2004-07-28 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "target.h"
34 /*#include "terminal.h" */
35 #include "gdbcmd.h"
36 #include "objfiles.h"
37 #include "gdb-stabs.h"
38 #include "gdbthread.h"
39 #include "remote.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "gdb_assert.h"
43
44 #include <ctype.h>
45 #include <sys/time.h>
46 #ifdef USG
47 #include <sys/types.h>
48 #endif
49
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include "inf-loop.h"
53
54 #include <signal.h>
55 #include "serial.h"
56
57 #include "gdbcore.h" /* for exec_bfd */
58
59 #include "remote-fileio.h"
60
61 /* Prototypes for local functions */
62 static void cleanup_sigint_signal_handler (void *dummy);
63 static void initialize_sigint_signal_handler (void);
64 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
65
66 static void handle_remote_sigint (int);
67 static void handle_remote_sigint_twice (int);
68 static void async_remote_interrupt (gdb_client_data);
69 void async_remote_interrupt_twice (gdb_client_data);
70
71 static void build_remote_gdbarch_data (void);
72
73 static void remote_files_info (struct target_ops *ignore);
74
75 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
76 int len, int should_write,
77 struct mem_attrib *attrib,
78 struct target_ops *target);
79
80 static void remote_prepare_to_store (void);
81
82 static void remote_fetch_registers (int regno);
83
84 static void remote_resume (ptid_t ptid, int step,
85 enum target_signal siggnal);
86 static void remote_async_resume (ptid_t ptid, int step,
87 enum target_signal siggnal);
88 static int remote_start_remote (struct ui_out *uiout, void *dummy);
89
90 static void remote_open (char *name, int from_tty);
91 static void remote_async_open (char *name, int from_tty);
92
93 static void extended_remote_open (char *name, int from_tty);
94 static void extended_remote_async_open (char *name, int from_tty);
95
96 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
97 int async_p);
98
99 static void remote_close (int quitting);
100
101 static void remote_store_registers (int regno);
102
103 static void remote_mourn (void);
104 static void remote_async_mourn (void);
105
106 static void extended_remote_restart (void);
107
108 static void extended_remote_mourn (void);
109
110 static void remote_mourn_1 (struct target_ops *);
111
112 static void remote_send (char *buf, long sizeof_buf);
113
114 static int readchar (int timeout);
115
116 static ptid_t remote_wait (ptid_t ptid,
117 struct target_waitstatus *status);
118 static ptid_t remote_async_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120
121 static void remote_kill (void);
122 static void remote_async_kill (void);
123
124 static int tohex (int nib);
125
126 static void remote_detach (char *args, int from_tty);
127
128 static void remote_interrupt (int signo);
129
130 static void remote_interrupt_twice (int signo);
131
132 static void interrupt_query (void);
133
134 static void set_thread (int, int);
135
136 static int remote_thread_alive (ptid_t);
137
138 static void get_offsets (void);
139
140 static long read_frame (char *buf, long sizeof_buf);
141
142 static int remote_insert_breakpoint (CORE_ADDR, char *);
143
144 static int remote_remove_breakpoint (CORE_ADDR, char *);
145
146 static int hexnumlen (ULONGEST num);
147
148 static void init_remote_ops (void);
149
150 static void init_extended_remote_ops (void);
151
152 static void remote_stop (void);
153
154 static int ishex (int ch, int *val);
155
156 static int stubhex (int ch);
157
158 static int hexnumstr (char *, ULONGEST);
159
160 static int hexnumnstr (char *, ULONGEST, int);
161
162 static CORE_ADDR remote_address_masked (CORE_ADDR);
163
164 static void print_packet (char *);
165
166 static unsigned long crc32 (unsigned char *, int, unsigned int);
167
168 static void compare_sections_command (char *, int);
169
170 static void packet_command (char *, int);
171
172 static int stub_unpack_int (char *buff, int fieldlength);
173
174 static ptid_t remote_current_thread (ptid_t oldptid);
175
176 static void remote_find_new_threads (void);
177
178 static void record_currthread (int currthread);
179
180 static int fromhex (int a);
181
182 static int hex2bin (const char *hex, char *bin, int count);
183
184 static int bin2hex (const char *bin, char *hex, int count);
185
186 static int putpkt_binary (char *buf, int cnt);
187
188 static void check_binary_download (CORE_ADDR addr);
189
190 struct packet_config;
191
192 static void show_packet_config_cmd (struct packet_config *config);
193
194 static void update_packet_config (struct packet_config *config);
195
196 void _initialize_remote (void);
197
198 /* Description of the remote protocol. Strictly speaking, when the
199 target is open()ed, remote.c should create a per-target description
200 of the remote protocol using that target's architecture.
201 Unfortunately, the target stack doesn't include local state. For
202 the moment keep the information in the target's architecture
203 object. Sigh.. */
204
205 struct packet_reg
206 {
207 long offset; /* Offset into G packet. */
208 long regnum; /* GDB's internal register number. */
209 LONGEST pnum; /* Remote protocol register number. */
210 int in_g_packet; /* Always part of G packet. */
211 /* long size in bytes; == DEPRECATED_REGISTER_RAW_SIZE (regnum); at present. */
212 /* char *name; == REGISTER_NAME (regnum); at present. */
213 };
214
215 struct remote_state
216 {
217 /* Description of the remote protocol registers. */
218 long sizeof_g_packet;
219
220 /* Description of the remote protocol registers indexed by REGNUM
221 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
222 struct packet_reg *regs;
223
224 /* This is the size (in chars) of the first response to the ``g''
225 packet. It is used as a heuristic when determining the maximum
226 size of memory-read and memory-write packets. A target will
227 typically only reserve a buffer large enough to hold the ``g''
228 packet. The size does not include packet overhead (headers and
229 trailers). */
230 long actual_register_packet_size;
231
232 /* This is the maximum size (in chars) of a non read/write packet.
233 It is also used as a cap on the size of read/write packets. */
234 long remote_packet_size;
235 };
236
237
238 /* Handle for retreving the remote protocol data from gdbarch. */
239 static struct gdbarch_data *remote_gdbarch_data_handle;
240
241 static struct remote_state *
242 get_remote_state (void)
243 {
244 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
245 }
246
247 static void *
248 init_remote_state (struct gdbarch *gdbarch)
249 {
250 int regnum;
251 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
252
253 if (DEPRECATED_REGISTER_BYTES != 0)
254 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
255 else
256 rs->sizeof_g_packet = 0;
257
258 /* Assume a 1:1 regnum<->pnum table. */
259 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
260 struct packet_reg);
261 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
262 {
263 struct packet_reg *r = &rs->regs[regnum];
264 r->pnum = regnum;
265 r->regnum = regnum;
266 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
267 r->in_g_packet = (regnum < NUM_REGS);
268 /* ...name = REGISTER_NAME (regnum); */
269
270 /* Compute packet size by accumulating the size of all registers. */
271 if (DEPRECATED_REGISTER_BYTES == 0)
272 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
273 }
274
275 /* Default maximum number of characters in a packet body. Many
276 remote stubs have a hardwired buffer size of 400 bytes
277 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
278 as the maximum packet-size to ensure that the packet and an extra
279 NUL character can always fit in the buffer. This stops GDB
280 trashing stubs that try to squeeze an extra NUL into what is
281 already a full buffer (As of 1999-12-04 that was most stubs. */
282 rs->remote_packet_size = 400 - 1;
283
284 /* Should rs->sizeof_g_packet needs more space than the
285 default, adjust the size accordingly. Remember that each byte is
286 encoded as two characters. 32 is the overhead for the packet
287 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
288 (``$NN:G...#NN'') is a better guess, the below has been padded a
289 little. */
290 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
291 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
292
293 /* This one is filled in when a ``g'' packet is received. */
294 rs->actual_register_packet_size = 0;
295
296 return rs;
297 }
298
299 static struct packet_reg *
300 packet_reg_from_regnum (struct remote_state *rs, long regnum)
301 {
302 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
303 return NULL;
304 else
305 {
306 struct packet_reg *r = &rs->regs[regnum];
307 gdb_assert (r->regnum == regnum);
308 return r;
309 }
310 }
311
312 static struct packet_reg *
313 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
314 {
315 int i;
316 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
317 {
318 struct packet_reg *r = &rs->regs[i];
319 if (r->pnum == pnum)
320 return r;
321 }
322 return NULL;
323 }
324
325 /* FIXME: graces/2002-08-08: These variables should eventually be
326 bound to an instance of the target object (as in gdbarch-tdep()),
327 when such a thing exists. */
328
329 /* This is set to the data address of the access causing the target
330 to stop for a watchpoint. */
331 static CORE_ADDR remote_watch_data_address;
332
333 /* This is non-zero if taregt stopped for a watchpoint. */
334 static int remote_stopped_by_watchpoint_p;
335
336
337 static struct target_ops remote_ops;
338
339 static struct target_ops extended_remote_ops;
340
341 /* Temporary target ops. Just like the remote_ops and
342 extended_remote_ops, but with asynchronous support. */
343 static struct target_ops remote_async_ops;
344
345 static struct target_ops extended_async_remote_ops;
346
347 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
348 ``forever'' still use the normal timeout mechanism. This is
349 currently used by the ASYNC code to guarentee that target reads
350 during the initial connect always time-out. Once getpkt has been
351 modified to return a timeout indication and, in turn
352 remote_wait()/wait_for_inferior() have gained a timeout parameter
353 this can go away. */
354 static int wait_forever_enabled_p = 1;
355
356
357 /* This variable chooses whether to send a ^C or a break when the user
358 requests program interruption. Although ^C is usually what remote
359 systems expect, and that is the default here, sometimes a break is
360 preferable instead. */
361
362 static int remote_break;
363
364 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
365 remote_open knows that we don't have a file open when the program
366 starts. */
367 static struct serial *remote_desc = NULL;
368
369 /* This variable sets the number of bits in an address that are to be
370 sent in a memory ("M" or "m") packet. Normally, after stripping
371 leading zeros, the entire address would be sent. This variable
372 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
373 initial implementation of remote.c restricted the address sent in
374 memory packets to ``host::sizeof long'' bytes - (typically 32
375 bits). Consequently, for 64 bit targets, the upper 32 bits of an
376 address was never sent. Since fixing this bug may cause a break in
377 some remote targets this variable is principly provided to
378 facilitate backward compatibility. */
379
380 static int remote_address_size;
381
382 /* Tempoary to track who currently owns the terminal. See
383 target_async_terminal_* for more details. */
384
385 static int remote_async_terminal_ours_p;
386
387 \f
388 /* User configurable variables for the number of characters in a
389 memory read/write packet. MIN ((rs->remote_packet_size),
390 rs->sizeof_g_packet) is the default. Some targets need smaller
391 values (fifo overruns, et.al.) and some users need larger values
392 (speed up transfers). The variables ``preferred_*'' (the user
393 request), ``current_*'' (what was actually set) and ``forced_*''
394 (Positive - a soft limit, negative - a hard limit). */
395
396 struct memory_packet_config
397 {
398 char *name;
399 long size;
400 int fixed_p;
401 };
402
403 /* Compute the current size of a read/write packet. Since this makes
404 use of ``actual_register_packet_size'' the computation is dynamic. */
405
406 static long
407 get_memory_packet_size (struct memory_packet_config *config)
408 {
409 struct remote_state *rs = get_remote_state ();
410 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
411 law?) that some hosts don't cope very well with large alloca()
412 calls. Eventually the alloca() code will be replaced by calls to
413 xmalloc() and make_cleanups() allowing this restriction to either
414 be lifted or removed. */
415 #ifndef MAX_REMOTE_PACKET_SIZE
416 #define MAX_REMOTE_PACKET_SIZE 16384
417 #endif
418 /* NOTE: 16 is just chosen at random. */
419 #ifndef MIN_REMOTE_PACKET_SIZE
420 #define MIN_REMOTE_PACKET_SIZE 16
421 #endif
422 long what_they_get;
423 if (config->fixed_p)
424 {
425 if (config->size <= 0)
426 what_they_get = MAX_REMOTE_PACKET_SIZE;
427 else
428 what_they_get = config->size;
429 }
430 else
431 {
432 what_they_get = (rs->remote_packet_size);
433 /* Limit the packet to the size specified by the user. */
434 if (config->size > 0
435 && what_they_get > config->size)
436 what_they_get = config->size;
437 /* Limit it to the size of the targets ``g'' response. */
438 if ((rs->actual_register_packet_size) > 0
439 && what_they_get > (rs->actual_register_packet_size))
440 what_they_get = (rs->actual_register_packet_size);
441 }
442 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
443 what_they_get = MAX_REMOTE_PACKET_SIZE;
444 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
445 what_they_get = MIN_REMOTE_PACKET_SIZE;
446 return what_they_get;
447 }
448
449 /* Update the size of a read/write packet. If they user wants
450 something really big then do a sanity check. */
451
452 static void
453 set_memory_packet_size (char *args, struct memory_packet_config *config)
454 {
455 int fixed_p = config->fixed_p;
456 long size = config->size;
457 if (args == NULL)
458 error ("Argument required (integer, `fixed' or `limited').");
459 else if (strcmp (args, "hard") == 0
460 || strcmp (args, "fixed") == 0)
461 fixed_p = 1;
462 else if (strcmp (args, "soft") == 0
463 || strcmp (args, "limit") == 0)
464 fixed_p = 0;
465 else
466 {
467 char *end;
468 size = strtoul (args, &end, 0);
469 if (args == end)
470 error ("Invalid %s (bad syntax).", config->name);
471 #if 0
472 /* Instead of explicitly capping the size of a packet to
473 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
474 instead allowed to set the size to something arbitrarily
475 large. */
476 if (size > MAX_REMOTE_PACKET_SIZE)
477 error ("Invalid %s (too large).", config->name);
478 #endif
479 }
480 /* Extra checks? */
481 if (fixed_p && !config->fixed_p)
482 {
483 if (! query ("The target may not be able to correctly handle a %s\n"
484 "of %ld bytes. Change the packet size? ",
485 config->name, size))
486 error ("Packet size not changed.");
487 }
488 /* Update the config. */
489 config->fixed_p = fixed_p;
490 config->size = size;
491 }
492
493 static void
494 show_memory_packet_size (struct memory_packet_config *config)
495 {
496 printf_filtered ("The %s is %ld. ", config->name, config->size);
497 if (config->fixed_p)
498 printf_filtered ("Packets are fixed at %ld bytes.\n",
499 get_memory_packet_size (config));
500 else
501 printf_filtered ("Packets are limited to %ld bytes.\n",
502 get_memory_packet_size (config));
503 }
504
505 static struct memory_packet_config memory_write_packet_config =
506 {
507 "memory-write-packet-size",
508 };
509
510 static void
511 set_memory_write_packet_size (char *args, int from_tty)
512 {
513 set_memory_packet_size (args, &memory_write_packet_config);
514 }
515
516 static void
517 show_memory_write_packet_size (char *args, int from_tty)
518 {
519 show_memory_packet_size (&memory_write_packet_config);
520 }
521
522 static long
523 get_memory_write_packet_size (void)
524 {
525 return get_memory_packet_size (&memory_write_packet_config);
526 }
527
528 static struct memory_packet_config memory_read_packet_config =
529 {
530 "memory-read-packet-size",
531 };
532
533 static void
534 set_memory_read_packet_size (char *args, int from_tty)
535 {
536 set_memory_packet_size (args, &memory_read_packet_config);
537 }
538
539 static void
540 show_memory_read_packet_size (char *args, int from_tty)
541 {
542 show_memory_packet_size (&memory_read_packet_config);
543 }
544
545 static long
546 get_memory_read_packet_size (void)
547 {
548 struct remote_state *rs = get_remote_state ();
549 long size = get_memory_packet_size (&memory_read_packet_config);
550 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
551 extra buffer size argument before the memory read size can be
552 increased beyond (rs->remote_packet_size). */
553 if (size > (rs->remote_packet_size))
554 size = (rs->remote_packet_size);
555 return size;
556 }
557
558 \f
559 /* Generic configuration support for packets the stub optionally
560 supports. Allows the user to specify the use of the packet as well
561 as allowing GDB to auto-detect support in the remote stub. */
562
563 enum packet_support
564 {
565 PACKET_SUPPORT_UNKNOWN = 0,
566 PACKET_ENABLE,
567 PACKET_DISABLE
568 };
569
570 struct packet_config
571 {
572 char *name;
573 char *title;
574 enum auto_boolean detect;
575 enum packet_support support;
576 };
577
578 /* Analyze a packet's return value and update the packet config
579 accordingly. */
580
581 enum packet_result
582 {
583 PACKET_ERROR,
584 PACKET_OK,
585 PACKET_UNKNOWN
586 };
587
588 static void
589 update_packet_config (struct packet_config *config)
590 {
591 switch (config->detect)
592 {
593 case AUTO_BOOLEAN_TRUE:
594 config->support = PACKET_ENABLE;
595 break;
596 case AUTO_BOOLEAN_FALSE:
597 config->support = PACKET_DISABLE;
598 break;
599 case AUTO_BOOLEAN_AUTO:
600 config->support = PACKET_SUPPORT_UNKNOWN;
601 break;
602 }
603 }
604
605 static void
606 show_packet_config_cmd (struct packet_config *config)
607 {
608 char *support = "internal-error";
609 switch (config->support)
610 {
611 case PACKET_ENABLE:
612 support = "enabled";
613 break;
614 case PACKET_DISABLE:
615 support = "disabled";
616 break;
617 case PACKET_SUPPORT_UNKNOWN:
618 support = "unknown";
619 break;
620 }
621 switch (config->detect)
622 {
623 case AUTO_BOOLEAN_AUTO:
624 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
625 config->name, config->title, support);
626 break;
627 case AUTO_BOOLEAN_TRUE:
628 case AUTO_BOOLEAN_FALSE:
629 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
630 config->name, config->title, support);
631 break;
632 }
633 }
634
635 static void
636 add_packet_config_cmd (struct packet_config *config,
637 char *name,
638 char *title,
639 cmd_sfunc_ftype *set_func,
640 cmd_sfunc_ftype *show_func,
641 struct cmd_list_element **set_remote_list,
642 struct cmd_list_element **show_remote_list,
643 int legacy)
644 {
645 struct cmd_list_element *set_cmd;
646 struct cmd_list_element *show_cmd;
647 char *set_doc;
648 char *show_doc;
649 char *help_doc;
650 char *print;
651 char *cmd_name;
652 config->name = name;
653 config->title = title;
654 config->detect = AUTO_BOOLEAN_AUTO;
655 config->support = PACKET_SUPPORT_UNKNOWN;
656 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
657 name, title);
658 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
659 name, title);
660 print = xstrprintf ("Current use of remote protocol `%s' (%s) is %%s",
661 name, title);
662 /* set/show TITLE-packet {auto,on,off} */
663 cmd_name = xstrprintf ("%s-packet", title);
664 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
665 &config->detect, set_doc, show_doc,
666 "", print,
667 set_func, show_func,
668 set_remote_list, show_remote_list);
669 /* set/show remote NAME-packet {auto,on,off} -- legacy */
670 if (legacy)
671 {
672 char *legacy_name;
673 legacy_name = xstrprintf ("%s-packet", name);
674 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
675 set_remote_list);
676 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
677 show_remote_list);
678 }
679 }
680
681 static enum packet_result
682 packet_ok (const char *buf, struct packet_config *config)
683 {
684 if (buf[0] != '\0')
685 {
686 /* The stub recognized the packet request. Check that the
687 operation succeeded. */
688 switch (config->support)
689 {
690 case PACKET_SUPPORT_UNKNOWN:
691 if (remote_debug)
692 fprintf_unfiltered (gdb_stdlog,
693 "Packet %s (%s) is supported\n",
694 config->name, config->title);
695 config->support = PACKET_ENABLE;
696 break;
697 case PACKET_DISABLE:
698 internal_error (__FILE__, __LINE__,
699 "packet_ok: attempt to use a disabled packet");
700 break;
701 case PACKET_ENABLE:
702 break;
703 }
704 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
705 /* "OK" - definitly OK. */
706 return PACKET_OK;
707 if (buf[0] == 'E'
708 && isxdigit (buf[1]) && isxdigit (buf[2])
709 && buf[3] == '\0')
710 /* "Enn" - definitly an error. */
711 return PACKET_ERROR;
712 /* The packet may or may not be OK. Just assume it is */
713 return PACKET_OK;
714 }
715 else
716 {
717 /* The stub does not support the packet. */
718 switch (config->support)
719 {
720 case PACKET_ENABLE:
721 if (config->detect == AUTO_BOOLEAN_AUTO)
722 /* If the stub previously indicated that the packet was
723 supported then there is a protocol error.. */
724 error ("Protocol error: %s (%s) conflicting enabled responses.",
725 config->name, config->title);
726 else
727 /* The user set it wrong. */
728 error ("Enabled packet %s (%s) not recognized by stub",
729 config->name, config->title);
730 break;
731 case PACKET_SUPPORT_UNKNOWN:
732 if (remote_debug)
733 fprintf_unfiltered (gdb_stdlog,
734 "Packet %s (%s) is NOT supported\n",
735 config->name, config->title);
736 config->support = PACKET_DISABLE;
737 break;
738 case PACKET_DISABLE:
739 break;
740 }
741 return PACKET_UNKNOWN;
742 }
743 }
744
745 /* Should we try the 'vCont' (descriptive resume) request? */
746 static struct packet_config remote_protocol_vcont;
747
748 static void
749 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
750 struct cmd_list_element *c)
751 {
752 update_packet_config (&remote_protocol_vcont);
753 }
754
755 static void
756 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
757 struct cmd_list_element *c)
758 {
759 show_packet_config_cmd (&remote_protocol_vcont);
760 }
761
762 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
763 static struct packet_config remote_protocol_qSymbol;
764
765 static void
766 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
767 struct cmd_list_element *c)
768 {
769 update_packet_config (&remote_protocol_qSymbol);
770 }
771
772 static void
773 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
774 struct cmd_list_element *c)
775 {
776 show_packet_config_cmd (&remote_protocol_qSymbol);
777 }
778
779 /* Should we try the 'P' (set register) request? */
780
781 static struct packet_config remote_protocol_P;
782
783 static void
784 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
785 struct cmd_list_element *c)
786 {
787 update_packet_config (&remote_protocol_P);
788 }
789
790 static void
791 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
792 struct cmd_list_element *c)
793 {
794 show_packet_config_cmd (&remote_protocol_P);
795 }
796
797 /* Should we try one of the 'Z' requests? */
798
799 enum Z_packet_type
800 {
801 Z_PACKET_SOFTWARE_BP,
802 Z_PACKET_HARDWARE_BP,
803 Z_PACKET_WRITE_WP,
804 Z_PACKET_READ_WP,
805 Z_PACKET_ACCESS_WP,
806 NR_Z_PACKET_TYPES
807 };
808
809 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
810
811 /* FIXME: Instead of having all these boiler plate functions, the
812 command callback should include a context argument. */
813
814 static void
815 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
816 struct cmd_list_element *c)
817 {
818 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
819 }
820
821 static void
822 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
823 struct cmd_list_element *c)
824 {
825 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
826 }
827
828 static void
829 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
830 struct cmd_list_element *c)
831 {
832 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
833 }
834
835 static void
836 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
837 struct cmd_list_element *c)
838 {
839 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
840 }
841
842 static void
843 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
844 struct cmd_list_element *c)
845 {
846 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
847 }
848
849 static void
850 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
851 struct cmd_list_element *c)
852 {
853 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
854 }
855
856 static void
857 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
858 struct cmd_list_element *c)
859 {
860 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
861 }
862
863 static void
864 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
865 struct cmd_list_element *c)
866 {
867 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
868 }
869
870 static void
871 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
872 struct cmd_list_element *c)
873 {
874 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
875 }
876
877 static void
878 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
879 struct cmd_list_element *c)
880 {
881 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
882 }
883
884 /* For compatibility with older distributions. Provide a ``set remote
885 Z-packet ...'' command that updates all the Z packet types. */
886
887 static enum auto_boolean remote_Z_packet_detect;
888
889 static void
890 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
891 struct cmd_list_element *c)
892 {
893 int i;
894 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
895 {
896 remote_protocol_Z[i].detect = remote_Z_packet_detect;
897 update_packet_config (&remote_protocol_Z[i]);
898 }
899 }
900
901 static void
902 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
903 struct cmd_list_element *c)
904 {
905 int i;
906 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
907 {
908 show_packet_config_cmd (&remote_protocol_Z[i]);
909 }
910 }
911
912 /* Should we try the 'X' (remote binary download) packet?
913
914 This variable (available to the user via "set remote X-packet")
915 dictates whether downloads are sent in binary (via the 'X' packet).
916 We assume that the stub can, and attempt to do it. This will be
917 cleared if the stub does not understand it. This switch is still
918 needed, though in cases when the packet is supported in the stub,
919 but the connection does not allow it (i.e., 7-bit serial connection
920 only). */
921
922 static struct packet_config remote_protocol_binary_download;
923
924 /* Should we try the 'ThreadInfo' query packet?
925
926 This variable (NOT available to the user: auto-detect only!)
927 determines whether GDB will use the new, simpler "ThreadInfo"
928 query or the older, more complex syntax for thread queries.
929 This is an auto-detect variable (set to true at each connect,
930 and set to false when the target fails to recognize it). */
931
932 static int use_threadinfo_query;
933 static int use_threadextra_query;
934
935 static void
936 set_remote_protocol_binary_download_cmd (char *args,
937 int from_tty,
938 struct cmd_list_element *c)
939 {
940 update_packet_config (&remote_protocol_binary_download);
941 }
942
943 static void
944 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
945 struct cmd_list_element *c)
946 {
947 show_packet_config_cmd (&remote_protocol_binary_download);
948 }
949
950 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
951 static struct packet_config remote_protocol_qPart_auxv;
952
953 static void
954 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
955 struct cmd_list_element *c)
956 {
957 update_packet_config (&remote_protocol_qPart_auxv);
958 }
959
960 static void
961 show_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
962 struct cmd_list_element *c)
963 {
964 show_packet_config_cmd (&remote_protocol_qPart_auxv);
965 }
966
967
968 /* Tokens for use by the asynchronous signal handlers for SIGINT */
969 static void *sigint_remote_twice_token;
970 static void *sigint_remote_token;
971
972 /* These are pointers to hook functions that may be set in order to
973 modify resume/wait behavior for a particular architecture. */
974
975 void (*deprecated_target_resume_hook) (void);
976 void (*deprecated_target_wait_loop_hook) (void);
977 \f
978
979
980 /* These are the threads which we last sent to the remote system.
981 -1 for all or -2 for not sent yet. */
982 static int general_thread;
983 static int continue_thread;
984
985 /* Call this function as a result of
986 1) A halt indication (T packet) containing a thread id
987 2) A direct query of currthread
988 3) Successful execution of set thread
989 */
990
991 static void
992 record_currthread (int currthread)
993 {
994 general_thread = currthread;
995
996 /* If this is a new thread, add it to GDB's thread list.
997 If we leave it up to WFI to do this, bad things will happen. */
998 if (!in_thread_list (pid_to_ptid (currthread)))
999 {
1000 add_thread (pid_to_ptid (currthread));
1001 ui_out_text (uiout, "[New ");
1002 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1003 ui_out_text (uiout, "]\n");
1004 }
1005 }
1006
1007 #define MAGIC_NULL_PID 42000
1008
1009 static void
1010 set_thread (int th, int gen)
1011 {
1012 struct remote_state *rs = get_remote_state ();
1013 char *buf = alloca (rs->remote_packet_size);
1014 int state = gen ? general_thread : continue_thread;
1015
1016 if (state == th)
1017 return;
1018
1019 buf[0] = 'H';
1020 buf[1] = gen ? 'g' : 'c';
1021 if (th == MAGIC_NULL_PID)
1022 {
1023 buf[2] = '0';
1024 buf[3] = '\0';
1025 }
1026 else if (th < 0)
1027 sprintf (&buf[2], "-%x", -th);
1028 else
1029 sprintf (&buf[2], "%x", th);
1030 putpkt (buf);
1031 getpkt (buf, (rs->remote_packet_size), 0);
1032 if (gen)
1033 general_thread = th;
1034 else
1035 continue_thread = th;
1036 }
1037 \f
1038 /* Return nonzero if the thread TH is still alive on the remote system. */
1039
1040 static int
1041 remote_thread_alive (ptid_t ptid)
1042 {
1043 int tid = PIDGET (ptid);
1044 char buf[16];
1045
1046 if (tid < 0)
1047 sprintf (buf, "T-%08x", -tid);
1048 else
1049 sprintf (buf, "T%08x", tid);
1050 putpkt (buf);
1051 getpkt (buf, sizeof (buf), 0);
1052 return (buf[0] == 'O' && buf[1] == 'K');
1053 }
1054
1055 /* About these extended threadlist and threadinfo packets. They are
1056 variable length packets but, the fields within them are often fixed
1057 length. They are redundent enough to send over UDP as is the
1058 remote protocol in general. There is a matching unit test module
1059 in libstub. */
1060
1061 #define OPAQUETHREADBYTES 8
1062
1063 /* a 64 bit opaque identifier */
1064 typedef unsigned char threadref[OPAQUETHREADBYTES];
1065
1066 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1067 protocol encoding, and remote.c. it is not particularly changable */
1068
1069 /* Right now, the internal structure is int. We want it to be bigger.
1070 Plan to fix this.
1071 */
1072
1073 typedef int gdb_threadref; /* internal GDB thread reference */
1074
1075 /* gdb_ext_thread_info is an internal GDB data structure which is
1076 equivalint to the reply of the remote threadinfo packet */
1077
1078 struct gdb_ext_thread_info
1079 {
1080 threadref threadid; /* External form of thread reference */
1081 int active; /* Has state interesting to GDB? , regs, stack */
1082 char display[256]; /* Brief state display, name, blocked/syspended */
1083 char shortname[32]; /* To be used to name threads */
1084 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1085 };
1086
1087 /* The volume of remote transfers can be limited by submitting
1088 a mask containing bits specifying the desired information.
1089 Use a union of these values as the 'selection' parameter to
1090 get_thread_info. FIXME: Make these TAG names more thread specific.
1091 */
1092
1093 #define TAG_THREADID 1
1094 #define TAG_EXISTS 2
1095 #define TAG_DISPLAY 4
1096 #define TAG_THREADNAME 8
1097 #define TAG_MOREDISPLAY 16
1098
1099 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1100
1101 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1102
1103 static char *unpack_nibble (char *buf, int *val);
1104
1105 static char *pack_nibble (char *buf, int nibble);
1106
1107 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1108
1109 static char *unpack_byte (char *buf, int *value);
1110
1111 static char *pack_int (char *buf, int value);
1112
1113 static char *unpack_int (char *buf, int *value);
1114
1115 static char *unpack_string (char *src, char *dest, int length);
1116
1117 static char *pack_threadid (char *pkt, threadref * id);
1118
1119 static char *unpack_threadid (char *inbuf, threadref * id);
1120
1121 void int_to_threadref (threadref * id, int value);
1122
1123 static int threadref_to_int (threadref * ref);
1124
1125 static void copy_threadref (threadref * dest, threadref * src);
1126
1127 static int threadmatch (threadref * dest, threadref * src);
1128
1129 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1130
1131 static int remote_unpack_thread_info_response (char *pkt,
1132 threadref * expectedref,
1133 struct gdb_ext_thread_info
1134 *info);
1135
1136
1137 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1138 struct gdb_ext_thread_info *info);
1139
1140 static char *pack_threadlist_request (char *pkt, int startflag,
1141 int threadcount,
1142 threadref * nextthread);
1143
1144 static int parse_threadlist_response (char *pkt,
1145 int result_limit,
1146 threadref * original_echo,
1147 threadref * resultlist, int *doneflag);
1148
1149 static int remote_get_threadlist (int startflag,
1150 threadref * nextthread,
1151 int result_limit,
1152 int *done,
1153 int *result_count, threadref * threadlist);
1154
1155 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1156
1157 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1158 void *context, int looplimit);
1159
1160 static int remote_newthread_step (threadref * ref, void *context);
1161
1162 /* encode 64 bits in 16 chars of hex */
1163
1164 static const char hexchars[] = "0123456789abcdef";
1165
1166 static int
1167 ishex (int ch, int *val)
1168 {
1169 if ((ch >= 'a') && (ch <= 'f'))
1170 {
1171 *val = ch - 'a' + 10;
1172 return 1;
1173 }
1174 if ((ch >= 'A') && (ch <= 'F'))
1175 {
1176 *val = ch - 'A' + 10;
1177 return 1;
1178 }
1179 if ((ch >= '0') && (ch <= '9'))
1180 {
1181 *val = ch - '0';
1182 return 1;
1183 }
1184 return 0;
1185 }
1186
1187 static int
1188 stubhex (int ch)
1189 {
1190 if (ch >= 'a' && ch <= 'f')
1191 return ch - 'a' + 10;
1192 if (ch >= '0' && ch <= '9')
1193 return ch - '0';
1194 if (ch >= 'A' && ch <= 'F')
1195 return ch - 'A' + 10;
1196 return -1;
1197 }
1198
1199 static int
1200 stub_unpack_int (char *buff, int fieldlength)
1201 {
1202 int nibble;
1203 int retval = 0;
1204
1205 while (fieldlength)
1206 {
1207 nibble = stubhex (*buff++);
1208 retval |= nibble;
1209 fieldlength--;
1210 if (fieldlength)
1211 retval = retval << 4;
1212 }
1213 return retval;
1214 }
1215
1216 char *
1217 unpack_varlen_hex (char *buff, /* packet to parse */
1218 ULONGEST *result)
1219 {
1220 int nibble;
1221 int retval = 0;
1222
1223 while (ishex (*buff, &nibble))
1224 {
1225 buff++;
1226 retval = retval << 4;
1227 retval |= nibble & 0x0f;
1228 }
1229 *result = retval;
1230 return buff;
1231 }
1232
1233 static char *
1234 unpack_nibble (char *buf, int *val)
1235 {
1236 ishex (*buf++, val);
1237 return buf;
1238 }
1239
1240 static char *
1241 pack_nibble (char *buf, int nibble)
1242 {
1243 *buf++ = hexchars[(nibble & 0x0f)];
1244 return buf;
1245 }
1246
1247 static char *
1248 pack_hex_byte (char *pkt, int byte)
1249 {
1250 *pkt++ = hexchars[(byte >> 4) & 0xf];
1251 *pkt++ = hexchars[(byte & 0xf)];
1252 return pkt;
1253 }
1254
1255 static char *
1256 unpack_byte (char *buf, int *value)
1257 {
1258 *value = stub_unpack_int (buf, 2);
1259 return buf + 2;
1260 }
1261
1262 static char *
1263 pack_int (char *buf, int value)
1264 {
1265 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1266 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1267 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1268 buf = pack_hex_byte (buf, (value & 0xff));
1269 return buf;
1270 }
1271
1272 static char *
1273 unpack_int (char *buf, int *value)
1274 {
1275 *value = stub_unpack_int (buf, 8);
1276 return buf + 8;
1277 }
1278
1279 #if 0 /* currently unused, uncomment when needed */
1280 static char *pack_string (char *pkt, char *string);
1281
1282 static char *
1283 pack_string (char *pkt, char *string)
1284 {
1285 char ch;
1286 int len;
1287
1288 len = strlen (string);
1289 if (len > 200)
1290 len = 200; /* Bigger than most GDB packets, junk??? */
1291 pkt = pack_hex_byte (pkt, len);
1292 while (len-- > 0)
1293 {
1294 ch = *string++;
1295 if ((ch == '\0') || (ch == '#'))
1296 ch = '*'; /* Protect encapsulation */
1297 *pkt++ = ch;
1298 }
1299 return pkt;
1300 }
1301 #endif /* 0 (unused) */
1302
1303 static char *
1304 unpack_string (char *src, char *dest, int length)
1305 {
1306 while (length--)
1307 *dest++ = *src++;
1308 *dest = '\0';
1309 return src;
1310 }
1311
1312 static char *
1313 pack_threadid (char *pkt, threadref *id)
1314 {
1315 char *limit;
1316 unsigned char *altid;
1317
1318 altid = (unsigned char *) id;
1319 limit = pkt + BUF_THREAD_ID_SIZE;
1320 while (pkt < limit)
1321 pkt = pack_hex_byte (pkt, *altid++);
1322 return pkt;
1323 }
1324
1325
1326 static char *
1327 unpack_threadid (char *inbuf, threadref *id)
1328 {
1329 char *altref;
1330 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1331 int x, y;
1332
1333 altref = (char *) id;
1334
1335 while (inbuf < limit)
1336 {
1337 x = stubhex (*inbuf++);
1338 y = stubhex (*inbuf++);
1339 *altref++ = (x << 4) | y;
1340 }
1341 return inbuf;
1342 }
1343
1344 /* Externally, threadrefs are 64 bits but internally, they are still
1345 ints. This is due to a mismatch of specifications. We would like
1346 to use 64bit thread references internally. This is an adapter
1347 function. */
1348
1349 void
1350 int_to_threadref (threadref *id, int value)
1351 {
1352 unsigned char *scan;
1353
1354 scan = (unsigned char *) id;
1355 {
1356 int i = 4;
1357 while (i--)
1358 *scan++ = 0;
1359 }
1360 *scan++ = (value >> 24) & 0xff;
1361 *scan++ = (value >> 16) & 0xff;
1362 *scan++ = (value >> 8) & 0xff;
1363 *scan++ = (value & 0xff);
1364 }
1365
1366 static int
1367 threadref_to_int (threadref *ref)
1368 {
1369 int i, value = 0;
1370 unsigned char *scan;
1371
1372 scan = (char *) ref;
1373 scan += 4;
1374 i = 4;
1375 while (i-- > 0)
1376 value = (value << 8) | ((*scan++) & 0xff);
1377 return value;
1378 }
1379
1380 static void
1381 copy_threadref (threadref *dest, threadref *src)
1382 {
1383 int i;
1384 unsigned char *csrc, *cdest;
1385
1386 csrc = (unsigned char *) src;
1387 cdest = (unsigned char *) dest;
1388 i = 8;
1389 while (i--)
1390 *cdest++ = *csrc++;
1391 }
1392
1393 static int
1394 threadmatch (threadref *dest, threadref *src)
1395 {
1396 /* things are broken right now, so just assume we got a match */
1397 #if 0
1398 unsigned char *srcp, *destp;
1399 int i, result;
1400 srcp = (char *) src;
1401 destp = (char *) dest;
1402
1403 result = 1;
1404 while (i-- > 0)
1405 result &= (*srcp++ == *destp++) ? 1 : 0;
1406 return result;
1407 #endif
1408 return 1;
1409 }
1410
1411 /*
1412 threadid:1, # always request threadid
1413 context_exists:2,
1414 display:4,
1415 unique_name:8,
1416 more_display:16
1417 */
1418
1419 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1420
1421 static char *
1422 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1423 {
1424 *pkt++ = 'q'; /* Info Query */
1425 *pkt++ = 'P'; /* process or thread info */
1426 pkt = pack_int (pkt, mode); /* mode */
1427 pkt = pack_threadid (pkt, id); /* threadid */
1428 *pkt = '\0'; /* terminate */
1429 return pkt;
1430 }
1431
1432 /* These values tag the fields in a thread info response packet */
1433 /* Tagging the fields allows us to request specific fields and to
1434 add more fields as time goes by */
1435
1436 #define TAG_THREADID 1 /* Echo the thread identifier */
1437 #define TAG_EXISTS 2 /* Is this process defined enough to
1438 fetch registers and its stack */
1439 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1440 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1441 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1442 the process */
1443
1444 static int
1445 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1446 struct gdb_ext_thread_info *info)
1447 {
1448 struct remote_state *rs = get_remote_state ();
1449 int mask, length;
1450 unsigned int tag;
1451 threadref ref;
1452 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1453 int retval = 1;
1454
1455 /* info->threadid = 0; FIXME: implement zero_threadref */
1456 info->active = 0;
1457 info->display[0] = '\0';
1458 info->shortname[0] = '\0';
1459 info->more_display[0] = '\0';
1460
1461 /* Assume the characters indicating the packet type have been stripped */
1462 pkt = unpack_int (pkt, &mask); /* arg mask */
1463 pkt = unpack_threadid (pkt, &ref);
1464
1465 if (mask == 0)
1466 warning ("Incomplete response to threadinfo request\n");
1467 if (!threadmatch (&ref, expectedref))
1468 { /* This is an answer to a different request */
1469 warning ("ERROR RMT Thread info mismatch\n");
1470 return 0;
1471 }
1472 copy_threadref (&info->threadid, &ref);
1473
1474 /* Loop on tagged fields , try to bail if somthing goes wrong */
1475
1476 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1477 {
1478 pkt = unpack_int (pkt, &tag); /* tag */
1479 pkt = unpack_byte (pkt, &length); /* length */
1480 if (!(tag & mask)) /* tags out of synch with mask */
1481 {
1482 warning ("ERROR RMT: threadinfo tag mismatch\n");
1483 retval = 0;
1484 break;
1485 }
1486 if (tag == TAG_THREADID)
1487 {
1488 if (length != 16)
1489 {
1490 warning ("ERROR RMT: length of threadid is not 16\n");
1491 retval = 0;
1492 break;
1493 }
1494 pkt = unpack_threadid (pkt, &ref);
1495 mask = mask & ~TAG_THREADID;
1496 continue;
1497 }
1498 if (tag == TAG_EXISTS)
1499 {
1500 info->active = stub_unpack_int (pkt, length);
1501 pkt += length;
1502 mask = mask & ~(TAG_EXISTS);
1503 if (length > 8)
1504 {
1505 warning ("ERROR RMT: 'exists' length too long\n");
1506 retval = 0;
1507 break;
1508 }
1509 continue;
1510 }
1511 if (tag == TAG_THREADNAME)
1512 {
1513 pkt = unpack_string (pkt, &info->shortname[0], length);
1514 mask = mask & ~TAG_THREADNAME;
1515 continue;
1516 }
1517 if (tag == TAG_DISPLAY)
1518 {
1519 pkt = unpack_string (pkt, &info->display[0], length);
1520 mask = mask & ~TAG_DISPLAY;
1521 continue;
1522 }
1523 if (tag == TAG_MOREDISPLAY)
1524 {
1525 pkt = unpack_string (pkt, &info->more_display[0], length);
1526 mask = mask & ~TAG_MOREDISPLAY;
1527 continue;
1528 }
1529 warning ("ERROR RMT: unknown thread info tag\n");
1530 break; /* Not a tag we know about */
1531 }
1532 return retval;
1533 }
1534
1535 static int
1536 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1537 struct gdb_ext_thread_info *info)
1538 {
1539 struct remote_state *rs = get_remote_state ();
1540 int result;
1541 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1542
1543 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1544 putpkt (threadinfo_pkt);
1545 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1546 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1547 info);
1548 return result;
1549 }
1550
1551 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1552
1553 static char *
1554 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1555 threadref *nextthread)
1556 {
1557 *pkt++ = 'q'; /* info query packet */
1558 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1559 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1560 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1561 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1562 *pkt = '\0';
1563 return pkt;
1564 }
1565
1566 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1567
1568 static int
1569 parse_threadlist_response (char *pkt, int result_limit,
1570 threadref *original_echo, threadref *resultlist,
1571 int *doneflag)
1572 {
1573 struct remote_state *rs = get_remote_state ();
1574 char *limit;
1575 int count, resultcount, done;
1576
1577 resultcount = 0;
1578 /* Assume the 'q' and 'M chars have been stripped. */
1579 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1580 pkt = unpack_byte (pkt, &count); /* count field */
1581 pkt = unpack_nibble (pkt, &done);
1582 /* The first threadid is the argument threadid. */
1583 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1584 while ((count-- > 0) && (pkt < limit))
1585 {
1586 pkt = unpack_threadid (pkt, resultlist++);
1587 if (resultcount++ >= result_limit)
1588 break;
1589 }
1590 if (doneflag)
1591 *doneflag = done;
1592 return resultcount;
1593 }
1594
1595 static int
1596 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1597 int *done, int *result_count, threadref *threadlist)
1598 {
1599 struct remote_state *rs = get_remote_state ();
1600 static threadref echo_nextthread;
1601 char *threadlist_packet = alloca (rs->remote_packet_size);
1602 char *t_response = alloca (rs->remote_packet_size);
1603 int result = 1;
1604
1605 /* Trancate result limit to be smaller than the packet size */
1606 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1607 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1608
1609 pack_threadlist_request (threadlist_packet,
1610 startflag, result_limit, nextthread);
1611 putpkt (threadlist_packet);
1612 getpkt (t_response, (rs->remote_packet_size), 0);
1613
1614 *result_count =
1615 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1616 threadlist, done);
1617
1618 if (!threadmatch (&echo_nextthread, nextthread))
1619 {
1620 /* FIXME: This is a good reason to drop the packet */
1621 /* Possably, there is a duplicate response */
1622 /* Possabilities :
1623 retransmit immediatly - race conditions
1624 retransmit after timeout - yes
1625 exit
1626 wait for packet, then exit
1627 */
1628 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1629 return 0; /* I choose simply exiting */
1630 }
1631 if (*result_count <= 0)
1632 {
1633 if (*done != 1)
1634 {
1635 warning ("RMT ERROR : failed to get remote thread list\n");
1636 result = 0;
1637 }
1638 return result; /* break; */
1639 }
1640 if (*result_count > result_limit)
1641 {
1642 *result_count = 0;
1643 warning ("RMT ERROR: threadlist response longer than requested\n");
1644 return 0;
1645 }
1646 return result;
1647 }
1648
1649 /* This is the interface between remote and threads, remotes upper interface */
1650
1651 /* remote_find_new_threads retrieves the thread list and for each
1652 thread in the list, looks up the thread in GDB's internal list,
1653 ading the thread if it does not already exist. This involves
1654 getting partial thread lists from the remote target so, polling the
1655 quit_flag is required. */
1656
1657
1658 /* About this many threadisds fit in a packet. */
1659
1660 #define MAXTHREADLISTRESULTS 32
1661
1662 static int
1663 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1664 int looplimit)
1665 {
1666 int done, i, result_count;
1667 int startflag = 1;
1668 int result = 1;
1669 int loopcount = 0;
1670 static threadref nextthread;
1671 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1672
1673 done = 0;
1674 while (!done)
1675 {
1676 if (loopcount++ > looplimit)
1677 {
1678 result = 0;
1679 warning ("Remote fetch threadlist -infinite loop-\n");
1680 break;
1681 }
1682 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1683 &done, &result_count, resultthreadlist))
1684 {
1685 result = 0;
1686 break;
1687 }
1688 /* clear for later iterations */
1689 startflag = 0;
1690 /* Setup to resume next batch of thread references, set nextthread. */
1691 if (result_count >= 1)
1692 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1693 i = 0;
1694 while (result_count--)
1695 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1696 break;
1697 }
1698 return result;
1699 }
1700
1701 static int
1702 remote_newthread_step (threadref *ref, void *context)
1703 {
1704 ptid_t ptid;
1705
1706 ptid = pid_to_ptid (threadref_to_int (ref));
1707
1708 if (!in_thread_list (ptid))
1709 add_thread (ptid);
1710 return 1; /* continue iterator */
1711 }
1712
1713 #define CRAZY_MAX_THREADS 1000
1714
1715 static ptid_t
1716 remote_current_thread (ptid_t oldpid)
1717 {
1718 struct remote_state *rs = get_remote_state ();
1719 char *buf = alloca (rs->remote_packet_size);
1720
1721 putpkt ("qC");
1722 getpkt (buf, (rs->remote_packet_size), 0);
1723 if (buf[0] == 'Q' && buf[1] == 'C')
1724 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1725 else
1726 return oldpid;
1727 }
1728
1729 /* Find new threads for info threads command.
1730 * Original version, using John Metzler's thread protocol.
1731 */
1732
1733 static void
1734 remote_find_new_threads (void)
1735 {
1736 remote_threadlist_iterator (remote_newthread_step, 0,
1737 CRAZY_MAX_THREADS);
1738 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1739 inferior_ptid = remote_current_thread (inferior_ptid);
1740 }
1741
1742 /*
1743 * Find all threads for info threads command.
1744 * Uses new thread protocol contributed by Cisco.
1745 * Falls back and attempts to use the older method (above)
1746 * if the target doesn't respond to the new method.
1747 */
1748
1749 static void
1750 remote_threads_info (void)
1751 {
1752 struct remote_state *rs = get_remote_state ();
1753 char *buf = alloca (rs->remote_packet_size);
1754 char *bufp;
1755 int tid;
1756
1757 if (remote_desc == 0) /* paranoia */
1758 error ("Command can only be used when connected to the remote target.");
1759
1760 if (use_threadinfo_query)
1761 {
1762 putpkt ("qfThreadInfo");
1763 bufp = buf;
1764 getpkt (bufp, (rs->remote_packet_size), 0);
1765 if (bufp[0] != '\0') /* q packet recognized */
1766 {
1767 while (*bufp++ == 'm') /* reply contains one or more TID */
1768 {
1769 do
1770 {
1771 tid = strtol (bufp, &bufp, 16);
1772 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1773 add_thread (pid_to_ptid (tid));
1774 }
1775 while (*bufp++ == ','); /* comma-separated list */
1776 putpkt ("qsThreadInfo");
1777 bufp = buf;
1778 getpkt (bufp, (rs->remote_packet_size), 0);
1779 }
1780 return; /* done */
1781 }
1782 }
1783
1784 /* Else fall back to old method based on jmetzler protocol. */
1785 use_threadinfo_query = 0;
1786 remote_find_new_threads ();
1787 return;
1788 }
1789
1790 /*
1791 * Collect a descriptive string about the given thread.
1792 * The target may say anything it wants to about the thread
1793 * (typically info about its blocked / runnable state, name, etc.).
1794 * This string will appear in the info threads display.
1795 *
1796 * Optional: targets are not required to implement this function.
1797 */
1798
1799 static char *
1800 remote_threads_extra_info (struct thread_info *tp)
1801 {
1802 struct remote_state *rs = get_remote_state ();
1803 int result;
1804 int set;
1805 threadref id;
1806 struct gdb_ext_thread_info threadinfo;
1807 static char display_buf[100]; /* arbitrary... */
1808 char *bufp = alloca (rs->remote_packet_size);
1809 int n = 0; /* position in display_buf */
1810
1811 if (remote_desc == 0) /* paranoia */
1812 internal_error (__FILE__, __LINE__,
1813 "remote_threads_extra_info");
1814
1815 if (use_threadextra_query)
1816 {
1817 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1818 putpkt (bufp);
1819 getpkt (bufp, (rs->remote_packet_size), 0);
1820 if (bufp[0] != 0)
1821 {
1822 n = min (strlen (bufp) / 2, sizeof (display_buf));
1823 result = hex2bin (bufp, display_buf, n);
1824 display_buf [result] = '\0';
1825 return display_buf;
1826 }
1827 }
1828
1829 /* If the above query fails, fall back to the old method. */
1830 use_threadextra_query = 0;
1831 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1832 | TAG_MOREDISPLAY | TAG_DISPLAY;
1833 int_to_threadref (&id, PIDGET (tp->ptid));
1834 if (remote_get_threadinfo (&id, set, &threadinfo))
1835 if (threadinfo.active)
1836 {
1837 if (*threadinfo.shortname)
1838 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1839 if (*threadinfo.display)
1840 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1841 if (*threadinfo.more_display)
1842 n += sprintf(&display_buf[n], " Priority: %s",
1843 threadinfo.more_display);
1844
1845 if (n > 0)
1846 {
1847 /* for purely cosmetic reasons, clear up trailing commas */
1848 if (',' == display_buf[n-1])
1849 display_buf[n-1] = ' ';
1850 return display_buf;
1851 }
1852 }
1853 return NULL;
1854 }
1855
1856 \f
1857
1858 /* Restart the remote side; this is an extended protocol operation. */
1859
1860 static void
1861 extended_remote_restart (void)
1862 {
1863 struct remote_state *rs = get_remote_state ();
1864 char *buf = alloca (rs->remote_packet_size);
1865
1866 /* Send the restart command; for reasons I don't understand the
1867 remote side really expects a number after the "R". */
1868 buf[0] = 'R';
1869 sprintf (&buf[1], "%x", 0);
1870 putpkt (buf);
1871
1872 /* Now query for status so this looks just like we restarted
1873 gdbserver from scratch. */
1874 putpkt ("?");
1875 getpkt (buf, (rs->remote_packet_size), 0);
1876 }
1877 \f
1878 /* Clean up connection to a remote debugger. */
1879
1880 static void
1881 remote_close (int quitting)
1882 {
1883 if (remote_desc)
1884 serial_close (remote_desc);
1885 remote_desc = NULL;
1886 }
1887
1888 /* Query the remote side for the text, data and bss offsets. */
1889
1890 static void
1891 get_offsets (void)
1892 {
1893 struct remote_state *rs = get_remote_state ();
1894 char *buf = alloca (rs->remote_packet_size);
1895 char *ptr;
1896 int lose;
1897 CORE_ADDR text_addr, data_addr, bss_addr;
1898 struct section_offsets *offs;
1899
1900 putpkt ("qOffsets");
1901
1902 getpkt (buf, (rs->remote_packet_size), 0);
1903
1904 if (buf[0] == '\000')
1905 return; /* Return silently. Stub doesn't support
1906 this command. */
1907 if (buf[0] == 'E')
1908 {
1909 warning ("Remote failure reply: %s", buf);
1910 return;
1911 }
1912
1913 /* Pick up each field in turn. This used to be done with scanf, but
1914 scanf will make trouble if CORE_ADDR size doesn't match
1915 conversion directives correctly. The following code will work
1916 with any size of CORE_ADDR. */
1917 text_addr = data_addr = bss_addr = 0;
1918 ptr = buf;
1919 lose = 0;
1920
1921 if (strncmp (ptr, "Text=", 5) == 0)
1922 {
1923 ptr += 5;
1924 /* Don't use strtol, could lose on big values. */
1925 while (*ptr && *ptr != ';')
1926 text_addr = (text_addr << 4) + fromhex (*ptr++);
1927 }
1928 else
1929 lose = 1;
1930
1931 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1932 {
1933 ptr += 6;
1934 while (*ptr && *ptr != ';')
1935 data_addr = (data_addr << 4) + fromhex (*ptr++);
1936 }
1937 else
1938 lose = 1;
1939
1940 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1941 {
1942 ptr += 5;
1943 while (*ptr && *ptr != ';')
1944 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1945 }
1946 else
1947 lose = 1;
1948
1949 if (lose)
1950 error ("Malformed response to offset query, %s", buf);
1951
1952 if (symfile_objfile == NULL)
1953 return;
1954
1955 offs = ((struct section_offsets *)
1956 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1957 memcpy (offs, symfile_objfile->section_offsets,
1958 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1959
1960 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1961
1962 /* This is a temporary kludge to force data and bss to use the same offsets
1963 because that's what nlmconv does now. The real solution requires changes
1964 to the stub and remote.c that I don't have time to do right now. */
1965
1966 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1967 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1968
1969 objfile_relocate (symfile_objfile, offs);
1970 }
1971
1972 /* Stub for catch_errors. */
1973
1974 static int
1975 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
1976 {
1977 start_remote (); /* Initialize gdb process mechanisms */
1978 /* NOTE: Return something >=0. A -ve value is reserved for
1979 catch_exceptions. */
1980 return 1;
1981 }
1982
1983 static int
1984 remote_start_remote (struct ui_out *uiout, void *dummy)
1985 {
1986 immediate_quit++; /* Allow user to interrupt it */
1987
1988 /* Ack any packet which the remote side has already sent. */
1989 serial_write (remote_desc, "+", 1);
1990
1991 /* Let the stub know that we want it to return the thread. */
1992 set_thread (-1, 0);
1993
1994 inferior_ptid = remote_current_thread (inferior_ptid);
1995
1996 get_offsets (); /* Get text, data & bss offsets */
1997
1998 putpkt ("?"); /* initiate a query from remote machine */
1999 immediate_quit--;
2000
2001 /* NOTE: See comment above in remote_start_remote_dummy(). This
2002 function returns something >=0. */
2003 return remote_start_remote_dummy (uiout, dummy);
2004 }
2005
2006 /* Open a connection to a remote debugger.
2007 NAME is the filename used for communication. */
2008
2009 static void
2010 remote_open (char *name, int from_tty)
2011 {
2012 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2013 }
2014
2015 /* Just like remote_open, but with asynchronous support. */
2016 static void
2017 remote_async_open (char *name, int from_tty)
2018 {
2019 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2020 }
2021
2022 /* Open a connection to a remote debugger using the extended
2023 remote gdb protocol. NAME is the filename used for communication. */
2024
2025 static void
2026 extended_remote_open (char *name, int from_tty)
2027 {
2028 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2029 0 /* async_p */);
2030 }
2031
2032 /* Just like extended_remote_open, but with asynchronous support. */
2033 static void
2034 extended_remote_async_open (char *name, int from_tty)
2035 {
2036 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2037 1 /*extended_p */, 1 /* async_p */);
2038 }
2039
2040 /* Generic code for opening a connection to a remote target. */
2041
2042 static void
2043 init_all_packet_configs (void)
2044 {
2045 int i;
2046 update_packet_config (&remote_protocol_P);
2047 update_packet_config (&remote_protocol_qSymbol);
2048 update_packet_config (&remote_protocol_vcont);
2049 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2050 update_packet_config (&remote_protocol_Z[i]);
2051 /* Force remote_write_bytes to check whether target supports binary
2052 downloading. */
2053 update_packet_config (&remote_protocol_binary_download);
2054 update_packet_config (&remote_protocol_qPart_auxv);
2055 }
2056
2057 /* Symbol look-up. */
2058
2059 static void
2060 remote_check_symbols (struct objfile *objfile)
2061 {
2062 struct remote_state *rs = get_remote_state ();
2063 char *msg, *reply, *tmp;
2064 struct minimal_symbol *sym;
2065 int end;
2066
2067 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2068 return;
2069
2070 msg = alloca (rs->remote_packet_size);
2071 reply = alloca (rs->remote_packet_size);
2072
2073 /* Invite target to request symbol lookups. */
2074
2075 putpkt ("qSymbol::");
2076 getpkt (reply, (rs->remote_packet_size), 0);
2077 packet_ok (reply, &remote_protocol_qSymbol);
2078
2079 while (strncmp (reply, "qSymbol:", 8) == 0)
2080 {
2081 tmp = &reply[8];
2082 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2083 msg[end] = '\0';
2084 sym = lookup_minimal_symbol (msg, NULL, NULL);
2085 if (sym == NULL)
2086 sprintf (msg, "qSymbol::%s", &reply[8]);
2087 else
2088 sprintf (msg, "qSymbol:%s:%s",
2089 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2090 &reply[8]);
2091 putpkt (msg);
2092 getpkt (reply, (rs->remote_packet_size), 0);
2093 }
2094 }
2095
2096 static struct serial *
2097 remote_serial_open (char *name)
2098 {
2099 static int udp_warning = 0;
2100
2101 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2102 of in ser-tcp.c, because it is the remote protocol assuming that the
2103 serial connection is reliable and not the serial connection promising
2104 to be. */
2105 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2106 {
2107 warning ("The remote protocol may be unreliable over UDP.");
2108 warning ("Some events may be lost, rendering further debugging "
2109 "impossible.");
2110 udp_warning = 1;
2111 }
2112
2113 return serial_open (name);
2114 }
2115
2116 static void
2117 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2118 int extended_p, int async_p)
2119 {
2120 int ex;
2121 struct remote_state *rs = get_remote_state ();
2122 if (name == 0)
2123 error ("To open a remote debug connection, you need to specify what\n"
2124 "serial device is attached to the remote system\n"
2125 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2126
2127 /* See FIXME above */
2128 if (!async_p)
2129 wait_forever_enabled_p = 1;
2130
2131 reopen_exec_file ();
2132 reread_symbols ();
2133
2134 target_preopen (from_tty);
2135
2136 unpush_target (target);
2137
2138 remote_desc = remote_serial_open (name);
2139 if (!remote_desc)
2140 perror_with_name (name);
2141
2142 if (baud_rate != -1)
2143 {
2144 if (serial_setbaudrate (remote_desc, baud_rate))
2145 {
2146 /* The requested speed could not be set. Error out to
2147 top level after closing remote_desc. Take care to
2148 set remote_desc to NULL to avoid closing remote_desc
2149 more than once. */
2150 serial_close (remote_desc);
2151 remote_desc = NULL;
2152 perror_with_name (name);
2153 }
2154 }
2155
2156 serial_raw (remote_desc);
2157
2158 /* If there is something sitting in the buffer we might take it as a
2159 response to a command, which would be bad. */
2160 serial_flush_input (remote_desc);
2161
2162 if (from_tty)
2163 {
2164 puts_filtered ("Remote debugging using ");
2165 puts_filtered (name);
2166 puts_filtered ("\n");
2167 }
2168 push_target (target); /* Switch to using remote target now */
2169
2170 init_all_packet_configs ();
2171
2172 general_thread = -2;
2173 continue_thread = -2;
2174
2175 /* Probe for ability to use "ThreadInfo" query, as required. */
2176 use_threadinfo_query = 1;
2177 use_threadextra_query = 1;
2178
2179 /* Without this, some commands which require an active target (such
2180 as kill) won't work. This variable serves (at least) double duty
2181 as both the pid of the target process (if it has such), and as a
2182 flag indicating that a target is active. These functions should
2183 be split out into seperate variables, especially since GDB will
2184 someday have a notion of debugging several processes. */
2185
2186 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2187
2188 if (async_p)
2189 {
2190 /* With this target we start out by owning the terminal. */
2191 remote_async_terminal_ours_p = 1;
2192
2193 /* FIXME: cagney/1999-09-23: During the initial connection it is
2194 assumed that the target is already ready and able to respond to
2195 requests. Unfortunately remote_start_remote() eventually calls
2196 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2197 around this. Eventually a mechanism that allows
2198 wait_for_inferior() to expect/get timeouts will be
2199 implemented. */
2200 wait_forever_enabled_p = 0;
2201 }
2202
2203 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2204 /* First delete any symbols previously loaded from shared libraries. */
2205 no_shared_libraries (NULL, 0);
2206 #endif
2207
2208 /* Start the remote connection. If error() or QUIT, discard this
2209 target (we'd otherwise be in an inconsistent state) and then
2210 propogate the error on up the exception chain. This ensures that
2211 the caller doesn't stumble along blindly assuming that the
2212 function succeeded. The CLI doesn't have this problem but other
2213 UI's, such as MI do.
2214
2215 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2216 this function should return an error indication letting the
2217 caller restore the previous state. Unfortunately the command
2218 ``target remote'' is directly wired to this function making that
2219 impossible. On a positive note, the CLI side of this problem has
2220 been fixed - the function set_cmd_context() makes it possible for
2221 all the ``target ....'' commands to share a common callback
2222 function. See cli-dump.c. */
2223 ex = catch_exceptions (uiout,
2224 remote_start_remote, NULL,
2225 "Couldn't establish connection to remote"
2226 " target\n",
2227 RETURN_MASK_ALL);
2228 if (ex < 0)
2229 {
2230 pop_target ();
2231 if (async_p)
2232 wait_forever_enabled_p = 1;
2233 throw_exception (ex);
2234 }
2235
2236 if (async_p)
2237 wait_forever_enabled_p = 1;
2238
2239 if (extended_p)
2240 {
2241 /* Tell the remote that we are using the extended protocol. */
2242 char *buf = alloca (rs->remote_packet_size);
2243 putpkt ("!");
2244 getpkt (buf, (rs->remote_packet_size), 0);
2245 }
2246 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2247 /* FIXME: need a master target_open vector from which all
2248 remote_opens can be called, so that stuff like this can
2249 go there. Failing that, the following code must be copied
2250 to the open function for any remote target that wants to
2251 support svr4 shared libraries. */
2252
2253 /* Set up to detect and load shared libraries. */
2254 if (exec_bfd) /* No use without an exec file. */
2255 {
2256 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2257 remote_check_symbols (symfile_objfile);
2258 }
2259 #endif
2260 }
2261
2262 /* This takes a program previously attached to and detaches it. After
2263 this is done, GDB can be used to debug some other program. We
2264 better not have left any breakpoints in the target program or it'll
2265 die when it hits one. */
2266
2267 static void
2268 remote_detach (char *args, int from_tty)
2269 {
2270 struct remote_state *rs = get_remote_state ();
2271 char *buf = alloca (rs->remote_packet_size);
2272
2273 if (args)
2274 error ("Argument given to \"detach\" when remotely debugging.");
2275
2276 /* Tell the remote target to detach. */
2277 strcpy (buf, "D");
2278 remote_send (buf, (rs->remote_packet_size));
2279
2280 /* Unregister the file descriptor from the event loop. */
2281 if (target_is_async_p ())
2282 serial_async (remote_desc, NULL, 0);
2283
2284 target_mourn_inferior ();
2285 if (from_tty)
2286 puts_filtered ("Ending remote debugging.\n");
2287 }
2288
2289 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2290
2291 static void
2292 remote_disconnect (char *args, int from_tty)
2293 {
2294 struct remote_state *rs = get_remote_state ();
2295 char *buf = alloca (rs->remote_packet_size);
2296
2297 if (args)
2298 error ("Argument given to \"detach\" when remotely debugging.");
2299
2300 /* Unregister the file descriptor from the event loop. */
2301 if (target_is_async_p ())
2302 serial_async (remote_desc, NULL, 0);
2303
2304 target_mourn_inferior ();
2305 if (from_tty)
2306 puts_filtered ("Ending remote debugging.\n");
2307 }
2308
2309 /* Convert hex digit A to a number. */
2310
2311 static int
2312 fromhex (int a)
2313 {
2314 if (a >= '0' && a <= '9')
2315 return a - '0';
2316 else if (a >= 'a' && a <= 'f')
2317 return a - 'a' + 10;
2318 else if (a >= 'A' && a <= 'F')
2319 return a - 'A' + 10;
2320 else
2321 error ("Reply contains invalid hex digit %d", a);
2322 }
2323
2324 static int
2325 hex2bin (const char *hex, char *bin, int count)
2326 {
2327 int i;
2328
2329 for (i = 0; i < count; i++)
2330 {
2331 if (hex[0] == 0 || hex[1] == 0)
2332 {
2333 /* Hex string is short, or of uneven length.
2334 Return the count that has been converted so far. */
2335 return i;
2336 }
2337 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2338 hex += 2;
2339 }
2340 return i;
2341 }
2342
2343 /* Convert number NIB to a hex digit. */
2344
2345 static int
2346 tohex (int nib)
2347 {
2348 if (nib < 10)
2349 return '0' + nib;
2350 else
2351 return 'a' + nib - 10;
2352 }
2353
2354 static int
2355 bin2hex (const char *bin, char *hex, int count)
2356 {
2357 int i;
2358 /* May use a length, or a nul-terminated string as input. */
2359 if (count == 0)
2360 count = strlen (bin);
2361
2362 for (i = 0; i < count; i++)
2363 {
2364 *hex++ = tohex ((*bin >> 4) & 0xf);
2365 *hex++ = tohex (*bin++ & 0xf);
2366 }
2367 *hex = 0;
2368 return i;
2369 }
2370 \f
2371 /* Check for the availability of vCont. This function should also check
2372 the response. */
2373
2374 static void
2375 remote_vcont_probe (struct remote_state *rs, char *buf)
2376 {
2377 strcpy (buf, "vCont?");
2378 putpkt (buf);
2379 getpkt (buf, rs->remote_packet_size, 0);
2380
2381 /* Make sure that the features we assume are supported. */
2382 if (strncmp (buf, "vCont", 5) == 0)
2383 {
2384 char *p = &buf[5];
2385 int support_s, support_S, support_c, support_C;
2386
2387 support_s = 0;
2388 support_S = 0;
2389 support_c = 0;
2390 support_C = 0;
2391 while (p && *p == ';')
2392 {
2393 p++;
2394 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2395 support_s = 1;
2396 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2397 support_S = 1;
2398 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2399 support_c = 1;
2400 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2401 support_C = 1;
2402
2403 p = strchr (p, ';');
2404 }
2405
2406 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2407 BUF will make packet_ok disable the packet. */
2408 if (!support_s || !support_S || !support_c || !support_C)
2409 buf[0] = 0;
2410 }
2411
2412 packet_ok (buf, &remote_protocol_vcont);
2413 }
2414
2415 /* Resume the remote inferior by using a "vCont" packet. The thread
2416 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2417 resumed thread should be single-stepped and/or signalled. If PTID's
2418 PID is -1, then all threads are resumed; the thread to be stepped and/or
2419 signalled is given in the global INFERIOR_PTID. This function returns
2420 non-zero iff it resumes the inferior.
2421
2422 This function issues a strict subset of all possible vCont commands at the
2423 moment. */
2424
2425 static int
2426 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2427 {
2428 struct remote_state *rs = get_remote_state ();
2429 int pid = PIDGET (ptid);
2430 char *buf = NULL, *outbuf;
2431 struct cleanup *old_cleanup;
2432
2433 buf = xmalloc (rs->remote_packet_size);
2434 old_cleanup = make_cleanup (xfree, buf);
2435
2436 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2437 remote_vcont_probe (rs, buf);
2438
2439 if (remote_protocol_vcont.support == PACKET_DISABLE)
2440 {
2441 do_cleanups (old_cleanup);
2442 return 0;
2443 }
2444
2445 /* If we could generate a wider range of packets, we'd have to worry
2446 about overflowing BUF. Should there be a generic
2447 "multi-part-packet" packet? */
2448
2449 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2450 {
2451 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2452 don't have any PID numbers the inferior will understand. Make sure
2453 to only send forms that do not specify a PID. */
2454 if (step && siggnal != TARGET_SIGNAL_0)
2455 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2456 else if (step)
2457 outbuf = xstrprintf ("vCont;s");
2458 else if (siggnal != TARGET_SIGNAL_0)
2459 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2460 else
2461 outbuf = xstrprintf ("vCont;c");
2462 }
2463 else if (pid == -1)
2464 {
2465 /* Resume all threads, with preference for INFERIOR_PTID. */
2466 if (step && siggnal != TARGET_SIGNAL_0)
2467 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2468 PIDGET (inferior_ptid));
2469 else if (step)
2470 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2471 else if (siggnal != TARGET_SIGNAL_0)
2472 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2473 PIDGET (inferior_ptid));
2474 else
2475 outbuf = xstrprintf ("vCont;c");
2476 }
2477 else
2478 {
2479 /* Scheduler locking; resume only PTID. */
2480 if (step && siggnal != TARGET_SIGNAL_0)
2481 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2482 else if (step)
2483 outbuf = xstrprintf ("vCont;s:%x", pid);
2484 else if (siggnal != TARGET_SIGNAL_0)
2485 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2486 else
2487 outbuf = xstrprintf ("vCont;c:%x", pid);
2488 }
2489
2490 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2491 make_cleanup (xfree, outbuf);
2492
2493 putpkt (outbuf);
2494
2495 do_cleanups (old_cleanup);
2496
2497 return 1;
2498 }
2499
2500 /* Tell the remote machine to resume. */
2501
2502 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2503
2504 static int last_sent_step;
2505
2506 static void
2507 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2508 {
2509 struct remote_state *rs = get_remote_state ();
2510 char *buf = alloca (rs->remote_packet_size);
2511 int pid = PIDGET (ptid);
2512 char *p;
2513
2514 last_sent_signal = siggnal;
2515 last_sent_step = step;
2516
2517 /* A hook for when we need to do something at the last moment before
2518 resumption. */
2519 if (deprecated_target_resume_hook)
2520 (*deprecated_target_resume_hook) ();
2521
2522 /* The vCont packet doesn't need to specify threads via Hc. */
2523 if (remote_vcont_resume (ptid, step, siggnal))
2524 return;
2525
2526 /* All other supported resume packets do use Hc, so call set_thread. */
2527 if (pid == -1)
2528 set_thread (0, 0); /* run any thread */
2529 else
2530 set_thread (pid, 0); /* run this thread */
2531
2532 if (siggnal != TARGET_SIGNAL_0)
2533 {
2534 buf[0] = step ? 'S' : 'C';
2535 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2536 buf[2] = tohex (((int) siggnal) & 0xf);
2537 buf[3] = '\0';
2538 }
2539 else
2540 strcpy (buf, step ? "s" : "c");
2541
2542 putpkt (buf);
2543 }
2544
2545 /* Same as remote_resume, but with async support. */
2546 static void
2547 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2548 {
2549 remote_resume (ptid, step, siggnal);
2550
2551 /* We are about to start executing the inferior, let's register it
2552 with the event loop. NOTE: this is the one place where all the
2553 execution commands end up. We could alternatively do this in each
2554 of the execution commands in infcmd.c.*/
2555 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2556 into infcmd.c in order to allow inferior function calls to work
2557 NOT asynchronously. */
2558 if (event_loop_p && target_can_async_p ())
2559 target_async (inferior_event_handler, 0);
2560 /* Tell the world that the target is now executing. */
2561 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2562 this? Instead, should the client of target just assume (for
2563 async targets) that the target is going to start executing? Is
2564 this information already found in the continuation block? */
2565 if (target_is_async_p ())
2566 target_executing = 1;
2567 }
2568 \f
2569
2570 /* Set up the signal handler for SIGINT, while the target is
2571 executing, ovewriting the 'regular' SIGINT signal handler. */
2572 static void
2573 initialize_sigint_signal_handler (void)
2574 {
2575 sigint_remote_token =
2576 create_async_signal_handler (async_remote_interrupt, NULL);
2577 signal (SIGINT, handle_remote_sigint);
2578 }
2579
2580 /* Signal handler for SIGINT, while the target is executing. */
2581 static void
2582 handle_remote_sigint (int sig)
2583 {
2584 signal (sig, handle_remote_sigint_twice);
2585 sigint_remote_twice_token =
2586 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2587 mark_async_signal_handler_wrapper (sigint_remote_token);
2588 }
2589
2590 /* Signal handler for SIGINT, installed after SIGINT has already been
2591 sent once. It will take effect the second time that the user sends
2592 a ^C. */
2593 static void
2594 handle_remote_sigint_twice (int sig)
2595 {
2596 signal (sig, handle_sigint);
2597 sigint_remote_twice_token =
2598 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2599 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2600 }
2601
2602 /* Perform the real interruption of the target execution, in response
2603 to a ^C. */
2604 static void
2605 async_remote_interrupt (gdb_client_data arg)
2606 {
2607 if (remote_debug)
2608 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2609
2610 target_stop ();
2611 }
2612
2613 /* Perform interrupt, if the first attempt did not succeed. Just give
2614 up on the target alltogether. */
2615 void
2616 async_remote_interrupt_twice (gdb_client_data arg)
2617 {
2618 if (remote_debug)
2619 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2620 /* Do something only if the target was not killed by the previous
2621 cntl-C. */
2622 if (target_executing)
2623 {
2624 interrupt_query ();
2625 signal (SIGINT, handle_remote_sigint);
2626 }
2627 }
2628
2629 /* Reinstall the usual SIGINT handlers, after the target has
2630 stopped. */
2631 static void
2632 cleanup_sigint_signal_handler (void *dummy)
2633 {
2634 signal (SIGINT, handle_sigint);
2635 if (sigint_remote_twice_token)
2636 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2637 if (sigint_remote_token)
2638 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2639 }
2640
2641 /* Send ^C to target to halt it. Target will respond, and send us a
2642 packet. */
2643 static void (*ofunc) (int);
2644
2645 /* The command line interface's stop routine. This function is installed
2646 as a signal handler for SIGINT. The first time a user requests a
2647 stop, we call remote_stop to send a break or ^C. If there is no
2648 response from the target (it didn't stop when the user requested it),
2649 we ask the user if he'd like to detach from the target. */
2650 static void
2651 remote_interrupt (int signo)
2652 {
2653 /* If this doesn't work, try more severe steps. */
2654 signal (signo, remote_interrupt_twice);
2655
2656 if (remote_debug)
2657 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2658
2659 target_stop ();
2660 }
2661
2662 /* The user typed ^C twice. */
2663
2664 static void
2665 remote_interrupt_twice (int signo)
2666 {
2667 signal (signo, ofunc);
2668 interrupt_query ();
2669 signal (signo, remote_interrupt);
2670 }
2671
2672 /* This is the generic stop called via the target vector. When a target
2673 interrupt is requested, either by the command line or the GUI, we
2674 will eventually end up here. */
2675 static void
2676 remote_stop (void)
2677 {
2678 /* Send a break or a ^C, depending on user preference. */
2679 if (remote_debug)
2680 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2681
2682 if (remote_break)
2683 serial_send_break (remote_desc);
2684 else
2685 serial_write (remote_desc, "\003", 1);
2686 }
2687
2688 /* Ask the user what to do when an interrupt is received. */
2689
2690 static void
2691 interrupt_query (void)
2692 {
2693 target_terminal_ours ();
2694
2695 if (query ("Interrupted while waiting for the program.\n\
2696 Give up (and stop debugging it)? "))
2697 {
2698 target_mourn_inferior ();
2699 throw_exception (RETURN_QUIT);
2700 }
2701
2702 target_terminal_inferior ();
2703 }
2704
2705 /* Enable/disable target terminal ownership. Most targets can use
2706 terminal groups to control terminal ownership. Remote targets are
2707 different in that explicit transfer of ownership to/from GDB/target
2708 is required. */
2709
2710 static void
2711 remote_async_terminal_inferior (void)
2712 {
2713 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2714 sync_execution here. This function should only be called when
2715 GDB is resuming the inferior in the forground. A background
2716 resume (``run&'') should leave GDB in control of the terminal and
2717 consequently should not call this code. */
2718 if (!sync_execution)
2719 return;
2720 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2721 calls target_terminal_*() idenpotent. The event-loop GDB talking
2722 to an asynchronous target with a synchronous command calls this
2723 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2724 stops trying to transfer the terminal to the target when it
2725 shouldn't this guard can go away. */
2726 if (!remote_async_terminal_ours_p)
2727 return;
2728 delete_file_handler (input_fd);
2729 remote_async_terminal_ours_p = 0;
2730 initialize_sigint_signal_handler ();
2731 /* NOTE: At this point we could also register our selves as the
2732 recipient of all input. Any characters typed could then be
2733 passed on down to the target. */
2734 }
2735
2736 static void
2737 remote_async_terminal_ours (void)
2738 {
2739 /* See FIXME in remote_async_terminal_inferior. */
2740 if (!sync_execution)
2741 return;
2742 /* See FIXME in remote_async_terminal_inferior. */
2743 if (remote_async_terminal_ours_p)
2744 return;
2745 cleanup_sigint_signal_handler (NULL);
2746 add_file_handler (input_fd, stdin_event_handler, 0);
2747 remote_async_terminal_ours_p = 1;
2748 }
2749
2750 /* If nonzero, ignore the next kill. */
2751
2752 int kill_kludge;
2753
2754 void
2755 remote_console_output (char *msg)
2756 {
2757 char *p;
2758
2759 for (p = msg; p[0] && p[1]; p += 2)
2760 {
2761 char tb[2];
2762 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2763 tb[0] = c;
2764 tb[1] = 0;
2765 fputs_unfiltered (tb, gdb_stdtarg);
2766 }
2767 gdb_flush (gdb_stdtarg);
2768 }
2769
2770 /* Wait until the remote machine stops, then return,
2771 storing status in STATUS just as `wait' would.
2772 Returns "pid", which in the case of a multi-threaded
2773 remote OS, is the thread-id. */
2774
2775 static ptid_t
2776 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2777 {
2778 struct remote_state *rs = get_remote_state ();
2779 unsigned char *buf = alloca (rs->remote_packet_size);
2780 ULONGEST thread_num = -1;
2781 ULONGEST addr;
2782
2783 status->kind = TARGET_WAITKIND_EXITED;
2784 status->value.integer = 0;
2785
2786 while (1)
2787 {
2788 unsigned char *p;
2789
2790 ofunc = signal (SIGINT, remote_interrupt);
2791 getpkt (buf, (rs->remote_packet_size), 1);
2792 signal (SIGINT, ofunc);
2793
2794 /* This is a hook for when we need to do something (perhaps the
2795 collection of trace data) every time the target stops. */
2796 if (deprecated_target_wait_loop_hook)
2797 (*deprecated_target_wait_loop_hook) ();
2798
2799 remote_stopped_by_watchpoint_p = 0;
2800
2801 switch (buf[0])
2802 {
2803 case 'E': /* Error of some sort */
2804 warning ("Remote failure reply: %s", buf);
2805 continue;
2806 case 'F': /* File-I/O request */
2807 remote_fileio_request (buf);
2808 continue;
2809 case 'T': /* Status with PC, SP, FP, ... */
2810 {
2811 int i;
2812 char regs[MAX_REGISTER_SIZE];
2813
2814 /* Expedited reply, containing Signal, {regno, reg} repeat */
2815 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2816 ss = signal number
2817 n... = register number
2818 r... = register contents
2819 */
2820 p = &buf[3]; /* after Txx */
2821
2822 while (*p)
2823 {
2824 unsigned char *p1;
2825 char *p_temp;
2826 int fieldsize;
2827 LONGEST pnum = 0;
2828
2829 /* If the packet contains a register number save it in pnum
2830 and set p1 to point to the character following it.
2831 Otherwise p1 points to p. */
2832
2833 /* If this packet is an awatch packet, don't parse the 'a'
2834 as a register number. */
2835
2836 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2837 {
2838 /* Read the ``P'' register number. */
2839 pnum = strtol (p, &p_temp, 16);
2840 p1 = (unsigned char *) p_temp;
2841 }
2842 else
2843 p1 = p;
2844
2845 if (p1 == p) /* No register number present here */
2846 {
2847 p1 = (unsigned char *) strchr (p, ':');
2848 if (p1 == NULL)
2849 warning ("Malformed packet(a) (missing colon): %s\n\
2850 Packet: '%s'\n",
2851 p, buf);
2852 if (strncmp (p, "thread", p1 - p) == 0)
2853 {
2854 p_temp = unpack_varlen_hex (++p1, &thread_num);
2855 record_currthread (thread_num);
2856 p = (unsigned char *) p_temp;
2857 }
2858 else if ((strncmp (p, "watch", p1 - p) == 0)
2859 || (strncmp (p, "rwatch", p1 - p) == 0)
2860 || (strncmp (p, "awatch", p1 - p) == 0))
2861 {
2862 remote_stopped_by_watchpoint_p = 1;
2863 p = unpack_varlen_hex (++p1, &addr);
2864 remote_watch_data_address = (CORE_ADDR)addr;
2865 }
2866 else
2867 {
2868 /* Silently skip unknown optional info. */
2869 p_temp = strchr (p1 + 1, ';');
2870 if (p_temp)
2871 p = (unsigned char *) p_temp;
2872 }
2873 }
2874 else
2875 {
2876 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2877 p = p1;
2878
2879 if (*p++ != ':')
2880 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
2881 p, buf);
2882
2883 if (reg == NULL)
2884 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
2885 phex_nz (pnum, 0), p, buf);
2886
2887 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
2888 p += 2 * fieldsize;
2889 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
2890 warning ("Remote reply is too short: %s", buf);
2891 regcache_raw_supply (current_regcache, reg->regnum, regs);
2892 }
2893
2894 if (*p++ != ';')
2895 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
2896 }
2897 }
2898 /* fall through */
2899 case 'S': /* Old style status, just signal only */
2900 status->kind = TARGET_WAITKIND_STOPPED;
2901 status->value.sig = (enum target_signal)
2902 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2903
2904 if (buf[3] == 'p')
2905 {
2906 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2907 record_currthread (thread_num);
2908 }
2909 goto got_status;
2910 case 'W': /* Target exited */
2911 {
2912 /* The remote process exited. */
2913 status->kind = TARGET_WAITKIND_EXITED;
2914 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2915 goto got_status;
2916 }
2917 case 'X':
2918 status->kind = TARGET_WAITKIND_SIGNALLED;
2919 status->value.sig = (enum target_signal)
2920 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2921 kill_kludge = 1;
2922
2923 goto got_status;
2924 case 'O': /* Console output */
2925 remote_console_output (buf + 1);
2926 continue;
2927 case '\0':
2928 if (last_sent_signal != TARGET_SIGNAL_0)
2929 {
2930 /* Zero length reply means that we tried 'S' or 'C' and
2931 the remote system doesn't support it. */
2932 target_terminal_ours_for_output ();
2933 printf_filtered
2934 ("Can't send signals to this remote system. %s not sent.\n",
2935 target_signal_to_name (last_sent_signal));
2936 last_sent_signal = TARGET_SIGNAL_0;
2937 target_terminal_inferior ();
2938
2939 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2940 putpkt ((char *) buf);
2941 continue;
2942 }
2943 /* else fallthrough */
2944 default:
2945 warning ("Invalid remote reply: %s", buf);
2946 continue;
2947 }
2948 }
2949 got_status:
2950 if (thread_num != -1)
2951 {
2952 return pid_to_ptid (thread_num);
2953 }
2954 return inferior_ptid;
2955 }
2956
2957 /* Async version of remote_wait. */
2958 static ptid_t
2959 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
2960 {
2961 struct remote_state *rs = get_remote_state ();
2962 unsigned char *buf = alloca (rs->remote_packet_size);
2963 ULONGEST thread_num = -1;
2964 ULONGEST addr;
2965
2966 status->kind = TARGET_WAITKIND_EXITED;
2967 status->value.integer = 0;
2968
2969 remote_stopped_by_watchpoint_p = 0;
2970
2971 while (1)
2972 {
2973 unsigned char *p;
2974
2975 if (!target_is_async_p ())
2976 ofunc = signal (SIGINT, remote_interrupt);
2977 /* FIXME: cagney/1999-09-27: If we're in async mode we should
2978 _never_ wait for ever -> test on target_is_async_p().
2979 However, before we do that we need to ensure that the caller
2980 knows how to take the target into/out of async mode. */
2981 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
2982 if (!target_is_async_p ())
2983 signal (SIGINT, ofunc);
2984
2985 /* This is a hook for when we need to do something (perhaps the
2986 collection of trace data) every time the target stops. */
2987 if (deprecated_target_wait_loop_hook)
2988 (*deprecated_target_wait_loop_hook) ();
2989
2990 switch (buf[0])
2991 {
2992 case 'E': /* Error of some sort */
2993 warning ("Remote failure reply: %s", buf);
2994 continue;
2995 case 'F': /* File-I/O request */
2996 remote_fileio_request (buf);
2997 continue;
2998 case 'T': /* Status with PC, SP, FP, ... */
2999 {
3000 int i;
3001 char regs[MAX_REGISTER_SIZE];
3002
3003 /* Expedited reply, containing Signal, {regno, reg} repeat */
3004 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3005 ss = signal number
3006 n... = register number
3007 r... = register contents
3008 */
3009 p = &buf[3]; /* after Txx */
3010
3011 while (*p)
3012 {
3013 unsigned char *p1;
3014 char *p_temp;
3015 int fieldsize;
3016 long pnum = 0;
3017
3018 /* If the packet contains a register number, save it in pnum
3019 and set p1 to point to the character following it.
3020 Otherwise p1 points to p. */
3021
3022 /* If this packet is an awatch packet, don't parse the 'a'
3023 as a register number. */
3024
3025 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3026 {
3027 /* Read the register number. */
3028 pnum = strtol (p, &p_temp, 16);
3029 p1 = (unsigned char *) p_temp;
3030 }
3031 else
3032 p1 = p;
3033
3034 if (p1 == p) /* No register number present here */
3035 {
3036 p1 = (unsigned char *) strchr (p, ':');
3037 if (p1 == NULL)
3038 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3039 p, buf);
3040 if (strncmp (p, "thread", p1 - p) == 0)
3041 {
3042 p_temp = unpack_varlen_hex (++p1, &thread_num);
3043 record_currthread (thread_num);
3044 p = (unsigned char *) p_temp;
3045 }
3046 else if ((strncmp (p, "watch", p1 - p) == 0)
3047 || (strncmp (p, "rwatch", p1 - p) == 0)
3048 || (strncmp (p, "awatch", p1 - p) == 0))
3049 {
3050 remote_stopped_by_watchpoint_p = 1;
3051 p = unpack_varlen_hex (++p1, &addr);
3052 remote_watch_data_address = (CORE_ADDR)addr;
3053 }
3054 else
3055 {
3056 /* Silently skip unknown optional info. */
3057 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3058 if (p_temp)
3059 p = p_temp;
3060 }
3061 }
3062
3063 else
3064 {
3065 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3066 p = p1;
3067 if (*p++ != ':')
3068 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3069 p, buf);
3070
3071 if (reg == NULL)
3072 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3073 pnum, p, buf);
3074
3075 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3076 p += 2 * fieldsize;
3077 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3078 warning ("Remote reply is too short: %s", buf);
3079 regcache_raw_supply (current_regcache, reg->regnum, regs);
3080 }
3081
3082 if (*p++ != ';')
3083 error ("Remote register badly formatted: %s\nhere: %s",
3084 buf, p);
3085 }
3086 }
3087 /* fall through */
3088 case 'S': /* Old style status, just signal only */
3089 status->kind = TARGET_WAITKIND_STOPPED;
3090 status->value.sig = (enum target_signal)
3091 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3092
3093 if (buf[3] == 'p')
3094 {
3095 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3096 record_currthread (thread_num);
3097 }
3098 goto got_status;
3099 case 'W': /* Target exited */
3100 {
3101 /* The remote process exited. */
3102 status->kind = TARGET_WAITKIND_EXITED;
3103 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3104 goto got_status;
3105 }
3106 case 'X':
3107 status->kind = TARGET_WAITKIND_SIGNALLED;
3108 status->value.sig = (enum target_signal)
3109 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3110 kill_kludge = 1;
3111
3112 goto got_status;
3113 case 'O': /* Console output */
3114 remote_console_output (buf + 1);
3115 /* Return immediately to the event loop. The event loop will
3116 still be waiting on the inferior afterwards. */
3117 status->kind = TARGET_WAITKIND_IGNORE;
3118 goto got_status;
3119 case '\0':
3120 if (last_sent_signal != TARGET_SIGNAL_0)
3121 {
3122 /* Zero length reply means that we tried 'S' or 'C' and
3123 the remote system doesn't support it. */
3124 target_terminal_ours_for_output ();
3125 printf_filtered
3126 ("Can't send signals to this remote system. %s not sent.\n",
3127 target_signal_to_name (last_sent_signal));
3128 last_sent_signal = TARGET_SIGNAL_0;
3129 target_terminal_inferior ();
3130
3131 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3132 putpkt ((char *) buf);
3133 continue;
3134 }
3135 /* else fallthrough */
3136 default:
3137 warning ("Invalid remote reply: %s", buf);
3138 continue;
3139 }
3140 }
3141 got_status:
3142 if (thread_num != -1)
3143 {
3144 return pid_to_ptid (thread_num);
3145 }
3146 return inferior_ptid;
3147 }
3148
3149 /* Number of bytes of registers this stub implements. */
3150
3151 static int register_bytes_found;
3152
3153 /* Read the remote registers into the block REGS. */
3154 /* Currently we just read all the registers, so we don't use regnum. */
3155
3156 static void
3157 remote_fetch_registers (int regnum)
3158 {
3159 struct remote_state *rs = get_remote_state ();
3160 char *buf = alloca (rs->remote_packet_size);
3161 int i;
3162 char *p;
3163 char *regs = alloca (rs->sizeof_g_packet);
3164
3165 set_thread (PIDGET (inferior_ptid), 1);
3166
3167 if (regnum >= 0)
3168 {
3169 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3170 gdb_assert (reg != NULL);
3171 if (!reg->in_g_packet)
3172 internal_error (__FILE__, __LINE__,
3173 "Attempt to fetch a non G-packet register when this "
3174 "remote.c does not support the p-packet.");
3175 }
3176
3177 sprintf (buf, "g");
3178 remote_send (buf, (rs->remote_packet_size));
3179
3180 /* Save the size of the packet sent to us by the target. Its used
3181 as a heuristic when determining the max size of packets that the
3182 target can safely receive. */
3183 if ((rs->actual_register_packet_size) == 0)
3184 (rs->actual_register_packet_size) = strlen (buf);
3185
3186 /* Unimplemented registers read as all bits zero. */
3187 memset (regs, 0, rs->sizeof_g_packet);
3188
3189 /* We can get out of synch in various cases. If the first character
3190 in the buffer is not a hex character, assume that has happened
3191 and try to fetch another packet to read. */
3192 while ((buf[0] < '0' || buf[0] > '9')
3193 && (buf[0] < 'a' || buf[0] > 'f')
3194 && buf[0] != 'x') /* New: unavailable register value */
3195 {
3196 if (remote_debug)
3197 fprintf_unfiltered (gdb_stdlog,
3198 "Bad register packet; fetching a new packet\n");
3199 getpkt (buf, (rs->remote_packet_size), 0);
3200 }
3201
3202 /* Reply describes registers byte by byte, each byte encoded as two
3203 hex characters. Suck them all up, then supply them to the
3204 register cacheing/storage mechanism. */
3205
3206 p = buf;
3207 for (i = 0; i < rs->sizeof_g_packet; i++)
3208 {
3209 if (p[0] == 0)
3210 break;
3211 if (p[1] == 0)
3212 {
3213 warning ("Remote reply is of odd length: %s", buf);
3214 /* Don't change register_bytes_found in this case, and don't
3215 print a second warning. */
3216 goto supply_them;
3217 }
3218 if (p[0] == 'x' && p[1] == 'x')
3219 regs[i] = 0; /* 'x' */
3220 else
3221 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3222 p += 2;
3223 }
3224
3225 if (i != register_bytes_found)
3226 {
3227 register_bytes_found = i;
3228 if (REGISTER_BYTES_OK_P ()
3229 && !REGISTER_BYTES_OK (i))
3230 warning ("Remote reply is too short: %s", buf);
3231 }
3232
3233 supply_them:
3234 {
3235 int i;
3236 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3237 {
3238 struct packet_reg *r = &rs->regs[i];
3239 if (r->in_g_packet)
3240 {
3241 if (r->offset * 2 >= strlen (buf))
3242 /* A short packet that didn't include the register's
3243 value, this implies that the register is zero (and
3244 not that the register is unavailable). Supply that
3245 zero value. */
3246 regcache_raw_supply (current_regcache, r->regnum, NULL);
3247 else if (buf[r->offset * 2] == 'x')
3248 {
3249 gdb_assert (r->offset * 2 < strlen (buf));
3250 /* The register isn't available, mark it as such (at
3251 the same time setting the value to zero). */
3252 regcache_raw_supply (current_regcache, r->regnum, NULL);
3253 set_register_cached (i, -1);
3254 }
3255 else
3256 regcache_raw_supply (current_regcache, r->regnum,
3257 regs + r->offset);
3258 }
3259 }
3260 }
3261 }
3262
3263 /* Prepare to store registers. Since we may send them all (using a
3264 'G' request), we have to read out the ones we don't want to change
3265 first. */
3266
3267 static void
3268 remote_prepare_to_store (void)
3269 {
3270 struct remote_state *rs = get_remote_state ();
3271 int i;
3272 char buf[MAX_REGISTER_SIZE];
3273
3274 /* Make sure the entire registers array is valid. */
3275 switch (remote_protocol_P.support)
3276 {
3277 case PACKET_DISABLE:
3278 case PACKET_SUPPORT_UNKNOWN:
3279 /* Make sure all the necessary registers are cached. */
3280 for (i = 0; i < NUM_REGS; i++)
3281 if (rs->regs[i].in_g_packet)
3282 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3283 break;
3284 case PACKET_ENABLE:
3285 break;
3286 }
3287 }
3288
3289 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3290 packet was not recognized. */
3291
3292 static int
3293 store_register_using_P (int regnum)
3294 {
3295 struct remote_state *rs = get_remote_state ();
3296 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3297 /* Try storing a single register. */
3298 char *buf = alloca (rs->remote_packet_size);
3299 char regp[MAX_REGISTER_SIZE];
3300 char *p;
3301 int i;
3302
3303 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3304 p = buf + strlen (buf);
3305 regcache_raw_collect (current_regcache, reg->regnum, regp);
3306 bin2hex (regp, p, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3307 remote_send (buf, rs->remote_packet_size);
3308
3309 return buf[0] != '\0';
3310 }
3311
3312
3313 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3314 of the register cache buffer. FIXME: ignores errors. */
3315
3316 static void
3317 remote_store_registers (int regnum)
3318 {
3319 struct remote_state *rs = get_remote_state ();
3320 char *buf;
3321 char *regs;
3322 int i;
3323 char *p;
3324
3325 set_thread (PIDGET (inferior_ptid), 1);
3326
3327 if (regnum >= 0)
3328 {
3329 switch (remote_protocol_P.support)
3330 {
3331 case PACKET_DISABLE:
3332 break;
3333 case PACKET_ENABLE:
3334 if (store_register_using_P (regnum))
3335 return;
3336 else
3337 error ("Protocol error: P packet not recognized by stub");
3338 case PACKET_SUPPORT_UNKNOWN:
3339 if (store_register_using_P (regnum))
3340 {
3341 /* The stub recognized the 'P' packet. Remember this. */
3342 remote_protocol_P.support = PACKET_ENABLE;
3343 return;
3344 }
3345 else
3346 {
3347 /* The stub does not support the 'P' packet. Use 'G'
3348 instead, and don't try using 'P' in the future (it
3349 will just waste our time). */
3350 remote_protocol_P.support = PACKET_DISABLE;
3351 break;
3352 }
3353 }
3354 }
3355
3356 /* Extract all the registers in the regcache copying them into a
3357 local buffer. */
3358 {
3359 int i;
3360 regs = alloca (rs->sizeof_g_packet);
3361 memset (regs, rs->sizeof_g_packet, 0);
3362 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3363 {
3364 struct packet_reg *r = &rs->regs[i];
3365 if (r->in_g_packet)
3366 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3367 }
3368 }
3369
3370 /* Command describes registers byte by byte,
3371 each byte encoded as two hex characters. */
3372 buf = alloca (rs->remote_packet_size);
3373 p = buf;
3374 *p++ = 'G';
3375 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3376 bin2hex (regs, p, register_bytes_found);
3377 remote_send (buf, (rs->remote_packet_size));
3378 }
3379 \f
3380
3381 /* Return the number of hex digits in num. */
3382
3383 static int
3384 hexnumlen (ULONGEST num)
3385 {
3386 int i;
3387
3388 for (i = 0; num != 0; i++)
3389 num >>= 4;
3390
3391 return max (i, 1);
3392 }
3393
3394 /* Set BUF to the minimum number of hex digits representing NUM. */
3395
3396 static int
3397 hexnumstr (char *buf, ULONGEST num)
3398 {
3399 int len = hexnumlen (num);
3400 return hexnumnstr (buf, num, len);
3401 }
3402
3403
3404 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3405
3406 static int
3407 hexnumnstr (char *buf, ULONGEST num, int width)
3408 {
3409 int i;
3410
3411 buf[width] = '\0';
3412
3413 for (i = width - 1; i >= 0; i--)
3414 {
3415 buf[i] = "0123456789abcdef"[(num & 0xf)];
3416 num >>= 4;
3417 }
3418
3419 return width;
3420 }
3421
3422 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3423
3424 static CORE_ADDR
3425 remote_address_masked (CORE_ADDR addr)
3426 {
3427 if (remote_address_size > 0
3428 && remote_address_size < (sizeof (ULONGEST) * 8))
3429 {
3430 /* Only create a mask when that mask can safely be constructed
3431 in a ULONGEST variable. */
3432 ULONGEST mask = 1;
3433 mask = (mask << remote_address_size) - 1;
3434 addr &= mask;
3435 }
3436 return addr;
3437 }
3438
3439 /* Determine whether the remote target supports binary downloading.
3440 This is accomplished by sending a no-op memory write of zero length
3441 to the target at the specified address. It does not suffice to send
3442 the whole packet, since many stubs strip the eighth bit and subsequently
3443 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3444
3445 NOTE: This can still lose if the serial line is not eight-bit
3446 clean. In cases like this, the user should clear "remote
3447 X-packet". */
3448
3449 static void
3450 check_binary_download (CORE_ADDR addr)
3451 {
3452 struct remote_state *rs = get_remote_state ();
3453 switch (remote_protocol_binary_download.support)
3454 {
3455 case PACKET_DISABLE:
3456 break;
3457 case PACKET_ENABLE:
3458 break;
3459 case PACKET_SUPPORT_UNKNOWN:
3460 {
3461 char *buf = alloca (rs->remote_packet_size);
3462 char *p;
3463
3464 p = buf;
3465 *p++ = 'X';
3466 p += hexnumstr (p, (ULONGEST) addr);
3467 *p++ = ',';
3468 p += hexnumstr (p, (ULONGEST) 0);
3469 *p++ = ':';
3470 *p = '\0';
3471
3472 putpkt_binary (buf, (int) (p - buf));
3473 getpkt (buf, (rs->remote_packet_size), 0);
3474
3475 if (buf[0] == '\0')
3476 {
3477 if (remote_debug)
3478 fprintf_unfiltered (gdb_stdlog,
3479 "binary downloading NOT suppported by target\n");
3480 remote_protocol_binary_download.support = PACKET_DISABLE;
3481 }
3482 else
3483 {
3484 if (remote_debug)
3485 fprintf_unfiltered (gdb_stdlog,
3486 "binary downloading suppported by target\n");
3487 remote_protocol_binary_download.support = PACKET_ENABLE;
3488 }
3489 break;
3490 }
3491 }
3492 }
3493
3494 /* Write memory data directly to the remote machine.
3495 This does not inform the data cache; the data cache uses this.
3496 MEMADDR is the address in the remote memory space.
3497 MYADDR is the address of the buffer in our space.
3498 LEN is the number of bytes.
3499
3500 Returns number of bytes transferred, or 0 (setting errno) for
3501 error. Only transfer a single packet. */
3502
3503 int
3504 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3505 {
3506 unsigned char *buf;
3507 unsigned char *p;
3508 unsigned char *plen;
3509 long sizeof_buf;
3510 int plenlen;
3511 int todo;
3512 int nr_bytes;
3513 int payload_size;
3514 unsigned char *payload_start;
3515
3516 /* Verify that the target can support a binary download. */
3517 check_binary_download (memaddr);
3518
3519 /* Compute the size, and then allocate space for the largest
3520 possible packet. Include space for an extra trailing NUL. */
3521 sizeof_buf = get_memory_write_packet_size () + 1;
3522 buf = alloca (sizeof_buf);
3523
3524 /* Compute the size of the actual payload by subtracting out the
3525 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3526 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3527 + hexnumlen (memaddr)
3528 + hexnumlen (len)));
3529
3530 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3531
3532 /* Append "[XM]". Compute a best guess of the number of bytes
3533 actually transfered. */
3534 p = buf;
3535 switch (remote_protocol_binary_download.support)
3536 {
3537 case PACKET_ENABLE:
3538 *p++ = 'X';
3539 /* Best guess at number of bytes that will fit. */
3540 todo = min (len, payload_size);
3541 break;
3542 case PACKET_DISABLE:
3543 *p++ = 'M';
3544 /* num bytes that will fit */
3545 todo = min (len, payload_size / 2);
3546 break;
3547 case PACKET_SUPPORT_UNKNOWN:
3548 internal_error (__FILE__, __LINE__,
3549 "remote_write_bytes: bad internal state");
3550 default:
3551 internal_error (__FILE__, __LINE__, "bad switch");
3552 }
3553
3554 /* Append "<memaddr>". */
3555 memaddr = remote_address_masked (memaddr);
3556 p += hexnumstr (p, (ULONGEST) memaddr);
3557
3558 /* Append ",". */
3559 *p++ = ',';
3560
3561 /* Append <len>. Retain the location/size of <len>. It may need to
3562 be adjusted once the packet body has been created. */
3563 plen = p;
3564 plenlen = hexnumstr (p, (ULONGEST) todo);
3565 p += plenlen;
3566
3567 /* Append ":". */
3568 *p++ = ':';
3569 *p = '\0';
3570
3571 /* Append the packet body. */
3572 payload_start = p;
3573 switch (remote_protocol_binary_download.support)
3574 {
3575 case PACKET_ENABLE:
3576 /* Binary mode. Send target system values byte by byte, in
3577 increasing byte addresses. Only escape certain critical
3578 characters. */
3579 for (nr_bytes = 0;
3580 (nr_bytes < todo) && (p - payload_start) < payload_size;
3581 nr_bytes++)
3582 {
3583 switch (myaddr[nr_bytes] & 0xff)
3584 {
3585 case '$':
3586 case '#':
3587 case 0x7d:
3588 /* These must be escaped */
3589 *p++ = 0x7d;
3590 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3591 break;
3592 default:
3593 *p++ = myaddr[nr_bytes] & 0xff;
3594 break;
3595 }
3596 }
3597 if (nr_bytes < todo)
3598 {
3599 /* Escape chars have filled up the buffer prematurely,
3600 and we have actually sent fewer bytes than planned.
3601 Fix-up the length field of the packet. Use the same
3602 number of characters as before. */
3603 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3604 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3605 }
3606 break;
3607 case PACKET_DISABLE:
3608 /* Normal mode: Send target system values byte by byte, in
3609 increasing byte addresses. Each byte is encoded as a two hex
3610 value. */
3611 nr_bytes = bin2hex (myaddr, p, todo);
3612 p += 2 * nr_bytes;
3613 break;
3614 case PACKET_SUPPORT_UNKNOWN:
3615 internal_error (__FILE__, __LINE__,
3616 "remote_write_bytes: bad internal state");
3617 default:
3618 internal_error (__FILE__, __LINE__, "bad switch");
3619 }
3620
3621 putpkt_binary (buf, (int) (p - buf));
3622 getpkt (buf, sizeof_buf, 0);
3623
3624 if (buf[0] == 'E')
3625 {
3626 /* There is no correspondance between what the remote protocol
3627 uses for errors and errno codes. We would like a cleaner way
3628 of representing errors (big enough to include errno codes,
3629 bfd_error codes, and others). But for now just return EIO. */
3630 errno = EIO;
3631 return 0;
3632 }
3633
3634 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3635 bytes than we'd planned. */
3636 return nr_bytes;
3637 }
3638
3639 /* Read memory data directly from the remote machine.
3640 This does not use the data cache; the data cache uses this.
3641 MEMADDR is the address in the remote memory space.
3642 MYADDR is the address of the buffer in our space.
3643 LEN is the number of bytes.
3644
3645 Returns number of bytes transferred, or 0 for error. */
3646
3647 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3648 remote targets) shouldn't attempt to read the entire buffer.
3649 Instead it should read a single packet worth of data and then
3650 return the byte size of that packet to the caller. The caller (its
3651 caller and its callers caller ;-) already contains code for
3652 handling partial reads. */
3653
3654 int
3655 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3656 {
3657 char *buf;
3658 int max_buf_size; /* Max size of packet output buffer */
3659 long sizeof_buf;
3660 int origlen;
3661
3662 /* Create a buffer big enough for this packet. */
3663 max_buf_size = get_memory_read_packet_size ();
3664 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3665 buf = alloca (sizeof_buf);
3666
3667 origlen = len;
3668 while (len > 0)
3669 {
3670 char *p;
3671 int todo;
3672 int i;
3673
3674 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3675
3676 /* construct "m"<memaddr>","<len>" */
3677 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3678 memaddr = remote_address_masked (memaddr);
3679 p = buf;
3680 *p++ = 'm';
3681 p += hexnumstr (p, (ULONGEST) memaddr);
3682 *p++ = ',';
3683 p += hexnumstr (p, (ULONGEST) todo);
3684 *p = '\0';
3685
3686 putpkt (buf);
3687 getpkt (buf, sizeof_buf, 0);
3688
3689 if (buf[0] == 'E'
3690 && isxdigit (buf[1]) && isxdigit (buf[2])
3691 && buf[3] == '\0')
3692 {
3693 /* There is no correspondance between what the remote protocol uses
3694 for errors and errno codes. We would like a cleaner way of
3695 representing errors (big enough to include errno codes, bfd_error
3696 codes, and others). But for now just return EIO. */
3697 errno = EIO;
3698 return 0;
3699 }
3700
3701 /* Reply describes memory byte by byte,
3702 each byte encoded as two hex characters. */
3703
3704 p = buf;
3705 if ((i = hex2bin (p, myaddr, todo)) < todo)
3706 {
3707 /* Reply is short. This means that we were able to read
3708 only part of what we wanted to. */
3709 return i + (origlen - len);
3710 }
3711 myaddr += todo;
3712 memaddr += todo;
3713 len -= todo;
3714 }
3715 return origlen;
3716 }
3717 \f
3718 /* Read or write LEN bytes from inferior memory at MEMADDR,
3719 transferring to or from debugger address BUFFER. Write to inferior if
3720 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3721 for error. TARGET is unused. */
3722
3723 static int
3724 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3725 int should_write, struct mem_attrib *attrib,
3726 struct target_ops *target)
3727 {
3728 CORE_ADDR targ_addr;
3729 int targ_len;
3730 int res;
3731
3732 /* Should this be the selected frame? */
3733 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3734 mem_addr, mem_len,
3735 &targ_addr, &targ_len);
3736 if (targ_len <= 0)
3737 return 0;
3738
3739 if (should_write)
3740 res = remote_write_bytes (targ_addr, buffer, targ_len);
3741 else
3742 res = remote_read_bytes (targ_addr, buffer, targ_len);
3743
3744 return res;
3745 }
3746
3747 static void
3748 remote_files_info (struct target_ops *ignore)
3749 {
3750 puts_filtered ("Debugging a target over a serial line.\n");
3751 }
3752 \f
3753 /* Stuff for dealing with the packets which are part of this protocol.
3754 See comment at top of file for details. */
3755
3756 /* Read a single character from the remote end, masking it down to 7 bits. */
3757
3758 static int
3759 readchar (int timeout)
3760 {
3761 int ch;
3762
3763 ch = serial_readchar (remote_desc, timeout);
3764
3765 if (ch >= 0)
3766 return (ch & 0x7f);
3767
3768 switch ((enum serial_rc) ch)
3769 {
3770 case SERIAL_EOF:
3771 target_mourn_inferior ();
3772 error ("Remote connection closed");
3773 /* no return */
3774 case SERIAL_ERROR:
3775 perror_with_name ("Remote communication error");
3776 /* no return */
3777 case SERIAL_TIMEOUT:
3778 break;
3779 }
3780 return ch;
3781 }
3782
3783 /* Send the command in BUF to the remote machine, and read the reply
3784 into BUF. Report an error if we get an error reply. */
3785
3786 static void
3787 remote_send (char *buf,
3788 long sizeof_buf)
3789 {
3790 putpkt (buf);
3791 getpkt (buf, sizeof_buf, 0);
3792
3793 if (buf[0] == 'E')
3794 error ("Remote failure reply: %s", buf);
3795 }
3796
3797 /* Display a null-terminated packet on stdout, for debugging, using C
3798 string notation. */
3799
3800 static void
3801 print_packet (char *buf)
3802 {
3803 puts_filtered ("\"");
3804 fputstr_filtered (buf, '"', gdb_stdout);
3805 puts_filtered ("\"");
3806 }
3807
3808 int
3809 putpkt (char *buf)
3810 {
3811 return putpkt_binary (buf, strlen (buf));
3812 }
3813
3814 /* Send a packet to the remote machine, with error checking. The data
3815 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
3816 to account for the $, # and checksum, and for a possible /0 if we are
3817 debugging (remote_debug) and want to print the sent packet as a string */
3818
3819 static int
3820 putpkt_binary (char *buf, int cnt)
3821 {
3822 struct remote_state *rs = get_remote_state ();
3823 int i;
3824 unsigned char csum = 0;
3825 char *buf2 = alloca (cnt + 6);
3826 long sizeof_junkbuf = (rs->remote_packet_size);
3827 char *junkbuf = alloca (sizeof_junkbuf);
3828
3829 int ch;
3830 int tcount = 0;
3831 char *p;
3832
3833 /* Copy the packet into buffer BUF2, encapsulating it
3834 and giving it a checksum. */
3835
3836 p = buf2;
3837 *p++ = '$';
3838
3839 for (i = 0; i < cnt; i++)
3840 {
3841 csum += buf[i];
3842 *p++ = buf[i];
3843 }
3844 *p++ = '#';
3845 *p++ = tohex ((csum >> 4) & 0xf);
3846 *p++ = tohex (csum & 0xf);
3847
3848 /* Send it over and over until we get a positive ack. */
3849
3850 while (1)
3851 {
3852 int started_error_output = 0;
3853
3854 if (remote_debug)
3855 {
3856 *p = '\0';
3857 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3858 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3859 fprintf_unfiltered (gdb_stdlog, "...");
3860 gdb_flush (gdb_stdlog);
3861 }
3862 if (serial_write (remote_desc, buf2, p - buf2))
3863 perror_with_name ("putpkt: write failed");
3864
3865 /* read until either a timeout occurs (-2) or '+' is read */
3866 while (1)
3867 {
3868 ch = readchar (remote_timeout);
3869
3870 if (remote_debug)
3871 {
3872 switch (ch)
3873 {
3874 case '+':
3875 case '-':
3876 case SERIAL_TIMEOUT:
3877 case '$':
3878 if (started_error_output)
3879 {
3880 putchar_unfiltered ('\n');
3881 started_error_output = 0;
3882 }
3883 }
3884 }
3885
3886 switch (ch)
3887 {
3888 case '+':
3889 if (remote_debug)
3890 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3891 return 1;
3892 case '-':
3893 if (remote_debug)
3894 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3895 case SERIAL_TIMEOUT:
3896 tcount++;
3897 if (tcount > 3)
3898 return 0;
3899 break; /* Retransmit buffer */
3900 case '$':
3901 {
3902 if (remote_debug)
3903 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
3904 /* It's probably an old response, and we're out of sync.
3905 Just gobble up the packet and ignore it. */
3906 read_frame (junkbuf, sizeof_junkbuf);
3907 continue; /* Now, go look for + */
3908 }
3909 default:
3910 if (remote_debug)
3911 {
3912 if (!started_error_output)
3913 {
3914 started_error_output = 1;
3915 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
3916 }
3917 fputc_unfiltered (ch & 0177, gdb_stdlog);
3918 }
3919 continue;
3920 }
3921 break; /* Here to retransmit */
3922 }
3923
3924 #if 0
3925 /* This is wrong. If doing a long backtrace, the user should be
3926 able to get out next time we call QUIT, without anything as
3927 violent as interrupt_query. If we want to provide a way out of
3928 here without getting to the next QUIT, it should be based on
3929 hitting ^C twice as in remote_wait. */
3930 if (quit_flag)
3931 {
3932 quit_flag = 0;
3933 interrupt_query ();
3934 }
3935 #endif
3936 }
3937 }
3938
3939 /* Come here after finding the start of the frame. Collect the rest
3940 into BUF, verifying the checksum, length, and handling run-length
3941 compression. No more than sizeof_buf-1 characters are read so that
3942 the buffer can be NUL terminated.
3943
3944 Returns -1 on error, number of characters in buffer (ignoring the
3945 trailing NULL) on success. (could be extended to return one of the
3946 SERIAL status indications). */
3947
3948 static long
3949 read_frame (char *buf,
3950 long sizeof_buf)
3951 {
3952 unsigned char csum;
3953 long bc;
3954 int c;
3955
3956 csum = 0;
3957 bc = 0;
3958
3959 while (1)
3960 {
3961 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
3962 c = readchar (remote_timeout);
3963 switch (c)
3964 {
3965 case SERIAL_TIMEOUT:
3966 if (remote_debug)
3967 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
3968 return -1;
3969 case '$':
3970 if (remote_debug)
3971 fputs_filtered ("Saw new packet start in middle of old one\n",
3972 gdb_stdlog);
3973 return -1; /* Start a new packet, count retries */
3974 case '#':
3975 {
3976 unsigned char pktcsum;
3977 int check_0 = 0;
3978 int check_1 = 0;
3979
3980 buf[bc] = '\0';
3981
3982 check_0 = readchar (remote_timeout);
3983 if (check_0 >= 0)
3984 check_1 = readchar (remote_timeout);
3985
3986 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
3987 {
3988 if (remote_debug)
3989 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
3990 return -1;
3991 }
3992 else if (check_0 < 0 || check_1 < 0)
3993 {
3994 if (remote_debug)
3995 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
3996 return -1;
3997 }
3998
3999 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4000 if (csum == pktcsum)
4001 return bc;
4002
4003 if (remote_debug)
4004 {
4005 fprintf_filtered (gdb_stdlog,
4006 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4007 pktcsum, csum);
4008 fputs_filtered (buf, gdb_stdlog);
4009 fputs_filtered ("\n", gdb_stdlog);
4010 }
4011 /* Number of characters in buffer ignoring trailing
4012 NUL. */
4013 return -1;
4014 }
4015 case '*': /* Run length encoding */
4016 {
4017 int repeat;
4018 csum += c;
4019
4020 c = readchar (remote_timeout);
4021 csum += c;
4022 repeat = c - ' ' + 3; /* Compute repeat count */
4023
4024 /* The character before ``*'' is repeated. */
4025
4026 if (repeat > 0 && repeat <= 255
4027 && bc > 0
4028 && bc + repeat - 1 < sizeof_buf - 1)
4029 {
4030 memset (&buf[bc], buf[bc - 1], repeat);
4031 bc += repeat;
4032 continue;
4033 }
4034
4035 buf[bc] = '\0';
4036 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4037 puts_filtered (buf);
4038 puts_filtered ("\n");
4039 return -1;
4040 }
4041 default:
4042 if (bc < sizeof_buf - 1)
4043 {
4044 buf[bc++] = c;
4045 csum += c;
4046 continue;
4047 }
4048
4049 buf[bc] = '\0';
4050 puts_filtered ("Remote packet too long: ");
4051 puts_filtered (buf);
4052 puts_filtered ("\n");
4053
4054 return -1;
4055 }
4056 }
4057 }
4058
4059 /* Read a packet from the remote machine, with error checking, and
4060 store it in BUF. If FOREVER, wait forever rather than timing out;
4061 this is used (in synchronous mode) to wait for a target that is is
4062 executing user code to stop. */
4063 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4064 don't have to change all the calls to getpkt to deal with the
4065 return value, because at the moment I don't know what the right
4066 thing to do it for those. */
4067 void
4068 getpkt (char *buf,
4069 long sizeof_buf,
4070 int forever)
4071 {
4072 int timed_out;
4073
4074 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4075 }
4076
4077
4078 /* Read a packet from the remote machine, with error checking, and
4079 store it in BUF. If FOREVER, wait forever rather than timing out;
4080 this is used (in synchronous mode) to wait for a target that is is
4081 executing user code to stop. If FOREVER == 0, this function is
4082 allowed to time out gracefully and return an indication of this to
4083 the caller. */
4084 static int
4085 getpkt_sane (char *buf,
4086 long sizeof_buf,
4087 int forever)
4088 {
4089 int c;
4090 int tries;
4091 int timeout;
4092 int val;
4093
4094 strcpy (buf, "timeout");
4095
4096 if (forever)
4097 {
4098 timeout = watchdog > 0 ? watchdog : -1;
4099 }
4100
4101 else
4102 timeout = remote_timeout;
4103
4104 #define MAX_TRIES 3
4105
4106 for (tries = 1; tries <= MAX_TRIES; tries++)
4107 {
4108 /* This can loop forever if the remote side sends us characters
4109 continuously, but if it pauses, we'll get a zero from readchar
4110 because of timeout. Then we'll count that as a retry. */
4111
4112 /* Note that we will only wait forever prior to the start of a packet.
4113 After that, we expect characters to arrive at a brisk pace. They
4114 should show up within remote_timeout intervals. */
4115
4116 do
4117 {
4118 c = readchar (timeout);
4119
4120 if (c == SERIAL_TIMEOUT)
4121 {
4122 if (forever) /* Watchdog went off? Kill the target. */
4123 {
4124 QUIT;
4125 target_mourn_inferior ();
4126 error ("Watchdog has expired. Target detached.\n");
4127 }
4128 if (remote_debug)
4129 fputs_filtered ("Timed out.\n", gdb_stdlog);
4130 goto retry;
4131 }
4132 }
4133 while (c != '$');
4134
4135 /* We've found the start of a packet, now collect the data. */
4136
4137 val = read_frame (buf, sizeof_buf);
4138
4139 if (val >= 0)
4140 {
4141 if (remote_debug)
4142 {
4143 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4144 fputstr_unfiltered (buf, 0, gdb_stdlog);
4145 fprintf_unfiltered (gdb_stdlog, "\n");
4146 }
4147 serial_write (remote_desc, "+", 1);
4148 return 0;
4149 }
4150
4151 /* Try the whole thing again. */
4152 retry:
4153 serial_write (remote_desc, "-", 1);
4154 }
4155
4156 /* We have tried hard enough, and just can't receive the packet. Give up. */
4157
4158 printf_unfiltered ("Ignoring packet error, continuing...\n");
4159 serial_write (remote_desc, "+", 1);
4160 return 1;
4161 }
4162 \f
4163 static void
4164 remote_kill (void)
4165 {
4166 /* For some mysterious reason, wait_for_inferior calls kill instead of
4167 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4168 if (kill_kludge)
4169 {
4170 kill_kludge = 0;
4171 target_mourn_inferior ();
4172 return;
4173 }
4174
4175 /* Use catch_errors so the user can quit from gdb even when we aren't on
4176 speaking terms with the remote system. */
4177 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4178
4179 /* Don't wait for it to die. I'm not really sure it matters whether
4180 we do or not. For the existing stubs, kill is a noop. */
4181 target_mourn_inferior ();
4182 }
4183
4184 /* Async version of remote_kill. */
4185 static void
4186 remote_async_kill (void)
4187 {
4188 /* Unregister the file descriptor from the event loop. */
4189 if (target_is_async_p ())
4190 serial_async (remote_desc, NULL, 0);
4191
4192 /* For some mysterious reason, wait_for_inferior calls kill instead of
4193 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4194 if (kill_kludge)
4195 {
4196 kill_kludge = 0;
4197 target_mourn_inferior ();
4198 return;
4199 }
4200
4201 /* Use catch_errors so the user can quit from gdb even when we aren't on
4202 speaking terms with the remote system. */
4203 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4204
4205 /* Don't wait for it to die. I'm not really sure it matters whether
4206 we do or not. For the existing stubs, kill is a noop. */
4207 target_mourn_inferior ();
4208 }
4209
4210 static void
4211 remote_mourn (void)
4212 {
4213 remote_mourn_1 (&remote_ops);
4214 }
4215
4216 static void
4217 remote_async_mourn (void)
4218 {
4219 remote_mourn_1 (&remote_async_ops);
4220 }
4221
4222 static void
4223 extended_remote_mourn (void)
4224 {
4225 /* We do _not_ want to mourn the target like this; this will
4226 remove the extended remote target from the target stack,
4227 and the next time the user says "run" it'll fail.
4228
4229 FIXME: What is the right thing to do here? */
4230 #if 0
4231 remote_mourn_1 (&extended_remote_ops);
4232 #endif
4233 }
4234
4235 /* Worker function for remote_mourn. */
4236 static void
4237 remote_mourn_1 (struct target_ops *target)
4238 {
4239 unpush_target (target);
4240 generic_mourn_inferior ();
4241 }
4242
4243 /* In the extended protocol we want to be able to do things like
4244 "run" and have them basically work as expected. So we need
4245 a special create_inferior function.
4246
4247 FIXME: One day add support for changing the exec file
4248 we're debugging, arguments and an environment. */
4249
4250 static void
4251 extended_remote_create_inferior (char *exec_file, char *args, char **env,
4252 int from_tty)
4253 {
4254 /* Rip out the breakpoints; we'll reinsert them after restarting
4255 the remote server. */
4256 remove_breakpoints ();
4257
4258 /* Now restart the remote server. */
4259 extended_remote_restart ();
4260
4261 /* Now put the breakpoints back in. This way we're safe if the
4262 restart function works via a unix fork on the remote side. */
4263 insert_breakpoints ();
4264
4265 /* Clean up from the last time we were running. */
4266 clear_proceed_status ();
4267
4268 /* Let the remote process run. */
4269 proceed (-1, TARGET_SIGNAL_0, 0);
4270 }
4271
4272 /* Async version of extended_remote_create_inferior. */
4273 static void
4274 extended_remote_async_create_inferior (char *exec_file, char *args, char **env,
4275 int from_tty)
4276 {
4277 /* Rip out the breakpoints; we'll reinsert them after restarting
4278 the remote server. */
4279 remove_breakpoints ();
4280
4281 /* If running asynchronously, register the target file descriptor
4282 with the event loop. */
4283 if (event_loop_p && target_can_async_p ())
4284 target_async (inferior_event_handler, 0);
4285
4286 /* Now restart the remote server. */
4287 extended_remote_restart ();
4288
4289 /* Now put the breakpoints back in. This way we're safe if the
4290 restart function works via a unix fork on the remote side. */
4291 insert_breakpoints ();
4292
4293 /* Clean up from the last time we were running. */
4294 clear_proceed_status ();
4295
4296 /* Let the remote process run. */
4297 proceed (-1, TARGET_SIGNAL_0, 0);
4298 }
4299 \f
4300
4301 /* On some machines, e.g. 68k, we may use a different breakpoint
4302 instruction than other targets; in those use
4303 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4304 Also, bi-endian targets may define
4305 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4306 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4307 just call the standard routines that are in mem-break.c. */
4308
4309 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4310 target should use an identical BREAKPOINT_FROM_PC. As for native,
4311 the ARCH-OS-tdep.c code can override the default. */
4312
4313 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4314 #define DEPRECATED_REMOTE_BREAKPOINT
4315 #endif
4316
4317 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4318
4319 /* If the target isn't bi-endian, just pretend it is. */
4320 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4321 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4322 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4323 #endif
4324
4325 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4326 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4327
4328 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4329
4330 /* Insert a breakpoint on targets that don't have any better
4331 breakpoint support. We read the contents of the target location
4332 and stash it, then overwrite it with a breakpoint instruction.
4333 ADDR is the target location in the target machine. CONTENTS_CACHE
4334 is a pointer to memory allocated for saving the target contents.
4335 It is guaranteed by the caller to be long enough to save the number
4336 of bytes returned by BREAKPOINT_FROM_PC. */
4337
4338 static int
4339 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4340 {
4341 struct remote_state *rs = get_remote_state ();
4342 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4343 int val;
4344 #endif
4345 int bp_size;
4346
4347 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4348 If it succeeds, then set the support to PACKET_ENABLE. If it
4349 fails, and the user has explicitly requested the Z support then
4350 report an error, otherwise, mark it disabled and go on. */
4351
4352 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4353 {
4354 char *buf = alloca (rs->remote_packet_size);
4355 char *p = buf;
4356
4357 addr = remote_address_masked (addr);
4358 *(p++) = 'Z';
4359 *(p++) = '0';
4360 *(p++) = ',';
4361 p += hexnumstr (p, (ULONGEST) addr);
4362 BREAKPOINT_FROM_PC (&addr, &bp_size);
4363 sprintf (p, ",%d", bp_size);
4364
4365 putpkt (buf);
4366 getpkt (buf, (rs->remote_packet_size), 0);
4367
4368 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4369 {
4370 case PACKET_ERROR:
4371 return -1;
4372 case PACKET_OK:
4373 return 0;
4374 case PACKET_UNKNOWN:
4375 break;
4376 }
4377 }
4378
4379 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4380 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4381
4382 if (val == 0)
4383 {
4384 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4385 val = target_write_memory (addr, (char *) big_break_insn,
4386 sizeof big_break_insn);
4387 else
4388 val = target_write_memory (addr, (char *) little_break_insn,
4389 sizeof little_break_insn);
4390 }
4391
4392 return val;
4393 #else
4394 return memory_insert_breakpoint (addr, contents_cache);
4395 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4396 }
4397
4398 static int
4399 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4400 {
4401 struct remote_state *rs = get_remote_state ();
4402 int bp_size;
4403
4404 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4405 {
4406 char *buf = alloca (rs->remote_packet_size);
4407 char *p = buf;
4408
4409 *(p++) = 'z';
4410 *(p++) = '0';
4411 *(p++) = ',';
4412
4413 addr = remote_address_masked (addr);
4414 p += hexnumstr (p, (ULONGEST) addr);
4415 BREAKPOINT_FROM_PC (&addr, &bp_size);
4416 sprintf (p, ",%d", bp_size);
4417
4418 putpkt (buf);
4419 getpkt (buf, (rs->remote_packet_size), 0);
4420
4421 return (buf[0] == 'E');
4422 }
4423
4424 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4425 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4426 #else
4427 return memory_remove_breakpoint (addr, contents_cache);
4428 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4429 }
4430
4431 static int
4432 watchpoint_to_Z_packet (int type)
4433 {
4434 switch (type)
4435 {
4436 case hw_write:
4437 return 2;
4438 break;
4439 case hw_read:
4440 return 3;
4441 break;
4442 case hw_access:
4443 return 4;
4444 break;
4445 default:
4446 internal_error (__FILE__, __LINE__,
4447 "hw_bp_to_z: bad watchpoint type %d", type);
4448 }
4449 }
4450
4451 static int
4452 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4453 {
4454 struct remote_state *rs = get_remote_state ();
4455 char *buf = alloca (rs->remote_packet_size);
4456 char *p;
4457 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4458
4459 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4460 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4461 remote_protocol_Z[packet].name,
4462 remote_protocol_Z[packet].title);
4463
4464 sprintf (buf, "Z%x,", packet);
4465 p = strchr (buf, '\0');
4466 addr = remote_address_masked (addr);
4467 p += hexnumstr (p, (ULONGEST) addr);
4468 sprintf (p, ",%x", len);
4469
4470 putpkt (buf);
4471 getpkt (buf, (rs->remote_packet_size), 0);
4472
4473 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4474 {
4475 case PACKET_ERROR:
4476 case PACKET_UNKNOWN:
4477 return -1;
4478 case PACKET_OK:
4479 return 0;
4480 }
4481 internal_error (__FILE__, __LINE__,
4482 "remote_insert_watchpoint: reached end of function");
4483 }
4484
4485
4486 static int
4487 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4488 {
4489 struct remote_state *rs = get_remote_state ();
4490 char *buf = alloca (rs->remote_packet_size);
4491 char *p;
4492 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4493
4494 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4495 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4496 remote_protocol_Z[packet].name,
4497 remote_protocol_Z[packet].title);
4498
4499 sprintf (buf, "z%x,", packet);
4500 p = strchr (buf, '\0');
4501 addr = remote_address_masked (addr);
4502 p += hexnumstr (p, (ULONGEST) addr);
4503 sprintf (p, ",%x", len);
4504 putpkt (buf);
4505 getpkt (buf, (rs->remote_packet_size), 0);
4506
4507 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4508 {
4509 case PACKET_ERROR:
4510 case PACKET_UNKNOWN:
4511 return -1;
4512 case PACKET_OK:
4513 return 0;
4514 }
4515 internal_error (__FILE__, __LINE__,
4516 "remote_remove_watchpoint: reached end of function");
4517 }
4518
4519
4520 int remote_hw_watchpoint_limit = -1;
4521 int remote_hw_breakpoint_limit = -1;
4522
4523 static int
4524 remote_check_watch_resources (int type, int cnt, int ot)
4525 {
4526 if (type == bp_hardware_breakpoint)
4527 {
4528 if (remote_hw_breakpoint_limit == 0)
4529 return 0;
4530 else if (remote_hw_breakpoint_limit < 0)
4531 return 1;
4532 else if (cnt <= remote_hw_breakpoint_limit)
4533 return 1;
4534 }
4535 else
4536 {
4537 if (remote_hw_watchpoint_limit == 0)
4538 return 0;
4539 else if (remote_hw_watchpoint_limit < 0)
4540 return 1;
4541 else if (ot)
4542 return -1;
4543 else if (cnt <= remote_hw_watchpoint_limit)
4544 return 1;
4545 }
4546 return -1;
4547 }
4548
4549 static int
4550 remote_stopped_by_watchpoint (void)
4551 {
4552 return remote_stopped_by_watchpoint_p;
4553 }
4554
4555 extern int stepped_after_stopped_by_watchpoint;
4556
4557 static CORE_ADDR
4558 remote_stopped_data_address (void)
4559 {
4560 if (remote_stopped_by_watchpoint ()
4561 || stepped_after_stopped_by_watchpoint)
4562 return remote_watch_data_address;
4563 return (CORE_ADDR)0;
4564 }
4565
4566
4567 static int
4568 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4569 {
4570 int len = 0;
4571 struct remote_state *rs = get_remote_state ();
4572 char *buf = alloca (rs->remote_packet_size);
4573 char *p = buf;
4574
4575 /* The length field should be set to the size of a breakpoint
4576 instruction. */
4577
4578 BREAKPOINT_FROM_PC (&addr, &len);
4579
4580 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4581 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4582 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4583 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4584
4585 *(p++) = 'Z';
4586 *(p++) = '1';
4587 *(p++) = ',';
4588
4589 addr = remote_address_masked (addr);
4590 p += hexnumstr (p, (ULONGEST) addr);
4591 sprintf (p, ",%x", len);
4592
4593 putpkt (buf);
4594 getpkt (buf, (rs->remote_packet_size), 0);
4595
4596 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4597 {
4598 case PACKET_ERROR:
4599 case PACKET_UNKNOWN:
4600 return -1;
4601 case PACKET_OK:
4602 return 0;
4603 }
4604 internal_error (__FILE__, __LINE__,
4605 "remote_insert_hw_breakpoint: reached end of function");
4606 }
4607
4608
4609 static int
4610 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4611 {
4612 int len;
4613 struct remote_state *rs = get_remote_state ();
4614 char *buf = alloca (rs->remote_packet_size);
4615 char *p = buf;
4616
4617 /* The length field should be set to the size of a breakpoint
4618 instruction. */
4619
4620 BREAKPOINT_FROM_PC (&addr, &len);
4621
4622 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4623 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4624 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4625 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4626
4627 *(p++) = 'z';
4628 *(p++) = '1';
4629 *(p++) = ',';
4630
4631 addr = remote_address_masked (addr);
4632 p += hexnumstr (p, (ULONGEST) addr);
4633 sprintf (p, ",%x", len);
4634
4635 putpkt(buf);
4636 getpkt (buf, (rs->remote_packet_size), 0);
4637
4638 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4639 {
4640 case PACKET_ERROR:
4641 case PACKET_UNKNOWN:
4642 return -1;
4643 case PACKET_OK:
4644 return 0;
4645 }
4646 internal_error (__FILE__, __LINE__,
4647 "remote_remove_hw_breakpoint: reached end of function");
4648 }
4649
4650 /* Some targets are only capable of doing downloads, and afterwards
4651 they switch to the remote serial protocol. This function provides
4652 a clean way to get from the download target to the remote target.
4653 It's basically just a wrapper so that we don't have to expose any
4654 of the internal workings of remote.c.
4655
4656 Prior to calling this routine, you should shutdown the current
4657 target code, else you will get the "A program is being debugged
4658 already..." message. Usually a call to pop_target() suffices. */
4659
4660 void
4661 push_remote_target (char *name, int from_tty)
4662 {
4663 printf_filtered ("Switching to remote protocol\n");
4664 remote_open (name, from_tty);
4665 }
4666
4667 /* Table used by the crc32 function to calcuate the checksum. */
4668
4669 static unsigned long crc32_table[256] =
4670 {0, 0};
4671
4672 static unsigned long
4673 crc32 (unsigned char *buf, int len, unsigned int crc)
4674 {
4675 if (!crc32_table[1])
4676 {
4677 /* Initialize the CRC table and the decoding table. */
4678 int i, j;
4679 unsigned int c;
4680
4681 for (i = 0; i < 256; i++)
4682 {
4683 for (c = i << 24, j = 8; j > 0; --j)
4684 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4685 crc32_table[i] = c;
4686 }
4687 }
4688
4689 while (len--)
4690 {
4691 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4692 buf++;
4693 }
4694 return crc;
4695 }
4696
4697 /* compare-sections command
4698
4699 With no arguments, compares each loadable section in the exec bfd
4700 with the same memory range on the target, and reports mismatches.
4701 Useful for verifying the image on the target against the exec file.
4702 Depends on the target understanding the new "qCRC:" request. */
4703
4704 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4705 target method (target verify memory) and generic version of the
4706 actual command. This will allow other high-level code (especially
4707 generic_load()) to make use of this target functionality. */
4708
4709 static void
4710 compare_sections_command (char *args, int from_tty)
4711 {
4712 struct remote_state *rs = get_remote_state ();
4713 asection *s;
4714 unsigned long host_crc, target_crc;
4715 extern bfd *exec_bfd;
4716 struct cleanup *old_chain;
4717 char *tmp;
4718 char *sectdata;
4719 const char *sectname;
4720 char *buf = alloca (rs->remote_packet_size);
4721 bfd_size_type size;
4722 bfd_vma lma;
4723 int matched = 0;
4724 int mismatched = 0;
4725
4726 if (!exec_bfd)
4727 error ("command cannot be used without an exec file");
4728 if (!current_target.to_shortname ||
4729 strcmp (current_target.to_shortname, "remote") != 0)
4730 error ("command can only be used with remote target");
4731
4732 for (s = exec_bfd->sections; s; s = s->next)
4733 {
4734 if (!(s->flags & SEC_LOAD))
4735 continue; /* skip non-loadable section */
4736
4737 size = bfd_get_section_size (s);
4738 if (size == 0)
4739 continue; /* skip zero-length section */
4740
4741 sectname = bfd_get_section_name (exec_bfd, s);
4742 if (args && strcmp (args, sectname) != 0)
4743 continue; /* not the section selected by user */
4744
4745 matched = 1; /* do this section */
4746 lma = s->lma;
4747 /* FIXME: assumes lma can fit into long */
4748 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4749 putpkt (buf);
4750
4751 /* be clever; compute the host_crc before waiting for target reply */
4752 sectdata = xmalloc (size);
4753 old_chain = make_cleanup (xfree, sectdata);
4754 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4755 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4756
4757 getpkt (buf, (rs->remote_packet_size), 0);
4758 if (buf[0] == 'E')
4759 error ("target memory fault, section %s, range 0x%s -- 0x%s",
4760 sectname, paddr (lma), paddr (lma + size));
4761 if (buf[0] != 'C')
4762 error ("remote target does not support this operation");
4763
4764 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4765 target_crc = target_crc * 16 + fromhex (*tmp);
4766
4767 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4768 sectname, paddr (lma), paddr (lma + size));
4769 if (host_crc == target_crc)
4770 printf_filtered ("matched.\n");
4771 else
4772 {
4773 printf_filtered ("MIS-MATCHED!\n");
4774 mismatched++;
4775 }
4776
4777 do_cleanups (old_chain);
4778 }
4779 if (mismatched > 0)
4780 warning ("One or more sections of the remote executable does not match\n\
4781 the loaded file\n");
4782 if (args && !matched)
4783 printf_filtered ("No loaded section named '%s'.\n", args);
4784 }
4785
4786 static LONGEST
4787 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4788 const char *annex, void *readbuf, const void *writebuf,
4789 ULONGEST offset, LONGEST len)
4790 {
4791 struct remote_state *rs = get_remote_state ();
4792 int i;
4793 char *buf2 = alloca (rs->remote_packet_size);
4794 char *p2 = &buf2[0];
4795 char query_type;
4796
4797 /* Only handle reads. */
4798 if (writebuf != NULL || readbuf == NULL)
4799 return -1;
4800
4801 /* Map pre-existing objects onto letters. DO NOT do this for new
4802 objects!!! Instead specify new query packets. */
4803 switch (object)
4804 {
4805 case TARGET_OBJECT_KOD:
4806 query_type = 'K';
4807 break;
4808 case TARGET_OBJECT_AVR:
4809 query_type = 'R';
4810 break;
4811
4812 case TARGET_OBJECT_AUXV:
4813 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
4814 {
4815 unsigned int total = 0;
4816 while (len > 0)
4817 {
4818 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
4819 snprintf (buf2, rs->remote_packet_size,
4820 "qPart:auxv:read::%s,%s",
4821 phex_nz (offset, sizeof offset),
4822 phex_nz (n, sizeof n));
4823 i = putpkt (buf2);
4824 if (i < 0)
4825 return total > 0 ? total : i;
4826 buf2[0] = '\0';
4827 getpkt (buf2, rs->remote_packet_size, 0);
4828 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
4829 return total > 0 ? total : -1;
4830 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
4831 break; /* Got EOF indicator. */
4832 /* Got some data. */
4833 i = hex2bin (buf2, readbuf, len);
4834 if (i > 0)
4835 {
4836 readbuf = (void *) ((char *) readbuf + i);
4837 offset += i;
4838 len -= i;
4839 total += i;
4840 }
4841 }
4842 return total;
4843 }
4844 return -1;
4845
4846 default:
4847 return -1;
4848 }
4849
4850 /* Note: a zero OFFSET and LEN can be used to query the minimum
4851 buffer size. */
4852 if (offset == 0 && len == 0)
4853 return (rs->remote_packet_size);
4854 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
4855 not large enough let the caller. */
4856 if (len < (rs->remote_packet_size))
4857 return -1;
4858 len = rs->remote_packet_size;
4859
4860 /* except for querying the minimum buffer size, target must be open */
4861 if (!remote_desc)
4862 error ("remote query is only available after target open");
4863
4864 gdb_assert (annex != NULL);
4865 gdb_assert (readbuf != NULL);
4866
4867 *p2++ = 'q';
4868 *p2++ = query_type;
4869
4870 /* we used one buffer char for the remote protocol q command and another
4871 for the query type. As the remote protocol encapsulation uses 4 chars
4872 plus one extra in case we are debugging (remote_debug),
4873 we have PBUFZIZ - 7 left to pack the query string */
4874 i = 0;
4875 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
4876 {
4877 /* Bad caller may have sent forbidden characters. */
4878 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
4879 *p2++ = annex[i];
4880 i++;
4881 }
4882 *p2 = '\0';
4883 gdb_assert (annex[i] == '\0');
4884
4885 i = putpkt (buf2);
4886 if (i < 0)
4887 return i;
4888
4889 getpkt (readbuf, len, 0);
4890
4891 return strlen (readbuf);
4892 }
4893
4894 static void
4895 remote_rcmd (char *command,
4896 struct ui_file *outbuf)
4897 {
4898 struct remote_state *rs = get_remote_state ();
4899 int i;
4900 char *buf = alloca (rs->remote_packet_size);
4901 char *p = buf;
4902
4903 if (!remote_desc)
4904 error ("remote rcmd is only available after target open");
4905
4906 /* Send a NULL command across as an empty command */
4907 if (command == NULL)
4908 command = "";
4909
4910 /* The query prefix */
4911 strcpy (buf, "qRcmd,");
4912 p = strchr (buf, '\0');
4913
4914 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
4915 error ("\"monitor\" command ``%s'' is too long\n", command);
4916
4917 /* Encode the actual command */
4918 bin2hex (command, p, 0);
4919
4920 if (putpkt (buf) < 0)
4921 error ("Communication problem with target\n");
4922
4923 /* get/display the response */
4924 while (1)
4925 {
4926 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
4927 buf[0] = '\0';
4928 getpkt (buf, (rs->remote_packet_size), 0);
4929 if (buf[0] == '\0')
4930 error ("Target does not support this command\n");
4931 if (buf[0] == 'O' && buf[1] != 'K')
4932 {
4933 remote_console_output (buf + 1); /* 'O' message from stub */
4934 continue;
4935 }
4936 if (strcmp (buf, "OK") == 0)
4937 break;
4938 if (strlen (buf) == 3 && buf[0] == 'E'
4939 && isdigit (buf[1]) && isdigit (buf[2]))
4940 {
4941 error ("Protocol error with Rcmd");
4942 }
4943 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
4944 {
4945 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
4946 fputc_unfiltered (c, outbuf);
4947 }
4948 break;
4949 }
4950 }
4951
4952 static void
4953 packet_command (char *args, int from_tty)
4954 {
4955 struct remote_state *rs = get_remote_state ();
4956 char *buf = alloca (rs->remote_packet_size);
4957
4958 if (!remote_desc)
4959 error ("command can only be used with remote target");
4960
4961 if (!args)
4962 error ("remote-packet command requires packet text as argument");
4963
4964 puts_filtered ("sending: ");
4965 print_packet (args);
4966 puts_filtered ("\n");
4967 putpkt (args);
4968
4969 getpkt (buf, (rs->remote_packet_size), 0);
4970 puts_filtered ("received: ");
4971 print_packet (buf);
4972 puts_filtered ("\n");
4973 }
4974
4975 #if 0
4976 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
4977
4978 static void display_thread_info (struct gdb_ext_thread_info *info);
4979
4980 static void threadset_test_cmd (char *cmd, int tty);
4981
4982 static void threadalive_test (char *cmd, int tty);
4983
4984 static void threadlist_test_cmd (char *cmd, int tty);
4985
4986 int get_and_display_threadinfo (threadref * ref);
4987
4988 static void threadinfo_test_cmd (char *cmd, int tty);
4989
4990 static int thread_display_step (threadref * ref, void *context);
4991
4992 static void threadlist_update_test_cmd (char *cmd, int tty);
4993
4994 static void init_remote_threadtests (void);
4995
4996 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
4997
4998 static void
4999 threadset_test_cmd (char *cmd, int tty)
5000 {
5001 int sample_thread = SAMPLE_THREAD;
5002
5003 printf_filtered ("Remote threadset test\n");
5004 set_thread (sample_thread, 1);
5005 }
5006
5007
5008 static void
5009 threadalive_test (char *cmd, int tty)
5010 {
5011 int sample_thread = SAMPLE_THREAD;
5012
5013 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5014 printf_filtered ("PASS: Thread alive test\n");
5015 else
5016 printf_filtered ("FAIL: Thread alive test\n");
5017 }
5018
5019 void output_threadid (char *title, threadref * ref);
5020
5021 void
5022 output_threadid (char *title, threadref *ref)
5023 {
5024 char hexid[20];
5025
5026 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5027 hexid[16] = 0;
5028 printf_filtered ("%s %s\n", title, (&hexid[0]));
5029 }
5030
5031 static void
5032 threadlist_test_cmd (char *cmd, int tty)
5033 {
5034 int startflag = 1;
5035 threadref nextthread;
5036 int done, result_count;
5037 threadref threadlist[3];
5038
5039 printf_filtered ("Remote Threadlist test\n");
5040 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5041 &result_count, &threadlist[0]))
5042 printf_filtered ("FAIL: threadlist test\n");
5043 else
5044 {
5045 threadref *scan = threadlist;
5046 threadref *limit = scan + result_count;
5047
5048 while (scan < limit)
5049 output_threadid (" thread ", scan++);
5050 }
5051 }
5052
5053 void
5054 display_thread_info (struct gdb_ext_thread_info *info)
5055 {
5056 output_threadid ("Threadid: ", &info->threadid);
5057 printf_filtered ("Name: %s\n ", info->shortname);
5058 printf_filtered ("State: %s\n", info->display);
5059 printf_filtered ("other: %s\n\n", info->more_display);
5060 }
5061
5062 int
5063 get_and_display_threadinfo (threadref *ref)
5064 {
5065 int result;
5066 int set;
5067 struct gdb_ext_thread_info threadinfo;
5068
5069 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5070 | TAG_MOREDISPLAY | TAG_DISPLAY;
5071 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5072 display_thread_info (&threadinfo);
5073 return result;
5074 }
5075
5076 static void
5077 threadinfo_test_cmd (char *cmd, int tty)
5078 {
5079 int athread = SAMPLE_THREAD;
5080 threadref thread;
5081 int set;
5082
5083 int_to_threadref (&thread, athread);
5084 printf_filtered ("Remote Threadinfo test\n");
5085 if (!get_and_display_threadinfo (&thread))
5086 printf_filtered ("FAIL cannot get thread info\n");
5087 }
5088
5089 static int
5090 thread_display_step (threadref *ref, void *context)
5091 {
5092 /* output_threadid(" threadstep ",ref); *//* simple test */
5093 return get_and_display_threadinfo (ref);
5094 }
5095
5096 static void
5097 threadlist_update_test_cmd (char *cmd, int tty)
5098 {
5099 printf_filtered ("Remote Threadlist update test\n");
5100 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5101 }
5102
5103 static void
5104 init_remote_threadtests (void)
5105 {
5106 add_com ("tlist", class_obscure, threadlist_test_cmd,
5107 "Fetch and print the remote list of thread identifiers, one pkt only");
5108 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5109 "Fetch and display info about one thread");
5110 add_com ("tset", class_obscure, threadset_test_cmd,
5111 "Test setting to a different thread");
5112 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5113 "Iterate through updating all remote thread info");
5114 add_com ("talive", class_obscure, threadalive_test,
5115 " Remote thread alive test ");
5116 }
5117
5118 #endif /* 0 */
5119
5120 /* Convert a thread ID to a string. Returns the string in a static
5121 buffer. */
5122
5123 static char *
5124 remote_pid_to_str (ptid_t ptid)
5125 {
5126 static char buf[30];
5127
5128 sprintf (buf, "Thread %d", PIDGET (ptid));
5129 return buf;
5130 }
5131
5132 static void
5133 init_remote_ops (void)
5134 {
5135 remote_ops.to_shortname = "remote";
5136 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5137 remote_ops.to_doc =
5138 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5139 Specify the serial device it is connected to\n\
5140 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5141 remote_ops.to_open = remote_open;
5142 remote_ops.to_close = remote_close;
5143 remote_ops.to_detach = remote_detach;
5144 remote_ops.to_disconnect = remote_disconnect;
5145 remote_ops.to_resume = remote_resume;
5146 remote_ops.to_wait = remote_wait;
5147 remote_ops.to_fetch_registers = remote_fetch_registers;
5148 remote_ops.to_store_registers = remote_store_registers;
5149 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5150 remote_ops.to_xfer_memory = remote_xfer_memory;
5151 remote_ops.to_files_info = remote_files_info;
5152 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5153 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5154 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5155 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5156 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5157 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5158 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5159 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5160 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5161 remote_ops.to_kill = remote_kill;
5162 remote_ops.to_load = generic_load;
5163 remote_ops.to_mourn_inferior = remote_mourn;
5164 remote_ops.to_thread_alive = remote_thread_alive;
5165 remote_ops.to_find_new_threads = remote_threads_info;
5166 remote_ops.to_pid_to_str = remote_pid_to_str;
5167 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5168 remote_ops.to_stop = remote_stop;
5169 remote_ops.to_xfer_partial = remote_xfer_partial;
5170 remote_ops.to_rcmd = remote_rcmd;
5171 remote_ops.to_stratum = process_stratum;
5172 remote_ops.to_has_all_memory = 1;
5173 remote_ops.to_has_memory = 1;
5174 remote_ops.to_has_stack = 1;
5175 remote_ops.to_has_registers = 1;
5176 remote_ops.to_has_execution = 1;
5177 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5178 remote_ops.to_magic = OPS_MAGIC;
5179 }
5180
5181 /* Set up the extended remote vector by making a copy of the standard
5182 remote vector and adding to it. */
5183
5184 static void
5185 init_extended_remote_ops (void)
5186 {
5187 extended_remote_ops = remote_ops;
5188
5189 extended_remote_ops.to_shortname = "extended-remote";
5190 extended_remote_ops.to_longname =
5191 "Extended remote serial target in gdb-specific protocol";
5192 extended_remote_ops.to_doc =
5193 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5194 Specify the serial device it is connected to (e.g. /dev/ttya).",
5195 extended_remote_ops.to_open = extended_remote_open;
5196 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5197 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5198 }
5199
5200 static int
5201 remote_can_async_p (void)
5202 {
5203 /* We're async whenever the serial device is. */
5204 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5205 }
5206
5207 static int
5208 remote_is_async_p (void)
5209 {
5210 /* We're async whenever the serial device is. */
5211 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5212 }
5213
5214 /* Pass the SERIAL event on and up to the client. One day this code
5215 will be able to delay notifying the client of an event until the
5216 point where an entire packet has been received. */
5217
5218 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5219 static void *async_client_context;
5220 static serial_event_ftype remote_async_serial_handler;
5221
5222 static void
5223 remote_async_serial_handler (struct serial *scb, void *context)
5224 {
5225 /* Don't propogate error information up to the client. Instead let
5226 the client find out about the error by querying the target. */
5227 async_client_callback (INF_REG_EVENT, async_client_context);
5228 }
5229
5230 static void
5231 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5232 {
5233 if (current_target.to_async_mask_value == 0)
5234 internal_error (__FILE__, __LINE__,
5235 "Calling remote_async when async is masked");
5236
5237 if (callback != NULL)
5238 {
5239 serial_async (remote_desc, remote_async_serial_handler, NULL);
5240 async_client_callback = callback;
5241 async_client_context = context;
5242 }
5243 else
5244 serial_async (remote_desc, NULL, NULL);
5245 }
5246
5247 /* Target async and target extended-async.
5248
5249 This are temporary targets, until it is all tested. Eventually
5250 async support will be incorporated int the usual 'remote'
5251 target. */
5252
5253 static void
5254 init_remote_async_ops (void)
5255 {
5256 remote_async_ops.to_shortname = "async";
5257 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5258 remote_async_ops.to_doc =
5259 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5260 Specify the serial device it is connected to (e.g. /dev/ttya).";
5261 remote_async_ops.to_open = remote_async_open;
5262 remote_async_ops.to_close = remote_close;
5263 remote_async_ops.to_detach = remote_detach;
5264 remote_async_ops.to_disconnect = remote_disconnect;
5265 remote_async_ops.to_resume = remote_async_resume;
5266 remote_async_ops.to_wait = remote_async_wait;
5267 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5268 remote_async_ops.to_store_registers = remote_store_registers;
5269 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5270 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5271 remote_async_ops.to_files_info = remote_files_info;
5272 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5273 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5274 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5275 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5276 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5277 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5278 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5279 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5280 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5281 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5282 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5283 remote_async_ops.to_kill = remote_async_kill;
5284 remote_async_ops.to_load = generic_load;
5285 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5286 remote_async_ops.to_thread_alive = remote_thread_alive;
5287 remote_async_ops.to_find_new_threads = remote_threads_info;
5288 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5289 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5290 remote_async_ops.to_stop = remote_stop;
5291 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5292 remote_async_ops.to_rcmd = remote_rcmd;
5293 remote_async_ops.to_stratum = process_stratum;
5294 remote_async_ops.to_has_all_memory = 1;
5295 remote_async_ops.to_has_memory = 1;
5296 remote_async_ops.to_has_stack = 1;
5297 remote_async_ops.to_has_registers = 1;
5298 remote_async_ops.to_has_execution = 1;
5299 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5300 remote_async_ops.to_can_async_p = remote_can_async_p;
5301 remote_async_ops.to_is_async_p = remote_is_async_p;
5302 remote_async_ops.to_async = remote_async;
5303 remote_async_ops.to_async_mask_value = 1;
5304 remote_async_ops.to_magic = OPS_MAGIC;
5305 }
5306
5307 /* Set up the async extended remote vector by making a copy of the standard
5308 remote vector and adding to it. */
5309
5310 static void
5311 init_extended_async_remote_ops (void)
5312 {
5313 extended_async_remote_ops = remote_async_ops;
5314
5315 extended_async_remote_ops.to_shortname = "extended-async";
5316 extended_async_remote_ops.to_longname =
5317 "Extended remote serial target in async gdb-specific protocol";
5318 extended_async_remote_ops.to_doc =
5319 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5320 Specify the serial device it is connected to (e.g. /dev/ttya).",
5321 extended_async_remote_ops.to_open = extended_remote_async_open;
5322 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5323 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5324 }
5325
5326 static void
5327 set_remote_cmd (char *args, int from_tty)
5328 {
5329 }
5330
5331 static void
5332 show_remote_cmd (char *args, int from_tty)
5333 {
5334 /* FIXME: cagney/2002-06-15: This function should iterate over
5335 remote_show_cmdlist for a list of sub commands to show. */
5336 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
5337 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
5338 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
5339 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
5340 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
5341 show_remote_protocol_qPart_auxv_packet_cmd (args, from_tty, NULL);
5342 }
5343
5344 static void
5345 build_remote_gdbarch_data (void)
5346 {
5347 remote_address_size = TARGET_ADDR_BIT;
5348 }
5349
5350 /* Saved pointer to previous owner of the new_objfile event. */
5351 static void (*remote_new_objfile_chain) (struct objfile *);
5352
5353 /* Function to be called whenever a new objfile (shlib) is detected. */
5354 static void
5355 remote_new_objfile (struct objfile *objfile)
5356 {
5357 if (remote_desc != 0) /* Have a remote connection */
5358 {
5359 remote_check_symbols (objfile);
5360 }
5361 /* Call predecessor on chain, if any. */
5362 if (remote_new_objfile_chain != 0 &&
5363 remote_desc == 0)
5364 remote_new_objfile_chain (objfile);
5365 }
5366
5367 void
5368 _initialize_remote (void)
5369 {
5370 static struct cmd_list_element *remote_set_cmdlist;
5371 static struct cmd_list_element *remote_show_cmdlist;
5372 struct cmd_list_element *tmpcmd;
5373
5374 /* architecture specific data */
5375 remote_gdbarch_data_handle = gdbarch_data_register_post_init (init_remote_state);
5376
5377 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5378 that the remote protocol has been initialized. */
5379 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5380 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5381
5382 init_remote_ops ();
5383 add_target (&remote_ops);
5384
5385 init_extended_remote_ops ();
5386 add_target (&extended_remote_ops);
5387
5388 init_remote_async_ops ();
5389 add_target (&remote_async_ops);
5390
5391 init_extended_async_remote_ops ();
5392 add_target (&extended_async_remote_ops);
5393
5394 /* Hook into new objfile notification. */
5395 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5396 deprecated_target_new_objfile_hook = remote_new_objfile;
5397
5398 #if 0
5399 init_remote_threadtests ();
5400 #endif
5401
5402 /* set/show remote ... */
5403
5404 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5405 Remote protocol specific variables\n\
5406 Configure various remote-protocol specific variables such as\n\
5407 the packets being used",
5408 &remote_set_cmdlist, "set remote ",
5409 0/*allow-unknown*/, &setlist);
5410 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5411 Remote protocol specific variables\n\
5412 Configure various remote-protocol specific variables such as\n\
5413 the packets being used",
5414 &remote_show_cmdlist, "show remote ",
5415 0/*allow-unknown*/, &showlist);
5416
5417 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5418 "Compare section data on target to the exec file.\n\
5419 Argument is a single section name (default: all loaded sections).",
5420 &cmdlist);
5421
5422 add_cmd ("packet", class_maintenance, packet_command,
5423 "Send an arbitrary packet to a remote target.\n\
5424 maintenance packet TEXT\n\
5425 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5426 this command sends the string TEXT to the inferior, and displays the\n\
5427 response packet. GDB supplies the initial `$' character, and the\n\
5428 terminating `#' character and checksum.",
5429 &maintenancelist);
5430
5431 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, "\
5432 Set whether to send break if interrupted.", "\
5433 Show whether to send break if interrupted.", "\
5434 If set, a break, instead of a cntrl-c, is sent to the remote target.", "\
5435 Whether to send break if interrupted is %s.",
5436 NULL, NULL,
5437 &setlist, &showlist);
5438
5439 /* Install commands for configuring memory read/write packets. */
5440
5441 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5442 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5443 &setlist);
5444 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5445 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5446 &showlist);
5447 add_cmd ("memory-write-packet-size", no_class,
5448 set_memory_write_packet_size,
5449 "Set the maximum number of bytes per memory-write packet.\n"
5450 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5451 "default packet size. The actual limit is further reduced\n"
5452 "dependent on the target. Specify ``fixed'' to disable the\n"
5453 "further restriction and ``limit'' to enable that restriction\n",
5454 &remote_set_cmdlist);
5455 add_cmd ("memory-read-packet-size", no_class,
5456 set_memory_read_packet_size,
5457 "Set the maximum number of bytes per memory-read packet.\n"
5458 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5459 "default packet size. The actual limit is further reduced\n"
5460 "dependent on the target. Specify ``fixed'' to disable the\n"
5461 "further restriction and ``limit'' to enable that restriction\n",
5462 &remote_set_cmdlist);
5463 add_cmd ("memory-write-packet-size", no_class,
5464 show_memory_write_packet_size,
5465 "Show the maximum number of bytes per memory-write packet.\n",
5466 &remote_show_cmdlist);
5467 add_cmd ("memory-read-packet-size", no_class,
5468 show_memory_read_packet_size,
5469 "Show the maximum number of bytes per memory-read packet.\n",
5470 &remote_show_cmdlist);
5471
5472 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5473 &remote_hw_watchpoint_limit, "\
5474 Set the maximum number of target hardware watchpoints.", "\
5475 Show the maximum number of target hardware watchpoints.", "\
5476 Specify a negative limit for unlimited.", "\
5477 The maximum number of target hardware watchpoints is %s.",
5478 NULL, NULL,
5479 &remote_set_cmdlist, &remote_show_cmdlist);
5480 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5481 &remote_hw_breakpoint_limit, "\
5482 Set the maximum number of target hardware breakpoints.", "\
5483 Show the maximum number of target hardware breakpoints.", "\
5484 Specify a negative limit for unlimited.", "\
5485 The maximum number of target hardware breakpoints is %s.",
5486 NULL, NULL,
5487 &remote_set_cmdlist, &remote_show_cmdlist);
5488
5489 deprecated_add_show_from_set
5490 (add_set_cmd ("remoteaddresssize", class_obscure,
5491 var_integer, (char *) &remote_address_size,
5492 "Set the maximum size of the address (in bits) \
5493 in a memory packet.\n",
5494 &setlist),
5495 &showlist);
5496
5497 add_packet_config_cmd (&remote_protocol_binary_download,
5498 "X", "binary-download",
5499 set_remote_protocol_binary_download_cmd,
5500 show_remote_protocol_binary_download_cmd,
5501 &remote_set_cmdlist, &remote_show_cmdlist,
5502 1);
5503 #if 0
5504 /* XXXX - should ``set remotebinarydownload'' be retained for
5505 compatibility. */
5506 deprecated_add_show_from_set
5507 (add_set_cmd ("remotebinarydownload", no_class,
5508 var_boolean, (char *) &remote_binary_download,
5509 "Set binary downloads.\n", &setlist),
5510 &showlist);
5511 #endif
5512
5513 add_packet_config_cmd (&remote_protocol_vcont,
5514 "vCont", "verbose-resume",
5515 set_remote_protocol_vcont_packet_cmd,
5516 show_remote_protocol_vcont_packet_cmd,
5517 &remote_set_cmdlist, &remote_show_cmdlist,
5518 0);
5519
5520 add_packet_config_cmd (&remote_protocol_qSymbol,
5521 "qSymbol", "symbol-lookup",
5522 set_remote_protocol_qSymbol_packet_cmd,
5523 show_remote_protocol_qSymbol_packet_cmd,
5524 &remote_set_cmdlist, &remote_show_cmdlist,
5525 0);
5526
5527 add_packet_config_cmd (&remote_protocol_P,
5528 "P", "set-register",
5529 set_remote_protocol_P_packet_cmd,
5530 show_remote_protocol_P_packet_cmd,
5531 &remote_set_cmdlist, &remote_show_cmdlist,
5532 1);
5533
5534 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5535 "Z0", "software-breakpoint",
5536 set_remote_protocol_Z_software_bp_packet_cmd,
5537 show_remote_protocol_Z_software_bp_packet_cmd,
5538 &remote_set_cmdlist, &remote_show_cmdlist,
5539 0);
5540
5541 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5542 "Z1", "hardware-breakpoint",
5543 set_remote_protocol_Z_hardware_bp_packet_cmd,
5544 show_remote_protocol_Z_hardware_bp_packet_cmd,
5545 &remote_set_cmdlist, &remote_show_cmdlist,
5546 0);
5547
5548 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5549 "Z2", "write-watchpoint",
5550 set_remote_protocol_Z_write_wp_packet_cmd,
5551 show_remote_protocol_Z_write_wp_packet_cmd,
5552 &remote_set_cmdlist, &remote_show_cmdlist,
5553 0);
5554
5555 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5556 "Z3", "read-watchpoint",
5557 set_remote_protocol_Z_read_wp_packet_cmd,
5558 show_remote_protocol_Z_read_wp_packet_cmd,
5559 &remote_set_cmdlist, &remote_show_cmdlist,
5560 0);
5561
5562 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5563 "Z4", "access-watchpoint",
5564 set_remote_protocol_Z_access_wp_packet_cmd,
5565 show_remote_protocol_Z_access_wp_packet_cmd,
5566 &remote_set_cmdlist, &remote_show_cmdlist,
5567 0);
5568
5569 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5570 "qPart_auxv", "read-aux-vector",
5571 set_remote_protocol_qPart_auxv_packet_cmd,
5572 show_remote_protocol_qPart_auxv_packet_cmd,
5573 &remote_set_cmdlist, &remote_show_cmdlist,
5574 0);
5575
5576 /* Keep the old ``set remote Z-packet ...'' working. */
5577 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5578 &remote_Z_packet_detect, "\
5579 Set use of remote protocol `Z' packets", "\
5580 Show use of remote protocol `Z' packets ", "\
5581 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5582 packets.", "\
5583 Use of remote protocol `Z' packets is %s",
5584 set_remote_protocol_Z_packet_cmd,
5585 show_remote_protocol_Z_packet_cmd,
5586 &remote_set_cmdlist, &remote_show_cmdlist);
5587
5588 /* Eventually initialize fileio. See fileio.c */
5589 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5590 }
This page took 0.167 seconds and 4 git commands to generate.