*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "target.h"
34 /*#include "terminal.h" */
35 #include "gdbcmd.h"
36 #include "objfiles.h"
37 #include "gdb-stabs.h"
38 #include "gdbthread.h"
39 #include "remote.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "gdb_assert.h"
43
44 #include <ctype.h>
45 #include <sys/time.h>
46 #ifdef USG
47 #include <sys/types.h>
48 #endif
49
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include "inf-loop.h"
53
54 #include <signal.h>
55 #include "serial.h"
56
57 #include "gdbcore.h" /* for exec_bfd */
58
59 #include "remote-fileio.h"
60
61 /* Prototypes for local functions */
62 static void cleanup_sigint_signal_handler (void *dummy);
63 static void initialize_sigint_signal_handler (void);
64 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
65
66 static void handle_remote_sigint (int);
67 static void handle_remote_sigint_twice (int);
68 static void async_remote_interrupt (gdb_client_data);
69 void async_remote_interrupt_twice (gdb_client_data);
70
71 static void build_remote_gdbarch_data (void);
72
73 static void remote_files_info (struct target_ops *ignore);
74
75 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
76 int len, int should_write,
77 struct mem_attrib *attrib,
78 struct target_ops *target);
79
80 static void remote_prepare_to_store (void);
81
82 static void remote_fetch_registers (int regno);
83
84 static void remote_resume (ptid_t ptid, int step,
85 enum target_signal siggnal);
86 static void remote_async_resume (ptid_t ptid, int step,
87 enum target_signal siggnal);
88 static int remote_start_remote (struct ui_out *uiout, void *dummy);
89
90 static void remote_open (char *name, int from_tty);
91 static void remote_async_open (char *name, int from_tty);
92
93 static void extended_remote_open (char *name, int from_tty);
94 static void extended_remote_async_open (char *name, int from_tty);
95
96 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
97 int async_p);
98
99 static void remote_close (int quitting);
100
101 static void remote_store_registers (int regno);
102
103 static void remote_mourn (void);
104 static void remote_async_mourn (void);
105
106 static void extended_remote_restart (void);
107
108 static void extended_remote_mourn (void);
109
110 static void extended_remote_create_inferior (char *, char *, char **);
111 static void extended_remote_async_create_inferior (char *, char *, char **);
112
113 static void remote_mourn_1 (struct target_ops *);
114
115 static void remote_send (char *buf, long sizeof_buf);
116
117 static int readchar (int timeout);
118
119 static ptid_t remote_wait (ptid_t ptid,
120 struct target_waitstatus *status);
121 static ptid_t remote_async_wait (ptid_t ptid,
122 struct target_waitstatus *status);
123
124 static void remote_kill (void);
125 static void remote_async_kill (void);
126
127 static int tohex (int nib);
128
129 static void remote_detach (char *args, int from_tty);
130
131 static void remote_interrupt (int signo);
132
133 static void remote_interrupt_twice (int signo);
134
135 static void interrupt_query (void);
136
137 static void set_thread (int, int);
138
139 static int remote_thread_alive (ptid_t);
140
141 static void get_offsets (void);
142
143 static long read_frame (char *buf, long sizeof_buf);
144
145 static int remote_insert_breakpoint (CORE_ADDR, char *);
146
147 static int remote_remove_breakpoint (CORE_ADDR, char *);
148
149 static int hexnumlen (ULONGEST num);
150
151 static void init_remote_ops (void);
152
153 static void init_extended_remote_ops (void);
154
155 static void remote_stop (void);
156
157 static int ishex (int ch, int *val);
158
159 static int stubhex (int ch);
160
161 static int hexnumstr (char *, ULONGEST);
162
163 static int hexnumnstr (char *, ULONGEST, int);
164
165 static CORE_ADDR remote_address_masked (CORE_ADDR);
166
167 static void print_packet (char *);
168
169 static unsigned long crc32 (unsigned char *, int, unsigned int);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static void record_currthread (int currthread);
182
183 static int fromhex (int a);
184
185 static int hex2bin (const char *hex, char *bin, int count);
186
187 static int bin2hex (const char *bin, char *hex, int count);
188
189 static int putpkt_binary (char *buf, int cnt);
190
191 static void check_binary_download (CORE_ADDR addr);
192
193 struct packet_config;
194
195 static void show_packet_config_cmd (struct packet_config *config);
196
197 static void update_packet_config (struct packet_config *config);
198
199 void _initialize_remote (void);
200
201 /* Description of the remote protocol. Strictly speaking, when the
202 target is open()ed, remote.c should create a per-target description
203 of the remote protocol using that target's architecture.
204 Unfortunately, the target stack doesn't include local state. For
205 the moment keep the information in the target's architecture
206 object. Sigh.. */
207
208 struct packet_reg
209 {
210 long offset; /* Offset into G packet. */
211 long regnum; /* GDB's internal register number. */
212 LONGEST pnum; /* Remote protocol register number. */
213 int in_g_packet; /* Always part of G packet. */
214 /* long size in bytes; == DEPRECATED_REGISTER_RAW_SIZE (regnum); at present. */
215 /* char *name; == REGISTER_NAME (regnum); at present. */
216 };
217
218 struct remote_state
219 {
220 /* Description of the remote protocol registers. */
221 long sizeof_g_packet;
222
223 /* Description of the remote protocol registers indexed by REGNUM
224 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
225 struct packet_reg *regs;
226
227 /* This is the size (in chars) of the first response to the ``g''
228 packet. It is used as a heuristic when determining the maximum
229 size of memory-read and memory-write packets. A target will
230 typically only reserve a buffer large enough to hold the ``g''
231 packet. The size does not include packet overhead (headers and
232 trailers). */
233 long actual_register_packet_size;
234
235 /* This is the maximum size (in chars) of a non read/write packet.
236 It is also used as a cap on the size of read/write packets. */
237 long remote_packet_size;
238 };
239
240
241 /* Handle for retreving the remote protocol data from gdbarch. */
242 static struct gdbarch_data *remote_gdbarch_data_handle;
243
244 static struct remote_state *
245 get_remote_state (void)
246 {
247 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
248 }
249
250 static void *
251 init_remote_state (struct gdbarch *gdbarch)
252 {
253 int regnum;
254 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
255
256 if (DEPRECATED_REGISTER_BYTES != 0)
257 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
258 else
259 rs->sizeof_g_packet = 0;
260
261 /* Assume a 1:1 regnum<->pnum table. */
262 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
263 struct packet_reg);
264 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
265 {
266 struct packet_reg *r = &rs->regs[regnum];
267 r->pnum = regnum;
268 r->regnum = regnum;
269 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
270 r->in_g_packet = (regnum < NUM_REGS);
271 /* ...name = REGISTER_NAME (regnum); */
272
273 /* Compute packet size by accumulating the size of all registers. */
274 if (DEPRECATED_REGISTER_BYTES == 0)
275 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
276 }
277
278 /* Default maximum number of characters in a packet body. Many
279 remote stubs have a hardwired buffer size of 400 bytes
280 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
281 as the maximum packet-size to ensure that the packet and an extra
282 NUL character can always fit in the buffer. This stops GDB
283 trashing stubs that try to squeeze an extra NUL into what is
284 already a full buffer (As of 1999-12-04 that was most stubs. */
285 rs->remote_packet_size = 400 - 1;
286
287 /* Should rs->sizeof_g_packet needs more space than the
288 default, adjust the size accordingly. Remember that each byte is
289 encoded as two characters. 32 is the overhead for the packet
290 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
291 (``$NN:G...#NN'') is a better guess, the below has been padded a
292 little. */
293 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
294 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
295
296 /* This one is filled in when a ``g'' packet is received. */
297 rs->actual_register_packet_size = 0;
298
299 return rs;
300 }
301
302 static struct packet_reg *
303 packet_reg_from_regnum (struct remote_state *rs, long regnum)
304 {
305 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
306 return NULL;
307 else
308 {
309 struct packet_reg *r = &rs->regs[regnum];
310 gdb_assert (r->regnum == regnum);
311 return r;
312 }
313 }
314
315 static struct packet_reg *
316 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
317 {
318 int i;
319 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
320 {
321 struct packet_reg *r = &rs->regs[i];
322 if (r->pnum == pnum)
323 return r;
324 }
325 return NULL;
326 }
327
328 /* FIXME: graces/2002-08-08: These variables should eventually be
329 bound to an instance of the target object (as in gdbarch-tdep()),
330 when such a thing exists. */
331
332 /* This is set to the data address of the access causing the target
333 to stop for a watchpoint. */
334 static CORE_ADDR remote_watch_data_address;
335
336 /* This is non-zero if taregt stopped for a watchpoint. */
337 static int remote_stopped_by_watchpoint_p;
338
339
340 static struct target_ops remote_ops;
341
342 static struct target_ops extended_remote_ops;
343
344 /* Temporary target ops. Just like the remote_ops and
345 extended_remote_ops, but with asynchronous support. */
346 static struct target_ops remote_async_ops;
347
348 static struct target_ops extended_async_remote_ops;
349
350 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
351 ``forever'' still use the normal timeout mechanism. This is
352 currently used by the ASYNC code to guarentee that target reads
353 during the initial connect always time-out. Once getpkt has been
354 modified to return a timeout indication and, in turn
355 remote_wait()/wait_for_inferior() have gained a timeout parameter
356 this can go away. */
357 static int wait_forever_enabled_p = 1;
358
359
360 /* This variable chooses whether to send a ^C or a break when the user
361 requests program interruption. Although ^C is usually what remote
362 systems expect, and that is the default here, sometimes a break is
363 preferable instead. */
364
365 static int remote_break;
366
367 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
368 remote_open knows that we don't have a file open when the program
369 starts. */
370 static struct serial *remote_desc = NULL;
371
372 /* This variable sets the number of bits in an address that are to be
373 sent in a memory ("M" or "m") packet. Normally, after stripping
374 leading zeros, the entire address would be sent. This variable
375 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
376 initial implementation of remote.c restricted the address sent in
377 memory packets to ``host::sizeof long'' bytes - (typically 32
378 bits). Consequently, for 64 bit targets, the upper 32 bits of an
379 address was never sent. Since fixing this bug may cause a break in
380 some remote targets this variable is principly provided to
381 facilitate backward compatibility. */
382
383 static int remote_address_size;
384
385 /* Tempoary to track who currently owns the terminal. See
386 target_async_terminal_* for more details. */
387
388 static int remote_async_terminal_ours_p;
389
390 \f
391 /* User configurable variables for the number of characters in a
392 memory read/write packet. MIN ((rs->remote_packet_size),
393 rs->sizeof_g_packet) is the default. Some targets need smaller
394 values (fifo overruns, et.al.) and some users need larger values
395 (speed up transfers). The variables ``preferred_*'' (the user
396 request), ``current_*'' (what was actually set) and ``forced_*''
397 (Positive - a soft limit, negative - a hard limit). */
398
399 struct memory_packet_config
400 {
401 char *name;
402 long size;
403 int fixed_p;
404 };
405
406 /* Compute the current size of a read/write packet. Since this makes
407 use of ``actual_register_packet_size'' the computation is dynamic. */
408
409 static long
410 get_memory_packet_size (struct memory_packet_config *config)
411 {
412 struct remote_state *rs = get_remote_state ();
413 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
414 law?) that some hosts don't cope very well with large alloca()
415 calls. Eventually the alloca() code will be replaced by calls to
416 xmalloc() and make_cleanups() allowing this restriction to either
417 be lifted or removed. */
418 #ifndef MAX_REMOTE_PACKET_SIZE
419 #define MAX_REMOTE_PACKET_SIZE 16384
420 #endif
421 /* NOTE: 16 is just chosen at random. */
422 #ifndef MIN_REMOTE_PACKET_SIZE
423 #define MIN_REMOTE_PACKET_SIZE 16
424 #endif
425 long what_they_get;
426 if (config->fixed_p)
427 {
428 if (config->size <= 0)
429 what_they_get = MAX_REMOTE_PACKET_SIZE;
430 else
431 what_they_get = config->size;
432 }
433 else
434 {
435 what_they_get = (rs->remote_packet_size);
436 /* Limit the packet to the size specified by the user. */
437 if (config->size > 0
438 && what_they_get > config->size)
439 what_they_get = config->size;
440 /* Limit it to the size of the targets ``g'' response. */
441 if ((rs->actual_register_packet_size) > 0
442 && what_they_get > (rs->actual_register_packet_size))
443 what_they_get = (rs->actual_register_packet_size);
444 }
445 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
446 what_they_get = MAX_REMOTE_PACKET_SIZE;
447 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
448 what_they_get = MIN_REMOTE_PACKET_SIZE;
449 return what_they_get;
450 }
451
452 /* Update the size of a read/write packet. If they user wants
453 something really big then do a sanity check. */
454
455 static void
456 set_memory_packet_size (char *args, struct memory_packet_config *config)
457 {
458 int fixed_p = config->fixed_p;
459 long size = config->size;
460 if (args == NULL)
461 error ("Argument required (integer, `fixed' or `limited').");
462 else if (strcmp (args, "hard") == 0
463 || strcmp (args, "fixed") == 0)
464 fixed_p = 1;
465 else if (strcmp (args, "soft") == 0
466 || strcmp (args, "limit") == 0)
467 fixed_p = 0;
468 else
469 {
470 char *end;
471 size = strtoul (args, &end, 0);
472 if (args == end)
473 error ("Invalid %s (bad syntax).", config->name);
474 #if 0
475 /* Instead of explicitly capping the size of a packet to
476 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
477 instead allowed to set the size to something arbitrarily
478 large. */
479 if (size > MAX_REMOTE_PACKET_SIZE)
480 error ("Invalid %s (too large).", config->name);
481 #endif
482 }
483 /* Extra checks? */
484 if (fixed_p && !config->fixed_p)
485 {
486 if (! query ("The target may not be able to correctly handle a %s\n"
487 "of %ld bytes. Change the packet size? ",
488 config->name, size))
489 error ("Packet size not changed.");
490 }
491 /* Update the config. */
492 config->fixed_p = fixed_p;
493 config->size = size;
494 }
495
496 static void
497 show_memory_packet_size (struct memory_packet_config *config)
498 {
499 printf_filtered ("The %s is %ld. ", config->name, config->size);
500 if (config->fixed_p)
501 printf_filtered ("Packets are fixed at %ld bytes.\n",
502 get_memory_packet_size (config));
503 else
504 printf_filtered ("Packets are limited to %ld bytes.\n",
505 get_memory_packet_size (config));
506 }
507
508 static struct memory_packet_config memory_write_packet_config =
509 {
510 "memory-write-packet-size",
511 };
512
513 static void
514 set_memory_write_packet_size (char *args, int from_tty)
515 {
516 set_memory_packet_size (args, &memory_write_packet_config);
517 }
518
519 static void
520 show_memory_write_packet_size (char *args, int from_tty)
521 {
522 show_memory_packet_size (&memory_write_packet_config);
523 }
524
525 static long
526 get_memory_write_packet_size (void)
527 {
528 return get_memory_packet_size (&memory_write_packet_config);
529 }
530
531 static struct memory_packet_config memory_read_packet_config =
532 {
533 "memory-read-packet-size",
534 };
535
536 static void
537 set_memory_read_packet_size (char *args, int from_tty)
538 {
539 set_memory_packet_size (args, &memory_read_packet_config);
540 }
541
542 static void
543 show_memory_read_packet_size (char *args, int from_tty)
544 {
545 show_memory_packet_size (&memory_read_packet_config);
546 }
547
548 static long
549 get_memory_read_packet_size (void)
550 {
551 struct remote_state *rs = get_remote_state ();
552 long size = get_memory_packet_size (&memory_read_packet_config);
553 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
554 extra buffer size argument before the memory read size can be
555 increased beyond (rs->remote_packet_size). */
556 if (size > (rs->remote_packet_size))
557 size = (rs->remote_packet_size);
558 return size;
559 }
560
561 \f
562 /* Generic configuration support for packets the stub optionally
563 supports. Allows the user to specify the use of the packet as well
564 as allowing GDB to auto-detect support in the remote stub. */
565
566 enum packet_support
567 {
568 PACKET_SUPPORT_UNKNOWN = 0,
569 PACKET_ENABLE,
570 PACKET_DISABLE
571 };
572
573 struct packet_config
574 {
575 char *name;
576 char *title;
577 enum auto_boolean detect;
578 enum packet_support support;
579 };
580
581 /* Analyze a packet's return value and update the packet config
582 accordingly. */
583
584 enum packet_result
585 {
586 PACKET_ERROR,
587 PACKET_OK,
588 PACKET_UNKNOWN
589 };
590
591 static void
592 update_packet_config (struct packet_config *config)
593 {
594 switch (config->detect)
595 {
596 case AUTO_BOOLEAN_TRUE:
597 config->support = PACKET_ENABLE;
598 break;
599 case AUTO_BOOLEAN_FALSE:
600 config->support = PACKET_DISABLE;
601 break;
602 case AUTO_BOOLEAN_AUTO:
603 config->support = PACKET_SUPPORT_UNKNOWN;
604 break;
605 }
606 }
607
608 static void
609 show_packet_config_cmd (struct packet_config *config)
610 {
611 char *support = "internal-error";
612 switch (config->support)
613 {
614 case PACKET_ENABLE:
615 support = "enabled";
616 break;
617 case PACKET_DISABLE:
618 support = "disabled";
619 break;
620 case PACKET_SUPPORT_UNKNOWN:
621 support = "unknown";
622 break;
623 }
624 switch (config->detect)
625 {
626 case AUTO_BOOLEAN_AUTO:
627 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
628 config->name, config->title, support);
629 break;
630 case AUTO_BOOLEAN_TRUE:
631 case AUTO_BOOLEAN_FALSE:
632 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
633 config->name, config->title, support);
634 break;
635 }
636 }
637
638 static void
639 add_packet_config_cmd (struct packet_config *config,
640 char *name,
641 char *title,
642 cmd_sfunc_ftype *set_func,
643 cmd_sfunc_ftype *show_func,
644 struct cmd_list_element **set_remote_list,
645 struct cmd_list_element **show_remote_list,
646 int legacy)
647 {
648 struct cmd_list_element *set_cmd;
649 struct cmd_list_element *show_cmd;
650 char *set_doc;
651 char *show_doc;
652 char *cmd_name;
653 config->name = name;
654 config->title = title;
655 config->detect = AUTO_BOOLEAN_AUTO;
656 config->support = PACKET_SUPPORT_UNKNOWN;
657 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
658 name, title);
659 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
660 name, title);
661 /* set/show TITLE-packet {auto,on,off} */
662 xasprintf (&cmd_name, "%s-packet", title);
663 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
664 &config->detect, set_doc, show_doc,
665 set_func, show_func,
666 set_remote_list, show_remote_list);
667 /* set/show remote NAME-packet {auto,on,off} -- legacy */
668 if (legacy)
669 {
670 char *legacy_name;
671 xasprintf (&legacy_name, "%s-packet", name);
672 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
673 set_remote_list);
674 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
675 show_remote_list);
676 }
677 }
678
679 static enum packet_result
680 packet_ok (const char *buf, struct packet_config *config)
681 {
682 if (buf[0] != '\0')
683 {
684 /* The stub recognized the packet request. Check that the
685 operation succeeded. */
686 switch (config->support)
687 {
688 case PACKET_SUPPORT_UNKNOWN:
689 if (remote_debug)
690 fprintf_unfiltered (gdb_stdlog,
691 "Packet %s (%s) is supported\n",
692 config->name, config->title);
693 config->support = PACKET_ENABLE;
694 break;
695 case PACKET_DISABLE:
696 internal_error (__FILE__, __LINE__,
697 "packet_ok: attempt to use a disabled packet");
698 break;
699 case PACKET_ENABLE:
700 break;
701 }
702 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
703 /* "OK" - definitly OK. */
704 return PACKET_OK;
705 if (buf[0] == 'E'
706 && isxdigit (buf[1]) && isxdigit (buf[2])
707 && buf[3] == '\0')
708 /* "Enn" - definitly an error. */
709 return PACKET_ERROR;
710 /* The packet may or may not be OK. Just assume it is */
711 return PACKET_OK;
712 }
713 else
714 {
715 /* The stub does not support the packet. */
716 switch (config->support)
717 {
718 case PACKET_ENABLE:
719 if (config->detect == AUTO_BOOLEAN_AUTO)
720 /* If the stub previously indicated that the packet was
721 supported then there is a protocol error.. */
722 error ("Protocol error: %s (%s) conflicting enabled responses.",
723 config->name, config->title);
724 else
725 /* The user set it wrong. */
726 error ("Enabled packet %s (%s) not recognized by stub",
727 config->name, config->title);
728 break;
729 case PACKET_SUPPORT_UNKNOWN:
730 if (remote_debug)
731 fprintf_unfiltered (gdb_stdlog,
732 "Packet %s (%s) is NOT supported\n",
733 config->name, config->title);
734 config->support = PACKET_DISABLE;
735 break;
736 case PACKET_DISABLE:
737 break;
738 }
739 return PACKET_UNKNOWN;
740 }
741 }
742
743 /* Should we try the 'vCont' (descriptive resume) request? */
744 static struct packet_config remote_protocol_vcont;
745
746 static void
747 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
748 struct cmd_list_element *c)
749 {
750 update_packet_config (&remote_protocol_vcont);
751 }
752
753 static void
754 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
755 struct cmd_list_element *c)
756 {
757 show_packet_config_cmd (&remote_protocol_vcont);
758 }
759
760 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
761 static struct packet_config remote_protocol_qSymbol;
762
763 static void
764 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
765 struct cmd_list_element *c)
766 {
767 update_packet_config (&remote_protocol_qSymbol);
768 }
769
770 static void
771 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 show_packet_config_cmd (&remote_protocol_qSymbol);
775 }
776
777 /* Should we try the 'e' (step over range) request? */
778 static struct packet_config remote_protocol_e;
779
780 static void
781 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
782 struct cmd_list_element *c)
783 {
784 update_packet_config (&remote_protocol_e);
785 }
786
787 static void
788 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 show_packet_config_cmd (&remote_protocol_e);
792 }
793
794
795 /* Should we try the 'E' (step over range / w signal #) request? */
796 static struct packet_config remote_protocol_E;
797
798 static void
799 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
800 struct cmd_list_element *c)
801 {
802 update_packet_config (&remote_protocol_E);
803 }
804
805 static void
806 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
807 struct cmd_list_element *c)
808 {
809 show_packet_config_cmd (&remote_protocol_E);
810 }
811
812
813 /* Should we try the 'P' (set register) request? */
814
815 static struct packet_config remote_protocol_P;
816
817 static void
818 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
819 struct cmd_list_element *c)
820 {
821 update_packet_config (&remote_protocol_P);
822 }
823
824 static void
825 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
826 struct cmd_list_element *c)
827 {
828 show_packet_config_cmd (&remote_protocol_P);
829 }
830
831 /* Should we try one of the 'Z' requests? */
832
833 enum Z_packet_type
834 {
835 Z_PACKET_SOFTWARE_BP,
836 Z_PACKET_HARDWARE_BP,
837 Z_PACKET_WRITE_WP,
838 Z_PACKET_READ_WP,
839 Z_PACKET_ACCESS_WP,
840 NR_Z_PACKET_TYPES
841 };
842
843 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
844
845 /* FIXME: Instead of having all these boiler plate functions, the
846 command callback should include a context argument. */
847
848 static void
849 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
850 struct cmd_list_element *c)
851 {
852 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
853 }
854
855 static void
856 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
857 struct cmd_list_element *c)
858 {
859 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
860 }
861
862 static void
863 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
864 struct cmd_list_element *c)
865 {
866 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
867 }
868
869 static void
870 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
871 struct cmd_list_element *c)
872 {
873 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
874 }
875
876 static void
877 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
878 struct cmd_list_element *c)
879 {
880 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
881 }
882
883 static void
884 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
885 struct cmd_list_element *c)
886 {
887 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
888 }
889
890 static void
891 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
892 struct cmd_list_element *c)
893 {
894 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
895 }
896
897 static void
898 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
899 struct cmd_list_element *c)
900 {
901 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
902 }
903
904 static void
905 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
906 struct cmd_list_element *c)
907 {
908 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
909 }
910
911 static void
912 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914 {
915 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
916 }
917
918 /* For compatibility with older distributions. Provide a ``set remote
919 Z-packet ...'' command that updates all the Z packet types. */
920
921 static enum auto_boolean remote_Z_packet_detect;
922
923 static void
924 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
925 struct cmd_list_element *c)
926 {
927 int i;
928 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
929 {
930 remote_protocol_Z[i].detect = remote_Z_packet_detect;
931 update_packet_config (&remote_protocol_Z[i]);
932 }
933 }
934
935 static void
936 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
937 struct cmd_list_element *c)
938 {
939 int i;
940 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
941 {
942 show_packet_config_cmd (&remote_protocol_Z[i]);
943 }
944 }
945
946 /* Should we try the 'X' (remote binary download) packet?
947
948 This variable (available to the user via "set remote X-packet")
949 dictates whether downloads are sent in binary (via the 'X' packet).
950 We assume that the stub can, and attempt to do it. This will be
951 cleared if the stub does not understand it. This switch is still
952 needed, though in cases when the packet is supported in the stub,
953 but the connection does not allow it (i.e., 7-bit serial connection
954 only). */
955
956 static struct packet_config remote_protocol_binary_download;
957
958 /* Should we try the 'ThreadInfo' query packet?
959
960 This variable (NOT available to the user: auto-detect only!)
961 determines whether GDB will use the new, simpler "ThreadInfo"
962 query or the older, more complex syntax for thread queries.
963 This is an auto-detect variable (set to true at each connect,
964 and set to false when the target fails to recognize it). */
965
966 static int use_threadinfo_query;
967 static int use_threadextra_query;
968
969 static void
970 set_remote_protocol_binary_download_cmd (char *args,
971 int from_tty,
972 struct cmd_list_element *c)
973 {
974 update_packet_config (&remote_protocol_binary_download);
975 }
976
977 static void
978 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
979 struct cmd_list_element *c)
980 {
981 show_packet_config_cmd (&remote_protocol_binary_download);
982 }
983
984
985 /* Tokens for use by the asynchronous signal handlers for SIGINT */
986 static void *sigint_remote_twice_token;
987 static void *sigint_remote_token;
988
989 /* These are pointers to hook functions that may be set in order to
990 modify resume/wait behavior for a particular architecture. */
991
992 void (*target_resume_hook) (void);
993 void (*target_wait_loop_hook) (void);
994 \f
995
996
997 /* These are the threads which we last sent to the remote system.
998 -1 for all or -2 for not sent yet. */
999 static int general_thread;
1000 static int continue_thread;
1001
1002 /* Call this function as a result of
1003 1) A halt indication (T packet) containing a thread id
1004 2) A direct query of currthread
1005 3) Successful execution of set thread
1006 */
1007
1008 static void
1009 record_currthread (int currthread)
1010 {
1011 general_thread = currthread;
1012
1013 /* If this is a new thread, add it to GDB's thread list.
1014 If we leave it up to WFI to do this, bad things will happen. */
1015 if (!in_thread_list (pid_to_ptid (currthread)))
1016 {
1017 add_thread (pid_to_ptid (currthread));
1018 ui_out_text (uiout, "[New ");
1019 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1020 ui_out_text (uiout, "]\n");
1021 }
1022 }
1023
1024 #define MAGIC_NULL_PID 42000
1025
1026 static void
1027 set_thread (int th, int gen)
1028 {
1029 struct remote_state *rs = get_remote_state ();
1030 char *buf = alloca (rs->remote_packet_size);
1031 int state = gen ? general_thread : continue_thread;
1032
1033 if (state == th)
1034 return;
1035
1036 buf[0] = 'H';
1037 buf[1] = gen ? 'g' : 'c';
1038 if (th == MAGIC_NULL_PID)
1039 {
1040 buf[2] = '0';
1041 buf[3] = '\0';
1042 }
1043 else if (th < 0)
1044 sprintf (&buf[2], "-%x", -th);
1045 else
1046 sprintf (&buf[2], "%x", th);
1047 putpkt (buf);
1048 getpkt (buf, (rs->remote_packet_size), 0);
1049 if (gen)
1050 general_thread = th;
1051 else
1052 continue_thread = th;
1053 }
1054 \f
1055 /* Return nonzero if the thread TH is still alive on the remote system. */
1056
1057 static int
1058 remote_thread_alive (ptid_t ptid)
1059 {
1060 int tid = PIDGET (ptid);
1061 char buf[16];
1062
1063 if (tid < 0)
1064 sprintf (buf, "T-%08x", -tid);
1065 else
1066 sprintf (buf, "T%08x", tid);
1067 putpkt (buf);
1068 getpkt (buf, sizeof (buf), 0);
1069 return (buf[0] == 'O' && buf[1] == 'K');
1070 }
1071
1072 /* About these extended threadlist and threadinfo packets. They are
1073 variable length packets but, the fields within them are often fixed
1074 length. They are redundent enough to send over UDP as is the
1075 remote protocol in general. There is a matching unit test module
1076 in libstub. */
1077
1078 #define OPAQUETHREADBYTES 8
1079
1080 /* a 64 bit opaque identifier */
1081 typedef unsigned char threadref[OPAQUETHREADBYTES];
1082
1083 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1084 protocol encoding, and remote.c. it is not particularly changable */
1085
1086 /* Right now, the internal structure is int. We want it to be bigger.
1087 Plan to fix this.
1088 */
1089
1090 typedef int gdb_threadref; /* internal GDB thread reference */
1091
1092 /* gdb_ext_thread_info is an internal GDB data structure which is
1093 equivalint to the reply of the remote threadinfo packet */
1094
1095 struct gdb_ext_thread_info
1096 {
1097 threadref threadid; /* External form of thread reference */
1098 int active; /* Has state interesting to GDB? , regs, stack */
1099 char display[256]; /* Brief state display, name, blocked/syspended */
1100 char shortname[32]; /* To be used to name threads */
1101 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1102 };
1103
1104 /* The volume of remote transfers can be limited by submitting
1105 a mask containing bits specifying the desired information.
1106 Use a union of these values as the 'selection' parameter to
1107 get_thread_info. FIXME: Make these TAG names more thread specific.
1108 */
1109
1110 #define TAG_THREADID 1
1111 #define TAG_EXISTS 2
1112 #define TAG_DISPLAY 4
1113 #define TAG_THREADNAME 8
1114 #define TAG_MOREDISPLAY 16
1115
1116 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1117
1118 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1119
1120 static char *unpack_nibble (char *buf, int *val);
1121
1122 static char *pack_nibble (char *buf, int nibble);
1123
1124 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1125
1126 static char *unpack_byte (char *buf, int *value);
1127
1128 static char *pack_int (char *buf, int value);
1129
1130 static char *unpack_int (char *buf, int *value);
1131
1132 static char *unpack_string (char *src, char *dest, int length);
1133
1134 static char *pack_threadid (char *pkt, threadref * id);
1135
1136 static char *unpack_threadid (char *inbuf, threadref * id);
1137
1138 void int_to_threadref (threadref * id, int value);
1139
1140 static int threadref_to_int (threadref * ref);
1141
1142 static void copy_threadref (threadref * dest, threadref * src);
1143
1144 static int threadmatch (threadref * dest, threadref * src);
1145
1146 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1147
1148 static int remote_unpack_thread_info_response (char *pkt,
1149 threadref * expectedref,
1150 struct gdb_ext_thread_info
1151 *info);
1152
1153
1154 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1155 struct gdb_ext_thread_info *info);
1156
1157 static char *pack_threadlist_request (char *pkt, int startflag,
1158 int threadcount,
1159 threadref * nextthread);
1160
1161 static int parse_threadlist_response (char *pkt,
1162 int result_limit,
1163 threadref * original_echo,
1164 threadref * resultlist, int *doneflag);
1165
1166 static int remote_get_threadlist (int startflag,
1167 threadref * nextthread,
1168 int result_limit,
1169 int *done,
1170 int *result_count, threadref * threadlist);
1171
1172 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1173
1174 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1175 void *context, int looplimit);
1176
1177 static int remote_newthread_step (threadref * ref, void *context);
1178
1179 /* encode 64 bits in 16 chars of hex */
1180
1181 static const char hexchars[] = "0123456789abcdef";
1182
1183 static int
1184 ishex (int ch, int *val)
1185 {
1186 if ((ch >= 'a') && (ch <= 'f'))
1187 {
1188 *val = ch - 'a' + 10;
1189 return 1;
1190 }
1191 if ((ch >= 'A') && (ch <= 'F'))
1192 {
1193 *val = ch - 'A' + 10;
1194 return 1;
1195 }
1196 if ((ch >= '0') && (ch <= '9'))
1197 {
1198 *val = ch - '0';
1199 return 1;
1200 }
1201 return 0;
1202 }
1203
1204 static int
1205 stubhex (int ch)
1206 {
1207 if (ch >= 'a' && ch <= 'f')
1208 return ch - 'a' + 10;
1209 if (ch >= '0' && ch <= '9')
1210 return ch - '0';
1211 if (ch >= 'A' && ch <= 'F')
1212 return ch - 'A' + 10;
1213 return -1;
1214 }
1215
1216 static int
1217 stub_unpack_int (char *buff, int fieldlength)
1218 {
1219 int nibble;
1220 int retval = 0;
1221
1222 while (fieldlength)
1223 {
1224 nibble = stubhex (*buff++);
1225 retval |= nibble;
1226 fieldlength--;
1227 if (fieldlength)
1228 retval = retval << 4;
1229 }
1230 return retval;
1231 }
1232
1233 char *
1234 unpack_varlen_hex (char *buff, /* packet to parse */
1235 ULONGEST *result)
1236 {
1237 int nibble;
1238 int retval = 0;
1239
1240 while (ishex (*buff, &nibble))
1241 {
1242 buff++;
1243 retval = retval << 4;
1244 retval |= nibble & 0x0f;
1245 }
1246 *result = retval;
1247 return buff;
1248 }
1249
1250 static char *
1251 unpack_nibble (char *buf, int *val)
1252 {
1253 ishex (*buf++, val);
1254 return buf;
1255 }
1256
1257 static char *
1258 pack_nibble (char *buf, int nibble)
1259 {
1260 *buf++ = hexchars[(nibble & 0x0f)];
1261 return buf;
1262 }
1263
1264 static char *
1265 pack_hex_byte (char *pkt, int byte)
1266 {
1267 *pkt++ = hexchars[(byte >> 4) & 0xf];
1268 *pkt++ = hexchars[(byte & 0xf)];
1269 return pkt;
1270 }
1271
1272 static char *
1273 unpack_byte (char *buf, int *value)
1274 {
1275 *value = stub_unpack_int (buf, 2);
1276 return buf + 2;
1277 }
1278
1279 static char *
1280 pack_int (char *buf, int value)
1281 {
1282 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1283 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1284 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1285 buf = pack_hex_byte (buf, (value & 0xff));
1286 return buf;
1287 }
1288
1289 static char *
1290 unpack_int (char *buf, int *value)
1291 {
1292 *value = stub_unpack_int (buf, 8);
1293 return buf + 8;
1294 }
1295
1296 #if 0 /* currently unused, uncomment when needed */
1297 static char *pack_string (char *pkt, char *string);
1298
1299 static char *
1300 pack_string (char *pkt, char *string)
1301 {
1302 char ch;
1303 int len;
1304
1305 len = strlen (string);
1306 if (len > 200)
1307 len = 200; /* Bigger than most GDB packets, junk??? */
1308 pkt = pack_hex_byte (pkt, len);
1309 while (len-- > 0)
1310 {
1311 ch = *string++;
1312 if ((ch == '\0') || (ch == '#'))
1313 ch = '*'; /* Protect encapsulation */
1314 *pkt++ = ch;
1315 }
1316 return pkt;
1317 }
1318 #endif /* 0 (unused) */
1319
1320 static char *
1321 unpack_string (char *src, char *dest, int length)
1322 {
1323 while (length--)
1324 *dest++ = *src++;
1325 *dest = '\0';
1326 return src;
1327 }
1328
1329 static char *
1330 pack_threadid (char *pkt, threadref *id)
1331 {
1332 char *limit;
1333 unsigned char *altid;
1334
1335 altid = (unsigned char *) id;
1336 limit = pkt + BUF_THREAD_ID_SIZE;
1337 while (pkt < limit)
1338 pkt = pack_hex_byte (pkt, *altid++);
1339 return pkt;
1340 }
1341
1342
1343 static char *
1344 unpack_threadid (char *inbuf, threadref *id)
1345 {
1346 char *altref;
1347 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1348 int x, y;
1349
1350 altref = (char *) id;
1351
1352 while (inbuf < limit)
1353 {
1354 x = stubhex (*inbuf++);
1355 y = stubhex (*inbuf++);
1356 *altref++ = (x << 4) | y;
1357 }
1358 return inbuf;
1359 }
1360
1361 /* Externally, threadrefs are 64 bits but internally, they are still
1362 ints. This is due to a mismatch of specifications. We would like
1363 to use 64bit thread references internally. This is an adapter
1364 function. */
1365
1366 void
1367 int_to_threadref (threadref *id, int value)
1368 {
1369 unsigned char *scan;
1370
1371 scan = (unsigned char *) id;
1372 {
1373 int i = 4;
1374 while (i--)
1375 *scan++ = 0;
1376 }
1377 *scan++ = (value >> 24) & 0xff;
1378 *scan++ = (value >> 16) & 0xff;
1379 *scan++ = (value >> 8) & 0xff;
1380 *scan++ = (value & 0xff);
1381 }
1382
1383 static int
1384 threadref_to_int (threadref *ref)
1385 {
1386 int i, value = 0;
1387 unsigned char *scan;
1388
1389 scan = (char *) ref;
1390 scan += 4;
1391 i = 4;
1392 while (i-- > 0)
1393 value = (value << 8) | ((*scan++) & 0xff);
1394 return value;
1395 }
1396
1397 static void
1398 copy_threadref (threadref *dest, threadref *src)
1399 {
1400 int i;
1401 unsigned char *csrc, *cdest;
1402
1403 csrc = (unsigned char *) src;
1404 cdest = (unsigned char *) dest;
1405 i = 8;
1406 while (i--)
1407 *cdest++ = *csrc++;
1408 }
1409
1410 static int
1411 threadmatch (threadref *dest, threadref *src)
1412 {
1413 /* things are broken right now, so just assume we got a match */
1414 #if 0
1415 unsigned char *srcp, *destp;
1416 int i, result;
1417 srcp = (char *) src;
1418 destp = (char *) dest;
1419
1420 result = 1;
1421 while (i-- > 0)
1422 result &= (*srcp++ == *destp++) ? 1 : 0;
1423 return result;
1424 #endif
1425 return 1;
1426 }
1427
1428 /*
1429 threadid:1, # always request threadid
1430 context_exists:2,
1431 display:4,
1432 unique_name:8,
1433 more_display:16
1434 */
1435
1436 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1437
1438 static char *
1439 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1440 {
1441 *pkt++ = 'q'; /* Info Query */
1442 *pkt++ = 'P'; /* process or thread info */
1443 pkt = pack_int (pkt, mode); /* mode */
1444 pkt = pack_threadid (pkt, id); /* threadid */
1445 *pkt = '\0'; /* terminate */
1446 return pkt;
1447 }
1448
1449 /* These values tag the fields in a thread info response packet */
1450 /* Tagging the fields allows us to request specific fields and to
1451 add more fields as time goes by */
1452
1453 #define TAG_THREADID 1 /* Echo the thread identifier */
1454 #define TAG_EXISTS 2 /* Is this process defined enough to
1455 fetch registers and its stack */
1456 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1457 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1458 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1459 the process */
1460
1461 static int
1462 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1463 struct gdb_ext_thread_info *info)
1464 {
1465 struct remote_state *rs = get_remote_state ();
1466 int mask, length;
1467 unsigned int tag;
1468 threadref ref;
1469 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1470 int retval = 1;
1471
1472 /* info->threadid = 0; FIXME: implement zero_threadref */
1473 info->active = 0;
1474 info->display[0] = '\0';
1475 info->shortname[0] = '\0';
1476 info->more_display[0] = '\0';
1477
1478 /* Assume the characters indicating the packet type have been stripped */
1479 pkt = unpack_int (pkt, &mask); /* arg mask */
1480 pkt = unpack_threadid (pkt, &ref);
1481
1482 if (mask == 0)
1483 warning ("Incomplete response to threadinfo request\n");
1484 if (!threadmatch (&ref, expectedref))
1485 { /* This is an answer to a different request */
1486 warning ("ERROR RMT Thread info mismatch\n");
1487 return 0;
1488 }
1489 copy_threadref (&info->threadid, &ref);
1490
1491 /* Loop on tagged fields , try to bail if somthing goes wrong */
1492
1493 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1494 {
1495 pkt = unpack_int (pkt, &tag); /* tag */
1496 pkt = unpack_byte (pkt, &length); /* length */
1497 if (!(tag & mask)) /* tags out of synch with mask */
1498 {
1499 warning ("ERROR RMT: threadinfo tag mismatch\n");
1500 retval = 0;
1501 break;
1502 }
1503 if (tag == TAG_THREADID)
1504 {
1505 if (length != 16)
1506 {
1507 warning ("ERROR RMT: length of threadid is not 16\n");
1508 retval = 0;
1509 break;
1510 }
1511 pkt = unpack_threadid (pkt, &ref);
1512 mask = mask & ~TAG_THREADID;
1513 continue;
1514 }
1515 if (tag == TAG_EXISTS)
1516 {
1517 info->active = stub_unpack_int (pkt, length);
1518 pkt += length;
1519 mask = mask & ~(TAG_EXISTS);
1520 if (length > 8)
1521 {
1522 warning ("ERROR RMT: 'exists' length too long\n");
1523 retval = 0;
1524 break;
1525 }
1526 continue;
1527 }
1528 if (tag == TAG_THREADNAME)
1529 {
1530 pkt = unpack_string (pkt, &info->shortname[0], length);
1531 mask = mask & ~TAG_THREADNAME;
1532 continue;
1533 }
1534 if (tag == TAG_DISPLAY)
1535 {
1536 pkt = unpack_string (pkt, &info->display[0], length);
1537 mask = mask & ~TAG_DISPLAY;
1538 continue;
1539 }
1540 if (tag == TAG_MOREDISPLAY)
1541 {
1542 pkt = unpack_string (pkt, &info->more_display[0], length);
1543 mask = mask & ~TAG_MOREDISPLAY;
1544 continue;
1545 }
1546 warning ("ERROR RMT: unknown thread info tag\n");
1547 break; /* Not a tag we know about */
1548 }
1549 return retval;
1550 }
1551
1552 static int
1553 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1554 struct gdb_ext_thread_info *info)
1555 {
1556 struct remote_state *rs = get_remote_state ();
1557 int result;
1558 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1559
1560 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1561 putpkt (threadinfo_pkt);
1562 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1563 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1564 info);
1565 return result;
1566 }
1567
1568 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1569
1570 static char *
1571 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1572 threadref *nextthread)
1573 {
1574 *pkt++ = 'q'; /* info query packet */
1575 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1576 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1577 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1578 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1579 *pkt = '\0';
1580 return pkt;
1581 }
1582
1583 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1584
1585 static int
1586 parse_threadlist_response (char *pkt, int result_limit,
1587 threadref *original_echo, threadref *resultlist,
1588 int *doneflag)
1589 {
1590 struct remote_state *rs = get_remote_state ();
1591 char *limit;
1592 int count, resultcount, done;
1593
1594 resultcount = 0;
1595 /* Assume the 'q' and 'M chars have been stripped. */
1596 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1597 pkt = unpack_byte (pkt, &count); /* count field */
1598 pkt = unpack_nibble (pkt, &done);
1599 /* The first threadid is the argument threadid. */
1600 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1601 while ((count-- > 0) && (pkt < limit))
1602 {
1603 pkt = unpack_threadid (pkt, resultlist++);
1604 if (resultcount++ >= result_limit)
1605 break;
1606 }
1607 if (doneflag)
1608 *doneflag = done;
1609 return resultcount;
1610 }
1611
1612 static int
1613 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1614 int *done, int *result_count, threadref *threadlist)
1615 {
1616 struct remote_state *rs = get_remote_state ();
1617 static threadref echo_nextthread;
1618 char *threadlist_packet = alloca (rs->remote_packet_size);
1619 char *t_response = alloca (rs->remote_packet_size);
1620 int result = 1;
1621
1622 /* Trancate result limit to be smaller than the packet size */
1623 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1624 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1625
1626 pack_threadlist_request (threadlist_packet,
1627 startflag, result_limit, nextthread);
1628 putpkt (threadlist_packet);
1629 getpkt (t_response, (rs->remote_packet_size), 0);
1630
1631 *result_count =
1632 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1633 threadlist, done);
1634
1635 if (!threadmatch (&echo_nextthread, nextthread))
1636 {
1637 /* FIXME: This is a good reason to drop the packet */
1638 /* Possably, there is a duplicate response */
1639 /* Possabilities :
1640 retransmit immediatly - race conditions
1641 retransmit after timeout - yes
1642 exit
1643 wait for packet, then exit
1644 */
1645 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1646 return 0; /* I choose simply exiting */
1647 }
1648 if (*result_count <= 0)
1649 {
1650 if (*done != 1)
1651 {
1652 warning ("RMT ERROR : failed to get remote thread list\n");
1653 result = 0;
1654 }
1655 return result; /* break; */
1656 }
1657 if (*result_count > result_limit)
1658 {
1659 *result_count = 0;
1660 warning ("RMT ERROR: threadlist response longer than requested\n");
1661 return 0;
1662 }
1663 return result;
1664 }
1665
1666 /* This is the interface between remote and threads, remotes upper interface */
1667
1668 /* remote_find_new_threads retrieves the thread list and for each
1669 thread in the list, looks up the thread in GDB's internal list,
1670 ading the thread if it does not already exist. This involves
1671 getting partial thread lists from the remote target so, polling the
1672 quit_flag is required. */
1673
1674
1675 /* About this many threadisds fit in a packet. */
1676
1677 #define MAXTHREADLISTRESULTS 32
1678
1679 static int
1680 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1681 int looplimit)
1682 {
1683 int done, i, result_count;
1684 int startflag = 1;
1685 int result = 1;
1686 int loopcount = 0;
1687 static threadref nextthread;
1688 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1689
1690 done = 0;
1691 while (!done)
1692 {
1693 if (loopcount++ > looplimit)
1694 {
1695 result = 0;
1696 warning ("Remote fetch threadlist -infinite loop-\n");
1697 break;
1698 }
1699 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1700 &done, &result_count, resultthreadlist))
1701 {
1702 result = 0;
1703 break;
1704 }
1705 /* clear for later iterations */
1706 startflag = 0;
1707 /* Setup to resume next batch of thread references, set nextthread. */
1708 if (result_count >= 1)
1709 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1710 i = 0;
1711 while (result_count--)
1712 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1713 break;
1714 }
1715 return result;
1716 }
1717
1718 static int
1719 remote_newthread_step (threadref *ref, void *context)
1720 {
1721 ptid_t ptid;
1722
1723 ptid = pid_to_ptid (threadref_to_int (ref));
1724
1725 if (!in_thread_list (ptid))
1726 add_thread (ptid);
1727 return 1; /* continue iterator */
1728 }
1729
1730 #define CRAZY_MAX_THREADS 1000
1731
1732 static ptid_t
1733 remote_current_thread (ptid_t oldpid)
1734 {
1735 struct remote_state *rs = get_remote_state ();
1736 char *buf = alloca (rs->remote_packet_size);
1737
1738 putpkt ("qC");
1739 getpkt (buf, (rs->remote_packet_size), 0);
1740 if (buf[0] == 'Q' && buf[1] == 'C')
1741 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1742 else
1743 return oldpid;
1744 }
1745
1746 /* Find new threads for info threads command.
1747 * Original version, using John Metzler's thread protocol.
1748 */
1749
1750 static void
1751 remote_find_new_threads (void)
1752 {
1753 remote_threadlist_iterator (remote_newthread_step, 0,
1754 CRAZY_MAX_THREADS);
1755 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1756 inferior_ptid = remote_current_thread (inferior_ptid);
1757 }
1758
1759 /*
1760 * Find all threads for info threads command.
1761 * Uses new thread protocol contributed by Cisco.
1762 * Falls back and attempts to use the older method (above)
1763 * if the target doesn't respond to the new method.
1764 */
1765
1766 static void
1767 remote_threads_info (void)
1768 {
1769 struct remote_state *rs = get_remote_state ();
1770 char *buf = alloca (rs->remote_packet_size);
1771 char *bufp;
1772 int tid;
1773
1774 if (remote_desc == 0) /* paranoia */
1775 error ("Command can only be used when connected to the remote target.");
1776
1777 if (use_threadinfo_query)
1778 {
1779 putpkt ("qfThreadInfo");
1780 bufp = buf;
1781 getpkt (bufp, (rs->remote_packet_size), 0);
1782 if (bufp[0] != '\0') /* q packet recognized */
1783 {
1784 while (*bufp++ == 'm') /* reply contains one or more TID */
1785 {
1786 do
1787 {
1788 tid = strtol (bufp, &bufp, 16);
1789 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1790 add_thread (pid_to_ptid (tid));
1791 }
1792 while (*bufp++ == ','); /* comma-separated list */
1793 putpkt ("qsThreadInfo");
1794 bufp = buf;
1795 getpkt (bufp, (rs->remote_packet_size), 0);
1796 }
1797 return; /* done */
1798 }
1799 }
1800
1801 /* Else fall back to old method based on jmetzler protocol. */
1802 use_threadinfo_query = 0;
1803 remote_find_new_threads ();
1804 return;
1805 }
1806
1807 /*
1808 * Collect a descriptive string about the given thread.
1809 * The target may say anything it wants to about the thread
1810 * (typically info about its blocked / runnable state, name, etc.).
1811 * This string will appear in the info threads display.
1812 *
1813 * Optional: targets are not required to implement this function.
1814 */
1815
1816 static char *
1817 remote_threads_extra_info (struct thread_info *tp)
1818 {
1819 struct remote_state *rs = get_remote_state ();
1820 int result;
1821 int set;
1822 threadref id;
1823 struct gdb_ext_thread_info threadinfo;
1824 static char display_buf[100]; /* arbitrary... */
1825 char *bufp = alloca (rs->remote_packet_size);
1826 int n = 0; /* position in display_buf */
1827
1828 if (remote_desc == 0) /* paranoia */
1829 internal_error (__FILE__, __LINE__,
1830 "remote_threads_extra_info");
1831
1832 if (use_threadextra_query)
1833 {
1834 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1835 putpkt (bufp);
1836 getpkt (bufp, (rs->remote_packet_size), 0);
1837 if (bufp[0] != 0)
1838 {
1839 n = min (strlen (bufp) / 2, sizeof (display_buf));
1840 result = hex2bin (bufp, display_buf, n);
1841 display_buf [result] = '\0';
1842 return display_buf;
1843 }
1844 }
1845
1846 /* If the above query fails, fall back to the old method. */
1847 use_threadextra_query = 0;
1848 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1849 | TAG_MOREDISPLAY | TAG_DISPLAY;
1850 int_to_threadref (&id, PIDGET (tp->ptid));
1851 if (remote_get_threadinfo (&id, set, &threadinfo))
1852 if (threadinfo.active)
1853 {
1854 if (*threadinfo.shortname)
1855 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1856 if (*threadinfo.display)
1857 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1858 if (*threadinfo.more_display)
1859 n += sprintf(&display_buf[n], " Priority: %s",
1860 threadinfo.more_display);
1861
1862 if (n > 0)
1863 {
1864 /* for purely cosmetic reasons, clear up trailing commas */
1865 if (',' == display_buf[n-1])
1866 display_buf[n-1] = ' ';
1867 return display_buf;
1868 }
1869 }
1870 return NULL;
1871 }
1872
1873 \f
1874
1875 /* Restart the remote side; this is an extended protocol operation. */
1876
1877 static void
1878 extended_remote_restart (void)
1879 {
1880 struct remote_state *rs = get_remote_state ();
1881 char *buf = alloca (rs->remote_packet_size);
1882
1883 /* Send the restart command; for reasons I don't understand the
1884 remote side really expects a number after the "R". */
1885 buf[0] = 'R';
1886 sprintf (&buf[1], "%x", 0);
1887 putpkt (buf);
1888
1889 /* Now query for status so this looks just like we restarted
1890 gdbserver from scratch. */
1891 putpkt ("?");
1892 getpkt (buf, (rs->remote_packet_size), 0);
1893 }
1894 \f
1895 /* Clean up connection to a remote debugger. */
1896
1897 static void
1898 remote_close (int quitting)
1899 {
1900 if (remote_desc)
1901 serial_close (remote_desc);
1902 remote_desc = NULL;
1903 }
1904
1905 /* Query the remote side for the text, data and bss offsets. */
1906
1907 static void
1908 get_offsets (void)
1909 {
1910 struct remote_state *rs = get_remote_state ();
1911 char *buf = alloca (rs->remote_packet_size);
1912 char *ptr;
1913 int lose;
1914 CORE_ADDR text_addr, data_addr, bss_addr;
1915 struct section_offsets *offs;
1916
1917 putpkt ("qOffsets");
1918
1919 getpkt (buf, (rs->remote_packet_size), 0);
1920
1921 if (buf[0] == '\000')
1922 return; /* Return silently. Stub doesn't support
1923 this command. */
1924 if (buf[0] == 'E')
1925 {
1926 warning ("Remote failure reply: %s", buf);
1927 return;
1928 }
1929
1930 /* Pick up each field in turn. This used to be done with scanf, but
1931 scanf will make trouble if CORE_ADDR size doesn't match
1932 conversion directives correctly. The following code will work
1933 with any size of CORE_ADDR. */
1934 text_addr = data_addr = bss_addr = 0;
1935 ptr = buf;
1936 lose = 0;
1937
1938 if (strncmp (ptr, "Text=", 5) == 0)
1939 {
1940 ptr += 5;
1941 /* Don't use strtol, could lose on big values. */
1942 while (*ptr && *ptr != ';')
1943 text_addr = (text_addr << 4) + fromhex (*ptr++);
1944 }
1945 else
1946 lose = 1;
1947
1948 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1949 {
1950 ptr += 6;
1951 while (*ptr && *ptr != ';')
1952 data_addr = (data_addr << 4) + fromhex (*ptr++);
1953 }
1954 else
1955 lose = 1;
1956
1957 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1958 {
1959 ptr += 5;
1960 while (*ptr && *ptr != ';')
1961 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1962 }
1963 else
1964 lose = 1;
1965
1966 if (lose)
1967 error ("Malformed response to offset query, %s", buf);
1968
1969 if (symfile_objfile == NULL)
1970 return;
1971
1972 offs = ((struct section_offsets *)
1973 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1974 memcpy (offs, symfile_objfile->section_offsets,
1975 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1976
1977 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1978
1979 /* This is a temporary kludge to force data and bss to use the same offsets
1980 because that's what nlmconv does now. The real solution requires changes
1981 to the stub and remote.c that I don't have time to do right now. */
1982
1983 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1984 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1985
1986 objfile_relocate (symfile_objfile, offs);
1987 }
1988
1989 /* Stub for catch_errors. */
1990
1991 static int
1992 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
1993 {
1994 start_remote (); /* Initialize gdb process mechanisms */
1995 /* NOTE: Return something >=0. A -ve value is reserved for
1996 catch_exceptions. */
1997 return 1;
1998 }
1999
2000 static int
2001 remote_start_remote (struct ui_out *uiout, void *dummy)
2002 {
2003 immediate_quit++; /* Allow user to interrupt it */
2004
2005 /* Ack any packet which the remote side has already sent. */
2006 serial_write (remote_desc, "+", 1);
2007
2008 /* Let the stub know that we want it to return the thread. */
2009 set_thread (-1, 0);
2010
2011 inferior_ptid = remote_current_thread (inferior_ptid);
2012
2013 get_offsets (); /* Get text, data & bss offsets */
2014
2015 putpkt ("?"); /* initiate a query from remote machine */
2016 immediate_quit--;
2017
2018 /* NOTE: See comment above in remote_start_remote_dummy(). This
2019 function returns something >=0. */
2020 return remote_start_remote_dummy (uiout, dummy);
2021 }
2022
2023 /* Open a connection to a remote debugger.
2024 NAME is the filename used for communication. */
2025
2026 static void
2027 remote_open (char *name, int from_tty)
2028 {
2029 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2030 }
2031
2032 /* Just like remote_open, but with asynchronous support. */
2033 static void
2034 remote_async_open (char *name, int from_tty)
2035 {
2036 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2037 }
2038
2039 /* Open a connection to a remote debugger using the extended
2040 remote gdb protocol. NAME is the filename used for communication. */
2041
2042 static void
2043 extended_remote_open (char *name, int from_tty)
2044 {
2045 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2046 0 /* async_p */);
2047 }
2048
2049 /* Just like extended_remote_open, but with asynchronous support. */
2050 static void
2051 extended_remote_async_open (char *name, int from_tty)
2052 {
2053 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2054 1 /*extended_p */, 1 /* async_p */);
2055 }
2056
2057 /* Generic code for opening a connection to a remote target. */
2058
2059 static void
2060 init_all_packet_configs (void)
2061 {
2062 int i;
2063 update_packet_config (&remote_protocol_e);
2064 update_packet_config (&remote_protocol_E);
2065 update_packet_config (&remote_protocol_P);
2066 update_packet_config (&remote_protocol_qSymbol);
2067 update_packet_config (&remote_protocol_vcont);
2068 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2069 update_packet_config (&remote_protocol_Z[i]);
2070 /* Force remote_write_bytes to check whether target supports binary
2071 downloading. */
2072 update_packet_config (&remote_protocol_binary_download);
2073 }
2074
2075 /* Symbol look-up. */
2076
2077 static void
2078 remote_check_symbols (struct objfile *objfile)
2079 {
2080 struct remote_state *rs = get_remote_state ();
2081 char *msg, *reply, *tmp;
2082 struct minimal_symbol *sym;
2083 int end;
2084
2085 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2086 return;
2087
2088 msg = alloca (rs->remote_packet_size);
2089 reply = alloca (rs->remote_packet_size);
2090
2091 /* Invite target to request symbol lookups. */
2092
2093 putpkt ("qSymbol::");
2094 getpkt (reply, (rs->remote_packet_size), 0);
2095 packet_ok (reply, &remote_protocol_qSymbol);
2096
2097 while (strncmp (reply, "qSymbol:", 8) == 0)
2098 {
2099 tmp = &reply[8];
2100 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2101 msg[end] = '\0';
2102 sym = lookup_minimal_symbol (msg, NULL, NULL);
2103 if (sym == NULL)
2104 sprintf (msg, "qSymbol::%s", &reply[8]);
2105 else
2106 sprintf (msg, "qSymbol:%s:%s",
2107 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2108 &reply[8]);
2109 putpkt (msg);
2110 getpkt (reply, (rs->remote_packet_size), 0);
2111 }
2112 }
2113
2114 static struct serial *
2115 remote_serial_open (char *name)
2116 {
2117 static int udp_warning = 0;
2118
2119 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2120 of in ser-tcp.c, because it is the remote protocol assuming that the
2121 serial connection is reliable and not the serial connection promising
2122 to be. */
2123 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2124 {
2125 warning ("The remote protocol may be unreliable over UDP.");
2126 warning ("Some events may be lost, rendering further debugging "
2127 "impossible.");
2128 udp_warning = 1;
2129 }
2130
2131 return serial_open (name);
2132 }
2133
2134 static void
2135 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2136 int extended_p, int async_p)
2137 {
2138 int ex;
2139 struct remote_state *rs = get_remote_state ();
2140 if (name == 0)
2141 error ("To open a remote debug connection, you need to specify what\n"
2142 "serial device is attached to the remote system\n"
2143 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2144
2145 /* See FIXME above */
2146 if (!async_p)
2147 wait_forever_enabled_p = 1;
2148
2149 target_preopen (from_tty);
2150
2151 unpush_target (target);
2152
2153 remote_desc = remote_serial_open (name);
2154 if (!remote_desc)
2155 perror_with_name (name);
2156
2157 if (baud_rate != -1)
2158 {
2159 if (serial_setbaudrate (remote_desc, baud_rate))
2160 {
2161 /* The requested speed could not be set. Error out to
2162 top level after closing remote_desc. Take care to
2163 set remote_desc to NULL to avoid closing remote_desc
2164 more than once. */
2165 serial_close (remote_desc);
2166 remote_desc = NULL;
2167 perror_with_name (name);
2168 }
2169 }
2170
2171 serial_raw (remote_desc);
2172
2173 /* If there is something sitting in the buffer we might take it as a
2174 response to a command, which would be bad. */
2175 serial_flush_input (remote_desc);
2176
2177 if (from_tty)
2178 {
2179 puts_filtered ("Remote debugging using ");
2180 puts_filtered (name);
2181 puts_filtered ("\n");
2182 }
2183 push_target (target); /* Switch to using remote target now */
2184
2185 init_all_packet_configs ();
2186
2187 general_thread = -2;
2188 continue_thread = -2;
2189
2190 /* Probe for ability to use "ThreadInfo" query, as required. */
2191 use_threadinfo_query = 1;
2192 use_threadextra_query = 1;
2193
2194 /* Without this, some commands which require an active target (such
2195 as kill) won't work. This variable serves (at least) double duty
2196 as both the pid of the target process (if it has such), and as a
2197 flag indicating that a target is active. These functions should
2198 be split out into seperate variables, especially since GDB will
2199 someday have a notion of debugging several processes. */
2200
2201 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2202
2203 if (async_p)
2204 {
2205 /* With this target we start out by owning the terminal. */
2206 remote_async_terminal_ours_p = 1;
2207
2208 /* FIXME: cagney/1999-09-23: During the initial connection it is
2209 assumed that the target is already ready and able to respond to
2210 requests. Unfortunately remote_start_remote() eventually calls
2211 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2212 around this. Eventually a mechanism that allows
2213 wait_for_inferior() to expect/get timeouts will be
2214 implemented. */
2215 wait_forever_enabled_p = 0;
2216 }
2217
2218 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2219 /* First delete any symbols previously loaded from shared libraries. */
2220 no_shared_libraries (NULL, 0);
2221 #endif
2222
2223 /* Start the remote connection. If error() or QUIT, discard this
2224 target (we'd otherwise be in an inconsistent state) and then
2225 propogate the error on up the exception chain. This ensures that
2226 the caller doesn't stumble along blindly assuming that the
2227 function succeeded. The CLI doesn't have this problem but other
2228 UI's, such as MI do.
2229
2230 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2231 this function should return an error indication letting the
2232 caller restore the previous state. Unfortunately the command
2233 ``target remote'' is directly wired to this function making that
2234 impossible. On a positive note, the CLI side of this problem has
2235 been fixed - the function set_cmd_context() makes it possible for
2236 all the ``target ....'' commands to share a common callback
2237 function. See cli-dump.c. */
2238 ex = catch_exceptions (uiout,
2239 remote_start_remote, NULL,
2240 "Couldn't establish connection to remote"
2241 " target\n",
2242 RETURN_MASK_ALL);
2243 if (ex < 0)
2244 {
2245 pop_target ();
2246 if (async_p)
2247 wait_forever_enabled_p = 1;
2248 throw_exception (ex);
2249 }
2250
2251 if (async_p)
2252 wait_forever_enabled_p = 1;
2253
2254 if (extended_p)
2255 {
2256 /* Tell the remote that we are using the extended protocol. */
2257 char *buf = alloca (rs->remote_packet_size);
2258 putpkt ("!");
2259 getpkt (buf, (rs->remote_packet_size), 0);
2260 }
2261 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2262 /* FIXME: need a master target_open vector from which all
2263 remote_opens can be called, so that stuff like this can
2264 go there. Failing that, the following code must be copied
2265 to the open function for any remote target that wants to
2266 support svr4 shared libraries. */
2267
2268 /* Set up to detect and load shared libraries. */
2269 if (exec_bfd) /* No use without an exec file. */
2270 {
2271 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2272 remote_check_symbols (symfile_objfile);
2273 }
2274 #endif
2275 }
2276
2277 /* This takes a program previously attached to and detaches it. After
2278 this is done, GDB can be used to debug some other program. We
2279 better not have left any breakpoints in the target program or it'll
2280 die when it hits one. */
2281
2282 static void
2283 remote_detach (char *args, int from_tty)
2284 {
2285 struct remote_state *rs = get_remote_state ();
2286 char *buf = alloca (rs->remote_packet_size);
2287
2288 if (args)
2289 error ("Argument given to \"detach\" when remotely debugging.");
2290
2291 /* Tell the remote target to detach. */
2292 strcpy (buf, "D");
2293 remote_send (buf, (rs->remote_packet_size));
2294
2295 /* Unregister the file descriptor from the event loop. */
2296 if (target_is_async_p ())
2297 serial_async (remote_desc, NULL, 0);
2298
2299 target_mourn_inferior ();
2300 if (from_tty)
2301 puts_filtered ("Ending remote debugging.\n");
2302 }
2303
2304 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2305
2306 static void
2307 remote_disconnect (char *args, int from_tty)
2308 {
2309 struct remote_state *rs = get_remote_state ();
2310 char *buf = alloca (rs->remote_packet_size);
2311
2312 if (args)
2313 error ("Argument given to \"detach\" when remotely debugging.");
2314
2315 /* Unregister the file descriptor from the event loop. */
2316 if (target_is_async_p ())
2317 serial_async (remote_desc, NULL, 0);
2318
2319 target_mourn_inferior ();
2320 if (from_tty)
2321 puts_filtered ("Ending remote debugging.\n");
2322 }
2323
2324 /* Convert hex digit A to a number. */
2325
2326 static int
2327 fromhex (int a)
2328 {
2329 if (a >= '0' && a <= '9')
2330 return a - '0';
2331 else if (a >= 'a' && a <= 'f')
2332 return a - 'a' + 10;
2333 else if (a >= 'A' && a <= 'F')
2334 return a - 'A' + 10;
2335 else
2336 error ("Reply contains invalid hex digit %d", a);
2337 }
2338
2339 static int
2340 hex2bin (const char *hex, char *bin, int count)
2341 {
2342 int i;
2343
2344 for (i = 0; i < count; i++)
2345 {
2346 if (hex[0] == 0 || hex[1] == 0)
2347 {
2348 /* Hex string is short, or of uneven length.
2349 Return the count that has been converted so far. */
2350 return i;
2351 }
2352 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2353 hex += 2;
2354 }
2355 return i;
2356 }
2357
2358 /* Convert number NIB to a hex digit. */
2359
2360 static int
2361 tohex (int nib)
2362 {
2363 if (nib < 10)
2364 return '0' + nib;
2365 else
2366 return 'a' + nib - 10;
2367 }
2368
2369 static int
2370 bin2hex (const char *bin, char *hex, int count)
2371 {
2372 int i;
2373 /* May use a length, or a nul-terminated string as input. */
2374 if (count == 0)
2375 count = strlen (bin);
2376
2377 for (i = 0; i < count; i++)
2378 {
2379 *hex++ = tohex ((*bin >> 4) & 0xf);
2380 *hex++ = tohex (*bin++ & 0xf);
2381 }
2382 *hex = 0;
2383 return i;
2384 }
2385 \f
2386 /* Check for the availability of vCont. This function should also check
2387 the response. */
2388
2389 static void
2390 remote_vcont_probe (struct remote_state *rs, char *buf)
2391 {
2392 strcpy (buf, "vCont?");
2393 putpkt (buf);
2394 getpkt (buf, rs->remote_packet_size, 0);
2395
2396 /* Make sure that the features we assume are supported. */
2397 if (strncmp (buf, "vCont", 5) == 0)
2398 {
2399 char *p = &buf[5];
2400 int support_s, support_S, support_c, support_C;
2401
2402 support_s = 0;
2403 support_S = 0;
2404 support_c = 0;
2405 support_C = 0;
2406 while (p && *p == ';')
2407 {
2408 p++;
2409 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2410 support_s = 1;
2411 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2412 support_S = 1;
2413 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2414 support_c = 1;
2415 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2416 support_C = 1;
2417
2418 p = strchr (p, ';');
2419 }
2420
2421 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2422 BUF will make packet_ok disable the packet. */
2423 if (!support_s || !support_S || !support_c || !support_C)
2424 buf[0] = 0;
2425 }
2426
2427 packet_ok (buf, &remote_protocol_vcont);
2428 }
2429
2430 /* Resume the remote inferior by using a "vCont" packet. The thread
2431 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2432 resumed thread should be single-stepped and/or signalled. If PTID's
2433 PID is -1, then all threads are resumed; the thread to be stepped and/or
2434 signalled is given in the global INFERIOR_PTID. This function returns
2435 non-zero iff it resumes the inferior.
2436
2437 This function issues a strict subset of all possible vCont commands at the
2438 moment. */
2439
2440 static int
2441 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2442 {
2443 struct remote_state *rs = get_remote_state ();
2444 int pid = PIDGET (ptid);
2445 char *buf = NULL, *outbuf;
2446 struct cleanup *old_cleanup;
2447
2448 buf = xmalloc (rs->remote_packet_size);
2449 old_cleanup = make_cleanup (xfree, buf);
2450
2451 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2452 remote_vcont_probe (rs, buf);
2453
2454 if (remote_protocol_vcont.support == PACKET_DISABLE)
2455 {
2456 do_cleanups (old_cleanup);
2457 return 0;
2458 }
2459
2460 /* If we could generate a wider range of packets, we'd have to worry
2461 about overflowing BUF. Should there be a generic
2462 "multi-part-packet" packet? */
2463
2464 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2465 {
2466 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2467 don't have any PID numbers the inferior will understand. Make sure
2468 to only send forms that do not specify a PID. */
2469 if (step && siggnal != TARGET_SIGNAL_0)
2470 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2471 else if (step)
2472 outbuf = xstrprintf ("vCont;s");
2473 else if (siggnal != TARGET_SIGNAL_0)
2474 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2475 else
2476 outbuf = xstrprintf ("vCont;c");
2477 }
2478 else if (pid == -1)
2479 {
2480 /* Resume all threads, with preference for INFERIOR_PTID. */
2481 if (step && siggnal != TARGET_SIGNAL_0)
2482 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2483 PIDGET (inferior_ptid));
2484 else if (step)
2485 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2486 else if (siggnal != TARGET_SIGNAL_0)
2487 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2488 PIDGET (inferior_ptid));
2489 else
2490 outbuf = xstrprintf ("vCont;c");
2491 }
2492 else
2493 {
2494 /* Scheduler locking; resume only PTID. */
2495 if (step && siggnal != TARGET_SIGNAL_0)
2496 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2497 else if (step)
2498 outbuf = xstrprintf ("vCont;s:%x", pid);
2499 else if (siggnal != TARGET_SIGNAL_0)
2500 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2501 else
2502 outbuf = xstrprintf ("vCont;c:%x", pid);
2503 }
2504
2505 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2506 make_cleanup (xfree, outbuf);
2507
2508 putpkt (outbuf);
2509
2510 do_cleanups (old_cleanup);
2511
2512 return 1;
2513 }
2514
2515 /* Tell the remote machine to resume. */
2516
2517 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2518
2519 static int last_sent_step;
2520
2521 static void
2522 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2523 {
2524 struct remote_state *rs = get_remote_state ();
2525 char *buf = alloca (rs->remote_packet_size);
2526 int pid = PIDGET (ptid);
2527 char *p;
2528
2529 last_sent_signal = siggnal;
2530 last_sent_step = step;
2531
2532 /* A hook for when we need to do something at the last moment before
2533 resumption. */
2534 if (target_resume_hook)
2535 (*target_resume_hook) ();
2536
2537 /* The vCont packet doesn't need to specify threads via Hc. */
2538 if (remote_vcont_resume (ptid, step, siggnal))
2539 return;
2540
2541 /* All other supported resume packets do use Hc, so call set_thread. */
2542 if (pid == -1)
2543 set_thread (0, 0); /* run any thread */
2544 else
2545 set_thread (pid, 0); /* run this thread */
2546
2547 /* The s/S/c/C packets do not return status. So if the target does
2548 not support the S or C packets, the debug agent returns an empty
2549 string which is detected in remote_wait(). This protocol defect
2550 is fixed in the e/E packets. */
2551
2552 if (step && step_range_end)
2553 {
2554 /* If the target does not support the 'E' packet, we try the 'S'
2555 packet. Ideally we would fall back to the 'e' packet if that
2556 too is not supported. But that would require another copy of
2557 the code to issue the 'e' packet (and fall back to 's' if not
2558 supported) in remote_wait(). */
2559
2560 if (siggnal != TARGET_SIGNAL_0)
2561 {
2562 if (remote_protocol_E.support != PACKET_DISABLE)
2563 {
2564 p = buf;
2565 *p++ = 'E';
2566 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2567 *p++ = tohex (((int) siggnal) & 0xf);
2568 *p++ = ',';
2569 p += hexnumstr (p, (ULONGEST) step_range_start);
2570 *p++ = ',';
2571 p += hexnumstr (p, (ULONGEST) step_range_end);
2572 *p++ = 0;
2573
2574 putpkt (buf);
2575 getpkt (buf, (rs->remote_packet_size), 0);
2576
2577 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2578 return;
2579 }
2580 }
2581 else
2582 {
2583 if (remote_protocol_e.support != PACKET_DISABLE)
2584 {
2585 p = buf;
2586 *p++ = 'e';
2587 p += hexnumstr (p, (ULONGEST) step_range_start);
2588 *p++ = ',';
2589 p += hexnumstr (p, (ULONGEST) step_range_end);
2590 *p++ = 0;
2591
2592 putpkt (buf);
2593 getpkt (buf, (rs->remote_packet_size), 0);
2594
2595 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2596 return;
2597 }
2598 }
2599 }
2600
2601 if (siggnal != TARGET_SIGNAL_0)
2602 {
2603 buf[0] = step ? 'S' : 'C';
2604 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2605 buf[2] = tohex (((int) siggnal) & 0xf);
2606 buf[3] = '\0';
2607 }
2608 else
2609 strcpy (buf, step ? "s" : "c");
2610
2611 putpkt (buf);
2612 }
2613
2614 /* Same as remote_resume, but with async support. */
2615 static void
2616 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2617 {
2618 remote_resume (ptid, step, siggnal);
2619
2620 /* We are about to start executing the inferior, let's register it
2621 with the event loop. NOTE: this is the one place where all the
2622 execution commands end up. We could alternatively do this in each
2623 of the execution commands in infcmd.c.*/
2624 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2625 into infcmd.c in order to allow inferior function calls to work
2626 NOT asynchronously. */
2627 if (event_loop_p && target_can_async_p ())
2628 target_async (inferior_event_handler, 0);
2629 /* Tell the world that the target is now executing. */
2630 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2631 this? Instead, should the client of target just assume (for
2632 async targets) that the target is going to start executing? Is
2633 this information already found in the continuation block? */
2634 if (target_is_async_p ())
2635 target_executing = 1;
2636 }
2637 \f
2638
2639 /* Set up the signal handler for SIGINT, while the target is
2640 executing, ovewriting the 'regular' SIGINT signal handler. */
2641 static void
2642 initialize_sigint_signal_handler (void)
2643 {
2644 sigint_remote_token =
2645 create_async_signal_handler (async_remote_interrupt, NULL);
2646 signal (SIGINT, handle_remote_sigint);
2647 }
2648
2649 /* Signal handler for SIGINT, while the target is executing. */
2650 static void
2651 handle_remote_sigint (int sig)
2652 {
2653 signal (sig, handle_remote_sigint_twice);
2654 sigint_remote_twice_token =
2655 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2656 mark_async_signal_handler_wrapper (sigint_remote_token);
2657 }
2658
2659 /* Signal handler for SIGINT, installed after SIGINT has already been
2660 sent once. It will take effect the second time that the user sends
2661 a ^C. */
2662 static void
2663 handle_remote_sigint_twice (int sig)
2664 {
2665 signal (sig, handle_sigint);
2666 sigint_remote_twice_token =
2667 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2668 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2669 }
2670
2671 /* Perform the real interruption of the target execution, in response
2672 to a ^C. */
2673 static void
2674 async_remote_interrupt (gdb_client_data arg)
2675 {
2676 if (remote_debug)
2677 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2678
2679 target_stop ();
2680 }
2681
2682 /* Perform interrupt, if the first attempt did not succeed. Just give
2683 up on the target alltogether. */
2684 void
2685 async_remote_interrupt_twice (gdb_client_data arg)
2686 {
2687 if (remote_debug)
2688 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2689 /* Do something only if the target was not killed by the previous
2690 cntl-C. */
2691 if (target_executing)
2692 {
2693 interrupt_query ();
2694 signal (SIGINT, handle_remote_sigint);
2695 }
2696 }
2697
2698 /* Reinstall the usual SIGINT handlers, after the target has
2699 stopped. */
2700 static void
2701 cleanup_sigint_signal_handler (void *dummy)
2702 {
2703 signal (SIGINT, handle_sigint);
2704 if (sigint_remote_twice_token)
2705 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2706 if (sigint_remote_token)
2707 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2708 }
2709
2710 /* Send ^C to target to halt it. Target will respond, and send us a
2711 packet. */
2712 static void (*ofunc) (int);
2713
2714 /* The command line interface's stop routine. This function is installed
2715 as a signal handler for SIGINT. The first time a user requests a
2716 stop, we call remote_stop to send a break or ^C. If there is no
2717 response from the target (it didn't stop when the user requested it),
2718 we ask the user if he'd like to detach from the target. */
2719 static void
2720 remote_interrupt (int signo)
2721 {
2722 /* If this doesn't work, try more severe steps. */
2723 signal (signo, remote_interrupt_twice);
2724
2725 if (remote_debug)
2726 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2727
2728 target_stop ();
2729 }
2730
2731 /* The user typed ^C twice. */
2732
2733 static void
2734 remote_interrupt_twice (int signo)
2735 {
2736 signal (signo, ofunc);
2737 interrupt_query ();
2738 signal (signo, remote_interrupt);
2739 }
2740
2741 /* This is the generic stop called via the target vector. When a target
2742 interrupt is requested, either by the command line or the GUI, we
2743 will eventually end up here. */
2744 static void
2745 remote_stop (void)
2746 {
2747 /* Send a break or a ^C, depending on user preference. */
2748 if (remote_debug)
2749 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2750
2751 if (remote_break)
2752 serial_send_break (remote_desc);
2753 else
2754 serial_write (remote_desc, "\003", 1);
2755 }
2756
2757 /* Ask the user what to do when an interrupt is received. */
2758
2759 static void
2760 interrupt_query (void)
2761 {
2762 target_terminal_ours ();
2763
2764 if (query ("Interrupted while waiting for the program.\n\
2765 Give up (and stop debugging it)? "))
2766 {
2767 target_mourn_inferior ();
2768 throw_exception (RETURN_QUIT);
2769 }
2770
2771 target_terminal_inferior ();
2772 }
2773
2774 /* Enable/disable target terminal ownership. Most targets can use
2775 terminal groups to control terminal ownership. Remote targets are
2776 different in that explicit transfer of ownership to/from GDB/target
2777 is required. */
2778
2779 static void
2780 remote_async_terminal_inferior (void)
2781 {
2782 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2783 sync_execution here. This function should only be called when
2784 GDB is resuming the inferior in the forground. A background
2785 resume (``run&'') should leave GDB in control of the terminal and
2786 consequently should not call this code. */
2787 if (!sync_execution)
2788 return;
2789 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2790 calls target_terminal_*() idenpotent. The event-loop GDB talking
2791 to an asynchronous target with a synchronous command calls this
2792 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2793 stops trying to transfer the terminal to the target when it
2794 shouldn't this guard can go away. */
2795 if (!remote_async_terminal_ours_p)
2796 return;
2797 delete_file_handler (input_fd);
2798 remote_async_terminal_ours_p = 0;
2799 initialize_sigint_signal_handler ();
2800 /* NOTE: At this point we could also register our selves as the
2801 recipient of all input. Any characters typed could then be
2802 passed on down to the target. */
2803 }
2804
2805 static void
2806 remote_async_terminal_ours (void)
2807 {
2808 /* See FIXME in remote_async_terminal_inferior. */
2809 if (!sync_execution)
2810 return;
2811 /* See FIXME in remote_async_terminal_inferior. */
2812 if (remote_async_terminal_ours_p)
2813 return;
2814 cleanup_sigint_signal_handler (NULL);
2815 add_file_handler (input_fd, stdin_event_handler, 0);
2816 remote_async_terminal_ours_p = 1;
2817 }
2818
2819 /* If nonzero, ignore the next kill. */
2820
2821 int kill_kludge;
2822
2823 void
2824 remote_console_output (char *msg)
2825 {
2826 char *p;
2827
2828 for (p = msg; p[0] && p[1]; p += 2)
2829 {
2830 char tb[2];
2831 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2832 tb[0] = c;
2833 tb[1] = 0;
2834 fputs_unfiltered (tb, gdb_stdtarg);
2835 }
2836 gdb_flush (gdb_stdtarg);
2837 }
2838
2839 /* Wait until the remote machine stops, then return,
2840 storing status in STATUS just as `wait' would.
2841 Returns "pid", which in the case of a multi-threaded
2842 remote OS, is the thread-id. */
2843
2844 static ptid_t
2845 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2846 {
2847 struct remote_state *rs = get_remote_state ();
2848 unsigned char *buf = alloca (rs->remote_packet_size);
2849 ULONGEST thread_num = -1;
2850 ULONGEST addr;
2851
2852 status->kind = TARGET_WAITKIND_EXITED;
2853 status->value.integer = 0;
2854
2855 while (1)
2856 {
2857 unsigned char *p;
2858
2859 ofunc = signal (SIGINT, remote_interrupt);
2860 getpkt (buf, (rs->remote_packet_size), 1);
2861 signal (SIGINT, ofunc);
2862
2863 /* This is a hook for when we need to do something (perhaps the
2864 collection of trace data) every time the target stops. */
2865 if (target_wait_loop_hook)
2866 (*target_wait_loop_hook) ();
2867
2868 remote_stopped_by_watchpoint_p = 0;
2869
2870 switch (buf[0])
2871 {
2872 case 'E': /* Error of some sort */
2873 warning ("Remote failure reply: %s", buf);
2874 continue;
2875 case 'F': /* File-I/O request */
2876 remote_fileio_request (buf);
2877 continue;
2878 case 'T': /* Status with PC, SP, FP, ... */
2879 {
2880 int i;
2881 char regs[MAX_REGISTER_SIZE];
2882
2883 /* Expedited reply, containing Signal, {regno, reg} repeat */
2884 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2885 ss = signal number
2886 n... = register number
2887 r... = register contents
2888 */
2889 p = &buf[3]; /* after Txx */
2890
2891 while (*p)
2892 {
2893 unsigned char *p1;
2894 char *p_temp;
2895 int fieldsize;
2896 LONGEST pnum = 0;
2897
2898 /* If the packet contains a register number save it in pnum
2899 and set p1 to point to the character following it.
2900 Otherwise p1 points to p. */
2901
2902 /* If this packet is an awatch packet, don't parse the 'a'
2903 as a register number. */
2904
2905 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2906 {
2907 /* Read the ``P'' register number. */
2908 pnum = strtol (p, &p_temp, 16);
2909 p1 = (unsigned char *) p_temp;
2910 }
2911 else
2912 p1 = p;
2913
2914 if (p1 == p) /* No register number present here */
2915 {
2916 p1 = (unsigned char *) strchr (p, ':');
2917 if (p1 == NULL)
2918 warning ("Malformed packet(a) (missing colon): %s\n\
2919 Packet: '%s'\n",
2920 p, buf);
2921 if (strncmp (p, "thread", p1 - p) == 0)
2922 {
2923 p_temp = unpack_varlen_hex (++p1, &thread_num);
2924 record_currthread (thread_num);
2925 p = (unsigned char *) p_temp;
2926 }
2927 else if ((strncmp (p, "watch", p1 - p) == 0)
2928 || (strncmp (p, "rwatch", p1 - p) == 0)
2929 || (strncmp (p, "awatch", p1 - p) == 0))
2930 {
2931 remote_stopped_by_watchpoint_p = 1;
2932 p = unpack_varlen_hex (++p1, &addr);
2933 remote_watch_data_address = (CORE_ADDR)addr;
2934 }
2935 else
2936 {
2937 /* Silently skip unknown optional info. */
2938 p_temp = strchr (p1 + 1, ';');
2939 if (p_temp)
2940 p = (unsigned char *) p_temp;
2941 }
2942 }
2943 else
2944 {
2945 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2946 p = p1;
2947
2948 if (*p++ != ':')
2949 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
2950 p, buf);
2951
2952 if (reg == NULL)
2953 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
2954 phex_nz (pnum, 0), p, buf);
2955
2956 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
2957 p += 2 * fieldsize;
2958 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
2959 warning ("Remote reply is too short: %s", buf);
2960 supply_register (reg->regnum, regs);
2961 }
2962
2963 if (*p++ != ';')
2964 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
2965 }
2966 }
2967 /* fall through */
2968 case 'S': /* Old style status, just signal only */
2969 status->kind = TARGET_WAITKIND_STOPPED;
2970 status->value.sig = (enum target_signal)
2971 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2972
2973 if (buf[3] == 'p')
2974 {
2975 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2976 record_currthread (thread_num);
2977 }
2978 goto got_status;
2979 case 'W': /* Target exited */
2980 {
2981 /* The remote process exited. */
2982 status->kind = TARGET_WAITKIND_EXITED;
2983 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2984 goto got_status;
2985 }
2986 case 'X':
2987 status->kind = TARGET_WAITKIND_SIGNALLED;
2988 status->value.sig = (enum target_signal)
2989 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2990 kill_kludge = 1;
2991
2992 goto got_status;
2993 case 'O': /* Console output */
2994 remote_console_output (buf + 1);
2995 continue;
2996 case '\0':
2997 if (last_sent_signal != TARGET_SIGNAL_0)
2998 {
2999 /* Zero length reply means that we tried 'S' or 'C' and
3000 the remote system doesn't support it. */
3001 target_terminal_ours_for_output ();
3002 printf_filtered
3003 ("Can't send signals to this remote system. %s not sent.\n",
3004 target_signal_to_name (last_sent_signal));
3005 last_sent_signal = TARGET_SIGNAL_0;
3006 target_terminal_inferior ();
3007
3008 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3009 putpkt ((char *) buf);
3010 continue;
3011 }
3012 /* else fallthrough */
3013 default:
3014 warning ("Invalid remote reply: %s", buf);
3015 continue;
3016 }
3017 }
3018 got_status:
3019 if (thread_num != -1)
3020 {
3021 return pid_to_ptid (thread_num);
3022 }
3023 return inferior_ptid;
3024 }
3025
3026 /* Async version of remote_wait. */
3027 static ptid_t
3028 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3029 {
3030 struct remote_state *rs = get_remote_state ();
3031 unsigned char *buf = alloca (rs->remote_packet_size);
3032 ULONGEST thread_num = -1;
3033 ULONGEST addr;
3034
3035 status->kind = TARGET_WAITKIND_EXITED;
3036 status->value.integer = 0;
3037
3038 remote_stopped_by_watchpoint_p = 0;
3039
3040 while (1)
3041 {
3042 unsigned char *p;
3043
3044 if (!target_is_async_p ())
3045 ofunc = signal (SIGINT, remote_interrupt);
3046 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3047 _never_ wait for ever -> test on target_is_async_p().
3048 However, before we do that we need to ensure that the caller
3049 knows how to take the target into/out of async mode. */
3050 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3051 if (!target_is_async_p ())
3052 signal (SIGINT, ofunc);
3053
3054 /* This is a hook for when we need to do something (perhaps the
3055 collection of trace data) every time the target stops. */
3056 if (target_wait_loop_hook)
3057 (*target_wait_loop_hook) ();
3058
3059 switch (buf[0])
3060 {
3061 case 'E': /* Error of some sort */
3062 warning ("Remote failure reply: %s", buf);
3063 continue;
3064 case 'F': /* File-I/O request */
3065 remote_fileio_request (buf);
3066 continue;
3067 case 'T': /* Status with PC, SP, FP, ... */
3068 {
3069 int i;
3070 char regs[MAX_REGISTER_SIZE];
3071
3072 /* Expedited reply, containing Signal, {regno, reg} repeat */
3073 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3074 ss = signal number
3075 n... = register number
3076 r... = register contents
3077 */
3078 p = &buf[3]; /* after Txx */
3079
3080 while (*p)
3081 {
3082 unsigned char *p1;
3083 char *p_temp;
3084 int fieldsize;
3085 long pnum = 0;
3086
3087 /* If the packet contains a register number, save it in pnum
3088 and set p1 to point to the character following it.
3089 Otherwise p1 points to p. */
3090
3091 /* If this packet is an awatch packet, don't parse the 'a'
3092 as a register number. */
3093
3094 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3095 {
3096 /* Read the register number. */
3097 pnum = strtol (p, &p_temp, 16);
3098 p1 = (unsigned char *) p_temp;
3099 }
3100 else
3101 p1 = p;
3102
3103 if (p1 == p) /* No register number present here */
3104 {
3105 p1 = (unsigned char *) strchr (p, ':');
3106 if (p1 == NULL)
3107 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3108 p, buf);
3109 if (strncmp (p, "thread", p1 - p) == 0)
3110 {
3111 p_temp = unpack_varlen_hex (++p1, &thread_num);
3112 record_currthread (thread_num);
3113 p = (unsigned char *) p_temp;
3114 }
3115 else if ((strncmp (p, "watch", p1 - p) == 0)
3116 || (strncmp (p, "rwatch", p1 - p) == 0)
3117 || (strncmp (p, "awatch", p1 - p) == 0))
3118 {
3119 remote_stopped_by_watchpoint_p = 1;
3120 p = unpack_varlen_hex (++p1, &addr);
3121 remote_watch_data_address = (CORE_ADDR)addr;
3122 }
3123 else
3124 {
3125 /* Silently skip unknown optional info. */
3126 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3127 if (p_temp)
3128 p = p_temp;
3129 }
3130 }
3131
3132 else
3133 {
3134 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3135 p = p1;
3136 if (*p++ != ':')
3137 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3138 p, buf);
3139
3140 if (reg == NULL)
3141 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3142 pnum, p, buf);
3143
3144 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3145 p += 2 * fieldsize;
3146 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3147 warning ("Remote reply is too short: %s", buf);
3148 supply_register (reg->regnum, regs);
3149 }
3150
3151 if (*p++ != ';')
3152 error ("Remote register badly formatted: %s\nhere: %s",
3153 buf, p);
3154 }
3155 }
3156 /* fall through */
3157 case 'S': /* Old style status, just signal only */
3158 status->kind = TARGET_WAITKIND_STOPPED;
3159 status->value.sig = (enum target_signal)
3160 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3161
3162 if (buf[3] == 'p')
3163 {
3164 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3165 record_currthread (thread_num);
3166 }
3167 goto got_status;
3168 case 'W': /* Target exited */
3169 {
3170 /* The remote process exited. */
3171 status->kind = TARGET_WAITKIND_EXITED;
3172 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3173 goto got_status;
3174 }
3175 case 'X':
3176 status->kind = TARGET_WAITKIND_SIGNALLED;
3177 status->value.sig = (enum target_signal)
3178 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3179 kill_kludge = 1;
3180
3181 goto got_status;
3182 case 'O': /* Console output */
3183 remote_console_output (buf + 1);
3184 /* Return immediately to the event loop. The event loop will
3185 still be waiting on the inferior afterwards. */
3186 status->kind = TARGET_WAITKIND_IGNORE;
3187 goto got_status;
3188 case '\0':
3189 if (last_sent_signal != TARGET_SIGNAL_0)
3190 {
3191 /* Zero length reply means that we tried 'S' or 'C' and
3192 the remote system doesn't support it. */
3193 target_terminal_ours_for_output ();
3194 printf_filtered
3195 ("Can't send signals to this remote system. %s not sent.\n",
3196 target_signal_to_name (last_sent_signal));
3197 last_sent_signal = TARGET_SIGNAL_0;
3198 target_terminal_inferior ();
3199
3200 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3201 putpkt ((char *) buf);
3202 continue;
3203 }
3204 /* else fallthrough */
3205 default:
3206 warning ("Invalid remote reply: %s", buf);
3207 continue;
3208 }
3209 }
3210 got_status:
3211 if (thread_num != -1)
3212 {
3213 return pid_to_ptid (thread_num);
3214 }
3215 return inferior_ptid;
3216 }
3217
3218 /* Number of bytes of registers this stub implements. */
3219
3220 static int register_bytes_found;
3221
3222 /* Read the remote registers into the block REGS. */
3223 /* Currently we just read all the registers, so we don't use regnum. */
3224
3225 static void
3226 remote_fetch_registers (int regnum)
3227 {
3228 struct remote_state *rs = get_remote_state ();
3229 char *buf = alloca (rs->remote_packet_size);
3230 int i;
3231 char *p;
3232 char *regs = alloca (rs->sizeof_g_packet);
3233
3234 set_thread (PIDGET (inferior_ptid), 1);
3235
3236 if (regnum >= 0)
3237 {
3238 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3239 gdb_assert (reg != NULL);
3240 if (!reg->in_g_packet)
3241 internal_error (__FILE__, __LINE__,
3242 "Attempt to fetch a non G-packet register when this "
3243 "remote.c does not support the p-packet.");
3244 }
3245
3246 sprintf (buf, "g");
3247 remote_send (buf, (rs->remote_packet_size));
3248
3249 /* Save the size of the packet sent to us by the target. Its used
3250 as a heuristic when determining the max size of packets that the
3251 target can safely receive. */
3252 if ((rs->actual_register_packet_size) == 0)
3253 (rs->actual_register_packet_size) = strlen (buf);
3254
3255 /* Unimplemented registers read as all bits zero. */
3256 memset (regs, 0, rs->sizeof_g_packet);
3257
3258 /* We can get out of synch in various cases. If the first character
3259 in the buffer is not a hex character, assume that has happened
3260 and try to fetch another packet to read. */
3261 while ((buf[0] < '0' || buf[0] > '9')
3262 && (buf[0] < 'a' || buf[0] > 'f')
3263 && buf[0] != 'x') /* New: unavailable register value */
3264 {
3265 if (remote_debug)
3266 fprintf_unfiltered (gdb_stdlog,
3267 "Bad register packet; fetching a new packet\n");
3268 getpkt (buf, (rs->remote_packet_size), 0);
3269 }
3270
3271 /* Reply describes registers byte by byte, each byte encoded as two
3272 hex characters. Suck them all up, then supply them to the
3273 register cacheing/storage mechanism. */
3274
3275 p = buf;
3276 for (i = 0; i < rs->sizeof_g_packet; i++)
3277 {
3278 if (p[0] == 0)
3279 break;
3280 if (p[1] == 0)
3281 {
3282 warning ("Remote reply is of odd length: %s", buf);
3283 /* Don't change register_bytes_found in this case, and don't
3284 print a second warning. */
3285 goto supply_them;
3286 }
3287 if (p[0] == 'x' && p[1] == 'x')
3288 regs[i] = 0; /* 'x' */
3289 else
3290 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3291 p += 2;
3292 }
3293
3294 if (i != register_bytes_found)
3295 {
3296 register_bytes_found = i;
3297 if (REGISTER_BYTES_OK_P ()
3298 && !REGISTER_BYTES_OK (i))
3299 warning ("Remote reply is too short: %s", buf);
3300 }
3301
3302 supply_them:
3303 {
3304 int i;
3305 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3306 {
3307 struct packet_reg *r = &rs->regs[i];
3308 if (r->in_g_packet)
3309 {
3310 if (r->offset * 2 >= strlen (buf))
3311 /* A short packet that didn't include the register's
3312 value, this implies that the register is zero (and
3313 not that the register is unavailable). Supply that
3314 zero value. */
3315 regcache_raw_supply (current_regcache, r->regnum, NULL);
3316 else if (buf[r->offset * 2] == 'x')
3317 {
3318 gdb_assert (r->offset * 2 < strlen (buf));
3319 /* The register isn't available, mark it as such (at
3320 the same time setting the value to zero). */
3321 regcache_raw_supply (current_regcache, r->regnum, NULL);
3322 set_register_cached (i, -1);
3323 }
3324 else
3325 regcache_raw_supply (current_regcache, r->regnum,
3326 regs + r->offset);
3327 }
3328 }
3329 }
3330 }
3331
3332 /* Prepare to store registers. Since we may send them all (using a
3333 'G' request), we have to read out the ones we don't want to change
3334 first. */
3335
3336 static void
3337 remote_prepare_to_store (void)
3338 {
3339 struct remote_state *rs = get_remote_state ();
3340 int i;
3341 char buf[MAX_REGISTER_SIZE];
3342
3343 /* Make sure the entire registers array is valid. */
3344 switch (remote_protocol_P.support)
3345 {
3346 case PACKET_DISABLE:
3347 case PACKET_SUPPORT_UNKNOWN:
3348 /* Make sure all the necessary registers are cached. */
3349 for (i = 0; i < NUM_REGS; i++)
3350 if (rs->regs[i].in_g_packet)
3351 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3352 break;
3353 case PACKET_ENABLE:
3354 break;
3355 }
3356 }
3357
3358 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3359 packet was not recognized. */
3360
3361 static int
3362 store_register_using_P (int regnum)
3363 {
3364 struct remote_state *rs = get_remote_state ();
3365 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3366 /* Try storing a single register. */
3367 char *buf = alloca (rs->remote_packet_size);
3368 char regp[MAX_REGISTER_SIZE];
3369 char *p;
3370 int i;
3371
3372 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3373 p = buf + strlen (buf);
3374 regcache_collect (reg->regnum, regp);
3375 bin2hex (regp, p, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3376 remote_send (buf, rs->remote_packet_size);
3377
3378 return buf[0] != '\0';
3379 }
3380
3381
3382 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3383 of the register cache buffer. FIXME: ignores errors. */
3384
3385 static void
3386 remote_store_registers (int regnum)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *buf;
3390 char *regs;
3391 int i;
3392 char *p;
3393
3394 set_thread (PIDGET (inferior_ptid), 1);
3395
3396 if (regnum >= 0)
3397 {
3398 switch (remote_protocol_P.support)
3399 {
3400 case PACKET_DISABLE:
3401 break;
3402 case PACKET_ENABLE:
3403 if (store_register_using_P (regnum))
3404 return;
3405 else
3406 error ("Protocol error: P packet not recognized by stub");
3407 case PACKET_SUPPORT_UNKNOWN:
3408 if (store_register_using_P (regnum))
3409 {
3410 /* The stub recognized the 'P' packet. Remember this. */
3411 remote_protocol_P.support = PACKET_ENABLE;
3412 return;
3413 }
3414 else
3415 {
3416 /* The stub does not support the 'P' packet. Use 'G'
3417 instead, and don't try using 'P' in the future (it
3418 will just waste our time). */
3419 remote_protocol_P.support = PACKET_DISABLE;
3420 break;
3421 }
3422 }
3423 }
3424
3425 /* Extract all the registers in the regcache copying them into a
3426 local buffer. */
3427 {
3428 int i;
3429 regs = alloca (rs->sizeof_g_packet);
3430 memset (regs, rs->sizeof_g_packet, 0);
3431 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3432 {
3433 struct packet_reg *r = &rs->regs[i];
3434 if (r->in_g_packet)
3435 regcache_collect (r->regnum, regs + r->offset);
3436 }
3437 }
3438
3439 /* Command describes registers byte by byte,
3440 each byte encoded as two hex characters. */
3441 buf = alloca (rs->remote_packet_size);
3442 p = buf;
3443 *p++ = 'G';
3444 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3445 bin2hex (regs, p, register_bytes_found);
3446 remote_send (buf, (rs->remote_packet_size));
3447 }
3448 \f
3449
3450 /* Return the number of hex digits in num. */
3451
3452 static int
3453 hexnumlen (ULONGEST num)
3454 {
3455 int i;
3456
3457 for (i = 0; num != 0; i++)
3458 num >>= 4;
3459
3460 return max (i, 1);
3461 }
3462
3463 /* Set BUF to the minimum number of hex digits representing NUM. */
3464
3465 static int
3466 hexnumstr (char *buf, ULONGEST num)
3467 {
3468 int len = hexnumlen (num);
3469 return hexnumnstr (buf, num, len);
3470 }
3471
3472
3473 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3474
3475 static int
3476 hexnumnstr (char *buf, ULONGEST num, int width)
3477 {
3478 int i;
3479
3480 buf[width] = '\0';
3481
3482 for (i = width - 1; i >= 0; i--)
3483 {
3484 buf[i] = "0123456789abcdef"[(num & 0xf)];
3485 num >>= 4;
3486 }
3487
3488 return width;
3489 }
3490
3491 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3492
3493 static CORE_ADDR
3494 remote_address_masked (CORE_ADDR addr)
3495 {
3496 if (remote_address_size > 0
3497 && remote_address_size < (sizeof (ULONGEST) * 8))
3498 {
3499 /* Only create a mask when that mask can safely be constructed
3500 in a ULONGEST variable. */
3501 ULONGEST mask = 1;
3502 mask = (mask << remote_address_size) - 1;
3503 addr &= mask;
3504 }
3505 return addr;
3506 }
3507
3508 /* Determine whether the remote target supports binary downloading.
3509 This is accomplished by sending a no-op memory write of zero length
3510 to the target at the specified address. It does not suffice to send
3511 the whole packet, since many stubs strip the eighth bit and subsequently
3512 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3513
3514 NOTE: This can still lose if the serial line is not eight-bit
3515 clean. In cases like this, the user should clear "remote
3516 X-packet". */
3517
3518 static void
3519 check_binary_download (CORE_ADDR addr)
3520 {
3521 struct remote_state *rs = get_remote_state ();
3522 switch (remote_protocol_binary_download.support)
3523 {
3524 case PACKET_DISABLE:
3525 break;
3526 case PACKET_ENABLE:
3527 break;
3528 case PACKET_SUPPORT_UNKNOWN:
3529 {
3530 char *buf = alloca (rs->remote_packet_size);
3531 char *p;
3532
3533 p = buf;
3534 *p++ = 'X';
3535 p += hexnumstr (p, (ULONGEST) addr);
3536 *p++ = ',';
3537 p += hexnumstr (p, (ULONGEST) 0);
3538 *p++ = ':';
3539 *p = '\0';
3540
3541 putpkt_binary (buf, (int) (p - buf));
3542 getpkt (buf, (rs->remote_packet_size), 0);
3543
3544 if (buf[0] == '\0')
3545 {
3546 if (remote_debug)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "binary downloading NOT suppported by target\n");
3549 remote_protocol_binary_download.support = PACKET_DISABLE;
3550 }
3551 else
3552 {
3553 if (remote_debug)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "binary downloading suppported by target\n");
3556 remote_protocol_binary_download.support = PACKET_ENABLE;
3557 }
3558 break;
3559 }
3560 }
3561 }
3562
3563 /* Write memory data directly to the remote machine.
3564 This does not inform the data cache; the data cache uses this.
3565 MEMADDR is the address in the remote memory space.
3566 MYADDR is the address of the buffer in our space.
3567 LEN is the number of bytes.
3568
3569 Returns number of bytes transferred, or 0 (setting errno) for
3570 error. Only transfer a single packet. */
3571
3572 int
3573 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3574 {
3575 unsigned char *buf;
3576 unsigned char *p;
3577 unsigned char *plen;
3578 long sizeof_buf;
3579 int plenlen;
3580 int todo;
3581 int nr_bytes;
3582 int payload_size;
3583 unsigned char *payload_start;
3584
3585 /* Verify that the target can support a binary download. */
3586 check_binary_download (memaddr);
3587
3588 /* Compute the size, and then allocate space for the largest
3589 possible packet. Include space for an extra trailing NUL. */
3590 sizeof_buf = get_memory_write_packet_size () + 1;
3591 buf = alloca (sizeof_buf);
3592
3593 /* Compute the size of the actual payload by subtracting out the
3594 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3595 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3596 + hexnumlen (memaddr)
3597 + hexnumlen (len)));
3598
3599 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3600
3601 /* Append "[XM]". Compute a best guess of the number of bytes
3602 actually transfered. */
3603 p = buf;
3604 switch (remote_protocol_binary_download.support)
3605 {
3606 case PACKET_ENABLE:
3607 *p++ = 'X';
3608 /* Best guess at number of bytes that will fit. */
3609 todo = min (len, payload_size);
3610 break;
3611 case PACKET_DISABLE:
3612 *p++ = 'M';
3613 /* num bytes that will fit */
3614 todo = min (len, payload_size / 2);
3615 break;
3616 case PACKET_SUPPORT_UNKNOWN:
3617 internal_error (__FILE__, __LINE__,
3618 "remote_write_bytes: bad internal state");
3619 default:
3620 internal_error (__FILE__, __LINE__, "bad switch");
3621 }
3622
3623 /* Append "<memaddr>". */
3624 memaddr = remote_address_masked (memaddr);
3625 p += hexnumstr (p, (ULONGEST) memaddr);
3626
3627 /* Append ",". */
3628 *p++ = ',';
3629
3630 /* Append <len>. Retain the location/size of <len>. It may need to
3631 be adjusted once the packet body has been created. */
3632 plen = p;
3633 plenlen = hexnumstr (p, (ULONGEST) todo);
3634 p += plenlen;
3635
3636 /* Append ":". */
3637 *p++ = ':';
3638 *p = '\0';
3639
3640 /* Append the packet body. */
3641 payload_start = p;
3642 switch (remote_protocol_binary_download.support)
3643 {
3644 case PACKET_ENABLE:
3645 /* Binary mode. Send target system values byte by byte, in
3646 increasing byte addresses. Only escape certain critical
3647 characters. */
3648 for (nr_bytes = 0;
3649 (nr_bytes < todo) && (p - payload_start) < payload_size;
3650 nr_bytes++)
3651 {
3652 switch (myaddr[nr_bytes] & 0xff)
3653 {
3654 case '$':
3655 case '#':
3656 case 0x7d:
3657 /* These must be escaped */
3658 *p++ = 0x7d;
3659 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3660 break;
3661 default:
3662 *p++ = myaddr[nr_bytes] & 0xff;
3663 break;
3664 }
3665 }
3666 if (nr_bytes < todo)
3667 {
3668 /* Escape chars have filled up the buffer prematurely,
3669 and we have actually sent fewer bytes than planned.
3670 Fix-up the length field of the packet. Use the same
3671 number of characters as before. */
3672 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3673 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3674 }
3675 break;
3676 case PACKET_DISABLE:
3677 /* Normal mode: Send target system values byte by byte, in
3678 increasing byte addresses. Each byte is encoded as a two hex
3679 value. */
3680 nr_bytes = bin2hex (myaddr, p, todo);
3681 p += 2 * nr_bytes;
3682 break;
3683 case PACKET_SUPPORT_UNKNOWN:
3684 internal_error (__FILE__, __LINE__,
3685 "remote_write_bytes: bad internal state");
3686 default:
3687 internal_error (__FILE__, __LINE__, "bad switch");
3688 }
3689
3690 putpkt_binary (buf, (int) (p - buf));
3691 getpkt (buf, sizeof_buf, 0);
3692
3693 if (buf[0] == 'E')
3694 {
3695 /* There is no correspondance between what the remote protocol
3696 uses for errors and errno codes. We would like a cleaner way
3697 of representing errors (big enough to include errno codes,
3698 bfd_error codes, and others). But for now just return EIO. */
3699 errno = EIO;
3700 return 0;
3701 }
3702
3703 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3704 bytes than we'd planned. */
3705 return nr_bytes;
3706 }
3707
3708 /* Read memory data directly from the remote machine.
3709 This does not use the data cache; the data cache uses this.
3710 MEMADDR is the address in the remote memory space.
3711 MYADDR is the address of the buffer in our space.
3712 LEN is the number of bytes.
3713
3714 Returns number of bytes transferred, or 0 for error. */
3715
3716 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3717 remote targets) shouldn't attempt to read the entire buffer.
3718 Instead it should read a single packet worth of data and then
3719 return the byte size of that packet to the caller. The caller (its
3720 caller and its callers caller ;-) already contains code for
3721 handling partial reads. */
3722
3723 int
3724 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3725 {
3726 char *buf;
3727 int max_buf_size; /* Max size of packet output buffer */
3728 long sizeof_buf;
3729 int origlen;
3730
3731 /* Create a buffer big enough for this packet. */
3732 max_buf_size = get_memory_read_packet_size ();
3733 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3734 buf = alloca (sizeof_buf);
3735
3736 origlen = len;
3737 while (len > 0)
3738 {
3739 char *p;
3740 int todo;
3741 int i;
3742
3743 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3744
3745 /* construct "m"<memaddr>","<len>" */
3746 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3747 memaddr = remote_address_masked (memaddr);
3748 p = buf;
3749 *p++ = 'm';
3750 p += hexnumstr (p, (ULONGEST) memaddr);
3751 *p++ = ',';
3752 p += hexnumstr (p, (ULONGEST) todo);
3753 *p = '\0';
3754
3755 putpkt (buf);
3756 getpkt (buf, sizeof_buf, 0);
3757
3758 if (buf[0] == 'E'
3759 && isxdigit (buf[1]) && isxdigit (buf[2])
3760 && buf[3] == '\0')
3761 {
3762 /* There is no correspondance between what the remote protocol uses
3763 for errors and errno codes. We would like a cleaner way of
3764 representing errors (big enough to include errno codes, bfd_error
3765 codes, and others). But for now just return EIO. */
3766 errno = EIO;
3767 return 0;
3768 }
3769
3770 /* Reply describes memory byte by byte,
3771 each byte encoded as two hex characters. */
3772
3773 p = buf;
3774 if ((i = hex2bin (p, myaddr, todo)) < todo)
3775 {
3776 /* Reply is short. This means that we were able to read
3777 only part of what we wanted to. */
3778 return i + (origlen - len);
3779 }
3780 myaddr += todo;
3781 memaddr += todo;
3782 len -= todo;
3783 }
3784 return origlen;
3785 }
3786 \f
3787 /* Read or write LEN bytes from inferior memory at MEMADDR,
3788 transferring to or from debugger address BUFFER. Write to inferior if
3789 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3790 for error. TARGET is unused. */
3791
3792 static int
3793 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3794 int should_write, struct mem_attrib *attrib,
3795 struct target_ops *target)
3796 {
3797 CORE_ADDR targ_addr;
3798 int targ_len;
3799 int res;
3800
3801 /* Should this be the selected frame? */
3802 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3803 mem_addr, mem_len,
3804 &targ_addr, &targ_len);
3805 if (targ_len <= 0)
3806 return 0;
3807
3808 if (should_write)
3809 res = remote_write_bytes (targ_addr, buffer, targ_len);
3810 else
3811 res = remote_read_bytes (targ_addr, buffer, targ_len);
3812
3813 return res;
3814 }
3815
3816 static void
3817 remote_files_info (struct target_ops *ignore)
3818 {
3819 puts_filtered ("Debugging a target over a serial line.\n");
3820 }
3821 \f
3822 /* Stuff for dealing with the packets which are part of this protocol.
3823 See comment at top of file for details. */
3824
3825 /* Read a single character from the remote end, masking it down to 7 bits. */
3826
3827 static int
3828 readchar (int timeout)
3829 {
3830 int ch;
3831
3832 ch = serial_readchar (remote_desc, timeout);
3833
3834 if (ch >= 0)
3835 return (ch & 0x7f);
3836
3837 switch ((enum serial_rc) ch)
3838 {
3839 case SERIAL_EOF:
3840 target_mourn_inferior ();
3841 error ("Remote connection closed");
3842 /* no return */
3843 case SERIAL_ERROR:
3844 perror_with_name ("Remote communication error");
3845 /* no return */
3846 case SERIAL_TIMEOUT:
3847 break;
3848 }
3849 return ch;
3850 }
3851
3852 /* Send the command in BUF to the remote machine, and read the reply
3853 into BUF. Report an error if we get an error reply. */
3854
3855 static void
3856 remote_send (char *buf,
3857 long sizeof_buf)
3858 {
3859 putpkt (buf);
3860 getpkt (buf, sizeof_buf, 0);
3861
3862 if (buf[0] == 'E')
3863 error ("Remote failure reply: %s", buf);
3864 }
3865
3866 /* Display a null-terminated packet on stdout, for debugging, using C
3867 string notation. */
3868
3869 static void
3870 print_packet (char *buf)
3871 {
3872 puts_filtered ("\"");
3873 fputstr_filtered (buf, '"', gdb_stdout);
3874 puts_filtered ("\"");
3875 }
3876
3877 int
3878 putpkt (char *buf)
3879 {
3880 return putpkt_binary (buf, strlen (buf));
3881 }
3882
3883 /* Send a packet to the remote machine, with error checking. The data
3884 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
3885 to account for the $, # and checksum, and for a possible /0 if we are
3886 debugging (remote_debug) and want to print the sent packet as a string */
3887
3888 static int
3889 putpkt_binary (char *buf, int cnt)
3890 {
3891 struct remote_state *rs = get_remote_state ();
3892 int i;
3893 unsigned char csum = 0;
3894 char *buf2 = alloca (cnt + 6);
3895 long sizeof_junkbuf = (rs->remote_packet_size);
3896 char *junkbuf = alloca (sizeof_junkbuf);
3897
3898 int ch;
3899 int tcount = 0;
3900 char *p;
3901
3902 /* Copy the packet into buffer BUF2, encapsulating it
3903 and giving it a checksum. */
3904
3905 p = buf2;
3906 *p++ = '$';
3907
3908 for (i = 0; i < cnt; i++)
3909 {
3910 csum += buf[i];
3911 *p++ = buf[i];
3912 }
3913 *p++ = '#';
3914 *p++ = tohex ((csum >> 4) & 0xf);
3915 *p++ = tohex (csum & 0xf);
3916
3917 /* Send it over and over until we get a positive ack. */
3918
3919 while (1)
3920 {
3921 int started_error_output = 0;
3922
3923 if (remote_debug)
3924 {
3925 *p = '\0';
3926 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3927 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3928 fprintf_unfiltered (gdb_stdlog, "...");
3929 gdb_flush (gdb_stdlog);
3930 }
3931 if (serial_write (remote_desc, buf2, p - buf2))
3932 perror_with_name ("putpkt: write failed");
3933
3934 /* read until either a timeout occurs (-2) or '+' is read */
3935 while (1)
3936 {
3937 ch = readchar (remote_timeout);
3938
3939 if (remote_debug)
3940 {
3941 switch (ch)
3942 {
3943 case '+':
3944 case '-':
3945 case SERIAL_TIMEOUT:
3946 case '$':
3947 if (started_error_output)
3948 {
3949 putchar_unfiltered ('\n');
3950 started_error_output = 0;
3951 }
3952 }
3953 }
3954
3955 switch (ch)
3956 {
3957 case '+':
3958 if (remote_debug)
3959 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3960 return 1;
3961 case '-':
3962 if (remote_debug)
3963 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3964 case SERIAL_TIMEOUT:
3965 tcount++;
3966 if (tcount > 3)
3967 return 0;
3968 break; /* Retransmit buffer */
3969 case '$':
3970 {
3971 if (remote_debug)
3972 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
3973 /* It's probably an old response, and we're out of sync.
3974 Just gobble up the packet and ignore it. */
3975 read_frame (junkbuf, sizeof_junkbuf);
3976 continue; /* Now, go look for + */
3977 }
3978 default:
3979 if (remote_debug)
3980 {
3981 if (!started_error_output)
3982 {
3983 started_error_output = 1;
3984 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
3985 }
3986 fputc_unfiltered (ch & 0177, gdb_stdlog);
3987 }
3988 continue;
3989 }
3990 break; /* Here to retransmit */
3991 }
3992
3993 #if 0
3994 /* This is wrong. If doing a long backtrace, the user should be
3995 able to get out next time we call QUIT, without anything as
3996 violent as interrupt_query. If we want to provide a way out of
3997 here without getting to the next QUIT, it should be based on
3998 hitting ^C twice as in remote_wait. */
3999 if (quit_flag)
4000 {
4001 quit_flag = 0;
4002 interrupt_query ();
4003 }
4004 #endif
4005 }
4006 }
4007
4008 /* Come here after finding the start of the frame. Collect the rest
4009 into BUF, verifying the checksum, length, and handling run-length
4010 compression. No more than sizeof_buf-1 characters are read so that
4011 the buffer can be NUL terminated.
4012
4013 Returns -1 on error, number of characters in buffer (ignoring the
4014 trailing NULL) on success. (could be extended to return one of the
4015 SERIAL status indications). */
4016
4017 static long
4018 read_frame (char *buf,
4019 long sizeof_buf)
4020 {
4021 unsigned char csum;
4022 long bc;
4023 int c;
4024
4025 csum = 0;
4026 bc = 0;
4027
4028 while (1)
4029 {
4030 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4031 c = readchar (remote_timeout);
4032 switch (c)
4033 {
4034 case SERIAL_TIMEOUT:
4035 if (remote_debug)
4036 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4037 return -1;
4038 case '$':
4039 if (remote_debug)
4040 fputs_filtered ("Saw new packet start in middle of old one\n",
4041 gdb_stdlog);
4042 return -1; /* Start a new packet, count retries */
4043 case '#':
4044 {
4045 unsigned char pktcsum;
4046 int check_0 = 0;
4047 int check_1 = 0;
4048
4049 buf[bc] = '\0';
4050
4051 check_0 = readchar (remote_timeout);
4052 if (check_0 >= 0)
4053 check_1 = readchar (remote_timeout);
4054
4055 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4056 {
4057 if (remote_debug)
4058 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4059 return -1;
4060 }
4061 else if (check_0 < 0 || check_1 < 0)
4062 {
4063 if (remote_debug)
4064 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4065 return -1;
4066 }
4067
4068 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4069 if (csum == pktcsum)
4070 return bc;
4071
4072 if (remote_debug)
4073 {
4074 fprintf_filtered (gdb_stdlog,
4075 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4076 pktcsum, csum);
4077 fputs_filtered (buf, gdb_stdlog);
4078 fputs_filtered ("\n", gdb_stdlog);
4079 }
4080 /* Number of characters in buffer ignoring trailing
4081 NUL. */
4082 return -1;
4083 }
4084 case '*': /* Run length encoding */
4085 {
4086 int repeat;
4087 csum += c;
4088
4089 c = readchar (remote_timeout);
4090 csum += c;
4091 repeat = c - ' ' + 3; /* Compute repeat count */
4092
4093 /* The character before ``*'' is repeated. */
4094
4095 if (repeat > 0 && repeat <= 255
4096 && bc > 0
4097 && bc + repeat - 1 < sizeof_buf - 1)
4098 {
4099 memset (&buf[bc], buf[bc - 1], repeat);
4100 bc += repeat;
4101 continue;
4102 }
4103
4104 buf[bc] = '\0';
4105 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4106 puts_filtered (buf);
4107 puts_filtered ("\n");
4108 return -1;
4109 }
4110 default:
4111 if (bc < sizeof_buf - 1)
4112 {
4113 buf[bc++] = c;
4114 csum += c;
4115 continue;
4116 }
4117
4118 buf[bc] = '\0';
4119 puts_filtered ("Remote packet too long: ");
4120 puts_filtered (buf);
4121 puts_filtered ("\n");
4122
4123 return -1;
4124 }
4125 }
4126 }
4127
4128 /* Read a packet from the remote machine, with error checking, and
4129 store it in BUF. If FOREVER, wait forever rather than timing out;
4130 this is used (in synchronous mode) to wait for a target that is is
4131 executing user code to stop. */
4132 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4133 don't have to change all the calls to getpkt to deal with the
4134 return value, because at the moment I don't know what the right
4135 thing to do it for those. */
4136 void
4137 getpkt (char *buf,
4138 long sizeof_buf,
4139 int forever)
4140 {
4141 int timed_out;
4142
4143 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4144 }
4145
4146
4147 /* Read a packet from the remote machine, with error checking, and
4148 store it in BUF. If FOREVER, wait forever rather than timing out;
4149 this is used (in synchronous mode) to wait for a target that is is
4150 executing user code to stop. If FOREVER == 0, this function is
4151 allowed to time out gracefully and return an indication of this to
4152 the caller. */
4153 static int
4154 getpkt_sane (char *buf,
4155 long sizeof_buf,
4156 int forever)
4157 {
4158 int c;
4159 int tries;
4160 int timeout;
4161 int val;
4162
4163 strcpy (buf, "timeout");
4164
4165 if (forever)
4166 {
4167 timeout = watchdog > 0 ? watchdog : -1;
4168 }
4169
4170 else
4171 timeout = remote_timeout;
4172
4173 #define MAX_TRIES 3
4174
4175 for (tries = 1; tries <= MAX_TRIES; tries++)
4176 {
4177 /* This can loop forever if the remote side sends us characters
4178 continuously, but if it pauses, we'll get a zero from readchar
4179 because of timeout. Then we'll count that as a retry. */
4180
4181 /* Note that we will only wait forever prior to the start of a packet.
4182 After that, we expect characters to arrive at a brisk pace. They
4183 should show up within remote_timeout intervals. */
4184
4185 do
4186 {
4187 c = readchar (timeout);
4188
4189 if (c == SERIAL_TIMEOUT)
4190 {
4191 if (forever) /* Watchdog went off? Kill the target. */
4192 {
4193 QUIT;
4194 target_mourn_inferior ();
4195 error ("Watchdog has expired. Target detached.\n");
4196 }
4197 if (remote_debug)
4198 fputs_filtered ("Timed out.\n", gdb_stdlog);
4199 goto retry;
4200 }
4201 }
4202 while (c != '$');
4203
4204 /* We've found the start of a packet, now collect the data. */
4205
4206 val = read_frame (buf, sizeof_buf);
4207
4208 if (val >= 0)
4209 {
4210 if (remote_debug)
4211 {
4212 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4213 fputstr_unfiltered (buf, 0, gdb_stdlog);
4214 fprintf_unfiltered (gdb_stdlog, "\n");
4215 }
4216 serial_write (remote_desc, "+", 1);
4217 return 0;
4218 }
4219
4220 /* Try the whole thing again. */
4221 retry:
4222 serial_write (remote_desc, "-", 1);
4223 }
4224
4225 /* We have tried hard enough, and just can't receive the packet. Give up. */
4226
4227 printf_unfiltered ("Ignoring packet error, continuing...\n");
4228 serial_write (remote_desc, "+", 1);
4229 return 1;
4230 }
4231 \f
4232 static void
4233 remote_kill (void)
4234 {
4235 /* For some mysterious reason, wait_for_inferior calls kill instead of
4236 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4237 if (kill_kludge)
4238 {
4239 kill_kludge = 0;
4240 target_mourn_inferior ();
4241 return;
4242 }
4243
4244 /* Use catch_errors so the user can quit from gdb even when we aren't on
4245 speaking terms with the remote system. */
4246 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4247
4248 /* Don't wait for it to die. I'm not really sure it matters whether
4249 we do or not. For the existing stubs, kill is a noop. */
4250 target_mourn_inferior ();
4251 }
4252
4253 /* Async version of remote_kill. */
4254 static void
4255 remote_async_kill (void)
4256 {
4257 /* Unregister the file descriptor from the event loop. */
4258 if (target_is_async_p ())
4259 serial_async (remote_desc, NULL, 0);
4260
4261 /* For some mysterious reason, wait_for_inferior calls kill instead of
4262 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4263 if (kill_kludge)
4264 {
4265 kill_kludge = 0;
4266 target_mourn_inferior ();
4267 return;
4268 }
4269
4270 /* Use catch_errors so the user can quit from gdb even when we aren't on
4271 speaking terms with the remote system. */
4272 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4273
4274 /* Don't wait for it to die. I'm not really sure it matters whether
4275 we do or not. For the existing stubs, kill is a noop. */
4276 target_mourn_inferior ();
4277 }
4278
4279 static void
4280 remote_mourn (void)
4281 {
4282 remote_mourn_1 (&remote_ops);
4283 }
4284
4285 static void
4286 remote_async_mourn (void)
4287 {
4288 remote_mourn_1 (&remote_async_ops);
4289 }
4290
4291 static void
4292 extended_remote_mourn (void)
4293 {
4294 /* We do _not_ want to mourn the target like this; this will
4295 remove the extended remote target from the target stack,
4296 and the next time the user says "run" it'll fail.
4297
4298 FIXME: What is the right thing to do here? */
4299 #if 0
4300 remote_mourn_1 (&extended_remote_ops);
4301 #endif
4302 }
4303
4304 /* Worker function for remote_mourn. */
4305 static void
4306 remote_mourn_1 (struct target_ops *target)
4307 {
4308 unpush_target (target);
4309 generic_mourn_inferior ();
4310 }
4311
4312 /* In the extended protocol we want to be able to do things like
4313 "run" and have them basically work as expected. So we need
4314 a special create_inferior function.
4315
4316 FIXME: One day add support for changing the exec file
4317 we're debugging, arguments and an environment. */
4318
4319 static void
4320 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4321 {
4322 /* Rip out the breakpoints; we'll reinsert them after restarting
4323 the remote server. */
4324 remove_breakpoints ();
4325
4326 /* Now restart the remote server. */
4327 extended_remote_restart ();
4328
4329 /* Now put the breakpoints back in. This way we're safe if the
4330 restart function works via a unix fork on the remote side. */
4331 insert_breakpoints ();
4332
4333 /* Clean up from the last time we were running. */
4334 clear_proceed_status ();
4335
4336 /* Let the remote process run. */
4337 proceed (-1, TARGET_SIGNAL_0, 0);
4338 }
4339
4340 /* Async version of extended_remote_create_inferior. */
4341 static void
4342 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4343 {
4344 /* Rip out the breakpoints; we'll reinsert them after restarting
4345 the remote server. */
4346 remove_breakpoints ();
4347
4348 /* If running asynchronously, register the target file descriptor
4349 with the event loop. */
4350 if (event_loop_p && target_can_async_p ())
4351 target_async (inferior_event_handler, 0);
4352
4353 /* Now restart the remote server. */
4354 extended_remote_restart ();
4355
4356 /* Now put the breakpoints back in. This way we're safe if the
4357 restart function works via a unix fork on the remote side. */
4358 insert_breakpoints ();
4359
4360 /* Clean up from the last time we were running. */
4361 clear_proceed_status ();
4362
4363 /* Let the remote process run. */
4364 proceed (-1, TARGET_SIGNAL_0, 0);
4365 }
4366 \f
4367
4368 /* On some machines, e.g. 68k, we may use a different breakpoint
4369 instruction than other targets; in those use
4370 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4371 Also, bi-endian targets may define
4372 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4373 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4374 just call the standard routines that are in mem-break.c. */
4375
4376 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4377 target should use an identical BREAKPOINT_FROM_PC. As for native,
4378 the ARCH-OS-tdep.c code can override the default. */
4379
4380 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4381 #define DEPRECATED_REMOTE_BREAKPOINT
4382 #endif
4383
4384 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4385
4386 /* If the target isn't bi-endian, just pretend it is. */
4387 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4388 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4389 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4390 #endif
4391
4392 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4393 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4394
4395 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4396
4397 /* Insert a breakpoint on targets that don't have any better
4398 breakpoint support. We read the contents of the target location
4399 and stash it, then overwrite it with a breakpoint instruction.
4400 ADDR is the target location in the target machine. CONTENTS_CACHE
4401 is a pointer to memory allocated for saving the target contents.
4402 It is guaranteed by the caller to be long enough to save the number
4403 of bytes returned by BREAKPOINT_FROM_PC. */
4404
4405 static int
4406 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4407 {
4408 struct remote_state *rs = get_remote_state ();
4409 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4410 int val;
4411 #endif
4412 int bp_size;
4413
4414 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4415 If it succeeds, then set the support to PACKET_ENABLE. If it
4416 fails, and the user has explicitly requested the Z support then
4417 report an error, otherwise, mark it disabled and go on. */
4418
4419 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4420 {
4421 char *buf = alloca (rs->remote_packet_size);
4422 char *p = buf;
4423
4424 addr = remote_address_masked (addr);
4425 *(p++) = 'Z';
4426 *(p++) = '0';
4427 *(p++) = ',';
4428 p += hexnumstr (p, (ULONGEST) addr);
4429 BREAKPOINT_FROM_PC (&addr, &bp_size);
4430 sprintf (p, ",%d", bp_size);
4431
4432 putpkt (buf);
4433 getpkt (buf, (rs->remote_packet_size), 0);
4434
4435 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4436 {
4437 case PACKET_ERROR:
4438 return -1;
4439 case PACKET_OK:
4440 return 0;
4441 case PACKET_UNKNOWN:
4442 break;
4443 }
4444 }
4445
4446 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4447 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4448
4449 if (val == 0)
4450 {
4451 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4452 val = target_write_memory (addr, (char *) big_break_insn,
4453 sizeof big_break_insn);
4454 else
4455 val = target_write_memory (addr, (char *) little_break_insn,
4456 sizeof little_break_insn);
4457 }
4458
4459 return val;
4460 #else
4461 return memory_insert_breakpoint (addr, contents_cache);
4462 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4463 }
4464
4465 static int
4466 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4467 {
4468 struct remote_state *rs = get_remote_state ();
4469 int bp_size;
4470
4471 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4472 {
4473 char *buf = alloca (rs->remote_packet_size);
4474 char *p = buf;
4475
4476 *(p++) = 'z';
4477 *(p++) = '0';
4478 *(p++) = ',';
4479
4480 addr = remote_address_masked (addr);
4481 p += hexnumstr (p, (ULONGEST) addr);
4482 BREAKPOINT_FROM_PC (&addr, &bp_size);
4483 sprintf (p, ",%d", bp_size);
4484
4485 putpkt (buf);
4486 getpkt (buf, (rs->remote_packet_size), 0);
4487
4488 return (buf[0] == 'E');
4489 }
4490
4491 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4492 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4493 #else
4494 return memory_remove_breakpoint (addr, contents_cache);
4495 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4496 }
4497
4498 static int
4499 watchpoint_to_Z_packet (int type)
4500 {
4501 switch (type)
4502 {
4503 case hw_write:
4504 return 2;
4505 break;
4506 case hw_read:
4507 return 3;
4508 break;
4509 case hw_access:
4510 return 4;
4511 break;
4512 default:
4513 internal_error (__FILE__, __LINE__,
4514 "hw_bp_to_z: bad watchpoint type %d", type);
4515 }
4516 }
4517
4518 static int
4519 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4520 {
4521 struct remote_state *rs = get_remote_state ();
4522 char *buf = alloca (rs->remote_packet_size);
4523 char *p;
4524 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4525
4526 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4527 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4528 remote_protocol_Z[packet].name,
4529 remote_protocol_Z[packet].title);
4530
4531 sprintf (buf, "Z%x,", packet);
4532 p = strchr (buf, '\0');
4533 addr = remote_address_masked (addr);
4534 p += hexnumstr (p, (ULONGEST) addr);
4535 sprintf (p, ",%x", len);
4536
4537 putpkt (buf);
4538 getpkt (buf, (rs->remote_packet_size), 0);
4539
4540 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4541 {
4542 case PACKET_ERROR:
4543 case PACKET_UNKNOWN:
4544 return -1;
4545 case PACKET_OK:
4546 return 0;
4547 }
4548 internal_error (__FILE__, __LINE__,
4549 "remote_insert_watchpoint: reached end of function");
4550 }
4551
4552
4553 static int
4554 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4555 {
4556 struct remote_state *rs = get_remote_state ();
4557 char *buf = alloca (rs->remote_packet_size);
4558 char *p;
4559 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4560
4561 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4562 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4563 remote_protocol_Z[packet].name,
4564 remote_protocol_Z[packet].title);
4565
4566 sprintf (buf, "z%x,", packet);
4567 p = strchr (buf, '\0');
4568 addr = remote_address_masked (addr);
4569 p += hexnumstr (p, (ULONGEST) addr);
4570 sprintf (p, ",%x", len);
4571 putpkt (buf);
4572 getpkt (buf, (rs->remote_packet_size), 0);
4573
4574 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4575 {
4576 case PACKET_ERROR:
4577 case PACKET_UNKNOWN:
4578 return -1;
4579 case PACKET_OK:
4580 return 0;
4581 }
4582 internal_error (__FILE__, __LINE__,
4583 "remote_remove_watchpoint: reached end of function");
4584 }
4585
4586
4587 int remote_hw_watchpoint_limit = -1;
4588 int remote_hw_breakpoint_limit = -1;
4589
4590 static int
4591 remote_check_watch_resources (int type, int cnt, int ot)
4592 {
4593 if (type == bp_hardware_breakpoint)
4594 {
4595 if (remote_hw_breakpoint_limit == 0)
4596 return 0;
4597 else if (remote_hw_breakpoint_limit < 0)
4598 return 1;
4599 else if (cnt <= remote_hw_breakpoint_limit)
4600 return 1;
4601 }
4602 else
4603 {
4604 if (remote_hw_watchpoint_limit == 0)
4605 return 0;
4606 else if (remote_hw_watchpoint_limit < 0)
4607 return 1;
4608 else if (ot)
4609 return -1;
4610 else if (cnt <= remote_hw_watchpoint_limit)
4611 return 1;
4612 }
4613 return -1;
4614 }
4615
4616 static int
4617 remote_stopped_by_watchpoint (void)
4618 {
4619 return remote_stopped_by_watchpoint_p;
4620 }
4621
4622 static CORE_ADDR
4623 remote_stopped_data_address (void)
4624 {
4625 if (remote_stopped_by_watchpoint ())
4626 return remote_watch_data_address;
4627 return (CORE_ADDR)0;
4628 }
4629
4630
4631 static int
4632 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4633 {
4634 int len = 0;
4635 struct remote_state *rs = get_remote_state ();
4636 char *buf = alloca (rs->remote_packet_size);
4637 char *p = buf;
4638
4639 /* The length field should be set to the size of a breakpoint
4640 instruction. */
4641
4642 BREAKPOINT_FROM_PC (&addr, &len);
4643
4644 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4645 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4646 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4647 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4648
4649 *(p++) = 'Z';
4650 *(p++) = '1';
4651 *(p++) = ',';
4652
4653 addr = remote_address_masked (addr);
4654 p += hexnumstr (p, (ULONGEST) addr);
4655 sprintf (p, ",%x", len);
4656
4657 putpkt (buf);
4658 getpkt (buf, (rs->remote_packet_size), 0);
4659
4660 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4661 {
4662 case PACKET_ERROR:
4663 case PACKET_UNKNOWN:
4664 return -1;
4665 case PACKET_OK:
4666 return 0;
4667 }
4668 internal_error (__FILE__, __LINE__,
4669 "remote_insert_hw_breakpoint: reached end of function");
4670 }
4671
4672
4673 static int
4674 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4675 {
4676 int len;
4677 struct remote_state *rs = get_remote_state ();
4678 char *buf = alloca (rs->remote_packet_size);
4679 char *p = buf;
4680
4681 /* The length field should be set to the size of a breakpoint
4682 instruction. */
4683
4684 BREAKPOINT_FROM_PC (&addr, &len);
4685
4686 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4687 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4688 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4689 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4690
4691 *(p++) = 'z';
4692 *(p++) = '1';
4693 *(p++) = ',';
4694
4695 addr = remote_address_masked (addr);
4696 p += hexnumstr (p, (ULONGEST) addr);
4697 sprintf (p, ",%x", len);
4698
4699 putpkt(buf);
4700 getpkt (buf, (rs->remote_packet_size), 0);
4701
4702 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4703 {
4704 case PACKET_ERROR:
4705 case PACKET_UNKNOWN:
4706 return -1;
4707 case PACKET_OK:
4708 return 0;
4709 }
4710 internal_error (__FILE__, __LINE__,
4711 "remote_remove_hw_breakpoint: reached end of function");
4712 }
4713
4714 /* Some targets are only capable of doing downloads, and afterwards
4715 they switch to the remote serial protocol. This function provides
4716 a clean way to get from the download target to the remote target.
4717 It's basically just a wrapper so that we don't have to expose any
4718 of the internal workings of remote.c.
4719
4720 Prior to calling this routine, you should shutdown the current
4721 target code, else you will get the "A program is being debugged
4722 already..." message. Usually a call to pop_target() suffices. */
4723
4724 void
4725 push_remote_target (char *name, int from_tty)
4726 {
4727 printf_filtered ("Switching to remote protocol\n");
4728 remote_open (name, from_tty);
4729 }
4730
4731 /* Table used by the crc32 function to calcuate the checksum. */
4732
4733 static unsigned long crc32_table[256] =
4734 {0, 0};
4735
4736 static unsigned long
4737 crc32 (unsigned char *buf, int len, unsigned int crc)
4738 {
4739 if (!crc32_table[1])
4740 {
4741 /* Initialize the CRC table and the decoding table. */
4742 int i, j;
4743 unsigned int c;
4744
4745 for (i = 0; i < 256; i++)
4746 {
4747 for (c = i << 24, j = 8; j > 0; --j)
4748 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4749 crc32_table[i] = c;
4750 }
4751 }
4752
4753 while (len--)
4754 {
4755 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4756 buf++;
4757 }
4758 return crc;
4759 }
4760
4761 /* compare-sections command
4762
4763 With no arguments, compares each loadable section in the exec bfd
4764 with the same memory range on the target, and reports mismatches.
4765 Useful for verifying the image on the target against the exec file.
4766 Depends on the target understanding the new "qCRC:" request. */
4767
4768 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4769 target method (target verify memory) and generic version of the
4770 actual command. This will allow other high-level code (especially
4771 generic_load()) to make use of this target functionality. */
4772
4773 static void
4774 compare_sections_command (char *args, int from_tty)
4775 {
4776 struct remote_state *rs = get_remote_state ();
4777 asection *s;
4778 unsigned long host_crc, target_crc;
4779 extern bfd *exec_bfd;
4780 struct cleanup *old_chain;
4781 char *tmp;
4782 char *sectdata;
4783 const char *sectname;
4784 char *buf = alloca (rs->remote_packet_size);
4785 bfd_size_type size;
4786 bfd_vma lma;
4787 int matched = 0;
4788 int mismatched = 0;
4789
4790 if (!exec_bfd)
4791 error ("command cannot be used without an exec file");
4792 if (!current_target.to_shortname ||
4793 strcmp (current_target.to_shortname, "remote") != 0)
4794 error ("command can only be used with remote target");
4795
4796 for (s = exec_bfd->sections; s; s = s->next)
4797 {
4798 if (!(s->flags & SEC_LOAD))
4799 continue; /* skip non-loadable section */
4800
4801 size = bfd_get_section_size_before_reloc (s);
4802 if (size == 0)
4803 continue; /* skip zero-length section */
4804
4805 sectname = bfd_get_section_name (exec_bfd, s);
4806 if (args && strcmp (args, sectname) != 0)
4807 continue; /* not the section selected by user */
4808
4809 matched = 1; /* do this section */
4810 lma = s->lma;
4811 /* FIXME: assumes lma can fit into long */
4812 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4813 putpkt (buf);
4814
4815 /* be clever; compute the host_crc before waiting for target reply */
4816 sectdata = xmalloc (size);
4817 old_chain = make_cleanup (xfree, sectdata);
4818 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4819 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4820
4821 getpkt (buf, (rs->remote_packet_size), 0);
4822 if (buf[0] == 'E')
4823 error ("target memory fault, section %s, range 0x%s -- 0x%s",
4824 sectname, paddr (lma), paddr (lma + size));
4825 if (buf[0] != 'C')
4826 error ("remote target does not support this operation");
4827
4828 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4829 target_crc = target_crc * 16 + fromhex (*tmp);
4830
4831 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4832 sectname, paddr (lma), paddr (lma + size));
4833 if (host_crc == target_crc)
4834 printf_filtered ("matched.\n");
4835 else
4836 {
4837 printf_filtered ("MIS-MATCHED!\n");
4838 mismatched++;
4839 }
4840
4841 do_cleanups (old_chain);
4842 }
4843 if (mismatched > 0)
4844 warning ("One or more sections of the remote executable does not match\n\
4845 the loaded file\n");
4846 if (args && !matched)
4847 printf_filtered ("No loaded section named '%s'.\n", args);
4848 }
4849
4850 static LONGEST
4851 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4852 const char *annex, void *readbuf, const void *writebuf,
4853 ULONGEST offset, LONGEST len)
4854 {
4855 struct remote_state *rs = get_remote_state ();
4856 int i;
4857 char *buf2 = alloca (rs->remote_packet_size);
4858 char *p2 = &buf2[0];
4859 char query_type;
4860
4861 /* Only handle reads. */
4862 if (writebuf != NULL || readbuf == NULL)
4863 return -1;
4864
4865 /* Map pre-existing objects onto letters. DO NOT do this for new
4866 objects!!! Instead specify new query packets. */
4867 switch (object)
4868 {
4869 case TARGET_OBJECT_KOD:
4870 query_type = 'K';
4871 break;
4872 case TARGET_OBJECT_AVR:
4873 query_type = 'R';
4874 break;
4875 default:
4876 return -1;
4877 }
4878
4879 /* Note: a zero OFFSET and LEN can be used to query the minimum
4880 buffer size. */
4881 if (offset == 0 && len == 0)
4882 return (rs->remote_packet_size);
4883 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
4884 not large enough let the caller. */
4885 if (len < (rs->remote_packet_size))
4886 return -1;
4887 len = rs->remote_packet_size;
4888
4889 /* except for querying the minimum buffer size, target must be open */
4890 if (!remote_desc)
4891 error ("remote query is only available after target open");
4892
4893 gdb_assert (annex != NULL);
4894 gdb_assert (readbuf != NULL);
4895
4896 *p2++ = 'q';
4897 *p2++ = query_type;
4898
4899 /* we used one buffer char for the remote protocol q command and another
4900 for the query type. As the remote protocol encapsulation uses 4 chars
4901 plus one extra in case we are debugging (remote_debug),
4902 we have PBUFZIZ - 7 left to pack the query string */
4903 i = 0;
4904 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
4905 {
4906 /* Bad caller may have sent forbidden characters. */
4907 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
4908 *p2++ = annex[i];
4909 i++;
4910 }
4911 *p2 = '\0';
4912 gdb_assert (annex[i] == '\0');
4913
4914 i = putpkt (buf2);
4915 if (i < 0)
4916 return i;
4917
4918 getpkt (readbuf, len, 0);
4919
4920 return strlen (readbuf);
4921 }
4922
4923 static void
4924 remote_rcmd (char *command,
4925 struct ui_file *outbuf)
4926 {
4927 struct remote_state *rs = get_remote_state ();
4928 int i;
4929 char *buf = alloca (rs->remote_packet_size);
4930 char *p = buf;
4931
4932 if (!remote_desc)
4933 error ("remote rcmd is only available after target open");
4934
4935 /* Send a NULL command across as an empty command */
4936 if (command == NULL)
4937 command = "";
4938
4939 /* The query prefix */
4940 strcpy (buf, "qRcmd,");
4941 p = strchr (buf, '\0');
4942
4943 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
4944 error ("\"monitor\" command ``%s'' is too long\n", command);
4945
4946 /* Encode the actual command */
4947 bin2hex (command, p, 0);
4948
4949 if (putpkt (buf) < 0)
4950 error ("Communication problem with target\n");
4951
4952 /* get/display the response */
4953 while (1)
4954 {
4955 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
4956 buf[0] = '\0';
4957 getpkt (buf, (rs->remote_packet_size), 0);
4958 if (buf[0] == '\0')
4959 error ("Target does not support this command\n");
4960 if (buf[0] == 'O' && buf[1] != 'K')
4961 {
4962 remote_console_output (buf + 1); /* 'O' message from stub */
4963 continue;
4964 }
4965 if (strcmp (buf, "OK") == 0)
4966 break;
4967 if (strlen (buf) == 3 && buf[0] == 'E'
4968 && isdigit (buf[1]) && isdigit (buf[2]))
4969 {
4970 error ("Protocol error with Rcmd");
4971 }
4972 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
4973 {
4974 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
4975 fputc_unfiltered (c, outbuf);
4976 }
4977 break;
4978 }
4979 }
4980
4981 static void
4982 packet_command (char *args, int from_tty)
4983 {
4984 struct remote_state *rs = get_remote_state ();
4985 char *buf = alloca (rs->remote_packet_size);
4986
4987 if (!remote_desc)
4988 error ("command can only be used with remote target");
4989
4990 if (!args)
4991 error ("remote-packet command requires packet text as argument");
4992
4993 puts_filtered ("sending: ");
4994 print_packet (args);
4995 puts_filtered ("\n");
4996 putpkt (args);
4997
4998 getpkt (buf, (rs->remote_packet_size), 0);
4999 puts_filtered ("received: ");
5000 print_packet (buf);
5001 puts_filtered ("\n");
5002 }
5003
5004 #if 0
5005 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5006
5007 static void display_thread_info (struct gdb_ext_thread_info *info);
5008
5009 static void threadset_test_cmd (char *cmd, int tty);
5010
5011 static void threadalive_test (char *cmd, int tty);
5012
5013 static void threadlist_test_cmd (char *cmd, int tty);
5014
5015 int get_and_display_threadinfo (threadref * ref);
5016
5017 static void threadinfo_test_cmd (char *cmd, int tty);
5018
5019 static int thread_display_step (threadref * ref, void *context);
5020
5021 static void threadlist_update_test_cmd (char *cmd, int tty);
5022
5023 static void init_remote_threadtests (void);
5024
5025 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5026
5027 static void
5028 threadset_test_cmd (char *cmd, int tty)
5029 {
5030 int sample_thread = SAMPLE_THREAD;
5031
5032 printf_filtered ("Remote threadset test\n");
5033 set_thread (sample_thread, 1);
5034 }
5035
5036
5037 static void
5038 threadalive_test (char *cmd, int tty)
5039 {
5040 int sample_thread = SAMPLE_THREAD;
5041
5042 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5043 printf_filtered ("PASS: Thread alive test\n");
5044 else
5045 printf_filtered ("FAIL: Thread alive test\n");
5046 }
5047
5048 void output_threadid (char *title, threadref * ref);
5049
5050 void
5051 output_threadid (char *title, threadref *ref)
5052 {
5053 char hexid[20];
5054
5055 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5056 hexid[16] = 0;
5057 printf_filtered ("%s %s\n", title, (&hexid[0]));
5058 }
5059
5060 static void
5061 threadlist_test_cmd (char *cmd, int tty)
5062 {
5063 int startflag = 1;
5064 threadref nextthread;
5065 int done, result_count;
5066 threadref threadlist[3];
5067
5068 printf_filtered ("Remote Threadlist test\n");
5069 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5070 &result_count, &threadlist[0]))
5071 printf_filtered ("FAIL: threadlist test\n");
5072 else
5073 {
5074 threadref *scan = threadlist;
5075 threadref *limit = scan + result_count;
5076
5077 while (scan < limit)
5078 output_threadid (" thread ", scan++);
5079 }
5080 }
5081
5082 void
5083 display_thread_info (struct gdb_ext_thread_info *info)
5084 {
5085 output_threadid ("Threadid: ", &info->threadid);
5086 printf_filtered ("Name: %s\n ", info->shortname);
5087 printf_filtered ("State: %s\n", info->display);
5088 printf_filtered ("other: %s\n\n", info->more_display);
5089 }
5090
5091 int
5092 get_and_display_threadinfo (threadref *ref)
5093 {
5094 int result;
5095 int set;
5096 struct gdb_ext_thread_info threadinfo;
5097
5098 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5099 | TAG_MOREDISPLAY | TAG_DISPLAY;
5100 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5101 display_thread_info (&threadinfo);
5102 return result;
5103 }
5104
5105 static void
5106 threadinfo_test_cmd (char *cmd, int tty)
5107 {
5108 int athread = SAMPLE_THREAD;
5109 threadref thread;
5110 int set;
5111
5112 int_to_threadref (&thread, athread);
5113 printf_filtered ("Remote Threadinfo test\n");
5114 if (!get_and_display_threadinfo (&thread))
5115 printf_filtered ("FAIL cannot get thread info\n");
5116 }
5117
5118 static int
5119 thread_display_step (threadref *ref, void *context)
5120 {
5121 /* output_threadid(" threadstep ",ref); *//* simple test */
5122 return get_and_display_threadinfo (ref);
5123 }
5124
5125 static void
5126 threadlist_update_test_cmd (char *cmd, int tty)
5127 {
5128 printf_filtered ("Remote Threadlist update test\n");
5129 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5130 }
5131
5132 static void
5133 init_remote_threadtests (void)
5134 {
5135 add_com ("tlist", class_obscure, threadlist_test_cmd,
5136 "Fetch and print the remote list of thread identifiers, one pkt only");
5137 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5138 "Fetch and display info about one thread");
5139 add_com ("tset", class_obscure, threadset_test_cmd,
5140 "Test setting to a different thread");
5141 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5142 "Iterate through updating all remote thread info");
5143 add_com ("talive", class_obscure, threadalive_test,
5144 " Remote thread alive test ");
5145 }
5146
5147 #endif /* 0 */
5148
5149 /* Convert a thread ID to a string. Returns the string in a static
5150 buffer. */
5151
5152 static char *
5153 remote_pid_to_str (ptid_t ptid)
5154 {
5155 static char buf[30];
5156
5157 sprintf (buf, "Thread %d", PIDGET (ptid));
5158 return buf;
5159 }
5160
5161 static void
5162 init_remote_ops (void)
5163 {
5164 remote_ops.to_shortname = "remote";
5165 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5166 remote_ops.to_doc =
5167 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5168 Specify the serial device it is connected to\n\
5169 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5170 remote_ops.to_open = remote_open;
5171 remote_ops.to_close = remote_close;
5172 remote_ops.to_detach = remote_detach;
5173 remote_ops.to_disconnect = remote_disconnect;
5174 remote_ops.to_resume = remote_resume;
5175 remote_ops.to_wait = remote_wait;
5176 remote_ops.to_fetch_registers = remote_fetch_registers;
5177 remote_ops.to_store_registers = remote_store_registers;
5178 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5179 remote_ops.to_xfer_memory = remote_xfer_memory;
5180 remote_ops.to_files_info = remote_files_info;
5181 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5182 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5183 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5184 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5185 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5186 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5187 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5188 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5189 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5190 remote_ops.to_kill = remote_kill;
5191 remote_ops.to_load = generic_load;
5192 remote_ops.to_mourn_inferior = remote_mourn;
5193 remote_ops.to_thread_alive = remote_thread_alive;
5194 remote_ops.to_find_new_threads = remote_threads_info;
5195 remote_ops.to_pid_to_str = remote_pid_to_str;
5196 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5197 remote_ops.to_stop = remote_stop;
5198 remote_ops.to_xfer_partial = remote_xfer_partial;
5199 remote_ops.to_rcmd = remote_rcmd;
5200 remote_ops.to_stratum = process_stratum;
5201 remote_ops.to_has_all_memory = 1;
5202 remote_ops.to_has_memory = 1;
5203 remote_ops.to_has_stack = 1;
5204 remote_ops.to_has_registers = 1;
5205 remote_ops.to_has_execution = 1;
5206 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5207 remote_ops.to_magic = OPS_MAGIC;
5208 }
5209
5210 /* Set up the extended remote vector by making a copy of the standard
5211 remote vector and adding to it. */
5212
5213 static void
5214 init_extended_remote_ops (void)
5215 {
5216 extended_remote_ops = remote_ops;
5217
5218 extended_remote_ops.to_shortname = "extended-remote";
5219 extended_remote_ops.to_longname =
5220 "Extended remote serial target in gdb-specific protocol";
5221 extended_remote_ops.to_doc =
5222 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5223 Specify the serial device it is connected to (e.g. /dev/ttya).",
5224 extended_remote_ops.to_open = extended_remote_open;
5225 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5226 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5227 }
5228
5229 static int
5230 remote_can_async_p (void)
5231 {
5232 /* We're async whenever the serial device is. */
5233 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5234 }
5235
5236 static int
5237 remote_is_async_p (void)
5238 {
5239 /* We're async whenever the serial device is. */
5240 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5241 }
5242
5243 /* Pass the SERIAL event on and up to the client. One day this code
5244 will be able to delay notifying the client of an event until the
5245 point where an entire packet has been received. */
5246
5247 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5248 static void *async_client_context;
5249 static serial_event_ftype remote_async_serial_handler;
5250
5251 static void
5252 remote_async_serial_handler (struct serial *scb, void *context)
5253 {
5254 /* Don't propogate error information up to the client. Instead let
5255 the client find out about the error by querying the target. */
5256 async_client_callback (INF_REG_EVENT, async_client_context);
5257 }
5258
5259 static void
5260 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5261 {
5262 if (current_target.to_async_mask_value == 0)
5263 internal_error (__FILE__, __LINE__,
5264 "Calling remote_async when async is masked");
5265
5266 if (callback != NULL)
5267 {
5268 serial_async (remote_desc, remote_async_serial_handler, NULL);
5269 async_client_callback = callback;
5270 async_client_context = context;
5271 }
5272 else
5273 serial_async (remote_desc, NULL, NULL);
5274 }
5275
5276 /* Target async and target extended-async.
5277
5278 This are temporary targets, until it is all tested. Eventually
5279 async support will be incorporated int the usual 'remote'
5280 target. */
5281
5282 static void
5283 init_remote_async_ops (void)
5284 {
5285 remote_async_ops.to_shortname = "async";
5286 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5287 remote_async_ops.to_doc =
5288 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5289 Specify the serial device it is connected to (e.g. /dev/ttya).";
5290 remote_async_ops.to_open = remote_async_open;
5291 remote_async_ops.to_close = remote_close;
5292 remote_async_ops.to_detach = remote_detach;
5293 remote_async_ops.to_disconnect = remote_disconnect;
5294 remote_async_ops.to_resume = remote_async_resume;
5295 remote_async_ops.to_wait = remote_async_wait;
5296 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5297 remote_async_ops.to_store_registers = remote_store_registers;
5298 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5299 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5300 remote_async_ops.to_files_info = remote_files_info;
5301 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5302 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5303 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5304 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5305 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5306 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5307 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5308 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5309 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5310 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5311 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5312 remote_async_ops.to_kill = remote_async_kill;
5313 remote_async_ops.to_load = generic_load;
5314 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5315 remote_async_ops.to_thread_alive = remote_thread_alive;
5316 remote_async_ops.to_find_new_threads = remote_threads_info;
5317 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5318 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5319 remote_async_ops.to_stop = remote_stop;
5320 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5321 remote_async_ops.to_rcmd = remote_rcmd;
5322 remote_async_ops.to_stratum = process_stratum;
5323 remote_async_ops.to_has_all_memory = 1;
5324 remote_async_ops.to_has_memory = 1;
5325 remote_async_ops.to_has_stack = 1;
5326 remote_async_ops.to_has_registers = 1;
5327 remote_async_ops.to_has_execution = 1;
5328 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5329 remote_async_ops.to_can_async_p = remote_can_async_p;
5330 remote_async_ops.to_is_async_p = remote_is_async_p;
5331 remote_async_ops.to_async = remote_async;
5332 remote_async_ops.to_async_mask_value = 1;
5333 remote_async_ops.to_magic = OPS_MAGIC;
5334 }
5335
5336 /* Set up the async extended remote vector by making a copy of the standard
5337 remote vector and adding to it. */
5338
5339 static void
5340 init_extended_async_remote_ops (void)
5341 {
5342 extended_async_remote_ops = remote_async_ops;
5343
5344 extended_async_remote_ops.to_shortname = "extended-async";
5345 extended_async_remote_ops.to_longname =
5346 "Extended remote serial target in async gdb-specific protocol";
5347 extended_async_remote_ops.to_doc =
5348 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5349 Specify the serial device it is connected to (e.g. /dev/ttya).",
5350 extended_async_remote_ops.to_open = extended_remote_async_open;
5351 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5352 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5353 }
5354
5355 static void
5356 set_remote_cmd (char *args, int from_tty)
5357 {
5358 }
5359
5360 static void
5361 show_remote_cmd (char *args, int from_tty)
5362 {
5363 /* FIXME: cagney/2002-06-15: This function should iterate over
5364 remote_show_cmdlist for a list of sub commands to show. */
5365 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
5366 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
5367 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
5368 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
5369 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
5370 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
5371 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
5372 }
5373
5374 static void
5375 build_remote_gdbarch_data (void)
5376 {
5377 remote_address_size = TARGET_ADDR_BIT;
5378 }
5379
5380 /* Saved pointer to previous owner of the new_objfile event. */
5381 static void (*remote_new_objfile_chain) (struct objfile *);
5382
5383 /* Function to be called whenever a new objfile (shlib) is detected. */
5384 static void
5385 remote_new_objfile (struct objfile *objfile)
5386 {
5387 if (remote_desc != 0) /* Have a remote connection */
5388 {
5389 remote_check_symbols (objfile);
5390 }
5391 /* Call predecessor on chain, if any. */
5392 if (remote_new_objfile_chain != 0 &&
5393 remote_desc == 0)
5394 remote_new_objfile_chain (objfile);
5395 }
5396
5397 void
5398 _initialize_remote (void)
5399 {
5400 static struct cmd_list_element *remote_set_cmdlist;
5401 static struct cmd_list_element *remote_show_cmdlist;
5402 struct cmd_list_element *tmpcmd;
5403
5404 /* architecture specific data */
5405 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state);
5406
5407 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5408 that the remote protocol has been initialized. */
5409 register_gdbarch_swap (&remote_address_size,
5410 sizeof (&remote_address_size), NULL);
5411 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5412
5413 init_remote_ops ();
5414 add_target (&remote_ops);
5415
5416 init_extended_remote_ops ();
5417 add_target (&extended_remote_ops);
5418
5419 init_remote_async_ops ();
5420 add_target (&remote_async_ops);
5421
5422 init_extended_async_remote_ops ();
5423 add_target (&extended_async_remote_ops);
5424
5425 /* Hook into new objfile notification. */
5426 remote_new_objfile_chain = target_new_objfile_hook;
5427 target_new_objfile_hook = remote_new_objfile;
5428
5429 #if 0
5430 init_remote_threadtests ();
5431 #endif
5432
5433 /* set/show remote ... */
5434
5435 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5436 Remote protocol specific variables\n\
5437 Configure various remote-protocol specific variables such as\n\
5438 the packets being used",
5439 &remote_set_cmdlist, "set remote ",
5440 0/*allow-unknown*/, &setlist);
5441 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5442 Remote protocol specific variables\n\
5443 Configure various remote-protocol specific variables such as\n\
5444 the packets being used",
5445 &remote_show_cmdlist, "show remote ",
5446 0/*allow-unknown*/, &showlist);
5447
5448 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5449 "Compare section data on target to the exec file.\n\
5450 Argument is a single section name (default: all loaded sections).",
5451 &cmdlist);
5452
5453 add_cmd ("packet", class_maintenance, packet_command,
5454 "Send an arbitrary packet to a remote target.\n\
5455 maintenance packet TEXT\n\
5456 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5457 this command sends the string TEXT to the inferior, and displays the\n\
5458 response packet. GDB supplies the initial `$' character, and the\n\
5459 terminating `#' character and checksum.",
5460 &maintenancelist);
5461
5462 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
5463 "Set whether to send break if interrupted.\n",
5464 "Show whether to send break if interrupted.\n",
5465 NULL, NULL,
5466 &setlist, &showlist);
5467
5468 /* Install commands for configuring memory read/write packets. */
5469
5470 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5471 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5472 &setlist);
5473 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5474 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5475 &showlist);
5476 add_cmd ("memory-write-packet-size", no_class,
5477 set_memory_write_packet_size,
5478 "Set the maximum number of bytes per memory-write packet.\n"
5479 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5480 "default packet size. The actual limit is further reduced\n"
5481 "dependent on the target. Specify ``fixed'' to disable the\n"
5482 "further restriction and ``limit'' to enable that restriction\n",
5483 &remote_set_cmdlist);
5484 add_cmd ("memory-read-packet-size", no_class,
5485 set_memory_read_packet_size,
5486 "Set the maximum number of bytes per memory-read packet.\n"
5487 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5488 "default packet size. The actual limit is further reduced\n"
5489 "dependent on the target. Specify ``fixed'' to disable the\n"
5490 "further restriction and ``limit'' to enable that restriction\n",
5491 &remote_set_cmdlist);
5492 add_cmd ("memory-write-packet-size", no_class,
5493 show_memory_write_packet_size,
5494 "Show the maximum number of bytes per memory-write packet.\n",
5495 &remote_show_cmdlist);
5496 add_cmd ("memory-read-packet-size", no_class,
5497 show_memory_read_packet_size,
5498 "Show the maximum number of bytes per memory-read packet.\n",
5499 &remote_show_cmdlist);
5500
5501 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
5502 var_zinteger, &remote_hw_watchpoint_limit, "\
5503 Set the maximum number of target hardware watchpoints.\n\
5504 Specify a negative limit for unlimited.", "\
5505 Show the maximum number of target hardware watchpoints.\n",
5506 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
5507 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
5508 var_zinteger, &remote_hw_breakpoint_limit, "\
5509 Set the maximum number of target hardware breakpoints.\n\
5510 Specify a negative limit for unlimited.", "\
5511 Show the maximum number of target hardware breakpoints.\n",
5512 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
5513
5514 add_show_from_set
5515 (add_set_cmd ("remoteaddresssize", class_obscure,
5516 var_integer, (char *) &remote_address_size,
5517 "Set the maximum size of the address (in bits) \
5518 in a memory packet.\n",
5519 &setlist),
5520 &showlist);
5521
5522 add_packet_config_cmd (&remote_protocol_binary_download,
5523 "X", "binary-download",
5524 set_remote_protocol_binary_download_cmd,
5525 show_remote_protocol_binary_download_cmd,
5526 &remote_set_cmdlist, &remote_show_cmdlist,
5527 1);
5528 #if 0
5529 /* XXXX - should ``set remotebinarydownload'' be retained for
5530 compatibility. */
5531 add_show_from_set
5532 (add_set_cmd ("remotebinarydownload", no_class,
5533 var_boolean, (char *) &remote_binary_download,
5534 "Set binary downloads.\n", &setlist),
5535 &showlist);
5536 #endif
5537
5538 add_packet_config_cmd (&remote_protocol_vcont,
5539 "vCont", "verbose-resume",
5540 set_remote_protocol_vcont_packet_cmd,
5541 show_remote_protocol_vcont_packet_cmd,
5542 &remote_set_cmdlist, &remote_show_cmdlist,
5543 0);
5544
5545 add_packet_config_cmd (&remote_protocol_qSymbol,
5546 "qSymbol", "symbol-lookup",
5547 set_remote_protocol_qSymbol_packet_cmd,
5548 show_remote_protocol_qSymbol_packet_cmd,
5549 &remote_set_cmdlist, &remote_show_cmdlist,
5550 0);
5551
5552 add_packet_config_cmd (&remote_protocol_e,
5553 "e", "step-over-range",
5554 set_remote_protocol_e_packet_cmd,
5555 show_remote_protocol_e_packet_cmd,
5556 &remote_set_cmdlist, &remote_show_cmdlist,
5557 0);
5558 /* Disable by default. The ``e'' packet has nasty interactions with
5559 the threading code - it relies on global state. */
5560 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
5561 update_packet_config (&remote_protocol_e);
5562
5563 add_packet_config_cmd (&remote_protocol_E,
5564 "E", "step-over-range-w-signal",
5565 set_remote_protocol_E_packet_cmd,
5566 show_remote_protocol_E_packet_cmd,
5567 &remote_set_cmdlist, &remote_show_cmdlist,
5568 0);
5569 /* Disable by default. The ``e'' packet has nasty interactions with
5570 the threading code - it relies on global state. */
5571 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
5572 update_packet_config (&remote_protocol_E);
5573
5574 add_packet_config_cmd (&remote_protocol_P,
5575 "P", "set-register",
5576 set_remote_protocol_P_packet_cmd,
5577 show_remote_protocol_P_packet_cmd,
5578 &remote_set_cmdlist, &remote_show_cmdlist,
5579 1);
5580
5581 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5582 "Z0", "software-breakpoint",
5583 set_remote_protocol_Z_software_bp_packet_cmd,
5584 show_remote_protocol_Z_software_bp_packet_cmd,
5585 &remote_set_cmdlist, &remote_show_cmdlist,
5586 0);
5587
5588 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5589 "Z1", "hardware-breakpoint",
5590 set_remote_protocol_Z_hardware_bp_packet_cmd,
5591 show_remote_protocol_Z_hardware_bp_packet_cmd,
5592 &remote_set_cmdlist, &remote_show_cmdlist,
5593 0);
5594
5595 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5596 "Z2", "write-watchpoint",
5597 set_remote_protocol_Z_write_wp_packet_cmd,
5598 show_remote_protocol_Z_write_wp_packet_cmd,
5599 &remote_set_cmdlist, &remote_show_cmdlist,
5600 0);
5601
5602 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5603 "Z3", "read-watchpoint",
5604 set_remote_protocol_Z_read_wp_packet_cmd,
5605 show_remote_protocol_Z_read_wp_packet_cmd,
5606 &remote_set_cmdlist, &remote_show_cmdlist,
5607 0);
5608
5609 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5610 "Z4", "access-watchpoint",
5611 set_remote_protocol_Z_access_wp_packet_cmd,
5612 show_remote_protocol_Z_access_wp_packet_cmd,
5613 &remote_set_cmdlist, &remote_show_cmdlist,
5614 0);
5615
5616 /* Keep the old ``set remote Z-packet ...'' working. */
5617 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5618 &remote_Z_packet_detect, "\
5619 Set use of remote protocol `Z' packets",
5620 "Show use of remote protocol `Z' packets ",
5621 set_remote_protocol_Z_packet_cmd,
5622 show_remote_protocol_Z_packet_cmd,
5623 &remote_set_cmdlist, &remote_show_cmdlist);
5624
5625 /* Eventually initialize fileio. See fileio.c */
5626 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5627 }
This page took 0.147776 seconds and 4 git commands to generate.