* gas/cfi/cfi-common-6.s: Do not use |.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (void);
93
94 static void remote_fetch_registers (int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == REGISTER_NAME (regnum); at present. */
264 };
265
266 struct remote_arch_state
267 {
268 /* Description of the remote protocol registers. */
269 long sizeof_g_packet;
270
271 /* Description of the remote protocol registers indexed by REGNUM
272 (making an array NUM_REGS in size). */
273 struct packet_reg *regs;
274
275 /* This is the size (in chars) of the first response to the ``g''
276 packet. It is used as a heuristic when determining the maximum
277 size of memory-read and memory-write packets. A target will
278 typically only reserve a buffer large enough to hold the ``g''
279 packet. The size does not include packet overhead (headers and
280 trailers). */
281 long actual_register_packet_size;
282
283 /* This is the maximum size (in chars) of a non read/write packet.
284 It is also used as a cap on the size of read/write packets. */
285 long remote_packet_size;
286 };
287
288
289 /* Handle for retreving the remote protocol data from gdbarch. */
290 static struct gdbarch_data *remote_gdbarch_data_handle;
291
292 static struct remote_arch_state *
293 get_remote_arch_state (void)
294 {
295 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
296 }
297
298 /* Fetch the global remote target state. */
299
300 static struct remote_state *
301 get_remote_state (void)
302 {
303 /* Make sure that the remote architecture state has been
304 initialized, because doing so might reallocate rs->buf. Any
305 function which calls getpkt also needs to be mindful of changes
306 to rs->buf, but this call limits the number of places which run
307 into trouble. */
308 get_remote_arch_state ();
309
310 return get_remote_state_raw ();
311 }
312
313 static int
314 compare_pnums (const void *lhs_, const void *rhs_)
315 {
316 const struct packet_reg * const *lhs = lhs_;
317 const struct packet_reg * const *rhs = rhs_;
318
319 if ((*lhs)->pnum < (*rhs)->pnum)
320 return -1;
321 else if ((*lhs)->pnum == (*rhs)->pnum)
322 return 0;
323 else
324 return 1;
325 }
326
327 static void *
328 init_remote_state (struct gdbarch *gdbarch)
329 {
330 int regnum, num_remote_regs, offset;
331 struct remote_state *rs = get_remote_state_raw ();
332 struct remote_arch_state *rsa;
333 struct packet_reg **remote_regs;
334
335 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
336
337 /* Assume a 1:1 regnum<->pnum table. */
338 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS, struct packet_reg);
339 for (regnum = 0; regnum < NUM_REGS; regnum++)
340 {
341 struct packet_reg *r = &rsa->regs[regnum];
342 r->pnum = regnum;
343 r->regnum = regnum;
344 }
345
346 /* Define the g/G packet format as the contents of each register
347 with a remote protocol number, in order of ascending protocol
348 number. */
349
350 remote_regs = alloca (NUM_REGS * sizeof (struct packet_reg *));
351 for (num_remote_regs = 0, regnum = 0; regnum < NUM_REGS; regnum++)
352 if (rsa->regs[regnum].pnum != -1)
353 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
354
355 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
356 compare_pnums);
357
358 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
359 {
360 remote_regs[regnum]->in_g_packet = 1;
361 remote_regs[regnum]->offset = offset;
362 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
363 }
364
365 /* Record the maximum possible size of the g packet - it may turn out
366 to be smaller. */
367 rsa->sizeof_g_packet = offset;
368
369 /* Default maximum number of characters in a packet body. Many
370 remote stubs have a hardwired buffer size of 400 bytes
371 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
372 as the maximum packet-size to ensure that the packet and an extra
373 NUL character can always fit in the buffer. This stops GDB
374 trashing stubs that try to squeeze an extra NUL into what is
375 already a full buffer (As of 1999-12-04 that was most stubs). */
376 rsa->remote_packet_size = 400 - 1;
377
378 /* This one is filled in when a ``g'' packet is received. */
379 rsa->actual_register_packet_size = 0;
380
381 /* Should rsa->sizeof_g_packet needs more space than the
382 default, adjust the size accordingly. Remember that each byte is
383 encoded as two characters. 32 is the overhead for the packet
384 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
385 (``$NN:G...#NN'') is a better guess, the below has been padded a
386 little. */
387 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
388 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
389
390 /* Make sure that the packet buffer is plenty big enough for
391 this architecture. */
392 if (rs->buf_size < rsa->remote_packet_size)
393 {
394 rs->buf_size = 2 * rsa->remote_packet_size;
395 rs->buf = xrealloc (rs->buf, rs->buf_size);
396 }
397
398 return rsa;
399 }
400
401 /* Return the current allowed size of a remote packet. This is
402 inferred from the current architecture, and should be used to
403 limit the length of outgoing packets. */
404 static long
405 get_remote_packet_size (void)
406 {
407 struct remote_state *rs = get_remote_state ();
408 struct remote_arch_state *rsa = get_remote_arch_state ();
409
410 if (rs->explicit_packet_size)
411 return rs->explicit_packet_size;
412
413 return rsa->remote_packet_size;
414 }
415
416 static struct packet_reg *
417 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
418 {
419 if (regnum < 0 && regnum >= NUM_REGS)
420 return NULL;
421 else
422 {
423 struct packet_reg *r = &rsa->regs[regnum];
424 gdb_assert (r->regnum == regnum);
425 return r;
426 }
427 }
428
429 static struct packet_reg *
430 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
431 {
432 int i;
433 for (i = 0; i < NUM_REGS; i++)
434 {
435 struct packet_reg *r = &rsa->regs[i];
436 if (r->pnum == pnum)
437 return r;
438 }
439 return NULL;
440 }
441
442 /* FIXME: graces/2002-08-08: These variables should eventually be
443 bound to an instance of the target object (as in gdbarch-tdep()),
444 when such a thing exists. */
445
446 /* This is set to the data address of the access causing the target
447 to stop for a watchpoint. */
448 static CORE_ADDR remote_watch_data_address;
449
450 /* This is non-zero if target stopped for a watchpoint. */
451 static int remote_stopped_by_watchpoint_p;
452
453 static struct target_ops remote_ops;
454
455 static struct target_ops extended_remote_ops;
456
457 /* Temporary target ops. Just like the remote_ops and
458 extended_remote_ops, but with asynchronous support. */
459 static struct target_ops remote_async_ops;
460
461 static struct target_ops extended_async_remote_ops;
462
463 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
464 ``forever'' still use the normal timeout mechanism. This is
465 currently used by the ASYNC code to guarentee that target reads
466 during the initial connect always time-out. Once getpkt has been
467 modified to return a timeout indication and, in turn
468 remote_wait()/wait_for_inferior() have gained a timeout parameter
469 this can go away. */
470 static int wait_forever_enabled_p = 1;
471
472
473 /* This variable chooses whether to send a ^C or a break when the user
474 requests program interruption. Although ^C is usually what remote
475 systems expect, and that is the default here, sometimes a break is
476 preferable instead. */
477
478 static int remote_break;
479
480 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
481 remote_open knows that we don't have a file open when the program
482 starts. */
483 static struct serial *remote_desc = NULL;
484
485 /* This variable sets the number of bits in an address that are to be
486 sent in a memory ("M" or "m") packet. Normally, after stripping
487 leading zeros, the entire address would be sent. This variable
488 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
489 initial implementation of remote.c restricted the address sent in
490 memory packets to ``host::sizeof long'' bytes - (typically 32
491 bits). Consequently, for 64 bit targets, the upper 32 bits of an
492 address was never sent. Since fixing this bug may cause a break in
493 some remote targets this variable is principly provided to
494 facilitate backward compatibility. */
495
496 static int remote_address_size;
497
498 /* Tempoary to track who currently owns the terminal. See
499 target_async_terminal_* for more details. */
500
501 static int remote_async_terminal_ours_p;
502
503 \f
504 /* User configurable variables for the number of characters in a
505 memory read/write packet. MIN (rsa->remote_packet_size,
506 rsa->sizeof_g_packet) is the default. Some targets need smaller
507 values (fifo overruns, et.al.) and some users need larger values
508 (speed up transfers). The variables ``preferred_*'' (the user
509 request), ``current_*'' (what was actually set) and ``forced_*''
510 (Positive - a soft limit, negative - a hard limit). */
511
512 struct memory_packet_config
513 {
514 char *name;
515 long size;
516 int fixed_p;
517 };
518
519 /* Compute the current size of a read/write packet. Since this makes
520 use of ``actual_register_packet_size'' the computation is dynamic. */
521
522 static long
523 get_memory_packet_size (struct memory_packet_config *config)
524 {
525 struct remote_state *rs = get_remote_state ();
526 struct remote_arch_state *rsa = get_remote_arch_state ();
527
528 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
529 law?) that some hosts don't cope very well with large alloca()
530 calls. Eventually the alloca() code will be replaced by calls to
531 xmalloc() and make_cleanups() allowing this restriction to either
532 be lifted or removed. */
533 #ifndef MAX_REMOTE_PACKET_SIZE
534 #define MAX_REMOTE_PACKET_SIZE 16384
535 #endif
536 /* NOTE: 20 ensures we can write at least one byte. */
537 #ifndef MIN_REMOTE_PACKET_SIZE
538 #define MIN_REMOTE_PACKET_SIZE 20
539 #endif
540 long what_they_get;
541 if (config->fixed_p)
542 {
543 if (config->size <= 0)
544 what_they_get = MAX_REMOTE_PACKET_SIZE;
545 else
546 what_they_get = config->size;
547 }
548 else
549 {
550 what_they_get = get_remote_packet_size ();
551 /* Limit the packet to the size specified by the user. */
552 if (config->size > 0
553 && what_they_get > config->size)
554 what_they_get = config->size;
555
556 /* Limit it to the size of the targets ``g'' response unless we have
557 permission from the stub to use a larger packet size. */
558 if (rs->explicit_packet_size == 0
559 && rsa->actual_register_packet_size > 0
560 && what_they_get > rsa->actual_register_packet_size)
561 what_they_get = rsa->actual_register_packet_size;
562 }
563 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
564 what_they_get = MAX_REMOTE_PACKET_SIZE;
565 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
566 what_they_get = MIN_REMOTE_PACKET_SIZE;
567
568 /* Make sure there is room in the global buffer for this packet
569 (including its trailing NUL byte). */
570 if (rs->buf_size < what_they_get + 1)
571 {
572 rs->buf_size = 2 * what_they_get;
573 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
574 }
575
576 return what_they_get;
577 }
578
579 /* Update the size of a read/write packet. If they user wants
580 something really big then do a sanity check. */
581
582 static void
583 set_memory_packet_size (char *args, struct memory_packet_config *config)
584 {
585 int fixed_p = config->fixed_p;
586 long size = config->size;
587 if (args == NULL)
588 error (_("Argument required (integer, `fixed' or `limited')."));
589 else if (strcmp (args, "hard") == 0
590 || strcmp (args, "fixed") == 0)
591 fixed_p = 1;
592 else if (strcmp (args, "soft") == 0
593 || strcmp (args, "limit") == 0)
594 fixed_p = 0;
595 else
596 {
597 char *end;
598 size = strtoul (args, &end, 0);
599 if (args == end)
600 error (_("Invalid %s (bad syntax)."), config->name);
601 #if 0
602 /* Instead of explicitly capping the size of a packet to
603 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
604 instead allowed to set the size to something arbitrarily
605 large. */
606 if (size > MAX_REMOTE_PACKET_SIZE)
607 error (_("Invalid %s (too large)."), config->name);
608 #endif
609 }
610 /* Extra checks? */
611 if (fixed_p && !config->fixed_p)
612 {
613 if (! query (_("The target may not be able to correctly handle a %s\n"
614 "of %ld bytes. Change the packet size? "),
615 config->name, size))
616 error (_("Packet size not changed."));
617 }
618 /* Update the config. */
619 config->fixed_p = fixed_p;
620 config->size = size;
621 }
622
623 static void
624 show_memory_packet_size (struct memory_packet_config *config)
625 {
626 printf_filtered (_("The %s is %ld. "), config->name, config->size);
627 if (config->fixed_p)
628 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
629 get_memory_packet_size (config));
630 else
631 printf_filtered (_("Packets are limited to %ld bytes.\n"),
632 get_memory_packet_size (config));
633 }
634
635 static struct memory_packet_config memory_write_packet_config =
636 {
637 "memory-write-packet-size",
638 };
639
640 static void
641 set_memory_write_packet_size (char *args, int from_tty)
642 {
643 set_memory_packet_size (args, &memory_write_packet_config);
644 }
645
646 static void
647 show_memory_write_packet_size (char *args, int from_tty)
648 {
649 show_memory_packet_size (&memory_write_packet_config);
650 }
651
652 static long
653 get_memory_write_packet_size (void)
654 {
655 return get_memory_packet_size (&memory_write_packet_config);
656 }
657
658 static struct memory_packet_config memory_read_packet_config =
659 {
660 "memory-read-packet-size",
661 };
662
663 static void
664 set_memory_read_packet_size (char *args, int from_tty)
665 {
666 set_memory_packet_size (args, &memory_read_packet_config);
667 }
668
669 static void
670 show_memory_read_packet_size (char *args, int from_tty)
671 {
672 show_memory_packet_size (&memory_read_packet_config);
673 }
674
675 static long
676 get_memory_read_packet_size (void)
677 {
678 long size = get_memory_packet_size (&memory_read_packet_config);
679 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
680 extra buffer size argument before the memory read size can be
681 increased beyond this. */
682 if (size > get_remote_packet_size ())
683 size = get_remote_packet_size ();
684 return size;
685 }
686
687 \f
688 /* Generic configuration support for packets the stub optionally
689 supports. Allows the user to specify the use of the packet as well
690 as allowing GDB to auto-detect support in the remote stub. */
691
692 enum packet_support
693 {
694 PACKET_SUPPORT_UNKNOWN = 0,
695 PACKET_ENABLE,
696 PACKET_DISABLE
697 };
698
699 struct packet_config
700 {
701 const char *name;
702 const char *title;
703 enum auto_boolean detect;
704 enum packet_support support;
705 };
706
707 /* Analyze a packet's return value and update the packet config
708 accordingly. */
709
710 enum packet_result
711 {
712 PACKET_ERROR,
713 PACKET_OK,
714 PACKET_UNKNOWN
715 };
716
717 static void
718 update_packet_config (struct packet_config *config)
719 {
720 switch (config->detect)
721 {
722 case AUTO_BOOLEAN_TRUE:
723 config->support = PACKET_ENABLE;
724 break;
725 case AUTO_BOOLEAN_FALSE:
726 config->support = PACKET_DISABLE;
727 break;
728 case AUTO_BOOLEAN_AUTO:
729 config->support = PACKET_SUPPORT_UNKNOWN;
730 break;
731 }
732 }
733
734 static void
735 show_packet_config_cmd (struct packet_config *config)
736 {
737 char *support = "internal-error";
738 switch (config->support)
739 {
740 case PACKET_ENABLE:
741 support = "enabled";
742 break;
743 case PACKET_DISABLE:
744 support = "disabled";
745 break;
746 case PACKET_SUPPORT_UNKNOWN:
747 support = "unknown";
748 break;
749 }
750 switch (config->detect)
751 {
752 case AUTO_BOOLEAN_AUTO:
753 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
754 config->name, support);
755 break;
756 case AUTO_BOOLEAN_TRUE:
757 case AUTO_BOOLEAN_FALSE:
758 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
759 config->name, support);
760 break;
761 }
762 }
763
764 static void
765 add_packet_config_cmd (struct packet_config *config, const char *name,
766 const char *title, int legacy)
767 {
768 char *set_doc;
769 char *show_doc;
770 char *cmd_name;
771
772 config->name = name;
773 config->title = title;
774 config->detect = AUTO_BOOLEAN_AUTO;
775 config->support = PACKET_SUPPORT_UNKNOWN;
776 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
777 name, title);
778 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
779 name, title);
780 /* set/show TITLE-packet {auto,on,off} */
781 cmd_name = xstrprintf ("%s-packet", title);
782 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
783 &config->detect, set_doc, show_doc, NULL, /* help_doc */
784 set_remote_protocol_packet_cmd,
785 show_remote_protocol_packet_cmd,
786 &remote_set_cmdlist, &remote_show_cmdlist);
787 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
788 if (legacy)
789 {
790 char *legacy_name;
791 legacy_name = xstrprintf ("%s-packet", name);
792 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
793 &remote_set_cmdlist);
794 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
795 &remote_show_cmdlist);
796 }
797 }
798
799 static enum packet_result
800 packet_check_result (const char *buf)
801 {
802 if (buf[0] != '\0')
803 {
804 /* The stub recognized the packet request. Check that the
805 operation succeeded. */
806 if (buf[0] == 'E'
807 && isxdigit (buf[1]) && isxdigit (buf[2])
808 && buf[3] == '\0')
809 /* "Enn" - definitly an error. */
810 return PACKET_ERROR;
811
812 /* Always treat "E." as an error. This will be used for
813 more verbose error messages, such as E.memtypes. */
814 if (buf[0] == 'E' && buf[1] == '.')
815 return PACKET_ERROR;
816
817 /* The packet may or may not be OK. Just assume it is. */
818 return PACKET_OK;
819 }
820 else
821 /* The stub does not support the packet. */
822 return PACKET_UNKNOWN;
823 }
824
825 static enum packet_result
826 packet_ok (const char *buf, struct packet_config *config)
827 {
828 enum packet_result result;
829
830 result = packet_check_result (buf);
831 switch (result)
832 {
833 case PACKET_OK:
834 case PACKET_ERROR:
835 /* The stub recognized the packet request. */
836 switch (config->support)
837 {
838 case PACKET_SUPPORT_UNKNOWN:
839 if (remote_debug)
840 fprintf_unfiltered (gdb_stdlog,
841 "Packet %s (%s) is supported\n",
842 config->name, config->title);
843 config->support = PACKET_ENABLE;
844 break;
845 case PACKET_DISABLE:
846 internal_error (__FILE__, __LINE__,
847 _("packet_ok: attempt to use a disabled packet"));
848 break;
849 case PACKET_ENABLE:
850 break;
851 }
852 break;
853 case PACKET_UNKNOWN:
854 /* The stub does not support the packet. */
855 switch (config->support)
856 {
857 case PACKET_ENABLE:
858 if (config->detect == AUTO_BOOLEAN_AUTO)
859 /* If the stub previously indicated that the packet was
860 supported then there is a protocol error.. */
861 error (_("Protocol error: %s (%s) conflicting enabled responses."),
862 config->name, config->title);
863 else
864 /* The user set it wrong. */
865 error (_("Enabled packet %s (%s) not recognized by stub"),
866 config->name, config->title);
867 break;
868 case PACKET_SUPPORT_UNKNOWN:
869 if (remote_debug)
870 fprintf_unfiltered (gdb_stdlog,
871 "Packet %s (%s) is NOT supported\n",
872 config->name, config->title);
873 config->support = PACKET_DISABLE;
874 break;
875 case PACKET_DISABLE:
876 break;
877 }
878 break;
879 }
880
881 return result;
882 }
883
884 enum {
885 PACKET_vCont = 0,
886 PACKET_X,
887 PACKET_qSymbol,
888 PACKET_P,
889 PACKET_p,
890 PACKET_Z0,
891 PACKET_Z1,
892 PACKET_Z2,
893 PACKET_Z3,
894 PACKET_Z4,
895 PACKET_qXfer_auxv,
896 PACKET_qXfer_memory_map,
897 PACKET_qGetTLSAddr,
898 PACKET_qSupported,
899 PACKET_QPassSignals,
900 PACKET_MAX
901 };
902
903 static struct packet_config remote_protocol_packets[PACKET_MAX];
904
905 static void
906 set_remote_protocol_packet_cmd (char *args, int from_tty,
907 struct cmd_list_element *c)
908 {
909 struct packet_config *packet;
910
911 for (packet = remote_protocol_packets;
912 packet < &remote_protocol_packets[PACKET_MAX];
913 packet++)
914 {
915 if (&packet->detect == c->var)
916 {
917 update_packet_config (packet);
918 return;
919 }
920 }
921 internal_error (__FILE__, __LINE__, "Could not find config for %s",
922 c->name);
923 }
924
925 static void
926 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
927 struct cmd_list_element *c,
928 const char *value)
929 {
930 struct packet_config *packet;
931
932 for (packet = remote_protocol_packets;
933 packet < &remote_protocol_packets[PACKET_MAX];
934 packet++)
935 {
936 if (&packet->detect == c->var)
937 {
938 show_packet_config_cmd (packet);
939 return;
940 }
941 }
942 internal_error (__FILE__, __LINE__, "Could not find config for %s",
943 c->name);
944 }
945
946 /* Should we try one of the 'Z' requests? */
947
948 enum Z_packet_type
949 {
950 Z_PACKET_SOFTWARE_BP,
951 Z_PACKET_HARDWARE_BP,
952 Z_PACKET_WRITE_WP,
953 Z_PACKET_READ_WP,
954 Z_PACKET_ACCESS_WP,
955 NR_Z_PACKET_TYPES
956 };
957
958 /* For compatibility with older distributions. Provide a ``set remote
959 Z-packet ...'' command that updates all the Z packet types. */
960
961 static enum auto_boolean remote_Z_packet_detect;
962
963 static void
964 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
965 struct cmd_list_element *c)
966 {
967 int i;
968 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
969 {
970 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
971 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
972 }
973 }
974
975 static void
976 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
977 struct cmd_list_element *c,
978 const char *value)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
984 }
985 }
986
987 /* Should we try the 'ThreadInfo' query packet?
988
989 This variable (NOT available to the user: auto-detect only!)
990 determines whether GDB will use the new, simpler "ThreadInfo"
991 query or the older, more complex syntax for thread queries.
992 This is an auto-detect variable (set to true at each connect,
993 and set to false when the target fails to recognize it). */
994
995 static int use_threadinfo_query;
996 static int use_threadextra_query;
997
998 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
999 static void *sigint_remote_twice_token;
1000 static void *sigint_remote_token;
1001
1002 /* These are pointers to hook functions that may be set in order to
1003 modify resume/wait behavior for a particular architecture. */
1004
1005 void (*deprecated_target_resume_hook) (void);
1006 void (*deprecated_target_wait_loop_hook) (void);
1007 \f
1008
1009
1010 /* These are the threads which we last sent to the remote system.
1011 -1 for all or -2 for not sent yet. */
1012 static int general_thread;
1013 static int continue_thread;
1014
1015 /* Call this function as a result of
1016 1) A halt indication (T packet) containing a thread id
1017 2) A direct query of currthread
1018 3) Successful execution of set thread
1019 */
1020
1021 static void
1022 record_currthread (int currthread)
1023 {
1024 general_thread = currthread;
1025
1026 /* If this is a new thread, add it to GDB's thread list.
1027 If we leave it up to WFI to do this, bad things will happen. */
1028 if (!in_thread_list (pid_to_ptid (currthread)))
1029 {
1030 add_thread (pid_to_ptid (currthread));
1031 ui_out_text (uiout, "[New ");
1032 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1033 ui_out_text (uiout, "]\n");
1034 }
1035 }
1036
1037 static char *last_pass_packet;
1038
1039 /* If 'QPassSignals' is supported, tell the remote stub what signals
1040 it can simply pass through to the inferior without reporting. */
1041
1042 static void
1043 remote_pass_signals (void)
1044 {
1045 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1046 {
1047 char *pass_packet, *p;
1048 int numsigs = (int) TARGET_SIGNAL_LAST;
1049 int count = 0, i;
1050
1051 gdb_assert (numsigs < 256);
1052 for (i = 0; i < numsigs; i++)
1053 {
1054 if (signal_stop_state (i) == 0
1055 && signal_print_state (i) == 0
1056 && signal_pass_state (i) == 1)
1057 count++;
1058 }
1059 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1060 strcpy (pass_packet, "QPassSignals:");
1061 p = pass_packet + strlen (pass_packet);
1062 for (i = 0; i < numsigs; i++)
1063 {
1064 if (signal_stop_state (i) == 0
1065 && signal_print_state (i) == 0
1066 && signal_pass_state (i) == 1)
1067 {
1068 if (i >= 16)
1069 *p++ = tohex (i >> 4);
1070 *p++ = tohex (i & 15);
1071 if (count)
1072 *p++ = ';';
1073 else
1074 break;
1075 count--;
1076 }
1077 }
1078 *p = 0;
1079 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1080 {
1081 struct remote_state *rs = get_remote_state ();
1082 char *buf = rs->buf;
1083
1084 putpkt (pass_packet);
1085 getpkt (&rs->buf, &rs->buf_size, 0);
1086 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1087 if (last_pass_packet)
1088 xfree (last_pass_packet);
1089 last_pass_packet = pass_packet;
1090 }
1091 else
1092 xfree (pass_packet);
1093 }
1094 }
1095
1096 #define MAGIC_NULL_PID 42000
1097
1098 static void
1099 set_thread (int th, int gen)
1100 {
1101 struct remote_state *rs = get_remote_state ();
1102 char *buf = rs->buf;
1103 int state = gen ? general_thread : continue_thread;
1104
1105 if (state == th)
1106 return;
1107
1108 buf[0] = 'H';
1109 buf[1] = gen ? 'g' : 'c';
1110 if (th == MAGIC_NULL_PID)
1111 {
1112 buf[2] = '0';
1113 buf[3] = '\0';
1114 }
1115 else if (th < 0)
1116 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1117 else
1118 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1119 putpkt (buf);
1120 getpkt (&rs->buf, &rs->buf_size, 0);
1121 if (gen)
1122 general_thread = th;
1123 else
1124 continue_thread = th;
1125 }
1126 \f
1127 /* Return nonzero if the thread TH is still alive on the remote system. */
1128
1129 static int
1130 remote_thread_alive (ptid_t ptid)
1131 {
1132 struct remote_state *rs = get_remote_state ();
1133 int tid = PIDGET (ptid);
1134
1135 if (tid < 0)
1136 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1137 else
1138 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1139 putpkt (rs->buf);
1140 getpkt (&rs->buf, &rs->buf_size, 0);
1141 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1142 }
1143
1144 /* About these extended threadlist and threadinfo packets. They are
1145 variable length packets but, the fields within them are often fixed
1146 length. They are redundent enough to send over UDP as is the
1147 remote protocol in general. There is a matching unit test module
1148 in libstub. */
1149
1150 #define OPAQUETHREADBYTES 8
1151
1152 /* a 64 bit opaque identifier */
1153 typedef unsigned char threadref[OPAQUETHREADBYTES];
1154
1155 /* WARNING: This threadref data structure comes from the remote O.S.,
1156 libstub protocol encoding, and remote.c. it is not particularly
1157 changable. */
1158
1159 /* Right now, the internal structure is int. We want it to be bigger.
1160 Plan to fix this.
1161 */
1162
1163 typedef int gdb_threadref; /* Internal GDB thread reference. */
1164
1165 /* gdb_ext_thread_info is an internal GDB data structure which is
1166 equivalent to the reply of the remote threadinfo packet. */
1167
1168 struct gdb_ext_thread_info
1169 {
1170 threadref threadid; /* External form of thread reference. */
1171 int active; /* Has state interesting to GDB?
1172 regs, stack. */
1173 char display[256]; /* Brief state display, name,
1174 blocked/suspended. */
1175 char shortname[32]; /* To be used to name threads. */
1176 char more_display[256]; /* Long info, statistics, queue depth,
1177 whatever. */
1178 };
1179
1180 /* The volume of remote transfers can be limited by submitting
1181 a mask containing bits specifying the desired information.
1182 Use a union of these values as the 'selection' parameter to
1183 get_thread_info. FIXME: Make these TAG names more thread specific.
1184 */
1185
1186 #define TAG_THREADID 1
1187 #define TAG_EXISTS 2
1188 #define TAG_DISPLAY 4
1189 #define TAG_THREADNAME 8
1190 #define TAG_MOREDISPLAY 16
1191
1192 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1193
1194 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1195
1196 static char *unpack_nibble (char *buf, int *val);
1197
1198 static char *pack_nibble (char *buf, int nibble);
1199
1200 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1201
1202 static char *unpack_byte (char *buf, int *value);
1203
1204 static char *pack_int (char *buf, int value);
1205
1206 static char *unpack_int (char *buf, int *value);
1207
1208 static char *unpack_string (char *src, char *dest, int length);
1209
1210 static char *pack_threadid (char *pkt, threadref *id);
1211
1212 static char *unpack_threadid (char *inbuf, threadref *id);
1213
1214 void int_to_threadref (threadref *id, int value);
1215
1216 static int threadref_to_int (threadref *ref);
1217
1218 static void copy_threadref (threadref *dest, threadref *src);
1219
1220 static int threadmatch (threadref *dest, threadref *src);
1221
1222 static char *pack_threadinfo_request (char *pkt, int mode,
1223 threadref *id);
1224
1225 static int remote_unpack_thread_info_response (char *pkt,
1226 threadref *expectedref,
1227 struct gdb_ext_thread_info
1228 *info);
1229
1230
1231 static int remote_get_threadinfo (threadref *threadid,
1232 int fieldset, /*TAG mask */
1233 struct gdb_ext_thread_info *info);
1234
1235 static char *pack_threadlist_request (char *pkt, int startflag,
1236 int threadcount,
1237 threadref *nextthread);
1238
1239 static int parse_threadlist_response (char *pkt,
1240 int result_limit,
1241 threadref *original_echo,
1242 threadref *resultlist,
1243 int *doneflag);
1244
1245 static int remote_get_threadlist (int startflag,
1246 threadref *nextthread,
1247 int result_limit,
1248 int *done,
1249 int *result_count,
1250 threadref *threadlist);
1251
1252 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1253
1254 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1255 void *context, int looplimit);
1256
1257 static int remote_newthread_step (threadref *ref, void *context);
1258
1259 /* Encode 64 bits in 16 chars of hex. */
1260
1261 static const char hexchars[] = "0123456789abcdef";
1262
1263 static int
1264 ishex (int ch, int *val)
1265 {
1266 if ((ch >= 'a') && (ch <= 'f'))
1267 {
1268 *val = ch - 'a' + 10;
1269 return 1;
1270 }
1271 if ((ch >= 'A') && (ch <= 'F'))
1272 {
1273 *val = ch - 'A' + 10;
1274 return 1;
1275 }
1276 if ((ch >= '0') && (ch <= '9'))
1277 {
1278 *val = ch - '0';
1279 return 1;
1280 }
1281 return 0;
1282 }
1283
1284 static int
1285 stubhex (int ch)
1286 {
1287 if (ch >= 'a' && ch <= 'f')
1288 return ch - 'a' + 10;
1289 if (ch >= '0' && ch <= '9')
1290 return ch - '0';
1291 if (ch >= 'A' && ch <= 'F')
1292 return ch - 'A' + 10;
1293 return -1;
1294 }
1295
1296 static int
1297 stub_unpack_int (char *buff, int fieldlength)
1298 {
1299 int nibble;
1300 int retval = 0;
1301
1302 while (fieldlength)
1303 {
1304 nibble = stubhex (*buff++);
1305 retval |= nibble;
1306 fieldlength--;
1307 if (fieldlength)
1308 retval = retval << 4;
1309 }
1310 return retval;
1311 }
1312
1313 char *
1314 unpack_varlen_hex (char *buff, /* packet to parse */
1315 ULONGEST *result)
1316 {
1317 int nibble;
1318 ULONGEST retval = 0;
1319
1320 while (ishex (*buff, &nibble))
1321 {
1322 buff++;
1323 retval = retval << 4;
1324 retval |= nibble & 0x0f;
1325 }
1326 *result = retval;
1327 return buff;
1328 }
1329
1330 static char *
1331 unpack_nibble (char *buf, int *val)
1332 {
1333 ishex (*buf++, val);
1334 return buf;
1335 }
1336
1337 static char *
1338 pack_nibble (char *buf, int nibble)
1339 {
1340 *buf++ = hexchars[(nibble & 0x0f)];
1341 return buf;
1342 }
1343
1344 static char *
1345 pack_hex_byte (char *pkt, int byte)
1346 {
1347 *pkt++ = hexchars[(byte >> 4) & 0xf];
1348 *pkt++ = hexchars[(byte & 0xf)];
1349 return pkt;
1350 }
1351
1352 static char *
1353 unpack_byte (char *buf, int *value)
1354 {
1355 *value = stub_unpack_int (buf, 2);
1356 return buf + 2;
1357 }
1358
1359 static char *
1360 pack_int (char *buf, int value)
1361 {
1362 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1363 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1364 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1365 buf = pack_hex_byte (buf, (value & 0xff));
1366 return buf;
1367 }
1368
1369 static char *
1370 unpack_int (char *buf, int *value)
1371 {
1372 *value = stub_unpack_int (buf, 8);
1373 return buf + 8;
1374 }
1375
1376 #if 0 /* Currently unused, uncomment when needed. */
1377 static char *pack_string (char *pkt, char *string);
1378
1379 static char *
1380 pack_string (char *pkt, char *string)
1381 {
1382 char ch;
1383 int len;
1384
1385 len = strlen (string);
1386 if (len > 200)
1387 len = 200; /* Bigger than most GDB packets, junk??? */
1388 pkt = pack_hex_byte (pkt, len);
1389 while (len-- > 0)
1390 {
1391 ch = *string++;
1392 if ((ch == '\0') || (ch == '#'))
1393 ch = '*'; /* Protect encapsulation. */
1394 *pkt++ = ch;
1395 }
1396 return pkt;
1397 }
1398 #endif /* 0 (unused) */
1399
1400 static char *
1401 unpack_string (char *src, char *dest, int length)
1402 {
1403 while (length--)
1404 *dest++ = *src++;
1405 *dest = '\0';
1406 return src;
1407 }
1408
1409 static char *
1410 pack_threadid (char *pkt, threadref *id)
1411 {
1412 char *limit;
1413 unsigned char *altid;
1414
1415 altid = (unsigned char *) id;
1416 limit = pkt + BUF_THREAD_ID_SIZE;
1417 while (pkt < limit)
1418 pkt = pack_hex_byte (pkt, *altid++);
1419 return pkt;
1420 }
1421
1422
1423 static char *
1424 unpack_threadid (char *inbuf, threadref *id)
1425 {
1426 char *altref;
1427 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1428 int x, y;
1429
1430 altref = (char *) id;
1431
1432 while (inbuf < limit)
1433 {
1434 x = stubhex (*inbuf++);
1435 y = stubhex (*inbuf++);
1436 *altref++ = (x << 4) | y;
1437 }
1438 return inbuf;
1439 }
1440
1441 /* Externally, threadrefs are 64 bits but internally, they are still
1442 ints. This is due to a mismatch of specifications. We would like
1443 to use 64bit thread references internally. This is an adapter
1444 function. */
1445
1446 void
1447 int_to_threadref (threadref *id, int value)
1448 {
1449 unsigned char *scan;
1450
1451 scan = (unsigned char *) id;
1452 {
1453 int i = 4;
1454 while (i--)
1455 *scan++ = 0;
1456 }
1457 *scan++ = (value >> 24) & 0xff;
1458 *scan++ = (value >> 16) & 0xff;
1459 *scan++ = (value >> 8) & 0xff;
1460 *scan++ = (value & 0xff);
1461 }
1462
1463 static int
1464 threadref_to_int (threadref *ref)
1465 {
1466 int i, value = 0;
1467 unsigned char *scan;
1468
1469 scan = *ref;
1470 scan += 4;
1471 i = 4;
1472 while (i-- > 0)
1473 value = (value << 8) | ((*scan++) & 0xff);
1474 return value;
1475 }
1476
1477 static void
1478 copy_threadref (threadref *dest, threadref *src)
1479 {
1480 int i;
1481 unsigned char *csrc, *cdest;
1482
1483 csrc = (unsigned char *) src;
1484 cdest = (unsigned char *) dest;
1485 i = 8;
1486 while (i--)
1487 *cdest++ = *csrc++;
1488 }
1489
1490 static int
1491 threadmatch (threadref *dest, threadref *src)
1492 {
1493 /* Things are broken right now, so just assume we got a match. */
1494 #if 0
1495 unsigned char *srcp, *destp;
1496 int i, result;
1497 srcp = (char *) src;
1498 destp = (char *) dest;
1499
1500 result = 1;
1501 while (i-- > 0)
1502 result &= (*srcp++ == *destp++) ? 1 : 0;
1503 return result;
1504 #endif
1505 return 1;
1506 }
1507
1508 /*
1509 threadid:1, # always request threadid
1510 context_exists:2,
1511 display:4,
1512 unique_name:8,
1513 more_display:16
1514 */
1515
1516 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1517
1518 static char *
1519 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1520 {
1521 *pkt++ = 'q'; /* Info Query */
1522 *pkt++ = 'P'; /* process or thread info */
1523 pkt = pack_int (pkt, mode); /* mode */
1524 pkt = pack_threadid (pkt, id); /* threadid */
1525 *pkt = '\0'; /* terminate */
1526 return pkt;
1527 }
1528
1529 /* These values tag the fields in a thread info response packet. */
1530 /* Tagging the fields allows us to request specific fields and to
1531 add more fields as time goes by. */
1532
1533 #define TAG_THREADID 1 /* Echo the thread identifier. */
1534 #define TAG_EXISTS 2 /* Is this process defined enough to
1535 fetch registers and its stack? */
1536 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1537 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1538 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1539 the process. */
1540
1541 static int
1542 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1543 struct gdb_ext_thread_info *info)
1544 {
1545 struct remote_state *rs = get_remote_state ();
1546 int mask, length;
1547 int tag;
1548 threadref ref;
1549 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1550 int retval = 1;
1551
1552 /* info->threadid = 0; FIXME: implement zero_threadref. */
1553 info->active = 0;
1554 info->display[0] = '\0';
1555 info->shortname[0] = '\0';
1556 info->more_display[0] = '\0';
1557
1558 /* Assume the characters indicating the packet type have been
1559 stripped. */
1560 pkt = unpack_int (pkt, &mask); /* arg mask */
1561 pkt = unpack_threadid (pkt, &ref);
1562
1563 if (mask == 0)
1564 warning (_("Incomplete response to threadinfo request."));
1565 if (!threadmatch (&ref, expectedref))
1566 { /* This is an answer to a different request. */
1567 warning (_("ERROR RMT Thread info mismatch."));
1568 return 0;
1569 }
1570 copy_threadref (&info->threadid, &ref);
1571
1572 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1573
1574 /* Packets are terminated with nulls. */
1575 while ((pkt < limit) && mask && *pkt)
1576 {
1577 pkt = unpack_int (pkt, &tag); /* tag */
1578 pkt = unpack_byte (pkt, &length); /* length */
1579 if (!(tag & mask)) /* Tags out of synch with mask. */
1580 {
1581 warning (_("ERROR RMT: threadinfo tag mismatch."));
1582 retval = 0;
1583 break;
1584 }
1585 if (tag == TAG_THREADID)
1586 {
1587 if (length != 16)
1588 {
1589 warning (_("ERROR RMT: length of threadid is not 16."));
1590 retval = 0;
1591 break;
1592 }
1593 pkt = unpack_threadid (pkt, &ref);
1594 mask = mask & ~TAG_THREADID;
1595 continue;
1596 }
1597 if (tag == TAG_EXISTS)
1598 {
1599 info->active = stub_unpack_int (pkt, length);
1600 pkt += length;
1601 mask = mask & ~(TAG_EXISTS);
1602 if (length > 8)
1603 {
1604 warning (_("ERROR RMT: 'exists' length too long."));
1605 retval = 0;
1606 break;
1607 }
1608 continue;
1609 }
1610 if (tag == TAG_THREADNAME)
1611 {
1612 pkt = unpack_string (pkt, &info->shortname[0], length);
1613 mask = mask & ~TAG_THREADNAME;
1614 continue;
1615 }
1616 if (tag == TAG_DISPLAY)
1617 {
1618 pkt = unpack_string (pkt, &info->display[0], length);
1619 mask = mask & ~TAG_DISPLAY;
1620 continue;
1621 }
1622 if (tag == TAG_MOREDISPLAY)
1623 {
1624 pkt = unpack_string (pkt, &info->more_display[0], length);
1625 mask = mask & ~TAG_MOREDISPLAY;
1626 continue;
1627 }
1628 warning (_("ERROR RMT: unknown thread info tag."));
1629 break; /* Not a tag we know about. */
1630 }
1631 return retval;
1632 }
1633
1634 static int
1635 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1636 struct gdb_ext_thread_info *info)
1637 {
1638 struct remote_state *rs = get_remote_state ();
1639 int result;
1640
1641 pack_threadinfo_request (rs->buf, fieldset, threadid);
1642 putpkt (rs->buf);
1643 getpkt (&rs->buf, &rs->buf_size, 0);
1644 result = remote_unpack_thread_info_response (rs->buf + 2,
1645 threadid, info);
1646 return result;
1647 }
1648
1649 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1650
1651 static char *
1652 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1653 threadref *nextthread)
1654 {
1655 *pkt++ = 'q'; /* info query packet */
1656 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1657 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1658 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1659 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1660 *pkt = '\0';
1661 return pkt;
1662 }
1663
1664 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1665
1666 static int
1667 parse_threadlist_response (char *pkt, int result_limit,
1668 threadref *original_echo, threadref *resultlist,
1669 int *doneflag)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 char *limit;
1673 int count, resultcount, done;
1674
1675 resultcount = 0;
1676 /* Assume the 'q' and 'M chars have been stripped. */
1677 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1678 /* done parse past here */
1679 pkt = unpack_byte (pkt, &count); /* count field */
1680 pkt = unpack_nibble (pkt, &done);
1681 /* The first threadid is the argument threadid. */
1682 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1683 while ((count-- > 0) && (pkt < limit))
1684 {
1685 pkt = unpack_threadid (pkt, resultlist++);
1686 if (resultcount++ >= result_limit)
1687 break;
1688 }
1689 if (doneflag)
1690 *doneflag = done;
1691 return resultcount;
1692 }
1693
1694 static int
1695 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1696 int *done, int *result_count, threadref *threadlist)
1697 {
1698 struct remote_state *rs = get_remote_state ();
1699 static threadref echo_nextthread;
1700 int result = 1;
1701
1702 /* Trancate result limit to be smaller than the packet size. */
1703 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1704 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1705
1706 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1707 putpkt (rs->buf);
1708 getpkt (&rs->buf, &rs->buf_size, 0);
1709
1710 *result_count =
1711 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1712 threadlist, done);
1713
1714 if (!threadmatch (&echo_nextthread, nextthread))
1715 {
1716 /* FIXME: This is a good reason to drop the packet. */
1717 /* Possably, there is a duplicate response. */
1718 /* Possabilities :
1719 retransmit immediatly - race conditions
1720 retransmit after timeout - yes
1721 exit
1722 wait for packet, then exit
1723 */
1724 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1725 return 0; /* I choose simply exiting. */
1726 }
1727 if (*result_count <= 0)
1728 {
1729 if (*done != 1)
1730 {
1731 warning (_("RMT ERROR : failed to get remote thread list."));
1732 result = 0;
1733 }
1734 return result; /* break; */
1735 }
1736 if (*result_count > result_limit)
1737 {
1738 *result_count = 0;
1739 warning (_("RMT ERROR: threadlist response longer than requested."));
1740 return 0;
1741 }
1742 return result;
1743 }
1744
1745 /* This is the interface between remote and threads, remotes upper
1746 interface. */
1747
1748 /* remote_find_new_threads retrieves the thread list and for each
1749 thread in the list, looks up the thread in GDB's internal list,
1750 ading the thread if it does not already exist. This involves
1751 getting partial thread lists from the remote target so, polling the
1752 quit_flag is required. */
1753
1754
1755 /* About this many threadisds fit in a packet. */
1756
1757 #define MAXTHREADLISTRESULTS 32
1758
1759 static int
1760 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1761 int looplimit)
1762 {
1763 int done, i, result_count;
1764 int startflag = 1;
1765 int result = 1;
1766 int loopcount = 0;
1767 static threadref nextthread;
1768 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1769
1770 done = 0;
1771 while (!done)
1772 {
1773 if (loopcount++ > looplimit)
1774 {
1775 result = 0;
1776 warning (_("Remote fetch threadlist -infinite loop-."));
1777 break;
1778 }
1779 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1780 &done, &result_count, resultthreadlist))
1781 {
1782 result = 0;
1783 break;
1784 }
1785 /* Clear for later iterations. */
1786 startflag = 0;
1787 /* Setup to resume next batch of thread references, set nextthread. */
1788 if (result_count >= 1)
1789 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1790 i = 0;
1791 while (result_count--)
1792 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1793 break;
1794 }
1795 return result;
1796 }
1797
1798 static int
1799 remote_newthread_step (threadref *ref, void *context)
1800 {
1801 ptid_t ptid;
1802
1803 ptid = pid_to_ptid (threadref_to_int (ref));
1804
1805 if (!in_thread_list (ptid))
1806 add_thread (ptid);
1807 return 1; /* continue iterator */
1808 }
1809
1810 #define CRAZY_MAX_THREADS 1000
1811
1812 static ptid_t
1813 remote_current_thread (ptid_t oldpid)
1814 {
1815 struct remote_state *rs = get_remote_state ();
1816
1817 putpkt ("qC");
1818 getpkt (&rs->buf, &rs->buf_size, 0);
1819 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1820 /* Use strtoul here, so we'll correctly parse values whose highest
1821 bit is set. The protocol carries them as a simple series of
1822 hex digits; in the absence of a sign, strtol will see such
1823 values as positive numbers out of range for signed 'long', and
1824 return LONG_MAX to indicate an overflow. */
1825 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1826 else
1827 return oldpid;
1828 }
1829
1830 /* Find new threads for info threads command.
1831 * Original version, using John Metzler's thread protocol.
1832 */
1833
1834 static void
1835 remote_find_new_threads (void)
1836 {
1837 remote_threadlist_iterator (remote_newthread_step, 0,
1838 CRAZY_MAX_THREADS);
1839 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1840 inferior_ptid = remote_current_thread (inferior_ptid);
1841 }
1842
1843 /*
1844 * Find all threads for info threads command.
1845 * Uses new thread protocol contributed by Cisco.
1846 * Falls back and attempts to use the older method (above)
1847 * if the target doesn't respond to the new method.
1848 */
1849
1850 static void
1851 remote_threads_info (void)
1852 {
1853 struct remote_state *rs = get_remote_state ();
1854 char *bufp;
1855 int tid;
1856
1857 if (remote_desc == 0) /* paranoia */
1858 error (_("Command can only be used when connected to the remote target."));
1859
1860 if (use_threadinfo_query)
1861 {
1862 putpkt ("qfThreadInfo");
1863 getpkt (&rs->buf, &rs->buf_size, 0);
1864 bufp = rs->buf;
1865 if (bufp[0] != '\0') /* q packet recognized */
1866 {
1867 while (*bufp++ == 'm') /* reply contains one or more TID */
1868 {
1869 do
1870 {
1871 /* Use strtoul here, so we'll correctly parse values
1872 whose highest bit is set. The protocol carries
1873 them as a simple series of hex digits; in the
1874 absence of a sign, strtol will see such values as
1875 positive numbers out of range for signed 'long',
1876 and return LONG_MAX to indicate an overflow. */
1877 tid = strtoul (bufp, &bufp, 16);
1878 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1879 add_thread (pid_to_ptid (tid));
1880 }
1881 while (*bufp++ == ','); /* comma-separated list */
1882 putpkt ("qsThreadInfo");
1883 getpkt (&rs->buf, &rs->buf_size, 0);
1884 bufp = rs->buf;
1885 }
1886 return; /* done */
1887 }
1888 }
1889
1890 /* Else fall back to old method based on jmetzler protocol. */
1891 use_threadinfo_query = 0;
1892 remote_find_new_threads ();
1893 return;
1894 }
1895
1896 /*
1897 * Collect a descriptive string about the given thread.
1898 * The target may say anything it wants to about the thread
1899 * (typically info about its blocked / runnable state, name, etc.).
1900 * This string will appear in the info threads display.
1901 *
1902 * Optional: targets are not required to implement this function.
1903 */
1904
1905 static char *
1906 remote_threads_extra_info (struct thread_info *tp)
1907 {
1908 struct remote_state *rs = get_remote_state ();
1909 int result;
1910 int set;
1911 threadref id;
1912 struct gdb_ext_thread_info threadinfo;
1913 static char display_buf[100]; /* arbitrary... */
1914 int n = 0; /* position in display_buf */
1915
1916 if (remote_desc == 0) /* paranoia */
1917 internal_error (__FILE__, __LINE__,
1918 _("remote_threads_extra_info"));
1919
1920 if (use_threadextra_query)
1921 {
1922 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1923 PIDGET (tp->ptid));
1924 putpkt (rs->buf);
1925 getpkt (&rs->buf, &rs->buf_size, 0);
1926 if (rs->buf[0] != 0)
1927 {
1928 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1929 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1930 display_buf [result] = '\0';
1931 return display_buf;
1932 }
1933 }
1934
1935 /* If the above query fails, fall back to the old method. */
1936 use_threadextra_query = 0;
1937 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1938 | TAG_MOREDISPLAY | TAG_DISPLAY;
1939 int_to_threadref (&id, PIDGET (tp->ptid));
1940 if (remote_get_threadinfo (&id, set, &threadinfo))
1941 if (threadinfo.active)
1942 {
1943 if (*threadinfo.shortname)
1944 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1945 " Name: %s,", threadinfo.shortname);
1946 if (*threadinfo.display)
1947 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1948 " State: %s,", threadinfo.display);
1949 if (*threadinfo.more_display)
1950 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1951 " Priority: %s", threadinfo.more_display);
1952
1953 if (n > 0)
1954 {
1955 /* For purely cosmetic reasons, clear up trailing commas. */
1956 if (',' == display_buf[n-1])
1957 display_buf[n-1] = ' ';
1958 return display_buf;
1959 }
1960 }
1961 return NULL;
1962 }
1963 \f
1964
1965 /* Restart the remote side; this is an extended protocol operation. */
1966
1967 static void
1968 extended_remote_restart (void)
1969 {
1970 struct remote_state *rs = get_remote_state ();
1971
1972 /* Send the restart command; for reasons I don't understand the
1973 remote side really expects a number after the "R". */
1974 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1975 putpkt (rs->buf);
1976
1977 remote_fileio_reset ();
1978
1979 /* Now query for status so this looks just like we restarted
1980 gdbserver from scratch. */
1981 putpkt ("?");
1982 getpkt (&rs->buf, &rs->buf_size, 0);
1983 }
1984 \f
1985 /* Clean up connection to a remote debugger. */
1986
1987 static void
1988 remote_close (int quitting)
1989 {
1990 if (remote_desc)
1991 serial_close (remote_desc);
1992 remote_desc = NULL;
1993 }
1994
1995 /* Query the remote side for the text, data and bss offsets. */
1996
1997 static void
1998 get_offsets (void)
1999 {
2000 struct remote_state *rs = get_remote_state ();
2001 char *buf;
2002 char *ptr;
2003 int lose;
2004 CORE_ADDR text_addr, data_addr, bss_addr;
2005 struct section_offsets *offs;
2006
2007 putpkt ("qOffsets");
2008 getpkt (&rs->buf, &rs->buf_size, 0);
2009 buf = rs->buf;
2010
2011 if (buf[0] == '\000')
2012 return; /* Return silently. Stub doesn't support
2013 this command. */
2014 if (buf[0] == 'E')
2015 {
2016 warning (_("Remote failure reply: %s"), buf);
2017 return;
2018 }
2019
2020 /* Pick up each field in turn. This used to be done with scanf, but
2021 scanf will make trouble if CORE_ADDR size doesn't match
2022 conversion directives correctly. The following code will work
2023 with any size of CORE_ADDR. */
2024 text_addr = data_addr = bss_addr = 0;
2025 ptr = buf;
2026 lose = 0;
2027
2028 if (strncmp (ptr, "Text=", 5) == 0)
2029 {
2030 ptr += 5;
2031 /* Don't use strtol, could lose on big values. */
2032 while (*ptr && *ptr != ';')
2033 text_addr = (text_addr << 4) + fromhex (*ptr++);
2034 }
2035 else
2036 lose = 1;
2037
2038 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2039 {
2040 ptr += 6;
2041 while (*ptr && *ptr != ';')
2042 data_addr = (data_addr << 4) + fromhex (*ptr++);
2043 }
2044 else
2045 lose = 1;
2046
2047 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2048 {
2049 ptr += 5;
2050 while (*ptr && *ptr != ';')
2051 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2052 }
2053 else
2054 lose = 1;
2055
2056 if (lose)
2057 error (_("Malformed response to offset query, %s"), buf);
2058
2059 if (symfile_objfile == NULL)
2060 return;
2061
2062 offs = ((struct section_offsets *)
2063 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2064 memcpy (offs, symfile_objfile->section_offsets,
2065 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2066
2067 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2068
2069 /* This is a temporary kludge to force data and bss to use the same offsets
2070 because that's what nlmconv does now. The real solution requires changes
2071 to the stub and remote.c that I don't have time to do right now. */
2072
2073 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2074 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2075
2076 objfile_relocate (symfile_objfile, offs);
2077 }
2078
2079 /* Stub for catch_exception. */
2080
2081 static void
2082 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2083 {
2084 int from_tty = * (int *) from_tty_p;
2085
2086 immediate_quit++; /* Allow user to interrupt it. */
2087
2088 /* Ack any packet which the remote side has already sent. */
2089 serial_write (remote_desc, "+", 1);
2090
2091 /* Let the stub know that we want it to return the thread. */
2092 set_thread (-1, 0);
2093
2094 inferior_ptid = remote_current_thread (inferior_ptid);
2095
2096 get_offsets (); /* Get text, data & bss offsets. */
2097
2098 putpkt ("?"); /* Initiate a query from remote machine. */
2099 immediate_quit--;
2100
2101 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2102 }
2103
2104 /* Open a connection to a remote debugger.
2105 NAME is the filename used for communication. */
2106
2107 static void
2108 remote_open (char *name, int from_tty)
2109 {
2110 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2111 }
2112
2113 /* Just like remote_open, but with asynchronous support. */
2114 static void
2115 remote_async_open (char *name, int from_tty)
2116 {
2117 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2118 }
2119
2120 /* Open a connection to a remote debugger using the extended
2121 remote gdb protocol. NAME is the filename used for communication. */
2122
2123 static void
2124 extended_remote_open (char *name, int from_tty)
2125 {
2126 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2127 0 /* async_p */);
2128 }
2129
2130 /* Just like extended_remote_open, but with asynchronous support. */
2131 static void
2132 extended_remote_async_open (char *name, int from_tty)
2133 {
2134 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2135 1 /*extended_p */, 1 /* async_p */);
2136 }
2137
2138 /* Generic code for opening a connection to a remote target. */
2139
2140 static void
2141 init_all_packet_configs (void)
2142 {
2143 int i;
2144 for (i = 0; i < PACKET_MAX; i++)
2145 update_packet_config (&remote_protocol_packets[i]);
2146 }
2147
2148 /* Symbol look-up. */
2149
2150 static void
2151 remote_check_symbols (struct objfile *objfile)
2152 {
2153 struct remote_state *rs = get_remote_state ();
2154 char *msg, *reply, *tmp;
2155 struct minimal_symbol *sym;
2156 int end;
2157
2158 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2159 return;
2160
2161 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2162 because we need both at the same time. */
2163 msg = alloca (get_remote_packet_size ());
2164
2165 /* Invite target to request symbol lookups. */
2166
2167 putpkt ("qSymbol::");
2168 getpkt (&rs->buf, &rs->buf_size, 0);
2169 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2170 reply = rs->buf;
2171
2172 while (strncmp (reply, "qSymbol:", 8) == 0)
2173 {
2174 tmp = &reply[8];
2175 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2176 msg[end] = '\0';
2177 sym = lookup_minimal_symbol (msg, NULL, NULL);
2178 if (sym == NULL)
2179 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2180 else
2181 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2182 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2183 &reply[8]);
2184 putpkt (msg);
2185 getpkt (&rs->buf, &rs->buf_size, 0);
2186 reply = rs->buf;
2187 }
2188 }
2189
2190 static struct serial *
2191 remote_serial_open (char *name)
2192 {
2193 static int udp_warning = 0;
2194
2195 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2196 of in ser-tcp.c, because it is the remote protocol assuming that the
2197 serial connection is reliable and not the serial connection promising
2198 to be. */
2199 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2200 {
2201 warning (_("\
2202 The remote protocol may be unreliable over UDP.\n\
2203 Some events may be lost, rendering further debugging impossible."));
2204 udp_warning = 1;
2205 }
2206
2207 return serial_open (name);
2208 }
2209
2210 /* This type describes each known response to the qSupported
2211 packet. */
2212 struct protocol_feature
2213 {
2214 /* The name of this protocol feature. */
2215 const char *name;
2216
2217 /* The default for this protocol feature. */
2218 enum packet_support default_support;
2219
2220 /* The function to call when this feature is reported, or after
2221 qSupported processing if the feature is not supported.
2222 The first argument points to this structure. The second
2223 argument indicates whether the packet requested support be
2224 enabled, disabled, or probed (or the default, if this function
2225 is being called at the end of processing and this feature was
2226 not reported). The third argument may be NULL; if not NULL, it
2227 is a NUL-terminated string taken from the packet following
2228 this feature's name and an equals sign. */
2229 void (*func) (const struct protocol_feature *, enum packet_support,
2230 const char *);
2231
2232 /* The corresponding packet for this feature. Only used if
2233 FUNC is remote_supported_packet. */
2234 int packet;
2235 };
2236
2237 static void
2238 remote_supported_packet (const struct protocol_feature *feature,
2239 enum packet_support support,
2240 const char *argument)
2241 {
2242 if (argument)
2243 {
2244 warning (_("Remote qSupported response supplied an unexpected value for"
2245 " \"%s\"."), feature->name);
2246 return;
2247 }
2248
2249 if (remote_protocol_packets[feature->packet].support
2250 == PACKET_SUPPORT_UNKNOWN)
2251 remote_protocol_packets[feature->packet].support = support;
2252 }
2253
2254 static void
2255 remote_packet_size (const struct protocol_feature *feature,
2256 enum packet_support support, const char *value)
2257 {
2258 struct remote_state *rs = get_remote_state ();
2259
2260 int packet_size;
2261 char *value_end;
2262
2263 if (support != PACKET_ENABLE)
2264 return;
2265
2266 if (value == NULL || *value == '\0')
2267 {
2268 warning (_("Remote target reported \"%s\" without a size."),
2269 feature->name);
2270 return;
2271 }
2272
2273 errno = 0;
2274 packet_size = strtol (value, &value_end, 16);
2275 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2276 {
2277 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2278 feature->name, value);
2279 return;
2280 }
2281
2282 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2283 {
2284 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2285 packet_size, MAX_REMOTE_PACKET_SIZE);
2286 packet_size = MAX_REMOTE_PACKET_SIZE;
2287 }
2288
2289 /* Record the new maximum packet size. */
2290 rs->explicit_packet_size = packet_size;
2291 }
2292
2293 static struct protocol_feature remote_protocol_features[] = {
2294 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2295 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2296 PACKET_qXfer_auxv },
2297 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2298 PACKET_qXfer_memory_map },
2299 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2300 PACKET_QPassSignals },
2301 };
2302
2303 static void
2304 remote_query_supported (void)
2305 {
2306 struct remote_state *rs = get_remote_state ();
2307 char *next;
2308 int i;
2309 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2310
2311 /* The packet support flags are handled differently for this packet
2312 than for most others. We treat an error, a disabled packet, and
2313 an empty response identically: any features which must be reported
2314 to be used will be automatically disabled. An empty buffer
2315 accomplishes this, since that is also the representation for a list
2316 containing no features. */
2317
2318 rs->buf[0] = 0;
2319 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2320 {
2321 putpkt ("qSupported");
2322 getpkt (&rs->buf, &rs->buf_size, 0);
2323
2324 /* If an error occured, warn, but do not return - just reset the
2325 buffer to empty and go on to disable features. */
2326 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2327 == PACKET_ERROR)
2328 {
2329 warning (_("Remote failure reply: %s"), rs->buf);
2330 rs->buf[0] = 0;
2331 }
2332 }
2333
2334 memset (seen, 0, sizeof (seen));
2335
2336 next = rs->buf;
2337 while (*next)
2338 {
2339 enum packet_support is_supported;
2340 char *p, *end, *name_end, *value;
2341
2342 /* First separate out this item from the rest of the packet. If
2343 there's another item after this, we overwrite the separator
2344 (terminated strings are much easier to work with). */
2345 p = next;
2346 end = strchr (p, ';');
2347 if (end == NULL)
2348 {
2349 end = p + strlen (p);
2350 next = end;
2351 }
2352 else
2353 {
2354 *end = '\0';
2355 next = end + 1;
2356
2357 if (end == p)
2358 {
2359 warning (_("empty item in \"qSupported\" response"));
2360 continue;
2361 }
2362 }
2363
2364 name_end = strchr (p, '=');
2365 if (name_end)
2366 {
2367 /* This is a name=value entry. */
2368 is_supported = PACKET_ENABLE;
2369 value = name_end + 1;
2370 *name_end = '\0';
2371 }
2372 else
2373 {
2374 value = NULL;
2375 switch (end[-1])
2376 {
2377 case '+':
2378 is_supported = PACKET_ENABLE;
2379 break;
2380
2381 case '-':
2382 is_supported = PACKET_DISABLE;
2383 break;
2384
2385 case '?':
2386 is_supported = PACKET_SUPPORT_UNKNOWN;
2387 break;
2388
2389 default:
2390 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2391 continue;
2392 }
2393 end[-1] = '\0';
2394 }
2395
2396 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2397 if (strcmp (remote_protocol_features[i].name, p) == 0)
2398 {
2399 const struct protocol_feature *feature;
2400
2401 seen[i] = 1;
2402 feature = &remote_protocol_features[i];
2403 feature->func (feature, is_supported, value);
2404 break;
2405 }
2406 }
2407
2408 /* If we increased the packet size, make sure to increase the global
2409 buffer size also. We delay this until after parsing the entire
2410 qSupported packet, because this is the same buffer we were
2411 parsing. */
2412 if (rs->buf_size < rs->explicit_packet_size)
2413 {
2414 rs->buf_size = rs->explicit_packet_size;
2415 rs->buf = xrealloc (rs->buf, rs->buf_size);
2416 }
2417
2418 /* Handle the defaults for unmentioned features. */
2419 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2420 if (!seen[i])
2421 {
2422 const struct protocol_feature *feature;
2423
2424 feature = &remote_protocol_features[i];
2425 feature->func (feature, feature->default_support, NULL);
2426 }
2427 }
2428
2429
2430 static void
2431 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2432 int extended_p, int async_p)
2433 {
2434 struct remote_state *rs = get_remote_state ();
2435 if (name == 0)
2436 error (_("To open a remote debug connection, you need to specify what\n"
2437 "serial device is attached to the remote system\n"
2438 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2439
2440 /* See FIXME above. */
2441 if (!async_p)
2442 wait_forever_enabled_p = 1;
2443
2444 target_preopen (from_tty);
2445
2446 unpush_target (target);
2447
2448 /* Make sure we send the passed signals list the next time we resume. */
2449 xfree (last_pass_packet);
2450 last_pass_packet = NULL;
2451
2452 remote_fileio_reset ();
2453 reopen_exec_file ();
2454 reread_symbols ();
2455
2456 remote_desc = remote_serial_open (name);
2457 if (!remote_desc)
2458 perror_with_name (name);
2459
2460 if (baud_rate != -1)
2461 {
2462 if (serial_setbaudrate (remote_desc, baud_rate))
2463 {
2464 /* The requested speed could not be set. Error out to
2465 top level after closing remote_desc. Take care to
2466 set remote_desc to NULL to avoid closing remote_desc
2467 more than once. */
2468 serial_close (remote_desc);
2469 remote_desc = NULL;
2470 perror_with_name (name);
2471 }
2472 }
2473
2474 serial_raw (remote_desc);
2475
2476 /* If there is something sitting in the buffer we might take it as a
2477 response to a command, which would be bad. */
2478 serial_flush_input (remote_desc);
2479
2480 if (from_tty)
2481 {
2482 puts_filtered ("Remote debugging using ");
2483 puts_filtered (name);
2484 puts_filtered ("\n");
2485 }
2486 push_target (target); /* Switch to using remote target now. */
2487
2488 /* Reset the target state; these things will be queried either by
2489 remote_query_supported or as they are needed. */
2490 init_all_packet_configs ();
2491 rs->explicit_packet_size = 0;
2492
2493 general_thread = -2;
2494 continue_thread = -2;
2495
2496 /* Probe for ability to use "ThreadInfo" query, as required. */
2497 use_threadinfo_query = 1;
2498 use_threadextra_query = 1;
2499
2500 /* The first packet we send to the target is the optional "supported
2501 packets" request. If the target can answer this, it will tell us
2502 which later probes to skip. */
2503 remote_query_supported ();
2504
2505 /* Next, if the target can specify a description, read it. We do
2506 this before anything involving memory or registers. */
2507 target_find_description ();
2508
2509 /* Without this, some commands which require an active target (such
2510 as kill) won't work. This variable serves (at least) double duty
2511 as both the pid of the target process (if it has such), and as a
2512 flag indicating that a target is active. These functions should
2513 be split out into seperate variables, especially since GDB will
2514 someday have a notion of debugging several processes. */
2515
2516 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2517
2518 if (async_p)
2519 {
2520 /* With this target we start out by owning the terminal. */
2521 remote_async_terminal_ours_p = 1;
2522
2523 /* FIXME: cagney/1999-09-23: During the initial connection it is
2524 assumed that the target is already ready and able to respond to
2525 requests. Unfortunately remote_start_remote() eventually calls
2526 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2527 around this. Eventually a mechanism that allows
2528 wait_for_inferior() to expect/get timeouts will be
2529 implemented. */
2530 wait_forever_enabled_p = 0;
2531 }
2532
2533 /* First delete any symbols previously loaded from shared libraries. */
2534 no_shared_libraries (NULL, 0);
2535
2536 /* Start the remote connection. If error() or QUIT, discard this
2537 target (we'd otherwise be in an inconsistent state) and then
2538 propogate the error on up the exception chain. This ensures that
2539 the caller doesn't stumble along blindly assuming that the
2540 function succeeded. The CLI doesn't have this problem but other
2541 UI's, such as MI do.
2542
2543 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2544 this function should return an error indication letting the
2545 caller restore the previous state. Unfortunately the command
2546 ``target remote'' is directly wired to this function making that
2547 impossible. On a positive note, the CLI side of this problem has
2548 been fixed - the function set_cmd_context() makes it possible for
2549 all the ``target ....'' commands to share a common callback
2550 function. See cli-dump.c. */
2551 {
2552 struct gdb_exception ex
2553 = catch_exception (uiout, remote_start_remote, &from_tty,
2554 RETURN_MASK_ALL);
2555 if (ex.reason < 0)
2556 {
2557 pop_target ();
2558 if (async_p)
2559 wait_forever_enabled_p = 1;
2560 throw_exception (ex);
2561 }
2562 }
2563
2564 if (async_p)
2565 wait_forever_enabled_p = 1;
2566
2567 if (extended_p)
2568 {
2569 /* Tell the remote that we are using the extended protocol. */
2570 putpkt ("!");
2571 getpkt (&rs->buf, &rs->buf_size, 0);
2572 }
2573
2574 if (exec_bfd) /* No use without an exec file. */
2575 remote_check_symbols (symfile_objfile);
2576 }
2577
2578 /* This takes a program previously attached to and detaches it. After
2579 this is done, GDB can be used to debug some other program. We
2580 better not have left any breakpoints in the target program or it'll
2581 die when it hits one. */
2582
2583 static void
2584 remote_detach (char *args, int from_tty)
2585 {
2586 struct remote_state *rs = get_remote_state ();
2587
2588 if (args)
2589 error (_("Argument given to \"detach\" when remotely debugging."));
2590
2591 /* Tell the remote target to detach. */
2592 strcpy (rs->buf, "D");
2593 remote_send (&rs->buf, &rs->buf_size);
2594
2595 /* Unregister the file descriptor from the event loop. */
2596 if (target_is_async_p ())
2597 serial_async (remote_desc, NULL, 0);
2598
2599 target_mourn_inferior ();
2600 if (from_tty)
2601 puts_filtered ("Ending remote debugging.\n");
2602 }
2603
2604 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2605
2606 static void
2607 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2608 {
2609 if (args)
2610 error (_("Argument given to \"detach\" when remotely debugging."));
2611
2612 /* Unregister the file descriptor from the event loop. */
2613 if (target_is_async_p ())
2614 serial_async (remote_desc, NULL, 0);
2615
2616 target_mourn_inferior ();
2617 if (from_tty)
2618 puts_filtered ("Ending remote debugging.\n");
2619 }
2620
2621 /* Convert hex digit A to a number. */
2622
2623 static int
2624 fromhex (int a)
2625 {
2626 if (a >= '0' && a <= '9')
2627 return a - '0';
2628 else if (a >= 'a' && a <= 'f')
2629 return a - 'a' + 10;
2630 else if (a >= 'A' && a <= 'F')
2631 return a - 'A' + 10;
2632 else
2633 error (_("Reply contains invalid hex digit %d"), a);
2634 }
2635
2636 static int
2637 hex2bin (const char *hex, gdb_byte *bin, int count)
2638 {
2639 int i;
2640
2641 for (i = 0; i < count; i++)
2642 {
2643 if (hex[0] == 0 || hex[1] == 0)
2644 {
2645 /* Hex string is short, or of uneven length.
2646 Return the count that has been converted so far. */
2647 return i;
2648 }
2649 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2650 hex += 2;
2651 }
2652 return i;
2653 }
2654
2655 /* Convert number NIB to a hex digit. */
2656
2657 static int
2658 tohex (int nib)
2659 {
2660 if (nib < 10)
2661 return '0' + nib;
2662 else
2663 return 'a' + nib - 10;
2664 }
2665
2666 static int
2667 bin2hex (const gdb_byte *bin, char *hex, int count)
2668 {
2669 int i;
2670 /* May use a length, or a nul-terminated string as input. */
2671 if (count == 0)
2672 count = strlen ((char *) bin);
2673
2674 for (i = 0; i < count; i++)
2675 {
2676 *hex++ = tohex ((*bin >> 4) & 0xf);
2677 *hex++ = tohex (*bin++ & 0xf);
2678 }
2679 *hex = 0;
2680 return i;
2681 }
2682 \f
2683 /* Check for the availability of vCont. This function should also check
2684 the response. */
2685
2686 static void
2687 remote_vcont_probe (struct remote_state *rs)
2688 {
2689 char *buf;
2690
2691 strcpy (rs->buf, "vCont?");
2692 putpkt (rs->buf);
2693 getpkt (&rs->buf, &rs->buf_size, 0);
2694 buf = rs->buf;
2695
2696 /* Make sure that the features we assume are supported. */
2697 if (strncmp (buf, "vCont", 5) == 0)
2698 {
2699 char *p = &buf[5];
2700 int support_s, support_S, support_c, support_C;
2701
2702 support_s = 0;
2703 support_S = 0;
2704 support_c = 0;
2705 support_C = 0;
2706 while (p && *p == ';')
2707 {
2708 p++;
2709 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2710 support_s = 1;
2711 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2712 support_S = 1;
2713 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2714 support_c = 1;
2715 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2716 support_C = 1;
2717
2718 p = strchr (p, ';');
2719 }
2720
2721 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2722 BUF will make packet_ok disable the packet. */
2723 if (!support_s || !support_S || !support_c || !support_C)
2724 buf[0] = 0;
2725 }
2726
2727 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2728 }
2729
2730 /* Resume the remote inferior by using a "vCont" packet. The thread
2731 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2732 resumed thread should be single-stepped and/or signalled. If PTID's
2733 PID is -1, then all threads are resumed; the thread to be stepped and/or
2734 signalled is given in the global INFERIOR_PTID. This function returns
2735 non-zero iff it resumes the inferior.
2736
2737 This function issues a strict subset of all possible vCont commands at the
2738 moment. */
2739
2740 static int
2741 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2742 {
2743 struct remote_state *rs = get_remote_state ();
2744 int pid = PIDGET (ptid);
2745 char *buf = NULL, *outbuf;
2746 struct cleanup *old_cleanup;
2747
2748 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2749 remote_vcont_probe (rs);
2750
2751 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2752 return 0;
2753
2754 /* If we could generate a wider range of packets, we'd have to worry
2755 about overflowing BUF. Should there be a generic
2756 "multi-part-packet" packet? */
2757
2758 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2759 {
2760 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2761 don't have any PID numbers the inferior will understand. Make sure
2762 to only send forms that do not specify a PID. */
2763 if (step && siggnal != TARGET_SIGNAL_0)
2764 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2765 else if (step)
2766 outbuf = xstrprintf ("vCont;s");
2767 else if (siggnal != TARGET_SIGNAL_0)
2768 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2769 else
2770 outbuf = xstrprintf ("vCont;c");
2771 }
2772 else if (pid == -1)
2773 {
2774 /* Resume all threads, with preference for INFERIOR_PTID. */
2775 if (step && siggnal != TARGET_SIGNAL_0)
2776 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2777 PIDGET (inferior_ptid));
2778 else if (step)
2779 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2780 else if (siggnal != TARGET_SIGNAL_0)
2781 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2782 PIDGET (inferior_ptid));
2783 else
2784 outbuf = xstrprintf ("vCont;c");
2785 }
2786 else
2787 {
2788 /* Scheduler locking; resume only PTID. */
2789 if (step && siggnal != TARGET_SIGNAL_0)
2790 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2791 else if (step)
2792 outbuf = xstrprintf ("vCont;s:%x", pid);
2793 else if (siggnal != TARGET_SIGNAL_0)
2794 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2795 else
2796 outbuf = xstrprintf ("vCont;c:%x", pid);
2797 }
2798
2799 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2800 old_cleanup = make_cleanup (xfree, outbuf);
2801
2802 putpkt (outbuf);
2803
2804 do_cleanups (old_cleanup);
2805
2806 return 1;
2807 }
2808
2809 /* Tell the remote machine to resume. */
2810
2811 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2812
2813 static int last_sent_step;
2814
2815 static void
2816 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *buf;
2820 int pid = PIDGET (ptid);
2821
2822 last_sent_signal = siggnal;
2823 last_sent_step = step;
2824
2825 /* A hook for when we need to do something at the last moment before
2826 resumption. */
2827 if (deprecated_target_resume_hook)
2828 (*deprecated_target_resume_hook) ();
2829
2830 /* Update the inferior on signals to silently pass, if they've changed. */
2831 remote_pass_signals ();
2832
2833 /* The vCont packet doesn't need to specify threads via Hc. */
2834 if (remote_vcont_resume (ptid, step, siggnal))
2835 return;
2836
2837 /* All other supported resume packets do use Hc, so call set_thread. */
2838 if (pid == -1)
2839 set_thread (0, 0); /* Run any thread. */
2840 else
2841 set_thread (pid, 0); /* Run this thread. */
2842
2843 buf = rs->buf;
2844 if (siggnal != TARGET_SIGNAL_0)
2845 {
2846 buf[0] = step ? 'S' : 'C';
2847 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2848 buf[2] = tohex (((int) siggnal) & 0xf);
2849 buf[3] = '\0';
2850 }
2851 else
2852 strcpy (buf, step ? "s" : "c");
2853
2854 putpkt (buf);
2855 }
2856
2857 /* Same as remote_resume, but with async support. */
2858 static void
2859 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2860 {
2861 remote_resume (ptid, step, siggnal);
2862
2863 /* We are about to start executing the inferior, let's register it
2864 with the event loop. NOTE: this is the one place where all the
2865 execution commands end up. We could alternatively do this in each
2866 of the execution commands in infcmd.c. */
2867 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2868 into infcmd.c in order to allow inferior function calls to work
2869 NOT asynchronously. */
2870 if (target_can_async_p ())
2871 target_async (inferior_event_handler, 0);
2872 /* Tell the world that the target is now executing. */
2873 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2874 this? Instead, should the client of target just assume (for
2875 async targets) that the target is going to start executing? Is
2876 this information already found in the continuation block? */
2877 if (target_is_async_p ())
2878 target_executing = 1;
2879 }
2880 \f
2881
2882 /* Set up the signal handler for SIGINT, while the target is
2883 executing, ovewriting the 'regular' SIGINT signal handler. */
2884 static void
2885 initialize_sigint_signal_handler (void)
2886 {
2887 sigint_remote_token =
2888 create_async_signal_handler (async_remote_interrupt, NULL);
2889 signal (SIGINT, handle_remote_sigint);
2890 }
2891
2892 /* Signal handler for SIGINT, while the target is executing. */
2893 static void
2894 handle_remote_sigint (int sig)
2895 {
2896 signal (sig, handle_remote_sigint_twice);
2897 sigint_remote_twice_token =
2898 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2899 mark_async_signal_handler_wrapper (sigint_remote_token);
2900 }
2901
2902 /* Signal handler for SIGINT, installed after SIGINT has already been
2903 sent once. It will take effect the second time that the user sends
2904 a ^C. */
2905 static void
2906 handle_remote_sigint_twice (int sig)
2907 {
2908 signal (sig, handle_sigint);
2909 sigint_remote_twice_token =
2910 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2911 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2912 }
2913
2914 /* Perform the real interruption of the target execution, in response
2915 to a ^C. */
2916 static void
2917 async_remote_interrupt (gdb_client_data arg)
2918 {
2919 if (remote_debug)
2920 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2921
2922 target_stop ();
2923 }
2924
2925 /* Perform interrupt, if the first attempt did not succeed. Just give
2926 up on the target alltogether. */
2927 void
2928 async_remote_interrupt_twice (gdb_client_data arg)
2929 {
2930 if (remote_debug)
2931 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2932 /* Do something only if the target was not killed by the previous
2933 cntl-C. */
2934 if (target_executing)
2935 {
2936 interrupt_query ();
2937 signal (SIGINT, handle_remote_sigint);
2938 }
2939 }
2940
2941 /* Reinstall the usual SIGINT handlers, after the target has
2942 stopped. */
2943 static void
2944 cleanup_sigint_signal_handler (void *dummy)
2945 {
2946 signal (SIGINT, handle_sigint);
2947 if (sigint_remote_twice_token)
2948 delete_async_signal_handler ((struct async_signal_handler **)
2949 &sigint_remote_twice_token);
2950 if (sigint_remote_token)
2951 delete_async_signal_handler ((struct async_signal_handler **)
2952 &sigint_remote_token);
2953 }
2954
2955 /* Send ^C to target to halt it. Target will respond, and send us a
2956 packet. */
2957 static void (*ofunc) (int);
2958
2959 /* The command line interface's stop routine. This function is installed
2960 as a signal handler for SIGINT. The first time a user requests a
2961 stop, we call remote_stop to send a break or ^C. If there is no
2962 response from the target (it didn't stop when the user requested it),
2963 we ask the user if he'd like to detach from the target. */
2964 static void
2965 remote_interrupt (int signo)
2966 {
2967 /* If this doesn't work, try more severe steps. */
2968 signal (signo, remote_interrupt_twice);
2969
2970 if (remote_debug)
2971 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2972
2973 target_stop ();
2974 }
2975
2976 /* The user typed ^C twice. */
2977
2978 static void
2979 remote_interrupt_twice (int signo)
2980 {
2981 signal (signo, ofunc);
2982 interrupt_query ();
2983 signal (signo, remote_interrupt);
2984 }
2985
2986 /* This is the generic stop called via the target vector. When a target
2987 interrupt is requested, either by the command line or the GUI, we
2988 will eventually end up here. */
2989 static void
2990 remote_stop (void)
2991 {
2992 /* Send a break or a ^C, depending on user preference. */
2993 if (remote_debug)
2994 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2995
2996 if (remote_break)
2997 serial_send_break (remote_desc);
2998 else
2999 serial_write (remote_desc, "\003", 1);
3000 }
3001
3002 /* Ask the user what to do when an interrupt is received. */
3003
3004 static void
3005 interrupt_query (void)
3006 {
3007 target_terminal_ours ();
3008
3009 if (query ("Interrupted while waiting for the program.\n\
3010 Give up (and stop debugging it)? "))
3011 {
3012 target_mourn_inferior ();
3013 deprecated_throw_reason (RETURN_QUIT);
3014 }
3015
3016 target_terminal_inferior ();
3017 }
3018
3019 /* Enable/disable target terminal ownership. Most targets can use
3020 terminal groups to control terminal ownership. Remote targets are
3021 different in that explicit transfer of ownership to/from GDB/target
3022 is required. */
3023
3024 static void
3025 remote_async_terminal_inferior (void)
3026 {
3027 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3028 sync_execution here. This function should only be called when
3029 GDB is resuming the inferior in the forground. A background
3030 resume (``run&'') should leave GDB in control of the terminal and
3031 consequently should not call this code. */
3032 if (!sync_execution)
3033 return;
3034 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3035 calls target_terminal_*() idenpotent. The event-loop GDB talking
3036 to an asynchronous target with a synchronous command calls this
3037 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3038 stops trying to transfer the terminal to the target when it
3039 shouldn't this guard can go away. */
3040 if (!remote_async_terminal_ours_p)
3041 return;
3042 delete_file_handler (input_fd);
3043 remote_async_terminal_ours_p = 0;
3044 initialize_sigint_signal_handler ();
3045 /* NOTE: At this point we could also register our selves as the
3046 recipient of all input. Any characters typed could then be
3047 passed on down to the target. */
3048 }
3049
3050 static void
3051 remote_async_terminal_ours (void)
3052 {
3053 /* See FIXME in remote_async_terminal_inferior. */
3054 if (!sync_execution)
3055 return;
3056 /* See FIXME in remote_async_terminal_inferior. */
3057 if (remote_async_terminal_ours_p)
3058 return;
3059 cleanup_sigint_signal_handler (NULL);
3060 add_file_handler (input_fd, stdin_event_handler, 0);
3061 remote_async_terminal_ours_p = 1;
3062 }
3063
3064 /* If nonzero, ignore the next kill. */
3065
3066 int kill_kludge;
3067
3068 void
3069 remote_console_output (char *msg)
3070 {
3071 char *p;
3072
3073 for (p = msg; p[0] && p[1]; p += 2)
3074 {
3075 char tb[2];
3076 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3077 tb[0] = c;
3078 tb[1] = 0;
3079 fputs_unfiltered (tb, gdb_stdtarg);
3080 }
3081 gdb_flush (gdb_stdtarg);
3082 }
3083
3084 /* Wait until the remote machine stops, then return,
3085 storing status in STATUS just as `wait' would.
3086 Returns "pid", which in the case of a multi-threaded
3087 remote OS, is the thread-id. */
3088
3089 static ptid_t
3090 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3091 {
3092 struct remote_state *rs = get_remote_state ();
3093 struct remote_arch_state *rsa = get_remote_arch_state ();
3094 ULONGEST thread_num = -1;
3095 ULONGEST addr;
3096
3097 status->kind = TARGET_WAITKIND_EXITED;
3098 status->value.integer = 0;
3099
3100 while (1)
3101 {
3102 char *buf, *p;
3103
3104 ofunc = signal (SIGINT, remote_interrupt);
3105 getpkt (&rs->buf, &rs->buf_size, 1);
3106 signal (SIGINT, ofunc);
3107
3108 buf = rs->buf;
3109
3110 /* This is a hook for when we need to do something (perhaps the
3111 collection of trace data) every time the target stops. */
3112 if (deprecated_target_wait_loop_hook)
3113 (*deprecated_target_wait_loop_hook) ();
3114
3115 remote_stopped_by_watchpoint_p = 0;
3116
3117 switch (buf[0])
3118 {
3119 case 'E': /* Error of some sort. */
3120 warning (_("Remote failure reply: %s"), buf);
3121 continue;
3122 case 'F': /* File-I/O request. */
3123 remote_fileio_request (buf);
3124 continue;
3125 case 'T': /* Status with PC, SP, FP, ... */
3126 {
3127 gdb_byte regs[MAX_REGISTER_SIZE];
3128
3129 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3130 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3131 ss = signal number
3132 n... = register number
3133 r... = register contents
3134 */
3135 p = &buf[3]; /* after Txx */
3136
3137 while (*p)
3138 {
3139 char *p1;
3140 char *p_temp;
3141 int fieldsize;
3142 LONGEST pnum = 0;
3143
3144 /* If the packet contains a register number save it in
3145 pnum and set p1 to point to the character following
3146 it. Otherwise p1 points to p. */
3147
3148 /* If this packet is an awatch packet, don't parse the
3149 'a' as a register number. */
3150
3151 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3152 {
3153 /* Read the ``P'' register number. */
3154 pnum = strtol (p, &p_temp, 16);
3155 p1 = p_temp;
3156 }
3157 else
3158 p1 = p;
3159
3160 if (p1 == p) /* No register number present here. */
3161 {
3162 p1 = strchr (p, ':');
3163 if (p1 == NULL)
3164 error (_("Malformed packet(a) (missing colon): %s\n\
3165 Packet: '%s'\n"),
3166 p, buf);
3167 if (strncmp (p, "thread", p1 - p) == 0)
3168 {
3169 p_temp = unpack_varlen_hex (++p1, &thread_num);
3170 record_currthread (thread_num);
3171 p = p_temp;
3172 }
3173 else if ((strncmp (p, "watch", p1 - p) == 0)
3174 || (strncmp (p, "rwatch", p1 - p) == 0)
3175 || (strncmp (p, "awatch", p1 - p) == 0))
3176 {
3177 remote_stopped_by_watchpoint_p = 1;
3178 p = unpack_varlen_hex (++p1, &addr);
3179 remote_watch_data_address = (CORE_ADDR)addr;
3180 }
3181 else
3182 {
3183 /* Silently skip unknown optional info. */
3184 p_temp = strchr (p1 + 1, ';');
3185 if (p_temp)
3186 p = p_temp;
3187 }
3188 }
3189 else
3190 {
3191 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3192 p = p1;
3193
3194 if (*p++ != ':')
3195 error (_("Malformed packet(b) (missing colon): %s\n\
3196 Packet: '%s'\n"),
3197 p, buf);
3198
3199 if (reg == NULL)
3200 error (_("Remote sent bad register number %s: %s\n\
3201 Packet: '%s'\n"),
3202 phex_nz (pnum, 0), p, buf);
3203
3204 fieldsize = hex2bin (p, regs,
3205 register_size (current_gdbarch,
3206 reg->regnum));
3207 p += 2 * fieldsize;
3208 if (fieldsize < register_size (current_gdbarch,
3209 reg->regnum))
3210 warning (_("Remote reply is too short: %s"), buf);
3211 regcache_raw_supply (current_regcache,
3212 reg->regnum, regs);
3213 }
3214
3215 if (*p++ != ';')
3216 error (_("Remote register badly formatted: %s\nhere: %s"),
3217 buf, p);
3218 }
3219 }
3220 /* fall through */
3221 case 'S': /* Old style status, just signal only. */
3222 status->kind = TARGET_WAITKIND_STOPPED;
3223 status->value.sig = (enum target_signal)
3224 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3225
3226 if (buf[3] == 'p')
3227 {
3228 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3229 record_currthread (thread_num);
3230 }
3231 goto got_status;
3232 case 'W': /* Target exited. */
3233 {
3234 /* The remote process exited. */
3235 status->kind = TARGET_WAITKIND_EXITED;
3236 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3237 goto got_status;
3238 }
3239 case 'X':
3240 status->kind = TARGET_WAITKIND_SIGNALLED;
3241 status->value.sig = (enum target_signal)
3242 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3243 kill_kludge = 1;
3244
3245 goto got_status;
3246 case 'O': /* Console output. */
3247 remote_console_output (buf + 1);
3248 continue;
3249 case '\0':
3250 if (last_sent_signal != TARGET_SIGNAL_0)
3251 {
3252 /* Zero length reply means that we tried 'S' or 'C' and
3253 the remote system doesn't support it. */
3254 target_terminal_ours_for_output ();
3255 printf_filtered
3256 ("Can't send signals to this remote system. %s not sent.\n",
3257 target_signal_to_name (last_sent_signal));
3258 last_sent_signal = TARGET_SIGNAL_0;
3259 target_terminal_inferior ();
3260
3261 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3262 putpkt ((char *) buf);
3263 continue;
3264 }
3265 /* else fallthrough */
3266 default:
3267 warning (_("Invalid remote reply: %s"), buf);
3268 continue;
3269 }
3270 }
3271 got_status:
3272 if (thread_num != -1)
3273 {
3274 return pid_to_ptid (thread_num);
3275 }
3276 return inferior_ptid;
3277 }
3278
3279 /* Async version of remote_wait. */
3280 static ptid_t
3281 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3282 {
3283 struct remote_state *rs = get_remote_state ();
3284 struct remote_arch_state *rsa = get_remote_arch_state ();
3285 ULONGEST thread_num = -1;
3286 ULONGEST addr;
3287
3288 status->kind = TARGET_WAITKIND_EXITED;
3289 status->value.integer = 0;
3290
3291 remote_stopped_by_watchpoint_p = 0;
3292
3293 while (1)
3294 {
3295 char *buf, *p;
3296
3297 if (!target_is_async_p ())
3298 ofunc = signal (SIGINT, remote_interrupt);
3299 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3300 _never_ wait for ever -> test on target_is_async_p().
3301 However, before we do that we need to ensure that the caller
3302 knows how to take the target into/out of async mode. */
3303 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3304 if (!target_is_async_p ())
3305 signal (SIGINT, ofunc);
3306
3307 buf = rs->buf;
3308
3309 /* This is a hook for when we need to do something (perhaps the
3310 collection of trace data) every time the target stops. */
3311 if (deprecated_target_wait_loop_hook)
3312 (*deprecated_target_wait_loop_hook) ();
3313
3314 switch (buf[0])
3315 {
3316 case 'E': /* Error of some sort. */
3317 warning (_("Remote failure reply: %s"), buf);
3318 continue;
3319 case 'F': /* File-I/O request. */
3320 remote_fileio_request (buf);
3321 continue;
3322 case 'T': /* Status with PC, SP, FP, ... */
3323 {
3324 gdb_byte regs[MAX_REGISTER_SIZE];
3325
3326 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3327 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3328 ss = signal number
3329 n... = register number
3330 r... = register contents
3331 */
3332 p = &buf[3]; /* after Txx */
3333
3334 while (*p)
3335 {
3336 char *p1;
3337 char *p_temp;
3338 int fieldsize;
3339 long pnum = 0;
3340
3341 /* If the packet contains a register number, save it
3342 in pnum and set p1 to point to the character
3343 following it. Otherwise p1 points to p. */
3344
3345 /* If this packet is an awatch packet, don't parse the 'a'
3346 as a register number. */
3347
3348 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3349 {
3350 /* Read the register number. */
3351 pnum = strtol (p, &p_temp, 16);
3352 p1 = p_temp;
3353 }
3354 else
3355 p1 = p;
3356
3357 if (p1 == p) /* No register number present here. */
3358 {
3359 p1 = strchr (p, ':');
3360 if (p1 == NULL)
3361 error (_("Malformed packet(a) (missing colon): %s\n\
3362 Packet: '%s'\n"),
3363 p, buf);
3364 if (strncmp (p, "thread", p1 - p) == 0)
3365 {
3366 p_temp = unpack_varlen_hex (++p1, &thread_num);
3367 record_currthread (thread_num);
3368 p = p_temp;
3369 }
3370 else if ((strncmp (p, "watch", p1 - p) == 0)
3371 || (strncmp (p, "rwatch", p1 - p) == 0)
3372 || (strncmp (p, "awatch", p1 - p) == 0))
3373 {
3374 remote_stopped_by_watchpoint_p = 1;
3375 p = unpack_varlen_hex (++p1, &addr);
3376 remote_watch_data_address = (CORE_ADDR)addr;
3377 }
3378 else
3379 {
3380 /* Silently skip unknown optional info. */
3381 p_temp = strchr (p1 + 1, ';');
3382 if (p_temp)
3383 p = p_temp;
3384 }
3385 }
3386
3387 else
3388 {
3389 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3390 p = p1;
3391 if (*p++ != ':')
3392 error (_("Malformed packet(b) (missing colon): %s\n\
3393 Packet: '%s'\n"),
3394 p, buf);
3395
3396 if (reg == NULL)
3397 error (_("Remote sent bad register number %ld: %s\n\
3398 Packet: '%s'\n"),
3399 pnum, p, buf);
3400
3401 fieldsize = hex2bin (p, regs,
3402 register_size (current_gdbarch,
3403 reg->regnum));
3404 p += 2 * fieldsize;
3405 if (fieldsize < register_size (current_gdbarch,
3406 reg->regnum))
3407 warning (_("Remote reply is too short: %s"), buf);
3408 regcache_raw_supply (current_regcache, reg->regnum, regs);
3409 }
3410
3411 if (*p++ != ';')
3412 error (_("Remote register badly formatted: %s\nhere: %s"),
3413 buf, p);
3414 }
3415 }
3416 /* fall through */
3417 case 'S': /* Old style status, just signal only. */
3418 status->kind = TARGET_WAITKIND_STOPPED;
3419 status->value.sig = (enum target_signal)
3420 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3421
3422 if (buf[3] == 'p')
3423 {
3424 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3425 record_currthread (thread_num);
3426 }
3427 goto got_status;
3428 case 'W': /* Target exited. */
3429 {
3430 /* The remote process exited. */
3431 status->kind = TARGET_WAITKIND_EXITED;
3432 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3433 goto got_status;
3434 }
3435 case 'X':
3436 status->kind = TARGET_WAITKIND_SIGNALLED;
3437 status->value.sig = (enum target_signal)
3438 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3439 kill_kludge = 1;
3440
3441 goto got_status;
3442 case 'O': /* Console output. */
3443 remote_console_output (buf + 1);
3444 /* Return immediately to the event loop. The event loop will
3445 still be waiting on the inferior afterwards. */
3446 status->kind = TARGET_WAITKIND_IGNORE;
3447 goto got_status;
3448 case '\0':
3449 if (last_sent_signal != TARGET_SIGNAL_0)
3450 {
3451 /* Zero length reply means that we tried 'S' or 'C' and
3452 the remote system doesn't support it. */
3453 target_terminal_ours_for_output ();
3454 printf_filtered
3455 ("Can't send signals to this remote system. %s not sent.\n",
3456 target_signal_to_name (last_sent_signal));
3457 last_sent_signal = TARGET_SIGNAL_0;
3458 target_terminal_inferior ();
3459
3460 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3461 putpkt ((char *) buf);
3462 continue;
3463 }
3464 /* else fallthrough */
3465 default:
3466 warning (_("Invalid remote reply: %s"), buf);
3467 continue;
3468 }
3469 }
3470 got_status:
3471 if (thread_num != -1)
3472 {
3473 return pid_to_ptid (thread_num);
3474 }
3475 return inferior_ptid;
3476 }
3477
3478 /* Fetch a single register using a 'p' packet. */
3479
3480 static int
3481 fetch_register_using_p (struct packet_reg *reg)
3482 {
3483 struct remote_state *rs = get_remote_state ();
3484 char *buf, *p;
3485 char regp[MAX_REGISTER_SIZE];
3486 int i;
3487
3488 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3489 return 0;
3490
3491 if (reg->pnum == -1)
3492 return 0;
3493
3494 p = rs->buf;
3495 *p++ = 'p';
3496 p += hexnumstr (p, reg->pnum);
3497 *p++ = '\0';
3498 remote_send (&rs->buf, &rs->buf_size);
3499
3500 buf = rs->buf;
3501
3502 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3503 {
3504 case PACKET_OK:
3505 break;
3506 case PACKET_UNKNOWN:
3507 return 0;
3508 case PACKET_ERROR:
3509 error (_("Could not fetch register \"%s\""),
3510 gdbarch_register_name (current_gdbarch, reg->regnum));
3511 }
3512
3513 /* If this register is unfetchable, tell the regcache. */
3514 if (buf[0] == 'x')
3515 {
3516 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3517 set_register_cached (reg->regnum, -1);
3518 return 1;
3519 }
3520
3521 /* Otherwise, parse and supply the value. */
3522 p = buf;
3523 i = 0;
3524 while (p[0] != 0)
3525 {
3526 if (p[1] == 0)
3527 error (_("fetch_register_using_p: early buf termination"));
3528
3529 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3530 p += 2;
3531 }
3532 regcache_raw_supply (current_regcache, reg->regnum, regp);
3533 return 1;
3534 }
3535
3536 /* Fetch the registers included in the target's 'g' packet. */
3537
3538 static int
3539 send_g_packet (void)
3540 {
3541 struct remote_state *rs = get_remote_state ();
3542 int i, buf_len;
3543 char *p;
3544 char *regs;
3545
3546 sprintf (rs->buf, "g");
3547 remote_send (&rs->buf, &rs->buf_size);
3548
3549 /* We can get out of synch in various cases. If the first character
3550 in the buffer is not a hex character, assume that has happened
3551 and try to fetch another packet to read. */
3552 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3553 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3554 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3555 && rs->buf[0] != 'x') /* New: unavailable register value. */
3556 {
3557 if (remote_debug)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "Bad register packet; fetching a new packet\n");
3560 getpkt (&rs->buf, &rs->buf_size, 0);
3561 }
3562
3563 buf_len = strlen (rs->buf);
3564
3565 /* Sanity check the received packet. */
3566 if (buf_len % 2 != 0)
3567 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3568
3569 return buf_len / 2;
3570 }
3571
3572 static void
3573 process_g_packet (void)
3574 {
3575 struct remote_state *rs = get_remote_state ();
3576 struct remote_arch_state *rsa = get_remote_arch_state ();
3577 int i, buf_len;
3578 char *p;
3579 char *regs;
3580
3581 buf_len = strlen (rs->buf);
3582
3583 /* Further sanity checks, with knowledge of the architecture. */
3584 if (REGISTER_BYTES_OK_P () && !REGISTER_BYTES_OK (buf_len / 2))
3585 error (_("Remote 'g' packet reply is wrong length: %s"), rs->buf);
3586 if (buf_len > 2 * rsa->sizeof_g_packet)
3587 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3588
3589 /* Save the size of the packet sent to us by the target. It is used
3590 as a heuristic when determining the max size of packets that the
3591 target can safely receive. */
3592 if (rsa->actual_register_packet_size == 0)
3593 rsa->actual_register_packet_size = buf_len;
3594
3595 /* If this is smaller than we guessed the 'g' packet would be,
3596 update our records. A 'g' reply that doesn't include a register's
3597 value implies either that the register is not available, or that
3598 the 'p' packet must be used. */
3599 if (buf_len < 2 * rsa->sizeof_g_packet)
3600 {
3601 rsa->sizeof_g_packet = buf_len / 2;
3602
3603 for (i = 0; i < NUM_REGS; i++)
3604 {
3605 if (rsa->regs[i].pnum == -1)
3606 continue;
3607
3608 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3609 rsa->regs[i].in_g_packet = 0;
3610 else
3611 rsa->regs[i].in_g_packet = 1;
3612 }
3613 }
3614
3615 regs = alloca (rsa->sizeof_g_packet);
3616
3617 /* Unimplemented registers read as all bits zero. */
3618 memset (regs, 0, rsa->sizeof_g_packet);
3619
3620 /* Reply describes registers byte by byte, each byte encoded as two
3621 hex characters. Suck them all up, then supply them to the
3622 register cacheing/storage mechanism. */
3623
3624 p = rs->buf;
3625 for (i = 0; i < rsa->sizeof_g_packet; i++)
3626 {
3627 if (p[0] == 0 || p[1] == 0)
3628 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3629 internal_error (__FILE__, __LINE__,
3630 "unexpected end of 'g' packet reply");
3631
3632 if (p[0] == 'x' && p[1] == 'x')
3633 regs[i] = 0; /* 'x' */
3634 else
3635 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3636 p += 2;
3637 }
3638
3639 {
3640 int i;
3641 for (i = 0; i < NUM_REGS; i++)
3642 {
3643 struct packet_reg *r = &rsa->regs[i];
3644 if (r->in_g_packet)
3645 {
3646 if (r->offset * 2 >= strlen (rs->buf))
3647 /* This shouldn't happen - we adjusted in_g_packet above. */
3648 internal_error (__FILE__, __LINE__,
3649 "unexpected end of 'g' packet reply");
3650 else if (rs->buf[r->offset * 2] == 'x')
3651 {
3652 gdb_assert (r->offset * 2 < strlen (rs->buf));
3653 /* The register isn't available, mark it as such (at
3654 the same time setting the value to zero). */
3655 regcache_raw_supply (current_regcache, r->regnum, NULL);
3656 set_register_cached (i, -1);
3657 }
3658 else
3659 regcache_raw_supply (current_regcache, r->regnum,
3660 regs + r->offset);
3661 }
3662 }
3663 }
3664 }
3665
3666 static void
3667 fetch_registers_using_g (void)
3668 {
3669 send_g_packet ();
3670 process_g_packet ();
3671 }
3672
3673 static void
3674 remote_fetch_registers (int regnum)
3675 {
3676 struct remote_state *rs = get_remote_state ();
3677 struct remote_arch_state *rsa = get_remote_arch_state ();
3678 int i;
3679
3680 set_thread (PIDGET (inferior_ptid), 1);
3681
3682 if (regnum >= 0)
3683 {
3684 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3685 gdb_assert (reg != NULL);
3686
3687 /* If this register might be in the 'g' packet, try that first -
3688 we are likely to read more than one register. If this is the
3689 first 'g' packet, we might be overly optimistic about its
3690 contents, so fall back to 'p'. */
3691 if (reg->in_g_packet)
3692 {
3693 fetch_registers_using_g ();
3694 if (reg->in_g_packet)
3695 return;
3696 }
3697
3698 if (fetch_register_using_p (reg))
3699 return;
3700
3701 /* This register is not available. */
3702 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3703 set_register_cached (reg->regnum, -1);
3704
3705 return;
3706 }
3707
3708 fetch_registers_using_g ();
3709
3710 for (i = 0; i < NUM_REGS; i++)
3711 if (!rsa->regs[i].in_g_packet)
3712 if (!fetch_register_using_p (&rsa->regs[i]))
3713 {
3714 /* This register is not available. */
3715 regcache_raw_supply (current_regcache, i, NULL);
3716 set_register_cached (i, -1);
3717 }
3718 }
3719
3720 /* Prepare to store registers. Since we may send them all (using a
3721 'G' request), we have to read out the ones we don't want to change
3722 first. */
3723
3724 static void
3725 remote_prepare_to_store (void)
3726 {
3727 struct remote_arch_state *rsa = get_remote_arch_state ();
3728 int i;
3729 gdb_byte buf[MAX_REGISTER_SIZE];
3730
3731 /* Make sure the entire registers array is valid. */
3732 switch (remote_protocol_packets[PACKET_P].support)
3733 {
3734 case PACKET_DISABLE:
3735 case PACKET_SUPPORT_UNKNOWN:
3736 /* Make sure all the necessary registers are cached. */
3737 for (i = 0; i < NUM_REGS; i++)
3738 if (rsa->regs[i].in_g_packet)
3739 regcache_raw_read (current_regcache, rsa->regs[i].regnum, buf);
3740 break;
3741 case PACKET_ENABLE:
3742 break;
3743 }
3744 }
3745
3746 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3747 packet was not recognized. */
3748
3749 static int
3750 store_register_using_P (struct packet_reg *reg)
3751 {
3752 struct remote_state *rs = get_remote_state ();
3753 struct remote_arch_state *rsa = get_remote_arch_state ();
3754 /* Try storing a single register. */
3755 char *buf = rs->buf;
3756 gdb_byte regp[MAX_REGISTER_SIZE];
3757 char *p;
3758
3759 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3760 return 0;
3761
3762 if (reg->pnum == -1)
3763 return 0;
3764
3765 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3766 p = buf + strlen (buf);
3767 regcache_raw_collect (current_regcache, reg->regnum, regp);
3768 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3769 remote_send (&rs->buf, &rs->buf_size);
3770
3771 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3772 {
3773 case PACKET_OK:
3774 return 1;
3775 case PACKET_ERROR:
3776 error (_("Could not write register \"%s\""),
3777 gdbarch_register_name (current_gdbarch, reg->regnum));
3778 case PACKET_UNKNOWN:
3779 return 0;
3780 default:
3781 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3782 }
3783 }
3784
3785 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3786 contents of the register cache buffer. FIXME: ignores errors. */
3787
3788 static void
3789 store_registers_using_G (void)
3790 {
3791 struct remote_state *rs = get_remote_state ();
3792 struct remote_arch_state *rsa = get_remote_arch_state ();
3793 gdb_byte *regs;
3794 char *p;
3795
3796 /* Extract all the registers in the regcache copying them into a
3797 local buffer. */
3798 {
3799 int i;
3800 regs = alloca (rsa->sizeof_g_packet);
3801 memset (regs, 0, rsa->sizeof_g_packet);
3802 for (i = 0; i < NUM_REGS; i++)
3803 {
3804 struct packet_reg *r = &rsa->regs[i];
3805 if (r->in_g_packet)
3806 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3807 }
3808 }
3809
3810 /* Command describes registers byte by byte,
3811 each byte encoded as two hex characters. */
3812 p = rs->buf;
3813 *p++ = 'G';
3814 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3815 updated. */
3816 bin2hex (regs, p, rsa->sizeof_g_packet);
3817 remote_send (&rs->buf, &rs->buf_size);
3818 }
3819
3820 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3821 of the register cache buffer. FIXME: ignores errors. */
3822
3823 static void
3824 remote_store_registers (int regnum)
3825 {
3826 struct remote_state *rs = get_remote_state ();
3827 struct remote_arch_state *rsa = get_remote_arch_state ();
3828 int i;
3829
3830 set_thread (PIDGET (inferior_ptid), 1);
3831
3832 if (regnum >= 0)
3833 {
3834 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3835 gdb_assert (reg != NULL);
3836
3837 /* Always prefer to store registers using the 'P' packet if
3838 possible; we often change only a small number of registers.
3839 Sometimes we change a larger number; we'd need help from a
3840 higher layer to know to use 'G'. */
3841 if (store_register_using_P (reg))
3842 return;
3843
3844 /* For now, don't complain if we have no way to write the
3845 register. GDB loses track of unavailable registers too
3846 easily. Some day, this may be an error. We don't have
3847 any way to read the register, either... */
3848 if (!reg->in_g_packet)
3849 return;
3850
3851 store_registers_using_G ();
3852 return;
3853 }
3854
3855 store_registers_using_G ();
3856
3857 for (i = 0; i < NUM_REGS; i++)
3858 if (!rsa->regs[i].in_g_packet)
3859 if (!store_register_using_P (&rsa->regs[i]))
3860 /* See above for why we do not issue an error here. */
3861 continue;
3862 }
3863 \f
3864
3865 /* Return the number of hex digits in num. */
3866
3867 static int
3868 hexnumlen (ULONGEST num)
3869 {
3870 int i;
3871
3872 for (i = 0; num != 0; i++)
3873 num >>= 4;
3874
3875 return max (i, 1);
3876 }
3877
3878 /* Set BUF to the minimum number of hex digits representing NUM. */
3879
3880 static int
3881 hexnumstr (char *buf, ULONGEST num)
3882 {
3883 int len = hexnumlen (num);
3884 return hexnumnstr (buf, num, len);
3885 }
3886
3887
3888 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3889
3890 static int
3891 hexnumnstr (char *buf, ULONGEST num, int width)
3892 {
3893 int i;
3894
3895 buf[width] = '\0';
3896
3897 for (i = width - 1; i >= 0; i--)
3898 {
3899 buf[i] = "0123456789abcdef"[(num & 0xf)];
3900 num >>= 4;
3901 }
3902
3903 return width;
3904 }
3905
3906 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3907
3908 static CORE_ADDR
3909 remote_address_masked (CORE_ADDR addr)
3910 {
3911 if (remote_address_size > 0
3912 && remote_address_size < (sizeof (ULONGEST) * 8))
3913 {
3914 /* Only create a mask when that mask can safely be constructed
3915 in a ULONGEST variable. */
3916 ULONGEST mask = 1;
3917 mask = (mask << remote_address_size) - 1;
3918 addr &= mask;
3919 }
3920 return addr;
3921 }
3922
3923 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3924 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3925 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3926 (which may be more than *OUT_LEN due to escape characters). The
3927 total number of bytes in the output buffer will be at most
3928 OUT_MAXLEN. */
3929
3930 static int
3931 remote_escape_output (const gdb_byte *buffer, int len,
3932 gdb_byte *out_buf, int *out_len,
3933 int out_maxlen)
3934 {
3935 int input_index, output_index;
3936
3937 output_index = 0;
3938 for (input_index = 0; input_index < len; input_index++)
3939 {
3940 gdb_byte b = buffer[input_index];
3941
3942 if (b == '$' || b == '#' || b == '}')
3943 {
3944 /* These must be escaped. */
3945 if (output_index + 2 > out_maxlen)
3946 break;
3947 out_buf[output_index++] = '}';
3948 out_buf[output_index++] = b ^ 0x20;
3949 }
3950 else
3951 {
3952 if (output_index + 1 > out_maxlen)
3953 break;
3954 out_buf[output_index++] = b;
3955 }
3956 }
3957
3958 *out_len = input_index;
3959 return output_index;
3960 }
3961
3962 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3963 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3964 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3965
3966 This function reverses remote_escape_output. It allows more
3967 escaped characters than that function does, in particular because
3968 '*' must be escaped to avoid the run-length encoding processing
3969 in reading packets. */
3970
3971 static int
3972 remote_unescape_input (const gdb_byte *buffer, int len,
3973 gdb_byte *out_buf, int out_maxlen)
3974 {
3975 int input_index, output_index;
3976 int escaped;
3977
3978 output_index = 0;
3979 escaped = 0;
3980 for (input_index = 0; input_index < len; input_index++)
3981 {
3982 gdb_byte b = buffer[input_index];
3983
3984 if (output_index + 1 > out_maxlen)
3985 {
3986 warning (_("Received too much data from remote target;"
3987 " ignoring overflow."));
3988 return output_index;
3989 }
3990
3991 if (escaped)
3992 {
3993 out_buf[output_index++] = b ^ 0x20;
3994 escaped = 0;
3995 }
3996 else if (b == '}')
3997 escaped = 1;
3998 else
3999 out_buf[output_index++] = b;
4000 }
4001
4002 if (escaped)
4003 error (_("Unmatched escape character in target response."));
4004
4005 return output_index;
4006 }
4007
4008 /* Determine whether the remote target supports binary downloading.
4009 This is accomplished by sending a no-op memory write of zero length
4010 to the target at the specified address. It does not suffice to send
4011 the whole packet, since many stubs strip the eighth bit and
4012 subsequently compute a wrong checksum, which causes real havoc with
4013 remote_write_bytes.
4014
4015 NOTE: This can still lose if the serial line is not eight-bit
4016 clean. In cases like this, the user should clear "remote
4017 X-packet". */
4018
4019 static void
4020 check_binary_download (CORE_ADDR addr)
4021 {
4022 struct remote_state *rs = get_remote_state ();
4023
4024 switch (remote_protocol_packets[PACKET_X].support)
4025 {
4026 case PACKET_DISABLE:
4027 break;
4028 case PACKET_ENABLE:
4029 break;
4030 case PACKET_SUPPORT_UNKNOWN:
4031 {
4032 char *p;
4033
4034 p = rs->buf;
4035 *p++ = 'X';
4036 p += hexnumstr (p, (ULONGEST) addr);
4037 *p++ = ',';
4038 p += hexnumstr (p, (ULONGEST) 0);
4039 *p++ = ':';
4040 *p = '\0';
4041
4042 putpkt_binary (rs->buf, (int) (p - rs->buf));
4043 getpkt (&rs->buf, &rs->buf_size, 0);
4044
4045 if (rs->buf[0] == '\0')
4046 {
4047 if (remote_debug)
4048 fprintf_unfiltered (gdb_stdlog,
4049 "binary downloading NOT suppported by target\n");
4050 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4051 }
4052 else
4053 {
4054 if (remote_debug)
4055 fprintf_unfiltered (gdb_stdlog,
4056 "binary downloading suppported by target\n");
4057 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4058 }
4059 break;
4060 }
4061 }
4062 }
4063
4064 /* Write memory data directly to the remote machine.
4065 This does not inform the data cache; the data cache uses this.
4066 HEADER is the starting part of the packet.
4067 MEMADDR is the address in the remote memory space.
4068 MYADDR is the address of the buffer in our space.
4069 LEN is the number of bytes.
4070 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4071 should send data as binary ('X'), or hex-encoded ('M').
4072
4073 The function creates packet of the form
4074 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4075
4076 where encoding of <DATA> is termined by PACKET_FORMAT.
4077
4078 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4079 are omitted.
4080
4081 Returns the number of bytes transferred, or 0 (setting errno) for
4082 error. Only transfer a single packet. */
4083
4084 static int
4085 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4086 const gdb_byte *myaddr, int len,
4087 char packet_format, int use_length)
4088 {
4089 struct remote_state *rs = get_remote_state ();
4090 char *p;
4091 char *plen = NULL;
4092 int plenlen = 0;
4093 int todo;
4094 int nr_bytes;
4095 int payload_size;
4096 int payload_length;
4097 int header_length;
4098
4099 if (packet_format != 'X' && packet_format != 'M')
4100 internal_error (__FILE__, __LINE__,
4101 "remote_write_bytes_aux: bad packet format");
4102
4103 /* Should this be the selected frame? */
4104 gdbarch_remote_translate_xfer_address (current_gdbarch,
4105 current_regcache,
4106 memaddr, len,
4107 &memaddr, &len);
4108
4109 if (len <= 0)
4110 return 0;
4111
4112 payload_size = get_memory_write_packet_size ();
4113
4114 /* The packet buffer will be large enough for the payload;
4115 get_memory_packet_size ensures this. */
4116 rs->buf[0] = '\0';
4117
4118 /* Compute the size of the actual payload by subtracting out the
4119 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4120 */
4121 payload_size -= strlen ("$,:#NN");
4122 if (!use_length)
4123 /* The comma won't be used. */
4124 payload_size += 1;
4125 header_length = strlen (header);
4126 payload_size -= header_length;
4127 payload_size -= hexnumlen (memaddr);
4128
4129 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4130
4131 strcat (rs->buf, header);
4132 p = rs->buf + strlen (header);
4133
4134 /* Compute a best guess of the number of bytes actually transfered. */
4135 if (packet_format == 'X')
4136 {
4137 /* Best guess at number of bytes that will fit. */
4138 todo = min (len, payload_size);
4139 if (use_length)
4140 payload_size -= hexnumlen (todo);
4141 todo = min (todo, payload_size);
4142 }
4143 else
4144 {
4145 /* Num bytes that will fit. */
4146 todo = min (len, payload_size / 2);
4147 if (use_length)
4148 payload_size -= hexnumlen (todo);
4149 todo = min (todo, payload_size / 2);
4150 }
4151
4152 if (todo <= 0)
4153 internal_error (__FILE__, __LINE__,
4154 _("minumum packet size too small to write data"));
4155
4156 /* If we already need another packet, then try to align the end
4157 of this packet to a useful boundary. */
4158 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4159 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4160
4161 /* Append "<memaddr>". */
4162 memaddr = remote_address_masked (memaddr);
4163 p += hexnumstr (p, (ULONGEST) memaddr);
4164
4165 if (use_length)
4166 {
4167 /* Append ",". */
4168 *p++ = ',';
4169
4170 /* Append <len>. Retain the location/size of <len>. It may need to
4171 be adjusted once the packet body has been created. */
4172 plen = p;
4173 plenlen = hexnumstr (p, (ULONGEST) todo);
4174 p += plenlen;
4175 }
4176
4177 /* Append ":". */
4178 *p++ = ':';
4179 *p = '\0';
4180
4181 /* Append the packet body. */
4182 if (packet_format == 'X')
4183 {
4184 /* Binary mode. Send target system values byte by byte, in
4185 increasing byte addresses. Only escape certain critical
4186 characters. */
4187 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4188 payload_size);
4189
4190 /* If not all TODO bytes fit, then we'll need another packet. Make
4191 a second try to keep the end of the packet aligned. Don't do
4192 this if the packet is tiny. */
4193 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4194 {
4195 int new_nr_bytes;
4196
4197 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4198 - memaddr);
4199 if (new_nr_bytes != nr_bytes)
4200 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4201 p, &nr_bytes,
4202 payload_size);
4203 }
4204
4205 p += payload_length;
4206 if (use_length && nr_bytes < todo)
4207 {
4208 /* Escape chars have filled up the buffer prematurely,
4209 and we have actually sent fewer bytes than planned.
4210 Fix-up the length field of the packet. Use the same
4211 number of characters as before. */
4212 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4213 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4214 }
4215 }
4216 else
4217 {
4218 /* Normal mode: Send target system values byte by byte, in
4219 increasing byte addresses. Each byte is encoded as a two hex
4220 value. */
4221 nr_bytes = bin2hex (myaddr, p, todo);
4222 p += 2 * nr_bytes;
4223 }
4224
4225 putpkt_binary (rs->buf, (int) (p - rs->buf));
4226 getpkt (&rs->buf, &rs->buf_size, 0);
4227
4228 if (rs->buf[0] == 'E')
4229 {
4230 /* There is no correspondance between what the remote protocol
4231 uses for errors and errno codes. We would like a cleaner way
4232 of representing errors (big enough to include errno codes,
4233 bfd_error codes, and others). But for now just return EIO. */
4234 errno = EIO;
4235 return 0;
4236 }
4237
4238 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4239 fewer bytes than we'd planned. */
4240 return nr_bytes;
4241 }
4242
4243 /* Write memory data directly to the remote machine.
4244 This does not inform the data cache; the data cache uses this.
4245 MEMADDR is the address in the remote memory space.
4246 MYADDR is the address of the buffer in our space.
4247 LEN is the number of bytes.
4248
4249 Returns number of bytes transferred, or 0 (setting errno) for
4250 error. Only transfer a single packet. */
4251
4252 int
4253 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4254 {
4255 char *packet_format = 0;
4256
4257 /* Check whether the target supports binary download. */
4258 check_binary_download (memaddr);
4259
4260 switch (remote_protocol_packets[PACKET_X].support)
4261 {
4262 case PACKET_ENABLE:
4263 packet_format = "X";
4264 break;
4265 case PACKET_DISABLE:
4266 packet_format = "M";
4267 break;
4268 case PACKET_SUPPORT_UNKNOWN:
4269 internal_error (__FILE__, __LINE__,
4270 _("remote_write_bytes: bad internal state"));
4271 default:
4272 internal_error (__FILE__, __LINE__, _("bad switch"));
4273 }
4274
4275 return remote_write_bytes_aux (packet_format,
4276 memaddr, myaddr, len, packet_format[0], 1);
4277 }
4278
4279 /* Read memory data directly from the remote machine.
4280 This does not use the data cache; the data cache uses this.
4281 MEMADDR is the address in the remote memory space.
4282 MYADDR is the address of the buffer in our space.
4283 LEN is the number of bytes.
4284
4285 Returns number of bytes transferred, or 0 for error. */
4286
4287 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4288 remote targets) shouldn't attempt to read the entire buffer.
4289 Instead it should read a single packet worth of data and then
4290 return the byte size of that packet to the caller. The caller (its
4291 caller and its callers caller ;-) already contains code for
4292 handling partial reads. */
4293
4294 int
4295 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4296 {
4297 struct remote_state *rs = get_remote_state ();
4298 int max_buf_size; /* Max size of packet output buffer. */
4299 int origlen;
4300
4301 /* Should this be the selected frame? */
4302 gdbarch_remote_translate_xfer_address (current_gdbarch,
4303 current_regcache,
4304 memaddr, len,
4305 &memaddr, &len);
4306
4307 if (len <= 0)
4308 return 0;
4309
4310 max_buf_size = get_memory_read_packet_size ();
4311 /* The packet buffer will be large enough for the payload;
4312 get_memory_packet_size ensures this. */
4313
4314 origlen = len;
4315 while (len > 0)
4316 {
4317 char *p;
4318 int todo;
4319 int i;
4320
4321 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4322
4323 /* construct "m"<memaddr>","<len>" */
4324 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4325 memaddr = remote_address_masked (memaddr);
4326 p = rs->buf;
4327 *p++ = 'm';
4328 p += hexnumstr (p, (ULONGEST) memaddr);
4329 *p++ = ',';
4330 p += hexnumstr (p, (ULONGEST) todo);
4331 *p = '\0';
4332
4333 putpkt (rs->buf);
4334 getpkt (&rs->buf, &rs->buf_size, 0);
4335
4336 if (rs->buf[0] == 'E'
4337 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4338 && rs->buf[3] == '\0')
4339 {
4340 /* There is no correspondance between what the remote
4341 protocol uses for errors and errno codes. We would like
4342 a cleaner way of representing errors (big enough to
4343 include errno codes, bfd_error codes, and others). But
4344 for now just return EIO. */
4345 errno = EIO;
4346 return 0;
4347 }
4348
4349 /* Reply describes memory byte by byte,
4350 each byte encoded as two hex characters. */
4351
4352 p = rs->buf;
4353 if ((i = hex2bin (p, myaddr, todo)) < todo)
4354 {
4355 /* Reply is short. This means that we were able to read
4356 only part of what we wanted to. */
4357 return i + (origlen - len);
4358 }
4359 myaddr += todo;
4360 memaddr += todo;
4361 len -= todo;
4362 }
4363 return origlen;
4364 }
4365 \f
4366 /* Read or write LEN bytes from inferior memory at MEMADDR,
4367 transferring to or from debugger address BUFFER. Write to inferior
4368 if SHOULD_WRITE is nonzero. Returns length of data written or
4369 read; 0 for error. TARGET is unused. */
4370
4371 static int
4372 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4373 int should_write, struct mem_attrib *attrib,
4374 struct target_ops *target)
4375 {
4376 int res;
4377
4378 if (should_write)
4379 res = remote_write_bytes (mem_addr, buffer, mem_len);
4380 else
4381 res = remote_read_bytes (mem_addr, buffer, mem_len);
4382
4383 return res;
4384 }
4385
4386 /* Sends a packet with content determined by the printf format string
4387 FORMAT and the remaining arguments, then gets the reply. Returns
4388 whether the packet was a success, a failure, or unknown. */
4389
4390 enum packet_result
4391 remote_send_printf (const char *format, ...)
4392 {
4393 struct remote_state *rs = get_remote_state ();
4394 int max_size = get_remote_packet_size ();
4395
4396 va_list ap;
4397 va_start (ap, format);
4398
4399 rs->buf[0] = '\0';
4400 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4401 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4402
4403 if (putpkt (rs->buf) < 0)
4404 error (_("Communication problem with target."));
4405
4406 rs->buf[0] = '\0';
4407 getpkt (&rs->buf, &rs->buf_size, 0);
4408
4409 return packet_check_result (rs->buf);
4410 }
4411
4412 static void
4413 restore_remote_timeout (void *p)
4414 {
4415 int value = *(int *)p;
4416 remote_timeout = value;
4417 }
4418
4419 /* Flash writing can take quite some time. We'll set
4420 effectively infinite timeout for flash operations.
4421 In future, we'll need to decide on a better approach. */
4422 static const int remote_flash_timeout = 1000;
4423
4424 static void
4425 remote_flash_erase (struct target_ops *ops,
4426 ULONGEST address, LONGEST length)
4427 {
4428 int saved_remote_timeout = remote_timeout;
4429 enum packet_result ret;
4430
4431 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4432 &saved_remote_timeout);
4433 remote_timeout = remote_flash_timeout;
4434
4435 ret = remote_send_printf ("vFlashErase:%s,%s",
4436 paddr (address),
4437 phex (length, 4));
4438 switch (ret)
4439 {
4440 case PACKET_UNKNOWN:
4441 error (_("Remote target does not support flash erase"));
4442 case PACKET_ERROR:
4443 error (_("Error erasing flash with vFlashErase packet"));
4444 default:
4445 break;
4446 }
4447
4448 do_cleanups (back_to);
4449 }
4450
4451 static LONGEST
4452 remote_flash_write (struct target_ops *ops,
4453 ULONGEST address, LONGEST length,
4454 const gdb_byte *data)
4455 {
4456 int saved_remote_timeout = remote_timeout;
4457 int ret;
4458 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4459 &saved_remote_timeout);
4460
4461 remote_timeout = remote_flash_timeout;
4462 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4463 do_cleanups (back_to);
4464
4465 return ret;
4466 }
4467
4468 static void
4469 remote_flash_done (struct target_ops *ops)
4470 {
4471 int saved_remote_timeout = remote_timeout;
4472 int ret;
4473 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4474 &saved_remote_timeout);
4475
4476 remote_timeout = remote_flash_timeout;
4477 ret = remote_send_printf ("vFlashDone");
4478 do_cleanups (back_to);
4479
4480 switch (ret)
4481 {
4482 case PACKET_UNKNOWN:
4483 error (_("Remote target does not support vFlashDone"));
4484 case PACKET_ERROR:
4485 error (_("Error finishing flash operation"));
4486 default:
4487 break;
4488 }
4489 }
4490
4491 static void
4492 remote_files_info (struct target_ops *ignore)
4493 {
4494 puts_filtered ("Debugging a target over a serial line.\n");
4495 }
4496 \f
4497 /* Stuff for dealing with the packets which are part of this protocol.
4498 See comment at top of file for details. */
4499
4500 /* Read a single character from the remote end. */
4501
4502 static int
4503 readchar (int timeout)
4504 {
4505 int ch;
4506
4507 ch = serial_readchar (remote_desc, timeout);
4508
4509 if (ch >= 0)
4510 return ch;
4511
4512 switch ((enum serial_rc) ch)
4513 {
4514 case SERIAL_EOF:
4515 target_mourn_inferior ();
4516 error (_("Remote connection closed"));
4517 /* no return */
4518 case SERIAL_ERROR:
4519 perror_with_name (_("Remote communication error"));
4520 /* no return */
4521 case SERIAL_TIMEOUT:
4522 break;
4523 }
4524 return ch;
4525 }
4526
4527 /* Send the command in *BUF to the remote machine, and read the reply
4528 into *BUF. Report an error if we get an error reply. Resize
4529 *BUF using xrealloc if necessary to hold the result, and update
4530 *SIZEOF_BUF. */
4531
4532 static void
4533 remote_send (char **buf,
4534 long *sizeof_buf)
4535 {
4536 putpkt (*buf);
4537 getpkt (buf, sizeof_buf, 0);
4538
4539 if ((*buf)[0] == 'E')
4540 error (_("Remote failure reply: %s"), *buf);
4541 }
4542
4543 /* Display a null-terminated packet on stdout, for debugging, using C
4544 string notation. */
4545
4546 static void
4547 print_packet (char *buf)
4548 {
4549 puts_filtered ("\"");
4550 fputstr_filtered (buf, '"', gdb_stdout);
4551 puts_filtered ("\"");
4552 }
4553
4554 int
4555 putpkt (char *buf)
4556 {
4557 return putpkt_binary (buf, strlen (buf));
4558 }
4559
4560 /* Send a packet to the remote machine, with error checking. The data
4561 of the packet is in BUF. The string in BUF can be at most
4562 get_remote_packet_size () - 5 to account for the $, # and checksum,
4563 and for a possible /0 if we are debugging (remote_debug) and want
4564 to print the sent packet as a string. */
4565
4566 static int
4567 putpkt_binary (char *buf, int cnt)
4568 {
4569 int i;
4570 unsigned char csum = 0;
4571 char *buf2 = alloca (cnt + 6);
4572
4573 int ch;
4574 int tcount = 0;
4575 char *p;
4576
4577 /* Copy the packet into buffer BUF2, encapsulating it
4578 and giving it a checksum. */
4579
4580 p = buf2;
4581 *p++ = '$';
4582
4583 for (i = 0; i < cnt; i++)
4584 {
4585 csum += buf[i];
4586 *p++ = buf[i];
4587 }
4588 *p++ = '#';
4589 *p++ = tohex ((csum >> 4) & 0xf);
4590 *p++ = tohex (csum & 0xf);
4591
4592 /* Send it over and over until we get a positive ack. */
4593
4594 while (1)
4595 {
4596 int started_error_output = 0;
4597
4598 if (remote_debug)
4599 {
4600 *p = '\0';
4601 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4602 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4603 fprintf_unfiltered (gdb_stdlog, "...");
4604 gdb_flush (gdb_stdlog);
4605 }
4606 if (serial_write (remote_desc, buf2, p - buf2))
4607 perror_with_name (_("putpkt: write failed"));
4608
4609 /* Read until either a timeout occurs (-2) or '+' is read. */
4610 while (1)
4611 {
4612 ch = readchar (remote_timeout);
4613
4614 if (remote_debug)
4615 {
4616 switch (ch)
4617 {
4618 case '+':
4619 case '-':
4620 case SERIAL_TIMEOUT:
4621 case '$':
4622 if (started_error_output)
4623 {
4624 putchar_unfiltered ('\n');
4625 started_error_output = 0;
4626 }
4627 }
4628 }
4629
4630 switch (ch)
4631 {
4632 case '+':
4633 if (remote_debug)
4634 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4635 return 1;
4636 case '-':
4637 if (remote_debug)
4638 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4639 case SERIAL_TIMEOUT:
4640 tcount++;
4641 if (tcount > 3)
4642 return 0;
4643 break; /* Retransmit buffer. */
4644 case '$':
4645 {
4646 if (remote_debug)
4647 fprintf_unfiltered (gdb_stdlog,
4648 "Packet instead of Ack, ignoring it\n");
4649 /* It's probably an old response sent because an ACK
4650 was lost. Gobble up the packet and ack it so it
4651 doesn't get retransmitted when we resend this
4652 packet. */
4653 skip_frame ();
4654 serial_write (remote_desc, "+", 1);
4655 continue; /* Now, go look for +. */
4656 }
4657 default:
4658 if (remote_debug)
4659 {
4660 if (!started_error_output)
4661 {
4662 started_error_output = 1;
4663 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4664 }
4665 fputc_unfiltered (ch & 0177, gdb_stdlog);
4666 }
4667 continue;
4668 }
4669 break; /* Here to retransmit. */
4670 }
4671
4672 #if 0
4673 /* This is wrong. If doing a long backtrace, the user should be
4674 able to get out next time we call QUIT, without anything as
4675 violent as interrupt_query. If we want to provide a way out of
4676 here without getting to the next QUIT, it should be based on
4677 hitting ^C twice as in remote_wait. */
4678 if (quit_flag)
4679 {
4680 quit_flag = 0;
4681 interrupt_query ();
4682 }
4683 #endif
4684 }
4685 }
4686
4687 /* Come here after finding the start of a frame when we expected an
4688 ack. Do our best to discard the rest of this packet. */
4689
4690 static void
4691 skip_frame (void)
4692 {
4693 int c;
4694
4695 while (1)
4696 {
4697 c = readchar (remote_timeout);
4698 switch (c)
4699 {
4700 case SERIAL_TIMEOUT:
4701 /* Nothing we can do. */
4702 return;
4703 case '#':
4704 /* Discard the two bytes of checksum and stop. */
4705 c = readchar (remote_timeout);
4706 if (c >= 0)
4707 c = readchar (remote_timeout);
4708
4709 return;
4710 case '*': /* Run length encoding. */
4711 /* Discard the repeat count. */
4712 c = readchar (remote_timeout);
4713 if (c < 0)
4714 return;
4715 break;
4716 default:
4717 /* A regular character. */
4718 break;
4719 }
4720 }
4721 }
4722
4723 /* Come here after finding the start of the frame. Collect the rest
4724 into *BUF, verifying the checksum, length, and handling run-length
4725 compression. NUL terminate the buffer. If there is not enough room,
4726 expand *BUF using xrealloc.
4727
4728 Returns -1 on error, number of characters in buffer (ignoring the
4729 trailing NULL) on success. (could be extended to return one of the
4730 SERIAL status indications). */
4731
4732 static long
4733 read_frame (char **buf_p,
4734 long *sizeof_buf)
4735 {
4736 unsigned char csum;
4737 long bc;
4738 int c;
4739 char *buf = *buf_p;
4740
4741 csum = 0;
4742 bc = 0;
4743
4744 while (1)
4745 {
4746 c = readchar (remote_timeout);
4747 switch (c)
4748 {
4749 case SERIAL_TIMEOUT:
4750 if (remote_debug)
4751 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4752 return -1;
4753 case '$':
4754 if (remote_debug)
4755 fputs_filtered ("Saw new packet start in middle of old one\n",
4756 gdb_stdlog);
4757 return -1; /* Start a new packet, count retries. */
4758 case '#':
4759 {
4760 unsigned char pktcsum;
4761 int check_0 = 0;
4762 int check_1 = 0;
4763
4764 buf[bc] = '\0';
4765
4766 check_0 = readchar (remote_timeout);
4767 if (check_0 >= 0)
4768 check_1 = readchar (remote_timeout);
4769
4770 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4771 {
4772 if (remote_debug)
4773 fputs_filtered ("Timeout in checksum, retrying\n",
4774 gdb_stdlog);
4775 return -1;
4776 }
4777 else if (check_0 < 0 || check_1 < 0)
4778 {
4779 if (remote_debug)
4780 fputs_filtered ("Communication error in checksum\n",
4781 gdb_stdlog);
4782 return -1;
4783 }
4784
4785 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4786 if (csum == pktcsum)
4787 return bc;
4788
4789 if (remote_debug)
4790 {
4791 fprintf_filtered (gdb_stdlog,
4792 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4793 pktcsum, csum);
4794 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4795 fputs_filtered ("\n", gdb_stdlog);
4796 }
4797 /* Number of characters in buffer ignoring trailing
4798 NULL. */
4799 return -1;
4800 }
4801 case '*': /* Run length encoding. */
4802 {
4803 int repeat;
4804 csum += c;
4805
4806 c = readchar (remote_timeout);
4807 csum += c;
4808 repeat = c - ' ' + 3; /* Compute repeat count. */
4809
4810 /* The character before ``*'' is repeated. */
4811
4812 if (repeat > 0 && repeat <= 255 && bc > 0)
4813 {
4814 if (bc + repeat - 1 >= *sizeof_buf - 1)
4815 {
4816 /* Make some more room in the buffer. */
4817 *sizeof_buf += repeat;
4818 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4819 buf = *buf_p;
4820 }
4821
4822 memset (&buf[bc], buf[bc - 1], repeat);
4823 bc += repeat;
4824 continue;
4825 }
4826
4827 buf[bc] = '\0';
4828 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4829 return -1;
4830 }
4831 default:
4832 if (bc >= *sizeof_buf - 1)
4833 {
4834 /* Make some more room in the buffer. */
4835 *sizeof_buf *= 2;
4836 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4837 buf = *buf_p;
4838 }
4839
4840 buf[bc++] = c;
4841 csum += c;
4842 continue;
4843 }
4844 }
4845 }
4846
4847 /* Read a packet from the remote machine, with error checking, and
4848 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4849 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4850 rather than timing out; this is used (in synchronous mode) to wait
4851 for a target that is is executing user code to stop. */
4852 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4853 don't have to change all the calls to getpkt to deal with the
4854 return value, because at the moment I don't know what the right
4855 thing to do it for those. */
4856 void
4857 getpkt (char **buf,
4858 long *sizeof_buf,
4859 int forever)
4860 {
4861 int timed_out;
4862
4863 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4864 }
4865
4866
4867 /* Read a packet from the remote machine, with error checking, and
4868 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4869 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4870 rather than timing out; this is used (in synchronous mode) to wait
4871 for a target that is is executing user code to stop. If FOREVER ==
4872 0, this function is allowed to time out gracefully and return an
4873 indication of this to the caller. Otherwise return the number
4874 of bytes read. */
4875 static int
4876 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4877 {
4878 int c;
4879 int tries;
4880 int timeout;
4881 int val;
4882
4883 strcpy (*buf, "timeout");
4884
4885 if (forever)
4886 {
4887 timeout = watchdog > 0 ? watchdog : -1;
4888 }
4889
4890 else
4891 timeout = remote_timeout;
4892
4893 #define MAX_TRIES 3
4894
4895 for (tries = 1; tries <= MAX_TRIES; tries++)
4896 {
4897 /* This can loop forever if the remote side sends us characters
4898 continuously, but if it pauses, we'll get a zero from
4899 readchar because of timeout. Then we'll count that as a
4900 retry. */
4901
4902 /* Note that we will only wait forever prior to the start of a
4903 packet. After that, we expect characters to arrive at a
4904 brisk pace. They should show up within remote_timeout
4905 intervals. */
4906
4907 do
4908 {
4909 c = readchar (timeout);
4910
4911 if (c == SERIAL_TIMEOUT)
4912 {
4913 if (forever) /* Watchdog went off? Kill the target. */
4914 {
4915 QUIT;
4916 target_mourn_inferior ();
4917 error (_("Watchdog has expired. Target detached."));
4918 }
4919 if (remote_debug)
4920 fputs_filtered ("Timed out.\n", gdb_stdlog);
4921 goto retry;
4922 }
4923 }
4924 while (c != '$');
4925
4926 /* We've found the start of a packet, now collect the data. */
4927
4928 val = read_frame (buf, sizeof_buf);
4929
4930 if (val >= 0)
4931 {
4932 if (remote_debug)
4933 {
4934 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4935 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4936 fprintf_unfiltered (gdb_stdlog, "\n");
4937 }
4938 serial_write (remote_desc, "+", 1);
4939 return val;
4940 }
4941
4942 /* Try the whole thing again. */
4943 retry:
4944 serial_write (remote_desc, "-", 1);
4945 }
4946
4947 /* We have tried hard enough, and just can't receive the packet.
4948 Give up. */
4949
4950 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4951 serial_write (remote_desc, "+", 1);
4952 return -1;
4953 }
4954 \f
4955 static void
4956 remote_kill (void)
4957 {
4958 /* For some mysterious reason, wait_for_inferior calls kill instead of
4959 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4960 if (kill_kludge)
4961 {
4962 kill_kludge = 0;
4963 target_mourn_inferior ();
4964 return;
4965 }
4966
4967 /* Use catch_errors so the user can quit from gdb even when we aren't on
4968 speaking terms with the remote system. */
4969 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4970
4971 /* Don't wait for it to die. I'm not really sure it matters whether
4972 we do or not. For the existing stubs, kill is a noop. */
4973 target_mourn_inferior ();
4974 }
4975
4976 /* Async version of remote_kill. */
4977 static void
4978 remote_async_kill (void)
4979 {
4980 /* Unregister the file descriptor from the event loop. */
4981 if (target_is_async_p ())
4982 serial_async (remote_desc, NULL, 0);
4983
4984 /* For some mysterious reason, wait_for_inferior calls kill instead of
4985 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4986 if (kill_kludge)
4987 {
4988 kill_kludge = 0;
4989 target_mourn_inferior ();
4990 return;
4991 }
4992
4993 /* Use catch_errors so the user can quit from gdb even when we
4994 aren't on speaking terms with the remote system. */
4995 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4996
4997 /* Don't wait for it to die. I'm not really sure it matters whether
4998 we do or not. For the existing stubs, kill is a noop. */
4999 target_mourn_inferior ();
5000 }
5001
5002 static void
5003 remote_mourn (void)
5004 {
5005 remote_mourn_1 (&remote_ops);
5006 }
5007
5008 static void
5009 remote_async_mourn (void)
5010 {
5011 remote_mourn_1 (&remote_async_ops);
5012 }
5013
5014 static void
5015 extended_remote_mourn (void)
5016 {
5017 /* We do _not_ want to mourn the target like this; this will
5018 remove the extended remote target from the target stack,
5019 and the next time the user says "run" it'll fail.
5020
5021 FIXME: What is the right thing to do here? */
5022 #if 0
5023 remote_mourn_1 (&extended_remote_ops);
5024 #endif
5025 }
5026
5027 /* Worker function for remote_mourn. */
5028 static void
5029 remote_mourn_1 (struct target_ops *target)
5030 {
5031 unpush_target (target);
5032 generic_mourn_inferior ();
5033 }
5034
5035 /* In the extended protocol we want to be able to do things like
5036 "run" and have them basically work as expected. So we need
5037 a special create_inferior function.
5038
5039 FIXME: One day add support for changing the exec file
5040 we're debugging, arguments and an environment. */
5041
5042 static void
5043 extended_remote_create_inferior (char *exec_file, char *args,
5044 char **env, int from_tty)
5045 {
5046 /* Rip out the breakpoints; we'll reinsert them after restarting
5047 the remote server. */
5048 remove_breakpoints ();
5049
5050 /* Now restart the remote server. */
5051 extended_remote_restart ();
5052
5053 /* NOTE: We don't need to recheck for a target description here; but
5054 if we gain the ability to switch the remote executable we may
5055 need to, if for instance we are running a process which requested
5056 different emulated hardware from the operating system. A
5057 concrete example of this is ARM GNU/Linux, where some binaries
5058 will have a legacy FPA coprocessor emulated and others may have
5059 access to a hardware VFP unit. */
5060
5061 /* Now put the breakpoints back in. This way we're safe if the
5062 restart function works via a unix fork on the remote side. */
5063 insert_breakpoints ();
5064
5065 /* Clean up from the last time we were running. */
5066 clear_proceed_status ();
5067 }
5068
5069 /* Async version of extended_remote_create_inferior. */
5070 static void
5071 extended_remote_async_create_inferior (char *exec_file, char *args,
5072 char **env, int from_tty)
5073 {
5074 /* Rip out the breakpoints; we'll reinsert them after restarting
5075 the remote server. */
5076 remove_breakpoints ();
5077
5078 /* If running asynchronously, register the target file descriptor
5079 with the event loop. */
5080 if (target_can_async_p ())
5081 target_async (inferior_event_handler, 0);
5082
5083 /* Now restart the remote server. */
5084 extended_remote_restart ();
5085
5086 /* NOTE: We don't need to recheck for a target description here; but
5087 if we gain the ability to switch the remote executable we may
5088 need to, if for instance we are running a process which requested
5089 different emulated hardware from the operating system. A
5090 concrete example of this is ARM GNU/Linux, where some binaries
5091 will have a legacy FPA coprocessor emulated and others may have
5092 access to a hardware VFP unit. */
5093
5094 /* Now put the breakpoints back in. This way we're safe if the
5095 restart function works via a unix fork on the remote side. */
5096 insert_breakpoints ();
5097
5098 /* Clean up from the last time we were running. */
5099 clear_proceed_status ();
5100 }
5101 \f
5102
5103 /* On some machines, e.g. 68k, we may use a different breakpoint
5104 instruction than other targets; in those use
5105 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
5106 Also, bi-endian targets may define
5107 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
5108 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
5109 just call the standard routines that are in mem-break.c. */
5110
5111 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
5112 target should use an identical BREAKPOINT_FROM_PC. As for native,
5113 the ARCH-OS-tdep.c code can override the default. */
5114
5115 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
5116 #define DEPRECATED_REMOTE_BREAKPOINT
5117 #endif
5118
5119 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5120
5121 /* If the target isn't bi-endian, just pretend it is. */
5122 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
5123 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
5124 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
5125 #endif
5126
5127 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
5128 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
5129
5130 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5131
5132 /* Insert a breakpoint. On targets that have software breakpoint
5133 support, we ask the remote target to do the work; on targets
5134 which don't, we insert a traditional memory breakpoint. */
5135
5136 static int
5137 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5138 {
5139 CORE_ADDR addr = bp_tgt->placed_address;
5140 struct remote_state *rs = get_remote_state ();
5141 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5142 int val;
5143 #endif
5144
5145 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5146 If it succeeds, then set the support to PACKET_ENABLE. If it
5147 fails, and the user has explicitly requested the Z support then
5148 report an error, otherwise, mark it disabled and go on. */
5149
5150 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5151 {
5152 char *p = rs->buf;
5153
5154 *(p++) = 'Z';
5155 *(p++) = '0';
5156 *(p++) = ',';
5157 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5158 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5159 p += hexnumstr (p, addr);
5160 sprintf (p, ",%d", bp_tgt->placed_size);
5161
5162 putpkt (rs->buf);
5163 getpkt (&rs->buf, &rs->buf_size, 0);
5164
5165 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5166 {
5167 case PACKET_ERROR:
5168 return -1;
5169 case PACKET_OK:
5170 return 0;
5171 case PACKET_UNKNOWN:
5172 break;
5173 }
5174 }
5175
5176 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5177 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof big_break_insn;
5178 val = target_read_memory (addr, bp_tgt->shadow_contents, bp_tgt->shadow_len);
5179
5180 if (val == 0)
5181 {
5182 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5183 val = target_write_memory (addr, (char *) big_break_insn,
5184 sizeof big_break_insn);
5185 else
5186 val = target_write_memory (addr, (char *) little_break_insn,
5187 sizeof little_break_insn);
5188 }
5189
5190 return val;
5191 #else
5192 return memory_insert_breakpoint (bp_tgt);
5193 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5194 }
5195
5196 static int
5197 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5198 {
5199 CORE_ADDR addr = bp_tgt->placed_address;
5200 struct remote_state *rs = get_remote_state ();
5201 int bp_size;
5202
5203 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5204 {
5205 char *p = rs->buf;
5206
5207 *(p++) = 'z';
5208 *(p++) = '0';
5209 *(p++) = ',';
5210
5211 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5212 p += hexnumstr (p, addr);
5213 sprintf (p, ",%d", bp_tgt->placed_size);
5214
5215 putpkt (rs->buf);
5216 getpkt (&rs->buf, &rs->buf_size, 0);
5217
5218 return (rs->buf[0] == 'E');
5219 }
5220
5221 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5222 return target_write_memory (bp_tgt->placed_address, bp_tgt->shadow_contents,
5223 bp_tgt->shadow_len);
5224 #else
5225 return memory_remove_breakpoint (bp_tgt);
5226 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5227 }
5228
5229 static int
5230 watchpoint_to_Z_packet (int type)
5231 {
5232 switch (type)
5233 {
5234 case hw_write:
5235 return Z_PACKET_WRITE_WP;
5236 break;
5237 case hw_read:
5238 return Z_PACKET_READ_WP;
5239 break;
5240 case hw_access:
5241 return Z_PACKET_ACCESS_WP;
5242 break;
5243 default:
5244 internal_error (__FILE__, __LINE__,
5245 _("hw_bp_to_z: bad watchpoint type %d"), type);
5246 }
5247 }
5248
5249 static int
5250 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5251 {
5252 struct remote_state *rs = get_remote_state ();
5253 char *p;
5254 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5255
5256 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5257 return -1;
5258
5259 sprintf (rs->buf, "Z%x,", packet);
5260 p = strchr (rs->buf, '\0');
5261 addr = remote_address_masked (addr);
5262 p += hexnumstr (p, (ULONGEST) addr);
5263 sprintf (p, ",%x", len);
5264
5265 putpkt (rs->buf);
5266 getpkt (&rs->buf, &rs->buf_size, 0);
5267
5268 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5269 {
5270 case PACKET_ERROR:
5271 case PACKET_UNKNOWN:
5272 return -1;
5273 case PACKET_OK:
5274 return 0;
5275 }
5276 internal_error (__FILE__, __LINE__,
5277 _("remote_insert_watchpoint: reached end of function"));
5278 }
5279
5280
5281 static int
5282 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5283 {
5284 struct remote_state *rs = get_remote_state ();
5285 char *p;
5286 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5287
5288 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5289 return -1;
5290
5291 sprintf (rs->buf, "z%x,", packet);
5292 p = strchr (rs->buf, '\0');
5293 addr = remote_address_masked (addr);
5294 p += hexnumstr (p, (ULONGEST) addr);
5295 sprintf (p, ",%x", len);
5296 putpkt (rs->buf);
5297 getpkt (&rs->buf, &rs->buf_size, 0);
5298
5299 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5300 {
5301 case PACKET_ERROR:
5302 case PACKET_UNKNOWN:
5303 return -1;
5304 case PACKET_OK:
5305 return 0;
5306 }
5307 internal_error (__FILE__, __LINE__,
5308 _("remote_remove_watchpoint: reached end of function"));
5309 }
5310
5311
5312 int remote_hw_watchpoint_limit = -1;
5313 int remote_hw_breakpoint_limit = -1;
5314
5315 static int
5316 remote_check_watch_resources (int type, int cnt, int ot)
5317 {
5318 if (type == bp_hardware_breakpoint)
5319 {
5320 if (remote_hw_breakpoint_limit == 0)
5321 return 0;
5322 else if (remote_hw_breakpoint_limit < 0)
5323 return 1;
5324 else if (cnt <= remote_hw_breakpoint_limit)
5325 return 1;
5326 }
5327 else
5328 {
5329 if (remote_hw_watchpoint_limit == 0)
5330 return 0;
5331 else if (remote_hw_watchpoint_limit < 0)
5332 return 1;
5333 else if (ot)
5334 return -1;
5335 else if (cnt <= remote_hw_watchpoint_limit)
5336 return 1;
5337 }
5338 return -1;
5339 }
5340
5341 static int
5342 remote_stopped_by_watchpoint (void)
5343 {
5344 return remote_stopped_by_watchpoint_p;
5345 }
5346
5347 extern int stepped_after_stopped_by_watchpoint;
5348
5349 static int
5350 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5351 {
5352 int rc = 0;
5353 if (remote_stopped_by_watchpoint ()
5354 || stepped_after_stopped_by_watchpoint)
5355 {
5356 *addr_p = remote_watch_data_address;
5357 rc = 1;
5358 }
5359
5360 return rc;
5361 }
5362
5363
5364 static int
5365 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5366 {
5367 CORE_ADDR addr;
5368 struct remote_state *rs = get_remote_state ();
5369 char *p = rs->buf;
5370
5371 /* The length field should be set to the size of a breakpoint
5372 instruction, even though we aren't inserting one ourselves. */
5373
5374 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5375
5376 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5377 return -1;
5378
5379 *(p++) = 'Z';
5380 *(p++) = '1';
5381 *(p++) = ',';
5382
5383 addr = remote_address_masked (bp_tgt->placed_address);
5384 p += hexnumstr (p, (ULONGEST) addr);
5385 sprintf (p, ",%x", bp_tgt->placed_size);
5386
5387 putpkt (rs->buf);
5388 getpkt (&rs->buf, &rs->buf_size, 0);
5389
5390 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5391 {
5392 case PACKET_ERROR:
5393 case PACKET_UNKNOWN:
5394 return -1;
5395 case PACKET_OK:
5396 return 0;
5397 }
5398 internal_error (__FILE__, __LINE__,
5399 _("remote_insert_hw_breakpoint: reached end of function"));
5400 }
5401
5402
5403 static int
5404 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5405 {
5406 CORE_ADDR addr;
5407 struct remote_state *rs = get_remote_state ();
5408 char *p = rs->buf;
5409
5410 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5411 return -1;
5412
5413 *(p++) = 'z';
5414 *(p++) = '1';
5415 *(p++) = ',';
5416
5417 addr = remote_address_masked (bp_tgt->placed_address);
5418 p += hexnumstr (p, (ULONGEST) addr);
5419 sprintf (p, ",%x", bp_tgt->placed_size);
5420
5421 putpkt (rs->buf);
5422 getpkt (&rs->buf, &rs->buf_size, 0);
5423
5424 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5425 {
5426 case PACKET_ERROR:
5427 case PACKET_UNKNOWN:
5428 return -1;
5429 case PACKET_OK:
5430 return 0;
5431 }
5432 internal_error (__FILE__, __LINE__,
5433 _("remote_remove_hw_breakpoint: reached end of function"));
5434 }
5435
5436 /* Some targets are only capable of doing downloads, and afterwards
5437 they switch to the remote serial protocol. This function provides
5438 a clean way to get from the download target to the remote target.
5439 It's basically just a wrapper so that we don't have to expose any
5440 of the internal workings of remote.c.
5441
5442 Prior to calling this routine, you should shutdown the current
5443 target code, else you will get the "A program is being debugged
5444 already..." message. Usually a call to pop_target() suffices. */
5445
5446 void
5447 push_remote_target (char *name, int from_tty)
5448 {
5449 printf_filtered (_("Switching to remote protocol\n"));
5450 remote_open (name, from_tty);
5451 }
5452
5453 /* Table used by the crc32 function to calcuate the checksum. */
5454
5455 static unsigned long crc32_table[256] =
5456 {0, 0};
5457
5458 static unsigned long
5459 crc32 (unsigned char *buf, int len, unsigned int crc)
5460 {
5461 if (!crc32_table[1])
5462 {
5463 /* Initialize the CRC table and the decoding table. */
5464 int i, j;
5465 unsigned int c;
5466
5467 for (i = 0; i < 256; i++)
5468 {
5469 for (c = i << 24, j = 8; j > 0; --j)
5470 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5471 crc32_table[i] = c;
5472 }
5473 }
5474
5475 while (len--)
5476 {
5477 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5478 buf++;
5479 }
5480 return crc;
5481 }
5482
5483 /* compare-sections command
5484
5485 With no arguments, compares each loadable section in the exec bfd
5486 with the same memory range on the target, and reports mismatches.
5487 Useful for verifying the image on the target against the exec file.
5488 Depends on the target understanding the new "qCRC:" request. */
5489
5490 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5491 target method (target verify memory) and generic version of the
5492 actual command. This will allow other high-level code (especially
5493 generic_load()) to make use of this target functionality. */
5494
5495 static void
5496 compare_sections_command (char *args, int from_tty)
5497 {
5498 struct remote_state *rs = get_remote_state ();
5499 asection *s;
5500 unsigned long host_crc, target_crc;
5501 extern bfd *exec_bfd;
5502 struct cleanup *old_chain;
5503 char *tmp;
5504 char *sectdata;
5505 const char *sectname;
5506 bfd_size_type size;
5507 bfd_vma lma;
5508 int matched = 0;
5509 int mismatched = 0;
5510
5511 if (!exec_bfd)
5512 error (_("command cannot be used without an exec file"));
5513 if (!current_target.to_shortname ||
5514 strcmp (current_target.to_shortname, "remote") != 0)
5515 error (_("command can only be used with remote target"));
5516
5517 for (s = exec_bfd->sections; s; s = s->next)
5518 {
5519 if (!(s->flags & SEC_LOAD))
5520 continue; /* skip non-loadable section */
5521
5522 size = bfd_get_section_size (s);
5523 if (size == 0)
5524 continue; /* skip zero-length section */
5525
5526 sectname = bfd_get_section_name (exec_bfd, s);
5527 if (args && strcmp (args, sectname) != 0)
5528 continue; /* not the section selected by user */
5529
5530 matched = 1; /* do this section */
5531 lma = s->lma;
5532 /* FIXME: assumes lma can fit into long. */
5533 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5534 (long) lma, (long) size);
5535 putpkt (rs->buf);
5536
5537 /* Be clever; compute the host_crc before waiting for target
5538 reply. */
5539 sectdata = xmalloc (size);
5540 old_chain = make_cleanup (xfree, sectdata);
5541 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5542 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5543
5544 getpkt (&rs->buf, &rs->buf_size, 0);
5545 if (rs->buf[0] == 'E')
5546 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5547 sectname, paddr (lma), paddr (lma + size));
5548 if (rs->buf[0] != 'C')
5549 error (_("remote target does not support this operation"));
5550
5551 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5552 target_crc = target_crc * 16 + fromhex (*tmp);
5553
5554 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5555 sectname, paddr (lma), paddr (lma + size));
5556 if (host_crc == target_crc)
5557 printf_filtered ("matched.\n");
5558 else
5559 {
5560 printf_filtered ("MIS-MATCHED!\n");
5561 mismatched++;
5562 }
5563
5564 do_cleanups (old_chain);
5565 }
5566 if (mismatched > 0)
5567 warning (_("One or more sections of the remote executable does not match\n\
5568 the loaded file\n"));
5569 if (args && !matched)
5570 printf_filtered (_("No loaded section named '%s'.\n"), args);
5571 }
5572
5573 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5574 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5575 number of bytes read is returned, or 0 for EOF, or -1 for error.
5576 The number of bytes read may be less than LEN without indicating an
5577 EOF. PACKET is checked and updated to indicate whether the remote
5578 target supports this object. */
5579
5580 static LONGEST
5581 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5582 const char *annex,
5583 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5584 struct packet_config *packet)
5585 {
5586 static char *finished_object;
5587 static char *finished_annex;
5588 static ULONGEST finished_offset;
5589
5590 struct remote_state *rs = get_remote_state ();
5591 unsigned int total = 0;
5592 LONGEST i, n, packet_len;
5593
5594 if (packet->support == PACKET_DISABLE)
5595 return -1;
5596
5597 /* Check whether we've cached an end-of-object packet that matches
5598 this request. */
5599 if (finished_object)
5600 {
5601 if (strcmp (object_name, finished_object) == 0
5602 && strcmp (annex ? annex : "", finished_annex) == 0
5603 && offset == finished_offset)
5604 return 0;
5605
5606 /* Otherwise, we're now reading something different. Discard
5607 the cache. */
5608 xfree (finished_object);
5609 xfree (finished_annex);
5610 finished_object = NULL;
5611 finished_annex = NULL;
5612 }
5613
5614 /* Request only enough to fit in a single packet. The actual data
5615 may not, since we don't know how much of it will need to be escaped;
5616 the target is free to respond with slightly less data. We subtract
5617 five to account for the response type and the protocol frame. */
5618 n = min (get_remote_packet_size () - 5, len);
5619 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5620 object_name, annex ? annex : "",
5621 phex_nz (offset, sizeof offset),
5622 phex_nz (n, sizeof n));
5623 i = putpkt (rs->buf);
5624 if (i < 0)
5625 return -1;
5626
5627 rs->buf[0] = '\0';
5628 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5629 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5630 return -1;
5631
5632 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5633 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5634
5635 /* 'm' means there is (or at least might be) more data after this
5636 batch. That does not make sense unless there's at least one byte
5637 of data in this reply. */
5638 if (rs->buf[0] == 'm' && packet_len == 1)
5639 error (_("Remote qXfer reply contained no data."));
5640
5641 /* Got some data. */
5642 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5643
5644 /* 'l' is an EOF marker, possibly including a final block of data,
5645 or possibly empty. Record it to bypass the next read, if one is
5646 issued. */
5647 if (rs->buf[0] == 'l')
5648 {
5649 finished_object = xstrdup (object_name);
5650 finished_annex = xstrdup (annex ? annex : "");
5651 finished_offset = offset + i;
5652 }
5653
5654 return i;
5655 }
5656
5657 static LONGEST
5658 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5659 const char *annex, gdb_byte *readbuf,
5660 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5661 {
5662 struct remote_state *rs = get_remote_state ();
5663 int i;
5664 char *p2;
5665 char query_type;
5666
5667 /* Handle memory using the standard memory routines. */
5668 if (object == TARGET_OBJECT_MEMORY)
5669 {
5670 int xfered;
5671 errno = 0;
5672
5673 if (writebuf != NULL)
5674 xfered = remote_write_bytes (offset, writebuf, len);
5675 else
5676 xfered = remote_read_bytes (offset, readbuf, len);
5677
5678 if (xfered > 0)
5679 return xfered;
5680 else if (xfered == 0 && errno == 0)
5681 return 0;
5682 else
5683 return -1;
5684 }
5685
5686 /* Only handle flash writes. */
5687 if (writebuf != NULL)
5688 {
5689 LONGEST xfered;
5690
5691 switch (object)
5692 {
5693 case TARGET_OBJECT_FLASH:
5694 xfered = remote_flash_write (ops, offset, len, writebuf);
5695
5696 if (xfered > 0)
5697 return xfered;
5698 else if (xfered == 0 && errno == 0)
5699 return 0;
5700 else
5701 return -1;
5702
5703 default:
5704 return -1;
5705 }
5706 }
5707
5708 /* Map pre-existing objects onto letters. DO NOT do this for new
5709 objects!!! Instead specify new query packets. */
5710 switch (object)
5711 {
5712 case TARGET_OBJECT_AVR:
5713 query_type = 'R';
5714 break;
5715
5716 case TARGET_OBJECT_AUXV:
5717 gdb_assert (annex == NULL);
5718 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5719 &remote_protocol_packets[PACKET_qXfer_auxv]);
5720
5721 case TARGET_OBJECT_MEMORY_MAP:
5722 gdb_assert (annex == NULL);
5723 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5724 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5725
5726 default:
5727 return -1;
5728 }
5729
5730 /* Note: a zero OFFSET and LEN can be used to query the minimum
5731 buffer size. */
5732 if (offset == 0 && len == 0)
5733 return (get_remote_packet_size ());
5734 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5735 large enough let the caller deal with it. */
5736 if (len < get_remote_packet_size ())
5737 return -1;
5738 len = get_remote_packet_size ();
5739
5740 /* Except for querying the minimum buffer size, target must be open. */
5741 if (!remote_desc)
5742 error (_("remote query is only available after target open"));
5743
5744 gdb_assert (annex != NULL);
5745 gdb_assert (readbuf != NULL);
5746
5747 p2 = rs->buf;
5748 *p2++ = 'q';
5749 *p2++ = query_type;
5750
5751 /* We used one buffer char for the remote protocol q command and
5752 another for the query type. As the remote protocol encapsulation
5753 uses 4 chars plus one extra in case we are debugging
5754 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5755 string. */
5756 i = 0;
5757 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5758 {
5759 /* Bad caller may have sent forbidden characters. */
5760 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5761 *p2++ = annex[i];
5762 i++;
5763 }
5764 *p2 = '\0';
5765 gdb_assert (annex[i] == '\0');
5766
5767 i = putpkt (rs->buf);
5768 if (i < 0)
5769 return i;
5770
5771 getpkt (&rs->buf, &rs->buf_size, 0);
5772 strcpy ((char *) readbuf, rs->buf);
5773
5774 return strlen ((char *) readbuf);
5775 }
5776
5777 static void
5778 remote_rcmd (char *command,
5779 struct ui_file *outbuf)
5780 {
5781 struct remote_state *rs = get_remote_state ();
5782 char *p = rs->buf;
5783
5784 if (!remote_desc)
5785 error (_("remote rcmd is only available after target open"));
5786
5787 /* Send a NULL command across as an empty command. */
5788 if (command == NULL)
5789 command = "";
5790
5791 /* The query prefix. */
5792 strcpy (rs->buf, "qRcmd,");
5793 p = strchr (rs->buf, '\0');
5794
5795 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5796 error (_("\"monitor\" command ``%s'' is too long."), command);
5797
5798 /* Encode the actual command. */
5799 bin2hex ((gdb_byte *) command, p, 0);
5800
5801 if (putpkt (rs->buf) < 0)
5802 error (_("Communication problem with target."));
5803
5804 /* get/display the response */
5805 while (1)
5806 {
5807 char *buf;
5808
5809 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5810 rs->buf[0] = '\0';
5811 getpkt (&rs->buf, &rs->buf_size, 0);
5812 buf = rs->buf;
5813 if (buf[0] == '\0')
5814 error (_("Target does not support this command."));
5815 if (buf[0] == 'O' && buf[1] != 'K')
5816 {
5817 remote_console_output (buf + 1); /* 'O' message from stub. */
5818 continue;
5819 }
5820 if (strcmp (buf, "OK") == 0)
5821 break;
5822 if (strlen (buf) == 3 && buf[0] == 'E'
5823 && isdigit (buf[1]) && isdigit (buf[2]))
5824 {
5825 error (_("Protocol error with Rcmd"));
5826 }
5827 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5828 {
5829 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5830 fputc_unfiltered (c, outbuf);
5831 }
5832 break;
5833 }
5834 }
5835
5836 static VEC(mem_region_s) *
5837 remote_memory_map (struct target_ops *ops)
5838 {
5839 VEC(mem_region_s) *result = NULL;
5840 char *text = target_read_stralloc (&current_target,
5841 TARGET_OBJECT_MEMORY_MAP, NULL);
5842
5843 if (text)
5844 {
5845 struct cleanup *back_to = make_cleanup (xfree, text);
5846 result = parse_memory_map (text);
5847 do_cleanups (back_to);
5848 }
5849
5850 return result;
5851 }
5852
5853 static void
5854 packet_command (char *args, int from_tty)
5855 {
5856 struct remote_state *rs = get_remote_state ();
5857
5858 if (!remote_desc)
5859 error (_("command can only be used with remote target"));
5860
5861 if (!args)
5862 error (_("remote-packet command requires packet text as argument"));
5863
5864 puts_filtered ("sending: ");
5865 print_packet (args);
5866 puts_filtered ("\n");
5867 putpkt (args);
5868
5869 getpkt (&rs->buf, &rs->buf_size, 0);
5870 puts_filtered ("received: ");
5871 print_packet (rs->buf);
5872 puts_filtered ("\n");
5873 }
5874
5875 #if 0
5876 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5877
5878 static void display_thread_info (struct gdb_ext_thread_info *info);
5879
5880 static void threadset_test_cmd (char *cmd, int tty);
5881
5882 static void threadalive_test (char *cmd, int tty);
5883
5884 static void threadlist_test_cmd (char *cmd, int tty);
5885
5886 int get_and_display_threadinfo (threadref *ref);
5887
5888 static void threadinfo_test_cmd (char *cmd, int tty);
5889
5890 static int thread_display_step (threadref *ref, void *context);
5891
5892 static void threadlist_update_test_cmd (char *cmd, int tty);
5893
5894 static void init_remote_threadtests (void);
5895
5896 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5897
5898 static void
5899 threadset_test_cmd (char *cmd, int tty)
5900 {
5901 int sample_thread = SAMPLE_THREAD;
5902
5903 printf_filtered (_("Remote threadset test\n"));
5904 set_thread (sample_thread, 1);
5905 }
5906
5907
5908 static void
5909 threadalive_test (char *cmd, int tty)
5910 {
5911 int sample_thread = SAMPLE_THREAD;
5912
5913 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5914 printf_filtered ("PASS: Thread alive test\n");
5915 else
5916 printf_filtered ("FAIL: Thread alive test\n");
5917 }
5918
5919 void output_threadid (char *title, threadref *ref);
5920
5921 void
5922 output_threadid (char *title, threadref *ref)
5923 {
5924 char hexid[20];
5925
5926 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5927 hexid[16] = 0;
5928 printf_filtered ("%s %s\n", title, (&hexid[0]));
5929 }
5930
5931 static void
5932 threadlist_test_cmd (char *cmd, int tty)
5933 {
5934 int startflag = 1;
5935 threadref nextthread;
5936 int done, result_count;
5937 threadref threadlist[3];
5938
5939 printf_filtered ("Remote Threadlist test\n");
5940 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5941 &result_count, &threadlist[0]))
5942 printf_filtered ("FAIL: threadlist test\n");
5943 else
5944 {
5945 threadref *scan = threadlist;
5946 threadref *limit = scan + result_count;
5947
5948 while (scan < limit)
5949 output_threadid (" thread ", scan++);
5950 }
5951 }
5952
5953 void
5954 display_thread_info (struct gdb_ext_thread_info *info)
5955 {
5956 output_threadid ("Threadid: ", &info->threadid);
5957 printf_filtered ("Name: %s\n ", info->shortname);
5958 printf_filtered ("State: %s\n", info->display);
5959 printf_filtered ("other: %s\n\n", info->more_display);
5960 }
5961
5962 int
5963 get_and_display_threadinfo (threadref *ref)
5964 {
5965 int result;
5966 int set;
5967 struct gdb_ext_thread_info threadinfo;
5968
5969 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5970 | TAG_MOREDISPLAY | TAG_DISPLAY;
5971 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5972 display_thread_info (&threadinfo);
5973 return result;
5974 }
5975
5976 static void
5977 threadinfo_test_cmd (char *cmd, int tty)
5978 {
5979 int athread = SAMPLE_THREAD;
5980 threadref thread;
5981 int set;
5982
5983 int_to_threadref (&thread, athread);
5984 printf_filtered ("Remote Threadinfo test\n");
5985 if (!get_and_display_threadinfo (&thread))
5986 printf_filtered ("FAIL cannot get thread info\n");
5987 }
5988
5989 static int
5990 thread_display_step (threadref *ref, void *context)
5991 {
5992 /* output_threadid(" threadstep ",ref); *//* simple test */
5993 return get_and_display_threadinfo (ref);
5994 }
5995
5996 static void
5997 threadlist_update_test_cmd (char *cmd, int tty)
5998 {
5999 printf_filtered ("Remote Threadlist update test\n");
6000 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6001 }
6002
6003 static void
6004 init_remote_threadtests (void)
6005 {
6006 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6007 Fetch and print the remote list of thread identifiers, one pkt only"));
6008 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6009 _("Fetch and display info about one thread"));
6010 add_com ("tset", class_obscure, threadset_test_cmd,
6011 _("Test setting to a different thread"));
6012 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6013 _("Iterate through updating all remote thread info"));
6014 add_com ("talive", class_obscure, threadalive_test,
6015 _(" Remote thread alive test "));
6016 }
6017
6018 #endif /* 0 */
6019
6020 /* Convert a thread ID to a string. Returns the string in a static
6021 buffer. */
6022
6023 static char *
6024 remote_pid_to_str (ptid_t ptid)
6025 {
6026 static char buf[32];
6027
6028 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6029 return buf;
6030 }
6031
6032 /* Get the address of the thread local variable in OBJFILE which is
6033 stored at OFFSET within the thread local storage for thread PTID. */
6034
6035 static CORE_ADDR
6036 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6037 {
6038 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6039 {
6040 struct remote_state *rs = get_remote_state ();
6041 char *p = rs->buf;
6042 enum packet_result result;
6043
6044 strcpy (p, "qGetTLSAddr:");
6045 p += strlen (p);
6046 p += hexnumstr (p, PIDGET (ptid));
6047 *p++ = ',';
6048 p += hexnumstr (p, offset);
6049 *p++ = ',';
6050 p += hexnumstr (p, lm);
6051 *p++ = '\0';
6052
6053 putpkt (rs->buf);
6054 getpkt (&rs->buf, &rs->buf_size, 0);
6055 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6056 if (result == PACKET_OK)
6057 {
6058 ULONGEST result;
6059
6060 unpack_varlen_hex (rs->buf, &result);
6061 return result;
6062 }
6063 else if (result == PACKET_UNKNOWN)
6064 throw_error (TLS_GENERIC_ERROR,
6065 _("Remote target doesn't support qGetTLSAddr packet"));
6066 else
6067 throw_error (TLS_GENERIC_ERROR,
6068 _("Remote target failed to process qGetTLSAddr request"));
6069 }
6070 else
6071 throw_error (TLS_GENERIC_ERROR,
6072 _("TLS not supported or disabled on this target"));
6073 /* Not reached. */
6074 return 0;
6075 }
6076
6077 /* Support for inferring a target description based on the current
6078 architecture and the size of a 'g' packet. While the 'g' packet
6079 can have any size (since optional registers can be left off the
6080 end), some sizes are easily recognizable given knowledge of the
6081 approximate architecture. */
6082
6083 struct remote_g_packet_guess
6084 {
6085 int bytes;
6086 const struct target_desc *tdesc;
6087 };
6088 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6089 DEF_VEC_O(remote_g_packet_guess_s);
6090
6091 struct remote_g_packet_data
6092 {
6093 VEC(remote_g_packet_guess_s) *guesses;
6094 };
6095
6096 static struct gdbarch_data *remote_g_packet_data_handle;
6097
6098 static void *
6099 remote_g_packet_data_init (struct obstack *obstack)
6100 {
6101 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6102 }
6103
6104 void
6105 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6106 const struct target_desc *tdesc)
6107 {
6108 struct remote_g_packet_data *data
6109 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6110 struct remote_g_packet_guess new_guess, *guess;
6111 int ix;
6112
6113 gdb_assert (tdesc != NULL);
6114
6115 for (ix = 0;
6116 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6117 ix++)
6118 if (guess->bytes == bytes)
6119 internal_error (__FILE__, __LINE__,
6120 "Duplicate g packet description added for size %d",
6121 bytes);
6122
6123 new_guess.bytes = bytes;
6124 new_guess.tdesc = tdesc;
6125 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6126 }
6127
6128 static const struct target_desc *
6129 remote_read_description (struct target_ops *target)
6130 {
6131 struct remote_g_packet_data *data
6132 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6133
6134 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6135 {
6136 struct remote_g_packet_guess *guess;
6137 int ix;
6138 int bytes = send_g_packet ();
6139
6140 for (ix = 0;
6141 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6142 ix++)
6143 if (guess->bytes == bytes)
6144 return guess->tdesc;
6145
6146 /* We discard the g packet. A minor optimization would be to
6147 hold on to it, and fill the register cache once we have selected
6148 an architecture, but it's too tricky to do safely. */
6149 }
6150
6151 return NULL;
6152 }
6153
6154 static void
6155 init_remote_ops (void)
6156 {
6157 remote_ops.to_shortname = "remote";
6158 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6159 remote_ops.to_doc =
6160 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6161 Specify the serial device it is connected to\n\
6162 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6163 remote_ops.to_open = remote_open;
6164 remote_ops.to_close = remote_close;
6165 remote_ops.to_detach = remote_detach;
6166 remote_ops.to_disconnect = remote_disconnect;
6167 remote_ops.to_resume = remote_resume;
6168 remote_ops.to_wait = remote_wait;
6169 remote_ops.to_fetch_registers = remote_fetch_registers;
6170 remote_ops.to_store_registers = remote_store_registers;
6171 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6172 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6173 remote_ops.to_files_info = remote_files_info;
6174 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6175 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6176 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6177 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6178 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6179 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6180 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6181 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6182 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6183 remote_ops.to_kill = remote_kill;
6184 remote_ops.to_load = generic_load;
6185 remote_ops.to_mourn_inferior = remote_mourn;
6186 remote_ops.to_thread_alive = remote_thread_alive;
6187 remote_ops.to_find_new_threads = remote_threads_info;
6188 remote_ops.to_pid_to_str = remote_pid_to_str;
6189 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6190 remote_ops.to_stop = remote_stop;
6191 remote_ops.to_xfer_partial = remote_xfer_partial;
6192 remote_ops.to_rcmd = remote_rcmd;
6193 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6194 remote_ops.to_stratum = process_stratum;
6195 remote_ops.to_has_all_memory = 1;
6196 remote_ops.to_has_memory = 1;
6197 remote_ops.to_has_stack = 1;
6198 remote_ops.to_has_registers = 1;
6199 remote_ops.to_has_execution = 1;
6200 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6201 remote_ops.to_magic = OPS_MAGIC;
6202 remote_ops.to_memory_map = remote_memory_map;
6203 remote_ops.to_flash_erase = remote_flash_erase;
6204 remote_ops.to_flash_done = remote_flash_done;
6205 remote_ops.to_read_description = remote_read_description;
6206 }
6207
6208 /* Set up the extended remote vector by making a copy of the standard
6209 remote vector and adding to it. */
6210
6211 static void
6212 init_extended_remote_ops (void)
6213 {
6214 extended_remote_ops = remote_ops;
6215
6216 extended_remote_ops.to_shortname = "extended-remote";
6217 extended_remote_ops.to_longname =
6218 "Extended remote serial target in gdb-specific protocol";
6219 extended_remote_ops.to_doc =
6220 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6221 Specify the serial device it is connected to (e.g. /dev/ttya).",
6222 extended_remote_ops.to_open = extended_remote_open;
6223 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6224 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6225 }
6226
6227 static int
6228 remote_can_async_p (void)
6229 {
6230 /* We're async whenever the serial device is. */
6231 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6232 }
6233
6234 static int
6235 remote_is_async_p (void)
6236 {
6237 /* We're async whenever the serial device is. */
6238 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6239 }
6240
6241 /* Pass the SERIAL event on and up to the client. One day this code
6242 will be able to delay notifying the client of an event until the
6243 point where an entire packet has been received. */
6244
6245 static void (*async_client_callback) (enum inferior_event_type event_type,
6246 void *context);
6247 static void *async_client_context;
6248 static serial_event_ftype remote_async_serial_handler;
6249
6250 static void
6251 remote_async_serial_handler (struct serial *scb, void *context)
6252 {
6253 /* Don't propogate error information up to the client. Instead let
6254 the client find out about the error by querying the target. */
6255 async_client_callback (INF_REG_EVENT, async_client_context);
6256 }
6257
6258 static void
6259 remote_async (void (*callback) (enum inferior_event_type event_type,
6260 void *context), void *context)
6261 {
6262 if (current_target.to_async_mask_value == 0)
6263 internal_error (__FILE__, __LINE__,
6264 _("Calling remote_async when async is masked"));
6265
6266 if (callback != NULL)
6267 {
6268 serial_async (remote_desc, remote_async_serial_handler, NULL);
6269 async_client_callback = callback;
6270 async_client_context = context;
6271 }
6272 else
6273 serial_async (remote_desc, NULL, NULL);
6274 }
6275
6276 /* Target async and target extended-async.
6277
6278 This are temporary targets, until it is all tested. Eventually
6279 async support will be incorporated int the usual 'remote'
6280 target. */
6281
6282 static void
6283 init_remote_async_ops (void)
6284 {
6285 remote_async_ops.to_shortname = "async";
6286 remote_async_ops.to_longname =
6287 "Remote serial target in async version of the gdb-specific protocol";
6288 remote_async_ops.to_doc =
6289 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6290 Specify the serial device it is connected to (e.g. /dev/ttya).";
6291 remote_async_ops.to_open = remote_async_open;
6292 remote_async_ops.to_close = remote_close;
6293 remote_async_ops.to_detach = remote_detach;
6294 remote_async_ops.to_disconnect = remote_disconnect;
6295 remote_async_ops.to_resume = remote_async_resume;
6296 remote_async_ops.to_wait = remote_async_wait;
6297 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6298 remote_async_ops.to_store_registers = remote_store_registers;
6299 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6300 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6301 remote_async_ops.to_files_info = remote_files_info;
6302 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6303 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6304 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6305 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6306 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6307 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6308 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6309 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6310 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6311 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6312 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6313 remote_async_ops.to_kill = remote_async_kill;
6314 remote_async_ops.to_load = generic_load;
6315 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6316 remote_async_ops.to_thread_alive = remote_thread_alive;
6317 remote_async_ops.to_find_new_threads = remote_threads_info;
6318 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6319 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6320 remote_async_ops.to_stop = remote_stop;
6321 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6322 remote_async_ops.to_rcmd = remote_rcmd;
6323 remote_async_ops.to_stratum = process_stratum;
6324 remote_async_ops.to_has_all_memory = 1;
6325 remote_async_ops.to_has_memory = 1;
6326 remote_async_ops.to_has_stack = 1;
6327 remote_async_ops.to_has_registers = 1;
6328 remote_async_ops.to_has_execution = 1;
6329 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6330 remote_async_ops.to_can_async_p = remote_can_async_p;
6331 remote_async_ops.to_is_async_p = remote_is_async_p;
6332 remote_async_ops.to_async = remote_async;
6333 remote_async_ops.to_async_mask_value = 1;
6334 remote_async_ops.to_magic = OPS_MAGIC;
6335 remote_async_ops.to_memory_map = remote_memory_map;
6336 remote_async_ops.to_flash_erase = remote_flash_erase;
6337 remote_async_ops.to_flash_done = remote_flash_done;
6338 remote_ops.to_read_description = remote_read_description;
6339 }
6340
6341 /* Set up the async extended remote vector by making a copy of the standard
6342 remote vector and adding to it. */
6343
6344 static void
6345 init_extended_async_remote_ops (void)
6346 {
6347 extended_async_remote_ops = remote_async_ops;
6348
6349 extended_async_remote_ops.to_shortname = "extended-async";
6350 extended_async_remote_ops.to_longname =
6351 "Extended remote serial target in async gdb-specific protocol";
6352 extended_async_remote_ops.to_doc =
6353 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6354 Specify the serial device it is connected to (e.g. /dev/ttya).",
6355 extended_async_remote_ops.to_open = extended_remote_async_open;
6356 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6357 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6358 }
6359
6360 static void
6361 set_remote_cmd (char *args, int from_tty)
6362 {
6363 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6364 }
6365
6366 static void
6367 show_remote_cmd (char *args, int from_tty)
6368 {
6369 /* We can't just use cmd_show_list here, because we want to skip
6370 the redundant "show remote Z-packet" and the legacy aliases. */
6371 struct cleanup *showlist_chain;
6372 struct cmd_list_element *list = remote_show_cmdlist;
6373
6374 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6375 for (; list != NULL; list = list->next)
6376 if (strcmp (list->name, "Z-packet") == 0)
6377 continue;
6378 else if (list->type == not_set_cmd)
6379 /* Alias commands are exactly like the original, except they
6380 don't have the normal type. */
6381 continue;
6382 else
6383 {
6384 struct cleanup *option_chain
6385 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6386 ui_out_field_string (uiout, "name", list->name);
6387 ui_out_text (uiout, ": ");
6388 if (list->type == show_cmd)
6389 do_setshow_command ((char *) NULL, from_tty, list);
6390 else
6391 cmd_func (list, NULL, from_tty);
6392 /* Close the tuple. */
6393 do_cleanups (option_chain);
6394 }
6395
6396 /* Close the tuple. */
6397 do_cleanups (showlist_chain);
6398 }
6399
6400 static void
6401 build_remote_gdbarch_data (void)
6402 {
6403 remote_address_size = TARGET_ADDR_BIT;
6404 }
6405
6406 /* Saved pointer to previous owner of the new_objfile event. */
6407 static void (*remote_new_objfile_chain) (struct objfile *);
6408
6409 /* Function to be called whenever a new objfile (shlib) is detected. */
6410 static void
6411 remote_new_objfile (struct objfile *objfile)
6412 {
6413 if (remote_desc != 0) /* Have a remote connection. */
6414 {
6415 remote_check_symbols (objfile);
6416 }
6417 /* Call predecessor on chain, if any. */
6418 if (remote_new_objfile_chain)
6419 remote_new_objfile_chain (objfile);
6420 }
6421
6422 void
6423 _initialize_remote (void)
6424 {
6425 struct remote_state *rs;
6426
6427 /* architecture specific data */
6428 remote_gdbarch_data_handle =
6429 gdbarch_data_register_post_init (init_remote_state);
6430 remote_g_packet_data_handle =
6431 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6432
6433 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6434 that the remote protocol has been initialized. */
6435 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6436 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6437
6438 /* Initialize the per-target state. At the moment there is only one
6439 of these, not one per target. Only one target is active at a
6440 time. The default buffer size is unimportant; it will be expanded
6441 whenever a larger buffer is needed. */
6442 rs = get_remote_state_raw ();
6443 rs->buf_size = 400;
6444 rs->buf = xmalloc (rs->buf_size);
6445
6446 init_remote_ops ();
6447 add_target (&remote_ops);
6448
6449 init_extended_remote_ops ();
6450 add_target (&extended_remote_ops);
6451
6452 init_remote_async_ops ();
6453 add_target (&remote_async_ops);
6454
6455 init_extended_async_remote_ops ();
6456 add_target (&extended_async_remote_ops);
6457
6458 /* Hook into new objfile notification. */
6459 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
6460 deprecated_target_new_objfile_hook = remote_new_objfile;
6461
6462 #if 0
6463 init_remote_threadtests ();
6464 #endif
6465
6466 /* set/show remote ... */
6467
6468 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6469 Remote protocol specific variables\n\
6470 Configure various remote-protocol specific variables such as\n\
6471 the packets being used"),
6472 &remote_set_cmdlist, "set remote ",
6473 0 /* allow-unknown */, &setlist);
6474 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6475 Remote protocol specific variables\n\
6476 Configure various remote-protocol specific variables such as\n\
6477 the packets being used"),
6478 &remote_show_cmdlist, "show remote ",
6479 0 /* allow-unknown */, &showlist);
6480
6481 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6482 Compare section data on target to the exec file.\n\
6483 Argument is a single section name (default: all loaded sections)."),
6484 &cmdlist);
6485
6486 add_cmd ("packet", class_maintenance, packet_command, _("\
6487 Send an arbitrary packet to a remote target.\n\
6488 maintenance packet TEXT\n\
6489 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6490 this command sends the string TEXT to the inferior, and displays the\n\
6491 response packet. GDB supplies the initial `$' character, and the\n\
6492 terminating `#' character and checksum."),
6493 &maintenancelist);
6494
6495 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6496 Set whether to send break if interrupted."), _("\
6497 Show whether to send break if interrupted."), _("\
6498 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6499 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6500 &setlist, &showlist);
6501
6502 /* Install commands for configuring memory read/write packets. */
6503
6504 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6505 Set the maximum number of bytes per memory write packet (deprecated)."),
6506 &setlist);
6507 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6508 Show the maximum number of bytes per memory write packet (deprecated)."),
6509 &showlist);
6510 add_cmd ("memory-write-packet-size", no_class,
6511 set_memory_write_packet_size, _("\
6512 Set the maximum number of bytes per memory-write packet.\n\
6513 Specify the number of bytes in a packet or 0 (zero) for the\n\
6514 default packet size. The actual limit is further reduced\n\
6515 dependent on the target. Specify ``fixed'' to disable the\n\
6516 further restriction and ``limit'' to enable that restriction."),
6517 &remote_set_cmdlist);
6518 add_cmd ("memory-read-packet-size", no_class,
6519 set_memory_read_packet_size, _("\
6520 Set the maximum number of bytes per memory-read packet.\n\
6521 Specify the number of bytes in a packet or 0 (zero) for the\n\
6522 default packet size. The actual limit is further reduced\n\
6523 dependent on the target. Specify ``fixed'' to disable the\n\
6524 further restriction and ``limit'' to enable that restriction."),
6525 &remote_set_cmdlist);
6526 add_cmd ("memory-write-packet-size", no_class,
6527 show_memory_write_packet_size,
6528 _("Show the maximum number of bytes per memory-write packet."),
6529 &remote_show_cmdlist);
6530 add_cmd ("memory-read-packet-size", no_class,
6531 show_memory_read_packet_size,
6532 _("Show the maximum number of bytes per memory-read packet."),
6533 &remote_show_cmdlist);
6534
6535 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6536 &remote_hw_watchpoint_limit, _("\
6537 Set the maximum number of target hardware watchpoints."), _("\
6538 Show the maximum number of target hardware watchpoints."), _("\
6539 Specify a negative limit for unlimited."),
6540 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6541 &remote_set_cmdlist, &remote_show_cmdlist);
6542 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6543 &remote_hw_breakpoint_limit, _("\
6544 Set the maximum number of target hardware breakpoints."), _("\
6545 Show the maximum number of target hardware breakpoints."), _("\
6546 Specify a negative limit for unlimited."),
6547 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6548 &remote_set_cmdlist, &remote_show_cmdlist);
6549
6550 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6551 &remote_address_size, _("\
6552 Set the maximum size of the address (in bits) in a memory packet."), _("\
6553 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6554 NULL,
6555 NULL, /* FIXME: i18n: */
6556 &setlist, &showlist);
6557
6558 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6559 "X", "binary-download", 1);
6560
6561 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6562 "vCont", "verbose-resume", 0);
6563
6564 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6565 "QPassSignals", "pass-signals", 0);
6566
6567 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6568 "qSymbol", "symbol-lookup", 0);
6569
6570 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6571 "P", "set-register", 1);
6572
6573 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6574 "p", "fetch-register", 1);
6575
6576 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6577 "Z0", "software-breakpoint", 0);
6578
6579 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6580 "Z1", "hardware-breakpoint", 0);
6581
6582 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6583 "Z2", "write-watchpoint", 0);
6584
6585 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6586 "Z3", "read-watchpoint", 0);
6587
6588 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6589 "Z4", "access-watchpoint", 0);
6590
6591 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6592 "qXfer:auxv:read", "read-aux-vector", 0);
6593
6594 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6595 "qXfer:memory-map:read", "memory-map", 0);
6596
6597 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6598 "qGetTLSAddr", "get-thread-local-storage-address",
6599 0);
6600
6601 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6602 "qSupported", "supported-packets", 0);
6603
6604 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6605 Z sub-packet has its own set and show commands, but users may
6606 have sets to this variable in their .gdbinit files (or in their
6607 documentation). */
6608 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6609 &remote_Z_packet_detect, _("\
6610 Set use of remote protocol `Z' packets"), _("\
6611 Show use of remote protocol `Z' packets "), _("\
6612 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6613 packets."),
6614 set_remote_protocol_Z_packet_cmd,
6615 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6616 &remote_set_cmdlist, &remote_show_cmdlist);
6617
6618 /* Eventually initialize fileio. See fileio.c */
6619 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6620 }
This page took 0.172983 seconds and 4 git commands to generate.