Introduce and use flush_streams
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281 /* Whether vCont support was probed already. This is a workaround
282 until packet_support is per-connection. */
283 bool supports_vCont_probed;
284
285 /* True if the user has pressed Ctrl-C, but the target hasn't
286 responded to that. */
287 bool ctrlc_pending_p = false;
288
289 /* True if we saw a Ctrl-C while reading or writing from/to the
290 remote descriptor. At that point it is not safe to send a remote
291 interrupt packet, so we instead remember we saw the Ctrl-C and
292 process it once we're done with sending/receiving the current
293 packet, which should be shortly. If however that takes too long,
294 and the user presses Ctrl-C again, we offer to disconnect. */
295 bool got_ctrlc_during_io = false;
296
297 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
298 remote_open knows that we don't have a file open when the program
299 starts. */
300 struct serial *remote_desc = nullptr;
301
302 /* These are the threads which we last sent to the remote system. The
303 TID member will be -1 for all or -2 for not sent yet. */
304 ptid_t general_thread = null_ptid;
305 ptid_t continue_thread = null_ptid;
306
307 /* This is the traceframe which we last selected on the remote system.
308 It will be -1 if no traceframe is selected. */
309 int remote_traceframe_number = -1;
310
311 char *last_pass_packet = nullptr;
312
313 /* The last QProgramSignals packet sent to the target. We bypass
314 sending a new program signals list down to the target if the new
315 packet is exactly the same as the last we sent. IOW, we only let
316 the target know about program signals list changes. */
317 char *last_program_signals_packet = nullptr;
318
319 gdb_signal last_sent_signal = GDB_SIGNAL_0;
320
321 bool last_sent_step = false;
322
323 /* The execution direction of the last resume we got. */
324 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
325
326 char *finished_object = nullptr;
327 char *finished_annex = nullptr;
328 ULONGEST finished_offset = 0;
329
330 /* Should we try the 'ThreadInfo' query packet?
331
332 This variable (NOT available to the user: auto-detect only!)
333 determines whether GDB will use the new, simpler "ThreadInfo"
334 query or the older, more complex syntax for thread queries.
335 This is an auto-detect variable (set to true at each connect,
336 and set to false when the target fails to recognize it). */
337 bool use_threadinfo_query = false;
338 bool use_threadextra_query = false;
339
340 threadref echo_nextthread {};
341 threadref nextthread {};
342 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
343
344 /* The state of remote notification. */
345 struct remote_notif_state *notif_state = nullptr;
346
347 /* The branch trace configuration. */
348 struct btrace_config btrace_config {};
349
350 /* The argument to the last "vFile:setfs:" packet we sent, used
351 to avoid sending repeated unnecessary "vFile:setfs:" packets.
352 Initialized to -1 to indicate that no "vFile:setfs:" packet
353 has yet been sent. */
354 int fs_pid = -1;
355
356 /* A readahead cache for vFile:pread. Often, reading a binary
357 involves a sequence of small reads. E.g., when parsing an ELF
358 file. A readahead cache helps mostly the case of remote
359 debugging on a connection with higher latency, due to the
360 request/reply nature of the RSP. We only cache data for a single
361 file descriptor at a time. */
362 struct readahead_cache readahead_cache;
363
364 /* The list of already fetched and acknowledged stop events. This
365 queue is used for notification Stop, and other notifications
366 don't need queue for their events, because the notification
367 events of Stop can't be consumed immediately, so that events
368 should be queued first, and be consumed by remote_wait_{ns,as}
369 one per time. Other notifications can consume their events
370 immediately, so queue is not needed for them. */
371 std::vector<stop_reply_up> stop_reply_queue;
372
373 /* Asynchronous signal handle registered as event loop source for
374 when we have pending events ready to be passed to the core. */
375 struct async_event_handler *remote_async_inferior_event_token = nullptr;
376
377 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
378 ``forever'' still use the normal timeout mechanism. This is
379 currently used by the ASYNC code to guarentee that target reads
380 during the initial connect always time-out. Once getpkt has been
381 modified to return a timeout indication and, in turn
382 remote_wait()/wait_for_inferior() have gained a timeout parameter
383 this can go away. */
384 int wait_forever_enabled_p = 1;
385
386 private:
387 /* Mapping of remote protocol data for each gdbarch. Usually there
388 is only one entry here, though we may see more with stubs that
389 support multi-process. */
390 std::unordered_map<struct gdbarch *, remote_arch_state>
391 m_arch_states;
392 };
393
394 static const target_info remote_target_info = {
395 "remote",
396 N_("Remote serial target in gdb-specific protocol"),
397 remote_doc
398 };
399
400 class remote_target : public process_stratum_target
401 {
402 public:
403 remote_target () = default;
404 ~remote_target () override;
405
406 const target_info &info () const override
407 { return remote_target_info; }
408
409 const char *connection_string () override;
410
411 thread_control_capabilities get_thread_control_capabilities () override
412 { return tc_schedlock; }
413
414 /* Open a remote connection. */
415 static void open (const char *, int);
416
417 void close () override;
418
419 void detach (inferior *, int) override;
420 void disconnect (const char *, int) override;
421
422 void commit_resume () override;
423 void resume (ptid_t, int, enum gdb_signal) override;
424 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
425
426 void fetch_registers (struct regcache *, int) override;
427 void store_registers (struct regcache *, int) override;
428 void prepare_to_store (struct regcache *) override;
429
430 void files_info () override;
431
432 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
433
434 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
435 enum remove_bp_reason) override;
436
437
438 bool stopped_by_sw_breakpoint () override;
439 bool supports_stopped_by_sw_breakpoint () override;
440
441 bool stopped_by_hw_breakpoint () override;
442
443 bool supports_stopped_by_hw_breakpoint () override;
444
445 bool stopped_by_watchpoint () override;
446
447 bool stopped_data_address (CORE_ADDR *) override;
448
449 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
450
451 int can_use_hw_breakpoint (enum bptype, int, int) override;
452
453 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
454
455 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
456
457 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
458
459 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
460 struct expression *) override;
461
462 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
463 struct expression *) override;
464
465 void kill () override;
466
467 void load (const char *, int) override;
468
469 void mourn_inferior () override;
470
471 void pass_signals (gdb::array_view<const unsigned char>) override;
472
473 int set_syscall_catchpoint (int, bool, int,
474 gdb::array_view<const int>) override;
475
476 void program_signals (gdb::array_view<const unsigned char>) override;
477
478 bool thread_alive (ptid_t ptid) override;
479
480 const char *thread_name (struct thread_info *) override;
481
482 void update_thread_list () override;
483
484 std::string pid_to_str (ptid_t) override;
485
486 const char *extra_thread_info (struct thread_info *) override;
487
488 ptid_t get_ada_task_ptid (long lwp, long thread) override;
489
490 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
491 int handle_len,
492 inferior *inf) override;
493
494 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
495 override;
496
497 void stop (ptid_t) override;
498
499 void interrupt () override;
500
501 void pass_ctrlc () override;
502
503 enum target_xfer_status xfer_partial (enum target_object object,
504 const char *annex,
505 gdb_byte *readbuf,
506 const gdb_byte *writebuf,
507 ULONGEST offset, ULONGEST len,
508 ULONGEST *xfered_len) override;
509
510 ULONGEST get_memory_xfer_limit () override;
511
512 void rcmd (const char *command, struct ui_file *output) override;
513
514 char *pid_to_exec_file (int pid) override;
515
516 void log_command (const char *cmd) override
517 {
518 serial_log_command (this, cmd);
519 }
520
521 CORE_ADDR get_thread_local_address (ptid_t ptid,
522 CORE_ADDR load_module_addr,
523 CORE_ADDR offset) override;
524
525 bool can_execute_reverse () override;
526
527 std::vector<mem_region> memory_map () override;
528
529 void flash_erase (ULONGEST address, LONGEST length) override;
530
531 void flash_done () override;
532
533 const struct target_desc *read_description () override;
534
535 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
536 const gdb_byte *pattern, ULONGEST pattern_len,
537 CORE_ADDR *found_addrp) override;
538
539 bool can_async_p () override;
540
541 bool is_async_p () override;
542
543 void async (int) override;
544
545 int async_wait_fd () override;
546
547 void thread_events (int) override;
548
549 int can_do_single_step () override;
550
551 void terminal_inferior () override;
552
553 void terminal_ours () override;
554
555 bool supports_non_stop () override;
556
557 bool supports_multi_process () override;
558
559 bool supports_disable_randomization () override;
560
561 bool filesystem_is_local () override;
562
563
564 int fileio_open (struct inferior *inf, const char *filename,
565 int flags, int mode, int warn_if_slow,
566 int *target_errno) override;
567
568 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
569 ULONGEST offset, int *target_errno) override;
570
571 int fileio_pread (int fd, gdb_byte *read_buf, int len,
572 ULONGEST offset, int *target_errno) override;
573
574 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
575
576 int fileio_close (int fd, int *target_errno) override;
577
578 int fileio_unlink (struct inferior *inf,
579 const char *filename,
580 int *target_errno) override;
581
582 gdb::optional<std::string>
583 fileio_readlink (struct inferior *inf,
584 const char *filename,
585 int *target_errno) override;
586
587 bool supports_enable_disable_tracepoint () override;
588
589 bool supports_string_tracing () override;
590
591 bool supports_evaluation_of_breakpoint_conditions () override;
592
593 bool can_run_breakpoint_commands () override;
594
595 void trace_init () override;
596
597 void download_tracepoint (struct bp_location *location) override;
598
599 bool can_download_tracepoint () override;
600
601 void download_trace_state_variable (const trace_state_variable &tsv) override;
602
603 void enable_tracepoint (struct bp_location *location) override;
604
605 void disable_tracepoint (struct bp_location *location) override;
606
607 void trace_set_readonly_regions () override;
608
609 void trace_start () override;
610
611 int get_trace_status (struct trace_status *ts) override;
612
613 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
614 override;
615
616 void trace_stop () override;
617
618 int trace_find (enum trace_find_type type, int num,
619 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
620
621 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
622
623 int save_trace_data (const char *filename) override;
624
625 int upload_tracepoints (struct uploaded_tp **utpp) override;
626
627 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
628
629 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
630
631 int get_min_fast_tracepoint_insn_len () override;
632
633 void set_disconnected_tracing (int val) override;
634
635 void set_circular_trace_buffer (int val) override;
636
637 void set_trace_buffer_size (LONGEST val) override;
638
639 bool set_trace_notes (const char *user, const char *notes,
640 const char *stopnotes) override;
641
642 int core_of_thread (ptid_t ptid) override;
643
644 int verify_memory (const gdb_byte *data,
645 CORE_ADDR memaddr, ULONGEST size) override;
646
647
648 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
649
650 void set_permissions () override;
651
652 bool static_tracepoint_marker_at (CORE_ADDR,
653 struct static_tracepoint_marker *marker)
654 override;
655
656 std::vector<static_tracepoint_marker>
657 static_tracepoint_markers_by_strid (const char *id) override;
658
659 traceframe_info_up traceframe_info () override;
660
661 bool use_agent (bool use) override;
662 bool can_use_agent () override;
663
664 struct btrace_target_info *enable_btrace (ptid_t ptid,
665 const struct btrace_config *conf) override;
666
667 void disable_btrace (struct btrace_target_info *tinfo) override;
668
669 void teardown_btrace (struct btrace_target_info *tinfo) override;
670
671 enum btrace_error read_btrace (struct btrace_data *data,
672 struct btrace_target_info *btinfo,
673 enum btrace_read_type type) override;
674
675 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
676 bool augmented_libraries_svr4_read () override;
677 bool follow_fork (bool, bool) override;
678 void follow_exec (struct inferior *, const char *) override;
679 int insert_fork_catchpoint (int) override;
680 int remove_fork_catchpoint (int) override;
681 int insert_vfork_catchpoint (int) override;
682 int remove_vfork_catchpoint (int) override;
683 int insert_exec_catchpoint (int) override;
684 int remove_exec_catchpoint (int) override;
685 enum exec_direction_kind execution_direction () override;
686
687 public: /* Remote specific methods. */
688
689 void remote_download_command_source (int num, ULONGEST addr,
690 struct command_line *cmds);
691
692 void remote_file_put (const char *local_file, const char *remote_file,
693 int from_tty);
694 void remote_file_get (const char *remote_file, const char *local_file,
695 int from_tty);
696 void remote_file_delete (const char *remote_file, int from_tty);
697
698 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
699 ULONGEST offset, int *remote_errno);
700 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
703 ULONGEST offset, int *remote_errno);
704
705 int remote_hostio_send_command (int command_bytes, int which_packet,
706 int *remote_errno, char **attachment,
707 int *attachment_len);
708 int remote_hostio_set_filesystem (struct inferior *inf,
709 int *remote_errno);
710 /* We should get rid of this and use fileio_open directly. */
711 int remote_hostio_open (struct inferior *inf, const char *filename,
712 int flags, int mode, int warn_if_slow,
713 int *remote_errno);
714 int remote_hostio_close (int fd, int *remote_errno);
715
716 int remote_hostio_unlink (inferior *inf, const char *filename,
717 int *remote_errno);
718
719 struct remote_state *get_remote_state ();
720
721 long get_remote_packet_size (void);
722 long get_memory_packet_size (struct memory_packet_config *config);
723
724 long get_memory_write_packet_size ();
725 long get_memory_read_packet_size ();
726
727 char *append_pending_thread_resumptions (char *p, char *endp,
728 ptid_t ptid);
729 static void open_1 (const char *name, int from_tty, int extended_p);
730 void start_remote (int from_tty, int extended_p);
731 void remote_detach_1 (struct inferior *inf, int from_tty);
732
733 char *append_resumption (char *p, char *endp,
734 ptid_t ptid, int step, gdb_signal siggnal);
735 int remote_resume_with_vcont (ptid_t ptid, int step,
736 gdb_signal siggnal);
737
738 void add_current_inferior_and_thread (char *wait_status);
739
740 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
741 int options);
742 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
743 int options);
744
745 ptid_t process_stop_reply (struct stop_reply *stop_reply,
746 target_waitstatus *status);
747
748 void remote_notice_new_inferior (ptid_t currthread, int executing);
749
750 void process_initial_stop_replies (int from_tty);
751
752 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
753
754 void btrace_sync_conf (const btrace_config *conf);
755
756 void remote_btrace_maybe_reopen ();
757
758 void remove_new_fork_children (threads_listing_context *context);
759 void kill_new_fork_children (int pid);
760 void discard_pending_stop_replies (struct inferior *inf);
761 int stop_reply_queue_length ();
762
763 void check_pending_events_prevent_wildcard_vcont
764 (int *may_global_wildcard_vcont);
765
766 void discard_pending_stop_replies_in_queue ();
767 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
768 struct stop_reply *queued_stop_reply (ptid_t ptid);
769 int peek_stop_reply (ptid_t ptid);
770 void remote_parse_stop_reply (const char *buf, stop_reply *event);
771
772 void remote_stop_ns (ptid_t ptid);
773 void remote_interrupt_as ();
774 void remote_interrupt_ns ();
775
776 char *remote_get_noisy_reply ();
777 int remote_query_attached (int pid);
778 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
779 int try_open_exec);
780
781 ptid_t remote_current_thread (ptid_t oldpid);
782 ptid_t get_current_thread (char *wait_status);
783
784 void set_thread (ptid_t ptid, int gen);
785 void set_general_thread (ptid_t ptid);
786 void set_continue_thread (ptid_t ptid);
787 void set_general_process ();
788
789 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
790
791 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
792 gdb_ext_thread_info *info);
793 int remote_get_threadinfo (threadref *threadid, int fieldset,
794 gdb_ext_thread_info *info);
795
796 int parse_threadlist_response (char *pkt, int result_limit,
797 threadref *original_echo,
798 threadref *resultlist,
799 int *doneflag);
800 int remote_get_threadlist (int startflag, threadref *nextthread,
801 int result_limit, int *done, int *result_count,
802 threadref *threadlist);
803
804 int remote_threadlist_iterator (rmt_thread_action stepfunction,
805 void *context, int looplimit);
806
807 int remote_get_threads_with_ql (threads_listing_context *context);
808 int remote_get_threads_with_qxfer (threads_listing_context *context);
809 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
810
811 void extended_remote_restart ();
812
813 void get_offsets ();
814
815 void remote_check_symbols ();
816
817 void remote_supported_packet (const struct protocol_feature *feature,
818 enum packet_support support,
819 const char *argument);
820
821 void remote_query_supported ();
822
823 void remote_packet_size (const protocol_feature *feature,
824 packet_support support, const char *value);
825
826 void remote_serial_quit_handler ();
827
828 void remote_detach_pid (int pid);
829
830 void remote_vcont_probe ();
831
832 void remote_resume_with_hc (ptid_t ptid, int step,
833 gdb_signal siggnal);
834
835 void send_interrupt_sequence ();
836 void interrupt_query ();
837
838 void remote_notif_get_pending_events (notif_client *nc);
839
840 int fetch_register_using_p (struct regcache *regcache,
841 packet_reg *reg);
842 int send_g_packet ();
843 void process_g_packet (struct regcache *regcache);
844 void fetch_registers_using_g (struct regcache *regcache);
845 int store_register_using_P (const struct regcache *regcache,
846 packet_reg *reg);
847 void store_registers_using_G (const struct regcache *regcache);
848
849 void set_remote_traceframe ();
850
851 void check_binary_download (CORE_ADDR addr);
852
853 target_xfer_status remote_write_bytes_aux (const char *header,
854 CORE_ADDR memaddr,
855 const gdb_byte *myaddr,
856 ULONGEST len_units,
857 int unit_size,
858 ULONGEST *xfered_len_units,
859 char packet_format,
860 int use_length);
861
862 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
863 const gdb_byte *myaddr, ULONGEST len,
864 int unit_size, ULONGEST *xfered_len);
865
866 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
867 ULONGEST len_units,
868 int unit_size, ULONGEST *xfered_len_units);
869
870 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
871 ULONGEST memaddr,
872 ULONGEST len,
873 int unit_size,
874 ULONGEST *xfered_len);
875
876 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
877 gdb_byte *myaddr, ULONGEST len,
878 int unit_size,
879 ULONGEST *xfered_len);
880
881 packet_result remote_send_printf (const char *format, ...)
882 ATTRIBUTE_PRINTF (2, 3);
883
884 target_xfer_status remote_flash_write (ULONGEST address,
885 ULONGEST length, ULONGEST *xfered_len,
886 const gdb_byte *data);
887
888 int readchar (int timeout);
889
890 void remote_serial_write (const char *str, int len);
891
892 int putpkt (const char *buf);
893 int putpkt_binary (const char *buf, int cnt);
894
895 int putpkt (const gdb::char_vector &buf)
896 {
897 return putpkt (buf.data ());
898 }
899
900 void skip_frame ();
901 long read_frame (gdb::char_vector *buf_p);
902 void getpkt (gdb::char_vector *buf, int forever);
903 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
904 int expecting_notif, int *is_notif);
905 int getpkt_sane (gdb::char_vector *buf, int forever);
906 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
907 int *is_notif);
908 int remote_vkill (int pid);
909 void remote_kill_k ();
910
911 void extended_remote_disable_randomization (int val);
912 int extended_remote_run (const std::string &args);
913
914 void send_environment_packet (const char *action,
915 const char *packet,
916 const char *value);
917
918 void extended_remote_environment_support ();
919 void extended_remote_set_inferior_cwd ();
920
921 target_xfer_status remote_write_qxfer (const char *object_name,
922 const char *annex,
923 const gdb_byte *writebuf,
924 ULONGEST offset, LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 target_xfer_status remote_read_qxfer (const char *object_name,
929 const char *annex,
930 gdb_byte *readbuf, ULONGEST offset,
931 LONGEST len,
932 ULONGEST *xfered_len,
933 struct packet_config *packet);
934
935 void push_stop_reply (struct stop_reply *new_event);
936
937 bool vcont_r_supported ();
938
939 void packet_command (const char *args, int from_tty);
940
941 private: /* data fields */
942
943 /* The remote state. Don't reference this directly. Use the
944 get_remote_state method instead. */
945 remote_state m_remote_state;
946 };
947
948 static const target_info extended_remote_target_info = {
949 "extended-remote",
950 N_("Extended remote serial target in gdb-specific protocol"),
951 remote_doc
952 };
953
954 /* Set up the extended remote target by extending the standard remote
955 target and adding to it. */
956
957 class extended_remote_target final : public remote_target
958 {
959 public:
960 const target_info &info () const override
961 { return extended_remote_target_info; }
962
963 /* Open an extended-remote connection. */
964 static void open (const char *, int);
965
966 bool can_create_inferior () override { return true; }
967 void create_inferior (const char *, const std::string &,
968 char **, int) override;
969
970 void detach (inferior *, int) override;
971
972 bool can_attach () override { return true; }
973 void attach (const char *, int) override;
974
975 void post_attach (int) override;
976 bool supports_disable_randomization () override;
977 };
978
979 /* Per-program-space data key. */
980 static const struct program_space_key<char, gdb::xfree_deleter<char>>
981 remote_pspace_data;
982
983 /* The variable registered as the control variable used by the
984 remote exec-file commands. While the remote exec-file setting is
985 per-program-space, the set/show machinery uses this as the
986 location of the remote exec-file value. */
987 static char *remote_exec_file_var;
988
989 /* The size to align memory write packets, when practical. The protocol
990 does not guarantee any alignment, and gdb will generate short
991 writes and unaligned writes, but even as a best-effort attempt this
992 can improve bulk transfers. For instance, if a write is misaligned
993 relative to the target's data bus, the stub may need to make an extra
994 round trip fetching data from the target. This doesn't make a
995 huge difference, but it's easy to do, so we try to be helpful.
996
997 The alignment chosen is arbitrary; usually data bus width is
998 important here, not the possibly larger cache line size. */
999 enum { REMOTE_ALIGN_WRITES = 16 };
1000
1001 /* Prototypes for local functions. */
1002
1003 static int hexnumlen (ULONGEST num);
1004
1005 static int stubhex (int ch);
1006
1007 static int hexnumstr (char *, ULONGEST);
1008
1009 static int hexnumnstr (char *, ULONGEST, int);
1010
1011 static CORE_ADDR remote_address_masked (CORE_ADDR);
1012
1013 static void print_packet (const char *);
1014
1015 static int stub_unpack_int (char *buff, int fieldlength);
1016
1017 struct packet_config;
1018
1019 static void show_packet_config_cmd (struct packet_config *config);
1020
1021 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1022 int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value);
1025
1026 static ptid_t read_ptid (const char *buf, const char **obuf);
1027
1028 static void remote_async_inferior_event_handler (gdb_client_data);
1029
1030 static bool remote_read_description_p (struct target_ops *target);
1031
1032 static void remote_console_output (const char *msg);
1033
1034 static void remote_btrace_reset (remote_state *rs);
1035
1036 static void remote_unpush_and_throw (remote_target *target);
1037
1038 /* For "remote". */
1039
1040 static struct cmd_list_element *remote_cmdlist;
1041
1042 /* For "set remote" and "show remote". */
1043
1044 static struct cmd_list_element *remote_set_cmdlist;
1045 static struct cmd_list_element *remote_show_cmdlist;
1046
1047 /* Controls whether GDB is willing to use range stepping. */
1048
1049 static bool use_range_stepping = true;
1050
1051 /* Private data that we'll store in (struct thread_info)->priv. */
1052 struct remote_thread_info : public private_thread_info
1053 {
1054 std::string extra;
1055 std::string name;
1056 int core = -1;
1057
1058 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1059 sequence of bytes. */
1060 gdb::byte_vector thread_handle;
1061
1062 /* Whether the target stopped for a breakpoint/watchpoint. */
1063 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1064
1065 /* This is set to the data address of the access causing the target
1066 to stop for a watchpoint. */
1067 CORE_ADDR watch_data_address = 0;
1068
1069 /* Fields used by the vCont action coalescing implemented in
1070 remote_resume / remote_commit_resume. remote_resume stores each
1071 thread's last resume request in these fields, so that a later
1072 remote_commit_resume knows which is the proper action for this
1073 thread to include in the vCont packet. */
1074
1075 /* True if the last target_resume call for this thread was a step
1076 request, false if a continue request. */
1077 int last_resume_step = 0;
1078
1079 /* The signal specified in the last target_resume call for this
1080 thread. */
1081 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1082
1083 /* Whether this thread was already vCont-resumed on the remote
1084 side. */
1085 int vcont_resumed = 0;
1086 };
1087
1088 remote_state::remote_state ()
1089 : buf (400)
1090 {
1091 }
1092
1093 remote_state::~remote_state ()
1094 {
1095 xfree (this->last_pass_packet);
1096 xfree (this->last_program_signals_packet);
1097 xfree (this->finished_object);
1098 xfree (this->finished_annex);
1099 }
1100
1101 /* Utility: generate error from an incoming stub packet. */
1102 static void
1103 trace_error (char *buf)
1104 {
1105 if (*buf++ != 'E')
1106 return; /* not an error msg */
1107 switch (*buf)
1108 {
1109 case '1': /* malformed packet error */
1110 if (*++buf == '0') /* general case: */
1111 error (_("remote.c: error in outgoing packet."));
1112 else
1113 error (_("remote.c: error in outgoing packet at field #%ld."),
1114 strtol (buf, NULL, 16));
1115 default:
1116 error (_("Target returns error code '%s'."), buf);
1117 }
1118 }
1119
1120 /* Utility: wait for reply from stub, while accepting "O" packets. */
1121
1122 char *
1123 remote_target::remote_get_noisy_reply ()
1124 {
1125 struct remote_state *rs = get_remote_state ();
1126
1127 do /* Loop on reply from remote stub. */
1128 {
1129 char *buf;
1130
1131 QUIT; /* Allow user to bail out with ^C. */
1132 getpkt (&rs->buf, 0);
1133 buf = rs->buf.data ();
1134 if (buf[0] == 'E')
1135 trace_error (buf);
1136 else if (startswith (buf, "qRelocInsn:"))
1137 {
1138 ULONGEST ul;
1139 CORE_ADDR from, to, org_to;
1140 const char *p, *pp;
1141 int adjusted_size = 0;
1142 int relocated = 0;
1143
1144 p = buf + strlen ("qRelocInsn:");
1145 pp = unpack_varlen_hex (p, &ul);
1146 if (*pp != ';')
1147 error (_("invalid qRelocInsn packet: %s"), buf);
1148 from = ul;
1149
1150 p = pp + 1;
1151 unpack_varlen_hex (p, &ul);
1152 to = ul;
1153
1154 org_to = to;
1155
1156 try
1157 {
1158 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1159 relocated = 1;
1160 }
1161 catch (const gdb_exception &ex)
1162 {
1163 if (ex.error == MEMORY_ERROR)
1164 {
1165 /* Propagate memory errors silently back to the
1166 target. The stub may have limited the range of
1167 addresses we can write to, for example. */
1168 }
1169 else
1170 {
1171 /* Something unexpectedly bad happened. Be verbose
1172 so we can tell what, and propagate the error back
1173 to the stub, so it doesn't get stuck waiting for
1174 a response. */
1175 exception_fprintf (gdb_stderr, ex,
1176 _("warning: relocating instruction: "));
1177 }
1178 putpkt ("E01");
1179 }
1180
1181 if (relocated)
1182 {
1183 adjusted_size = to - org_to;
1184
1185 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1186 putpkt (buf);
1187 }
1188 }
1189 else if (buf[0] == 'O' && buf[1] != 'K')
1190 remote_console_output (buf + 1); /* 'O' message from stub */
1191 else
1192 return buf; /* Here's the actual reply. */
1193 }
1194 while (1);
1195 }
1196
1197 struct remote_arch_state *
1198 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1199 {
1200 remote_arch_state *rsa;
1201
1202 auto it = this->m_arch_states.find (gdbarch);
1203 if (it == this->m_arch_states.end ())
1204 {
1205 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1206 std::forward_as_tuple (gdbarch),
1207 std::forward_as_tuple (gdbarch));
1208 rsa = &p.first->second;
1209
1210 /* Make sure that the packet buffer is plenty big enough for
1211 this architecture. */
1212 if (this->buf.size () < rsa->remote_packet_size)
1213 this->buf.resize (2 * rsa->remote_packet_size);
1214 }
1215 else
1216 rsa = &it->second;
1217
1218 return rsa;
1219 }
1220
1221 /* Fetch the global remote target state. */
1222
1223 remote_state *
1224 remote_target::get_remote_state ()
1225 {
1226 /* Make sure that the remote architecture state has been
1227 initialized, because doing so might reallocate rs->buf. Any
1228 function which calls getpkt also needs to be mindful of changes
1229 to rs->buf, but this call limits the number of places which run
1230 into trouble. */
1231 m_remote_state.get_remote_arch_state (target_gdbarch ());
1232
1233 return &m_remote_state;
1234 }
1235
1236 /* Fetch the remote exec-file from the current program space. */
1237
1238 static const char *
1239 get_remote_exec_file (void)
1240 {
1241 char *remote_exec_file;
1242
1243 remote_exec_file = remote_pspace_data.get (current_program_space);
1244 if (remote_exec_file == NULL)
1245 return "";
1246
1247 return remote_exec_file;
1248 }
1249
1250 /* Set the remote exec file for PSPACE. */
1251
1252 static void
1253 set_pspace_remote_exec_file (struct program_space *pspace,
1254 const char *remote_exec_file)
1255 {
1256 char *old_file = remote_pspace_data.get (pspace);
1257
1258 xfree (old_file);
1259 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1260 }
1261
1262 /* The "set/show remote exec-file" set command hook. */
1263
1264 static void
1265 set_remote_exec_file (const char *ignored, int from_tty,
1266 struct cmd_list_element *c)
1267 {
1268 gdb_assert (remote_exec_file_var != NULL);
1269 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1270 }
1271
1272 /* The "set/show remote exec-file" show command hook. */
1273
1274 static void
1275 show_remote_exec_file (struct ui_file *file, int from_tty,
1276 struct cmd_list_element *cmd, const char *value)
1277 {
1278 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1279 }
1280
1281 static int
1282 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1283 {
1284 int regnum, num_remote_regs, offset;
1285 struct packet_reg **remote_regs;
1286
1287 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1288 {
1289 struct packet_reg *r = &regs[regnum];
1290
1291 if (register_size (gdbarch, regnum) == 0)
1292 /* Do not try to fetch zero-sized (placeholder) registers. */
1293 r->pnum = -1;
1294 else
1295 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1296
1297 r->regnum = regnum;
1298 }
1299
1300 /* Define the g/G packet format as the contents of each register
1301 with a remote protocol number, in order of ascending protocol
1302 number. */
1303
1304 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1305 for (num_remote_regs = 0, regnum = 0;
1306 regnum < gdbarch_num_regs (gdbarch);
1307 regnum++)
1308 if (regs[regnum].pnum != -1)
1309 remote_regs[num_remote_regs++] = &regs[regnum];
1310
1311 std::sort (remote_regs, remote_regs + num_remote_regs,
1312 [] (const packet_reg *a, const packet_reg *b)
1313 { return a->pnum < b->pnum; });
1314
1315 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1316 {
1317 remote_regs[regnum]->in_g_packet = 1;
1318 remote_regs[regnum]->offset = offset;
1319 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1320 }
1321
1322 return offset;
1323 }
1324
1325 /* Given the architecture described by GDBARCH, return the remote
1326 protocol register's number and the register's offset in the g/G
1327 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1328 If the target does not have a mapping for REGNUM, return false,
1329 otherwise, return true. */
1330
1331 int
1332 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1333 int *pnum, int *poffset)
1334 {
1335 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1336
1337 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1338
1339 map_regcache_remote_table (gdbarch, regs.data ());
1340
1341 *pnum = regs[regnum].pnum;
1342 *poffset = regs[regnum].offset;
1343
1344 return *pnum != -1;
1345 }
1346
1347 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1348 {
1349 /* Use the architecture to build a regnum<->pnum table, which will be
1350 1:1 unless a feature set specifies otherwise. */
1351 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1352
1353 /* Record the maximum possible size of the g packet - it may turn out
1354 to be smaller. */
1355 this->sizeof_g_packet
1356 = map_regcache_remote_table (gdbarch, this->regs.get ());
1357
1358 /* Default maximum number of characters in a packet body. Many
1359 remote stubs have a hardwired buffer size of 400 bytes
1360 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1361 as the maximum packet-size to ensure that the packet and an extra
1362 NUL character can always fit in the buffer. This stops GDB
1363 trashing stubs that try to squeeze an extra NUL into what is
1364 already a full buffer (As of 1999-12-04 that was most stubs). */
1365 this->remote_packet_size = 400 - 1;
1366
1367 /* This one is filled in when a ``g'' packet is received. */
1368 this->actual_register_packet_size = 0;
1369
1370 /* Should rsa->sizeof_g_packet needs more space than the
1371 default, adjust the size accordingly. Remember that each byte is
1372 encoded as two characters. 32 is the overhead for the packet
1373 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1374 (``$NN:G...#NN'') is a better guess, the below has been padded a
1375 little. */
1376 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1377 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1378 }
1379
1380 /* Get a pointer to the current remote target. If not connected to a
1381 remote target, return NULL. */
1382
1383 static remote_target *
1384 get_current_remote_target ()
1385 {
1386 target_ops *proc_target = current_inferior ()->process_target ();
1387 return dynamic_cast<remote_target *> (proc_target);
1388 }
1389
1390 /* Return the current allowed size of a remote packet. This is
1391 inferred from the current architecture, and should be used to
1392 limit the length of outgoing packets. */
1393 long
1394 remote_target::get_remote_packet_size ()
1395 {
1396 struct remote_state *rs = get_remote_state ();
1397 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1398
1399 if (rs->explicit_packet_size)
1400 return rs->explicit_packet_size;
1401
1402 return rsa->remote_packet_size;
1403 }
1404
1405 static struct packet_reg *
1406 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1407 long regnum)
1408 {
1409 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1410 return NULL;
1411 else
1412 {
1413 struct packet_reg *r = &rsa->regs[regnum];
1414
1415 gdb_assert (r->regnum == regnum);
1416 return r;
1417 }
1418 }
1419
1420 static struct packet_reg *
1421 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1422 LONGEST pnum)
1423 {
1424 int i;
1425
1426 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1427 {
1428 struct packet_reg *r = &rsa->regs[i];
1429
1430 if (r->pnum == pnum)
1431 return r;
1432 }
1433 return NULL;
1434 }
1435
1436 /* Allow the user to specify what sequence to send to the remote
1437 when he requests a program interruption: Although ^C is usually
1438 what remote systems expect (this is the default, here), it is
1439 sometimes preferable to send a break. On other systems such
1440 as the Linux kernel, a break followed by g, which is Magic SysRq g
1441 is required in order to interrupt the execution. */
1442 const char interrupt_sequence_control_c[] = "Ctrl-C";
1443 const char interrupt_sequence_break[] = "BREAK";
1444 const char interrupt_sequence_break_g[] = "BREAK-g";
1445 static const char *const interrupt_sequence_modes[] =
1446 {
1447 interrupt_sequence_control_c,
1448 interrupt_sequence_break,
1449 interrupt_sequence_break_g,
1450 NULL
1451 };
1452 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1453
1454 static void
1455 show_interrupt_sequence (struct ui_file *file, int from_tty,
1456 struct cmd_list_element *c,
1457 const char *value)
1458 {
1459 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1460 fprintf_filtered (file,
1461 _("Send the ASCII ETX character (Ctrl-c) "
1462 "to the remote target to interrupt the "
1463 "execution of the program.\n"));
1464 else if (interrupt_sequence_mode == interrupt_sequence_break)
1465 fprintf_filtered (file,
1466 _("send a break signal to the remote target "
1467 "to interrupt the execution of the program.\n"));
1468 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1469 fprintf_filtered (file,
1470 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1471 "the remote target to interrupt the execution "
1472 "of Linux kernel.\n"));
1473 else
1474 internal_error (__FILE__, __LINE__,
1475 _("Invalid value for interrupt_sequence_mode: %s."),
1476 interrupt_sequence_mode);
1477 }
1478
1479 /* This boolean variable specifies whether interrupt_sequence is sent
1480 to the remote target when gdb connects to it.
1481 This is mostly needed when you debug the Linux kernel: The Linux kernel
1482 expects BREAK g which is Magic SysRq g for connecting gdb. */
1483 static bool interrupt_on_connect = false;
1484
1485 /* This variable is used to implement the "set/show remotebreak" commands.
1486 Since these commands are now deprecated in favor of "set/show remote
1487 interrupt-sequence", it no longer has any effect on the code. */
1488 static bool remote_break;
1489
1490 static void
1491 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1492 {
1493 if (remote_break)
1494 interrupt_sequence_mode = interrupt_sequence_break;
1495 else
1496 interrupt_sequence_mode = interrupt_sequence_control_c;
1497 }
1498
1499 static void
1500 show_remotebreak (struct ui_file *file, int from_tty,
1501 struct cmd_list_element *c,
1502 const char *value)
1503 {
1504 }
1505
1506 /* This variable sets the number of bits in an address that are to be
1507 sent in a memory ("M" or "m") packet. Normally, after stripping
1508 leading zeros, the entire address would be sent. This variable
1509 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1510 initial implementation of remote.c restricted the address sent in
1511 memory packets to ``host::sizeof long'' bytes - (typically 32
1512 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1513 address was never sent. Since fixing this bug may cause a break in
1514 some remote targets this variable is principally provided to
1515 facilitate backward compatibility. */
1516
1517 static unsigned int remote_address_size;
1518
1519 \f
1520 /* User configurable variables for the number of characters in a
1521 memory read/write packet. MIN (rsa->remote_packet_size,
1522 rsa->sizeof_g_packet) is the default. Some targets need smaller
1523 values (fifo overruns, et.al.) and some users need larger values
1524 (speed up transfers). The variables ``preferred_*'' (the user
1525 request), ``current_*'' (what was actually set) and ``forced_*''
1526 (Positive - a soft limit, negative - a hard limit). */
1527
1528 struct memory_packet_config
1529 {
1530 const char *name;
1531 long size;
1532 int fixed_p;
1533 };
1534
1535 /* The default max memory-write-packet-size, when the setting is
1536 "fixed". The 16k is historical. (It came from older GDB's using
1537 alloca for buffers and the knowledge (folklore?) that some hosts
1538 don't cope very well with large alloca calls.) */
1539 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1540
1541 /* The minimum remote packet size for memory transfers. Ensures we
1542 can write at least one byte. */
1543 #define MIN_MEMORY_PACKET_SIZE 20
1544
1545 /* Get the memory packet size, assuming it is fixed. */
1546
1547 static long
1548 get_fixed_memory_packet_size (struct memory_packet_config *config)
1549 {
1550 gdb_assert (config->fixed_p);
1551
1552 if (config->size <= 0)
1553 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1554 else
1555 return config->size;
1556 }
1557
1558 /* Compute the current size of a read/write packet. Since this makes
1559 use of ``actual_register_packet_size'' the computation is dynamic. */
1560
1561 long
1562 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1563 {
1564 struct remote_state *rs = get_remote_state ();
1565 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1566
1567 long what_they_get;
1568 if (config->fixed_p)
1569 what_they_get = get_fixed_memory_packet_size (config);
1570 else
1571 {
1572 what_they_get = get_remote_packet_size ();
1573 /* Limit the packet to the size specified by the user. */
1574 if (config->size > 0
1575 && what_they_get > config->size)
1576 what_they_get = config->size;
1577
1578 /* Limit it to the size of the targets ``g'' response unless we have
1579 permission from the stub to use a larger packet size. */
1580 if (rs->explicit_packet_size == 0
1581 && rsa->actual_register_packet_size > 0
1582 && what_they_get > rsa->actual_register_packet_size)
1583 what_they_get = rsa->actual_register_packet_size;
1584 }
1585 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1586 what_they_get = MIN_MEMORY_PACKET_SIZE;
1587
1588 /* Make sure there is room in the global buffer for this packet
1589 (including its trailing NUL byte). */
1590 if (rs->buf.size () < what_they_get + 1)
1591 rs->buf.resize (2 * what_they_get);
1592
1593 return what_they_get;
1594 }
1595
1596 /* Update the size of a read/write packet. If they user wants
1597 something really big then do a sanity check. */
1598
1599 static void
1600 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1601 {
1602 int fixed_p = config->fixed_p;
1603 long size = config->size;
1604
1605 if (args == NULL)
1606 error (_("Argument required (integer, `fixed' or `limited')."));
1607 else if (strcmp (args, "hard") == 0
1608 || strcmp (args, "fixed") == 0)
1609 fixed_p = 1;
1610 else if (strcmp (args, "soft") == 0
1611 || strcmp (args, "limit") == 0)
1612 fixed_p = 0;
1613 else
1614 {
1615 char *end;
1616
1617 size = strtoul (args, &end, 0);
1618 if (args == end)
1619 error (_("Invalid %s (bad syntax)."), config->name);
1620
1621 /* Instead of explicitly capping the size of a packet to or
1622 disallowing it, the user is allowed to set the size to
1623 something arbitrarily large. */
1624 }
1625
1626 /* Extra checks? */
1627 if (fixed_p && !config->fixed_p)
1628 {
1629 /* So that the query shows the correct value. */
1630 long query_size = (size <= 0
1631 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1632 : size);
1633
1634 if (! query (_("The target may not be able to correctly handle a %s\n"
1635 "of %ld bytes. Change the packet size? "),
1636 config->name, query_size))
1637 error (_("Packet size not changed."));
1638 }
1639 /* Update the config. */
1640 config->fixed_p = fixed_p;
1641 config->size = size;
1642 }
1643
1644 static void
1645 show_memory_packet_size (struct memory_packet_config *config)
1646 {
1647 if (config->size == 0)
1648 printf_filtered (_("The %s is 0 (default). "), config->name);
1649 else
1650 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1651 if (config->fixed_p)
1652 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1653 get_fixed_memory_packet_size (config));
1654 else
1655 {
1656 remote_target *remote = get_current_remote_target ();
1657
1658 if (remote != NULL)
1659 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1660 remote->get_memory_packet_size (config));
1661 else
1662 puts_filtered ("The actual limit will be further reduced "
1663 "dependent on the target.\n");
1664 }
1665 }
1666
1667 /* FIXME: needs to be per-remote-target. */
1668 static struct memory_packet_config memory_write_packet_config =
1669 {
1670 "memory-write-packet-size",
1671 };
1672
1673 static void
1674 set_memory_write_packet_size (const char *args, int from_tty)
1675 {
1676 set_memory_packet_size (args, &memory_write_packet_config);
1677 }
1678
1679 static void
1680 show_memory_write_packet_size (const char *args, int from_tty)
1681 {
1682 show_memory_packet_size (&memory_write_packet_config);
1683 }
1684
1685 /* Show the number of hardware watchpoints that can be used. */
1686
1687 static void
1688 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1689 struct cmd_list_element *c,
1690 const char *value)
1691 {
1692 fprintf_filtered (file, _("The maximum number of target hardware "
1693 "watchpoints is %s.\n"), value);
1694 }
1695
1696 /* Show the length limit (in bytes) for hardware watchpoints. */
1697
1698 static void
1699 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1700 struct cmd_list_element *c,
1701 const char *value)
1702 {
1703 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1704 "hardware watchpoint is %s.\n"), value);
1705 }
1706
1707 /* Show the number of hardware breakpoints that can be used. */
1708
1709 static void
1710 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c,
1712 const char *value)
1713 {
1714 fprintf_filtered (file, _("The maximum number of target hardware "
1715 "breakpoints is %s.\n"), value);
1716 }
1717
1718 /* Controls the maximum number of characters to display in the debug output
1719 for each remote packet. The remaining characters are omitted. */
1720
1721 static int remote_packet_max_chars = 512;
1722
1723 /* Show the maximum number of characters to display for each remote packet
1724 when remote debugging is enabled. */
1725
1726 static void
1727 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1728 struct cmd_list_element *c,
1729 const char *value)
1730 {
1731 fprintf_filtered (file, _("Number of remote packet characters to "
1732 "display is %s.\n"), value);
1733 }
1734
1735 long
1736 remote_target::get_memory_write_packet_size ()
1737 {
1738 return get_memory_packet_size (&memory_write_packet_config);
1739 }
1740
1741 /* FIXME: needs to be per-remote-target. */
1742 static struct memory_packet_config memory_read_packet_config =
1743 {
1744 "memory-read-packet-size",
1745 };
1746
1747 static void
1748 set_memory_read_packet_size (const char *args, int from_tty)
1749 {
1750 set_memory_packet_size (args, &memory_read_packet_config);
1751 }
1752
1753 static void
1754 show_memory_read_packet_size (const char *args, int from_tty)
1755 {
1756 show_memory_packet_size (&memory_read_packet_config);
1757 }
1758
1759 long
1760 remote_target::get_memory_read_packet_size ()
1761 {
1762 long size = get_memory_packet_size (&memory_read_packet_config);
1763
1764 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1765 extra buffer size argument before the memory read size can be
1766 increased beyond this. */
1767 if (size > get_remote_packet_size ())
1768 size = get_remote_packet_size ();
1769 return size;
1770 }
1771
1772 \f
1773
1774 struct packet_config
1775 {
1776 const char *name;
1777 const char *title;
1778
1779 /* If auto, GDB auto-detects support for this packet or feature,
1780 either through qSupported, or by trying the packet and looking
1781 at the response. If true, GDB assumes the target supports this
1782 packet. If false, the packet is disabled. Configs that don't
1783 have an associated command always have this set to auto. */
1784 enum auto_boolean detect;
1785
1786 /* Does the target support this packet? */
1787 enum packet_support support;
1788 };
1789
1790 static enum packet_support packet_config_support (struct packet_config *config);
1791 static enum packet_support packet_support (int packet);
1792
1793 static void
1794 show_packet_config_cmd (struct packet_config *config)
1795 {
1796 const char *support = "internal-error";
1797
1798 switch (packet_config_support (config))
1799 {
1800 case PACKET_ENABLE:
1801 support = "enabled";
1802 break;
1803 case PACKET_DISABLE:
1804 support = "disabled";
1805 break;
1806 case PACKET_SUPPORT_UNKNOWN:
1807 support = "unknown";
1808 break;
1809 }
1810 switch (config->detect)
1811 {
1812 case AUTO_BOOLEAN_AUTO:
1813 printf_filtered (_("Support for the `%s' packet "
1814 "is auto-detected, currently %s.\n"),
1815 config->name, support);
1816 break;
1817 case AUTO_BOOLEAN_TRUE:
1818 case AUTO_BOOLEAN_FALSE:
1819 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1820 config->name, support);
1821 break;
1822 }
1823 }
1824
1825 static void
1826 add_packet_config_cmd (struct packet_config *config, const char *name,
1827 const char *title, int legacy)
1828 {
1829 char *set_doc;
1830 char *show_doc;
1831 char *cmd_name;
1832
1833 config->name = name;
1834 config->title = title;
1835 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1836 name, title);
1837 show_doc = xstrprintf ("Show current use of remote "
1838 "protocol `%s' (%s) packet.",
1839 name, title);
1840 /* set/show TITLE-packet {auto,on,off} */
1841 cmd_name = xstrprintf ("%s-packet", title);
1842 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1843 &config->detect, set_doc,
1844 show_doc, NULL, /* help_doc */
1845 NULL,
1846 show_remote_protocol_packet_cmd,
1847 &remote_set_cmdlist, &remote_show_cmdlist);
1848 /* The command code copies the documentation strings. */
1849 xfree (set_doc);
1850 xfree (show_doc);
1851 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1852 if (legacy)
1853 {
1854 char *legacy_name;
1855
1856 legacy_name = xstrprintf ("%s-packet", name);
1857 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1858 &remote_set_cmdlist);
1859 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1860 &remote_show_cmdlist);
1861 }
1862 }
1863
1864 static enum packet_result
1865 packet_check_result (const char *buf)
1866 {
1867 if (buf[0] != '\0')
1868 {
1869 /* The stub recognized the packet request. Check that the
1870 operation succeeded. */
1871 if (buf[0] == 'E'
1872 && isxdigit (buf[1]) && isxdigit (buf[2])
1873 && buf[3] == '\0')
1874 /* "Enn" - definitely an error. */
1875 return PACKET_ERROR;
1876
1877 /* Always treat "E." as an error. This will be used for
1878 more verbose error messages, such as E.memtypes. */
1879 if (buf[0] == 'E' && buf[1] == '.')
1880 return PACKET_ERROR;
1881
1882 /* The packet may or may not be OK. Just assume it is. */
1883 return PACKET_OK;
1884 }
1885 else
1886 /* The stub does not support the packet. */
1887 return PACKET_UNKNOWN;
1888 }
1889
1890 static enum packet_result
1891 packet_check_result (const gdb::char_vector &buf)
1892 {
1893 return packet_check_result (buf.data ());
1894 }
1895
1896 static enum packet_result
1897 packet_ok (const char *buf, struct packet_config *config)
1898 {
1899 enum packet_result result;
1900
1901 if (config->detect != AUTO_BOOLEAN_TRUE
1902 && config->support == PACKET_DISABLE)
1903 internal_error (__FILE__, __LINE__,
1904 _("packet_ok: attempt to use a disabled packet"));
1905
1906 result = packet_check_result (buf);
1907 switch (result)
1908 {
1909 case PACKET_OK:
1910 case PACKET_ERROR:
1911 /* The stub recognized the packet request. */
1912 if (config->support == PACKET_SUPPORT_UNKNOWN)
1913 {
1914 if (remote_debug)
1915 fprintf_unfiltered (gdb_stdlog,
1916 "Packet %s (%s) is supported\n",
1917 config->name, config->title);
1918 config->support = PACKET_ENABLE;
1919 }
1920 break;
1921 case PACKET_UNKNOWN:
1922 /* The stub does not support the packet. */
1923 if (config->detect == AUTO_BOOLEAN_AUTO
1924 && config->support == PACKET_ENABLE)
1925 {
1926 /* If the stub previously indicated that the packet was
1927 supported then there is a protocol error. */
1928 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1929 config->name, config->title);
1930 }
1931 else if (config->detect == AUTO_BOOLEAN_TRUE)
1932 {
1933 /* The user set it wrong. */
1934 error (_("Enabled packet %s (%s) not recognized by stub"),
1935 config->name, config->title);
1936 }
1937
1938 if (remote_debug)
1939 fprintf_unfiltered (gdb_stdlog,
1940 "Packet %s (%s) is NOT supported\n",
1941 config->name, config->title);
1942 config->support = PACKET_DISABLE;
1943 break;
1944 }
1945
1946 return result;
1947 }
1948
1949 static enum packet_result
1950 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1951 {
1952 return packet_ok (buf.data (), config);
1953 }
1954
1955 enum {
1956 PACKET_vCont = 0,
1957 PACKET_X,
1958 PACKET_qSymbol,
1959 PACKET_P,
1960 PACKET_p,
1961 PACKET_Z0,
1962 PACKET_Z1,
1963 PACKET_Z2,
1964 PACKET_Z3,
1965 PACKET_Z4,
1966 PACKET_vFile_setfs,
1967 PACKET_vFile_open,
1968 PACKET_vFile_pread,
1969 PACKET_vFile_pwrite,
1970 PACKET_vFile_close,
1971 PACKET_vFile_unlink,
1972 PACKET_vFile_readlink,
1973 PACKET_vFile_fstat,
1974 PACKET_qXfer_auxv,
1975 PACKET_qXfer_features,
1976 PACKET_qXfer_exec_file,
1977 PACKET_qXfer_libraries,
1978 PACKET_qXfer_libraries_svr4,
1979 PACKET_qXfer_memory_map,
1980 PACKET_qXfer_osdata,
1981 PACKET_qXfer_threads,
1982 PACKET_qXfer_statictrace_read,
1983 PACKET_qXfer_traceframe_info,
1984 PACKET_qXfer_uib,
1985 PACKET_qGetTIBAddr,
1986 PACKET_qGetTLSAddr,
1987 PACKET_qSupported,
1988 PACKET_qTStatus,
1989 PACKET_QPassSignals,
1990 PACKET_QCatchSyscalls,
1991 PACKET_QProgramSignals,
1992 PACKET_QSetWorkingDir,
1993 PACKET_QStartupWithShell,
1994 PACKET_QEnvironmentHexEncoded,
1995 PACKET_QEnvironmentReset,
1996 PACKET_QEnvironmentUnset,
1997 PACKET_qCRC,
1998 PACKET_qSearch_memory,
1999 PACKET_vAttach,
2000 PACKET_vRun,
2001 PACKET_QStartNoAckMode,
2002 PACKET_vKill,
2003 PACKET_qXfer_siginfo_read,
2004 PACKET_qXfer_siginfo_write,
2005 PACKET_qAttached,
2006
2007 /* Support for conditional tracepoints. */
2008 PACKET_ConditionalTracepoints,
2009
2010 /* Support for target-side breakpoint conditions. */
2011 PACKET_ConditionalBreakpoints,
2012
2013 /* Support for target-side breakpoint commands. */
2014 PACKET_BreakpointCommands,
2015
2016 /* Support for fast tracepoints. */
2017 PACKET_FastTracepoints,
2018
2019 /* Support for static tracepoints. */
2020 PACKET_StaticTracepoints,
2021
2022 /* Support for installing tracepoints while a trace experiment is
2023 running. */
2024 PACKET_InstallInTrace,
2025
2026 PACKET_bc,
2027 PACKET_bs,
2028 PACKET_TracepointSource,
2029 PACKET_QAllow,
2030 PACKET_qXfer_fdpic,
2031 PACKET_QDisableRandomization,
2032 PACKET_QAgent,
2033 PACKET_QTBuffer_size,
2034 PACKET_Qbtrace_off,
2035 PACKET_Qbtrace_bts,
2036 PACKET_Qbtrace_pt,
2037 PACKET_qXfer_btrace,
2038
2039 /* Support for the QNonStop packet. */
2040 PACKET_QNonStop,
2041
2042 /* Support for the QThreadEvents packet. */
2043 PACKET_QThreadEvents,
2044
2045 /* Support for multi-process extensions. */
2046 PACKET_multiprocess_feature,
2047
2048 /* Support for enabling and disabling tracepoints while a trace
2049 experiment is running. */
2050 PACKET_EnableDisableTracepoints_feature,
2051
2052 /* Support for collecting strings using the tracenz bytecode. */
2053 PACKET_tracenz_feature,
2054
2055 /* Support for continuing to run a trace experiment while GDB is
2056 disconnected. */
2057 PACKET_DisconnectedTracing_feature,
2058
2059 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2060 PACKET_augmented_libraries_svr4_read_feature,
2061
2062 /* Support for the qXfer:btrace-conf:read packet. */
2063 PACKET_qXfer_btrace_conf,
2064
2065 /* Support for the Qbtrace-conf:bts:size packet. */
2066 PACKET_Qbtrace_conf_bts_size,
2067
2068 /* Support for swbreak+ feature. */
2069 PACKET_swbreak_feature,
2070
2071 /* Support for hwbreak+ feature. */
2072 PACKET_hwbreak_feature,
2073
2074 /* Support for fork events. */
2075 PACKET_fork_event_feature,
2076
2077 /* Support for vfork events. */
2078 PACKET_vfork_event_feature,
2079
2080 /* Support for the Qbtrace-conf:pt:size packet. */
2081 PACKET_Qbtrace_conf_pt_size,
2082
2083 /* Support for exec events. */
2084 PACKET_exec_event_feature,
2085
2086 /* Support for query supported vCont actions. */
2087 PACKET_vContSupported,
2088
2089 /* Support remote CTRL-C. */
2090 PACKET_vCtrlC,
2091
2092 /* Support TARGET_WAITKIND_NO_RESUMED. */
2093 PACKET_no_resumed,
2094
2095 PACKET_MAX
2096 };
2097
2098 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2099 assuming all remote targets are the same server (thus all support
2100 the same packets). */
2101 static struct packet_config remote_protocol_packets[PACKET_MAX];
2102
2103 /* Returns the packet's corresponding "set remote foo-packet" command
2104 state. See struct packet_config for more details. */
2105
2106 static enum auto_boolean
2107 packet_set_cmd_state (int packet)
2108 {
2109 return remote_protocol_packets[packet].detect;
2110 }
2111
2112 /* Returns whether a given packet or feature is supported. This takes
2113 into account the state of the corresponding "set remote foo-packet"
2114 command, which may be used to bypass auto-detection. */
2115
2116 static enum packet_support
2117 packet_config_support (struct packet_config *config)
2118 {
2119 switch (config->detect)
2120 {
2121 case AUTO_BOOLEAN_TRUE:
2122 return PACKET_ENABLE;
2123 case AUTO_BOOLEAN_FALSE:
2124 return PACKET_DISABLE;
2125 case AUTO_BOOLEAN_AUTO:
2126 return config->support;
2127 default:
2128 gdb_assert_not_reached (_("bad switch"));
2129 }
2130 }
2131
2132 /* Same as packet_config_support, but takes the packet's enum value as
2133 argument. */
2134
2135 static enum packet_support
2136 packet_support (int packet)
2137 {
2138 struct packet_config *config = &remote_protocol_packets[packet];
2139
2140 return packet_config_support (config);
2141 }
2142
2143 static void
2144 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2145 struct cmd_list_element *c,
2146 const char *value)
2147 {
2148 struct packet_config *packet;
2149
2150 for (packet = remote_protocol_packets;
2151 packet < &remote_protocol_packets[PACKET_MAX];
2152 packet++)
2153 {
2154 if (&packet->detect == c->var)
2155 {
2156 show_packet_config_cmd (packet);
2157 return;
2158 }
2159 }
2160 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2161 c->name);
2162 }
2163
2164 /* Should we try one of the 'Z' requests? */
2165
2166 enum Z_packet_type
2167 {
2168 Z_PACKET_SOFTWARE_BP,
2169 Z_PACKET_HARDWARE_BP,
2170 Z_PACKET_WRITE_WP,
2171 Z_PACKET_READ_WP,
2172 Z_PACKET_ACCESS_WP,
2173 NR_Z_PACKET_TYPES
2174 };
2175
2176 /* For compatibility with older distributions. Provide a ``set remote
2177 Z-packet ...'' command that updates all the Z packet types. */
2178
2179 static enum auto_boolean remote_Z_packet_detect;
2180
2181 static void
2182 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2183 struct cmd_list_element *c)
2184 {
2185 int i;
2186
2187 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2188 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2189 }
2190
2191 static void
2192 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2193 struct cmd_list_element *c,
2194 const char *value)
2195 {
2196 int i;
2197
2198 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2199 {
2200 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2201 }
2202 }
2203
2204 /* Returns true if the multi-process extensions are in effect. */
2205
2206 static int
2207 remote_multi_process_p (struct remote_state *rs)
2208 {
2209 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2210 }
2211
2212 /* Returns true if fork events are supported. */
2213
2214 static int
2215 remote_fork_event_p (struct remote_state *rs)
2216 {
2217 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2218 }
2219
2220 /* Returns true if vfork events are supported. */
2221
2222 static int
2223 remote_vfork_event_p (struct remote_state *rs)
2224 {
2225 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2226 }
2227
2228 /* Returns true if exec events are supported. */
2229
2230 static int
2231 remote_exec_event_p (struct remote_state *rs)
2232 {
2233 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2234 }
2235
2236 /* Insert fork catchpoint target routine. If fork events are enabled
2237 then return success, nothing more to do. */
2238
2239 int
2240 remote_target::insert_fork_catchpoint (int pid)
2241 {
2242 struct remote_state *rs = get_remote_state ();
2243
2244 return !remote_fork_event_p (rs);
2245 }
2246
2247 /* Remove fork catchpoint target routine. Nothing to do, just
2248 return success. */
2249
2250 int
2251 remote_target::remove_fork_catchpoint (int pid)
2252 {
2253 return 0;
2254 }
2255
2256 /* Insert vfork catchpoint target routine. If vfork events are enabled
2257 then return success, nothing more to do. */
2258
2259 int
2260 remote_target::insert_vfork_catchpoint (int pid)
2261 {
2262 struct remote_state *rs = get_remote_state ();
2263
2264 return !remote_vfork_event_p (rs);
2265 }
2266
2267 /* Remove vfork catchpoint target routine. Nothing to do, just
2268 return success. */
2269
2270 int
2271 remote_target::remove_vfork_catchpoint (int pid)
2272 {
2273 return 0;
2274 }
2275
2276 /* Insert exec catchpoint target routine. If exec events are
2277 enabled, just return success. */
2278
2279 int
2280 remote_target::insert_exec_catchpoint (int pid)
2281 {
2282 struct remote_state *rs = get_remote_state ();
2283
2284 return !remote_exec_event_p (rs);
2285 }
2286
2287 /* Remove exec catchpoint target routine. Nothing to do, just
2288 return success. */
2289
2290 int
2291 remote_target::remove_exec_catchpoint (int pid)
2292 {
2293 return 0;
2294 }
2295
2296 \f
2297
2298 /* Take advantage of the fact that the TID field is not used, to tag
2299 special ptids with it set to != 0. */
2300 static const ptid_t magic_null_ptid (42000, -1, 1);
2301 static const ptid_t not_sent_ptid (42000, -2, 1);
2302 static const ptid_t any_thread_ptid (42000, 0, 1);
2303
2304 /* Find out if the stub attached to PID (and hence GDB should offer to
2305 detach instead of killing it when bailing out). */
2306
2307 int
2308 remote_target::remote_query_attached (int pid)
2309 {
2310 struct remote_state *rs = get_remote_state ();
2311 size_t size = get_remote_packet_size ();
2312
2313 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2314 return 0;
2315
2316 if (remote_multi_process_p (rs))
2317 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2318 else
2319 xsnprintf (rs->buf.data (), size, "qAttached");
2320
2321 putpkt (rs->buf);
2322 getpkt (&rs->buf, 0);
2323
2324 switch (packet_ok (rs->buf,
2325 &remote_protocol_packets[PACKET_qAttached]))
2326 {
2327 case PACKET_OK:
2328 if (strcmp (rs->buf.data (), "1") == 0)
2329 return 1;
2330 break;
2331 case PACKET_ERROR:
2332 warning (_("Remote failure reply: %s"), rs->buf.data ());
2333 break;
2334 case PACKET_UNKNOWN:
2335 break;
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2342 has been invented by GDB, instead of reported by the target. Since
2343 we can be connected to a remote system before before knowing about
2344 any inferior, mark the target with execution when we find the first
2345 inferior. If ATTACHED is 1, then we had just attached to this
2346 inferior. If it is 0, then we just created this inferior. If it
2347 is -1, then try querying the remote stub to find out if it had
2348 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2349 attempt to open this inferior's executable as the main executable
2350 if no main executable is open already. */
2351
2352 inferior *
2353 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2354 int try_open_exec)
2355 {
2356 struct inferior *inf;
2357
2358 /* Check whether this process we're learning about is to be
2359 considered attached, or if is to be considered to have been
2360 spawned by the stub. */
2361 if (attached == -1)
2362 attached = remote_query_attached (pid);
2363
2364 if (gdbarch_has_global_solist (target_gdbarch ()))
2365 {
2366 /* If the target shares code across all inferiors, then every
2367 attach adds a new inferior. */
2368 inf = add_inferior (pid);
2369
2370 /* ... and every inferior is bound to the same program space.
2371 However, each inferior may still have its own address
2372 space. */
2373 inf->aspace = maybe_new_address_space ();
2374 inf->pspace = current_program_space;
2375 }
2376 else
2377 {
2378 /* In the traditional debugging scenario, there's a 1-1 match
2379 between program/address spaces. We simply bind the inferior
2380 to the program space's address space. */
2381 inf = current_inferior ();
2382
2383 /* However, if the current inferior is already bound to a
2384 process, find some other empty inferior. */
2385 if (inf->pid != 0)
2386 {
2387 inf = nullptr;
2388 for (inferior *it : all_inferiors ())
2389 if (it->pid == 0)
2390 {
2391 inf = it;
2392 break;
2393 }
2394 }
2395 if (inf == nullptr)
2396 {
2397 /* Since all inferiors were already bound to a process, add
2398 a new inferior. */
2399 inf = add_inferior_with_spaces ();
2400 }
2401 switch_to_inferior_no_thread (inf);
2402 push_target (this);
2403 inferior_appeared (inf, pid);
2404 }
2405
2406 inf->attach_flag = attached;
2407 inf->fake_pid_p = fake_pid_p;
2408
2409 /* If no main executable is currently open then attempt to
2410 open the file that was executed to create this inferior. */
2411 if (try_open_exec && get_exec_file (0) == NULL)
2412 exec_file_locate_attach (pid, 0, 1);
2413
2414 /* Check for exec file mismatch, and let the user solve it. */
2415 validate_exec_file (1);
2416
2417 return inf;
2418 }
2419
2420 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2421 static remote_thread_info *get_remote_thread_info (remote_target *target,
2422 ptid_t ptid);
2423
2424 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2425 according to RUNNING. */
2426
2427 thread_info *
2428 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2429 {
2430 struct remote_state *rs = get_remote_state ();
2431 struct thread_info *thread;
2432
2433 /* GDB historically didn't pull threads in the initial connection
2434 setup. If the remote target doesn't even have a concept of
2435 threads (e.g., a bare-metal target), even if internally we
2436 consider that a single-threaded target, mentioning a new thread
2437 might be confusing to the user. Be silent then, preserving the
2438 age old behavior. */
2439 if (rs->starting_up)
2440 thread = add_thread_silent (this, ptid);
2441 else
2442 thread = add_thread (this, ptid);
2443
2444 get_remote_thread_info (thread)->vcont_resumed = executing;
2445 set_executing (this, ptid, executing);
2446 set_running (this, ptid, running);
2447
2448 return thread;
2449 }
2450
2451 /* Come here when we learn about a thread id from the remote target.
2452 It may be the first time we hear about such thread, so take the
2453 opportunity to add it to GDB's thread list. In case this is the
2454 first time we're noticing its corresponding inferior, add it to
2455 GDB's inferior list as well. EXECUTING indicates whether the
2456 thread is (internally) executing or stopped. */
2457
2458 void
2459 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2460 {
2461 /* In non-stop mode, we assume new found threads are (externally)
2462 running until proven otherwise with a stop reply. In all-stop,
2463 we can only get here if all threads are stopped. */
2464 int running = target_is_non_stop_p () ? 1 : 0;
2465
2466 /* If this is a new thread, add it to GDB's thread list.
2467 If we leave it up to WFI to do this, bad things will happen. */
2468
2469 thread_info *tp = find_thread_ptid (this, currthread);
2470 if (tp != NULL && tp->state == THREAD_EXITED)
2471 {
2472 /* We're seeing an event on a thread id we knew had exited.
2473 This has to be a new thread reusing the old id. Add it. */
2474 remote_add_thread (currthread, running, executing);
2475 return;
2476 }
2477
2478 if (!in_thread_list (this, currthread))
2479 {
2480 struct inferior *inf = NULL;
2481 int pid = currthread.pid ();
2482
2483 if (inferior_ptid.is_pid ()
2484 && pid == inferior_ptid.pid ())
2485 {
2486 /* inferior_ptid has no thread member yet. This can happen
2487 with the vAttach -> remote_wait,"TAAthread:" path if the
2488 stub doesn't support qC. This is the first stop reported
2489 after an attach, so this is the main thread. Update the
2490 ptid in the thread list. */
2491 if (in_thread_list (this, ptid_t (pid)))
2492 thread_change_ptid (this, inferior_ptid, currthread);
2493 else
2494 {
2495 remote_add_thread (currthread, running, executing);
2496 inferior_ptid = currthread;
2497 }
2498 return;
2499 }
2500
2501 if (magic_null_ptid == inferior_ptid)
2502 {
2503 /* inferior_ptid is not set yet. This can happen with the
2504 vRun -> remote_wait,"TAAthread:" path if the stub
2505 doesn't support qC. This is the first stop reported
2506 after an attach, so this is the main thread. Update the
2507 ptid in the thread list. */
2508 thread_change_ptid (this, inferior_ptid, currthread);
2509 return;
2510 }
2511
2512 /* When connecting to a target remote, or to a target
2513 extended-remote which already was debugging an inferior, we
2514 may not know about it yet. Add it before adding its child
2515 thread, so notifications are emitted in a sensible order. */
2516 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519 bool fake_pid_p = !remote_multi_process_p (rs);
2520
2521 inf = remote_add_inferior (fake_pid_p,
2522 currthread.pid (), -1, 1);
2523 }
2524
2525 /* This is really a new thread. Add it. */
2526 thread_info *new_thr
2527 = remote_add_thread (currthread, running, executing);
2528
2529 /* If we found a new inferior, let the common code do whatever
2530 it needs to with it (e.g., read shared libraries, insert
2531 breakpoints), unless we're just setting up an all-stop
2532 connection. */
2533 if (inf != NULL)
2534 {
2535 struct remote_state *rs = get_remote_state ();
2536
2537 if (!rs->starting_up)
2538 notice_new_inferior (new_thr, executing, 0);
2539 }
2540 }
2541 }
2542
2543 /* Return THREAD's private thread data, creating it if necessary. */
2544
2545 static remote_thread_info *
2546 get_remote_thread_info (thread_info *thread)
2547 {
2548 gdb_assert (thread != NULL);
2549
2550 if (thread->priv == NULL)
2551 thread->priv.reset (new remote_thread_info);
2552
2553 return static_cast<remote_thread_info *> (thread->priv.get ());
2554 }
2555
2556 /* Return PTID's private thread data, creating it if necessary. */
2557
2558 static remote_thread_info *
2559 get_remote_thread_info (remote_target *target, ptid_t ptid)
2560 {
2561 thread_info *thr = find_thread_ptid (target, ptid);
2562 return get_remote_thread_info (thr);
2563 }
2564
2565 /* Call this function as a result of
2566 1) A halt indication (T packet) containing a thread id
2567 2) A direct query of currthread
2568 3) Successful execution of set thread */
2569
2570 static void
2571 record_currthread (struct remote_state *rs, ptid_t currthread)
2572 {
2573 rs->general_thread = currthread;
2574 }
2575
2576 /* If 'QPassSignals' is supported, tell the remote stub what signals
2577 it can simply pass through to the inferior without reporting. */
2578
2579 void
2580 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2581 {
2582 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2583 {
2584 char *pass_packet, *p;
2585 int count = 0;
2586 struct remote_state *rs = get_remote_state ();
2587
2588 gdb_assert (pass_signals.size () < 256);
2589 for (size_t i = 0; i < pass_signals.size (); i++)
2590 {
2591 if (pass_signals[i])
2592 count++;
2593 }
2594 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2595 strcpy (pass_packet, "QPassSignals:");
2596 p = pass_packet + strlen (pass_packet);
2597 for (size_t i = 0; i < pass_signals.size (); i++)
2598 {
2599 if (pass_signals[i])
2600 {
2601 if (i >= 16)
2602 *p++ = tohex (i >> 4);
2603 *p++ = tohex (i & 15);
2604 if (count)
2605 *p++ = ';';
2606 else
2607 break;
2608 count--;
2609 }
2610 }
2611 *p = 0;
2612 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2613 {
2614 putpkt (pass_packet);
2615 getpkt (&rs->buf, 0);
2616 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2617 if (rs->last_pass_packet)
2618 xfree (rs->last_pass_packet);
2619 rs->last_pass_packet = pass_packet;
2620 }
2621 else
2622 xfree (pass_packet);
2623 }
2624 }
2625
2626 /* If 'QCatchSyscalls' is supported, tell the remote stub
2627 to report syscalls to GDB. */
2628
2629 int
2630 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2631 gdb::array_view<const int> syscall_counts)
2632 {
2633 const char *catch_packet;
2634 enum packet_result result;
2635 int n_sysno = 0;
2636
2637 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2638 {
2639 /* Not supported. */
2640 return 1;
2641 }
2642
2643 if (needed && any_count == 0)
2644 {
2645 /* Count how many syscalls are to be caught. */
2646 for (size_t i = 0; i < syscall_counts.size (); i++)
2647 {
2648 if (syscall_counts[i] != 0)
2649 n_sysno++;
2650 }
2651 }
2652
2653 if (remote_debug)
2654 {
2655 fprintf_unfiltered (gdb_stdlog,
2656 "remote_set_syscall_catchpoint "
2657 "pid %d needed %d any_count %d n_sysno %d\n",
2658 pid, needed, any_count, n_sysno);
2659 }
2660
2661 std::string built_packet;
2662 if (needed)
2663 {
2664 /* Prepare a packet with the sysno list, assuming max 8+1
2665 characters for a sysno. If the resulting packet size is too
2666 big, fallback on the non-selective packet. */
2667 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2668 built_packet.reserve (maxpktsz);
2669 built_packet = "QCatchSyscalls:1";
2670 if (any_count == 0)
2671 {
2672 /* Add in each syscall to be caught. */
2673 for (size_t i = 0; i < syscall_counts.size (); i++)
2674 {
2675 if (syscall_counts[i] != 0)
2676 string_appendf (built_packet, ";%zx", i);
2677 }
2678 }
2679 if (built_packet.size () > get_remote_packet_size ())
2680 {
2681 /* catch_packet too big. Fallback to less efficient
2682 non selective mode, with GDB doing the filtering. */
2683 catch_packet = "QCatchSyscalls:1";
2684 }
2685 else
2686 catch_packet = built_packet.c_str ();
2687 }
2688 else
2689 catch_packet = "QCatchSyscalls:0";
2690
2691 struct remote_state *rs = get_remote_state ();
2692
2693 putpkt (catch_packet);
2694 getpkt (&rs->buf, 0);
2695 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2696 if (result == PACKET_OK)
2697 return 0;
2698 else
2699 return -1;
2700 }
2701
2702 /* If 'QProgramSignals' is supported, tell the remote stub what
2703 signals it should pass through to the inferior when detaching. */
2704
2705 void
2706 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2707 {
2708 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2709 {
2710 char *packet, *p;
2711 int count = 0;
2712 struct remote_state *rs = get_remote_state ();
2713
2714 gdb_assert (signals.size () < 256);
2715 for (size_t i = 0; i < signals.size (); i++)
2716 {
2717 if (signals[i])
2718 count++;
2719 }
2720 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2721 strcpy (packet, "QProgramSignals:");
2722 p = packet + strlen (packet);
2723 for (size_t i = 0; i < signals.size (); i++)
2724 {
2725 if (signal_pass_state (i))
2726 {
2727 if (i >= 16)
2728 *p++ = tohex (i >> 4);
2729 *p++ = tohex (i & 15);
2730 if (count)
2731 *p++ = ';';
2732 else
2733 break;
2734 count--;
2735 }
2736 }
2737 *p = 0;
2738 if (!rs->last_program_signals_packet
2739 || strcmp (rs->last_program_signals_packet, packet) != 0)
2740 {
2741 putpkt (packet);
2742 getpkt (&rs->buf, 0);
2743 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2744 xfree (rs->last_program_signals_packet);
2745 rs->last_program_signals_packet = packet;
2746 }
2747 else
2748 xfree (packet);
2749 }
2750 }
2751
2752 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2753 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2754 thread. If GEN is set, set the general thread, if not, then set
2755 the step/continue thread. */
2756 void
2757 remote_target::set_thread (ptid_t ptid, int gen)
2758 {
2759 struct remote_state *rs = get_remote_state ();
2760 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2761 char *buf = rs->buf.data ();
2762 char *endbuf = buf + get_remote_packet_size ();
2763
2764 if (state == ptid)
2765 return;
2766
2767 *buf++ = 'H';
2768 *buf++ = gen ? 'g' : 'c';
2769 if (ptid == magic_null_ptid)
2770 xsnprintf (buf, endbuf - buf, "0");
2771 else if (ptid == any_thread_ptid)
2772 xsnprintf (buf, endbuf - buf, "0");
2773 else if (ptid == minus_one_ptid)
2774 xsnprintf (buf, endbuf - buf, "-1");
2775 else
2776 write_ptid (buf, endbuf, ptid);
2777 putpkt (rs->buf);
2778 getpkt (&rs->buf, 0);
2779 if (gen)
2780 rs->general_thread = ptid;
2781 else
2782 rs->continue_thread = ptid;
2783 }
2784
2785 void
2786 remote_target::set_general_thread (ptid_t ptid)
2787 {
2788 set_thread (ptid, 1);
2789 }
2790
2791 void
2792 remote_target::set_continue_thread (ptid_t ptid)
2793 {
2794 set_thread (ptid, 0);
2795 }
2796
2797 /* Change the remote current process. Which thread within the process
2798 ends up selected isn't important, as long as it is the same process
2799 as what INFERIOR_PTID points to.
2800
2801 This comes from that fact that there is no explicit notion of
2802 "selected process" in the protocol. The selected process for
2803 general operations is the process the selected general thread
2804 belongs to. */
2805
2806 void
2807 remote_target::set_general_process ()
2808 {
2809 struct remote_state *rs = get_remote_state ();
2810
2811 /* If the remote can't handle multiple processes, don't bother. */
2812 if (!remote_multi_process_p (rs))
2813 return;
2814
2815 /* We only need to change the remote current thread if it's pointing
2816 at some other process. */
2817 if (rs->general_thread.pid () != inferior_ptid.pid ())
2818 set_general_thread (inferior_ptid);
2819 }
2820
2821 \f
2822 /* Return nonzero if this is the main thread that we made up ourselves
2823 to model non-threaded targets as single-threaded. */
2824
2825 static int
2826 remote_thread_always_alive (ptid_t ptid)
2827 {
2828 if (ptid == magic_null_ptid)
2829 /* The main thread is always alive. */
2830 return 1;
2831
2832 if (ptid.pid () != 0 && ptid.lwp () == 0)
2833 /* The main thread is always alive. This can happen after a
2834 vAttach, if the remote side doesn't support
2835 multi-threading. */
2836 return 1;
2837
2838 return 0;
2839 }
2840
2841 /* Return nonzero if the thread PTID is still alive on the remote
2842 system. */
2843
2844 bool
2845 remote_target::thread_alive (ptid_t ptid)
2846 {
2847 struct remote_state *rs = get_remote_state ();
2848 char *p, *endp;
2849
2850 /* Check if this is a thread that we made up ourselves to model
2851 non-threaded targets as single-threaded. */
2852 if (remote_thread_always_alive (ptid))
2853 return 1;
2854
2855 p = rs->buf.data ();
2856 endp = p + get_remote_packet_size ();
2857
2858 *p++ = 'T';
2859 write_ptid (p, endp, ptid);
2860
2861 putpkt (rs->buf);
2862 getpkt (&rs->buf, 0);
2863 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2864 }
2865
2866 /* Return a pointer to a thread name if we know it and NULL otherwise.
2867 The thread_info object owns the memory for the name. */
2868
2869 const char *
2870 remote_target::thread_name (struct thread_info *info)
2871 {
2872 if (info->priv != NULL)
2873 {
2874 const std::string &name = get_remote_thread_info (info)->name;
2875 return !name.empty () ? name.c_str () : NULL;
2876 }
2877
2878 return NULL;
2879 }
2880
2881 /* About these extended threadlist and threadinfo packets. They are
2882 variable length packets but, the fields within them are often fixed
2883 length. They are redundant enough to send over UDP as is the
2884 remote protocol in general. There is a matching unit test module
2885 in libstub. */
2886
2887 /* WARNING: This threadref data structure comes from the remote O.S.,
2888 libstub protocol encoding, and remote.c. It is not particularly
2889 changable. */
2890
2891 /* Right now, the internal structure is int. We want it to be bigger.
2892 Plan to fix this. */
2893
2894 typedef int gdb_threadref; /* Internal GDB thread reference. */
2895
2896 /* gdb_ext_thread_info is an internal GDB data structure which is
2897 equivalent to the reply of the remote threadinfo packet. */
2898
2899 struct gdb_ext_thread_info
2900 {
2901 threadref threadid; /* External form of thread reference. */
2902 int active; /* Has state interesting to GDB?
2903 regs, stack. */
2904 char display[256]; /* Brief state display, name,
2905 blocked/suspended. */
2906 char shortname[32]; /* To be used to name threads. */
2907 char more_display[256]; /* Long info, statistics, queue depth,
2908 whatever. */
2909 };
2910
2911 /* The volume of remote transfers can be limited by submitting
2912 a mask containing bits specifying the desired information.
2913 Use a union of these values as the 'selection' parameter to
2914 get_thread_info. FIXME: Make these TAG names more thread specific. */
2915
2916 #define TAG_THREADID 1
2917 #define TAG_EXISTS 2
2918 #define TAG_DISPLAY 4
2919 #define TAG_THREADNAME 8
2920 #define TAG_MOREDISPLAY 16
2921
2922 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2923
2924 static char *unpack_nibble (char *buf, int *val);
2925
2926 static char *unpack_byte (char *buf, int *value);
2927
2928 static char *pack_int (char *buf, int value);
2929
2930 static char *unpack_int (char *buf, int *value);
2931
2932 static char *unpack_string (char *src, char *dest, int length);
2933
2934 static char *pack_threadid (char *pkt, threadref *id);
2935
2936 static char *unpack_threadid (char *inbuf, threadref *id);
2937
2938 void int_to_threadref (threadref *id, int value);
2939
2940 static int threadref_to_int (threadref *ref);
2941
2942 static void copy_threadref (threadref *dest, threadref *src);
2943
2944 static int threadmatch (threadref *dest, threadref *src);
2945
2946 static char *pack_threadinfo_request (char *pkt, int mode,
2947 threadref *id);
2948
2949 static char *pack_threadlist_request (char *pkt, int startflag,
2950 int threadcount,
2951 threadref *nextthread);
2952
2953 static int remote_newthread_step (threadref *ref, void *context);
2954
2955
2956 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2957 buffer we're allowed to write to. Returns
2958 BUF+CHARACTERS_WRITTEN. */
2959
2960 char *
2961 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2962 {
2963 int pid, tid;
2964 struct remote_state *rs = get_remote_state ();
2965
2966 if (remote_multi_process_p (rs))
2967 {
2968 pid = ptid.pid ();
2969 if (pid < 0)
2970 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2971 else
2972 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2973 }
2974 tid = ptid.lwp ();
2975 if (tid < 0)
2976 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2977 else
2978 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2979
2980 return buf;
2981 }
2982
2983 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2984 last parsed char. Returns null_ptid if no thread id is found, and
2985 throws an error if the thread id has an invalid format. */
2986
2987 static ptid_t
2988 read_ptid (const char *buf, const char **obuf)
2989 {
2990 const char *p = buf;
2991 const char *pp;
2992 ULONGEST pid = 0, tid = 0;
2993
2994 if (*p == 'p')
2995 {
2996 /* Multi-process ptid. */
2997 pp = unpack_varlen_hex (p + 1, &pid);
2998 if (*pp != '.')
2999 error (_("invalid remote ptid: %s"), p);
3000
3001 p = pp;
3002 pp = unpack_varlen_hex (p + 1, &tid);
3003 if (obuf)
3004 *obuf = pp;
3005 return ptid_t (pid, tid, 0);
3006 }
3007
3008 /* No multi-process. Just a tid. */
3009 pp = unpack_varlen_hex (p, &tid);
3010
3011 /* Return null_ptid when no thread id is found. */
3012 if (p == pp)
3013 {
3014 if (obuf)
3015 *obuf = pp;
3016 return null_ptid;
3017 }
3018
3019 /* Since the stub is not sending a process id, then default to
3020 what's in inferior_ptid, unless it's null at this point. If so,
3021 then since there's no way to know the pid of the reported
3022 threads, use the magic number. */
3023 if (inferior_ptid == null_ptid)
3024 pid = magic_null_ptid.pid ();
3025 else
3026 pid = inferior_ptid.pid ();
3027
3028 if (obuf)
3029 *obuf = pp;
3030 return ptid_t (pid, tid, 0);
3031 }
3032
3033 static int
3034 stubhex (int ch)
3035 {
3036 if (ch >= 'a' && ch <= 'f')
3037 return ch - 'a' + 10;
3038 if (ch >= '0' && ch <= '9')
3039 return ch - '0';
3040 if (ch >= 'A' && ch <= 'F')
3041 return ch - 'A' + 10;
3042 return -1;
3043 }
3044
3045 static int
3046 stub_unpack_int (char *buff, int fieldlength)
3047 {
3048 int nibble;
3049 int retval = 0;
3050
3051 while (fieldlength)
3052 {
3053 nibble = stubhex (*buff++);
3054 retval |= nibble;
3055 fieldlength--;
3056 if (fieldlength)
3057 retval = retval << 4;
3058 }
3059 return retval;
3060 }
3061
3062 static char *
3063 unpack_nibble (char *buf, int *val)
3064 {
3065 *val = fromhex (*buf++);
3066 return buf;
3067 }
3068
3069 static char *
3070 unpack_byte (char *buf, int *value)
3071 {
3072 *value = stub_unpack_int (buf, 2);
3073 return buf + 2;
3074 }
3075
3076 static char *
3077 pack_int (char *buf, int value)
3078 {
3079 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3080 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3081 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3082 buf = pack_hex_byte (buf, (value & 0xff));
3083 return buf;
3084 }
3085
3086 static char *
3087 unpack_int (char *buf, int *value)
3088 {
3089 *value = stub_unpack_int (buf, 8);
3090 return buf + 8;
3091 }
3092
3093 #if 0 /* Currently unused, uncomment when needed. */
3094 static char *pack_string (char *pkt, char *string);
3095
3096 static char *
3097 pack_string (char *pkt, char *string)
3098 {
3099 char ch;
3100 int len;
3101
3102 len = strlen (string);
3103 if (len > 200)
3104 len = 200; /* Bigger than most GDB packets, junk??? */
3105 pkt = pack_hex_byte (pkt, len);
3106 while (len-- > 0)
3107 {
3108 ch = *string++;
3109 if ((ch == '\0') || (ch == '#'))
3110 ch = '*'; /* Protect encapsulation. */
3111 *pkt++ = ch;
3112 }
3113 return pkt;
3114 }
3115 #endif /* 0 (unused) */
3116
3117 static char *
3118 unpack_string (char *src, char *dest, int length)
3119 {
3120 while (length--)
3121 *dest++ = *src++;
3122 *dest = '\0';
3123 return src;
3124 }
3125
3126 static char *
3127 pack_threadid (char *pkt, threadref *id)
3128 {
3129 char *limit;
3130 unsigned char *altid;
3131
3132 altid = (unsigned char *) id;
3133 limit = pkt + BUF_THREAD_ID_SIZE;
3134 while (pkt < limit)
3135 pkt = pack_hex_byte (pkt, *altid++);
3136 return pkt;
3137 }
3138
3139
3140 static char *
3141 unpack_threadid (char *inbuf, threadref *id)
3142 {
3143 char *altref;
3144 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3145 int x, y;
3146
3147 altref = (char *) id;
3148
3149 while (inbuf < limit)
3150 {
3151 x = stubhex (*inbuf++);
3152 y = stubhex (*inbuf++);
3153 *altref++ = (x << 4) | y;
3154 }
3155 return inbuf;
3156 }
3157
3158 /* Externally, threadrefs are 64 bits but internally, they are still
3159 ints. This is due to a mismatch of specifications. We would like
3160 to use 64bit thread references internally. This is an adapter
3161 function. */
3162
3163 void
3164 int_to_threadref (threadref *id, int value)
3165 {
3166 unsigned char *scan;
3167
3168 scan = (unsigned char *) id;
3169 {
3170 int i = 4;
3171 while (i--)
3172 *scan++ = 0;
3173 }
3174 *scan++ = (value >> 24) & 0xff;
3175 *scan++ = (value >> 16) & 0xff;
3176 *scan++ = (value >> 8) & 0xff;
3177 *scan++ = (value & 0xff);
3178 }
3179
3180 static int
3181 threadref_to_int (threadref *ref)
3182 {
3183 int i, value = 0;
3184 unsigned char *scan;
3185
3186 scan = *ref;
3187 scan += 4;
3188 i = 4;
3189 while (i-- > 0)
3190 value = (value << 8) | ((*scan++) & 0xff);
3191 return value;
3192 }
3193
3194 static void
3195 copy_threadref (threadref *dest, threadref *src)
3196 {
3197 int i;
3198 unsigned char *csrc, *cdest;
3199
3200 csrc = (unsigned char *) src;
3201 cdest = (unsigned char *) dest;
3202 i = 8;
3203 while (i--)
3204 *cdest++ = *csrc++;
3205 }
3206
3207 static int
3208 threadmatch (threadref *dest, threadref *src)
3209 {
3210 /* Things are broken right now, so just assume we got a match. */
3211 #if 0
3212 unsigned char *srcp, *destp;
3213 int i, result;
3214 srcp = (char *) src;
3215 destp = (char *) dest;
3216
3217 result = 1;
3218 while (i-- > 0)
3219 result &= (*srcp++ == *destp++) ? 1 : 0;
3220 return result;
3221 #endif
3222 return 1;
3223 }
3224
3225 /*
3226 threadid:1, # always request threadid
3227 context_exists:2,
3228 display:4,
3229 unique_name:8,
3230 more_display:16
3231 */
3232
3233 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3234
3235 static char *
3236 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3237 {
3238 *pkt++ = 'q'; /* Info Query */
3239 *pkt++ = 'P'; /* process or thread info */
3240 pkt = pack_int (pkt, mode); /* mode */
3241 pkt = pack_threadid (pkt, id); /* threadid */
3242 *pkt = '\0'; /* terminate */
3243 return pkt;
3244 }
3245
3246 /* These values tag the fields in a thread info response packet. */
3247 /* Tagging the fields allows us to request specific fields and to
3248 add more fields as time goes by. */
3249
3250 #define TAG_THREADID 1 /* Echo the thread identifier. */
3251 #define TAG_EXISTS 2 /* Is this process defined enough to
3252 fetch registers and its stack? */
3253 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3254 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3255 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3256 the process. */
3257
3258 int
3259 remote_target::remote_unpack_thread_info_response (char *pkt,
3260 threadref *expectedref,
3261 gdb_ext_thread_info *info)
3262 {
3263 struct remote_state *rs = get_remote_state ();
3264 int mask, length;
3265 int tag;
3266 threadref ref;
3267 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3268 int retval = 1;
3269
3270 /* info->threadid = 0; FIXME: implement zero_threadref. */
3271 info->active = 0;
3272 info->display[0] = '\0';
3273 info->shortname[0] = '\0';
3274 info->more_display[0] = '\0';
3275
3276 /* Assume the characters indicating the packet type have been
3277 stripped. */
3278 pkt = unpack_int (pkt, &mask); /* arg mask */
3279 pkt = unpack_threadid (pkt, &ref);
3280
3281 if (mask == 0)
3282 warning (_("Incomplete response to threadinfo request."));
3283 if (!threadmatch (&ref, expectedref))
3284 { /* This is an answer to a different request. */
3285 warning (_("ERROR RMT Thread info mismatch."));
3286 return 0;
3287 }
3288 copy_threadref (&info->threadid, &ref);
3289
3290 /* Loop on tagged fields , try to bail if something goes wrong. */
3291
3292 /* Packets are terminated with nulls. */
3293 while ((pkt < limit) && mask && *pkt)
3294 {
3295 pkt = unpack_int (pkt, &tag); /* tag */
3296 pkt = unpack_byte (pkt, &length); /* length */
3297 if (!(tag & mask)) /* Tags out of synch with mask. */
3298 {
3299 warning (_("ERROR RMT: threadinfo tag mismatch."));
3300 retval = 0;
3301 break;
3302 }
3303 if (tag == TAG_THREADID)
3304 {
3305 if (length != 16)
3306 {
3307 warning (_("ERROR RMT: length of threadid is not 16."));
3308 retval = 0;
3309 break;
3310 }
3311 pkt = unpack_threadid (pkt, &ref);
3312 mask = mask & ~TAG_THREADID;
3313 continue;
3314 }
3315 if (tag == TAG_EXISTS)
3316 {
3317 info->active = stub_unpack_int (pkt, length);
3318 pkt += length;
3319 mask = mask & ~(TAG_EXISTS);
3320 if (length > 8)
3321 {
3322 warning (_("ERROR RMT: 'exists' length too long."));
3323 retval = 0;
3324 break;
3325 }
3326 continue;
3327 }
3328 if (tag == TAG_THREADNAME)
3329 {
3330 pkt = unpack_string (pkt, &info->shortname[0], length);
3331 mask = mask & ~TAG_THREADNAME;
3332 continue;
3333 }
3334 if (tag == TAG_DISPLAY)
3335 {
3336 pkt = unpack_string (pkt, &info->display[0], length);
3337 mask = mask & ~TAG_DISPLAY;
3338 continue;
3339 }
3340 if (tag == TAG_MOREDISPLAY)
3341 {
3342 pkt = unpack_string (pkt, &info->more_display[0], length);
3343 mask = mask & ~TAG_MOREDISPLAY;
3344 continue;
3345 }
3346 warning (_("ERROR RMT: unknown thread info tag."));
3347 break; /* Not a tag we know about. */
3348 }
3349 return retval;
3350 }
3351
3352 int
3353 remote_target::remote_get_threadinfo (threadref *threadid,
3354 int fieldset,
3355 gdb_ext_thread_info *info)
3356 {
3357 struct remote_state *rs = get_remote_state ();
3358 int result;
3359
3360 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3361 putpkt (rs->buf);
3362 getpkt (&rs->buf, 0);
3363
3364 if (rs->buf[0] == '\0')
3365 return 0;
3366
3367 result = remote_unpack_thread_info_response (&rs->buf[2],
3368 threadid, info);
3369 return result;
3370 }
3371
3372 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3373
3374 static char *
3375 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3376 threadref *nextthread)
3377 {
3378 *pkt++ = 'q'; /* info query packet */
3379 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3380 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3381 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3382 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3383 *pkt = '\0';
3384 return pkt;
3385 }
3386
3387 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3388
3389 int
3390 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3391 threadref *original_echo,
3392 threadref *resultlist,
3393 int *doneflag)
3394 {
3395 struct remote_state *rs = get_remote_state ();
3396 char *limit;
3397 int count, resultcount, done;
3398
3399 resultcount = 0;
3400 /* Assume the 'q' and 'M chars have been stripped. */
3401 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3402 /* done parse past here */
3403 pkt = unpack_byte (pkt, &count); /* count field */
3404 pkt = unpack_nibble (pkt, &done);
3405 /* The first threadid is the argument threadid. */
3406 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3407 while ((count-- > 0) && (pkt < limit))
3408 {
3409 pkt = unpack_threadid (pkt, resultlist++);
3410 if (resultcount++ >= result_limit)
3411 break;
3412 }
3413 if (doneflag)
3414 *doneflag = done;
3415 return resultcount;
3416 }
3417
3418 /* Fetch the next batch of threads from the remote. Returns -1 if the
3419 qL packet is not supported, 0 on error and 1 on success. */
3420
3421 int
3422 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3423 int result_limit, int *done, int *result_count,
3424 threadref *threadlist)
3425 {
3426 struct remote_state *rs = get_remote_state ();
3427 int result = 1;
3428
3429 /* Truncate result limit to be smaller than the packet size. */
3430 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3431 >= get_remote_packet_size ())
3432 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3433
3434 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3435 nextthread);
3436 putpkt (rs->buf);
3437 getpkt (&rs->buf, 0);
3438 if (rs->buf[0] == '\0')
3439 {
3440 /* Packet not supported. */
3441 return -1;
3442 }
3443
3444 *result_count =
3445 parse_threadlist_response (&rs->buf[2], result_limit,
3446 &rs->echo_nextthread, threadlist, done);
3447
3448 if (!threadmatch (&rs->echo_nextthread, nextthread))
3449 {
3450 /* FIXME: This is a good reason to drop the packet. */
3451 /* Possibly, there is a duplicate response. */
3452 /* Possibilities :
3453 retransmit immediatly - race conditions
3454 retransmit after timeout - yes
3455 exit
3456 wait for packet, then exit
3457 */
3458 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3459 return 0; /* I choose simply exiting. */
3460 }
3461 if (*result_count <= 0)
3462 {
3463 if (*done != 1)
3464 {
3465 warning (_("RMT ERROR : failed to get remote thread list."));
3466 result = 0;
3467 }
3468 return result; /* break; */
3469 }
3470 if (*result_count > result_limit)
3471 {
3472 *result_count = 0;
3473 warning (_("RMT ERROR: threadlist response longer than requested."));
3474 return 0;
3475 }
3476 return result;
3477 }
3478
3479 /* Fetch the list of remote threads, with the qL packet, and call
3480 STEPFUNCTION for each thread found. Stops iterating and returns 1
3481 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3482 STEPFUNCTION returns false. If the packet is not supported,
3483 returns -1. */
3484
3485 int
3486 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3487 void *context, int looplimit)
3488 {
3489 struct remote_state *rs = get_remote_state ();
3490 int done, i, result_count;
3491 int startflag = 1;
3492 int result = 1;
3493 int loopcount = 0;
3494
3495 done = 0;
3496 while (!done)
3497 {
3498 if (loopcount++ > looplimit)
3499 {
3500 result = 0;
3501 warning (_("Remote fetch threadlist -infinite loop-."));
3502 break;
3503 }
3504 result = remote_get_threadlist (startflag, &rs->nextthread,
3505 MAXTHREADLISTRESULTS,
3506 &done, &result_count,
3507 rs->resultthreadlist);
3508 if (result <= 0)
3509 break;
3510 /* Clear for later iterations. */
3511 startflag = 0;
3512 /* Setup to resume next batch of thread references, set nextthread. */
3513 if (result_count >= 1)
3514 copy_threadref (&rs->nextthread,
3515 &rs->resultthreadlist[result_count - 1]);
3516 i = 0;
3517 while (result_count--)
3518 {
3519 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3520 {
3521 result = 0;
3522 break;
3523 }
3524 }
3525 }
3526 return result;
3527 }
3528
3529 /* A thread found on the remote target. */
3530
3531 struct thread_item
3532 {
3533 explicit thread_item (ptid_t ptid_)
3534 : ptid (ptid_)
3535 {}
3536
3537 thread_item (thread_item &&other) = default;
3538 thread_item &operator= (thread_item &&other) = default;
3539
3540 DISABLE_COPY_AND_ASSIGN (thread_item);
3541
3542 /* The thread's PTID. */
3543 ptid_t ptid;
3544
3545 /* The thread's extra info. */
3546 std::string extra;
3547
3548 /* The thread's name. */
3549 std::string name;
3550
3551 /* The core the thread was running on. -1 if not known. */
3552 int core = -1;
3553
3554 /* The thread handle associated with the thread. */
3555 gdb::byte_vector thread_handle;
3556 };
3557
3558 /* Context passed around to the various methods listing remote
3559 threads. As new threads are found, they're added to the ITEMS
3560 vector. */
3561
3562 struct threads_listing_context
3563 {
3564 /* Return true if this object contains an entry for a thread with ptid
3565 PTID. */
3566
3567 bool contains_thread (ptid_t ptid) const
3568 {
3569 auto match_ptid = [&] (const thread_item &item)
3570 {
3571 return item.ptid == ptid;
3572 };
3573
3574 auto it = std::find_if (this->items.begin (),
3575 this->items.end (),
3576 match_ptid);
3577
3578 return it != this->items.end ();
3579 }
3580
3581 /* Remove the thread with ptid PTID. */
3582
3583 void remove_thread (ptid_t ptid)
3584 {
3585 auto match_ptid = [&] (const thread_item &item)
3586 {
3587 return item.ptid == ptid;
3588 };
3589
3590 auto it = std::remove_if (this->items.begin (),
3591 this->items.end (),
3592 match_ptid);
3593
3594 if (it != this->items.end ())
3595 this->items.erase (it);
3596 }
3597
3598 /* The threads found on the remote target. */
3599 std::vector<thread_item> items;
3600 };
3601
3602 static int
3603 remote_newthread_step (threadref *ref, void *data)
3604 {
3605 struct threads_listing_context *context
3606 = (struct threads_listing_context *) data;
3607 int pid = inferior_ptid.pid ();
3608 int lwp = threadref_to_int (ref);
3609 ptid_t ptid (pid, lwp);
3610
3611 context->items.emplace_back (ptid);
3612
3613 return 1; /* continue iterator */
3614 }
3615
3616 #define CRAZY_MAX_THREADS 1000
3617
3618 ptid_t
3619 remote_target::remote_current_thread (ptid_t oldpid)
3620 {
3621 struct remote_state *rs = get_remote_state ();
3622
3623 putpkt ("qC");
3624 getpkt (&rs->buf, 0);
3625 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3626 {
3627 const char *obuf;
3628 ptid_t result;
3629
3630 result = read_ptid (&rs->buf[2], &obuf);
3631 if (*obuf != '\0' && remote_debug)
3632 fprintf_unfiltered (gdb_stdlog,
3633 "warning: garbage in qC reply\n");
3634
3635 return result;
3636 }
3637 else
3638 return oldpid;
3639 }
3640
3641 /* List remote threads using the deprecated qL packet. */
3642
3643 int
3644 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3645 {
3646 if (remote_threadlist_iterator (remote_newthread_step, context,
3647 CRAZY_MAX_THREADS) >= 0)
3648 return 1;
3649
3650 return 0;
3651 }
3652
3653 #if defined(HAVE_LIBEXPAT)
3654
3655 static void
3656 start_thread (struct gdb_xml_parser *parser,
3657 const struct gdb_xml_element *element,
3658 void *user_data,
3659 std::vector<gdb_xml_value> &attributes)
3660 {
3661 struct threads_listing_context *data
3662 = (struct threads_listing_context *) user_data;
3663 struct gdb_xml_value *attr;
3664
3665 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3666 ptid_t ptid = read_ptid (id, NULL);
3667
3668 data->items.emplace_back (ptid);
3669 thread_item &item = data->items.back ();
3670
3671 attr = xml_find_attribute (attributes, "core");
3672 if (attr != NULL)
3673 item.core = *(ULONGEST *) attr->value.get ();
3674
3675 attr = xml_find_attribute (attributes, "name");
3676 if (attr != NULL)
3677 item.name = (const char *) attr->value.get ();
3678
3679 attr = xml_find_attribute (attributes, "handle");
3680 if (attr != NULL)
3681 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3682 }
3683
3684 static void
3685 end_thread (struct gdb_xml_parser *parser,
3686 const struct gdb_xml_element *element,
3687 void *user_data, const char *body_text)
3688 {
3689 struct threads_listing_context *data
3690 = (struct threads_listing_context *) user_data;
3691
3692 if (body_text != NULL && *body_text != '\0')
3693 data->items.back ().extra = body_text;
3694 }
3695
3696 const struct gdb_xml_attribute thread_attributes[] = {
3697 { "id", GDB_XML_AF_NONE, NULL, NULL },
3698 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3699 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3700 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3701 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3702 };
3703
3704 const struct gdb_xml_element thread_children[] = {
3705 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3706 };
3707
3708 const struct gdb_xml_element threads_children[] = {
3709 { "thread", thread_attributes, thread_children,
3710 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3711 start_thread, end_thread },
3712 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3713 };
3714
3715 const struct gdb_xml_element threads_elements[] = {
3716 { "threads", NULL, threads_children,
3717 GDB_XML_EF_NONE, NULL, NULL },
3718 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3719 };
3720
3721 #endif
3722
3723 /* List remote threads using qXfer:threads:read. */
3724
3725 int
3726 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3727 {
3728 #if defined(HAVE_LIBEXPAT)
3729 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3730 {
3731 gdb::optional<gdb::char_vector> xml
3732 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3733
3734 if (xml && (*xml)[0] != '\0')
3735 {
3736 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3737 threads_elements, xml->data (), context);
3738 }
3739
3740 return 1;
3741 }
3742 #endif
3743
3744 return 0;
3745 }
3746
3747 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3748
3749 int
3750 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3751 {
3752 struct remote_state *rs = get_remote_state ();
3753
3754 if (rs->use_threadinfo_query)
3755 {
3756 const char *bufp;
3757
3758 putpkt ("qfThreadInfo");
3759 getpkt (&rs->buf, 0);
3760 bufp = rs->buf.data ();
3761 if (bufp[0] != '\0') /* q packet recognized */
3762 {
3763 while (*bufp++ == 'm') /* reply contains one or more TID */
3764 {
3765 do
3766 {
3767 ptid_t ptid = read_ptid (bufp, &bufp);
3768 context->items.emplace_back (ptid);
3769 }
3770 while (*bufp++ == ','); /* comma-separated list */
3771 putpkt ("qsThreadInfo");
3772 getpkt (&rs->buf, 0);
3773 bufp = rs->buf.data ();
3774 }
3775 return 1;
3776 }
3777 else
3778 {
3779 /* Packet not recognized. */
3780 rs->use_threadinfo_query = 0;
3781 }
3782 }
3783
3784 return 0;
3785 }
3786
3787 /* Implement the to_update_thread_list function for the remote
3788 targets. */
3789
3790 void
3791 remote_target::update_thread_list ()
3792 {
3793 struct threads_listing_context context;
3794 int got_list = 0;
3795
3796 /* We have a few different mechanisms to fetch the thread list. Try
3797 them all, starting with the most preferred one first, falling
3798 back to older methods. */
3799 if (remote_get_threads_with_qxfer (&context)
3800 || remote_get_threads_with_qthreadinfo (&context)
3801 || remote_get_threads_with_ql (&context))
3802 {
3803 got_list = 1;
3804
3805 if (context.items.empty ()
3806 && remote_thread_always_alive (inferior_ptid))
3807 {
3808 /* Some targets don't really support threads, but still
3809 reply an (empty) thread list in response to the thread
3810 listing packets, instead of replying "packet not
3811 supported". Exit early so we don't delete the main
3812 thread. */
3813 return;
3814 }
3815
3816 /* CONTEXT now holds the current thread list on the remote
3817 target end. Delete GDB-side threads no longer found on the
3818 target. */
3819 for (thread_info *tp : all_threads_safe ())
3820 {
3821 if (tp->inf->process_target () != this)
3822 continue;
3823
3824 if (!context.contains_thread (tp->ptid))
3825 {
3826 /* Not found. */
3827 delete_thread (tp);
3828 }
3829 }
3830
3831 /* Remove any unreported fork child threads from CONTEXT so
3832 that we don't interfere with follow fork, which is where
3833 creation of such threads is handled. */
3834 remove_new_fork_children (&context);
3835
3836 /* And now add threads we don't know about yet to our list. */
3837 for (thread_item &item : context.items)
3838 {
3839 if (item.ptid != null_ptid)
3840 {
3841 /* In non-stop mode, we assume new found threads are
3842 executing until proven otherwise with a stop reply.
3843 In all-stop, we can only get here if all threads are
3844 stopped. */
3845 int executing = target_is_non_stop_p () ? 1 : 0;
3846
3847 remote_notice_new_inferior (item.ptid, executing);
3848
3849 thread_info *tp = find_thread_ptid (this, item.ptid);
3850 remote_thread_info *info = get_remote_thread_info (tp);
3851 info->core = item.core;
3852 info->extra = std::move (item.extra);
3853 info->name = std::move (item.name);
3854 info->thread_handle = std::move (item.thread_handle);
3855 }
3856 }
3857 }
3858
3859 if (!got_list)
3860 {
3861 /* If no thread listing method is supported, then query whether
3862 each known thread is alive, one by one, with the T packet.
3863 If the target doesn't support threads at all, then this is a
3864 no-op. See remote_thread_alive. */
3865 prune_threads ();
3866 }
3867 }
3868
3869 /*
3870 * Collect a descriptive string about the given thread.
3871 * The target may say anything it wants to about the thread
3872 * (typically info about its blocked / runnable state, name, etc.).
3873 * This string will appear in the info threads display.
3874 *
3875 * Optional: targets are not required to implement this function.
3876 */
3877
3878 const char *
3879 remote_target::extra_thread_info (thread_info *tp)
3880 {
3881 struct remote_state *rs = get_remote_state ();
3882 int set;
3883 threadref id;
3884 struct gdb_ext_thread_info threadinfo;
3885
3886 if (rs->remote_desc == 0) /* paranoia */
3887 internal_error (__FILE__, __LINE__,
3888 _("remote_threads_extra_info"));
3889
3890 if (tp->ptid == magic_null_ptid
3891 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3892 /* This is the main thread which was added by GDB. The remote
3893 server doesn't know about it. */
3894 return NULL;
3895
3896 std::string &extra = get_remote_thread_info (tp)->extra;
3897
3898 /* If already have cached info, use it. */
3899 if (!extra.empty ())
3900 return extra.c_str ();
3901
3902 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3903 {
3904 /* If we're using qXfer:threads:read, then the extra info is
3905 included in the XML. So if we didn't have anything cached,
3906 it's because there's really no extra info. */
3907 return NULL;
3908 }
3909
3910 if (rs->use_threadextra_query)
3911 {
3912 char *b = rs->buf.data ();
3913 char *endb = b + get_remote_packet_size ();
3914
3915 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3916 b += strlen (b);
3917 write_ptid (b, endb, tp->ptid);
3918
3919 putpkt (rs->buf);
3920 getpkt (&rs->buf, 0);
3921 if (rs->buf[0] != 0)
3922 {
3923 extra.resize (strlen (rs->buf.data ()) / 2);
3924 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3925 return extra.c_str ();
3926 }
3927 }
3928
3929 /* If the above query fails, fall back to the old method. */
3930 rs->use_threadextra_query = 0;
3931 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3932 | TAG_MOREDISPLAY | TAG_DISPLAY;
3933 int_to_threadref (&id, tp->ptid.lwp ());
3934 if (remote_get_threadinfo (&id, set, &threadinfo))
3935 if (threadinfo.active)
3936 {
3937 if (*threadinfo.shortname)
3938 string_appendf (extra, " Name: %s", threadinfo.shortname);
3939 if (*threadinfo.display)
3940 {
3941 if (!extra.empty ())
3942 extra += ',';
3943 string_appendf (extra, " State: %s", threadinfo.display);
3944 }
3945 if (*threadinfo.more_display)
3946 {
3947 if (!extra.empty ())
3948 extra += ',';
3949 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3950 }
3951 return extra.c_str ();
3952 }
3953 return NULL;
3954 }
3955 \f
3956
3957 bool
3958 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3959 struct static_tracepoint_marker *marker)
3960 {
3961 struct remote_state *rs = get_remote_state ();
3962 char *p = rs->buf.data ();
3963
3964 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3965 p += strlen (p);
3966 p += hexnumstr (p, addr);
3967 putpkt (rs->buf);
3968 getpkt (&rs->buf, 0);
3969 p = rs->buf.data ();
3970
3971 if (*p == 'E')
3972 error (_("Remote failure reply: %s"), p);
3973
3974 if (*p++ == 'm')
3975 {
3976 parse_static_tracepoint_marker_definition (p, NULL, marker);
3977 return true;
3978 }
3979
3980 return false;
3981 }
3982
3983 std::vector<static_tracepoint_marker>
3984 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3985 {
3986 struct remote_state *rs = get_remote_state ();
3987 std::vector<static_tracepoint_marker> markers;
3988 const char *p;
3989 static_tracepoint_marker marker;
3990
3991 /* Ask for a first packet of static tracepoint marker
3992 definition. */
3993 putpkt ("qTfSTM");
3994 getpkt (&rs->buf, 0);
3995 p = rs->buf.data ();
3996 if (*p == 'E')
3997 error (_("Remote failure reply: %s"), p);
3998
3999 while (*p++ == 'm')
4000 {
4001 do
4002 {
4003 parse_static_tracepoint_marker_definition (p, &p, &marker);
4004
4005 if (strid == NULL || marker.str_id == strid)
4006 markers.push_back (std::move (marker));
4007 }
4008 while (*p++ == ','); /* comma-separated list */
4009 /* Ask for another packet of static tracepoint definition. */
4010 putpkt ("qTsSTM");
4011 getpkt (&rs->buf, 0);
4012 p = rs->buf.data ();
4013 }
4014
4015 return markers;
4016 }
4017
4018 \f
4019 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4020
4021 ptid_t
4022 remote_target::get_ada_task_ptid (long lwp, long thread)
4023 {
4024 return ptid_t (inferior_ptid.pid (), lwp, 0);
4025 }
4026 \f
4027
4028 /* Restart the remote side; this is an extended protocol operation. */
4029
4030 void
4031 remote_target::extended_remote_restart ()
4032 {
4033 struct remote_state *rs = get_remote_state ();
4034
4035 /* Send the restart command; for reasons I don't understand the
4036 remote side really expects a number after the "R". */
4037 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4038 putpkt (rs->buf);
4039
4040 remote_fileio_reset ();
4041 }
4042 \f
4043 /* Clean up connection to a remote debugger. */
4044
4045 void
4046 remote_target::close ()
4047 {
4048 /* Make sure we leave stdin registered in the event loop. */
4049 terminal_ours ();
4050
4051 trace_reset_local_state ();
4052
4053 delete this;
4054 }
4055
4056 remote_target::~remote_target ()
4057 {
4058 struct remote_state *rs = get_remote_state ();
4059
4060 /* Check for NULL because we may get here with a partially
4061 constructed target/connection. */
4062 if (rs->remote_desc == nullptr)
4063 return;
4064
4065 serial_close (rs->remote_desc);
4066
4067 /* We are destroying the remote target, so we should discard
4068 everything of this target. */
4069 discard_pending_stop_replies_in_queue ();
4070
4071 if (rs->remote_async_inferior_event_token)
4072 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4073
4074 delete rs->notif_state;
4075 }
4076
4077 /* Query the remote side for the text, data and bss offsets. */
4078
4079 void
4080 remote_target::get_offsets ()
4081 {
4082 struct remote_state *rs = get_remote_state ();
4083 char *buf;
4084 char *ptr;
4085 int lose, num_segments = 0, do_sections, do_segments;
4086 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4087 struct symfile_segment_data *data;
4088
4089 if (symfile_objfile == NULL)
4090 return;
4091
4092 putpkt ("qOffsets");
4093 getpkt (&rs->buf, 0);
4094 buf = rs->buf.data ();
4095
4096 if (buf[0] == '\000')
4097 return; /* Return silently. Stub doesn't support
4098 this command. */
4099 if (buf[0] == 'E')
4100 {
4101 warning (_("Remote failure reply: %s"), buf);
4102 return;
4103 }
4104
4105 /* Pick up each field in turn. This used to be done with scanf, but
4106 scanf will make trouble if CORE_ADDR size doesn't match
4107 conversion directives correctly. The following code will work
4108 with any size of CORE_ADDR. */
4109 text_addr = data_addr = bss_addr = 0;
4110 ptr = buf;
4111 lose = 0;
4112
4113 if (startswith (ptr, "Text="))
4114 {
4115 ptr += 5;
4116 /* Don't use strtol, could lose on big values. */
4117 while (*ptr && *ptr != ';')
4118 text_addr = (text_addr << 4) + fromhex (*ptr++);
4119
4120 if (startswith (ptr, ";Data="))
4121 {
4122 ptr += 6;
4123 while (*ptr && *ptr != ';')
4124 data_addr = (data_addr << 4) + fromhex (*ptr++);
4125 }
4126 else
4127 lose = 1;
4128
4129 if (!lose && startswith (ptr, ";Bss="))
4130 {
4131 ptr += 5;
4132 while (*ptr && *ptr != ';')
4133 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4134
4135 if (bss_addr != data_addr)
4136 warning (_("Target reported unsupported offsets: %s"), buf);
4137 }
4138 else
4139 lose = 1;
4140 }
4141 else if (startswith (ptr, "TextSeg="))
4142 {
4143 ptr += 8;
4144 /* Don't use strtol, could lose on big values. */
4145 while (*ptr && *ptr != ';')
4146 text_addr = (text_addr << 4) + fromhex (*ptr++);
4147 num_segments = 1;
4148
4149 if (startswith (ptr, ";DataSeg="))
4150 {
4151 ptr += 9;
4152 while (*ptr && *ptr != ';')
4153 data_addr = (data_addr << 4) + fromhex (*ptr++);
4154 num_segments++;
4155 }
4156 }
4157 else
4158 lose = 1;
4159
4160 if (lose)
4161 error (_("Malformed response to offset query, %s"), buf);
4162 else if (*ptr != '\0')
4163 warning (_("Target reported unsupported offsets: %s"), buf);
4164
4165 section_offsets offs = symfile_objfile->section_offsets;
4166
4167 data = get_symfile_segment_data (symfile_objfile->obfd);
4168 do_segments = (data != NULL);
4169 do_sections = num_segments == 0;
4170
4171 if (num_segments > 0)
4172 {
4173 segments[0] = text_addr;
4174 segments[1] = data_addr;
4175 }
4176 /* If we have two segments, we can still try to relocate everything
4177 by assuming that the .text and .data offsets apply to the whole
4178 text and data segments. Convert the offsets given in the packet
4179 to base addresses for symfile_map_offsets_to_segments. */
4180 else if (data && data->num_segments == 2)
4181 {
4182 segments[0] = data->segment_bases[0] + text_addr;
4183 segments[1] = data->segment_bases[1] + data_addr;
4184 num_segments = 2;
4185 }
4186 /* If the object file has only one segment, assume that it is text
4187 rather than data; main programs with no writable data are rare,
4188 but programs with no code are useless. Of course the code might
4189 have ended up in the data segment... to detect that we would need
4190 the permissions here. */
4191 else if (data && data->num_segments == 1)
4192 {
4193 segments[0] = data->segment_bases[0] + text_addr;
4194 num_segments = 1;
4195 }
4196 /* There's no way to relocate by segment. */
4197 else
4198 do_segments = 0;
4199
4200 if (do_segments)
4201 {
4202 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4203 offs, num_segments, segments);
4204
4205 if (ret == 0 && !do_sections)
4206 error (_("Can not handle qOffsets TextSeg "
4207 "response with this symbol file"));
4208
4209 if (ret > 0)
4210 do_sections = 0;
4211 }
4212
4213 if (data)
4214 free_symfile_segment_data (data);
4215
4216 if (do_sections)
4217 {
4218 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4219
4220 /* This is a temporary kludge to force data and bss to use the
4221 same offsets because that's what nlmconv does now. The real
4222 solution requires changes to the stub and remote.c that I
4223 don't have time to do right now. */
4224
4225 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4226 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4227 }
4228
4229 objfile_relocate (symfile_objfile, offs);
4230 }
4231
4232 /* Send interrupt_sequence to remote target. */
4233
4234 void
4235 remote_target::send_interrupt_sequence ()
4236 {
4237 struct remote_state *rs = get_remote_state ();
4238
4239 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4240 remote_serial_write ("\x03", 1);
4241 else if (interrupt_sequence_mode == interrupt_sequence_break)
4242 serial_send_break (rs->remote_desc);
4243 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4244 {
4245 serial_send_break (rs->remote_desc);
4246 remote_serial_write ("g", 1);
4247 }
4248 else
4249 internal_error (__FILE__, __LINE__,
4250 _("Invalid value for interrupt_sequence_mode: %s."),
4251 interrupt_sequence_mode);
4252 }
4253
4254
4255 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4256 and extract the PTID. Returns NULL_PTID if not found. */
4257
4258 static ptid_t
4259 stop_reply_extract_thread (char *stop_reply)
4260 {
4261 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4262 {
4263 const char *p;
4264
4265 /* Txx r:val ; r:val (...) */
4266 p = &stop_reply[3];
4267
4268 /* Look for "register" named "thread". */
4269 while (*p != '\0')
4270 {
4271 const char *p1;
4272
4273 p1 = strchr (p, ':');
4274 if (p1 == NULL)
4275 return null_ptid;
4276
4277 if (strncmp (p, "thread", p1 - p) == 0)
4278 return read_ptid (++p1, &p);
4279
4280 p1 = strchr (p, ';');
4281 if (p1 == NULL)
4282 return null_ptid;
4283 p1++;
4284
4285 p = p1;
4286 }
4287 }
4288
4289 return null_ptid;
4290 }
4291
4292 /* Determine the remote side's current thread. If we have a stop
4293 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4294 "thread" register we can extract the current thread from. If not,
4295 ask the remote which is the current thread with qC. The former
4296 method avoids a roundtrip. */
4297
4298 ptid_t
4299 remote_target::get_current_thread (char *wait_status)
4300 {
4301 ptid_t ptid = null_ptid;
4302
4303 /* Note we don't use remote_parse_stop_reply as that makes use of
4304 the target architecture, which we haven't yet fully determined at
4305 this point. */
4306 if (wait_status != NULL)
4307 ptid = stop_reply_extract_thread (wait_status);
4308 if (ptid == null_ptid)
4309 ptid = remote_current_thread (inferior_ptid);
4310
4311 return ptid;
4312 }
4313
4314 /* Query the remote target for which is the current thread/process,
4315 add it to our tables, and update INFERIOR_PTID. The caller is
4316 responsible for setting the state such that the remote end is ready
4317 to return the current thread.
4318
4319 This function is called after handling the '?' or 'vRun' packets,
4320 whose response is a stop reply from which we can also try
4321 extracting the thread. If the target doesn't support the explicit
4322 qC query, we infer the current thread from that stop reply, passed
4323 in in WAIT_STATUS, which may be NULL. */
4324
4325 void
4326 remote_target::add_current_inferior_and_thread (char *wait_status)
4327 {
4328 struct remote_state *rs = get_remote_state ();
4329 bool fake_pid_p = false;
4330
4331 inferior_ptid = null_ptid;
4332
4333 /* Now, if we have thread information, update inferior_ptid. */
4334 ptid_t curr_ptid = get_current_thread (wait_status);
4335
4336 if (curr_ptid != null_ptid)
4337 {
4338 if (!remote_multi_process_p (rs))
4339 fake_pid_p = true;
4340 }
4341 else
4342 {
4343 /* Without this, some commands which require an active target
4344 (such as kill) won't work. This variable serves (at least)
4345 double duty as both the pid of the target process (if it has
4346 such), and as a flag indicating that a target is active. */
4347 curr_ptid = magic_null_ptid;
4348 fake_pid_p = true;
4349 }
4350
4351 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4352
4353 /* Add the main thread and switch to it. Don't try reading
4354 registers yet, since we haven't fetched the target description
4355 yet. */
4356 thread_info *tp = add_thread_silent (this, curr_ptid);
4357 switch_to_thread_no_regs (tp);
4358 }
4359
4360 /* Print info about a thread that was found already stopped on
4361 connection. */
4362
4363 static void
4364 print_one_stopped_thread (struct thread_info *thread)
4365 {
4366 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4367
4368 switch_to_thread (thread);
4369 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4370 set_current_sal_from_frame (get_current_frame ());
4371
4372 thread->suspend.waitstatus_pending_p = 0;
4373
4374 if (ws->kind == TARGET_WAITKIND_STOPPED)
4375 {
4376 enum gdb_signal sig = ws->value.sig;
4377
4378 if (signal_print_state (sig))
4379 gdb::observers::signal_received.notify (sig);
4380 }
4381 gdb::observers::normal_stop.notify (NULL, 1);
4382 }
4383
4384 /* Process all initial stop replies the remote side sent in response
4385 to the ? packet. These indicate threads that were already stopped
4386 on initial connection. We mark these threads as stopped and print
4387 their current frame before giving the user the prompt. */
4388
4389 void
4390 remote_target::process_initial_stop_replies (int from_tty)
4391 {
4392 int pending_stop_replies = stop_reply_queue_length ();
4393 struct thread_info *selected = NULL;
4394 struct thread_info *lowest_stopped = NULL;
4395 struct thread_info *first = NULL;
4396
4397 /* Consume the initial pending events. */
4398 while (pending_stop_replies-- > 0)
4399 {
4400 ptid_t waiton_ptid = minus_one_ptid;
4401 ptid_t event_ptid;
4402 struct target_waitstatus ws;
4403 int ignore_event = 0;
4404
4405 memset (&ws, 0, sizeof (ws));
4406 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4407 if (remote_debug)
4408 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4409
4410 switch (ws.kind)
4411 {
4412 case TARGET_WAITKIND_IGNORE:
4413 case TARGET_WAITKIND_NO_RESUMED:
4414 case TARGET_WAITKIND_SIGNALLED:
4415 case TARGET_WAITKIND_EXITED:
4416 /* We shouldn't see these, but if we do, just ignore. */
4417 if (remote_debug)
4418 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4419 ignore_event = 1;
4420 break;
4421
4422 case TARGET_WAITKIND_EXECD:
4423 xfree (ws.value.execd_pathname);
4424 break;
4425 default:
4426 break;
4427 }
4428
4429 if (ignore_event)
4430 continue;
4431
4432 thread_info *evthread = find_thread_ptid (this, event_ptid);
4433
4434 if (ws.kind == TARGET_WAITKIND_STOPPED)
4435 {
4436 enum gdb_signal sig = ws.value.sig;
4437
4438 /* Stubs traditionally report SIGTRAP as initial signal,
4439 instead of signal 0. Suppress it. */
4440 if (sig == GDB_SIGNAL_TRAP)
4441 sig = GDB_SIGNAL_0;
4442 evthread->suspend.stop_signal = sig;
4443 ws.value.sig = sig;
4444 }
4445
4446 evthread->suspend.waitstatus = ws;
4447
4448 if (ws.kind != TARGET_WAITKIND_STOPPED
4449 || ws.value.sig != GDB_SIGNAL_0)
4450 evthread->suspend.waitstatus_pending_p = 1;
4451
4452 set_executing (this, event_ptid, false);
4453 set_running (this, event_ptid, false);
4454 get_remote_thread_info (evthread)->vcont_resumed = 0;
4455 }
4456
4457 /* "Notice" the new inferiors before anything related to
4458 registers/memory. */
4459 for (inferior *inf : all_non_exited_inferiors (this))
4460 {
4461 inf->needs_setup = 1;
4462
4463 if (non_stop)
4464 {
4465 thread_info *thread = any_live_thread_of_inferior (inf);
4466 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4467 from_tty);
4468 }
4469 }
4470
4471 /* If all-stop on top of non-stop, pause all threads. Note this
4472 records the threads' stop pc, so must be done after "noticing"
4473 the inferiors. */
4474 if (!non_stop)
4475 {
4476 stop_all_threads ();
4477
4478 /* If all threads of an inferior were already stopped, we
4479 haven't setup the inferior yet. */
4480 for (inferior *inf : all_non_exited_inferiors (this))
4481 {
4482 if (inf->needs_setup)
4483 {
4484 thread_info *thread = any_live_thread_of_inferior (inf);
4485 switch_to_thread_no_regs (thread);
4486 setup_inferior (0);
4487 }
4488 }
4489 }
4490
4491 /* Now go over all threads that are stopped, and print their current
4492 frame. If all-stop, then if there's a signalled thread, pick
4493 that as current. */
4494 for (thread_info *thread : all_non_exited_threads (this))
4495 {
4496 if (first == NULL)
4497 first = thread;
4498
4499 if (!non_stop)
4500 thread->set_running (false);
4501 else if (thread->state != THREAD_STOPPED)
4502 continue;
4503
4504 if (selected == NULL
4505 && thread->suspend.waitstatus_pending_p)
4506 selected = thread;
4507
4508 if (lowest_stopped == NULL
4509 || thread->inf->num < lowest_stopped->inf->num
4510 || thread->per_inf_num < lowest_stopped->per_inf_num)
4511 lowest_stopped = thread;
4512
4513 if (non_stop)
4514 print_one_stopped_thread (thread);
4515 }
4516
4517 /* In all-stop, we only print the status of one thread, and leave
4518 others with their status pending. */
4519 if (!non_stop)
4520 {
4521 thread_info *thread = selected;
4522 if (thread == NULL)
4523 thread = lowest_stopped;
4524 if (thread == NULL)
4525 thread = first;
4526
4527 print_one_stopped_thread (thread);
4528 }
4529
4530 /* For "info program". */
4531 thread_info *thread = inferior_thread ();
4532 if (thread->state == THREAD_STOPPED)
4533 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4534 }
4535
4536 /* Start the remote connection and sync state. */
4537
4538 void
4539 remote_target::start_remote (int from_tty, int extended_p)
4540 {
4541 struct remote_state *rs = get_remote_state ();
4542 struct packet_config *noack_config;
4543 char *wait_status = NULL;
4544
4545 /* Signal other parts that we're going through the initial setup,
4546 and so things may not be stable yet. E.g., we don't try to
4547 install tracepoints until we've relocated symbols. Also, a
4548 Ctrl-C before we're connected and synced up can't interrupt the
4549 target. Instead, it offers to drop the (potentially wedged)
4550 connection. */
4551 rs->starting_up = 1;
4552
4553 QUIT;
4554
4555 if (interrupt_on_connect)
4556 send_interrupt_sequence ();
4557
4558 /* Ack any packet which the remote side has already sent. */
4559 remote_serial_write ("+", 1);
4560
4561 /* The first packet we send to the target is the optional "supported
4562 packets" request. If the target can answer this, it will tell us
4563 which later probes to skip. */
4564 remote_query_supported ();
4565
4566 /* If the stub wants to get a QAllow, compose one and send it. */
4567 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4568 set_permissions ();
4569
4570 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4571 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4572 as a reply to known packet. For packet "vFile:setfs:" it is an
4573 invalid reply and GDB would return error in
4574 remote_hostio_set_filesystem, making remote files access impossible.
4575 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4576 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4577 {
4578 const char v_mustreplyempty[] = "vMustReplyEmpty";
4579
4580 putpkt (v_mustreplyempty);
4581 getpkt (&rs->buf, 0);
4582 if (strcmp (rs->buf.data (), "OK") == 0)
4583 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4584 else if (strcmp (rs->buf.data (), "") != 0)
4585 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4586 rs->buf.data ());
4587 }
4588
4589 /* Next, we possibly activate noack mode.
4590
4591 If the QStartNoAckMode packet configuration is set to AUTO,
4592 enable noack mode if the stub reported a wish for it with
4593 qSupported.
4594
4595 If set to TRUE, then enable noack mode even if the stub didn't
4596 report it in qSupported. If the stub doesn't reply OK, the
4597 session ends with an error.
4598
4599 If FALSE, then don't activate noack mode, regardless of what the
4600 stub claimed should be the default with qSupported. */
4601
4602 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4603 if (packet_config_support (noack_config) != PACKET_DISABLE)
4604 {
4605 putpkt ("QStartNoAckMode");
4606 getpkt (&rs->buf, 0);
4607 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4608 rs->noack_mode = 1;
4609 }
4610
4611 if (extended_p)
4612 {
4613 /* Tell the remote that we are using the extended protocol. */
4614 putpkt ("!");
4615 getpkt (&rs->buf, 0);
4616 }
4617
4618 /* Let the target know which signals it is allowed to pass down to
4619 the program. */
4620 update_signals_program_target ();
4621
4622 /* Next, if the target can specify a description, read it. We do
4623 this before anything involving memory or registers. */
4624 target_find_description ();
4625
4626 /* Next, now that we know something about the target, update the
4627 address spaces in the program spaces. */
4628 update_address_spaces ();
4629
4630 /* On OSs where the list of libraries is global to all
4631 processes, we fetch them early. */
4632 if (gdbarch_has_global_solist (target_gdbarch ()))
4633 solib_add (NULL, from_tty, auto_solib_add);
4634
4635 if (target_is_non_stop_p ())
4636 {
4637 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4638 error (_("Non-stop mode requested, but remote "
4639 "does not support non-stop"));
4640
4641 putpkt ("QNonStop:1");
4642 getpkt (&rs->buf, 0);
4643
4644 if (strcmp (rs->buf.data (), "OK") != 0)
4645 error (_("Remote refused setting non-stop mode with: %s"),
4646 rs->buf.data ());
4647
4648 /* Find about threads and processes the stub is already
4649 controlling. We default to adding them in the running state.
4650 The '?' query below will then tell us about which threads are
4651 stopped. */
4652 this->update_thread_list ();
4653 }
4654 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4655 {
4656 /* Don't assume that the stub can operate in all-stop mode.
4657 Request it explicitly. */
4658 putpkt ("QNonStop:0");
4659 getpkt (&rs->buf, 0);
4660
4661 if (strcmp (rs->buf.data (), "OK") != 0)
4662 error (_("Remote refused setting all-stop mode with: %s"),
4663 rs->buf.data ());
4664 }
4665
4666 /* Upload TSVs regardless of whether the target is running or not. The
4667 remote stub, such as GDBserver, may have some predefined or builtin
4668 TSVs, even if the target is not running. */
4669 if (get_trace_status (current_trace_status ()) != -1)
4670 {
4671 struct uploaded_tsv *uploaded_tsvs = NULL;
4672
4673 upload_trace_state_variables (&uploaded_tsvs);
4674 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4675 }
4676
4677 /* Check whether the target is running now. */
4678 putpkt ("?");
4679 getpkt (&rs->buf, 0);
4680
4681 if (!target_is_non_stop_p ())
4682 {
4683 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4684 {
4685 if (!extended_p)
4686 error (_("The target is not running (try extended-remote?)"));
4687
4688 /* We're connected, but not running. Drop out before we
4689 call start_remote. */
4690 rs->starting_up = 0;
4691 return;
4692 }
4693 else
4694 {
4695 /* Save the reply for later. */
4696 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4697 strcpy (wait_status, rs->buf.data ());
4698 }
4699
4700 /* Fetch thread list. */
4701 target_update_thread_list ();
4702
4703 /* Let the stub know that we want it to return the thread. */
4704 set_continue_thread (minus_one_ptid);
4705
4706 if (thread_count (this) == 0)
4707 {
4708 /* Target has no concept of threads at all. GDB treats
4709 non-threaded target as single-threaded; add a main
4710 thread. */
4711 add_current_inferior_and_thread (wait_status);
4712 }
4713 else
4714 {
4715 /* We have thread information; select the thread the target
4716 says should be current. If we're reconnecting to a
4717 multi-threaded program, this will ideally be the thread
4718 that last reported an event before GDB disconnected. */
4719 ptid_t curr_thread = get_current_thread (wait_status);
4720 if (curr_thread == null_ptid)
4721 {
4722 /* Odd... The target was able to list threads, but not
4723 tell us which thread was current (no "thread"
4724 register in T stop reply?). Just pick the first
4725 thread in the thread list then. */
4726
4727 if (remote_debug)
4728 fprintf_unfiltered (gdb_stdlog,
4729 "warning: couldn't determine remote "
4730 "current thread; picking first in list.\n");
4731
4732 for (thread_info *tp : all_non_exited_threads (this,
4733 minus_one_ptid))
4734 {
4735 switch_to_thread (tp);
4736 break;
4737 }
4738 }
4739 else
4740 switch_to_thread (find_thread_ptid (this, curr_thread));
4741 }
4742
4743 /* init_wait_for_inferior should be called before get_offsets in order
4744 to manage `inserted' flag in bp loc in a correct state.
4745 breakpoint_init_inferior, called from init_wait_for_inferior, set
4746 `inserted' flag to 0, while before breakpoint_re_set, called from
4747 start_remote, set `inserted' flag to 1. In the initialization of
4748 inferior, breakpoint_init_inferior should be called first, and then
4749 breakpoint_re_set can be called. If this order is broken, state of
4750 `inserted' flag is wrong, and cause some problems on breakpoint
4751 manipulation. */
4752 init_wait_for_inferior ();
4753
4754 get_offsets (); /* Get text, data & bss offsets. */
4755
4756 /* If we could not find a description using qXfer, and we know
4757 how to do it some other way, try again. This is not
4758 supported for non-stop; it could be, but it is tricky if
4759 there are no stopped threads when we connect. */
4760 if (remote_read_description_p (this)
4761 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4762 {
4763 target_clear_description ();
4764 target_find_description ();
4765 }
4766
4767 /* Use the previously fetched status. */
4768 gdb_assert (wait_status != NULL);
4769 strcpy (rs->buf.data (), wait_status);
4770 rs->cached_wait_status = 1;
4771
4772 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4773 }
4774 else
4775 {
4776 /* Clear WFI global state. Do this before finding about new
4777 threads and inferiors, and setting the current inferior.
4778 Otherwise we would clear the proceed status of the current
4779 inferior when we want its stop_soon state to be preserved
4780 (see notice_new_inferior). */
4781 init_wait_for_inferior ();
4782
4783 /* In non-stop, we will either get an "OK", meaning that there
4784 are no stopped threads at this time; or, a regular stop
4785 reply. In the latter case, there may be more than one thread
4786 stopped --- we pull them all out using the vStopped
4787 mechanism. */
4788 if (strcmp (rs->buf.data (), "OK") != 0)
4789 {
4790 struct notif_client *notif = &notif_client_stop;
4791
4792 /* remote_notif_get_pending_replies acks this one, and gets
4793 the rest out. */
4794 rs->notif_state->pending_event[notif_client_stop.id]
4795 = remote_notif_parse (this, notif, rs->buf.data ());
4796 remote_notif_get_pending_events (notif);
4797 }
4798
4799 if (thread_count (this) == 0)
4800 {
4801 if (!extended_p)
4802 error (_("The target is not running (try extended-remote?)"));
4803
4804 /* We're connected, but not running. Drop out before we
4805 call start_remote. */
4806 rs->starting_up = 0;
4807 return;
4808 }
4809
4810 /* In non-stop mode, any cached wait status will be stored in
4811 the stop reply queue. */
4812 gdb_assert (wait_status == NULL);
4813
4814 /* Report all signals during attach/startup. */
4815 pass_signals ({});
4816
4817 /* If there are already stopped threads, mark them stopped and
4818 report their stops before giving the prompt to the user. */
4819 process_initial_stop_replies (from_tty);
4820
4821 if (target_can_async_p ())
4822 target_async (1);
4823 }
4824
4825 /* If we connected to a live target, do some additional setup. */
4826 if (target_has_execution)
4827 {
4828 if (symfile_objfile) /* No use without a symbol-file. */
4829 remote_check_symbols ();
4830 }
4831
4832 /* Possibly the target has been engaged in a trace run started
4833 previously; find out where things are at. */
4834 if (get_trace_status (current_trace_status ()) != -1)
4835 {
4836 struct uploaded_tp *uploaded_tps = NULL;
4837
4838 if (current_trace_status ()->running)
4839 printf_filtered (_("Trace is already running on the target.\n"));
4840
4841 upload_tracepoints (&uploaded_tps);
4842
4843 merge_uploaded_tracepoints (&uploaded_tps);
4844 }
4845
4846 /* Possibly the target has been engaged in a btrace record started
4847 previously; find out where things are at. */
4848 remote_btrace_maybe_reopen ();
4849
4850 /* The thread and inferior lists are now synchronized with the
4851 target, our symbols have been relocated, and we're merged the
4852 target's tracepoints with ours. We're done with basic start
4853 up. */
4854 rs->starting_up = 0;
4855
4856 /* Maybe breakpoints are global and need to be inserted now. */
4857 if (breakpoints_should_be_inserted_now ())
4858 insert_breakpoints ();
4859 }
4860
4861 const char *
4862 remote_target::connection_string ()
4863 {
4864 remote_state *rs = get_remote_state ();
4865
4866 if (rs->remote_desc->name != NULL)
4867 return rs->remote_desc->name;
4868 else
4869 return NULL;
4870 }
4871
4872 /* Open a connection to a remote debugger.
4873 NAME is the filename used for communication. */
4874
4875 void
4876 remote_target::open (const char *name, int from_tty)
4877 {
4878 open_1 (name, from_tty, 0);
4879 }
4880
4881 /* Open a connection to a remote debugger using the extended
4882 remote gdb protocol. NAME is the filename used for communication. */
4883
4884 void
4885 extended_remote_target::open (const char *name, int from_tty)
4886 {
4887 open_1 (name, from_tty, 1 /*extended_p */);
4888 }
4889
4890 /* Reset all packets back to "unknown support". Called when opening a
4891 new connection to a remote target. */
4892
4893 static void
4894 reset_all_packet_configs_support (void)
4895 {
4896 int i;
4897
4898 for (i = 0; i < PACKET_MAX; i++)
4899 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4900 }
4901
4902 /* Initialize all packet configs. */
4903
4904 static void
4905 init_all_packet_configs (void)
4906 {
4907 int i;
4908
4909 for (i = 0; i < PACKET_MAX; i++)
4910 {
4911 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4912 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4913 }
4914 }
4915
4916 /* Symbol look-up. */
4917
4918 void
4919 remote_target::remote_check_symbols ()
4920 {
4921 char *tmp;
4922 int end;
4923
4924 /* The remote side has no concept of inferiors that aren't running
4925 yet, it only knows about running processes. If we're connected
4926 but our current inferior is not running, we should not invite the
4927 remote target to request symbol lookups related to its
4928 (unrelated) current process. */
4929 if (!target_has_execution)
4930 return;
4931
4932 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4933 return;
4934
4935 /* Make sure the remote is pointing at the right process. Note
4936 there's no way to select "no process". */
4937 set_general_process ();
4938
4939 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4940 because we need both at the same time. */
4941 gdb::char_vector msg (get_remote_packet_size ());
4942 gdb::char_vector reply (get_remote_packet_size ());
4943
4944 /* Invite target to request symbol lookups. */
4945
4946 putpkt ("qSymbol::");
4947 getpkt (&reply, 0);
4948 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4949
4950 while (startswith (reply.data (), "qSymbol:"))
4951 {
4952 struct bound_minimal_symbol sym;
4953
4954 tmp = &reply[8];
4955 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4956 strlen (tmp) / 2);
4957 msg[end] = '\0';
4958 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4959 if (sym.minsym == NULL)
4960 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4961 &reply[8]);
4962 else
4963 {
4964 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4965 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4966
4967 /* If this is a function address, return the start of code
4968 instead of any data function descriptor. */
4969 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4970 sym_addr,
4971 current_top_target ());
4972
4973 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4974 phex_nz (sym_addr, addr_size), &reply[8]);
4975 }
4976
4977 putpkt (msg.data ());
4978 getpkt (&reply, 0);
4979 }
4980 }
4981
4982 static struct serial *
4983 remote_serial_open (const char *name)
4984 {
4985 static int udp_warning = 0;
4986
4987 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4988 of in ser-tcp.c, because it is the remote protocol assuming that the
4989 serial connection is reliable and not the serial connection promising
4990 to be. */
4991 if (!udp_warning && startswith (name, "udp:"))
4992 {
4993 warning (_("The remote protocol may be unreliable over UDP.\n"
4994 "Some events may be lost, rendering further debugging "
4995 "impossible."));
4996 udp_warning = 1;
4997 }
4998
4999 return serial_open (name);
5000 }
5001
5002 /* Inform the target of our permission settings. The permission flags
5003 work without this, but if the target knows the settings, it can do
5004 a couple things. First, it can add its own check, to catch cases
5005 that somehow manage to get by the permissions checks in target
5006 methods. Second, if the target is wired to disallow particular
5007 settings (for instance, a system in the field that is not set up to
5008 be able to stop at a breakpoint), it can object to any unavailable
5009 permissions. */
5010
5011 void
5012 remote_target::set_permissions ()
5013 {
5014 struct remote_state *rs = get_remote_state ();
5015
5016 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5017 "WriteReg:%x;WriteMem:%x;"
5018 "InsertBreak:%x;InsertTrace:%x;"
5019 "InsertFastTrace:%x;Stop:%x",
5020 may_write_registers, may_write_memory,
5021 may_insert_breakpoints, may_insert_tracepoints,
5022 may_insert_fast_tracepoints, may_stop);
5023 putpkt (rs->buf);
5024 getpkt (&rs->buf, 0);
5025
5026 /* If the target didn't like the packet, warn the user. Do not try
5027 to undo the user's settings, that would just be maddening. */
5028 if (strcmp (rs->buf.data (), "OK") != 0)
5029 warning (_("Remote refused setting permissions with: %s"),
5030 rs->buf.data ());
5031 }
5032
5033 /* This type describes each known response to the qSupported
5034 packet. */
5035 struct protocol_feature
5036 {
5037 /* The name of this protocol feature. */
5038 const char *name;
5039
5040 /* The default for this protocol feature. */
5041 enum packet_support default_support;
5042
5043 /* The function to call when this feature is reported, or after
5044 qSupported processing if the feature is not supported.
5045 The first argument points to this structure. The second
5046 argument indicates whether the packet requested support be
5047 enabled, disabled, or probed (or the default, if this function
5048 is being called at the end of processing and this feature was
5049 not reported). The third argument may be NULL; if not NULL, it
5050 is a NUL-terminated string taken from the packet following
5051 this feature's name and an equals sign. */
5052 void (*func) (remote_target *remote, const struct protocol_feature *,
5053 enum packet_support, const char *);
5054
5055 /* The corresponding packet for this feature. Only used if
5056 FUNC is remote_supported_packet. */
5057 int packet;
5058 };
5059
5060 static void
5061 remote_supported_packet (remote_target *remote,
5062 const struct protocol_feature *feature,
5063 enum packet_support support,
5064 const char *argument)
5065 {
5066 if (argument)
5067 {
5068 warning (_("Remote qSupported response supplied an unexpected value for"
5069 " \"%s\"."), feature->name);
5070 return;
5071 }
5072
5073 remote_protocol_packets[feature->packet].support = support;
5074 }
5075
5076 void
5077 remote_target::remote_packet_size (const protocol_feature *feature,
5078 enum packet_support support, const char *value)
5079 {
5080 struct remote_state *rs = get_remote_state ();
5081
5082 int packet_size;
5083 char *value_end;
5084
5085 if (support != PACKET_ENABLE)
5086 return;
5087
5088 if (value == NULL || *value == '\0')
5089 {
5090 warning (_("Remote target reported \"%s\" without a size."),
5091 feature->name);
5092 return;
5093 }
5094
5095 errno = 0;
5096 packet_size = strtol (value, &value_end, 16);
5097 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5098 {
5099 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5100 feature->name, value);
5101 return;
5102 }
5103
5104 /* Record the new maximum packet size. */
5105 rs->explicit_packet_size = packet_size;
5106 }
5107
5108 static void
5109 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5110 enum packet_support support, const char *value)
5111 {
5112 remote->remote_packet_size (feature, support, value);
5113 }
5114
5115 static const struct protocol_feature remote_protocol_features[] = {
5116 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5117 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_qXfer_auxv },
5119 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_exec_file },
5121 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_qXfer_features },
5123 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_qXfer_libraries },
5125 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_libraries_svr4 },
5127 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5128 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5129 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_qXfer_memory_map },
5131 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_qXfer_osdata },
5133 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_qXfer_threads },
5135 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_qXfer_traceframe_info },
5137 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_QPassSignals },
5139 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_QCatchSyscalls },
5141 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_QProgramSignals },
5143 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_QSetWorkingDir },
5145 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_QStartupWithShell },
5147 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_QEnvironmentHexEncoded },
5149 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_QEnvironmentReset },
5151 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_QEnvironmentUnset },
5153 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_QStartNoAckMode },
5155 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_multiprocess_feature },
5157 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5158 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_qXfer_siginfo_read },
5160 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_qXfer_siginfo_write },
5162 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_ConditionalTracepoints },
5164 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_ConditionalBreakpoints },
5166 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_BreakpointCommands },
5168 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_FastTracepoints },
5170 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_StaticTracepoints },
5172 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_InstallInTrace},
5174 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_DisconnectedTracing_feature },
5176 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_bc },
5178 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_bs },
5180 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_TracepointSource },
5182 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_QAllow },
5184 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_EnableDisableTracepoints_feature },
5186 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_qXfer_fdpic },
5188 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_qXfer_uib },
5190 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_QDisableRandomization },
5192 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5193 { "QTBuffer:size", PACKET_DISABLE,
5194 remote_supported_packet, PACKET_QTBuffer_size},
5195 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5196 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5197 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5198 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5199 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5200 PACKET_qXfer_btrace },
5201 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5202 PACKET_qXfer_btrace_conf },
5203 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5204 PACKET_Qbtrace_conf_bts_size },
5205 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5206 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5207 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5208 PACKET_fork_event_feature },
5209 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5210 PACKET_vfork_event_feature },
5211 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5212 PACKET_exec_event_feature },
5213 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5214 PACKET_Qbtrace_conf_pt_size },
5215 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5216 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5217 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5218 };
5219
5220 static char *remote_support_xml;
5221
5222 /* Register string appended to "xmlRegisters=" in qSupported query. */
5223
5224 void
5225 register_remote_support_xml (const char *xml)
5226 {
5227 #if defined(HAVE_LIBEXPAT)
5228 if (remote_support_xml == NULL)
5229 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5230 else
5231 {
5232 char *copy = xstrdup (remote_support_xml + 13);
5233 char *saveptr;
5234 char *p = strtok_r (copy, ",", &saveptr);
5235
5236 do
5237 {
5238 if (strcmp (p, xml) == 0)
5239 {
5240 /* already there */
5241 xfree (copy);
5242 return;
5243 }
5244 }
5245 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5246 xfree (copy);
5247
5248 remote_support_xml = reconcat (remote_support_xml,
5249 remote_support_xml, ",", xml,
5250 (char *) NULL);
5251 }
5252 #endif
5253 }
5254
5255 static void
5256 remote_query_supported_append (std::string *msg, const char *append)
5257 {
5258 if (!msg->empty ())
5259 msg->append (";");
5260 msg->append (append);
5261 }
5262
5263 void
5264 remote_target::remote_query_supported ()
5265 {
5266 struct remote_state *rs = get_remote_state ();
5267 char *next;
5268 int i;
5269 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5270
5271 /* The packet support flags are handled differently for this packet
5272 than for most others. We treat an error, a disabled packet, and
5273 an empty response identically: any features which must be reported
5274 to be used will be automatically disabled. An empty buffer
5275 accomplishes this, since that is also the representation for a list
5276 containing no features. */
5277
5278 rs->buf[0] = 0;
5279 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5280 {
5281 std::string q;
5282
5283 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5284 remote_query_supported_append (&q, "multiprocess+");
5285
5286 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5287 remote_query_supported_append (&q, "swbreak+");
5288 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5289 remote_query_supported_append (&q, "hwbreak+");
5290
5291 remote_query_supported_append (&q, "qRelocInsn+");
5292
5293 if (packet_set_cmd_state (PACKET_fork_event_feature)
5294 != AUTO_BOOLEAN_FALSE)
5295 remote_query_supported_append (&q, "fork-events+");
5296 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5297 != AUTO_BOOLEAN_FALSE)
5298 remote_query_supported_append (&q, "vfork-events+");
5299 if (packet_set_cmd_state (PACKET_exec_event_feature)
5300 != AUTO_BOOLEAN_FALSE)
5301 remote_query_supported_append (&q, "exec-events+");
5302
5303 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5304 remote_query_supported_append (&q, "vContSupported+");
5305
5306 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5307 remote_query_supported_append (&q, "QThreadEvents+");
5308
5309 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5310 remote_query_supported_append (&q, "no-resumed+");
5311
5312 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5313 the qSupported:xmlRegisters=i386 handling. */
5314 if (remote_support_xml != NULL
5315 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5316 remote_query_supported_append (&q, remote_support_xml);
5317
5318 q = "qSupported:" + q;
5319 putpkt (q.c_str ());
5320
5321 getpkt (&rs->buf, 0);
5322
5323 /* If an error occured, warn, but do not return - just reset the
5324 buffer to empty and go on to disable features. */
5325 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5326 == PACKET_ERROR)
5327 {
5328 warning (_("Remote failure reply: %s"), rs->buf.data ());
5329 rs->buf[0] = 0;
5330 }
5331 }
5332
5333 memset (seen, 0, sizeof (seen));
5334
5335 next = rs->buf.data ();
5336 while (*next)
5337 {
5338 enum packet_support is_supported;
5339 char *p, *end, *name_end, *value;
5340
5341 /* First separate out this item from the rest of the packet. If
5342 there's another item after this, we overwrite the separator
5343 (terminated strings are much easier to work with). */
5344 p = next;
5345 end = strchr (p, ';');
5346 if (end == NULL)
5347 {
5348 end = p + strlen (p);
5349 next = end;
5350 }
5351 else
5352 {
5353 *end = '\0';
5354 next = end + 1;
5355
5356 if (end == p)
5357 {
5358 warning (_("empty item in \"qSupported\" response"));
5359 continue;
5360 }
5361 }
5362
5363 name_end = strchr (p, '=');
5364 if (name_end)
5365 {
5366 /* This is a name=value entry. */
5367 is_supported = PACKET_ENABLE;
5368 value = name_end + 1;
5369 *name_end = '\0';
5370 }
5371 else
5372 {
5373 value = NULL;
5374 switch (end[-1])
5375 {
5376 case '+':
5377 is_supported = PACKET_ENABLE;
5378 break;
5379
5380 case '-':
5381 is_supported = PACKET_DISABLE;
5382 break;
5383
5384 case '?':
5385 is_supported = PACKET_SUPPORT_UNKNOWN;
5386 break;
5387
5388 default:
5389 warning (_("unrecognized item \"%s\" "
5390 "in \"qSupported\" response"), p);
5391 continue;
5392 }
5393 end[-1] = '\0';
5394 }
5395
5396 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5397 if (strcmp (remote_protocol_features[i].name, p) == 0)
5398 {
5399 const struct protocol_feature *feature;
5400
5401 seen[i] = 1;
5402 feature = &remote_protocol_features[i];
5403 feature->func (this, feature, is_supported, value);
5404 break;
5405 }
5406 }
5407
5408 /* If we increased the packet size, make sure to increase the global
5409 buffer size also. We delay this until after parsing the entire
5410 qSupported packet, because this is the same buffer we were
5411 parsing. */
5412 if (rs->buf.size () < rs->explicit_packet_size)
5413 rs->buf.resize (rs->explicit_packet_size);
5414
5415 /* Handle the defaults for unmentioned features. */
5416 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5417 if (!seen[i])
5418 {
5419 const struct protocol_feature *feature;
5420
5421 feature = &remote_protocol_features[i];
5422 feature->func (this, feature, feature->default_support, NULL);
5423 }
5424 }
5425
5426 /* Serial QUIT handler for the remote serial descriptor.
5427
5428 Defers handling a Ctrl-C until we're done with the current
5429 command/response packet sequence, unless:
5430
5431 - We're setting up the connection. Don't send a remote interrupt
5432 request, as we're not fully synced yet. Quit immediately
5433 instead.
5434
5435 - The target has been resumed in the foreground
5436 (target_terminal::is_ours is false) with a synchronous resume
5437 packet, and we're blocked waiting for the stop reply, thus a
5438 Ctrl-C should be immediately sent to the target.
5439
5440 - We get a second Ctrl-C while still within the same serial read or
5441 write. In that case the serial is seemingly wedged --- offer to
5442 quit/disconnect.
5443
5444 - We see a second Ctrl-C without target response, after having
5445 previously interrupted the target. In that case the target/stub
5446 is probably wedged --- offer to quit/disconnect.
5447 */
5448
5449 void
5450 remote_target::remote_serial_quit_handler ()
5451 {
5452 struct remote_state *rs = get_remote_state ();
5453
5454 if (check_quit_flag ())
5455 {
5456 /* If we're starting up, we're not fully synced yet. Quit
5457 immediately. */
5458 if (rs->starting_up)
5459 quit ();
5460 else if (rs->got_ctrlc_during_io)
5461 {
5462 if (query (_("The target is not responding to GDB commands.\n"
5463 "Stop debugging it? ")))
5464 remote_unpush_and_throw (this);
5465 }
5466 /* If ^C has already been sent once, offer to disconnect. */
5467 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5468 interrupt_query ();
5469 /* All-stop protocol, and blocked waiting for stop reply. Send
5470 an interrupt request. */
5471 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5472 target_interrupt ();
5473 else
5474 rs->got_ctrlc_during_io = 1;
5475 }
5476 }
5477
5478 /* The remote_target that is current while the quit handler is
5479 overridden with remote_serial_quit_handler. */
5480 static remote_target *curr_quit_handler_target;
5481
5482 static void
5483 remote_serial_quit_handler ()
5484 {
5485 curr_quit_handler_target->remote_serial_quit_handler ();
5486 }
5487
5488 /* Remove the remote target from the target stack of each inferior
5489 that is using it. Upper targets depend on it so remove them
5490 first. */
5491
5492 static void
5493 remote_unpush_target (remote_target *target)
5494 {
5495 /* We have to unpush the target from all inferiors, even those that
5496 aren't running. */
5497 scoped_restore_current_inferior restore_current_inferior;
5498
5499 for (inferior *inf : all_inferiors (target))
5500 {
5501 switch_to_inferior_no_thread (inf);
5502 pop_all_targets_at_and_above (process_stratum);
5503 generic_mourn_inferior ();
5504 }
5505 }
5506
5507 static void
5508 remote_unpush_and_throw (remote_target *target)
5509 {
5510 remote_unpush_target (target);
5511 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5512 }
5513
5514 void
5515 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5516 {
5517 remote_target *curr_remote = get_current_remote_target ();
5518
5519 if (name == 0)
5520 error (_("To open a remote debug connection, you need to specify what\n"
5521 "serial device is attached to the remote system\n"
5522 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5523
5524 /* If we're connected to a running target, target_preopen will kill it.
5525 Ask this question first, before target_preopen has a chance to kill
5526 anything. */
5527 if (curr_remote != NULL && !target_has_execution)
5528 {
5529 if (from_tty
5530 && !query (_("Already connected to a remote target. Disconnect? ")))
5531 error (_("Still connected."));
5532 }
5533
5534 /* Here the possibly existing remote target gets unpushed. */
5535 target_preopen (from_tty);
5536
5537 remote_fileio_reset ();
5538 reopen_exec_file ();
5539 reread_symbols ();
5540
5541 remote_target *remote
5542 = (extended_p ? new extended_remote_target () : new remote_target ());
5543 target_ops_up target_holder (remote);
5544
5545 remote_state *rs = remote->get_remote_state ();
5546
5547 /* See FIXME above. */
5548 if (!target_async_permitted)
5549 rs->wait_forever_enabled_p = 1;
5550
5551 rs->remote_desc = remote_serial_open (name);
5552 if (!rs->remote_desc)
5553 perror_with_name (name);
5554
5555 if (baud_rate != -1)
5556 {
5557 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5558 {
5559 /* The requested speed could not be set. Error out to
5560 top level after closing remote_desc. Take care to
5561 set remote_desc to NULL to avoid closing remote_desc
5562 more than once. */
5563 serial_close (rs->remote_desc);
5564 rs->remote_desc = NULL;
5565 perror_with_name (name);
5566 }
5567 }
5568
5569 serial_setparity (rs->remote_desc, serial_parity);
5570 serial_raw (rs->remote_desc);
5571
5572 /* If there is something sitting in the buffer we might take it as a
5573 response to a command, which would be bad. */
5574 serial_flush_input (rs->remote_desc);
5575
5576 if (from_tty)
5577 {
5578 puts_filtered ("Remote debugging using ");
5579 puts_filtered (name);
5580 puts_filtered ("\n");
5581 }
5582
5583 /* Switch to using the remote target now. */
5584 push_target (std::move (target_holder));
5585
5586 /* Register extra event sources in the event loop. */
5587 rs->remote_async_inferior_event_token
5588 = create_async_event_handler (remote_async_inferior_event_handler,
5589 remote);
5590 rs->notif_state = remote_notif_state_allocate (remote);
5591
5592 /* Reset the target state; these things will be queried either by
5593 remote_query_supported or as they are needed. */
5594 reset_all_packet_configs_support ();
5595 rs->cached_wait_status = 0;
5596 rs->explicit_packet_size = 0;
5597 rs->noack_mode = 0;
5598 rs->extended = extended_p;
5599 rs->waiting_for_stop_reply = 0;
5600 rs->ctrlc_pending_p = 0;
5601 rs->got_ctrlc_during_io = 0;
5602
5603 rs->general_thread = not_sent_ptid;
5604 rs->continue_thread = not_sent_ptid;
5605 rs->remote_traceframe_number = -1;
5606
5607 rs->last_resume_exec_dir = EXEC_FORWARD;
5608
5609 /* Probe for ability to use "ThreadInfo" query, as required. */
5610 rs->use_threadinfo_query = 1;
5611 rs->use_threadextra_query = 1;
5612
5613 rs->readahead_cache.invalidate ();
5614
5615 if (target_async_permitted)
5616 {
5617 /* FIXME: cagney/1999-09-23: During the initial connection it is
5618 assumed that the target is already ready and able to respond to
5619 requests. Unfortunately remote_start_remote() eventually calls
5620 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5621 around this. Eventually a mechanism that allows
5622 wait_for_inferior() to expect/get timeouts will be
5623 implemented. */
5624 rs->wait_forever_enabled_p = 0;
5625 }
5626
5627 /* First delete any symbols previously loaded from shared libraries. */
5628 no_shared_libraries (NULL, 0);
5629
5630 /* Start the remote connection. If error() or QUIT, discard this
5631 target (we'd otherwise be in an inconsistent state) and then
5632 propogate the error on up the exception chain. This ensures that
5633 the caller doesn't stumble along blindly assuming that the
5634 function succeeded. The CLI doesn't have this problem but other
5635 UI's, such as MI do.
5636
5637 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5638 this function should return an error indication letting the
5639 caller restore the previous state. Unfortunately the command
5640 ``target remote'' is directly wired to this function making that
5641 impossible. On a positive note, the CLI side of this problem has
5642 been fixed - the function set_cmd_context() makes it possible for
5643 all the ``target ....'' commands to share a common callback
5644 function. See cli-dump.c. */
5645 {
5646
5647 try
5648 {
5649 remote->start_remote (from_tty, extended_p);
5650 }
5651 catch (const gdb_exception &ex)
5652 {
5653 /* Pop the partially set up target - unless something else did
5654 already before throwing the exception. */
5655 if (ex.error != TARGET_CLOSE_ERROR)
5656 remote_unpush_target (remote);
5657 throw;
5658 }
5659 }
5660
5661 remote_btrace_reset (rs);
5662
5663 if (target_async_permitted)
5664 rs->wait_forever_enabled_p = 1;
5665 }
5666
5667 /* Detach the specified process. */
5668
5669 void
5670 remote_target::remote_detach_pid (int pid)
5671 {
5672 struct remote_state *rs = get_remote_state ();
5673
5674 /* This should not be necessary, but the handling for D;PID in
5675 GDBserver versions prior to 8.2 incorrectly assumes that the
5676 selected process points to the same process we're detaching,
5677 leading to misbehavior (and possibly GDBserver crashing) when it
5678 does not. Since it's easy and cheap, work around it by forcing
5679 GDBserver to select GDB's current process. */
5680 set_general_process ();
5681
5682 if (remote_multi_process_p (rs))
5683 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5684 else
5685 strcpy (rs->buf.data (), "D");
5686
5687 putpkt (rs->buf);
5688 getpkt (&rs->buf, 0);
5689
5690 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5691 ;
5692 else if (rs->buf[0] == '\0')
5693 error (_("Remote doesn't know how to detach"));
5694 else
5695 error (_("Can't detach process."));
5696 }
5697
5698 /* This detaches a program to which we previously attached, using
5699 inferior_ptid to identify the process. After this is done, GDB
5700 can be used to debug some other program. We better not have left
5701 any breakpoints in the target program or it'll die when it hits
5702 one. */
5703
5704 void
5705 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5706 {
5707 int pid = inferior_ptid.pid ();
5708 struct remote_state *rs = get_remote_state ();
5709 int is_fork_parent;
5710
5711 if (!target_has_execution)
5712 error (_("No process to detach from."));
5713
5714 target_announce_detach (from_tty);
5715
5716 /* Tell the remote target to detach. */
5717 remote_detach_pid (pid);
5718
5719 /* Exit only if this is the only active inferior. */
5720 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5721 puts_filtered (_("Ending remote debugging.\n"));
5722
5723 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5724
5725 /* Check to see if we are detaching a fork parent. Note that if we
5726 are detaching a fork child, tp == NULL. */
5727 is_fork_parent = (tp != NULL
5728 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5729
5730 /* If doing detach-on-fork, we don't mourn, because that will delete
5731 breakpoints that should be available for the followed inferior. */
5732 if (!is_fork_parent)
5733 {
5734 /* Save the pid as a string before mourning, since that will
5735 unpush the remote target, and we need the string after. */
5736 std::string infpid = target_pid_to_str (ptid_t (pid));
5737
5738 target_mourn_inferior (inferior_ptid);
5739 if (print_inferior_events)
5740 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5741 inf->num, infpid.c_str ());
5742 }
5743 else
5744 {
5745 inferior_ptid = null_ptid;
5746 detach_inferior (current_inferior ());
5747 }
5748 }
5749
5750 void
5751 remote_target::detach (inferior *inf, int from_tty)
5752 {
5753 remote_detach_1 (inf, from_tty);
5754 }
5755
5756 void
5757 extended_remote_target::detach (inferior *inf, int from_tty)
5758 {
5759 remote_detach_1 (inf, from_tty);
5760 }
5761
5762 /* Target follow-fork function for remote targets. On entry, and
5763 at return, the current inferior is the fork parent.
5764
5765 Note that although this is currently only used for extended-remote,
5766 it is named remote_follow_fork in anticipation of using it for the
5767 remote target as well. */
5768
5769 bool
5770 remote_target::follow_fork (bool follow_child, bool detach_fork)
5771 {
5772 struct remote_state *rs = get_remote_state ();
5773 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5774
5775 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5776 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5777 {
5778 /* When following the parent and detaching the child, we detach
5779 the child here. For the case of following the child and
5780 detaching the parent, the detach is done in the target-
5781 independent follow fork code in infrun.c. We can't use
5782 target_detach when detaching an unfollowed child because
5783 the client side doesn't know anything about the child. */
5784 if (detach_fork && !follow_child)
5785 {
5786 /* Detach the fork child. */
5787 ptid_t child_ptid;
5788 pid_t child_pid;
5789
5790 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5791 child_pid = child_ptid.pid ();
5792
5793 remote_detach_pid (child_pid);
5794 }
5795 }
5796
5797 return false;
5798 }
5799
5800 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5801 in the program space of the new inferior. On entry and at return the
5802 current inferior is the exec'ing inferior. INF is the new exec'd
5803 inferior, which may be the same as the exec'ing inferior unless
5804 follow-exec-mode is "new". */
5805
5806 void
5807 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5808 {
5809 /* We know that this is a target file name, so if it has the "target:"
5810 prefix we strip it off before saving it in the program space. */
5811 if (is_target_filename (execd_pathname))
5812 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5813
5814 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5815 }
5816
5817 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5818
5819 void
5820 remote_target::disconnect (const char *args, int from_tty)
5821 {
5822 if (args)
5823 error (_("Argument given to \"disconnect\" when remotely debugging."));
5824
5825 /* Make sure we unpush even the extended remote targets. Calling
5826 target_mourn_inferior won't unpush, and
5827 remote_target::mourn_inferior won't unpush if there is more than
5828 one inferior left. */
5829 remote_unpush_target (this);
5830
5831 if (from_tty)
5832 puts_filtered ("Ending remote debugging.\n");
5833 }
5834
5835 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5836 be chatty about it. */
5837
5838 void
5839 extended_remote_target::attach (const char *args, int from_tty)
5840 {
5841 struct remote_state *rs = get_remote_state ();
5842 int pid;
5843 char *wait_status = NULL;
5844
5845 pid = parse_pid_to_attach (args);
5846
5847 /* Remote PID can be freely equal to getpid, do not check it here the same
5848 way as in other targets. */
5849
5850 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5851 error (_("This target does not support attaching to a process"));
5852
5853 if (from_tty)
5854 {
5855 const char *exec_file = get_exec_file (0);
5856
5857 if (exec_file)
5858 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5859 target_pid_to_str (ptid_t (pid)).c_str ());
5860 else
5861 printf_unfiltered (_("Attaching to %s\n"),
5862 target_pid_to_str (ptid_t (pid)).c_str ());
5863 }
5864
5865 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5866 putpkt (rs->buf);
5867 getpkt (&rs->buf, 0);
5868
5869 switch (packet_ok (rs->buf,
5870 &remote_protocol_packets[PACKET_vAttach]))
5871 {
5872 case PACKET_OK:
5873 if (!target_is_non_stop_p ())
5874 {
5875 /* Save the reply for later. */
5876 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5877 strcpy (wait_status, rs->buf.data ());
5878 }
5879 else if (strcmp (rs->buf.data (), "OK") != 0)
5880 error (_("Attaching to %s failed with: %s"),
5881 target_pid_to_str (ptid_t (pid)).c_str (),
5882 rs->buf.data ());
5883 break;
5884 case PACKET_UNKNOWN:
5885 error (_("This target does not support attaching to a process"));
5886 default:
5887 error (_("Attaching to %s failed"),
5888 target_pid_to_str (ptid_t (pid)).c_str ());
5889 }
5890
5891 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5892
5893 inferior_ptid = ptid_t (pid);
5894
5895 if (target_is_non_stop_p ())
5896 {
5897 struct thread_info *thread;
5898
5899 /* Get list of threads. */
5900 update_thread_list ();
5901
5902 thread = first_thread_of_inferior (current_inferior ());
5903 if (thread)
5904 inferior_ptid = thread->ptid;
5905 else
5906 inferior_ptid = ptid_t (pid);
5907
5908 /* Invalidate our notion of the remote current thread. */
5909 record_currthread (rs, minus_one_ptid);
5910 }
5911 else
5912 {
5913 /* Now, if we have thread information, update inferior_ptid. */
5914 inferior_ptid = remote_current_thread (inferior_ptid);
5915
5916 /* Add the main thread to the thread list. */
5917 thread_info *thr = add_thread_silent (this, inferior_ptid);
5918 /* Don't consider the thread stopped until we've processed the
5919 saved stop reply. */
5920 set_executing (this, thr->ptid, true);
5921 }
5922
5923 /* Next, if the target can specify a description, read it. We do
5924 this before anything involving memory or registers. */
5925 target_find_description ();
5926
5927 if (!target_is_non_stop_p ())
5928 {
5929 /* Use the previously fetched status. */
5930 gdb_assert (wait_status != NULL);
5931
5932 if (target_can_async_p ())
5933 {
5934 struct notif_event *reply
5935 = remote_notif_parse (this, &notif_client_stop, wait_status);
5936
5937 push_stop_reply ((struct stop_reply *) reply);
5938
5939 target_async (1);
5940 }
5941 else
5942 {
5943 gdb_assert (wait_status != NULL);
5944 strcpy (rs->buf.data (), wait_status);
5945 rs->cached_wait_status = 1;
5946 }
5947 }
5948 else
5949 gdb_assert (wait_status == NULL);
5950 }
5951
5952 /* Implementation of the to_post_attach method. */
5953
5954 void
5955 extended_remote_target::post_attach (int pid)
5956 {
5957 /* Get text, data & bss offsets. */
5958 get_offsets ();
5959
5960 /* In certain cases GDB might not have had the chance to start
5961 symbol lookup up until now. This could happen if the debugged
5962 binary is not using shared libraries, the vsyscall page is not
5963 present (on Linux) and the binary itself hadn't changed since the
5964 debugging process was started. */
5965 if (symfile_objfile != NULL)
5966 remote_check_symbols();
5967 }
5968
5969 \f
5970 /* Check for the availability of vCont. This function should also check
5971 the response. */
5972
5973 void
5974 remote_target::remote_vcont_probe ()
5975 {
5976 remote_state *rs = get_remote_state ();
5977 char *buf;
5978
5979 strcpy (rs->buf.data (), "vCont?");
5980 putpkt (rs->buf);
5981 getpkt (&rs->buf, 0);
5982 buf = rs->buf.data ();
5983
5984 /* Make sure that the features we assume are supported. */
5985 if (startswith (buf, "vCont"))
5986 {
5987 char *p = &buf[5];
5988 int support_c, support_C;
5989
5990 rs->supports_vCont.s = 0;
5991 rs->supports_vCont.S = 0;
5992 support_c = 0;
5993 support_C = 0;
5994 rs->supports_vCont.t = 0;
5995 rs->supports_vCont.r = 0;
5996 while (p && *p == ';')
5997 {
5998 p++;
5999 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6000 rs->supports_vCont.s = 1;
6001 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6002 rs->supports_vCont.S = 1;
6003 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6004 support_c = 1;
6005 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6006 support_C = 1;
6007 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6008 rs->supports_vCont.t = 1;
6009 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6010 rs->supports_vCont.r = 1;
6011
6012 p = strchr (p, ';');
6013 }
6014
6015 /* If c, and C are not all supported, we can't use vCont. Clearing
6016 BUF will make packet_ok disable the packet. */
6017 if (!support_c || !support_C)
6018 buf[0] = 0;
6019 }
6020
6021 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6022 rs->supports_vCont_probed = true;
6023 }
6024
6025 /* Helper function for building "vCont" resumptions. Write a
6026 resumption to P. ENDP points to one-passed-the-end of the buffer
6027 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6028 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6029 resumed thread should be single-stepped and/or signalled. If PTID
6030 equals minus_one_ptid, then all threads are resumed; if PTID
6031 represents a process, then all threads of the process are resumed;
6032 the thread to be stepped and/or signalled is given in the global
6033 INFERIOR_PTID. */
6034
6035 char *
6036 remote_target::append_resumption (char *p, char *endp,
6037 ptid_t ptid, int step, gdb_signal siggnal)
6038 {
6039 struct remote_state *rs = get_remote_state ();
6040
6041 if (step && siggnal != GDB_SIGNAL_0)
6042 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6043 else if (step
6044 /* GDB is willing to range step. */
6045 && use_range_stepping
6046 /* Target supports range stepping. */
6047 && rs->supports_vCont.r
6048 /* We don't currently support range stepping multiple
6049 threads with a wildcard (though the protocol allows it,
6050 so stubs shouldn't make an active effort to forbid
6051 it). */
6052 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6053 {
6054 struct thread_info *tp;
6055
6056 if (ptid == minus_one_ptid)
6057 {
6058 /* If we don't know about the target thread's tid, then
6059 we're resuming magic_null_ptid (see caller). */
6060 tp = find_thread_ptid (this, magic_null_ptid);
6061 }
6062 else
6063 tp = find_thread_ptid (this, ptid);
6064 gdb_assert (tp != NULL);
6065
6066 if (tp->control.may_range_step)
6067 {
6068 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6069
6070 p += xsnprintf (p, endp - p, ";r%s,%s",
6071 phex_nz (tp->control.step_range_start,
6072 addr_size),
6073 phex_nz (tp->control.step_range_end,
6074 addr_size));
6075 }
6076 else
6077 p += xsnprintf (p, endp - p, ";s");
6078 }
6079 else if (step)
6080 p += xsnprintf (p, endp - p, ";s");
6081 else if (siggnal != GDB_SIGNAL_0)
6082 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6083 else
6084 p += xsnprintf (p, endp - p, ";c");
6085
6086 if (remote_multi_process_p (rs) && ptid.is_pid ())
6087 {
6088 ptid_t nptid;
6089
6090 /* All (-1) threads of process. */
6091 nptid = ptid_t (ptid.pid (), -1, 0);
6092
6093 p += xsnprintf (p, endp - p, ":");
6094 p = write_ptid (p, endp, nptid);
6095 }
6096 else if (ptid != minus_one_ptid)
6097 {
6098 p += xsnprintf (p, endp - p, ":");
6099 p = write_ptid (p, endp, ptid);
6100 }
6101
6102 return p;
6103 }
6104
6105 /* Clear the thread's private info on resume. */
6106
6107 static void
6108 resume_clear_thread_private_info (struct thread_info *thread)
6109 {
6110 if (thread->priv != NULL)
6111 {
6112 remote_thread_info *priv = get_remote_thread_info (thread);
6113
6114 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6115 priv->watch_data_address = 0;
6116 }
6117 }
6118
6119 /* Append a vCont continue-with-signal action for threads that have a
6120 non-zero stop signal. */
6121
6122 char *
6123 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6124 ptid_t ptid)
6125 {
6126 for (thread_info *thread : all_non_exited_threads (this, ptid))
6127 if (inferior_ptid != thread->ptid
6128 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6129 {
6130 p = append_resumption (p, endp, thread->ptid,
6131 0, thread->suspend.stop_signal);
6132 thread->suspend.stop_signal = GDB_SIGNAL_0;
6133 resume_clear_thread_private_info (thread);
6134 }
6135
6136 return p;
6137 }
6138
6139 /* Set the target running, using the packets that use Hc
6140 (c/s/C/S). */
6141
6142 void
6143 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6144 gdb_signal siggnal)
6145 {
6146 struct remote_state *rs = get_remote_state ();
6147 char *buf;
6148
6149 rs->last_sent_signal = siggnal;
6150 rs->last_sent_step = step;
6151
6152 /* The c/s/C/S resume packets use Hc, so set the continue
6153 thread. */
6154 if (ptid == minus_one_ptid)
6155 set_continue_thread (any_thread_ptid);
6156 else
6157 set_continue_thread (ptid);
6158
6159 for (thread_info *thread : all_non_exited_threads (this))
6160 resume_clear_thread_private_info (thread);
6161
6162 buf = rs->buf.data ();
6163 if (::execution_direction == EXEC_REVERSE)
6164 {
6165 /* We don't pass signals to the target in reverse exec mode. */
6166 if (info_verbose && siggnal != GDB_SIGNAL_0)
6167 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6168 siggnal);
6169
6170 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6171 error (_("Remote reverse-step not supported."));
6172 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6173 error (_("Remote reverse-continue not supported."));
6174
6175 strcpy (buf, step ? "bs" : "bc");
6176 }
6177 else if (siggnal != GDB_SIGNAL_0)
6178 {
6179 buf[0] = step ? 'S' : 'C';
6180 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6181 buf[2] = tohex (((int) siggnal) & 0xf);
6182 buf[3] = '\0';
6183 }
6184 else
6185 strcpy (buf, step ? "s" : "c");
6186
6187 putpkt (buf);
6188 }
6189
6190 /* Resume the remote inferior by using a "vCont" packet. The thread
6191 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6192 resumed thread should be single-stepped and/or signalled. If PTID
6193 equals minus_one_ptid, then all threads are resumed; the thread to
6194 be stepped and/or signalled is given in the global INFERIOR_PTID.
6195 This function returns non-zero iff it resumes the inferior.
6196
6197 This function issues a strict subset of all possible vCont commands
6198 at the moment. */
6199
6200 int
6201 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6202 enum gdb_signal siggnal)
6203 {
6204 struct remote_state *rs = get_remote_state ();
6205 char *p;
6206 char *endp;
6207
6208 /* No reverse execution actions defined for vCont. */
6209 if (::execution_direction == EXEC_REVERSE)
6210 return 0;
6211
6212 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6213 remote_vcont_probe ();
6214
6215 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6216 return 0;
6217
6218 p = rs->buf.data ();
6219 endp = p + get_remote_packet_size ();
6220
6221 /* If we could generate a wider range of packets, we'd have to worry
6222 about overflowing BUF. Should there be a generic
6223 "multi-part-packet" packet? */
6224
6225 p += xsnprintf (p, endp - p, "vCont");
6226
6227 if (ptid == magic_null_ptid)
6228 {
6229 /* MAGIC_NULL_PTID means that we don't have any active threads,
6230 so we don't have any TID numbers the inferior will
6231 understand. Make sure to only send forms that do not specify
6232 a TID. */
6233 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6234 }
6235 else if (ptid == minus_one_ptid || ptid.is_pid ())
6236 {
6237 /* Resume all threads (of all processes, or of a single
6238 process), with preference for INFERIOR_PTID. This assumes
6239 inferior_ptid belongs to the set of all threads we are about
6240 to resume. */
6241 if (step || siggnal != GDB_SIGNAL_0)
6242 {
6243 /* Step inferior_ptid, with or without signal. */
6244 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6245 }
6246
6247 /* Also pass down any pending signaled resumption for other
6248 threads not the current. */
6249 p = append_pending_thread_resumptions (p, endp, ptid);
6250
6251 /* And continue others without a signal. */
6252 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6253 }
6254 else
6255 {
6256 /* Scheduler locking; resume only PTID. */
6257 append_resumption (p, endp, ptid, step, siggnal);
6258 }
6259
6260 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6261 putpkt (rs->buf);
6262
6263 if (target_is_non_stop_p ())
6264 {
6265 /* In non-stop, the stub replies to vCont with "OK". The stop
6266 reply will be reported asynchronously by means of a `%Stop'
6267 notification. */
6268 getpkt (&rs->buf, 0);
6269 if (strcmp (rs->buf.data (), "OK") != 0)
6270 error (_("Unexpected vCont reply in non-stop mode: %s"),
6271 rs->buf.data ());
6272 }
6273
6274 return 1;
6275 }
6276
6277 /* Tell the remote machine to resume. */
6278
6279 void
6280 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6281 {
6282 struct remote_state *rs = get_remote_state ();
6283
6284 /* When connected in non-stop mode, the core resumes threads
6285 individually. Resuming remote threads directly in target_resume
6286 would thus result in sending one packet per thread. Instead, to
6287 minimize roundtrip latency, here we just store the resume
6288 request; the actual remote resumption will be done in
6289 target_commit_resume / remote_commit_resume, where we'll be able
6290 to do vCont action coalescing. */
6291 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6292 {
6293 remote_thread_info *remote_thr;
6294
6295 if (minus_one_ptid == ptid || ptid.is_pid ())
6296 remote_thr = get_remote_thread_info (this, inferior_ptid);
6297 else
6298 remote_thr = get_remote_thread_info (this, ptid);
6299
6300 remote_thr->last_resume_step = step;
6301 remote_thr->last_resume_sig = siggnal;
6302 return;
6303 }
6304
6305 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6306 (explained in remote-notif.c:handle_notification) so
6307 remote_notif_process is not called. We need find a place where
6308 it is safe to start a 'vNotif' sequence. It is good to do it
6309 before resuming inferior, because inferior was stopped and no RSP
6310 traffic at that moment. */
6311 if (!target_is_non_stop_p ())
6312 remote_notif_process (rs->notif_state, &notif_client_stop);
6313
6314 rs->last_resume_exec_dir = ::execution_direction;
6315
6316 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6317 if (!remote_resume_with_vcont (ptid, step, siggnal))
6318 remote_resume_with_hc (ptid, step, siggnal);
6319
6320 /* We are about to start executing the inferior, let's register it
6321 with the event loop. NOTE: this is the one place where all the
6322 execution commands end up. We could alternatively do this in each
6323 of the execution commands in infcmd.c. */
6324 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6325 into infcmd.c in order to allow inferior function calls to work
6326 NOT asynchronously. */
6327 if (target_can_async_p ())
6328 target_async (1);
6329
6330 /* We've just told the target to resume. The remote server will
6331 wait for the inferior to stop, and then send a stop reply. In
6332 the mean time, we can't start another command/query ourselves
6333 because the stub wouldn't be ready to process it. This applies
6334 only to the base all-stop protocol, however. In non-stop (which
6335 only supports vCont), the stub replies with an "OK", and is
6336 immediate able to process further serial input. */
6337 if (!target_is_non_stop_p ())
6338 rs->waiting_for_stop_reply = 1;
6339 }
6340
6341 static int is_pending_fork_parent_thread (struct thread_info *thread);
6342
6343 /* Private per-inferior info for target remote processes. */
6344
6345 struct remote_inferior : public private_inferior
6346 {
6347 /* Whether we can send a wildcard vCont for this process. */
6348 bool may_wildcard_vcont = true;
6349 };
6350
6351 /* Get the remote private inferior data associated to INF. */
6352
6353 static remote_inferior *
6354 get_remote_inferior (inferior *inf)
6355 {
6356 if (inf->priv == NULL)
6357 inf->priv.reset (new remote_inferior);
6358
6359 return static_cast<remote_inferior *> (inf->priv.get ());
6360 }
6361
6362 /* Class used to track the construction of a vCont packet in the
6363 outgoing packet buffer. This is used to send multiple vCont
6364 packets if we have more actions than would fit a single packet. */
6365
6366 class vcont_builder
6367 {
6368 public:
6369 explicit vcont_builder (remote_target *remote)
6370 : m_remote (remote)
6371 {
6372 restart ();
6373 }
6374
6375 void flush ();
6376 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6377
6378 private:
6379 void restart ();
6380
6381 /* The remote target. */
6382 remote_target *m_remote;
6383
6384 /* Pointer to the first action. P points here if no action has been
6385 appended yet. */
6386 char *m_first_action;
6387
6388 /* Where the next action will be appended. */
6389 char *m_p;
6390
6391 /* The end of the buffer. Must never write past this. */
6392 char *m_endp;
6393 };
6394
6395 /* Prepare the outgoing buffer for a new vCont packet. */
6396
6397 void
6398 vcont_builder::restart ()
6399 {
6400 struct remote_state *rs = m_remote->get_remote_state ();
6401
6402 m_p = rs->buf.data ();
6403 m_endp = m_p + m_remote->get_remote_packet_size ();
6404 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6405 m_first_action = m_p;
6406 }
6407
6408 /* If the vCont packet being built has any action, send it to the
6409 remote end. */
6410
6411 void
6412 vcont_builder::flush ()
6413 {
6414 struct remote_state *rs;
6415
6416 if (m_p == m_first_action)
6417 return;
6418
6419 rs = m_remote->get_remote_state ();
6420 m_remote->putpkt (rs->buf);
6421 m_remote->getpkt (&rs->buf, 0);
6422 if (strcmp (rs->buf.data (), "OK") != 0)
6423 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6424 }
6425
6426 /* The largest action is range-stepping, with its two addresses. This
6427 is more than sufficient. If a new, bigger action is created, it'll
6428 quickly trigger a failed assertion in append_resumption (and we'll
6429 just bump this). */
6430 #define MAX_ACTION_SIZE 200
6431
6432 /* Append a new vCont action in the outgoing packet being built. If
6433 the action doesn't fit the packet along with previous actions, push
6434 what we've got so far to the remote end and start over a new vCont
6435 packet (with the new action). */
6436
6437 void
6438 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6439 {
6440 char buf[MAX_ACTION_SIZE + 1];
6441
6442 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6443 ptid, step, siggnal);
6444
6445 /* Check whether this new action would fit in the vCont packet along
6446 with previous actions. If not, send what we've got so far and
6447 start a new vCont packet. */
6448 size_t rsize = endp - buf;
6449 if (rsize > m_endp - m_p)
6450 {
6451 flush ();
6452 restart ();
6453
6454 /* Should now fit. */
6455 gdb_assert (rsize <= m_endp - m_p);
6456 }
6457
6458 memcpy (m_p, buf, rsize);
6459 m_p += rsize;
6460 *m_p = '\0';
6461 }
6462
6463 /* to_commit_resume implementation. */
6464
6465 void
6466 remote_target::commit_resume ()
6467 {
6468 int any_process_wildcard;
6469 int may_global_wildcard_vcont;
6470
6471 /* If connected in all-stop mode, we'd send the remote resume
6472 request directly from remote_resume. Likewise if
6473 reverse-debugging, as there are no defined vCont actions for
6474 reverse execution. */
6475 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6476 return;
6477
6478 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6479 instead of resuming all threads of each process individually.
6480 However, if any thread of a process must remain halted, we can't
6481 send wildcard resumes and must send one action per thread.
6482
6483 Care must be taken to not resume threads/processes the server
6484 side already told us are stopped, but the core doesn't know about
6485 yet, because the events are still in the vStopped notification
6486 queue. For example:
6487
6488 #1 => vCont s:p1.1;c
6489 #2 <= OK
6490 #3 <= %Stopped T05 p1.1
6491 #4 => vStopped
6492 #5 <= T05 p1.2
6493 #6 => vStopped
6494 #7 <= OK
6495 #8 (infrun handles the stop for p1.1 and continues stepping)
6496 #9 => vCont s:p1.1;c
6497
6498 The last vCont above would resume thread p1.2 by mistake, because
6499 the server has no idea that the event for p1.2 had not been
6500 handled yet.
6501
6502 The server side must similarly ignore resume actions for the
6503 thread that has a pending %Stopped notification (and any other
6504 threads with events pending), until GDB acks the notification
6505 with vStopped. Otherwise, e.g., the following case is
6506 mishandled:
6507
6508 #1 => g (or any other packet)
6509 #2 <= [registers]
6510 #3 <= %Stopped T05 p1.2
6511 #4 => vCont s:p1.1;c
6512 #5 <= OK
6513
6514 Above, the server must not resume thread p1.2. GDB can't know
6515 that p1.2 stopped until it acks the %Stopped notification, and
6516 since from GDB's perspective all threads should be running, it
6517 sends a "c" action.
6518
6519 Finally, special care must also be given to handling fork/vfork
6520 events. A (v)fork event actually tells us that two processes
6521 stopped -- the parent and the child. Until we follow the fork,
6522 we must not resume the child. Therefore, if we have a pending
6523 fork follow, we must not send a global wildcard resume action
6524 (vCont;c). We can still send process-wide wildcards though. */
6525
6526 /* Start by assuming a global wildcard (vCont;c) is possible. */
6527 may_global_wildcard_vcont = 1;
6528
6529 /* And assume every process is individually wildcard-able too. */
6530 for (inferior *inf : all_non_exited_inferiors (this))
6531 {
6532 remote_inferior *priv = get_remote_inferior (inf);
6533
6534 priv->may_wildcard_vcont = true;
6535 }
6536
6537 /* Check for any pending events (not reported or processed yet) and
6538 disable process and global wildcard resumes appropriately. */
6539 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6540
6541 for (thread_info *tp : all_non_exited_threads (this))
6542 {
6543 /* If a thread of a process is not meant to be resumed, then we
6544 can't wildcard that process. */
6545 if (!tp->executing)
6546 {
6547 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6548
6549 /* And if we can't wildcard a process, we can't wildcard
6550 everything either. */
6551 may_global_wildcard_vcont = 0;
6552 continue;
6553 }
6554
6555 /* If a thread is the parent of an unfollowed fork, then we
6556 can't do a global wildcard, as that would resume the fork
6557 child. */
6558 if (is_pending_fork_parent_thread (tp))
6559 may_global_wildcard_vcont = 0;
6560 }
6561
6562 /* Now let's build the vCont packet(s). Actions must be appended
6563 from narrower to wider scopes (thread -> process -> global). If
6564 we end up with too many actions for a single packet vcont_builder
6565 flushes the current vCont packet to the remote side and starts a
6566 new one. */
6567 struct vcont_builder vcont_builder (this);
6568
6569 /* Threads first. */
6570 for (thread_info *tp : all_non_exited_threads (this))
6571 {
6572 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6573
6574 if (!tp->executing || remote_thr->vcont_resumed)
6575 continue;
6576
6577 gdb_assert (!thread_is_in_step_over_chain (tp));
6578
6579 if (!remote_thr->last_resume_step
6580 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6581 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6582 {
6583 /* We'll send a wildcard resume instead. */
6584 remote_thr->vcont_resumed = 1;
6585 continue;
6586 }
6587
6588 vcont_builder.push_action (tp->ptid,
6589 remote_thr->last_resume_step,
6590 remote_thr->last_resume_sig);
6591 remote_thr->vcont_resumed = 1;
6592 }
6593
6594 /* Now check whether we can send any process-wide wildcard. This is
6595 to avoid sending a global wildcard in the case nothing is
6596 supposed to be resumed. */
6597 any_process_wildcard = 0;
6598
6599 for (inferior *inf : all_non_exited_inferiors (this))
6600 {
6601 if (get_remote_inferior (inf)->may_wildcard_vcont)
6602 {
6603 any_process_wildcard = 1;
6604 break;
6605 }
6606 }
6607
6608 if (any_process_wildcard)
6609 {
6610 /* If all processes are wildcard-able, then send a single "c"
6611 action, otherwise, send an "all (-1) threads of process"
6612 continue action for each running process, if any. */
6613 if (may_global_wildcard_vcont)
6614 {
6615 vcont_builder.push_action (minus_one_ptid,
6616 false, GDB_SIGNAL_0);
6617 }
6618 else
6619 {
6620 for (inferior *inf : all_non_exited_inferiors (this))
6621 {
6622 if (get_remote_inferior (inf)->may_wildcard_vcont)
6623 {
6624 vcont_builder.push_action (ptid_t (inf->pid),
6625 false, GDB_SIGNAL_0);
6626 }
6627 }
6628 }
6629 }
6630
6631 vcont_builder.flush ();
6632 }
6633
6634 \f
6635
6636 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6637 thread, all threads of a remote process, or all threads of all
6638 processes. */
6639
6640 void
6641 remote_target::remote_stop_ns (ptid_t ptid)
6642 {
6643 struct remote_state *rs = get_remote_state ();
6644 char *p = rs->buf.data ();
6645 char *endp = p + get_remote_packet_size ();
6646
6647 /* FIXME: This supports_vCont_probed check is a workaround until
6648 packet_support is per-connection. */
6649 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6650 || !rs->supports_vCont_probed)
6651 remote_vcont_probe ();
6652
6653 if (!rs->supports_vCont.t)
6654 error (_("Remote server does not support stopping threads"));
6655
6656 if (ptid == minus_one_ptid
6657 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6658 p += xsnprintf (p, endp - p, "vCont;t");
6659 else
6660 {
6661 ptid_t nptid;
6662
6663 p += xsnprintf (p, endp - p, "vCont;t:");
6664
6665 if (ptid.is_pid ())
6666 /* All (-1) threads of process. */
6667 nptid = ptid_t (ptid.pid (), -1, 0);
6668 else
6669 {
6670 /* Small optimization: if we already have a stop reply for
6671 this thread, no use in telling the stub we want this
6672 stopped. */
6673 if (peek_stop_reply (ptid))
6674 return;
6675
6676 nptid = ptid;
6677 }
6678
6679 write_ptid (p, endp, nptid);
6680 }
6681
6682 /* In non-stop, we get an immediate OK reply. The stop reply will
6683 come in asynchronously by notification. */
6684 putpkt (rs->buf);
6685 getpkt (&rs->buf, 0);
6686 if (strcmp (rs->buf.data (), "OK") != 0)
6687 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6688 rs->buf.data ());
6689 }
6690
6691 /* All-stop version of target_interrupt. Sends a break or a ^C to
6692 interrupt the remote target. It is undefined which thread of which
6693 process reports the interrupt. */
6694
6695 void
6696 remote_target::remote_interrupt_as ()
6697 {
6698 struct remote_state *rs = get_remote_state ();
6699
6700 rs->ctrlc_pending_p = 1;
6701
6702 /* If the inferior is stopped already, but the core didn't know
6703 about it yet, just ignore the request. The cached wait status
6704 will be collected in remote_wait. */
6705 if (rs->cached_wait_status)
6706 return;
6707
6708 /* Send interrupt_sequence to remote target. */
6709 send_interrupt_sequence ();
6710 }
6711
6712 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6713 the remote target. It is undefined which thread of which process
6714 reports the interrupt. Throws an error if the packet is not
6715 supported by the server. */
6716
6717 void
6718 remote_target::remote_interrupt_ns ()
6719 {
6720 struct remote_state *rs = get_remote_state ();
6721 char *p = rs->buf.data ();
6722 char *endp = p + get_remote_packet_size ();
6723
6724 xsnprintf (p, endp - p, "vCtrlC");
6725
6726 /* In non-stop, we get an immediate OK reply. The stop reply will
6727 come in asynchronously by notification. */
6728 putpkt (rs->buf);
6729 getpkt (&rs->buf, 0);
6730
6731 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6732 {
6733 case PACKET_OK:
6734 break;
6735 case PACKET_UNKNOWN:
6736 error (_("No support for interrupting the remote target."));
6737 case PACKET_ERROR:
6738 error (_("Interrupting target failed: %s"), rs->buf.data ());
6739 }
6740 }
6741
6742 /* Implement the to_stop function for the remote targets. */
6743
6744 void
6745 remote_target::stop (ptid_t ptid)
6746 {
6747 if (remote_debug)
6748 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6749
6750 if (target_is_non_stop_p ())
6751 remote_stop_ns (ptid);
6752 else
6753 {
6754 /* We don't currently have a way to transparently pause the
6755 remote target in all-stop mode. Interrupt it instead. */
6756 remote_interrupt_as ();
6757 }
6758 }
6759
6760 /* Implement the to_interrupt function for the remote targets. */
6761
6762 void
6763 remote_target::interrupt ()
6764 {
6765 if (remote_debug)
6766 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6767
6768 if (target_is_non_stop_p ())
6769 remote_interrupt_ns ();
6770 else
6771 remote_interrupt_as ();
6772 }
6773
6774 /* Implement the to_pass_ctrlc function for the remote targets. */
6775
6776 void
6777 remote_target::pass_ctrlc ()
6778 {
6779 struct remote_state *rs = get_remote_state ();
6780
6781 if (remote_debug)
6782 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6783
6784 /* If we're starting up, we're not fully synced yet. Quit
6785 immediately. */
6786 if (rs->starting_up)
6787 quit ();
6788 /* If ^C has already been sent once, offer to disconnect. */
6789 else if (rs->ctrlc_pending_p)
6790 interrupt_query ();
6791 else
6792 target_interrupt ();
6793 }
6794
6795 /* Ask the user what to do when an interrupt is received. */
6796
6797 void
6798 remote_target::interrupt_query ()
6799 {
6800 struct remote_state *rs = get_remote_state ();
6801
6802 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6803 {
6804 if (query (_("The target is not responding to interrupt requests.\n"
6805 "Stop debugging it? ")))
6806 {
6807 remote_unpush_target (this);
6808 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6809 }
6810 }
6811 else
6812 {
6813 if (query (_("Interrupted while waiting for the program.\n"
6814 "Give up waiting? ")))
6815 quit ();
6816 }
6817 }
6818
6819 /* Enable/disable target terminal ownership. Most targets can use
6820 terminal groups to control terminal ownership. Remote targets are
6821 different in that explicit transfer of ownership to/from GDB/target
6822 is required. */
6823
6824 void
6825 remote_target::terminal_inferior ()
6826 {
6827 /* NOTE: At this point we could also register our selves as the
6828 recipient of all input. Any characters typed could then be
6829 passed on down to the target. */
6830 }
6831
6832 void
6833 remote_target::terminal_ours ()
6834 {
6835 }
6836
6837 static void
6838 remote_console_output (const char *msg)
6839 {
6840 const char *p;
6841
6842 for (p = msg; p[0] && p[1]; p += 2)
6843 {
6844 char tb[2];
6845 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6846
6847 tb[0] = c;
6848 tb[1] = 0;
6849 gdb_stdtarg->puts (tb);
6850 }
6851 gdb_stdtarg->flush ();
6852 }
6853
6854 struct stop_reply : public notif_event
6855 {
6856 ~stop_reply ();
6857
6858 /* The identifier of the thread about this event */
6859 ptid_t ptid;
6860
6861 /* The remote state this event is associated with. When the remote
6862 connection, represented by a remote_state object, is closed,
6863 all the associated stop_reply events should be released. */
6864 struct remote_state *rs;
6865
6866 struct target_waitstatus ws;
6867
6868 /* The architecture associated with the expedited registers. */
6869 gdbarch *arch;
6870
6871 /* Expedited registers. This makes remote debugging a bit more
6872 efficient for those targets that provide critical registers as
6873 part of their normal status mechanism (as another roundtrip to
6874 fetch them is avoided). */
6875 std::vector<cached_reg_t> regcache;
6876
6877 enum target_stop_reason stop_reason;
6878
6879 CORE_ADDR watch_data_address;
6880
6881 int core;
6882 };
6883
6884 /* Return the length of the stop reply queue. */
6885
6886 int
6887 remote_target::stop_reply_queue_length ()
6888 {
6889 remote_state *rs = get_remote_state ();
6890 return rs->stop_reply_queue.size ();
6891 }
6892
6893 static void
6894 remote_notif_stop_parse (remote_target *remote,
6895 struct notif_client *self, const char *buf,
6896 struct notif_event *event)
6897 {
6898 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6899 }
6900
6901 static void
6902 remote_notif_stop_ack (remote_target *remote,
6903 struct notif_client *self, const char *buf,
6904 struct notif_event *event)
6905 {
6906 struct stop_reply *stop_reply = (struct stop_reply *) event;
6907
6908 /* acknowledge */
6909 putpkt (remote, self->ack_command);
6910
6911 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6912 {
6913 /* We got an unknown stop reply. */
6914 error (_("Unknown stop reply"));
6915 }
6916
6917 remote->push_stop_reply (stop_reply);
6918 }
6919
6920 static int
6921 remote_notif_stop_can_get_pending_events (remote_target *remote,
6922 struct notif_client *self)
6923 {
6924 /* We can't get pending events in remote_notif_process for
6925 notification stop, and we have to do this in remote_wait_ns
6926 instead. If we fetch all queued events from stub, remote stub
6927 may exit and we have no chance to process them back in
6928 remote_wait_ns. */
6929 remote_state *rs = remote->get_remote_state ();
6930 mark_async_event_handler (rs->remote_async_inferior_event_token);
6931 return 0;
6932 }
6933
6934 stop_reply::~stop_reply ()
6935 {
6936 for (cached_reg_t &reg : regcache)
6937 xfree (reg.data);
6938 }
6939
6940 static notif_event_up
6941 remote_notif_stop_alloc_reply ()
6942 {
6943 return notif_event_up (new struct stop_reply ());
6944 }
6945
6946 /* A client of notification Stop. */
6947
6948 struct notif_client notif_client_stop =
6949 {
6950 "Stop",
6951 "vStopped",
6952 remote_notif_stop_parse,
6953 remote_notif_stop_ack,
6954 remote_notif_stop_can_get_pending_events,
6955 remote_notif_stop_alloc_reply,
6956 REMOTE_NOTIF_STOP,
6957 };
6958
6959 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6960 the pid of the process that owns the threads we want to check, or
6961 -1 if we want to check all threads. */
6962
6963 static int
6964 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6965 ptid_t thread_ptid)
6966 {
6967 if (ws->kind == TARGET_WAITKIND_FORKED
6968 || ws->kind == TARGET_WAITKIND_VFORKED)
6969 {
6970 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6971 return 1;
6972 }
6973
6974 return 0;
6975 }
6976
6977 /* Return the thread's pending status used to determine whether the
6978 thread is a fork parent stopped at a fork event. */
6979
6980 static struct target_waitstatus *
6981 thread_pending_fork_status (struct thread_info *thread)
6982 {
6983 if (thread->suspend.waitstatus_pending_p)
6984 return &thread->suspend.waitstatus;
6985 else
6986 return &thread->pending_follow;
6987 }
6988
6989 /* Determine if THREAD is a pending fork parent thread. */
6990
6991 static int
6992 is_pending_fork_parent_thread (struct thread_info *thread)
6993 {
6994 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6995 int pid = -1;
6996
6997 return is_pending_fork_parent (ws, pid, thread->ptid);
6998 }
6999
7000 /* If CONTEXT contains any fork child threads that have not been
7001 reported yet, remove them from the CONTEXT list. If such a
7002 thread exists it is because we are stopped at a fork catchpoint
7003 and have not yet called follow_fork, which will set up the
7004 host-side data structures for the new process. */
7005
7006 void
7007 remote_target::remove_new_fork_children (threads_listing_context *context)
7008 {
7009 int pid = -1;
7010 struct notif_client *notif = &notif_client_stop;
7011
7012 /* For any threads stopped at a fork event, remove the corresponding
7013 fork child threads from the CONTEXT list. */
7014 for (thread_info *thread : all_non_exited_threads (this))
7015 {
7016 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7017
7018 if (is_pending_fork_parent (ws, pid, thread->ptid))
7019 context->remove_thread (ws->value.related_pid);
7020 }
7021
7022 /* Check for any pending fork events (not reported or processed yet)
7023 in process PID and remove those fork child threads from the
7024 CONTEXT list as well. */
7025 remote_notif_get_pending_events (notif);
7026 for (auto &event : get_remote_state ()->stop_reply_queue)
7027 if (event->ws.kind == TARGET_WAITKIND_FORKED
7028 || event->ws.kind == TARGET_WAITKIND_VFORKED
7029 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7030 context->remove_thread (event->ws.value.related_pid);
7031 }
7032
7033 /* Check whether any event pending in the vStopped queue would prevent
7034 a global or process wildcard vCont action. Clear
7035 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7036 and clear the event inferior's may_wildcard_vcont flag if we can't
7037 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7038
7039 void
7040 remote_target::check_pending_events_prevent_wildcard_vcont
7041 (int *may_global_wildcard)
7042 {
7043 struct notif_client *notif = &notif_client_stop;
7044
7045 remote_notif_get_pending_events (notif);
7046 for (auto &event : get_remote_state ()->stop_reply_queue)
7047 {
7048 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7049 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7050 continue;
7051
7052 if (event->ws.kind == TARGET_WAITKIND_FORKED
7053 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7054 *may_global_wildcard = 0;
7055
7056 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7057
7058 /* This may be the first time we heard about this process.
7059 Regardless, we must not do a global wildcard resume, otherwise
7060 we'd resume this process too. */
7061 *may_global_wildcard = 0;
7062 if (inf != NULL)
7063 get_remote_inferior (inf)->may_wildcard_vcont = false;
7064 }
7065 }
7066
7067 /* Discard all pending stop replies of inferior INF. */
7068
7069 void
7070 remote_target::discard_pending_stop_replies (struct inferior *inf)
7071 {
7072 struct stop_reply *reply;
7073 struct remote_state *rs = get_remote_state ();
7074 struct remote_notif_state *rns = rs->notif_state;
7075
7076 /* This function can be notified when an inferior exists. When the
7077 target is not remote, the notification state is NULL. */
7078 if (rs->remote_desc == NULL)
7079 return;
7080
7081 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7082
7083 /* Discard the in-flight notification. */
7084 if (reply != NULL && reply->ptid.pid () == inf->pid)
7085 {
7086 delete reply;
7087 rns->pending_event[notif_client_stop.id] = NULL;
7088 }
7089
7090 /* Discard the stop replies we have already pulled with
7091 vStopped. */
7092 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7093 rs->stop_reply_queue.end (),
7094 [=] (const stop_reply_up &event)
7095 {
7096 return event->ptid.pid () == inf->pid;
7097 });
7098 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7099 }
7100
7101 /* Discard the stop replies for RS in stop_reply_queue. */
7102
7103 void
7104 remote_target::discard_pending_stop_replies_in_queue ()
7105 {
7106 remote_state *rs = get_remote_state ();
7107
7108 /* Discard the stop replies we have already pulled with
7109 vStopped. */
7110 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7111 rs->stop_reply_queue.end (),
7112 [=] (const stop_reply_up &event)
7113 {
7114 return event->rs == rs;
7115 });
7116 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7117 }
7118
7119 /* Remove the first reply in 'stop_reply_queue' which matches
7120 PTID. */
7121
7122 struct stop_reply *
7123 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7124 {
7125 remote_state *rs = get_remote_state ();
7126
7127 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7128 rs->stop_reply_queue.end (),
7129 [=] (const stop_reply_up &event)
7130 {
7131 return event->ptid.matches (ptid);
7132 });
7133 struct stop_reply *result;
7134 if (iter == rs->stop_reply_queue.end ())
7135 result = nullptr;
7136 else
7137 {
7138 result = iter->release ();
7139 rs->stop_reply_queue.erase (iter);
7140 }
7141
7142 if (notif_debug)
7143 fprintf_unfiltered (gdb_stdlog,
7144 "notif: discard queued event: 'Stop' in %s\n",
7145 target_pid_to_str (ptid).c_str ());
7146
7147 return result;
7148 }
7149
7150 /* Look for a queued stop reply belonging to PTID. If one is found,
7151 remove it from the queue, and return it. Returns NULL if none is
7152 found. If there are still queued events left to process, tell the
7153 event loop to get back to target_wait soon. */
7154
7155 struct stop_reply *
7156 remote_target::queued_stop_reply (ptid_t ptid)
7157 {
7158 remote_state *rs = get_remote_state ();
7159 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7160
7161 if (!rs->stop_reply_queue.empty ())
7162 {
7163 /* There's still at least an event left. */
7164 mark_async_event_handler (rs->remote_async_inferior_event_token);
7165 }
7166
7167 return r;
7168 }
7169
7170 /* Push a fully parsed stop reply in the stop reply queue. Since we
7171 know that we now have at least one queued event left to pass to the
7172 core side, tell the event loop to get back to target_wait soon. */
7173
7174 void
7175 remote_target::push_stop_reply (struct stop_reply *new_event)
7176 {
7177 remote_state *rs = get_remote_state ();
7178 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7179
7180 if (notif_debug)
7181 fprintf_unfiltered (gdb_stdlog,
7182 "notif: push 'Stop' %s to queue %d\n",
7183 target_pid_to_str (new_event->ptid).c_str (),
7184 int (rs->stop_reply_queue.size ()));
7185
7186 mark_async_event_handler (rs->remote_async_inferior_event_token);
7187 }
7188
7189 /* Returns true if we have a stop reply for PTID. */
7190
7191 int
7192 remote_target::peek_stop_reply (ptid_t ptid)
7193 {
7194 remote_state *rs = get_remote_state ();
7195 for (auto &event : rs->stop_reply_queue)
7196 if (ptid == event->ptid
7197 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7198 return 1;
7199 return 0;
7200 }
7201
7202 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7203 starting with P and ending with PEND matches PREFIX. */
7204
7205 static int
7206 strprefix (const char *p, const char *pend, const char *prefix)
7207 {
7208 for ( ; p < pend; p++, prefix++)
7209 if (*p != *prefix)
7210 return 0;
7211 return *prefix == '\0';
7212 }
7213
7214 /* Parse the stop reply in BUF. Either the function succeeds, and the
7215 result is stored in EVENT, or throws an error. */
7216
7217 void
7218 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7219 {
7220 remote_arch_state *rsa = NULL;
7221 ULONGEST addr;
7222 const char *p;
7223 int skipregs = 0;
7224
7225 event->ptid = null_ptid;
7226 event->rs = get_remote_state ();
7227 event->ws.kind = TARGET_WAITKIND_IGNORE;
7228 event->ws.value.integer = 0;
7229 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7230 event->regcache.clear ();
7231 event->core = -1;
7232
7233 switch (buf[0])
7234 {
7235 case 'T': /* Status with PC, SP, FP, ... */
7236 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7237 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7238 ss = signal number
7239 n... = register number
7240 r... = register contents
7241 */
7242
7243 p = &buf[3]; /* after Txx */
7244 while (*p)
7245 {
7246 const char *p1;
7247 int fieldsize;
7248
7249 p1 = strchr (p, ':');
7250 if (p1 == NULL)
7251 error (_("Malformed packet(a) (missing colon): %s\n\
7252 Packet: '%s'\n"),
7253 p, buf);
7254 if (p == p1)
7255 error (_("Malformed packet(a) (missing register number): %s\n\
7256 Packet: '%s'\n"),
7257 p, buf);
7258
7259 /* Some "registers" are actually extended stop information.
7260 Note if you're adding a new entry here: GDB 7.9 and
7261 earlier assume that all register "numbers" that start
7262 with an hex digit are real register numbers. Make sure
7263 the server only sends such a packet if it knows the
7264 client understands it. */
7265
7266 if (strprefix (p, p1, "thread"))
7267 event->ptid = read_ptid (++p1, &p);
7268 else if (strprefix (p, p1, "syscall_entry"))
7269 {
7270 ULONGEST sysno;
7271
7272 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7273 p = unpack_varlen_hex (++p1, &sysno);
7274 event->ws.value.syscall_number = (int) sysno;
7275 }
7276 else if (strprefix (p, p1, "syscall_return"))
7277 {
7278 ULONGEST sysno;
7279
7280 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7281 p = unpack_varlen_hex (++p1, &sysno);
7282 event->ws.value.syscall_number = (int) sysno;
7283 }
7284 else if (strprefix (p, p1, "watch")
7285 || strprefix (p, p1, "rwatch")
7286 || strprefix (p, p1, "awatch"))
7287 {
7288 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7289 p = unpack_varlen_hex (++p1, &addr);
7290 event->watch_data_address = (CORE_ADDR) addr;
7291 }
7292 else if (strprefix (p, p1, "swbreak"))
7293 {
7294 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7295
7296 /* Make sure the stub doesn't forget to indicate support
7297 with qSupported. */
7298 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7299 error (_("Unexpected swbreak stop reason"));
7300
7301 /* The value part is documented as "must be empty",
7302 though we ignore it, in case we ever decide to make
7303 use of it in a backward compatible way. */
7304 p = strchrnul (p1 + 1, ';');
7305 }
7306 else if (strprefix (p, p1, "hwbreak"))
7307 {
7308 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7309
7310 /* Make sure the stub doesn't forget to indicate support
7311 with qSupported. */
7312 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7313 error (_("Unexpected hwbreak stop reason"));
7314
7315 /* See above. */
7316 p = strchrnul (p1 + 1, ';');
7317 }
7318 else if (strprefix (p, p1, "library"))
7319 {
7320 event->ws.kind = TARGET_WAITKIND_LOADED;
7321 p = strchrnul (p1 + 1, ';');
7322 }
7323 else if (strprefix (p, p1, "replaylog"))
7324 {
7325 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7326 /* p1 will indicate "begin" or "end", but it makes
7327 no difference for now, so ignore it. */
7328 p = strchrnul (p1 + 1, ';');
7329 }
7330 else if (strprefix (p, p1, "core"))
7331 {
7332 ULONGEST c;
7333
7334 p = unpack_varlen_hex (++p1, &c);
7335 event->core = c;
7336 }
7337 else if (strprefix (p, p1, "fork"))
7338 {
7339 event->ws.value.related_pid = read_ptid (++p1, &p);
7340 event->ws.kind = TARGET_WAITKIND_FORKED;
7341 }
7342 else if (strprefix (p, p1, "vfork"))
7343 {
7344 event->ws.value.related_pid = read_ptid (++p1, &p);
7345 event->ws.kind = TARGET_WAITKIND_VFORKED;
7346 }
7347 else if (strprefix (p, p1, "vforkdone"))
7348 {
7349 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7350 p = strchrnul (p1 + 1, ';');
7351 }
7352 else if (strprefix (p, p1, "exec"))
7353 {
7354 ULONGEST ignored;
7355 int pathlen;
7356
7357 /* Determine the length of the execd pathname. */
7358 p = unpack_varlen_hex (++p1, &ignored);
7359 pathlen = (p - p1) / 2;
7360
7361 /* Save the pathname for event reporting and for
7362 the next run command. */
7363 gdb::unique_xmalloc_ptr<char[]> pathname
7364 ((char *) xmalloc (pathlen + 1));
7365 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7366 pathname[pathlen] = '\0';
7367
7368 /* This is freed during event handling. */
7369 event->ws.value.execd_pathname = pathname.release ();
7370 event->ws.kind = TARGET_WAITKIND_EXECD;
7371
7372 /* Skip the registers included in this packet, since
7373 they may be for an architecture different from the
7374 one used by the original program. */
7375 skipregs = 1;
7376 }
7377 else if (strprefix (p, p1, "create"))
7378 {
7379 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7380 p = strchrnul (p1 + 1, ';');
7381 }
7382 else
7383 {
7384 ULONGEST pnum;
7385 const char *p_temp;
7386
7387 if (skipregs)
7388 {
7389 p = strchrnul (p1 + 1, ';');
7390 p++;
7391 continue;
7392 }
7393
7394 /* Maybe a real ``P'' register number. */
7395 p_temp = unpack_varlen_hex (p, &pnum);
7396 /* If the first invalid character is the colon, we got a
7397 register number. Otherwise, it's an unknown stop
7398 reason. */
7399 if (p_temp == p1)
7400 {
7401 /* If we haven't parsed the event's thread yet, find
7402 it now, in order to find the architecture of the
7403 reported expedited registers. */
7404 if (event->ptid == null_ptid)
7405 {
7406 /* If there is no thread-id information then leave
7407 the event->ptid as null_ptid. Later in
7408 process_stop_reply we will pick a suitable
7409 thread. */
7410 const char *thr = strstr (p1 + 1, ";thread:");
7411 if (thr != NULL)
7412 event->ptid = read_ptid (thr + strlen (";thread:"),
7413 NULL);
7414 }
7415
7416 if (rsa == NULL)
7417 {
7418 inferior *inf
7419 = (event->ptid == null_ptid
7420 ? NULL
7421 : find_inferior_ptid (this, event->ptid));
7422 /* If this is the first time we learn anything
7423 about this process, skip the registers
7424 included in this packet, since we don't yet
7425 know which architecture to use to parse them.
7426 We'll determine the architecture later when
7427 we process the stop reply and retrieve the
7428 target description, via
7429 remote_notice_new_inferior ->
7430 post_create_inferior. */
7431 if (inf == NULL)
7432 {
7433 p = strchrnul (p1 + 1, ';');
7434 p++;
7435 continue;
7436 }
7437
7438 event->arch = inf->gdbarch;
7439 rsa = event->rs->get_remote_arch_state (event->arch);
7440 }
7441
7442 packet_reg *reg
7443 = packet_reg_from_pnum (event->arch, rsa, pnum);
7444 cached_reg_t cached_reg;
7445
7446 if (reg == NULL)
7447 error (_("Remote sent bad register number %s: %s\n\
7448 Packet: '%s'\n"),
7449 hex_string (pnum), p, buf);
7450
7451 cached_reg.num = reg->regnum;
7452 cached_reg.data = (gdb_byte *)
7453 xmalloc (register_size (event->arch, reg->regnum));
7454
7455 p = p1 + 1;
7456 fieldsize = hex2bin (p, cached_reg.data,
7457 register_size (event->arch, reg->regnum));
7458 p += 2 * fieldsize;
7459 if (fieldsize < register_size (event->arch, reg->regnum))
7460 warning (_("Remote reply is too short: %s"), buf);
7461
7462 event->regcache.push_back (cached_reg);
7463 }
7464 else
7465 {
7466 /* Not a number. Silently skip unknown optional
7467 info. */
7468 p = strchrnul (p1 + 1, ';');
7469 }
7470 }
7471
7472 if (*p != ';')
7473 error (_("Remote register badly formatted: %s\nhere: %s"),
7474 buf, p);
7475 ++p;
7476 }
7477
7478 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7479 break;
7480
7481 /* fall through */
7482 case 'S': /* Old style status, just signal only. */
7483 {
7484 int sig;
7485
7486 event->ws.kind = TARGET_WAITKIND_STOPPED;
7487 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7488 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7489 event->ws.value.sig = (enum gdb_signal) sig;
7490 else
7491 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7492 }
7493 break;
7494 case 'w': /* Thread exited. */
7495 {
7496 ULONGEST value;
7497
7498 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7499 p = unpack_varlen_hex (&buf[1], &value);
7500 event->ws.value.integer = value;
7501 if (*p != ';')
7502 error (_("stop reply packet badly formatted: %s"), buf);
7503 event->ptid = read_ptid (++p, NULL);
7504 break;
7505 }
7506 case 'W': /* Target exited. */
7507 case 'X':
7508 {
7509 ULONGEST value;
7510
7511 /* GDB used to accept only 2 hex chars here. Stubs should
7512 only send more if they detect GDB supports multi-process
7513 support. */
7514 p = unpack_varlen_hex (&buf[1], &value);
7515
7516 if (buf[0] == 'W')
7517 {
7518 /* The remote process exited. */
7519 event->ws.kind = TARGET_WAITKIND_EXITED;
7520 event->ws.value.integer = value;
7521 }
7522 else
7523 {
7524 /* The remote process exited with a signal. */
7525 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7526 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7527 event->ws.value.sig = (enum gdb_signal) value;
7528 else
7529 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7530 }
7531
7532 /* If no process is specified, return null_ptid, and let the
7533 caller figure out the right process to use. */
7534 int pid = 0;
7535 if (*p == '\0')
7536 ;
7537 else if (*p == ';')
7538 {
7539 p++;
7540
7541 if (*p == '\0')
7542 ;
7543 else if (startswith (p, "process:"))
7544 {
7545 ULONGEST upid;
7546
7547 p += sizeof ("process:") - 1;
7548 unpack_varlen_hex (p, &upid);
7549 pid = upid;
7550 }
7551 else
7552 error (_("unknown stop reply packet: %s"), buf);
7553 }
7554 else
7555 error (_("unknown stop reply packet: %s"), buf);
7556 event->ptid = ptid_t (pid);
7557 }
7558 break;
7559 case 'N':
7560 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7561 event->ptid = minus_one_ptid;
7562 break;
7563 }
7564 }
7565
7566 /* When the stub wants to tell GDB about a new notification reply, it
7567 sends a notification (%Stop, for example). Those can come it at
7568 any time, hence, we have to make sure that any pending
7569 putpkt/getpkt sequence we're making is finished, before querying
7570 the stub for more events with the corresponding ack command
7571 (vStopped, for example). E.g., if we started a vStopped sequence
7572 immediately upon receiving the notification, something like this
7573 could happen:
7574
7575 1.1) --> Hg 1
7576 1.2) <-- OK
7577 1.3) --> g
7578 1.4) <-- %Stop
7579 1.5) --> vStopped
7580 1.6) <-- (registers reply to step #1.3)
7581
7582 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7583 query.
7584
7585 To solve this, whenever we parse a %Stop notification successfully,
7586 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7587 doing whatever we were doing:
7588
7589 2.1) --> Hg 1
7590 2.2) <-- OK
7591 2.3) --> g
7592 2.4) <-- %Stop
7593 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7594 2.5) <-- (registers reply to step #2.3)
7595
7596 Eventually after step #2.5, we return to the event loop, which
7597 notices there's an event on the
7598 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7599 associated callback --- the function below. At this point, we're
7600 always safe to start a vStopped sequence. :
7601
7602 2.6) --> vStopped
7603 2.7) <-- T05 thread:2
7604 2.8) --> vStopped
7605 2.9) --> OK
7606 */
7607
7608 void
7609 remote_target::remote_notif_get_pending_events (notif_client *nc)
7610 {
7611 struct remote_state *rs = get_remote_state ();
7612
7613 if (rs->notif_state->pending_event[nc->id] != NULL)
7614 {
7615 if (notif_debug)
7616 fprintf_unfiltered (gdb_stdlog,
7617 "notif: process: '%s' ack pending event\n",
7618 nc->name);
7619
7620 /* acknowledge */
7621 nc->ack (this, nc, rs->buf.data (),
7622 rs->notif_state->pending_event[nc->id]);
7623 rs->notif_state->pending_event[nc->id] = NULL;
7624
7625 while (1)
7626 {
7627 getpkt (&rs->buf, 0);
7628 if (strcmp (rs->buf.data (), "OK") == 0)
7629 break;
7630 else
7631 remote_notif_ack (this, nc, rs->buf.data ());
7632 }
7633 }
7634 else
7635 {
7636 if (notif_debug)
7637 fprintf_unfiltered (gdb_stdlog,
7638 "notif: process: '%s' no pending reply\n",
7639 nc->name);
7640 }
7641 }
7642
7643 /* Wrapper around remote_target::remote_notif_get_pending_events to
7644 avoid having to export the whole remote_target class. */
7645
7646 void
7647 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7648 {
7649 remote->remote_notif_get_pending_events (nc);
7650 }
7651
7652 /* Called when it is decided that STOP_REPLY holds the info of the
7653 event that is to be returned to the core. This function always
7654 destroys STOP_REPLY. */
7655
7656 ptid_t
7657 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7658 struct target_waitstatus *status)
7659 {
7660 ptid_t ptid;
7661
7662 *status = stop_reply->ws;
7663 ptid = stop_reply->ptid;
7664
7665 /* If no thread/process was reported by the stub then use the first
7666 non-exited thread in the current target. */
7667 if (ptid == null_ptid)
7668 {
7669 /* Some stop events apply to all threads in an inferior, while others
7670 only apply to a single thread. */
7671 bool is_stop_for_all_threads
7672 = (status->kind == TARGET_WAITKIND_EXITED
7673 || status->kind == TARGET_WAITKIND_SIGNALLED);
7674
7675 for (thread_info *thr : all_non_exited_threads (this))
7676 {
7677 if (ptid != null_ptid
7678 && (!is_stop_for_all_threads
7679 || ptid.pid () != thr->ptid.pid ()))
7680 {
7681 static bool warned = false;
7682
7683 if (!warned)
7684 {
7685 /* If you are seeing this warning then the remote target
7686 has stopped without specifying a thread-id, but the
7687 target does have multiple threads (or inferiors), and
7688 so GDB is having to guess which thread stopped.
7689
7690 Examples of what might cause this are the target
7691 sending and 'S' stop packet, or a 'T' stop packet and
7692 not including a thread-id.
7693
7694 Additionally, the target might send a 'W' or 'X
7695 packet without including a process-id, when the target
7696 has multiple running inferiors. */
7697 if (is_stop_for_all_threads)
7698 warning (_("multi-inferior target stopped without "
7699 "sending a process-id, using first "
7700 "non-exited inferior"));
7701 else
7702 warning (_("multi-threaded target stopped without "
7703 "sending a thread-id, using first "
7704 "non-exited thread"));
7705 warned = true;
7706 }
7707 break;
7708 }
7709
7710 /* If this is a stop for all threads then don't use a particular
7711 threads ptid, instead create a new ptid where only the pid
7712 field is set. */
7713 if (is_stop_for_all_threads)
7714 ptid = ptid_t (thr->ptid.pid ());
7715 else
7716 ptid = thr->ptid;
7717 }
7718 gdb_assert (ptid != null_ptid);
7719 }
7720
7721 if (status->kind != TARGET_WAITKIND_EXITED
7722 && status->kind != TARGET_WAITKIND_SIGNALLED
7723 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7724 {
7725 /* Expedited registers. */
7726 if (!stop_reply->regcache.empty ())
7727 {
7728 struct regcache *regcache
7729 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7730
7731 for (cached_reg_t &reg : stop_reply->regcache)
7732 {
7733 regcache->raw_supply (reg.num, reg.data);
7734 xfree (reg.data);
7735 }
7736
7737 stop_reply->regcache.clear ();
7738 }
7739
7740 remote_notice_new_inferior (ptid, 0);
7741 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7742 remote_thr->core = stop_reply->core;
7743 remote_thr->stop_reason = stop_reply->stop_reason;
7744 remote_thr->watch_data_address = stop_reply->watch_data_address;
7745 remote_thr->vcont_resumed = 0;
7746 }
7747
7748 delete stop_reply;
7749 return ptid;
7750 }
7751
7752 /* The non-stop mode version of target_wait. */
7753
7754 ptid_t
7755 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7756 {
7757 struct remote_state *rs = get_remote_state ();
7758 struct stop_reply *stop_reply;
7759 int ret;
7760 int is_notif = 0;
7761
7762 /* If in non-stop mode, get out of getpkt even if a
7763 notification is received. */
7764
7765 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7766 while (1)
7767 {
7768 if (ret != -1 && !is_notif)
7769 switch (rs->buf[0])
7770 {
7771 case 'E': /* Error of some sort. */
7772 /* We're out of sync with the target now. Did it continue
7773 or not? We can't tell which thread it was in non-stop,
7774 so just ignore this. */
7775 warning (_("Remote failure reply: %s"), rs->buf.data ());
7776 break;
7777 case 'O': /* Console output. */
7778 remote_console_output (&rs->buf[1]);
7779 break;
7780 default:
7781 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7782 break;
7783 }
7784
7785 /* Acknowledge a pending stop reply that may have arrived in the
7786 mean time. */
7787 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7788 remote_notif_get_pending_events (&notif_client_stop);
7789
7790 /* If indeed we noticed a stop reply, we're done. */
7791 stop_reply = queued_stop_reply (ptid);
7792 if (stop_reply != NULL)
7793 return process_stop_reply (stop_reply, status);
7794
7795 /* Still no event. If we're just polling for an event, then
7796 return to the event loop. */
7797 if (options & TARGET_WNOHANG)
7798 {
7799 status->kind = TARGET_WAITKIND_IGNORE;
7800 return minus_one_ptid;
7801 }
7802
7803 /* Otherwise do a blocking wait. */
7804 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7805 }
7806 }
7807
7808 /* Return the first resumed thread. */
7809
7810 static ptid_t
7811 first_remote_resumed_thread (remote_target *target)
7812 {
7813 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7814 if (tp->resumed)
7815 return tp->ptid;
7816 return null_ptid;
7817 }
7818
7819 /* Wait until the remote machine stops, then return, storing status in
7820 STATUS just as `wait' would. */
7821
7822 ptid_t
7823 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7824 {
7825 struct remote_state *rs = get_remote_state ();
7826 ptid_t event_ptid = null_ptid;
7827 char *buf;
7828 struct stop_reply *stop_reply;
7829
7830 again:
7831
7832 status->kind = TARGET_WAITKIND_IGNORE;
7833 status->value.integer = 0;
7834
7835 stop_reply = queued_stop_reply (ptid);
7836 if (stop_reply != NULL)
7837 return process_stop_reply (stop_reply, status);
7838
7839 if (rs->cached_wait_status)
7840 /* Use the cached wait status, but only once. */
7841 rs->cached_wait_status = 0;
7842 else
7843 {
7844 int ret;
7845 int is_notif;
7846 int forever = ((options & TARGET_WNOHANG) == 0
7847 && rs->wait_forever_enabled_p);
7848
7849 if (!rs->waiting_for_stop_reply)
7850 {
7851 status->kind = TARGET_WAITKIND_NO_RESUMED;
7852 return minus_one_ptid;
7853 }
7854
7855 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7856 _never_ wait for ever -> test on target_is_async_p().
7857 However, before we do that we need to ensure that the caller
7858 knows how to take the target into/out of async mode. */
7859 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7860
7861 /* GDB gets a notification. Return to core as this event is
7862 not interesting. */
7863 if (ret != -1 && is_notif)
7864 return minus_one_ptid;
7865
7866 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7867 return minus_one_ptid;
7868 }
7869
7870 buf = rs->buf.data ();
7871
7872 /* Assume that the target has acknowledged Ctrl-C unless we receive
7873 an 'F' or 'O' packet. */
7874 if (buf[0] != 'F' && buf[0] != 'O')
7875 rs->ctrlc_pending_p = 0;
7876
7877 switch (buf[0])
7878 {
7879 case 'E': /* Error of some sort. */
7880 /* We're out of sync with the target now. Did it continue or
7881 not? Not is more likely, so report a stop. */
7882 rs->waiting_for_stop_reply = 0;
7883
7884 warning (_("Remote failure reply: %s"), buf);
7885 status->kind = TARGET_WAITKIND_STOPPED;
7886 status->value.sig = GDB_SIGNAL_0;
7887 break;
7888 case 'F': /* File-I/O request. */
7889 /* GDB may access the inferior memory while handling the File-I/O
7890 request, but we don't want GDB accessing memory while waiting
7891 for a stop reply. See the comments in putpkt_binary. Set
7892 waiting_for_stop_reply to 0 temporarily. */
7893 rs->waiting_for_stop_reply = 0;
7894 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7895 rs->ctrlc_pending_p = 0;
7896 /* GDB handled the File-I/O request, and the target is running
7897 again. Keep waiting for events. */
7898 rs->waiting_for_stop_reply = 1;
7899 break;
7900 case 'N': case 'T': case 'S': case 'X': case 'W':
7901 {
7902 /* There is a stop reply to handle. */
7903 rs->waiting_for_stop_reply = 0;
7904
7905 stop_reply
7906 = (struct stop_reply *) remote_notif_parse (this,
7907 &notif_client_stop,
7908 rs->buf.data ());
7909
7910 event_ptid = process_stop_reply (stop_reply, status);
7911 break;
7912 }
7913 case 'O': /* Console output. */
7914 remote_console_output (buf + 1);
7915 break;
7916 case '\0':
7917 if (rs->last_sent_signal != GDB_SIGNAL_0)
7918 {
7919 /* Zero length reply means that we tried 'S' or 'C' and the
7920 remote system doesn't support it. */
7921 target_terminal::ours_for_output ();
7922 printf_filtered
7923 ("Can't send signals to this remote system. %s not sent.\n",
7924 gdb_signal_to_name (rs->last_sent_signal));
7925 rs->last_sent_signal = GDB_SIGNAL_0;
7926 target_terminal::inferior ();
7927
7928 strcpy (buf, rs->last_sent_step ? "s" : "c");
7929 putpkt (buf);
7930 break;
7931 }
7932 /* fallthrough */
7933 default:
7934 warning (_("Invalid remote reply: %s"), buf);
7935 break;
7936 }
7937
7938 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7939 return minus_one_ptid;
7940 else if (status->kind == TARGET_WAITKIND_IGNORE)
7941 {
7942 /* Nothing interesting happened. If we're doing a non-blocking
7943 poll, we're done. Otherwise, go back to waiting. */
7944 if (options & TARGET_WNOHANG)
7945 return minus_one_ptid;
7946 else
7947 goto again;
7948 }
7949 else if (status->kind != TARGET_WAITKIND_EXITED
7950 && status->kind != TARGET_WAITKIND_SIGNALLED)
7951 {
7952 if (event_ptid != null_ptid)
7953 record_currthread (rs, event_ptid);
7954 else
7955 event_ptid = first_remote_resumed_thread (this);
7956 }
7957 else
7958 {
7959 /* A process exit. Invalidate our notion of current thread. */
7960 record_currthread (rs, minus_one_ptid);
7961 /* It's possible that the packet did not include a pid. */
7962 if (event_ptid == null_ptid)
7963 event_ptid = first_remote_resumed_thread (this);
7964 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7965 if (event_ptid == null_ptid)
7966 event_ptid = magic_null_ptid;
7967 }
7968
7969 return event_ptid;
7970 }
7971
7972 /* Wait until the remote machine stops, then return, storing status in
7973 STATUS just as `wait' would. */
7974
7975 ptid_t
7976 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7977 {
7978 ptid_t event_ptid;
7979
7980 if (target_is_non_stop_p ())
7981 event_ptid = wait_ns (ptid, status, options);
7982 else
7983 event_ptid = wait_as (ptid, status, options);
7984
7985 if (target_is_async_p ())
7986 {
7987 remote_state *rs = get_remote_state ();
7988
7989 /* If there are are events left in the queue tell the event loop
7990 to return here. */
7991 if (!rs->stop_reply_queue.empty ())
7992 mark_async_event_handler (rs->remote_async_inferior_event_token);
7993 }
7994
7995 return event_ptid;
7996 }
7997
7998 /* Fetch a single register using a 'p' packet. */
7999
8000 int
8001 remote_target::fetch_register_using_p (struct regcache *regcache,
8002 packet_reg *reg)
8003 {
8004 struct gdbarch *gdbarch = regcache->arch ();
8005 struct remote_state *rs = get_remote_state ();
8006 char *buf, *p;
8007 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8008 int i;
8009
8010 if (packet_support (PACKET_p) == PACKET_DISABLE)
8011 return 0;
8012
8013 if (reg->pnum == -1)
8014 return 0;
8015
8016 p = rs->buf.data ();
8017 *p++ = 'p';
8018 p += hexnumstr (p, reg->pnum);
8019 *p++ = '\0';
8020 putpkt (rs->buf);
8021 getpkt (&rs->buf, 0);
8022
8023 buf = rs->buf.data ();
8024
8025 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8026 {
8027 case PACKET_OK:
8028 break;
8029 case PACKET_UNKNOWN:
8030 return 0;
8031 case PACKET_ERROR:
8032 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8033 gdbarch_register_name (regcache->arch (),
8034 reg->regnum),
8035 buf);
8036 }
8037
8038 /* If this register is unfetchable, tell the regcache. */
8039 if (buf[0] == 'x')
8040 {
8041 regcache->raw_supply (reg->regnum, NULL);
8042 return 1;
8043 }
8044
8045 /* Otherwise, parse and supply the value. */
8046 p = buf;
8047 i = 0;
8048 while (p[0] != 0)
8049 {
8050 if (p[1] == 0)
8051 error (_("fetch_register_using_p: early buf termination"));
8052
8053 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8054 p += 2;
8055 }
8056 regcache->raw_supply (reg->regnum, regp);
8057 return 1;
8058 }
8059
8060 /* Fetch the registers included in the target's 'g' packet. */
8061
8062 int
8063 remote_target::send_g_packet ()
8064 {
8065 struct remote_state *rs = get_remote_state ();
8066 int buf_len;
8067
8068 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8069 putpkt (rs->buf);
8070 getpkt (&rs->buf, 0);
8071 if (packet_check_result (rs->buf) == PACKET_ERROR)
8072 error (_("Could not read registers; remote failure reply '%s'"),
8073 rs->buf.data ());
8074
8075 /* We can get out of synch in various cases. If the first character
8076 in the buffer is not a hex character, assume that has happened
8077 and try to fetch another packet to read. */
8078 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8079 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8080 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8081 && rs->buf[0] != 'x') /* New: unavailable register value. */
8082 {
8083 if (remote_debug)
8084 fprintf_unfiltered (gdb_stdlog,
8085 "Bad register packet; fetching a new packet\n");
8086 getpkt (&rs->buf, 0);
8087 }
8088
8089 buf_len = strlen (rs->buf.data ());
8090
8091 /* Sanity check the received packet. */
8092 if (buf_len % 2 != 0)
8093 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8094
8095 return buf_len / 2;
8096 }
8097
8098 void
8099 remote_target::process_g_packet (struct regcache *regcache)
8100 {
8101 struct gdbarch *gdbarch = regcache->arch ();
8102 struct remote_state *rs = get_remote_state ();
8103 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8104 int i, buf_len;
8105 char *p;
8106 char *regs;
8107
8108 buf_len = strlen (rs->buf.data ());
8109
8110 /* Further sanity checks, with knowledge of the architecture. */
8111 if (buf_len > 2 * rsa->sizeof_g_packet)
8112 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8113 "bytes): %s"),
8114 rsa->sizeof_g_packet, buf_len / 2,
8115 rs->buf.data ());
8116
8117 /* Save the size of the packet sent to us by the target. It is used
8118 as a heuristic when determining the max size of packets that the
8119 target can safely receive. */
8120 if (rsa->actual_register_packet_size == 0)
8121 rsa->actual_register_packet_size = buf_len;
8122
8123 /* If this is smaller than we guessed the 'g' packet would be,
8124 update our records. A 'g' reply that doesn't include a register's
8125 value implies either that the register is not available, or that
8126 the 'p' packet must be used. */
8127 if (buf_len < 2 * rsa->sizeof_g_packet)
8128 {
8129 long sizeof_g_packet = buf_len / 2;
8130
8131 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8132 {
8133 long offset = rsa->regs[i].offset;
8134 long reg_size = register_size (gdbarch, i);
8135
8136 if (rsa->regs[i].pnum == -1)
8137 continue;
8138
8139 if (offset >= sizeof_g_packet)
8140 rsa->regs[i].in_g_packet = 0;
8141 else if (offset + reg_size > sizeof_g_packet)
8142 error (_("Truncated register %d in remote 'g' packet"), i);
8143 else
8144 rsa->regs[i].in_g_packet = 1;
8145 }
8146
8147 /* Looks valid enough, we can assume this is the correct length
8148 for a 'g' packet. It's important not to adjust
8149 rsa->sizeof_g_packet if we have truncated registers otherwise
8150 this "if" won't be run the next time the method is called
8151 with a packet of the same size and one of the internal errors
8152 below will trigger instead. */
8153 rsa->sizeof_g_packet = sizeof_g_packet;
8154 }
8155
8156 regs = (char *) alloca (rsa->sizeof_g_packet);
8157
8158 /* Unimplemented registers read as all bits zero. */
8159 memset (regs, 0, rsa->sizeof_g_packet);
8160
8161 /* Reply describes registers byte by byte, each byte encoded as two
8162 hex characters. Suck them all up, then supply them to the
8163 register cacheing/storage mechanism. */
8164
8165 p = rs->buf.data ();
8166 for (i = 0; i < rsa->sizeof_g_packet; i++)
8167 {
8168 if (p[0] == 0 || p[1] == 0)
8169 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8170 internal_error (__FILE__, __LINE__,
8171 _("unexpected end of 'g' packet reply"));
8172
8173 if (p[0] == 'x' && p[1] == 'x')
8174 regs[i] = 0; /* 'x' */
8175 else
8176 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8177 p += 2;
8178 }
8179
8180 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8181 {
8182 struct packet_reg *r = &rsa->regs[i];
8183 long reg_size = register_size (gdbarch, i);
8184
8185 if (r->in_g_packet)
8186 {
8187 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8188 /* This shouldn't happen - we adjusted in_g_packet above. */
8189 internal_error (__FILE__, __LINE__,
8190 _("unexpected end of 'g' packet reply"));
8191 else if (rs->buf[r->offset * 2] == 'x')
8192 {
8193 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8194 /* The register isn't available, mark it as such (at
8195 the same time setting the value to zero). */
8196 regcache->raw_supply (r->regnum, NULL);
8197 }
8198 else
8199 regcache->raw_supply (r->regnum, regs + r->offset);
8200 }
8201 }
8202 }
8203
8204 void
8205 remote_target::fetch_registers_using_g (struct regcache *regcache)
8206 {
8207 send_g_packet ();
8208 process_g_packet (regcache);
8209 }
8210
8211 /* Make the remote selected traceframe match GDB's selected
8212 traceframe. */
8213
8214 void
8215 remote_target::set_remote_traceframe ()
8216 {
8217 int newnum;
8218 struct remote_state *rs = get_remote_state ();
8219
8220 if (rs->remote_traceframe_number == get_traceframe_number ())
8221 return;
8222
8223 /* Avoid recursion, remote_trace_find calls us again. */
8224 rs->remote_traceframe_number = get_traceframe_number ();
8225
8226 newnum = target_trace_find (tfind_number,
8227 get_traceframe_number (), 0, 0, NULL);
8228
8229 /* Should not happen. If it does, all bets are off. */
8230 if (newnum != get_traceframe_number ())
8231 warning (_("could not set remote traceframe"));
8232 }
8233
8234 void
8235 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8236 {
8237 struct gdbarch *gdbarch = regcache->arch ();
8238 struct remote_state *rs = get_remote_state ();
8239 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8240 int i;
8241
8242 set_remote_traceframe ();
8243 set_general_thread (regcache->ptid ());
8244
8245 if (regnum >= 0)
8246 {
8247 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8248
8249 gdb_assert (reg != NULL);
8250
8251 /* If this register might be in the 'g' packet, try that first -
8252 we are likely to read more than one register. If this is the
8253 first 'g' packet, we might be overly optimistic about its
8254 contents, so fall back to 'p'. */
8255 if (reg->in_g_packet)
8256 {
8257 fetch_registers_using_g (regcache);
8258 if (reg->in_g_packet)
8259 return;
8260 }
8261
8262 if (fetch_register_using_p (regcache, reg))
8263 return;
8264
8265 /* This register is not available. */
8266 regcache->raw_supply (reg->regnum, NULL);
8267
8268 return;
8269 }
8270
8271 fetch_registers_using_g (regcache);
8272
8273 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8274 if (!rsa->regs[i].in_g_packet)
8275 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8276 {
8277 /* This register is not available. */
8278 regcache->raw_supply (i, NULL);
8279 }
8280 }
8281
8282 /* Prepare to store registers. Since we may send them all (using a
8283 'G' request), we have to read out the ones we don't want to change
8284 first. */
8285
8286 void
8287 remote_target::prepare_to_store (struct regcache *regcache)
8288 {
8289 struct remote_state *rs = get_remote_state ();
8290 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8291 int i;
8292
8293 /* Make sure the entire registers array is valid. */
8294 switch (packet_support (PACKET_P))
8295 {
8296 case PACKET_DISABLE:
8297 case PACKET_SUPPORT_UNKNOWN:
8298 /* Make sure all the necessary registers are cached. */
8299 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8300 if (rsa->regs[i].in_g_packet)
8301 regcache->raw_update (rsa->regs[i].regnum);
8302 break;
8303 case PACKET_ENABLE:
8304 break;
8305 }
8306 }
8307
8308 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8309 packet was not recognized. */
8310
8311 int
8312 remote_target::store_register_using_P (const struct regcache *regcache,
8313 packet_reg *reg)
8314 {
8315 struct gdbarch *gdbarch = regcache->arch ();
8316 struct remote_state *rs = get_remote_state ();
8317 /* Try storing a single register. */
8318 char *buf = rs->buf.data ();
8319 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8320 char *p;
8321
8322 if (packet_support (PACKET_P) == PACKET_DISABLE)
8323 return 0;
8324
8325 if (reg->pnum == -1)
8326 return 0;
8327
8328 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8329 p = buf + strlen (buf);
8330 regcache->raw_collect (reg->regnum, regp);
8331 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8332 putpkt (rs->buf);
8333 getpkt (&rs->buf, 0);
8334
8335 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8336 {
8337 case PACKET_OK:
8338 return 1;
8339 case PACKET_ERROR:
8340 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8341 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8342 case PACKET_UNKNOWN:
8343 return 0;
8344 default:
8345 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8346 }
8347 }
8348
8349 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8350 contents of the register cache buffer. FIXME: ignores errors. */
8351
8352 void
8353 remote_target::store_registers_using_G (const struct regcache *regcache)
8354 {
8355 struct remote_state *rs = get_remote_state ();
8356 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8357 gdb_byte *regs;
8358 char *p;
8359
8360 /* Extract all the registers in the regcache copying them into a
8361 local buffer. */
8362 {
8363 int i;
8364
8365 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8366 memset (regs, 0, rsa->sizeof_g_packet);
8367 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8368 {
8369 struct packet_reg *r = &rsa->regs[i];
8370
8371 if (r->in_g_packet)
8372 regcache->raw_collect (r->regnum, regs + r->offset);
8373 }
8374 }
8375
8376 /* Command describes registers byte by byte,
8377 each byte encoded as two hex characters. */
8378 p = rs->buf.data ();
8379 *p++ = 'G';
8380 bin2hex (regs, p, rsa->sizeof_g_packet);
8381 putpkt (rs->buf);
8382 getpkt (&rs->buf, 0);
8383 if (packet_check_result (rs->buf) == PACKET_ERROR)
8384 error (_("Could not write registers; remote failure reply '%s'"),
8385 rs->buf.data ());
8386 }
8387
8388 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8389 of the register cache buffer. FIXME: ignores errors. */
8390
8391 void
8392 remote_target::store_registers (struct regcache *regcache, int regnum)
8393 {
8394 struct gdbarch *gdbarch = regcache->arch ();
8395 struct remote_state *rs = get_remote_state ();
8396 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8397 int i;
8398
8399 set_remote_traceframe ();
8400 set_general_thread (regcache->ptid ());
8401
8402 if (regnum >= 0)
8403 {
8404 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8405
8406 gdb_assert (reg != NULL);
8407
8408 /* Always prefer to store registers using the 'P' packet if
8409 possible; we often change only a small number of registers.
8410 Sometimes we change a larger number; we'd need help from a
8411 higher layer to know to use 'G'. */
8412 if (store_register_using_P (regcache, reg))
8413 return;
8414
8415 /* For now, don't complain if we have no way to write the
8416 register. GDB loses track of unavailable registers too
8417 easily. Some day, this may be an error. We don't have
8418 any way to read the register, either... */
8419 if (!reg->in_g_packet)
8420 return;
8421
8422 store_registers_using_G (regcache);
8423 return;
8424 }
8425
8426 store_registers_using_G (regcache);
8427
8428 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8429 if (!rsa->regs[i].in_g_packet)
8430 if (!store_register_using_P (regcache, &rsa->regs[i]))
8431 /* See above for why we do not issue an error here. */
8432 continue;
8433 }
8434 \f
8435
8436 /* Return the number of hex digits in num. */
8437
8438 static int
8439 hexnumlen (ULONGEST num)
8440 {
8441 int i;
8442
8443 for (i = 0; num != 0; i++)
8444 num >>= 4;
8445
8446 return std::max (i, 1);
8447 }
8448
8449 /* Set BUF to the minimum number of hex digits representing NUM. */
8450
8451 static int
8452 hexnumstr (char *buf, ULONGEST num)
8453 {
8454 int len = hexnumlen (num);
8455
8456 return hexnumnstr (buf, num, len);
8457 }
8458
8459
8460 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8461
8462 static int
8463 hexnumnstr (char *buf, ULONGEST num, int width)
8464 {
8465 int i;
8466
8467 buf[width] = '\0';
8468
8469 for (i = width - 1; i >= 0; i--)
8470 {
8471 buf[i] = "0123456789abcdef"[(num & 0xf)];
8472 num >>= 4;
8473 }
8474
8475 return width;
8476 }
8477
8478 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8479
8480 static CORE_ADDR
8481 remote_address_masked (CORE_ADDR addr)
8482 {
8483 unsigned int address_size = remote_address_size;
8484
8485 /* If "remoteaddresssize" was not set, default to target address size. */
8486 if (!address_size)
8487 address_size = gdbarch_addr_bit (target_gdbarch ());
8488
8489 if (address_size > 0
8490 && address_size < (sizeof (ULONGEST) * 8))
8491 {
8492 /* Only create a mask when that mask can safely be constructed
8493 in a ULONGEST variable. */
8494 ULONGEST mask = 1;
8495
8496 mask = (mask << address_size) - 1;
8497 addr &= mask;
8498 }
8499 return addr;
8500 }
8501
8502 /* Determine whether the remote target supports binary downloading.
8503 This is accomplished by sending a no-op memory write of zero length
8504 to the target at the specified address. It does not suffice to send
8505 the whole packet, since many stubs strip the eighth bit and
8506 subsequently compute a wrong checksum, which causes real havoc with
8507 remote_write_bytes.
8508
8509 NOTE: This can still lose if the serial line is not eight-bit
8510 clean. In cases like this, the user should clear "remote
8511 X-packet". */
8512
8513 void
8514 remote_target::check_binary_download (CORE_ADDR addr)
8515 {
8516 struct remote_state *rs = get_remote_state ();
8517
8518 switch (packet_support (PACKET_X))
8519 {
8520 case PACKET_DISABLE:
8521 break;
8522 case PACKET_ENABLE:
8523 break;
8524 case PACKET_SUPPORT_UNKNOWN:
8525 {
8526 char *p;
8527
8528 p = rs->buf.data ();
8529 *p++ = 'X';
8530 p += hexnumstr (p, (ULONGEST) addr);
8531 *p++ = ',';
8532 p += hexnumstr (p, (ULONGEST) 0);
8533 *p++ = ':';
8534 *p = '\0';
8535
8536 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8537 getpkt (&rs->buf, 0);
8538
8539 if (rs->buf[0] == '\0')
8540 {
8541 if (remote_debug)
8542 fprintf_unfiltered (gdb_stdlog,
8543 "binary downloading NOT "
8544 "supported by target\n");
8545 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8546 }
8547 else
8548 {
8549 if (remote_debug)
8550 fprintf_unfiltered (gdb_stdlog,
8551 "binary downloading supported by target\n");
8552 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8553 }
8554 break;
8555 }
8556 }
8557 }
8558
8559 /* Helper function to resize the payload in order to try to get a good
8560 alignment. We try to write an amount of data such that the next write will
8561 start on an address aligned on REMOTE_ALIGN_WRITES. */
8562
8563 static int
8564 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8565 {
8566 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8567 }
8568
8569 /* Write memory data directly to the remote machine.
8570 This does not inform the data cache; the data cache uses this.
8571 HEADER is the starting part of the packet.
8572 MEMADDR is the address in the remote memory space.
8573 MYADDR is the address of the buffer in our space.
8574 LEN_UNITS is the number of addressable units to write.
8575 UNIT_SIZE is the length in bytes of an addressable unit.
8576 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8577 should send data as binary ('X'), or hex-encoded ('M').
8578
8579 The function creates packet of the form
8580 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8581
8582 where encoding of <DATA> is terminated by PACKET_FORMAT.
8583
8584 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8585 are omitted.
8586
8587 Return the transferred status, error or OK (an
8588 'enum target_xfer_status' value). Save the number of addressable units
8589 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8590
8591 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8592 exchange between gdb and the stub could look like (?? in place of the
8593 checksum):
8594
8595 -> $m1000,4#??
8596 <- aaaabbbbccccdddd
8597
8598 -> $M1000,3:eeeeffffeeee#??
8599 <- OK
8600
8601 -> $m1000,4#??
8602 <- eeeeffffeeeedddd */
8603
8604 target_xfer_status
8605 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8606 const gdb_byte *myaddr,
8607 ULONGEST len_units,
8608 int unit_size,
8609 ULONGEST *xfered_len_units,
8610 char packet_format, int use_length)
8611 {
8612 struct remote_state *rs = get_remote_state ();
8613 char *p;
8614 char *plen = NULL;
8615 int plenlen = 0;
8616 int todo_units;
8617 int units_written;
8618 int payload_capacity_bytes;
8619 int payload_length_bytes;
8620
8621 if (packet_format != 'X' && packet_format != 'M')
8622 internal_error (__FILE__, __LINE__,
8623 _("remote_write_bytes_aux: bad packet format"));
8624
8625 if (len_units == 0)
8626 return TARGET_XFER_EOF;
8627
8628 payload_capacity_bytes = get_memory_write_packet_size ();
8629
8630 /* The packet buffer will be large enough for the payload;
8631 get_memory_packet_size ensures this. */
8632 rs->buf[0] = '\0';
8633
8634 /* Compute the size of the actual payload by subtracting out the
8635 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8636
8637 payload_capacity_bytes -= strlen ("$,:#NN");
8638 if (!use_length)
8639 /* The comma won't be used. */
8640 payload_capacity_bytes += 1;
8641 payload_capacity_bytes -= strlen (header);
8642 payload_capacity_bytes -= hexnumlen (memaddr);
8643
8644 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8645
8646 strcat (rs->buf.data (), header);
8647 p = rs->buf.data () + strlen (header);
8648
8649 /* Compute a best guess of the number of bytes actually transfered. */
8650 if (packet_format == 'X')
8651 {
8652 /* Best guess at number of bytes that will fit. */
8653 todo_units = std::min (len_units,
8654 (ULONGEST) payload_capacity_bytes / unit_size);
8655 if (use_length)
8656 payload_capacity_bytes -= hexnumlen (todo_units);
8657 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8658 }
8659 else
8660 {
8661 /* Number of bytes that will fit. */
8662 todo_units
8663 = std::min (len_units,
8664 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8665 if (use_length)
8666 payload_capacity_bytes -= hexnumlen (todo_units);
8667 todo_units = std::min (todo_units,
8668 (payload_capacity_bytes / unit_size) / 2);
8669 }
8670
8671 if (todo_units <= 0)
8672 internal_error (__FILE__, __LINE__,
8673 _("minimum packet size too small to write data"));
8674
8675 /* If we already need another packet, then try to align the end
8676 of this packet to a useful boundary. */
8677 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8678 todo_units = align_for_efficient_write (todo_units, memaddr);
8679
8680 /* Append "<memaddr>". */
8681 memaddr = remote_address_masked (memaddr);
8682 p += hexnumstr (p, (ULONGEST) memaddr);
8683
8684 if (use_length)
8685 {
8686 /* Append ",". */
8687 *p++ = ',';
8688
8689 /* Append the length and retain its location and size. It may need to be
8690 adjusted once the packet body has been created. */
8691 plen = p;
8692 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8693 p += plenlen;
8694 }
8695
8696 /* Append ":". */
8697 *p++ = ':';
8698 *p = '\0';
8699
8700 /* Append the packet body. */
8701 if (packet_format == 'X')
8702 {
8703 /* Binary mode. Send target system values byte by byte, in
8704 increasing byte addresses. Only escape certain critical
8705 characters. */
8706 payload_length_bytes =
8707 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8708 &units_written, payload_capacity_bytes);
8709
8710 /* If not all TODO units fit, then we'll need another packet. Make
8711 a second try to keep the end of the packet aligned. Don't do
8712 this if the packet is tiny. */
8713 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8714 {
8715 int new_todo_units;
8716
8717 new_todo_units = align_for_efficient_write (units_written, memaddr);
8718
8719 if (new_todo_units != units_written)
8720 payload_length_bytes =
8721 remote_escape_output (myaddr, new_todo_units, unit_size,
8722 (gdb_byte *) p, &units_written,
8723 payload_capacity_bytes);
8724 }
8725
8726 p += payload_length_bytes;
8727 if (use_length && units_written < todo_units)
8728 {
8729 /* Escape chars have filled up the buffer prematurely,
8730 and we have actually sent fewer units than planned.
8731 Fix-up the length field of the packet. Use the same
8732 number of characters as before. */
8733 plen += hexnumnstr (plen, (ULONGEST) units_written,
8734 plenlen);
8735 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8736 }
8737 }
8738 else
8739 {
8740 /* Normal mode: Send target system values byte by byte, in
8741 increasing byte addresses. Each byte is encoded as a two hex
8742 value. */
8743 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8744 units_written = todo_units;
8745 }
8746
8747 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8748 getpkt (&rs->buf, 0);
8749
8750 if (rs->buf[0] == 'E')
8751 return TARGET_XFER_E_IO;
8752
8753 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8754 send fewer units than we'd planned. */
8755 *xfered_len_units = (ULONGEST) units_written;
8756 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8757 }
8758
8759 /* Write memory data directly to the remote machine.
8760 This does not inform the data cache; the data cache uses this.
8761 MEMADDR is the address in the remote memory space.
8762 MYADDR is the address of the buffer in our space.
8763 LEN is the number of bytes.
8764
8765 Return the transferred status, error or OK (an
8766 'enum target_xfer_status' value). Save the number of bytes
8767 transferred in *XFERED_LEN. Only transfer a single packet. */
8768
8769 target_xfer_status
8770 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8771 ULONGEST len, int unit_size,
8772 ULONGEST *xfered_len)
8773 {
8774 const char *packet_format = NULL;
8775
8776 /* Check whether the target supports binary download. */
8777 check_binary_download (memaddr);
8778
8779 switch (packet_support (PACKET_X))
8780 {
8781 case PACKET_ENABLE:
8782 packet_format = "X";
8783 break;
8784 case PACKET_DISABLE:
8785 packet_format = "M";
8786 break;
8787 case PACKET_SUPPORT_UNKNOWN:
8788 internal_error (__FILE__, __LINE__,
8789 _("remote_write_bytes: bad internal state"));
8790 default:
8791 internal_error (__FILE__, __LINE__, _("bad switch"));
8792 }
8793
8794 return remote_write_bytes_aux (packet_format,
8795 memaddr, myaddr, len, unit_size, xfered_len,
8796 packet_format[0], 1);
8797 }
8798
8799 /* Read memory data directly from the remote machine.
8800 This does not use the data cache; the data cache uses this.
8801 MEMADDR is the address in the remote memory space.
8802 MYADDR is the address of the buffer in our space.
8803 LEN_UNITS is the number of addressable memory units to read..
8804 UNIT_SIZE is the length in bytes of an addressable unit.
8805
8806 Return the transferred status, error or OK (an
8807 'enum target_xfer_status' value). Save the number of bytes
8808 transferred in *XFERED_LEN_UNITS.
8809
8810 See the comment of remote_write_bytes_aux for an example of
8811 memory read/write exchange between gdb and the stub. */
8812
8813 target_xfer_status
8814 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8815 ULONGEST len_units,
8816 int unit_size, ULONGEST *xfered_len_units)
8817 {
8818 struct remote_state *rs = get_remote_state ();
8819 int buf_size_bytes; /* Max size of packet output buffer. */
8820 char *p;
8821 int todo_units;
8822 int decoded_bytes;
8823
8824 buf_size_bytes = get_memory_read_packet_size ();
8825 /* The packet buffer will be large enough for the payload;
8826 get_memory_packet_size ensures this. */
8827
8828 /* Number of units that will fit. */
8829 todo_units = std::min (len_units,
8830 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8831
8832 /* Construct "m"<memaddr>","<len>". */
8833 memaddr = remote_address_masked (memaddr);
8834 p = rs->buf.data ();
8835 *p++ = 'm';
8836 p += hexnumstr (p, (ULONGEST) memaddr);
8837 *p++ = ',';
8838 p += hexnumstr (p, (ULONGEST) todo_units);
8839 *p = '\0';
8840 putpkt (rs->buf);
8841 getpkt (&rs->buf, 0);
8842 if (rs->buf[0] == 'E'
8843 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8844 && rs->buf[3] == '\0')
8845 return TARGET_XFER_E_IO;
8846 /* Reply describes memory byte by byte, each byte encoded as two hex
8847 characters. */
8848 p = rs->buf.data ();
8849 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8850 /* Return what we have. Let higher layers handle partial reads. */
8851 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8852 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8853 }
8854
8855 /* Using the set of read-only target sections of remote, read live
8856 read-only memory.
8857
8858 For interface/parameters/return description see target.h,
8859 to_xfer_partial. */
8860
8861 target_xfer_status
8862 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8863 ULONGEST memaddr,
8864 ULONGEST len,
8865 int unit_size,
8866 ULONGEST *xfered_len)
8867 {
8868 struct target_section *secp;
8869 struct target_section_table *table;
8870
8871 secp = target_section_by_addr (this, memaddr);
8872 if (secp != NULL
8873 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8874 {
8875 struct target_section *p;
8876 ULONGEST memend = memaddr + len;
8877
8878 table = target_get_section_table (this);
8879
8880 for (p = table->sections; p < table->sections_end; p++)
8881 {
8882 if (memaddr >= p->addr)
8883 {
8884 if (memend <= p->endaddr)
8885 {
8886 /* Entire transfer is within this section. */
8887 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8888 xfered_len);
8889 }
8890 else if (memaddr >= p->endaddr)
8891 {
8892 /* This section ends before the transfer starts. */
8893 continue;
8894 }
8895 else
8896 {
8897 /* This section overlaps the transfer. Just do half. */
8898 len = p->endaddr - memaddr;
8899 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8900 xfered_len);
8901 }
8902 }
8903 }
8904 }
8905
8906 return TARGET_XFER_EOF;
8907 }
8908
8909 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8910 first if the requested memory is unavailable in traceframe.
8911 Otherwise, fall back to remote_read_bytes_1. */
8912
8913 target_xfer_status
8914 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8915 gdb_byte *myaddr, ULONGEST len, int unit_size,
8916 ULONGEST *xfered_len)
8917 {
8918 if (len == 0)
8919 return TARGET_XFER_EOF;
8920
8921 if (get_traceframe_number () != -1)
8922 {
8923 std::vector<mem_range> available;
8924
8925 /* If we fail to get the set of available memory, then the
8926 target does not support querying traceframe info, and so we
8927 attempt reading from the traceframe anyway (assuming the
8928 target implements the old QTro packet then). */
8929 if (traceframe_available_memory (&available, memaddr, len))
8930 {
8931 if (available.empty () || available[0].start != memaddr)
8932 {
8933 enum target_xfer_status res;
8934
8935 /* Don't read into the traceframe's available
8936 memory. */
8937 if (!available.empty ())
8938 {
8939 LONGEST oldlen = len;
8940
8941 len = available[0].start - memaddr;
8942 gdb_assert (len <= oldlen);
8943 }
8944
8945 /* This goes through the topmost target again. */
8946 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8947 len, unit_size, xfered_len);
8948 if (res == TARGET_XFER_OK)
8949 return TARGET_XFER_OK;
8950 else
8951 {
8952 /* No use trying further, we know some memory starting
8953 at MEMADDR isn't available. */
8954 *xfered_len = len;
8955 return (*xfered_len != 0) ?
8956 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8957 }
8958 }
8959
8960 /* Don't try to read more than how much is available, in
8961 case the target implements the deprecated QTro packet to
8962 cater for older GDBs (the target's knowledge of read-only
8963 sections may be outdated by now). */
8964 len = available[0].length;
8965 }
8966 }
8967
8968 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8969 }
8970
8971 \f
8972
8973 /* Sends a packet with content determined by the printf format string
8974 FORMAT and the remaining arguments, then gets the reply. Returns
8975 whether the packet was a success, a failure, or unknown. */
8976
8977 packet_result
8978 remote_target::remote_send_printf (const char *format, ...)
8979 {
8980 struct remote_state *rs = get_remote_state ();
8981 int max_size = get_remote_packet_size ();
8982 va_list ap;
8983
8984 va_start (ap, format);
8985
8986 rs->buf[0] = '\0';
8987 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8988
8989 va_end (ap);
8990
8991 if (size >= max_size)
8992 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8993
8994 if (putpkt (rs->buf) < 0)
8995 error (_("Communication problem with target."));
8996
8997 rs->buf[0] = '\0';
8998 getpkt (&rs->buf, 0);
8999
9000 return packet_check_result (rs->buf);
9001 }
9002
9003 /* Flash writing can take quite some time. We'll set
9004 effectively infinite timeout for flash operations.
9005 In future, we'll need to decide on a better approach. */
9006 static const int remote_flash_timeout = 1000;
9007
9008 void
9009 remote_target::flash_erase (ULONGEST address, LONGEST length)
9010 {
9011 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9012 enum packet_result ret;
9013 scoped_restore restore_timeout
9014 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9015
9016 ret = remote_send_printf ("vFlashErase:%s,%s",
9017 phex (address, addr_size),
9018 phex (length, 4));
9019 switch (ret)
9020 {
9021 case PACKET_UNKNOWN:
9022 error (_("Remote target does not support flash erase"));
9023 case PACKET_ERROR:
9024 error (_("Error erasing flash with vFlashErase packet"));
9025 default:
9026 break;
9027 }
9028 }
9029
9030 target_xfer_status
9031 remote_target::remote_flash_write (ULONGEST address,
9032 ULONGEST length, ULONGEST *xfered_len,
9033 const gdb_byte *data)
9034 {
9035 scoped_restore restore_timeout
9036 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9037 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9038 xfered_len,'X', 0);
9039 }
9040
9041 void
9042 remote_target::flash_done ()
9043 {
9044 int ret;
9045
9046 scoped_restore restore_timeout
9047 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9048
9049 ret = remote_send_printf ("vFlashDone");
9050
9051 switch (ret)
9052 {
9053 case PACKET_UNKNOWN:
9054 error (_("Remote target does not support vFlashDone"));
9055 case PACKET_ERROR:
9056 error (_("Error finishing flash operation"));
9057 default:
9058 break;
9059 }
9060 }
9061
9062 void
9063 remote_target::files_info ()
9064 {
9065 puts_filtered ("Debugging a target over a serial line.\n");
9066 }
9067 \f
9068 /* Stuff for dealing with the packets which are part of this protocol.
9069 See comment at top of file for details. */
9070
9071 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9072 error to higher layers. Called when a serial error is detected.
9073 The exception message is STRING, followed by a colon and a blank,
9074 the system error message for errno at function entry and final dot
9075 for output compatibility with throw_perror_with_name. */
9076
9077 static void
9078 unpush_and_perror (remote_target *target, const char *string)
9079 {
9080 int saved_errno = errno;
9081
9082 remote_unpush_target (target);
9083 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9084 safe_strerror (saved_errno));
9085 }
9086
9087 /* Read a single character from the remote end. The current quit
9088 handler is overridden to avoid quitting in the middle of packet
9089 sequence, as that would break communication with the remote server.
9090 See remote_serial_quit_handler for more detail. */
9091
9092 int
9093 remote_target::readchar (int timeout)
9094 {
9095 int ch;
9096 struct remote_state *rs = get_remote_state ();
9097
9098 {
9099 scoped_restore restore_quit_target
9100 = make_scoped_restore (&curr_quit_handler_target, this);
9101 scoped_restore restore_quit
9102 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9103
9104 rs->got_ctrlc_during_io = 0;
9105
9106 ch = serial_readchar (rs->remote_desc, timeout);
9107
9108 if (rs->got_ctrlc_during_io)
9109 set_quit_flag ();
9110 }
9111
9112 if (ch >= 0)
9113 return ch;
9114
9115 switch ((enum serial_rc) ch)
9116 {
9117 case SERIAL_EOF:
9118 remote_unpush_target (this);
9119 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9120 /* no return */
9121 case SERIAL_ERROR:
9122 unpush_and_perror (this, _("Remote communication error. "
9123 "Target disconnected."));
9124 /* no return */
9125 case SERIAL_TIMEOUT:
9126 break;
9127 }
9128 return ch;
9129 }
9130
9131 /* Wrapper for serial_write that closes the target and throws if
9132 writing fails. The current quit handler is overridden to avoid
9133 quitting in the middle of packet sequence, as that would break
9134 communication with the remote server. See
9135 remote_serial_quit_handler for more detail. */
9136
9137 void
9138 remote_target::remote_serial_write (const char *str, int len)
9139 {
9140 struct remote_state *rs = get_remote_state ();
9141
9142 scoped_restore restore_quit_target
9143 = make_scoped_restore (&curr_quit_handler_target, this);
9144 scoped_restore restore_quit
9145 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9146
9147 rs->got_ctrlc_during_io = 0;
9148
9149 if (serial_write (rs->remote_desc, str, len))
9150 {
9151 unpush_and_perror (this, _("Remote communication error. "
9152 "Target disconnected."));
9153 }
9154
9155 if (rs->got_ctrlc_during_io)
9156 set_quit_flag ();
9157 }
9158
9159 /* Return a string representing an escaped version of BUF, of len N.
9160 E.g. \n is converted to \\n, \t to \\t, etc. */
9161
9162 static std::string
9163 escape_buffer (const char *buf, int n)
9164 {
9165 string_file stb;
9166
9167 stb.putstrn (buf, n, '\\');
9168 return std::move (stb.string ());
9169 }
9170
9171 /* Display a null-terminated packet on stdout, for debugging, using C
9172 string notation. */
9173
9174 static void
9175 print_packet (const char *buf)
9176 {
9177 puts_filtered ("\"");
9178 fputstr_filtered (buf, '"', gdb_stdout);
9179 puts_filtered ("\"");
9180 }
9181
9182 int
9183 remote_target::putpkt (const char *buf)
9184 {
9185 return putpkt_binary (buf, strlen (buf));
9186 }
9187
9188 /* Wrapper around remote_target::putpkt to avoid exporting
9189 remote_target. */
9190
9191 int
9192 putpkt (remote_target *remote, const char *buf)
9193 {
9194 return remote->putpkt (buf);
9195 }
9196
9197 /* Send a packet to the remote machine, with error checking. The data
9198 of the packet is in BUF. The string in BUF can be at most
9199 get_remote_packet_size () - 5 to account for the $, # and checksum,
9200 and for a possible /0 if we are debugging (remote_debug) and want
9201 to print the sent packet as a string. */
9202
9203 int
9204 remote_target::putpkt_binary (const char *buf, int cnt)
9205 {
9206 struct remote_state *rs = get_remote_state ();
9207 int i;
9208 unsigned char csum = 0;
9209 gdb::def_vector<char> data (cnt + 6);
9210 char *buf2 = data.data ();
9211
9212 int ch;
9213 int tcount = 0;
9214 char *p;
9215
9216 /* Catch cases like trying to read memory or listing threads while
9217 we're waiting for a stop reply. The remote server wouldn't be
9218 ready to handle this request, so we'd hang and timeout. We don't
9219 have to worry about this in synchronous mode, because in that
9220 case it's not possible to issue a command while the target is
9221 running. This is not a problem in non-stop mode, because in that
9222 case, the stub is always ready to process serial input. */
9223 if (!target_is_non_stop_p ()
9224 && target_is_async_p ()
9225 && rs->waiting_for_stop_reply)
9226 {
9227 error (_("Cannot execute this command while the target is running.\n"
9228 "Use the \"interrupt\" command to stop the target\n"
9229 "and then try again."));
9230 }
9231
9232 /* We're sending out a new packet. Make sure we don't look at a
9233 stale cached response. */
9234 rs->cached_wait_status = 0;
9235
9236 /* Copy the packet into buffer BUF2, encapsulating it
9237 and giving it a checksum. */
9238
9239 p = buf2;
9240 *p++ = '$';
9241
9242 for (i = 0; i < cnt; i++)
9243 {
9244 csum += buf[i];
9245 *p++ = buf[i];
9246 }
9247 *p++ = '#';
9248 *p++ = tohex ((csum >> 4) & 0xf);
9249 *p++ = tohex (csum & 0xf);
9250
9251 /* Send it over and over until we get a positive ack. */
9252
9253 while (1)
9254 {
9255 int started_error_output = 0;
9256
9257 if (remote_debug)
9258 {
9259 *p = '\0';
9260
9261 int len = (int) (p - buf2);
9262 int max_chars;
9263
9264 if (remote_packet_max_chars < 0)
9265 max_chars = len;
9266 else
9267 max_chars = remote_packet_max_chars;
9268
9269 std::string str
9270 = escape_buffer (buf2, std::min (len, max_chars));
9271
9272 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9273
9274 if (len > max_chars)
9275 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9276 len - max_chars);
9277
9278 fprintf_unfiltered (gdb_stdlog, "...");
9279
9280 gdb_flush (gdb_stdlog);
9281 }
9282 remote_serial_write (buf2, p - buf2);
9283
9284 /* If this is a no acks version of the remote protocol, send the
9285 packet and move on. */
9286 if (rs->noack_mode)
9287 break;
9288
9289 /* Read until either a timeout occurs (-2) or '+' is read.
9290 Handle any notification that arrives in the mean time. */
9291 while (1)
9292 {
9293 ch = readchar (remote_timeout);
9294
9295 if (remote_debug)
9296 {
9297 switch (ch)
9298 {
9299 case '+':
9300 case '-':
9301 case SERIAL_TIMEOUT:
9302 case '$':
9303 case '%':
9304 if (started_error_output)
9305 {
9306 putchar_unfiltered ('\n');
9307 started_error_output = 0;
9308 }
9309 }
9310 }
9311
9312 switch (ch)
9313 {
9314 case '+':
9315 if (remote_debug)
9316 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9317 return 1;
9318 case '-':
9319 if (remote_debug)
9320 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9321 /* FALLTHROUGH */
9322 case SERIAL_TIMEOUT:
9323 tcount++;
9324 if (tcount > 3)
9325 return 0;
9326 break; /* Retransmit buffer. */
9327 case '$':
9328 {
9329 if (remote_debug)
9330 fprintf_unfiltered (gdb_stdlog,
9331 "Packet instead of Ack, ignoring it\n");
9332 /* It's probably an old response sent because an ACK
9333 was lost. Gobble up the packet and ack it so it
9334 doesn't get retransmitted when we resend this
9335 packet. */
9336 skip_frame ();
9337 remote_serial_write ("+", 1);
9338 continue; /* Now, go look for +. */
9339 }
9340
9341 case '%':
9342 {
9343 int val;
9344
9345 /* If we got a notification, handle it, and go back to looking
9346 for an ack. */
9347 /* We've found the start of a notification. Now
9348 collect the data. */
9349 val = read_frame (&rs->buf);
9350 if (val >= 0)
9351 {
9352 if (remote_debug)
9353 {
9354 std::string str = escape_buffer (rs->buf.data (), val);
9355
9356 fprintf_unfiltered (gdb_stdlog,
9357 " Notification received: %s\n",
9358 str.c_str ());
9359 }
9360 handle_notification (rs->notif_state, rs->buf.data ());
9361 /* We're in sync now, rewait for the ack. */
9362 tcount = 0;
9363 }
9364 else
9365 {
9366 if (remote_debug)
9367 {
9368 if (!started_error_output)
9369 {
9370 started_error_output = 1;
9371 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9372 }
9373 fputc_unfiltered (ch & 0177, gdb_stdlog);
9374 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9375 }
9376 }
9377 continue;
9378 }
9379 /* fall-through */
9380 default:
9381 if (remote_debug)
9382 {
9383 if (!started_error_output)
9384 {
9385 started_error_output = 1;
9386 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9387 }
9388 fputc_unfiltered (ch & 0177, gdb_stdlog);
9389 }
9390 continue;
9391 }
9392 break; /* Here to retransmit. */
9393 }
9394
9395 #if 0
9396 /* This is wrong. If doing a long backtrace, the user should be
9397 able to get out next time we call QUIT, without anything as
9398 violent as interrupt_query. If we want to provide a way out of
9399 here without getting to the next QUIT, it should be based on
9400 hitting ^C twice as in remote_wait. */
9401 if (quit_flag)
9402 {
9403 quit_flag = 0;
9404 interrupt_query ();
9405 }
9406 #endif
9407 }
9408
9409 return 0;
9410 }
9411
9412 /* Come here after finding the start of a frame when we expected an
9413 ack. Do our best to discard the rest of this packet. */
9414
9415 void
9416 remote_target::skip_frame ()
9417 {
9418 int c;
9419
9420 while (1)
9421 {
9422 c = readchar (remote_timeout);
9423 switch (c)
9424 {
9425 case SERIAL_TIMEOUT:
9426 /* Nothing we can do. */
9427 return;
9428 case '#':
9429 /* Discard the two bytes of checksum and stop. */
9430 c = readchar (remote_timeout);
9431 if (c >= 0)
9432 c = readchar (remote_timeout);
9433
9434 return;
9435 case '*': /* Run length encoding. */
9436 /* Discard the repeat count. */
9437 c = readchar (remote_timeout);
9438 if (c < 0)
9439 return;
9440 break;
9441 default:
9442 /* A regular character. */
9443 break;
9444 }
9445 }
9446 }
9447
9448 /* Come here after finding the start of the frame. Collect the rest
9449 into *BUF, verifying the checksum, length, and handling run-length
9450 compression. NUL terminate the buffer. If there is not enough room,
9451 expand *BUF.
9452
9453 Returns -1 on error, number of characters in buffer (ignoring the
9454 trailing NULL) on success. (could be extended to return one of the
9455 SERIAL status indications). */
9456
9457 long
9458 remote_target::read_frame (gdb::char_vector *buf_p)
9459 {
9460 unsigned char csum;
9461 long bc;
9462 int c;
9463 char *buf = buf_p->data ();
9464 struct remote_state *rs = get_remote_state ();
9465
9466 csum = 0;
9467 bc = 0;
9468
9469 while (1)
9470 {
9471 c = readchar (remote_timeout);
9472 switch (c)
9473 {
9474 case SERIAL_TIMEOUT:
9475 if (remote_debug)
9476 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9477 return -1;
9478 case '$':
9479 if (remote_debug)
9480 fputs_filtered ("Saw new packet start in middle of old one\n",
9481 gdb_stdlog);
9482 return -1; /* Start a new packet, count retries. */
9483 case '#':
9484 {
9485 unsigned char pktcsum;
9486 int check_0 = 0;
9487 int check_1 = 0;
9488
9489 buf[bc] = '\0';
9490
9491 check_0 = readchar (remote_timeout);
9492 if (check_0 >= 0)
9493 check_1 = readchar (remote_timeout);
9494
9495 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9496 {
9497 if (remote_debug)
9498 fputs_filtered ("Timeout in checksum, retrying\n",
9499 gdb_stdlog);
9500 return -1;
9501 }
9502 else if (check_0 < 0 || check_1 < 0)
9503 {
9504 if (remote_debug)
9505 fputs_filtered ("Communication error in checksum\n",
9506 gdb_stdlog);
9507 return -1;
9508 }
9509
9510 /* Don't recompute the checksum; with no ack packets we
9511 don't have any way to indicate a packet retransmission
9512 is necessary. */
9513 if (rs->noack_mode)
9514 return bc;
9515
9516 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9517 if (csum == pktcsum)
9518 return bc;
9519
9520 if (remote_debug)
9521 {
9522 std::string str = escape_buffer (buf, bc);
9523
9524 fprintf_unfiltered (gdb_stdlog,
9525 "Bad checksum, sentsum=0x%x, "
9526 "csum=0x%x, buf=%s\n",
9527 pktcsum, csum, str.c_str ());
9528 }
9529 /* Number of characters in buffer ignoring trailing
9530 NULL. */
9531 return -1;
9532 }
9533 case '*': /* Run length encoding. */
9534 {
9535 int repeat;
9536
9537 csum += c;
9538 c = readchar (remote_timeout);
9539 csum += c;
9540 repeat = c - ' ' + 3; /* Compute repeat count. */
9541
9542 /* The character before ``*'' is repeated. */
9543
9544 if (repeat > 0 && repeat <= 255 && bc > 0)
9545 {
9546 if (bc + repeat - 1 >= buf_p->size () - 1)
9547 {
9548 /* Make some more room in the buffer. */
9549 buf_p->resize (buf_p->size () + repeat);
9550 buf = buf_p->data ();
9551 }
9552
9553 memset (&buf[bc], buf[bc - 1], repeat);
9554 bc += repeat;
9555 continue;
9556 }
9557
9558 buf[bc] = '\0';
9559 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9560 return -1;
9561 }
9562 default:
9563 if (bc >= buf_p->size () - 1)
9564 {
9565 /* Make some more room in the buffer. */
9566 buf_p->resize (buf_p->size () * 2);
9567 buf = buf_p->data ();
9568 }
9569
9570 buf[bc++] = c;
9571 csum += c;
9572 continue;
9573 }
9574 }
9575 }
9576
9577 /* Set this to the maximum number of seconds to wait instead of waiting forever
9578 in target_wait(). If this timer times out, then it generates an error and
9579 the command is aborted. This replaces most of the need for timeouts in the
9580 GDB test suite, and makes it possible to distinguish between a hung target
9581 and one with slow communications. */
9582
9583 static int watchdog = 0;
9584 static void
9585 show_watchdog (struct ui_file *file, int from_tty,
9586 struct cmd_list_element *c, const char *value)
9587 {
9588 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9589 }
9590
9591 /* Read a packet from the remote machine, with error checking, and
9592 store it in *BUF. Resize *BUF if necessary to hold the result. If
9593 FOREVER, wait forever rather than timing out; this is used (in
9594 synchronous mode) to wait for a target that is is executing user
9595 code to stop. */
9596 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9597 don't have to change all the calls to getpkt to deal with the
9598 return value, because at the moment I don't know what the right
9599 thing to do it for those. */
9600
9601 void
9602 remote_target::getpkt (gdb::char_vector *buf, int forever)
9603 {
9604 getpkt_sane (buf, forever);
9605 }
9606
9607
9608 /* Read a packet from the remote machine, with error checking, and
9609 store it in *BUF. Resize *BUF if necessary to hold the result. If
9610 FOREVER, wait forever rather than timing out; this is used (in
9611 synchronous mode) to wait for a target that is is executing user
9612 code to stop. If FOREVER == 0, this function is allowed to time
9613 out gracefully and return an indication of this to the caller.
9614 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9615 consider receiving a notification enough reason to return to the
9616 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9617 holds a notification or not (a regular packet). */
9618
9619 int
9620 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9621 int forever, int expecting_notif,
9622 int *is_notif)
9623 {
9624 struct remote_state *rs = get_remote_state ();
9625 int c;
9626 int tries;
9627 int timeout;
9628 int val = -1;
9629
9630 /* We're reading a new response. Make sure we don't look at a
9631 previously cached response. */
9632 rs->cached_wait_status = 0;
9633
9634 strcpy (buf->data (), "timeout");
9635
9636 if (forever)
9637 timeout = watchdog > 0 ? watchdog : -1;
9638 else if (expecting_notif)
9639 timeout = 0; /* There should already be a char in the buffer. If
9640 not, bail out. */
9641 else
9642 timeout = remote_timeout;
9643
9644 #define MAX_TRIES 3
9645
9646 /* Process any number of notifications, and then return when
9647 we get a packet. */
9648 for (;;)
9649 {
9650 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9651 times. */
9652 for (tries = 1; tries <= MAX_TRIES; tries++)
9653 {
9654 /* This can loop forever if the remote side sends us
9655 characters continuously, but if it pauses, we'll get
9656 SERIAL_TIMEOUT from readchar because of timeout. Then
9657 we'll count that as a retry.
9658
9659 Note that even when forever is set, we will only wait
9660 forever prior to the start of a packet. After that, we
9661 expect characters to arrive at a brisk pace. They should
9662 show up within remote_timeout intervals. */
9663 do
9664 c = readchar (timeout);
9665 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9666
9667 if (c == SERIAL_TIMEOUT)
9668 {
9669 if (expecting_notif)
9670 return -1; /* Don't complain, it's normal to not get
9671 anything in this case. */
9672
9673 if (forever) /* Watchdog went off? Kill the target. */
9674 {
9675 remote_unpush_target (this);
9676 throw_error (TARGET_CLOSE_ERROR,
9677 _("Watchdog timeout has expired. "
9678 "Target detached."));
9679 }
9680 if (remote_debug)
9681 fputs_filtered ("Timed out.\n", gdb_stdlog);
9682 }
9683 else
9684 {
9685 /* We've found the start of a packet or notification.
9686 Now collect the data. */
9687 val = read_frame (buf);
9688 if (val >= 0)
9689 break;
9690 }
9691
9692 remote_serial_write ("-", 1);
9693 }
9694
9695 if (tries > MAX_TRIES)
9696 {
9697 /* We have tried hard enough, and just can't receive the
9698 packet/notification. Give up. */
9699 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9700
9701 /* Skip the ack char if we're in no-ack mode. */
9702 if (!rs->noack_mode)
9703 remote_serial_write ("+", 1);
9704 return -1;
9705 }
9706
9707 /* If we got an ordinary packet, return that to our caller. */
9708 if (c == '$')
9709 {
9710 if (remote_debug)
9711 {
9712 int max_chars;
9713
9714 if (remote_packet_max_chars < 0)
9715 max_chars = val;
9716 else
9717 max_chars = remote_packet_max_chars;
9718
9719 std::string str
9720 = escape_buffer (buf->data (),
9721 std::min (val, max_chars));
9722
9723 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9724 str.c_str ());
9725
9726 if (val > max_chars)
9727 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9728 val - max_chars);
9729
9730 fprintf_unfiltered (gdb_stdlog, "\n");
9731 }
9732
9733 /* Skip the ack char if we're in no-ack mode. */
9734 if (!rs->noack_mode)
9735 remote_serial_write ("+", 1);
9736 if (is_notif != NULL)
9737 *is_notif = 0;
9738 return val;
9739 }
9740
9741 /* If we got a notification, handle it, and go back to looking
9742 for a packet. */
9743 else
9744 {
9745 gdb_assert (c == '%');
9746
9747 if (remote_debug)
9748 {
9749 std::string str = escape_buffer (buf->data (), val);
9750
9751 fprintf_unfiltered (gdb_stdlog,
9752 " Notification received: %s\n",
9753 str.c_str ());
9754 }
9755 if (is_notif != NULL)
9756 *is_notif = 1;
9757
9758 handle_notification (rs->notif_state, buf->data ());
9759
9760 /* Notifications require no acknowledgement. */
9761
9762 if (expecting_notif)
9763 return val;
9764 }
9765 }
9766 }
9767
9768 int
9769 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9770 {
9771 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9772 }
9773
9774 int
9775 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9776 int *is_notif)
9777 {
9778 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9779 }
9780
9781 /* Kill any new fork children of process PID that haven't been
9782 processed by follow_fork. */
9783
9784 void
9785 remote_target::kill_new_fork_children (int pid)
9786 {
9787 remote_state *rs = get_remote_state ();
9788 struct notif_client *notif = &notif_client_stop;
9789
9790 /* Kill the fork child threads of any threads in process PID
9791 that are stopped at a fork event. */
9792 for (thread_info *thread : all_non_exited_threads (this))
9793 {
9794 struct target_waitstatus *ws = &thread->pending_follow;
9795
9796 if (is_pending_fork_parent (ws, pid, thread->ptid))
9797 {
9798 int child_pid = ws->value.related_pid.pid ();
9799 int res;
9800
9801 res = remote_vkill (child_pid);
9802 if (res != 0)
9803 error (_("Can't kill fork child process %d"), child_pid);
9804 }
9805 }
9806
9807 /* Check for any pending fork events (not reported or processed yet)
9808 in process PID and kill those fork child threads as well. */
9809 remote_notif_get_pending_events (notif);
9810 for (auto &event : rs->stop_reply_queue)
9811 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9812 {
9813 int child_pid = event->ws.value.related_pid.pid ();
9814 int res;
9815
9816 res = remote_vkill (child_pid);
9817 if (res != 0)
9818 error (_("Can't kill fork child process %d"), child_pid);
9819 }
9820 }
9821
9822 \f
9823 /* Target hook to kill the current inferior. */
9824
9825 void
9826 remote_target::kill ()
9827 {
9828 int res = -1;
9829 int pid = inferior_ptid.pid ();
9830 struct remote_state *rs = get_remote_state ();
9831
9832 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9833 {
9834 /* If we're stopped while forking and we haven't followed yet,
9835 kill the child task. We need to do this before killing the
9836 parent task because if this is a vfork then the parent will
9837 be sleeping. */
9838 kill_new_fork_children (pid);
9839
9840 res = remote_vkill (pid);
9841 if (res == 0)
9842 {
9843 target_mourn_inferior (inferior_ptid);
9844 return;
9845 }
9846 }
9847
9848 /* If we are in 'target remote' mode and we are killing the only
9849 inferior, then we will tell gdbserver to exit and unpush the
9850 target. */
9851 if (res == -1 && !remote_multi_process_p (rs)
9852 && number_of_live_inferiors (this) == 1)
9853 {
9854 remote_kill_k ();
9855
9856 /* We've killed the remote end, we get to mourn it. If we are
9857 not in extended mode, mourning the inferior also unpushes
9858 remote_ops from the target stack, which closes the remote
9859 connection. */
9860 target_mourn_inferior (inferior_ptid);
9861
9862 return;
9863 }
9864
9865 error (_("Can't kill process"));
9866 }
9867
9868 /* Send a kill request to the target using the 'vKill' packet. */
9869
9870 int
9871 remote_target::remote_vkill (int pid)
9872 {
9873 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9874 return -1;
9875
9876 remote_state *rs = get_remote_state ();
9877
9878 /* Tell the remote target to detach. */
9879 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9880 putpkt (rs->buf);
9881 getpkt (&rs->buf, 0);
9882
9883 switch (packet_ok (rs->buf,
9884 &remote_protocol_packets[PACKET_vKill]))
9885 {
9886 case PACKET_OK:
9887 return 0;
9888 case PACKET_ERROR:
9889 return 1;
9890 case PACKET_UNKNOWN:
9891 return -1;
9892 default:
9893 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9894 }
9895 }
9896
9897 /* Send a kill request to the target using the 'k' packet. */
9898
9899 void
9900 remote_target::remote_kill_k ()
9901 {
9902 /* Catch errors so the user can quit from gdb even when we
9903 aren't on speaking terms with the remote system. */
9904 try
9905 {
9906 putpkt ("k");
9907 }
9908 catch (const gdb_exception_error &ex)
9909 {
9910 if (ex.error == TARGET_CLOSE_ERROR)
9911 {
9912 /* If we got an (EOF) error that caused the target
9913 to go away, then we're done, that's what we wanted.
9914 "k" is susceptible to cause a premature EOF, given
9915 that the remote server isn't actually required to
9916 reply to "k", and it can happen that it doesn't
9917 even get to reply ACK to the "k". */
9918 return;
9919 }
9920
9921 /* Otherwise, something went wrong. We didn't actually kill
9922 the target. Just propagate the exception, and let the
9923 user or higher layers decide what to do. */
9924 throw;
9925 }
9926 }
9927
9928 void
9929 remote_target::mourn_inferior ()
9930 {
9931 struct remote_state *rs = get_remote_state ();
9932
9933 /* We're no longer interested in notification events of an inferior
9934 that exited or was killed/detached. */
9935 discard_pending_stop_replies (current_inferior ());
9936
9937 /* In 'target remote' mode with one inferior, we close the connection. */
9938 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9939 {
9940 remote_unpush_target (this);
9941 return;
9942 }
9943
9944 /* In case we got here due to an error, but we're going to stay
9945 connected. */
9946 rs->waiting_for_stop_reply = 0;
9947
9948 /* If the current general thread belonged to the process we just
9949 detached from or has exited, the remote side current general
9950 thread becomes undefined. Considering a case like this:
9951
9952 - We just got here due to a detach.
9953 - The process that we're detaching from happens to immediately
9954 report a global breakpoint being hit in non-stop mode, in the
9955 same thread we had selected before.
9956 - GDB attaches to this process again.
9957 - This event happens to be the next event we handle.
9958
9959 GDB would consider that the current general thread didn't need to
9960 be set on the stub side (with Hg), since for all it knew,
9961 GENERAL_THREAD hadn't changed.
9962
9963 Notice that although in all-stop mode, the remote server always
9964 sets the current thread to the thread reporting the stop event,
9965 that doesn't happen in non-stop mode; in non-stop, the stub *must
9966 not* change the current thread when reporting a breakpoint hit,
9967 due to the decoupling of event reporting and event handling.
9968
9969 To keep things simple, we always invalidate our notion of the
9970 current thread. */
9971 record_currthread (rs, minus_one_ptid);
9972
9973 /* Call common code to mark the inferior as not running. */
9974 generic_mourn_inferior ();
9975 }
9976
9977 bool
9978 extended_remote_target::supports_disable_randomization ()
9979 {
9980 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9981 }
9982
9983 void
9984 remote_target::extended_remote_disable_randomization (int val)
9985 {
9986 struct remote_state *rs = get_remote_state ();
9987 char *reply;
9988
9989 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9990 "QDisableRandomization:%x", val);
9991 putpkt (rs->buf);
9992 reply = remote_get_noisy_reply ();
9993 if (*reply == '\0')
9994 error (_("Target does not support QDisableRandomization."));
9995 if (strcmp (reply, "OK") != 0)
9996 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9997 }
9998
9999 int
10000 remote_target::extended_remote_run (const std::string &args)
10001 {
10002 struct remote_state *rs = get_remote_state ();
10003 int len;
10004 const char *remote_exec_file = get_remote_exec_file ();
10005
10006 /* If the user has disabled vRun support, or we have detected that
10007 support is not available, do not try it. */
10008 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10009 return -1;
10010
10011 strcpy (rs->buf.data (), "vRun;");
10012 len = strlen (rs->buf.data ());
10013
10014 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10015 error (_("Remote file name too long for run packet"));
10016 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10017 strlen (remote_exec_file));
10018
10019 if (!args.empty ())
10020 {
10021 int i;
10022
10023 gdb_argv argv (args.c_str ());
10024 for (i = 0; argv[i] != NULL; i++)
10025 {
10026 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10027 error (_("Argument list too long for run packet"));
10028 rs->buf[len++] = ';';
10029 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10030 strlen (argv[i]));
10031 }
10032 }
10033
10034 rs->buf[len++] = '\0';
10035
10036 putpkt (rs->buf);
10037 getpkt (&rs->buf, 0);
10038
10039 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10040 {
10041 case PACKET_OK:
10042 /* We have a wait response. All is well. */
10043 return 0;
10044 case PACKET_UNKNOWN:
10045 return -1;
10046 case PACKET_ERROR:
10047 if (remote_exec_file[0] == '\0')
10048 error (_("Running the default executable on the remote target failed; "
10049 "try \"set remote exec-file\"?"));
10050 else
10051 error (_("Running \"%s\" on the remote target failed"),
10052 remote_exec_file);
10053 default:
10054 gdb_assert_not_reached (_("bad switch"));
10055 }
10056 }
10057
10058 /* Helper function to send set/unset environment packets. ACTION is
10059 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10060 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10061 sent. */
10062
10063 void
10064 remote_target::send_environment_packet (const char *action,
10065 const char *packet,
10066 const char *value)
10067 {
10068 remote_state *rs = get_remote_state ();
10069
10070 /* Convert the environment variable to an hex string, which
10071 is the best format to be transmitted over the wire. */
10072 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10073 strlen (value));
10074
10075 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10076 "%s:%s", packet, encoded_value.c_str ());
10077
10078 putpkt (rs->buf);
10079 getpkt (&rs->buf, 0);
10080 if (strcmp (rs->buf.data (), "OK") != 0)
10081 warning (_("Unable to %s environment variable '%s' on remote."),
10082 action, value);
10083 }
10084
10085 /* Helper function to handle the QEnvironment* packets. */
10086
10087 void
10088 remote_target::extended_remote_environment_support ()
10089 {
10090 remote_state *rs = get_remote_state ();
10091
10092 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10093 {
10094 putpkt ("QEnvironmentReset");
10095 getpkt (&rs->buf, 0);
10096 if (strcmp (rs->buf.data (), "OK") != 0)
10097 warning (_("Unable to reset environment on remote."));
10098 }
10099
10100 gdb_environ *e = &current_inferior ()->environment;
10101
10102 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10103 for (const std::string &el : e->user_set_env ())
10104 send_environment_packet ("set", "QEnvironmentHexEncoded",
10105 el.c_str ());
10106
10107 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10108 for (const std::string &el : e->user_unset_env ())
10109 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10110 }
10111
10112 /* Helper function to set the current working directory for the
10113 inferior in the remote target. */
10114
10115 void
10116 remote_target::extended_remote_set_inferior_cwd ()
10117 {
10118 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10119 {
10120 const char *inferior_cwd = get_inferior_cwd ();
10121 remote_state *rs = get_remote_state ();
10122
10123 if (inferior_cwd != NULL)
10124 {
10125 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10126 strlen (inferior_cwd));
10127
10128 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10129 "QSetWorkingDir:%s", hexpath.c_str ());
10130 }
10131 else
10132 {
10133 /* An empty inferior_cwd means that the user wants us to
10134 reset the remote server's inferior's cwd. */
10135 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10136 "QSetWorkingDir:");
10137 }
10138
10139 putpkt (rs->buf);
10140 getpkt (&rs->buf, 0);
10141 if (packet_ok (rs->buf,
10142 &remote_protocol_packets[PACKET_QSetWorkingDir])
10143 != PACKET_OK)
10144 error (_("\
10145 Remote replied unexpectedly while setting the inferior's working\n\
10146 directory: %s"),
10147 rs->buf.data ());
10148
10149 }
10150 }
10151
10152 /* In the extended protocol we want to be able to do things like
10153 "run" and have them basically work as expected. So we need
10154 a special create_inferior function. We support changing the
10155 executable file and the command line arguments, but not the
10156 environment. */
10157
10158 void
10159 extended_remote_target::create_inferior (const char *exec_file,
10160 const std::string &args,
10161 char **env, int from_tty)
10162 {
10163 int run_worked;
10164 char *stop_reply;
10165 struct remote_state *rs = get_remote_state ();
10166 const char *remote_exec_file = get_remote_exec_file ();
10167
10168 /* If running asynchronously, register the target file descriptor
10169 with the event loop. */
10170 if (target_can_async_p ())
10171 target_async (1);
10172
10173 /* Disable address space randomization if requested (and supported). */
10174 if (supports_disable_randomization ())
10175 extended_remote_disable_randomization (disable_randomization);
10176
10177 /* If startup-with-shell is on, we inform gdbserver to start the
10178 remote inferior using a shell. */
10179 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10180 {
10181 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10182 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10183 putpkt (rs->buf);
10184 getpkt (&rs->buf, 0);
10185 if (strcmp (rs->buf.data (), "OK") != 0)
10186 error (_("\
10187 Remote replied unexpectedly while setting startup-with-shell: %s"),
10188 rs->buf.data ());
10189 }
10190
10191 extended_remote_environment_support ();
10192
10193 extended_remote_set_inferior_cwd ();
10194
10195 /* Now restart the remote server. */
10196 run_worked = extended_remote_run (args) != -1;
10197 if (!run_worked)
10198 {
10199 /* vRun was not supported. Fail if we need it to do what the
10200 user requested. */
10201 if (remote_exec_file[0])
10202 error (_("Remote target does not support \"set remote exec-file\""));
10203 if (!args.empty ())
10204 error (_("Remote target does not support \"set args\" or run ARGS"));
10205
10206 /* Fall back to "R". */
10207 extended_remote_restart ();
10208 }
10209
10210 /* vRun's success return is a stop reply. */
10211 stop_reply = run_worked ? rs->buf.data () : NULL;
10212 add_current_inferior_and_thread (stop_reply);
10213
10214 /* Get updated offsets, if the stub uses qOffsets. */
10215 get_offsets ();
10216 }
10217 \f
10218
10219 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10220 the list of conditions (in agent expression bytecode format), if any, the
10221 target needs to evaluate. The output is placed into the packet buffer
10222 started from BUF and ended at BUF_END. */
10223
10224 static int
10225 remote_add_target_side_condition (struct gdbarch *gdbarch,
10226 struct bp_target_info *bp_tgt, char *buf,
10227 char *buf_end)
10228 {
10229 if (bp_tgt->conditions.empty ())
10230 return 0;
10231
10232 buf += strlen (buf);
10233 xsnprintf (buf, buf_end - buf, "%s", ";");
10234 buf++;
10235
10236 /* Send conditions to the target. */
10237 for (agent_expr *aexpr : bp_tgt->conditions)
10238 {
10239 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10240 buf += strlen (buf);
10241 for (int i = 0; i < aexpr->len; ++i)
10242 buf = pack_hex_byte (buf, aexpr->buf[i]);
10243 *buf = '\0';
10244 }
10245 return 0;
10246 }
10247
10248 static void
10249 remote_add_target_side_commands (struct gdbarch *gdbarch,
10250 struct bp_target_info *bp_tgt, char *buf)
10251 {
10252 if (bp_tgt->tcommands.empty ())
10253 return;
10254
10255 buf += strlen (buf);
10256
10257 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10258 buf += strlen (buf);
10259
10260 /* Concatenate all the agent expressions that are commands into the
10261 cmds parameter. */
10262 for (agent_expr *aexpr : bp_tgt->tcommands)
10263 {
10264 sprintf (buf, "X%x,", aexpr->len);
10265 buf += strlen (buf);
10266 for (int i = 0; i < aexpr->len; ++i)
10267 buf = pack_hex_byte (buf, aexpr->buf[i]);
10268 *buf = '\0';
10269 }
10270 }
10271
10272 /* Insert a breakpoint. On targets that have software breakpoint
10273 support, we ask the remote target to do the work; on targets
10274 which don't, we insert a traditional memory breakpoint. */
10275
10276 int
10277 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10278 struct bp_target_info *bp_tgt)
10279 {
10280 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10281 If it succeeds, then set the support to PACKET_ENABLE. If it
10282 fails, and the user has explicitly requested the Z support then
10283 report an error, otherwise, mark it disabled and go on. */
10284
10285 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10286 {
10287 CORE_ADDR addr = bp_tgt->reqstd_address;
10288 struct remote_state *rs;
10289 char *p, *endbuf;
10290
10291 /* Make sure the remote is pointing at the right process, if
10292 necessary. */
10293 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10294 set_general_process ();
10295
10296 rs = get_remote_state ();
10297 p = rs->buf.data ();
10298 endbuf = p + get_remote_packet_size ();
10299
10300 *(p++) = 'Z';
10301 *(p++) = '0';
10302 *(p++) = ',';
10303 addr = (ULONGEST) remote_address_masked (addr);
10304 p += hexnumstr (p, addr);
10305 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10306
10307 if (supports_evaluation_of_breakpoint_conditions ())
10308 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10309
10310 if (can_run_breakpoint_commands ())
10311 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10312
10313 putpkt (rs->buf);
10314 getpkt (&rs->buf, 0);
10315
10316 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10317 {
10318 case PACKET_ERROR:
10319 return -1;
10320 case PACKET_OK:
10321 return 0;
10322 case PACKET_UNKNOWN:
10323 break;
10324 }
10325 }
10326
10327 /* If this breakpoint has target-side commands but this stub doesn't
10328 support Z0 packets, throw error. */
10329 if (!bp_tgt->tcommands.empty ())
10330 throw_error (NOT_SUPPORTED_ERROR, _("\
10331 Target doesn't support breakpoints that have target side commands."));
10332
10333 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10334 }
10335
10336 int
10337 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10338 struct bp_target_info *bp_tgt,
10339 enum remove_bp_reason reason)
10340 {
10341 CORE_ADDR addr = bp_tgt->placed_address;
10342 struct remote_state *rs = get_remote_state ();
10343
10344 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10345 {
10346 char *p = rs->buf.data ();
10347 char *endbuf = p + get_remote_packet_size ();
10348
10349 /* Make sure the remote is pointing at the right process, if
10350 necessary. */
10351 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10352 set_general_process ();
10353
10354 *(p++) = 'z';
10355 *(p++) = '0';
10356 *(p++) = ',';
10357
10358 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10359 p += hexnumstr (p, addr);
10360 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10361
10362 putpkt (rs->buf);
10363 getpkt (&rs->buf, 0);
10364
10365 return (rs->buf[0] == 'E');
10366 }
10367
10368 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10369 }
10370
10371 static enum Z_packet_type
10372 watchpoint_to_Z_packet (int type)
10373 {
10374 switch (type)
10375 {
10376 case hw_write:
10377 return Z_PACKET_WRITE_WP;
10378 break;
10379 case hw_read:
10380 return Z_PACKET_READ_WP;
10381 break;
10382 case hw_access:
10383 return Z_PACKET_ACCESS_WP;
10384 break;
10385 default:
10386 internal_error (__FILE__, __LINE__,
10387 _("hw_bp_to_z: bad watchpoint type %d"), type);
10388 }
10389 }
10390
10391 int
10392 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10393 enum target_hw_bp_type type, struct expression *cond)
10394 {
10395 struct remote_state *rs = get_remote_state ();
10396 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10397 char *p;
10398 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10399
10400 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10401 return 1;
10402
10403 /* Make sure the remote is pointing at the right process, if
10404 necessary. */
10405 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10406 set_general_process ();
10407
10408 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10409 p = strchr (rs->buf.data (), '\0');
10410 addr = remote_address_masked (addr);
10411 p += hexnumstr (p, (ULONGEST) addr);
10412 xsnprintf (p, endbuf - p, ",%x", len);
10413
10414 putpkt (rs->buf);
10415 getpkt (&rs->buf, 0);
10416
10417 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10418 {
10419 case PACKET_ERROR:
10420 return -1;
10421 case PACKET_UNKNOWN:
10422 return 1;
10423 case PACKET_OK:
10424 return 0;
10425 }
10426 internal_error (__FILE__, __LINE__,
10427 _("remote_insert_watchpoint: reached end of function"));
10428 }
10429
10430 bool
10431 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10432 CORE_ADDR start, int length)
10433 {
10434 CORE_ADDR diff = remote_address_masked (addr - start);
10435
10436 return diff < length;
10437 }
10438
10439
10440 int
10441 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10442 enum target_hw_bp_type type, struct expression *cond)
10443 {
10444 struct remote_state *rs = get_remote_state ();
10445 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10446 char *p;
10447 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10448
10449 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10450 return -1;
10451
10452 /* Make sure the remote is pointing at the right process, if
10453 necessary. */
10454 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10455 set_general_process ();
10456
10457 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10458 p = strchr (rs->buf.data (), '\0');
10459 addr = remote_address_masked (addr);
10460 p += hexnumstr (p, (ULONGEST) addr);
10461 xsnprintf (p, endbuf - p, ",%x", len);
10462 putpkt (rs->buf);
10463 getpkt (&rs->buf, 0);
10464
10465 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10466 {
10467 case PACKET_ERROR:
10468 case PACKET_UNKNOWN:
10469 return -1;
10470 case PACKET_OK:
10471 return 0;
10472 }
10473 internal_error (__FILE__, __LINE__,
10474 _("remote_remove_watchpoint: reached end of function"));
10475 }
10476
10477
10478 static int remote_hw_watchpoint_limit = -1;
10479 static int remote_hw_watchpoint_length_limit = -1;
10480 static int remote_hw_breakpoint_limit = -1;
10481
10482 int
10483 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10484 {
10485 if (remote_hw_watchpoint_length_limit == 0)
10486 return 0;
10487 else if (remote_hw_watchpoint_length_limit < 0)
10488 return 1;
10489 else if (len <= remote_hw_watchpoint_length_limit)
10490 return 1;
10491 else
10492 return 0;
10493 }
10494
10495 int
10496 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10497 {
10498 if (type == bp_hardware_breakpoint)
10499 {
10500 if (remote_hw_breakpoint_limit == 0)
10501 return 0;
10502 else if (remote_hw_breakpoint_limit < 0)
10503 return 1;
10504 else if (cnt <= remote_hw_breakpoint_limit)
10505 return 1;
10506 }
10507 else
10508 {
10509 if (remote_hw_watchpoint_limit == 0)
10510 return 0;
10511 else if (remote_hw_watchpoint_limit < 0)
10512 return 1;
10513 else if (ot)
10514 return -1;
10515 else if (cnt <= remote_hw_watchpoint_limit)
10516 return 1;
10517 }
10518 return -1;
10519 }
10520
10521 /* The to_stopped_by_sw_breakpoint method of target remote. */
10522
10523 bool
10524 remote_target::stopped_by_sw_breakpoint ()
10525 {
10526 struct thread_info *thread = inferior_thread ();
10527
10528 return (thread->priv != NULL
10529 && (get_remote_thread_info (thread)->stop_reason
10530 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10531 }
10532
10533 /* The to_supports_stopped_by_sw_breakpoint method of target
10534 remote. */
10535
10536 bool
10537 remote_target::supports_stopped_by_sw_breakpoint ()
10538 {
10539 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10540 }
10541
10542 /* The to_stopped_by_hw_breakpoint method of target remote. */
10543
10544 bool
10545 remote_target::stopped_by_hw_breakpoint ()
10546 {
10547 struct thread_info *thread = inferior_thread ();
10548
10549 return (thread->priv != NULL
10550 && (get_remote_thread_info (thread)->stop_reason
10551 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10552 }
10553
10554 /* The to_supports_stopped_by_hw_breakpoint method of target
10555 remote. */
10556
10557 bool
10558 remote_target::supports_stopped_by_hw_breakpoint ()
10559 {
10560 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10561 }
10562
10563 bool
10564 remote_target::stopped_by_watchpoint ()
10565 {
10566 struct thread_info *thread = inferior_thread ();
10567
10568 return (thread->priv != NULL
10569 && (get_remote_thread_info (thread)->stop_reason
10570 == TARGET_STOPPED_BY_WATCHPOINT));
10571 }
10572
10573 bool
10574 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10575 {
10576 struct thread_info *thread = inferior_thread ();
10577
10578 if (thread->priv != NULL
10579 && (get_remote_thread_info (thread)->stop_reason
10580 == TARGET_STOPPED_BY_WATCHPOINT))
10581 {
10582 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10583 return true;
10584 }
10585
10586 return false;
10587 }
10588
10589
10590 int
10591 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10592 struct bp_target_info *bp_tgt)
10593 {
10594 CORE_ADDR addr = bp_tgt->reqstd_address;
10595 struct remote_state *rs;
10596 char *p, *endbuf;
10597 char *message;
10598
10599 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10600 return -1;
10601
10602 /* Make sure the remote is pointing at the right process, if
10603 necessary. */
10604 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10605 set_general_process ();
10606
10607 rs = get_remote_state ();
10608 p = rs->buf.data ();
10609 endbuf = p + get_remote_packet_size ();
10610
10611 *(p++) = 'Z';
10612 *(p++) = '1';
10613 *(p++) = ',';
10614
10615 addr = remote_address_masked (addr);
10616 p += hexnumstr (p, (ULONGEST) addr);
10617 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10618
10619 if (supports_evaluation_of_breakpoint_conditions ())
10620 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10621
10622 if (can_run_breakpoint_commands ())
10623 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10624
10625 putpkt (rs->buf);
10626 getpkt (&rs->buf, 0);
10627
10628 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10629 {
10630 case PACKET_ERROR:
10631 if (rs->buf[1] == '.')
10632 {
10633 message = strchr (&rs->buf[2], '.');
10634 if (message)
10635 error (_("Remote failure reply: %s"), message + 1);
10636 }
10637 return -1;
10638 case PACKET_UNKNOWN:
10639 return -1;
10640 case PACKET_OK:
10641 return 0;
10642 }
10643 internal_error (__FILE__, __LINE__,
10644 _("remote_insert_hw_breakpoint: reached end of function"));
10645 }
10646
10647
10648 int
10649 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10650 struct bp_target_info *bp_tgt)
10651 {
10652 CORE_ADDR addr;
10653 struct remote_state *rs = get_remote_state ();
10654 char *p = rs->buf.data ();
10655 char *endbuf = p + get_remote_packet_size ();
10656
10657 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10658 return -1;
10659
10660 /* Make sure the remote is pointing at the right process, if
10661 necessary. */
10662 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10663 set_general_process ();
10664
10665 *(p++) = 'z';
10666 *(p++) = '1';
10667 *(p++) = ',';
10668
10669 addr = remote_address_masked (bp_tgt->placed_address);
10670 p += hexnumstr (p, (ULONGEST) addr);
10671 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10672
10673 putpkt (rs->buf);
10674 getpkt (&rs->buf, 0);
10675
10676 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10677 {
10678 case PACKET_ERROR:
10679 case PACKET_UNKNOWN:
10680 return -1;
10681 case PACKET_OK:
10682 return 0;
10683 }
10684 internal_error (__FILE__, __LINE__,
10685 _("remote_remove_hw_breakpoint: reached end of function"));
10686 }
10687
10688 /* Verify memory using the "qCRC:" request. */
10689
10690 int
10691 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10692 {
10693 struct remote_state *rs = get_remote_state ();
10694 unsigned long host_crc, target_crc;
10695 char *tmp;
10696
10697 /* It doesn't make sense to use qCRC if the remote target is
10698 connected but not running. */
10699 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10700 {
10701 enum packet_result result;
10702
10703 /* Make sure the remote is pointing at the right process. */
10704 set_general_process ();
10705
10706 /* FIXME: assumes lma can fit into long. */
10707 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10708 (long) lma, (long) size);
10709 putpkt (rs->buf);
10710
10711 /* Be clever; compute the host_crc before waiting for target
10712 reply. */
10713 host_crc = xcrc32 (data, size, 0xffffffff);
10714
10715 getpkt (&rs->buf, 0);
10716
10717 result = packet_ok (rs->buf,
10718 &remote_protocol_packets[PACKET_qCRC]);
10719 if (result == PACKET_ERROR)
10720 return -1;
10721 else if (result == PACKET_OK)
10722 {
10723 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10724 target_crc = target_crc * 16 + fromhex (*tmp);
10725
10726 return (host_crc == target_crc);
10727 }
10728 }
10729
10730 return simple_verify_memory (this, data, lma, size);
10731 }
10732
10733 /* compare-sections command
10734
10735 With no arguments, compares each loadable section in the exec bfd
10736 with the same memory range on the target, and reports mismatches.
10737 Useful for verifying the image on the target against the exec file. */
10738
10739 static void
10740 compare_sections_command (const char *args, int from_tty)
10741 {
10742 asection *s;
10743 const char *sectname;
10744 bfd_size_type size;
10745 bfd_vma lma;
10746 int matched = 0;
10747 int mismatched = 0;
10748 int res;
10749 int read_only = 0;
10750
10751 if (!exec_bfd)
10752 error (_("command cannot be used without an exec file"));
10753
10754 if (args != NULL && strcmp (args, "-r") == 0)
10755 {
10756 read_only = 1;
10757 args = NULL;
10758 }
10759
10760 for (s = exec_bfd->sections; s; s = s->next)
10761 {
10762 if (!(s->flags & SEC_LOAD))
10763 continue; /* Skip non-loadable section. */
10764
10765 if (read_only && (s->flags & SEC_READONLY) == 0)
10766 continue; /* Skip writeable sections */
10767
10768 size = bfd_section_size (s);
10769 if (size == 0)
10770 continue; /* Skip zero-length section. */
10771
10772 sectname = bfd_section_name (s);
10773 if (args && strcmp (args, sectname) != 0)
10774 continue; /* Not the section selected by user. */
10775
10776 matched = 1; /* Do this section. */
10777 lma = s->lma;
10778
10779 gdb::byte_vector sectdata (size);
10780 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10781
10782 res = target_verify_memory (sectdata.data (), lma, size);
10783
10784 if (res == -1)
10785 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10786 paddress (target_gdbarch (), lma),
10787 paddress (target_gdbarch (), lma + size));
10788
10789 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10790 paddress (target_gdbarch (), lma),
10791 paddress (target_gdbarch (), lma + size));
10792 if (res)
10793 printf_filtered ("matched.\n");
10794 else
10795 {
10796 printf_filtered ("MIS-MATCHED!\n");
10797 mismatched++;
10798 }
10799 }
10800 if (mismatched > 0)
10801 warning (_("One or more sections of the target image does not match\n\
10802 the loaded file\n"));
10803 if (args && !matched)
10804 printf_filtered (_("No loaded section named '%s'.\n"), args);
10805 }
10806
10807 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10808 into remote target. The number of bytes written to the remote
10809 target is returned, or -1 for error. */
10810
10811 target_xfer_status
10812 remote_target::remote_write_qxfer (const char *object_name,
10813 const char *annex, const gdb_byte *writebuf,
10814 ULONGEST offset, LONGEST len,
10815 ULONGEST *xfered_len,
10816 struct packet_config *packet)
10817 {
10818 int i, buf_len;
10819 ULONGEST n;
10820 struct remote_state *rs = get_remote_state ();
10821 int max_size = get_memory_write_packet_size ();
10822
10823 if (packet_config_support (packet) == PACKET_DISABLE)
10824 return TARGET_XFER_E_IO;
10825
10826 /* Insert header. */
10827 i = snprintf (rs->buf.data (), max_size,
10828 "qXfer:%s:write:%s:%s:",
10829 object_name, annex ? annex : "",
10830 phex_nz (offset, sizeof offset));
10831 max_size -= (i + 1);
10832
10833 /* Escape as much data as fits into rs->buf. */
10834 buf_len = remote_escape_output
10835 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10836
10837 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10838 || getpkt_sane (&rs->buf, 0) < 0
10839 || packet_ok (rs->buf, packet) != PACKET_OK)
10840 return TARGET_XFER_E_IO;
10841
10842 unpack_varlen_hex (rs->buf.data (), &n);
10843
10844 *xfered_len = n;
10845 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10846 }
10847
10848 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10849 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10850 number of bytes read is returned, or 0 for EOF, or -1 for error.
10851 The number of bytes read may be less than LEN without indicating an
10852 EOF. PACKET is checked and updated to indicate whether the remote
10853 target supports this object. */
10854
10855 target_xfer_status
10856 remote_target::remote_read_qxfer (const char *object_name,
10857 const char *annex,
10858 gdb_byte *readbuf, ULONGEST offset,
10859 LONGEST len,
10860 ULONGEST *xfered_len,
10861 struct packet_config *packet)
10862 {
10863 struct remote_state *rs = get_remote_state ();
10864 LONGEST i, n, packet_len;
10865
10866 if (packet_config_support (packet) == PACKET_DISABLE)
10867 return TARGET_XFER_E_IO;
10868
10869 /* Check whether we've cached an end-of-object packet that matches
10870 this request. */
10871 if (rs->finished_object)
10872 {
10873 if (strcmp (object_name, rs->finished_object) == 0
10874 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10875 && offset == rs->finished_offset)
10876 return TARGET_XFER_EOF;
10877
10878
10879 /* Otherwise, we're now reading something different. Discard
10880 the cache. */
10881 xfree (rs->finished_object);
10882 xfree (rs->finished_annex);
10883 rs->finished_object = NULL;
10884 rs->finished_annex = NULL;
10885 }
10886
10887 /* Request only enough to fit in a single packet. The actual data
10888 may not, since we don't know how much of it will need to be escaped;
10889 the target is free to respond with slightly less data. We subtract
10890 five to account for the response type and the protocol frame. */
10891 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10892 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10893 "qXfer:%s:read:%s:%s,%s",
10894 object_name, annex ? annex : "",
10895 phex_nz (offset, sizeof offset),
10896 phex_nz (n, sizeof n));
10897 i = putpkt (rs->buf);
10898 if (i < 0)
10899 return TARGET_XFER_E_IO;
10900
10901 rs->buf[0] = '\0';
10902 packet_len = getpkt_sane (&rs->buf, 0);
10903 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10904 return TARGET_XFER_E_IO;
10905
10906 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10907 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10908
10909 /* 'm' means there is (or at least might be) more data after this
10910 batch. That does not make sense unless there's at least one byte
10911 of data in this reply. */
10912 if (rs->buf[0] == 'm' && packet_len == 1)
10913 error (_("Remote qXfer reply contained no data."));
10914
10915 /* Got some data. */
10916 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10917 packet_len - 1, readbuf, n);
10918
10919 /* 'l' is an EOF marker, possibly including a final block of data,
10920 or possibly empty. If we have the final block of a non-empty
10921 object, record this fact to bypass a subsequent partial read. */
10922 if (rs->buf[0] == 'l' && offset + i > 0)
10923 {
10924 rs->finished_object = xstrdup (object_name);
10925 rs->finished_annex = xstrdup (annex ? annex : "");
10926 rs->finished_offset = offset + i;
10927 }
10928
10929 if (i == 0)
10930 return TARGET_XFER_EOF;
10931 else
10932 {
10933 *xfered_len = i;
10934 return TARGET_XFER_OK;
10935 }
10936 }
10937
10938 enum target_xfer_status
10939 remote_target::xfer_partial (enum target_object object,
10940 const char *annex, gdb_byte *readbuf,
10941 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10942 ULONGEST *xfered_len)
10943 {
10944 struct remote_state *rs;
10945 int i;
10946 char *p2;
10947 char query_type;
10948 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10949
10950 set_remote_traceframe ();
10951 set_general_thread (inferior_ptid);
10952
10953 rs = get_remote_state ();
10954
10955 /* Handle memory using the standard memory routines. */
10956 if (object == TARGET_OBJECT_MEMORY)
10957 {
10958 /* If the remote target is connected but not running, we should
10959 pass this request down to a lower stratum (e.g. the executable
10960 file). */
10961 if (!target_has_execution)
10962 return TARGET_XFER_EOF;
10963
10964 if (writebuf != NULL)
10965 return remote_write_bytes (offset, writebuf, len, unit_size,
10966 xfered_len);
10967 else
10968 return remote_read_bytes (offset, readbuf, len, unit_size,
10969 xfered_len);
10970 }
10971
10972 /* Handle extra signal info using qxfer packets. */
10973 if (object == TARGET_OBJECT_SIGNAL_INFO)
10974 {
10975 if (readbuf)
10976 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10977 xfered_len, &remote_protocol_packets
10978 [PACKET_qXfer_siginfo_read]);
10979 else
10980 return remote_write_qxfer ("siginfo", annex,
10981 writebuf, offset, len, xfered_len,
10982 &remote_protocol_packets
10983 [PACKET_qXfer_siginfo_write]);
10984 }
10985
10986 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10987 {
10988 if (readbuf)
10989 return remote_read_qxfer ("statictrace", annex,
10990 readbuf, offset, len, xfered_len,
10991 &remote_protocol_packets
10992 [PACKET_qXfer_statictrace_read]);
10993 else
10994 return TARGET_XFER_E_IO;
10995 }
10996
10997 /* Only handle flash writes. */
10998 if (writebuf != NULL)
10999 {
11000 switch (object)
11001 {
11002 case TARGET_OBJECT_FLASH:
11003 return remote_flash_write (offset, len, xfered_len,
11004 writebuf);
11005
11006 default:
11007 return TARGET_XFER_E_IO;
11008 }
11009 }
11010
11011 /* Map pre-existing objects onto letters. DO NOT do this for new
11012 objects!!! Instead specify new query packets. */
11013 switch (object)
11014 {
11015 case TARGET_OBJECT_AVR:
11016 query_type = 'R';
11017 break;
11018
11019 case TARGET_OBJECT_AUXV:
11020 gdb_assert (annex == NULL);
11021 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11022 xfered_len,
11023 &remote_protocol_packets[PACKET_qXfer_auxv]);
11024
11025 case TARGET_OBJECT_AVAILABLE_FEATURES:
11026 return remote_read_qxfer
11027 ("features", annex, readbuf, offset, len, xfered_len,
11028 &remote_protocol_packets[PACKET_qXfer_features]);
11029
11030 case TARGET_OBJECT_LIBRARIES:
11031 return remote_read_qxfer
11032 ("libraries", annex, readbuf, offset, len, xfered_len,
11033 &remote_protocol_packets[PACKET_qXfer_libraries]);
11034
11035 case TARGET_OBJECT_LIBRARIES_SVR4:
11036 return remote_read_qxfer
11037 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11038 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11039
11040 case TARGET_OBJECT_MEMORY_MAP:
11041 gdb_assert (annex == NULL);
11042 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11043 xfered_len,
11044 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11045
11046 case TARGET_OBJECT_OSDATA:
11047 /* Should only get here if we're connected. */
11048 gdb_assert (rs->remote_desc);
11049 return remote_read_qxfer
11050 ("osdata", annex, readbuf, offset, len, xfered_len,
11051 &remote_protocol_packets[PACKET_qXfer_osdata]);
11052
11053 case TARGET_OBJECT_THREADS:
11054 gdb_assert (annex == NULL);
11055 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11056 xfered_len,
11057 &remote_protocol_packets[PACKET_qXfer_threads]);
11058
11059 case TARGET_OBJECT_TRACEFRAME_INFO:
11060 gdb_assert (annex == NULL);
11061 return remote_read_qxfer
11062 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11063 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11064
11065 case TARGET_OBJECT_FDPIC:
11066 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11067 xfered_len,
11068 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11069
11070 case TARGET_OBJECT_OPENVMS_UIB:
11071 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11072 xfered_len,
11073 &remote_protocol_packets[PACKET_qXfer_uib]);
11074
11075 case TARGET_OBJECT_BTRACE:
11076 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11077 xfered_len,
11078 &remote_protocol_packets[PACKET_qXfer_btrace]);
11079
11080 case TARGET_OBJECT_BTRACE_CONF:
11081 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11082 len, xfered_len,
11083 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11084
11085 case TARGET_OBJECT_EXEC_FILE:
11086 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11087 len, xfered_len,
11088 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11089
11090 default:
11091 return TARGET_XFER_E_IO;
11092 }
11093
11094 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11095 large enough let the caller deal with it. */
11096 if (len < get_remote_packet_size ())
11097 return TARGET_XFER_E_IO;
11098 len = get_remote_packet_size ();
11099
11100 /* Except for querying the minimum buffer size, target must be open. */
11101 if (!rs->remote_desc)
11102 error (_("remote query is only available after target open"));
11103
11104 gdb_assert (annex != NULL);
11105 gdb_assert (readbuf != NULL);
11106
11107 p2 = rs->buf.data ();
11108 *p2++ = 'q';
11109 *p2++ = query_type;
11110
11111 /* We used one buffer char for the remote protocol q command and
11112 another for the query type. As the remote protocol encapsulation
11113 uses 4 chars plus one extra in case we are debugging
11114 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11115 string. */
11116 i = 0;
11117 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11118 {
11119 /* Bad caller may have sent forbidden characters. */
11120 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11121 *p2++ = annex[i];
11122 i++;
11123 }
11124 *p2 = '\0';
11125 gdb_assert (annex[i] == '\0');
11126
11127 i = putpkt (rs->buf);
11128 if (i < 0)
11129 return TARGET_XFER_E_IO;
11130
11131 getpkt (&rs->buf, 0);
11132 strcpy ((char *) readbuf, rs->buf.data ());
11133
11134 *xfered_len = strlen ((char *) readbuf);
11135 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11136 }
11137
11138 /* Implementation of to_get_memory_xfer_limit. */
11139
11140 ULONGEST
11141 remote_target::get_memory_xfer_limit ()
11142 {
11143 return get_memory_write_packet_size ();
11144 }
11145
11146 int
11147 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11148 const gdb_byte *pattern, ULONGEST pattern_len,
11149 CORE_ADDR *found_addrp)
11150 {
11151 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11152 struct remote_state *rs = get_remote_state ();
11153 int max_size = get_memory_write_packet_size ();
11154 struct packet_config *packet =
11155 &remote_protocol_packets[PACKET_qSearch_memory];
11156 /* Number of packet bytes used to encode the pattern;
11157 this could be more than PATTERN_LEN due to escape characters. */
11158 int escaped_pattern_len;
11159 /* Amount of pattern that was encodable in the packet. */
11160 int used_pattern_len;
11161 int i;
11162 int found;
11163 ULONGEST found_addr;
11164
11165 /* Don't go to the target if we don't have to. This is done before
11166 checking packet_config_support to avoid the possibility that a
11167 success for this edge case means the facility works in
11168 general. */
11169 if (pattern_len > search_space_len)
11170 return 0;
11171 if (pattern_len == 0)
11172 {
11173 *found_addrp = start_addr;
11174 return 1;
11175 }
11176
11177 /* If we already know the packet isn't supported, fall back to the simple
11178 way of searching memory. */
11179
11180 if (packet_config_support (packet) == PACKET_DISABLE)
11181 {
11182 /* Target doesn't provided special support, fall back and use the
11183 standard support (copy memory and do the search here). */
11184 return simple_search_memory (this, start_addr, search_space_len,
11185 pattern, pattern_len, found_addrp);
11186 }
11187
11188 /* Make sure the remote is pointing at the right process. */
11189 set_general_process ();
11190
11191 /* Insert header. */
11192 i = snprintf (rs->buf.data (), max_size,
11193 "qSearch:memory:%s;%s;",
11194 phex_nz (start_addr, addr_size),
11195 phex_nz (search_space_len, sizeof (search_space_len)));
11196 max_size -= (i + 1);
11197
11198 /* Escape as much data as fits into rs->buf. */
11199 escaped_pattern_len =
11200 remote_escape_output (pattern, pattern_len, 1,
11201 (gdb_byte *) rs->buf.data () + i,
11202 &used_pattern_len, max_size);
11203
11204 /* Bail if the pattern is too large. */
11205 if (used_pattern_len != pattern_len)
11206 error (_("Pattern is too large to transmit to remote target."));
11207
11208 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11209 || getpkt_sane (&rs->buf, 0) < 0
11210 || packet_ok (rs->buf, packet) != PACKET_OK)
11211 {
11212 /* The request may not have worked because the command is not
11213 supported. If so, fall back to the simple way. */
11214 if (packet_config_support (packet) == PACKET_DISABLE)
11215 {
11216 return simple_search_memory (this, start_addr, search_space_len,
11217 pattern, pattern_len, found_addrp);
11218 }
11219 return -1;
11220 }
11221
11222 if (rs->buf[0] == '0')
11223 found = 0;
11224 else if (rs->buf[0] == '1')
11225 {
11226 found = 1;
11227 if (rs->buf[1] != ',')
11228 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11229 unpack_varlen_hex (&rs->buf[2], &found_addr);
11230 *found_addrp = found_addr;
11231 }
11232 else
11233 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11234
11235 return found;
11236 }
11237
11238 void
11239 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11240 {
11241 struct remote_state *rs = get_remote_state ();
11242 char *p = rs->buf.data ();
11243
11244 if (!rs->remote_desc)
11245 error (_("remote rcmd is only available after target open"));
11246
11247 /* Send a NULL command across as an empty command. */
11248 if (command == NULL)
11249 command = "";
11250
11251 /* The query prefix. */
11252 strcpy (rs->buf.data (), "qRcmd,");
11253 p = strchr (rs->buf.data (), '\0');
11254
11255 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11256 > get_remote_packet_size ())
11257 error (_("\"monitor\" command ``%s'' is too long."), command);
11258
11259 /* Encode the actual command. */
11260 bin2hex ((const gdb_byte *) command, p, strlen (command));
11261
11262 if (putpkt (rs->buf) < 0)
11263 error (_("Communication problem with target."));
11264
11265 /* get/display the response */
11266 while (1)
11267 {
11268 char *buf;
11269
11270 /* XXX - see also remote_get_noisy_reply(). */
11271 QUIT; /* Allow user to bail out with ^C. */
11272 rs->buf[0] = '\0';
11273 if (getpkt_sane (&rs->buf, 0) == -1)
11274 {
11275 /* Timeout. Continue to (try to) read responses.
11276 This is better than stopping with an error, assuming the stub
11277 is still executing the (long) monitor command.
11278 If needed, the user can interrupt gdb using C-c, obtaining
11279 an effect similar to stop on timeout. */
11280 continue;
11281 }
11282 buf = rs->buf.data ();
11283 if (buf[0] == '\0')
11284 error (_("Target does not support this command."));
11285 if (buf[0] == 'O' && buf[1] != 'K')
11286 {
11287 remote_console_output (buf + 1); /* 'O' message from stub. */
11288 continue;
11289 }
11290 if (strcmp (buf, "OK") == 0)
11291 break;
11292 if (strlen (buf) == 3 && buf[0] == 'E'
11293 && isdigit (buf[1]) && isdigit (buf[2]))
11294 {
11295 error (_("Protocol error with Rcmd"));
11296 }
11297 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11298 {
11299 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11300
11301 fputc_unfiltered (c, outbuf);
11302 }
11303 break;
11304 }
11305 }
11306
11307 std::vector<mem_region>
11308 remote_target::memory_map ()
11309 {
11310 std::vector<mem_region> result;
11311 gdb::optional<gdb::char_vector> text
11312 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11313
11314 if (text)
11315 result = parse_memory_map (text->data ());
11316
11317 return result;
11318 }
11319
11320 static void
11321 packet_command (const char *args, int from_tty)
11322 {
11323 remote_target *remote = get_current_remote_target ();
11324
11325 if (remote == nullptr)
11326 error (_("command can only be used with remote target"));
11327
11328 remote->packet_command (args, from_tty);
11329 }
11330
11331 void
11332 remote_target::packet_command (const char *args, int from_tty)
11333 {
11334 if (!args)
11335 error (_("remote-packet command requires packet text as argument"));
11336
11337 puts_filtered ("sending: ");
11338 print_packet (args);
11339 puts_filtered ("\n");
11340 putpkt (args);
11341
11342 remote_state *rs = get_remote_state ();
11343
11344 getpkt (&rs->buf, 0);
11345 puts_filtered ("received: ");
11346 print_packet (rs->buf.data ());
11347 puts_filtered ("\n");
11348 }
11349
11350 #if 0
11351 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11352
11353 static void display_thread_info (struct gdb_ext_thread_info *info);
11354
11355 static void threadset_test_cmd (char *cmd, int tty);
11356
11357 static void threadalive_test (char *cmd, int tty);
11358
11359 static void threadlist_test_cmd (char *cmd, int tty);
11360
11361 int get_and_display_threadinfo (threadref *ref);
11362
11363 static void threadinfo_test_cmd (char *cmd, int tty);
11364
11365 static int thread_display_step (threadref *ref, void *context);
11366
11367 static void threadlist_update_test_cmd (char *cmd, int tty);
11368
11369 static void init_remote_threadtests (void);
11370
11371 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11372
11373 static void
11374 threadset_test_cmd (const char *cmd, int tty)
11375 {
11376 int sample_thread = SAMPLE_THREAD;
11377
11378 printf_filtered (_("Remote threadset test\n"));
11379 set_general_thread (sample_thread);
11380 }
11381
11382
11383 static void
11384 threadalive_test (const char *cmd, int tty)
11385 {
11386 int sample_thread = SAMPLE_THREAD;
11387 int pid = inferior_ptid.pid ();
11388 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11389
11390 if (remote_thread_alive (ptid))
11391 printf_filtered ("PASS: Thread alive test\n");
11392 else
11393 printf_filtered ("FAIL: Thread alive test\n");
11394 }
11395
11396 void output_threadid (char *title, threadref *ref);
11397
11398 void
11399 output_threadid (char *title, threadref *ref)
11400 {
11401 char hexid[20];
11402
11403 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11404 hexid[16] = 0;
11405 printf_filtered ("%s %s\n", title, (&hexid[0]));
11406 }
11407
11408 static void
11409 threadlist_test_cmd (const char *cmd, int tty)
11410 {
11411 int startflag = 1;
11412 threadref nextthread;
11413 int done, result_count;
11414 threadref threadlist[3];
11415
11416 printf_filtered ("Remote Threadlist test\n");
11417 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11418 &result_count, &threadlist[0]))
11419 printf_filtered ("FAIL: threadlist test\n");
11420 else
11421 {
11422 threadref *scan = threadlist;
11423 threadref *limit = scan + result_count;
11424
11425 while (scan < limit)
11426 output_threadid (" thread ", scan++);
11427 }
11428 }
11429
11430 void
11431 display_thread_info (struct gdb_ext_thread_info *info)
11432 {
11433 output_threadid ("Threadid: ", &info->threadid);
11434 printf_filtered ("Name: %s\n ", info->shortname);
11435 printf_filtered ("State: %s\n", info->display);
11436 printf_filtered ("other: %s\n\n", info->more_display);
11437 }
11438
11439 int
11440 get_and_display_threadinfo (threadref *ref)
11441 {
11442 int result;
11443 int set;
11444 struct gdb_ext_thread_info threadinfo;
11445
11446 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11447 | TAG_MOREDISPLAY | TAG_DISPLAY;
11448 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11449 display_thread_info (&threadinfo);
11450 return result;
11451 }
11452
11453 static void
11454 threadinfo_test_cmd (const char *cmd, int tty)
11455 {
11456 int athread = SAMPLE_THREAD;
11457 threadref thread;
11458 int set;
11459
11460 int_to_threadref (&thread, athread);
11461 printf_filtered ("Remote Threadinfo test\n");
11462 if (!get_and_display_threadinfo (&thread))
11463 printf_filtered ("FAIL cannot get thread info\n");
11464 }
11465
11466 static int
11467 thread_display_step (threadref *ref, void *context)
11468 {
11469 /* output_threadid(" threadstep ",ref); *//* simple test */
11470 return get_and_display_threadinfo (ref);
11471 }
11472
11473 static void
11474 threadlist_update_test_cmd (const char *cmd, int tty)
11475 {
11476 printf_filtered ("Remote Threadlist update test\n");
11477 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11478 }
11479
11480 static void
11481 init_remote_threadtests (void)
11482 {
11483 add_com ("tlist", class_obscure, threadlist_test_cmd,
11484 _("Fetch and print the remote list of "
11485 "thread identifiers, one pkt only."));
11486 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11487 _("Fetch and display info about one thread."));
11488 add_com ("tset", class_obscure, threadset_test_cmd,
11489 _("Test setting to a different thread."));
11490 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11491 _("Iterate through updating all remote thread info."));
11492 add_com ("talive", class_obscure, threadalive_test,
11493 _("Remote thread alive test."));
11494 }
11495
11496 #endif /* 0 */
11497
11498 /* Convert a thread ID to a string. */
11499
11500 std::string
11501 remote_target::pid_to_str (ptid_t ptid)
11502 {
11503 struct remote_state *rs = get_remote_state ();
11504
11505 if (ptid == null_ptid)
11506 return normal_pid_to_str (ptid);
11507 else if (ptid.is_pid ())
11508 {
11509 /* Printing an inferior target id. */
11510
11511 /* When multi-process extensions are off, there's no way in the
11512 remote protocol to know the remote process id, if there's any
11513 at all. There's one exception --- when we're connected with
11514 target extended-remote, and we manually attached to a process
11515 with "attach PID". We don't record anywhere a flag that
11516 allows us to distinguish that case from the case of
11517 connecting with extended-remote and the stub already being
11518 attached to a process, and reporting yes to qAttached, hence
11519 no smart special casing here. */
11520 if (!remote_multi_process_p (rs))
11521 return "Remote target";
11522
11523 return normal_pid_to_str (ptid);
11524 }
11525 else
11526 {
11527 if (magic_null_ptid == ptid)
11528 return "Thread <main>";
11529 else if (remote_multi_process_p (rs))
11530 if (ptid.lwp () == 0)
11531 return normal_pid_to_str (ptid);
11532 else
11533 return string_printf ("Thread %d.%ld",
11534 ptid.pid (), ptid.lwp ());
11535 else
11536 return string_printf ("Thread %ld", ptid.lwp ());
11537 }
11538 }
11539
11540 /* Get the address of the thread local variable in OBJFILE which is
11541 stored at OFFSET within the thread local storage for thread PTID. */
11542
11543 CORE_ADDR
11544 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11545 CORE_ADDR offset)
11546 {
11547 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11548 {
11549 struct remote_state *rs = get_remote_state ();
11550 char *p = rs->buf.data ();
11551 char *endp = p + get_remote_packet_size ();
11552 enum packet_result result;
11553
11554 strcpy (p, "qGetTLSAddr:");
11555 p += strlen (p);
11556 p = write_ptid (p, endp, ptid);
11557 *p++ = ',';
11558 p += hexnumstr (p, offset);
11559 *p++ = ',';
11560 p += hexnumstr (p, lm);
11561 *p++ = '\0';
11562
11563 putpkt (rs->buf);
11564 getpkt (&rs->buf, 0);
11565 result = packet_ok (rs->buf,
11566 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11567 if (result == PACKET_OK)
11568 {
11569 ULONGEST addr;
11570
11571 unpack_varlen_hex (rs->buf.data (), &addr);
11572 return addr;
11573 }
11574 else if (result == PACKET_UNKNOWN)
11575 throw_error (TLS_GENERIC_ERROR,
11576 _("Remote target doesn't support qGetTLSAddr packet"));
11577 else
11578 throw_error (TLS_GENERIC_ERROR,
11579 _("Remote target failed to process qGetTLSAddr request"));
11580 }
11581 else
11582 throw_error (TLS_GENERIC_ERROR,
11583 _("TLS not supported or disabled on this target"));
11584 /* Not reached. */
11585 return 0;
11586 }
11587
11588 /* Provide thread local base, i.e. Thread Information Block address.
11589 Returns 1 if ptid is found and thread_local_base is non zero. */
11590
11591 bool
11592 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11593 {
11594 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11595 {
11596 struct remote_state *rs = get_remote_state ();
11597 char *p = rs->buf.data ();
11598 char *endp = p + get_remote_packet_size ();
11599 enum packet_result result;
11600
11601 strcpy (p, "qGetTIBAddr:");
11602 p += strlen (p);
11603 p = write_ptid (p, endp, ptid);
11604 *p++ = '\0';
11605
11606 putpkt (rs->buf);
11607 getpkt (&rs->buf, 0);
11608 result = packet_ok (rs->buf,
11609 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11610 if (result == PACKET_OK)
11611 {
11612 ULONGEST val;
11613 unpack_varlen_hex (rs->buf.data (), &val);
11614 if (addr)
11615 *addr = (CORE_ADDR) val;
11616 return true;
11617 }
11618 else if (result == PACKET_UNKNOWN)
11619 error (_("Remote target doesn't support qGetTIBAddr packet"));
11620 else
11621 error (_("Remote target failed to process qGetTIBAddr request"));
11622 }
11623 else
11624 error (_("qGetTIBAddr not supported or disabled on this target"));
11625 /* Not reached. */
11626 return false;
11627 }
11628
11629 /* Support for inferring a target description based on the current
11630 architecture and the size of a 'g' packet. While the 'g' packet
11631 can have any size (since optional registers can be left off the
11632 end), some sizes are easily recognizable given knowledge of the
11633 approximate architecture. */
11634
11635 struct remote_g_packet_guess
11636 {
11637 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11638 : bytes (bytes_),
11639 tdesc (tdesc_)
11640 {
11641 }
11642
11643 int bytes;
11644 const struct target_desc *tdesc;
11645 };
11646
11647 struct remote_g_packet_data : public allocate_on_obstack
11648 {
11649 std::vector<remote_g_packet_guess> guesses;
11650 };
11651
11652 static struct gdbarch_data *remote_g_packet_data_handle;
11653
11654 static void *
11655 remote_g_packet_data_init (struct obstack *obstack)
11656 {
11657 return new (obstack) remote_g_packet_data;
11658 }
11659
11660 void
11661 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11662 const struct target_desc *tdesc)
11663 {
11664 struct remote_g_packet_data *data
11665 = ((struct remote_g_packet_data *)
11666 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11667
11668 gdb_assert (tdesc != NULL);
11669
11670 for (const remote_g_packet_guess &guess : data->guesses)
11671 if (guess.bytes == bytes)
11672 internal_error (__FILE__, __LINE__,
11673 _("Duplicate g packet description added for size %d"),
11674 bytes);
11675
11676 data->guesses.emplace_back (bytes, tdesc);
11677 }
11678
11679 /* Return true if remote_read_description would do anything on this target
11680 and architecture, false otherwise. */
11681
11682 static bool
11683 remote_read_description_p (struct target_ops *target)
11684 {
11685 struct remote_g_packet_data *data
11686 = ((struct remote_g_packet_data *)
11687 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11688
11689 return !data->guesses.empty ();
11690 }
11691
11692 const struct target_desc *
11693 remote_target::read_description ()
11694 {
11695 struct remote_g_packet_data *data
11696 = ((struct remote_g_packet_data *)
11697 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11698
11699 /* Do not try this during initial connection, when we do not know
11700 whether there is a running but stopped thread. */
11701 if (!target_has_execution || inferior_ptid == null_ptid)
11702 return beneath ()->read_description ();
11703
11704 if (!data->guesses.empty ())
11705 {
11706 int bytes = send_g_packet ();
11707
11708 for (const remote_g_packet_guess &guess : data->guesses)
11709 if (guess.bytes == bytes)
11710 return guess.tdesc;
11711
11712 /* We discard the g packet. A minor optimization would be to
11713 hold on to it, and fill the register cache once we have selected
11714 an architecture, but it's too tricky to do safely. */
11715 }
11716
11717 return beneath ()->read_description ();
11718 }
11719
11720 /* Remote file transfer support. This is host-initiated I/O, not
11721 target-initiated; for target-initiated, see remote-fileio.c. */
11722
11723 /* If *LEFT is at least the length of STRING, copy STRING to
11724 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11725 decrease *LEFT. Otherwise raise an error. */
11726
11727 static void
11728 remote_buffer_add_string (char **buffer, int *left, const char *string)
11729 {
11730 int len = strlen (string);
11731
11732 if (len > *left)
11733 error (_("Packet too long for target."));
11734
11735 memcpy (*buffer, string, len);
11736 *buffer += len;
11737 *left -= len;
11738
11739 /* NUL-terminate the buffer as a convenience, if there is
11740 room. */
11741 if (*left)
11742 **buffer = '\0';
11743 }
11744
11745 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11746 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11747 decrease *LEFT. Otherwise raise an error. */
11748
11749 static void
11750 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11751 int len)
11752 {
11753 if (2 * len > *left)
11754 error (_("Packet too long for target."));
11755
11756 bin2hex (bytes, *buffer, len);
11757 *buffer += 2 * len;
11758 *left -= 2 * len;
11759
11760 /* NUL-terminate the buffer as a convenience, if there is
11761 room. */
11762 if (*left)
11763 **buffer = '\0';
11764 }
11765
11766 /* If *LEFT is large enough, convert VALUE to hex and add it to
11767 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11768 decrease *LEFT. Otherwise raise an error. */
11769
11770 static void
11771 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11772 {
11773 int len = hexnumlen (value);
11774
11775 if (len > *left)
11776 error (_("Packet too long for target."));
11777
11778 hexnumstr (*buffer, value);
11779 *buffer += len;
11780 *left -= len;
11781
11782 /* NUL-terminate the buffer as a convenience, if there is
11783 room. */
11784 if (*left)
11785 **buffer = '\0';
11786 }
11787
11788 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11789 value, *REMOTE_ERRNO to the remote error number or zero if none
11790 was included, and *ATTACHMENT to point to the start of the annex
11791 if any. The length of the packet isn't needed here; there may
11792 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11793
11794 Return 0 if the packet could be parsed, -1 if it could not. If
11795 -1 is returned, the other variables may not be initialized. */
11796
11797 static int
11798 remote_hostio_parse_result (char *buffer, int *retcode,
11799 int *remote_errno, char **attachment)
11800 {
11801 char *p, *p2;
11802
11803 *remote_errno = 0;
11804 *attachment = NULL;
11805
11806 if (buffer[0] != 'F')
11807 return -1;
11808
11809 errno = 0;
11810 *retcode = strtol (&buffer[1], &p, 16);
11811 if (errno != 0 || p == &buffer[1])
11812 return -1;
11813
11814 /* Check for ",errno". */
11815 if (*p == ',')
11816 {
11817 errno = 0;
11818 *remote_errno = strtol (p + 1, &p2, 16);
11819 if (errno != 0 || p + 1 == p2)
11820 return -1;
11821 p = p2;
11822 }
11823
11824 /* Check for ";attachment". If there is no attachment, the
11825 packet should end here. */
11826 if (*p == ';')
11827 {
11828 *attachment = p + 1;
11829 return 0;
11830 }
11831 else if (*p == '\0')
11832 return 0;
11833 else
11834 return -1;
11835 }
11836
11837 /* Send a prepared I/O packet to the target and read its response.
11838 The prepared packet is in the global RS->BUF before this function
11839 is called, and the answer is there when we return.
11840
11841 COMMAND_BYTES is the length of the request to send, which may include
11842 binary data. WHICH_PACKET is the packet configuration to check
11843 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11844 is set to the error number and -1 is returned. Otherwise the value
11845 returned by the function is returned.
11846
11847 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11848 attachment is expected; an error will be reported if there's a
11849 mismatch. If one is found, *ATTACHMENT will be set to point into
11850 the packet buffer and *ATTACHMENT_LEN will be set to the
11851 attachment's length. */
11852
11853 int
11854 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11855 int *remote_errno, char **attachment,
11856 int *attachment_len)
11857 {
11858 struct remote_state *rs = get_remote_state ();
11859 int ret, bytes_read;
11860 char *attachment_tmp;
11861
11862 if (packet_support (which_packet) == PACKET_DISABLE)
11863 {
11864 *remote_errno = FILEIO_ENOSYS;
11865 return -1;
11866 }
11867
11868 putpkt_binary (rs->buf.data (), command_bytes);
11869 bytes_read = getpkt_sane (&rs->buf, 0);
11870
11871 /* If it timed out, something is wrong. Don't try to parse the
11872 buffer. */
11873 if (bytes_read < 0)
11874 {
11875 *remote_errno = FILEIO_EINVAL;
11876 return -1;
11877 }
11878
11879 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11880 {
11881 case PACKET_ERROR:
11882 *remote_errno = FILEIO_EINVAL;
11883 return -1;
11884 case PACKET_UNKNOWN:
11885 *remote_errno = FILEIO_ENOSYS;
11886 return -1;
11887 case PACKET_OK:
11888 break;
11889 }
11890
11891 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11892 &attachment_tmp))
11893 {
11894 *remote_errno = FILEIO_EINVAL;
11895 return -1;
11896 }
11897
11898 /* Make sure we saw an attachment if and only if we expected one. */
11899 if ((attachment_tmp == NULL && attachment != NULL)
11900 || (attachment_tmp != NULL && attachment == NULL))
11901 {
11902 *remote_errno = FILEIO_EINVAL;
11903 return -1;
11904 }
11905
11906 /* If an attachment was found, it must point into the packet buffer;
11907 work out how many bytes there were. */
11908 if (attachment_tmp != NULL)
11909 {
11910 *attachment = attachment_tmp;
11911 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11912 }
11913
11914 return ret;
11915 }
11916
11917 /* See declaration.h. */
11918
11919 void
11920 readahead_cache::invalidate ()
11921 {
11922 this->fd = -1;
11923 }
11924
11925 /* See declaration.h. */
11926
11927 void
11928 readahead_cache::invalidate_fd (int fd)
11929 {
11930 if (this->fd == fd)
11931 this->fd = -1;
11932 }
11933
11934 /* Set the filesystem remote_hostio functions that take FILENAME
11935 arguments will use. Return 0 on success, or -1 if an error
11936 occurs (and set *REMOTE_ERRNO). */
11937
11938 int
11939 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11940 int *remote_errno)
11941 {
11942 struct remote_state *rs = get_remote_state ();
11943 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11944 char *p = rs->buf.data ();
11945 int left = get_remote_packet_size () - 1;
11946 char arg[9];
11947 int ret;
11948
11949 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11950 return 0;
11951
11952 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11953 return 0;
11954
11955 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11956
11957 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11958 remote_buffer_add_string (&p, &left, arg);
11959
11960 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11961 remote_errno, NULL, NULL);
11962
11963 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11964 return 0;
11965
11966 if (ret == 0)
11967 rs->fs_pid = required_pid;
11968
11969 return ret;
11970 }
11971
11972 /* Implementation of to_fileio_open. */
11973
11974 int
11975 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11976 int flags, int mode, int warn_if_slow,
11977 int *remote_errno)
11978 {
11979 struct remote_state *rs = get_remote_state ();
11980 char *p = rs->buf.data ();
11981 int left = get_remote_packet_size () - 1;
11982
11983 if (warn_if_slow)
11984 {
11985 static int warning_issued = 0;
11986
11987 printf_unfiltered (_("Reading %s from remote target...\n"),
11988 filename);
11989
11990 if (!warning_issued)
11991 {
11992 warning (_("File transfers from remote targets can be slow."
11993 " Use \"set sysroot\" to access files locally"
11994 " instead."));
11995 warning_issued = 1;
11996 }
11997 }
11998
11999 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12000 return -1;
12001
12002 remote_buffer_add_string (&p, &left, "vFile:open:");
12003
12004 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12005 strlen (filename));
12006 remote_buffer_add_string (&p, &left, ",");
12007
12008 remote_buffer_add_int (&p, &left, flags);
12009 remote_buffer_add_string (&p, &left, ",");
12010
12011 remote_buffer_add_int (&p, &left, mode);
12012
12013 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12014 remote_errno, NULL, NULL);
12015 }
12016
12017 int
12018 remote_target::fileio_open (struct inferior *inf, const char *filename,
12019 int flags, int mode, int warn_if_slow,
12020 int *remote_errno)
12021 {
12022 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12023 remote_errno);
12024 }
12025
12026 /* Implementation of to_fileio_pwrite. */
12027
12028 int
12029 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12030 ULONGEST offset, int *remote_errno)
12031 {
12032 struct remote_state *rs = get_remote_state ();
12033 char *p = rs->buf.data ();
12034 int left = get_remote_packet_size ();
12035 int out_len;
12036
12037 rs->readahead_cache.invalidate_fd (fd);
12038
12039 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12040
12041 remote_buffer_add_int (&p, &left, fd);
12042 remote_buffer_add_string (&p, &left, ",");
12043
12044 remote_buffer_add_int (&p, &left, offset);
12045 remote_buffer_add_string (&p, &left, ",");
12046
12047 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12048 (get_remote_packet_size ()
12049 - (p - rs->buf.data ())));
12050
12051 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12052 remote_errno, NULL, NULL);
12053 }
12054
12055 int
12056 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12057 ULONGEST offset, int *remote_errno)
12058 {
12059 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12060 }
12061
12062 /* Helper for the implementation of to_fileio_pread. Read the file
12063 from the remote side with vFile:pread. */
12064
12065 int
12066 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12067 ULONGEST offset, int *remote_errno)
12068 {
12069 struct remote_state *rs = get_remote_state ();
12070 char *p = rs->buf.data ();
12071 char *attachment;
12072 int left = get_remote_packet_size ();
12073 int ret, attachment_len;
12074 int read_len;
12075
12076 remote_buffer_add_string (&p, &left, "vFile:pread:");
12077
12078 remote_buffer_add_int (&p, &left, fd);
12079 remote_buffer_add_string (&p, &left, ",");
12080
12081 remote_buffer_add_int (&p, &left, len);
12082 remote_buffer_add_string (&p, &left, ",");
12083
12084 remote_buffer_add_int (&p, &left, offset);
12085
12086 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12087 remote_errno, &attachment,
12088 &attachment_len);
12089
12090 if (ret < 0)
12091 return ret;
12092
12093 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12094 read_buf, len);
12095 if (read_len != ret)
12096 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12097
12098 return ret;
12099 }
12100
12101 /* See declaration.h. */
12102
12103 int
12104 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12105 ULONGEST offset)
12106 {
12107 if (this->fd == fd
12108 && this->offset <= offset
12109 && offset < this->offset + this->bufsize)
12110 {
12111 ULONGEST max = this->offset + this->bufsize;
12112
12113 if (offset + len > max)
12114 len = max - offset;
12115
12116 memcpy (read_buf, this->buf + offset - this->offset, len);
12117 return len;
12118 }
12119
12120 return 0;
12121 }
12122
12123 /* Implementation of to_fileio_pread. */
12124
12125 int
12126 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12127 ULONGEST offset, int *remote_errno)
12128 {
12129 int ret;
12130 struct remote_state *rs = get_remote_state ();
12131 readahead_cache *cache = &rs->readahead_cache;
12132
12133 ret = cache->pread (fd, read_buf, len, offset);
12134 if (ret > 0)
12135 {
12136 cache->hit_count++;
12137
12138 if (remote_debug)
12139 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12140 pulongest (cache->hit_count));
12141 return ret;
12142 }
12143
12144 cache->miss_count++;
12145 if (remote_debug)
12146 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12147 pulongest (cache->miss_count));
12148
12149 cache->fd = fd;
12150 cache->offset = offset;
12151 cache->bufsize = get_remote_packet_size ();
12152 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12153
12154 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12155 cache->offset, remote_errno);
12156 if (ret <= 0)
12157 {
12158 cache->invalidate_fd (fd);
12159 return ret;
12160 }
12161
12162 cache->bufsize = ret;
12163 return cache->pread (fd, read_buf, len, offset);
12164 }
12165
12166 int
12167 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12168 ULONGEST offset, int *remote_errno)
12169 {
12170 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12171 }
12172
12173 /* Implementation of to_fileio_close. */
12174
12175 int
12176 remote_target::remote_hostio_close (int fd, int *remote_errno)
12177 {
12178 struct remote_state *rs = get_remote_state ();
12179 char *p = rs->buf.data ();
12180 int left = get_remote_packet_size () - 1;
12181
12182 rs->readahead_cache.invalidate_fd (fd);
12183
12184 remote_buffer_add_string (&p, &left, "vFile:close:");
12185
12186 remote_buffer_add_int (&p, &left, fd);
12187
12188 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12189 remote_errno, NULL, NULL);
12190 }
12191
12192 int
12193 remote_target::fileio_close (int fd, int *remote_errno)
12194 {
12195 return remote_hostio_close (fd, remote_errno);
12196 }
12197
12198 /* Implementation of to_fileio_unlink. */
12199
12200 int
12201 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12202 int *remote_errno)
12203 {
12204 struct remote_state *rs = get_remote_state ();
12205 char *p = rs->buf.data ();
12206 int left = get_remote_packet_size () - 1;
12207
12208 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12209 return -1;
12210
12211 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12212
12213 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12214 strlen (filename));
12215
12216 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12217 remote_errno, NULL, NULL);
12218 }
12219
12220 int
12221 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12222 int *remote_errno)
12223 {
12224 return remote_hostio_unlink (inf, filename, remote_errno);
12225 }
12226
12227 /* Implementation of to_fileio_readlink. */
12228
12229 gdb::optional<std::string>
12230 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12231 int *remote_errno)
12232 {
12233 struct remote_state *rs = get_remote_state ();
12234 char *p = rs->buf.data ();
12235 char *attachment;
12236 int left = get_remote_packet_size ();
12237 int len, attachment_len;
12238 int read_len;
12239
12240 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12241 return {};
12242
12243 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12244
12245 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12246 strlen (filename));
12247
12248 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12249 remote_errno, &attachment,
12250 &attachment_len);
12251
12252 if (len < 0)
12253 return {};
12254
12255 std::string ret (len, '\0');
12256
12257 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12258 (gdb_byte *) &ret[0], len);
12259 if (read_len != len)
12260 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12261
12262 return ret;
12263 }
12264
12265 /* Implementation of to_fileio_fstat. */
12266
12267 int
12268 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12269 {
12270 struct remote_state *rs = get_remote_state ();
12271 char *p = rs->buf.data ();
12272 int left = get_remote_packet_size ();
12273 int attachment_len, ret;
12274 char *attachment;
12275 struct fio_stat fst;
12276 int read_len;
12277
12278 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12279
12280 remote_buffer_add_int (&p, &left, fd);
12281
12282 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12283 remote_errno, &attachment,
12284 &attachment_len);
12285 if (ret < 0)
12286 {
12287 if (*remote_errno != FILEIO_ENOSYS)
12288 return ret;
12289
12290 /* Strictly we should return -1, ENOSYS here, but when
12291 "set sysroot remote:" was implemented in August 2008
12292 BFD's need for a stat function was sidestepped with
12293 this hack. This was not remedied until March 2015
12294 so we retain the previous behavior to avoid breaking
12295 compatibility.
12296
12297 Note that the memset is a March 2015 addition; older
12298 GDBs set st_size *and nothing else* so the structure
12299 would have garbage in all other fields. This might
12300 break something but retaining the previous behavior
12301 here would be just too wrong. */
12302
12303 memset (st, 0, sizeof (struct stat));
12304 st->st_size = INT_MAX;
12305 return 0;
12306 }
12307
12308 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12309 (gdb_byte *) &fst, sizeof (fst));
12310
12311 if (read_len != ret)
12312 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12313
12314 if (read_len != sizeof (fst))
12315 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12316 read_len, (int) sizeof (fst));
12317
12318 remote_fileio_to_host_stat (&fst, st);
12319
12320 return 0;
12321 }
12322
12323 /* Implementation of to_filesystem_is_local. */
12324
12325 bool
12326 remote_target::filesystem_is_local ()
12327 {
12328 /* Valgrind GDB presents itself as a remote target but works
12329 on the local filesystem: it does not implement remote get
12330 and users are not expected to set a sysroot. To handle
12331 this case we treat the remote filesystem as local if the
12332 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12333 does not support vFile:open. */
12334 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12335 {
12336 enum packet_support ps = packet_support (PACKET_vFile_open);
12337
12338 if (ps == PACKET_SUPPORT_UNKNOWN)
12339 {
12340 int fd, remote_errno;
12341
12342 /* Try opening a file to probe support. The supplied
12343 filename is irrelevant, we only care about whether
12344 the stub recognizes the packet or not. */
12345 fd = remote_hostio_open (NULL, "just probing",
12346 FILEIO_O_RDONLY, 0700, 0,
12347 &remote_errno);
12348
12349 if (fd >= 0)
12350 remote_hostio_close (fd, &remote_errno);
12351
12352 ps = packet_support (PACKET_vFile_open);
12353 }
12354
12355 if (ps == PACKET_DISABLE)
12356 {
12357 static int warning_issued = 0;
12358
12359 if (!warning_issued)
12360 {
12361 warning (_("remote target does not support file"
12362 " transfer, attempting to access files"
12363 " from local filesystem."));
12364 warning_issued = 1;
12365 }
12366
12367 return true;
12368 }
12369 }
12370
12371 return false;
12372 }
12373
12374 static int
12375 remote_fileio_errno_to_host (int errnum)
12376 {
12377 switch (errnum)
12378 {
12379 case FILEIO_EPERM:
12380 return EPERM;
12381 case FILEIO_ENOENT:
12382 return ENOENT;
12383 case FILEIO_EINTR:
12384 return EINTR;
12385 case FILEIO_EIO:
12386 return EIO;
12387 case FILEIO_EBADF:
12388 return EBADF;
12389 case FILEIO_EACCES:
12390 return EACCES;
12391 case FILEIO_EFAULT:
12392 return EFAULT;
12393 case FILEIO_EBUSY:
12394 return EBUSY;
12395 case FILEIO_EEXIST:
12396 return EEXIST;
12397 case FILEIO_ENODEV:
12398 return ENODEV;
12399 case FILEIO_ENOTDIR:
12400 return ENOTDIR;
12401 case FILEIO_EISDIR:
12402 return EISDIR;
12403 case FILEIO_EINVAL:
12404 return EINVAL;
12405 case FILEIO_ENFILE:
12406 return ENFILE;
12407 case FILEIO_EMFILE:
12408 return EMFILE;
12409 case FILEIO_EFBIG:
12410 return EFBIG;
12411 case FILEIO_ENOSPC:
12412 return ENOSPC;
12413 case FILEIO_ESPIPE:
12414 return ESPIPE;
12415 case FILEIO_EROFS:
12416 return EROFS;
12417 case FILEIO_ENOSYS:
12418 return ENOSYS;
12419 case FILEIO_ENAMETOOLONG:
12420 return ENAMETOOLONG;
12421 }
12422 return -1;
12423 }
12424
12425 static char *
12426 remote_hostio_error (int errnum)
12427 {
12428 int host_error = remote_fileio_errno_to_host (errnum);
12429
12430 if (host_error == -1)
12431 error (_("Unknown remote I/O error %d"), errnum);
12432 else
12433 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12434 }
12435
12436 /* A RAII wrapper around a remote file descriptor. */
12437
12438 class scoped_remote_fd
12439 {
12440 public:
12441 scoped_remote_fd (remote_target *remote, int fd)
12442 : m_remote (remote), m_fd (fd)
12443 {
12444 }
12445
12446 ~scoped_remote_fd ()
12447 {
12448 if (m_fd != -1)
12449 {
12450 try
12451 {
12452 int remote_errno;
12453 m_remote->remote_hostio_close (m_fd, &remote_errno);
12454 }
12455 catch (...)
12456 {
12457 /* Swallow exception before it escapes the dtor. If
12458 something goes wrong, likely the connection is gone,
12459 and there's nothing else that can be done. */
12460 }
12461 }
12462 }
12463
12464 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12465
12466 /* Release ownership of the file descriptor, and return it. */
12467 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12468 {
12469 int fd = m_fd;
12470 m_fd = -1;
12471 return fd;
12472 }
12473
12474 /* Return the owned file descriptor. */
12475 int get () const noexcept
12476 {
12477 return m_fd;
12478 }
12479
12480 private:
12481 /* The remote target. */
12482 remote_target *m_remote;
12483
12484 /* The owned remote I/O file descriptor. */
12485 int m_fd;
12486 };
12487
12488 void
12489 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12490 {
12491 remote_target *remote = get_current_remote_target ();
12492
12493 if (remote == nullptr)
12494 error (_("command can only be used with remote target"));
12495
12496 remote->remote_file_put (local_file, remote_file, from_tty);
12497 }
12498
12499 void
12500 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12501 int from_tty)
12502 {
12503 int retcode, remote_errno, bytes, io_size;
12504 int bytes_in_buffer;
12505 int saw_eof;
12506 ULONGEST offset;
12507
12508 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12509 if (file == NULL)
12510 perror_with_name (local_file);
12511
12512 scoped_remote_fd fd
12513 (this, remote_hostio_open (NULL,
12514 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12515 | FILEIO_O_TRUNC),
12516 0700, 0, &remote_errno));
12517 if (fd.get () == -1)
12518 remote_hostio_error (remote_errno);
12519
12520 /* Send up to this many bytes at once. They won't all fit in the
12521 remote packet limit, so we'll transfer slightly fewer. */
12522 io_size = get_remote_packet_size ();
12523 gdb::byte_vector buffer (io_size);
12524
12525 bytes_in_buffer = 0;
12526 saw_eof = 0;
12527 offset = 0;
12528 while (bytes_in_buffer || !saw_eof)
12529 {
12530 if (!saw_eof)
12531 {
12532 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12533 io_size - bytes_in_buffer,
12534 file.get ());
12535 if (bytes == 0)
12536 {
12537 if (ferror (file.get ()))
12538 error (_("Error reading %s."), local_file);
12539 else
12540 {
12541 /* EOF. Unless there is something still in the
12542 buffer from the last iteration, we are done. */
12543 saw_eof = 1;
12544 if (bytes_in_buffer == 0)
12545 break;
12546 }
12547 }
12548 }
12549 else
12550 bytes = 0;
12551
12552 bytes += bytes_in_buffer;
12553 bytes_in_buffer = 0;
12554
12555 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12556 offset, &remote_errno);
12557
12558 if (retcode < 0)
12559 remote_hostio_error (remote_errno);
12560 else if (retcode == 0)
12561 error (_("Remote write of %d bytes returned 0!"), bytes);
12562 else if (retcode < bytes)
12563 {
12564 /* Short write. Save the rest of the read data for the next
12565 write. */
12566 bytes_in_buffer = bytes - retcode;
12567 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12568 }
12569
12570 offset += retcode;
12571 }
12572
12573 if (remote_hostio_close (fd.release (), &remote_errno))
12574 remote_hostio_error (remote_errno);
12575
12576 if (from_tty)
12577 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12578 }
12579
12580 void
12581 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12582 {
12583 remote_target *remote = get_current_remote_target ();
12584
12585 if (remote == nullptr)
12586 error (_("command can only be used with remote target"));
12587
12588 remote->remote_file_get (remote_file, local_file, from_tty);
12589 }
12590
12591 void
12592 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12593 int from_tty)
12594 {
12595 int remote_errno, bytes, io_size;
12596 ULONGEST offset;
12597
12598 scoped_remote_fd fd
12599 (this, remote_hostio_open (NULL,
12600 remote_file, FILEIO_O_RDONLY, 0, 0,
12601 &remote_errno));
12602 if (fd.get () == -1)
12603 remote_hostio_error (remote_errno);
12604
12605 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12606 if (file == NULL)
12607 perror_with_name (local_file);
12608
12609 /* Send up to this many bytes at once. They won't all fit in the
12610 remote packet limit, so we'll transfer slightly fewer. */
12611 io_size = get_remote_packet_size ();
12612 gdb::byte_vector buffer (io_size);
12613
12614 offset = 0;
12615 while (1)
12616 {
12617 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12618 &remote_errno);
12619 if (bytes == 0)
12620 /* Success, but no bytes, means end-of-file. */
12621 break;
12622 if (bytes == -1)
12623 remote_hostio_error (remote_errno);
12624
12625 offset += bytes;
12626
12627 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12628 if (bytes == 0)
12629 perror_with_name (local_file);
12630 }
12631
12632 if (remote_hostio_close (fd.release (), &remote_errno))
12633 remote_hostio_error (remote_errno);
12634
12635 if (from_tty)
12636 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12637 }
12638
12639 void
12640 remote_file_delete (const char *remote_file, int from_tty)
12641 {
12642 remote_target *remote = get_current_remote_target ();
12643
12644 if (remote == nullptr)
12645 error (_("command can only be used with remote target"));
12646
12647 remote->remote_file_delete (remote_file, from_tty);
12648 }
12649
12650 void
12651 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12652 {
12653 int retcode, remote_errno;
12654
12655 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12656 if (retcode == -1)
12657 remote_hostio_error (remote_errno);
12658
12659 if (from_tty)
12660 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12661 }
12662
12663 static void
12664 remote_put_command (const char *args, int from_tty)
12665 {
12666 if (args == NULL)
12667 error_no_arg (_("file to put"));
12668
12669 gdb_argv argv (args);
12670 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12671 error (_("Invalid parameters to remote put"));
12672
12673 remote_file_put (argv[0], argv[1], from_tty);
12674 }
12675
12676 static void
12677 remote_get_command (const char *args, int from_tty)
12678 {
12679 if (args == NULL)
12680 error_no_arg (_("file to get"));
12681
12682 gdb_argv argv (args);
12683 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12684 error (_("Invalid parameters to remote get"));
12685
12686 remote_file_get (argv[0], argv[1], from_tty);
12687 }
12688
12689 static void
12690 remote_delete_command (const char *args, int from_tty)
12691 {
12692 if (args == NULL)
12693 error_no_arg (_("file to delete"));
12694
12695 gdb_argv argv (args);
12696 if (argv[0] == NULL || argv[1] != NULL)
12697 error (_("Invalid parameters to remote delete"));
12698
12699 remote_file_delete (argv[0], from_tty);
12700 }
12701
12702 static void
12703 remote_command (const char *args, int from_tty)
12704 {
12705 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12706 }
12707
12708 bool
12709 remote_target::can_execute_reverse ()
12710 {
12711 if (packet_support (PACKET_bs) == PACKET_ENABLE
12712 || packet_support (PACKET_bc) == PACKET_ENABLE)
12713 return true;
12714 else
12715 return false;
12716 }
12717
12718 bool
12719 remote_target::supports_non_stop ()
12720 {
12721 return true;
12722 }
12723
12724 bool
12725 remote_target::supports_disable_randomization ()
12726 {
12727 /* Only supported in extended mode. */
12728 return false;
12729 }
12730
12731 bool
12732 remote_target::supports_multi_process ()
12733 {
12734 struct remote_state *rs = get_remote_state ();
12735
12736 return remote_multi_process_p (rs);
12737 }
12738
12739 static int
12740 remote_supports_cond_tracepoints ()
12741 {
12742 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12743 }
12744
12745 bool
12746 remote_target::supports_evaluation_of_breakpoint_conditions ()
12747 {
12748 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12749 }
12750
12751 static int
12752 remote_supports_fast_tracepoints ()
12753 {
12754 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12755 }
12756
12757 static int
12758 remote_supports_static_tracepoints ()
12759 {
12760 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12761 }
12762
12763 static int
12764 remote_supports_install_in_trace ()
12765 {
12766 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12767 }
12768
12769 bool
12770 remote_target::supports_enable_disable_tracepoint ()
12771 {
12772 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12773 == PACKET_ENABLE);
12774 }
12775
12776 bool
12777 remote_target::supports_string_tracing ()
12778 {
12779 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12780 }
12781
12782 bool
12783 remote_target::can_run_breakpoint_commands ()
12784 {
12785 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12786 }
12787
12788 void
12789 remote_target::trace_init ()
12790 {
12791 struct remote_state *rs = get_remote_state ();
12792
12793 putpkt ("QTinit");
12794 remote_get_noisy_reply ();
12795 if (strcmp (rs->buf.data (), "OK") != 0)
12796 error (_("Target does not support this command."));
12797 }
12798
12799 /* Recursive routine to walk through command list including loops, and
12800 download packets for each command. */
12801
12802 void
12803 remote_target::remote_download_command_source (int num, ULONGEST addr,
12804 struct command_line *cmds)
12805 {
12806 struct remote_state *rs = get_remote_state ();
12807 struct command_line *cmd;
12808
12809 for (cmd = cmds; cmd; cmd = cmd->next)
12810 {
12811 QUIT; /* Allow user to bail out with ^C. */
12812 strcpy (rs->buf.data (), "QTDPsrc:");
12813 encode_source_string (num, addr, "cmd", cmd->line,
12814 rs->buf.data () + strlen (rs->buf.data ()),
12815 rs->buf.size () - strlen (rs->buf.data ()));
12816 putpkt (rs->buf);
12817 remote_get_noisy_reply ();
12818 if (strcmp (rs->buf.data (), "OK"))
12819 warning (_("Target does not support source download."));
12820
12821 if (cmd->control_type == while_control
12822 || cmd->control_type == while_stepping_control)
12823 {
12824 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12825
12826 QUIT; /* Allow user to bail out with ^C. */
12827 strcpy (rs->buf.data (), "QTDPsrc:");
12828 encode_source_string (num, addr, "cmd", "end",
12829 rs->buf.data () + strlen (rs->buf.data ()),
12830 rs->buf.size () - strlen (rs->buf.data ()));
12831 putpkt (rs->buf);
12832 remote_get_noisy_reply ();
12833 if (strcmp (rs->buf.data (), "OK"))
12834 warning (_("Target does not support source download."));
12835 }
12836 }
12837 }
12838
12839 void
12840 remote_target::download_tracepoint (struct bp_location *loc)
12841 {
12842 CORE_ADDR tpaddr;
12843 char addrbuf[40];
12844 std::vector<std::string> tdp_actions;
12845 std::vector<std::string> stepping_actions;
12846 char *pkt;
12847 struct breakpoint *b = loc->owner;
12848 struct tracepoint *t = (struct tracepoint *) b;
12849 struct remote_state *rs = get_remote_state ();
12850 int ret;
12851 const char *err_msg = _("Tracepoint packet too large for target.");
12852 size_t size_left;
12853
12854 /* We use a buffer other than rs->buf because we'll build strings
12855 across multiple statements, and other statements in between could
12856 modify rs->buf. */
12857 gdb::char_vector buf (get_remote_packet_size ());
12858
12859 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12860
12861 tpaddr = loc->address;
12862 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12863 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12864 b->number, addrbuf, /* address */
12865 (b->enable_state == bp_enabled ? 'E' : 'D'),
12866 t->step_count, t->pass_count);
12867
12868 if (ret < 0 || ret >= buf.size ())
12869 error ("%s", err_msg);
12870
12871 /* Fast tracepoints are mostly handled by the target, but we can
12872 tell the target how big of an instruction block should be moved
12873 around. */
12874 if (b->type == bp_fast_tracepoint)
12875 {
12876 /* Only test for support at download time; we may not know
12877 target capabilities at definition time. */
12878 if (remote_supports_fast_tracepoints ())
12879 {
12880 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12881 NULL))
12882 {
12883 size_left = buf.size () - strlen (buf.data ());
12884 ret = snprintf (buf.data () + strlen (buf.data ()),
12885 size_left, ":F%x",
12886 gdb_insn_length (loc->gdbarch, tpaddr));
12887
12888 if (ret < 0 || ret >= size_left)
12889 error ("%s", err_msg);
12890 }
12891 else
12892 /* If it passed validation at definition but fails now,
12893 something is very wrong. */
12894 internal_error (__FILE__, __LINE__,
12895 _("Fast tracepoint not "
12896 "valid during download"));
12897 }
12898 else
12899 /* Fast tracepoints are functionally identical to regular
12900 tracepoints, so don't take lack of support as a reason to
12901 give up on the trace run. */
12902 warning (_("Target does not support fast tracepoints, "
12903 "downloading %d as regular tracepoint"), b->number);
12904 }
12905 else if (b->type == bp_static_tracepoint)
12906 {
12907 /* Only test for support at download time; we may not know
12908 target capabilities at definition time. */
12909 if (remote_supports_static_tracepoints ())
12910 {
12911 struct static_tracepoint_marker marker;
12912
12913 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12914 {
12915 size_left = buf.size () - strlen (buf.data ());
12916 ret = snprintf (buf.data () + strlen (buf.data ()),
12917 size_left, ":S");
12918
12919 if (ret < 0 || ret >= size_left)
12920 error ("%s", err_msg);
12921 }
12922 else
12923 error (_("Static tracepoint not valid during download"));
12924 }
12925 else
12926 /* Fast tracepoints are functionally identical to regular
12927 tracepoints, so don't take lack of support as a reason
12928 to give up on the trace run. */
12929 error (_("Target does not support static tracepoints"));
12930 }
12931 /* If the tracepoint has a conditional, make it into an agent
12932 expression and append to the definition. */
12933 if (loc->cond)
12934 {
12935 /* Only test support at download time, we may not know target
12936 capabilities at definition time. */
12937 if (remote_supports_cond_tracepoints ())
12938 {
12939 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12940 loc->cond.get ());
12941
12942 size_left = buf.size () - strlen (buf.data ());
12943
12944 ret = snprintf (buf.data () + strlen (buf.data ()),
12945 size_left, ":X%x,", aexpr->len);
12946
12947 if (ret < 0 || ret >= size_left)
12948 error ("%s", err_msg);
12949
12950 size_left = buf.size () - strlen (buf.data ());
12951
12952 /* Two bytes to encode each aexpr byte, plus the terminating
12953 null byte. */
12954 if (aexpr->len * 2 + 1 > size_left)
12955 error ("%s", err_msg);
12956
12957 pkt = buf.data () + strlen (buf.data ());
12958
12959 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12960 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12961 *pkt = '\0';
12962 }
12963 else
12964 warning (_("Target does not support conditional tracepoints, "
12965 "ignoring tp %d cond"), b->number);
12966 }
12967
12968 if (b->commands || *default_collect)
12969 {
12970 size_left = buf.size () - strlen (buf.data ());
12971
12972 ret = snprintf (buf.data () + strlen (buf.data ()),
12973 size_left, "-");
12974
12975 if (ret < 0 || ret >= size_left)
12976 error ("%s", err_msg);
12977 }
12978
12979 putpkt (buf.data ());
12980 remote_get_noisy_reply ();
12981 if (strcmp (rs->buf.data (), "OK"))
12982 error (_("Target does not support tracepoints."));
12983
12984 /* do_single_steps (t); */
12985 for (auto action_it = tdp_actions.begin ();
12986 action_it != tdp_actions.end (); action_it++)
12987 {
12988 QUIT; /* Allow user to bail out with ^C. */
12989
12990 bool has_more = ((action_it + 1) != tdp_actions.end ()
12991 || !stepping_actions.empty ());
12992
12993 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12994 b->number, addrbuf, /* address */
12995 action_it->c_str (),
12996 has_more ? '-' : 0);
12997
12998 if (ret < 0 || ret >= buf.size ())
12999 error ("%s", err_msg);
13000
13001 putpkt (buf.data ());
13002 remote_get_noisy_reply ();
13003 if (strcmp (rs->buf.data (), "OK"))
13004 error (_("Error on target while setting tracepoints."));
13005 }
13006
13007 for (auto action_it = stepping_actions.begin ();
13008 action_it != stepping_actions.end (); action_it++)
13009 {
13010 QUIT; /* Allow user to bail out with ^C. */
13011
13012 bool is_first = action_it == stepping_actions.begin ();
13013 bool has_more = (action_it + 1) != stepping_actions.end ();
13014
13015 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13016 b->number, addrbuf, /* address */
13017 is_first ? "S" : "",
13018 action_it->c_str (),
13019 has_more ? "-" : "");
13020
13021 if (ret < 0 || ret >= buf.size ())
13022 error ("%s", err_msg);
13023
13024 putpkt (buf.data ());
13025 remote_get_noisy_reply ();
13026 if (strcmp (rs->buf.data (), "OK"))
13027 error (_("Error on target while setting tracepoints."));
13028 }
13029
13030 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13031 {
13032 if (b->location != NULL)
13033 {
13034 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13035
13036 if (ret < 0 || ret >= buf.size ())
13037 error ("%s", err_msg);
13038
13039 encode_source_string (b->number, loc->address, "at",
13040 event_location_to_string (b->location.get ()),
13041 buf.data () + strlen (buf.data ()),
13042 buf.size () - strlen (buf.data ()));
13043 putpkt (buf.data ());
13044 remote_get_noisy_reply ();
13045 if (strcmp (rs->buf.data (), "OK"))
13046 warning (_("Target does not support source download."));
13047 }
13048 if (b->cond_string)
13049 {
13050 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13051
13052 if (ret < 0 || ret >= buf.size ())
13053 error ("%s", err_msg);
13054
13055 encode_source_string (b->number, loc->address,
13056 "cond", b->cond_string,
13057 buf.data () + strlen (buf.data ()),
13058 buf.size () - strlen (buf.data ()));
13059 putpkt (buf.data ());
13060 remote_get_noisy_reply ();
13061 if (strcmp (rs->buf.data (), "OK"))
13062 warning (_("Target does not support source download."));
13063 }
13064 remote_download_command_source (b->number, loc->address,
13065 breakpoint_commands (b));
13066 }
13067 }
13068
13069 bool
13070 remote_target::can_download_tracepoint ()
13071 {
13072 struct remote_state *rs = get_remote_state ();
13073 struct trace_status *ts;
13074 int status;
13075
13076 /* Don't try to install tracepoints until we've relocated our
13077 symbols, and fetched and merged the target's tracepoint list with
13078 ours. */
13079 if (rs->starting_up)
13080 return false;
13081
13082 ts = current_trace_status ();
13083 status = get_trace_status (ts);
13084
13085 if (status == -1 || !ts->running_known || !ts->running)
13086 return false;
13087
13088 /* If we are in a tracing experiment, but remote stub doesn't support
13089 installing tracepoint in trace, we have to return. */
13090 if (!remote_supports_install_in_trace ())
13091 return false;
13092
13093 return true;
13094 }
13095
13096
13097 void
13098 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13099 {
13100 struct remote_state *rs = get_remote_state ();
13101 char *p;
13102
13103 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13104 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13105 tsv.builtin);
13106 p = rs->buf.data () + strlen (rs->buf.data ());
13107 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13108 >= get_remote_packet_size ())
13109 error (_("Trace state variable name too long for tsv definition packet"));
13110 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13111 *p++ = '\0';
13112 putpkt (rs->buf);
13113 remote_get_noisy_reply ();
13114 if (rs->buf[0] == '\0')
13115 error (_("Target does not support this command."));
13116 if (strcmp (rs->buf.data (), "OK") != 0)
13117 error (_("Error on target while downloading trace state variable."));
13118 }
13119
13120 void
13121 remote_target::enable_tracepoint (struct bp_location *location)
13122 {
13123 struct remote_state *rs = get_remote_state ();
13124
13125 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13126 location->owner->number,
13127 phex (location->address, sizeof (CORE_ADDR)));
13128 putpkt (rs->buf);
13129 remote_get_noisy_reply ();
13130 if (rs->buf[0] == '\0')
13131 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13132 if (strcmp (rs->buf.data (), "OK") != 0)
13133 error (_("Error on target while enabling tracepoint."));
13134 }
13135
13136 void
13137 remote_target::disable_tracepoint (struct bp_location *location)
13138 {
13139 struct remote_state *rs = get_remote_state ();
13140
13141 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13142 location->owner->number,
13143 phex (location->address, sizeof (CORE_ADDR)));
13144 putpkt (rs->buf);
13145 remote_get_noisy_reply ();
13146 if (rs->buf[0] == '\0')
13147 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13148 if (strcmp (rs->buf.data (), "OK") != 0)
13149 error (_("Error on target while disabling tracepoint."));
13150 }
13151
13152 void
13153 remote_target::trace_set_readonly_regions ()
13154 {
13155 asection *s;
13156 bfd_size_type size;
13157 bfd_vma vma;
13158 int anysecs = 0;
13159 int offset = 0;
13160
13161 if (!exec_bfd)
13162 return; /* No information to give. */
13163
13164 struct remote_state *rs = get_remote_state ();
13165
13166 strcpy (rs->buf.data (), "QTro");
13167 offset = strlen (rs->buf.data ());
13168 for (s = exec_bfd->sections; s; s = s->next)
13169 {
13170 char tmp1[40], tmp2[40];
13171 int sec_length;
13172
13173 if ((s->flags & SEC_LOAD) == 0 ||
13174 /* (s->flags & SEC_CODE) == 0 || */
13175 (s->flags & SEC_READONLY) == 0)
13176 continue;
13177
13178 anysecs = 1;
13179 vma = bfd_section_vma (s);
13180 size = bfd_section_size (s);
13181 sprintf_vma (tmp1, vma);
13182 sprintf_vma (tmp2, vma + size);
13183 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13184 if (offset + sec_length + 1 > rs->buf.size ())
13185 {
13186 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13187 warning (_("\
13188 Too many sections for read-only sections definition packet."));
13189 break;
13190 }
13191 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13192 tmp1, tmp2);
13193 offset += sec_length;
13194 }
13195 if (anysecs)
13196 {
13197 putpkt (rs->buf);
13198 getpkt (&rs->buf, 0);
13199 }
13200 }
13201
13202 void
13203 remote_target::trace_start ()
13204 {
13205 struct remote_state *rs = get_remote_state ();
13206
13207 putpkt ("QTStart");
13208 remote_get_noisy_reply ();
13209 if (rs->buf[0] == '\0')
13210 error (_("Target does not support this command."));
13211 if (strcmp (rs->buf.data (), "OK") != 0)
13212 error (_("Bogus reply from target: %s"), rs->buf.data ());
13213 }
13214
13215 int
13216 remote_target::get_trace_status (struct trace_status *ts)
13217 {
13218 /* Initialize it just to avoid a GCC false warning. */
13219 char *p = NULL;
13220 enum packet_result result;
13221 struct remote_state *rs = get_remote_state ();
13222
13223 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13224 return -1;
13225
13226 /* FIXME we need to get register block size some other way. */
13227 trace_regblock_size
13228 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13229
13230 putpkt ("qTStatus");
13231
13232 try
13233 {
13234 p = remote_get_noisy_reply ();
13235 }
13236 catch (const gdb_exception_error &ex)
13237 {
13238 if (ex.error != TARGET_CLOSE_ERROR)
13239 {
13240 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13241 return -1;
13242 }
13243 throw;
13244 }
13245
13246 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13247
13248 /* If the remote target doesn't do tracing, flag it. */
13249 if (result == PACKET_UNKNOWN)
13250 return -1;
13251
13252 /* We're working with a live target. */
13253 ts->filename = NULL;
13254
13255 if (*p++ != 'T')
13256 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13257
13258 /* Function 'parse_trace_status' sets default value of each field of
13259 'ts' at first, so we don't have to do it here. */
13260 parse_trace_status (p, ts);
13261
13262 return ts->running;
13263 }
13264
13265 void
13266 remote_target::get_tracepoint_status (struct breakpoint *bp,
13267 struct uploaded_tp *utp)
13268 {
13269 struct remote_state *rs = get_remote_state ();
13270 char *reply;
13271 struct bp_location *loc;
13272 struct tracepoint *tp = (struct tracepoint *) bp;
13273 size_t size = get_remote_packet_size ();
13274
13275 if (tp)
13276 {
13277 tp->hit_count = 0;
13278 tp->traceframe_usage = 0;
13279 for (loc = tp->loc; loc; loc = loc->next)
13280 {
13281 /* If the tracepoint was never downloaded, don't go asking for
13282 any status. */
13283 if (tp->number_on_target == 0)
13284 continue;
13285 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13286 phex_nz (loc->address, 0));
13287 putpkt (rs->buf);
13288 reply = remote_get_noisy_reply ();
13289 if (reply && *reply)
13290 {
13291 if (*reply == 'V')
13292 parse_tracepoint_status (reply + 1, bp, utp);
13293 }
13294 }
13295 }
13296 else if (utp)
13297 {
13298 utp->hit_count = 0;
13299 utp->traceframe_usage = 0;
13300 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13301 phex_nz (utp->addr, 0));
13302 putpkt (rs->buf);
13303 reply = remote_get_noisy_reply ();
13304 if (reply && *reply)
13305 {
13306 if (*reply == 'V')
13307 parse_tracepoint_status (reply + 1, bp, utp);
13308 }
13309 }
13310 }
13311
13312 void
13313 remote_target::trace_stop ()
13314 {
13315 struct remote_state *rs = get_remote_state ();
13316
13317 putpkt ("QTStop");
13318 remote_get_noisy_reply ();
13319 if (rs->buf[0] == '\0')
13320 error (_("Target does not support this command."));
13321 if (strcmp (rs->buf.data (), "OK") != 0)
13322 error (_("Bogus reply from target: %s"), rs->buf.data ());
13323 }
13324
13325 int
13326 remote_target::trace_find (enum trace_find_type type, int num,
13327 CORE_ADDR addr1, CORE_ADDR addr2,
13328 int *tpp)
13329 {
13330 struct remote_state *rs = get_remote_state ();
13331 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13332 char *p, *reply;
13333 int target_frameno = -1, target_tracept = -1;
13334
13335 /* Lookups other than by absolute frame number depend on the current
13336 trace selected, so make sure it is correct on the remote end
13337 first. */
13338 if (type != tfind_number)
13339 set_remote_traceframe ();
13340
13341 p = rs->buf.data ();
13342 strcpy (p, "QTFrame:");
13343 p = strchr (p, '\0');
13344 switch (type)
13345 {
13346 case tfind_number:
13347 xsnprintf (p, endbuf - p, "%x", num);
13348 break;
13349 case tfind_pc:
13350 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13351 break;
13352 case tfind_tp:
13353 xsnprintf (p, endbuf - p, "tdp:%x", num);
13354 break;
13355 case tfind_range:
13356 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13357 phex_nz (addr2, 0));
13358 break;
13359 case tfind_outside:
13360 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13361 phex_nz (addr2, 0));
13362 break;
13363 default:
13364 error (_("Unknown trace find type %d"), type);
13365 }
13366
13367 putpkt (rs->buf);
13368 reply = remote_get_noisy_reply ();
13369 if (*reply == '\0')
13370 error (_("Target does not support this command."));
13371
13372 while (reply && *reply)
13373 switch (*reply)
13374 {
13375 case 'F':
13376 p = ++reply;
13377 target_frameno = (int) strtol (p, &reply, 16);
13378 if (reply == p)
13379 error (_("Unable to parse trace frame number"));
13380 /* Don't update our remote traceframe number cache on failure
13381 to select a remote traceframe. */
13382 if (target_frameno == -1)
13383 return -1;
13384 break;
13385 case 'T':
13386 p = ++reply;
13387 target_tracept = (int) strtol (p, &reply, 16);
13388 if (reply == p)
13389 error (_("Unable to parse tracepoint number"));
13390 break;
13391 case 'O': /* "OK"? */
13392 if (reply[1] == 'K' && reply[2] == '\0')
13393 reply += 2;
13394 else
13395 error (_("Bogus reply from target: %s"), reply);
13396 break;
13397 default:
13398 error (_("Bogus reply from target: %s"), reply);
13399 }
13400 if (tpp)
13401 *tpp = target_tracept;
13402
13403 rs->remote_traceframe_number = target_frameno;
13404 return target_frameno;
13405 }
13406
13407 bool
13408 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13409 {
13410 struct remote_state *rs = get_remote_state ();
13411 char *reply;
13412 ULONGEST uval;
13413
13414 set_remote_traceframe ();
13415
13416 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13417 putpkt (rs->buf);
13418 reply = remote_get_noisy_reply ();
13419 if (reply && *reply)
13420 {
13421 if (*reply == 'V')
13422 {
13423 unpack_varlen_hex (reply + 1, &uval);
13424 *val = (LONGEST) uval;
13425 return true;
13426 }
13427 }
13428 return false;
13429 }
13430
13431 int
13432 remote_target::save_trace_data (const char *filename)
13433 {
13434 struct remote_state *rs = get_remote_state ();
13435 char *p, *reply;
13436
13437 p = rs->buf.data ();
13438 strcpy (p, "QTSave:");
13439 p += strlen (p);
13440 if ((p - rs->buf.data ()) + strlen (filename) * 2
13441 >= get_remote_packet_size ())
13442 error (_("Remote file name too long for trace save packet"));
13443 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13444 *p++ = '\0';
13445 putpkt (rs->buf);
13446 reply = remote_get_noisy_reply ();
13447 if (*reply == '\0')
13448 error (_("Target does not support this command."));
13449 if (strcmp (reply, "OK") != 0)
13450 error (_("Bogus reply from target: %s"), reply);
13451 return 0;
13452 }
13453
13454 /* This is basically a memory transfer, but needs to be its own packet
13455 because we don't know how the target actually organizes its trace
13456 memory, plus we want to be able to ask for as much as possible, but
13457 not be unhappy if we don't get as much as we ask for. */
13458
13459 LONGEST
13460 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13461 {
13462 struct remote_state *rs = get_remote_state ();
13463 char *reply;
13464 char *p;
13465 int rslt;
13466
13467 p = rs->buf.data ();
13468 strcpy (p, "qTBuffer:");
13469 p += strlen (p);
13470 p += hexnumstr (p, offset);
13471 *p++ = ',';
13472 p += hexnumstr (p, len);
13473 *p++ = '\0';
13474
13475 putpkt (rs->buf);
13476 reply = remote_get_noisy_reply ();
13477 if (reply && *reply)
13478 {
13479 /* 'l' by itself means we're at the end of the buffer and
13480 there is nothing more to get. */
13481 if (*reply == 'l')
13482 return 0;
13483
13484 /* Convert the reply into binary. Limit the number of bytes to
13485 convert according to our passed-in buffer size, rather than
13486 what was returned in the packet; if the target is
13487 unexpectedly generous and gives us a bigger reply than we
13488 asked for, we don't want to crash. */
13489 rslt = hex2bin (reply, buf, len);
13490 return rslt;
13491 }
13492
13493 /* Something went wrong, flag as an error. */
13494 return -1;
13495 }
13496
13497 void
13498 remote_target::set_disconnected_tracing (int val)
13499 {
13500 struct remote_state *rs = get_remote_state ();
13501
13502 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13503 {
13504 char *reply;
13505
13506 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13507 "QTDisconnected:%x", val);
13508 putpkt (rs->buf);
13509 reply = remote_get_noisy_reply ();
13510 if (*reply == '\0')
13511 error (_("Target does not support this command."));
13512 if (strcmp (reply, "OK") != 0)
13513 error (_("Bogus reply from target: %s"), reply);
13514 }
13515 else if (val)
13516 warning (_("Target does not support disconnected tracing."));
13517 }
13518
13519 int
13520 remote_target::core_of_thread (ptid_t ptid)
13521 {
13522 thread_info *info = find_thread_ptid (this, ptid);
13523
13524 if (info != NULL && info->priv != NULL)
13525 return get_remote_thread_info (info)->core;
13526
13527 return -1;
13528 }
13529
13530 void
13531 remote_target::set_circular_trace_buffer (int val)
13532 {
13533 struct remote_state *rs = get_remote_state ();
13534 char *reply;
13535
13536 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13537 "QTBuffer:circular:%x", val);
13538 putpkt (rs->buf);
13539 reply = remote_get_noisy_reply ();
13540 if (*reply == '\0')
13541 error (_("Target does not support this command."));
13542 if (strcmp (reply, "OK") != 0)
13543 error (_("Bogus reply from target: %s"), reply);
13544 }
13545
13546 traceframe_info_up
13547 remote_target::traceframe_info ()
13548 {
13549 gdb::optional<gdb::char_vector> text
13550 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13551 NULL);
13552 if (text)
13553 return parse_traceframe_info (text->data ());
13554
13555 return NULL;
13556 }
13557
13558 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13559 instruction on which a fast tracepoint may be placed. Returns -1
13560 if the packet is not supported, and 0 if the minimum instruction
13561 length is unknown. */
13562
13563 int
13564 remote_target::get_min_fast_tracepoint_insn_len ()
13565 {
13566 struct remote_state *rs = get_remote_state ();
13567 char *reply;
13568
13569 /* If we're not debugging a process yet, the IPA can't be
13570 loaded. */
13571 if (!target_has_execution)
13572 return 0;
13573
13574 /* Make sure the remote is pointing at the right process. */
13575 set_general_process ();
13576
13577 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13578 putpkt (rs->buf);
13579 reply = remote_get_noisy_reply ();
13580 if (*reply == '\0')
13581 return -1;
13582 else
13583 {
13584 ULONGEST min_insn_len;
13585
13586 unpack_varlen_hex (reply, &min_insn_len);
13587
13588 return (int) min_insn_len;
13589 }
13590 }
13591
13592 void
13593 remote_target::set_trace_buffer_size (LONGEST val)
13594 {
13595 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13596 {
13597 struct remote_state *rs = get_remote_state ();
13598 char *buf = rs->buf.data ();
13599 char *endbuf = buf + get_remote_packet_size ();
13600 enum packet_result result;
13601
13602 gdb_assert (val >= 0 || val == -1);
13603 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13604 /* Send -1 as literal "-1" to avoid host size dependency. */
13605 if (val < 0)
13606 {
13607 *buf++ = '-';
13608 buf += hexnumstr (buf, (ULONGEST) -val);
13609 }
13610 else
13611 buf += hexnumstr (buf, (ULONGEST) val);
13612
13613 putpkt (rs->buf);
13614 remote_get_noisy_reply ();
13615 result = packet_ok (rs->buf,
13616 &remote_protocol_packets[PACKET_QTBuffer_size]);
13617
13618 if (result != PACKET_OK)
13619 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13620 }
13621 }
13622
13623 bool
13624 remote_target::set_trace_notes (const char *user, const char *notes,
13625 const char *stop_notes)
13626 {
13627 struct remote_state *rs = get_remote_state ();
13628 char *reply;
13629 char *buf = rs->buf.data ();
13630 char *endbuf = buf + get_remote_packet_size ();
13631 int nbytes;
13632
13633 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13634 if (user)
13635 {
13636 buf += xsnprintf (buf, endbuf - buf, "user:");
13637 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13638 buf += 2 * nbytes;
13639 *buf++ = ';';
13640 }
13641 if (notes)
13642 {
13643 buf += xsnprintf (buf, endbuf - buf, "notes:");
13644 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13645 buf += 2 * nbytes;
13646 *buf++ = ';';
13647 }
13648 if (stop_notes)
13649 {
13650 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13651 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13652 buf += 2 * nbytes;
13653 *buf++ = ';';
13654 }
13655 /* Ensure the buffer is terminated. */
13656 *buf = '\0';
13657
13658 putpkt (rs->buf);
13659 reply = remote_get_noisy_reply ();
13660 if (*reply == '\0')
13661 return false;
13662
13663 if (strcmp (reply, "OK") != 0)
13664 error (_("Bogus reply from target: %s"), reply);
13665
13666 return true;
13667 }
13668
13669 bool
13670 remote_target::use_agent (bool use)
13671 {
13672 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13673 {
13674 struct remote_state *rs = get_remote_state ();
13675
13676 /* If the stub supports QAgent. */
13677 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13678 putpkt (rs->buf);
13679 getpkt (&rs->buf, 0);
13680
13681 if (strcmp (rs->buf.data (), "OK") == 0)
13682 {
13683 ::use_agent = use;
13684 return true;
13685 }
13686 }
13687
13688 return false;
13689 }
13690
13691 bool
13692 remote_target::can_use_agent ()
13693 {
13694 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13695 }
13696
13697 struct btrace_target_info
13698 {
13699 /* The ptid of the traced thread. */
13700 ptid_t ptid;
13701
13702 /* The obtained branch trace configuration. */
13703 struct btrace_config conf;
13704 };
13705
13706 /* Reset our idea of our target's btrace configuration. */
13707
13708 static void
13709 remote_btrace_reset (remote_state *rs)
13710 {
13711 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13712 }
13713
13714 /* Synchronize the configuration with the target. */
13715
13716 void
13717 remote_target::btrace_sync_conf (const btrace_config *conf)
13718 {
13719 struct packet_config *packet;
13720 struct remote_state *rs;
13721 char *buf, *pos, *endbuf;
13722
13723 rs = get_remote_state ();
13724 buf = rs->buf.data ();
13725 endbuf = buf + get_remote_packet_size ();
13726
13727 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13728 if (packet_config_support (packet) == PACKET_ENABLE
13729 && conf->bts.size != rs->btrace_config.bts.size)
13730 {
13731 pos = buf;
13732 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13733 conf->bts.size);
13734
13735 putpkt (buf);
13736 getpkt (&rs->buf, 0);
13737
13738 if (packet_ok (buf, packet) == PACKET_ERROR)
13739 {
13740 if (buf[0] == 'E' && buf[1] == '.')
13741 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13742 else
13743 error (_("Failed to configure the BTS buffer size."));
13744 }
13745
13746 rs->btrace_config.bts.size = conf->bts.size;
13747 }
13748
13749 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13750 if (packet_config_support (packet) == PACKET_ENABLE
13751 && conf->pt.size != rs->btrace_config.pt.size)
13752 {
13753 pos = buf;
13754 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13755 conf->pt.size);
13756
13757 putpkt (buf);
13758 getpkt (&rs->buf, 0);
13759
13760 if (packet_ok (buf, packet) == PACKET_ERROR)
13761 {
13762 if (buf[0] == 'E' && buf[1] == '.')
13763 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13764 else
13765 error (_("Failed to configure the trace buffer size."));
13766 }
13767
13768 rs->btrace_config.pt.size = conf->pt.size;
13769 }
13770 }
13771
13772 /* Read the current thread's btrace configuration from the target and
13773 store it into CONF. */
13774
13775 static void
13776 btrace_read_config (struct btrace_config *conf)
13777 {
13778 gdb::optional<gdb::char_vector> xml
13779 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13780 if (xml)
13781 parse_xml_btrace_conf (conf, xml->data ());
13782 }
13783
13784 /* Maybe reopen target btrace. */
13785
13786 void
13787 remote_target::remote_btrace_maybe_reopen ()
13788 {
13789 struct remote_state *rs = get_remote_state ();
13790 int btrace_target_pushed = 0;
13791 #if !defined (HAVE_LIBIPT)
13792 int warned = 0;
13793 #endif
13794
13795 /* Don't bother walking the entirety of the remote thread list when
13796 we know the feature isn't supported by the remote. */
13797 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13798 return;
13799
13800 scoped_restore_current_thread restore_thread;
13801
13802 for (thread_info *tp : all_non_exited_threads (this))
13803 {
13804 set_general_thread (tp->ptid);
13805
13806 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13807 btrace_read_config (&rs->btrace_config);
13808
13809 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13810 continue;
13811
13812 #if !defined (HAVE_LIBIPT)
13813 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13814 {
13815 if (!warned)
13816 {
13817 warned = 1;
13818 warning (_("Target is recording using Intel Processor Trace "
13819 "but support was disabled at compile time."));
13820 }
13821
13822 continue;
13823 }
13824 #endif /* !defined (HAVE_LIBIPT) */
13825
13826 /* Push target, once, but before anything else happens. This way our
13827 changes to the threads will be cleaned up by unpushing the target
13828 in case btrace_read_config () throws. */
13829 if (!btrace_target_pushed)
13830 {
13831 btrace_target_pushed = 1;
13832 record_btrace_push_target ();
13833 printf_filtered (_("Target is recording using %s.\n"),
13834 btrace_format_string (rs->btrace_config.format));
13835 }
13836
13837 tp->btrace.target = XCNEW (struct btrace_target_info);
13838 tp->btrace.target->ptid = tp->ptid;
13839 tp->btrace.target->conf = rs->btrace_config;
13840 }
13841 }
13842
13843 /* Enable branch tracing. */
13844
13845 struct btrace_target_info *
13846 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13847 {
13848 struct btrace_target_info *tinfo = NULL;
13849 struct packet_config *packet = NULL;
13850 struct remote_state *rs = get_remote_state ();
13851 char *buf = rs->buf.data ();
13852 char *endbuf = buf + get_remote_packet_size ();
13853
13854 switch (conf->format)
13855 {
13856 case BTRACE_FORMAT_BTS:
13857 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13858 break;
13859
13860 case BTRACE_FORMAT_PT:
13861 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13862 break;
13863 }
13864
13865 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13866 error (_("Target does not support branch tracing."));
13867
13868 btrace_sync_conf (conf);
13869
13870 set_general_thread (ptid);
13871
13872 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13873 putpkt (rs->buf);
13874 getpkt (&rs->buf, 0);
13875
13876 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13877 {
13878 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13879 error (_("Could not enable branch tracing for %s: %s"),
13880 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13881 else
13882 error (_("Could not enable branch tracing for %s."),
13883 target_pid_to_str (ptid).c_str ());
13884 }
13885
13886 tinfo = XCNEW (struct btrace_target_info);
13887 tinfo->ptid = ptid;
13888
13889 /* If we fail to read the configuration, we lose some information, but the
13890 tracing itself is not impacted. */
13891 try
13892 {
13893 btrace_read_config (&tinfo->conf);
13894 }
13895 catch (const gdb_exception_error &err)
13896 {
13897 if (err.message != NULL)
13898 warning ("%s", err.what ());
13899 }
13900
13901 return tinfo;
13902 }
13903
13904 /* Disable branch tracing. */
13905
13906 void
13907 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13908 {
13909 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13910 struct remote_state *rs = get_remote_state ();
13911 char *buf = rs->buf.data ();
13912 char *endbuf = buf + get_remote_packet_size ();
13913
13914 if (packet_config_support (packet) != PACKET_ENABLE)
13915 error (_("Target does not support branch tracing."));
13916
13917 set_general_thread (tinfo->ptid);
13918
13919 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13920 putpkt (rs->buf);
13921 getpkt (&rs->buf, 0);
13922
13923 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13924 {
13925 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13926 error (_("Could not disable branch tracing for %s: %s"),
13927 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13928 else
13929 error (_("Could not disable branch tracing for %s."),
13930 target_pid_to_str (tinfo->ptid).c_str ());
13931 }
13932
13933 xfree (tinfo);
13934 }
13935
13936 /* Teardown branch tracing. */
13937
13938 void
13939 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13940 {
13941 /* We must not talk to the target during teardown. */
13942 xfree (tinfo);
13943 }
13944
13945 /* Read the branch trace. */
13946
13947 enum btrace_error
13948 remote_target::read_btrace (struct btrace_data *btrace,
13949 struct btrace_target_info *tinfo,
13950 enum btrace_read_type type)
13951 {
13952 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13953 const char *annex;
13954
13955 if (packet_config_support (packet) != PACKET_ENABLE)
13956 error (_("Target does not support branch tracing."));
13957
13958 #if !defined(HAVE_LIBEXPAT)
13959 error (_("Cannot process branch tracing result. XML parsing not supported."));
13960 #endif
13961
13962 switch (type)
13963 {
13964 case BTRACE_READ_ALL:
13965 annex = "all";
13966 break;
13967 case BTRACE_READ_NEW:
13968 annex = "new";
13969 break;
13970 case BTRACE_READ_DELTA:
13971 annex = "delta";
13972 break;
13973 default:
13974 internal_error (__FILE__, __LINE__,
13975 _("Bad branch tracing read type: %u."),
13976 (unsigned int) type);
13977 }
13978
13979 gdb::optional<gdb::char_vector> xml
13980 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13981 if (!xml)
13982 return BTRACE_ERR_UNKNOWN;
13983
13984 parse_xml_btrace (btrace, xml->data ());
13985
13986 return BTRACE_ERR_NONE;
13987 }
13988
13989 const struct btrace_config *
13990 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13991 {
13992 return &tinfo->conf;
13993 }
13994
13995 bool
13996 remote_target::augmented_libraries_svr4_read ()
13997 {
13998 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13999 == PACKET_ENABLE);
14000 }
14001
14002 /* Implementation of to_load. */
14003
14004 void
14005 remote_target::load (const char *name, int from_tty)
14006 {
14007 generic_load (name, from_tty);
14008 }
14009
14010 /* Accepts an integer PID; returns a string representing a file that
14011 can be opened on the remote side to get the symbols for the child
14012 process. Returns NULL if the operation is not supported. */
14013
14014 char *
14015 remote_target::pid_to_exec_file (int pid)
14016 {
14017 static gdb::optional<gdb::char_vector> filename;
14018 char *annex = NULL;
14019
14020 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14021 return NULL;
14022
14023 inferior *inf = find_inferior_pid (this, pid);
14024 if (inf == NULL)
14025 internal_error (__FILE__, __LINE__,
14026 _("not currently attached to process %d"), pid);
14027
14028 if (!inf->fake_pid_p)
14029 {
14030 const int annex_size = 9;
14031
14032 annex = (char *) alloca (annex_size);
14033 xsnprintf (annex, annex_size, "%x", pid);
14034 }
14035
14036 filename = target_read_stralloc (current_top_target (),
14037 TARGET_OBJECT_EXEC_FILE, annex);
14038
14039 return filename ? filename->data () : nullptr;
14040 }
14041
14042 /* Implement the to_can_do_single_step target_ops method. */
14043
14044 int
14045 remote_target::can_do_single_step ()
14046 {
14047 /* We can only tell whether target supports single step or not by
14048 supported s and S vCont actions if the stub supports vContSupported
14049 feature. If the stub doesn't support vContSupported feature,
14050 we have conservatively to think target doesn't supports single
14051 step. */
14052 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14053 {
14054 struct remote_state *rs = get_remote_state ();
14055
14056 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14057 remote_vcont_probe ();
14058
14059 return rs->supports_vCont.s && rs->supports_vCont.S;
14060 }
14061 else
14062 return 0;
14063 }
14064
14065 /* Implementation of the to_execution_direction method for the remote
14066 target. */
14067
14068 enum exec_direction_kind
14069 remote_target::execution_direction ()
14070 {
14071 struct remote_state *rs = get_remote_state ();
14072
14073 return rs->last_resume_exec_dir;
14074 }
14075
14076 /* Return pointer to the thread_info struct which corresponds to
14077 THREAD_HANDLE (having length HANDLE_LEN). */
14078
14079 thread_info *
14080 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14081 int handle_len,
14082 inferior *inf)
14083 {
14084 for (thread_info *tp : all_non_exited_threads (this))
14085 {
14086 remote_thread_info *priv = get_remote_thread_info (tp);
14087
14088 if (tp->inf == inf && priv != NULL)
14089 {
14090 if (handle_len != priv->thread_handle.size ())
14091 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14092 handle_len, priv->thread_handle.size ());
14093 if (memcmp (thread_handle, priv->thread_handle.data (),
14094 handle_len) == 0)
14095 return tp;
14096 }
14097 }
14098
14099 return NULL;
14100 }
14101
14102 gdb::byte_vector
14103 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14104 {
14105 remote_thread_info *priv = get_remote_thread_info (tp);
14106 return priv->thread_handle;
14107 }
14108
14109 bool
14110 remote_target::can_async_p ()
14111 {
14112 struct remote_state *rs = get_remote_state ();
14113
14114 /* We don't go async if the user has explicitly prevented it with the
14115 "maint set target-async" command. */
14116 if (!target_async_permitted)
14117 return false;
14118
14119 /* We're async whenever the serial device is. */
14120 return serial_can_async_p (rs->remote_desc);
14121 }
14122
14123 bool
14124 remote_target::is_async_p ()
14125 {
14126 struct remote_state *rs = get_remote_state ();
14127
14128 if (!target_async_permitted)
14129 /* We only enable async when the user specifically asks for it. */
14130 return false;
14131
14132 /* We're async whenever the serial device is. */
14133 return serial_is_async_p (rs->remote_desc);
14134 }
14135
14136 /* Pass the SERIAL event on and up to the client. One day this code
14137 will be able to delay notifying the client of an event until the
14138 point where an entire packet has been received. */
14139
14140 static serial_event_ftype remote_async_serial_handler;
14141
14142 static void
14143 remote_async_serial_handler (struct serial *scb, void *context)
14144 {
14145 /* Don't propogate error information up to the client. Instead let
14146 the client find out about the error by querying the target. */
14147 inferior_event_handler (INF_REG_EVENT, NULL);
14148 }
14149
14150 static void
14151 remote_async_inferior_event_handler (gdb_client_data data)
14152 {
14153 inferior_event_handler (INF_REG_EVENT, data);
14154 }
14155
14156 int
14157 remote_target::async_wait_fd ()
14158 {
14159 struct remote_state *rs = get_remote_state ();
14160 return rs->remote_desc->fd;
14161 }
14162
14163 void
14164 remote_target::async (int enable)
14165 {
14166 struct remote_state *rs = get_remote_state ();
14167
14168 if (enable)
14169 {
14170 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14171
14172 /* If there are pending events in the stop reply queue tell the
14173 event loop to process them. */
14174 if (!rs->stop_reply_queue.empty ())
14175 mark_async_event_handler (rs->remote_async_inferior_event_token);
14176 /* For simplicity, below we clear the pending events token
14177 without remembering whether it is marked, so here we always
14178 mark it. If there's actually no pending notification to
14179 process, this ends up being a no-op (other than a spurious
14180 event-loop wakeup). */
14181 if (target_is_non_stop_p ())
14182 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14183 }
14184 else
14185 {
14186 serial_async (rs->remote_desc, NULL, NULL);
14187 /* If the core is disabling async, it doesn't want to be
14188 disturbed with target events. Clear all async event sources
14189 too. */
14190 clear_async_event_handler (rs->remote_async_inferior_event_token);
14191 if (target_is_non_stop_p ())
14192 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14193 }
14194 }
14195
14196 /* Implementation of the to_thread_events method. */
14197
14198 void
14199 remote_target::thread_events (int enable)
14200 {
14201 struct remote_state *rs = get_remote_state ();
14202 size_t size = get_remote_packet_size ();
14203
14204 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14205 return;
14206
14207 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14208 putpkt (rs->buf);
14209 getpkt (&rs->buf, 0);
14210
14211 switch (packet_ok (rs->buf,
14212 &remote_protocol_packets[PACKET_QThreadEvents]))
14213 {
14214 case PACKET_OK:
14215 if (strcmp (rs->buf.data (), "OK") != 0)
14216 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14217 break;
14218 case PACKET_ERROR:
14219 warning (_("Remote failure reply: %s"), rs->buf.data ());
14220 break;
14221 case PACKET_UNKNOWN:
14222 break;
14223 }
14224 }
14225
14226 static void
14227 set_remote_cmd (const char *args, int from_tty)
14228 {
14229 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14230 }
14231
14232 static void
14233 show_remote_cmd (const char *args, int from_tty)
14234 {
14235 /* We can't just use cmd_show_list here, because we want to skip
14236 the redundant "show remote Z-packet" and the legacy aliases. */
14237 struct cmd_list_element *list = remote_show_cmdlist;
14238 struct ui_out *uiout = current_uiout;
14239
14240 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14241 for (; list != NULL; list = list->next)
14242 if (strcmp (list->name, "Z-packet") == 0)
14243 continue;
14244 else if (list->type == not_set_cmd)
14245 /* Alias commands are exactly like the original, except they
14246 don't have the normal type. */
14247 continue;
14248 else
14249 {
14250 ui_out_emit_tuple option_emitter (uiout, "option");
14251
14252 uiout->field_string ("name", list->name);
14253 uiout->text (": ");
14254 if (list->type == show_cmd)
14255 do_show_command (NULL, from_tty, list);
14256 else
14257 cmd_func (list, NULL, from_tty);
14258 }
14259 }
14260
14261
14262 /* Function to be called whenever a new objfile (shlib) is detected. */
14263 static void
14264 remote_new_objfile (struct objfile *objfile)
14265 {
14266 remote_target *remote = get_current_remote_target ();
14267
14268 if (remote != NULL) /* Have a remote connection. */
14269 remote->remote_check_symbols ();
14270 }
14271
14272 /* Pull all the tracepoints defined on the target and create local
14273 data structures representing them. We don't want to create real
14274 tracepoints yet, we don't want to mess up the user's existing
14275 collection. */
14276
14277 int
14278 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14279 {
14280 struct remote_state *rs = get_remote_state ();
14281 char *p;
14282
14283 /* Ask for a first packet of tracepoint definition. */
14284 putpkt ("qTfP");
14285 getpkt (&rs->buf, 0);
14286 p = rs->buf.data ();
14287 while (*p && *p != 'l')
14288 {
14289 parse_tracepoint_definition (p, utpp);
14290 /* Ask for another packet of tracepoint definition. */
14291 putpkt ("qTsP");
14292 getpkt (&rs->buf, 0);
14293 p = rs->buf.data ();
14294 }
14295 return 0;
14296 }
14297
14298 int
14299 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14300 {
14301 struct remote_state *rs = get_remote_state ();
14302 char *p;
14303
14304 /* Ask for a first packet of variable definition. */
14305 putpkt ("qTfV");
14306 getpkt (&rs->buf, 0);
14307 p = rs->buf.data ();
14308 while (*p && *p != 'l')
14309 {
14310 parse_tsv_definition (p, utsvp);
14311 /* Ask for another packet of variable definition. */
14312 putpkt ("qTsV");
14313 getpkt (&rs->buf, 0);
14314 p = rs->buf.data ();
14315 }
14316 return 0;
14317 }
14318
14319 /* The "set/show range-stepping" show hook. */
14320
14321 static void
14322 show_range_stepping (struct ui_file *file, int from_tty,
14323 struct cmd_list_element *c,
14324 const char *value)
14325 {
14326 fprintf_filtered (file,
14327 _("Debugger's willingness to use range stepping "
14328 "is %s.\n"), value);
14329 }
14330
14331 /* Return true if the vCont;r action is supported by the remote
14332 stub. */
14333
14334 bool
14335 remote_target::vcont_r_supported ()
14336 {
14337 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14338 remote_vcont_probe ();
14339
14340 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14341 && get_remote_state ()->supports_vCont.r);
14342 }
14343
14344 /* The "set/show range-stepping" set hook. */
14345
14346 static void
14347 set_range_stepping (const char *ignore_args, int from_tty,
14348 struct cmd_list_element *c)
14349 {
14350 /* When enabling, check whether range stepping is actually supported
14351 by the target, and warn if not. */
14352 if (use_range_stepping)
14353 {
14354 remote_target *remote = get_current_remote_target ();
14355 if (remote == NULL
14356 || !remote->vcont_r_supported ())
14357 warning (_("Range stepping is not supported by the current target"));
14358 }
14359 }
14360
14361 void _initialize_remote ();
14362 void
14363 _initialize_remote ()
14364 {
14365 struct cmd_list_element *cmd;
14366 const char *cmd_name;
14367
14368 /* architecture specific data */
14369 remote_g_packet_data_handle =
14370 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14371
14372 add_target (remote_target_info, remote_target::open);
14373 add_target (extended_remote_target_info, extended_remote_target::open);
14374
14375 /* Hook into new objfile notification. */
14376 gdb::observers::new_objfile.attach (remote_new_objfile);
14377
14378 #if 0
14379 init_remote_threadtests ();
14380 #endif
14381
14382 /* set/show remote ... */
14383
14384 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14385 Remote protocol specific variables.\n\
14386 Configure various remote-protocol specific variables such as\n\
14387 the packets being used."),
14388 &remote_set_cmdlist, "set remote ",
14389 0 /* allow-unknown */, &setlist);
14390 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14391 Remote protocol specific variables.\n\
14392 Configure various remote-protocol specific variables such as\n\
14393 the packets being used."),
14394 &remote_show_cmdlist, "show remote ",
14395 0 /* allow-unknown */, &showlist);
14396
14397 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14398 Compare section data on target to the exec file.\n\
14399 Argument is a single section name (default: all loaded sections).\n\
14400 To compare only read-only loaded sections, specify the -r option."),
14401 &cmdlist);
14402
14403 add_cmd ("packet", class_maintenance, packet_command, _("\
14404 Send an arbitrary packet to a remote target.\n\
14405 maintenance packet TEXT\n\
14406 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14407 this command sends the string TEXT to the inferior, and displays the\n\
14408 response packet. GDB supplies the initial `$' character, and the\n\
14409 terminating `#' character and checksum."),
14410 &maintenancelist);
14411
14412 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14413 Set whether to send break if interrupted."), _("\
14414 Show whether to send break if interrupted."), _("\
14415 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14416 set_remotebreak, show_remotebreak,
14417 &setlist, &showlist);
14418 cmd_name = "remotebreak";
14419 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14420 deprecate_cmd (cmd, "set remote interrupt-sequence");
14421 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14422 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14423 deprecate_cmd (cmd, "show remote interrupt-sequence");
14424
14425 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14426 interrupt_sequence_modes, &interrupt_sequence_mode,
14427 _("\
14428 Set interrupt sequence to remote target."), _("\
14429 Show interrupt sequence to remote target."), _("\
14430 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14431 NULL, show_interrupt_sequence,
14432 &remote_set_cmdlist,
14433 &remote_show_cmdlist);
14434
14435 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14436 &interrupt_on_connect, _("\
14437 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14438 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14439 If set, interrupt sequence is sent to remote target."),
14440 NULL, NULL,
14441 &remote_set_cmdlist, &remote_show_cmdlist);
14442
14443 /* Install commands for configuring memory read/write packets. */
14444
14445 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14446 Set the maximum number of bytes per memory write packet (deprecated)."),
14447 &setlist);
14448 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14449 Show the maximum number of bytes per memory write packet (deprecated)."),
14450 &showlist);
14451 add_cmd ("memory-write-packet-size", no_class,
14452 set_memory_write_packet_size, _("\
14453 Set the maximum number of bytes per memory-write packet.\n\
14454 Specify the number of bytes in a packet or 0 (zero) for the\n\
14455 default packet size. The actual limit is further reduced\n\
14456 dependent on the target. Specify ``fixed'' to disable the\n\
14457 further restriction and ``limit'' to enable that restriction."),
14458 &remote_set_cmdlist);
14459 add_cmd ("memory-read-packet-size", no_class,
14460 set_memory_read_packet_size, _("\
14461 Set the maximum number of bytes per memory-read packet.\n\
14462 Specify the number of bytes in a packet or 0 (zero) for the\n\
14463 default packet size. The actual limit is further reduced\n\
14464 dependent on the target. Specify ``fixed'' to disable the\n\
14465 further restriction and ``limit'' to enable that restriction."),
14466 &remote_set_cmdlist);
14467 add_cmd ("memory-write-packet-size", no_class,
14468 show_memory_write_packet_size,
14469 _("Show the maximum number of bytes per memory-write packet."),
14470 &remote_show_cmdlist);
14471 add_cmd ("memory-read-packet-size", no_class,
14472 show_memory_read_packet_size,
14473 _("Show the maximum number of bytes per memory-read packet."),
14474 &remote_show_cmdlist);
14475
14476 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14477 &remote_hw_watchpoint_limit, _("\
14478 Set the maximum number of target hardware watchpoints."), _("\
14479 Show the maximum number of target hardware watchpoints."), _("\
14480 Specify \"unlimited\" for unlimited hardware watchpoints."),
14481 NULL, show_hardware_watchpoint_limit,
14482 &remote_set_cmdlist,
14483 &remote_show_cmdlist);
14484 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14485 no_class,
14486 &remote_hw_watchpoint_length_limit, _("\
14487 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14488 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14489 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14490 NULL, show_hardware_watchpoint_length_limit,
14491 &remote_set_cmdlist, &remote_show_cmdlist);
14492 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14493 &remote_hw_breakpoint_limit, _("\
14494 Set the maximum number of target hardware breakpoints."), _("\
14495 Show the maximum number of target hardware breakpoints."), _("\
14496 Specify \"unlimited\" for unlimited hardware breakpoints."),
14497 NULL, show_hardware_breakpoint_limit,
14498 &remote_set_cmdlist, &remote_show_cmdlist);
14499
14500 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14501 &remote_address_size, _("\
14502 Set the maximum size of the address (in bits) in a memory packet."), _("\
14503 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14504 NULL,
14505 NULL, /* FIXME: i18n: */
14506 &setlist, &showlist);
14507
14508 init_all_packet_configs ();
14509
14510 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14511 "X", "binary-download", 1);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14514 "vCont", "verbose-resume", 0);
14515
14516 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14517 "QPassSignals", "pass-signals", 0);
14518
14519 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14520 "QCatchSyscalls", "catch-syscalls", 0);
14521
14522 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14523 "QProgramSignals", "program-signals", 0);
14524
14525 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14526 "QSetWorkingDir", "set-working-dir", 0);
14527
14528 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14529 "QStartupWithShell", "startup-with-shell", 0);
14530
14531 add_packet_config_cmd (&remote_protocol_packets
14532 [PACKET_QEnvironmentHexEncoded],
14533 "QEnvironmentHexEncoded", "environment-hex-encoded",
14534 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14537 "QEnvironmentReset", "environment-reset",
14538 0);
14539
14540 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14541 "QEnvironmentUnset", "environment-unset",
14542 0);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14545 "qSymbol", "symbol-lookup", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14548 "P", "set-register", 1);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14551 "p", "fetch-register", 1);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14554 "Z0", "software-breakpoint", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14557 "Z1", "hardware-breakpoint", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14560 "Z2", "write-watchpoint", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14563 "Z3", "read-watchpoint", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14566 "Z4", "access-watchpoint", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14569 "qXfer:auxv:read", "read-aux-vector", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14572 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14575 "qXfer:features:read", "target-features", 0);
14576
14577 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14578 "qXfer:libraries:read", "library-info", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14581 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14584 "qXfer:memory-map:read", "memory-map", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14587 "qXfer:osdata:read", "osdata", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14590 "qXfer:threads:read", "threads", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14593 "qXfer:siginfo:read", "read-siginfo-object", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14596 "qXfer:siginfo:write", "write-siginfo-object", 0);
14597
14598 add_packet_config_cmd
14599 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14600 "qXfer:traceframe-info:read", "traceframe-info", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14603 "qXfer:uib:read", "unwind-info-block", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14606 "qGetTLSAddr", "get-thread-local-storage-address",
14607 0);
14608
14609 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14610 "qGetTIBAddr", "get-thread-information-block-address",
14611 0);
14612
14613 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14614 "bc", "reverse-continue", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14617 "bs", "reverse-step", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14620 "qSupported", "supported-packets", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14623 "qSearch:memory", "search-memory", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14626 "qTStatus", "trace-status", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14629 "vFile:setfs", "hostio-setfs", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14632 "vFile:open", "hostio-open", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14635 "vFile:pread", "hostio-pread", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14638 "vFile:pwrite", "hostio-pwrite", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14641 "vFile:close", "hostio-close", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14644 "vFile:unlink", "hostio-unlink", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14647 "vFile:readlink", "hostio-readlink", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14650 "vFile:fstat", "hostio-fstat", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14653 "vAttach", "attach", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14656 "vRun", "run", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14659 "QStartNoAckMode", "noack", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14662 "vKill", "kill", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14665 "qAttached", "query-attached", 0);
14666
14667 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14668 "ConditionalTracepoints",
14669 "conditional-tracepoints", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14672 "ConditionalBreakpoints",
14673 "conditional-breakpoints", 0);
14674
14675 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14676 "BreakpointCommands",
14677 "breakpoint-commands", 0);
14678
14679 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14680 "FastTracepoints", "fast-tracepoints", 0);
14681
14682 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14683 "TracepointSource", "TracepointSource", 0);
14684
14685 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14686 "QAllow", "allow", 0);
14687
14688 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14689 "StaticTracepoints", "static-tracepoints", 0);
14690
14691 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14692 "InstallInTrace", "install-in-trace", 0);
14693
14694 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14695 "qXfer:statictrace:read", "read-sdata-object", 0);
14696
14697 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14698 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14699
14700 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14701 "QDisableRandomization", "disable-randomization", 0);
14702
14703 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14704 "QAgent", "agent", 0);
14705
14706 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14707 "QTBuffer:size", "trace-buffer-size", 0);
14708
14709 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14710 "Qbtrace:off", "disable-btrace", 0);
14711
14712 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14713 "Qbtrace:bts", "enable-btrace-bts", 0);
14714
14715 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14716 "Qbtrace:pt", "enable-btrace-pt", 0);
14717
14718 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14719 "qXfer:btrace", "read-btrace", 0);
14720
14721 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14722 "qXfer:btrace-conf", "read-btrace-conf", 0);
14723
14724 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14725 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14726
14727 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14728 "multiprocess-feature", "multiprocess-feature", 0);
14729
14730 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14731 "swbreak-feature", "swbreak-feature", 0);
14732
14733 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14734 "hwbreak-feature", "hwbreak-feature", 0);
14735
14736 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14737 "fork-event-feature", "fork-event-feature", 0);
14738
14739 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14740 "vfork-event-feature", "vfork-event-feature", 0);
14741
14742 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14743 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14744
14745 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14746 "vContSupported", "verbose-resume-supported", 0);
14747
14748 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14749 "exec-event-feature", "exec-event-feature", 0);
14750
14751 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14752 "vCtrlC", "ctrl-c", 0);
14753
14754 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14755 "QThreadEvents", "thread-events", 0);
14756
14757 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14758 "N stop reply", "no-resumed-stop-reply", 0);
14759
14760 /* Assert that we've registered "set remote foo-packet" commands
14761 for all packet configs. */
14762 {
14763 int i;
14764
14765 for (i = 0; i < PACKET_MAX; i++)
14766 {
14767 /* Ideally all configs would have a command associated. Some
14768 still don't though. */
14769 int excepted;
14770
14771 switch (i)
14772 {
14773 case PACKET_QNonStop:
14774 case PACKET_EnableDisableTracepoints_feature:
14775 case PACKET_tracenz_feature:
14776 case PACKET_DisconnectedTracing_feature:
14777 case PACKET_augmented_libraries_svr4_read_feature:
14778 case PACKET_qCRC:
14779 /* Additions to this list need to be well justified:
14780 pre-existing packets are OK; new packets are not. */
14781 excepted = 1;
14782 break;
14783 default:
14784 excepted = 0;
14785 break;
14786 }
14787
14788 /* This catches both forgetting to add a config command, and
14789 forgetting to remove a packet from the exception list. */
14790 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14791 }
14792 }
14793
14794 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14795 Z sub-packet has its own set and show commands, but users may
14796 have sets to this variable in their .gdbinit files (or in their
14797 documentation). */
14798 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14799 &remote_Z_packet_detect, _("\
14800 Set use of remote protocol `Z' packets."), _("\
14801 Show use of remote protocol `Z' packets."), _("\
14802 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14803 packets."),
14804 set_remote_protocol_Z_packet_cmd,
14805 show_remote_protocol_Z_packet_cmd,
14806 /* FIXME: i18n: Use of remote protocol
14807 `Z' packets is %s. */
14808 &remote_set_cmdlist, &remote_show_cmdlist);
14809
14810 add_prefix_cmd ("remote", class_files, remote_command, _("\
14811 Manipulate files on the remote system.\n\
14812 Transfer files to and from the remote target system."),
14813 &remote_cmdlist, "remote ",
14814 0 /* allow-unknown */, &cmdlist);
14815
14816 add_cmd ("put", class_files, remote_put_command,
14817 _("Copy a local file to the remote system."),
14818 &remote_cmdlist);
14819
14820 add_cmd ("get", class_files, remote_get_command,
14821 _("Copy a remote file to the local system."),
14822 &remote_cmdlist);
14823
14824 add_cmd ("delete", class_files, remote_delete_command,
14825 _("Delete a remote file."),
14826 &remote_cmdlist);
14827
14828 add_setshow_string_noescape_cmd ("exec-file", class_files,
14829 &remote_exec_file_var, _("\
14830 Set the remote pathname for \"run\"."), _("\
14831 Show the remote pathname for \"run\"."), NULL,
14832 set_remote_exec_file,
14833 show_remote_exec_file,
14834 &remote_set_cmdlist,
14835 &remote_show_cmdlist);
14836
14837 add_setshow_boolean_cmd ("range-stepping", class_run,
14838 &use_range_stepping, _("\
14839 Enable or disable range stepping."), _("\
14840 Show whether target-assisted range stepping is enabled."), _("\
14841 If on, and the target supports it, when stepping a source line, GDB\n\
14842 tells the target to step the corresponding range of addresses itself instead\n\
14843 of issuing multiple single-steps. This speeds up source level\n\
14844 stepping. If off, GDB always issues single-steps, even if range\n\
14845 stepping is supported by the target. The default is on."),
14846 set_range_stepping,
14847 show_range_stepping,
14848 &setlist,
14849 &showlist);
14850
14851 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14852 Set watchdog timer."), _("\
14853 Show watchdog timer."), _("\
14854 When non-zero, this timeout is used instead of waiting forever for a target\n\
14855 to finish a low-level step or continue operation. If the specified amount\n\
14856 of time passes without a response from the target, an error occurs."),
14857 NULL,
14858 show_watchdog,
14859 &setlist, &showlist);
14860
14861 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14862 &remote_packet_max_chars, _("\
14863 Set the maximum number of characters to display for each remote packet."), _("\
14864 Show the maximum number of characters to display for each remote packet."), _("\
14865 Specify \"unlimited\" to display all the characters."),
14866 NULL, show_remote_packet_max_chars,
14867 &setdebuglist, &showdebuglist);
14868
14869 /* Eventually initialize fileio. See fileio.c */
14870 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14871 }
This page took 0.351227 seconds and 4 git commands to generate.