* remote.c (remote_xfer_partial): Handle TARGET_OBJECT_MEMORY.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "target.h"
34 /*#include "terminal.h" */
35 #include "gdbcmd.h"
36 #include "objfiles.h"
37 #include "gdb-stabs.h"
38 #include "gdbthread.h"
39 #include "remote.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "gdb_assert.h"
43
44 #include <ctype.h>
45 #include <sys/time.h>
46
47 #include "event-loop.h"
48 #include "event-top.h"
49 #include "inf-loop.h"
50
51 #include <signal.h>
52 #include "serial.h"
53
54 #include "gdbcore.h" /* for exec_bfd */
55
56 #include "remote-fileio.h"
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static void remote_files_info (struct target_ops *ignore);
71
72 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
73 int len, int should_write,
74 struct mem_attrib *attrib,
75 struct target_ops *target);
76
77 static void remote_prepare_to_store (void);
78
79 static void remote_fetch_registers (int regno);
80
81 static void remote_resume (ptid_t ptid, int step,
82 enum target_signal siggnal);
83 static void remote_async_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static int remote_start_remote (struct ui_out *uiout, void *dummy);
86
87 static void remote_open (char *name, int from_tty);
88 static void remote_async_open (char *name, int from_tty);
89
90 static void extended_remote_open (char *name, int from_tty);
91 static void extended_remote_async_open (char *name, int from_tty);
92
93 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
94 int async_p);
95
96 static void remote_close (int quitting);
97
98 static void remote_store_registers (int regno);
99
100 static void remote_mourn (void);
101 static void remote_async_mourn (void);
102
103 static void extended_remote_restart (void);
104
105 static void extended_remote_mourn (void);
106
107 static void remote_mourn_1 (struct target_ops *);
108
109 static void remote_send (char *buf, long sizeof_buf);
110
111 static int readchar (int timeout);
112
113 static ptid_t remote_wait (ptid_t ptid,
114 struct target_waitstatus *status);
115 static ptid_t remote_async_wait (ptid_t ptid,
116 struct target_waitstatus *status);
117
118 static void remote_kill (void);
119 static void remote_async_kill (void);
120
121 static int tohex (int nib);
122
123 static void remote_detach (char *args, int from_tty);
124
125 static void remote_interrupt (int signo);
126
127 static void remote_interrupt_twice (int signo);
128
129 static void interrupt_query (void);
130
131 static void set_thread (int, int);
132
133 static int remote_thread_alive (ptid_t);
134
135 static void get_offsets (void);
136
137 static long read_frame (char *buf, long sizeof_buf);
138
139 static int remote_insert_breakpoint (CORE_ADDR, char *);
140
141 static int remote_remove_breakpoint (CORE_ADDR, char *);
142
143 static int hexnumlen (ULONGEST num);
144
145 static void init_remote_ops (void);
146
147 static void init_extended_remote_ops (void);
148
149 static void remote_stop (void);
150
151 static int ishex (int ch, int *val);
152
153 static int stubhex (int ch);
154
155 static int hexnumstr (char *, ULONGEST);
156
157 static int hexnumnstr (char *, ULONGEST, int);
158
159 static CORE_ADDR remote_address_masked (CORE_ADDR);
160
161 static void print_packet (char *);
162
163 static unsigned long crc32 (unsigned char *, int, unsigned int);
164
165 static void compare_sections_command (char *, int);
166
167 static void packet_command (char *, int);
168
169 static int stub_unpack_int (char *buff, int fieldlength);
170
171 static ptid_t remote_current_thread (ptid_t oldptid);
172
173 static void remote_find_new_threads (void);
174
175 static void record_currthread (int currthread);
176
177 static int fromhex (int a);
178
179 static int hex2bin (const char *hex, char *bin, int count);
180
181 static int bin2hex (const char *bin, char *hex, int count);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 void _initialize_remote (void);
194
195 /* Description of the remote protocol. Strictly speaking, when the
196 target is open()ed, remote.c should create a per-target description
197 of the remote protocol using that target's architecture.
198 Unfortunately, the target stack doesn't include local state. For
199 the moment keep the information in the target's architecture
200 object. Sigh.. */
201
202 struct packet_reg
203 {
204 long offset; /* Offset into G packet. */
205 long regnum; /* GDB's internal register number. */
206 LONGEST pnum; /* Remote protocol register number. */
207 int in_g_packet; /* Always part of G packet. */
208 /* long size in bytes; == register_size (current_gdbarch, regnum); at present. */
209 /* char *name; == REGISTER_NAME (regnum); at present. */
210 };
211
212 struct remote_state
213 {
214 /* Description of the remote protocol registers. */
215 long sizeof_g_packet;
216
217 /* Description of the remote protocol registers indexed by REGNUM
218 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
219 struct packet_reg *regs;
220
221 /* This is the size (in chars) of the first response to the ``g''
222 packet. It is used as a heuristic when determining the maximum
223 size of memory-read and memory-write packets. A target will
224 typically only reserve a buffer large enough to hold the ``g''
225 packet. The size does not include packet overhead (headers and
226 trailers). */
227 long actual_register_packet_size;
228
229 /* This is the maximum size (in chars) of a non read/write packet.
230 It is also used as a cap on the size of read/write packets. */
231 long remote_packet_size;
232 };
233
234
235 /* Handle for retreving the remote protocol data from gdbarch. */
236 static struct gdbarch_data *remote_gdbarch_data_handle;
237
238 static struct remote_state *
239 get_remote_state (void)
240 {
241 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
242 }
243
244 static void *
245 init_remote_state (struct gdbarch *gdbarch)
246 {
247 int regnum;
248 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
249
250 if (deprecated_register_bytes () != 0)
251 rs->sizeof_g_packet = deprecated_register_bytes ();
252 else
253 rs->sizeof_g_packet = 0;
254
255 /* Assume a 1:1 regnum<->pnum table. */
256 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
257 struct packet_reg);
258 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
259 {
260 struct packet_reg *r = &rs->regs[regnum];
261 r->pnum = regnum;
262 r->regnum = regnum;
263 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
264 r->in_g_packet = (regnum < NUM_REGS);
265 /* ...name = REGISTER_NAME (regnum); */
266
267 /* Compute packet size by accumulating the size of all registers. */
268 if (deprecated_register_bytes () == 0)
269 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
270 }
271
272 /* Default maximum number of characters in a packet body. Many
273 remote stubs have a hardwired buffer size of 400 bytes
274 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
275 as the maximum packet-size to ensure that the packet and an extra
276 NUL character can always fit in the buffer. This stops GDB
277 trashing stubs that try to squeeze an extra NUL into what is
278 already a full buffer (As of 1999-12-04 that was most stubs. */
279 rs->remote_packet_size = 400 - 1;
280
281 /* Should rs->sizeof_g_packet needs more space than the
282 default, adjust the size accordingly. Remember that each byte is
283 encoded as two characters. 32 is the overhead for the packet
284 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
285 (``$NN:G...#NN'') is a better guess, the below has been padded a
286 little. */
287 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
288 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
289
290 /* This one is filled in when a ``g'' packet is received. */
291 rs->actual_register_packet_size = 0;
292
293 return rs;
294 }
295
296 static struct packet_reg *
297 packet_reg_from_regnum (struct remote_state *rs, long regnum)
298 {
299 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
300 return NULL;
301 else
302 {
303 struct packet_reg *r = &rs->regs[regnum];
304 gdb_assert (r->regnum == regnum);
305 return r;
306 }
307 }
308
309 static struct packet_reg *
310 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
311 {
312 int i;
313 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
314 {
315 struct packet_reg *r = &rs->regs[i];
316 if (r->pnum == pnum)
317 return r;
318 }
319 return NULL;
320 }
321
322 /* FIXME: graces/2002-08-08: These variables should eventually be
323 bound to an instance of the target object (as in gdbarch-tdep()),
324 when such a thing exists. */
325
326 /* This is set to the data address of the access causing the target
327 to stop for a watchpoint. */
328 static CORE_ADDR remote_watch_data_address;
329
330 /* This is non-zero if taregt stopped for a watchpoint. */
331 static int remote_stopped_by_watchpoint_p;
332
333
334 static struct target_ops remote_ops;
335
336 static struct target_ops extended_remote_ops;
337
338 /* Temporary target ops. Just like the remote_ops and
339 extended_remote_ops, but with asynchronous support. */
340 static struct target_ops remote_async_ops;
341
342 static struct target_ops extended_async_remote_ops;
343
344 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
345 ``forever'' still use the normal timeout mechanism. This is
346 currently used by the ASYNC code to guarentee that target reads
347 during the initial connect always time-out. Once getpkt has been
348 modified to return a timeout indication and, in turn
349 remote_wait()/wait_for_inferior() have gained a timeout parameter
350 this can go away. */
351 static int wait_forever_enabled_p = 1;
352
353
354 /* This variable chooses whether to send a ^C or a break when the user
355 requests program interruption. Although ^C is usually what remote
356 systems expect, and that is the default here, sometimes a break is
357 preferable instead. */
358
359 static int remote_break;
360
361 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
362 remote_open knows that we don't have a file open when the program
363 starts. */
364 static struct serial *remote_desc = NULL;
365
366 /* This variable sets the number of bits in an address that are to be
367 sent in a memory ("M" or "m") packet. Normally, after stripping
368 leading zeros, the entire address would be sent. This variable
369 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
370 initial implementation of remote.c restricted the address sent in
371 memory packets to ``host::sizeof long'' bytes - (typically 32
372 bits). Consequently, for 64 bit targets, the upper 32 bits of an
373 address was never sent. Since fixing this bug may cause a break in
374 some remote targets this variable is principly provided to
375 facilitate backward compatibility. */
376
377 static int remote_address_size;
378
379 /* Tempoary to track who currently owns the terminal. See
380 target_async_terminal_* for more details. */
381
382 static int remote_async_terminal_ours_p;
383
384 \f
385 /* User configurable variables for the number of characters in a
386 memory read/write packet. MIN ((rs->remote_packet_size),
387 rs->sizeof_g_packet) is the default. Some targets need smaller
388 values (fifo overruns, et.al.) and some users need larger values
389 (speed up transfers). The variables ``preferred_*'' (the user
390 request), ``current_*'' (what was actually set) and ``forced_*''
391 (Positive - a soft limit, negative - a hard limit). */
392
393 struct memory_packet_config
394 {
395 char *name;
396 long size;
397 int fixed_p;
398 };
399
400 /* Compute the current size of a read/write packet. Since this makes
401 use of ``actual_register_packet_size'' the computation is dynamic. */
402
403 static long
404 get_memory_packet_size (struct memory_packet_config *config)
405 {
406 struct remote_state *rs = get_remote_state ();
407 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
408 law?) that some hosts don't cope very well with large alloca()
409 calls. Eventually the alloca() code will be replaced by calls to
410 xmalloc() and make_cleanups() allowing this restriction to either
411 be lifted or removed. */
412 #ifndef MAX_REMOTE_PACKET_SIZE
413 #define MAX_REMOTE_PACKET_SIZE 16384
414 #endif
415 /* NOTE: 16 is just chosen at random. */
416 #ifndef MIN_REMOTE_PACKET_SIZE
417 #define MIN_REMOTE_PACKET_SIZE 16
418 #endif
419 long what_they_get;
420 if (config->fixed_p)
421 {
422 if (config->size <= 0)
423 what_they_get = MAX_REMOTE_PACKET_SIZE;
424 else
425 what_they_get = config->size;
426 }
427 else
428 {
429 what_they_get = (rs->remote_packet_size);
430 /* Limit the packet to the size specified by the user. */
431 if (config->size > 0
432 && what_they_get > config->size)
433 what_they_get = config->size;
434 /* Limit it to the size of the targets ``g'' response. */
435 if ((rs->actual_register_packet_size) > 0
436 && what_they_get > (rs->actual_register_packet_size))
437 what_they_get = (rs->actual_register_packet_size);
438 }
439 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
440 what_they_get = MAX_REMOTE_PACKET_SIZE;
441 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
442 what_they_get = MIN_REMOTE_PACKET_SIZE;
443 return what_they_get;
444 }
445
446 /* Update the size of a read/write packet. If they user wants
447 something really big then do a sanity check. */
448
449 static void
450 set_memory_packet_size (char *args, struct memory_packet_config *config)
451 {
452 int fixed_p = config->fixed_p;
453 long size = config->size;
454 if (args == NULL)
455 error ("Argument required (integer, `fixed' or `limited').");
456 else if (strcmp (args, "hard") == 0
457 || strcmp (args, "fixed") == 0)
458 fixed_p = 1;
459 else if (strcmp (args, "soft") == 0
460 || strcmp (args, "limit") == 0)
461 fixed_p = 0;
462 else
463 {
464 char *end;
465 size = strtoul (args, &end, 0);
466 if (args == end)
467 error ("Invalid %s (bad syntax).", config->name);
468 #if 0
469 /* Instead of explicitly capping the size of a packet to
470 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
471 instead allowed to set the size to something arbitrarily
472 large. */
473 if (size > MAX_REMOTE_PACKET_SIZE)
474 error ("Invalid %s (too large).", config->name);
475 #endif
476 }
477 /* Extra checks? */
478 if (fixed_p && !config->fixed_p)
479 {
480 if (! query ("The target may not be able to correctly handle a %s\n"
481 "of %ld bytes. Change the packet size? ",
482 config->name, size))
483 error ("Packet size not changed.");
484 }
485 /* Update the config. */
486 config->fixed_p = fixed_p;
487 config->size = size;
488 }
489
490 static void
491 show_memory_packet_size (struct memory_packet_config *config)
492 {
493 printf_filtered ("The %s is %ld. ", config->name, config->size);
494 if (config->fixed_p)
495 printf_filtered ("Packets are fixed at %ld bytes.\n",
496 get_memory_packet_size (config));
497 else
498 printf_filtered ("Packets are limited to %ld bytes.\n",
499 get_memory_packet_size (config));
500 }
501
502 static struct memory_packet_config memory_write_packet_config =
503 {
504 "memory-write-packet-size",
505 };
506
507 static void
508 set_memory_write_packet_size (char *args, int from_tty)
509 {
510 set_memory_packet_size (args, &memory_write_packet_config);
511 }
512
513 static void
514 show_memory_write_packet_size (char *args, int from_tty)
515 {
516 show_memory_packet_size (&memory_write_packet_config);
517 }
518
519 static long
520 get_memory_write_packet_size (void)
521 {
522 return get_memory_packet_size (&memory_write_packet_config);
523 }
524
525 static struct memory_packet_config memory_read_packet_config =
526 {
527 "memory-read-packet-size",
528 };
529
530 static void
531 set_memory_read_packet_size (char *args, int from_tty)
532 {
533 set_memory_packet_size (args, &memory_read_packet_config);
534 }
535
536 static void
537 show_memory_read_packet_size (char *args, int from_tty)
538 {
539 show_memory_packet_size (&memory_read_packet_config);
540 }
541
542 static long
543 get_memory_read_packet_size (void)
544 {
545 struct remote_state *rs = get_remote_state ();
546 long size = get_memory_packet_size (&memory_read_packet_config);
547 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
548 extra buffer size argument before the memory read size can be
549 increased beyond (rs->remote_packet_size). */
550 if (size > (rs->remote_packet_size))
551 size = (rs->remote_packet_size);
552 return size;
553 }
554
555 \f
556 /* Generic configuration support for packets the stub optionally
557 supports. Allows the user to specify the use of the packet as well
558 as allowing GDB to auto-detect support in the remote stub. */
559
560 enum packet_support
561 {
562 PACKET_SUPPORT_UNKNOWN = 0,
563 PACKET_ENABLE,
564 PACKET_DISABLE
565 };
566
567 struct packet_config
568 {
569 char *name;
570 char *title;
571 enum auto_boolean detect;
572 enum packet_support support;
573 };
574
575 /* Analyze a packet's return value and update the packet config
576 accordingly. */
577
578 enum packet_result
579 {
580 PACKET_ERROR,
581 PACKET_OK,
582 PACKET_UNKNOWN
583 };
584
585 static void
586 update_packet_config (struct packet_config *config)
587 {
588 switch (config->detect)
589 {
590 case AUTO_BOOLEAN_TRUE:
591 config->support = PACKET_ENABLE;
592 break;
593 case AUTO_BOOLEAN_FALSE:
594 config->support = PACKET_DISABLE;
595 break;
596 case AUTO_BOOLEAN_AUTO:
597 config->support = PACKET_SUPPORT_UNKNOWN;
598 break;
599 }
600 }
601
602 static void
603 show_packet_config_cmd (struct packet_config *config)
604 {
605 char *support = "internal-error";
606 switch (config->support)
607 {
608 case PACKET_ENABLE:
609 support = "enabled";
610 break;
611 case PACKET_DISABLE:
612 support = "disabled";
613 break;
614 case PACKET_SUPPORT_UNKNOWN:
615 support = "unknown";
616 break;
617 }
618 switch (config->detect)
619 {
620 case AUTO_BOOLEAN_AUTO:
621 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
622 config->name, config->title, support);
623 break;
624 case AUTO_BOOLEAN_TRUE:
625 case AUTO_BOOLEAN_FALSE:
626 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
627 config->name, config->title, support);
628 break;
629 }
630 }
631
632 static void
633 add_packet_config_cmd (struct packet_config *config,
634 char *name,
635 char *title,
636 cmd_sfunc_ftype *set_func,
637 cmd_sfunc_ftype *show_func,
638 struct cmd_list_element **set_remote_list,
639 struct cmd_list_element **show_remote_list,
640 int legacy)
641 {
642 struct cmd_list_element *set_cmd;
643 struct cmd_list_element *show_cmd;
644 char *set_doc;
645 char *show_doc;
646 char *help_doc;
647 char *print;
648 char *cmd_name;
649 config->name = name;
650 config->title = title;
651 config->detect = AUTO_BOOLEAN_AUTO;
652 config->support = PACKET_SUPPORT_UNKNOWN;
653 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
654 name, title);
655 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
656 name, title);
657 print = xstrprintf ("Current use of remote protocol `%s' (%s) is %%s",
658 name, title);
659 /* set/show TITLE-packet {auto,on,off} */
660 cmd_name = xstrprintf ("%s-packet", title);
661 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
662 &config->detect, set_doc, show_doc,
663 "", print,
664 set_func, show_func,
665 set_remote_list, show_remote_list);
666 /* set/show remote NAME-packet {auto,on,off} -- legacy */
667 if (legacy)
668 {
669 char *legacy_name;
670 legacy_name = xstrprintf ("%s-packet", name);
671 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
672 set_remote_list);
673 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
674 show_remote_list);
675 }
676 }
677
678 static enum packet_result
679 packet_ok (const char *buf, struct packet_config *config)
680 {
681 if (buf[0] != '\0')
682 {
683 /* The stub recognized the packet request. Check that the
684 operation succeeded. */
685 switch (config->support)
686 {
687 case PACKET_SUPPORT_UNKNOWN:
688 if (remote_debug)
689 fprintf_unfiltered (gdb_stdlog,
690 "Packet %s (%s) is supported\n",
691 config->name, config->title);
692 config->support = PACKET_ENABLE;
693 break;
694 case PACKET_DISABLE:
695 internal_error (__FILE__, __LINE__,
696 "packet_ok: attempt to use a disabled packet");
697 break;
698 case PACKET_ENABLE:
699 break;
700 }
701 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
702 /* "OK" - definitly OK. */
703 return PACKET_OK;
704 if (buf[0] == 'E'
705 && isxdigit (buf[1]) && isxdigit (buf[2])
706 && buf[3] == '\0')
707 /* "Enn" - definitly an error. */
708 return PACKET_ERROR;
709 /* The packet may or may not be OK. Just assume it is */
710 return PACKET_OK;
711 }
712 else
713 {
714 /* The stub does not support the packet. */
715 switch (config->support)
716 {
717 case PACKET_ENABLE:
718 if (config->detect == AUTO_BOOLEAN_AUTO)
719 /* If the stub previously indicated that the packet was
720 supported then there is a protocol error.. */
721 error ("Protocol error: %s (%s) conflicting enabled responses.",
722 config->name, config->title);
723 else
724 /* The user set it wrong. */
725 error ("Enabled packet %s (%s) not recognized by stub",
726 config->name, config->title);
727 break;
728 case PACKET_SUPPORT_UNKNOWN:
729 if (remote_debug)
730 fprintf_unfiltered (gdb_stdlog,
731 "Packet %s (%s) is NOT supported\n",
732 config->name, config->title);
733 config->support = PACKET_DISABLE;
734 break;
735 case PACKET_DISABLE:
736 break;
737 }
738 return PACKET_UNKNOWN;
739 }
740 }
741
742 /* Should we try the 'vCont' (descriptive resume) request? */
743 static struct packet_config remote_protocol_vcont;
744
745 static void
746 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
747 struct cmd_list_element *c)
748 {
749 update_packet_config (&remote_protocol_vcont);
750 }
751
752 static void
753 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
754 struct cmd_list_element *c)
755 {
756 show_packet_config_cmd (&remote_protocol_vcont);
757 }
758
759 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
760 static struct packet_config remote_protocol_qSymbol;
761
762 static void
763 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
764 struct cmd_list_element *c)
765 {
766 update_packet_config (&remote_protocol_qSymbol);
767 }
768
769 static void
770 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
771 struct cmd_list_element *c)
772 {
773 show_packet_config_cmd (&remote_protocol_qSymbol);
774 }
775
776 /* Should we try the 'P' (set register) request? */
777
778 static struct packet_config remote_protocol_P;
779
780 static void
781 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
782 struct cmd_list_element *c)
783 {
784 update_packet_config (&remote_protocol_P);
785 }
786
787 static void
788 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 show_packet_config_cmd (&remote_protocol_P);
792 }
793
794 /* Should we try one of the 'Z' requests? */
795
796 enum Z_packet_type
797 {
798 Z_PACKET_SOFTWARE_BP,
799 Z_PACKET_HARDWARE_BP,
800 Z_PACKET_WRITE_WP,
801 Z_PACKET_READ_WP,
802 Z_PACKET_ACCESS_WP,
803 NR_Z_PACKET_TYPES
804 };
805
806 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
807
808 /* FIXME: Instead of having all these boiler plate functions, the
809 command callback should include a context argument. */
810
811 static void
812 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
813 struct cmd_list_element *c)
814 {
815 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
816 }
817
818 static void
819 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
820 struct cmd_list_element *c)
821 {
822 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
823 }
824
825 static void
826 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
827 struct cmd_list_element *c)
828 {
829 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
830 }
831
832 static void
833 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
834 struct cmd_list_element *c)
835 {
836 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
837 }
838
839 static void
840 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
841 struct cmd_list_element *c)
842 {
843 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
844 }
845
846 static void
847 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
851 }
852
853 static void
854 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
855 struct cmd_list_element *c)
856 {
857 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
858 }
859
860 static void
861 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
862 struct cmd_list_element *c)
863 {
864 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
865 }
866
867 static void
868 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870 {
871 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
872 }
873
874 static void
875 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
876 struct cmd_list_element *c)
877 {
878 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
879 }
880
881 /* For compatibility with older distributions. Provide a ``set remote
882 Z-packet ...'' command that updates all the Z packet types. */
883
884 static enum auto_boolean remote_Z_packet_detect;
885
886 static void
887 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
888 struct cmd_list_element *c)
889 {
890 int i;
891 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
892 {
893 remote_protocol_Z[i].detect = remote_Z_packet_detect;
894 update_packet_config (&remote_protocol_Z[i]);
895 }
896 }
897
898 static void
899 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
900 struct cmd_list_element *c)
901 {
902 int i;
903 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
904 {
905 show_packet_config_cmd (&remote_protocol_Z[i]);
906 }
907 }
908
909 /* Should we try the 'X' (remote binary download) packet?
910
911 This variable (available to the user via "set remote X-packet")
912 dictates whether downloads are sent in binary (via the 'X' packet).
913 We assume that the stub can, and attempt to do it. This will be
914 cleared if the stub does not understand it. This switch is still
915 needed, though in cases when the packet is supported in the stub,
916 but the connection does not allow it (i.e., 7-bit serial connection
917 only). */
918
919 static struct packet_config remote_protocol_binary_download;
920
921 /* Should we try the 'ThreadInfo' query packet?
922
923 This variable (NOT available to the user: auto-detect only!)
924 determines whether GDB will use the new, simpler "ThreadInfo"
925 query or the older, more complex syntax for thread queries.
926 This is an auto-detect variable (set to true at each connect,
927 and set to false when the target fails to recognize it). */
928
929 static int use_threadinfo_query;
930 static int use_threadextra_query;
931
932 static void
933 set_remote_protocol_binary_download_cmd (char *args,
934 int from_tty,
935 struct cmd_list_element *c)
936 {
937 update_packet_config (&remote_protocol_binary_download);
938 }
939
940 static void
941 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
942 struct cmd_list_element *c)
943 {
944 show_packet_config_cmd (&remote_protocol_binary_download);
945 }
946
947 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
948 static struct packet_config remote_protocol_qPart_auxv;
949
950 static void
951 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
952 struct cmd_list_element *c)
953 {
954 update_packet_config (&remote_protocol_qPart_auxv);
955 }
956
957 static void
958 show_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
959 struct cmd_list_element *c)
960 {
961 show_packet_config_cmd (&remote_protocol_qPart_auxv);
962 }
963
964 static struct packet_config remote_protocol_p;
965
966 static void
967 set_remote_protocol_p_packet_cmd (char *args, int from_tty,
968 struct cmd_list_element *c)
969 {
970 update_packet_config (&remote_protocol_p);
971 }
972
973 static void
974 show_remote_protocol_p_packet_cmd (char *args, int from_tty,
975 struct cmd_list_element *c)
976 {
977 show_packet_config_cmd (&remote_protocol_p);
978 }
979
980
981
982 /* Tokens for use by the asynchronous signal handlers for SIGINT */
983 static void *sigint_remote_twice_token;
984 static void *sigint_remote_token;
985
986 /* These are pointers to hook functions that may be set in order to
987 modify resume/wait behavior for a particular architecture. */
988
989 void (*deprecated_target_resume_hook) (void);
990 void (*deprecated_target_wait_loop_hook) (void);
991 \f
992
993
994 /* These are the threads which we last sent to the remote system.
995 -1 for all or -2 for not sent yet. */
996 static int general_thread;
997 static int continue_thread;
998
999 /* Call this function as a result of
1000 1) A halt indication (T packet) containing a thread id
1001 2) A direct query of currthread
1002 3) Successful execution of set thread
1003 */
1004
1005 static void
1006 record_currthread (int currthread)
1007 {
1008 general_thread = currthread;
1009
1010 /* If this is a new thread, add it to GDB's thread list.
1011 If we leave it up to WFI to do this, bad things will happen. */
1012 if (!in_thread_list (pid_to_ptid (currthread)))
1013 {
1014 add_thread (pid_to_ptid (currthread));
1015 ui_out_text (uiout, "[New ");
1016 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1017 ui_out_text (uiout, "]\n");
1018 }
1019 }
1020
1021 #define MAGIC_NULL_PID 42000
1022
1023 static void
1024 set_thread (int th, int gen)
1025 {
1026 struct remote_state *rs = get_remote_state ();
1027 char *buf = alloca (rs->remote_packet_size);
1028 int state = gen ? general_thread : continue_thread;
1029
1030 if (state == th)
1031 return;
1032
1033 buf[0] = 'H';
1034 buf[1] = gen ? 'g' : 'c';
1035 if (th == MAGIC_NULL_PID)
1036 {
1037 buf[2] = '0';
1038 buf[3] = '\0';
1039 }
1040 else if (th < 0)
1041 sprintf (&buf[2], "-%x", -th);
1042 else
1043 sprintf (&buf[2], "%x", th);
1044 putpkt (buf);
1045 getpkt (buf, (rs->remote_packet_size), 0);
1046 if (gen)
1047 general_thread = th;
1048 else
1049 continue_thread = th;
1050 }
1051 \f
1052 /* Return nonzero if the thread TH is still alive on the remote system. */
1053
1054 static int
1055 remote_thread_alive (ptid_t ptid)
1056 {
1057 int tid = PIDGET (ptid);
1058 char buf[16];
1059
1060 if (tid < 0)
1061 sprintf (buf, "T-%08x", -tid);
1062 else
1063 sprintf (buf, "T%08x", tid);
1064 putpkt (buf);
1065 getpkt (buf, sizeof (buf), 0);
1066 return (buf[0] == 'O' && buf[1] == 'K');
1067 }
1068
1069 /* About these extended threadlist and threadinfo packets. They are
1070 variable length packets but, the fields within them are often fixed
1071 length. They are redundent enough to send over UDP as is the
1072 remote protocol in general. There is a matching unit test module
1073 in libstub. */
1074
1075 #define OPAQUETHREADBYTES 8
1076
1077 /* a 64 bit opaque identifier */
1078 typedef unsigned char threadref[OPAQUETHREADBYTES];
1079
1080 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1081 protocol encoding, and remote.c. it is not particularly changable */
1082
1083 /* Right now, the internal structure is int. We want it to be bigger.
1084 Plan to fix this.
1085 */
1086
1087 typedef int gdb_threadref; /* internal GDB thread reference */
1088
1089 /* gdb_ext_thread_info is an internal GDB data structure which is
1090 equivalint to the reply of the remote threadinfo packet */
1091
1092 struct gdb_ext_thread_info
1093 {
1094 threadref threadid; /* External form of thread reference */
1095 int active; /* Has state interesting to GDB? , regs, stack */
1096 char display[256]; /* Brief state display, name, blocked/syspended */
1097 char shortname[32]; /* To be used to name threads */
1098 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1099 };
1100
1101 /* The volume of remote transfers can be limited by submitting
1102 a mask containing bits specifying the desired information.
1103 Use a union of these values as the 'selection' parameter to
1104 get_thread_info. FIXME: Make these TAG names more thread specific.
1105 */
1106
1107 #define TAG_THREADID 1
1108 #define TAG_EXISTS 2
1109 #define TAG_DISPLAY 4
1110 #define TAG_THREADNAME 8
1111 #define TAG_MOREDISPLAY 16
1112
1113 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1114
1115 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1116
1117 static char *unpack_nibble (char *buf, int *val);
1118
1119 static char *pack_nibble (char *buf, int nibble);
1120
1121 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1122
1123 static char *unpack_byte (char *buf, int *value);
1124
1125 static char *pack_int (char *buf, int value);
1126
1127 static char *unpack_int (char *buf, int *value);
1128
1129 static char *unpack_string (char *src, char *dest, int length);
1130
1131 static char *pack_threadid (char *pkt, threadref * id);
1132
1133 static char *unpack_threadid (char *inbuf, threadref * id);
1134
1135 void int_to_threadref (threadref * id, int value);
1136
1137 static int threadref_to_int (threadref * ref);
1138
1139 static void copy_threadref (threadref * dest, threadref * src);
1140
1141 static int threadmatch (threadref * dest, threadref * src);
1142
1143 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1144
1145 static int remote_unpack_thread_info_response (char *pkt,
1146 threadref * expectedref,
1147 struct gdb_ext_thread_info
1148 *info);
1149
1150
1151 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1152 struct gdb_ext_thread_info *info);
1153
1154 static char *pack_threadlist_request (char *pkt, int startflag,
1155 int threadcount,
1156 threadref * nextthread);
1157
1158 static int parse_threadlist_response (char *pkt,
1159 int result_limit,
1160 threadref * original_echo,
1161 threadref * resultlist, int *doneflag);
1162
1163 static int remote_get_threadlist (int startflag,
1164 threadref * nextthread,
1165 int result_limit,
1166 int *done,
1167 int *result_count, threadref * threadlist);
1168
1169 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1170
1171 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1172 void *context, int looplimit);
1173
1174 static int remote_newthread_step (threadref * ref, void *context);
1175
1176 /* encode 64 bits in 16 chars of hex */
1177
1178 static const char hexchars[] = "0123456789abcdef";
1179
1180 static int
1181 ishex (int ch, int *val)
1182 {
1183 if ((ch >= 'a') && (ch <= 'f'))
1184 {
1185 *val = ch - 'a' + 10;
1186 return 1;
1187 }
1188 if ((ch >= 'A') && (ch <= 'F'))
1189 {
1190 *val = ch - 'A' + 10;
1191 return 1;
1192 }
1193 if ((ch >= '0') && (ch <= '9'))
1194 {
1195 *val = ch - '0';
1196 return 1;
1197 }
1198 return 0;
1199 }
1200
1201 static int
1202 stubhex (int ch)
1203 {
1204 if (ch >= 'a' && ch <= 'f')
1205 return ch - 'a' + 10;
1206 if (ch >= '0' && ch <= '9')
1207 return ch - '0';
1208 if (ch >= 'A' && ch <= 'F')
1209 return ch - 'A' + 10;
1210 return -1;
1211 }
1212
1213 static int
1214 stub_unpack_int (char *buff, int fieldlength)
1215 {
1216 int nibble;
1217 int retval = 0;
1218
1219 while (fieldlength)
1220 {
1221 nibble = stubhex (*buff++);
1222 retval |= nibble;
1223 fieldlength--;
1224 if (fieldlength)
1225 retval = retval << 4;
1226 }
1227 return retval;
1228 }
1229
1230 char *
1231 unpack_varlen_hex (char *buff, /* packet to parse */
1232 ULONGEST *result)
1233 {
1234 int nibble;
1235 int retval = 0;
1236
1237 while (ishex (*buff, &nibble))
1238 {
1239 buff++;
1240 retval = retval << 4;
1241 retval |= nibble & 0x0f;
1242 }
1243 *result = retval;
1244 return buff;
1245 }
1246
1247 static char *
1248 unpack_nibble (char *buf, int *val)
1249 {
1250 ishex (*buf++, val);
1251 return buf;
1252 }
1253
1254 static char *
1255 pack_nibble (char *buf, int nibble)
1256 {
1257 *buf++ = hexchars[(nibble & 0x0f)];
1258 return buf;
1259 }
1260
1261 static char *
1262 pack_hex_byte (char *pkt, int byte)
1263 {
1264 *pkt++ = hexchars[(byte >> 4) & 0xf];
1265 *pkt++ = hexchars[(byte & 0xf)];
1266 return pkt;
1267 }
1268
1269 static char *
1270 unpack_byte (char *buf, int *value)
1271 {
1272 *value = stub_unpack_int (buf, 2);
1273 return buf + 2;
1274 }
1275
1276 static char *
1277 pack_int (char *buf, int value)
1278 {
1279 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1280 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1281 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1282 buf = pack_hex_byte (buf, (value & 0xff));
1283 return buf;
1284 }
1285
1286 static char *
1287 unpack_int (char *buf, int *value)
1288 {
1289 *value = stub_unpack_int (buf, 8);
1290 return buf + 8;
1291 }
1292
1293 #if 0 /* currently unused, uncomment when needed */
1294 static char *pack_string (char *pkt, char *string);
1295
1296 static char *
1297 pack_string (char *pkt, char *string)
1298 {
1299 char ch;
1300 int len;
1301
1302 len = strlen (string);
1303 if (len > 200)
1304 len = 200; /* Bigger than most GDB packets, junk??? */
1305 pkt = pack_hex_byte (pkt, len);
1306 while (len-- > 0)
1307 {
1308 ch = *string++;
1309 if ((ch == '\0') || (ch == '#'))
1310 ch = '*'; /* Protect encapsulation */
1311 *pkt++ = ch;
1312 }
1313 return pkt;
1314 }
1315 #endif /* 0 (unused) */
1316
1317 static char *
1318 unpack_string (char *src, char *dest, int length)
1319 {
1320 while (length--)
1321 *dest++ = *src++;
1322 *dest = '\0';
1323 return src;
1324 }
1325
1326 static char *
1327 pack_threadid (char *pkt, threadref *id)
1328 {
1329 char *limit;
1330 unsigned char *altid;
1331
1332 altid = (unsigned char *) id;
1333 limit = pkt + BUF_THREAD_ID_SIZE;
1334 while (pkt < limit)
1335 pkt = pack_hex_byte (pkt, *altid++);
1336 return pkt;
1337 }
1338
1339
1340 static char *
1341 unpack_threadid (char *inbuf, threadref *id)
1342 {
1343 char *altref;
1344 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1345 int x, y;
1346
1347 altref = (char *) id;
1348
1349 while (inbuf < limit)
1350 {
1351 x = stubhex (*inbuf++);
1352 y = stubhex (*inbuf++);
1353 *altref++ = (x << 4) | y;
1354 }
1355 return inbuf;
1356 }
1357
1358 /* Externally, threadrefs are 64 bits but internally, they are still
1359 ints. This is due to a mismatch of specifications. We would like
1360 to use 64bit thread references internally. This is an adapter
1361 function. */
1362
1363 void
1364 int_to_threadref (threadref *id, int value)
1365 {
1366 unsigned char *scan;
1367
1368 scan = (unsigned char *) id;
1369 {
1370 int i = 4;
1371 while (i--)
1372 *scan++ = 0;
1373 }
1374 *scan++ = (value >> 24) & 0xff;
1375 *scan++ = (value >> 16) & 0xff;
1376 *scan++ = (value >> 8) & 0xff;
1377 *scan++ = (value & 0xff);
1378 }
1379
1380 static int
1381 threadref_to_int (threadref *ref)
1382 {
1383 int i, value = 0;
1384 unsigned char *scan;
1385
1386 scan = (char *) ref;
1387 scan += 4;
1388 i = 4;
1389 while (i-- > 0)
1390 value = (value << 8) | ((*scan++) & 0xff);
1391 return value;
1392 }
1393
1394 static void
1395 copy_threadref (threadref *dest, threadref *src)
1396 {
1397 int i;
1398 unsigned char *csrc, *cdest;
1399
1400 csrc = (unsigned char *) src;
1401 cdest = (unsigned char *) dest;
1402 i = 8;
1403 while (i--)
1404 *cdest++ = *csrc++;
1405 }
1406
1407 static int
1408 threadmatch (threadref *dest, threadref *src)
1409 {
1410 /* things are broken right now, so just assume we got a match */
1411 #if 0
1412 unsigned char *srcp, *destp;
1413 int i, result;
1414 srcp = (char *) src;
1415 destp = (char *) dest;
1416
1417 result = 1;
1418 while (i-- > 0)
1419 result &= (*srcp++ == *destp++) ? 1 : 0;
1420 return result;
1421 #endif
1422 return 1;
1423 }
1424
1425 /*
1426 threadid:1, # always request threadid
1427 context_exists:2,
1428 display:4,
1429 unique_name:8,
1430 more_display:16
1431 */
1432
1433 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1434
1435 static char *
1436 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1437 {
1438 *pkt++ = 'q'; /* Info Query */
1439 *pkt++ = 'P'; /* process or thread info */
1440 pkt = pack_int (pkt, mode); /* mode */
1441 pkt = pack_threadid (pkt, id); /* threadid */
1442 *pkt = '\0'; /* terminate */
1443 return pkt;
1444 }
1445
1446 /* These values tag the fields in a thread info response packet */
1447 /* Tagging the fields allows us to request specific fields and to
1448 add more fields as time goes by */
1449
1450 #define TAG_THREADID 1 /* Echo the thread identifier */
1451 #define TAG_EXISTS 2 /* Is this process defined enough to
1452 fetch registers and its stack */
1453 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1454 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1455 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1456 the process */
1457
1458 static int
1459 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1460 struct gdb_ext_thread_info *info)
1461 {
1462 struct remote_state *rs = get_remote_state ();
1463 int mask, length;
1464 unsigned int tag;
1465 threadref ref;
1466 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1467 int retval = 1;
1468
1469 /* info->threadid = 0; FIXME: implement zero_threadref */
1470 info->active = 0;
1471 info->display[0] = '\0';
1472 info->shortname[0] = '\0';
1473 info->more_display[0] = '\0';
1474
1475 /* Assume the characters indicating the packet type have been stripped */
1476 pkt = unpack_int (pkt, &mask); /* arg mask */
1477 pkt = unpack_threadid (pkt, &ref);
1478
1479 if (mask == 0)
1480 warning ("Incomplete response to threadinfo request\n");
1481 if (!threadmatch (&ref, expectedref))
1482 { /* This is an answer to a different request */
1483 warning ("ERROR RMT Thread info mismatch\n");
1484 return 0;
1485 }
1486 copy_threadref (&info->threadid, &ref);
1487
1488 /* Loop on tagged fields , try to bail if somthing goes wrong */
1489
1490 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1491 {
1492 pkt = unpack_int (pkt, &tag); /* tag */
1493 pkt = unpack_byte (pkt, &length); /* length */
1494 if (!(tag & mask)) /* tags out of synch with mask */
1495 {
1496 warning ("ERROR RMT: threadinfo tag mismatch\n");
1497 retval = 0;
1498 break;
1499 }
1500 if (tag == TAG_THREADID)
1501 {
1502 if (length != 16)
1503 {
1504 warning ("ERROR RMT: length of threadid is not 16\n");
1505 retval = 0;
1506 break;
1507 }
1508 pkt = unpack_threadid (pkt, &ref);
1509 mask = mask & ~TAG_THREADID;
1510 continue;
1511 }
1512 if (tag == TAG_EXISTS)
1513 {
1514 info->active = stub_unpack_int (pkt, length);
1515 pkt += length;
1516 mask = mask & ~(TAG_EXISTS);
1517 if (length > 8)
1518 {
1519 warning ("ERROR RMT: 'exists' length too long\n");
1520 retval = 0;
1521 break;
1522 }
1523 continue;
1524 }
1525 if (tag == TAG_THREADNAME)
1526 {
1527 pkt = unpack_string (pkt, &info->shortname[0], length);
1528 mask = mask & ~TAG_THREADNAME;
1529 continue;
1530 }
1531 if (tag == TAG_DISPLAY)
1532 {
1533 pkt = unpack_string (pkt, &info->display[0], length);
1534 mask = mask & ~TAG_DISPLAY;
1535 continue;
1536 }
1537 if (tag == TAG_MOREDISPLAY)
1538 {
1539 pkt = unpack_string (pkt, &info->more_display[0], length);
1540 mask = mask & ~TAG_MOREDISPLAY;
1541 continue;
1542 }
1543 warning ("ERROR RMT: unknown thread info tag\n");
1544 break; /* Not a tag we know about */
1545 }
1546 return retval;
1547 }
1548
1549 static int
1550 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1551 struct gdb_ext_thread_info *info)
1552 {
1553 struct remote_state *rs = get_remote_state ();
1554 int result;
1555 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1556
1557 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1558 putpkt (threadinfo_pkt);
1559 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1560 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1561 info);
1562 return result;
1563 }
1564
1565 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1566
1567 static char *
1568 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1569 threadref *nextthread)
1570 {
1571 *pkt++ = 'q'; /* info query packet */
1572 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1573 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1574 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1575 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1576 *pkt = '\0';
1577 return pkt;
1578 }
1579
1580 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1581
1582 static int
1583 parse_threadlist_response (char *pkt, int result_limit,
1584 threadref *original_echo, threadref *resultlist,
1585 int *doneflag)
1586 {
1587 struct remote_state *rs = get_remote_state ();
1588 char *limit;
1589 int count, resultcount, done;
1590
1591 resultcount = 0;
1592 /* Assume the 'q' and 'M chars have been stripped. */
1593 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1594 pkt = unpack_byte (pkt, &count); /* count field */
1595 pkt = unpack_nibble (pkt, &done);
1596 /* The first threadid is the argument threadid. */
1597 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1598 while ((count-- > 0) && (pkt < limit))
1599 {
1600 pkt = unpack_threadid (pkt, resultlist++);
1601 if (resultcount++ >= result_limit)
1602 break;
1603 }
1604 if (doneflag)
1605 *doneflag = done;
1606 return resultcount;
1607 }
1608
1609 static int
1610 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1611 int *done, int *result_count, threadref *threadlist)
1612 {
1613 struct remote_state *rs = get_remote_state ();
1614 static threadref echo_nextthread;
1615 char *threadlist_packet = alloca (rs->remote_packet_size);
1616 char *t_response = alloca (rs->remote_packet_size);
1617 int result = 1;
1618
1619 /* Trancate result limit to be smaller than the packet size */
1620 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1621 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1622
1623 pack_threadlist_request (threadlist_packet,
1624 startflag, result_limit, nextthread);
1625 putpkt (threadlist_packet);
1626 getpkt (t_response, (rs->remote_packet_size), 0);
1627
1628 *result_count =
1629 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1630 threadlist, done);
1631
1632 if (!threadmatch (&echo_nextthread, nextthread))
1633 {
1634 /* FIXME: This is a good reason to drop the packet */
1635 /* Possably, there is a duplicate response */
1636 /* Possabilities :
1637 retransmit immediatly - race conditions
1638 retransmit after timeout - yes
1639 exit
1640 wait for packet, then exit
1641 */
1642 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1643 return 0; /* I choose simply exiting */
1644 }
1645 if (*result_count <= 0)
1646 {
1647 if (*done != 1)
1648 {
1649 warning ("RMT ERROR : failed to get remote thread list\n");
1650 result = 0;
1651 }
1652 return result; /* break; */
1653 }
1654 if (*result_count > result_limit)
1655 {
1656 *result_count = 0;
1657 warning ("RMT ERROR: threadlist response longer than requested\n");
1658 return 0;
1659 }
1660 return result;
1661 }
1662
1663 /* This is the interface between remote and threads, remotes upper interface */
1664
1665 /* remote_find_new_threads retrieves the thread list and for each
1666 thread in the list, looks up the thread in GDB's internal list,
1667 ading the thread if it does not already exist. This involves
1668 getting partial thread lists from the remote target so, polling the
1669 quit_flag is required. */
1670
1671
1672 /* About this many threadisds fit in a packet. */
1673
1674 #define MAXTHREADLISTRESULTS 32
1675
1676 static int
1677 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1678 int looplimit)
1679 {
1680 int done, i, result_count;
1681 int startflag = 1;
1682 int result = 1;
1683 int loopcount = 0;
1684 static threadref nextthread;
1685 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1686
1687 done = 0;
1688 while (!done)
1689 {
1690 if (loopcount++ > looplimit)
1691 {
1692 result = 0;
1693 warning ("Remote fetch threadlist -infinite loop-\n");
1694 break;
1695 }
1696 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1697 &done, &result_count, resultthreadlist))
1698 {
1699 result = 0;
1700 break;
1701 }
1702 /* clear for later iterations */
1703 startflag = 0;
1704 /* Setup to resume next batch of thread references, set nextthread. */
1705 if (result_count >= 1)
1706 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1707 i = 0;
1708 while (result_count--)
1709 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1710 break;
1711 }
1712 return result;
1713 }
1714
1715 static int
1716 remote_newthread_step (threadref *ref, void *context)
1717 {
1718 ptid_t ptid;
1719
1720 ptid = pid_to_ptid (threadref_to_int (ref));
1721
1722 if (!in_thread_list (ptid))
1723 add_thread (ptid);
1724 return 1; /* continue iterator */
1725 }
1726
1727 #define CRAZY_MAX_THREADS 1000
1728
1729 static ptid_t
1730 remote_current_thread (ptid_t oldpid)
1731 {
1732 struct remote_state *rs = get_remote_state ();
1733 char *buf = alloca (rs->remote_packet_size);
1734
1735 putpkt ("qC");
1736 getpkt (buf, (rs->remote_packet_size), 0);
1737 if (buf[0] == 'Q' && buf[1] == 'C')
1738 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1739 else
1740 return oldpid;
1741 }
1742
1743 /* Find new threads for info threads command.
1744 * Original version, using John Metzler's thread protocol.
1745 */
1746
1747 static void
1748 remote_find_new_threads (void)
1749 {
1750 remote_threadlist_iterator (remote_newthread_step, 0,
1751 CRAZY_MAX_THREADS);
1752 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1753 inferior_ptid = remote_current_thread (inferior_ptid);
1754 }
1755
1756 /*
1757 * Find all threads for info threads command.
1758 * Uses new thread protocol contributed by Cisco.
1759 * Falls back and attempts to use the older method (above)
1760 * if the target doesn't respond to the new method.
1761 */
1762
1763 static void
1764 remote_threads_info (void)
1765 {
1766 struct remote_state *rs = get_remote_state ();
1767 char *buf = alloca (rs->remote_packet_size);
1768 char *bufp;
1769 int tid;
1770
1771 if (remote_desc == 0) /* paranoia */
1772 error ("Command can only be used when connected to the remote target.");
1773
1774 if (use_threadinfo_query)
1775 {
1776 putpkt ("qfThreadInfo");
1777 bufp = buf;
1778 getpkt (bufp, (rs->remote_packet_size), 0);
1779 if (bufp[0] != '\0') /* q packet recognized */
1780 {
1781 while (*bufp++ == 'm') /* reply contains one or more TID */
1782 {
1783 do
1784 {
1785 tid = strtol (bufp, &bufp, 16);
1786 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1787 add_thread (pid_to_ptid (tid));
1788 }
1789 while (*bufp++ == ','); /* comma-separated list */
1790 putpkt ("qsThreadInfo");
1791 bufp = buf;
1792 getpkt (bufp, (rs->remote_packet_size), 0);
1793 }
1794 return; /* done */
1795 }
1796 }
1797
1798 /* Else fall back to old method based on jmetzler protocol. */
1799 use_threadinfo_query = 0;
1800 remote_find_new_threads ();
1801 return;
1802 }
1803
1804 /*
1805 * Collect a descriptive string about the given thread.
1806 * The target may say anything it wants to about the thread
1807 * (typically info about its blocked / runnable state, name, etc.).
1808 * This string will appear in the info threads display.
1809 *
1810 * Optional: targets are not required to implement this function.
1811 */
1812
1813 static char *
1814 remote_threads_extra_info (struct thread_info *tp)
1815 {
1816 struct remote_state *rs = get_remote_state ();
1817 int result;
1818 int set;
1819 threadref id;
1820 struct gdb_ext_thread_info threadinfo;
1821 static char display_buf[100]; /* arbitrary... */
1822 char *bufp = alloca (rs->remote_packet_size);
1823 int n = 0; /* position in display_buf */
1824
1825 if (remote_desc == 0) /* paranoia */
1826 internal_error (__FILE__, __LINE__,
1827 "remote_threads_extra_info");
1828
1829 if (use_threadextra_query)
1830 {
1831 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1832 putpkt (bufp);
1833 getpkt (bufp, (rs->remote_packet_size), 0);
1834 if (bufp[0] != 0)
1835 {
1836 n = min (strlen (bufp) / 2, sizeof (display_buf));
1837 result = hex2bin (bufp, display_buf, n);
1838 display_buf [result] = '\0';
1839 return display_buf;
1840 }
1841 }
1842
1843 /* If the above query fails, fall back to the old method. */
1844 use_threadextra_query = 0;
1845 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1846 | TAG_MOREDISPLAY | TAG_DISPLAY;
1847 int_to_threadref (&id, PIDGET (tp->ptid));
1848 if (remote_get_threadinfo (&id, set, &threadinfo))
1849 if (threadinfo.active)
1850 {
1851 if (*threadinfo.shortname)
1852 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1853 if (*threadinfo.display)
1854 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1855 if (*threadinfo.more_display)
1856 n += sprintf(&display_buf[n], " Priority: %s",
1857 threadinfo.more_display);
1858
1859 if (n > 0)
1860 {
1861 /* for purely cosmetic reasons, clear up trailing commas */
1862 if (',' == display_buf[n-1])
1863 display_buf[n-1] = ' ';
1864 return display_buf;
1865 }
1866 }
1867 return NULL;
1868 }
1869
1870 \f
1871
1872 /* Restart the remote side; this is an extended protocol operation. */
1873
1874 static void
1875 extended_remote_restart (void)
1876 {
1877 struct remote_state *rs = get_remote_state ();
1878 char *buf = alloca (rs->remote_packet_size);
1879
1880 /* Send the restart command; for reasons I don't understand the
1881 remote side really expects a number after the "R". */
1882 buf[0] = 'R';
1883 sprintf (&buf[1], "%x", 0);
1884 putpkt (buf);
1885
1886 /* Now query for status so this looks just like we restarted
1887 gdbserver from scratch. */
1888 putpkt ("?");
1889 getpkt (buf, (rs->remote_packet_size), 0);
1890 }
1891 \f
1892 /* Clean up connection to a remote debugger. */
1893
1894 static void
1895 remote_close (int quitting)
1896 {
1897 if (remote_desc)
1898 serial_close (remote_desc);
1899 remote_desc = NULL;
1900 }
1901
1902 /* Query the remote side for the text, data and bss offsets. */
1903
1904 static void
1905 get_offsets (void)
1906 {
1907 struct remote_state *rs = get_remote_state ();
1908 char *buf = alloca (rs->remote_packet_size);
1909 char *ptr;
1910 int lose;
1911 CORE_ADDR text_addr, data_addr, bss_addr;
1912 struct section_offsets *offs;
1913
1914 putpkt ("qOffsets");
1915
1916 getpkt (buf, (rs->remote_packet_size), 0);
1917
1918 if (buf[0] == '\000')
1919 return; /* Return silently. Stub doesn't support
1920 this command. */
1921 if (buf[0] == 'E')
1922 {
1923 warning ("Remote failure reply: %s", buf);
1924 return;
1925 }
1926
1927 /* Pick up each field in turn. This used to be done with scanf, but
1928 scanf will make trouble if CORE_ADDR size doesn't match
1929 conversion directives correctly. The following code will work
1930 with any size of CORE_ADDR. */
1931 text_addr = data_addr = bss_addr = 0;
1932 ptr = buf;
1933 lose = 0;
1934
1935 if (strncmp (ptr, "Text=", 5) == 0)
1936 {
1937 ptr += 5;
1938 /* Don't use strtol, could lose on big values. */
1939 while (*ptr && *ptr != ';')
1940 text_addr = (text_addr << 4) + fromhex (*ptr++);
1941 }
1942 else
1943 lose = 1;
1944
1945 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1946 {
1947 ptr += 6;
1948 while (*ptr && *ptr != ';')
1949 data_addr = (data_addr << 4) + fromhex (*ptr++);
1950 }
1951 else
1952 lose = 1;
1953
1954 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1955 {
1956 ptr += 5;
1957 while (*ptr && *ptr != ';')
1958 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1959 }
1960 else
1961 lose = 1;
1962
1963 if (lose)
1964 error ("Malformed response to offset query, %s", buf);
1965
1966 if (symfile_objfile == NULL)
1967 return;
1968
1969 offs = ((struct section_offsets *)
1970 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1971 memcpy (offs, symfile_objfile->section_offsets,
1972 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1973
1974 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1975
1976 /* This is a temporary kludge to force data and bss to use the same offsets
1977 because that's what nlmconv does now. The real solution requires changes
1978 to the stub and remote.c that I don't have time to do right now. */
1979
1980 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1981 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1982
1983 objfile_relocate (symfile_objfile, offs);
1984 }
1985
1986 /* Stub for catch_errors. */
1987
1988 static int
1989 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
1990 {
1991 start_remote (); /* Initialize gdb process mechanisms */
1992 /* NOTE: Return something >=0. A -ve value is reserved for
1993 catch_exceptions. */
1994 return 1;
1995 }
1996
1997 static int
1998 remote_start_remote (struct ui_out *uiout, void *dummy)
1999 {
2000 immediate_quit++; /* Allow user to interrupt it */
2001
2002 /* Ack any packet which the remote side has already sent. */
2003 serial_write (remote_desc, "+", 1);
2004
2005 /* Let the stub know that we want it to return the thread. */
2006 set_thread (-1, 0);
2007
2008 inferior_ptid = remote_current_thread (inferior_ptid);
2009
2010 get_offsets (); /* Get text, data & bss offsets */
2011
2012 putpkt ("?"); /* initiate a query from remote machine */
2013 immediate_quit--;
2014
2015 /* NOTE: See comment above in remote_start_remote_dummy(). This
2016 function returns something >=0. */
2017 return remote_start_remote_dummy (uiout, dummy);
2018 }
2019
2020 /* Open a connection to a remote debugger.
2021 NAME is the filename used for communication. */
2022
2023 static void
2024 remote_open (char *name, int from_tty)
2025 {
2026 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2027 }
2028
2029 /* Just like remote_open, but with asynchronous support. */
2030 static void
2031 remote_async_open (char *name, int from_tty)
2032 {
2033 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2034 }
2035
2036 /* Open a connection to a remote debugger using the extended
2037 remote gdb protocol. NAME is the filename used for communication. */
2038
2039 static void
2040 extended_remote_open (char *name, int from_tty)
2041 {
2042 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2043 0 /* async_p */);
2044 }
2045
2046 /* Just like extended_remote_open, but with asynchronous support. */
2047 static void
2048 extended_remote_async_open (char *name, int from_tty)
2049 {
2050 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2051 1 /*extended_p */, 1 /* async_p */);
2052 }
2053
2054 /* Generic code for opening a connection to a remote target. */
2055
2056 static void
2057 init_all_packet_configs (void)
2058 {
2059 int i;
2060 update_packet_config (&remote_protocol_P);
2061 update_packet_config (&remote_protocol_p);
2062 update_packet_config (&remote_protocol_qSymbol);
2063 update_packet_config (&remote_protocol_vcont);
2064 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2065 update_packet_config (&remote_protocol_Z[i]);
2066 /* Force remote_write_bytes to check whether target supports binary
2067 downloading. */
2068 update_packet_config (&remote_protocol_binary_download);
2069 update_packet_config (&remote_protocol_qPart_auxv);
2070 }
2071
2072 /* Symbol look-up. */
2073
2074 static void
2075 remote_check_symbols (struct objfile *objfile)
2076 {
2077 struct remote_state *rs = get_remote_state ();
2078 char *msg, *reply, *tmp;
2079 struct minimal_symbol *sym;
2080 int end;
2081
2082 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2083 return;
2084
2085 msg = alloca (rs->remote_packet_size);
2086 reply = alloca (rs->remote_packet_size);
2087
2088 /* Invite target to request symbol lookups. */
2089
2090 putpkt ("qSymbol::");
2091 getpkt (reply, (rs->remote_packet_size), 0);
2092 packet_ok (reply, &remote_protocol_qSymbol);
2093
2094 while (strncmp (reply, "qSymbol:", 8) == 0)
2095 {
2096 tmp = &reply[8];
2097 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2098 msg[end] = '\0';
2099 sym = lookup_minimal_symbol (msg, NULL, NULL);
2100 if (sym == NULL)
2101 sprintf (msg, "qSymbol::%s", &reply[8]);
2102 else
2103 sprintf (msg, "qSymbol:%s:%s",
2104 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2105 &reply[8]);
2106 putpkt (msg);
2107 getpkt (reply, (rs->remote_packet_size), 0);
2108 }
2109 }
2110
2111 static struct serial *
2112 remote_serial_open (char *name)
2113 {
2114 static int udp_warning = 0;
2115
2116 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2117 of in ser-tcp.c, because it is the remote protocol assuming that the
2118 serial connection is reliable and not the serial connection promising
2119 to be. */
2120 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2121 {
2122 warning ("The remote protocol may be unreliable over UDP.");
2123 warning ("Some events may be lost, rendering further debugging "
2124 "impossible.");
2125 udp_warning = 1;
2126 }
2127
2128 return serial_open (name);
2129 }
2130
2131 static void
2132 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2133 int extended_p, int async_p)
2134 {
2135 int ex;
2136 struct remote_state *rs = get_remote_state ();
2137 if (name == 0)
2138 error ("To open a remote debug connection, you need to specify what\n"
2139 "serial device is attached to the remote system\n"
2140 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2141
2142 /* See FIXME above */
2143 if (!async_p)
2144 wait_forever_enabled_p = 1;
2145
2146 reopen_exec_file ();
2147 reread_symbols ();
2148
2149 target_preopen (from_tty);
2150
2151 unpush_target (target);
2152
2153 remote_desc = remote_serial_open (name);
2154 if (!remote_desc)
2155 perror_with_name (name);
2156
2157 if (baud_rate != -1)
2158 {
2159 if (serial_setbaudrate (remote_desc, baud_rate))
2160 {
2161 /* The requested speed could not be set. Error out to
2162 top level after closing remote_desc. Take care to
2163 set remote_desc to NULL to avoid closing remote_desc
2164 more than once. */
2165 serial_close (remote_desc);
2166 remote_desc = NULL;
2167 perror_with_name (name);
2168 }
2169 }
2170
2171 serial_raw (remote_desc);
2172
2173 /* If there is something sitting in the buffer we might take it as a
2174 response to a command, which would be bad. */
2175 serial_flush_input (remote_desc);
2176
2177 if (from_tty)
2178 {
2179 puts_filtered ("Remote debugging using ");
2180 puts_filtered (name);
2181 puts_filtered ("\n");
2182 }
2183 push_target (target); /* Switch to using remote target now */
2184
2185 init_all_packet_configs ();
2186
2187 general_thread = -2;
2188 continue_thread = -2;
2189
2190 /* Probe for ability to use "ThreadInfo" query, as required. */
2191 use_threadinfo_query = 1;
2192 use_threadextra_query = 1;
2193
2194 /* Without this, some commands which require an active target (such
2195 as kill) won't work. This variable serves (at least) double duty
2196 as both the pid of the target process (if it has such), and as a
2197 flag indicating that a target is active. These functions should
2198 be split out into seperate variables, especially since GDB will
2199 someday have a notion of debugging several processes. */
2200
2201 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2202
2203 if (async_p)
2204 {
2205 /* With this target we start out by owning the terminal. */
2206 remote_async_terminal_ours_p = 1;
2207
2208 /* FIXME: cagney/1999-09-23: During the initial connection it is
2209 assumed that the target is already ready and able to respond to
2210 requests. Unfortunately remote_start_remote() eventually calls
2211 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2212 around this. Eventually a mechanism that allows
2213 wait_for_inferior() to expect/get timeouts will be
2214 implemented. */
2215 wait_forever_enabled_p = 0;
2216 }
2217
2218 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2219 /* First delete any symbols previously loaded from shared libraries. */
2220 no_shared_libraries (NULL, 0);
2221 #endif
2222
2223 /* Start the remote connection. If error() or QUIT, discard this
2224 target (we'd otherwise be in an inconsistent state) and then
2225 propogate the error on up the exception chain. This ensures that
2226 the caller doesn't stumble along blindly assuming that the
2227 function succeeded. The CLI doesn't have this problem but other
2228 UI's, such as MI do.
2229
2230 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2231 this function should return an error indication letting the
2232 caller restore the previous state. Unfortunately the command
2233 ``target remote'' is directly wired to this function making that
2234 impossible. On a positive note, the CLI side of this problem has
2235 been fixed - the function set_cmd_context() makes it possible for
2236 all the ``target ....'' commands to share a common callback
2237 function. See cli-dump.c. */
2238 ex = catch_exceptions (uiout,
2239 remote_start_remote, NULL,
2240 "Couldn't establish connection to remote"
2241 " target\n",
2242 RETURN_MASK_ALL);
2243 if (ex < 0)
2244 {
2245 pop_target ();
2246 if (async_p)
2247 wait_forever_enabled_p = 1;
2248 throw_exception (ex);
2249 }
2250
2251 if (async_p)
2252 wait_forever_enabled_p = 1;
2253
2254 if (extended_p)
2255 {
2256 /* Tell the remote that we are using the extended protocol. */
2257 char *buf = alloca (rs->remote_packet_size);
2258 putpkt ("!");
2259 getpkt (buf, (rs->remote_packet_size), 0);
2260 }
2261 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2262 /* FIXME: need a master target_open vector from which all
2263 remote_opens can be called, so that stuff like this can
2264 go there. Failing that, the following code must be copied
2265 to the open function for any remote target that wants to
2266 support svr4 shared libraries. */
2267
2268 /* Set up to detect and load shared libraries. */
2269 if (exec_bfd) /* No use without an exec file. */
2270 {
2271 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2272 remote_check_symbols (symfile_objfile);
2273 }
2274 #endif
2275 }
2276
2277 /* This takes a program previously attached to and detaches it. After
2278 this is done, GDB can be used to debug some other program. We
2279 better not have left any breakpoints in the target program or it'll
2280 die when it hits one. */
2281
2282 static void
2283 remote_detach (char *args, int from_tty)
2284 {
2285 struct remote_state *rs = get_remote_state ();
2286 char *buf = alloca (rs->remote_packet_size);
2287
2288 if (args)
2289 error ("Argument given to \"detach\" when remotely debugging.");
2290
2291 /* Tell the remote target to detach. */
2292 strcpy (buf, "D");
2293 remote_send (buf, (rs->remote_packet_size));
2294
2295 /* Unregister the file descriptor from the event loop. */
2296 if (target_is_async_p ())
2297 serial_async (remote_desc, NULL, 0);
2298
2299 target_mourn_inferior ();
2300 if (from_tty)
2301 puts_filtered ("Ending remote debugging.\n");
2302 }
2303
2304 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2305
2306 static void
2307 remote_disconnect (char *args, int from_tty)
2308 {
2309 struct remote_state *rs = get_remote_state ();
2310 char *buf = alloca (rs->remote_packet_size);
2311
2312 if (args)
2313 error ("Argument given to \"detach\" when remotely debugging.");
2314
2315 /* Unregister the file descriptor from the event loop. */
2316 if (target_is_async_p ())
2317 serial_async (remote_desc, NULL, 0);
2318
2319 target_mourn_inferior ();
2320 if (from_tty)
2321 puts_filtered ("Ending remote debugging.\n");
2322 }
2323
2324 /* Convert hex digit A to a number. */
2325
2326 static int
2327 fromhex (int a)
2328 {
2329 if (a >= '0' && a <= '9')
2330 return a - '0';
2331 else if (a >= 'a' && a <= 'f')
2332 return a - 'a' + 10;
2333 else if (a >= 'A' && a <= 'F')
2334 return a - 'A' + 10;
2335 else
2336 error ("Reply contains invalid hex digit %d", a);
2337 }
2338
2339 static int
2340 hex2bin (const char *hex, char *bin, int count)
2341 {
2342 int i;
2343
2344 for (i = 0; i < count; i++)
2345 {
2346 if (hex[0] == 0 || hex[1] == 0)
2347 {
2348 /* Hex string is short, or of uneven length.
2349 Return the count that has been converted so far. */
2350 return i;
2351 }
2352 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2353 hex += 2;
2354 }
2355 return i;
2356 }
2357
2358 /* Convert number NIB to a hex digit. */
2359
2360 static int
2361 tohex (int nib)
2362 {
2363 if (nib < 10)
2364 return '0' + nib;
2365 else
2366 return 'a' + nib - 10;
2367 }
2368
2369 static int
2370 bin2hex (const char *bin, char *hex, int count)
2371 {
2372 int i;
2373 /* May use a length, or a nul-terminated string as input. */
2374 if (count == 0)
2375 count = strlen (bin);
2376
2377 for (i = 0; i < count; i++)
2378 {
2379 *hex++ = tohex ((*bin >> 4) & 0xf);
2380 *hex++ = tohex (*bin++ & 0xf);
2381 }
2382 *hex = 0;
2383 return i;
2384 }
2385 \f
2386 /* Check for the availability of vCont. This function should also check
2387 the response. */
2388
2389 static void
2390 remote_vcont_probe (struct remote_state *rs, char *buf)
2391 {
2392 strcpy (buf, "vCont?");
2393 putpkt (buf);
2394 getpkt (buf, rs->remote_packet_size, 0);
2395
2396 /* Make sure that the features we assume are supported. */
2397 if (strncmp (buf, "vCont", 5) == 0)
2398 {
2399 char *p = &buf[5];
2400 int support_s, support_S, support_c, support_C;
2401
2402 support_s = 0;
2403 support_S = 0;
2404 support_c = 0;
2405 support_C = 0;
2406 while (p && *p == ';')
2407 {
2408 p++;
2409 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2410 support_s = 1;
2411 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2412 support_S = 1;
2413 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2414 support_c = 1;
2415 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2416 support_C = 1;
2417
2418 p = strchr (p, ';');
2419 }
2420
2421 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2422 BUF will make packet_ok disable the packet. */
2423 if (!support_s || !support_S || !support_c || !support_C)
2424 buf[0] = 0;
2425 }
2426
2427 packet_ok (buf, &remote_protocol_vcont);
2428 }
2429
2430 /* Resume the remote inferior by using a "vCont" packet. The thread
2431 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2432 resumed thread should be single-stepped and/or signalled. If PTID's
2433 PID is -1, then all threads are resumed; the thread to be stepped and/or
2434 signalled is given in the global INFERIOR_PTID. This function returns
2435 non-zero iff it resumes the inferior.
2436
2437 This function issues a strict subset of all possible vCont commands at the
2438 moment. */
2439
2440 static int
2441 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2442 {
2443 struct remote_state *rs = get_remote_state ();
2444 int pid = PIDGET (ptid);
2445 char *buf = NULL, *outbuf;
2446 struct cleanup *old_cleanup;
2447
2448 buf = xmalloc (rs->remote_packet_size);
2449 old_cleanup = make_cleanup (xfree, buf);
2450
2451 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2452 remote_vcont_probe (rs, buf);
2453
2454 if (remote_protocol_vcont.support == PACKET_DISABLE)
2455 {
2456 do_cleanups (old_cleanup);
2457 return 0;
2458 }
2459
2460 /* If we could generate a wider range of packets, we'd have to worry
2461 about overflowing BUF. Should there be a generic
2462 "multi-part-packet" packet? */
2463
2464 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2465 {
2466 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2467 don't have any PID numbers the inferior will understand. Make sure
2468 to only send forms that do not specify a PID. */
2469 if (step && siggnal != TARGET_SIGNAL_0)
2470 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2471 else if (step)
2472 outbuf = xstrprintf ("vCont;s");
2473 else if (siggnal != TARGET_SIGNAL_0)
2474 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2475 else
2476 outbuf = xstrprintf ("vCont;c");
2477 }
2478 else if (pid == -1)
2479 {
2480 /* Resume all threads, with preference for INFERIOR_PTID. */
2481 if (step && siggnal != TARGET_SIGNAL_0)
2482 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2483 PIDGET (inferior_ptid));
2484 else if (step)
2485 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2486 else if (siggnal != TARGET_SIGNAL_0)
2487 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2488 PIDGET (inferior_ptid));
2489 else
2490 outbuf = xstrprintf ("vCont;c");
2491 }
2492 else
2493 {
2494 /* Scheduler locking; resume only PTID. */
2495 if (step && siggnal != TARGET_SIGNAL_0)
2496 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2497 else if (step)
2498 outbuf = xstrprintf ("vCont;s:%x", pid);
2499 else if (siggnal != TARGET_SIGNAL_0)
2500 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2501 else
2502 outbuf = xstrprintf ("vCont;c:%x", pid);
2503 }
2504
2505 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2506 make_cleanup (xfree, outbuf);
2507
2508 putpkt (outbuf);
2509
2510 do_cleanups (old_cleanup);
2511
2512 return 1;
2513 }
2514
2515 /* Tell the remote machine to resume. */
2516
2517 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2518
2519 static int last_sent_step;
2520
2521 static void
2522 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2523 {
2524 struct remote_state *rs = get_remote_state ();
2525 char *buf = alloca (rs->remote_packet_size);
2526 int pid = PIDGET (ptid);
2527 char *p;
2528
2529 last_sent_signal = siggnal;
2530 last_sent_step = step;
2531
2532 /* A hook for when we need to do something at the last moment before
2533 resumption. */
2534 if (deprecated_target_resume_hook)
2535 (*deprecated_target_resume_hook) ();
2536
2537 /* The vCont packet doesn't need to specify threads via Hc. */
2538 if (remote_vcont_resume (ptid, step, siggnal))
2539 return;
2540
2541 /* All other supported resume packets do use Hc, so call set_thread. */
2542 if (pid == -1)
2543 set_thread (0, 0); /* run any thread */
2544 else
2545 set_thread (pid, 0); /* run this thread */
2546
2547 if (siggnal != TARGET_SIGNAL_0)
2548 {
2549 buf[0] = step ? 'S' : 'C';
2550 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2551 buf[2] = tohex (((int) siggnal) & 0xf);
2552 buf[3] = '\0';
2553 }
2554 else
2555 strcpy (buf, step ? "s" : "c");
2556
2557 putpkt (buf);
2558 }
2559
2560 /* Same as remote_resume, but with async support. */
2561 static void
2562 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2563 {
2564 remote_resume (ptid, step, siggnal);
2565
2566 /* We are about to start executing the inferior, let's register it
2567 with the event loop. NOTE: this is the one place where all the
2568 execution commands end up. We could alternatively do this in each
2569 of the execution commands in infcmd.c.*/
2570 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2571 into infcmd.c in order to allow inferior function calls to work
2572 NOT asynchronously. */
2573 if (target_can_async_p ())
2574 target_async (inferior_event_handler, 0);
2575 /* Tell the world that the target is now executing. */
2576 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2577 this? Instead, should the client of target just assume (for
2578 async targets) that the target is going to start executing? Is
2579 this information already found in the continuation block? */
2580 if (target_is_async_p ())
2581 target_executing = 1;
2582 }
2583 \f
2584
2585 /* Set up the signal handler for SIGINT, while the target is
2586 executing, ovewriting the 'regular' SIGINT signal handler. */
2587 static void
2588 initialize_sigint_signal_handler (void)
2589 {
2590 sigint_remote_token =
2591 create_async_signal_handler (async_remote_interrupt, NULL);
2592 signal (SIGINT, handle_remote_sigint);
2593 }
2594
2595 /* Signal handler for SIGINT, while the target is executing. */
2596 static void
2597 handle_remote_sigint (int sig)
2598 {
2599 signal (sig, handle_remote_sigint_twice);
2600 sigint_remote_twice_token =
2601 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2602 mark_async_signal_handler_wrapper (sigint_remote_token);
2603 }
2604
2605 /* Signal handler for SIGINT, installed after SIGINT has already been
2606 sent once. It will take effect the second time that the user sends
2607 a ^C. */
2608 static void
2609 handle_remote_sigint_twice (int sig)
2610 {
2611 signal (sig, handle_sigint);
2612 sigint_remote_twice_token =
2613 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2614 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2615 }
2616
2617 /* Perform the real interruption of the target execution, in response
2618 to a ^C. */
2619 static void
2620 async_remote_interrupt (gdb_client_data arg)
2621 {
2622 if (remote_debug)
2623 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2624
2625 target_stop ();
2626 }
2627
2628 /* Perform interrupt, if the first attempt did not succeed. Just give
2629 up on the target alltogether. */
2630 void
2631 async_remote_interrupt_twice (gdb_client_data arg)
2632 {
2633 if (remote_debug)
2634 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2635 /* Do something only if the target was not killed by the previous
2636 cntl-C. */
2637 if (target_executing)
2638 {
2639 interrupt_query ();
2640 signal (SIGINT, handle_remote_sigint);
2641 }
2642 }
2643
2644 /* Reinstall the usual SIGINT handlers, after the target has
2645 stopped. */
2646 static void
2647 cleanup_sigint_signal_handler (void *dummy)
2648 {
2649 signal (SIGINT, handle_sigint);
2650 if (sigint_remote_twice_token)
2651 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2652 if (sigint_remote_token)
2653 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2654 }
2655
2656 /* Send ^C to target to halt it. Target will respond, and send us a
2657 packet. */
2658 static void (*ofunc) (int);
2659
2660 /* The command line interface's stop routine. This function is installed
2661 as a signal handler for SIGINT. The first time a user requests a
2662 stop, we call remote_stop to send a break or ^C. If there is no
2663 response from the target (it didn't stop when the user requested it),
2664 we ask the user if he'd like to detach from the target. */
2665 static void
2666 remote_interrupt (int signo)
2667 {
2668 /* If this doesn't work, try more severe steps. */
2669 signal (signo, remote_interrupt_twice);
2670
2671 if (remote_debug)
2672 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2673
2674 target_stop ();
2675 }
2676
2677 /* The user typed ^C twice. */
2678
2679 static void
2680 remote_interrupt_twice (int signo)
2681 {
2682 signal (signo, ofunc);
2683 interrupt_query ();
2684 signal (signo, remote_interrupt);
2685 }
2686
2687 /* This is the generic stop called via the target vector. When a target
2688 interrupt is requested, either by the command line or the GUI, we
2689 will eventually end up here. */
2690 static void
2691 remote_stop (void)
2692 {
2693 /* Send a break or a ^C, depending on user preference. */
2694 if (remote_debug)
2695 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2696
2697 if (remote_break)
2698 serial_send_break (remote_desc);
2699 else
2700 serial_write (remote_desc, "\003", 1);
2701 }
2702
2703 /* Ask the user what to do when an interrupt is received. */
2704
2705 static void
2706 interrupt_query (void)
2707 {
2708 target_terminal_ours ();
2709
2710 if (query ("Interrupted while waiting for the program.\n\
2711 Give up (and stop debugging it)? "))
2712 {
2713 target_mourn_inferior ();
2714 throw_exception (RETURN_QUIT);
2715 }
2716
2717 target_terminal_inferior ();
2718 }
2719
2720 /* Enable/disable target terminal ownership. Most targets can use
2721 terminal groups to control terminal ownership. Remote targets are
2722 different in that explicit transfer of ownership to/from GDB/target
2723 is required. */
2724
2725 static void
2726 remote_async_terminal_inferior (void)
2727 {
2728 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2729 sync_execution here. This function should only be called when
2730 GDB is resuming the inferior in the forground. A background
2731 resume (``run&'') should leave GDB in control of the terminal and
2732 consequently should not call this code. */
2733 if (!sync_execution)
2734 return;
2735 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2736 calls target_terminal_*() idenpotent. The event-loop GDB talking
2737 to an asynchronous target with a synchronous command calls this
2738 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2739 stops trying to transfer the terminal to the target when it
2740 shouldn't this guard can go away. */
2741 if (!remote_async_terminal_ours_p)
2742 return;
2743 delete_file_handler (input_fd);
2744 remote_async_terminal_ours_p = 0;
2745 initialize_sigint_signal_handler ();
2746 /* NOTE: At this point we could also register our selves as the
2747 recipient of all input. Any characters typed could then be
2748 passed on down to the target. */
2749 }
2750
2751 static void
2752 remote_async_terminal_ours (void)
2753 {
2754 /* See FIXME in remote_async_terminal_inferior. */
2755 if (!sync_execution)
2756 return;
2757 /* See FIXME in remote_async_terminal_inferior. */
2758 if (remote_async_terminal_ours_p)
2759 return;
2760 cleanup_sigint_signal_handler (NULL);
2761 add_file_handler (input_fd, stdin_event_handler, 0);
2762 remote_async_terminal_ours_p = 1;
2763 }
2764
2765 /* If nonzero, ignore the next kill. */
2766
2767 int kill_kludge;
2768
2769 void
2770 remote_console_output (char *msg)
2771 {
2772 char *p;
2773
2774 for (p = msg; p[0] && p[1]; p += 2)
2775 {
2776 char tb[2];
2777 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2778 tb[0] = c;
2779 tb[1] = 0;
2780 fputs_unfiltered (tb, gdb_stdtarg);
2781 }
2782 gdb_flush (gdb_stdtarg);
2783 }
2784
2785 /* Wait until the remote machine stops, then return,
2786 storing status in STATUS just as `wait' would.
2787 Returns "pid", which in the case of a multi-threaded
2788 remote OS, is the thread-id. */
2789
2790 static ptid_t
2791 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2792 {
2793 struct remote_state *rs = get_remote_state ();
2794 unsigned char *buf = alloca (rs->remote_packet_size);
2795 ULONGEST thread_num = -1;
2796 ULONGEST addr;
2797
2798 status->kind = TARGET_WAITKIND_EXITED;
2799 status->value.integer = 0;
2800
2801 while (1)
2802 {
2803 unsigned char *p;
2804
2805 ofunc = signal (SIGINT, remote_interrupt);
2806 getpkt (buf, (rs->remote_packet_size), 1);
2807 signal (SIGINT, ofunc);
2808
2809 /* This is a hook for when we need to do something (perhaps the
2810 collection of trace data) every time the target stops. */
2811 if (deprecated_target_wait_loop_hook)
2812 (*deprecated_target_wait_loop_hook) ();
2813
2814 remote_stopped_by_watchpoint_p = 0;
2815
2816 switch (buf[0])
2817 {
2818 case 'E': /* Error of some sort */
2819 warning ("Remote failure reply: %s", buf);
2820 continue;
2821 case 'F': /* File-I/O request */
2822 remote_fileio_request (buf);
2823 continue;
2824 case 'T': /* Status with PC, SP, FP, ... */
2825 {
2826 int i;
2827 char regs[MAX_REGISTER_SIZE];
2828
2829 /* Expedited reply, containing Signal, {regno, reg} repeat */
2830 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2831 ss = signal number
2832 n... = register number
2833 r... = register contents
2834 */
2835 p = &buf[3]; /* after Txx */
2836
2837 while (*p)
2838 {
2839 unsigned char *p1;
2840 char *p_temp;
2841 int fieldsize;
2842 LONGEST pnum = 0;
2843
2844 /* If the packet contains a register number save it in pnum
2845 and set p1 to point to the character following it.
2846 Otherwise p1 points to p. */
2847
2848 /* If this packet is an awatch packet, don't parse the 'a'
2849 as a register number. */
2850
2851 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2852 {
2853 /* Read the ``P'' register number. */
2854 pnum = strtol (p, &p_temp, 16);
2855 p1 = (unsigned char *) p_temp;
2856 }
2857 else
2858 p1 = p;
2859
2860 if (p1 == p) /* No register number present here */
2861 {
2862 p1 = (unsigned char *) strchr (p, ':');
2863 if (p1 == NULL)
2864 warning ("Malformed packet(a) (missing colon): %s\n\
2865 Packet: '%s'\n",
2866 p, buf);
2867 if (strncmp (p, "thread", p1 - p) == 0)
2868 {
2869 p_temp = unpack_varlen_hex (++p1, &thread_num);
2870 record_currthread (thread_num);
2871 p = (unsigned char *) p_temp;
2872 }
2873 else if ((strncmp (p, "watch", p1 - p) == 0)
2874 || (strncmp (p, "rwatch", p1 - p) == 0)
2875 || (strncmp (p, "awatch", p1 - p) == 0))
2876 {
2877 remote_stopped_by_watchpoint_p = 1;
2878 p = unpack_varlen_hex (++p1, &addr);
2879 remote_watch_data_address = (CORE_ADDR)addr;
2880 }
2881 else
2882 {
2883 /* Silently skip unknown optional info. */
2884 p_temp = strchr (p1 + 1, ';');
2885 if (p_temp)
2886 p = (unsigned char *) p_temp;
2887 }
2888 }
2889 else
2890 {
2891 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2892 p = p1;
2893
2894 if (*p++ != ':')
2895 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
2896 p, buf);
2897
2898 if (reg == NULL)
2899 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
2900 phex_nz (pnum, 0), p, buf);
2901
2902 fieldsize = hex2bin (p, regs, register_size (current_gdbarch, reg->regnum));
2903 p += 2 * fieldsize;
2904 if (fieldsize < register_size (current_gdbarch, reg->regnum))
2905 warning ("Remote reply is too short: %s", buf);
2906 regcache_raw_supply (current_regcache, reg->regnum, regs);
2907 }
2908
2909 if (*p++ != ';')
2910 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
2911 }
2912 }
2913 /* fall through */
2914 case 'S': /* Old style status, just signal only */
2915 status->kind = TARGET_WAITKIND_STOPPED;
2916 status->value.sig = (enum target_signal)
2917 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2918
2919 if (buf[3] == 'p')
2920 {
2921 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2922 record_currthread (thread_num);
2923 }
2924 goto got_status;
2925 case 'W': /* Target exited */
2926 {
2927 /* The remote process exited. */
2928 status->kind = TARGET_WAITKIND_EXITED;
2929 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2930 goto got_status;
2931 }
2932 case 'X':
2933 status->kind = TARGET_WAITKIND_SIGNALLED;
2934 status->value.sig = (enum target_signal)
2935 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2936 kill_kludge = 1;
2937
2938 goto got_status;
2939 case 'O': /* Console output */
2940 remote_console_output (buf + 1);
2941 continue;
2942 case '\0':
2943 if (last_sent_signal != TARGET_SIGNAL_0)
2944 {
2945 /* Zero length reply means that we tried 'S' or 'C' and
2946 the remote system doesn't support it. */
2947 target_terminal_ours_for_output ();
2948 printf_filtered
2949 ("Can't send signals to this remote system. %s not sent.\n",
2950 target_signal_to_name (last_sent_signal));
2951 last_sent_signal = TARGET_SIGNAL_0;
2952 target_terminal_inferior ();
2953
2954 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2955 putpkt ((char *) buf);
2956 continue;
2957 }
2958 /* else fallthrough */
2959 default:
2960 warning ("Invalid remote reply: %s", buf);
2961 continue;
2962 }
2963 }
2964 got_status:
2965 if (thread_num != -1)
2966 {
2967 return pid_to_ptid (thread_num);
2968 }
2969 return inferior_ptid;
2970 }
2971
2972 /* Async version of remote_wait. */
2973 static ptid_t
2974 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
2975 {
2976 struct remote_state *rs = get_remote_state ();
2977 unsigned char *buf = alloca (rs->remote_packet_size);
2978 ULONGEST thread_num = -1;
2979 ULONGEST addr;
2980
2981 status->kind = TARGET_WAITKIND_EXITED;
2982 status->value.integer = 0;
2983
2984 remote_stopped_by_watchpoint_p = 0;
2985
2986 while (1)
2987 {
2988 unsigned char *p;
2989
2990 if (!target_is_async_p ())
2991 ofunc = signal (SIGINT, remote_interrupt);
2992 /* FIXME: cagney/1999-09-27: If we're in async mode we should
2993 _never_ wait for ever -> test on target_is_async_p().
2994 However, before we do that we need to ensure that the caller
2995 knows how to take the target into/out of async mode. */
2996 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
2997 if (!target_is_async_p ())
2998 signal (SIGINT, ofunc);
2999
3000 /* This is a hook for when we need to do something (perhaps the
3001 collection of trace data) every time the target stops. */
3002 if (deprecated_target_wait_loop_hook)
3003 (*deprecated_target_wait_loop_hook) ();
3004
3005 switch (buf[0])
3006 {
3007 case 'E': /* Error of some sort */
3008 warning ("Remote failure reply: %s", buf);
3009 continue;
3010 case 'F': /* File-I/O request */
3011 remote_fileio_request (buf);
3012 continue;
3013 case 'T': /* Status with PC, SP, FP, ... */
3014 {
3015 int i;
3016 char regs[MAX_REGISTER_SIZE];
3017
3018 /* Expedited reply, containing Signal, {regno, reg} repeat */
3019 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3020 ss = signal number
3021 n... = register number
3022 r... = register contents
3023 */
3024 p = &buf[3]; /* after Txx */
3025
3026 while (*p)
3027 {
3028 unsigned char *p1;
3029 char *p_temp;
3030 int fieldsize;
3031 long pnum = 0;
3032
3033 /* If the packet contains a register number, save it in pnum
3034 and set p1 to point to the character following it.
3035 Otherwise p1 points to p. */
3036
3037 /* If this packet is an awatch packet, don't parse the 'a'
3038 as a register number. */
3039
3040 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3041 {
3042 /* Read the register number. */
3043 pnum = strtol (p, &p_temp, 16);
3044 p1 = (unsigned char *) p_temp;
3045 }
3046 else
3047 p1 = p;
3048
3049 if (p1 == p) /* No register number present here */
3050 {
3051 p1 = (unsigned char *) strchr (p, ':');
3052 if (p1 == NULL)
3053 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3054 p, buf);
3055 if (strncmp (p, "thread", p1 - p) == 0)
3056 {
3057 p_temp = unpack_varlen_hex (++p1, &thread_num);
3058 record_currthread (thread_num);
3059 p = (unsigned char *) p_temp;
3060 }
3061 else if ((strncmp (p, "watch", p1 - p) == 0)
3062 || (strncmp (p, "rwatch", p1 - p) == 0)
3063 || (strncmp (p, "awatch", p1 - p) == 0))
3064 {
3065 remote_stopped_by_watchpoint_p = 1;
3066 p = unpack_varlen_hex (++p1, &addr);
3067 remote_watch_data_address = (CORE_ADDR)addr;
3068 }
3069 else
3070 {
3071 /* Silently skip unknown optional info. */
3072 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3073 if (p_temp)
3074 p = p_temp;
3075 }
3076 }
3077
3078 else
3079 {
3080 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3081 p = p1;
3082 if (*p++ != ':')
3083 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3084 p, buf);
3085
3086 if (reg == NULL)
3087 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3088 pnum, p, buf);
3089
3090 fieldsize = hex2bin (p, regs, register_size (current_gdbarch, reg->regnum));
3091 p += 2 * fieldsize;
3092 if (fieldsize < register_size (current_gdbarch, reg->regnum))
3093 warning ("Remote reply is too short: %s", buf);
3094 regcache_raw_supply (current_regcache, reg->regnum, regs);
3095 }
3096
3097 if (*p++ != ';')
3098 error ("Remote register badly formatted: %s\nhere: %s",
3099 buf, p);
3100 }
3101 }
3102 /* fall through */
3103 case 'S': /* Old style status, just signal only */
3104 status->kind = TARGET_WAITKIND_STOPPED;
3105 status->value.sig = (enum target_signal)
3106 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3107
3108 if (buf[3] == 'p')
3109 {
3110 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3111 record_currthread (thread_num);
3112 }
3113 goto got_status;
3114 case 'W': /* Target exited */
3115 {
3116 /* The remote process exited. */
3117 status->kind = TARGET_WAITKIND_EXITED;
3118 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3119 goto got_status;
3120 }
3121 case 'X':
3122 status->kind = TARGET_WAITKIND_SIGNALLED;
3123 status->value.sig = (enum target_signal)
3124 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3125 kill_kludge = 1;
3126
3127 goto got_status;
3128 case 'O': /* Console output */
3129 remote_console_output (buf + 1);
3130 /* Return immediately to the event loop. The event loop will
3131 still be waiting on the inferior afterwards. */
3132 status->kind = TARGET_WAITKIND_IGNORE;
3133 goto got_status;
3134 case '\0':
3135 if (last_sent_signal != TARGET_SIGNAL_0)
3136 {
3137 /* Zero length reply means that we tried 'S' or 'C' and
3138 the remote system doesn't support it. */
3139 target_terminal_ours_for_output ();
3140 printf_filtered
3141 ("Can't send signals to this remote system. %s not sent.\n",
3142 target_signal_to_name (last_sent_signal));
3143 last_sent_signal = TARGET_SIGNAL_0;
3144 target_terminal_inferior ();
3145
3146 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3147 putpkt ((char *) buf);
3148 continue;
3149 }
3150 /* else fallthrough */
3151 default:
3152 warning ("Invalid remote reply: %s", buf);
3153 continue;
3154 }
3155 }
3156 got_status:
3157 if (thread_num != -1)
3158 {
3159 return pid_to_ptid (thread_num);
3160 }
3161 return inferior_ptid;
3162 }
3163
3164 /* Number of bytes of registers this stub implements. */
3165
3166 static int register_bytes_found;
3167
3168 /* Read the remote registers into the block REGS. */
3169 /* Currently we just read all the registers, so we don't use regnum. */
3170
3171 static int
3172 fetch_register_using_p (int regnum)
3173 {
3174 struct remote_state *rs = get_remote_state ();
3175 char *buf = alloca (rs->remote_packet_size), *p;
3176 char regp[MAX_REGISTER_SIZE];
3177 int i;
3178
3179 buf[0] = 'p';
3180 bin2hex((char *) &regnum, &buf[1], sizeof(regnum));
3181 buf[9] = 0;
3182 remote_send (buf, rs->remote_packet_size);
3183 if (buf[0] != 0 && buf[0] != 'E') {
3184 p = buf;
3185 i = 0;
3186 while (p[0] != 0) {
3187 if (p[1] == 0) {
3188 error("fetch_register_using_p: early buf termination");
3189 return 0;
3190 }
3191 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3192 p += 2;
3193 }
3194 regcache_raw_supply (current_regcache, regnum, regp);
3195 return 1;
3196 }
3197
3198 return 0;
3199 }
3200
3201 static void
3202 remote_fetch_registers (int regnum)
3203 {
3204 struct remote_state *rs = get_remote_state ();
3205 char *buf = alloca (rs->remote_packet_size);
3206 int i;
3207 char *p;
3208 char *regs = alloca (rs->sizeof_g_packet);
3209
3210 set_thread (PIDGET (inferior_ptid), 1);
3211
3212 if (regnum >= 0)
3213 {
3214 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3215 gdb_assert (reg != NULL);
3216 if (!reg->in_g_packet)
3217 internal_error (__FILE__, __LINE__,
3218 "Attempt to fetch a non G-packet register when this "
3219 "remote.c does not support the p-packet.");
3220 }
3221 switch (remote_protocol_p.support)
3222 {
3223 case PACKET_DISABLE:
3224 break;
3225 case PACKET_ENABLE:
3226 if (fetch_register_using_p (regnum))
3227 return;
3228 else
3229 error ("Protocol error: p packet not recognized by stub");
3230 case PACKET_SUPPORT_UNKNOWN:
3231 if (fetch_register_using_p (regnum))
3232 {
3233 /* The stub recognized the 'p' packet. Remember this. */
3234 remote_protocol_p.support = PACKET_ENABLE;
3235 return;
3236 }
3237 else
3238 {
3239 /* The stub does not support the 'P' packet. Use 'G'
3240 instead, and don't try using 'P' in the future (it
3241 will just waste our time). */
3242 remote_protocol_p.support = PACKET_DISABLE;
3243 break;
3244 }
3245 }
3246
3247 sprintf (buf, "g");
3248 remote_send (buf, (rs->remote_packet_size));
3249
3250 /* Save the size of the packet sent to us by the target. Its used
3251 as a heuristic when determining the max size of packets that the
3252 target can safely receive. */
3253 if ((rs->actual_register_packet_size) == 0)
3254 (rs->actual_register_packet_size) = strlen (buf);
3255
3256 /* Unimplemented registers read as all bits zero. */
3257 memset (regs, 0, rs->sizeof_g_packet);
3258
3259 /* We can get out of synch in various cases. If the first character
3260 in the buffer is not a hex character, assume that has happened
3261 and try to fetch another packet to read. */
3262 while ((buf[0] < '0' || buf[0] > '9')
3263 && (buf[0] < 'a' || buf[0] > 'f')
3264 && buf[0] != 'x') /* New: unavailable register value */
3265 {
3266 if (remote_debug)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "Bad register packet; fetching a new packet\n");
3269 getpkt (buf, (rs->remote_packet_size), 0);
3270 }
3271
3272 /* Reply describes registers byte by byte, each byte encoded as two
3273 hex characters. Suck them all up, then supply them to the
3274 register cacheing/storage mechanism. */
3275
3276 p = buf;
3277 for (i = 0; i < rs->sizeof_g_packet; i++)
3278 {
3279 if (p[0] == 0)
3280 break;
3281 if (p[1] == 0)
3282 {
3283 warning ("Remote reply is of odd length: %s", buf);
3284 /* Don't change register_bytes_found in this case, and don't
3285 print a second warning. */
3286 goto supply_them;
3287 }
3288 if (p[0] == 'x' && p[1] == 'x')
3289 regs[i] = 0; /* 'x' */
3290 else
3291 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3292 p += 2;
3293 }
3294
3295 if (i != register_bytes_found)
3296 {
3297 register_bytes_found = i;
3298 if (REGISTER_BYTES_OK_P ()
3299 && !REGISTER_BYTES_OK (i))
3300 warning ("Remote reply is too short: %s", buf);
3301 }
3302
3303 supply_them:
3304 {
3305 int i;
3306 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3307 {
3308 struct packet_reg *r = &rs->regs[i];
3309 if (r->in_g_packet)
3310 {
3311 if (r->offset * 2 >= strlen (buf))
3312 /* A short packet that didn't include the register's
3313 value, this implies that the register is zero (and
3314 not that the register is unavailable). Supply that
3315 zero value. */
3316 regcache_raw_supply (current_regcache, r->regnum, NULL);
3317 else if (buf[r->offset * 2] == 'x')
3318 {
3319 gdb_assert (r->offset * 2 < strlen (buf));
3320 /* The register isn't available, mark it as such (at
3321 the same time setting the value to zero). */
3322 regcache_raw_supply (current_regcache, r->regnum, NULL);
3323 set_register_cached (i, -1);
3324 }
3325 else
3326 regcache_raw_supply (current_regcache, r->regnum,
3327 regs + r->offset);
3328 }
3329 }
3330 }
3331 }
3332
3333 /* Prepare to store registers. Since we may send them all (using a
3334 'G' request), we have to read out the ones we don't want to change
3335 first. */
3336
3337 static void
3338 remote_prepare_to_store (void)
3339 {
3340 struct remote_state *rs = get_remote_state ();
3341 int i;
3342 char buf[MAX_REGISTER_SIZE];
3343
3344 /* Make sure the entire registers array is valid. */
3345 switch (remote_protocol_P.support)
3346 {
3347 case PACKET_DISABLE:
3348 case PACKET_SUPPORT_UNKNOWN:
3349 /* Make sure all the necessary registers are cached. */
3350 for (i = 0; i < NUM_REGS; i++)
3351 if (rs->regs[i].in_g_packet)
3352 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3353 break;
3354 case PACKET_ENABLE:
3355 break;
3356 }
3357 }
3358
3359 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3360 packet was not recognized. */
3361
3362 static int
3363 store_register_using_P (int regnum)
3364 {
3365 struct remote_state *rs = get_remote_state ();
3366 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3367 /* Try storing a single register. */
3368 char *buf = alloca (rs->remote_packet_size);
3369 char regp[MAX_REGISTER_SIZE];
3370 char *p;
3371 int i;
3372
3373 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3374 p = buf + strlen (buf);
3375 regcache_raw_collect (current_regcache, reg->regnum, regp);
3376 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3377 remote_send (buf, rs->remote_packet_size);
3378
3379 return buf[0] != '\0';
3380 }
3381
3382
3383 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3384 of the register cache buffer. FIXME: ignores errors. */
3385
3386 static void
3387 remote_store_registers (int regnum)
3388 {
3389 struct remote_state *rs = get_remote_state ();
3390 char *buf;
3391 char *regs;
3392 int i;
3393 char *p;
3394
3395 set_thread (PIDGET (inferior_ptid), 1);
3396
3397 if (regnum >= 0)
3398 {
3399 switch (remote_protocol_P.support)
3400 {
3401 case PACKET_DISABLE:
3402 break;
3403 case PACKET_ENABLE:
3404 if (store_register_using_P (regnum))
3405 return;
3406 else
3407 error ("Protocol error: P packet not recognized by stub");
3408 case PACKET_SUPPORT_UNKNOWN:
3409 if (store_register_using_P (regnum))
3410 {
3411 /* The stub recognized the 'P' packet. Remember this. */
3412 remote_protocol_P.support = PACKET_ENABLE;
3413 return;
3414 }
3415 else
3416 {
3417 /* The stub does not support the 'P' packet. Use 'G'
3418 instead, and don't try using 'P' in the future (it
3419 will just waste our time). */
3420 remote_protocol_P.support = PACKET_DISABLE;
3421 break;
3422 }
3423 }
3424 }
3425
3426 /* Extract all the registers in the regcache copying them into a
3427 local buffer. */
3428 {
3429 int i;
3430 regs = alloca (rs->sizeof_g_packet);
3431 memset (regs, rs->sizeof_g_packet, 0);
3432 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3433 {
3434 struct packet_reg *r = &rs->regs[i];
3435 if (r->in_g_packet)
3436 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3437 }
3438 }
3439
3440 /* Command describes registers byte by byte,
3441 each byte encoded as two hex characters. */
3442 buf = alloca (rs->remote_packet_size);
3443 p = buf;
3444 *p++ = 'G';
3445 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3446 bin2hex (regs, p, register_bytes_found);
3447 remote_send (buf, (rs->remote_packet_size));
3448 }
3449 \f
3450
3451 /* Return the number of hex digits in num. */
3452
3453 static int
3454 hexnumlen (ULONGEST num)
3455 {
3456 int i;
3457
3458 for (i = 0; num != 0; i++)
3459 num >>= 4;
3460
3461 return max (i, 1);
3462 }
3463
3464 /* Set BUF to the minimum number of hex digits representing NUM. */
3465
3466 static int
3467 hexnumstr (char *buf, ULONGEST num)
3468 {
3469 int len = hexnumlen (num);
3470 return hexnumnstr (buf, num, len);
3471 }
3472
3473
3474 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3475
3476 static int
3477 hexnumnstr (char *buf, ULONGEST num, int width)
3478 {
3479 int i;
3480
3481 buf[width] = '\0';
3482
3483 for (i = width - 1; i >= 0; i--)
3484 {
3485 buf[i] = "0123456789abcdef"[(num & 0xf)];
3486 num >>= 4;
3487 }
3488
3489 return width;
3490 }
3491
3492 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3493
3494 static CORE_ADDR
3495 remote_address_masked (CORE_ADDR addr)
3496 {
3497 if (remote_address_size > 0
3498 && remote_address_size < (sizeof (ULONGEST) * 8))
3499 {
3500 /* Only create a mask when that mask can safely be constructed
3501 in a ULONGEST variable. */
3502 ULONGEST mask = 1;
3503 mask = (mask << remote_address_size) - 1;
3504 addr &= mask;
3505 }
3506 return addr;
3507 }
3508
3509 /* Determine whether the remote target supports binary downloading.
3510 This is accomplished by sending a no-op memory write of zero length
3511 to the target at the specified address. It does not suffice to send
3512 the whole packet, since many stubs strip the eighth bit and subsequently
3513 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3514
3515 NOTE: This can still lose if the serial line is not eight-bit
3516 clean. In cases like this, the user should clear "remote
3517 X-packet". */
3518
3519 static void
3520 check_binary_download (CORE_ADDR addr)
3521 {
3522 struct remote_state *rs = get_remote_state ();
3523 switch (remote_protocol_binary_download.support)
3524 {
3525 case PACKET_DISABLE:
3526 break;
3527 case PACKET_ENABLE:
3528 break;
3529 case PACKET_SUPPORT_UNKNOWN:
3530 {
3531 char *buf = alloca (rs->remote_packet_size);
3532 char *p;
3533
3534 p = buf;
3535 *p++ = 'X';
3536 p += hexnumstr (p, (ULONGEST) addr);
3537 *p++ = ',';
3538 p += hexnumstr (p, (ULONGEST) 0);
3539 *p++ = ':';
3540 *p = '\0';
3541
3542 putpkt_binary (buf, (int) (p - buf));
3543 getpkt (buf, (rs->remote_packet_size), 0);
3544
3545 if (buf[0] == '\0')
3546 {
3547 if (remote_debug)
3548 fprintf_unfiltered (gdb_stdlog,
3549 "binary downloading NOT suppported by target\n");
3550 remote_protocol_binary_download.support = PACKET_DISABLE;
3551 }
3552 else
3553 {
3554 if (remote_debug)
3555 fprintf_unfiltered (gdb_stdlog,
3556 "binary downloading suppported by target\n");
3557 remote_protocol_binary_download.support = PACKET_ENABLE;
3558 }
3559 break;
3560 }
3561 }
3562 }
3563
3564 /* Write memory data directly to the remote machine.
3565 This does not inform the data cache; the data cache uses this.
3566 MEMADDR is the address in the remote memory space.
3567 MYADDR is the address of the buffer in our space.
3568 LEN is the number of bytes.
3569
3570 Returns number of bytes transferred, or 0 (setting errno) for
3571 error. Only transfer a single packet. */
3572
3573 int
3574 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3575 {
3576 unsigned char *buf;
3577 unsigned char *p;
3578 unsigned char *plen;
3579 long sizeof_buf;
3580 int plenlen;
3581 int todo;
3582 int nr_bytes;
3583 int payload_size;
3584 unsigned char *payload_start;
3585
3586 /* Verify that the target can support a binary download. */
3587 check_binary_download (memaddr);
3588
3589 /* Compute the size, and then allocate space for the largest
3590 possible packet. Include space for an extra trailing NUL. */
3591 sizeof_buf = get_memory_write_packet_size () + 1;
3592 buf = alloca (sizeof_buf);
3593
3594 /* Compute the size of the actual payload by subtracting out the
3595 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3596 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3597 + hexnumlen (memaddr)
3598 + hexnumlen (len)));
3599
3600 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3601
3602 /* Append "[XM]". Compute a best guess of the number of bytes
3603 actually transfered. */
3604 p = buf;
3605 switch (remote_protocol_binary_download.support)
3606 {
3607 case PACKET_ENABLE:
3608 *p++ = 'X';
3609 /* Best guess at number of bytes that will fit. */
3610 todo = min (len, payload_size);
3611 break;
3612 case PACKET_DISABLE:
3613 *p++ = 'M';
3614 /* num bytes that will fit */
3615 todo = min (len, payload_size / 2);
3616 break;
3617 case PACKET_SUPPORT_UNKNOWN:
3618 internal_error (__FILE__, __LINE__,
3619 "remote_write_bytes: bad internal state");
3620 default:
3621 internal_error (__FILE__, __LINE__, "bad switch");
3622 }
3623
3624 /* Append "<memaddr>". */
3625 memaddr = remote_address_masked (memaddr);
3626 p += hexnumstr (p, (ULONGEST) memaddr);
3627
3628 /* Append ",". */
3629 *p++ = ',';
3630
3631 /* Append <len>. Retain the location/size of <len>. It may need to
3632 be adjusted once the packet body has been created. */
3633 plen = p;
3634 plenlen = hexnumstr (p, (ULONGEST) todo);
3635 p += plenlen;
3636
3637 /* Append ":". */
3638 *p++ = ':';
3639 *p = '\0';
3640
3641 /* Append the packet body. */
3642 payload_start = p;
3643 switch (remote_protocol_binary_download.support)
3644 {
3645 case PACKET_ENABLE:
3646 /* Binary mode. Send target system values byte by byte, in
3647 increasing byte addresses. Only escape certain critical
3648 characters. */
3649 for (nr_bytes = 0;
3650 (nr_bytes < todo) && (p - payload_start) < payload_size;
3651 nr_bytes++)
3652 {
3653 switch (myaddr[nr_bytes] & 0xff)
3654 {
3655 case '$':
3656 case '#':
3657 case 0x7d:
3658 /* These must be escaped */
3659 *p++ = 0x7d;
3660 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3661 break;
3662 default:
3663 *p++ = myaddr[nr_bytes] & 0xff;
3664 break;
3665 }
3666 }
3667 if (nr_bytes < todo)
3668 {
3669 /* Escape chars have filled up the buffer prematurely,
3670 and we have actually sent fewer bytes than planned.
3671 Fix-up the length field of the packet. Use the same
3672 number of characters as before. */
3673 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3674 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3675 }
3676 break;
3677 case PACKET_DISABLE:
3678 /* Normal mode: Send target system values byte by byte, in
3679 increasing byte addresses. Each byte is encoded as a two hex
3680 value. */
3681 nr_bytes = bin2hex (myaddr, p, todo);
3682 p += 2 * nr_bytes;
3683 break;
3684 case PACKET_SUPPORT_UNKNOWN:
3685 internal_error (__FILE__, __LINE__,
3686 "remote_write_bytes: bad internal state");
3687 default:
3688 internal_error (__FILE__, __LINE__, "bad switch");
3689 }
3690
3691 putpkt_binary (buf, (int) (p - buf));
3692 getpkt (buf, sizeof_buf, 0);
3693
3694 if (buf[0] == 'E')
3695 {
3696 /* There is no correspondance between what the remote protocol
3697 uses for errors and errno codes. We would like a cleaner way
3698 of representing errors (big enough to include errno codes,
3699 bfd_error codes, and others). But for now just return EIO. */
3700 errno = EIO;
3701 return 0;
3702 }
3703
3704 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3705 bytes than we'd planned. */
3706 return nr_bytes;
3707 }
3708
3709 /* Read memory data directly from the remote machine.
3710 This does not use the data cache; the data cache uses this.
3711 MEMADDR is the address in the remote memory space.
3712 MYADDR is the address of the buffer in our space.
3713 LEN is the number of bytes.
3714
3715 Returns number of bytes transferred, or 0 for error. */
3716
3717 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3718 remote targets) shouldn't attempt to read the entire buffer.
3719 Instead it should read a single packet worth of data and then
3720 return the byte size of that packet to the caller. The caller (its
3721 caller and its callers caller ;-) already contains code for
3722 handling partial reads. */
3723
3724 int
3725 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3726 {
3727 char *buf;
3728 int max_buf_size; /* Max size of packet output buffer */
3729 long sizeof_buf;
3730 int origlen;
3731
3732 /* Create a buffer big enough for this packet. */
3733 max_buf_size = get_memory_read_packet_size ();
3734 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3735 buf = alloca (sizeof_buf);
3736
3737 origlen = len;
3738 while (len > 0)
3739 {
3740 char *p;
3741 int todo;
3742 int i;
3743
3744 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3745
3746 /* construct "m"<memaddr>","<len>" */
3747 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3748 memaddr = remote_address_masked (memaddr);
3749 p = buf;
3750 *p++ = 'm';
3751 p += hexnumstr (p, (ULONGEST) memaddr);
3752 *p++ = ',';
3753 p += hexnumstr (p, (ULONGEST) todo);
3754 *p = '\0';
3755
3756 putpkt (buf);
3757 getpkt (buf, sizeof_buf, 0);
3758
3759 if (buf[0] == 'E'
3760 && isxdigit (buf[1]) && isxdigit (buf[2])
3761 && buf[3] == '\0')
3762 {
3763 /* There is no correspondance between what the remote protocol uses
3764 for errors and errno codes. We would like a cleaner way of
3765 representing errors (big enough to include errno codes, bfd_error
3766 codes, and others). But for now just return EIO. */
3767 errno = EIO;
3768 return 0;
3769 }
3770
3771 /* Reply describes memory byte by byte,
3772 each byte encoded as two hex characters. */
3773
3774 p = buf;
3775 if ((i = hex2bin (p, myaddr, todo)) < todo)
3776 {
3777 /* Reply is short. This means that we were able to read
3778 only part of what we wanted to. */
3779 return i + (origlen - len);
3780 }
3781 myaddr += todo;
3782 memaddr += todo;
3783 len -= todo;
3784 }
3785 return origlen;
3786 }
3787 \f
3788 /* Read or write LEN bytes from inferior memory at MEMADDR,
3789 transferring to or from debugger address BUFFER. Write to inferior if
3790 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3791 for error. TARGET is unused. */
3792
3793 static int
3794 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3795 int should_write, struct mem_attrib *attrib,
3796 struct target_ops *target)
3797 {
3798 CORE_ADDR targ_addr;
3799 int targ_len;
3800 int res;
3801
3802 /* Should this be the selected frame? */
3803 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3804 mem_addr, mem_len,
3805 &targ_addr, &targ_len);
3806 if (targ_len <= 0)
3807 return 0;
3808
3809 if (should_write)
3810 res = remote_write_bytes (targ_addr, buffer, targ_len);
3811 else
3812 res = remote_read_bytes (targ_addr, buffer, targ_len);
3813
3814 return res;
3815 }
3816
3817 static void
3818 remote_files_info (struct target_ops *ignore)
3819 {
3820 puts_filtered ("Debugging a target over a serial line.\n");
3821 }
3822 \f
3823 /* Stuff for dealing with the packets which are part of this protocol.
3824 See comment at top of file for details. */
3825
3826 /* Read a single character from the remote end, masking it down to 7 bits. */
3827
3828 static int
3829 readchar (int timeout)
3830 {
3831 int ch;
3832
3833 ch = serial_readchar (remote_desc, timeout);
3834
3835 if (ch >= 0)
3836 return (ch & 0x7f);
3837
3838 switch ((enum serial_rc) ch)
3839 {
3840 case SERIAL_EOF:
3841 target_mourn_inferior ();
3842 error ("Remote connection closed");
3843 /* no return */
3844 case SERIAL_ERROR:
3845 perror_with_name ("Remote communication error");
3846 /* no return */
3847 case SERIAL_TIMEOUT:
3848 break;
3849 }
3850 return ch;
3851 }
3852
3853 /* Send the command in BUF to the remote machine, and read the reply
3854 into BUF. Report an error if we get an error reply. */
3855
3856 static void
3857 remote_send (char *buf,
3858 long sizeof_buf)
3859 {
3860 putpkt (buf);
3861 getpkt (buf, sizeof_buf, 0);
3862
3863 if (buf[0] == 'E')
3864 error ("Remote failure reply: %s", buf);
3865 }
3866
3867 /* Display a null-terminated packet on stdout, for debugging, using C
3868 string notation. */
3869
3870 static void
3871 print_packet (char *buf)
3872 {
3873 puts_filtered ("\"");
3874 fputstr_filtered (buf, '"', gdb_stdout);
3875 puts_filtered ("\"");
3876 }
3877
3878 int
3879 putpkt (char *buf)
3880 {
3881 return putpkt_binary (buf, strlen (buf));
3882 }
3883
3884 /* Send a packet to the remote machine, with error checking. The data
3885 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
3886 to account for the $, # and checksum, and for a possible /0 if we are
3887 debugging (remote_debug) and want to print the sent packet as a string */
3888
3889 static int
3890 putpkt_binary (char *buf, int cnt)
3891 {
3892 struct remote_state *rs = get_remote_state ();
3893 int i;
3894 unsigned char csum = 0;
3895 char *buf2 = alloca (cnt + 6);
3896 long sizeof_junkbuf = (rs->remote_packet_size);
3897 char *junkbuf = alloca (sizeof_junkbuf);
3898
3899 int ch;
3900 int tcount = 0;
3901 char *p;
3902
3903 /* Copy the packet into buffer BUF2, encapsulating it
3904 and giving it a checksum. */
3905
3906 p = buf2;
3907 *p++ = '$';
3908
3909 for (i = 0; i < cnt; i++)
3910 {
3911 csum += buf[i];
3912 *p++ = buf[i];
3913 }
3914 *p++ = '#';
3915 *p++ = tohex ((csum >> 4) & 0xf);
3916 *p++ = tohex (csum & 0xf);
3917
3918 /* Send it over and over until we get a positive ack. */
3919
3920 while (1)
3921 {
3922 int started_error_output = 0;
3923
3924 if (remote_debug)
3925 {
3926 *p = '\0';
3927 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3928 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3929 fprintf_unfiltered (gdb_stdlog, "...");
3930 gdb_flush (gdb_stdlog);
3931 }
3932 if (serial_write (remote_desc, buf2, p - buf2))
3933 perror_with_name ("putpkt: write failed");
3934
3935 /* read until either a timeout occurs (-2) or '+' is read */
3936 while (1)
3937 {
3938 ch = readchar (remote_timeout);
3939
3940 if (remote_debug)
3941 {
3942 switch (ch)
3943 {
3944 case '+':
3945 case '-':
3946 case SERIAL_TIMEOUT:
3947 case '$':
3948 if (started_error_output)
3949 {
3950 putchar_unfiltered ('\n');
3951 started_error_output = 0;
3952 }
3953 }
3954 }
3955
3956 switch (ch)
3957 {
3958 case '+':
3959 if (remote_debug)
3960 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3961 return 1;
3962 case '-':
3963 if (remote_debug)
3964 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3965 case SERIAL_TIMEOUT:
3966 tcount++;
3967 if (tcount > 3)
3968 return 0;
3969 break; /* Retransmit buffer */
3970 case '$':
3971 {
3972 if (remote_debug)
3973 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
3974 /* It's probably an old response, and we're out of sync.
3975 Just gobble up the packet and ignore it. */
3976 read_frame (junkbuf, sizeof_junkbuf);
3977 continue; /* Now, go look for + */
3978 }
3979 default:
3980 if (remote_debug)
3981 {
3982 if (!started_error_output)
3983 {
3984 started_error_output = 1;
3985 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
3986 }
3987 fputc_unfiltered (ch & 0177, gdb_stdlog);
3988 }
3989 continue;
3990 }
3991 break; /* Here to retransmit */
3992 }
3993
3994 #if 0
3995 /* This is wrong. If doing a long backtrace, the user should be
3996 able to get out next time we call QUIT, without anything as
3997 violent as interrupt_query. If we want to provide a way out of
3998 here without getting to the next QUIT, it should be based on
3999 hitting ^C twice as in remote_wait. */
4000 if (quit_flag)
4001 {
4002 quit_flag = 0;
4003 interrupt_query ();
4004 }
4005 #endif
4006 }
4007 }
4008
4009 /* Come here after finding the start of the frame. Collect the rest
4010 into BUF, verifying the checksum, length, and handling run-length
4011 compression. No more than sizeof_buf-1 characters are read so that
4012 the buffer can be NUL terminated.
4013
4014 Returns -1 on error, number of characters in buffer (ignoring the
4015 trailing NULL) on success. (could be extended to return one of the
4016 SERIAL status indications). */
4017
4018 static long
4019 read_frame (char *buf,
4020 long sizeof_buf)
4021 {
4022 unsigned char csum;
4023 long bc;
4024 int c;
4025
4026 csum = 0;
4027 bc = 0;
4028
4029 while (1)
4030 {
4031 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4032 c = readchar (remote_timeout);
4033 switch (c)
4034 {
4035 case SERIAL_TIMEOUT:
4036 if (remote_debug)
4037 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4038 return -1;
4039 case '$':
4040 if (remote_debug)
4041 fputs_filtered ("Saw new packet start in middle of old one\n",
4042 gdb_stdlog);
4043 return -1; /* Start a new packet, count retries */
4044 case '#':
4045 {
4046 unsigned char pktcsum;
4047 int check_0 = 0;
4048 int check_1 = 0;
4049
4050 buf[bc] = '\0';
4051
4052 check_0 = readchar (remote_timeout);
4053 if (check_0 >= 0)
4054 check_1 = readchar (remote_timeout);
4055
4056 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4057 {
4058 if (remote_debug)
4059 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4060 return -1;
4061 }
4062 else if (check_0 < 0 || check_1 < 0)
4063 {
4064 if (remote_debug)
4065 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4066 return -1;
4067 }
4068
4069 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4070 if (csum == pktcsum)
4071 return bc;
4072
4073 if (remote_debug)
4074 {
4075 fprintf_filtered (gdb_stdlog,
4076 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4077 pktcsum, csum);
4078 fputs_filtered (buf, gdb_stdlog);
4079 fputs_filtered ("\n", gdb_stdlog);
4080 }
4081 /* Number of characters in buffer ignoring trailing
4082 NUL. */
4083 return -1;
4084 }
4085 case '*': /* Run length encoding */
4086 {
4087 int repeat;
4088 csum += c;
4089
4090 c = readchar (remote_timeout);
4091 csum += c;
4092 repeat = c - ' ' + 3; /* Compute repeat count */
4093
4094 /* The character before ``*'' is repeated. */
4095
4096 if (repeat > 0 && repeat <= 255
4097 && bc > 0
4098 && bc + repeat - 1 < sizeof_buf - 1)
4099 {
4100 memset (&buf[bc], buf[bc - 1], repeat);
4101 bc += repeat;
4102 continue;
4103 }
4104
4105 buf[bc] = '\0';
4106 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4107 puts_filtered (buf);
4108 puts_filtered ("\n");
4109 return -1;
4110 }
4111 default:
4112 if (bc < sizeof_buf - 1)
4113 {
4114 buf[bc++] = c;
4115 csum += c;
4116 continue;
4117 }
4118
4119 buf[bc] = '\0';
4120 puts_filtered ("Remote packet too long: ");
4121 puts_filtered (buf);
4122 puts_filtered ("\n");
4123
4124 return -1;
4125 }
4126 }
4127 }
4128
4129 /* Read a packet from the remote machine, with error checking, and
4130 store it in BUF. If FOREVER, wait forever rather than timing out;
4131 this is used (in synchronous mode) to wait for a target that is is
4132 executing user code to stop. */
4133 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4134 don't have to change all the calls to getpkt to deal with the
4135 return value, because at the moment I don't know what the right
4136 thing to do it for those. */
4137 void
4138 getpkt (char *buf,
4139 long sizeof_buf,
4140 int forever)
4141 {
4142 int timed_out;
4143
4144 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4145 }
4146
4147
4148 /* Read a packet from the remote machine, with error checking, and
4149 store it in BUF. If FOREVER, wait forever rather than timing out;
4150 this is used (in synchronous mode) to wait for a target that is is
4151 executing user code to stop. If FOREVER == 0, this function is
4152 allowed to time out gracefully and return an indication of this to
4153 the caller. */
4154 static int
4155 getpkt_sane (char *buf,
4156 long sizeof_buf,
4157 int forever)
4158 {
4159 int c;
4160 int tries;
4161 int timeout;
4162 int val;
4163
4164 strcpy (buf, "timeout");
4165
4166 if (forever)
4167 {
4168 timeout = watchdog > 0 ? watchdog : -1;
4169 }
4170
4171 else
4172 timeout = remote_timeout;
4173
4174 #define MAX_TRIES 3
4175
4176 for (tries = 1; tries <= MAX_TRIES; tries++)
4177 {
4178 /* This can loop forever if the remote side sends us characters
4179 continuously, but if it pauses, we'll get a zero from readchar
4180 because of timeout. Then we'll count that as a retry. */
4181
4182 /* Note that we will only wait forever prior to the start of a packet.
4183 After that, we expect characters to arrive at a brisk pace. They
4184 should show up within remote_timeout intervals. */
4185
4186 do
4187 {
4188 c = readchar (timeout);
4189
4190 if (c == SERIAL_TIMEOUT)
4191 {
4192 if (forever) /* Watchdog went off? Kill the target. */
4193 {
4194 QUIT;
4195 target_mourn_inferior ();
4196 error ("Watchdog has expired. Target detached.\n");
4197 }
4198 if (remote_debug)
4199 fputs_filtered ("Timed out.\n", gdb_stdlog);
4200 goto retry;
4201 }
4202 }
4203 while (c != '$');
4204
4205 /* We've found the start of a packet, now collect the data. */
4206
4207 val = read_frame (buf, sizeof_buf);
4208
4209 if (val >= 0)
4210 {
4211 if (remote_debug)
4212 {
4213 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4214 fputstr_unfiltered (buf, 0, gdb_stdlog);
4215 fprintf_unfiltered (gdb_stdlog, "\n");
4216 }
4217 serial_write (remote_desc, "+", 1);
4218 return 0;
4219 }
4220
4221 /* Try the whole thing again. */
4222 retry:
4223 serial_write (remote_desc, "-", 1);
4224 }
4225
4226 /* We have tried hard enough, and just can't receive the packet. Give up. */
4227
4228 printf_unfiltered ("Ignoring packet error, continuing...\n");
4229 serial_write (remote_desc, "+", 1);
4230 return 1;
4231 }
4232 \f
4233 static void
4234 remote_kill (void)
4235 {
4236 /* For some mysterious reason, wait_for_inferior calls kill instead of
4237 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4238 if (kill_kludge)
4239 {
4240 kill_kludge = 0;
4241 target_mourn_inferior ();
4242 return;
4243 }
4244
4245 /* Use catch_errors so the user can quit from gdb even when we aren't on
4246 speaking terms with the remote system. */
4247 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4248
4249 /* Don't wait for it to die. I'm not really sure it matters whether
4250 we do or not. For the existing stubs, kill is a noop. */
4251 target_mourn_inferior ();
4252 }
4253
4254 /* Async version of remote_kill. */
4255 static void
4256 remote_async_kill (void)
4257 {
4258 /* Unregister the file descriptor from the event loop. */
4259 if (target_is_async_p ())
4260 serial_async (remote_desc, NULL, 0);
4261
4262 /* For some mysterious reason, wait_for_inferior calls kill instead of
4263 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4264 if (kill_kludge)
4265 {
4266 kill_kludge = 0;
4267 target_mourn_inferior ();
4268 return;
4269 }
4270
4271 /* Use catch_errors so the user can quit from gdb even when we aren't on
4272 speaking terms with the remote system. */
4273 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4274
4275 /* Don't wait for it to die. I'm not really sure it matters whether
4276 we do or not. For the existing stubs, kill is a noop. */
4277 target_mourn_inferior ();
4278 }
4279
4280 static void
4281 remote_mourn (void)
4282 {
4283 remote_mourn_1 (&remote_ops);
4284 }
4285
4286 static void
4287 remote_async_mourn (void)
4288 {
4289 remote_mourn_1 (&remote_async_ops);
4290 }
4291
4292 static void
4293 extended_remote_mourn (void)
4294 {
4295 /* We do _not_ want to mourn the target like this; this will
4296 remove the extended remote target from the target stack,
4297 and the next time the user says "run" it'll fail.
4298
4299 FIXME: What is the right thing to do here? */
4300 #if 0
4301 remote_mourn_1 (&extended_remote_ops);
4302 #endif
4303 }
4304
4305 /* Worker function for remote_mourn. */
4306 static void
4307 remote_mourn_1 (struct target_ops *target)
4308 {
4309 unpush_target (target);
4310 generic_mourn_inferior ();
4311 }
4312
4313 /* In the extended protocol we want to be able to do things like
4314 "run" and have them basically work as expected. So we need
4315 a special create_inferior function.
4316
4317 FIXME: One day add support for changing the exec file
4318 we're debugging, arguments and an environment. */
4319
4320 static void
4321 extended_remote_create_inferior (char *exec_file, char *args, char **env,
4322 int from_tty)
4323 {
4324 /* Rip out the breakpoints; we'll reinsert them after restarting
4325 the remote server. */
4326 remove_breakpoints ();
4327
4328 /* Now restart the remote server. */
4329 extended_remote_restart ();
4330
4331 /* Now put the breakpoints back in. This way we're safe if the
4332 restart function works via a unix fork on the remote side. */
4333 insert_breakpoints ();
4334
4335 /* Clean up from the last time we were running. */
4336 clear_proceed_status ();
4337
4338 /* Let the remote process run. */
4339 proceed (-1, TARGET_SIGNAL_0, 0);
4340 }
4341
4342 /* Async version of extended_remote_create_inferior. */
4343 static void
4344 extended_remote_async_create_inferior (char *exec_file, char *args, char **env,
4345 int from_tty)
4346 {
4347 /* Rip out the breakpoints; we'll reinsert them after restarting
4348 the remote server. */
4349 remove_breakpoints ();
4350
4351 /* If running asynchronously, register the target file descriptor
4352 with the event loop. */
4353 if (target_can_async_p ())
4354 target_async (inferior_event_handler, 0);
4355
4356 /* Now restart the remote server. */
4357 extended_remote_restart ();
4358
4359 /* Now put the breakpoints back in. This way we're safe if the
4360 restart function works via a unix fork on the remote side. */
4361 insert_breakpoints ();
4362
4363 /* Clean up from the last time we were running. */
4364 clear_proceed_status ();
4365
4366 /* Let the remote process run. */
4367 proceed (-1, TARGET_SIGNAL_0, 0);
4368 }
4369 \f
4370
4371 /* On some machines, e.g. 68k, we may use a different breakpoint
4372 instruction than other targets; in those use
4373 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4374 Also, bi-endian targets may define
4375 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4376 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4377 just call the standard routines that are in mem-break.c. */
4378
4379 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4380 target should use an identical BREAKPOINT_FROM_PC. As for native,
4381 the ARCH-OS-tdep.c code can override the default. */
4382
4383 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4384 #define DEPRECATED_REMOTE_BREAKPOINT
4385 #endif
4386
4387 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4388
4389 /* If the target isn't bi-endian, just pretend it is. */
4390 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4391 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4392 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4393 #endif
4394
4395 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4396 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4397
4398 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4399
4400 /* Insert a breakpoint on targets that don't have any better
4401 breakpoint support. We read the contents of the target location
4402 and stash it, then overwrite it with a breakpoint instruction.
4403 ADDR is the target location in the target machine. CONTENTS_CACHE
4404 is a pointer to memory allocated for saving the target contents.
4405 It is guaranteed by the caller to be long enough to save the number
4406 of bytes returned by BREAKPOINT_FROM_PC. */
4407
4408 static int
4409 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4410 {
4411 struct remote_state *rs = get_remote_state ();
4412 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4413 int val;
4414 #endif
4415 int bp_size;
4416
4417 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4418 If it succeeds, then set the support to PACKET_ENABLE. If it
4419 fails, and the user has explicitly requested the Z support then
4420 report an error, otherwise, mark it disabled and go on. */
4421
4422 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4423 {
4424 char *buf = alloca (rs->remote_packet_size);
4425 char *p = buf;
4426
4427 addr = remote_address_masked (addr);
4428 *(p++) = 'Z';
4429 *(p++) = '0';
4430 *(p++) = ',';
4431 p += hexnumstr (p, (ULONGEST) addr);
4432 BREAKPOINT_FROM_PC (&addr, &bp_size);
4433 sprintf (p, ",%d", bp_size);
4434
4435 putpkt (buf);
4436 getpkt (buf, (rs->remote_packet_size), 0);
4437
4438 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4439 {
4440 case PACKET_ERROR:
4441 return -1;
4442 case PACKET_OK:
4443 return 0;
4444 case PACKET_UNKNOWN:
4445 break;
4446 }
4447 }
4448
4449 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4450 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4451
4452 if (val == 0)
4453 {
4454 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4455 val = target_write_memory (addr, (char *) big_break_insn,
4456 sizeof big_break_insn);
4457 else
4458 val = target_write_memory (addr, (char *) little_break_insn,
4459 sizeof little_break_insn);
4460 }
4461
4462 return val;
4463 #else
4464 return memory_insert_breakpoint (addr, contents_cache);
4465 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4466 }
4467
4468 static int
4469 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4470 {
4471 struct remote_state *rs = get_remote_state ();
4472 int bp_size;
4473
4474 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4475 {
4476 char *buf = alloca (rs->remote_packet_size);
4477 char *p = buf;
4478
4479 *(p++) = 'z';
4480 *(p++) = '0';
4481 *(p++) = ',';
4482
4483 addr = remote_address_masked (addr);
4484 p += hexnumstr (p, (ULONGEST) addr);
4485 BREAKPOINT_FROM_PC (&addr, &bp_size);
4486 sprintf (p, ",%d", bp_size);
4487
4488 putpkt (buf);
4489 getpkt (buf, (rs->remote_packet_size), 0);
4490
4491 return (buf[0] == 'E');
4492 }
4493
4494 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4495 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4496 #else
4497 return memory_remove_breakpoint (addr, contents_cache);
4498 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4499 }
4500
4501 static int
4502 watchpoint_to_Z_packet (int type)
4503 {
4504 switch (type)
4505 {
4506 case hw_write:
4507 return 2;
4508 break;
4509 case hw_read:
4510 return 3;
4511 break;
4512 case hw_access:
4513 return 4;
4514 break;
4515 default:
4516 internal_error (__FILE__, __LINE__,
4517 "hw_bp_to_z: bad watchpoint type %d", type);
4518 }
4519 }
4520
4521 static int
4522 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4523 {
4524 struct remote_state *rs = get_remote_state ();
4525 char *buf = alloca (rs->remote_packet_size);
4526 char *p;
4527 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4528
4529 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4530 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4531 remote_protocol_Z[packet].name,
4532 remote_protocol_Z[packet].title);
4533
4534 sprintf (buf, "Z%x,", packet);
4535 p = strchr (buf, '\0');
4536 addr = remote_address_masked (addr);
4537 p += hexnumstr (p, (ULONGEST) addr);
4538 sprintf (p, ",%x", len);
4539
4540 putpkt (buf);
4541 getpkt (buf, (rs->remote_packet_size), 0);
4542
4543 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4544 {
4545 case PACKET_ERROR:
4546 case PACKET_UNKNOWN:
4547 return -1;
4548 case PACKET_OK:
4549 return 0;
4550 }
4551 internal_error (__FILE__, __LINE__,
4552 "remote_insert_watchpoint: reached end of function");
4553 }
4554
4555
4556 static int
4557 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4558 {
4559 struct remote_state *rs = get_remote_state ();
4560 char *buf = alloca (rs->remote_packet_size);
4561 char *p;
4562 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4563
4564 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4565 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4566 remote_protocol_Z[packet].name,
4567 remote_protocol_Z[packet].title);
4568
4569 sprintf (buf, "z%x,", packet);
4570 p = strchr (buf, '\0');
4571 addr = remote_address_masked (addr);
4572 p += hexnumstr (p, (ULONGEST) addr);
4573 sprintf (p, ",%x", len);
4574 putpkt (buf);
4575 getpkt (buf, (rs->remote_packet_size), 0);
4576
4577 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4578 {
4579 case PACKET_ERROR:
4580 case PACKET_UNKNOWN:
4581 return -1;
4582 case PACKET_OK:
4583 return 0;
4584 }
4585 internal_error (__FILE__, __LINE__,
4586 "remote_remove_watchpoint: reached end of function");
4587 }
4588
4589
4590 int remote_hw_watchpoint_limit = -1;
4591 int remote_hw_breakpoint_limit = -1;
4592
4593 static int
4594 remote_check_watch_resources (int type, int cnt, int ot)
4595 {
4596 if (type == bp_hardware_breakpoint)
4597 {
4598 if (remote_hw_breakpoint_limit == 0)
4599 return 0;
4600 else if (remote_hw_breakpoint_limit < 0)
4601 return 1;
4602 else if (cnt <= remote_hw_breakpoint_limit)
4603 return 1;
4604 }
4605 else
4606 {
4607 if (remote_hw_watchpoint_limit == 0)
4608 return 0;
4609 else if (remote_hw_watchpoint_limit < 0)
4610 return 1;
4611 else if (ot)
4612 return -1;
4613 else if (cnt <= remote_hw_watchpoint_limit)
4614 return 1;
4615 }
4616 return -1;
4617 }
4618
4619 static int
4620 remote_stopped_by_watchpoint (void)
4621 {
4622 return remote_stopped_by_watchpoint_p;
4623 }
4624
4625 extern int stepped_after_stopped_by_watchpoint;
4626
4627 static CORE_ADDR
4628 remote_stopped_data_address (void)
4629 {
4630 if (remote_stopped_by_watchpoint ()
4631 || stepped_after_stopped_by_watchpoint)
4632 return remote_watch_data_address;
4633 return (CORE_ADDR)0;
4634 }
4635
4636
4637 static int
4638 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4639 {
4640 int len = 0;
4641 struct remote_state *rs = get_remote_state ();
4642 char *buf = alloca (rs->remote_packet_size);
4643 char *p = buf;
4644
4645 /* The length field should be set to the size of a breakpoint
4646 instruction. */
4647
4648 BREAKPOINT_FROM_PC (&addr, &len);
4649
4650 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4651 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4652 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4653 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4654
4655 *(p++) = 'Z';
4656 *(p++) = '1';
4657 *(p++) = ',';
4658
4659 addr = remote_address_masked (addr);
4660 p += hexnumstr (p, (ULONGEST) addr);
4661 sprintf (p, ",%x", len);
4662
4663 putpkt (buf);
4664 getpkt (buf, (rs->remote_packet_size), 0);
4665
4666 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4667 {
4668 case PACKET_ERROR:
4669 case PACKET_UNKNOWN:
4670 return -1;
4671 case PACKET_OK:
4672 return 0;
4673 }
4674 internal_error (__FILE__, __LINE__,
4675 "remote_insert_hw_breakpoint: reached end of function");
4676 }
4677
4678
4679 static int
4680 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4681 {
4682 int len;
4683 struct remote_state *rs = get_remote_state ();
4684 char *buf = alloca (rs->remote_packet_size);
4685 char *p = buf;
4686
4687 /* The length field should be set to the size of a breakpoint
4688 instruction. */
4689
4690 BREAKPOINT_FROM_PC (&addr, &len);
4691
4692 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4693 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4694 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4695 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4696
4697 *(p++) = 'z';
4698 *(p++) = '1';
4699 *(p++) = ',';
4700
4701 addr = remote_address_masked (addr);
4702 p += hexnumstr (p, (ULONGEST) addr);
4703 sprintf (p, ",%x", len);
4704
4705 putpkt(buf);
4706 getpkt (buf, (rs->remote_packet_size), 0);
4707
4708 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4709 {
4710 case PACKET_ERROR:
4711 case PACKET_UNKNOWN:
4712 return -1;
4713 case PACKET_OK:
4714 return 0;
4715 }
4716 internal_error (__FILE__, __LINE__,
4717 "remote_remove_hw_breakpoint: reached end of function");
4718 }
4719
4720 /* Some targets are only capable of doing downloads, and afterwards
4721 they switch to the remote serial protocol. This function provides
4722 a clean way to get from the download target to the remote target.
4723 It's basically just a wrapper so that we don't have to expose any
4724 of the internal workings of remote.c.
4725
4726 Prior to calling this routine, you should shutdown the current
4727 target code, else you will get the "A program is being debugged
4728 already..." message. Usually a call to pop_target() suffices. */
4729
4730 void
4731 push_remote_target (char *name, int from_tty)
4732 {
4733 printf_filtered ("Switching to remote protocol\n");
4734 remote_open (name, from_tty);
4735 }
4736
4737 /* Table used by the crc32 function to calcuate the checksum. */
4738
4739 static unsigned long crc32_table[256] =
4740 {0, 0};
4741
4742 static unsigned long
4743 crc32 (unsigned char *buf, int len, unsigned int crc)
4744 {
4745 if (!crc32_table[1])
4746 {
4747 /* Initialize the CRC table and the decoding table. */
4748 int i, j;
4749 unsigned int c;
4750
4751 for (i = 0; i < 256; i++)
4752 {
4753 for (c = i << 24, j = 8; j > 0; --j)
4754 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4755 crc32_table[i] = c;
4756 }
4757 }
4758
4759 while (len--)
4760 {
4761 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4762 buf++;
4763 }
4764 return crc;
4765 }
4766
4767 /* compare-sections command
4768
4769 With no arguments, compares each loadable section in the exec bfd
4770 with the same memory range on the target, and reports mismatches.
4771 Useful for verifying the image on the target against the exec file.
4772 Depends on the target understanding the new "qCRC:" request. */
4773
4774 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4775 target method (target verify memory) and generic version of the
4776 actual command. This will allow other high-level code (especially
4777 generic_load()) to make use of this target functionality. */
4778
4779 static void
4780 compare_sections_command (char *args, int from_tty)
4781 {
4782 struct remote_state *rs = get_remote_state ();
4783 asection *s;
4784 unsigned long host_crc, target_crc;
4785 extern bfd *exec_bfd;
4786 struct cleanup *old_chain;
4787 char *tmp;
4788 char *sectdata;
4789 const char *sectname;
4790 char *buf = alloca (rs->remote_packet_size);
4791 bfd_size_type size;
4792 bfd_vma lma;
4793 int matched = 0;
4794 int mismatched = 0;
4795
4796 if (!exec_bfd)
4797 error ("command cannot be used without an exec file");
4798 if (!current_target.to_shortname ||
4799 strcmp (current_target.to_shortname, "remote") != 0)
4800 error ("command can only be used with remote target");
4801
4802 for (s = exec_bfd->sections; s; s = s->next)
4803 {
4804 if (!(s->flags & SEC_LOAD))
4805 continue; /* skip non-loadable section */
4806
4807 size = bfd_get_section_size (s);
4808 if (size == 0)
4809 continue; /* skip zero-length section */
4810
4811 sectname = bfd_get_section_name (exec_bfd, s);
4812 if (args && strcmp (args, sectname) != 0)
4813 continue; /* not the section selected by user */
4814
4815 matched = 1; /* do this section */
4816 lma = s->lma;
4817 /* FIXME: assumes lma can fit into long */
4818 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4819 putpkt (buf);
4820
4821 /* be clever; compute the host_crc before waiting for target reply */
4822 sectdata = xmalloc (size);
4823 old_chain = make_cleanup (xfree, sectdata);
4824 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4825 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4826
4827 getpkt (buf, (rs->remote_packet_size), 0);
4828 if (buf[0] == 'E')
4829 error ("target memory fault, section %s, range 0x%s -- 0x%s",
4830 sectname, paddr (lma), paddr (lma + size));
4831 if (buf[0] != 'C')
4832 error ("remote target does not support this operation");
4833
4834 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4835 target_crc = target_crc * 16 + fromhex (*tmp);
4836
4837 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4838 sectname, paddr (lma), paddr (lma + size));
4839 if (host_crc == target_crc)
4840 printf_filtered ("matched.\n");
4841 else
4842 {
4843 printf_filtered ("MIS-MATCHED!\n");
4844 mismatched++;
4845 }
4846
4847 do_cleanups (old_chain);
4848 }
4849 if (mismatched > 0)
4850 warning ("One or more sections of the remote executable does not match\n\
4851 the loaded file\n");
4852 if (args && !matched)
4853 printf_filtered ("No loaded section named '%s'.\n", args);
4854 }
4855
4856 static LONGEST
4857 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4858 const char *annex, void *readbuf, const void *writebuf,
4859 ULONGEST offset, LONGEST len)
4860 {
4861 struct remote_state *rs = get_remote_state ();
4862 int i;
4863 char *buf2 = alloca (rs->remote_packet_size);
4864 char *p2 = &buf2[0];
4865 char query_type;
4866
4867 /* Handle memory using remote_xfer_memory. */
4868 if (object == TARGET_OBJECT_MEMORY)
4869 {
4870 int xfered;
4871 errno = 0;
4872
4873 if (writebuf != NULL)
4874 {
4875 void *buffer = xmalloc (len);
4876 struct cleanup *cleanup = make_cleanup (xfree, buffer);
4877 memcpy (buffer, writebuf, len);
4878 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
4879 do_cleanups (cleanup);
4880 }
4881 else
4882 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
4883
4884 if (xfered > 0)
4885 return xfered;
4886 else if (xfered == 0 && errno == 0)
4887 return 0;
4888 else
4889 return -1;
4890 }
4891
4892 /* Only handle reads. */
4893 if (writebuf != NULL || readbuf == NULL)
4894 return -1;
4895
4896 /* Map pre-existing objects onto letters. DO NOT do this for new
4897 objects!!! Instead specify new query packets. */
4898 switch (object)
4899 {
4900 case TARGET_OBJECT_KOD:
4901 query_type = 'K';
4902 break;
4903 case TARGET_OBJECT_AVR:
4904 query_type = 'R';
4905 break;
4906
4907 case TARGET_OBJECT_AUXV:
4908 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
4909 {
4910 unsigned int total = 0;
4911 while (len > 0)
4912 {
4913 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
4914 snprintf (buf2, rs->remote_packet_size,
4915 "qPart:auxv:read::%s,%s",
4916 phex_nz (offset, sizeof offset),
4917 phex_nz (n, sizeof n));
4918 i = putpkt (buf2);
4919 if (i < 0)
4920 return total > 0 ? total : i;
4921 buf2[0] = '\0';
4922 getpkt (buf2, rs->remote_packet_size, 0);
4923 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
4924 return total > 0 ? total : -1;
4925 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
4926 break; /* Got EOF indicator. */
4927 /* Got some data. */
4928 i = hex2bin (buf2, readbuf, len);
4929 if (i > 0)
4930 {
4931 readbuf = (void *) ((char *) readbuf + i);
4932 offset += i;
4933 len -= i;
4934 total += i;
4935 }
4936 }
4937 return total;
4938 }
4939 return -1;
4940
4941 default:
4942 return -1;
4943 }
4944
4945 /* Note: a zero OFFSET and LEN can be used to query the minimum
4946 buffer size. */
4947 if (offset == 0 && len == 0)
4948 return (rs->remote_packet_size);
4949 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
4950 not large enough let the caller. */
4951 if (len < (rs->remote_packet_size))
4952 return -1;
4953 len = rs->remote_packet_size;
4954
4955 /* except for querying the minimum buffer size, target must be open */
4956 if (!remote_desc)
4957 error ("remote query is only available after target open");
4958
4959 gdb_assert (annex != NULL);
4960 gdb_assert (readbuf != NULL);
4961
4962 *p2++ = 'q';
4963 *p2++ = query_type;
4964
4965 /* we used one buffer char for the remote protocol q command and another
4966 for the query type. As the remote protocol encapsulation uses 4 chars
4967 plus one extra in case we are debugging (remote_debug),
4968 we have PBUFZIZ - 7 left to pack the query string */
4969 i = 0;
4970 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
4971 {
4972 /* Bad caller may have sent forbidden characters. */
4973 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
4974 *p2++ = annex[i];
4975 i++;
4976 }
4977 *p2 = '\0';
4978 gdb_assert (annex[i] == '\0');
4979
4980 i = putpkt (buf2);
4981 if (i < 0)
4982 return i;
4983
4984 getpkt (readbuf, len, 0);
4985
4986 return strlen (readbuf);
4987 }
4988
4989 static void
4990 remote_rcmd (char *command,
4991 struct ui_file *outbuf)
4992 {
4993 struct remote_state *rs = get_remote_state ();
4994 int i;
4995 char *buf = alloca (rs->remote_packet_size);
4996 char *p = buf;
4997
4998 if (!remote_desc)
4999 error ("remote rcmd is only available after target open");
5000
5001 /* Send a NULL command across as an empty command */
5002 if (command == NULL)
5003 command = "";
5004
5005 /* The query prefix */
5006 strcpy (buf, "qRcmd,");
5007 p = strchr (buf, '\0');
5008
5009 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5010 error ("\"monitor\" command ``%s'' is too long\n", command);
5011
5012 /* Encode the actual command */
5013 bin2hex (command, p, 0);
5014
5015 if (putpkt (buf) < 0)
5016 error ("Communication problem with target\n");
5017
5018 /* get/display the response */
5019 while (1)
5020 {
5021 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5022 buf[0] = '\0';
5023 getpkt (buf, (rs->remote_packet_size), 0);
5024 if (buf[0] == '\0')
5025 error ("Target does not support this command\n");
5026 if (buf[0] == 'O' && buf[1] != 'K')
5027 {
5028 remote_console_output (buf + 1); /* 'O' message from stub */
5029 continue;
5030 }
5031 if (strcmp (buf, "OK") == 0)
5032 break;
5033 if (strlen (buf) == 3 && buf[0] == 'E'
5034 && isdigit (buf[1]) && isdigit (buf[2]))
5035 {
5036 error ("Protocol error with Rcmd");
5037 }
5038 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5039 {
5040 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5041 fputc_unfiltered (c, outbuf);
5042 }
5043 break;
5044 }
5045 }
5046
5047 static void
5048 packet_command (char *args, int from_tty)
5049 {
5050 struct remote_state *rs = get_remote_state ();
5051 char *buf = alloca (rs->remote_packet_size);
5052
5053 if (!remote_desc)
5054 error ("command can only be used with remote target");
5055
5056 if (!args)
5057 error ("remote-packet command requires packet text as argument");
5058
5059 puts_filtered ("sending: ");
5060 print_packet (args);
5061 puts_filtered ("\n");
5062 putpkt (args);
5063
5064 getpkt (buf, (rs->remote_packet_size), 0);
5065 puts_filtered ("received: ");
5066 print_packet (buf);
5067 puts_filtered ("\n");
5068 }
5069
5070 #if 0
5071 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5072
5073 static void display_thread_info (struct gdb_ext_thread_info *info);
5074
5075 static void threadset_test_cmd (char *cmd, int tty);
5076
5077 static void threadalive_test (char *cmd, int tty);
5078
5079 static void threadlist_test_cmd (char *cmd, int tty);
5080
5081 int get_and_display_threadinfo (threadref * ref);
5082
5083 static void threadinfo_test_cmd (char *cmd, int tty);
5084
5085 static int thread_display_step (threadref * ref, void *context);
5086
5087 static void threadlist_update_test_cmd (char *cmd, int tty);
5088
5089 static void init_remote_threadtests (void);
5090
5091 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5092
5093 static void
5094 threadset_test_cmd (char *cmd, int tty)
5095 {
5096 int sample_thread = SAMPLE_THREAD;
5097
5098 printf_filtered ("Remote threadset test\n");
5099 set_thread (sample_thread, 1);
5100 }
5101
5102
5103 static void
5104 threadalive_test (char *cmd, int tty)
5105 {
5106 int sample_thread = SAMPLE_THREAD;
5107
5108 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5109 printf_filtered ("PASS: Thread alive test\n");
5110 else
5111 printf_filtered ("FAIL: Thread alive test\n");
5112 }
5113
5114 void output_threadid (char *title, threadref * ref);
5115
5116 void
5117 output_threadid (char *title, threadref *ref)
5118 {
5119 char hexid[20];
5120
5121 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5122 hexid[16] = 0;
5123 printf_filtered ("%s %s\n", title, (&hexid[0]));
5124 }
5125
5126 static void
5127 threadlist_test_cmd (char *cmd, int tty)
5128 {
5129 int startflag = 1;
5130 threadref nextthread;
5131 int done, result_count;
5132 threadref threadlist[3];
5133
5134 printf_filtered ("Remote Threadlist test\n");
5135 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5136 &result_count, &threadlist[0]))
5137 printf_filtered ("FAIL: threadlist test\n");
5138 else
5139 {
5140 threadref *scan = threadlist;
5141 threadref *limit = scan + result_count;
5142
5143 while (scan < limit)
5144 output_threadid (" thread ", scan++);
5145 }
5146 }
5147
5148 void
5149 display_thread_info (struct gdb_ext_thread_info *info)
5150 {
5151 output_threadid ("Threadid: ", &info->threadid);
5152 printf_filtered ("Name: %s\n ", info->shortname);
5153 printf_filtered ("State: %s\n", info->display);
5154 printf_filtered ("other: %s\n\n", info->more_display);
5155 }
5156
5157 int
5158 get_and_display_threadinfo (threadref *ref)
5159 {
5160 int result;
5161 int set;
5162 struct gdb_ext_thread_info threadinfo;
5163
5164 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5165 | TAG_MOREDISPLAY | TAG_DISPLAY;
5166 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5167 display_thread_info (&threadinfo);
5168 return result;
5169 }
5170
5171 static void
5172 threadinfo_test_cmd (char *cmd, int tty)
5173 {
5174 int athread = SAMPLE_THREAD;
5175 threadref thread;
5176 int set;
5177
5178 int_to_threadref (&thread, athread);
5179 printf_filtered ("Remote Threadinfo test\n");
5180 if (!get_and_display_threadinfo (&thread))
5181 printf_filtered ("FAIL cannot get thread info\n");
5182 }
5183
5184 static int
5185 thread_display_step (threadref *ref, void *context)
5186 {
5187 /* output_threadid(" threadstep ",ref); *//* simple test */
5188 return get_and_display_threadinfo (ref);
5189 }
5190
5191 static void
5192 threadlist_update_test_cmd (char *cmd, int tty)
5193 {
5194 printf_filtered ("Remote Threadlist update test\n");
5195 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5196 }
5197
5198 static void
5199 init_remote_threadtests (void)
5200 {
5201 add_com ("tlist", class_obscure, threadlist_test_cmd,
5202 "Fetch and print the remote list of thread identifiers, one pkt only");
5203 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5204 "Fetch and display info about one thread");
5205 add_com ("tset", class_obscure, threadset_test_cmd,
5206 "Test setting to a different thread");
5207 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5208 "Iterate through updating all remote thread info");
5209 add_com ("talive", class_obscure, threadalive_test,
5210 " Remote thread alive test ");
5211 }
5212
5213 #endif /* 0 */
5214
5215 /* Convert a thread ID to a string. Returns the string in a static
5216 buffer. */
5217
5218 static char *
5219 remote_pid_to_str (ptid_t ptid)
5220 {
5221 static char buf[30];
5222
5223 sprintf (buf, "Thread %d", PIDGET (ptid));
5224 return buf;
5225 }
5226
5227 static void
5228 init_remote_ops (void)
5229 {
5230 remote_ops.to_shortname = "remote";
5231 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5232 remote_ops.to_doc =
5233 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5234 Specify the serial device it is connected to\n\
5235 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5236 remote_ops.to_open = remote_open;
5237 remote_ops.to_close = remote_close;
5238 remote_ops.to_detach = remote_detach;
5239 remote_ops.to_disconnect = remote_disconnect;
5240 remote_ops.to_resume = remote_resume;
5241 remote_ops.to_wait = remote_wait;
5242 remote_ops.to_fetch_registers = remote_fetch_registers;
5243 remote_ops.to_store_registers = remote_store_registers;
5244 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5245 remote_ops.to_xfer_memory = remote_xfer_memory;
5246 remote_ops.to_files_info = remote_files_info;
5247 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5248 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5249 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5250 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5251 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5252 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5253 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5254 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5255 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5256 remote_ops.to_kill = remote_kill;
5257 remote_ops.to_load = generic_load;
5258 remote_ops.to_mourn_inferior = remote_mourn;
5259 remote_ops.to_thread_alive = remote_thread_alive;
5260 remote_ops.to_find_new_threads = remote_threads_info;
5261 remote_ops.to_pid_to_str = remote_pid_to_str;
5262 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5263 remote_ops.to_stop = remote_stop;
5264 remote_ops.to_xfer_partial = remote_xfer_partial;
5265 remote_ops.to_rcmd = remote_rcmd;
5266 remote_ops.to_stratum = process_stratum;
5267 remote_ops.to_has_all_memory = 1;
5268 remote_ops.to_has_memory = 1;
5269 remote_ops.to_has_stack = 1;
5270 remote_ops.to_has_registers = 1;
5271 remote_ops.to_has_execution = 1;
5272 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5273 remote_ops.to_magic = OPS_MAGIC;
5274 }
5275
5276 /* Set up the extended remote vector by making a copy of the standard
5277 remote vector and adding to it. */
5278
5279 static void
5280 init_extended_remote_ops (void)
5281 {
5282 extended_remote_ops = remote_ops;
5283
5284 extended_remote_ops.to_shortname = "extended-remote";
5285 extended_remote_ops.to_longname =
5286 "Extended remote serial target in gdb-specific protocol";
5287 extended_remote_ops.to_doc =
5288 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5289 Specify the serial device it is connected to (e.g. /dev/ttya).",
5290 extended_remote_ops.to_open = extended_remote_open;
5291 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5292 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5293 }
5294
5295 static int
5296 remote_can_async_p (void)
5297 {
5298 /* We're async whenever the serial device is. */
5299 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5300 }
5301
5302 static int
5303 remote_is_async_p (void)
5304 {
5305 /* We're async whenever the serial device is. */
5306 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5307 }
5308
5309 /* Pass the SERIAL event on and up to the client. One day this code
5310 will be able to delay notifying the client of an event until the
5311 point where an entire packet has been received. */
5312
5313 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5314 static void *async_client_context;
5315 static serial_event_ftype remote_async_serial_handler;
5316
5317 static void
5318 remote_async_serial_handler (struct serial *scb, void *context)
5319 {
5320 /* Don't propogate error information up to the client. Instead let
5321 the client find out about the error by querying the target. */
5322 async_client_callback (INF_REG_EVENT, async_client_context);
5323 }
5324
5325 static void
5326 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5327 {
5328 if (current_target.to_async_mask_value == 0)
5329 internal_error (__FILE__, __LINE__,
5330 "Calling remote_async when async is masked");
5331
5332 if (callback != NULL)
5333 {
5334 serial_async (remote_desc, remote_async_serial_handler, NULL);
5335 async_client_callback = callback;
5336 async_client_context = context;
5337 }
5338 else
5339 serial_async (remote_desc, NULL, NULL);
5340 }
5341
5342 /* Target async and target extended-async.
5343
5344 This are temporary targets, until it is all tested. Eventually
5345 async support will be incorporated int the usual 'remote'
5346 target. */
5347
5348 static void
5349 init_remote_async_ops (void)
5350 {
5351 remote_async_ops.to_shortname = "async";
5352 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5353 remote_async_ops.to_doc =
5354 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5355 Specify the serial device it is connected to (e.g. /dev/ttya).";
5356 remote_async_ops.to_open = remote_async_open;
5357 remote_async_ops.to_close = remote_close;
5358 remote_async_ops.to_detach = remote_detach;
5359 remote_async_ops.to_disconnect = remote_disconnect;
5360 remote_async_ops.to_resume = remote_async_resume;
5361 remote_async_ops.to_wait = remote_async_wait;
5362 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5363 remote_async_ops.to_store_registers = remote_store_registers;
5364 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5365 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5366 remote_async_ops.to_files_info = remote_files_info;
5367 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5368 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5369 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5370 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5371 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5372 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5373 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5374 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5375 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5376 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5377 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5378 remote_async_ops.to_kill = remote_async_kill;
5379 remote_async_ops.to_load = generic_load;
5380 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5381 remote_async_ops.to_thread_alive = remote_thread_alive;
5382 remote_async_ops.to_find_new_threads = remote_threads_info;
5383 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5384 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5385 remote_async_ops.to_stop = remote_stop;
5386 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5387 remote_async_ops.to_rcmd = remote_rcmd;
5388 remote_async_ops.to_stratum = process_stratum;
5389 remote_async_ops.to_has_all_memory = 1;
5390 remote_async_ops.to_has_memory = 1;
5391 remote_async_ops.to_has_stack = 1;
5392 remote_async_ops.to_has_registers = 1;
5393 remote_async_ops.to_has_execution = 1;
5394 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5395 remote_async_ops.to_can_async_p = remote_can_async_p;
5396 remote_async_ops.to_is_async_p = remote_is_async_p;
5397 remote_async_ops.to_async = remote_async;
5398 remote_async_ops.to_async_mask_value = 1;
5399 remote_async_ops.to_magic = OPS_MAGIC;
5400 }
5401
5402 /* Set up the async extended remote vector by making a copy of the standard
5403 remote vector and adding to it. */
5404
5405 static void
5406 init_extended_async_remote_ops (void)
5407 {
5408 extended_async_remote_ops = remote_async_ops;
5409
5410 extended_async_remote_ops.to_shortname = "extended-async";
5411 extended_async_remote_ops.to_longname =
5412 "Extended remote serial target in async gdb-specific protocol";
5413 extended_async_remote_ops.to_doc =
5414 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5415 Specify the serial device it is connected to (e.g. /dev/ttya).",
5416 extended_async_remote_ops.to_open = extended_remote_async_open;
5417 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5418 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5419 }
5420
5421 static void
5422 set_remote_cmd (char *args, int from_tty)
5423 {
5424 }
5425
5426 static void
5427 show_remote_cmd (char *args, int from_tty)
5428 {
5429 /* FIXME: cagney/2002-06-15: This function should iterate over
5430 remote_show_cmdlist for a list of sub commands to show. */
5431 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
5432 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
5433 show_remote_protocol_p_packet_cmd (args, from_tty, NULL);
5434 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
5435 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
5436 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
5437 show_remote_protocol_qPart_auxv_packet_cmd (args, from_tty, NULL);
5438 }
5439
5440 static void
5441 build_remote_gdbarch_data (void)
5442 {
5443 remote_address_size = TARGET_ADDR_BIT;
5444 }
5445
5446 /* Saved pointer to previous owner of the new_objfile event. */
5447 static void (*remote_new_objfile_chain) (struct objfile *);
5448
5449 /* Function to be called whenever a new objfile (shlib) is detected. */
5450 static void
5451 remote_new_objfile (struct objfile *objfile)
5452 {
5453 if (remote_desc != 0) /* Have a remote connection */
5454 {
5455 remote_check_symbols (objfile);
5456 }
5457 /* Call predecessor on chain, if any. */
5458 if (remote_new_objfile_chain != 0 &&
5459 remote_desc == 0)
5460 remote_new_objfile_chain (objfile);
5461 }
5462
5463 void
5464 _initialize_remote (void)
5465 {
5466 static struct cmd_list_element *remote_set_cmdlist;
5467 static struct cmd_list_element *remote_show_cmdlist;
5468 struct cmd_list_element *tmpcmd;
5469
5470 /* architecture specific data */
5471 remote_gdbarch_data_handle = gdbarch_data_register_post_init (init_remote_state);
5472
5473 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5474 that the remote protocol has been initialized. */
5475 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5476 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5477
5478 init_remote_ops ();
5479 add_target (&remote_ops);
5480
5481 init_extended_remote_ops ();
5482 add_target (&extended_remote_ops);
5483
5484 init_remote_async_ops ();
5485 add_target (&remote_async_ops);
5486
5487 init_extended_async_remote_ops ();
5488 add_target (&extended_async_remote_ops);
5489
5490 /* Hook into new objfile notification. */
5491 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5492 deprecated_target_new_objfile_hook = remote_new_objfile;
5493
5494 #if 0
5495 init_remote_threadtests ();
5496 #endif
5497
5498 /* set/show remote ... */
5499
5500 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5501 Remote protocol specific variables\n\
5502 Configure various remote-protocol specific variables such as\n\
5503 the packets being used",
5504 &remote_set_cmdlist, "set remote ",
5505 0/*allow-unknown*/, &setlist);
5506 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5507 Remote protocol specific variables\n\
5508 Configure various remote-protocol specific variables such as\n\
5509 the packets being used",
5510 &remote_show_cmdlist, "show remote ",
5511 0/*allow-unknown*/, &showlist);
5512
5513 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5514 "Compare section data on target to the exec file.\n\
5515 Argument is a single section name (default: all loaded sections).",
5516 &cmdlist);
5517
5518 add_cmd ("packet", class_maintenance, packet_command,
5519 "Send an arbitrary packet to a remote target.\n\
5520 maintenance packet TEXT\n\
5521 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5522 this command sends the string TEXT to the inferior, and displays the\n\
5523 response packet. GDB supplies the initial `$' character, and the\n\
5524 terminating `#' character and checksum.",
5525 &maintenancelist);
5526
5527 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, "\
5528 Set whether to send break if interrupted.", "\
5529 Show whether to send break if interrupted.", "\
5530 If set, a break, instead of a cntrl-c, is sent to the remote target.", "\
5531 Whether to send break if interrupted is %s.",
5532 NULL, NULL,
5533 &setlist, &showlist);
5534
5535 /* Install commands for configuring memory read/write packets. */
5536
5537 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5538 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5539 &setlist);
5540 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5541 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5542 &showlist);
5543 add_cmd ("memory-write-packet-size", no_class,
5544 set_memory_write_packet_size,
5545 "Set the maximum number of bytes per memory-write packet.\n"
5546 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5547 "default packet size. The actual limit is further reduced\n"
5548 "dependent on the target. Specify ``fixed'' to disable the\n"
5549 "further restriction and ``limit'' to enable that restriction\n",
5550 &remote_set_cmdlist);
5551 add_cmd ("memory-read-packet-size", no_class,
5552 set_memory_read_packet_size,
5553 "Set the maximum number of bytes per memory-read packet.\n"
5554 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5555 "default packet size. The actual limit is further reduced\n"
5556 "dependent on the target. Specify ``fixed'' to disable the\n"
5557 "further restriction and ``limit'' to enable that restriction\n",
5558 &remote_set_cmdlist);
5559 add_cmd ("memory-write-packet-size", no_class,
5560 show_memory_write_packet_size,
5561 "Show the maximum number of bytes per memory-write packet.\n",
5562 &remote_show_cmdlist);
5563 add_cmd ("memory-read-packet-size", no_class,
5564 show_memory_read_packet_size,
5565 "Show the maximum number of bytes per memory-read packet.\n",
5566 &remote_show_cmdlist);
5567
5568 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5569 &remote_hw_watchpoint_limit, "\
5570 Set the maximum number of target hardware watchpoints.", "\
5571 Show the maximum number of target hardware watchpoints.", "\
5572 Specify a negative limit for unlimited.", "\
5573 The maximum number of target hardware watchpoints is %s.",
5574 NULL, NULL,
5575 &remote_set_cmdlist, &remote_show_cmdlist);
5576 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5577 &remote_hw_breakpoint_limit, "\
5578 Set the maximum number of target hardware breakpoints.", "\
5579 Show the maximum number of target hardware breakpoints.", "\
5580 Specify a negative limit for unlimited.", "\
5581 The maximum number of target hardware breakpoints is %s.",
5582 NULL, NULL,
5583 &remote_set_cmdlist, &remote_show_cmdlist);
5584
5585 deprecated_add_show_from_set
5586 (add_set_cmd ("remoteaddresssize", class_obscure,
5587 var_integer, (char *) &remote_address_size,
5588 "Set the maximum size of the address (in bits) \
5589 in a memory packet.\n",
5590 &setlist),
5591 &showlist);
5592
5593 add_packet_config_cmd (&remote_protocol_binary_download,
5594 "X", "binary-download",
5595 set_remote_protocol_binary_download_cmd,
5596 show_remote_protocol_binary_download_cmd,
5597 &remote_set_cmdlist, &remote_show_cmdlist,
5598 1);
5599 #if 0
5600 /* XXXX - should ``set remotebinarydownload'' be retained for
5601 compatibility. */
5602 deprecated_add_show_from_set
5603 (add_set_cmd ("remotebinarydownload", no_class,
5604 var_boolean, (char *) &remote_binary_download,
5605 "Set binary downloads.\n", &setlist),
5606 &showlist);
5607 #endif
5608
5609 add_packet_config_cmd (&remote_protocol_vcont,
5610 "vCont", "verbose-resume",
5611 set_remote_protocol_vcont_packet_cmd,
5612 show_remote_protocol_vcont_packet_cmd,
5613 &remote_set_cmdlist, &remote_show_cmdlist,
5614 0);
5615
5616 add_packet_config_cmd (&remote_protocol_qSymbol,
5617 "qSymbol", "symbol-lookup",
5618 set_remote_protocol_qSymbol_packet_cmd,
5619 show_remote_protocol_qSymbol_packet_cmd,
5620 &remote_set_cmdlist, &remote_show_cmdlist,
5621 0);
5622
5623 add_packet_config_cmd (&remote_protocol_P,
5624 "P", "set-register",
5625 set_remote_protocol_P_packet_cmd,
5626 show_remote_protocol_P_packet_cmd,
5627 &remote_set_cmdlist, &remote_show_cmdlist,
5628 1);
5629
5630 add_packet_config_cmd (&remote_protocol_p,
5631 "p", "fetch-register",
5632 set_remote_protocol_p_packet_cmd,
5633 show_remote_protocol_p_packet_cmd,
5634 &remote_set_cmdlist, &remote_show_cmdlist,
5635 1);
5636
5637 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5638 "Z0", "software-breakpoint",
5639 set_remote_protocol_Z_software_bp_packet_cmd,
5640 show_remote_protocol_Z_software_bp_packet_cmd,
5641 &remote_set_cmdlist, &remote_show_cmdlist,
5642 0);
5643
5644 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5645 "Z1", "hardware-breakpoint",
5646 set_remote_protocol_Z_hardware_bp_packet_cmd,
5647 show_remote_protocol_Z_hardware_bp_packet_cmd,
5648 &remote_set_cmdlist, &remote_show_cmdlist,
5649 0);
5650
5651 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5652 "Z2", "write-watchpoint",
5653 set_remote_protocol_Z_write_wp_packet_cmd,
5654 show_remote_protocol_Z_write_wp_packet_cmd,
5655 &remote_set_cmdlist, &remote_show_cmdlist,
5656 0);
5657
5658 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5659 "Z3", "read-watchpoint",
5660 set_remote_protocol_Z_read_wp_packet_cmd,
5661 show_remote_protocol_Z_read_wp_packet_cmd,
5662 &remote_set_cmdlist, &remote_show_cmdlist,
5663 0);
5664
5665 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5666 "Z4", "access-watchpoint",
5667 set_remote_protocol_Z_access_wp_packet_cmd,
5668 show_remote_protocol_Z_access_wp_packet_cmd,
5669 &remote_set_cmdlist, &remote_show_cmdlist,
5670 0);
5671
5672 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5673 "qPart_auxv", "read-aux-vector",
5674 set_remote_protocol_qPart_auxv_packet_cmd,
5675 show_remote_protocol_qPart_auxv_packet_cmd,
5676 &remote_set_cmdlist, &remote_show_cmdlist,
5677 0);
5678
5679 /* Keep the old ``set remote Z-packet ...'' working. */
5680 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5681 &remote_Z_packet_detect, "\
5682 Set use of remote protocol `Z' packets", "\
5683 Show use of remote protocol `Z' packets ", "\
5684 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5685 packets.", "\
5686 Use of remote protocol `Z' packets is %s",
5687 set_remote_protocol_Z_packet_cmd,
5688 show_remote_protocol_Z_packet_cmd,
5689 &remote_set_cmdlist, &remote_show_cmdlist);
5690
5691 /* Eventually initialize fileio. See fileio.c */
5692 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5693 }
This page took 0.157951 seconds and 4 git commands to generate.