* gdb.dwarf2/dw2-noloc.S: New file.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (void);
93
94 static void remote_fetch_registers (int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == REGISTER_NAME (regnum); at present. */
264 };
265
266 struct remote_arch_state
267 {
268 /* Description of the remote protocol registers. */
269 long sizeof_g_packet;
270
271 /* Description of the remote protocol registers indexed by REGNUM
272 (making an array NUM_REGS in size). */
273 struct packet_reg *regs;
274
275 /* This is the size (in chars) of the first response to the ``g''
276 packet. It is used as a heuristic when determining the maximum
277 size of memory-read and memory-write packets. A target will
278 typically only reserve a buffer large enough to hold the ``g''
279 packet. The size does not include packet overhead (headers and
280 trailers). */
281 long actual_register_packet_size;
282
283 /* This is the maximum size (in chars) of a non read/write packet.
284 It is also used as a cap on the size of read/write packets. */
285 long remote_packet_size;
286 };
287
288
289 /* Handle for retreving the remote protocol data from gdbarch. */
290 static struct gdbarch_data *remote_gdbarch_data_handle;
291
292 static struct remote_arch_state *
293 get_remote_arch_state (void)
294 {
295 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
296 }
297
298 /* Fetch the global remote target state. */
299
300 static struct remote_state *
301 get_remote_state (void)
302 {
303 /* Make sure that the remote architecture state has been
304 initialized, because doing so might reallocate rs->buf. Any
305 function which calls getpkt also needs to be mindful of changes
306 to rs->buf, but this call limits the number of places which run
307 into trouble. */
308 get_remote_arch_state ();
309
310 return get_remote_state_raw ();
311 }
312
313 static int
314 compare_pnums (const void *lhs_, const void *rhs_)
315 {
316 const struct packet_reg * const *lhs = lhs_;
317 const struct packet_reg * const *rhs = rhs_;
318
319 if ((*lhs)->pnum < (*rhs)->pnum)
320 return -1;
321 else if ((*lhs)->pnum == (*rhs)->pnum)
322 return 0;
323 else
324 return 1;
325 }
326
327 static void *
328 init_remote_state (struct gdbarch *gdbarch)
329 {
330 int regnum, num_remote_regs, offset;
331 struct remote_state *rs = get_remote_state_raw ();
332 struct remote_arch_state *rsa;
333 struct packet_reg **remote_regs;
334
335 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
336
337 /* Use the architecture to build a regnum<->pnum table, which will be
338 1:1 unless a feature set specifies otherwise. */
339 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS, struct packet_reg);
340 for (regnum = 0; regnum < NUM_REGS; regnum++)
341 {
342 struct packet_reg *r = &rsa->regs[regnum];
343
344 if (register_size (current_gdbarch, regnum) == 0)
345 /* Do not try to fetch zero-sized (placeholder) registers. */
346 r->pnum = -1;
347 else
348 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
349
350 r->regnum = regnum;
351 }
352
353 /* Define the g/G packet format as the contents of each register
354 with a remote protocol number, in order of ascending protocol
355 number. */
356
357 remote_regs = alloca (NUM_REGS * sizeof (struct packet_reg *));
358 for (num_remote_regs = 0, regnum = 0; regnum < NUM_REGS; regnum++)
359 if (rsa->regs[regnum].pnum != -1)
360 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
361
362 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
363 compare_pnums);
364
365 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
366 {
367 remote_regs[regnum]->in_g_packet = 1;
368 remote_regs[regnum]->offset = offset;
369 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
370 }
371
372 /* Record the maximum possible size of the g packet - it may turn out
373 to be smaller. */
374 rsa->sizeof_g_packet = offset;
375
376 /* Default maximum number of characters in a packet body. Many
377 remote stubs have a hardwired buffer size of 400 bytes
378 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
379 as the maximum packet-size to ensure that the packet and an extra
380 NUL character can always fit in the buffer. This stops GDB
381 trashing stubs that try to squeeze an extra NUL into what is
382 already a full buffer (As of 1999-12-04 that was most stubs). */
383 rsa->remote_packet_size = 400 - 1;
384
385 /* This one is filled in when a ``g'' packet is received. */
386 rsa->actual_register_packet_size = 0;
387
388 /* Should rsa->sizeof_g_packet needs more space than the
389 default, adjust the size accordingly. Remember that each byte is
390 encoded as two characters. 32 is the overhead for the packet
391 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
392 (``$NN:G...#NN'') is a better guess, the below has been padded a
393 little. */
394 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
395 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
396
397 /* Make sure that the packet buffer is plenty big enough for
398 this architecture. */
399 if (rs->buf_size < rsa->remote_packet_size)
400 {
401 rs->buf_size = 2 * rsa->remote_packet_size;
402 rs->buf = xrealloc (rs->buf, rs->buf_size);
403 }
404
405 return rsa;
406 }
407
408 /* Return the current allowed size of a remote packet. This is
409 inferred from the current architecture, and should be used to
410 limit the length of outgoing packets. */
411 static long
412 get_remote_packet_size (void)
413 {
414 struct remote_state *rs = get_remote_state ();
415 struct remote_arch_state *rsa = get_remote_arch_state ();
416
417 if (rs->explicit_packet_size)
418 return rs->explicit_packet_size;
419
420 return rsa->remote_packet_size;
421 }
422
423 static struct packet_reg *
424 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
425 {
426 if (regnum < 0 && regnum >= NUM_REGS)
427 return NULL;
428 else
429 {
430 struct packet_reg *r = &rsa->regs[regnum];
431 gdb_assert (r->regnum == regnum);
432 return r;
433 }
434 }
435
436 static struct packet_reg *
437 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
438 {
439 int i;
440 for (i = 0; i < NUM_REGS; i++)
441 {
442 struct packet_reg *r = &rsa->regs[i];
443 if (r->pnum == pnum)
444 return r;
445 }
446 return NULL;
447 }
448
449 /* FIXME: graces/2002-08-08: These variables should eventually be
450 bound to an instance of the target object (as in gdbarch-tdep()),
451 when such a thing exists. */
452
453 /* This is set to the data address of the access causing the target
454 to stop for a watchpoint. */
455 static CORE_ADDR remote_watch_data_address;
456
457 /* This is non-zero if target stopped for a watchpoint. */
458 static int remote_stopped_by_watchpoint_p;
459
460 static struct target_ops remote_ops;
461
462 static struct target_ops extended_remote_ops;
463
464 /* Temporary target ops. Just like the remote_ops and
465 extended_remote_ops, but with asynchronous support. */
466 static struct target_ops remote_async_ops;
467
468 static struct target_ops extended_async_remote_ops;
469
470 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
471 ``forever'' still use the normal timeout mechanism. This is
472 currently used by the ASYNC code to guarentee that target reads
473 during the initial connect always time-out. Once getpkt has been
474 modified to return a timeout indication and, in turn
475 remote_wait()/wait_for_inferior() have gained a timeout parameter
476 this can go away. */
477 static int wait_forever_enabled_p = 1;
478
479
480 /* This variable chooses whether to send a ^C or a break when the user
481 requests program interruption. Although ^C is usually what remote
482 systems expect, and that is the default here, sometimes a break is
483 preferable instead. */
484
485 static int remote_break;
486
487 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
488 remote_open knows that we don't have a file open when the program
489 starts. */
490 static struct serial *remote_desc = NULL;
491
492 /* This variable sets the number of bits in an address that are to be
493 sent in a memory ("M" or "m") packet. Normally, after stripping
494 leading zeros, the entire address would be sent. This variable
495 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
496 initial implementation of remote.c restricted the address sent in
497 memory packets to ``host::sizeof long'' bytes - (typically 32
498 bits). Consequently, for 64 bit targets, the upper 32 bits of an
499 address was never sent. Since fixing this bug may cause a break in
500 some remote targets this variable is principly provided to
501 facilitate backward compatibility. */
502
503 static int remote_address_size;
504
505 /* Tempoary to track who currently owns the terminal. See
506 target_async_terminal_* for more details. */
507
508 static int remote_async_terminal_ours_p;
509
510 \f
511 /* User configurable variables for the number of characters in a
512 memory read/write packet. MIN (rsa->remote_packet_size,
513 rsa->sizeof_g_packet) is the default. Some targets need smaller
514 values (fifo overruns, et.al.) and some users need larger values
515 (speed up transfers). The variables ``preferred_*'' (the user
516 request), ``current_*'' (what was actually set) and ``forced_*''
517 (Positive - a soft limit, negative - a hard limit). */
518
519 struct memory_packet_config
520 {
521 char *name;
522 long size;
523 int fixed_p;
524 };
525
526 /* Compute the current size of a read/write packet. Since this makes
527 use of ``actual_register_packet_size'' the computation is dynamic. */
528
529 static long
530 get_memory_packet_size (struct memory_packet_config *config)
531 {
532 struct remote_state *rs = get_remote_state ();
533 struct remote_arch_state *rsa = get_remote_arch_state ();
534
535 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
536 law?) that some hosts don't cope very well with large alloca()
537 calls. Eventually the alloca() code will be replaced by calls to
538 xmalloc() and make_cleanups() allowing this restriction to either
539 be lifted or removed. */
540 #ifndef MAX_REMOTE_PACKET_SIZE
541 #define MAX_REMOTE_PACKET_SIZE 16384
542 #endif
543 /* NOTE: 20 ensures we can write at least one byte. */
544 #ifndef MIN_REMOTE_PACKET_SIZE
545 #define MIN_REMOTE_PACKET_SIZE 20
546 #endif
547 long what_they_get;
548 if (config->fixed_p)
549 {
550 if (config->size <= 0)
551 what_they_get = MAX_REMOTE_PACKET_SIZE;
552 else
553 what_they_get = config->size;
554 }
555 else
556 {
557 what_they_get = get_remote_packet_size ();
558 /* Limit the packet to the size specified by the user. */
559 if (config->size > 0
560 && what_they_get > config->size)
561 what_they_get = config->size;
562
563 /* Limit it to the size of the targets ``g'' response unless we have
564 permission from the stub to use a larger packet size. */
565 if (rs->explicit_packet_size == 0
566 && rsa->actual_register_packet_size > 0
567 && what_they_get > rsa->actual_register_packet_size)
568 what_they_get = rsa->actual_register_packet_size;
569 }
570 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
571 what_they_get = MAX_REMOTE_PACKET_SIZE;
572 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
573 what_they_get = MIN_REMOTE_PACKET_SIZE;
574
575 /* Make sure there is room in the global buffer for this packet
576 (including its trailing NUL byte). */
577 if (rs->buf_size < what_they_get + 1)
578 {
579 rs->buf_size = 2 * what_they_get;
580 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
581 }
582
583 return what_they_get;
584 }
585
586 /* Update the size of a read/write packet. If they user wants
587 something really big then do a sanity check. */
588
589 static void
590 set_memory_packet_size (char *args, struct memory_packet_config *config)
591 {
592 int fixed_p = config->fixed_p;
593 long size = config->size;
594 if (args == NULL)
595 error (_("Argument required (integer, `fixed' or `limited')."));
596 else if (strcmp (args, "hard") == 0
597 || strcmp (args, "fixed") == 0)
598 fixed_p = 1;
599 else if (strcmp (args, "soft") == 0
600 || strcmp (args, "limit") == 0)
601 fixed_p = 0;
602 else
603 {
604 char *end;
605 size = strtoul (args, &end, 0);
606 if (args == end)
607 error (_("Invalid %s (bad syntax)."), config->name);
608 #if 0
609 /* Instead of explicitly capping the size of a packet to
610 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
611 instead allowed to set the size to something arbitrarily
612 large. */
613 if (size > MAX_REMOTE_PACKET_SIZE)
614 error (_("Invalid %s (too large)."), config->name);
615 #endif
616 }
617 /* Extra checks? */
618 if (fixed_p && !config->fixed_p)
619 {
620 if (! query (_("The target may not be able to correctly handle a %s\n"
621 "of %ld bytes. Change the packet size? "),
622 config->name, size))
623 error (_("Packet size not changed."));
624 }
625 /* Update the config. */
626 config->fixed_p = fixed_p;
627 config->size = size;
628 }
629
630 static void
631 show_memory_packet_size (struct memory_packet_config *config)
632 {
633 printf_filtered (_("The %s is %ld. "), config->name, config->size);
634 if (config->fixed_p)
635 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
636 get_memory_packet_size (config));
637 else
638 printf_filtered (_("Packets are limited to %ld bytes.\n"),
639 get_memory_packet_size (config));
640 }
641
642 static struct memory_packet_config memory_write_packet_config =
643 {
644 "memory-write-packet-size",
645 };
646
647 static void
648 set_memory_write_packet_size (char *args, int from_tty)
649 {
650 set_memory_packet_size (args, &memory_write_packet_config);
651 }
652
653 static void
654 show_memory_write_packet_size (char *args, int from_tty)
655 {
656 show_memory_packet_size (&memory_write_packet_config);
657 }
658
659 static long
660 get_memory_write_packet_size (void)
661 {
662 return get_memory_packet_size (&memory_write_packet_config);
663 }
664
665 static struct memory_packet_config memory_read_packet_config =
666 {
667 "memory-read-packet-size",
668 };
669
670 static void
671 set_memory_read_packet_size (char *args, int from_tty)
672 {
673 set_memory_packet_size (args, &memory_read_packet_config);
674 }
675
676 static void
677 show_memory_read_packet_size (char *args, int from_tty)
678 {
679 show_memory_packet_size (&memory_read_packet_config);
680 }
681
682 static long
683 get_memory_read_packet_size (void)
684 {
685 long size = get_memory_packet_size (&memory_read_packet_config);
686 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
687 extra buffer size argument before the memory read size can be
688 increased beyond this. */
689 if (size > get_remote_packet_size ())
690 size = get_remote_packet_size ();
691 return size;
692 }
693
694 \f
695 /* Generic configuration support for packets the stub optionally
696 supports. Allows the user to specify the use of the packet as well
697 as allowing GDB to auto-detect support in the remote stub. */
698
699 enum packet_support
700 {
701 PACKET_SUPPORT_UNKNOWN = 0,
702 PACKET_ENABLE,
703 PACKET_DISABLE
704 };
705
706 struct packet_config
707 {
708 const char *name;
709 const char *title;
710 enum auto_boolean detect;
711 enum packet_support support;
712 };
713
714 /* Analyze a packet's return value and update the packet config
715 accordingly. */
716
717 enum packet_result
718 {
719 PACKET_ERROR,
720 PACKET_OK,
721 PACKET_UNKNOWN
722 };
723
724 static void
725 update_packet_config (struct packet_config *config)
726 {
727 switch (config->detect)
728 {
729 case AUTO_BOOLEAN_TRUE:
730 config->support = PACKET_ENABLE;
731 break;
732 case AUTO_BOOLEAN_FALSE:
733 config->support = PACKET_DISABLE;
734 break;
735 case AUTO_BOOLEAN_AUTO:
736 config->support = PACKET_SUPPORT_UNKNOWN;
737 break;
738 }
739 }
740
741 static void
742 show_packet_config_cmd (struct packet_config *config)
743 {
744 char *support = "internal-error";
745 switch (config->support)
746 {
747 case PACKET_ENABLE:
748 support = "enabled";
749 break;
750 case PACKET_DISABLE:
751 support = "disabled";
752 break;
753 case PACKET_SUPPORT_UNKNOWN:
754 support = "unknown";
755 break;
756 }
757 switch (config->detect)
758 {
759 case AUTO_BOOLEAN_AUTO:
760 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
761 config->name, support);
762 break;
763 case AUTO_BOOLEAN_TRUE:
764 case AUTO_BOOLEAN_FALSE:
765 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
766 config->name, support);
767 break;
768 }
769 }
770
771 static void
772 add_packet_config_cmd (struct packet_config *config, const char *name,
773 const char *title, int legacy)
774 {
775 char *set_doc;
776 char *show_doc;
777 char *cmd_name;
778
779 config->name = name;
780 config->title = title;
781 config->detect = AUTO_BOOLEAN_AUTO;
782 config->support = PACKET_SUPPORT_UNKNOWN;
783 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
784 name, title);
785 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
786 name, title);
787 /* set/show TITLE-packet {auto,on,off} */
788 cmd_name = xstrprintf ("%s-packet", title);
789 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
790 &config->detect, set_doc, show_doc, NULL, /* help_doc */
791 set_remote_protocol_packet_cmd,
792 show_remote_protocol_packet_cmd,
793 &remote_set_cmdlist, &remote_show_cmdlist);
794 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
795 if (legacy)
796 {
797 char *legacy_name;
798 legacy_name = xstrprintf ("%s-packet", name);
799 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
800 &remote_set_cmdlist);
801 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
802 &remote_show_cmdlist);
803 }
804 }
805
806 static enum packet_result
807 packet_check_result (const char *buf)
808 {
809 if (buf[0] != '\0')
810 {
811 /* The stub recognized the packet request. Check that the
812 operation succeeded. */
813 if (buf[0] == 'E'
814 && isxdigit (buf[1]) && isxdigit (buf[2])
815 && buf[3] == '\0')
816 /* "Enn" - definitly an error. */
817 return PACKET_ERROR;
818
819 /* Always treat "E." as an error. This will be used for
820 more verbose error messages, such as E.memtypes. */
821 if (buf[0] == 'E' && buf[1] == '.')
822 return PACKET_ERROR;
823
824 /* The packet may or may not be OK. Just assume it is. */
825 return PACKET_OK;
826 }
827 else
828 /* The stub does not support the packet. */
829 return PACKET_UNKNOWN;
830 }
831
832 static enum packet_result
833 packet_ok (const char *buf, struct packet_config *config)
834 {
835 enum packet_result result;
836
837 result = packet_check_result (buf);
838 switch (result)
839 {
840 case PACKET_OK:
841 case PACKET_ERROR:
842 /* The stub recognized the packet request. */
843 switch (config->support)
844 {
845 case PACKET_SUPPORT_UNKNOWN:
846 if (remote_debug)
847 fprintf_unfiltered (gdb_stdlog,
848 "Packet %s (%s) is supported\n",
849 config->name, config->title);
850 config->support = PACKET_ENABLE;
851 break;
852 case PACKET_DISABLE:
853 internal_error (__FILE__, __LINE__,
854 _("packet_ok: attempt to use a disabled packet"));
855 break;
856 case PACKET_ENABLE:
857 break;
858 }
859 break;
860 case PACKET_UNKNOWN:
861 /* The stub does not support the packet. */
862 switch (config->support)
863 {
864 case PACKET_ENABLE:
865 if (config->detect == AUTO_BOOLEAN_AUTO)
866 /* If the stub previously indicated that the packet was
867 supported then there is a protocol error.. */
868 error (_("Protocol error: %s (%s) conflicting enabled responses."),
869 config->name, config->title);
870 else
871 /* The user set it wrong. */
872 error (_("Enabled packet %s (%s) not recognized by stub"),
873 config->name, config->title);
874 break;
875 case PACKET_SUPPORT_UNKNOWN:
876 if (remote_debug)
877 fprintf_unfiltered (gdb_stdlog,
878 "Packet %s (%s) is NOT supported\n",
879 config->name, config->title);
880 config->support = PACKET_DISABLE;
881 break;
882 case PACKET_DISABLE:
883 break;
884 }
885 break;
886 }
887
888 return result;
889 }
890
891 enum {
892 PACKET_vCont = 0,
893 PACKET_X,
894 PACKET_qSymbol,
895 PACKET_P,
896 PACKET_p,
897 PACKET_Z0,
898 PACKET_Z1,
899 PACKET_Z2,
900 PACKET_Z3,
901 PACKET_Z4,
902 PACKET_qXfer_auxv,
903 PACKET_qXfer_features,
904 PACKET_qXfer_memory_map,
905 PACKET_qGetTLSAddr,
906 PACKET_qSupported,
907 PACKET_QPassSignals,
908 PACKET_MAX
909 };
910
911 static struct packet_config remote_protocol_packets[PACKET_MAX];
912
913 static void
914 set_remote_protocol_packet_cmd (char *args, int from_tty,
915 struct cmd_list_element *c)
916 {
917 struct packet_config *packet;
918
919 for (packet = remote_protocol_packets;
920 packet < &remote_protocol_packets[PACKET_MAX];
921 packet++)
922 {
923 if (&packet->detect == c->var)
924 {
925 update_packet_config (packet);
926 return;
927 }
928 }
929 internal_error (__FILE__, __LINE__, "Could not find config for %s",
930 c->name);
931 }
932
933 static void
934 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
935 struct cmd_list_element *c,
936 const char *value)
937 {
938 struct packet_config *packet;
939
940 for (packet = remote_protocol_packets;
941 packet < &remote_protocol_packets[PACKET_MAX];
942 packet++)
943 {
944 if (&packet->detect == c->var)
945 {
946 show_packet_config_cmd (packet);
947 return;
948 }
949 }
950 internal_error (__FILE__, __LINE__, "Could not find config for %s",
951 c->name);
952 }
953
954 /* Should we try one of the 'Z' requests? */
955
956 enum Z_packet_type
957 {
958 Z_PACKET_SOFTWARE_BP,
959 Z_PACKET_HARDWARE_BP,
960 Z_PACKET_WRITE_WP,
961 Z_PACKET_READ_WP,
962 Z_PACKET_ACCESS_WP,
963 NR_Z_PACKET_TYPES
964 };
965
966 /* For compatibility with older distributions. Provide a ``set remote
967 Z-packet ...'' command that updates all the Z packet types. */
968
969 static enum auto_boolean remote_Z_packet_detect;
970
971 static void
972 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
973 struct cmd_list_element *c)
974 {
975 int i;
976 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
977 {
978 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
979 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
980 }
981 }
982
983 static void
984 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
985 struct cmd_list_element *c,
986 const char *value)
987 {
988 int i;
989 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
990 {
991 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
992 }
993 }
994
995 /* Should we try the 'ThreadInfo' query packet?
996
997 This variable (NOT available to the user: auto-detect only!)
998 determines whether GDB will use the new, simpler "ThreadInfo"
999 query or the older, more complex syntax for thread queries.
1000 This is an auto-detect variable (set to true at each connect,
1001 and set to false when the target fails to recognize it). */
1002
1003 static int use_threadinfo_query;
1004 static int use_threadextra_query;
1005
1006 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1007 static struct async_signal_handler *sigint_remote_twice_token;
1008 static struct async_signal_handler *sigint_remote_token;
1009
1010 /* These are pointers to hook functions that may be set in order to
1011 modify resume/wait behavior for a particular architecture. */
1012
1013 void (*deprecated_target_resume_hook) (void);
1014 void (*deprecated_target_wait_loop_hook) (void);
1015 \f
1016
1017
1018 /* These are the threads which we last sent to the remote system.
1019 -1 for all or -2 for not sent yet. */
1020 static int general_thread;
1021 static int continue_thread;
1022
1023 /* Call this function as a result of
1024 1) A halt indication (T packet) containing a thread id
1025 2) A direct query of currthread
1026 3) Successful execution of set thread
1027 */
1028
1029 static void
1030 record_currthread (int currthread)
1031 {
1032 general_thread = currthread;
1033
1034 /* If this is a new thread, add it to GDB's thread list.
1035 If we leave it up to WFI to do this, bad things will happen. */
1036 if (!in_thread_list (pid_to_ptid (currthread)))
1037 {
1038 add_thread (pid_to_ptid (currthread));
1039 ui_out_text (uiout, "[New ");
1040 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1041 ui_out_text (uiout, "]\n");
1042 }
1043 }
1044
1045 static char *last_pass_packet;
1046
1047 /* If 'QPassSignals' is supported, tell the remote stub what signals
1048 it can simply pass through to the inferior without reporting. */
1049
1050 static void
1051 remote_pass_signals (void)
1052 {
1053 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1054 {
1055 char *pass_packet, *p;
1056 int numsigs = (int) TARGET_SIGNAL_LAST;
1057 int count = 0, i;
1058
1059 gdb_assert (numsigs < 256);
1060 for (i = 0; i < numsigs; i++)
1061 {
1062 if (signal_stop_state (i) == 0
1063 && signal_print_state (i) == 0
1064 && signal_pass_state (i) == 1)
1065 count++;
1066 }
1067 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1068 strcpy (pass_packet, "QPassSignals:");
1069 p = pass_packet + strlen (pass_packet);
1070 for (i = 0; i < numsigs; i++)
1071 {
1072 if (signal_stop_state (i) == 0
1073 && signal_print_state (i) == 0
1074 && signal_pass_state (i) == 1)
1075 {
1076 if (i >= 16)
1077 *p++ = tohex (i >> 4);
1078 *p++ = tohex (i & 15);
1079 if (count)
1080 *p++ = ';';
1081 else
1082 break;
1083 count--;
1084 }
1085 }
1086 *p = 0;
1087 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1088 {
1089 struct remote_state *rs = get_remote_state ();
1090 char *buf = rs->buf;
1091
1092 putpkt (pass_packet);
1093 getpkt (&rs->buf, &rs->buf_size, 0);
1094 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1095 if (last_pass_packet)
1096 xfree (last_pass_packet);
1097 last_pass_packet = pass_packet;
1098 }
1099 else
1100 xfree (pass_packet);
1101 }
1102 }
1103
1104 #define MAGIC_NULL_PID 42000
1105
1106 static void
1107 set_thread (int th, int gen)
1108 {
1109 struct remote_state *rs = get_remote_state ();
1110 char *buf = rs->buf;
1111 int state = gen ? general_thread : continue_thread;
1112
1113 if (state == th)
1114 return;
1115
1116 buf[0] = 'H';
1117 buf[1] = gen ? 'g' : 'c';
1118 if (th == MAGIC_NULL_PID)
1119 {
1120 buf[2] = '0';
1121 buf[3] = '\0';
1122 }
1123 else if (th < 0)
1124 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1125 else
1126 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1127 putpkt (buf);
1128 getpkt (&rs->buf, &rs->buf_size, 0);
1129 if (gen)
1130 general_thread = th;
1131 else
1132 continue_thread = th;
1133 }
1134 \f
1135 /* Return nonzero if the thread TH is still alive on the remote system. */
1136
1137 static int
1138 remote_thread_alive (ptid_t ptid)
1139 {
1140 struct remote_state *rs = get_remote_state ();
1141 int tid = PIDGET (ptid);
1142
1143 if (tid < 0)
1144 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1145 else
1146 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1147 putpkt (rs->buf);
1148 getpkt (&rs->buf, &rs->buf_size, 0);
1149 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1150 }
1151
1152 /* About these extended threadlist and threadinfo packets. They are
1153 variable length packets but, the fields within them are often fixed
1154 length. They are redundent enough to send over UDP as is the
1155 remote protocol in general. There is a matching unit test module
1156 in libstub. */
1157
1158 #define OPAQUETHREADBYTES 8
1159
1160 /* a 64 bit opaque identifier */
1161 typedef unsigned char threadref[OPAQUETHREADBYTES];
1162
1163 /* WARNING: This threadref data structure comes from the remote O.S.,
1164 libstub protocol encoding, and remote.c. it is not particularly
1165 changable. */
1166
1167 /* Right now, the internal structure is int. We want it to be bigger.
1168 Plan to fix this.
1169 */
1170
1171 typedef int gdb_threadref; /* Internal GDB thread reference. */
1172
1173 /* gdb_ext_thread_info is an internal GDB data structure which is
1174 equivalent to the reply of the remote threadinfo packet. */
1175
1176 struct gdb_ext_thread_info
1177 {
1178 threadref threadid; /* External form of thread reference. */
1179 int active; /* Has state interesting to GDB?
1180 regs, stack. */
1181 char display[256]; /* Brief state display, name,
1182 blocked/suspended. */
1183 char shortname[32]; /* To be used to name threads. */
1184 char more_display[256]; /* Long info, statistics, queue depth,
1185 whatever. */
1186 };
1187
1188 /* The volume of remote transfers can be limited by submitting
1189 a mask containing bits specifying the desired information.
1190 Use a union of these values as the 'selection' parameter to
1191 get_thread_info. FIXME: Make these TAG names more thread specific.
1192 */
1193
1194 #define TAG_THREADID 1
1195 #define TAG_EXISTS 2
1196 #define TAG_DISPLAY 4
1197 #define TAG_THREADNAME 8
1198 #define TAG_MOREDISPLAY 16
1199
1200 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1201
1202 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1203
1204 static char *unpack_nibble (char *buf, int *val);
1205
1206 static char *pack_nibble (char *buf, int nibble);
1207
1208 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1209
1210 static char *unpack_byte (char *buf, int *value);
1211
1212 static char *pack_int (char *buf, int value);
1213
1214 static char *unpack_int (char *buf, int *value);
1215
1216 static char *unpack_string (char *src, char *dest, int length);
1217
1218 static char *pack_threadid (char *pkt, threadref *id);
1219
1220 static char *unpack_threadid (char *inbuf, threadref *id);
1221
1222 void int_to_threadref (threadref *id, int value);
1223
1224 static int threadref_to_int (threadref *ref);
1225
1226 static void copy_threadref (threadref *dest, threadref *src);
1227
1228 static int threadmatch (threadref *dest, threadref *src);
1229
1230 static char *pack_threadinfo_request (char *pkt, int mode,
1231 threadref *id);
1232
1233 static int remote_unpack_thread_info_response (char *pkt,
1234 threadref *expectedref,
1235 struct gdb_ext_thread_info
1236 *info);
1237
1238
1239 static int remote_get_threadinfo (threadref *threadid,
1240 int fieldset, /*TAG mask */
1241 struct gdb_ext_thread_info *info);
1242
1243 static char *pack_threadlist_request (char *pkt, int startflag,
1244 int threadcount,
1245 threadref *nextthread);
1246
1247 static int parse_threadlist_response (char *pkt,
1248 int result_limit,
1249 threadref *original_echo,
1250 threadref *resultlist,
1251 int *doneflag);
1252
1253 static int remote_get_threadlist (int startflag,
1254 threadref *nextthread,
1255 int result_limit,
1256 int *done,
1257 int *result_count,
1258 threadref *threadlist);
1259
1260 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1261
1262 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1263 void *context, int looplimit);
1264
1265 static int remote_newthread_step (threadref *ref, void *context);
1266
1267 /* Encode 64 bits in 16 chars of hex. */
1268
1269 static const char hexchars[] = "0123456789abcdef";
1270
1271 static int
1272 ishex (int ch, int *val)
1273 {
1274 if ((ch >= 'a') && (ch <= 'f'))
1275 {
1276 *val = ch - 'a' + 10;
1277 return 1;
1278 }
1279 if ((ch >= 'A') && (ch <= 'F'))
1280 {
1281 *val = ch - 'A' + 10;
1282 return 1;
1283 }
1284 if ((ch >= '0') && (ch <= '9'))
1285 {
1286 *val = ch - '0';
1287 return 1;
1288 }
1289 return 0;
1290 }
1291
1292 static int
1293 stubhex (int ch)
1294 {
1295 if (ch >= 'a' && ch <= 'f')
1296 return ch - 'a' + 10;
1297 if (ch >= '0' && ch <= '9')
1298 return ch - '0';
1299 if (ch >= 'A' && ch <= 'F')
1300 return ch - 'A' + 10;
1301 return -1;
1302 }
1303
1304 static int
1305 stub_unpack_int (char *buff, int fieldlength)
1306 {
1307 int nibble;
1308 int retval = 0;
1309
1310 while (fieldlength)
1311 {
1312 nibble = stubhex (*buff++);
1313 retval |= nibble;
1314 fieldlength--;
1315 if (fieldlength)
1316 retval = retval << 4;
1317 }
1318 return retval;
1319 }
1320
1321 char *
1322 unpack_varlen_hex (char *buff, /* packet to parse */
1323 ULONGEST *result)
1324 {
1325 int nibble;
1326 ULONGEST retval = 0;
1327
1328 while (ishex (*buff, &nibble))
1329 {
1330 buff++;
1331 retval = retval << 4;
1332 retval |= nibble & 0x0f;
1333 }
1334 *result = retval;
1335 return buff;
1336 }
1337
1338 static char *
1339 unpack_nibble (char *buf, int *val)
1340 {
1341 ishex (*buf++, val);
1342 return buf;
1343 }
1344
1345 static char *
1346 pack_nibble (char *buf, int nibble)
1347 {
1348 *buf++ = hexchars[(nibble & 0x0f)];
1349 return buf;
1350 }
1351
1352 static char *
1353 pack_hex_byte (char *pkt, int byte)
1354 {
1355 *pkt++ = hexchars[(byte >> 4) & 0xf];
1356 *pkt++ = hexchars[(byte & 0xf)];
1357 return pkt;
1358 }
1359
1360 static char *
1361 unpack_byte (char *buf, int *value)
1362 {
1363 *value = stub_unpack_int (buf, 2);
1364 return buf + 2;
1365 }
1366
1367 static char *
1368 pack_int (char *buf, int value)
1369 {
1370 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1371 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1372 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1373 buf = pack_hex_byte (buf, (value & 0xff));
1374 return buf;
1375 }
1376
1377 static char *
1378 unpack_int (char *buf, int *value)
1379 {
1380 *value = stub_unpack_int (buf, 8);
1381 return buf + 8;
1382 }
1383
1384 #if 0 /* Currently unused, uncomment when needed. */
1385 static char *pack_string (char *pkt, char *string);
1386
1387 static char *
1388 pack_string (char *pkt, char *string)
1389 {
1390 char ch;
1391 int len;
1392
1393 len = strlen (string);
1394 if (len > 200)
1395 len = 200; /* Bigger than most GDB packets, junk??? */
1396 pkt = pack_hex_byte (pkt, len);
1397 while (len-- > 0)
1398 {
1399 ch = *string++;
1400 if ((ch == '\0') || (ch == '#'))
1401 ch = '*'; /* Protect encapsulation. */
1402 *pkt++ = ch;
1403 }
1404 return pkt;
1405 }
1406 #endif /* 0 (unused) */
1407
1408 static char *
1409 unpack_string (char *src, char *dest, int length)
1410 {
1411 while (length--)
1412 *dest++ = *src++;
1413 *dest = '\0';
1414 return src;
1415 }
1416
1417 static char *
1418 pack_threadid (char *pkt, threadref *id)
1419 {
1420 char *limit;
1421 unsigned char *altid;
1422
1423 altid = (unsigned char *) id;
1424 limit = pkt + BUF_THREAD_ID_SIZE;
1425 while (pkt < limit)
1426 pkt = pack_hex_byte (pkt, *altid++);
1427 return pkt;
1428 }
1429
1430
1431 static char *
1432 unpack_threadid (char *inbuf, threadref *id)
1433 {
1434 char *altref;
1435 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1436 int x, y;
1437
1438 altref = (char *) id;
1439
1440 while (inbuf < limit)
1441 {
1442 x = stubhex (*inbuf++);
1443 y = stubhex (*inbuf++);
1444 *altref++ = (x << 4) | y;
1445 }
1446 return inbuf;
1447 }
1448
1449 /* Externally, threadrefs are 64 bits but internally, they are still
1450 ints. This is due to a mismatch of specifications. We would like
1451 to use 64bit thread references internally. This is an adapter
1452 function. */
1453
1454 void
1455 int_to_threadref (threadref *id, int value)
1456 {
1457 unsigned char *scan;
1458
1459 scan = (unsigned char *) id;
1460 {
1461 int i = 4;
1462 while (i--)
1463 *scan++ = 0;
1464 }
1465 *scan++ = (value >> 24) & 0xff;
1466 *scan++ = (value >> 16) & 0xff;
1467 *scan++ = (value >> 8) & 0xff;
1468 *scan++ = (value & 0xff);
1469 }
1470
1471 static int
1472 threadref_to_int (threadref *ref)
1473 {
1474 int i, value = 0;
1475 unsigned char *scan;
1476
1477 scan = *ref;
1478 scan += 4;
1479 i = 4;
1480 while (i-- > 0)
1481 value = (value << 8) | ((*scan++) & 0xff);
1482 return value;
1483 }
1484
1485 static void
1486 copy_threadref (threadref *dest, threadref *src)
1487 {
1488 int i;
1489 unsigned char *csrc, *cdest;
1490
1491 csrc = (unsigned char *) src;
1492 cdest = (unsigned char *) dest;
1493 i = 8;
1494 while (i--)
1495 *cdest++ = *csrc++;
1496 }
1497
1498 static int
1499 threadmatch (threadref *dest, threadref *src)
1500 {
1501 /* Things are broken right now, so just assume we got a match. */
1502 #if 0
1503 unsigned char *srcp, *destp;
1504 int i, result;
1505 srcp = (char *) src;
1506 destp = (char *) dest;
1507
1508 result = 1;
1509 while (i-- > 0)
1510 result &= (*srcp++ == *destp++) ? 1 : 0;
1511 return result;
1512 #endif
1513 return 1;
1514 }
1515
1516 /*
1517 threadid:1, # always request threadid
1518 context_exists:2,
1519 display:4,
1520 unique_name:8,
1521 more_display:16
1522 */
1523
1524 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1525
1526 static char *
1527 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1528 {
1529 *pkt++ = 'q'; /* Info Query */
1530 *pkt++ = 'P'; /* process or thread info */
1531 pkt = pack_int (pkt, mode); /* mode */
1532 pkt = pack_threadid (pkt, id); /* threadid */
1533 *pkt = '\0'; /* terminate */
1534 return pkt;
1535 }
1536
1537 /* These values tag the fields in a thread info response packet. */
1538 /* Tagging the fields allows us to request specific fields and to
1539 add more fields as time goes by. */
1540
1541 #define TAG_THREADID 1 /* Echo the thread identifier. */
1542 #define TAG_EXISTS 2 /* Is this process defined enough to
1543 fetch registers and its stack? */
1544 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1545 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1546 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1547 the process. */
1548
1549 static int
1550 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1551 struct gdb_ext_thread_info *info)
1552 {
1553 struct remote_state *rs = get_remote_state ();
1554 int mask, length;
1555 int tag;
1556 threadref ref;
1557 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1558 int retval = 1;
1559
1560 /* info->threadid = 0; FIXME: implement zero_threadref. */
1561 info->active = 0;
1562 info->display[0] = '\0';
1563 info->shortname[0] = '\0';
1564 info->more_display[0] = '\0';
1565
1566 /* Assume the characters indicating the packet type have been
1567 stripped. */
1568 pkt = unpack_int (pkt, &mask); /* arg mask */
1569 pkt = unpack_threadid (pkt, &ref);
1570
1571 if (mask == 0)
1572 warning (_("Incomplete response to threadinfo request."));
1573 if (!threadmatch (&ref, expectedref))
1574 { /* This is an answer to a different request. */
1575 warning (_("ERROR RMT Thread info mismatch."));
1576 return 0;
1577 }
1578 copy_threadref (&info->threadid, &ref);
1579
1580 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1581
1582 /* Packets are terminated with nulls. */
1583 while ((pkt < limit) && mask && *pkt)
1584 {
1585 pkt = unpack_int (pkt, &tag); /* tag */
1586 pkt = unpack_byte (pkt, &length); /* length */
1587 if (!(tag & mask)) /* Tags out of synch with mask. */
1588 {
1589 warning (_("ERROR RMT: threadinfo tag mismatch."));
1590 retval = 0;
1591 break;
1592 }
1593 if (tag == TAG_THREADID)
1594 {
1595 if (length != 16)
1596 {
1597 warning (_("ERROR RMT: length of threadid is not 16."));
1598 retval = 0;
1599 break;
1600 }
1601 pkt = unpack_threadid (pkt, &ref);
1602 mask = mask & ~TAG_THREADID;
1603 continue;
1604 }
1605 if (tag == TAG_EXISTS)
1606 {
1607 info->active = stub_unpack_int (pkt, length);
1608 pkt += length;
1609 mask = mask & ~(TAG_EXISTS);
1610 if (length > 8)
1611 {
1612 warning (_("ERROR RMT: 'exists' length too long."));
1613 retval = 0;
1614 break;
1615 }
1616 continue;
1617 }
1618 if (tag == TAG_THREADNAME)
1619 {
1620 pkt = unpack_string (pkt, &info->shortname[0], length);
1621 mask = mask & ~TAG_THREADNAME;
1622 continue;
1623 }
1624 if (tag == TAG_DISPLAY)
1625 {
1626 pkt = unpack_string (pkt, &info->display[0], length);
1627 mask = mask & ~TAG_DISPLAY;
1628 continue;
1629 }
1630 if (tag == TAG_MOREDISPLAY)
1631 {
1632 pkt = unpack_string (pkt, &info->more_display[0], length);
1633 mask = mask & ~TAG_MOREDISPLAY;
1634 continue;
1635 }
1636 warning (_("ERROR RMT: unknown thread info tag."));
1637 break; /* Not a tag we know about. */
1638 }
1639 return retval;
1640 }
1641
1642 static int
1643 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1644 struct gdb_ext_thread_info *info)
1645 {
1646 struct remote_state *rs = get_remote_state ();
1647 int result;
1648
1649 pack_threadinfo_request (rs->buf, fieldset, threadid);
1650 putpkt (rs->buf);
1651 getpkt (&rs->buf, &rs->buf_size, 0);
1652 result = remote_unpack_thread_info_response (rs->buf + 2,
1653 threadid, info);
1654 return result;
1655 }
1656
1657 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1658
1659 static char *
1660 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1661 threadref *nextthread)
1662 {
1663 *pkt++ = 'q'; /* info query packet */
1664 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1665 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1666 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1667 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1668 *pkt = '\0';
1669 return pkt;
1670 }
1671
1672 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1673
1674 static int
1675 parse_threadlist_response (char *pkt, int result_limit,
1676 threadref *original_echo, threadref *resultlist,
1677 int *doneflag)
1678 {
1679 struct remote_state *rs = get_remote_state ();
1680 char *limit;
1681 int count, resultcount, done;
1682
1683 resultcount = 0;
1684 /* Assume the 'q' and 'M chars have been stripped. */
1685 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1686 /* done parse past here */
1687 pkt = unpack_byte (pkt, &count); /* count field */
1688 pkt = unpack_nibble (pkt, &done);
1689 /* The first threadid is the argument threadid. */
1690 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1691 while ((count-- > 0) && (pkt < limit))
1692 {
1693 pkt = unpack_threadid (pkt, resultlist++);
1694 if (resultcount++ >= result_limit)
1695 break;
1696 }
1697 if (doneflag)
1698 *doneflag = done;
1699 return resultcount;
1700 }
1701
1702 static int
1703 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1704 int *done, int *result_count, threadref *threadlist)
1705 {
1706 struct remote_state *rs = get_remote_state ();
1707 static threadref echo_nextthread;
1708 int result = 1;
1709
1710 /* Trancate result limit to be smaller than the packet size. */
1711 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1712 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1713
1714 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1715 putpkt (rs->buf);
1716 getpkt (&rs->buf, &rs->buf_size, 0);
1717
1718 *result_count =
1719 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1720 threadlist, done);
1721
1722 if (!threadmatch (&echo_nextthread, nextthread))
1723 {
1724 /* FIXME: This is a good reason to drop the packet. */
1725 /* Possably, there is a duplicate response. */
1726 /* Possabilities :
1727 retransmit immediatly - race conditions
1728 retransmit after timeout - yes
1729 exit
1730 wait for packet, then exit
1731 */
1732 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1733 return 0; /* I choose simply exiting. */
1734 }
1735 if (*result_count <= 0)
1736 {
1737 if (*done != 1)
1738 {
1739 warning (_("RMT ERROR : failed to get remote thread list."));
1740 result = 0;
1741 }
1742 return result; /* break; */
1743 }
1744 if (*result_count > result_limit)
1745 {
1746 *result_count = 0;
1747 warning (_("RMT ERROR: threadlist response longer than requested."));
1748 return 0;
1749 }
1750 return result;
1751 }
1752
1753 /* This is the interface between remote and threads, remotes upper
1754 interface. */
1755
1756 /* remote_find_new_threads retrieves the thread list and for each
1757 thread in the list, looks up the thread in GDB's internal list,
1758 ading the thread if it does not already exist. This involves
1759 getting partial thread lists from the remote target so, polling the
1760 quit_flag is required. */
1761
1762
1763 /* About this many threadisds fit in a packet. */
1764
1765 #define MAXTHREADLISTRESULTS 32
1766
1767 static int
1768 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1769 int looplimit)
1770 {
1771 int done, i, result_count;
1772 int startflag = 1;
1773 int result = 1;
1774 int loopcount = 0;
1775 static threadref nextthread;
1776 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1777
1778 done = 0;
1779 while (!done)
1780 {
1781 if (loopcount++ > looplimit)
1782 {
1783 result = 0;
1784 warning (_("Remote fetch threadlist -infinite loop-."));
1785 break;
1786 }
1787 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1788 &done, &result_count, resultthreadlist))
1789 {
1790 result = 0;
1791 break;
1792 }
1793 /* Clear for later iterations. */
1794 startflag = 0;
1795 /* Setup to resume next batch of thread references, set nextthread. */
1796 if (result_count >= 1)
1797 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1798 i = 0;
1799 while (result_count--)
1800 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1801 break;
1802 }
1803 return result;
1804 }
1805
1806 static int
1807 remote_newthread_step (threadref *ref, void *context)
1808 {
1809 ptid_t ptid;
1810
1811 ptid = pid_to_ptid (threadref_to_int (ref));
1812
1813 if (!in_thread_list (ptid))
1814 add_thread (ptid);
1815 return 1; /* continue iterator */
1816 }
1817
1818 #define CRAZY_MAX_THREADS 1000
1819
1820 static ptid_t
1821 remote_current_thread (ptid_t oldpid)
1822 {
1823 struct remote_state *rs = get_remote_state ();
1824
1825 putpkt ("qC");
1826 getpkt (&rs->buf, &rs->buf_size, 0);
1827 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1828 /* Use strtoul here, so we'll correctly parse values whose highest
1829 bit is set. The protocol carries them as a simple series of
1830 hex digits; in the absence of a sign, strtol will see such
1831 values as positive numbers out of range for signed 'long', and
1832 return LONG_MAX to indicate an overflow. */
1833 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1834 else
1835 return oldpid;
1836 }
1837
1838 /* Find new threads for info threads command.
1839 * Original version, using John Metzler's thread protocol.
1840 */
1841
1842 static void
1843 remote_find_new_threads (void)
1844 {
1845 remote_threadlist_iterator (remote_newthread_step, 0,
1846 CRAZY_MAX_THREADS);
1847 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1848 inferior_ptid = remote_current_thread (inferior_ptid);
1849 }
1850
1851 /*
1852 * Find all threads for info threads command.
1853 * Uses new thread protocol contributed by Cisco.
1854 * Falls back and attempts to use the older method (above)
1855 * if the target doesn't respond to the new method.
1856 */
1857
1858 static void
1859 remote_threads_info (void)
1860 {
1861 struct remote_state *rs = get_remote_state ();
1862 char *bufp;
1863 int tid;
1864
1865 if (remote_desc == 0) /* paranoia */
1866 error (_("Command can only be used when connected to the remote target."));
1867
1868 if (use_threadinfo_query)
1869 {
1870 putpkt ("qfThreadInfo");
1871 getpkt (&rs->buf, &rs->buf_size, 0);
1872 bufp = rs->buf;
1873 if (bufp[0] != '\0') /* q packet recognized */
1874 {
1875 while (*bufp++ == 'm') /* reply contains one or more TID */
1876 {
1877 do
1878 {
1879 /* Use strtoul here, so we'll correctly parse values
1880 whose highest bit is set. The protocol carries
1881 them as a simple series of hex digits; in the
1882 absence of a sign, strtol will see such values as
1883 positive numbers out of range for signed 'long',
1884 and return LONG_MAX to indicate an overflow. */
1885 tid = strtoul (bufp, &bufp, 16);
1886 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1887 add_thread (pid_to_ptid (tid));
1888 }
1889 while (*bufp++ == ','); /* comma-separated list */
1890 putpkt ("qsThreadInfo");
1891 getpkt (&rs->buf, &rs->buf_size, 0);
1892 bufp = rs->buf;
1893 }
1894 return; /* done */
1895 }
1896 }
1897
1898 /* Else fall back to old method based on jmetzler protocol. */
1899 use_threadinfo_query = 0;
1900 remote_find_new_threads ();
1901 return;
1902 }
1903
1904 /*
1905 * Collect a descriptive string about the given thread.
1906 * The target may say anything it wants to about the thread
1907 * (typically info about its blocked / runnable state, name, etc.).
1908 * This string will appear in the info threads display.
1909 *
1910 * Optional: targets are not required to implement this function.
1911 */
1912
1913 static char *
1914 remote_threads_extra_info (struct thread_info *tp)
1915 {
1916 struct remote_state *rs = get_remote_state ();
1917 int result;
1918 int set;
1919 threadref id;
1920 struct gdb_ext_thread_info threadinfo;
1921 static char display_buf[100]; /* arbitrary... */
1922 int n = 0; /* position in display_buf */
1923
1924 if (remote_desc == 0) /* paranoia */
1925 internal_error (__FILE__, __LINE__,
1926 _("remote_threads_extra_info"));
1927
1928 if (use_threadextra_query)
1929 {
1930 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1931 PIDGET (tp->ptid));
1932 putpkt (rs->buf);
1933 getpkt (&rs->buf, &rs->buf_size, 0);
1934 if (rs->buf[0] != 0)
1935 {
1936 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1937 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1938 display_buf [result] = '\0';
1939 return display_buf;
1940 }
1941 }
1942
1943 /* If the above query fails, fall back to the old method. */
1944 use_threadextra_query = 0;
1945 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1946 | TAG_MOREDISPLAY | TAG_DISPLAY;
1947 int_to_threadref (&id, PIDGET (tp->ptid));
1948 if (remote_get_threadinfo (&id, set, &threadinfo))
1949 if (threadinfo.active)
1950 {
1951 if (*threadinfo.shortname)
1952 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1953 " Name: %s,", threadinfo.shortname);
1954 if (*threadinfo.display)
1955 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1956 " State: %s,", threadinfo.display);
1957 if (*threadinfo.more_display)
1958 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1959 " Priority: %s", threadinfo.more_display);
1960
1961 if (n > 0)
1962 {
1963 /* For purely cosmetic reasons, clear up trailing commas. */
1964 if (',' == display_buf[n-1])
1965 display_buf[n-1] = ' ';
1966 return display_buf;
1967 }
1968 }
1969 return NULL;
1970 }
1971 \f
1972
1973 /* Restart the remote side; this is an extended protocol operation. */
1974
1975 static void
1976 extended_remote_restart (void)
1977 {
1978 struct remote_state *rs = get_remote_state ();
1979
1980 /* Send the restart command; for reasons I don't understand the
1981 remote side really expects a number after the "R". */
1982 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1983 putpkt (rs->buf);
1984
1985 remote_fileio_reset ();
1986
1987 /* Now query for status so this looks just like we restarted
1988 gdbserver from scratch. */
1989 putpkt ("?");
1990 getpkt (&rs->buf, &rs->buf_size, 0);
1991 }
1992 \f
1993 /* Clean up connection to a remote debugger. */
1994
1995 static void
1996 remote_close (int quitting)
1997 {
1998 if (remote_desc)
1999 serial_close (remote_desc);
2000 remote_desc = NULL;
2001 }
2002
2003 /* Query the remote side for the text, data and bss offsets. */
2004
2005 static void
2006 get_offsets (void)
2007 {
2008 struct remote_state *rs = get_remote_state ();
2009 char *buf;
2010 char *ptr;
2011 int lose;
2012 CORE_ADDR text_addr, data_addr, bss_addr;
2013 struct section_offsets *offs;
2014
2015 putpkt ("qOffsets");
2016 getpkt (&rs->buf, &rs->buf_size, 0);
2017 buf = rs->buf;
2018
2019 if (buf[0] == '\000')
2020 return; /* Return silently. Stub doesn't support
2021 this command. */
2022 if (buf[0] == 'E')
2023 {
2024 warning (_("Remote failure reply: %s"), buf);
2025 return;
2026 }
2027
2028 /* Pick up each field in turn. This used to be done with scanf, but
2029 scanf will make trouble if CORE_ADDR size doesn't match
2030 conversion directives correctly. The following code will work
2031 with any size of CORE_ADDR. */
2032 text_addr = data_addr = bss_addr = 0;
2033 ptr = buf;
2034 lose = 0;
2035
2036 if (strncmp (ptr, "Text=", 5) == 0)
2037 {
2038 ptr += 5;
2039 /* Don't use strtol, could lose on big values. */
2040 while (*ptr && *ptr != ';')
2041 text_addr = (text_addr << 4) + fromhex (*ptr++);
2042 }
2043 else
2044 lose = 1;
2045
2046 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2047 {
2048 ptr += 6;
2049 while (*ptr && *ptr != ';')
2050 data_addr = (data_addr << 4) + fromhex (*ptr++);
2051 }
2052 else
2053 lose = 1;
2054
2055 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2056 {
2057 ptr += 5;
2058 while (*ptr && *ptr != ';')
2059 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2060 }
2061 else
2062 lose = 1;
2063
2064 if (lose)
2065 error (_("Malformed response to offset query, %s"), buf);
2066
2067 if (symfile_objfile == NULL)
2068 return;
2069
2070 offs = ((struct section_offsets *)
2071 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2072 memcpy (offs, symfile_objfile->section_offsets,
2073 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2074
2075 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2076
2077 /* This is a temporary kludge to force data and bss to use the same offsets
2078 because that's what nlmconv does now. The real solution requires changes
2079 to the stub and remote.c that I don't have time to do right now. */
2080
2081 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2082 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2083
2084 objfile_relocate (symfile_objfile, offs);
2085 }
2086
2087 /* Stub for catch_exception. */
2088
2089 static void
2090 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2091 {
2092 int from_tty = * (int *) from_tty_p;
2093
2094 immediate_quit++; /* Allow user to interrupt it. */
2095
2096 /* Ack any packet which the remote side has already sent. */
2097 serial_write (remote_desc, "+", 1);
2098
2099 /* Let the stub know that we want it to return the thread. */
2100 set_thread (-1, 0);
2101
2102 inferior_ptid = remote_current_thread (inferior_ptid);
2103
2104 get_offsets (); /* Get text, data & bss offsets. */
2105
2106 putpkt ("?"); /* Initiate a query from remote machine. */
2107 immediate_quit--;
2108
2109 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2110 }
2111
2112 /* Open a connection to a remote debugger.
2113 NAME is the filename used for communication. */
2114
2115 static void
2116 remote_open (char *name, int from_tty)
2117 {
2118 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2119 }
2120
2121 /* Just like remote_open, but with asynchronous support. */
2122 static void
2123 remote_async_open (char *name, int from_tty)
2124 {
2125 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2126 }
2127
2128 /* Open a connection to a remote debugger using the extended
2129 remote gdb protocol. NAME is the filename used for communication. */
2130
2131 static void
2132 extended_remote_open (char *name, int from_tty)
2133 {
2134 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2135 0 /* async_p */);
2136 }
2137
2138 /* Just like extended_remote_open, but with asynchronous support. */
2139 static void
2140 extended_remote_async_open (char *name, int from_tty)
2141 {
2142 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2143 1 /*extended_p */, 1 /* async_p */);
2144 }
2145
2146 /* Generic code for opening a connection to a remote target. */
2147
2148 static void
2149 init_all_packet_configs (void)
2150 {
2151 int i;
2152 for (i = 0; i < PACKET_MAX; i++)
2153 update_packet_config (&remote_protocol_packets[i]);
2154 }
2155
2156 /* Symbol look-up. */
2157
2158 static void
2159 remote_check_symbols (struct objfile *objfile)
2160 {
2161 struct remote_state *rs = get_remote_state ();
2162 char *msg, *reply, *tmp;
2163 struct minimal_symbol *sym;
2164 int end;
2165
2166 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2167 return;
2168
2169 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2170 because we need both at the same time. */
2171 msg = alloca (get_remote_packet_size ());
2172
2173 /* Invite target to request symbol lookups. */
2174
2175 putpkt ("qSymbol::");
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2178 reply = rs->buf;
2179
2180 while (strncmp (reply, "qSymbol:", 8) == 0)
2181 {
2182 tmp = &reply[8];
2183 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2184 msg[end] = '\0';
2185 sym = lookup_minimal_symbol (msg, NULL, NULL);
2186 if (sym == NULL)
2187 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2188 else
2189 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2190 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2191 &reply[8]);
2192 putpkt (msg);
2193 getpkt (&rs->buf, &rs->buf_size, 0);
2194 reply = rs->buf;
2195 }
2196 }
2197
2198 static struct serial *
2199 remote_serial_open (char *name)
2200 {
2201 static int udp_warning = 0;
2202
2203 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2204 of in ser-tcp.c, because it is the remote protocol assuming that the
2205 serial connection is reliable and not the serial connection promising
2206 to be. */
2207 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2208 {
2209 warning (_("\
2210 The remote protocol may be unreliable over UDP.\n\
2211 Some events may be lost, rendering further debugging impossible."));
2212 udp_warning = 1;
2213 }
2214
2215 return serial_open (name);
2216 }
2217
2218 /* This type describes each known response to the qSupported
2219 packet. */
2220 struct protocol_feature
2221 {
2222 /* The name of this protocol feature. */
2223 const char *name;
2224
2225 /* The default for this protocol feature. */
2226 enum packet_support default_support;
2227
2228 /* The function to call when this feature is reported, or after
2229 qSupported processing if the feature is not supported.
2230 The first argument points to this structure. The second
2231 argument indicates whether the packet requested support be
2232 enabled, disabled, or probed (or the default, if this function
2233 is being called at the end of processing and this feature was
2234 not reported). The third argument may be NULL; if not NULL, it
2235 is a NUL-terminated string taken from the packet following
2236 this feature's name and an equals sign. */
2237 void (*func) (const struct protocol_feature *, enum packet_support,
2238 const char *);
2239
2240 /* The corresponding packet for this feature. Only used if
2241 FUNC is remote_supported_packet. */
2242 int packet;
2243 };
2244
2245 static void
2246 remote_supported_packet (const struct protocol_feature *feature,
2247 enum packet_support support,
2248 const char *argument)
2249 {
2250 if (argument)
2251 {
2252 warning (_("Remote qSupported response supplied an unexpected value for"
2253 " \"%s\"."), feature->name);
2254 return;
2255 }
2256
2257 if (remote_protocol_packets[feature->packet].support
2258 == PACKET_SUPPORT_UNKNOWN)
2259 remote_protocol_packets[feature->packet].support = support;
2260 }
2261
2262 static void
2263 remote_packet_size (const struct protocol_feature *feature,
2264 enum packet_support support, const char *value)
2265 {
2266 struct remote_state *rs = get_remote_state ();
2267
2268 int packet_size;
2269 char *value_end;
2270
2271 if (support != PACKET_ENABLE)
2272 return;
2273
2274 if (value == NULL || *value == '\0')
2275 {
2276 warning (_("Remote target reported \"%s\" without a size."),
2277 feature->name);
2278 return;
2279 }
2280
2281 errno = 0;
2282 packet_size = strtol (value, &value_end, 16);
2283 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2284 {
2285 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2286 feature->name, value);
2287 return;
2288 }
2289
2290 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2291 {
2292 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2293 packet_size, MAX_REMOTE_PACKET_SIZE);
2294 packet_size = MAX_REMOTE_PACKET_SIZE;
2295 }
2296
2297 /* Record the new maximum packet size. */
2298 rs->explicit_packet_size = packet_size;
2299 }
2300
2301 static struct protocol_feature remote_protocol_features[] = {
2302 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2303 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2304 PACKET_qXfer_auxv },
2305 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2306 PACKET_qXfer_features },
2307 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2308 PACKET_qXfer_memory_map },
2309 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2310 PACKET_QPassSignals },
2311 };
2312
2313 static void
2314 remote_query_supported (void)
2315 {
2316 struct remote_state *rs = get_remote_state ();
2317 char *next;
2318 int i;
2319 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2320
2321 /* The packet support flags are handled differently for this packet
2322 than for most others. We treat an error, a disabled packet, and
2323 an empty response identically: any features which must be reported
2324 to be used will be automatically disabled. An empty buffer
2325 accomplishes this, since that is also the representation for a list
2326 containing no features. */
2327
2328 rs->buf[0] = 0;
2329 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2330 {
2331 putpkt ("qSupported");
2332 getpkt (&rs->buf, &rs->buf_size, 0);
2333
2334 /* If an error occured, warn, but do not return - just reset the
2335 buffer to empty and go on to disable features. */
2336 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2337 == PACKET_ERROR)
2338 {
2339 warning (_("Remote failure reply: %s"), rs->buf);
2340 rs->buf[0] = 0;
2341 }
2342 }
2343
2344 memset (seen, 0, sizeof (seen));
2345
2346 next = rs->buf;
2347 while (*next)
2348 {
2349 enum packet_support is_supported;
2350 char *p, *end, *name_end, *value;
2351
2352 /* First separate out this item from the rest of the packet. If
2353 there's another item after this, we overwrite the separator
2354 (terminated strings are much easier to work with). */
2355 p = next;
2356 end = strchr (p, ';');
2357 if (end == NULL)
2358 {
2359 end = p + strlen (p);
2360 next = end;
2361 }
2362 else
2363 {
2364 *end = '\0';
2365 next = end + 1;
2366
2367 if (end == p)
2368 {
2369 warning (_("empty item in \"qSupported\" response"));
2370 continue;
2371 }
2372 }
2373
2374 name_end = strchr (p, '=');
2375 if (name_end)
2376 {
2377 /* This is a name=value entry. */
2378 is_supported = PACKET_ENABLE;
2379 value = name_end + 1;
2380 *name_end = '\0';
2381 }
2382 else
2383 {
2384 value = NULL;
2385 switch (end[-1])
2386 {
2387 case '+':
2388 is_supported = PACKET_ENABLE;
2389 break;
2390
2391 case '-':
2392 is_supported = PACKET_DISABLE;
2393 break;
2394
2395 case '?':
2396 is_supported = PACKET_SUPPORT_UNKNOWN;
2397 break;
2398
2399 default:
2400 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2401 continue;
2402 }
2403 end[-1] = '\0';
2404 }
2405
2406 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2407 if (strcmp (remote_protocol_features[i].name, p) == 0)
2408 {
2409 const struct protocol_feature *feature;
2410
2411 seen[i] = 1;
2412 feature = &remote_protocol_features[i];
2413 feature->func (feature, is_supported, value);
2414 break;
2415 }
2416 }
2417
2418 /* If we increased the packet size, make sure to increase the global
2419 buffer size also. We delay this until after parsing the entire
2420 qSupported packet, because this is the same buffer we were
2421 parsing. */
2422 if (rs->buf_size < rs->explicit_packet_size)
2423 {
2424 rs->buf_size = rs->explicit_packet_size;
2425 rs->buf = xrealloc (rs->buf, rs->buf_size);
2426 }
2427
2428 /* Handle the defaults for unmentioned features. */
2429 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2430 if (!seen[i])
2431 {
2432 const struct protocol_feature *feature;
2433
2434 feature = &remote_protocol_features[i];
2435 feature->func (feature, feature->default_support, NULL);
2436 }
2437 }
2438
2439
2440 static void
2441 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2442 int extended_p, int async_p)
2443 {
2444 struct remote_state *rs = get_remote_state ();
2445 if (name == 0)
2446 error (_("To open a remote debug connection, you need to specify what\n"
2447 "serial device is attached to the remote system\n"
2448 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2449
2450 /* See FIXME above. */
2451 if (!async_p)
2452 wait_forever_enabled_p = 1;
2453
2454 target_preopen (from_tty);
2455
2456 unpush_target (target);
2457
2458 /* Make sure we send the passed signals list the next time we resume. */
2459 xfree (last_pass_packet);
2460 last_pass_packet = NULL;
2461
2462 remote_fileio_reset ();
2463 reopen_exec_file ();
2464 reread_symbols ();
2465
2466 remote_desc = remote_serial_open (name);
2467 if (!remote_desc)
2468 perror_with_name (name);
2469
2470 if (baud_rate != -1)
2471 {
2472 if (serial_setbaudrate (remote_desc, baud_rate))
2473 {
2474 /* The requested speed could not be set. Error out to
2475 top level after closing remote_desc. Take care to
2476 set remote_desc to NULL to avoid closing remote_desc
2477 more than once. */
2478 serial_close (remote_desc);
2479 remote_desc = NULL;
2480 perror_with_name (name);
2481 }
2482 }
2483
2484 serial_raw (remote_desc);
2485
2486 /* If there is something sitting in the buffer we might take it as a
2487 response to a command, which would be bad. */
2488 serial_flush_input (remote_desc);
2489
2490 if (from_tty)
2491 {
2492 puts_filtered ("Remote debugging using ");
2493 puts_filtered (name);
2494 puts_filtered ("\n");
2495 }
2496 push_target (target); /* Switch to using remote target now. */
2497
2498 /* Reset the target state; these things will be queried either by
2499 remote_query_supported or as they are needed. */
2500 init_all_packet_configs ();
2501 rs->explicit_packet_size = 0;
2502
2503 general_thread = -2;
2504 continue_thread = -2;
2505
2506 /* Probe for ability to use "ThreadInfo" query, as required. */
2507 use_threadinfo_query = 1;
2508 use_threadextra_query = 1;
2509
2510 /* The first packet we send to the target is the optional "supported
2511 packets" request. If the target can answer this, it will tell us
2512 which later probes to skip. */
2513 remote_query_supported ();
2514
2515 /* Next, if the target can specify a description, read it. We do
2516 this before anything involving memory or registers. */
2517 target_find_description ();
2518
2519 /* Without this, some commands which require an active target (such
2520 as kill) won't work. This variable serves (at least) double duty
2521 as both the pid of the target process (if it has such), and as a
2522 flag indicating that a target is active. These functions should
2523 be split out into seperate variables, especially since GDB will
2524 someday have a notion of debugging several processes. */
2525
2526 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2527
2528 if (async_p)
2529 {
2530 /* With this target we start out by owning the terminal. */
2531 remote_async_terminal_ours_p = 1;
2532
2533 /* FIXME: cagney/1999-09-23: During the initial connection it is
2534 assumed that the target is already ready and able to respond to
2535 requests. Unfortunately remote_start_remote() eventually calls
2536 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2537 around this. Eventually a mechanism that allows
2538 wait_for_inferior() to expect/get timeouts will be
2539 implemented. */
2540 wait_forever_enabled_p = 0;
2541 }
2542
2543 /* First delete any symbols previously loaded from shared libraries. */
2544 no_shared_libraries (NULL, 0);
2545
2546 /* Start the remote connection. If error() or QUIT, discard this
2547 target (we'd otherwise be in an inconsistent state) and then
2548 propogate the error on up the exception chain. This ensures that
2549 the caller doesn't stumble along blindly assuming that the
2550 function succeeded. The CLI doesn't have this problem but other
2551 UI's, such as MI do.
2552
2553 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2554 this function should return an error indication letting the
2555 caller restore the previous state. Unfortunately the command
2556 ``target remote'' is directly wired to this function making that
2557 impossible. On a positive note, the CLI side of this problem has
2558 been fixed - the function set_cmd_context() makes it possible for
2559 all the ``target ....'' commands to share a common callback
2560 function. See cli-dump.c. */
2561 {
2562 struct gdb_exception ex
2563 = catch_exception (uiout, remote_start_remote, &from_tty,
2564 RETURN_MASK_ALL);
2565 if (ex.reason < 0)
2566 {
2567 pop_target ();
2568 if (async_p)
2569 wait_forever_enabled_p = 1;
2570 throw_exception (ex);
2571 }
2572 }
2573
2574 if (async_p)
2575 wait_forever_enabled_p = 1;
2576
2577 if (extended_p)
2578 {
2579 /* Tell the remote that we are using the extended protocol. */
2580 putpkt ("!");
2581 getpkt (&rs->buf, &rs->buf_size, 0);
2582 }
2583
2584 if (exec_bfd) /* No use without an exec file. */
2585 remote_check_symbols (symfile_objfile);
2586 }
2587
2588 /* This takes a program previously attached to and detaches it. After
2589 this is done, GDB can be used to debug some other program. We
2590 better not have left any breakpoints in the target program or it'll
2591 die when it hits one. */
2592
2593 static void
2594 remote_detach (char *args, int from_tty)
2595 {
2596 struct remote_state *rs = get_remote_state ();
2597
2598 if (args)
2599 error (_("Argument given to \"detach\" when remotely debugging."));
2600
2601 /* Tell the remote target to detach. */
2602 strcpy (rs->buf, "D");
2603 remote_send (&rs->buf, &rs->buf_size);
2604
2605 /* Unregister the file descriptor from the event loop. */
2606 if (target_is_async_p ())
2607 serial_async (remote_desc, NULL, 0);
2608
2609 target_mourn_inferior ();
2610 if (from_tty)
2611 puts_filtered ("Ending remote debugging.\n");
2612 }
2613
2614 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2615
2616 static void
2617 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2618 {
2619 if (args)
2620 error (_("Argument given to \"detach\" when remotely debugging."));
2621
2622 /* Unregister the file descriptor from the event loop. */
2623 if (target_is_async_p ())
2624 serial_async (remote_desc, NULL, 0);
2625
2626 target_mourn_inferior ();
2627 if (from_tty)
2628 puts_filtered ("Ending remote debugging.\n");
2629 }
2630
2631 /* Convert hex digit A to a number. */
2632
2633 static int
2634 fromhex (int a)
2635 {
2636 if (a >= '0' && a <= '9')
2637 return a - '0';
2638 else if (a >= 'a' && a <= 'f')
2639 return a - 'a' + 10;
2640 else if (a >= 'A' && a <= 'F')
2641 return a - 'A' + 10;
2642 else
2643 error (_("Reply contains invalid hex digit %d"), a);
2644 }
2645
2646 static int
2647 hex2bin (const char *hex, gdb_byte *bin, int count)
2648 {
2649 int i;
2650
2651 for (i = 0; i < count; i++)
2652 {
2653 if (hex[0] == 0 || hex[1] == 0)
2654 {
2655 /* Hex string is short, or of uneven length.
2656 Return the count that has been converted so far. */
2657 return i;
2658 }
2659 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2660 hex += 2;
2661 }
2662 return i;
2663 }
2664
2665 /* Convert number NIB to a hex digit. */
2666
2667 static int
2668 tohex (int nib)
2669 {
2670 if (nib < 10)
2671 return '0' + nib;
2672 else
2673 return 'a' + nib - 10;
2674 }
2675
2676 static int
2677 bin2hex (const gdb_byte *bin, char *hex, int count)
2678 {
2679 int i;
2680 /* May use a length, or a nul-terminated string as input. */
2681 if (count == 0)
2682 count = strlen ((char *) bin);
2683
2684 for (i = 0; i < count; i++)
2685 {
2686 *hex++ = tohex ((*bin >> 4) & 0xf);
2687 *hex++ = tohex (*bin++ & 0xf);
2688 }
2689 *hex = 0;
2690 return i;
2691 }
2692 \f
2693 /* Check for the availability of vCont. This function should also check
2694 the response. */
2695
2696 static void
2697 remote_vcont_probe (struct remote_state *rs)
2698 {
2699 char *buf;
2700
2701 strcpy (rs->buf, "vCont?");
2702 putpkt (rs->buf);
2703 getpkt (&rs->buf, &rs->buf_size, 0);
2704 buf = rs->buf;
2705
2706 /* Make sure that the features we assume are supported. */
2707 if (strncmp (buf, "vCont", 5) == 0)
2708 {
2709 char *p = &buf[5];
2710 int support_s, support_S, support_c, support_C;
2711
2712 support_s = 0;
2713 support_S = 0;
2714 support_c = 0;
2715 support_C = 0;
2716 while (p && *p == ';')
2717 {
2718 p++;
2719 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2720 support_s = 1;
2721 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2722 support_S = 1;
2723 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2724 support_c = 1;
2725 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2726 support_C = 1;
2727
2728 p = strchr (p, ';');
2729 }
2730
2731 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2732 BUF will make packet_ok disable the packet. */
2733 if (!support_s || !support_S || !support_c || !support_C)
2734 buf[0] = 0;
2735 }
2736
2737 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2738 }
2739
2740 /* Resume the remote inferior by using a "vCont" packet. The thread
2741 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2742 resumed thread should be single-stepped and/or signalled. If PTID's
2743 PID is -1, then all threads are resumed; the thread to be stepped and/or
2744 signalled is given in the global INFERIOR_PTID. This function returns
2745 non-zero iff it resumes the inferior.
2746
2747 This function issues a strict subset of all possible vCont commands at the
2748 moment. */
2749
2750 static int
2751 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2752 {
2753 struct remote_state *rs = get_remote_state ();
2754 int pid = PIDGET (ptid);
2755 char *buf = NULL, *outbuf;
2756 struct cleanup *old_cleanup;
2757
2758 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2759 remote_vcont_probe (rs);
2760
2761 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2762 return 0;
2763
2764 /* If we could generate a wider range of packets, we'd have to worry
2765 about overflowing BUF. Should there be a generic
2766 "multi-part-packet" packet? */
2767
2768 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2769 {
2770 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2771 don't have any PID numbers the inferior will understand. Make sure
2772 to only send forms that do not specify a PID. */
2773 if (step && siggnal != TARGET_SIGNAL_0)
2774 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2775 else if (step)
2776 outbuf = xstrprintf ("vCont;s");
2777 else if (siggnal != TARGET_SIGNAL_0)
2778 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2779 else
2780 outbuf = xstrprintf ("vCont;c");
2781 }
2782 else if (pid == -1)
2783 {
2784 /* Resume all threads, with preference for INFERIOR_PTID. */
2785 if (step && siggnal != TARGET_SIGNAL_0)
2786 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2787 PIDGET (inferior_ptid));
2788 else if (step)
2789 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2790 else if (siggnal != TARGET_SIGNAL_0)
2791 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2792 PIDGET (inferior_ptid));
2793 else
2794 outbuf = xstrprintf ("vCont;c");
2795 }
2796 else
2797 {
2798 /* Scheduler locking; resume only PTID. */
2799 if (step && siggnal != TARGET_SIGNAL_0)
2800 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2801 else if (step)
2802 outbuf = xstrprintf ("vCont;s:%x", pid);
2803 else if (siggnal != TARGET_SIGNAL_0)
2804 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2805 else
2806 outbuf = xstrprintf ("vCont;c:%x", pid);
2807 }
2808
2809 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2810 old_cleanup = make_cleanup (xfree, outbuf);
2811
2812 putpkt (outbuf);
2813
2814 do_cleanups (old_cleanup);
2815
2816 return 1;
2817 }
2818
2819 /* Tell the remote machine to resume. */
2820
2821 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2822
2823 static int last_sent_step;
2824
2825 static void
2826 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2827 {
2828 struct remote_state *rs = get_remote_state ();
2829 char *buf;
2830 int pid = PIDGET (ptid);
2831
2832 last_sent_signal = siggnal;
2833 last_sent_step = step;
2834
2835 /* A hook for when we need to do something at the last moment before
2836 resumption. */
2837 if (deprecated_target_resume_hook)
2838 (*deprecated_target_resume_hook) ();
2839
2840 /* Update the inferior on signals to silently pass, if they've changed. */
2841 remote_pass_signals ();
2842
2843 /* The vCont packet doesn't need to specify threads via Hc. */
2844 if (remote_vcont_resume (ptid, step, siggnal))
2845 return;
2846
2847 /* All other supported resume packets do use Hc, so call set_thread. */
2848 if (pid == -1)
2849 set_thread (0, 0); /* Run any thread. */
2850 else
2851 set_thread (pid, 0); /* Run this thread. */
2852
2853 buf = rs->buf;
2854 if (siggnal != TARGET_SIGNAL_0)
2855 {
2856 buf[0] = step ? 'S' : 'C';
2857 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2858 buf[2] = tohex (((int) siggnal) & 0xf);
2859 buf[3] = '\0';
2860 }
2861 else
2862 strcpy (buf, step ? "s" : "c");
2863
2864 putpkt (buf);
2865 }
2866
2867 /* Same as remote_resume, but with async support. */
2868 static void
2869 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2870 {
2871 remote_resume (ptid, step, siggnal);
2872
2873 /* We are about to start executing the inferior, let's register it
2874 with the event loop. NOTE: this is the one place where all the
2875 execution commands end up. We could alternatively do this in each
2876 of the execution commands in infcmd.c. */
2877 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2878 into infcmd.c in order to allow inferior function calls to work
2879 NOT asynchronously. */
2880 if (target_can_async_p ())
2881 target_async (inferior_event_handler, 0);
2882 /* Tell the world that the target is now executing. */
2883 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2884 this? Instead, should the client of target just assume (for
2885 async targets) that the target is going to start executing? Is
2886 this information already found in the continuation block? */
2887 if (target_is_async_p ())
2888 target_executing = 1;
2889 }
2890 \f
2891
2892 /* Set up the signal handler for SIGINT, while the target is
2893 executing, ovewriting the 'regular' SIGINT signal handler. */
2894 static void
2895 initialize_sigint_signal_handler (void)
2896 {
2897 sigint_remote_token =
2898 create_async_signal_handler (async_remote_interrupt, NULL);
2899 signal (SIGINT, handle_remote_sigint);
2900 }
2901
2902 /* Signal handler for SIGINT, while the target is executing. */
2903 static void
2904 handle_remote_sigint (int sig)
2905 {
2906 signal (sig, handle_remote_sigint_twice);
2907 sigint_remote_twice_token =
2908 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2909 mark_async_signal_handler_wrapper (sigint_remote_token);
2910 }
2911
2912 /* Signal handler for SIGINT, installed after SIGINT has already been
2913 sent once. It will take effect the second time that the user sends
2914 a ^C. */
2915 static void
2916 handle_remote_sigint_twice (int sig)
2917 {
2918 signal (sig, handle_sigint);
2919 sigint_remote_twice_token =
2920 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2921 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2922 }
2923
2924 /* Perform the real interruption of the target execution, in response
2925 to a ^C. */
2926 static void
2927 async_remote_interrupt (gdb_client_data arg)
2928 {
2929 if (remote_debug)
2930 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2931
2932 target_stop ();
2933 }
2934
2935 /* Perform interrupt, if the first attempt did not succeed. Just give
2936 up on the target alltogether. */
2937 void
2938 async_remote_interrupt_twice (gdb_client_data arg)
2939 {
2940 if (remote_debug)
2941 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2942 /* Do something only if the target was not killed by the previous
2943 cntl-C. */
2944 if (target_executing)
2945 {
2946 interrupt_query ();
2947 signal (SIGINT, handle_remote_sigint);
2948 }
2949 }
2950
2951 /* Reinstall the usual SIGINT handlers, after the target has
2952 stopped. */
2953 static void
2954 cleanup_sigint_signal_handler (void *dummy)
2955 {
2956 signal (SIGINT, handle_sigint);
2957 if (sigint_remote_twice_token)
2958 delete_async_signal_handler (&sigint_remote_twice_token);
2959 if (sigint_remote_token)
2960 delete_async_signal_handler (&sigint_remote_token);
2961 }
2962
2963 /* Send ^C to target to halt it. Target will respond, and send us a
2964 packet. */
2965 static void (*ofunc) (int);
2966
2967 /* The command line interface's stop routine. This function is installed
2968 as a signal handler for SIGINT. The first time a user requests a
2969 stop, we call remote_stop to send a break or ^C. If there is no
2970 response from the target (it didn't stop when the user requested it),
2971 we ask the user if he'd like to detach from the target. */
2972 static void
2973 remote_interrupt (int signo)
2974 {
2975 /* If this doesn't work, try more severe steps. */
2976 signal (signo, remote_interrupt_twice);
2977
2978 if (remote_debug)
2979 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2980
2981 target_stop ();
2982 }
2983
2984 /* The user typed ^C twice. */
2985
2986 static void
2987 remote_interrupt_twice (int signo)
2988 {
2989 signal (signo, ofunc);
2990 interrupt_query ();
2991 signal (signo, remote_interrupt);
2992 }
2993
2994 /* This is the generic stop called via the target vector. When a target
2995 interrupt is requested, either by the command line or the GUI, we
2996 will eventually end up here. */
2997 static void
2998 remote_stop (void)
2999 {
3000 /* Send a break or a ^C, depending on user preference. */
3001 if (remote_debug)
3002 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3003
3004 if (remote_break)
3005 serial_send_break (remote_desc);
3006 else
3007 serial_write (remote_desc, "\003", 1);
3008 }
3009
3010 /* Ask the user what to do when an interrupt is received. */
3011
3012 static void
3013 interrupt_query (void)
3014 {
3015 target_terminal_ours ();
3016
3017 if (query ("Interrupted while waiting for the program.\n\
3018 Give up (and stop debugging it)? "))
3019 {
3020 target_mourn_inferior ();
3021 deprecated_throw_reason (RETURN_QUIT);
3022 }
3023
3024 target_terminal_inferior ();
3025 }
3026
3027 /* Enable/disable target terminal ownership. Most targets can use
3028 terminal groups to control terminal ownership. Remote targets are
3029 different in that explicit transfer of ownership to/from GDB/target
3030 is required. */
3031
3032 static void
3033 remote_async_terminal_inferior (void)
3034 {
3035 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3036 sync_execution here. This function should only be called when
3037 GDB is resuming the inferior in the forground. A background
3038 resume (``run&'') should leave GDB in control of the terminal and
3039 consequently should not call this code. */
3040 if (!sync_execution)
3041 return;
3042 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3043 calls target_terminal_*() idenpotent. The event-loop GDB talking
3044 to an asynchronous target with a synchronous command calls this
3045 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3046 stops trying to transfer the terminal to the target when it
3047 shouldn't this guard can go away. */
3048 if (!remote_async_terminal_ours_p)
3049 return;
3050 delete_file_handler (input_fd);
3051 remote_async_terminal_ours_p = 0;
3052 initialize_sigint_signal_handler ();
3053 /* NOTE: At this point we could also register our selves as the
3054 recipient of all input. Any characters typed could then be
3055 passed on down to the target. */
3056 }
3057
3058 static void
3059 remote_async_terminal_ours (void)
3060 {
3061 /* See FIXME in remote_async_terminal_inferior. */
3062 if (!sync_execution)
3063 return;
3064 /* See FIXME in remote_async_terminal_inferior. */
3065 if (remote_async_terminal_ours_p)
3066 return;
3067 cleanup_sigint_signal_handler (NULL);
3068 add_file_handler (input_fd, stdin_event_handler, 0);
3069 remote_async_terminal_ours_p = 1;
3070 }
3071
3072 /* If nonzero, ignore the next kill. */
3073
3074 int kill_kludge;
3075
3076 void
3077 remote_console_output (char *msg)
3078 {
3079 char *p;
3080
3081 for (p = msg; p[0] && p[1]; p += 2)
3082 {
3083 char tb[2];
3084 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3085 tb[0] = c;
3086 tb[1] = 0;
3087 fputs_unfiltered (tb, gdb_stdtarg);
3088 }
3089 gdb_flush (gdb_stdtarg);
3090 }
3091
3092 /* Wait until the remote machine stops, then return,
3093 storing status in STATUS just as `wait' would.
3094 Returns "pid", which in the case of a multi-threaded
3095 remote OS, is the thread-id. */
3096
3097 static ptid_t
3098 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3099 {
3100 struct remote_state *rs = get_remote_state ();
3101 struct remote_arch_state *rsa = get_remote_arch_state ();
3102 ULONGEST thread_num = -1;
3103 ULONGEST addr;
3104
3105 status->kind = TARGET_WAITKIND_EXITED;
3106 status->value.integer = 0;
3107
3108 while (1)
3109 {
3110 char *buf, *p;
3111
3112 ofunc = signal (SIGINT, remote_interrupt);
3113 getpkt (&rs->buf, &rs->buf_size, 1);
3114 signal (SIGINT, ofunc);
3115
3116 buf = rs->buf;
3117
3118 /* This is a hook for when we need to do something (perhaps the
3119 collection of trace data) every time the target stops. */
3120 if (deprecated_target_wait_loop_hook)
3121 (*deprecated_target_wait_loop_hook) ();
3122
3123 remote_stopped_by_watchpoint_p = 0;
3124
3125 switch (buf[0])
3126 {
3127 case 'E': /* Error of some sort. */
3128 warning (_("Remote failure reply: %s"), buf);
3129 continue;
3130 case 'F': /* File-I/O request. */
3131 remote_fileio_request (buf);
3132 continue;
3133 case 'T': /* Status with PC, SP, FP, ... */
3134 {
3135 gdb_byte regs[MAX_REGISTER_SIZE];
3136
3137 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3138 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3139 ss = signal number
3140 n... = register number
3141 r... = register contents
3142 */
3143 p = &buf[3]; /* after Txx */
3144
3145 while (*p)
3146 {
3147 char *p1;
3148 char *p_temp;
3149 int fieldsize;
3150 LONGEST pnum = 0;
3151
3152 /* If the packet contains a register number save it in
3153 pnum and set p1 to point to the character following
3154 it. Otherwise p1 points to p. */
3155
3156 /* If this packet is an awatch packet, don't parse the
3157 'a' as a register number. */
3158
3159 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3160 {
3161 /* Read the ``P'' register number. */
3162 pnum = strtol (p, &p_temp, 16);
3163 p1 = p_temp;
3164 }
3165 else
3166 p1 = p;
3167
3168 if (p1 == p) /* No register number present here. */
3169 {
3170 p1 = strchr (p, ':');
3171 if (p1 == NULL)
3172 error (_("Malformed packet(a) (missing colon): %s\n\
3173 Packet: '%s'\n"),
3174 p, buf);
3175 if (strncmp (p, "thread", p1 - p) == 0)
3176 {
3177 p_temp = unpack_varlen_hex (++p1, &thread_num);
3178 record_currthread (thread_num);
3179 p = p_temp;
3180 }
3181 else if ((strncmp (p, "watch", p1 - p) == 0)
3182 || (strncmp (p, "rwatch", p1 - p) == 0)
3183 || (strncmp (p, "awatch", p1 - p) == 0))
3184 {
3185 remote_stopped_by_watchpoint_p = 1;
3186 p = unpack_varlen_hex (++p1, &addr);
3187 remote_watch_data_address = (CORE_ADDR)addr;
3188 }
3189 else
3190 {
3191 /* Silently skip unknown optional info. */
3192 p_temp = strchr (p1 + 1, ';');
3193 if (p_temp)
3194 p = p_temp;
3195 }
3196 }
3197 else
3198 {
3199 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3200 p = p1;
3201
3202 if (*p++ != ':')
3203 error (_("Malformed packet(b) (missing colon): %s\n\
3204 Packet: '%s'\n"),
3205 p, buf);
3206
3207 if (reg == NULL)
3208 error (_("Remote sent bad register number %s: %s\n\
3209 Packet: '%s'\n"),
3210 phex_nz (pnum, 0), p, buf);
3211
3212 fieldsize = hex2bin (p, regs,
3213 register_size (current_gdbarch,
3214 reg->regnum));
3215 p += 2 * fieldsize;
3216 if (fieldsize < register_size (current_gdbarch,
3217 reg->regnum))
3218 warning (_("Remote reply is too short: %s"), buf);
3219 regcache_raw_supply (current_regcache,
3220 reg->regnum, regs);
3221 }
3222
3223 if (*p++ != ';')
3224 error (_("Remote register badly formatted: %s\nhere: %s"),
3225 buf, p);
3226 }
3227 }
3228 /* fall through */
3229 case 'S': /* Old style status, just signal only. */
3230 status->kind = TARGET_WAITKIND_STOPPED;
3231 status->value.sig = (enum target_signal)
3232 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3233
3234 if (buf[3] == 'p')
3235 {
3236 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3237 record_currthread (thread_num);
3238 }
3239 goto got_status;
3240 case 'W': /* Target exited. */
3241 {
3242 /* The remote process exited. */
3243 status->kind = TARGET_WAITKIND_EXITED;
3244 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3245 goto got_status;
3246 }
3247 case 'X':
3248 status->kind = TARGET_WAITKIND_SIGNALLED;
3249 status->value.sig = (enum target_signal)
3250 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3251 kill_kludge = 1;
3252
3253 goto got_status;
3254 case 'O': /* Console output. */
3255 remote_console_output (buf + 1);
3256 continue;
3257 case '\0':
3258 if (last_sent_signal != TARGET_SIGNAL_0)
3259 {
3260 /* Zero length reply means that we tried 'S' or 'C' and
3261 the remote system doesn't support it. */
3262 target_terminal_ours_for_output ();
3263 printf_filtered
3264 ("Can't send signals to this remote system. %s not sent.\n",
3265 target_signal_to_name (last_sent_signal));
3266 last_sent_signal = TARGET_SIGNAL_0;
3267 target_terminal_inferior ();
3268
3269 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3270 putpkt ((char *) buf);
3271 continue;
3272 }
3273 /* else fallthrough */
3274 default:
3275 warning (_("Invalid remote reply: %s"), buf);
3276 continue;
3277 }
3278 }
3279 got_status:
3280 if (thread_num != -1)
3281 {
3282 return pid_to_ptid (thread_num);
3283 }
3284 return inferior_ptid;
3285 }
3286
3287 /* Async version of remote_wait. */
3288 static ptid_t
3289 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3290 {
3291 struct remote_state *rs = get_remote_state ();
3292 struct remote_arch_state *rsa = get_remote_arch_state ();
3293 ULONGEST thread_num = -1;
3294 ULONGEST addr;
3295
3296 status->kind = TARGET_WAITKIND_EXITED;
3297 status->value.integer = 0;
3298
3299 remote_stopped_by_watchpoint_p = 0;
3300
3301 while (1)
3302 {
3303 char *buf, *p;
3304
3305 if (!target_is_async_p ())
3306 ofunc = signal (SIGINT, remote_interrupt);
3307 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3308 _never_ wait for ever -> test on target_is_async_p().
3309 However, before we do that we need to ensure that the caller
3310 knows how to take the target into/out of async mode. */
3311 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3312 if (!target_is_async_p ())
3313 signal (SIGINT, ofunc);
3314
3315 buf = rs->buf;
3316
3317 /* This is a hook for when we need to do something (perhaps the
3318 collection of trace data) every time the target stops. */
3319 if (deprecated_target_wait_loop_hook)
3320 (*deprecated_target_wait_loop_hook) ();
3321
3322 switch (buf[0])
3323 {
3324 case 'E': /* Error of some sort. */
3325 warning (_("Remote failure reply: %s"), buf);
3326 continue;
3327 case 'F': /* File-I/O request. */
3328 remote_fileio_request (buf);
3329 continue;
3330 case 'T': /* Status with PC, SP, FP, ... */
3331 {
3332 gdb_byte regs[MAX_REGISTER_SIZE];
3333
3334 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3335 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3336 ss = signal number
3337 n... = register number
3338 r... = register contents
3339 */
3340 p = &buf[3]; /* after Txx */
3341
3342 while (*p)
3343 {
3344 char *p1;
3345 char *p_temp;
3346 int fieldsize;
3347 long pnum = 0;
3348
3349 /* If the packet contains a register number, save it
3350 in pnum and set p1 to point to the character
3351 following it. Otherwise p1 points to p. */
3352
3353 /* If this packet is an awatch packet, don't parse the 'a'
3354 as a register number. */
3355
3356 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3357 {
3358 /* Read the register number. */
3359 pnum = strtol (p, &p_temp, 16);
3360 p1 = p_temp;
3361 }
3362 else
3363 p1 = p;
3364
3365 if (p1 == p) /* No register number present here. */
3366 {
3367 p1 = strchr (p, ':');
3368 if (p1 == NULL)
3369 error (_("Malformed packet(a) (missing colon): %s\n\
3370 Packet: '%s'\n"),
3371 p, buf);
3372 if (strncmp (p, "thread", p1 - p) == 0)
3373 {
3374 p_temp = unpack_varlen_hex (++p1, &thread_num);
3375 record_currthread (thread_num);
3376 p = p_temp;
3377 }
3378 else if ((strncmp (p, "watch", p1 - p) == 0)
3379 || (strncmp (p, "rwatch", p1 - p) == 0)
3380 || (strncmp (p, "awatch", p1 - p) == 0))
3381 {
3382 remote_stopped_by_watchpoint_p = 1;
3383 p = unpack_varlen_hex (++p1, &addr);
3384 remote_watch_data_address = (CORE_ADDR)addr;
3385 }
3386 else
3387 {
3388 /* Silently skip unknown optional info. */
3389 p_temp = strchr (p1 + 1, ';');
3390 if (p_temp)
3391 p = p_temp;
3392 }
3393 }
3394
3395 else
3396 {
3397 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3398 p = p1;
3399 if (*p++ != ':')
3400 error (_("Malformed packet(b) (missing colon): %s\n\
3401 Packet: '%s'\n"),
3402 p, buf);
3403
3404 if (reg == NULL)
3405 error (_("Remote sent bad register number %ld: %s\n\
3406 Packet: '%s'\n"),
3407 pnum, p, buf);
3408
3409 fieldsize = hex2bin (p, regs,
3410 register_size (current_gdbarch,
3411 reg->regnum));
3412 p += 2 * fieldsize;
3413 if (fieldsize < register_size (current_gdbarch,
3414 reg->regnum))
3415 warning (_("Remote reply is too short: %s"), buf);
3416 regcache_raw_supply (current_regcache, reg->regnum, regs);
3417 }
3418
3419 if (*p++ != ';')
3420 error (_("Remote register badly formatted: %s\nhere: %s"),
3421 buf, p);
3422 }
3423 }
3424 /* fall through */
3425 case 'S': /* Old style status, just signal only. */
3426 status->kind = TARGET_WAITKIND_STOPPED;
3427 status->value.sig = (enum target_signal)
3428 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3429
3430 if (buf[3] == 'p')
3431 {
3432 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3433 record_currthread (thread_num);
3434 }
3435 goto got_status;
3436 case 'W': /* Target exited. */
3437 {
3438 /* The remote process exited. */
3439 status->kind = TARGET_WAITKIND_EXITED;
3440 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3441 goto got_status;
3442 }
3443 case 'X':
3444 status->kind = TARGET_WAITKIND_SIGNALLED;
3445 status->value.sig = (enum target_signal)
3446 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3447 kill_kludge = 1;
3448
3449 goto got_status;
3450 case 'O': /* Console output. */
3451 remote_console_output (buf + 1);
3452 /* Return immediately to the event loop. The event loop will
3453 still be waiting on the inferior afterwards. */
3454 status->kind = TARGET_WAITKIND_IGNORE;
3455 goto got_status;
3456 case '\0':
3457 if (last_sent_signal != TARGET_SIGNAL_0)
3458 {
3459 /* Zero length reply means that we tried 'S' or 'C' and
3460 the remote system doesn't support it. */
3461 target_terminal_ours_for_output ();
3462 printf_filtered
3463 ("Can't send signals to this remote system. %s not sent.\n",
3464 target_signal_to_name (last_sent_signal));
3465 last_sent_signal = TARGET_SIGNAL_0;
3466 target_terminal_inferior ();
3467
3468 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3469 putpkt ((char *) buf);
3470 continue;
3471 }
3472 /* else fallthrough */
3473 default:
3474 warning (_("Invalid remote reply: %s"), buf);
3475 continue;
3476 }
3477 }
3478 got_status:
3479 if (thread_num != -1)
3480 {
3481 return pid_to_ptid (thread_num);
3482 }
3483 return inferior_ptid;
3484 }
3485
3486 /* Fetch a single register using a 'p' packet. */
3487
3488 static int
3489 fetch_register_using_p (struct packet_reg *reg)
3490 {
3491 struct remote_state *rs = get_remote_state ();
3492 char *buf, *p;
3493 char regp[MAX_REGISTER_SIZE];
3494 int i;
3495
3496 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3497 return 0;
3498
3499 if (reg->pnum == -1)
3500 return 0;
3501
3502 p = rs->buf;
3503 *p++ = 'p';
3504 p += hexnumstr (p, reg->pnum);
3505 *p++ = '\0';
3506 remote_send (&rs->buf, &rs->buf_size);
3507
3508 buf = rs->buf;
3509
3510 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3511 {
3512 case PACKET_OK:
3513 break;
3514 case PACKET_UNKNOWN:
3515 return 0;
3516 case PACKET_ERROR:
3517 error (_("Could not fetch register \"%s\""),
3518 gdbarch_register_name (current_gdbarch, reg->regnum));
3519 }
3520
3521 /* If this register is unfetchable, tell the regcache. */
3522 if (buf[0] == 'x')
3523 {
3524 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3525 set_register_cached (reg->regnum, -1);
3526 return 1;
3527 }
3528
3529 /* Otherwise, parse and supply the value. */
3530 p = buf;
3531 i = 0;
3532 while (p[0] != 0)
3533 {
3534 if (p[1] == 0)
3535 error (_("fetch_register_using_p: early buf termination"));
3536
3537 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3538 p += 2;
3539 }
3540 regcache_raw_supply (current_regcache, reg->regnum, regp);
3541 return 1;
3542 }
3543
3544 /* Fetch the registers included in the target's 'g' packet. */
3545
3546 static int
3547 send_g_packet (void)
3548 {
3549 struct remote_state *rs = get_remote_state ();
3550 int i, buf_len;
3551 char *p;
3552 char *regs;
3553
3554 sprintf (rs->buf, "g");
3555 remote_send (&rs->buf, &rs->buf_size);
3556
3557 /* We can get out of synch in various cases. If the first character
3558 in the buffer is not a hex character, assume that has happened
3559 and try to fetch another packet to read. */
3560 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3561 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3562 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3563 && rs->buf[0] != 'x') /* New: unavailable register value. */
3564 {
3565 if (remote_debug)
3566 fprintf_unfiltered (gdb_stdlog,
3567 "Bad register packet; fetching a new packet\n");
3568 getpkt (&rs->buf, &rs->buf_size, 0);
3569 }
3570
3571 buf_len = strlen (rs->buf);
3572
3573 /* Sanity check the received packet. */
3574 if (buf_len % 2 != 0)
3575 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3576
3577 return buf_len / 2;
3578 }
3579
3580 static void
3581 process_g_packet (void)
3582 {
3583 struct remote_state *rs = get_remote_state ();
3584 struct remote_arch_state *rsa = get_remote_arch_state ();
3585 int i, buf_len;
3586 char *p;
3587 char *regs;
3588
3589 buf_len = strlen (rs->buf);
3590
3591 /* Further sanity checks, with knowledge of the architecture. */
3592 if (REGISTER_BYTES_OK_P () && !REGISTER_BYTES_OK (buf_len / 2))
3593 error (_("Remote 'g' packet reply is wrong length: %s"), rs->buf);
3594 if (buf_len > 2 * rsa->sizeof_g_packet)
3595 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3596
3597 /* Save the size of the packet sent to us by the target. It is used
3598 as a heuristic when determining the max size of packets that the
3599 target can safely receive. */
3600 if (rsa->actual_register_packet_size == 0)
3601 rsa->actual_register_packet_size = buf_len;
3602
3603 /* If this is smaller than we guessed the 'g' packet would be,
3604 update our records. A 'g' reply that doesn't include a register's
3605 value implies either that the register is not available, or that
3606 the 'p' packet must be used. */
3607 if (buf_len < 2 * rsa->sizeof_g_packet)
3608 {
3609 rsa->sizeof_g_packet = buf_len / 2;
3610
3611 for (i = 0; i < NUM_REGS; i++)
3612 {
3613 if (rsa->regs[i].pnum == -1)
3614 continue;
3615
3616 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3617 rsa->regs[i].in_g_packet = 0;
3618 else
3619 rsa->regs[i].in_g_packet = 1;
3620 }
3621 }
3622
3623 regs = alloca (rsa->sizeof_g_packet);
3624
3625 /* Unimplemented registers read as all bits zero. */
3626 memset (regs, 0, rsa->sizeof_g_packet);
3627
3628 /* Reply describes registers byte by byte, each byte encoded as two
3629 hex characters. Suck them all up, then supply them to the
3630 register cacheing/storage mechanism. */
3631
3632 p = rs->buf;
3633 for (i = 0; i < rsa->sizeof_g_packet; i++)
3634 {
3635 if (p[0] == 0 || p[1] == 0)
3636 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3637 internal_error (__FILE__, __LINE__,
3638 "unexpected end of 'g' packet reply");
3639
3640 if (p[0] == 'x' && p[1] == 'x')
3641 regs[i] = 0; /* 'x' */
3642 else
3643 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3644 p += 2;
3645 }
3646
3647 {
3648 int i;
3649 for (i = 0; i < NUM_REGS; i++)
3650 {
3651 struct packet_reg *r = &rsa->regs[i];
3652 if (r->in_g_packet)
3653 {
3654 if (r->offset * 2 >= strlen (rs->buf))
3655 /* This shouldn't happen - we adjusted in_g_packet above. */
3656 internal_error (__FILE__, __LINE__,
3657 "unexpected end of 'g' packet reply");
3658 else if (rs->buf[r->offset * 2] == 'x')
3659 {
3660 gdb_assert (r->offset * 2 < strlen (rs->buf));
3661 /* The register isn't available, mark it as such (at
3662 the same time setting the value to zero). */
3663 regcache_raw_supply (current_regcache, r->regnum, NULL);
3664 set_register_cached (i, -1);
3665 }
3666 else
3667 regcache_raw_supply (current_regcache, r->regnum,
3668 regs + r->offset);
3669 }
3670 }
3671 }
3672 }
3673
3674 static void
3675 fetch_registers_using_g (void)
3676 {
3677 send_g_packet ();
3678 process_g_packet ();
3679 }
3680
3681 static void
3682 remote_fetch_registers (int regnum)
3683 {
3684 struct remote_state *rs = get_remote_state ();
3685 struct remote_arch_state *rsa = get_remote_arch_state ();
3686 int i;
3687
3688 set_thread (PIDGET (inferior_ptid), 1);
3689
3690 if (regnum >= 0)
3691 {
3692 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3693 gdb_assert (reg != NULL);
3694
3695 /* If this register might be in the 'g' packet, try that first -
3696 we are likely to read more than one register. If this is the
3697 first 'g' packet, we might be overly optimistic about its
3698 contents, so fall back to 'p'. */
3699 if (reg->in_g_packet)
3700 {
3701 fetch_registers_using_g ();
3702 if (reg->in_g_packet)
3703 return;
3704 }
3705
3706 if (fetch_register_using_p (reg))
3707 return;
3708
3709 /* This register is not available. */
3710 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3711 set_register_cached (reg->regnum, -1);
3712
3713 return;
3714 }
3715
3716 fetch_registers_using_g ();
3717
3718 for (i = 0; i < NUM_REGS; i++)
3719 if (!rsa->regs[i].in_g_packet)
3720 if (!fetch_register_using_p (&rsa->regs[i]))
3721 {
3722 /* This register is not available. */
3723 regcache_raw_supply (current_regcache, i, NULL);
3724 set_register_cached (i, -1);
3725 }
3726 }
3727
3728 /* Prepare to store registers. Since we may send them all (using a
3729 'G' request), we have to read out the ones we don't want to change
3730 first. */
3731
3732 static void
3733 remote_prepare_to_store (void)
3734 {
3735 struct remote_arch_state *rsa = get_remote_arch_state ();
3736 int i;
3737 gdb_byte buf[MAX_REGISTER_SIZE];
3738
3739 /* Make sure the entire registers array is valid. */
3740 switch (remote_protocol_packets[PACKET_P].support)
3741 {
3742 case PACKET_DISABLE:
3743 case PACKET_SUPPORT_UNKNOWN:
3744 /* Make sure all the necessary registers are cached. */
3745 for (i = 0; i < NUM_REGS; i++)
3746 if (rsa->regs[i].in_g_packet)
3747 regcache_raw_read (current_regcache, rsa->regs[i].regnum, buf);
3748 break;
3749 case PACKET_ENABLE:
3750 break;
3751 }
3752 }
3753
3754 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3755 packet was not recognized. */
3756
3757 static int
3758 store_register_using_P (struct packet_reg *reg)
3759 {
3760 struct remote_state *rs = get_remote_state ();
3761 struct remote_arch_state *rsa = get_remote_arch_state ();
3762 /* Try storing a single register. */
3763 char *buf = rs->buf;
3764 gdb_byte regp[MAX_REGISTER_SIZE];
3765 char *p;
3766
3767 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3768 return 0;
3769
3770 if (reg->pnum == -1)
3771 return 0;
3772
3773 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3774 p = buf + strlen (buf);
3775 regcache_raw_collect (current_regcache, reg->regnum, regp);
3776 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3777 remote_send (&rs->buf, &rs->buf_size);
3778
3779 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3780 {
3781 case PACKET_OK:
3782 return 1;
3783 case PACKET_ERROR:
3784 error (_("Could not write register \"%s\""),
3785 gdbarch_register_name (current_gdbarch, reg->regnum));
3786 case PACKET_UNKNOWN:
3787 return 0;
3788 default:
3789 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3790 }
3791 }
3792
3793 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3794 contents of the register cache buffer. FIXME: ignores errors. */
3795
3796 static void
3797 store_registers_using_G (void)
3798 {
3799 struct remote_state *rs = get_remote_state ();
3800 struct remote_arch_state *rsa = get_remote_arch_state ();
3801 gdb_byte *regs;
3802 char *p;
3803
3804 /* Extract all the registers in the regcache copying them into a
3805 local buffer. */
3806 {
3807 int i;
3808 regs = alloca (rsa->sizeof_g_packet);
3809 memset (regs, 0, rsa->sizeof_g_packet);
3810 for (i = 0; i < NUM_REGS; i++)
3811 {
3812 struct packet_reg *r = &rsa->regs[i];
3813 if (r->in_g_packet)
3814 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3815 }
3816 }
3817
3818 /* Command describes registers byte by byte,
3819 each byte encoded as two hex characters. */
3820 p = rs->buf;
3821 *p++ = 'G';
3822 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3823 updated. */
3824 bin2hex (regs, p, rsa->sizeof_g_packet);
3825 remote_send (&rs->buf, &rs->buf_size);
3826 }
3827
3828 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3829 of the register cache buffer. FIXME: ignores errors. */
3830
3831 static void
3832 remote_store_registers (int regnum)
3833 {
3834 struct remote_state *rs = get_remote_state ();
3835 struct remote_arch_state *rsa = get_remote_arch_state ();
3836 int i;
3837
3838 set_thread (PIDGET (inferior_ptid), 1);
3839
3840 if (regnum >= 0)
3841 {
3842 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3843 gdb_assert (reg != NULL);
3844
3845 /* Always prefer to store registers using the 'P' packet if
3846 possible; we often change only a small number of registers.
3847 Sometimes we change a larger number; we'd need help from a
3848 higher layer to know to use 'G'. */
3849 if (store_register_using_P (reg))
3850 return;
3851
3852 /* For now, don't complain if we have no way to write the
3853 register. GDB loses track of unavailable registers too
3854 easily. Some day, this may be an error. We don't have
3855 any way to read the register, either... */
3856 if (!reg->in_g_packet)
3857 return;
3858
3859 store_registers_using_G ();
3860 return;
3861 }
3862
3863 store_registers_using_G ();
3864
3865 for (i = 0; i < NUM_REGS; i++)
3866 if (!rsa->regs[i].in_g_packet)
3867 if (!store_register_using_P (&rsa->regs[i]))
3868 /* See above for why we do not issue an error here. */
3869 continue;
3870 }
3871 \f
3872
3873 /* Return the number of hex digits in num. */
3874
3875 static int
3876 hexnumlen (ULONGEST num)
3877 {
3878 int i;
3879
3880 for (i = 0; num != 0; i++)
3881 num >>= 4;
3882
3883 return max (i, 1);
3884 }
3885
3886 /* Set BUF to the minimum number of hex digits representing NUM. */
3887
3888 static int
3889 hexnumstr (char *buf, ULONGEST num)
3890 {
3891 int len = hexnumlen (num);
3892 return hexnumnstr (buf, num, len);
3893 }
3894
3895
3896 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3897
3898 static int
3899 hexnumnstr (char *buf, ULONGEST num, int width)
3900 {
3901 int i;
3902
3903 buf[width] = '\0';
3904
3905 for (i = width - 1; i >= 0; i--)
3906 {
3907 buf[i] = "0123456789abcdef"[(num & 0xf)];
3908 num >>= 4;
3909 }
3910
3911 return width;
3912 }
3913
3914 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3915
3916 static CORE_ADDR
3917 remote_address_masked (CORE_ADDR addr)
3918 {
3919 if (remote_address_size > 0
3920 && remote_address_size < (sizeof (ULONGEST) * 8))
3921 {
3922 /* Only create a mask when that mask can safely be constructed
3923 in a ULONGEST variable. */
3924 ULONGEST mask = 1;
3925 mask = (mask << remote_address_size) - 1;
3926 addr &= mask;
3927 }
3928 return addr;
3929 }
3930
3931 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3932 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3933 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3934 (which may be more than *OUT_LEN due to escape characters). The
3935 total number of bytes in the output buffer will be at most
3936 OUT_MAXLEN. */
3937
3938 static int
3939 remote_escape_output (const gdb_byte *buffer, int len,
3940 gdb_byte *out_buf, int *out_len,
3941 int out_maxlen)
3942 {
3943 int input_index, output_index;
3944
3945 output_index = 0;
3946 for (input_index = 0; input_index < len; input_index++)
3947 {
3948 gdb_byte b = buffer[input_index];
3949
3950 if (b == '$' || b == '#' || b == '}')
3951 {
3952 /* These must be escaped. */
3953 if (output_index + 2 > out_maxlen)
3954 break;
3955 out_buf[output_index++] = '}';
3956 out_buf[output_index++] = b ^ 0x20;
3957 }
3958 else
3959 {
3960 if (output_index + 1 > out_maxlen)
3961 break;
3962 out_buf[output_index++] = b;
3963 }
3964 }
3965
3966 *out_len = input_index;
3967 return output_index;
3968 }
3969
3970 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3971 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3972 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3973
3974 This function reverses remote_escape_output. It allows more
3975 escaped characters than that function does, in particular because
3976 '*' must be escaped to avoid the run-length encoding processing
3977 in reading packets. */
3978
3979 static int
3980 remote_unescape_input (const gdb_byte *buffer, int len,
3981 gdb_byte *out_buf, int out_maxlen)
3982 {
3983 int input_index, output_index;
3984 int escaped;
3985
3986 output_index = 0;
3987 escaped = 0;
3988 for (input_index = 0; input_index < len; input_index++)
3989 {
3990 gdb_byte b = buffer[input_index];
3991
3992 if (output_index + 1 > out_maxlen)
3993 {
3994 warning (_("Received too much data from remote target;"
3995 " ignoring overflow."));
3996 return output_index;
3997 }
3998
3999 if (escaped)
4000 {
4001 out_buf[output_index++] = b ^ 0x20;
4002 escaped = 0;
4003 }
4004 else if (b == '}')
4005 escaped = 1;
4006 else
4007 out_buf[output_index++] = b;
4008 }
4009
4010 if (escaped)
4011 error (_("Unmatched escape character in target response."));
4012
4013 return output_index;
4014 }
4015
4016 /* Determine whether the remote target supports binary downloading.
4017 This is accomplished by sending a no-op memory write of zero length
4018 to the target at the specified address. It does not suffice to send
4019 the whole packet, since many stubs strip the eighth bit and
4020 subsequently compute a wrong checksum, which causes real havoc with
4021 remote_write_bytes.
4022
4023 NOTE: This can still lose if the serial line is not eight-bit
4024 clean. In cases like this, the user should clear "remote
4025 X-packet". */
4026
4027 static void
4028 check_binary_download (CORE_ADDR addr)
4029 {
4030 struct remote_state *rs = get_remote_state ();
4031
4032 switch (remote_protocol_packets[PACKET_X].support)
4033 {
4034 case PACKET_DISABLE:
4035 break;
4036 case PACKET_ENABLE:
4037 break;
4038 case PACKET_SUPPORT_UNKNOWN:
4039 {
4040 char *p;
4041
4042 p = rs->buf;
4043 *p++ = 'X';
4044 p += hexnumstr (p, (ULONGEST) addr);
4045 *p++ = ',';
4046 p += hexnumstr (p, (ULONGEST) 0);
4047 *p++ = ':';
4048 *p = '\0';
4049
4050 putpkt_binary (rs->buf, (int) (p - rs->buf));
4051 getpkt (&rs->buf, &rs->buf_size, 0);
4052
4053 if (rs->buf[0] == '\0')
4054 {
4055 if (remote_debug)
4056 fprintf_unfiltered (gdb_stdlog,
4057 "binary downloading NOT suppported by target\n");
4058 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4059 }
4060 else
4061 {
4062 if (remote_debug)
4063 fprintf_unfiltered (gdb_stdlog,
4064 "binary downloading suppported by target\n");
4065 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4066 }
4067 break;
4068 }
4069 }
4070 }
4071
4072 /* Write memory data directly to the remote machine.
4073 This does not inform the data cache; the data cache uses this.
4074 HEADER is the starting part of the packet.
4075 MEMADDR is the address in the remote memory space.
4076 MYADDR is the address of the buffer in our space.
4077 LEN is the number of bytes.
4078 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4079 should send data as binary ('X'), or hex-encoded ('M').
4080
4081 The function creates packet of the form
4082 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4083
4084 where encoding of <DATA> is termined by PACKET_FORMAT.
4085
4086 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4087 are omitted.
4088
4089 Returns the number of bytes transferred, or 0 (setting errno) for
4090 error. Only transfer a single packet. */
4091
4092 static int
4093 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4094 const gdb_byte *myaddr, int len,
4095 char packet_format, int use_length)
4096 {
4097 struct remote_state *rs = get_remote_state ();
4098 char *p;
4099 char *plen = NULL;
4100 int plenlen = 0;
4101 int todo;
4102 int nr_bytes;
4103 int payload_size;
4104 int payload_length;
4105 int header_length;
4106
4107 if (packet_format != 'X' && packet_format != 'M')
4108 internal_error (__FILE__, __LINE__,
4109 "remote_write_bytes_aux: bad packet format");
4110
4111 /* Should this be the selected frame? */
4112 gdbarch_remote_translate_xfer_address (current_gdbarch,
4113 current_regcache,
4114 memaddr, len,
4115 &memaddr, &len);
4116
4117 if (len <= 0)
4118 return 0;
4119
4120 payload_size = get_memory_write_packet_size ();
4121
4122 /* The packet buffer will be large enough for the payload;
4123 get_memory_packet_size ensures this. */
4124 rs->buf[0] = '\0';
4125
4126 /* Compute the size of the actual payload by subtracting out the
4127 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4128 */
4129 payload_size -= strlen ("$,:#NN");
4130 if (!use_length)
4131 /* The comma won't be used. */
4132 payload_size += 1;
4133 header_length = strlen (header);
4134 payload_size -= header_length;
4135 payload_size -= hexnumlen (memaddr);
4136
4137 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4138
4139 strcat (rs->buf, header);
4140 p = rs->buf + strlen (header);
4141
4142 /* Compute a best guess of the number of bytes actually transfered. */
4143 if (packet_format == 'X')
4144 {
4145 /* Best guess at number of bytes that will fit. */
4146 todo = min (len, payload_size);
4147 if (use_length)
4148 payload_size -= hexnumlen (todo);
4149 todo = min (todo, payload_size);
4150 }
4151 else
4152 {
4153 /* Num bytes that will fit. */
4154 todo = min (len, payload_size / 2);
4155 if (use_length)
4156 payload_size -= hexnumlen (todo);
4157 todo = min (todo, payload_size / 2);
4158 }
4159
4160 if (todo <= 0)
4161 internal_error (__FILE__, __LINE__,
4162 _("minumum packet size too small to write data"));
4163
4164 /* If we already need another packet, then try to align the end
4165 of this packet to a useful boundary. */
4166 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4167 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4168
4169 /* Append "<memaddr>". */
4170 memaddr = remote_address_masked (memaddr);
4171 p += hexnumstr (p, (ULONGEST) memaddr);
4172
4173 if (use_length)
4174 {
4175 /* Append ",". */
4176 *p++ = ',';
4177
4178 /* Append <len>. Retain the location/size of <len>. It may need to
4179 be adjusted once the packet body has been created. */
4180 plen = p;
4181 plenlen = hexnumstr (p, (ULONGEST) todo);
4182 p += plenlen;
4183 }
4184
4185 /* Append ":". */
4186 *p++ = ':';
4187 *p = '\0';
4188
4189 /* Append the packet body. */
4190 if (packet_format == 'X')
4191 {
4192 /* Binary mode. Send target system values byte by byte, in
4193 increasing byte addresses. Only escape certain critical
4194 characters. */
4195 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4196 payload_size);
4197
4198 /* If not all TODO bytes fit, then we'll need another packet. Make
4199 a second try to keep the end of the packet aligned. Don't do
4200 this if the packet is tiny. */
4201 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4202 {
4203 int new_nr_bytes;
4204
4205 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4206 - memaddr);
4207 if (new_nr_bytes != nr_bytes)
4208 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4209 p, &nr_bytes,
4210 payload_size);
4211 }
4212
4213 p += payload_length;
4214 if (use_length && nr_bytes < todo)
4215 {
4216 /* Escape chars have filled up the buffer prematurely,
4217 and we have actually sent fewer bytes than planned.
4218 Fix-up the length field of the packet. Use the same
4219 number of characters as before. */
4220 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4221 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4222 }
4223 }
4224 else
4225 {
4226 /* Normal mode: Send target system values byte by byte, in
4227 increasing byte addresses. Each byte is encoded as a two hex
4228 value. */
4229 nr_bytes = bin2hex (myaddr, p, todo);
4230 p += 2 * nr_bytes;
4231 }
4232
4233 putpkt_binary (rs->buf, (int) (p - rs->buf));
4234 getpkt (&rs->buf, &rs->buf_size, 0);
4235
4236 if (rs->buf[0] == 'E')
4237 {
4238 /* There is no correspondance between what the remote protocol
4239 uses for errors and errno codes. We would like a cleaner way
4240 of representing errors (big enough to include errno codes,
4241 bfd_error codes, and others). But for now just return EIO. */
4242 errno = EIO;
4243 return 0;
4244 }
4245
4246 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4247 fewer bytes than we'd planned. */
4248 return nr_bytes;
4249 }
4250
4251 /* Write memory data directly to the remote machine.
4252 This does not inform the data cache; the data cache uses this.
4253 MEMADDR is the address in the remote memory space.
4254 MYADDR is the address of the buffer in our space.
4255 LEN is the number of bytes.
4256
4257 Returns number of bytes transferred, or 0 (setting errno) for
4258 error. Only transfer a single packet. */
4259
4260 int
4261 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4262 {
4263 char *packet_format = 0;
4264
4265 /* Check whether the target supports binary download. */
4266 check_binary_download (memaddr);
4267
4268 switch (remote_protocol_packets[PACKET_X].support)
4269 {
4270 case PACKET_ENABLE:
4271 packet_format = "X";
4272 break;
4273 case PACKET_DISABLE:
4274 packet_format = "M";
4275 break;
4276 case PACKET_SUPPORT_UNKNOWN:
4277 internal_error (__FILE__, __LINE__,
4278 _("remote_write_bytes: bad internal state"));
4279 default:
4280 internal_error (__FILE__, __LINE__, _("bad switch"));
4281 }
4282
4283 return remote_write_bytes_aux (packet_format,
4284 memaddr, myaddr, len, packet_format[0], 1);
4285 }
4286
4287 /* Read memory data directly from the remote machine.
4288 This does not use the data cache; the data cache uses this.
4289 MEMADDR is the address in the remote memory space.
4290 MYADDR is the address of the buffer in our space.
4291 LEN is the number of bytes.
4292
4293 Returns number of bytes transferred, or 0 for error. */
4294
4295 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4296 remote targets) shouldn't attempt to read the entire buffer.
4297 Instead it should read a single packet worth of data and then
4298 return the byte size of that packet to the caller. The caller (its
4299 caller and its callers caller ;-) already contains code for
4300 handling partial reads. */
4301
4302 int
4303 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4304 {
4305 struct remote_state *rs = get_remote_state ();
4306 int max_buf_size; /* Max size of packet output buffer. */
4307 int origlen;
4308
4309 /* Should this be the selected frame? */
4310 gdbarch_remote_translate_xfer_address (current_gdbarch,
4311 current_regcache,
4312 memaddr, len,
4313 &memaddr, &len);
4314
4315 if (len <= 0)
4316 return 0;
4317
4318 max_buf_size = get_memory_read_packet_size ();
4319 /* The packet buffer will be large enough for the payload;
4320 get_memory_packet_size ensures this. */
4321
4322 origlen = len;
4323 while (len > 0)
4324 {
4325 char *p;
4326 int todo;
4327 int i;
4328
4329 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4330
4331 /* construct "m"<memaddr>","<len>" */
4332 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4333 memaddr = remote_address_masked (memaddr);
4334 p = rs->buf;
4335 *p++ = 'm';
4336 p += hexnumstr (p, (ULONGEST) memaddr);
4337 *p++ = ',';
4338 p += hexnumstr (p, (ULONGEST) todo);
4339 *p = '\0';
4340
4341 putpkt (rs->buf);
4342 getpkt (&rs->buf, &rs->buf_size, 0);
4343
4344 if (rs->buf[0] == 'E'
4345 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4346 && rs->buf[3] == '\0')
4347 {
4348 /* There is no correspondance between what the remote
4349 protocol uses for errors and errno codes. We would like
4350 a cleaner way of representing errors (big enough to
4351 include errno codes, bfd_error codes, and others). But
4352 for now just return EIO. */
4353 errno = EIO;
4354 return 0;
4355 }
4356
4357 /* Reply describes memory byte by byte,
4358 each byte encoded as two hex characters. */
4359
4360 p = rs->buf;
4361 if ((i = hex2bin (p, myaddr, todo)) < todo)
4362 {
4363 /* Reply is short. This means that we were able to read
4364 only part of what we wanted to. */
4365 return i + (origlen - len);
4366 }
4367 myaddr += todo;
4368 memaddr += todo;
4369 len -= todo;
4370 }
4371 return origlen;
4372 }
4373 \f
4374 /* Read or write LEN bytes from inferior memory at MEMADDR,
4375 transferring to or from debugger address BUFFER. Write to inferior
4376 if SHOULD_WRITE is nonzero. Returns length of data written or
4377 read; 0 for error. TARGET is unused. */
4378
4379 static int
4380 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4381 int should_write, struct mem_attrib *attrib,
4382 struct target_ops *target)
4383 {
4384 int res;
4385
4386 if (should_write)
4387 res = remote_write_bytes (mem_addr, buffer, mem_len);
4388 else
4389 res = remote_read_bytes (mem_addr, buffer, mem_len);
4390
4391 return res;
4392 }
4393
4394 /* Sends a packet with content determined by the printf format string
4395 FORMAT and the remaining arguments, then gets the reply. Returns
4396 whether the packet was a success, a failure, or unknown. */
4397
4398 enum packet_result
4399 remote_send_printf (const char *format, ...)
4400 {
4401 struct remote_state *rs = get_remote_state ();
4402 int max_size = get_remote_packet_size ();
4403
4404 va_list ap;
4405 va_start (ap, format);
4406
4407 rs->buf[0] = '\0';
4408 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4409 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4410
4411 if (putpkt (rs->buf) < 0)
4412 error (_("Communication problem with target."));
4413
4414 rs->buf[0] = '\0';
4415 getpkt (&rs->buf, &rs->buf_size, 0);
4416
4417 return packet_check_result (rs->buf);
4418 }
4419
4420 static void
4421 restore_remote_timeout (void *p)
4422 {
4423 int value = *(int *)p;
4424 remote_timeout = value;
4425 }
4426
4427 /* Flash writing can take quite some time. We'll set
4428 effectively infinite timeout for flash operations.
4429 In future, we'll need to decide on a better approach. */
4430 static const int remote_flash_timeout = 1000;
4431
4432 static void
4433 remote_flash_erase (struct target_ops *ops,
4434 ULONGEST address, LONGEST length)
4435 {
4436 int saved_remote_timeout = remote_timeout;
4437 enum packet_result ret;
4438
4439 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4440 &saved_remote_timeout);
4441 remote_timeout = remote_flash_timeout;
4442
4443 ret = remote_send_printf ("vFlashErase:%s,%s",
4444 paddr (address),
4445 phex (length, 4));
4446 switch (ret)
4447 {
4448 case PACKET_UNKNOWN:
4449 error (_("Remote target does not support flash erase"));
4450 case PACKET_ERROR:
4451 error (_("Error erasing flash with vFlashErase packet"));
4452 default:
4453 break;
4454 }
4455
4456 do_cleanups (back_to);
4457 }
4458
4459 static LONGEST
4460 remote_flash_write (struct target_ops *ops,
4461 ULONGEST address, LONGEST length,
4462 const gdb_byte *data)
4463 {
4464 int saved_remote_timeout = remote_timeout;
4465 int ret;
4466 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4467 &saved_remote_timeout);
4468
4469 remote_timeout = remote_flash_timeout;
4470 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4471 do_cleanups (back_to);
4472
4473 return ret;
4474 }
4475
4476 static void
4477 remote_flash_done (struct target_ops *ops)
4478 {
4479 int saved_remote_timeout = remote_timeout;
4480 int ret;
4481 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4482 &saved_remote_timeout);
4483
4484 remote_timeout = remote_flash_timeout;
4485 ret = remote_send_printf ("vFlashDone");
4486 do_cleanups (back_to);
4487
4488 switch (ret)
4489 {
4490 case PACKET_UNKNOWN:
4491 error (_("Remote target does not support vFlashDone"));
4492 case PACKET_ERROR:
4493 error (_("Error finishing flash operation"));
4494 default:
4495 break;
4496 }
4497 }
4498
4499 static void
4500 remote_files_info (struct target_ops *ignore)
4501 {
4502 puts_filtered ("Debugging a target over a serial line.\n");
4503 }
4504 \f
4505 /* Stuff for dealing with the packets which are part of this protocol.
4506 See comment at top of file for details. */
4507
4508 /* Read a single character from the remote end. */
4509
4510 static int
4511 readchar (int timeout)
4512 {
4513 int ch;
4514
4515 ch = serial_readchar (remote_desc, timeout);
4516
4517 if (ch >= 0)
4518 return ch;
4519
4520 switch ((enum serial_rc) ch)
4521 {
4522 case SERIAL_EOF:
4523 target_mourn_inferior ();
4524 error (_("Remote connection closed"));
4525 /* no return */
4526 case SERIAL_ERROR:
4527 perror_with_name (_("Remote communication error"));
4528 /* no return */
4529 case SERIAL_TIMEOUT:
4530 break;
4531 }
4532 return ch;
4533 }
4534
4535 /* Send the command in *BUF to the remote machine, and read the reply
4536 into *BUF. Report an error if we get an error reply. Resize
4537 *BUF using xrealloc if necessary to hold the result, and update
4538 *SIZEOF_BUF. */
4539
4540 static void
4541 remote_send (char **buf,
4542 long *sizeof_buf)
4543 {
4544 putpkt (*buf);
4545 getpkt (buf, sizeof_buf, 0);
4546
4547 if ((*buf)[0] == 'E')
4548 error (_("Remote failure reply: %s"), *buf);
4549 }
4550
4551 /* Display a null-terminated packet on stdout, for debugging, using C
4552 string notation. */
4553
4554 static void
4555 print_packet (char *buf)
4556 {
4557 puts_filtered ("\"");
4558 fputstr_filtered (buf, '"', gdb_stdout);
4559 puts_filtered ("\"");
4560 }
4561
4562 int
4563 putpkt (char *buf)
4564 {
4565 return putpkt_binary (buf, strlen (buf));
4566 }
4567
4568 /* Send a packet to the remote machine, with error checking. The data
4569 of the packet is in BUF. The string in BUF can be at most
4570 get_remote_packet_size () - 5 to account for the $, # and checksum,
4571 and for a possible /0 if we are debugging (remote_debug) and want
4572 to print the sent packet as a string. */
4573
4574 static int
4575 putpkt_binary (char *buf, int cnt)
4576 {
4577 int i;
4578 unsigned char csum = 0;
4579 char *buf2 = alloca (cnt + 6);
4580
4581 int ch;
4582 int tcount = 0;
4583 char *p;
4584
4585 /* Copy the packet into buffer BUF2, encapsulating it
4586 and giving it a checksum. */
4587
4588 p = buf2;
4589 *p++ = '$';
4590
4591 for (i = 0; i < cnt; i++)
4592 {
4593 csum += buf[i];
4594 *p++ = buf[i];
4595 }
4596 *p++ = '#';
4597 *p++ = tohex ((csum >> 4) & 0xf);
4598 *p++ = tohex (csum & 0xf);
4599
4600 /* Send it over and over until we get a positive ack. */
4601
4602 while (1)
4603 {
4604 int started_error_output = 0;
4605
4606 if (remote_debug)
4607 {
4608 *p = '\0';
4609 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4610 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4611 fprintf_unfiltered (gdb_stdlog, "...");
4612 gdb_flush (gdb_stdlog);
4613 }
4614 if (serial_write (remote_desc, buf2, p - buf2))
4615 perror_with_name (_("putpkt: write failed"));
4616
4617 /* Read until either a timeout occurs (-2) or '+' is read. */
4618 while (1)
4619 {
4620 ch = readchar (remote_timeout);
4621
4622 if (remote_debug)
4623 {
4624 switch (ch)
4625 {
4626 case '+':
4627 case '-':
4628 case SERIAL_TIMEOUT:
4629 case '$':
4630 if (started_error_output)
4631 {
4632 putchar_unfiltered ('\n');
4633 started_error_output = 0;
4634 }
4635 }
4636 }
4637
4638 switch (ch)
4639 {
4640 case '+':
4641 if (remote_debug)
4642 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4643 return 1;
4644 case '-':
4645 if (remote_debug)
4646 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4647 case SERIAL_TIMEOUT:
4648 tcount++;
4649 if (tcount > 3)
4650 return 0;
4651 break; /* Retransmit buffer. */
4652 case '$':
4653 {
4654 if (remote_debug)
4655 fprintf_unfiltered (gdb_stdlog,
4656 "Packet instead of Ack, ignoring it\n");
4657 /* It's probably an old response sent because an ACK
4658 was lost. Gobble up the packet and ack it so it
4659 doesn't get retransmitted when we resend this
4660 packet. */
4661 skip_frame ();
4662 serial_write (remote_desc, "+", 1);
4663 continue; /* Now, go look for +. */
4664 }
4665 default:
4666 if (remote_debug)
4667 {
4668 if (!started_error_output)
4669 {
4670 started_error_output = 1;
4671 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4672 }
4673 fputc_unfiltered (ch & 0177, gdb_stdlog);
4674 }
4675 continue;
4676 }
4677 break; /* Here to retransmit. */
4678 }
4679
4680 #if 0
4681 /* This is wrong. If doing a long backtrace, the user should be
4682 able to get out next time we call QUIT, without anything as
4683 violent as interrupt_query. If we want to provide a way out of
4684 here without getting to the next QUIT, it should be based on
4685 hitting ^C twice as in remote_wait. */
4686 if (quit_flag)
4687 {
4688 quit_flag = 0;
4689 interrupt_query ();
4690 }
4691 #endif
4692 }
4693 }
4694
4695 /* Come here after finding the start of a frame when we expected an
4696 ack. Do our best to discard the rest of this packet. */
4697
4698 static void
4699 skip_frame (void)
4700 {
4701 int c;
4702
4703 while (1)
4704 {
4705 c = readchar (remote_timeout);
4706 switch (c)
4707 {
4708 case SERIAL_TIMEOUT:
4709 /* Nothing we can do. */
4710 return;
4711 case '#':
4712 /* Discard the two bytes of checksum and stop. */
4713 c = readchar (remote_timeout);
4714 if (c >= 0)
4715 c = readchar (remote_timeout);
4716
4717 return;
4718 case '*': /* Run length encoding. */
4719 /* Discard the repeat count. */
4720 c = readchar (remote_timeout);
4721 if (c < 0)
4722 return;
4723 break;
4724 default:
4725 /* A regular character. */
4726 break;
4727 }
4728 }
4729 }
4730
4731 /* Come here after finding the start of the frame. Collect the rest
4732 into *BUF, verifying the checksum, length, and handling run-length
4733 compression. NUL terminate the buffer. If there is not enough room,
4734 expand *BUF using xrealloc.
4735
4736 Returns -1 on error, number of characters in buffer (ignoring the
4737 trailing NULL) on success. (could be extended to return one of the
4738 SERIAL status indications). */
4739
4740 static long
4741 read_frame (char **buf_p,
4742 long *sizeof_buf)
4743 {
4744 unsigned char csum;
4745 long bc;
4746 int c;
4747 char *buf = *buf_p;
4748
4749 csum = 0;
4750 bc = 0;
4751
4752 while (1)
4753 {
4754 c = readchar (remote_timeout);
4755 switch (c)
4756 {
4757 case SERIAL_TIMEOUT:
4758 if (remote_debug)
4759 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4760 return -1;
4761 case '$':
4762 if (remote_debug)
4763 fputs_filtered ("Saw new packet start in middle of old one\n",
4764 gdb_stdlog);
4765 return -1; /* Start a new packet, count retries. */
4766 case '#':
4767 {
4768 unsigned char pktcsum;
4769 int check_0 = 0;
4770 int check_1 = 0;
4771
4772 buf[bc] = '\0';
4773
4774 check_0 = readchar (remote_timeout);
4775 if (check_0 >= 0)
4776 check_1 = readchar (remote_timeout);
4777
4778 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4779 {
4780 if (remote_debug)
4781 fputs_filtered ("Timeout in checksum, retrying\n",
4782 gdb_stdlog);
4783 return -1;
4784 }
4785 else if (check_0 < 0 || check_1 < 0)
4786 {
4787 if (remote_debug)
4788 fputs_filtered ("Communication error in checksum\n",
4789 gdb_stdlog);
4790 return -1;
4791 }
4792
4793 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4794 if (csum == pktcsum)
4795 return bc;
4796
4797 if (remote_debug)
4798 {
4799 fprintf_filtered (gdb_stdlog,
4800 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4801 pktcsum, csum);
4802 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4803 fputs_filtered ("\n", gdb_stdlog);
4804 }
4805 /* Number of characters in buffer ignoring trailing
4806 NULL. */
4807 return -1;
4808 }
4809 case '*': /* Run length encoding. */
4810 {
4811 int repeat;
4812 csum += c;
4813
4814 c = readchar (remote_timeout);
4815 csum += c;
4816 repeat = c - ' ' + 3; /* Compute repeat count. */
4817
4818 /* The character before ``*'' is repeated. */
4819
4820 if (repeat > 0 && repeat <= 255 && bc > 0)
4821 {
4822 if (bc + repeat - 1 >= *sizeof_buf - 1)
4823 {
4824 /* Make some more room in the buffer. */
4825 *sizeof_buf += repeat;
4826 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4827 buf = *buf_p;
4828 }
4829
4830 memset (&buf[bc], buf[bc - 1], repeat);
4831 bc += repeat;
4832 continue;
4833 }
4834
4835 buf[bc] = '\0';
4836 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4837 return -1;
4838 }
4839 default:
4840 if (bc >= *sizeof_buf - 1)
4841 {
4842 /* Make some more room in the buffer. */
4843 *sizeof_buf *= 2;
4844 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4845 buf = *buf_p;
4846 }
4847
4848 buf[bc++] = c;
4849 csum += c;
4850 continue;
4851 }
4852 }
4853 }
4854
4855 /* Read a packet from the remote machine, with error checking, and
4856 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4857 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4858 rather than timing out; this is used (in synchronous mode) to wait
4859 for a target that is is executing user code to stop. */
4860 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4861 don't have to change all the calls to getpkt to deal with the
4862 return value, because at the moment I don't know what the right
4863 thing to do it for those. */
4864 void
4865 getpkt (char **buf,
4866 long *sizeof_buf,
4867 int forever)
4868 {
4869 int timed_out;
4870
4871 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4872 }
4873
4874
4875 /* Read a packet from the remote machine, with error checking, and
4876 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4877 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4878 rather than timing out; this is used (in synchronous mode) to wait
4879 for a target that is is executing user code to stop. If FOREVER ==
4880 0, this function is allowed to time out gracefully and return an
4881 indication of this to the caller. Otherwise return the number
4882 of bytes read. */
4883 static int
4884 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4885 {
4886 int c;
4887 int tries;
4888 int timeout;
4889 int val;
4890
4891 strcpy (*buf, "timeout");
4892
4893 if (forever)
4894 {
4895 timeout = watchdog > 0 ? watchdog : -1;
4896 }
4897
4898 else
4899 timeout = remote_timeout;
4900
4901 #define MAX_TRIES 3
4902
4903 for (tries = 1; tries <= MAX_TRIES; tries++)
4904 {
4905 /* This can loop forever if the remote side sends us characters
4906 continuously, but if it pauses, we'll get a zero from
4907 readchar because of timeout. Then we'll count that as a
4908 retry. */
4909
4910 /* Note that we will only wait forever prior to the start of a
4911 packet. After that, we expect characters to arrive at a
4912 brisk pace. They should show up within remote_timeout
4913 intervals. */
4914
4915 do
4916 {
4917 c = readchar (timeout);
4918
4919 if (c == SERIAL_TIMEOUT)
4920 {
4921 if (forever) /* Watchdog went off? Kill the target. */
4922 {
4923 QUIT;
4924 target_mourn_inferior ();
4925 error (_("Watchdog has expired. Target detached."));
4926 }
4927 if (remote_debug)
4928 fputs_filtered ("Timed out.\n", gdb_stdlog);
4929 goto retry;
4930 }
4931 }
4932 while (c != '$');
4933
4934 /* We've found the start of a packet, now collect the data. */
4935
4936 val = read_frame (buf, sizeof_buf);
4937
4938 if (val >= 0)
4939 {
4940 if (remote_debug)
4941 {
4942 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4943 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4944 fprintf_unfiltered (gdb_stdlog, "\n");
4945 }
4946 serial_write (remote_desc, "+", 1);
4947 return val;
4948 }
4949
4950 /* Try the whole thing again. */
4951 retry:
4952 serial_write (remote_desc, "-", 1);
4953 }
4954
4955 /* We have tried hard enough, and just can't receive the packet.
4956 Give up. */
4957
4958 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4959 serial_write (remote_desc, "+", 1);
4960 return -1;
4961 }
4962 \f
4963 static void
4964 remote_kill (void)
4965 {
4966 /* For some mysterious reason, wait_for_inferior calls kill instead of
4967 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4968 if (kill_kludge)
4969 {
4970 kill_kludge = 0;
4971 target_mourn_inferior ();
4972 return;
4973 }
4974
4975 /* Use catch_errors so the user can quit from gdb even when we aren't on
4976 speaking terms with the remote system. */
4977 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4978
4979 /* Don't wait for it to die. I'm not really sure it matters whether
4980 we do or not. For the existing stubs, kill is a noop. */
4981 target_mourn_inferior ();
4982 }
4983
4984 /* Async version of remote_kill. */
4985 static void
4986 remote_async_kill (void)
4987 {
4988 /* Unregister the file descriptor from the event loop. */
4989 if (target_is_async_p ())
4990 serial_async (remote_desc, NULL, 0);
4991
4992 /* For some mysterious reason, wait_for_inferior calls kill instead of
4993 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4994 if (kill_kludge)
4995 {
4996 kill_kludge = 0;
4997 target_mourn_inferior ();
4998 return;
4999 }
5000
5001 /* Use catch_errors so the user can quit from gdb even when we
5002 aren't on speaking terms with the remote system. */
5003 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5004
5005 /* Don't wait for it to die. I'm not really sure it matters whether
5006 we do or not. For the existing stubs, kill is a noop. */
5007 target_mourn_inferior ();
5008 }
5009
5010 static void
5011 remote_mourn (void)
5012 {
5013 remote_mourn_1 (&remote_ops);
5014 }
5015
5016 static void
5017 remote_async_mourn (void)
5018 {
5019 remote_mourn_1 (&remote_async_ops);
5020 }
5021
5022 static void
5023 extended_remote_mourn (void)
5024 {
5025 /* We do _not_ want to mourn the target like this; this will
5026 remove the extended remote target from the target stack,
5027 and the next time the user says "run" it'll fail.
5028
5029 FIXME: What is the right thing to do here? */
5030 #if 0
5031 remote_mourn_1 (&extended_remote_ops);
5032 #endif
5033 }
5034
5035 /* Worker function for remote_mourn. */
5036 static void
5037 remote_mourn_1 (struct target_ops *target)
5038 {
5039 unpush_target (target);
5040 generic_mourn_inferior ();
5041 }
5042
5043 /* In the extended protocol we want to be able to do things like
5044 "run" and have them basically work as expected. So we need
5045 a special create_inferior function.
5046
5047 FIXME: One day add support for changing the exec file
5048 we're debugging, arguments and an environment. */
5049
5050 static void
5051 extended_remote_create_inferior (char *exec_file, char *args,
5052 char **env, int from_tty)
5053 {
5054 /* Rip out the breakpoints; we'll reinsert them after restarting
5055 the remote server. */
5056 remove_breakpoints ();
5057
5058 /* Now restart the remote server. */
5059 extended_remote_restart ();
5060
5061 /* NOTE: We don't need to recheck for a target description here; but
5062 if we gain the ability to switch the remote executable we may
5063 need to, if for instance we are running a process which requested
5064 different emulated hardware from the operating system. A
5065 concrete example of this is ARM GNU/Linux, where some binaries
5066 will have a legacy FPA coprocessor emulated and others may have
5067 access to a hardware VFP unit. */
5068
5069 /* Now put the breakpoints back in. This way we're safe if the
5070 restart function works via a unix fork on the remote side. */
5071 insert_breakpoints ();
5072
5073 /* Clean up from the last time we were running. */
5074 clear_proceed_status ();
5075 }
5076
5077 /* Async version of extended_remote_create_inferior. */
5078 static void
5079 extended_remote_async_create_inferior (char *exec_file, char *args,
5080 char **env, int from_tty)
5081 {
5082 /* Rip out the breakpoints; we'll reinsert them after restarting
5083 the remote server. */
5084 remove_breakpoints ();
5085
5086 /* If running asynchronously, register the target file descriptor
5087 with the event loop. */
5088 if (target_can_async_p ())
5089 target_async (inferior_event_handler, 0);
5090
5091 /* Now restart the remote server. */
5092 extended_remote_restart ();
5093
5094 /* NOTE: We don't need to recheck for a target description here; but
5095 if we gain the ability to switch the remote executable we may
5096 need to, if for instance we are running a process which requested
5097 different emulated hardware from the operating system. A
5098 concrete example of this is ARM GNU/Linux, where some binaries
5099 will have a legacy FPA coprocessor emulated and others may have
5100 access to a hardware VFP unit. */
5101
5102 /* Now put the breakpoints back in. This way we're safe if the
5103 restart function works via a unix fork on the remote side. */
5104 insert_breakpoints ();
5105
5106 /* Clean up from the last time we were running. */
5107 clear_proceed_status ();
5108 }
5109 \f
5110
5111 /* Insert a breakpoint. On targets that have software breakpoint
5112 support, we ask the remote target to do the work; on targets
5113 which don't, we insert a traditional memory breakpoint. */
5114
5115 static int
5116 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5117 {
5118 CORE_ADDR addr = bp_tgt->placed_address;
5119 struct remote_state *rs = get_remote_state ();
5120
5121 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5122 If it succeeds, then set the support to PACKET_ENABLE. If it
5123 fails, and the user has explicitly requested the Z support then
5124 report an error, otherwise, mark it disabled and go on. */
5125
5126 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5127 {
5128 char *p = rs->buf;
5129
5130 *(p++) = 'Z';
5131 *(p++) = '0';
5132 *(p++) = ',';
5133 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5134 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5135 p += hexnumstr (p, addr);
5136 sprintf (p, ",%d", bp_tgt->placed_size);
5137
5138 putpkt (rs->buf);
5139 getpkt (&rs->buf, &rs->buf_size, 0);
5140
5141 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5142 {
5143 case PACKET_ERROR:
5144 return -1;
5145 case PACKET_OK:
5146 return 0;
5147 case PACKET_UNKNOWN:
5148 break;
5149 }
5150 }
5151
5152 return memory_insert_breakpoint (bp_tgt);
5153 }
5154
5155 static int
5156 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5157 {
5158 CORE_ADDR addr = bp_tgt->placed_address;
5159 struct remote_state *rs = get_remote_state ();
5160 int bp_size;
5161
5162 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5163 {
5164 char *p = rs->buf;
5165
5166 *(p++) = 'z';
5167 *(p++) = '0';
5168 *(p++) = ',';
5169
5170 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5171 p += hexnumstr (p, addr);
5172 sprintf (p, ",%d", bp_tgt->placed_size);
5173
5174 putpkt (rs->buf);
5175 getpkt (&rs->buf, &rs->buf_size, 0);
5176
5177 return (rs->buf[0] == 'E');
5178 }
5179
5180 return memory_remove_breakpoint (bp_tgt);
5181 }
5182
5183 static int
5184 watchpoint_to_Z_packet (int type)
5185 {
5186 switch (type)
5187 {
5188 case hw_write:
5189 return Z_PACKET_WRITE_WP;
5190 break;
5191 case hw_read:
5192 return Z_PACKET_READ_WP;
5193 break;
5194 case hw_access:
5195 return Z_PACKET_ACCESS_WP;
5196 break;
5197 default:
5198 internal_error (__FILE__, __LINE__,
5199 _("hw_bp_to_z: bad watchpoint type %d"), type);
5200 }
5201 }
5202
5203 static int
5204 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5205 {
5206 struct remote_state *rs = get_remote_state ();
5207 char *p;
5208 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5209
5210 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5211 return -1;
5212
5213 sprintf (rs->buf, "Z%x,", packet);
5214 p = strchr (rs->buf, '\0');
5215 addr = remote_address_masked (addr);
5216 p += hexnumstr (p, (ULONGEST) addr);
5217 sprintf (p, ",%x", len);
5218
5219 putpkt (rs->buf);
5220 getpkt (&rs->buf, &rs->buf_size, 0);
5221
5222 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5223 {
5224 case PACKET_ERROR:
5225 case PACKET_UNKNOWN:
5226 return -1;
5227 case PACKET_OK:
5228 return 0;
5229 }
5230 internal_error (__FILE__, __LINE__,
5231 _("remote_insert_watchpoint: reached end of function"));
5232 }
5233
5234
5235 static int
5236 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5237 {
5238 struct remote_state *rs = get_remote_state ();
5239 char *p;
5240 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5241
5242 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5243 return -1;
5244
5245 sprintf (rs->buf, "z%x,", packet);
5246 p = strchr (rs->buf, '\0');
5247 addr = remote_address_masked (addr);
5248 p += hexnumstr (p, (ULONGEST) addr);
5249 sprintf (p, ",%x", len);
5250 putpkt (rs->buf);
5251 getpkt (&rs->buf, &rs->buf_size, 0);
5252
5253 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5254 {
5255 case PACKET_ERROR:
5256 case PACKET_UNKNOWN:
5257 return -1;
5258 case PACKET_OK:
5259 return 0;
5260 }
5261 internal_error (__FILE__, __LINE__,
5262 _("remote_remove_watchpoint: reached end of function"));
5263 }
5264
5265
5266 int remote_hw_watchpoint_limit = -1;
5267 int remote_hw_breakpoint_limit = -1;
5268
5269 static int
5270 remote_check_watch_resources (int type, int cnt, int ot)
5271 {
5272 if (type == bp_hardware_breakpoint)
5273 {
5274 if (remote_hw_breakpoint_limit == 0)
5275 return 0;
5276 else if (remote_hw_breakpoint_limit < 0)
5277 return 1;
5278 else if (cnt <= remote_hw_breakpoint_limit)
5279 return 1;
5280 }
5281 else
5282 {
5283 if (remote_hw_watchpoint_limit == 0)
5284 return 0;
5285 else if (remote_hw_watchpoint_limit < 0)
5286 return 1;
5287 else if (ot)
5288 return -1;
5289 else if (cnt <= remote_hw_watchpoint_limit)
5290 return 1;
5291 }
5292 return -1;
5293 }
5294
5295 static int
5296 remote_stopped_by_watchpoint (void)
5297 {
5298 return remote_stopped_by_watchpoint_p;
5299 }
5300
5301 extern int stepped_after_stopped_by_watchpoint;
5302
5303 static int
5304 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5305 {
5306 int rc = 0;
5307 if (remote_stopped_by_watchpoint ()
5308 || stepped_after_stopped_by_watchpoint)
5309 {
5310 *addr_p = remote_watch_data_address;
5311 rc = 1;
5312 }
5313
5314 return rc;
5315 }
5316
5317
5318 static int
5319 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5320 {
5321 CORE_ADDR addr;
5322 struct remote_state *rs = get_remote_state ();
5323 char *p = rs->buf;
5324
5325 /* The length field should be set to the size of a breakpoint
5326 instruction, even though we aren't inserting one ourselves. */
5327
5328 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5329
5330 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5331 return -1;
5332
5333 *(p++) = 'Z';
5334 *(p++) = '1';
5335 *(p++) = ',';
5336
5337 addr = remote_address_masked (bp_tgt->placed_address);
5338 p += hexnumstr (p, (ULONGEST) addr);
5339 sprintf (p, ",%x", bp_tgt->placed_size);
5340
5341 putpkt (rs->buf);
5342 getpkt (&rs->buf, &rs->buf_size, 0);
5343
5344 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5345 {
5346 case PACKET_ERROR:
5347 case PACKET_UNKNOWN:
5348 return -1;
5349 case PACKET_OK:
5350 return 0;
5351 }
5352 internal_error (__FILE__, __LINE__,
5353 _("remote_insert_hw_breakpoint: reached end of function"));
5354 }
5355
5356
5357 static int
5358 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5359 {
5360 CORE_ADDR addr;
5361 struct remote_state *rs = get_remote_state ();
5362 char *p = rs->buf;
5363
5364 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5365 return -1;
5366
5367 *(p++) = 'z';
5368 *(p++) = '1';
5369 *(p++) = ',';
5370
5371 addr = remote_address_masked (bp_tgt->placed_address);
5372 p += hexnumstr (p, (ULONGEST) addr);
5373 sprintf (p, ",%x", bp_tgt->placed_size);
5374
5375 putpkt (rs->buf);
5376 getpkt (&rs->buf, &rs->buf_size, 0);
5377
5378 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5379 {
5380 case PACKET_ERROR:
5381 case PACKET_UNKNOWN:
5382 return -1;
5383 case PACKET_OK:
5384 return 0;
5385 }
5386 internal_error (__FILE__, __LINE__,
5387 _("remote_remove_hw_breakpoint: reached end of function"));
5388 }
5389
5390 /* Some targets are only capable of doing downloads, and afterwards
5391 they switch to the remote serial protocol. This function provides
5392 a clean way to get from the download target to the remote target.
5393 It's basically just a wrapper so that we don't have to expose any
5394 of the internal workings of remote.c.
5395
5396 Prior to calling this routine, you should shutdown the current
5397 target code, else you will get the "A program is being debugged
5398 already..." message. Usually a call to pop_target() suffices. */
5399
5400 void
5401 push_remote_target (char *name, int from_tty)
5402 {
5403 printf_filtered (_("Switching to remote protocol\n"));
5404 remote_open (name, from_tty);
5405 }
5406
5407 /* Table used by the crc32 function to calcuate the checksum. */
5408
5409 static unsigned long crc32_table[256] =
5410 {0, 0};
5411
5412 static unsigned long
5413 crc32 (unsigned char *buf, int len, unsigned int crc)
5414 {
5415 if (!crc32_table[1])
5416 {
5417 /* Initialize the CRC table and the decoding table. */
5418 int i, j;
5419 unsigned int c;
5420
5421 for (i = 0; i < 256; i++)
5422 {
5423 for (c = i << 24, j = 8; j > 0; --j)
5424 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5425 crc32_table[i] = c;
5426 }
5427 }
5428
5429 while (len--)
5430 {
5431 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5432 buf++;
5433 }
5434 return crc;
5435 }
5436
5437 /* compare-sections command
5438
5439 With no arguments, compares each loadable section in the exec bfd
5440 with the same memory range on the target, and reports mismatches.
5441 Useful for verifying the image on the target against the exec file.
5442 Depends on the target understanding the new "qCRC:" request. */
5443
5444 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5445 target method (target verify memory) and generic version of the
5446 actual command. This will allow other high-level code (especially
5447 generic_load()) to make use of this target functionality. */
5448
5449 static void
5450 compare_sections_command (char *args, int from_tty)
5451 {
5452 struct remote_state *rs = get_remote_state ();
5453 asection *s;
5454 unsigned long host_crc, target_crc;
5455 extern bfd *exec_bfd;
5456 struct cleanup *old_chain;
5457 char *tmp;
5458 char *sectdata;
5459 const char *sectname;
5460 bfd_size_type size;
5461 bfd_vma lma;
5462 int matched = 0;
5463 int mismatched = 0;
5464
5465 if (!exec_bfd)
5466 error (_("command cannot be used without an exec file"));
5467 if (!current_target.to_shortname ||
5468 strcmp (current_target.to_shortname, "remote") != 0)
5469 error (_("command can only be used with remote target"));
5470
5471 for (s = exec_bfd->sections; s; s = s->next)
5472 {
5473 if (!(s->flags & SEC_LOAD))
5474 continue; /* skip non-loadable section */
5475
5476 size = bfd_get_section_size (s);
5477 if (size == 0)
5478 continue; /* skip zero-length section */
5479
5480 sectname = bfd_get_section_name (exec_bfd, s);
5481 if (args && strcmp (args, sectname) != 0)
5482 continue; /* not the section selected by user */
5483
5484 matched = 1; /* do this section */
5485 lma = s->lma;
5486 /* FIXME: assumes lma can fit into long. */
5487 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5488 (long) lma, (long) size);
5489 putpkt (rs->buf);
5490
5491 /* Be clever; compute the host_crc before waiting for target
5492 reply. */
5493 sectdata = xmalloc (size);
5494 old_chain = make_cleanup (xfree, sectdata);
5495 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5496 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5497
5498 getpkt (&rs->buf, &rs->buf_size, 0);
5499 if (rs->buf[0] == 'E')
5500 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5501 sectname, paddr (lma), paddr (lma + size));
5502 if (rs->buf[0] != 'C')
5503 error (_("remote target does not support this operation"));
5504
5505 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5506 target_crc = target_crc * 16 + fromhex (*tmp);
5507
5508 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5509 sectname, paddr (lma), paddr (lma + size));
5510 if (host_crc == target_crc)
5511 printf_filtered ("matched.\n");
5512 else
5513 {
5514 printf_filtered ("MIS-MATCHED!\n");
5515 mismatched++;
5516 }
5517
5518 do_cleanups (old_chain);
5519 }
5520 if (mismatched > 0)
5521 warning (_("One or more sections of the remote executable does not match\n\
5522 the loaded file\n"));
5523 if (args && !matched)
5524 printf_filtered (_("No loaded section named '%s'.\n"), args);
5525 }
5526
5527 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5528 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5529 number of bytes read is returned, or 0 for EOF, or -1 for error.
5530 The number of bytes read may be less than LEN without indicating an
5531 EOF. PACKET is checked and updated to indicate whether the remote
5532 target supports this object. */
5533
5534 static LONGEST
5535 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5536 const char *annex,
5537 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5538 struct packet_config *packet)
5539 {
5540 static char *finished_object;
5541 static char *finished_annex;
5542 static ULONGEST finished_offset;
5543
5544 struct remote_state *rs = get_remote_state ();
5545 unsigned int total = 0;
5546 LONGEST i, n, packet_len;
5547
5548 if (packet->support == PACKET_DISABLE)
5549 return -1;
5550
5551 /* Check whether we've cached an end-of-object packet that matches
5552 this request. */
5553 if (finished_object)
5554 {
5555 if (strcmp (object_name, finished_object) == 0
5556 && strcmp (annex ? annex : "", finished_annex) == 0
5557 && offset == finished_offset)
5558 return 0;
5559
5560 /* Otherwise, we're now reading something different. Discard
5561 the cache. */
5562 xfree (finished_object);
5563 xfree (finished_annex);
5564 finished_object = NULL;
5565 finished_annex = NULL;
5566 }
5567
5568 /* Request only enough to fit in a single packet. The actual data
5569 may not, since we don't know how much of it will need to be escaped;
5570 the target is free to respond with slightly less data. We subtract
5571 five to account for the response type and the protocol frame. */
5572 n = min (get_remote_packet_size () - 5, len);
5573 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5574 object_name, annex ? annex : "",
5575 phex_nz (offset, sizeof offset),
5576 phex_nz (n, sizeof n));
5577 i = putpkt (rs->buf);
5578 if (i < 0)
5579 return -1;
5580
5581 rs->buf[0] = '\0';
5582 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5583 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5584 return -1;
5585
5586 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5587 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5588
5589 /* 'm' means there is (or at least might be) more data after this
5590 batch. That does not make sense unless there's at least one byte
5591 of data in this reply. */
5592 if (rs->buf[0] == 'm' && packet_len == 1)
5593 error (_("Remote qXfer reply contained no data."));
5594
5595 /* Got some data. */
5596 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5597
5598 /* 'l' is an EOF marker, possibly including a final block of data,
5599 or possibly empty. Record it to bypass the next read, if one is
5600 issued. */
5601 if (rs->buf[0] == 'l')
5602 {
5603 finished_object = xstrdup (object_name);
5604 finished_annex = xstrdup (annex ? annex : "");
5605 finished_offset = offset + i;
5606 }
5607
5608 return i;
5609 }
5610
5611 static LONGEST
5612 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5613 const char *annex, gdb_byte *readbuf,
5614 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5615 {
5616 struct remote_state *rs = get_remote_state ();
5617 int i;
5618 char *p2;
5619 char query_type;
5620
5621 /* Handle memory using the standard memory routines. */
5622 if (object == TARGET_OBJECT_MEMORY)
5623 {
5624 int xfered;
5625 errno = 0;
5626
5627 if (writebuf != NULL)
5628 xfered = remote_write_bytes (offset, writebuf, len);
5629 else
5630 xfered = remote_read_bytes (offset, readbuf, len);
5631
5632 if (xfered > 0)
5633 return xfered;
5634 else if (xfered == 0 && errno == 0)
5635 return 0;
5636 else
5637 return -1;
5638 }
5639
5640 /* Only handle flash writes. */
5641 if (writebuf != NULL)
5642 {
5643 LONGEST xfered;
5644
5645 switch (object)
5646 {
5647 case TARGET_OBJECT_FLASH:
5648 xfered = remote_flash_write (ops, offset, len, writebuf);
5649
5650 if (xfered > 0)
5651 return xfered;
5652 else if (xfered == 0 && errno == 0)
5653 return 0;
5654 else
5655 return -1;
5656
5657 default:
5658 return -1;
5659 }
5660 }
5661
5662 /* Map pre-existing objects onto letters. DO NOT do this for new
5663 objects!!! Instead specify new query packets. */
5664 switch (object)
5665 {
5666 case TARGET_OBJECT_AVR:
5667 query_type = 'R';
5668 break;
5669
5670 case TARGET_OBJECT_AUXV:
5671 gdb_assert (annex == NULL);
5672 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5673 &remote_protocol_packets[PACKET_qXfer_auxv]);
5674
5675 case TARGET_OBJECT_AVAILABLE_FEATURES:
5676 return remote_read_qxfer
5677 (ops, "features", annex, readbuf, offset, len,
5678 &remote_protocol_packets[PACKET_qXfer_features]);
5679
5680 case TARGET_OBJECT_MEMORY_MAP:
5681 gdb_assert (annex == NULL);
5682 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5683 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5684
5685 default:
5686 return -1;
5687 }
5688
5689 /* Note: a zero OFFSET and LEN can be used to query the minimum
5690 buffer size. */
5691 if (offset == 0 && len == 0)
5692 return (get_remote_packet_size ());
5693 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5694 large enough let the caller deal with it. */
5695 if (len < get_remote_packet_size ())
5696 return -1;
5697 len = get_remote_packet_size ();
5698
5699 /* Except for querying the minimum buffer size, target must be open. */
5700 if (!remote_desc)
5701 error (_("remote query is only available after target open"));
5702
5703 gdb_assert (annex != NULL);
5704 gdb_assert (readbuf != NULL);
5705
5706 p2 = rs->buf;
5707 *p2++ = 'q';
5708 *p2++ = query_type;
5709
5710 /* We used one buffer char for the remote protocol q command and
5711 another for the query type. As the remote protocol encapsulation
5712 uses 4 chars plus one extra in case we are debugging
5713 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5714 string. */
5715 i = 0;
5716 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5717 {
5718 /* Bad caller may have sent forbidden characters. */
5719 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5720 *p2++ = annex[i];
5721 i++;
5722 }
5723 *p2 = '\0';
5724 gdb_assert (annex[i] == '\0');
5725
5726 i = putpkt (rs->buf);
5727 if (i < 0)
5728 return i;
5729
5730 getpkt (&rs->buf, &rs->buf_size, 0);
5731 strcpy ((char *) readbuf, rs->buf);
5732
5733 return strlen ((char *) readbuf);
5734 }
5735
5736 static void
5737 remote_rcmd (char *command,
5738 struct ui_file *outbuf)
5739 {
5740 struct remote_state *rs = get_remote_state ();
5741 char *p = rs->buf;
5742
5743 if (!remote_desc)
5744 error (_("remote rcmd is only available after target open"));
5745
5746 /* Send a NULL command across as an empty command. */
5747 if (command == NULL)
5748 command = "";
5749
5750 /* The query prefix. */
5751 strcpy (rs->buf, "qRcmd,");
5752 p = strchr (rs->buf, '\0');
5753
5754 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5755 error (_("\"monitor\" command ``%s'' is too long."), command);
5756
5757 /* Encode the actual command. */
5758 bin2hex ((gdb_byte *) command, p, 0);
5759
5760 if (putpkt (rs->buf) < 0)
5761 error (_("Communication problem with target."));
5762
5763 /* get/display the response */
5764 while (1)
5765 {
5766 char *buf;
5767
5768 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5769 rs->buf[0] = '\0';
5770 getpkt (&rs->buf, &rs->buf_size, 0);
5771 buf = rs->buf;
5772 if (buf[0] == '\0')
5773 error (_("Target does not support this command."));
5774 if (buf[0] == 'O' && buf[1] != 'K')
5775 {
5776 remote_console_output (buf + 1); /* 'O' message from stub. */
5777 continue;
5778 }
5779 if (strcmp (buf, "OK") == 0)
5780 break;
5781 if (strlen (buf) == 3 && buf[0] == 'E'
5782 && isdigit (buf[1]) && isdigit (buf[2]))
5783 {
5784 error (_("Protocol error with Rcmd"));
5785 }
5786 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5787 {
5788 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5789 fputc_unfiltered (c, outbuf);
5790 }
5791 break;
5792 }
5793 }
5794
5795 static VEC(mem_region_s) *
5796 remote_memory_map (struct target_ops *ops)
5797 {
5798 VEC(mem_region_s) *result = NULL;
5799 char *text = target_read_stralloc (&current_target,
5800 TARGET_OBJECT_MEMORY_MAP, NULL);
5801
5802 if (text)
5803 {
5804 struct cleanup *back_to = make_cleanup (xfree, text);
5805 result = parse_memory_map (text);
5806 do_cleanups (back_to);
5807 }
5808
5809 return result;
5810 }
5811
5812 static void
5813 packet_command (char *args, int from_tty)
5814 {
5815 struct remote_state *rs = get_remote_state ();
5816
5817 if (!remote_desc)
5818 error (_("command can only be used with remote target"));
5819
5820 if (!args)
5821 error (_("remote-packet command requires packet text as argument"));
5822
5823 puts_filtered ("sending: ");
5824 print_packet (args);
5825 puts_filtered ("\n");
5826 putpkt (args);
5827
5828 getpkt (&rs->buf, &rs->buf_size, 0);
5829 puts_filtered ("received: ");
5830 print_packet (rs->buf);
5831 puts_filtered ("\n");
5832 }
5833
5834 #if 0
5835 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5836
5837 static void display_thread_info (struct gdb_ext_thread_info *info);
5838
5839 static void threadset_test_cmd (char *cmd, int tty);
5840
5841 static void threadalive_test (char *cmd, int tty);
5842
5843 static void threadlist_test_cmd (char *cmd, int tty);
5844
5845 int get_and_display_threadinfo (threadref *ref);
5846
5847 static void threadinfo_test_cmd (char *cmd, int tty);
5848
5849 static int thread_display_step (threadref *ref, void *context);
5850
5851 static void threadlist_update_test_cmd (char *cmd, int tty);
5852
5853 static void init_remote_threadtests (void);
5854
5855 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5856
5857 static void
5858 threadset_test_cmd (char *cmd, int tty)
5859 {
5860 int sample_thread = SAMPLE_THREAD;
5861
5862 printf_filtered (_("Remote threadset test\n"));
5863 set_thread (sample_thread, 1);
5864 }
5865
5866
5867 static void
5868 threadalive_test (char *cmd, int tty)
5869 {
5870 int sample_thread = SAMPLE_THREAD;
5871
5872 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5873 printf_filtered ("PASS: Thread alive test\n");
5874 else
5875 printf_filtered ("FAIL: Thread alive test\n");
5876 }
5877
5878 void output_threadid (char *title, threadref *ref);
5879
5880 void
5881 output_threadid (char *title, threadref *ref)
5882 {
5883 char hexid[20];
5884
5885 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5886 hexid[16] = 0;
5887 printf_filtered ("%s %s\n", title, (&hexid[0]));
5888 }
5889
5890 static void
5891 threadlist_test_cmd (char *cmd, int tty)
5892 {
5893 int startflag = 1;
5894 threadref nextthread;
5895 int done, result_count;
5896 threadref threadlist[3];
5897
5898 printf_filtered ("Remote Threadlist test\n");
5899 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5900 &result_count, &threadlist[0]))
5901 printf_filtered ("FAIL: threadlist test\n");
5902 else
5903 {
5904 threadref *scan = threadlist;
5905 threadref *limit = scan + result_count;
5906
5907 while (scan < limit)
5908 output_threadid (" thread ", scan++);
5909 }
5910 }
5911
5912 void
5913 display_thread_info (struct gdb_ext_thread_info *info)
5914 {
5915 output_threadid ("Threadid: ", &info->threadid);
5916 printf_filtered ("Name: %s\n ", info->shortname);
5917 printf_filtered ("State: %s\n", info->display);
5918 printf_filtered ("other: %s\n\n", info->more_display);
5919 }
5920
5921 int
5922 get_and_display_threadinfo (threadref *ref)
5923 {
5924 int result;
5925 int set;
5926 struct gdb_ext_thread_info threadinfo;
5927
5928 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5929 | TAG_MOREDISPLAY | TAG_DISPLAY;
5930 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5931 display_thread_info (&threadinfo);
5932 return result;
5933 }
5934
5935 static void
5936 threadinfo_test_cmd (char *cmd, int tty)
5937 {
5938 int athread = SAMPLE_THREAD;
5939 threadref thread;
5940 int set;
5941
5942 int_to_threadref (&thread, athread);
5943 printf_filtered ("Remote Threadinfo test\n");
5944 if (!get_and_display_threadinfo (&thread))
5945 printf_filtered ("FAIL cannot get thread info\n");
5946 }
5947
5948 static int
5949 thread_display_step (threadref *ref, void *context)
5950 {
5951 /* output_threadid(" threadstep ",ref); *//* simple test */
5952 return get_and_display_threadinfo (ref);
5953 }
5954
5955 static void
5956 threadlist_update_test_cmd (char *cmd, int tty)
5957 {
5958 printf_filtered ("Remote Threadlist update test\n");
5959 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5960 }
5961
5962 static void
5963 init_remote_threadtests (void)
5964 {
5965 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5966 Fetch and print the remote list of thread identifiers, one pkt only"));
5967 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5968 _("Fetch and display info about one thread"));
5969 add_com ("tset", class_obscure, threadset_test_cmd,
5970 _("Test setting to a different thread"));
5971 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5972 _("Iterate through updating all remote thread info"));
5973 add_com ("talive", class_obscure, threadalive_test,
5974 _(" Remote thread alive test "));
5975 }
5976
5977 #endif /* 0 */
5978
5979 /* Convert a thread ID to a string. Returns the string in a static
5980 buffer. */
5981
5982 static char *
5983 remote_pid_to_str (ptid_t ptid)
5984 {
5985 static char buf[32];
5986
5987 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
5988 return buf;
5989 }
5990
5991 /* Get the address of the thread local variable in OBJFILE which is
5992 stored at OFFSET within the thread local storage for thread PTID. */
5993
5994 static CORE_ADDR
5995 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5996 {
5997 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
5998 {
5999 struct remote_state *rs = get_remote_state ();
6000 char *p = rs->buf;
6001 enum packet_result result;
6002
6003 strcpy (p, "qGetTLSAddr:");
6004 p += strlen (p);
6005 p += hexnumstr (p, PIDGET (ptid));
6006 *p++ = ',';
6007 p += hexnumstr (p, offset);
6008 *p++ = ',';
6009 p += hexnumstr (p, lm);
6010 *p++ = '\0';
6011
6012 putpkt (rs->buf);
6013 getpkt (&rs->buf, &rs->buf_size, 0);
6014 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6015 if (result == PACKET_OK)
6016 {
6017 ULONGEST result;
6018
6019 unpack_varlen_hex (rs->buf, &result);
6020 return result;
6021 }
6022 else if (result == PACKET_UNKNOWN)
6023 throw_error (TLS_GENERIC_ERROR,
6024 _("Remote target doesn't support qGetTLSAddr packet"));
6025 else
6026 throw_error (TLS_GENERIC_ERROR,
6027 _("Remote target failed to process qGetTLSAddr request"));
6028 }
6029 else
6030 throw_error (TLS_GENERIC_ERROR,
6031 _("TLS not supported or disabled on this target"));
6032 /* Not reached. */
6033 return 0;
6034 }
6035
6036 /* Support for inferring a target description based on the current
6037 architecture and the size of a 'g' packet. While the 'g' packet
6038 can have any size (since optional registers can be left off the
6039 end), some sizes are easily recognizable given knowledge of the
6040 approximate architecture. */
6041
6042 struct remote_g_packet_guess
6043 {
6044 int bytes;
6045 const struct target_desc *tdesc;
6046 };
6047 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6048 DEF_VEC_O(remote_g_packet_guess_s);
6049
6050 struct remote_g_packet_data
6051 {
6052 VEC(remote_g_packet_guess_s) *guesses;
6053 };
6054
6055 static struct gdbarch_data *remote_g_packet_data_handle;
6056
6057 static void *
6058 remote_g_packet_data_init (struct obstack *obstack)
6059 {
6060 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6061 }
6062
6063 void
6064 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6065 const struct target_desc *tdesc)
6066 {
6067 struct remote_g_packet_data *data
6068 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6069 struct remote_g_packet_guess new_guess, *guess;
6070 int ix;
6071
6072 gdb_assert (tdesc != NULL);
6073
6074 for (ix = 0;
6075 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6076 ix++)
6077 if (guess->bytes == bytes)
6078 internal_error (__FILE__, __LINE__,
6079 "Duplicate g packet description added for size %d",
6080 bytes);
6081
6082 new_guess.bytes = bytes;
6083 new_guess.tdesc = tdesc;
6084 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6085 }
6086
6087 static const struct target_desc *
6088 remote_read_description (struct target_ops *target)
6089 {
6090 struct remote_g_packet_data *data
6091 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6092
6093 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6094 {
6095 struct remote_g_packet_guess *guess;
6096 int ix;
6097 int bytes = send_g_packet ();
6098
6099 for (ix = 0;
6100 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6101 ix++)
6102 if (guess->bytes == bytes)
6103 return guess->tdesc;
6104
6105 /* We discard the g packet. A minor optimization would be to
6106 hold on to it, and fill the register cache once we have selected
6107 an architecture, but it's too tricky to do safely. */
6108 }
6109
6110 return NULL;
6111 }
6112
6113 static void
6114 init_remote_ops (void)
6115 {
6116 remote_ops.to_shortname = "remote";
6117 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6118 remote_ops.to_doc =
6119 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6120 Specify the serial device it is connected to\n\
6121 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6122 remote_ops.to_open = remote_open;
6123 remote_ops.to_close = remote_close;
6124 remote_ops.to_detach = remote_detach;
6125 remote_ops.to_disconnect = remote_disconnect;
6126 remote_ops.to_resume = remote_resume;
6127 remote_ops.to_wait = remote_wait;
6128 remote_ops.to_fetch_registers = remote_fetch_registers;
6129 remote_ops.to_store_registers = remote_store_registers;
6130 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6131 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6132 remote_ops.to_files_info = remote_files_info;
6133 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6134 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6135 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6136 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6137 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6138 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6139 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6140 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6141 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6142 remote_ops.to_kill = remote_kill;
6143 remote_ops.to_load = generic_load;
6144 remote_ops.to_mourn_inferior = remote_mourn;
6145 remote_ops.to_thread_alive = remote_thread_alive;
6146 remote_ops.to_find_new_threads = remote_threads_info;
6147 remote_ops.to_pid_to_str = remote_pid_to_str;
6148 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6149 remote_ops.to_stop = remote_stop;
6150 remote_ops.to_xfer_partial = remote_xfer_partial;
6151 remote_ops.to_rcmd = remote_rcmd;
6152 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6153 remote_ops.to_stratum = process_stratum;
6154 remote_ops.to_has_all_memory = 1;
6155 remote_ops.to_has_memory = 1;
6156 remote_ops.to_has_stack = 1;
6157 remote_ops.to_has_registers = 1;
6158 remote_ops.to_has_execution = 1;
6159 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6160 remote_ops.to_magic = OPS_MAGIC;
6161 remote_ops.to_memory_map = remote_memory_map;
6162 remote_ops.to_flash_erase = remote_flash_erase;
6163 remote_ops.to_flash_done = remote_flash_done;
6164 remote_ops.to_read_description = remote_read_description;
6165 }
6166
6167 /* Set up the extended remote vector by making a copy of the standard
6168 remote vector and adding to it. */
6169
6170 static void
6171 init_extended_remote_ops (void)
6172 {
6173 extended_remote_ops = remote_ops;
6174
6175 extended_remote_ops.to_shortname = "extended-remote";
6176 extended_remote_ops.to_longname =
6177 "Extended remote serial target in gdb-specific protocol";
6178 extended_remote_ops.to_doc =
6179 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6180 Specify the serial device it is connected to (e.g. /dev/ttya).",
6181 extended_remote_ops.to_open = extended_remote_open;
6182 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6183 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6184 }
6185
6186 static int
6187 remote_can_async_p (void)
6188 {
6189 /* We're async whenever the serial device is. */
6190 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6191 }
6192
6193 static int
6194 remote_is_async_p (void)
6195 {
6196 /* We're async whenever the serial device is. */
6197 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6198 }
6199
6200 /* Pass the SERIAL event on and up to the client. One day this code
6201 will be able to delay notifying the client of an event until the
6202 point where an entire packet has been received. */
6203
6204 static void (*async_client_callback) (enum inferior_event_type event_type,
6205 void *context);
6206 static void *async_client_context;
6207 static serial_event_ftype remote_async_serial_handler;
6208
6209 static void
6210 remote_async_serial_handler (struct serial *scb, void *context)
6211 {
6212 /* Don't propogate error information up to the client. Instead let
6213 the client find out about the error by querying the target. */
6214 async_client_callback (INF_REG_EVENT, async_client_context);
6215 }
6216
6217 static void
6218 remote_async (void (*callback) (enum inferior_event_type event_type,
6219 void *context), void *context)
6220 {
6221 if (current_target.to_async_mask_value == 0)
6222 internal_error (__FILE__, __LINE__,
6223 _("Calling remote_async when async is masked"));
6224
6225 if (callback != NULL)
6226 {
6227 serial_async (remote_desc, remote_async_serial_handler, NULL);
6228 async_client_callback = callback;
6229 async_client_context = context;
6230 }
6231 else
6232 serial_async (remote_desc, NULL, NULL);
6233 }
6234
6235 /* Target async and target extended-async.
6236
6237 This are temporary targets, until it is all tested. Eventually
6238 async support will be incorporated int the usual 'remote'
6239 target. */
6240
6241 static void
6242 init_remote_async_ops (void)
6243 {
6244 remote_async_ops.to_shortname = "async";
6245 remote_async_ops.to_longname =
6246 "Remote serial target in async version of the gdb-specific protocol";
6247 remote_async_ops.to_doc =
6248 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6249 Specify the serial device it is connected to (e.g. /dev/ttya).";
6250 remote_async_ops.to_open = remote_async_open;
6251 remote_async_ops.to_close = remote_close;
6252 remote_async_ops.to_detach = remote_detach;
6253 remote_async_ops.to_disconnect = remote_disconnect;
6254 remote_async_ops.to_resume = remote_async_resume;
6255 remote_async_ops.to_wait = remote_async_wait;
6256 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6257 remote_async_ops.to_store_registers = remote_store_registers;
6258 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6259 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6260 remote_async_ops.to_files_info = remote_files_info;
6261 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6262 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6263 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6264 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6265 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6266 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6267 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6268 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6269 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6270 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6271 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6272 remote_async_ops.to_kill = remote_async_kill;
6273 remote_async_ops.to_load = generic_load;
6274 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6275 remote_async_ops.to_thread_alive = remote_thread_alive;
6276 remote_async_ops.to_find_new_threads = remote_threads_info;
6277 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6278 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6279 remote_async_ops.to_stop = remote_stop;
6280 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6281 remote_async_ops.to_rcmd = remote_rcmd;
6282 remote_async_ops.to_stratum = process_stratum;
6283 remote_async_ops.to_has_all_memory = 1;
6284 remote_async_ops.to_has_memory = 1;
6285 remote_async_ops.to_has_stack = 1;
6286 remote_async_ops.to_has_registers = 1;
6287 remote_async_ops.to_has_execution = 1;
6288 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6289 remote_async_ops.to_can_async_p = remote_can_async_p;
6290 remote_async_ops.to_is_async_p = remote_is_async_p;
6291 remote_async_ops.to_async = remote_async;
6292 remote_async_ops.to_async_mask_value = 1;
6293 remote_async_ops.to_magic = OPS_MAGIC;
6294 remote_async_ops.to_memory_map = remote_memory_map;
6295 remote_async_ops.to_flash_erase = remote_flash_erase;
6296 remote_async_ops.to_flash_done = remote_flash_done;
6297 remote_ops.to_read_description = remote_read_description;
6298 }
6299
6300 /* Set up the async extended remote vector by making a copy of the standard
6301 remote vector and adding to it. */
6302
6303 static void
6304 init_extended_async_remote_ops (void)
6305 {
6306 extended_async_remote_ops = remote_async_ops;
6307
6308 extended_async_remote_ops.to_shortname = "extended-async";
6309 extended_async_remote_ops.to_longname =
6310 "Extended remote serial target in async gdb-specific protocol";
6311 extended_async_remote_ops.to_doc =
6312 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6313 Specify the serial device it is connected to (e.g. /dev/ttya).",
6314 extended_async_remote_ops.to_open = extended_remote_async_open;
6315 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6316 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6317 }
6318
6319 static void
6320 set_remote_cmd (char *args, int from_tty)
6321 {
6322 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6323 }
6324
6325 static void
6326 show_remote_cmd (char *args, int from_tty)
6327 {
6328 /* We can't just use cmd_show_list here, because we want to skip
6329 the redundant "show remote Z-packet" and the legacy aliases. */
6330 struct cleanup *showlist_chain;
6331 struct cmd_list_element *list = remote_show_cmdlist;
6332
6333 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6334 for (; list != NULL; list = list->next)
6335 if (strcmp (list->name, "Z-packet") == 0)
6336 continue;
6337 else if (list->type == not_set_cmd)
6338 /* Alias commands are exactly like the original, except they
6339 don't have the normal type. */
6340 continue;
6341 else
6342 {
6343 struct cleanup *option_chain
6344 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6345 ui_out_field_string (uiout, "name", list->name);
6346 ui_out_text (uiout, ": ");
6347 if (list->type == show_cmd)
6348 do_setshow_command ((char *) NULL, from_tty, list);
6349 else
6350 cmd_func (list, NULL, from_tty);
6351 /* Close the tuple. */
6352 do_cleanups (option_chain);
6353 }
6354
6355 /* Close the tuple. */
6356 do_cleanups (showlist_chain);
6357 }
6358
6359 static void
6360 build_remote_gdbarch_data (void)
6361 {
6362 remote_address_size = TARGET_ADDR_BIT;
6363 }
6364
6365 /* Saved pointer to previous owner of the new_objfile event. */
6366 static void (*remote_new_objfile_chain) (struct objfile *);
6367
6368 /* Function to be called whenever a new objfile (shlib) is detected. */
6369 static void
6370 remote_new_objfile (struct objfile *objfile)
6371 {
6372 if (remote_desc != 0) /* Have a remote connection. */
6373 {
6374 remote_check_symbols (objfile);
6375 }
6376 /* Call predecessor on chain, if any. */
6377 if (remote_new_objfile_chain)
6378 remote_new_objfile_chain (objfile);
6379 }
6380
6381 void
6382 _initialize_remote (void)
6383 {
6384 struct remote_state *rs;
6385
6386 /* architecture specific data */
6387 remote_gdbarch_data_handle =
6388 gdbarch_data_register_post_init (init_remote_state);
6389 remote_g_packet_data_handle =
6390 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6391
6392 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6393 that the remote protocol has been initialized. */
6394 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6395 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6396
6397 /* Initialize the per-target state. At the moment there is only one
6398 of these, not one per target. Only one target is active at a
6399 time. The default buffer size is unimportant; it will be expanded
6400 whenever a larger buffer is needed. */
6401 rs = get_remote_state_raw ();
6402 rs->buf_size = 400;
6403 rs->buf = xmalloc (rs->buf_size);
6404
6405 init_remote_ops ();
6406 add_target (&remote_ops);
6407
6408 init_extended_remote_ops ();
6409 add_target (&extended_remote_ops);
6410
6411 init_remote_async_ops ();
6412 add_target (&remote_async_ops);
6413
6414 init_extended_async_remote_ops ();
6415 add_target (&extended_async_remote_ops);
6416
6417 /* Hook into new objfile notification. */
6418 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
6419 deprecated_target_new_objfile_hook = remote_new_objfile;
6420
6421 #if 0
6422 init_remote_threadtests ();
6423 #endif
6424
6425 /* set/show remote ... */
6426
6427 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6428 Remote protocol specific variables\n\
6429 Configure various remote-protocol specific variables such as\n\
6430 the packets being used"),
6431 &remote_set_cmdlist, "set remote ",
6432 0 /* allow-unknown */, &setlist);
6433 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6434 Remote protocol specific variables\n\
6435 Configure various remote-protocol specific variables such as\n\
6436 the packets being used"),
6437 &remote_show_cmdlist, "show remote ",
6438 0 /* allow-unknown */, &showlist);
6439
6440 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6441 Compare section data on target to the exec file.\n\
6442 Argument is a single section name (default: all loaded sections)."),
6443 &cmdlist);
6444
6445 add_cmd ("packet", class_maintenance, packet_command, _("\
6446 Send an arbitrary packet to a remote target.\n\
6447 maintenance packet TEXT\n\
6448 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6449 this command sends the string TEXT to the inferior, and displays the\n\
6450 response packet. GDB supplies the initial `$' character, and the\n\
6451 terminating `#' character and checksum."),
6452 &maintenancelist);
6453
6454 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6455 Set whether to send break if interrupted."), _("\
6456 Show whether to send break if interrupted."), _("\
6457 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6458 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6459 &setlist, &showlist);
6460
6461 /* Install commands for configuring memory read/write packets. */
6462
6463 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6464 Set the maximum number of bytes per memory write packet (deprecated)."),
6465 &setlist);
6466 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6467 Show the maximum number of bytes per memory write packet (deprecated)."),
6468 &showlist);
6469 add_cmd ("memory-write-packet-size", no_class,
6470 set_memory_write_packet_size, _("\
6471 Set the maximum number of bytes per memory-write packet.\n\
6472 Specify the number of bytes in a packet or 0 (zero) for the\n\
6473 default packet size. The actual limit is further reduced\n\
6474 dependent on the target. Specify ``fixed'' to disable the\n\
6475 further restriction and ``limit'' to enable that restriction."),
6476 &remote_set_cmdlist);
6477 add_cmd ("memory-read-packet-size", no_class,
6478 set_memory_read_packet_size, _("\
6479 Set the maximum number of bytes per memory-read packet.\n\
6480 Specify the number of bytes in a packet or 0 (zero) for the\n\
6481 default packet size. The actual limit is further reduced\n\
6482 dependent on the target. Specify ``fixed'' to disable the\n\
6483 further restriction and ``limit'' to enable that restriction."),
6484 &remote_set_cmdlist);
6485 add_cmd ("memory-write-packet-size", no_class,
6486 show_memory_write_packet_size,
6487 _("Show the maximum number of bytes per memory-write packet."),
6488 &remote_show_cmdlist);
6489 add_cmd ("memory-read-packet-size", no_class,
6490 show_memory_read_packet_size,
6491 _("Show the maximum number of bytes per memory-read packet."),
6492 &remote_show_cmdlist);
6493
6494 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6495 &remote_hw_watchpoint_limit, _("\
6496 Set the maximum number of target hardware watchpoints."), _("\
6497 Show the maximum number of target hardware watchpoints."), _("\
6498 Specify a negative limit for unlimited."),
6499 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6500 &remote_set_cmdlist, &remote_show_cmdlist);
6501 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6502 &remote_hw_breakpoint_limit, _("\
6503 Set the maximum number of target hardware breakpoints."), _("\
6504 Show the maximum number of target hardware breakpoints."), _("\
6505 Specify a negative limit for unlimited."),
6506 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6507 &remote_set_cmdlist, &remote_show_cmdlist);
6508
6509 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6510 &remote_address_size, _("\
6511 Set the maximum size of the address (in bits) in a memory packet."), _("\
6512 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6513 NULL,
6514 NULL, /* FIXME: i18n: */
6515 &setlist, &showlist);
6516
6517 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6518 "X", "binary-download", 1);
6519
6520 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6521 "vCont", "verbose-resume", 0);
6522
6523 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6524 "QPassSignals", "pass-signals", 0);
6525
6526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6527 "qSymbol", "symbol-lookup", 0);
6528
6529 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6530 "P", "set-register", 1);
6531
6532 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6533 "p", "fetch-register", 1);
6534
6535 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6536 "Z0", "software-breakpoint", 0);
6537
6538 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6539 "Z1", "hardware-breakpoint", 0);
6540
6541 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6542 "Z2", "write-watchpoint", 0);
6543
6544 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6545 "Z3", "read-watchpoint", 0);
6546
6547 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6548 "Z4", "access-watchpoint", 0);
6549
6550 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6551 "qXfer:auxv:read", "read-aux-vector", 0);
6552
6553 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6554 "qXfer:features:read", "target-features", 0);
6555
6556 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6557 "qXfer:memory-map:read", "memory-map", 0);
6558
6559 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6560 "qGetTLSAddr", "get-thread-local-storage-address",
6561 0);
6562
6563 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6564 "qSupported", "supported-packets", 0);
6565
6566 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6567 Z sub-packet has its own set and show commands, but users may
6568 have sets to this variable in their .gdbinit files (or in their
6569 documentation). */
6570 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6571 &remote_Z_packet_detect, _("\
6572 Set use of remote protocol `Z' packets"), _("\
6573 Show use of remote protocol `Z' packets "), _("\
6574 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6575 packets."),
6576 set_remote_protocol_Z_packet_cmd,
6577 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6578 &remote_set_cmdlist, &remote_show_cmdlist);
6579
6580 /* Eventually initialize fileio. See fileio.c */
6581 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6582 }
This page took 0.179888 seconds and 4 git commands to generate.