objfile)
6032 {
6033 if (remote_desc != 0) /* Have a remote connection */
6034 {
6035 remote_check_symbols (objfile);
6036 }
6037 /* Call predecessor on chain, if any. */
6038 if (remote_new_objfile_chain != 0 &&
6039 remote_desc == 0)
6040 remote_new_objfile_chain (objfile);
6041 }
6042
6043 void
6044 _initialize_remote (void)
6045 {
6046 static struct cmd_list_element *remote_set_cmdlist;
6047 static struct cmd_list_element *remote_show_cmdlist;
6048 struct cmd_list_element *tmpcmd;
6049
6050 /* architecture specific data */
6051 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6052 free_remote_state);
6053
6054 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6055 that the remote protocol has been initialized. */
6056 register_gdbarch_swap (&remote_address_size,
6057 sizeof (&remote_address_size), NULL);
6058 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6059
6060 init_remote_ops ();
6061 add_target (&remote_ops);
6062
6063 init_extended_remote_ops ();
6064 add_target (&extended_remote_ops);
6065
6066 init_remote_async_ops ();
6067 add_target (&remote_async_ops);
6068
6069 init_extended_async_remote_ops ();
6070 add_target (&extended_async_remote_ops);
6071
6072 init_remote_cisco_ops ();
6073 add_target (&remote_cisco_ops);
6074
6075 /* Hook into new objfile notification. */
6076 remote_new_objfile_chain = target_new_objfile_hook;
6077 target_new_objfile_hook = remote_new_objfile;
6078
6079 #if 0
6080 init_remote_threadtests ();
6081 #endif
6082
6083 /* set/show remote ... */
6084
6085 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6086 Remote protocol specific variables\n\
6087 Configure various remote-protocol specific variables such as\n\
6088 the packets being used",
6089 &remote_set_cmdlist, "set remote ",
6090 0/*allow-unknown*/, &setlist);
6091 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6092 Remote protocol specific variables\n\
6093 Configure various remote-protocol specific variables such as\n\
6094 the packets being used",
6095 &remote_show_cmdlist, "show remote ",
6096 0/*allow-unknown*/, &showlist);
6097
6098 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6099 "Compare section data on target to the exec file.\n\
6100 Argument is a single section name (default: all loaded sections).",
6101 &cmdlist);
6102
6103 add_cmd ("packet", class_maintenance, packet_command,
6104 "Send an arbitrary packet to a remote target.\n\
6105 maintenance packet TEXT\n\
6106 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6107 this command sends the string TEXT to the inferior, and displays the\n\
6108 response packet. GDB supplies the initial `$' character, and the\n\
6109 terminating `#' character and checksum.",
6110 &maintenancelist);
6111
6112 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6113 "Set whether to send break if interrupted.\n",
6114 "Show whether to send break if interrupted.\n",
6115 NULL, NULL,
6116 &setlist, &showlist);
6117
6118 /* Install commands for configuring memory read/write packets. */
6119
6120 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6121 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6122 &setlist);
6123 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6124 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6125 &showlist);
6126 add_cmd ("memory-write-packet-size", no_class,
6127 set_memory_write_packet_size,
6128 "Set the maximum number of bytes per memory-write packet.\n"
6129 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6130 "default packet size. The actual limit is further reduced\n"
6131 "dependent on the target. Specify ``fixed'' to disable the\n"
6132 "further restriction and ``limit'' to enable that restriction\n",
6133 &remote_set_cmdlist);
6134 add_cmd ("memory-read-packet-size", no_class,
6135 set_memory_read_packet_size,
6136 "Set the maximum number of bytes per memory-read packet.\n"
6137 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6138 "default packet size. The actual limit is further reduced\n"
6139 "dependent on the target. Specify ``fixed'' to disable the\n"
6140 "further restriction and ``limit'' to enable that restriction\n",
6141 &remote_set_cmdlist);
6142 add_cmd ("memory-write-packet-size", no_class,
6143 show_memory_write_packet_size,
6144 "Show the maximum number of bytes per memory-write packet.\n",
6145 &remote_show_cmdlist);
6146 add_cmd ("memory-read-packet-size", no_class,
6147 show_memory_read_packet_size,
6148 "Show the maximum number of bytes per memory-read packet.\n",
6149 &remote_show_cmdlist);
6150
6151 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6152 var_zinteger, &remote_hw_watchpoint_limit, "\
6153 Set the maximum number of target hardware watchpoints.\n\
6154 Specify a negative limit for unlimited.", "\
6155 Show the maximum number of target hardware watchpoints.\n",
6156 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6157 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6158 var_zinteger, &remote_hw_breakpoint_limit, "\
6159 Set the maximum number of target hardware breakpoints.\n\
6160 Specify a negative limit for unlimited.", "\
6161 Show the maximum number of target hardware breakpoints.\n",
6162 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6163
6164 add_show_from_set
6165 (add_set_cmd ("remoteaddresssize", class_obscure,
6166 var_integer, (char *) &remote_address_size,
6167 "Set the maximum size of the address (in bits) \
6168 in a memory packet.\n",
6169 &setlist),
6170 &showlist);
6171
6172 add_packet_config_cmd (&remote_protocol_binary_download,
6173 "X", "binary-download",
6174 set_remote_protocol_binary_download_cmd,
6175 show_remote_protocol_binary_download_cmd,
6176 &remote_set_cmdlist, &remote_show_cmdlist,
6177 1);
6178 #if 0
6179 /* XXXX - should ``set remotebinarydownload'' be retained for
6180 compatibility. */
6181 add_show_from_set
6182 (add_set_cmd ("remotebinarydownload", no_class,
6183 var_boolean, (char *) &remote_binary_download,
6184 "Set binary downloads.\n", &setlist),
6185 &showlist);
6186 #endif
6187
6188 add_info ("remote-process", remote_info_process,
6189 "Query the remote system for process info.");
6190
6191 add_packet_config_cmd (&remote_protocol_qSymbol,
6192 "qSymbol", "symbol-lookup",
6193 set_remote_protocol_qSymbol_packet_cmd,
6194 show_remote_protocol_qSymbol_packet_cmd,
6195 &remote_set_cmdlist, &remote_show_cmdlist,
6196 0);
6197
6198 add_packet_config_cmd (&remote_protocol_e,
6199 "e", "step-over-range",
6200 set_remote_protocol_e_packet_cmd,
6201 show_remote_protocol_e_packet_cmd,
6202 &remote_set_cmdlist, &remote_show_cmdlist,
6203 0);
6204 /* Disable by default. The ``e'' packet has nasty interactions with
6205 the threading code - it relies on global state. */
6206 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6207 update_packet_config (&remote_protocol_e);
6208
6209 add_packet_config_cmd (&remote_protocol_E,
6210 "E", "step-over-range-w-signal",
6211 set_remote_protocol_E_packet_cmd,
6212 show_remote_protocol_E_packet_cmd,
6213 &remote_set_cmdlist, &remote_show_cmdlist,
6214 0);
6215 /* Disable by default. The ``e'' packet has nasty interactions with
6216 the threading code - it relies on global state. */
6217 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6218 update_packet_config (&remote_protocol_E);
6219
6220 add_packet_config_cmd (&remote_protocol_P,
6221 "P", "set-register",
6222 set_remote_protocol_P_packet_cmd,
6223 show_remote_protocol_P_packet_cmd,
6224 &remote_set_cmdlist, &remote_show_cmdlist,
6225 1);
6226
6227 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6228 "Z0", "software-breakpoint",
6229 set_remote_protocol_Z_software_bp_packet_cmd,
6230 show_remote_protocol_Z_software_bp_packet_cmd,
6231 &remote_set_cmdlist, &remote_show_cmdlist,
6232 0);
6233
6234 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6235 "Z1", "hardware-breakpoint",
6236 set_remote_protocol_Z_hardware_bp_packet_cmd,
6237 show_remote_protocol_Z_hardware_bp_packet_cmd,
6238 &remote_set_cmdlist, &remote_show_cmdlist,
6239 0);
6240
6241 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6242 "Z2", "write-watchpoint",
6243 set_remote_protocol_Z_write_wp_packet_cmd,
6244 show_remote_protocol_Z_write_wp_packet_cmd,
6245 &remote_set_cmdlist, &remote_show_cmdlist,
6246 0);
6247
6248 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6249 "Z3", "read-watchpoint",
6250 set_remote_protocol_Z_read_wp_packet_cmd,
6251 show_remote_protocol_Z_read_wp_packet_cmd,
6252 &remote_set_cmdlist, &remote_show_cmdlist,
6253 0);
6254
6255 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6256 "Z4", "access-watchpoint",
6257 set_remote_protocol_Z_access_wp_packet_cmd,
6258 show_remote_protocol_Z_access_wp_packet_cmd,
6259 &remote_set_cmdlist, &remote_show_cmdlist,
6260 0);
6261
6262 /* Keep the old ``set remote Z-packet ...'' working. */
6263 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6264 &remote_Z_packet_detect, "\
6265 Set use of remote protocol `Z' packets",
6266 "Show use of remote protocol `Z' packets ",
6267 set_remote_protocol_Z_packet_cmd,
6268 show_remote_protocol_Z_packet_cmd,
6269 &remote_set_cmdlist, &remote_show_cmdlist);
6270 }
This page took 0.187585 seconds and 4 git commands to generate.