bf7568cb4d575dffbe94905194f0766a81eccd39
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* temp hacks for tracepoint encoding migration */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, char ***tdp_actions,
76 char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static unsigned long crc32 (unsigned char *, int, unsigned int);
177
178 static void compare_sections_command (char *, int);
179
180 static void packet_command (char *, int);
181
182 static int stub_unpack_int (char *buff, int fieldlength);
183
184 static ptid_t remote_current_thread (ptid_t oldptid);
185
186 static void remote_find_new_threads (void);
187
188 static void record_currthread (ptid_t currthread);
189
190 static int fromhex (int a);
191
192 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
193
194 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
195
196 static int putpkt_binary (char *buf, int cnt);
197
198 static void check_binary_download (CORE_ADDR addr);
199
200 struct packet_config;
201
202 static void show_packet_config_cmd (struct packet_config *config);
203
204 static void update_packet_config (struct packet_config *config);
205
206 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
207 struct cmd_list_element *c);
208
209 static void show_remote_protocol_packet_cmd (struct ui_file *file,
210 int from_tty,
211 struct cmd_list_element *c,
212 const char *value);
213
214 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
215 static ptid_t read_ptid (char *buf, char **obuf);
216
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224 static void remote_query_supported (void);
225
226 static void remote_check_symbols (struct objfile *objfile);
227
228 void _initialize_remote (void);
229
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242
243 static void remote_terminal_ours (void);
244
245 static int remote_read_description_p (struct target_ops *target);
246
247 /* The non-stop remote protocol provisions for one pending stop reply.
248 This is where we keep it until it is acknowledged. */
249
250 static struct stop_reply *pending_stop_reply = NULL;
251
252 /* For "remote". */
253
254 static struct cmd_list_element *remote_cmdlist;
255
256 /* For "set remote" and "show remote". */
257
258 static struct cmd_list_element *remote_set_cmdlist;
259 static struct cmd_list_element *remote_show_cmdlist;
260
261 /* Description of the remote protocol state for the currently
262 connected target. This is per-target state, and independent of the
263 selected architecture. */
264
265 struct remote_state
266 {
267 /* A buffer to use for incoming packets, and its current size. The
268 buffer is grown dynamically for larger incoming packets.
269 Outgoing packets may also be constructed in this buffer.
270 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
271 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
272 packets. */
273 char *buf;
274 long buf_size;
275
276 /* If we negotiated packet size explicitly (and thus can bypass
277 heuristics for the largest packet size that will not overflow
278 a buffer in the stub), this will be set to that packet size.
279 Otherwise zero, meaning to use the guessed size. */
280 long explicit_packet_size;
281
282 /* remote_wait is normally called when the target is running and
283 waits for a stop reply packet. But sometimes we need to call it
284 when the target is already stopped. We can send a "?" packet
285 and have remote_wait read the response. Or, if we already have
286 the response, we can stash it in BUF and tell remote_wait to
287 skip calling getpkt. This flag is set when BUF contains a
288 stop reply packet and the target is not waiting. */
289 int cached_wait_status;
290
291 /* True, if in no ack mode. That is, neither GDB nor the stub will
292 expect acks from each other. The connection is assumed to be
293 reliable. */
294 int noack_mode;
295
296 /* True if we're connected in extended remote mode. */
297 int extended;
298
299 /* True if the stub reported support for multi-process
300 extensions. */
301 int multi_process_aware;
302
303 /* True if we resumed the target and we're waiting for the target to
304 stop. In the mean time, we can't start another command/query.
305 The remote server wouldn't be ready to process it, so we'd
306 timeout waiting for a reply that would never come and eventually
307 we'd close the connection. This can happen in asynchronous mode
308 because we allow GDB commands while the target is running. */
309 int waiting_for_stop_reply;
310
311 /* True if the stub reports support for non-stop mode. */
312 int non_stop_aware;
313
314 /* True if the stub reports support for vCont;t. */
315 int support_vCont_t;
316
317 /* True if the stub reports support for conditional tracepoints. */
318 int cond_tracepoints;
319
320 /* True if the stub reports support for fast tracepoints. */
321 int fast_tracepoints;
322
323 /* True if the stub can continue running a trace while GDB is
324 disconnected. */
325 int disconnected_tracing;
326
327 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
328 responded to that. */
329 int ctrlc_pending_p;
330 };
331
332 /* Private data that we'll store in (struct thread_info)->private. */
333 struct private_thread_info
334 {
335 char *extra;
336 int core;
337 };
338
339 static void
340 free_private_thread_info (struct private_thread_info *info)
341 {
342 xfree (info->extra);
343 xfree (info);
344 }
345
346 /* Returns true if the multi-process extensions are in effect. */
347 static int
348 remote_multi_process_p (struct remote_state *rs)
349 {
350 return rs->extended && rs->multi_process_aware;
351 }
352
353 /* This data could be associated with a target, but we do not always
354 have access to the current target when we need it, so for now it is
355 static. This will be fine for as long as only one target is in use
356 at a time. */
357 static struct remote_state remote_state;
358
359 static struct remote_state *
360 get_remote_state_raw (void)
361 {
362 return &remote_state;
363 }
364
365 /* Description of the remote protocol for a given architecture. */
366
367 struct packet_reg
368 {
369 long offset; /* Offset into G packet. */
370 long regnum; /* GDB's internal register number. */
371 LONGEST pnum; /* Remote protocol register number. */
372 int in_g_packet; /* Always part of G packet. */
373 /* long size in bytes; == register_size (target_gdbarch, regnum);
374 at present. */
375 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
376 at present. */
377 };
378
379 struct remote_arch_state
380 {
381 /* Description of the remote protocol registers. */
382 long sizeof_g_packet;
383
384 /* Description of the remote protocol registers indexed by REGNUM
385 (making an array gdbarch_num_regs in size). */
386 struct packet_reg *regs;
387
388 /* This is the size (in chars) of the first response to the ``g''
389 packet. It is used as a heuristic when determining the maximum
390 size of memory-read and memory-write packets. A target will
391 typically only reserve a buffer large enough to hold the ``g''
392 packet. The size does not include packet overhead (headers and
393 trailers). */
394 long actual_register_packet_size;
395
396 /* This is the maximum size (in chars) of a non read/write packet.
397 It is also used as a cap on the size of read/write packets. */
398 long remote_packet_size;
399 };
400
401 long sizeof_pkt = 2000;
402
403 /* Utility: generate error from an incoming stub packet. */
404 static void
405 trace_error (char *buf)
406 {
407 if (*buf++ != 'E')
408 return; /* not an error msg */
409 switch (*buf)
410 {
411 case '1': /* malformed packet error */
412 if (*++buf == '0') /* general case: */
413 error (_("remote.c: error in outgoing packet."));
414 else
415 error (_("remote.c: error in outgoing packet at field #%ld."),
416 strtol (buf, NULL, 16));
417 case '2':
418 error (_("trace API error 0x%s."), ++buf);
419 default:
420 error (_("Target returns error code '%s'."), buf);
421 }
422 }
423
424 /* Utility: wait for reply from stub, while accepting "O" packets. */
425 static char *
426 remote_get_noisy_reply (char **buf_p,
427 long *sizeof_buf)
428 {
429 do /* Loop on reply from remote stub. */
430 {
431 char *buf;
432 QUIT; /* allow user to bail out with ^C */
433 getpkt (buf_p, sizeof_buf, 0);
434 buf = *buf_p;
435 if (buf[0] == 0)
436 error (_("Target does not support this command."));
437 else if (buf[0] == 'E')
438 trace_error (buf);
439 else if (buf[0] == 'O' &&
440 buf[1] != 'K')
441 remote_console_output (buf + 1); /* 'O' message from stub */
442 else
443 return buf; /* here's the actual reply */
444 }
445 while (1);
446 }
447
448 /* Handle for retreving the remote protocol data from gdbarch. */
449 static struct gdbarch_data *remote_gdbarch_data_handle;
450
451 static struct remote_arch_state *
452 get_remote_arch_state (void)
453 {
454 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
455 }
456
457 /* Fetch the global remote target state. */
458
459 static struct remote_state *
460 get_remote_state (void)
461 {
462 /* Make sure that the remote architecture state has been
463 initialized, because doing so might reallocate rs->buf. Any
464 function which calls getpkt also needs to be mindful of changes
465 to rs->buf, but this call limits the number of places which run
466 into trouble. */
467 get_remote_arch_state ();
468
469 return get_remote_state_raw ();
470 }
471
472 static int
473 compare_pnums (const void *lhs_, const void *rhs_)
474 {
475 const struct packet_reg * const *lhs = lhs_;
476 const struct packet_reg * const *rhs = rhs_;
477
478 if ((*lhs)->pnum < (*rhs)->pnum)
479 return -1;
480 else if ((*lhs)->pnum == (*rhs)->pnum)
481 return 0;
482 else
483 return 1;
484 }
485
486 static void *
487 init_remote_state (struct gdbarch *gdbarch)
488 {
489 int regnum, num_remote_regs, offset;
490 struct remote_state *rs = get_remote_state_raw ();
491 struct remote_arch_state *rsa;
492 struct packet_reg **remote_regs;
493
494 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
495
496 /* Use the architecture to build a regnum<->pnum table, which will be
497 1:1 unless a feature set specifies otherwise. */
498 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
499 gdbarch_num_regs (gdbarch),
500 struct packet_reg);
501 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
502 {
503 struct packet_reg *r = &rsa->regs[regnum];
504
505 if (register_size (gdbarch, regnum) == 0)
506 /* Do not try to fetch zero-sized (placeholder) registers. */
507 r->pnum = -1;
508 else
509 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
510
511 r->regnum = regnum;
512 }
513
514 /* Define the g/G packet format as the contents of each register
515 with a remote protocol number, in order of ascending protocol
516 number. */
517
518 remote_regs = alloca (gdbarch_num_regs (gdbarch)
519 * sizeof (struct packet_reg *));
520 for (num_remote_regs = 0, regnum = 0;
521 regnum < gdbarch_num_regs (gdbarch);
522 regnum++)
523 if (rsa->regs[regnum].pnum != -1)
524 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
525
526 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
527 compare_pnums);
528
529 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
530 {
531 remote_regs[regnum]->in_g_packet = 1;
532 remote_regs[regnum]->offset = offset;
533 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
534 }
535
536 /* Record the maximum possible size of the g packet - it may turn out
537 to be smaller. */
538 rsa->sizeof_g_packet = offset;
539
540 /* Default maximum number of characters in a packet body. Many
541 remote stubs have a hardwired buffer size of 400 bytes
542 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
543 as the maximum packet-size to ensure that the packet and an extra
544 NUL character can always fit in the buffer. This stops GDB
545 trashing stubs that try to squeeze an extra NUL into what is
546 already a full buffer (As of 1999-12-04 that was most stubs). */
547 rsa->remote_packet_size = 400 - 1;
548
549 /* This one is filled in when a ``g'' packet is received. */
550 rsa->actual_register_packet_size = 0;
551
552 /* Should rsa->sizeof_g_packet needs more space than the
553 default, adjust the size accordingly. Remember that each byte is
554 encoded as two characters. 32 is the overhead for the packet
555 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
556 (``$NN:G...#NN'') is a better guess, the below has been padded a
557 little. */
558 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
559 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
560
561 /* Make sure that the packet buffer is plenty big enough for
562 this architecture. */
563 if (rs->buf_size < rsa->remote_packet_size)
564 {
565 rs->buf_size = 2 * rsa->remote_packet_size;
566 rs->buf = xrealloc (rs->buf, rs->buf_size);
567 }
568
569 return rsa;
570 }
571
572 /* Return the current allowed size of a remote packet. This is
573 inferred from the current architecture, and should be used to
574 limit the length of outgoing packets. */
575 static long
576 get_remote_packet_size (void)
577 {
578 struct remote_state *rs = get_remote_state ();
579 struct remote_arch_state *rsa = get_remote_arch_state ();
580
581 if (rs->explicit_packet_size)
582 return rs->explicit_packet_size;
583
584 return rsa->remote_packet_size;
585 }
586
587 static struct packet_reg *
588 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
589 {
590 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
591 return NULL;
592 else
593 {
594 struct packet_reg *r = &rsa->regs[regnum];
595 gdb_assert (r->regnum == regnum);
596 return r;
597 }
598 }
599
600 static struct packet_reg *
601 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
602 {
603 int i;
604 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
605 {
606 struct packet_reg *r = &rsa->regs[i];
607 if (r->pnum == pnum)
608 return r;
609 }
610 return NULL;
611 }
612
613 /* FIXME: graces/2002-08-08: These variables should eventually be
614 bound to an instance of the target object (as in gdbarch-tdep()),
615 when such a thing exists. */
616
617 /* This is set to the data address of the access causing the target
618 to stop for a watchpoint. */
619 static CORE_ADDR remote_watch_data_address;
620
621 /* This is non-zero if target stopped for a watchpoint. */
622 static int remote_stopped_by_watchpoint_p;
623
624 static struct target_ops remote_ops;
625
626 static struct target_ops extended_remote_ops;
627
628 static int remote_async_mask_value = 1;
629
630 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
631 ``forever'' still use the normal timeout mechanism. This is
632 currently used by the ASYNC code to guarentee that target reads
633 during the initial connect always time-out. Once getpkt has been
634 modified to return a timeout indication and, in turn
635 remote_wait()/wait_for_inferior() have gained a timeout parameter
636 this can go away. */
637 static int wait_forever_enabled_p = 1;
638
639 /* Allow the user to specify what sequence to send to the remote
640 when he requests a program interruption: Although ^C is usually
641 what remote systems expect (this is the default, here), it is
642 sometimes preferable to send a break. On other systems such
643 as the Linux kernel, a break followed by g, which is Magic SysRq g
644 is required in order to interrupt the execution. */
645 const char interrupt_sequence_control_c[] = "Ctrl-C";
646 const char interrupt_sequence_break[] = "BREAK";
647 const char interrupt_sequence_break_g[] = "BREAK-g";
648 static const char *interrupt_sequence_modes[] =
649 {
650 interrupt_sequence_control_c,
651 interrupt_sequence_break,
652 interrupt_sequence_break_g,
653 NULL
654 };
655 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
656
657 static void
658 show_interrupt_sequence (struct ui_file *file, int from_tty,
659 struct cmd_list_element *c,
660 const char *value)
661 {
662 if (interrupt_sequence_mode == interrupt_sequence_control_c)
663 fprintf_filtered (file,
664 _("Send the ASCII ETX character (Ctrl-c) "
665 "to the remote target to interrupt the "
666 "execution of the program.\n"));
667 else if (interrupt_sequence_mode == interrupt_sequence_break)
668 fprintf_filtered (file,
669 _("send a break signal to the remote target "
670 "to interrupt the execution of the program.\n"));
671 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
672 fprintf_filtered (file,
673 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
674 "the remote target to interrupt the execution "
675 "of Linux kernel.\n"));
676 else
677 internal_error (__FILE__, __LINE__,
678 _("Invalid value for interrupt_sequence_mode: %s."),
679 interrupt_sequence_mode);
680 }
681
682 /* This boolean variable specifies whether interrupt_sequence is sent
683 to the remote target when gdb connects to it.
684 This is mostly needed when you debug the Linux kernel: The Linux kernel
685 expects BREAK g which is Magic SysRq g for connecting gdb. */
686 static int interrupt_on_connect = 0;
687
688 /* This variable is used to implement the "set/show remotebreak" commands.
689 Since these commands are now deprecated in favor of "set/show remote
690 interrupt-sequence", it no longer has any effect on the code. */
691 static int remote_break;
692
693 static void
694 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
695 {
696 if (remote_break)
697 interrupt_sequence_mode = interrupt_sequence_break;
698 else
699 interrupt_sequence_mode = interrupt_sequence_control_c;
700 }
701
702 static void
703 show_remotebreak (struct ui_file *file, int from_tty,
704 struct cmd_list_element *c,
705 const char *value)
706 {
707 }
708
709 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
710 remote_open knows that we don't have a file open when the program
711 starts. */
712 static struct serial *remote_desc = NULL;
713
714 /* This variable sets the number of bits in an address that are to be
715 sent in a memory ("M" or "m") packet. Normally, after stripping
716 leading zeros, the entire address would be sent. This variable
717 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
718 initial implementation of remote.c restricted the address sent in
719 memory packets to ``host::sizeof long'' bytes - (typically 32
720 bits). Consequently, for 64 bit targets, the upper 32 bits of an
721 address was never sent. Since fixing this bug may cause a break in
722 some remote targets this variable is principly provided to
723 facilitate backward compatibility. */
724
725 static int remote_address_size;
726
727 /* Temporary to track who currently owns the terminal. See
728 remote_terminal_* for more details. */
729
730 static int remote_async_terminal_ours_p;
731
732 /* The executable file to use for "run" on the remote side. */
733
734 static char *remote_exec_file = "";
735
736 \f
737 /* User configurable variables for the number of characters in a
738 memory read/write packet. MIN (rsa->remote_packet_size,
739 rsa->sizeof_g_packet) is the default. Some targets need smaller
740 values (fifo overruns, et.al.) and some users need larger values
741 (speed up transfers). The variables ``preferred_*'' (the user
742 request), ``current_*'' (what was actually set) and ``forced_*''
743 (Positive - a soft limit, negative - a hard limit). */
744
745 struct memory_packet_config
746 {
747 char *name;
748 long size;
749 int fixed_p;
750 };
751
752 /* Compute the current size of a read/write packet. Since this makes
753 use of ``actual_register_packet_size'' the computation is dynamic. */
754
755 static long
756 get_memory_packet_size (struct memory_packet_config *config)
757 {
758 struct remote_state *rs = get_remote_state ();
759 struct remote_arch_state *rsa = get_remote_arch_state ();
760
761 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
762 law?) that some hosts don't cope very well with large alloca()
763 calls. Eventually the alloca() code will be replaced by calls to
764 xmalloc() and make_cleanups() allowing this restriction to either
765 be lifted or removed. */
766 #ifndef MAX_REMOTE_PACKET_SIZE
767 #define MAX_REMOTE_PACKET_SIZE 16384
768 #endif
769 /* NOTE: 20 ensures we can write at least one byte. */
770 #ifndef MIN_REMOTE_PACKET_SIZE
771 #define MIN_REMOTE_PACKET_SIZE 20
772 #endif
773 long what_they_get;
774 if (config->fixed_p)
775 {
776 if (config->size <= 0)
777 what_they_get = MAX_REMOTE_PACKET_SIZE;
778 else
779 what_they_get = config->size;
780 }
781 else
782 {
783 what_they_get = get_remote_packet_size ();
784 /* Limit the packet to the size specified by the user. */
785 if (config->size > 0
786 && what_they_get > config->size)
787 what_they_get = config->size;
788
789 /* Limit it to the size of the targets ``g'' response unless we have
790 permission from the stub to use a larger packet size. */
791 if (rs->explicit_packet_size == 0
792 && rsa->actual_register_packet_size > 0
793 && what_they_get > rsa->actual_register_packet_size)
794 what_they_get = rsa->actual_register_packet_size;
795 }
796 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
797 what_they_get = MAX_REMOTE_PACKET_SIZE;
798 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
799 what_they_get = MIN_REMOTE_PACKET_SIZE;
800
801 /* Make sure there is room in the global buffer for this packet
802 (including its trailing NUL byte). */
803 if (rs->buf_size < what_they_get + 1)
804 {
805 rs->buf_size = 2 * what_they_get;
806 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
807 }
808
809 return what_they_get;
810 }
811
812 /* Update the size of a read/write packet. If they user wants
813 something really big then do a sanity check. */
814
815 static void
816 set_memory_packet_size (char *args, struct memory_packet_config *config)
817 {
818 int fixed_p = config->fixed_p;
819 long size = config->size;
820 if (args == NULL)
821 error (_("Argument required (integer, `fixed' or `limited')."));
822 else if (strcmp (args, "hard") == 0
823 || strcmp (args, "fixed") == 0)
824 fixed_p = 1;
825 else if (strcmp (args, "soft") == 0
826 || strcmp (args, "limit") == 0)
827 fixed_p = 0;
828 else
829 {
830 char *end;
831 size = strtoul (args, &end, 0);
832 if (args == end)
833 error (_("Invalid %s (bad syntax)."), config->name);
834 #if 0
835 /* Instead of explicitly capping the size of a packet to
836 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
837 instead allowed to set the size to something arbitrarily
838 large. */
839 if (size > MAX_REMOTE_PACKET_SIZE)
840 error (_("Invalid %s (too large)."), config->name);
841 #endif
842 }
843 /* Extra checks? */
844 if (fixed_p && !config->fixed_p)
845 {
846 if (! query (_("The target may not be able to correctly handle a %s\n"
847 "of %ld bytes. Change the packet size? "),
848 config->name, size))
849 error (_("Packet size not changed."));
850 }
851 /* Update the config. */
852 config->fixed_p = fixed_p;
853 config->size = size;
854 }
855
856 static void
857 show_memory_packet_size (struct memory_packet_config *config)
858 {
859 printf_filtered (_("The %s is %ld. "), config->name, config->size);
860 if (config->fixed_p)
861 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
862 get_memory_packet_size (config));
863 else
864 printf_filtered (_("Packets are limited to %ld bytes.\n"),
865 get_memory_packet_size (config));
866 }
867
868 static struct memory_packet_config memory_write_packet_config =
869 {
870 "memory-write-packet-size",
871 };
872
873 static void
874 set_memory_write_packet_size (char *args, int from_tty)
875 {
876 set_memory_packet_size (args, &memory_write_packet_config);
877 }
878
879 static void
880 show_memory_write_packet_size (char *args, int from_tty)
881 {
882 show_memory_packet_size (&memory_write_packet_config);
883 }
884
885 static long
886 get_memory_write_packet_size (void)
887 {
888 return get_memory_packet_size (&memory_write_packet_config);
889 }
890
891 static struct memory_packet_config memory_read_packet_config =
892 {
893 "memory-read-packet-size",
894 };
895
896 static void
897 set_memory_read_packet_size (char *args, int from_tty)
898 {
899 set_memory_packet_size (args, &memory_read_packet_config);
900 }
901
902 static void
903 show_memory_read_packet_size (char *args, int from_tty)
904 {
905 show_memory_packet_size (&memory_read_packet_config);
906 }
907
908 static long
909 get_memory_read_packet_size (void)
910 {
911 long size = get_memory_packet_size (&memory_read_packet_config);
912 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
913 extra buffer size argument before the memory read size can be
914 increased beyond this. */
915 if (size > get_remote_packet_size ())
916 size = get_remote_packet_size ();
917 return size;
918 }
919
920 \f
921 /* Generic configuration support for packets the stub optionally
922 supports. Allows the user to specify the use of the packet as well
923 as allowing GDB to auto-detect support in the remote stub. */
924
925 enum packet_support
926 {
927 PACKET_SUPPORT_UNKNOWN = 0,
928 PACKET_ENABLE,
929 PACKET_DISABLE
930 };
931
932 struct packet_config
933 {
934 const char *name;
935 const char *title;
936 enum auto_boolean detect;
937 enum packet_support support;
938 };
939
940 /* Analyze a packet's return value and update the packet config
941 accordingly. */
942
943 enum packet_result
944 {
945 PACKET_ERROR,
946 PACKET_OK,
947 PACKET_UNKNOWN
948 };
949
950 static void
951 update_packet_config (struct packet_config *config)
952 {
953 switch (config->detect)
954 {
955 case AUTO_BOOLEAN_TRUE:
956 config->support = PACKET_ENABLE;
957 break;
958 case AUTO_BOOLEAN_FALSE:
959 config->support = PACKET_DISABLE;
960 break;
961 case AUTO_BOOLEAN_AUTO:
962 config->support = PACKET_SUPPORT_UNKNOWN;
963 break;
964 }
965 }
966
967 static void
968 show_packet_config_cmd (struct packet_config *config)
969 {
970 char *support = "internal-error";
971 switch (config->support)
972 {
973 case PACKET_ENABLE:
974 support = "enabled";
975 break;
976 case PACKET_DISABLE:
977 support = "disabled";
978 break;
979 case PACKET_SUPPORT_UNKNOWN:
980 support = "unknown";
981 break;
982 }
983 switch (config->detect)
984 {
985 case AUTO_BOOLEAN_AUTO:
986 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
987 config->name, support);
988 break;
989 case AUTO_BOOLEAN_TRUE:
990 case AUTO_BOOLEAN_FALSE:
991 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
992 config->name, support);
993 break;
994 }
995 }
996
997 static void
998 add_packet_config_cmd (struct packet_config *config, const char *name,
999 const char *title, int legacy)
1000 {
1001 char *set_doc;
1002 char *show_doc;
1003 char *cmd_name;
1004
1005 config->name = name;
1006 config->title = title;
1007 config->detect = AUTO_BOOLEAN_AUTO;
1008 config->support = PACKET_SUPPORT_UNKNOWN;
1009 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1010 name, title);
1011 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
1012 name, title);
1013 /* set/show TITLE-packet {auto,on,off} */
1014 cmd_name = xstrprintf ("%s-packet", title);
1015 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1016 &config->detect, set_doc, show_doc, NULL, /* help_doc */
1017 set_remote_protocol_packet_cmd,
1018 show_remote_protocol_packet_cmd,
1019 &remote_set_cmdlist, &remote_show_cmdlist);
1020 /* The command code copies the documentation strings. */
1021 xfree (set_doc);
1022 xfree (show_doc);
1023 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1024 if (legacy)
1025 {
1026 char *legacy_name;
1027 legacy_name = xstrprintf ("%s-packet", name);
1028 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1029 &remote_set_cmdlist);
1030 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1031 &remote_show_cmdlist);
1032 }
1033 }
1034
1035 static enum packet_result
1036 packet_check_result (const char *buf)
1037 {
1038 if (buf[0] != '\0')
1039 {
1040 /* The stub recognized the packet request. Check that the
1041 operation succeeded. */
1042 if (buf[0] == 'E'
1043 && isxdigit (buf[1]) && isxdigit (buf[2])
1044 && buf[3] == '\0')
1045 /* "Enn" - definitly an error. */
1046 return PACKET_ERROR;
1047
1048 /* Always treat "E." as an error. This will be used for
1049 more verbose error messages, such as E.memtypes. */
1050 if (buf[0] == 'E' && buf[1] == '.')
1051 return PACKET_ERROR;
1052
1053 /* The packet may or may not be OK. Just assume it is. */
1054 return PACKET_OK;
1055 }
1056 else
1057 /* The stub does not support the packet. */
1058 return PACKET_UNKNOWN;
1059 }
1060
1061 static enum packet_result
1062 packet_ok (const char *buf, struct packet_config *config)
1063 {
1064 enum packet_result result;
1065
1066 result = packet_check_result (buf);
1067 switch (result)
1068 {
1069 case PACKET_OK:
1070 case PACKET_ERROR:
1071 /* The stub recognized the packet request. */
1072 switch (config->support)
1073 {
1074 case PACKET_SUPPORT_UNKNOWN:
1075 if (remote_debug)
1076 fprintf_unfiltered (gdb_stdlog,
1077 "Packet %s (%s) is supported\n",
1078 config->name, config->title);
1079 config->support = PACKET_ENABLE;
1080 break;
1081 case PACKET_DISABLE:
1082 internal_error (__FILE__, __LINE__,
1083 _("packet_ok: attempt to use a disabled packet"));
1084 break;
1085 case PACKET_ENABLE:
1086 break;
1087 }
1088 break;
1089 case PACKET_UNKNOWN:
1090 /* The stub does not support the packet. */
1091 switch (config->support)
1092 {
1093 case PACKET_ENABLE:
1094 if (config->detect == AUTO_BOOLEAN_AUTO)
1095 /* If the stub previously indicated that the packet was
1096 supported then there is a protocol error.. */
1097 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1098 config->name, config->title);
1099 else
1100 /* The user set it wrong. */
1101 error (_("Enabled packet %s (%s) not recognized by stub"),
1102 config->name, config->title);
1103 break;
1104 case PACKET_SUPPORT_UNKNOWN:
1105 if (remote_debug)
1106 fprintf_unfiltered (gdb_stdlog,
1107 "Packet %s (%s) is NOT supported\n",
1108 config->name, config->title);
1109 config->support = PACKET_DISABLE;
1110 break;
1111 case PACKET_DISABLE:
1112 break;
1113 }
1114 break;
1115 }
1116
1117 return result;
1118 }
1119
1120 enum {
1121 PACKET_vCont = 0,
1122 PACKET_X,
1123 PACKET_qSymbol,
1124 PACKET_P,
1125 PACKET_p,
1126 PACKET_Z0,
1127 PACKET_Z1,
1128 PACKET_Z2,
1129 PACKET_Z3,
1130 PACKET_Z4,
1131 PACKET_vFile_open,
1132 PACKET_vFile_pread,
1133 PACKET_vFile_pwrite,
1134 PACKET_vFile_close,
1135 PACKET_vFile_unlink,
1136 PACKET_qXfer_auxv,
1137 PACKET_qXfer_features,
1138 PACKET_qXfer_libraries,
1139 PACKET_qXfer_memory_map,
1140 PACKET_qXfer_spu_read,
1141 PACKET_qXfer_spu_write,
1142 PACKET_qXfer_osdata,
1143 PACKET_qXfer_threads,
1144 PACKET_qGetTLSAddr,
1145 PACKET_qSupported,
1146 PACKET_QPassSignals,
1147 PACKET_qSearch_memory,
1148 PACKET_vAttach,
1149 PACKET_vRun,
1150 PACKET_QStartNoAckMode,
1151 PACKET_vKill,
1152 PACKET_qXfer_siginfo_read,
1153 PACKET_qXfer_siginfo_write,
1154 PACKET_qAttached,
1155 PACKET_ConditionalTracepoints,
1156 PACKET_FastTracepoints,
1157 PACKET_bc,
1158 PACKET_bs,
1159 PACKET_MAX
1160 };
1161
1162 static struct packet_config remote_protocol_packets[PACKET_MAX];
1163
1164 static void
1165 set_remote_protocol_packet_cmd (char *args, int from_tty,
1166 struct cmd_list_element *c)
1167 {
1168 struct packet_config *packet;
1169
1170 for (packet = remote_protocol_packets;
1171 packet < &remote_protocol_packets[PACKET_MAX];
1172 packet++)
1173 {
1174 if (&packet->detect == c->var)
1175 {
1176 update_packet_config (packet);
1177 return;
1178 }
1179 }
1180 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1181 c->name);
1182 }
1183
1184 static void
1185 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1186 struct cmd_list_element *c,
1187 const char *value)
1188 {
1189 struct packet_config *packet;
1190
1191 for (packet = remote_protocol_packets;
1192 packet < &remote_protocol_packets[PACKET_MAX];
1193 packet++)
1194 {
1195 if (&packet->detect == c->var)
1196 {
1197 show_packet_config_cmd (packet);
1198 return;
1199 }
1200 }
1201 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1202 c->name);
1203 }
1204
1205 /* Should we try one of the 'Z' requests? */
1206
1207 enum Z_packet_type
1208 {
1209 Z_PACKET_SOFTWARE_BP,
1210 Z_PACKET_HARDWARE_BP,
1211 Z_PACKET_WRITE_WP,
1212 Z_PACKET_READ_WP,
1213 Z_PACKET_ACCESS_WP,
1214 NR_Z_PACKET_TYPES
1215 };
1216
1217 /* For compatibility with older distributions. Provide a ``set remote
1218 Z-packet ...'' command that updates all the Z packet types. */
1219
1220 static enum auto_boolean remote_Z_packet_detect;
1221
1222 static void
1223 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1224 struct cmd_list_element *c)
1225 {
1226 int i;
1227 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1228 {
1229 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1230 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1231 }
1232 }
1233
1234 static void
1235 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1236 struct cmd_list_element *c,
1237 const char *value)
1238 {
1239 int i;
1240 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1241 {
1242 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1243 }
1244 }
1245
1246 /* Should we try the 'ThreadInfo' query packet?
1247
1248 This variable (NOT available to the user: auto-detect only!)
1249 determines whether GDB will use the new, simpler "ThreadInfo"
1250 query or the older, more complex syntax for thread queries.
1251 This is an auto-detect variable (set to true at each connect,
1252 and set to false when the target fails to recognize it). */
1253
1254 static int use_threadinfo_query;
1255 static int use_threadextra_query;
1256
1257 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1258 static struct async_signal_handler *sigint_remote_twice_token;
1259 static struct async_signal_handler *sigint_remote_token;
1260
1261 \f
1262 /* Asynchronous signal handle registered as event loop source for
1263 when we have pending events ready to be passed to the core. */
1264
1265 static struct async_event_handler *remote_async_inferior_event_token;
1266
1267 /* Asynchronous signal handle registered as event loop source for when
1268 the remote sent us a %Stop notification. The registered callback
1269 will do a vStopped sequence to pull the rest of the events out of
1270 the remote side into our event queue. */
1271
1272 static struct async_event_handler *remote_async_get_pending_events_token;
1273 \f
1274
1275 static ptid_t magic_null_ptid;
1276 static ptid_t not_sent_ptid;
1277 static ptid_t any_thread_ptid;
1278
1279 /* These are the threads which we last sent to the remote system. The
1280 TID member will be -1 for all or -2 for not sent yet. */
1281
1282 static ptid_t general_thread;
1283 static ptid_t continue_thread;
1284
1285 /* Find out if the stub attached to PID (and hence GDB should offer to
1286 detach instead of killing it when bailing out). */
1287
1288 static int
1289 remote_query_attached (int pid)
1290 {
1291 struct remote_state *rs = get_remote_state ();
1292
1293 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1294 return 0;
1295
1296 if (remote_multi_process_p (rs))
1297 sprintf (rs->buf, "qAttached:%x", pid);
1298 else
1299 sprintf (rs->buf, "qAttached");
1300
1301 putpkt (rs->buf);
1302 getpkt (&rs->buf, &rs->buf_size, 0);
1303
1304 switch (packet_ok (rs->buf,
1305 &remote_protocol_packets[PACKET_qAttached]))
1306 {
1307 case PACKET_OK:
1308 if (strcmp (rs->buf, "1") == 0)
1309 return 1;
1310 break;
1311 case PACKET_ERROR:
1312 warning (_("Remote failure reply: %s"), rs->buf);
1313 break;
1314 case PACKET_UNKNOWN:
1315 break;
1316 }
1317
1318 return 0;
1319 }
1320
1321 /* Add PID to GDB's inferior table. Since we can be connected to a
1322 remote system before before knowing about any inferior, mark the
1323 target with execution when we find the first inferior. If ATTACHED
1324 is 1, then we had just attached to this inferior. If it is 0, then
1325 we just created this inferior. If it is -1, then try querying the
1326 remote stub to find out if it had attached to the inferior or
1327 not. */
1328
1329 static struct inferior *
1330 remote_add_inferior (int pid, int attached)
1331 {
1332 struct inferior *inf;
1333
1334 /* Check whether this process we're learning about is to be
1335 considered attached, or if is to be considered to have been
1336 spawned by the stub. */
1337 if (attached == -1)
1338 attached = remote_query_attached (pid);
1339
1340 if (gdbarch_has_global_solist (target_gdbarch))
1341 {
1342 /* If the target shares code across all inferiors, then every
1343 attach adds a new inferior. */
1344 inf = add_inferior (pid);
1345
1346 /* ... and every inferior is bound to the same program space.
1347 However, each inferior may still have its own address
1348 space. */
1349 inf->aspace = maybe_new_address_space ();
1350 inf->pspace = current_program_space;
1351 }
1352 else
1353 {
1354 /* In the traditional debugging scenario, there's a 1-1 match
1355 between program/address spaces. We simply bind the inferior
1356 to the program space's address space. */
1357 inf = current_inferior ();
1358 inferior_appeared (inf, pid);
1359 }
1360
1361 inf->attach_flag = attached;
1362
1363 return inf;
1364 }
1365
1366 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1367 according to RUNNING. */
1368
1369 static void
1370 remote_add_thread (ptid_t ptid, int running)
1371 {
1372 add_thread (ptid);
1373
1374 set_executing (ptid, running);
1375 set_running (ptid, running);
1376 }
1377
1378 /* Come here when we learn about a thread id from the remote target.
1379 It may be the first time we hear about such thread, so take the
1380 opportunity to add it to GDB's thread list. In case this is the
1381 first time we're noticing its corresponding inferior, add it to
1382 GDB's inferior list as well. */
1383
1384 static void
1385 remote_notice_new_inferior (ptid_t currthread, int running)
1386 {
1387 /* If this is a new thread, add it to GDB's thread list.
1388 If we leave it up to WFI to do this, bad things will happen. */
1389
1390 if (in_thread_list (currthread) && is_exited (currthread))
1391 {
1392 /* We're seeing an event on a thread id we knew had exited.
1393 This has to be a new thread reusing the old id. Add it. */
1394 remote_add_thread (currthread, running);
1395 return;
1396 }
1397
1398 if (!in_thread_list (currthread))
1399 {
1400 struct inferior *inf = NULL;
1401 int pid = ptid_get_pid (currthread);
1402
1403 if (ptid_is_pid (inferior_ptid)
1404 && pid == ptid_get_pid (inferior_ptid))
1405 {
1406 /* inferior_ptid has no thread member yet. This can happen
1407 with the vAttach -> remote_wait,"TAAthread:" path if the
1408 stub doesn't support qC. This is the first stop reported
1409 after an attach, so this is the main thread. Update the
1410 ptid in the thread list. */
1411 if (in_thread_list (pid_to_ptid (pid)))
1412 thread_change_ptid (inferior_ptid, currthread);
1413 else
1414 {
1415 remote_add_thread (currthread, running);
1416 inferior_ptid = currthread;
1417 }
1418 return;
1419 }
1420
1421 if (ptid_equal (magic_null_ptid, inferior_ptid))
1422 {
1423 /* inferior_ptid is not set yet. This can happen with the
1424 vRun -> remote_wait,"TAAthread:" path if the stub
1425 doesn't support qC. This is the first stop reported
1426 after an attach, so this is the main thread. Update the
1427 ptid in the thread list. */
1428 thread_change_ptid (inferior_ptid, currthread);
1429 return;
1430 }
1431
1432 /* When connecting to a target remote, or to a target
1433 extended-remote which already was debugging an inferior, we
1434 may not know about it yet. Add it before adding its child
1435 thread, so notifications are emitted in a sensible order. */
1436 if (!in_inferior_list (ptid_get_pid (currthread)))
1437 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1438
1439 /* This is really a new thread. Add it. */
1440 remote_add_thread (currthread, running);
1441
1442 /* If we found a new inferior, let the common code do whatever
1443 it needs to with it (e.g., read shared libraries, insert
1444 breakpoints). */
1445 if (inf != NULL)
1446 notice_new_inferior (currthread, running, 0);
1447 }
1448 }
1449
1450 /* Return the private thread data, creating it if necessary. */
1451
1452 struct private_thread_info *
1453 demand_private_info (ptid_t ptid)
1454 {
1455 struct thread_info *info = find_thread_ptid (ptid);
1456
1457 gdb_assert (info);
1458
1459 if (!info->private)
1460 {
1461 info->private = xmalloc (sizeof (*(info->private)));
1462 info->private_dtor = free_private_thread_info;
1463 info->private->core = -1;
1464 info->private->extra = 0;
1465 }
1466
1467 return info->private;
1468 }
1469
1470 /* Call this function as a result of
1471 1) A halt indication (T packet) containing a thread id
1472 2) A direct query of currthread
1473 3) Successful execution of set thread
1474 */
1475
1476 static void
1477 record_currthread (ptid_t currthread)
1478 {
1479 general_thread = currthread;
1480 }
1481
1482 static char *last_pass_packet;
1483
1484 /* If 'QPassSignals' is supported, tell the remote stub what signals
1485 it can simply pass through to the inferior without reporting. */
1486
1487 static void
1488 remote_pass_signals (void)
1489 {
1490 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1491 {
1492 char *pass_packet, *p;
1493 int numsigs = (int) TARGET_SIGNAL_LAST;
1494 int count = 0, i;
1495
1496 gdb_assert (numsigs < 256);
1497 for (i = 0; i < numsigs; i++)
1498 {
1499 if (signal_stop_state (i) == 0
1500 && signal_print_state (i) == 0
1501 && signal_pass_state (i) == 1)
1502 count++;
1503 }
1504 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1505 strcpy (pass_packet, "QPassSignals:");
1506 p = pass_packet + strlen (pass_packet);
1507 for (i = 0; i < numsigs; i++)
1508 {
1509 if (signal_stop_state (i) == 0
1510 && signal_print_state (i) == 0
1511 && signal_pass_state (i) == 1)
1512 {
1513 if (i >= 16)
1514 *p++ = tohex (i >> 4);
1515 *p++ = tohex (i & 15);
1516 if (count)
1517 *p++ = ';';
1518 else
1519 break;
1520 count--;
1521 }
1522 }
1523 *p = 0;
1524 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1525 {
1526 struct remote_state *rs = get_remote_state ();
1527 char *buf = rs->buf;
1528
1529 putpkt (pass_packet);
1530 getpkt (&rs->buf, &rs->buf_size, 0);
1531 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1532 if (last_pass_packet)
1533 xfree (last_pass_packet);
1534 last_pass_packet = pass_packet;
1535 }
1536 else
1537 xfree (pass_packet);
1538 }
1539 }
1540
1541 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1542 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1543 thread. If GEN is set, set the general thread, if not, then set
1544 the step/continue thread. */
1545 static void
1546 set_thread (struct ptid ptid, int gen)
1547 {
1548 struct remote_state *rs = get_remote_state ();
1549 ptid_t state = gen ? general_thread : continue_thread;
1550 char *buf = rs->buf;
1551 char *endbuf = rs->buf + get_remote_packet_size ();
1552
1553 if (ptid_equal (state, ptid))
1554 return;
1555
1556 *buf++ = 'H';
1557 *buf++ = gen ? 'g' : 'c';
1558 if (ptid_equal (ptid, magic_null_ptid))
1559 xsnprintf (buf, endbuf - buf, "0");
1560 else if (ptid_equal (ptid, any_thread_ptid))
1561 xsnprintf (buf, endbuf - buf, "0");
1562 else if (ptid_equal (ptid, minus_one_ptid))
1563 xsnprintf (buf, endbuf - buf, "-1");
1564 else
1565 write_ptid (buf, endbuf, ptid);
1566 putpkt (rs->buf);
1567 getpkt (&rs->buf, &rs->buf_size, 0);
1568 if (gen)
1569 general_thread = ptid;
1570 else
1571 continue_thread = ptid;
1572 }
1573
1574 static void
1575 set_general_thread (struct ptid ptid)
1576 {
1577 set_thread (ptid, 1);
1578 }
1579
1580 static void
1581 set_continue_thread (struct ptid ptid)
1582 {
1583 set_thread (ptid, 0);
1584 }
1585
1586 /* Change the remote current process. Which thread within the process
1587 ends up selected isn't important, as long as it is the same process
1588 as what INFERIOR_PTID points to.
1589
1590 This comes from that fact that there is no explicit notion of
1591 "selected process" in the protocol. The selected process for
1592 general operations is the process the selected general thread
1593 belongs to. */
1594
1595 static void
1596 set_general_process (void)
1597 {
1598 struct remote_state *rs = get_remote_state ();
1599
1600 /* If the remote can't handle multiple processes, don't bother. */
1601 if (!remote_multi_process_p (rs))
1602 return;
1603
1604 /* We only need to change the remote current thread if it's pointing
1605 at some other process. */
1606 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1607 set_general_thread (inferior_ptid);
1608 }
1609
1610 \f
1611 /* Return nonzero if the thread PTID is still alive on the remote
1612 system. */
1613
1614 static int
1615 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1616 {
1617 struct remote_state *rs = get_remote_state ();
1618 char *p, *endp;
1619
1620 if (ptid_equal (ptid, magic_null_ptid))
1621 /* The main thread is always alive. */
1622 return 1;
1623
1624 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1625 /* The main thread is always alive. This can happen after a
1626 vAttach, if the remote side doesn't support
1627 multi-threading. */
1628 return 1;
1629
1630 p = rs->buf;
1631 endp = rs->buf + get_remote_packet_size ();
1632
1633 *p++ = 'T';
1634 write_ptid (p, endp, ptid);
1635
1636 putpkt (rs->buf);
1637 getpkt (&rs->buf, &rs->buf_size, 0);
1638 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1639 }
1640
1641 /* About these extended threadlist and threadinfo packets. They are
1642 variable length packets but, the fields within them are often fixed
1643 length. They are redundent enough to send over UDP as is the
1644 remote protocol in general. There is a matching unit test module
1645 in libstub. */
1646
1647 #define OPAQUETHREADBYTES 8
1648
1649 /* a 64 bit opaque identifier */
1650 typedef unsigned char threadref[OPAQUETHREADBYTES];
1651
1652 /* WARNING: This threadref data structure comes from the remote O.S.,
1653 libstub protocol encoding, and remote.c. it is not particularly
1654 changable. */
1655
1656 /* Right now, the internal structure is int. We want it to be bigger.
1657 Plan to fix this.
1658 */
1659
1660 typedef int gdb_threadref; /* Internal GDB thread reference. */
1661
1662 /* gdb_ext_thread_info is an internal GDB data structure which is
1663 equivalent to the reply of the remote threadinfo packet. */
1664
1665 struct gdb_ext_thread_info
1666 {
1667 threadref threadid; /* External form of thread reference. */
1668 int active; /* Has state interesting to GDB?
1669 regs, stack. */
1670 char display[256]; /* Brief state display, name,
1671 blocked/suspended. */
1672 char shortname[32]; /* To be used to name threads. */
1673 char more_display[256]; /* Long info, statistics, queue depth,
1674 whatever. */
1675 };
1676
1677 /* The volume of remote transfers can be limited by submitting
1678 a mask containing bits specifying the desired information.
1679 Use a union of these values as the 'selection' parameter to
1680 get_thread_info. FIXME: Make these TAG names more thread specific.
1681 */
1682
1683 #define TAG_THREADID 1
1684 #define TAG_EXISTS 2
1685 #define TAG_DISPLAY 4
1686 #define TAG_THREADNAME 8
1687 #define TAG_MOREDISPLAY 16
1688
1689 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1690
1691 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1692
1693 static char *unpack_nibble (char *buf, int *val);
1694
1695 static char *pack_nibble (char *buf, int nibble);
1696
1697 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1698
1699 static char *unpack_byte (char *buf, int *value);
1700
1701 static char *pack_int (char *buf, int value);
1702
1703 static char *unpack_int (char *buf, int *value);
1704
1705 static char *unpack_string (char *src, char *dest, int length);
1706
1707 static char *pack_threadid (char *pkt, threadref *id);
1708
1709 static char *unpack_threadid (char *inbuf, threadref *id);
1710
1711 void int_to_threadref (threadref *id, int value);
1712
1713 static int threadref_to_int (threadref *ref);
1714
1715 static void copy_threadref (threadref *dest, threadref *src);
1716
1717 static int threadmatch (threadref *dest, threadref *src);
1718
1719 static char *pack_threadinfo_request (char *pkt, int mode,
1720 threadref *id);
1721
1722 static int remote_unpack_thread_info_response (char *pkt,
1723 threadref *expectedref,
1724 struct gdb_ext_thread_info
1725 *info);
1726
1727
1728 static int remote_get_threadinfo (threadref *threadid,
1729 int fieldset, /*TAG mask */
1730 struct gdb_ext_thread_info *info);
1731
1732 static char *pack_threadlist_request (char *pkt, int startflag,
1733 int threadcount,
1734 threadref *nextthread);
1735
1736 static int parse_threadlist_response (char *pkt,
1737 int result_limit,
1738 threadref *original_echo,
1739 threadref *resultlist,
1740 int *doneflag);
1741
1742 static int remote_get_threadlist (int startflag,
1743 threadref *nextthread,
1744 int result_limit,
1745 int *done,
1746 int *result_count,
1747 threadref *threadlist);
1748
1749 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1750
1751 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1752 void *context, int looplimit);
1753
1754 static int remote_newthread_step (threadref *ref, void *context);
1755
1756
1757 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1758 buffer we're allowed to write to. Returns
1759 BUF+CHARACTERS_WRITTEN. */
1760
1761 static char *
1762 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1763 {
1764 int pid, tid;
1765 struct remote_state *rs = get_remote_state ();
1766
1767 if (remote_multi_process_p (rs))
1768 {
1769 pid = ptid_get_pid (ptid);
1770 if (pid < 0)
1771 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1772 else
1773 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1774 }
1775 tid = ptid_get_tid (ptid);
1776 if (tid < 0)
1777 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1778 else
1779 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1780
1781 return buf;
1782 }
1783
1784 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1785 passed the last parsed char. Returns null_ptid on error. */
1786
1787 static ptid_t
1788 read_ptid (char *buf, char **obuf)
1789 {
1790 char *p = buf;
1791 char *pp;
1792 ULONGEST pid = 0, tid = 0;
1793
1794 if (*p == 'p')
1795 {
1796 /* Multi-process ptid. */
1797 pp = unpack_varlen_hex (p + 1, &pid);
1798 if (*pp != '.')
1799 error (_("invalid remote ptid: %s\n"), p);
1800
1801 p = pp;
1802 pp = unpack_varlen_hex (p + 1, &tid);
1803 if (obuf)
1804 *obuf = pp;
1805 return ptid_build (pid, 0, tid);
1806 }
1807
1808 /* No multi-process. Just a tid. */
1809 pp = unpack_varlen_hex (p, &tid);
1810
1811 /* Since the stub is not sending a process id, then default to
1812 what's in inferior_ptid, unless it's null at this point. If so,
1813 then since there's no way to know the pid of the reported
1814 threads, use the magic number. */
1815 if (ptid_equal (inferior_ptid, null_ptid))
1816 pid = ptid_get_pid (magic_null_ptid);
1817 else
1818 pid = ptid_get_pid (inferior_ptid);
1819
1820 if (obuf)
1821 *obuf = pp;
1822 return ptid_build (pid, 0, tid);
1823 }
1824
1825 /* Encode 64 bits in 16 chars of hex. */
1826
1827 static const char hexchars[] = "0123456789abcdef";
1828
1829 static int
1830 ishex (int ch, int *val)
1831 {
1832 if ((ch >= 'a') && (ch <= 'f'))
1833 {
1834 *val = ch - 'a' + 10;
1835 return 1;
1836 }
1837 if ((ch >= 'A') && (ch <= 'F'))
1838 {
1839 *val = ch - 'A' + 10;
1840 return 1;
1841 }
1842 if ((ch >= '0') && (ch <= '9'))
1843 {
1844 *val = ch - '0';
1845 return 1;
1846 }
1847 return 0;
1848 }
1849
1850 static int
1851 stubhex (int ch)
1852 {
1853 if (ch >= 'a' && ch <= 'f')
1854 return ch - 'a' + 10;
1855 if (ch >= '0' && ch <= '9')
1856 return ch - '0';
1857 if (ch >= 'A' && ch <= 'F')
1858 return ch - 'A' + 10;
1859 return -1;
1860 }
1861
1862 static int
1863 stub_unpack_int (char *buff, int fieldlength)
1864 {
1865 int nibble;
1866 int retval = 0;
1867
1868 while (fieldlength)
1869 {
1870 nibble = stubhex (*buff++);
1871 retval |= nibble;
1872 fieldlength--;
1873 if (fieldlength)
1874 retval = retval << 4;
1875 }
1876 return retval;
1877 }
1878
1879 char *
1880 unpack_varlen_hex (char *buff, /* packet to parse */
1881 ULONGEST *result)
1882 {
1883 int nibble;
1884 ULONGEST retval = 0;
1885
1886 while (ishex (*buff, &nibble))
1887 {
1888 buff++;
1889 retval = retval << 4;
1890 retval |= nibble & 0x0f;
1891 }
1892 *result = retval;
1893 return buff;
1894 }
1895
1896 static char *
1897 unpack_nibble (char *buf, int *val)
1898 {
1899 *val = fromhex (*buf++);
1900 return buf;
1901 }
1902
1903 static char *
1904 pack_nibble (char *buf, int nibble)
1905 {
1906 *buf++ = hexchars[(nibble & 0x0f)];
1907 return buf;
1908 }
1909
1910 static char *
1911 pack_hex_byte (char *pkt, int byte)
1912 {
1913 *pkt++ = hexchars[(byte >> 4) & 0xf];
1914 *pkt++ = hexchars[(byte & 0xf)];
1915 return pkt;
1916 }
1917
1918 static char *
1919 unpack_byte (char *buf, int *value)
1920 {
1921 *value = stub_unpack_int (buf, 2);
1922 return buf + 2;
1923 }
1924
1925 static char *
1926 pack_int (char *buf, int value)
1927 {
1928 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1929 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1930 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1931 buf = pack_hex_byte (buf, (value & 0xff));
1932 return buf;
1933 }
1934
1935 static char *
1936 unpack_int (char *buf, int *value)
1937 {
1938 *value = stub_unpack_int (buf, 8);
1939 return buf + 8;
1940 }
1941
1942 #if 0 /* Currently unused, uncomment when needed. */
1943 static char *pack_string (char *pkt, char *string);
1944
1945 static char *
1946 pack_string (char *pkt, char *string)
1947 {
1948 char ch;
1949 int len;
1950
1951 len = strlen (string);
1952 if (len > 200)
1953 len = 200; /* Bigger than most GDB packets, junk??? */
1954 pkt = pack_hex_byte (pkt, len);
1955 while (len-- > 0)
1956 {
1957 ch = *string++;
1958 if ((ch == '\0') || (ch == '#'))
1959 ch = '*'; /* Protect encapsulation. */
1960 *pkt++ = ch;
1961 }
1962 return pkt;
1963 }
1964 #endif /* 0 (unused) */
1965
1966 static char *
1967 unpack_string (char *src, char *dest, int length)
1968 {
1969 while (length--)
1970 *dest++ = *src++;
1971 *dest = '\0';
1972 return src;
1973 }
1974
1975 static char *
1976 pack_threadid (char *pkt, threadref *id)
1977 {
1978 char *limit;
1979 unsigned char *altid;
1980
1981 altid = (unsigned char *) id;
1982 limit = pkt + BUF_THREAD_ID_SIZE;
1983 while (pkt < limit)
1984 pkt = pack_hex_byte (pkt, *altid++);
1985 return pkt;
1986 }
1987
1988
1989 static char *
1990 unpack_threadid (char *inbuf, threadref *id)
1991 {
1992 char *altref;
1993 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1994 int x, y;
1995
1996 altref = (char *) id;
1997
1998 while (inbuf < limit)
1999 {
2000 x = stubhex (*inbuf++);
2001 y = stubhex (*inbuf++);
2002 *altref++ = (x << 4) | y;
2003 }
2004 return inbuf;
2005 }
2006
2007 /* Externally, threadrefs are 64 bits but internally, they are still
2008 ints. This is due to a mismatch of specifications. We would like
2009 to use 64bit thread references internally. This is an adapter
2010 function. */
2011
2012 void
2013 int_to_threadref (threadref *id, int value)
2014 {
2015 unsigned char *scan;
2016
2017 scan = (unsigned char *) id;
2018 {
2019 int i = 4;
2020 while (i--)
2021 *scan++ = 0;
2022 }
2023 *scan++ = (value >> 24) & 0xff;
2024 *scan++ = (value >> 16) & 0xff;
2025 *scan++ = (value >> 8) & 0xff;
2026 *scan++ = (value & 0xff);
2027 }
2028
2029 static int
2030 threadref_to_int (threadref *ref)
2031 {
2032 int i, value = 0;
2033 unsigned char *scan;
2034
2035 scan = *ref;
2036 scan += 4;
2037 i = 4;
2038 while (i-- > 0)
2039 value = (value << 8) | ((*scan++) & 0xff);
2040 return value;
2041 }
2042
2043 static void
2044 copy_threadref (threadref *dest, threadref *src)
2045 {
2046 int i;
2047 unsigned char *csrc, *cdest;
2048
2049 csrc = (unsigned char *) src;
2050 cdest = (unsigned char *) dest;
2051 i = 8;
2052 while (i--)
2053 *cdest++ = *csrc++;
2054 }
2055
2056 static int
2057 threadmatch (threadref *dest, threadref *src)
2058 {
2059 /* Things are broken right now, so just assume we got a match. */
2060 #if 0
2061 unsigned char *srcp, *destp;
2062 int i, result;
2063 srcp = (char *) src;
2064 destp = (char *) dest;
2065
2066 result = 1;
2067 while (i-- > 0)
2068 result &= (*srcp++ == *destp++) ? 1 : 0;
2069 return result;
2070 #endif
2071 return 1;
2072 }
2073
2074 /*
2075 threadid:1, # always request threadid
2076 context_exists:2,
2077 display:4,
2078 unique_name:8,
2079 more_display:16
2080 */
2081
2082 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2083
2084 static char *
2085 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2086 {
2087 *pkt++ = 'q'; /* Info Query */
2088 *pkt++ = 'P'; /* process or thread info */
2089 pkt = pack_int (pkt, mode); /* mode */
2090 pkt = pack_threadid (pkt, id); /* threadid */
2091 *pkt = '\0'; /* terminate */
2092 return pkt;
2093 }
2094
2095 /* These values tag the fields in a thread info response packet. */
2096 /* Tagging the fields allows us to request specific fields and to
2097 add more fields as time goes by. */
2098
2099 #define TAG_THREADID 1 /* Echo the thread identifier. */
2100 #define TAG_EXISTS 2 /* Is this process defined enough to
2101 fetch registers and its stack? */
2102 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2103 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2104 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2105 the process. */
2106
2107 static int
2108 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2109 struct gdb_ext_thread_info *info)
2110 {
2111 struct remote_state *rs = get_remote_state ();
2112 int mask, length;
2113 int tag;
2114 threadref ref;
2115 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2116 int retval = 1;
2117
2118 /* info->threadid = 0; FIXME: implement zero_threadref. */
2119 info->active = 0;
2120 info->display[0] = '\0';
2121 info->shortname[0] = '\0';
2122 info->more_display[0] = '\0';
2123
2124 /* Assume the characters indicating the packet type have been
2125 stripped. */
2126 pkt = unpack_int (pkt, &mask); /* arg mask */
2127 pkt = unpack_threadid (pkt, &ref);
2128
2129 if (mask == 0)
2130 warning (_("Incomplete response to threadinfo request."));
2131 if (!threadmatch (&ref, expectedref))
2132 { /* This is an answer to a different request. */
2133 warning (_("ERROR RMT Thread info mismatch."));
2134 return 0;
2135 }
2136 copy_threadref (&info->threadid, &ref);
2137
2138 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2139
2140 /* Packets are terminated with nulls. */
2141 while ((pkt < limit) && mask && *pkt)
2142 {
2143 pkt = unpack_int (pkt, &tag); /* tag */
2144 pkt = unpack_byte (pkt, &length); /* length */
2145 if (!(tag & mask)) /* Tags out of synch with mask. */
2146 {
2147 warning (_("ERROR RMT: threadinfo tag mismatch."));
2148 retval = 0;
2149 break;
2150 }
2151 if (tag == TAG_THREADID)
2152 {
2153 if (length != 16)
2154 {
2155 warning (_("ERROR RMT: length of threadid is not 16."));
2156 retval = 0;
2157 break;
2158 }
2159 pkt = unpack_threadid (pkt, &ref);
2160 mask = mask & ~TAG_THREADID;
2161 continue;
2162 }
2163 if (tag == TAG_EXISTS)
2164 {
2165 info->active = stub_unpack_int (pkt, length);
2166 pkt += length;
2167 mask = mask & ~(TAG_EXISTS);
2168 if (length > 8)
2169 {
2170 warning (_("ERROR RMT: 'exists' length too long."));
2171 retval = 0;
2172 break;
2173 }
2174 continue;
2175 }
2176 if (tag == TAG_THREADNAME)
2177 {
2178 pkt = unpack_string (pkt, &info->shortname[0], length);
2179 mask = mask & ~TAG_THREADNAME;
2180 continue;
2181 }
2182 if (tag == TAG_DISPLAY)
2183 {
2184 pkt = unpack_string (pkt, &info->display[0], length);
2185 mask = mask & ~TAG_DISPLAY;
2186 continue;
2187 }
2188 if (tag == TAG_MOREDISPLAY)
2189 {
2190 pkt = unpack_string (pkt, &info->more_display[0], length);
2191 mask = mask & ~TAG_MOREDISPLAY;
2192 continue;
2193 }
2194 warning (_("ERROR RMT: unknown thread info tag."));
2195 break; /* Not a tag we know about. */
2196 }
2197 return retval;
2198 }
2199
2200 static int
2201 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2202 struct gdb_ext_thread_info *info)
2203 {
2204 struct remote_state *rs = get_remote_state ();
2205 int result;
2206
2207 pack_threadinfo_request (rs->buf, fieldset, threadid);
2208 putpkt (rs->buf);
2209 getpkt (&rs->buf, &rs->buf_size, 0);
2210
2211 if (rs->buf[0] == '\0')
2212 return 0;
2213
2214 result = remote_unpack_thread_info_response (rs->buf + 2,
2215 threadid, info);
2216 return result;
2217 }
2218
2219 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2220
2221 static char *
2222 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2223 threadref *nextthread)
2224 {
2225 *pkt++ = 'q'; /* info query packet */
2226 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2227 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2228 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2229 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2230 *pkt = '\0';
2231 return pkt;
2232 }
2233
2234 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2235
2236 static int
2237 parse_threadlist_response (char *pkt, int result_limit,
2238 threadref *original_echo, threadref *resultlist,
2239 int *doneflag)
2240 {
2241 struct remote_state *rs = get_remote_state ();
2242 char *limit;
2243 int count, resultcount, done;
2244
2245 resultcount = 0;
2246 /* Assume the 'q' and 'M chars have been stripped. */
2247 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2248 /* done parse past here */
2249 pkt = unpack_byte (pkt, &count); /* count field */
2250 pkt = unpack_nibble (pkt, &done);
2251 /* The first threadid is the argument threadid. */
2252 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2253 while ((count-- > 0) && (pkt < limit))
2254 {
2255 pkt = unpack_threadid (pkt, resultlist++);
2256 if (resultcount++ >= result_limit)
2257 break;
2258 }
2259 if (doneflag)
2260 *doneflag = done;
2261 return resultcount;
2262 }
2263
2264 static int
2265 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2266 int *done, int *result_count, threadref *threadlist)
2267 {
2268 struct remote_state *rs = get_remote_state ();
2269 static threadref echo_nextthread;
2270 int result = 1;
2271
2272 /* Trancate result limit to be smaller than the packet size. */
2273 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2274 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2275
2276 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2277 putpkt (rs->buf);
2278 getpkt (&rs->buf, &rs->buf_size, 0);
2279
2280 if (*rs->buf == '\0')
2281 *result_count = 0;
2282 else
2283 *result_count =
2284 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2285 threadlist, done);
2286
2287 if (!threadmatch (&echo_nextthread, nextthread))
2288 {
2289 /* FIXME: This is a good reason to drop the packet. */
2290 /* Possably, there is a duplicate response. */
2291 /* Possabilities :
2292 retransmit immediatly - race conditions
2293 retransmit after timeout - yes
2294 exit
2295 wait for packet, then exit
2296 */
2297 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2298 return 0; /* I choose simply exiting. */
2299 }
2300 if (*result_count <= 0)
2301 {
2302 if (*done != 1)
2303 {
2304 warning (_("RMT ERROR : failed to get remote thread list."));
2305 result = 0;
2306 }
2307 return result; /* break; */
2308 }
2309 if (*result_count > result_limit)
2310 {
2311 *result_count = 0;
2312 warning (_("RMT ERROR: threadlist response longer than requested."));
2313 return 0;
2314 }
2315 return result;
2316 }
2317
2318 /* This is the interface between remote and threads, remotes upper
2319 interface. */
2320
2321 /* remote_find_new_threads retrieves the thread list and for each
2322 thread in the list, looks up the thread in GDB's internal list,
2323 adding the thread if it does not already exist. This involves
2324 getting partial thread lists from the remote target so, polling the
2325 quit_flag is required. */
2326
2327
2328 /* About this many threadisds fit in a packet. */
2329
2330 #define MAXTHREADLISTRESULTS 32
2331
2332 static int
2333 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2334 int looplimit)
2335 {
2336 int done, i, result_count;
2337 int startflag = 1;
2338 int result = 1;
2339 int loopcount = 0;
2340 static threadref nextthread;
2341 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2342
2343 done = 0;
2344 while (!done)
2345 {
2346 if (loopcount++ > looplimit)
2347 {
2348 result = 0;
2349 warning (_("Remote fetch threadlist -infinite loop-."));
2350 break;
2351 }
2352 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2353 &done, &result_count, resultthreadlist))
2354 {
2355 result = 0;
2356 break;
2357 }
2358 /* Clear for later iterations. */
2359 startflag = 0;
2360 /* Setup to resume next batch of thread references, set nextthread. */
2361 if (result_count >= 1)
2362 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2363 i = 0;
2364 while (result_count--)
2365 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2366 break;
2367 }
2368 return result;
2369 }
2370
2371 static int
2372 remote_newthread_step (threadref *ref, void *context)
2373 {
2374 int pid = ptid_get_pid (inferior_ptid);
2375 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2376
2377 if (!in_thread_list (ptid))
2378 add_thread (ptid);
2379 return 1; /* continue iterator */
2380 }
2381
2382 #define CRAZY_MAX_THREADS 1000
2383
2384 static ptid_t
2385 remote_current_thread (ptid_t oldpid)
2386 {
2387 struct remote_state *rs = get_remote_state ();
2388
2389 putpkt ("qC");
2390 getpkt (&rs->buf, &rs->buf_size, 0);
2391 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2392 return read_ptid (&rs->buf[2], NULL);
2393 else
2394 return oldpid;
2395 }
2396
2397 /* Find new threads for info threads command.
2398 * Original version, using John Metzler's thread protocol.
2399 */
2400
2401 static void
2402 remote_find_new_threads (void)
2403 {
2404 remote_threadlist_iterator (remote_newthread_step, 0,
2405 CRAZY_MAX_THREADS);
2406 }
2407
2408 #if defined(HAVE_LIBEXPAT)
2409
2410 typedef struct thread_item
2411 {
2412 ptid_t ptid;
2413 char *extra;
2414 int core;
2415 } thread_item_t;
2416 DEF_VEC_O(thread_item_t);
2417
2418 struct threads_parsing_context
2419 {
2420 VEC (thread_item_t) *items;
2421 };
2422
2423 static void
2424 start_thread (struct gdb_xml_parser *parser,
2425 const struct gdb_xml_element *element,
2426 void *user_data, VEC(gdb_xml_value_s) *attributes)
2427 {
2428 struct threads_parsing_context *data = user_data;
2429
2430 struct thread_item item;
2431 char *id;
2432
2433 id = VEC_index (gdb_xml_value_s, attributes, 0)->value;
2434 item.ptid = read_ptid (id, NULL);
2435
2436 if (VEC_length (gdb_xml_value_s, attributes) > 1)
2437 item.core = *(ULONGEST *) VEC_index (gdb_xml_value_s, attributes, 1)->value;
2438 else
2439 item.core = -1;
2440
2441 item.extra = 0;
2442
2443 VEC_safe_push (thread_item_t, data->items, &item);
2444 }
2445
2446 static void
2447 end_thread (struct gdb_xml_parser *parser,
2448 const struct gdb_xml_element *element,
2449 void *user_data, const char *body_text)
2450 {
2451 struct threads_parsing_context *data = user_data;
2452
2453 if (body_text && *body_text)
2454 VEC_last (thread_item_t, data->items)->extra = strdup (body_text);
2455 }
2456
2457 const struct gdb_xml_attribute thread_attributes[] = {
2458 { "id", GDB_XML_AF_NONE, NULL, NULL },
2459 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2460 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2461 };
2462
2463 const struct gdb_xml_element thread_children[] = {
2464 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2465 };
2466
2467 const struct gdb_xml_element threads_children[] = {
2468 { "thread", thread_attributes, thread_children,
2469 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2470 start_thread, end_thread },
2471 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2472 };
2473
2474 const struct gdb_xml_element threads_elements[] = {
2475 { "threads", NULL, threads_children,
2476 GDB_XML_EF_NONE, NULL, NULL },
2477 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2478 };
2479
2480 #endif
2481
2482 /*
2483 * Find all threads for info threads command.
2484 * Uses new thread protocol contributed by Cisco.
2485 * Falls back and attempts to use the older method (above)
2486 * if the target doesn't respond to the new method.
2487 */
2488
2489 static void
2490 remote_threads_info (struct target_ops *ops)
2491 {
2492 struct remote_state *rs = get_remote_state ();
2493 char *bufp;
2494 ptid_t new_thread;
2495
2496 if (remote_desc == 0) /* paranoia */
2497 error (_("Command can only be used when connected to the remote target."));
2498
2499 #if defined(HAVE_LIBEXPAT)
2500 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2501 {
2502 char *xml = target_read_stralloc (&current_target,
2503 TARGET_OBJECT_THREADS, NULL);
2504
2505 struct cleanup *back_to = make_cleanup (xfree, xml);
2506 if (xml && *xml)
2507 {
2508 struct gdb_xml_parser *parser;
2509 struct threads_parsing_context context;
2510 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
2511
2512 context.items = 0;
2513 parser = gdb_xml_create_parser_and_cleanup (_("threads"),
2514 threads_elements,
2515 &context);
2516
2517 gdb_xml_use_dtd (parser, "threads.dtd");
2518
2519 if (gdb_xml_parse (parser, xml) == 0)
2520 {
2521 int i;
2522 struct thread_item *item;
2523
2524 for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i)
2525 {
2526 if (!ptid_equal (item->ptid, null_ptid))
2527 {
2528 struct private_thread_info *info;
2529 /* In non-stop mode, we assume new found threads
2530 are running until proven otherwise with a
2531 stop reply. In all-stop, we can only get
2532 here if all threads are stopped. */
2533 int running = non_stop ? 1 : 0;
2534
2535 remote_notice_new_inferior (item->ptid, running);
2536
2537 info = demand_private_info (item->ptid);
2538 info->core = item->core;
2539 info->extra = item->extra;
2540 item->extra = 0;
2541 }
2542 xfree (item->extra);
2543 }
2544 }
2545
2546 VEC_free (thread_item_t, context.items);
2547 }
2548
2549 do_cleanups (back_to);
2550 return;
2551 }
2552 #endif
2553
2554 if (use_threadinfo_query)
2555 {
2556 putpkt ("qfThreadInfo");
2557 getpkt (&rs->buf, &rs->buf_size, 0);
2558 bufp = rs->buf;
2559 if (bufp[0] != '\0') /* q packet recognized */
2560 {
2561 while (*bufp++ == 'm') /* reply contains one or more TID */
2562 {
2563 do
2564 {
2565 new_thread = read_ptid (bufp, &bufp);
2566 if (!ptid_equal (new_thread, null_ptid))
2567 {
2568 /* In non-stop mode, we assume new found threads
2569 are running until proven otherwise with a
2570 stop reply. In all-stop, we can only get
2571 here if all threads are stopped. */
2572 int running = non_stop ? 1 : 0;
2573
2574 remote_notice_new_inferior (new_thread, running);
2575 }
2576 }
2577 while (*bufp++ == ','); /* comma-separated list */
2578 putpkt ("qsThreadInfo");
2579 getpkt (&rs->buf, &rs->buf_size, 0);
2580 bufp = rs->buf;
2581 }
2582 return; /* done */
2583 }
2584 }
2585
2586 /* Only qfThreadInfo is supported in non-stop mode. */
2587 if (non_stop)
2588 return;
2589
2590 /* Else fall back to old method based on jmetzler protocol. */
2591 use_threadinfo_query = 0;
2592 remote_find_new_threads ();
2593 return;
2594 }
2595
2596 /*
2597 * Collect a descriptive string about the given thread.
2598 * The target may say anything it wants to about the thread
2599 * (typically info about its blocked / runnable state, name, etc.).
2600 * This string will appear in the info threads display.
2601 *
2602 * Optional: targets are not required to implement this function.
2603 */
2604
2605 static char *
2606 remote_threads_extra_info (struct thread_info *tp)
2607 {
2608 struct remote_state *rs = get_remote_state ();
2609 int result;
2610 int set;
2611 threadref id;
2612 struct gdb_ext_thread_info threadinfo;
2613 static char display_buf[100]; /* arbitrary... */
2614 int n = 0; /* position in display_buf */
2615
2616 if (remote_desc == 0) /* paranoia */
2617 internal_error (__FILE__, __LINE__,
2618 _("remote_threads_extra_info"));
2619
2620 if (ptid_equal (tp->ptid, magic_null_ptid)
2621 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2622 /* This is the main thread which was added by GDB. The remote
2623 server doesn't know about it. */
2624 return NULL;
2625
2626 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2627 {
2628 struct thread_info *info = find_thread_ptid (tp->ptid);
2629 if (info && info->private)
2630 return info->private->extra;
2631 else
2632 return NULL;
2633 }
2634
2635 if (use_threadextra_query)
2636 {
2637 char *b = rs->buf;
2638 char *endb = rs->buf + get_remote_packet_size ();
2639
2640 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2641 b += strlen (b);
2642 write_ptid (b, endb, tp->ptid);
2643
2644 putpkt (rs->buf);
2645 getpkt (&rs->buf, &rs->buf_size, 0);
2646 if (rs->buf[0] != 0)
2647 {
2648 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2649 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2650 display_buf [result] = '\0';
2651 return display_buf;
2652 }
2653 }
2654
2655 /* If the above query fails, fall back to the old method. */
2656 use_threadextra_query = 0;
2657 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2658 | TAG_MOREDISPLAY | TAG_DISPLAY;
2659 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2660 if (remote_get_threadinfo (&id, set, &threadinfo))
2661 if (threadinfo.active)
2662 {
2663 if (*threadinfo.shortname)
2664 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2665 " Name: %s,", threadinfo.shortname);
2666 if (*threadinfo.display)
2667 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2668 " State: %s,", threadinfo.display);
2669 if (*threadinfo.more_display)
2670 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2671 " Priority: %s", threadinfo.more_display);
2672
2673 if (n > 0)
2674 {
2675 /* For purely cosmetic reasons, clear up trailing commas. */
2676 if (',' == display_buf[n-1])
2677 display_buf[n-1] = ' ';
2678 return display_buf;
2679 }
2680 }
2681 return NULL;
2682 }
2683 \f
2684
2685 /* Restart the remote side; this is an extended protocol operation. */
2686
2687 static void
2688 extended_remote_restart (void)
2689 {
2690 struct remote_state *rs = get_remote_state ();
2691
2692 /* Send the restart command; for reasons I don't understand the
2693 remote side really expects a number after the "R". */
2694 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2695 putpkt (rs->buf);
2696
2697 remote_fileio_reset ();
2698 }
2699 \f
2700 /* Clean up connection to a remote debugger. */
2701
2702 static void
2703 remote_close (int quitting)
2704 {
2705 if (remote_desc == NULL)
2706 return; /* already closed */
2707
2708 /* Make sure we leave stdin registered in the event loop, and we
2709 don't leave the async SIGINT signal handler installed. */
2710 remote_terminal_ours ();
2711
2712 serial_close (remote_desc);
2713 remote_desc = NULL;
2714
2715 /* We don't have a connection to the remote stub anymore. Get rid
2716 of all the inferiors and their threads we were controlling. */
2717 discard_all_inferiors ();
2718
2719 /* We're no longer interested in any of these events. */
2720 discard_pending_stop_replies (-1);
2721
2722 if (remote_async_inferior_event_token)
2723 delete_async_event_handler (&remote_async_inferior_event_token);
2724 if (remote_async_get_pending_events_token)
2725 delete_async_event_handler (&remote_async_get_pending_events_token);
2726 }
2727
2728 /* Query the remote side for the text, data and bss offsets. */
2729
2730 static void
2731 get_offsets (void)
2732 {
2733 struct remote_state *rs = get_remote_state ();
2734 char *buf;
2735 char *ptr;
2736 int lose, num_segments = 0, do_sections, do_segments;
2737 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2738 struct section_offsets *offs;
2739 struct symfile_segment_data *data;
2740
2741 if (symfile_objfile == NULL)
2742 return;
2743
2744 putpkt ("qOffsets");
2745 getpkt (&rs->buf, &rs->buf_size, 0);
2746 buf = rs->buf;
2747
2748 if (buf[0] == '\000')
2749 return; /* Return silently. Stub doesn't support
2750 this command. */
2751 if (buf[0] == 'E')
2752 {
2753 warning (_("Remote failure reply: %s"), buf);
2754 return;
2755 }
2756
2757 /* Pick up each field in turn. This used to be done with scanf, but
2758 scanf will make trouble if CORE_ADDR size doesn't match
2759 conversion directives correctly. The following code will work
2760 with any size of CORE_ADDR. */
2761 text_addr = data_addr = bss_addr = 0;
2762 ptr = buf;
2763 lose = 0;
2764
2765 if (strncmp (ptr, "Text=", 5) == 0)
2766 {
2767 ptr += 5;
2768 /* Don't use strtol, could lose on big values. */
2769 while (*ptr && *ptr != ';')
2770 text_addr = (text_addr << 4) + fromhex (*ptr++);
2771
2772 if (strncmp (ptr, ";Data=", 6) == 0)
2773 {
2774 ptr += 6;
2775 while (*ptr && *ptr != ';')
2776 data_addr = (data_addr << 4) + fromhex (*ptr++);
2777 }
2778 else
2779 lose = 1;
2780
2781 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2782 {
2783 ptr += 5;
2784 while (*ptr && *ptr != ';')
2785 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2786
2787 if (bss_addr != data_addr)
2788 warning (_("Target reported unsupported offsets: %s"), buf);
2789 }
2790 else
2791 lose = 1;
2792 }
2793 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2794 {
2795 ptr += 8;
2796 /* Don't use strtol, could lose on big values. */
2797 while (*ptr && *ptr != ';')
2798 text_addr = (text_addr << 4) + fromhex (*ptr++);
2799 num_segments = 1;
2800
2801 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2802 {
2803 ptr += 9;
2804 while (*ptr && *ptr != ';')
2805 data_addr = (data_addr << 4) + fromhex (*ptr++);
2806 num_segments++;
2807 }
2808 }
2809 else
2810 lose = 1;
2811
2812 if (lose)
2813 error (_("Malformed response to offset query, %s"), buf);
2814 else if (*ptr != '\0')
2815 warning (_("Target reported unsupported offsets: %s"), buf);
2816
2817 offs = ((struct section_offsets *)
2818 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2819 memcpy (offs, symfile_objfile->section_offsets,
2820 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2821
2822 data = get_symfile_segment_data (symfile_objfile->obfd);
2823 do_segments = (data != NULL);
2824 do_sections = num_segments == 0;
2825
2826 if (num_segments > 0)
2827 {
2828 segments[0] = text_addr;
2829 segments[1] = data_addr;
2830 }
2831 /* If we have two segments, we can still try to relocate everything
2832 by assuming that the .text and .data offsets apply to the whole
2833 text and data segments. Convert the offsets given in the packet
2834 to base addresses for symfile_map_offsets_to_segments. */
2835 else if (data && data->num_segments == 2)
2836 {
2837 segments[0] = data->segment_bases[0] + text_addr;
2838 segments[1] = data->segment_bases[1] + data_addr;
2839 num_segments = 2;
2840 }
2841 /* If the object file has only one segment, assume that it is text
2842 rather than data; main programs with no writable data are rare,
2843 but programs with no code are useless. Of course the code might
2844 have ended up in the data segment... to detect that we would need
2845 the permissions here. */
2846 else if (data && data->num_segments == 1)
2847 {
2848 segments[0] = data->segment_bases[0] + text_addr;
2849 num_segments = 1;
2850 }
2851 /* There's no way to relocate by segment. */
2852 else
2853 do_segments = 0;
2854
2855 if (do_segments)
2856 {
2857 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2858 offs, num_segments, segments);
2859
2860 if (ret == 0 && !do_sections)
2861 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2862
2863 if (ret > 0)
2864 do_sections = 0;
2865 }
2866
2867 if (data)
2868 free_symfile_segment_data (data);
2869
2870 if (do_sections)
2871 {
2872 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2873
2874 /* This is a temporary kludge to force data and bss to use the same offsets
2875 because that's what nlmconv does now. The real solution requires changes
2876 to the stub and remote.c that I don't have time to do right now. */
2877
2878 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2879 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2880 }
2881
2882 objfile_relocate (symfile_objfile, offs);
2883 }
2884
2885 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2886 threads we know are stopped already. This is used during the
2887 initial remote connection in non-stop mode --- threads that are
2888 reported as already being stopped are left stopped. */
2889
2890 static int
2891 set_stop_requested_callback (struct thread_info *thread, void *data)
2892 {
2893 /* If we have a stop reply for this thread, it must be stopped. */
2894 if (peek_stop_reply (thread->ptid))
2895 set_stop_requested (thread->ptid, 1);
2896
2897 return 0;
2898 }
2899
2900 /* Stub for catch_exception. */
2901
2902 struct start_remote_args
2903 {
2904 int from_tty;
2905
2906 /* The current target. */
2907 struct target_ops *target;
2908
2909 /* Non-zero if this is an extended-remote target. */
2910 int extended_p;
2911 };
2912
2913 /* Send interrupt_sequence to remote target. */
2914 static void
2915 send_interrupt_sequence ()
2916 {
2917 if (interrupt_sequence_mode == interrupt_sequence_control_c)
2918 serial_write (remote_desc, "\x03", 1);
2919 else if (interrupt_sequence_mode == interrupt_sequence_break)
2920 serial_send_break (remote_desc);
2921 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
2922 {
2923 serial_send_break (remote_desc);
2924 serial_write (remote_desc, "g", 1);
2925 }
2926 else
2927 internal_error (__FILE__, __LINE__,
2928 _("Invalid value for interrupt_sequence_mode: %s."),
2929 interrupt_sequence_mode);
2930 }
2931
2932 static void
2933 remote_start_remote (struct ui_out *uiout, void *opaque)
2934 {
2935 struct start_remote_args *args = opaque;
2936 struct remote_state *rs = get_remote_state ();
2937 struct packet_config *noack_config;
2938 char *wait_status = NULL;
2939
2940 immediate_quit++; /* Allow user to interrupt it. */
2941
2942 /* Ack any packet which the remote side has already sent. */
2943 serial_write (remote_desc, "+", 1);
2944
2945 if (interrupt_on_connect)
2946 send_interrupt_sequence ();
2947
2948 /* The first packet we send to the target is the optional "supported
2949 packets" request. If the target can answer this, it will tell us
2950 which later probes to skip. */
2951 remote_query_supported ();
2952
2953 /* Next, we possibly activate noack mode.
2954
2955 If the QStartNoAckMode packet configuration is set to AUTO,
2956 enable noack mode if the stub reported a wish for it with
2957 qSupported.
2958
2959 If set to TRUE, then enable noack mode even if the stub didn't
2960 report it in qSupported. If the stub doesn't reply OK, the
2961 session ends with an error.
2962
2963 If FALSE, then don't activate noack mode, regardless of what the
2964 stub claimed should be the default with qSupported. */
2965
2966 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2967
2968 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2969 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2970 && noack_config->support == PACKET_ENABLE))
2971 {
2972 putpkt ("QStartNoAckMode");
2973 getpkt (&rs->buf, &rs->buf_size, 0);
2974 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2975 rs->noack_mode = 1;
2976 }
2977
2978 if (args->extended_p)
2979 {
2980 /* Tell the remote that we are using the extended protocol. */
2981 putpkt ("!");
2982 getpkt (&rs->buf, &rs->buf_size, 0);
2983 }
2984
2985 /* Next, if the target can specify a description, read it. We do
2986 this before anything involving memory or registers. */
2987 target_find_description ();
2988
2989 /* Next, now that we know something about the target, update the
2990 address spaces in the program spaces. */
2991 update_address_spaces ();
2992
2993 /* On OSs where the list of libraries is global to all
2994 processes, we fetch them early. */
2995 if (gdbarch_has_global_solist (target_gdbarch))
2996 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2997
2998 if (non_stop)
2999 {
3000 if (!rs->non_stop_aware)
3001 error (_("Non-stop mode requested, but remote does not support non-stop"));
3002
3003 putpkt ("QNonStop:1");
3004 getpkt (&rs->buf, &rs->buf_size, 0);
3005
3006 if (strcmp (rs->buf, "OK") != 0)
3007 error ("Remote refused setting non-stop mode with: %s", rs->buf);
3008
3009 /* Find about threads and processes the stub is already
3010 controlling. We default to adding them in the running state.
3011 The '?' query below will then tell us about which threads are
3012 stopped. */
3013 remote_threads_info (args->target);
3014 }
3015 else if (rs->non_stop_aware)
3016 {
3017 /* Don't assume that the stub can operate in all-stop mode.
3018 Request it explicitely. */
3019 putpkt ("QNonStop:0");
3020 getpkt (&rs->buf, &rs->buf_size, 0);
3021
3022 if (strcmp (rs->buf, "OK") != 0)
3023 error ("Remote refused setting all-stop mode with: %s", rs->buf);
3024 }
3025
3026 /* Check whether the target is running now. */
3027 putpkt ("?");
3028 getpkt (&rs->buf, &rs->buf_size, 0);
3029
3030 if (!non_stop)
3031 {
3032 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3033 {
3034 if (!args->extended_p)
3035 error (_("The target is not running (try extended-remote?)"));
3036
3037 /* We're connected, but not running. Drop out before we
3038 call start_remote. */
3039 return;
3040 }
3041 else
3042 {
3043 /* Save the reply for later. */
3044 wait_status = alloca (strlen (rs->buf) + 1);
3045 strcpy (wait_status, rs->buf);
3046 }
3047
3048 /* Let the stub know that we want it to return the thread. */
3049 set_continue_thread (minus_one_ptid);
3050
3051 /* Without this, some commands which require an active target
3052 (such as kill) won't work. This variable serves (at least)
3053 double duty as both the pid of the target process (if it has
3054 such), and as a flag indicating that a target is active.
3055 These functions should be split out into seperate variables,
3056 especially since GDB will someday have a notion of debugging
3057 several processes. */
3058 inferior_ptid = magic_null_ptid;
3059
3060 /* Now, if we have thread information, update inferior_ptid. */
3061 inferior_ptid = remote_current_thread (inferior_ptid);
3062
3063 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3064
3065 /* Always add the main thread. */
3066 add_thread_silent (inferior_ptid);
3067
3068 get_offsets (); /* Get text, data & bss offsets. */
3069
3070 /* If we could not find a description using qXfer, and we know
3071 how to do it some other way, try again. This is not
3072 supported for non-stop; it could be, but it is tricky if
3073 there are no stopped threads when we connect. */
3074 if (remote_read_description_p (args->target)
3075 && gdbarch_target_desc (target_gdbarch) == NULL)
3076 {
3077 target_clear_description ();
3078 target_find_description ();
3079 }
3080
3081 /* Use the previously fetched status. */
3082 gdb_assert (wait_status != NULL);
3083 strcpy (rs->buf, wait_status);
3084 rs->cached_wait_status = 1;
3085
3086 immediate_quit--;
3087 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
3088 }
3089 else
3090 {
3091 /* Clear WFI global state. Do this before finding about new
3092 threads and inferiors, and setting the current inferior.
3093 Otherwise we would clear the proceed status of the current
3094 inferior when we want its stop_soon state to be preserved
3095 (see notice_new_inferior). */
3096 init_wait_for_inferior ();
3097
3098 /* In non-stop, we will either get an "OK", meaning that there
3099 are no stopped threads at this time; or, a regular stop
3100 reply. In the latter case, there may be more than one thread
3101 stopped --- we pull them all out using the vStopped
3102 mechanism. */
3103 if (strcmp (rs->buf, "OK") != 0)
3104 {
3105 struct stop_reply *stop_reply;
3106 struct cleanup *old_chain;
3107
3108 stop_reply = stop_reply_xmalloc ();
3109 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3110
3111 remote_parse_stop_reply (rs->buf, stop_reply);
3112 discard_cleanups (old_chain);
3113
3114 /* get_pending_stop_replies acks this one, and gets the rest
3115 out. */
3116 pending_stop_reply = stop_reply;
3117 remote_get_pending_stop_replies ();
3118
3119 /* Make sure that threads that were stopped remain
3120 stopped. */
3121 iterate_over_threads (set_stop_requested_callback, NULL);
3122 }
3123
3124 if (target_can_async_p ())
3125 target_async (inferior_event_handler, 0);
3126
3127 if (thread_count () == 0)
3128 {
3129 if (!args->extended_p)
3130 error (_("The target is not running (try extended-remote?)"));
3131
3132 /* We're connected, but not running. Drop out before we
3133 call start_remote. */
3134 return;
3135 }
3136
3137 /* Let the stub know that we want it to return the thread. */
3138
3139 /* Force the stub to choose a thread. */
3140 set_general_thread (null_ptid);
3141
3142 /* Query it. */
3143 inferior_ptid = remote_current_thread (minus_one_ptid);
3144 if (ptid_equal (inferior_ptid, minus_one_ptid))
3145 error (_("remote didn't report the current thread in non-stop mode"));
3146
3147 get_offsets (); /* Get text, data & bss offsets. */
3148
3149 /* In non-stop mode, any cached wait status will be stored in
3150 the stop reply queue. */
3151 gdb_assert (wait_status == NULL);
3152 }
3153
3154 /* If we connected to a live target, do some additional setup. */
3155 if (target_has_execution)
3156 {
3157 if (exec_bfd) /* No use without an exec file. */
3158 remote_check_symbols (symfile_objfile);
3159 }
3160
3161 /* Possibly the target has been engaged in a trace run started
3162 previously; find out where things are at. */
3163 if (rs->disconnected_tracing)
3164 {
3165 struct uploaded_tp *uploaded_tps = NULL;
3166 struct uploaded_tsv *uploaded_tsvs = NULL;
3167
3168 remote_get_trace_status (current_trace_status ());
3169 if (current_trace_status ()->running)
3170 printf_filtered (_("Trace is already running on the target.\n"));
3171
3172 /* Get trace state variables first, they may be checked when
3173 parsing uploaded commands. */
3174
3175 remote_upload_trace_state_variables (&uploaded_tsvs);
3176
3177 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3178
3179 remote_upload_tracepoints (&uploaded_tps);
3180
3181 merge_uploaded_tracepoints (&uploaded_tps);
3182 }
3183
3184 /* If breakpoints are global, insert them now. */
3185 if (gdbarch_has_global_breakpoints (target_gdbarch)
3186 && breakpoints_always_inserted_mode ())
3187 insert_breakpoints ();
3188 }
3189
3190 /* Open a connection to a remote debugger.
3191 NAME is the filename used for communication. */
3192
3193 static void
3194 remote_open (char *name, int from_tty)
3195 {
3196 remote_open_1 (name, from_tty, &remote_ops, 0);
3197 }
3198
3199 /* Open a connection to a remote debugger using the extended
3200 remote gdb protocol. NAME is the filename used for communication. */
3201
3202 static void
3203 extended_remote_open (char *name, int from_tty)
3204 {
3205 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3206 }
3207
3208 /* Generic code for opening a connection to a remote target. */
3209
3210 static void
3211 init_all_packet_configs (void)
3212 {
3213 int i;
3214 for (i = 0; i < PACKET_MAX; i++)
3215 update_packet_config (&remote_protocol_packets[i]);
3216 }
3217
3218 /* Symbol look-up. */
3219
3220 static void
3221 remote_check_symbols (struct objfile *objfile)
3222 {
3223 struct remote_state *rs = get_remote_state ();
3224 char *msg, *reply, *tmp;
3225 struct minimal_symbol *sym;
3226 int end;
3227
3228 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3229 return;
3230
3231 /* Make sure the remote is pointing at the right process. */
3232 set_general_process ();
3233
3234 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3235 because we need both at the same time. */
3236 msg = alloca (get_remote_packet_size ());
3237
3238 /* Invite target to request symbol lookups. */
3239
3240 putpkt ("qSymbol::");
3241 getpkt (&rs->buf, &rs->buf_size, 0);
3242 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3243 reply = rs->buf;
3244
3245 while (strncmp (reply, "qSymbol:", 8) == 0)
3246 {
3247 tmp = &reply[8];
3248 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3249 msg[end] = '\0';
3250 sym = lookup_minimal_symbol (msg, NULL, NULL);
3251 if (sym == NULL)
3252 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3253 else
3254 {
3255 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3256 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3257
3258 /* If this is a function address, return the start of code
3259 instead of any data function descriptor. */
3260 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3261 sym_addr,
3262 &current_target);
3263
3264 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3265 phex_nz (sym_addr, addr_size), &reply[8]);
3266 }
3267
3268 putpkt (msg);
3269 getpkt (&rs->buf, &rs->buf_size, 0);
3270 reply = rs->buf;
3271 }
3272 }
3273
3274 static struct serial *
3275 remote_serial_open (char *name)
3276 {
3277 static int udp_warning = 0;
3278
3279 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3280 of in ser-tcp.c, because it is the remote protocol assuming that the
3281 serial connection is reliable and not the serial connection promising
3282 to be. */
3283 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3284 {
3285 warning (_("\
3286 The remote protocol may be unreliable over UDP.\n\
3287 Some events may be lost, rendering further debugging impossible."));
3288 udp_warning = 1;
3289 }
3290
3291 return serial_open (name);
3292 }
3293
3294 /* This type describes each known response to the qSupported
3295 packet. */
3296 struct protocol_feature
3297 {
3298 /* The name of this protocol feature. */
3299 const char *name;
3300
3301 /* The default for this protocol feature. */
3302 enum packet_support default_support;
3303
3304 /* The function to call when this feature is reported, or after
3305 qSupported processing if the feature is not supported.
3306 The first argument points to this structure. The second
3307 argument indicates whether the packet requested support be
3308 enabled, disabled, or probed (or the default, if this function
3309 is being called at the end of processing and this feature was
3310 not reported). The third argument may be NULL; if not NULL, it
3311 is a NUL-terminated string taken from the packet following
3312 this feature's name and an equals sign. */
3313 void (*func) (const struct protocol_feature *, enum packet_support,
3314 const char *);
3315
3316 /* The corresponding packet for this feature. Only used if
3317 FUNC is remote_supported_packet. */
3318 int packet;
3319 };
3320
3321 static void
3322 remote_supported_packet (const struct protocol_feature *feature,
3323 enum packet_support support,
3324 const char *argument)
3325 {
3326 if (argument)
3327 {
3328 warning (_("Remote qSupported response supplied an unexpected value for"
3329 " \"%s\"."), feature->name);
3330 return;
3331 }
3332
3333 if (remote_protocol_packets[feature->packet].support
3334 == PACKET_SUPPORT_UNKNOWN)
3335 remote_protocol_packets[feature->packet].support = support;
3336 }
3337
3338 static void
3339 remote_packet_size (const struct protocol_feature *feature,
3340 enum packet_support support, const char *value)
3341 {
3342 struct remote_state *rs = get_remote_state ();
3343
3344 int packet_size;
3345 char *value_end;
3346
3347 if (support != PACKET_ENABLE)
3348 return;
3349
3350 if (value == NULL || *value == '\0')
3351 {
3352 warning (_("Remote target reported \"%s\" without a size."),
3353 feature->name);
3354 return;
3355 }
3356
3357 errno = 0;
3358 packet_size = strtol (value, &value_end, 16);
3359 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3360 {
3361 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3362 feature->name, value);
3363 return;
3364 }
3365
3366 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3367 {
3368 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3369 packet_size, MAX_REMOTE_PACKET_SIZE);
3370 packet_size = MAX_REMOTE_PACKET_SIZE;
3371 }
3372
3373 /* Record the new maximum packet size. */
3374 rs->explicit_packet_size = packet_size;
3375 }
3376
3377 static void
3378 remote_multi_process_feature (const struct protocol_feature *feature,
3379 enum packet_support support, const char *value)
3380 {
3381 struct remote_state *rs = get_remote_state ();
3382 rs->multi_process_aware = (support == PACKET_ENABLE);
3383 }
3384
3385 static void
3386 remote_non_stop_feature (const struct protocol_feature *feature,
3387 enum packet_support support, const char *value)
3388 {
3389 struct remote_state *rs = get_remote_state ();
3390 rs->non_stop_aware = (support == PACKET_ENABLE);
3391 }
3392
3393 static void
3394 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3395 enum packet_support support,
3396 const char *value)
3397 {
3398 struct remote_state *rs = get_remote_state ();
3399 rs->cond_tracepoints = (support == PACKET_ENABLE);
3400 }
3401
3402 static void
3403 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3404 enum packet_support support,
3405 const char *value)
3406 {
3407 struct remote_state *rs = get_remote_state ();
3408 rs->fast_tracepoints = (support == PACKET_ENABLE);
3409 }
3410
3411 static void
3412 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3413 enum packet_support support,
3414 const char *value)
3415 {
3416 struct remote_state *rs = get_remote_state ();
3417 rs->disconnected_tracing = (support == PACKET_ENABLE);
3418 }
3419
3420 static struct protocol_feature remote_protocol_features[] = {
3421 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3422 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3423 PACKET_qXfer_auxv },
3424 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3425 PACKET_qXfer_features },
3426 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3427 PACKET_qXfer_libraries },
3428 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3429 PACKET_qXfer_memory_map },
3430 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3431 PACKET_qXfer_spu_read },
3432 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3433 PACKET_qXfer_spu_write },
3434 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3435 PACKET_qXfer_osdata },
3436 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3437 PACKET_qXfer_threads },
3438 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3439 PACKET_QPassSignals },
3440 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3441 PACKET_QStartNoAckMode },
3442 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3443 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3444 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3445 PACKET_qXfer_siginfo_read },
3446 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3447 PACKET_qXfer_siginfo_write },
3448 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3449 PACKET_ConditionalTracepoints },
3450 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3451 PACKET_FastTracepoints },
3452 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3453 -1 },
3454 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3455 PACKET_bc },
3456 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3457 PACKET_bs },
3458 };
3459
3460 static void
3461 remote_query_supported (void)
3462 {
3463 struct remote_state *rs = get_remote_state ();
3464 char *next;
3465 int i;
3466 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3467
3468 /* The packet support flags are handled differently for this packet
3469 than for most others. We treat an error, a disabled packet, and
3470 an empty response identically: any features which must be reported
3471 to be used will be automatically disabled. An empty buffer
3472 accomplishes this, since that is also the representation for a list
3473 containing no features. */
3474
3475 rs->buf[0] = 0;
3476 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3477 {
3478 if (rs->extended)
3479 putpkt ("qSupported:multiprocess+");
3480 else
3481 putpkt ("qSupported");
3482
3483 getpkt (&rs->buf, &rs->buf_size, 0);
3484
3485 /* If an error occured, warn, but do not return - just reset the
3486 buffer to empty and go on to disable features. */
3487 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3488 == PACKET_ERROR)
3489 {
3490 warning (_("Remote failure reply: %s"), rs->buf);
3491 rs->buf[0] = 0;
3492 }
3493 }
3494
3495 memset (seen, 0, sizeof (seen));
3496
3497 next = rs->buf;
3498 while (*next)
3499 {
3500 enum packet_support is_supported;
3501 char *p, *end, *name_end, *value;
3502
3503 /* First separate out this item from the rest of the packet. If
3504 there's another item after this, we overwrite the separator
3505 (terminated strings are much easier to work with). */
3506 p = next;
3507 end = strchr (p, ';');
3508 if (end == NULL)
3509 {
3510 end = p + strlen (p);
3511 next = end;
3512 }
3513 else
3514 {
3515 *end = '\0';
3516 next = end + 1;
3517
3518 if (end == p)
3519 {
3520 warning (_("empty item in \"qSupported\" response"));
3521 continue;
3522 }
3523 }
3524
3525 name_end = strchr (p, '=');
3526 if (name_end)
3527 {
3528 /* This is a name=value entry. */
3529 is_supported = PACKET_ENABLE;
3530 value = name_end + 1;
3531 *name_end = '\0';
3532 }
3533 else
3534 {
3535 value = NULL;
3536 switch (end[-1])
3537 {
3538 case '+':
3539 is_supported = PACKET_ENABLE;
3540 break;
3541
3542 case '-':
3543 is_supported = PACKET_DISABLE;
3544 break;
3545
3546 case '?':
3547 is_supported = PACKET_SUPPORT_UNKNOWN;
3548 break;
3549
3550 default:
3551 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3552 continue;
3553 }
3554 end[-1] = '\0';
3555 }
3556
3557 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3558 if (strcmp (remote_protocol_features[i].name, p) == 0)
3559 {
3560 const struct protocol_feature *feature;
3561
3562 seen[i] = 1;
3563 feature = &remote_protocol_features[i];
3564 feature->func (feature, is_supported, value);
3565 break;
3566 }
3567 }
3568
3569 /* If we increased the packet size, make sure to increase the global
3570 buffer size also. We delay this until after parsing the entire
3571 qSupported packet, because this is the same buffer we were
3572 parsing. */
3573 if (rs->buf_size < rs->explicit_packet_size)
3574 {
3575 rs->buf_size = rs->explicit_packet_size;
3576 rs->buf = xrealloc (rs->buf, rs->buf_size);
3577 }
3578
3579 /* Handle the defaults for unmentioned features. */
3580 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3581 if (!seen[i])
3582 {
3583 const struct protocol_feature *feature;
3584
3585 feature = &remote_protocol_features[i];
3586 feature->func (feature, feature->default_support, NULL);
3587 }
3588 }
3589
3590
3591 static void
3592 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3593 {
3594 struct remote_state *rs = get_remote_state ();
3595
3596 if (name == 0)
3597 error (_("To open a remote debug connection, you need to specify what\n"
3598 "serial device is attached to the remote system\n"
3599 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3600
3601 /* See FIXME above. */
3602 if (!target_async_permitted)
3603 wait_forever_enabled_p = 1;
3604
3605 /* If we're connected to a running target, target_preopen will kill it.
3606 But if we're connected to a target system with no running process,
3607 then we will still be connected when it returns. Ask this question
3608 first, before target_preopen has a chance to kill anything. */
3609 if (remote_desc != NULL && !have_inferiors ())
3610 {
3611 if (!from_tty
3612 || query (_("Already connected to a remote target. Disconnect? ")))
3613 pop_target ();
3614 else
3615 error (_("Still connected."));
3616 }
3617
3618 target_preopen (from_tty);
3619
3620 unpush_target (target);
3621
3622 /* This time without a query. If we were connected to an
3623 extended-remote target and target_preopen killed the running
3624 process, we may still be connected. If we are starting "target
3625 remote" now, the extended-remote target will not have been
3626 removed by unpush_target. */
3627 if (remote_desc != NULL && !have_inferiors ())
3628 pop_target ();
3629
3630 /* Make sure we send the passed signals list the next time we resume. */
3631 xfree (last_pass_packet);
3632 last_pass_packet = NULL;
3633
3634 remote_fileio_reset ();
3635 reopen_exec_file ();
3636 reread_symbols ();
3637
3638 remote_desc = remote_serial_open (name);
3639 if (!remote_desc)
3640 perror_with_name (name);
3641
3642 if (baud_rate != -1)
3643 {
3644 if (serial_setbaudrate (remote_desc, baud_rate))
3645 {
3646 /* The requested speed could not be set. Error out to
3647 top level after closing remote_desc. Take care to
3648 set remote_desc to NULL to avoid closing remote_desc
3649 more than once. */
3650 serial_close (remote_desc);
3651 remote_desc = NULL;
3652 perror_with_name (name);
3653 }
3654 }
3655
3656 serial_raw (remote_desc);
3657
3658 /* If there is something sitting in the buffer we might take it as a
3659 response to a command, which would be bad. */
3660 serial_flush_input (remote_desc);
3661
3662 if (from_tty)
3663 {
3664 puts_filtered ("Remote debugging using ");
3665 puts_filtered (name);
3666 puts_filtered ("\n");
3667 }
3668 push_target (target); /* Switch to using remote target now. */
3669
3670 /* Register extra event sources in the event loop. */
3671 remote_async_inferior_event_token
3672 = create_async_event_handler (remote_async_inferior_event_handler,
3673 NULL);
3674 remote_async_get_pending_events_token
3675 = create_async_event_handler (remote_async_get_pending_events_handler,
3676 NULL);
3677
3678 /* Reset the target state; these things will be queried either by
3679 remote_query_supported or as they are needed. */
3680 init_all_packet_configs ();
3681 rs->cached_wait_status = 0;
3682 rs->explicit_packet_size = 0;
3683 rs->noack_mode = 0;
3684 rs->multi_process_aware = 0;
3685 rs->extended = extended_p;
3686 rs->non_stop_aware = 0;
3687 rs->waiting_for_stop_reply = 0;
3688 rs->ctrlc_pending_p = 0;
3689
3690 general_thread = not_sent_ptid;
3691 continue_thread = not_sent_ptid;
3692
3693 /* Probe for ability to use "ThreadInfo" query, as required. */
3694 use_threadinfo_query = 1;
3695 use_threadextra_query = 1;
3696
3697 if (target_async_permitted)
3698 {
3699 /* With this target we start out by owning the terminal. */
3700 remote_async_terminal_ours_p = 1;
3701
3702 /* FIXME: cagney/1999-09-23: During the initial connection it is
3703 assumed that the target is already ready and able to respond to
3704 requests. Unfortunately remote_start_remote() eventually calls
3705 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3706 around this. Eventually a mechanism that allows
3707 wait_for_inferior() to expect/get timeouts will be
3708 implemented. */
3709 wait_forever_enabled_p = 0;
3710 }
3711
3712 /* First delete any symbols previously loaded from shared libraries. */
3713 no_shared_libraries (NULL, 0);
3714
3715 /* Start afresh. */
3716 init_thread_list ();
3717
3718 /* Start the remote connection. If error() or QUIT, discard this
3719 target (we'd otherwise be in an inconsistent state) and then
3720 propogate the error on up the exception chain. This ensures that
3721 the caller doesn't stumble along blindly assuming that the
3722 function succeeded. The CLI doesn't have this problem but other
3723 UI's, such as MI do.
3724
3725 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3726 this function should return an error indication letting the
3727 caller restore the previous state. Unfortunately the command
3728 ``target remote'' is directly wired to this function making that
3729 impossible. On a positive note, the CLI side of this problem has
3730 been fixed - the function set_cmd_context() makes it possible for
3731 all the ``target ....'' commands to share a common callback
3732 function. See cli-dump.c. */
3733 {
3734 struct gdb_exception ex;
3735 struct start_remote_args args;
3736
3737 args.from_tty = from_tty;
3738 args.target = target;
3739 args.extended_p = extended_p;
3740
3741 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3742 if (ex.reason < 0)
3743 {
3744 /* Pop the partially set up target - unless something else did
3745 already before throwing the exception. */
3746 if (remote_desc != NULL)
3747 pop_target ();
3748 if (target_async_permitted)
3749 wait_forever_enabled_p = 1;
3750 throw_exception (ex);
3751 }
3752 }
3753
3754 if (target_async_permitted)
3755 wait_forever_enabled_p = 1;
3756 }
3757
3758 /* This takes a program previously attached to and detaches it. After
3759 this is done, GDB can be used to debug some other program. We
3760 better not have left any breakpoints in the target program or it'll
3761 die when it hits one. */
3762
3763 static void
3764 remote_detach_1 (char *args, int from_tty, int extended)
3765 {
3766 int pid = ptid_get_pid (inferior_ptid);
3767 struct remote_state *rs = get_remote_state ();
3768
3769 if (args)
3770 error (_("Argument given to \"detach\" when remotely debugging."));
3771
3772 if (!target_has_execution)
3773 error (_("No process to detach from."));
3774
3775 /* Tell the remote target to detach. */
3776 if (remote_multi_process_p (rs))
3777 sprintf (rs->buf, "D;%x", pid);
3778 else
3779 strcpy (rs->buf, "D");
3780
3781 putpkt (rs->buf);
3782 getpkt (&rs->buf, &rs->buf_size, 0);
3783
3784 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3785 ;
3786 else if (rs->buf[0] == '\0')
3787 error (_("Remote doesn't know how to detach"));
3788 else
3789 error (_("Can't detach process."));
3790
3791 if (from_tty)
3792 {
3793 if (remote_multi_process_p (rs))
3794 printf_filtered (_("Detached from remote %s.\n"),
3795 target_pid_to_str (pid_to_ptid (pid)));
3796 else
3797 {
3798 if (extended)
3799 puts_filtered (_("Detached from remote process.\n"));
3800 else
3801 puts_filtered (_("Ending remote debugging.\n"));
3802 }
3803 }
3804
3805 discard_pending_stop_replies (pid);
3806 target_mourn_inferior ();
3807 }
3808
3809 static void
3810 remote_detach (struct target_ops *ops, char *args, int from_tty)
3811 {
3812 remote_detach_1 (args, from_tty, 0);
3813 }
3814
3815 static void
3816 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3817 {
3818 remote_detach_1 (args, from_tty, 1);
3819 }
3820
3821 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3822
3823 static void
3824 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3825 {
3826 if (args)
3827 error (_("Argument given to \"disconnect\" when remotely debugging."));
3828
3829 /* Make sure we unpush even the extended remote targets; mourn
3830 won't do it. So call remote_mourn_1 directly instead of
3831 target_mourn_inferior. */
3832 remote_mourn_1 (target);
3833
3834 if (from_tty)
3835 puts_filtered ("Ending remote debugging.\n");
3836 }
3837
3838 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3839 be chatty about it. */
3840
3841 static void
3842 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3843 {
3844 struct remote_state *rs = get_remote_state ();
3845 int pid;
3846 char *dummy;
3847 char *wait_status = NULL;
3848
3849 if (!args)
3850 error_no_arg (_("process-id to attach"));
3851
3852 dummy = args;
3853 pid = strtol (args, &dummy, 0);
3854 /* Some targets don't set errno on errors, grrr! */
3855 if (pid == 0 && args == dummy)
3856 error (_("Illegal process-id: %s."), args);
3857
3858 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3859 error (_("This target does not support attaching to a process"));
3860
3861 sprintf (rs->buf, "vAttach;%x", pid);
3862 putpkt (rs->buf);
3863 getpkt (&rs->buf, &rs->buf_size, 0);
3864
3865 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3866 {
3867 if (from_tty)
3868 printf_unfiltered (_("Attached to %s\n"),
3869 target_pid_to_str (pid_to_ptid (pid)));
3870
3871 if (!non_stop)
3872 {
3873 /* Save the reply for later. */
3874 wait_status = alloca (strlen (rs->buf) + 1);
3875 strcpy (wait_status, rs->buf);
3876 }
3877 else if (strcmp (rs->buf, "OK") != 0)
3878 error (_("Attaching to %s failed with: %s"),
3879 target_pid_to_str (pid_to_ptid (pid)),
3880 rs->buf);
3881 }
3882 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3883 error (_("This target does not support attaching to a process"));
3884 else
3885 error (_("Attaching to %s failed"),
3886 target_pid_to_str (pid_to_ptid (pid)));
3887
3888 set_current_inferior (remote_add_inferior (pid, 1));
3889
3890 inferior_ptid = pid_to_ptid (pid);
3891
3892 if (non_stop)
3893 {
3894 struct thread_info *thread;
3895
3896 /* Get list of threads. */
3897 remote_threads_info (target);
3898
3899 thread = first_thread_of_process (pid);
3900 if (thread)
3901 inferior_ptid = thread->ptid;
3902 else
3903 inferior_ptid = pid_to_ptid (pid);
3904
3905 /* Invalidate our notion of the remote current thread. */
3906 record_currthread (minus_one_ptid);
3907 }
3908 else
3909 {
3910 /* Now, if we have thread information, update inferior_ptid. */
3911 inferior_ptid = remote_current_thread (inferior_ptid);
3912
3913 /* Add the main thread to the thread list. */
3914 add_thread_silent (inferior_ptid);
3915 }
3916
3917 /* Next, if the target can specify a description, read it. We do
3918 this before anything involving memory or registers. */
3919 target_find_description ();
3920
3921 if (!non_stop)
3922 {
3923 /* Use the previously fetched status. */
3924 gdb_assert (wait_status != NULL);
3925
3926 if (target_can_async_p ())
3927 {
3928 struct stop_reply *stop_reply;
3929 struct cleanup *old_chain;
3930
3931 stop_reply = stop_reply_xmalloc ();
3932 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3933 remote_parse_stop_reply (wait_status, stop_reply);
3934 discard_cleanups (old_chain);
3935 push_stop_reply (stop_reply);
3936
3937 target_async (inferior_event_handler, 0);
3938 }
3939 else
3940 {
3941 gdb_assert (wait_status != NULL);
3942 strcpy (rs->buf, wait_status);
3943 rs->cached_wait_status = 1;
3944 }
3945 }
3946 else
3947 gdb_assert (wait_status == NULL);
3948 }
3949
3950 static void
3951 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3952 {
3953 extended_remote_attach_1 (ops, args, from_tty);
3954 }
3955
3956 /* Convert hex digit A to a number. */
3957
3958 static int
3959 fromhex (int a)
3960 {
3961 if (a >= '0' && a <= '9')
3962 return a - '0';
3963 else if (a >= 'a' && a <= 'f')
3964 return a - 'a' + 10;
3965 else if (a >= 'A' && a <= 'F')
3966 return a - 'A' + 10;
3967 else
3968 error (_("Reply contains invalid hex digit %d"), a);
3969 }
3970
3971 int
3972 hex2bin (const char *hex, gdb_byte *bin, int count)
3973 {
3974 int i;
3975
3976 for (i = 0; i < count; i++)
3977 {
3978 if (hex[0] == 0 || hex[1] == 0)
3979 {
3980 /* Hex string is short, or of uneven length.
3981 Return the count that has been converted so far. */
3982 return i;
3983 }
3984 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3985 hex += 2;
3986 }
3987 return i;
3988 }
3989
3990 /* Convert number NIB to a hex digit. */
3991
3992 static int
3993 tohex (int nib)
3994 {
3995 if (nib < 10)
3996 return '0' + nib;
3997 else
3998 return 'a' + nib - 10;
3999 }
4000
4001 int
4002 bin2hex (const gdb_byte *bin, char *hex, int count)
4003 {
4004 int i;
4005 /* May use a length, or a nul-terminated string as input. */
4006 if (count == 0)
4007 count = strlen ((char *) bin);
4008
4009 for (i = 0; i < count; i++)
4010 {
4011 *hex++ = tohex ((*bin >> 4) & 0xf);
4012 *hex++ = tohex (*bin++ & 0xf);
4013 }
4014 *hex = 0;
4015 return i;
4016 }
4017 \f
4018 /* Check for the availability of vCont. This function should also check
4019 the response. */
4020
4021 static void
4022 remote_vcont_probe (struct remote_state *rs)
4023 {
4024 char *buf;
4025
4026 strcpy (rs->buf, "vCont?");
4027 putpkt (rs->buf);
4028 getpkt (&rs->buf, &rs->buf_size, 0);
4029 buf = rs->buf;
4030
4031 /* Make sure that the features we assume are supported. */
4032 if (strncmp (buf, "vCont", 5) == 0)
4033 {
4034 char *p = &buf[5];
4035 int support_s, support_S, support_c, support_C;
4036
4037 support_s = 0;
4038 support_S = 0;
4039 support_c = 0;
4040 support_C = 0;
4041 rs->support_vCont_t = 0;
4042 while (p && *p == ';')
4043 {
4044 p++;
4045 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4046 support_s = 1;
4047 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4048 support_S = 1;
4049 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4050 support_c = 1;
4051 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4052 support_C = 1;
4053 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4054 rs->support_vCont_t = 1;
4055
4056 p = strchr (p, ';');
4057 }
4058
4059 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4060 BUF will make packet_ok disable the packet. */
4061 if (!support_s || !support_S || !support_c || !support_C)
4062 buf[0] = 0;
4063 }
4064
4065 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4066 }
4067
4068 /* Helper function for building "vCont" resumptions. Write a
4069 resumption to P. ENDP points to one-passed-the-end of the buffer
4070 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4071 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4072 resumed thread should be single-stepped and/or signalled. If PTID
4073 equals minus_one_ptid, then all threads are resumed; if PTID
4074 represents a process, then all threads of the process are resumed;
4075 the thread to be stepped and/or signalled is given in the global
4076 INFERIOR_PTID. */
4077
4078 static char *
4079 append_resumption (char *p, char *endp,
4080 ptid_t ptid, int step, enum target_signal siggnal)
4081 {
4082 struct remote_state *rs = get_remote_state ();
4083
4084 if (step && siggnal != TARGET_SIGNAL_0)
4085 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4086 else if (step)
4087 p += xsnprintf (p, endp - p, ";s");
4088 else if (siggnal != TARGET_SIGNAL_0)
4089 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4090 else
4091 p += xsnprintf (p, endp - p, ";c");
4092
4093 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4094 {
4095 ptid_t nptid;
4096
4097 /* All (-1) threads of process. */
4098 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4099
4100 p += xsnprintf (p, endp - p, ":");
4101 p = write_ptid (p, endp, nptid);
4102 }
4103 else if (!ptid_equal (ptid, minus_one_ptid))
4104 {
4105 p += xsnprintf (p, endp - p, ":");
4106 p = write_ptid (p, endp, ptid);
4107 }
4108
4109 return p;
4110 }
4111
4112 /* Resume the remote inferior by using a "vCont" packet. The thread
4113 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4114 resumed thread should be single-stepped and/or signalled. If PTID
4115 equals minus_one_ptid, then all threads are resumed; the thread to
4116 be stepped and/or signalled is given in the global INFERIOR_PTID.
4117 This function returns non-zero iff it resumes the inferior.
4118
4119 This function issues a strict subset of all possible vCont commands at the
4120 moment. */
4121
4122 static int
4123 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4124 {
4125 struct remote_state *rs = get_remote_state ();
4126 char *p;
4127 char *endp;
4128
4129 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4130 remote_vcont_probe (rs);
4131
4132 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4133 return 0;
4134
4135 p = rs->buf;
4136 endp = rs->buf + get_remote_packet_size ();
4137
4138 /* If we could generate a wider range of packets, we'd have to worry
4139 about overflowing BUF. Should there be a generic
4140 "multi-part-packet" packet? */
4141
4142 p += xsnprintf (p, endp - p, "vCont");
4143
4144 if (ptid_equal (ptid, magic_null_ptid))
4145 {
4146 /* MAGIC_NULL_PTID means that we don't have any active threads,
4147 so we don't have any TID numbers the inferior will
4148 understand. Make sure to only send forms that do not specify
4149 a TID. */
4150 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
4151 }
4152 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4153 {
4154 /* Resume all threads (of all processes, or of a single
4155 process), with preference for INFERIOR_PTID. This assumes
4156 inferior_ptid belongs to the set of all threads we are about
4157 to resume. */
4158 if (step || siggnal != TARGET_SIGNAL_0)
4159 {
4160 /* Step inferior_ptid, with or without signal. */
4161 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4162 }
4163
4164 /* And continue others without a signal. */
4165 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4166 }
4167 else
4168 {
4169 /* Scheduler locking; resume only PTID. */
4170 p = append_resumption (p, endp, ptid, step, siggnal);
4171 }
4172
4173 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4174 putpkt (rs->buf);
4175
4176 if (non_stop)
4177 {
4178 /* In non-stop, the stub replies to vCont with "OK". The stop
4179 reply will be reported asynchronously by means of a `%Stop'
4180 notification. */
4181 getpkt (&rs->buf, &rs->buf_size, 0);
4182 if (strcmp (rs->buf, "OK") != 0)
4183 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4184 }
4185
4186 return 1;
4187 }
4188
4189 /* Tell the remote machine to resume. */
4190
4191 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4192
4193 static int last_sent_step;
4194
4195 static void
4196 remote_resume (struct target_ops *ops,
4197 ptid_t ptid, int step, enum target_signal siggnal)
4198 {
4199 struct remote_state *rs = get_remote_state ();
4200 char *buf;
4201
4202 last_sent_signal = siggnal;
4203 last_sent_step = step;
4204
4205 /* Update the inferior on signals to silently pass, if they've changed. */
4206 remote_pass_signals ();
4207
4208 /* The vCont packet doesn't need to specify threads via Hc. */
4209 /* No reverse support (yet) for vCont. */
4210 if (execution_direction != EXEC_REVERSE)
4211 if (remote_vcont_resume (ptid, step, siggnal))
4212 goto done;
4213
4214 /* All other supported resume packets do use Hc, so set the continue
4215 thread. */
4216 if (ptid_equal (ptid, minus_one_ptid))
4217 set_continue_thread (any_thread_ptid);
4218 else
4219 set_continue_thread (ptid);
4220
4221 buf = rs->buf;
4222 if (execution_direction == EXEC_REVERSE)
4223 {
4224 /* We don't pass signals to the target in reverse exec mode. */
4225 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4226 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4227 siggnal);
4228
4229 if (step
4230 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4231 error (_("Remote reverse-step not supported."));
4232 if (!step
4233 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4234 error (_("Remote reverse-continue not supported."));
4235
4236 strcpy (buf, step ? "bs" : "bc");
4237 }
4238 else if (siggnal != TARGET_SIGNAL_0)
4239 {
4240 buf[0] = step ? 'S' : 'C';
4241 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4242 buf[2] = tohex (((int) siggnal) & 0xf);
4243 buf[3] = '\0';
4244 }
4245 else
4246 strcpy (buf, step ? "s" : "c");
4247
4248 putpkt (buf);
4249
4250 done:
4251 /* We are about to start executing the inferior, let's register it
4252 with the event loop. NOTE: this is the one place where all the
4253 execution commands end up. We could alternatively do this in each
4254 of the execution commands in infcmd.c. */
4255 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4256 into infcmd.c in order to allow inferior function calls to work
4257 NOT asynchronously. */
4258 if (target_can_async_p ())
4259 target_async (inferior_event_handler, 0);
4260
4261 /* We've just told the target to resume. The remote server will
4262 wait for the inferior to stop, and then send a stop reply. In
4263 the mean time, we can't start another command/query ourselves
4264 because the stub wouldn't be ready to process it. This applies
4265 only to the base all-stop protocol, however. In non-stop (which
4266 only supports vCont), the stub replies with an "OK", and is
4267 immediate able to process further serial input. */
4268 if (!non_stop)
4269 rs->waiting_for_stop_reply = 1;
4270 }
4271 \f
4272
4273 /* Set up the signal handler for SIGINT, while the target is
4274 executing, ovewriting the 'regular' SIGINT signal handler. */
4275 static void
4276 initialize_sigint_signal_handler (void)
4277 {
4278 signal (SIGINT, handle_remote_sigint);
4279 }
4280
4281 /* Signal handler for SIGINT, while the target is executing. */
4282 static void
4283 handle_remote_sigint (int sig)
4284 {
4285 signal (sig, handle_remote_sigint_twice);
4286 mark_async_signal_handler_wrapper (sigint_remote_token);
4287 }
4288
4289 /* Signal handler for SIGINT, installed after SIGINT has already been
4290 sent once. It will take effect the second time that the user sends
4291 a ^C. */
4292 static void
4293 handle_remote_sigint_twice (int sig)
4294 {
4295 signal (sig, handle_remote_sigint);
4296 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4297 }
4298
4299 /* Perform the real interruption of the target execution, in response
4300 to a ^C. */
4301 static void
4302 async_remote_interrupt (gdb_client_data arg)
4303 {
4304 if (remote_debug)
4305 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4306
4307 target_stop (inferior_ptid);
4308 }
4309
4310 /* Perform interrupt, if the first attempt did not succeed. Just give
4311 up on the target alltogether. */
4312 void
4313 async_remote_interrupt_twice (gdb_client_data arg)
4314 {
4315 if (remote_debug)
4316 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4317
4318 interrupt_query ();
4319 }
4320
4321 /* Reinstall the usual SIGINT handlers, after the target has
4322 stopped. */
4323 static void
4324 cleanup_sigint_signal_handler (void *dummy)
4325 {
4326 signal (SIGINT, handle_sigint);
4327 }
4328
4329 /* Send ^C to target to halt it. Target will respond, and send us a
4330 packet. */
4331 static void (*ofunc) (int);
4332
4333 /* The command line interface's stop routine. This function is installed
4334 as a signal handler for SIGINT. The first time a user requests a
4335 stop, we call remote_stop to send a break or ^C. If there is no
4336 response from the target (it didn't stop when the user requested it),
4337 we ask the user if he'd like to detach from the target. */
4338 static void
4339 remote_interrupt (int signo)
4340 {
4341 /* If this doesn't work, try more severe steps. */
4342 signal (signo, remote_interrupt_twice);
4343
4344 gdb_call_async_signal_handler (sigint_remote_token, 1);
4345 }
4346
4347 /* The user typed ^C twice. */
4348
4349 static void
4350 remote_interrupt_twice (int signo)
4351 {
4352 signal (signo, ofunc);
4353 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4354 signal (signo, remote_interrupt);
4355 }
4356
4357 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4358 thread, all threads of a remote process, or all threads of all
4359 processes. */
4360
4361 static void
4362 remote_stop_ns (ptid_t ptid)
4363 {
4364 struct remote_state *rs = get_remote_state ();
4365 char *p = rs->buf;
4366 char *endp = rs->buf + get_remote_packet_size ();
4367
4368 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4369 remote_vcont_probe (rs);
4370
4371 if (!rs->support_vCont_t)
4372 error (_("Remote server does not support stopping threads"));
4373
4374 if (ptid_equal (ptid, minus_one_ptid)
4375 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4376 p += xsnprintf (p, endp - p, "vCont;t");
4377 else
4378 {
4379 ptid_t nptid;
4380
4381 p += xsnprintf (p, endp - p, "vCont;t:");
4382
4383 if (ptid_is_pid (ptid))
4384 /* All (-1) threads of process. */
4385 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4386 else
4387 {
4388 /* Small optimization: if we already have a stop reply for
4389 this thread, no use in telling the stub we want this
4390 stopped. */
4391 if (peek_stop_reply (ptid))
4392 return;
4393
4394 nptid = ptid;
4395 }
4396
4397 p = write_ptid (p, endp, nptid);
4398 }
4399
4400 /* In non-stop, we get an immediate OK reply. The stop reply will
4401 come in asynchronously by notification. */
4402 putpkt (rs->buf);
4403 getpkt (&rs->buf, &rs->buf_size, 0);
4404 if (strcmp (rs->buf, "OK") != 0)
4405 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4406 }
4407
4408 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4409 remote target. It is undefined which thread of which process
4410 reports the stop. */
4411
4412 static void
4413 remote_stop_as (ptid_t ptid)
4414 {
4415 struct remote_state *rs = get_remote_state ();
4416
4417 rs->ctrlc_pending_p = 1;
4418
4419 /* If the inferior is stopped already, but the core didn't know
4420 about it yet, just ignore the request. The cached wait status
4421 will be collected in remote_wait. */
4422 if (rs->cached_wait_status)
4423 return;
4424
4425 /* Send interrupt_sequence to remote target. */
4426 send_interrupt_sequence ();
4427 }
4428
4429 /* This is the generic stop called via the target vector. When a target
4430 interrupt is requested, either by the command line or the GUI, we
4431 will eventually end up here. */
4432
4433 static void
4434 remote_stop (ptid_t ptid)
4435 {
4436 if (remote_debug)
4437 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4438
4439 if (non_stop)
4440 remote_stop_ns (ptid);
4441 else
4442 remote_stop_as (ptid);
4443 }
4444
4445 /* Ask the user what to do when an interrupt is received. */
4446
4447 static void
4448 interrupt_query (void)
4449 {
4450 target_terminal_ours ();
4451
4452 if (target_can_async_p ())
4453 {
4454 signal (SIGINT, handle_sigint);
4455 deprecated_throw_reason (RETURN_QUIT);
4456 }
4457 else
4458 {
4459 if (query (_("Interrupted while waiting for the program.\n\
4460 Give up (and stop debugging it)? ")))
4461 {
4462 pop_target ();
4463 deprecated_throw_reason (RETURN_QUIT);
4464 }
4465 }
4466
4467 target_terminal_inferior ();
4468 }
4469
4470 /* Enable/disable target terminal ownership. Most targets can use
4471 terminal groups to control terminal ownership. Remote targets are
4472 different in that explicit transfer of ownership to/from GDB/target
4473 is required. */
4474
4475 static void
4476 remote_terminal_inferior (void)
4477 {
4478 if (!target_async_permitted)
4479 /* Nothing to do. */
4480 return;
4481
4482 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4483 idempotent. The event-loop GDB talking to an asynchronous target
4484 with a synchronous command calls this function from both
4485 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4486 transfer the terminal to the target when it shouldn't this guard
4487 can go away. */
4488 if (!remote_async_terminal_ours_p)
4489 return;
4490 delete_file_handler (input_fd);
4491 remote_async_terminal_ours_p = 0;
4492 initialize_sigint_signal_handler ();
4493 /* NOTE: At this point we could also register our selves as the
4494 recipient of all input. Any characters typed could then be
4495 passed on down to the target. */
4496 }
4497
4498 static void
4499 remote_terminal_ours (void)
4500 {
4501 if (!target_async_permitted)
4502 /* Nothing to do. */
4503 return;
4504
4505 /* See FIXME in remote_terminal_inferior. */
4506 if (remote_async_terminal_ours_p)
4507 return;
4508 cleanup_sigint_signal_handler (NULL);
4509 add_file_handler (input_fd, stdin_event_handler, 0);
4510 remote_async_terminal_ours_p = 1;
4511 }
4512
4513 void
4514 remote_console_output (char *msg)
4515 {
4516 char *p;
4517
4518 for (p = msg; p[0] && p[1]; p += 2)
4519 {
4520 char tb[2];
4521 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4522 tb[0] = c;
4523 tb[1] = 0;
4524 fputs_unfiltered (tb, gdb_stdtarg);
4525 }
4526 gdb_flush (gdb_stdtarg);
4527 }
4528
4529 typedef struct cached_reg
4530 {
4531 int num;
4532 gdb_byte data[MAX_REGISTER_SIZE];
4533 } cached_reg_t;
4534
4535 DEF_VEC_O(cached_reg_t);
4536
4537 struct stop_reply
4538 {
4539 struct stop_reply *next;
4540
4541 ptid_t ptid;
4542
4543 struct target_waitstatus ws;
4544
4545 VEC(cached_reg_t) *regcache;
4546
4547 int stopped_by_watchpoint_p;
4548 CORE_ADDR watch_data_address;
4549
4550 int solibs_changed;
4551 int replay_event;
4552
4553 int core;
4554 };
4555
4556 /* The list of already fetched and acknowledged stop events. */
4557 static struct stop_reply *stop_reply_queue;
4558
4559 static struct stop_reply *
4560 stop_reply_xmalloc (void)
4561 {
4562 struct stop_reply *r = XMALLOC (struct stop_reply);
4563 r->next = NULL;
4564 return r;
4565 }
4566
4567 static void
4568 stop_reply_xfree (struct stop_reply *r)
4569 {
4570 if (r != NULL)
4571 {
4572 VEC_free (cached_reg_t, r->regcache);
4573 xfree (r);
4574 }
4575 }
4576
4577 /* Discard all pending stop replies of inferior PID. If PID is -1,
4578 discard everything. */
4579
4580 static void
4581 discard_pending_stop_replies (int pid)
4582 {
4583 struct stop_reply *prev = NULL, *reply, *next;
4584
4585 /* Discard the in-flight notification. */
4586 if (pending_stop_reply != NULL
4587 && (pid == -1
4588 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4589 {
4590 stop_reply_xfree (pending_stop_reply);
4591 pending_stop_reply = NULL;
4592 }
4593
4594 /* Discard the stop replies we have already pulled with
4595 vStopped. */
4596 for (reply = stop_reply_queue; reply; reply = next)
4597 {
4598 next = reply->next;
4599 if (pid == -1
4600 || ptid_get_pid (reply->ptid) == pid)
4601 {
4602 if (reply == stop_reply_queue)
4603 stop_reply_queue = reply->next;
4604 else
4605 prev->next = reply->next;
4606
4607 stop_reply_xfree (reply);
4608 }
4609 else
4610 prev = reply;
4611 }
4612 }
4613
4614 /* Cleanup wrapper. */
4615
4616 static void
4617 do_stop_reply_xfree (void *arg)
4618 {
4619 struct stop_reply *r = arg;
4620 stop_reply_xfree (r);
4621 }
4622
4623 /* Look for a queued stop reply belonging to PTID. If one is found,
4624 remove it from the queue, and return it. Returns NULL if none is
4625 found. If there are still queued events left to process, tell the
4626 event loop to get back to target_wait soon. */
4627
4628 static struct stop_reply *
4629 queued_stop_reply (ptid_t ptid)
4630 {
4631 struct stop_reply *it, *prev;
4632 struct stop_reply head;
4633
4634 head.next = stop_reply_queue;
4635 prev = &head;
4636
4637 it = head.next;
4638
4639 if (!ptid_equal (ptid, minus_one_ptid))
4640 for (; it; prev = it, it = it->next)
4641 if (ptid_equal (ptid, it->ptid))
4642 break;
4643
4644 if (it)
4645 {
4646 prev->next = it->next;
4647 it->next = NULL;
4648 }
4649
4650 stop_reply_queue = head.next;
4651
4652 if (stop_reply_queue)
4653 /* There's still at least an event left. */
4654 mark_async_event_handler (remote_async_inferior_event_token);
4655
4656 return it;
4657 }
4658
4659 /* Push a fully parsed stop reply in the stop reply queue. Since we
4660 know that we now have at least one queued event left to pass to the
4661 core side, tell the event loop to get back to target_wait soon. */
4662
4663 static void
4664 push_stop_reply (struct stop_reply *new_event)
4665 {
4666 struct stop_reply *event;
4667
4668 if (stop_reply_queue)
4669 {
4670 for (event = stop_reply_queue;
4671 event && event->next;
4672 event = event->next)
4673 ;
4674
4675 event->next = new_event;
4676 }
4677 else
4678 stop_reply_queue = new_event;
4679
4680 mark_async_event_handler (remote_async_inferior_event_token);
4681 }
4682
4683 /* Returns true if we have a stop reply for PTID. */
4684
4685 static int
4686 peek_stop_reply (ptid_t ptid)
4687 {
4688 struct stop_reply *it;
4689
4690 for (it = stop_reply_queue; it; it = it->next)
4691 if (ptid_equal (ptid, it->ptid))
4692 {
4693 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4694 return 1;
4695 }
4696
4697 return 0;
4698 }
4699
4700 /* Parse the stop reply in BUF. Either the function succeeds, and the
4701 result is stored in EVENT, or throws an error. */
4702
4703 static void
4704 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4705 {
4706 struct remote_arch_state *rsa = get_remote_arch_state ();
4707 ULONGEST addr;
4708 char *p;
4709
4710 event->ptid = null_ptid;
4711 event->ws.kind = TARGET_WAITKIND_IGNORE;
4712 event->ws.value.integer = 0;
4713 event->solibs_changed = 0;
4714 event->replay_event = 0;
4715 event->stopped_by_watchpoint_p = 0;
4716 event->regcache = NULL;
4717 event->core = -1;
4718
4719 switch (buf[0])
4720 {
4721 case 'T': /* Status with PC, SP, FP, ... */
4722 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4723 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4724 ss = signal number
4725 n... = register number
4726 r... = register contents
4727 */
4728
4729 p = &buf[3]; /* after Txx */
4730 while (*p)
4731 {
4732 char *p1;
4733 char *p_temp;
4734 int fieldsize;
4735 LONGEST pnum = 0;
4736
4737 /* If the packet contains a register number, save it in
4738 pnum and set p1 to point to the character following it.
4739 Otherwise p1 points to p. */
4740
4741 /* If this packet is an awatch packet, don't parse the 'a'
4742 as a register number. */
4743
4744 if (strncmp (p, "awatch", strlen("awatch")) != 0
4745 && strncmp (p, "core", strlen ("core") != 0))
4746 {
4747 /* Read the ``P'' register number. */
4748 pnum = strtol (p, &p_temp, 16);
4749 p1 = p_temp;
4750 }
4751 else
4752 p1 = p;
4753
4754 if (p1 == p) /* No register number present here. */
4755 {
4756 p1 = strchr (p, ':');
4757 if (p1 == NULL)
4758 error (_("Malformed packet(a) (missing colon): %s\n\
4759 Packet: '%s'\n"),
4760 p, buf);
4761 if (strncmp (p, "thread", p1 - p) == 0)
4762 event->ptid = read_ptid (++p1, &p);
4763 else if ((strncmp (p, "watch", p1 - p) == 0)
4764 || (strncmp (p, "rwatch", p1 - p) == 0)
4765 || (strncmp (p, "awatch", p1 - p) == 0))
4766 {
4767 event->stopped_by_watchpoint_p = 1;
4768 p = unpack_varlen_hex (++p1, &addr);
4769 event->watch_data_address = (CORE_ADDR) addr;
4770 }
4771 else if (strncmp (p, "library", p1 - p) == 0)
4772 {
4773 p1++;
4774 p_temp = p1;
4775 while (*p_temp && *p_temp != ';')
4776 p_temp++;
4777
4778 event->solibs_changed = 1;
4779 p = p_temp;
4780 }
4781 else if (strncmp (p, "replaylog", p1 - p) == 0)
4782 {
4783 /* NO_HISTORY event.
4784 p1 will indicate "begin" or "end", but
4785 it makes no difference for now, so ignore it. */
4786 event->replay_event = 1;
4787 p_temp = strchr (p1 + 1, ';');
4788 if (p_temp)
4789 p = p_temp;
4790 }
4791 else if (strncmp (p, "core", p1 - p) == 0)
4792 {
4793 ULONGEST c;
4794 p = unpack_varlen_hex (++p1, &c);
4795 event->core = c;
4796 }
4797 else
4798 {
4799 /* Silently skip unknown optional info. */
4800 p_temp = strchr (p1 + 1, ';');
4801 if (p_temp)
4802 p = p_temp;
4803 }
4804 }
4805 else
4806 {
4807 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4808 cached_reg_t cached_reg;
4809
4810 p = p1;
4811
4812 if (*p != ':')
4813 error (_("Malformed packet(b) (missing colon): %s\n\
4814 Packet: '%s'\n"),
4815 p, buf);
4816 ++p;
4817
4818 if (reg == NULL)
4819 error (_("Remote sent bad register number %s: %s\n\
4820 Packet: '%s'\n"),
4821 phex_nz (pnum, 0), p, buf);
4822
4823 cached_reg.num = reg->regnum;
4824
4825 fieldsize = hex2bin (p, cached_reg.data,
4826 register_size (target_gdbarch,
4827 reg->regnum));
4828 p += 2 * fieldsize;
4829 if (fieldsize < register_size (target_gdbarch,
4830 reg->regnum))
4831 warning (_("Remote reply is too short: %s"), buf);
4832
4833 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4834 }
4835
4836 if (*p != ';')
4837 error (_("Remote register badly formatted: %s\nhere: %s"),
4838 buf, p);
4839 ++p;
4840 }
4841 /* fall through */
4842 case 'S': /* Old style status, just signal only. */
4843 if (event->solibs_changed)
4844 event->ws.kind = TARGET_WAITKIND_LOADED;
4845 else if (event->replay_event)
4846 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4847 else
4848 {
4849 event->ws.kind = TARGET_WAITKIND_STOPPED;
4850 event->ws.value.sig = (enum target_signal)
4851 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4852 }
4853 break;
4854 case 'W': /* Target exited. */
4855 case 'X':
4856 {
4857 char *p;
4858 int pid;
4859 ULONGEST value;
4860
4861 /* GDB used to accept only 2 hex chars here. Stubs should
4862 only send more if they detect GDB supports multi-process
4863 support. */
4864 p = unpack_varlen_hex (&buf[1], &value);
4865
4866 if (buf[0] == 'W')
4867 {
4868 /* The remote process exited. */
4869 event->ws.kind = TARGET_WAITKIND_EXITED;
4870 event->ws.value.integer = value;
4871 }
4872 else
4873 {
4874 /* The remote process exited with a signal. */
4875 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4876 event->ws.value.sig = (enum target_signal) value;
4877 }
4878
4879 /* If no process is specified, assume inferior_ptid. */
4880 pid = ptid_get_pid (inferior_ptid);
4881 if (*p == '\0')
4882 ;
4883 else if (*p == ';')
4884 {
4885 p++;
4886
4887 if (p == '\0')
4888 ;
4889 else if (strncmp (p,
4890 "process:", sizeof ("process:") - 1) == 0)
4891 {
4892 ULONGEST upid;
4893 p += sizeof ("process:") - 1;
4894 unpack_varlen_hex (p, &upid);
4895 pid = upid;
4896 }
4897 else
4898 error (_("unknown stop reply packet: %s"), buf);
4899 }
4900 else
4901 error (_("unknown stop reply packet: %s"), buf);
4902 event->ptid = pid_to_ptid (pid);
4903 }
4904 break;
4905 }
4906
4907 if (non_stop && ptid_equal (event->ptid, null_ptid))
4908 error (_("No process or thread specified in stop reply: %s"), buf);
4909 }
4910
4911 /* When the stub wants to tell GDB about a new stop reply, it sends a
4912 stop notification (%Stop). Those can come it at any time, hence,
4913 we have to make sure that any pending putpkt/getpkt sequence we're
4914 making is finished, before querying the stub for more events with
4915 vStopped. E.g., if we started a vStopped sequence immediatelly
4916 upon receiving the %Stop notification, something like this could
4917 happen:
4918
4919 1.1) --> Hg 1
4920 1.2) <-- OK
4921 1.3) --> g
4922 1.4) <-- %Stop
4923 1.5) --> vStopped
4924 1.6) <-- (registers reply to step #1.3)
4925
4926 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4927 query.
4928
4929 To solve this, whenever we parse a %Stop notification sucessfully,
4930 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4931 doing whatever we were doing:
4932
4933 2.1) --> Hg 1
4934 2.2) <-- OK
4935 2.3) --> g
4936 2.4) <-- %Stop
4937 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4938 2.5) <-- (registers reply to step #2.3)
4939
4940 Eventualy after step #2.5, we return to the event loop, which
4941 notices there's an event on the
4942 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4943 associated callback --- the function below. At this point, we're
4944 always safe to start a vStopped sequence. :
4945
4946 2.6) --> vStopped
4947 2.7) <-- T05 thread:2
4948 2.8) --> vStopped
4949 2.9) --> OK
4950 */
4951
4952 static void
4953 remote_get_pending_stop_replies (void)
4954 {
4955 struct remote_state *rs = get_remote_state ();
4956
4957 if (pending_stop_reply)
4958 {
4959 /* acknowledge */
4960 putpkt ("vStopped");
4961
4962 /* Now we can rely on it. */
4963 push_stop_reply (pending_stop_reply);
4964 pending_stop_reply = NULL;
4965
4966 while (1)
4967 {
4968 getpkt (&rs->buf, &rs->buf_size, 0);
4969 if (strcmp (rs->buf, "OK") == 0)
4970 break;
4971 else
4972 {
4973 struct cleanup *old_chain;
4974 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4975
4976 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4977 remote_parse_stop_reply (rs->buf, stop_reply);
4978
4979 /* acknowledge */
4980 putpkt ("vStopped");
4981
4982 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4983 {
4984 /* Now we can rely on it. */
4985 discard_cleanups (old_chain);
4986 push_stop_reply (stop_reply);
4987 }
4988 else
4989 /* We got an unknown stop reply. */
4990 do_cleanups (old_chain);
4991 }
4992 }
4993 }
4994 }
4995
4996
4997 /* Called when it is decided that STOP_REPLY holds the info of the
4998 event that is to be returned to the core. This function always
4999 destroys STOP_REPLY. */
5000
5001 static ptid_t
5002 process_stop_reply (struct stop_reply *stop_reply,
5003 struct target_waitstatus *status)
5004 {
5005 ptid_t ptid;
5006 struct thread_info *info;
5007
5008 *status = stop_reply->ws;
5009 ptid = stop_reply->ptid;
5010
5011 /* If no thread/process was reported by the stub, assume the current
5012 inferior. */
5013 if (ptid_equal (ptid, null_ptid))
5014 ptid = inferior_ptid;
5015
5016 if (status->kind != TARGET_WAITKIND_EXITED
5017 && status->kind != TARGET_WAITKIND_SIGNALLED)
5018 {
5019 /* Expedited registers. */
5020 if (stop_reply->regcache)
5021 {
5022 struct regcache *regcache
5023 = get_thread_arch_regcache (ptid, target_gdbarch);
5024 cached_reg_t *reg;
5025 int ix;
5026
5027 for (ix = 0;
5028 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5029 ix++)
5030 regcache_raw_supply (regcache, reg->num, reg->data);
5031 VEC_free (cached_reg_t, stop_reply->regcache);
5032 }
5033
5034 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5035 remote_watch_data_address = stop_reply->watch_data_address;
5036
5037 remote_notice_new_inferior (ptid, 0);
5038 demand_private_info (ptid)->core = stop_reply->core;
5039 }
5040
5041 stop_reply_xfree (stop_reply);
5042 return ptid;
5043 }
5044
5045 /* The non-stop mode version of target_wait. */
5046
5047 static ptid_t
5048 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5049 {
5050 struct remote_state *rs = get_remote_state ();
5051 struct stop_reply *stop_reply;
5052 int ret;
5053
5054 /* If in non-stop mode, get out of getpkt even if a
5055 notification is received. */
5056
5057 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5058 0 /* forever */);
5059 while (1)
5060 {
5061 if (ret != -1)
5062 switch (rs->buf[0])
5063 {
5064 case 'E': /* Error of some sort. */
5065 /* We're out of sync with the target now. Did it continue
5066 or not? We can't tell which thread it was in non-stop,
5067 so just ignore this. */
5068 warning (_("Remote failure reply: %s"), rs->buf);
5069 break;
5070 case 'O': /* Console output. */
5071 remote_console_output (rs->buf + 1);
5072 break;
5073 default:
5074 warning (_("Invalid remote reply: %s"), rs->buf);
5075 break;
5076 }
5077
5078 /* Acknowledge a pending stop reply that may have arrived in the
5079 mean time. */
5080 if (pending_stop_reply != NULL)
5081 remote_get_pending_stop_replies ();
5082
5083 /* If indeed we noticed a stop reply, we're done. */
5084 stop_reply = queued_stop_reply (ptid);
5085 if (stop_reply != NULL)
5086 return process_stop_reply (stop_reply, status);
5087
5088 /* Still no event. If we're just polling for an event, then
5089 return to the event loop. */
5090 if (options & TARGET_WNOHANG)
5091 {
5092 status->kind = TARGET_WAITKIND_IGNORE;
5093 return minus_one_ptid;
5094 }
5095
5096 /* Otherwise do a blocking wait. */
5097 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5098 1 /* forever */);
5099 }
5100 }
5101
5102 /* Wait until the remote machine stops, then return, storing status in
5103 STATUS just as `wait' would. */
5104
5105 static ptid_t
5106 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5107 {
5108 struct remote_state *rs = get_remote_state ();
5109 ptid_t event_ptid = null_ptid;
5110 char *buf;
5111 struct stop_reply *stop_reply;
5112
5113 again:
5114
5115 status->kind = TARGET_WAITKIND_IGNORE;
5116 status->value.integer = 0;
5117
5118 stop_reply = queued_stop_reply (ptid);
5119 if (stop_reply != NULL)
5120 return process_stop_reply (stop_reply, status);
5121
5122 if (rs->cached_wait_status)
5123 /* Use the cached wait status, but only once. */
5124 rs->cached_wait_status = 0;
5125 else
5126 {
5127 int ret;
5128
5129 if (!target_is_async_p ())
5130 {
5131 ofunc = signal (SIGINT, remote_interrupt);
5132 /* If the user hit C-c before this packet, or between packets,
5133 pretend that it was hit right here. */
5134 if (quit_flag)
5135 {
5136 quit_flag = 0;
5137 remote_interrupt (SIGINT);
5138 }
5139 }
5140
5141 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5142 _never_ wait for ever -> test on target_is_async_p().
5143 However, before we do that we need to ensure that the caller
5144 knows how to take the target into/out of async mode. */
5145 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5146 if (!target_is_async_p ())
5147 signal (SIGINT, ofunc);
5148 }
5149
5150 buf = rs->buf;
5151
5152 remote_stopped_by_watchpoint_p = 0;
5153
5154 /* We got something. */
5155 rs->waiting_for_stop_reply = 0;
5156
5157 /* Assume that the target has acknowledged Ctrl-C unless we receive
5158 an 'F' or 'O' packet. */
5159 if (buf[0] != 'F' && buf[0] != 'O')
5160 rs->ctrlc_pending_p = 0;
5161
5162 switch (buf[0])
5163 {
5164 case 'E': /* Error of some sort. */
5165 /* We're out of sync with the target now. Did it continue or
5166 not? Not is more likely, so report a stop. */
5167 warning (_("Remote failure reply: %s"), buf);
5168 status->kind = TARGET_WAITKIND_STOPPED;
5169 status->value.sig = TARGET_SIGNAL_0;
5170 break;
5171 case 'F': /* File-I/O request. */
5172 remote_fileio_request (buf, rs->ctrlc_pending_p);
5173 rs->ctrlc_pending_p = 0;
5174 break;
5175 case 'T': case 'S': case 'X': case 'W':
5176 {
5177 struct stop_reply *stop_reply;
5178 struct cleanup *old_chain;
5179
5180 stop_reply = stop_reply_xmalloc ();
5181 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5182 remote_parse_stop_reply (buf, stop_reply);
5183 discard_cleanups (old_chain);
5184 event_ptid = process_stop_reply (stop_reply, status);
5185 break;
5186 }
5187 case 'O': /* Console output. */
5188 remote_console_output (buf + 1);
5189
5190 /* The target didn't really stop; keep waiting. */
5191 rs->waiting_for_stop_reply = 1;
5192
5193 break;
5194 case '\0':
5195 if (last_sent_signal != TARGET_SIGNAL_0)
5196 {
5197 /* Zero length reply means that we tried 'S' or 'C' and the
5198 remote system doesn't support it. */
5199 target_terminal_ours_for_output ();
5200 printf_filtered
5201 ("Can't send signals to this remote system. %s not sent.\n",
5202 target_signal_to_name (last_sent_signal));
5203 last_sent_signal = TARGET_SIGNAL_0;
5204 target_terminal_inferior ();
5205
5206 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5207 putpkt ((char *) buf);
5208
5209 /* We just told the target to resume, so a stop reply is in
5210 order. */
5211 rs->waiting_for_stop_reply = 1;
5212 break;
5213 }
5214 /* else fallthrough */
5215 default:
5216 warning (_("Invalid remote reply: %s"), buf);
5217 /* Keep waiting. */
5218 rs->waiting_for_stop_reply = 1;
5219 break;
5220 }
5221
5222 if (status->kind == TARGET_WAITKIND_IGNORE)
5223 {
5224 /* Nothing interesting happened. If we're doing a non-blocking
5225 poll, we're done. Otherwise, go back to waiting. */
5226 if (options & TARGET_WNOHANG)
5227 return minus_one_ptid;
5228 else
5229 goto again;
5230 }
5231 else if (status->kind != TARGET_WAITKIND_EXITED
5232 && status->kind != TARGET_WAITKIND_SIGNALLED)
5233 {
5234 if (!ptid_equal (event_ptid, null_ptid))
5235 record_currthread (event_ptid);
5236 else
5237 event_ptid = inferior_ptid;
5238 }
5239 else
5240 /* A process exit. Invalidate our notion of current thread. */
5241 record_currthread (minus_one_ptid);
5242
5243 return event_ptid;
5244 }
5245
5246 /* Wait until the remote machine stops, then return, storing status in
5247 STATUS just as `wait' would. */
5248
5249 static ptid_t
5250 remote_wait (struct target_ops *ops,
5251 ptid_t ptid, struct target_waitstatus *status, int options)
5252 {
5253 ptid_t event_ptid;
5254
5255 if (non_stop)
5256 event_ptid = remote_wait_ns (ptid, status, options);
5257 else
5258 event_ptid = remote_wait_as (ptid, status, options);
5259
5260 if (target_can_async_p ())
5261 {
5262 /* If there are are events left in the queue tell the event loop
5263 to return here. */
5264 if (stop_reply_queue)
5265 mark_async_event_handler (remote_async_inferior_event_token);
5266 }
5267
5268 return event_ptid;
5269 }
5270
5271 /* Fetch a single register using a 'p' packet. */
5272
5273 static int
5274 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5275 {
5276 struct remote_state *rs = get_remote_state ();
5277 char *buf, *p;
5278 char regp[MAX_REGISTER_SIZE];
5279 int i;
5280
5281 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5282 return 0;
5283
5284 if (reg->pnum == -1)
5285 return 0;
5286
5287 p = rs->buf;
5288 *p++ = 'p';
5289 p += hexnumstr (p, reg->pnum);
5290 *p++ = '\0';
5291 putpkt (rs->buf);
5292 getpkt (&rs->buf, &rs->buf_size, 0);
5293
5294 buf = rs->buf;
5295
5296 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5297 {
5298 case PACKET_OK:
5299 break;
5300 case PACKET_UNKNOWN:
5301 return 0;
5302 case PACKET_ERROR:
5303 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5304 gdbarch_register_name (get_regcache_arch (regcache),
5305 reg->regnum),
5306 buf);
5307 }
5308
5309 /* If this register is unfetchable, tell the regcache. */
5310 if (buf[0] == 'x')
5311 {
5312 regcache_raw_supply (regcache, reg->regnum, NULL);
5313 return 1;
5314 }
5315
5316 /* Otherwise, parse and supply the value. */
5317 p = buf;
5318 i = 0;
5319 while (p[0] != 0)
5320 {
5321 if (p[1] == 0)
5322 error (_("fetch_register_using_p: early buf termination"));
5323
5324 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5325 p += 2;
5326 }
5327 regcache_raw_supply (regcache, reg->regnum, regp);
5328 return 1;
5329 }
5330
5331 /* Fetch the registers included in the target's 'g' packet. */
5332
5333 static int
5334 send_g_packet (void)
5335 {
5336 struct remote_state *rs = get_remote_state ();
5337 int buf_len;
5338
5339 sprintf (rs->buf, "g");
5340 remote_send (&rs->buf, &rs->buf_size);
5341
5342 /* We can get out of synch in various cases. If the first character
5343 in the buffer is not a hex character, assume that has happened
5344 and try to fetch another packet to read. */
5345 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5346 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5347 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5348 && rs->buf[0] != 'x') /* New: unavailable register value. */
5349 {
5350 if (remote_debug)
5351 fprintf_unfiltered (gdb_stdlog,
5352 "Bad register packet; fetching a new packet\n");
5353 getpkt (&rs->buf, &rs->buf_size, 0);
5354 }
5355
5356 buf_len = strlen (rs->buf);
5357
5358 /* Sanity check the received packet. */
5359 if (buf_len % 2 != 0)
5360 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5361
5362 return buf_len / 2;
5363 }
5364
5365 static void
5366 process_g_packet (struct regcache *regcache)
5367 {
5368 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5369 struct remote_state *rs = get_remote_state ();
5370 struct remote_arch_state *rsa = get_remote_arch_state ();
5371 int i, buf_len;
5372 char *p;
5373 char *regs;
5374
5375 buf_len = strlen (rs->buf);
5376
5377 /* Further sanity checks, with knowledge of the architecture. */
5378 if (buf_len > 2 * rsa->sizeof_g_packet)
5379 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5380
5381 /* Save the size of the packet sent to us by the target. It is used
5382 as a heuristic when determining the max size of packets that the
5383 target can safely receive. */
5384 if (rsa->actual_register_packet_size == 0)
5385 rsa->actual_register_packet_size = buf_len;
5386
5387 /* If this is smaller than we guessed the 'g' packet would be,
5388 update our records. A 'g' reply that doesn't include a register's
5389 value implies either that the register is not available, or that
5390 the 'p' packet must be used. */
5391 if (buf_len < 2 * rsa->sizeof_g_packet)
5392 {
5393 rsa->sizeof_g_packet = buf_len / 2;
5394
5395 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5396 {
5397 if (rsa->regs[i].pnum == -1)
5398 continue;
5399
5400 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5401 rsa->regs[i].in_g_packet = 0;
5402 else
5403 rsa->regs[i].in_g_packet = 1;
5404 }
5405 }
5406
5407 regs = alloca (rsa->sizeof_g_packet);
5408
5409 /* Unimplemented registers read as all bits zero. */
5410 memset (regs, 0, rsa->sizeof_g_packet);
5411
5412 /* Reply describes registers byte by byte, each byte encoded as two
5413 hex characters. Suck them all up, then supply them to the
5414 register cacheing/storage mechanism. */
5415
5416 p = rs->buf;
5417 for (i = 0; i < rsa->sizeof_g_packet; i++)
5418 {
5419 if (p[0] == 0 || p[1] == 0)
5420 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5421 internal_error (__FILE__, __LINE__,
5422 "unexpected end of 'g' packet reply");
5423
5424 if (p[0] == 'x' && p[1] == 'x')
5425 regs[i] = 0; /* 'x' */
5426 else
5427 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5428 p += 2;
5429 }
5430
5431 {
5432 int i;
5433 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5434 {
5435 struct packet_reg *r = &rsa->regs[i];
5436 if (r->in_g_packet)
5437 {
5438 if (r->offset * 2 >= strlen (rs->buf))
5439 /* This shouldn't happen - we adjusted in_g_packet above. */
5440 internal_error (__FILE__, __LINE__,
5441 "unexpected end of 'g' packet reply");
5442 else if (rs->buf[r->offset * 2] == 'x')
5443 {
5444 gdb_assert (r->offset * 2 < strlen (rs->buf));
5445 /* The register isn't available, mark it as such (at
5446 the same time setting the value to zero). */
5447 regcache_raw_supply (regcache, r->regnum, NULL);
5448 }
5449 else
5450 regcache_raw_supply (regcache, r->regnum,
5451 regs + r->offset);
5452 }
5453 }
5454 }
5455 }
5456
5457 static void
5458 fetch_registers_using_g (struct regcache *regcache)
5459 {
5460 send_g_packet ();
5461 process_g_packet (regcache);
5462 }
5463
5464 static void
5465 remote_fetch_registers (struct target_ops *ops,
5466 struct regcache *regcache, int regnum)
5467 {
5468 struct remote_arch_state *rsa = get_remote_arch_state ();
5469 int i;
5470
5471 set_general_thread (inferior_ptid);
5472
5473 if (regnum >= 0)
5474 {
5475 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5476 gdb_assert (reg != NULL);
5477
5478 /* If this register might be in the 'g' packet, try that first -
5479 we are likely to read more than one register. If this is the
5480 first 'g' packet, we might be overly optimistic about its
5481 contents, so fall back to 'p'. */
5482 if (reg->in_g_packet)
5483 {
5484 fetch_registers_using_g (regcache);
5485 if (reg->in_g_packet)
5486 return;
5487 }
5488
5489 if (fetch_register_using_p (regcache, reg))
5490 return;
5491
5492 /* This register is not available. */
5493 regcache_raw_supply (regcache, reg->regnum, NULL);
5494
5495 return;
5496 }
5497
5498 fetch_registers_using_g (regcache);
5499
5500 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5501 if (!rsa->regs[i].in_g_packet)
5502 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5503 {
5504 /* This register is not available. */
5505 regcache_raw_supply (regcache, i, NULL);
5506 }
5507 }
5508
5509 /* Prepare to store registers. Since we may send them all (using a
5510 'G' request), we have to read out the ones we don't want to change
5511 first. */
5512
5513 static void
5514 remote_prepare_to_store (struct regcache *regcache)
5515 {
5516 struct remote_arch_state *rsa = get_remote_arch_state ();
5517 int i;
5518 gdb_byte buf[MAX_REGISTER_SIZE];
5519
5520 /* Make sure the entire registers array is valid. */
5521 switch (remote_protocol_packets[PACKET_P].support)
5522 {
5523 case PACKET_DISABLE:
5524 case PACKET_SUPPORT_UNKNOWN:
5525 /* Make sure all the necessary registers are cached. */
5526 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5527 if (rsa->regs[i].in_g_packet)
5528 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5529 break;
5530 case PACKET_ENABLE:
5531 break;
5532 }
5533 }
5534
5535 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5536 packet was not recognized. */
5537
5538 static int
5539 store_register_using_P (const struct regcache *regcache,
5540 struct packet_reg *reg)
5541 {
5542 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5543 struct remote_state *rs = get_remote_state ();
5544 /* Try storing a single register. */
5545 char *buf = rs->buf;
5546 gdb_byte regp[MAX_REGISTER_SIZE];
5547 char *p;
5548
5549 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5550 return 0;
5551
5552 if (reg->pnum == -1)
5553 return 0;
5554
5555 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5556 p = buf + strlen (buf);
5557 regcache_raw_collect (regcache, reg->regnum, regp);
5558 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5559 putpkt (rs->buf);
5560 getpkt (&rs->buf, &rs->buf_size, 0);
5561
5562 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5563 {
5564 case PACKET_OK:
5565 return 1;
5566 case PACKET_ERROR:
5567 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5568 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5569 case PACKET_UNKNOWN:
5570 return 0;
5571 default:
5572 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5573 }
5574 }
5575
5576 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5577 contents of the register cache buffer. FIXME: ignores errors. */
5578
5579 static void
5580 store_registers_using_G (const struct regcache *regcache)
5581 {
5582 struct remote_state *rs = get_remote_state ();
5583 struct remote_arch_state *rsa = get_remote_arch_state ();
5584 gdb_byte *regs;
5585 char *p;
5586
5587 /* Extract all the registers in the regcache copying them into a
5588 local buffer. */
5589 {
5590 int i;
5591 regs = alloca (rsa->sizeof_g_packet);
5592 memset (regs, 0, rsa->sizeof_g_packet);
5593 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5594 {
5595 struct packet_reg *r = &rsa->regs[i];
5596 if (r->in_g_packet)
5597 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5598 }
5599 }
5600
5601 /* Command describes registers byte by byte,
5602 each byte encoded as two hex characters. */
5603 p = rs->buf;
5604 *p++ = 'G';
5605 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5606 updated. */
5607 bin2hex (regs, p, rsa->sizeof_g_packet);
5608 putpkt (rs->buf);
5609 getpkt (&rs->buf, &rs->buf_size, 0);
5610 if (packet_check_result (rs->buf) == PACKET_ERROR)
5611 error (_("Could not write registers; remote failure reply '%s'"),
5612 rs->buf);
5613 }
5614
5615 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5616 of the register cache buffer. FIXME: ignores errors. */
5617
5618 static void
5619 remote_store_registers (struct target_ops *ops,
5620 struct regcache *regcache, int regnum)
5621 {
5622 struct remote_arch_state *rsa = get_remote_arch_state ();
5623 int i;
5624
5625 set_general_thread (inferior_ptid);
5626
5627 if (regnum >= 0)
5628 {
5629 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5630 gdb_assert (reg != NULL);
5631
5632 /* Always prefer to store registers using the 'P' packet if
5633 possible; we often change only a small number of registers.
5634 Sometimes we change a larger number; we'd need help from a
5635 higher layer to know to use 'G'. */
5636 if (store_register_using_P (regcache, reg))
5637 return;
5638
5639 /* For now, don't complain if we have no way to write the
5640 register. GDB loses track of unavailable registers too
5641 easily. Some day, this may be an error. We don't have
5642 any way to read the register, either... */
5643 if (!reg->in_g_packet)
5644 return;
5645
5646 store_registers_using_G (regcache);
5647 return;
5648 }
5649
5650 store_registers_using_G (regcache);
5651
5652 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5653 if (!rsa->regs[i].in_g_packet)
5654 if (!store_register_using_P (regcache, &rsa->regs[i]))
5655 /* See above for why we do not issue an error here. */
5656 continue;
5657 }
5658 \f
5659
5660 /* Return the number of hex digits in num. */
5661
5662 static int
5663 hexnumlen (ULONGEST num)
5664 {
5665 int i;
5666
5667 for (i = 0; num != 0; i++)
5668 num >>= 4;
5669
5670 return max (i, 1);
5671 }
5672
5673 /* Set BUF to the minimum number of hex digits representing NUM. */
5674
5675 static int
5676 hexnumstr (char *buf, ULONGEST num)
5677 {
5678 int len = hexnumlen (num);
5679 return hexnumnstr (buf, num, len);
5680 }
5681
5682
5683 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5684
5685 static int
5686 hexnumnstr (char *buf, ULONGEST num, int width)
5687 {
5688 int i;
5689
5690 buf[width] = '\0';
5691
5692 for (i = width - 1; i >= 0; i--)
5693 {
5694 buf[i] = "0123456789abcdef"[(num & 0xf)];
5695 num >>= 4;
5696 }
5697
5698 return width;
5699 }
5700
5701 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5702
5703 static CORE_ADDR
5704 remote_address_masked (CORE_ADDR addr)
5705 {
5706 int address_size = remote_address_size;
5707 /* If "remoteaddresssize" was not set, default to target address size. */
5708 if (!address_size)
5709 address_size = gdbarch_addr_bit (target_gdbarch);
5710
5711 if (address_size > 0
5712 && address_size < (sizeof (ULONGEST) * 8))
5713 {
5714 /* Only create a mask when that mask can safely be constructed
5715 in a ULONGEST variable. */
5716 ULONGEST mask = 1;
5717 mask = (mask << address_size) - 1;
5718 addr &= mask;
5719 }
5720 return addr;
5721 }
5722
5723 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5724 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5725 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5726 (which may be more than *OUT_LEN due to escape characters). The
5727 total number of bytes in the output buffer will be at most
5728 OUT_MAXLEN. */
5729
5730 static int
5731 remote_escape_output (const gdb_byte *buffer, int len,
5732 gdb_byte *out_buf, int *out_len,
5733 int out_maxlen)
5734 {
5735 int input_index, output_index;
5736
5737 output_index = 0;
5738 for (input_index = 0; input_index < len; input_index++)
5739 {
5740 gdb_byte b = buffer[input_index];
5741
5742 if (b == '$' || b == '#' || b == '}')
5743 {
5744 /* These must be escaped. */
5745 if (output_index + 2 > out_maxlen)
5746 break;
5747 out_buf[output_index++] = '}';
5748 out_buf[output_index++] = b ^ 0x20;
5749 }
5750 else
5751 {
5752 if (output_index + 1 > out_maxlen)
5753 break;
5754 out_buf[output_index++] = b;
5755 }
5756 }
5757
5758 *out_len = input_index;
5759 return output_index;
5760 }
5761
5762 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5763 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5764 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5765
5766 This function reverses remote_escape_output. It allows more
5767 escaped characters than that function does, in particular because
5768 '*' must be escaped to avoid the run-length encoding processing
5769 in reading packets. */
5770
5771 static int
5772 remote_unescape_input (const gdb_byte *buffer, int len,
5773 gdb_byte *out_buf, int out_maxlen)
5774 {
5775 int input_index, output_index;
5776 int escaped;
5777
5778 output_index = 0;
5779 escaped = 0;
5780 for (input_index = 0; input_index < len; input_index++)
5781 {
5782 gdb_byte b = buffer[input_index];
5783
5784 if (output_index + 1 > out_maxlen)
5785 {
5786 warning (_("Received too much data from remote target;"
5787 " ignoring overflow."));
5788 return output_index;
5789 }
5790
5791 if (escaped)
5792 {
5793 out_buf[output_index++] = b ^ 0x20;
5794 escaped = 0;
5795 }
5796 else if (b == '}')
5797 escaped = 1;
5798 else
5799 out_buf[output_index++] = b;
5800 }
5801
5802 if (escaped)
5803 error (_("Unmatched escape character in target response."));
5804
5805 return output_index;
5806 }
5807
5808 /* Determine whether the remote target supports binary downloading.
5809 This is accomplished by sending a no-op memory write of zero length
5810 to the target at the specified address. It does not suffice to send
5811 the whole packet, since many stubs strip the eighth bit and
5812 subsequently compute a wrong checksum, which causes real havoc with
5813 remote_write_bytes.
5814
5815 NOTE: This can still lose if the serial line is not eight-bit
5816 clean. In cases like this, the user should clear "remote
5817 X-packet". */
5818
5819 static void
5820 check_binary_download (CORE_ADDR addr)
5821 {
5822 struct remote_state *rs = get_remote_state ();
5823
5824 switch (remote_protocol_packets[PACKET_X].support)
5825 {
5826 case PACKET_DISABLE:
5827 break;
5828 case PACKET_ENABLE:
5829 break;
5830 case PACKET_SUPPORT_UNKNOWN:
5831 {
5832 char *p;
5833
5834 p = rs->buf;
5835 *p++ = 'X';
5836 p += hexnumstr (p, (ULONGEST) addr);
5837 *p++ = ',';
5838 p += hexnumstr (p, (ULONGEST) 0);
5839 *p++ = ':';
5840 *p = '\0';
5841
5842 putpkt_binary (rs->buf, (int) (p - rs->buf));
5843 getpkt (&rs->buf, &rs->buf_size, 0);
5844
5845 if (rs->buf[0] == '\0')
5846 {
5847 if (remote_debug)
5848 fprintf_unfiltered (gdb_stdlog,
5849 "binary downloading NOT suppported by target\n");
5850 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5851 }
5852 else
5853 {
5854 if (remote_debug)
5855 fprintf_unfiltered (gdb_stdlog,
5856 "binary downloading suppported by target\n");
5857 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5858 }
5859 break;
5860 }
5861 }
5862 }
5863
5864 /* Write memory data directly to the remote machine.
5865 This does not inform the data cache; the data cache uses this.
5866 HEADER is the starting part of the packet.
5867 MEMADDR is the address in the remote memory space.
5868 MYADDR is the address of the buffer in our space.
5869 LEN is the number of bytes.
5870 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5871 should send data as binary ('X'), or hex-encoded ('M').
5872
5873 The function creates packet of the form
5874 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5875
5876 where encoding of <DATA> is termined by PACKET_FORMAT.
5877
5878 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5879 are omitted.
5880
5881 Returns the number of bytes transferred, or 0 (setting errno) for
5882 error. Only transfer a single packet. */
5883
5884 static int
5885 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5886 const gdb_byte *myaddr, int len,
5887 char packet_format, int use_length)
5888 {
5889 struct remote_state *rs = get_remote_state ();
5890 char *p;
5891 char *plen = NULL;
5892 int plenlen = 0;
5893 int todo;
5894 int nr_bytes;
5895 int payload_size;
5896 int payload_length;
5897 int header_length;
5898
5899 if (packet_format != 'X' && packet_format != 'M')
5900 internal_error (__FILE__, __LINE__,
5901 "remote_write_bytes_aux: bad packet format");
5902
5903 if (len <= 0)
5904 return 0;
5905
5906 payload_size = get_memory_write_packet_size ();
5907
5908 /* The packet buffer will be large enough for the payload;
5909 get_memory_packet_size ensures this. */
5910 rs->buf[0] = '\0';
5911
5912 /* Compute the size of the actual payload by subtracting out the
5913 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5914 */
5915 payload_size -= strlen ("$,:#NN");
5916 if (!use_length)
5917 /* The comma won't be used. */
5918 payload_size += 1;
5919 header_length = strlen (header);
5920 payload_size -= header_length;
5921 payload_size -= hexnumlen (memaddr);
5922
5923 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5924
5925 strcat (rs->buf, header);
5926 p = rs->buf + strlen (header);
5927
5928 /* Compute a best guess of the number of bytes actually transfered. */
5929 if (packet_format == 'X')
5930 {
5931 /* Best guess at number of bytes that will fit. */
5932 todo = min (len, payload_size);
5933 if (use_length)
5934 payload_size -= hexnumlen (todo);
5935 todo = min (todo, payload_size);
5936 }
5937 else
5938 {
5939 /* Num bytes that will fit. */
5940 todo = min (len, payload_size / 2);
5941 if (use_length)
5942 payload_size -= hexnumlen (todo);
5943 todo = min (todo, payload_size / 2);
5944 }
5945
5946 if (todo <= 0)
5947 internal_error (__FILE__, __LINE__,
5948 _("minumum packet size too small to write data"));
5949
5950 /* If we already need another packet, then try to align the end
5951 of this packet to a useful boundary. */
5952 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5953 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5954
5955 /* Append "<memaddr>". */
5956 memaddr = remote_address_masked (memaddr);
5957 p += hexnumstr (p, (ULONGEST) memaddr);
5958
5959 if (use_length)
5960 {
5961 /* Append ",". */
5962 *p++ = ',';
5963
5964 /* Append <len>. Retain the location/size of <len>. It may need to
5965 be adjusted once the packet body has been created. */
5966 plen = p;
5967 plenlen = hexnumstr (p, (ULONGEST) todo);
5968 p += plenlen;
5969 }
5970
5971 /* Append ":". */
5972 *p++ = ':';
5973 *p = '\0';
5974
5975 /* Append the packet body. */
5976 if (packet_format == 'X')
5977 {
5978 /* Binary mode. Send target system values byte by byte, in
5979 increasing byte addresses. Only escape certain critical
5980 characters. */
5981 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5982 payload_size);
5983
5984 /* If not all TODO bytes fit, then we'll need another packet. Make
5985 a second try to keep the end of the packet aligned. Don't do
5986 this if the packet is tiny. */
5987 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5988 {
5989 int new_nr_bytes;
5990
5991 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5992 - memaddr);
5993 if (new_nr_bytes != nr_bytes)
5994 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5995 p, &nr_bytes,
5996 payload_size);
5997 }
5998
5999 p += payload_length;
6000 if (use_length && nr_bytes < todo)
6001 {
6002 /* Escape chars have filled up the buffer prematurely,
6003 and we have actually sent fewer bytes than planned.
6004 Fix-up the length field of the packet. Use the same
6005 number of characters as before. */
6006 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6007 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6008 }
6009 }
6010 else
6011 {
6012 /* Normal mode: Send target system values byte by byte, in
6013 increasing byte addresses. Each byte is encoded as a two hex
6014 value. */
6015 nr_bytes = bin2hex (myaddr, p, todo);
6016 p += 2 * nr_bytes;
6017 }
6018
6019 putpkt_binary (rs->buf, (int) (p - rs->buf));
6020 getpkt (&rs->buf, &rs->buf_size, 0);
6021
6022 if (rs->buf[0] == 'E')
6023 {
6024 /* There is no correspondance between what the remote protocol
6025 uses for errors and errno codes. We would like a cleaner way
6026 of representing errors (big enough to include errno codes,
6027 bfd_error codes, and others). But for now just return EIO. */
6028 errno = EIO;
6029 return 0;
6030 }
6031
6032 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6033 fewer bytes than we'd planned. */
6034 return nr_bytes;
6035 }
6036
6037 /* Write memory data directly to the remote machine.
6038 This does not inform the data cache; the data cache uses this.
6039 MEMADDR is the address in the remote memory space.
6040 MYADDR is the address of the buffer in our space.
6041 LEN is the number of bytes.
6042
6043 Returns number of bytes transferred, or 0 (setting errno) for
6044 error. Only transfer a single packet. */
6045
6046 int
6047 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6048 {
6049 char *packet_format = 0;
6050
6051 /* Check whether the target supports binary download. */
6052 check_binary_download (memaddr);
6053
6054 switch (remote_protocol_packets[PACKET_X].support)
6055 {
6056 case PACKET_ENABLE:
6057 packet_format = "X";
6058 break;
6059 case PACKET_DISABLE:
6060 packet_format = "M";
6061 break;
6062 case PACKET_SUPPORT_UNKNOWN:
6063 internal_error (__FILE__, __LINE__,
6064 _("remote_write_bytes: bad internal state"));
6065 default:
6066 internal_error (__FILE__, __LINE__, _("bad switch"));
6067 }
6068
6069 return remote_write_bytes_aux (packet_format,
6070 memaddr, myaddr, len, packet_format[0], 1);
6071 }
6072
6073 /* Read memory data directly from the remote machine.
6074 This does not use the data cache; the data cache uses this.
6075 MEMADDR is the address in the remote memory space.
6076 MYADDR is the address of the buffer in our space.
6077 LEN is the number of bytes.
6078
6079 Returns number of bytes transferred, or 0 for error. */
6080
6081 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
6082 remote targets) shouldn't attempt to read the entire buffer.
6083 Instead it should read a single packet worth of data and then
6084 return the byte size of that packet to the caller. The caller (its
6085 caller and its callers caller ;-) already contains code for
6086 handling partial reads. */
6087
6088 int
6089 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6090 {
6091 struct remote_state *rs = get_remote_state ();
6092 int max_buf_size; /* Max size of packet output buffer. */
6093 int origlen;
6094
6095 if (len <= 0)
6096 return 0;
6097
6098 max_buf_size = get_memory_read_packet_size ();
6099 /* The packet buffer will be large enough for the payload;
6100 get_memory_packet_size ensures this. */
6101
6102 origlen = len;
6103 while (len > 0)
6104 {
6105 char *p;
6106 int todo;
6107 int i;
6108
6109 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
6110
6111 /* construct "m"<memaddr>","<len>" */
6112 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
6113 memaddr = remote_address_masked (memaddr);
6114 p = rs->buf;
6115 *p++ = 'm';
6116 p += hexnumstr (p, (ULONGEST) memaddr);
6117 *p++ = ',';
6118 p += hexnumstr (p, (ULONGEST) todo);
6119 *p = '\0';
6120
6121 putpkt (rs->buf);
6122 getpkt (&rs->buf, &rs->buf_size, 0);
6123
6124 if (rs->buf[0] == 'E'
6125 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6126 && rs->buf[3] == '\0')
6127 {
6128 /* There is no correspondance between what the remote
6129 protocol uses for errors and errno codes. We would like
6130 a cleaner way of representing errors (big enough to
6131 include errno codes, bfd_error codes, and others). But
6132 for now just return EIO. */
6133 errno = EIO;
6134 return 0;
6135 }
6136
6137 /* Reply describes memory byte by byte,
6138 each byte encoded as two hex characters. */
6139
6140 p = rs->buf;
6141 if ((i = hex2bin (p, myaddr, todo)) < todo)
6142 {
6143 /* Reply is short. This means that we were able to read
6144 only part of what we wanted to. */
6145 return i + (origlen - len);
6146 }
6147 myaddr += todo;
6148 memaddr += todo;
6149 len -= todo;
6150 }
6151 return origlen;
6152 }
6153 \f
6154
6155 /* Remote notification handler. */
6156
6157 static void
6158 handle_notification (char *buf, size_t length)
6159 {
6160 if (strncmp (buf, "Stop:", 5) == 0)
6161 {
6162 if (pending_stop_reply)
6163 /* We've already parsed the in-flight stop-reply, but the stub
6164 for some reason thought we didn't, possibly due to timeout
6165 on its side. Just ignore it. */
6166 ;
6167 else
6168 {
6169 struct cleanup *old_chain;
6170 struct stop_reply *reply = stop_reply_xmalloc ();
6171 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6172
6173 remote_parse_stop_reply (buf + 5, reply);
6174
6175 discard_cleanups (old_chain);
6176
6177 /* Be careful to only set it after parsing, since an error
6178 may be thrown then. */
6179 pending_stop_reply = reply;
6180
6181 /* Notify the event loop there's a stop reply to acknowledge
6182 and that there may be more events to fetch. */
6183 mark_async_event_handler (remote_async_get_pending_events_token);
6184 }
6185 }
6186 else
6187 /* We ignore notifications we don't recognize, for compatibility
6188 with newer stubs. */
6189 ;
6190 }
6191
6192 \f
6193 /* Read or write LEN bytes from inferior memory at MEMADDR,
6194 transferring to or from debugger address BUFFER. Write to inferior
6195 if SHOULD_WRITE is nonzero. Returns length of data written or
6196 read; 0 for error. TARGET is unused. */
6197
6198 static int
6199 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6200 int should_write, struct mem_attrib *attrib,
6201 struct target_ops *target)
6202 {
6203 int res;
6204
6205 set_general_thread (inferior_ptid);
6206
6207 if (should_write)
6208 res = remote_write_bytes (mem_addr, buffer, mem_len);
6209 else
6210 res = remote_read_bytes (mem_addr, buffer, mem_len);
6211
6212 return res;
6213 }
6214
6215 /* Sends a packet with content determined by the printf format string
6216 FORMAT and the remaining arguments, then gets the reply. Returns
6217 whether the packet was a success, a failure, or unknown. */
6218
6219 static enum packet_result
6220 remote_send_printf (const char *format, ...)
6221 {
6222 struct remote_state *rs = get_remote_state ();
6223 int max_size = get_remote_packet_size ();
6224
6225 va_list ap;
6226 va_start (ap, format);
6227
6228 rs->buf[0] = '\0';
6229 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6230 internal_error (__FILE__, __LINE__, "Too long remote packet.");
6231
6232 if (putpkt (rs->buf) < 0)
6233 error (_("Communication problem with target."));
6234
6235 rs->buf[0] = '\0';
6236 getpkt (&rs->buf, &rs->buf_size, 0);
6237
6238 return packet_check_result (rs->buf);
6239 }
6240
6241 static void
6242 restore_remote_timeout (void *p)
6243 {
6244 int value = *(int *)p;
6245 remote_timeout = value;
6246 }
6247
6248 /* Flash writing can take quite some time. We'll set
6249 effectively infinite timeout for flash operations.
6250 In future, we'll need to decide on a better approach. */
6251 static const int remote_flash_timeout = 1000;
6252
6253 static void
6254 remote_flash_erase (struct target_ops *ops,
6255 ULONGEST address, LONGEST length)
6256 {
6257 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6258 int saved_remote_timeout = remote_timeout;
6259 enum packet_result ret;
6260
6261 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6262 &saved_remote_timeout);
6263 remote_timeout = remote_flash_timeout;
6264
6265 ret = remote_send_printf ("vFlashErase:%s,%s",
6266 phex (address, addr_size),
6267 phex (length, 4));
6268 switch (ret)
6269 {
6270 case PACKET_UNKNOWN:
6271 error (_("Remote target does not support flash erase"));
6272 case PACKET_ERROR:
6273 error (_("Error erasing flash with vFlashErase packet"));
6274 default:
6275 break;
6276 }
6277
6278 do_cleanups (back_to);
6279 }
6280
6281 static LONGEST
6282 remote_flash_write (struct target_ops *ops,
6283 ULONGEST address, LONGEST length,
6284 const gdb_byte *data)
6285 {
6286 int saved_remote_timeout = remote_timeout;
6287 int ret;
6288 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6289 &saved_remote_timeout);
6290
6291 remote_timeout = remote_flash_timeout;
6292 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6293 do_cleanups (back_to);
6294
6295 return ret;
6296 }
6297
6298 static void
6299 remote_flash_done (struct target_ops *ops)
6300 {
6301 int saved_remote_timeout = remote_timeout;
6302 int ret;
6303 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6304 &saved_remote_timeout);
6305
6306 remote_timeout = remote_flash_timeout;
6307 ret = remote_send_printf ("vFlashDone");
6308 do_cleanups (back_to);
6309
6310 switch (ret)
6311 {
6312 case PACKET_UNKNOWN:
6313 error (_("Remote target does not support vFlashDone"));
6314 case PACKET_ERROR:
6315 error (_("Error finishing flash operation"));
6316 default:
6317 break;
6318 }
6319 }
6320
6321 static void
6322 remote_files_info (struct target_ops *ignore)
6323 {
6324 puts_filtered ("Debugging a target over a serial line.\n");
6325 }
6326 \f
6327 /* Stuff for dealing with the packets which are part of this protocol.
6328 See comment at top of file for details. */
6329
6330 /* Read a single character from the remote end. */
6331
6332 static int
6333 readchar (int timeout)
6334 {
6335 int ch;
6336
6337 ch = serial_readchar (remote_desc, timeout);
6338
6339 if (ch >= 0)
6340 return ch;
6341
6342 switch ((enum serial_rc) ch)
6343 {
6344 case SERIAL_EOF:
6345 pop_target ();
6346 error (_("Remote connection closed"));
6347 /* no return */
6348 case SERIAL_ERROR:
6349 perror_with_name (_("Remote communication error"));
6350 /* no return */
6351 case SERIAL_TIMEOUT:
6352 break;
6353 }
6354 return ch;
6355 }
6356
6357 /* Send the command in *BUF to the remote machine, and read the reply
6358 into *BUF. Report an error if we get an error reply. Resize
6359 *BUF using xrealloc if necessary to hold the result, and update
6360 *SIZEOF_BUF. */
6361
6362 static void
6363 remote_send (char **buf,
6364 long *sizeof_buf)
6365 {
6366 putpkt (*buf);
6367 getpkt (buf, sizeof_buf, 0);
6368
6369 if ((*buf)[0] == 'E')
6370 error (_("Remote failure reply: %s"), *buf);
6371 }
6372
6373 /* Return a pointer to an xmalloc'ed string representing an escaped
6374 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6375 etc. The caller is responsible for releasing the returned
6376 memory. */
6377
6378 static char *
6379 escape_buffer (const char *buf, int n)
6380 {
6381 struct cleanup *old_chain;
6382 struct ui_file *stb;
6383 char *str;
6384
6385 stb = mem_fileopen ();
6386 old_chain = make_cleanup_ui_file_delete (stb);
6387
6388 fputstrn_unfiltered (buf, n, 0, stb);
6389 str = ui_file_xstrdup (stb, NULL);
6390 do_cleanups (old_chain);
6391 return str;
6392 }
6393
6394 /* Display a null-terminated packet on stdout, for debugging, using C
6395 string notation. */
6396
6397 static void
6398 print_packet (char *buf)
6399 {
6400 puts_filtered ("\"");
6401 fputstr_filtered (buf, '"', gdb_stdout);
6402 puts_filtered ("\"");
6403 }
6404
6405 int
6406 putpkt (char *buf)
6407 {
6408 return putpkt_binary (buf, strlen (buf));
6409 }
6410
6411 /* Send a packet to the remote machine, with error checking. The data
6412 of the packet is in BUF. The string in BUF can be at most
6413 get_remote_packet_size () - 5 to account for the $, # and checksum,
6414 and for a possible /0 if we are debugging (remote_debug) and want
6415 to print the sent packet as a string. */
6416
6417 static int
6418 putpkt_binary (char *buf, int cnt)
6419 {
6420 struct remote_state *rs = get_remote_state ();
6421 int i;
6422 unsigned char csum = 0;
6423 char *buf2 = alloca (cnt + 6);
6424
6425 int ch;
6426 int tcount = 0;
6427 char *p;
6428
6429 /* Catch cases like trying to read memory or listing threads while
6430 we're waiting for a stop reply. The remote server wouldn't be
6431 ready to handle this request, so we'd hang and timeout. We don't
6432 have to worry about this in synchronous mode, because in that
6433 case it's not possible to issue a command while the target is
6434 running. This is not a problem in non-stop mode, because in that
6435 case, the stub is always ready to process serial input. */
6436 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6437 error (_("Cannot execute this command while the target is running."));
6438
6439 /* We're sending out a new packet. Make sure we don't look at a
6440 stale cached response. */
6441 rs->cached_wait_status = 0;
6442
6443 /* Copy the packet into buffer BUF2, encapsulating it
6444 and giving it a checksum. */
6445
6446 p = buf2;
6447 *p++ = '$';
6448
6449 for (i = 0; i < cnt; i++)
6450 {
6451 csum += buf[i];
6452 *p++ = buf[i];
6453 }
6454 *p++ = '#';
6455 *p++ = tohex ((csum >> 4) & 0xf);
6456 *p++ = tohex (csum & 0xf);
6457
6458 /* Send it over and over until we get a positive ack. */
6459
6460 while (1)
6461 {
6462 int started_error_output = 0;
6463
6464 if (remote_debug)
6465 {
6466 struct cleanup *old_chain;
6467 char *str;
6468
6469 *p = '\0';
6470 str = escape_buffer (buf2, p - buf2);
6471 old_chain = make_cleanup (xfree, str);
6472 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6473 gdb_flush (gdb_stdlog);
6474 do_cleanups (old_chain);
6475 }
6476 if (serial_write (remote_desc, buf2, p - buf2))
6477 perror_with_name (_("putpkt: write failed"));
6478
6479 /* If this is a no acks version of the remote protocol, send the
6480 packet and move on. */
6481 if (rs->noack_mode)
6482 break;
6483
6484 /* Read until either a timeout occurs (-2) or '+' is read.
6485 Handle any notification that arrives in the mean time. */
6486 while (1)
6487 {
6488 ch = readchar (remote_timeout);
6489
6490 if (remote_debug)
6491 {
6492 switch (ch)
6493 {
6494 case '+':
6495 case '-':
6496 case SERIAL_TIMEOUT:
6497 case '$':
6498 case '%':
6499 if (started_error_output)
6500 {
6501 putchar_unfiltered ('\n');
6502 started_error_output = 0;
6503 }
6504 }
6505 }
6506
6507 switch (ch)
6508 {
6509 case '+':
6510 if (remote_debug)
6511 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6512 return 1;
6513 case '-':
6514 if (remote_debug)
6515 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6516 case SERIAL_TIMEOUT:
6517 tcount++;
6518 if (tcount > 3)
6519 return 0;
6520 break; /* Retransmit buffer. */
6521 case '$':
6522 {
6523 if (remote_debug)
6524 fprintf_unfiltered (gdb_stdlog,
6525 "Packet instead of Ack, ignoring it\n");
6526 /* It's probably an old response sent because an ACK
6527 was lost. Gobble up the packet and ack it so it
6528 doesn't get retransmitted when we resend this
6529 packet. */
6530 skip_frame ();
6531 serial_write (remote_desc, "+", 1);
6532 continue; /* Now, go look for +. */
6533 }
6534
6535 case '%':
6536 {
6537 int val;
6538
6539 /* If we got a notification, handle it, and go back to looking
6540 for an ack. */
6541 /* We've found the start of a notification. Now
6542 collect the data. */
6543 val = read_frame (&rs->buf, &rs->buf_size);
6544 if (val >= 0)
6545 {
6546 if (remote_debug)
6547 {
6548 struct cleanup *old_chain;
6549 char *str;
6550
6551 str = escape_buffer (rs->buf, val);
6552 old_chain = make_cleanup (xfree, str);
6553 fprintf_unfiltered (gdb_stdlog,
6554 " Notification received: %s\n",
6555 str);
6556 do_cleanups (old_chain);
6557 }
6558 handle_notification (rs->buf, val);
6559 /* We're in sync now, rewait for the ack. */
6560 tcount = 0;
6561 }
6562 else
6563 {
6564 if (remote_debug)
6565 {
6566 if (!started_error_output)
6567 {
6568 started_error_output = 1;
6569 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6570 }
6571 fputc_unfiltered (ch & 0177, gdb_stdlog);
6572 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6573 }
6574 }
6575 continue;
6576 }
6577 /* fall-through */
6578 default:
6579 if (remote_debug)
6580 {
6581 if (!started_error_output)
6582 {
6583 started_error_output = 1;
6584 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6585 }
6586 fputc_unfiltered (ch & 0177, gdb_stdlog);
6587 }
6588 continue;
6589 }
6590 break; /* Here to retransmit. */
6591 }
6592
6593 #if 0
6594 /* This is wrong. If doing a long backtrace, the user should be
6595 able to get out next time we call QUIT, without anything as
6596 violent as interrupt_query. If we want to provide a way out of
6597 here without getting to the next QUIT, it should be based on
6598 hitting ^C twice as in remote_wait. */
6599 if (quit_flag)
6600 {
6601 quit_flag = 0;
6602 interrupt_query ();
6603 }
6604 #endif
6605 }
6606 return 0;
6607 }
6608
6609 /* Come here after finding the start of a frame when we expected an
6610 ack. Do our best to discard the rest of this packet. */
6611
6612 static void
6613 skip_frame (void)
6614 {
6615 int c;
6616
6617 while (1)
6618 {
6619 c = readchar (remote_timeout);
6620 switch (c)
6621 {
6622 case SERIAL_TIMEOUT:
6623 /* Nothing we can do. */
6624 return;
6625 case '#':
6626 /* Discard the two bytes of checksum and stop. */
6627 c = readchar (remote_timeout);
6628 if (c >= 0)
6629 c = readchar (remote_timeout);
6630
6631 return;
6632 case '*': /* Run length encoding. */
6633 /* Discard the repeat count. */
6634 c = readchar (remote_timeout);
6635 if (c < 0)
6636 return;
6637 break;
6638 default:
6639 /* A regular character. */
6640 break;
6641 }
6642 }
6643 }
6644
6645 /* Come here after finding the start of the frame. Collect the rest
6646 into *BUF, verifying the checksum, length, and handling run-length
6647 compression. NUL terminate the buffer. If there is not enough room,
6648 expand *BUF using xrealloc.
6649
6650 Returns -1 on error, number of characters in buffer (ignoring the
6651 trailing NULL) on success. (could be extended to return one of the
6652 SERIAL status indications). */
6653
6654 static long
6655 read_frame (char **buf_p,
6656 long *sizeof_buf)
6657 {
6658 unsigned char csum;
6659 long bc;
6660 int c;
6661 char *buf = *buf_p;
6662 struct remote_state *rs = get_remote_state ();
6663
6664 csum = 0;
6665 bc = 0;
6666
6667 while (1)
6668 {
6669 c = readchar (remote_timeout);
6670 switch (c)
6671 {
6672 case SERIAL_TIMEOUT:
6673 if (remote_debug)
6674 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6675 return -1;
6676 case '$':
6677 if (remote_debug)
6678 fputs_filtered ("Saw new packet start in middle of old one\n",
6679 gdb_stdlog);
6680 return -1; /* Start a new packet, count retries. */
6681 case '#':
6682 {
6683 unsigned char pktcsum;
6684 int check_0 = 0;
6685 int check_1 = 0;
6686
6687 buf[bc] = '\0';
6688
6689 check_0 = readchar (remote_timeout);
6690 if (check_0 >= 0)
6691 check_1 = readchar (remote_timeout);
6692
6693 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6694 {
6695 if (remote_debug)
6696 fputs_filtered ("Timeout in checksum, retrying\n",
6697 gdb_stdlog);
6698 return -1;
6699 }
6700 else if (check_0 < 0 || check_1 < 0)
6701 {
6702 if (remote_debug)
6703 fputs_filtered ("Communication error in checksum\n",
6704 gdb_stdlog);
6705 return -1;
6706 }
6707
6708 /* Don't recompute the checksum; with no ack packets we
6709 don't have any way to indicate a packet retransmission
6710 is necessary. */
6711 if (rs->noack_mode)
6712 return bc;
6713
6714 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6715 if (csum == pktcsum)
6716 return bc;
6717
6718 if (remote_debug)
6719 {
6720 struct cleanup *old_chain;
6721 char *str;
6722
6723 str = escape_buffer (buf, bc);
6724 old_chain = make_cleanup (xfree, str);
6725 fprintf_unfiltered (gdb_stdlog,
6726 "\
6727 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6728 pktcsum, csum, str);
6729 do_cleanups (old_chain);
6730 }
6731 /* Number of characters in buffer ignoring trailing
6732 NULL. */
6733 return -1;
6734 }
6735 case '*': /* Run length encoding. */
6736 {
6737 int repeat;
6738 csum += c;
6739
6740 c = readchar (remote_timeout);
6741 csum += c;
6742 repeat = c - ' ' + 3; /* Compute repeat count. */
6743
6744 /* The character before ``*'' is repeated. */
6745
6746 if (repeat > 0 && repeat <= 255 && bc > 0)
6747 {
6748 if (bc + repeat - 1 >= *sizeof_buf - 1)
6749 {
6750 /* Make some more room in the buffer. */
6751 *sizeof_buf += repeat;
6752 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6753 buf = *buf_p;
6754 }
6755
6756 memset (&buf[bc], buf[bc - 1], repeat);
6757 bc += repeat;
6758 continue;
6759 }
6760
6761 buf[bc] = '\0';
6762 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6763 return -1;
6764 }
6765 default:
6766 if (bc >= *sizeof_buf - 1)
6767 {
6768 /* Make some more room in the buffer. */
6769 *sizeof_buf *= 2;
6770 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6771 buf = *buf_p;
6772 }
6773
6774 buf[bc++] = c;
6775 csum += c;
6776 continue;
6777 }
6778 }
6779 }
6780
6781 /* Read a packet from the remote machine, with error checking, and
6782 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6783 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6784 rather than timing out; this is used (in synchronous mode) to wait
6785 for a target that is is executing user code to stop. */
6786 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6787 don't have to change all the calls to getpkt to deal with the
6788 return value, because at the moment I don't know what the right
6789 thing to do it for those. */
6790 void
6791 getpkt (char **buf,
6792 long *sizeof_buf,
6793 int forever)
6794 {
6795 int timed_out;
6796
6797 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6798 }
6799
6800
6801 /* Read a packet from the remote machine, with error checking, and
6802 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6803 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6804 rather than timing out; this is used (in synchronous mode) to wait
6805 for a target that is is executing user code to stop. If FOREVER ==
6806 0, this function is allowed to time out gracefully and return an
6807 indication of this to the caller. Otherwise return the number of
6808 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6809 enough reason to return to the caller. */
6810
6811 static int
6812 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6813 int expecting_notif)
6814 {
6815 struct remote_state *rs = get_remote_state ();
6816 int c;
6817 int tries;
6818 int timeout;
6819 int val = -1;
6820
6821 /* We're reading a new response. Make sure we don't look at a
6822 previously cached response. */
6823 rs->cached_wait_status = 0;
6824
6825 strcpy (*buf, "timeout");
6826
6827 if (forever)
6828 timeout = watchdog > 0 ? watchdog : -1;
6829 else if (expecting_notif)
6830 timeout = 0; /* There should already be a char in the buffer. If
6831 not, bail out. */
6832 else
6833 timeout = remote_timeout;
6834
6835 #define MAX_TRIES 3
6836
6837 /* Process any number of notifications, and then return when
6838 we get a packet. */
6839 for (;;)
6840 {
6841 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6842 times. */
6843 for (tries = 1; tries <= MAX_TRIES; tries++)
6844 {
6845 /* This can loop forever if the remote side sends us
6846 characters continuously, but if it pauses, we'll get
6847 SERIAL_TIMEOUT from readchar because of timeout. Then
6848 we'll count that as a retry.
6849
6850 Note that even when forever is set, we will only wait
6851 forever prior to the start of a packet. After that, we
6852 expect characters to arrive at a brisk pace. They should
6853 show up within remote_timeout intervals. */
6854 do
6855 c = readchar (timeout);
6856 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6857
6858 if (c == SERIAL_TIMEOUT)
6859 {
6860 if (expecting_notif)
6861 return -1; /* Don't complain, it's normal to not get
6862 anything in this case. */
6863
6864 if (forever) /* Watchdog went off? Kill the target. */
6865 {
6866 QUIT;
6867 pop_target ();
6868 error (_("Watchdog timeout has expired. Target detached."));
6869 }
6870 if (remote_debug)
6871 fputs_filtered ("Timed out.\n", gdb_stdlog);
6872 }
6873 else
6874 {
6875 /* We've found the start of a packet or notification.
6876 Now collect the data. */
6877 val = read_frame (buf, sizeof_buf);
6878 if (val >= 0)
6879 break;
6880 }
6881
6882 serial_write (remote_desc, "-", 1);
6883 }
6884
6885 if (tries > MAX_TRIES)
6886 {
6887 /* We have tried hard enough, and just can't receive the
6888 packet/notification. Give up. */
6889 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6890
6891 /* Skip the ack char if we're in no-ack mode. */
6892 if (!rs->noack_mode)
6893 serial_write (remote_desc, "+", 1);
6894 return -1;
6895 }
6896
6897 /* If we got an ordinary packet, return that to our caller. */
6898 if (c == '$')
6899 {
6900 if (remote_debug)
6901 {
6902 struct cleanup *old_chain;
6903 char *str;
6904
6905 str = escape_buffer (*buf, val);
6906 old_chain = make_cleanup (xfree, str);
6907 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6908 do_cleanups (old_chain);
6909 }
6910
6911 /* Skip the ack char if we're in no-ack mode. */
6912 if (!rs->noack_mode)
6913 serial_write (remote_desc, "+", 1);
6914 return val;
6915 }
6916
6917 /* If we got a notification, handle it, and go back to looking
6918 for a packet. */
6919 else
6920 {
6921 gdb_assert (c == '%');
6922
6923 if (remote_debug)
6924 {
6925 struct cleanup *old_chain;
6926 char *str;
6927
6928 str = escape_buffer (*buf, val);
6929 old_chain = make_cleanup (xfree, str);
6930 fprintf_unfiltered (gdb_stdlog,
6931 " Notification received: %s\n",
6932 str);
6933 do_cleanups (old_chain);
6934 }
6935
6936 handle_notification (*buf, val);
6937
6938 /* Notifications require no acknowledgement. */
6939
6940 if (expecting_notif)
6941 return -1;
6942 }
6943 }
6944 }
6945
6946 static int
6947 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6948 {
6949 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6950 }
6951
6952 static int
6953 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6954 {
6955 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6956 }
6957
6958 \f
6959 static void
6960 remote_kill (struct target_ops *ops)
6961 {
6962 /* Use catch_errors so the user can quit from gdb even when we
6963 aren't on speaking terms with the remote system. */
6964 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6965
6966 /* Don't wait for it to die. I'm not really sure it matters whether
6967 we do or not. For the existing stubs, kill is a noop. */
6968 target_mourn_inferior ();
6969 }
6970
6971 static int
6972 remote_vkill (int pid, struct remote_state *rs)
6973 {
6974 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6975 return -1;
6976
6977 /* Tell the remote target to detach. */
6978 sprintf (rs->buf, "vKill;%x", pid);
6979 putpkt (rs->buf);
6980 getpkt (&rs->buf, &rs->buf_size, 0);
6981
6982 if (packet_ok (rs->buf,
6983 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6984 return 0;
6985 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6986 return -1;
6987 else
6988 return 1;
6989 }
6990
6991 static void
6992 extended_remote_kill (struct target_ops *ops)
6993 {
6994 int res;
6995 int pid = ptid_get_pid (inferior_ptid);
6996 struct remote_state *rs = get_remote_state ();
6997
6998 res = remote_vkill (pid, rs);
6999 if (res == -1 && !remote_multi_process_p (rs))
7000 {
7001 /* Don't try 'k' on a multi-process aware stub -- it has no way
7002 to specify the pid. */
7003
7004 putpkt ("k");
7005 #if 0
7006 getpkt (&rs->buf, &rs->buf_size, 0);
7007 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7008 res = 1;
7009 #else
7010 /* Don't wait for it to die. I'm not really sure it matters whether
7011 we do or not. For the existing stubs, kill is a noop. */
7012 res = 0;
7013 #endif
7014 }
7015
7016 if (res != 0)
7017 error (_("Can't kill process"));
7018
7019 target_mourn_inferior ();
7020 }
7021
7022 static void
7023 remote_mourn (struct target_ops *ops)
7024 {
7025 remote_mourn_1 (ops);
7026 }
7027
7028 /* Worker function for remote_mourn. */
7029 static void
7030 remote_mourn_1 (struct target_ops *target)
7031 {
7032 unpush_target (target);
7033
7034 /* remote_close takes care of doing most of the clean up. */
7035 generic_mourn_inferior ();
7036 }
7037
7038 static void
7039 extended_remote_mourn_1 (struct target_ops *target)
7040 {
7041 struct remote_state *rs = get_remote_state ();
7042
7043 /* In case we got here due to an error, but we're going to stay
7044 connected. */
7045 rs->waiting_for_stop_reply = 0;
7046
7047 /* We're no longer interested in these events. */
7048 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7049
7050 /* If the current general thread belonged to the process we just
7051 detached from or has exited, the remote side current general
7052 thread becomes undefined. Considering a case like this:
7053
7054 - We just got here due to a detach.
7055 - The process that we're detaching from happens to immediately
7056 report a global breakpoint being hit in non-stop mode, in the
7057 same thread we had selected before.
7058 - GDB attaches to this process again.
7059 - This event happens to be the next event we handle.
7060
7061 GDB would consider that the current general thread didn't need to
7062 be set on the stub side (with Hg), since for all it knew,
7063 GENERAL_THREAD hadn't changed.
7064
7065 Notice that although in all-stop mode, the remote server always
7066 sets the current thread to the thread reporting the stop event,
7067 that doesn't happen in non-stop mode; in non-stop, the stub *must
7068 not* change the current thread when reporting a breakpoint hit,
7069 due to the decoupling of event reporting and event handling.
7070
7071 To keep things simple, we always invalidate our notion of the
7072 current thread. */
7073 record_currthread (minus_one_ptid);
7074
7075 /* Unlike "target remote", we do not want to unpush the target; then
7076 the next time the user says "run", we won't be connected. */
7077
7078 /* Call common code to mark the inferior as not running. */
7079 generic_mourn_inferior ();
7080
7081 if (!have_inferiors ())
7082 {
7083 if (!remote_multi_process_p (rs))
7084 {
7085 /* Check whether the target is running now - some remote stubs
7086 automatically restart after kill. */
7087 putpkt ("?");
7088 getpkt (&rs->buf, &rs->buf_size, 0);
7089
7090 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7091 {
7092 /* Assume that the target has been restarted. Set inferior_ptid
7093 so that bits of core GDB realizes there's something here, e.g.,
7094 so that the user can say "kill" again. */
7095 inferior_ptid = magic_null_ptid;
7096 }
7097 }
7098 }
7099 }
7100
7101 static void
7102 extended_remote_mourn (struct target_ops *ops)
7103 {
7104 extended_remote_mourn_1 (ops);
7105 }
7106
7107 static int
7108 extended_remote_run (char *args)
7109 {
7110 struct remote_state *rs = get_remote_state ();
7111 int len;
7112
7113 /* If the user has disabled vRun support, or we have detected that
7114 support is not available, do not try it. */
7115 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7116 return -1;
7117
7118 strcpy (rs->buf, "vRun;");
7119 len = strlen (rs->buf);
7120
7121 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7122 error (_("Remote file name too long for run packet"));
7123 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7124
7125 gdb_assert (args != NULL);
7126 if (*args)
7127 {
7128 struct cleanup *back_to;
7129 int i;
7130 char **argv;
7131
7132 argv = gdb_buildargv (args);
7133 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7134 for (i = 0; argv[i] != NULL; i++)
7135 {
7136 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7137 error (_("Argument list too long for run packet"));
7138 rs->buf[len++] = ';';
7139 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7140 }
7141 do_cleanups (back_to);
7142 }
7143
7144 rs->buf[len++] = '\0';
7145
7146 putpkt (rs->buf);
7147 getpkt (&rs->buf, &rs->buf_size, 0);
7148
7149 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7150 {
7151 /* We have a wait response; we don't need it, though. All is well. */
7152 return 0;
7153 }
7154 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7155 /* It wasn't disabled before, but it is now. */
7156 return -1;
7157 else
7158 {
7159 if (remote_exec_file[0] == '\0')
7160 error (_("Running the default executable on the remote target failed; "
7161 "try \"set remote exec-file\"?"));
7162 else
7163 error (_("Running \"%s\" on the remote target failed"),
7164 remote_exec_file);
7165 }
7166 }
7167
7168 /* In the extended protocol we want to be able to do things like
7169 "run" and have them basically work as expected. So we need
7170 a special create_inferior function. We support changing the
7171 executable file and the command line arguments, but not the
7172 environment. */
7173
7174 static void
7175 extended_remote_create_inferior_1 (char *exec_file, char *args,
7176 char **env, int from_tty)
7177 {
7178 /* If running asynchronously, register the target file descriptor
7179 with the event loop. */
7180 if (target_can_async_p ())
7181 target_async (inferior_event_handler, 0);
7182
7183 /* Now restart the remote server. */
7184 if (extended_remote_run (args) == -1)
7185 {
7186 /* vRun was not supported. Fail if we need it to do what the
7187 user requested. */
7188 if (remote_exec_file[0])
7189 error (_("Remote target does not support \"set remote exec-file\""));
7190 if (args[0])
7191 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7192
7193 /* Fall back to "R". */
7194 extended_remote_restart ();
7195 }
7196
7197 if (!have_inferiors ())
7198 {
7199 /* Clean up from the last time we ran, before we mark the target
7200 running again. This will mark breakpoints uninserted, and
7201 get_offsets may insert breakpoints. */
7202 init_thread_list ();
7203 init_wait_for_inferior ();
7204 }
7205
7206 /* Now mark the inferior as running before we do anything else. */
7207 inferior_ptid = magic_null_ptid;
7208
7209 /* Now, if we have thread information, update inferior_ptid. */
7210 inferior_ptid = remote_current_thread (inferior_ptid);
7211
7212 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7213 add_thread_silent (inferior_ptid);
7214
7215 /* Get updated offsets, if the stub uses qOffsets. */
7216 get_offsets ();
7217 }
7218
7219 static void
7220 extended_remote_create_inferior (struct target_ops *ops,
7221 char *exec_file, char *args,
7222 char **env, int from_tty)
7223 {
7224 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7225 }
7226 \f
7227
7228 /* Insert a breakpoint. On targets that have software breakpoint
7229 support, we ask the remote target to do the work; on targets
7230 which don't, we insert a traditional memory breakpoint. */
7231
7232 static int
7233 remote_insert_breakpoint (struct gdbarch *gdbarch,
7234 struct bp_target_info *bp_tgt)
7235 {
7236 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7237 If it succeeds, then set the support to PACKET_ENABLE. If it
7238 fails, and the user has explicitly requested the Z support then
7239 report an error, otherwise, mark it disabled and go on. */
7240
7241 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7242 {
7243 CORE_ADDR addr = bp_tgt->placed_address;
7244 struct remote_state *rs;
7245 char *p;
7246 int bpsize;
7247
7248 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7249
7250 rs = get_remote_state ();
7251 p = rs->buf;
7252
7253 *(p++) = 'Z';
7254 *(p++) = '0';
7255 *(p++) = ',';
7256 addr = (ULONGEST) remote_address_masked (addr);
7257 p += hexnumstr (p, addr);
7258 sprintf (p, ",%d", bpsize);
7259
7260 putpkt (rs->buf);
7261 getpkt (&rs->buf, &rs->buf_size, 0);
7262
7263 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7264 {
7265 case PACKET_ERROR:
7266 return -1;
7267 case PACKET_OK:
7268 bp_tgt->placed_address = addr;
7269 bp_tgt->placed_size = bpsize;
7270 return 0;
7271 case PACKET_UNKNOWN:
7272 break;
7273 }
7274 }
7275
7276 return memory_insert_breakpoint (gdbarch, bp_tgt);
7277 }
7278
7279 static int
7280 remote_remove_breakpoint (struct gdbarch *gdbarch,
7281 struct bp_target_info *bp_tgt)
7282 {
7283 CORE_ADDR addr = bp_tgt->placed_address;
7284 struct remote_state *rs = get_remote_state ();
7285
7286 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7287 {
7288 char *p = rs->buf;
7289
7290 *(p++) = 'z';
7291 *(p++) = '0';
7292 *(p++) = ',';
7293
7294 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7295 p += hexnumstr (p, addr);
7296 sprintf (p, ",%d", bp_tgt->placed_size);
7297
7298 putpkt (rs->buf);
7299 getpkt (&rs->buf, &rs->buf_size, 0);
7300
7301 return (rs->buf[0] == 'E');
7302 }
7303
7304 return memory_remove_breakpoint (gdbarch, bp_tgt);
7305 }
7306
7307 static int
7308 watchpoint_to_Z_packet (int type)
7309 {
7310 switch (type)
7311 {
7312 case hw_write:
7313 return Z_PACKET_WRITE_WP;
7314 break;
7315 case hw_read:
7316 return Z_PACKET_READ_WP;
7317 break;
7318 case hw_access:
7319 return Z_PACKET_ACCESS_WP;
7320 break;
7321 default:
7322 internal_error (__FILE__, __LINE__,
7323 _("hw_bp_to_z: bad watchpoint type %d"), type);
7324 }
7325 }
7326
7327 static int
7328 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
7329 {
7330 struct remote_state *rs = get_remote_state ();
7331 char *p;
7332 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7333
7334 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7335 return -1;
7336
7337 sprintf (rs->buf, "Z%x,", packet);
7338 p = strchr (rs->buf, '\0');
7339 addr = remote_address_masked (addr);
7340 p += hexnumstr (p, (ULONGEST) addr);
7341 sprintf (p, ",%x", len);
7342
7343 putpkt (rs->buf);
7344 getpkt (&rs->buf, &rs->buf_size, 0);
7345
7346 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7347 {
7348 case PACKET_ERROR:
7349 case PACKET_UNKNOWN:
7350 return -1;
7351 case PACKET_OK:
7352 return 0;
7353 }
7354 internal_error (__FILE__, __LINE__,
7355 _("remote_insert_watchpoint: reached end of function"));
7356 }
7357
7358
7359 static int
7360 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
7361 {
7362 struct remote_state *rs = get_remote_state ();
7363 char *p;
7364 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7365
7366 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7367 return -1;
7368
7369 sprintf (rs->buf, "z%x,", packet);
7370 p = strchr (rs->buf, '\0');
7371 addr = remote_address_masked (addr);
7372 p += hexnumstr (p, (ULONGEST) addr);
7373 sprintf (p, ",%x", len);
7374 putpkt (rs->buf);
7375 getpkt (&rs->buf, &rs->buf_size, 0);
7376
7377 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7378 {
7379 case PACKET_ERROR:
7380 case PACKET_UNKNOWN:
7381 return -1;
7382 case PACKET_OK:
7383 return 0;
7384 }
7385 internal_error (__FILE__, __LINE__,
7386 _("remote_remove_watchpoint: reached end of function"));
7387 }
7388
7389
7390 int remote_hw_watchpoint_limit = -1;
7391 int remote_hw_breakpoint_limit = -1;
7392
7393 static int
7394 remote_check_watch_resources (int type, int cnt, int ot)
7395 {
7396 if (type == bp_hardware_breakpoint)
7397 {
7398 if (remote_hw_breakpoint_limit == 0)
7399 return 0;
7400 else if (remote_hw_breakpoint_limit < 0)
7401 return 1;
7402 else if (cnt <= remote_hw_breakpoint_limit)
7403 return 1;
7404 }
7405 else
7406 {
7407 if (remote_hw_watchpoint_limit == 0)
7408 return 0;
7409 else if (remote_hw_watchpoint_limit < 0)
7410 return 1;
7411 else if (ot)
7412 return -1;
7413 else if (cnt <= remote_hw_watchpoint_limit)
7414 return 1;
7415 }
7416 return -1;
7417 }
7418
7419 static int
7420 remote_stopped_by_watchpoint (void)
7421 {
7422 return remote_stopped_by_watchpoint_p;
7423 }
7424
7425 static int
7426 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7427 {
7428 int rc = 0;
7429 if (remote_stopped_by_watchpoint ())
7430 {
7431 *addr_p = remote_watch_data_address;
7432 rc = 1;
7433 }
7434
7435 return rc;
7436 }
7437
7438
7439 static int
7440 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7441 struct bp_target_info *bp_tgt)
7442 {
7443 CORE_ADDR addr;
7444 struct remote_state *rs;
7445 char *p;
7446
7447 /* The length field should be set to the size of a breakpoint
7448 instruction, even though we aren't inserting one ourselves. */
7449
7450 gdbarch_remote_breakpoint_from_pc
7451 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7452
7453 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7454 return -1;
7455
7456 rs = get_remote_state ();
7457 p = rs->buf;
7458
7459 *(p++) = 'Z';
7460 *(p++) = '1';
7461 *(p++) = ',';
7462
7463 addr = remote_address_masked (bp_tgt->placed_address);
7464 p += hexnumstr (p, (ULONGEST) addr);
7465 sprintf (p, ",%x", bp_tgt->placed_size);
7466
7467 putpkt (rs->buf);
7468 getpkt (&rs->buf, &rs->buf_size, 0);
7469
7470 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7471 {
7472 case PACKET_ERROR:
7473 case PACKET_UNKNOWN:
7474 return -1;
7475 case PACKET_OK:
7476 return 0;
7477 }
7478 internal_error (__FILE__, __LINE__,
7479 _("remote_insert_hw_breakpoint: reached end of function"));
7480 }
7481
7482
7483 static int
7484 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7485 struct bp_target_info *bp_tgt)
7486 {
7487 CORE_ADDR addr;
7488 struct remote_state *rs = get_remote_state ();
7489 char *p = rs->buf;
7490
7491 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7492 return -1;
7493
7494 *(p++) = 'z';
7495 *(p++) = '1';
7496 *(p++) = ',';
7497
7498 addr = remote_address_masked (bp_tgt->placed_address);
7499 p += hexnumstr (p, (ULONGEST) addr);
7500 sprintf (p, ",%x", bp_tgt->placed_size);
7501
7502 putpkt (rs->buf);
7503 getpkt (&rs->buf, &rs->buf_size, 0);
7504
7505 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7506 {
7507 case PACKET_ERROR:
7508 case PACKET_UNKNOWN:
7509 return -1;
7510 case PACKET_OK:
7511 return 0;
7512 }
7513 internal_error (__FILE__, __LINE__,
7514 _("remote_remove_hw_breakpoint: reached end of function"));
7515 }
7516
7517 /* Table used by the crc32 function to calcuate the checksum. */
7518
7519 static unsigned long crc32_table[256] =
7520 {0, 0};
7521
7522 static unsigned long
7523 crc32 (unsigned char *buf, int len, unsigned int crc)
7524 {
7525 if (!crc32_table[1])
7526 {
7527 /* Initialize the CRC table and the decoding table. */
7528 int i, j;
7529 unsigned int c;
7530
7531 for (i = 0; i < 256; i++)
7532 {
7533 for (c = i << 24, j = 8; j > 0; --j)
7534 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7535 crc32_table[i] = c;
7536 }
7537 }
7538
7539 while (len--)
7540 {
7541 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7542 buf++;
7543 }
7544 return crc;
7545 }
7546
7547 /* compare-sections command
7548
7549 With no arguments, compares each loadable section in the exec bfd
7550 with the same memory range on the target, and reports mismatches.
7551 Useful for verifying the image on the target against the exec file.
7552 Depends on the target understanding the new "qCRC:" request. */
7553
7554 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7555 target method (target verify memory) and generic version of the
7556 actual command. This will allow other high-level code (especially
7557 generic_load()) to make use of this target functionality. */
7558
7559 static void
7560 compare_sections_command (char *args, int from_tty)
7561 {
7562 struct remote_state *rs = get_remote_state ();
7563 asection *s;
7564 unsigned long host_crc, target_crc;
7565 struct cleanup *old_chain;
7566 char *tmp;
7567 char *sectdata;
7568 const char *sectname;
7569 bfd_size_type size;
7570 bfd_vma lma;
7571 int matched = 0;
7572 int mismatched = 0;
7573
7574 if (!exec_bfd)
7575 error (_("command cannot be used without an exec file"));
7576 if (!current_target.to_shortname ||
7577 strcmp (current_target.to_shortname, "remote") != 0)
7578 error (_("command can only be used with remote target"));
7579
7580 for (s = exec_bfd->sections; s; s = s->next)
7581 {
7582 if (!(s->flags & SEC_LOAD))
7583 continue; /* skip non-loadable section */
7584
7585 size = bfd_get_section_size (s);
7586 if (size == 0)
7587 continue; /* skip zero-length section */
7588
7589 sectname = bfd_get_section_name (exec_bfd, s);
7590 if (args && strcmp (args, sectname) != 0)
7591 continue; /* not the section selected by user */
7592
7593 matched = 1; /* do this section */
7594 lma = s->lma;
7595 /* FIXME: assumes lma can fit into long. */
7596 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7597 (long) lma, (long) size);
7598 putpkt (rs->buf);
7599
7600 /* Be clever; compute the host_crc before waiting for target
7601 reply. */
7602 sectdata = xmalloc (size);
7603 old_chain = make_cleanup (xfree, sectdata);
7604 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7605 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7606
7607 getpkt (&rs->buf, &rs->buf_size, 0);
7608 if (rs->buf[0] == 'E')
7609 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7610 paddress (target_gdbarch, lma),
7611 paddress (target_gdbarch, lma + size));
7612 if (rs->buf[0] != 'C')
7613 error (_("remote target does not support this operation"));
7614
7615 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7616 target_crc = target_crc * 16 + fromhex (*tmp);
7617
7618 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7619 paddress (target_gdbarch, lma),
7620 paddress (target_gdbarch, lma + size));
7621 if (host_crc == target_crc)
7622 printf_filtered ("matched.\n");
7623 else
7624 {
7625 printf_filtered ("MIS-MATCHED!\n");
7626 mismatched++;
7627 }
7628
7629 do_cleanups (old_chain);
7630 }
7631 if (mismatched > 0)
7632 warning (_("One or more sections of the remote executable does not match\n\
7633 the loaded file\n"));
7634 if (args && !matched)
7635 printf_filtered (_("No loaded section named '%s'.\n"), args);
7636 }
7637
7638 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7639 into remote target. The number of bytes written to the remote
7640 target is returned, or -1 for error. */
7641
7642 static LONGEST
7643 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7644 const char *annex, const gdb_byte *writebuf,
7645 ULONGEST offset, LONGEST len,
7646 struct packet_config *packet)
7647 {
7648 int i, buf_len;
7649 ULONGEST n;
7650 struct remote_state *rs = get_remote_state ();
7651 int max_size = get_memory_write_packet_size ();
7652
7653 if (packet->support == PACKET_DISABLE)
7654 return -1;
7655
7656 /* Insert header. */
7657 i = snprintf (rs->buf, max_size,
7658 "qXfer:%s:write:%s:%s:",
7659 object_name, annex ? annex : "",
7660 phex_nz (offset, sizeof offset));
7661 max_size -= (i + 1);
7662
7663 /* Escape as much data as fits into rs->buf. */
7664 buf_len = remote_escape_output
7665 (writebuf, len, (rs->buf + i), &max_size, max_size);
7666
7667 if (putpkt_binary (rs->buf, i + buf_len) < 0
7668 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7669 || packet_ok (rs->buf, packet) != PACKET_OK)
7670 return -1;
7671
7672 unpack_varlen_hex (rs->buf, &n);
7673 return n;
7674 }
7675
7676 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7677 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7678 number of bytes read is returned, or 0 for EOF, or -1 for error.
7679 The number of bytes read may be less than LEN without indicating an
7680 EOF. PACKET is checked and updated to indicate whether the remote
7681 target supports this object. */
7682
7683 static LONGEST
7684 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7685 const char *annex,
7686 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7687 struct packet_config *packet)
7688 {
7689 static char *finished_object;
7690 static char *finished_annex;
7691 static ULONGEST finished_offset;
7692
7693 struct remote_state *rs = get_remote_state ();
7694 LONGEST i, n, packet_len;
7695
7696 if (packet->support == PACKET_DISABLE)
7697 return -1;
7698
7699 /* Check whether we've cached an end-of-object packet that matches
7700 this request. */
7701 if (finished_object)
7702 {
7703 if (strcmp (object_name, finished_object) == 0
7704 && strcmp (annex ? annex : "", finished_annex) == 0
7705 && offset == finished_offset)
7706 return 0;
7707
7708 /* Otherwise, we're now reading something different. Discard
7709 the cache. */
7710 xfree (finished_object);
7711 xfree (finished_annex);
7712 finished_object = NULL;
7713 finished_annex = NULL;
7714 }
7715
7716 /* Request only enough to fit in a single packet. The actual data
7717 may not, since we don't know how much of it will need to be escaped;
7718 the target is free to respond with slightly less data. We subtract
7719 five to account for the response type and the protocol frame. */
7720 n = min (get_remote_packet_size () - 5, len);
7721 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7722 object_name, annex ? annex : "",
7723 phex_nz (offset, sizeof offset),
7724 phex_nz (n, sizeof n));
7725 i = putpkt (rs->buf);
7726 if (i < 0)
7727 return -1;
7728
7729 rs->buf[0] = '\0';
7730 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7731 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7732 return -1;
7733
7734 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7735 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7736
7737 /* 'm' means there is (or at least might be) more data after this
7738 batch. That does not make sense unless there's at least one byte
7739 of data in this reply. */
7740 if (rs->buf[0] == 'm' && packet_len == 1)
7741 error (_("Remote qXfer reply contained no data."));
7742
7743 /* Got some data. */
7744 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7745
7746 /* 'l' is an EOF marker, possibly including a final block of data,
7747 or possibly empty. If we have the final block of a non-empty
7748 object, record this fact to bypass a subsequent partial read. */
7749 if (rs->buf[0] == 'l' && offset + i > 0)
7750 {
7751 finished_object = xstrdup (object_name);
7752 finished_annex = xstrdup (annex ? annex : "");
7753 finished_offset = offset + i;
7754 }
7755
7756 return i;
7757 }
7758
7759 static LONGEST
7760 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7761 const char *annex, gdb_byte *readbuf,
7762 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7763 {
7764 struct remote_state *rs;
7765 int i;
7766 char *p2;
7767 char query_type;
7768
7769 set_general_thread (inferior_ptid);
7770
7771 rs = get_remote_state ();
7772
7773 /* Handle memory using the standard memory routines. */
7774 if (object == TARGET_OBJECT_MEMORY)
7775 {
7776 int xfered;
7777 errno = 0;
7778
7779 /* If the remote target is connected but not running, we should
7780 pass this request down to a lower stratum (e.g. the executable
7781 file). */
7782 if (!target_has_execution)
7783 return 0;
7784
7785 if (writebuf != NULL)
7786 xfered = remote_write_bytes (offset, writebuf, len);
7787 else
7788 xfered = remote_read_bytes (offset, readbuf, len);
7789
7790 if (xfered > 0)
7791 return xfered;
7792 else if (xfered == 0 && errno == 0)
7793 return 0;
7794 else
7795 return -1;
7796 }
7797
7798 /* Handle SPU memory using qxfer packets. */
7799 if (object == TARGET_OBJECT_SPU)
7800 {
7801 if (readbuf)
7802 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7803 &remote_protocol_packets
7804 [PACKET_qXfer_spu_read]);
7805 else
7806 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7807 &remote_protocol_packets
7808 [PACKET_qXfer_spu_write]);
7809 }
7810
7811 /* Handle extra signal info using qxfer packets. */
7812 if (object == TARGET_OBJECT_SIGNAL_INFO)
7813 {
7814 if (readbuf)
7815 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7816 &remote_protocol_packets
7817 [PACKET_qXfer_siginfo_read]);
7818 else
7819 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7820 &remote_protocol_packets
7821 [PACKET_qXfer_siginfo_write]);
7822 }
7823
7824 /* Only handle flash writes. */
7825 if (writebuf != NULL)
7826 {
7827 LONGEST xfered;
7828
7829 switch (object)
7830 {
7831 case TARGET_OBJECT_FLASH:
7832 xfered = remote_flash_write (ops, offset, len, writebuf);
7833
7834 if (xfered > 0)
7835 return xfered;
7836 else if (xfered == 0 && errno == 0)
7837 return 0;
7838 else
7839 return -1;
7840
7841 default:
7842 return -1;
7843 }
7844 }
7845
7846 /* Map pre-existing objects onto letters. DO NOT do this for new
7847 objects!!! Instead specify new query packets. */
7848 switch (object)
7849 {
7850 case TARGET_OBJECT_AVR:
7851 query_type = 'R';
7852 break;
7853
7854 case TARGET_OBJECT_AUXV:
7855 gdb_assert (annex == NULL);
7856 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7857 &remote_protocol_packets[PACKET_qXfer_auxv]);
7858
7859 case TARGET_OBJECT_AVAILABLE_FEATURES:
7860 return remote_read_qxfer
7861 (ops, "features", annex, readbuf, offset, len,
7862 &remote_protocol_packets[PACKET_qXfer_features]);
7863
7864 case TARGET_OBJECT_LIBRARIES:
7865 return remote_read_qxfer
7866 (ops, "libraries", annex, readbuf, offset, len,
7867 &remote_protocol_packets[PACKET_qXfer_libraries]);
7868
7869 case TARGET_OBJECT_MEMORY_MAP:
7870 gdb_assert (annex == NULL);
7871 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7872 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7873
7874 case TARGET_OBJECT_OSDATA:
7875 /* Should only get here if we're connected. */
7876 gdb_assert (remote_desc);
7877 return remote_read_qxfer
7878 (ops, "osdata", annex, readbuf, offset, len,
7879 &remote_protocol_packets[PACKET_qXfer_osdata]);
7880
7881 case TARGET_OBJECT_THREADS:
7882 gdb_assert (annex == NULL);
7883 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
7884 &remote_protocol_packets[PACKET_qXfer_threads]);
7885
7886 default:
7887 return -1;
7888 }
7889
7890 /* Note: a zero OFFSET and LEN can be used to query the minimum
7891 buffer size. */
7892 if (offset == 0 && len == 0)
7893 return (get_remote_packet_size ());
7894 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7895 large enough let the caller deal with it. */
7896 if (len < get_remote_packet_size ())
7897 return -1;
7898 len = get_remote_packet_size ();
7899
7900 /* Except for querying the minimum buffer size, target must be open. */
7901 if (!remote_desc)
7902 error (_("remote query is only available after target open"));
7903
7904 gdb_assert (annex != NULL);
7905 gdb_assert (readbuf != NULL);
7906
7907 p2 = rs->buf;
7908 *p2++ = 'q';
7909 *p2++ = query_type;
7910
7911 /* We used one buffer char for the remote protocol q command and
7912 another for the query type. As the remote protocol encapsulation
7913 uses 4 chars plus one extra in case we are debugging
7914 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7915 string. */
7916 i = 0;
7917 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7918 {
7919 /* Bad caller may have sent forbidden characters. */
7920 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7921 *p2++ = annex[i];
7922 i++;
7923 }
7924 *p2 = '\0';
7925 gdb_assert (annex[i] == '\0');
7926
7927 i = putpkt (rs->buf);
7928 if (i < 0)
7929 return i;
7930
7931 getpkt (&rs->buf, &rs->buf_size, 0);
7932 strcpy ((char *) readbuf, rs->buf);
7933
7934 return strlen ((char *) readbuf);
7935 }
7936
7937 static int
7938 remote_search_memory (struct target_ops* ops,
7939 CORE_ADDR start_addr, ULONGEST search_space_len,
7940 const gdb_byte *pattern, ULONGEST pattern_len,
7941 CORE_ADDR *found_addrp)
7942 {
7943 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
7944 struct remote_state *rs = get_remote_state ();
7945 int max_size = get_memory_write_packet_size ();
7946 struct packet_config *packet =
7947 &remote_protocol_packets[PACKET_qSearch_memory];
7948 /* number of packet bytes used to encode the pattern,
7949 this could be more than PATTERN_LEN due to escape characters */
7950 int escaped_pattern_len;
7951 /* amount of pattern that was encodable in the packet */
7952 int used_pattern_len;
7953 int i;
7954 int found;
7955 ULONGEST found_addr;
7956
7957 /* Don't go to the target if we don't have to.
7958 This is done before checking packet->support to avoid the possibility that
7959 a success for this edge case means the facility works in general. */
7960 if (pattern_len > search_space_len)
7961 return 0;
7962 if (pattern_len == 0)
7963 {
7964 *found_addrp = start_addr;
7965 return 1;
7966 }
7967
7968 /* If we already know the packet isn't supported, fall back to the simple
7969 way of searching memory. */
7970
7971 if (packet->support == PACKET_DISABLE)
7972 {
7973 /* Target doesn't provided special support, fall back and use the
7974 standard support (copy memory and do the search here). */
7975 return simple_search_memory (ops, start_addr, search_space_len,
7976 pattern, pattern_len, found_addrp);
7977 }
7978
7979 /* Insert header. */
7980 i = snprintf (rs->buf, max_size,
7981 "qSearch:memory:%s;%s;",
7982 phex_nz (start_addr, addr_size),
7983 phex_nz (search_space_len, sizeof (search_space_len)));
7984 max_size -= (i + 1);
7985
7986 /* Escape as much data as fits into rs->buf. */
7987 escaped_pattern_len =
7988 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7989 &used_pattern_len, max_size);
7990
7991 /* Bail if the pattern is too large. */
7992 if (used_pattern_len != pattern_len)
7993 error ("Pattern is too large to transmit to remote target.");
7994
7995 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7996 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7997 || packet_ok (rs->buf, packet) != PACKET_OK)
7998 {
7999 /* The request may not have worked because the command is not
8000 supported. If so, fall back to the simple way. */
8001 if (packet->support == PACKET_DISABLE)
8002 {
8003 return simple_search_memory (ops, start_addr, search_space_len,
8004 pattern, pattern_len, found_addrp);
8005 }
8006 return -1;
8007 }
8008
8009 if (rs->buf[0] == '0')
8010 found = 0;
8011 else if (rs->buf[0] == '1')
8012 {
8013 found = 1;
8014 if (rs->buf[1] != ',')
8015 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8016 unpack_varlen_hex (rs->buf + 2, &found_addr);
8017 *found_addrp = found_addr;
8018 }
8019 else
8020 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8021
8022 return found;
8023 }
8024
8025 static void
8026 remote_rcmd (char *command,
8027 struct ui_file *outbuf)
8028 {
8029 struct remote_state *rs = get_remote_state ();
8030 char *p = rs->buf;
8031
8032 if (!remote_desc)
8033 error (_("remote rcmd is only available after target open"));
8034
8035 /* Send a NULL command across as an empty command. */
8036 if (command == NULL)
8037 command = "";
8038
8039 /* The query prefix. */
8040 strcpy (rs->buf, "qRcmd,");
8041 p = strchr (rs->buf, '\0');
8042
8043 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
8044 error (_("\"monitor\" command ``%s'' is too long."), command);
8045
8046 /* Encode the actual command. */
8047 bin2hex ((gdb_byte *) command, p, 0);
8048
8049 if (putpkt (rs->buf) < 0)
8050 error (_("Communication problem with target."));
8051
8052 /* get/display the response */
8053 while (1)
8054 {
8055 char *buf;
8056
8057 /* XXX - see also remote_get_noisy_reply(). */
8058 rs->buf[0] = '\0';
8059 getpkt (&rs->buf, &rs->buf_size, 0);
8060 buf = rs->buf;
8061 if (buf[0] == '\0')
8062 error (_("Target does not support this command."));
8063 if (buf[0] == 'O' && buf[1] != 'K')
8064 {
8065 remote_console_output (buf + 1); /* 'O' message from stub. */
8066 continue;
8067 }
8068 if (strcmp (buf, "OK") == 0)
8069 break;
8070 if (strlen (buf) == 3 && buf[0] == 'E'
8071 && isdigit (buf[1]) && isdigit (buf[2]))
8072 {
8073 error (_("Protocol error with Rcmd"));
8074 }
8075 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8076 {
8077 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8078 fputc_unfiltered (c, outbuf);
8079 }
8080 break;
8081 }
8082 }
8083
8084 static VEC(mem_region_s) *
8085 remote_memory_map (struct target_ops *ops)
8086 {
8087 VEC(mem_region_s) *result = NULL;
8088 char *text = target_read_stralloc (&current_target,
8089 TARGET_OBJECT_MEMORY_MAP, NULL);
8090
8091 if (text)
8092 {
8093 struct cleanup *back_to = make_cleanup (xfree, text);
8094 result = parse_memory_map (text);
8095 do_cleanups (back_to);
8096 }
8097
8098 return result;
8099 }
8100
8101 static void
8102 packet_command (char *args, int from_tty)
8103 {
8104 struct remote_state *rs = get_remote_state ();
8105
8106 if (!remote_desc)
8107 error (_("command can only be used with remote target"));
8108
8109 if (!args)
8110 error (_("remote-packet command requires packet text as argument"));
8111
8112 puts_filtered ("sending: ");
8113 print_packet (args);
8114 puts_filtered ("\n");
8115 putpkt (args);
8116
8117 getpkt (&rs->buf, &rs->buf_size, 0);
8118 puts_filtered ("received: ");
8119 print_packet (rs->buf);
8120 puts_filtered ("\n");
8121 }
8122
8123 #if 0
8124 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8125
8126 static void display_thread_info (struct gdb_ext_thread_info *info);
8127
8128 static void threadset_test_cmd (char *cmd, int tty);
8129
8130 static void threadalive_test (char *cmd, int tty);
8131
8132 static void threadlist_test_cmd (char *cmd, int tty);
8133
8134 int get_and_display_threadinfo (threadref *ref);
8135
8136 static void threadinfo_test_cmd (char *cmd, int tty);
8137
8138 static int thread_display_step (threadref *ref, void *context);
8139
8140 static void threadlist_update_test_cmd (char *cmd, int tty);
8141
8142 static void init_remote_threadtests (void);
8143
8144 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8145
8146 static void
8147 threadset_test_cmd (char *cmd, int tty)
8148 {
8149 int sample_thread = SAMPLE_THREAD;
8150
8151 printf_filtered (_("Remote threadset test\n"));
8152 set_general_thread (sample_thread);
8153 }
8154
8155
8156 static void
8157 threadalive_test (char *cmd, int tty)
8158 {
8159 int sample_thread = SAMPLE_THREAD;
8160 int pid = ptid_get_pid (inferior_ptid);
8161 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8162
8163 if (remote_thread_alive (ptid))
8164 printf_filtered ("PASS: Thread alive test\n");
8165 else
8166 printf_filtered ("FAIL: Thread alive test\n");
8167 }
8168
8169 void output_threadid (char *title, threadref *ref);
8170
8171 void
8172 output_threadid (char *title, threadref *ref)
8173 {
8174 char hexid[20];
8175
8176 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8177 hexid[16] = 0;
8178 printf_filtered ("%s %s\n", title, (&hexid[0]));
8179 }
8180
8181 static void
8182 threadlist_test_cmd (char *cmd, int tty)
8183 {
8184 int startflag = 1;
8185 threadref nextthread;
8186 int done, result_count;
8187 threadref threadlist[3];
8188
8189 printf_filtered ("Remote Threadlist test\n");
8190 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8191 &result_count, &threadlist[0]))
8192 printf_filtered ("FAIL: threadlist test\n");
8193 else
8194 {
8195 threadref *scan = threadlist;
8196 threadref *limit = scan + result_count;
8197
8198 while (scan < limit)
8199 output_threadid (" thread ", scan++);
8200 }
8201 }
8202
8203 void
8204 display_thread_info (struct gdb_ext_thread_info *info)
8205 {
8206 output_threadid ("Threadid: ", &info->threadid);
8207 printf_filtered ("Name: %s\n ", info->shortname);
8208 printf_filtered ("State: %s\n", info->display);
8209 printf_filtered ("other: %s\n\n", info->more_display);
8210 }
8211
8212 int
8213 get_and_display_threadinfo (threadref *ref)
8214 {
8215 int result;
8216 int set;
8217 struct gdb_ext_thread_info threadinfo;
8218
8219 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8220 | TAG_MOREDISPLAY | TAG_DISPLAY;
8221 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8222 display_thread_info (&threadinfo);
8223 return result;
8224 }
8225
8226 static void
8227 threadinfo_test_cmd (char *cmd, int tty)
8228 {
8229 int athread = SAMPLE_THREAD;
8230 threadref thread;
8231 int set;
8232
8233 int_to_threadref (&thread, athread);
8234 printf_filtered ("Remote Threadinfo test\n");
8235 if (!get_and_display_threadinfo (&thread))
8236 printf_filtered ("FAIL cannot get thread info\n");
8237 }
8238
8239 static int
8240 thread_display_step (threadref *ref, void *context)
8241 {
8242 /* output_threadid(" threadstep ",ref); *//* simple test */
8243 return get_and_display_threadinfo (ref);
8244 }
8245
8246 static void
8247 threadlist_update_test_cmd (char *cmd, int tty)
8248 {
8249 printf_filtered ("Remote Threadlist update test\n");
8250 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8251 }
8252
8253 static void
8254 init_remote_threadtests (void)
8255 {
8256 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
8257 Fetch and print the remote list of thread identifiers, one pkt only"));
8258 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8259 _("Fetch and display info about one thread"));
8260 add_com ("tset", class_obscure, threadset_test_cmd,
8261 _("Test setting to a different thread"));
8262 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8263 _("Iterate through updating all remote thread info"));
8264 add_com ("talive", class_obscure, threadalive_test,
8265 _(" Remote thread alive test "));
8266 }
8267
8268 #endif /* 0 */
8269
8270 /* Convert a thread ID to a string. Returns the string in a static
8271 buffer. */
8272
8273 static char *
8274 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8275 {
8276 static char buf[64];
8277 struct remote_state *rs = get_remote_state ();
8278
8279 if (ptid_is_pid (ptid))
8280 {
8281 /* Printing an inferior target id. */
8282
8283 /* When multi-process extensions are off, there's no way in the
8284 remote protocol to know the remote process id, if there's any
8285 at all. There's one exception --- when we're connected with
8286 target extended-remote, and we manually attached to a process
8287 with "attach PID". We don't record anywhere a flag that
8288 allows us to distinguish that case from the case of
8289 connecting with extended-remote and the stub already being
8290 attached to a process, and reporting yes to qAttached, hence
8291 no smart special casing here. */
8292 if (!remote_multi_process_p (rs))
8293 {
8294 xsnprintf (buf, sizeof buf, "Remote target");
8295 return buf;
8296 }
8297
8298 return normal_pid_to_str (ptid);
8299 }
8300 else
8301 {
8302 if (ptid_equal (magic_null_ptid, ptid))
8303 xsnprintf (buf, sizeof buf, "Thread <main>");
8304 else if (remote_multi_process_p (rs))
8305 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8306 ptid_get_pid (ptid), ptid_get_tid (ptid));
8307 else
8308 xsnprintf (buf, sizeof buf, "Thread %ld",
8309 ptid_get_tid (ptid));
8310 return buf;
8311 }
8312 }
8313
8314 /* Get the address of the thread local variable in OBJFILE which is
8315 stored at OFFSET within the thread local storage for thread PTID. */
8316
8317 static CORE_ADDR
8318 remote_get_thread_local_address (struct target_ops *ops,
8319 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8320 {
8321 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8322 {
8323 struct remote_state *rs = get_remote_state ();
8324 char *p = rs->buf;
8325 char *endp = rs->buf + get_remote_packet_size ();
8326 enum packet_result result;
8327
8328 strcpy (p, "qGetTLSAddr:");
8329 p += strlen (p);
8330 p = write_ptid (p, endp, ptid);
8331 *p++ = ',';
8332 p += hexnumstr (p, offset);
8333 *p++ = ',';
8334 p += hexnumstr (p, lm);
8335 *p++ = '\0';
8336
8337 putpkt (rs->buf);
8338 getpkt (&rs->buf, &rs->buf_size, 0);
8339 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
8340 if (result == PACKET_OK)
8341 {
8342 ULONGEST result;
8343
8344 unpack_varlen_hex (rs->buf, &result);
8345 return result;
8346 }
8347 else if (result == PACKET_UNKNOWN)
8348 throw_error (TLS_GENERIC_ERROR,
8349 _("Remote target doesn't support qGetTLSAddr packet"));
8350 else
8351 throw_error (TLS_GENERIC_ERROR,
8352 _("Remote target failed to process qGetTLSAddr request"));
8353 }
8354 else
8355 throw_error (TLS_GENERIC_ERROR,
8356 _("TLS not supported or disabled on this target"));
8357 /* Not reached. */
8358 return 0;
8359 }
8360
8361 /* Support for inferring a target description based on the current
8362 architecture and the size of a 'g' packet. While the 'g' packet
8363 can have any size (since optional registers can be left off the
8364 end), some sizes are easily recognizable given knowledge of the
8365 approximate architecture. */
8366
8367 struct remote_g_packet_guess
8368 {
8369 int bytes;
8370 const struct target_desc *tdesc;
8371 };
8372 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8373 DEF_VEC_O(remote_g_packet_guess_s);
8374
8375 struct remote_g_packet_data
8376 {
8377 VEC(remote_g_packet_guess_s) *guesses;
8378 };
8379
8380 static struct gdbarch_data *remote_g_packet_data_handle;
8381
8382 static void *
8383 remote_g_packet_data_init (struct obstack *obstack)
8384 {
8385 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8386 }
8387
8388 void
8389 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8390 const struct target_desc *tdesc)
8391 {
8392 struct remote_g_packet_data *data
8393 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8394 struct remote_g_packet_guess new_guess, *guess;
8395 int ix;
8396
8397 gdb_assert (tdesc != NULL);
8398
8399 for (ix = 0;
8400 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8401 ix++)
8402 if (guess->bytes == bytes)
8403 internal_error (__FILE__, __LINE__,
8404 "Duplicate g packet description added for size %d",
8405 bytes);
8406
8407 new_guess.bytes = bytes;
8408 new_guess.tdesc = tdesc;
8409 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8410 }
8411
8412 /* Return 1 if remote_read_description would do anything on this target
8413 and architecture, 0 otherwise. */
8414
8415 static int
8416 remote_read_description_p (struct target_ops *target)
8417 {
8418 struct remote_g_packet_data *data
8419 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8420
8421 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8422 return 1;
8423
8424 return 0;
8425 }
8426
8427 static const struct target_desc *
8428 remote_read_description (struct target_ops *target)
8429 {
8430 struct remote_g_packet_data *data
8431 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8432
8433 /* Do not try this during initial connection, when we do not know
8434 whether there is a running but stopped thread. */
8435 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8436 return NULL;
8437
8438 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8439 {
8440 struct remote_g_packet_guess *guess;
8441 int ix;
8442 int bytes = send_g_packet ();
8443
8444 for (ix = 0;
8445 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8446 ix++)
8447 if (guess->bytes == bytes)
8448 return guess->tdesc;
8449
8450 /* We discard the g packet. A minor optimization would be to
8451 hold on to it, and fill the register cache once we have selected
8452 an architecture, but it's too tricky to do safely. */
8453 }
8454
8455 return NULL;
8456 }
8457
8458 /* Remote file transfer support. This is host-initiated I/O, not
8459 target-initiated; for target-initiated, see remote-fileio.c. */
8460
8461 /* If *LEFT is at least the length of STRING, copy STRING to
8462 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8463 decrease *LEFT. Otherwise raise an error. */
8464
8465 static void
8466 remote_buffer_add_string (char **buffer, int *left, char *string)
8467 {
8468 int len = strlen (string);
8469
8470 if (len > *left)
8471 error (_("Packet too long for target."));
8472
8473 memcpy (*buffer, string, len);
8474 *buffer += len;
8475 *left -= len;
8476
8477 /* NUL-terminate the buffer as a convenience, if there is
8478 room. */
8479 if (*left)
8480 **buffer = '\0';
8481 }
8482
8483 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8484 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8485 decrease *LEFT. Otherwise raise an error. */
8486
8487 static void
8488 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8489 int len)
8490 {
8491 if (2 * len > *left)
8492 error (_("Packet too long for target."));
8493
8494 bin2hex (bytes, *buffer, len);
8495 *buffer += 2 * len;
8496 *left -= 2 * len;
8497
8498 /* NUL-terminate the buffer as a convenience, if there is
8499 room. */
8500 if (*left)
8501 **buffer = '\0';
8502 }
8503
8504 /* If *LEFT is large enough, convert VALUE to hex and add it to
8505 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8506 decrease *LEFT. Otherwise raise an error. */
8507
8508 static void
8509 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8510 {
8511 int len = hexnumlen (value);
8512
8513 if (len > *left)
8514 error (_("Packet too long for target."));
8515
8516 hexnumstr (*buffer, value);
8517 *buffer += len;
8518 *left -= len;
8519
8520 /* NUL-terminate the buffer as a convenience, if there is
8521 room. */
8522 if (*left)
8523 **buffer = '\0';
8524 }
8525
8526 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8527 value, *REMOTE_ERRNO to the remote error number or zero if none
8528 was included, and *ATTACHMENT to point to the start of the annex
8529 if any. The length of the packet isn't needed here; there may
8530 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8531
8532 Return 0 if the packet could be parsed, -1 if it could not. If
8533 -1 is returned, the other variables may not be initialized. */
8534
8535 static int
8536 remote_hostio_parse_result (char *buffer, int *retcode,
8537 int *remote_errno, char **attachment)
8538 {
8539 char *p, *p2;
8540
8541 *remote_errno = 0;
8542 *attachment = NULL;
8543
8544 if (buffer[0] != 'F')
8545 return -1;
8546
8547 errno = 0;
8548 *retcode = strtol (&buffer[1], &p, 16);
8549 if (errno != 0 || p == &buffer[1])
8550 return -1;
8551
8552 /* Check for ",errno". */
8553 if (*p == ',')
8554 {
8555 errno = 0;
8556 *remote_errno = strtol (p + 1, &p2, 16);
8557 if (errno != 0 || p + 1 == p2)
8558 return -1;
8559 p = p2;
8560 }
8561
8562 /* Check for ";attachment". If there is no attachment, the
8563 packet should end here. */
8564 if (*p == ';')
8565 {
8566 *attachment = p + 1;
8567 return 0;
8568 }
8569 else if (*p == '\0')
8570 return 0;
8571 else
8572 return -1;
8573 }
8574
8575 /* Send a prepared I/O packet to the target and read its response.
8576 The prepared packet is in the global RS->BUF before this function
8577 is called, and the answer is there when we return.
8578
8579 COMMAND_BYTES is the length of the request to send, which may include
8580 binary data. WHICH_PACKET is the packet configuration to check
8581 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8582 is set to the error number and -1 is returned. Otherwise the value
8583 returned by the function is returned.
8584
8585 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8586 attachment is expected; an error will be reported if there's a
8587 mismatch. If one is found, *ATTACHMENT will be set to point into
8588 the packet buffer and *ATTACHMENT_LEN will be set to the
8589 attachment's length. */
8590
8591 static int
8592 remote_hostio_send_command (int command_bytes, int which_packet,
8593 int *remote_errno, char **attachment,
8594 int *attachment_len)
8595 {
8596 struct remote_state *rs = get_remote_state ();
8597 int ret, bytes_read;
8598 char *attachment_tmp;
8599
8600 if (!remote_desc
8601 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8602 {
8603 *remote_errno = FILEIO_ENOSYS;
8604 return -1;
8605 }
8606
8607 putpkt_binary (rs->buf, command_bytes);
8608 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8609
8610 /* If it timed out, something is wrong. Don't try to parse the
8611 buffer. */
8612 if (bytes_read < 0)
8613 {
8614 *remote_errno = FILEIO_EINVAL;
8615 return -1;
8616 }
8617
8618 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8619 {
8620 case PACKET_ERROR:
8621 *remote_errno = FILEIO_EINVAL;
8622 return -1;
8623 case PACKET_UNKNOWN:
8624 *remote_errno = FILEIO_ENOSYS;
8625 return -1;
8626 case PACKET_OK:
8627 break;
8628 }
8629
8630 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8631 &attachment_tmp))
8632 {
8633 *remote_errno = FILEIO_EINVAL;
8634 return -1;
8635 }
8636
8637 /* Make sure we saw an attachment if and only if we expected one. */
8638 if ((attachment_tmp == NULL && attachment != NULL)
8639 || (attachment_tmp != NULL && attachment == NULL))
8640 {
8641 *remote_errno = FILEIO_EINVAL;
8642 return -1;
8643 }
8644
8645 /* If an attachment was found, it must point into the packet buffer;
8646 work out how many bytes there were. */
8647 if (attachment_tmp != NULL)
8648 {
8649 *attachment = attachment_tmp;
8650 *attachment_len = bytes_read - (*attachment - rs->buf);
8651 }
8652
8653 return ret;
8654 }
8655
8656 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8657 remote file descriptor, or -1 if an error occurs (and set
8658 *REMOTE_ERRNO). */
8659
8660 static int
8661 remote_hostio_open (const char *filename, int flags, int mode,
8662 int *remote_errno)
8663 {
8664 struct remote_state *rs = get_remote_state ();
8665 char *p = rs->buf;
8666 int left = get_remote_packet_size () - 1;
8667
8668 remote_buffer_add_string (&p, &left, "vFile:open:");
8669
8670 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8671 strlen (filename));
8672 remote_buffer_add_string (&p, &left, ",");
8673
8674 remote_buffer_add_int (&p, &left, flags);
8675 remote_buffer_add_string (&p, &left, ",");
8676
8677 remote_buffer_add_int (&p, &left, mode);
8678
8679 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8680 remote_errno, NULL, NULL);
8681 }
8682
8683 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8684 Return the number of bytes written, or -1 if an error occurs (and
8685 set *REMOTE_ERRNO). */
8686
8687 static int
8688 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8689 ULONGEST offset, int *remote_errno)
8690 {
8691 struct remote_state *rs = get_remote_state ();
8692 char *p = rs->buf;
8693 int left = get_remote_packet_size ();
8694 int out_len;
8695
8696 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8697
8698 remote_buffer_add_int (&p, &left, fd);
8699 remote_buffer_add_string (&p, &left, ",");
8700
8701 remote_buffer_add_int (&p, &left, offset);
8702 remote_buffer_add_string (&p, &left, ",");
8703
8704 p += remote_escape_output (write_buf, len, p, &out_len,
8705 get_remote_packet_size () - (p - rs->buf));
8706
8707 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8708 remote_errno, NULL, NULL);
8709 }
8710
8711 /* Read up to LEN bytes FD on the remote target into READ_BUF
8712 Return the number of bytes read, or -1 if an error occurs (and
8713 set *REMOTE_ERRNO). */
8714
8715 static int
8716 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8717 ULONGEST offset, int *remote_errno)
8718 {
8719 struct remote_state *rs = get_remote_state ();
8720 char *p = rs->buf;
8721 char *attachment;
8722 int left = get_remote_packet_size ();
8723 int ret, attachment_len;
8724 int read_len;
8725
8726 remote_buffer_add_string (&p, &left, "vFile:pread:");
8727
8728 remote_buffer_add_int (&p, &left, fd);
8729 remote_buffer_add_string (&p, &left, ",");
8730
8731 remote_buffer_add_int (&p, &left, len);
8732 remote_buffer_add_string (&p, &left, ",");
8733
8734 remote_buffer_add_int (&p, &left, offset);
8735
8736 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8737 remote_errno, &attachment,
8738 &attachment_len);
8739
8740 if (ret < 0)
8741 return ret;
8742
8743 read_len = remote_unescape_input (attachment, attachment_len,
8744 read_buf, len);
8745 if (read_len != ret)
8746 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8747
8748 return ret;
8749 }
8750
8751 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8752 (and set *REMOTE_ERRNO). */
8753
8754 static int
8755 remote_hostio_close (int fd, int *remote_errno)
8756 {
8757 struct remote_state *rs = get_remote_state ();
8758 char *p = rs->buf;
8759 int left = get_remote_packet_size () - 1;
8760
8761 remote_buffer_add_string (&p, &left, "vFile:close:");
8762
8763 remote_buffer_add_int (&p, &left, fd);
8764
8765 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8766 remote_errno, NULL, NULL);
8767 }
8768
8769 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8770 occurs (and set *REMOTE_ERRNO). */
8771
8772 static int
8773 remote_hostio_unlink (const char *filename, int *remote_errno)
8774 {
8775 struct remote_state *rs = get_remote_state ();
8776 char *p = rs->buf;
8777 int left = get_remote_packet_size () - 1;
8778
8779 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8780
8781 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8782 strlen (filename));
8783
8784 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8785 remote_errno, NULL, NULL);
8786 }
8787
8788 static int
8789 remote_fileio_errno_to_host (int errnum)
8790 {
8791 switch (errnum)
8792 {
8793 case FILEIO_EPERM:
8794 return EPERM;
8795 case FILEIO_ENOENT:
8796 return ENOENT;
8797 case FILEIO_EINTR:
8798 return EINTR;
8799 case FILEIO_EIO:
8800 return EIO;
8801 case FILEIO_EBADF:
8802 return EBADF;
8803 case FILEIO_EACCES:
8804 return EACCES;
8805 case FILEIO_EFAULT:
8806 return EFAULT;
8807 case FILEIO_EBUSY:
8808 return EBUSY;
8809 case FILEIO_EEXIST:
8810 return EEXIST;
8811 case FILEIO_ENODEV:
8812 return ENODEV;
8813 case FILEIO_ENOTDIR:
8814 return ENOTDIR;
8815 case FILEIO_EISDIR:
8816 return EISDIR;
8817 case FILEIO_EINVAL:
8818 return EINVAL;
8819 case FILEIO_ENFILE:
8820 return ENFILE;
8821 case FILEIO_EMFILE:
8822 return EMFILE;
8823 case FILEIO_EFBIG:
8824 return EFBIG;
8825 case FILEIO_ENOSPC:
8826 return ENOSPC;
8827 case FILEIO_ESPIPE:
8828 return ESPIPE;
8829 case FILEIO_EROFS:
8830 return EROFS;
8831 case FILEIO_ENOSYS:
8832 return ENOSYS;
8833 case FILEIO_ENAMETOOLONG:
8834 return ENAMETOOLONG;
8835 }
8836 return -1;
8837 }
8838
8839 static char *
8840 remote_hostio_error (int errnum)
8841 {
8842 int host_error = remote_fileio_errno_to_host (errnum);
8843
8844 if (host_error == -1)
8845 error (_("Unknown remote I/O error %d"), errnum);
8846 else
8847 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8848 }
8849
8850 static void
8851 remote_hostio_close_cleanup (void *opaque)
8852 {
8853 int fd = *(int *) opaque;
8854 int remote_errno;
8855
8856 remote_hostio_close (fd, &remote_errno);
8857 }
8858
8859
8860 static void *
8861 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8862 {
8863 const char *filename = bfd_get_filename (abfd);
8864 int fd, remote_errno;
8865 int *stream;
8866
8867 gdb_assert (remote_filename_p (filename));
8868
8869 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8870 if (fd == -1)
8871 {
8872 errno = remote_fileio_errno_to_host (remote_errno);
8873 bfd_set_error (bfd_error_system_call);
8874 return NULL;
8875 }
8876
8877 stream = xmalloc (sizeof (int));
8878 *stream = fd;
8879 return stream;
8880 }
8881
8882 static int
8883 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8884 {
8885 int fd = *(int *)stream;
8886 int remote_errno;
8887
8888 xfree (stream);
8889
8890 /* Ignore errors on close; these may happen if the remote
8891 connection was already torn down. */
8892 remote_hostio_close (fd, &remote_errno);
8893
8894 return 1;
8895 }
8896
8897 static file_ptr
8898 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8899 file_ptr nbytes, file_ptr offset)
8900 {
8901 int fd = *(int *)stream;
8902 int remote_errno;
8903 file_ptr pos, bytes;
8904
8905 pos = 0;
8906 while (nbytes > pos)
8907 {
8908 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8909 offset + pos, &remote_errno);
8910 if (bytes == 0)
8911 /* Success, but no bytes, means end-of-file. */
8912 break;
8913 if (bytes == -1)
8914 {
8915 errno = remote_fileio_errno_to_host (remote_errno);
8916 bfd_set_error (bfd_error_system_call);
8917 return -1;
8918 }
8919
8920 pos += bytes;
8921 }
8922
8923 return pos;
8924 }
8925
8926 static int
8927 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8928 {
8929 /* FIXME: We should probably implement remote_hostio_stat. */
8930 sb->st_size = INT_MAX;
8931 return 0;
8932 }
8933
8934 int
8935 remote_filename_p (const char *filename)
8936 {
8937 return strncmp (filename, "remote:", 7) == 0;
8938 }
8939
8940 bfd *
8941 remote_bfd_open (const char *remote_file, const char *target)
8942 {
8943 return bfd_openr_iovec (remote_file, target,
8944 remote_bfd_iovec_open, NULL,
8945 remote_bfd_iovec_pread,
8946 remote_bfd_iovec_close,
8947 remote_bfd_iovec_stat);
8948 }
8949
8950 void
8951 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8952 {
8953 struct cleanup *back_to, *close_cleanup;
8954 int retcode, fd, remote_errno, bytes, io_size;
8955 FILE *file;
8956 gdb_byte *buffer;
8957 int bytes_in_buffer;
8958 int saw_eof;
8959 ULONGEST offset;
8960
8961 if (!remote_desc)
8962 error (_("command can only be used with remote target"));
8963
8964 file = fopen (local_file, "rb");
8965 if (file == NULL)
8966 perror_with_name (local_file);
8967 back_to = make_cleanup_fclose (file);
8968
8969 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8970 | FILEIO_O_TRUNC),
8971 0700, &remote_errno);
8972 if (fd == -1)
8973 remote_hostio_error (remote_errno);
8974
8975 /* Send up to this many bytes at once. They won't all fit in the
8976 remote packet limit, so we'll transfer slightly fewer. */
8977 io_size = get_remote_packet_size ();
8978 buffer = xmalloc (io_size);
8979 make_cleanup (xfree, buffer);
8980
8981 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8982
8983 bytes_in_buffer = 0;
8984 saw_eof = 0;
8985 offset = 0;
8986 while (bytes_in_buffer || !saw_eof)
8987 {
8988 if (!saw_eof)
8989 {
8990 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8991 file);
8992 if (bytes == 0)
8993 {
8994 if (ferror (file))
8995 error (_("Error reading %s."), local_file);
8996 else
8997 {
8998 /* EOF. Unless there is something still in the
8999 buffer from the last iteration, we are done. */
9000 saw_eof = 1;
9001 if (bytes_in_buffer == 0)
9002 break;
9003 }
9004 }
9005 }
9006 else
9007 bytes = 0;
9008
9009 bytes += bytes_in_buffer;
9010 bytes_in_buffer = 0;
9011
9012 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
9013
9014 if (retcode < 0)
9015 remote_hostio_error (remote_errno);
9016 else if (retcode == 0)
9017 error (_("Remote write of %d bytes returned 0!"), bytes);
9018 else if (retcode < bytes)
9019 {
9020 /* Short write. Save the rest of the read data for the next
9021 write. */
9022 bytes_in_buffer = bytes - retcode;
9023 memmove (buffer, buffer + retcode, bytes_in_buffer);
9024 }
9025
9026 offset += retcode;
9027 }
9028
9029 discard_cleanups (close_cleanup);
9030 if (remote_hostio_close (fd, &remote_errno))
9031 remote_hostio_error (remote_errno);
9032
9033 if (from_tty)
9034 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9035 do_cleanups (back_to);
9036 }
9037
9038 void
9039 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9040 {
9041 struct cleanup *back_to, *close_cleanup;
9042 int fd, remote_errno, bytes, io_size;
9043 FILE *file;
9044 gdb_byte *buffer;
9045 ULONGEST offset;
9046
9047 if (!remote_desc)
9048 error (_("command can only be used with remote target"));
9049
9050 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9051 if (fd == -1)
9052 remote_hostio_error (remote_errno);
9053
9054 file = fopen (local_file, "wb");
9055 if (file == NULL)
9056 perror_with_name (local_file);
9057 back_to = make_cleanup_fclose (file);
9058
9059 /* Send up to this many bytes at once. They won't all fit in the
9060 remote packet limit, so we'll transfer slightly fewer. */
9061 io_size = get_remote_packet_size ();
9062 buffer = xmalloc (io_size);
9063 make_cleanup (xfree, buffer);
9064
9065 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9066
9067 offset = 0;
9068 while (1)
9069 {
9070 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9071 if (bytes == 0)
9072 /* Success, but no bytes, means end-of-file. */
9073 break;
9074 if (bytes == -1)
9075 remote_hostio_error (remote_errno);
9076
9077 offset += bytes;
9078
9079 bytes = fwrite (buffer, 1, bytes, file);
9080 if (bytes == 0)
9081 perror_with_name (local_file);
9082 }
9083
9084 discard_cleanups (close_cleanup);
9085 if (remote_hostio_close (fd, &remote_errno))
9086 remote_hostio_error (remote_errno);
9087
9088 if (from_tty)
9089 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9090 do_cleanups (back_to);
9091 }
9092
9093 void
9094 remote_file_delete (const char *remote_file, int from_tty)
9095 {
9096 int retcode, remote_errno;
9097
9098 if (!remote_desc)
9099 error (_("command can only be used with remote target"));
9100
9101 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9102 if (retcode == -1)
9103 remote_hostio_error (remote_errno);
9104
9105 if (from_tty)
9106 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9107 }
9108
9109 static void
9110 remote_put_command (char *args, int from_tty)
9111 {
9112 struct cleanup *back_to;
9113 char **argv;
9114
9115 if (args == NULL)
9116 error_no_arg (_("file to put"));
9117
9118 argv = gdb_buildargv (args);
9119 back_to = make_cleanup_freeargv (argv);
9120 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9121 error (_("Invalid parameters to remote put"));
9122
9123 remote_file_put (argv[0], argv[1], from_tty);
9124
9125 do_cleanups (back_to);
9126 }
9127
9128 static void
9129 remote_get_command (char *args, int from_tty)
9130 {
9131 struct cleanup *back_to;
9132 char **argv;
9133
9134 if (args == NULL)
9135 error_no_arg (_("file to get"));
9136
9137 argv = gdb_buildargv (args);
9138 back_to = make_cleanup_freeargv (argv);
9139 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9140 error (_("Invalid parameters to remote get"));
9141
9142 remote_file_get (argv[0], argv[1], from_tty);
9143
9144 do_cleanups (back_to);
9145 }
9146
9147 static void
9148 remote_delete_command (char *args, int from_tty)
9149 {
9150 struct cleanup *back_to;
9151 char **argv;
9152
9153 if (args == NULL)
9154 error_no_arg (_("file to delete"));
9155
9156 argv = gdb_buildargv (args);
9157 back_to = make_cleanup_freeargv (argv);
9158 if (argv[0] == NULL || argv[1] != NULL)
9159 error (_("Invalid parameters to remote delete"));
9160
9161 remote_file_delete (argv[0], from_tty);
9162
9163 do_cleanups (back_to);
9164 }
9165
9166 static void
9167 remote_command (char *args, int from_tty)
9168 {
9169 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9170 }
9171
9172 static int
9173 remote_can_execute_reverse (void)
9174 {
9175 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9176 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9177 return 1;
9178 else
9179 return 0;
9180 }
9181
9182 static int
9183 remote_supports_non_stop (void)
9184 {
9185 return 1;
9186 }
9187
9188 static int
9189 remote_supports_multi_process (void)
9190 {
9191 struct remote_state *rs = get_remote_state ();
9192 return remote_multi_process_p (rs);
9193 }
9194
9195 int
9196 remote_supports_cond_tracepoints (void)
9197 {
9198 struct remote_state *rs = get_remote_state ();
9199 return rs->cond_tracepoints;
9200 }
9201
9202 int
9203 remote_supports_fast_tracepoints (void)
9204 {
9205 struct remote_state *rs = get_remote_state ();
9206 return rs->fast_tracepoints;
9207 }
9208
9209 static void
9210 remote_trace_init ()
9211 {
9212 putpkt ("QTinit");
9213 remote_get_noisy_reply (&target_buf, &target_buf_size);
9214 if (strcmp (target_buf, "OK"))
9215 error (_("Target does not support this command."));
9216 }
9217
9218 static void free_actions_list (char **actions_list);
9219 static void free_actions_list_cleanup_wrapper (void *);
9220 static void
9221 free_actions_list_cleanup_wrapper (void *al)
9222 {
9223 free_actions_list (al);
9224 }
9225
9226 static void
9227 free_actions_list (char **actions_list)
9228 {
9229 int ndx;
9230
9231 if (actions_list == 0)
9232 return;
9233
9234 for (ndx = 0; actions_list[ndx]; ndx++)
9235 xfree (actions_list[ndx]);
9236
9237 xfree (actions_list);
9238 }
9239
9240 static void
9241 remote_download_tracepoint (struct breakpoint *t)
9242 {
9243 CORE_ADDR tpaddr;
9244 char tmp[40];
9245 char buf[2048];
9246 char **tdp_actions;
9247 char **stepping_actions;
9248 int ndx;
9249 struct cleanup *old_chain = NULL;
9250 struct agent_expr *aexpr;
9251 struct cleanup *aexpr_chain = NULL;
9252 char *pkt;
9253
9254 encode_actions (t, &tdp_actions, &stepping_actions);
9255 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9256 tdp_actions);
9257 (void) make_cleanup (free_actions_list_cleanup_wrapper, stepping_actions);
9258
9259 tpaddr = t->loc->address;
9260 sprintf_vma (tmp, (t->loc ? tpaddr : 0));
9261 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9262 tmp, /* address */
9263 (t->enable_state == bp_enabled ? 'E' : 'D'),
9264 t->step_count, t->pass_count);
9265 /* Fast tracepoints are mostly handled by the target, but we can
9266 tell the target how big of an instruction block should be moved
9267 around. */
9268 if (t->type == bp_fast_tracepoint)
9269 {
9270 /* Only test for support at download time; we may not know
9271 target capabilities at definition time. */
9272 if (remote_supports_fast_tracepoints ())
9273 {
9274 int isize;
9275
9276 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9277 tpaddr, &isize, NULL))
9278 sprintf (buf + strlen (buf), ":F%x", isize);
9279 else
9280 /* If it passed validation at definition but fails now,
9281 something is very wrong. */
9282 internal_error (__FILE__, __LINE__,
9283 "Fast tracepoint not valid during download");
9284 }
9285 else
9286 /* Fast tracepoints are functionally identical to regular
9287 tracepoints, so don't take lack of support as a reason to
9288 give up on the trace run. */
9289 warning (_("Target does not support fast tracepoints, downloading %d as regular tracepoint"), t->number);
9290 }
9291 /* If the tracepoint has a conditional, make it into an agent
9292 expression and append to the definition. */
9293 if (t->loc->cond)
9294 {
9295 /* Only test support at download time, we may not know target
9296 capabilities at definition time. */
9297 if (remote_supports_cond_tracepoints ())
9298 {
9299 aexpr = gen_eval_for_expr (t->loc->address, t->loc->cond);
9300 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9301 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9302 pkt = buf + strlen (buf);
9303 for (ndx = 0; ndx < aexpr->len; ++ndx)
9304 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9305 *pkt = '\0';
9306 do_cleanups (aexpr_chain);
9307 }
9308 else
9309 warning (_("Target does not support conditional tracepoints, ignoring tp %d cond"), t->number);
9310 }
9311
9312 if (t->actions || *default_collect)
9313 strcat (buf, "-");
9314 putpkt (buf);
9315 remote_get_noisy_reply (&target_buf, &target_buf_size);
9316 if (strcmp (target_buf, "OK"))
9317 error (_("Target does not support tracepoints."));
9318
9319 if (!t->actions && !*default_collect)
9320 return;
9321
9322 /* do_single_steps (t); */
9323 if (tdp_actions)
9324 {
9325 for (ndx = 0; tdp_actions[ndx]; ndx++)
9326 {
9327 QUIT; /* allow user to bail out with ^C */
9328 sprintf (buf, "QTDP:-%x:%s:%s%c",
9329 t->number, tmp, /* address */
9330 tdp_actions[ndx],
9331 ((tdp_actions[ndx + 1] || stepping_actions)
9332 ? '-' : 0));
9333 putpkt (buf);
9334 remote_get_noisy_reply (&target_buf,
9335 &target_buf_size);
9336 if (strcmp (target_buf, "OK"))
9337 error (_("Error on target while setting tracepoints."));
9338 }
9339 }
9340 if (stepping_actions)
9341 {
9342 for (ndx = 0; stepping_actions[ndx]; ndx++)
9343 {
9344 QUIT; /* allow user to bail out with ^C */
9345 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9346 t->number, tmp, /* address */
9347 ((ndx == 0) ? "S" : ""),
9348 stepping_actions[ndx],
9349 (stepping_actions[ndx + 1] ? "-" : ""));
9350 putpkt (buf);
9351 remote_get_noisy_reply (&target_buf,
9352 &target_buf_size);
9353 if (strcmp (target_buf, "OK"))
9354 error (_("Error on target while setting tracepoints."));
9355 }
9356 }
9357 do_cleanups (old_chain);
9358 return;
9359 }
9360
9361 static void
9362 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9363 {
9364 struct remote_state *rs = get_remote_state ();
9365 char *p;
9366
9367 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9368 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9369 p = rs->buf + strlen (rs->buf);
9370 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9371 error (_("Trace state variable name too long for tsv definition packet"));
9372 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9373 *p++ = '\0';
9374 putpkt (rs->buf);
9375 remote_get_noisy_reply (&target_buf, &target_buf_size);
9376 }
9377
9378 static void
9379 remote_trace_set_readonly_regions ()
9380 {
9381 asection *s;
9382 bfd_size_type size;
9383 bfd_vma lma;
9384 int anysecs = 0;
9385
9386 if (!exec_bfd)
9387 return; /* No information to give. */
9388
9389 strcpy (target_buf, "QTro");
9390 for (s = exec_bfd->sections; s; s = s->next)
9391 {
9392 char tmp1[40], tmp2[40];
9393
9394 if ((s->flags & SEC_LOAD) == 0 ||
9395 /* (s->flags & SEC_CODE) == 0 || */
9396 (s->flags & SEC_READONLY) == 0)
9397 continue;
9398
9399 anysecs = 1;
9400 lma = s->lma;
9401 size = bfd_get_section_size (s);
9402 sprintf_vma (tmp1, lma);
9403 sprintf_vma (tmp2, lma + size);
9404 sprintf (target_buf + strlen (target_buf),
9405 ":%s,%s", tmp1, tmp2);
9406 }
9407 if (anysecs)
9408 {
9409 putpkt (target_buf);
9410 getpkt (&target_buf, &target_buf_size, 0);
9411 }
9412 }
9413
9414 static void
9415 remote_trace_start ()
9416 {
9417 putpkt ("QTStart");
9418 remote_get_noisy_reply (&target_buf, &target_buf_size);
9419 if (strcmp (target_buf, "OK"))
9420 error (_("Bogus reply from target: %s"), target_buf);
9421 }
9422
9423 static int
9424 remote_get_trace_status (struct trace_status *ts)
9425 {
9426 char *p, *p1, *p_temp;
9427 ULONGEST val;
9428 /* FIXME we need to get register block size some other way */
9429 extern int trace_regblock_size;
9430 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9431
9432 putpkt ("qTStatus");
9433 getpkt (&target_buf, &target_buf_size, 0);
9434 /* FIXME should handle more variety of replies */
9435
9436 p = target_buf;
9437
9438 /* If the remote target doesn't do tracing, flag it. */
9439 if (*p == '\0')
9440 return -1;
9441
9442 /* We're working with a live target. */
9443 ts->from_file = 0;
9444
9445 /* Set some defaults. */
9446 ts->running_known = 0;
9447 ts->stop_reason = trace_stop_reason_unknown;
9448 ts->traceframe_count = -1;
9449 ts->buffer_free = 0;
9450
9451 if (*p++ != 'T')
9452 error (_("Bogus trace status reply from target: %s"), target_buf);
9453
9454 parse_trace_status (p, ts);
9455
9456 return ts->running;
9457 }
9458
9459 static void
9460 remote_trace_stop ()
9461 {
9462 putpkt ("QTStop");
9463 remote_get_noisy_reply (&target_buf, &target_buf_size);
9464 if (strcmp (target_buf, "OK"))
9465 error (_("Bogus reply from target: %s"), target_buf);
9466 }
9467
9468 static int
9469 remote_trace_find (enum trace_find_type type, int num,
9470 ULONGEST addr1, ULONGEST addr2,
9471 int *tpp)
9472 {
9473 struct remote_state *rs = get_remote_state ();
9474 char *p, *reply;
9475 int target_frameno = -1, target_tracept = -1;
9476
9477 p = rs->buf;
9478 strcpy (p, "QTFrame:");
9479 p = strchr (p, '\0');
9480 switch (type)
9481 {
9482 case tfind_number:
9483 sprintf (p, "%x", num);
9484 break;
9485 case tfind_pc:
9486 sprintf (p, "pc:%s", phex_nz (addr1, 0));
9487 break;
9488 case tfind_tp:
9489 sprintf (p, "tdp:%x", num);
9490 break;
9491 case tfind_range:
9492 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9493 break;
9494 case tfind_outside:
9495 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9496 break;
9497 default:
9498 error ("Unknown trace find type %d", type);
9499 }
9500
9501 putpkt (rs->buf);
9502 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
9503
9504 while (reply && *reply)
9505 switch (*reply)
9506 {
9507 case 'F':
9508 if ((target_frameno = (int) strtol (++reply, &reply, 16)) == -1)
9509 error (_("Target failed to find requested trace frame."));
9510 break;
9511 case 'T':
9512 if ((target_tracept = (int) strtol (++reply, &reply, 16)) == -1)
9513 error (_("Target failed to find requested trace frame."));
9514 break;
9515 case 'O': /* "OK"? */
9516 if (reply[1] == 'K' && reply[2] == '\0')
9517 reply += 2;
9518 else
9519 error (_("Bogus reply from target: %s"), reply);
9520 break;
9521 default:
9522 error (_("Bogus reply from target: %s"), reply);
9523 }
9524 if (tpp)
9525 *tpp = target_tracept;
9526 return target_frameno;
9527 }
9528
9529 static int
9530 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
9531 {
9532 struct remote_state *rs = get_remote_state ();
9533 char *reply;
9534 ULONGEST uval;
9535
9536 sprintf (rs->buf, "qTV:%x", tsvnum);
9537 putpkt (rs->buf);
9538 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9539 if (reply && *reply)
9540 {
9541 if (*reply == 'V')
9542 {
9543 unpack_varlen_hex (reply + 1, &uval);
9544 *val = (LONGEST) uval;
9545 return 1;
9546 }
9547 }
9548 return 0;
9549 }
9550
9551 static int
9552 remote_save_trace_data (char *filename)
9553 {
9554 struct remote_state *rs = get_remote_state ();
9555 char *p, *reply;
9556
9557 p = rs->buf;
9558 strcpy (p, "QTSave:");
9559 p += strlen (p);
9560 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
9561 error (_("Remote file name too long for trace save packet"));
9562 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
9563 *p++ = '\0';
9564 putpkt (rs->buf);
9565 remote_get_noisy_reply (&target_buf, &target_buf_size);
9566 return 0;
9567 }
9568
9569 /* This is basically a memory transfer, but needs to be its own packet
9570 because we don't know how the target actually organizes its trace
9571 memory, plus we want to be able to ask for as much as possible, but
9572 not be unhappy if we don't get as much as we ask for. */
9573
9574 static LONGEST
9575 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
9576 {
9577 struct remote_state *rs = get_remote_state ();
9578 char *reply;
9579 char *p;
9580 int rslt;
9581
9582 p = rs->buf;
9583 strcpy (p, "qTBuffer:");
9584 p += strlen (p);
9585 p += hexnumstr (p, offset);
9586 *p++ = ',';
9587 p += hexnumstr (p, len);
9588 *p++ = '\0';
9589
9590 putpkt (rs->buf);
9591 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9592 if (reply && *reply)
9593 {
9594 /* 'l' by itself means we're at the end of the buffer and
9595 there is nothing more to get. */
9596 if (*reply == 'l')
9597 return 0;
9598
9599 /* Convert the reply into binary. Limit the number of bytes to
9600 convert according to our passed-in buffer size, rather than
9601 what was returned in the packet; if the target is
9602 unexpectedly generous and gives us a bigger reply than we
9603 asked for, we don't want to crash. */
9604 rslt = hex2bin (target_buf, buf, len);
9605 return rslt;
9606 }
9607
9608 /* Something went wrong, flag as an error. */
9609 return -1;
9610 }
9611
9612 static void
9613 remote_set_disconnected_tracing (int val)
9614 {
9615 struct remote_state *rs = get_remote_state ();
9616
9617 sprintf (rs->buf, "QTDisconnected:%x", val);
9618 putpkt (rs->buf);
9619 remote_get_noisy_reply (&target_buf, &target_buf_size);
9620 if (strcmp (target_buf, "OK"))
9621 error (_("Target does not support this command."));
9622 }
9623
9624 static int
9625 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
9626 {
9627 struct thread_info *info = find_thread_ptid (ptid);
9628 if (info && info->private)
9629 return info->private->core;
9630 return -1;
9631 }
9632
9633 static void
9634 init_remote_ops (void)
9635 {
9636 remote_ops.to_shortname = "remote";
9637 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
9638 remote_ops.to_doc =
9639 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9640 Specify the serial device it is connected to\n\
9641 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
9642 remote_ops.to_open = remote_open;
9643 remote_ops.to_close = remote_close;
9644 remote_ops.to_detach = remote_detach;
9645 remote_ops.to_disconnect = remote_disconnect;
9646 remote_ops.to_resume = remote_resume;
9647 remote_ops.to_wait = remote_wait;
9648 remote_ops.to_fetch_registers = remote_fetch_registers;
9649 remote_ops.to_store_registers = remote_store_registers;
9650 remote_ops.to_prepare_to_store = remote_prepare_to_store;
9651 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
9652 remote_ops.to_files_info = remote_files_info;
9653 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
9654 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
9655 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
9656 remote_ops.to_stopped_data_address = remote_stopped_data_address;
9657 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
9658 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
9659 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
9660 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
9661 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
9662 remote_ops.to_kill = remote_kill;
9663 remote_ops.to_load = generic_load;
9664 remote_ops.to_mourn_inferior = remote_mourn;
9665 remote_ops.to_thread_alive = remote_thread_alive;
9666 remote_ops.to_find_new_threads = remote_threads_info;
9667 remote_ops.to_pid_to_str = remote_pid_to_str;
9668 remote_ops.to_extra_thread_info = remote_threads_extra_info;
9669 remote_ops.to_stop = remote_stop;
9670 remote_ops.to_xfer_partial = remote_xfer_partial;
9671 remote_ops.to_rcmd = remote_rcmd;
9672 remote_ops.to_log_command = serial_log_command;
9673 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
9674 remote_ops.to_stratum = process_stratum;
9675 remote_ops.to_has_all_memory = default_child_has_all_memory;
9676 remote_ops.to_has_memory = default_child_has_memory;
9677 remote_ops.to_has_stack = default_child_has_stack;
9678 remote_ops.to_has_registers = default_child_has_registers;
9679 remote_ops.to_has_execution = default_child_has_execution;
9680 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
9681 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
9682 remote_ops.to_magic = OPS_MAGIC;
9683 remote_ops.to_memory_map = remote_memory_map;
9684 remote_ops.to_flash_erase = remote_flash_erase;
9685 remote_ops.to_flash_done = remote_flash_done;
9686 remote_ops.to_read_description = remote_read_description;
9687 remote_ops.to_search_memory = remote_search_memory;
9688 remote_ops.to_can_async_p = remote_can_async_p;
9689 remote_ops.to_is_async_p = remote_is_async_p;
9690 remote_ops.to_async = remote_async;
9691 remote_ops.to_async_mask = remote_async_mask;
9692 remote_ops.to_terminal_inferior = remote_terminal_inferior;
9693 remote_ops.to_terminal_ours = remote_terminal_ours;
9694 remote_ops.to_supports_non_stop = remote_supports_non_stop;
9695 remote_ops.to_supports_multi_process = remote_supports_multi_process;
9696 remote_ops.to_trace_init = remote_trace_init;
9697 remote_ops.to_download_tracepoint = remote_download_tracepoint;
9698 remote_ops.to_download_trace_state_variable = remote_download_trace_state_variable;
9699 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
9700 remote_ops.to_trace_start = remote_trace_start;
9701 remote_ops.to_get_trace_status = remote_get_trace_status;
9702 remote_ops.to_trace_stop = remote_trace_stop;
9703 remote_ops.to_trace_find = remote_trace_find;
9704 remote_ops.to_get_trace_state_variable_value = remote_get_trace_state_variable_value;
9705 remote_ops.to_save_trace_data = remote_save_trace_data;
9706 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
9707 remote_ops.to_upload_trace_state_variables = remote_upload_trace_state_variables;
9708 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
9709 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
9710 remote_ops.to_core_of_thread = remote_core_of_thread;
9711 }
9712
9713 /* Set up the extended remote vector by making a copy of the standard
9714 remote vector and adding to it. */
9715
9716 static void
9717 init_extended_remote_ops (void)
9718 {
9719 extended_remote_ops = remote_ops;
9720
9721 extended_remote_ops.to_shortname = "extended-remote";
9722 extended_remote_ops.to_longname =
9723 "Extended remote serial target in gdb-specific protocol";
9724 extended_remote_ops.to_doc =
9725 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9726 Specify the serial device it is connected to (e.g. /dev/ttya).";
9727 extended_remote_ops.to_open = extended_remote_open;
9728 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
9729 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
9730 extended_remote_ops.to_detach = extended_remote_detach;
9731 extended_remote_ops.to_attach = extended_remote_attach;
9732 extended_remote_ops.to_kill = extended_remote_kill;
9733 }
9734
9735 static int
9736 remote_can_async_p (void)
9737 {
9738 if (!target_async_permitted)
9739 /* We only enable async when the user specifically asks for it. */
9740 return 0;
9741
9742 /* We're async whenever the serial device is. */
9743 return remote_async_mask_value && serial_can_async_p (remote_desc);
9744 }
9745
9746 static int
9747 remote_is_async_p (void)
9748 {
9749 if (!target_async_permitted)
9750 /* We only enable async when the user specifically asks for it. */
9751 return 0;
9752
9753 /* We're async whenever the serial device is. */
9754 return remote_async_mask_value && serial_is_async_p (remote_desc);
9755 }
9756
9757 /* Pass the SERIAL event on and up to the client. One day this code
9758 will be able to delay notifying the client of an event until the
9759 point where an entire packet has been received. */
9760
9761 static void (*async_client_callback) (enum inferior_event_type event_type,
9762 void *context);
9763 static void *async_client_context;
9764 static serial_event_ftype remote_async_serial_handler;
9765
9766 static void
9767 remote_async_serial_handler (struct serial *scb, void *context)
9768 {
9769 /* Don't propogate error information up to the client. Instead let
9770 the client find out about the error by querying the target. */
9771 async_client_callback (INF_REG_EVENT, async_client_context);
9772 }
9773
9774 static void
9775 remote_async_inferior_event_handler (gdb_client_data data)
9776 {
9777 inferior_event_handler (INF_REG_EVENT, NULL);
9778 }
9779
9780 static void
9781 remote_async_get_pending_events_handler (gdb_client_data data)
9782 {
9783 remote_get_pending_stop_replies ();
9784 }
9785
9786 static void
9787 remote_async (void (*callback) (enum inferior_event_type event_type,
9788 void *context), void *context)
9789 {
9790 if (remote_async_mask_value == 0)
9791 internal_error (__FILE__, __LINE__,
9792 _("Calling remote_async when async is masked"));
9793
9794 if (callback != NULL)
9795 {
9796 serial_async (remote_desc, remote_async_serial_handler, NULL);
9797 async_client_callback = callback;
9798 async_client_context = context;
9799 }
9800 else
9801 serial_async (remote_desc, NULL, NULL);
9802 }
9803
9804 static int
9805 remote_async_mask (int new_mask)
9806 {
9807 int curr_mask = remote_async_mask_value;
9808 remote_async_mask_value = new_mask;
9809 return curr_mask;
9810 }
9811
9812 static void
9813 set_remote_cmd (char *args, int from_tty)
9814 {
9815 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
9816 }
9817
9818 static void
9819 show_remote_cmd (char *args, int from_tty)
9820 {
9821 /* We can't just use cmd_show_list here, because we want to skip
9822 the redundant "show remote Z-packet" and the legacy aliases. */
9823 struct cleanup *showlist_chain;
9824 struct cmd_list_element *list = remote_show_cmdlist;
9825
9826 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
9827 for (; list != NULL; list = list->next)
9828 if (strcmp (list->name, "Z-packet") == 0)
9829 continue;
9830 else if (list->type == not_set_cmd)
9831 /* Alias commands are exactly like the original, except they
9832 don't have the normal type. */
9833 continue;
9834 else
9835 {
9836 struct cleanup *option_chain
9837 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
9838 ui_out_field_string (uiout, "name", list->name);
9839 ui_out_text (uiout, ": ");
9840 if (list->type == show_cmd)
9841 do_setshow_command ((char *) NULL, from_tty, list);
9842 else
9843 cmd_func (list, NULL, from_tty);
9844 /* Close the tuple. */
9845 do_cleanups (option_chain);
9846 }
9847
9848 /* Close the tuple. */
9849 do_cleanups (showlist_chain);
9850 }
9851
9852
9853 /* Function to be called whenever a new objfile (shlib) is detected. */
9854 static void
9855 remote_new_objfile (struct objfile *objfile)
9856 {
9857 if (remote_desc != 0) /* Have a remote connection. */
9858 remote_check_symbols (objfile);
9859 }
9860
9861 /* Pull all the tracepoints defined on the target and create local
9862 data structures representing them. We don't want to create real
9863 tracepoints yet, we don't want to mess up the user's existing
9864 collection. */
9865
9866 static int
9867 remote_upload_tracepoints (struct uploaded_tp **utpp)
9868 {
9869 struct remote_state *rs = get_remote_state ();
9870 char *p;
9871
9872 /* Ask for a first packet of tracepoint definition. */
9873 putpkt ("qTfP");
9874 getpkt (&rs->buf, &rs->buf_size, 0);
9875 p = rs->buf;
9876 while (*p && *p != 'l')
9877 {
9878 parse_tracepoint_definition (p, utpp);
9879 /* Ask for another packet of tracepoint definition. */
9880 putpkt ("qTsP");
9881 getpkt (&rs->buf, &rs->buf_size, 0);
9882 p = rs->buf;
9883 }
9884 return 0;
9885 }
9886
9887 static int
9888 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
9889 {
9890 struct remote_state *rs = get_remote_state ();
9891 char *p;
9892
9893 /* Ask for a first packet of variable definition. */
9894 putpkt ("qTfV");
9895 getpkt (&rs->buf, &rs->buf_size, 0);
9896 p = rs->buf;
9897 while (*p && *p != 'l')
9898 {
9899 parse_tsv_definition (p, utsvp);
9900 /* Ask for another packet of variable definition. */
9901 putpkt ("qTsV");
9902 getpkt (&rs->buf, &rs->buf_size, 0);
9903 p = rs->buf;
9904 }
9905 return 0;
9906 }
9907
9908 void
9909 _initialize_remote (void)
9910 {
9911 struct remote_state *rs;
9912 struct cmd_list_element *cmd;
9913 char *cmd_name;
9914
9915 /* architecture specific data */
9916 remote_gdbarch_data_handle =
9917 gdbarch_data_register_post_init (init_remote_state);
9918 remote_g_packet_data_handle =
9919 gdbarch_data_register_pre_init (remote_g_packet_data_init);
9920
9921 /* Initialize the per-target state. At the moment there is only one
9922 of these, not one per target. Only one target is active at a
9923 time. The default buffer size is unimportant; it will be expanded
9924 whenever a larger buffer is needed. */
9925 rs = get_remote_state_raw ();
9926 rs->buf_size = 400;
9927 rs->buf = xmalloc (rs->buf_size);
9928
9929 init_remote_ops ();
9930 add_target (&remote_ops);
9931
9932 init_extended_remote_ops ();
9933 add_target (&extended_remote_ops);
9934
9935 /* Hook into new objfile notification. */
9936 observer_attach_new_objfile (remote_new_objfile);
9937
9938 /* Set up signal handlers. */
9939 sigint_remote_token =
9940 create_async_signal_handler (async_remote_interrupt, NULL);
9941 sigint_remote_twice_token =
9942 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9943
9944 #if 0
9945 init_remote_threadtests ();
9946 #endif
9947
9948 /* set/show remote ... */
9949
9950 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9951 Remote protocol specific variables\n\
9952 Configure various remote-protocol specific variables such as\n\
9953 the packets being used"),
9954 &remote_set_cmdlist, "set remote ",
9955 0 /* allow-unknown */, &setlist);
9956 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9957 Remote protocol specific variables\n\
9958 Configure various remote-protocol specific variables such as\n\
9959 the packets being used"),
9960 &remote_show_cmdlist, "show remote ",
9961 0 /* allow-unknown */, &showlist);
9962
9963 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9964 Compare section data on target to the exec file.\n\
9965 Argument is a single section name (default: all loaded sections)."),
9966 &cmdlist);
9967
9968 add_cmd ("packet", class_maintenance, packet_command, _("\
9969 Send an arbitrary packet to a remote target.\n\
9970 maintenance packet TEXT\n\
9971 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9972 this command sends the string TEXT to the inferior, and displays the\n\
9973 response packet. GDB supplies the initial `$' character, and the\n\
9974 terminating `#' character and checksum."),
9975 &maintenancelist);
9976
9977 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9978 Set whether to send break if interrupted."), _("\
9979 Show whether to send break if interrupted."), _("\
9980 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9981 set_remotebreak, show_remotebreak,
9982 &setlist, &showlist);
9983 cmd_name = "remotebreak";
9984 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
9985 deprecate_cmd (cmd, "set remote interrupt-sequence");
9986 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
9987 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
9988 deprecate_cmd (cmd, "show remote interrupt-sequence");
9989
9990 add_setshow_enum_cmd ("interrupt-sequence", class_support,
9991 interrupt_sequence_modes, &interrupt_sequence_mode, _("\
9992 Set interrupt sequence to remote target."), _("\
9993 Show interrupt sequence to remote target."), _("\
9994 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
9995 NULL, show_interrupt_sequence,
9996 &remote_set_cmdlist,
9997 &remote_show_cmdlist);
9998
9999 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10000 &interrupt_on_connect, _("\
10001 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10002 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10003 If set, interrupt sequence is sent to remote target."),
10004 NULL, NULL,
10005 &remote_set_cmdlist, &remote_show_cmdlist);
10006
10007 /* Install commands for configuring memory read/write packets. */
10008
10009 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10010 Set the maximum number of bytes per memory write packet (deprecated)."),
10011 &setlist);
10012 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10013 Show the maximum number of bytes per memory write packet (deprecated)."),
10014 &showlist);
10015 add_cmd ("memory-write-packet-size", no_class,
10016 set_memory_write_packet_size, _("\
10017 Set the maximum number of bytes per memory-write packet.\n\
10018 Specify the number of bytes in a packet or 0 (zero) for the\n\
10019 default packet size. The actual limit is further reduced\n\
10020 dependent on the target. Specify ``fixed'' to disable the\n\
10021 further restriction and ``limit'' to enable that restriction."),
10022 &remote_set_cmdlist);
10023 add_cmd ("memory-read-packet-size", no_class,
10024 set_memory_read_packet_size, _("\
10025 Set the maximum number of bytes per memory-read packet.\n\
10026 Specify the number of bytes in a packet or 0 (zero) for the\n\
10027 default packet size. The actual limit is further reduced\n\
10028 dependent on the target. Specify ``fixed'' to disable the\n\
10029 further restriction and ``limit'' to enable that restriction."),
10030 &remote_set_cmdlist);
10031 add_cmd ("memory-write-packet-size", no_class,
10032 show_memory_write_packet_size,
10033 _("Show the maximum number of bytes per memory-write packet."),
10034 &remote_show_cmdlist);
10035 add_cmd ("memory-read-packet-size", no_class,
10036 show_memory_read_packet_size,
10037 _("Show the maximum number of bytes per memory-read packet."),
10038 &remote_show_cmdlist);
10039
10040 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10041 &remote_hw_watchpoint_limit, _("\
10042 Set the maximum number of target hardware watchpoints."), _("\
10043 Show the maximum number of target hardware watchpoints."), _("\
10044 Specify a negative limit for unlimited."),
10045 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
10046 &remote_set_cmdlist, &remote_show_cmdlist);
10047 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10048 &remote_hw_breakpoint_limit, _("\
10049 Set the maximum number of target hardware breakpoints."), _("\
10050 Show the maximum number of target hardware breakpoints."), _("\
10051 Specify a negative limit for unlimited."),
10052 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
10053 &remote_set_cmdlist, &remote_show_cmdlist);
10054
10055 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10056 &remote_address_size, _("\
10057 Set the maximum size of the address (in bits) in a memory packet."), _("\
10058 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10059 NULL,
10060 NULL, /* FIXME: i18n: */
10061 &setlist, &showlist);
10062
10063 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10064 "X", "binary-download", 1);
10065
10066 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10067 "vCont", "verbose-resume", 0);
10068
10069 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10070 "QPassSignals", "pass-signals", 0);
10071
10072 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10073 "qSymbol", "symbol-lookup", 0);
10074
10075 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10076 "P", "set-register", 1);
10077
10078 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10079 "p", "fetch-register", 1);
10080
10081 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10082 "Z0", "software-breakpoint", 0);
10083
10084 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10085 "Z1", "hardware-breakpoint", 0);
10086
10087 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10088 "Z2", "write-watchpoint", 0);
10089
10090 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10091 "Z3", "read-watchpoint", 0);
10092
10093 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10094 "Z4", "access-watchpoint", 0);
10095
10096 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10097 "qXfer:auxv:read", "read-aux-vector", 0);
10098
10099 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10100 "qXfer:features:read", "target-features", 0);
10101
10102 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10103 "qXfer:libraries:read", "library-info", 0);
10104
10105 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10106 "qXfer:memory-map:read", "memory-map", 0);
10107
10108 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10109 "qXfer:spu:read", "read-spu-object", 0);
10110
10111 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10112 "qXfer:spu:write", "write-spu-object", 0);
10113
10114 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10115 "qXfer:osdata:read", "osdata", 0);
10116
10117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10118 "qXfer:threads:read", "threads", 0);
10119
10120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10121 "qXfer:siginfo:read", "read-siginfo-object", 0);
10122
10123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10124 "qXfer:siginfo:write", "write-siginfo-object", 0);
10125
10126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10127 "qGetTLSAddr", "get-thread-local-storage-address",
10128 0);
10129
10130 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10131 "bc", "reverse-continue", 0);
10132
10133 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10134 "bs", "reverse-step", 0);
10135
10136 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10137 "qSupported", "supported-packets", 0);
10138
10139 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10140 "qSearch:memory", "search-memory", 0);
10141
10142 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10143 "vFile:open", "hostio-open", 0);
10144
10145 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10146 "vFile:pread", "hostio-pread", 0);
10147
10148 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10149 "vFile:pwrite", "hostio-pwrite", 0);
10150
10151 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10152 "vFile:close", "hostio-close", 0);
10153
10154 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10155 "vFile:unlink", "hostio-unlink", 0);
10156
10157 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10158 "vAttach", "attach", 0);
10159
10160 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10161 "vRun", "run", 0);
10162
10163 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10164 "QStartNoAckMode", "noack", 0);
10165
10166 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10167 "vKill", "kill", 0);
10168
10169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10170 "qAttached", "query-attached", 0);
10171
10172 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10173 "ConditionalTracepoints", "conditional-tracepoints", 0);
10174 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10175 "FastTracepoints", "fast-tracepoints", 0);
10176
10177 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10178 Z sub-packet has its own set and show commands, but users may
10179 have sets to this variable in their .gdbinit files (or in their
10180 documentation). */
10181 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10182 &remote_Z_packet_detect, _("\
10183 Set use of remote protocol `Z' packets"), _("\
10184 Show use of remote protocol `Z' packets "), _("\
10185 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10186 packets."),
10187 set_remote_protocol_Z_packet_cmd,
10188 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
10189 &remote_set_cmdlist, &remote_show_cmdlist);
10190
10191 add_prefix_cmd ("remote", class_files, remote_command, _("\
10192 Manipulate files on the remote system\n\
10193 Transfer files to and from the remote target system."),
10194 &remote_cmdlist, "remote ",
10195 0 /* allow-unknown */, &cmdlist);
10196
10197 add_cmd ("put", class_files, remote_put_command,
10198 _("Copy a local file to the remote system."),
10199 &remote_cmdlist);
10200
10201 add_cmd ("get", class_files, remote_get_command,
10202 _("Copy a remote file to the local system."),
10203 &remote_cmdlist);
10204
10205 add_cmd ("delete", class_files, remote_delete_command,
10206 _("Delete a remote file."),
10207 &remote_cmdlist);
10208
10209 remote_exec_file = xstrdup ("");
10210 add_setshow_string_noescape_cmd ("exec-file", class_files,
10211 &remote_exec_file, _("\
10212 Set the remote pathname for \"run\""), _("\
10213 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10214 &remote_set_cmdlist, &remote_show_cmdlist);
10215
10216 /* Eventually initialize fileio. See fileio.c */
10217 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10218
10219 /* Take advantage of the fact that the LWP field is not used, to tag
10220 special ptids with it set to != 0. */
10221 magic_null_ptid = ptid_build (42000, 1, -1);
10222 not_sent_ptid = ptid_build (42000, 1, -2);
10223 any_thread_ptid = ptid_build (42000, 1, 0);
10224
10225 target_buf_size = 2048;
10226 target_buf = xmalloc (target_buf_size);
10227 }
This page took 0.26316 seconds and 4 git commands to generate.