* remote.c (remote_start_remote): If the solib list is global,
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
103
104 static void remote_close (int quitting);
105
106 static void remote_store_registers (struct regcache *regcache, int regno);
107
108 static void remote_mourn (void);
109
110 static void extended_remote_restart (void);
111
112 static void extended_remote_mourn (void);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char **buf, long *sizeof_buf_p);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static int remote_async_mask (int new_mask);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static int remote_thread_alive (ptid_t);
148
149 static void get_offsets (void);
150
151 static void skip_frame (void);
152
153 static long read_frame (char **buf_p, long *sizeof_buf);
154
155 static int hexnumlen (ULONGEST num);
156
157 static void init_remote_ops (void);
158
159 static void init_extended_remote_ops (void);
160
161 static void remote_stop (ptid_t);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177 static void compare_sections_command (char *, int);
178
179 static void packet_command (char *, int);
180
181 static int stub_unpack_int (char *buff, int fieldlength);
182
183 static ptid_t remote_current_thread (ptid_t oldptid);
184
185 static void remote_find_new_threads (void);
186
187 static void record_currthread (ptid_t currthread);
188
189 static int fromhex (int a);
190
191 static int hex2bin (const char *hex, gdb_byte *bin, int count);
192
193 static int bin2hex (const gdb_byte *bin, char *hex, int count);
194
195 static int putpkt_binary (char *buf, int cnt);
196
197 static void check_binary_download (CORE_ADDR addr);
198
199 struct packet_config;
200
201 static void show_packet_config_cmd (struct packet_config *config);
202
203 static void update_packet_config (struct packet_config *config);
204
205 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
206 struct cmd_list_element *c);
207
208 static void show_remote_protocol_packet_cmd (struct ui_file *file,
209 int from_tty,
210 struct cmd_list_element *c,
211 const char *value);
212
213 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
214 static ptid_t read_ptid (char *buf, char **obuf);
215
216 static void remote_query_supported (void);
217
218 static void remote_check_symbols (struct objfile *objfile);
219
220 void _initialize_remote (void);
221
222 struct stop_reply;
223 static struct stop_reply *stop_reply_xmalloc (void);
224 static void stop_reply_xfree (struct stop_reply *);
225 static void do_stop_reply_xfree (void *arg);
226 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
227 static void push_stop_reply (struct stop_reply *);
228 static void remote_get_pending_stop_replies (void);
229 static void discard_pending_stop_replies (int pid);
230 static int peek_stop_reply (ptid_t ptid);
231
232 static void remote_async_inferior_event_handler (gdb_client_data);
233 static void remote_async_get_pending_events_handler (gdb_client_data);
234
235 /* The non-stop remote protocol provisions for one pending stop reply.
236 This is where we keep it until it is acknowledged. */
237
238 static struct stop_reply *pending_stop_reply = NULL;
239
240 /* For "remote". */
241
242 static struct cmd_list_element *remote_cmdlist;
243
244 /* For "set remote" and "show remote". */
245
246 static struct cmd_list_element *remote_set_cmdlist;
247 static struct cmd_list_element *remote_show_cmdlist;
248
249 /* Description of the remote protocol state for the currently
250 connected target. This is per-target state, and independent of the
251 selected architecture. */
252
253 struct remote_state
254 {
255 /* A buffer to use for incoming packets, and its current size. The
256 buffer is grown dynamically for larger incoming packets.
257 Outgoing packets may also be constructed in this buffer.
258 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
259 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
260 packets. */
261 char *buf;
262 long buf_size;
263
264 /* If we negotiated packet size explicitly (and thus can bypass
265 heuristics for the largest packet size that will not overflow
266 a buffer in the stub), this will be set to that packet size.
267 Otherwise zero, meaning to use the guessed size. */
268 long explicit_packet_size;
269
270 /* remote_wait is normally called when the target is running and
271 waits for a stop reply packet. But sometimes we need to call it
272 when the target is already stopped. We can send a "?" packet
273 and have remote_wait read the response. Or, if we already have
274 the response, we can stash it in BUF and tell remote_wait to
275 skip calling getpkt. This flag is set when BUF contains a
276 stop reply packet and the target is not waiting. */
277 int cached_wait_status;
278
279 /* True, if in no ack mode. That is, neither GDB nor the stub will
280 expect acks from each other. The connection is assumed to be
281 reliable. */
282 int noack_mode;
283
284 /* True if we're connected in extended remote mode. */
285 int extended;
286
287 /* True if the stub reported support for multi-process
288 extensions. */
289 int multi_process_aware;
290
291 /* True if we resumed the target and we're waiting for the target to
292 stop. In the mean time, we can't start another command/query.
293 The remote server wouldn't be ready to process it, so we'd
294 timeout waiting for a reply that would never come and eventually
295 we'd close the connection. This can happen in asynchronous mode
296 because we allow GDB commands while the target is running. */
297 int waiting_for_stop_reply;
298
299 /* True if the stub reports support for non-stop mode. */
300 int non_stop_aware;
301
302 /* True if the stub reports support for vCont;t. */
303 int support_vCont_t;
304 };
305
306 /* Returns true if the multi-process extensions are in effect. */
307 static int
308 remote_multi_process_p (struct remote_state *rs)
309 {
310 return rs->extended && rs->multi_process_aware;
311 }
312
313 /* This data could be associated with a target, but we do not always
314 have access to the current target when we need it, so for now it is
315 static. This will be fine for as long as only one target is in use
316 at a time. */
317 static struct remote_state remote_state;
318
319 static struct remote_state *
320 get_remote_state_raw (void)
321 {
322 return &remote_state;
323 }
324
325 /* Description of the remote protocol for a given architecture. */
326
327 struct packet_reg
328 {
329 long offset; /* Offset into G packet. */
330 long regnum; /* GDB's internal register number. */
331 LONGEST pnum; /* Remote protocol register number. */
332 int in_g_packet; /* Always part of G packet. */
333 /* long size in bytes; == register_size (target_gdbarch, regnum);
334 at present. */
335 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
336 at present. */
337 };
338
339 struct remote_arch_state
340 {
341 /* Description of the remote protocol registers. */
342 long sizeof_g_packet;
343
344 /* Description of the remote protocol registers indexed by REGNUM
345 (making an array gdbarch_num_regs in size). */
346 struct packet_reg *regs;
347
348 /* This is the size (in chars) of the first response to the ``g''
349 packet. It is used as a heuristic when determining the maximum
350 size of memory-read and memory-write packets. A target will
351 typically only reserve a buffer large enough to hold the ``g''
352 packet. The size does not include packet overhead (headers and
353 trailers). */
354 long actual_register_packet_size;
355
356 /* This is the maximum size (in chars) of a non read/write packet.
357 It is also used as a cap on the size of read/write packets. */
358 long remote_packet_size;
359 };
360
361
362 /* Handle for retreving the remote protocol data from gdbarch. */
363 static struct gdbarch_data *remote_gdbarch_data_handle;
364
365 static struct remote_arch_state *
366 get_remote_arch_state (void)
367 {
368 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
369 }
370
371 /* Fetch the global remote target state. */
372
373 static struct remote_state *
374 get_remote_state (void)
375 {
376 /* Make sure that the remote architecture state has been
377 initialized, because doing so might reallocate rs->buf. Any
378 function which calls getpkt also needs to be mindful of changes
379 to rs->buf, but this call limits the number of places which run
380 into trouble. */
381 get_remote_arch_state ();
382
383 return get_remote_state_raw ();
384 }
385
386 static int
387 compare_pnums (const void *lhs_, const void *rhs_)
388 {
389 const struct packet_reg * const *lhs = lhs_;
390 const struct packet_reg * const *rhs = rhs_;
391
392 if ((*lhs)->pnum < (*rhs)->pnum)
393 return -1;
394 else if ((*lhs)->pnum == (*rhs)->pnum)
395 return 0;
396 else
397 return 1;
398 }
399
400 static void *
401 init_remote_state (struct gdbarch *gdbarch)
402 {
403 int regnum, num_remote_regs, offset;
404 struct remote_state *rs = get_remote_state_raw ();
405 struct remote_arch_state *rsa;
406 struct packet_reg **remote_regs;
407
408 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
409
410 /* Use the architecture to build a regnum<->pnum table, which will be
411 1:1 unless a feature set specifies otherwise. */
412 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
413 gdbarch_num_regs (gdbarch),
414 struct packet_reg);
415 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
416 {
417 struct packet_reg *r = &rsa->regs[regnum];
418
419 if (register_size (gdbarch, regnum) == 0)
420 /* Do not try to fetch zero-sized (placeholder) registers. */
421 r->pnum = -1;
422 else
423 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
424
425 r->regnum = regnum;
426 }
427
428 /* Define the g/G packet format as the contents of each register
429 with a remote protocol number, in order of ascending protocol
430 number. */
431
432 remote_regs = alloca (gdbarch_num_regs (gdbarch)
433 * sizeof (struct packet_reg *));
434 for (num_remote_regs = 0, regnum = 0;
435 regnum < gdbarch_num_regs (gdbarch);
436 regnum++)
437 if (rsa->regs[regnum].pnum != -1)
438 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
439
440 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
441 compare_pnums);
442
443 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
444 {
445 remote_regs[regnum]->in_g_packet = 1;
446 remote_regs[regnum]->offset = offset;
447 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
448 }
449
450 /* Record the maximum possible size of the g packet - it may turn out
451 to be smaller. */
452 rsa->sizeof_g_packet = offset;
453
454 /* Default maximum number of characters in a packet body. Many
455 remote stubs have a hardwired buffer size of 400 bytes
456 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
457 as the maximum packet-size to ensure that the packet and an extra
458 NUL character can always fit in the buffer. This stops GDB
459 trashing stubs that try to squeeze an extra NUL into what is
460 already a full buffer (As of 1999-12-04 that was most stubs). */
461 rsa->remote_packet_size = 400 - 1;
462
463 /* This one is filled in when a ``g'' packet is received. */
464 rsa->actual_register_packet_size = 0;
465
466 /* Should rsa->sizeof_g_packet needs more space than the
467 default, adjust the size accordingly. Remember that each byte is
468 encoded as two characters. 32 is the overhead for the packet
469 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
470 (``$NN:G...#NN'') is a better guess, the below has been padded a
471 little. */
472 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
473 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
474
475 /* Make sure that the packet buffer is plenty big enough for
476 this architecture. */
477 if (rs->buf_size < rsa->remote_packet_size)
478 {
479 rs->buf_size = 2 * rsa->remote_packet_size;
480 rs->buf = xrealloc (rs->buf, rs->buf_size);
481 }
482
483 return rsa;
484 }
485
486 /* Return the current allowed size of a remote packet. This is
487 inferred from the current architecture, and should be used to
488 limit the length of outgoing packets. */
489 static long
490 get_remote_packet_size (void)
491 {
492 struct remote_state *rs = get_remote_state ();
493 struct remote_arch_state *rsa = get_remote_arch_state ();
494
495 if (rs->explicit_packet_size)
496 return rs->explicit_packet_size;
497
498 return rsa->remote_packet_size;
499 }
500
501 static struct packet_reg *
502 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
503 {
504 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
505 return NULL;
506 else
507 {
508 struct packet_reg *r = &rsa->regs[regnum];
509 gdb_assert (r->regnum == regnum);
510 return r;
511 }
512 }
513
514 static struct packet_reg *
515 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
516 {
517 int i;
518 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
519 {
520 struct packet_reg *r = &rsa->regs[i];
521 if (r->pnum == pnum)
522 return r;
523 }
524 return NULL;
525 }
526
527 /* FIXME: graces/2002-08-08: These variables should eventually be
528 bound to an instance of the target object (as in gdbarch-tdep()),
529 when such a thing exists. */
530
531 /* This is set to the data address of the access causing the target
532 to stop for a watchpoint. */
533 static CORE_ADDR remote_watch_data_address;
534
535 /* This is non-zero if target stopped for a watchpoint. */
536 static int remote_stopped_by_watchpoint_p;
537
538 static struct target_ops remote_ops;
539
540 static struct target_ops extended_remote_ops;
541
542 static int remote_async_mask_value = 1;
543
544 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
545 ``forever'' still use the normal timeout mechanism. This is
546 currently used by the ASYNC code to guarentee that target reads
547 during the initial connect always time-out. Once getpkt has been
548 modified to return a timeout indication and, in turn
549 remote_wait()/wait_for_inferior() have gained a timeout parameter
550 this can go away. */
551 static int wait_forever_enabled_p = 1;
552
553
554 /* This variable chooses whether to send a ^C or a break when the user
555 requests program interruption. Although ^C is usually what remote
556 systems expect, and that is the default here, sometimes a break is
557 preferable instead. */
558
559 static int remote_break;
560
561 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
562 remote_open knows that we don't have a file open when the program
563 starts. */
564 static struct serial *remote_desc = NULL;
565
566 /* This variable sets the number of bits in an address that are to be
567 sent in a memory ("M" or "m") packet. Normally, after stripping
568 leading zeros, the entire address would be sent. This variable
569 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
570 initial implementation of remote.c restricted the address sent in
571 memory packets to ``host::sizeof long'' bytes - (typically 32
572 bits). Consequently, for 64 bit targets, the upper 32 bits of an
573 address was never sent. Since fixing this bug may cause a break in
574 some remote targets this variable is principly provided to
575 facilitate backward compatibility. */
576
577 static int remote_address_size;
578
579 /* Temporary to track who currently owns the terminal. See
580 remote_terminal_* for more details. */
581
582 static int remote_async_terminal_ours_p;
583
584 /* The executable file to use for "run" on the remote side. */
585
586 static char *remote_exec_file = "";
587
588 \f
589 /* User configurable variables for the number of characters in a
590 memory read/write packet. MIN (rsa->remote_packet_size,
591 rsa->sizeof_g_packet) is the default. Some targets need smaller
592 values (fifo overruns, et.al.) and some users need larger values
593 (speed up transfers). The variables ``preferred_*'' (the user
594 request), ``current_*'' (what was actually set) and ``forced_*''
595 (Positive - a soft limit, negative - a hard limit). */
596
597 struct memory_packet_config
598 {
599 char *name;
600 long size;
601 int fixed_p;
602 };
603
604 /* Compute the current size of a read/write packet. Since this makes
605 use of ``actual_register_packet_size'' the computation is dynamic. */
606
607 static long
608 get_memory_packet_size (struct memory_packet_config *config)
609 {
610 struct remote_state *rs = get_remote_state ();
611 struct remote_arch_state *rsa = get_remote_arch_state ();
612
613 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
614 law?) that some hosts don't cope very well with large alloca()
615 calls. Eventually the alloca() code will be replaced by calls to
616 xmalloc() and make_cleanups() allowing this restriction to either
617 be lifted or removed. */
618 #ifndef MAX_REMOTE_PACKET_SIZE
619 #define MAX_REMOTE_PACKET_SIZE 16384
620 #endif
621 /* NOTE: 20 ensures we can write at least one byte. */
622 #ifndef MIN_REMOTE_PACKET_SIZE
623 #define MIN_REMOTE_PACKET_SIZE 20
624 #endif
625 long what_they_get;
626 if (config->fixed_p)
627 {
628 if (config->size <= 0)
629 what_they_get = MAX_REMOTE_PACKET_SIZE;
630 else
631 what_they_get = config->size;
632 }
633 else
634 {
635 what_they_get = get_remote_packet_size ();
636 /* Limit the packet to the size specified by the user. */
637 if (config->size > 0
638 && what_they_get > config->size)
639 what_they_get = config->size;
640
641 /* Limit it to the size of the targets ``g'' response unless we have
642 permission from the stub to use a larger packet size. */
643 if (rs->explicit_packet_size == 0
644 && rsa->actual_register_packet_size > 0
645 && what_they_get > rsa->actual_register_packet_size)
646 what_they_get = rsa->actual_register_packet_size;
647 }
648 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
649 what_they_get = MAX_REMOTE_PACKET_SIZE;
650 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
651 what_they_get = MIN_REMOTE_PACKET_SIZE;
652
653 /* Make sure there is room in the global buffer for this packet
654 (including its trailing NUL byte). */
655 if (rs->buf_size < what_they_get + 1)
656 {
657 rs->buf_size = 2 * what_they_get;
658 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
659 }
660
661 return what_they_get;
662 }
663
664 /* Update the size of a read/write packet. If they user wants
665 something really big then do a sanity check. */
666
667 static void
668 set_memory_packet_size (char *args, struct memory_packet_config *config)
669 {
670 int fixed_p = config->fixed_p;
671 long size = config->size;
672 if (args == NULL)
673 error (_("Argument required (integer, `fixed' or `limited')."));
674 else if (strcmp (args, "hard") == 0
675 || strcmp (args, "fixed") == 0)
676 fixed_p = 1;
677 else if (strcmp (args, "soft") == 0
678 || strcmp (args, "limit") == 0)
679 fixed_p = 0;
680 else
681 {
682 char *end;
683 size = strtoul (args, &end, 0);
684 if (args == end)
685 error (_("Invalid %s (bad syntax)."), config->name);
686 #if 0
687 /* Instead of explicitly capping the size of a packet to
688 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
689 instead allowed to set the size to something arbitrarily
690 large. */
691 if (size > MAX_REMOTE_PACKET_SIZE)
692 error (_("Invalid %s (too large)."), config->name);
693 #endif
694 }
695 /* Extra checks? */
696 if (fixed_p && !config->fixed_p)
697 {
698 if (! query (_("The target may not be able to correctly handle a %s\n"
699 "of %ld bytes. Change the packet size? "),
700 config->name, size))
701 error (_("Packet size not changed."));
702 }
703 /* Update the config. */
704 config->fixed_p = fixed_p;
705 config->size = size;
706 }
707
708 static void
709 show_memory_packet_size (struct memory_packet_config *config)
710 {
711 printf_filtered (_("The %s is %ld. "), config->name, config->size);
712 if (config->fixed_p)
713 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
714 get_memory_packet_size (config));
715 else
716 printf_filtered (_("Packets are limited to %ld bytes.\n"),
717 get_memory_packet_size (config));
718 }
719
720 static struct memory_packet_config memory_write_packet_config =
721 {
722 "memory-write-packet-size",
723 };
724
725 static void
726 set_memory_write_packet_size (char *args, int from_tty)
727 {
728 set_memory_packet_size (args, &memory_write_packet_config);
729 }
730
731 static void
732 show_memory_write_packet_size (char *args, int from_tty)
733 {
734 show_memory_packet_size (&memory_write_packet_config);
735 }
736
737 static long
738 get_memory_write_packet_size (void)
739 {
740 return get_memory_packet_size (&memory_write_packet_config);
741 }
742
743 static struct memory_packet_config memory_read_packet_config =
744 {
745 "memory-read-packet-size",
746 };
747
748 static void
749 set_memory_read_packet_size (char *args, int from_tty)
750 {
751 set_memory_packet_size (args, &memory_read_packet_config);
752 }
753
754 static void
755 show_memory_read_packet_size (char *args, int from_tty)
756 {
757 show_memory_packet_size (&memory_read_packet_config);
758 }
759
760 static long
761 get_memory_read_packet_size (void)
762 {
763 long size = get_memory_packet_size (&memory_read_packet_config);
764 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
765 extra buffer size argument before the memory read size can be
766 increased beyond this. */
767 if (size > get_remote_packet_size ())
768 size = get_remote_packet_size ();
769 return size;
770 }
771
772 \f
773 /* Generic configuration support for packets the stub optionally
774 supports. Allows the user to specify the use of the packet as well
775 as allowing GDB to auto-detect support in the remote stub. */
776
777 enum packet_support
778 {
779 PACKET_SUPPORT_UNKNOWN = 0,
780 PACKET_ENABLE,
781 PACKET_DISABLE
782 };
783
784 struct packet_config
785 {
786 const char *name;
787 const char *title;
788 enum auto_boolean detect;
789 enum packet_support support;
790 };
791
792 /* Analyze a packet's return value and update the packet config
793 accordingly. */
794
795 enum packet_result
796 {
797 PACKET_ERROR,
798 PACKET_OK,
799 PACKET_UNKNOWN
800 };
801
802 static void
803 update_packet_config (struct packet_config *config)
804 {
805 switch (config->detect)
806 {
807 case AUTO_BOOLEAN_TRUE:
808 config->support = PACKET_ENABLE;
809 break;
810 case AUTO_BOOLEAN_FALSE:
811 config->support = PACKET_DISABLE;
812 break;
813 case AUTO_BOOLEAN_AUTO:
814 config->support = PACKET_SUPPORT_UNKNOWN;
815 break;
816 }
817 }
818
819 static void
820 show_packet_config_cmd (struct packet_config *config)
821 {
822 char *support = "internal-error";
823 switch (config->support)
824 {
825 case PACKET_ENABLE:
826 support = "enabled";
827 break;
828 case PACKET_DISABLE:
829 support = "disabled";
830 break;
831 case PACKET_SUPPORT_UNKNOWN:
832 support = "unknown";
833 break;
834 }
835 switch (config->detect)
836 {
837 case AUTO_BOOLEAN_AUTO:
838 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
839 config->name, support);
840 break;
841 case AUTO_BOOLEAN_TRUE:
842 case AUTO_BOOLEAN_FALSE:
843 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
844 config->name, support);
845 break;
846 }
847 }
848
849 static void
850 add_packet_config_cmd (struct packet_config *config, const char *name,
851 const char *title, int legacy)
852 {
853 char *set_doc;
854 char *show_doc;
855 char *cmd_name;
856
857 config->name = name;
858 config->title = title;
859 config->detect = AUTO_BOOLEAN_AUTO;
860 config->support = PACKET_SUPPORT_UNKNOWN;
861 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
862 name, title);
863 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
864 name, title);
865 /* set/show TITLE-packet {auto,on,off} */
866 cmd_name = xstrprintf ("%s-packet", title);
867 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
868 &config->detect, set_doc, show_doc, NULL, /* help_doc */
869 set_remote_protocol_packet_cmd,
870 show_remote_protocol_packet_cmd,
871 &remote_set_cmdlist, &remote_show_cmdlist);
872 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
873 if (legacy)
874 {
875 char *legacy_name;
876 legacy_name = xstrprintf ("%s-packet", name);
877 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
878 &remote_set_cmdlist);
879 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
880 &remote_show_cmdlist);
881 }
882 }
883
884 static enum packet_result
885 packet_check_result (const char *buf)
886 {
887 if (buf[0] != '\0')
888 {
889 /* The stub recognized the packet request. Check that the
890 operation succeeded. */
891 if (buf[0] == 'E'
892 && isxdigit (buf[1]) && isxdigit (buf[2])
893 && buf[3] == '\0')
894 /* "Enn" - definitly an error. */
895 return PACKET_ERROR;
896
897 /* Always treat "E." as an error. This will be used for
898 more verbose error messages, such as E.memtypes. */
899 if (buf[0] == 'E' && buf[1] == '.')
900 return PACKET_ERROR;
901
902 /* The packet may or may not be OK. Just assume it is. */
903 return PACKET_OK;
904 }
905 else
906 /* The stub does not support the packet. */
907 return PACKET_UNKNOWN;
908 }
909
910 static enum packet_result
911 packet_ok (const char *buf, struct packet_config *config)
912 {
913 enum packet_result result;
914
915 result = packet_check_result (buf);
916 switch (result)
917 {
918 case PACKET_OK:
919 case PACKET_ERROR:
920 /* The stub recognized the packet request. */
921 switch (config->support)
922 {
923 case PACKET_SUPPORT_UNKNOWN:
924 if (remote_debug)
925 fprintf_unfiltered (gdb_stdlog,
926 "Packet %s (%s) is supported\n",
927 config->name, config->title);
928 config->support = PACKET_ENABLE;
929 break;
930 case PACKET_DISABLE:
931 internal_error (__FILE__, __LINE__,
932 _("packet_ok: attempt to use a disabled packet"));
933 break;
934 case PACKET_ENABLE:
935 break;
936 }
937 break;
938 case PACKET_UNKNOWN:
939 /* The stub does not support the packet. */
940 switch (config->support)
941 {
942 case PACKET_ENABLE:
943 if (config->detect == AUTO_BOOLEAN_AUTO)
944 /* If the stub previously indicated that the packet was
945 supported then there is a protocol error.. */
946 error (_("Protocol error: %s (%s) conflicting enabled responses."),
947 config->name, config->title);
948 else
949 /* The user set it wrong. */
950 error (_("Enabled packet %s (%s) not recognized by stub"),
951 config->name, config->title);
952 break;
953 case PACKET_SUPPORT_UNKNOWN:
954 if (remote_debug)
955 fprintf_unfiltered (gdb_stdlog,
956 "Packet %s (%s) is NOT supported\n",
957 config->name, config->title);
958 config->support = PACKET_DISABLE;
959 break;
960 case PACKET_DISABLE:
961 break;
962 }
963 break;
964 }
965
966 return result;
967 }
968
969 enum {
970 PACKET_vCont = 0,
971 PACKET_X,
972 PACKET_qSymbol,
973 PACKET_P,
974 PACKET_p,
975 PACKET_Z0,
976 PACKET_Z1,
977 PACKET_Z2,
978 PACKET_Z3,
979 PACKET_Z4,
980 PACKET_vFile_open,
981 PACKET_vFile_pread,
982 PACKET_vFile_pwrite,
983 PACKET_vFile_close,
984 PACKET_vFile_unlink,
985 PACKET_qXfer_auxv,
986 PACKET_qXfer_features,
987 PACKET_qXfer_libraries,
988 PACKET_qXfer_memory_map,
989 PACKET_qXfer_spu_read,
990 PACKET_qXfer_spu_write,
991 PACKET_qGetTLSAddr,
992 PACKET_qSupported,
993 PACKET_QPassSignals,
994 PACKET_qSearch_memory,
995 PACKET_vAttach,
996 PACKET_vRun,
997 PACKET_QStartNoAckMode,
998 PACKET_vKill,
999 PACKET_MAX
1000 };
1001
1002 static struct packet_config remote_protocol_packets[PACKET_MAX];
1003
1004 static void
1005 set_remote_protocol_packet_cmd (char *args, int from_tty,
1006 struct cmd_list_element *c)
1007 {
1008 struct packet_config *packet;
1009
1010 for (packet = remote_protocol_packets;
1011 packet < &remote_protocol_packets[PACKET_MAX];
1012 packet++)
1013 {
1014 if (&packet->detect == c->var)
1015 {
1016 update_packet_config (packet);
1017 return;
1018 }
1019 }
1020 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1021 c->name);
1022 }
1023
1024 static void
1025 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1026 struct cmd_list_element *c,
1027 const char *value)
1028 {
1029 struct packet_config *packet;
1030
1031 for (packet = remote_protocol_packets;
1032 packet < &remote_protocol_packets[PACKET_MAX];
1033 packet++)
1034 {
1035 if (&packet->detect == c->var)
1036 {
1037 show_packet_config_cmd (packet);
1038 return;
1039 }
1040 }
1041 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1042 c->name);
1043 }
1044
1045 /* Should we try one of the 'Z' requests? */
1046
1047 enum Z_packet_type
1048 {
1049 Z_PACKET_SOFTWARE_BP,
1050 Z_PACKET_HARDWARE_BP,
1051 Z_PACKET_WRITE_WP,
1052 Z_PACKET_READ_WP,
1053 Z_PACKET_ACCESS_WP,
1054 NR_Z_PACKET_TYPES
1055 };
1056
1057 /* For compatibility with older distributions. Provide a ``set remote
1058 Z-packet ...'' command that updates all the Z packet types. */
1059
1060 static enum auto_boolean remote_Z_packet_detect;
1061
1062 static void
1063 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1064 struct cmd_list_element *c)
1065 {
1066 int i;
1067 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1068 {
1069 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1070 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1071 }
1072 }
1073
1074 static void
1075 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c,
1077 const char *value)
1078 {
1079 int i;
1080 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1081 {
1082 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1083 }
1084 }
1085
1086 /* Should we try the 'ThreadInfo' query packet?
1087
1088 This variable (NOT available to the user: auto-detect only!)
1089 determines whether GDB will use the new, simpler "ThreadInfo"
1090 query or the older, more complex syntax for thread queries.
1091 This is an auto-detect variable (set to true at each connect,
1092 and set to false when the target fails to recognize it). */
1093
1094 static int use_threadinfo_query;
1095 static int use_threadextra_query;
1096
1097 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1098 static struct async_signal_handler *sigint_remote_twice_token;
1099 static struct async_signal_handler *sigint_remote_token;
1100
1101 \f
1102 /* Asynchronous signal handle registered as event loop source for
1103 when we have pending events ready to be passed to the core. */
1104
1105 static struct async_event_handler *remote_async_inferior_event_token;
1106
1107 /* Asynchronous signal handle registered as event loop source for when
1108 the remote sent us a %Stop notification. The registered callback
1109 will do a vStopped sequence to pull the rest of the events out of
1110 the remote side into our event queue. */
1111
1112 static struct async_event_handler *remote_async_get_pending_events_token;
1113 \f
1114
1115 static ptid_t magic_null_ptid;
1116 static ptid_t not_sent_ptid;
1117 static ptid_t any_thread_ptid;
1118
1119 /* These are the threads which we last sent to the remote system. The
1120 TID member will be -1 for all or -2 for not sent yet. */
1121
1122 static ptid_t general_thread;
1123 static ptid_t continue_thread;
1124
1125 static void
1126 notice_new_inferiors (ptid_t currthread)
1127 {
1128 /* When connecting to a target remote, or to a target
1129 extended-remote which already was debugging an inferior, we may
1130 not know about it yet. Add it before adding its child thread, so
1131 notifications are emitted in a sensible order. */
1132 if (!in_inferior_list (ptid_get_pid (currthread)))
1133 add_inferior (ptid_get_pid (currthread));
1134
1135 /* If this is a new thread, add it to GDB's thread list.
1136 If we leave it up to WFI to do this, bad things will happen. */
1137
1138 if (in_thread_list (currthread) && is_exited (currthread))
1139 {
1140 /* We're seeing an event on a thread id we knew had exited.
1141 This has to be a new thread reusing the old id. Add it. */
1142 add_thread (currthread);
1143 return;
1144 }
1145
1146 if (!in_thread_list (currthread))
1147 {
1148 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1149 {
1150 /* inferior_ptid has no thread member yet. This can happen
1151 with the vAttach -> remote_wait,"TAAthread:" path if the
1152 stub doesn't support qC. This is the first stop reported
1153 after an attach, so this is the main thread. Update the
1154 ptid in the thread list. */
1155 thread_change_ptid (inferior_ptid, currthread);
1156 return;
1157 }
1158
1159 if (ptid_equal (magic_null_ptid, inferior_ptid))
1160 {
1161 /* inferior_ptid is not set yet. This can happen with the
1162 vRun -> remote_wait,"TAAthread:" path if the stub
1163 doesn't support qC. This is the first stop reported
1164 after an attach, so this is the main thread. Update the
1165 ptid in the thread list. */
1166 thread_change_ptid (inferior_ptid, currthread);
1167 return;
1168 }
1169
1170 /* This is really a new thread. Add it. */
1171 add_thread (currthread);
1172 }
1173 }
1174
1175 /* Call this function as a result of
1176 1) A halt indication (T packet) containing a thread id
1177 2) A direct query of currthread
1178 3) Successful execution of set thread
1179 */
1180
1181 static void
1182 record_currthread (ptid_t currthread)
1183 {
1184 general_thread = currthread;
1185
1186 if (ptid_equal (currthread, minus_one_ptid))
1187 /* We're just invalidating the local thread mirror. */
1188 return;
1189
1190 notice_new_inferiors (currthread);
1191 }
1192
1193 static char *last_pass_packet;
1194
1195 /* If 'QPassSignals' is supported, tell the remote stub what signals
1196 it can simply pass through to the inferior without reporting. */
1197
1198 static void
1199 remote_pass_signals (void)
1200 {
1201 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1202 {
1203 char *pass_packet, *p;
1204 int numsigs = (int) TARGET_SIGNAL_LAST;
1205 int count = 0, i;
1206
1207 gdb_assert (numsigs < 256);
1208 for (i = 0; i < numsigs; i++)
1209 {
1210 if (signal_stop_state (i) == 0
1211 && signal_print_state (i) == 0
1212 && signal_pass_state (i) == 1)
1213 count++;
1214 }
1215 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1216 strcpy (pass_packet, "QPassSignals:");
1217 p = pass_packet + strlen (pass_packet);
1218 for (i = 0; i < numsigs; i++)
1219 {
1220 if (signal_stop_state (i) == 0
1221 && signal_print_state (i) == 0
1222 && signal_pass_state (i) == 1)
1223 {
1224 if (i >= 16)
1225 *p++ = tohex (i >> 4);
1226 *p++ = tohex (i & 15);
1227 if (count)
1228 *p++ = ';';
1229 else
1230 break;
1231 count--;
1232 }
1233 }
1234 *p = 0;
1235 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1236 {
1237 struct remote_state *rs = get_remote_state ();
1238 char *buf = rs->buf;
1239
1240 putpkt (pass_packet);
1241 getpkt (&rs->buf, &rs->buf_size, 0);
1242 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1243 if (last_pass_packet)
1244 xfree (last_pass_packet);
1245 last_pass_packet = pass_packet;
1246 }
1247 else
1248 xfree (pass_packet);
1249 }
1250 }
1251
1252 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1253 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1254 thread. If GEN is set, set the general thread, if not, then set
1255 the step/continue thread. */
1256 static void
1257 set_thread (struct ptid ptid, int gen)
1258 {
1259 struct remote_state *rs = get_remote_state ();
1260 ptid_t state = gen ? general_thread : continue_thread;
1261 char *buf = rs->buf;
1262 char *endbuf = rs->buf + get_remote_packet_size ();
1263
1264 if (ptid_equal (state, ptid))
1265 return;
1266
1267 *buf++ = 'H';
1268 *buf++ = gen ? 'g' : 'c';
1269 if (ptid_equal (ptid, magic_null_ptid))
1270 xsnprintf (buf, endbuf - buf, "0");
1271 else if (ptid_equal (ptid, any_thread_ptid))
1272 xsnprintf (buf, endbuf - buf, "0");
1273 else if (ptid_equal (ptid, minus_one_ptid))
1274 xsnprintf (buf, endbuf - buf, "-1");
1275 else
1276 write_ptid (buf, endbuf, ptid);
1277 putpkt (rs->buf);
1278 getpkt (&rs->buf, &rs->buf_size, 0);
1279 if (gen)
1280 general_thread = ptid;
1281 else
1282 continue_thread = ptid;
1283 }
1284
1285 static void
1286 set_general_thread (struct ptid ptid)
1287 {
1288 set_thread (ptid, 1);
1289 }
1290
1291 static void
1292 set_continue_thread (struct ptid ptid)
1293 {
1294 set_thread (ptid, 0);
1295 }
1296
1297 /* Change the remote current process. Which thread within the process
1298 ends up selected isn't important, as long as it is the same process
1299 as what INFERIOR_PTID points to.
1300
1301 This comes from that fact that there is no explicit notion of
1302 "selected process" in the protocol. The selected process for
1303 general operations is the process the selected general thread
1304 belongs to. */
1305
1306 static void
1307 set_general_process (void)
1308 {
1309 struct remote_state *rs = get_remote_state ();
1310
1311 /* If the remote can't handle multiple processes, don't bother. */
1312 if (!remote_multi_process_p (rs))
1313 return;
1314
1315 /* We only need to change the remote current thread if it's pointing
1316 at some other process. */
1317 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1318 set_general_thread (inferior_ptid);
1319 }
1320
1321 \f
1322 /* Return nonzero if the thread PTID is still alive on the remote
1323 system. */
1324
1325 static int
1326 remote_thread_alive (ptid_t ptid)
1327 {
1328 struct remote_state *rs = get_remote_state ();
1329 int tid = ptid_get_tid (ptid);
1330 char *p, *endp;
1331
1332 if (ptid_equal (ptid, magic_null_ptid))
1333 /* The main thread is always alive. */
1334 return 1;
1335
1336 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1337 /* The main thread is always alive. This can happen after a
1338 vAttach, if the remote side doesn't support
1339 multi-threading. */
1340 return 1;
1341
1342 p = rs->buf;
1343 endp = rs->buf + get_remote_packet_size ();
1344
1345 *p++ = 'T';
1346 write_ptid (p, endp, ptid);
1347
1348 putpkt (rs->buf);
1349 getpkt (&rs->buf, &rs->buf_size, 0);
1350 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1351 }
1352
1353 /* About these extended threadlist and threadinfo packets. They are
1354 variable length packets but, the fields within them are often fixed
1355 length. They are redundent enough to send over UDP as is the
1356 remote protocol in general. There is a matching unit test module
1357 in libstub. */
1358
1359 #define OPAQUETHREADBYTES 8
1360
1361 /* a 64 bit opaque identifier */
1362 typedef unsigned char threadref[OPAQUETHREADBYTES];
1363
1364 /* WARNING: This threadref data structure comes from the remote O.S.,
1365 libstub protocol encoding, and remote.c. it is not particularly
1366 changable. */
1367
1368 /* Right now, the internal structure is int. We want it to be bigger.
1369 Plan to fix this.
1370 */
1371
1372 typedef int gdb_threadref; /* Internal GDB thread reference. */
1373
1374 /* gdb_ext_thread_info is an internal GDB data structure which is
1375 equivalent to the reply of the remote threadinfo packet. */
1376
1377 struct gdb_ext_thread_info
1378 {
1379 threadref threadid; /* External form of thread reference. */
1380 int active; /* Has state interesting to GDB?
1381 regs, stack. */
1382 char display[256]; /* Brief state display, name,
1383 blocked/suspended. */
1384 char shortname[32]; /* To be used to name threads. */
1385 char more_display[256]; /* Long info, statistics, queue depth,
1386 whatever. */
1387 };
1388
1389 /* The volume of remote transfers can be limited by submitting
1390 a mask containing bits specifying the desired information.
1391 Use a union of these values as the 'selection' parameter to
1392 get_thread_info. FIXME: Make these TAG names more thread specific.
1393 */
1394
1395 #define TAG_THREADID 1
1396 #define TAG_EXISTS 2
1397 #define TAG_DISPLAY 4
1398 #define TAG_THREADNAME 8
1399 #define TAG_MOREDISPLAY 16
1400
1401 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1402
1403 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1404
1405 static char *unpack_nibble (char *buf, int *val);
1406
1407 static char *pack_nibble (char *buf, int nibble);
1408
1409 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1410
1411 static char *unpack_byte (char *buf, int *value);
1412
1413 static char *pack_int (char *buf, int value);
1414
1415 static char *unpack_int (char *buf, int *value);
1416
1417 static char *unpack_string (char *src, char *dest, int length);
1418
1419 static char *pack_threadid (char *pkt, threadref *id);
1420
1421 static char *unpack_threadid (char *inbuf, threadref *id);
1422
1423 void int_to_threadref (threadref *id, int value);
1424
1425 static int threadref_to_int (threadref *ref);
1426
1427 static void copy_threadref (threadref *dest, threadref *src);
1428
1429 static int threadmatch (threadref *dest, threadref *src);
1430
1431 static char *pack_threadinfo_request (char *pkt, int mode,
1432 threadref *id);
1433
1434 static int remote_unpack_thread_info_response (char *pkt,
1435 threadref *expectedref,
1436 struct gdb_ext_thread_info
1437 *info);
1438
1439
1440 static int remote_get_threadinfo (threadref *threadid,
1441 int fieldset, /*TAG mask */
1442 struct gdb_ext_thread_info *info);
1443
1444 static char *pack_threadlist_request (char *pkt, int startflag,
1445 int threadcount,
1446 threadref *nextthread);
1447
1448 static int parse_threadlist_response (char *pkt,
1449 int result_limit,
1450 threadref *original_echo,
1451 threadref *resultlist,
1452 int *doneflag);
1453
1454 static int remote_get_threadlist (int startflag,
1455 threadref *nextthread,
1456 int result_limit,
1457 int *done,
1458 int *result_count,
1459 threadref *threadlist);
1460
1461 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1462
1463 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1464 void *context, int looplimit);
1465
1466 static int remote_newthread_step (threadref *ref, void *context);
1467
1468
1469 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1470 buffer we're allowed to write to. Returns
1471 BUF+CHARACTERS_WRITTEN. */
1472
1473 static char *
1474 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1475 {
1476 int pid, tid;
1477 struct remote_state *rs = get_remote_state ();
1478
1479 if (remote_multi_process_p (rs))
1480 {
1481 pid = ptid_get_pid (ptid);
1482 if (pid < 0)
1483 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1484 else
1485 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1486 }
1487 tid = ptid_get_tid (ptid);
1488 if (tid < 0)
1489 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1490 else
1491 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1492
1493 return buf;
1494 }
1495
1496 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1497 passed the last parsed char. Returns null_ptid on error. */
1498
1499 static ptid_t
1500 read_ptid (char *buf, char **obuf)
1501 {
1502 char *p = buf;
1503 char *pp;
1504 ULONGEST pid = 0, tid = 0;
1505 ptid_t ptid;
1506
1507 if (*p == 'p')
1508 {
1509 /* Multi-process ptid. */
1510 pp = unpack_varlen_hex (p + 1, &pid);
1511 if (*pp != '.')
1512 error (_("invalid remote ptid: %s\n"), p);
1513
1514 p = pp;
1515 pp = unpack_varlen_hex (p + 1, &tid);
1516 if (obuf)
1517 *obuf = pp;
1518 return ptid_build (pid, 0, tid);
1519 }
1520
1521 /* No multi-process. Just a tid. */
1522 pp = unpack_varlen_hex (p, &tid);
1523
1524 /* Since the stub is not sending a process id, then default to
1525 what's in inferior_ptid. */
1526 pid = ptid_get_pid (inferior_ptid);
1527
1528 if (obuf)
1529 *obuf = pp;
1530 return ptid_build (pid, 0, tid);
1531 }
1532
1533 /* Encode 64 bits in 16 chars of hex. */
1534
1535 static const char hexchars[] = "0123456789abcdef";
1536
1537 static int
1538 ishex (int ch, int *val)
1539 {
1540 if ((ch >= 'a') && (ch <= 'f'))
1541 {
1542 *val = ch - 'a' + 10;
1543 return 1;
1544 }
1545 if ((ch >= 'A') && (ch <= 'F'))
1546 {
1547 *val = ch - 'A' + 10;
1548 return 1;
1549 }
1550 if ((ch >= '0') && (ch <= '9'))
1551 {
1552 *val = ch - '0';
1553 return 1;
1554 }
1555 return 0;
1556 }
1557
1558 static int
1559 stubhex (int ch)
1560 {
1561 if (ch >= 'a' && ch <= 'f')
1562 return ch - 'a' + 10;
1563 if (ch >= '0' && ch <= '9')
1564 return ch - '0';
1565 if (ch >= 'A' && ch <= 'F')
1566 return ch - 'A' + 10;
1567 return -1;
1568 }
1569
1570 static int
1571 stub_unpack_int (char *buff, int fieldlength)
1572 {
1573 int nibble;
1574 int retval = 0;
1575
1576 while (fieldlength)
1577 {
1578 nibble = stubhex (*buff++);
1579 retval |= nibble;
1580 fieldlength--;
1581 if (fieldlength)
1582 retval = retval << 4;
1583 }
1584 return retval;
1585 }
1586
1587 char *
1588 unpack_varlen_hex (char *buff, /* packet to parse */
1589 ULONGEST *result)
1590 {
1591 int nibble;
1592 ULONGEST retval = 0;
1593
1594 while (ishex (*buff, &nibble))
1595 {
1596 buff++;
1597 retval = retval << 4;
1598 retval |= nibble & 0x0f;
1599 }
1600 *result = retval;
1601 return buff;
1602 }
1603
1604 static char *
1605 unpack_nibble (char *buf, int *val)
1606 {
1607 *val = fromhex (*buf++);
1608 return buf;
1609 }
1610
1611 static char *
1612 pack_nibble (char *buf, int nibble)
1613 {
1614 *buf++ = hexchars[(nibble & 0x0f)];
1615 return buf;
1616 }
1617
1618 static char *
1619 pack_hex_byte (char *pkt, int byte)
1620 {
1621 *pkt++ = hexchars[(byte >> 4) & 0xf];
1622 *pkt++ = hexchars[(byte & 0xf)];
1623 return pkt;
1624 }
1625
1626 static char *
1627 unpack_byte (char *buf, int *value)
1628 {
1629 *value = stub_unpack_int (buf, 2);
1630 return buf + 2;
1631 }
1632
1633 static char *
1634 pack_int (char *buf, int value)
1635 {
1636 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1637 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1638 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1639 buf = pack_hex_byte (buf, (value & 0xff));
1640 return buf;
1641 }
1642
1643 static char *
1644 unpack_int (char *buf, int *value)
1645 {
1646 *value = stub_unpack_int (buf, 8);
1647 return buf + 8;
1648 }
1649
1650 #if 0 /* Currently unused, uncomment when needed. */
1651 static char *pack_string (char *pkt, char *string);
1652
1653 static char *
1654 pack_string (char *pkt, char *string)
1655 {
1656 char ch;
1657 int len;
1658
1659 len = strlen (string);
1660 if (len > 200)
1661 len = 200; /* Bigger than most GDB packets, junk??? */
1662 pkt = pack_hex_byte (pkt, len);
1663 while (len-- > 0)
1664 {
1665 ch = *string++;
1666 if ((ch == '\0') || (ch == '#'))
1667 ch = '*'; /* Protect encapsulation. */
1668 *pkt++ = ch;
1669 }
1670 return pkt;
1671 }
1672 #endif /* 0 (unused) */
1673
1674 static char *
1675 unpack_string (char *src, char *dest, int length)
1676 {
1677 while (length--)
1678 *dest++ = *src++;
1679 *dest = '\0';
1680 return src;
1681 }
1682
1683 static char *
1684 pack_threadid (char *pkt, threadref *id)
1685 {
1686 char *limit;
1687 unsigned char *altid;
1688
1689 altid = (unsigned char *) id;
1690 limit = pkt + BUF_THREAD_ID_SIZE;
1691 while (pkt < limit)
1692 pkt = pack_hex_byte (pkt, *altid++);
1693 return pkt;
1694 }
1695
1696
1697 static char *
1698 unpack_threadid (char *inbuf, threadref *id)
1699 {
1700 char *altref;
1701 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1702 int x, y;
1703
1704 altref = (char *) id;
1705
1706 while (inbuf < limit)
1707 {
1708 x = stubhex (*inbuf++);
1709 y = stubhex (*inbuf++);
1710 *altref++ = (x << 4) | y;
1711 }
1712 return inbuf;
1713 }
1714
1715 /* Externally, threadrefs are 64 bits but internally, they are still
1716 ints. This is due to a mismatch of specifications. We would like
1717 to use 64bit thread references internally. This is an adapter
1718 function. */
1719
1720 void
1721 int_to_threadref (threadref *id, int value)
1722 {
1723 unsigned char *scan;
1724
1725 scan = (unsigned char *) id;
1726 {
1727 int i = 4;
1728 while (i--)
1729 *scan++ = 0;
1730 }
1731 *scan++ = (value >> 24) & 0xff;
1732 *scan++ = (value >> 16) & 0xff;
1733 *scan++ = (value >> 8) & 0xff;
1734 *scan++ = (value & 0xff);
1735 }
1736
1737 static int
1738 threadref_to_int (threadref *ref)
1739 {
1740 int i, value = 0;
1741 unsigned char *scan;
1742
1743 scan = *ref;
1744 scan += 4;
1745 i = 4;
1746 while (i-- > 0)
1747 value = (value << 8) | ((*scan++) & 0xff);
1748 return value;
1749 }
1750
1751 static void
1752 copy_threadref (threadref *dest, threadref *src)
1753 {
1754 int i;
1755 unsigned char *csrc, *cdest;
1756
1757 csrc = (unsigned char *) src;
1758 cdest = (unsigned char *) dest;
1759 i = 8;
1760 while (i--)
1761 *cdest++ = *csrc++;
1762 }
1763
1764 static int
1765 threadmatch (threadref *dest, threadref *src)
1766 {
1767 /* Things are broken right now, so just assume we got a match. */
1768 #if 0
1769 unsigned char *srcp, *destp;
1770 int i, result;
1771 srcp = (char *) src;
1772 destp = (char *) dest;
1773
1774 result = 1;
1775 while (i-- > 0)
1776 result &= (*srcp++ == *destp++) ? 1 : 0;
1777 return result;
1778 #endif
1779 return 1;
1780 }
1781
1782 /*
1783 threadid:1, # always request threadid
1784 context_exists:2,
1785 display:4,
1786 unique_name:8,
1787 more_display:16
1788 */
1789
1790 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1791
1792 static char *
1793 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1794 {
1795 *pkt++ = 'q'; /* Info Query */
1796 *pkt++ = 'P'; /* process or thread info */
1797 pkt = pack_int (pkt, mode); /* mode */
1798 pkt = pack_threadid (pkt, id); /* threadid */
1799 *pkt = '\0'; /* terminate */
1800 return pkt;
1801 }
1802
1803 /* These values tag the fields in a thread info response packet. */
1804 /* Tagging the fields allows us to request specific fields and to
1805 add more fields as time goes by. */
1806
1807 #define TAG_THREADID 1 /* Echo the thread identifier. */
1808 #define TAG_EXISTS 2 /* Is this process defined enough to
1809 fetch registers and its stack? */
1810 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1811 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1812 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1813 the process. */
1814
1815 static int
1816 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1817 struct gdb_ext_thread_info *info)
1818 {
1819 struct remote_state *rs = get_remote_state ();
1820 int mask, length;
1821 int tag;
1822 threadref ref;
1823 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1824 int retval = 1;
1825
1826 /* info->threadid = 0; FIXME: implement zero_threadref. */
1827 info->active = 0;
1828 info->display[0] = '\0';
1829 info->shortname[0] = '\0';
1830 info->more_display[0] = '\0';
1831
1832 /* Assume the characters indicating the packet type have been
1833 stripped. */
1834 pkt = unpack_int (pkt, &mask); /* arg mask */
1835 pkt = unpack_threadid (pkt, &ref);
1836
1837 if (mask == 0)
1838 warning (_("Incomplete response to threadinfo request."));
1839 if (!threadmatch (&ref, expectedref))
1840 { /* This is an answer to a different request. */
1841 warning (_("ERROR RMT Thread info mismatch."));
1842 return 0;
1843 }
1844 copy_threadref (&info->threadid, &ref);
1845
1846 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1847
1848 /* Packets are terminated with nulls. */
1849 while ((pkt < limit) && mask && *pkt)
1850 {
1851 pkt = unpack_int (pkt, &tag); /* tag */
1852 pkt = unpack_byte (pkt, &length); /* length */
1853 if (!(tag & mask)) /* Tags out of synch with mask. */
1854 {
1855 warning (_("ERROR RMT: threadinfo tag mismatch."));
1856 retval = 0;
1857 break;
1858 }
1859 if (tag == TAG_THREADID)
1860 {
1861 if (length != 16)
1862 {
1863 warning (_("ERROR RMT: length of threadid is not 16."));
1864 retval = 0;
1865 break;
1866 }
1867 pkt = unpack_threadid (pkt, &ref);
1868 mask = mask & ~TAG_THREADID;
1869 continue;
1870 }
1871 if (tag == TAG_EXISTS)
1872 {
1873 info->active = stub_unpack_int (pkt, length);
1874 pkt += length;
1875 mask = mask & ~(TAG_EXISTS);
1876 if (length > 8)
1877 {
1878 warning (_("ERROR RMT: 'exists' length too long."));
1879 retval = 0;
1880 break;
1881 }
1882 continue;
1883 }
1884 if (tag == TAG_THREADNAME)
1885 {
1886 pkt = unpack_string (pkt, &info->shortname[0], length);
1887 mask = mask & ~TAG_THREADNAME;
1888 continue;
1889 }
1890 if (tag == TAG_DISPLAY)
1891 {
1892 pkt = unpack_string (pkt, &info->display[0], length);
1893 mask = mask & ~TAG_DISPLAY;
1894 continue;
1895 }
1896 if (tag == TAG_MOREDISPLAY)
1897 {
1898 pkt = unpack_string (pkt, &info->more_display[0], length);
1899 mask = mask & ~TAG_MOREDISPLAY;
1900 continue;
1901 }
1902 warning (_("ERROR RMT: unknown thread info tag."));
1903 break; /* Not a tag we know about. */
1904 }
1905 return retval;
1906 }
1907
1908 static int
1909 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1910 struct gdb_ext_thread_info *info)
1911 {
1912 struct remote_state *rs = get_remote_state ();
1913 int result;
1914
1915 pack_threadinfo_request (rs->buf, fieldset, threadid);
1916 putpkt (rs->buf);
1917 getpkt (&rs->buf, &rs->buf_size, 0);
1918
1919 if (rs->buf[0] == '\0')
1920 return 0;
1921
1922 result = remote_unpack_thread_info_response (rs->buf + 2,
1923 threadid, info);
1924 return result;
1925 }
1926
1927 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1928
1929 static char *
1930 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1931 threadref *nextthread)
1932 {
1933 *pkt++ = 'q'; /* info query packet */
1934 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1935 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1936 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1937 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1938 *pkt = '\0';
1939 return pkt;
1940 }
1941
1942 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1943
1944 static int
1945 parse_threadlist_response (char *pkt, int result_limit,
1946 threadref *original_echo, threadref *resultlist,
1947 int *doneflag)
1948 {
1949 struct remote_state *rs = get_remote_state ();
1950 char *limit;
1951 int count, resultcount, done;
1952
1953 resultcount = 0;
1954 /* Assume the 'q' and 'M chars have been stripped. */
1955 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1956 /* done parse past here */
1957 pkt = unpack_byte (pkt, &count); /* count field */
1958 pkt = unpack_nibble (pkt, &done);
1959 /* The first threadid is the argument threadid. */
1960 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1961 while ((count-- > 0) && (pkt < limit))
1962 {
1963 pkt = unpack_threadid (pkt, resultlist++);
1964 if (resultcount++ >= result_limit)
1965 break;
1966 }
1967 if (doneflag)
1968 *doneflag = done;
1969 return resultcount;
1970 }
1971
1972 static int
1973 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1974 int *done, int *result_count, threadref *threadlist)
1975 {
1976 struct remote_state *rs = get_remote_state ();
1977 static threadref echo_nextthread;
1978 int result = 1;
1979
1980 /* Trancate result limit to be smaller than the packet size. */
1981 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1982 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1983
1984 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1985 putpkt (rs->buf);
1986 getpkt (&rs->buf, &rs->buf_size, 0);
1987
1988 if (*rs->buf == '\0')
1989 *result_count = 0;
1990 else
1991 *result_count =
1992 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1993 threadlist, done);
1994
1995 if (!threadmatch (&echo_nextthread, nextthread))
1996 {
1997 /* FIXME: This is a good reason to drop the packet. */
1998 /* Possably, there is a duplicate response. */
1999 /* Possabilities :
2000 retransmit immediatly - race conditions
2001 retransmit after timeout - yes
2002 exit
2003 wait for packet, then exit
2004 */
2005 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2006 return 0; /* I choose simply exiting. */
2007 }
2008 if (*result_count <= 0)
2009 {
2010 if (*done != 1)
2011 {
2012 warning (_("RMT ERROR : failed to get remote thread list."));
2013 result = 0;
2014 }
2015 return result; /* break; */
2016 }
2017 if (*result_count > result_limit)
2018 {
2019 *result_count = 0;
2020 warning (_("RMT ERROR: threadlist response longer than requested."));
2021 return 0;
2022 }
2023 return result;
2024 }
2025
2026 /* This is the interface between remote and threads, remotes upper
2027 interface. */
2028
2029 /* remote_find_new_threads retrieves the thread list and for each
2030 thread in the list, looks up the thread in GDB's internal list,
2031 adding the thread if it does not already exist. This involves
2032 getting partial thread lists from the remote target so, polling the
2033 quit_flag is required. */
2034
2035
2036 /* About this many threadisds fit in a packet. */
2037
2038 #define MAXTHREADLISTRESULTS 32
2039
2040 static int
2041 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2042 int looplimit)
2043 {
2044 int done, i, result_count;
2045 int startflag = 1;
2046 int result = 1;
2047 int loopcount = 0;
2048 static threadref nextthread;
2049 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2050
2051 done = 0;
2052 while (!done)
2053 {
2054 if (loopcount++ > looplimit)
2055 {
2056 result = 0;
2057 warning (_("Remote fetch threadlist -infinite loop-."));
2058 break;
2059 }
2060 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2061 &done, &result_count, resultthreadlist))
2062 {
2063 result = 0;
2064 break;
2065 }
2066 /* Clear for later iterations. */
2067 startflag = 0;
2068 /* Setup to resume next batch of thread references, set nextthread. */
2069 if (result_count >= 1)
2070 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2071 i = 0;
2072 while (result_count--)
2073 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2074 break;
2075 }
2076 return result;
2077 }
2078
2079 static int
2080 remote_newthread_step (threadref *ref, void *context)
2081 {
2082 int pid = ptid_get_pid (inferior_ptid);
2083 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2084
2085 if (!in_thread_list (ptid))
2086 add_thread (ptid);
2087 return 1; /* continue iterator */
2088 }
2089
2090 #define CRAZY_MAX_THREADS 1000
2091
2092 static ptid_t
2093 remote_current_thread (ptid_t oldpid)
2094 {
2095 struct remote_state *rs = get_remote_state ();
2096 char *p = rs->buf;
2097 int tid;
2098 int pid;
2099
2100 putpkt ("qC");
2101 getpkt (&rs->buf, &rs->buf_size, 0);
2102 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2103 return read_ptid (&rs->buf[2], NULL);
2104 else
2105 return oldpid;
2106 }
2107
2108 /* Find new threads for info threads command.
2109 * Original version, using John Metzler's thread protocol.
2110 */
2111
2112 static void
2113 remote_find_new_threads (void)
2114 {
2115 remote_threadlist_iterator (remote_newthread_step, 0,
2116 CRAZY_MAX_THREADS);
2117 }
2118
2119 /*
2120 * Find all threads for info threads command.
2121 * Uses new thread protocol contributed by Cisco.
2122 * Falls back and attempts to use the older method (above)
2123 * if the target doesn't respond to the new method.
2124 */
2125
2126 static void
2127 remote_threads_info (void)
2128 {
2129 struct remote_state *rs = get_remote_state ();
2130 char *bufp;
2131 ptid_t new_thread;
2132
2133 if (remote_desc == 0) /* paranoia */
2134 error (_("Command can only be used when connected to the remote target."));
2135
2136 if (use_threadinfo_query)
2137 {
2138 putpkt ("qfThreadInfo");
2139 getpkt (&rs->buf, &rs->buf_size, 0);
2140 bufp = rs->buf;
2141 if (bufp[0] != '\0') /* q packet recognized */
2142 {
2143 while (*bufp++ == 'm') /* reply contains one or more TID */
2144 {
2145 do
2146 {
2147 new_thread = read_ptid (bufp, &bufp);
2148 if (!ptid_equal (new_thread, null_ptid)
2149 && (!in_thread_list (new_thread)
2150 || is_exited (new_thread)))
2151 {
2152 /* When connected to a multi-process aware stub,
2153 "info threads" may show up threads of
2154 inferiors we didn't know about yet. Add them
2155 now, and before adding any of its child
2156 threads, so notifications are emitted in a
2157 sensible order. */
2158 if (!in_inferior_list (ptid_get_pid (new_thread)))
2159 add_inferior (ptid_get_pid (new_thread));
2160
2161 add_thread (new_thread);
2162
2163 /* In non-stop mode, we assume new found threads
2164 are running until we proven otherwise with a
2165 stop reply. In all-stop, we can only get
2166 here if all threads are stopped. */
2167 set_executing (new_thread, non_stop ? 1 : 0);
2168 set_running (new_thread, non_stop ? 1 : 0);
2169 }
2170 }
2171 while (*bufp++ == ','); /* comma-separated list */
2172 putpkt ("qsThreadInfo");
2173 getpkt (&rs->buf, &rs->buf_size, 0);
2174 bufp = rs->buf;
2175 }
2176 return; /* done */
2177 }
2178 }
2179
2180 /* Only qfThreadInfo is supported in non-stop mode. */
2181 if (non_stop)
2182 return;
2183
2184 /* Else fall back to old method based on jmetzler protocol. */
2185 use_threadinfo_query = 0;
2186 remote_find_new_threads ();
2187 return;
2188 }
2189
2190 /*
2191 * Collect a descriptive string about the given thread.
2192 * The target may say anything it wants to about the thread
2193 * (typically info about its blocked / runnable state, name, etc.).
2194 * This string will appear in the info threads display.
2195 *
2196 * Optional: targets are not required to implement this function.
2197 */
2198
2199 static char *
2200 remote_threads_extra_info (struct thread_info *tp)
2201 {
2202 struct remote_state *rs = get_remote_state ();
2203 int result;
2204 int set;
2205 threadref id;
2206 struct gdb_ext_thread_info threadinfo;
2207 static char display_buf[100]; /* arbitrary... */
2208 int n = 0; /* position in display_buf */
2209
2210 if (remote_desc == 0) /* paranoia */
2211 internal_error (__FILE__, __LINE__,
2212 _("remote_threads_extra_info"));
2213
2214 if (ptid_equal (tp->ptid, magic_null_ptid)
2215 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2216 /* This is the main thread which was added by GDB. The remote
2217 server doesn't know about it. */
2218 return NULL;
2219
2220 if (use_threadextra_query)
2221 {
2222 char *b = rs->buf;
2223 char *endb = rs->buf + get_remote_packet_size ();
2224
2225 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2226 b += strlen (b);
2227 write_ptid (b, endb, tp->ptid);
2228
2229 putpkt (rs->buf);
2230 getpkt (&rs->buf, &rs->buf_size, 0);
2231 if (rs->buf[0] != 0)
2232 {
2233 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2234 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2235 display_buf [result] = '\0';
2236 return display_buf;
2237 }
2238 }
2239
2240 /* If the above query fails, fall back to the old method. */
2241 use_threadextra_query = 0;
2242 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2243 | TAG_MOREDISPLAY | TAG_DISPLAY;
2244 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2245 if (remote_get_threadinfo (&id, set, &threadinfo))
2246 if (threadinfo.active)
2247 {
2248 if (*threadinfo.shortname)
2249 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2250 " Name: %s,", threadinfo.shortname);
2251 if (*threadinfo.display)
2252 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2253 " State: %s,", threadinfo.display);
2254 if (*threadinfo.more_display)
2255 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2256 " Priority: %s", threadinfo.more_display);
2257
2258 if (n > 0)
2259 {
2260 /* For purely cosmetic reasons, clear up trailing commas. */
2261 if (',' == display_buf[n-1])
2262 display_buf[n-1] = ' ';
2263 return display_buf;
2264 }
2265 }
2266 return NULL;
2267 }
2268 \f
2269
2270 /* Restart the remote side; this is an extended protocol operation. */
2271
2272 static void
2273 extended_remote_restart (void)
2274 {
2275 struct remote_state *rs = get_remote_state ();
2276
2277 /* Send the restart command; for reasons I don't understand the
2278 remote side really expects a number after the "R". */
2279 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2280 putpkt (rs->buf);
2281
2282 remote_fileio_reset ();
2283 }
2284 \f
2285 /* Clean up connection to a remote debugger. */
2286
2287 static void
2288 remote_close (int quitting)
2289 {
2290 if (remote_desc)
2291 {
2292 /* Unregister the file descriptor from the event loop. */
2293 if (target_is_async_p ())
2294 target_async (NULL, 0);
2295 serial_close (remote_desc);
2296 remote_desc = NULL;
2297 }
2298
2299 /* Make sure we don't leave the async SIGINT signal handler
2300 installed. */
2301 signal (SIGINT, handle_sigint);
2302
2303 /* We don't have a connection to the remote stub anymore. Get rid
2304 of all the inferiors and their threads we were controlling. */
2305 discard_all_inferiors ();
2306
2307 /* We're no longer interested in any of these events. */
2308 discard_pending_stop_replies (-1);
2309
2310 if (remote_async_inferior_event_token)
2311 delete_async_event_handler (&remote_async_inferior_event_token);
2312 if (remote_async_get_pending_events_token)
2313 delete_async_event_handler (&remote_async_get_pending_events_token);
2314
2315 generic_mourn_inferior ();
2316 }
2317
2318 /* Query the remote side for the text, data and bss offsets. */
2319
2320 static void
2321 get_offsets (void)
2322 {
2323 struct remote_state *rs = get_remote_state ();
2324 char *buf;
2325 char *ptr;
2326 int lose, num_segments = 0, do_sections, do_segments;
2327 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2328 struct section_offsets *offs;
2329 struct symfile_segment_data *data;
2330
2331 if (symfile_objfile == NULL)
2332 return;
2333
2334 putpkt ("qOffsets");
2335 getpkt (&rs->buf, &rs->buf_size, 0);
2336 buf = rs->buf;
2337
2338 if (buf[0] == '\000')
2339 return; /* Return silently. Stub doesn't support
2340 this command. */
2341 if (buf[0] == 'E')
2342 {
2343 warning (_("Remote failure reply: %s"), buf);
2344 return;
2345 }
2346
2347 /* Pick up each field in turn. This used to be done with scanf, but
2348 scanf will make trouble if CORE_ADDR size doesn't match
2349 conversion directives correctly. The following code will work
2350 with any size of CORE_ADDR. */
2351 text_addr = data_addr = bss_addr = 0;
2352 ptr = buf;
2353 lose = 0;
2354
2355 if (strncmp (ptr, "Text=", 5) == 0)
2356 {
2357 ptr += 5;
2358 /* Don't use strtol, could lose on big values. */
2359 while (*ptr && *ptr != ';')
2360 text_addr = (text_addr << 4) + fromhex (*ptr++);
2361
2362 if (strncmp (ptr, ";Data=", 6) == 0)
2363 {
2364 ptr += 6;
2365 while (*ptr && *ptr != ';')
2366 data_addr = (data_addr << 4) + fromhex (*ptr++);
2367 }
2368 else
2369 lose = 1;
2370
2371 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2372 {
2373 ptr += 5;
2374 while (*ptr && *ptr != ';')
2375 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2376
2377 if (bss_addr != data_addr)
2378 warning (_("Target reported unsupported offsets: %s"), buf);
2379 }
2380 else
2381 lose = 1;
2382 }
2383 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2384 {
2385 ptr += 8;
2386 /* Don't use strtol, could lose on big values. */
2387 while (*ptr && *ptr != ';')
2388 text_addr = (text_addr << 4) + fromhex (*ptr++);
2389 num_segments = 1;
2390
2391 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2392 {
2393 ptr += 9;
2394 while (*ptr && *ptr != ';')
2395 data_addr = (data_addr << 4) + fromhex (*ptr++);
2396 num_segments++;
2397 }
2398 }
2399 else
2400 lose = 1;
2401
2402 if (lose)
2403 error (_("Malformed response to offset query, %s"), buf);
2404 else if (*ptr != '\0')
2405 warning (_("Target reported unsupported offsets: %s"), buf);
2406
2407 offs = ((struct section_offsets *)
2408 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2409 memcpy (offs, symfile_objfile->section_offsets,
2410 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2411
2412 data = get_symfile_segment_data (symfile_objfile->obfd);
2413 do_segments = (data != NULL);
2414 do_sections = num_segments == 0;
2415
2416 if (num_segments > 0)
2417 {
2418 segments[0] = text_addr;
2419 segments[1] = data_addr;
2420 }
2421 /* If we have two segments, we can still try to relocate everything
2422 by assuming that the .text and .data offsets apply to the whole
2423 text and data segments. Convert the offsets given in the packet
2424 to base addresses for symfile_map_offsets_to_segments. */
2425 else if (data && data->num_segments == 2)
2426 {
2427 segments[0] = data->segment_bases[0] + text_addr;
2428 segments[1] = data->segment_bases[1] + data_addr;
2429 num_segments = 2;
2430 }
2431 /* If the object file has only one segment, assume that it is text
2432 rather than data; main programs with no writable data are rare,
2433 but programs with no code are useless. Of course the code might
2434 have ended up in the data segment... to detect that we would need
2435 the permissions here. */
2436 else if (data && data->num_segments == 1)
2437 {
2438 segments[0] = data->segment_bases[0] + text_addr;
2439 num_segments = 1;
2440 }
2441 /* There's no way to relocate by segment. */
2442 else
2443 do_segments = 0;
2444
2445 if (do_segments)
2446 {
2447 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2448 offs, num_segments, segments);
2449
2450 if (ret == 0 && !do_sections)
2451 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2452
2453 if (ret > 0)
2454 do_sections = 0;
2455 }
2456
2457 if (data)
2458 free_symfile_segment_data (data);
2459
2460 if (do_sections)
2461 {
2462 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2463
2464 /* This is a temporary kludge to force data and bss to use the same offsets
2465 because that's what nlmconv does now. The real solution requires changes
2466 to the stub and remote.c that I don't have time to do right now. */
2467
2468 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2469 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2470 }
2471
2472 objfile_relocate (symfile_objfile, offs);
2473 }
2474
2475 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2476 threads we know are stopped already. This is used during the
2477 initial remote connection in non-stop mode --- threads that are
2478 reported as already being stopped are left stopped. */
2479
2480 static int
2481 set_stop_requested_callback (struct thread_info *thread, void *data)
2482 {
2483 /* If we have a stop reply for this thread, it must be stopped. */
2484 if (peek_stop_reply (thread->ptid))
2485 set_stop_requested (thread->ptid, 1);
2486
2487 return 0;
2488 }
2489
2490 /* Stub for catch_exception. */
2491
2492 struct start_remote_args
2493 {
2494 int from_tty;
2495
2496 /* The current target. */
2497 struct target_ops *target;
2498
2499 /* Non-zero if this is an extended-remote target. */
2500 int extended_p;
2501 };
2502
2503 static void
2504 remote_start_remote (struct ui_out *uiout, void *opaque)
2505 {
2506 struct start_remote_args *args = opaque;
2507 struct remote_state *rs = get_remote_state ();
2508 struct packet_config *noack_config;
2509 char *wait_status = NULL;
2510
2511 immediate_quit++; /* Allow user to interrupt it. */
2512
2513 /* Ack any packet which the remote side has already sent. */
2514 serial_write (remote_desc, "+", 1);
2515
2516 /* The first packet we send to the target is the optional "supported
2517 packets" request. If the target can answer this, it will tell us
2518 which later probes to skip. */
2519 remote_query_supported ();
2520
2521 /* Next, we possibly activate noack mode.
2522
2523 If the QStartNoAckMode packet configuration is set to AUTO,
2524 enable noack mode if the stub reported a wish for it with
2525 qSupported.
2526
2527 If set to TRUE, then enable noack mode even if the stub didn't
2528 report it in qSupported. If the stub doesn't reply OK, the
2529 session ends with an error.
2530
2531 If FALSE, then don't activate noack mode, regardless of what the
2532 stub claimed should be the default with qSupported. */
2533
2534 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2535
2536 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2537 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2538 && noack_config->support == PACKET_ENABLE))
2539 {
2540 putpkt ("QStartNoAckMode");
2541 getpkt (&rs->buf, &rs->buf_size, 0);
2542 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2543 rs->noack_mode = 1;
2544 }
2545
2546 if (args->extended_p)
2547 {
2548 /* Tell the remote that we are using the extended protocol. */
2549 putpkt ("!");
2550 getpkt (&rs->buf, &rs->buf_size, 0);
2551 }
2552
2553 /* On OSs where the list of libraries is global to all
2554 processes, we fetch them early. */
2555 if (gdbarch_has_global_solist (target_gdbarch))
2556 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2557
2558 /* Next, if the target can specify a description, read it. We do
2559 this before anything involving memory or registers. */
2560 target_find_description ();
2561
2562 if (non_stop)
2563 {
2564 if (!rs->non_stop_aware)
2565 error (_("Non-stop mode requested, but remote does not support non-stop"));
2566
2567 putpkt ("QNonStop:1");
2568 getpkt (&rs->buf, &rs->buf_size, 0);
2569
2570 if (strcmp (rs->buf, "OK") != 0)
2571 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2572
2573 /* Find about threads and processes the stub is already
2574 controlling. We default to adding them in the running state.
2575 The '?' query below will then tell us about which threads are
2576 stopped. */
2577
2578 /* If we're not using the multi-process extensions, there's no
2579 way to know the pid of the reported threads; use the magic
2580 number. */
2581 if (!remote_multi_process_p (rs))
2582 inferior_ptid = magic_null_ptid;
2583
2584 remote_threads_info ();
2585 }
2586 else if (rs->non_stop_aware)
2587 {
2588 /* Don't assume that the stub can operate in all-stop mode.
2589 Request it explicitely. */
2590 putpkt ("QNonStop:0");
2591 getpkt (&rs->buf, &rs->buf_size, 0);
2592
2593 if (strcmp (rs->buf, "OK") != 0)
2594 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2595 }
2596
2597 /* Check whether the target is running now. */
2598 putpkt ("?");
2599 getpkt (&rs->buf, &rs->buf_size, 0);
2600
2601 if (!non_stop)
2602 {
2603 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2604 {
2605 if (args->extended_p)
2606 {
2607 /* We're connected, but not running. Drop out before we
2608 call start_remote. */
2609 target_mark_exited (args->target);
2610 return;
2611 }
2612 else
2613 error (_("The target is not running (try extended-remote?)"));
2614 }
2615 else
2616 {
2617 if (args->extended_p)
2618 target_mark_running (args->target);
2619
2620 /* Save the reply for later. */
2621 wait_status = alloca (strlen (rs->buf) + 1);
2622 strcpy (wait_status, rs->buf);
2623 }
2624
2625 /* Let the stub know that we want it to return the thread. */
2626 set_continue_thread (minus_one_ptid);
2627
2628 /* Without this, some commands which require an active target
2629 (such as kill) won't work. This variable serves (at least)
2630 double duty as both the pid of the target process (if it has
2631 such), and as a flag indicating that a target is active.
2632 These functions should be split out into seperate variables,
2633 especially since GDB will someday have a notion of debugging
2634 several processes. */
2635 inferior_ptid = magic_null_ptid;
2636
2637 /* Now, if we have thread information, update inferior_ptid. */
2638 inferior_ptid = remote_current_thread (inferior_ptid);
2639
2640 add_inferior (ptid_get_pid (inferior_ptid));
2641
2642 /* Always add the main thread. */
2643 add_thread_silent (inferior_ptid);
2644
2645 get_offsets (); /* Get text, data & bss offsets. */
2646
2647 /* Use the previously fetched status. */
2648 gdb_assert (wait_status != NULL);
2649 strcpy (rs->buf, wait_status);
2650 rs->cached_wait_status = 1;
2651
2652 immediate_quit--;
2653 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2654 }
2655 else
2656 {
2657 /* In non-stop, we will either get an "OK", meaning that there
2658 are no stopped threads at this time; or, a regular stop
2659 reply. In the latter case, there may be more than one thread
2660 stopped --- we pull them all out using the vStopped
2661 mechanism. */
2662 if (strcmp (rs->buf, "OK") != 0)
2663 {
2664 struct stop_reply *stop_reply;
2665 struct cleanup *old_chain;
2666
2667 stop_reply = stop_reply_xmalloc ();
2668 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2669
2670 remote_parse_stop_reply (rs->buf, stop_reply);
2671 discard_cleanups (old_chain);
2672
2673 /* get_pending_stop_replies acks this one, and gets the rest
2674 out. */
2675 pending_stop_reply = stop_reply;
2676 remote_get_pending_stop_replies ();
2677
2678 /* Make sure that threads that were stopped remain
2679 stopped. */
2680 iterate_over_threads (set_stop_requested_callback, NULL);
2681 }
2682
2683 if (target_can_async_p ())
2684 target_async (inferior_event_handler, 0);
2685
2686 if (thread_count () == 0)
2687 {
2688 if (args->extended_p)
2689 {
2690 /* We're connected, but not running. Drop out before we
2691 call start_remote. */
2692 target_mark_exited (args->target);
2693 return;
2694 }
2695 else
2696 error (_("The target is not running (try extended-remote?)"));
2697 }
2698
2699 if (args->extended_p)
2700 target_mark_running (args->target);
2701
2702 /* Let the stub know that we want it to return the thread. */
2703
2704 /* Force the stub to choose a thread. */
2705 set_general_thread (null_ptid);
2706
2707 /* Query it. */
2708 inferior_ptid = remote_current_thread (minus_one_ptid);
2709 if (ptid_equal (inferior_ptid, minus_one_ptid))
2710 error (_("remote didn't report the current thread in non-stop mode"));
2711
2712 get_offsets (); /* Get text, data & bss offsets. */
2713
2714 /* In non-stop mode, any cached wait status will be stored in
2715 the stop reply queue. */
2716 gdb_assert (wait_status == NULL);
2717 }
2718
2719 /* If we connected to a live target, do some additional setup. */
2720 if (target_has_execution)
2721 {
2722 if (exec_bfd) /* No use without an exec file. */
2723 remote_check_symbols (symfile_objfile);
2724 }
2725
2726 /* If code is shared between processes, then breakpoints are global
2727 too; Insert them now. */
2728 if (gdbarch_has_global_solist (target_gdbarch)
2729 && breakpoints_always_inserted_mode ())
2730 insert_breakpoints ();
2731 }
2732
2733 /* Open a connection to a remote debugger.
2734 NAME is the filename used for communication. */
2735
2736 static void
2737 remote_open (char *name, int from_tty)
2738 {
2739 remote_open_1 (name, from_tty, &remote_ops, 0);
2740 }
2741
2742 /* Open a connection to a remote debugger using the extended
2743 remote gdb protocol. NAME is the filename used for communication. */
2744
2745 static void
2746 extended_remote_open (char *name, int from_tty)
2747 {
2748 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2749 }
2750
2751 /* Generic code for opening a connection to a remote target. */
2752
2753 static void
2754 init_all_packet_configs (void)
2755 {
2756 int i;
2757 for (i = 0; i < PACKET_MAX; i++)
2758 update_packet_config (&remote_protocol_packets[i]);
2759 }
2760
2761 /* Symbol look-up. */
2762
2763 static void
2764 remote_check_symbols (struct objfile *objfile)
2765 {
2766 struct remote_state *rs = get_remote_state ();
2767 char *msg, *reply, *tmp;
2768 struct minimal_symbol *sym;
2769 int end;
2770
2771 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2772 return;
2773
2774 /* Make sure the remote is pointing at the right process. */
2775 set_general_process ();
2776
2777 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2778 because we need both at the same time. */
2779 msg = alloca (get_remote_packet_size ());
2780
2781 /* Invite target to request symbol lookups. */
2782
2783 putpkt ("qSymbol::");
2784 getpkt (&rs->buf, &rs->buf_size, 0);
2785 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2786 reply = rs->buf;
2787
2788 while (strncmp (reply, "qSymbol:", 8) == 0)
2789 {
2790 tmp = &reply[8];
2791 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2792 msg[end] = '\0';
2793 sym = lookup_minimal_symbol (msg, NULL, NULL);
2794 if (sym == NULL)
2795 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2796 else
2797 {
2798 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2799
2800 /* If this is a function address, return the start of code
2801 instead of any data function descriptor. */
2802 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2803 sym_addr,
2804 &current_target);
2805
2806 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2807 paddr_nz (sym_addr), &reply[8]);
2808 }
2809
2810 putpkt (msg);
2811 getpkt (&rs->buf, &rs->buf_size, 0);
2812 reply = rs->buf;
2813 }
2814 }
2815
2816 static struct serial *
2817 remote_serial_open (char *name)
2818 {
2819 static int udp_warning = 0;
2820
2821 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2822 of in ser-tcp.c, because it is the remote protocol assuming that the
2823 serial connection is reliable and not the serial connection promising
2824 to be. */
2825 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2826 {
2827 warning (_("\
2828 The remote protocol may be unreliable over UDP.\n\
2829 Some events may be lost, rendering further debugging impossible."));
2830 udp_warning = 1;
2831 }
2832
2833 return serial_open (name);
2834 }
2835
2836 /* This type describes each known response to the qSupported
2837 packet. */
2838 struct protocol_feature
2839 {
2840 /* The name of this protocol feature. */
2841 const char *name;
2842
2843 /* The default for this protocol feature. */
2844 enum packet_support default_support;
2845
2846 /* The function to call when this feature is reported, or after
2847 qSupported processing if the feature is not supported.
2848 The first argument points to this structure. The second
2849 argument indicates whether the packet requested support be
2850 enabled, disabled, or probed (or the default, if this function
2851 is being called at the end of processing and this feature was
2852 not reported). The third argument may be NULL; if not NULL, it
2853 is a NUL-terminated string taken from the packet following
2854 this feature's name and an equals sign. */
2855 void (*func) (const struct protocol_feature *, enum packet_support,
2856 const char *);
2857
2858 /* The corresponding packet for this feature. Only used if
2859 FUNC is remote_supported_packet. */
2860 int packet;
2861 };
2862
2863 static void
2864 remote_supported_packet (const struct protocol_feature *feature,
2865 enum packet_support support,
2866 const char *argument)
2867 {
2868 if (argument)
2869 {
2870 warning (_("Remote qSupported response supplied an unexpected value for"
2871 " \"%s\"."), feature->name);
2872 return;
2873 }
2874
2875 if (remote_protocol_packets[feature->packet].support
2876 == PACKET_SUPPORT_UNKNOWN)
2877 remote_protocol_packets[feature->packet].support = support;
2878 }
2879
2880 static void
2881 remote_packet_size (const struct protocol_feature *feature,
2882 enum packet_support support, const char *value)
2883 {
2884 struct remote_state *rs = get_remote_state ();
2885
2886 int packet_size;
2887 char *value_end;
2888
2889 if (support != PACKET_ENABLE)
2890 return;
2891
2892 if (value == NULL || *value == '\0')
2893 {
2894 warning (_("Remote target reported \"%s\" without a size."),
2895 feature->name);
2896 return;
2897 }
2898
2899 errno = 0;
2900 packet_size = strtol (value, &value_end, 16);
2901 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2902 {
2903 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2904 feature->name, value);
2905 return;
2906 }
2907
2908 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2909 {
2910 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2911 packet_size, MAX_REMOTE_PACKET_SIZE);
2912 packet_size = MAX_REMOTE_PACKET_SIZE;
2913 }
2914
2915 /* Record the new maximum packet size. */
2916 rs->explicit_packet_size = packet_size;
2917 }
2918
2919 static void
2920 remote_multi_process_feature (const struct protocol_feature *feature,
2921 enum packet_support support, const char *value)
2922 {
2923 struct remote_state *rs = get_remote_state ();
2924 rs->multi_process_aware = (support == PACKET_ENABLE);
2925 }
2926
2927 static void
2928 remote_non_stop_feature (const struct protocol_feature *feature,
2929 enum packet_support support, const char *value)
2930 {
2931 struct remote_state *rs = get_remote_state ();
2932 rs->non_stop_aware = (support == PACKET_ENABLE);
2933 }
2934
2935 static struct protocol_feature remote_protocol_features[] = {
2936 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2937 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2938 PACKET_qXfer_auxv },
2939 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2940 PACKET_qXfer_features },
2941 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2942 PACKET_qXfer_libraries },
2943 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2944 PACKET_qXfer_memory_map },
2945 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2946 PACKET_qXfer_spu_read },
2947 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2948 PACKET_qXfer_spu_write },
2949 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2950 PACKET_QPassSignals },
2951 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2952 PACKET_QStartNoAckMode },
2953 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2954 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
2955 };
2956
2957 static void
2958 remote_query_supported (void)
2959 {
2960 struct remote_state *rs = get_remote_state ();
2961 char *next;
2962 int i;
2963 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2964
2965 /* The packet support flags are handled differently for this packet
2966 than for most others. We treat an error, a disabled packet, and
2967 an empty response identically: any features which must be reported
2968 to be used will be automatically disabled. An empty buffer
2969 accomplishes this, since that is also the representation for a list
2970 containing no features. */
2971
2972 rs->buf[0] = 0;
2973 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2974 {
2975 if (rs->extended)
2976 putpkt ("qSupported:multiprocess+");
2977 else
2978 putpkt ("qSupported");
2979
2980 getpkt (&rs->buf, &rs->buf_size, 0);
2981
2982 /* If an error occured, warn, but do not return - just reset the
2983 buffer to empty and go on to disable features. */
2984 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2985 == PACKET_ERROR)
2986 {
2987 warning (_("Remote failure reply: %s"), rs->buf);
2988 rs->buf[0] = 0;
2989 }
2990 }
2991
2992 memset (seen, 0, sizeof (seen));
2993
2994 next = rs->buf;
2995 while (*next)
2996 {
2997 enum packet_support is_supported;
2998 char *p, *end, *name_end, *value;
2999
3000 /* First separate out this item from the rest of the packet. If
3001 there's another item after this, we overwrite the separator
3002 (terminated strings are much easier to work with). */
3003 p = next;
3004 end = strchr (p, ';');
3005 if (end == NULL)
3006 {
3007 end = p + strlen (p);
3008 next = end;
3009 }
3010 else
3011 {
3012 *end = '\0';
3013 next = end + 1;
3014
3015 if (end == p)
3016 {
3017 warning (_("empty item in \"qSupported\" response"));
3018 continue;
3019 }
3020 }
3021
3022 name_end = strchr (p, '=');
3023 if (name_end)
3024 {
3025 /* This is a name=value entry. */
3026 is_supported = PACKET_ENABLE;
3027 value = name_end + 1;
3028 *name_end = '\0';
3029 }
3030 else
3031 {
3032 value = NULL;
3033 switch (end[-1])
3034 {
3035 case '+':
3036 is_supported = PACKET_ENABLE;
3037 break;
3038
3039 case '-':
3040 is_supported = PACKET_DISABLE;
3041 break;
3042
3043 case '?':
3044 is_supported = PACKET_SUPPORT_UNKNOWN;
3045 break;
3046
3047 default:
3048 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3049 continue;
3050 }
3051 end[-1] = '\0';
3052 }
3053
3054 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3055 if (strcmp (remote_protocol_features[i].name, p) == 0)
3056 {
3057 const struct protocol_feature *feature;
3058
3059 seen[i] = 1;
3060 feature = &remote_protocol_features[i];
3061 feature->func (feature, is_supported, value);
3062 break;
3063 }
3064 }
3065
3066 /* If we increased the packet size, make sure to increase the global
3067 buffer size also. We delay this until after parsing the entire
3068 qSupported packet, because this is the same buffer we were
3069 parsing. */
3070 if (rs->buf_size < rs->explicit_packet_size)
3071 {
3072 rs->buf_size = rs->explicit_packet_size;
3073 rs->buf = xrealloc (rs->buf, rs->buf_size);
3074 }
3075
3076 /* Handle the defaults for unmentioned features. */
3077 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3078 if (!seen[i])
3079 {
3080 const struct protocol_feature *feature;
3081
3082 feature = &remote_protocol_features[i];
3083 feature->func (feature, feature->default_support, NULL);
3084 }
3085 }
3086
3087
3088 static void
3089 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3090 {
3091 struct remote_state *rs = get_remote_state ();
3092
3093 if (name == 0)
3094 error (_("To open a remote debug connection, you need to specify what\n"
3095 "serial device is attached to the remote system\n"
3096 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3097
3098 /* See FIXME above. */
3099 if (!target_async_permitted)
3100 wait_forever_enabled_p = 1;
3101
3102 /* If we're connected to a running target, target_preopen will kill it.
3103 But if we're connected to a target system with no running process,
3104 then we will still be connected when it returns. Ask this question
3105 first, before target_preopen has a chance to kill anything. */
3106 if (remote_desc != NULL && !target_has_execution)
3107 {
3108 if (!from_tty
3109 || query (_("Already connected to a remote target. Disconnect? ")))
3110 pop_target ();
3111 else
3112 error (_("Still connected."));
3113 }
3114
3115 target_preopen (from_tty);
3116
3117 unpush_target (target);
3118
3119 /* This time without a query. If we were connected to an
3120 extended-remote target and target_preopen killed the running
3121 process, we may still be connected. If we are starting "target
3122 remote" now, the extended-remote target will not have been
3123 removed by unpush_target. */
3124 if (remote_desc != NULL && !target_has_execution)
3125 pop_target ();
3126
3127 /* Make sure we send the passed signals list the next time we resume. */
3128 xfree (last_pass_packet);
3129 last_pass_packet = NULL;
3130
3131 remote_fileio_reset ();
3132 reopen_exec_file ();
3133 reread_symbols ();
3134
3135 remote_desc = remote_serial_open (name);
3136 if (!remote_desc)
3137 perror_with_name (name);
3138
3139 if (baud_rate != -1)
3140 {
3141 if (serial_setbaudrate (remote_desc, baud_rate))
3142 {
3143 /* The requested speed could not be set. Error out to
3144 top level after closing remote_desc. Take care to
3145 set remote_desc to NULL to avoid closing remote_desc
3146 more than once. */
3147 serial_close (remote_desc);
3148 remote_desc = NULL;
3149 perror_with_name (name);
3150 }
3151 }
3152
3153 serial_raw (remote_desc);
3154
3155 /* If there is something sitting in the buffer we might take it as a
3156 response to a command, which would be bad. */
3157 serial_flush_input (remote_desc);
3158
3159 if (from_tty)
3160 {
3161 puts_filtered ("Remote debugging using ");
3162 puts_filtered (name);
3163 puts_filtered ("\n");
3164 }
3165 push_target (target); /* Switch to using remote target now. */
3166
3167 /* Assume that the target is running, unless we learn otherwise. */
3168 target_mark_running (target);
3169
3170 /* Register extra event sources in the event loop. */
3171 remote_async_inferior_event_token
3172 = create_async_event_handler (remote_async_inferior_event_handler,
3173 NULL);
3174 remote_async_get_pending_events_token
3175 = create_async_event_handler (remote_async_get_pending_events_handler,
3176 NULL);
3177
3178 /* Reset the target state; these things will be queried either by
3179 remote_query_supported or as they are needed. */
3180 init_all_packet_configs ();
3181 rs->cached_wait_status = 0;
3182 rs->explicit_packet_size = 0;
3183 rs->noack_mode = 0;
3184 rs->multi_process_aware = 0;
3185 rs->extended = extended_p;
3186 rs->non_stop_aware = 0;
3187 rs->waiting_for_stop_reply = 0;
3188
3189 general_thread = not_sent_ptid;
3190 continue_thread = not_sent_ptid;
3191
3192 /* Probe for ability to use "ThreadInfo" query, as required. */
3193 use_threadinfo_query = 1;
3194 use_threadextra_query = 1;
3195
3196 if (target_async_permitted)
3197 {
3198 /* With this target we start out by owning the terminal. */
3199 remote_async_terminal_ours_p = 1;
3200
3201 /* FIXME: cagney/1999-09-23: During the initial connection it is
3202 assumed that the target is already ready and able to respond to
3203 requests. Unfortunately remote_start_remote() eventually calls
3204 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3205 around this. Eventually a mechanism that allows
3206 wait_for_inferior() to expect/get timeouts will be
3207 implemented. */
3208 wait_forever_enabled_p = 0;
3209 }
3210
3211 /* First delete any symbols previously loaded from shared libraries. */
3212 no_shared_libraries (NULL, 0);
3213
3214 /* Start afresh. */
3215 init_thread_list ();
3216
3217 /* Start the remote connection. If error() or QUIT, discard this
3218 target (we'd otherwise be in an inconsistent state) and then
3219 propogate the error on up the exception chain. This ensures that
3220 the caller doesn't stumble along blindly assuming that the
3221 function succeeded. The CLI doesn't have this problem but other
3222 UI's, such as MI do.
3223
3224 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3225 this function should return an error indication letting the
3226 caller restore the previous state. Unfortunately the command
3227 ``target remote'' is directly wired to this function making that
3228 impossible. On a positive note, the CLI side of this problem has
3229 been fixed - the function set_cmd_context() makes it possible for
3230 all the ``target ....'' commands to share a common callback
3231 function. See cli-dump.c. */
3232 {
3233 struct gdb_exception ex;
3234 struct start_remote_args args;
3235
3236 args.from_tty = from_tty;
3237 args.target = target;
3238 args.extended_p = extended_p;
3239
3240 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3241 if (ex.reason < 0)
3242 {
3243 /* Pop the partially set up target - unless something else did
3244 already before throwing the exception. */
3245 if (remote_desc != NULL)
3246 pop_target ();
3247 if (target_async_permitted)
3248 wait_forever_enabled_p = 1;
3249 throw_exception (ex);
3250 }
3251 }
3252
3253 if (target_async_permitted)
3254 wait_forever_enabled_p = 1;
3255 }
3256
3257 /* This takes a program previously attached to and detaches it. After
3258 this is done, GDB can be used to debug some other program. We
3259 better not have left any breakpoints in the target program or it'll
3260 die when it hits one. */
3261
3262 static void
3263 remote_detach_1 (char *args, int from_tty, int extended)
3264 {
3265 int pid = ptid_get_pid (inferior_ptid);
3266 struct remote_state *rs = get_remote_state ();
3267
3268 if (args)
3269 error (_("Argument given to \"detach\" when remotely debugging."));
3270
3271 if (!target_has_execution)
3272 error (_("No process to detach from."));
3273
3274 /* Tell the remote target to detach. */
3275 if (remote_multi_process_p (rs))
3276 sprintf (rs->buf, "D;%x", pid);
3277 else
3278 strcpy (rs->buf, "D");
3279
3280 putpkt (rs->buf);
3281 getpkt (&rs->buf, &rs->buf_size, 0);
3282
3283 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3284 ;
3285 else if (rs->buf[0] == '\0')
3286 error (_("Remote doesn't know how to detach"));
3287 else
3288 error (_("Can't detach process."));
3289
3290 if (from_tty)
3291 {
3292 if (remote_multi_process_p (rs))
3293 printf_filtered (_("Detached from remote %s.\n"),
3294 target_pid_to_str (pid_to_ptid (pid)));
3295 else
3296 {
3297 if (extended)
3298 puts_filtered (_("Detached from remote process.\n"));
3299 else
3300 puts_filtered (_("Ending remote debugging.\n"));
3301 }
3302 }
3303
3304 discard_pending_stop_replies (pid);
3305 detach_inferior (pid);
3306 target_mourn_inferior ();
3307 }
3308
3309 static void
3310 remote_detach (char *args, int from_tty)
3311 {
3312 remote_detach_1 (args, from_tty, 0);
3313 }
3314
3315 static void
3316 extended_remote_detach (char *args, int from_tty)
3317 {
3318 remote_detach_1 (args, from_tty, 1);
3319 }
3320
3321 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3322
3323 static void
3324 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3325 {
3326 if (args)
3327 error (_("Argument given to \"disconnect\" when remotely debugging."));
3328
3329 /* Make sure we unpush even the extended remote targets; mourn
3330 won't do it. So call remote_mourn_1 directly instead of
3331 target_mourn_inferior. */
3332 remote_mourn_1 (target);
3333
3334 if (from_tty)
3335 puts_filtered ("Ending remote debugging.\n");
3336 }
3337
3338 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3339 be chatty about it. */
3340
3341 static void
3342 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3343 {
3344 struct remote_state *rs = get_remote_state ();
3345 int pid;
3346 char *dummy;
3347 char *wait_status = NULL;
3348 struct inferior *inf;
3349
3350 if (!args)
3351 error_no_arg (_("process-id to attach"));
3352
3353 dummy = args;
3354 pid = strtol (args, &dummy, 0);
3355 /* Some targets don't set errno on errors, grrr! */
3356 if (pid == 0 && args == dummy)
3357 error (_("Illegal process-id: %s."), args);
3358
3359 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3360 error (_("This target does not support attaching to a process"));
3361
3362 sprintf (rs->buf, "vAttach;%x", pid);
3363 putpkt (rs->buf);
3364 getpkt (&rs->buf, &rs->buf_size, 0);
3365
3366 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3367 {
3368 if (from_tty)
3369 printf_unfiltered (_("Attached to %s\n"),
3370 target_pid_to_str (pid_to_ptid (pid)));
3371
3372 if (!non_stop)
3373 {
3374 /* Save the reply for later. */
3375 wait_status = alloca (strlen (rs->buf) + 1);
3376 strcpy (wait_status, rs->buf);
3377 }
3378 else if (strcmp (rs->buf, "OK") != 0)
3379 error (_("Attaching to %s failed with: %s"),
3380 target_pid_to_str (pid_to_ptid (pid)),
3381 rs->buf);
3382 }
3383 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3384 error (_("This target does not support attaching to a process"));
3385 else
3386 error (_("Attaching to %s failed"),
3387 target_pid_to_str (pid_to_ptid (pid)));
3388
3389 target_mark_running (target);
3390 inferior_ptid = pid_to_ptid (pid);
3391
3392 /* Now, if we have thread information, update inferior_ptid. */
3393 inferior_ptid = remote_current_thread (inferior_ptid);
3394
3395 inf = add_inferior (pid);
3396 inf->attach_flag = 1;
3397
3398 if (non_stop)
3399 /* Get list of threads. */
3400 remote_threads_info ();
3401 else
3402 /* Add the main thread to the thread list. */
3403 add_thread_silent (inferior_ptid);
3404
3405 /* Next, if the target can specify a description, read it. We do
3406 this before anything involving memory or registers. */
3407 target_find_description ();
3408
3409 if (!non_stop)
3410 {
3411 /* Use the previously fetched status. */
3412 gdb_assert (wait_status != NULL);
3413
3414 if (target_can_async_p ())
3415 {
3416 struct stop_reply *stop_reply;
3417 struct cleanup *old_chain;
3418
3419 stop_reply = stop_reply_xmalloc ();
3420 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3421 remote_parse_stop_reply (wait_status, stop_reply);
3422 discard_cleanups (old_chain);
3423 push_stop_reply (stop_reply);
3424
3425 target_async (inferior_event_handler, 0);
3426 }
3427 else
3428 {
3429 gdb_assert (wait_status != NULL);
3430 strcpy (rs->buf, wait_status);
3431 rs->cached_wait_status = 1;
3432 }
3433 }
3434 else
3435 gdb_assert (wait_status == NULL);
3436 }
3437
3438 static void
3439 extended_remote_attach (char *args, int from_tty)
3440 {
3441 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
3442 }
3443
3444 /* Convert hex digit A to a number. */
3445
3446 static int
3447 fromhex (int a)
3448 {
3449 if (a >= '0' && a <= '9')
3450 return a - '0';
3451 else if (a >= 'a' && a <= 'f')
3452 return a - 'a' + 10;
3453 else if (a >= 'A' && a <= 'F')
3454 return a - 'A' + 10;
3455 else
3456 error (_("Reply contains invalid hex digit %d"), a);
3457 }
3458
3459 static int
3460 hex2bin (const char *hex, gdb_byte *bin, int count)
3461 {
3462 int i;
3463
3464 for (i = 0; i < count; i++)
3465 {
3466 if (hex[0] == 0 || hex[1] == 0)
3467 {
3468 /* Hex string is short, or of uneven length.
3469 Return the count that has been converted so far. */
3470 return i;
3471 }
3472 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3473 hex += 2;
3474 }
3475 return i;
3476 }
3477
3478 /* Convert number NIB to a hex digit. */
3479
3480 static int
3481 tohex (int nib)
3482 {
3483 if (nib < 10)
3484 return '0' + nib;
3485 else
3486 return 'a' + nib - 10;
3487 }
3488
3489 static int
3490 bin2hex (const gdb_byte *bin, char *hex, int count)
3491 {
3492 int i;
3493 /* May use a length, or a nul-terminated string as input. */
3494 if (count == 0)
3495 count = strlen ((char *) bin);
3496
3497 for (i = 0; i < count; i++)
3498 {
3499 *hex++ = tohex ((*bin >> 4) & 0xf);
3500 *hex++ = tohex (*bin++ & 0xf);
3501 }
3502 *hex = 0;
3503 return i;
3504 }
3505 \f
3506 /* Check for the availability of vCont. This function should also check
3507 the response. */
3508
3509 static void
3510 remote_vcont_probe (struct remote_state *rs)
3511 {
3512 char *buf;
3513
3514 strcpy (rs->buf, "vCont?");
3515 putpkt (rs->buf);
3516 getpkt (&rs->buf, &rs->buf_size, 0);
3517 buf = rs->buf;
3518
3519 /* Make sure that the features we assume are supported. */
3520 if (strncmp (buf, "vCont", 5) == 0)
3521 {
3522 char *p = &buf[5];
3523 int support_s, support_S, support_c, support_C;
3524
3525 support_s = 0;
3526 support_S = 0;
3527 support_c = 0;
3528 support_C = 0;
3529 rs->support_vCont_t = 0;
3530 while (p && *p == ';')
3531 {
3532 p++;
3533 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3534 support_s = 1;
3535 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3536 support_S = 1;
3537 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3538 support_c = 1;
3539 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3540 support_C = 1;
3541 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3542 rs->support_vCont_t = 1;
3543
3544 p = strchr (p, ';');
3545 }
3546
3547 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3548 BUF will make packet_ok disable the packet. */
3549 if (!support_s || !support_S || !support_c || !support_C)
3550 buf[0] = 0;
3551 }
3552
3553 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3554 }
3555
3556 /* Resume the remote inferior by using a "vCont" packet. The thread
3557 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3558 resumed thread should be single-stepped and/or signalled. If PTID
3559 equals minus_one_ptid, then all threads are resumed; the thread to
3560 be stepped and/or signalled is given in the global INFERIOR_PTID.
3561 This function returns non-zero iff it resumes the inferior.
3562
3563 This function issues a strict subset of all possible vCont commands at the
3564 moment. */
3565
3566 static int
3567 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3568 {
3569 struct remote_state *rs = get_remote_state ();
3570 char *p;
3571 char *endp;
3572
3573 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3574 remote_vcont_probe (rs);
3575
3576 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3577 return 0;
3578
3579 p = rs->buf;
3580 endp = rs->buf + get_remote_packet_size ();
3581
3582 /* If we could generate a wider range of packets, we'd have to worry
3583 about overflowing BUF. Should there be a generic
3584 "multi-part-packet" packet? */
3585
3586 if (ptid_equal (ptid, magic_null_ptid))
3587 {
3588 /* MAGIC_NULL_PTID means that we don't have any active threads,
3589 so we don't have any TID numbers the inferior will
3590 understand. Make sure to only send forms that do not specify
3591 a TID. */
3592 if (step && siggnal != TARGET_SIGNAL_0)
3593 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3594 else if (step)
3595 xsnprintf (p, endp - p, "vCont;s");
3596 else if (siggnal != TARGET_SIGNAL_0)
3597 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3598 else
3599 xsnprintf (p, endp - p, "vCont;c");
3600 }
3601 else if (ptid_equal (ptid, minus_one_ptid))
3602 {
3603 /* Resume all threads, with preference for INFERIOR_PTID. */
3604 if (step && siggnal != TARGET_SIGNAL_0)
3605 {
3606 /* Step inferior_ptid with signal. */
3607 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3608 p = write_ptid (p, endp, inferior_ptid);
3609 /* And continue others. */
3610 p += xsnprintf (p, endp - p, ";c");
3611 }
3612 else if (step)
3613 {
3614 /* Step inferior_ptid. */
3615 p += xsnprintf (p, endp - p, "vCont;s:");
3616 p = write_ptid (p, endp, inferior_ptid);
3617 /* And continue others. */
3618 p += xsnprintf (p, endp - p, ";c");
3619 }
3620 else if (siggnal != TARGET_SIGNAL_0)
3621 {
3622 /* Continue inferior_ptid with signal. */
3623 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3624 p = write_ptid (p, endp, inferior_ptid);
3625 /* And continue others. */
3626 p += xsnprintf (p, endp - p, ";c");
3627 }
3628 else
3629 xsnprintf (p, endp - p, "vCont;c");
3630 }
3631 else
3632 {
3633 /* Scheduler locking; resume only PTID. */
3634 if (step && siggnal != TARGET_SIGNAL_0)
3635 {
3636 /* Step ptid with signal. */
3637 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3638 p = write_ptid (p, endp, ptid);
3639 }
3640 else if (step)
3641 {
3642 /* Step ptid. */
3643 p += xsnprintf (p, endp - p, "vCont;s:");
3644 p = write_ptid (p, endp, ptid);
3645 }
3646 else if (siggnal != TARGET_SIGNAL_0)
3647 {
3648 /* Continue ptid with signal. */
3649 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3650 p = write_ptid (p, endp, ptid);
3651 }
3652 else
3653 {
3654 /* Continue ptid. */
3655 p += xsnprintf (p, endp - p, "vCont;c:");
3656 p = write_ptid (p, endp, ptid);
3657 }
3658 }
3659
3660 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3661 putpkt (rs->buf);
3662
3663 if (non_stop)
3664 {
3665 /* In non-stop, the stub replies to vCont with "OK". The stop
3666 reply will be reported asynchronously by means of a `%Stop'
3667 notification. */
3668 getpkt (&rs->buf, &rs->buf_size, 0);
3669 if (strcmp (rs->buf, "OK") != 0)
3670 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3671 }
3672
3673 return 1;
3674 }
3675
3676 /* Tell the remote machine to resume. */
3677
3678 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3679
3680 static int last_sent_step;
3681
3682 static void
3683 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3684 {
3685 struct remote_state *rs = get_remote_state ();
3686 char *buf;
3687
3688 last_sent_signal = siggnal;
3689 last_sent_step = step;
3690
3691 /* Update the inferior on signals to silently pass, if they've changed. */
3692 remote_pass_signals ();
3693
3694 /* The vCont packet doesn't need to specify threads via Hc. */
3695 if (remote_vcont_resume (ptid, step, siggnal))
3696 goto done;
3697
3698 /* All other supported resume packets do use Hc, so set the continue
3699 thread. */
3700 if (ptid_equal (ptid, minus_one_ptid))
3701 set_continue_thread (any_thread_ptid);
3702 else
3703 set_continue_thread (ptid);
3704
3705 buf = rs->buf;
3706 if (execution_direction == EXEC_REVERSE)
3707 {
3708 /* We don't pass signals to the target in reverse exec mode. */
3709 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3710 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3711 siggnal);
3712 strcpy (buf, step ? "bs" : "bc");
3713 }
3714 else if (siggnal != TARGET_SIGNAL_0)
3715 {
3716 buf[0] = step ? 'S' : 'C';
3717 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3718 buf[2] = tohex (((int) siggnal) & 0xf);
3719 buf[3] = '\0';
3720 }
3721 else
3722 strcpy (buf, step ? "s" : "c");
3723
3724 putpkt (buf);
3725
3726 done:
3727 /* We are about to start executing the inferior, let's register it
3728 with the event loop. NOTE: this is the one place where all the
3729 execution commands end up. We could alternatively do this in each
3730 of the execution commands in infcmd.c. */
3731 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3732 into infcmd.c in order to allow inferior function calls to work
3733 NOT asynchronously. */
3734 if (target_can_async_p ())
3735 target_async (inferior_event_handler, 0);
3736
3737 /* We've just told the target to resume. The remote server will
3738 wait for the inferior to stop, and then send a stop reply. In
3739 the mean time, we can't start another command/query ourselves
3740 because the stub wouldn't be ready to process it. This applies
3741 only to the base all-stop protocol, however. In non-stop (which
3742 only supports vCont), the stub replies with an "OK", and is
3743 immediate able to process further serial input. */
3744 if (!non_stop)
3745 rs->waiting_for_stop_reply = 1;
3746 }
3747 \f
3748
3749 /* Set up the signal handler for SIGINT, while the target is
3750 executing, ovewriting the 'regular' SIGINT signal handler. */
3751 static void
3752 initialize_sigint_signal_handler (void)
3753 {
3754 signal (SIGINT, handle_remote_sigint);
3755 }
3756
3757 /* Signal handler for SIGINT, while the target is executing. */
3758 static void
3759 handle_remote_sigint (int sig)
3760 {
3761 signal (sig, handle_remote_sigint_twice);
3762 mark_async_signal_handler_wrapper (sigint_remote_token);
3763 }
3764
3765 /* Signal handler for SIGINT, installed after SIGINT has already been
3766 sent once. It will take effect the second time that the user sends
3767 a ^C. */
3768 static void
3769 handle_remote_sigint_twice (int sig)
3770 {
3771 signal (sig, handle_remote_sigint);
3772 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3773 }
3774
3775 /* Perform the real interruption of the target execution, in response
3776 to a ^C. */
3777 static void
3778 async_remote_interrupt (gdb_client_data arg)
3779 {
3780 if (remote_debug)
3781 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3782
3783 target_stop (inferior_ptid);
3784 }
3785
3786 /* Perform interrupt, if the first attempt did not succeed. Just give
3787 up on the target alltogether. */
3788 void
3789 async_remote_interrupt_twice (gdb_client_data arg)
3790 {
3791 if (remote_debug)
3792 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3793
3794 interrupt_query ();
3795 }
3796
3797 /* Reinstall the usual SIGINT handlers, after the target has
3798 stopped. */
3799 static void
3800 cleanup_sigint_signal_handler (void *dummy)
3801 {
3802 signal (SIGINT, handle_sigint);
3803 }
3804
3805 /* Send ^C to target to halt it. Target will respond, and send us a
3806 packet. */
3807 static void (*ofunc) (int);
3808
3809 /* The command line interface's stop routine. This function is installed
3810 as a signal handler for SIGINT. The first time a user requests a
3811 stop, we call remote_stop to send a break or ^C. If there is no
3812 response from the target (it didn't stop when the user requested it),
3813 we ask the user if he'd like to detach from the target. */
3814 static void
3815 remote_interrupt (int signo)
3816 {
3817 /* If this doesn't work, try more severe steps. */
3818 signal (signo, remote_interrupt_twice);
3819
3820 gdb_call_async_signal_handler (sigint_remote_token, 1);
3821 }
3822
3823 /* The user typed ^C twice. */
3824
3825 static void
3826 remote_interrupt_twice (int signo)
3827 {
3828 signal (signo, ofunc);
3829 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3830 signal (signo, remote_interrupt);
3831 }
3832
3833 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3834 thread, all threads of a remote process, or all threads of all
3835 processes. */
3836
3837 static void
3838 remote_stop_ns (ptid_t ptid)
3839 {
3840 struct remote_state *rs = get_remote_state ();
3841 char *p = rs->buf;
3842 char *endp = rs->buf + get_remote_packet_size ();
3843 struct stop_reply *reply, *next;
3844
3845 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3846 remote_vcont_probe (rs);
3847
3848 if (!rs->support_vCont_t)
3849 error (_("Remote server does not support stopping threads"));
3850
3851 if (ptid_equal (ptid, minus_one_ptid))
3852 p += xsnprintf (p, endp - p, "vCont;t");
3853 else
3854 {
3855 ptid_t nptid;
3856
3857 /* Step inferior_ptid. */
3858 p += xsnprintf (p, endp - p, "vCont;t:");
3859
3860 if (ptid_is_pid (ptid))
3861 /* All (-1) threads of process. */
3862 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3863 else
3864 {
3865 /* Small optimization: if we already have a stop reply for
3866 this thread, no use in telling the stub we want this
3867 stopped. */
3868 if (peek_stop_reply (ptid))
3869 return;
3870
3871 nptid = ptid;
3872 }
3873
3874 p = write_ptid (p, endp, nptid);
3875 }
3876
3877 /* In non-stop, we get an immediate OK reply. The stop reply will
3878 come in asynchronously by notification. */
3879 putpkt (rs->buf);
3880 getpkt (&rs->buf, &rs->buf_size, 0);
3881 if (strcmp (rs->buf, "OK") != 0)
3882 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3883 }
3884
3885 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3886 remote target. It is undefined which thread of which process
3887 reports the stop. */
3888
3889 static void
3890 remote_stop_as (ptid_t ptid)
3891 {
3892 struct remote_state *rs = get_remote_state ();
3893
3894 /* If the inferior is stopped already, but the core didn't know
3895 about it yet, just ignore the request. The cached wait status
3896 will be collected in remote_wait. */
3897 if (rs->cached_wait_status)
3898 return;
3899
3900 /* Send a break or a ^C, depending on user preference. */
3901
3902 if (remote_break)
3903 serial_send_break (remote_desc);
3904 else
3905 serial_write (remote_desc, "\003", 1);
3906 }
3907
3908 /* This is the generic stop called via the target vector. When a target
3909 interrupt is requested, either by the command line or the GUI, we
3910 will eventually end up here. */
3911
3912 static void
3913 remote_stop (ptid_t ptid)
3914 {
3915 if (remote_debug)
3916 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3917
3918 if (non_stop)
3919 remote_stop_ns (ptid);
3920 else
3921 remote_stop_as (ptid);
3922 }
3923
3924 /* Ask the user what to do when an interrupt is received. */
3925
3926 static void
3927 interrupt_query (void)
3928 {
3929 target_terminal_ours ();
3930
3931 if (target_can_async_p ())
3932 {
3933 signal (SIGINT, handle_sigint);
3934 deprecated_throw_reason (RETURN_QUIT);
3935 }
3936 else
3937 {
3938 if (query ("Interrupted while waiting for the program.\n\
3939 Give up (and stop debugging it)? "))
3940 {
3941 pop_target ();
3942 deprecated_throw_reason (RETURN_QUIT);
3943 }
3944 }
3945
3946 target_terminal_inferior ();
3947 }
3948
3949 /* Enable/disable target terminal ownership. Most targets can use
3950 terminal groups to control terminal ownership. Remote targets are
3951 different in that explicit transfer of ownership to/from GDB/target
3952 is required. */
3953
3954 static void
3955 remote_terminal_inferior (void)
3956 {
3957 if (!target_async_permitted)
3958 /* Nothing to do. */
3959 return;
3960
3961 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3962 sync_execution here. This function should only be called when
3963 GDB is resuming the inferior in the forground. A background
3964 resume (``run&'') should leave GDB in control of the terminal and
3965 consequently should not call this code. */
3966 if (!sync_execution)
3967 return;
3968 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3969 calls target_terminal_*() idenpotent. The event-loop GDB talking
3970 to an asynchronous target with a synchronous command calls this
3971 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3972 stops trying to transfer the terminal to the target when it
3973 shouldn't this guard can go away. */
3974 if (!remote_async_terminal_ours_p)
3975 return;
3976 delete_file_handler (input_fd);
3977 remote_async_terminal_ours_p = 0;
3978 initialize_sigint_signal_handler ();
3979 /* NOTE: At this point we could also register our selves as the
3980 recipient of all input. Any characters typed could then be
3981 passed on down to the target. */
3982 }
3983
3984 static void
3985 remote_terminal_ours (void)
3986 {
3987 if (!target_async_permitted)
3988 /* Nothing to do. */
3989 return;
3990
3991 /* See FIXME in remote_terminal_inferior. */
3992 if (!sync_execution)
3993 return;
3994 /* See FIXME in remote_terminal_inferior. */
3995 if (remote_async_terminal_ours_p)
3996 return;
3997 cleanup_sigint_signal_handler (NULL);
3998 add_file_handler (input_fd, stdin_event_handler, 0);
3999 remote_async_terminal_ours_p = 1;
4000 }
4001
4002 void
4003 remote_console_output (char *msg)
4004 {
4005 char *p;
4006
4007 for (p = msg; p[0] && p[1]; p += 2)
4008 {
4009 char tb[2];
4010 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4011 tb[0] = c;
4012 tb[1] = 0;
4013 fputs_unfiltered (tb, gdb_stdtarg);
4014 }
4015 gdb_flush (gdb_stdtarg);
4016 }
4017
4018 typedef struct cached_reg
4019 {
4020 int num;
4021 gdb_byte data[MAX_REGISTER_SIZE];
4022 } cached_reg_t;
4023
4024 DEF_VEC_O(cached_reg_t);
4025
4026 struct stop_reply
4027 {
4028 struct stop_reply *next;
4029
4030 ptid_t ptid;
4031
4032 struct target_waitstatus ws;
4033
4034 VEC(cached_reg_t) *regcache;
4035
4036 int stopped_by_watchpoint_p;
4037 CORE_ADDR watch_data_address;
4038
4039 int solibs_changed;
4040 int replay_event;
4041 };
4042
4043 /* The list of already fetched and acknowledged stop events. */
4044 static struct stop_reply *stop_reply_queue;
4045
4046 static struct stop_reply *
4047 stop_reply_xmalloc (void)
4048 {
4049 struct stop_reply *r = XMALLOC (struct stop_reply);
4050 r->next = NULL;
4051 return r;
4052 }
4053
4054 static void
4055 stop_reply_xfree (struct stop_reply *r)
4056 {
4057 if (r != NULL)
4058 {
4059 VEC_free (cached_reg_t, r->regcache);
4060 xfree (r);
4061 }
4062 }
4063
4064 /* Discard all pending stop replies of inferior PID. If PID is -1,
4065 discard everything. */
4066
4067 static void
4068 discard_pending_stop_replies (int pid)
4069 {
4070 struct stop_reply *prev = NULL, *reply, *next;
4071
4072 /* Discard the in-flight notification. */
4073 if (pending_stop_reply != NULL
4074 && (pid == -1
4075 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4076 {
4077 stop_reply_xfree (pending_stop_reply);
4078 pending_stop_reply = NULL;
4079 }
4080
4081 /* Discard the stop replies we have already pulled with
4082 vStopped. */
4083 for (reply = stop_reply_queue; reply; reply = next)
4084 {
4085 next = reply->next;
4086 if (pid == -1
4087 || ptid_get_pid (reply->ptid) == pid)
4088 {
4089 if (reply == stop_reply_queue)
4090 stop_reply_queue = reply->next;
4091 else
4092 prev->next = reply->next;
4093
4094 stop_reply_xfree (reply);
4095 }
4096 else
4097 prev = reply;
4098 }
4099 }
4100
4101 /* Cleanup wrapper. */
4102
4103 static void
4104 do_stop_reply_xfree (void *arg)
4105 {
4106 struct stop_reply *r = arg;
4107 stop_reply_xfree (r);
4108 }
4109
4110 /* Look for a queued stop reply belonging to PTID. If one is found,
4111 remove it from the queue, and return it. Returns NULL if none is
4112 found. If there are still queued events left to process, tell the
4113 event loop to get back to target_wait soon. */
4114
4115 static struct stop_reply *
4116 queued_stop_reply (ptid_t ptid)
4117 {
4118 struct stop_reply *it, *prev;
4119 struct stop_reply head;
4120
4121 head.next = stop_reply_queue;
4122 prev = &head;
4123
4124 it = head.next;
4125
4126 if (!ptid_equal (ptid, minus_one_ptid))
4127 for (; it; prev = it, it = it->next)
4128 if (ptid_equal (ptid, it->ptid))
4129 break;
4130
4131 if (it)
4132 {
4133 prev->next = it->next;
4134 it->next = NULL;
4135 }
4136
4137 stop_reply_queue = head.next;
4138
4139 if (stop_reply_queue)
4140 /* There's still at least an event left. */
4141 mark_async_event_handler (remote_async_inferior_event_token);
4142
4143 return it;
4144 }
4145
4146 /* Push a fully parsed stop reply in the stop reply queue. Since we
4147 know that we now have at least one queued event left to pass to the
4148 core side, tell the event loop to get back to target_wait soon. */
4149
4150 static void
4151 push_stop_reply (struct stop_reply *new_event)
4152 {
4153 struct stop_reply *event;
4154
4155 if (stop_reply_queue)
4156 {
4157 for (event = stop_reply_queue;
4158 event && event->next;
4159 event = event->next)
4160 ;
4161
4162 event->next = new_event;
4163 }
4164 else
4165 stop_reply_queue = new_event;
4166
4167 mark_async_event_handler (remote_async_inferior_event_token);
4168 }
4169
4170 /* Returns true if we have a stop reply for PTID. */
4171
4172 static int
4173 peek_stop_reply (ptid_t ptid)
4174 {
4175 struct stop_reply *it;
4176
4177 for (it = stop_reply_queue; it; it = it->next)
4178 if (ptid_equal (ptid, it->ptid))
4179 {
4180 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4181 return 1;
4182 }
4183
4184 return 0;
4185 }
4186
4187 /* Parse the stop reply in BUF. Either the function succeeds, and the
4188 result is stored in EVENT, or throws an error. */
4189
4190 static void
4191 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4192 {
4193 struct remote_arch_state *rsa = get_remote_arch_state ();
4194 ULONGEST addr;
4195 char *p;
4196
4197 event->ptid = null_ptid;
4198 event->ws.kind = TARGET_WAITKIND_IGNORE;
4199 event->ws.value.integer = 0;
4200 event->solibs_changed = 0;
4201 event->replay_event = 0;
4202 event->stopped_by_watchpoint_p = 0;
4203 event->regcache = NULL;
4204
4205 switch (buf[0])
4206 {
4207 case 'T': /* Status with PC, SP, FP, ... */
4208 {
4209 gdb_byte regs[MAX_REGISTER_SIZE];
4210
4211 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4212 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4213 ss = signal number
4214 n... = register number
4215 r... = register contents
4216 */
4217
4218 p = &buf[3]; /* after Txx */
4219 while (*p)
4220 {
4221 char *p1;
4222 char *p_temp;
4223 int fieldsize;
4224 LONGEST pnum = 0;
4225
4226 /* If the packet contains a register number, save it in
4227 pnum and set p1 to point to the character following it.
4228 Otherwise p1 points to p. */
4229
4230 /* If this packet is an awatch packet, don't parse the 'a'
4231 as a register number. */
4232
4233 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4234 {
4235 /* Read the ``P'' register number. */
4236 pnum = strtol (p, &p_temp, 16);
4237 p1 = p_temp;
4238 }
4239 else
4240 p1 = p;
4241
4242 if (p1 == p) /* No register number present here. */
4243 {
4244 p1 = strchr (p, ':');
4245 if (p1 == NULL)
4246 error (_("Malformed packet(a) (missing colon): %s\n\
4247 Packet: '%s'\n"),
4248 p, buf);
4249 if (strncmp (p, "thread", p1 - p) == 0)
4250 event->ptid = read_ptid (++p1, &p);
4251 else if ((strncmp (p, "watch", p1 - p) == 0)
4252 || (strncmp (p, "rwatch", p1 - p) == 0)
4253 || (strncmp (p, "awatch", p1 - p) == 0))
4254 {
4255 event->stopped_by_watchpoint_p = 1;
4256 p = unpack_varlen_hex (++p1, &addr);
4257 event->watch_data_address = (CORE_ADDR) addr;
4258 }
4259 else if (strncmp (p, "library", p1 - p) == 0)
4260 {
4261 p1++;
4262 p_temp = p1;
4263 while (*p_temp && *p_temp != ';')
4264 p_temp++;
4265
4266 event->solibs_changed = 1;
4267 p = p_temp;
4268 }
4269 else if (strncmp (p, "replaylog", p1 - p) == 0)
4270 {
4271 /* NO_HISTORY event.
4272 p1 will indicate "begin" or "end", but
4273 it makes no difference for now, so ignore it. */
4274 event->replay_event = 1;
4275 p_temp = strchr (p1 + 1, ';');
4276 if (p_temp)
4277 p = p_temp;
4278 }
4279 else
4280 {
4281 /* Silently skip unknown optional info. */
4282 p_temp = strchr (p1 + 1, ';');
4283 if (p_temp)
4284 p = p_temp;
4285 }
4286 }
4287 else
4288 {
4289 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4290 cached_reg_t cached_reg;
4291
4292 cached_reg.num = reg->regnum;
4293
4294 p = p1;
4295
4296 if (*p != ':')
4297 error (_("Malformed packet(b) (missing colon): %s\n\
4298 Packet: '%s'\n"),
4299 p, buf);
4300 ++p;
4301
4302 if (reg == NULL)
4303 error (_("Remote sent bad register number %s: %s\n\
4304 Packet: '%s'\n"),
4305 phex_nz (pnum, 0), p, buf);
4306
4307 fieldsize = hex2bin (p, cached_reg.data,
4308 register_size (target_gdbarch,
4309 reg->regnum));
4310 p += 2 * fieldsize;
4311 if (fieldsize < register_size (target_gdbarch,
4312 reg->regnum))
4313 warning (_("Remote reply is too short: %s"), buf);
4314
4315 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4316 }
4317
4318 if (*p != ';')
4319 error (_("Remote register badly formatted: %s\nhere: %s"),
4320 buf, p);
4321 ++p;
4322 }
4323 }
4324 /* fall through */
4325 case 'S': /* Old style status, just signal only. */
4326 if (event->solibs_changed)
4327 event->ws.kind = TARGET_WAITKIND_LOADED;
4328 else if (event->replay_event)
4329 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4330 else
4331 {
4332 event->ws.kind = TARGET_WAITKIND_STOPPED;
4333 event->ws.value.sig = (enum target_signal)
4334 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4335 }
4336 break;
4337 case 'W': /* Target exited. */
4338 case 'X':
4339 {
4340 char *p;
4341 int pid;
4342 ULONGEST value;
4343
4344 /* GDB used to accept only 2 hex chars here. Stubs should
4345 only send more if they detect GDB supports multi-process
4346 support. */
4347 p = unpack_varlen_hex (&buf[1], &value);
4348
4349 if (buf[0] == 'W')
4350 {
4351 /* The remote process exited. */
4352 event->ws.kind = TARGET_WAITKIND_EXITED;
4353 event->ws.value.integer = value;
4354 }
4355 else
4356 {
4357 /* The remote process exited with a signal. */
4358 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4359 event->ws.value.sig = (enum target_signal) value;
4360 }
4361
4362 /* If no process is specified, assume inferior_ptid. */
4363 pid = ptid_get_pid (inferior_ptid);
4364 if (*p == '\0')
4365 ;
4366 else if (*p == ';')
4367 {
4368 p++;
4369
4370 if (p == '\0')
4371 ;
4372 else if (strncmp (p,
4373 "process:", sizeof ("process:") - 1) == 0)
4374 {
4375 ULONGEST upid;
4376 p += sizeof ("process:") - 1;
4377 unpack_varlen_hex (p, &upid);
4378 pid = upid;
4379 }
4380 else
4381 error (_("unknown stop reply packet: %s"), buf);
4382 }
4383 else
4384 error (_("unknown stop reply packet: %s"), buf);
4385 event->ptid = pid_to_ptid (pid);
4386 }
4387 break;
4388 }
4389
4390 if (non_stop && ptid_equal (event->ptid, null_ptid))
4391 error (_("No process or thread specified in stop reply: %s"), buf);
4392 }
4393
4394 /* When the stub wants to tell GDB about a new stop reply, it sends a
4395 stop notification (%Stop). Those can come it at any time, hence,
4396 we have to make sure that any pending putpkt/getpkt sequence we're
4397 making is finished, before querying the stub for more events with
4398 vStopped. E.g., if we started a vStopped sequence immediatelly
4399 upon receiving the %Stop notification, something like this could
4400 happen:
4401
4402 1.1) --> Hg 1
4403 1.2) <-- OK
4404 1.3) --> g
4405 1.4) <-- %Stop
4406 1.5) --> vStopped
4407 1.6) <-- (registers reply to step #1.3)
4408
4409 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4410 query.
4411
4412 To solve this, whenever we parse a %Stop notification sucessfully,
4413 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4414 doing whatever we were doing:
4415
4416 2.1) --> Hg 1
4417 2.2) <-- OK
4418 2.3) --> g
4419 2.4) <-- %Stop
4420 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4421 2.5) <-- (registers reply to step #2.3)
4422
4423 Eventualy after step #2.5, we return to the event loop, which
4424 notices there's an event on the
4425 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4426 associated callback --- the function below. At this point, we're
4427 always safe to start a vStopped sequence. :
4428
4429 2.6) --> vStopped
4430 2.7) <-- T05 thread:2
4431 2.8) --> vStopped
4432 2.9) --> OK
4433 */
4434
4435 static void
4436 remote_get_pending_stop_replies (void)
4437 {
4438 struct remote_state *rs = get_remote_state ();
4439 int ret;
4440
4441 if (pending_stop_reply)
4442 {
4443 /* acknowledge */
4444 putpkt ("vStopped");
4445
4446 /* Now we can rely on it. */
4447 push_stop_reply (pending_stop_reply);
4448 pending_stop_reply = NULL;
4449
4450 while (1)
4451 {
4452 getpkt (&rs->buf, &rs->buf_size, 0);
4453 if (strcmp (rs->buf, "OK") == 0)
4454 break;
4455 else
4456 {
4457 struct cleanup *old_chain;
4458 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4459
4460 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4461 remote_parse_stop_reply (rs->buf, stop_reply);
4462
4463 /* acknowledge */
4464 putpkt ("vStopped");
4465
4466 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4467 {
4468 /* Now we can rely on it. */
4469 discard_cleanups (old_chain);
4470 push_stop_reply (stop_reply);
4471 }
4472 else
4473 /* We got an unknown stop reply. */
4474 do_cleanups (old_chain);
4475 }
4476 }
4477 }
4478 }
4479
4480
4481 /* Called when it is decided that STOP_REPLY holds the info of the
4482 event that is to be returned to the core. This function always
4483 destroys STOP_REPLY. */
4484
4485 static ptid_t
4486 process_stop_reply (struct stop_reply *stop_reply,
4487 struct target_waitstatus *status)
4488 {
4489 ptid_t ptid;
4490
4491 *status = stop_reply->ws;
4492 ptid = stop_reply->ptid;
4493
4494 /* If no thread/process was reported by the stub, assume the current
4495 inferior. */
4496 if (ptid_equal (ptid, null_ptid))
4497 ptid = inferior_ptid;
4498
4499 if (status->kind == TARGET_WAITKIND_EXITED
4500 || status->kind == TARGET_WAITKIND_SIGNALLED)
4501 {
4502 int pid = ptid_get_pid (ptid);
4503 delete_inferior (pid);
4504 }
4505 else
4506 notice_new_inferiors (ptid);
4507
4508 /* Expedited registers. */
4509 if (stop_reply->regcache)
4510 {
4511 cached_reg_t *reg;
4512 int ix;
4513
4514 for (ix = 0;
4515 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4516 ix++)
4517 regcache_raw_supply (get_thread_regcache (ptid),
4518 reg->num, reg->data);
4519 VEC_free (cached_reg_t, stop_reply->regcache);
4520 }
4521
4522 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4523 remote_watch_data_address = stop_reply->watch_data_address;
4524
4525 stop_reply_xfree (stop_reply);
4526 return ptid;
4527 }
4528
4529 /* The non-stop mode version of target_wait. */
4530
4531 static ptid_t
4532 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4533 {
4534 struct remote_state *rs = get_remote_state ();
4535 struct remote_arch_state *rsa = get_remote_arch_state ();
4536 ptid_t event_ptid = null_ptid;
4537 struct stop_reply *stop_reply;
4538 int ret;
4539
4540 /* If in non-stop mode, get out of getpkt even if a
4541 notification is received. */
4542
4543 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4544 0 /* forever */);
4545 while (1)
4546 {
4547 if (ret != -1)
4548 switch (rs->buf[0])
4549 {
4550 case 'E': /* Error of some sort. */
4551 /* We're out of sync with the target now. Did it continue
4552 or not? We can't tell which thread it was in non-stop,
4553 so just ignore this. */
4554 warning (_("Remote failure reply: %s"), rs->buf);
4555 break;
4556 case 'O': /* Console output. */
4557 remote_console_output (rs->buf + 1);
4558 break;
4559 default:
4560 warning (_("Invalid remote reply: %s"), rs->buf);
4561 break;
4562 }
4563
4564 /* Acknowledge a pending stop reply that may have arrived in the
4565 mean time. */
4566 if (pending_stop_reply != NULL)
4567 remote_get_pending_stop_replies ();
4568
4569 /* If indeed we noticed a stop reply, we're done. */
4570 stop_reply = queued_stop_reply (ptid);
4571 if (stop_reply != NULL)
4572 return process_stop_reply (stop_reply, status);
4573
4574 /* Still no event. If we're in asynchronous mode, then just
4575 return to the event loop. */
4576 if (remote_is_async_p ())
4577 {
4578 status->kind = TARGET_WAITKIND_IGNORE;
4579 return minus_one_ptid;
4580 }
4581
4582 /* Otherwise, asynchronous mode is masked, so do a blocking
4583 wait. */
4584 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4585 1 /* forever */);
4586 }
4587 }
4588
4589 /* Wait until the remote machine stops, then return, storing status in
4590 STATUS just as `wait' would. */
4591
4592 static ptid_t
4593 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4594 {
4595 struct remote_state *rs = get_remote_state ();
4596 struct remote_arch_state *rsa = get_remote_arch_state ();
4597 ptid_t event_ptid = null_ptid;
4598 ULONGEST addr;
4599 int solibs_changed = 0;
4600 char *buf, *p;
4601 struct stop_reply *stop_reply;
4602
4603 status->kind = TARGET_WAITKIND_IGNORE;
4604 status->value.integer = 0;
4605
4606 stop_reply = queued_stop_reply (ptid);
4607 if (stop_reply != NULL)
4608 return process_stop_reply (stop_reply, status);
4609
4610 if (rs->cached_wait_status)
4611 /* Use the cached wait status, but only once. */
4612 rs->cached_wait_status = 0;
4613 else
4614 {
4615 int ret;
4616
4617 if (!target_is_async_p ())
4618 {
4619 ofunc = signal (SIGINT, remote_interrupt);
4620 /* If the user hit C-c before this packet, or between packets,
4621 pretend that it was hit right here. */
4622 if (quit_flag)
4623 {
4624 quit_flag = 0;
4625 remote_interrupt (SIGINT);
4626 }
4627 }
4628
4629 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4630 _never_ wait for ever -> test on target_is_async_p().
4631 However, before we do that we need to ensure that the caller
4632 knows how to take the target into/out of async mode. */
4633 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4634 if (!target_is_async_p ())
4635 signal (SIGINT, ofunc);
4636 }
4637
4638 buf = rs->buf;
4639
4640 remote_stopped_by_watchpoint_p = 0;
4641
4642 /* We got something. */
4643 rs->waiting_for_stop_reply = 0;
4644
4645 switch (buf[0])
4646 {
4647 case 'E': /* Error of some sort. */
4648 /* We're out of sync with the target now. Did it continue or
4649 not? Not is more likely, so report a stop. */
4650 warning (_("Remote failure reply: %s"), buf);
4651 status->kind = TARGET_WAITKIND_STOPPED;
4652 status->value.sig = TARGET_SIGNAL_0;
4653 break;
4654 case 'F': /* File-I/O request. */
4655 remote_fileio_request (buf);
4656 break;
4657 case 'T': case 'S': case 'X': case 'W':
4658 {
4659 struct stop_reply *stop_reply;
4660 struct cleanup *old_chain;
4661
4662 stop_reply = stop_reply_xmalloc ();
4663 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4664 remote_parse_stop_reply (buf, stop_reply);
4665 discard_cleanups (old_chain);
4666 event_ptid = process_stop_reply (stop_reply, status);
4667 break;
4668 }
4669 case 'O': /* Console output. */
4670 remote_console_output (buf + 1);
4671
4672 /* The target didn't really stop; keep waiting. */
4673 rs->waiting_for_stop_reply = 1;
4674
4675 break;
4676 case '\0':
4677 if (last_sent_signal != TARGET_SIGNAL_0)
4678 {
4679 /* Zero length reply means that we tried 'S' or 'C' and the
4680 remote system doesn't support it. */
4681 target_terminal_ours_for_output ();
4682 printf_filtered
4683 ("Can't send signals to this remote system. %s not sent.\n",
4684 target_signal_to_name (last_sent_signal));
4685 last_sent_signal = TARGET_SIGNAL_0;
4686 target_terminal_inferior ();
4687
4688 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4689 putpkt ((char *) buf);
4690
4691 /* We just told the target to resume, so a stop reply is in
4692 order. */
4693 rs->waiting_for_stop_reply = 1;
4694 break;
4695 }
4696 /* else fallthrough */
4697 default:
4698 warning (_("Invalid remote reply: %s"), buf);
4699 /* Keep waiting. */
4700 rs->waiting_for_stop_reply = 1;
4701 break;
4702 }
4703
4704 if (status->kind == TARGET_WAITKIND_IGNORE)
4705 /* Nothing interesting happened. */
4706 return minus_one_ptid;
4707 else if (status->kind != TARGET_WAITKIND_EXITED
4708 && status->kind != TARGET_WAITKIND_SIGNALLED)
4709 {
4710 if (!ptid_equal (event_ptid, null_ptid))
4711 record_currthread (event_ptid);
4712 else
4713 event_ptid = inferior_ptid;
4714 }
4715 else
4716 /* A process exit. Invalidate our notion of current thread. */
4717 record_currthread (minus_one_ptid);
4718
4719 return event_ptid;
4720 }
4721
4722 /* Wait until the remote machine stops, then return, storing status in
4723 STATUS just as `wait' would. */
4724
4725 static ptid_t
4726 remote_wait (ptid_t ptid, struct target_waitstatus *status)
4727 {
4728 ptid_t event_ptid;
4729
4730 if (non_stop)
4731 event_ptid = remote_wait_ns (ptid, status);
4732 else
4733 {
4734 /* In synchronous mode, keep waiting until the target stops. In
4735 asynchronous mode, always return to the event loop. */
4736
4737 do
4738 {
4739 event_ptid = remote_wait_as (ptid, status);
4740 }
4741 while (status->kind == TARGET_WAITKIND_IGNORE
4742 && !target_can_async_p ());
4743 }
4744
4745 if (target_can_async_p ())
4746 {
4747 /* If there are are events left in the queue tell the event loop
4748 to return here. */
4749 if (stop_reply_queue)
4750 mark_async_event_handler (remote_async_inferior_event_token);
4751 }
4752
4753 return event_ptid;
4754 }
4755
4756 /* Fetch a single register using a 'p' packet. */
4757
4758 static int
4759 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4760 {
4761 struct remote_state *rs = get_remote_state ();
4762 char *buf, *p;
4763 char regp[MAX_REGISTER_SIZE];
4764 int i;
4765
4766 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4767 return 0;
4768
4769 if (reg->pnum == -1)
4770 return 0;
4771
4772 p = rs->buf;
4773 *p++ = 'p';
4774 p += hexnumstr (p, reg->pnum);
4775 *p++ = '\0';
4776 remote_send (&rs->buf, &rs->buf_size);
4777
4778 buf = rs->buf;
4779
4780 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4781 {
4782 case PACKET_OK:
4783 break;
4784 case PACKET_UNKNOWN:
4785 return 0;
4786 case PACKET_ERROR:
4787 error (_("Could not fetch register \"%s\""),
4788 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4789 }
4790
4791 /* If this register is unfetchable, tell the regcache. */
4792 if (buf[0] == 'x')
4793 {
4794 regcache_raw_supply (regcache, reg->regnum, NULL);
4795 return 1;
4796 }
4797
4798 /* Otherwise, parse and supply the value. */
4799 p = buf;
4800 i = 0;
4801 while (p[0] != 0)
4802 {
4803 if (p[1] == 0)
4804 error (_("fetch_register_using_p: early buf termination"));
4805
4806 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4807 p += 2;
4808 }
4809 regcache_raw_supply (regcache, reg->regnum, regp);
4810 return 1;
4811 }
4812
4813 /* Fetch the registers included in the target's 'g' packet. */
4814
4815 static int
4816 send_g_packet (void)
4817 {
4818 struct remote_state *rs = get_remote_state ();
4819 int i, buf_len;
4820 char *p;
4821 char *regs;
4822
4823 sprintf (rs->buf, "g");
4824 remote_send (&rs->buf, &rs->buf_size);
4825
4826 /* We can get out of synch in various cases. If the first character
4827 in the buffer is not a hex character, assume that has happened
4828 and try to fetch another packet to read. */
4829 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4830 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4831 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4832 && rs->buf[0] != 'x') /* New: unavailable register value. */
4833 {
4834 if (remote_debug)
4835 fprintf_unfiltered (gdb_stdlog,
4836 "Bad register packet; fetching a new packet\n");
4837 getpkt (&rs->buf, &rs->buf_size, 0);
4838 }
4839
4840 buf_len = strlen (rs->buf);
4841
4842 /* Sanity check the received packet. */
4843 if (buf_len % 2 != 0)
4844 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4845
4846 return buf_len / 2;
4847 }
4848
4849 static void
4850 process_g_packet (struct regcache *regcache)
4851 {
4852 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4853 struct remote_state *rs = get_remote_state ();
4854 struct remote_arch_state *rsa = get_remote_arch_state ();
4855 int i, buf_len;
4856 char *p;
4857 char *regs;
4858
4859 buf_len = strlen (rs->buf);
4860
4861 /* Further sanity checks, with knowledge of the architecture. */
4862 if (buf_len > 2 * rsa->sizeof_g_packet)
4863 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4864
4865 /* Save the size of the packet sent to us by the target. It is used
4866 as a heuristic when determining the max size of packets that the
4867 target can safely receive. */
4868 if (rsa->actual_register_packet_size == 0)
4869 rsa->actual_register_packet_size = buf_len;
4870
4871 /* If this is smaller than we guessed the 'g' packet would be,
4872 update our records. A 'g' reply that doesn't include a register's
4873 value implies either that the register is not available, or that
4874 the 'p' packet must be used. */
4875 if (buf_len < 2 * rsa->sizeof_g_packet)
4876 {
4877 rsa->sizeof_g_packet = buf_len / 2;
4878
4879 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4880 {
4881 if (rsa->regs[i].pnum == -1)
4882 continue;
4883
4884 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4885 rsa->regs[i].in_g_packet = 0;
4886 else
4887 rsa->regs[i].in_g_packet = 1;
4888 }
4889 }
4890
4891 regs = alloca (rsa->sizeof_g_packet);
4892
4893 /* Unimplemented registers read as all bits zero. */
4894 memset (regs, 0, rsa->sizeof_g_packet);
4895
4896 /* Reply describes registers byte by byte, each byte encoded as two
4897 hex characters. Suck them all up, then supply them to the
4898 register cacheing/storage mechanism. */
4899
4900 p = rs->buf;
4901 for (i = 0; i < rsa->sizeof_g_packet; i++)
4902 {
4903 if (p[0] == 0 || p[1] == 0)
4904 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4905 internal_error (__FILE__, __LINE__,
4906 "unexpected end of 'g' packet reply");
4907
4908 if (p[0] == 'x' && p[1] == 'x')
4909 regs[i] = 0; /* 'x' */
4910 else
4911 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4912 p += 2;
4913 }
4914
4915 {
4916 int i;
4917 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4918 {
4919 struct packet_reg *r = &rsa->regs[i];
4920 if (r->in_g_packet)
4921 {
4922 if (r->offset * 2 >= strlen (rs->buf))
4923 /* This shouldn't happen - we adjusted in_g_packet above. */
4924 internal_error (__FILE__, __LINE__,
4925 "unexpected end of 'g' packet reply");
4926 else if (rs->buf[r->offset * 2] == 'x')
4927 {
4928 gdb_assert (r->offset * 2 < strlen (rs->buf));
4929 /* The register isn't available, mark it as such (at
4930 the same time setting the value to zero). */
4931 regcache_raw_supply (regcache, r->regnum, NULL);
4932 }
4933 else
4934 regcache_raw_supply (regcache, r->regnum,
4935 regs + r->offset);
4936 }
4937 }
4938 }
4939 }
4940
4941 static void
4942 fetch_registers_using_g (struct regcache *regcache)
4943 {
4944 send_g_packet ();
4945 process_g_packet (regcache);
4946 }
4947
4948 static void
4949 remote_fetch_registers (struct regcache *regcache, int regnum)
4950 {
4951 struct remote_state *rs = get_remote_state ();
4952 struct remote_arch_state *rsa = get_remote_arch_state ();
4953 int i;
4954
4955 set_general_thread (inferior_ptid);
4956
4957 if (regnum >= 0)
4958 {
4959 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4960 gdb_assert (reg != NULL);
4961
4962 /* If this register might be in the 'g' packet, try that first -
4963 we are likely to read more than one register. If this is the
4964 first 'g' packet, we might be overly optimistic about its
4965 contents, so fall back to 'p'. */
4966 if (reg->in_g_packet)
4967 {
4968 fetch_registers_using_g (regcache);
4969 if (reg->in_g_packet)
4970 return;
4971 }
4972
4973 if (fetch_register_using_p (regcache, reg))
4974 return;
4975
4976 /* This register is not available. */
4977 regcache_raw_supply (regcache, reg->regnum, NULL);
4978
4979 return;
4980 }
4981
4982 fetch_registers_using_g (regcache);
4983
4984 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4985 if (!rsa->regs[i].in_g_packet)
4986 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4987 {
4988 /* This register is not available. */
4989 regcache_raw_supply (regcache, i, NULL);
4990 }
4991 }
4992
4993 /* Prepare to store registers. Since we may send them all (using a
4994 'G' request), we have to read out the ones we don't want to change
4995 first. */
4996
4997 static void
4998 remote_prepare_to_store (struct regcache *regcache)
4999 {
5000 struct remote_arch_state *rsa = get_remote_arch_state ();
5001 int i;
5002 gdb_byte buf[MAX_REGISTER_SIZE];
5003
5004 /* Make sure the entire registers array is valid. */
5005 switch (remote_protocol_packets[PACKET_P].support)
5006 {
5007 case PACKET_DISABLE:
5008 case PACKET_SUPPORT_UNKNOWN:
5009 /* Make sure all the necessary registers are cached. */
5010 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5011 if (rsa->regs[i].in_g_packet)
5012 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5013 break;
5014 case PACKET_ENABLE:
5015 break;
5016 }
5017 }
5018
5019 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5020 packet was not recognized. */
5021
5022 static int
5023 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5024 {
5025 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5026 struct remote_state *rs = get_remote_state ();
5027 struct remote_arch_state *rsa = get_remote_arch_state ();
5028 /* Try storing a single register. */
5029 char *buf = rs->buf;
5030 gdb_byte regp[MAX_REGISTER_SIZE];
5031 char *p;
5032
5033 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5034 return 0;
5035
5036 if (reg->pnum == -1)
5037 return 0;
5038
5039 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5040 p = buf + strlen (buf);
5041 regcache_raw_collect (regcache, reg->regnum, regp);
5042 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5043 remote_send (&rs->buf, &rs->buf_size);
5044
5045 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5046 {
5047 case PACKET_OK:
5048 return 1;
5049 case PACKET_ERROR:
5050 error (_("Could not write register \"%s\""),
5051 gdbarch_register_name (gdbarch, reg->regnum));
5052 case PACKET_UNKNOWN:
5053 return 0;
5054 default:
5055 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5056 }
5057 }
5058
5059 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5060 contents of the register cache buffer. FIXME: ignores errors. */
5061
5062 static void
5063 store_registers_using_G (const struct regcache *regcache)
5064 {
5065 struct remote_state *rs = get_remote_state ();
5066 struct remote_arch_state *rsa = get_remote_arch_state ();
5067 gdb_byte *regs;
5068 char *p;
5069
5070 /* Extract all the registers in the regcache copying them into a
5071 local buffer. */
5072 {
5073 int i;
5074 regs = alloca (rsa->sizeof_g_packet);
5075 memset (regs, 0, rsa->sizeof_g_packet);
5076 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5077 {
5078 struct packet_reg *r = &rsa->regs[i];
5079 if (r->in_g_packet)
5080 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5081 }
5082 }
5083
5084 /* Command describes registers byte by byte,
5085 each byte encoded as two hex characters. */
5086 p = rs->buf;
5087 *p++ = 'G';
5088 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5089 updated. */
5090 bin2hex (regs, p, rsa->sizeof_g_packet);
5091 remote_send (&rs->buf, &rs->buf_size);
5092 }
5093
5094 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5095 of the register cache buffer. FIXME: ignores errors. */
5096
5097 static void
5098 remote_store_registers (struct regcache *regcache, int regnum)
5099 {
5100 struct remote_state *rs = get_remote_state ();
5101 struct remote_arch_state *rsa = get_remote_arch_state ();
5102 int i;
5103
5104 set_general_thread (inferior_ptid);
5105
5106 if (regnum >= 0)
5107 {
5108 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5109 gdb_assert (reg != NULL);
5110
5111 /* Always prefer to store registers using the 'P' packet if
5112 possible; we often change only a small number of registers.
5113 Sometimes we change a larger number; we'd need help from a
5114 higher layer to know to use 'G'. */
5115 if (store_register_using_P (regcache, reg))
5116 return;
5117
5118 /* For now, don't complain if we have no way to write the
5119 register. GDB loses track of unavailable registers too
5120 easily. Some day, this may be an error. We don't have
5121 any way to read the register, either... */
5122 if (!reg->in_g_packet)
5123 return;
5124
5125 store_registers_using_G (regcache);
5126 return;
5127 }
5128
5129 store_registers_using_G (regcache);
5130
5131 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5132 if (!rsa->regs[i].in_g_packet)
5133 if (!store_register_using_P (regcache, &rsa->regs[i]))
5134 /* See above for why we do not issue an error here. */
5135 continue;
5136 }
5137 \f
5138
5139 /* Return the number of hex digits in num. */
5140
5141 static int
5142 hexnumlen (ULONGEST num)
5143 {
5144 int i;
5145
5146 for (i = 0; num != 0; i++)
5147 num >>= 4;
5148
5149 return max (i, 1);
5150 }
5151
5152 /* Set BUF to the minimum number of hex digits representing NUM. */
5153
5154 static int
5155 hexnumstr (char *buf, ULONGEST num)
5156 {
5157 int len = hexnumlen (num);
5158 return hexnumnstr (buf, num, len);
5159 }
5160
5161
5162 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5163
5164 static int
5165 hexnumnstr (char *buf, ULONGEST num, int width)
5166 {
5167 int i;
5168
5169 buf[width] = '\0';
5170
5171 for (i = width - 1; i >= 0; i--)
5172 {
5173 buf[i] = "0123456789abcdef"[(num & 0xf)];
5174 num >>= 4;
5175 }
5176
5177 return width;
5178 }
5179
5180 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5181
5182 static CORE_ADDR
5183 remote_address_masked (CORE_ADDR addr)
5184 {
5185 int address_size = remote_address_size;
5186 /* If "remoteaddresssize" was not set, default to target address size. */
5187 if (!address_size)
5188 address_size = gdbarch_addr_bit (target_gdbarch);
5189
5190 if (address_size > 0
5191 && address_size < (sizeof (ULONGEST) * 8))
5192 {
5193 /* Only create a mask when that mask can safely be constructed
5194 in a ULONGEST variable. */
5195 ULONGEST mask = 1;
5196 mask = (mask << address_size) - 1;
5197 addr &= mask;
5198 }
5199 return addr;
5200 }
5201
5202 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5203 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5204 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5205 (which may be more than *OUT_LEN due to escape characters). The
5206 total number of bytes in the output buffer will be at most
5207 OUT_MAXLEN. */
5208
5209 static int
5210 remote_escape_output (const gdb_byte *buffer, int len,
5211 gdb_byte *out_buf, int *out_len,
5212 int out_maxlen)
5213 {
5214 int input_index, output_index;
5215
5216 output_index = 0;
5217 for (input_index = 0; input_index < len; input_index++)
5218 {
5219 gdb_byte b = buffer[input_index];
5220
5221 if (b == '$' || b == '#' || b == '}')
5222 {
5223 /* These must be escaped. */
5224 if (output_index + 2 > out_maxlen)
5225 break;
5226 out_buf[output_index++] = '}';
5227 out_buf[output_index++] = b ^ 0x20;
5228 }
5229 else
5230 {
5231 if (output_index + 1 > out_maxlen)
5232 break;
5233 out_buf[output_index++] = b;
5234 }
5235 }
5236
5237 *out_len = input_index;
5238 return output_index;
5239 }
5240
5241 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5242 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5243 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5244
5245 This function reverses remote_escape_output. It allows more
5246 escaped characters than that function does, in particular because
5247 '*' must be escaped to avoid the run-length encoding processing
5248 in reading packets. */
5249
5250 static int
5251 remote_unescape_input (const gdb_byte *buffer, int len,
5252 gdb_byte *out_buf, int out_maxlen)
5253 {
5254 int input_index, output_index;
5255 int escaped;
5256
5257 output_index = 0;
5258 escaped = 0;
5259 for (input_index = 0; input_index < len; input_index++)
5260 {
5261 gdb_byte b = buffer[input_index];
5262
5263 if (output_index + 1 > out_maxlen)
5264 {
5265 warning (_("Received too much data from remote target;"
5266 " ignoring overflow."));
5267 return output_index;
5268 }
5269
5270 if (escaped)
5271 {
5272 out_buf[output_index++] = b ^ 0x20;
5273 escaped = 0;
5274 }
5275 else if (b == '}')
5276 escaped = 1;
5277 else
5278 out_buf[output_index++] = b;
5279 }
5280
5281 if (escaped)
5282 error (_("Unmatched escape character in target response."));
5283
5284 return output_index;
5285 }
5286
5287 /* Determine whether the remote target supports binary downloading.
5288 This is accomplished by sending a no-op memory write of zero length
5289 to the target at the specified address. It does not suffice to send
5290 the whole packet, since many stubs strip the eighth bit and
5291 subsequently compute a wrong checksum, which causes real havoc with
5292 remote_write_bytes.
5293
5294 NOTE: This can still lose if the serial line is not eight-bit
5295 clean. In cases like this, the user should clear "remote
5296 X-packet". */
5297
5298 static void
5299 check_binary_download (CORE_ADDR addr)
5300 {
5301 struct remote_state *rs = get_remote_state ();
5302
5303 switch (remote_protocol_packets[PACKET_X].support)
5304 {
5305 case PACKET_DISABLE:
5306 break;
5307 case PACKET_ENABLE:
5308 break;
5309 case PACKET_SUPPORT_UNKNOWN:
5310 {
5311 char *p;
5312
5313 p = rs->buf;
5314 *p++ = 'X';
5315 p += hexnumstr (p, (ULONGEST) addr);
5316 *p++ = ',';
5317 p += hexnumstr (p, (ULONGEST) 0);
5318 *p++ = ':';
5319 *p = '\0';
5320
5321 putpkt_binary (rs->buf, (int) (p - rs->buf));
5322 getpkt (&rs->buf, &rs->buf_size, 0);
5323
5324 if (rs->buf[0] == '\0')
5325 {
5326 if (remote_debug)
5327 fprintf_unfiltered (gdb_stdlog,
5328 "binary downloading NOT suppported by target\n");
5329 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5330 }
5331 else
5332 {
5333 if (remote_debug)
5334 fprintf_unfiltered (gdb_stdlog,
5335 "binary downloading suppported by target\n");
5336 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5337 }
5338 break;
5339 }
5340 }
5341 }
5342
5343 /* Write memory data directly to the remote machine.
5344 This does not inform the data cache; the data cache uses this.
5345 HEADER is the starting part of the packet.
5346 MEMADDR is the address in the remote memory space.
5347 MYADDR is the address of the buffer in our space.
5348 LEN is the number of bytes.
5349 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5350 should send data as binary ('X'), or hex-encoded ('M').
5351
5352 The function creates packet of the form
5353 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5354
5355 where encoding of <DATA> is termined by PACKET_FORMAT.
5356
5357 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5358 are omitted.
5359
5360 Returns the number of bytes transferred, or 0 (setting errno) for
5361 error. Only transfer a single packet. */
5362
5363 static int
5364 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5365 const gdb_byte *myaddr, int len,
5366 char packet_format, int use_length)
5367 {
5368 struct remote_state *rs = get_remote_state ();
5369 char *p;
5370 char *plen = NULL;
5371 int plenlen = 0;
5372 int todo;
5373 int nr_bytes;
5374 int payload_size;
5375 int payload_length;
5376 int header_length;
5377
5378 if (packet_format != 'X' && packet_format != 'M')
5379 internal_error (__FILE__, __LINE__,
5380 "remote_write_bytes_aux: bad packet format");
5381
5382 if (len <= 0)
5383 return 0;
5384
5385 payload_size = get_memory_write_packet_size ();
5386
5387 /* The packet buffer will be large enough for the payload;
5388 get_memory_packet_size ensures this. */
5389 rs->buf[0] = '\0';
5390
5391 /* Compute the size of the actual payload by subtracting out the
5392 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5393 */
5394 payload_size -= strlen ("$,:#NN");
5395 if (!use_length)
5396 /* The comma won't be used. */
5397 payload_size += 1;
5398 header_length = strlen (header);
5399 payload_size -= header_length;
5400 payload_size -= hexnumlen (memaddr);
5401
5402 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5403
5404 strcat (rs->buf, header);
5405 p = rs->buf + strlen (header);
5406
5407 /* Compute a best guess of the number of bytes actually transfered. */
5408 if (packet_format == 'X')
5409 {
5410 /* Best guess at number of bytes that will fit. */
5411 todo = min (len, payload_size);
5412 if (use_length)
5413 payload_size -= hexnumlen (todo);
5414 todo = min (todo, payload_size);
5415 }
5416 else
5417 {
5418 /* Num bytes that will fit. */
5419 todo = min (len, payload_size / 2);
5420 if (use_length)
5421 payload_size -= hexnumlen (todo);
5422 todo = min (todo, payload_size / 2);
5423 }
5424
5425 if (todo <= 0)
5426 internal_error (__FILE__, __LINE__,
5427 _("minumum packet size too small to write data"));
5428
5429 /* If we already need another packet, then try to align the end
5430 of this packet to a useful boundary. */
5431 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5432 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5433
5434 /* Append "<memaddr>". */
5435 memaddr = remote_address_masked (memaddr);
5436 p += hexnumstr (p, (ULONGEST) memaddr);
5437
5438 if (use_length)
5439 {
5440 /* Append ",". */
5441 *p++ = ',';
5442
5443 /* Append <len>. Retain the location/size of <len>. It may need to
5444 be adjusted once the packet body has been created. */
5445 plen = p;
5446 plenlen = hexnumstr (p, (ULONGEST) todo);
5447 p += plenlen;
5448 }
5449
5450 /* Append ":". */
5451 *p++ = ':';
5452 *p = '\0';
5453
5454 /* Append the packet body. */
5455 if (packet_format == 'X')
5456 {
5457 /* Binary mode. Send target system values byte by byte, in
5458 increasing byte addresses. Only escape certain critical
5459 characters. */
5460 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5461 payload_size);
5462
5463 /* If not all TODO bytes fit, then we'll need another packet. Make
5464 a second try to keep the end of the packet aligned. Don't do
5465 this if the packet is tiny. */
5466 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5467 {
5468 int new_nr_bytes;
5469
5470 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5471 - memaddr);
5472 if (new_nr_bytes != nr_bytes)
5473 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5474 p, &nr_bytes,
5475 payload_size);
5476 }
5477
5478 p += payload_length;
5479 if (use_length && nr_bytes < todo)
5480 {
5481 /* Escape chars have filled up the buffer prematurely,
5482 and we have actually sent fewer bytes than planned.
5483 Fix-up the length field of the packet. Use the same
5484 number of characters as before. */
5485 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5486 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5487 }
5488 }
5489 else
5490 {
5491 /* Normal mode: Send target system values byte by byte, in
5492 increasing byte addresses. Each byte is encoded as a two hex
5493 value. */
5494 nr_bytes = bin2hex (myaddr, p, todo);
5495 p += 2 * nr_bytes;
5496 }
5497
5498 putpkt_binary (rs->buf, (int) (p - rs->buf));
5499 getpkt (&rs->buf, &rs->buf_size, 0);
5500
5501 if (rs->buf[0] == 'E')
5502 {
5503 /* There is no correspondance between what the remote protocol
5504 uses for errors and errno codes. We would like a cleaner way
5505 of representing errors (big enough to include errno codes,
5506 bfd_error codes, and others). But for now just return EIO. */
5507 errno = EIO;
5508 return 0;
5509 }
5510
5511 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5512 fewer bytes than we'd planned. */
5513 return nr_bytes;
5514 }
5515
5516 /* Write memory data directly to the remote machine.
5517 This does not inform the data cache; the data cache uses this.
5518 MEMADDR is the address in the remote memory space.
5519 MYADDR is the address of the buffer in our space.
5520 LEN is the number of bytes.
5521
5522 Returns number of bytes transferred, or 0 (setting errno) for
5523 error. Only transfer a single packet. */
5524
5525 int
5526 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5527 {
5528 char *packet_format = 0;
5529
5530 /* Check whether the target supports binary download. */
5531 check_binary_download (memaddr);
5532
5533 switch (remote_protocol_packets[PACKET_X].support)
5534 {
5535 case PACKET_ENABLE:
5536 packet_format = "X";
5537 break;
5538 case PACKET_DISABLE:
5539 packet_format = "M";
5540 break;
5541 case PACKET_SUPPORT_UNKNOWN:
5542 internal_error (__FILE__, __LINE__,
5543 _("remote_write_bytes: bad internal state"));
5544 default:
5545 internal_error (__FILE__, __LINE__, _("bad switch"));
5546 }
5547
5548 return remote_write_bytes_aux (packet_format,
5549 memaddr, myaddr, len, packet_format[0], 1);
5550 }
5551
5552 /* Read memory data directly from the remote machine.
5553 This does not use the data cache; the data cache uses this.
5554 MEMADDR is the address in the remote memory space.
5555 MYADDR is the address of the buffer in our space.
5556 LEN is the number of bytes.
5557
5558 Returns number of bytes transferred, or 0 for error. */
5559
5560 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5561 remote targets) shouldn't attempt to read the entire buffer.
5562 Instead it should read a single packet worth of data and then
5563 return the byte size of that packet to the caller. The caller (its
5564 caller and its callers caller ;-) already contains code for
5565 handling partial reads. */
5566
5567 int
5568 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5569 {
5570 struct remote_state *rs = get_remote_state ();
5571 int max_buf_size; /* Max size of packet output buffer. */
5572 int origlen;
5573
5574 if (len <= 0)
5575 return 0;
5576
5577 max_buf_size = get_memory_read_packet_size ();
5578 /* The packet buffer will be large enough for the payload;
5579 get_memory_packet_size ensures this. */
5580
5581 origlen = len;
5582 while (len > 0)
5583 {
5584 char *p;
5585 int todo;
5586 int i;
5587
5588 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5589
5590 /* construct "m"<memaddr>","<len>" */
5591 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5592 memaddr = remote_address_masked (memaddr);
5593 p = rs->buf;
5594 *p++ = 'm';
5595 p += hexnumstr (p, (ULONGEST) memaddr);
5596 *p++ = ',';
5597 p += hexnumstr (p, (ULONGEST) todo);
5598 *p = '\0';
5599
5600 putpkt (rs->buf);
5601 getpkt (&rs->buf, &rs->buf_size, 0);
5602
5603 if (rs->buf[0] == 'E'
5604 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5605 && rs->buf[3] == '\0')
5606 {
5607 /* There is no correspondance between what the remote
5608 protocol uses for errors and errno codes. We would like
5609 a cleaner way of representing errors (big enough to
5610 include errno codes, bfd_error codes, and others). But
5611 for now just return EIO. */
5612 errno = EIO;
5613 return 0;
5614 }
5615
5616 /* Reply describes memory byte by byte,
5617 each byte encoded as two hex characters. */
5618
5619 p = rs->buf;
5620 if ((i = hex2bin (p, myaddr, todo)) < todo)
5621 {
5622 /* Reply is short. This means that we were able to read
5623 only part of what we wanted to. */
5624 return i + (origlen - len);
5625 }
5626 myaddr += todo;
5627 memaddr += todo;
5628 len -= todo;
5629 }
5630 return origlen;
5631 }
5632 \f
5633
5634 /* Remote notification handler. */
5635
5636 static void
5637 handle_notification (char *buf, size_t length)
5638 {
5639 if (strncmp (buf, "Stop:", 5) == 0)
5640 {
5641 if (pending_stop_reply)
5642 /* We've already parsed the in-flight stop-reply, but the stub
5643 for some reason thought we didn't, possibly due to timeout
5644 on its side. Just ignore it. */
5645 ;
5646 else
5647 {
5648 struct cleanup *old_chain;
5649 struct stop_reply *reply = stop_reply_xmalloc ();
5650 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5651
5652 remote_parse_stop_reply (buf + 5, reply);
5653
5654 discard_cleanups (old_chain);
5655
5656 /* Be careful to only set it after parsing, since an error
5657 may be thrown then. */
5658 pending_stop_reply = reply;
5659
5660 /* Notify the event loop there's a stop reply to acknowledge
5661 and that there may be more events to fetch. */
5662 mark_async_event_handler (remote_async_get_pending_events_token);
5663 }
5664 }
5665 else
5666 /* We ignore notifications we don't recognize, for compatibility
5667 with newer stubs. */
5668 ;
5669 }
5670
5671 \f
5672 /* Read or write LEN bytes from inferior memory at MEMADDR,
5673 transferring to or from debugger address BUFFER. Write to inferior
5674 if SHOULD_WRITE is nonzero. Returns length of data written or
5675 read; 0 for error. TARGET is unused. */
5676
5677 static int
5678 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5679 int should_write, struct mem_attrib *attrib,
5680 struct target_ops *target)
5681 {
5682 int res;
5683
5684 set_general_thread (inferior_ptid);
5685
5686 if (should_write)
5687 res = remote_write_bytes (mem_addr, buffer, mem_len);
5688 else
5689 res = remote_read_bytes (mem_addr, buffer, mem_len);
5690
5691 return res;
5692 }
5693
5694 /* Sends a packet with content determined by the printf format string
5695 FORMAT and the remaining arguments, then gets the reply. Returns
5696 whether the packet was a success, a failure, or unknown. */
5697
5698 enum packet_result
5699 remote_send_printf (const char *format, ...)
5700 {
5701 struct remote_state *rs = get_remote_state ();
5702 int max_size = get_remote_packet_size ();
5703
5704 va_list ap;
5705 va_start (ap, format);
5706
5707 rs->buf[0] = '\0';
5708 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5709 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5710
5711 if (putpkt (rs->buf) < 0)
5712 error (_("Communication problem with target."));
5713
5714 rs->buf[0] = '\0';
5715 getpkt (&rs->buf, &rs->buf_size, 0);
5716
5717 return packet_check_result (rs->buf);
5718 }
5719
5720 static void
5721 restore_remote_timeout (void *p)
5722 {
5723 int value = *(int *)p;
5724 remote_timeout = value;
5725 }
5726
5727 /* Flash writing can take quite some time. We'll set
5728 effectively infinite timeout for flash operations.
5729 In future, we'll need to decide on a better approach. */
5730 static const int remote_flash_timeout = 1000;
5731
5732 static void
5733 remote_flash_erase (struct target_ops *ops,
5734 ULONGEST address, LONGEST length)
5735 {
5736 int saved_remote_timeout = remote_timeout;
5737 enum packet_result ret;
5738
5739 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5740 &saved_remote_timeout);
5741 remote_timeout = remote_flash_timeout;
5742
5743 ret = remote_send_printf ("vFlashErase:%s,%s",
5744 paddr (address),
5745 phex (length, 4));
5746 switch (ret)
5747 {
5748 case PACKET_UNKNOWN:
5749 error (_("Remote target does not support flash erase"));
5750 case PACKET_ERROR:
5751 error (_("Error erasing flash with vFlashErase packet"));
5752 default:
5753 break;
5754 }
5755
5756 do_cleanups (back_to);
5757 }
5758
5759 static LONGEST
5760 remote_flash_write (struct target_ops *ops,
5761 ULONGEST address, LONGEST length,
5762 const gdb_byte *data)
5763 {
5764 int saved_remote_timeout = remote_timeout;
5765 int ret;
5766 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5767 &saved_remote_timeout);
5768
5769 remote_timeout = remote_flash_timeout;
5770 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5771 do_cleanups (back_to);
5772
5773 return ret;
5774 }
5775
5776 static void
5777 remote_flash_done (struct target_ops *ops)
5778 {
5779 int saved_remote_timeout = remote_timeout;
5780 int ret;
5781 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5782 &saved_remote_timeout);
5783
5784 remote_timeout = remote_flash_timeout;
5785 ret = remote_send_printf ("vFlashDone");
5786 do_cleanups (back_to);
5787
5788 switch (ret)
5789 {
5790 case PACKET_UNKNOWN:
5791 error (_("Remote target does not support vFlashDone"));
5792 case PACKET_ERROR:
5793 error (_("Error finishing flash operation"));
5794 default:
5795 break;
5796 }
5797 }
5798
5799 static void
5800 remote_files_info (struct target_ops *ignore)
5801 {
5802 puts_filtered ("Debugging a target over a serial line.\n");
5803 }
5804 \f
5805 /* Stuff for dealing with the packets which are part of this protocol.
5806 See comment at top of file for details. */
5807
5808 /* Read a single character from the remote end. */
5809
5810 static int
5811 readchar (int timeout)
5812 {
5813 int ch;
5814
5815 ch = serial_readchar (remote_desc, timeout);
5816
5817 if (ch >= 0)
5818 return ch;
5819
5820 switch ((enum serial_rc) ch)
5821 {
5822 case SERIAL_EOF:
5823 pop_target ();
5824 error (_("Remote connection closed"));
5825 /* no return */
5826 case SERIAL_ERROR:
5827 perror_with_name (_("Remote communication error"));
5828 /* no return */
5829 case SERIAL_TIMEOUT:
5830 break;
5831 }
5832 return ch;
5833 }
5834
5835 /* Send the command in *BUF to the remote machine, and read the reply
5836 into *BUF. Report an error if we get an error reply. Resize
5837 *BUF using xrealloc if necessary to hold the result, and update
5838 *SIZEOF_BUF. */
5839
5840 static void
5841 remote_send (char **buf,
5842 long *sizeof_buf)
5843 {
5844 putpkt (*buf);
5845 getpkt (buf, sizeof_buf, 0);
5846
5847 if ((*buf)[0] == 'E')
5848 error (_("Remote failure reply: %s"), *buf);
5849 }
5850
5851 /* Display a null-terminated packet on stdout, for debugging, using C
5852 string notation. */
5853
5854 static void
5855 print_packet (char *buf)
5856 {
5857 puts_filtered ("\"");
5858 fputstr_filtered (buf, '"', gdb_stdout);
5859 puts_filtered ("\"");
5860 }
5861
5862 int
5863 putpkt (char *buf)
5864 {
5865 return putpkt_binary (buf, strlen (buf));
5866 }
5867
5868 /* Send a packet to the remote machine, with error checking. The data
5869 of the packet is in BUF. The string in BUF can be at most
5870 get_remote_packet_size () - 5 to account for the $, # and checksum,
5871 and for a possible /0 if we are debugging (remote_debug) and want
5872 to print the sent packet as a string. */
5873
5874 static int
5875 putpkt_binary (char *buf, int cnt)
5876 {
5877 struct remote_state *rs = get_remote_state ();
5878 int i;
5879 unsigned char csum = 0;
5880 char *buf2 = alloca (cnt + 6);
5881
5882 int ch;
5883 int tcount = 0;
5884 char *p;
5885
5886 /* Catch cases like trying to read memory or listing threads while
5887 we're waiting for a stop reply. The remote server wouldn't be
5888 ready to handle this request, so we'd hang and timeout. We don't
5889 have to worry about this in synchronous mode, because in that
5890 case it's not possible to issue a command while the target is
5891 running. This is not a problem in non-stop mode, because in that
5892 case, the stub is always ready to process serial input. */
5893 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
5894 error (_("Cannot execute this command while the target is running."));
5895
5896 /* We're sending out a new packet. Make sure we don't look at a
5897 stale cached response. */
5898 rs->cached_wait_status = 0;
5899
5900 /* Copy the packet into buffer BUF2, encapsulating it
5901 and giving it a checksum. */
5902
5903 p = buf2;
5904 *p++ = '$';
5905
5906 for (i = 0; i < cnt; i++)
5907 {
5908 csum += buf[i];
5909 *p++ = buf[i];
5910 }
5911 *p++ = '#';
5912 *p++ = tohex ((csum >> 4) & 0xf);
5913 *p++ = tohex (csum & 0xf);
5914
5915 /* Send it over and over until we get a positive ack. */
5916
5917 while (1)
5918 {
5919 int started_error_output = 0;
5920
5921 if (remote_debug)
5922 {
5923 *p = '\0';
5924 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
5925 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
5926 fprintf_unfiltered (gdb_stdlog, "...");
5927 gdb_flush (gdb_stdlog);
5928 }
5929 if (serial_write (remote_desc, buf2, p - buf2))
5930 perror_with_name (_("putpkt: write failed"));
5931
5932 /* If this is a no acks version of the remote protocol, send the
5933 packet and move on. */
5934 if (rs->noack_mode)
5935 break;
5936
5937 /* Read until either a timeout occurs (-2) or '+' is read.
5938 Handle any notification that arrives in the mean time. */
5939 while (1)
5940 {
5941 ch = readchar (remote_timeout);
5942
5943 if (remote_debug)
5944 {
5945 switch (ch)
5946 {
5947 case '+':
5948 case '-':
5949 case SERIAL_TIMEOUT:
5950 case '$':
5951 case '%':
5952 if (started_error_output)
5953 {
5954 putchar_unfiltered ('\n');
5955 started_error_output = 0;
5956 }
5957 }
5958 }
5959
5960 switch (ch)
5961 {
5962 case '+':
5963 if (remote_debug)
5964 fprintf_unfiltered (gdb_stdlog, "Ack\n");
5965 return 1;
5966 case '-':
5967 if (remote_debug)
5968 fprintf_unfiltered (gdb_stdlog, "Nak\n");
5969 case SERIAL_TIMEOUT:
5970 tcount++;
5971 if (tcount > 3)
5972 return 0;
5973 break; /* Retransmit buffer. */
5974 case '$':
5975 {
5976 if (remote_debug)
5977 fprintf_unfiltered (gdb_stdlog,
5978 "Packet instead of Ack, ignoring it\n");
5979 /* It's probably an old response sent because an ACK
5980 was lost. Gobble up the packet and ack it so it
5981 doesn't get retransmitted when we resend this
5982 packet. */
5983 skip_frame ();
5984 serial_write (remote_desc, "+", 1);
5985 continue; /* Now, go look for +. */
5986 }
5987
5988 case '%':
5989 {
5990 int val;
5991
5992 /* If we got a notification, handle it, and go back to looking
5993 for an ack. */
5994 /* We've found the start of a notification. Now
5995 collect the data. */
5996 val = read_frame (&rs->buf, &rs->buf_size);
5997 if (val >= 0)
5998 {
5999 if (remote_debug)
6000 {
6001 fprintf_unfiltered (gdb_stdlog, " Notification received: ");
6002 fputstrn_unfiltered (rs->buf, val, 0, gdb_stdlog);
6003 fprintf_unfiltered (gdb_stdlog, "\n");
6004 }
6005 handle_notification (rs->buf, val);
6006 /* We're in sync now, rewait for the ack. */
6007 tcount = 0;
6008 }
6009 else
6010 {
6011 if (remote_debug)
6012 {
6013 if (!started_error_output)
6014 {
6015 started_error_output = 1;
6016 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6017 }
6018 fputc_unfiltered (ch & 0177, gdb_stdlog);
6019 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6020 }
6021 }
6022 continue;
6023 }
6024 /* fall-through */
6025 default:
6026 if (remote_debug)
6027 {
6028 if (!started_error_output)
6029 {
6030 started_error_output = 1;
6031 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6032 }
6033 fputc_unfiltered (ch & 0177, gdb_stdlog);
6034 }
6035 continue;
6036 }
6037 break; /* Here to retransmit. */
6038 }
6039
6040 #if 0
6041 /* This is wrong. If doing a long backtrace, the user should be
6042 able to get out next time we call QUIT, without anything as
6043 violent as interrupt_query. If we want to provide a way out of
6044 here without getting to the next QUIT, it should be based on
6045 hitting ^C twice as in remote_wait. */
6046 if (quit_flag)
6047 {
6048 quit_flag = 0;
6049 interrupt_query ();
6050 }
6051 #endif
6052 }
6053 return 0;
6054 }
6055
6056 /* Come here after finding the start of a frame when we expected an
6057 ack. Do our best to discard the rest of this packet. */
6058
6059 static void
6060 skip_frame (void)
6061 {
6062 int c;
6063
6064 while (1)
6065 {
6066 c = readchar (remote_timeout);
6067 switch (c)
6068 {
6069 case SERIAL_TIMEOUT:
6070 /* Nothing we can do. */
6071 return;
6072 case '#':
6073 /* Discard the two bytes of checksum and stop. */
6074 c = readchar (remote_timeout);
6075 if (c >= 0)
6076 c = readchar (remote_timeout);
6077
6078 return;
6079 case '*': /* Run length encoding. */
6080 /* Discard the repeat count. */
6081 c = readchar (remote_timeout);
6082 if (c < 0)
6083 return;
6084 break;
6085 default:
6086 /* A regular character. */
6087 break;
6088 }
6089 }
6090 }
6091
6092 /* Come here after finding the start of the frame. Collect the rest
6093 into *BUF, verifying the checksum, length, and handling run-length
6094 compression. NUL terminate the buffer. If there is not enough room,
6095 expand *BUF using xrealloc.
6096
6097 Returns -1 on error, number of characters in buffer (ignoring the
6098 trailing NULL) on success. (could be extended to return one of the
6099 SERIAL status indications). */
6100
6101 static long
6102 read_frame (char **buf_p,
6103 long *sizeof_buf)
6104 {
6105 unsigned char csum;
6106 long bc;
6107 int c;
6108 char *buf = *buf_p;
6109 struct remote_state *rs = get_remote_state ();
6110
6111 csum = 0;
6112 bc = 0;
6113
6114 while (1)
6115 {
6116 c = readchar (remote_timeout);
6117 switch (c)
6118 {
6119 case SERIAL_TIMEOUT:
6120 if (remote_debug)
6121 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6122 return -1;
6123 case '$':
6124 if (remote_debug)
6125 fputs_filtered ("Saw new packet start in middle of old one\n",
6126 gdb_stdlog);
6127 return -1; /* Start a new packet, count retries. */
6128 case '#':
6129 {
6130 unsigned char pktcsum;
6131 int check_0 = 0;
6132 int check_1 = 0;
6133
6134 buf[bc] = '\0';
6135
6136 check_0 = readchar (remote_timeout);
6137 if (check_0 >= 0)
6138 check_1 = readchar (remote_timeout);
6139
6140 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6141 {
6142 if (remote_debug)
6143 fputs_filtered ("Timeout in checksum, retrying\n",
6144 gdb_stdlog);
6145 return -1;
6146 }
6147 else if (check_0 < 0 || check_1 < 0)
6148 {
6149 if (remote_debug)
6150 fputs_filtered ("Communication error in checksum\n",
6151 gdb_stdlog);
6152 return -1;
6153 }
6154
6155 /* Don't recompute the checksum; with no ack packets we
6156 don't have any way to indicate a packet retransmission
6157 is necessary. */
6158 if (rs->noack_mode)
6159 return bc;
6160
6161 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6162 if (csum == pktcsum)
6163 return bc;
6164
6165 if (remote_debug)
6166 {
6167 fprintf_filtered (gdb_stdlog,
6168 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
6169 pktcsum, csum);
6170 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
6171 fputs_filtered ("\n", gdb_stdlog);
6172 }
6173 /* Number of characters in buffer ignoring trailing
6174 NULL. */
6175 return -1;
6176 }
6177 case '*': /* Run length encoding. */
6178 {
6179 int repeat;
6180 csum += c;
6181
6182 c = readchar (remote_timeout);
6183 csum += c;
6184 repeat = c - ' ' + 3; /* Compute repeat count. */
6185
6186 /* The character before ``*'' is repeated. */
6187
6188 if (repeat > 0 && repeat <= 255 && bc > 0)
6189 {
6190 if (bc + repeat - 1 >= *sizeof_buf - 1)
6191 {
6192 /* Make some more room in the buffer. */
6193 *sizeof_buf += repeat;
6194 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6195 buf = *buf_p;
6196 }
6197
6198 memset (&buf[bc], buf[bc - 1], repeat);
6199 bc += repeat;
6200 continue;
6201 }
6202
6203 buf[bc] = '\0';
6204 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6205 return -1;
6206 }
6207 default:
6208 if (bc >= *sizeof_buf - 1)
6209 {
6210 /* Make some more room in the buffer. */
6211 *sizeof_buf *= 2;
6212 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6213 buf = *buf_p;
6214 }
6215
6216 buf[bc++] = c;
6217 csum += c;
6218 continue;
6219 }
6220 }
6221 }
6222
6223 /* Read a packet from the remote machine, with error checking, and
6224 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6225 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6226 rather than timing out; this is used (in synchronous mode) to wait
6227 for a target that is is executing user code to stop. */
6228 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6229 don't have to change all the calls to getpkt to deal with the
6230 return value, because at the moment I don't know what the right
6231 thing to do it for those. */
6232 void
6233 getpkt (char **buf,
6234 long *sizeof_buf,
6235 int forever)
6236 {
6237 int timed_out;
6238
6239 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6240 }
6241
6242
6243 /* Read a packet from the remote machine, with error checking, and
6244 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6245 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6246 rather than timing out; this is used (in synchronous mode) to wait
6247 for a target that is is executing user code to stop. If FOREVER ==
6248 0, this function is allowed to time out gracefully and return an
6249 indication of this to the caller. Otherwise return the number of
6250 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6251 enough reason to return to the caller. */
6252
6253 static int
6254 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6255 int expecting_notif)
6256 {
6257 struct remote_state *rs = get_remote_state ();
6258 int c;
6259 int tries;
6260 int timeout;
6261 int val;
6262
6263 /* We're reading a new response. Make sure we don't look at a
6264 previously cached response. */
6265 rs->cached_wait_status = 0;
6266
6267 strcpy (*buf, "timeout");
6268
6269 if (forever)
6270 timeout = watchdog > 0 ? watchdog : -1;
6271 else if (expecting_notif)
6272 timeout = 0; /* There should already be a char in the buffer. If
6273 not, bail out. */
6274 else
6275 timeout = remote_timeout;
6276
6277 #define MAX_TRIES 3
6278
6279 /* Process any number of notifications, and then return when
6280 we get a packet. */
6281 for (;;)
6282 {
6283 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6284 times. */
6285 for (tries = 1; tries <= MAX_TRIES; tries++)
6286 {
6287 /* This can loop forever if the remote side sends us
6288 characters continuously, but if it pauses, we'll get
6289 SERIAL_TIMEOUT from readchar because of timeout. Then
6290 we'll count that as a retry.
6291
6292 Note that even when forever is set, we will only wait
6293 forever prior to the start of a packet. After that, we
6294 expect characters to arrive at a brisk pace. They should
6295 show up within remote_timeout intervals. */
6296 do
6297 c = readchar (timeout);
6298 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6299
6300 if (c == SERIAL_TIMEOUT)
6301 {
6302 if (expecting_notif)
6303 return -1; /* Don't complain, it's normal to not get
6304 anything in this case. */
6305
6306 if (forever) /* Watchdog went off? Kill the target. */
6307 {
6308 QUIT;
6309 pop_target ();
6310 error (_("Watchdog timeout has expired. Target detached."));
6311 }
6312 if (remote_debug)
6313 fputs_filtered ("Timed out.\n", gdb_stdlog);
6314 }
6315 else
6316 {
6317 /* We've found the start of a packet or notification.
6318 Now collect the data. */
6319 val = read_frame (buf, sizeof_buf);
6320 if (val >= 0)
6321 break;
6322 }
6323
6324 serial_write (remote_desc, "-", 1);
6325 }
6326
6327 if (tries > MAX_TRIES)
6328 {
6329 /* We have tried hard enough, and just can't receive the
6330 packet/notification. Give up. */
6331 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6332
6333 /* Skip the ack char if we're in no-ack mode. */
6334 if (!rs->noack_mode)
6335 serial_write (remote_desc, "+", 1);
6336 return -1;
6337 }
6338
6339 /* If we got an ordinary packet, return that to our caller. */
6340 if (c == '$')
6341 {
6342 if (remote_debug)
6343 {
6344 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
6345 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
6346 fprintf_unfiltered (gdb_stdlog, "\n");
6347 }
6348
6349 /* Skip the ack char if we're in no-ack mode. */
6350 if (!rs->noack_mode)
6351 serial_write (remote_desc, "+", 1);
6352 return val;
6353 }
6354
6355 /* If we got a notification, handle it, and go back to looking
6356 for a packet. */
6357 else
6358 {
6359 gdb_assert (c == '%');
6360
6361 if (remote_debug)
6362 {
6363 fprintf_unfiltered (gdb_stdlog, " Notification received: ");
6364 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
6365 fprintf_unfiltered (gdb_stdlog, "\n");
6366 }
6367
6368 handle_notification (*buf, val);
6369
6370 /* Notifications require no acknowledgement. */
6371
6372 if (expecting_notif)
6373 return -1;
6374 }
6375 }
6376 }
6377
6378 static int
6379 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6380 {
6381 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6382 }
6383
6384 static int
6385 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6386 {
6387 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6388 }
6389
6390 \f
6391 static void
6392 remote_kill (void)
6393 {
6394 /* Use catch_errors so the user can quit from gdb even when we
6395 aren't on speaking terms with the remote system. */
6396 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6397
6398 /* Don't wait for it to die. I'm not really sure it matters whether
6399 we do or not. For the existing stubs, kill is a noop. */
6400 target_mourn_inferior ();
6401 }
6402
6403 static int
6404 remote_vkill (int pid, struct remote_state *rs)
6405 {
6406 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6407 return -1;
6408
6409 /* Tell the remote target to detach. */
6410 sprintf (rs->buf, "vKill;%x", pid);
6411 putpkt (rs->buf);
6412 getpkt (&rs->buf, &rs->buf_size, 0);
6413
6414 if (packet_ok (rs->buf,
6415 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6416 return 0;
6417 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6418 return -1;
6419 else
6420 return 1;
6421 }
6422
6423 static void
6424 extended_remote_kill (void)
6425 {
6426 int res;
6427 int pid = ptid_get_pid (inferior_ptid);
6428 struct remote_state *rs = get_remote_state ();
6429
6430 res = remote_vkill (pid, rs);
6431 if (res == -1 && !remote_multi_process_p (rs))
6432 {
6433 /* Don't try 'k' on a multi-process aware stub -- it has no way
6434 to specify the pid. */
6435
6436 putpkt ("k");
6437 #if 0
6438 getpkt (&rs->buf, &rs->buf_size, 0);
6439 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6440 res = 1;
6441 #else
6442 /* Don't wait for it to die. I'm not really sure it matters whether
6443 we do or not. For the existing stubs, kill is a noop. */
6444 res = 0;
6445 #endif
6446 }
6447
6448 if (res != 0)
6449 error (_("Can't kill process"));
6450
6451 delete_inferior (pid);
6452 target_mourn_inferior ();
6453 }
6454
6455 static void
6456 remote_mourn (void)
6457 {
6458 remote_mourn_1 (&remote_ops);
6459 }
6460
6461 /* Worker function for remote_mourn. */
6462 static void
6463 remote_mourn_1 (struct target_ops *target)
6464 {
6465 unpush_target (target);
6466
6467 /* remote_close takes care of cleaning up. */
6468 }
6469
6470 static int
6471 select_new_thread_callback (struct thread_info *th, void* data)
6472 {
6473 if (!is_exited (th->ptid))
6474 {
6475 switch_to_thread (th->ptid);
6476 printf_filtered (_("[Switching to %s]\n"),
6477 target_pid_to_str (inferior_ptid));
6478 return 1;
6479 }
6480 return 0;
6481 }
6482
6483 static void
6484 extended_remote_mourn_1 (struct target_ops *target)
6485 {
6486 struct remote_state *rs = get_remote_state ();
6487
6488 /* In case we got here due to an error, but we're going to stay
6489 connected. */
6490 rs->waiting_for_stop_reply = 0;
6491
6492 /* We're no longer interested in these events. */
6493 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6494
6495 /* Unlike "target remote", we do not want to unpush the target; then
6496 the next time the user says "run", we won't be connected. */
6497
6498 if (have_inferiors ())
6499 {
6500 extern void nullify_last_target_wait_ptid ();
6501 /* Multi-process case. The current process has exited, but
6502 there are other processes to debug. Switch to the first
6503 available. */
6504 iterate_over_threads (select_new_thread_callback, NULL);
6505 nullify_last_target_wait_ptid ();
6506 }
6507 else
6508 {
6509 struct remote_state *rs = get_remote_state ();
6510
6511 /* Call common code to mark the inferior as not running. */
6512 generic_mourn_inferior ();
6513 if (!remote_multi_process_p (rs))
6514 {
6515 /* Check whether the target is running now - some remote stubs
6516 automatically restart after kill. */
6517 putpkt ("?");
6518 getpkt (&rs->buf, &rs->buf_size, 0);
6519
6520 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6521 {
6522 /* Assume that the target has been restarted. Set inferior_ptid
6523 so that bits of core GDB realizes there's something here, e.g.,
6524 so that the user can say "kill" again. */
6525 inferior_ptid = magic_null_ptid;
6526 }
6527 else
6528 {
6529 /* Mark this (still pushed) target as not executable until we
6530 restart it. */
6531 target_mark_exited (target);
6532 }
6533 }
6534 else
6535 /* Always remove execution if this was the last process. */
6536 target_mark_exited (target);
6537 }
6538 }
6539
6540 static void
6541 extended_remote_mourn (void)
6542 {
6543 extended_remote_mourn_1 (&extended_remote_ops);
6544 }
6545
6546 static int
6547 extended_remote_run (char *args)
6548 {
6549 struct remote_state *rs = get_remote_state ();
6550 char *p;
6551 int len;
6552
6553 /* If the user has disabled vRun support, or we have detected that
6554 support is not available, do not try it. */
6555 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6556 return -1;
6557
6558 strcpy (rs->buf, "vRun;");
6559 len = strlen (rs->buf);
6560
6561 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6562 error (_("Remote file name too long for run packet"));
6563 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6564
6565 gdb_assert (args != NULL);
6566 if (*args)
6567 {
6568 struct cleanup *back_to;
6569 int i;
6570 char **argv;
6571
6572 argv = gdb_buildargv (args);
6573 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6574 for (i = 0; argv[i] != NULL; i++)
6575 {
6576 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6577 error (_("Argument list too long for run packet"));
6578 rs->buf[len++] = ';';
6579 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6580 }
6581 do_cleanups (back_to);
6582 }
6583
6584 rs->buf[len++] = '\0';
6585
6586 putpkt (rs->buf);
6587 getpkt (&rs->buf, &rs->buf_size, 0);
6588
6589 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6590 {
6591 /* We have a wait response; we don't need it, though. All is well. */
6592 return 0;
6593 }
6594 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6595 /* It wasn't disabled before, but it is now. */
6596 return -1;
6597 else
6598 {
6599 if (remote_exec_file[0] == '\0')
6600 error (_("Running the default executable on the remote target failed; "
6601 "try \"set remote exec-file\"?"));
6602 else
6603 error (_("Running \"%s\" on the remote target failed"),
6604 remote_exec_file);
6605 }
6606 }
6607
6608 /* In the extended protocol we want to be able to do things like
6609 "run" and have them basically work as expected. So we need
6610 a special create_inferior function. We support changing the
6611 executable file and the command line arguments, but not the
6612 environment. */
6613
6614 static void
6615 extended_remote_create_inferior_1 (char *exec_file, char *args,
6616 char **env, int from_tty)
6617 {
6618 /* If running asynchronously, register the target file descriptor
6619 with the event loop. */
6620 if (target_can_async_p ())
6621 target_async (inferior_event_handler, 0);
6622
6623 /* Now restart the remote server. */
6624 if (extended_remote_run (args) == -1)
6625 {
6626 /* vRun was not supported. Fail if we need it to do what the
6627 user requested. */
6628 if (remote_exec_file[0])
6629 error (_("Remote target does not support \"set remote exec-file\""));
6630 if (args[0])
6631 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6632
6633 /* Fall back to "R". */
6634 extended_remote_restart ();
6635 }
6636
6637 /* Clean up from the last time we ran, before we mark the target
6638 running again. This will mark breakpoints uninserted, and
6639 get_offsets may insert breakpoints. */
6640 init_thread_list ();
6641 init_wait_for_inferior ();
6642
6643 /* Now mark the inferior as running before we do anything else. */
6644 inferior_ptid = magic_null_ptid;
6645
6646 /* Now, if we have thread information, update inferior_ptid. */
6647 inferior_ptid = remote_current_thread (inferior_ptid);
6648
6649 add_inferior (ptid_get_pid (inferior_ptid));
6650 add_thread_silent (inferior_ptid);
6651
6652 target_mark_running (&extended_remote_ops);
6653
6654 /* Get updated offsets, if the stub uses qOffsets. */
6655 get_offsets ();
6656 }
6657
6658 static void
6659 extended_remote_create_inferior (char *exec_file, char *args,
6660 char **env, int from_tty)
6661 {
6662 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6663 }
6664 \f
6665
6666 /* Insert a breakpoint. On targets that have software breakpoint
6667 support, we ask the remote target to do the work; on targets
6668 which don't, we insert a traditional memory breakpoint. */
6669
6670 static int
6671 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6672 {
6673 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6674 If it succeeds, then set the support to PACKET_ENABLE. If it
6675 fails, and the user has explicitly requested the Z support then
6676 report an error, otherwise, mark it disabled and go on. */
6677
6678 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6679 {
6680 CORE_ADDR addr = bp_tgt->placed_address;
6681 struct remote_state *rs;
6682 char *p;
6683 int bpsize;
6684
6685 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6686
6687 rs = get_remote_state ();
6688 p = rs->buf;
6689
6690 *(p++) = 'Z';
6691 *(p++) = '0';
6692 *(p++) = ',';
6693 addr = (ULONGEST) remote_address_masked (addr);
6694 p += hexnumstr (p, addr);
6695 sprintf (p, ",%d", bpsize);
6696
6697 putpkt (rs->buf);
6698 getpkt (&rs->buf, &rs->buf_size, 0);
6699
6700 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6701 {
6702 case PACKET_ERROR:
6703 return -1;
6704 case PACKET_OK:
6705 bp_tgt->placed_address = addr;
6706 bp_tgt->placed_size = bpsize;
6707 return 0;
6708 case PACKET_UNKNOWN:
6709 break;
6710 }
6711 }
6712
6713 return memory_insert_breakpoint (bp_tgt);
6714 }
6715
6716 static int
6717 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6718 {
6719 CORE_ADDR addr = bp_tgt->placed_address;
6720 struct remote_state *rs = get_remote_state ();
6721 int bp_size;
6722
6723 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6724 {
6725 char *p = rs->buf;
6726
6727 *(p++) = 'z';
6728 *(p++) = '0';
6729 *(p++) = ',';
6730
6731 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6732 p += hexnumstr (p, addr);
6733 sprintf (p, ",%d", bp_tgt->placed_size);
6734
6735 putpkt (rs->buf);
6736 getpkt (&rs->buf, &rs->buf_size, 0);
6737
6738 return (rs->buf[0] == 'E');
6739 }
6740
6741 return memory_remove_breakpoint (bp_tgt);
6742 }
6743
6744 static int
6745 watchpoint_to_Z_packet (int type)
6746 {
6747 switch (type)
6748 {
6749 case hw_write:
6750 return Z_PACKET_WRITE_WP;
6751 break;
6752 case hw_read:
6753 return Z_PACKET_READ_WP;
6754 break;
6755 case hw_access:
6756 return Z_PACKET_ACCESS_WP;
6757 break;
6758 default:
6759 internal_error (__FILE__, __LINE__,
6760 _("hw_bp_to_z: bad watchpoint type %d"), type);
6761 }
6762 }
6763
6764 static int
6765 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6766 {
6767 struct remote_state *rs = get_remote_state ();
6768 char *p;
6769 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6770
6771 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6772 return -1;
6773
6774 sprintf (rs->buf, "Z%x,", packet);
6775 p = strchr (rs->buf, '\0');
6776 addr = remote_address_masked (addr);
6777 p += hexnumstr (p, (ULONGEST) addr);
6778 sprintf (p, ",%x", len);
6779
6780 putpkt (rs->buf);
6781 getpkt (&rs->buf, &rs->buf_size, 0);
6782
6783 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6784 {
6785 case PACKET_ERROR:
6786 case PACKET_UNKNOWN:
6787 return -1;
6788 case PACKET_OK:
6789 return 0;
6790 }
6791 internal_error (__FILE__, __LINE__,
6792 _("remote_insert_watchpoint: reached end of function"));
6793 }
6794
6795
6796 static int
6797 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6798 {
6799 struct remote_state *rs = get_remote_state ();
6800 char *p;
6801 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6802
6803 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6804 return -1;
6805
6806 sprintf (rs->buf, "z%x,", packet);
6807 p = strchr (rs->buf, '\0');
6808 addr = remote_address_masked (addr);
6809 p += hexnumstr (p, (ULONGEST) addr);
6810 sprintf (p, ",%x", len);
6811 putpkt (rs->buf);
6812 getpkt (&rs->buf, &rs->buf_size, 0);
6813
6814 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6815 {
6816 case PACKET_ERROR:
6817 case PACKET_UNKNOWN:
6818 return -1;
6819 case PACKET_OK:
6820 return 0;
6821 }
6822 internal_error (__FILE__, __LINE__,
6823 _("remote_remove_watchpoint: reached end of function"));
6824 }
6825
6826
6827 int remote_hw_watchpoint_limit = -1;
6828 int remote_hw_breakpoint_limit = -1;
6829
6830 static int
6831 remote_check_watch_resources (int type, int cnt, int ot)
6832 {
6833 if (type == bp_hardware_breakpoint)
6834 {
6835 if (remote_hw_breakpoint_limit == 0)
6836 return 0;
6837 else if (remote_hw_breakpoint_limit < 0)
6838 return 1;
6839 else if (cnt <= remote_hw_breakpoint_limit)
6840 return 1;
6841 }
6842 else
6843 {
6844 if (remote_hw_watchpoint_limit == 0)
6845 return 0;
6846 else if (remote_hw_watchpoint_limit < 0)
6847 return 1;
6848 else if (ot)
6849 return -1;
6850 else if (cnt <= remote_hw_watchpoint_limit)
6851 return 1;
6852 }
6853 return -1;
6854 }
6855
6856 static int
6857 remote_stopped_by_watchpoint (void)
6858 {
6859 return remote_stopped_by_watchpoint_p;
6860 }
6861
6862 static int
6863 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
6864 {
6865 int rc = 0;
6866 if (remote_stopped_by_watchpoint ())
6867 {
6868 *addr_p = remote_watch_data_address;
6869 rc = 1;
6870 }
6871
6872 return rc;
6873 }
6874
6875
6876 static int
6877 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
6878 {
6879 CORE_ADDR addr;
6880 struct remote_state *rs;
6881 char *p;
6882
6883 /* The length field should be set to the size of a breakpoint
6884 instruction, even though we aren't inserting one ourselves. */
6885
6886 gdbarch_breakpoint_from_pc
6887 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
6888
6889 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6890 return -1;
6891
6892 rs = get_remote_state ();
6893 p = rs->buf;
6894
6895 *(p++) = 'Z';
6896 *(p++) = '1';
6897 *(p++) = ',';
6898
6899 addr = remote_address_masked (bp_tgt->placed_address);
6900 p += hexnumstr (p, (ULONGEST) addr);
6901 sprintf (p, ",%x", bp_tgt->placed_size);
6902
6903 putpkt (rs->buf);
6904 getpkt (&rs->buf, &rs->buf_size, 0);
6905
6906 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6907 {
6908 case PACKET_ERROR:
6909 case PACKET_UNKNOWN:
6910 return -1;
6911 case PACKET_OK:
6912 return 0;
6913 }
6914 internal_error (__FILE__, __LINE__,
6915 _("remote_insert_hw_breakpoint: reached end of function"));
6916 }
6917
6918
6919 static int
6920 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
6921 {
6922 CORE_ADDR addr;
6923 struct remote_state *rs = get_remote_state ();
6924 char *p = rs->buf;
6925
6926 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6927 return -1;
6928
6929 *(p++) = 'z';
6930 *(p++) = '1';
6931 *(p++) = ',';
6932
6933 addr = remote_address_masked (bp_tgt->placed_address);
6934 p += hexnumstr (p, (ULONGEST) addr);
6935 sprintf (p, ",%x", bp_tgt->placed_size);
6936
6937 putpkt (rs->buf);
6938 getpkt (&rs->buf, &rs->buf_size, 0);
6939
6940 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6941 {
6942 case PACKET_ERROR:
6943 case PACKET_UNKNOWN:
6944 return -1;
6945 case PACKET_OK:
6946 return 0;
6947 }
6948 internal_error (__FILE__, __LINE__,
6949 _("remote_remove_hw_breakpoint: reached end of function"));
6950 }
6951
6952 /* Table used by the crc32 function to calcuate the checksum. */
6953
6954 static unsigned long crc32_table[256] =
6955 {0, 0};
6956
6957 static unsigned long
6958 crc32 (unsigned char *buf, int len, unsigned int crc)
6959 {
6960 if (!crc32_table[1])
6961 {
6962 /* Initialize the CRC table and the decoding table. */
6963 int i, j;
6964 unsigned int c;
6965
6966 for (i = 0; i < 256; i++)
6967 {
6968 for (c = i << 24, j = 8; j > 0; --j)
6969 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
6970 crc32_table[i] = c;
6971 }
6972 }
6973
6974 while (len--)
6975 {
6976 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
6977 buf++;
6978 }
6979 return crc;
6980 }
6981
6982 /* compare-sections command
6983
6984 With no arguments, compares each loadable section in the exec bfd
6985 with the same memory range on the target, and reports mismatches.
6986 Useful for verifying the image on the target against the exec file.
6987 Depends on the target understanding the new "qCRC:" request. */
6988
6989 /* FIXME: cagney/1999-10-26: This command should be broken down into a
6990 target method (target verify memory) and generic version of the
6991 actual command. This will allow other high-level code (especially
6992 generic_load()) to make use of this target functionality. */
6993
6994 static void
6995 compare_sections_command (char *args, int from_tty)
6996 {
6997 struct remote_state *rs = get_remote_state ();
6998 asection *s;
6999 unsigned long host_crc, target_crc;
7000 extern bfd *exec_bfd;
7001 struct cleanup *old_chain;
7002 char *tmp;
7003 char *sectdata;
7004 const char *sectname;
7005 bfd_size_type size;
7006 bfd_vma lma;
7007 int matched = 0;
7008 int mismatched = 0;
7009
7010 if (!exec_bfd)
7011 error (_("command cannot be used without an exec file"));
7012 if (!current_target.to_shortname ||
7013 strcmp (current_target.to_shortname, "remote") != 0)
7014 error (_("command can only be used with remote target"));
7015
7016 for (s = exec_bfd->sections; s; s = s->next)
7017 {
7018 if (!(s->flags & SEC_LOAD))
7019 continue; /* skip non-loadable section */
7020
7021 size = bfd_get_section_size (s);
7022 if (size == 0)
7023 continue; /* skip zero-length section */
7024
7025 sectname = bfd_get_section_name (exec_bfd, s);
7026 if (args && strcmp (args, sectname) != 0)
7027 continue; /* not the section selected by user */
7028
7029 matched = 1; /* do this section */
7030 lma = s->lma;
7031 /* FIXME: assumes lma can fit into long. */
7032 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7033 (long) lma, (long) size);
7034 putpkt (rs->buf);
7035
7036 /* Be clever; compute the host_crc before waiting for target
7037 reply. */
7038 sectdata = xmalloc (size);
7039 old_chain = make_cleanup (xfree, sectdata);
7040 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7041 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7042
7043 getpkt (&rs->buf, &rs->buf_size, 0);
7044 if (rs->buf[0] == 'E')
7045 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7046 sectname, paddr (lma), paddr (lma + size));
7047 if (rs->buf[0] != 'C')
7048 error (_("remote target does not support this operation"));
7049
7050 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7051 target_crc = target_crc * 16 + fromhex (*tmp);
7052
7053 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7054 sectname, paddr (lma), paddr (lma + size));
7055 if (host_crc == target_crc)
7056 printf_filtered ("matched.\n");
7057 else
7058 {
7059 printf_filtered ("MIS-MATCHED!\n");
7060 mismatched++;
7061 }
7062
7063 do_cleanups (old_chain);
7064 }
7065 if (mismatched > 0)
7066 warning (_("One or more sections of the remote executable does not match\n\
7067 the loaded file\n"));
7068 if (args && !matched)
7069 printf_filtered (_("No loaded section named '%s'.\n"), args);
7070 }
7071
7072 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7073 into remote target. The number of bytes written to the remote
7074 target is returned, or -1 for error. */
7075
7076 static LONGEST
7077 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7078 const char *annex, const gdb_byte *writebuf,
7079 ULONGEST offset, LONGEST len,
7080 struct packet_config *packet)
7081 {
7082 int i, buf_len;
7083 ULONGEST n;
7084 gdb_byte *wbuf;
7085 struct remote_state *rs = get_remote_state ();
7086 int max_size = get_memory_write_packet_size ();
7087
7088 if (packet->support == PACKET_DISABLE)
7089 return -1;
7090
7091 /* Insert header. */
7092 i = snprintf (rs->buf, max_size,
7093 "qXfer:%s:write:%s:%s:",
7094 object_name, annex ? annex : "",
7095 phex_nz (offset, sizeof offset));
7096 max_size -= (i + 1);
7097
7098 /* Escape as much data as fits into rs->buf. */
7099 buf_len = remote_escape_output
7100 (writebuf, len, (rs->buf + i), &max_size, max_size);
7101
7102 if (putpkt_binary (rs->buf, i + buf_len) < 0
7103 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7104 || packet_ok (rs->buf, packet) != PACKET_OK)
7105 return -1;
7106
7107 unpack_varlen_hex (rs->buf, &n);
7108 return n;
7109 }
7110
7111 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7112 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7113 number of bytes read is returned, or 0 for EOF, or -1 for error.
7114 The number of bytes read may be less than LEN without indicating an
7115 EOF. PACKET is checked and updated to indicate whether the remote
7116 target supports this object. */
7117
7118 static LONGEST
7119 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7120 const char *annex,
7121 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7122 struct packet_config *packet)
7123 {
7124 static char *finished_object;
7125 static char *finished_annex;
7126 static ULONGEST finished_offset;
7127
7128 struct remote_state *rs = get_remote_state ();
7129 unsigned int total = 0;
7130 LONGEST i, n, packet_len;
7131
7132 if (packet->support == PACKET_DISABLE)
7133 return -1;
7134
7135 /* Check whether we've cached an end-of-object packet that matches
7136 this request. */
7137 if (finished_object)
7138 {
7139 if (strcmp (object_name, finished_object) == 0
7140 && strcmp (annex ? annex : "", finished_annex) == 0
7141 && offset == finished_offset)
7142 return 0;
7143
7144 /* Otherwise, we're now reading something different. Discard
7145 the cache. */
7146 xfree (finished_object);
7147 xfree (finished_annex);
7148 finished_object = NULL;
7149 finished_annex = NULL;
7150 }
7151
7152 /* Request only enough to fit in a single packet. The actual data
7153 may not, since we don't know how much of it will need to be escaped;
7154 the target is free to respond with slightly less data. We subtract
7155 five to account for the response type and the protocol frame. */
7156 n = min (get_remote_packet_size () - 5, len);
7157 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7158 object_name, annex ? annex : "",
7159 phex_nz (offset, sizeof offset),
7160 phex_nz (n, sizeof n));
7161 i = putpkt (rs->buf);
7162 if (i < 0)
7163 return -1;
7164
7165 rs->buf[0] = '\0';
7166 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7167 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7168 return -1;
7169
7170 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7171 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7172
7173 /* 'm' means there is (or at least might be) more data after this
7174 batch. That does not make sense unless there's at least one byte
7175 of data in this reply. */
7176 if (rs->buf[0] == 'm' && packet_len == 1)
7177 error (_("Remote qXfer reply contained no data."));
7178
7179 /* Got some data. */
7180 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7181
7182 /* 'l' is an EOF marker, possibly including a final block of data,
7183 or possibly empty. If we have the final block of a non-empty
7184 object, record this fact to bypass a subsequent partial read. */
7185 if (rs->buf[0] == 'l' && offset + i > 0)
7186 {
7187 finished_object = xstrdup (object_name);
7188 finished_annex = xstrdup (annex ? annex : "");
7189 finished_offset = offset + i;
7190 }
7191
7192 return i;
7193 }
7194
7195 static LONGEST
7196 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7197 const char *annex, gdb_byte *readbuf,
7198 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7199 {
7200 struct remote_state *rs;
7201 int i;
7202 char *p2;
7203 char query_type;
7204
7205 set_general_thread (inferior_ptid);
7206
7207 rs = get_remote_state ();
7208
7209 /* Handle memory using the standard memory routines. */
7210 if (object == TARGET_OBJECT_MEMORY)
7211 {
7212 int xfered;
7213 errno = 0;
7214
7215 /* If the remote target is connected but not running, we should
7216 pass this request down to a lower stratum (e.g. the executable
7217 file). */
7218 if (!target_has_execution)
7219 return 0;
7220
7221 if (writebuf != NULL)
7222 xfered = remote_write_bytes (offset, writebuf, len);
7223 else
7224 xfered = remote_read_bytes (offset, readbuf, len);
7225
7226 if (xfered > 0)
7227 return xfered;
7228 else if (xfered == 0 && errno == 0)
7229 return 0;
7230 else
7231 return -1;
7232 }
7233
7234 /* Handle SPU memory using qxfer packets. */
7235 if (object == TARGET_OBJECT_SPU)
7236 {
7237 if (readbuf)
7238 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7239 &remote_protocol_packets
7240 [PACKET_qXfer_spu_read]);
7241 else
7242 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7243 &remote_protocol_packets
7244 [PACKET_qXfer_spu_write]);
7245 }
7246
7247 /* Only handle flash writes. */
7248 if (writebuf != NULL)
7249 {
7250 LONGEST xfered;
7251
7252 switch (object)
7253 {
7254 case TARGET_OBJECT_FLASH:
7255 xfered = remote_flash_write (ops, offset, len, writebuf);
7256
7257 if (xfered > 0)
7258 return xfered;
7259 else if (xfered == 0 && errno == 0)
7260 return 0;
7261 else
7262 return -1;
7263
7264 default:
7265 return -1;
7266 }
7267 }
7268
7269 /* Map pre-existing objects onto letters. DO NOT do this for new
7270 objects!!! Instead specify new query packets. */
7271 switch (object)
7272 {
7273 case TARGET_OBJECT_AVR:
7274 query_type = 'R';
7275 break;
7276
7277 case TARGET_OBJECT_AUXV:
7278 gdb_assert (annex == NULL);
7279 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7280 &remote_protocol_packets[PACKET_qXfer_auxv]);
7281
7282 case TARGET_OBJECT_AVAILABLE_FEATURES:
7283 return remote_read_qxfer
7284 (ops, "features", annex, readbuf, offset, len,
7285 &remote_protocol_packets[PACKET_qXfer_features]);
7286
7287 case TARGET_OBJECT_LIBRARIES:
7288 return remote_read_qxfer
7289 (ops, "libraries", annex, readbuf, offset, len,
7290 &remote_protocol_packets[PACKET_qXfer_libraries]);
7291
7292 case TARGET_OBJECT_MEMORY_MAP:
7293 gdb_assert (annex == NULL);
7294 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7295 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7296
7297 default:
7298 return -1;
7299 }
7300
7301 /* Note: a zero OFFSET and LEN can be used to query the minimum
7302 buffer size. */
7303 if (offset == 0 && len == 0)
7304 return (get_remote_packet_size ());
7305 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7306 large enough let the caller deal with it. */
7307 if (len < get_remote_packet_size ())
7308 return -1;
7309 len = get_remote_packet_size ();
7310
7311 /* Except for querying the minimum buffer size, target must be open. */
7312 if (!remote_desc)
7313 error (_("remote query is only available after target open"));
7314
7315 gdb_assert (annex != NULL);
7316 gdb_assert (readbuf != NULL);
7317
7318 p2 = rs->buf;
7319 *p2++ = 'q';
7320 *p2++ = query_type;
7321
7322 /* We used one buffer char for the remote protocol q command and
7323 another for the query type. As the remote protocol encapsulation
7324 uses 4 chars plus one extra in case we are debugging
7325 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7326 string. */
7327 i = 0;
7328 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7329 {
7330 /* Bad caller may have sent forbidden characters. */
7331 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7332 *p2++ = annex[i];
7333 i++;
7334 }
7335 *p2 = '\0';
7336 gdb_assert (annex[i] == '\0');
7337
7338 i = putpkt (rs->buf);
7339 if (i < 0)
7340 return i;
7341
7342 getpkt (&rs->buf, &rs->buf_size, 0);
7343 strcpy ((char *) readbuf, rs->buf);
7344
7345 return strlen ((char *) readbuf);
7346 }
7347
7348 static int
7349 remote_search_memory (struct target_ops* ops,
7350 CORE_ADDR start_addr, ULONGEST search_space_len,
7351 const gdb_byte *pattern, ULONGEST pattern_len,
7352 CORE_ADDR *found_addrp)
7353 {
7354 struct remote_state *rs = get_remote_state ();
7355 int max_size = get_memory_write_packet_size ();
7356 struct packet_config *packet =
7357 &remote_protocol_packets[PACKET_qSearch_memory];
7358 /* number of packet bytes used to encode the pattern,
7359 this could be more than PATTERN_LEN due to escape characters */
7360 int escaped_pattern_len;
7361 /* amount of pattern that was encodable in the packet */
7362 int used_pattern_len;
7363 int i;
7364 int found;
7365 ULONGEST found_addr;
7366
7367 /* Don't go to the target if we don't have to.
7368 This is done before checking packet->support to avoid the possibility that
7369 a success for this edge case means the facility works in general. */
7370 if (pattern_len > search_space_len)
7371 return 0;
7372 if (pattern_len == 0)
7373 {
7374 *found_addrp = start_addr;
7375 return 1;
7376 }
7377
7378 /* If we already know the packet isn't supported, fall back to the simple
7379 way of searching memory. */
7380
7381 if (packet->support == PACKET_DISABLE)
7382 {
7383 /* Target doesn't provided special support, fall back and use the
7384 standard support (copy memory and do the search here). */
7385 return simple_search_memory (ops, start_addr, search_space_len,
7386 pattern, pattern_len, found_addrp);
7387 }
7388
7389 /* Insert header. */
7390 i = snprintf (rs->buf, max_size,
7391 "qSearch:memory:%s;%s;",
7392 paddr_nz (start_addr),
7393 phex_nz (search_space_len, sizeof (search_space_len)));
7394 max_size -= (i + 1);
7395
7396 /* Escape as much data as fits into rs->buf. */
7397 escaped_pattern_len =
7398 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7399 &used_pattern_len, max_size);
7400
7401 /* Bail if the pattern is too large. */
7402 if (used_pattern_len != pattern_len)
7403 error ("Pattern is too large to transmit to remote target.");
7404
7405 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7406 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7407 || packet_ok (rs->buf, packet) != PACKET_OK)
7408 {
7409 /* The request may not have worked because the command is not
7410 supported. If so, fall back to the simple way. */
7411 if (packet->support == PACKET_DISABLE)
7412 {
7413 return simple_search_memory (ops, start_addr, search_space_len,
7414 pattern, pattern_len, found_addrp);
7415 }
7416 return -1;
7417 }
7418
7419 if (rs->buf[0] == '0')
7420 found = 0;
7421 else if (rs->buf[0] == '1')
7422 {
7423 found = 1;
7424 if (rs->buf[1] != ',')
7425 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7426 unpack_varlen_hex (rs->buf + 2, &found_addr);
7427 *found_addrp = found_addr;
7428 }
7429 else
7430 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7431
7432 return found;
7433 }
7434
7435 static void
7436 remote_rcmd (char *command,
7437 struct ui_file *outbuf)
7438 {
7439 struct remote_state *rs = get_remote_state ();
7440 char *p = rs->buf;
7441
7442 if (!remote_desc)
7443 error (_("remote rcmd is only available after target open"));
7444
7445 /* Send a NULL command across as an empty command. */
7446 if (command == NULL)
7447 command = "";
7448
7449 /* The query prefix. */
7450 strcpy (rs->buf, "qRcmd,");
7451 p = strchr (rs->buf, '\0');
7452
7453 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7454 error (_("\"monitor\" command ``%s'' is too long."), command);
7455
7456 /* Encode the actual command. */
7457 bin2hex ((gdb_byte *) command, p, 0);
7458
7459 if (putpkt (rs->buf) < 0)
7460 error (_("Communication problem with target."));
7461
7462 /* get/display the response */
7463 while (1)
7464 {
7465 char *buf;
7466
7467 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7468 rs->buf[0] = '\0';
7469 getpkt (&rs->buf, &rs->buf_size, 0);
7470 buf = rs->buf;
7471 if (buf[0] == '\0')
7472 error (_("Target does not support this command."));
7473 if (buf[0] == 'O' && buf[1] != 'K')
7474 {
7475 remote_console_output (buf + 1); /* 'O' message from stub. */
7476 continue;
7477 }
7478 if (strcmp (buf, "OK") == 0)
7479 break;
7480 if (strlen (buf) == 3 && buf[0] == 'E'
7481 && isdigit (buf[1]) && isdigit (buf[2]))
7482 {
7483 error (_("Protocol error with Rcmd"));
7484 }
7485 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7486 {
7487 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7488 fputc_unfiltered (c, outbuf);
7489 }
7490 break;
7491 }
7492 }
7493
7494 static VEC(mem_region_s) *
7495 remote_memory_map (struct target_ops *ops)
7496 {
7497 VEC(mem_region_s) *result = NULL;
7498 char *text = target_read_stralloc (&current_target,
7499 TARGET_OBJECT_MEMORY_MAP, NULL);
7500
7501 if (text)
7502 {
7503 struct cleanup *back_to = make_cleanup (xfree, text);
7504 result = parse_memory_map (text);
7505 do_cleanups (back_to);
7506 }
7507
7508 return result;
7509 }
7510
7511 static void
7512 packet_command (char *args, int from_tty)
7513 {
7514 struct remote_state *rs = get_remote_state ();
7515
7516 if (!remote_desc)
7517 error (_("command can only be used with remote target"));
7518
7519 if (!args)
7520 error (_("remote-packet command requires packet text as argument"));
7521
7522 puts_filtered ("sending: ");
7523 print_packet (args);
7524 puts_filtered ("\n");
7525 putpkt (args);
7526
7527 getpkt (&rs->buf, &rs->buf_size, 0);
7528 puts_filtered ("received: ");
7529 print_packet (rs->buf);
7530 puts_filtered ("\n");
7531 }
7532
7533 #if 0
7534 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7535
7536 static void display_thread_info (struct gdb_ext_thread_info *info);
7537
7538 static void threadset_test_cmd (char *cmd, int tty);
7539
7540 static void threadalive_test (char *cmd, int tty);
7541
7542 static void threadlist_test_cmd (char *cmd, int tty);
7543
7544 int get_and_display_threadinfo (threadref *ref);
7545
7546 static void threadinfo_test_cmd (char *cmd, int tty);
7547
7548 static int thread_display_step (threadref *ref, void *context);
7549
7550 static void threadlist_update_test_cmd (char *cmd, int tty);
7551
7552 static void init_remote_threadtests (void);
7553
7554 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7555
7556 static void
7557 threadset_test_cmd (char *cmd, int tty)
7558 {
7559 int sample_thread = SAMPLE_THREAD;
7560
7561 printf_filtered (_("Remote threadset test\n"));
7562 set_general_thread (sample_thread);
7563 }
7564
7565
7566 static void
7567 threadalive_test (char *cmd, int tty)
7568 {
7569 int sample_thread = SAMPLE_THREAD;
7570 int pid = ptid_get_pid (inferior_ptid);
7571 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7572
7573 if (remote_thread_alive (ptid))
7574 printf_filtered ("PASS: Thread alive test\n");
7575 else
7576 printf_filtered ("FAIL: Thread alive test\n");
7577 }
7578
7579 void output_threadid (char *title, threadref *ref);
7580
7581 void
7582 output_threadid (char *title, threadref *ref)
7583 {
7584 char hexid[20];
7585
7586 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7587 hexid[16] = 0;
7588 printf_filtered ("%s %s\n", title, (&hexid[0]));
7589 }
7590
7591 static void
7592 threadlist_test_cmd (char *cmd, int tty)
7593 {
7594 int startflag = 1;
7595 threadref nextthread;
7596 int done, result_count;
7597 threadref threadlist[3];
7598
7599 printf_filtered ("Remote Threadlist test\n");
7600 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7601 &result_count, &threadlist[0]))
7602 printf_filtered ("FAIL: threadlist test\n");
7603 else
7604 {
7605 threadref *scan = threadlist;
7606 threadref *limit = scan + result_count;
7607
7608 while (scan < limit)
7609 output_threadid (" thread ", scan++);
7610 }
7611 }
7612
7613 void
7614 display_thread_info (struct gdb_ext_thread_info *info)
7615 {
7616 output_threadid ("Threadid: ", &info->threadid);
7617 printf_filtered ("Name: %s\n ", info->shortname);
7618 printf_filtered ("State: %s\n", info->display);
7619 printf_filtered ("other: %s\n\n", info->more_display);
7620 }
7621
7622 int
7623 get_and_display_threadinfo (threadref *ref)
7624 {
7625 int result;
7626 int set;
7627 struct gdb_ext_thread_info threadinfo;
7628
7629 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7630 | TAG_MOREDISPLAY | TAG_DISPLAY;
7631 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7632 display_thread_info (&threadinfo);
7633 return result;
7634 }
7635
7636 static void
7637 threadinfo_test_cmd (char *cmd, int tty)
7638 {
7639 int athread = SAMPLE_THREAD;
7640 threadref thread;
7641 int set;
7642
7643 int_to_threadref (&thread, athread);
7644 printf_filtered ("Remote Threadinfo test\n");
7645 if (!get_and_display_threadinfo (&thread))
7646 printf_filtered ("FAIL cannot get thread info\n");
7647 }
7648
7649 static int
7650 thread_display_step (threadref *ref, void *context)
7651 {
7652 /* output_threadid(" threadstep ",ref); *//* simple test */
7653 return get_and_display_threadinfo (ref);
7654 }
7655
7656 static void
7657 threadlist_update_test_cmd (char *cmd, int tty)
7658 {
7659 printf_filtered ("Remote Threadlist update test\n");
7660 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7661 }
7662
7663 static void
7664 init_remote_threadtests (void)
7665 {
7666 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7667 Fetch and print the remote list of thread identifiers, one pkt only"));
7668 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7669 _("Fetch and display info about one thread"));
7670 add_com ("tset", class_obscure, threadset_test_cmd,
7671 _("Test setting to a different thread"));
7672 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7673 _("Iterate through updating all remote thread info"));
7674 add_com ("talive", class_obscure, threadalive_test,
7675 _(" Remote thread alive test "));
7676 }
7677
7678 #endif /* 0 */
7679
7680 /* Convert a thread ID to a string. Returns the string in a static
7681 buffer. */
7682
7683 static char *
7684 remote_pid_to_str (ptid_t ptid)
7685 {
7686 static char buf[64];
7687 struct remote_state *rs = get_remote_state ();
7688
7689 if (ptid_equal (magic_null_ptid, ptid))
7690 {
7691 xsnprintf (buf, sizeof buf, "Thread <main>");
7692 return buf;
7693 }
7694 else if (remote_multi_process_p (rs)
7695 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7696 {
7697 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7698 ptid_get_pid (ptid), ptid_get_tid (ptid));
7699 return buf;
7700 }
7701 else if (ptid_get_tid (ptid) != 0)
7702 {
7703 xsnprintf (buf, sizeof buf, "Thread %ld",
7704 ptid_get_tid (ptid));
7705 return buf;
7706 }
7707
7708 return normal_pid_to_str (ptid);
7709 }
7710
7711 /* Get the address of the thread local variable in OBJFILE which is
7712 stored at OFFSET within the thread local storage for thread PTID. */
7713
7714 static CORE_ADDR
7715 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7716 {
7717 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7718 {
7719 struct remote_state *rs = get_remote_state ();
7720 char *p = rs->buf;
7721 char *endp = rs->buf + get_remote_packet_size ();
7722 enum packet_result result;
7723
7724 strcpy (p, "qGetTLSAddr:");
7725 p += strlen (p);
7726 p = write_ptid (p, endp, ptid);
7727 *p++ = ',';
7728 p += hexnumstr (p, offset);
7729 *p++ = ',';
7730 p += hexnumstr (p, lm);
7731 *p++ = '\0';
7732
7733 putpkt (rs->buf);
7734 getpkt (&rs->buf, &rs->buf_size, 0);
7735 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7736 if (result == PACKET_OK)
7737 {
7738 ULONGEST result;
7739
7740 unpack_varlen_hex (rs->buf, &result);
7741 return result;
7742 }
7743 else if (result == PACKET_UNKNOWN)
7744 throw_error (TLS_GENERIC_ERROR,
7745 _("Remote target doesn't support qGetTLSAddr packet"));
7746 else
7747 throw_error (TLS_GENERIC_ERROR,
7748 _("Remote target failed to process qGetTLSAddr request"));
7749 }
7750 else
7751 throw_error (TLS_GENERIC_ERROR,
7752 _("TLS not supported or disabled on this target"));
7753 /* Not reached. */
7754 return 0;
7755 }
7756
7757 /* Support for inferring a target description based on the current
7758 architecture and the size of a 'g' packet. While the 'g' packet
7759 can have any size (since optional registers can be left off the
7760 end), some sizes are easily recognizable given knowledge of the
7761 approximate architecture. */
7762
7763 struct remote_g_packet_guess
7764 {
7765 int bytes;
7766 const struct target_desc *tdesc;
7767 };
7768 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7769 DEF_VEC_O(remote_g_packet_guess_s);
7770
7771 struct remote_g_packet_data
7772 {
7773 VEC(remote_g_packet_guess_s) *guesses;
7774 };
7775
7776 static struct gdbarch_data *remote_g_packet_data_handle;
7777
7778 static void *
7779 remote_g_packet_data_init (struct obstack *obstack)
7780 {
7781 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7782 }
7783
7784 void
7785 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7786 const struct target_desc *tdesc)
7787 {
7788 struct remote_g_packet_data *data
7789 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7790 struct remote_g_packet_guess new_guess, *guess;
7791 int ix;
7792
7793 gdb_assert (tdesc != NULL);
7794
7795 for (ix = 0;
7796 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7797 ix++)
7798 if (guess->bytes == bytes)
7799 internal_error (__FILE__, __LINE__,
7800 "Duplicate g packet description added for size %d",
7801 bytes);
7802
7803 new_guess.bytes = bytes;
7804 new_guess.tdesc = tdesc;
7805 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7806 }
7807
7808 static const struct target_desc *
7809 remote_read_description (struct target_ops *target)
7810 {
7811 struct remote_g_packet_data *data
7812 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7813
7814 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7815 {
7816 struct remote_g_packet_guess *guess;
7817 int ix;
7818 int bytes = send_g_packet ();
7819
7820 for (ix = 0;
7821 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7822 ix++)
7823 if (guess->bytes == bytes)
7824 return guess->tdesc;
7825
7826 /* We discard the g packet. A minor optimization would be to
7827 hold on to it, and fill the register cache once we have selected
7828 an architecture, but it's too tricky to do safely. */
7829 }
7830
7831 return NULL;
7832 }
7833
7834 /* Remote file transfer support. This is host-initiated I/O, not
7835 target-initiated; for target-initiated, see remote-fileio.c. */
7836
7837 /* If *LEFT is at least the length of STRING, copy STRING to
7838 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7839 decrease *LEFT. Otherwise raise an error. */
7840
7841 static void
7842 remote_buffer_add_string (char **buffer, int *left, char *string)
7843 {
7844 int len = strlen (string);
7845
7846 if (len > *left)
7847 error (_("Packet too long for target."));
7848
7849 memcpy (*buffer, string, len);
7850 *buffer += len;
7851 *left -= len;
7852
7853 /* NUL-terminate the buffer as a convenience, if there is
7854 room. */
7855 if (*left)
7856 **buffer = '\0';
7857 }
7858
7859 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
7860 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7861 decrease *LEFT. Otherwise raise an error. */
7862
7863 static void
7864 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
7865 int len)
7866 {
7867 if (2 * len > *left)
7868 error (_("Packet too long for target."));
7869
7870 bin2hex (bytes, *buffer, len);
7871 *buffer += 2 * len;
7872 *left -= 2 * len;
7873
7874 /* NUL-terminate the buffer as a convenience, if there is
7875 room. */
7876 if (*left)
7877 **buffer = '\0';
7878 }
7879
7880 /* If *LEFT is large enough, convert VALUE to hex and add it to
7881 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7882 decrease *LEFT. Otherwise raise an error. */
7883
7884 static void
7885 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
7886 {
7887 int len = hexnumlen (value);
7888
7889 if (len > *left)
7890 error (_("Packet too long for target."));
7891
7892 hexnumstr (*buffer, value);
7893 *buffer += len;
7894 *left -= len;
7895
7896 /* NUL-terminate the buffer as a convenience, if there is
7897 room. */
7898 if (*left)
7899 **buffer = '\0';
7900 }
7901
7902 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
7903 value, *REMOTE_ERRNO to the remote error number or zero if none
7904 was included, and *ATTACHMENT to point to the start of the annex
7905 if any. The length of the packet isn't needed here; there may
7906 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
7907
7908 Return 0 if the packet could be parsed, -1 if it could not. If
7909 -1 is returned, the other variables may not be initialized. */
7910
7911 static int
7912 remote_hostio_parse_result (char *buffer, int *retcode,
7913 int *remote_errno, char **attachment)
7914 {
7915 char *p, *p2;
7916
7917 *remote_errno = 0;
7918 *attachment = NULL;
7919
7920 if (buffer[0] != 'F')
7921 return -1;
7922
7923 errno = 0;
7924 *retcode = strtol (&buffer[1], &p, 16);
7925 if (errno != 0 || p == &buffer[1])
7926 return -1;
7927
7928 /* Check for ",errno". */
7929 if (*p == ',')
7930 {
7931 errno = 0;
7932 *remote_errno = strtol (p + 1, &p2, 16);
7933 if (errno != 0 || p + 1 == p2)
7934 return -1;
7935 p = p2;
7936 }
7937
7938 /* Check for ";attachment". If there is no attachment, the
7939 packet should end here. */
7940 if (*p == ';')
7941 {
7942 *attachment = p + 1;
7943 return 0;
7944 }
7945 else if (*p == '\0')
7946 return 0;
7947 else
7948 return -1;
7949 }
7950
7951 /* Send a prepared I/O packet to the target and read its response.
7952 The prepared packet is in the global RS->BUF before this function
7953 is called, and the answer is there when we return.
7954
7955 COMMAND_BYTES is the length of the request to send, which may include
7956 binary data. WHICH_PACKET is the packet configuration to check
7957 before attempting a packet. If an error occurs, *REMOTE_ERRNO
7958 is set to the error number and -1 is returned. Otherwise the value
7959 returned by the function is returned.
7960
7961 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
7962 attachment is expected; an error will be reported if there's a
7963 mismatch. If one is found, *ATTACHMENT will be set to point into
7964 the packet buffer and *ATTACHMENT_LEN will be set to the
7965 attachment's length. */
7966
7967 static int
7968 remote_hostio_send_command (int command_bytes, int which_packet,
7969 int *remote_errno, char **attachment,
7970 int *attachment_len)
7971 {
7972 struct remote_state *rs = get_remote_state ();
7973 int ret, bytes_read;
7974 char *attachment_tmp;
7975
7976 if (!remote_desc
7977 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
7978 {
7979 *remote_errno = FILEIO_ENOSYS;
7980 return -1;
7981 }
7982
7983 putpkt_binary (rs->buf, command_bytes);
7984 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7985
7986 /* If it timed out, something is wrong. Don't try to parse the
7987 buffer. */
7988 if (bytes_read < 0)
7989 {
7990 *remote_errno = FILEIO_EINVAL;
7991 return -1;
7992 }
7993
7994 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
7995 {
7996 case PACKET_ERROR:
7997 *remote_errno = FILEIO_EINVAL;
7998 return -1;
7999 case PACKET_UNKNOWN:
8000 *remote_errno = FILEIO_ENOSYS;
8001 return -1;
8002 case PACKET_OK:
8003 break;
8004 }
8005
8006 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8007 &attachment_tmp))
8008 {
8009 *remote_errno = FILEIO_EINVAL;
8010 return -1;
8011 }
8012
8013 /* Make sure we saw an attachment if and only if we expected one. */
8014 if ((attachment_tmp == NULL && attachment != NULL)
8015 || (attachment_tmp != NULL && attachment == NULL))
8016 {
8017 *remote_errno = FILEIO_EINVAL;
8018 return -1;
8019 }
8020
8021 /* If an attachment was found, it must point into the packet buffer;
8022 work out how many bytes there were. */
8023 if (attachment_tmp != NULL)
8024 {
8025 *attachment = attachment_tmp;
8026 *attachment_len = bytes_read - (*attachment - rs->buf);
8027 }
8028
8029 return ret;
8030 }
8031
8032 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8033 remote file descriptor, or -1 if an error occurs (and set
8034 *REMOTE_ERRNO). */
8035
8036 static int
8037 remote_hostio_open (const char *filename, int flags, int mode,
8038 int *remote_errno)
8039 {
8040 struct remote_state *rs = get_remote_state ();
8041 char *p = rs->buf;
8042 int left = get_remote_packet_size () - 1;
8043
8044 remote_buffer_add_string (&p, &left, "vFile:open:");
8045
8046 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8047 strlen (filename));
8048 remote_buffer_add_string (&p, &left, ",");
8049
8050 remote_buffer_add_int (&p, &left, flags);
8051 remote_buffer_add_string (&p, &left, ",");
8052
8053 remote_buffer_add_int (&p, &left, mode);
8054
8055 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8056 remote_errno, NULL, NULL);
8057 }
8058
8059 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8060 Return the number of bytes written, or -1 if an error occurs (and
8061 set *REMOTE_ERRNO). */
8062
8063 static int
8064 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8065 ULONGEST offset, int *remote_errno)
8066 {
8067 struct remote_state *rs = get_remote_state ();
8068 char *p = rs->buf;
8069 int left = get_remote_packet_size ();
8070 int out_len;
8071
8072 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8073
8074 remote_buffer_add_int (&p, &left, fd);
8075 remote_buffer_add_string (&p, &left, ",");
8076
8077 remote_buffer_add_int (&p, &left, offset);
8078 remote_buffer_add_string (&p, &left, ",");
8079
8080 p += remote_escape_output (write_buf, len, p, &out_len,
8081 get_remote_packet_size () - (p - rs->buf));
8082
8083 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8084 remote_errno, NULL, NULL);
8085 }
8086
8087 /* Read up to LEN bytes FD on the remote target into READ_BUF
8088 Return the number of bytes read, or -1 if an error occurs (and
8089 set *REMOTE_ERRNO). */
8090
8091 static int
8092 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8093 ULONGEST offset, int *remote_errno)
8094 {
8095 struct remote_state *rs = get_remote_state ();
8096 char *p = rs->buf;
8097 char *attachment;
8098 int left = get_remote_packet_size ();
8099 int ret, attachment_len;
8100 int read_len;
8101
8102 remote_buffer_add_string (&p, &left, "vFile:pread:");
8103
8104 remote_buffer_add_int (&p, &left, fd);
8105 remote_buffer_add_string (&p, &left, ",");
8106
8107 remote_buffer_add_int (&p, &left, len);
8108 remote_buffer_add_string (&p, &left, ",");
8109
8110 remote_buffer_add_int (&p, &left, offset);
8111
8112 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8113 remote_errno, &attachment,
8114 &attachment_len);
8115
8116 if (ret < 0)
8117 return ret;
8118
8119 read_len = remote_unescape_input (attachment, attachment_len,
8120 read_buf, len);
8121 if (read_len != ret)
8122 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8123
8124 return ret;
8125 }
8126
8127 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8128 (and set *REMOTE_ERRNO). */
8129
8130 static int
8131 remote_hostio_close (int fd, int *remote_errno)
8132 {
8133 struct remote_state *rs = get_remote_state ();
8134 char *p = rs->buf;
8135 int left = get_remote_packet_size () - 1;
8136
8137 remote_buffer_add_string (&p, &left, "vFile:close:");
8138
8139 remote_buffer_add_int (&p, &left, fd);
8140
8141 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8142 remote_errno, NULL, NULL);
8143 }
8144
8145 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8146 occurs (and set *REMOTE_ERRNO). */
8147
8148 static int
8149 remote_hostio_unlink (const char *filename, int *remote_errno)
8150 {
8151 struct remote_state *rs = get_remote_state ();
8152 char *p = rs->buf;
8153 int left = get_remote_packet_size () - 1;
8154
8155 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8156
8157 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8158 strlen (filename));
8159
8160 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8161 remote_errno, NULL, NULL);
8162 }
8163
8164 static int
8165 remote_fileio_errno_to_host (int errnum)
8166 {
8167 switch (errnum)
8168 {
8169 case FILEIO_EPERM:
8170 return EPERM;
8171 case FILEIO_ENOENT:
8172 return ENOENT;
8173 case FILEIO_EINTR:
8174 return EINTR;
8175 case FILEIO_EIO:
8176 return EIO;
8177 case FILEIO_EBADF:
8178 return EBADF;
8179 case FILEIO_EACCES:
8180 return EACCES;
8181 case FILEIO_EFAULT:
8182 return EFAULT;
8183 case FILEIO_EBUSY:
8184 return EBUSY;
8185 case FILEIO_EEXIST:
8186 return EEXIST;
8187 case FILEIO_ENODEV:
8188 return ENODEV;
8189 case FILEIO_ENOTDIR:
8190 return ENOTDIR;
8191 case FILEIO_EISDIR:
8192 return EISDIR;
8193 case FILEIO_EINVAL:
8194 return EINVAL;
8195 case FILEIO_ENFILE:
8196 return ENFILE;
8197 case FILEIO_EMFILE:
8198 return EMFILE;
8199 case FILEIO_EFBIG:
8200 return EFBIG;
8201 case FILEIO_ENOSPC:
8202 return ENOSPC;
8203 case FILEIO_ESPIPE:
8204 return ESPIPE;
8205 case FILEIO_EROFS:
8206 return EROFS;
8207 case FILEIO_ENOSYS:
8208 return ENOSYS;
8209 case FILEIO_ENAMETOOLONG:
8210 return ENAMETOOLONG;
8211 }
8212 return -1;
8213 }
8214
8215 static char *
8216 remote_hostio_error (int errnum)
8217 {
8218 int host_error = remote_fileio_errno_to_host (errnum);
8219
8220 if (host_error == -1)
8221 error (_("Unknown remote I/O error %d"), errnum);
8222 else
8223 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8224 }
8225
8226 static void
8227 remote_hostio_close_cleanup (void *opaque)
8228 {
8229 int fd = *(int *) opaque;
8230 int remote_errno;
8231
8232 remote_hostio_close (fd, &remote_errno);
8233 }
8234
8235
8236 static void *
8237 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8238 {
8239 const char *filename = bfd_get_filename (abfd);
8240 int fd, remote_errno;
8241 int *stream;
8242
8243 gdb_assert (remote_filename_p (filename));
8244
8245 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8246 if (fd == -1)
8247 {
8248 errno = remote_fileio_errno_to_host (remote_errno);
8249 bfd_set_error (bfd_error_system_call);
8250 return NULL;
8251 }
8252
8253 stream = xmalloc (sizeof (int));
8254 *stream = fd;
8255 return stream;
8256 }
8257
8258 static int
8259 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8260 {
8261 int fd = *(int *)stream;
8262 int remote_errno;
8263
8264 xfree (stream);
8265
8266 /* Ignore errors on close; these may happen if the remote
8267 connection was already torn down. */
8268 remote_hostio_close (fd, &remote_errno);
8269
8270 return 1;
8271 }
8272
8273 static file_ptr
8274 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8275 file_ptr nbytes, file_ptr offset)
8276 {
8277 int fd = *(int *)stream;
8278 int remote_errno;
8279 file_ptr pos, bytes;
8280
8281 pos = 0;
8282 while (nbytes > pos)
8283 {
8284 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8285 offset + pos, &remote_errno);
8286 if (bytes == 0)
8287 /* Success, but no bytes, means end-of-file. */
8288 break;
8289 if (bytes == -1)
8290 {
8291 errno = remote_fileio_errno_to_host (remote_errno);
8292 bfd_set_error (bfd_error_system_call);
8293 return -1;
8294 }
8295
8296 pos += bytes;
8297 }
8298
8299 return pos;
8300 }
8301
8302 static int
8303 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8304 {
8305 /* FIXME: We should probably implement remote_hostio_stat. */
8306 sb->st_size = INT_MAX;
8307 return 0;
8308 }
8309
8310 int
8311 remote_filename_p (const char *filename)
8312 {
8313 return strncmp (filename, "remote:", 7) == 0;
8314 }
8315
8316 bfd *
8317 remote_bfd_open (const char *remote_file, const char *target)
8318 {
8319 return bfd_openr_iovec (remote_file, target,
8320 remote_bfd_iovec_open, NULL,
8321 remote_bfd_iovec_pread,
8322 remote_bfd_iovec_close,
8323 remote_bfd_iovec_stat);
8324 }
8325
8326 void
8327 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8328 {
8329 struct cleanup *back_to, *close_cleanup;
8330 int retcode, fd, remote_errno, bytes, io_size;
8331 FILE *file;
8332 gdb_byte *buffer;
8333 int bytes_in_buffer;
8334 int saw_eof;
8335 ULONGEST offset;
8336
8337 if (!remote_desc)
8338 error (_("command can only be used with remote target"));
8339
8340 file = fopen (local_file, "rb");
8341 if (file == NULL)
8342 perror_with_name (local_file);
8343 back_to = make_cleanup_fclose (file);
8344
8345 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8346 | FILEIO_O_TRUNC),
8347 0700, &remote_errno);
8348 if (fd == -1)
8349 remote_hostio_error (remote_errno);
8350
8351 /* Send up to this many bytes at once. They won't all fit in the
8352 remote packet limit, so we'll transfer slightly fewer. */
8353 io_size = get_remote_packet_size ();
8354 buffer = xmalloc (io_size);
8355 make_cleanup (xfree, buffer);
8356
8357 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8358
8359 bytes_in_buffer = 0;
8360 saw_eof = 0;
8361 offset = 0;
8362 while (bytes_in_buffer || !saw_eof)
8363 {
8364 if (!saw_eof)
8365 {
8366 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8367 file);
8368 if (bytes == 0)
8369 {
8370 if (ferror (file))
8371 error (_("Error reading %s."), local_file);
8372 else
8373 {
8374 /* EOF. Unless there is something still in the
8375 buffer from the last iteration, we are done. */
8376 saw_eof = 1;
8377 if (bytes_in_buffer == 0)
8378 break;
8379 }
8380 }
8381 }
8382 else
8383 bytes = 0;
8384
8385 bytes += bytes_in_buffer;
8386 bytes_in_buffer = 0;
8387
8388 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8389
8390 if (retcode < 0)
8391 remote_hostio_error (remote_errno);
8392 else if (retcode == 0)
8393 error (_("Remote write of %d bytes returned 0!"), bytes);
8394 else if (retcode < bytes)
8395 {
8396 /* Short write. Save the rest of the read data for the next
8397 write. */
8398 bytes_in_buffer = bytes - retcode;
8399 memmove (buffer, buffer + retcode, bytes_in_buffer);
8400 }
8401
8402 offset += retcode;
8403 }
8404
8405 discard_cleanups (close_cleanup);
8406 if (remote_hostio_close (fd, &remote_errno))
8407 remote_hostio_error (remote_errno);
8408
8409 if (from_tty)
8410 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8411 do_cleanups (back_to);
8412 }
8413
8414 void
8415 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8416 {
8417 struct cleanup *back_to, *close_cleanup;
8418 int retcode, fd, remote_errno, bytes, io_size;
8419 FILE *file;
8420 gdb_byte *buffer;
8421 ULONGEST offset;
8422
8423 if (!remote_desc)
8424 error (_("command can only be used with remote target"));
8425
8426 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8427 if (fd == -1)
8428 remote_hostio_error (remote_errno);
8429
8430 file = fopen (local_file, "wb");
8431 if (file == NULL)
8432 perror_with_name (local_file);
8433 back_to = make_cleanup_fclose (file);
8434
8435 /* Send up to this many bytes at once. They won't all fit in the
8436 remote packet limit, so we'll transfer slightly fewer. */
8437 io_size = get_remote_packet_size ();
8438 buffer = xmalloc (io_size);
8439 make_cleanup (xfree, buffer);
8440
8441 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8442
8443 offset = 0;
8444 while (1)
8445 {
8446 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8447 if (bytes == 0)
8448 /* Success, but no bytes, means end-of-file. */
8449 break;
8450 if (bytes == -1)
8451 remote_hostio_error (remote_errno);
8452
8453 offset += bytes;
8454
8455 bytes = fwrite (buffer, 1, bytes, file);
8456 if (bytes == 0)
8457 perror_with_name (local_file);
8458 }
8459
8460 discard_cleanups (close_cleanup);
8461 if (remote_hostio_close (fd, &remote_errno))
8462 remote_hostio_error (remote_errno);
8463
8464 if (from_tty)
8465 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8466 do_cleanups (back_to);
8467 }
8468
8469 void
8470 remote_file_delete (const char *remote_file, int from_tty)
8471 {
8472 int retcode, remote_errno;
8473
8474 if (!remote_desc)
8475 error (_("command can only be used with remote target"));
8476
8477 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8478 if (retcode == -1)
8479 remote_hostio_error (remote_errno);
8480
8481 if (from_tty)
8482 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8483 }
8484
8485 static void
8486 remote_put_command (char *args, int from_tty)
8487 {
8488 struct cleanup *back_to;
8489 char **argv;
8490
8491 if (args == NULL)
8492 error_no_arg (_("file to put"));
8493
8494 argv = gdb_buildargv (args);
8495 back_to = make_cleanup_freeargv (argv);
8496 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8497 error (_("Invalid parameters to remote put"));
8498
8499 remote_file_put (argv[0], argv[1], from_tty);
8500
8501 do_cleanups (back_to);
8502 }
8503
8504 static void
8505 remote_get_command (char *args, int from_tty)
8506 {
8507 struct cleanup *back_to;
8508 char **argv;
8509
8510 if (args == NULL)
8511 error_no_arg (_("file to get"));
8512
8513 argv = gdb_buildargv (args);
8514 back_to = make_cleanup_freeargv (argv);
8515 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8516 error (_("Invalid parameters to remote get"));
8517
8518 remote_file_get (argv[0], argv[1], from_tty);
8519
8520 do_cleanups (back_to);
8521 }
8522
8523 static void
8524 remote_delete_command (char *args, int from_tty)
8525 {
8526 struct cleanup *back_to;
8527 char **argv;
8528
8529 if (args == NULL)
8530 error_no_arg (_("file to delete"));
8531
8532 argv = gdb_buildargv (args);
8533 back_to = make_cleanup_freeargv (argv);
8534 if (argv[0] == NULL || argv[1] != NULL)
8535 error (_("Invalid parameters to remote delete"));
8536
8537 remote_file_delete (argv[0], from_tty);
8538
8539 do_cleanups (back_to);
8540 }
8541
8542 static void
8543 remote_command (char *args, int from_tty)
8544 {
8545 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8546 }
8547
8548 static int remote_target_can_reverse = 1;
8549
8550 static int
8551 remote_can_execute_reverse (void)
8552 {
8553 return remote_target_can_reverse;
8554 }
8555
8556 static int
8557 remote_supports_non_stop (void)
8558 {
8559 return 1;
8560 }
8561
8562 static int
8563 remote_supports_multi_process (void)
8564 {
8565 struct remote_state *rs = get_remote_state ();
8566 return remote_multi_process_p (rs);
8567 }
8568
8569 static void
8570 init_remote_ops (void)
8571 {
8572 remote_ops.to_shortname = "remote";
8573 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8574 remote_ops.to_doc =
8575 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8576 Specify the serial device it is connected to\n\
8577 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8578 remote_ops.to_open = remote_open;
8579 remote_ops.to_close = remote_close;
8580 remote_ops.to_detach = remote_detach;
8581 remote_ops.to_disconnect = remote_disconnect;
8582 remote_ops.to_resume = remote_resume;
8583 remote_ops.to_wait = remote_wait;
8584 remote_ops.to_fetch_registers = remote_fetch_registers;
8585 remote_ops.to_store_registers = remote_store_registers;
8586 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8587 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8588 remote_ops.to_files_info = remote_files_info;
8589 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8590 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8591 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8592 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8593 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8594 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8595 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8596 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8597 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8598 remote_ops.to_kill = remote_kill;
8599 remote_ops.to_load = generic_load;
8600 remote_ops.to_mourn_inferior = remote_mourn;
8601 remote_ops.to_thread_alive = remote_thread_alive;
8602 remote_ops.to_find_new_threads = remote_threads_info;
8603 remote_ops.to_pid_to_str = remote_pid_to_str;
8604 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8605 remote_ops.to_stop = remote_stop;
8606 remote_ops.to_xfer_partial = remote_xfer_partial;
8607 remote_ops.to_rcmd = remote_rcmd;
8608 remote_ops.to_log_command = serial_log_command;
8609 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8610 remote_ops.to_stratum = process_stratum;
8611 remote_ops.to_has_all_memory = 1;
8612 remote_ops.to_has_memory = 1;
8613 remote_ops.to_has_stack = 1;
8614 remote_ops.to_has_registers = 1;
8615 remote_ops.to_has_execution = 1;
8616 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8617 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8618 remote_ops.to_magic = OPS_MAGIC;
8619 remote_ops.to_memory_map = remote_memory_map;
8620 remote_ops.to_flash_erase = remote_flash_erase;
8621 remote_ops.to_flash_done = remote_flash_done;
8622 remote_ops.to_read_description = remote_read_description;
8623 remote_ops.to_search_memory = remote_search_memory;
8624 remote_ops.to_can_async_p = remote_can_async_p;
8625 remote_ops.to_is_async_p = remote_is_async_p;
8626 remote_ops.to_async = remote_async;
8627 remote_ops.to_async_mask = remote_async_mask;
8628 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8629 remote_ops.to_terminal_ours = remote_terminal_ours;
8630 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8631 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8632 }
8633
8634 /* Set up the extended remote vector by making a copy of the standard
8635 remote vector and adding to it. */
8636
8637 static void
8638 init_extended_remote_ops (void)
8639 {
8640 extended_remote_ops = remote_ops;
8641
8642 extended_remote_ops.to_shortname = "extended-remote";
8643 extended_remote_ops.to_longname =
8644 "Extended remote serial target in gdb-specific protocol";
8645 extended_remote_ops.to_doc =
8646 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8647 Specify the serial device it is connected to (e.g. /dev/ttya).";
8648 extended_remote_ops.to_open = extended_remote_open;
8649 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8650 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8651 extended_remote_ops.to_detach = extended_remote_detach;
8652 extended_remote_ops.to_attach = extended_remote_attach;
8653 extended_remote_ops.to_kill = extended_remote_kill;
8654 }
8655
8656 static int
8657 remote_can_async_p (void)
8658 {
8659 if (!target_async_permitted)
8660 /* We only enable async when the user specifically asks for it. */
8661 return 0;
8662
8663 /* We're async whenever the serial device is. */
8664 return remote_async_mask_value && serial_can_async_p (remote_desc);
8665 }
8666
8667 static int
8668 remote_is_async_p (void)
8669 {
8670 if (!target_async_permitted)
8671 /* We only enable async when the user specifically asks for it. */
8672 return 0;
8673
8674 /* We're async whenever the serial device is. */
8675 return remote_async_mask_value && serial_is_async_p (remote_desc);
8676 }
8677
8678 /* Pass the SERIAL event on and up to the client. One day this code
8679 will be able to delay notifying the client of an event until the
8680 point where an entire packet has been received. */
8681
8682 static void (*async_client_callback) (enum inferior_event_type event_type,
8683 void *context);
8684 static void *async_client_context;
8685 static serial_event_ftype remote_async_serial_handler;
8686
8687 static void
8688 remote_async_serial_handler (struct serial *scb, void *context)
8689 {
8690 /* Don't propogate error information up to the client. Instead let
8691 the client find out about the error by querying the target. */
8692 async_client_callback (INF_REG_EVENT, async_client_context);
8693 }
8694
8695 static void
8696 remote_async_inferior_event_handler (gdb_client_data data)
8697 {
8698 inferior_event_handler (INF_REG_EVENT, NULL);
8699 }
8700
8701 static void
8702 remote_async_get_pending_events_handler (gdb_client_data data)
8703 {
8704 remote_get_pending_stop_replies ();
8705 }
8706
8707 static void
8708 remote_async (void (*callback) (enum inferior_event_type event_type,
8709 void *context), void *context)
8710 {
8711 if (remote_async_mask_value == 0)
8712 internal_error (__FILE__, __LINE__,
8713 _("Calling remote_async when async is masked"));
8714
8715 if (callback != NULL)
8716 {
8717 serial_async (remote_desc, remote_async_serial_handler, NULL);
8718 async_client_callback = callback;
8719 async_client_context = context;
8720 }
8721 else
8722 serial_async (remote_desc, NULL, NULL);
8723 }
8724
8725 static int
8726 remote_async_mask (int new_mask)
8727 {
8728 int curr_mask = remote_async_mask_value;
8729 remote_async_mask_value = new_mask;
8730 return curr_mask;
8731 }
8732
8733 static void
8734 set_remote_cmd (char *args, int from_tty)
8735 {
8736 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8737 }
8738
8739 static void
8740 show_remote_cmd (char *args, int from_tty)
8741 {
8742 /* We can't just use cmd_show_list here, because we want to skip
8743 the redundant "show remote Z-packet" and the legacy aliases. */
8744 struct cleanup *showlist_chain;
8745 struct cmd_list_element *list = remote_show_cmdlist;
8746
8747 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8748 for (; list != NULL; list = list->next)
8749 if (strcmp (list->name, "Z-packet") == 0)
8750 continue;
8751 else if (list->type == not_set_cmd)
8752 /* Alias commands are exactly like the original, except they
8753 don't have the normal type. */
8754 continue;
8755 else
8756 {
8757 struct cleanup *option_chain
8758 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8759 ui_out_field_string (uiout, "name", list->name);
8760 ui_out_text (uiout, ": ");
8761 if (list->type == show_cmd)
8762 do_setshow_command ((char *) NULL, from_tty, list);
8763 else
8764 cmd_func (list, NULL, from_tty);
8765 /* Close the tuple. */
8766 do_cleanups (option_chain);
8767 }
8768
8769 /* Close the tuple. */
8770 do_cleanups (showlist_chain);
8771 }
8772
8773
8774 /* Function to be called whenever a new objfile (shlib) is detected. */
8775 static void
8776 remote_new_objfile (struct objfile *objfile)
8777 {
8778 if (remote_desc != 0) /* Have a remote connection. */
8779 remote_check_symbols (objfile);
8780 }
8781
8782 void
8783 _initialize_remote (void)
8784 {
8785 struct remote_state *rs;
8786
8787 /* architecture specific data */
8788 remote_gdbarch_data_handle =
8789 gdbarch_data_register_post_init (init_remote_state);
8790 remote_g_packet_data_handle =
8791 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8792
8793 /* Initialize the per-target state. At the moment there is only one
8794 of these, not one per target. Only one target is active at a
8795 time. The default buffer size is unimportant; it will be expanded
8796 whenever a larger buffer is needed. */
8797 rs = get_remote_state_raw ();
8798 rs->buf_size = 400;
8799 rs->buf = xmalloc (rs->buf_size);
8800
8801 init_remote_ops ();
8802 add_target (&remote_ops);
8803
8804 init_extended_remote_ops ();
8805 add_target (&extended_remote_ops);
8806
8807 /* Hook into new objfile notification. */
8808 observer_attach_new_objfile (remote_new_objfile);
8809
8810 /* Set up signal handlers. */
8811 sigint_remote_token =
8812 create_async_signal_handler (async_remote_interrupt, NULL);
8813 sigint_remote_twice_token =
8814 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8815
8816 #if 0
8817 init_remote_threadtests ();
8818 #endif
8819
8820 /* set/show remote ... */
8821
8822 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
8823 Remote protocol specific variables\n\
8824 Configure various remote-protocol specific variables such as\n\
8825 the packets being used"),
8826 &remote_set_cmdlist, "set remote ",
8827 0 /* allow-unknown */, &setlist);
8828 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
8829 Remote protocol specific variables\n\
8830 Configure various remote-protocol specific variables such as\n\
8831 the packets being used"),
8832 &remote_show_cmdlist, "show remote ",
8833 0 /* allow-unknown */, &showlist);
8834
8835 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
8836 Compare section data on target to the exec file.\n\
8837 Argument is a single section name (default: all loaded sections)."),
8838 &cmdlist);
8839
8840 add_cmd ("packet", class_maintenance, packet_command, _("\
8841 Send an arbitrary packet to a remote target.\n\
8842 maintenance packet TEXT\n\
8843 If GDB is talking to an inferior via the GDB serial protocol, then\n\
8844 this command sends the string TEXT to the inferior, and displays the\n\
8845 response packet. GDB supplies the initial `$' character, and the\n\
8846 terminating `#' character and checksum."),
8847 &maintenancelist);
8848
8849 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
8850 Set whether to send break if interrupted."), _("\
8851 Show whether to send break if interrupted."), _("\
8852 If set, a break, instead of a cntrl-c, is sent to the remote target."),
8853 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
8854 &setlist, &showlist);
8855
8856 /* Install commands for configuring memory read/write packets. */
8857
8858 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
8859 Set the maximum number of bytes per memory write packet (deprecated)."),
8860 &setlist);
8861 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
8862 Show the maximum number of bytes per memory write packet (deprecated)."),
8863 &showlist);
8864 add_cmd ("memory-write-packet-size", no_class,
8865 set_memory_write_packet_size, _("\
8866 Set the maximum number of bytes per memory-write packet.\n\
8867 Specify the number of bytes in a packet or 0 (zero) for the\n\
8868 default packet size. The actual limit is further reduced\n\
8869 dependent on the target. Specify ``fixed'' to disable the\n\
8870 further restriction and ``limit'' to enable that restriction."),
8871 &remote_set_cmdlist);
8872 add_cmd ("memory-read-packet-size", no_class,
8873 set_memory_read_packet_size, _("\
8874 Set the maximum number of bytes per memory-read packet.\n\
8875 Specify the number of bytes in a packet or 0 (zero) for the\n\
8876 default packet size. The actual limit is further reduced\n\
8877 dependent on the target. Specify ``fixed'' to disable the\n\
8878 further restriction and ``limit'' to enable that restriction."),
8879 &remote_set_cmdlist);
8880 add_cmd ("memory-write-packet-size", no_class,
8881 show_memory_write_packet_size,
8882 _("Show the maximum number of bytes per memory-write packet."),
8883 &remote_show_cmdlist);
8884 add_cmd ("memory-read-packet-size", no_class,
8885 show_memory_read_packet_size,
8886 _("Show the maximum number of bytes per memory-read packet."),
8887 &remote_show_cmdlist);
8888
8889 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
8890 &remote_hw_watchpoint_limit, _("\
8891 Set the maximum number of target hardware watchpoints."), _("\
8892 Show the maximum number of target hardware watchpoints."), _("\
8893 Specify a negative limit for unlimited."),
8894 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
8895 &remote_set_cmdlist, &remote_show_cmdlist);
8896 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
8897 &remote_hw_breakpoint_limit, _("\
8898 Set the maximum number of target hardware breakpoints."), _("\
8899 Show the maximum number of target hardware breakpoints."), _("\
8900 Specify a negative limit for unlimited."),
8901 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
8902 &remote_set_cmdlist, &remote_show_cmdlist);
8903
8904 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
8905 &remote_address_size, _("\
8906 Set the maximum size of the address (in bits) in a memory packet."), _("\
8907 Show the maximum size of the address (in bits) in a memory packet."), NULL,
8908 NULL,
8909 NULL, /* FIXME: i18n: */
8910 &setlist, &showlist);
8911
8912 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
8913 "X", "binary-download", 1);
8914
8915 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
8916 "vCont", "verbose-resume", 0);
8917
8918 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
8919 "QPassSignals", "pass-signals", 0);
8920
8921 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
8922 "qSymbol", "symbol-lookup", 0);
8923
8924 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
8925 "P", "set-register", 1);
8926
8927 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
8928 "p", "fetch-register", 1);
8929
8930 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
8931 "Z0", "software-breakpoint", 0);
8932
8933 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
8934 "Z1", "hardware-breakpoint", 0);
8935
8936 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
8937 "Z2", "write-watchpoint", 0);
8938
8939 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
8940 "Z3", "read-watchpoint", 0);
8941
8942 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
8943 "Z4", "access-watchpoint", 0);
8944
8945 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
8946 "qXfer:auxv:read", "read-aux-vector", 0);
8947
8948 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
8949 "qXfer:features:read", "target-features", 0);
8950
8951 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
8952 "qXfer:libraries:read", "library-info", 0);
8953
8954 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
8955 "qXfer:memory-map:read", "memory-map", 0);
8956
8957 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
8958 "qXfer:spu:read", "read-spu-object", 0);
8959
8960 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
8961 "qXfer:spu:write", "write-spu-object", 0);
8962
8963 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
8964 "qGetTLSAddr", "get-thread-local-storage-address",
8965 0);
8966
8967 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
8968 "qSupported", "supported-packets", 0);
8969
8970 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
8971 "qSearch:memory", "search-memory", 0);
8972
8973 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
8974 "vFile:open", "hostio-open", 0);
8975
8976 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
8977 "vFile:pread", "hostio-pread", 0);
8978
8979 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
8980 "vFile:pwrite", "hostio-pwrite", 0);
8981
8982 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
8983 "vFile:close", "hostio-close", 0);
8984
8985 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
8986 "vFile:unlink", "hostio-unlink", 0);
8987
8988 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
8989 "vAttach", "attach", 0);
8990
8991 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
8992 "vRun", "run", 0);
8993
8994 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
8995 "QStartNoAckMode", "noack", 0);
8996
8997 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
8998 "vKill", "kill", 0);
8999
9000 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9001 Z sub-packet has its own set and show commands, but users may
9002 have sets to this variable in their .gdbinit files (or in their
9003 documentation). */
9004 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9005 &remote_Z_packet_detect, _("\
9006 Set use of remote protocol `Z' packets"), _("\
9007 Show use of remote protocol `Z' packets "), _("\
9008 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9009 packets."),
9010 set_remote_protocol_Z_packet_cmd,
9011 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9012 &remote_set_cmdlist, &remote_show_cmdlist);
9013
9014 add_prefix_cmd ("remote", class_files, remote_command, _("\
9015 Manipulate files on the remote system\n\
9016 Transfer files to and from the remote target system."),
9017 &remote_cmdlist, "remote ",
9018 0 /* allow-unknown */, &cmdlist);
9019
9020 add_cmd ("put", class_files, remote_put_command,
9021 _("Copy a local file to the remote system."),
9022 &remote_cmdlist);
9023
9024 add_cmd ("get", class_files, remote_get_command,
9025 _("Copy a remote file to the local system."),
9026 &remote_cmdlist);
9027
9028 add_cmd ("delete", class_files, remote_delete_command,
9029 _("Delete a remote file."),
9030 &remote_cmdlist);
9031
9032 remote_exec_file = xstrdup ("");
9033 add_setshow_string_noescape_cmd ("exec-file", class_files,
9034 &remote_exec_file, _("\
9035 Set the remote pathname for \"run\""), _("\
9036 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9037 &remote_set_cmdlist, &remote_show_cmdlist);
9038
9039 /* Eventually initialize fileio. See fileio.c */
9040 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9041
9042 /* Take advantage of the fact that the LWP field is not used, to tag
9043 special ptids with it set to != 0. */
9044 magic_null_ptid = ptid_build (42000, 1, -1);
9045 not_sent_ptid = ptid_build (42000, 1, -2);
9046 any_thread_ptid = ptid_build (42000, 1, 0);
9047 }
This page took 0.505107 seconds and 4 git commands to generate.