2004-07-28 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "target.h"
34 /*#include "terminal.h" */
35 #include "gdbcmd.h"
36 #include "objfiles.h"
37 #include "gdb-stabs.h"
38 #include "gdbthread.h"
39 #include "remote.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "gdb_assert.h"
43
44 #include <ctype.h>
45 #include <sys/time.h>
46 #ifdef USG
47 #include <sys/types.h>
48 #endif
49
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include "inf-loop.h"
53
54 #include <signal.h>
55 #include "serial.h"
56
57 #include "gdbcore.h" /* for exec_bfd */
58
59 #include "remote-fileio.h"
60
61 /* Prototypes for local functions */
62 static void cleanup_sigint_signal_handler (void *dummy);
63 static void initialize_sigint_signal_handler (void);
64 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
65
66 static void handle_remote_sigint (int);
67 static void handle_remote_sigint_twice (int);
68 static void async_remote_interrupt (gdb_client_data);
69 void async_remote_interrupt_twice (gdb_client_data);
70
71 static void build_remote_gdbarch_data (void);
72
73 static void remote_files_info (struct target_ops *ignore);
74
75 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
76 int len, int should_write,
77 struct mem_attrib *attrib,
78 struct target_ops *target);
79
80 static void remote_prepare_to_store (void);
81
82 static void remote_fetch_registers (int regno);
83
84 static void remote_resume (ptid_t ptid, int step,
85 enum target_signal siggnal);
86 static void remote_async_resume (ptid_t ptid, int step,
87 enum target_signal siggnal);
88 static int remote_start_remote (struct ui_out *uiout, void *dummy);
89
90 static void remote_open (char *name, int from_tty);
91 static void remote_async_open (char *name, int from_tty);
92
93 static void extended_remote_open (char *name, int from_tty);
94 static void extended_remote_async_open (char *name, int from_tty);
95
96 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
97 int async_p);
98
99 static void remote_close (int quitting);
100
101 static void remote_store_registers (int regno);
102
103 static void remote_mourn (void);
104 static void remote_async_mourn (void);
105
106 static void extended_remote_restart (void);
107
108 static void extended_remote_mourn (void);
109
110 static void remote_mourn_1 (struct target_ops *);
111
112 static void remote_send (char *buf, long sizeof_buf);
113
114 static int readchar (int timeout);
115
116 static ptid_t remote_wait (ptid_t ptid,
117 struct target_waitstatus *status);
118 static ptid_t remote_async_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120
121 static void remote_kill (void);
122 static void remote_async_kill (void);
123
124 static int tohex (int nib);
125
126 static void remote_detach (char *args, int from_tty);
127
128 static void remote_interrupt (int signo);
129
130 static void remote_interrupt_twice (int signo);
131
132 static void interrupt_query (void);
133
134 static void set_thread (int, int);
135
136 static int remote_thread_alive (ptid_t);
137
138 static void get_offsets (void);
139
140 static long read_frame (char *buf, long sizeof_buf);
141
142 static int remote_insert_breakpoint (CORE_ADDR, char *);
143
144 static int remote_remove_breakpoint (CORE_ADDR, char *);
145
146 static int hexnumlen (ULONGEST num);
147
148 static void init_remote_ops (void);
149
150 static void init_extended_remote_ops (void);
151
152 static void remote_stop (void);
153
154 static int ishex (int ch, int *val);
155
156 static int stubhex (int ch);
157
158 static int hexnumstr (char *, ULONGEST);
159
160 static int hexnumnstr (char *, ULONGEST, int);
161
162 static CORE_ADDR remote_address_masked (CORE_ADDR);
163
164 static void print_packet (char *);
165
166 static unsigned long crc32 (unsigned char *, int, unsigned int);
167
168 static void compare_sections_command (char *, int);
169
170 static void packet_command (char *, int);
171
172 static int stub_unpack_int (char *buff, int fieldlength);
173
174 static ptid_t remote_current_thread (ptid_t oldptid);
175
176 static void remote_find_new_threads (void);
177
178 static void record_currthread (int currthread);
179
180 static int fromhex (int a);
181
182 static int hex2bin (const char *hex, char *bin, int count);
183
184 static int bin2hex (const char *bin, char *hex, int count);
185
186 static int putpkt_binary (char *buf, int cnt);
187
188 static void check_binary_download (CORE_ADDR addr);
189
190 struct packet_config;
191
192 static void show_packet_config_cmd (struct packet_config *config);
193
194 static void update_packet_config (struct packet_config *config);
195
196 void _initialize_remote (void);
197
198 /* Description of the remote protocol. Strictly speaking, when the
199 target is open()ed, remote.c should create a per-target description
200 of the remote protocol using that target's architecture.
201 Unfortunately, the target stack doesn't include local state. For
202 the moment keep the information in the target's architecture
203 object. Sigh.. */
204
205 struct packet_reg
206 {
207 long offset; /* Offset into G packet. */
208 long regnum; /* GDB's internal register number. */
209 LONGEST pnum; /* Remote protocol register number. */
210 int in_g_packet; /* Always part of G packet. */
211 /* long size in bytes; == DEPRECATED_REGISTER_RAW_SIZE (regnum); at present. */
212 /* char *name; == REGISTER_NAME (regnum); at present. */
213 };
214
215 struct remote_state
216 {
217 /* Description of the remote protocol registers. */
218 long sizeof_g_packet;
219
220 /* Description of the remote protocol registers indexed by REGNUM
221 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
222 struct packet_reg *regs;
223
224 /* This is the size (in chars) of the first response to the ``g''
225 packet. It is used as a heuristic when determining the maximum
226 size of memory-read and memory-write packets. A target will
227 typically only reserve a buffer large enough to hold the ``g''
228 packet. The size does not include packet overhead (headers and
229 trailers). */
230 long actual_register_packet_size;
231
232 /* This is the maximum size (in chars) of a non read/write packet.
233 It is also used as a cap on the size of read/write packets. */
234 long remote_packet_size;
235 };
236
237
238 /* Handle for retreving the remote protocol data from gdbarch. */
239 static struct gdbarch_data *remote_gdbarch_data_handle;
240
241 static struct remote_state *
242 get_remote_state (void)
243 {
244 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
245 }
246
247 static void *
248 init_remote_state (struct gdbarch *gdbarch)
249 {
250 int regnum;
251 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
252
253 if (DEPRECATED_REGISTER_BYTES != 0)
254 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
255 else
256 rs->sizeof_g_packet = 0;
257
258 /* Assume a 1:1 regnum<->pnum table. */
259 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
260 struct packet_reg);
261 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
262 {
263 struct packet_reg *r = &rs->regs[regnum];
264 r->pnum = regnum;
265 r->regnum = regnum;
266 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
267 r->in_g_packet = (regnum < NUM_REGS);
268 /* ...name = REGISTER_NAME (regnum); */
269
270 /* Compute packet size by accumulating the size of all registers. */
271 if (DEPRECATED_REGISTER_BYTES == 0)
272 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
273 }
274
275 /* Default maximum number of characters in a packet body. Many
276 remote stubs have a hardwired buffer size of 400 bytes
277 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
278 as the maximum packet-size to ensure that the packet and an extra
279 NUL character can always fit in the buffer. This stops GDB
280 trashing stubs that try to squeeze an extra NUL into what is
281 already a full buffer (As of 1999-12-04 that was most stubs. */
282 rs->remote_packet_size = 400 - 1;
283
284 /* Should rs->sizeof_g_packet needs more space than the
285 default, adjust the size accordingly. Remember that each byte is
286 encoded as two characters. 32 is the overhead for the packet
287 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
288 (``$NN:G...#NN'') is a better guess, the below has been padded a
289 little. */
290 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
291 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
292
293 /* This one is filled in when a ``g'' packet is received. */
294 rs->actual_register_packet_size = 0;
295
296 return rs;
297 }
298
299 static struct packet_reg *
300 packet_reg_from_regnum (struct remote_state *rs, long regnum)
301 {
302 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
303 return NULL;
304 else
305 {
306 struct packet_reg *r = &rs->regs[regnum];
307 gdb_assert (r->regnum == regnum);
308 return r;
309 }
310 }
311
312 static struct packet_reg *
313 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
314 {
315 int i;
316 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
317 {
318 struct packet_reg *r = &rs->regs[i];
319 if (r->pnum == pnum)
320 return r;
321 }
322 return NULL;
323 }
324
325 /* FIXME: graces/2002-08-08: These variables should eventually be
326 bound to an instance of the target object (as in gdbarch-tdep()),
327 when such a thing exists. */
328
329 /* This is set to the data address of the access causing the target
330 to stop for a watchpoint. */
331 static CORE_ADDR remote_watch_data_address;
332
333 /* This is non-zero if taregt stopped for a watchpoint. */
334 static int remote_stopped_by_watchpoint_p;
335
336
337 static struct target_ops remote_ops;
338
339 static struct target_ops extended_remote_ops;
340
341 /* Temporary target ops. Just like the remote_ops and
342 extended_remote_ops, but with asynchronous support. */
343 static struct target_ops remote_async_ops;
344
345 static struct target_ops extended_async_remote_ops;
346
347 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
348 ``forever'' still use the normal timeout mechanism. This is
349 currently used by the ASYNC code to guarentee that target reads
350 during the initial connect always time-out. Once getpkt has been
351 modified to return a timeout indication and, in turn
352 remote_wait()/wait_for_inferior() have gained a timeout parameter
353 this can go away. */
354 static int wait_forever_enabled_p = 1;
355
356
357 /* This variable chooses whether to send a ^C or a break when the user
358 requests program interruption. Although ^C is usually what remote
359 systems expect, and that is the default here, sometimes a break is
360 preferable instead. */
361
362 static int remote_break;
363
364 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
365 remote_open knows that we don't have a file open when the program
366 starts. */
367 static struct serial *remote_desc = NULL;
368
369 /* This variable sets the number of bits in an address that are to be
370 sent in a memory ("M" or "m") packet. Normally, after stripping
371 leading zeros, the entire address would be sent. This variable
372 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
373 initial implementation of remote.c restricted the address sent in
374 memory packets to ``host::sizeof long'' bytes - (typically 32
375 bits). Consequently, for 64 bit targets, the upper 32 bits of an
376 address was never sent. Since fixing this bug may cause a break in
377 some remote targets this variable is principly provided to
378 facilitate backward compatibility. */
379
380 static int remote_address_size;
381
382 /* Tempoary to track who currently owns the terminal. See
383 target_async_terminal_* for more details. */
384
385 static int remote_async_terminal_ours_p;
386
387 \f
388 /* User configurable variables for the number of characters in a
389 memory read/write packet. MIN ((rs->remote_packet_size),
390 rs->sizeof_g_packet) is the default. Some targets need smaller
391 values (fifo overruns, et.al.) and some users need larger values
392 (speed up transfers). The variables ``preferred_*'' (the user
393 request), ``current_*'' (what was actually set) and ``forced_*''
394 (Positive - a soft limit, negative - a hard limit). */
395
396 struct memory_packet_config
397 {
398 char *name;
399 long size;
400 int fixed_p;
401 };
402
403 /* Compute the current size of a read/write packet. Since this makes
404 use of ``actual_register_packet_size'' the computation is dynamic. */
405
406 static long
407 get_memory_packet_size (struct memory_packet_config *config)
408 {
409 struct remote_state *rs = get_remote_state ();
410 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
411 law?) that some hosts don't cope very well with large alloca()
412 calls. Eventually the alloca() code will be replaced by calls to
413 xmalloc() and make_cleanups() allowing this restriction to either
414 be lifted or removed. */
415 #ifndef MAX_REMOTE_PACKET_SIZE
416 #define MAX_REMOTE_PACKET_SIZE 16384
417 #endif
418 /* NOTE: 16 is just chosen at random. */
419 #ifndef MIN_REMOTE_PACKET_SIZE
420 #define MIN_REMOTE_PACKET_SIZE 16
421 #endif
422 long what_they_get;
423 if (config->fixed_p)
424 {
425 if (config->size <= 0)
426 what_they_get = MAX_REMOTE_PACKET_SIZE;
427 else
428 what_they_get = config->size;
429 }
430 else
431 {
432 what_they_get = (rs->remote_packet_size);
433 /* Limit the packet to the size specified by the user. */
434 if (config->size > 0
435 && what_they_get > config->size)
436 what_they_get = config->size;
437 /* Limit it to the size of the targets ``g'' response. */
438 if ((rs->actual_register_packet_size) > 0
439 && what_they_get > (rs->actual_register_packet_size))
440 what_they_get = (rs->actual_register_packet_size);
441 }
442 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
443 what_they_get = MAX_REMOTE_PACKET_SIZE;
444 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
445 what_they_get = MIN_REMOTE_PACKET_SIZE;
446 return what_they_get;
447 }
448
449 /* Update the size of a read/write packet. If they user wants
450 something really big then do a sanity check. */
451
452 static void
453 set_memory_packet_size (char *args, struct memory_packet_config *config)
454 {
455 int fixed_p = config->fixed_p;
456 long size = config->size;
457 if (args == NULL)
458 error ("Argument required (integer, `fixed' or `limited').");
459 else if (strcmp (args, "hard") == 0
460 || strcmp (args, "fixed") == 0)
461 fixed_p = 1;
462 else if (strcmp (args, "soft") == 0
463 || strcmp (args, "limit") == 0)
464 fixed_p = 0;
465 else
466 {
467 char *end;
468 size = strtoul (args, &end, 0);
469 if (args == end)
470 error ("Invalid %s (bad syntax).", config->name);
471 #if 0
472 /* Instead of explicitly capping the size of a packet to
473 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
474 instead allowed to set the size to something arbitrarily
475 large. */
476 if (size > MAX_REMOTE_PACKET_SIZE)
477 error ("Invalid %s (too large).", config->name);
478 #endif
479 }
480 /* Extra checks? */
481 if (fixed_p && !config->fixed_p)
482 {
483 if (! query ("The target may not be able to correctly handle a %s\n"
484 "of %ld bytes. Change the packet size? ",
485 config->name, size))
486 error ("Packet size not changed.");
487 }
488 /* Update the config. */
489 config->fixed_p = fixed_p;
490 config->size = size;
491 }
492
493 static void
494 show_memory_packet_size (struct memory_packet_config *config)
495 {
496 printf_filtered ("The %s is %ld. ", config->name, config->size);
497 if (config->fixed_p)
498 printf_filtered ("Packets are fixed at %ld bytes.\n",
499 get_memory_packet_size (config));
500 else
501 printf_filtered ("Packets are limited to %ld bytes.\n",
502 get_memory_packet_size (config));
503 }
504
505 static struct memory_packet_config memory_write_packet_config =
506 {
507 "memory-write-packet-size",
508 };
509
510 static void
511 set_memory_write_packet_size (char *args, int from_tty)
512 {
513 set_memory_packet_size (args, &memory_write_packet_config);
514 }
515
516 static void
517 show_memory_write_packet_size (char *args, int from_tty)
518 {
519 show_memory_packet_size (&memory_write_packet_config);
520 }
521
522 static long
523 get_memory_write_packet_size (void)
524 {
525 return get_memory_packet_size (&memory_write_packet_config);
526 }
527
528 static struct memory_packet_config memory_read_packet_config =
529 {
530 "memory-read-packet-size",
531 };
532
533 static void
534 set_memory_read_packet_size (char *args, int from_tty)
535 {
536 set_memory_packet_size (args, &memory_read_packet_config);
537 }
538
539 static void
540 show_memory_read_packet_size (char *args, int from_tty)
541 {
542 show_memory_packet_size (&memory_read_packet_config);
543 }
544
545 static long
546 get_memory_read_packet_size (void)
547 {
548 struct remote_state *rs = get_remote_state ();
549 long size = get_memory_packet_size (&memory_read_packet_config);
550 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
551 extra buffer size argument before the memory read size can be
552 increased beyond (rs->remote_packet_size). */
553 if (size > (rs->remote_packet_size))
554 size = (rs->remote_packet_size);
555 return size;
556 }
557
558 \f
559 /* Generic configuration support for packets the stub optionally
560 supports. Allows the user to specify the use of the packet as well
561 as allowing GDB to auto-detect support in the remote stub. */
562
563 enum packet_support
564 {
565 PACKET_SUPPORT_UNKNOWN = 0,
566 PACKET_ENABLE,
567 PACKET_DISABLE
568 };
569
570 struct packet_config
571 {
572 char *name;
573 char *title;
574 enum auto_boolean detect;
575 enum packet_support support;
576 };
577
578 /* Analyze a packet's return value and update the packet config
579 accordingly. */
580
581 enum packet_result
582 {
583 PACKET_ERROR,
584 PACKET_OK,
585 PACKET_UNKNOWN
586 };
587
588 static void
589 update_packet_config (struct packet_config *config)
590 {
591 switch (config->detect)
592 {
593 case AUTO_BOOLEAN_TRUE:
594 config->support = PACKET_ENABLE;
595 break;
596 case AUTO_BOOLEAN_FALSE:
597 config->support = PACKET_DISABLE;
598 break;
599 case AUTO_BOOLEAN_AUTO:
600 config->support = PACKET_SUPPORT_UNKNOWN;
601 break;
602 }
603 }
604
605 static void
606 show_packet_config_cmd (struct packet_config *config)
607 {
608 char *support = "internal-error";
609 switch (config->support)
610 {
611 case PACKET_ENABLE:
612 support = "enabled";
613 break;
614 case PACKET_DISABLE:
615 support = "disabled";
616 break;
617 case PACKET_SUPPORT_UNKNOWN:
618 support = "unknown";
619 break;
620 }
621 switch (config->detect)
622 {
623 case AUTO_BOOLEAN_AUTO:
624 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
625 config->name, config->title, support);
626 break;
627 case AUTO_BOOLEAN_TRUE:
628 case AUTO_BOOLEAN_FALSE:
629 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
630 config->name, config->title, support);
631 break;
632 }
633 }
634
635 static void
636 add_packet_config_cmd (struct packet_config *config,
637 char *name,
638 char *title,
639 cmd_sfunc_ftype *set_func,
640 cmd_sfunc_ftype *show_func,
641 struct cmd_list_element **set_remote_list,
642 struct cmd_list_element **show_remote_list,
643 int legacy)
644 {
645 struct cmd_list_element *set_cmd;
646 struct cmd_list_element *show_cmd;
647 char *set_doc;
648 char *show_doc;
649 char *cmd_name;
650 config->name = name;
651 config->title = title;
652 config->detect = AUTO_BOOLEAN_AUTO;
653 config->support = PACKET_SUPPORT_UNKNOWN;
654 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
655 name, title);
656 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
657 name, title);
658 /* set/show TITLE-packet {auto,on,off} */
659 cmd_name = xstrprintf ("%s-packet", title);
660 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
661 &config->detect, set_doc, show_doc,
662 set_func, show_func,
663 set_remote_list, show_remote_list);
664 /* set/show remote NAME-packet {auto,on,off} -- legacy */
665 if (legacy)
666 {
667 char *legacy_name;
668 legacy_name = xstrprintf ("%s-packet", name);
669 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
670 set_remote_list);
671 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
672 show_remote_list);
673 }
674 }
675
676 static enum packet_result
677 packet_ok (const char *buf, struct packet_config *config)
678 {
679 if (buf[0] != '\0')
680 {
681 /* The stub recognized the packet request. Check that the
682 operation succeeded. */
683 switch (config->support)
684 {
685 case PACKET_SUPPORT_UNKNOWN:
686 if (remote_debug)
687 fprintf_unfiltered (gdb_stdlog,
688 "Packet %s (%s) is supported\n",
689 config->name, config->title);
690 config->support = PACKET_ENABLE;
691 break;
692 case PACKET_DISABLE:
693 internal_error (__FILE__, __LINE__,
694 "packet_ok: attempt to use a disabled packet");
695 break;
696 case PACKET_ENABLE:
697 break;
698 }
699 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
700 /* "OK" - definitly OK. */
701 return PACKET_OK;
702 if (buf[0] == 'E'
703 && isxdigit (buf[1]) && isxdigit (buf[2])
704 && buf[3] == '\0')
705 /* "Enn" - definitly an error. */
706 return PACKET_ERROR;
707 /* The packet may or may not be OK. Just assume it is */
708 return PACKET_OK;
709 }
710 else
711 {
712 /* The stub does not support the packet. */
713 switch (config->support)
714 {
715 case PACKET_ENABLE:
716 if (config->detect == AUTO_BOOLEAN_AUTO)
717 /* If the stub previously indicated that the packet was
718 supported then there is a protocol error.. */
719 error ("Protocol error: %s (%s) conflicting enabled responses.",
720 config->name, config->title);
721 else
722 /* The user set it wrong. */
723 error ("Enabled packet %s (%s) not recognized by stub",
724 config->name, config->title);
725 break;
726 case PACKET_SUPPORT_UNKNOWN:
727 if (remote_debug)
728 fprintf_unfiltered (gdb_stdlog,
729 "Packet %s (%s) is NOT supported\n",
730 config->name, config->title);
731 config->support = PACKET_DISABLE;
732 break;
733 case PACKET_DISABLE:
734 break;
735 }
736 return PACKET_UNKNOWN;
737 }
738 }
739
740 /* Should we try the 'vCont' (descriptive resume) request? */
741 static struct packet_config remote_protocol_vcont;
742
743 static void
744 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
745 struct cmd_list_element *c)
746 {
747 update_packet_config (&remote_protocol_vcont);
748 }
749
750 static void
751 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
752 struct cmd_list_element *c)
753 {
754 show_packet_config_cmd (&remote_protocol_vcont);
755 }
756
757 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
758 static struct packet_config remote_protocol_qSymbol;
759
760 static void
761 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
762 struct cmd_list_element *c)
763 {
764 update_packet_config (&remote_protocol_qSymbol);
765 }
766
767 static void
768 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
769 struct cmd_list_element *c)
770 {
771 show_packet_config_cmd (&remote_protocol_qSymbol);
772 }
773
774 /* Should we try the 'P' (set register) request? */
775
776 static struct packet_config remote_protocol_P;
777
778 static void
779 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
780 struct cmd_list_element *c)
781 {
782 update_packet_config (&remote_protocol_P);
783 }
784
785 static void
786 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
787 struct cmd_list_element *c)
788 {
789 show_packet_config_cmd (&remote_protocol_P);
790 }
791
792 /* Should we try one of the 'Z' requests? */
793
794 enum Z_packet_type
795 {
796 Z_PACKET_SOFTWARE_BP,
797 Z_PACKET_HARDWARE_BP,
798 Z_PACKET_WRITE_WP,
799 Z_PACKET_READ_WP,
800 Z_PACKET_ACCESS_WP,
801 NR_Z_PACKET_TYPES
802 };
803
804 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
805
806 /* FIXME: Instead of having all these boiler plate functions, the
807 command callback should include a context argument. */
808
809 static void
810 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
811 struct cmd_list_element *c)
812 {
813 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
814 }
815
816 static void
817 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
818 struct cmd_list_element *c)
819 {
820 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
821 }
822
823 static void
824 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
825 struct cmd_list_element *c)
826 {
827 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
828 }
829
830 static void
831 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
832 struct cmd_list_element *c)
833 {
834 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
835 }
836
837 static void
838 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
839 struct cmd_list_element *c)
840 {
841 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
842 }
843
844 static void
845 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
846 struct cmd_list_element *c)
847 {
848 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
849 }
850
851 static void
852 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
853 struct cmd_list_element *c)
854 {
855 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
856 }
857
858 static void
859 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
860 struct cmd_list_element *c)
861 {
862 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
863 }
864
865 static void
866 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
867 struct cmd_list_element *c)
868 {
869 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
870 }
871
872 static void
873 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
874 struct cmd_list_element *c)
875 {
876 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
877 }
878
879 /* For compatibility with older distributions. Provide a ``set remote
880 Z-packet ...'' command that updates all the Z packet types. */
881
882 static enum auto_boolean remote_Z_packet_detect;
883
884 static void
885 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
886 struct cmd_list_element *c)
887 {
888 int i;
889 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
890 {
891 remote_protocol_Z[i].detect = remote_Z_packet_detect;
892 update_packet_config (&remote_protocol_Z[i]);
893 }
894 }
895
896 static void
897 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
898 struct cmd_list_element *c)
899 {
900 int i;
901 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
902 {
903 show_packet_config_cmd (&remote_protocol_Z[i]);
904 }
905 }
906
907 /* Should we try the 'X' (remote binary download) packet?
908
909 This variable (available to the user via "set remote X-packet")
910 dictates whether downloads are sent in binary (via the 'X' packet).
911 We assume that the stub can, and attempt to do it. This will be
912 cleared if the stub does not understand it. This switch is still
913 needed, though in cases when the packet is supported in the stub,
914 but the connection does not allow it (i.e., 7-bit serial connection
915 only). */
916
917 static struct packet_config remote_protocol_binary_download;
918
919 /* Should we try the 'ThreadInfo' query packet?
920
921 This variable (NOT available to the user: auto-detect only!)
922 determines whether GDB will use the new, simpler "ThreadInfo"
923 query or the older, more complex syntax for thread queries.
924 This is an auto-detect variable (set to true at each connect,
925 and set to false when the target fails to recognize it). */
926
927 static int use_threadinfo_query;
928 static int use_threadextra_query;
929
930 static void
931 set_remote_protocol_binary_download_cmd (char *args,
932 int from_tty,
933 struct cmd_list_element *c)
934 {
935 update_packet_config (&remote_protocol_binary_download);
936 }
937
938 static void
939 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
940 struct cmd_list_element *c)
941 {
942 show_packet_config_cmd (&remote_protocol_binary_download);
943 }
944
945 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
946 static struct packet_config remote_protocol_qPart_auxv;
947
948 static void
949 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
950 struct cmd_list_element *c)
951 {
952 update_packet_config (&remote_protocol_qPart_auxv);
953 }
954
955 static void
956 show_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
957 struct cmd_list_element *c)
958 {
959 show_packet_config_cmd (&remote_protocol_qPart_auxv);
960 }
961
962
963 /* Tokens for use by the asynchronous signal handlers for SIGINT */
964 static void *sigint_remote_twice_token;
965 static void *sigint_remote_token;
966
967 /* These are pointers to hook functions that may be set in order to
968 modify resume/wait behavior for a particular architecture. */
969
970 void (*deprecated_target_resume_hook) (void);
971 void (*deprecated_target_wait_loop_hook) (void);
972 \f
973
974
975 /* These are the threads which we last sent to the remote system.
976 -1 for all or -2 for not sent yet. */
977 static int general_thread;
978 static int continue_thread;
979
980 /* Call this function as a result of
981 1) A halt indication (T packet) containing a thread id
982 2) A direct query of currthread
983 3) Successful execution of set thread
984 */
985
986 static void
987 record_currthread (int currthread)
988 {
989 general_thread = currthread;
990
991 /* If this is a new thread, add it to GDB's thread list.
992 If we leave it up to WFI to do this, bad things will happen. */
993 if (!in_thread_list (pid_to_ptid (currthread)))
994 {
995 add_thread (pid_to_ptid (currthread));
996 ui_out_text (uiout, "[New ");
997 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
998 ui_out_text (uiout, "]\n");
999 }
1000 }
1001
1002 #define MAGIC_NULL_PID 42000
1003
1004 static void
1005 set_thread (int th, int gen)
1006 {
1007 struct remote_state *rs = get_remote_state ();
1008 char *buf = alloca (rs->remote_packet_size);
1009 int state = gen ? general_thread : continue_thread;
1010
1011 if (state == th)
1012 return;
1013
1014 buf[0] = 'H';
1015 buf[1] = gen ? 'g' : 'c';
1016 if (th == MAGIC_NULL_PID)
1017 {
1018 buf[2] = '0';
1019 buf[3] = '\0';
1020 }
1021 else if (th < 0)
1022 sprintf (&buf[2], "-%x", -th);
1023 else
1024 sprintf (&buf[2], "%x", th);
1025 putpkt (buf);
1026 getpkt (buf, (rs->remote_packet_size), 0);
1027 if (gen)
1028 general_thread = th;
1029 else
1030 continue_thread = th;
1031 }
1032 \f
1033 /* Return nonzero if the thread TH is still alive on the remote system. */
1034
1035 static int
1036 remote_thread_alive (ptid_t ptid)
1037 {
1038 int tid = PIDGET (ptid);
1039 char buf[16];
1040
1041 if (tid < 0)
1042 sprintf (buf, "T-%08x", -tid);
1043 else
1044 sprintf (buf, "T%08x", tid);
1045 putpkt (buf);
1046 getpkt (buf, sizeof (buf), 0);
1047 return (buf[0] == 'O' && buf[1] == 'K');
1048 }
1049
1050 /* About these extended threadlist and threadinfo packets. They are
1051 variable length packets but, the fields within them are often fixed
1052 length. They are redundent enough to send over UDP as is the
1053 remote protocol in general. There is a matching unit test module
1054 in libstub. */
1055
1056 #define OPAQUETHREADBYTES 8
1057
1058 /* a 64 bit opaque identifier */
1059 typedef unsigned char threadref[OPAQUETHREADBYTES];
1060
1061 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1062 protocol encoding, and remote.c. it is not particularly changable */
1063
1064 /* Right now, the internal structure is int. We want it to be bigger.
1065 Plan to fix this.
1066 */
1067
1068 typedef int gdb_threadref; /* internal GDB thread reference */
1069
1070 /* gdb_ext_thread_info is an internal GDB data structure which is
1071 equivalint to the reply of the remote threadinfo packet */
1072
1073 struct gdb_ext_thread_info
1074 {
1075 threadref threadid; /* External form of thread reference */
1076 int active; /* Has state interesting to GDB? , regs, stack */
1077 char display[256]; /* Brief state display, name, blocked/syspended */
1078 char shortname[32]; /* To be used to name threads */
1079 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1080 };
1081
1082 /* The volume of remote transfers can be limited by submitting
1083 a mask containing bits specifying the desired information.
1084 Use a union of these values as the 'selection' parameter to
1085 get_thread_info. FIXME: Make these TAG names more thread specific.
1086 */
1087
1088 #define TAG_THREADID 1
1089 #define TAG_EXISTS 2
1090 #define TAG_DISPLAY 4
1091 #define TAG_THREADNAME 8
1092 #define TAG_MOREDISPLAY 16
1093
1094 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1095
1096 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1097
1098 static char *unpack_nibble (char *buf, int *val);
1099
1100 static char *pack_nibble (char *buf, int nibble);
1101
1102 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1103
1104 static char *unpack_byte (char *buf, int *value);
1105
1106 static char *pack_int (char *buf, int value);
1107
1108 static char *unpack_int (char *buf, int *value);
1109
1110 static char *unpack_string (char *src, char *dest, int length);
1111
1112 static char *pack_threadid (char *pkt, threadref * id);
1113
1114 static char *unpack_threadid (char *inbuf, threadref * id);
1115
1116 void int_to_threadref (threadref * id, int value);
1117
1118 static int threadref_to_int (threadref * ref);
1119
1120 static void copy_threadref (threadref * dest, threadref * src);
1121
1122 static int threadmatch (threadref * dest, threadref * src);
1123
1124 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1125
1126 static int remote_unpack_thread_info_response (char *pkt,
1127 threadref * expectedref,
1128 struct gdb_ext_thread_info
1129 *info);
1130
1131
1132 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1133 struct gdb_ext_thread_info *info);
1134
1135 static char *pack_threadlist_request (char *pkt, int startflag,
1136 int threadcount,
1137 threadref * nextthread);
1138
1139 static int parse_threadlist_response (char *pkt,
1140 int result_limit,
1141 threadref * original_echo,
1142 threadref * resultlist, int *doneflag);
1143
1144 static int remote_get_threadlist (int startflag,
1145 threadref * nextthread,
1146 int result_limit,
1147 int *done,
1148 int *result_count, threadref * threadlist);
1149
1150 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1151
1152 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1153 void *context, int looplimit);
1154
1155 static int remote_newthread_step (threadref * ref, void *context);
1156
1157 /* encode 64 bits in 16 chars of hex */
1158
1159 static const char hexchars[] = "0123456789abcdef";
1160
1161 static int
1162 ishex (int ch, int *val)
1163 {
1164 if ((ch >= 'a') && (ch <= 'f'))
1165 {
1166 *val = ch - 'a' + 10;
1167 return 1;
1168 }
1169 if ((ch >= 'A') && (ch <= 'F'))
1170 {
1171 *val = ch - 'A' + 10;
1172 return 1;
1173 }
1174 if ((ch >= '0') && (ch <= '9'))
1175 {
1176 *val = ch - '0';
1177 return 1;
1178 }
1179 return 0;
1180 }
1181
1182 static int
1183 stubhex (int ch)
1184 {
1185 if (ch >= 'a' && ch <= 'f')
1186 return ch - 'a' + 10;
1187 if (ch >= '0' && ch <= '9')
1188 return ch - '0';
1189 if (ch >= 'A' && ch <= 'F')
1190 return ch - 'A' + 10;
1191 return -1;
1192 }
1193
1194 static int
1195 stub_unpack_int (char *buff, int fieldlength)
1196 {
1197 int nibble;
1198 int retval = 0;
1199
1200 while (fieldlength)
1201 {
1202 nibble = stubhex (*buff++);
1203 retval |= nibble;
1204 fieldlength--;
1205 if (fieldlength)
1206 retval = retval << 4;
1207 }
1208 return retval;
1209 }
1210
1211 char *
1212 unpack_varlen_hex (char *buff, /* packet to parse */
1213 ULONGEST *result)
1214 {
1215 int nibble;
1216 int retval = 0;
1217
1218 while (ishex (*buff, &nibble))
1219 {
1220 buff++;
1221 retval = retval << 4;
1222 retval |= nibble & 0x0f;
1223 }
1224 *result = retval;
1225 return buff;
1226 }
1227
1228 static char *
1229 unpack_nibble (char *buf, int *val)
1230 {
1231 ishex (*buf++, val);
1232 return buf;
1233 }
1234
1235 static char *
1236 pack_nibble (char *buf, int nibble)
1237 {
1238 *buf++ = hexchars[(nibble & 0x0f)];
1239 return buf;
1240 }
1241
1242 static char *
1243 pack_hex_byte (char *pkt, int byte)
1244 {
1245 *pkt++ = hexchars[(byte >> 4) & 0xf];
1246 *pkt++ = hexchars[(byte & 0xf)];
1247 return pkt;
1248 }
1249
1250 static char *
1251 unpack_byte (char *buf, int *value)
1252 {
1253 *value = stub_unpack_int (buf, 2);
1254 return buf + 2;
1255 }
1256
1257 static char *
1258 pack_int (char *buf, int value)
1259 {
1260 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1261 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1262 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1263 buf = pack_hex_byte (buf, (value & 0xff));
1264 return buf;
1265 }
1266
1267 static char *
1268 unpack_int (char *buf, int *value)
1269 {
1270 *value = stub_unpack_int (buf, 8);
1271 return buf + 8;
1272 }
1273
1274 #if 0 /* currently unused, uncomment when needed */
1275 static char *pack_string (char *pkt, char *string);
1276
1277 static char *
1278 pack_string (char *pkt, char *string)
1279 {
1280 char ch;
1281 int len;
1282
1283 len = strlen (string);
1284 if (len > 200)
1285 len = 200; /* Bigger than most GDB packets, junk??? */
1286 pkt = pack_hex_byte (pkt, len);
1287 while (len-- > 0)
1288 {
1289 ch = *string++;
1290 if ((ch == '\0') || (ch == '#'))
1291 ch = '*'; /* Protect encapsulation */
1292 *pkt++ = ch;
1293 }
1294 return pkt;
1295 }
1296 #endif /* 0 (unused) */
1297
1298 static char *
1299 unpack_string (char *src, char *dest, int length)
1300 {
1301 while (length--)
1302 *dest++ = *src++;
1303 *dest = '\0';
1304 return src;
1305 }
1306
1307 static char *
1308 pack_threadid (char *pkt, threadref *id)
1309 {
1310 char *limit;
1311 unsigned char *altid;
1312
1313 altid = (unsigned char *) id;
1314 limit = pkt + BUF_THREAD_ID_SIZE;
1315 while (pkt < limit)
1316 pkt = pack_hex_byte (pkt, *altid++);
1317 return pkt;
1318 }
1319
1320
1321 static char *
1322 unpack_threadid (char *inbuf, threadref *id)
1323 {
1324 char *altref;
1325 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1326 int x, y;
1327
1328 altref = (char *) id;
1329
1330 while (inbuf < limit)
1331 {
1332 x = stubhex (*inbuf++);
1333 y = stubhex (*inbuf++);
1334 *altref++ = (x << 4) | y;
1335 }
1336 return inbuf;
1337 }
1338
1339 /* Externally, threadrefs are 64 bits but internally, they are still
1340 ints. This is due to a mismatch of specifications. We would like
1341 to use 64bit thread references internally. This is an adapter
1342 function. */
1343
1344 void
1345 int_to_threadref (threadref *id, int value)
1346 {
1347 unsigned char *scan;
1348
1349 scan = (unsigned char *) id;
1350 {
1351 int i = 4;
1352 while (i--)
1353 *scan++ = 0;
1354 }
1355 *scan++ = (value >> 24) & 0xff;
1356 *scan++ = (value >> 16) & 0xff;
1357 *scan++ = (value >> 8) & 0xff;
1358 *scan++ = (value & 0xff);
1359 }
1360
1361 static int
1362 threadref_to_int (threadref *ref)
1363 {
1364 int i, value = 0;
1365 unsigned char *scan;
1366
1367 scan = (char *) ref;
1368 scan += 4;
1369 i = 4;
1370 while (i-- > 0)
1371 value = (value << 8) | ((*scan++) & 0xff);
1372 return value;
1373 }
1374
1375 static void
1376 copy_threadref (threadref *dest, threadref *src)
1377 {
1378 int i;
1379 unsigned char *csrc, *cdest;
1380
1381 csrc = (unsigned char *) src;
1382 cdest = (unsigned char *) dest;
1383 i = 8;
1384 while (i--)
1385 *cdest++ = *csrc++;
1386 }
1387
1388 static int
1389 threadmatch (threadref *dest, threadref *src)
1390 {
1391 /* things are broken right now, so just assume we got a match */
1392 #if 0
1393 unsigned char *srcp, *destp;
1394 int i, result;
1395 srcp = (char *) src;
1396 destp = (char *) dest;
1397
1398 result = 1;
1399 while (i-- > 0)
1400 result &= (*srcp++ == *destp++) ? 1 : 0;
1401 return result;
1402 #endif
1403 return 1;
1404 }
1405
1406 /*
1407 threadid:1, # always request threadid
1408 context_exists:2,
1409 display:4,
1410 unique_name:8,
1411 more_display:16
1412 */
1413
1414 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1415
1416 static char *
1417 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1418 {
1419 *pkt++ = 'q'; /* Info Query */
1420 *pkt++ = 'P'; /* process or thread info */
1421 pkt = pack_int (pkt, mode); /* mode */
1422 pkt = pack_threadid (pkt, id); /* threadid */
1423 *pkt = '\0'; /* terminate */
1424 return pkt;
1425 }
1426
1427 /* These values tag the fields in a thread info response packet */
1428 /* Tagging the fields allows us to request specific fields and to
1429 add more fields as time goes by */
1430
1431 #define TAG_THREADID 1 /* Echo the thread identifier */
1432 #define TAG_EXISTS 2 /* Is this process defined enough to
1433 fetch registers and its stack */
1434 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1435 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1436 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1437 the process */
1438
1439 static int
1440 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1441 struct gdb_ext_thread_info *info)
1442 {
1443 struct remote_state *rs = get_remote_state ();
1444 int mask, length;
1445 unsigned int tag;
1446 threadref ref;
1447 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1448 int retval = 1;
1449
1450 /* info->threadid = 0; FIXME: implement zero_threadref */
1451 info->active = 0;
1452 info->display[0] = '\0';
1453 info->shortname[0] = '\0';
1454 info->more_display[0] = '\0';
1455
1456 /* Assume the characters indicating the packet type have been stripped */
1457 pkt = unpack_int (pkt, &mask); /* arg mask */
1458 pkt = unpack_threadid (pkt, &ref);
1459
1460 if (mask == 0)
1461 warning ("Incomplete response to threadinfo request\n");
1462 if (!threadmatch (&ref, expectedref))
1463 { /* This is an answer to a different request */
1464 warning ("ERROR RMT Thread info mismatch\n");
1465 return 0;
1466 }
1467 copy_threadref (&info->threadid, &ref);
1468
1469 /* Loop on tagged fields , try to bail if somthing goes wrong */
1470
1471 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1472 {
1473 pkt = unpack_int (pkt, &tag); /* tag */
1474 pkt = unpack_byte (pkt, &length); /* length */
1475 if (!(tag & mask)) /* tags out of synch with mask */
1476 {
1477 warning ("ERROR RMT: threadinfo tag mismatch\n");
1478 retval = 0;
1479 break;
1480 }
1481 if (tag == TAG_THREADID)
1482 {
1483 if (length != 16)
1484 {
1485 warning ("ERROR RMT: length of threadid is not 16\n");
1486 retval = 0;
1487 break;
1488 }
1489 pkt = unpack_threadid (pkt, &ref);
1490 mask = mask & ~TAG_THREADID;
1491 continue;
1492 }
1493 if (tag == TAG_EXISTS)
1494 {
1495 info->active = stub_unpack_int (pkt, length);
1496 pkt += length;
1497 mask = mask & ~(TAG_EXISTS);
1498 if (length > 8)
1499 {
1500 warning ("ERROR RMT: 'exists' length too long\n");
1501 retval = 0;
1502 break;
1503 }
1504 continue;
1505 }
1506 if (tag == TAG_THREADNAME)
1507 {
1508 pkt = unpack_string (pkt, &info->shortname[0], length);
1509 mask = mask & ~TAG_THREADNAME;
1510 continue;
1511 }
1512 if (tag == TAG_DISPLAY)
1513 {
1514 pkt = unpack_string (pkt, &info->display[0], length);
1515 mask = mask & ~TAG_DISPLAY;
1516 continue;
1517 }
1518 if (tag == TAG_MOREDISPLAY)
1519 {
1520 pkt = unpack_string (pkt, &info->more_display[0], length);
1521 mask = mask & ~TAG_MOREDISPLAY;
1522 continue;
1523 }
1524 warning ("ERROR RMT: unknown thread info tag\n");
1525 break; /* Not a tag we know about */
1526 }
1527 return retval;
1528 }
1529
1530 static int
1531 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1532 struct gdb_ext_thread_info *info)
1533 {
1534 struct remote_state *rs = get_remote_state ();
1535 int result;
1536 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1537
1538 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1539 putpkt (threadinfo_pkt);
1540 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1541 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1542 info);
1543 return result;
1544 }
1545
1546 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1547
1548 static char *
1549 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1550 threadref *nextthread)
1551 {
1552 *pkt++ = 'q'; /* info query packet */
1553 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1554 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1555 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1556 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1557 *pkt = '\0';
1558 return pkt;
1559 }
1560
1561 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1562
1563 static int
1564 parse_threadlist_response (char *pkt, int result_limit,
1565 threadref *original_echo, threadref *resultlist,
1566 int *doneflag)
1567 {
1568 struct remote_state *rs = get_remote_state ();
1569 char *limit;
1570 int count, resultcount, done;
1571
1572 resultcount = 0;
1573 /* Assume the 'q' and 'M chars have been stripped. */
1574 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1575 pkt = unpack_byte (pkt, &count); /* count field */
1576 pkt = unpack_nibble (pkt, &done);
1577 /* The first threadid is the argument threadid. */
1578 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1579 while ((count-- > 0) && (pkt < limit))
1580 {
1581 pkt = unpack_threadid (pkt, resultlist++);
1582 if (resultcount++ >= result_limit)
1583 break;
1584 }
1585 if (doneflag)
1586 *doneflag = done;
1587 return resultcount;
1588 }
1589
1590 static int
1591 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1592 int *done, int *result_count, threadref *threadlist)
1593 {
1594 struct remote_state *rs = get_remote_state ();
1595 static threadref echo_nextthread;
1596 char *threadlist_packet = alloca (rs->remote_packet_size);
1597 char *t_response = alloca (rs->remote_packet_size);
1598 int result = 1;
1599
1600 /* Trancate result limit to be smaller than the packet size */
1601 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1602 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1603
1604 pack_threadlist_request (threadlist_packet,
1605 startflag, result_limit, nextthread);
1606 putpkt (threadlist_packet);
1607 getpkt (t_response, (rs->remote_packet_size), 0);
1608
1609 *result_count =
1610 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1611 threadlist, done);
1612
1613 if (!threadmatch (&echo_nextthread, nextthread))
1614 {
1615 /* FIXME: This is a good reason to drop the packet */
1616 /* Possably, there is a duplicate response */
1617 /* Possabilities :
1618 retransmit immediatly - race conditions
1619 retransmit after timeout - yes
1620 exit
1621 wait for packet, then exit
1622 */
1623 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1624 return 0; /* I choose simply exiting */
1625 }
1626 if (*result_count <= 0)
1627 {
1628 if (*done != 1)
1629 {
1630 warning ("RMT ERROR : failed to get remote thread list\n");
1631 result = 0;
1632 }
1633 return result; /* break; */
1634 }
1635 if (*result_count > result_limit)
1636 {
1637 *result_count = 0;
1638 warning ("RMT ERROR: threadlist response longer than requested\n");
1639 return 0;
1640 }
1641 return result;
1642 }
1643
1644 /* This is the interface between remote and threads, remotes upper interface */
1645
1646 /* remote_find_new_threads retrieves the thread list and for each
1647 thread in the list, looks up the thread in GDB's internal list,
1648 ading the thread if it does not already exist. This involves
1649 getting partial thread lists from the remote target so, polling the
1650 quit_flag is required. */
1651
1652
1653 /* About this many threadisds fit in a packet. */
1654
1655 #define MAXTHREADLISTRESULTS 32
1656
1657 static int
1658 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1659 int looplimit)
1660 {
1661 int done, i, result_count;
1662 int startflag = 1;
1663 int result = 1;
1664 int loopcount = 0;
1665 static threadref nextthread;
1666 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1667
1668 done = 0;
1669 while (!done)
1670 {
1671 if (loopcount++ > looplimit)
1672 {
1673 result = 0;
1674 warning ("Remote fetch threadlist -infinite loop-\n");
1675 break;
1676 }
1677 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1678 &done, &result_count, resultthreadlist))
1679 {
1680 result = 0;
1681 break;
1682 }
1683 /* clear for later iterations */
1684 startflag = 0;
1685 /* Setup to resume next batch of thread references, set nextthread. */
1686 if (result_count >= 1)
1687 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1688 i = 0;
1689 while (result_count--)
1690 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1691 break;
1692 }
1693 return result;
1694 }
1695
1696 static int
1697 remote_newthread_step (threadref *ref, void *context)
1698 {
1699 ptid_t ptid;
1700
1701 ptid = pid_to_ptid (threadref_to_int (ref));
1702
1703 if (!in_thread_list (ptid))
1704 add_thread (ptid);
1705 return 1; /* continue iterator */
1706 }
1707
1708 #define CRAZY_MAX_THREADS 1000
1709
1710 static ptid_t
1711 remote_current_thread (ptid_t oldpid)
1712 {
1713 struct remote_state *rs = get_remote_state ();
1714 char *buf = alloca (rs->remote_packet_size);
1715
1716 putpkt ("qC");
1717 getpkt (buf, (rs->remote_packet_size), 0);
1718 if (buf[0] == 'Q' && buf[1] == 'C')
1719 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1720 else
1721 return oldpid;
1722 }
1723
1724 /* Find new threads for info threads command.
1725 * Original version, using John Metzler's thread protocol.
1726 */
1727
1728 static void
1729 remote_find_new_threads (void)
1730 {
1731 remote_threadlist_iterator (remote_newthread_step, 0,
1732 CRAZY_MAX_THREADS);
1733 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1734 inferior_ptid = remote_current_thread (inferior_ptid);
1735 }
1736
1737 /*
1738 * Find all threads for info threads command.
1739 * Uses new thread protocol contributed by Cisco.
1740 * Falls back and attempts to use the older method (above)
1741 * if the target doesn't respond to the new method.
1742 */
1743
1744 static void
1745 remote_threads_info (void)
1746 {
1747 struct remote_state *rs = get_remote_state ();
1748 char *buf = alloca (rs->remote_packet_size);
1749 char *bufp;
1750 int tid;
1751
1752 if (remote_desc == 0) /* paranoia */
1753 error ("Command can only be used when connected to the remote target.");
1754
1755 if (use_threadinfo_query)
1756 {
1757 putpkt ("qfThreadInfo");
1758 bufp = buf;
1759 getpkt (bufp, (rs->remote_packet_size), 0);
1760 if (bufp[0] != '\0') /* q packet recognized */
1761 {
1762 while (*bufp++ == 'm') /* reply contains one or more TID */
1763 {
1764 do
1765 {
1766 tid = strtol (bufp, &bufp, 16);
1767 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1768 add_thread (pid_to_ptid (tid));
1769 }
1770 while (*bufp++ == ','); /* comma-separated list */
1771 putpkt ("qsThreadInfo");
1772 bufp = buf;
1773 getpkt (bufp, (rs->remote_packet_size), 0);
1774 }
1775 return; /* done */
1776 }
1777 }
1778
1779 /* Else fall back to old method based on jmetzler protocol. */
1780 use_threadinfo_query = 0;
1781 remote_find_new_threads ();
1782 return;
1783 }
1784
1785 /*
1786 * Collect a descriptive string about the given thread.
1787 * The target may say anything it wants to about the thread
1788 * (typically info about its blocked / runnable state, name, etc.).
1789 * This string will appear in the info threads display.
1790 *
1791 * Optional: targets are not required to implement this function.
1792 */
1793
1794 static char *
1795 remote_threads_extra_info (struct thread_info *tp)
1796 {
1797 struct remote_state *rs = get_remote_state ();
1798 int result;
1799 int set;
1800 threadref id;
1801 struct gdb_ext_thread_info threadinfo;
1802 static char display_buf[100]; /* arbitrary... */
1803 char *bufp = alloca (rs->remote_packet_size);
1804 int n = 0; /* position in display_buf */
1805
1806 if (remote_desc == 0) /* paranoia */
1807 internal_error (__FILE__, __LINE__,
1808 "remote_threads_extra_info");
1809
1810 if (use_threadextra_query)
1811 {
1812 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1813 putpkt (bufp);
1814 getpkt (bufp, (rs->remote_packet_size), 0);
1815 if (bufp[0] != 0)
1816 {
1817 n = min (strlen (bufp) / 2, sizeof (display_buf));
1818 result = hex2bin (bufp, display_buf, n);
1819 display_buf [result] = '\0';
1820 return display_buf;
1821 }
1822 }
1823
1824 /* If the above query fails, fall back to the old method. */
1825 use_threadextra_query = 0;
1826 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1827 | TAG_MOREDISPLAY | TAG_DISPLAY;
1828 int_to_threadref (&id, PIDGET (tp->ptid));
1829 if (remote_get_threadinfo (&id, set, &threadinfo))
1830 if (threadinfo.active)
1831 {
1832 if (*threadinfo.shortname)
1833 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1834 if (*threadinfo.display)
1835 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1836 if (*threadinfo.more_display)
1837 n += sprintf(&display_buf[n], " Priority: %s",
1838 threadinfo.more_display);
1839
1840 if (n > 0)
1841 {
1842 /* for purely cosmetic reasons, clear up trailing commas */
1843 if (',' == display_buf[n-1])
1844 display_buf[n-1] = ' ';
1845 return display_buf;
1846 }
1847 }
1848 return NULL;
1849 }
1850
1851 \f
1852
1853 /* Restart the remote side; this is an extended protocol operation. */
1854
1855 static void
1856 extended_remote_restart (void)
1857 {
1858 struct remote_state *rs = get_remote_state ();
1859 char *buf = alloca (rs->remote_packet_size);
1860
1861 /* Send the restart command; for reasons I don't understand the
1862 remote side really expects a number after the "R". */
1863 buf[0] = 'R';
1864 sprintf (&buf[1], "%x", 0);
1865 putpkt (buf);
1866
1867 /* Now query for status so this looks just like we restarted
1868 gdbserver from scratch. */
1869 putpkt ("?");
1870 getpkt (buf, (rs->remote_packet_size), 0);
1871 }
1872 \f
1873 /* Clean up connection to a remote debugger. */
1874
1875 static void
1876 remote_close (int quitting)
1877 {
1878 if (remote_desc)
1879 serial_close (remote_desc);
1880 remote_desc = NULL;
1881 }
1882
1883 /* Query the remote side for the text, data and bss offsets. */
1884
1885 static void
1886 get_offsets (void)
1887 {
1888 struct remote_state *rs = get_remote_state ();
1889 char *buf = alloca (rs->remote_packet_size);
1890 char *ptr;
1891 int lose;
1892 CORE_ADDR text_addr, data_addr, bss_addr;
1893 struct section_offsets *offs;
1894
1895 putpkt ("qOffsets");
1896
1897 getpkt (buf, (rs->remote_packet_size), 0);
1898
1899 if (buf[0] == '\000')
1900 return; /* Return silently. Stub doesn't support
1901 this command. */
1902 if (buf[0] == 'E')
1903 {
1904 warning ("Remote failure reply: %s", buf);
1905 return;
1906 }
1907
1908 /* Pick up each field in turn. This used to be done with scanf, but
1909 scanf will make trouble if CORE_ADDR size doesn't match
1910 conversion directives correctly. The following code will work
1911 with any size of CORE_ADDR. */
1912 text_addr = data_addr = bss_addr = 0;
1913 ptr = buf;
1914 lose = 0;
1915
1916 if (strncmp (ptr, "Text=", 5) == 0)
1917 {
1918 ptr += 5;
1919 /* Don't use strtol, could lose on big values. */
1920 while (*ptr && *ptr != ';')
1921 text_addr = (text_addr << 4) + fromhex (*ptr++);
1922 }
1923 else
1924 lose = 1;
1925
1926 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1927 {
1928 ptr += 6;
1929 while (*ptr && *ptr != ';')
1930 data_addr = (data_addr << 4) + fromhex (*ptr++);
1931 }
1932 else
1933 lose = 1;
1934
1935 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1936 {
1937 ptr += 5;
1938 while (*ptr && *ptr != ';')
1939 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1940 }
1941 else
1942 lose = 1;
1943
1944 if (lose)
1945 error ("Malformed response to offset query, %s", buf);
1946
1947 if (symfile_objfile == NULL)
1948 return;
1949
1950 offs = ((struct section_offsets *)
1951 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1952 memcpy (offs, symfile_objfile->section_offsets,
1953 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1954
1955 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1956
1957 /* This is a temporary kludge to force data and bss to use the same offsets
1958 because that's what nlmconv does now. The real solution requires changes
1959 to the stub and remote.c that I don't have time to do right now. */
1960
1961 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1962 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1963
1964 objfile_relocate (symfile_objfile, offs);
1965 }
1966
1967 /* Stub for catch_errors. */
1968
1969 static int
1970 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
1971 {
1972 start_remote (); /* Initialize gdb process mechanisms */
1973 /* NOTE: Return something >=0. A -ve value is reserved for
1974 catch_exceptions. */
1975 return 1;
1976 }
1977
1978 static int
1979 remote_start_remote (struct ui_out *uiout, void *dummy)
1980 {
1981 immediate_quit++; /* Allow user to interrupt it */
1982
1983 /* Ack any packet which the remote side has already sent. */
1984 serial_write (remote_desc, "+", 1);
1985
1986 /* Let the stub know that we want it to return the thread. */
1987 set_thread (-1, 0);
1988
1989 inferior_ptid = remote_current_thread (inferior_ptid);
1990
1991 get_offsets (); /* Get text, data & bss offsets */
1992
1993 putpkt ("?"); /* initiate a query from remote machine */
1994 immediate_quit--;
1995
1996 /* NOTE: See comment above in remote_start_remote_dummy(). This
1997 function returns something >=0. */
1998 return remote_start_remote_dummy (uiout, dummy);
1999 }
2000
2001 /* Open a connection to a remote debugger.
2002 NAME is the filename used for communication. */
2003
2004 static void
2005 remote_open (char *name, int from_tty)
2006 {
2007 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2008 }
2009
2010 /* Just like remote_open, but with asynchronous support. */
2011 static void
2012 remote_async_open (char *name, int from_tty)
2013 {
2014 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2015 }
2016
2017 /* Open a connection to a remote debugger using the extended
2018 remote gdb protocol. NAME is the filename used for communication. */
2019
2020 static void
2021 extended_remote_open (char *name, int from_tty)
2022 {
2023 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2024 0 /* async_p */);
2025 }
2026
2027 /* Just like extended_remote_open, but with asynchronous support. */
2028 static void
2029 extended_remote_async_open (char *name, int from_tty)
2030 {
2031 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2032 1 /*extended_p */, 1 /* async_p */);
2033 }
2034
2035 /* Generic code for opening a connection to a remote target. */
2036
2037 static void
2038 init_all_packet_configs (void)
2039 {
2040 int i;
2041 update_packet_config (&remote_protocol_P);
2042 update_packet_config (&remote_protocol_qSymbol);
2043 update_packet_config (&remote_protocol_vcont);
2044 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2045 update_packet_config (&remote_protocol_Z[i]);
2046 /* Force remote_write_bytes to check whether target supports binary
2047 downloading. */
2048 update_packet_config (&remote_protocol_binary_download);
2049 update_packet_config (&remote_protocol_qPart_auxv);
2050 }
2051
2052 /* Symbol look-up. */
2053
2054 static void
2055 remote_check_symbols (struct objfile *objfile)
2056 {
2057 struct remote_state *rs = get_remote_state ();
2058 char *msg, *reply, *tmp;
2059 struct minimal_symbol *sym;
2060 int end;
2061
2062 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2063 return;
2064
2065 msg = alloca (rs->remote_packet_size);
2066 reply = alloca (rs->remote_packet_size);
2067
2068 /* Invite target to request symbol lookups. */
2069
2070 putpkt ("qSymbol::");
2071 getpkt (reply, (rs->remote_packet_size), 0);
2072 packet_ok (reply, &remote_protocol_qSymbol);
2073
2074 while (strncmp (reply, "qSymbol:", 8) == 0)
2075 {
2076 tmp = &reply[8];
2077 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2078 msg[end] = '\0';
2079 sym = lookup_minimal_symbol (msg, NULL, NULL);
2080 if (sym == NULL)
2081 sprintf (msg, "qSymbol::%s", &reply[8]);
2082 else
2083 sprintf (msg, "qSymbol:%s:%s",
2084 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2085 &reply[8]);
2086 putpkt (msg);
2087 getpkt (reply, (rs->remote_packet_size), 0);
2088 }
2089 }
2090
2091 static struct serial *
2092 remote_serial_open (char *name)
2093 {
2094 static int udp_warning = 0;
2095
2096 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2097 of in ser-tcp.c, because it is the remote protocol assuming that the
2098 serial connection is reliable and not the serial connection promising
2099 to be. */
2100 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2101 {
2102 warning ("The remote protocol may be unreliable over UDP.");
2103 warning ("Some events may be lost, rendering further debugging "
2104 "impossible.");
2105 udp_warning = 1;
2106 }
2107
2108 return serial_open (name);
2109 }
2110
2111 static void
2112 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2113 int extended_p, int async_p)
2114 {
2115 int ex;
2116 struct remote_state *rs = get_remote_state ();
2117 if (name == 0)
2118 error ("To open a remote debug connection, you need to specify what\n"
2119 "serial device is attached to the remote system\n"
2120 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2121
2122 /* See FIXME above */
2123 if (!async_p)
2124 wait_forever_enabled_p = 1;
2125
2126 reopen_exec_file ();
2127 reread_symbols ();
2128
2129 target_preopen (from_tty);
2130
2131 unpush_target (target);
2132
2133 remote_desc = remote_serial_open (name);
2134 if (!remote_desc)
2135 perror_with_name (name);
2136
2137 if (baud_rate != -1)
2138 {
2139 if (serial_setbaudrate (remote_desc, baud_rate))
2140 {
2141 /* The requested speed could not be set. Error out to
2142 top level after closing remote_desc. Take care to
2143 set remote_desc to NULL to avoid closing remote_desc
2144 more than once. */
2145 serial_close (remote_desc);
2146 remote_desc = NULL;
2147 perror_with_name (name);
2148 }
2149 }
2150
2151 serial_raw (remote_desc);
2152
2153 /* If there is something sitting in the buffer we might take it as a
2154 response to a command, which would be bad. */
2155 serial_flush_input (remote_desc);
2156
2157 if (from_tty)
2158 {
2159 puts_filtered ("Remote debugging using ");
2160 puts_filtered (name);
2161 puts_filtered ("\n");
2162 }
2163 push_target (target); /* Switch to using remote target now */
2164
2165 init_all_packet_configs ();
2166
2167 general_thread = -2;
2168 continue_thread = -2;
2169
2170 /* Probe for ability to use "ThreadInfo" query, as required. */
2171 use_threadinfo_query = 1;
2172 use_threadextra_query = 1;
2173
2174 /* Without this, some commands which require an active target (such
2175 as kill) won't work. This variable serves (at least) double duty
2176 as both the pid of the target process (if it has such), and as a
2177 flag indicating that a target is active. These functions should
2178 be split out into seperate variables, especially since GDB will
2179 someday have a notion of debugging several processes. */
2180
2181 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2182
2183 if (async_p)
2184 {
2185 /* With this target we start out by owning the terminal. */
2186 remote_async_terminal_ours_p = 1;
2187
2188 /* FIXME: cagney/1999-09-23: During the initial connection it is
2189 assumed that the target is already ready and able to respond to
2190 requests. Unfortunately remote_start_remote() eventually calls
2191 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2192 around this. Eventually a mechanism that allows
2193 wait_for_inferior() to expect/get timeouts will be
2194 implemented. */
2195 wait_forever_enabled_p = 0;
2196 }
2197
2198 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2199 /* First delete any symbols previously loaded from shared libraries. */
2200 no_shared_libraries (NULL, 0);
2201 #endif
2202
2203 /* Start the remote connection. If error() or QUIT, discard this
2204 target (we'd otherwise be in an inconsistent state) and then
2205 propogate the error on up the exception chain. This ensures that
2206 the caller doesn't stumble along blindly assuming that the
2207 function succeeded. The CLI doesn't have this problem but other
2208 UI's, such as MI do.
2209
2210 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2211 this function should return an error indication letting the
2212 caller restore the previous state. Unfortunately the command
2213 ``target remote'' is directly wired to this function making that
2214 impossible. On a positive note, the CLI side of this problem has
2215 been fixed - the function set_cmd_context() makes it possible for
2216 all the ``target ....'' commands to share a common callback
2217 function. See cli-dump.c. */
2218 ex = catch_exceptions (uiout,
2219 remote_start_remote, NULL,
2220 "Couldn't establish connection to remote"
2221 " target\n",
2222 RETURN_MASK_ALL);
2223 if (ex < 0)
2224 {
2225 pop_target ();
2226 if (async_p)
2227 wait_forever_enabled_p = 1;
2228 throw_exception (ex);
2229 }
2230
2231 if (async_p)
2232 wait_forever_enabled_p = 1;
2233
2234 if (extended_p)
2235 {
2236 /* Tell the remote that we are using the extended protocol. */
2237 char *buf = alloca (rs->remote_packet_size);
2238 putpkt ("!");
2239 getpkt (buf, (rs->remote_packet_size), 0);
2240 }
2241 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2242 /* FIXME: need a master target_open vector from which all
2243 remote_opens can be called, so that stuff like this can
2244 go there. Failing that, the following code must be copied
2245 to the open function for any remote target that wants to
2246 support svr4 shared libraries. */
2247
2248 /* Set up to detect and load shared libraries. */
2249 if (exec_bfd) /* No use without an exec file. */
2250 {
2251 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2252 remote_check_symbols (symfile_objfile);
2253 }
2254 #endif
2255 }
2256
2257 /* This takes a program previously attached to and detaches it. After
2258 this is done, GDB can be used to debug some other program. We
2259 better not have left any breakpoints in the target program or it'll
2260 die when it hits one. */
2261
2262 static void
2263 remote_detach (char *args, int from_tty)
2264 {
2265 struct remote_state *rs = get_remote_state ();
2266 char *buf = alloca (rs->remote_packet_size);
2267
2268 if (args)
2269 error ("Argument given to \"detach\" when remotely debugging.");
2270
2271 /* Tell the remote target to detach. */
2272 strcpy (buf, "D");
2273 remote_send (buf, (rs->remote_packet_size));
2274
2275 /* Unregister the file descriptor from the event loop. */
2276 if (target_is_async_p ())
2277 serial_async (remote_desc, NULL, 0);
2278
2279 target_mourn_inferior ();
2280 if (from_tty)
2281 puts_filtered ("Ending remote debugging.\n");
2282 }
2283
2284 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2285
2286 static void
2287 remote_disconnect (char *args, int from_tty)
2288 {
2289 struct remote_state *rs = get_remote_state ();
2290 char *buf = alloca (rs->remote_packet_size);
2291
2292 if (args)
2293 error ("Argument given to \"detach\" when remotely debugging.");
2294
2295 /* Unregister the file descriptor from the event loop. */
2296 if (target_is_async_p ())
2297 serial_async (remote_desc, NULL, 0);
2298
2299 target_mourn_inferior ();
2300 if (from_tty)
2301 puts_filtered ("Ending remote debugging.\n");
2302 }
2303
2304 /* Convert hex digit A to a number. */
2305
2306 static int
2307 fromhex (int a)
2308 {
2309 if (a >= '0' && a <= '9')
2310 return a - '0';
2311 else if (a >= 'a' && a <= 'f')
2312 return a - 'a' + 10;
2313 else if (a >= 'A' && a <= 'F')
2314 return a - 'A' + 10;
2315 else
2316 error ("Reply contains invalid hex digit %d", a);
2317 }
2318
2319 static int
2320 hex2bin (const char *hex, char *bin, int count)
2321 {
2322 int i;
2323
2324 for (i = 0; i < count; i++)
2325 {
2326 if (hex[0] == 0 || hex[1] == 0)
2327 {
2328 /* Hex string is short, or of uneven length.
2329 Return the count that has been converted so far. */
2330 return i;
2331 }
2332 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2333 hex += 2;
2334 }
2335 return i;
2336 }
2337
2338 /* Convert number NIB to a hex digit. */
2339
2340 static int
2341 tohex (int nib)
2342 {
2343 if (nib < 10)
2344 return '0' + nib;
2345 else
2346 return 'a' + nib - 10;
2347 }
2348
2349 static int
2350 bin2hex (const char *bin, char *hex, int count)
2351 {
2352 int i;
2353 /* May use a length, or a nul-terminated string as input. */
2354 if (count == 0)
2355 count = strlen (bin);
2356
2357 for (i = 0; i < count; i++)
2358 {
2359 *hex++ = tohex ((*bin >> 4) & 0xf);
2360 *hex++ = tohex (*bin++ & 0xf);
2361 }
2362 *hex = 0;
2363 return i;
2364 }
2365 \f
2366 /* Check for the availability of vCont. This function should also check
2367 the response. */
2368
2369 static void
2370 remote_vcont_probe (struct remote_state *rs, char *buf)
2371 {
2372 strcpy (buf, "vCont?");
2373 putpkt (buf);
2374 getpkt (buf, rs->remote_packet_size, 0);
2375
2376 /* Make sure that the features we assume are supported. */
2377 if (strncmp (buf, "vCont", 5) == 0)
2378 {
2379 char *p = &buf[5];
2380 int support_s, support_S, support_c, support_C;
2381
2382 support_s = 0;
2383 support_S = 0;
2384 support_c = 0;
2385 support_C = 0;
2386 while (p && *p == ';')
2387 {
2388 p++;
2389 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2390 support_s = 1;
2391 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2392 support_S = 1;
2393 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2394 support_c = 1;
2395 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2396 support_C = 1;
2397
2398 p = strchr (p, ';');
2399 }
2400
2401 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2402 BUF will make packet_ok disable the packet. */
2403 if (!support_s || !support_S || !support_c || !support_C)
2404 buf[0] = 0;
2405 }
2406
2407 packet_ok (buf, &remote_protocol_vcont);
2408 }
2409
2410 /* Resume the remote inferior by using a "vCont" packet. The thread
2411 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2412 resumed thread should be single-stepped and/or signalled. If PTID's
2413 PID is -1, then all threads are resumed; the thread to be stepped and/or
2414 signalled is given in the global INFERIOR_PTID. This function returns
2415 non-zero iff it resumes the inferior.
2416
2417 This function issues a strict subset of all possible vCont commands at the
2418 moment. */
2419
2420 static int
2421 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2422 {
2423 struct remote_state *rs = get_remote_state ();
2424 int pid = PIDGET (ptid);
2425 char *buf = NULL, *outbuf;
2426 struct cleanup *old_cleanup;
2427
2428 buf = xmalloc (rs->remote_packet_size);
2429 old_cleanup = make_cleanup (xfree, buf);
2430
2431 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2432 remote_vcont_probe (rs, buf);
2433
2434 if (remote_protocol_vcont.support == PACKET_DISABLE)
2435 {
2436 do_cleanups (old_cleanup);
2437 return 0;
2438 }
2439
2440 /* If we could generate a wider range of packets, we'd have to worry
2441 about overflowing BUF. Should there be a generic
2442 "multi-part-packet" packet? */
2443
2444 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2445 {
2446 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2447 don't have any PID numbers the inferior will understand. Make sure
2448 to only send forms that do not specify a PID. */
2449 if (step && siggnal != TARGET_SIGNAL_0)
2450 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2451 else if (step)
2452 outbuf = xstrprintf ("vCont;s");
2453 else if (siggnal != TARGET_SIGNAL_0)
2454 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2455 else
2456 outbuf = xstrprintf ("vCont;c");
2457 }
2458 else if (pid == -1)
2459 {
2460 /* Resume all threads, with preference for INFERIOR_PTID. */
2461 if (step && siggnal != TARGET_SIGNAL_0)
2462 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2463 PIDGET (inferior_ptid));
2464 else if (step)
2465 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2466 else if (siggnal != TARGET_SIGNAL_0)
2467 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2468 PIDGET (inferior_ptid));
2469 else
2470 outbuf = xstrprintf ("vCont;c");
2471 }
2472 else
2473 {
2474 /* Scheduler locking; resume only PTID. */
2475 if (step && siggnal != TARGET_SIGNAL_0)
2476 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2477 else if (step)
2478 outbuf = xstrprintf ("vCont;s:%x", pid);
2479 else if (siggnal != TARGET_SIGNAL_0)
2480 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2481 else
2482 outbuf = xstrprintf ("vCont;c:%x", pid);
2483 }
2484
2485 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2486 make_cleanup (xfree, outbuf);
2487
2488 putpkt (outbuf);
2489
2490 do_cleanups (old_cleanup);
2491
2492 return 1;
2493 }
2494
2495 /* Tell the remote machine to resume. */
2496
2497 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2498
2499 static int last_sent_step;
2500
2501 static void
2502 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2503 {
2504 struct remote_state *rs = get_remote_state ();
2505 char *buf = alloca (rs->remote_packet_size);
2506 int pid = PIDGET (ptid);
2507 char *p;
2508
2509 last_sent_signal = siggnal;
2510 last_sent_step = step;
2511
2512 /* A hook for when we need to do something at the last moment before
2513 resumption. */
2514 if (deprecated_target_resume_hook)
2515 (*deprecated_target_resume_hook) ();
2516
2517 /* The vCont packet doesn't need to specify threads via Hc. */
2518 if (remote_vcont_resume (ptid, step, siggnal))
2519 return;
2520
2521 /* All other supported resume packets do use Hc, so call set_thread. */
2522 if (pid == -1)
2523 set_thread (0, 0); /* run any thread */
2524 else
2525 set_thread (pid, 0); /* run this thread */
2526
2527 if (siggnal != TARGET_SIGNAL_0)
2528 {
2529 buf[0] = step ? 'S' : 'C';
2530 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2531 buf[2] = tohex (((int) siggnal) & 0xf);
2532 buf[3] = '\0';
2533 }
2534 else
2535 strcpy (buf, step ? "s" : "c");
2536
2537 putpkt (buf);
2538 }
2539
2540 /* Same as remote_resume, but with async support. */
2541 static void
2542 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2543 {
2544 remote_resume (ptid, step, siggnal);
2545
2546 /* We are about to start executing the inferior, let's register it
2547 with the event loop. NOTE: this is the one place where all the
2548 execution commands end up. We could alternatively do this in each
2549 of the execution commands in infcmd.c.*/
2550 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2551 into infcmd.c in order to allow inferior function calls to work
2552 NOT asynchronously. */
2553 if (event_loop_p && target_can_async_p ())
2554 target_async (inferior_event_handler, 0);
2555 /* Tell the world that the target is now executing. */
2556 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2557 this? Instead, should the client of target just assume (for
2558 async targets) that the target is going to start executing? Is
2559 this information already found in the continuation block? */
2560 if (target_is_async_p ())
2561 target_executing = 1;
2562 }
2563 \f
2564
2565 /* Set up the signal handler for SIGINT, while the target is
2566 executing, ovewriting the 'regular' SIGINT signal handler. */
2567 static void
2568 initialize_sigint_signal_handler (void)
2569 {
2570 sigint_remote_token =
2571 create_async_signal_handler (async_remote_interrupt, NULL);
2572 signal (SIGINT, handle_remote_sigint);
2573 }
2574
2575 /* Signal handler for SIGINT, while the target is executing. */
2576 static void
2577 handle_remote_sigint (int sig)
2578 {
2579 signal (sig, handle_remote_sigint_twice);
2580 sigint_remote_twice_token =
2581 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2582 mark_async_signal_handler_wrapper (sigint_remote_token);
2583 }
2584
2585 /* Signal handler for SIGINT, installed after SIGINT has already been
2586 sent once. It will take effect the second time that the user sends
2587 a ^C. */
2588 static void
2589 handle_remote_sigint_twice (int sig)
2590 {
2591 signal (sig, handle_sigint);
2592 sigint_remote_twice_token =
2593 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2594 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2595 }
2596
2597 /* Perform the real interruption of the target execution, in response
2598 to a ^C. */
2599 static void
2600 async_remote_interrupt (gdb_client_data arg)
2601 {
2602 if (remote_debug)
2603 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2604
2605 target_stop ();
2606 }
2607
2608 /* Perform interrupt, if the first attempt did not succeed. Just give
2609 up on the target alltogether. */
2610 void
2611 async_remote_interrupt_twice (gdb_client_data arg)
2612 {
2613 if (remote_debug)
2614 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2615 /* Do something only if the target was not killed by the previous
2616 cntl-C. */
2617 if (target_executing)
2618 {
2619 interrupt_query ();
2620 signal (SIGINT, handle_remote_sigint);
2621 }
2622 }
2623
2624 /* Reinstall the usual SIGINT handlers, after the target has
2625 stopped. */
2626 static void
2627 cleanup_sigint_signal_handler (void *dummy)
2628 {
2629 signal (SIGINT, handle_sigint);
2630 if (sigint_remote_twice_token)
2631 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2632 if (sigint_remote_token)
2633 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2634 }
2635
2636 /* Send ^C to target to halt it. Target will respond, and send us a
2637 packet. */
2638 static void (*ofunc) (int);
2639
2640 /* The command line interface's stop routine. This function is installed
2641 as a signal handler for SIGINT. The first time a user requests a
2642 stop, we call remote_stop to send a break or ^C. If there is no
2643 response from the target (it didn't stop when the user requested it),
2644 we ask the user if he'd like to detach from the target. */
2645 static void
2646 remote_interrupt (int signo)
2647 {
2648 /* If this doesn't work, try more severe steps. */
2649 signal (signo, remote_interrupt_twice);
2650
2651 if (remote_debug)
2652 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2653
2654 target_stop ();
2655 }
2656
2657 /* The user typed ^C twice. */
2658
2659 static void
2660 remote_interrupt_twice (int signo)
2661 {
2662 signal (signo, ofunc);
2663 interrupt_query ();
2664 signal (signo, remote_interrupt);
2665 }
2666
2667 /* This is the generic stop called via the target vector. When a target
2668 interrupt is requested, either by the command line or the GUI, we
2669 will eventually end up here. */
2670 static void
2671 remote_stop (void)
2672 {
2673 /* Send a break or a ^C, depending on user preference. */
2674 if (remote_debug)
2675 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2676
2677 if (remote_break)
2678 serial_send_break (remote_desc);
2679 else
2680 serial_write (remote_desc, "\003", 1);
2681 }
2682
2683 /* Ask the user what to do when an interrupt is received. */
2684
2685 static void
2686 interrupt_query (void)
2687 {
2688 target_terminal_ours ();
2689
2690 if (query ("Interrupted while waiting for the program.\n\
2691 Give up (and stop debugging it)? "))
2692 {
2693 target_mourn_inferior ();
2694 throw_exception (RETURN_QUIT);
2695 }
2696
2697 target_terminal_inferior ();
2698 }
2699
2700 /* Enable/disable target terminal ownership. Most targets can use
2701 terminal groups to control terminal ownership. Remote targets are
2702 different in that explicit transfer of ownership to/from GDB/target
2703 is required. */
2704
2705 static void
2706 remote_async_terminal_inferior (void)
2707 {
2708 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2709 sync_execution here. This function should only be called when
2710 GDB is resuming the inferior in the forground. A background
2711 resume (``run&'') should leave GDB in control of the terminal and
2712 consequently should not call this code. */
2713 if (!sync_execution)
2714 return;
2715 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2716 calls target_terminal_*() idenpotent. The event-loop GDB talking
2717 to an asynchronous target with a synchronous command calls this
2718 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2719 stops trying to transfer the terminal to the target when it
2720 shouldn't this guard can go away. */
2721 if (!remote_async_terminal_ours_p)
2722 return;
2723 delete_file_handler (input_fd);
2724 remote_async_terminal_ours_p = 0;
2725 initialize_sigint_signal_handler ();
2726 /* NOTE: At this point we could also register our selves as the
2727 recipient of all input. Any characters typed could then be
2728 passed on down to the target. */
2729 }
2730
2731 static void
2732 remote_async_terminal_ours (void)
2733 {
2734 /* See FIXME in remote_async_terminal_inferior. */
2735 if (!sync_execution)
2736 return;
2737 /* See FIXME in remote_async_terminal_inferior. */
2738 if (remote_async_terminal_ours_p)
2739 return;
2740 cleanup_sigint_signal_handler (NULL);
2741 add_file_handler (input_fd, stdin_event_handler, 0);
2742 remote_async_terminal_ours_p = 1;
2743 }
2744
2745 /* If nonzero, ignore the next kill. */
2746
2747 int kill_kludge;
2748
2749 void
2750 remote_console_output (char *msg)
2751 {
2752 char *p;
2753
2754 for (p = msg; p[0] && p[1]; p += 2)
2755 {
2756 char tb[2];
2757 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2758 tb[0] = c;
2759 tb[1] = 0;
2760 fputs_unfiltered (tb, gdb_stdtarg);
2761 }
2762 gdb_flush (gdb_stdtarg);
2763 }
2764
2765 /* Wait until the remote machine stops, then return,
2766 storing status in STATUS just as `wait' would.
2767 Returns "pid", which in the case of a multi-threaded
2768 remote OS, is the thread-id. */
2769
2770 static ptid_t
2771 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2772 {
2773 struct remote_state *rs = get_remote_state ();
2774 unsigned char *buf = alloca (rs->remote_packet_size);
2775 ULONGEST thread_num = -1;
2776 ULONGEST addr;
2777
2778 status->kind = TARGET_WAITKIND_EXITED;
2779 status->value.integer = 0;
2780
2781 while (1)
2782 {
2783 unsigned char *p;
2784
2785 ofunc = signal (SIGINT, remote_interrupt);
2786 getpkt (buf, (rs->remote_packet_size), 1);
2787 signal (SIGINT, ofunc);
2788
2789 /* This is a hook for when we need to do something (perhaps the
2790 collection of trace data) every time the target stops. */
2791 if (deprecated_target_wait_loop_hook)
2792 (*deprecated_target_wait_loop_hook) ();
2793
2794 remote_stopped_by_watchpoint_p = 0;
2795
2796 switch (buf[0])
2797 {
2798 case 'E': /* Error of some sort */
2799 warning ("Remote failure reply: %s", buf);
2800 continue;
2801 case 'F': /* File-I/O request */
2802 remote_fileio_request (buf);
2803 continue;
2804 case 'T': /* Status with PC, SP, FP, ... */
2805 {
2806 int i;
2807 char regs[MAX_REGISTER_SIZE];
2808
2809 /* Expedited reply, containing Signal, {regno, reg} repeat */
2810 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2811 ss = signal number
2812 n... = register number
2813 r... = register contents
2814 */
2815 p = &buf[3]; /* after Txx */
2816
2817 while (*p)
2818 {
2819 unsigned char *p1;
2820 char *p_temp;
2821 int fieldsize;
2822 LONGEST pnum = 0;
2823
2824 /* If the packet contains a register number save it in pnum
2825 and set p1 to point to the character following it.
2826 Otherwise p1 points to p. */
2827
2828 /* If this packet is an awatch packet, don't parse the 'a'
2829 as a register number. */
2830
2831 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2832 {
2833 /* Read the ``P'' register number. */
2834 pnum = strtol (p, &p_temp, 16);
2835 p1 = (unsigned char *) p_temp;
2836 }
2837 else
2838 p1 = p;
2839
2840 if (p1 == p) /* No register number present here */
2841 {
2842 p1 = (unsigned char *) strchr (p, ':');
2843 if (p1 == NULL)
2844 warning ("Malformed packet(a) (missing colon): %s\n\
2845 Packet: '%s'\n",
2846 p, buf);
2847 if (strncmp (p, "thread", p1 - p) == 0)
2848 {
2849 p_temp = unpack_varlen_hex (++p1, &thread_num);
2850 record_currthread (thread_num);
2851 p = (unsigned char *) p_temp;
2852 }
2853 else if ((strncmp (p, "watch", p1 - p) == 0)
2854 || (strncmp (p, "rwatch", p1 - p) == 0)
2855 || (strncmp (p, "awatch", p1 - p) == 0))
2856 {
2857 remote_stopped_by_watchpoint_p = 1;
2858 p = unpack_varlen_hex (++p1, &addr);
2859 remote_watch_data_address = (CORE_ADDR)addr;
2860 }
2861 else
2862 {
2863 /* Silently skip unknown optional info. */
2864 p_temp = strchr (p1 + 1, ';');
2865 if (p_temp)
2866 p = (unsigned char *) p_temp;
2867 }
2868 }
2869 else
2870 {
2871 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2872 p = p1;
2873
2874 if (*p++ != ':')
2875 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
2876 p, buf);
2877
2878 if (reg == NULL)
2879 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
2880 phex_nz (pnum, 0), p, buf);
2881
2882 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
2883 p += 2 * fieldsize;
2884 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
2885 warning ("Remote reply is too short: %s", buf);
2886 regcache_raw_supply (current_regcache, reg->regnum, regs);
2887 }
2888
2889 if (*p++ != ';')
2890 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
2891 }
2892 }
2893 /* fall through */
2894 case 'S': /* Old style status, just signal only */
2895 status->kind = TARGET_WAITKIND_STOPPED;
2896 status->value.sig = (enum target_signal)
2897 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2898
2899 if (buf[3] == 'p')
2900 {
2901 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2902 record_currthread (thread_num);
2903 }
2904 goto got_status;
2905 case 'W': /* Target exited */
2906 {
2907 /* The remote process exited. */
2908 status->kind = TARGET_WAITKIND_EXITED;
2909 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2910 goto got_status;
2911 }
2912 case 'X':
2913 status->kind = TARGET_WAITKIND_SIGNALLED;
2914 status->value.sig = (enum target_signal)
2915 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2916 kill_kludge = 1;
2917
2918 goto got_status;
2919 case 'O': /* Console output */
2920 remote_console_output (buf + 1);
2921 continue;
2922 case '\0':
2923 if (last_sent_signal != TARGET_SIGNAL_0)
2924 {
2925 /* Zero length reply means that we tried 'S' or 'C' and
2926 the remote system doesn't support it. */
2927 target_terminal_ours_for_output ();
2928 printf_filtered
2929 ("Can't send signals to this remote system. %s not sent.\n",
2930 target_signal_to_name (last_sent_signal));
2931 last_sent_signal = TARGET_SIGNAL_0;
2932 target_terminal_inferior ();
2933
2934 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2935 putpkt ((char *) buf);
2936 continue;
2937 }
2938 /* else fallthrough */
2939 default:
2940 warning ("Invalid remote reply: %s", buf);
2941 continue;
2942 }
2943 }
2944 got_status:
2945 if (thread_num != -1)
2946 {
2947 return pid_to_ptid (thread_num);
2948 }
2949 return inferior_ptid;
2950 }
2951
2952 /* Async version of remote_wait. */
2953 static ptid_t
2954 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
2955 {
2956 struct remote_state *rs = get_remote_state ();
2957 unsigned char *buf = alloca (rs->remote_packet_size);
2958 ULONGEST thread_num = -1;
2959 ULONGEST addr;
2960
2961 status->kind = TARGET_WAITKIND_EXITED;
2962 status->value.integer = 0;
2963
2964 remote_stopped_by_watchpoint_p = 0;
2965
2966 while (1)
2967 {
2968 unsigned char *p;
2969
2970 if (!target_is_async_p ())
2971 ofunc = signal (SIGINT, remote_interrupt);
2972 /* FIXME: cagney/1999-09-27: If we're in async mode we should
2973 _never_ wait for ever -> test on target_is_async_p().
2974 However, before we do that we need to ensure that the caller
2975 knows how to take the target into/out of async mode. */
2976 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
2977 if (!target_is_async_p ())
2978 signal (SIGINT, ofunc);
2979
2980 /* This is a hook for when we need to do something (perhaps the
2981 collection of trace data) every time the target stops. */
2982 if (deprecated_target_wait_loop_hook)
2983 (*deprecated_target_wait_loop_hook) ();
2984
2985 switch (buf[0])
2986 {
2987 case 'E': /* Error of some sort */
2988 warning ("Remote failure reply: %s", buf);
2989 continue;
2990 case 'F': /* File-I/O request */
2991 remote_fileio_request (buf);
2992 continue;
2993 case 'T': /* Status with PC, SP, FP, ... */
2994 {
2995 int i;
2996 char regs[MAX_REGISTER_SIZE];
2997
2998 /* Expedited reply, containing Signal, {regno, reg} repeat */
2999 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3000 ss = signal number
3001 n... = register number
3002 r... = register contents
3003 */
3004 p = &buf[3]; /* after Txx */
3005
3006 while (*p)
3007 {
3008 unsigned char *p1;
3009 char *p_temp;
3010 int fieldsize;
3011 long pnum = 0;
3012
3013 /* If the packet contains a register number, save it in pnum
3014 and set p1 to point to the character following it.
3015 Otherwise p1 points to p. */
3016
3017 /* If this packet is an awatch packet, don't parse the 'a'
3018 as a register number. */
3019
3020 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3021 {
3022 /* Read the register number. */
3023 pnum = strtol (p, &p_temp, 16);
3024 p1 = (unsigned char *) p_temp;
3025 }
3026 else
3027 p1 = p;
3028
3029 if (p1 == p) /* No register number present here */
3030 {
3031 p1 = (unsigned char *) strchr (p, ':');
3032 if (p1 == NULL)
3033 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3034 p, buf);
3035 if (strncmp (p, "thread", p1 - p) == 0)
3036 {
3037 p_temp = unpack_varlen_hex (++p1, &thread_num);
3038 record_currthread (thread_num);
3039 p = (unsigned char *) p_temp;
3040 }
3041 else if ((strncmp (p, "watch", p1 - p) == 0)
3042 || (strncmp (p, "rwatch", p1 - p) == 0)
3043 || (strncmp (p, "awatch", p1 - p) == 0))
3044 {
3045 remote_stopped_by_watchpoint_p = 1;
3046 p = unpack_varlen_hex (++p1, &addr);
3047 remote_watch_data_address = (CORE_ADDR)addr;
3048 }
3049 else
3050 {
3051 /* Silently skip unknown optional info. */
3052 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3053 if (p_temp)
3054 p = p_temp;
3055 }
3056 }
3057
3058 else
3059 {
3060 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3061 p = p1;
3062 if (*p++ != ':')
3063 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3064 p, buf);
3065
3066 if (reg == NULL)
3067 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3068 pnum, p, buf);
3069
3070 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3071 p += 2 * fieldsize;
3072 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3073 warning ("Remote reply is too short: %s", buf);
3074 regcache_raw_supply (current_regcache, reg->regnum, regs);
3075 }
3076
3077 if (*p++ != ';')
3078 error ("Remote register badly formatted: %s\nhere: %s",
3079 buf, p);
3080 }
3081 }
3082 /* fall through */
3083 case 'S': /* Old style status, just signal only */
3084 status->kind = TARGET_WAITKIND_STOPPED;
3085 status->value.sig = (enum target_signal)
3086 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3087
3088 if (buf[3] == 'p')
3089 {
3090 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3091 record_currthread (thread_num);
3092 }
3093 goto got_status;
3094 case 'W': /* Target exited */
3095 {
3096 /* The remote process exited. */
3097 status->kind = TARGET_WAITKIND_EXITED;
3098 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3099 goto got_status;
3100 }
3101 case 'X':
3102 status->kind = TARGET_WAITKIND_SIGNALLED;
3103 status->value.sig = (enum target_signal)
3104 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3105 kill_kludge = 1;
3106
3107 goto got_status;
3108 case 'O': /* Console output */
3109 remote_console_output (buf + 1);
3110 /* Return immediately to the event loop. The event loop will
3111 still be waiting on the inferior afterwards. */
3112 status->kind = TARGET_WAITKIND_IGNORE;
3113 goto got_status;
3114 case '\0':
3115 if (last_sent_signal != TARGET_SIGNAL_0)
3116 {
3117 /* Zero length reply means that we tried 'S' or 'C' and
3118 the remote system doesn't support it. */
3119 target_terminal_ours_for_output ();
3120 printf_filtered
3121 ("Can't send signals to this remote system. %s not sent.\n",
3122 target_signal_to_name (last_sent_signal));
3123 last_sent_signal = TARGET_SIGNAL_0;
3124 target_terminal_inferior ();
3125
3126 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3127 putpkt ((char *) buf);
3128 continue;
3129 }
3130 /* else fallthrough */
3131 default:
3132 warning ("Invalid remote reply: %s", buf);
3133 continue;
3134 }
3135 }
3136 got_status:
3137 if (thread_num != -1)
3138 {
3139 return pid_to_ptid (thread_num);
3140 }
3141 return inferior_ptid;
3142 }
3143
3144 /* Number of bytes of registers this stub implements. */
3145
3146 static int register_bytes_found;
3147
3148 /* Read the remote registers into the block REGS. */
3149 /* Currently we just read all the registers, so we don't use regnum. */
3150
3151 static void
3152 remote_fetch_registers (int regnum)
3153 {
3154 struct remote_state *rs = get_remote_state ();
3155 char *buf = alloca (rs->remote_packet_size);
3156 int i;
3157 char *p;
3158 char *regs = alloca (rs->sizeof_g_packet);
3159
3160 set_thread (PIDGET (inferior_ptid), 1);
3161
3162 if (regnum >= 0)
3163 {
3164 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3165 gdb_assert (reg != NULL);
3166 if (!reg->in_g_packet)
3167 internal_error (__FILE__, __LINE__,
3168 "Attempt to fetch a non G-packet register when this "
3169 "remote.c does not support the p-packet.");
3170 }
3171
3172 sprintf (buf, "g");
3173 remote_send (buf, (rs->remote_packet_size));
3174
3175 /* Save the size of the packet sent to us by the target. Its used
3176 as a heuristic when determining the max size of packets that the
3177 target can safely receive. */
3178 if ((rs->actual_register_packet_size) == 0)
3179 (rs->actual_register_packet_size) = strlen (buf);
3180
3181 /* Unimplemented registers read as all bits zero. */
3182 memset (regs, 0, rs->sizeof_g_packet);
3183
3184 /* We can get out of synch in various cases. If the first character
3185 in the buffer is not a hex character, assume that has happened
3186 and try to fetch another packet to read. */
3187 while ((buf[0] < '0' || buf[0] > '9')
3188 && (buf[0] < 'a' || buf[0] > 'f')
3189 && buf[0] != 'x') /* New: unavailable register value */
3190 {
3191 if (remote_debug)
3192 fprintf_unfiltered (gdb_stdlog,
3193 "Bad register packet; fetching a new packet\n");
3194 getpkt (buf, (rs->remote_packet_size), 0);
3195 }
3196
3197 /* Reply describes registers byte by byte, each byte encoded as two
3198 hex characters. Suck them all up, then supply them to the
3199 register cacheing/storage mechanism. */
3200
3201 p = buf;
3202 for (i = 0; i < rs->sizeof_g_packet; i++)
3203 {
3204 if (p[0] == 0)
3205 break;
3206 if (p[1] == 0)
3207 {
3208 warning ("Remote reply is of odd length: %s", buf);
3209 /* Don't change register_bytes_found in this case, and don't
3210 print a second warning. */
3211 goto supply_them;
3212 }
3213 if (p[0] == 'x' && p[1] == 'x')
3214 regs[i] = 0; /* 'x' */
3215 else
3216 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3217 p += 2;
3218 }
3219
3220 if (i != register_bytes_found)
3221 {
3222 register_bytes_found = i;
3223 if (REGISTER_BYTES_OK_P ()
3224 && !REGISTER_BYTES_OK (i))
3225 warning ("Remote reply is too short: %s", buf);
3226 }
3227
3228 supply_them:
3229 {
3230 int i;
3231 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3232 {
3233 struct packet_reg *r = &rs->regs[i];
3234 if (r->in_g_packet)
3235 {
3236 if (r->offset * 2 >= strlen (buf))
3237 /* A short packet that didn't include the register's
3238 value, this implies that the register is zero (and
3239 not that the register is unavailable). Supply that
3240 zero value. */
3241 regcache_raw_supply (current_regcache, r->regnum, NULL);
3242 else if (buf[r->offset * 2] == 'x')
3243 {
3244 gdb_assert (r->offset * 2 < strlen (buf));
3245 /* The register isn't available, mark it as such (at
3246 the same time setting the value to zero). */
3247 regcache_raw_supply (current_regcache, r->regnum, NULL);
3248 set_register_cached (i, -1);
3249 }
3250 else
3251 regcache_raw_supply (current_regcache, r->regnum,
3252 regs + r->offset);
3253 }
3254 }
3255 }
3256 }
3257
3258 /* Prepare to store registers. Since we may send them all (using a
3259 'G' request), we have to read out the ones we don't want to change
3260 first. */
3261
3262 static void
3263 remote_prepare_to_store (void)
3264 {
3265 struct remote_state *rs = get_remote_state ();
3266 int i;
3267 char buf[MAX_REGISTER_SIZE];
3268
3269 /* Make sure the entire registers array is valid. */
3270 switch (remote_protocol_P.support)
3271 {
3272 case PACKET_DISABLE:
3273 case PACKET_SUPPORT_UNKNOWN:
3274 /* Make sure all the necessary registers are cached. */
3275 for (i = 0; i < NUM_REGS; i++)
3276 if (rs->regs[i].in_g_packet)
3277 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3278 break;
3279 case PACKET_ENABLE:
3280 break;
3281 }
3282 }
3283
3284 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3285 packet was not recognized. */
3286
3287 static int
3288 store_register_using_P (int regnum)
3289 {
3290 struct remote_state *rs = get_remote_state ();
3291 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3292 /* Try storing a single register. */
3293 char *buf = alloca (rs->remote_packet_size);
3294 char regp[MAX_REGISTER_SIZE];
3295 char *p;
3296 int i;
3297
3298 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3299 p = buf + strlen (buf);
3300 regcache_raw_collect (current_regcache, reg->regnum, regp);
3301 bin2hex (regp, p, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3302 remote_send (buf, rs->remote_packet_size);
3303
3304 return buf[0] != '\0';
3305 }
3306
3307
3308 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3309 of the register cache buffer. FIXME: ignores errors. */
3310
3311 static void
3312 remote_store_registers (int regnum)
3313 {
3314 struct remote_state *rs = get_remote_state ();
3315 char *buf;
3316 char *regs;
3317 int i;
3318 char *p;
3319
3320 set_thread (PIDGET (inferior_ptid), 1);
3321
3322 if (regnum >= 0)
3323 {
3324 switch (remote_protocol_P.support)
3325 {
3326 case PACKET_DISABLE:
3327 break;
3328 case PACKET_ENABLE:
3329 if (store_register_using_P (regnum))
3330 return;
3331 else
3332 error ("Protocol error: P packet not recognized by stub");
3333 case PACKET_SUPPORT_UNKNOWN:
3334 if (store_register_using_P (regnum))
3335 {
3336 /* The stub recognized the 'P' packet. Remember this. */
3337 remote_protocol_P.support = PACKET_ENABLE;
3338 return;
3339 }
3340 else
3341 {
3342 /* The stub does not support the 'P' packet. Use 'G'
3343 instead, and don't try using 'P' in the future (it
3344 will just waste our time). */
3345 remote_protocol_P.support = PACKET_DISABLE;
3346 break;
3347 }
3348 }
3349 }
3350
3351 /* Extract all the registers in the regcache copying them into a
3352 local buffer. */
3353 {
3354 int i;
3355 regs = alloca (rs->sizeof_g_packet);
3356 memset (regs, rs->sizeof_g_packet, 0);
3357 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3358 {
3359 struct packet_reg *r = &rs->regs[i];
3360 if (r->in_g_packet)
3361 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3362 }
3363 }
3364
3365 /* Command describes registers byte by byte,
3366 each byte encoded as two hex characters. */
3367 buf = alloca (rs->remote_packet_size);
3368 p = buf;
3369 *p++ = 'G';
3370 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3371 bin2hex (regs, p, register_bytes_found);
3372 remote_send (buf, (rs->remote_packet_size));
3373 }
3374 \f
3375
3376 /* Return the number of hex digits in num. */
3377
3378 static int
3379 hexnumlen (ULONGEST num)
3380 {
3381 int i;
3382
3383 for (i = 0; num != 0; i++)
3384 num >>= 4;
3385
3386 return max (i, 1);
3387 }
3388
3389 /* Set BUF to the minimum number of hex digits representing NUM. */
3390
3391 static int
3392 hexnumstr (char *buf, ULONGEST num)
3393 {
3394 int len = hexnumlen (num);
3395 return hexnumnstr (buf, num, len);
3396 }
3397
3398
3399 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3400
3401 static int
3402 hexnumnstr (char *buf, ULONGEST num, int width)
3403 {
3404 int i;
3405
3406 buf[width] = '\0';
3407
3408 for (i = width - 1; i >= 0; i--)
3409 {
3410 buf[i] = "0123456789abcdef"[(num & 0xf)];
3411 num >>= 4;
3412 }
3413
3414 return width;
3415 }
3416
3417 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3418
3419 static CORE_ADDR
3420 remote_address_masked (CORE_ADDR addr)
3421 {
3422 if (remote_address_size > 0
3423 && remote_address_size < (sizeof (ULONGEST) * 8))
3424 {
3425 /* Only create a mask when that mask can safely be constructed
3426 in a ULONGEST variable. */
3427 ULONGEST mask = 1;
3428 mask = (mask << remote_address_size) - 1;
3429 addr &= mask;
3430 }
3431 return addr;
3432 }
3433
3434 /* Determine whether the remote target supports binary downloading.
3435 This is accomplished by sending a no-op memory write of zero length
3436 to the target at the specified address. It does not suffice to send
3437 the whole packet, since many stubs strip the eighth bit and subsequently
3438 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3439
3440 NOTE: This can still lose if the serial line is not eight-bit
3441 clean. In cases like this, the user should clear "remote
3442 X-packet". */
3443
3444 static void
3445 check_binary_download (CORE_ADDR addr)
3446 {
3447 struct remote_state *rs = get_remote_state ();
3448 switch (remote_protocol_binary_download.support)
3449 {
3450 case PACKET_DISABLE:
3451 break;
3452 case PACKET_ENABLE:
3453 break;
3454 case PACKET_SUPPORT_UNKNOWN:
3455 {
3456 char *buf = alloca (rs->remote_packet_size);
3457 char *p;
3458
3459 p = buf;
3460 *p++ = 'X';
3461 p += hexnumstr (p, (ULONGEST) addr);
3462 *p++ = ',';
3463 p += hexnumstr (p, (ULONGEST) 0);
3464 *p++ = ':';
3465 *p = '\0';
3466
3467 putpkt_binary (buf, (int) (p - buf));
3468 getpkt (buf, (rs->remote_packet_size), 0);
3469
3470 if (buf[0] == '\0')
3471 {
3472 if (remote_debug)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "binary downloading NOT suppported by target\n");
3475 remote_protocol_binary_download.support = PACKET_DISABLE;
3476 }
3477 else
3478 {
3479 if (remote_debug)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "binary downloading suppported by target\n");
3482 remote_protocol_binary_download.support = PACKET_ENABLE;
3483 }
3484 break;
3485 }
3486 }
3487 }
3488
3489 /* Write memory data directly to the remote machine.
3490 This does not inform the data cache; the data cache uses this.
3491 MEMADDR is the address in the remote memory space.
3492 MYADDR is the address of the buffer in our space.
3493 LEN is the number of bytes.
3494
3495 Returns number of bytes transferred, or 0 (setting errno) for
3496 error. Only transfer a single packet. */
3497
3498 int
3499 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3500 {
3501 unsigned char *buf;
3502 unsigned char *p;
3503 unsigned char *plen;
3504 long sizeof_buf;
3505 int plenlen;
3506 int todo;
3507 int nr_bytes;
3508 int payload_size;
3509 unsigned char *payload_start;
3510
3511 /* Verify that the target can support a binary download. */
3512 check_binary_download (memaddr);
3513
3514 /* Compute the size, and then allocate space for the largest
3515 possible packet. Include space for an extra trailing NUL. */
3516 sizeof_buf = get_memory_write_packet_size () + 1;
3517 buf = alloca (sizeof_buf);
3518
3519 /* Compute the size of the actual payload by subtracting out the
3520 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3521 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3522 + hexnumlen (memaddr)
3523 + hexnumlen (len)));
3524
3525 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3526
3527 /* Append "[XM]". Compute a best guess of the number of bytes
3528 actually transfered. */
3529 p = buf;
3530 switch (remote_protocol_binary_download.support)
3531 {
3532 case PACKET_ENABLE:
3533 *p++ = 'X';
3534 /* Best guess at number of bytes that will fit. */
3535 todo = min (len, payload_size);
3536 break;
3537 case PACKET_DISABLE:
3538 *p++ = 'M';
3539 /* num bytes that will fit */
3540 todo = min (len, payload_size / 2);
3541 break;
3542 case PACKET_SUPPORT_UNKNOWN:
3543 internal_error (__FILE__, __LINE__,
3544 "remote_write_bytes: bad internal state");
3545 default:
3546 internal_error (__FILE__, __LINE__, "bad switch");
3547 }
3548
3549 /* Append "<memaddr>". */
3550 memaddr = remote_address_masked (memaddr);
3551 p += hexnumstr (p, (ULONGEST) memaddr);
3552
3553 /* Append ",". */
3554 *p++ = ',';
3555
3556 /* Append <len>. Retain the location/size of <len>. It may need to
3557 be adjusted once the packet body has been created. */
3558 plen = p;
3559 plenlen = hexnumstr (p, (ULONGEST) todo);
3560 p += plenlen;
3561
3562 /* Append ":". */
3563 *p++ = ':';
3564 *p = '\0';
3565
3566 /* Append the packet body. */
3567 payload_start = p;
3568 switch (remote_protocol_binary_download.support)
3569 {
3570 case PACKET_ENABLE:
3571 /* Binary mode. Send target system values byte by byte, in
3572 increasing byte addresses. Only escape certain critical
3573 characters. */
3574 for (nr_bytes = 0;
3575 (nr_bytes < todo) && (p - payload_start) < payload_size;
3576 nr_bytes++)
3577 {
3578 switch (myaddr[nr_bytes] & 0xff)
3579 {
3580 case '$':
3581 case '#':
3582 case 0x7d:
3583 /* These must be escaped */
3584 *p++ = 0x7d;
3585 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3586 break;
3587 default:
3588 *p++ = myaddr[nr_bytes] & 0xff;
3589 break;
3590 }
3591 }
3592 if (nr_bytes < todo)
3593 {
3594 /* Escape chars have filled up the buffer prematurely,
3595 and we have actually sent fewer bytes than planned.
3596 Fix-up the length field of the packet. Use the same
3597 number of characters as before. */
3598 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3599 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3600 }
3601 break;
3602 case PACKET_DISABLE:
3603 /* Normal mode: Send target system values byte by byte, in
3604 increasing byte addresses. Each byte is encoded as a two hex
3605 value. */
3606 nr_bytes = bin2hex (myaddr, p, todo);
3607 p += 2 * nr_bytes;
3608 break;
3609 case PACKET_SUPPORT_UNKNOWN:
3610 internal_error (__FILE__, __LINE__,
3611 "remote_write_bytes: bad internal state");
3612 default:
3613 internal_error (__FILE__, __LINE__, "bad switch");
3614 }
3615
3616 putpkt_binary (buf, (int) (p - buf));
3617 getpkt (buf, sizeof_buf, 0);
3618
3619 if (buf[0] == 'E')
3620 {
3621 /* There is no correspondance between what the remote protocol
3622 uses for errors and errno codes. We would like a cleaner way
3623 of representing errors (big enough to include errno codes,
3624 bfd_error codes, and others). But for now just return EIO. */
3625 errno = EIO;
3626 return 0;
3627 }
3628
3629 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3630 bytes than we'd planned. */
3631 return nr_bytes;
3632 }
3633
3634 /* Read memory data directly from the remote machine.
3635 This does not use the data cache; the data cache uses this.
3636 MEMADDR is the address in the remote memory space.
3637 MYADDR is the address of the buffer in our space.
3638 LEN is the number of bytes.
3639
3640 Returns number of bytes transferred, or 0 for error. */
3641
3642 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3643 remote targets) shouldn't attempt to read the entire buffer.
3644 Instead it should read a single packet worth of data and then
3645 return the byte size of that packet to the caller. The caller (its
3646 caller and its callers caller ;-) already contains code for
3647 handling partial reads. */
3648
3649 int
3650 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3651 {
3652 char *buf;
3653 int max_buf_size; /* Max size of packet output buffer */
3654 long sizeof_buf;
3655 int origlen;
3656
3657 /* Create a buffer big enough for this packet. */
3658 max_buf_size = get_memory_read_packet_size ();
3659 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3660 buf = alloca (sizeof_buf);
3661
3662 origlen = len;
3663 while (len > 0)
3664 {
3665 char *p;
3666 int todo;
3667 int i;
3668
3669 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3670
3671 /* construct "m"<memaddr>","<len>" */
3672 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3673 memaddr = remote_address_masked (memaddr);
3674 p = buf;
3675 *p++ = 'm';
3676 p += hexnumstr (p, (ULONGEST) memaddr);
3677 *p++ = ',';
3678 p += hexnumstr (p, (ULONGEST) todo);
3679 *p = '\0';
3680
3681 putpkt (buf);
3682 getpkt (buf, sizeof_buf, 0);
3683
3684 if (buf[0] == 'E'
3685 && isxdigit (buf[1]) && isxdigit (buf[2])
3686 && buf[3] == '\0')
3687 {
3688 /* There is no correspondance between what the remote protocol uses
3689 for errors and errno codes. We would like a cleaner way of
3690 representing errors (big enough to include errno codes, bfd_error
3691 codes, and others). But for now just return EIO. */
3692 errno = EIO;
3693 return 0;
3694 }
3695
3696 /* Reply describes memory byte by byte,
3697 each byte encoded as two hex characters. */
3698
3699 p = buf;
3700 if ((i = hex2bin (p, myaddr, todo)) < todo)
3701 {
3702 /* Reply is short. This means that we were able to read
3703 only part of what we wanted to. */
3704 return i + (origlen - len);
3705 }
3706 myaddr += todo;
3707 memaddr += todo;
3708 len -= todo;
3709 }
3710 return origlen;
3711 }
3712 \f
3713 /* Read or write LEN bytes from inferior memory at MEMADDR,
3714 transferring to or from debugger address BUFFER. Write to inferior if
3715 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3716 for error. TARGET is unused. */
3717
3718 static int
3719 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3720 int should_write, struct mem_attrib *attrib,
3721 struct target_ops *target)
3722 {
3723 CORE_ADDR targ_addr;
3724 int targ_len;
3725 int res;
3726
3727 /* Should this be the selected frame? */
3728 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3729 mem_addr, mem_len,
3730 &targ_addr, &targ_len);
3731 if (targ_len <= 0)
3732 return 0;
3733
3734 if (should_write)
3735 res = remote_write_bytes (targ_addr, buffer, targ_len);
3736 else
3737 res = remote_read_bytes (targ_addr, buffer, targ_len);
3738
3739 return res;
3740 }
3741
3742 static void
3743 remote_files_info (struct target_ops *ignore)
3744 {
3745 puts_filtered ("Debugging a target over a serial line.\n");
3746 }
3747 \f
3748 /* Stuff for dealing with the packets which are part of this protocol.
3749 See comment at top of file for details. */
3750
3751 /* Read a single character from the remote end, masking it down to 7 bits. */
3752
3753 static int
3754 readchar (int timeout)
3755 {
3756 int ch;
3757
3758 ch = serial_readchar (remote_desc, timeout);
3759
3760 if (ch >= 0)
3761 return (ch & 0x7f);
3762
3763 switch ((enum serial_rc) ch)
3764 {
3765 case SERIAL_EOF:
3766 target_mourn_inferior ();
3767 error ("Remote connection closed");
3768 /* no return */
3769 case SERIAL_ERROR:
3770 perror_with_name ("Remote communication error");
3771 /* no return */
3772 case SERIAL_TIMEOUT:
3773 break;
3774 }
3775 return ch;
3776 }
3777
3778 /* Send the command in BUF to the remote machine, and read the reply
3779 into BUF. Report an error if we get an error reply. */
3780
3781 static void
3782 remote_send (char *buf,
3783 long sizeof_buf)
3784 {
3785 putpkt (buf);
3786 getpkt (buf, sizeof_buf, 0);
3787
3788 if (buf[0] == 'E')
3789 error ("Remote failure reply: %s", buf);
3790 }
3791
3792 /* Display a null-terminated packet on stdout, for debugging, using C
3793 string notation. */
3794
3795 static void
3796 print_packet (char *buf)
3797 {
3798 puts_filtered ("\"");
3799 fputstr_filtered (buf, '"', gdb_stdout);
3800 puts_filtered ("\"");
3801 }
3802
3803 int
3804 putpkt (char *buf)
3805 {
3806 return putpkt_binary (buf, strlen (buf));
3807 }
3808
3809 /* Send a packet to the remote machine, with error checking. The data
3810 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
3811 to account for the $, # and checksum, and for a possible /0 if we are
3812 debugging (remote_debug) and want to print the sent packet as a string */
3813
3814 static int
3815 putpkt_binary (char *buf, int cnt)
3816 {
3817 struct remote_state *rs = get_remote_state ();
3818 int i;
3819 unsigned char csum = 0;
3820 char *buf2 = alloca (cnt + 6);
3821 long sizeof_junkbuf = (rs->remote_packet_size);
3822 char *junkbuf = alloca (sizeof_junkbuf);
3823
3824 int ch;
3825 int tcount = 0;
3826 char *p;
3827
3828 /* Copy the packet into buffer BUF2, encapsulating it
3829 and giving it a checksum. */
3830
3831 p = buf2;
3832 *p++ = '$';
3833
3834 for (i = 0; i < cnt; i++)
3835 {
3836 csum += buf[i];
3837 *p++ = buf[i];
3838 }
3839 *p++ = '#';
3840 *p++ = tohex ((csum >> 4) & 0xf);
3841 *p++ = tohex (csum & 0xf);
3842
3843 /* Send it over and over until we get a positive ack. */
3844
3845 while (1)
3846 {
3847 int started_error_output = 0;
3848
3849 if (remote_debug)
3850 {
3851 *p = '\0';
3852 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3853 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3854 fprintf_unfiltered (gdb_stdlog, "...");
3855 gdb_flush (gdb_stdlog);
3856 }
3857 if (serial_write (remote_desc, buf2, p - buf2))
3858 perror_with_name ("putpkt: write failed");
3859
3860 /* read until either a timeout occurs (-2) or '+' is read */
3861 while (1)
3862 {
3863 ch = readchar (remote_timeout);
3864
3865 if (remote_debug)
3866 {
3867 switch (ch)
3868 {
3869 case '+':
3870 case '-':
3871 case SERIAL_TIMEOUT:
3872 case '$':
3873 if (started_error_output)
3874 {
3875 putchar_unfiltered ('\n');
3876 started_error_output = 0;
3877 }
3878 }
3879 }
3880
3881 switch (ch)
3882 {
3883 case '+':
3884 if (remote_debug)
3885 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3886 return 1;
3887 case '-':
3888 if (remote_debug)
3889 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3890 case SERIAL_TIMEOUT:
3891 tcount++;
3892 if (tcount > 3)
3893 return 0;
3894 break; /* Retransmit buffer */
3895 case '$':
3896 {
3897 if (remote_debug)
3898 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
3899 /* It's probably an old response, and we're out of sync.
3900 Just gobble up the packet and ignore it. */
3901 read_frame (junkbuf, sizeof_junkbuf);
3902 continue; /* Now, go look for + */
3903 }
3904 default:
3905 if (remote_debug)
3906 {
3907 if (!started_error_output)
3908 {
3909 started_error_output = 1;
3910 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
3911 }
3912 fputc_unfiltered (ch & 0177, gdb_stdlog);
3913 }
3914 continue;
3915 }
3916 break; /* Here to retransmit */
3917 }
3918
3919 #if 0
3920 /* This is wrong. If doing a long backtrace, the user should be
3921 able to get out next time we call QUIT, without anything as
3922 violent as interrupt_query. If we want to provide a way out of
3923 here without getting to the next QUIT, it should be based on
3924 hitting ^C twice as in remote_wait. */
3925 if (quit_flag)
3926 {
3927 quit_flag = 0;
3928 interrupt_query ();
3929 }
3930 #endif
3931 }
3932 }
3933
3934 /* Come here after finding the start of the frame. Collect the rest
3935 into BUF, verifying the checksum, length, and handling run-length
3936 compression. No more than sizeof_buf-1 characters are read so that
3937 the buffer can be NUL terminated.
3938
3939 Returns -1 on error, number of characters in buffer (ignoring the
3940 trailing NULL) on success. (could be extended to return one of the
3941 SERIAL status indications). */
3942
3943 static long
3944 read_frame (char *buf,
3945 long sizeof_buf)
3946 {
3947 unsigned char csum;
3948 long bc;
3949 int c;
3950
3951 csum = 0;
3952 bc = 0;
3953
3954 while (1)
3955 {
3956 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
3957 c = readchar (remote_timeout);
3958 switch (c)
3959 {
3960 case SERIAL_TIMEOUT:
3961 if (remote_debug)
3962 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
3963 return -1;
3964 case '$':
3965 if (remote_debug)
3966 fputs_filtered ("Saw new packet start in middle of old one\n",
3967 gdb_stdlog);
3968 return -1; /* Start a new packet, count retries */
3969 case '#':
3970 {
3971 unsigned char pktcsum;
3972 int check_0 = 0;
3973 int check_1 = 0;
3974
3975 buf[bc] = '\0';
3976
3977 check_0 = readchar (remote_timeout);
3978 if (check_0 >= 0)
3979 check_1 = readchar (remote_timeout);
3980
3981 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
3982 {
3983 if (remote_debug)
3984 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
3985 return -1;
3986 }
3987 else if (check_0 < 0 || check_1 < 0)
3988 {
3989 if (remote_debug)
3990 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
3991 return -1;
3992 }
3993
3994 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
3995 if (csum == pktcsum)
3996 return bc;
3997
3998 if (remote_debug)
3999 {
4000 fprintf_filtered (gdb_stdlog,
4001 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4002 pktcsum, csum);
4003 fputs_filtered (buf, gdb_stdlog);
4004 fputs_filtered ("\n", gdb_stdlog);
4005 }
4006 /* Number of characters in buffer ignoring trailing
4007 NUL. */
4008 return -1;
4009 }
4010 case '*': /* Run length encoding */
4011 {
4012 int repeat;
4013 csum += c;
4014
4015 c = readchar (remote_timeout);
4016 csum += c;
4017 repeat = c - ' ' + 3; /* Compute repeat count */
4018
4019 /* The character before ``*'' is repeated. */
4020
4021 if (repeat > 0 && repeat <= 255
4022 && bc > 0
4023 && bc + repeat - 1 < sizeof_buf - 1)
4024 {
4025 memset (&buf[bc], buf[bc - 1], repeat);
4026 bc += repeat;
4027 continue;
4028 }
4029
4030 buf[bc] = '\0';
4031 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4032 puts_filtered (buf);
4033 puts_filtered ("\n");
4034 return -1;
4035 }
4036 default:
4037 if (bc < sizeof_buf - 1)
4038 {
4039 buf[bc++] = c;
4040 csum += c;
4041 continue;
4042 }
4043
4044 buf[bc] = '\0';
4045 puts_filtered ("Remote packet too long: ");
4046 puts_filtered (buf);
4047 puts_filtered ("\n");
4048
4049 return -1;
4050 }
4051 }
4052 }
4053
4054 /* Read a packet from the remote machine, with error checking, and
4055 store it in BUF. If FOREVER, wait forever rather than timing out;
4056 this is used (in synchronous mode) to wait for a target that is is
4057 executing user code to stop. */
4058 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4059 don't have to change all the calls to getpkt to deal with the
4060 return value, because at the moment I don't know what the right
4061 thing to do it for those. */
4062 void
4063 getpkt (char *buf,
4064 long sizeof_buf,
4065 int forever)
4066 {
4067 int timed_out;
4068
4069 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4070 }
4071
4072
4073 /* Read a packet from the remote machine, with error checking, and
4074 store it in BUF. If FOREVER, wait forever rather than timing out;
4075 this is used (in synchronous mode) to wait for a target that is is
4076 executing user code to stop. If FOREVER == 0, this function is
4077 allowed to time out gracefully and return an indication of this to
4078 the caller. */
4079 static int
4080 getpkt_sane (char *buf,
4081 long sizeof_buf,
4082 int forever)
4083 {
4084 int c;
4085 int tries;
4086 int timeout;
4087 int val;
4088
4089 strcpy (buf, "timeout");
4090
4091 if (forever)
4092 {
4093 timeout = watchdog > 0 ? watchdog : -1;
4094 }
4095
4096 else
4097 timeout = remote_timeout;
4098
4099 #define MAX_TRIES 3
4100
4101 for (tries = 1; tries <= MAX_TRIES; tries++)
4102 {
4103 /* This can loop forever if the remote side sends us characters
4104 continuously, but if it pauses, we'll get a zero from readchar
4105 because of timeout. Then we'll count that as a retry. */
4106
4107 /* Note that we will only wait forever prior to the start of a packet.
4108 After that, we expect characters to arrive at a brisk pace. They
4109 should show up within remote_timeout intervals. */
4110
4111 do
4112 {
4113 c = readchar (timeout);
4114
4115 if (c == SERIAL_TIMEOUT)
4116 {
4117 if (forever) /* Watchdog went off? Kill the target. */
4118 {
4119 QUIT;
4120 target_mourn_inferior ();
4121 error ("Watchdog has expired. Target detached.\n");
4122 }
4123 if (remote_debug)
4124 fputs_filtered ("Timed out.\n", gdb_stdlog);
4125 goto retry;
4126 }
4127 }
4128 while (c != '$');
4129
4130 /* We've found the start of a packet, now collect the data. */
4131
4132 val = read_frame (buf, sizeof_buf);
4133
4134 if (val >= 0)
4135 {
4136 if (remote_debug)
4137 {
4138 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4139 fputstr_unfiltered (buf, 0, gdb_stdlog);
4140 fprintf_unfiltered (gdb_stdlog, "\n");
4141 }
4142 serial_write (remote_desc, "+", 1);
4143 return 0;
4144 }
4145
4146 /* Try the whole thing again. */
4147 retry:
4148 serial_write (remote_desc, "-", 1);
4149 }
4150
4151 /* We have tried hard enough, and just can't receive the packet. Give up. */
4152
4153 printf_unfiltered ("Ignoring packet error, continuing...\n");
4154 serial_write (remote_desc, "+", 1);
4155 return 1;
4156 }
4157 \f
4158 static void
4159 remote_kill (void)
4160 {
4161 /* For some mysterious reason, wait_for_inferior calls kill instead of
4162 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4163 if (kill_kludge)
4164 {
4165 kill_kludge = 0;
4166 target_mourn_inferior ();
4167 return;
4168 }
4169
4170 /* Use catch_errors so the user can quit from gdb even when we aren't on
4171 speaking terms with the remote system. */
4172 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4173
4174 /* Don't wait for it to die. I'm not really sure it matters whether
4175 we do or not. For the existing stubs, kill is a noop. */
4176 target_mourn_inferior ();
4177 }
4178
4179 /* Async version of remote_kill. */
4180 static void
4181 remote_async_kill (void)
4182 {
4183 /* Unregister the file descriptor from the event loop. */
4184 if (target_is_async_p ())
4185 serial_async (remote_desc, NULL, 0);
4186
4187 /* For some mysterious reason, wait_for_inferior calls kill instead of
4188 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4189 if (kill_kludge)
4190 {
4191 kill_kludge = 0;
4192 target_mourn_inferior ();
4193 return;
4194 }
4195
4196 /* Use catch_errors so the user can quit from gdb even when we aren't on
4197 speaking terms with the remote system. */
4198 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4199
4200 /* Don't wait for it to die. I'm not really sure it matters whether
4201 we do or not. For the existing stubs, kill is a noop. */
4202 target_mourn_inferior ();
4203 }
4204
4205 static void
4206 remote_mourn (void)
4207 {
4208 remote_mourn_1 (&remote_ops);
4209 }
4210
4211 static void
4212 remote_async_mourn (void)
4213 {
4214 remote_mourn_1 (&remote_async_ops);
4215 }
4216
4217 static void
4218 extended_remote_mourn (void)
4219 {
4220 /* We do _not_ want to mourn the target like this; this will
4221 remove the extended remote target from the target stack,
4222 and the next time the user says "run" it'll fail.
4223
4224 FIXME: What is the right thing to do here? */
4225 #if 0
4226 remote_mourn_1 (&extended_remote_ops);
4227 #endif
4228 }
4229
4230 /* Worker function for remote_mourn. */
4231 static void
4232 remote_mourn_1 (struct target_ops *target)
4233 {
4234 unpush_target (target);
4235 generic_mourn_inferior ();
4236 }
4237
4238 /* In the extended protocol we want to be able to do things like
4239 "run" and have them basically work as expected. So we need
4240 a special create_inferior function.
4241
4242 FIXME: One day add support for changing the exec file
4243 we're debugging, arguments and an environment. */
4244
4245 static void
4246 extended_remote_create_inferior (char *exec_file, char *args, char **env,
4247 int from_tty)
4248 {
4249 /* Rip out the breakpoints; we'll reinsert them after restarting
4250 the remote server. */
4251 remove_breakpoints ();
4252
4253 /* Now restart the remote server. */
4254 extended_remote_restart ();
4255
4256 /* Now put the breakpoints back in. This way we're safe if the
4257 restart function works via a unix fork on the remote side. */
4258 insert_breakpoints ();
4259
4260 /* Clean up from the last time we were running. */
4261 clear_proceed_status ();
4262
4263 /* Let the remote process run. */
4264 proceed (-1, TARGET_SIGNAL_0, 0);
4265 }
4266
4267 /* Async version of extended_remote_create_inferior. */
4268 static void
4269 extended_remote_async_create_inferior (char *exec_file, char *args, char **env,
4270 int from_tty)
4271 {
4272 /* Rip out the breakpoints; we'll reinsert them after restarting
4273 the remote server. */
4274 remove_breakpoints ();
4275
4276 /* If running asynchronously, register the target file descriptor
4277 with the event loop. */
4278 if (event_loop_p && target_can_async_p ())
4279 target_async (inferior_event_handler, 0);
4280
4281 /* Now restart the remote server. */
4282 extended_remote_restart ();
4283
4284 /* Now put the breakpoints back in. This way we're safe if the
4285 restart function works via a unix fork on the remote side. */
4286 insert_breakpoints ();
4287
4288 /* Clean up from the last time we were running. */
4289 clear_proceed_status ();
4290
4291 /* Let the remote process run. */
4292 proceed (-1, TARGET_SIGNAL_0, 0);
4293 }
4294 \f
4295
4296 /* On some machines, e.g. 68k, we may use a different breakpoint
4297 instruction than other targets; in those use
4298 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4299 Also, bi-endian targets may define
4300 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4301 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4302 just call the standard routines that are in mem-break.c. */
4303
4304 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4305 target should use an identical BREAKPOINT_FROM_PC. As for native,
4306 the ARCH-OS-tdep.c code can override the default. */
4307
4308 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4309 #define DEPRECATED_REMOTE_BREAKPOINT
4310 #endif
4311
4312 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4313
4314 /* If the target isn't bi-endian, just pretend it is. */
4315 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4316 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4317 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4318 #endif
4319
4320 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4321 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4322
4323 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4324
4325 /* Insert a breakpoint on targets that don't have any better
4326 breakpoint support. We read the contents of the target location
4327 and stash it, then overwrite it with a breakpoint instruction.
4328 ADDR is the target location in the target machine. CONTENTS_CACHE
4329 is a pointer to memory allocated for saving the target contents.
4330 It is guaranteed by the caller to be long enough to save the number
4331 of bytes returned by BREAKPOINT_FROM_PC. */
4332
4333 static int
4334 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4335 {
4336 struct remote_state *rs = get_remote_state ();
4337 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4338 int val;
4339 #endif
4340 int bp_size;
4341
4342 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4343 If it succeeds, then set the support to PACKET_ENABLE. If it
4344 fails, and the user has explicitly requested the Z support then
4345 report an error, otherwise, mark it disabled and go on. */
4346
4347 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4348 {
4349 char *buf = alloca (rs->remote_packet_size);
4350 char *p = buf;
4351
4352 addr = remote_address_masked (addr);
4353 *(p++) = 'Z';
4354 *(p++) = '0';
4355 *(p++) = ',';
4356 p += hexnumstr (p, (ULONGEST) addr);
4357 BREAKPOINT_FROM_PC (&addr, &bp_size);
4358 sprintf (p, ",%d", bp_size);
4359
4360 putpkt (buf);
4361 getpkt (buf, (rs->remote_packet_size), 0);
4362
4363 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4364 {
4365 case PACKET_ERROR:
4366 return -1;
4367 case PACKET_OK:
4368 return 0;
4369 case PACKET_UNKNOWN:
4370 break;
4371 }
4372 }
4373
4374 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4375 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4376
4377 if (val == 0)
4378 {
4379 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4380 val = target_write_memory (addr, (char *) big_break_insn,
4381 sizeof big_break_insn);
4382 else
4383 val = target_write_memory (addr, (char *) little_break_insn,
4384 sizeof little_break_insn);
4385 }
4386
4387 return val;
4388 #else
4389 return memory_insert_breakpoint (addr, contents_cache);
4390 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4391 }
4392
4393 static int
4394 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4395 {
4396 struct remote_state *rs = get_remote_state ();
4397 int bp_size;
4398
4399 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4400 {
4401 char *buf = alloca (rs->remote_packet_size);
4402 char *p = buf;
4403
4404 *(p++) = 'z';
4405 *(p++) = '0';
4406 *(p++) = ',';
4407
4408 addr = remote_address_masked (addr);
4409 p += hexnumstr (p, (ULONGEST) addr);
4410 BREAKPOINT_FROM_PC (&addr, &bp_size);
4411 sprintf (p, ",%d", bp_size);
4412
4413 putpkt (buf);
4414 getpkt (buf, (rs->remote_packet_size), 0);
4415
4416 return (buf[0] == 'E');
4417 }
4418
4419 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4420 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4421 #else
4422 return memory_remove_breakpoint (addr, contents_cache);
4423 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4424 }
4425
4426 static int
4427 watchpoint_to_Z_packet (int type)
4428 {
4429 switch (type)
4430 {
4431 case hw_write:
4432 return 2;
4433 break;
4434 case hw_read:
4435 return 3;
4436 break;
4437 case hw_access:
4438 return 4;
4439 break;
4440 default:
4441 internal_error (__FILE__, __LINE__,
4442 "hw_bp_to_z: bad watchpoint type %d", type);
4443 }
4444 }
4445
4446 static int
4447 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4448 {
4449 struct remote_state *rs = get_remote_state ();
4450 char *buf = alloca (rs->remote_packet_size);
4451 char *p;
4452 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4453
4454 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4455 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4456 remote_protocol_Z[packet].name,
4457 remote_protocol_Z[packet].title);
4458
4459 sprintf (buf, "Z%x,", packet);
4460 p = strchr (buf, '\0');
4461 addr = remote_address_masked (addr);
4462 p += hexnumstr (p, (ULONGEST) addr);
4463 sprintf (p, ",%x", len);
4464
4465 putpkt (buf);
4466 getpkt (buf, (rs->remote_packet_size), 0);
4467
4468 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4469 {
4470 case PACKET_ERROR:
4471 case PACKET_UNKNOWN:
4472 return -1;
4473 case PACKET_OK:
4474 return 0;
4475 }
4476 internal_error (__FILE__, __LINE__,
4477 "remote_insert_watchpoint: reached end of function");
4478 }
4479
4480
4481 static int
4482 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4483 {
4484 struct remote_state *rs = get_remote_state ();
4485 char *buf = alloca (rs->remote_packet_size);
4486 char *p;
4487 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4488
4489 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4490 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4491 remote_protocol_Z[packet].name,
4492 remote_protocol_Z[packet].title);
4493
4494 sprintf (buf, "z%x,", packet);
4495 p = strchr (buf, '\0');
4496 addr = remote_address_masked (addr);
4497 p += hexnumstr (p, (ULONGEST) addr);
4498 sprintf (p, ",%x", len);
4499 putpkt (buf);
4500 getpkt (buf, (rs->remote_packet_size), 0);
4501
4502 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4503 {
4504 case PACKET_ERROR:
4505 case PACKET_UNKNOWN:
4506 return -1;
4507 case PACKET_OK:
4508 return 0;
4509 }
4510 internal_error (__FILE__, __LINE__,
4511 "remote_remove_watchpoint: reached end of function");
4512 }
4513
4514
4515 int remote_hw_watchpoint_limit = -1;
4516 int remote_hw_breakpoint_limit = -1;
4517
4518 static int
4519 remote_check_watch_resources (int type, int cnt, int ot)
4520 {
4521 if (type == bp_hardware_breakpoint)
4522 {
4523 if (remote_hw_breakpoint_limit == 0)
4524 return 0;
4525 else if (remote_hw_breakpoint_limit < 0)
4526 return 1;
4527 else if (cnt <= remote_hw_breakpoint_limit)
4528 return 1;
4529 }
4530 else
4531 {
4532 if (remote_hw_watchpoint_limit == 0)
4533 return 0;
4534 else if (remote_hw_watchpoint_limit < 0)
4535 return 1;
4536 else if (ot)
4537 return -1;
4538 else if (cnt <= remote_hw_watchpoint_limit)
4539 return 1;
4540 }
4541 return -1;
4542 }
4543
4544 static int
4545 remote_stopped_by_watchpoint (void)
4546 {
4547 return remote_stopped_by_watchpoint_p;
4548 }
4549
4550 extern int stepped_after_stopped_by_watchpoint;
4551
4552 static CORE_ADDR
4553 remote_stopped_data_address (void)
4554 {
4555 if (remote_stopped_by_watchpoint ()
4556 || stepped_after_stopped_by_watchpoint)
4557 return remote_watch_data_address;
4558 return (CORE_ADDR)0;
4559 }
4560
4561
4562 static int
4563 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4564 {
4565 int len = 0;
4566 struct remote_state *rs = get_remote_state ();
4567 char *buf = alloca (rs->remote_packet_size);
4568 char *p = buf;
4569
4570 /* The length field should be set to the size of a breakpoint
4571 instruction. */
4572
4573 BREAKPOINT_FROM_PC (&addr, &len);
4574
4575 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4576 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4577 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4578 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4579
4580 *(p++) = 'Z';
4581 *(p++) = '1';
4582 *(p++) = ',';
4583
4584 addr = remote_address_masked (addr);
4585 p += hexnumstr (p, (ULONGEST) addr);
4586 sprintf (p, ",%x", len);
4587
4588 putpkt (buf);
4589 getpkt (buf, (rs->remote_packet_size), 0);
4590
4591 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4592 {
4593 case PACKET_ERROR:
4594 case PACKET_UNKNOWN:
4595 return -1;
4596 case PACKET_OK:
4597 return 0;
4598 }
4599 internal_error (__FILE__, __LINE__,
4600 "remote_insert_hw_breakpoint: reached end of function");
4601 }
4602
4603
4604 static int
4605 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4606 {
4607 int len;
4608 struct remote_state *rs = get_remote_state ();
4609 char *buf = alloca (rs->remote_packet_size);
4610 char *p = buf;
4611
4612 /* The length field should be set to the size of a breakpoint
4613 instruction. */
4614
4615 BREAKPOINT_FROM_PC (&addr, &len);
4616
4617 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4618 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4619 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4620 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4621
4622 *(p++) = 'z';
4623 *(p++) = '1';
4624 *(p++) = ',';
4625
4626 addr = remote_address_masked (addr);
4627 p += hexnumstr (p, (ULONGEST) addr);
4628 sprintf (p, ",%x", len);
4629
4630 putpkt(buf);
4631 getpkt (buf, (rs->remote_packet_size), 0);
4632
4633 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4634 {
4635 case PACKET_ERROR:
4636 case PACKET_UNKNOWN:
4637 return -1;
4638 case PACKET_OK:
4639 return 0;
4640 }
4641 internal_error (__FILE__, __LINE__,
4642 "remote_remove_hw_breakpoint: reached end of function");
4643 }
4644
4645 /* Some targets are only capable of doing downloads, and afterwards
4646 they switch to the remote serial protocol. This function provides
4647 a clean way to get from the download target to the remote target.
4648 It's basically just a wrapper so that we don't have to expose any
4649 of the internal workings of remote.c.
4650
4651 Prior to calling this routine, you should shutdown the current
4652 target code, else you will get the "A program is being debugged
4653 already..." message. Usually a call to pop_target() suffices. */
4654
4655 void
4656 push_remote_target (char *name, int from_tty)
4657 {
4658 printf_filtered ("Switching to remote protocol\n");
4659 remote_open (name, from_tty);
4660 }
4661
4662 /* Table used by the crc32 function to calcuate the checksum. */
4663
4664 static unsigned long crc32_table[256] =
4665 {0, 0};
4666
4667 static unsigned long
4668 crc32 (unsigned char *buf, int len, unsigned int crc)
4669 {
4670 if (!crc32_table[1])
4671 {
4672 /* Initialize the CRC table and the decoding table. */
4673 int i, j;
4674 unsigned int c;
4675
4676 for (i = 0; i < 256; i++)
4677 {
4678 for (c = i << 24, j = 8; j > 0; --j)
4679 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4680 crc32_table[i] = c;
4681 }
4682 }
4683
4684 while (len--)
4685 {
4686 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4687 buf++;
4688 }
4689 return crc;
4690 }
4691
4692 /* compare-sections command
4693
4694 With no arguments, compares each loadable section in the exec bfd
4695 with the same memory range on the target, and reports mismatches.
4696 Useful for verifying the image on the target against the exec file.
4697 Depends on the target understanding the new "qCRC:" request. */
4698
4699 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4700 target method (target verify memory) and generic version of the
4701 actual command. This will allow other high-level code (especially
4702 generic_load()) to make use of this target functionality. */
4703
4704 static void
4705 compare_sections_command (char *args, int from_tty)
4706 {
4707 struct remote_state *rs = get_remote_state ();
4708 asection *s;
4709 unsigned long host_crc, target_crc;
4710 extern bfd *exec_bfd;
4711 struct cleanup *old_chain;
4712 char *tmp;
4713 char *sectdata;
4714 const char *sectname;
4715 char *buf = alloca (rs->remote_packet_size);
4716 bfd_size_type size;
4717 bfd_vma lma;
4718 int matched = 0;
4719 int mismatched = 0;
4720
4721 if (!exec_bfd)
4722 error ("command cannot be used without an exec file");
4723 if (!current_target.to_shortname ||
4724 strcmp (current_target.to_shortname, "remote") != 0)
4725 error ("command can only be used with remote target");
4726
4727 for (s = exec_bfd->sections; s; s = s->next)
4728 {
4729 if (!(s->flags & SEC_LOAD))
4730 continue; /* skip non-loadable section */
4731
4732 size = bfd_get_section_size (s);
4733 if (size == 0)
4734 continue; /* skip zero-length section */
4735
4736 sectname = bfd_get_section_name (exec_bfd, s);
4737 if (args && strcmp (args, sectname) != 0)
4738 continue; /* not the section selected by user */
4739
4740 matched = 1; /* do this section */
4741 lma = s->lma;
4742 /* FIXME: assumes lma can fit into long */
4743 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4744 putpkt (buf);
4745
4746 /* be clever; compute the host_crc before waiting for target reply */
4747 sectdata = xmalloc (size);
4748 old_chain = make_cleanup (xfree, sectdata);
4749 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4750 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4751
4752 getpkt (buf, (rs->remote_packet_size), 0);
4753 if (buf[0] == 'E')
4754 error ("target memory fault, section %s, range 0x%s -- 0x%s",
4755 sectname, paddr (lma), paddr (lma + size));
4756 if (buf[0] != 'C')
4757 error ("remote target does not support this operation");
4758
4759 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4760 target_crc = target_crc * 16 + fromhex (*tmp);
4761
4762 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4763 sectname, paddr (lma), paddr (lma + size));
4764 if (host_crc == target_crc)
4765 printf_filtered ("matched.\n");
4766 else
4767 {
4768 printf_filtered ("MIS-MATCHED!\n");
4769 mismatched++;
4770 }
4771
4772 do_cleanups (old_chain);
4773 }
4774 if (mismatched > 0)
4775 warning ("One or more sections of the remote executable does not match\n\
4776 the loaded file\n");
4777 if (args && !matched)
4778 printf_filtered ("No loaded section named '%s'.\n", args);
4779 }
4780
4781 static LONGEST
4782 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4783 const char *annex, void *readbuf, const void *writebuf,
4784 ULONGEST offset, LONGEST len)
4785 {
4786 struct remote_state *rs = get_remote_state ();
4787 int i;
4788 char *buf2 = alloca (rs->remote_packet_size);
4789 char *p2 = &buf2[0];
4790 char query_type;
4791
4792 /* Only handle reads. */
4793 if (writebuf != NULL || readbuf == NULL)
4794 return -1;
4795
4796 /* Map pre-existing objects onto letters. DO NOT do this for new
4797 objects!!! Instead specify new query packets. */
4798 switch (object)
4799 {
4800 case TARGET_OBJECT_KOD:
4801 query_type = 'K';
4802 break;
4803 case TARGET_OBJECT_AVR:
4804 query_type = 'R';
4805 break;
4806
4807 case TARGET_OBJECT_AUXV:
4808 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
4809 {
4810 unsigned int total = 0;
4811 while (len > 0)
4812 {
4813 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
4814 snprintf (buf2, rs->remote_packet_size,
4815 "qPart:auxv:read::%s,%s",
4816 phex_nz (offset, sizeof offset),
4817 phex_nz (n, sizeof n));
4818 i = putpkt (buf2);
4819 if (i < 0)
4820 return total > 0 ? total : i;
4821 buf2[0] = '\0';
4822 getpkt (buf2, rs->remote_packet_size, 0);
4823 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
4824 return total > 0 ? total : -1;
4825 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
4826 break; /* Got EOF indicator. */
4827 /* Got some data. */
4828 i = hex2bin (buf2, readbuf, len);
4829 if (i > 0)
4830 {
4831 readbuf = (void *) ((char *) readbuf + i);
4832 offset += i;
4833 len -= i;
4834 total += i;
4835 }
4836 }
4837 return total;
4838 }
4839 return -1;
4840
4841 default:
4842 return -1;
4843 }
4844
4845 /* Note: a zero OFFSET and LEN can be used to query the minimum
4846 buffer size. */
4847 if (offset == 0 && len == 0)
4848 return (rs->remote_packet_size);
4849 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
4850 not large enough let the caller. */
4851 if (len < (rs->remote_packet_size))
4852 return -1;
4853 len = rs->remote_packet_size;
4854
4855 /* except for querying the minimum buffer size, target must be open */
4856 if (!remote_desc)
4857 error ("remote query is only available after target open");
4858
4859 gdb_assert (annex != NULL);
4860 gdb_assert (readbuf != NULL);
4861
4862 *p2++ = 'q';
4863 *p2++ = query_type;
4864
4865 /* we used one buffer char for the remote protocol q command and another
4866 for the query type. As the remote protocol encapsulation uses 4 chars
4867 plus one extra in case we are debugging (remote_debug),
4868 we have PBUFZIZ - 7 left to pack the query string */
4869 i = 0;
4870 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
4871 {
4872 /* Bad caller may have sent forbidden characters. */
4873 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
4874 *p2++ = annex[i];
4875 i++;
4876 }
4877 *p2 = '\0';
4878 gdb_assert (annex[i] == '\0');
4879
4880 i = putpkt (buf2);
4881 if (i < 0)
4882 return i;
4883
4884 getpkt (readbuf, len, 0);
4885
4886 return strlen (readbuf);
4887 }
4888
4889 static void
4890 remote_rcmd (char *command,
4891 struct ui_file *outbuf)
4892 {
4893 struct remote_state *rs = get_remote_state ();
4894 int i;
4895 char *buf = alloca (rs->remote_packet_size);
4896 char *p = buf;
4897
4898 if (!remote_desc)
4899 error ("remote rcmd is only available after target open");
4900
4901 /* Send a NULL command across as an empty command */
4902 if (command == NULL)
4903 command = "";
4904
4905 /* The query prefix */
4906 strcpy (buf, "qRcmd,");
4907 p = strchr (buf, '\0');
4908
4909 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
4910 error ("\"monitor\" command ``%s'' is too long\n", command);
4911
4912 /* Encode the actual command */
4913 bin2hex (command, p, 0);
4914
4915 if (putpkt (buf) < 0)
4916 error ("Communication problem with target\n");
4917
4918 /* get/display the response */
4919 while (1)
4920 {
4921 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
4922 buf[0] = '\0';
4923 getpkt (buf, (rs->remote_packet_size), 0);
4924 if (buf[0] == '\0')
4925 error ("Target does not support this command\n");
4926 if (buf[0] == 'O' && buf[1] != 'K')
4927 {
4928 remote_console_output (buf + 1); /* 'O' message from stub */
4929 continue;
4930 }
4931 if (strcmp (buf, "OK") == 0)
4932 break;
4933 if (strlen (buf) == 3 && buf[0] == 'E'
4934 && isdigit (buf[1]) && isdigit (buf[2]))
4935 {
4936 error ("Protocol error with Rcmd");
4937 }
4938 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
4939 {
4940 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
4941 fputc_unfiltered (c, outbuf);
4942 }
4943 break;
4944 }
4945 }
4946
4947 static void
4948 packet_command (char *args, int from_tty)
4949 {
4950 struct remote_state *rs = get_remote_state ();
4951 char *buf = alloca (rs->remote_packet_size);
4952
4953 if (!remote_desc)
4954 error ("command can only be used with remote target");
4955
4956 if (!args)
4957 error ("remote-packet command requires packet text as argument");
4958
4959 puts_filtered ("sending: ");
4960 print_packet (args);
4961 puts_filtered ("\n");
4962 putpkt (args);
4963
4964 getpkt (buf, (rs->remote_packet_size), 0);
4965 puts_filtered ("received: ");
4966 print_packet (buf);
4967 puts_filtered ("\n");
4968 }
4969
4970 #if 0
4971 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
4972
4973 static void display_thread_info (struct gdb_ext_thread_info *info);
4974
4975 static void threadset_test_cmd (char *cmd, int tty);
4976
4977 static void threadalive_test (char *cmd, int tty);
4978
4979 static void threadlist_test_cmd (char *cmd, int tty);
4980
4981 int get_and_display_threadinfo (threadref * ref);
4982
4983 static void threadinfo_test_cmd (char *cmd, int tty);
4984
4985 static int thread_display_step (threadref * ref, void *context);
4986
4987 static void threadlist_update_test_cmd (char *cmd, int tty);
4988
4989 static void init_remote_threadtests (void);
4990
4991 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
4992
4993 static void
4994 threadset_test_cmd (char *cmd, int tty)
4995 {
4996 int sample_thread = SAMPLE_THREAD;
4997
4998 printf_filtered ("Remote threadset test\n");
4999 set_thread (sample_thread, 1);
5000 }
5001
5002
5003 static void
5004 threadalive_test (char *cmd, int tty)
5005 {
5006 int sample_thread = SAMPLE_THREAD;
5007
5008 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5009 printf_filtered ("PASS: Thread alive test\n");
5010 else
5011 printf_filtered ("FAIL: Thread alive test\n");
5012 }
5013
5014 void output_threadid (char *title, threadref * ref);
5015
5016 void
5017 output_threadid (char *title, threadref *ref)
5018 {
5019 char hexid[20];
5020
5021 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5022 hexid[16] = 0;
5023 printf_filtered ("%s %s\n", title, (&hexid[0]));
5024 }
5025
5026 static void
5027 threadlist_test_cmd (char *cmd, int tty)
5028 {
5029 int startflag = 1;
5030 threadref nextthread;
5031 int done, result_count;
5032 threadref threadlist[3];
5033
5034 printf_filtered ("Remote Threadlist test\n");
5035 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5036 &result_count, &threadlist[0]))
5037 printf_filtered ("FAIL: threadlist test\n");
5038 else
5039 {
5040 threadref *scan = threadlist;
5041 threadref *limit = scan + result_count;
5042
5043 while (scan < limit)
5044 output_threadid (" thread ", scan++);
5045 }
5046 }
5047
5048 void
5049 display_thread_info (struct gdb_ext_thread_info *info)
5050 {
5051 output_threadid ("Threadid: ", &info->threadid);
5052 printf_filtered ("Name: %s\n ", info->shortname);
5053 printf_filtered ("State: %s\n", info->display);
5054 printf_filtered ("other: %s\n\n", info->more_display);
5055 }
5056
5057 int
5058 get_and_display_threadinfo (threadref *ref)
5059 {
5060 int result;
5061 int set;
5062 struct gdb_ext_thread_info threadinfo;
5063
5064 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5065 | TAG_MOREDISPLAY | TAG_DISPLAY;
5066 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5067 display_thread_info (&threadinfo);
5068 return result;
5069 }
5070
5071 static void
5072 threadinfo_test_cmd (char *cmd, int tty)
5073 {
5074 int athread = SAMPLE_THREAD;
5075 threadref thread;
5076 int set;
5077
5078 int_to_threadref (&thread, athread);
5079 printf_filtered ("Remote Threadinfo test\n");
5080 if (!get_and_display_threadinfo (&thread))
5081 printf_filtered ("FAIL cannot get thread info\n");
5082 }
5083
5084 static int
5085 thread_display_step (threadref *ref, void *context)
5086 {
5087 /* output_threadid(" threadstep ",ref); *//* simple test */
5088 return get_and_display_threadinfo (ref);
5089 }
5090
5091 static void
5092 threadlist_update_test_cmd (char *cmd, int tty)
5093 {
5094 printf_filtered ("Remote Threadlist update test\n");
5095 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5096 }
5097
5098 static void
5099 init_remote_threadtests (void)
5100 {
5101 add_com ("tlist", class_obscure, threadlist_test_cmd,
5102 "Fetch and print the remote list of thread identifiers, one pkt only");
5103 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5104 "Fetch and display info about one thread");
5105 add_com ("tset", class_obscure, threadset_test_cmd,
5106 "Test setting to a different thread");
5107 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5108 "Iterate through updating all remote thread info");
5109 add_com ("talive", class_obscure, threadalive_test,
5110 " Remote thread alive test ");
5111 }
5112
5113 #endif /* 0 */
5114
5115 /* Convert a thread ID to a string. Returns the string in a static
5116 buffer. */
5117
5118 static char *
5119 remote_pid_to_str (ptid_t ptid)
5120 {
5121 static char buf[30];
5122
5123 sprintf (buf, "Thread %d", PIDGET (ptid));
5124 return buf;
5125 }
5126
5127 static void
5128 init_remote_ops (void)
5129 {
5130 remote_ops.to_shortname = "remote";
5131 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5132 remote_ops.to_doc =
5133 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5134 Specify the serial device it is connected to\n\
5135 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5136 remote_ops.to_open = remote_open;
5137 remote_ops.to_close = remote_close;
5138 remote_ops.to_detach = remote_detach;
5139 remote_ops.to_disconnect = remote_disconnect;
5140 remote_ops.to_resume = remote_resume;
5141 remote_ops.to_wait = remote_wait;
5142 remote_ops.to_fetch_registers = remote_fetch_registers;
5143 remote_ops.to_store_registers = remote_store_registers;
5144 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5145 remote_ops.to_xfer_memory = remote_xfer_memory;
5146 remote_ops.to_files_info = remote_files_info;
5147 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5148 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5149 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5150 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5151 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5152 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5153 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5154 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5155 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5156 remote_ops.to_kill = remote_kill;
5157 remote_ops.to_load = generic_load;
5158 remote_ops.to_mourn_inferior = remote_mourn;
5159 remote_ops.to_thread_alive = remote_thread_alive;
5160 remote_ops.to_find_new_threads = remote_threads_info;
5161 remote_ops.to_pid_to_str = remote_pid_to_str;
5162 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5163 remote_ops.to_stop = remote_stop;
5164 remote_ops.to_xfer_partial = remote_xfer_partial;
5165 remote_ops.to_rcmd = remote_rcmd;
5166 remote_ops.to_stratum = process_stratum;
5167 remote_ops.to_has_all_memory = 1;
5168 remote_ops.to_has_memory = 1;
5169 remote_ops.to_has_stack = 1;
5170 remote_ops.to_has_registers = 1;
5171 remote_ops.to_has_execution = 1;
5172 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5173 remote_ops.to_magic = OPS_MAGIC;
5174 }
5175
5176 /* Set up the extended remote vector by making a copy of the standard
5177 remote vector and adding to it. */
5178
5179 static void
5180 init_extended_remote_ops (void)
5181 {
5182 extended_remote_ops = remote_ops;
5183
5184 extended_remote_ops.to_shortname = "extended-remote";
5185 extended_remote_ops.to_longname =
5186 "Extended remote serial target in gdb-specific protocol";
5187 extended_remote_ops.to_doc =
5188 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5189 Specify the serial device it is connected to (e.g. /dev/ttya).",
5190 extended_remote_ops.to_open = extended_remote_open;
5191 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5192 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5193 }
5194
5195 static int
5196 remote_can_async_p (void)
5197 {
5198 /* We're async whenever the serial device is. */
5199 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5200 }
5201
5202 static int
5203 remote_is_async_p (void)
5204 {
5205 /* We're async whenever the serial device is. */
5206 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5207 }
5208
5209 /* Pass the SERIAL event on and up to the client. One day this code
5210 will be able to delay notifying the client of an event until the
5211 point where an entire packet has been received. */
5212
5213 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5214 static void *async_client_context;
5215 static serial_event_ftype remote_async_serial_handler;
5216
5217 static void
5218 remote_async_serial_handler (struct serial *scb, void *context)
5219 {
5220 /* Don't propogate error information up to the client. Instead let
5221 the client find out about the error by querying the target. */
5222 async_client_callback (INF_REG_EVENT, async_client_context);
5223 }
5224
5225 static void
5226 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5227 {
5228 if (current_target.to_async_mask_value == 0)
5229 internal_error (__FILE__, __LINE__,
5230 "Calling remote_async when async is masked");
5231
5232 if (callback != NULL)
5233 {
5234 serial_async (remote_desc, remote_async_serial_handler, NULL);
5235 async_client_callback = callback;
5236 async_client_context = context;
5237 }
5238 else
5239 serial_async (remote_desc, NULL, NULL);
5240 }
5241
5242 /* Target async and target extended-async.
5243
5244 This are temporary targets, until it is all tested. Eventually
5245 async support will be incorporated int the usual 'remote'
5246 target. */
5247
5248 static void
5249 init_remote_async_ops (void)
5250 {
5251 remote_async_ops.to_shortname = "async";
5252 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5253 remote_async_ops.to_doc =
5254 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5255 Specify the serial device it is connected to (e.g. /dev/ttya).";
5256 remote_async_ops.to_open = remote_async_open;
5257 remote_async_ops.to_close = remote_close;
5258 remote_async_ops.to_detach = remote_detach;
5259 remote_async_ops.to_disconnect = remote_disconnect;
5260 remote_async_ops.to_resume = remote_async_resume;
5261 remote_async_ops.to_wait = remote_async_wait;
5262 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5263 remote_async_ops.to_store_registers = remote_store_registers;
5264 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5265 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5266 remote_async_ops.to_files_info = remote_files_info;
5267 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5268 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5269 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5270 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5271 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5272 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5273 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5274 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5275 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5276 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5277 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5278 remote_async_ops.to_kill = remote_async_kill;
5279 remote_async_ops.to_load = generic_load;
5280 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5281 remote_async_ops.to_thread_alive = remote_thread_alive;
5282 remote_async_ops.to_find_new_threads = remote_threads_info;
5283 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5284 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5285 remote_async_ops.to_stop = remote_stop;
5286 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5287 remote_async_ops.to_rcmd = remote_rcmd;
5288 remote_async_ops.to_stratum = process_stratum;
5289 remote_async_ops.to_has_all_memory = 1;
5290 remote_async_ops.to_has_memory = 1;
5291 remote_async_ops.to_has_stack = 1;
5292 remote_async_ops.to_has_registers = 1;
5293 remote_async_ops.to_has_execution = 1;
5294 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5295 remote_async_ops.to_can_async_p = remote_can_async_p;
5296 remote_async_ops.to_is_async_p = remote_is_async_p;
5297 remote_async_ops.to_async = remote_async;
5298 remote_async_ops.to_async_mask_value = 1;
5299 remote_async_ops.to_magic = OPS_MAGIC;
5300 }
5301
5302 /* Set up the async extended remote vector by making a copy of the standard
5303 remote vector and adding to it. */
5304
5305 static void
5306 init_extended_async_remote_ops (void)
5307 {
5308 extended_async_remote_ops = remote_async_ops;
5309
5310 extended_async_remote_ops.to_shortname = "extended-async";
5311 extended_async_remote_ops.to_longname =
5312 "Extended remote serial target in async gdb-specific protocol";
5313 extended_async_remote_ops.to_doc =
5314 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5315 Specify the serial device it is connected to (e.g. /dev/ttya).",
5316 extended_async_remote_ops.to_open = extended_remote_async_open;
5317 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5318 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5319 }
5320
5321 static void
5322 set_remote_cmd (char *args, int from_tty)
5323 {
5324 }
5325
5326 static void
5327 show_remote_cmd (char *args, int from_tty)
5328 {
5329 /* FIXME: cagney/2002-06-15: This function should iterate over
5330 remote_show_cmdlist for a list of sub commands to show. */
5331 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
5332 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
5333 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
5334 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
5335 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
5336 show_remote_protocol_qPart_auxv_packet_cmd (args, from_tty, NULL);
5337 }
5338
5339 static void
5340 build_remote_gdbarch_data (void)
5341 {
5342 remote_address_size = TARGET_ADDR_BIT;
5343 }
5344
5345 /* Saved pointer to previous owner of the new_objfile event. */
5346 static void (*remote_new_objfile_chain) (struct objfile *);
5347
5348 /* Function to be called whenever a new objfile (shlib) is detected. */
5349 static void
5350 remote_new_objfile (struct objfile *objfile)
5351 {
5352 if (remote_desc != 0) /* Have a remote connection */
5353 {
5354 remote_check_symbols (objfile);
5355 }
5356 /* Call predecessor on chain, if any. */
5357 if (remote_new_objfile_chain != 0 &&
5358 remote_desc == 0)
5359 remote_new_objfile_chain (objfile);
5360 }
5361
5362 void
5363 _initialize_remote (void)
5364 {
5365 static struct cmd_list_element *remote_set_cmdlist;
5366 static struct cmd_list_element *remote_show_cmdlist;
5367 struct cmd_list_element *tmpcmd;
5368
5369 /* architecture specific data */
5370 remote_gdbarch_data_handle = gdbarch_data_register_post_init (init_remote_state);
5371
5372 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5373 that the remote protocol has been initialized. */
5374 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5375 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5376
5377 init_remote_ops ();
5378 add_target (&remote_ops);
5379
5380 init_extended_remote_ops ();
5381 add_target (&extended_remote_ops);
5382
5383 init_remote_async_ops ();
5384 add_target (&remote_async_ops);
5385
5386 init_extended_async_remote_ops ();
5387 add_target (&extended_async_remote_ops);
5388
5389 /* Hook into new objfile notification. */
5390 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5391 deprecated_target_new_objfile_hook = remote_new_objfile;
5392
5393 #if 0
5394 init_remote_threadtests ();
5395 #endif
5396
5397 /* set/show remote ... */
5398
5399 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5400 Remote protocol specific variables\n\
5401 Configure various remote-protocol specific variables such as\n\
5402 the packets being used",
5403 &remote_set_cmdlist, "set remote ",
5404 0/*allow-unknown*/, &setlist);
5405 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5406 Remote protocol specific variables\n\
5407 Configure various remote-protocol specific variables such as\n\
5408 the packets being used",
5409 &remote_show_cmdlist, "show remote ",
5410 0/*allow-unknown*/, &showlist);
5411
5412 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5413 "Compare section data on target to the exec file.\n\
5414 Argument is a single section name (default: all loaded sections).",
5415 &cmdlist);
5416
5417 add_cmd ("packet", class_maintenance, packet_command,
5418 "Send an arbitrary packet to a remote target.\n\
5419 maintenance packet TEXT\n\
5420 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5421 this command sends the string TEXT to the inferior, and displays the\n\
5422 response packet. GDB supplies the initial `$' character, and the\n\
5423 terminating `#' character and checksum.",
5424 &maintenancelist);
5425
5426 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
5427 "Set whether to send break if interrupted.\n",
5428 "Show whether to send break if interrupted.\n",
5429 NULL, NULL,
5430 &setlist, &showlist);
5431
5432 /* Install commands for configuring memory read/write packets. */
5433
5434 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5435 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5436 &setlist);
5437 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5438 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5439 &showlist);
5440 add_cmd ("memory-write-packet-size", no_class,
5441 set_memory_write_packet_size,
5442 "Set the maximum number of bytes per memory-write packet.\n"
5443 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5444 "default packet size. The actual limit is further reduced\n"
5445 "dependent on the target. Specify ``fixed'' to disable the\n"
5446 "further restriction and ``limit'' to enable that restriction\n",
5447 &remote_set_cmdlist);
5448 add_cmd ("memory-read-packet-size", no_class,
5449 set_memory_read_packet_size,
5450 "Set the maximum number of bytes per memory-read packet.\n"
5451 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5452 "default packet size. The actual limit is further reduced\n"
5453 "dependent on the target. Specify ``fixed'' to disable the\n"
5454 "further restriction and ``limit'' to enable that restriction\n",
5455 &remote_set_cmdlist);
5456 add_cmd ("memory-write-packet-size", no_class,
5457 show_memory_write_packet_size,
5458 "Show the maximum number of bytes per memory-write packet.\n",
5459 &remote_show_cmdlist);
5460 add_cmd ("memory-read-packet-size", no_class,
5461 show_memory_read_packet_size,
5462 "Show the maximum number of bytes per memory-read packet.\n",
5463 &remote_show_cmdlist);
5464
5465 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
5466 var_zinteger, &remote_hw_watchpoint_limit, "\
5467 Set the maximum number of target hardware watchpoints.\n\
5468 Specify a negative limit for unlimited.", "\
5469 Show the maximum number of target hardware watchpoints.\n",
5470 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
5471 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
5472 var_zinteger, &remote_hw_breakpoint_limit, "\
5473 Set the maximum number of target hardware breakpoints.\n\
5474 Specify a negative limit for unlimited.", "\
5475 Show the maximum number of target hardware breakpoints.\n",
5476 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
5477
5478 deprecated_add_show_from_set
5479 (add_set_cmd ("remoteaddresssize", class_obscure,
5480 var_integer, (char *) &remote_address_size,
5481 "Set the maximum size of the address (in bits) \
5482 in a memory packet.\n",
5483 &setlist),
5484 &showlist);
5485
5486 add_packet_config_cmd (&remote_protocol_binary_download,
5487 "X", "binary-download",
5488 set_remote_protocol_binary_download_cmd,
5489 show_remote_protocol_binary_download_cmd,
5490 &remote_set_cmdlist, &remote_show_cmdlist,
5491 1);
5492 #if 0
5493 /* XXXX - should ``set remotebinarydownload'' be retained for
5494 compatibility. */
5495 deprecated_add_show_from_set
5496 (add_set_cmd ("remotebinarydownload", no_class,
5497 var_boolean, (char *) &remote_binary_download,
5498 "Set binary downloads.\n", &setlist),
5499 &showlist);
5500 #endif
5501
5502 add_packet_config_cmd (&remote_protocol_vcont,
5503 "vCont", "verbose-resume",
5504 set_remote_protocol_vcont_packet_cmd,
5505 show_remote_protocol_vcont_packet_cmd,
5506 &remote_set_cmdlist, &remote_show_cmdlist,
5507 0);
5508
5509 add_packet_config_cmd (&remote_protocol_qSymbol,
5510 "qSymbol", "symbol-lookup",
5511 set_remote_protocol_qSymbol_packet_cmd,
5512 show_remote_protocol_qSymbol_packet_cmd,
5513 &remote_set_cmdlist, &remote_show_cmdlist,
5514 0);
5515
5516 add_packet_config_cmd (&remote_protocol_P,
5517 "P", "set-register",
5518 set_remote_protocol_P_packet_cmd,
5519 show_remote_protocol_P_packet_cmd,
5520 &remote_set_cmdlist, &remote_show_cmdlist,
5521 1);
5522
5523 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5524 "Z0", "software-breakpoint",
5525 set_remote_protocol_Z_software_bp_packet_cmd,
5526 show_remote_protocol_Z_software_bp_packet_cmd,
5527 &remote_set_cmdlist, &remote_show_cmdlist,
5528 0);
5529
5530 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5531 "Z1", "hardware-breakpoint",
5532 set_remote_protocol_Z_hardware_bp_packet_cmd,
5533 show_remote_protocol_Z_hardware_bp_packet_cmd,
5534 &remote_set_cmdlist, &remote_show_cmdlist,
5535 0);
5536
5537 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5538 "Z2", "write-watchpoint",
5539 set_remote_protocol_Z_write_wp_packet_cmd,
5540 show_remote_protocol_Z_write_wp_packet_cmd,
5541 &remote_set_cmdlist, &remote_show_cmdlist,
5542 0);
5543
5544 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5545 "Z3", "read-watchpoint",
5546 set_remote_protocol_Z_read_wp_packet_cmd,
5547 show_remote_protocol_Z_read_wp_packet_cmd,
5548 &remote_set_cmdlist, &remote_show_cmdlist,
5549 0);
5550
5551 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5552 "Z4", "access-watchpoint",
5553 set_remote_protocol_Z_access_wp_packet_cmd,
5554 show_remote_protocol_Z_access_wp_packet_cmd,
5555 &remote_set_cmdlist, &remote_show_cmdlist,
5556 0);
5557
5558 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5559 "qPart_auxv", "read-aux-vector",
5560 set_remote_protocol_qPart_auxv_packet_cmd,
5561 show_remote_protocol_qPart_auxv_packet_cmd,
5562 &remote_set_cmdlist, &remote_show_cmdlist,
5563 0);
5564
5565 /* Keep the old ``set remote Z-packet ...'' working. */
5566 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5567 &remote_Z_packet_detect, "\
5568 Set use of remote protocol `Z' packets",
5569 "Show use of remote protocol `Z' packets ",
5570 set_remote_protocol_Z_packet_cmd,
5571 show_remote_protocol_Z_packet_cmd,
5572 &remote_set_cmdlist, &remote_show_cmdlist);
5573
5574 /* Eventually initialize fileio. See fileio.c */
5575 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5576 }
This page took 0.222525 seconds and 4 git commands to generate.