New "find" command.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (struct regcache *regcache, int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "remote". */
212
213 static struct cmd_list_element *remote_cmdlist;
214
215 /* For "set remote" and "show remote". */
216
217 static struct cmd_list_element *remote_set_cmdlist;
218 static struct cmd_list_element *remote_show_cmdlist;
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 struct remote_state
225 {
226 /* A buffer to use for incoming packets, and its current size. The
227 buffer is grown dynamically for larger incoming packets.
228 Outgoing packets may also be constructed in this buffer.
229 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
230 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
231 packets. */
232 char *buf;
233 long buf_size;
234
235 /* If we negotiated packet size explicitly (and thus can bypass
236 heuristics for the largest packet size that will not overflow
237 a buffer in the stub), this will be set to that packet size.
238 Otherwise zero, meaning to use the guessed size. */
239 long explicit_packet_size;
240
241 /* remote_wait is normally called when the target is running and
242 waits for a stop reply packet. But sometimes we need to call it
243 when the target is already stopped. We can send a "?" packet
244 and have remote_wait read the response. Or, if we already have
245 the response, we can stash it in BUF and tell remote_wait to
246 skip calling getpkt. This flag is set when BUF contains a
247 stop reply packet and the target is not waiting. */
248 int cached_wait_status;
249 };
250
251 /* This data could be associated with a target, but we do not always
252 have access to the current target when we need it, so for now it is
253 static. This will be fine for as long as only one target is in use
254 at a time. */
255 static struct remote_state remote_state;
256
257 static struct remote_state *
258 get_remote_state_raw (void)
259 {
260 return &remote_state;
261 }
262
263 /* Description of the remote protocol for a given architecture. */
264
265 struct packet_reg
266 {
267 long offset; /* Offset into G packet. */
268 long regnum; /* GDB's internal register number. */
269 LONGEST pnum; /* Remote protocol register number. */
270 int in_g_packet; /* Always part of G packet. */
271 /* long size in bytes; == register_size (current_gdbarch, regnum);
272 at present. */
273 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
274 at present. */
275 };
276
277 struct remote_arch_state
278 {
279 /* Description of the remote protocol registers. */
280 long sizeof_g_packet;
281
282 /* Description of the remote protocol registers indexed by REGNUM
283 (making an array gdbarch_num_regs in size). */
284 struct packet_reg *regs;
285
286 /* This is the size (in chars) of the first response to the ``g''
287 packet. It is used as a heuristic when determining the maximum
288 size of memory-read and memory-write packets. A target will
289 typically only reserve a buffer large enough to hold the ``g''
290 packet. The size does not include packet overhead (headers and
291 trailers). */
292 long actual_register_packet_size;
293
294 /* This is the maximum size (in chars) of a non read/write packet.
295 It is also used as a cap on the size of read/write packets. */
296 long remote_packet_size;
297 };
298
299
300 /* Handle for retreving the remote protocol data from gdbarch. */
301 static struct gdbarch_data *remote_gdbarch_data_handle;
302
303 static struct remote_arch_state *
304 get_remote_arch_state (void)
305 {
306 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
307 }
308
309 /* Fetch the global remote target state. */
310
311 static struct remote_state *
312 get_remote_state (void)
313 {
314 /* Make sure that the remote architecture state has been
315 initialized, because doing so might reallocate rs->buf. Any
316 function which calls getpkt also needs to be mindful of changes
317 to rs->buf, but this call limits the number of places which run
318 into trouble. */
319 get_remote_arch_state ();
320
321 return get_remote_state_raw ();
322 }
323
324 static int
325 compare_pnums (const void *lhs_, const void *rhs_)
326 {
327 const struct packet_reg * const *lhs = lhs_;
328 const struct packet_reg * const *rhs = rhs_;
329
330 if ((*lhs)->pnum < (*rhs)->pnum)
331 return -1;
332 else if ((*lhs)->pnum == (*rhs)->pnum)
333 return 0;
334 else
335 return 1;
336 }
337
338 static void *
339 init_remote_state (struct gdbarch *gdbarch)
340 {
341 int regnum, num_remote_regs, offset;
342 struct remote_state *rs = get_remote_state_raw ();
343 struct remote_arch_state *rsa;
344 struct packet_reg **remote_regs;
345
346 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
347
348 /* Use the architecture to build a regnum<->pnum table, which will be
349 1:1 unless a feature set specifies otherwise. */
350 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
351 gdbarch_num_regs (gdbarch),
352 struct packet_reg);
353 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
354 {
355 struct packet_reg *r = &rsa->regs[regnum];
356
357 if (register_size (gdbarch, regnum) == 0)
358 /* Do not try to fetch zero-sized (placeholder) registers. */
359 r->pnum = -1;
360 else
361 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
362
363 r->regnum = regnum;
364 }
365
366 /* Define the g/G packet format as the contents of each register
367 with a remote protocol number, in order of ascending protocol
368 number. */
369
370 remote_regs = alloca (gdbarch_num_regs (gdbarch)
371 * sizeof (struct packet_reg *));
372 for (num_remote_regs = 0, regnum = 0;
373 regnum < gdbarch_num_regs (gdbarch);
374 regnum++)
375 if (rsa->regs[regnum].pnum != -1)
376 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
377
378 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
379 compare_pnums);
380
381 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
382 {
383 remote_regs[regnum]->in_g_packet = 1;
384 remote_regs[regnum]->offset = offset;
385 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
386 }
387
388 /* Record the maximum possible size of the g packet - it may turn out
389 to be smaller. */
390 rsa->sizeof_g_packet = offset;
391
392 /* Default maximum number of characters in a packet body. Many
393 remote stubs have a hardwired buffer size of 400 bytes
394 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
395 as the maximum packet-size to ensure that the packet and an extra
396 NUL character can always fit in the buffer. This stops GDB
397 trashing stubs that try to squeeze an extra NUL into what is
398 already a full buffer (As of 1999-12-04 that was most stubs). */
399 rsa->remote_packet_size = 400 - 1;
400
401 /* This one is filled in when a ``g'' packet is received. */
402 rsa->actual_register_packet_size = 0;
403
404 /* Should rsa->sizeof_g_packet needs more space than the
405 default, adjust the size accordingly. Remember that each byte is
406 encoded as two characters. 32 is the overhead for the packet
407 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
408 (``$NN:G...#NN'') is a better guess, the below has been padded a
409 little. */
410 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
411 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
412
413 /* Make sure that the packet buffer is plenty big enough for
414 this architecture. */
415 if (rs->buf_size < rsa->remote_packet_size)
416 {
417 rs->buf_size = 2 * rsa->remote_packet_size;
418 rs->buf = xrealloc (rs->buf, rs->buf_size);
419 }
420
421 return rsa;
422 }
423
424 /* Return the current allowed size of a remote packet. This is
425 inferred from the current architecture, and should be used to
426 limit the length of outgoing packets. */
427 static long
428 get_remote_packet_size (void)
429 {
430 struct remote_state *rs = get_remote_state ();
431 struct remote_arch_state *rsa = get_remote_arch_state ();
432
433 if (rs->explicit_packet_size)
434 return rs->explicit_packet_size;
435
436 return rsa->remote_packet_size;
437 }
438
439 static struct packet_reg *
440 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
441 {
442 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
443 return NULL;
444 else
445 {
446 struct packet_reg *r = &rsa->regs[regnum];
447 gdb_assert (r->regnum == regnum);
448 return r;
449 }
450 }
451
452 static struct packet_reg *
453 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
454 {
455 int i;
456 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
457 {
458 struct packet_reg *r = &rsa->regs[i];
459 if (r->pnum == pnum)
460 return r;
461 }
462 return NULL;
463 }
464
465 /* FIXME: graces/2002-08-08: These variables should eventually be
466 bound to an instance of the target object (as in gdbarch-tdep()),
467 when such a thing exists. */
468
469 /* This is set to the data address of the access causing the target
470 to stop for a watchpoint. */
471 static CORE_ADDR remote_watch_data_address;
472
473 /* This is non-zero if target stopped for a watchpoint. */
474 static int remote_stopped_by_watchpoint_p;
475
476 static struct target_ops remote_ops;
477
478 static struct target_ops extended_remote_ops;
479
480 /* Temporary target ops. Just like the remote_ops and
481 extended_remote_ops, but with asynchronous support. */
482 static struct target_ops remote_async_ops;
483
484 static int remote_async_mask_value = 1;
485
486 static struct target_ops extended_async_remote_ops;
487
488 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
489 ``forever'' still use the normal timeout mechanism. This is
490 currently used by the ASYNC code to guarentee that target reads
491 during the initial connect always time-out. Once getpkt has been
492 modified to return a timeout indication and, in turn
493 remote_wait()/wait_for_inferior() have gained a timeout parameter
494 this can go away. */
495 static int wait_forever_enabled_p = 1;
496
497
498 /* This variable chooses whether to send a ^C or a break when the user
499 requests program interruption. Although ^C is usually what remote
500 systems expect, and that is the default here, sometimes a break is
501 preferable instead. */
502
503 static int remote_break;
504
505 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
506 remote_open knows that we don't have a file open when the program
507 starts. */
508 static struct serial *remote_desc = NULL;
509
510 /* This variable sets the number of bits in an address that are to be
511 sent in a memory ("M" or "m") packet. Normally, after stripping
512 leading zeros, the entire address would be sent. This variable
513 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
514 initial implementation of remote.c restricted the address sent in
515 memory packets to ``host::sizeof long'' bytes - (typically 32
516 bits). Consequently, for 64 bit targets, the upper 32 bits of an
517 address was never sent. Since fixing this bug may cause a break in
518 some remote targets this variable is principly provided to
519 facilitate backward compatibility. */
520
521 static int remote_address_size;
522
523 /* Tempoary to track who currently owns the terminal. See
524 target_async_terminal_* for more details. */
525
526 static int remote_async_terminal_ours_p;
527
528 /* The executable file to use for "run" on the remote side. */
529
530 static char *remote_exec_file = "";
531
532 \f
533 /* User configurable variables for the number of characters in a
534 memory read/write packet. MIN (rsa->remote_packet_size,
535 rsa->sizeof_g_packet) is the default. Some targets need smaller
536 values (fifo overruns, et.al.) and some users need larger values
537 (speed up transfers). The variables ``preferred_*'' (the user
538 request), ``current_*'' (what was actually set) and ``forced_*''
539 (Positive - a soft limit, negative - a hard limit). */
540
541 struct memory_packet_config
542 {
543 char *name;
544 long size;
545 int fixed_p;
546 };
547
548 /* Compute the current size of a read/write packet. Since this makes
549 use of ``actual_register_packet_size'' the computation is dynamic. */
550
551 static long
552 get_memory_packet_size (struct memory_packet_config *config)
553 {
554 struct remote_state *rs = get_remote_state ();
555 struct remote_arch_state *rsa = get_remote_arch_state ();
556
557 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
558 law?) that some hosts don't cope very well with large alloca()
559 calls. Eventually the alloca() code will be replaced by calls to
560 xmalloc() and make_cleanups() allowing this restriction to either
561 be lifted or removed. */
562 #ifndef MAX_REMOTE_PACKET_SIZE
563 #define MAX_REMOTE_PACKET_SIZE 16384
564 #endif
565 /* NOTE: 20 ensures we can write at least one byte. */
566 #ifndef MIN_REMOTE_PACKET_SIZE
567 #define MIN_REMOTE_PACKET_SIZE 20
568 #endif
569 long what_they_get;
570 if (config->fixed_p)
571 {
572 if (config->size <= 0)
573 what_they_get = MAX_REMOTE_PACKET_SIZE;
574 else
575 what_they_get = config->size;
576 }
577 else
578 {
579 what_they_get = get_remote_packet_size ();
580 /* Limit the packet to the size specified by the user. */
581 if (config->size > 0
582 && what_they_get > config->size)
583 what_they_get = config->size;
584
585 /* Limit it to the size of the targets ``g'' response unless we have
586 permission from the stub to use a larger packet size. */
587 if (rs->explicit_packet_size == 0
588 && rsa->actual_register_packet_size > 0
589 && what_they_get > rsa->actual_register_packet_size)
590 what_they_get = rsa->actual_register_packet_size;
591 }
592 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
593 what_they_get = MAX_REMOTE_PACKET_SIZE;
594 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
595 what_they_get = MIN_REMOTE_PACKET_SIZE;
596
597 /* Make sure there is room in the global buffer for this packet
598 (including its trailing NUL byte). */
599 if (rs->buf_size < what_they_get + 1)
600 {
601 rs->buf_size = 2 * what_they_get;
602 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
603 }
604
605 return what_they_get;
606 }
607
608 /* Update the size of a read/write packet. If they user wants
609 something really big then do a sanity check. */
610
611 static void
612 set_memory_packet_size (char *args, struct memory_packet_config *config)
613 {
614 int fixed_p = config->fixed_p;
615 long size = config->size;
616 if (args == NULL)
617 error (_("Argument required (integer, `fixed' or `limited')."));
618 else if (strcmp (args, "hard") == 0
619 || strcmp (args, "fixed") == 0)
620 fixed_p = 1;
621 else if (strcmp (args, "soft") == 0
622 || strcmp (args, "limit") == 0)
623 fixed_p = 0;
624 else
625 {
626 char *end;
627 size = strtoul (args, &end, 0);
628 if (args == end)
629 error (_("Invalid %s (bad syntax)."), config->name);
630 #if 0
631 /* Instead of explicitly capping the size of a packet to
632 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
633 instead allowed to set the size to something arbitrarily
634 large. */
635 if (size > MAX_REMOTE_PACKET_SIZE)
636 error (_("Invalid %s (too large)."), config->name);
637 #endif
638 }
639 /* Extra checks? */
640 if (fixed_p && !config->fixed_p)
641 {
642 if (! query (_("The target may not be able to correctly handle a %s\n"
643 "of %ld bytes. Change the packet size? "),
644 config->name, size))
645 error (_("Packet size not changed."));
646 }
647 /* Update the config. */
648 config->fixed_p = fixed_p;
649 config->size = size;
650 }
651
652 static void
653 show_memory_packet_size (struct memory_packet_config *config)
654 {
655 printf_filtered (_("The %s is %ld. "), config->name, config->size);
656 if (config->fixed_p)
657 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
658 get_memory_packet_size (config));
659 else
660 printf_filtered (_("Packets are limited to %ld bytes.\n"),
661 get_memory_packet_size (config));
662 }
663
664 static struct memory_packet_config memory_write_packet_config =
665 {
666 "memory-write-packet-size",
667 };
668
669 static void
670 set_memory_write_packet_size (char *args, int from_tty)
671 {
672 set_memory_packet_size (args, &memory_write_packet_config);
673 }
674
675 static void
676 show_memory_write_packet_size (char *args, int from_tty)
677 {
678 show_memory_packet_size (&memory_write_packet_config);
679 }
680
681 static long
682 get_memory_write_packet_size (void)
683 {
684 return get_memory_packet_size (&memory_write_packet_config);
685 }
686
687 static struct memory_packet_config memory_read_packet_config =
688 {
689 "memory-read-packet-size",
690 };
691
692 static void
693 set_memory_read_packet_size (char *args, int from_tty)
694 {
695 set_memory_packet_size (args, &memory_read_packet_config);
696 }
697
698 static void
699 show_memory_read_packet_size (char *args, int from_tty)
700 {
701 show_memory_packet_size (&memory_read_packet_config);
702 }
703
704 static long
705 get_memory_read_packet_size (void)
706 {
707 long size = get_memory_packet_size (&memory_read_packet_config);
708 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
709 extra buffer size argument before the memory read size can be
710 increased beyond this. */
711 if (size > get_remote_packet_size ())
712 size = get_remote_packet_size ();
713 return size;
714 }
715
716 \f
717 /* Generic configuration support for packets the stub optionally
718 supports. Allows the user to specify the use of the packet as well
719 as allowing GDB to auto-detect support in the remote stub. */
720
721 enum packet_support
722 {
723 PACKET_SUPPORT_UNKNOWN = 0,
724 PACKET_ENABLE,
725 PACKET_DISABLE
726 };
727
728 struct packet_config
729 {
730 const char *name;
731 const char *title;
732 enum auto_boolean detect;
733 enum packet_support support;
734 };
735
736 /* Analyze a packet's return value and update the packet config
737 accordingly. */
738
739 enum packet_result
740 {
741 PACKET_ERROR,
742 PACKET_OK,
743 PACKET_UNKNOWN
744 };
745
746 static void
747 update_packet_config (struct packet_config *config)
748 {
749 switch (config->detect)
750 {
751 case AUTO_BOOLEAN_TRUE:
752 config->support = PACKET_ENABLE;
753 break;
754 case AUTO_BOOLEAN_FALSE:
755 config->support = PACKET_DISABLE;
756 break;
757 case AUTO_BOOLEAN_AUTO:
758 config->support = PACKET_SUPPORT_UNKNOWN;
759 break;
760 }
761 }
762
763 static void
764 show_packet_config_cmd (struct packet_config *config)
765 {
766 char *support = "internal-error";
767 switch (config->support)
768 {
769 case PACKET_ENABLE:
770 support = "enabled";
771 break;
772 case PACKET_DISABLE:
773 support = "disabled";
774 break;
775 case PACKET_SUPPORT_UNKNOWN:
776 support = "unknown";
777 break;
778 }
779 switch (config->detect)
780 {
781 case AUTO_BOOLEAN_AUTO:
782 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
783 config->name, support);
784 break;
785 case AUTO_BOOLEAN_TRUE:
786 case AUTO_BOOLEAN_FALSE:
787 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
788 config->name, support);
789 break;
790 }
791 }
792
793 static void
794 add_packet_config_cmd (struct packet_config *config, const char *name,
795 const char *title, int legacy)
796 {
797 char *set_doc;
798 char *show_doc;
799 char *cmd_name;
800
801 config->name = name;
802 config->title = title;
803 config->detect = AUTO_BOOLEAN_AUTO;
804 config->support = PACKET_SUPPORT_UNKNOWN;
805 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
806 name, title);
807 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
808 name, title);
809 /* set/show TITLE-packet {auto,on,off} */
810 cmd_name = xstrprintf ("%s-packet", title);
811 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
812 &config->detect, set_doc, show_doc, NULL, /* help_doc */
813 set_remote_protocol_packet_cmd,
814 show_remote_protocol_packet_cmd,
815 &remote_set_cmdlist, &remote_show_cmdlist);
816 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
817 if (legacy)
818 {
819 char *legacy_name;
820 legacy_name = xstrprintf ("%s-packet", name);
821 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
822 &remote_set_cmdlist);
823 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
824 &remote_show_cmdlist);
825 }
826 }
827
828 static enum packet_result
829 packet_check_result (const char *buf)
830 {
831 if (buf[0] != '\0')
832 {
833 /* The stub recognized the packet request. Check that the
834 operation succeeded. */
835 if (buf[0] == 'E'
836 && isxdigit (buf[1]) && isxdigit (buf[2])
837 && buf[3] == '\0')
838 /* "Enn" - definitly an error. */
839 return PACKET_ERROR;
840
841 /* Always treat "E." as an error. This will be used for
842 more verbose error messages, such as E.memtypes. */
843 if (buf[0] == 'E' && buf[1] == '.')
844 return PACKET_ERROR;
845
846 /* The packet may or may not be OK. Just assume it is. */
847 return PACKET_OK;
848 }
849 else
850 /* The stub does not support the packet. */
851 return PACKET_UNKNOWN;
852 }
853
854 static enum packet_result
855 packet_ok (const char *buf, struct packet_config *config)
856 {
857 enum packet_result result;
858
859 result = packet_check_result (buf);
860 switch (result)
861 {
862 case PACKET_OK:
863 case PACKET_ERROR:
864 /* The stub recognized the packet request. */
865 switch (config->support)
866 {
867 case PACKET_SUPPORT_UNKNOWN:
868 if (remote_debug)
869 fprintf_unfiltered (gdb_stdlog,
870 "Packet %s (%s) is supported\n",
871 config->name, config->title);
872 config->support = PACKET_ENABLE;
873 break;
874 case PACKET_DISABLE:
875 internal_error (__FILE__, __LINE__,
876 _("packet_ok: attempt to use a disabled packet"));
877 break;
878 case PACKET_ENABLE:
879 break;
880 }
881 break;
882 case PACKET_UNKNOWN:
883 /* The stub does not support the packet. */
884 switch (config->support)
885 {
886 case PACKET_ENABLE:
887 if (config->detect == AUTO_BOOLEAN_AUTO)
888 /* If the stub previously indicated that the packet was
889 supported then there is a protocol error.. */
890 error (_("Protocol error: %s (%s) conflicting enabled responses."),
891 config->name, config->title);
892 else
893 /* The user set it wrong. */
894 error (_("Enabled packet %s (%s) not recognized by stub"),
895 config->name, config->title);
896 break;
897 case PACKET_SUPPORT_UNKNOWN:
898 if (remote_debug)
899 fprintf_unfiltered (gdb_stdlog,
900 "Packet %s (%s) is NOT supported\n",
901 config->name, config->title);
902 config->support = PACKET_DISABLE;
903 break;
904 case PACKET_DISABLE:
905 break;
906 }
907 break;
908 }
909
910 return result;
911 }
912
913 enum {
914 PACKET_vCont = 0,
915 PACKET_X,
916 PACKET_qSymbol,
917 PACKET_P,
918 PACKET_p,
919 PACKET_Z0,
920 PACKET_Z1,
921 PACKET_Z2,
922 PACKET_Z3,
923 PACKET_Z4,
924 PACKET_vFile_open,
925 PACKET_vFile_pread,
926 PACKET_vFile_pwrite,
927 PACKET_vFile_close,
928 PACKET_vFile_unlink,
929 PACKET_qXfer_auxv,
930 PACKET_qXfer_features,
931 PACKET_qXfer_libraries,
932 PACKET_qXfer_memory_map,
933 PACKET_qXfer_spu_read,
934 PACKET_qXfer_spu_write,
935 PACKET_qGetTLSAddr,
936 PACKET_qSupported,
937 PACKET_QPassSignals,
938 PACKET_qSearch_memory,
939 PACKET_vAttach,
940 PACKET_vRun,
941 PACKET_MAX
942 };
943
944 static struct packet_config remote_protocol_packets[PACKET_MAX];
945
946 static void
947 set_remote_protocol_packet_cmd (char *args, int from_tty,
948 struct cmd_list_element *c)
949 {
950 struct packet_config *packet;
951
952 for (packet = remote_protocol_packets;
953 packet < &remote_protocol_packets[PACKET_MAX];
954 packet++)
955 {
956 if (&packet->detect == c->var)
957 {
958 update_packet_config (packet);
959 return;
960 }
961 }
962 internal_error (__FILE__, __LINE__, "Could not find config for %s",
963 c->name);
964 }
965
966 static void
967 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
968 struct cmd_list_element *c,
969 const char *value)
970 {
971 struct packet_config *packet;
972
973 for (packet = remote_protocol_packets;
974 packet < &remote_protocol_packets[PACKET_MAX];
975 packet++)
976 {
977 if (&packet->detect == c->var)
978 {
979 show_packet_config_cmd (packet);
980 return;
981 }
982 }
983 internal_error (__FILE__, __LINE__, "Could not find config for %s",
984 c->name);
985 }
986
987 /* Should we try one of the 'Z' requests? */
988
989 enum Z_packet_type
990 {
991 Z_PACKET_SOFTWARE_BP,
992 Z_PACKET_HARDWARE_BP,
993 Z_PACKET_WRITE_WP,
994 Z_PACKET_READ_WP,
995 Z_PACKET_ACCESS_WP,
996 NR_Z_PACKET_TYPES
997 };
998
999 /* For compatibility with older distributions. Provide a ``set remote
1000 Z-packet ...'' command that updates all the Z packet types. */
1001
1002 static enum auto_boolean remote_Z_packet_detect;
1003
1004 static void
1005 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1006 struct cmd_list_element *c)
1007 {
1008 int i;
1009 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1010 {
1011 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1012 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1013 }
1014 }
1015
1016 static void
1017 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1018 struct cmd_list_element *c,
1019 const char *value)
1020 {
1021 int i;
1022 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1023 {
1024 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1025 }
1026 }
1027
1028 /* Should we try the 'ThreadInfo' query packet?
1029
1030 This variable (NOT available to the user: auto-detect only!)
1031 determines whether GDB will use the new, simpler "ThreadInfo"
1032 query or the older, more complex syntax for thread queries.
1033 This is an auto-detect variable (set to true at each connect,
1034 and set to false when the target fails to recognize it). */
1035
1036 static int use_threadinfo_query;
1037 static int use_threadextra_query;
1038
1039 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1040 static struct async_signal_handler *sigint_remote_twice_token;
1041 static struct async_signal_handler *sigint_remote_token;
1042
1043 \f
1044
1045
1046 /* These are the threads which we last sent to the remote system.
1047 -1 for all or -2 for not sent yet. */
1048 static int general_thread;
1049 static int continue_thread;
1050
1051 /* Call this function as a result of
1052 1) A halt indication (T packet) containing a thread id
1053 2) A direct query of currthread
1054 3) Successful execution of set thread
1055 */
1056
1057 static void
1058 record_currthread (int currthread)
1059 {
1060 general_thread = currthread;
1061
1062 /* If this is a new thread, add it to GDB's thread list.
1063 If we leave it up to WFI to do this, bad things will happen. */
1064 if (!in_thread_list (pid_to_ptid (currthread)))
1065 add_thread (pid_to_ptid (currthread));
1066 }
1067
1068 static char *last_pass_packet;
1069
1070 /* If 'QPassSignals' is supported, tell the remote stub what signals
1071 it can simply pass through to the inferior without reporting. */
1072
1073 static void
1074 remote_pass_signals (void)
1075 {
1076 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1077 {
1078 char *pass_packet, *p;
1079 int numsigs = (int) TARGET_SIGNAL_LAST;
1080 int count = 0, i;
1081
1082 gdb_assert (numsigs < 256);
1083 for (i = 0; i < numsigs; i++)
1084 {
1085 if (signal_stop_state (i) == 0
1086 && signal_print_state (i) == 0
1087 && signal_pass_state (i) == 1)
1088 count++;
1089 }
1090 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1091 strcpy (pass_packet, "QPassSignals:");
1092 p = pass_packet + strlen (pass_packet);
1093 for (i = 0; i < numsigs; i++)
1094 {
1095 if (signal_stop_state (i) == 0
1096 && signal_print_state (i) == 0
1097 && signal_pass_state (i) == 1)
1098 {
1099 if (i >= 16)
1100 *p++ = tohex (i >> 4);
1101 *p++ = tohex (i & 15);
1102 if (count)
1103 *p++ = ';';
1104 else
1105 break;
1106 count--;
1107 }
1108 }
1109 *p = 0;
1110 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1111 {
1112 struct remote_state *rs = get_remote_state ();
1113 char *buf = rs->buf;
1114
1115 putpkt (pass_packet);
1116 getpkt (&rs->buf, &rs->buf_size, 0);
1117 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1118 if (last_pass_packet)
1119 xfree (last_pass_packet);
1120 last_pass_packet = pass_packet;
1121 }
1122 else
1123 xfree (pass_packet);
1124 }
1125 }
1126
1127 #define MAGIC_NULL_PID 42000
1128
1129 static void
1130 set_thread (int th, int gen)
1131 {
1132 struct remote_state *rs = get_remote_state ();
1133 char *buf = rs->buf;
1134 int state = gen ? general_thread : continue_thread;
1135
1136 if (state == th)
1137 return;
1138
1139 buf[0] = 'H';
1140 buf[1] = gen ? 'g' : 'c';
1141 if (th == MAGIC_NULL_PID)
1142 {
1143 buf[2] = '0';
1144 buf[3] = '\0';
1145 }
1146 else if (th < 0)
1147 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1148 else
1149 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1150 putpkt (buf);
1151 getpkt (&rs->buf, &rs->buf_size, 0);
1152 if (gen)
1153 general_thread = th;
1154 else
1155 continue_thread = th;
1156 }
1157 \f
1158 /* Return nonzero if the thread TH is still alive on the remote system. */
1159
1160 static int
1161 remote_thread_alive (ptid_t ptid)
1162 {
1163 struct remote_state *rs = get_remote_state ();
1164 int tid = PIDGET (ptid);
1165
1166 if (tid < 0)
1167 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1168 else
1169 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1170 putpkt (rs->buf);
1171 getpkt (&rs->buf, &rs->buf_size, 0);
1172 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1173 }
1174
1175 /* About these extended threadlist and threadinfo packets. They are
1176 variable length packets but, the fields within them are often fixed
1177 length. They are redundent enough to send over UDP as is the
1178 remote protocol in general. There is a matching unit test module
1179 in libstub. */
1180
1181 #define OPAQUETHREADBYTES 8
1182
1183 /* a 64 bit opaque identifier */
1184 typedef unsigned char threadref[OPAQUETHREADBYTES];
1185
1186 /* WARNING: This threadref data structure comes from the remote O.S.,
1187 libstub protocol encoding, and remote.c. it is not particularly
1188 changable. */
1189
1190 /* Right now, the internal structure is int. We want it to be bigger.
1191 Plan to fix this.
1192 */
1193
1194 typedef int gdb_threadref; /* Internal GDB thread reference. */
1195
1196 /* gdb_ext_thread_info is an internal GDB data structure which is
1197 equivalent to the reply of the remote threadinfo packet. */
1198
1199 struct gdb_ext_thread_info
1200 {
1201 threadref threadid; /* External form of thread reference. */
1202 int active; /* Has state interesting to GDB?
1203 regs, stack. */
1204 char display[256]; /* Brief state display, name,
1205 blocked/suspended. */
1206 char shortname[32]; /* To be used to name threads. */
1207 char more_display[256]; /* Long info, statistics, queue depth,
1208 whatever. */
1209 };
1210
1211 /* The volume of remote transfers can be limited by submitting
1212 a mask containing bits specifying the desired information.
1213 Use a union of these values as the 'selection' parameter to
1214 get_thread_info. FIXME: Make these TAG names more thread specific.
1215 */
1216
1217 #define TAG_THREADID 1
1218 #define TAG_EXISTS 2
1219 #define TAG_DISPLAY 4
1220 #define TAG_THREADNAME 8
1221 #define TAG_MOREDISPLAY 16
1222
1223 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1224
1225 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1226
1227 static char *unpack_nibble (char *buf, int *val);
1228
1229 static char *pack_nibble (char *buf, int nibble);
1230
1231 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1232
1233 static char *unpack_byte (char *buf, int *value);
1234
1235 static char *pack_int (char *buf, int value);
1236
1237 static char *unpack_int (char *buf, int *value);
1238
1239 static char *unpack_string (char *src, char *dest, int length);
1240
1241 static char *pack_threadid (char *pkt, threadref *id);
1242
1243 static char *unpack_threadid (char *inbuf, threadref *id);
1244
1245 void int_to_threadref (threadref *id, int value);
1246
1247 static int threadref_to_int (threadref *ref);
1248
1249 static void copy_threadref (threadref *dest, threadref *src);
1250
1251 static int threadmatch (threadref *dest, threadref *src);
1252
1253 static char *pack_threadinfo_request (char *pkt, int mode,
1254 threadref *id);
1255
1256 static int remote_unpack_thread_info_response (char *pkt,
1257 threadref *expectedref,
1258 struct gdb_ext_thread_info
1259 *info);
1260
1261
1262 static int remote_get_threadinfo (threadref *threadid,
1263 int fieldset, /*TAG mask */
1264 struct gdb_ext_thread_info *info);
1265
1266 static char *pack_threadlist_request (char *pkt, int startflag,
1267 int threadcount,
1268 threadref *nextthread);
1269
1270 static int parse_threadlist_response (char *pkt,
1271 int result_limit,
1272 threadref *original_echo,
1273 threadref *resultlist,
1274 int *doneflag);
1275
1276 static int remote_get_threadlist (int startflag,
1277 threadref *nextthread,
1278 int result_limit,
1279 int *done,
1280 int *result_count,
1281 threadref *threadlist);
1282
1283 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1284
1285 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1286 void *context, int looplimit);
1287
1288 static int remote_newthread_step (threadref *ref, void *context);
1289
1290 /* Encode 64 bits in 16 chars of hex. */
1291
1292 static const char hexchars[] = "0123456789abcdef";
1293
1294 static int
1295 ishex (int ch, int *val)
1296 {
1297 if ((ch >= 'a') && (ch <= 'f'))
1298 {
1299 *val = ch - 'a' + 10;
1300 return 1;
1301 }
1302 if ((ch >= 'A') && (ch <= 'F'))
1303 {
1304 *val = ch - 'A' + 10;
1305 return 1;
1306 }
1307 if ((ch >= '0') && (ch <= '9'))
1308 {
1309 *val = ch - '0';
1310 return 1;
1311 }
1312 return 0;
1313 }
1314
1315 static int
1316 stubhex (int ch)
1317 {
1318 if (ch >= 'a' && ch <= 'f')
1319 return ch - 'a' + 10;
1320 if (ch >= '0' && ch <= '9')
1321 return ch - '0';
1322 if (ch >= 'A' && ch <= 'F')
1323 return ch - 'A' + 10;
1324 return -1;
1325 }
1326
1327 static int
1328 stub_unpack_int (char *buff, int fieldlength)
1329 {
1330 int nibble;
1331 int retval = 0;
1332
1333 while (fieldlength)
1334 {
1335 nibble = stubhex (*buff++);
1336 retval |= nibble;
1337 fieldlength--;
1338 if (fieldlength)
1339 retval = retval << 4;
1340 }
1341 return retval;
1342 }
1343
1344 char *
1345 unpack_varlen_hex (char *buff, /* packet to parse */
1346 ULONGEST *result)
1347 {
1348 int nibble;
1349 ULONGEST retval = 0;
1350
1351 while (ishex (*buff, &nibble))
1352 {
1353 buff++;
1354 retval = retval << 4;
1355 retval |= nibble & 0x0f;
1356 }
1357 *result = retval;
1358 return buff;
1359 }
1360
1361 static char *
1362 unpack_nibble (char *buf, int *val)
1363 {
1364 *val = fromhex (*buf++);
1365 return buf;
1366 }
1367
1368 static char *
1369 pack_nibble (char *buf, int nibble)
1370 {
1371 *buf++ = hexchars[(nibble & 0x0f)];
1372 return buf;
1373 }
1374
1375 static char *
1376 pack_hex_byte (char *pkt, int byte)
1377 {
1378 *pkt++ = hexchars[(byte >> 4) & 0xf];
1379 *pkt++ = hexchars[(byte & 0xf)];
1380 return pkt;
1381 }
1382
1383 static char *
1384 unpack_byte (char *buf, int *value)
1385 {
1386 *value = stub_unpack_int (buf, 2);
1387 return buf + 2;
1388 }
1389
1390 static char *
1391 pack_int (char *buf, int value)
1392 {
1393 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1394 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1395 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1396 buf = pack_hex_byte (buf, (value & 0xff));
1397 return buf;
1398 }
1399
1400 static char *
1401 unpack_int (char *buf, int *value)
1402 {
1403 *value = stub_unpack_int (buf, 8);
1404 return buf + 8;
1405 }
1406
1407 #if 0 /* Currently unused, uncomment when needed. */
1408 static char *pack_string (char *pkt, char *string);
1409
1410 static char *
1411 pack_string (char *pkt, char *string)
1412 {
1413 char ch;
1414 int len;
1415
1416 len = strlen (string);
1417 if (len > 200)
1418 len = 200; /* Bigger than most GDB packets, junk??? */
1419 pkt = pack_hex_byte (pkt, len);
1420 while (len-- > 0)
1421 {
1422 ch = *string++;
1423 if ((ch == '\0') || (ch == '#'))
1424 ch = '*'; /* Protect encapsulation. */
1425 *pkt++ = ch;
1426 }
1427 return pkt;
1428 }
1429 #endif /* 0 (unused) */
1430
1431 static char *
1432 unpack_string (char *src, char *dest, int length)
1433 {
1434 while (length--)
1435 *dest++ = *src++;
1436 *dest = '\0';
1437 return src;
1438 }
1439
1440 static char *
1441 pack_threadid (char *pkt, threadref *id)
1442 {
1443 char *limit;
1444 unsigned char *altid;
1445
1446 altid = (unsigned char *) id;
1447 limit = pkt + BUF_THREAD_ID_SIZE;
1448 while (pkt < limit)
1449 pkt = pack_hex_byte (pkt, *altid++);
1450 return pkt;
1451 }
1452
1453
1454 static char *
1455 unpack_threadid (char *inbuf, threadref *id)
1456 {
1457 char *altref;
1458 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1459 int x, y;
1460
1461 altref = (char *) id;
1462
1463 while (inbuf < limit)
1464 {
1465 x = stubhex (*inbuf++);
1466 y = stubhex (*inbuf++);
1467 *altref++ = (x << 4) | y;
1468 }
1469 return inbuf;
1470 }
1471
1472 /* Externally, threadrefs are 64 bits but internally, they are still
1473 ints. This is due to a mismatch of specifications. We would like
1474 to use 64bit thread references internally. This is an adapter
1475 function. */
1476
1477 void
1478 int_to_threadref (threadref *id, int value)
1479 {
1480 unsigned char *scan;
1481
1482 scan = (unsigned char *) id;
1483 {
1484 int i = 4;
1485 while (i--)
1486 *scan++ = 0;
1487 }
1488 *scan++ = (value >> 24) & 0xff;
1489 *scan++ = (value >> 16) & 0xff;
1490 *scan++ = (value >> 8) & 0xff;
1491 *scan++ = (value & 0xff);
1492 }
1493
1494 static int
1495 threadref_to_int (threadref *ref)
1496 {
1497 int i, value = 0;
1498 unsigned char *scan;
1499
1500 scan = *ref;
1501 scan += 4;
1502 i = 4;
1503 while (i-- > 0)
1504 value = (value << 8) | ((*scan++) & 0xff);
1505 return value;
1506 }
1507
1508 static void
1509 copy_threadref (threadref *dest, threadref *src)
1510 {
1511 int i;
1512 unsigned char *csrc, *cdest;
1513
1514 csrc = (unsigned char *) src;
1515 cdest = (unsigned char *) dest;
1516 i = 8;
1517 while (i--)
1518 *cdest++ = *csrc++;
1519 }
1520
1521 static int
1522 threadmatch (threadref *dest, threadref *src)
1523 {
1524 /* Things are broken right now, so just assume we got a match. */
1525 #if 0
1526 unsigned char *srcp, *destp;
1527 int i, result;
1528 srcp = (char *) src;
1529 destp = (char *) dest;
1530
1531 result = 1;
1532 while (i-- > 0)
1533 result &= (*srcp++ == *destp++) ? 1 : 0;
1534 return result;
1535 #endif
1536 return 1;
1537 }
1538
1539 /*
1540 threadid:1, # always request threadid
1541 context_exists:2,
1542 display:4,
1543 unique_name:8,
1544 more_display:16
1545 */
1546
1547 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1548
1549 static char *
1550 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1551 {
1552 *pkt++ = 'q'; /* Info Query */
1553 *pkt++ = 'P'; /* process or thread info */
1554 pkt = pack_int (pkt, mode); /* mode */
1555 pkt = pack_threadid (pkt, id); /* threadid */
1556 *pkt = '\0'; /* terminate */
1557 return pkt;
1558 }
1559
1560 /* These values tag the fields in a thread info response packet. */
1561 /* Tagging the fields allows us to request specific fields and to
1562 add more fields as time goes by. */
1563
1564 #define TAG_THREADID 1 /* Echo the thread identifier. */
1565 #define TAG_EXISTS 2 /* Is this process defined enough to
1566 fetch registers and its stack? */
1567 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1568 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1569 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1570 the process. */
1571
1572 static int
1573 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1574 struct gdb_ext_thread_info *info)
1575 {
1576 struct remote_state *rs = get_remote_state ();
1577 int mask, length;
1578 int tag;
1579 threadref ref;
1580 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1581 int retval = 1;
1582
1583 /* info->threadid = 0; FIXME: implement zero_threadref. */
1584 info->active = 0;
1585 info->display[0] = '\0';
1586 info->shortname[0] = '\0';
1587 info->more_display[0] = '\0';
1588
1589 /* Assume the characters indicating the packet type have been
1590 stripped. */
1591 pkt = unpack_int (pkt, &mask); /* arg mask */
1592 pkt = unpack_threadid (pkt, &ref);
1593
1594 if (mask == 0)
1595 warning (_("Incomplete response to threadinfo request."));
1596 if (!threadmatch (&ref, expectedref))
1597 { /* This is an answer to a different request. */
1598 warning (_("ERROR RMT Thread info mismatch."));
1599 return 0;
1600 }
1601 copy_threadref (&info->threadid, &ref);
1602
1603 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1604
1605 /* Packets are terminated with nulls. */
1606 while ((pkt < limit) && mask && *pkt)
1607 {
1608 pkt = unpack_int (pkt, &tag); /* tag */
1609 pkt = unpack_byte (pkt, &length); /* length */
1610 if (!(tag & mask)) /* Tags out of synch with mask. */
1611 {
1612 warning (_("ERROR RMT: threadinfo tag mismatch."));
1613 retval = 0;
1614 break;
1615 }
1616 if (tag == TAG_THREADID)
1617 {
1618 if (length != 16)
1619 {
1620 warning (_("ERROR RMT: length of threadid is not 16."));
1621 retval = 0;
1622 break;
1623 }
1624 pkt = unpack_threadid (pkt, &ref);
1625 mask = mask & ~TAG_THREADID;
1626 continue;
1627 }
1628 if (tag == TAG_EXISTS)
1629 {
1630 info->active = stub_unpack_int (pkt, length);
1631 pkt += length;
1632 mask = mask & ~(TAG_EXISTS);
1633 if (length > 8)
1634 {
1635 warning (_("ERROR RMT: 'exists' length too long."));
1636 retval = 0;
1637 break;
1638 }
1639 continue;
1640 }
1641 if (tag == TAG_THREADNAME)
1642 {
1643 pkt = unpack_string (pkt, &info->shortname[0], length);
1644 mask = mask & ~TAG_THREADNAME;
1645 continue;
1646 }
1647 if (tag == TAG_DISPLAY)
1648 {
1649 pkt = unpack_string (pkt, &info->display[0], length);
1650 mask = mask & ~TAG_DISPLAY;
1651 continue;
1652 }
1653 if (tag == TAG_MOREDISPLAY)
1654 {
1655 pkt = unpack_string (pkt, &info->more_display[0], length);
1656 mask = mask & ~TAG_MOREDISPLAY;
1657 continue;
1658 }
1659 warning (_("ERROR RMT: unknown thread info tag."));
1660 break; /* Not a tag we know about. */
1661 }
1662 return retval;
1663 }
1664
1665 static int
1666 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1667 struct gdb_ext_thread_info *info)
1668 {
1669 struct remote_state *rs = get_remote_state ();
1670 int result;
1671
1672 pack_threadinfo_request (rs->buf, fieldset, threadid);
1673 putpkt (rs->buf);
1674 getpkt (&rs->buf, &rs->buf_size, 0);
1675 result = remote_unpack_thread_info_response (rs->buf + 2,
1676 threadid, info);
1677 return result;
1678 }
1679
1680 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1681
1682 static char *
1683 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1684 threadref *nextthread)
1685 {
1686 *pkt++ = 'q'; /* info query packet */
1687 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1688 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1689 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1690 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1691 *pkt = '\0';
1692 return pkt;
1693 }
1694
1695 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1696
1697 static int
1698 parse_threadlist_response (char *pkt, int result_limit,
1699 threadref *original_echo, threadref *resultlist,
1700 int *doneflag)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703 char *limit;
1704 int count, resultcount, done;
1705
1706 resultcount = 0;
1707 /* Assume the 'q' and 'M chars have been stripped. */
1708 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1709 /* done parse past here */
1710 pkt = unpack_byte (pkt, &count); /* count field */
1711 pkt = unpack_nibble (pkt, &done);
1712 /* The first threadid is the argument threadid. */
1713 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1714 while ((count-- > 0) && (pkt < limit))
1715 {
1716 pkt = unpack_threadid (pkt, resultlist++);
1717 if (resultcount++ >= result_limit)
1718 break;
1719 }
1720 if (doneflag)
1721 *doneflag = done;
1722 return resultcount;
1723 }
1724
1725 static int
1726 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1727 int *done, int *result_count, threadref *threadlist)
1728 {
1729 struct remote_state *rs = get_remote_state ();
1730 static threadref echo_nextthread;
1731 int result = 1;
1732
1733 /* Trancate result limit to be smaller than the packet size. */
1734 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1735 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1736
1737 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1738 putpkt (rs->buf);
1739 getpkt (&rs->buf, &rs->buf_size, 0);
1740
1741 if (*rs->buf == '\0')
1742 *result_count = 0;
1743 else
1744 *result_count =
1745 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1746 threadlist, done);
1747
1748 if (!threadmatch (&echo_nextthread, nextthread))
1749 {
1750 /* FIXME: This is a good reason to drop the packet. */
1751 /* Possably, there is a duplicate response. */
1752 /* Possabilities :
1753 retransmit immediatly - race conditions
1754 retransmit after timeout - yes
1755 exit
1756 wait for packet, then exit
1757 */
1758 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1759 return 0; /* I choose simply exiting. */
1760 }
1761 if (*result_count <= 0)
1762 {
1763 if (*done != 1)
1764 {
1765 warning (_("RMT ERROR : failed to get remote thread list."));
1766 result = 0;
1767 }
1768 return result; /* break; */
1769 }
1770 if (*result_count > result_limit)
1771 {
1772 *result_count = 0;
1773 warning (_("RMT ERROR: threadlist response longer than requested."));
1774 return 0;
1775 }
1776 return result;
1777 }
1778
1779 /* This is the interface between remote and threads, remotes upper
1780 interface. */
1781
1782 /* remote_find_new_threads retrieves the thread list and for each
1783 thread in the list, looks up the thread in GDB's internal list,
1784 ading the thread if it does not already exist. This involves
1785 getting partial thread lists from the remote target so, polling the
1786 quit_flag is required. */
1787
1788
1789 /* About this many threadisds fit in a packet. */
1790
1791 #define MAXTHREADLISTRESULTS 32
1792
1793 static int
1794 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1795 int looplimit)
1796 {
1797 int done, i, result_count;
1798 int startflag = 1;
1799 int result = 1;
1800 int loopcount = 0;
1801 static threadref nextthread;
1802 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1803
1804 done = 0;
1805 while (!done)
1806 {
1807 if (loopcount++ > looplimit)
1808 {
1809 result = 0;
1810 warning (_("Remote fetch threadlist -infinite loop-."));
1811 break;
1812 }
1813 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1814 &done, &result_count, resultthreadlist))
1815 {
1816 result = 0;
1817 break;
1818 }
1819 /* Clear for later iterations. */
1820 startflag = 0;
1821 /* Setup to resume next batch of thread references, set nextthread. */
1822 if (result_count >= 1)
1823 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1824 i = 0;
1825 while (result_count--)
1826 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1827 break;
1828 }
1829 return result;
1830 }
1831
1832 static int
1833 remote_newthread_step (threadref *ref, void *context)
1834 {
1835 ptid_t ptid;
1836
1837 ptid = pid_to_ptid (threadref_to_int (ref));
1838
1839 if (!in_thread_list (ptid))
1840 add_thread (ptid);
1841 return 1; /* continue iterator */
1842 }
1843
1844 #define CRAZY_MAX_THREADS 1000
1845
1846 static ptid_t
1847 remote_current_thread (ptid_t oldpid)
1848 {
1849 struct remote_state *rs = get_remote_state ();
1850
1851 putpkt ("qC");
1852 getpkt (&rs->buf, &rs->buf_size, 0);
1853 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1854 /* Use strtoul here, so we'll correctly parse values whose highest
1855 bit is set. The protocol carries them as a simple series of
1856 hex digits; in the absence of a sign, strtol will see such
1857 values as positive numbers out of range for signed 'long', and
1858 return LONG_MAX to indicate an overflow. */
1859 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1860 else
1861 return oldpid;
1862 }
1863
1864 /* Find new threads for info threads command.
1865 * Original version, using John Metzler's thread protocol.
1866 */
1867
1868 static void
1869 remote_find_new_threads (void)
1870 {
1871 remote_threadlist_iterator (remote_newthread_step, 0,
1872 CRAZY_MAX_THREADS);
1873 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1874 inferior_ptid = remote_current_thread (inferior_ptid);
1875 }
1876
1877 /*
1878 * Find all threads for info threads command.
1879 * Uses new thread protocol contributed by Cisco.
1880 * Falls back and attempts to use the older method (above)
1881 * if the target doesn't respond to the new method.
1882 */
1883
1884 static void
1885 remote_threads_info (void)
1886 {
1887 struct remote_state *rs = get_remote_state ();
1888 char *bufp;
1889 int tid;
1890
1891 if (remote_desc == 0) /* paranoia */
1892 error (_("Command can only be used when connected to the remote target."));
1893
1894 if (use_threadinfo_query)
1895 {
1896 putpkt ("qfThreadInfo");
1897 getpkt (&rs->buf, &rs->buf_size, 0);
1898 bufp = rs->buf;
1899 if (bufp[0] != '\0') /* q packet recognized */
1900 {
1901 while (*bufp++ == 'm') /* reply contains one or more TID */
1902 {
1903 do
1904 {
1905 /* Use strtoul here, so we'll correctly parse values
1906 whose highest bit is set. The protocol carries
1907 them as a simple series of hex digits; in the
1908 absence of a sign, strtol will see such values as
1909 positive numbers out of range for signed 'long',
1910 and return LONG_MAX to indicate an overflow. */
1911 tid = strtoul (bufp, &bufp, 16);
1912 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1913 add_thread (pid_to_ptid (tid));
1914 }
1915 while (*bufp++ == ','); /* comma-separated list */
1916 putpkt ("qsThreadInfo");
1917 getpkt (&rs->buf, &rs->buf_size, 0);
1918 bufp = rs->buf;
1919 }
1920 return; /* done */
1921 }
1922 }
1923
1924 /* Else fall back to old method based on jmetzler protocol. */
1925 use_threadinfo_query = 0;
1926 remote_find_new_threads ();
1927 return;
1928 }
1929
1930 /*
1931 * Collect a descriptive string about the given thread.
1932 * The target may say anything it wants to about the thread
1933 * (typically info about its blocked / runnable state, name, etc.).
1934 * This string will appear in the info threads display.
1935 *
1936 * Optional: targets are not required to implement this function.
1937 */
1938
1939 static char *
1940 remote_threads_extra_info (struct thread_info *tp)
1941 {
1942 struct remote_state *rs = get_remote_state ();
1943 int result;
1944 int set;
1945 threadref id;
1946 struct gdb_ext_thread_info threadinfo;
1947 static char display_buf[100]; /* arbitrary... */
1948 int n = 0; /* position in display_buf */
1949
1950 if (remote_desc == 0) /* paranoia */
1951 internal_error (__FILE__, __LINE__,
1952 _("remote_threads_extra_info"));
1953
1954 if (use_threadextra_query)
1955 {
1956 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1957 PIDGET (tp->ptid));
1958 putpkt (rs->buf);
1959 getpkt (&rs->buf, &rs->buf_size, 0);
1960 if (rs->buf[0] != 0)
1961 {
1962 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1963 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1964 display_buf [result] = '\0';
1965 return display_buf;
1966 }
1967 }
1968
1969 /* If the above query fails, fall back to the old method. */
1970 use_threadextra_query = 0;
1971 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1972 | TAG_MOREDISPLAY | TAG_DISPLAY;
1973 int_to_threadref (&id, PIDGET (tp->ptid));
1974 if (remote_get_threadinfo (&id, set, &threadinfo))
1975 if (threadinfo.active)
1976 {
1977 if (*threadinfo.shortname)
1978 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1979 " Name: %s,", threadinfo.shortname);
1980 if (*threadinfo.display)
1981 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1982 " State: %s,", threadinfo.display);
1983 if (*threadinfo.more_display)
1984 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1985 " Priority: %s", threadinfo.more_display);
1986
1987 if (n > 0)
1988 {
1989 /* For purely cosmetic reasons, clear up trailing commas. */
1990 if (',' == display_buf[n-1])
1991 display_buf[n-1] = ' ';
1992 return display_buf;
1993 }
1994 }
1995 return NULL;
1996 }
1997 \f
1998
1999 /* Restart the remote side; this is an extended protocol operation. */
2000
2001 static void
2002 extended_remote_restart (void)
2003 {
2004 struct remote_state *rs = get_remote_state ();
2005
2006 /* Send the restart command; for reasons I don't understand the
2007 remote side really expects a number after the "R". */
2008 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2009 putpkt (rs->buf);
2010
2011 remote_fileio_reset ();
2012 }
2013 \f
2014 /* Clean up connection to a remote debugger. */
2015
2016 static void
2017 remote_close (int quitting)
2018 {
2019 if (remote_desc)
2020 serial_close (remote_desc);
2021 remote_desc = NULL;
2022 }
2023
2024 /* Query the remote side for the text, data and bss offsets. */
2025
2026 static void
2027 get_offsets (void)
2028 {
2029 struct remote_state *rs = get_remote_state ();
2030 char *buf;
2031 char *ptr;
2032 int lose, num_segments = 0, do_sections, do_segments;
2033 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2034 struct section_offsets *offs;
2035 struct symfile_segment_data *data;
2036
2037 if (symfile_objfile == NULL)
2038 return;
2039
2040 putpkt ("qOffsets");
2041 getpkt (&rs->buf, &rs->buf_size, 0);
2042 buf = rs->buf;
2043
2044 if (buf[0] == '\000')
2045 return; /* Return silently. Stub doesn't support
2046 this command. */
2047 if (buf[0] == 'E')
2048 {
2049 warning (_("Remote failure reply: %s"), buf);
2050 return;
2051 }
2052
2053 /* Pick up each field in turn. This used to be done with scanf, but
2054 scanf will make trouble if CORE_ADDR size doesn't match
2055 conversion directives correctly. The following code will work
2056 with any size of CORE_ADDR. */
2057 text_addr = data_addr = bss_addr = 0;
2058 ptr = buf;
2059 lose = 0;
2060
2061 if (strncmp (ptr, "Text=", 5) == 0)
2062 {
2063 ptr += 5;
2064 /* Don't use strtol, could lose on big values. */
2065 while (*ptr && *ptr != ';')
2066 text_addr = (text_addr << 4) + fromhex (*ptr++);
2067
2068 if (strncmp (ptr, ";Data=", 6) == 0)
2069 {
2070 ptr += 6;
2071 while (*ptr && *ptr != ';')
2072 data_addr = (data_addr << 4) + fromhex (*ptr++);
2073 }
2074 else
2075 lose = 1;
2076
2077 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2078 {
2079 ptr += 5;
2080 while (*ptr && *ptr != ';')
2081 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2082
2083 if (bss_addr != data_addr)
2084 warning (_("Target reported unsupported offsets: %s"), buf);
2085 }
2086 else
2087 lose = 1;
2088 }
2089 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2090 {
2091 ptr += 8;
2092 /* Don't use strtol, could lose on big values. */
2093 while (*ptr && *ptr != ';')
2094 text_addr = (text_addr << 4) + fromhex (*ptr++);
2095 num_segments = 1;
2096
2097 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2098 {
2099 ptr += 9;
2100 while (*ptr && *ptr != ';')
2101 data_addr = (data_addr << 4) + fromhex (*ptr++);
2102 num_segments++;
2103 }
2104 }
2105 else
2106 lose = 1;
2107
2108 if (lose)
2109 error (_("Malformed response to offset query, %s"), buf);
2110 else if (*ptr != '\0')
2111 warning (_("Target reported unsupported offsets: %s"), buf);
2112
2113 offs = ((struct section_offsets *)
2114 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2115 memcpy (offs, symfile_objfile->section_offsets,
2116 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2117
2118 data = get_symfile_segment_data (symfile_objfile->obfd);
2119 do_segments = (data != NULL);
2120 do_sections = num_segments == 0;
2121
2122 if (num_segments > 0)
2123 {
2124 segments[0] = text_addr;
2125 segments[1] = data_addr;
2126 }
2127 /* If we have two segments, we can still try to relocate everything
2128 by assuming that the .text and .data offsets apply to the whole
2129 text and data segments. Convert the offsets given in the packet
2130 to base addresses for symfile_map_offsets_to_segments. */
2131 else if (data && data->num_segments == 2)
2132 {
2133 segments[0] = data->segment_bases[0] + text_addr;
2134 segments[1] = data->segment_bases[1] + data_addr;
2135 num_segments = 2;
2136 }
2137 /* There's no way to relocate by segment. */
2138 else
2139 do_segments = 0;
2140
2141 if (do_segments)
2142 {
2143 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2144 offs, num_segments, segments);
2145
2146 if (ret == 0 && !do_sections)
2147 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2148
2149 if (ret > 0)
2150 do_sections = 0;
2151 }
2152
2153 if (data)
2154 free_symfile_segment_data (data);
2155
2156 if (do_sections)
2157 {
2158 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2159
2160 /* This is a temporary kludge to force data and bss to use the same offsets
2161 because that's what nlmconv does now. The real solution requires changes
2162 to the stub and remote.c that I don't have time to do right now. */
2163
2164 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2165 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2166 }
2167
2168 objfile_relocate (symfile_objfile, offs);
2169 }
2170
2171 /* Stub for catch_exception. */
2172
2173 struct start_remote_args
2174 {
2175 int from_tty;
2176
2177 /* The current target. */
2178 struct target_ops *target;
2179
2180 /* Non-zero if this is an extended-remote target. */
2181 int extended_p;
2182 };
2183
2184 static void
2185 remote_start_remote (struct ui_out *uiout, void *opaque)
2186 {
2187 struct remote_state *rs = get_remote_state ();
2188 struct start_remote_args *args = opaque;
2189 char *wait_status = NULL;
2190
2191 immediate_quit++; /* Allow user to interrupt it. */
2192
2193 /* Ack any packet which the remote side has already sent. */
2194 serial_write (remote_desc, "+", 1);
2195
2196 /* Check whether the target is running now. */
2197 putpkt ("?");
2198 getpkt (&rs->buf, &rs->buf_size, 0);
2199
2200 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2201 {
2202 if (args->extended_p)
2203 {
2204 /* We're connected, but not running. Drop out before we
2205 call start_remote. */
2206 target_mark_exited (args->target);
2207 return;
2208 }
2209 else
2210 error (_("The target is not running (try extended-remote?)"));
2211 }
2212 else
2213 {
2214 if (args->extended_p)
2215 target_mark_running (args->target);
2216
2217 /* Save the reply for later. */
2218 wait_status = alloca (strlen (rs->buf) + 1);
2219 strcpy (wait_status, rs->buf);
2220 }
2221
2222 /* Let the stub know that we want it to return the thread. */
2223 set_thread (-1, 0);
2224
2225 /* Without this, some commands which require an active target
2226 (such as kill) won't work. This variable serves (at least)
2227 double duty as both the pid of the target process (if it has
2228 such), and as a flag indicating that a target is active.
2229 These functions should be split out into seperate variables,
2230 especially since GDB will someday have a notion of debugging
2231 several processes. */
2232 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2233
2234 /* Now, if we have thread information, update inferior_ptid. */
2235 inferior_ptid = remote_current_thread (inferior_ptid);
2236
2237 get_offsets (); /* Get text, data & bss offsets. */
2238
2239 /* Use the previously fetched status. */
2240 gdb_assert (wait_status != NULL);
2241 strcpy (rs->buf, wait_status);
2242 rs->cached_wait_status = 1;
2243
2244 immediate_quit--;
2245 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2246 }
2247
2248 /* Open a connection to a remote debugger.
2249 NAME is the filename used for communication. */
2250
2251 static void
2252 remote_open (char *name, int from_tty)
2253 {
2254 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2255 }
2256
2257 /* Just like remote_open, but with asynchronous support. */
2258 static void
2259 remote_async_open (char *name, int from_tty)
2260 {
2261 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2262 }
2263
2264 /* Open a connection to a remote debugger using the extended
2265 remote gdb protocol. NAME is the filename used for communication. */
2266
2267 static void
2268 extended_remote_open (char *name, int from_tty)
2269 {
2270 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2271 0 /* async_p */);
2272 }
2273
2274 /* Just like extended_remote_open, but with asynchronous support. */
2275 static void
2276 extended_remote_async_open (char *name, int from_tty)
2277 {
2278 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2279 1 /*extended_p */, 1 /* async_p */);
2280 }
2281
2282 /* Generic code for opening a connection to a remote target. */
2283
2284 static void
2285 init_all_packet_configs (void)
2286 {
2287 int i;
2288 for (i = 0; i < PACKET_MAX; i++)
2289 update_packet_config (&remote_protocol_packets[i]);
2290 }
2291
2292 /* Symbol look-up. */
2293
2294 static void
2295 remote_check_symbols (struct objfile *objfile)
2296 {
2297 struct remote_state *rs = get_remote_state ();
2298 char *msg, *reply, *tmp;
2299 struct minimal_symbol *sym;
2300 int end;
2301
2302 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2303 return;
2304
2305 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2306 because we need both at the same time. */
2307 msg = alloca (get_remote_packet_size ());
2308
2309 /* Invite target to request symbol lookups. */
2310
2311 putpkt ("qSymbol::");
2312 getpkt (&rs->buf, &rs->buf_size, 0);
2313 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2314 reply = rs->buf;
2315
2316 while (strncmp (reply, "qSymbol:", 8) == 0)
2317 {
2318 tmp = &reply[8];
2319 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2320 msg[end] = '\0';
2321 sym = lookup_minimal_symbol (msg, NULL, NULL);
2322 if (sym == NULL)
2323 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2324 else
2325 {
2326 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2327
2328 /* If this is a function address, return the start of code
2329 instead of any data function descriptor. */
2330 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2331 sym_addr,
2332 &current_target);
2333
2334 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2335 paddr_nz (sym_addr), &reply[8]);
2336 }
2337
2338 putpkt (msg);
2339 getpkt (&rs->buf, &rs->buf_size, 0);
2340 reply = rs->buf;
2341 }
2342 }
2343
2344 static struct serial *
2345 remote_serial_open (char *name)
2346 {
2347 static int udp_warning = 0;
2348
2349 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2350 of in ser-tcp.c, because it is the remote protocol assuming that the
2351 serial connection is reliable and not the serial connection promising
2352 to be. */
2353 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2354 {
2355 warning (_("\
2356 The remote protocol may be unreliable over UDP.\n\
2357 Some events may be lost, rendering further debugging impossible."));
2358 udp_warning = 1;
2359 }
2360
2361 return serial_open (name);
2362 }
2363
2364 /* This type describes each known response to the qSupported
2365 packet. */
2366 struct protocol_feature
2367 {
2368 /* The name of this protocol feature. */
2369 const char *name;
2370
2371 /* The default for this protocol feature. */
2372 enum packet_support default_support;
2373
2374 /* The function to call when this feature is reported, or after
2375 qSupported processing if the feature is not supported.
2376 The first argument points to this structure. The second
2377 argument indicates whether the packet requested support be
2378 enabled, disabled, or probed (or the default, if this function
2379 is being called at the end of processing and this feature was
2380 not reported). The third argument may be NULL; if not NULL, it
2381 is a NUL-terminated string taken from the packet following
2382 this feature's name and an equals sign. */
2383 void (*func) (const struct protocol_feature *, enum packet_support,
2384 const char *);
2385
2386 /* The corresponding packet for this feature. Only used if
2387 FUNC is remote_supported_packet. */
2388 int packet;
2389 };
2390
2391 static void
2392 remote_supported_packet (const struct protocol_feature *feature,
2393 enum packet_support support,
2394 const char *argument)
2395 {
2396 if (argument)
2397 {
2398 warning (_("Remote qSupported response supplied an unexpected value for"
2399 " \"%s\"."), feature->name);
2400 return;
2401 }
2402
2403 if (remote_protocol_packets[feature->packet].support
2404 == PACKET_SUPPORT_UNKNOWN)
2405 remote_protocol_packets[feature->packet].support = support;
2406 }
2407
2408 static void
2409 remote_packet_size (const struct protocol_feature *feature,
2410 enum packet_support support, const char *value)
2411 {
2412 struct remote_state *rs = get_remote_state ();
2413
2414 int packet_size;
2415 char *value_end;
2416
2417 if (support != PACKET_ENABLE)
2418 return;
2419
2420 if (value == NULL || *value == '\0')
2421 {
2422 warning (_("Remote target reported \"%s\" without a size."),
2423 feature->name);
2424 return;
2425 }
2426
2427 errno = 0;
2428 packet_size = strtol (value, &value_end, 16);
2429 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2430 {
2431 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2432 feature->name, value);
2433 return;
2434 }
2435
2436 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2437 {
2438 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2439 packet_size, MAX_REMOTE_PACKET_SIZE);
2440 packet_size = MAX_REMOTE_PACKET_SIZE;
2441 }
2442
2443 /* Record the new maximum packet size. */
2444 rs->explicit_packet_size = packet_size;
2445 }
2446
2447 static struct protocol_feature remote_protocol_features[] = {
2448 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2449 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2450 PACKET_qXfer_auxv },
2451 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2452 PACKET_qXfer_features },
2453 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2454 PACKET_qXfer_libraries },
2455 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2456 PACKET_qXfer_memory_map },
2457 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2458 PACKET_qXfer_spu_read },
2459 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2460 PACKET_qXfer_spu_write },
2461 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2462 PACKET_QPassSignals },
2463 };
2464
2465 static void
2466 remote_query_supported (void)
2467 {
2468 struct remote_state *rs = get_remote_state ();
2469 char *next;
2470 int i;
2471 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2472
2473 /* The packet support flags are handled differently for this packet
2474 than for most others. We treat an error, a disabled packet, and
2475 an empty response identically: any features which must be reported
2476 to be used will be automatically disabled. An empty buffer
2477 accomplishes this, since that is also the representation for a list
2478 containing no features. */
2479
2480 rs->buf[0] = 0;
2481 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2482 {
2483 putpkt ("qSupported");
2484 getpkt (&rs->buf, &rs->buf_size, 0);
2485
2486 /* If an error occured, warn, but do not return - just reset the
2487 buffer to empty and go on to disable features. */
2488 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2489 == PACKET_ERROR)
2490 {
2491 warning (_("Remote failure reply: %s"), rs->buf);
2492 rs->buf[0] = 0;
2493 }
2494 }
2495
2496 memset (seen, 0, sizeof (seen));
2497
2498 next = rs->buf;
2499 while (*next)
2500 {
2501 enum packet_support is_supported;
2502 char *p, *end, *name_end, *value;
2503
2504 /* First separate out this item from the rest of the packet. If
2505 there's another item after this, we overwrite the separator
2506 (terminated strings are much easier to work with). */
2507 p = next;
2508 end = strchr (p, ';');
2509 if (end == NULL)
2510 {
2511 end = p + strlen (p);
2512 next = end;
2513 }
2514 else
2515 {
2516 *end = '\0';
2517 next = end + 1;
2518
2519 if (end == p)
2520 {
2521 warning (_("empty item in \"qSupported\" response"));
2522 continue;
2523 }
2524 }
2525
2526 name_end = strchr (p, '=');
2527 if (name_end)
2528 {
2529 /* This is a name=value entry. */
2530 is_supported = PACKET_ENABLE;
2531 value = name_end + 1;
2532 *name_end = '\0';
2533 }
2534 else
2535 {
2536 value = NULL;
2537 switch (end[-1])
2538 {
2539 case '+':
2540 is_supported = PACKET_ENABLE;
2541 break;
2542
2543 case '-':
2544 is_supported = PACKET_DISABLE;
2545 break;
2546
2547 case '?':
2548 is_supported = PACKET_SUPPORT_UNKNOWN;
2549 break;
2550
2551 default:
2552 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2553 continue;
2554 }
2555 end[-1] = '\0';
2556 }
2557
2558 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2559 if (strcmp (remote_protocol_features[i].name, p) == 0)
2560 {
2561 const struct protocol_feature *feature;
2562
2563 seen[i] = 1;
2564 feature = &remote_protocol_features[i];
2565 feature->func (feature, is_supported, value);
2566 break;
2567 }
2568 }
2569
2570 /* If we increased the packet size, make sure to increase the global
2571 buffer size also. We delay this until after parsing the entire
2572 qSupported packet, because this is the same buffer we were
2573 parsing. */
2574 if (rs->buf_size < rs->explicit_packet_size)
2575 {
2576 rs->buf_size = rs->explicit_packet_size;
2577 rs->buf = xrealloc (rs->buf, rs->buf_size);
2578 }
2579
2580 /* Handle the defaults for unmentioned features. */
2581 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2582 if (!seen[i])
2583 {
2584 const struct protocol_feature *feature;
2585
2586 feature = &remote_protocol_features[i];
2587 feature->func (feature, feature->default_support, NULL);
2588 }
2589 }
2590
2591
2592 static void
2593 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2594 int extended_p, int async_p)
2595 {
2596 struct remote_state *rs = get_remote_state ();
2597 if (name == 0)
2598 error (_("To open a remote debug connection, you need to specify what\n"
2599 "serial device is attached to the remote system\n"
2600 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2601
2602 /* See FIXME above. */
2603 if (!async_p)
2604 wait_forever_enabled_p = 1;
2605
2606 /* If we're connected to a running target, target_preopen will kill it.
2607 But if we're connected to a target system with no running process,
2608 then we will still be connected when it returns. Ask this question
2609 first, before target_preopen has a chance to kill anything. */
2610 if (remote_desc != NULL && !target_has_execution)
2611 {
2612 if (!from_tty
2613 || query (_("Already connected to a remote target. Disconnect? ")))
2614 pop_target ();
2615 else
2616 error (_("Still connected."));
2617 }
2618
2619 target_preopen (from_tty);
2620
2621 unpush_target (target);
2622
2623 /* This time without a query. If we were connected to an
2624 extended-remote target and target_preopen killed the running
2625 process, we may still be connected. If we are starting "target
2626 remote" now, the extended-remote target will not have been
2627 removed by unpush_target. */
2628 if (remote_desc != NULL && !target_has_execution)
2629 pop_target ();
2630
2631 /* Make sure we send the passed signals list the next time we resume. */
2632 xfree (last_pass_packet);
2633 last_pass_packet = NULL;
2634
2635 remote_fileio_reset ();
2636 reopen_exec_file ();
2637 reread_symbols ();
2638
2639 remote_desc = remote_serial_open (name);
2640 if (!remote_desc)
2641 perror_with_name (name);
2642
2643 if (baud_rate != -1)
2644 {
2645 if (serial_setbaudrate (remote_desc, baud_rate))
2646 {
2647 /* The requested speed could not be set. Error out to
2648 top level after closing remote_desc. Take care to
2649 set remote_desc to NULL to avoid closing remote_desc
2650 more than once. */
2651 serial_close (remote_desc);
2652 remote_desc = NULL;
2653 perror_with_name (name);
2654 }
2655 }
2656
2657 serial_raw (remote_desc);
2658
2659 /* If there is something sitting in the buffer we might take it as a
2660 response to a command, which would be bad. */
2661 serial_flush_input (remote_desc);
2662
2663 if (from_tty)
2664 {
2665 puts_filtered ("Remote debugging using ");
2666 puts_filtered (name);
2667 puts_filtered ("\n");
2668 }
2669 push_target (target); /* Switch to using remote target now. */
2670
2671 /* Assume that the target is running, unless we learn otherwise. */
2672 target_mark_running (target);
2673
2674 /* Reset the target state; these things will be queried either by
2675 remote_query_supported or as they are needed. */
2676 init_all_packet_configs ();
2677 rs->explicit_packet_size = 0;
2678
2679 general_thread = -2;
2680 continue_thread = -2;
2681
2682 /* Probe for ability to use "ThreadInfo" query, as required. */
2683 use_threadinfo_query = 1;
2684 use_threadextra_query = 1;
2685
2686 /* The first packet we send to the target is the optional "supported
2687 packets" request. If the target can answer this, it will tell us
2688 which later probes to skip. */
2689 remote_query_supported ();
2690
2691 /* Next, if the target can specify a description, read it. We do
2692 this before anything involving memory or registers. */
2693 target_find_description ();
2694
2695 if (async_p)
2696 {
2697 /* With this target we start out by owning the terminal. */
2698 remote_async_terminal_ours_p = 1;
2699
2700 /* FIXME: cagney/1999-09-23: During the initial connection it is
2701 assumed that the target is already ready and able to respond to
2702 requests. Unfortunately remote_start_remote() eventually calls
2703 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2704 around this. Eventually a mechanism that allows
2705 wait_for_inferior() to expect/get timeouts will be
2706 implemented. */
2707 wait_forever_enabled_p = 0;
2708 }
2709
2710 /* First delete any symbols previously loaded from shared libraries. */
2711 no_shared_libraries (NULL, 0);
2712
2713 /* Start the remote connection. If error() or QUIT, discard this
2714 target (we'd otherwise be in an inconsistent state) and then
2715 propogate the error on up the exception chain. This ensures that
2716 the caller doesn't stumble along blindly assuming that the
2717 function succeeded. The CLI doesn't have this problem but other
2718 UI's, such as MI do.
2719
2720 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2721 this function should return an error indication letting the
2722 caller restore the previous state. Unfortunately the command
2723 ``target remote'' is directly wired to this function making that
2724 impossible. On a positive note, the CLI side of this problem has
2725 been fixed - the function set_cmd_context() makes it possible for
2726 all the ``target ....'' commands to share a common callback
2727 function. See cli-dump.c. */
2728 {
2729 struct gdb_exception ex;
2730 struct start_remote_args args;
2731
2732 args.from_tty = from_tty;
2733 args.target = target;
2734 args.extended_p = extended_p;
2735
2736 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2737 if (ex.reason < 0)
2738 {
2739 pop_target ();
2740 if (async_p)
2741 wait_forever_enabled_p = 1;
2742 throw_exception (ex);
2743 }
2744 }
2745
2746 if (async_p)
2747 wait_forever_enabled_p = 1;
2748
2749 if (extended_p)
2750 {
2751 /* Tell the remote that we are using the extended protocol. */
2752 putpkt ("!");
2753 getpkt (&rs->buf, &rs->buf_size, 0);
2754 }
2755
2756 /* If we connected to a live target, do some additional setup. */
2757 if (target_has_execution)
2758 {
2759 if (exec_bfd) /* No use without an exec file. */
2760 remote_check_symbols (symfile_objfile);
2761 }
2762 }
2763
2764 /* This takes a program previously attached to and detaches it. After
2765 this is done, GDB can be used to debug some other program. We
2766 better not have left any breakpoints in the target program or it'll
2767 die when it hits one. */
2768
2769 static void
2770 remote_detach_1 (char *args, int from_tty, int extended)
2771 {
2772 struct remote_state *rs = get_remote_state ();
2773
2774 if (args)
2775 error (_("Argument given to \"detach\" when remotely debugging."));
2776
2777 if (!target_has_execution)
2778 error (_("No process to detach from."));
2779
2780 /* Tell the remote target to detach. */
2781 strcpy (rs->buf, "D");
2782 putpkt (rs->buf);
2783 getpkt (&rs->buf, &rs->buf_size, 0);
2784
2785 if (rs->buf[0] == 'E')
2786 error (_("Can't detach process."));
2787
2788 /* Unregister the file descriptor from the event loop. */
2789 if (target_is_async_p ())
2790 serial_async (remote_desc, NULL, 0);
2791
2792 target_mourn_inferior ();
2793 if (from_tty)
2794 {
2795 if (extended)
2796 puts_filtered ("Detached from remote process.\n");
2797 else
2798 puts_filtered ("Ending remote debugging.\n");
2799 }
2800 }
2801
2802 static void
2803 remote_detach (char *args, int from_tty)
2804 {
2805 remote_detach_1 (args, from_tty, 0);
2806 }
2807
2808 static void
2809 extended_remote_detach (char *args, int from_tty)
2810 {
2811 remote_detach_1 (args, from_tty, 1);
2812 }
2813
2814 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2815
2816 static void
2817 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2818 {
2819 if (args)
2820 error (_("Argument given to \"disconnect\" when remotely debugging."));
2821
2822 /* Unregister the file descriptor from the event loop. */
2823 if (target_is_async_p ())
2824 serial_async (remote_desc, NULL, 0);
2825
2826 /* Make sure we unpush even the extended remote targets; mourn
2827 won't do it. So call remote_mourn_1 directly instead of
2828 target_mourn_inferior. */
2829 remote_mourn_1 (target);
2830
2831 if (from_tty)
2832 puts_filtered ("Ending remote debugging.\n");
2833 }
2834
2835 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2836 be chatty about it. */
2837
2838 static void
2839 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2840 {
2841 struct remote_state *rs = get_remote_state ();
2842 int pid;
2843 char *dummy;
2844 char *wait_status = NULL;
2845
2846 if (!args)
2847 error_no_arg (_("process-id to attach"));
2848
2849 dummy = args;
2850 pid = strtol (args, &dummy, 0);
2851 /* Some targets don't set errno on errors, grrr! */
2852 if (pid == 0 && args == dummy)
2853 error (_("Illegal process-id: %s."), args);
2854
2855 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2856 error (_("This target does not support attaching to a process"));
2857
2858 sprintf (rs->buf, "vAttach;%x", pid);
2859 putpkt (rs->buf);
2860 getpkt (&rs->buf, &rs->buf_size, 0);
2861
2862 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2863 {
2864 if (from_tty)
2865 printf_unfiltered (_("Attached to %s\n"),
2866 target_pid_to_str (pid_to_ptid (pid)));
2867
2868 /* Save the reply for later. */
2869 wait_status = alloca (strlen (rs->buf) + 1);
2870 strcpy (wait_status, rs->buf);
2871 }
2872 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2873 error (_("This target does not support attaching to a process"));
2874 else
2875 error (_("Attaching to %s failed"),
2876 target_pid_to_str (pid_to_ptid (pid)));
2877
2878 target_mark_running (target);
2879 inferior_ptid = pid_to_ptid (pid);
2880 attach_flag = 1;
2881
2882 /* Next, if the target can specify a description, read it. We do
2883 this before anything involving memory or registers. */
2884 target_find_description ();
2885
2886 /* Use the previously fetched status. */
2887 gdb_assert (wait_status != NULL);
2888 strcpy (rs->buf, wait_status);
2889 rs->cached_wait_status = 1;
2890 }
2891
2892 static void
2893 extended_remote_attach (char *args, int from_tty)
2894 {
2895 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2896 }
2897
2898 static void
2899 extended_async_remote_attach (char *args, int from_tty)
2900 {
2901 extended_remote_attach_1 (&extended_async_remote_ops, args, from_tty);
2902 }
2903
2904 /* Convert hex digit A to a number. */
2905
2906 static int
2907 fromhex (int a)
2908 {
2909 if (a >= '0' && a <= '9')
2910 return a - '0';
2911 else if (a >= 'a' && a <= 'f')
2912 return a - 'a' + 10;
2913 else if (a >= 'A' && a <= 'F')
2914 return a - 'A' + 10;
2915 else
2916 error (_("Reply contains invalid hex digit %d"), a);
2917 }
2918
2919 static int
2920 hex2bin (const char *hex, gdb_byte *bin, int count)
2921 {
2922 int i;
2923
2924 for (i = 0; i < count; i++)
2925 {
2926 if (hex[0] == 0 || hex[1] == 0)
2927 {
2928 /* Hex string is short, or of uneven length.
2929 Return the count that has been converted so far. */
2930 return i;
2931 }
2932 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2933 hex += 2;
2934 }
2935 return i;
2936 }
2937
2938 /* Convert number NIB to a hex digit. */
2939
2940 static int
2941 tohex (int nib)
2942 {
2943 if (nib < 10)
2944 return '0' + nib;
2945 else
2946 return 'a' + nib - 10;
2947 }
2948
2949 static int
2950 bin2hex (const gdb_byte *bin, char *hex, int count)
2951 {
2952 int i;
2953 /* May use a length, or a nul-terminated string as input. */
2954 if (count == 0)
2955 count = strlen ((char *) bin);
2956
2957 for (i = 0; i < count; i++)
2958 {
2959 *hex++ = tohex ((*bin >> 4) & 0xf);
2960 *hex++ = tohex (*bin++ & 0xf);
2961 }
2962 *hex = 0;
2963 return i;
2964 }
2965 \f
2966 /* Check for the availability of vCont. This function should also check
2967 the response. */
2968
2969 static void
2970 remote_vcont_probe (struct remote_state *rs)
2971 {
2972 char *buf;
2973
2974 strcpy (rs->buf, "vCont?");
2975 putpkt (rs->buf);
2976 getpkt (&rs->buf, &rs->buf_size, 0);
2977 buf = rs->buf;
2978
2979 /* Make sure that the features we assume are supported. */
2980 if (strncmp (buf, "vCont", 5) == 0)
2981 {
2982 char *p = &buf[5];
2983 int support_s, support_S, support_c, support_C;
2984
2985 support_s = 0;
2986 support_S = 0;
2987 support_c = 0;
2988 support_C = 0;
2989 while (p && *p == ';')
2990 {
2991 p++;
2992 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2993 support_s = 1;
2994 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2995 support_S = 1;
2996 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2997 support_c = 1;
2998 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2999 support_C = 1;
3000
3001 p = strchr (p, ';');
3002 }
3003
3004 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3005 BUF will make packet_ok disable the packet. */
3006 if (!support_s || !support_S || !support_c || !support_C)
3007 buf[0] = 0;
3008 }
3009
3010 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3011 }
3012
3013 /* Resume the remote inferior by using a "vCont" packet. The thread
3014 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3015 resumed thread should be single-stepped and/or signalled. If PTID's
3016 PID is -1, then all threads are resumed; the thread to be stepped and/or
3017 signalled is given in the global INFERIOR_PTID. This function returns
3018 non-zero iff it resumes the inferior.
3019
3020 This function issues a strict subset of all possible vCont commands at the
3021 moment. */
3022
3023 static int
3024 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3025 {
3026 struct remote_state *rs = get_remote_state ();
3027 int pid = PIDGET (ptid);
3028 char *outbuf;
3029 struct cleanup *old_cleanup;
3030
3031 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3032 remote_vcont_probe (rs);
3033
3034 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3035 return 0;
3036
3037 /* If we could generate a wider range of packets, we'd have to worry
3038 about overflowing BUF. Should there be a generic
3039 "multi-part-packet" packet? */
3040
3041 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
3042 {
3043 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
3044 don't have any PID numbers the inferior will understand. Make sure
3045 to only send forms that do not specify a PID. */
3046 if (step && siggnal != TARGET_SIGNAL_0)
3047 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3048 else if (step)
3049 outbuf = xstrprintf ("vCont;s");
3050 else if (siggnal != TARGET_SIGNAL_0)
3051 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3052 else
3053 outbuf = xstrprintf ("vCont;c");
3054 }
3055 else if (pid == -1)
3056 {
3057 /* Resume all threads, with preference for INFERIOR_PTID. */
3058 if (step && siggnal != TARGET_SIGNAL_0)
3059 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
3060 PIDGET (inferior_ptid));
3061 else if (step)
3062 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
3063 else if (siggnal != TARGET_SIGNAL_0)
3064 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
3065 PIDGET (inferior_ptid));
3066 else
3067 outbuf = xstrprintf ("vCont;c");
3068 }
3069 else
3070 {
3071 /* Scheduler locking; resume only PTID. */
3072 if (step && siggnal != TARGET_SIGNAL_0)
3073 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
3074 else if (step)
3075 outbuf = xstrprintf ("vCont;s:%x", pid);
3076 else if (siggnal != TARGET_SIGNAL_0)
3077 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
3078 else
3079 outbuf = xstrprintf ("vCont;c:%x", pid);
3080 }
3081
3082 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3083 old_cleanup = make_cleanup (xfree, outbuf);
3084
3085 putpkt (outbuf);
3086
3087 do_cleanups (old_cleanup);
3088
3089 return 1;
3090 }
3091
3092 /* Tell the remote machine to resume. */
3093
3094 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3095
3096 static int last_sent_step;
3097
3098 static void
3099 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3100 {
3101 struct remote_state *rs = get_remote_state ();
3102 char *buf;
3103 int pid = PIDGET (ptid);
3104
3105 last_sent_signal = siggnal;
3106 last_sent_step = step;
3107
3108 /* Update the inferior on signals to silently pass, if they've changed. */
3109 remote_pass_signals ();
3110
3111 /* The vCont packet doesn't need to specify threads via Hc. */
3112 if (remote_vcont_resume (ptid, step, siggnal))
3113 return;
3114
3115 /* All other supported resume packets do use Hc, so call set_thread. */
3116 if (pid == -1)
3117 set_thread (0, 0); /* Run any thread. */
3118 else
3119 set_thread (pid, 0); /* Run this thread. */
3120
3121 buf = rs->buf;
3122 if (siggnal != TARGET_SIGNAL_0)
3123 {
3124 buf[0] = step ? 'S' : 'C';
3125 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3126 buf[2] = tohex (((int) siggnal) & 0xf);
3127 buf[3] = '\0';
3128 }
3129 else
3130 strcpy (buf, step ? "s" : "c");
3131
3132 putpkt (buf);
3133 }
3134
3135 /* Same as remote_resume, but with async support. */
3136 static void
3137 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
3138 {
3139 remote_resume (ptid, step, siggnal);
3140
3141 /* We are about to start executing the inferior, let's register it
3142 with the event loop. NOTE: this is the one place where all the
3143 execution commands end up. We could alternatively do this in each
3144 of the execution commands in infcmd.c. */
3145 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3146 into infcmd.c in order to allow inferior function calls to work
3147 NOT asynchronously. */
3148 if (target_can_async_p ())
3149 target_async (inferior_event_handler, 0);
3150 /* Tell the world that the target is now executing. */
3151 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3152 this? Instead, should the client of target just assume (for
3153 async targets) that the target is going to start executing? Is
3154 this information already found in the continuation block? */
3155 if (target_is_async_p ())
3156 target_executing = 1;
3157 }
3158 \f
3159
3160 /* Set up the signal handler for SIGINT, while the target is
3161 executing, ovewriting the 'regular' SIGINT signal handler. */
3162 static void
3163 initialize_sigint_signal_handler (void)
3164 {
3165 signal (SIGINT, handle_remote_sigint);
3166 }
3167
3168 /* Signal handler for SIGINT, while the target is executing. */
3169 static void
3170 handle_remote_sigint (int sig)
3171 {
3172 signal (sig, handle_remote_sigint_twice);
3173 mark_async_signal_handler_wrapper (sigint_remote_token);
3174 }
3175
3176 /* Signal handler for SIGINT, installed after SIGINT has already been
3177 sent once. It will take effect the second time that the user sends
3178 a ^C. */
3179 static void
3180 handle_remote_sigint_twice (int sig)
3181 {
3182 signal (sig, handle_remote_sigint);
3183 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3184 }
3185
3186 /* Perform the real interruption of the target execution, in response
3187 to a ^C. */
3188 static void
3189 async_remote_interrupt (gdb_client_data arg)
3190 {
3191 if (remote_debug)
3192 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3193
3194 target_stop ();
3195 }
3196
3197 /* Perform interrupt, if the first attempt did not succeed. Just give
3198 up on the target alltogether. */
3199 void
3200 async_remote_interrupt_twice (gdb_client_data arg)
3201 {
3202 if (remote_debug)
3203 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3204
3205 interrupt_query ();
3206 }
3207
3208 /* Reinstall the usual SIGINT handlers, after the target has
3209 stopped. */
3210 static void
3211 cleanup_sigint_signal_handler (void *dummy)
3212 {
3213 signal (SIGINT, handle_sigint);
3214 }
3215
3216 /* Send ^C to target to halt it. Target will respond, and send us a
3217 packet. */
3218 static void (*ofunc) (int);
3219
3220 /* The command line interface's stop routine. This function is installed
3221 as a signal handler for SIGINT. The first time a user requests a
3222 stop, we call remote_stop to send a break or ^C. If there is no
3223 response from the target (it didn't stop when the user requested it),
3224 we ask the user if he'd like to detach from the target. */
3225 static void
3226 remote_interrupt (int signo)
3227 {
3228 /* If this doesn't work, try more severe steps. */
3229 signal (signo, remote_interrupt_twice);
3230
3231 gdb_call_async_signal_handler (sigint_remote_token, 1);
3232 }
3233
3234 /* The user typed ^C twice. */
3235
3236 static void
3237 remote_interrupt_twice (int signo)
3238 {
3239 signal (signo, ofunc);
3240 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3241 signal (signo, remote_interrupt);
3242 }
3243
3244 /* This is the generic stop called via the target vector. When a target
3245 interrupt is requested, either by the command line or the GUI, we
3246 will eventually end up here. */
3247 static void
3248 remote_stop (void)
3249 {
3250 /* Send a break or a ^C, depending on user preference. */
3251 if (remote_debug)
3252 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3253
3254 if (remote_break)
3255 serial_send_break (remote_desc);
3256 else
3257 serial_write (remote_desc, "\003", 1);
3258 }
3259
3260 /* Ask the user what to do when an interrupt is received. */
3261
3262 static void
3263 interrupt_query (void)
3264 {
3265 target_terminal_ours ();
3266
3267 if (query ("Interrupted while waiting for the program.\n\
3268 Give up (and stop debugging it)? "))
3269 {
3270 target_mourn_inferior ();
3271 signal (SIGINT, handle_sigint);
3272 deprecated_throw_reason (RETURN_QUIT);
3273 }
3274
3275 target_terminal_inferior ();
3276 }
3277
3278 /* Enable/disable target terminal ownership. Most targets can use
3279 terminal groups to control terminal ownership. Remote targets are
3280 different in that explicit transfer of ownership to/from GDB/target
3281 is required. */
3282
3283 static void
3284 remote_async_terminal_inferior (void)
3285 {
3286 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3287 sync_execution here. This function should only be called when
3288 GDB is resuming the inferior in the forground. A background
3289 resume (``run&'') should leave GDB in control of the terminal and
3290 consequently should not call this code. */
3291 if (!sync_execution)
3292 return;
3293 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3294 calls target_terminal_*() idenpotent. The event-loop GDB talking
3295 to an asynchronous target with a synchronous command calls this
3296 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3297 stops trying to transfer the terminal to the target when it
3298 shouldn't this guard can go away. */
3299 if (!remote_async_terminal_ours_p)
3300 return;
3301 delete_file_handler (input_fd);
3302 remote_async_terminal_ours_p = 0;
3303 initialize_sigint_signal_handler ();
3304 /* NOTE: At this point we could also register our selves as the
3305 recipient of all input. Any characters typed could then be
3306 passed on down to the target. */
3307 }
3308
3309 static void
3310 remote_async_terminal_ours (void)
3311 {
3312 /* See FIXME in remote_async_terminal_inferior. */
3313 if (!sync_execution)
3314 return;
3315 /* See FIXME in remote_async_terminal_inferior. */
3316 if (remote_async_terminal_ours_p)
3317 return;
3318 cleanup_sigint_signal_handler (NULL);
3319 add_file_handler (input_fd, stdin_event_handler, 0);
3320 remote_async_terminal_ours_p = 1;
3321 }
3322
3323 /* If nonzero, ignore the next kill. */
3324
3325 int kill_kludge;
3326
3327 void
3328 remote_console_output (char *msg)
3329 {
3330 char *p;
3331
3332 for (p = msg; p[0] && p[1]; p += 2)
3333 {
3334 char tb[2];
3335 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3336 tb[0] = c;
3337 tb[1] = 0;
3338 fputs_unfiltered (tb, gdb_stdtarg);
3339 }
3340 gdb_flush (gdb_stdtarg);
3341 }
3342
3343 /* Wait until the remote machine stops, then return,
3344 storing status in STATUS just as `wait' would.
3345 Returns "pid", which in the case of a multi-threaded
3346 remote OS, is the thread-id. */
3347
3348 static ptid_t
3349 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3350 {
3351 struct remote_state *rs = get_remote_state ();
3352 struct remote_arch_state *rsa = get_remote_arch_state ();
3353 ULONGEST thread_num = -1;
3354 ULONGEST addr;
3355 int solibs_changed = 0;
3356
3357 status->kind = TARGET_WAITKIND_EXITED;
3358 status->value.integer = 0;
3359
3360 while (1)
3361 {
3362 char *buf, *p;
3363
3364 if (rs->cached_wait_status)
3365 /* Use the cached wait status, but only once. */
3366 rs->cached_wait_status = 0;
3367 else
3368 {
3369 ofunc = signal (SIGINT, remote_interrupt);
3370 /* If the user hit C-c before this packet, or between packets,
3371 pretend that it was hit right here. */
3372 if (quit_flag)
3373 {
3374 quit_flag = 0;
3375 remote_interrupt (SIGINT);
3376 }
3377 getpkt (&rs->buf, &rs->buf_size, 1);
3378 signal (SIGINT, ofunc);
3379 }
3380
3381 buf = rs->buf;
3382
3383 remote_stopped_by_watchpoint_p = 0;
3384
3385 switch (buf[0])
3386 {
3387 case 'E': /* Error of some sort. */
3388 /* We're out of sync with the target now. Did it continue or not?
3389 Not is more likely, so report a stop. */
3390 warning (_("Remote failure reply: %s"), buf);
3391 status->kind = TARGET_WAITKIND_STOPPED;
3392 status->value.sig = TARGET_SIGNAL_0;
3393 goto got_status;
3394 case 'F': /* File-I/O request. */
3395 remote_fileio_request (buf);
3396 continue;
3397 case 'T': /* Status with PC, SP, FP, ... */
3398 {
3399 gdb_byte regs[MAX_REGISTER_SIZE];
3400
3401 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3402 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3403 ss = signal number
3404 n... = register number
3405 r... = register contents
3406 */
3407 p = &buf[3]; /* after Txx */
3408
3409 while (*p)
3410 {
3411 char *p1;
3412 char *p_temp;
3413 int fieldsize;
3414 LONGEST pnum = 0;
3415
3416 /* If the packet contains a register number save it in
3417 pnum and set p1 to point to the character following
3418 it. Otherwise p1 points to p. */
3419
3420 /* If this packet is an awatch packet, don't parse the
3421 'a' as a register number. */
3422
3423 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3424 {
3425 /* Read the ``P'' register number. */
3426 pnum = strtol (p, &p_temp, 16);
3427 p1 = p_temp;
3428 }
3429 else
3430 p1 = p;
3431
3432 if (p1 == p) /* No register number present here. */
3433 {
3434 p1 = strchr (p, ':');
3435 if (p1 == NULL)
3436 error (_("Malformed packet(a) (missing colon): %s\n\
3437 Packet: '%s'\n"),
3438 p, buf);
3439 if (strncmp (p, "thread", p1 - p) == 0)
3440 {
3441 p_temp = unpack_varlen_hex (++p1, &thread_num);
3442 record_currthread (thread_num);
3443 p = p_temp;
3444 }
3445 else if ((strncmp (p, "watch", p1 - p) == 0)
3446 || (strncmp (p, "rwatch", p1 - p) == 0)
3447 || (strncmp (p, "awatch", p1 - p) == 0))
3448 {
3449 remote_stopped_by_watchpoint_p = 1;
3450 p = unpack_varlen_hex (++p1, &addr);
3451 remote_watch_data_address = (CORE_ADDR)addr;
3452 }
3453 else if (strncmp (p, "library", p1 - p) == 0)
3454 {
3455 p1++;
3456 p_temp = p1;
3457 while (*p_temp && *p_temp != ';')
3458 p_temp++;
3459
3460 solibs_changed = 1;
3461 p = p_temp;
3462 }
3463 else
3464 {
3465 /* Silently skip unknown optional info. */
3466 p_temp = strchr (p1 + 1, ';');
3467 if (p_temp)
3468 p = p_temp;
3469 }
3470 }
3471 else
3472 {
3473 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3474 p = p1;
3475
3476 if (*p++ != ':')
3477 error (_("Malformed packet(b) (missing colon): %s\n\
3478 Packet: '%s'\n"),
3479 p, buf);
3480
3481 if (reg == NULL)
3482 error (_("Remote sent bad register number %s: %s\n\
3483 Packet: '%s'\n"),
3484 phex_nz (pnum, 0), p, buf);
3485
3486 fieldsize = hex2bin (p, regs,
3487 register_size (current_gdbarch,
3488 reg->regnum));
3489 p += 2 * fieldsize;
3490 if (fieldsize < register_size (current_gdbarch,
3491 reg->regnum))
3492 warning (_("Remote reply is too short: %s"), buf);
3493 regcache_raw_supply (get_current_regcache (),
3494 reg->regnum, regs);
3495 }
3496
3497 if (*p++ != ';')
3498 error (_("Remote register badly formatted: %s\nhere: %s"),
3499 buf, p);
3500 }
3501 }
3502 /* fall through */
3503 case 'S': /* Old style status, just signal only. */
3504 if (solibs_changed)
3505 status->kind = TARGET_WAITKIND_LOADED;
3506 else
3507 {
3508 status->kind = TARGET_WAITKIND_STOPPED;
3509 status->value.sig = (enum target_signal)
3510 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3511 }
3512
3513 if (buf[3] == 'p')
3514 {
3515 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3516 record_currthread (thread_num);
3517 }
3518 goto got_status;
3519 case 'W': /* Target exited. */
3520 {
3521 /* The remote process exited. */
3522 status->kind = TARGET_WAITKIND_EXITED;
3523 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3524 goto got_status;
3525 }
3526 case 'X':
3527 status->kind = TARGET_WAITKIND_SIGNALLED;
3528 status->value.sig = (enum target_signal)
3529 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3530 kill_kludge = 1;
3531
3532 goto got_status;
3533 case 'O': /* Console output. */
3534 remote_console_output (buf + 1);
3535 continue;
3536 case '\0':
3537 if (last_sent_signal != TARGET_SIGNAL_0)
3538 {
3539 /* Zero length reply means that we tried 'S' or 'C' and
3540 the remote system doesn't support it. */
3541 target_terminal_ours_for_output ();
3542 printf_filtered
3543 ("Can't send signals to this remote system. %s not sent.\n",
3544 target_signal_to_name (last_sent_signal));
3545 last_sent_signal = TARGET_SIGNAL_0;
3546 target_terminal_inferior ();
3547
3548 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3549 putpkt ((char *) buf);
3550 continue;
3551 }
3552 /* else fallthrough */
3553 default:
3554 warning (_("Invalid remote reply: %s"), buf);
3555 continue;
3556 }
3557 }
3558 got_status:
3559 if (thread_num != -1)
3560 {
3561 return pid_to_ptid (thread_num);
3562 }
3563 return inferior_ptid;
3564 }
3565
3566 /* Async version of remote_wait. */
3567 static ptid_t
3568 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3569 {
3570 struct remote_state *rs = get_remote_state ();
3571 struct remote_arch_state *rsa = get_remote_arch_state ();
3572 ULONGEST thread_num = -1;
3573 ULONGEST addr;
3574 int solibs_changed = 0;
3575
3576 status->kind = TARGET_WAITKIND_EXITED;
3577 status->value.integer = 0;
3578
3579 remote_stopped_by_watchpoint_p = 0;
3580
3581 while (1)
3582 {
3583 char *buf, *p;
3584
3585 if (rs->cached_wait_status)
3586 /* Use the cached wait status, but only once. */
3587 rs->cached_wait_status = 0;
3588 else
3589 {
3590 if (!target_is_async_p ())
3591 {
3592 ofunc = signal (SIGINT, remote_interrupt);
3593 /* If the user hit C-c before this packet, or between packets,
3594 pretend that it was hit right here. */
3595 if (quit_flag)
3596 {
3597 quit_flag = 0;
3598 remote_interrupt (SIGINT);
3599 }
3600 }
3601 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3602 _never_ wait for ever -> test on target_is_async_p().
3603 However, before we do that we need to ensure that the caller
3604 knows how to take the target into/out of async mode. */
3605 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3606 if (!target_is_async_p ())
3607 signal (SIGINT, ofunc);
3608 }
3609
3610 buf = rs->buf;
3611
3612 switch (buf[0])
3613 {
3614 case 'E': /* Error of some sort. */
3615 /* We're out of sync with the target now. Did it continue or not?
3616 Not is more likely, so report a stop. */
3617 warning (_("Remote failure reply: %s"), buf);
3618 status->kind = TARGET_WAITKIND_STOPPED;
3619 status->value.sig = TARGET_SIGNAL_0;
3620 goto got_status;
3621 case 'F': /* File-I/O request. */
3622 remote_fileio_request (buf);
3623 continue;
3624 case 'T': /* Status with PC, SP, FP, ... */
3625 {
3626 gdb_byte regs[MAX_REGISTER_SIZE];
3627
3628 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3629 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3630 ss = signal number
3631 n... = register number
3632 r... = register contents
3633 */
3634 p = &buf[3]; /* after Txx */
3635
3636 while (*p)
3637 {
3638 char *p1;
3639 char *p_temp;
3640 int fieldsize;
3641 long pnum = 0;
3642
3643 /* If the packet contains a register number, save it
3644 in pnum and set p1 to point to the character
3645 following it. Otherwise p1 points to p. */
3646
3647 /* If this packet is an awatch packet, don't parse the 'a'
3648 as a register number. */
3649
3650 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3651 {
3652 /* Read the register number. */
3653 pnum = strtol (p, &p_temp, 16);
3654 p1 = p_temp;
3655 }
3656 else
3657 p1 = p;
3658
3659 if (p1 == p) /* No register number present here. */
3660 {
3661 p1 = strchr (p, ':');
3662 if (p1 == NULL)
3663 error (_("Malformed packet(a) (missing colon): %s\n\
3664 Packet: '%s'\n"),
3665 p, buf);
3666 if (strncmp (p, "thread", p1 - p) == 0)
3667 {
3668 p_temp = unpack_varlen_hex (++p1, &thread_num);
3669 record_currthread (thread_num);
3670 p = p_temp;
3671 }
3672 else if ((strncmp (p, "watch", p1 - p) == 0)
3673 || (strncmp (p, "rwatch", p1 - p) == 0)
3674 || (strncmp (p, "awatch", p1 - p) == 0))
3675 {
3676 remote_stopped_by_watchpoint_p = 1;
3677 p = unpack_varlen_hex (++p1, &addr);
3678 remote_watch_data_address = (CORE_ADDR)addr;
3679 }
3680 else if (strncmp (p, "library", p1 - p) == 0)
3681 {
3682 p1++;
3683 p_temp = p1;
3684 while (*p_temp && *p_temp != ';')
3685 p_temp++;
3686
3687 solibs_changed = 1;
3688 p = p_temp;
3689 }
3690 else
3691 {
3692 /* Silently skip unknown optional info. */
3693 p_temp = strchr (p1 + 1, ';');
3694 if (p_temp)
3695 p = p_temp;
3696 }
3697 }
3698
3699 else
3700 {
3701 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3702 p = p1;
3703 if (*p++ != ':')
3704 error (_("Malformed packet(b) (missing colon): %s\n\
3705 Packet: '%s'\n"),
3706 p, buf);
3707
3708 if (reg == NULL)
3709 error (_("Remote sent bad register number %ld: %s\n\
3710 Packet: '%s'\n"),
3711 pnum, p, buf);
3712
3713 fieldsize = hex2bin (p, regs,
3714 register_size (current_gdbarch,
3715 reg->regnum));
3716 p += 2 * fieldsize;
3717 if (fieldsize < register_size (current_gdbarch,
3718 reg->regnum))
3719 warning (_("Remote reply is too short: %s"), buf);
3720 regcache_raw_supply (get_current_regcache (),
3721 reg->regnum, regs);
3722 }
3723
3724 if (*p++ != ';')
3725 error (_("Remote register badly formatted: %s\nhere: %s"),
3726 buf, p);
3727 }
3728 }
3729 /* fall through */
3730 case 'S': /* Old style status, just signal only. */
3731 if (solibs_changed)
3732 status->kind = TARGET_WAITKIND_LOADED;
3733 else
3734 {
3735 status->kind = TARGET_WAITKIND_STOPPED;
3736 status->value.sig = (enum target_signal)
3737 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3738 }
3739
3740 if (buf[3] == 'p')
3741 {
3742 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3743 record_currthread (thread_num);
3744 }
3745 goto got_status;
3746 case 'W': /* Target exited. */
3747 {
3748 /* The remote process exited. */
3749 status->kind = TARGET_WAITKIND_EXITED;
3750 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3751 goto got_status;
3752 }
3753 case 'X':
3754 status->kind = TARGET_WAITKIND_SIGNALLED;
3755 status->value.sig = (enum target_signal)
3756 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3757 kill_kludge = 1;
3758
3759 goto got_status;
3760 case 'O': /* Console output. */
3761 remote_console_output (buf + 1);
3762 /* Return immediately to the event loop. The event loop will
3763 still be waiting on the inferior afterwards. */
3764 status->kind = TARGET_WAITKIND_IGNORE;
3765 goto got_status;
3766 case '\0':
3767 if (last_sent_signal != TARGET_SIGNAL_0)
3768 {
3769 /* Zero length reply means that we tried 'S' or 'C' and
3770 the remote system doesn't support it. */
3771 target_terminal_ours_for_output ();
3772 printf_filtered
3773 ("Can't send signals to this remote system. %s not sent.\n",
3774 target_signal_to_name (last_sent_signal));
3775 last_sent_signal = TARGET_SIGNAL_0;
3776 target_terminal_inferior ();
3777
3778 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3779 putpkt ((char *) buf);
3780 continue;
3781 }
3782 /* else fallthrough */
3783 default:
3784 warning (_("Invalid remote reply: %s"), buf);
3785 continue;
3786 }
3787 }
3788 got_status:
3789 if (thread_num != -1)
3790 {
3791 return pid_to_ptid (thread_num);
3792 }
3793 return inferior_ptid;
3794 }
3795
3796 /* Fetch a single register using a 'p' packet. */
3797
3798 static int
3799 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3800 {
3801 struct remote_state *rs = get_remote_state ();
3802 char *buf, *p;
3803 char regp[MAX_REGISTER_SIZE];
3804 int i;
3805
3806 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3807 return 0;
3808
3809 if (reg->pnum == -1)
3810 return 0;
3811
3812 p = rs->buf;
3813 *p++ = 'p';
3814 p += hexnumstr (p, reg->pnum);
3815 *p++ = '\0';
3816 remote_send (&rs->buf, &rs->buf_size);
3817
3818 buf = rs->buf;
3819
3820 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3821 {
3822 case PACKET_OK:
3823 break;
3824 case PACKET_UNKNOWN:
3825 return 0;
3826 case PACKET_ERROR:
3827 error (_("Could not fetch register \"%s\""),
3828 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3829 }
3830
3831 /* If this register is unfetchable, tell the regcache. */
3832 if (buf[0] == 'x')
3833 {
3834 regcache_raw_supply (regcache, reg->regnum, NULL);
3835 return 1;
3836 }
3837
3838 /* Otherwise, parse and supply the value. */
3839 p = buf;
3840 i = 0;
3841 while (p[0] != 0)
3842 {
3843 if (p[1] == 0)
3844 error (_("fetch_register_using_p: early buf termination"));
3845
3846 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3847 p += 2;
3848 }
3849 regcache_raw_supply (regcache, reg->regnum, regp);
3850 return 1;
3851 }
3852
3853 /* Fetch the registers included in the target's 'g' packet. */
3854
3855 static int
3856 send_g_packet (void)
3857 {
3858 struct remote_state *rs = get_remote_state ();
3859 int i, buf_len;
3860 char *p;
3861 char *regs;
3862
3863 sprintf (rs->buf, "g");
3864 remote_send (&rs->buf, &rs->buf_size);
3865
3866 /* We can get out of synch in various cases. If the first character
3867 in the buffer is not a hex character, assume that has happened
3868 and try to fetch another packet to read. */
3869 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3870 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3871 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3872 && rs->buf[0] != 'x') /* New: unavailable register value. */
3873 {
3874 if (remote_debug)
3875 fprintf_unfiltered (gdb_stdlog,
3876 "Bad register packet; fetching a new packet\n");
3877 getpkt (&rs->buf, &rs->buf_size, 0);
3878 }
3879
3880 buf_len = strlen (rs->buf);
3881
3882 /* Sanity check the received packet. */
3883 if (buf_len % 2 != 0)
3884 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3885
3886 return buf_len / 2;
3887 }
3888
3889 static void
3890 process_g_packet (struct regcache *regcache)
3891 {
3892 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3893 struct remote_state *rs = get_remote_state ();
3894 struct remote_arch_state *rsa = get_remote_arch_state ();
3895 int i, buf_len;
3896 char *p;
3897 char *regs;
3898
3899 buf_len = strlen (rs->buf);
3900
3901 /* Further sanity checks, with knowledge of the architecture. */
3902 if (buf_len > 2 * rsa->sizeof_g_packet)
3903 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3904
3905 /* Save the size of the packet sent to us by the target. It is used
3906 as a heuristic when determining the max size of packets that the
3907 target can safely receive. */
3908 if (rsa->actual_register_packet_size == 0)
3909 rsa->actual_register_packet_size = buf_len;
3910
3911 /* If this is smaller than we guessed the 'g' packet would be,
3912 update our records. A 'g' reply that doesn't include a register's
3913 value implies either that the register is not available, or that
3914 the 'p' packet must be used. */
3915 if (buf_len < 2 * rsa->sizeof_g_packet)
3916 {
3917 rsa->sizeof_g_packet = buf_len / 2;
3918
3919 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3920 {
3921 if (rsa->regs[i].pnum == -1)
3922 continue;
3923
3924 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3925 rsa->regs[i].in_g_packet = 0;
3926 else
3927 rsa->regs[i].in_g_packet = 1;
3928 }
3929 }
3930
3931 regs = alloca (rsa->sizeof_g_packet);
3932
3933 /* Unimplemented registers read as all bits zero. */
3934 memset (regs, 0, rsa->sizeof_g_packet);
3935
3936 /* Reply describes registers byte by byte, each byte encoded as two
3937 hex characters. Suck them all up, then supply them to the
3938 register cacheing/storage mechanism. */
3939
3940 p = rs->buf;
3941 for (i = 0; i < rsa->sizeof_g_packet; i++)
3942 {
3943 if (p[0] == 0 || p[1] == 0)
3944 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3945 internal_error (__FILE__, __LINE__,
3946 "unexpected end of 'g' packet reply");
3947
3948 if (p[0] == 'x' && p[1] == 'x')
3949 regs[i] = 0; /* 'x' */
3950 else
3951 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3952 p += 2;
3953 }
3954
3955 {
3956 int i;
3957 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3958 {
3959 struct packet_reg *r = &rsa->regs[i];
3960 if (r->in_g_packet)
3961 {
3962 if (r->offset * 2 >= strlen (rs->buf))
3963 /* This shouldn't happen - we adjusted in_g_packet above. */
3964 internal_error (__FILE__, __LINE__,
3965 "unexpected end of 'g' packet reply");
3966 else if (rs->buf[r->offset * 2] == 'x')
3967 {
3968 gdb_assert (r->offset * 2 < strlen (rs->buf));
3969 /* The register isn't available, mark it as such (at
3970 the same time setting the value to zero). */
3971 regcache_raw_supply (regcache, r->regnum, NULL);
3972 }
3973 else
3974 regcache_raw_supply (regcache, r->regnum,
3975 regs + r->offset);
3976 }
3977 }
3978 }
3979 }
3980
3981 static void
3982 fetch_registers_using_g (struct regcache *regcache)
3983 {
3984 send_g_packet ();
3985 process_g_packet (regcache);
3986 }
3987
3988 static void
3989 remote_fetch_registers (struct regcache *regcache, int regnum)
3990 {
3991 struct remote_state *rs = get_remote_state ();
3992 struct remote_arch_state *rsa = get_remote_arch_state ();
3993 int i;
3994
3995 set_thread (PIDGET (inferior_ptid), 1);
3996
3997 if (regnum >= 0)
3998 {
3999 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4000 gdb_assert (reg != NULL);
4001
4002 /* If this register might be in the 'g' packet, try that first -
4003 we are likely to read more than one register. If this is the
4004 first 'g' packet, we might be overly optimistic about its
4005 contents, so fall back to 'p'. */
4006 if (reg->in_g_packet)
4007 {
4008 fetch_registers_using_g (regcache);
4009 if (reg->in_g_packet)
4010 return;
4011 }
4012
4013 if (fetch_register_using_p (regcache, reg))
4014 return;
4015
4016 /* This register is not available. */
4017 regcache_raw_supply (regcache, reg->regnum, NULL);
4018
4019 return;
4020 }
4021
4022 fetch_registers_using_g (regcache);
4023
4024 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4025 if (!rsa->regs[i].in_g_packet)
4026 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4027 {
4028 /* This register is not available. */
4029 regcache_raw_supply (regcache, i, NULL);
4030 }
4031 }
4032
4033 /* Prepare to store registers. Since we may send them all (using a
4034 'G' request), we have to read out the ones we don't want to change
4035 first. */
4036
4037 static void
4038 remote_prepare_to_store (struct regcache *regcache)
4039 {
4040 struct remote_arch_state *rsa = get_remote_arch_state ();
4041 int i;
4042 gdb_byte buf[MAX_REGISTER_SIZE];
4043
4044 /* Make sure the entire registers array is valid. */
4045 switch (remote_protocol_packets[PACKET_P].support)
4046 {
4047 case PACKET_DISABLE:
4048 case PACKET_SUPPORT_UNKNOWN:
4049 /* Make sure all the necessary registers are cached. */
4050 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4051 if (rsa->regs[i].in_g_packet)
4052 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4053 break;
4054 case PACKET_ENABLE:
4055 break;
4056 }
4057 }
4058
4059 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4060 packet was not recognized. */
4061
4062 static int
4063 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4064 {
4065 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4066 struct remote_state *rs = get_remote_state ();
4067 struct remote_arch_state *rsa = get_remote_arch_state ();
4068 /* Try storing a single register. */
4069 char *buf = rs->buf;
4070 gdb_byte regp[MAX_REGISTER_SIZE];
4071 char *p;
4072
4073 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4074 return 0;
4075
4076 if (reg->pnum == -1)
4077 return 0;
4078
4079 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4080 p = buf + strlen (buf);
4081 regcache_raw_collect (regcache, reg->regnum, regp);
4082 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4083 remote_send (&rs->buf, &rs->buf_size);
4084
4085 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4086 {
4087 case PACKET_OK:
4088 return 1;
4089 case PACKET_ERROR:
4090 error (_("Could not write register \"%s\""),
4091 gdbarch_register_name (gdbarch, reg->regnum));
4092 case PACKET_UNKNOWN:
4093 return 0;
4094 default:
4095 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4096 }
4097 }
4098
4099 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4100 contents of the register cache buffer. FIXME: ignores errors. */
4101
4102 static void
4103 store_registers_using_G (const struct regcache *regcache)
4104 {
4105 struct remote_state *rs = get_remote_state ();
4106 struct remote_arch_state *rsa = get_remote_arch_state ();
4107 gdb_byte *regs;
4108 char *p;
4109
4110 /* Extract all the registers in the regcache copying them into a
4111 local buffer. */
4112 {
4113 int i;
4114 regs = alloca (rsa->sizeof_g_packet);
4115 memset (regs, 0, rsa->sizeof_g_packet);
4116 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4117 {
4118 struct packet_reg *r = &rsa->regs[i];
4119 if (r->in_g_packet)
4120 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4121 }
4122 }
4123
4124 /* Command describes registers byte by byte,
4125 each byte encoded as two hex characters. */
4126 p = rs->buf;
4127 *p++ = 'G';
4128 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4129 updated. */
4130 bin2hex (regs, p, rsa->sizeof_g_packet);
4131 remote_send (&rs->buf, &rs->buf_size);
4132 }
4133
4134 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4135 of the register cache buffer. FIXME: ignores errors. */
4136
4137 static void
4138 remote_store_registers (struct regcache *regcache, int regnum)
4139 {
4140 struct remote_state *rs = get_remote_state ();
4141 struct remote_arch_state *rsa = get_remote_arch_state ();
4142 int i;
4143
4144 set_thread (PIDGET (inferior_ptid), 1);
4145
4146 if (regnum >= 0)
4147 {
4148 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4149 gdb_assert (reg != NULL);
4150
4151 /* Always prefer to store registers using the 'P' packet if
4152 possible; we often change only a small number of registers.
4153 Sometimes we change a larger number; we'd need help from a
4154 higher layer to know to use 'G'. */
4155 if (store_register_using_P (regcache, reg))
4156 return;
4157
4158 /* For now, don't complain if we have no way to write the
4159 register. GDB loses track of unavailable registers too
4160 easily. Some day, this may be an error. We don't have
4161 any way to read the register, either... */
4162 if (!reg->in_g_packet)
4163 return;
4164
4165 store_registers_using_G (regcache);
4166 return;
4167 }
4168
4169 store_registers_using_G (regcache);
4170
4171 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4172 if (!rsa->regs[i].in_g_packet)
4173 if (!store_register_using_P (regcache, &rsa->regs[i]))
4174 /* See above for why we do not issue an error here. */
4175 continue;
4176 }
4177 \f
4178
4179 /* Return the number of hex digits in num. */
4180
4181 static int
4182 hexnumlen (ULONGEST num)
4183 {
4184 int i;
4185
4186 for (i = 0; num != 0; i++)
4187 num >>= 4;
4188
4189 return max (i, 1);
4190 }
4191
4192 /* Set BUF to the minimum number of hex digits representing NUM. */
4193
4194 static int
4195 hexnumstr (char *buf, ULONGEST num)
4196 {
4197 int len = hexnumlen (num);
4198 return hexnumnstr (buf, num, len);
4199 }
4200
4201
4202 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4203
4204 static int
4205 hexnumnstr (char *buf, ULONGEST num, int width)
4206 {
4207 int i;
4208
4209 buf[width] = '\0';
4210
4211 for (i = width - 1; i >= 0; i--)
4212 {
4213 buf[i] = "0123456789abcdef"[(num & 0xf)];
4214 num >>= 4;
4215 }
4216
4217 return width;
4218 }
4219
4220 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4221
4222 static CORE_ADDR
4223 remote_address_masked (CORE_ADDR addr)
4224 {
4225 int address_size = remote_address_size;
4226 /* If "remoteaddresssize" was not set, default to target address size. */
4227 if (!address_size)
4228 address_size = gdbarch_addr_bit (current_gdbarch);
4229
4230 if (address_size > 0
4231 && address_size < (sizeof (ULONGEST) * 8))
4232 {
4233 /* Only create a mask when that mask can safely be constructed
4234 in a ULONGEST variable. */
4235 ULONGEST mask = 1;
4236 mask = (mask << address_size) - 1;
4237 addr &= mask;
4238 }
4239 return addr;
4240 }
4241
4242 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4243 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4244 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4245 (which may be more than *OUT_LEN due to escape characters). The
4246 total number of bytes in the output buffer will be at most
4247 OUT_MAXLEN. */
4248
4249 static int
4250 remote_escape_output (const gdb_byte *buffer, int len,
4251 gdb_byte *out_buf, int *out_len,
4252 int out_maxlen)
4253 {
4254 int input_index, output_index;
4255
4256 output_index = 0;
4257 for (input_index = 0; input_index < len; input_index++)
4258 {
4259 gdb_byte b = buffer[input_index];
4260
4261 if (b == '$' || b == '#' || b == '}')
4262 {
4263 /* These must be escaped. */
4264 if (output_index + 2 > out_maxlen)
4265 break;
4266 out_buf[output_index++] = '}';
4267 out_buf[output_index++] = b ^ 0x20;
4268 }
4269 else
4270 {
4271 if (output_index + 1 > out_maxlen)
4272 break;
4273 out_buf[output_index++] = b;
4274 }
4275 }
4276
4277 *out_len = input_index;
4278 return output_index;
4279 }
4280
4281 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4282 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4283 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4284
4285 This function reverses remote_escape_output. It allows more
4286 escaped characters than that function does, in particular because
4287 '*' must be escaped to avoid the run-length encoding processing
4288 in reading packets. */
4289
4290 static int
4291 remote_unescape_input (const gdb_byte *buffer, int len,
4292 gdb_byte *out_buf, int out_maxlen)
4293 {
4294 int input_index, output_index;
4295 int escaped;
4296
4297 output_index = 0;
4298 escaped = 0;
4299 for (input_index = 0; input_index < len; input_index++)
4300 {
4301 gdb_byte b = buffer[input_index];
4302
4303 if (output_index + 1 > out_maxlen)
4304 {
4305 warning (_("Received too much data from remote target;"
4306 " ignoring overflow."));
4307 return output_index;
4308 }
4309
4310 if (escaped)
4311 {
4312 out_buf[output_index++] = b ^ 0x20;
4313 escaped = 0;
4314 }
4315 else if (b == '}')
4316 escaped = 1;
4317 else
4318 out_buf[output_index++] = b;
4319 }
4320
4321 if (escaped)
4322 error (_("Unmatched escape character in target response."));
4323
4324 return output_index;
4325 }
4326
4327 /* Determine whether the remote target supports binary downloading.
4328 This is accomplished by sending a no-op memory write of zero length
4329 to the target at the specified address. It does not suffice to send
4330 the whole packet, since many stubs strip the eighth bit and
4331 subsequently compute a wrong checksum, which causes real havoc with
4332 remote_write_bytes.
4333
4334 NOTE: This can still lose if the serial line is not eight-bit
4335 clean. In cases like this, the user should clear "remote
4336 X-packet". */
4337
4338 static void
4339 check_binary_download (CORE_ADDR addr)
4340 {
4341 struct remote_state *rs = get_remote_state ();
4342
4343 switch (remote_protocol_packets[PACKET_X].support)
4344 {
4345 case PACKET_DISABLE:
4346 break;
4347 case PACKET_ENABLE:
4348 break;
4349 case PACKET_SUPPORT_UNKNOWN:
4350 {
4351 char *p;
4352
4353 p = rs->buf;
4354 *p++ = 'X';
4355 p += hexnumstr (p, (ULONGEST) addr);
4356 *p++ = ',';
4357 p += hexnumstr (p, (ULONGEST) 0);
4358 *p++ = ':';
4359 *p = '\0';
4360
4361 putpkt_binary (rs->buf, (int) (p - rs->buf));
4362 getpkt (&rs->buf, &rs->buf_size, 0);
4363
4364 if (rs->buf[0] == '\0')
4365 {
4366 if (remote_debug)
4367 fprintf_unfiltered (gdb_stdlog,
4368 "binary downloading NOT suppported by target\n");
4369 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4370 }
4371 else
4372 {
4373 if (remote_debug)
4374 fprintf_unfiltered (gdb_stdlog,
4375 "binary downloading suppported by target\n");
4376 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4377 }
4378 break;
4379 }
4380 }
4381 }
4382
4383 /* Write memory data directly to the remote machine.
4384 This does not inform the data cache; the data cache uses this.
4385 HEADER is the starting part of the packet.
4386 MEMADDR is the address in the remote memory space.
4387 MYADDR is the address of the buffer in our space.
4388 LEN is the number of bytes.
4389 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4390 should send data as binary ('X'), or hex-encoded ('M').
4391
4392 The function creates packet of the form
4393 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4394
4395 where encoding of <DATA> is termined by PACKET_FORMAT.
4396
4397 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4398 are omitted.
4399
4400 Returns the number of bytes transferred, or 0 (setting errno) for
4401 error. Only transfer a single packet. */
4402
4403 static int
4404 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4405 const gdb_byte *myaddr, int len,
4406 char packet_format, int use_length)
4407 {
4408 struct remote_state *rs = get_remote_state ();
4409 char *p;
4410 char *plen = NULL;
4411 int plenlen = 0;
4412 int todo;
4413 int nr_bytes;
4414 int payload_size;
4415 int payload_length;
4416 int header_length;
4417
4418 if (packet_format != 'X' && packet_format != 'M')
4419 internal_error (__FILE__, __LINE__,
4420 "remote_write_bytes_aux: bad packet format");
4421
4422 if (len <= 0)
4423 return 0;
4424
4425 payload_size = get_memory_write_packet_size ();
4426
4427 /* The packet buffer will be large enough for the payload;
4428 get_memory_packet_size ensures this. */
4429 rs->buf[0] = '\0';
4430
4431 /* Compute the size of the actual payload by subtracting out the
4432 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4433 */
4434 payload_size -= strlen ("$,:#NN");
4435 if (!use_length)
4436 /* The comma won't be used. */
4437 payload_size += 1;
4438 header_length = strlen (header);
4439 payload_size -= header_length;
4440 payload_size -= hexnumlen (memaddr);
4441
4442 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4443
4444 strcat (rs->buf, header);
4445 p = rs->buf + strlen (header);
4446
4447 /* Compute a best guess of the number of bytes actually transfered. */
4448 if (packet_format == 'X')
4449 {
4450 /* Best guess at number of bytes that will fit. */
4451 todo = min (len, payload_size);
4452 if (use_length)
4453 payload_size -= hexnumlen (todo);
4454 todo = min (todo, payload_size);
4455 }
4456 else
4457 {
4458 /* Num bytes that will fit. */
4459 todo = min (len, payload_size / 2);
4460 if (use_length)
4461 payload_size -= hexnumlen (todo);
4462 todo = min (todo, payload_size / 2);
4463 }
4464
4465 if (todo <= 0)
4466 internal_error (__FILE__, __LINE__,
4467 _("minumum packet size too small to write data"));
4468
4469 /* If we already need another packet, then try to align the end
4470 of this packet to a useful boundary. */
4471 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4472 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4473
4474 /* Append "<memaddr>". */
4475 memaddr = remote_address_masked (memaddr);
4476 p += hexnumstr (p, (ULONGEST) memaddr);
4477
4478 if (use_length)
4479 {
4480 /* Append ",". */
4481 *p++ = ',';
4482
4483 /* Append <len>. Retain the location/size of <len>. It may need to
4484 be adjusted once the packet body has been created. */
4485 plen = p;
4486 plenlen = hexnumstr (p, (ULONGEST) todo);
4487 p += plenlen;
4488 }
4489
4490 /* Append ":". */
4491 *p++ = ':';
4492 *p = '\0';
4493
4494 /* Append the packet body. */
4495 if (packet_format == 'X')
4496 {
4497 /* Binary mode. Send target system values byte by byte, in
4498 increasing byte addresses. Only escape certain critical
4499 characters. */
4500 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4501 payload_size);
4502
4503 /* If not all TODO bytes fit, then we'll need another packet. Make
4504 a second try to keep the end of the packet aligned. Don't do
4505 this if the packet is tiny. */
4506 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4507 {
4508 int new_nr_bytes;
4509
4510 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4511 - memaddr);
4512 if (new_nr_bytes != nr_bytes)
4513 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4514 p, &nr_bytes,
4515 payload_size);
4516 }
4517
4518 p += payload_length;
4519 if (use_length && nr_bytes < todo)
4520 {
4521 /* Escape chars have filled up the buffer prematurely,
4522 and we have actually sent fewer bytes than planned.
4523 Fix-up the length field of the packet. Use the same
4524 number of characters as before. */
4525 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4526 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4527 }
4528 }
4529 else
4530 {
4531 /* Normal mode: Send target system values byte by byte, in
4532 increasing byte addresses. Each byte is encoded as a two hex
4533 value. */
4534 nr_bytes = bin2hex (myaddr, p, todo);
4535 p += 2 * nr_bytes;
4536 }
4537
4538 putpkt_binary (rs->buf, (int) (p - rs->buf));
4539 getpkt (&rs->buf, &rs->buf_size, 0);
4540
4541 if (rs->buf[0] == 'E')
4542 {
4543 /* There is no correspondance between what the remote protocol
4544 uses for errors and errno codes. We would like a cleaner way
4545 of representing errors (big enough to include errno codes,
4546 bfd_error codes, and others). But for now just return EIO. */
4547 errno = EIO;
4548 return 0;
4549 }
4550
4551 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4552 fewer bytes than we'd planned. */
4553 return nr_bytes;
4554 }
4555
4556 /* Write memory data directly to the remote machine.
4557 This does not inform the data cache; the data cache uses this.
4558 MEMADDR is the address in the remote memory space.
4559 MYADDR is the address of the buffer in our space.
4560 LEN is the number of bytes.
4561
4562 Returns number of bytes transferred, or 0 (setting errno) for
4563 error. Only transfer a single packet. */
4564
4565 int
4566 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4567 {
4568 char *packet_format = 0;
4569
4570 /* Check whether the target supports binary download. */
4571 check_binary_download (memaddr);
4572
4573 switch (remote_protocol_packets[PACKET_X].support)
4574 {
4575 case PACKET_ENABLE:
4576 packet_format = "X";
4577 break;
4578 case PACKET_DISABLE:
4579 packet_format = "M";
4580 break;
4581 case PACKET_SUPPORT_UNKNOWN:
4582 internal_error (__FILE__, __LINE__,
4583 _("remote_write_bytes: bad internal state"));
4584 default:
4585 internal_error (__FILE__, __LINE__, _("bad switch"));
4586 }
4587
4588 return remote_write_bytes_aux (packet_format,
4589 memaddr, myaddr, len, packet_format[0], 1);
4590 }
4591
4592 /* Read memory data directly from the remote machine.
4593 This does not use the data cache; the data cache uses this.
4594 MEMADDR is the address in the remote memory space.
4595 MYADDR is the address of the buffer in our space.
4596 LEN is the number of bytes.
4597
4598 Returns number of bytes transferred, or 0 for error. */
4599
4600 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4601 remote targets) shouldn't attempt to read the entire buffer.
4602 Instead it should read a single packet worth of data and then
4603 return the byte size of that packet to the caller. The caller (its
4604 caller and its callers caller ;-) already contains code for
4605 handling partial reads. */
4606
4607 int
4608 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4609 {
4610 struct remote_state *rs = get_remote_state ();
4611 int max_buf_size; /* Max size of packet output buffer. */
4612 int origlen;
4613
4614 if (len <= 0)
4615 return 0;
4616
4617 max_buf_size = get_memory_read_packet_size ();
4618 /* The packet buffer will be large enough for the payload;
4619 get_memory_packet_size ensures this. */
4620
4621 origlen = len;
4622 while (len > 0)
4623 {
4624 char *p;
4625 int todo;
4626 int i;
4627
4628 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4629
4630 /* construct "m"<memaddr>","<len>" */
4631 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4632 memaddr = remote_address_masked (memaddr);
4633 p = rs->buf;
4634 *p++ = 'm';
4635 p += hexnumstr (p, (ULONGEST) memaddr);
4636 *p++ = ',';
4637 p += hexnumstr (p, (ULONGEST) todo);
4638 *p = '\0';
4639
4640 putpkt (rs->buf);
4641 getpkt (&rs->buf, &rs->buf_size, 0);
4642
4643 if (rs->buf[0] == 'E'
4644 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4645 && rs->buf[3] == '\0')
4646 {
4647 /* There is no correspondance between what the remote
4648 protocol uses for errors and errno codes. We would like
4649 a cleaner way of representing errors (big enough to
4650 include errno codes, bfd_error codes, and others). But
4651 for now just return EIO. */
4652 errno = EIO;
4653 return 0;
4654 }
4655
4656 /* Reply describes memory byte by byte,
4657 each byte encoded as two hex characters. */
4658
4659 p = rs->buf;
4660 if ((i = hex2bin (p, myaddr, todo)) < todo)
4661 {
4662 /* Reply is short. This means that we were able to read
4663 only part of what we wanted to. */
4664 return i + (origlen - len);
4665 }
4666 myaddr += todo;
4667 memaddr += todo;
4668 len -= todo;
4669 }
4670 return origlen;
4671 }
4672 \f
4673 /* Read or write LEN bytes from inferior memory at MEMADDR,
4674 transferring to or from debugger address BUFFER. Write to inferior
4675 if SHOULD_WRITE is nonzero. Returns length of data written or
4676 read; 0 for error. TARGET is unused. */
4677
4678 static int
4679 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4680 int should_write, struct mem_attrib *attrib,
4681 struct target_ops *target)
4682 {
4683 int res;
4684
4685 if (should_write)
4686 res = remote_write_bytes (mem_addr, buffer, mem_len);
4687 else
4688 res = remote_read_bytes (mem_addr, buffer, mem_len);
4689
4690 return res;
4691 }
4692
4693 /* Sends a packet with content determined by the printf format string
4694 FORMAT and the remaining arguments, then gets the reply. Returns
4695 whether the packet was a success, a failure, or unknown. */
4696
4697 enum packet_result
4698 remote_send_printf (const char *format, ...)
4699 {
4700 struct remote_state *rs = get_remote_state ();
4701 int max_size = get_remote_packet_size ();
4702
4703 va_list ap;
4704 va_start (ap, format);
4705
4706 rs->buf[0] = '\0';
4707 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4708 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4709
4710 if (putpkt (rs->buf) < 0)
4711 error (_("Communication problem with target."));
4712
4713 rs->buf[0] = '\0';
4714 getpkt (&rs->buf, &rs->buf_size, 0);
4715
4716 return packet_check_result (rs->buf);
4717 }
4718
4719 static void
4720 restore_remote_timeout (void *p)
4721 {
4722 int value = *(int *)p;
4723 remote_timeout = value;
4724 }
4725
4726 /* Flash writing can take quite some time. We'll set
4727 effectively infinite timeout for flash operations.
4728 In future, we'll need to decide on a better approach. */
4729 static const int remote_flash_timeout = 1000;
4730
4731 static void
4732 remote_flash_erase (struct target_ops *ops,
4733 ULONGEST address, LONGEST length)
4734 {
4735 int saved_remote_timeout = remote_timeout;
4736 enum packet_result ret;
4737
4738 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4739 &saved_remote_timeout);
4740 remote_timeout = remote_flash_timeout;
4741
4742 ret = remote_send_printf ("vFlashErase:%s,%s",
4743 paddr (address),
4744 phex (length, 4));
4745 switch (ret)
4746 {
4747 case PACKET_UNKNOWN:
4748 error (_("Remote target does not support flash erase"));
4749 case PACKET_ERROR:
4750 error (_("Error erasing flash with vFlashErase packet"));
4751 default:
4752 break;
4753 }
4754
4755 do_cleanups (back_to);
4756 }
4757
4758 static LONGEST
4759 remote_flash_write (struct target_ops *ops,
4760 ULONGEST address, LONGEST length,
4761 const gdb_byte *data)
4762 {
4763 int saved_remote_timeout = remote_timeout;
4764 int ret;
4765 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4766 &saved_remote_timeout);
4767
4768 remote_timeout = remote_flash_timeout;
4769 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4770 do_cleanups (back_to);
4771
4772 return ret;
4773 }
4774
4775 static void
4776 remote_flash_done (struct target_ops *ops)
4777 {
4778 int saved_remote_timeout = remote_timeout;
4779 int ret;
4780 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4781 &saved_remote_timeout);
4782
4783 remote_timeout = remote_flash_timeout;
4784 ret = remote_send_printf ("vFlashDone");
4785 do_cleanups (back_to);
4786
4787 switch (ret)
4788 {
4789 case PACKET_UNKNOWN:
4790 error (_("Remote target does not support vFlashDone"));
4791 case PACKET_ERROR:
4792 error (_("Error finishing flash operation"));
4793 default:
4794 break;
4795 }
4796 }
4797
4798 static void
4799 remote_files_info (struct target_ops *ignore)
4800 {
4801 puts_filtered ("Debugging a target over a serial line.\n");
4802 }
4803 \f
4804 /* Stuff for dealing with the packets which are part of this protocol.
4805 See comment at top of file for details. */
4806
4807 /* Read a single character from the remote end. */
4808
4809 static int
4810 readchar (int timeout)
4811 {
4812 int ch;
4813
4814 ch = serial_readchar (remote_desc, timeout);
4815
4816 if (ch >= 0)
4817 return ch;
4818
4819 switch ((enum serial_rc) ch)
4820 {
4821 case SERIAL_EOF:
4822 target_mourn_inferior ();
4823 error (_("Remote connection closed"));
4824 /* no return */
4825 case SERIAL_ERROR:
4826 perror_with_name (_("Remote communication error"));
4827 /* no return */
4828 case SERIAL_TIMEOUT:
4829 break;
4830 }
4831 return ch;
4832 }
4833
4834 /* Send the command in *BUF to the remote machine, and read the reply
4835 into *BUF. Report an error if we get an error reply. Resize
4836 *BUF using xrealloc if necessary to hold the result, and update
4837 *SIZEOF_BUF. */
4838
4839 static void
4840 remote_send (char **buf,
4841 long *sizeof_buf)
4842 {
4843 putpkt (*buf);
4844 getpkt (buf, sizeof_buf, 0);
4845
4846 if ((*buf)[0] == 'E')
4847 error (_("Remote failure reply: %s"), *buf);
4848 }
4849
4850 /* Display a null-terminated packet on stdout, for debugging, using C
4851 string notation. */
4852
4853 static void
4854 print_packet (char *buf)
4855 {
4856 puts_filtered ("\"");
4857 fputstr_filtered (buf, '"', gdb_stdout);
4858 puts_filtered ("\"");
4859 }
4860
4861 int
4862 putpkt (char *buf)
4863 {
4864 return putpkt_binary (buf, strlen (buf));
4865 }
4866
4867 /* Send a packet to the remote machine, with error checking. The data
4868 of the packet is in BUF. The string in BUF can be at most
4869 get_remote_packet_size () - 5 to account for the $, # and checksum,
4870 and for a possible /0 if we are debugging (remote_debug) and want
4871 to print the sent packet as a string. */
4872
4873 static int
4874 putpkt_binary (char *buf, int cnt)
4875 {
4876 struct remote_state *rs = get_remote_state ();
4877 int i;
4878 unsigned char csum = 0;
4879 char *buf2 = alloca (cnt + 6);
4880
4881 int ch;
4882 int tcount = 0;
4883 char *p;
4884
4885 /* We're sending out a new packet. Make sure we don't look at a
4886 stale cached response. */
4887 rs->cached_wait_status = 0;
4888
4889 /* Copy the packet into buffer BUF2, encapsulating it
4890 and giving it a checksum. */
4891
4892 p = buf2;
4893 *p++ = '$';
4894
4895 for (i = 0; i < cnt; i++)
4896 {
4897 csum += buf[i];
4898 *p++ = buf[i];
4899 }
4900 *p++ = '#';
4901 *p++ = tohex ((csum >> 4) & 0xf);
4902 *p++ = tohex (csum & 0xf);
4903
4904 /* Send it over and over until we get a positive ack. */
4905
4906 while (1)
4907 {
4908 int started_error_output = 0;
4909
4910 if (remote_debug)
4911 {
4912 *p = '\0';
4913 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4914 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4915 fprintf_unfiltered (gdb_stdlog, "...");
4916 gdb_flush (gdb_stdlog);
4917 }
4918 if (serial_write (remote_desc, buf2, p - buf2))
4919 perror_with_name (_("putpkt: write failed"));
4920
4921 /* Read until either a timeout occurs (-2) or '+' is read. */
4922 while (1)
4923 {
4924 ch = readchar (remote_timeout);
4925
4926 if (remote_debug)
4927 {
4928 switch (ch)
4929 {
4930 case '+':
4931 case '-':
4932 case SERIAL_TIMEOUT:
4933 case '$':
4934 if (started_error_output)
4935 {
4936 putchar_unfiltered ('\n');
4937 started_error_output = 0;
4938 }
4939 }
4940 }
4941
4942 switch (ch)
4943 {
4944 case '+':
4945 if (remote_debug)
4946 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4947 return 1;
4948 case '-':
4949 if (remote_debug)
4950 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4951 case SERIAL_TIMEOUT:
4952 tcount++;
4953 if (tcount > 3)
4954 return 0;
4955 break; /* Retransmit buffer. */
4956 case '$':
4957 {
4958 if (remote_debug)
4959 fprintf_unfiltered (gdb_stdlog,
4960 "Packet instead of Ack, ignoring it\n");
4961 /* It's probably an old response sent because an ACK
4962 was lost. Gobble up the packet and ack it so it
4963 doesn't get retransmitted when we resend this
4964 packet. */
4965 skip_frame ();
4966 serial_write (remote_desc, "+", 1);
4967 continue; /* Now, go look for +. */
4968 }
4969 default:
4970 if (remote_debug)
4971 {
4972 if (!started_error_output)
4973 {
4974 started_error_output = 1;
4975 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4976 }
4977 fputc_unfiltered (ch & 0177, gdb_stdlog);
4978 }
4979 continue;
4980 }
4981 break; /* Here to retransmit. */
4982 }
4983
4984 #if 0
4985 /* This is wrong. If doing a long backtrace, the user should be
4986 able to get out next time we call QUIT, without anything as
4987 violent as interrupt_query. If we want to provide a way out of
4988 here without getting to the next QUIT, it should be based on
4989 hitting ^C twice as in remote_wait. */
4990 if (quit_flag)
4991 {
4992 quit_flag = 0;
4993 interrupt_query ();
4994 }
4995 #endif
4996 }
4997 }
4998
4999 /* Come here after finding the start of a frame when we expected an
5000 ack. Do our best to discard the rest of this packet. */
5001
5002 static void
5003 skip_frame (void)
5004 {
5005 int c;
5006
5007 while (1)
5008 {
5009 c = readchar (remote_timeout);
5010 switch (c)
5011 {
5012 case SERIAL_TIMEOUT:
5013 /* Nothing we can do. */
5014 return;
5015 case '#':
5016 /* Discard the two bytes of checksum and stop. */
5017 c = readchar (remote_timeout);
5018 if (c >= 0)
5019 c = readchar (remote_timeout);
5020
5021 return;
5022 case '*': /* Run length encoding. */
5023 /* Discard the repeat count. */
5024 c = readchar (remote_timeout);
5025 if (c < 0)
5026 return;
5027 break;
5028 default:
5029 /* A regular character. */
5030 break;
5031 }
5032 }
5033 }
5034
5035 /* Come here after finding the start of the frame. Collect the rest
5036 into *BUF, verifying the checksum, length, and handling run-length
5037 compression. NUL terminate the buffer. If there is not enough room,
5038 expand *BUF using xrealloc.
5039
5040 Returns -1 on error, number of characters in buffer (ignoring the
5041 trailing NULL) on success. (could be extended to return one of the
5042 SERIAL status indications). */
5043
5044 static long
5045 read_frame (char **buf_p,
5046 long *sizeof_buf)
5047 {
5048 unsigned char csum;
5049 long bc;
5050 int c;
5051 char *buf = *buf_p;
5052
5053 csum = 0;
5054 bc = 0;
5055
5056 while (1)
5057 {
5058 c = readchar (remote_timeout);
5059 switch (c)
5060 {
5061 case SERIAL_TIMEOUT:
5062 if (remote_debug)
5063 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5064 return -1;
5065 case '$':
5066 if (remote_debug)
5067 fputs_filtered ("Saw new packet start in middle of old one\n",
5068 gdb_stdlog);
5069 return -1; /* Start a new packet, count retries. */
5070 case '#':
5071 {
5072 unsigned char pktcsum;
5073 int check_0 = 0;
5074 int check_1 = 0;
5075
5076 buf[bc] = '\0';
5077
5078 check_0 = readchar (remote_timeout);
5079 if (check_0 >= 0)
5080 check_1 = readchar (remote_timeout);
5081
5082 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5083 {
5084 if (remote_debug)
5085 fputs_filtered ("Timeout in checksum, retrying\n",
5086 gdb_stdlog);
5087 return -1;
5088 }
5089 else if (check_0 < 0 || check_1 < 0)
5090 {
5091 if (remote_debug)
5092 fputs_filtered ("Communication error in checksum\n",
5093 gdb_stdlog);
5094 return -1;
5095 }
5096
5097 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5098 if (csum == pktcsum)
5099 return bc;
5100
5101 if (remote_debug)
5102 {
5103 fprintf_filtered (gdb_stdlog,
5104 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5105 pktcsum, csum);
5106 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5107 fputs_filtered ("\n", gdb_stdlog);
5108 }
5109 /* Number of characters in buffer ignoring trailing
5110 NULL. */
5111 return -1;
5112 }
5113 case '*': /* Run length encoding. */
5114 {
5115 int repeat;
5116 csum += c;
5117
5118 c = readchar (remote_timeout);
5119 csum += c;
5120 repeat = c - ' ' + 3; /* Compute repeat count. */
5121
5122 /* The character before ``*'' is repeated. */
5123
5124 if (repeat > 0 && repeat <= 255 && bc > 0)
5125 {
5126 if (bc + repeat - 1 >= *sizeof_buf - 1)
5127 {
5128 /* Make some more room in the buffer. */
5129 *sizeof_buf += repeat;
5130 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5131 buf = *buf_p;
5132 }
5133
5134 memset (&buf[bc], buf[bc - 1], repeat);
5135 bc += repeat;
5136 continue;
5137 }
5138
5139 buf[bc] = '\0';
5140 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5141 return -1;
5142 }
5143 default:
5144 if (bc >= *sizeof_buf - 1)
5145 {
5146 /* Make some more room in the buffer. */
5147 *sizeof_buf *= 2;
5148 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5149 buf = *buf_p;
5150 }
5151
5152 buf[bc++] = c;
5153 csum += c;
5154 continue;
5155 }
5156 }
5157 }
5158
5159 /* Read a packet from the remote machine, with error checking, and
5160 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5161 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5162 rather than timing out; this is used (in synchronous mode) to wait
5163 for a target that is is executing user code to stop. */
5164 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5165 don't have to change all the calls to getpkt to deal with the
5166 return value, because at the moment I don't know what the right
5167 thing to do it for those. */
5168 void
5169 getpkt (char **buf,
5170 long *sizeof_buf,
5171 int forever)
5172 {
5173 int timed_out;
5174
5175 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5176 }
5177
5178
5179 /* Read a packet from the remote machine, with error checking, and
5180 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5181 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5182 rather than timing out; this is used (in synchronous mode) to wait
5183 for a target that is is executing user code to stop. If FOREVER ==
5184 0, this function is allowed to time out gracefully and return an
5185 indication of this to the caller. Otherwise return the number
5186 of bytes read. */
5187 static int
5188 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5189 {
5190 struct remote_state *rs = get_remote_state ();
5191 int c;
5192 int tries;
5193 int timeout;
5194 int val;
5195
5196 /* We're reading a new response. Make sure we don't look at a
5197 previously cached response. */
5198 rs->cached_wait_status = 0;
5199
5200 strcpy (*buf, "timeout");
5201
5202 if (forever)
5203 {
5204 timeout = watchdog > 0 ? watchdog : -1;
5205 }
5206
5207 else
5208 timeout = remote_timeout;
5209
5210 #define MAX_TRIES 3
5211
5212 for (tries = 1; tries <= MAX_TRIES; tries++)
5213 {
5214 /* This can loop forever if the remote side sends us characters
5215 continuously, but if it pauses, we'll get a zero from
5216 readchar because of timeout. Then we'll count that as a
5217 retry. */
5218
5219 /* Note that we will only wait forever prior to the start of a
5220 packet. After that, we expect characters to arrive at a
5221 brisk pace. They should show up within remote_timeout
5222 intervals. */
5223
5224 do
5225 {
5226 c = readchar (timeout);
5227
5228 if (c == SERIAL_TIMEOUT)
5229 {
5230 if (forever) /* Watchdog went off? Kill the target. */
5231 {
5232 QUIT;
5233 target_mourn_inferior ();
5234 error (_("Watchdog timeout has expired. Target detached."));
5235 }
5236 if (remote_debug)
5237 fputs_filtered ("Timed out.\n", gdb_stdlog);
5238 goto retry;
5239 }
5240 }
5241 while (c != '$');
5242
5243 /* We've found the start of a packet, now collect the data. */
5244
5245 val = read_frame (buf, sizeof_buf);
5246
5247 if (val >= 0)
5248 {
5249 if (remote_debug)
5250 {
5251 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5252 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5253 fprintf_unfiltered (gdb_stdlog, "\n");
5254 }
5255 serial_write (remote_desc, "+", 1);
5256 return val;
5257 }
5258
5259 /* Try the whole thing again. */
5260 retry:
5261 serial_write (remote_desc, "-", 1);
5262 }
5263
5264 /* We have tried hard enough, and just can't receive the packet.
5265 Give up. */
5266
5267 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5268 serial_write (remote_desc, "+", 1);
5269 return -1;
5270 }
5271 \f
5272 static void
5273 remote_kill (void)
5274 {
5275 /* For some mysterious reason, wait_for_inferior calls kill instead of
5276 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5277 if (kill_kludge)
5278 {
5279 kill_kludge = 0;
5280 target_mourn_inferior ();
5281 return;
5282 }
5283
5284 /* Use catch_errors so the user can quit from gdb even when we aren't on
5285 speaking terms with the remote system. */
5286 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5287
5288 /* Don't wait for it to die. I'm not really sure it matters whether
5289 we do or not. For the existing stubs, kill is a noop. */
5290 target_mourn_inferior ();
5291 }
5292
5293 /* Async version of remote_kill. */
5294 static void
5295 remote_async_kill (void)
5296 {
5297 /* Unregister the file descriptor from the event loop. */
5298 if (target_is_async_p ())
5299 serial_async (remote_desc, NULL, 0);
5300
5301 /* For some mysterious reason, wait_for_inferior calls kill instead of
5302 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5303 if (kill_kludge)
5304 {
5305 kill_kludge = 0;
5306 target_mourn_inferior ();
5307 return;
5308 }
5309
5310 /* Use catch_errors so the user can quit from gdb even when we
5311 aren't on speaking terms with the remote system. */
5312 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5313
5314 /* Don't wait for it to die. I'm not really sure it matters whether
5315 we do or not. For the existing stubs, kill is a noop. */
5316 target_mourn_inferior ();
5317 }
5318
5319 static void
5320 remote_mourn (void)
5321 {
5322 remote_mourn_1 (&remote_ops);
5323 }
5324
5325 static void
5326 remote_async_mourn (void)
5327 {
5328 remote_mourn_1 (&remote_async_ops);
5329 }
5330
5331 /* Worker function for remote_mourn. */
5332 static void
5333 remote_mourn_1 (struct target_ops *target)
5334 {
5335 unpush_target (target);
5336 generic_mourn_inferior ();
5337 }
5338
5339 static void
5340 extended_remote_mourn_1 (struct target_ops *target)
5341 {
5342 struct remote_state *rs = get_remote_state ();
5343
5344 /* Unlike "target remote", we do not want to unpush the target; then
5345 the next time the user says "run", we won't be connected. */
5346
5347 /* Call common code to mark the inferior as not running. */
5348 generic_mourn_inferior ();
5349
5350 /* Check whether the target is running now - some remote stubs
5351 automatically restart after kill. */
5352 putpkt ("?");
5353 getpkt (&rs->buf, &rs->buf_size, 0);
5354
5355 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5356 {
5357 /* Assume that the target has been restarted. Set inferior_ptid
5358 so that bits of core GDB realizes there's something here, e.g.,
5359 so that the user can say "kill" again. */
5360 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5361 }
5362 else
5363 {
5364 /* Mark this (still pushed) target as not executable until we
5365 restart it. */
5366 target_mark_exited (target);
5367 }
5368 }
5369
5370 static void
5371 extended_remote_mourn (void)
5372 {
5373 extended_remote_mourn_1 (&extended_remote_ops);
5374 }
5375
5376 static void
5377 extended_async_remote_mourn (void)
5378 {
5379 extended_remote_mourn_1 (&extended_async_remote_ops);
5380 }
5381
5382 static int
5383 extended_remote_run (char *args)
5384 {
5385 struct remote_state *rs = get_remote_state ();
5386 char *p;
5387 int len;
5388
5389 /* If the user has disabled vRun support, or we have detected that
5390 support is not available, do not try it. */
5391 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5392 return -1;
5393
5394 strcpy (rs->buf, "vRun;");
5395 len = strlen (rs->buf);
5396
5397 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5398 error (_("Remote file name too long for run packet"));
5399 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5400
5401 if (*args)
5402 {
5403 struct cleanup *back_to;
5404 int i;
5405 char **argv;
5406
5407 argv = buildargv (args);
5408 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5409 for (i = 0; argv[i] != NULL; i++)
5410 {
5411 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5412 error (_("Argument list too long for run packet"));
5413 rs->buf[len++] = ';';
5414 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5415 }
5416 do_cleanups (back_to);
5417 }
5418
5419 rs->buf[len++] = '\0';
5420
5421 putpkt (rs->buf);
5422 getpkt (&rs->buf, &rs->buf_size, 0);
5423
5424 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5425 {
5426 /* We have a wait response; we don't need it, though. All is well. */
5427 return 0;
5428 }
5429 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5430 /* It wasn't disabled before, but it is now. */
5431 return -1;
5432 else
5433 {
5434 if (remote_exec_file[0] == '\0')
5435 error (_("Running the default executable on the remote target failed; "
5436 "try \"set remote exec-file\"?"));
5437 else
5438 error (_("Running \"%s\" on the remote target failed"),
5439 remote_exec_file);
5440 }
5441 }
5442
5443 /* In the extended protocol we want to be able to do things like
5444 "run" and have them basically work as expected. So we need
5445 a special create_inferior function. We support changing the
5446 executable file and the command line arguments, but not the
5447 environment. */
5448
5449 static void
5450 extended_remote_create_inferior_1 (char *exec_file, char *args,
5451 char **env, int from_tty,
5452 int async_p)
5453 {
5454 /* If running asynchronously, register the target file descriptor
5455 with the event loop. */
5456 if (async_p && target_can_async_p ())
5457 target_async (inferior_event_handler, 0);
5458
5459 /* Now restart the remote server. */
5460 if (extended_remote_run (args) == -1)
5461 {
5462 /* vRun was not supported. Fail if we need it to do what the
5463 user requested. */
5464 if (remote_exec_file[0])
5465 error (_("Remote target does not support \"set remote exec-file\""));
5466 if (args[0])
5467 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5468
5469 /* Fall back to "R". */
5470 extended_remote_restart ();
5471 }
5472
5473 /* Clean up from the last time we ran, before we mark the target
5474 running again. This will mark breakpoints uninserted, and
5475 get_offsets may insert breakpoints. */
5476 init_thread_list ();
5477 init_wait_for_inferior ();
5478
5479 /* Now mark the inferior as running before we do anything else. */
5480 attach_flag = 0;
5481 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5482 if (async_p)
5483 target_mark_running (&extended_async_remote_ops);
5484 else
5485 target_mark_running (&extended_remote_ops);
5486
5487 /* Get updated offsets, if the stub uses qOffsets. */
5488 get_offsets ();
5489 }
5490
5491 static void
5492 extended_remote_create_inferior (char *exec_file, char *args,
5493 char **env, int from_tty)
5494 {
5495 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 0);
5496 }
5497
5498 static void
5499 extended_remote_async_create_inferior (char *exec_file, char *args,
5500 char **env, int from_tty)
5501 {
5502 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 1);
5503 }
5504 \f
5505
5506 /* Insert a breakpoint. On targets that have software breakpoint
5507 support, we ask the remote target to do the work; on targets
5508 which don't, we insert a traditional memory breakpoint. */
5509
5510 static int
5511 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5512 {
5513 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5514 If it succeeds, then set the support to PACKET_ENABLE. If it
5515 fails, and the user has explicitly requested the Z support then
5516 report an error, otherwise, mark it disabled and go on. */
5517
5518 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5519 {
5520 CORE_ADDR addr;
5521 struct remote_state *rs;
5522 char *p;
5523
5524 gdbarch_breakpoint_from_pc
5525 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5526
5527 rs = get_remote_state ();
5528 p = rs->buf;
5529
5530 *(p++) = 'Z';
5531 *(p++) = '0';
5532 *(p++) = ',';
5533 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5534 p += hexnumstr (p, addr);
5535 sprintf (p, ",%d", bp_tgt->placed_size);
5536
5537 putpkt (rs->buf);
5538 getpkt (&rs->buf, &rs->buf_size, 0);
5539
5540 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5541 {
5542 case PACKET_ERROR:
5543 return -1;
5544 case PACKET_OK:
5545 return 0;
5546 case PACKET_UNKNOWN:
5547 break;
5548 }
5549 }
5550
5551 return memory_insert_breakpoint (bp_tgt);
5552 }
5553
5554 static int
5555 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5556 {
5557 CORE_ADDR addr = bp_tgt->placed_address;
5558 struct remote_state *rs = get_remote_state ();
5559 int bp_size;
5560
5561 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5562 {
5563 char *p = rs->buf;
5564
5565 *(p++) = 'z';
5566 *(p++) = '0';
5567 *(p++) = ',';
5568
5569 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5570 p += hexnumstr (p, addr);
5571 sprintf (p, ",%d", bp_tgt->placed_size);
5572
5573 putpkt (rs->buf);
5574 getpkt (&rs->buf, &rs->buf_size, 0);
5575
5576 return (rs->buf[0] == 'E');
5577 }
5578
5579 return memory_remove_breakpoint (bp_tgt);
5580 }
5581
5582 static int
5583 watchpoint_to_Z_packet (int type)
5584 {
5585 switch (type)
5586 {
5587 case hw_write:
5588 return Z_PACKET_WRITE_WP;
5589 break;
5590 case hw_read:
5591 return Z_PACKET_READ_WP;
5592 break;
5593 case hw_access:
5594 return Z_PACKET_ACCESS_WP;
5595 break;
5596 default:
5597 internal_error (__FILE__, __LINE__,
5598 _("hw_bp_to_z: bad watchpoint type %d"), type);
5599 }
5600 }
5601
5602 static int
5603 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5604 {
5605 struct remote_state *rs = get_remote_state ();
5606 char *p;
5607 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5608
5609 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5610 return -1;
5611
5612 sprintf (rs->buf, "Z%x,", packet);
5613 p = strchr (rs->buf, '\0');
5614 addr = remote_address_masked (addr);
5615 p += hexnumstr (p, (ULONGEST) addr);
5616 sprintf (p, ",%x", len);
5617
5618 putpkt (rs->buf);
5619 getpkt (&rs->buf, &rs->buf_size, 0);
5620
5621 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5622 {
5623 case PACKET_ERROR:
5624 case PACKET_UNKNOWN:
5625 return -1;
5626 case PACKET_OK:
5627 return 0;
5628 }
5629 internal_error (__FILE__, __LINE__,
5630 _("remote_insert_watchpoint: reached end of function"));
5631 }
5632
5633
5634 static int
5635 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5636 {
5637 struct remote_state *rs = get_remote_state ();
5638 char *p;
5639 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5640
5641 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5642 return -1;
5643
5644 sprintf (rs->buf, "z%x,", packet);
5645 p = strchr (rs->buf, '\0');
5646 addr = remote_address_masked (addr);
5647 p += hexnumstr (p, (ULONGEST) addr);
5648 sprintf (p, ",%x", len);
5649 putpkt (rs->buf);
5650 getpkt (&rs->buf, &rs->buf_size, 0);
5651
5652 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5653 {
5654 case PACKET_ERROR:
5655 case PACKET_UNKNOWN:
5656 return -1;
5657 case PACKET_OK:
5658 return 0;
5659 }
5660 internal_error (__FILE__, __LINE__,
5661 _("remote_remove_watchpoint: reached end of function"));
5662 }
5663
5664
5665 int remote_hw_watchpoint_limit = -1;
5666 int remote_hw_breakpoint_limit = -1;
5667
5668 static int
5669 remote_check_watch_resources (int type, int cnt, int ot)
5670 {
5671 if (type == bp_hardware_breakpoint)
5672 {
5673 if (remote_hw_breakpoint_limit == 0)
5674 return 0;
5675 else if (remote_hw_breakpoint_limit < 0)
5676 return 1;
5677 else if (cnt <= remote_hw_breakpoint_limit)
5678 return 1;
5679 }
5680 else
5681 {
5682 if (remote_hw_watchpoint_limit == 0)
5683 return 0;
5684 else if (remote_hw_watchpoint_limit < 0)
5685 return 1;
5686 else if (ot)
5687 return -1;
5688 else if (cnt <= remote_hw_watchpoint_limit)
5689 return 1;
5690 }
5691 return -1;
5692 }
5693
5694 static int
5695 remote_stopped_by_watchpoint (void)
5696 {
5697 return remote_stopped_by_watchpoint_p;
5698 }
5699
5700 static int
5701 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5702 {
5703 int rc = 0;
5704 if (remote_stopped_by_watchpoint ())
5705 {
5706 *addr_p = remote_watch_data_address;
5707 rc = 1;
5708 }
5709
5710 return rc;
5711 }
5712
5713
5714 static int
5715 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5716 {
5717 CORE_ADDR addr;
5718 struct remote_state *rs;
5719 char *p;
5720
5721 /* The length field should be set to the size of a breakpoint
5722 instruction, even though we aren't inserting one ourselves. */
5723
5724 gdbarch_breakpoint_from_pc
5725 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5726
5727 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5728 return -1;
5729
5730 rs = get_remote_state ();
5731 p = rs->buf;
5732
5733 *(p++) = 'Z';
5734 *(p++) = '1';
5735 *(p++) = ',';
5736
5737 addr = remote_address_masked (bp_tgt->placed_address);
5738 p += hexnumstr (p, (ULONGEST) addr);
5739 sprintf (p, ",%x", bp_tgt->placed_size);
5740
5741 putpkt (rs->buf);
5742 getpkt (&rs->buf, &rs->buf_size, 0);
5743
5744 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5745 {
5746 case PACKET_ERROR:
5747 case PACKET_UNKNOWN:
5748 return -1;
5749 case PACKET_OK:
5750 return 0;
5751 }
5752 internal_error (__FILE__, __LINE__,
5753 _("remote_insert_hw_breakpoint: reached end of function"));
5754 }
5755
5756
5757 static int
5758 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5759 {
5760 CORE_ADDR addr;
5761 struct remote_state *rs = get_remote_state ();
5762 char *p = rs->buf;
5763
5764 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5765 return -1;
5766
5767 *(p++) = 'z';
5768 *(p++) = '1';
5769 *(p++) = ',';
5770
5771 addr = remote_address_masked (bp_tgt->placed_address);
5772 p += hexnumstr (p, (ULONGEST) addr);
5773 sprintf (p, ",%x", bp_tgt->placed_size);
5774
5775 putpkt (rs->buf);
5776 getpkt (&rs->buf, &rs->buf_size, 0);
5777
5778 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5779 {
5780 case PACKET_ERROR:
5781 case PACKET_UNKNOWN:
5782 return -1;
5783 case PACKET_OK:
5784 return 0;
5785 }
5786 internal_error (__FILE__, __LINE__,
5787 _("remote_remove_hw_breakpoint: reached end of function"));
5788 }
5789
5790 /* Some targets are only capable of doing downloads, and afterwards
5791 they switch to the remote serial protocol. This function provides
5792 a clean way to get from the download target to the remote target.
5793 It's basically just a wrapper so that we don't have to expose any
5794 of the internal workings of remote.c.
5795
5796 Prior to calling this routine, you should shutdown the current
5797 target code, else you will get the "A program is being debugged
5798 already..." message. Usually a call to pop_target() suffices. */
5799
5800 void
5801 push_remote_target (char *name, int from_tty)
5802 {
5803 printf_filtered (_("Switching to remote protocol\n"));
5804 remote_open (name, from_tty);
5805 }
5806
5807 /* Table used by the crc32 function to calcuate the checksum. */
5808
5809 static unsigned long crc32_table[256] =
5810 {0, 0};
5811
5812 static unsigned long
5813 crc32 (unsigned char *buf, int len, unsigned int crc)
5814 {
5815 if (!crc32_table[1])
5816 {
5817 /* Initialize the CRC table and the decoding table. */
5818 int i, j;
5819 unsigned int c;
5820
5821 for (i = 0; i < 256; i++)
5822 {
5823 for (c = i << 24, j = 8; j > 0; --j)
5824 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5825 crc32_table[i] = c;
5826 }
5827 }
5828
5829 while (len--)
5830 {
5831 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5832 buf++;
5833 }
5834 return crc;
5835 }
5836
5837 /* compare-sections command
5838
5839 With no arguments, compares each loadable section in the exec bfd
5840 with the same memory range on the target, and reports mismatches.
5841 Useful for verifying the image on the target against the exec file.
5842 Depends on the target understanding the new "qCRC:" request. */
5843
5844 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5845 target method (target verify memory) and generic version of the
5846 actual command. This will allow other high-level code (especially
5847 generic_load()) to make use of this target functionality. */
5848
5849 static void
5850 compare_sections_command (char *args, int from_tty)
5851 {
5852 struct remote_state *rs = get_remote_state ();
5853 asection *s;
5854 unsigned long host_crc, target_crc;
5855 extern bfd *exec_bfd;
5856 struct cleanup *old_chain;
5857 char *tmp;
5858 char *sectdata;
5859 const char *sectname;
5860 bfd_size_type size;
5861 bfd_vma lma;
5862 int matched = 0;
5863 int mismatched = 0;
5864
5865 if (!exec_bfd)
5866 error (_("command cannot be used without an exec file"));
5867 if (!current_target.to_shortname ||
5868 strcmp (current_target.to_shortname, "remote") != 0)
5869 error (_("command can only be used with remote target"));
5870
5871 for (s = exec_bfd->sections; s; s = s->next)
5872 {
5873 if (!(s->flags & SEC_LOAD))
5874 continue; /* skip non-loadable section */
5875
5876 size = bfd_get_section_size (s);
5877 if (size == 0)
5878 continue; /* skip zero-length section */
5879
5880 sectname = bfd_get_section_name (exec_bfd, s);
5881 if (args && strcmp (args, sectname) != 0)
5882 continue; /* not the section selected by user */
5883
5884 matched = 1; /* do this section */
5885 lma = s->lma;
5886 /* FIXME: assumes lma can fit into long. */
5887 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5888 (long) lma, (long) size);
5889 putpkt (rs->buf);
5890
5891 /* Be clever; compute the host_crc before waiting for target
5892 reply. */
5893 sectdata = xmalloc (size);
5894 old_chain = make_cleanup (xfree, sectdata);
5895 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5896 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5897
5898 getpkt (&rs->buf, &rs->buf_size, 0);
5899 if (rs->buf[0] == 'E')
5900 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5901 sectname, paddr (lma), paddr (lma + size));
5902 if (rs->buf[0] != 'C')
5903 error (_("remote target does not support this operation"));
5904
5905 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5906 target_crc = target_crc * 16 + fromhex (*tmp);
5907
5908 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5909 sectname, paddr (lma), paddr (lma + size));
5910 if (host_crc == target_crc)
5911 printf_filtered ("matched.\n");
5912 else
5913 {
5914 printf_filtered ("MIS-MATCHED!\n");
5915 mismatched++;
5916 }
5917
5918 do_cleanups (old_chain);
5919 }
5920 if (mismatched > 0)
5921 warning (_("One or more sections of the remote executable does not match\n\
5922 the loaded file\n"));
5923 if (args && !matched)
5924 printf_filtered (_("No loaded section named '%s'.\n"), args);
5925 }
5926
5927 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5928 into remote target. The number of bytes written to the remote
5929 target is returned, or -1 for error. */
5930
5931 static LONGEST
5932 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5933 const char *annex, const gdb_byte *writebuf,
5934 ULONGEST offset, LONGEST len,
5935 struct packet_config *packet)
5936 {
5937 int i, buf_len;
5938 ULONGEST n;
5939 gdb_byte *wbuf;
5940 struct remote_state *rs = get_remote_state ();
5941 int max_size = get_memory_write_packet_size ();
5942
5943 if (packet->support == PACKET_DISABLE)
5944 return -1;
5945
5946 /* Insert header. */
5947 i = snprintf (rs->buf, max_size,
5948 "qXfer:%s:write:%s:%s:",
5949 object_name, annex ? annex : "",
5950 phex_nz (offset, sizeof offset));
5951 max_size -= (i + 1);
5952
5953 /* Escape as much data as fits into rs->buf. */
5954 buf_len = remote_escape_output
5955 (writebuf, len, (rs->buf + i), &max_size, max_size);
5956
5957 if (putpkt_binary (rs->buf, i + buf_len) < 0
5958 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5959 || packet_ok (rs->buf, packet) != PACKET_OK)
5960 return -1;
5961
5962 unpack_varlen_hex (rs->buf, &n);
5963 return n;
5964 }
5965
5966 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5967 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5968 number of bytes read is returned, or 0 for EOF, or -1 for error.
5969 The number of bytes read may be less than LEN without indicating an
5970 EOF. PACKET is checked and updated to indicate whether the remote
5971 target supports this object. */
5972
5973 static LONGEST
5974 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5975 const char *annex,
5976 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5977 struct packet_config *packet)
5978 {
5979 static char *finished_object;
5980 static char *finished_annex;
5981 static ULONGEST finished_offset;
5982
5983 struct remote_state *rs = get_remote_state ();
5984 unsigned int total = 0;
5985 LONGEST i, n, packet_len;
5986
5987 if (packet->support == PACKET_DISABLE)
5988 return -1;
5989
5990 /* Check whether we've cached an end-of-object packet that matches
5991 this request. */
5992 if (finished_object)
5993 {
5994 if (strcmp (object_name, finished_object) == 0
5995 && strcmp (annex ? annex : "", finished_annex) == 0
5996 && offset == finished_offset)
5997 return 0;
5998
5999 /* Otherwise, we're now reading something different. Discard
6000 the cache. */
6001 xfree (finished_object);
6002 xfree (finished_annex);
6003 finished_object = NULL;
6004 finished_annex = NULL;
6005 }
6006
6007 /* Request only enough to fit in a single packet. The actual data
6008 may not, since we don't know how much of it will need to be escaped;
6009 the target is free to respond with slightly less data. We subtract
6010 five to account for the response type and the protocol frame. */
6011 n = min (get_remote_packet_size () - 5, len);
6012 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
6013 object_name, annex ? annex : "",
6014 phex_nz (offset, sizeof offset),
6015 phex_nz (n, sizeof n));
6016 i = putpkt (rs->buf);
6017 if (i < 0)
6018 return -1;
6019
6020 rs->buf[0] = '\0';
6021 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6022 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6023 return -1;
6024
6025 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6026 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6027
6028 /* 'm' means there is (or at least might be) more data after this
6029 batch. That does not make sense unless there's at least one byte
6030 of data in this reply. */
6031 if (rs->buf[0] == 'm' && packet_len == 1)
6032 error (_("Remote qXfer reply contained no data."));
6033
6034 /* Got some data. */
6035 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6036
6037 /* 'l' is an EOF marker, possibly including a final block of data,
6038 or possibly empty. If we have the final block of a non-empty
6039 object, record this fact to bypass a subsequent partial read. */
6040 if (rs->buf[0] == 'l' && offset + i > 0)
6041 {
6042 finished_object = xstrdup (object_name);
6043 finished_annex = xstrdup (annex ? annex : "");
6044 finished_offset = offset + i;
6045 }
6046
6047 return i;
6048 }
6049
6050 static LONGEST
6051 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6052 const char *annex, gdb_byte *readbuf,
6053 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6054 {
6055 struct remote_state *rs = get_remote_state ();
6056 int i;
6057 char *p2;
6058 char query_type;
6059
6060 /* Handle memory using the standard memory routines. */
6061 if (object == TARGET_OBJECT_MEMORY)
6062 {
6063 int xfered;
6064 errno = 0;
6065
6066 /* If the remote target is connected but not running, we should
6067 pass this request down to a lower stratum (e.g. the executable
6068 file). */
6069 if (!target_has_execution)
6070 return 0;
6071
6072 if (writebuf != NULL)
6073 xfered = remote_write_bytes (offset, writebuf, len);
6074 else
6075 xfered = remote_read_bytes (offset, readbuf, len);
6076
6077 if (xfered > 0)
6078 return xfered;
6079 else if (xfered == 0 && errno == 0)
6080 return 0;
6081 else
6082 return -1;
6083 }
6084
6085 /* Handle SPU memory using qxfer packets. */
6086 if (object == TARGET_OBJECT_SPU)
6087 {
6088 if (readbuf)
6089 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6090 &remote_protocol_packets
6091 [PACKET_qXfer_spu_read]);
6092 else
6093 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6094 &remote_protocol_packets
6095 [PACKET_qXfer_spu_write]);
6096 }
6097
6098 /* Only handle flash writes. */
6099 if (writebuf != NULL)
6100 {
6101 LONGEST xfered;
6102
6103 switch (object)
6104 {
6105 case TARGET_OBJECT_FLASH:
6106 xfered = remote_flash_write (ops, offset, len, writebuf);
6107
6108 if (xfered > 0)
6109 return xfered;
6110 else if (xfered == 0 && errno == 0)
6111 return 0;
6112 else
6113 return -1;
6114
6115 default:
6116 return -1;
6117 }
6118 }
6119
6120 /* Map pre-existing objects onto letters. DO NOT do this for new
6121 objects!!! Instead specify new query packets. */
6122 switch (object)
6123 {
6124 case TARGET_OBJECT_AVR:
6125 query_type = 'R';
6126 break;
6127
6128 case TARGET_OBJECT_AUXV:
6129 gdb_assert (annex == NULL);
6130 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6131 &remote_protocol_packets[PACKET_qXfer_auxv]);
6132
6133 case TARGET_OBJECT_AVAILABLE_FEATURES:
6134 return remote_read_qxfer
6135 (ops, "features", annex, readbuf, offset, len,
6136 &remote_protocol_packets[PACKET_qXfer_features]);
6137
6138 case TARGET_OBJECT_LIBRARIES:
6139 return remote_read_qxfer
6140 (ops, "libraries", annex, readbuf, offset, len,
6141 &remote_protocol_packets[PACKET_qXfer_libraries]);
6142
6143 case TARGET_OBJECT_MEMORY_MAP:
6144 gdb_assert (annex == NULL);
6145 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6146 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6147
6148 default:
6149 return -1;
6150 }
6151
6152 /* Note: a zero OFFSET and LEN can be used to query the minimum
6153 buffer size. */
6154 if (offset == 0 && len == 0)
6155 return (get_remote_packet_size ());
6156 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6157 large enough let the caller deal with it. */
6158 if (len < get_remote_packet_size ())
6159 return -1;
6160 len = get_remote_packet_size ();
6161
6162 /* Except for querying the minimum buffer size, target must be open. */
6163 if (!remote_desc)
6164 error (_("remote query is only available after target open"));
6165
6166 gdb_assert (annex != NULL);
6167 gdb_assert (readbuf != NULL);
6168
6169 p2 = rs->buf;
6170 *p2++ = 'q';
6171 *p2++ = query_type;
6172
6173 /* We used one buffer char for the remote protocol q command and
6174 another for the query type. As the remote protocol encapsulation
6175 uses 4 chars plus one extra in case we are debugging
6176 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6177 string. */
6178 i = 0;
6179 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6180 {
6181 /* Bad caller may have sent forbidden characters. */
6182 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6183 *p2++ = annex[i];
6184 i++;
6185 }
6186 *p2 = '\0';
6187 gdb_assert (annex[i] == '\0');
6188
6189 i = putpkt (rs->buf);
6190 if (i < 0)
6191 return i;
6192
6193 getpkt (&rs->buf, &rs->buf_size, 0);
6194 strcpy ((char *) readbuf, rs->buf);
6195
6196 return strlen ((char *) readbuf);
6197 }
6198
6199 static int
6200 remote_search_memory (struct target_ops* ops,
6201 CORE_ADDR start_addr, ULONGEST search_space_len,
6202 const gdb_byte *pattern, ULONGEST pattern_len,
6203 CORE_ADDR *found_addrp)
6204 {
6205 struct remote_state *rs = get_remote_state ();
6206 int max_size = get_memory_write_packet_size ();
6207 struct packet_config *packet =
6208 &remote_protocol_packets[PACKET_qSearch_memory];
6209 /* number of packet bytes used to encode the pattern,
6210 this could be more than PATTERN_LEN due to escape characters */
6211 int escaped_pattern_len;
6212 /* amount of pattern that was encodable in the packet */
6213 int used_pattern_len;
6214 int i;
6215 int found;
6216 ULONGEST found_addr;
6217
6218 /* Don't go to the target if we don't have to.
6219 This is done before checking packet->support to avoid the possibility that
6220 a success for this edge case means the facility works in general. */
6221 if (pattern_len > search_space_len)
6222 return 0;
6223 if (pattern_len == 0)
6224 {
6225 *found_addrp = start_addr;
6226 return 1;
6227 }
6228
6229 /* If we already know the packet isn't supported, fall back to the simple
6230 way of searching memory. */
6231
6232 if (packet->support == PACKET_DISABLE)
6233 {
6234 /* Target doesn't provided special support, fall back and use the
6235 standard support (copy memory and do the search here). */
6236 return simple_search_memory (ops, start_addr, search_space_len,
6237 pattern, pattern_len, found_addrp);
6238 }
6239
6240 /* Insert header. */
6241 i = snprintf (rs->buf, max_size,
6242 "qSearch:memory:%s;%s;",
6243 paddr_nz (start_addr),
6244 phex_nz (search_space_len, sizeof (search_space_len)));
6245 max_size -= (i + 1);
6246
6247 /* Escape as much data as fits into rs->buf. */
6248 escaped_pattern_len =
6249 remote_escape_output (pattern, pattern_len, (rs->buf + i),
6250 &used_pattern_len, max_size);
6251
6252 /* Bail if the pattern is too large. */
6253 if (used_pattern_len != pattern_len)
6254 error ("pattern is too large to transmit to remote target");
6255
6256 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
6257 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6258 || packet_ok (rs->buf, packet) != PACKET_OK)
6259 {
6260 /* The request may not have worked because the command is not
6261 supported. If so, fall back to the simple way. */
6262 if (packet->support == PACKET_DISABLE)
6263 {
6264 return simple_search_memory (ops, start_addr, search_space_len,
6265 pattern, pattern_len, found_addrp);
6266 }
6267 return -1;
6268 }
6269
6270 if (rs->buf[0] == '0')
6271 found = 0;
6272 else if (rs->buf[0] == '1')
6273 {
6274 found = 1;
6275 if (rs->buf[1] != ',')
6276 error (_("unknown qSearch:memory reply: %s"), rs->buf);
6277 unpack_varlen_hex (rs->buf + 2, &found_addr);
6278 *found_addrp = found_addr;
6279 }
6280 else
6281 error (_("unknown qSearch:memory reply: %s"), rs->buf);
6282
6283 return found;
6284 }
6285
6286 static void
6287 remote_rcmd (char *command,
6288 struct ui_file *outbuf)
6289 {
6290 struct remote_state *rs = get_remote_state ();
6291 char *p = rs->buf;
6292
6293 if (!remote_desc)
6294 error (_("remote rcmd is only available after target open"));
6295
6296 /* Send a NULL command across as an empty command. */
6297 if (command == NULL)
6298 command = "";
6299
6300 /* The query prefix. */
6301 strcpy (rs->buf, "qRcmd,");
6302 p = strchr (rs->buf, '\0');
6303
6304 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6305 error (_("\"monitor\" command ``%s'' is too long."), command);
6306
6307 /* Encode the actual command. */
6308 bin2hex ((gdb_byte *) command, p, 0);
6309
6310 if (putpkt (rs->buf) < 0)
6311 error (_("Communication problem with target."));
6312
6313 /* get/display the response */
6314 while (1)
6315 {
6316 char *buf;
6317
6318 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6319 rs->buf[0] = '\0';
6320 getpkt (&rs->buf, &rs->buf_size, 0);
6321 buf = rs->buf;
6322 if (buf[0] == '\0')
6323 error (_("Target does not support this command."));
6324 if (buf[0] == 'O' && buf[1] != 'K')
6325 {
6326 remote_console_output (buf + 1); /* 'O' message from stub. */
6327 continue;
6328 }
6329 if (strcmp (buf, "OK") == 0)
6330 break;
6331 if (strlen (buf) == 3 && buf[0] == 'E'
6332 && isdigit (buf[1]) && isdigit (buf[2]))
6333 {
6334 error (_("Protocol error with Rcmd"));
6335 }
6336 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6337 {
6338 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6339 fputc_unfiltered (c, outbuf);
6340 }
6341 break;
6342 }
6343 }
6344
6345 static VEC(mem_region_s) *
6346 remote_memory_map (struct target_ops *ops)
6347 {
6348 VEC(mem_region_s) *result = NULL;
6349 char *text = target_read_stralloc (&current_target,
6350 TARGET_OBJECT_MEMORY_MAP, NULL);
6351
6352 if (text)
6353 {
6354 struct cleanup *back_to = make_cleanup (xfree, text);
6355 result = parse_memory_map (text);
6356 do_cleanups (back_to);
6357 }
6358
6359 return result;
6360 }
6361
6362 static void
6363 packet_command (char *args, int from_tty)
6364 {
6365 struct remote_state *rs = get_remote_state ();
6366
6367 if (!remote_desc)
6368 error (_("command can only be used with remote target"));
6369
6370 if (!args)
6371 error (_("remote-packet command requires packet text as argument"));
6372
6373 puts_filtered ("sending: ");
6374 print_packet (args);
6375 puts_filtered ("\n");
6376 putpkt (args);
6377
6378 getpkt (&rs->buf, &rs->buf_size, 0);
6379 puts_filtered ("received: ");
6380 print_packet (rs->buf);
6381 puts_filtered ("\n");
6382 }
6383
6384 #if 0
6385 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6386
6387 static void display_thread_info (struct gdb_ext_thread_info *info);
6388
6389 static void threadset_test_cmd (char *cmd, int tty);
6390
6391 static void threadalive_test (char *cmd, int tty);
6392
6393 static void threadlist_test_cmd (char *cmd, int tty);
6394
6395 int get_and_display_threadinfo (threadref *ref);
6396
6397 static void threadinfo_test_cmd (char *cmd, int tty);
6398
6399 static int thread_display_step (threadref *ref, void *context);
6400
6401 static void threadlist_update_test_cmd (char *cmd, int tty);
6402
6403 static void init_remote_threadtests (void);
6404
6405 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6406
6407 static void
6408 threadset_test_cmd (char *cmd, int tty)
6409 {
6410 int sample_thread = SAMPLE_THREAD;
6411
6412 printf_filtered (_("Remote threadset test\n"));
6413 set_thread (sample_thread, 1);
6414 }
6415
6416
6417 static void
6418 threadalive_test (char *cmd, int tty)
6419 {
6420 int sample_thread = SAMPLE_THREAD;
6421
6422 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6423 printf_filtered ("PASS: Thread alive test\n");
6424 else
6425 printf_filtered ("FAIL: Thread alive test\n");
6426 }
6427
6428 void output_threadid (char *title, threadref *ref);
6429
6430 void
6431 output_threadid (char *title, threadref *ref)
6432 {
6433 char hexid[20];
6434
6435 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6436 hexid[16] = 0;
6437 printf_filtered ("%s %s\n", title, (&hexid[0]));
6438 }
6439
6440 static void
6441 threadlist_test_cmd (char *cmd, int tty)
6442 {
6443 int startflag = 1;
6444 threadref nextthread;
6445 int done, result_count;
6446 threadref threadlist[3];
6447
6448 printf_filtered ("Remote Threadlist test\n");
6449 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6450 &result_count, &threadlist[0]))
6451 printf_filtered ("FAIL: threadlist test\n");
6452 else
6453 {
6454 threadref *scan = threadlist;
6455 threadref *limit = scan + result_count;
6456
6457 while (scan < limit)
6458 output_threadid (" thread ", scan++);
6459 }
6460 }
6461
6462 void
6463 display_thread_info (struct gdb_ext_thread_info *info)
6464 {
6465 output_threadid ("Threadid: ", &info->threadid);
6466 printf_filtered ("Name: %s\n ", info->shortname);
6467 printf_filtered ("State: %s\n", info->display);
6468 printf_filtered ("other: %s\n\n", info->more_display);
6469 }
6470
6471 int
6472 get_and_display_threadinfo (threadref *ref)
6473 {
6474 int result;
6475 int set;
6476 struct gdb_ext_thread_info threadinfo;
6477
6478 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6479 | TAG_MOREDISPLAY | TAG_DISPLAY;
6480 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6481 display_thread_info (&threadinfo);
6482 return result;
6483 }
6484
6485 static void
6486 threadinfo_test_cmd (char *cmd, int tty)
6487 {
6488 int athread = SAMPLE_THREAD;
6489 threadref thread;
6490 int set;
6491
6492 int_to_threadref (&thread, athread);
6493 printf_filtered ("Remote Threadinfo test\n");
6494 if (!get_and_display_threadinfo (&thread))
6495 printf_filtered ("FAIL cannot get thread info\n");
6496 }
6497
6498 static int
6499 thread_display_step (threadref *ref, void *context)
6500 {
6501 /* output_threadid(" threadstep ",ref); *//* simple test */
6502 return get_and_display_threadinfo (ref);
6503 }
6504
6505 static void
6506 threadlist_update_test_cmd (char *cmd, int tty)
6507 {
6508 printf_filtered ("Remote Threadlist update test\n");
6509 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6510 }
6511
6512 static void
6513 init_remote_threadtests (void)
6514 {
6515 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6516 Fetch and print the remote list of thread identifiers, one pkt only"));
6517 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6518 _("Fetch and display info about one thread"));
6519 add_com ("tset", class_obscure, threadset_test_cmd,
6520 _("Test setting to a different thread"));
6521 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6522 _("Iterate through updating all remote thread info"));
6523 add_com ("talive", class_obscure, threadalive_test,
6524 _(" Remote thread alive test "));
6525 }
6526
6527 #endif /* 0 */
6528
6529 /* Convert a thread ID to a string. Returns the string in a static
6530 buffer. */
6531
6532 static char *
6533 remote_pid_to_str (ptid_t ptid)
6534 {
6535 static char buf[32];
6536
6537 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6538 return buf;
6539 }
6540
6541 /* Get the address of the thread local variable in OBJFILE which is
6542 stored at OFFSET within the thread local storage for thread PTID. */
6543
6544 static CORE_ADDR
6545 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6546 {
6547 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6548 {
6549 struct remote_state *rs = get_remote_state ();
6550 char *p = rs->buf;
6551 enum packet_result result;
6552
6553 strcpy (p, "qGetTLSAddr:");
6554 p += strlen (p);
6555 p += hexnumstr (p, PIDGET (ptid));
6556 *p++ = ',';
6557 p += hexnumstr (p, offset);
6558 *p++ = ',';
6559 p += hexnumstr (p, lm);
6560 *p++ = '\0';
6561
6562 putpkt (rs->buf);
6563 getpkt (&rs->buf, &rs->buf_size, 0);
6564 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6565 if (result == PACKET_OK)
6566 {
6567 ULONGEST result;
6568
6569 unpack_varlen_hex (rs->buf, &result);
6570 return result;
6571 }
6572 else if (result == PACKET_UNKNOWN)
6573 throw_error (TLS_GENERIC_ERROR,
6574 _("Remote target doesn't support qGetTLSAddr packet"));
6575 else
6576 throw_error (TLS_GENERIC_ERROR,
6577 _("Remote target failed to process qGetTLSAddr request"));
6578 }
6579 else
6580 throw_error (TLS_GENERIC_ERROR,
6581 _("TLS not supported or disabled on this target"));
6582 /* Not reached. */
6583 return 0;
6584 }
6585
6586 /* Support for inferring a target description based on the current
6587 architecture and the size of a 'g' packet. While the 'g' packet
6588 can have any size (since optional registers can be left off the
6589 end), some sizes are easily recognizable given knowledge of the
6590 approximate architecture. */
6591
6592 struct remote_g_packet_guess
6593 {
6594 int bytes;
6595 const struct target_desc *tdesc;
6596 };
6597 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6598 DEF_VEC_O(remote_g_packet_guess_s);
6599
6600 struct remote_g_packet_data
6601 {
6602 VEC(remote_g_packet_guess_s) *guesses;
6603 };
6604
6605 static struct gdbarch_data *remote_g_packet_data_handle;
6606
6607 static void *
6608 remote_g_packet_data_init (struct obstack *obstack)
6609 {
6610 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6611 }
6612
6613 void
6614 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6615 const struct target_desc *tdesc)
6616 {
6617 struct remote_g_packet_data *data
6618 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6619 struct remote_g_packet_guess new_guess, *guess;
6620 int ix;
6621
6622 gdb_assert (tdesc != NULL);
6623
6624 for (ix = 0;
6625 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6626 ix++)
6627 if (guess->bytes == bytes)
6628 internal_error (__FILE__, __LINE__,
6629 "Duplicate g packet description added for size %d",
6630 bytes);
6631
6632 new_guess.bytes = bytes;
6633 new_guess.tdesc = tdesc;
6634 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6635 }
6636
6637 static const struct target_desc *
6638 remote_read_description (struct target_ops *target)
6639 {
6640 struct remote_g_packet_data *data
6641 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6642
6643 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6644 {
6645 struct remote_g_packet_guess *guess;
6646 int ix;
6647 int bytes = send_g_packet ();
6648
6649 for (ix = 0;
6650 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6651 ix++)
6652 if (guess->bytes == bytes)
6653 return guess->tdesc;
6654
6655 /* We discard the g packet. A minor optimization would be to
6656 hold on to it, and fill the register cache once we have selected
6657 an architecture, but it's too tricky to do safely. */
6658 }
6659
6660 return NULL;
6661 }
6662
6663 /* Remote file transfer support. This is host-initiated I/O, not
6664 target-initiated; for target-initiated, see remote-fileio.c. */
6665
6666 /* If *LEFT is at least the length of STRING, copy STRING to
6667 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6668 decrease *LEFT. Otherwise raise an error. */
6669
6670 static void
6671 remote_buffer_add_string (char **buffer, int *left, char *string)
6672 {
6673 int len = strlen (string);
6674
6675 if (len > *left)
6676 error (_("Packet too long for target."));
6677
6678 memcpy (*buffer, string, len);
6679 *buffer += len;
6680 *left -= len;
6681
6682 /* NUL-terminate the buffer as a convenience, if there is
6683 room. */
6684 if (*left)
6685 **buffer = '\0';
6686 }
6687
6688 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6689 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6690 decrease *LEFT. Otherwise raise an error. */
6691
6692 static void
6693 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6694 int len)
6695 {
6696 if (2 * len > *left)
6697 error (_("Packet too long for target."));
6698
6699 bin2hex (bytes, *buffer, len);
6700 *buffer += 2 * len;
6701 *left -= 2 * len;
6702
6703 /* NUL-terminate the buffer as a convenience, if there is
6704 room. */
6705 if (*left)
6706 **buffer = '\0';
6707 }
6708
6709 /* If *LEFT is large enough, convert VALUE to hex and add it to
6710 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6711 decrease *LEFT. Otherwise raise an error. */
6712
6713 static void
6714 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6715 {
6716 int len = hexnumlen (value);
6717
6718 if (len > *left)
6719 error (_("Packet too long for target."));
6720
6721 hexnumstr (*buffer, value);
6722 *buffer += len;
6723 *left -= len;
6724
6725 /* NUL-terminate the buffer as a convenience, if there is
6726 room. */
6727 if (*left)
6728 **buffer = '\0';
6729 }
6730
6731 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6732 value, *REMOTE_ERRNO to the remote error number or zero if none
6733 was included, and *ATTACHMENT to point to the start of the annex
6734 if any. The length of the packet isn't needed here; there may
6735 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6736
6737 Return 0 if the packet could be parsed, -1 if it could not. If
6738 -1 is returned, the other variables may not be initialized. */
6739
6740 static int
6741 remote_hostio_parse_result (char *buffer, int *retcode,
6742 int *remote_errno, char **attachment)
6743 {
6744 char *p, *p2;
6745
6746 *remote_errno = 0;
6747 *attachment = NULL;
6748
6749 if (buffer[0] != 'F')
6750 return -1;
6751
6752 errno = 0;
6753 *retcode = strtol (&buffer[1], &p, 16);
6754 if (errno != 0 || p == &buffer[1])
6755 return -1;
6756
6757 /* Check for ",errno". */
6758 if (*p == ',')
6759 {
6760 errno = 0;
6761 *remote_errno = strtol (p + 1, &p2, 16);
6762 if (errno != 0 || p + 1 == p2)
6763 return -1;
6764 p = p2;
6765 }
6766
6767 /* Check for ";attachment". If there is no attachment, the
6768 packet should end here. */
6769 if (*p == ';')
6770 {
6771 *attachment = p + 1;
6772 return 0;
6773 }
6774 else if (*p == '\0')
6775 return 0;
6776 else
6777 return -1;
6778 }
6779
6780 /* Send a prepared I/O packet to the target and read its response.
6781 The prepared packet is in the global RS->BUF before this function
6782 is called, and the answer is there when we return.
6783
6784 COMMAND_BYTES is the length of the request to send, which may include
6785 binary data. WHICH_PACKET is the packet configuration to check
6786 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6787 is set to the error number and -1 is returned. Otherwise the value
6788 returned by the function is returned.
6789
6790 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6791 attachment is expected; an error will be reported if there's a
6792 mismatch. If one is found, *ATTACHMENT will be set to point into
6793 the packet buffer and *ATTACHMENT_LEN will be set to the
6794 attachment's length. */
6795
6796 static int
6797 remote_hostio_send_command (int command_bytes, int which_packet,
6798 int *remote_errno, char **attachment,
6799 int *attachment_len)
6800 {
6801 struct remote_state *rs = get_remote_state ();
6802 int ret, bytes_read;
6803 char *attachment_tmp;
6804
6805 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6806 {
6807 *remote_errno = FILEIO_ENOSYS;
6808 return -1;
6809 }
6810
6811 putpkt_binary (rs->buf, command_bytes);
6812 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6813
6814 /* If it timed out, something is wrong. Don't try to parse the
6815 buffer. */
6816 if (bytes_read < 0)
6817 {
6818 *remote_errno = FILEIO_EINVAL;
6819 return -1;
6820 }
6821
6822 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6823 {
6824 case PACKET_ERROR:
6825 *remote_errno = FILEIO_EINVAL;
6826 return -1;
6827 case PACKET_UNKNOWN:
6828 *remote_errno = FILEIO_ENOSYS;
6829 return -1;
6830 case PACKET_OK:
6831 break;
6832 }
6833
6834 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6835 &attachment_tmp))
6836 {
6837 *remote_errno = FILEIO_EINVAL;
6838 return -1;
6839 }
6840
6841 /* Make sure we saw an attachment if and only if we expected one. */
6842 if ((attachment_tmp == NULL && attachment != NULL)
6843 || (attachment_tmp != NULL && attachment == NULL))
6844 {
6845 *remote_errno = FILEIO_EINVAL;
6846 return -1;
6847 }
6848
6849 /* If an attachment was found, it must point into the packet buffer;
6850 work out how many bytes there were. */
6851 if (attachment_tmp != NULL)
6852 {
6853 *attachment = attachment_tmp;
6854 *attachment_len = bytes_read - (*attachment - rs->buf);
6855 }
6856
6857 return ret;
6858 }
6859
6860 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6861 remote file descriptor, or -1 if an error occurs (and set
6862 *REMOTE_ERRNO). */
6863
6864 static int
6865 remote_hostio_open (const char *filename, int flags, int mode,
6866 int *remote_errno)
6867 {
6868 struct remote_state *rs = get_remote_state ();
6869 char *p = rs->buf;
6870 int left = get_remote_packet_size () - 1;
6871
6872 remote_buffer_add_string (&p, &left, "vFile:open:");
6873
6874 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6875 strlen (filename));
6876 remote_buffer_add_string (&p, &left, ",");
6877
6878 remote_buffer_add_int (&p, &left, flags);
6879 remote_buffer_add_string (&p, &left, ",");
6880
6881 remote_buffer_add_int (&p, &left, mode);
6882
6883 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6884 remote_errno, NULL, NULL);
6885 }
6886
6887 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6888 Return the number of bytes written, or -1 if an error occurs (and
6889 set *REMOTE_ERRNO). */
6890
6891 static int
6892 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6893 ULONGEST offset, int *remote_errno)
6894 {
6895 struct remote_state *rs = get_remote_state ();
6896 char *p = rs->buf;
6897 int left = get_remote_packet_size ();
6898 int out_len;
6899
6900 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6901
6902 remote_buffer_add_int (&p, &left, fd);
6903 remote_buffer_add_string (&p, &left, ",");
6904
6905 remote_buffer_add_int (&p, &left, offset);
6906 remote_buffer_add_string (&p, &left, ",");
6907
6908 p += remote_escape_output (write_buf, len, p, &out_len,
6909 get_remote_packet_size () - (p - rs->buf));
6910
6911 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6912 remote_errno, NULL, NULL);
6913 }
6914
6915 /* Read up to LEN bytes FD on the remote target into READ_BUF
6916 Return the number of bytes read, or -1 if an error occurs (and
6917 set *REMOTE_ERRNO). */
6918
6919 static int
6920 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6921 ULONGEST offset, int *remote_errno)
6922 {
6923 struct remote_state *rs = get_remote_state ();
6924 char *p = rs->buf;
6925 char *attachment;
6926 int left = get_remote_packet_size ();
6927 int ret, attachment_len;
6928 int read_len;
6929
6930 remote_buffer_add_string (&p, &left, "vFile:pread:");
6931
6932 remote_buffer_add_int (&p, &left, fd);
6933 remote_buffer_add_string (&p, &left, ",");
6934
6935 remote_buffer_add_int (&p, &left, len);
6936 remote_buffer_add_string (&p, &left, ",");
6937
6938 remote_buffer_add_int (&p, &left, offset);
6939
6940 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6941 remote_errno, &attachment,
6942 &attachment_len);
6943
6944 if (ret < 0)
6945 return ret;
6946
6947 read_len = remote_unescape_input (attachment, attachment_len,
6948 read_buf, len);
6949 if (read_len != ret)
6950 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6951
6952 return ret;
6953 }
6954
6955 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6956 (and set *REMOTE_ERRNO). */
6957
6958 static int
6959 remote_hostio_close (int fd, int *remote_errno)
6960 {
6961 struct remote_state *rs = get_remote_state ();
6962 char *p = rs->buf;
6963 int left = get_remote_packet_size () - 1;
6964
6965 remote_buffer_add_string (&p, &left, "vFile:close:");
6966
6967 remote_buffer_add_int (&p, &left, fd);
6968
6969 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6970 remote_errno, NULL, NULL);
6971 }
6972
6973 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6974 occurs (and set *REMOTE_ERRNO). */
6975
6976 static int
6977 remote_hostio_unlink (const char *filename, int *remote_errno)
6978 {
6979 struct remote_state *rs = get_remote_state ();
6980 char *p = rs->buf;
6981 int left = get_remote_packet_size () - 1;
6982
6983 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6984
6985 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6986 strlen (filename));
6987
6988 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6989 remote_errno, NULL, NULL);
6990 }
6991
6992 static int
6993 remote_fileio_errno_to_host (int errnum)
6994 {
6995 switch (errnum)
6996 {
6997 case FILEIO_EPERM:
6998 return EPERM;
6999 case FILEIO_ENOENT:
7000 return ENOENT;
7001 case FILEIO_EINTR:
7002 return EINTR;
7003 case FILEIO_EIO:
7004 return EIO;
7005 case FILEIO_EBADF:
7006 return EBADF;
7007 case FILEIO_EACCES:
7008 return EACCES;
7009 case FILEIO_EFAULT:
7010 return EFAULT;
7011 case FILEIO_EBUSY:
7012 return EBUSY;
7013 case FILEIO_EEXIST:
7014 return EEXIST;
7015 case FILEIO_ENODEV:
7016 return ENODEV;
7017 case FILEIO_ENOTDIR:
7018 return ENOTDIR;
7019 case FILEIO_EISDIR:
7020 return EISDIR;
7021 case FILEIO_EINVAL:
7022 return EINVAL;
7023 case FILEIO_ENFILE:
7024 return ENFILE;
7025 case FILEIO_EMFILE:
7026 return EMFILE;
7027 case FILEIO_EFBIG:
7028 return EFBIG;
7029 case FILEIO_ENOSPC:
7030 return ENOSPC;
7031 case FILEIO_ESPIPE:
7032 return ESPIPE;
7033 case FILEIO_EROFS:
7034 return EROFS;
7035 case FILEIO_ENOSYS:
7036 return ENOSYS;
7037 case FILEIO_ENAMETOOLONG:
7038 return ENAMETOOLONG;
7039 }
7040 return -1;
7041 }
7042
7043 static char *
7044 remote_hostio_error (int errnum)
7045 {
7046 int host_error = remote_fileio_errno_to_host (errnum);
7047
7048 if (host_error == -1)
7049 error (_("Unknown remote I/O error %d"), errnum);
7050 else
7051 error (_("Remote I/O error: %s"), safe_strerror (host_error));
7052 }
7053
7054 static void
7055 fclose_cleanup (void *file)
7056 {
7057 fclose (file);
7058 }
7059
7060 static void
7061 remote_hostio_close_cleanup (void *opaque)
7062 {
7063 int fd = *(int *) opaque;
7064 int remote_errno;
7065
7066 remote_hostio_close (fd, &remote_errno);
7067 }
7068
7069 void
7070 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
7071 {
7072 struct cleanup *back_to, *close_cleanup;
7073 int retcode, fd, remote_errno, bytes, io_size;
7074 FILE *file;
7075 gdb_byte *buffer;
7076 int bytes_in_buffer;
7077 int saw_eof;
7078 ULONGEST offset;
7079
7080 if (!remote_desc)
7081 error (_("command can only be used with remote target"));
7082
7083 file = fopen (local_file, "rb");
7084 if (file == NULL)
7085 perror_with_name (local_file);
7086 back_to = make_cleanup (fclose_cleanup, file);
7087
7088 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
7089 | FILEIO_O_TRUNC),
7090 0700, &remote_errno);
7091 if (fd == -1)
7092 remote_hostio_error (remote_errno);
7093
7094 /* Send up to this many bytes at once. They won't all fit in the
7095 remote packet limit, so we'll transfer slightly fewer. */
7096 io_size = get_remote_packet_size ();
7097 buffer = xmalloc (io_size);
7098 make_cleanup (xfree, buffer);
7099
7100 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7101
7102 bytes_in_buffer = 0;
7103 saw_eof = 0;
7104 offset = 0;
7105 while (bytes_in_buffer || !saw_eof)
7106 {
7107 if (!saw_eof)
7108 {
7109 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7110 file);
7111 if (bytes == 0)
7112 {
7113 if (ferror (file))
7114 error (_("Error reading %s."), local_file);
7115 else
7116 {
7117 /* EOF. Unless there is something still in the
7118 buffer from the last iteration, we are done. */
7119 saw_eof = 1;
7120 if (bytes_in_buffer == 0)
7121 break;
7122 }
7123 }
7124 }
7125 else
7126 bytes = 0;
7127
7128 bytes += bytes_in_buffer;
7129 bytes_in_buffer = 0;
7130
7131 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7132
7133 if (retcode < 0)
7134 remote_hostio_error (remote_errno);
7135 else if (retcode == 0)
7136 error (_("Remote write of %d bytes returned 0!"), bytes);
7137 else if (retcode < bytes)
7138 {
7139 /* Short write. Save the rest of the read data for the next
7140 write. */
7141 bytes_in_buffer = bytes - retcode;
7142 memmove (buffer, buffer + retcode, bytes_in_buffer);
7143 }
7144
7145 offset += retcode;
7146 }
7147
7148 discard_cleanups (close_cleanup);
7149 if (remote_hostio_close (fd, &remote_errno))
7150 remote_hostio_error (remote_errno);
7151
7152 if (from_tty)
7153 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7154 do_cleanups (back_to);
7155 }
7156
7157 void
7158 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7159 {
7160 struct cleanup *back_to, *close_cleanup;
7161 int retcode, fd, remote_errno, bytes, io_size;
7162 FILE *file;
7163 gdb_byte *buffer;
7164 ULONGEST offset;
7165
7166 if (!remote_desc)
7167 error (_("command can only be used with remote target"));
7168
7169 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7170 if (fd == -1)
7171 remote_hostio_error (remote_errno);
7172
7173 file = fopen (local_file, "wb");
7174 if (file == NULL)
7175 perror_with_name (local_file);
7176 back_to = make_cleanup (fclose_cleanup, file);
7177
7178 /* Send up to this many bytes at once. They won't all fit in the
7179 remote packet limit, so we'll transfer slightly fewer. */
7180 io_size = get_remote_packet_size ();
7181 buffer = xmalloc (io_size);
7182 make_cleanup (xfree, buffer);
7183
7184 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7185
7186 offset = 0;
7187 while (1)
7188 {
7189 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7190 if (bytes == 0)
7191 /* Success, but no bytes, means end-of-file. */
7192 break;
7193 if (bytes == -1)
7194 remote_hostio_error (remote_errno);
7195
7196 offset += bytes;
7197
7198 bytes = fwrite (buffer, 1, bytes, file);
7199 if (bytes == 0)
7200 perror_with_name (local_file);
7201 }
7202
7203 discard_cleanups (close_cleanup);
7204 if (remote_hostio_close (fd, &remote_errno))
7205 remote_hostio_error (remote_errno);
7206
7207 if (from_tty)
7208 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7209 do_cleanups (back_to);
7210 }
7211
7212 void
7213 remote_file_delete (const char *remote_file, int from_tty)
7214 {
7215 int retcode, remote_errno;
7216
7217 if (!remote_desc)
7218 error (_("command can only be used with remote target"));
7219
7220 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7221 if (retcode == -1)
7222 remote_hostio_error (remote_errno);
7223
7224 if (from_tty)
7225 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7226 }
7227
7228 static void
7229 remote_put_command (char *args, int from_tty)
7230 {
7231 struct cleanup *back_to;
7232 char **argv;
7233
7234 argv = buildargv (args);
7235 if (argv == NULL)
7236 nomem (0);
7237 back_to = make_cleanup_freeargv (argv);
7238 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7239 error (_("Invalid parameters to remote put"));
7240
7241 remote_file_put (argv[0], argv[1], from_tty);
7242
7243 do_cleanups (back_to);
7244 }
7245
7246 static void
7247 remote_get_command (char *args, int from_tty)
7248 {
7249 struct cleanup *back_to;
7250 char **argv;
7251
7252 argv = buildargv (args);
7253 if (argv == NULL)
7254 nomem (0);
7255 back_to = make_cleanup_freeargv (argv);
7256 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7257 error (_("Invalid parameters to remote get"));
7258
7259 remote_file_get (argv[0], argv[1], from_tty);
7260
7261 do_cleanups (back_to);
7262 }
7263
7264 static void
7265 remote_delete_command (char *args, int from_tty)
7266 {
7267 struct cleanup *back_to;
7268 char **argv;
7269
7270 argv = buildargv (args);
7271 if (argv == NULL)
7272 nomem (0);
7273 back_to = make_cleanup_freeargv (argv);
7274 if (argv[0] == NULL || argv[1] != NULL)
7275 error (_("Invalid parameters to remote delete"));
7276
7277 remote_file_delete (argv[0], from_tty);
7278
7279 do_cleanups (back_to);
7280 }
7281
7282 static void
7283 remote_command (char *args, int from_tty)
7284 {
7285 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7286 }
7287
7288 static int
7289 remote_return_zero (void)
7290 {
7291 return 0;
7292 }
7293
7294 static void
7295 init_remote_ops (void)
7296 {
7297 remote_ops.to_shortname = "remote";
7298 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7299 remote_ops.to_doc =
7300 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7301 Specify the serial device it is connected to\n\
7302 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7303 remote_ops.to_open = remote_open;
7304 remote_ops.to_close = remote_close;
7305 remote_ops.to_detach = remote_detach;
7306 remote_ops.to_disconnect = remote_disconnect;
7307 remote_ops.to_resume = remote_resume;
7308 remote_ops.to_wait = remote_wait;
7309 remote_ops.to_fetch_registers = remote_fetch_registers;
7310 remote_ops.to_store_registers = remote_store_registers;
7311 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7312 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7313 remote_ops.to_files_info = remote_files_info;
7314 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7315 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7316 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7317 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7318 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7319 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7320 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7321 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7322 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7323 remote_ops.to_kill = remote_kill;
7324 remote_ops.to_load = generic_load;
7325 remote_ops.to_mourn_inferior = remote_mourn;
7326 remote_ops.to_thread_alive = remote_thread_alive;
7327 remote_ops.to_find_new_threads = remote_threads_info;
7328 remote_ops.to_pid_to_str = remote_pid_to_str;
7329 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7330 remote_ops.to_stop = remote_stop;
7331 remote_ops.to_xfer_partial = remote_xfer_partial;
7332 remote_ops.to_rcmd = remote_rcmd;
7333 remote_ops.to_log_command = serial_log_command;
7334 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7335 remote_ops.to_stratum = process_stratum;
7336 remote_ops.to_has_all_memory = 1;
7337 remote_ops.to_has_memory = 1;
7338 remote_ops.to_has_stack = 1;
7339 remote_ops.to_has_registers = 1;
7340 remote_ops.to_has_execution = 1;
7341 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7342 remote_ops.to_magic = OPS_MAGIC;
7343 remote_ops.to_memory_map = remote_memory_map;
7344 remote_ops.to_flash_erase = remote_flash_erase;
7345 remote_ops.to_flash_done = remote_flash_done;
7346 remote_ops.to_read_description = remote_read_description;
7347 remote_ops.to_search_memory = remote_search_memory;
7348 remote_ops.to_can_async_p = remote_return_zero;
7349 remote_ops.to_is_async_p = remote_return_zero;
7350 }
7351
7352 /* Set up the extended remote vector by making a copy of the standard
7353 remote vector and adding to it. */
7354
7355 static void
7356 init_extended_remote_ops (void)
7357 {
7358 extended_remote_ops = remote_ops;
7359
7360 extended_remote_ops.to_shortname = "extended-remote";
7361 extended_remote_ops.to_longname =
7362 "Extended remote serial target in gdb-specific protocol";
7363 extended_remote_ops.to_doc =
7364 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7365 Specify the serial device it is connected to (e.g. /dev/ttya).",
7366 extended_remote_ops.to_open = extended_remote_open;
7367 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7368 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7369 extended_remote_ops.to_detach = extended_remote_detach;
7370 extended_remote_ops.to_attach = extended_remote_attach;
7371 }
7372
7373 static int
7374 remote_can_async_p (void)
7375 {
7376 /* We're async whenever the serial device is. */
7377 return remote_async_mask_value && serial_can_async_p (remote_desc);
7378 }
7379
7380 static int
7381 remote_is_async_p (void)
7382 {
7383 /* We're async whenever the serial device is. */
7384 return remote_async_mask_value && serial_is_async_p (remote_desc);
7385 }
7386
7387 /* Pass the SERIAL event on and up to the client. One day this code
7388 will be able to delay notifying the client of an event until the
7389 point where an entire packet has been received. */
7390
7391 static void (*async_client_callback) (enum inferior_event_type event_type,
7392 void *context);
7393 static void *async_client_context;
7394 static serial_event_ftype remote_async_serial_handler;
7395
7396 static void
7397 remote_async_serial_handler (struct serial *scb, void *context)
7398 {
7399 /* Don't propogate error information up to the client. Instead let
7400 the client find out about the error by querying the target. */
7401 async_client_callback (INF_REG_EVENT, async_client_context);
7402 }
7403
7404 static void
7405 remote_async (void (*callback) (enum inferior_event_type event_type,
7406 void *context), void *context)
7407 {
7408 if (remote_async_mask_value == 0)
7409 internal_error (__FILE__, __LINE__,
7410 _("Calling remote_async when async is masked"));
7411
7412 if (callback != NULL)
7413 {
7414 serial_async (remote_desc, remote_async_serial_handler, NULL);
7415 async_client_callback = callback;
7416 async_client_context = context;
7417 }
7418 else
7419 serial_async (remote_desc, NULL, NULL);
7420 }
7421
7422 static int
7423 remote_async_mask (int new_mask)
7424 {
7425 int curr_mask = remote_async_mask_value;
7426 remote_async_mask_value = new_mask;
7427 return curr_mask;
7428 }
7429
7430 /* Target async and target extended-async.
7431
7432 This are temporary targets, until it is all tested. Eventually
7433 async support will be incorporated int the usual 'remote'
7434 target. */
7435
7436 static void
7437 init_remote_async_ops (void)
7438 {
7439 remote_async_ops.to_shortname = "async";
7440 remote_async_ops.to_longname =
7441 "Remote serial target in async version of the gdb-specific protocol";
7442 remote_async_ops.to_doc =
7443 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7444 Specify the serial device it is connected to (e.g. /dev/ttya).";
7445 remote_async_ops.to_open = remote_async_open;
7446 remote_async_ops.to_close = remote_close;
7447 remote_async_ops.to_detach = remote_detach;
7448 remote_async_ops.to_disconnect = remote_disconnect;
7449 remote_async_ops.to_resume = remote_async_resume;
7450 remote_async_ops.to_wait = remote_async_wait;
7451 remote_async_ops.to_fetch_registers = remote_fetch_registers;
7452 remote_async_ops.to_store_registers = remote_store_registers;
7453 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
7454 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
7455 remote_async_ops.to_files_info = remote_files_info;
7456 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
7457 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
7458 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7459 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7460 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7461 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
7462 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
7463 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7464 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
7465 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
7466 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
7467 remote_async_ops.to_kill = remote_async_kill;
7468 remote_async_ops.to_load = generic_load;
7469 remote_async_ops.to_mourn_inferior = remote_async_mourn;
7470 remote_async_ops.to_thread_alive = remote_thread_alive;
7471 remote_async_ops.to_find_new_threads = remote_threads_info;
7472 remote_async_ops.to_pid_to_str = remote_pid_to_str;
7473 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
7474 remote_async_ops.to_stop = remote_stop;
7475 remote_async_ops.to_xfer_partial = remote_xfer_partial;
7476 remote_async_ops.to_rcmd = remote_rcmd;
7477 remote_async_ops.to_get_thread_local_address
7478 = remote_get_thread_local_address;
7479 remote_async_ops.to_stratum = process_stratum;
7480 remote_async_ops.to_has_all_memory = 1;
7481 remote_async_ops.to_has_memory = 1;
7482 remote_async_ops.to_has_stack = 1;
7483 remote_async_ops.to_has_registers = 1;
7484 remote_async_ops.to_has_execution = 1;
7485 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7486 remote_async_ops.to_can_async_p = remote_can_async_p;
7487 remote_async_ops.to_is_async_p = remote_is_async_p;
7488 remote_async_ops.to_async = remote_async;
7489 remote_async_ops.to_async_mask = remote_async_mask;
7490 remote_async_ops.to_magic = OPS_MAGIC;
7491 remote_async_ops.to_memory_map = remote_memory_map;
7492 remote_async_ops.to_flash_erase = remote_flash_erase;
7493 remote_async_ops.to_flash_done = remote_flash_done;
7494 remote_async_ops.to_read_description = remote_read_description;
7495 remote_async_ops.to_search_memory = remote_search_memory;
7496 }
7497
7498 /* Set up the async extended remote vector by making a copy of the standard
7499 remote vector and adding to it. */
7500
7501 static void
7502 init_extended_async_remote_ops (void)
7503 {
7504 extended_async_remote_ops = remote_async_ops;
7505
7506 extended_async_remote_ops.to_shortname = "extended-async";
7507 extended_async_remote_ops.to_longname =
7508 "Extended remote serial target in async gdb-specific protocol";
7509 extended_async_remote_ops.to_doc =
7510 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
7511 Specify the serial device it is connected to (e.g. /dev/ttya).",
7512 extended_async_remote_ops.to_open = extended_remote_async_open;
7513 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
7514 extended_async_remote_ops.to_mourn_inferior = extended_async_remote_mourn;
7515 extended_async_remote_ops.to_detach = extended_remote_detach;
7516 extended_async_remote_ops.to_attach = extended_async_remote_attach;
7517 }
7518
7519 static void
7520 set_remote_cmd (char *args, int from_tty)
7521 {
7522 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7523 }
7524
7525 static void
7526 show_remote_cmd (char *args, int from_tty)
7527 {
7528 /* We can't just use cmd_show_list here, because we want to skip
7529 the redundant "show remote Z-packet" and the legacy aliases. */
7530 struct cleanup *showlist_chain;
7531 struct cmd_list_element *list = remote_show_cmdlist;
7532
7533 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7534 for (; list != NULL; list = list->next)
7535 if (strcmp (list->name, "Z-packet") == 0)
7536 continue;
7537 else if (list->type == not_set_cmd)
7538 /* Alias commands are exactly like the original, except they
7539 don't have the normal type. */
7540 continue;
7541 else
7542 {
7543 struct cleanup *option_chain
7544 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7545 ui_out_field_string (uiout, "name", list->name);
7546 ui_out_text (uiout, ": ");
7547 if (list->type == show_cmd)
7548 do_setshow_command ((char *) NULL, from_tty, list);
7549 else
7550 cmd_func (list, NULL, from_tty);
7551 /* Close the tuple. */
7552 do_cleanups (option_chain);
7553 }
7554
7555 /* Close the tuple. */
7556 do_cleanups (showlist_chain);
7557 }
7558
7559
7560 /* Function to be called whenever a new objfile (shlib) is detected. */
7561 static void
7562 remote_new_objfile (struct objfile *objfile)
7563 {
7564 if (remote_desc != 0) /* Have a remote connection. */
7565 remote_check_symbols (objfile);
7566 }
7567
7568 void
7569 _initialize_remote (void)
7570 {
7571 struct remote_state *rs;
7572
7573 /* architecture specific data */
7574 remote_gdbarch_data_handle =
7575 gdbarch_data_register_post_init (init_remote_state);
7576 remote_g_packet_data_handle =
7577 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7578
7579 /* Initialize the per-target state. At the moment there is only one
7580 of these, not one per target. Only one target is active at a
7581 time. The default buffer size is unimportant; it will be expanded
7582 whenever a larger buffer is needed. */
7583 rs = get_remote_state_raw ();
7584 rs->buf_size = 400;
7585 rs->buf = xmalloc (rs->buf_size);
7586
7587 init_remote_ops ();
7588 add_target (&remote_ops);
7589
7590 init_extended_remote_ops ();
7591 add_target (&extended_remote_ops);
7592
7593 init_remote_async_ops ();
7594 add_target (&remote_async_ops);
7595
7596 init_extended_async_remote_ops ();
7597 add_target (&extended_async_remote_ops);
7598
7599 /* Hook into new objfile notification. */
7600 observer_attach_new_objfile (remote_new_objfile);
7601
7602 /* Set up signal handlers. */
7603 sigint_remote_token =
7604 create_async_signal_handler (async_remote_interrupt, NULL);
7605 sigint_remote_twice_token =
7606 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7607
7608 #if 0
7609 init_remote_threadtests ();
7610 #endif
7611
7612 /* set/show remote ... */
7613
7614 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7615 Remote protocol specific variables\n\
7616 Configure various remote-protocol specific variables such as\n\
7617 the packets being used"),
7618 &remote_set_cmdlist, "set remote ",
7619 0 /* allow-unknown */, &setlist);
7620 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7621 Remote protocol specific variables\n\
7622 Configure various remote-protocol specific variables such as\n\
7623 the packets being used"),
7624 &remote_show_cmdlist, "show remote ",
7625 0 /* allow-unknown */, &showlist);
7626
7627 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7628 Compare section data on target to the exec file.\n\
7629 Argument is a single section name (default: all loaded sections)."),
7630 &cmdlist);
7631
7632 add_cmd ("packet", class_maintenance, packet_command, _("\
7633 Send an arbitrary packet to a remote target.\n\
7634 maintenance packet TEXT\n\
7635 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7636 this command sends the string TEXT to the inferior, and displays the\n\
7637 response packet. GDB supplies the initial `$' character, and the\n\
7638 terminating `#' character and checksum."),
7639 &maintenancelist);
7640
7641 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7642 Set whether to send break if interrupted."), _("\
7643 Show whether to send break if interrupted."), _("\
7644 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7645 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7646 &setlist, &showlist);
7647
7648 /* Install commands for configuring memory read/write packets. */
7649
7650 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7651 Set the maximum number of bytes per memory write packet (deprecated)."),
7652 &setlist);
7653 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7654 Show the maximum number of bytes per memory write packet (deprecated)."),
7655 &showlist);
7656 add_cmd ("memory-write-packet-size", no_class,
7657 set_memory_write_packet_size, _("\
7658 Set the maximum number of bytes per memory-write packet.\n\
7659 Specify the number of bytes in a packet or 0 (zero) for the\n\
7660 default packet size. The actual limit is further reduced\n\
7661 dependent on the target. Specify ``fixed'' to disable the\n\
7662 further restriction and ``limit'' to enable that restriction."),
7663 &remote_set_cmdlist);
7664 add_cmd ("memory-read-packet-size", no_class,
7665 set_memory_read_packet_size, _("\
7666 Set the maximum number of bytes per memory-read packet.\n\
7667 Specify the number of bytes in a packet or 0 (zero) for the\n\
7668 default packet size. The actual limit is further reduced\n\
7669 dependent on the target. Specify ``fixed'' to disable the\n\
7670 further restriction and ``limit'' to enable that restriction."),
7671 &remote_set_cmdlist);
7672 add_cmd ("memory-write-packet-size", no_class,
7673 show_memory_write_packet_size,
7674 _("Show the maximum number of bytes per memory-write packet."),
7675 &remote_show_cmdlist);
7676 add_cmd ("memory-read-packet-size", no_class,
7677 show_memory_read_packet_size,
7678 _("Show the maximum number of bytes per memory-read packet."),
7679 &remote_show_cmdlist);
7680
7681 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7682 &remote_hw_watchpoint_limit, _("\
7683 Set the maximum number of target hardware watchpoints."), _("\
7684 Show the maximum number of target hardware watchpoints."), _("\
7685 Specify a negative limit for unlimited."),
7686 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7687 &remote_set_cmdlist, &remote_show_cmdlist);
7688 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7689 &remote_hw_breakpoint_limit, _("\
7690 Set the maximum number of target hardware breakpoints."), _("\
7691 Show the maximum number of target hardware breakpoints."), _("\
7692 Specify a negative limit for unlimited."),
7693 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7694 &remote_set_cmdlist, &remote_show_cmdlist);
7695
7696 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7697 &remote_address_size, _("\
7698 Set the maximum size of the address (in bits) in a memory packet."), _("\
7699 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7700 NULL,
7701 NULL, /* FIXME: i18n: */
7702 &setlist, &showlist);
7703
7704 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7705 "X", "binary-download", 1);
7706
7707 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7708 "vCont", "verbose-resume", 0);
7709
7710 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7711 "QPassSignals", "pass-signals", 0);
7712
7713 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7714 "qSymbol", "symbol-lookup", 0);
7715
7716 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7717 "P", "set-register", 1);
7718
7719 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7720 "p", "fetch-register", 1);
7721
7722 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7723 "Z0", "software-breakpoint", 0);
7724
7725 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7726 "Z1", "hardware-breakpoint", 0);
7727
7728 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7729 "Z2", "write-watchpoint", 0);
7730
7731 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7732 "Z3", "read-watchpoint", 0);
7733
7734 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7735 "Z4", "access-watchpoint", 0);
7736
7737 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7738 "qXfer:auxv:read", "read-aux-vector", 0);
7739
7740 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7741 "qXfer:features:read", "target-features", 0);
7742
7743 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7744 "qXfer:libraries:read", "library-info", 0);
7745
7746 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7747 "qXfer:memory-map:read", "memory-map", 0);
7748
7749 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7750 "qXfer:spu:read", "read-spu-object", 0);
7751
7752 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7753 "qXfer:spu:write", "write-spu-object", 0);
7754
7755 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7756 "qGetTLSAddr", "get-thread-local-storage-address",
7757 0);
7758
7759 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7760 "qSupported", "supported-packets", 0);
7761
7762 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7763 "qSearch:memory", "search-memory", 0);
7764
7765 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7766 "vFile:open", "hostio-open", 0);
7767
7768 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7769 "vFile:pread", "hostio-pread", 0);
7770
7771 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7772 "vFile:pwrite", "hostio-pwrite", 0);
7773
7774 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7775 "vFile:close", "hostio-close", 0);
7776
7777 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7778 "vFile:unlink", "hostio-unlink", 0);
7779
7780 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7781 "vAttach", "attach", 0);
7782
7783 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7784 "vRun", "run", 0);
7785
7786 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7787 Z sub-packet has its own set and show commands, but users may
7788 have sets to this variable in their .gdbinit files (or in their
7789 documentation). */
7790 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7791 &remote_Z_packet_detect, _("\
7792 Set use of remote protocol `Z' packets"), _("\
7793 Show use of remote protocol `Z' packets "), _("\
7794 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7795 packets."),
7796 set_remote_protocol_Z_packet_cmd,
7797 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7798 &remote_set_cmdlist, &remote_show_cmdlist);
7799
7800 add_prefix_cmd ("remote", class_files, remote_command, _("\
7801 Manipulate files on the remote system\n\
7802 Transfer files to and from the remote target system."),
7803 &remote_cmdlist, "remote ",
7804 0 /* allow-unknown */, &cmdlist);
7805
7806 add_cmd ("put", class_files, remote_put_command,
7807 _("Copy a local file to the remote system."),
7808 &remote_cmdlist);
7809
7810 add_cmd ("get", class_files, remote_get_command,
7811 _("Copy a remote file to the local system."),
7812 &remote_cmdlist);
7813
7814 add_cmd ("delete", class_files, remote_delete_command,
7815 _("Delete a remote file."),
7816 &remote_cmdlist);
7817
7818 remote_exec_file = xstrdup ("");
7819 add_setshow_string_noescape_cmd ("exec-file", class_files,
7820 &remote_exec_file, _("\
7821 Set the remote pathname for \"run\""), _("\
7822 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7823 &remote_set_cmdlist, &remote_show_cmdlist);
7824
7825 /* Eventually initialize fileio. See fileio.c */
7826 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7827 }
This page took 0.200344 seconds and 4 git commands to generate.