* gdb.base/corefile.exp: Recognize the message saying that GDB
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "target.h"
32 /*#include "terminal.h" */
33 #include "gdbcmd.h"
34 #include "objfiles.h"
35 #include "gdb-stabs.h"
36 #include "gdbthread.h"
37 #include "remote.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41
42 #include <ctype.h>
43 #include <sys/time.h>
44 #ifdef USG
45 #include <sys/types.h>
46 #endif
47
48 #include "event-loop.h"
49 #include "event-top.h"
50 #include "inf-loop.h"
51
52 #include <signal.h>
53 #include "serial.h"
54
55 #include "gdbcore.h" /* for exec_bfd */
56
57 /* Prototypes for local functions */
58 static void cleanup_sigint_signal_handler (void *dummy);
59 static void initialize_sigint_signal_handler (void);
60 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
61
62 static void handle_remote_sigint (int);
63 static void handle_remote_sigint_twice (int);
64 static void async_remote_interrupt (gdb_client_data);
65 void async_remote_interrupt_twice (gdb_client_data);
66
67 static void build_remote_gdbarch_data (void);
68
69 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
70
71 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
72
73 static void remote_files_info (struct target_ops *ignore);
74
75 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
76 int len, int should_write,
77 struct mem_attrib *attrib,
78 struct target_ops *target);
79
80 static void remote_prepare_to_store (void);
81
82 static void remote_fetch_registers (int regno);
83
84 static void remote_resume (ptid_t ptid, int step,
85 enum target_signal siggnal);
86 static void remote_async_resume (ptid_t ptid, int step,
87 enum target_signal siggnal);
88 static int remote_start_remote (PTR);
89
90 static void remote_open (char *name, int from_tty);
91 static void remote_async_open (char *name, int from_tty);
92
93 static void extended_remote_open (char *name, int from_tty);
94 static void extended_remote_async_open (char *name, int from_tty);
95
96 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
97 static void remote_async_open_1 (char *, int, struct target_ops *,
98 int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_store_registers (int regno);
103
104 static void remote_mourn (void);
105 static void remote_async_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void extended_remote_create_inferior (char *, char *, char **);
112 static void extended_remote_async_create_inferior (char *, char *, char **);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char *buf, long sizeof_buf);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122 static ptid_t remote_async_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124
125 static void remote_kill (void);
126 static void remote_async_kill (void);
127
128 static int tohex (int nib);
129
130 static void remote_detach (char *args, int from_tty);
131 static void remote_async_detach (char *args, int from_tty);
132
133 static void remote_interrupt (int signo);
134
135 static void remote_interrupt_twice (int signo);
136
137 static void interrupt_query (void);
138
139 static void set_thread (int, int);
140
141 static int remote_thread_alive (ptid_t);
142
143 static void get_offsets (void);
144
145 static long read_frame (char *buf, long sizeof_buf);
146
147 static int remote_insert_breakpoint (CORE_ADDR, char *);
148
149 static int remote_remove_breakpoint (CORE_ADDR, char *);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void init_remote_cisco_ops (void);
158
159 static struct target_ops remote_cisco_ops;
160
161 static void remote_stop (void);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int remote_query (int /*char */ , char *, char *, int *);
168
169 static int hexnumstr (char *, ULONGEST);
170
171 static int hexnumnstr (char *, ULONGEST, int);
172
173 static CORE_ADDR remote_address_masked (CORE_ADDR);
174
175 static void print_packet (char *);
176
177 static unsigned long crc32 (unsigned char *, int, unsigned int);
178
179 static void compare_sections_command (char *, int);
180
181 static void packet_command (char *, int);
182
183 static int stub_unpack_int (char *buff, int fieldlength);
184
185 static ptid_t remote_current_thread (ptid_t oldptid);
186
187 static void remote_find_new_threads (void);
188
189 static void record_currthread (int currthread);
190
191 static int fromhex (int a);
192
193 static int hex2bin (const char *hex, char *bin, int count);
194
195 static int bin2hex (const char *bin, char *hex, int count);
196
197 static int putpkt_binary (char *buf, int cnt);
198
199 static void check_binary_download (CORE_ADDR addr);
200
201 struct packet_config;
202
203 static void show_packet_config_cmd (struct packet_config *config);
204
205 static void update_packet_config (struct packet_config *config);
206
207 /* Define the target subroutine names */
208
209 void open_remote_target (char *, int, struct target_ops *, int);
210
211 void _initialize_remote (void);
212
213 /* Description of the remote protocol. Strictly speeking, when the
214 target is open()ed, remote.c should create a per-target description
215 of the remote protocol using that target's architecture.
216 Unfortunatly, the target stack doesn't include local state. For
217 the moment keep the information in the target's architecture
218 object. Sigh.. */
219
220 struct packet_reg
221 {
222 long offset; /* Offset into G packet. */
223 long regnum; /* GDB's internal register number. */
224 LONGEST pnum; /* Remote protocol register number. */
225 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
226 /* char *name; == REGISTER_NAME (regnum); at present. */
227 };
228
229 struct remote_state
230 {
231 /* Description of the remote protocol registers. */
232 long sizeof_g_packet;
233 struct packet_reg *g_packet; /* NULL terminated. */
234
235 /* This is the size (in chars) of the first response to the ``g''
236 packet. It is used as a heuristic when determining the maximum
237 size of memory-read and memory-write packets. A target will
238 typically only reserve a buffer large enough to hold the ``g''
239 packet. The size does not include packet overhead (headers and
240 trailers). */
241 long actual_register_packet_size;
242
243 /* This is the maximum size (in chars) of a non read/write packet.
244 It is also used as a cap on the size of read/write packets. */
245 long remote_packet_size;
246 };
247
248 /* Handle for retreving the remote protocol data from gdbarch. */
249 static struct gdbarch_data *remote_gdbarch_data_handle;
250
251 static struct remote_state *
252 get_remote_state ()
253 {
254 return gdbarch_data (remote_gdbarch_data_handle);
255 }
256
257 static void *
258 init_remote_state (struct gdbarch *gdbarch)
259 {
260 int regnum;
261 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
262
263 /* Start out by having the remote protocol mimic the existing
264 behavour - just copy in the description of the register cache. */
265 rs->sizeof_g_packet = REGISTER_BYTES; /* OK use. */
266
267 /* Since, for the moment, the regcache is still being direct mapped,
268 there are exactly NUM_REGS. Zero allocate a buffer adding space
269 for a sentinal. */
270 rs->g_packet = xcalloc (NUM_REGS + 1, sizeof (struct packet_reg));
271 rs->g_packet[NUM_REGS].offset = -1;
272 for (regnum = 0; regnum < NUM_REGS; regnum++)
273 {
274 rs->g_packet[regnum].pnum = regnum;
275 rs->g_packet[regnum].regnum = regnum;
276 rs->g_packet[regnum].offset = REGISTER_BYTE (regnum);
277 /* ...size = REGISTER_RAW_SIZE (regnum); */
278 /* ...name = REGISTER_NAME (regnum); */
279 }
280
281 /* Default maximum number of characters in a packet body. Many
282 remote stubs have a hardwired buffer size of 400 bytes
283 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
284 as the maximum packet-size to ensure that the packet and an extra
285 NUL character can always fit in the buffer. This stops GDB
286 trashing stubs that try to squeeze an extra NUL into what is
287 already a full buffer (As of 1999-12-04 that was most stubs. */
288 rs->remote_packet_size = 400 - 1;
289
290 /* Should rs->sizeof_g_packet needs more space than the
291 default, adjust the size accordingly. Remember that each byte is
292 encoded as two characters. 32 is the overhead for the packet
293 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
294 (``$NN:G...#NN'') is a better guess, the below has been padded a
295 little. */
296 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
297 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
298
299 /* This one is filled in when a ``g'' packet is received. */
300 rs->actual_register_packet_size = 0;
301
302 return rs;
303 }
304
305 static void
306 free_remote_state (struct gdbarch *gdbarch, void *pointer)
307 {
308 struct remote_state *data = pointer;
309 xfree (data->g_packet);
310 xfree (data);
311 }
312
313 static struct packet_reg *
314 packet_reg_from_regnum (struct remote_state *rs, long regnum)
315 {
316 struct packet_reg *reg;
317 for (reg = rs->g_packet; reg->offset >= 0; reg++)
318 {
319 if (reg->regnum == regnum)
320 return reg;
321 }
322 return NULL;
323 }
324
325 static struct packet_reg *
326 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
327 {
328 struct packet_reg *reg;
329 for (reg = rs->g_packet; reg->offset >= 0; reg++)
330 {
331 if (reg->pnum == pnum)
332 return reg;
333 }
334 return NULL;
335 }
336
337 /* */
338
339 static struct target_ops remote_ops;
340
341 static struct target_ops extended_remote_ops;
342
343 /* Temporary target ops. Just like the remote_ops and
344 extended_remote_ops, but with asynchronous support. */
345 static struct target_ops remote_async_ops;
346
347 static struct target_ops extended_async_remote_ops;
348
349 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
350 ``forever'' still use the normal timeout mechanism. This is
351 currently used by the ASYNC code to guarentee that target reads
352 during the initial connect always time-out. Once getpkt has been
353 modified to return a timeout indication and, in turn
354 remote_wait()/wait_for_inferior() have gained a timeout parameter
355 this can go away. */
356 static int wait_forever_enabled_p = 1;
357
358
359 /* This variable chooses whether to send a ^C or a break when the user
360 requests program interruption. Although ^C is usually what remote
361 systems expect, and that is the default here, sometimes a break is
362 preferable instead. */
363
364 static int remote_break;
365
366 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
367 remote_open knows that we don't have a file open when the program
368 starts. */
369 static struct serial *remote_desc = NULL;
370
371 /* This is set by the target (thru the 'S' message)
372 to denote that the target is in kernel mode. */
373 static int cisco_kernel_mode = 0;
374
375 /* This variable sets the number of bits in an address that are to be
376 sent in a memory ("M" or "m") packet. Normally, after stripping
377 leading zeros, the entire address would be sent. This variable
378 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
379 initial implementation of remote.c restricted the address sent in
380 memory packets to ``host::sizeof long'' bytes - (typically 32
381 bits). Consequently, for 64 bit targets, the upper 32 bits of an
382 address was never sent. Since fixing this bug may cause a break in
383 some remote targets this variable is principly provided to
384 facilitate backward compatibility. */
385
386 static int remote_address_size;
387
388 /* Tempoary to track who currently owns the terminal. See
389 target_async_terminal_* for more details. */
390
391 static int remote_async_terminal_ours_p;
392
393 \f
394 /* User configurable variables for the number of characters in a
395 memory read/write packet. MIN ((rs->remote_packet_size),
396 rs->sizeof_g_packet) is the default. Some targets need smaller
397 values (fifo overruns, et.al.) and some users need larger values
398 (speed up transfers). The variables ``preferred_*'' (the user
399 request), ``current_*'' (what was actually set) and ``forced_*''
400 (Positive - a soft limit, negative - a hard limit). */
401
402 struct memory_packet_config
403 {
404 char *name;
405 long size;
406 int fixed_p;
407 };
408
409 /* Compute the current size of a read/write packet. Since this makes
410 use of ``actual_register_packet_size'' the computation is dynamic. */
411
412 static long
413 get_memory_packet_size (struct memory_packet_config *config)
414 {
415 struct remote_state *rs = get_remote_state ();
416 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
417 law?) that some hosts don't cope very well with large alloca()
418 calls. Eventually the alloca() code will be replaced by calls to
419 xmalloc() and make_cleanups() allowing this restriction to either
420 be lifted or removed. */
421 #ifndef MAX_REMOTE_PACKET_SIZE
422 #define MAX_REMOTE_PACKET_SIZE 16384
423 #endif
424 /* NOTE: 16 is just chosen at random. */
425 #ifndef MIN_REMOTE_PACKET_SIZE
426 #define MIN_REMOTE_PACKET_SIZE 16
427 #endif
428 long what_they_get;
429 if (config->fixed_p)
430 {
431 if (config->size <= 0)
432 what_they_get = MAX_REMOTE_PACKET_SIZE;
433 else
434 what_they_get = config->size;
435 }
436 else
437 {
438 what_they_get = (rs->remote_packet_size);
439 /* Limit the packet to the size specified by the user. */
440 if (config->size > 0
441 && what_they_get > config->size)
442 what_they_get = config->size;
443 /* Limit it to the size of the targets ``g'' response. */
444 if ((rs->actual_register_packet_size) > 0
445 && what_they_get > (rs->actual_register_packet_size))
446 what_they_get = (rs->actual_register_packet_size);
447 }
448 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
449 what_they_get = MAX_REMOTE_PACKET_SIZE;
450 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
451 what_they_get = MIN_REMOTE_PACKET_SIZE;
452 return what_they_get;
453 }
454
455 /* Update the size of a read/write packet. If they user wants
456 something really big then do a sanity check. */
457
458 static void
459 set_memory_packet_size (char *args, struct memory_packet_config *config)
460 {
461 int fixed_p = config->fixed_p;
462 long size = config->size;
463 if (args == NULL)
464 error ("Argument required (integer, `fixed' or `limited').");
465 else if (strcmp (args, "hard") == 0
466 || strcmp (args, "fixed") == 0)
467 fixed_p = 1;
468 else if (strcmp (args, "soft") == 0
469 || strcmp (args, "limit") == 0)
470 fixed_p = 0;
471 else
472 {
473 char *end;
474 size = strtoul (args, &end, 0);
475 if (args == end)
476 error ("Invalid %s (bad syntax).", config->name);
477 #if 0
478 /* Instead of explicitly capping the size of a packet to
479 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
480 instead allowed to set the size to something arbitrarily
481 large. */
482 if (size > MAX_REMOTE_PACKET_SIZE)
483 error ("Invalid %s (too large).", config->name);
484 #endif
485 }
486 /* Extra checks? */
487 if (fixed_p && !config->fixed_p)
488 {
489 if (! query ("The target may not be able to correctly handle a %s\n"
490 "of %ld bytes. Change the packet size? ",
491 config->name, size))
492 error ("Packet size not changed.");
493 }
494 /* Update the config. */
495 config->fixed_p = fixed_p;
496 config->size = size;
497 }
498
499 static void
500 show_memory_packet_size (struct memory_packet_config *config)
501 {
502 printf_filtered ("The %s is %ld. ", config->name, config->size);
503 if (config->fixed_p)
504 printf_filtered ("Packets are fixed at %ld bytes.\n",
505 get_memory_packet_size (config));
506 else
507 printf_filtered ("Packets are limited to %ld bytes.\n",
508 get_memory_packet_size (config));
509 }
510
511 static struct memory_packet_config memory_write_packet_config =
512 {
513 "memory-write-packet-size",
514 };
515
516 static void
517 set_memory_write_packet_size (char *args, int from_tty)
518 {
519 set_memory_packet_size (args, &memory_write_packet_config);
520 }
521
522 static void
523 show_memory_write_packet_size (char *args, int from_tty)
524 {
525 show_memory_packet_size (&memory_write_packet_config);
526 }
527
528 static long
529 get_memory_write_packet_size (void)
530 {
531 return get_memory_packet_size (&memory_write_packet_config);
532 }
533
534 static struct memory_packet_config memory_read_packet_config =
535 {
536 "memory-read-packet-size",
537 };
538
539 static void
540 set_memory_read_packet_size (char *args, int from_tty)
541 {
542 set_memory_packet_size (args, &memory_read_packet_config);
543 }
544
545 static void
546 show_memory_read_packet_size (char *args, int from_tty)
547 {
548 show_memory_packet_size (&memory_read_packet_config);
549 }
550
551 static long
552 get_memory_read_packet_size (void)
553 {
554 struct remote_state *rs = get_remote_state ();
555 long size = get_memory_packet_size (&memory_read_packet_config);
556 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
557 extra buffer size argument before the memory read size can be
558 increased beyond (rs->remote_packet_size). */
559 if (size > (rs->remote_packet_size))
560 size = (rs->remote_packet_size);
561 return size;
562 }
563
564 \f
565 /* Generic configuration support for packets the stub optionally
566 supports. Allows the user to specify the use of the packet as well
567 as allowing GDB to auto-detect support in the remote stub. */
568
569 enum packet_support
570 {
571 PACKET_SUPPORT_UNKNOWN = 0,
572 PACKET_ENABLE,
573 PACKET_DISABLE
574 };
575
576 struct packet_config
577 {
578 char *name;
579 char *title;
580 enum cmd_auto_boolean detect;
581 enum packet_support support;
582 };
583
584 /* Analyze a packet's return value and update the packet config
585 accordingly. */
586
587 enum packet_result
588 {
589 PACKET_ERROR,
590 PACKET_OK,
591 PACKET_UNKNOWN
592 };
593
594 static void
595 update_packet_config (struct packet_config *config)
596 {
597 switch (config->detect)
598 {
599 case CMD_AUTO_BOOLEAN_TRUE:
600 config->support = PACKET_ENABLE;
601 break;
602 case CMD_AUTO_BOOLEAN_FALSE:
603 config->support = PACKET_DISABLE;
604 break;
605 case CMD_AUTO_BOOLEAN_AUTO:
606 config->support = PACKET_SUPPORT_UNKNOWN;
607 break;
608 }
609 }
610
611 static void
612 show_packet_config_cmd (struct packet_config *config)
613 {
614 char *support = "internal-error";
615 switch (config->support)
616 {
617 case PACKET_ENABLE:
618 support = "enabled";
619 break;
620 case PACKET_DISABLE:
621 support = "disabled";
622 break;
623 case PACKET_SUPPORT_UNKNOWN:
624 support = "unknown";
625 break;
626 }
627 switch (config->detect)
628 {
629 case CMD_AUTO_BOOLEAN_AUTO:
630 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
631 config->name, config->title, support);
632 break;
633 case CMD_AUTO_BOOLEAN_TRUE:
634 case CMD_AUTO_BOOLEAN_FALSE:
635 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
636 config->name, config->title, support);
637 break;
638 }
639 }
640
641 static void
642 add_packet_config_cmd (struct packet_config *config,
643 char *name,
644 char *title,
645 void (*set_func) (char *args, int from_tty,
646 struct cmd_list_element *
647 c),
648 void (*show_func) (char *name,
649 int from_tty),
650 struct cmd_list_element **set_remote_list,
651 struct cmd_list_element **show_remote_list,
652 int legacy)
653 {
654 struct cmd_list_element *set_cmd;
655 struct cmd_list_element *show_cmd;
656 char *set_doc;
657 char *show_doc;
658 char *cmd_name;
659 config->name = name;
660 config->title = title;
661 config->detect = CMD_AUTO_BOOLEAN_AUTO;
662 config->support = PACKET_SUPPORT_UNKNOWN;
663 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
664 name, title);
665 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
666 name, title);
667 /* set/show TITLE-packet {auto,on,off} */
668 xasprintf (&cmd_name, "%s-packet", title);
669 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
670 &config->detect, set_doc,
671 set_remote_list);
672 set_cmd->function.sfunc = set_func;
673 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
674 show_remote_list);
675 /* set/show remote NAME-packet {auto,on,off} -- legacy */
676 if (legacy)
677 {
678 char *legacy_name;
679 xasprintf (&legacy_name, "%s-packet", name);
680 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
681 set_remote_list);
682 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
683 show_remote_list);
684 }
685 }
686
687 static enum packet_result
688 packet_ok (const char *buf, struct packet_config *config)
689 {
690 if (buf[0] != '\0')
691 {
692 /* The stub recognized the packet request. Check that the
693 operation succeeded. */
694 switch (config->support)
695 {
696 case PACKET_SUPPORT_UNKNOWN:
697 if (remote_debug)
698 fprintf_unfiltered (gdb_stdlog,
699 "Packet %s (%s) is supported\n",
700 config->name, config->title);
701 config->support = PACKET_ENABLE;
702 break;
703 case PACKET_DISABLE:
704 internal_error (__FILE__, __LINE__,
705 "packet_ok: attempt to use a disabled packet");
706 break;
707 case PACKET_ENABLE:
708 break;
709 }
710 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
711 /* "OK" - definitly OK. */
712 return PACKET_OK;
713 if (buf[0] == 'E'
714 && isxdigit (buf[1]) && isxdigit (buf[2])
715 && buf[3] == '\0')
716 /* "Enn" - definitly an error. */
717 return PACKET_ERROR;
718 /* The packet may or may not be OK. Just assume it is */
719 return PACKET_OK;
720 }
721 else
722 {
723 /* The stub does not support the packet. */
724 switch (config->support)
725 {
726 case PACKET_ENABLE:
727 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
728 /* If the stub previously indicated that the packet was
729 supported then there is a protocol error.. */
730 error ("Protocol error: %s (%s) conflicting enabled responses.",
731 config->name, config->title);
732 else
733 /* The user set it wrong. */
734 error ("Enabled packet %s (%s) not recognized by stub",
735 config->name, config->title);
736 break;
737 case PACKET_SUPPORT_UNKNOWN:
738 if (remote_debug)
739 fprintf_unfiltered (gdb_stdlog,
740 "Packet %s (%s) is NOT supported\n",
741 config->name, config->title);
742 config->support = PACKET_DISABLE;
743 break;
744 case PACKET_DISABLE:
745 break;
746 }
747 return PACKET_UNKNOWN;
748 }
749 }
750
751 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
752 static struct packet_config remote_protocol_qSymbol;
753
754 static void
755 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
756 struct cmd_list_element *c)
757 {
758 update_packet_config (&remote_protocol_qSymbol);
759 }
760
761 static void
762 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty)
763 {
764 show_packet_config_cmd (&remote_protocol_qSymbol);
765 }
766
767 /* Should we try the 'e' (step over range) request? */
768 static struct packet_config remote_protocol_e;
769
770 static void
771 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 update_packet_config (&remote_protocol_e);
775 }
776
777 static void
778 show_remote_protocol_e_packet_cmd (char *args, int from_tty)
779 {
780 show_packet_config_cmd (&remote_protocol_e);
781 }
782
783
784 /* Should we try the 'E' (step over range / w signal #) request? */
785 static struct packet_config remote_protocol_E;
786
787 static void
788 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 update_packet_config (&remote_protocol_E);
792 }
793
794 static void
795 show_remote_protocol_E_packet_cmd (char *args, int from_tty)
796 {
797 show_packet_config_cmd (&remote_protocol_E);
798 }
799
800
801 /* Should we try the 'P' (set register) request? */
802
803 static struct packet_config remote_protocol_P;
804
805 static void
806 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
807 struct cmd_list_element *c)
808 {
809 update_packet_config (&remote_protocol_P);
810 }
811
812 static void
813 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
814 {
815 show_packet_config_cmd (&remote_protocol_P);
816 }
817
818 /* Should we try one of the 'Z' requests? */
819
820 enum Z_packet_type
821 {
822 Z_PACKET_SOFTWARE_BP,
823 Z_PACKET_HARDWARE_BP,
824 Z_PACKET_WRITE_WP,
825 Z_PACKET_READ_WP,
826 Z_PACKET_ACCESS_WP,
827 NR_Z_PACKET_TYPES
828 };
829
830 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
831
832 /* FIXME: Instead of having all these boiler plate functions, the
833 command callback should include a context argument. */
834
835 static void
836 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
837 struct cmd_list_element *c)
838 {
839 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
840 }
841
842 static void
843 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
844 {
845 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
846 }
847
848 static void
849 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
850 struct cmd_list_element *c)
851 {
852 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
853 }
854
855 static void
856 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
857 {
858 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
859 }
860
861 static void
862 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
863 struct cmd_list_element *c)
864 {
865 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
866 }
867
868 static void
869 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
870 {
871 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
872 }
873
874 static void
875 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
876 struct cmd_list_element *c)
877 {
878 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
879 }
880
881 static void
882 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
883 {
884 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
885 }
886
887 static void
888 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
889 struct cmd_list_element *c)
890 {
891 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
892 }
893
894 static void
895 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
896 {
897 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
898 }
899
900 /* For compatibility with older distributions. Provide a ``set remote
901 Z-packet ...'' command that updates all the Z packet types. */
902
903 static enum cmd_auto_boolean remote_Z_packet_detect;
904
905 static void
906 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
907 struct cmd_list_element *c)
908 {
909 int i;
910 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
911 {
912 remote_protocol_Z[i].detect = remote_Z_packet_detect;
913 update_packet_config (&remote_protocol_Z[i]);
914 }
915 }
916
917 static void
918 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
919 {
920 int i;
921 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
922 {
923 show_packet_config_cmd (&remote_protocol_Z[i]);
924 }
925 }
926
927 /* Should we try the 'X' (remote binary download) packet?
928
929 This variable (available to the user via "set remote X-packet")
930 dictates whether downloads are sent in binary (via the 'X' packet).
931 We assume that the stub can, and attempt to do it. This will be
932 cleared if the stub does not understand it. This switch is still
933 needed, though in cases when the packet is supported in the stub,
934 but the connection does not allow it (i.e., 7-bit serial connection
935 only). */
936
937 static struct packet_config remote_protocol_binary_download;
938
939 /* Should we try the 'ThreadInfo' query packet?
940
941 This variable (NOT available to the user: auto-detect only!)
942 determines whether GDB will use the new, simpler "ThreadInfo"
943 query or the older, more complex syntax for thread queries.
944 This is an auto-detect variable (set to true at each connect,
945 and set to false when the target fails to recognize it). */
946
947 static int use_threadinfo_query;
948 static int use_threadextra_query;
949
950 static void
951 set_remote_protocol_binary_download_cmd (char *args,
952 int from_tty,
953 struct cmd_list_element *c)
954 {
955 update_packet_config (&remote_protocol_binary_download);
956 }
957
958 static void
959 show_remote_protocol_binary_download_cmd (char *args,
960 int from_tty)
961 {
962 show_packet_config_cmd (&remote_protocol_binary_download);
963 }
964
965
966 /* Tokens for use by the asynchronous signal handlers for SIGINT */
967 PTR sigint_remote_twice_token;
968 PTR sigint_remote_token;
969
970 /* These are pointers to hook functions that may be set in order to
971 modify resume/wait behavior for a particular architecture. */
972
973 void (*target_resume_hook) (void);
974 void (*target_wait_loop_hook) (void);
975 \f
976
977
978 /* These are the threads which we last sent to the remote system.
979 -1 for all or -2 for not sent yet. */
980 static int general_thread;
981 static int continue_thread;
982
983 /* Call this function as a result of
984 1) A halt indication (T packet) containing a thread id
985 2) A direct query of currthread
986 3) Successful execution of set thread
987 */
988
989 static void
990 record_currthread (int currthread)
991 {
992 general_thread = currthread;
993
994 /* If this is a new thread, add it to GDB's thread list.
995 If we leave it up to WFI to do this, bad things will happen. */
996 if (!in_thread_list (pid_to_ptid (currthread)))
997 {
998 add_thread (pid_to_ptid (currthread));
999 #ifdef UI_OUT
1000 ui_out_text (uiout, "[New ");
1001 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1002 ui_out_text (uiout, "]\n");
1003 #else
1004 printf_filtered ("[New %s]\n",
1005 target_pid_to_str (pid_to_ptid (currthread)));
1006 #endif
1007 }
1008 }
1009
1010 #define MAGIC_NULL_PID 42000
1011
1012 static void
1013 set_thread (int th, int gen)
1014 {
1015 struct remote_state *rs = get_remote_state ();
1016 char *buf = alloca (rs->remote_packet_size);
1017 int state = gen ? general_thread : continue_thread;
1018
1019 if (state == th)
1020 return;
1021
1022 buf[0] = 'H';
1023 buf[1] = gen ? 'g' : 'c';
1024 if (th == MAGIC_NULL_PID)
1025 {
1026 buf[2] = '0';
1027 buf[3] = '\0';
1028 }
1029 else if (th < 0)
1030 sprintf (&buf[2], "-%x", -th);
1031 else
1032 sprintf (&buf[2], "%x", th);
1033 putpkt (buf);
1034 getpkt (buf, (rs->remote_packet_size), 0);
1035 if (gen)
1036 general_thread = th;
1037 else
1038 continue_thread = th;
1039 }
1040 \f
1041 /* Return nonzero if the thread TH is still alive on the remote system. */
1042
1043 static int
1044 remote_thread_alive (ptid_t ptid)
1045 {
1046 int tid = PIDGET (ptid);
1047 char buf[16];
1048
1049 if (tid < 0)
1050 sprintf (buf, "T-%08x", -tid);
1051 else
1052 sprintf (buf, "T%08x", tid);
1053 putpkt (buf);
1054 getpkt (buf, sizeof (buf), 0);
1055 return (buf[0] == 'O' && buf[1] == 'K');
1056 }
1057
1058 /* About these extended threadlist and threadinfo packets. They are
1059 variable length packets but, the fields within them are often fixed
1060 length. They are redundent enough to send over UDP as is the
1061 remote protocol in general. There is a matching unit test module
1062 in libstub. */
1063
1064 #define OPAQUETHREADBYTES 8
1065
1066 /* a 64 bit opaque identifier */
1067 typedef unsigned char threadref[OPAQUETHREADBYTES];
1068
1069 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1070 protocol encoding, and remote.c. it is not particularly changable */
1071
1072 /* Right now, the internal structure is int. We want it to be bigger.
1073 Plan to fix this.
1074 */
1075
1076 typedef int gdb_threadref; /* internal GDB thread reference */
1077
1078 /* gdb_ext_thread_info is an internal GDB data structure which is
1079 equivalint to the reply of the remote threadinfo packet */
1080
1081 struct gdb_ext_thread_info
1082 {
1083 threadref threadid; /* External form of thread reference */
1084 int active; /* Has state interesting to GDB? , regs, stack */
1085 char display[256]; /* Brief state display, name, blocked/syspended */
1086 char shortname[32]; /* To be used to name threads */
1087 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1088 };
1089
1090 /* The volume of remote transfers can be limited by submitting
1091 a mask containing bits specifying the desired information.
1092 Use a union of these values as the 'selection' parameter to
1093 get_thread_info. FIXME: Make these TAG names more thread specific.
1094 */
1095
1096 #define TAG_THREADID 1
1097 #define TAG_EXISTS 2
1098 #define TAG_DISPLAY 4
1099 #define TAG_THREADNAME 8
1100 #define TAG_MOREDISPLAY 16
1101
1102 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1103
1104 char *unpack_varlen_hex (char *buff, int *result);
1105
1106 static char *unpack_nibble (char *buf, int *val);
1107
1108 static char *pack_nibble (char *buf, int nibble);
1109
1110 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1111
1112 static char *unpack_byte (char *buf, int *value);
1113
1114 static char *pack_int (char *buf, int value);
1115
1116 static char *unpack_int (char *buf, int *value);
1117
1118 static char *unpack_string (char *src, char *dest, int length);
1119
1120 static char *pack_threadid (char *pkt, threadref * id);
1121
1122 static char *unpack_threadid (char *inbuf, threadref * id);
1123
1124 void int_to_threadref (threadref * id, int value);
1125
1126 static int threadref_to_int (threadref * ref);
1127
1128 static void copy_threadref (threadref * dest, threadref * src);
1129
1130 static int threadmatch (threadref * dest, threadref * src);
1131
1132 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1133
1134 static int remote_unpack_thread_info_response (char *pkt,
1135 threadref * expectedref,
1136 struct gdb_ext_thread_info
1137 *info);
1138
1139
1140 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1141 struct gdb_ext_thread_info *info);
1142
1143 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1144 int selection,
1145 struct gdb_ext_thread_info *info);
1146
1147 static char *pack_threadlist_request (char *pkt, int startflag,
1148 int threadcount,
1149 threadref * nextthread);
1150
1151 static int parse_threadlist_response (char *pkt,
1152 int result_limit,
1153 threadref * original_echo,
1154 threadref * resultlist, int *doneflag);
1155
1156 static int remote_get_threadlist (int startflag,
1157 threadref * nextthread,
1158 int result_limit,
1159 int *done,
1160 int *result_count, threadref * threadlist);
1161
1162 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1163
1164 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1165 void *context, int looplimit);
1166
1167 static int remote_newthread_step (threadref * ref, void *context);
1168
1169 /* encode 64 bits in 16 chars of hex */
1170
1171 static const char hexchars[] = "0123456789abcdef";
1172
1173 static int
1174 ishex (int ch, int *val)
1175 {
1176 if ((ch >= 'a') && (ch <= 'f'))
1177 {
1178 *val = ch - 'a' + 10;
1179 return 1;
1180 }
1181 if ((ch >= 'A') && (ch <= 'F'))
1182 {
1183 *val = ch - 'A' + 10;
1184 return 1;
1185 }
1186 if ((ch >= '0') && (ch <= '9'))
1187 {
1188 *val = ch - '0';
1189 return 1;
1190 }
1191 return 0;
1192 }
1193
1194 static int
1195 stubhex (int ch)
1196 {
1197 if (ch >= 'a' && ch <= 'f')
1198 return ch - 'a' + 10;
1199 if (ch >= '0' && ch <= '9')
1200 return ch - '0';
1201 if (ch >= 'A' && ch <= 'F')
1202 return ch - 'A' + 10;
1203 return -1;
1204 }
1205
1206 static int
1207 stub_unpack_int (char *buff, int fieldlength)
1208 {
1209 int nibble;
1210 int retval = 0;
1211
1212 while (fieldlength)
1213 {
1214 nibble = stubhex (*buff++);
1215 retval |= nibble;
1216 fieldlength--;
1217 if (fieldlength)
1218 retval = retval << 4;
1219 }
1220 return retval;
1221 }
1222
1223 char *
1224 unpack_varlen_hex (char *buff, /* packet to parse */
1225 int *result)
1226 {
1227 int nibble;
1228 int retval = 0;
1229
1230 while (ishex (*buff, &nibble))
1231 {
1232 buff++;
1233 retval = retval << 4;
1234 retval |= nibble & 0x0f;
1235 }
1236 *result = retval;
1237 return buff;
1238 }
1239
1240 static char *
1241 unpack_nibble (char *buf, int *val)
1242 {
1243 ishex (*buf++, val);
1244 return buf;
1245 }
1246
1247 static char *
1248 pack_nibble (char *buf, int nibble)
1249 {
1250 *buf++ = hexchars[(nibble & 0x0f)];
1251 return buf;
1252 }
1253
1254 static char *
1255 pack_hex_byte (char *pkt, int byte)
1256 {
1257 *pkt++ = hexchars[(byte >> 4) & 0xf];
1258 *pkt++ = hexchars[(byte & 0xf)];
1259 return pkt;
1260 }
1261
1262 static char *
1263 unpack_byte (char *buf, int *value)
1264 {
1265 *value = stub_unpack_int (buf, 2);
1266 return buf + 2;
1267 }
1268
1269 static char *
1270 pack_int (char *buf, int value)
1271 {
1272 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1273 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1274 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1275 buf = pack_hex_byte (buf, (value & 0xff));
1276 return buf;
1277 }
1278
1279 static char *
1280 unpack_int (char *buf, int *value)
1281 {
1282 *value = stub_unpack_int (buf, 8);
1283 return buf + 8;
1284 }
1285
1286 #if 0 /* currently unused, uncomment when needed */
1287 static char *pack_string (char *pkt, char *string);
1288
1289 static char *
1290 pack_string (char *pkt, char *string)
1291 {
1292 char ch;
1293 int len;
1294
1295 len = strlen (string);
1296 if (len > 200)
1297 len = 200; /* Bigger than most GDB packets, junk??? */
1298 pkt = pack_hex_byte (pkt, len);
1299 while (len-- > 0)
1300 {
1301 ch = *string++;
1302 if ((ch == '\0') || (ch == '#'))
1303 ch = '*'; /* Protect encapsulation */
1304 *pkt++ = ch;
1305 }
1306 return pkt;
1307 }
1308 #endif /* 0 (unused) */
1309
1310 static char *
1311 unpack_string (char *src, char *dest, int length)
1312 {
1313 while (length--)
1314 *dest++ = *src++;
1315 *dest = '\0';
1316 return src;
1317 }
1318
1319 static char *
1320 pack_threadid (char *pkt, threadref *id)
1321 {
1322 char *limit;
1323 unsigned char *altid;
1324
1325 altid = (unsigned char *) id;
1326 limit = pkt + BUF_THREAD_ID_SIZE;
1327 while (pkt < limit)
1328 pkt = pack_hex_byte (pkt, *altid++);
1329 return pkt;
1330 }
1331
1332
1333 static char *
1334 unpack_threadid (char *inbuf, threadref *id)
1335 {
1336 char *altref;
1337 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1338 int x, y;
1339
1340 altref = (char *) id;
1341
1342 while (inbuf < limit)
1343 {
1344 x = stubhex (*inbuf++);
1345 y = stubhex (*inbuf++);
1346 *altref++ = (x << 4) | y;
1347 }
1348 return inbuf;
1349 }
1350
1351 /* Externally, threadrefs are 64 bits but internally, they are still
1352 ints. This is due to a mismatch of specifications. We would like
1353 to use 64bit thread references internally. This is an adapter
1354 function. */
1355
1356 void
1357 int_to_threadref (threadref *id, int value)
1358 {
1359 unsigned char *scan;
1360
1361 scan = (unsigned char *) id;
1362 {
1363 int i = 4;
1364 while (i--)
1365 *scan++ = 0;
1366 }
1367 *scan++ = (value >> 24) & 0xff;
1368 *scan++ = (value >> 16) & 0xff;
1369 *scan++ = (value >> 8) & 0xff;
1370 *scan++ = (value & 0xff);
1371 }
1372
1373 static int
1374 threadref_to_int (threadref *ref)
1375 {
1376 int i, value = 0;
1377 unsigned char *scan;
1378
1379 scan = (char *) ref;
1380 scan += 4;
1381 i = 4;
1382 while (i-- > 0)
1383 value = (value << 8) | ((*scan++) & 0xff);
1384 return value;
1385 }
1386
1387 static void
1388 copy_threadref (threadref *dest, threadref *src)
1389 {
1390 int i;
1391 unsigned char *csrc, *cdest;
1392
1393 csrc = (unsigned char *) src;
1394 cdest = (unsigned char *) dest;
1395 i = 8;
1396 while (i--)
1397 *cdest++ = *csrc++;
1398 }
1399
1400 static int
1401 threadmatch (threadref *dest, threadref *src)
1402 {
1403 /* things are broken right now, so just assume we got a match */
1404 #if 0
1405 unsigned char *srcp, *destp;
1406 int i, result;
1407 srcp = (char *) src;
1408 destp = (char *) dest;
1409
1410 result = 1;
1411 while (i-- > 0)
1412 result &= (*srcp++ == *destp++) ? 1 : 0;
1413 return result;
1414 #endif
1415 return 1;
1416 }
1417
1418 /*
1419 threadid:1, # always request threadid
1420 context_exists:2,
1421 display:4,
1422 unique_name:8,
1423 more_display:16
1424 */
1425
1426 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1427
1428 static char *
1429 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1430 {
1431 *pkt++ = 'q'; /* Info Query */
1432 *pkt++ = 'P'; /* process or thread info */
1433 pkt = pack_int (pkt, mode); /* mode */
1434 pkt = pack_threadid (pkt, id); /* threadid */
1435 *pkt = '\0'; /* terminate */
1436 return pkt;
1437 }
1438
1439 /* These values tag the fields in a thread info response packet */
1440 /* Tagging the fields allows us to request specific fields and to
1441 add more fields as time goes by */
1442
1443 #define TAG_THREADID 1 /* Echo the thread identifier */
1444 #define TAG_EXISTS 2 /* Is this process defined enough to
1445 fetch registers and its stack */
1446 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1447 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1448 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1449 the process */
1450
1451 static int
1452 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1453 struct gdb_ext_thread_info *info)
1454 {
1455 struct remote_state *rs = get_remote_state ();
1456 int mask, length;
1457 unsigned int tag;
1458 threadref ref;
1459 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1460 int retval = 1;
1461
1462 /* info->threadid = 0; FIXME: implement zero_threadref */
1463 info->active = 0;
1464 info->display[0] = '\0';
1465 info->shortname[0] = '\0';
1466 info->more_display[0] = '\0';
1467
1468 /* Assume the characters indicating the packet type have been stripped */
1469 pkt = unpack_int (pkt, &mask); /* arg mask */
1470 pkt = unpack_threadid (pkt, &ref);
1471
1472 if (mask == 0)
1473 warning ("Incomplete response to threadinfo request\n");
1474 if (!threadmatch (&ref, expectedref))
1475 { /* This is an answer to a different request */
1476 warning ("ERROR RMT Thread info mismatch\n");
1477 return 0;
1478 }
1479 copy_threadref (&info->threadid, &ref);
1480
1481 /* Loop on tagged fields , try to bail if somthing goes wrong */
1482
1483 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1484 {
1485 pkt = unpack_int (pkt, &tag); /* tag */
1486 pkt = unpack_byte (pkt, &length); /* length */
1487 if (!(tag & mask)) /* tags out of synch with mask */
1488 {
1489 warning ("ERROR RMT: threadinfo tag mismatch\n");
1490 retval = 0;
1491 break;
1492 }
1493 if (tag == TAG_THREADID)
1494 {
1495 if (length != 16)
1496 {
1497 warning ("ERROR RMT: length of threadid is not 16\n");
1498 retval = 0;
1499 break;
1500 }
1501 pkt = unpack_threadid (pkt, &ref);
1502 mask = mask & ~TAG_THREADID;
1503 continue;
1504 }
1505 if (tag == TAG_EXISTS)
1506 {
1507 info->active = stub_unpack_int (pkt, length);
1508 pkt += length;
1509 mask = mask & ~(TAG_EXISTS);
1510 if (length > 8)
1511 {
1512 warning ("ERROR RMT: 'exists' length too long\n");
1513 retval = 0;
1514 break;
1515 }
1516 continue;
1517 }
1518 if (tag == TAG_THREADNAME)
1519 {
1520 pkt = unpack_string (pkt, &info->shortname[0], length);
1521 mask = mask & ~TAG_THREADNAME;
1522 continue;
1523 }
1524 if (tag == TAG_DISPLAY)
1525 {
1526 pkt = unpack_string (pkt, &info->display[0], length);
1527 mask = mask & ~TAG_DISPLAY;
1528 continue;
1529 }
1530 if (tag == TAG_MOREDISPLAY)
1531 {
1532 pkt = unpack_string (pkt, &info->more_display[0], length);
1533 mask = mask & ~TAG_MOREDISPLAY;
1534 continue;
1535 }
1536 warning ("ERROR RMT: unknown thread info tag\n");
1537 break; /* Not a tag we know about */
1538 }
1539 return retval;
1540 }
1541
1542 static int
1543 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1544 struct gdb_ext_thread_info *info)
1545 {
1546 struct remote_state *rs = get_remote_state ();
1547 int result;
1548 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1549
1550 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1551 putpkt (threadinfo_pkt);
1552 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1553 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1554 info);
1555 return result;
1556 }
1557
1558 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1559 representation of a threadid. */
1560
1561 static int
1562 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1563 struct gdb_ext_thread_info *info)
1564 {
1565 threadref lclref;
1566
1567 int_to_threadref (&lclref, *ref);
1568 return remote_get_threadinfo (&lclref, selection, info);
1569 }
1570
1571 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1572
1573 static char *
1574 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1575 threadref *nextthread)
1576 {
1577 *pkt++ = 'q'; /* info query packet */
1578 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1579 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1580 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1581 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1582 *pkt = '\0';
1583 return pkt;
1584 }
1585
1586 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1587
1588 static int
1589 parse_threadlist_response (char *pkt, int result_limit,
1590 threadref *original_echo, threadref *resultlist,
1591 int *doneflag)
1592 {
1593 struct remote_state *rs = get_remote_state ();
1594 char *limit;
1595 int count, resultcount, done;
1596
1597 resultcount = 0;
1598 /* Assume the 'q' and 'M chars have been stripped. */
1599 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1600 pkt = unpack_byte (pkt, &count); /* count field */
1601 pkt = unpack_nibble (pkt, &done);
1602 /* The first threadid is the argument threadid. */
1603 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1604 while ((count-- > 0) && (pkt < limit))
1605 {
1606 pkt = unpack_threadid (pkt, resultlist++);
1607 if (resultcount++ >= result_limit)
1608 break;
1609 }
1610 if (doneflag)
1611 *doneflag = done;
1612 return resultcount;
1613 }
1614
1615 static int
1616 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1617 int *done, int *result_count, threadref *threadlist)
1618 {
1619 struct remote_state *rs = get_remote_state ();
1620 static threadref echo_nextthread;
1621 char *threadlist_packet = alloca (rs->remote_packet_size);
1622 char *t_response = alloca (rs->remote_packet_size);
1623 int result = 1;
1624
1625 /* Trancate result limit to be smaller than the packet size */
1626 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1627 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1628
1629 pack_threadlist_request (threadlist_packet,
1630 startflag, result_limit, nextthread);
1631 putpkt (threadlist_packet);
1632 getpkt (t_response, (rs->remote_packet_size), 0);
1633
1634 *result_count =
1635 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1636 threadlist, done);
1637
1638 if (!threadmatch (&echo_nextthread, nextthread))
1639 {
1640 /* FIXME: This is a good reason to drop the packet */
1641 /* Possably, there is a duplicate response */
1642 /* Possabilities :
1643 retransmit immediatly - race conditions
1644 retransmit after timeout - yes
1645 exit
1646 wait for packet, then exit
1647 */
1648 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1649 return 0; /* I choose simply exiting */
1650 }
1651 if (*result_count <= 0)
1652 {
1653 if (*done != 1)
1654 {
1655 warning ("RMT ERROR : failed to get remote thread list\n");
1656 result = 0;
1657 }
1658 return result; /* break; */
1659 }
1660 if (*result_count > result_limit)
1661 {
1662 *result_count = 0;
1663 warning ("RMT ERROR: threadlist response longer than requested\n");
1664 return 0;
1665 }
1666 return result;
1667 }
1668
1669 /* This is the interface between remote and threads, remotes upper interface */
1670
1671 /* remote_find_new_threads retrieves the thread list and for each
1672 thread in the list, looks up the thread in GDB's internal list,
1673 ading the thread if it does not already exist. This involves
1674 getting partial thread lists from the remote target so, polling the
1675 quit_flag is required. */
1676
1677
1678 /* About this many threadisds fit in a packet. */
1679
1680 #define MAXTHREADLISTRESULTS 32
1681
1682 static int
1683 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1684 int looplimit)
1685 {
1686 int done, i, result_count;
1687 int startflag = 1;
1688 int result = 1;
1689 int loopcount = 0;
1690 static threadref nextthread;
1691 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1692
1693 done = 0;
1694 while (!done)
1695 {
1696 if (loopcount++ > looplimit)
1697 {
1698 result = 0;
1699 warning ("Remote fetch threadlist -infinite loop-\n");
1700 break;
1701 }
1702 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1703 &done, &result_count, resultthreadlist))
1704 {
1705 result = 0;
1706 break;
1707 }
1708 /* clear for later iterations */
1709 startflag = 0;
1710 /* Setup to resume next batch of thread references, set nextthread. */
1711 if (result_count >= 1)
1712 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1713 i = 0;
1714 while (result_count--)
1715 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1716 break;
1717 }
1718 return result;
1719 }
1720
1721 static int
1722 remote_newthread_step (threadref *ref, void *context)
1723 {
1724 ptid_t ptid;
1725
1726 ptid = pid_to_ptid (threadref_to_int (ref));
1727
1728 if (!in_thread_list (ptid))
1729 add_thread (ptid);
1730 return 1; /* continue iterator */
1731 }
1732
1733 #define CRAZY_MAX_THREADS 1000
1734
1735 static ptid_t
1736 remote_current_thread (ptid_t oldpid)
1737 {
1738 struct remote_state *rs = get_remote_state ();
1739 char *buf = alloca (rs->remote_packet_size);
1740
1741 putpkt ("qC");
1742 getpkt (buf, (rs->remote_packet_size), 0);
1743 if (buf[0] == 'Q' && buf[1] == 'C')
1744 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1745 else
1746 return oldpid;
1747 }
1748
1749 /* Find new threads for info threads command.
1750 * Original version, using John Metzler's thread protocol.
1751 */
1752
1753 static void
1754 remote_find_new_threads (void)
1755 {
1756 remote_threadlist_iterator (remote_newthread_step, 0,
1757 CRAZY_MAX_THREADS);
1758 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1759 inferior_ptid = remote_current_thread (inferior_ptid);
1760 }
1761
1762 /*
1763 * Find all threads for info threads command.
1764 * Uses new thread protocol contributed by Cisco.
1765 * Falls back and attempts to use the older method (above)
1766 * if the target doesn't respond to the new method.
1767 */
1768
1769 static void
1770 remote_threads_info (void)
1771 {
1772 struct remote_state *rs = get_remote_state ();
1773 char *buf = alloca (rs->remote_packet_size);
1774 char *bufp;
1775 int tid;
1776
1777 if (remote_desc == 0) /* paranoia */
1778 error ("Command can only be used when connected to the remote target.");
1779
1780 if (use_threadinfo_query)
1781 {
1782 putpkt ("qfThreadInfo");
1783 bufp = buf;
1784 getpkt (bufp, (rs->remote_packet_size), 0);
1785 if (bufp[0] != '\0') /* q packet recognized */
1786 {
1787 while (*bufp++ == 'm') /* reply contains one or more TID */
1788 {
1789 do
1790 {
1791 tid = strtol (bufp, &bufp, 16);
1792 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1793 add_thread (pid_to_ptid (tid));
1794 }
1795 while (*bufp++ == ','); /* comma-separated list */
1796 putpkt ("qsThreadInfo");
1797 bufp = buf;
1798 getpkt (bufp, (rs->remote_packet_size), 0);
1799 }
1800 return; /* done */
1801 }
1802 }
1803
1804 /* Else fall back to old method based on jmetzler protocol. */
1805 use_threadinfo_query = 0;
1806 remote_find_new_threads ();
1807 return;
1808 }
1809
1810 /*
1811 * Collect a descriptive string about the given thread.
1812 * The target may say anything it wants to about the thread
1813 * (typically info about its blocked / runnable state, name, etc.).
1814 * This string will appear in the info threads display.
1815 *
1816 * Optional: targets are not required to implement this function.
1817 */
1818
1819 static char *
1820 remote_threads_extra_info (struct thread_info *tp)
1821 {
1822 struct remote_state *rs = get_remote_state ();
1823 int result;
1824 int set;
1825 threadref id;
1826 struct gdb_ext_thread_info threadinfo;
1827 static char display_buf[100]; /* arbitrary... */
1828 char *bufp = alloca (rs->remote_packet_size);
1829 int n = 0; /* position in display_buf */
1830
1831 if (remote_desc == 0) /* paranoia */
1832 internal_error (__FILE__, __LINE__,
1833 "remote_threads_extra_info");
1834
1835 if (use_threadextra_query)
1836 {
1837 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1838 putpkt (bufp);
1839 getpkt (bufp, (rs->remote_packet_size), 0);
1840 if (bufp[0] != 0)
1841 {
1842 n = min (strlen (bufp) / 2, sizeof (display_buf));
1843 result = hex2bin (bufp, display_buf, n);
1844 display_buf [result] = '\0';
1845 return display_buf;
1846 }
1847 }
1848
1849 /* If the above query fails, fall back to the old method. */
1850 use_threadextra_query = 0;
1851 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1852 | TAG_MOREDISPLAY | TAG_DISPLAY;
1853 int_to_threadref (&id, PIDGET (tp->ptid));
1854 if (remote_get_threadinfo (&id, set, &threadinfo))
1855 if (threadinfo.active)
1856 {
1857 if (*threadinfo.shortname)
1858 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1859 if (*threadinfo.display)
1860 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1861 if (*threadinfo.more_display)
1862 n += sprintf(&display_buf[n], " Priority: %s",
1863 threadinfo.more_display);
1864
1865 if (n > 0)
1866 {
1867 /* for purely cosmetic reasons, clear up trailing commas */
1868 if (',' == display_buf[n-1])
1869 display_buf[n-1] = ' ';
1870 return display_buf;
1871 }
1872 }
1873 return NULL;
1874 }
1875
1876 \f
1877
1878 /* Restart the remote side; this is an extended protocol operation. */
1879
1880 static void
1881 extended_remote_restart (void)
1882 {
1883 struct remote_state *rs = get_remote_state ();
1884 char *buf = alloca (rs->remote_packet_size);
1885
1886 /* Send the restart command; for reasons I don't understand the
1887 remote side really expects a number after the "R". */
1888 buf[0] = 'R';
1889 sprintf (&buf[1], "%x", 0);
1890 putpkt (buf);
1891
1892 /* Now query for status so this looks just like we restarted
1893 gdbserver from scratch. */
1894 putpkt ("?");
1895 getpkt (buf, (rs->remote_packet_size), 0);
1896 }
1897 \f
1898 /* Clean up connection to a remote debugger. */
1899
1900 /* ARGSUSED */
1901 static void
1902 remote_close (int quitting)
1903 {
1904 if (remote_desc)
1905 serial_close (remote_desc);
1906 remote_desc = NULL;
1907 }
1908
1909 /* Query the remote side for the text, data and bss offsets. */
1910
1911 static void
1912 get_offsets (void)
1913 {
1914 struct remote_state *rs = get_remote_state ();
1915 char *buf = alloca (rs->remote_packet_size);
1916 char *ptr;
1917 int lose;
1918 CORE_ADDR text_addr, data_addr, bss_addr;
1919 struct section_offsets *offs;
1920
1921 putpkt ("qOffsets");
1922
1923 getpkt (buf, (rs->remote_packet_size), 0);
1924
1925 if (buf[0] == '\000')
1926 return; /* Return silently. Stub doesn't support
1927 this command. */
1928 if (buf[0] == 'E')
1929 {
1930 warning ("Remote failure reply: %s", buf);
1931 return;
1932 }
1933
1934 /* Pick up each field in turn. This used to be done with scanf, but
1935 scanf will make trouble if CORE_ADDR size doesn't match
1936 conversion directives correctly. The following code will work
1937 with any size of CORE_ADDR. */
1938 text_addr = data_addr = bss_addr = 0;
1939 ptr = buf;
1940 lose = 0;
1941
1942 if (strncmp (ptr, "Text=", 5) == 0)
1943 {
1944 ptr += 5;
1945 /* Don't use strtol, could lose on big values. */
1946 while (*ptr && *ptr != ';')
1947 text_addr = (text_addr << 4) + fromhex (*ptr++);
1948 }
1949 else
1950 lose = 1;
1951
1952 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1953 {
1954 ptr += 6;
1955 while (*ptr && *ptr != ';')
1956 data_addr = (data_addr << 4) + fromhex (*ptr++);
1957 }
1958 else
1959 lose = 1;
1960
1961 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1962 {
1963 ptr += 5;
1964 while (*ptr && *ptr != ';')
1965 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1966 }
1967 else
1968 lose = 1;
1969
1970 if (lose)
1971 error ("Malformed response to offset query, %s", buf);
1972
1973 if (symfile_objfile == NULL)
1974 return;
1975
1976 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1977 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1978
1979 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1980
1981 /* This is a temporary kludge to force data and bss to use the same offsets
1982 because that's what nlmconv does now. The real solution requires changes
1983 to the stub and remote.c that I don't have time to do right now. */
1984
1985 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1986 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1987
1988 objfile_relocate (symfile_objfile, offs);
1989 }
1990
1991 /*
1992 * Cisco version of section offsets:
1993 *
1994 * Instead of having GDB query the target for the section offsets,
1995 * Cisco lets the target volunteer the information! It's also in
1996 * a different format, so here are the functions that will decode
1997 * a section offset packet from a Cisco target.
1998 */
1999
2000 /*
2001 * Function: remote_cisco_section_offsets
2002 *
2003 * Returns: zero for success, non-zero for failure
2004 */
2005
2006 static int
2007 remote_cisco_section_offsets (bfd_vma text_addr,
2008 bfd_vma data_addr,
2009 bfd_vma bss_addr,
2010 bfd_signed_vma *text_offs,
2011 bfd_signed_vma *data_offs,
2012 bfd_signed_vma *bss_offs)
2013 {
2014 bfd_vma text_base, data_base, bss_base;
2015 struct minimal_symbol *start;
2016 asection *sect;
2017 bfd *abfd;
2018 int len;
2019
2020 if (symfile_objfile == NULL)
2021 return -1; /* no can do nothin' */
2022
2023 start = lookup_minimal_symbol ("_start", NULL, NULL);
2024 if (start == NULL)
2025 return -1; /* Can't find "_start" symbol */
2026
2027 data_base = bss_base = 0;
2028 text_base = SYMBOL_VALUE_ADDRESS (start);
2029
2030 abfd = symfile_objfile->obfd;
2031 for (sect = abfd->sections;
2032 sect != 0;
2033 sect = sect->next)
2034 {
2035 const char *p = bfd_get_section_name (abfd, sect);
2036 len = strlen (p);
2037 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2038 if (data_base == 0 ||
2039 data_base > bfd_get_section_vma (abfd, sect))
2040 data_base = bfd_get_section_vma (abfd, sect);
2041 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2042 if (bss_base == 0 ||
2043 bss_base > bfd_get_section_vma (abfd, sect))
2044 bss_base = bfd_get_section_vma (abfd, sect);
2045 }
2046 *text_offs = text_addr - text_base;
2047 *data_offs = data_addr - data_base;
2048 *bss_offs = bss_addr - bss_base;
2049 if (remote_debug)
2050 {
2051 char tmp[128];
2052
2053 sprintf (tmp, "VMA: text = 0x");
2054 sprintf_vma (tmp + strlen (tmp), text_addr);
2055 sprintf (tmp + strlen (tmp), " data = 0x");
2056 sprintf_vma (tmp + strlen (tmp), data_addr);
2057 sprintf (tmp + strlen (tmp), " bss = 0x");
2058 sprintf_vma (tmp + strlen (tmp), bss_addr);
2059 fprintf_filtered (gdb_stdlog, tmp);
2060 fprintf_filtered (gdb_stdlog,
2061 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2062 paddr_nz (*text_offs),
2063 paddr_nz (*data_offs),
2064 paddr_nz (*bss_offs));
2065 }
2066
2067 return 0;
2068 }
2069
2070 /*
2071 * Function: remote_cisco_objfile_relocate
2072 *
2073 * Relocate the symbol file for a remote target.
2074 */
2075
2076 void
2077 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2078 bfd_signed_vma bss_off)
2079 {
2080 struct section_offsets *offs;
2081
2082 if (text_off != 0 || data_off != 0 || bss_off != 0)
2083 {
2084 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2085 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2086 simple canonical representation for this stuff. */
2087
2088 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2089 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2090
2091 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2092 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2093 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2094
2095 /* First call the standard objfile_relocate. */
2096 objfile_relocate (symfile_objfile, offs);
2097
2098 /* Now we need to fix up the section entries already attached to
2099 the exec target. These entries will control memory transfers
2100 from the exec file. */
2101
2102 exec_set_section_offsets (text_off, data_off, bss_off);
2103 }
2104 }
2105
2106 /* Stub for catch_errors. */
2107
2108 static int
2109 remote_start_remote_dummy (void *dummy)
2110 {
2111 start_remote (); /* Initialize gdb process mechanisms */
2112 return 1;
2113 }
2114
2115 static int
2116 remote_start_remote (PTR dummy)
2117 {
2118 immediate_quit++; /* Allow user to interrupt it */
2119
2120 /* Ack any packet which the remote side has already sent. */
2121 serial_write (remote_desc, "+", 1);
2122
2123 /* Let the stub know that we want it to return the thread. */
2124 set_thread (-1, 0);
2125
2126 inferior_ptid = remote_current_thread (inferior_ptid);
2127
2128 get_offsets (); /* Get text, data & bss offsets */
2129
2130 putpkt ("?"); /* initiate a query from remote machine */
2131 immediate_quit--;
2132
2133 return remote_start_remote_dummy (dummy);
2134 }
2135
2136 /* Open a connection to a remote debugger.
2137 NAME is the filename used for communication. */
2138
2139 static void
2140 remote_open (char *name, int from_tty)
2141 {
2142 remote_open_1 (name, from_tty, &remote_ops, 0);
2143 }
2144
2145 /* Just like remote_open, but with asynchronous support. */
2146 static void
2147 remote_async_open (char *name, int from_tty)
2148 {
2149 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2150 }
2151
2152 /* Open a connection to a remote debugger using the extended
2153 remote gdb protocol. NAME is the filename used for communication. */
2154
2155 static void
2156 extended_remote_open (char *name, int from_tty)
2157 {
2158 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2159 }
2160
2161 /* Just like extended_remote_open, but with asynchronous support. */
2162 static void
2163 extended_remote_async_open (char *name, int from_tty)
2164 {
2165 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2166 }
2167
2168 /* Generic code for opening a connection to a remote target. */
2169
2170 static void
2171 init_all_packet_configs (void)
2172 {
2173 int i;
2174 update_packet_config (&remote_protocol_e);
2175 update_packet_config (&remote_protocol_E);
2176 update_packet_config (&remote_protocol_P);
2177 update_packet_config (&remote_protocol_qSymbol);
2178 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2179 update_packet_config (&remote_protocol_Z[i]);
2180 /* Force remote_write_bytes to check whether target supports binary
2181 downloading. */
2182 update_packet_config (&remote_protocol_binary_download);
2183 }
2184
2185 /* Symbol look-up. */
2186
2187 static void
2188 remote_check_symbols (struct objfile *objfile)
2189 {
2190 struct remote_state *rs = get_remote_state ();
2191 char *msg, *reply, *tmp;
2192 struct minimal_symbol *sym;
2193 int end;
2194
2195 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2196 return;
2197
2198 msg = alloca (rs->remote_packet_size);
2199 reply = alloca (rs->remote_packet_size);
2200
2201 /* Invite target to request symbol lookups. */
2202
2203 putpkt ("qSymbol::");
2204 getpkt (reply, (rs->remote_packet_size), 0);
2205 packet_ok (reply, &remote_protocol_qSymbol);
2206
2207 while (strncmp (reply, "qSymbol:", 8) == 0)
2208 {
2209 tmp = &reply[8];
2210 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2211 msg[end] = '\0';
2212 sym = lookup_minimal_symbol (msg, NULL, NULL);
2213 if (sym == NULL)
2214 sprintf (msg, "qSymbol::%s", &reply[8]);
2215 else
2216 sprintf (msg, "qSymbol:%s:%s",
2217 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2218 &reply[8]);
2219 putpkt (msg);
2220 getpkt (reply, (rs->remote_packet_size), 0);
2221 }
2222 }
2223
2224 static void
2225 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2226 int extended_p)
2227 {
2228 struct remote_state *rs = get_remote_state ();
2229 if (name == 0)
2230 error ("To open a remote debug connection, you need to specify what\n"
2231 "serial device is attached to the remote system\n"
2232 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2233
2234 /* See FIXME above */
2235 wait_forever_enabled_p = 1;
2236
2237 target_preopen (from_tty);
2238
2239 unpush_target (target);
2240
2241 remote_desc = serial_open (name);
2242 if (!remote_desc)
2243 perror_with_name (name);
2244
2245 if (baud_rate != -1)
2246 {
2247 if (serial_setbaudrate (remote_desc, baud_rate))
2248 {
2249 serial_close (remote_desc);
2250 perror_with_name (name);
2251 }
2252 }
2253
2254 serial_raw (remote_desc);
2255
2256 /* If there is something sitting in the buffer we might take it as a
2257 response to a command, which would be bad. */
2258 serial_flush_input (remote_desc);
2259
2260 if (from_tty)
2261 {
2262 puts_filtered ("Remote debugging using ");
2263 puts_filtered (name);
2264 puts_filtered ("\n");
2265 }
2266 push_target (target); /* Switch to using remote target now */
2267
2268 init_all_packet_configs ();
2269
2270 general_thread = -2;
2271 continue_thread = -2;
2272
2273 /* Probe for ability to use "ThreadInfo" query, as required. */
2274 use_threadinfo_query = 1;
2275 use_threadextra_query = 1;
2276
2277 /* Without this, some commands which require an active target (such
2278 as kill) won't work. This variable serves (at least) double duty
2279 as both the pid of the target process (if it has such), and as a
2280 flag indicating that a target is active. These functions should
2281 be split out into seperate variables, especially since GDB will
2282 someday have a notion of debugging several processes. */
2283
2284 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2285 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2286 /* First delete any symbols previously loaded from shared libraries. */
2287 no_shared_libraries (NULL, 0);
2288 #endif
2289
2290 /* Start the remote connection; if error (0), discard this target.
2291 In particular, if the user quits, be sure to discard it
2292 (we'd be in an inconsistent state otherwise). */
2293 if (!catch_errors (remote_start_remote, NULL,
2294 "Couldn't establish connection to remote target\n",
2295 RETURN_MASK_ALL))
2296 {
2297 pop_target ();
2298 return;
2299 }
2300
2301 if (extended_p)
2302 {
2303 /* Tell the remote that we are using the extended protocol. */
2304 char *buf = alloca (rs->remote_packet_size);
2305 putpkt ("!");
2306 getpkt (buf, (rs->remote_packet_size), 0);
2307 }
2308 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2309 /* FIXME: need a master target_open vector from which all
2310 remote_opens can be called, so that stuff like this can
2311 go there. Failing that, the following code must be copied
2312 to the open function for any remote target that wants to
2313 support svr4 shared libraries. */
2314
2315 /* Set up to detect and load shared libraries. */
2316 if (exec_bfd) /* No use without an exec file. */
2317 {
2318 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2319 remote_check_symbols (symfile_objfile);
2320 }
2321 #endif
2322 }
2323
2324 /* Just like remote_open but with asynchronous support. */
2325 static void
2326 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2327 int extended_p)
2328 {
2329 struct remote_state *rs = get_remote_state ();
2330 if (name == 0)
2331 error ("To open a remote debug connection, you need to specify what\n"
2332 "serial device is attached to the remote system\n"
2333 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2334
2335 target_preopen (from_tty);
2336
2337 unpush_target (target);
2338
2339 remote_desc = serial_open (name);
2340 if (!remote_desc)
2341 perror_with_name (name);
2342
2343 if (baud_rate != -1)
2344 {
2345 if (serial_setbaudrate (remote_desc, baud_rate))
2346 {
2347 serial_close (remote_desc);
2348 perror_with_name (name);
2349 }
2350 }
2351
2352 serial_raw (remote_desc);
2353
2354 /* If there is something sitting in the buffer we might take it as a
2355 response to a command, which would be bad. */
2356 serial_flush_input (remote_desc);
2357
2358 if (from_tty)
2359 {
2360 puts_filtered ("Remote debugging using ");
2361 puts_filtered (name);
2362 puts_filtered ("\n");
2363 }
2364
2365 push_target (target); /* Switch to using remote target now */
2366
2367 init_all_packet_configs ();
2368
2369 general_thread = -2;
2370 continue_thread = -2;
2371
2372 /* Probe for ability to use "ThreadInfo" query, as required. */
2373 use_threadinfo_query = 1;
2374 use_threadextra_query = 1;
2375
2376 /* Without this, some commands which require an active target (such
2377 as kill) won't work. This variable serves (at least) double duty
2378 as both the pid of the target process (if it has such), and as a
2379 flag indicating that a target is active. These functions should
2380 be split out into seperate variables, especially since GDB will
2381 someday have a notion of debugging several processes. */
2382 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2383
2384 /* With this target we start out by owning the terminal. */
2385 remote_async_terminal_ours_p = 1;
2386
2387 /* FIXME: cagney/1999-09-23: During the initial connection it is
2388 assumed that the target is already ready and able to respond to
2389 requests. Unfortunately remote_start_remote() eventually calls
2390 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2391 around this. Eventually a mechanism that allows
2392 wait_for_inferior() to expect/get timeouts will be
2393 implemented. */
2394 wait_forever_enabled_p = 0;
2395
2396 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2397 /* First delete any symbols previously loaded from shared libraries. */
2398 no_shared_libraries (NULL, 0);
2399 #endif
2400
2401 /* Start the remote connection; if error (0), discard this target.
2402 In particular, if the user quits, be sure to discard it
2403 (we'd be in an inconsistent state otherwise). */
2404 if (!catch_errors (remote_start_remote, NULL,
2405 "Couldn't establish connection to remote target\n",
2406 RETURN_MASK_ALL))
2407 {
2408 pop_target ();
2409 wait_forever_enabled_p = 1;
2410 return;
2411 }
2412
2413 wait_forever_enabled_p = 1;
2414
2415 if (extended_p)
2416 {
2417 /* Tell the remote that we are using the extended protocol. */
2418 char *buf = alloca (rs->remote_packet_size);
2419 putpkt ("!");
2420 getpkt (buf, (rs->remote_packet_size), 0);
2421 }
2422 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2423 /* FIXME: need a master target_open vector from which all
2424 remote_opens can be called, so that stuff like this can
2425 go there. Failing that, the following code must be copied
2426 to the open function for any remote target that wants to
2427 support svr4 shared libraries. */
2428
2429 /* Set up to detect and load shared libraries. */
2430 if (exec_bfd) /* No use without an exec file. */
2431 {
2432 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2433 remote_check_symbols (symfile_objfile);
2434 }
2435 #endif
2436 }
2437
2438 /* This takes a program previously attached to and detaches it. After
2439 this is done, GDB can be used to debug some other program. We
2440 better not have left any breakpoints in the target program or it'll
2441 die when it hits one. */
2442
2443 static void
2444 remote_detach (char *args, int from_tty)
2445 {
2446 struct remote_state *rs = get_remote_state ();
2447 char *buf = alloca (rs->remote_packet_size);
2448
2449 if (args)
2450 error ("Argument given to \"detach\" when remotely debugging.");
2451
2452 /* Tell the remote target to detach. */
2453 strcpy (buf, "D");
2454 remote_send (buf, (rs->remote_packet_size));
2455
2456 target_mourn_inferior ();
2457 if (from_tty)
2458 puts_filtered ("Ending remote debugging.\n");
2459
2460 }
2461
2462 /* Same as remote_detach, but with async support. */
2463 static void
2464 remote_async_detach (char *args, int from_tty)
2465 {
2466 struct remote_state *rs = get_remote_state ();
2467 char *buf = alloca (rs->remote_packet_size);
2468
2469 if (args)
2470 error ("Argument given to \"detach\" when remotely debugging.");
2471
2472 /* Tell the remote target to detach. */
2473 strcpy (buf, "D");
2474 remote_send (buf, (rs->remote_packet_size));
2475
2476 /* Unregister the file descriptor from the event loop. */
2477 if (target_is_async_p ())
2478 serial_async (remote_desc, NULL, 0);
2479
2480 target_mourn_inferior ();
2481 if (from_tty)
2482 puts_filtered ("Ending remote debugging.\n");
2483 }
2484
2485 /* Convert hex digit A to a number. */
2486
2487 static int
2488 fromhex (int a)
2489 {
2490 if (a >= '0' && a <= '9')
2491 return a - '0';
2492 else if (a >= 'a' && a <= 'f')
2493 return a - 'a' + 10;
2494 else if (a >= 'A' && a <= 'F')
2495 return a - 'A' + 10;
2496 else
2497 error ("Reply contains invalid hex digit %d", a);
2498 }
2499
2500 static int
2501 hex2bin (const char *hex, char *bin, int count)
2502 {
2503 int i;
2504
2505 for (i = 0; i < count; i++)
2506 {
2507 if (hex[0] == 0 || hex[1] == 0)
2508 {
2509 /* Hex string is short, or of uneven length.
2510 Return the count that has been converted so far. */
2511 return i;
2512 }
2513 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2514 hex += 2;
2515 }
2516 return i;
2517 }
2518
2519 /* Convert number NIB to a hex digit. */
2520
2521 static int
2522 tohex (int nib)
2523 {
2524 if (nib < 10)
2525 return '0' + nib;
2526 else
2527 return 'a' + nib - 10;
2528 }
2529
2530 static int
2531 bin2hex (const char *bin, char *hex, int count)
2532 {
2533 int i;
2534 /* May use a length, or a nul-terminated string as input. */
2535 if (count == 0)
2536 count = strlen (bin);
2537
2538 for (i = 0; i < count; i++)
2539 {
2540 *hex++ = tohex ((*bin >> 4) & 0xf);
2541 *hex++ = tohex (*bin++ & 0xf);
2542 }
2543 *hex = 0;
2544 return i;
2545 }
2546 \f
2547 /* Tell the remote machine to resume. */
2548
2549 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2550
2551 static int last_sent_step;
2552
2553 static void
2554 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2555 {
2556 struct remote_state *rs = get_remote_state ();
2557 char *buf = alloca (rs->remote_packet_size);
2558 int pid = PIDGET (ptid);
2559 char *p;
2560
2561 if (pid == -1)
2562 set_thread (0, 0); /* run any thread */
2563 else
2564 set_thread (pid, 0); /* run this thread */
2565
2566 last_sent_signal = siggnal;
2567 last_sent_step = step;
2568
2569 /* A hook for when we need to do something at the last moment before
2570 resumption. */
2571 if (target_resume_hook)
2572 (*target_resume_hook) ();
2573
2574
2575 /* The s/S/c/C packets do not return status. So if the target does
2576 not support the S or C packets, the debug agent returns an empty
2577 string which is detected in remote_wait(). This protocol defect
2578 is fixed in the e/E packets. */
2579
2580 if (step && step_range_end)
2581 {
2582 /* If the target does not support the 'E' packet, we try the 'S'
2583 packet. Ideally we would fall back to the 'e' packet if that
2584 too is not supported. But that would require another copy of
2585 the code to issue the 'e' packet (and fall back to 's' if not
2586 supported) in remote_wait(). */
2587
2588 if (siggnal != TARGET_SIGNAL_0)
2589 {
2590 if (remote_protocol_E.support != PACKET_DISABLE)
2591 {
2592 p = buf;
2593 *p++ = 'E';
2594 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2595 *p++ = tohex (((int) siggnal) & 0xf);
2596 *p++ = ',';
2597 p += hexnumstr (p, (ULONGEST) step_range_start);
2598 *p++ = ',';
2599 p += hexnumstr (p, (ULONGEST) step_range_end);
2600 *p++ = 0;
2601
2602 putpkt (buf);
2603 getpkt (buf, (rs->remote_packet_size), 0);
2604
2605 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2606 return;
2607 }
2608 }
2609 else
2610 {
2611 if (remote_protocol_e.support != PACKET_DISABLE)
2612 {
2613 p = buf;
2614 *p++ = 'e';
2615 p += hexnumstr (p, (ULONGEST) step_range_start);
2616 *p++ = ',';
2617 p += hexnumstr (p, (ULONGEST) step_range_end);
2618 *p++ = 0;
2619
2620 putpkt (buf);
2621 getpkt (buf, (rs->remote_packet_size), 0);
2622
2623 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2624 return;
2625 }
2626 }
2627 }
2628
2629 if (siggnal != TARGET_SIGNAL_0)
2630 {
2631 buf[0] = step ? 'S' : 'C';
2632 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2633 buf[2] = tohex (((int) siggnal) & 0xf);
2634 buf[3] = '\0';
2635 }
2636 else
2637 strcpy (buf, step ? "s" : "c");
2638
2639 putpkt (buf);
2640 }
2641
2642 /* Same as remote_resume, but with async support. */
2643 static void
2644 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2645 {
2646 struct remote_state *rs = get_remote_state ();
2647 char *buf = alloca (rs->remote_packet_size);
2648 int pid = PIDGET (ptid);
2649 char *p;
2650
2651 if (pid == -1)
2652 set_thread (0, 0); /* run any thread */
2653 else
2654 set_thread (pid, 0); /* run this thread */
2655
2656 last_sent_signal = siggnal;
2657 last_sent_step = step;
2658
2659 /* A hook for when we need to do something at the last moment before
2660 resumption. */
2661 if (target_resume_hook)
2662 (*target_resume_hook) ();
2663
2664 /* The s/S/c/C packets do not return status. So if the target does
2665 not support the S or C packets, the debug agent returns an empty
2666 string which is detected in remote_wait(). This protocol defect
2667 is fixed in the e/E packets. */
2668
2669 if (step && step_range_end)
2670 {
2671 /* If the target does not support the 'E' packet, we try the 'S'
2672 packet. Ideally we would fall back to the 'e' packet if that
2673 too is not supported. But that would require another copy of
2674 the code to issue the 'e' packet (and fall back to 's' if not
2675 supported) in remote_wait(). */
2676
2677 if (siggnal != TARGET_SIGNAL_0)
2678 {
2679 if (remote_protocol_E.support != PACKET_DISABLE)
2680 {
2681 p = buf;
2682 *p++ = 'E';
2683 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2684 *p++ = tohex (((int) siggnal) & 0xf);
2685 *p++ = ',';
2686 p += hexnumstr (p, (ULONGEST) step_range_start);
2687 *p++ = ',';
2688 p += hexnumstr (p, (ULONGEST) step_range_end);
2689 *p++ = 0;
2690
2691 putpkt (buf);
2692 getpkt (buf, (rs->remote_packet_size), 0);
2693
2694 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2695 goto register_event_loop;
2696 }
2697 }
2698 else
2699 {
2700 if (remote_protocol_e.support != PACKET_DISABLE)
2701 {
2702 p = buf;
2703 *p++ = 'e';
2704 p += hexnumstr (p, (ULONGEST) step_range_start);
2705 *p++ = ',';
2706 p += hexnumstr (p, (ULONGEST) step_range_end);
2707 *p++ = 0;
2708
2709 putpkt (buf);
2710 getpkt (buf, (rs->remote_packet_size), 0);
2711
2712 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2713 goto register_event_loop;
2714 }
2715 }
2716 }
2717
2718 if (siggnal != TARGET_SIGNAL_0)
2719 {
2720 buf[0] = step ? 'S' : 'C';
2721 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2722 buf[2] = tohex ((int) siggnal & 0xf);
2723 buf[3] = '\0';
2724 }
2725 else
2726 strcpy (buf, step ? "s" : "c");
2727
2728 putpkt (buf);
2729
2730 register_event_loop:
2731 /* We are about to start executing the inferior, let's register it
2732 with the event loop. NOTE: this is the one place where all the
2733 execution commands end up. We could alternatively do this in each
2734 of the execution commands in infcmd.c.*/
2735 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2736 into infcmd.c in order to allow inferior function calls to work
2737 NOT asynchronously. */
2738 if (event_loop_p && target_can_async_p ())
2739 target_async (inferior_event_handler, 0);
2740 /* Tell the world that the target is now executing. */
2741 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2742 this? Instead, should the client of target just assume (for
2743 async targets) that the target is going to start executing? Is
2744 this information already found in the continuation block? */
2745 if (target_is_async_p ())
2746 target_executing = 1;
2747 }
2748 \f
2749
2750 /* Set up the signal handler for SIGINT, while the target is
2751 executing, ovewriting the 'regular' SIGINT signal handler. */
2752 static void
2753 initialize_sigint_signal_handler (void)
2754 {
2755 sigint_remote_token =
2756 create_async_signal_handler (async_remote_interrupt, NULL);
2757 signal (SIGINT, handle_remote_sigint);
2758 }
2759
2760 /* Signal handler for SIGINT, while the target is executing. */
2761 static void
2762 handle_remote_sigint (int sig)
2763 {
2764 signal (sig, handle_remote_sigint_twice);
2765 sigint_remote_twice_token =
2766 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2767 mark_async_signal_handler_wrapper (sigint_remote_token);
2768 }
2769
2770 /* Signal handler for SIGINT, installed after SIGINT has already been
2771 sent once. It will take effect the second time that the user sends
2772 a ^C. */
2773 static void
2774 handle_remote_sigint_twice (int sig)
2775 {
2776 signal (sig, handle_sigint);
2777 sigint_remote_twice_token =
2778 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2779 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2780 }
2781
2782 /* Perform the real interruption of the target execution, in response
2783 to a ^C. */
2784 static void
2785 async_remote_interrupt (gdb_client_data arg)
2786 {
2787 if (remote_debug)
2788 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2789
2790 target_stop ();
2791 }
2792
2793 /* Perform interrupt, if the first attempt did not succeed. Just give
2794 up on the target alltogether. */
2795 void
2796 async_remote_interrupt_twice (gdb_client_data arg)
2797 {
2798 if (remote_debug)
2799 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2800 /* Do something only if the target was not killed by the previous
2801 cntl-C. */
2802 if (target_executing)
2803 {
2804 interrupt_query ();
2805 signal (SIGINT, handle_remote_sigint);
2806 }
2807 }
2808
2809 /* Reinstall the usual SIGINT handlers, after the target has
2810 stopped. */
2811 static void
2812 cleanup_sigint_signal_handler (void *dummy)
2813 {
2814 signal (SIGINT, handle_sigint);
2815 if (sigint_remote_twice_token)
2816 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2817 if (sigint_remote_token)
2818 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2819 }
2820
2821 /* Send ^C to target to halt it. Target will respond, and send us a
2822 packet. */
2823 static void (*ofunc) (int);
2824
2825 /* The command line interface's stop routine. This function is installed
2826 as a signal handler for SIGINT. The first time a user requests a
2827 stop, we call remote_stop to send a break or ^C. If there is no
2828 response from the target (it didn't stop when the user requested it),
2829 we ask the user if he'd like to detach from the target. */
2830 static void
2831 remote_interrupt (int signo)
2832 {
2833 /* If this doesn't work, try more severe steps. */
2834 signal (signo, remote_interrupt_twice);
2835
2836 if (remote_debug)
2837 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2838
2839 target_stop ();
2840 }
2841
2842 /* The user typed ^C twice. */
2843
2844 static void
2845 remote_interrupt_twice (int signo)
2846 {
2847 signal (signo, ofunc);
2848 interrupt_query ();
2849 signal (signo, remote_interrupt);
2850 }
2851
2852 /* This is the generic stop called via the target vector. When a target
2853 interrupt is requested, either by the command line or the GUI, we
2854 will eventually end up here. */
2855 static void
2856 remote_stop (void)
2857 {
2858 /* Send a break or a ^C, depending on user preference. */
2859 if (remote_debug)
2860 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2861
2862 if (remote_break)
2863 serial_send_break (remote_desc);
2864 else
2865 serial_write (remote_desc, "\003", 1);
2866 }
2867
2868 /* Ask the user what to do when an interrupt is received. */
2869
2870 static void
2871 interrupt_query (void)
2872 {
2873 target_terminal_ours ();
2874
2875 if (query ("Interrupted while waiting for the program.\n\
2876 Give up (and stop debugging it)? "))
2877 {
2878 target_mourn_inferior ();
2879 return_to_top_level (RETURN_QUIT);
2880 }
2881
2882 target_terminal_inferior ();
2883 }
2884
2885 /* Enable/disable target terminal ownership. Most targets can use
2886 terminal groups to control terminal ownership. Remote targets are
2887 different in that explicit transfer of ownership to/from GDB/target
2888 is required. */
2889
2890 static void
2891 remote_async_terminal_inferior (void)
2892 {
2893 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2894 sync_execution here. This function should only be called when
2895 GDB is resuming the inferior in the forground. A background
2896 resume (``run&'') should leave GDB in control of the terminal and
2897 consequently should not call this code. */
2898 if (!sync_execution)
2899 return;
2900 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2901 calls target_terminal_*() idenpotent. The event-loop GDB talking
2902 to an asynchronous target with a synchronous command calls this
2903 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2904 stops trying to transfer the terminal to the target when it
2905 shouldn't this guard can go away. */
2906 if (!remote_async_terminal_ours_p)
2907 return;
2908 delete_file_handler (input_fd);
2909 remote_async_terminal_ours_p = 0;
2910 initialize_sigint_signal_handler ();
2911 /* NOTE: At this point we could also register our selves as the
2912 recipient of all input. Any characters typed could then be
2913 passed on down to the target. */
2914 }
2915
2916 static void
2917 remote_async_terminal_ours (void)
2918 {
2919 /* See FIXME in remote_async_terminal_inferior. */
2920 if (!sync_execution)
2921 return;
2922 /* See FIXME in remote_async_terminal_inferior. */
2923 if (remote_async_terminal_ours_p)
2924 return;
2925 cleanup_sigint_signal_handler (NULL);
2926 add_file_handler (input_fd, stdin_event_handler, 0);
2927 remote_async_terminal_ours_p = 1;
2928 }
2929
2930 /* If nonzero, ignore the next kill. */
2931
2932 int kill_kludge;
2933
2934 void
2935 remote_console_output (char *msg)
2936 {
2937 char *p;
2938
2939 for (p = msg; p[0] && p[1]; p += 2)
2940 {
2941 char tb[2];
2942 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2943 tb[0] = c;
2944 tb[1] = 0;
2945 fputs_unfiltered (tb, gdb_stdtarg);
2946 }
2947 gdb_flush (gdb_stdtarg);
2948 }
2949
2950 /* Wait until the remote machine stops, then return,
2951 storing status in STATUS just as `wait' would.
2952 Returns "pid", which in the case of a multi-threaded
2953 remote OS, is the thread-id. */
2954
2955 static ptid_t
2956 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2957 {
2958 struct remote_state *rs = get_remote_state ();
2959 unsigned char *buf = alloca (rs->remote_packet_size);
2960 int thread_num = -1;
2961
2962 status->kind = TARGET_WAITKIND_EXITED;
2963 status->value.integer = 0;
2964
2965 while (1)
2966 {
2967 unsigned char *p;
2968
2969 ofunc = signal (SIGINT, remote_interrupt);
2970 getpkt (buf, (rs->remote_packet_size), 1);
2971 signal (SIGINT, ofunc);
2972
2973 /* This is a hook for when we need to do something (perhaps the
2974 collection of trace data) every time the target stops. */
2975 if (target_wait_loop_hook)
2976 (*target_wait_loop_hook) ();
2977
2978 switch (buf[0])
2979 {
2980 case 'E': /* Error of some sort */
2981 warning ("Remote failure reply: %s", buf);
2982 continue;
2983 case 'T': /* Status with PC, SP, FP, ... */
2984 {
2985 int i;
2986 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2987
2988 /* Expedited reply, containing Signal, {regno, reg} repeat */
2989 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2990 ss = signal number
2991 n... = register number
2992 r... = register contents
2993 */
2994 p = &buf[3]; /* after Txx */
2995
2996 while (*p)
2997 {
2998 unsigned char *p1;
2999 char *p_temp;
3000 int fieldsize;
3001
3002 /* Read the ``P'' register number. */
3003 LONGEST pnum = strtol ((const char *) p, &p_temp, 16);
3004 p1 = (unsigned char *) p_temp;
3005
3006 if (p1 == p) /* No register number present here */
3007 {
3008 p1 = (unsigned char *) strchr ((const char *) p, ':');
3009 if (p1 == NULL)
3010 warning ("Malformed packet(a) (missing colon): %s\n\
3011 Packet: '%s'\n",
3012 p, buf);
3013 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3014 {
3015 p_temp = unpack_varlen_hex (++p1, &thread_num);
3016 record_currthread (thread_num);
3017 p = (unsigned char *) p_temp;
3018 }
3019 }
3020 else
3021 {
3022 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3023 p = p1;
3024
3025 if (*p++ != ':')
3026 warning ("Malformed packet(b) (missing colon): %s\n\
3027 Packet: '%s'\n",
3028 p, buf);
3029
3030 if (reg == NULL)
3031 warning ("Remote sent bad register number %s: %s\n\
3032 Packet: '%s'\n",
3033 phex_nz (pnum, 0), p, buf);
3034
3035 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3036 p += 2 * fieldsize;
3037 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3038 warning ("Remote reply is too short: %s", buf);
3039 supply_register (reg->regnum, regs);
3040 }
3041
3042 if (*p++ != ';')
3043 {
3044 warning ("Remote register badly formatted: %s", buf);
3045 warning (" here: %s", p);
3046 }
3047 }
3048 }
3049 /* fall through */
3050 case 'S': /* Old style status, just signal only */
3051 status->kind = TARGET_WAITKIND_STOPPED;
3052 status->value.sig = (enum target_signal)
3053 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3054
3055 if (buf[3] == 'p')
3056 {
3057 /* Export Cisco kernel mode as a convenience variable
3058 (so that it can be used in the GDB prompt if desired). */
3059
3060 if (cisco_kernel_mode == 1)
3061 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3062 value_from_string ("PDEBUG-"));
3063 cisco_kernel_mode = 0;
3064 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3065 record_currthread (thread_num);
3066 }
3067 else if (buf[3] == 'k')
3068 {
3069 /* Export Cisco kernel mode as a convenience variable
3070 (so that it can be used in the GDB prompt if desired). */
3071
3072 if (cisco_kernel_mode == 1)
3073 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3074 value_from_string ("KDEBUG-"));
3075 cisco_kernel_mode = 1;
3076 }
3077 goto got_status;
3078 case 'N': /* Cisco special: status and offsets */
3079 {
3080 bfd_vma text_addr, data_addr, bss_addr;
3081 bfd_signed_vma text_off, data_off, bss_off;
3082 unsigned char *p1;
3083
3084 status->kind = TARGET_WAITKIND_STOPPED;
3085 status->value.sig = (enum target_signal)
3086 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3087
3088 if (symfile_objfile == NULL)
3089 {
3090 warning ("Relocation packet received with no symbol file. \
3091 Packet Dropped");
3092 goto got_status;
3093 }
3094
3095 /* Relocate object file. Buffer format is NAATT;DD;BB
3096 * where AA is the signal number, TT is the new text
3097 * address, DD * is the new data address, and BB is the
3098 * new bss address. */
3099
3100 p = &buf[3];
3101 text_addr = strtoul (p, (char **) &p1, 16);
3102 if (p1 == p || *p1 != ';')
3103 warning ("Malformed relocation packet: Packet '%s'", buf);
3104 p = p1 + 1;
3105 data_addr = strtoul (p, (char **) &p1, 16);
3106 if (p1 == p || *p1 != ';')
3107 warning ("Malformed relocation packet: Packet '%s'", buf);
3108 p = p1 + 1;
3109 bss_addr = strtoul (p, (char **) &p1, 16);
3110 if (p1 == p)
3111 warning ("Malformed relocation packet: Packet '%s'", buf);
3112
3113 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3114 &text_off, &data_off, &bss_off)
3115 == 0)
3116 if (text_off != 0 || data_off != 0 || bss_off != 0)
3117 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3118
3119 goto got_status;
3120 }
3121 case 'W': /* Target exited */
3122 {
3123 /* The remote process exited. */
3124 status->kind = TARGET_WAITKIND_EXITED;
3125 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3126 goto got_status;
3127 }
3128 case 'X':
3129 status->kind = TARGET_WAITKIND_SIGNALLED;
3130 status->value.sig = (enum target_signal)
3131 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3132 kill_kludge = 1;
3133
3134 goto got_status;
3135 case 'O': /* Console output */
3136 remote_console_output (buf + 1);
3137 continue;
3138 case '\0':
3139 if (last_sent_signal != TARGET_SIGNAL_0)
3140 {
3141 /* Zero length reply means that we tried 'S' or 'C' and
3142 the remote system doesn't support it. */
3143 target_terminal_ours_for_output ();
3144 printf_filtered
3145 ("Can't send signals to this remote system. %s not sent.\n",
3146 target_signal_to_name (last_sent_signal));
3147 last_sent_signal = TARGET_SIGNAL_0;
3148 target_terminal_inferior ();
3149
3150 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3151 putpkt ((char *) buf);
3152 continue;
3153 }
3154 /* else fallthrough */
3155 default:
3156 warning ("Invalid remote reply: %s", buf);
3157 continue;
3158 }
3159 }
3160 got_status:
3161 if (thread_num != -1)
3162 {
3163 return pid_to_ptid (thread_num);
3164 }
3165 return inferior_ptid;
3166 }
3167
3168 /* Async version of remote_wait. */
3169 static ptid_t
3170 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3171 {
3172 struct remote_state *rs = get_remote_state ();
3173 unsigned char *buf = alloca (rs->remote_packet_size);
3174 int thread_num = -1;
3175
3176 status->kind = TARGET_WAITKIND_EXITED;
3177 status->value.integer = 0;
3178
3179 while (1)
3180 {
3181 unsigned char *p;
3182
3183 if (!target_is_async_p ())
3184 ofunc = signal (SIGINT, remote_interrupt);
3185 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3186 _never_ wait for ever -> test on target_is_async_p().
3187 However, before we do that we need to ensure that the caller
3188 knows how to take the target into/out of async mode. */
3189 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3190 if (!target_is_async_p ())
3191 signal (SIGINT, ofunc);
3192
3193 /* This is a hook for when we need to do something (perhaps the
3194 collection of trace data) every time the target stops. */
3195 if (target_wait_loop_hook)
3196 (*target_wait_loop_hook) ();
3197
3198 switch (buf[0])
3199 {
3200 case 'E': /* Error of some sort */
3201 warning ("Remote failure reply: %s", buf);
3202 continue;
3203 case 'T': /* Status with PC, SP, FP, ... */
3204 {
3205 int i;
3206 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3207
3208 /* Expedited reply, containing Signal, {regno, reg} repeat */
3209 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3210 ss = signal number
3211 n... = register number
3212 r... = register contents
3213 */
3214 p = &buf[3]; /* after Txx */
3215
3216 while (*p)
3217 {
3218 unsigned char *p1;
3219 char *p_temp;
3220 int fieldsize;
3221
3222 /* Read the register number */
3223 long pnum = strtol ((const char *) p, &p_temp, 16);
3224 p1 = (unsigned char *) p_temp;
3225
3226 if (p1 == p) /* No register number present here */
3227 {
3228 p1 = (unsigned char *) strchr ((const char *) p, ':');
3229 if (p1 == NULL)
3230 warning ("Malformed packet(a) (missing colon): %s\n\
3231 Packet: '%s'\n",
3232 p, buf);
3233 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3234 {
3235 p_temp = unpack_varlen_hex (++p1, &thread_num);
3236 record_currthread (thread_num);
3237 p = (unsigned char *) p_temp;
3238 }
3239 }
3240 else
3241 {
3242 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3243 p = p1;
3244 if (*p++ != ':')
3245 warning ("Malformed packet(b) (missing colon): %s\n\
3246 Packet: '%s'\n",
3247 p, buf);
3248
3249 if (reg == NULL)
3250 warning ("Remote sent bad register number %ld: %s\n\
3251 Packet: '%s'\n",
3252 pnum, p, buf);
3253
3254 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3255 p += 2 * fieldsize;
3256 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3257 warning ("Remote reply is too short: %s", buf);
3258 supply_register (reg->regnum, regs);
3259 }
3260
3261 if (*p++ != ';')
3262 {
3263 warning ("Remote register badly formatted: %s", buf);
3264 warning (" here: %s", p);
3265 }
3266 }
3267 }
3268 /* fall through */
3269 case 'S': /* Old style status, just signal only */
3270 status->kind = TARGET_WAITKIND_STOPPED;
3271 status->value.sig = (enum target_signal)
3272 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3273
3274 if (buf[3] == 'p')
3275 {
3276 /* Export Cisco kernel mode as a convenience variable
3277 (so that it can be used in the GDB prompt if desired). */
3278
3279 if (cisco_kernel_mode == 1)
3280 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3281 value_from_string ("PDEBUG-"));
3282 cisco_kernel_mode = 0;
3283 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3284 record_currthread (thread_num);
3285 }
3286 else if (buf[3] == 'k')
3287 {
3288 /* Export Cisco kernel mode as a convenience variable
3289 (so that it can be used in the GDB prompt if desired). */
3290
3291 if (cisco_kernel_mode == 1)
3292 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3293 value_from_string ("KDEBUG-"));
3294 cisco_kernel_mode = 1;
3295 }
3296 goto got_status;
3297 case 'N': /* Cisco special: status and offsets */
3298 {
3299 bfd_vma text_addr, data_addr, bss_addr;
3300 bfd_signed_vma text_off, data_off, bss_off;
3301 unsigned char *p1;
3302
3303 status->kind = TARGET_WAITKIND_STOPPED;
3304 status->value.sig = (enum target_signal)
3305 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3306
3307 if (symfile_objfile == NULL)
3308 {
3309 warning ("Relocation packet recieved with no symbol file. \
3310 Packet Dropped");
3311 goto got_status;
3312 }
3313
3314 /* Relocate object file. Buffer format is NAATT;DD;BB
3315 * where AA is the signal number, TT is the new text
3316 * address, DD * is the new data address, and BB is the
3317 * new bss address. */
3318
3319 p = &buf[3];
3320 text_addr = strtoul (p, (char **) &p1, 16);
3321 if (p1 == p || *p1 != ';')
3322 warning ("Malformed relocation packet: Packet '%s'", buf);
3323 p = p1 + 1;
3324 data_addr = strtoul (p, (char **) &p1, 16);
3325 if (p1 == p || *p1 != ';')
3326 warning ("Malformed relocation packet: Packet '%s'", buf);
3327 p = p1 + 1;
3328 bss_addr = strtoul (p, (char **) &p1, 16);
3329 if (p1 == p)
3330 warning ("Malformed relocation packet: Packet '%s'", buf);
3331
3332 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3333 &text_off, &data_off, &bss_off)
3334 == 0)
3335 if (text_off != 0 || data_off != 0 || bss_off != 0)
3336 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3337
3338 goto got_status;
3339 }
3340 case 'W': /* Target exited */
3341 {
3342 /* The remote process exited. */
3343 status->kind = TARGET_WAITKIND_EXITED;
3344 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3345 goto got_status;
3346 }
3347 case 'X':
3348 status->kind = TARGET_WAITKIND_SIGNALLED;
3349 status->value.sig = (enum target_signal)
3350 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3351 kill_kludge = 1;
3352
3353 goto got_status;
3354 case 'O': /* Console output */
3355 remote_console_output (buf + 1);
3356 /* Return immediately to the event loop. The event loop will
3357 still be waiting on the inferior afterwards. */
3358 status->kind = TARGET_WAITKIND_IGNORE;
3359 goto got_status;
3360 case '\0':
3361 if (last_sent_signal != TARGET_SIGNAL_0)
3362 {
3363 /* Zero length reply means that we tried 'S' or 'C' and
3364 the remote system doesn't support it. */
3365 target_terminal_ours_for_output ();
3366 printf_filtered
3367 ("Can't send signals to this remote system. %s not sent.\n",
3368 target_signal_to_name (last_sent_signal));
3369 last_sent_signal = TARGET_SIGNAL_0;
3370 target_terminal_inferior ();
3371
3372 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3373 putpkt ((char *) buf);
3374 continue;
3375 }
3376 /* else fallthrough */
3377 default:
3378 warning ("Invalid remote reply: %s", buf);
3379 continue;
3380 }
3381 }
3382 got_status:
3383 if (thread_num != -1)
3384 {
3385 return pid_to_ptid (thread_num);
3386 }
3387 return inferior_ptid;
3388 }
3389
3390 /* Number of bytes of registers this stub implements. */
3391
3392 static int register_bytes_found;
3393
3394 /* Read the remote registers into the block REGS. */
3395 /* Currently we just read all the registers, so we don't use regnum. */
3396
3397 /* ARGSUSED */
3398 static void
3399 remote_fetch_registers (int regnum)
3400 {
3401 struct remote_state *rs = get_remote_state ();
3402 char *buf = alloca (rs->remote_packet_size);
3403 int i;
3404 char *p;
3405 char *regs = alloca (rs->sizeof_g_packet);
3406
3407 set_thread (PIDGET (inferior_ptid), 1);
3408
3409 sprintf (buf, "g");
3410 remote_send (buf, (rs->remote_packet_size));
3411
3412 /* Save the size of the packet sent to us by the target. Its used
3413 as a heuristic when determining the max size of packets that the
3414 target can safely receive. */
3415 if ((rs->actual_register_packet_size) == 0)
3416 (rs->actual_register_packet_size) = strlen (buf);
3417
3418 /* Unimplemented registers read as all bits zero. */
3419 memset (regs, 0, rs->sizeof_g_packet);
3420
3421 /* We can get out of synch in various cases. If the first character
3422 in the buffer is not a hex character, assume that has happened
3423 and try to fetch another packet to read. */
3424 while ((buf[0] < '0' || buf[0] > '9')
3425 && (buf[0] < 'a' || buf[0] > 'f')
3426 && buf[0] != 'x') /* New: unavailable register value */
3427 {
3428 if (remote_debug)
3429 fprintf_unfiltered (gdb_stdlog,
3430 "Bad register packet; fetching a new packet\n");
3431 getpkt (buf, (rs->remote_packet_size), 0);
3432 }
3433
3434 /* Reply describes registers byte by byte, each byte encoded as two
3435 hex characters. Suck them all up, then supply them to the
3436 register cacheing/storage mechanism. */
3437
3438 p = buf;
3439 for (i = 0; i < rs->sizeof_g_packet; i++)
3440 {
3441 if (p[0] == 0)
3442 break;
3443 if (p[1] == 0)
3444 {
3445 warning ("Remote reply is of odd length: %s", buf);
3446 /* Don't change register_bytes_found in this case, and don't
3447 print a second warning. */
3448 goto supply_them;
3449 }
3450 if (p[0] == 'x' && p[1] == 'x')
3451 regs[i] = 0; /* 'x' */
3452 else
3453 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3454 p += 2;
3455 }
3456
3457 if (i != register_bytes_found)
3458 {
3459 register_bytes_found = i;
3460 if (REGISTER_BYTES_OK_P ()
3461 && !REGISTER_BYTES_OK (i))
3462 warning ("Remote reply is too short: %s", buf);
3463 }
3464
3465 supply_them:
3466 {
3467 struct packet_reg *g;
3468 for (g = rs->g_packet; g->offset >= 0; g++)
3469 {
3470 supply_register (g->regnum, regs + g->offset);
3471 if (buf[g->offset * 2] == 'x')
3472 set_register_cached (i, -1);
3473 }
3474 }
3475 }
3476
3477 /* Prepare to store registers. Since we may send them all (using a
3478 'G' request), we have to read out the ones we don't want to change
3479 first. */
3480
3481 static void
3482 remote_prepare_to_store (void)
3483 {
3484 /* Make sure the entire registers array is valid. */
3485 switch (remote_protocol_P.support)
3486 {
3487 case PACKET_DISABLE:
3488 case PACKET_SUPPORT_UNKNOWN:
3489 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3490 forcing the register cache to read its and not the target
3491 registers. */
3492 read_register_bytes (0, (char *) NULL, REGISTER_BYTES); /* OK use. */
3493 break;
3494 case PACKET_ENABLE:
3495 break;
3496 }
3497 }
3498
3499 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3500 packet was not recognized. */
3501
3502 static int
3503 store_register_using_P (int regnum)
3504 {
3505 struct remote_state *rs = get_remote_state ();
3506 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3507 /* Try storing a single register. */
3508 char *buf = alloca (rs->remote_packet_size);
3509 char *regp = alloca (MAX_REGISTER_RAW_SIZE);
3510 char *p;
3511 int i;
3512
3513 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3514 p = buf + strlen (buf);
3515 regcache_collect (reg->regnum, regp);
3516 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3517 remote_send (buf, rs->remote_packet_size);
3518
3519 return buf[0] != '\0';
3520 }
3521
3522
3523 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3524 of the register cache buffer. FIXME: ignores errors. */
3525
3526 static void
3527 remote_store_registers (int regnum)
3528 {
3529 struct remote_state *rs = get_remote_state ();
3530 char *buf;
3531 char *regs;
3532 int i;
3533 char *p;
3534
3535 set_thread (PIDGET (inferior_ptid), 1);
3536
3537 if (regnum >= 0)
3538 {
3539 switch (remote_protocol_P.support)
3540 {
3541 case PACKET_DISABLE:
3542 break;
3543 case PACKET_ENABLE:
3544 if (store_register_using_P (regnum))
3545 return;
3546 else
3547 error ("Protocol error: P packet not recognized by stub");
3548 case PACKET_SUPPORT_UNKNOWN:
3549 if (store_register_using_P (regnum))
3550 {
3551 /* The stub recognized the 'P' packet. Remember this. */
3552 remote_protocol_P.support = PACKET_ENABLE;
3553 return;
3554 }
3555 else
3556 {
3557 /* The stub does not support the 'P' packet. Use 'G'
3558 instead, and don't try using 'P' in the future (it
3559 will just waste our time). */
3560 remote_protocol_P.support = PACKET_DISABLE;
3561 break;
3562 }
3563 }
3564 }
3565
3566 /* Extract all the registers in the regcache copying them into a
3567 local buffer. */
3568 {
3569 struct packet_reg *g;
3570 regs = alloca (rs->sizeof_g_packet);
3571 memset (regs, rs->sizeof_g_packet, 0);
3572 for (g = rs->g_packet; g->offset >= 0; g++)
3573 {
3574 regcache_collect (g->regnum, regs + g->offset);
3575 }
3576 }
3577
3578 /* Command describes registers byte by byte,
3579 each byte encoded as two hex characters. */
3580 buf = alloca (rs->remote_packet_size);
3581 p = buf;
3582 *p++ = 'G';
3583 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3584 bin2hex (regs, p, register_bytes_found);
3585 remote_send (buf, (rs->remote_packet_size));
3586 }
3587 \f
3588
3589 /* Return the number of hex digits in num. */
3590
3591 static int
3592 hexnumlen (ULONGEST num)
3593 {
3594 int i;
3595
3596 for (i = 0; num != 0; i++)
3597 num >>= 4;
3598
3599 return max (i, 1);
3600 }
3601
3602 /* Set BUF to the minimum number of hex digits representing NUM. */
3603
3604 static int
3605 hexnumstr (char *buf, ULONGEST num)
3606 {
3607 int len = hexnumlen (num);
3608 return hexnumnstr (buf, num, len);
3609 }
3610
3611
3612 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3613
3614 static int
3615 hexnumnstr (char *buf, ULONGEST num, int width)
3616 {
3617 int i;
3618
3619 buf[width] = '\0';
3620
3621 for (i = width - 1; i >= 0; i--)
3622 {
3623 buf[i] = "0123456789abcdef"[(num & 0xf)];
3624 num >>= 4;
3625 }
3626
3627 return width;
3628 }
3629
3630 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3631
3632 static CORE_ADDR
3633 remote_address_masked (CORE_ADDR addr)
3634 {
3635 if (remote_address_size > 0
3636 && remote_address_size < (sizeof (ULONGEST) * 8))
3637 {
3638 /* Only create a mask when that mask can safely be constructed
3639 in a ULONGEST variable. */
3640 ULONGEST mask = 1;
3641 mask = (mask << remote_address_size) - 1;
3642 addr &= mask;
3643 }
3644 return addr;
3645 }
3646
3647 /* Determine whether the remote target supports binary downloading.
3648 This is accomplished by sending a no-op memory write of zero length
3649 to the target at the specified address. It does not suffice to send
3650 the whole packet, since many stubs strip the eighth bit and subsequently
3651 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3652
3653 NOTE: This can still lose if the serial line is not eight-bit
3654 clean. In cases like this, the user should clear "remote
3655 X-packet". */
3656
3657 static void
3658 check_binary_download (CORE_ADDR addr)
3659 {
3660 struct remote_state *rs = get_remote_state ();
3661 switch (remote_protocol_binary_download.support)
3662 {
3663 case PACKET_DISABLE:
3664 break;
3665 case PACKET_ENABLE:
3666 break;
3667 case PACKET_SUPPORT_UNKNOWN:
3668 {
3669 char *buf = alloca (rs->remote_packet_size);
3670 char *p;
3671
3672 p = buf;
3673 *p++ = 'X';
3674 p += hexnumstr (p, (ULONGEST) addr);
3675 *p++ = ',';
3676 p += hexnumstr (p, (ULONGEST) 0);
3677 *p++ = ':';
3678 *p = '\0';
3679
3680 putpkt_binary (buf, (int) (p - buf));
3681 getpkt (buf, (rs->remote_packet_size), 0);
3682
3683 if (buf[0] == '\0')
3684 {
3685 if (remote_debug)
3686 fprintf_unfiltered (gdb_stdlog,
3687 "binary downloading NOT suppported by target\n");
3688 remote_protocol_binary_download.support = PACKET_DISABLE;
3689 }
3690 else
3691 {
3692 if (remote_debug)
3693 fprintf_unfiltered (gdb_stdlog,
3694 "binary downloading suppported by target\n");
3695 remote_protocol_binary_download.support = PACKET_ENABLE;
3696 }
3697 break;
3698 }
3699 }
3700 }
3701
3702 /* Write memory data directly to the remote machine.
3703 This does not inform the data cache; the data cache uses this.
3704 MEMADDR is the address in the remote memory space.
3705 MYADDR is the address of the buffer in our space.
3706 LEN is the number of bytes.
3707
3708 Returns number of bytes transferred, or 0 (setting errno) for
3709 error. Only transfer a single packet. */
3710
3711 static int
3712 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3713 {
3714 unsigned char *buf;
3715 int max_buf_size; /* Max size of packet output buffer */
3716 unsigned char *p;
3717 unsigned char *plen;
3718 long sizeof_buf;
3719 int plenlen;
3720 int todo;
3721 int nr_bytes;
3722
3723 /* Verify that the target can support a binary download */
3724 check_binary_download (memaddr);
3725
3726 /* Determine the max packet size. */
3727 max_buf_size = get_memory_write_packet_size ();
3728 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3729 buf = alloca (sizeof_buf);
3730
3731 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3732 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3733
3734 /* construct "M"<memaddr>","<len>":" */
3735 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3736 p = buf;
3737
3738 /* Append [XM]. Compute a best guess of the number of bytes
3739 actually transfered. */
3740 switch (remote_protocol_binary_download.support)
3741 {
3742 case PACKET_ENABLE:
3743 *p++ = 'X';
3744 /* Best guess at number of bytes that will fit. */
3745 todo = min (len, max_buf_size);
3746 break;
3747 case PACKET_DISABLE:
3748 *p++ = 'M';
3749 /* num bytes that will fit */
3750 todo = min (len, max_buf_size / 2);
3751 break;
3752 case PACKET_SUPPORT_UNKNOWN:
3753 internal_error (__FILE__, __LINE__,
3754 "remote_write_bytes: bad internal state");
3755 default:
3756 internal_error (__FILE__, __LINE__, "bad switch");
3757 }
3758
3759 /* Append <memaddr> */
3760 memaddr = remote_address_masked (memaddr);
3761 p += hexnumstr (p, (ULONGEST) memaddr);
3762 *p++ = ',';
3763
3764 /* Append <len>. Retain the location/size of <len>. It may
3765 need to be adjusted once the packet body has been created. */
3766 plen = p;
3767 plenlen = hexnumstr (p, (ULONGEST) todo);
3768 p += plenlen;
3769 *p++ = ':';
3770 *p = '\0';
3771
3772 /* Append the packet body. */
3773 switch (remote_protocol_binary_download.support)
3774 {
3775 case PACKET_ENABLE:
3776 /* Binary mode. Send target system values byte by byte, in
3777 increasing byte addresses. Only escape certain critical
3778 characters. */
3779 for (nr_bytes = 0;
3780 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3781 nr_bytes++)
3782 {
3783 switch (myaddr[nr_bytes] & 0xff)
3784 {
3785 case '$':
3786 case '#':
3787 case 0x7d:
3788 /* These must be escaped */
3789 *p++ = 0x7d;
3790 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3791 break;
3792 default:
3793 *p++ = myaddr[nr_bytes] & 0xff;
3794 break;
3795 }
3796 }
3797 if (nr_bytes < todo)
3798 {
3799 /* Escape chars have filled up the buffer prematurely,
3800 and we have actually sent fewer bytes than planned.
3801 Fix-up the length field of the packet. Use the same
3802 number of characters as before. */
3803
3804 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3805 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3806 }
3807 break;
3808 case PACKET_DISABLE:
3809 /* Normal mode: Send target system values byte by byte, in
3810 increasing byte addresses. Each byte is encoded as a two hex
3811 value. */
3812 nr_bytes = bin2hex (myaddr, p, todo);
3813 p += 2 * nr_bytes;
3814 break;
3815 case PACKET_SUPPORT_UNKNOWN:
3816 internal_error (__FILE__, __LINE__,
3817 "remote_write_bytes: bad internal state");
3818 default:
3819 internal_error (__FILE__, __LINE__, "bad switch");
3820 }
3821
3822 putpkt_binary (buf, (int) (p - buf));
3823 getpkt (buf, sizeof_buf, 0);
3824
3825 if (buf[0] == 'E')
3826 {
3827 /* There is no correspondance between what the remote protocol
3828 uses for errors and errno codes. We would like a cleaner way
3829 of representing errors (big enough to include errno codes,
3830 bfd_error codes, and others). But for now just return EIO. */
3831 errno = EIO;
3832 return 0;
3833 }
3834
3835 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3836 bytes than we'd planned. */
3837 return nr_bytes;
3838 }
3839
3840 /* Read memory data directly from the remote machine.
3841 This does not use the data cache; the data cache uses this.
3842 MEMADDR is the address in the remote memory space.
3843 MYADDR is the address of the buffer in our space.
3844 LEN is the number of bytes.
3845
3846 Returns number of bytes transferred, or 0 for error. */
3847
3848 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3849 remote targets) shouldn't attempt to read the entire buffer.
3850 Instead it should read a single packet worth of data and then
3851 return the byte size of that packet to the caller. The caller (its
3852 caller and its callers caller ;-) already contains code for
3853 handling partial reads. */
3854
3855 static int
3856 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3857 {
3858 char *buf;
3859 int max_buf_size; /* Max size of packet output buffer */
3860 long sizeof_buf;
3861 int origlen;
3862
3863 /* Create a buffer big enough for this packet. */
3864 max_buf_size = get_memory_read_packet_size ();
3865 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3866 buf = alloca (sizeof_buf);
3867
3868 origlen = len;
3869 while (len > 0)
3870 {
3871 char *p;
3872 int todo;
3873 int i;
3874
3875 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3876
3877 /* construct "m"<memaddr>","<len>" */
3878 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3879 memaddr = remote_address_masked (memaddr);
3880 p = buf;
3881 *p++ = 'm';
3882 p += hexnumstr (p, (ULONGEST) memaddr);
3883 *p++ = ',';
3884 p += hexnumstr (p, (ULONGEST) todo);
3885 *p = '\0';
3886
3887 putpkt (buf);
3888 getpkt (buf, sizeof_buf, 0);
3889
3890 if (buf[0] == 'E')
3891 {
3892 /* There is no correspondance between what the remote protocol uses
3893 for errors and errno codes. We would like a cleaner way of
3894 representing errors (big enough to include errno codes, bfd_error
3895 codes, and others). But for now just return EIO. */
3896 errno = EIO;
3897 return 0;
3898 }
3899
3900 /* Reply describes memory byte by byte,
3901 each byte encoded as two hex characters. */
3902
3903 p = buf;
3904 if ((i = hex2bin (p, myaddr, todo)) < todo)
3905 {
3906 /* Reply is short. This means that we were able to read
3907 only part of what we wanted to. */
3908 return i + (origlen - len);
3909 }
3910 myaddr += todo;
3911 memaddr += todo;
3912 len -= todo;
3913 }
3914 return origlen;
3915 }
3916 \f
3917 /* Read or write LEN bytes from inferior memory at MEMADDR,
3918 transferring to or from debugger address BUFFER. Write to inferior if
3919 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3920 for error. TARGET is unused. */
3921
3922 /* ARGSUSED */
3923 static int
3924 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3925 int should_write,
3926 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
3927 struct target_ops *target)
3928 {
3929 CORE_ADDR targ_addr;
3930 int targ_len;
3931 int res;
3932
3933 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3934 if (targ_len <= 0)
3935 return 0;
3936
3937 if (should_write)
3938 res = remote_write_bytes (targ_addr, buffer, targ_len);
3939 else
3940 res = remote_read_bytes (targ_addr, buffer, targ_len);
3941
3942 return res;
3943 }
3944
3945
3946 #if 0
3947 /* Enable after 4.12. */
3948
3949 void
3950 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3951 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3952 CORE_ADDR *addr_found, char *data_found)
3953 {
3954 if (increment == -4 && len == 4)
3955 {
3956 long mask_long, data_long;
3957 long data_found_long;
3958 CORE_ADDR addr_we_found;
3959 char *buf = alloca (rs->remote_packet_size);
3960 long returned_long[2];
3961 char *p;
3962
3963 mask_long = extract_unsigned_integer (mask, len);
3964 data_long = extract_unsigned_integer (data, len);
3965 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
3966 putpkt (buf);
3967 getpkt (buf, (rs->remote_packet_size), 0);
3968 if (buf[0] == '\0')
3969 {
3970 /* The stub doesn't support the 't' request. We might want to
3971 remember this fact, but on the other hand the stub could be
3972 switched on us. Maybe we should remember it only until
3973 the next "target remote". */
3974 generic_search (len, data, mask, startaddr, increment, lorange,
3975 hirange, addr_found, data_found);
3976 return;
3977 }
3978
3979 if (buf[0] == 'E')
3980 /* There is no correspondance between what the remote protocol uses
3981 for errors and errno codes. We would like a cleaner way of
3982 representing errors (big enough to include errno codes, bfd_error
3983 codes, and others). But for now just use EIO. */
3984 memory_error (EIO, startaddr);
3985 p = buf;
3986 addr_we_found = 0;
3987 while (*p != '\0' && *p != ',')
3988 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
3989 if (*p == '\0')
3990 error ("Protocol error: short return for search");
3991
3992 data_found_long = 0;
3993 while (*p != '\0' && *p != ',')
3994 data_found_long = (data_found_long << 4) + fromhex (*p++);
3995 /* Ignore anything after this comma, for future extensions. */
3996
3997 if (addr_we_found < lorange || addr_we_found >= hirange)
3998 {
3999 *addr_found = 0;
4000 return;
4001 }
4002
4003 *addr_found = addr_we_found;
4004 *data_found = store_unsigned_integer (data_we_found, len);
4005 return;
4006 }
4007 generic_search (len, data, mask, startaddr, increment, lorange,
4008 hirange, addr_found, data_found);
4009 }
4010 #endif /* 0 */
4011 \f
4012 static void
4013 remote_files_info (struct target_ops *ignore)
4014 {
4015 puts_filtered ("Debugging a target over a serial line.\n");
4016 }
4017 \f
4018 /* Stuff for dealing with the packets which are part of this protocol.
4019 See comment at top of file for details. */
4020
4021 /* Read a single character from the remote end, masking it down to 7 bits. */
4022
4023 static int
4024 readchar (int timeout)
4025 {
4026 int ch;
4027
4028 ch = serial_readchar (remote_desc, timeout);
4029
4030 if (ch >= 0)
4031 return (ch & 0x7f);
4032
4033 switch ((enum serial_rc) ch)
4034 {
4035 case SERIAL_EOF:
4036 target_mourn_inferior ();
4037 error ("Remote connection closed");
4038 /* no return */
4039 case SERIAL_ERROR:
4040 perror_with_name ("Remote communication error");
4041 /* no return */
4042 case SERIAL_TIMEOUT:
4043 break;
4044 }
4045 return ch;
4046 }
4047
4048 /* Send the command in BUF to the remote machine, and read the reply
4049 into BUF. Report an error if we get an error reply. */
4050
4051 static void
4052 remote_send (char *buf,
4053 long sizeof_buf)
4054 {
4055 putpkt (buf);
4056 getpkt (buf, sizeof_buf, 0);
4057
4058 if (buf[0] == 'E')
4059 error ("Remote failure reply: %s", buf);
4060 }
4061
4062 /* Display a null-terminated packet on stdout, for debugging, using C
4063 string notation. */
4064
4065 static void
4066 print_packet (char *buf)
4067 {
4068 puts_filtered ("\"");
4069 fputstr_filtered (buf, '"', gdb_stdout);
4070 puts_filtered ("\"");
4071 }
4072
4073 int
4074 putpkt (char *buf)
4075 {
4076 return putpkt_binary (buf, strlen (buf));
4077 }
4078
4079 /* Send a packet to the remote machine, with error checking. The data
4080 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4081 to account for the $, # and checksum, and for a possible /0 if we are
4082 debugging (remote_debug) and want to print the sent packet as a string */
4083
4084 static int
4085 putpkt_binary (char *buf, int cnt)
4086 {
4087 struct remote_state *rs = get_remote_state ();
4088 int i;
4089 unsigned char csum = 0;
4090 char *buf2 = alloca (cnt + 6);
4091 long sizeof_junkbuf = (rs->remote_packet_size);
4092 char *junkbuf = alloca (sizeof_junkbuf);
4093
4094 int ch;
4095 int tcount = 0;
4096 char *p;
4097
4098 /* Copy the packet into buffer BUF2, encapsulating it
4099 and giving it a checksum. */
4100
4101 p = buf2;
4102 *p++ = '$';
4103
4104 for (i = 0; i < cnt; i++)
4105 {
4106 csum += buf[i];
4107 *p++ = buf[i];
4108 }
4109 *p++ = '#';
4110 *p++ = tohex ((csum >> 4) & 0xf);
4111 *p++ = tohex (csum & 0xf);
4112
4113 /* Send it over and over until we get a positive ack. */
4114
4115 while (1)
4116 {
4117 int started_error_output = 0;
4118
4119 if (remote_debug)
4120 {
4121 *p = '\0';
4122 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4123 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4124 fprintf_unfiltered (gdb_stdlog, "...");
4125 gdb_flush (gdb_stdlog);
4126 }
4127 if (serial_write (remote_desc, buf2, p - buf2))
4128 perror_with_name ("putpkt: write failed");
4129
4130 /* read until either a timeout occurs (-2) or '+' is read */
4131 while (1)
4132 {
4133 ch = readchar (remote_timeout);
4134
4135 if (remote_debug)
4136 {
4137 switch (ch)
4138 {
4139 case '+':
4140 case '-':
4141 case SERIAL_TIMEOUT:
4142 case '$':
4143 if (started_error_output)
4144 {
4145 putchar_unfiltered ('\n');
4146 started_error_output = 0;
4147 }
4148 }
4149 }
4150
4151 switch (ch)
4152 {
4153 case '+':
4154 if (remote_debug)
4155 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4156 return 1;
4157 case '-':
4158 if (remote_debug)
4159 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4160 case SERIAL_TIMEOUT:
4161 tcount++;
4162 if (tcount > 3)
4163 return 0;
4164 break; /* Retransmit buffer */
4165 case '$':
4166 {
4167 if (remote_debug)
4168 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4169 /* It's probably an old response, and we're out of sync.
4170 Just gobble up the packet and ignore it. */
4171 read_frame (junkbuf, sizeof_junkbuf);
4172 continue; /* Now, go look for + */
4173 }
4174 default:
4175 if (remote_debug)
4176 {
4177 if (!started_error_output)
4178 {
4179 started_error_output = 1;
4180 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4181 }
4182 fputc_unfiltered (ch & 0177, gdb_stdlog);
4183 }
4184 continue;
4185 }
4186 break; /* Here to retransmit */
4187 }
4188
4189 #if 0
4190 /* This is wrong. If doing a long backtrace, the user should be
4191 able to get out next time we call QUIT, without anything as
4192 violent as interrupt_query. If we want to provide a way out of
4193 here without getting to the next QUIT, it should be based on
4194 hitting ^C twice as in remote_wait. */
4195 if (quit_flag)
4196 {
4197 quit_flag = 0;
4198 interrupt_query ();
4199 }
4200 #endif
4201 }
4202 }
4203
4204 static int remote_cisco_mode;
4205
4206 /* Come here after finding the start of the frame. Collect the rest
4207 into BUF, verifying the checksum, length, and handling run-length
4208 compression. No more than sizeof_buf-1 characters are read so that
4209 the buffer can be NUL terminated.
4210
4211 Returns -1 on error, number of characters in buffer (ignoring the
4212 trailing NULL) on success. (could be extended to return one of the
4213 SERIAL status indications). */
4214
4215 static long
4216 read_frame (char *buf,
4217 long sizeof_buf)
4218 {
4219 unsigned char csum;
4220 long bc;
4221 int c;
4222
4223 csum = 0;
4224 bc = 0;
4225
4226 while (1)
4227 {
4228 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4229 c = readchar (remote_timeout);
4230 switch (c)
4231 {
4232 case SERIAL_TIMEOUT:
4233 if (remote_debug)
4234 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4235 return -1;
4236 case '$':
4237 if (remote_debug)
4238 fputs_filtered ("Saw new packet start in middle of old one\n",
4239 gdb_stdlog);
4240 return -1; /* Start a new packet, count retries */
4241 case '#':
4242 {
4243 unsigned char pktcsum;
4244 int check_0 = 0;
4245 int check_1 = 0;
4246
4247 buf[bc] = '\0';
4248
4249 check_0 = readchar (remote_timeout);
4250 if (check_0 >= 0)
4251 check_1 = readchar (remote_timeout);
4252
4253 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4254 {
4255 if (remote_debug)
4256 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4257 return -1;
4258 }
4259 else if (check_0 < 0 || check_1 < 0)
4260 {
4261 if (remote_debug)
4262 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4263 return -1;
4264 }
4265
4266 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4267 if (csum == pktcsum)
4268 return bc;
4269
4270 if (remote_debug)
4271 {
4272 fprintf_filtered (gdb_stdlog,
4273 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4274 pktcsum, csum);
4275 fputs_filtered (buf, gdb_stdlog);
4276 fputs_filtered ("\n", gdb_stdlog);
4277 }
4278 /* Number of characters in buffer ignoring trailing
4279 NUL. */
4280 return -1;
4281 }
4282 case '*': /* Run length encoding */
4283 {
4284 int repeat;
4285 csum += c;
4286
4287 if (remote_cisco_mode == 0)
4288 {
4289 c = readchar (remote_timeout);
4290 csum += c;
4291 repeat = c - ' ' + 3; /* Compute repeat count */
4292 }
4293 else
4294 {
4295 /* Cisco's run-length encoding variant uses two
4296 hex chars to represent the repeat count. */
4297
4298 c = readchar (remote_timeout);
4299 csum += c;
4300 repeat = fromhex (c) << 4;
4301 c = readchar (remote_timeout);
4302 csum += c;
4303 repeat += fromhex (c);
4304 }
4305
4306 /* The character before ``*'' is repeated. */
4307
4308 if (repeat > 0 && repeat <= 255
4309 && bc > 0
4310 && bc + repeat - 1 < sizeof_buf - 1)
4311 {
4312 memset (&buf[bc], buf[bc - 1], repeat);
4313 bc += repeat;
4314 continue;
4315 }
4316
4317 buf[bc] = '\0';
4318 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4319 puts_filtered (buf);
4320 puts_filtered ("\n");
4321 return -1;
4322 }
4323 default:
4324 if (bc < sizeof_buf - 1)
4325 {
4326 buf[bc++] = c;
4327 csum += c;
4328 continue;
4329 }
4330
4331 buf[bc] = '\0';
4332 puts_filtered ("Remote packet too long: ");
4333 puts_filtered (buf);
4334 puts_filtered ("\n");
4335
4336 return -1;
4337 }
4338 }
4339 }
4340
4341 /* Read a packet from the remote machine, with error checking, and
4342 store it in BUF. If FOREVER, wait forever rather than timing out;
4343 this is used (in synchronous mode) to wait for a target that is is
4344 executing user code to stop. */
4345 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4346 don't have to change all the calls to getpkt to deal with the
4347 return value, because at the moment I don't know what the right
4348 thing to do it for those. */
4349 void
4350 getpkt (char *buf,
4351 long sizeof_buf,
4352 int forever)
4353 {
4354 int timed_out;
4355
4356 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4357 }
4358
4359
4360 /* Read a packet from the remote machine, with error checking, and
4361 store it in BUF. If FOREVER, wait forever rather than timing out;
4362 this is used (in synchronous mode) to wait for a target that is is
4363 executing user code to stop. If FOREVER == 0, this function is
4364 allowed to time out gracefully and return an indication of this to
4365 the caller. */
4366 static int
4367 getpkt_sane (char *buf,
4368 long sizeof_buf,
4369 int forever)
4370 {
4371 int c;
4372 int tries;
4373 int timeout;
4374 int val;
4375
4376 strcpy (buf, "timeout");
4377
4378 if (forever)
4379 {
4380 timeout = watchdog > 0 ? watchdog : -1;
4381 }
4382
4383 else
4384 timeout = remote_timeout;
4385
4386 #define MAX_TRIES 3
4387
4388 for (tries = 1; tries <= MAX_TRIES; tries++)
4389 {
4390 /* This can loop forever if the remote side sends us characters
4391 continuously, but if it pauses, we'll get a zero from readchar
4392 because of timeout. Then we'll count that as a retry. */
4393
4394 /* Note that we will only wait forever prior to the start of a packet.
4395 After that, we expect characters to arrive at a brisk pace. They
4396 should show up within remote_timeout intervals. */
4397
4398 do
4399 {
4400 c = readchar (timeout);
4401
4402 if (c == SERIAL_TIMEOUT)
4403 {
4404 if (forever) /* Watchdog went off? Kill the target. */
4405 {
4406 QUIT;
4407 target_mourn_inferior ();
4408 error ("Watchdog has expired. Target detached.\n");
4409 }
4410 if (remote_debug)
4411 fputs_filtered ("Timed out.\n", gdb_stdlog);
4412 goto retry;
4413 }
4414 }
4415 while (c != '$');
4416
4417 /* We've found the start of a packet, now collect the data. */
4418
4419 val = read_frame (buf, sizeof_buf);
4420
4421 if (val >= 0)
4422 {
4423 if (remote_debug)
4424 {
4425 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4426 fputstr_unfiltered (buf, 0, gdb_stdlog);
4427 fprintf_unfiltered (gdb_stdlog, "\n");
4428 }
4429 serial_write (remote_desc, "+", 1);
4430 return 0;
4431 }
4432
4433 /* Try the whole thing again. */
4434 retry:
4435 serial_write (remote_desc, "-", 1);
4436 }
4437
4438 /* We have tried hard enough, and just can't receive the packet. Give up. */
4439
4440 printf_unfiltered ("Ignoring packet error, continuing...\n");
4441 serial_write (remote_desc, "+", 1);
4442 return 1;
4443 }
4444 \f
4445 static void
4446 remote_kill (void)
4447 {
4448 /* For some mysterious reason, wait_for_inferior calls kill instead of
4449 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4450 if (kill_kludge)
4451 {
4452 kill_kludge = 0;
4453 target_mourn_inferior ();
4454 return;
4455 }
4456
4457 /* Use catch_errors so the user can quit from gdb even when we aren't on
4458 speaking terms with the remote system. */
4459 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4460
4461 /* Don't wait for it to die. I'm not really sure it matters whether
4462 we do or not. For the existing stubs, kill is a noop. */
4463 target_mourn_inferior ();
4464 }
4465
4466 /* Async version of remote_kill. */
4467 static void
4468 remote_async_kill (void)
4469 {
4470 /* Unregister the file descriptor from the event loop. */
4471 if (target_is_async_p ())
4472 serial_async (remote_desc, NULL, 0);
4473
4474 /* For some mysterious reason, wait_for_inferior calls kill instead of
4475 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4476 if (kill_kludge)
4477 {
4478 kill_kludge = 0;
4479 target_mourn_inferior ();
4480 return;
4481 }
4482
4483 /* Use catch_errors so the user can quit from gdb even when we aren't on
4484 speaking terms with the remote system. */
4485 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4486
4487 /* Don't wait for it to die. I'm not really sure it matters whether
4488 we do or not. For the existing stubs, kill is a noop. */
4489 target_mourn_inferior ();
4490 }
4491
4492 static void
4493 remote_mourn (void)
4494 {
4495 remote_mourn_1 (&remote_ops);
4496 }
4497
4498 static void
4499 remote_async_mourn (void)
4500 {
4501 remote_mourn_1 (&remote_async_ops);
4502 }
4503
4504 static void
4505 extended_remote_mourn (void)
4506 {
4507 /* We do _not_ want to mourn the target like this; this will
4508 remove the extended remote target from the target stack,
4509 and the next time the user says "run" it'll fail.
4510
4511 FIXME: What is the right thing to do here? */
4512 #if 0
4513 remote_mourn_1 (&extended_remote_ops);
4514 #endif
4515 }
4516
4517 /* Worker function for remote_mourn. */
4518 static void
4519 remote_mourn_1 (struct target_ops *target)
4520 {
4521 unpush_target (target);
4522 generic_mourn_inferior ();
4523 }
4524
4525 /* In the extended protocol we want to be able to do things like
4526 "run" and have them basically work as expected. So we need
4527 a special create_inferior function.
4528
4529 FIXME: One day add support for changing the exec file
4530 we're debugging, arguments and an environment. */
4531
4532 static void
4533 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4534 {
4535 /* Rip out the breakpoints; we'll reinsert them after restarting
4536 the remote server. */
4537 remove_breakpoints ();
4538
4539 /* Now restart the remote server. */
4540 extended_remote_restart ();
4541
4542 /* Now put the breakpoints back in. This way we're safe if the
4543 restart function works via a unix fork on the remote side. */
4544 insert_breakpoints ();
4545
4546 /* Clean up from the last time we were running. */
4547 clear_proceed_status ();
4548
4549 /* Let the remote process run. */
4550 proceed (-1, TARGET_SIGNAL_0, 0);
4551 }
4552
4553 /* Async version of extended_remote_create_inferior. */
4554 static void
4555 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4556 {
4557 /* Rip out the breakpoints; we'll reinsert them after restarting
4558 the remote server. */
4559 remove_breakpoints ();
4560
4561 /* If running asynchronously, register the target file descriptor
4562 with the event loop. */
4563 if (event_loop_p && target_can_async_p ())
4564 target_async (inferior_event_handler, 0);
4565
4566 /* Now restart the remote server. */
4567 extended_remote_restart ();
4568
4569 /* Now put the breakpoints back in. This way we're safe if the
4570 restart function works via a unix fork on the remote side. */
4571 insert_breakpoints ();
4572
4573 /* Clean up from the last time we were running. */
4574 clear_proceed_status ();
4575
4576 /* Let the remote process run. */
4577 proceed (-1, TARGET_SIGNAL_0, 0);
4578 }
4579 \f
4580
4581 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4582 than other targets; in those use REMOTE_BREAKPOINT instead of just
4583 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4584 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4585 the standard routines that are in mem-break.c. */
4586
4587 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4588 the choice of breakpoint instruction affects target program design and
4589 vice versa, and by making it user-tweakable, the special code here
4590 goes away and we need fewer special GDB configurations. */
4591
4592 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4593 #define REMOTE_BREAKPOINT
4594 #endif
4595
4596 #ifdef REMOTE_BREAKPOINT
4597
4598 /* If the target isn't bi-endian, just pretend it is. */
4599 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4600 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4601 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4602 #endif
4603
4604 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4605 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4606
4607 #endif /* REMOTE_BREAKPOINT */
4608
4609 /* Insert a breakpoint on targets that don't have any better breakpoint
4610 support. We read the contents of the target location and stash it,
4611 then overwrite it with a breakpoint instruction. ADDR is the target
4612 location in the target machine. CONTENTS_CACHE is a pointer to
4613 memory allocated for saving the target contents. It is guaranteed
4614 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4615 is accomplished via BREAKPOINT_MAX). */
4616
4617 static int
4618 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4619 {
4620 struct remote_state *rs = get_remote_state ();
4621 #ifdef REMOTE_BREAKPOINT
4622 int val;
4623 #endif
4624 int bp_size;
4625
4626 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4627 If it succeeds, then set the support to PACKET_ENABLE. If it
4628 fails, and the user has explicitly requested the Z support then
4629 report an error, otherwise, mark it disabled and go on. */
4630
4631 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4632 {
4633 char *buf = alloca (rs->remote_packet_size);
4634 char *p = buf;
4635
4636 addr = remote_address_masked (addr);
4637 *(p++) = 'Z';
4638 *(p++) = '0';
4639 *(p++) = ',';
4640 p += hexnumstr (p, (ULONGEST) addr);
4641 BREAKPOINT_FROM_PC (&addr, &bp_size);
4642 sprintf (p, ",%d", bp_size);
4643
4644 putpkt (buf);
4645 getpkt (buf, (rs->remote_packet_size), 0);
4646
4647 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4648 {
4649 case PACKET_ERROR:
4650 return -1;
4651 case PACKET_OK:
4652 return 0;
4653 case PACKET_UNKNOWN:
4654 break;
4655 }
4656 }
4657
4658 #ifdef REMOTE_BREAKPOINT
4659 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4660
4661 if (val == 0)
4662 {
4663 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
4664 val = target_write_memory (addr, (char *) big_break_insn,
4665 sizeof big_break_insn);
4666 else
4667 val = target_write_memory (addr, (char *) little_break_insn,
4668 sizeof little_break_insn);
4669 }
4670
4671 return val;
4672 #else
4673 return memory_insert_breakpoint (addr, contents_cache);
4674 #endif /* REMOTE_BREAKPOINT */
4675 }
4676
4677 static int
4678 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4679 {
4680 struct remote_state *rs = get_remote_state ();
4681 int bp_size;
4682
4683 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4684 {
4685 char *buf = alloca (rs->remote_packet_size);
4686 char *p = buf;
4687
4688 *(p++) = 'z';
4689 *(p++) = '0';
4690 *(p++) = ',';
4691
4692 addr = remote_address_masked (addr);
4693 p += hexnumstr (p, (ULONGEST) addr);
4694 BREAKPOINT_FROM_PC (&addr, &bp_size);
4695 sprintf (p, ",%d", bp_size);
4696
4697 putpkt (buf);
4698 getpkt (buf, (rs->remote_packet_size), 0);
4699
4700 return (buf[0] == 'E');
4701 }
4702
4703 #ifdef REMOTE_BREAKPOINT
4704 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4705 #else
4706 return memory_remove_breakpoint (addr, contents_cache);
4707 #endif /* REMOTE_BREAKPOINT */
4708 }
4709
4710 static int
4711 watchpoint_to_Z_packet (int type)
4712 {
4713 switch (type)
4714 {
4715 case hw_write:
4716 return 2;
4717 break;
4718 case hw_read:
4719 return 3;
4720 break;
4721 case hw_access:
4722 return 4;
4723 break;
4724 default:
4725 internal_error (__FILE__, __LINE__,
4726 "hw_bp_to_z: bad watchpoint type %d", type);
4727 }
4728 }
4729
4730 /* FIXME: This function should be static and a member of the remote
4731 target vector. */
4732
4733 int
4734 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4735 {
4736 struct remote_state *rs = get_remote_state ();
4737 char *buf = alloca (rs->remote_packet_size);
4738 char *p;
4739 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4740
4741 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4742 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4743 remote_protocol_Z[packet].name,
4744 remote_protocol_Z[packet].title);
4745
4746 sprintf (buf, "Z%x,", packet);
4747 p = strchr (buf, '\0');
4748 addr = remote_address_masked (addr);
4749 p += hexnumstr (p, (ULONGEST) addr);
4750 sprintf (p, ",%x", len);
4751
4752 putpkt (buf);
4753 getpkt (buf, (rs->remote_packet_size), 0);
4754
4755 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4756 {
4757 case PACKET_ERROR:
4758 case PACKET_UNKNOWN:
4759 return -1;
4760 case PACKET_OK:
4761 return 0;
4762 }
4763 internal_error (__FILE__, __LINE__,
4764 "remote_insert_watchpoint: reached end of function");
4765 }
4766
4767 /* FIXME: This function should be static and a member of the remote
4768 target vector. */
4769
4770 int
4771 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4772 {
4773 struct remote_state *rs = get_remote_state ();
4774 char *buf = alloca (rs->remote_packet_size);
4775 char *p;
4776 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4777
4778 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4779 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4780 remote_protocol_Z[packet].name,
4781 remote_protocol_Z[packet].title);
4782
4783 sprintf (buf, "z%x,", packet);
4784 p = strchr (buf, '\0');
4785 addr = remote_address_masked (addr);
4786 p += hexnumstr (p, (ULONGEST) addr);
4787 sprintf (p, ",%x", len);
4788 putpkt (buf);
4789 getpkt (buf, (rs->remote_packet_size), 0);
4790
4791 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4792 {
4793 case PACKET_ERROR:
4794 case PACKET_UNKNOWN:
4795 return -1;
4796 case PACKET_OK:
4797 return 0;
4798 }
4799 internal_error (__FILE__, __LINE__,
4800 "remote_remove_watchpoint: reached end of function");
4801 }
4802
4803 /* FIXME: This function should be static and a member of the remote
4804 target vector. */
4805
4806 int
4807 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4808 {
4809 struct remote_state *rs = get_remote_state ();
4810 char *buf = alloca (rs->remote_packet_size);
4811 char *p = buf;
4812
4813 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4814 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4815 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4816 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4817
4818 *(p++) = 'Z';
4819 *(p++) = '1';
4820 *(p++) = ',';
4821
4822 addr = remote_address_masked (addr);
4823 p += hexnumstr (p, (ULONGEST) addr);
4824 sprintf (p, ",%x", len);
4825
4826 putpkt (buf);
4827 getpkt (buf, (rs->remote_packet_size), 0);
4828
4829 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4830 {
4831 case PACKET_ERROR:
4832 case PACKET_UNKNOWN:
4833 return -1;
4834 case PACKET_OK:
4835 return 0;
4836 }
4837 internal_error (__FILE__, __LINE__,
4838 "remote_remove_watchpoint: reached end of function");
4839 }
4840
4841 /* FIXME: This function should be static and a member of the remote
4842 target vector. */
4843
4844 int
4845 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4846 {
4847 struct remote_state *rs = get_remote_state ();
4848 char *buf = alloca (rs->remote_packet_size);
4849 char *p = buf;
4850
4851 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4852 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4853 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4854 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4855
4856 *(p++) = 'z';
4857 *(p++) = '1';
4858 *(p++) = ',';
4859
4860 addr = remote_address_masked (addr);
4861 p += hexnumstr (p, (ULONGEST) addr);
4862 sprintf (p, ",%x", len);
4863
4864 putpkt(buf);
4865 getpkt (buf, (rs->remote_packet_size), 0);
4866
4867 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4868 {
4869 case PACKET_ERROR:
4870 case PACKET_UNKNOWN:
4871 return -1;
4872 case PACKET_OK:
4873 return 0;
4874 }
4875 internal_error (__FILE__, __LINE__,
4876 "remote_remove_watchpoint: reached end of function");
4877 }
4878
4879 /* Some targets are only capable of doing downloads, and afterwards
4880 they switch to the remote serial protocol. This function provides
4881 a clean way to get from the download target to the remote target.
4882 It's basically just a wrapper so that we don't have to expose any
4883 of the internal workings of remote.c.
4884
4885 Prior to calling this routine, you should shutdown the current
4886 target code, else you will get the "A program is being debugged
4887 already..." message. Usually a call to pop_target() suffices. */
4888
4889 void
4890 push_remote_target (char *name, int from_tty)
4891 {
4892 printf_filtered ("Switching to remote protocol\n");
4893 remote_open (name, from_tty);
4894 }
4895
4896 /* Other targets want to use the entire remote serial module but with
4897 certain remote_ops overridden. */
4898
4899 void
4900 open_remote_target (char *name, int from_tty, struct target_ops *target,
4901 int extended_p)
4902 {
4903 printf_filtered ("Selecting the %sremote protocol\n",
4904 (extended_p ? "extended-" : ""));
4905 remote_open_1 (name, from_tty, target, extended_p);
4906 }
4907
4908 /* Table used by the crc32 function to calcuate the checksum. */
4909
4910 static unsigned long crc32_table[256] =
4911 {0, 0};
4912
4913 static unsigned long
4914 crc32 (unsigned char *buf, int len, unsigned int crc)
4915 {
4916 if (!crc32_table[1])
4917 {
4918 /* Initialize the CRC table and the decoding table. */
4919 int i, j;
4920 unsigned int c;
4921
4922 for (i = 0; i < 256; i++)
4923 {
4924 for (c = i << 24, j = 8; j > 0; --j)
4925 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4926 crc32_table[i] = c;
4927 }
4928 }
4929
4930 while (len--)
4931 {
4932 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4933 buf++;
4934 }
4935 return crc;
4936 }
4937
4938 /* compare-sections command
4939
4940 With no arguments, compares each loadable section in the exec bfd
4941 with the same memory range on the target, and reports mismatches.
4942 Useful for verifying the image on the target against the exec file.
4943 Depends on the target understanding the new "qCRC:" request. */
4944
4945 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4946 target method (target verify memory) and generic version of the
4947 actual command. This will allow other high-level code (especially
4948 generic_load()) to make use of this target functionality. */
4949
4950 static void
4951 compare_sections_command (char *args, int from_tty)
4952 {
4953 struct remote_state *rs = get_remote_state ();
4954 asection *s;
4955 unsigned long host_crc, target_crc;
4956 extern bfd *exec_bfd;
4957 struct cleanup *old_chain;
4958 char *tmp;
4959 char *sectdata;
4960 const char *sectname;
4961 char *buf = alloca (rs->remote_packet_size);
4962 bfd_size_type size;
4963 bfd_vma lma;
4964 int matched = 0;
4965 int mismatched = 0;
4966
4967 if (!exec_bfd)
4968 error ("command cannot be used without an exec file");
4969 if (!current_target.to_shortname ||
4970 strcmp (current_target.to_shortname, "remote") != 0)
4971 error ("command can only be used with remote target");
4972
4973 for (s = exec_bfd->sections; s; s = s->next)
4974 {
4975 if (!(s->flags & SEC_LOAD))
4976 continue; /* skip non-loadable section */
4977
4978 size = bfd_get_section_size_before_reloc (s);
4979 if (size == 0)
4980 continue; /* skip zero-length section */
4981
4982 sectname = bfd_get_section_name (exec_bfd, s);
4983 if (args && strcmp (args, sectname) != 0)
4984 continue; /* not the section selected by user */
4985
4986 matched = 1; /* do this section */
4987 lma = s->lma;
4988 /* FIXME: assumes lma can fit into long */
4989 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4990 putpkt (buf);
4991
4992 /* be clever; compute the host_crc before waiting for target reply */
4993 sectdata = xmalloc (size);
4994 old_chain = make_cleanup (xfree, sectdata);
4995 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4996 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4997
4998 getpkt (buf, (rs->remote_packet_size), 0);
4999 if (buf[0] == 'E')
5000 error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
5001 sectname, lma, lma + size);
5002 if (buf[0] != 'C')
5003 error ("remote target does not support this operation");
5004
5005 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5006 target_crc = target_crc * 16 + fromhex (*tmp);
5007
5008 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5009 sectname, paddr (lma), paddr (lma + size));
5010 if (host_crc == target_crc)
5011 printf_filtered ("matched.\n");
5012 else
5013 {
5014 printf_filtered ("MIS-MATCHED!\n");
5015 mismatched++;
5016 }
5017
5018 do_cleanups (old_chain);
5019 }
5020 if (mismatched > 0)
5021 warning ("One or more sections of the remote executable does not match\n\
5022 the loaded file\n");
5023 if (args && !matched)
5024 printf_filtered ("No loaded section named '%s'.\n", args);
5025 }
5026
5027 static int
5028 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5029 {
5030 struct remote_state *rs = get_remote_state ();
5031 int i;
5032 char *buf2 = alloca (rs->remote_packet_size);
5033 char *p2 = &buf2[0];
5034
5035 if (!bufsiz)
5036 error ("null pointer to remote bufer size specified");
5037
5038 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5039 the caller know and return what the minimum size is */
5040 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5041 if (*bufsiz < (rs->remote_packet_size))
5042 {
5043 *bufsiz = (rs->remote_packet_size);
5044 return -1;
5045 }
5046
5047 /* except for querying the minimum buffer size, target must be open */
5048 if (!remote_desc)
5049 error ("remote query is only available after target open");
5050
5051 /* we only take uppercase letters as query types, at least for now */
5052 if ((query_type < 'A') || (query_type > 'Z'))
5053 error ("invalid remote query type");
5054
5055 if (!buf)
5056 error ("null remote query specified");
5057
5058 if (!outbuf)
5059 error ("remote query requires a buffer to receive data");
5060
5061 outbuf[0] = '\0';
5062
5063 *p2++ = 'q';
5064 *p2++ = query_type;
5065
5066 /* we used one buffer char for the remote protocol q command and another
5067 for the query type. As the remote protocol encapsulation uses 4 chars
5068 plus one extra in case we are debugging (remote_debug),
5069 we have PBUFZIZ - 7 left to pack the query string */
5070 i = 0;
5071 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5072 {
5073 /* bad caller may have sent forbidden characters */
5074 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5075 error ("illegal characters in query string");
5076
5077 *p2++ = buf[i];
5078 i++;
5079 }
5080 *p2 = buf[i];
5081
5082 if (buf[i])
5083 error ("query larger than available buffer");
5084
5085 i = putpkt (buf2);
5086 if (i < 0)
5087 return i;
5088
5089 getpkt (outbuf, *bufsiz, 0);
5090
5091 return 0;
5092 }
5093
5094 static void
5095 remote_rcmd (char *command,
5096 struct ui_file *outbuf)
5097 {
5098 struct remote_state *rs = get_remote_state ();
5099 int i;
5100 char *buf = alloca (rs->remote_packet_size);
5101 char *p = buf;
5102
5103 if (!remote_desc)
5104 error ("remote rcmd is only available after target open");
5105
5106 /* Send a NULL command across as an empty command */
5107 if (command == NULL)
5108 command = "";
5109
5110 /* The query prefix */
5111 strcpy (buf, "qRcmd,");
5112 p = strchr (buf, '\0');
5113
5114 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5115 error ("\"monitor\" command ``%s'' is too long\n", command);
5116
5117 /* Encode the actual command */
5118 bin2hex (command, p, 0);
5119
5120 if (putpkt (buf) < 0)
5121 error ("Communication problem with target\n");
5122
5123 /* get/display the response */
5124 while (1)
5125 {
5126 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5127 buf[0] = '\0';
5128 getpkt (buf, (rs->remote_packet_size), 0);
5129 if (buf[0] == '\0')
5130 error ("Target does not support this command\n");
5131 if (buf[0] == 'O' && buf[1] != 'K')
5132 {
5133 remote_console_output (buf + 1); /* 'O' message from stub */
5134 continue;
5135 }
5136 if (strcmp (buf, "OK") == 0)
5137 break;
5138 if (strlen (buf) == 3 && buf[0] == 'E'
5139 && isdigit (buf[1]) && isdigit (buf[2]))
5140 {
5141 error ("Protocol error with Rcmd");
5142 }
5143 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5144 {
5145 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5146 fputc_unfiltered (c, outbuf);
5147 }
5148 break;
5149 }
5150 }
5151
5152 static void
5153 packet_command (char *args, int from_tty)
5154 {
5155 struct remote_state *rs = get_remote_state ();
5156 char *buf = alloca (rs->remote_packet_size);
5157
5158 if (!remote_desc)
5159 error ("command can only be used with remote target");
5160
5161 if (!args)
5162 error ("remote-packet command requires packet text as argument");
5163
5164 puts_filtered ("sending: ");
5165 print_packet (args);
5166 puts_filtered ("\n");
5167 putpkt (args);
5168
5169 getpkt (buf, (rs->remote_packet_size), 0);
5170 puts_filtered ("received: ");
5171 print_packet (buf);
5172 puts_filtered ("\n");
5173 }
5174
5175 #if 0
5176 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5177
5178 static void display_thread_info (struct gdb_ext_thread_info *info);
5179
5180 static void threadset_test_cmd (char *cmd, int tty);
5181
5182 static void threadalive_test (char *cmd, int tty);
5183
5184 static void threadlist_test_cmd (char *cmd, int tty);
5185
5186 int get_and_display_threadinfo (threadref * ref);
5187
5188 static void threadinfo_test_cmd (char *cmd, int tty);
5189
5190 static int thread_display_step (threadref * ref, void *context);
5191
5192 static void threadlist_update_test_cmd (char *cmd, int tty);
5193
5194 static void init_remote_threadtests (void);
5195
5196 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5197
5198 static void
5199 threadset_test_cmd (char *cmd, int tty)
5200 {
5201 int sample_thread = SAMPLE_THREAD;
5202
5203 printf_filtered ("Remote threadset test\n");
5204 set_thread (sample_thread, 1);
5205 }
5206
5207
5208 static void
5209 threadalive_test (char *cmd, int tty)
5210 {
5211 int sample_thread = SAMPLE_THREAD;
5212
5213 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5214 printf_filtered ("PASS: Thread alive test\n");
5215 else
5216 printf_filtered ("FAIL: Thread alive test\n");
5217 }
5218
5219 void output_threadid (char *title, threadref * ref);
5220
5221 void
5222 output_threadid (char *title, threadref *ref)
5223 {
5224 char hexid[20];
5225
5226 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5227 hexid[16] = 0;
5228 printf_filtered ("%s %s\n", title, (&hexid[0]));
5229 }
5230
5231 static void
5232 threadlist_test_cmd (char *cmd, int tty)
5233 {
5234 int startflag = 1;
5235 threadref nextthread;
5236 int done, result_count;
5237 threadref threadlist[3];
5238
5239 printf_filtered ("Remote Threadlist test\n");
5240 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5241 &result_count, &threadlist[0]))
5242 printf_filtered ("FAIL: threadlist test\n");
5243 else
5244 {
5245 threadref *scan = threadlist;
5246 threadref *limit = scan + result_count;
5247
5248 while (scan < limit)
5249 output_threadid (" thread ", scan++);
5250 }
5251 }
5252
5253 void
5254 display_thread_info (struct gdb_ext_thread_info *info)
5255 {
5256 output_threadid ("Threadid: ", &info->threadid);
5257 printf_filtered ("Name: %s\n ", info->shortname);
5258 printf_filtered ("State: %s\n", info->display);
5259 printf_filtered ("other: %s\n\n", info->more_display);
5260 }
5261
5262 int
5263 get_and_display_threadinfo (threadref *ref)
5264 {
5265 int result;
5266 int set;
5267 struct gdb_ext_thread_info threadinfo;
5268
5269 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5270 | TAG_MOREDISPLAY | TAG_DISPLAY;
5271 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5272 display_thread_info (&threadinfo);
5273 return result;
5274 }
5275
5276 static void
5277 threadinfo_test_cmd (char *cmd, int tty)
5278 {
5279 int athread = SAMPLE_THREAD;
5280 threadref thread;
5281 int set;
5282
5283 int_to_threadref (&thread, athread);
5284 printf_filtered ("Remote Threadinfo test\n");
5285 if (!get_and_display_threadinfo (&thread))
5286 printf_filtered ("FAIL cannot get thread info\n");
5287 }
5288
5289 static int
5290 thread_display_step (threadref *ref, void *context)
5291 {
5292 /* output_threadid(" threadstep ",ref); *//* simple test */
5293 return get_and_display_threadinfo (ref);
5294 }
5295
5296 static void
5297 threadlist_update_test_cmd (char *cmd, int tty)
5298 {
5299 printf_filtered ("Remote Threadlist update test\n");
5300 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5301 }
5302
5303 static void
5304 init_remote_threadtests (void)
5305 {
5306 add_com ("tlist", class_obscure, threadlist_test_cmd,
5307 "Fetch and print the remote list of thread identifiers, one pkt only");
5308 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5309 "Fetch and display info about one thread");
5310 add_com ("tset", class_obscure, threadset_test_cmd,
5311 "Test setting to a different thread");
5312 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5313 "Iterate through updating all remote thread info");
5314 add_com ("talive", class_obscure, threadalive_test,
5315 " Remote thread alive test ");
5316 }
5317
5318 #endif /* 0 */
5319
5320 /* Convert a thread ID to a string. Returns the string in a static
5321 buffer. */
5322
5323 static char *
5324 remote_pid_to_str (ptid_t ptid)
5325 {
5326 static char buf[30];
5327
5328 sprintf (buf, "Thread %d", PIDGET (ptid));
5329 return buf;
5330 }
5331
5332 static void
5333 init_remote_ops (void)
5334 {
5335 remote_ops.to_shortname = "remote";
5336 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5337 remote_ops.to_doc =
5338 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5339 Specify the serial device it is connected to\n\
5340 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5341 remote_ops.to_open = remote_open;
5342 remote_ops.to_close = remote_close;
5343 remote_ops.to_detach = remote_detach;
5344 remote_ops.to_resume = remote_resume;
5345 remote_ops.to_wait = remote_wait;
5346 remote_ops.to_fetch_registers = remote_fetch_registers;
5347 remote_ops.to_store_registers = remote_store_registers;
5348 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5349 remote_ops.to_xfer_memory = remote_xfer_memory;
5350 remote_ops.to_files_info = remote_files_info;
5351 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5352 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5353 remote_ops.to_kill = remote_kill;
5354 remote_ops.to_load = generic_load;
5355 remote_ops.to_mourn_inferior = remote_mourn;
5356 remote_ops.to_thread_alive = remote_thread_alive;
5357 remote_ops.to_find_new_threads = remote_threads_info;
5358 remote_ops.to_pid_to_str = remote_pid_to_str;
5359 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5360 remote_ops.to_stop = remote_stop;
5361 remote_ops.to_query = remote_query;
5362 remote_ops.to_rcmd = remote_rcmd;
5363 remote_ops.to_stratum = process_stratum;
5364 remote_ops.to_has_all_memory = 1;
5365 remote_ops.to_has_memory = 1;
5366 remote_ops.to_has_stack = 1;
5367 remote_ops.to_has_registers = 1;
5368 remote_ops.to_has_execution = 1;
5369 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5370 remote_ops.to_magic = OPS_MAGIC;
5371 }
5372
5373 /* Set up the extended remote vector by making a copy of the standard
5374 remote vector and adding to it. */
5375
5376 static void
5377 init_extended_remote_ops (void)
5378 {
5379 extended_remote_ops = remote_ops;
5380
5381 extended_remote_ops.to_shortname = "extended-remote";
5382 extended_remote_ops.to_longname =
5383 "Extended remote serial target in gdb-specific protocol";
5384 extended_remote_ops.to_doc =
5385 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5386 Specify the serial device it is connected to (e.g. /dev/ttya).",
5387 extended_remote_ops.to_open = extended_remote_open;
5388 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5389 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5390 }
5391
5392 /*
5393 * Command: info remote-process
5394 *
5395 * This implements Cisco's version of the "info proc" command.
5396 *
5397 * This query allows the target stub to return an arbitrary string
5398 * (or strings) giving arbitrary information about the target process.
5399 * This is optional; the target stub isn't required to implement it.
5400 *
5401 * Syntax: qfProcessInfo request first string
5402 * qsProcessInfo request subsequent string
5403 * reply: 'O'<hex-encoded-string>
5404 * 'l' last reply (empty)
5405 */
5406
5407 static void
5408 remote_info_process (char *args, int from_tty)
5409 {
5410 struct remote_state *rs = get_remote_state ();
5411 char *buf = alloca (rs->remote_packet_size);
5412
5413 if (remote_desc == 0)
5414 error ("Command can only be used when connected to the remote target.");
5415
5416 putpkt ("qfProcessInfo");
5417 getpkt (buf, (rs->remote_packet_size), 0);
5418 if (buf[0] == 0)
5419 return; /* Silently: target does not support this feature. */
5420
5421 if (buf[0] == 'E')
5422 error ("info proc: target error.");
5423
5424 while (buf[0] == 'O') /* Capitol-O packet */
5425 {
5426 remote_console_output (&buf[1]);
5427 putpkt ("qsProcessInfo");
5428 getpkt (buf, (rs->remote_packet_size), 0);
5429 }
5430 }
5431
5432 /*
5433 * Target Cisco
5434 */
5435
5436 static void
5437 remote_cisco_open (char *name, int from_tty)
5438 {
5439 if (name == 0)
5440 error ("To open a remote debug connection, you need to specify what \n"
5441 "device is attached to the remote system (e.g. host:port).");
5442
5443 /* See FIXME above */
5444 wait_forever_enabled_p = 1;
5445
5446 target_preopen (from_tty);
5447
5448 unpush_target (&remote_cisco_ops);
5449
5450 remote_desc = serial_open (name);
5451 if (!remote_desc)
5452 perror_with_name (name);
5453
5454 /*
5455 * If a baud rate was specified on the gdb command line it will
5456 * be greater than the initial value of -1. If it is, use it otherwise
5457 * default to 9600
5458 */
5459
5460 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5461 if (serial_setbaudrate (remote_desc, baud_rate))
5462 {
5463 serial_close (remote_desc);
5464 perror_with_name (name);
5465 }
5466
5467 serial_raw (remote_desc);
5468
5469 /* If there is something sitting in the buffer we might take it as a
5470 response to a command, which would be bad. */
5471 serial_flush_input (remote_desc);
5472
5473 if (from_tty)
5474 {
5475 puts_filtered ("Remote debugging using ");
5476 puts_filtered (name);
5477 puts_filtered ("\n");
5478 }
5479
5480 remote_cisco_mode = 1;
5481
5482 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5483
5484 init_all_packet_configs ();
5485
5486 general_thread = -2;
5487 continue_thread = -2;
5488
5489 /* Probe for ability to use "ThreadInfo" query, as required. */
5490 use_threadinfo_query = 1;
5491 use_threadextra_query = 1;
5492
5493 /* Without this, some commands which require an active target (such
5494 as kill) won't work. This variable serves (at least) double duty
5495 as both the pid of the target process (if it has such), and as a
5496 flag indicating that a target is active. These functions should
5497 be split out into seperate variables, especially since GDB will
5498 someday have a notion of debugging several processes. */
5499 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5500
5501 /* Start the remote connection; if error (0), discard this target. */
5502
5503 if (!catch_errors (remote_start_remote_dummy, (char *) 0,
5504 "Couldn't establish connection to remote target\n",
5505 RETURN_MASK_ALL))
5506 {
5507 pop_target ();
5508 return;
5509 }
5510 }
5511
5512 static void
5513 remote_cisco_close (int quitting)
5514 {
5515 remote_cisco_mode = 0;
5516 remote_close (quitting);
5517 }
5518
5519 static void
5520 remote_cisco_mourn (void)
5521 {
5522 remote_mourn_1 (&remote_cisco_ops);
5523 }
5524
5525 enum
5526 {
5527 READ_MORE,
5528 FATAL_ERROR,
5529 ENTER_DEBUG,
5530 DISCONNECT_TELNET
5531 }
5532 minitelnet_return;
5533
5534 /* Shared between readsocket() and readtty(). The size is arbitrary,
5535 however all targets are known to support a 400 character packet. */
5536 static char tty_input[400];
5537
5538 static int escape_count;
5539 static int echo_check;
5540 extern int quit_flag;
5541
5542 static int
5543 readsocket (void)
5544 {
5545 int data;
5546
5547 /* Loop until the socket doesn't have any more data */
5548
5549 while ((data = readchar (0)) >= 0)
5550 {
5551 /* Check for the escape sequence */
5552 if (data == '|')
5553 {
5554 /* If this is the fourth escape, get out */
5555 if (++escape_count == 4)
5556 {
5557 return ENTER_DEBUG;
5558 }
5559 else
5560 { /* This is a '|', but not the fourth in a row.
5561 Continue without echoing it. If it isn't actually
5562 one of four in a row, it'll be echoed later. */
5563 continue;
5564 }
5565 }
5566 else
5567 /* Not a '|' */
5568 {
5569 /* Ensure any pending '|'s are flushed. */
5570
5571 for (; escape_count > 0; escape_count--)
5572 putchar ('|');
5573 }
5574
5575 if (data == '\r') /* If this is a return character, */
5576 continue; /* - just supress it. */
5577
5578 if (echo_check != -1) /* Check for echo of user input. */
5579 {
5580 if (tty_input[echo_check] == data)
5581 {
5582 gdb_assert (echo_check <= sizeof (tty_input));
5583 echo_check++; /* Character matched user input: */
5584 continue; /* Continue without echoing it. */
5585 }
5586 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5587 { /* End of the line (and of echo checking). */
5588 echo_check = -1; /* No more echo supression */
5589 continue; /* Continue without echoing. */
5590 }
5591 else
5592 { /* Failed check for echo of user input.
5593 We now have some suppressed output to flush! */
5594 int j;
5595
5596 for (j = 0; j < echo_check; j++)
5597 putchar (tty_input[j]);
5598 echo_check = -1;
5599 }
5600 }
5601 putchar (data); /* Default case: output the char. */
5602 }
5603
5604 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5605 return READ_MORE; /* Try to read some more */
5606 else
5607 return FATAL_ERROR; /* Trouble, bail out */
5608 }
5609
5610 static int
5611 readtty (void)
5612 {
5613 int tty_bytecount;
5614
5615 /* First, read a buffer full from the terminal */
5616 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5617 if (tty_bytecount == -1)
5618 {
5619 perror ("readtty: read failed");
5620 return FATAL_ERROR;
5621 }
5622
5623 /* Remove a quoted newline. */
5624 if (tty_input[tty_bytecount - 1] == '\n' &&
5625 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5626 {
5627 tty_input[--tty_bytecount] = 0; /* remove newline */
5628 tty_input[--tty_bytecount] = 0; /* remove backslash */
5629 }
5630
5631 /* Turn trailing newlines into returns */
5632 if (tty_input[tty_bytecount - 1] == '\n')
5633 tty_input[tty_bytecount - 1] = '\r';
5634
5635 /* If the line consists of a ~, enter debugging mode. */
5636 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5637 return ENTER_DEBUG;
5638
5639 /* Make this a zero terminated string and write it out */
5640 tty_input[tty_bytecount] = 0;
5641 if (serial_write (remote_desc, tty_input, tty_bytecount))
5642 {
5643 perror_with_name ("readtty: write failed");
5644 return FATAL_ERROR;
5645 }
5646
5647 return READ_MORE;
5648 }
5649
5650 static int
5651 minitelnet (void)
5652 {
5653 fd_set input; /* file descriptors for select */
5654 int tablesize; /* max number of FDs for select */
5655 int status;
5656 int quit_count = 0;
5657
5658 extern int escape_count; /* global shared by readsocket */
5659 extern int echo_check; /* ditto */
5660
5661 escape_count = 0;
5662 echo_check = -1;
5663
5664 tablesize = 8 * sizeof (input);
5665
5666 for (;;)
5667 {
5668 /* Check for anything from our socket - doesn't block. Note that
5669 this must be done *before* the select as there may be
5670 buffered I/O waiting to be processed. */
5671
5672 if ((status = readsocket ()) == FATAL_ERROR)
5673 {
5674 error ("Debugging terminated by communications error");
5675 }
5676 else if (status != READ_MORE)
5677 {
5678 return (status);
5679 }
5680
5681 fflush (stdout); /* Flush output before blocking */
5682
5683 /* Now block on more socket input or TTY input */
5684
5685 FD_ZERO (&input);
5686 FD_SET (fileno (stdin), &input);
5687 FD_SET (deprecated_serial_fd (remote_desc), &input);
5688
5689 status = select (tablesize, &input, 0, 0, 0);
5690 if ((status == -1) && (errno != EINTR))
5691 {
5692 error ("Communications error on select %d", errno);
5693 }
5694
5695 /* Handle Control-C typed */
5696
5697 if (quit_flag)
5698 {
5699 if ((++quit_count) == 2)
5700 {
5701 if (query ("Interrupt GDB? "))
5702 {
5703 printf_filtered ("Interrupted by user.\n");
5704 return_to_top_level (RETURN_QUIT);
5705 }
5706 quit_count = 0;
5707 }
5708 quit_flag = 0;
5709
5710 if (remote_break)
5711 serial_send_break (remote_desc);
5712 else
5713 serial_write (remote_desc, "\003", 1);
5714
5715 continue;
5716 }
5717
5718 /* Handle console input */
5719
5720 if (FD_ISSET (fileno (stdin), &input))
5721 {
5722 quit_count = 0;
5723 echo_check = 0;
5724 status = readtty ();
5725 if (status == READ_MORE)
5726 continue;
5727
5728 return status; /* telnet session ended */
5729 }
5730 }
5731 }
5732
5733 static ptid_t
5734 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5735 {
5736 if (minitelnet () != ENTER_DEBUG)
5737 {
5738 error ("Debugging session terminated by protocol error");
5739 }
5740 putpkt ("?");
5741 return remote_wait (ptid, status);
5742 }
5743
5744 static void
5745 init_remote_cisco_ops (void)
5746 {
5747 remote_cisco_ops.to_shortname = "cisco";
5748 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5749 remote_cisco_ops.to_doc =
5750 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5751 Specify the serial device it is connected to (e.g. host:2020).";
5752 remote_cisco_ops.to_open = remote_cisco_open;
5753 remote_cisco_ops.to_close = remote_cisco_close;
5754 remote_cisco_ops.to_detach = remote_detach;
5755 remote_cisco_ops.to_resume = remote_resume;
5756 remote_cisco_ops.to_wait = remote_cisco_wait;
5757 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5758 remote_cisco_ops.to_store_registers = remote_store_registers;
5759 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5760 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5761 remote_cisco_ops.to_files_info = remote_files_info;
5762 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5763 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5764 remote_cisco_ops.to_kill = remote_kill;
5765 remote_cisco_ops.to_load = generic_load;
5766 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5767 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5768 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5769 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5770 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5771 remote_cisco_ops.to_stratum = process_stratum;
5772 remote_cisco_ops.to_has_all_memory = 1;
5773 remote_cisco_ops.to_has_memory = 1;
5774 remote_cisco_ops.to_has_stack = 1;
5775 remote_cisco_ops.to_has_registers = 1;
5776 remote_cisco_ops.to_has_execution = 1;
5777 remote_cisco_ops.to_magic = OPS_MAGIC;
5778 }
5779
5780 static int
5781 remote_can_async_p (void)
5782 {
5783 /* We're async whenever the serial device is. */
5784 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5785 }
5786
5787 static int
5788 remote_is_async_p (void)
5789 {
5790 /* We're async whenever the serial device is. */
5791 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5792 }
5793
5794 /* Pass the SERIAL event on and up to the client. One day this code
5795 will be able to delay notifying the client of an event until the
5796 point where an entire packet has been received. */
5797
5798 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5799 static void *async_client_context;
5800 static serial_event_ftype remote_async_serial_handler;
5801
5802 static void
5803 remote_async_serial_handler (struct serial *scb, void *context)
5804 {
5805 /* Don't propogate error information up to the client. Instead let
5806 the client find out about the error by querying the target. */
5807 async_client_callback (INF_REG_EVENT, async_client_context);
5808 }
5809
5810 static void
5811 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5812 {
5813 if (current_target.to_async_mask_value == 0)
5814 internal_error (__FILE__, __LINE__,
5815 "Calling remote_async when async is masked");
5816
5817 if (callback != NULL)
5818 {
5819 serial_async (remote_desc, remote_async_serial_handler, NULL);
5820 async_client_callback = callback;
5821 async_client_context = context;
5822 }
5823 else
5824 serial_async (remote_desc, NULL, NULL);
5825 }
5826
5827 /* Target async and target extended-async.
5828
5829 This are temporary targets, until it is all tested. Eventually
5830 async support will be incorporated int the usual 'remote'
5831 target. */
5832
5833 static void
5834 init_remote_async_ops (void)
5835 {
5836 remote_async_ops.to_shortname = "async";
5837 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5838 remote_async_ops.to_doc =
5839 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5840 Specify the serial device it is connected to (e.g. /dev/ttya).";
5841 remote_async_ops.to_open = remote_async_open;
5842 remote_async_ops.to_close = remote_close;
5843 remote_async_ops.to_detach = remote_async_detach;
5844 remote_async_ops.to_resume = remote_async_resume;
5845 remote_async_ops.to_wait = remote_async_wait;
5846 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5847 remote_async_ops.to_store_registers = remote_store_registers;
5848 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5849 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5850 remote_async_ops.to_files_info = remote_files_info;
5851 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5852 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5853 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5854 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5855 remote_async_ops.to_kill = remote_async_kill;
5856 remote_async_ops.to_load = generic_load;
5857 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5858 remote_async_ops.to_thread_alive = remote_thread_alive;
5859 remote_async_ops.to_find_new_threads = remote_threads_info;
5860 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5861 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5862 remote_async_ops.to_stop = remote_stop;
5863 remote_async_ops.to_query = remote_query;
5864 remote_async_ops.to_rcmd = remote_rcmd;
5865 remote_async_ops.to_stratum = process_stratum;
5866 remote_async_ops.to_has_all_memory = 1;
5867 remote_async_ops.to_has_memory = 1;
5868 remote_async_ops.to_has_stack = 1;
5869 remote_async_ops.to_has_registers = 1;
5870 remote_async_ops.to_has_execution = 1;
5871 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5872 remote_async_ops.to_can_async_p = remote_can_async_p;
5873 remote_async_ops.to_is_async_p = remote_is_async_p;
5874 remote_async_ops.to_async = remote_async;
5875 remote_async_ops.to_async_mask_value = 1;
5876 remote_async_ops.to_magic = OPS_MAGIC;
5877 }
5878
5879 /* Set up the async extended remote vector by making a copy of the standard
5880 remote vector and adding to it. */
5881
5882 static void
5883 init_extended_async_remote_ops (void)
5884 {
5885 extended_async_remote_ops = remote_async_ops;
5886
5887 extended_async_remote_ops.to_shortname = "extended-async";
5888 extended_async_remote_ops.to_longname =
5889 "Extended remote serial target in async gdb-specific protocol";
5890 extended_async_remote_ops.to_doc =
5891 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5892 Specify the serial device it is connected to (e.g. /dev/ttya).",
5893 extended_async_remote_ops.to_open = extended_remote_async_open;
5894 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5895 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5896 }
5897
5898 static void
5899 set_remote_cmd (char *args, int from_tty)
5900 {
5901 }
5902
5903 static void
5904 show_remote_cmd (char *args, int from_tty)
5905 {
5906
5907 show_remote_protocol_Z_packet_cmd (args, from_tty);
5908 show_remote_protocol_e_packet_cmd (args, from_tty);
5909 show_remote_protocol_E_packet_cmd (args, from_tty);
5910 show_remote_protocol_P_packet_cmd (args, from_tty);
5911 show_remote_protocol_qSymbol_packet_cmd (args, from_tty);
5912 show_remote_protocol_binary_download_cmd (args, from_tty);
5913 }
5914
5915 static void
5916 build_remote_gdbarch_data (void)
5917 {
5918 remote_address_size = TARGET_ADDR_BIT;
5919 }
5920
5921 /* Saved pointer to previous owner of the new_objfile event. */
5922 static void (*remote_new_objfile_chain) (struct objfile *);
5923
5924 /* Function to be called whenever a new objfile (shlib) is detected. */
5925 static void
5926 remote_new_objfile (struct objfile *objfile)
5927 {
5928 if (remote_desc != 0) /* Have a remote connection */
5929 {
5930 remote_check_symbols (objfile);
5931 }
5932 /* Call predecessor on chain, if any. */
5933 if (remote_new_objfile_chain != 0 &&
5934 remote_desc == 0)
5935 remote_new_objfile_chain (objfile);
5936 }
5937
5938 void
5939 _initialize_remote (void)
5940 {
5941 static struct cmd_list_element *remote_set_cmdlist;
5942 static struct cmd_list_element *remote_show_cmdlist;
5943 struct cmd_list_element *tmpcmd;
5944
5945 /* architecture specific data */
5946 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
5947 free_remote_state);
5948
5949 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5950 that the remote protocol has been initialized. */
5951 register_gdbarch_swap (&remote_address_size,
5952 sizeof (&remote_address_size), NULL);
5953 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5954
5955 init_remote_ops ();
5956 add_target (&remote_ops);
5957
5958 init_extended_remote_ops ();
5959 add_target (&extended_remote_ops);
5960
5961 init_remote_async_ops ();
5962 add_target (&remote_async_ops);
5963
5964 init_extended_async_remote_ops ();
5965 add_target (&extended_async_remote_ops);
5966
5967 init_remote_cisco_ops ();
5968 add_target (&remote_cisco_ops);
5969
5970 /* Hook into new objfile notification. */
5971 remote_new_objfile_chain = target_new_objfile_hook;
5972 target_new_objfile_hook = remote_new_objfile;
5973
5974 #if 0
5975 init_remote_threadtests ();
5976 #endif
5977
5978 /* set/show remote ... */
5979
5980 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5981 Remote protocol specific variables\n\
5982 Configure various remote-protocol specific variables such as\n\
5983 the packets being used",
5984 &remote_set_cmdlist, "set remote ",
5985 0/*allow-unknown*/, &setlist);
5986 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5987 Remote protocol specific variables\n\
5988 Configure various remote-protocol specific variables such as\n\
5989 the packets being used",
5990 &remote_show_cmdlist, "show remote ",
5991 0/*allow-unknown*/, &showlist);
5992
5993 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5994 "Compare section data on target to the exec file.\n\
5995 Argument is a single section name (default: all loaded sections).",
5996 &cmdlist);
5997
5998 add_cmd ("packet", class_maintenance, packet_command,
5999 "Send an arbitrary packet to a remote target.\n\
6000 maintenance packet TEXT\n\
6001 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6002 this command sends the string TEXT to the inferior, and displays the\n\
6003 response packet. GDB supplies the initial `$' character, and the\n\
6004 terminating `#' character and checksum.",
6005 &maintenancelist);
6006
6007 add_show_from_set
6008 (add_set_boolean_cmd ("remotebreak", no_class, &remote_break,
6009 "Set whether to send break if interrupted.\n",
6010 &setlist),
6011 &showlist);
6012
6013 /* Install commands for configuring memory read/write packets. */
6014
6015 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6016 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6017 &setlist);
6018 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6019 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6020 &showlist);
6021 add_cmd ("memory-write-packet-size", no_class,
6022 set_memory_write_packet_size,
6023 "Set the maximum number of bytes per memory-write packet.\n"
6024 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6025 "default packet size. The actual limit is further reduced\n"
6026 "dependent on the target. Specify ``fixed'' to disable the\n"
6027 "further restriction and ``limit'' to enable that restriction\n",
6028 &remote_set_cmdlist);
6029 add_cmd ("memory-read-packet-size", no_class,
6030 set_memory_read_packet_size,
6031 "Set the maximum number of bytes per memory-read packet.\n"
6032 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6033 "default packet size. The actual limit is further reduced\n"
6034 "dependent on the target. Specify ``fixed'' to disable the\n"
6035 "further restriction and ``limit'' to enable that restriction\n",
6036 &remote_set_cmdlist);
6037 add_cmd ("memory-write-packet-size", no_class,
6038 show_memory_write_packet_size,
6039 "Show the maximum number of bytes per memory-write packet.\n",
6040 &remote_show_cmdlist);
6041 add_cmd ("memory-read-packet-size", no_class,
6042 show_memory_read_packet_size,
6043 "Show the maximum number of bytes per memory-read packet.\n",
6044 &remote_show_cmdlist);
6045
6046 add_show_from_set
6047 (add_set_cmd ("remoteaddresssize", class_obscure,
6048 var_integer, (char *) &remote_address_size,
6049 "Set the maximum size of the address (in bits) \
6050 in a memory packet.\n",
6051 &setlist),
6052 &showlist);
6053
6054 add_packet_config_cmd (&remote_protocol_binary_download,
6055 "X", "binary-download",
6056 set_remote_protocol_binary_download_cmd,
6057 show_remote_protocol_binary_download_cmd,
6058 &remote_set_cmdlist, &remote_show_cmdlist,
6059 1);
6060 #if 0
6061 /* XXXX - should ``set remotebinarydownload'' be retained for
6062 compatibility. */
6063 add_show_from_set
6064 (add_set_cmd ("remotebinarydownload", no_class,
6065 var_boolean, (char *) &remote_binary_download,
6066 "Set binary downloads.\n", &setlist),
6067 &showlist);
6068 #endif
6069
6070 add_info ("remote-process", remote_info_process,
6071 "Query the remote system for process info.");
6072
6073 add_packet_config_cmd (&remote_protocol_qSymbol,
6074 "qSymbol", "symbol-lookup",
6075 set_remote_protocol_qSymbol_packet_cmd,
6076 show_remote_protocol_qSymbol_packet_cmd,
6077 &remote_set_cmdlist, &remote_show_cmdlist,
6078 0);
6079
6080 add_packet_config_cmd (&remote_protocol_e,
6081 "e", "step-over-range",
6082 set_remote_protocol_e_packet_cmd,
6083 show_remote_protocol_e_packet_cmd,
6084 &remote_set_cmdlist, &remote_show_cmdlist,
6085 0);
6086
6087 add_packet_config_cmd (&remote_protocol_E,
6088 "E", "step-over-range-w-signal",
6089 set_remote_protocol_E_packet_cmd,
6090 show_remote_protocol_E_packet_cmd,
6091 &remote_set_cmdlist, &remote_show_cmdlist,
6092 0);
6093
6094 add_packet_config_cmd (&remote_protocol_P,
6095 "P", "set-register",
6096 set_remote_protocol_P_packet_cmd,
6097 show_remote_protocol_P_packet_cmd,
6098 &remote_set_cmdlist, &remote_show_cmdlist,
6099 1);
6100
6101 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6102 "Z0", "software-breakpoint",
6103 set_remote_protocol_Z_software_bp_packet_cmd,
6104 show_remote_protocol_Z_software_bp_packet_cmd,
6105 &remote_set_cmdlist, &remote_show_cmdlist,
6106 0);
6107
6108 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6109 "Z1", "hardware-breakpoint",
6110 set_remote_protocol_Z_hardware_bp_packet_cmd,
6111 show_remote_protocol_Z_hardware_bp_packet_cmd,
6112 &remote_set_cmdlist, &remote_show_cmdlist,
6113 0);
6114
6115 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6116 "Z2", "write-watchpoint",
6117 set_remote_protocol_Z_write_wp_packet_cmd,
6118 show_remote_protocol_Z_write_wp_packet_cmd,
6119 &remote_set_cmdlist, &remote_show_cmdlist,
6120 0);
6121
6122 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6123 "Z3", "read-watchpoint",
6124 set_remote_protocol_Z_read_wp_packet_cmd,
6125 show_remote_protocol_Z_read_wp_packet_cmd,
6126 &remote_set_cmdlist, &remote_show_cmdlist,
6127 0);
6128
6129 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6130 "Z4", "access-watchpoint",
6131 set_remote_protocol_Z_access_wp_packet_cmd,
6132 show_remote_protocol_Z_access_wp_packet_cmd,
6133 &remote_set_cmdlist, &remote_show_cmdlist,
6134 0);
6135
6136 /* Keep the old ``set remote Z-packet ...'' working. */
6137 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
6138 &remote_Z_packet_detect,
6139 "\
6140 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
6141 tmpcmd->function.sfunc = set_remote_protocol_Z_packet_cmd;
6142 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
6143 "Show use of remote protocol `Z' packets ",
6144 &remote_show_cmdlist);
6145 }
This page took 0.155377 seconds and 4 git commands to generate.