2012-03-01 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "observer.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59 #include "gdb/fileio.h"
60 #include "gdb_stat.h"
61 #include "xml-support.h"
62
63 #include "memory-map.h"
64
65 #include "tracepoint.h"
66 #include "ax.h"
67 #include "ax-gdb.h"
68
69 /* Temp hacks for tracepoint encoding migration. */
70 static char *target_buf;
71 static long target_buf_size;
72
73 /* The size to align memory write packets, when practical. The protocol
74 does not guarantee any alignment, and gdb will generate short
75 writes and unaligned writes, but even as a best-effort attempt this
76 can improve bulk transfers. For instance, if a write is misaligned
77 relative to the target's data bus, the stub may need to make an extra
78 round trip fetching data from the target. This doesn't make a
79 huge difference, but it's easy to do, so we try to be helpful.
80
81 The alignment chosen is arbitrary; usually data bus width is
82 important here, not the possibly larger cache line size. */
83 enum { REMOTE_ALIGN_WRITES = 16 };
84
85 /* Prototypes for local functions. */
86 static void cleanup_sigint_signal_handler (void *dummy);
87 static void initialize_sigint_signal_handler (void);
88 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
89 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
90 int forever);
91
92 static void handle_remote_sigint (int);
93 static void handle_remote_sigint_twice (int);
94 static void async_remote_interrupt (gdb_client_data);
95 void async_remote_interrupt_twice (gdb_client_data);
96
97 static void remote_files_info (struct target_ops *ignore);
98
99 static void remote_prepare_to_store (struct regcache *regcache);
100
101 static void remote_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104
105 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
106
107 static void remote_close (int quitting);
108
109 static void remote_mourn (struct target_ops *ops);
110
111 static void extended_remote_restart (void);
112
113 static void extended_remote_mourn (struct target_ops *);
114
115 static void remote_mourn_1 (struct target_ops *);
116
117 static void remote_send (char **buf, long *sizeof_buf_p);
118
119 static int readchar (int timeout);
120
121 static void remote_kill (struct target_ops *ops);
122
123 static int tohex (int nib);
124
125 static int remote_can_async_p (void);
126
127 static int remote_is_async_p (void);
128
129 static void remote_async (void (*callback) (enum inferior_event_type event_type,
130 void *context), void *context);
131
132 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_general_thread (struct ptid ptid);
141 static void set_continue_thread (struct ptid ptid);
142
143 static void get_offsets (void);
144
145 static void skip_frame (void);
146
147 static long read_frame (char **buf_p, long *sizeof_buf);
148
149 static int hexnumlen (ULONGEST num);
150
151 static void init_remote_ops (void);
152
153 static void init_extended_remote_ops (void);
154
155 static void remote_stop (ptid_t);
156
157 static int ishex (int ch, int *val);
158
159 static int stubhex (int ch);
160
161 static int hexnumstr (char *, ULONGEST);
162
163 static int hexnumnstr (char *, ULONGEST, int);
164
165 static CORE_ADDR remote_address_masked (CORE_ADDR);
166
167 static void print_packet (char *);
168
169 static void compare_sections_command (char *, int);
170
171 static void packet_command (char *, int);
172
173 static int stub_unpack_int (char *buff, int fieldlength);
174
175 static ptid_t remote_current_thread (ptid_t oldptid);
176
177 static void remote_find_new_threads (void);
178
179 static void record_currthread (ptid_t currthread);
180
181 static int fromhex (int a);
182
183 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
184
185 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
186
187 static int putpkt_binary (char *buf, int cnt);
188
189 static void check_binary_download (CORE_ADDR addr);
190
191 struct packet_config;
192
193 static void show_packet_config_cmd (struct packet_config *config);
194
195 static void update_packet_config (struct packet_config *config);
196
197 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
198 struct cmd_list_element *c);
199
200 static void show_remote_protocol_packet_cmd (struct ui_file *file,
201 int from_tty,
202 struct cmd_list_element *c,
203 const char *value);
204
205 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
206 static ptid_t read_ptid (char *buf, char **obuf);
207
208 static void remote_set_permissions (void);
209
210 struct remote_state;
211 static int remote_get_trace_status (struct trace_status *ts);
212
213 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
214
215 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
216
217 static void remote_query_supported (void);
218
219 static void remote_check_symbols (struct objfile *objfile);
220
221 void _initialize_remote (void);
222
223 struct stop_reply;
224 static struct stop_reply *stop_reply_xmalloc (void);
225 static void stop_reply_xfree (struct stop_reply *);
226 static void do_stop_reply_xfree (void *arg);
227 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
228 static void push_stop_reply (struct stop_reply *);
229 static void remote_get_pending_stop_replies (void);
230 static void discard_pending_stop_replies (int pid);
231 static int peek_stop_reply (ptid_t ptid);
232
233 static void remote_async_inferior_event_handler (gdb_client_data);
234 static void remote_async_get_pending_events_handler (gdb_client_data);
235
236 static void remote_terminal_ours (void);
237
238 static int remote_read_description_p (struct target_ops *target);
239
240 static void remote_console_output (char *msg);
241
242 static int remote_supports_cond_breakpoints (void);
243
244 /* The non-stop remote protocol provisions for one pending stop reply.
245 This is where we keep it until it is acknowledged. */
246
247 static struct stop_reply *pending_stop_reply = NULL;
248
249 /* For "remote". */
250
251 static struct cmd_list_element *remote_cmdlist;
252
253 /* For "set remote" and "show remote". */
254
255 static struct cmd_list_element *remote_set_cmdlist;
256 static struct cmd_list_element *remote_show_cmdlist;
257
258 /* Description of the remote protocol state for the currently
259 connected target. This is per-target state, and independent of the
260 selected architecture. */
261
262 struct remote_state
263 {
264 /* A buffer to use for incoming packets, and its current size. The
265 buffer is grown dynamically for larger incoming packets.
266 Outgoing packets may also be constructed in this buffer.
267 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
268 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
269 packets. */
270 char *buf;
271 long buf_size;
272
273 /* If we negotiated packet size explicitly (and thus can bypass
274 heuristics for the largest packet size that will not overflow
275 a buffer in the stub), this will be set to that packet size.
276 Otherwise zero, meaning to use the guessed size. */
277 long explicit_packet_size;
278
279 /* remote_wait is normally called when the target is running and
280 waits for a stop reply packet. But sometimes we need to call it
281 when the target is already stopped. We can send a "?" packet
282 and have remote_wait read the response. Or, if we already have
283 the response, we can stash it in BUF and tell remote_wait to
284 skip calling getpkt. This flag is set when BUF contains a
285 stop reply packet and the target is not waiting. */
286 int cached_wait_status;
287
288 /* True, if in no ack mode. That is, neither GDB nor the stub will
289 expect acks from each other. The connection is assumed to be
290 reliable. */
291 int noack_mode;
292
293 /* True if we're connected in extended remote mode. */
294 int extended;
295
296 /* True if the stub reported support for multi-process
297 extensions. */
298 int multi_process_aware;
299
300 /* True if we resumed the target and we're waiting for the target to
301 stop. In the mean time, we can't start another command/query.
302 The remote server wouldn't be ready to process it, so we'd
303 timeout waiting for a reply that would never come and eventually
304 we'd close the connection. This can happen in asynchronous mode
305 because we allow GDB commands while the target is running. */
306 int waiting_for_stop_reply;
307
308 /* True if the stub reports support for non-stop mode. */
309 int non_stop_aware;
310
311 /* True if the stub reports support for vCont;t. */
312 int support_vCont_t;
313
314 /* True if the stub reports support for conditional tracepoints. */
315 int cond_tracepoints;
316
317 /* True if the stub reports support for target-side breakpoint
318 conditions. */
319 int cond_breakpoints;
320
321 /* True if the stub reports support for fast tracepoints. */
322 int fast_tracepoints;
323
324 /* True if the stub reports support for static tracepoints. */
325 int static_tracepoints;
326
327 /* True if the stub reports support for installing tracepoint while
328 tracing. */
329 int install_in_trace;
330
331 /* True if the stub can continue running a trace while GDB is
332 disconnected. */
333 int disconnected_tracing;
334
335 /* True if the stub reports support for enabling and disabling
336 tracepoints while a trace experiment is running. */
337 int enable_disable_tracepoints;
338
339 /* True if the stub can collect strings using tracenz bytecode. */
340 int string_tracing;
341
342 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
343 responded to that. */
344 int ctrlc_pending_p;
345 };
346
347 /* Private data that we'll store in (struct thread_info)->private. */
348 struct private_thread_info
349 {
350 char *extra;
351 int core;
352 };
353
354 static void
355 free_private_thread_info (struct private_thread_info *info)
356 {
357 xfree (info->extra);
358 xfree (info);
359 }
360
361 /* Returns true if the multi-process extensions are in effect. */
362 static int
363 remote_multi_process_p (struct remote_state *rs)
364 {
365 return rs->multi_process_aware;
366 }
367
368 /* This data could be associated with a target, but we do not always
369 have access to the current target when we need it, so for now it is
370 static. This will be fine for as long as only one target is in use
371 at a time. */
372 static struct remote_state remote_state;
373
374 static struct remote_state *
375 get_remote_state_raw (void)
376 {
377 return &remote_state;
378 }
379
380 /* Description of the remote protocol for a given architecture. */
381
382 struct packet_reg
383 {
384 long offset; /* Offset into G packet. */
385 long regnum; /* GDB's internal register number. */
386 LONGEST pnum; /* Remote protocol register number. */
387 int in_g_packet; /* Always part of G packet. */
388 /* long size in bytes; == register_size (target_gdbarch, regnum);
389 at present. */
390 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
391 at present. */
392 };
393
394 struct remote_arch_state
395 {
396 /* Description of the remote protocol registers. */
397 long sizeof_g_packet;
398
399 /* Description of the remote protocol registers indexed by REGNUM
400 (making an array gdbarch_num_regs in size). */
401 struct packet_reg *regs;
402
403 /* This is the size (in chars) of the first response to the ``g''
404 packet. It is used as a heuristic when determining the maximum
405 size of memory-read and memory-write packets. A target will
406 typically only reserve a buffer large enough to hold the ``g''
407 packet. The size does not include packet overhead (headers and
408 trailers). */
409 long actual_register_packet_size;
410
411 /* This is the maximum size (in chars) of a non read/write packet.
412 It is also used as a cap on the size of read/write packets. */
413 long remote_packet_size;
414 };
415
416 long sizeof_pkt = 2000;
417
418 /* Utility: generate error from an incoming stub packet. */
419 static void
420 trace_error (char *buf)
421 {
422 if (*buf++ != 'E')
423 return; /* not an error msg */
424 switch (*buf)
425 {
426 case '1': /* malformed packet error */
427 if (*++buf == '0') /* general case: */
428 error (_("remote.c: error in outgoing packet."));
429 else
430 error (_("remote.c: error in outgoing packet at field #%ld."),
431 strtol (buf, NULL, 16));
432 case '2':
433 error (_("trace API error 0x%s."), ++buf);
434 default:
435 error (_("Target returns error code '%s'."), buf);
436 }
437 }
438
439 /* Utility: wait for reply from stub, while accepting "O" packets. */
440 static char *
441 remote_get_noisy_reply (char **buf_p,
442 long *sizeof_buf)
443 {
444 do /* Loop on reply from remote stub. */
445 {
446 char *buf;
447
448 QUIT; /* Allow user to bail out with ^C. */
449 getpkt (buf_p, sizeof_buf, 0);
450 buf = *buf_p;
451 if (buf[0] == 'E')
452 trace_error (buf);
453 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
454 {
455 ULONGEST ul;
456 CORE_ADDR from, to, org_to;
457 char *p, *pp;
458 int adjusted_size = 0;
459 volatile struct gdb_exception ex;
460
461 p = buf + strlen ("qRelocInsn:");
462 pp = unpack_varlen_hex (p, &ul);
463 if (*pp != ';')
464 error (_("invalid qRelocInsn packet: %s"), buf);
465 from = ul;
466
467 p = pp + 1;
468 unpack_varlen_hex (p, &ul);
469 to = ul;
470
471 org_to = to;
472
473 TRY_CATCH (ex, RETURN_MASK_ALL)
474 {
475 gdbarch_relocate_instruction (target_gdbarch, &to, from);
476 }
477 if (ex.reason >= 0)
478 {
479 adjusted_size = to - org_to;
480
481 sprintf (buf, "qRelocInsn:%x", adjusted_size);
482 putpkt (buf);
483 }
484 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
485 {
486 /* Propagate memory errors silently back to the target.
487 The stub may have limited the range of addresses we
488 can write to, for example. */
489 putpkt ("E01");
490 }
491 else
492 {
493 /* Something unexpectedly bad happened. Be verbose so
494 we can tell what, and propagate the error back to the
495 stub, so it doesn't get stuck waiting for a
496 response. */
497 exception_fprintf (gdb_stderr, ex,
498 _("warning: relocating instruction: "));
499 putpkt ("E01");
500 }
501 }
502 else if (buf[0] == 'O' && buf[1] != 'K')
503 remote_console_output (buf + 1); /* 'O' message from stub */
504 else
505 return buf; /* Here's the actual reply. */
506 }
507 while (1);
508 }
509
510 /* Handle for retreving the remote protocol data from gdbarch. */
511 static struct gdbarch_data *remote_gdbarch_data_handle;
512
513 static struct remote_arch_state *
514 get_remote_arch_state (void)
515 {
516 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
517 }
518
519 /* Fetch the global remote target state. */
520
521 static struct remote_state *
522 get_remote_state (void)
523 {
524 /* Make sure that the remote architecture state has been
525 initialized, because doing so might reallocate rs->buf. Any
526 function which calls getpkt also needs to be mindful of changes
527 to rs->buf, but this call limits the number of places which run
528 into trouble. */
529 get_remote_arch_state ();
530
531 return get_remote_state_raw ();
532 }
533
534 static int
535 compare_pnums (const void *lhs_, const void *rhs_)
536 {
537 const struct packet_reg * const *lhs = lhs_;
538 const struct packet_reg * const *rhs = rhs_;
539
540 if ((*lhs)->pnum < (*rhs)->pnum)
541 return -1;
542 else if ((*lhs)->pnum == (*rhs)->pnum)
543 return 0;
544 else
545 return 1;
546 }
547
548 static int
549 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
550 {
551 int regnum, num_remote_regs, offset;
552 struct packet_reg **remote_regs;
553
554 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
555 {
556 struct packet_reg *r = &regs[regnum];
557
558 if (register_size (gdbarch, regnum) == 0)
559 /* Do not try to fetch zero-sized (placeholder) registers. */
560 r->pnum = -1;
561 else
562 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
563
564 r->regnum = regnum;
565 }
566
567 /* Define the g/G packet format as the contents of each register
568 with a remote protocol number, in order of ascending protocol
569 number. */
570
571 remote_regs = alloca (gdbarch_num_regs (gdbarch)
572 * sizeof (struct packet_reg *));
573 for (num_remote_regs = 0, regnum = 0;
574 regnum < gdbarch_num_regs (gdbarch);
575 regnum++)
576 if (regs[regnum].pnum != -1)
577 remote_regs[num_remote_regs++] = &regs[regnum];
578
579 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
580 compare_pnums);
581
582 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
583 {
584 remote_regs[regnum]->in_g_packet = 1;
585 remote_regs[regnum]->offset = offset;
586 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
587 }
588
589 return offset;
590 }
591
592 /* Given the architecture described by GDBARCH, return the remote
593 protocol register's number and the register's offset in the g/G
594 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
595 If the target does not have a mapping for REGNUM, return false,
596 otherwise, return true. */
597
598 int
599 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
600 int *pnum, int *poffset)
601 {
602 int sizeof_g_packet;
603 struct packet_reg *regs;
604 struct cleanup *old_chain;
605
606 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
607
608 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
609 old_chain = make_cleanup (xfree, regs);
610
611 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
612
613 *pnum = regs[regnum].pnum;
614 *poffset = regs[regnum].offset;
615
616 do_cleanups (old_chain);
617
618 return *pnum != -1;
619 }
620
621 static void *
622 init_remote_state (struct gdbarch *gdbarch)
623 {
624 struct remote_state *rs = get_remote_state_raw ();
625 struct remote_arch_state *rsa;
626
627 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
628
629 /* Use the architecture to build a regnum<->pnum table, which will be
630 1:1 unless a feature set specifies otherwise. */
631 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
632 gdbarch_num_regs (gdbarch),
633 struct packet_reg);
634
635 /* Record the maximum possible size of the g packet - it may turn out
636 to be smaller. */
637 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
638
639 /* Default maximum number of characters in a packet body. Many
640 remote stubs have a hardwired buffer size of 400 bytes
641 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
642 as the maximum packet-size to ensure that the packet and an extra
643 NUL character can always fit in the buffer. This stops GDB
644 trashing stubs that try to squeeze an extra NUL into what is
645 already a full buffer (As of 1999-12-04 that was most stubs). */
646 rsa->remote_packet_size = 400 - 1;
647
648 /* This one is filled in when a ``g'' packet is received. */
649 rsa->actual_register_packet_size = 0;
650
651 /* Should rsa->sizeof_g_packet needs more space than the
652 default, adjust the size accordingly. Remember that each byte is
653 encoded as two characters. 32 is the overhead for the packet
654 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
655 (``$NN:G...#NN'') is a better guess, the below has been padded a
656 little. */
657 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
658 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
659
660 /* Make sure that the packet buffer is plenty big enough for
661 this architecture. */
662 if (rs->buf_size < rsa->remote_packet_size)
663 {
664 rs->buf_size = 2 * rsa->remote_packet_size;
665 rs->buf = xrealloc (rs->buf, rs->buf_size);
666 }
667
668 return rsa;
669 }
670
671 /* Return the current allowed size of a remote packet. This is
672 inferred from the current architecture, and should be used to
673 limit the length of outgoing packets. */
674 static long
675 get_remote_packet_size (void)
676 {
677 struct remote_state *rs = get_remote_state ();
678 struct remote_arch_state *rsa = get_remote_arch_state ();
679
680 if (rs->explicit_packet_size)
681 return rs->explicit_packet_size;
682
683 return rsa->remote_packet_size;
684 }
685
686 static struct packet_reg *
687 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
688 {
689 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
690 return NULL;
691 else
692 {
693 struct packet_reg *r = &rsa->regs[regnum];
694
695 gdb_assert (r->regnum == regnum);
696 return r;
697 }
698 }
699
700 static struct packet_reg *
701 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
702 {
703 int i;
704
705 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
706 {
707 struct packet_reg *r = &rsa->regs[i];
708
709 if (r->pnum == pnum)
710 return r;
711 }
712 return NULL;
713 }
714
715 /* FIXME: graces/2002-08-08: These variables should eventually be
716 bound to an instance of the target object (as in gdbarch-tdep()),
717 when such a thing exists. */
718
719 /* This is set to the data address of the access causing the target
720 to stop for a watchpoint. */
721 static CORE_ADDR remote_watch_data_address;
722
723 /* This is non-zero if target stopped for a watchpoint. */
724 static int remote_stopped_by_watchpoint_p;
725
726 static struct target_ops remote_ops;
727
728 static struct target_ops extended_remote_ops;
729
730 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
731 ``forever'' still use the normal timeout mechanism. This is
732 currently used by the ASYNC code to guarentee that target reads
733 during the initial connect always time-out. Once getpkt has been
734 modified to return a timeout indication and, in turn
735 remote_wait()/wait_for_inferior() have gained a timeout parameter
736 this can go away. */
737 static int wait_forever_enabled_p = 1;
738
739 /* Allow the user to specify what sequence to send to the remote
740 when he requests a program interruption: Although ^C is usually
741 what remote systems expect (this is the default, here), it is
742 sometimes preferable to send a break. On other systems such
743 as the Linux kernel, a break followed by g, which is Magic SysRq g
744 is required in order to interrupt the execution. */
745 const char interrupt_sequence_control_c[] = "Ctrl-C";
746 const char interrupt_sequence_break[] = "BREAK";
747 const char interrupt_sequence_break_g[] = "BREAK-g";
748 static const char *const interrupt_sequence_modes[] =
749 {
750 interrupt_sequence_control_c,
751 interrupt_sequence_break,
752 interrupt_sequence_break_g,
753 NULL
754 };
755 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
756
757 static void
758 show_interrupt_sequence (struct ui_file *file, int from_tty,
759 struct cmd_list_element *c,
760 const char *value)
761 {
762 if (interrupt_sequence_mode == interrupt_sequence_control_c)
763 fprintf_filtered (file,
764 _("Send the ASCII ETX character (Ctrl-c) "
765 "to the remote target to interrupt the "
766 "execution of the program.\n"));
767 else if (interrupt_sequence_mode == interrupt_sequence_break)
768 fprintf_filtered (file,
769 _("send a break signal to the remote target "
770 "to interrupt the execution of the program.\n"));
771 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
772 fprintf_filtered (file,
773 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
774 "the remote target to interrupt the execution "
775 "of Linux kernel.\n"));
776 else
777 internal_error (__FILE__, __LINE__,
778 _("Invalid value for interrupt_sequence_mode: %s."),
779 interrupt_sequence_mode);
780 }
781
782 /* This boolean variable specifies whether interrupt_sequence is sent
783 to the remote target when gdb connects to it.
784 This is mostly needed when you debug the Linux kernel: The Linux kernel
785 expects BREAK g which is Magic SysRq g for connecting gdb. */
786 static int interrupt_on_connect = 0;
787
788 /* This variable is used to implement the "set/show remotebreak" commands.
789 Since these commands are now deprecated in favor of "set/show remote
790 interrupt-sequence", it no longer has any effect on the code. */
791 static int remote_break;
792
793 static void
794 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
795 {
796 if (remote_break)
797 interrupt_sequence_mode = interrupt_sequence_break;
798 else
799 interrupt_sequence_mode = interrupt_sequence_control_c;
800 }
801
802 static void
803 show_remotebreak (struct ui_file *file, int from_tty,
804 struct cmd_list_element *c,
805 const char *value)
806 {
807 }
808
809 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
810 remote_open knows that we don't have a file open when the program
811 starts. */
812 static struct serial *remote_desc = NULL;
813
814 /* This variable sets the number of bits in an address that are to be
815 sent in a memory ("M" or "m") packet. Normally, after stripping
816 leading zeros, the entire address would be sent. This variable
817 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
818 initial implementation of remote.c restricted the address sent in
819 memory packets to ``host::sizeof long'' bytes - (typically 32
820 bits). Consequently, for 64 bit targets, the upper 32 bits of an
821 address was never sent. Since fixing this bug may cause a break in
822 some remote targets this variable is principly provided to
823 facilitate backward compatibility. */
824
825 static int remote_address_size;
826
827 /* Temporary to track who currently owns the terminal. See
828 remote_terminal_* for more details. */
829
830 static int remote_async_terminal_ours_p;
831
832 /* The executable file to use for "run" on the remote side. */
833
834 static char *remote_exec_file = "";
835
836 \f
837 /* User configurable variables for the number of characters in a
838 memory read/write packet. MIN (rsa->remote_packet_size,
839 rsa->sizeof_g_packet) is the default. Some targets need smaller
840 values (fifo overruns, et.al.) and some users need larger values
841 (speed up transfers). The variables ``preferred_*'' (the user
842 request), ``current_*'' (what was actually set) and ``forced_*''
843 (Positive - a soft limit, negative - a hard limit). */
844
845 struct memory_packet_config
846 {
847 char *name;
848 long size;
849 int fixed_p;
850 };
851
852 /* Compute the current size of a read/write packet. Since this makes
853 use of ``actual_register_packet_size'' the computation is dynamic. */
854
855 static long
856 get_memory_packet_size (struct memory_packet_config *config)
857 {
858 struct remote_state *rs = get_remote_state ();
859 struct remote_arch_state *rsa = get_remote_arch_state ();
860
861 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
862 law?) that some hosts don't cope very well with large alloca()
863 calls. Eventually the alloca() code will be replaced by calls to
864 xmalloc() and make_cleanups() allowing this restriction to either
865 be lifted or removed. */
866 #ifndef MAX_REMOTE_PACKET_SIZE
867 #define MAX_REMOTE_PACKET_SIZE 16384
868 #endif
869 /* NOTE: 20 ensures we can write at least one byte. */
870 #ifndef MIN_REMOTE_PACKET_SIZE
871 #define MIN_REMOTE_PACKET_SIZE 20
872 #endif
873 long what_they_get;
874 if (config->fixed_p)
875 {
876 if (config->size <= 0)
877 what_they_get = MAX_REMOTE_PACKET_SIZE;
878 else
879 what_they_get = config->size;
880 }
881 else
882 {
883 what_they_get = get_remote_packet_size ();
884 /* Limit the packet to the size specified by the user. */
885 if (config->size > 0
886 && what_they_get > config->size)
887 what_they_get = config->size;
888
889 /* Limit it to the size of the targets ``g'' response unless we have
890 permission from the stub to use a larger packet size. */
891 if (rs->explicit_packet_size == 0
892 && rsa->actual_register_packet_size > 0
893 && what_they_get > rsa->actual_register_packet_size)
894 what_they_get = rsa->actual_register_packet_size;
895 }
896 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
897 what_they_get = MAX_REMOTE_PACKET_SIZE;
898 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
899 what_they_get = MIN_REMOTE_PACKET_SIZE;
900
901 /* Make sure there is room in the global buffer for this packet
902 (including its trailing NUL byte). */
903 if (rs->buf_size < what_they_get + 1)
904 {
905 rs->buf_size = 2 * what_they_get;
906 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
907 }
908
909 return what_they_get;
910 }
911
912 /* Update the size of a read/write packet. If they user wants
913 something really big then do a sanity check. */
914
915 static void
916 set_memory_packet_size (char *args, struct memory_packet_config *config)
917 {
918 int fixed_p = config->fixed_p;
919 long size = config->size;
920
921 if (args == NULL)
922 error (_("Argument required (integer, `fixed' or `limited')."));
923 else if (strcmp (args, "hard") == 0
924 || strcmp (args, "fixed") == 0)
925 fixed_p = 1;
926 else if (strcmp (args, "soft") == 0
927 || strcmp (args, "limit") == 0)
928 fixed_p = 0;
929 else
930 {
931 char *end;
932
933 size = strtoul (args, &end, 0);
934 if (args == end)
935 error (_("Invalid %s (bad syntax)."), config->name);
936 #if 0
937 /* Instead of explicitly capping the size of a packet to
938 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
939 instead allowed to set the size to something arbitrarily
940 large. */
941 if (size > MAX_REMOTE_PACKET_SIZE)
942 error (_("Invalid %s (too large)."), config->name);
943 #endif
944 }
945 /* Extra checks? */
946 if (fixed_p && !config->fixed_p)
947 {
948 if (! query (_("The target may not be able to correctly handle a %s\n"
949 "of %ld bytes. Change the packet size? "),
950 config->name, size))
951 error (_("Packet size not changed."));
952 }
953 /* Update the config. */
954 config->fixed_p = fixed_p;
955 config->size = size;
956 }
957
958 static void
959 show_memory_packet_size (struct memory_packet_config *config)
960 {
961 printf_filtered (_("The %s is %ld. "), config->name, config->size);
962 if (config->fixed_p)
963 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
964 get_memory_packet_size (config));
965 else
966 printf_filtered (_("Packets are limited to %ld bytes.\n"),
967 get_memory_packet_size (config));
968 }
969
970 static struct memory_packet_config memory_write_packet_config =
971 {
972 "memory-write-packet-size",
973 };
974
975 static void
976 set_memory_write_packet_size (char *args, int from_tty)
977 {
978 set_memory_packet_size (args, &memory_write_packet_config);
979 }
980
981 static void
982 show_memory_write_packet_size (char *args, int from_tty)
983 {
984 show_memory_packet_size (&memory_write_packet_config);
985 }
986
987 static long
988 get_memory_write_packet_size (void)
989 {
990 return get_memory_packet_size (&memory_write_packet_config);
991 }
992
993 static struct memory_packet_config memory_read_packet_config =
994 {
995 "memory-read-packet-size",
996 };
997
998 static void
999 set_memory_read_packet_size (char *args, int from_tty)
1000 {
1001 set_memory_packet_size (args, &memory_read_packet_config);
1002 }
1003
1004 static void
1005 show_memory_read_packet_size (char *args, int from_tty)
1006 {
1007 show_memory_packet_size (&memory_read_packet_config);
1008 }
1009
1010 static long
1011 get_memory_read_packet_size (void)
1012 {
1013 long size = get_memory_packet_size (&memory_read_packet_config);
1014
1015 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1016 extra buffer size argument before the memory read size can be
1017 increased beyond this. */
1018 if (size > get_remote_packet_size ())
1019 size = get_remote_packet_size ();
1020 return size;
1021 }
1022
1023 \f
1024 /* Generic configuration support for packets the stub optionally
1025 supports. Allows the user to specify the use of the packet as well
1026 as allowing GDB to auto-detect support in the remote stub. */
1027
1028 enum packet_support
1029 {
1030 PACKET_SUPPORT_UNKNOWN = 0,
1031 PACKET_ENABLE,
1032 PACKET_DISABLE
1033 };
1034
1035 struct packet_config
1036 {
1037 const char *name;
1038 const char *title;
1039 enum auto_boolean detect;
1040 enum packet_support support;
1041 };
1042
1043 /* Analyze a packet's return value and update the packet config
1044 accordingly. */
1045
1046 enum packet_result
1047 {
1048 PACKET_ERROR,
1049 PACKET_OK,
1050 PACKET_UNKNOWN
1051 };
1052
1053 static void
1054 update_packet_config (struct packet_config *config)
1055 {
1056 switch (config->detect)
1057 {
1058 case AUTO_BOOLEAN_TRUE:
1059 config->support = PACKET_ENABLE;
1060 break;
1061 case AUTO_BOOLEAN_FALSE:
1062 config->support = PACKET_DISABLE;
1063 break;
1064 case AUTO_BOOLEAN_AUTO:
1065 config->support = PACKET_SUPPORT_UNKNOWN;
1066 break;
1067 }
1068 }
1069
1070 static void
1071 show_packet_config_cmd (struct packet_config *config)
1072 {
1073 char *support = "internal-error";
1074
1075 switch (config->support)
1076 {
1077 case PACKET_ENABLE:
1078 support = "enabled";
1079 break;
1080 case PACKET_DISABLE:
1081 support = "disabled";
1082 break;
1083 case PACKET_SUPPORT_UNKNOWN:
1084 support = "unknown";
1085 break;
1086 }
1087 switch (config->detect)
1088 {
1089 case AUTO_BOOLEAN_AUTO:
1090 printf_filtered (_("Support for the `%s' packet "
1091 "is auto-detected, currently %s.\n"),
1092 config->name, support);
1093 break;
1094 case AUTO_BOOLEAN_TRUE:
1095 case AUTO_BOOLEAN_FALSE:
1096 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1097 config->name, support);
1098 break;
1099 }
1100 }
1101
1102 static void
1103 add_packet_config_cmd (struct packet_config *config, const char *name,
1104 const char *title, int legacy)
1105 {
1106 char *set_doc;
1107 char *show_doc;
1108 char *cmd_name;
1109
1110 config->name = name;
1111 config->title = title;
1112 config->detect = AUTO_BOOLEAN_AUTO;
1113 config->support = PACKET_SUPPORT_UNKNOWN;
1114 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1115 name, title);
1116 show_doc = xstrprintf ("Show current use of remote "
1117 "protocol `%s' (%s) packet",
1118 name, title);
1119 /* set/show TITLE-packet {auto,on,off} */
1120 cmd_name = xstrprintf ("%s-packet", title);
1121 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1122 &config->detect, set_doc,
1123 show_doc, NULL, /* help_doc */
1124 set_remote_protocol_packet_cmd,
1125 show_remote_protocol_packet_cmd,
1126 &remote_set_cmdlist, &remote_show_cmdlist);
1127 /* The command code copies the documentation strings. */
1128 xfree (set_doc);
1129 xfree (show_doc);
1130 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1131 if (legacy)
1132 {
1133 char *legacy_name;
1134
1135 legacy_name = xstrprintf ("%s-packet", name);
1136 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1137 &remote_set_cmdlist);
1138 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1139 &remote_show_cmdlist);
1140 }
1141 }
1142
1143 static enum packet_result
1144 packet_check_result (const char *buf)
1145 {
1146 if (buf[0] != '\0')
1147 {
1148 /* The stub recognized the packet request. Check that the
1149 operation succeeded. */
1150 if (buf[0] == 'E'
1151 && isxdigit (buf[1]) && isxdigit (buf[2])
1152 && buf[3] == '\0')
1153 /* "Enn" - definitly an error. */
1154 return PACKET_ERROR;
1155
1156 /* Always treat "E." as an error. This will be used for
1157 more verbose error messages, such as E.memtypes. */
1158 if (buf[0] == 'E' && buf[1] == '.')
1159 return PACKET_ERROR;
1160
1161 /* The packet may or may not be OK. Just assume it is. */
1162 return PACKET_OK;
1163 }
1164 else
1165 /* The stub does not support the packet. */
1166 return PACKET_UNKNOWN;
1167 }
1168
1169 static enum packet_result
1170 packet_ok (const char *buf, struct packet_config *config)
1171 {
1172 enum packet_result result;
1173
1174 result = packet_check_result (buf);
1175 switch (result)
1176 {
1177 case PACKET_OK:
1178 case PACKET_ERROR:
1179 /* The stub recognized the packet request. */
1180 switch (config->support)
1181 {
1182 case PACKET_SUPPORT_UNKNOWN:
1183 if (remote_debug)
1184 fprintf_unfiltered (gdb_stdlog,
1185 "Packet %s (%s) is supported\n",
1186 config->name, config->title);
1187 config->support = PACKET_ENABLE;
1188 break;
1189 case PACKET_DISABLE:
1190 internal_error (__FILE__, __LINE__,
1191 _("packet_ok: attempt to use a disabled packet"));
1192 break;
1193 case PACKET_ENABLE:
1194 break;
1195 }
1196 break;
1197 case PACKET_UNKNOWN:
1198 /* The stub does not support the packet. */
1199 switch (config->support)
1200 {
1201 case PACKET_ENABLE:
1202 if (config->detect == AUTO_BOOLEAN_AUTO)
1203 /* If the stub previously indicated that the packet was
1204 supported then there is a protocol error.. */
1205 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1206 config->name, config->title);
1207 else
1208 /* The user set it wrong. */
1209 error (_("Enabled packet %s (%s) not recognized by stub"),
1210 config->name, config->title);
1211 break;
1212 case PACKET_SUPPORT_UNKNOWN:
1213 if (remote_debug)
1214 fprintf_unfiltered (gdb_stdlog,
1215 "Packet %s (%s) is NOT supported\n",
1216 config->name, config->title);
1217 config->support = PACKET_DISABLE;
1218 break;
1219 case PACKET_DISABLE:
1220 break;
1221 }
1222 break;
1223 }
1224
1225 return result;
1226 }
1227
1228 enum {
1229 PACKET_vCont = 0,
1230 PACKET_X,
1231 PACKET_qSymbol,
1232 PACKET_P,
1233 PACKET_p,
1234 PACKET_Z0,
1235 PACKET_Z1,
1236 PACKET_Z2,
1237 PACKET_Z3,
1238 PACKET_Z4,
1239 PACKET_vFile_open,
1240 PACKET_vFile_pread,
1241 PACKET_vFile_pwrite,
1242 PACKET_vFile_close,
1243 PACKET_vFile_unlink,
1244 PACKET_vFile_readlink,
1245 PACKET_qXfer_auxv,
1246 PACKET_qXfer_features,
1247 PACKET_qXfer_libraries,
1248 PACKET_qXfer_libraries_svr4,
1249 PACKET_qXfer_memory_map,
1250 PACKET_qXfer_spu_read,
1251 PACKET_qXfer_spu_write,
1252 PACKET_qXfer_osdata,
1253 PACKET_qXfer_threads,
1254 PACKET_qXfer_statictrace_read,
1255 PACKET_qXfer_traceframe_info,
1256 PACKET_qGetTIBAddr,
1257 PACKET_qGetTLSAddr,
1258 PACKET_qSupported,
1259 PACKET_QPassSignals,
1260 PACKET_qSearch_memory,
1261 PACKET_vAttach,
1262 PACKET_vRun,
1263 PACKET_QStartNoAckMode,
1264 PACKET_vKill,
1265 PACKET_qXfer_siginfo_read,
1266 PACKET_qXfer_siginfo_write,
1267 PACKET_qAttached,
1268 PACKET_ConditionalTracepoints,
1269 PACKET_ConditionalBreakpoints,
1270 PACKET_FastTracepoints,
1271 PACKET_StaticTracepoints,
1272 PACKET_InstallInTrace,
1273 PACKET_bc,
1274 PACKET_bs,
1275 PACKET_TracepointSource,
1276 PACKET_QAllow,
1277 PACKET_qXfer_fdpic,
1278 PACKET_QDisableRandomization,
1279 PACKET_MAX
1280 };
1281
1282 static struct packet_config remote_protocol_packets[PACKET_MAX];
1283
1284 static void
1285 set_remote_protocol_packet_cmd (char *args, int from_tty,
1286 struct cmd_list_element *c)
1287 {
1288 struct packet_config *packet;
1289
1290 for (packet = remote_protocol_packets;
1291 packet < &remote_protocol_packets[PACKET_MAX];
1292 packet++)
1293 {
1294 if (&packet->detect == c->var)
1295 {
1296 update_packet_config (packet);
1297 return;
1298 }
1299 }
1300 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1301 c->name);
1302 }
1303
1304 static void
1305 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1306 struct cmd_list_element *c,
1307 const char *value)
1308 {
1309 struct packet_config *packet;
1310
1311 for (packet = remote_protocol_packets;
1312 packet < &remote_protocol_packets[PACKET_MAX];
1313 packet++)
1314 {
1315 if (&packet->detect == c->var)
1316 {
1317 show_packet_config_cmd (packet);
1318 return;
1319 }
1320 }
1321 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1322 c->name);
1323 }
1324
1325 /* Should we try one of the 'Z' requests? */
1326
1327 enum Z_packet_type
1328 {
1329 Z_PACKET_SOFTWARE_BP,
1330 Z_PACKET_HARDWARE_BP,
1331 Z_PACKET_WRITE_WP,
1332 Z_PACKET_READ_WP,
1333 Z_PACKET_ACCESS_WP,
1334 NR_Z_PACKET_TYPES
1335 };
1336
1337 /* For compatibility with older distributions. Provide a ``set remote
1338 Z-packet ...'' command that updates all the Z packet types. */
1339
1340 static enum auto_boolean remote_Z_packet_detect;
1341
1342 static void
1343 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1344 struct cmd_list_element *c)
1345 {
1346 int i;
1347
1348 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1349 {
1350 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1351 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1352 }
1353 }
1354
1355 static void
1356 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c,
1358 const char *value)
1359 {
1360 int i;
1361
1362 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1363 {
1364 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1365 }
1366 }
1367
1368 /* Should we try the 'ThreadInfo' query packet?
1369
1370 This variable (NOT available to the user: auto-detect only!)
1371 determines whether GDB will use the new, simpler "ThreadInfo"
1372 query or the older, more complex syntax for thread queries.
1373 This is an auto-detect variable (set to true at each connect,
1374 and set to false when the target fails to recognize it). */
1375
1376 static int use_threadinfo_query;
1377 static int use_threadextra_query;
1378
1379 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1380 static struct async_signal_handler *sigint_remote_twice_token;
1381 static struct async_signal_handler *sigint_remote_token;
1382
1383 \f
1384 /* Asynchronous signal handle registered as event loop source for
1385 when we have pending events ready to be passed to the core. */
1386
1387 static struct async_event_handler *remote_async_inferior_event_token;
1388
1389 /* Asynchronous signal handle registered as event loop source for when
1390 the remote sent us a %Stop notification. The registered callback
1391 will do a vStopped sequence to pull the rest of the events out of
1392 the remote side into our event queue. */
1393
1394 static struct async_event_handler *remote_async_get_pending_events_token;
1395 \f
1396
1397 static ptid_t magic_null_ptid;
1398 static ptid_t not_sent_ptid;
1399 static ptid_t any_thread_ptid;
1400
1401 /* These are the threads which we last sent to the remote system. The
1402 TID member will be -1 for all or -2 for not sent yet. */
1403
1404 static ptid_t general_thread;
1405 static ptid_t continue_thread;
1406
1407 /* This the traceframe which we last selected on the remote system.
1408 It will be -1 if no traceframe is selected. */
1409 static int remote_traceframe_number = -1;
1410
1411 /* Find out if the stub attached to PID (and hence GDB should offer to
1412 detach instead of killing it when bailing out). */
1413
1414 static int
1415 remote_query_attached (int pid)
1416 {
1417 struct remote_state *rs = get_remote_state ();
1418
1419 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1420 return 0;
1421
1422 if (remote_multi_process_p (rs))
1423 sprintf (rs->buf, "qAttached:%x", pid);
1424 else
1425 sprintf (rs->buf, "qAttached");
1426
1427 putpkt (rs->buf);
1428 getpkt (&rs->buf, &rs->buf_size, 0);
1429
1430 switch (packet_ok (rs->buf,
1431 &remote_protocol_packets[PACKET_qAttached]))
1432 {
1433 case PACKET_OK:
1434 if (strcmp (rs->buf, "1") == 0)
1435 return 1;
1436 break;
1437 case PACKET_ERROR:
1438 warning (_("Remote failure reply: %s"), rs->buf);
1439 break;
1440 case PACKET_UNKNOWN:
1441 break;
1442 }
1443
1444 return 0;
1445 }
1446
1447 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1448 has been invented by GDB, instead of reported by the target. Since
1449 we can be connected to a remote system before before knowing about
1450 any inferior, mark the target with execution when we find the first
1451 inferior. If ATTACHED is 1, then we had just attached to this
1452 inferior. If it is 0, then we just created this inferior. If it
1453 is -1, then try querying the remote stub to find out if it had
1454 attached to the inferior or not. */
1455
1456 static struct inferior *
1457 remote_add_inferior (int fake_pid_p, int pid, int attached)
1458 {
1459 struct inferior *inf;
1460
1461 /* Check whether this process we're learning about is to be
1462 considered attached, or if is to be considered to have been
1463 spawned by the stub. */
1464 if (attached == -1)
1465 attached = remote_query_attached (pid);
1466
1467 if (gdbarch_has_global_solist (target_gdbarch))
1468 {
1469 /* If the target shares code across all inferiors, then every
1470 attach adds a new inferior. */
1471 inf = add_inferior (pid);
1472
1473 /* ... and every inferior is bound to the same program space.
1474 However, each inferior may still have its own address
1475 space. */
1476 inf->aspace = maybe_new_address_space ();
1477 inf->pspace = current_program_space;
1478 }
1479 else
1480 {
1481 /* In the traditional debugging scenario, there's a 1-1 match
1482 between program/address spaces. We simply bind the inferior
1483 to the program space's address space. */
1484 inf = current_inferior ();
1485 inferior_appeared (inf, pid);
1486 }
1487
1488 inf->attach_flag = attached;
1489 inf->fake_pid_p = fake_pid_p;
1490
1491 return inf;
1492 }
1493
1494 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1495 according to RUNNING. */
1496
1497 static void
1498 remote_add_thread (ptid_t ptid, int running)
1499 {
1500 add_thread (ptid);
1501
1502 set_executing (ptid, running);
1503 set_running (ptid, running);
1504 }
1505
1506 /* Come here when we learn about a thread id from the remote target.
1507 It may be the first time we hear about such thread, so take the
1508 opportunity to add it to GDB's thread list. In case this is the
1509 first time we're noticing its corresponding inferior, add it to
1510 GDB's inferior list as well. */
1511
1512 static void
1513 remote_notice_new_inferior (ptid_t currthread, int running)
1514 {
1515 /* If this is a new thread, add it to GDB's thread list.
1516 If we leave it up to WFI to do this, bad things will happen. */
1517
1518 if (in_thread_list (currthread) && is_exited (currthread))
1519 {
1520 /* We're seeing an event on a thread id we knew had exited.
1521 This has to be a new thread reusing the old id. Add it. */
1522 remote_add_thread (currthread, running);
1523 return;
1524 }
1525
1526 if (!in_thread_list (currthread))
1527 {
1528 struct inferior *inf = NULL;
1529 int pid = ptid_get_pid (currthread);
1530
1531 if (ptid_is_pid (inferior_ptid)
1532 && pid == ptid_get_pid (inferior_ptid))
1533 {
1534 /* inferior_ptid has no thread member yet. This can happen
1535 with the vAttach -> remote_wait,"TAAthread:" path if the
1536 stub doesn't support qC. This is the first stop reported
1537 after an attach, so this is the main thread. Update the
1538 ptid in the thread list. */
1539 if (in_thread_list (pid_to_ptid (pid)))
1540 thread_change_ptid (inferior_ptid, currthread);
1541 else
1542 {
1543 remote_add_thread (currthread, running);
1544 inferior_ptid = currthread;
1545 }
1546 return;
1547 }
1548
1549 if (ptid_equal (magic_null_ptid, inferior_ptid))
1550 {
1551 /* inferior_ptid is not set yet. This can happen with the
1552 vRun -> remote_wait,"TAAthread:" path if the stub
1553 doesn't support qC. This is the first stop reported
1554 after an attach, so this is the main thread. Update the
1555 ptid in the thread list. */
1556 thread_change_ptid (inferior_ptid, currthread);
1557 return;
1558 }
1559
1560 /* When connecting to a target remote, or to a target
1561 extended-remote which already was debugging an inferior, we
1562 may not know about it yet. Add it before adding its child
1563 thread, so notifications are emitted in a sensible order. */
1564 if (!in_inferior_list (ptid_get_pid (currthread)))
1565 {
1566 struct remote_state *rs = get_remote_state ();
1567 int fake_pid_p = !remote_multi_process_p (rs);
1568
1569 inf = remote_add_inferior (fake_pid_p,
1570 ptid_get_pid (currthread), -1);
1571 }
1572
1573 /* This is really a new thread. Add it. */
1574 remote_add_thread (currthread, running);
1575
1576 /* If we found a new inferior, let the common code do whatever
1577 it needs to with it (e.g., read shared libraries, insert
1578 breakpoints). */
1579 if (inf != NULL)
1580 notice_new_inferior (currthread, running, 0);
1581 }
1582 }
1583
1584 /* Return the private thread data, creating it if necessary. */
1585
1586 struct private_thread_info *
1587 demand_private_info (ptid_t ptid)
1588 {
1589 struct thread_info *info = find_thread_ptid (ptid);
1590
1591 gdb_assert (info);
1592
1593 if (!info->private)
1594 {
1595 info->private = xmalloc (sizeof (*(info->private)));
1596 info->private_dtor = free_private_thread_info;
1597 info->private->core = -1;
1598 info->private->extra = 0;
1599 }
1600
1601 return info->private;
1602 }
1603
1604 /* Call this function as a result of
1605 1) A halt indication (T packet) containing a thread id
1606 2) A direct query of currthread
1607 3) Successful execution of set thread */
1608
1609 static void
1610 record_currthread (ptid_t currthread)
1611 {
1612 general_thread = currthread;
1613 }
1614
1615 static char *last_pass_packet;
1616
1617 /* If 'QPassSignals' is supported, tell the remote stub what signals
1618 it can simply pass through to the inferior without reporting. */
1619
1620 static void
1621 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1622 {
1623 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1624 {
1625 char *pass_packet, *p;
1626 int count = 0, i;
1627
1628 gdb_assert (numsigs < 256);
1629 for (i = 0; i < numsigs; i++)
1630 {
1631 if (pass_signals[i])
1632 count++;
1633 }
1634 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1635 strcpy (pass_packet, "QPassSignals:");
1636 p = pass_packet + strlen (pass_packet);
1637 for (i = 0; i < numsigs; i++)
1638 {
1639 if (pass_signals[i])
1640 {
1641 if (i >= 16)
1642 *p++ = tohex (i >> 4);
1643 *p++ = tohex (i & 15);
1644 if (count)
1645 *p++ = ';';
1646 else
1647 break;
1648 count--;
1649 }
1650 }
1651 *p = 0;
1652 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 char *buf = rs->buf;
1656
1657 putpkt (pass_packet);
1658 getpkt (&rs->buf, &rs->buf_size, 0);
1659 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1660 if (last_pass_packet)
1661 xfree (last_pass_packet);
1662 last_pass_packet = pass_packet;
1663 }
1664 else
1665 xfree (pass_packet);
1666 }
1667 }
1668
1669 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1670 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1671 thread. If GEN is set, set the general thread, if not, then set
1672 the step/continue thread. */
1673 static void
1674 set_thread (struct ptid ptid, int gen)
1675 {
1676 struct remote_state *rs = get_remote_state ();
1677 ptid_t state = gen ? general_thread : continue_thread;
1678 char *buf = rs->buf;
1679 char *endbuf = rs->buf + get_remote_packet_size ();
1680
1681 if (ptid_equal (state, ptid))
1682 return;
1683
1684 *buf++ = 'H';
1685 *buf++ = gen ? 'g' : 'c';
1686 if (ptid_equal (ptid, magic_null_ptid))
1687 xsnprintf (buf, endbuf - buf, "0");
1688 else if (ptid_equal (ptid, any_thread_ptid))
1689 xsnprintf (buf, endbuf - buf, "0");
1690 else if (ptid_equal (ptid, minus_one_ptid))
1691 xsnprintf (buf, endbuf - buf, "-1");
1692 else
1693 write_ptid (buf, endbuf, ptid);
1694 putpkt (rs->buf);
1695 getpkt (&rs->buf, &rs->buf_size, 0);
1696 if (gen)
1697 general_thread = ptid;
1698 else
1699 continue_thread = ptid;
1700 }
1701
1702 static void
1703 set_general_thread (struct ptid ptid)
1704 {
1705 set_thread (ptid, 1);
1706 }
1707
1708 static void
1709 set_continue_thread (struct ptid ptid)
1710 {
1711 set_thread (ptid, 0);
1712 }
1713
1714 /* Change the remote current process. Which thread within the process
1715 ends up selected isn't important, as long as it is the same process
1716 as what INFERIOR_PTID points to.
1717
1718 This comes from that fact that there is no explicit notion of
1719 "selected process" in the protocol. The selected process for
1720 general operations is the process the selected general thread
1721 belongs to. */
1722
1723 static void
1724 set_general_process (void)
1725 {
1726 struct remote_state *rs = get_remote_state ();
1727
1728 /* If the remote can't handle multiple processes, don't bother. */
1729 if (!rs->extended || !remote_multi_process_p (rs))
1730 return;
1731
1732 /* We only need to change the remote current thread if it's pointing
1733 at some other process. */
1734 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1735 set_general_thread (inferior_ptid);
1736 }
1737
1738 \f
1739 /* Return nonzero if the thread PTID is still alive on the remote
1740 system. */
1741
1742 static int
1743 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1744 {
1745 struct remote_state *rs = get_remote_state ();
1746 char *p, *endp;
1747
1748 if (ptid_equal (ptid, magic_null_ptid))
1749 /* The main thread is always alive. */
1750 return 1;
1751
1752 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1753 /* The main thread is always alive. This can happen after a
1754 vAttach, if the remote side doesn't support
1755 multi-threading. */
1756 return 1;
1757
1758 p = rs->buf;
1759 endp = rs->buf + get_remote_packet_size ();
1760
1761 *p++ = 'T';
1762 write_ptid (p, endp, ptid);
1763
1764 putpkt (rs->buf);
1765 getpkt (&rs->buf, &rs->buf_size, 0);
1766 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1767 }
1768
1769 /* About these extended threadlist and threadinfo packets. They are
1770 variable length packets but, the fields within them are often fixed
1771 length. They are redundent enough to send over UDP as is the
1772 remote protocol in general. There is a matching unit test module
1773 in libstub. */
1774
1775 #define OPAQUETHREADBYTES 8
1776
1777 /* a 64 bit opaque identifier */
1778 typedef unsigned char threadref[OPAQUETHREADBYTES];
1779
1780 /* WARNING: This threadref data structure comes from the remote O.S.,
1781 libstub protocol encoding, and remote.c. It is not particularly
1782 changable. */
1783
1784 /* Right now, the internal structure is int. We want it to be bigger.
1785 Plan to fix this. */
1786
1787 typedef int gdb_threadref; /* Internal GDB thread reference. */
1788
1789 /* gdb_ext_thread_info is an internal GDB data structure which is
1790 equivalent to the reply of the remote threadinfo packet. */
1791
1792 struct gdb_ext_thread_info
1793 {
1794 threadref threadid; /* External form of thread reference. */
1795 int active; /* Has state interesting to GDB?
1796 regs, stack. */
1797 char display[256]; /* Brief state display, name,
1798 blocked/suspended. */
1799 char shortname[32]; /* To be used to name threads. */
1800 char more_display[256]; /* Long info, statistics, queue depth,
1801 whatever. */
1802 };
1803
1804 /* The volume of remote transfers can be limited by submitting
1805 a mask containing bits specifying the desired information.
1806 Use a union of these values as the 'selection' parameter to
1807 get_thread_info. FIXME: Make these TAG names more thread specific. */
1808
1809 #define TAG_THREADID 1
1810 #define TAG_EXISTS 2
1811 #define TAG_DISPLAY 4
1812 #define TAG_THREADNAME 8
1813 #define TAG_MOREDISPLAY 16
1814
1815 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1816
1817 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1818
1819 static char *unpack_nibble (char *buf, int *val);
1820
1821 static char *pack_nibble (char *buf, int nibble);
1822
1823 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1824
1825 static char *unpack_byte (char *buf, int *value);
1826
1827 static char *pack_int (char *buf, int value);
1828
1829 static char *unpack_int (char *buf, int *value);
1830
1831 static char *unpack_string (char *src, char *dest, int length);
1832
1833 static char *pack_threadid (char *pkt, threadref *id);
1834
1835 static char *unpack_threadid (char *inbuf, threadref *id);
1836
1837 void int_to_threadref (threadref *id, int value);
1838
1839 static int threadref_to_int (threadref *ref);
1840
1841 static void copy_threadref (threadref *dest, threadref *src);
1842
1843 static int threadmatch (threadref *dest, threadref *src);
1844
1845 static char *pack_threadinfo_request (char *pkt, int mode,
1846 threadref *id);
1847
1848 static int remote_unpack_thread_info_response (char *pkt,
1849 threadref *expectedref,
1850 struct gdb_ext_thread_info
1851 *info);
1852
1853
1854 static int remote_get_threadinfo (threadref *threadid,
1855 int fieldset, /*TAG mask */
1856 struct gdb_ext_thread_info *info);
1857
1858 static char *pack_threadlist_request (char *pkt, int startflag,
1859 int threadcount,
1860 threadref *nextthread);
1861
1862 static int parse_threadlist_response (char *pkt,
1863 int result_limit,
1864 threadref *original_echo,
1865 threadref *resultlist,
1866 int *doneflag);
1867
1868 static int remote_get_threadlist (int startflag,
1869 threadref *nextthread,
1870 int result_limit,
1871 int *done,
1872 int *result_count,
1873 threadref *threadlist);
1874
1875 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1876
1877 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1878 void *context, int looplimit);
1879
1880 static int remote_newthread_step (threadref *ref, void *context);
1881
1882
1883 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1884 buffer we're allowed to write to. Returns
1885 BUF+CHARACTERS_WRITTEN. */
1886
1887 static char *
1888 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1889 {
1890 int pid, tid;
1891 struct remote_state *rs = get_remote_state ();
1892
1893 if (remote_multi_process_p (rs))
1894 {
1895 pid = ptid_get_pid (ptid);
1896 if (pid < 0)
1897 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1898 else
1899 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1900 }
1901 tid = ptid_get_tid (ptid);
1902 if (tid < 0)
1903 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1904 else
1905 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1906
1907 return buf;
1908 }
1909
1910 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1911 passed the last parsed char. Returns null_ptid on error. */
1912
1913 static ptid_t
1914 read_ptid (char *buf, char **obuf)
1915 {
1916 char *p = buf;
1917 char *pp;
1918 ULONGEST pid = 0, tid = 0;
1919
1920 if (*p == 'p')
1921 {
1922 /* Multi-process ptid. */
1923 pp = unpack_varlen_hex (p + 1, &pid);
1924 if (*pp != '.')
1925 error (_("invalid remote ptid: %s"), p);
1926
1927 p = pp;
1928 pp = unpack_varlen_hex (p + 1, &tid);
1929 if (obuf)
1930 *obuf = pp;
1931 return ptid_build (pid, 0, tid);
1932 }
1933
1934 /* No multi-process. Just a tid. */
1935 pp = unpack_varlen_hex (p, &tid);
1936
1937 /* Since the stub is not sending a process id, then default to
1938 what's in inferior_ptid, unless it's null at this point. If so,
1939 then since there's no way to know the pid of the reported
1940 threads, use the magic number. */
1941 if (ptid_equal (inferior_ptid, null_ptid))
1942 pid = ptid_get_pid (magic_null_ptid);
1943 else
1944 pid = ptid_get_pid (inferior_ptid);
1945
1946 if (obuf)
1947 *obuf = pp;
1948 return ptid_build (pid, 0, tid);
1949 }
1950
1951 /* Encode 64 bits in 16 chars of hex. */
1952
1953 static const char hexchars[] = "0123456789abcdef";
1954
1955 static int
1956 ishex (int ch, int *val)
1957 {
1958 if ((ch >= 'a') && (ch <= 'f'))
1959 {
1960 *val = ch - 'a' + 10;
1961 return 1;
1962 }
1963 if ((ch >= 'A') && (ch <= 'F'))
1964 {
1965 *val = ch - 'A' + 10;
1966 return 1;
1967 }
1968 if ((ch >= '0') && (ch <= '9'))
1969 {
1970 *val = ch - '0';
1971 return 1;
1972 }
1973 return 0;
1974 }
1975
1976 static int
1977 stubhex (int ch)
1978 {
1979 if (ch >= 'a' && ch <= 'f')
1980 return ch - 'a' + 10;
1981 if (ch >= '0' && ch <= '9')
1982 return ch - '0';
1983 if (ch >= 'A' && ch <= 'F')
1984 return ch - 'A' + 10;
1985 return -1;
1986 }
1987
1988 static int
1989 stub_unpack_int (char *buff, int fieldlength)
1990 {
1991 int nibble;
1992 int retval = 0;
1993
1994 while (fieldlength)
1995 {
1996 nibble = stubhex (*buff++);
1997 retval |= nibble;
1998 fieldlength--;
1999 if (fieldlength)
2000 retval = retval << 4;
2001 }
2002 return retval;
2003 }
2004
2005 char *
2006 unpack_varlen_hex (char *buff, /* packet to parse */
2007 ULONGEST *result)
2008 {
2009 int nibble;
2010 ULONGEST retval = 0;
2011
2012 while (ishex (*buff, &nibble))
2013 {
2014 buff++;
2015 retval = retval << 4;
2016 retval |= nibble & 0x0f;
2017 }
2018 *result = retval;
2019 return buff;
2020 }
2021
2022 static char *
2023 unpack_nibble (char *buf, int *val)
2024 {
2025 *val = fromhex (*buf++);
2026 return buf;
2027 }
2028
2029 static char *
2030 pack_nibble (char *buf, int nibble)
2031 {
2032 *buf++ = hexchars[(nibble & 0x0f)];
2033 return buf;
2034 }
2035
2036 static char *
2037 pack_hex_byte (char *pkt, int byte)
2038 {
2039 *pkt++ = hexchars[(byte >> 4) & 0xf];
2040 *pkt++ = hexchars[(byte & 0xf)];
2041 return pkt;
2042 }
2043
2044 static char *
2045 unpack_byte (char *buf, int *value)
2046 {
2047 *value = stub_unpack_int (buf, 2);
2048 return buf + 2;
2049 }
2050
2051 static char *
2052 pack_int (char *buf, int value)
2053 {
2054 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2055 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2056 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2057 buf = pack_hex_byte (buf, (value & 0xff));
2058 return buf;
2059 }
2060
2061 static char *
2062 unpack_int (char *buf, int *value)
2063 {
2064 *value = stub_unpack_int (buf, 8);
2065 return buf + 8;
2066 }
2067
2068 #if 0 /* Currently unused, uncomment when needed. */
2069 static char *pack_string (char *pkt, char *string);
2070
2071 static char *
2072 pack_string (char *pkt, char *string)
2073 {
2074 char ch;
2075 int len;
2076
2077 len = strlen (string);
2078 if (len > 200)
2079 len = 200; /* Bigger than most GDB packets, junk??? */
2080 pkt = pack_hex_byte (pkt, len);
2081 while (len-- > 0)
2082 {
2083 ch = *string++;
2084 if ((ch == '\0') || (ch == '#'))
2085 ch = '*'; /* Protect encapsulation. */
2086 *pkt++ = ch;
2087 }
2088 return pkt;
2089 }
2090 #endif /* 0 (unused) */
2091
2092 static char *
2093 unpack_string (char *src, char *dest, int length)
2094 {
2095 while (length--)
2096 *dest++ = *src++;
2097 *dest = '\0';
2098 return src;
2099 }
2100
2101 static char *
2102 pack_threadid (char *pkt, threadref *id)
2103 {
2104 char *limit;
2105 unsigned char *altid;
2106
2107 altid = (unsigned char *) id;
2108 limit = pkt + BUF_THREAD_ID_SIZE;
2109 while (pkt < limit)
2110 pkt = pack_hex_byte (pkt, *altid++);
2111 return pkt;
2112 }
2113
2114
2115 static char *
2116 unpack_threadid (char *inbuf, threadref *id)
2117 {
2118 char *altref;
2119 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2120 int x, y;
2121
2122 altref = (char *) id;
2123
2124 while (inbuf < limit)
2125 {
2126 x = stubhex (*inbuf++);
2127 y = stubhex (*inbuf++);
2128 *altref++ = (x << 4) | y;
2129 }
2130 return inbuf;
2131 }
2132
2133 /* Externally, threadrefs are 64 bits but internally, they are still
2134 ints. This is due to a mismatch of specifications. We would like
2135 to use 64bit thread references internally. This is an adapter
2136 function. */
2137
2138 void
2139 int_to_threadref (threadref *id, int value)
2140 {
2141 unsigned char *scan;
2142
2143 scan = (unsigned char *) id;
2144 {
2145 int i = 4;
2146 while (i--)
2147 *scan++ = 0;
2148 }
2149 *scan++ = (value >> 24) & 0xff;
2150 *scan++ = (value >> 16) & 0xff;
2151 *scan++ = (value >> 8) & 0xff;
2152 *scan++ = (value & 0xff);
2153 }
2154
2155 static int
2156 threadref_to_int (threadref *ref)
2157 {
2158 int i, value = 0;
2159 unsigned char *scan;
2160
2161 scan = *ref;
2162 scan += 4;
2163 i = 4;
2164 while (i-- > 0)
2165 value = (value << 8) | ((*scan++) & 0xff);
2166 return value;
2167 }
2168
2169 static void
2170 copy_threadref (threadref *dest, threadref *src)
2171 {
2172 int i;
2173 unsigned char *csrc, *cdest;
2174
2175 csrc = (unsigned char *) src;
2176 cdest = (unsigned char *) dest;
2177 i = 8;
2178 while (i--)
2179 *cdest++ = *csrc++;
2180 }
2181
2182 static int
2183 threadmatch (threadref *dest, threadref *src)
2184 {
2185 /* Things are broken right now, so just assume we got a match. */
2186 #if 0
2187 unsigned char *srcp, *destp;
2188 int i, result;
2189 srcp = (char *) src;
2190 destp = (char *) dest;
2191
2192 result = 1;
2193 while (i-- > 0)
2194 result &= (*srcp++ == *destp++) ? 1 : 0;
2195 return result;
2196 #endif
2197 return 1;
2198 }
2199
2200 /*
2201 threadid:1, # always request threadid
2202 context_exists:2,
2203 display:4,
2204 unique_name:8,
2205 more_display:16
2206 */
2207
2208 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2209
2210 static char *
2211 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2212 {
2213 *pkt++ = 'q'; /* Info Query */
2214 *pkt++ = 'P'; /* process or thread info */
2215 pkt = pack_int (pkt, mode); /* mode */
2216 pkt = pack_threadid (pkt, id); /* threadid */
2217 *pkt = '\0'; /* terminate */
2218 return pkt;
2219 }
2220
2221 /* These values tag the fields in a thread info response packet. */
2222 /* Tagging the fields allows us to request specific fields and to
2223 add more fields as time goes by. */
2224
2225 #define TAG_THREADID 1 /* Echo the thread identifier. */
2226 #define TAG_EXISTS 2 /* Is this process defined enough to
2227 fetch registers and its stack? */
2228 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2229 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2230 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2231 the process. */
2232
2233 static int
2234 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2235 struct gdb_ext_thread_info *info)
2236 {
2237 struct remote_state *rs = get_remote_state ();
2238 int mask, length;
2239 int tag;
2240 threadref ref;
2241 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2242 int retval = 1;
2243
2244 /* info->threadid = 0; FIXME: implement zero_threadref. */
2245 info->active = 0;
2246 info->display[0] = '\0';
2247 info->shortname[0] = '\0';
2248 info->more_display[0] = '\0';
2249
2250 /* Assume the characters indicating the packet type have been
2251 stripped. */
2252 pkt = unpack_int (pkt, &mask); /* arg mask */
2253 pkt = unpack_threadid (pkt, &ref);
2254
2255 if (mask == 0)
2256 warning (_("Incomplete response to threadinfo request."));
2257 if (!threadmatch (&ref, expectedref))
2258 { /* This is an answer to a different request. */
2259 warning (_("ERROR RMT Thread info mismatch."));
2260 return 0;
2261 }
2262 copy_threadref (&info->threadid, &ref);
2263
2264 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2265
2266 /* Packets are terminated with nulls. */
2267 while ((pkt < limit) && mask && *pkt)
2268 {
2269 pkt = unpack_int (pkt, &tag); /* tag */
2270 pkt = unpack_byte (pkt, &length); /* length */
2271 if (!(tag & mask)) /* Tags out of synch with mask. */
2272 {
2273 warning (_("ERROR RMT: threadinfo tag mismatch."));
2274 retval = 0;
2275 break;
2276 }
2277 if (tag == TAG_THREADID)
2278 {
2279 if (length != 16)
2280 {
2281 warning (_("ERROR RMT: length of threadid is not 16."));
2282 retval = 0;
2283 break;
2284 }
2285 pkt = unpack_threadid (pkt, &ref);
2286 mask = mask & ~TAG_THREADID;
2287 continue;
2288 }
2289 if (tag == TAG_EXISTS)
2290 {
2291 info->active = stub_unpack_int (pkt, length);
2292 pkt += length;
2293 mask = mask & ~(TAG_EXISTS);
2294 if (length > 8)
2295 {
2296 warning (_("ERROR RMT: 'exists' length too long."));
2297 retval = 0;
2298 break;
2299 }
2300 continue;
2301 }
2302 if (tag == TAG_THREADNAME)
2303 {
2304 pkt = unpack_string (pkt, &info->shortname[0], length);
2305 mask = mask & ~TAG_THREADNAME;
2306 continue;
2307 }
2308 if (tag == TAG_DISPLAY)
2309 {
2310 pkt = unpack_string (pkt, &info->display[0], length);
2311 mask = mask & ~TAG_DISPLAY;
2312 continue;
2313 }
2314 if (tag == TAG_MOREDISPLAY)
2315 {
2316 pkt = unpack_string (pkt, &info->more_display[0], length);
2317 mask = mask & ~TAG_MOREDISPLAY;
2318 continue;
2319 }
2320 warning (_("ERROR RMT: unknown thread info tag."));
2321 break; /* Not a tag we know about. */
2322 }
2323 return retval;
2324 }
2325
2326 static int
2327 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2328 struct gdb_ext_thread_info *info)
2329 {
2330 struct remote_state *rs = get_remote_state ();
2331 int result;
2332
2333 pack_threadinfo_request (rs->buf, fieldset, threadid);
2334 putpkt (rs->buf);
2335 getpkt (&rs->buf, &rs->buf_size, 0);
2336
2337 if (rs->buf[0] == '\0')
2338 return 0;
2339
2340 result = remote_unpack_thread_info_response (rs->buf + 2,
2341 threadid, info);
2342 return result;
2343 }
2344
2345 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2346
2347 static char *
2348 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2349 threadref *nextthread)
2350 {
2351 *pkt++ = 'q'; /* info query packet */
2352 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2353 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2354 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2355 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2356 *pkt = '\0';
2357 return pkt;
2358 }
2359
2360 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2361
2362 static int
2363 parse_threadlist_response (char *pkt, int result_limit,
2364 threadref *original_echo, threadref *resultlist,
2365 int *doneflag)
2366 {
2367 struct remote_state *rs = get_remote_state ();
2368 char *limit;
2369 int count, resultcount, done;
2370
2371 resultcount = 0;
2372 /* Assume the 'q' and 'M chars have been stripped. */
2373 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2374 /* done parse past here */
2375 pkt = unpack_byte (pkt, &count); /* count field */
2376 pkt = unpack_nibble (pkt, &done);
2377 /* The first threadid is the argument threadid. */
2378 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2379 while ((count-- > 0) && (pkt < limit))
2380 {
2381 pkt = unpack_threadid (pkt, resultlist++);
2382 if (resultcount++ >= result_limit)
2383 break;
2384 }
2385 if (doneflag)
2386 *doneflag = done;
2387 return resultcount;
2388 }
2389
2390 static int
2391 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2392 int *done, int *result_count, threadref *threadlist)
2393 {
2394 struct remote_state *rs = get_remote_state ();
2395 static threadref echo_nextthread;
2396 int result = 1;
2397
2398 /* Trancate result limit to be smaller than the packet size. */
2399 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2400 >= get_remote_packet_size ())
2401 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2402
2403 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2404 putpkt (rs->buf);
2405 getpkt (&rs->buf, &rs->buf_size, 0);
2406
2407 if (*rs->buf == '\0')
2408 return 0;
2409 else
2410 *result_count =
2411 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2412 threadlist, done);
2413
2414 if (!threadmatch (&echo_nextthread, nextthread))
2415 {
2416 /* FIXME: This is a good reason to drop the packet. */
2417 /* Possably, there is a duplicate response. */
2418 /* Possabilities :
2419 retransmit immediatly - race conditions
2420 retransmit after timeout - yes
2421 exit
2422 wait for packet, then exit
2423 */
2424 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2425 return 0; /* I choose simply exiting. */
2426 }
2427 if (*result_count <= 0)
2428 {
2429 if (*done != 1)
2430 {
2431 warning (_("RMT ERROR : failed to get remote thread list."));
2432 result = 0;
2433 }
2434 return result; /* break; */
2435 }
2436 if (*result_count > result_limit)
2437 {
2438 *result_count = 0;
2439 warning (_("RMT ERROR: threadlist response longer than requested."));
2440 return 0;
2441 }
2442 return result;
2443 }
2444
2445 /* This is the interface between remote and threads, remotes upper
2446 interface. */
2447
2448 /* remote_find_new_threads retrieves the thread list and for each
2449 thread in the list, looks up the thread in GDB's internal list,
2450 adding the thread if it does not already exist. This involves
2451 getting partial thread lists from the remote target so, polling the
2452 quit_flag is required. */
2453
2454
2455 /* About this many threadisds fit in a packet. */
2456
2457 #define MAXTHREADLISTRESULTS 32
2458
2459 static int
2460 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2461 int looplimit)
2462 {
2463 int done, i, result_count;
2464 int startflag = 1;
2465 int result = 1;
2466 int loopcount = 0;
2467 static threadref nextthread;
2468 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2469
2470 done = 0;
2471 while (!done)
2472 {
2473 if (loopcount++ > looplimit)
2474 {
2475 result = 0;
2476 warning (_("Remote fetch threadlist -infinite loop-."));
2477 break;
2478 }
2479 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2480 &done, &result_count, resultthreadlist))
2481 {
2482 result = 0;
2483 break;
2484 }
2485 /* Clear for later iterations. */
2486 startflag = 0;
2487 /* Setup to resume next batch of thread references, set nextthread. */
2488 if (result_count >= 1)
2489 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2490 i = 0;
2491 while (result_count--)
2492 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2493 break;
2494 }
2495 return result;
2496 }
2497
2498 static int
2499 remote_newthread_step (threadref *ref, void *context)
2500 {
2501 int pid = ptid_get_pid (inferior_ptid);
2502 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2503
2504 if (!in_thread_list (ptid))
2505 add_thread (ptid);
2506 return 1; /* continue iterator */
2507 }
2508
2509 #define CRAZY_MAX_THREADS 1000
2510
2511 static ptid_t
2512 remote_current_thread (ptid_t oldpid)
2513 {
2514 struct remote_state *rs = get_remote_state ();
2515
2516 putpkt ("qC");
2517 getpkt (&rs->buf, &rs->buf_size, 0);
2518 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2519 return read_ptid (&rs->buf[2], NULL);
2520 else
2521 return oldpid;
2522 }
2523
2524 /* Find new threads for info threads command.
2525 * Original version, using John Metzler's thread protocol.
2526 */
2527
2528 static void
2529 remote_find_new_threads (void)
2530 {
2531 remote_threadlist_iterator (remote_newthread_step, 0,
2532 CRAZY_MAX_THREADS);
2533 }
2534
2535 #if defined(HAVE_LIBEXPAT)
2536
2537 typedef struct thread_item
2538 {
2539 ptid_t ptid;
2540 char *extra;
2541 int core;
2542 } thread_item_t;
2543 DEF_VEC_O(thread_item_t);
2544
2545 struct threads_parsing_context
2546 {
2547 VEC (thread_item_t) *items;
2548 };
2549
2550 static void
2551 start_thread (struct gdb_xml_parser *parser,
2552 const struct gdb_xml_element *element,
2553 void *user_data, VEC(gdb_xml_value_s) *attributes)
2554 {
2555 struct threads_parsing_context *data = user_data;
2556
2557 struct thread_item item;
2558 char *id;
2559 struct gdb_xml_value *attr;
2560
2561 id = xml_find_attribute (attributes, "id")->value;
2562 item.ptid = read_ptid (id, NULL);
2563
2564 attr = xml_find_attribute (attributes, "core");
2565 if (attr != NULL)
2566 item.core = *(ULONGEST *) attr->value;
2567 else
2568 item.core = -1;
2569
2570 item.extra = 0;
2571
2572 VEC_safe_push (thread_item_t, data->items, &item);
2573 }
2574
2575 static void
2576 end_thread (struct gdb_xml_parser *parser,
2577 const struct gdb_xml_element *element,
2578 void *user_data, const char *body_text)
2579 {
2580 struct threads_parsing_context *data = user_data;
2581
2582 if (body_text && *body_text)
2583 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2584 }
2585
2586 const struct gdb_xml_attribute thread_attributes[] = {
2587 { "id", GDB_XML_AF_NONE, NULL, NULL },
2588 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2589 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2590 };
2591
2592 const struct gdb_xml_element thread_children[] = {
2593 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2594 };
2595
2596 const struct gdb_xml_element threads_children[] = {
2597 { "thread", thread_attributes, thread_children,
2598 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2599 start_thread, end_thread },
2600 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2601 };
2602
2603 const struct gdb_xml_element threads_elements[] = {
2604 { "threads", NULL, threads_children,
2605 GDB_XML_EF_NONE, NULL, NULL },
2606 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2607 };
2608
2609 /* Discard the contents of the constructed thread info context. */
2610
2611 static void
2612 clear_threads_parsing_context (void *p)
2613 {
2614 struct threads_parsing_context *context = p;
2615 int i;
2616 struct thread_item *item;
2617
2618 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2619 xfree (item->extra);
2620
2621 VEC_free (thread_item_t, context->items);
2622 }
2623
2624 #endif
2625
2626 /*
2627 * Find all threads for info threads command.
2628 * Uses new thread protocol contributed by Cisco.
2629 * Falls back and attempts to use the older method (above)
2630 * if the target doesn't respond to the new method.
2631 */
2632
2633 static void
2634 remote_threads_info (struct target_ops *ops)
2635 {
2636 struct remote_state *rs = get_remote_state ();
2637 char *bufp;
2638 ptid_t new_thread;
2639
2640 if (remote_desc == 0) /* paranoia */
2641 error (_("Command can only be used when connected to the remote target."));
2642
2643 #if defined(HAVE_LIBEXPAT)
2644 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2645 {
2646 char *xml = target_read_stralloc (&current_target,
2647 TARGET_OBJECT_THREADS, NULL);
2648
2649 struct cleanup *back_to = make_cleanup (xfree, xml);
2650
2651 if (xml && *xml)
2652 {
2653 struct threads_parsing_context context;
2654
2655 context.items = NULL;
2656 make_cleanup (clear_threads_parsing_context, &context);
2657
2658 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2659 threads_elements, xml, &context) == 0)
2660 {
2661 int i;
2662 struct thread_item *item;
2663
2664 for (i = 0;
2665 VEC_iterate (thread_item_t, context.items, i, item);
2666 ++i)
2667 {
2668 if (!ptid_equal (item->ptid, null_ptid))
2669 {
2670 struct private_thread_info *info;
2671 /* In non-stop mode, we assume new found threads
2672 are running until proven otherwise with a
2673 stop reply. In all-stop, we can only get
2674 here if all threads are stopped. */
2675 int running = non_stop ? 1 : 0;
2676
2677 remote_notice_new_inferior (item->ptid, running);
2678
2679 info = demand_private_info (item->ptid);
2680 info->core = item->core;
2681 info->extra = item->extra;
2682 item->extra = NULL;
2683 }
2684 }
2685 }
2686 }
2687
2688 do_cleanups (back_to);
2689 return;
2690 }
2691 #endif
2692
2693 if (use_threadinfo_query)
2694 {
2695 putpkt ("qfThreadInfo");
2696 getpkt (&rs->buf, &rs->buf_size, 0);
2697 bufp = rs->buf;
2698 if (bufp[0] != '\0') /* q packet recognized */
2699 {
2700 while (*bufp++ == 'm') /* reply contains one or more TID */
2701 {
2702 do
2703 {
2704 new_thread = read_ptid (bufp, &bufp);
2705 if (!ptid_equal (new_thread, null_ptid))
2706 {
2707 /* In non-stop mode, we assume new found threads
2708 are running until proven otherwise with a
2709 stop reply. In all-stop, we can only get
2710 here if all threads are stopped. */
2711 int running = non_stop ? 1 : 0;
2712
2713 remote_notice_new_inferior (new_thread, running);
2714 }
2715 }
2716 while (*bufp++ == ','); /* comma-separated list */
2717 putpkt ("qsThreadInfo");
2718 getpkt (&rs->buf, &rs->buf_size, 0);
2719 bufp = rs->buf;
2720 }
2721 return; /* done */
2722 }
2723 }
2724
2725 /* Only qfThreadInfo is supported in non-stop mode. */
2726 if (non_stop)
2727 return;
2728
2729 /* Else fall back to old method based on jmetzler protocol. */
2730 use_threadinfo_query = 0;
2731 remote_find_new_threads ();
2732 return;
2733 }
2734
2735 /*
2736 * Collect a descriptive string about the given thread.
2737 * The target may say anything it wants to about the thread
2738 * (typically info about its blocked / runnable state, name, etc.).
2739 * This string will appear in the info threads display.
2740 *
2741 * Optional: targets are not required to implement this function.
2742 */
2743
2744 static char *
2745 remote_threads_extra_info (struct thread_info *tp)
2746 {
2747 struct remote_state *rs = get_remote_state ();
2748 int result;
2749 int set;
2750 threadref id;
2751 struct gdb_ext_thread_info threadinfo;
2752 static char display_buf[100]; /* arbitrary... */
2753 int n = 0; /* position in display_buf */
2754
2755 if (remote_desc == 0) /* paranoia */
2756 internal_error (__FILE__, __LINE__,
2757 _("remote_threads_extra_info"));
2758
2759 if (ptid_equal (tp->ptid, magic_null_ptid)
2760 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2761 /* This is the main thread which was added by GDB. The remote
2762 server doesn't know about it. */
2763 return NULL;
2764
2765 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2766 {
2767 struct thread_info *info = find_thread_ptid (tp->ptid);
2768
2769 if (info && info->private)
2770 return info->private->extra;
2771 else
2772 return NULL;
2773 }
2774
2775 if (use_threadextra_query)
2776 {
2777 char *b = rs->buf;
2778 char *endb = rs->buf + get_remote_packet_size ();
2779
2780 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2781 b += strlen (b);
2782 write_ptid (b, endb, tp->ptid);
2783
2784 putpkt (rs->buf);
2785 getpkt (&rs->buf, &rs->buf_size, 0);
2786 if (rs->buf[0] != 0)
2787 {
2788 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2789 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2790 display_buf [result] = '\0';
2791 return display_buf;
2792 }
2793 }
2794
2795 /* If the above query fails, fall back to the old method. */
2796 use_threadextra_query = 0;
2797 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2798 | TAG_MOREDISPLAY | TAG_DISPLAY;
2799 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2800 if (remote_get_threadinfo (&id, set, &threadinfo))
2801 if (threadinfo.active)
2802 {
2803 if (*threadinfo.shortname)
2804 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2805 " Name: %s,", threadinfo.shortname);
2806 if (*threadinfo.display)
2807 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2808 " State: %s,", threadinfo.display);
2809 if (*threadinfo.more_display)
2810 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2811 " Priority: %s", threadinfo.more_display);
2812
2813 if (n > 0)
2814 {
2815 /* For purely cosmetic reasons, clear up trailing commas. */
2816 if (',' == display_buf[n-1])
2817 display_buf[n-1] = ' ';
2818 return display_buf;
2819 }
2820 }
2821 return NULL;
2822 }
2823 \f
2824
2825 static int
2826 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2827 struct static_tracepoint_marker *marker)
2828 {
2829 struct remote_state *rs = get_remote_state ();
2830 char *p = rs->buf;
2831
2832 sprintf (p, "qTSTMat:");
2833 p += strlen (p);
2834 p += hexnumstr (p, addr);
2835 putpkt (rs->buf);
2836 getpkt (&rs->buf, &rs->buf_size, 0);
2837 p = rs->buf;
2838
2839 if (*p == 'E')
2840 error (_("Remote failure reply: %s"), p);
2841
2842 if (*p++ == 'm')
2843 {
2844 parse_static_tracepoint_marker_definition (p, &p, marker);
2845 return 1;
2846 }
2847
2848 return 0;
2849 }
2850
2851 static void
2852 free_current_marker (void *arg)
2853 {
2854 struct static_tracepoint_marker **marker_p = arg;
2855
2856 if (*marker_p != NULL)
2857 {
2858 release_static_tracepoint_marker (*marker_p);
2859 xfree (*marker_p);
2860 }
2861 else
2862 *marker_p = NULL;
2863 }
2864
2865 static VEC(static_tracepoint_marker_p) *
2866 remote_static_tracepoint_markers_by_strid (const char *strid)
2867 {
2868 struct remote_state *rs = get_remote_state ();
2869 VEC(static_tracepoint_marker_p) *markers = NULL;
2870 struct static_tracepoint_marker *marker = NULL;
2871 struct cleanup *old_chain;
2872 char *p;
2873
2874 /* Ask for a first packet of static tracepoint marker
2875 definition. */
2876 putpkt ("qTfSTM");
2877 getpkt (&rs->buf, &rs->buf_size, 0);
2878 p = rs->buf;
2879 if (*p == 'E')
2880 error (_("Remote failure reply: %s"), p);
2881
2882 old_chain = make_cleanup (free_current_marker, &marker);
2883
2884 while (*p++ == 'm')
2885 {
2886 if (marker == NULL)
2887 marker = XCNEW (struct static_tracepoint_marker);
2888
2889 do
2890 {
2891 parse_static_tracepoint_marker_definition (p, &p, marker);
2892
2893 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2894 {
2895 VEC_safe_push (static_tracepoint_marker_p,
2896 markers, marker);
2897 marker = NULL;
2898 }
2899 else
2900 {
2901 release_static_tracepoint_marker (marker);
2902 memset (marker, 0, sizeof (*marker));
2903 }
2904 }
2905 while (*p++ == ','); /* comma-separated list */
2906 /* Ask for another packet of static tracepoint definition. */
2907 putpkt ("qTsSTM");
2908 getpkt (&rs->buf, &rs->buf_size, 0);
2909 p = rs->buf;
2910 }
2911
2912 do_cleanups (old_chain);
2913 return markers;
2914 }
2915
2916 \f
2917 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2918
2919 static ptid_t
2920 remote_get_ada_task_ptid (long lwp, long thread)
2921 {
2922 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2923 }
2924 \f
2925
2926 /* Restart the remote side; this is an extended protocol operation. */
2927
2928 static void
2929 extended_remote_restart (void)
2930 {
2931 struct remote_state *rs = get_remote_state ();
2932
2933 /* Send the restart command; for reasons I don't understand the
2934 remote side really expects a number after the "R". */
2935 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2936 putpkt (rs->buf);
2937
2938 remote_fileio_reset ();
2939 }
2940 \f
2941 /* Clean up connection to a remote debugger. */
2942
2943 static void
2944 remote_close (int quitting)
2945 {
2946 if (remote_desc == NULL)
2947 return; /* already closed */
2948
2949 /* Make sure we leave stdin registered in the event loop, and we
2950 don't leave the async SIGINT signal handler installed. */
2951 remote_terminal_ours ();
2952
2953 serial_close (remote_desc);
2954 remote_desc = NULL;
2955
2956 /* We don't have a connection to the remote stub anymore. Get rid
2957 of all the inferiors and their threads we were controlling.
2958 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2959 will be unable to find the thread corresponding to (pid, 0, 0). */
2960 inferior_ptid = null_ptid;
2961 discard_all_inferiors ();
2962
2963 /* We're no longer interested in any of these events. */
2964 discard_pending_stop_replies (-1);
2965
2966 if (remote_async_inferior_event_token)
2967 delete_async_event_handler (&remote_async_inferior_event_token);
2968 if (remote_async_get_pending_events_token)
2969 delete_async_event_handler (&remote_async_get_pending_events_token);
2970 }
2971
2972 /* Query the remote side for the text, data and bss offsets. */
2973
2974 static void
2975 get_offsets (void)
2976 {
2977 struct remote_state *rs = get_remote_state ();
2978 char *buf;
2979 char *ptr;
2980 int lose, num_segments = 0, do_sections, do_segments;
2981 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2982 struct section_offsets *offs;
2983 struct symfile_segment_data *data;
2984
2985 if (symfile_objfile == NULL)
2986 return;
2987
2988 putpkt ("qOffsets");
2989 getpkt (&rs->buf, &rs->buf_size, 0);
2990 buf = rs->buf;
2991
2992 if (buf[0] == '\000')
2993 return; /* Return silently. Stub doesn't support
2994 this command. */
2995 if (buf[0] == 'E')
2996 {
2997 warning (_("Remote failure reply: %s"), buf);
2998 return;
2999 }
3000
3001 /* Pick up each field in turn. This used to be done with scanf, but
3002 scanf will make trouble if CORE_ADDR size doesn't match
3003 conversion directives correctly. The following code will work
3004 with any size of CORE_ADDR. */
3005 text_addr = data_addr = bss_addr = 0;
3006 ptr = buf;
3007 lose = 0;
3008
3009 if (strncmp (ptr, "Text=", 5) == 0)
3010 {
3011 ptr += 5;
3012 /* Don't use strtol, could lose on big values. */
3013 while (*ptr && *ptr != ';')
3014 text_addr = (text_addr << 4) + fromhex (*ptr++);
3015
3016 if (strncmp (ptr, ";Data=", 6) == 0)
3017 {
3018 ptr += 6;
3019 while (*ptr && *ptr != ';')
3020 data_addr = (data_addr << 4) + fromhex (*ptr++);
3021 }
3022 else
3023 lose = 1;
3024
3025 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3026 {
3027 ptr += 5;
3028 while (*ptr && *ptr != ';')
3029 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3030
3031 if (bss_addr != data_addr)
3032 warning (_("Target reported unsupported offsets: %s"), buf);
3033 }
3034 else
3035 lose = 1;
3036 }
3037 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3038 {
3039 ptr += 8;
3040 /* Don't use strtol, could lose on big values. */
3041 while (*ptr && *ptr != ';')
3042 text_addr = (text_addr << 4) + fromhex (*ptr++);
3043 num_segments = 1;
3044
3045 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3046 {
3047 ptr += 9;
3048 while (*ptr && *ptr != ';')
3049 data_addr = (data_addr << 4) + fromhex (*ptr++);
3050 num_segments++;
3051 }
3052 }
3053 else
3054 lose = 1;
3055
3056 if (lose)
3057 error (_("Malformed response to offset query, %s"), buf);
3058 else if (*ptr != '\0')
3059 warning (_("Target reported unsupported offsets: %s"), buf);
3060
3061 offs = ((struct section_offsets *)
3062 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3063 memcpy (offs, symfile_objfile->section_offsets,
3064 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3065
3066 data = get_symfile_segment_data (symfile_objfile->obfd);
3067 do_segments = (data != NULL);
3068 do_sections = num_segments == 0;
3069
3070 if (num_segments > 0)
3071 {
3072 segments[0] = text_addr;
3073 segments[1] = data_addr;
3074 }
3075 /* If we have two segments, we can still try to relocate everything
3076 by assuming that the .text and .data offsets apply to the whole
3077 text and data segments. Convert the offsets given in the packet
3078 to base addresses for symfile_map_offsets_to_segments. */
3079 else if (data && data->num_segments == 2)
3080 {
3081 segments[0] = data->segment_bases[0] + text_addr;
3082 segments[1] = data->segment_bases[1] + data_addr;
3083 num_segments = 2;
3084 }
3085 /* If the object file has only one segment, assume that it is text
3086 rather than data; main programs with no writable data are rare,
3087 but programs with no code are useless. Of course the code might
3088 have ended up in the data segment... to detect that we would need
3089 the permissions here. */
3090 else if (data && data->num_segments == 1)
3091 {
3092 segments[0] = data->segment_bases[0] + text_addr;
3093 num_segments = 1;
3094 }
3095 /* There's no way to relocate by segment. */
3096 else
3097 do_segments = 0;
3098
3099 if (do_segments)
3100 {
3101 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3102 offs, num_segments, segments);
3103
3104 if (ret == 0 && !do_sections)
3105 error (_("Can not handle qOffsets TextSeg "
3106 "response with this symbol file"));
3107
3108 if (ret > 0)
3109 do_sections = 0;
3110 }
3111
3112 if (data)
3113 free_symfile_segment_data (data);
3114
3115 if (do_sections)
3116 {
3117 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3118
3119 /* This is a temporary kludge to force data and bss to use the
3120 same offsets because that's what nlmconv does now. The real
3121 solution requires changes to the stub and remote.c that I
3122 don't have time to do right now. */
3123
3124 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3125 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3126 }
3127
3128 objfile_relocate (symfile_objfile, offs);
3129 }
3130
3131 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3132 threads we know are stopped already. This is used during the
3133 initial remote connection in non-stop mode --- threads that are
3134 reported as already being stopped are left stopped. */
3135
3136 static int
3137 set_stop_requested_callback (struct thread_info *thread, void *data)
3138 {
3139 /* If we have a stop reply for this thread, it must be stopped. */
3140 if (peek_stop_reply (thread->ptid))
3141 set_stop_requested (thread->ptid, 1);
3142
3143 return 0;
3144 }
3145
3146 /* Send interrupt_sequence to remote target. */
3147 static void
3148 send_interrupt_sequence (void)
3149 {
3150 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3151 serial_write (remote_desc, "\x03", 1);
3152 else if (interrupt_sequence_mode == interrupt_sequence_break)
3153 serial_send_break (remote_desc);
3154 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3155 {
3156 serial_send_break (remote_desc);
3157 serial_write (remote_desc, "g", 1);
3158 }
3159 else
3160 internal_error (__FILE__, __LINE__,
3161 _("Invalid value for interrupt_sequence_mode: %s."),
3162 interrupt_sequence_mode);
3163 }
3164
3165 /* Query the remote target for which is the current thread/process,
3166 add it to our tables, and update INFERIOR_PTID. The caller is
3167 responsible for setting the state such that the remote end is ready
3168 to return the current thread. */
3169
3170 static void
3171 add_current_inferior_and_thread (void)
3172 {
3173 struct remote_state *rs = get_remote_state ();
3174 int fake_pid_p = 0;
3175 ptid_t ptid;
3176
3177 inferior_ptid = null_ptid;
3178
3179 /* Now, if we have thread information, update inferior_ptid. */
3180 ptid = remote_current_thread (inferior_ptid);
3181 if (!ptid_equal (ptid, null_ptid))
3182 {
3183 if (!remote_multi_process_p (rs))
3184 fake_pid_p = 1;
3185
3186 inferior_ptid = ptid;
3187 }
3188 else
3189 {
3190 /* Without this, some commands which require an active target
3191 (such as kill) won't work. This variable serves (at least)
3192 double duty as both the pid of the target process (if it has
3193 such), and as a flag indicating that a target is active. */
3194 inferior_ptid = magic_null_ptid;
3195 fake_pid_p = 1;
3196 }
3197
3198 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3199
3200 /* Add the main thread. */
3201 add_thread_silent (inferior_ptid);
3202 }
3203
3204 static void
3205 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3206 {
3207 struct remote_state *rs = get_remote_state ();
3208 struct packet_config *noack_config;
3209 char *wait_status = NULL;
3210
3211 immediate_quit++; /* Allow user to interrupt it. */
3212
3213 if (interrupt_on_connect)
3214 send_interrupt_sequence ();
3215
3216 /* Ack any packet which the remote side has already sent. */
3217 serial_write (remote_desc, "+", 1);
3218
3219 /* The first packet we send to the target is the optional "supported
3220 packets" request. If the target can answer this, it will tell us
3221 which later probes to skip. */
3222 remote_query_supported ();
3223
3224 /* If the stub wants to get a QAllow, compose one and send it. */
3225 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3226 remote_set_permissions ();
3227
3228 /* Next, we possibly activate noack mode.
3229
3230 If the QStartNoAckMode packet configuration is set to AUTO,
3231 enable noack mode if the stub reported a wish for it with
3232 qSupported.
3233
3234 If set to TRUE, then enable noack mode even if the stub didn't
3235 report it in qSupported. If the stub doesn't reply OK, the
3236 session ends with an error.
3237
3238 If FALSE, then don't activate noack mode, regardless of what the
3239 stub claimed should be the default with qSupported. */
3240
3241 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3242
3243 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3244 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3245 && noack_config->support == PACKET_ENABLE))
3246 {
3247 putpkt ("QStartNoAckMode");
3248 getpkt (&rs->buf, &rs->buf_size, 0);
3249 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3250 rs->noack_mode = 1;
3251 }
3252
3253 if (extended_p)
3254 {
3255 /* Tell the remote that we are using the extended protocol. */
3256 putpkt ("!");
3257 getpkt (&rs->buf, &rs->buf_size, 0);
3258 }
3259
3260 /* Next, if the target can specify a description, read it. We do
3261 this before anything involving memory or registers. */
3262 target_find_description ();
3263
3264 /* Next, now that we know something about the target, update the
3265 address spaces in the program spaces. */
3266 update_address_spaces ();
3267
3268 /* On OSs where the list of libraries is global to all
3269 processes, we fetch them early. */
3270 if (gdbarch_has_global_solist (target_gdbarch))
3271 solib_add (NULL, from_tty, target, auto_solib_add);
3272
3273 if (non_stop)
3274 {
3275 if (!rs->non_stop_aware)
3276 error (_("Non-stop mode requested, but remote "
3277 "does not support non-stop"));
3278
3279 putpkt ("QNonStop:1");
3280 getpkt (&rs->buf, &rs->buf_size, 0);
3281
3282 if (strcmp (rs->buf, "OK") != 0)
3283 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3284
3285 /* Find about threads and processes the stub is already
3286 controlling. We default to adding them in the running state.
3287 The '?' query below will then tell us about which threads are
3288 stopped. */
3289 remote_threads_info (target);
3290 }
3291 else if (rs->non_stop_aware)
3292 {
3293 /* Don't assume that the stub can operate in all-stop mode.
3294 Request it explicitely. */
3295 putpkt ("QNonStop:0");
3296 getpkt (&rs->buf, &rs->buf_size, 0);
3297
3298 if (strcmp (rs->buf, "OK") != 0)
3299 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3300 }
3301
3302 /* Check whether the target is running now. */
3303 putpkt ("?");
3304 getpkt (&rs->buf, &rs->buf_size, 0);
3305
3306 if (!non_stop)
3307 {
3308 ptid_t ptid;
3309 int fake_pid_p = 0;
3310 struct inferior *inf;
3311
3312 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3313 {
3314 if (!extended_p)
3315 error (_("The target is not running (try extended-remote?)"));
3316
3317 /* We're connected, but not running. Drop out before we
3318 call start_remote. */
3319 return;
3320 }
3321 else
3322 {
3323 /* Save the reply for later. */
3324 wait_status = alloca (strlen (rs->buf) + 1);
3325 strcpy (wait_status, rs->buf);
3326 }
3327
3328 /* Let the stub know that we want it to return the thread. */
3329 set_continue_thread (minus_one_ptid);
3330
3331 add_current_inferior_and_thread ();
3332
3333 /* init_wait_for_inferior should be called before get_offsets in order
3334 to manage `inserted' flag in bp loc in a correct state.
3335 breakpoint_init_inferior, called from init_wait_for_inferior, set
3336 `inserted' flag to 0, while before breakpoint_re_set, called from
3337 start_remote, set `inserted' flag to 1. In the initialization of
3338 inferior, breakpoint_init_inferior should be called first, and then
3339 breakpoint_re_set can be called. If this order is broken, state of
3340 `inserted' flag is wrong, and cause some problems on breakpoint
3341 manipulation. */
3342 init_wait_for_inferior ();
3343
3344 get_offsets (); /* Get text, data & bss offsets. */
3345
3346 /* If we could not find a description using qXfer, and we know
3347 how to do it some other way, try again. This is not
3348 supported for non-stop; it could be, but it is tricky if
3349 there are no stopped threads when we connect. */
3350 if (remote_read_description_p (target)
3351 && gdbarch_target_desc (target_gdbarch) == NULL)
3352 {
3353 target_clear_description ();
3354 target_find_description ();
3355 }
3356
3357 /* Use the previously fetched status. */
3358 gdb_assert (wait_status != NULL);
3359 strcpy (rs->buf, wait_status);
3360 rs->cached_wait_status = 1;
3361
3362 immediate_quit--;
3363 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3364 }
3365 else
3366 {
3367 /* Clear WFI global state. Do this before finding about new
3368 threads and inferiors, and setting the current inferior.
3369 Otherwise we would clear the proceed status of the current
3370 inferior when we want its stop_soon state to be preserved
3371 (see notice_new_inferior). */
3372 init_wait_for_inferior ();
3373
3374 /* In non-stop, we will either get an "OK", meaning that there
3375 are no stopped threads at this time; or, a regular stop
3376 reply. In the latter case, there may be more than one thread
3377 stopped --- we pull them all out using the vStopped
3378 mechanism. */
3379 if (strcmp (rs->buf, "OK") != 0)
3380 {
3381 struct stop_reply *stop_reply;
3382 struct cleanup *old_chain;
3383
3384 stop_reply = stop_reply_xmalloc ();
3385 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3386
3387 remote_parse_stop_reply (rs->buf, stop_reply);
3388 discard_cleanups (old_chain);
3389
3390 /* get_pending_stop_replies acks this one, and gets the rest
3391 out. */
3392 pending_stop_reply = stop_reply;
3393 remote_get_pending_stop_replies ();
3394
3395 /* Make sure that threads that were stopped remain
3396 stopped. */
3397 iterate_over_threads (set_stop_requested_callback, NULL);
3398 }
3399
3400 if (target_can_async_p ())
3401 target_async (inferior_event_handler, 0);
3402
3403 if (thread_count () == 0)
3404 {
3405 if (!extended_p)
3406 error (_("The target is not running (try extended-remote?)"));
3407
3408 /* We're connected, but not running. Drop out before we
3409 call start_remote. */
3410 return;
3411 }
3412
3413 /* Let the stub know that we want it to return the thread. */
3414
3415 /* Force the stub to choose a thread. */
3416 set_general_thread (null_ptid);
3417
3418 /* Query it. */
3419 inferior_ptid = remote_current_thread (minus_one_ptid);
3420 if (ptid_equal (inferior_ptid, minus_one_ptid))
3421 error (_("remote didn't report the current thread in non-stop mode"));
3422
3423 get_offsets (); /* Get text, data & bss offsets. */
3424
3425 /* In non-stop mode, any cached wait status will be stored in
3426 the stop reply queue. */
3427 gdb_assert (wait_status == NULL);
3428
3429 /* Report all signals during attach/startup. */
3430 remote_pass_signals (0, NULL);
3431 }
3432
3433 /* If we connected to a live target, do some additional setup. */
3434 if (target_has_execution)
3435 {
3436 if (exec_bfd) /* No use without an exec file. */
3437 remote_check_symbols (symfile_objfile);
3438 }
3439
3440 /* Possibly the target has been engaged in a trace run started
3441 previously; find out where things are at. */
3442 if (remote_get_trace_status (current_trace_status ()) != -1)
3443 {
3444 struct uploaded_tp *uploaded_tps = NULL;
3445 struct uploaded_tsv *uploaded_tsvs = NULL;
3446
3447 if (current_trace_status ()->running)
3448 printf_filtered (_("Trace is already running on the target.\n"));
3449
3450 /* Get trace state variables first, they may be checked when
3451 parsing uploaded commands. */
3452
3453 remote_upload_trace_state_variables (&uploaded_tsvs);
3454
3455 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3456
3457 remote_upload_tracepoints (&uploaded_tps);
3458
3459 merge_uploaded_tracepoints (&uploaded_tps);
3460 }
3461
3462 /* If breakpoints are global, insert them now. */
3463 if (gdbarch_has_global_breakpoints (target_gdbarch)
3464 && breakpoints_always_inserted_mode ())
3465 insert_breakpoints ();
3466 }
3467
3468 /* Open a connection to a remote debugger.
3469 NAME is the filename used for communication. */
3470
3471 static void
3472 remote_open (char *name, int from_tty)
3473 {
3474 remote_open_1 (name, from_tty, &remote_ops, 0);
3475 }
3476
3477 /* Open a connection to a remote debugger using the extended
3478 remote gdb protocol. NAME is the filename used for communication. */
3479
3480 static void
3481 extended_remote_open (char *name, int from_tty)
3482 {
3483 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3484 }
3485
3486 /* Generic code for opening a connection to a remote target. */
3487
3488 static void
3489 init_all_packet_configs (void)
3490 {
3491 int i;
3492
3493 for (i = 0; i < PACKET_MAX; i++)
3494 update_packet_config (&remote_protocol_packets[i]);
3495 }
3496
3497 /* Symbol look-up. */
3498
3499 static void
3500 remote_check_symbols (struct objfile *objfile)
3501 {
3502 struct remote_state *rs = get_remote_state ();
3503 char *msg, *reply, *tmp;
3504 struct minimal_symbol *sym;
3505 int end;
3506
3507 /* The remote side has no concept of inferiors that aren't running
3508 yet, it only knows about running processes. If we're connected
3509 but our current inferior is not running, we should not invite the
3510 remote target to request symbol lookups related to its
3511 (unrelated) current process. */
3512 if (!target_has_execution)
3513 return;
3514
3515 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3516 return;
3517
3518 /* Make sure the remote is pointing at the right process. Note
3519 there's no way to select "no process". */
3520 set_general_process ();
3521
3522 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3523 because we need both at the same time. */
3524 msg = alloca (get_remote_packet_size ());
3525
3526 /* Invite target to request symbol lookups. */
3527
3528 putpkt ("qSymbol::");
3529 getpkt (&rs->buf, &rs->buf_size, 0);
3530 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3531 reply = rs->buf;
3532
3533 while (strncmp (reply, "qSymbol:", 8) == 0)
3534 {
3535 tmp = &reply[8];
3536 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3537 msg[end] = '\0';
3538 sym = lookup_minimal_symbol (msg, NULL, NULL);
3539 if (sym == NULL)
3540 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3541 else
3542 {
3543 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3544 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3545
3546 /* If this is a function address, return the start of code
3547 instead of any data function descriptor. */
3548 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3549 sym_addr,
3550 &current_target);
3551
3552 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3553 phex_nz (sym_addr, addr_size), &reply[8]);
3554 }
3555
3556 putpkt (msg);
3557 getpkt (&rs->buf, &rs->buf_size, 0);
3558 reply = rs->buf;
3559 }
3560 }
3561
3562 static struct serial *
3563 remote_serial_open (char *name)
3564 {
3565 static int udp_warning = 0;
3566
3567 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3568 of in ser-tcp.c, because it is the remote protocol assuming that the
3569 serial connection is reliable and not the serial connection promising
3570 to be. */
3571 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3572 {
3573 warning (_("The remote protocol may be unreliable over UDP.\n"
3574 "Some events may be lost, rendering further debugging "
3575 "impossible."));
3576 udp_warning = 1;
3577 }
3578
3579 return serial_open (name);
3580 }
3581
3582 /* Inform the target of our permission settings. The permission flags
3583 work without this, but if the target knows the settings, it can do
3584 a couple things. First, it can add its own check, to catch cases
3585 that somehow manage to get by the permissions checks in target
3586 methods. Second, if the target is wired to disallow particular
3587 settings (for instance, a system in the field that is not set up to
3588 be able to stop at a breakpoint), it can object to any unavailable
3589 permissions. */
3590
3591 void
3592 remote_set_permissions (void)
3593 {
3594 struct remote_state *rs = get_remote_state ();
3595
3596 sprintf (rs->buf, "QAllow:"
3597 "WriteReg:%x;WriteMem:%x;"
3598 "InsertBreak:%x;InsertTrace:%x;"
3599 "InsertFastTrace:%x;Stop:%x",
3600 may_write_registers, may_write_memory,
3601 may_insert_breakpoints, may_insert_tracepoints,
3602 may_insert_fast_tracepoints, may_stop);
3603 putpkt (rs->buf);
3604 getpkt (&rs->buf, &rs->buf_size, 0);
3605
3606 /* If the target didn't like the packet, warn the user. Do not try
3607 to undo the user's settings, that would just be maddening. */
3608 if (strcmp (rs->buf, "OK") != 0)
3609 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3610 }
3611
3612 /* This type describes each known response to the qSupported
3613 packet. */
3614 struct protocol_feature
3615 {
3616 /* The name of this protocol feature. */
3617 const char *name;
3618
3619 /* The default for this protocol feature. */
3620 enum packet_support default_support;
3621
3622 /* The function to call when this feature is reported, or after
3623 qSupported processing if the feature is not supported.
3624 The first argument points to this structure. The second
3625 argument indicates whether the packet requested support be
3626 enabled, disabled, or probed (or the default, if this function
3627 is being called at the end of processing and this feature was
3628 not reported). The third argument may be NULL; if not NULL, it
3629 is a NUL-terminated string taken from the packet following
3630 this feature's name and an equals sign. */
3631 void (*func) (const struct protocol_feature *, enum packet_support,
3632 const char *);
3633
3634 /* The corresponding packet for this feature. Only used if
3635 FUNC is remote_supported_packet. */
3636 int packet;
3637 };
3638
3639 static void
3640 remote_supported_packet (const struct protocol_feature *feature,
3641 enum packet_support support,
3642 const char *argument)
3643 {
3644 if (argument)
3645 {
3646 warning (_("Remote qSupported response supplied an unexpected value for"
3647 " \"%s\"."), feature->name);
3648 return;
3649 }
3650
3651 if (remote_protocol_packets[feature->packet].support
3652 == PACKET_SUPPORT_UNKNOWN)
3653 remote_protocol_packets[feature->packet].support = support;
3654 }
3655
3656 static void
3657 remote_packet_size (const struct protocol_feature *feature,
3658 enum packet_support support, const char *value)
3659 {
3660 struct remote_state *rs = get_remote_state ();
3661
3662 int packet_size;
3663 char *value_end;
3664
3665 if (support != PACKET_ENABLE)
3666 return;
3667
3668 if (value == NULL || *value == '\0')
3669 {
3670 warning (_("Remote target reported \"%s\" without a size."),
3671 feature->name);
3672 return;
3673 }
3674
3675 errno = 0;
3676 packet_size = strtol (value, &value_end, 16);
3677 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3678 {
3679 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3680 feature->name, value);
3681 return;
3682 }
3683
3684 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3685 {
3686 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3687 packet_size, MAX_REMOTE_PACKET_SIZE);
3688 packet_size = MAX_REMOTE_PACKET_SIZE;
3689 }
3690
3691 /* Record the new maximum packet size. */
3692 rs->explicit_packet_size = packet_size;
3693 }
3694
3695 static void
3696 remote_multi_process_feature (const struct protocol_feature *feature,
3697 enum packet_support support, const char *value)
3698 {
3699 struct remote_state *rs = get_remote_state ();
3700
3701 rs->multi_process_aware = (support == PACKET_ENABLE);
3702 }
3703
3704 static void
3705 remote_non_stop_feature (const struct protocol_feature *feature,
3706 enum packet_support support, const char *value)
3707 {
3708 struct remote_state *rs = get_remote_state ();
3709
3710 rs->non_stop_aware = (support == PACKET_ENABLE);
3711 }
3712
3713 static void
3714 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3715 enum packet_support support,
3716 const char *value)
3717 {
3718 struct remote_state *rs = get_remote_state ();
3719
3720 rs->cond_tracepoints = (support == PACKET_ENABLE);
3721 }
3722
3723 static void
3724 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3725 enum packet_support support,
3726 const char *value)
3727 {
3728 struct remote_state *rs = get_remote_state ();
3729
3730 rs->cond_breakpoints = (support == PACKET_ENABLE);
3731 }
3732
3733 static void
3734 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3735 enum packet_support support,
3736 const char *value)
3737 {
3738 struct remote_state *rs = get_remote_state ();
3739
3740 rs->fast_tracepoints = (support == PACKET_ENABLE);
3741 }
3742
3743 static void
3744 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3745 enum packet_support support,
3746 const char *value)
3747 {
3748 struct remote_state *rs = get_remote_state ();
3749
3750 rs->static_tracepoints = (support == PACKET_ENABLE);
3751 }
3752
3753 static void
3754 remote_install_in_trace_feature (const struct protocol_feature *feature,
3755 enum packet_support support,
3756 const char *value)
3757 {
3758 struct remote_state *rs = get_remote_state ();
3759
3760 rs->install_in_trace = (support == PACKET_ENABLE);
3761 }
3762
3763 static void
3764 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3765 enum packet_support support,
3766 const char *value)
3767 {
3768 struct remote_state *rs = get_remote_state ();
3769
3770 rs->disconnected_tracing = (support == PACKET_ENABLE);
3771 }
3772
3773 static void
3774 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3775 enum packet_support support,
3776 const char *value)
3777 {
3778 struct remote_state *rs = get_remote_state ();
3779
3780 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3781 }
3782
3783 static void
3784 remote_string_tracing_feature (const struct protocol_feature *feature,
3785 enum packet_support support,
3786 const char *value)
3787 {
3788 struct remote_state *rs = get_remote_state ();
3789
3790 rs->string_tracing = (support == PACKET_ENABLE);
3791 }
3792
3793 static struct protocol_feature remote_protocol_features[] = {
3794 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3795 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3796 PACKET_qXfer_auxv },
3797 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3798 PACKET_qXfer_features },
3799 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3800 PACKET_qXfer_libraries },
3801 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3802 PACKET_qXfer_libraries_svr4 },
3803 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3804 PACKET_qXfer_memory_map },
3805 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3806 PACKET_qXfer_spu_read },
3807 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3808 PACKET_qXfer_spu_write },
3809 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3810 PACKET_qXfer_osdata },
3811 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3812 PACKET_qXfer_threads },
3813 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3814 PACKET_qXfer_traceframe_info },
3815 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3816 PACKET_QPassSignals },
3817 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3818 PACKET_QStartNoAckMode },
3819 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3820 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3821 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3822 PACKET_qXfer_siginfo_read },
3823 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3824 PACKET_qXfer_siginfo_write },
3825 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3826 PACKET_ConditionalTracepoints },
3827 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3828 PACKET_ConditionalBreakpoints },
3829 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3830 PACKET_FastTracepoints },
3831 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3832 PACKET_StaticTracepoints },
3833 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3834 PACKET_InstallInTrace},
3835 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3836 -1 },
3837 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3838 PACKET_bc },
3839 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3840 PACKET_bs },
3841 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3842 PACKET_TracepointSource },
3843 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3844 PACKET_QAllow },
3845 { "EnableDisableTracepoints", PACKET_DISABLE,
3846 remote_enable_disable_tracepoint_feature, -1 },
3847 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3848 PACKET_qXfer_fdpic },
3849 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3850 PACKET_QDisableRandomization },
3851 { "tracenz", PACKET_DISABLE,
3852 remote_string_tracing_feature, -1 },
3853 };
3854
3855 static char *remote_support_xml;
3856
3857 /* Register string appended to "xmlRegisters=" in qSupported query. */
3858
3859 void
3860 register_remote_support_xml (const char *xml)
3861 {
3862 #if defined(HAVE_LIBEXPAT)
3863 if (remote_support_xml == NULL)
3864 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3865 else
3866 {
3867 char *copy = xstrdup (remote_support_xml + 13);
3868 char *p = strtok (copy, ",");
3869
3870 do
3871 {
3872 if (strcmp (p, xml) == 0)
3873 {
3874 /* already there */
3875 xfree (copy);
3876 return;
3877 }
3878 }
3879 while ((p = strtok (NULL, ",")) != NULL);
3880 xfree (copy);
3881
3882 remote_support_xml = reconcat (remote_support_xml,
3883 remote_support_xml, ",", xml,
3884 (char *) NULL);
3885 }
3886 #endif
3887 }
3888
3889 static char *
3890 remote_query_supported_append (char *msg, const char *append)
3891 {
3892 if (msg)
3893 return reconcat (msg, msg, ";", append, (char *) NULL);
3894 else
3895 return xstrdup (append);
3896 }
3897
3898 static void
3899 remote_query_supported (void)
3900 {
3901 struct remote_state *rs = get_remote_state ();
3902 char *next;
3903 int i;
3904 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3905
3906 /* The packet support flags are handled differently for this packet
3907 than for most others. We treat an error, a disabled packet, and
3908 an empty response identically: any features which must be reported
3909 to be used will be automatically disabled. An empty buffer
3910 accomplishes this, since that is also the representation for a list
3911 containing no features. */
3912
3913 rs->buf[0] = 0;
3914 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3915 {
3916 char *q = NULL;
3917 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3918
3919 q = remote_query_supported_append (q, "multiprocess+");
3920
3921 if (remote_support_xml)
3922 q = remote_query_supported_append (q, remote_support_xml);
3923
3924 q = remote_query_supported_append (q, "qRelocInsn+");
3925
3926 q = reconcat (q, "qSupported:", q, (char *) NULL);
3927 putpkt (q);
3928
3929 do_cleanups (old_chain);
3930
3931 getpkt (&rs->buf, &rs->buf_size, 0);
3932
3933 /* If an error occured, warn, but do not return - just reset the
3934 buffer to empty and go on to disable features. */
3935 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3936 == PACKET_ERROR)
3937 {
3938 warning (_("Remote failure reply: %s"), rs->buf);
3939 rs->buf[0] = 0;
3940 }
3941 }
3942
3943 memset (seen, 0, sizeof (seen));
3944
3945 next = rs->buf;
3946 while (*next)
3947 {
3948 enum packet_support is_supported;
3949 char *p, *end, *name_end, *value;
3950
3951 /* First separate out this item from the rest of the packet. If
3952 there's another item after this, we overwrite the separator
3953 (terminated strings are much easier to work with). */
3954 p = next;
3955 end = strchr (p, ';');
3956 if (end == NULL)
3957 {
3958 end = p + strlen (p);
3959 next = end;
3960 }
3961 else
3962 {
3963 *end = '\0';
3964 next = end + 1;
3965
3966 if (end == p)
3967 {
3968 warning (_("empty item in \"qSupported\" response"));
3969 continue;
3970 }
3971 }
3972
3973 name_end = strchr (p, '=');
3974 if (name_end)
3975 {
3976 /* This is a name=value entry. */
3977 is_supported = PACKET_ENABLE;
3978 value = name_end + 1;
3979 *name_end = '\0';
3980 }
3981 else
3982 {
3983 value = NULL;
3984 switch (end[-1])
3985 {
3986 case '+':
3987 is_supported = PACKET_ENABLE;
3988 break;
3989
3990 case '-':
3991 is_supported = PACKET_DISABLE;
3992 break;
3993
3994 case '?':
3995 is_supported = PACKET_SUPPORT_UNKNOWN;
3996 break;
3997
3998 default:
3999 warning (_("unrecognized item \"%s\" "
4000 "in \"qSupported\" response"), p);
4001 continue;
4002 }
4003 end[-1] = '\0';
4004 }
4005
4006 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4007 if (strcmp (remote_protocol_features[i].name, p) == 0)
4008 {
4009 const struct protocol_feature *feature;
4010
4011 seen[i] = 1;
4012 feature = &remote_protocol_features[i];
4013 feature->func (feature, is_supported, value);
4014 break;
4015 }
4016 }
4017
4018 /* If we increased the packet size, make sure to increase the global
4019 buffer size also. We delay this until after parsing the entire
4020 qSupported packet, because this is the same buffer we were
4021 parsing. */
4022 if (rs->buf_size < rs->explicit_packet_size)
4023 {
4024 rs->buf_size = rs->explicit_packet_size;
4025 rs->buf = xrealloc (rs->buf, rs->buf_size);
4026 }
4027
4028 /* Handle the defaults for unmentioned features. */
4029 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4030 if (!seen[i])
4031 {
4032 const struct protocol_feature *feature;
4033
4034 feature = &remote_protocol_features[i];
4035 feature->func (feature, feature->default_support, NULL);
4036 }
4037 }
4038
4039
4040 static void
4041 remote_open_1 (char *name, int from_tty,
4042 struct target_ops *target, int extended_p)
4043 {
4044 struct remote_state *rs = get_remote_state ();
4045
4046 if (name == 0)
4047 error (_("To open a remote debug connection, you need to specify what\n"
4048 "serial device is attached to the remote system\n"
4049 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4050
4051 /* See FIXME above. */
4052 if (!target_async_permitted)
4053 wait_forever_enabled_p = 1;
4054
4055 /* If we're connected to a running target, target_preopen will kill it.
4056 But if we're connected to a target system with no running process,
4057 then we will still be connected when it returns. Ask this question
4058 first, before target_preopen has a chance to kill anything. */
4059 if (remote_desc != NULL && !have_inferiors ())
4060 {
4061 if (!from_tty
4062 || query (_("Already connected to a remote target. Disconnect? ")))
4063 pop_target ();
4064 else
4065 error (_("Still connected."));
4066 }
4067
4068 target_preopen (from_tty);
4069
4070 unpush_target (target);
4071
4072 /* This time without a query. If we were connected to an
4073 extended-remote target and target_preopen killed the running
4074 process, we may still be connected. If we are starting "target
4075 remote" now, the extended-remote target will not have been
4076 removed by unpush_target. */
4077 if (remote_desc != NULL && !have_inferiors ())
4078 pop_target ();
4079
4080 /* Make sure we send the passed signals list the next time we resume. */
4081 xfree (last_pass_packet);
4082 last_pass_packet = NULL;
4083
4084 remote_fileio_reset ();
4085 reopen_exec_file ();
4086 reread_symbols ();
4087
4088 remote_desc = remote_serial_open (name);
4089 if (!remote_desc)
4090 perror_with_name (name);
4091
4092 if (baud_rate != -1)
4093 {
4094 if (serial_setbaudrate (remote_desc, baud_rate))
4095 {
4096 /* The requested speed could not be set. Error out to
4097 top level after closing remote_desc. Take care to
4098 set remote_desc to NULL to avoid closing remote_desc
4099 more than once. */
4100 serial_close (remote_desc);
4101 remote_desc = NULL;
4102 perror_with_name (name);
4103 }
4104 }
4105
4106 serial_raw (remote_desc);
4107
4108 /* If there is something sitting in the buffer we might take it as a
4109 response to a command, which would be bad. */
4110 serial_flush_input (remote_desc);
4111
4112 if (from_tty)
4113 {
4114 puts_filtered ("Remote debugging using ");
4115 puts_filtered (name);
4116 puts_filtered ("\n");
4117 }
4118 push_target (target); /* Switch to using remote target now. */
4119
4120 /* Register extra event sources in the event loop. */
4121 remote_async_inferior_event_token
4122 = create_async_event_handler (remote_async_inferior_event_handler,
4123 NULL);
4124 remote_async_get_pending_events_token
4125 = create_async_event_handler (remote_async_get_pending_events_handler,
4126 NULL);
4127
4128 /* Reset the target state; these things will be queried either by
4129 remote_query_supported or as they are needed. */
4130 init_all_packet_configs ();
4131 rs->cached_wait_status = 0;
4132 rs->explicit_packet_size = 0;
4133 rs->noack_mode = 0;
4134 rs->multi_process_aware = 0;
4135 rs->extended = extended_p;
4136 rs->non_stop_aware = 0;
4137 rs->waiting_for_stop_reply = 0;
4138 rs->ctrlc_pending_p = 0;
4139
4140 general_thread = not_sent_ptid;
4141 continue_thread = not_sent_ptid;
4142 remote_traceframe_number = -1;
4143
4144 /* Probe for ability to use "ThreadInfo" query, as required. */
4145 use_threadinfo_query = 1;
4146 use_threadextra_query = 1;
4147
4148 if (target_async_permitted)
4149 {
4150 /* With this target we start out by owning the terminal. */
4151 remote_async_terminal_ours_p = 1;
4152
4153 /* FIXME: cagney/1999-09-23: During the initial connection it is
4154 assumed that the target is already ready and able to respond to
4155 requests. Unfortunately remote_start_remote() eventually calls
4156 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4157 around this. Eventually a mechanism that allows
4158 wait_for_inferior() to expect/get timeouts will be
4159 implemented. */
4160 wait_forever_enabled_p = 0;
4161 }
4162
4163 /* First delete any symbols previously loaded from shared libraries. */
4164 no_shared_libraries (NULL, 0);
4165
4166 /* Start afresh. */
4167 init_thread_list ();
4168
4169 /* Start the remote connection. If error() or QUIT, discard this
4170 target (we'd otherwise be in an inconsistent state) and then
4171 propogate the error on up the exception chain. This ensures that
4172 the caller doesn't stumble along blindly assuming that the
4173 function succeeded. The CLI doesn't have this problem but other
4174 UI's, such as MI do.
4175
4176 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4177 this function should return an error indication letting the
4178 caller restore the previous state. Unfortunately the command
4179 ``target remote'' is directly wired to this function making that
4180 impossible. On a positive note, the CLI side of this problem has
4181 been fixed - the function set_cmd_context() makes it possible for
4182 all the ``target ....'' commands to share a common callback
4183 function. See cli-dump.c. */
4184 {
4185 volatile struct gdb_exception ex;
4186
4187 TRY_CATCH (ex, RETURN_MASK_ALL)
4188 {
4189 remote_start_remote (from_tty, target, extended_p);
4190 }
4191 if (ex.reason < 0)
4192 {
4193 /* Pop the partially set up target - unless something else did
4194 already before throwing the exception. */
4195 if (remote_desc != NULL)
4196 pop_target ();
4197 if (target_async_permitted)
4198 wait_forever_enabled_p = 1;
4199 throw_exception (ex);
4200 }
4201 }
4202
4203 if (target_async_permitted)
4204 wait_forever_enabled_p = 1;
4205 }
4206
4207 /* This takes a program previously attached to and detaches it. After
4208 this is done, GDB can be used to debug some other program. We
4209 better not have left any breakpoints in the target program or it'll
4210 die when it hits one. */
4211
4212 static void
4213 remote_detach_1 (char *args, int from_tty, int extended)
4214 {
4215 int pid = ptid_get_pid (inferior_ptid);
4216 struct remote_state *rs = get_remote_state ();
4217
4218 if (args)
4219 error (_("Argument given to \"detach\" when remotely debugging."));
4220
4221 if (!target_has_execution)
4222 error (_("No process to detach from."));
4223
4224 if (from_tty)
4225 {
4226 char *exec_file = get_exec_file (0);
4227 if (exec_file == NULL)
4228 exec_file = "";
4229 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4230 target_pid_to_str (pid_to_ptid (pid)));
4231 gdb_flush (gdb_stdout);
4232 }
4233
4234 /* Tell the remote target to detach. */
4235 if (remote_multi_process_p (rs))
4236 sprintf (rs->buf, "D;%x", pid);
4237 else
4238 strcpy (rs->buf, "D");
4239
4240 putpkt (rs->buf);
4241 getpkt (&rs->buf, &rs->buf_size, 0);
4242
4243 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4244 ;
4245 else if (rs->buf[0] == '\0')
4246 error (_("Remote doesn't know how to detach"));
4247 else
4248 error (_("Can't detach process."));
4249
4250 if (from_tty && !extended)
4251 puts_filtered (_("Ending remote debugging.\n"));
4252
4253 discard_pending_stop_replies (pid);
4254 target_mourn_inferior ();
4255 }
4256
4257 static void
4258 remote_detach (struct target_ops *ops, char *args, int from_tty)
4259 {
4260 remote_detach_1 (args, from_tty, 0);
4261 }
4262
4263 static void
4264 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4265 {
4266 remote_detach_1 (args, from_tty, 1);
4267 }
4268
4269 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4270
4271 static void
4272 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4273 {
4274 if (args)
4275 error (_("Argument given to \"disconnect\" when remotely debugging."));
4276
4277 /* Make sure we unpush even the extended remote targets; mourn
4278 won't do it. So call remote_mourn_1 directly instead of
4279 target_mourn_inferior. */
4280 remote_mourn_1 (target);
4281
4282 if (from_tty)
4283 puts_filtered ("Ending remote debugging.\n");
4284 }
4285
4286 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4287 be chatty about it. */
4288
4289 static void
4290 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4291 {
4292 struct remote_state *rs = get_remote_state ();
4293 int pid;
4294 char *wait_status = NULL;
4295
4296 pid = parse_pid_to_attach (args);
4297
4298 /* Remote PID can be freely equal to getpid, do not check it here the same
4299 way as in other targets. */
4300
4301 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4302 error (_("This target does not support attaching to a process"));
4303
4304 if (from_tty)
4305 {
4306 char *exec_file = get_exec_file (0);
4307
4308 if (exec_file)
4309 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4310 target_pid_to_str (pid_to_ptid (pid)));
4311 else
4312 printf_unfiltered (_("Attaching to %s\n"),
4313 target_pid_to_str (pid_to_ptid (pid)));
4314
4315 gdb_flush (gdb_stdout);
4316 }
4317
4318 sprintf (rs->buf, "vAttach;%x", pid);
4319 putpkt (rs->buf);
4320 getpkt (&rs->buf, &rs->buf_size, 0);
4321
4322 if (packet_ok (rs->buf,
4323 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4324 {
4325 if (!non_stop)
4326 {
4327 /* Save the reply for later. */
4328 wait_status = alloca (strlen (rs->buf) + 1);
4329 strcpy (wait_status, rs->buf);
4330 }
4331 else if (strcmp (rs->buf, "OK") != 0)
4332 error (_("Attaching to %s failed with: %s"),
4333 target_pid_to_str (pid_to_ptid (pid)),
4334 rs->buf);
4335 }
4336 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4337 error (_("This target does not support attaching to a process"));
4338 else
4339 error (_("Attaching to %s failed"),
4340 target_pid_to_str (pid_to_ptid (pid)));
4341
4342 set_current_inferior (remote_add_inferior (0, pid, 1));
4343
4344 inferior_ptid = pid_to_ptid (pid);
4345
4346 if (non_stop)
4347 {
4348 struct thread_info *thread;
4349
4350 /* Get list of threads. */
4351 remote_threads_info (target);
4352
4353 thread = first_thread_of_process (pid);
4354 if (thread)
4355 inferior_ptid = thread->ptid;
4356 else
4357 inferior_ptid = pid_to_ptid (pid);
4358
4359 /* Invalidate our notion of the remote current thread. */
4360 record_currthread (minus_one_ptid);
4361 }
4362 else
4363 {
4364 /* Now, if we have thread information, update inferior_ptid. */
4365 inferior_ptid = remote_current_thread (inferior_ptid);
4366
4367 /* Add the main thread to the thread list. */
4368 add_thread_silent (inferior_ptid);
4369 }
4370
4371 /* Next, if the target can specify a description, read it. We do
4372 this before anything involving memory or registers. */
4373 target_find_description ();
4374
4375 if (!non_stop)
4376 {
4377 /* Use the previously fetched status. */
4378 gdb_assert (wait_status != NULL);
4379
4380 if (target_can_async_p ())
4381 {
4382 struct stop_reply *stop_reply;
4383 struct cleanup *old_chain;
4384
4385 stop_reply = stop_reply_xmalloc ();
4386 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4387 remote_parse_stop_reply (wait_status, stop_reply);
4388 discard_cleanups (old_chain);
4389 push_stop_reply (stop_reply);
4390
4391 target_async (inferior_event_handler, 0);
4392 }
4393 else
4394 {
4395 gdb_assert (wait_status != NULL);
4396 strcpy (rs->buf, wait_status);
4397 rs->cached_wait_status = 1;
4398 }
4399 }
4400 else
4401 gdb_assert (wait_status == NULL);
4402 }
4403
4404 static void
4405 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4406 {
4407 extended_remote_attach_1 (ops, args, from_tty);
4408 }
4409
4410 /* Convert hex digit A to a number. */
4411
4412 static int
4413 fromhex (int a)
4414 {
4415 if (a >= '0' && a <= '9')
4416 return a - '0';
4417 else if (a >= 'a' && a <= 'f')
4418 return a - 'a' + 10;
4419 else if (a >= 'A' && a <= 'F')
4420 return a - 'A' + 10;
4421 else
4422 error (_("Reply contains invalid hex digit %d"), a);
4423 }
4424
4425 int
4426 hex2bin (const char *hex, gdb_byte *bin, int count)
4427 {
4428 int i;
4429
4430 for (i = 0; i < count; i++)
4431 {
4432 if (hex[0] == 0 || hex[1] == 0)
4433 {
4434 /* Hex string is short, or of uneven length.
4435 Return the count that has been converted so far. */
4436 return i;
4437 }
4438 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4439 hex += 2;
4440 }
4441 return i;
4442 }
4443
4444 /* Convert number NIB to a hex digit. */
4445
4446 static int
4447 tohex (int nib)
4448 {
4449 if (nib < 10)
4450 return '0' + nib;
4451 else
4452 return 'a' + nib - 10;
4453 }
4454
4455 int
4456 bin2hex (const gdb_byte *bin, char *hex, int count)
4457 {
4458 int i;
4459
4460 /* May use a length, or a nul-terminated string as input. */
4461 if (count == 0)
4462 count = strlen ((char *) bin);
4463
4464 for (i = 0; i < count; i++)
4465 {
4466 *hex++ = tohex ((*bin >> 4) & 0xf);
4467 *hex++ = tohex (*bin++ & 0xf);
4468 }
4469 *hex = 0;
4470 return i;
4471 }
4472 \f
4473 /* Check for the availability of vCont. This function should also check
4474 the response. */
4475
4476 static void
4477 remote_vcont_probe (struct remote_state *rs)
4478 {
4479 char *buf;
4480
4481 strcpy (rs->buf, "vCont?");
4482 putpkt (rs->buf);
4483 getpkt (&rs->buf, &rs->buf_size, 0);
4484 buf = rs->buf;
4485
4486 /* Make sure that the features we assume are supported. */
4487 if (strncmp (buf, "vCont", 5) == 0)
4488 {
4489 char *p = &buf[5];
4490 int support_s, support_S, support_c, support_C;
4491
4492 support_s = 0;
4493 support_S = 0;
4494 support_c = 0;
4495 support_C = 0;
4496 rs->support_vCont_t = 0;
4497 while (p && *p == ';')
4498 {
4499 p++;
4500 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4501 support_s = 1;
4502 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4503 support_S = 1;
4504 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4505 support_c = 1;
4506 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4507 support_C = 1;
4508 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4509 rs->support_vCont_t = 1;
4510
4511 p = strchr (p, ';');
4512 }
4513
4514 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4515 BUF will make packet_ok disable the packet. */
4516 if (!support_s || !support_S || !support_c || !support_C)
4517 buf[0] = 0;
4518 }
4519
4520 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4521 }
4522
4523 /* Helper function for building "vCont" resumptions. Write a
4524 resumption to P. ENDP points to one-passed-the-end of the buffer
4525 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4526 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4527 resumed thread should be single-stepped and/or signalled. If PTID
4528 equals minus_one_ptid, then all threads are resumed; if PTID
4529 represents a process, then all threads of the process are resumed;
4530 the thread to be stepped and/or signalled is given in the global
4531 INFERIOR_PTID. */
4532
4533 static char *
4534 append_resumption (char *p, char *endp,
4535 ptid_t ptid, int step, enum target_signal siggnal)
4536 {
4537 struct remote_state *rs = get_remote_state ();
4538
4539 if (step && siggnal != TARGET_SIGNAL_0)
4540 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4541 else if (step)
4542 p += xsnprintf (p, endp - p, ";s");
4543 else if (siggnal != TARGET_SIGNAL_0)
4544 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4545 else
4546 p += xsnprintf (p, endp - p, ";c");
4547
4548 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4549 {
4550 ptid_t nptid;
4551
4552 /* All (-1) threads of process. */
4553 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4554
4555 p += xsnprintf (p, endp - p, ":");
4556 p = write_ptid (p, endp, nptid);
4557 }
4558 else if (!ptid_equal (ptid, minus_one_ptid))
4559 {
4560 p += xsnprintf (p, endp - p, ":");
4561 p = write_ptid (p, endp, ptid);
4562 }
4563
4564 return p;
4565 }
4566
4567 /* Resume the remote inferior by using a "vCont" packet. The thread
4568 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4569 resumed thread should be single-stepped and/or signalled. If PTID
4570 equals minus_one_ptid, then all threads are resumed; the thread to
4571 be stepped and/or signalled is given in the global INFERIOR_PTID.
4572 This function returns non-zero iff it resumes the inferior.
4573
4574 This function issues a strict subset of all possible vCont commands at the
4575 moment. */
4576
4577 static int
4578 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4579 {
4580 struct remote_state *rs = get_remote_state ();
4581 char *p;
4582 char *endp;
4583
4584 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4585 remote_vcont_probe (rs);
4586
4587 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4588 return 0;
4589
4590 p = rs->buf;
4591 endp = rs->buf + get_remote_packet_size ();
4592
4593 /* If we could generate a wider range of packets, we'd have to worry
4594 about overflowing BUF. Should there be a generic
4595 "multi-part-packet" packet? */
4596
4597 p += xsnprintf (p, endp - p, "vCont");
4598
4599 if (ptid_equal (ptid, magic_null_ptid))
4600 {
4601 /* MAGIC_NULL_PTID means that we don't have any active threads,
4602 so we don't have any TID numbers the inferior will
4603 understand. Make sure to only send forms that do not specify
4604 a TID. */
4605 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4606 }
4607 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4608 {
4609 /* Resume all threads (of all processes, or of a single
4610 process), with preference for INFERIOR_PTID. This assumes
4611 inferior_ptid belongs to the set of all threads we are about
4612 to resume. */
4613 if (step || siggnal != TARGET_SIGNAL_0)
4614 {
4615 /* Step inferior_ptid, with or without signal. */
4616 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4617 }
4618
4619 /* And continue others without a signal. */
4620 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4621 }
4622 else
4623 {
4624 /* Scheduler locking; resume only PTID. */
4625 append_resumption (p, endp, ptid, step, siggnal);
4626 }
4627
4628 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4629 putpkt (rs->buf);
4630
4631 if (non_stop)
4632 {
4633 /* In non-stop, the stub replies to vCont with "OK". The stop
4634 reply will be reported asynchronously by means of a `%Stop'
4635 notification. */
4636 getpkt (&rs->buf, &rs->buf_size, 0);
4637 if (strcmp (rs->buf, "OK") != 0)
4638 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4639 }
4640
4641 return 1;
4642 }
4643
4644 /* Tell the remote machine to resume. */
4645
4646 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4647
4648 static int last_sent_step;
4649
4650 static void
4651 remote_resume (struct target_ops *ops,
4652 ptid_t ptid, int step, enum target_signal siggnal)
4653 {
4654 struct remote_state *rs = get_remote_state ();
4655 char *buf;
4656
4657 last_sent_signal = siggnal;
4658 last_sent_step = step;
4659
4660 /* The vCont packet doesn't need to specify threads via Hc. */
4661 /* No reverse support (yet) for vCont. */
4662 if (execution_direction != EXEC_REVERSE)
4663 if (remote_vcont_resume (ptid, step, siggnal))
4664 goto done;
4665
4666 /* All other supported resume packets do use Hc, so set the continue
4667 thread. */
4668 if (ptid_equal (ptid, minus_one_ptid))
4669 set_continue_thread (any_thread_ptid);
4670 else
4671 set_continue_thread (ptid);
4672
4673 buf = rs->buf;
4674 if (execution_direction == EXEC_REVERSE)
4675 {
4676 /* We don't pass signals to the target in reverse exec mode. */
4677 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4678 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4679 siggnal);
4680
4681 if (step
4682 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4683 error (_("Remote reverse-step not supported."));
4684 if (!step
4685 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4686 error (_("Remote reverse-continue not supported."));
4687
4688 strcpy (buf, step ? "bs" : "bc");
4689 }
4690 else if (siggnal != TARGET_SIGNAL_0)
4691 {
4692 buf[0] = step ? 'S' : 'C';
4693 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4694 buf[2] = tohex (((int) siggnal) & 0xf);
4695 buf[3] = '\0';
4696 }
4697 else
4698 strcpy (buf, step ? "s" : "c");
4699
4700 putpkt (buf);
4701
4702 done:
4703 /* We are about to start executing the inferior, let's register it
4704 with the event loop. NOTE: this is the one place where all the
4705 execution commands end up. We could alternatively do this in each
4706 of the execution commands in infcmd.c. */
4707 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4708 into infcmd.c in order to allow inferior function calls to work
4709 NOT asynchronously. */
4710 if (target_can_async_p ())
4711 target_async (inferior_event_handler, 0);
4712
4713 /* We've just told the target to resume. The remote server will
4714 wait for the inferior to stop, and then send a stop reply. In
4715 the mean time, we can't start another command/query ourselves
4716 because the stub wouldn't be ready to process it. This applies
4717 only to the base all-stop protocol, however. In non-stop (which
4718 only supports vCont), the stub replies with an "OK", and is
4719 immediate able to process further serial input. */
4720 if (!non_stop)
4721 rs->waiting_for_stop_reply = 1;
4722 }
4723 \f
4724
4725 /* Set up the signal handler for SIGINT, while the target is
4726 executing, ovewriting the 'regular' SIGINT signal handler. */
4727 static void
4728 initialize_sigint_signal_handler (void)
4729 {
4730 signal (SIGINT, handle_remote_sigint);
4731 }
4732
4733 /* Signal handler for SIGINT, while the target is executing. */
4734 static void
4735 handle_remote_sigint (int sig)
4736 {
4737 signal (sig, handle_remote_sigint_twice);
4738 mark_async_signal_handler_wrapper (sigint_remote_token);
4739 }
4740
4741 /* Signal handler for SIGINT, installed after SIGINT has already been
4742 sent once. It will take effect the second time that the user sends
4743 a ^C. */
4744 static void
4745 handle_remote_sigint_twice (int sig)
4746 {
4747 signal (sig, handle_remote_sigint);
4748 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4749 }
4750
4751 /* Perform the real interruption of the target execution, in response
4752 to a ^C. */
4753 static void
4754 async_remote_interrupt (gdb_client_data arg)
4755 {
4756 if (remote_debug)
4757 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4758
4759 target_stop (inferior_ptid);
4760 }
4761
4762 /* Perform interrupt, if the first attempt did not succeed. Just give
4763 up on the target alltogether. */
4764 void
4765 async_remote_interrupt_twice (gdb_client_data arg)
4766 {
4767 if (remote_debug)
4768 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4769
4770 interrupt_query ();
4771 }
4772
4773 /* Reinstall the usual SIGINT handlers, after the target has
4774 stopped. */
4775 static void
4776 cleanup_sigint_signal_handler (void *dummy)
4777 {
4778 signal (SIGINT, handle_sigint);
4779 }
4780
4781 /* Send ^C to target to halt it. Target will respond, and send us a
4782 packet. */
4783 static void (*ofunc) (int);
4784
4785 /* The command line interface's stop routine. This function is installed
4786 as a signal handler for SIGINT. The first time a user requests a
4787 stop, we call remote_stop to send a break or ^C. If there is no
4788 response from the target (it didn't stop when the user requested it),
4789 we ask the user if he'd like to detach from the target. */
4790 static void
4791 remote_interrupt (int signo)
4792 {
4793 /* If this doesn't work, try more severe steps. */
4794 signal (signo, remote_interrupt_twice);
4795
4796 gdb_call_async_signal_handler (sigint_remote_token, 1);
4797 }
4798
4799 /* The user typed ^C twice. */
4800
4801 static void
4802 remote_interrupt_twice (int signo)
4803 {
4804 signal (signo, ofunc);
4805 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4806 signal (signo, remote_interrupt);
4807 }
4808
4809 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4810 thread, all threads of a remote process, or all threads of all
4811 processes. */
4812
4813 static void
4814 remote_stop_ns (ptid_t ptid)
4815 {
4816 struct remote_state *rs = get_remote_state ();
4817 char *p = rs->buf;
4818 char *endp = rs->buf + get_remote_packet_size ();
4819
4820 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4821 remote_vcont_probe (rs);
4822
4823 if (!rs->support_vCont_t)
4824 error (_("Remote server does not support stopping threads"));
4825
4826 if (ptid_equal (ptid, minus_one_ptid)
4827 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4828 p += xsnprintf (p, endp - p, "vCont;t");
4829 else
4830 {
4831 ptid_t nptid;
4832
4833 p += xsnprintf (p, endp - p, "vCont;t:");
4834
4835 if (ptid_is_pid (ptid))
4836 /* All (-1) threads of process. */
4837 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4838 else
4839 {
4840 /* Small optimization: if we already have a stop reply for
4841 this thread, no use in telling the stub we want this
4842 stopped. */
4843 if (peek_stop_reply (ptid))
4844 return;
4845
4846 nptid = ptid;
4847 }
4848
4849 write_ptid (p, endp, nptid);
4850 }
4851
4852 /* In non-stop, we get an immediate OK reply. The stop reply will
4853 come in asynchronously by notification. */
4854 putpkt (rs->buf);
4855 getpkt (&rs->buf, &rs->buf_size, 0);
4856 if (strcmp (rs->buf, "OK") != 0)
4857 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4858 }
4859
4860 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4861 remote target. It is undefined which thread of which process
4862 reports the stop. */
4863
4864 static void
4865 remote_stop_as (ptid_t ptid)
4866 {
4867 struct remote_state *rs = get_remote_state ();
4868
4869 rs->ctrlc_pending_p = 1;
4870
4871 /* If the inferior is stopped already, but the core didn't know
4872 about it yet, just ignore the request. The cached wait status
4873 will be collected in remote_wait. */
4874 if (rs->cached_wait_status)
4875 return;
4876
4877 /* Send interrupt_sequence to remote target. */
4878 send_interrupt_sequence ();
4879 }
4880
4881 /* This is the generic stop called via the target vector. When a target
4882 interrupt is requested, either by the command line or the GUI, we
4883 will eventually end up here. */
4884
4885 static void
4886 remote_stop (ptid_t ptid)
4887 {
4888 if (remote_debug)
4889 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4890
4891 if (non_stop)
4892 remote_stop_ns (ptid);
4893 else
4894 remote_stop_as (ptid);
4895 }
4896
4897 /* Ask the user what to do when an interrupt is received. */
4898
4899 static void
4900 interrupt_query (void)
4901 {
4902 target_terminal_ours ();
4903
4904 if (target_can_async_p ())
4905 {
4906 signal (SIGINT, handle_sigint);
4907 deprecated_throw_reason (RETURN_QUIT);
4908 }
4909 else
4910 {
4911 if (query (_("Interrupted while waiting for the program.\n\
4912 Give up (and stop debugging it)? ")))
4913 {
4914 pop_target ();
4915 deprecated_throw_reason (RETURN_QUIT);
4916 }
4917 }
4918
4919 target_terminal_inferior ();
4920 }
4921
4922 /* Enable/disable target terminal ownership. Most targets can use
4923 terminal groups to control terminal ownership. Remote targets are
4924 different in that explicit transfer of ownership to/from GDB/target
4925 is required. */
4926
4927 static void
4928 remote_terminal_inferior (void)
4929 {
4930 if (!target_async_permitted)
4931 /* Nothing to do. */
4932 return;
4933
4934 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4935 idempotent. The event-loop GDB talking to an asynchronous target
4936 with a synchronous command calls this function from both
4937 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4938 transfer the terminal to the target when it shouldn't this guard
4939 can go away. */
4940 if (!remote_async_terminal_ours_p)
4941 return;
4942 delete_file_handler (input_fd);
4943 remote_async_terminal_ours_p = 0;
4944 initialize_sigint_signal_handler ();
4945 /* NOTE: At this point we could also register our selves as the
4946 recipient of all input. Any characters typed could then be
4947 passed on down to the target. */
4948 }
4949
4950 static void
4951 remote_terminal_ours (void)
4952 {
4953 if (!target_async_permitted)
4954 /* Nothing to do. */
4955 return;
4956
4957 /* See FIXME in remote_terminal_inferior. */
4958 if (remote_async_terminal_ours_p)
4959 return;
4960 cleanup_sigint_signal_handler (NULL);
4961 add_file_handler (input_fd, stdin_event_handler, 0);
4962 remote_async_terminal_ours_p = 1;
4963 }
4964
4965 static void
4966 remote_console_output (char *msg)
4967 {
4968 char *p;
4969
4970 for (p = msg; p[0] && p[1]; p += 2)
4971 {
4972 char tb[2];
4973 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4974
4975 tb[0] = c;
4976 tb[1] = 0;
4977 fputs_unfiltered (tb, gdb_stdtarg);
4978 }
4979 gdb_flush (gdb_stdtarg);
4980 }
4981
4982 typedef struct cached_reg
4983 {
4984 int num;
4985 gdb_byte data[MAX_REGISTER_SIZE];
4986 } cached_reg_t;
4987
4988 DEF_VEC_O(cached_reg_t);
4989
4990 struct stop_reply
4991 {
4992 struct stop_reply *next;
4993
4994 ptid_t ptid;
4995
4996 struct target_waitstatus ws;
4997
4998 /* Expedited registers. This makes remote debugging a bit more
4999 efficient for those targets that provide critical registers as
5000 part of their normal status mechanism (as another roundtrip to
5001 fetch them is avoided). */
5002 VEC(cached_reg_t) *regcache;
5003
5004 int stopped_by_watchpoint_p;
5005 CORE_ADDR watch_data_address;
5006
5007 int solibs_changed;
5008 int replay_event;
5009
5010 int core;
5011 };
5012
5013 /* The list of already fetched and acknowledged stop events. */
5014 static struct stop_reply *stop_reply_queue;
5015
5016 static struct stop_reply *
5017 stop_reply_xmalloc (void)
5018 {
5019 struct stop_reply *r = XMALLOC (struct stop_reply);
5020
5021 r->next = NULL;
5022 return r;
5023 }
5024
5025 static void
5026 stop_reply_xfree (struct stop_reply *r)
5027 {
5028 if (r != NULL)
5029 {
5030 VEC_free (cached_reg_t, r->regcache);
5031 xfree (r);
5032 }
5033 }
5034
5035 /* Discard all pending stop replies of inferior PID. If PID is -1,
5036 discard everything. */
5037
5038 static void
5039 discard_pending_stop_replies (int pid)
5040 {
5041 struct stop_reply *prev = NULL, *reply, *next;
5042
5043 /* Discard the in-flight notification. */
5044 if (pending_stop_reply != NULL
5045 && (pid == -1
5046 || ptid_get_pid (pending_stop_reply->ptid) == pid))
5047 {
5048 stop_reply_xfree (pending_stop_reply);
5049 pending_stop_reply = NULL;
5050 }
5051
5052 /* Discard the stop replies we have already pulled with
5053 vStopped. */
5054 for (reply = stop_reply_queue; reply; reply = next)
5055 {
5056 next = reply->next;
5057 if (pid == -1
5058 || ptid_get_pid (reply->ptid) == pid)
5059 {
5060 if (reply == stop_reply_queue)
5061 stop_reply_queue = reply->next;
5062 else
5063 prev->next = reply->next;
5064
5065 stop_reply_xfree (reply);
5066 }
5067 else
5068 prev = reply;
5069 }
5070 }
5071
5072 /* Cleanup wrapper. */
5073
5074 static void
5075 do_stop_reply_xfree (void *arg)
5076 {
5077 struct stop_reply *r = arg;
5078
5079 stop_reply_xfree (r);
5080 }
5081
5082 /* Look for a queued stop reply belonging to PTID. If one is found,
5083 remove it from the queue, and return it. Returns NULL if none is
5084 found. If there are still queued events left to process, tell the
5085 event loop to get back to target_wait soon. */
5086
5087 static struct stop_reply *
5088 queued_stop_reply (ptid_t ptid)
5089 {
5090 struct stop_reply *it;
5091 struct stop_reply **it_link;
5092
5093 it = stop_reply_queue;
5094 it_link = &stop_reply_queue;
5095 while (it)
5096 {
5097 if (ptid_match (it->ptid, ptid))
5098 {
5099 *it_link = it->next;
5100 it->next = NULL;
5101 break;
5102 }
5103
5104 it_link = &it->next;
5105 it = *it_link;
5106 }
5107
5108 if (stop_reply_queue)
5109 /* There's still at least an event left. */
5110 mark_async_event_handler (remote_async_inferior_event_token);
5111
5112 return it;
5113 }
5114
5115 /* Push a fully parsed stop reply in the stop reply queue. Since we
5116 know that we now have at least one queued event left to pass to the
5117 core side, tell the event loop to get back to target_wait soon. */
5118
5119 static void
5120 push_stop_reply (struct stop_reply *new_event)
5121 {
5122 struct stop_reply *event;
5123
5124 if (stop_reply_queue)
5125 {
5126 for (event = stop_reply_queue;
5127 event && event->next;
5128 event = event->next)
5129 ;
5130
5131 event->next = new_event;
5132 }
5133 else
5134 stop_reply_queue = new_event;
5135
5136 mark_async_event_handler (remote_async_inferior_event_token);
5137 }
5138
5139 /* Returns true if we have a stop reply for PTID. */
5140
5141 static int
5142 peek_stop_reply (ptid_t ptid)
5143 {
5144 struct stop_reply *it;
5145
5146 for (it = stop_reply_queue; it; it = it->next)
5147 if (ptid_equal (ptid, it->ptid))
5148 {
5149 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5150 return 1;
5151 }
5152
5153 return 0;
5154 }
5155
5156 /* Parse the stop reply in BUF. Either the function succeeds, and the
5157 result is stored in EVENT, or throws an error. */
5158
5159 static void
5160 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5161 {
5162 struct remote_arch_state *rsa = get_remote_arch_state ();
5163 ULONGEST addr;
5164 char *p;
5165
5166 event->ptid = null_ptid;
5167 event->ws.kind = TARGET_WAITKIND_IGNORE;
5168 event->ws.value.integer = 0;
5169 event->solibs_changed = 0;
5170 event->replay_event = 0;
5171 event->stopped_by_watchpoint_p = 0;
5172 event->regcache = NULL;
5173 event->core = -1;
5174
5175 switch (buf[0])
5176 {
5177 case 'T': /* Status with PC, SP, FP, ... */
5178 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5179 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5180 ss = signal number
5181 n... = register number
5182 r... = register contents
5183 */
5184
5185 p = &buf[3]; /* after Txx */
5186 while (*p)
5187 {
5188 char *p1;
5189 char *p_temp;
5190 int fieldsize;
5191 LONGEST pnum = 0;
5192
5193 /* If the packet contains a register number, save it in
5194 pnum and set p1 to point to the character following it.
5195 Otherwise p1 points to p. */
5196
5197 /* If this packet is an awatch packet, don't parse the 'a'
5198 as a register number. */
5199
5200 if (strncmp (p, "awatch", strlen("awatch")) != 0
5201 && strncmp (p, "core", strlen ("core") != 0))
5202 {
5203 /* Read the ``P'' register number. */
5204 pnum = strtol (p, &p_temp, 16);
5205 p1 = p_temp;
5206 }
5207 else
5208 p1 = p;
5209
5210 if (p1 == p) /* No register number present here. */
5211 {
5212 p1 = strchr (p, ':');
5213 if (p1 == NULL)
5214 error (_("Malformed packet(a) (missing colon): %s\n\
5215 Packet: '%s'\n"),
5216 p, buf);
5217 if (strncmp (p, "thread", p1 - p) == 0)
5218 event->ptid = read_ptid (++p1, &p);
5219 else if ((strncmp (p, "watch", p1 - p) == 0)
5220 || (strncmp (p, "rwatch", p1 - p) == 0)
5221 || (strncmp (p, "awatch", p1 - p) == 0))
5222 {
5223 event->stopped_by_watchpoint_p = 1;
5224 p = unpack_varlen_hex (++p1, &addr);
5225 event->watch_data_address = (CORE_ADDR) addr;
5226 }
5227 else if (strncmp (p, "library", p1 - p) == 0)
5228 {
5229 p1++;
5230 p_temp = p1;
5231 while (*p_temp && *p_temp != ';')
5232 p_temp++;
5233
5234 event->solibs_changed = 1;
5235 p = p_temp;
5236 }
5237 else if (strncmp (p, "replaylog", p1 - p) == 0)
5238 {
5239 /* NO_HISTORY event.
5240 p1 will indicate "begin" or "end", but
5241 it makes no difference for now, so ignore it. */
5242 event->replay_event = 1;
5243 p_temp = strchr (p1 + 1, ';');
5244 if (p_temp)
5245 p = p_temp;
5246 }
5247 else if (strncmp (p, "core", p1 - p) == 0)
5248 {
5249 ULONGEST c;
5250
5251 p = unpack_varlen_hex (++p1, &c);
5252 event->core = c;
5253 }
5254 else
5255 {
5256 /* Silently skip unknown optional info. */
5257 p_temp = strchr (p1 + 1, ';');
5258 if (p_temp)
5259 p = p_temp;
5260 }
5261 }
5262 else
5263 {
5264 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5265 cached_reg_t cached_reg;
5266
5267 p = p1;
5268
5269 if (*p != ':')
5270 error (_("Malformed packet(b) (missing colon): %s\n\
5271 Packet: '%s'\n"),
5272 p, buf);
5273 ++p;
5274
5275 if (reg == NULL)
5276 error (_("Remote sent bad register number %s: %s\n\
5277 Packet: '%s'\n"),
5278 hex_string (pnum), p, buf);
5279
5280 cached_reg.num = reg->regnum;
5281
5282 fieldsize = hex2bin (p, cached_reg.data,
5283 register_size (target_gdbarch,
5284 reg->regnum));
5285 p += 2 * fieldsize;
5286 if (fieldsize < register_size (target_gdbarch,
5287 reg->regnum))
5288 warning (_("Remote reply is too short: %s"), buf);
5289
5290 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5291 }
5292
5293 if (*p != ';')
5294 error (_("Remote register badly formatted: %s\nhere: %s"),
5295 buf, p);
5296 ++p;
5297 }
5298 /* fall through */
5299 case 'S': /* Old style status, just signal only. */
5300 if (event->solibs_changed)
5301 event->ws.kind = TARGET_WAITKIND_LOADED;
5302 else if (event->replay_event)
5303 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5304 else
5305 {
5306 event->ws.kind = TARGET_WAITKIND_STOPPED;
5307 event->ws.value.sig = (enum target_signal)
5308 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5309 }
5310 break;
5311 case 'W': /* Target exited. */
5312 case 'X':
5313 {
5314 char *p;
5315 int pid;
5316 ULONGEST value;
5317
5318 /* GDB used to accept only 2 hex chars here. Stubs should
5319 only send more if they detect GDB supports multi-process
5320 support. */
5321 p = unpack_varlen_hex (&buf[1], &value);
5322
5323 if (buf[0] == 'W')
5324 {
5325 /* The remote process exited. */
5326 event->ws.kind = TARGET_WAITKIND_EXITED;
5327 event->ws.value.integer = value;
5328 }
5329 else
5330 {
5331 /* The remote process exited with a signal. */
5332 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5333 event->ws.value.sig = (enum target_signal) value;
5334 }
5335
5336 /* If no process is specified, assume inferior_ptid. */
5337 pid = ptid_get_pid (inferior_ptid);
5338 if (*p == '\0')
5339 ;
5340 else if (*p == ';')
5341 {
5342 p++;
5343
5344 if (p == '\0')
5345 ;
5346 else if (strncmp (p,
5347 "process:", sizeof ("process:") - 1) == 0)
5348 {
5349 ULONGEST upid;
5350
5351 p += sizeof ("process:") - 1;
5352 unpack_varlen_hex (p, &upid);
5353 pid = upid;
5354 }
5355 else
5356 error (_("unknown stop reply packet: %s"), buf);
5357 }
5358 else
5359 error (_("unknown stop reply packet: %s"), buf);
5360 event->ptid = pid_to_ptid (pid);
5361 }
5362 break;
5363 }
5364
5365 if (non_stop && ptid_equal (event->ptid, null_ptid))
5366 error (_("No process or thread specified in stop reply: %s"), buf);
5367 }
5368
5369 /* When the stub wants to tell GDB about a new stop reply, it sends a
5370 stop notification (%Stop). Those can come it at any time, hence,
5371 we have to make sure that any pending putpkt/getpkt sequence we're
5372 making is finished, before querying the stub for more events with
5373 vStopped. E.g., if we started a vStopped sequence immediatelly
5374 upon receiving the %Stop notification, something like this could
5375 happen:
5376
5377 1.1) --> Hg 1
5378 1.2) <-- OK
5379 1.3) --> g
5380 1.4) <-- %Stop
5381 1.5) --> vStopped
5382 1.6) <-- (registers reply to step #1.3)
5383
5384 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5385 query.
5386
5387 To solve this, whenever we parse a %Stop notification sucessfully,
5388 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5389 doing whatever we were doing:
5390
5391 2.1) --> Hg 1
5392 2.2) <-- OK
5393 2.3) --> g
5394 2.4) <-- %Stop
5395 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5396 2.5) <-- (registers reply to step #2.3)
5397
5398 Eventualy after step #2.5, we return to the event loop, which
5399 notices there's an event on the
5400 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5401 associated callback --- the function below. At this point, we're
5402 always safe to start a vStopped sequence. :
5403
5404 2.6) --> vStopped
5405 2.7) <-- T05 thread:2
5406 2.8) --> vStopped
5407 2.9) --> OK
5408 */
5409
5410 static void
5411 remote_get_pending_stop_replies (void)
5412 {
5413 struct remote_state *rs = get_remote_state ();
5414
5415 if (pending_stop_reply)
5416 {
5417 /* acknowledge */
5418 putpkt ("vStopped");
5419
5420 /* Now we can rely on it. */
5421 push_stop_reply (pending_stop_reply);
5422 pending_stop_reply = NULL;
5423
5424 while (1)
5425 {
5426 getpkt (&rs->buf, &rs->buf_size, 0);
5427 if (strcmp (rs->buf, "OK") == 0)
5428 break;
5429 else
5430 {
5431 struct cleanup *old_chain;
5432 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5433
5434 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5435 remote_parse_stop_reply (rs->buf, stop_reply);
5436
5437 /* acknowledge */
5438 putpkt ("vStopped");
5439
5440 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5441 {
5442 /* Now we can rely on it. */
5443 discard_cleanups (old_chain);
5444 push_stop_reply (stop_reply);
5445 }
5446 else
5447 /* We got an unknown stop reply. */
5448 do_cleanups (old_chain);
5449 }
5450 }
5451 }
5452 }
5453
5454
5455 /* Called when it is decided that STOP_REPLY holds the info of the
5456 event that is to be returned to the core. This function always
5457 destroys STOP_REPLY. */
5458
5459 static ptid_t
5460 process_stop_reply (struct stop_reply *stop_reply,
5461 struct target_waitstatus *status)
5462 {
5463 ptid_t ptid;
5464
5465 *status = stop_reply->ws;
5466 ptid = stop_reply->ptid;
5467
5468 /* If no thread/process was reported by the stub, assume the current
5469 inferior. */
5470 if (ptid_equal (ptid, null_ptid))
5471 ptid = inferior_ptid;
5472
5473 if (status->kind != TARGET_WAITKIND_EXITED
5474 && status->kind != TARGET_WAITKIND_SIGNALLED)
5475 {
5476 /* Expedited registers. */
5477 if (stop_reply->regcache)
5478 {
5479 struct regcache *regcache
5480 = get_thread_arch_regcache (ptid, target_gdbarch);
5481 cached_reg_t *reg;
5482 int ix;
5483
5484 for (ix = 0;
5485 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5486 ix++)
5487 regcache_raw_supply (regcache, reg->num, reg->data);
5488 VEC_free (cached_reg_t, stop_reply->regcache);
5489 }
5490
5491 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5492 remote_watch_data_address = stop_reply->watch_data_address;
5493
5494 remote_notice_new_inferior (ptid, 0);
5495 demand_private_info (ptid)->core = stop_reply->core;
5496 }
5497
5498 stop_reply_xfree (stop_reply);
5499 return ptid;
5500 }
5501
5502 /* The non-stop mode version of target_wait. */
5503
5504 static ptid_t
5505 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5506 {
5507 struct remote_state *rs = get_remote_state ();
5508 struct stop_reply *stop_reply;
5509 int ret;
5510
5511 /* If in non-stop mode, get out of getpkt even if a
5512 notification is received. */
5513
5514 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5515 0 /* forever */);
5516 while (1)
5517 {
5518 if (ret != -1)
5519 switch (rs->buf[0])
5520 {
5521 case 'E': /* Error of some sort. */
5522 /* We're out of sync with the target now. Did it continue
5523 or not? We can't tell which thread it was in non-stop,
5524 so just ignore this. */
5525 warning (_("Remote failure reply: %s"), rs->buf);
5526 break;
5527 case 'O': /* Console output. */
5528 remote_console_output (rs->buf + 1);
5529 break;
5530 default:
5531 warning (_("Invalid remote reply: %s"), rs->buf);
5532 break;
5533 }
5534
5535 /* Acknowledge a pending stop reply that may have arrived in the
5536 mean time. */
5537 if (pending_stop_reply != NULL)
5538 remote_get_pending_stop_replies ();
5539
5540 /* If indeed we noticed a stop reply, we're done. */
5541 stop_reply = queued_stop_reply (ptid);
5542 if (stop_reply != NULL)
5543 return process_stop_reply (stop_reply, status);
5544
5545 /* Still no event. If we're just polling for an event, then
5546 return to the event loop. */
5547 if (options & TARGET_WNOHANG)
5548 {
5549 status->kind = TARGET_WAITKIND_IGNORE;
5550 return minus_one_ptid;
5551 }
5552
5553 /* Otherwise do a blocking wait. */
5554 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5555 1 /* forever */);
5556 }
5557 }
5558
5559 /* Wait until the remote machine stops, then return, storing status in
5560 STATUS just as `wait' would. */
5561
5562 static ptid_t
5563 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5564 {
5565 struct remote_state *rs = get_remote_state ();
5566 ptid_t event_ptid = null_ptid;
5567 char *buf;
5568 struct stop_reply *stop_reply;
5569
5570 again:
5571
5572 status->kind = TARGET_WAITKIND_IGNORE;
5573 status->value.integer = 0;
5574
5575 stop_reply = queued_stop_reply (ptid);
5576 if (stop_reply != NULL)
5577 return process_stop_reply (stop_reply, status);
5578
5579 if (rs->cached_wait_status)
5580 /* Use the cached wait status, but only once. */
5581 rs->cached_wait_status = 0;
5582 else
5583 {
5584 int ret;
5585
5586 if (!target_is_async_p ())
5587 {
5588 ofunc = signal (SIGINT, remote_interrupt);
5589 /* If the user hit C-c before this packet, or between packets,
5590 pretend that it was hit right here. */
5591 if (quit_flag)
5592 {
5593 quit_flag = 0;
5594 remote_interrupt (SIGINT);
5595 }
5596 }
5597
5598 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5599 _never_ wait for ever -> test on target_is_async_p().
5600 However, before we do that we need to ensure that the caller
5601 knows how to take the target into/out of async mode. */
5602 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5603 if (!target_is_async_p ())
5604 signal (SIGINT, ofunc);
5605 }
5606
5607 buf = rs->buf;
5608
5609 remote_stopped_by_watchpoint_p = 0;
5610
5611 /* We got something. */
5612 rs->waiting_for_stop_reply = 0;
5613
5614 /* Assume that the target has acknowledged Ctrl-C unless we receive
5615 an 'F' or 'O' packet. */
5616 if (buf[0] != 'F' && buf[0] != 'O')
5617 rs->ctrlc_pending_p = 0;
5618
5619 switch (buf[0])
5620 {
5621 case 'E': /* Error of some sort. */
5622 /* We're out of sync with the target now. Did it continue or
5623 not? Not is more likely, so report a stop. */
5624 warning (_("Remote failure reply: %s"), buf);
5625 status->kind = TARGET_WAITKIND_STOPPED;
5626 status->value.sig = TARGET_SIGNAL_0;
5627 break;
5628 case 'F': /* File-I/O request. */
5629 remote_fileio_request (buf, rs->ctrlc_pending_p);
5630 rs->ctrlc_pending_p = 0;
5631 break;
5632 case 'T': case 'S': case 'X': case 'W':
5633 {
5634 struct stop_reply *stop_reply;
5635 struct cleanup *old_chain;
5636
5637 stop_reply = stop_reply_xmalloc ();
5638 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5639 remote_parse_stop_reply (buf, stop_reply);
5640 discard_cleanups (old_chain);
5641 event_ptid = process_stop_reply (stop_reply, status);
5642 break;
5643 }
5644 case 'O': /* Console output. */
5645 remote_console_output (buf + 1);
5646
5647 /* The target didn't really stop; keep waiting. */
5648 rs->waiting_for_stop_reply = 1;
5649
5650 break;
5651 case '\0':
5652 if (last_sent_signal != TARGET_SIGNAL_0)
5653 {
5654 /* Zero length reply means that we tried 'S' or 'C' and the
5655 remote system doesn't support it. */
5656 target_terminal_ours_for_output ();
5657 printf_filtered
5658 ("Can't send signals to this remote system. %s not sent.\n",
5659 target_signal_to_name (last_sent_signal));
5660 last_sent_signal = TARGET_SIGNAL_0;
5661 target_terminal_inferior ();
5662
5663 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5664 putpkt ((char *) buf);
5665
5666 /* We just told the target to resume, so a stop reply is in
5667 order. */
5668 rs->waiting_for_stop_reply = 1;
5669 break;
5670 }
5671 /* else fallthrough */
5672 default:
5673 warning (_("Invalid remote reply: %s"), buf);
5674 /* Keep waiting. */
5675 rs->waiting_for_stop_reply = 1;
5676 break;
5677 }
5678
5679 if (status->kind == TARGET_WAITKIND_IGNORE)
5680 {
5681 /* Nothing interesting happened. If we're doing a non-blocking
5682 poll, we're done. Otherwise, go back to waiting. */
5683 if (options & TARGET_WNOHANG)
5684 return minus_one_ptid;
5685 else
5686 goto again;
5687 }
5688 else if (status->kind != TARGET_WAITKIND_EXITED
5689 && status->kind != TARGET_WAITKIND_SIGNALLED)
5690 {
5691 if (!ptid_equal (event_ptid, null_ptid))
5692 record_currthread (event_ptid);
5693 else
5694 event_ptid = inferior_ptid;
5695 }
5696 else
5697 /* A process exit. Invalidate our notion of current thread. */
5698 record_currthread (minus_one_ptid);
5699
5700 return event_ptid;
5701 }
5702
5703 /* Wait until the remote machine stops, then return, storing status in
5704 STATUS just as `wait' would. */
5705
5706 static ptid_t
5707 remote_wait (struct target_ops *ops,
5708 ptid_t ptid, struct target_waitstatus *status, int options)
5709 {
5710 ptid_t event_ptid;
5711
5712 if (non_stop)
5713 event_ptid = remote_wait_ns (ptid, status, options);
5714 else
5715 event_ptid = remote_wait_as (ptid, status, options);
5716
5717 if (target_can_async_p ())
5718 {
5719 /* If there are are events left in the queue tell the event loop
5720 to return here. */
5721 if (stop_reply_queue)
5722 mark_async_event_handler (remote_async_inferior_event_token);
5723 }
5724
5725 return event_ptid;
5726 }
5727
5728 /* Fetch a single register using a 'p' packet. */
5729
5730 static int
5731 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5732 {
5733 struct remote_state *rs = get_remote_state ();
5734 char *buf, *p;
5735 char regp[MAX_REGISTER_SIZE];
5736 int i;
5737
5738 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5739 return 0;
5740
5741 if (reg->pnum == -1)
5742 return 0;
5743
5744 p = rs->buf;
5745 *p++ = 'p';
5746 p += hexnumstr (p, reg->pnum);
5747 *p++ = '\0';
5748 putpkt (rs->buf);
5749 getpkt (&rs->buf, &rs->buf_size, 0);
5750
5751 buf = rs->buf;
5752
5753 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5754 {
5755 case PACKET_OK:
5756 break;
5757 case PACKET_UNKNOWN:
5758 return 0;
5759 case PACKET_ERROR:
5760 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5761 gdbarch_register_name (get_regcache_arch (regcache),
5762 reg->regnum),
5763 buf);
5764 }
5765
5766 /* If this register is unfetchable, tell the regcache. */
5767 if (buf[0] == 'x')
5768 {
5769 regcache_raw_supply (regcache, reg->regnum, NULL);
5770 return 1;
5771 }
5772
5773 /* Otherwise, parse and supply the value. */
5774 p = buf;
5775 i = 0;
5776 while (p[0] != 0)
5777 {
5778 if (p[1] == 0)
5779 error (_("fetch_register_using_p: early buf termination"));
5780
5781 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5782 p += 2;
5783 }
5784 regcache_raw_supply (regcache, reg->regnum, regp);
5785 return 1;
5786 }
5787
5788 /* Fetch the registers included in the target's 'g' packet. */
5789
5790 static int
5791 send_g_packet (void)
5792 {
5793 struct remote_state *rs = get_remote_state ();
5794 int buf_len;
5795
5796 sprintf (rs->buf, "g");
5797 remote_send (&rs->buf, &rs->buf_size);
5798
5799 /* We can get out of synch in various cases. If the first character
5800 in the buffer is not a hex character, assume that has happened
5801 and try to fetch another packet to read. */
5802 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5803 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5804 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5805 && rs->buf[0] != 'x') /* New: unavailable register value. */
5806 {
5807 if (remote_debug)
5808 fprintf_unfiltered (gdb_stdlog,
5809 "Bad register packet; fetching a new packet\n");
5810 getpkt (&rs->buf, &rs->buf_size, 0);
5811 }
5812
5813 buf_len = strlen (rs->buf);
5814
5815 /* Sanity check the received packet. */
5816 if (buf_len % 2 != 0)
5817 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5818
5819 return buf_len / 2;
5820 }
5821
5822 static void
5823 process_g_packet (struct regcache *regcache)
5824 {
5825 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5826 struct remote_state *rs = get_remote_state ();
5827 struct remote_arch_state *rsa = get_remote_arch_state ();
5828 int i, buf_len;
5829 char *p;
5830 char *regs;
5831
5832 buf_len = strlen (rs->buf);
5833
5834 /* Further sanity checks, with knowledge of the architecture. */
5835 if (buf_len > 2 * rsa->sizeof_g_packet)
5836 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5837
5838 /* Save the size of the packet sent to us by the target. It is used
5839 as a heuristic when determining the max size of packets that the
5840 target can safely receive. */
5841 if (rsa->actual_register_packet_size == 0)
5842 rsa->actual_register_packet_size = buf_len;
5843
5844 /* If this is smaller than we guessed the 'g' packet would be,
5845 update our records. A 'g' reply that doesn't include a register's
5846 value implies either that the register is not available, or that
5847 the 'p' packet must be used. */
5848 if (buf_len < 2 * rsa->sizeof_g_packet)
5849 {
5850 rsa->sizeof_g_packet = buf_len / 2;
5851
5852 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5853 {
5854 if (rsa->regs[i].pnum == -1)
5855 continue;
5856
5857 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5858 rsa->regs[i].in_g_packet = 0;
5859 else
5860 rsa->regs[i].in_g_packet = 1;
5861 }
5862 }
5863
5864 regs = alloca (rsa->sizeof_g_packet);
5865
5866 /* Unimplemented registers read as all bits zero. */
5867 memset (regs, 0, rsa->sizeof_g_packet);
5868
5869 /* Reply describes registers byte by byte, each byte encoded as two
5870 hex characters. Suck them all up, then supply them to the
5871 register cacheing/storage mechanism. */
5872
5873 p = rs->buf;
5874 for (i = 0; i < rsa->sizeof_g_packet; i++)
5875 {
5876 if (p[0] == 0 || p[1] == 0)
5877 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5878 internal_error (__FILE__, __LINE__,
5879 _("unexpected end of 'g' packet reply"));
5880
5881 if (p[0] == 'x' && p[1] == 'x')
5882 regs[i] = 0; /* 'x' */
5883 else
5884 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5885 p += 2;
5886 }
5887
5888 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5889 {
5890 struct packet_reg *r = &rsa->regs[i];
5891
5892 if (r->in_g_packet)
5893 {
5894 if (r->offset * 2 >= strlen (rs->buf))
5895 /* This shouldn't happen - we adjusted in_g_packet above. */
5896 internal_error (__FILE__, __LINE__,
5897 _("unexpected end of 'g' packet reply"));
5898 else if (rs->buf[r->offset * 2] == 'x')
5899 {
5900 gdb_assert (r->offset * 2 < strlen (rs->buf));
5901 /* The register isn't available, mark it as such (at
5902 the same time setting the value to zero). */
5903 regcache_raw_supply (regcache, r->regnum, NULL);
5904 }
5905 else
5906 regcache_raw_supply (regcache, r->regnum,
5907 regs + r->offset);
5908 }
5909 }
5910 }
5911
5912 static void
5913 fetch_registers_using_g (struct regcache *regcache)
5914 {
5915 send_g_packet ();
5916 process_g_packet (regcache);
5917 }
5918
5919 /* Make the remote selected traceframe match GDB's selected
5920 traceframe. */
5921
5922 static void
5923 set_remote_traceframe (void)
5924 {
5925 int newnum;
5926
5927 if (remote_traceframe_number == get_traceframe_number ())
5928 return;
5929
5930 /* Avoid recursion, remote_trace_find calls us again. */
5931 remote_traceframe_number = get_traceframe_number ();
5932
5933 newnum = target_trace_find (tfind_number,
5934 get_traceframe_number (), 0, 0, NULL);
5935
5936 /* Should not happen. If it does, all bets are off. */
5937 if (newnum != get_traceframe_number ())
5938 warning (_("could not set remote traceframe"));
5939 }
5940
5941 static void
5942 remote_fetch_registers (struct target_ops *ops,
5943 struct regcache *regcache, int regnum)
5944 {
5945 struct remote_arch_state *rsa = get_remote_arch_state ();
5946 int i;
5947
5948 set_remote_traceframe ();
5949 set_general_thread (inferior_ptid);
5950
5951 if (regnum >= 0)
5952 {
5953 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5954
5955 gdb_assert (reg != NULL);
5956
5957 /* If this register might be in the 'g' packet, try that first -
5958 we are likely to read more than one register. If this is the
5959 first 'g' packet, we might be overly optimistic about its
5960 contents, so fall back to 'p'. */
5961 if (reg->in_g_packet)
5962 {
5963 fetch_registers_using_g (regcache);
5964 if (reg->in_g_packet)
5965 return;
5966 }
5967
5968 if (fetch_register_using_p (regcache, reg))
5969 return;
5970
5971 /* This register is not available. */
5972 regcache_raw_supply (regcache, reg->regnum, NULL);
5973
5974 return;
5975 }
5976
5977 fetch_registers_using_g (regcache);
5978
5979 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5980 if (!rsa->regs[i].in_g_packet)
5981 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5982 {
5983 /* This register is not available. */
5984 regcache_raw_supply (regcache, i, NULL);
5985 }
5986 }
5987
5988 /* Prepare to store registers. Since we may send them all (using a
5989 'G' request), we have to read out the ones we don't want to change
5990 first. */
5991
5992 static void
5993 remote_prepare_to_store (struct regcache *regcache)
5994 {
5995 struct remote_arch_state *rsa = get_remote_arch_state ();
5996 int i;
5997 gdb_byte buf[MAX_REGISTER_SIZE];
5998
5999 /* Make sure the entire registers array is valid. */
6000 switch (remote_protocol_packets[PACKET_P].support)
6001 {
6002 case PACKET_DISABLE:
6003 case PACKET_SUPPORT_UNKNOWN:
6004 /* Make sure all the necessary registers are cached. */
6005 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6006 if (rsa->regs[i].in_g_packet)
6007 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6008 break;
6009 case PACKET_ENABLE:
6010 break;
6011 }
6012 }
6013
6014 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6015 packet was not recognized. */
6016
6017 static int
6018 store_register_using_P (const struct regcache *regcache,
6019 struct packet_reg *reg)
6020 {
6021 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6022 struct remote_state *rs = get_remote_state ();
6023 /* Try storing a single register. */
6024 char *buf = rs->buf;
6025 gdb_byte regp[MAX_REGISTER_SIZE];
6026 char *p;
6027
6028 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6029 return 0;
6030
6031 if (reg->pnum == -1)
6032 return 0;
6033
6034 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6035 p = buf + strlen (buf);
6036 regcache_raw_collect (regcache, reg->regnum, regp);
6037 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6038 putpkt (rs->buf);
6039 getpkt (&rs->buf, &rs->buf_size, 0);
6040
6041 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6042 {
6043 case PACKET_OK:
6044 return 1;
6045 case PACKET_ERROR:
6046 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6047 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6048 case PACKET_UNKNOWN:
6049 return 0;
6050 default:
6051 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6052 }
6053 }
6054
6055 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6056 contents of the register cache buffer. FIXME: ignores errors. */
6057
6058 static void
6059 store_registers_using_G (const struct regcache *regcache)
6060 {
6061 struct remote_state *rs = get_remote_state ();
6062 struct remote_arch_state *rsa = get_remote_arch_state ();
6063 gdb_byte *regs;
6064 char *p;
6065
6066 /* Extract all the registers in the regcache copying them into a
6067 local buffer. */
6068 {
6069 int i;
6070
6071 regs = alloca (rsa->sizeof_g_packet);
6072 memset (regs, 0, rsa->sizeof_g_packet);
6073 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6074 {
6075 struct packet_reg *r = &rsa->regs[i];
6076
6077 if (r->in_g_packet)
6078 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6079 }
6080 }
6081
6082 /* Command describes registers byte by byte,
6083 each byte encoded as two hex characters. */
6084 p = rs->buf;
6085 *p++ = 'G';
6086 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6087 updated. */
6088 bin2hex (regs, p, rsa->sizeof_g_packet);
6089 putpkt (rs->buf);
6090 getpkt (&rs->buf, &rs->buf_size, 0);
6091 if (packet_check_result (rs->buf) == PACKET_ERROR)
6092 error (_("Could not write registers; remote failure reply '%s'"),
6093 rs->buf);
6094 }
6095
6096 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6097 of the register cache buffer. FIXME: ignores errors. */
6098
6099 static void
6100 remote_store_registers (struct target_ops *ops,
6101 struct regcache *regcache, int regnum)
6102 {
6103 struct remote_arch_state *rsa = get_remote_arch_state ();
6104 int i;
6105
6106 set_remote_traceframe ();
6107 set_general_thread (inferior_ptid);
6108
6109 if (regnum >= 0)
6110 {
6111 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6112
6113 gdb_assert (reg != NULL);
6114
6115 /* Always prefer to store registers using the 'P' packet if
6116 possible; we often change only a small number of registers.
6117 Sometimes we change a larger number; we'd need help from a
6118 higher layer to know to use 'G'. */
6119 if (store_register_using_P (regcache, reg))
6120 return;
6121
6122 /* For now, don't complain if we have no way to write the
6123 register. GDB loses track of unavailable registers too
6124 easily. Some day, this may be an error. We don't have
6125 any way to read the register, either... */
6126 if (!reg->in_g_packet)
6127 return;
6128
6129 store_registers_using_G (regcache);
6130 return;
6131 }
6132
6133 store_registers_using_G (regcache);
6134
6135 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6136 if (!rsa->regs[i].in_g_packet)
6137 if (!store_register_using_P (regcache, &rsa->regs[i]))
6138 /* See above for why we do not issue an error here. */
6139 continue;
6140 }
6141 \f
6142
6143 /* Return the number of hex digits in num. */
6144
6145 static int
6146 hexnumlen (ULONGEST num)
6147 {
6148 int i;
6149
6150 for (i = 0; num != 0; i++)
6151 num >>= 4;
6152
6153 return max (i, 1);
6154 }
6155
6156 /* Set BUF to the minimum number of hex digits representing NUM. */
6157
6158 static int
6159 hexnumstr (char *buf, ULONGEST num)
6160 {
6161 int len = hexnumlen (num);
6162
6163 return hexnumnstr (buf, num, len);
6164 }
6165
6166
6167 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6168
6169 static int
6170 hexnumnstr (char *buf, ULONGEST num, int width)
6171 {
6172 int i;
6173
6174 buf[width] = '\0';
6175
6176 for (i = width - 1; i >= 0; i--)
6177 {
6178 buf[i] = "0123456789abcdef"[(num & 0xf)];
6179 num >>= 4;
6180 }
6181
6182 return width;
6183 }
6184
6185 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6186
6187 static CORE_ADDR
6188 remote_address_masked (CORE_ADDR addr)
6189 {
6190 int address_size = remote_address_size;
6191
6192 /* If "remoteaddresssize" was not set, default to target address size. */
6193 if (!address_size)
6194 address_size = gdbarch_addr_bit (target_gdbarch);
6195
6196 if (address_size > 0
6197 && address_size < (sizeof (ULONGEST) * 8))
6198 {
6199 /* Only create a mask when that mask can safely be constructed
6200 in a ULONGEST variable. */
6201 ULONGEST mask = 1;
6202
6203 mask = (mask << address_size) - 1;
6204 addr &= mask;
6205 }
6206 return addr;
6207 }
6208
6209 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6210 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6211 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6212 (which may be more than *OUT_LEN due to escape characters). The
6213 total number of bytes in the output buffer will be at most
6214 OUT_MAXLEN. */
6215
6216 static int
6217 remote_escape_output (const gdb_byte *buffer, int len,
6218 gdb_byte *out_buf, int *out_len,
6219 int out_maxlen)
6220 {
6221 int input_index, output_index;
6222
6223 output_index = 0;
6224 for (input_index = 0; input_index < len; input_index++)
6225 {
6226 gdb_byte b = buffer[input_index];
6227
6228 if (b == '$' || b == '#' || b == '}')
6229 {
6230 /* These must be escaped. */
6231 if (output_index + 2 > out_maxlen)
6232 break;
6233 out_buf[output_index++] = '}';
6234 out_buf[output_index++] = b ^ 0x20;
6235 }
6236 else
6237 {
6238 if (output_index + 1 > out_maxlen)
6239 break;
6240 out_buf[output_index++] = b;
6241 }
6242 }
6243
6244 *out_len = input_index;
6245 return output_index;
6246 }
6247
6248 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6249 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6250 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6251
6252 This function reverses remote_escape_output. It allows more
6253 escaped characters than that function does, in particular because
6254 '*' must be escaped to avoid the run-length encoding processing
6255 in reading packets. */
6256
6257 static int
6258 remote_unescape_input (const gdb_byte *buffer, int len,
6259 gdb_byte *out_buf, int out_maxlen)
6260 {
6261 int input_index, output_index;
6262 int escaped;
6263
6264 output_index = 0;
6265 escaped = 0;
6266 for (input_index = 0; input_index < len; input_index++)
6267 {
6268 gdb_byte b = buffer[input_index];
6269
6270 if (output_index + 1 > out_maxlen)
6271 {
6272 warning (_("Received too much data from remote target;"
6273 " ignoring overflow."));
6274 return output_index;
6275 }
6276
6277 if (escaped)
6278 {
6279 out_buf[output_index++] = b ^ 0x20;
6280 escaped = 0;
6281 }
6282 else if (b == '}')
6283 escaped = 1;
6284 else
6285 out_buf[output_index++] = b;
6286 }
6287
6288 if (escaped)
6289 error (_("Unmatched escape character in target response."));
6290
6291 return output_index;
6292 }
6293
6294 /* Determine whether the remote target supports binary downloading.
6295 This is accomplished by sending a no-op memory write of zero length
6296 to the target at the specified address. It does not suffice to send
6297 the whole packet, since many stubs strip the eighth bit and
6298 subsequently compute a wrong checksum, which causes real havoc with
6299 remote_write_bytes.
6300
6301 NOTE: This can still lose if the serial line is not eight-bit
6302 clean. In cases like this, the user should clear "remote
6303 X-packet". */
6304
6305 static void
6306 check_binary_download (CORE_ADDR addr)
6307 {
6308 struct remote_state *rs = get_remote_state ();
6309
6310 switch (remote_protocol_packets[PACKET_X].support)
6311 {
6312 case PACKET_DISABLE:
6313 break;
6314 case PACKET_ENABLE:
6315 break;
6316 case PACKET_SUPPORT_UNKNOWN:
6317 {
6318 char *p;
6319
6320 p = rs->buf;
6321 *p++ = 'X';
6322 p += hexnumstr (p, (ULONGEST) addr);
6323 *p++ = ',';
6324 p += hexnumstr (p, (ULONGEST) 0);
6325 *p++ = ':';
6326 *p = '\0';
6327
6328 putpkt_binary (rs->buf, (int) (p - rs->buf));
6329 getpkt (&rs->buf, &rs->buf_size, 0);
6330
6331 if (rs->buf[0] == '\0')
6332 {
6333 if (remote_debug)
6334 fprintf_unfiltered (gdb_stdlog,
6335 "binary downloading NOT "
6336 "supported by target\n");
6337 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6338 }
6339 else
6340 {
6341 if (remote_debug)
6342 fprintf_unfiltered (gdb_stdlog,
6343 "binary downloading supported by target\n");
6344 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6345 }
6346 break;
6347 }
6348 }
6349 }
6350
6351 /* Write memory data directly to the remote machine.
6352 This does not inform the data cache; the data cache uses this.
6353 HEADER is the starting part of the packet.
6354 MEMADDR is the address in the remote memory space.
6355 MYADDR is the address of the buffer in our space.
6356 LEN is the number of bytes.
6357 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6358 should send data as binary ('X'), or hex-encoded ('M').
6359
6360 The function creates packet of the form
6361 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6362
6363 where encoding of <DATA> is termined by PACKET_FORMAT.
6364
6365 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6366 are omitted.
6367
6368 Returns the number of bytes transferred, or 0 (setting errno) for
6369 error. Only transfer a single packet. */
6370
6371 static int
6372 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6373 const gdb_byte *myaddr, int len,
6374 char packet_format, int use_length)
6375 {
6376 struct remote_state *rs = get_remote_state ();
6377 char *p;
6378 char *plen = NULL;
6379 int plenlen = 0;
6380 int todo;
6381 int nr_bytes;
6382 int payload_size;
6383 int payload_length;
6384 int header_length;
6385
6386 if (packet_format != 'X' && packet_format != 'M')
6387 internal_error (__FILE__, __LINE__,
6388 _("remote_write_bytes_aux: bad packet format"));
6389
6390 if (len <= 0)
6391 return 0;
6392
6393 payload_size = get_memory_write_packet_size ();
6394
6395 /* The packet buffer will be large enough for the payload;
6396 get_memory_packet_size ensures this. */
6397 rs->buf[0] = '\0';
6398
6399 /* Compute the size of the actual payload by subtracting out the
6400 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6401
6402 payload_size -= strlen ("$,:#NN");
6403 if (!use_length)
6404 /* The comma won't be used. */
6405 payload_size += 1;
6406 header_length = strlen (header);
6407 payload_size -= header_length;
6408 payload_size -= hexnumlen (memaddr);
6409
6410 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6411
6412 strcat (rs->buf, header);
6413 p = rs->buf + strlen (header);
6414
6415 /* Compute a best guess of the number of bytes actually transfered. */
6416 if (packet_format == 'X')
6417 {
6418 /* Best guess at number of bytes that will fit. */
6419 todo = min (len, payload_size);
6420 if (use_length)
6421 payload_size -= hexnumlen (todo);
6422 todo = min (todo, payload_size);
6423 }
6424 else
6425 {
6426 /* Num bytes that will fit. */
6427 todo = min (len, payload_size / 2);
6428 if (use_length)
6429 payload_size -= hexnumlen (todo);
6430 todo = min (todo, payload_size / 2);
6431 }
6432
6433 if (todo <= 0)
6434 internal_error (__FILE__, __LINE__,
6435 _("minimum packet size too small to write data"));
6436
6437 /* If we already need another packet, then try to align the end
6438 of this packet to a useful boundary. */
6439 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6440 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6441
6442 /* Append "<memaddr>". */
6443 memaddr = remote_address_masked (memaddr);
6444 p += hexnumstr (p, (ULONGEST) memaddr);
6445
6446 if (use_length)
6447 {
6448 /* Append ",". */
6449 *p++ = ',';
6450
6451 /* Append <len>. Retain the location/size of <len>. It may need to
6452 be adjusted once the packet body has been created. */
6453 plen = p;
6454 plenlen = hexnumstr (p, (ULONGEST) todo);
6455 p += plenlen;
6456 }
6457
6458 /* Append ":". */
6459 *p++ = ':';
6460 *p = '\0';
6461
6462 /* Append the packet body. */
6463 if (packet_format == 'X')
6464 {
6465 /* Binary mode. Send target system values byte by byte, in
6466 increasing byte addresses. Only escape certain critical
6467 characters. */
6468 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6469 payload_size);
6470
6471 /* If not all TODO bytes fit, then we'll need another packet. Make
6472 a second try to keep the end of the packet aligned. Don't do
6473 this if the packet is tiny. */
6474 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6475 {
6476 int new_nr_bytes;
6477
6478 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6479 - memaddr);
6480 if (new_nr_bytes != nr_bytes)
6481 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6482 p, &nr_bytes,
6483 payload_size);
6484 }
6485
6486 p += payload_length;
6487 if (use_length && nr_bytes < todo)
6488 {
6489 /* Escape chars have filled up the buffer prematurely,
6490 and we have actually sent fewer bytes than planned.
6491 Fix-up the length field of the packet. Use the same
6492 number of characters as before. */
6493 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6494 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6495 }
6496 }
6497 else
6498 {
6499 /* Normal mode: Send target system values byte by byte, in
6500 increasing byte addresses. Each byte is encoded as a two hex
6501 value. */
6502 nr_bytes = bin2hex (myaddr, p, todo);
6503 p += 2 * nr_bytes;
6504 }
6505
6506 putpkt_binary (rs->buf, (int) (p - rs->buf));
6507 getpkt (&rs->buf, &rs->buf_size, 0);
6508
6509 if (rs->buf[0] == 'E')
6510 {
6511 /* There is no correspondance between what the remote protocol
6512 uses for errors and errno codes. We would like a cleaner way
6513 of representing errors (big enough to include errno codes,
6514 bfd_error codes, and others). But for now just return EIO. */
6515 errno = EIO;
6516 return 0;
6517 }
6518
6519 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6520 fewer bytes than we'd planned. */
6521 return nr_bytes;
6522 }
6523
6524 /* Write memory data directly to the remote machine.
6525 This does not inform the data cache; the data cache uses this.
6526 MEMADDR is the address in the remote memory space.
6527 MYADDR is the address of the buffer in our space.
6528 LEN is the number of bytes.
6529
6530 Returns number of bytes transferred, or 0 (setting errno) for
6531 error. Only transfer a single packet. */
6532
6533 static int
6534 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6535 {
6536 char *packet_format = 0;
6537
6538 /* Check whether the target supports binary download. */
6539 check_binary_download (memaddr);
6540
6541 switch (remote_protocol_packets[PACKET_X].support)
6542 {
6543 case PACKET_ENABLE:
6544 packet_format = "X";
6545 break;
6546 case PACKET_DISABLE:
6547 packet_format = "M";
6548 break;
6549 case PACKET_SUPPORT_UNKNOWN:
6550 internal_error (__FILE__, __LINE__,
6551 _("remote_write_bytes: bad internal state"));
6552 default:
6553 internal_error (__FILE__, __LINE__, _("bad switch"));
6554 }
6555
6556 return remote_write_bytes_aux (packet_format,
6557 memaddr, myaddr, len, packet_format[0], 1);
6558 }
6559
6560 /* Read memory data directly from the remote machine.
6561 This does not use the data cache; the data cache uses this.
6562 MEMADDR is the address in the remote memory space.
6563 MYADDR is the address of the buffer in our space.
6564 LEN is the number of bytes.
6565
6566 Returns number of bytes transferred, or 0 for error. */
6567
6568 static int
6569 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6570 {
6571 struct remote_state *rs = get_remote_state ();
6572 int max_buf_size; /* Max size of packet output buffer. */
6573 char *p;
6574 int todo;
6575 int i;
6576
6577 if (len <= 0)
6578 return 0;
6579
6580 max_buf_size = get_memory_read_packet_size ();
6581 /* The packet buffer will be large enough for the payload;
6582 get_memory_packet_size ensures this. */
6583
6584 /* Number if bytes that will fit. */
6585 todo = min (len, max_buf_size / 2);
6586
6587 /* Construct "m"<memaddr>","<len>". */
6588 memaddr = remote_address_masked (memaddr);
6589 p = rs->buf;
6590 *p++ = 'm';
6591 p += hexnumstr (p, (ULONGEST) memaddr);
6592 *p++ = ',';
6593 p += hexnumstr (p, (ULONGEST) todo);
6594 *p = '\0';
6595 putpkt (rs->buf);
6596 getpkt (&rs->buf, &rs->buf_size, 0);
6597 if (rs->buf[0] == 'E'
6598 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6599 && rs->buf[3] == '\0')
6600 {
6601 /* There is no correspondance between what the remote protocol
6602 uses for errors and errno codes. We would like a cleaner way
6603 of representing errors (big enough to include errno codes,
6604 bfd_error codes, and others). But for now just return
6605 EIO. */
6606 errno = EIO;
6607 return 0;
6608 }
6609 /* Reply describes memory byte by byte, each byte encoded as two hex
6610 characters. */
6611 p = rs->buf;
6612 i = hex2bin (p, myaddr, todo);
6613 /* Return what we have. Let higher layers handle partial reads. */
6614 return i;
6615 }
6616 \f
6617
6618 /* Remote notification handler. */
6619
6620 static void
6621 handle_notification (char *buf, size_t length)
6622 {
6623 if (strncmp (buf, "Stop:", 5) == 0)
6624 {
6625 if (pending_stop_reply)
6626 {
6627 /* We've already parsed the in-flight stop-reply, but the
6628 stub for some reason thought we didn't, possibly due to
6629 timeout on its side. Just ignore it. */
6630 if (remote_debug)
6631 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6632 }
6633 else
6634 {
6635 struct cleanup *old_chain;
6636 struct stop_reply *reply = stop_reply_xmalloc ();
6637
6638 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6639
6640 remote_parse_stop_reply (buf + 5, reply);
6641
6642 discard_cleanups (old_chain);
6643
6644 /* Be careful to only set it after parsing, since an error
6645 may be thrown then. */
6646 pending_stop_reply = reply;
6647
6648 /* Notify the event loop there's a stop reply to acknowledge
6649 and that there may be more events to fetch. */
6650 mark_async_event_handler (remote_async_get_pending_events_token);
6651
6652 if (remote_debug)
6653 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6654 }
6655 }
6656 else
6657 /* We ignore notifications we don't recognize, for compatibility
6658 with newer stubs. */
6659 ;
6660 }
6661
6662 \f
6663 /* Read or write LEN bytes from inferior memory at MEMADDR,
6664 transferring to or from debugger address BUFFER. Write to inferior
6665 if SHOULD_WRITE is nonzero. Returns length of data written or
6666 read; 0 for error. TARGET is unused. */
6667
6668 static int
6669 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6670 int should_write, struct mem_attrib *attrib,
6671 struct target_ops *target)
6672 {
6673 int res;
6674
6675 set_remote_traceframe ();
6676 set_general_thread (inferior_ptid);
6677
6678 if (should_write)
6679 res = remote_write_bytes (mem_addr, buffer, mem_len);
6680 else
6681 res = remote_read_bytes (mem_addr, buffer, mem_len);
6682
6683 return res;
6684 }
6685
6686 /* Sends a packet with content determined by the printf format string
6687 FORMAT and the remaining arguments, then gets the reply. Returns
6688 whether the packet was a success, a failure, or unknown. */
6689
6690 static enum packet_result
6691 remote_send_printf (const char *format, ...)
6692 {
6693 struct remote_state *rs = get_remote_state ();
6694 int max_size = get_remote_packet_size ();
6695 va_list ap;
6696
6697 va_start (ap, format);
6698
6699 rs->buf[0] = '\0';
6700 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6701 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6702
6703 if (putpkt (rs->buf) < 0)
6704 error (_("Communication problem with target."));
6705
6706 rs->buf[0] = '\0';
6707 getpkt (&rs->buf, &rs->buf_size, 0);
6708
6709 return packet_check_result (rs->buf);
6710 }
6711
6712 static void
6713 restore_remote_timeout (void *p)
6714 {
6715 int value = *(int *)p;
6716
6717 remote_timeout = value;
6718 }
6719
6720 /* Flash writing can take quite some time. We'll set
6721 effectively infinite timeout for flash operations.
6722 In future, we'll need to decide on a better approach. */
6723 static const int remote_flash_timeout = 1000;
6724
6725 static void
6726 remote_flash_erase (struct target_ops *ops,
6727 ULONGEST address, LONGEST length)
6728 {
6729 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6730 int saved_remote_timeout = remote_timeout;
6731 enum packet_result ret;
6732 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6733 &saved_remote_timeout);
6734
6735 remote_timeout = remote_flash_timeout;
6736
6737 ret = remote_send_printf ("vFlashErase:%s,%s",
6738 phex (address, addr_size),
6739 phex (length, 4));
6740 switch (ret)
6741 {
6742 case PACKET_UNKNOWN:
6743 error (_("Remote target does not support flash erase"));
6744 case PACKET_ERROR:
6745 error (_("Error erasing flash with vFlashErase packet"));
6746 default:
6747 break;
6748 }
6749
6750 do_cleanups (back_to);
6751 }
6752
6753 static LONGEST
6754 remote_flash_write (struct target_ops *ops,
6755 ULONGEST address, LONGEST length,
6756 const gdb_byte *data)
6757 {
6758 int saved_remote_timeout = remote_timeout;
6759 int ret;
6760 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6761 &saved_remote_timeout);
6762
6763 remote_timeout = remote_flash_timeout;
6764 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6765 do_cleanups (back_to);
6766
6767 return ret;
6768 }
6769
6770 static void
6771 remote_flash_done (struct target_ops *ops)
6772 {
6773 int saved_remote_timeout = remote_timeout;
6774 int ret;
6775 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6776 &saved_remote_timeout);
6777
6778 remote_timeout = remote_flash_timeout;
6779 ret = remote_send_printf ("vFlashDone");
6780 do_cleanups (back_to);
6781
6782 switch (ret)
6783 {
6784 case PACKET_UNKNOWN:
6785 error (_("Remote target does not support vFlashDone"));
6786 case PACKET_ERROR:
6787 error (_("Error finishing flash operation"));
6788 default:
6789 break;
6790 }
6791 }
6792
6793 static void
6794 remote_files_info (struct target_ops *ignore)
6795 {
6796 puts_filtered ("Debugging a target over a serial line.\n");
6797 }
6798 \f
6799 /* Stuff for dealing with the packets which are part of this protocol.
6800 See comment at top of file for details. */
6801
6802 /* Read a single character from the remote end. */
6803
6804 static int
6805 readchar (int timeout)
6806 {
6807 int ch;
6808
6809 ch = serial_readchar (remote_desc, timeout);
6810
6811 if (ch >= 0)
6812 return ch;
6813
6814 switch ((enum serial_rc) ch)
6815 {
6816 case SERIAL_EOF:
6817 pop_target ();
6818 error (_("Remote connection closed"));
6819 /* no return */
6820 case SERIAL_ERROR:
6821 pop_target ();
6822 perror_with_name (_("Remote communication error. "
6823 "Target disconnected."));
6824 /* no return */
6825 case SERIAL_TIMEOUT:
6826 break;
6827 }
6828 return ch;
6829 }
6830
6831 /* Send the command in *BUF to the remote machine, and read the reply
6832 into *BUF. Report an error if we get an error reply. Resize
6833 *BUF using xrealloc if necessary to hold the result, and update
6834 *SIZEOF_BUF. */
6835
6836 static void
6837 remote_send (char **buf,
6838 long *sizeof_buf)
6839 {
6840 putpkt (*buf);
6841 getpkt (buf, sizeof_buf, 0);
6842
6843 if ((*buf)[0] == 'E')
6844 error (_("Remote failure reply: %s"), *buf);
6845 }
6846
6847 /* Return a pointer to an xmalloc'ed string representing an escaped
6848 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6849 etc. The caller is responsible for releasing the returned
6850 memory. */
6851
6852 static char *
6853 escape_buffer (const char *buf, int n)
6854 {
6855 struct cleanup *old_chain;
6856 struct ui_file *stb;
6857 char *str;
6858
6859 stb = mem_fileopen ();
6860 old_chain = make_cleanup_ui_file_delete (stb);
6861
6862 fputstrn_unfiltered (buf, n, 0, stb);
6863 str = ui_file_xstrdup (stb, NULL);
6864 do_cleanups (old_chain);
6865 return str;
6866 }
6867
6868 /* Display a null-terminated packet on stdout, for debugging, using C
6869 string notation. */
6870
6871 static void
6872 print_packet (char *buf)
6873 {
6874 puts_filtered ("\"");
6875 fputstr_filtered (buf, '"', gdb_stdout);
6876 puts_filtered ("\"");
6877 }
6878
6879 int
6880 putpkt (char *buf)
6881 {
6882 return putpkt_binary (buf, strlen (buf));
6883 }
6884
6885 /* Send a packet to the remote machine, with error checking. The data
6886 of the packet is in BUF. The string in BUF can be at most
6887 get_remote_packet_size () - 5 to account for the $, # and checksum,
6888 and for a possible /0 if we are debugging (remote_debug) and want
6889 to print the sent packet as a string. */
6890
6891 static int
6892 putpkt_binary (char *buf, int cnt)
6893 {
6894 struct remote_state *rs = get_remote_state ();
6895 int i;
6896 unsigned char csum = 0;
6897 char *buf2 = alloca (cnt + 6);
6898
6899 int ch;
6900 int tcount = 0;
6901 char *p;
6902
6903 /* Catch cases like trying to read memory or listing threads while
6904 we're waiting for a stop reply. The remote server wouldn't be
6905 ready to handle this request, so we'd hang and timeout. We don't
6906 have to worry about this in synchronous mode, because in that
6907 case it's not possible to issue a command while the target is
6908 running. This is not a problem in non-stop mode, because in that
6909 case, the stub is always ready to process serial input. */
6910 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6911 error (_("Cannot execute this command while the target is running."));
6912
6913 /* We're sending out a new packet. Make sure we don't look at a
6914 stale cached response. */
6915 rs->cached_wait_status = 0;
6916
6917 /* Copy the packet into buffer BUF2, encapsulating it
6918 and giving it a checksum. */
6919
6920 p = buf2;
6921 *p++ = '$';
6922
6923 for (i = 0; i < cnt; i++)
6924 {
6925 csum += buf[i];
6926 *p++ = buf[i];
6927 }
6928 *p++ = '#';
6929 *p++ = tohex ((csum >> 4) & 0xf);
6930 *p++ = tohex (csum & 0xf);
6931
6932 /* Send it over and over until we get a positive ack. */
6933
6934 while (1)
6935 {
6936 int started_error_output = 0;
6937
6938 if (remote_debug)
6939 {
6940 struct cleanup *old_chain;
6941 char *str;
6942
6943 *p = '\0';
6944 str = escape_buffer (buf2, p - buf2);
6945 old_chain = make_cleanup (xfree, str);
6946 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6947 gdb_flush (gdb_stdlog);
6948 do_cleanups (old_chain);
6949 }
6950 if (serial_write (remote_desc, buf2, p - buf2))
6951 perror_with_name (_("putpkt: write failed"));
6952
6953 /* If this is a no acks version of the remote protocol, send the
6954 packet and move on. */
6955 if (rs->noack_mode)
6956 break;
6957
6958 /* Read until either a timeout occurs (-2) or '+' is read.
6959 Handle any notification that arrives in the mean time. */
6960 while (1)
6961 {
6962 ch = readchar (remote_timeout);
6963
6964 if (remote_debug)
6965 {
6966 switch (ch)
6967 {
6968 case '+':
6969 case '-':
6970 case SERIAL_TIMEOUT:
6971 case '$':
6972 case '%':
6973 if (started_error_output)
6974 {
6975 putchar_unfiltered ('\n');
6976 started_error_output = 0;
6977 }
6978 }
6979 }
6980
6981 switch (ch)
6982 {
6983 case '+':
6984 if (remote_debug)
6985 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6986 return 1;
6987 case '-':
6988 if (remote_debug)
6989 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6990 /* FALLTHROUGH */
6991 case SERIAL_TIMEOUT:
6992 tcount++;
6993 if (tcount > 3)
6994 return 0;
6995 break; /* Retransmit buffer. */
6996 case '$':
6997 {
6998 if (remote_debug)
6999 fprintf_unfiltered (gdb_stdlog,
7000 "Packet instead of Ack, ignoring it\n");
7001 /* It's probably an old response sent because an ACK
7002 was lost. Gobble up the packet and ack it so it
7003 doesn't get retransmitted when we resend this
7004 packet. */
7005 skip_frame ();
7006 serial_write (remote_desc, "+", 1);
7007 continue; /* Now, go look for +. */
7008 }
7009
7010 case '%':
7011 {
7012 int val;
7013
7014 /* If we got a notification, handle it, and go back to looking
7015 for an ack. */
7016 /* We've found the start of a notification. Now
7017 collect the data. */
7018 val = read_frame (&rs->buf, &rs->buf_size);
7019 if (val >= 0)
7020 {
7021 if (remote_debug)
7022 {
7023 struct cleanup *old_chain;
7024 char *str;
7025
7026 str = escape_buffer (rs->buf, val);
7027 old_chain = make_cleanup (xfree, str);
7028 fprintf_unfiltered (gdb_stdlog,
7029 " Notification received: %s\n",
7030 str);
7031 do_cleanups (old_chain);
7032 }
7033 handle_notification (rs->buf, val);
7034 /* We're in sync now, rewait for the ack. */
7035 tcount = 0;
7036 }
7037 else
7038 {
7039 if (remote_debug)
7040 {
7041 if (!started_error_output)
7042 {
7043 started_error_output = 1;
7044 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7045 }
7046 fputc_unfiltered (ch & 0177, gdb_stdlog);
7047 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7048 }
7049 }
7050 continue;
7051 }
7052 /* fall-through */
7053 default:
7054 if (remote_debug)
7055 {
7056 if (!started_error_output)
7057 {
7058 started_error_output = 1;
7059 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7060 }
7061 fputc_unfiltered (ch & 0177, gdb_stdlog);
7062 }
7063 continue;
7064 }
7065 break; /* Here to retransmit. */
7066 }
7067
7068 #if 0
7069 /* This is wrong. If doing a long backtrace, the user should be
7070 able to get out next time we call QUIT, without anything as
7071 violent as interrupt_query. If we want to provide a way out of
7072 here without getting to the next QUIT, it should be based on
7073 hitting ^C twice as in remote_wait. */
7074 if (quit_flag)
7075 {
7076 quit_flag = 0;
7077 interrupt_query ();
7078 }
7079 #endif
7080 }
7081 return 0;
7082 }
7083
7084 /* Come here after finding the start of a frame when we expected an
7085 ack. Do our best to discard the rest of this packet. */
7086
7087 static void
7088 skip_frame (void)
7089 {
7090 int c;
7091
7092 while (1)
7093 {
7094 c = readchar (remote_timeout);
7095 switch (c)
7096 {
7097 case SERIAL_TIMEOUT:
7098 /* Nothing we can do. */
7099 return;
7100 case '#':
7101 /* Discard the two bytes of checksum and stop. */
7102 c = readchar (remote_timeout);
7103 if (c >= 0)
7104 c = readchar (remote_timeout);
7105
7106 return;
7107 case '*': /* Run length encoding. */
7108 /* Discard the repeat count. */
7109 c = readchar (remote_timeout);
7110 if (c < 0)
7111 return;
7112 break;
7113 default:
7114 /* A regular character. */
7115 break;
7116 }
7117 }
7118 }
7119
7120 /* Come here after finding the start of the frame. Collect the rest
7121 into *BUF, verifying the checksum, length, and handling run-length
7122 compression. NUL terminate the buffer. If there is not enough room,
7123 expand *BUF using xrealloc.
7124
7125 Returns -1 on error, number of characters in buffer (ignoring the
7126 trailing NULL) on success. (could be extended to return one of the
7127 SERIAL status indications). */
7128
7129 static long
7130 read_frame (char **buf_p,
7131 long *sizeof_buf)
7132 {
7133 unsigned char csum;
7134 long bc;
7135 int c;
7136 char *buf = *buf_p;
7137 struct remote_state *rs = get_remote_state ();
7138
7139 csum = 0;
7140 bc = 0;
7141
7142 while (1)
7143 {
7144 c = readchar (remote_timeout);
7145 switch (c)
7146 {
7147 case SERIAL_TIMEOUT:
7148 if (remote_debug)
7149 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7150 return -1;
7151 case '$':
7152 if (remote_debug)
7153 fputs_filtered ("Saw new packet start in middle of old one\n",
7154 gdb_stdlog);
7155 return -1; /* Start a new packet, count retries. */
7156 case '#':
7157 {
7158 unsigned char pktcsum;
7159 int check_0 = 0;
7160 int check_1 = 0;
7161
7162 buf[bc] = '\0';
7163
7164 check_0 = readchar (remote_timeout);
7165 if (check_0 >= 0)
7166 check_1 = readchar (remote_timeout);
7167
7168 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7169 {
7170 if (remote_debug)
7171 fputs_filtered ("Timeout in checksum, retrying\n",
7172 gdb_stdlog);
7173 return -1;
7174 }
7175 else if (check_0 < 0 || check_1 < 0)
7176 {
7177 if (remote_debug)
7178 fputs_filtered ("Communication error in checksum\n",
7179 gdb_stdlog);
7180 return -1;
7181 }
7182
7183 /* Don't recompute the checksum; with no ack packets we
7184 don't have any way to indicate a packet retransmission
7185 is necessary. */
7186 if (rs->noack_mode)
7187 return bc;
7188
7189 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7190 if (csum == pktcsum)
7191 return bc;
7192
7193 if (remote_debug)
7194 {
7195 struct cleanup *old_chain;
7196 char *str;
7197
7198 str = escape_buffer (buf, bc);
7199 old_chain = make_cleanup (xfree, str);
7200 fprintf_unfiltered (gdb_stdlog,
7201 "Bad checksum, sentsum=0x%x, "
7202 "csum=0x%x, buf=%s\n",
7203 pktcsum, csum, str);
7204 do_cleanups (old_chain);
7205 }
7206 /* Number of characters in buffer ignoring trailing
7207 NULL. */
7208 return -1;
7209 }
7210 case '*': /* Run length encoding. */
7211 {
7212 int repeat;
7213
7214 csum += c;
7215 c = readchar (remote_timeout);
7216 csum += c;
7217 repeat = c - ' ' + 3; /* Compute repeat count. */
7218
7219 /* The character before ``*'' is repeated. */
7220
7221 if (repeat > 0 && repeat <= 255 && bc > 0)
7222 {
7223 if (bc + repeat - 1 >= *sizeof_buf - 1)
7224 {
7225 /* Make some more room in the buffer. */
7226 *sizeof_buf += repeat;
7227 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7228 buf = *buf_p;
7229 }
7230
7231 memset (&buf[bc], buf[bc - 1], repeat);
7232 bc += repeat;
7233 continue;
7234 }
7235
7236 buf[bc] = '\0';
7237 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7238 return -1;
7239 }
7240 default:
7241 if (bc >= *sizeof_buf - 1)
7242 {
7243 /* Make some more room in the buffer. */
7244 *sizeof_buf *= 2;
7245 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7246 buf = *buf_p;
7247 }
7248
7249 buf[bc++] = c;
7250 csum += c;
7251 continue;
7252 }
7253 }
7254 }
7255
7256 /* Read a packet from the remote machine, with error checking, and
7257 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7258 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7259 rather than timing out; this is used (in synchronous mode) to wait
7260 for a target that is is executing user code to stop. */
7261 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7262 don't have to change all the calls to getpkt to deal with the
7263 return value, because at the moment I don't know what the right
7264 thing to do it for those. */
7265 void
7266 getpkt (char **buf,
7267 long *sizeof_buf,
7268 int forever)
7269 {
7270 int timed_out;
7271
7272 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7273 }
7274
7275
7276 /* Read a packet from the remote machine, with error checking, and
7277 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7278 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7279 rather than timing out; this is used (in synchronous mode) to wait
7280 for a target that is is executing user code to stop. If FOREVER ==
7281 0, this function is allowed to time out gracefully and return an
7282 indication of this to the caller. Otherwise return the number of
7283 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7284 enough reason to return to the caller. */
7285
7286 static int
7287 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7288 int expecting_notif)
7289 {
7290 struct remote_state *rs = get_remote_state ();
7291 int c;
7292 int tries;
7293 int timeout;
7294 int val = -1;
7295
7296 /* We're reading a new response. Make sure we don't look at a
7297 previously cached response. */
7298 rs->cached_wait_status = 0;
7299
7300 strcpy (*buf, "timeout");
7301
7302 if (forever)
7303 timeout = watchdog > 0 ? watchdog : -1;
7304 else if (expecting_notif)
7305 timeout = 0; /* There should already be a char in the buffer. If
7306 not, bail out. */
7307 else
7308 timeout = remote_timeout;
7309
7310 #define MAX_TRIES 3
7311
7312 /* Process any number of notifications, and then return when
7313 we get a packet. */
7314 for (;;)
7315 {
7316 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7317 times. */
7318 for (tries = 1; tries <= MAX_TRIES; tries++)
7319 {
7320 /* This can loop forever if the remote side sends us
7321 characters continuously, but if it pauses, we'll get
7322 SERIAL_TIMEOUT from readchar because of timeout. Then
7323 we'll count that as a retry.
7324
7325 Note that even when forever is set, we will only wait
7326 forever prior to the start of a packet. After that, we
7327 expect characters to arrive at a brisk pace. They should
7328 show up within remote_timeout intervals. */
7329 do
7330 c = readchar (timeout);
7331 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7332
7333 if (c == SERIAL_TIMEOUT)
7334 {
7335 if (expecting_notif)
7336 return -1; /* Don't complain, it's normal to not get
7337 anything in this case. */
7338
7339 if (forever) /* Watchdog went off? Kill the target. */
7340 {
7341 QUIT;
7342 pop_target ();
7343 error (_("Watchdog timeout has expired. Target detached."));
7344 }
7345 if (remote_debug)
7346 fputs_filtered ("Timed out.\n", gdb_stdlog);
7347 }
7348 else
7349 {
7350 /* We've found the start of a packet or notification.
7351 Now collect the data. */
7352 val = read_frame (buf, sizeof_buf);
7353 if (val >= 0)
7354 break;
7355 }
7356
7357 serial_write (remote_desc, "-", 1);
7358 }
7359
7360 if (tries > MAX_TRIES)
7361 {
7362 /* We have tried hard enough, and just can't receive the
7363 packet/notification. Give up. */
7364 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7365
7366 /* Skip the ack char if we're in no-ack mode. */
7367 if (!rs->noack_mode)
7368 serial_write (remote_desc, "+", 1);
7369 return -1;
7370 }
7371
7372 /* If we got an ordinary packet, return that to our caller. */
7373 if (c == '$')
7374 {
7375 if (remote_debug)
7376 {
7377 struct cleanup *old_chain;
7378 char *str;
7379
7380 str = escape_buffer (*buf, val);
7381 old_chain = make_cleanup (xfree, str);
7382 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7383 do_cleanups (old_chain);
7384 }
7385
7386 /* Skip the ack char if we're in no-ack mode. */
7387 if (!rs->noack_mode)
7388 serial_write (remote_desc, "+", 1);
7389 return val;
7390 }
7391
7392 /* If we got a notification, handle it, and go back to looking
7393 for a packet. */
7394 else
7395 {
7396 gdb_assert (c == '%');
7397
7398 if (remote_debug)
7399 {
7400 struct cleanup *old_chain;
7401 char *str;
7402
7403 str = escape_buffer (*buf, val);
7404 old_chain = make_cleanup (xfree, str);
7405 fprintf_unfiltered (gdb_stdlog,
7406 " Notification received: %s\n",
7407 str);
7408 do_cleanups (old_chain);
7409 }
7410
7411 handle_notification (*buf, val);
7412
7413 /* Notifications require no acknowledgement. */
7414
7415 if (expecting_notif)
7416 return -1;
7417 }
7418 }
7419 }
7420
7421 static int
7422 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7423 {
7424 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7425 }
7426
7427 static int
7428 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7429 {
7430 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7431 }
7432
7433 \f
7434 /* A helper function that just calls putpkt; for type correctness. */
7435
7436 static int
7437 putpkt_for_catch_errors (void *arg)
7438 {
7439 return putpkt (arg);
7440 }
7441
7442 static void
7443 remote_kill (struct target_ops *ops)
7444 {
7445 /* Use catch_errors so the user can quit from gdb even when we
7446 aren't on speaking terms with the remote system. */
7447 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7448
7449 /* Don't wait for it to die. I'm not really sure it matters whether
7450 we do or not. For the existing stubs, kill is a noop. */
7451 target_mourn_inferior ();
7452 }
7453
7454 static int
7455 remote_vkill (int pid, struct remote_state *rs)
7456 {
7457 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7458 return -1;
7459
7460 /* Tell the remote target to detach. */
7461 sprintf (rs->buf, "vKill;%x", pid);
7462 putpkt (rs->buf);
7463 getpkt (&rs->buf, &rs->buf_size, 0);
7464
7465 if (packet_ok (rs->buf,
7466 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7467 return 0;
7468 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7469 return -1;
7470 else
7471 return 1;
7472 }
7473
7474 static void
7475 extended_remote_kill (struct target_ops *ops)
7476 {
7477 int res;
7478 int pid = ptid_get_pid (inferior_ptid);
7479 struct remote_state *rs = get_remote_state ();
7480
7481 res = remote_vkill (pid, rs);
7482 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7483 {
7484 /* Don't try 'k' on a multi-process aware stub -- it has no way
7485 to specify the pid. */
7486
7487 putpkt ("k");
7488 #if 0
7489 getpkt (&rs->buf, &rs->buf_size, 0);
7490 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7491 res = 1;
7492 #else
7493 /* Don't wait for it to die. I'm not really sure it matters whether
7494 we do or not. For the existing stubs, kill is a noop. */
7495 res = 0;
7496 #endif
7497 }
7498
7499 if (res != 0)
7500 error (_("Can't kill process"));
7501
7502 target_mourn_inferior ();
7503 }
7504
7505 static void
7506 remote_mourn (struct target_ops *ops)
7507 {
7508 remote_mourn_1 (ops);
7509 }
7510
7511 /* Worker function for remote_mourn. */
7512 static void
7513 remote_mourn_1 (struct target_ops *target)
7514 {
7515 unpush_target (target);
7516
7517 /* remote_close takes care of doing most of the clean up. */
7518 generic_mourn_inferior ();
7519 }
7520
7521 static void
7522 extended_remote_mourn_1 (struct target_ops *target)
7523 {
7524 struct remote_state *rs = get_remote_state ();
7525
7526 /* In case we got here due to an error, but we're going to stay
7527 connected. */
7528 rs->waiting_for_stop_reply = 0;
7529
7530 /* We're no longer interested in these events. */
7531 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7532
7533 /* If the current general thread belonged to the process we just
7534 detached from or has exited, the remote side current general
7535 thread becomes undefined. Considering a case like this:
7536
7537 - We just got here due to a detach.
7538 - The process that we're detaching from happens to immediately
7539 report a global breakpoint being hit in non-stop mode, in the
7540 same thread we had selected before.
7541 - GDB attaches to this process again.
7542 - This event happens to be the next event we handle.
7543
7544 GDB would consider that the current general thread didn't need to
7545 be set on the stub side (with Hg), since for all it knew,
7546 GENERAL_THREAD hadn't changed.
7547
7548 Notice that although in all-stop mode, the remote server always
7549 sets the current thread to the thread reporting the stop event,
7550 that doesn't happen in non-stop mode; in non-stop, the stub *must
7551 not* change the current thread when reporting a breakpoint hit,
7552 due to the decoupling of event reporting and event handling.
7553
7554 To keep things simple, we always invalidate our notion of the
7555 current thread. */
7556 record_currthread (minus_one_ptid);
7557
7558 /* Unlike "target remote", we do not want to unpush the target; then
7559 the next time the user says "run", we won't be connected. */
7560
7561 /* Call common code to mark the inferior as not running. */
7562 generic_mourn_inferior ();
7563
7564 if (!have_inferiors ())
7565 {
7566 if (!remote_multi_process_p (rs))
7567 {
7568 /* Check whether the target is running now - some remote stubs
7569 automatically restart after kill. */
7570 putpkt ("?");
7571 getpkt (&rs->buf, &rs->buf_size, 0);
7572
7573 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7574 {
7575 /* Assume that the target has been restarted. Set
7576 inferior_ptid so that bits of core GDB realizes
7577 there's something here, e.g., so that the user can
7578 say "kill" again. */
7579 inferior_ptid = magic_null_ptid;
7580 }
7581 }
7582 }
7583 }
7584
7585 static void
7586 extended_remote_mourn (struct target_ops *ops)
7587 {
7588 extended_remote_mourn_1 (ops);
7589 }
7590
7591 static int
7592 extended_remote_supports_disable_randomization (void)
7593 {
7594 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7595 == PACKET_ENABLE);
7596 }
7597
7598 static void
7599 extended_remote_disable_randomization (int val)
7600 {
7601 struct remote_state *rs = get_remote_state ();
7602 char *reply;
7603
7604 sprintf (rs->buf, "QDisableRandomization:%x", val);
7605 putpkt (rs->buf);
7606 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7607 if (*reply == '\0')
7608 error (_("Target does not support QDisableRandomization."));
7609 if (strcmp (reply, "OK") != 0)
7610 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7611 }
7612
7613 static int
7614 extended_remote_run (char *args)
7615 {
7616 struct remote_state *rs = get_remote_state ();
7617 int len;
7618
7619 /* If the user has disabled vRun support, or we have detected that
7620 support is not available, do not try it. */
7621 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7622 return -1;
7623
7624 strcpy (rs->buf, "vRun;");
7625 len = strlen (rs->buf);
7626
7627 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7628 error (_("Remote file name too long for run packet"));
7629 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7630
7631 gdb_assert (args != NULL);
7632 if (*args)
7633 {
7634 struct cleanup *back_to;
7635 int i;
7636 char **argv;
7637
7638 argv = gdb_buildargv (args);
7639 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7640 for (i = 0; argv[i] != NULL; i++)
7641 {
7642 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7643 error (_("Argument list too long for run packet"));
7644 rs->buf[len++] = ';';
7645 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7646 }
7647 do_cleanups (back_to);
7648 }
7649
7650 rs->buf[len++] = '\0';
7651
7652 putpkt (rs->buf);
7653 getpkt (&rs->buf, &rs->buf_size, 0);
7654
7655 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7656 {
7657 /* We have a wait response; we don't need it, though. All is well. */
7658 return 0;
7659 }
7660 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7661 /* It wasn't disabled before, but it is now. */
7662 return -1;
7663 else
7664 {
7665 if (remote_exec_file[0] == '\0')
7666 error (_("Running the default executable on the remote target failed; "
7667 "try \"set remote exec-file\"?"));
7668 else
7669 error (_("Running \"%s\" on the remote target failed"),
7670 remote_exec_file);
7671 }
7672 }
7673
7674 /* In the extended protocol we want to be able to do things like
7675 "run" and have them basically work as expected. So we need
7676 a special create_inferior function. We support changing the
7677 executable file and the command line arguments, but not the
7678 environment. */
7679
7680 static void
7681 extended_remote_create_inferior_1 (char *exec_file, char *args,
7682 char **env, int from_tty)
7683 {
7684 /* If running asynchronously, register the target file descriptor
7685 with the event loop. */
7686 if (target_can_async_p ())
7687 target_async (inferior_event_handler, 0);
7688
7689 /* Disable address space randomization if requested (and supported). */
7690 if (extended_remote_supports_disable_randomization ())
7691 extended_remote_disable_randomization (disable_randomization);
7692
7693 /* Now restart the remote server. */
7694 if (extended_remote_run (args) == -1)
7695 {
7696 /* vRun was not supported. Fail if we need it to do what the
7697 user requested. */
7698 if (remote_exec_file[0])
7699 error (_("Remote target does not support \"set remote exec-file\""));
7700 if (args[0])
7701 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7702
7703 /* Fall back to "R". */
7704 extended_remote_restart ();
7705 }
7706
7707 if (!have_inferiors ())
7708 {
7709 /* Clean up from the last time we ran, before we mark the target
7710 running again. This will mark breakpoints uninserted, and
7711 get_offsets may insert breakpoints. */
7712 init_thread_list ();
7713 init_wait_for_inferior ();
7714 }
7715
7716 add_current_inferior_and_thread ();
7717
7718 /* Get updated offsets, if the stub uses qOffsets. */
7719 get_offsets ();
7720 }
7721
7722 static void
7723 extended_remote_create_inferior (struct target_ops *ops,
7724 char *exec_file, char *args,
7725 char **env, int from_tty)
7726 {
7727 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7728 }
7729 \f
7730
7731 /* Given a location's target info BP_TGT and the packet buffer BUF, output
7732 the list of conditions (in agent expression bytecode format), if any, the
7733 target needs to evaluate. The output is placed into the packet buffer
7734 BUF. */
7735
7736 static int
7737 remote_add_target_side_condition (struct gdbarch *gdbarch,
7738 struct bp_target_info *bp_tgt, char *buf)
7739 {
7740 struct agent_expr *aexpr = NULL;
7741 int i, ix;
7742 char *pkt;
7743 char *buf_start = buf;
7744
7745 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
7746 return 0;
7747
7748 buf += strlen (buf);
7749 sprintf (buf, "%s", ";");
7750 buf++;
7751
7752 /* Send conditions to the target and free the vector. */
7753 for (ix = 0;
7754 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
7755 ix++)
7756 {
7757 sprintf (buf, "X%x,", aexpr->len);
7758 buf += strlen (buf);
7759 for (i = 0; i < aexpr->len; ++i)
7760 buf = pack_hex_byte (buf, aexpr->buf[i]);
7761 *buf = '\0';
7762 }
7763
7764 VEC_free (agent_expr_p, bp_tgt->conditions);
7765 return 0;
7766 }
7767
7768 /* Insert a breakpoint. On targets that have software breakpoint
7769 support, we ask the remote target to do the work; on targets
7770 which don't, we insert a traditional memory breakpoint. */
7771
7772 static int
7773 remote_insert_breakpoint (struct gdbarch *gdbarch,
7774 struct bp_target_info *bp_tgt)
7775 {
7776 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7777 If it succeeds, then set the support to PACKET_ENABLE. If it
7778 fails, and the user has explicitly requested the Z support then
7779 report an error, otherwise, mark it disabled and go on. */
7780
7781 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7782 {
7783 CORE_ADDR addr = bp_tgt->placed_address;
7784 struct remote_state *rs;
7785 char *p;
7786 int bpsize;
7787 struct condition_list *cond = NULL;
7788
7789 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7790
7791 rs = get_remote_state ();
7792 p = rs->buf;
7793
7794 *(p++) = 'Z';
7795 *(p++) = '0';
7796 *(p++) = ',';
7797 addr = (ULONGEST) remote_address_masked (addr);
7798 p += hexnumstr (p, addr);
7799 sprintf (p, ",%d", bpsize);
7800
7801 if (remote_supports_cond_breakpoints ())
7802 remote_add_target_side_condition (gdbarch, bp_tgt, p);
7803
7804 putpkt (rs->buf);
7805 getpkt (&rs->buf, &rs->buf_size, 0);
7806
7807 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7808 {
7809 case PACKET_ERROR:
7810 return -1;
7811 case PACKET_OK:
7812 bp_tgt->placed_address = addr;
7813 bp_tgt->placed_size = bpsize;
7814 return 0;
7815 case PACKET_UNKNOWN:
7816 break;
7817 }
7818 }
7819
7820 return memory_insert_breakpoint (gdbarch, bp_tgt);
7821 }
7822
7823 static int
7824 remote_remove_breakpoint (struct gdbarch *gdbarch,
7825 struct bp_target_info *bp_tgt)
7826 {
7827 CORE_ADDR addr = bp_tgt->placed_address;
7828 struct remote_state *rs = get_remote_state ();
7829
7830 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7831 {
7832 char *p = rs->buf;
7833
7834 *(p++) = 'z';
7835 *(p++) = '0';
7836 *(p++) = ',';
7837
7838 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7839 p += hexnumstr (p, addr);
7840 sprintf (p, ",%d", bp_tgt->placed_size);
7841
7842 putpkt (rs->buf);
7843 getpkt (&rs->buf, &rs->buf_size, 0);
7844
7845 return (rs->buf[0] == 'E');
7846 }
7847
7848 return memory_remove_breakpoint (gdbarch, bp_tgt);
7849 }
7850
7851 static int
7852 watchpoint_to_Z_packet (int type)
7853 {
7854 switch (type)
7855 {
7856 case hw_write:
7857 return Z_PACKET_WRITE_WP;
7858 break;
7859 case hw_read:
7860 return Z_PACKET_READ_WP;
7861 break;
7862 case hw_access:
7863 return Z_PACKET_ACCESS_WP;
7864 break;
7865 default:
7866 internal_error (__FILE__, __LINE__,
7867 _("hw_bp_to_z: bad watchpoint type %d"), type);
7868 }
7869 }
7870
7871 static int
7872 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7873 struct expression *cond)
7874 {
7875 struct remote_state *rs = get_remote_state ();
7876 char *p;
7877 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7878
7879 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7880 return 1;
7881
7882 sprintf (rs->buf, "Z%x,", packet);
7883 p = strchr (rs->buf, '\0');
7884 addr = remote_address_masked (addr);
7885 p += hexnumstr (p, (ULONGEST) addr);
7886 sprintf (p, ",%x", len);
7887
7888 putpkt (rs->buf);
7889 getpkt (&rs->buf, &rs->buf_size, 0);
7890
7891 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7892 {
7893 case PACKET_ERROR:
7894 return -1;
7895 case PACKET_UNKNOWN:
7896 return 1;
7897 case PACKET_OK:
7898 return 0;
7899 }
7900 internal_error (__FILE__, __LINE__,
7901 _("remote_insert_watchpoint: reached end of function"));
7902 }
7903
7904 static int
7905 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
7906 CORE_ADDR start, int length)
7907 {
7908 CORE_ADDR diff = remote_address_masked (addr - start);
7909
7910 return diff < length;
7911 }
7912
7913
7914 static int
7915 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7916 struct expression *cond)
7917 {
7918 struct remote_state *rs = get_remote_state ();
7919 char *p;
7920 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7921
7922 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7923 return -1;
7924
7925 sprintf (rs->buf, "z%x,", packet);
7926 p = strchr (rs->buf, '\0');
7927 addr = remote_address_masked (addr);
7928 p += hexnumstr (p, (ULONGEST) addr);
7929 sprintf (p, ",%x", len);
7930 putpkt (rs->buf);
7931 getpkt (&rs->buf, &rs->buf_size, 0);
7932
7933 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7934 {
7935 case PACKET_ERROR:
7936 case PACKET_UNKNOWN:
7937 return -1;
7938 case PACKET_OK:
7939 return 0;
7940 }
7941 internal_error (__FILE__, __LINE__,
7942 _("remote_remove_watchpoint: reached end of function"));
7943 }
7944
7945
7946 int remote_hw_watchpoint_limit = -1;
7947 int remote_hw_watchpoint_length_limit = -1;
7948 int remote_hw_breakpoint_limit = -1;
7949
7950 static int
7951 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
7952 {
7953 if (remote_hw_watchpoint_length_limit == 0)
7954 return 0;
7955 else if (remote_hw_watchpoint_length_limit < 0)
7956 return 1;
7957 else if (len <= remote_hw_watchpoint_length_limit)
7958 return 1;
7959 else
7960 return 0;
7961 }
7962
7963 static int
7964 remote_check_watch_resources (int type, int cnt, int ot)
7965 {
7966 if (type == bp_hardware_breakpoint)
7967 {
7968 if (remote_hw_breakpoint_limit == 0)
7969 return 0;
7970 else if (remote_hw_breakpoint_limit < 0)
7971 return 1;
7972 else if (cnt <= remote_hw_breakpoint_limit)
7973 return 1;
7974 }
7975 else
7976 {
7977 if (remote_hw_watchpoint_limit == 0)
7978 return 0;
7979 else if (remote_hw_watchpoint_limit < 0)
7980 return 1;
7981 else if (ot)
7982 return -1;
7983 else if (cnt <= remote_hw_watchpoint_limit)
7984 return 1;
7985 }
7986 return -1;
7987 }
7988
7989 static int
7990 remote_stopped_by_watchpoint (void)
7991 {
7992 return remote_stopped_by_watchpoint_p;
7993 }
7994
7995 static int
7996 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7997 {
7998 int rc = 0;
7999
8000 if (remote_stopped_by_watchpoint ())
8001 {
8002 *addr_p = remote_watch_data_address;
8003 rc = 1;
8004 }
8005
8006 return rc;
8007 }
8008
8009
8010 static int
8011 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8012 struct bp_target_info *bp_tgt)
8013 {
8014 CORE_ADDR addr;
8015 struct remote_state *rs;
8016 char *p;
8017
8018 /* The length field should be set to the size of a breakpoint
8019 instruction, even though we aren't inserting one ourselves. */
8020
8021 gdbarch_remote_breakpoint_from_pc
8022 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8023
8024 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8025 return -1;
8026
8027 rs = get_remote_state ();
8028 p = rs->buf;
8029
8030 *(p++) = 'Z';
8031 *(p++) = '1';
8032 *(p++) = ',';
8033
8034 addr = remote_address_masked (bp_tgt->placed_address);
8035 p += hexnumstr (p, (ULONGEST) addr);
8036 sprintf (p, ",%x", bp_tgt->placed_size);
8037
8038 if (remote_supports_cond_breakpoints ())
8039 remote_add_target_side_condition (gdbarch, bp_tgt, p);
8040
8041 putpkt (rs->buf);
8042 getpkt (&rs->buf, &rs->buf_size, 0);
8043
8044 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8045 {
8046 case PACKET_ERROR:
8047 case PACKET_UNKNOWN:
8048 return -1;
8049 case PACKET_OK:
8050 return 0;
8051 }
8052 internal_error (__FILE__, __LINE__,
8053 _("remote_insert_hw_breakpoint: reached end of function"));
8054 }
8055
8056
8057 static int
8058 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8059 struct bp_target_info *bp_tgt)
8060 {
8061 CORE_ADDR addr;
8062 struct remote_state *rs = get_remote_state ();
8063 char *p = rs->buf;
8064
8065 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8066 return -1;
8067
8068 *(p++) = 'z';
8069 *(p++) = '1';
8070 *(p++) = ',';
8071
8072 addr = remote_address_masked (bp_tgt->placed_address);
8073 p += hexnumstr (p, (ULONGEST) addr);
8074 sprintf (p, ",%x", bp_tgt->placed_size);
8075
8076 putpkt (rs->buf);
8077 getpkt (&rs->buf, &rs->buf_size, 0);
8078
8079 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8080 {
8081 case PACKET_ERROR:
8082 case PACKET_UNKNOWN:
8083 return -1;
8084 case PACKET_OK:
8085 return 0;
8086 }
8087 internal_error (__FILE__, __LINE__,
8088 _("remote_remove_hw_breakpoint: reached end of function"));
8089 }
8090
8091 /* Table used by the crc32 function to calcuate the checksum. */
8092
8093 static unsigned long crc32_table[256] =
8094 {0, 0};
8095
8096 static unsigned long
8097 crc32 (const unsigned char *buf, int len, unsigned int crc)
8098 {
8099 if (!crc32_table[1])
8100 {
8101 /* Initialize the CRC table and the decoding table. */
8102 int i, j;
8103 unsigned int c;
8104
8105 for (i = 0; i < 256; i++)
8106 {
8107 for (c = i << 24, j = 8; j > 0; --j)
8108 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8109 crc32_table[i] = c;
8110 }
8111 }
8112
8113 while (len--)
8114 {
8115 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8116 buf++;
8117 }
8118 return crc;
8119 }
8120
8121 /* Verify memory using the "qCRC:" request. */
8122
8123 static int
8124 remote_verify_memory (struct target_ops *ops,
8125 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8126 {
8127 struct remote_state *rs = get_remote_state ();
8128 unsigned long host_crc, target_crc;
8129 char *tmp;
8130
8131 /* FIXME: assumes lma can fit into long. */
8132 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8133 (long) lma, (long) size);
8134 putpkt (rs->buf);
8135
8136 /* Be clever; compute the host_crc before waiting for target
8137 reply. */
8138 host_crc = crc32 (data, size, 0xffffffff);
8139
8140 getpkt (&rs->buf, &rs->buf_size, 0);
8141 if (rs->buf[0] == 'E')
8142 return -1;
8143
8144 if (rs->buf[0] != 'C')
8145 error (_("remote target does not support this operation"));
8146
8147 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8148 target_crc = target_crc * 16 + fromhex (*tmp);
8149
8150 return (host_crc == target_crc);
8151 }
8152
8153 /* compare-sections command
8154
8155 With no arguments, compares each loadable section in the exec bfd
8156 with the same memory range on the target, and reports mismatches.
8157 Useful for verifying the image on the target against the exec file. */
8158
8159 static void
8160 compare_sections_command (char *args, int from_tty)
8161 {
8162 asection *s;
8163 struct cleanup *old_chain;
8164 char *sectdata;
8165 const char *sectname;
8166 bfd_size_type size;
8167 bfd_vma lma;
8168 int matched = 0;
8169 int mismatched = 0;
8170 int res;
8171
8172 if (!exec_bfd)
8173 error (_("command cannot be used without an exec file"));
8174
8175 for (s = exec_bfd->sections; s; s = s->next)
8176 {
8177 if (!(s->flags & SEC_LOAD))
8178 continue; /* Skip non-loadable section. */
8179
8180 size = bfd_get_section_size (s);
8181 if (size == 0)
8182 continue; /* Skip zero-length section. */
8183
8184 sectname = bfd_get_section_name (exec_bfd, s);
8185 if (args && strcmp (args, sectname) != 0)
8186 continue; /* Not the section selected by user. */
8187
8188 matched = 1; /* Do this section. */
8189 lma = s->lma;
8190
8191 sectdata = xmalloc (size);
8192 old_chain = make_cleanup (xfree, sectdata);
8193 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8194
8195 res = target_verify_memory (sectdata, lma, size);
8196
8197 if (res == -1)
8198 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8199 paddress (target_gdbarch, lma),
8200 paddress (target_gdbarch, lma + size));
8201
8202 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8203 paddress (target_gdbarch, lma),
8204 paddress (target_gdbarch, lma + size));
8205 if (res)
8206 printf_filtered ("matched.\n");
8207 else
8208 {
8209 printf_filtered ("MIS-MATCHED!\n");
8210 mismatched++;
8211 }
8212
8213 do_cleanups (old_chain);
8214 }
8215 if (mismatched > 0)
8216 warning (_("One or more sections of the remote executable does not match\n\
8217 the loaded file\n"));
8218 if (args && !matched)
8219 printf_filtered (_("No loaded section named '%s'.\n"), args);
8220 }
8221
8222 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8223 into remote target. The number of bytes written to the remote
8224 target is returned, or -1 for error. */
8225
8226 static LONGEST
8227 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8228 const char *annex, const gdb_byte *writebuf,
8229 ULONGEST offset, LONGEST len,
8230 struct packet_config *packet)
8231 {
8232 int i, buf_len;
8233 ULONGEST n;
8234 struct remote_state *rs = get_remote_state ();
8235 int max_size = get_memory_write_packet_size ();
8236
8237 if (packet->support == PACKET_DISABLE)
8238 return -1;
8239
8240 /* Insert header. */
8241 i = snprintf (rs->buf, max_size,
8242 "qXfer:%s:write:%s:%s:",
8243 object_name, annex ? annex : "",
8244 phex_nz (offset, sizeof offset));
8245 max_size -= (i + 1);
8246
8247 /* Escape as much data as fits into rs->buf. */
8248 buf_len = remote_escape_output
8249 (writebuf, len, (rs->buf + i), &max_size, max_size);
8250
8251 if (putpkt_binary (rs->buf, i + buf_len) < 0
8252 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8253 || packet_ok (rs->buf, packet) != PACKET_OK)
8254 return -1;
8255
8256 unpack_varlen_hex (rs->buf, &n);
8257 return n;
8258 }
8259
8260 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8261 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8262 number of bytes read is returned, or 0 for EOF, or -1 for error.
8263 The number of bytes read may be less than LEN without indicating an
8264 EOF. PACKET is checked and updated to indicate whether the remote
8265 target supports this object. */
8266
8267 static LONGEST
8268 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8269 const char *annex,
8270 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8271 struct packet_config *packet)
8272 {
8273 static char *finished_object;
8274 static char *finished_annex;
8275 static ULONGEST finished_offset;
8276
8277 struct remote_state *rs = get_remote_state ();
8278 LONGEST i, n, packet_len;
8279
8280 if (packet->support == PACKET_DISABLE)
8281 return -1;
8282
8283 /* Check whether we've cached an end-of-object packet that matches
8284 this request. */
8285 if (finished_object)
8286 {
8287 if (strcmp (object_name, finished_object) == 0
8288 && strcmp (annex ? annex : "", finished_annex) == 0
8289 && offset == finished_offset)
8290 return 0;
8291
8292 /* Otherwise, we're now reading something different. Discard
8293 the cache. */
8294 xfree (finished_object);
8295 xfree (finished_annex);
8296 finished_object = NULL;
8297 finished_annex = NULL;
8298 }
8299
8300 /* Request only enough to fit in a single packet. The actual data
8301 may not, since we don't know how much of it will need to be escaped;
8302 the target is free to respond with slightly less data. We subtract
8303 five to account for the response type and the protocol frame. */
8304 n = min (get_remote_packet_size () - 5, len);
8305 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8306 object_name, annex ? annex : "",
8307 phex_nz (offset, sizeof offset),
8308 phex_nz (n, sizeof n));
8309 i = putpkt (rs->buf);
8310 if (i < 0)
8311 return -1;
8312
8313 rs->buf[0] = '\0';
8314 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8315 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8316 return -1;
8317
8318 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8319 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8320
8321 /* 'm' means there is (or at least might be) more data after this
8322 batch. That does not make sense unless there's at least one byte
8323 of data in this reply. */
8324 if (rs->buf[0] == 'm' && packet_len == 1)
8325 error (_("Remote qXfer reply contained no data."));
8326
8327 /* Got some data. */
8328 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8329
8330 /* 'l' is an EOF marker, possibly including a final block of data,
8331 or possibly empty. If we have the final block of a non-empty
8332 object, record this fact to bypass a subsequent partial read. */
8333 if (rs->buf[0] == 'l' && offset + i > 0)
8334 {
8335 finished_object = xstrdup (object_name);
8336 finished_annex = xstrdup (annex ? annex : "");
8337 finished_offset = offset + i;
8338 }
8339
8340 return i;
8341 }
8342
8343 static LONGEST
8344 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8345 const char *annex, gdb_byte *readbuf,
8346 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8347 {
8348 struct remote_state *rs;
8349 int i;
8350 char *p2;
8351 char query_type;
8352
8353 set_remote_traceframe ();
8354 set_general_thread (inferior_ptid);
8355
8356 rs = get_remote_state ();
8357
8358 /* Handle memory using the standard memory routines. */
8359 if (object == TARGET_OBJECT_MEMORY)
8360 {
8361 int xfered;
8362
8363 errno = 0;
8364
8365 /* If the remote target is connected but not running, we should
8366 pass this request down to a lower stratum (e.g. the executable
8367 file). */
8368 if (!target_has_execution)
8369 return 0;
8370
8371 if (writebuf != NULL)
8372 xfered = remote_write_bytes (offset, writebuf, len);
8373 else
8374 xfered = remote_read_bytes (offset, readbuf, len);
8375
8376 if (xfered > 0)
8377 return xfered;
8378 else if (xfered == 0 && errno == 0)
8379 return 0;
8380 else
8381 return -1;
8382 }
8383
8384 /* Handle SPU memory using qxfer packets. */
8385 if (object == TARGET_OBJECT_SPU)
8386 {
8387 if (readbuf)
8388 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8389 &remote_protocol_packets
8390 [PACKET_qXfer_spu_read]);
8391 else
8392 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8393 &remote_protocol_packets
8394 [PACKET_qXfer_spu_write]);
8395 }
8396
8397 /* Handle extra signal info using qxfer packets. */
8398 if (object == TARGET_OBJECT_SIGNAL_INFO)
8399 {
8400 if (readbuf)
8401 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8402 &remote_protocol_packets
8403 [PACKET_qXfer_siginfo_read]);
8404 else
8405 return remote_write_qxfer (ops, "siginfo", annex,
8406 writebuf, offset, len,
8407 &remote_protocol_packets
8408 [PACKET_qXfer_siginfo_write]);
8409 }
8410
8411 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8412 {
8413 if (readbuf)
8414 return remote_read_qxfer (ops, "statictrace", annex,
8415 readbuf, offset, len,
8416 &remote_protocol_packets
8417 [PACKET_qXfer_statictrace_read]);
8418 else
8419 return -1;
8420 }
8421
8422 /* Only handle flash writes. */
8423 if (writebuf != NULL)
8424 {
8425 LONGEST xfered;
8426
8427 switch (object)
8428 {
8429 case TARGET_OBJECT_FLASH:
8430 xfered = remote_flash_write (ops, offset, len, writebuf);
8431
8432 if (xfered > 0)
8433 return xfered;
8434 else if (xfered == 0 && errno == 0)
8435 return 0;
8436 else
8437 return -1;
8438
8439 default:
8440 return -1;
8441 }
8442 }
8443
8444 /* Map pre-existing objects onto letters. DO NOT do this for new
8445 objects!!! Instead specify new query packets. */
8446 switch (object)
8447 {
8448 case TARGET_OBJECT_AVR:
8449 query_type = 'R';
8450 break;
8451
8452 case TARGET_OBJECT_AUXV:
8453 gdb_assert (annex == NULL);
8454 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8455 &remote_protocol_packets[PACKET_qXfer_auxv]);
8456
8457 case TARGET_OBJECT_AVAILABLE_FEATURES:
8458 return remote_read_qxfer
8459 (ops, "features", annex, readbuf, offset, len,
8460 &remote_protocol_packets[PACKET_qXfer_features]);
8461
8462 case TARGET_OBJECT_LIBRARIES:
8463 return remote_read_qxfer
8464 (ops, "libraries", annex, readbuf, offset, len,
8465 &remote_protocol_packets[PACKET_qXfer_libraries]);
8466
8467 case TARGET_OBJECT_LIBRARIES_SVR4:
8468 return remote_read_qxfer
8469 (ops, "libraries-svr4", annex, readbuf, offset, len,
8470 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8471
8472 case TARGET_OBJECT_MEMORY_MAP:
8473 gdb_assert (annex == NULL);
8474 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8475 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8476
8477 case TARGET_OBJECT_OSDATA:
8478 /* Should only get here if we're connected. */
8479 gdb_assert (remote_desc);
8480 return remote_read_qxfer
8481 (ops, "osdata", annex, readbuf, offset, len,
8482 &remote_protocol_packets[PACKET_qXfer_osdata]);
8483
8484 case TARGET_OBJECT_THREADS:
8485 gdb_assert (annex == NULL);
8486 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8487 &remote_protocol_packets[PACKET_qXfer_threads]);
8488
8489 case TARGET_OBJECT_TRACEFRAME_INFO:
8490 gdb_assert (annex == NULL);
8491 return remote_read_qxfer
8492 (ops, "traceframe-info", annex, readbuf, offset, len,
8493 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8494
8495 case TARGET_OBJECT_FDPIC:
8496 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8497 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8498 default:
8499 return -1;
8500 }
8501
8502 /* Note: a zero OFFSET and LEN can be used to query the minimum
8503 buffer size. */
8504 if (offset == 0 && len == 0)
8505 return (get_remote_packet_size ());
8506 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8507 large enough let the caller deal with it. */
8508 if (len < get_remote_packet_size ())
8509 return -1;
8510 len = get_remote_packet_size ();
8511
8512 /* Except for querying the minimum buffer size, target must be open. */
8513 if (!remote_desc)
8514 error (_("remote query is only available after target open"));
8515
8516 gdb_assert (annex != NULL);
8517 gdb_assert (readbuf != NULL);
8518
8519 p2 = rs->buf;
8520 *p2++ = 'q';
8521 *p2++ = query_type;
8522
8523 /* We used one buffer char for the remote protocol q command and
8524 another for the query type. As the remote protocol encapsulation
8525 uses 4 chars plus one extra in case we are debugging
8526 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8527 string. */
8528 i = 0;
8529 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8530 {
8531 /* Bad caller may have sent forbidden characters. */
8532 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8533 *p2++ = annex[i];
8534 i++;
8535 }
8536 *p2 = '\0';
8537 gdb_assert (annex[i] == '\0');
8538
8539 i = putpkt (rs->buf);
8540 if (i < 0)
8541 return i;
8542
8543 getpkt (&rs->buf, &rs->buf_size, 0);
8544 strcpy ((char *) readbuf, rs->buf);
8545
8546 return strlen ((char *) readbuf);
8547 }
8548
8549 static int
8550 remote_search_memory (struct target_ops* ops,
8551 CORE_ADDR start_addr, ULONGEST search_space_len,
8552 const gdb_byte *pattern, ULONGEST pattern_len,
8553 CORE_ADDR *found_addrp)
8554 {
8555 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8556 struct remote_state *rs = get_remote_state ();
8557 int max_size = get_memory_write_packet_size ();
8558 struct packet_config *packet =
8559 &remote_protocol_packets[PACKET_qSearch_memory];
8560 /* Number of packet bytes used to encode the pattern;
8561 this could be more than PATTERN_LEN due to escape characters. */
8562 int escaped_pattern_len;
8563 /* Amount of pattern that was encodable in the packet. */
8564 int used_pattern_len;
8565 int i;
8566 int found;
8567 ULONGEST found_addr;
8568
8569 /* Don't go to the target if we don't have to.
8570 This is done before checking packet->support to avoid the possibility that
8571 a success for this edge case means the facility works in general. */
8572 if (pattern_len > search_space_len)
8573 return 0;
8574 if (pattern_len == 0)
8575 {
8576 *found_addrp = start_addr;
8577 return 1;
8578 }
8579
8580 /* If we already know the packet isn't supported, fall back to the simple
8581 way of searching memory. */
8582
8583 if (packet->support == PACKET_DISABLE)
8584 {
8585 /* Target doesn't provided special support, fall back and use the
8586 standard support (copy memory and do the search here). */
8587 return simple_search_memory (ops, start_addr, search_space_len,
8588 pattern, pattern_len, found_addrp);
8589 }
8590
8591 /* Insert header. */
8592 i = snprintf (rs->buf, max_size,
8593 "qSearch:memory:%s;%s;",
8594 phex_nz (start_addr, addr_size),
8595 phex_nz (search_space_len, sizeof (search_space_len)));
8596 max_size -= (i + 1);
8597
8598 /* Escape as much data as fits into rs->buf. */
8599 escaped_pattern_len =
8600 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8601 &used_pattern_len, max_size);
8602
8603 /* Bail if the pattern is too large. */
8604 if (used_pattern_len != pattern_len)
8605 error (_("Pattern is too large to transmit to remote target."));
8606
8607 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8608 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8609 || packet_ok (rs->buf, packet) != PACKET_OK)
8610 {
8611 /* The request may not have worked because the command is not
8612 supported. If so, fall back to the simple way. */
8613 if (packet->support == PACKET_DISABLE)
8614 {
8615 return simple_search_memory (ops, start_addr, search_space_len,
8616 pattern, pattern_len, found_addrp);
8617 }
8618 return -1;
8619 }
8620
8621 if (rs->buf[0] == '0')
8622 found = 0;
8623 else if (rs->buf[0] == '1')
8624 {
8625 found = 1;
8626 if (rs->buf[1] != ',')
8627 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8628 unpack_varlen_hex (rs->buf + 2, &found_addr);
8629 *found_addrp = found_addr;
8630 }
8631 else
8632 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8633
8634 return found;
8635 }
8636
8637 static void
8638 remote_rcmd (char *command,
8639 struct ui_file *outbuf)
8640 {
8641 struct remote_state *rs = get_remote_state ();
8642 char *p = rs->buf;
8643
8644 if (!remote_desc)
8645 error (_("remote rcmd is only available after target open"));
8646
8647 /* Send a NULL command across as an empty command. */
8648 if (command == NULL)
8649 command = "";
8650
8651 /* The query prefix. */
8652 strcpy (rs->buf, "qRcmd,");
8653 p = strchr (rs->buf, '\0');
8654
8655 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8656 > get_remote_packet_size ())
8657 error (_("\"monitor\" command ``%s'' is too long."), command);
8658
8659 /* Encode the actual command. */
8660 bin2hex ((gdb_byte *) command, p, 0);
8661
8662 if (putpkt (rs->buf) < 0)
8663 error (_("Communication problem with target."));
8664
8665 /* get/display the response */
8666 while (1)
8667 {
8668 char *buf;
8669
8670 /* XXX - see also remote_get_noisy_reply(). */
8671 QUIT; /* Allow user to bail out with ^C. */
8672 rs->buf[0] = '\0';
8673 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8674 {
8675 /* Timeout. Continue to (try to) read responses.
8676 This is better than stopping with an error, assuming the stub
8677 is still executing the (long) monitor command.
8678 If needed, the user can interrupt gdb using C-c, obtaining
8679 an effect similar to stop on timeout. */
8680 continue;
8681 }
8682 buf = rs->buf;
8683 if (buf[0] == '\0')
8684 error (_("Target does not support this command."));
8685 if (buf[0] == 'O' && buf[1] != 'K')
8686 {
8687 remote_console_output (buf + 1); /* 'O' message from stub. */
8688 continue;
8689 }
8690 if (strcmp (buf, "OK") == 0)
8691 break;
8692 if (strlen (buf) == 3 && buf[0] == 'E'
8693 && isdigit (buf[1]) && isdigit (buf[2]))
8694 {
8695 error (_("Protocol error with Rcmd"));
8696 }
8697 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8698 {
8699 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8700
8701 fputc_unfiltered (c, outbuf);
8702 }
8703 break;
8704 }
8705 }
8706
8707 static VEC(mem_region_s) *
8708 remote_memory_map (struct target_ops *ops)
8709 {
8710 VEC(mem_region_s) *result = NULL;
8711 char *text = target_read_stralloc (&current_target,
8712 TARGET_OBJECT_MEMORY_MAP, NULL);
8713
8714 if (text)
8715 {
8716 struct cleanup *back_to = make_cleanup (xfree, text);
8717
8718 result = parse_memory_map (text);
8719 do_cleanups (back_to);
8720 }
8721
8722 return result;
8723 }
8724
8725 static void
8726 packet_command (char *args, int from_tty)
8727 {
8728 struct remote_state *rs = get_remote_state ();
8729
8730 if (!remote_desc)
8731 error (_("command can only be used with remote target"));
8732
8733 if (!args)
8734 error (_("remote-packet command requires packet text as argument"));
8735
8736 puts_filtered ("sending: ");
8737 print_packet (args);
8738 puts_filtered ("\n");
8739 putpkt (args);
8740
8741 getpkt (&rs->buf, &rs->buf_size, 0);
8742 puts_filtered ("received: ");
8743 print_packet (rs->buf);
8744 puts_filtered ("\n");
8745 }
8746
8747 #if 0
8748 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8749
8750 static void display_thread_info (struct gdb_ext_thread_info *info);
8751
8752 static void threadset_test_cmd (char *cmd, int tty);
8753
8754 static void threadalive_test (char *cmd, int tty);
8755
8756 static void threadlist_test_cmd (char *cmd, int tty);
8757
8758 int get_and_display_threadinfo (threadref *ref);
8759
8760 static void threadinfo_test_cmd (char *cmd, int tty);
8761
8762 static int thread_display_step (threadref *ref, void *context);
8763
8764 static void threadlist_update_test_cmd (char *cmd, int tty);
8765
8766 static void init_remote_threadtests (void);
8767
8768 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8769
8770 static void
8771 threadset_test_cmd (char *cmd, int tty)
8772 {
8773 int sample_thread = SAMPLE_THREAD;
8774
8775 printf_filtered (_("Remote threadset test\n"));
8776 set_general_thread (sample_thread);
8777 }
8778
8779
8780 static void
8781 threadalive_test (char *cmd, int tty)
8782 {
8783 int sample_thread = SAMPLE_THREAD;
8784 int pid = ptid_get_pid (inferior_ptid);
8785 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8786
8787 if (remote_thread_alive (ptid))
8788 printf_filtered ("PASS: Thread alive test\n");
8789 else
8790 printf_filtered ("FAIL: Thread alive test\n");
8791 }
8792
8793 void output_threadid (char *title, threadref *ref);
8794
8795 void
8796 output_threadid (char *title, threadref *ref)
8797 {
8798 char hexid[20];
8799
8800 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8801 hexid[16] = 0;
8802 printf_filtered ("%s %s\n", title, (&hexid[0]));
8803 }
8804
8805 static void
8806 threadlist_test_cmd (char *cmd, int tty)
8807 {
8808 int startflag = 1;
8809 threadref nextthread;
8810 int done, result_count;
8811 threadref threadlist[3];
8812
8813 printf_filtered ("Remote Threadlist test\n");
8814 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8815 &result_count, &threadlist[0]))
8816 printf_filtered ("FAIL: threadlist test\n");
8817 else
8818 {
8819 threadref *scan = threadlist;
8820 threadref *limit = scan + result_count;
8821
8822 while (scan < limit)
8823 output_threadid (" thread ", scan++);
8824 }
8825 }
8826
8827 void
8828 display_thread_info (struct gdb_ext_thread_info *info)
8829 {
8830 output_threadid ("Threadid: ", &info->threadid);
8831 printf_filtered ("Name: %s\n ", info->shortname);
8832 printf_filtered ("State: %s\n", info->display);
8833 printf_filtered ("other: %s\n\n", info->more_display);
8834 }
8835
8836 int
8837 get_and_display_threadinfo (threadref *ref)
8838 {
8839 int result;
8840 int set;
8841 struct gdb_ext_thread_info threadinfo;
8842
8843 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8844 | TAG_MOREDISPLAY | TAG_DISPLAY;
8845 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8846 display_thread_info (&threadinfo);
8847 return result;
8848 }
8849
8850 static void
8851 threadinfo_test_cmd (char *cmd, int tty)
8852 {
8853 int athread = SAMPLE_THREAD;
8854 threadref thread;
8855 int set;
8856
8857 int_to_threadref (&thread, athread);
8858 printf_filtered ("Remote Threadinfo test\n");
8859 if (!get_and_display_threadinfo (&thread))
8860 printf_filtered ("FAIL cannot get thread info\n");
8861 }
8862
8863 static int
8864 thread_display_step (threadref *ref, void *context)
8865 {
8866 /* output_threadid(" threadstep ",ref); *//* simple test */
8867 return get_and_display_threadinfo (ref);
8868 }
8869
8870 static void
8871 threadlist_update_test_cmd (char *cmd, int tty)
8872 {
8873 printf_filtered ("Remote Threadlist update test\n");
8874 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8875 }
8876
8877 static void
8878 init_remote_threadtests (void)
8879 {
8880 add_com ("tlist", class_obscure, threadlist_test_cmd,
8881 _("Fetch and print the remote list of "
8882 "thread identifiers, one pkt only"));
8883 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8884 _("Fetch and display info about one thread"));
8885 add_com ("tset", class_obscure, threadset_test_cmd,
8886 _("Test setting to a different thread"));
8887 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8888 _("Iterate through updating all remote thread info"));
8889 add_com ("talive", class_obscure, threadalive_test,
8890 _(" Remote thread alive test "));
8891 }
8892
8893 #endif /* 0 */
8894
8895 /* Convert a thread ID to a string. Returns the string in a static
8896 buffer. */
8897
8898 static char *
8899 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8900 {
8901 static char buf[64];
8902 struct remote_state *rs = get_remote_state ();
8903
8904 if (ptid_equal (ptid, null_ptid))
8905 return normal_pid_to_str (ptid);
8906 else if (ptid_is_pid (ptid))
8907 {
8908 /* Printing an inferior target id. */
8909
8910 /* When multi-process extensions are off, there's no way in the
8911 remote protocol to know the remote process id, if there's any
8912 at all. There's one exception --- when we're connected with
8913 target extended-remote, and we manually attached to a process
8914 with "attach PID". We don't record anywhere a flag that
8915 allows us to distinguish that case from the case of
8916 connecting with extended-remote and the stub already being
8917 attached to a process, and reporting yes to qAttached, hence
8918 no smart special casing here. */
8919 if (!remote_multi_process_p (rs))
8920 {
8921 xsnprintf (buf, sizeof buf, "Remote target");
8922 return buf;
8923 }
8924
8925 return normal_pid_to_str (ptid);
8926 }
8927 else
8928 {
8929 if (ptid_equal (magic_null_ptid, ptid))
8930 xsnprintf (buf, sizeof buf, "Thread <main>");
8931 else if (rs->extended && remote_multi_process_p (rs))
8932 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8933 ptid_get_pid (ptid), ptid_get_tid (ptid));
8934 else
8935 xsnprintf (buf, sizeof buf, "Thread %ld",
8936 ptid_get_tid (ptid));
8937 return buf;
8938 }
8939 }
8940
8941 /* Get the address of the thread local variable in OBJFILE which is
8942 stored at OFFSET within the thread local storage for thread PTID. */
8943
8944 static CORE_ADDR
8945 remote_get_thread_local_address (struct target_ops *ops,
8946 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8947 {
8948 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8949 {
8950 struct remote_state *rs = get_remote_state ();
8951 char *p = rs->buf;
8952 char *endp = rs->buf + get_remote_packet_size ();
8953 enum packet_result result;
8954
8955 strcpy (p, "qGetTLSAddr:");
8956 p += strlen (p);
8957 p = write_ptid (p, endp, ptid);
8958 *p++ = ',';
8959 p += hexnumstr (p, offset);
8960 *p++ = ',';
8961 p += hexnumstr (p, lm);
8962 *p++ = '\0';
8963
8964 putpkt (rs->buf);
8965 getpkt (&rs->buf, &rs->buf_size, 0);
8966 result = packet_ok (rs->buf,
8967 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8968 if (result == PACKET_OK)
8969 {
8970 ULONGEST result;
8971
8972 unpack_varlen_hex (rs->buf, &result);
8973 return result;
8974 }
8975 else if (result == PACKET_UNKNOWN)
8976 throw_error (TLS_GENERIC_ERROR,
8977 _("Remote target doesn't support qGetTLSAddr packet"));
8978 else
8979 throw_error (TLS_GENERIC_ERROR,
8980 _("Remote target failed to process qGetTLSAddr request"));
8981 }
8982 else
8983 throw_error (TLS_GENERIC_ERROR,
8984 _("TLS not supported or disabled on this target"));
8985 /* Not reached. */
8986 return 0;
8987 }
8988
8989 /* Provide thread local base, i.e. Thread Information Block address.
8990 Returns 1 if ptid is found and thread_local_base is non zero. */
8991
8992 int
8993 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8994 {
8995 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8996 {
8997 struct remote_state *rs = get_remote_state ();
8998 char *p = rs->buf;
8999 char *endp = rs->buf + get_remote_packet_size ();
9000 enum packet_result result;
9001
9002 strcpy (p, "qGetTIBAddr:");
9003 p += strlen (p);
9004 p = write_ptid (p, endp, ptid);
9005 *p++ = '\0';
9006
9007 putpkt (rs->buf);
9008 getpkt (&rs->buf, &rs->buf_size, 0);
9009 result = packet_ok (rs->buf,
9010 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9011 if (result == PACKET_OK)
9012 {
9013 ULONGEST result;
9014
9015 unpack_varlen_hex (rs->buf, &result);
9016 if (addr)
9017 *addr = (CORE_ADDR) result;
9018 return 1;
9019 }
9020 else if (result == PACKET_UNKNOWN)
9021 error (_("Remote target doesn't support qGetTIBAddr packet"));
9022 else
9023 error (_("Remote target failed to process qGetTIBAddr request"));
9024 }
9025 else
9026 error (_("qGetTIBAddr not supported or disabled on this target"));
9027 /* Not reached. */
9028 return 0;
9029 }
9030
9031 /* Support for inferring a target description based on the current
9032 architecture and the size of a 'g' packet. While the 'g' packet
9033 can have any size (since optional registers can be left off the
9034 end), some sizes are easily recognizable given knowledge of the
9035 approximate architecture. */
9036
9037 struct remote_g_packet_guess
9038 {
9039 int bytes;
9040 const struct target_desc *tdesc;
9041 };
9042 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9043 DEF_VEC_O(remote_g_packet_guess_s);
9044
9045 struct remote_g_packet_data
9046 {
9047 VEC(remote_g_packet_guess_s) *guesses;
9048 };
9049
9050 static struct gdbarch_data *remote_g_packet_data_handle;
9051
9052 static void *
9053 remote_g_packet_data_init (struct obstack *obstack)
9054 {
9055 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9056 }
9057
9058 void
9059 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9060 const struct target_desc *tdesc)
9061 {
9062 struct remote_g_packet_data *data
9063 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9064 struct remote_g_packet_guess new_guess, *guess;
9065 int ix;
9066
9067 gdb_assert (tdesc != NULL);
9068
9069 for (ix = 0;
9070 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9071 ix++)
9072 if (guess->bytes == bytes)
9073 internal_error (__FILE__, __LINE__,
9074 _("Duplicate g packet description added for size %d"),
9075 bytes);
9076
9077 new_guess.bytes = bytes;
9078 new_guess.tdesc = tdesc;
9079 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9080 }
9081
9082 /* Return 1 if remote_read_description would do anything on this target
9083 and architecture, 0 otherwise. */
9084
9085 static int
9086 remote_read_description_p (struct target_ops *target)
9087 {
9088 struct remote_g_packet_data *data
9089 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9090
9091 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9092 return 1;
9093
9094 return 0;
9095 }
9096
9097 static const struct target_desc *
9098 remote_read_description (struct target_ops *target)
9099 {
9100 struct remote_g_packet_data *data
9101 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9102
9103 /* Do not try this during initial connection, when we do not know
9104 whether there is a running but stopped thread. */
9105 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9106 return NULL;
9107
9108 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9109 {
9110 struct remote_g_packet_guess *guess;
9111 int ix;
9112 int bytes = send_g_packet ();
9113
9114 for (ix = 0;
9115 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9116 ix++)
9117 if (guess->bytes == bytes)
9118 return guess->tdesc;
9119
9120 /* We discard the g packet. A minor optimization would be to
9121 hold on to it, and fill the register cache once we have selected
9122 an architecture, but it's too tricky to do safely. */
9123 }
9124
9125 return NULL;
9126 }
9127
9128 /* Remote file transfer support. This is host-initiated I/O, not
9129 target-initiated; for target-initiated, see remote-fileio.c. */
9130
9131 /* If *LEFT is at least the length of STRING, copy STRING to
9132 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9133 decrease *LEFT. Otherwise raise an error. */
9134
9135 static void
9136 remote_buffer_add_string (char **buffer, int *left, char *string)
9137 {
9138 int len = strlen (string);
9139
9140 if (len > *left)
9141 error (_("Packet too long for target."));
9142
9143 memcpy (*buffer, string, len);
9144 *buffer += len;
9145 *left -= len;
9146
9147 /* NUL-terminate the buffer as a convenience, if there is
9148 room. */
9149 if (*left)
9150 **buffer = '\0';
9151 }
9152
9153 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9154 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9155 decrease *LEFT. Otherwise raise an error. */
9156
9157 static void
9158 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9159 int len)
9160 {
9161 if (2 * len > *left)
9162 error (_("Packet too long for target."));
9163
9164 bin2hex (bytes, *buffer, len);
9165 *buffer += 2 * len;
9166 *left -= 2 * len;
9167
9168 /* NUL-terminate the buffer as a convenience, if there is
9169 room. */
9170 if (*left)
9171 **buffer = '\0';
9172 }
9173
9174 /* If *LEFT is large enough, convert VALUE to hex and add it to
9175 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9176 decrease *LEFT. Otherwise raise an error. */
9177
9178 static void
9179 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9180 {
9181 int len = hexnumlen (value);
9182
9183 if (len > *left)
9184 error (_("Packet too long for target."));
9185
9186 hexnumstr (*buffer, value);
9187 *buffer += len;
9188 *left -= len;
9189
9190 /* NUL-terminate the buffer as a convenience, if there is
9191 room. */
9192 if (*left)
9193 **buffer = '\0';
9194 }
9195
9196 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9197 value, *REMOTE_ERRNO to the remote error number or zero if none
9198 was included, and *ATTACHMENT to point to the start of the annex
9199 if any. The length of the packet isn't needed here; there may
9200 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9201
9202 Return 0 if the packet could be parsed, -1 if it could not. If
9203 -1 is returned, the other variables may not be initialized. */
9204
9205 static int
9206 remote_hostio_parse_result (char *buffer, int *retcode,
9207 int *remote_errno, char **attachment)
9208 {
9209 char *p, *p2;
9210
9211 *remote_errno = 0;
9212 *attachment = NULL;
9213
9214 if (buffer[0] != 'F')
9215 return -1;
9216
9217 errno = 0;
9218 *retcode = strtol (&buffer[1], &p, 16);
9219 if (errno != 0 || p == &buffer[1])
9220 return -1;
9221
9222 /* Check for ",errno". */
9223 if (*p == ',')
9224 {
9225 errno = 0;
9226 *remote_errno = strtol (p + 1, &p2, 16);
9227 if (errno != 0 || p + 1 == p2)
9228 return -1;
9229 p = p2;
9230 }
9231
9232 /* Check for ";attachment". If there is no attachment, the
9233 packet should end here. */
9234 if (*p == ';')
9235 {
9236 *attachment = p + 1;
9237 return 0;
9238 }
9239 else if (*p == '\0')
9240 return 0;
9241 else
9242 return -1;
9243 }
9244
9245 /* Send a prepared I/O packet to the target and read its response.
9246 The prepared packet is in the global RS->BUF before this function
9247 is called, and the answer is there when we return.
9248
9249 COMMAND_BYTES is the length of the request to send, which may include
9250 binary data. WHICH_PACKET is the packet configuration to check
9251 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9252 is set to the error number and -1 is returned. Otherwise the value
9253 returned by the function is returned.
9254
9255 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9256 attachment is expected; an error will be reported if there's a
9257 mismatch. If one is found, *ATTACHMENT will be set to point into
9258 the packet buffer and *ATTACHMENT_LEN will be set to the
9259 attachment's length. */
9260
9261 static int
9262 remote_hostio_send_command (int command_bytes, int which_packet,
9263 int *remote_errno, char **attachment,
9264 int *attachment_len)
9265 {
9266 struct remote_state *rs = get_remote_state ();
9267 int ret, bytes_read;
9268 char *attachment_tmp;
9269
9270 if (!remote_desc
9271 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9272 {
9273 *remote_errno = FILEIO_ENOSYS;
9274 return -1;
9275 }
9276
9277 putpkt_binary (rs->buf, command_bytes);
9278 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9279
9280 /* If it timed out, something is wrong. Don't try to parse the
9281 buffer. */
9282 if (bytes_read < 0)
9283 {
9284 *remote_errno = FILEIO_EINVAL;
9285 return -1;
9286 }
9287
9288 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9289 {
9290 case PACKET_ERROR:
9291 *remote_errno = FILEIO_EINVAL;
9292 return -1;
9293 case PACKET_UNKNOWN:
9294 *remote_errno = FILEIO_ENOSYS;
9295 return -1;
9296 case PACKET_OK:
9297 break;
9298 }
9299
9300 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9301 &attachment_tmp))
9302 {
9303 *remote_errno = FILEIO_EINVAL;
9304 return -1;
9305 }
9306
9307 /* Make sure we saw an attachment if and only if we expected one. */
9308 if ((attachment_tmp == NULL && attachment != NULL)
9309 || (attachment_tmp != NULL && attachment == NULL))
9310 {
9311 *remote_errno = FILEIO_EINVAL;
9312 return -1;
9313 }
9314
9315 /* If an attachment was found, it must point into the packet buffer;
9316 work out how many bytes there were. */
9317 if (attachment_tmp != NULL)
9318 {
9319 *attachment = attachment_tmp;
9320 *attachment_len = bytes_read - (*attachment - rs->buf);
9321 }
9322
9323 return ret;
9324 }
9325
9326 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9327 remote file descriptor, or -1 if an error occurs (and set
9328 *REMOTE_ERRNO). */
9329
9330 static int
9331 remote_hostio_open (const char *filename, int flags, int mode,
9332 int *remote_errno)
9333 {
9334 struct remote_state *rs = get_remote_state ();
9335 char *p = rs->buf;
9336 int left = get_remote_packet_size () - 1;
9337
9338 remote_buffer_add_string (&p, &left, "vFile:open:");
9339
9340 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9341 strlen (filename));
9342 remote_buffer_add_string (&p, &left, ",");
9343
9344 remote_buffer_add_int (&p, &left, flags);
9345 remote_buffer_add_string (&p, &left, ",");
9346
9347 remote_buffer_add_int (&p, &left, mode);
9348
9349 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9350 remote_errno, NULL, NULL);
9351 }
9352
9353 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9354 Return the number of bytes written, or -1 if an error occurs (and
9355 set *REMOTE_ERRNO). */
9356
9357 static int
9358 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9359 ULONGEST offset, int *remote_errno)
9360 {
9361 struct remote_state *rs = get_remote_state ();
9362 char *p = rs->buf;
9363 int left = get_remote_packet_size ();
9364 int out_len;
9365
9366 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9367
9368 remote_buffer_add_int (&p, &left, fd);
9369 remote_buffer_add_string (&p, &left, ",");
9370
9371 remote_buffer_add_int (&p, &left, offset);
9372 remote_buffer_add_string (&p, &left, ",");
9373
9374 p += remote_escape_output (write_buf, len, p, &out_len,
9375 get_remote_packet_size () - (p - rs->buf));
9376
9377 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9378 remote_errno, NULL, NULL);
9379 }
9380
9381 /* Read up to LEN bytes FD on the remote target into READ_BUF
9382 Return the number of bytes read, or -1 if an error occurs (and
9383 set *REMOTE_ERRNO). */
9384
9385 static int
9386 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9387 ULONGEST offset, int *remote_errno)
9388 {
9389 struct remote_state *rs = get_remote_state ();
9390 char *p = rs->buf;
9391 char *attachment;
9392 int left = get_remote_packet_size ();
9393 int ret, attachment_len;
9394 int read_len;
9395
9396 remote_buffer_add_string (&p, &left, "vFile:pread:");
9397
9398 remote_buffer_add_int (&p, &left, fd);
9399 remote_buffer_add_string (&p, &left, ",");
9400
9401 remote_buffer_add_int (&p, &left, len);
9402 remote_buffer_add_string (&p, &left, ",");
9403
9404 remote_buffer_add_int (&p, &left, offset);
9405
9406 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9407 remote_errno, &attachment,
9408 &attachment_len);
9409
9410 if (ret < 0)
9411 return ret;
9412
9413 read_len = remote_unescape_input (attachment, attachment_len,
9414 read_buf, len);
9415 if (read_len != ret)
9416 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9417
9418 return ret;
9419 }
9420
9421 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9422 (and set *REMOTE_ERRNO). */
9423
9424 static int
9425 remote_hostio_close (int fd, int *remote_errno)
9426 {
9427 struct remote_state *rs = get_remote_state ();
9428 char *p = rs->buf;
9429 int left = get_remote_packet_size () - 1;
9430
9431 remote_buffer_add_string (&p, &left, "vFile:close:");
9432
9433 remote_buffer_add_int (&p, &left, fd);
9434
9435 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9436 remote_errno, NULL, NULL);
9437 }
9438
9439 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9440 occurs (and set *REMOTE_ERRNO). */
9441
9442 static int
9443 remote_hostio_unlink (const char *filename, int *remote_errno)
9444 {
9445 struct remote_state *rs = get_remote_state ();
9446 char *p = rs->buf;
9447 int left = get_remote_packet_size () - 1;
9448
9449 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9450
9451 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9452 strlen (filename));
9453
9454 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9455 remote_errno, NULL, NULL);
9456 }
9457
9458 /* Read value of symbolic link FILENAME on the remote target. Return
9459 a null-terminated string allocated via xmalloc, or NULL if an error
9460 occurs (and set *REMOTE_ERRNO). */
9461
9462 static char *
9463 remote_hostio_readlink (const char *filename, int *remote_errno)
9464 {
9465 struct remote_state *rs = get_remote_state ();
9466 char *p = rs->buf;
9467 char *attachment;
9468 int left = get_remote_packet_size ();
9469 int len, attachment_len;
9470 int read_len;
9471 char *ret;
9472
9473 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9474
9475 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9476 strlen (filename));
9477
9478 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9479 remote_errno, &attachment,
9480 &attachment_len);
9481
9482 if (len < 0)
9483 return NULL;
9484
9485 ret = xmalloc (len + 1);
9486
9487 read_len = remote_unescape_input (attachment, attachment_len,
9488 ret, len);
9489 if (read_len != len)
9490 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9491
9492 ret[len] = '\0';
9493 return ret;
9494 }
9495
9496 static int
9497 remote_fileio_errno_to_host (int errnum)
9498 {
9499 switch (errnum)
9500 {
9501 case FILEIO_EPERM:
9502 return EPERM;
9503 case FILEIO_ENOENT:
9504 return ENOENT;
9505 case FILEIO_EINTR:
9506 return EINTR;
9507 case FILEIO_EIO:
9508 return EIO;
9509 case FILEIO_EBADF:
9510 return EBADF;
9511 case FILEIO_EACCES:
9512 return EACCES;
9513 case FILEIO_EFAULT:
9514 return EFAULT;
9515 case FILEIO_EBUSY:
9516 return EBUSY;
9517 case FILEIO_EEXIST:
9518 return EEXIST;
9519 case FILEIO_ENODEV:
9520 return ENODEV;
9521 case FILEIO_ENOTDIR:
9522 return ENOTDIR;
9523 case FILEIO_EISDIR:
9524 return EISDIR;
9525 case FILEIO_EINVAL:
9526 return EINVAL;
9527 case FILEIO_ENFILE:
9528 return ENFILE;
9529 case FILEIO_EMFILE:
9530 return EMFILE;
9531 case FILEIO_EFBIG:
9532 return EFBIG;
9533 case FILEIO_ENOSPC:
9534 return ENOSPC;
9535 case FILEIO_ESPIPE:
9536 return ESPIPE;
9537 case FILEIO_EROFS:
9538 return EROFS;
9539 case FILEIO_ENOSYS:
9540 return ENOSYS;
9541 case FILEIO_ENAMETOOLONG:
9542 return ENAMETOOLONG;
9543 }
9544 return -1;
9545 }
9546
9547 static char *
9548 remote_hostio_error (int errnum)
9549 {
9550 int host_error = remote_fileio_errno_to_host (errnum);
9551
9552 if (host_error == -1)
9553 error (_("Unknown remote I/O error %d"), errnum);
9554 else
9555 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9556 }
9557
9558 static void
9559 remote_hostio_close_cleanup (void *opaque)
9560 {
9561 int fd = *(int *) opaque;
9562 int remote_errno;
9563
9564 remote_hostio_close (fd, &remote_errno);
9565 }
9566
9567
9568 static void *
9569 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9570 {
9571 const char *filename = bfd_get_filename (abfd);
9572 int fd, remote_errno;
9573 int *stream;
9574
9575 gdb_assert (remote_filename_p (filename));
9576
9577 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9578 if (fd == -1)
9579 {
9580 errno = remote_fileio_errno_to_host (remote_errno);
9581 bfd_set_error (bfd_error_system_call);
9582 return NULL;
9583 }
9584
9585 stream = xmalloc (sizeof (int));
9586 *stream = fd;
9587 return stream;
9588 }
9589
9590 static int
9591 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9592 {
9593 int fd = *(int *)stream;
9594 int remote_errno;
9595
9596 xfree (stream);
9597
9598 /* Ignore errors on close; these may happen if the remote
9599 connection was already torn down. */
9600 remote_hostio_close (fd, &remote_errno);
9601
9602 return 1;
9603 }
9604
9605 static file_ptr
9606 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9607 file_ptr nbytes, file_ptr offset)
9608 {
9609 int fd = *(int *)stream;
9610 int remote_errno;
9611 file_ptr pos, bytes;
9612
9613 pos = 0;
9614 while (nbytes > pos)
9615 {
9616 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9617 offset + pos, &remote_errno);
9618 if (bytes == 0)
9619 /* Success, but no bytes, means end-of-file. */
9620 break;
9621 if (bytes == -1)
9622 {
9623 errno = remote_fileio_errno_to_host (remote_errno);
9624 bfd_set_error (bfd_error_system_call);
9625 return -1;
9626 }
9627
9628 pos += bytes;
9629 }
9630
9631 return pos;
9632 }
9633
9634 static int
9635 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9636 {
9637 /* FIXME: We should probably implement remote_hostio_stat. */
9638 sb->st_size = INT_MAX;
9639 return 0;
9640 }
9641
9642 int
9643 remote_filename_p (const char *filename)
9644 {
9645 return strncmp (filename, "remote:", 7) == 0;
9646 }
9647
9648 bfd *
9649 remote_bfd_open (const char *remote_file, const char *target)
9650 {
9651 return bfd_openr_iovec (remote_file, target,
9652 remote_bfd_iovec_open, NULL,
9653 remote_bfd_iovec_pread,
9654 remote_bfd_iovec_close,
9655 remote_bfd_iovec_stat);
9656 }
9657
9658 void
9659 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9660 {
9661 struct cleanup *back_to, *close_cleanup;
9662 int retcode, fd, remote_errno, bytes, io_size;
9663 FILE *file;
9664 gdb_byte *buffer;
9665 int bytes_in_buffer;
9666 int saw_eof;
9667 ULONGEST offset;
9668
9669 if (!remote_desc)
9670 error (_("command can only be used with remote target"));
9671
9672 file = fopen (local_file, "rb");
9673 if (file == NULL)
9674 perror_with_name (local_file);
9675 back_to = make_cleanup_fclose (file);
9676
9677 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9678 | FILEIO_O_TRUNC),
9679 0700, &remote_errno);
9680 if (fd == -1)
9681 remote_hostio_error (remote_errno);
9682
9683 /* Send up to this many bytes at once. They won't all fit in the
9684 remote packet limit, so we'll transfer slightly fewer. */
9685 io_size = get_remote_packet_size ();
9686 buffer = xmalloc (io_size);
9687 make_cleanup (xfree, buffer);
9688
9689 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9690
9691 bytes_in_buffer = 0;
9692 saw_eof = 0;
9693 offset = 0;
9694 while (bytes_in_buffer || !saw_eof)
9695 {
9696 if (!saw_eof)
9697 {
9698 bytes = fread (buffer + bytes_in_buffer, 1,
9699 io_size - bytes_in_buffer,
9700 file);
9701 if (bytes == 0)
9702 {
9703 if (ferror (file))
9704 error (_("Error reading %s."), local_file);
9705 else
9706 {
9707 /* EOF. Unless there is something still in the
9708 buffer from the last iteration, we are done. */
9709 saw_eof = 1;
9710 if (bytes_in_buffer == 0)
9711 break;
9712 }
9713 }
9714 }
9715 else
9716 bytes = 0;
9717
9718 bytes += bytes_in_buffer;
9719 bytes_in_buffer = 0;
9720
9721 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9722 offset, &remote_errno);
9723
9724 if (retcode < 0)
9725 remote_hostio_error (remote_errno);
9726 else if (retcode == 0)
9727 error (_("Remote write of %d bytes returned 0!"), bytes);
9728 else if (retcode < bytes)
9729 {
9730 /* Short write. Save the rest of the read data for the next
9731 write. */
9732 bytes_in_buffer = bytes - retcode;
9733 memmove (buffer, buffer + retcode, bytes_in_buffer);
9734 }
9735
9736 offset += retcode;
9737 }
9738
9739 discard_cleanups (close_cleanup);
9740 if (remote_hostio_close (fd, &remote_errno))
9741 remote_hostio_error (remote_errno);
9742
9743 if (from_tty)
9744 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9745 do_cleanups (back_to);
9746 }
9747
9748 void
9749 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9750 {
9751 struct cleanup *back_to, *close_cleanup;
9752 int fd, remote_errno, bytes, io_size;
9753 FILE *file;
9754 gdb_byte *buffer;
9755 ULONGEST offset;
9756
9757 if (!remote_desc)
9758 error (_("command can only be used with remote target"));
9759
9760 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9761 if (fd == -1)
9762 remote_hostio_error (remote_errno);
9763
9764 file = fopen (local_file, "wb");
9765 if (file == NULL)
9766 perror_with_name (local_file);
9767 back_to = make_cleanup_fclose (file);
9768
9769 /* Send up to this many bytes at once. They won't all fit in the
9770 remote packet limit, so we'll transfer slightly fewer. */
9771 io_size = get_remote_packet_size ();
9772 buffer = xmalloc (io_size);
9773 make_cleanup (xfree, buffer);
9774
9775 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9776
9777 offset = 0;
9778 while (1)
9779 {
9780 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9781 if (bytes == 0)
9782 /* Success, but no bytes, means end-of-file. */
9783 break;
9784 if (bytes == -1)
9785 remote_hostio_error (remote_errno);
9786
9787 offset += bytes;
9788
9789 bytes = fwrite (buffer, 1, bytes, file);
9790 if (bytes == 0)
9791 perror_with_name (local_file);
9792 }
9793
9794 discard_cleanups (close_cleanup);
9795 if (remote_hostio_close (fd, &remote_errno))
9796 remote_hostio_error (remote_errno);
9797
9798 if (from_tty)
9799 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9800 do_cleanups (back_to);
9801 }
9802
9803 void
9804 remote_file_delete (const char *remote_file, int from_tty)
9805 {
9806 int retcode, remote_errno;
9807
9808 if (!remote_desc)
9809 error (_("command can only be used with remote target"));
9810
9811 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9812 if (retcode == -1)
9813 remote_hostio_error (remote_errno);
9814
9815 if (from_tty)
9816 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9817 }
9818
9819 static void
9820 remote_put_command (char *args, int from_tty)
9821 {
9822 struct cleanup *back_to;
9823 char **argv;
9824
9825 if (args == NULL)
9826 error_no_arg (_("file to put"));
9827
9828 argv = gdb_buildargv (args);
9829 back_to = make_cleanup_freeargv (argv);
9830 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9831 error (_("Invalid parameters to remote put"));
9832
9833 remote_file_put (argv[0], argv[1], from_tty);
9834
9835 do_cleanups (back_to);
9836 }
9837
9838 static void
9839 remote_get_command (char *args, int from_tty)
9840 {
9841 struct cleanup *back_to;
9842 char **argv;
9843
9844 if (args == NULL)
9845 error_no_arg (_("file to get"));
9846
9847 argv = gdb_buildargv (args);
9848 back_to = make_cleanup_freeargv (argv);
9849 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9850 error (_("Invalid parameters to remote get"));
9851
9852 remote_file_get (argv[0], argv[1], from_tty);
9853
9854 do_cleanups (back_to);
9855 }
9856
9857 static void
9858 remote_delete_command (char *args, int from_tty)
9859 {
9860 struct cleanup *back_to;
9861 char **argv;
9862
9863 if (args == NULL)
9864 error_no_arg (_("file to delete"));
9865
9866 argv = gdb_buildargv (args);
9867 back_to = make_cleanup_freeargv (argv);
9868 if (argv[0] == NULL || argv[1] != NULL)
9869 error (_("Invalid parameters to remote delete"));
9870
9871 remote_file_delete (argv[0], from_tty);
9872
9873 do_cleanups (back_to);
9874 }
9875
9876 static void
9877 remote_command (char *args, int from_tty)
9878 {
9879 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9880 }
9881
9882 static int
9883 remote_can_execute_reverse (void)
9884 {
9885 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9886 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9887 return 1;
9888 else
9889 return 0;
9890 }
9891
9892 static int
9893 remote_supports_non_stop (void)
9894 {
9895 return 1;
9896 }
9897
9898 static int
9899 remote_supports_disable_randomization (void)
9900 {
9901 /* Only supported in extended mode. */
9902 return 0;
9903 }
9904
9905 static int
9906 remote_supports_multi_process (void)
9907 {
9908 struct remote_state *rs = get_remote_state ();
9909
9910 /* Only extended-remote handles being attached to multiple
9911 processes, even though plain remote can use the multi-process
9912 thread id extensions, so that GDB knows the target process's
9913 PID. */
9914 return rs->extended && remote_multi_process_p (rs);
9915 }
9916
9917 int
9918 remote_supports_cond_tracepoints (void)
9919 {
9920 struct remote_state *rs = get_remote_state ();
9921
9922 return rs->cond_tracepoints;
9923 }
9924
9925 static int
9926 remote_supports_cond_breakpoints (void)
9927 {
9928 struct remote_state *rs = get_remote_state ();
9929
9930 return rs->cond_breakpoints;
9931 }
9932
9933 int
9934 remote_supports_fast_tracepoints (void)
9935 {
9936 struct remote_state *rs = get_remote_state ();
9937
9938 return rs->fast_tracepoints;
9939 }
9940
9941 static int
9942 remote_supports_static_tracepoints (void)
9943 {
9944 struct remote_state *rs = get_remote_state ();
9945
9946 return rs->static_tracepoints;
9947 }
9948
9949 static int
9950 remote_supports_install_in_trace (void)
9951 {
9952 struct remote_state *rs = get_remote_state ();
9953
9954 return rs->install_in_trace;
9955 }
9956
9957 static int
9958 remote_supports_enable_disable_tracepoint (void)
9959 {
9960 struct remote_state *rs = get_remote_state ();
9961
9962 return rs->enable_disable_tracepoints;
9963 }
9964
9965 static int
9966 remote_supports_string_tracing (void)
9967 {
9968 struct remote_state *rs = get_remote_state ();
9969
9970 return rs->string_tracing;
9971 }
9972
9973 static void
9974 remote_trace_init (void)
9975 {
9976 putpkt ("QTinit");
9977 remote_get_noisy_reply (&target_buf, &target_buf_size);
9978 if (strcmp (target_buf, "OK") != 0)
9979 error (_("Target does not support this command."));
9980 }
9981
9982 static void free_actions_list (char **actions_list);
9983 static void free_actions_list_cleanup_wrapper (void *);
9984 static void
9985 free_actions_list_cleanup_wrapper (void *al)
9986 {
9987 free_actions_list (al);
9988 }
9989
9990 static void
9991 free_actions_list (char **actions_list)
9992 {
9993 int ndx;
9994
9995 if (actions_list == 0)
9996 return;
9997
9998 for (ndx = 0; actions_list[ndx]; ndx++)
9999 xfree (actions_list[ndx]);
10000
10001 xfree (actions_list);
10002 }
10003
10004 /* Recursive routine to walk through command list including loops, and
10005 download packets for each command. */
10006
10007 static void
10008 remote_download_command_source (int num, ULONGEST addr,
10009 struct command_line *cmds)
10010 {
10011 struct remote_state *rs = get_remote_state ();
10012 struct command_line *cmd;
10013
10014 for (cmd = cmds; cmd; cmd = cmd->next)
10015 {
10016 QUIT; /* Allow user to bail out with ^C. */
10017 strcpy (rs->buf, "QTDPsrc:");
10018 encode_source_string (num, addr, "cmd", cmd->line,
10019 rs->buf + strlen (rs->buf),
10020 rs->buf_size - strlen (rs->buf));
10021 putpkt (rs->buf);
10022 remote_get_noisy_reply (&target_buf, &target_buf_size);
10023 if (strcmp (target_buf, "OK"))
10024 warning (_("Target does not support source download."));
10025
10026 if (cmd->control_type == while_control
10027 || cmd->control_type == while_stepping_control)
10028 {
10029 remote_download_command_source (num, addr, *cmd->body_list);
10030
10031 QUIT; /* Allow user to bail out with ^C. */
10032 strcpy (rs->buf, "QTDPsrc:");
10033 encode_source_string (num, addr, "cmd", "end",
10034 rs->buf + strlen (rs->buf),
10035 rs->buf_size - strlen (rs->buf));
10036 putpkt (rs->buf);
10037 remote_get_noisy_reply (&target_buf, &target_buf_size);
10038 if (strcmp (target_buf, "OK"))
10039 warning (_("Target does not support source download."));
10040 }
10041 }
10042 }
10043
10044 static void
10045 remote_download_tracepoint (struct bp_location *loc)
10046 {
10047
10048 CORE_ADDR tpaddr;
10049 char addrbuf[40];
10050 char buf[2048];
10051 char **tdp_actions;
10052 char **stepping_actions;
10053 int ndx;
10054 struct cleanup *old_chain = NULL;
10055 struct agent_expr *aexpr;
10056 struct cleanup *aexpr_chain = NULL;
10057 char *pkt;
10058 struct breakpoint *b = loc->owner;
10059 struct tracepoint *t = (struct tracepoint *) b;
10060
10061 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10062 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10063 tdp_actions);
10064 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10065 stepping_actions);
10066
10067 tpaddr = loc->address;
10068 sprintf_vma (addrbuf, tpaddr);
10069 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", b->number,
10070 addrbuf, /* address */
10071 (b->enable_state == bp_enabled ? 'E' : 'D'),
10072 t->step_count, t->pass_count);
10073 /* Fast tracepoints are mostly handled by the target, but we can
10074 tell the target how big of an instruction block should be moved
10075 around. */
10076 if (b->type == bp_fast_tracepoint)
10077 {
10078 /* Only test for support at download time; we may not know
10079 target capabilities at definition time. */
10080 if (remote_supports_fast_tracepoints ())
10081 {
10082 int isize;
10083
10084 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
10085 tpaddr, &isize, NULL))
10086 sprintf (buf + strlen (buf), ":F%x", isize);
10087 else
10088 /* If it passed validation at definition but fails now,
10089 something is very wrong. */
10090 internal_error (__FILE__, __LINE__,
10091 _("Fast tracepoint not "
10092 "valid during download"));
10093 }
10094 else
10095 /* Fast tracepoints are functionally identical to regular
10096 tracepoints, so don't take lack of support as a reason to
10097 give up on the trace run. */
10098 warning (_("Target does not support fast tracepoints, "
10099 "downloading %d as regular tracepoint"), b->number);
10100 }
10101 else if (b->type == bp_static_tracepoint)
10102 {
10103 /* Only test for support at download time; we may not know
10104 target capabilities at definition time. */
10105 if (remote_supports_static_tracepoints ())
10106 {
10107 struct static_tracepoint_marker marker;
10108
10109 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10110 strcat (buf, ":S");
10111 else
10112 error (_("Static tracepoint not valid during download"));
10113 }
10114 else
10115 /* Fast tracepoints are functionally identical to regular
10116 tracepoints, so don't take lack of support as a reason
10117 to give up on the trace run. */
10118 error (_("Target does not support static tracepoints"));
10119 }
10120 /* If the tracepoint has a conditional, make it into an agent
10121 expression and append to the definition. */
10122 if (loc->cond)
10123 {
10124 /* Only test support at download time, we may not know target
10125 capabilities at definition time. */
10126 if (remote_supports_cond_tracepoints ())
10127 {
10128 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10129 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10130 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
10131 pkt = buf + strlen (buf);
10132 for (ndx = 0; ndx < aexpr->len; ++ndx)
10133 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10134 *pkt = '\0';
10135 do_cleanups (aexpr_chain);
10136 }
10137 else
10138 warning (_("Target does not support conditional tracepoints, "
10139 "ignoring tp %d cond"), b->number);
10140 }
10141
10142 if (b->commands || *default_collect)
10143 strcat (buf, "-");
10144 putpkt (buf);
10145 remote_get_noisy_reply (&target_buf, &target_buf_size);
10146 if (strcmp (target_buf, "OK"))
10147 error (_("Target does not support tracepoints."));
10148
10149 /* do_single_steps (t); */
10150 if (tdp_actions)
10151 {
10152 for (ndx = 0; tdp_actions[ndx]; ndx++)
10153 {
10154 QUIT; /* Allow user to bail out with ^C. */
10155 sprintf (buf, "QTDP:-%x:%s:%s%c",
10156 b->number, addrbuf, /* address */
10157 tdp_actions[ndx],
10158 ((tdp_actions[ndx + 1] || stepping_actions)
10159 ? '-' : 0));
10160 putpkt (buf);
10161 remote_get_noisy_reply (&target_buf,
10162 &target_buf_size);
10163 if (strcmp (target_buf, "OK"))
10164 error (_("Error on target while setting tracepoints."));
10165 }
10166 }
10167 if (stepping_actions)
10168 {
10169 for (ndx = 0; stepping_actions[ndx]; ndx++)
10170 {
10171 QUIT; /* Allow user to bail out with ^C. */
10172 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
10173 b->number, addrbuf, /* address */
10174 ((ndx == 0) ? "S" : ""),
10175 stepping_actions[ndx],
10176 (stepping_actions[ndx + 1] ? "-" : ""));
10177 putpkt (buf);
10178 remote_get_noisy_reply (&target_buf,
10179 &target_buf_size);
10180 if (strcmp (target_buf, "OK"))
10181 error (_("Error on target while setting tracepoints."));
10182 }
10183 }
10184
10185 if (remote_protocol_packets[PACKET_TracepointSource].support
10186 == PACKET_ENABLE)
10187 {
10188 if (b->addr_string)
10189 {
10190 strcpy (buf, "QTDPsrc:");
10191 encode_source_string (b->number, loc->address,
10192 "at", b->addr_string, buf + strlen (buf),
10193 2048 - strlen (buf));
10194
10195 putpkt (buf);
10196 remote_get_noisy_reply (&target_buf, &target_buf_size);
10197 if (strcmp (target_buf, "OK"))
10198 warning (_("Target does not support source download."));
10199 }
10200 if (b->cond_string)
10201 {
10202 strcpy (buf, "QTDPsrc:");
10203 encode_source_string (b->number, loc->address,
10204 "cond", b->cond_string, buf + strlen (buf),
10205 2048 - strlen (buf));
10206 putpkt (buf);
10207 remote_get_noisy_reply (&target_buf, &target_buf_size);
10208 if (strcmp (target_buf, "OK"))
10209 warning (_("Target does not support source download."));
10210 }
10211 remote_download_command_source (b->number, loc->address,
10212 breakpoint_commands (b));
10213 }
10214
10215 do_cleanups (old_chain);
10216 }
10217
10218 static int
10219 remote_can_download_tracepoint (void)
10220 {
10221 struct trace_status *ts = current_trace_status ();
10222 int status = remote_get_trace_status (ts);
10223
10224 if (status == -1 || !ts->running_known || !ts->running)
10225 return 0;
10226
10227 /* If we are in a tracing experiment, but remote stub doesn't support
10228 installing tracepoint in trace, we have to return. */
10229 if (!remote_supports_install_in_trace ())
10230 return 0;
10231
10232 return 1;
10233 }
10234
10235
10236 static void
10237 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10238 {
10239 struct remote_state *rs = get_remote_state ();
10240 char *p;
10241
10242 sprintf (rs->buf, "QTDV:%x:%s:%x:",
10243 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
10244 p = rs->buf + strlen (rs->buf);
10245 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10246 error (_("Trace state variable name too long for tsv definition packet"));
10247 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10248 *p++ = '\0';
10249 putpkt (rs->buf);
10250 remote_get_noisy_reply (&target_buf, &target_buf_size);
10251 if (*target_buf == '\0')
10252 error (_("Target does not support this command."));
10253 if (strcmp (target_buf, "OK") != 0)
10254 error (_("Error on target while downloading trace state variable."));
10255 }
10256
10257 static void
10258 remote_enable_tracepoint (struct bp_location *location)
10259 {
10260 struct remote_state *rs = get_remote_state ();
10261 char addr_buf[40];
10262
10263 sprintf_vma (addr_buf, location->address);
10264 sprintf (rs->buf, "QTEnable:%x:%s", location->owner->number, addr_buf);
10265 putpkt (rs->buf);
10266 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10267 if (*rs->buf == '\0')
10268 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10269 if (strcmp (rs->buf, "OK") != 0)
10270 error (_("Error on target while enabling tracepoint."));
10271 }
10272
10273 static void
10274 remote_disable_tracepoint (struct bp_location *location)
10275 {
10276 struct remote_state *rs = get_remote_state ();
10277 char addr_buf[40];
10278
10279 sprintf_vma (addr_buf, location->address);
10280 sprintf (rs->buf, "QTDisable:%x:%s", location->owner->number, addr_buf);
10281 putpkt (rs->buf);
10282 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10283 if (*rs->buf == '\0')
10284 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10285 if (strcmp (rs->buf, "OK") != 0)
10286 error (_("Error on target while disabling tracepoint."));
10287 }
10288
10289 static void
10290 remote_trace_set_readonly_regions (void)
10291 {
10292 asection *s;
10293 bfd_size_type size;
10294 bfd_vma vma;
10295 int anysecs = 0;
10296 int offset = 0;
10297
10298 if (!exec_bfd)
10299 return; /* No information to give. */
10300
10301 strcpy (target_buf, "QTro");
10302 for (s = exec_bfd->sections; s; s = s->next)
10303 {
10304 char tmp1[40], tmp2[40];
10305 int sec_length;
10306
10307 if ((s->flags & SEC_LOAD) == 0 ||
10308 /* (s->flags & SEC_CODE) == 0 || */
10309 (s->flags & SEC_READONLY) == 0)
10310 continue;
10311
10312 anysecs = 1;
10313 vma = bfd_get_section_vma (,s);
10314 size = bfd_get_section_size (s);
10315 sprintf_vma (tmp1, vma);
10316 sprintf_vma (tmp2, vma + size);
10317 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10318 if (offset + sec_length + 1 > target_buf_size)
10319 {
10320 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10321 != PACKET_ENABLE)
10322 warning (_("\
10323 Too many sections for read-only sections definition packet."));
10324 break;
10325 }
10326 sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
10327 offset += sec_length;
10328 }
10329 if (anysecs)
10330 {
10331 putpkt (target_buf);
10332 getpkt (&target_buf, &target_buf_size, 0);
10333 }
10334 }
10335
10336 static void
10337 remote_trace_start (void)
10338 {
10339 putpkt ("QTStart");
10340 remote_get_noisy_reply (&target_buf, &target_buf_size);
10341 if (*target_buf == '\0')
10342 error (_("Target does not support this command."));
10343 if (strcmp (target_buf, "OK") != 0)
10344 error (_("Bogus reply from target: %s"), target_buf);
10345 }
10346
10347 static int
10348 remote_get_trace_status (struct trace_status *ts)
10349 {
10350 /* Initialize it just to avoid a GCC false warning. */
10351 char *p = NULL;
10352 /* FIXME we need to get register block size some other way. */
10353 extern int trace_regblock_size;
10354 volatile struct gdb_exception ex;
10355
10356 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10357
10358 putpkt ("qTStatus");
10359
10360 TRY_CATCH (ex, RETURN_MASK_ERROR)
10361 {
10362 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10363 }
10364 if (ex.reason < 0)
10365 {
10366 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10367 return -1;
10368 }
10369
10370 /* If the remote target doesn't do tracing, flag it. */
10371 if (*p == '\0')
10372 return -1;
10373
10374 /* We're working with a live target. */
10375 ts->from_file = 0;
10376
10377 /* Set some defaults. */
10378 ts->running_known = 0;
10379 ts->stop_reason = trace_stop_reason_unknown;
10380 ts->traceframe_count = -1;
10381 ts->buffer_free = 0;
10382
10383 if (*p++ != 'T')
10384 error (_("Bogus trace status reply from target: %s"), target_buf);
10385
10386 parse_trace_status (p, ts);
10387
10388 return ts->running;
10389 }
10390
10391 void
10392 remote_get_tracepoint_status (struct breakpoint *bp,
10393 struct uploaded_tp *utp)
10394 {
10395 struct remote_state *rs = get_remote_state ();
10396 char *reply;
10397 struct bp_location *loc;
10398 struct tracepoint *tp = (struct tracepoint *) bp;
10399
10400 if (tp)
10401 {
10402 tp->base.hit_count = 0;
10403 tp->traceframe_usage = 0;
10404 for (loc = tp->base.loc; loc; loc = loc->next)
10405 {
10406 /* If the tracepoint was never downloaded, don't go asking for
10407 any status. */
10408 if (tp->number_on_target == 0)
10409 continue;
10410 sprintf (rs->buf, "qTP:%x:%s", tp->number_on_target,
10411 phex_nz (loc->address, 0));
10412 putpkt (rs->buf);
10413 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10414 if (reply && *reply)
10415 {
10416 if (*reply == 'V')
10417 parse_tracepoint_status (reply + 1, bp, utp);
10418 }
10419 }
10420 }
10421 else if (utp)
10422 {
10423 utp->hit_count = 0;
10424 utp->traceframe_usage = 0;
10425 sprintf (rs->buf, "qTP:%x:%s", utp->number, phex_nz (utp->addr, 0));
10426 putpkt (rs->buf);
10427 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10428 if (reply && *reply)
10429 {
10430 if (*reply == 'V')
10431 parse_tracepoint_status (reply + 1, bp, utp);
10432 }
10433 }
10434 }
10435
10436 static void
10437 remote_trace_stop (void)
10438 {
10439 putpkt ("QTStop");
10440 remote_get_noisy_reply (&target_buf, &target_buf_size);
10441 if (*target_buf == '\0')
10442 error (_("Target does not support this command."));
10443 if (strcmp (target_buf, "OK") != 0)
10444 error (_("Bogus reply from target: %s"), target_buf);
10445 }
10446
10447 static int
10448 remote_trace_find (enum trace_find_type type, int num,
10449 ULONGEST addr1, ULONGEST addr2,
10450 int *tpp)
10451 {
10452 struct remote_state *rs = get_remote_state ();
10453 char *p, *reply;
10454 int target_frameno = -1, target_tracept = -1;
10455
10456 /* Lookups other than by absolute frame number depend on the current
10457 trace selected, so make sure it is correct on the remote end
10458 first. */
10459 if (type != tfind_number)
10460 set_remote_traceframe ();
10461
10462 p = rs->buf;
10463 strcpy (p, "QTFrame:");
10464 p = strchr (p, '\0');
10465 switch (type)
10466 {
10467 case tfind_number:
10468 sprintf (p, "%x", num);
10469 break;
10470 case tfind_pc:
10471 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10472 break;
10473 case tfind_tp:
10474 sprintf (p, "tdp:%x", num);
10475 break;
10476 case tfind_range:
10477 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10478 break;
10479 case tfind_outside:
10480 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10481 break;
10482 default:
10483 error (_("Unknown trace find type %d"), type);
10484 }
10485
10486 putpkt (rs->buf);
10487 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10488 if (*reply == '\0')
10489 error (_("Target does not support this command."));
10490
10491 while (reply && *reply)
10492 switch (*reply)
10493 {
10494 case 'F':
10495 p = ++reply;
10496 target_frameno = (int) strtol (p, &reply, 16);
10497 if (reply == p)
10498 error (_("Unable to parse trace frame number"));
10499 /* Don't update our remote traceframe number cache on failure
10500 to select a remote traceframe. */
10501 if (target_frameno == -1)
10502 return -1;
10503 break;
10504 case 'T':
10505 p = ++reply;
10506 target_tracept = (int) strtol (p, &reply, 16);
10507 if (reply == p)
10508 error (_("Unable to parse tracepoint number"));
10509 break;
10510 case 'O': /* "OK"? */
10511 if (reply[1] == 'K' && reply[2] == '\0')
10512 reply += 2;
10513 else
10514 error (_("Bogus reply from target: %s"), reply);
10515 break;
10516 default:
10517 error (_("Bogus reply from target: %s"), reply);
10518 }
10519 if (tpp)
10520 *tpp = target_tracept;
10521
10522 remote_traceframe_number = target_frameno;
10523 return target_frameno;
10524 }
10525
10526 static int
10527 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10528 {
10529 struct remote_state *rs = get_remote_state ();
10530 char *reply;
10531 ULONGEST uval;
10532
10533 set_remote_traceframe ();
10534
10535 sprintf (rs->buf, "qTV:%x", tsvnum);
10536 putpkt (rs->buf);
10537 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10538 if (reply && *reply)
10539 {
10540 if (*reply == 'V')
10541 {
10542 unpack_varlen_hex (reply + 1, &uval);
10543 *val = (LONGEST) uval;
10544 return 1;
10545 }
10546 }
10547 return 0;
10548 }
10549
10550 static int
10551 remote_save_trace_data (const char *filename)
10552 {
10553 struct remote_state *rs = get_remote_state ();
10554 char *p, *reply;
10555
10556 p = rs->buf;
10557 strcpy (p, "QTSave:");
10558 p += strlen (p);
10559 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10560 error (_("Remote file name too long for trace save packet"));
10561 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10562 *p++ = '\0';
10563 putpkt (rs->buf);
10564 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10565 if (*reply == '\0')
10566 error (_("Target does not support this command."));
10567 if (strcmp (reply, "OK") != 0)
10568 error (_("Bogus reply from target: %s"), reply);
10569 return 0;
10570 }
10571
10572 /* This is basically a memory transfer, but needs to be its own packet
10573 because we don't know how the target actually organizes its trace
10574 memory, plus we want to be able to ask for as much as possible, but
10575 not be unhappy if we don't get as much as we ask for. */
10576
10577 static LONGEST
10578 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10579 {
10580 struct remote_state *rs = get_remote_state ();
10581 char *reply;
10582 char *p;
10583 int rslt;
10584
10585 p = rs->buf;
10586 strcpy (p, "qTBuffer:");
10587 p += strlen (p);
10588 p += hexnumstr (p, offset);
10589 *p++ = ',';
10590 p += hexnumstr (p, len);
10591 *p++ = '\0';
10592
10593 putpkt (rs->buf);
10594 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10595 if (reply && *reply)
10596 {
10597 /* 'l' by itself means we're at the end of the buffer and
10598 there is nothing more to get. */
10599 if (*reply == 'l')
10600 return 0;
10601
10602 /* Convert the reply into binary. Limit the number of bytes to
10603 convert according to our passed-in buffer size, rather than
10604 what was returned in the packet; if the target is
10605 unexpectedly generous and gives us a bigger reply than we
10606 asked for, we don't want to crash. */
10607 rslt = hex2bin (target_buf, buf, len);
10608 return rslt;
10609 }
10610
10611 /* Something went wrong, flag as an error. */
10612 return -1;
10613 }
10614
10615 static void
10616 remote_set_disconnected_tracing (int val)
10617 {
10618 struct remote_state *rs = get_remote_state ();
10619
10620 if (rs->disconnected_tracing)
10621 {
10622 char *reply;
10623
10624 sprintf (rs->buf, "QTDisconnected:%x", val);
10625 putpkt (rs->buf);
10626 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10627 if (*reply == '\0')
10628 error (_("Target does not support this command."));
10629 if (strcmp (reply, "OK") != 0)
10630 error (_("Bogus reply from target: %s"), reply);
10631 }
10632 else if (val)
10633 warning (_("Target does not support disconnected tracing."));
10634 }
10635
10636 static int
10637 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10638 {
10639 struct thread_info *info = find_thread_ptid (ptid);
10640
10641 if (info && info->private)
10642 return info->private->core;
10643 return -1;
10644 }
10645
10646 static void
10647 remote_set_circular_trace_buffer (int val)
10648 {
10649 struct remote_state *rs = get_remote_state ();
10650 char *reply;
10651
10652 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10653 putpkt (rs->buf);
10654 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10655 if (*reply == '\0')
10656 error (_("Target does not support this command."));
10657 if (strcmp (reply, "OK") != 0)
10658 error (_("Bogus reply from target: %s"), reply);
10659 }
10660
10661 static struct traceframe_info *
10662 remote_traceframe_info (void)
10663 {
10664 char *text;
10665
10666 text = target_read_stralloc (&current_target,
10667 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10668 if (text != NULL)
10669 {
10670 struct traceframe_info *info;
10671 struct cleanup *back_to = make_cleanup (xfree, text);
10672
10673 info = parse_traceframe_info (text);
10674 do_cleanups (back_to);
10675 return info;
10676 }
10677
10678 return NULL;
10679 }
10680
10681 /* Handle the qTMinFTPILen packet. Returns the minimum length of
10682 instruction on which a fast tracepoint may be placed. Returns -1
10683 if the packet is not supported, and 0 if the minimum instruction
10684 length is unknown. */
10685
10686 static int
10687 remote_get_min_fast_tracepoint_insn_len (void)
10688 {
10689 struct remote_state *rs = get_remote_state ();
10690 char *reply;
10691
10692 /* If we're not debugging a process yet, the IPA can't be
10693 loaded. */
10694 if (!target_has_execution)
10695 return 0;
10696
10697 /* Make sure the remote is pointing at the right process. */
10698 set_general_process ();
10699
10700 sprintf (rs->buf, "qTMinFTPILen");
10701 putpkt (rs->buf);
10702 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10703 if (*reply == '\0')
10704 return -1;
10705 else
10706 {
10707 ULONGEST min_insn_len;
10708
10709 unpack_varlen_hex (reply, &min_insn_len);
10710
10711 return (int) min_insn_len;
10712 }
10713 }
10714
10715 static int
10716 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
10717 {
10718 struct remote_state *rs = get_remote_state ();
10719 char *reply;
10720 char *buf = rs->buf;
10721 char *endbuf = rs->buf + get_remote_packet_size ();
10722 int nbytes;
10723
10724 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
10725 if (user)
10726 {
10727 buf += xsnprintf (buf, endbuf - buf, "user:");
10728 nbytes = bin2hex (user, buf, 0);
10729 buf += 2 * nbytes;
10730 *buf++ = ';';
10731 }
10732 if (notes)
10733 {
10734 buf += xsnprintf (buf, endbuf - buf, "notes:");
10735 nbytes = bin2hex (notes, buf, 0);
10736 buf += 2 * nbytes;
10737 *buf++ = ';';
10738 }
10739 if (stop_notes)
10740 {
10741 buf += xsnprintf (buf, endbuf - buf, "tstop:");
10742 nbytes = bin2hex (stop_notes, buf, 0);
10743 buf += 2 * nbytes;
10744 *buf++ = ';';
10745 }
10746 /* Ensure the buffer is terminated. */
10747 *buf = '\0';
10748
10749 putpkt (rs->buf);
10750 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10751 if (*reply == '\0')
10752 return 0;
10753
10754 if (strcmp (reply, "OK") != 0)
10755 error (_("Bogus reply from target: %s"), reply);
10756
10757 return 1;
10758 }
10759
10760 static void
10761 init_remote_ops (void)
10762 {
10763 remote_ops.to_shortname = "remote";
10764 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10765 remote_ops.to_doc =
10766 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10767 Specify the serial device it is connected to\n\
10768 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10769 remote_ops.to_open = remote_open;
10770 remote_ops.to_close = remote_close;
10771 remote_ops.to_detach = remote_detach;
10772 remote_ops.to_disconnect = remote_disconnect;
10773 remote_ops.to_resume = remote_resume;
10774 remote_ops.to_wait = remote_wait;
10775 remote_ops.to_fetch_registers = remote_fetch_registers;
10776 remote_ops.to_store_registers = remote_store_registers;
10777 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10778 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10779 remote_ops.to_files_info = remote_files_info;
10780 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10781 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10782 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10783 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10784 remote_ops.to_watchpoint_addr_within_range =
10785 remote_watchpoint_addr_within_range;
10786 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10787 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10788 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10789 remote_ops.to_region_ok_for_hw_watchpoint
10790 = remote_region_ok_for_hw_watchpoint;
10791 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10792 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10793 remote_ops.to_kill = remote_kill;
10794 remote_ops.to_load = generic_load;
10795 remote_ops.to_mourn_inferior = remote_mourn;
10796 remote_ops.to_pass_signals = remote_pass_signals;
10797 remote_ops.to_thread_alive = remote_thread_alive;
10798 remote_ops.to_find_new_threads = remote_threads_info;
10799 remote_ops.to_pid_to_str = remote_pid_to_str;
10800 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10801 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10802 remote_ops.to_stop = remote_stop;
10803 remote_ops.to_xfer_partial = remote_xfer_partial;
10804 remote_ops.to_rcmd = remote_rcmd;
10805 remote_ops.to_log_command = serial_log_command;
10806 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10807 remote_ops.to_stratum = process_stratum;
10808 remote_ops.to_has_all_memory = default_child_has_all_memory;
10809 remote_ops.to_has_memory = default_child_has_memory;
10810 remote_ops.to_has_stack = default_child_has_stack;
10811 remote_ops.to_has_registers = default_child_has_registers;
10812 remote_ops.to_has_execution = default_child_has_execution;
10813 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10814 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10815 remote_ops.to_magic = OPS_MAGIC;
10816 remote_ops.to_memory_map = remote_memory_map;
10817 remote_ops.to_flash_erase = remote_flash_erase;
10818 remote_ops.to_flash_done = remote_flash_done;
10819 remote_ops.to_read_description = remote_read_description;
10820 remote_ops.to_search_memory = remote_search_memory;
10821 remote_ops.to_can_async_p = remote_can_async_p;
10822 remote_ops.to_is_async_p = remote_is_async_p;
10823 remote_ops.to_async = remote_async;
10824 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10825 remote_ops.to_terminal_ours = remote_terminal_ours;
10826 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10827 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10828 remote_ops.to_supports_disable_randomization
10829 = remote_supports_disable_randomization;
10830 remote_ops.to_fileio_open = remote_hostio_open;
10831 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
10832 remote_ops.to_fileio_pread = remote_hostio_pread;
10833 remote_ops.to_fileio_close = remote_hostio_close;
10834 remote_ops.to_fileio_unlink = remote_hostio_unlink;
10835 remote_ops.to_fileio_readlink = remote_hostio_readlink;
10836 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10837 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
10838 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
10839 remote_ops.to_trace_init = remote_trace_init;
10840 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10841 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
10842 remote_ops.to_download_trace_state_variable
10843 = remote_download_trace_state_variable;
10844 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10845 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10846 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10847 remote_ops.to_trace_start = remote_trace_start;
10848 remote_ops.to_get_trace_status = remote_get_trace_status;
10849 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
10850 remote_ops.to_trace_stop = remote_trace_stop;
10851 remote_ops.to_trace_find = remote_trace_find;
10852 remote_ops.to_get_trace_state_variable_value
10853 = remote_get_trace_state_variable_value;
10854 remote_ops.to_save_trace_data = remote_save_trace_data;
10855 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10856 remote_ops.to_upload_trace_state_variables
10857 = remote_upload_trace_state_variables;
10858 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10859 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
10860 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10861 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10862 remote_ops.to_set_trace_notes = remote_set_trace_notes;
10863 remote_ops.to_core_of_thread = remote_core_of_thread;
10864 remote_ops.to_verify_memory = remote_verify_memory;
10865 remote_ops.to_get_tib_address = remote_get_tib_address;
10866 remote_ops.to_set_permissions = remote_set_permissions;
10867 remote_ops.to_static_tracepoint_marker_at
10868 = remote_static_tracepoint_marker_at;
10869 remote_ops.to_static_tracepoint_markers_by_strid
10870 = remote_static_tracepoint_markers_by_strid;
10871 remote_ops.to_traceframe_info = remote_traceframe_info;
10872 }
10873
10874 /* Set up the extended remote vector by making a copy of the standard
10875 remote vector and adding to it. */
10876
10877 static void
10878 init_extended_remote_ops (void)
10879 {
10880 extended_remote_ops = remote_ops;
10881
10882 extended_remote_ops.to_shortname = "extended-remote";
10883 extended_remote_ops.to_longname =
10884 "Extended remote serial target in gdb-specific protocol";
10885 extended_remote_ops.to_doc =
10886 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10887 Specify the serial device it is connected to (e.g. /dev/ttya).";
10888 extended_remote_ops.to_open = extended_remote_open;
10889 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10890 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10891 extended_remote_ops.to_detach = extended_remote_detach;
10892 extended_remote_ops.to_attach = extended_remote_attach;
10893 extended_remote_ops.to_kill = extended_remote_kill;
10894 extended_remote_ops.to_supports_disable_randomization
10895 = extended_remote_supports_disable_randomization;
10896 }
10897
10898 static int
10899 remote_can_async_p (void)
10900 {
10901 if (!target_async_permitted)
10902 /* We only enable async when the user specifically asks for it. */
10903 return 0;
10904
10905 /* We're async whenever the serial device is. */
10906 return serial_can_async_p (remote_desc);
10907 }
10908
10909 static int
10910 remote_is_async_p (void)
10911 {
10912 if (!target_async_permitted)
10913 /* We only enable async when the user specifically asks for it. */
10914 return 0;
10915
10916 /* We're async whenever the serial device is. */
10917 return serial_is_async_p (remote_desc);
10918 }
10919
10920 /* Pass the SERIAL event on and up to the client. One day this code
10921 will be able to delay notifying the client of an event until the
10922 point where an entire packet has been received. */
10923
10924 static void (*async_client_callback) (enum inferior_event_type event_type,
10925 void *context);
10926 static void *async_client_context;
10927 static serial_event_ftype remote_async_serial_handler;
10928
10929 static void
10930 remote_async_serial_handler (struct serial *scb, void *context)
10931 {
10932 /* Don't propogate error information up to the client. Instead let
10933 the client find out about the error by querying the target. */
10934 async_client_callback (INF_REG_EVENT, async_client_context);
10935 }
10936
10937 static void
10938 remote_async_inferior_event_handler (gdb_client_data data)
10939 {
10940 inferior_event_handler (INF_REG_EVENT, NULL);
10941 }
10942
10943 static void
10944 remote_async_get_pending_events_handler (gdb_client_data data)
10945 {
10946 remote_get_pending_stop_replies ();
10947 }
10948
10949 static void
10950 remote_async (void (*callback) (enum inferior_event_type event_type,
10951 void *context), void *context)
10952 {
10953 if (callback != NULL)
10954 {
10955 serial_async (remote_desc, remote_async_serial_handler, NULL);
10956 async_client_callback = callback;
10957 async_client_context = context;
10958 }
10959 else
10960 serial_async (remote_desc, NULL, NULL);
10961 }
10962
10963 static void
10964 set_remote_cmd (char *args, int from_tty)
10965 {
10966 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10967 }
10968
10969 static void
10970 show_remote_cmd (char *args, int from_tty)
10971 {
10972 /* We can't just use cmd_show_list here, because we want to skip
10973 the redundant "show remote Z-packet" and the legacy aliases. */
10974 struct cleanup *showlist_chain;
10975 struct cmd_list_element *list = remote_show_cmdlist;
10976 struct ui_out *uiout = current_uiout;
10977
10978 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10979 for (; list != NULL; list = list->next)
10980 if (strcmp (list->name, "Z-packet") == 0)
10981 continue;
10982 else if (list->type == not_set_cmd)
10983 /* Alias commands are exactly like the original, except they
10984 don't have the normal type. */
10985 continue;
10986 else
10987 {
10988 struct cleanup *option_chain
10989 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10990
10991 ui_out_field_string (uiout, "name", list->name);
10992 ui_out_text (uiout, ": ");
10993 if (list->type == show_cmd)
10994 do_setshow_command ((char *) NULL, from_tty, list);
10995 else
10996 cmd_func (list, NULL, from_tty);
10997 /* Close the tuple. */
10998 do_cleanups (option_chain);
10999 }
11000
11001 /* Close the tuple. */
11002 do_cleanups (showlist_chain);
11003 }
11004
11005
11006 /* Function to be called whenever a new objfile (shlib) is detected. */
11007 static void
11008 remote_new_objfile (struct objfile *objfile)
11009 {
11010 if (remote_desc != 0) /* Have a remote connection. */
11011 remote_check_symbols (objfile);
11012 }
11013
11014 /* Pull all the tracepoints defined on the target and create local
11015 data structures representing them. We don't want to create real
11016 tracepoints yet, we don't want to mess up the user's existing
11017 collection. */
11018
11019 static int
11020 remote_upload_tracepoints (struct uploaded_tp **utpp)
11021 {
11022 struct remote_state *rs = get_remote_state ();
11023 char *p;
11024
11025 /* Ask for a first packet of tracepoint definition. */
11026 putpkt ("qTfP");
11027 getpkt (&rs->buf, &rs->buf_size, 0);
11028 p = rs->buf;
11029 while (*p && *p != 'l')
11030 {
11031 parse_tracepoint_definition (p, utpp);
11032 /* Ask for another packet of tracepoint definition. */
11033 putpkt ("qTsP");
11034 getpkt (&rs->buf, &rs->buf_size, 0);
11035 p = rs->buf;
11036 }
11037 return 0;
11038 }
11039
11040 static int
11041 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11042 {
11043 struct remote_state *rs = get_remote_state ();
11044 char *p;
11045
11046 /* Ask for a first packet of variable definition. */
11047 putpkt ("qTfV");
11048 getpkt (&rs->buf, &rs->buf_size, 0);
11049 p = rs->buf;
11050 while (*p && *p != 'l')
11051 {
11052 parse_tsv_definition (p, utsvp);
11053 /* Ask for another packet of variable definition. */
11054 putpkt ("qTsV");
11055 getpkt (&rs->buf, &rs->buf_size, 0);
11056 p = rs->buf;
11057 }
11058 return 0;
11059 }
11060
11061 void
11062 _initialize_remote (void)
11063 {
11064 struct remote_state *rs;
11065 struct cmd_list_element *cmd;
11066 char *cmd_name;
11067
11068 /* architecture specific data */
11069 remote_gdbarch_data_handle =
11070 gdbarch_data_register_post_init (init_remote_state);
11071 remote_g_packet_data_handle =
11072 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11073
11074 /* Initialize the per-target state. At the moment there is only one
11075 of these, not one per target. Only one target is active at a
11076 time. The default buffer size is unimportant; it will be expanded
11077 whenever a larger buffer is needed. */
11078 rs = get_remote_state_raw ();
11079 rs->buf_size = 400;
11080 rs->buf = xmalloc (rs->buf_size);
11081
11082 init_remote_ops ();
11083 add_target (&remote_ops);
11084
11085 init_extended_remote_ops ();
11086 add_target (&extended_remote_ops);
11087
11088 /* Hook into new objfile notification. */
11089 observer_attach_new_objfile (remote_new_objfile);
11090
11091 /* Set up signal handlers. */
11092 sigint_remote_token =
11093 create_async_signal_handler (async_remote_interrupt, NULL);
11094 sigint_remote_twice_token =
11095 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11096
11097 #if 0
11098 init_remote_threadtests ();
11099 #endif
11100
11101 /* set/show remote ... */
11102
11103 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11104 Remote protocol specific variables\n\
11105 Configure various remote-protocol specific variables such as\n\
11106 the packets being used"),
11107 &remote_set_cmdlist, "set remote ",
11108 0 /* allow-unknown */, &setlist);
11109 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11110 Remote protocol specific variables\n\
11111 Configure various remote-protocol specific variables such as\n\
11112 the packets being used"),
11113 &remote_show_cmdlist, "show remote ",
11114 0 /* allow-unknown */, &showlist);
11115
11116 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11117 Compare section data on target to the exec file.\n\
11118 Argument is a single section name (default: all loaded sections)."),
11119 &cmdlist);
11120
11121 add_cmd ("packet", class_maintenance, packet_command, _("\
11122 Send an arbitrary packet to a remote target.\n\
11123 maintenance packet TEXT\n\
11124 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11125 this command sends the string TEXT to the inferior, and displays the\n\
11126 response packet. GDB supplies the initial `$' character, and the\n\
11127 terminating `#' character and checksum."),
11128 &maintenancelist);
11129
11130 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11131 Set whether to send break if interrupted."), _("\
11132 Show whether to send break if interrupted."), _("\
11133 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11134 set_remotebreak, show_remotebreak,
11135 &setlist, &showlist);
11136 cmd_name = "remotebreak";
11137 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11138 deprecate_cmd (cmd, "set remote interrupt-sequence");
11139 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11140 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11141 deprecate_cmd (cmd, "show remote interrupt-sequence");
11142
11143 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11144 interrupt_sequence_modes, &interrupt_sequence_mode,
11145 _("\
11146 Set interrupt sequence to remote target."), _("\
11147 Show interrupt sequence to remote target."), _("\
11148 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11149 NULL, show_interrupt_sequence,
11150 &remote_set_cmdlist,
11151 &remote_show_cmdlist);
11152
11153 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11154 &interrupt_on_connect, _("\
11155 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11156 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11157 If set, interrupt sequence is sent to remote target."),
11158 NULL, NULL,
11159 &remote_set_cmdlist, &remote_show_cmdlist);
11160
11161 /* Install commands for configuring memory read/write packets. */
11162
11163 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11164 Set the maximum number of bytes per memory write packet (deprecated)."),
11165 &setlist);
11166 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11167 Show the maximum number of bytes per memory write packet (deprecated)."),
11168 &showlist);
11169 add_cmd ("memory-write-packet-size", no_class,
11170 set_memory_write_packet_size, _("\
11171 Set the maximum number of bytes per memory-write packet.\n\
11172 Specify the number of bytes in a packet or 0 (zero) for the\n\
11173 default packet size. The actual limit is further reduced\n\
11174 dependent on the target. Specify ``fixed'' to disable the\n\
11175 further restriction and ``limit'' to enable that restriction."),
11176 &remote_set_cmdlist);
11177 add_cmd ("memory-read-packet-size", no_class,
11178 set_memory_read_packet_size, _("\
11179 Set the maximum number of bytes per memory-read packet.\n\
11180 Specify the number of bytes in a packet or 0 (zero) for the\n\
11181 default packet size. The actual limit is further reduced\n\
11182 dependent on the target. Specify ``fixed'' to disable the\n\
11183 further restriction and ``limit'' to enable that restriction."),
11184 &remote_set_cmdlist);
11185 add_cmd ("memory-write-packet-size", no_class,
11186 show_memory_write_packet_size,
11187 _("Show the maximum number of bytes per memory-write packet."),
11188 &remote_show_cmdlist);
11189 add_cmd ("memory-read-packet-size", no_class,
11190 show_memory_read_packet_size,
11191 _("Show the maximum number of bytes per memory-read packet."),
11192 &remote_show_cmdlist);
11193
11194 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11195 &remote_hw_watchpoint_limit, _("\
11196 Set the maximum number of target hardware watchpoints."), _("\
11197 Show the maximum number of target hardware watchpoints."), _("\
11198 Specify a negative limit for unlimited."),
11199 NULL, NULL, /* FIXME: i18n: The maximum
11200 number of target hardware
11201 watchpoints is %s. */
11202 &remote_set_cmdlist, &remote_show_cmdlist);
11203 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11204 &remote_hw_watchpoint_length_limit, _("\
11205 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11206 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11207 Specify a negative limit for unlimited."),
11208 NULL, NULL, /* FIXME: i18n: The maximum
11209 length (in bytes) of a target
11210 hardware watchpoint is %s. */
11211 &remote_set_cmdlist, &remote_show_cmdlist);
11212 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11213 &remote_hw_breakpoint_limit, _("\
11214 Set the maximum number of target hardware breakpoints."), _("\
11215 Show the maximum number of target hardware breakpoints."), _("\
11216 Specify a negative limit for unlimited."),
11217 NULL, NULL, /* FIXME: i18n: The maximum
11218 number of target hardware
11219 breakpoints is %s. */
11220 &remote_set_cmdlist, &remote_show_cmdlist);
11221
11222 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
11223 &remote_address_size, _("\
11224 Set the maximum size of the address (in bits) in a memory packet."), _("\
11225 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11226 NULL,
11227 NULL, /* FIXME: i18n: */
11228 &setlist, &showlist);
11229
11230 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11231 "X", "binary-download", 1);
11232
11233 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11234 "vCont", "verbose-resume", 0);
11235
11236 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11237 "QPassSignals", "pass-signals", 0);
11238
11239 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11240 "qSymbol", "symbol-lookup", 0);
11241
11242 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11243 "P", "set-register", 1);
11244
11245 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11246 "p", "fetch-register", 1);
11247
11248 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11249 "Z0", "software-breakpoint", 0);
11250
11251 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11252 "Z1", "hardware-breakpoint", 0);
11253
11254 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11255 "Z2", "write-watchpoint", 0);
11256
11257 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11258 "Z3", "read-watchpoint", 0);
11259
11260 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11261 "Z4", "access-watchpoint", 0);
11262
11263 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11264 "qXfer:auxv:read", "read-aux-vector", 0);
11265
11266 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11267 "qXfer:features:read", "target-features", 0);
11268
11269 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11270 "qXfer:libraries:read", "library-info", 0);
11271
11272 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11273 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11274
11275 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11276 "qXfer:memory-map:read", "memory-map", 0);
11277
11278 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11279 "qXfer:spu:read", "read-spu-object", 0);
11280
11281 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11282 "qXfer:spu:write", "write-spu-object", 0);
11283
11284 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11285 "qXfer:osdata:read", "osdata", 0);
11286
11287 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11288 "qXfer:threads:read", "threads", 0);
11289
11290 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11291 "qXfer:siginfo:read", "read-siginfo-object", 0);
11292
11293 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11294 "qXfer:siginfo:write", "write-siginfo-object", 0);
11295
11296 add_packet_config_cmd
11297 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11298 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11299
11300 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11301 "qGetTLSAddr", "get-thread-local-storage-address",
11302 0);
11303
11304 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11305 "qGetTIBAddr", "get-thread-information-block-address",
11306 0);
11307
11308 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11309 "bc", "reverse-continue", 0);
11310
11311 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11312 "bs", "reverse-step", 0);
11313
11314 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11315 "qSupported", "supported-packets", 0);
11316
11317 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11318 "qSearch:memory", "search-memory", 0);
11319
11320 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11321 "vFile:open", "hostio-open", 0);
11322
11323 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11324 "vFile:pread", "hostio-pread", 0);
11325
11326 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11327 "vFile:pwrite", "hostio-pwrite", 0);
11328
11329 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11330 "vFile:close", "hostio-close", 0);
11331
11332 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11333 "vFile:unlink", "hostio-unlink", 0);
11334
11335 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11336 "vFile:readlink", "hostio-readlink", 0);
11337
11338 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11339 "vAttach", "attach", 0);
11340
11341 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11342 "vRun", "run", 0);
11343
11344 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11345 "QStartNoAckMode", "noack", 0);
11346
11347 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11348 "vKill", "kill", 0);
11349
11350 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11351 "qAttached", "query-attached", 0);
11352
11353 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11354 "ConditionalTracepoints",
11355 "conditional-tracepoints", 0);
11356
11357 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11358 "ConditionalBreakpoints",
11359 "conditional-breakpoints", 0);
11360
11361 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11362 "FastTracepoints", "fast-tracepoints", 0);
11363
11364 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11365 "TracepointSource", "TracepointSource", 0);
11366
11367 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11368 "QAllow", "allow", 0);
11369
11370 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11371 "StaticTracepoints", "static-tracepoints", 0);
11372
11373 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11374 "InstallInTrace", "install-in-trace", 0);
11375
11376 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11377 "qXfer:statictrace:read", "read-sdata-object", 0);
11378
11379 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11380 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11381
11382 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11383 "QDisableRandomization", "disable-randomization", 0);
11384
11385 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11386 Z sub-packet has its own set and show commands, but users may
11387 have sets to this variable in their .gdbinit files (or in their
11388 documentation). */
11389 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11390 &remote_Z_packet_detect, _("\
11391 Set use of remote protocol `Z' packets"), _("\
11392 Show use of remote protocol `Z' packets "), _("\
11393 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11394 packets."),
11395 set_remote_protocol_Z_packet_cmd,
11396 show_remote_protocol_Z_packet_cmd,
11397 /* FIXME: i18n: Use of remote protocol
11398 `Z' packets is %s. */
11399 &remote_set_cmdlist, &remote_show_cmdlist);
11400
11401 add_prefix_cmd ("remote", class_files, remote_command, _("\
11402 Manipulate files on the remote system\n\
11403 Transfer files to and from the remote target system."),
11404 &remote_cmdlist, "remote ",
11405 0 /* allow-unknown */, &cmdlist);
11406
11407 add_cmd ("put", class_files, remote_put_command,
11408 _("Copy a local file to the remote system."),
11409 &remote_cmdlist);
11410
11411 add_cmd ("get", class_files, remote_get_command,
11412 _("Copy a remote file to the local system."),
11413 &remote_cmdlist);
11414
11415 add_cmd ("delete", class_files, remote_delete_command,
11416 _("Delete a remote file."),
11417 &remote_cmdlist);
11418
11419 remote_exec_file = xstrdup ("");
11420 add_setshow_string_noescape_cmd ("exec-file", class_files,
11421 &remote_exec_file, _("\
11422 Set the remote pathname for \"run\""), _("\
11423 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11424 &remote_set_cmdlist, &remote_show_cmdlist);
11425
11426 /* Eventually initialize fileio. See fileio.c */
11427 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11428
11429 /* Take advantage of the fact that the LWP field is not used, to tag
11430 special ptids with it set to != 0. */
11431 magic_null_ptid = ptid_build (42000, 1, -1);
11432 not_sent_ptid = ptid_build (42000, 1, -2);
11433 any_thread_ptid = ptid_build (42000, 1, 0);
11434
11435 target_buf_size = 2048;
11436 target_buf = xmalloc (target_buf_size);
11437 }
11438
This page took 0.749697 seconds and 4 git commands to generate.