c80fa092294b5d544313a7042571478eece1b650
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1991-2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* See the GDB User Guide for details of the GDB remote protocol. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <fcntl.h>
27 #include "frame.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "target.h"
32 /*#include "terminal.h" */
33 #include "gdbcmd.h"
34 #include "objfiles.h"
35 #include "gdb-stabs.h"
36 #include "gdbthread.h"
37 #include "remote.h"
38
39 #include <ctype.h>
40 #include <sys/time.h>
41 #ifdef USG
42 #include <sys/types.h>
43 #endif
44
45 #include "event-loop.h"
46 #include "event-top.h"
47 #include "inf-loop.h"
48
49 #include <signal.h>
50 #include "serial.h"
51
52 /* Prototypes for local functions */
53 static void cleanup_sigint_signal_handler (void *dummy);
54 static void initialize_sigint_signal_handler (void);
55 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
56
57 static void handle_remote_sigint (int);
58 static void handle_remote_sigint_twice (int);
59 static void async_remote_interrupt (gdb_client_data);
60 void async_remote_interrupt_twice (gdb_client_data);
61
62 static void build_remote_gdbarch_data (void);
63
64 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
65
66 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
67
68 static void remote_files_info (struct target_ops *ignore);
69
70 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
71 int len, int should_write,
72 struct mem_attrib *attrib,
73 struct target_ops *target);
74
75 static void remote_prepare_to_store (void);
76
77 static void remote_fetch_registers (int regno);
78
79 static void remote_resume (int pid, int step, enum target_signal siggnal);
80 static void remote_async_resume (int pid, int step,
81 enum target_signal siggnal);
82 static int remote_start_remote (PTR);
83
84 static void remote_open (char *name, int from_tty);
85 static void remote_async_open (char *name, int from_tty);
86
87 static void extended_remote_open (char *name, int from_tty);
88 static void extended_remote_async_open (char *name, int from_tty);
89
90 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
91 static void remote_async_open_1 (char *, int, struct target_ops *,
92 int extended_p);
93
94 static void remote_close (int quitting);
95
96 static void remote_store_registers (int regno);
97
98 static void remote_mourn (void);
99 static void remote_async_mourn (void);
100
101 static void extended_remote_restart (void);
102
103 static void extended_remote_mourn (void);
104
105 static void extended_remote_create_inferior (char *, char *, char **);
106 static void extended_remote_async_create_inferior (char *, char *, char **);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char *buf, long sizeof_buf);
111
112 static int readchar (int timeout);
113
114 static int remote_wait (int pid, struct target_waitstatus *status);
115 static int remote_async_wait (int pid, struct target_waitstatus *status);
116
117 static void remote_kill (void);
118 static void remote_async_kill (void);
119
120 static int tohex (int nib);
121
122 static void remote_detach (char *args, int from_tty);
123 static void remote_async_detach (char *args, int from_tty);
124
125 static void remote_interrupt (int signo);
126
127 static void remote_interrupt_twice (int signo);
128
129 static void interrupt_query (void);
130
131 static void set_thread (int, int);
132
133 static int remote_thread_alive (int);
134
135 static void get_offsets (void);
136
137 static long read_frame (char *buf, long sizeof_buf);
138
139 static int remote_insert_breakpoint (CORE_ADDR, char *);
140
141 static int remote_remove_breakpoint (CORE_ADDR, char *);
142
143 static int hexnumlen (ULONGEST num);
144
145 static void init_remote_ops (void);
146
147 static void init_extended_remote_ops (void);
148
149 static void init_remote_cisco_ops (void);
150
151 static struct target_ops remote_cisco_ops;
152
153 static void remote_stop (void);
154
155 static int ishex (int ch, int *val);
156
157 static int stubhex (int ch);
158
159 static int remote_query (int /*char */ , char *, char *, int *);
160
161 static int hexnumstr (char *, ULONGEST);
162
163 static int hexnumnstr (char *, ULONGEST, int);
164
165 static CORE_ADDR remote_address_masked (CORE_ADDR);
166
167 static void print_packet (char *);
168
169 static unsigned long crc32 (unsigned char *, int, unsigned int);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static int remote_current_thread (int oldpid);
178
179 static void remote_find_new_threads (void);
180
181 static void record_currthread (int currthread);
182
183 /* exported functions */
184
185 extern int fromhex (int a);
186
187 static int putpkt_binary (char *buf, int cnt);
188
189 static void check_binary_download (CORE_ADDR addr);
190
191 struct packet_config;
192
193 static void show_packet_config_cmd (struct packet_config *config);
194
195 static void update_packet_config (struct packet_config *config);
196
197 /* Define the target subroutine names */
198
199 void open_remote_target (char *, int, struct target_ops *, int);
200
201 void _initialize_remote (void);
202
203 /* */
204
205 static struct target_ops remote_ops;
206
207 static struct target_ops extended_remote_ops;
208
209 /* Temporary target ops. Just like the remote_ops and
210 extended_remote_ops, but with asynchronous support. */
211 static struct target_ops remote_async_ops;
212
213 static struct target_ops extended_async_remote_ops;
214
215 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
216 ``forever'' still use the normal timeout mechanism. This is
217 currently used by the ASYNC code to guarentee that target reads
218 during the initial connect always time-out. Once getpkt has been
219 modified to return a timeout indication and, in turn
220 remote_wait()/wait_for_inferior() have gained a timeout parameter
221 this can go away. */
222 static int wait_forever_enabled_p = 1;
223
224
225 /* This variable chooses whether to send a ^C or a break when the user
226 requests program interruption. Although ^C is usually what remote
227 systems expect, and that is the default here, sometimes a break is
228 preferable instead. */
229
230 static int remote_break;
231
232 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
233 remote_open knows that we don't have a file open when the program
234 starts. */
235 static serial_t remote_desc = NULL;
236
237 /* This is set by the target (thru the 'S' message)
238 to denote that the target is in kernel mode. */
239 static int cisco_kernel_mode = 0;
240
241 /* This variable sets the number of bits in an address that are to be
242 sent in a memory ("M" or "m") packet. Normally, after stripping
243 leading zeros, the entire address would be sent. This variable
244 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
245 initial implementation of remote.c restricted the address sent in
246 memory packets to ``host::sizeof long'' bytes - (typically 32
247 bits). Consequently, for 64 bit targets, the upper 32 bits of an
248 address was never sent. Since fixing this bug may cause a break in
249 some remote targets this variable is principly provided to
250 facilitate backward compatibility. */
251
252 static int remote_address_size;
253
254 /* Tempoary to track who currently owns the terminal. See
255 target_async_terminal_* for more details. */
256
257 static int remote_async_terminal_ours_p;
258
259 \f
260 /* This is the size (in chars) of the first response to the ``g''
261 packet. It is used as a heuristic when determining the maximum
262 size of memory-read and memory-write packets. A target will
263 typically only reserve a buffer large enough to hold the ``g''
264 packet. The size does not include packet overhead (headers and
265 trailers). */
266
267 static long actual_register_packet_size;
268
269 /* This is the maximum size (in chars) of a non read/write packet. It
270 is also used as a cap on the size of read/write packets. */
271
272 static long remote_packet_size;
273 /* compatibility. */
274 #define PBUFSIZ (remote_packet_size)
275
276 /* User configurable variables for the number of characters in a
277 memory read/write packet. MIN (PBUFSIZ, g-packet-size) is the
278 default. Some targets need smaller values (fifo overruns, et.al.)
279 and some users need larger values (speed up transfers). The
280 variables ``preferred_*'' (the user request), ``current_*'' (what
281 was actually set) and ``forced_*'' (Positive - a soft limit,
282 negative - a hard limit). */
283
284 struct memory_packet_config
285 {
286 char *name;
287 long size;
288 int fixed_p;
289 };
290
291 /* Compute the current size of a read/write packet. Since this makes
292 use of ``actual_register_packet_size'' the computation is dynamic. */
293
294 static long
295 get_memory_packet_size (struct memory_packet_config *config)
296 {
297 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
298 law?) that some hosts don't cope very well with large alloca()
299 calls. Eventually the alloca() code will be replaced by calls to
300 xmalloc() and make_cleanups() allowing this restriction to either
301 be lifted or removed. */
302 #ifndef MAX_REMOTE_PACKET_SIZE
303 #define MAX_REMOTE_PACKET_SIZE 16384
304 #endif
305 /* NOTE: 16 is just chosen at random. */
306 #ifndef MIN_REMOTE_PACKET_SIZE
307 #define MIN_REMOTE_PACKET_SIZE 16
308 #endif
309 long what_they_get;
310 if (config->fixed_p)
311 {
312 if (config->size <= 0)
313 what_they_get = MAX_REMOTE_PACKET_SIZE;
314 else
315 what_they_get = config->size;
316 }
317 else
318 {
319 what_they_get = remote_packet_size;
320 /* Limit the packet to the size specified by the user. */
321 if (config->size > 0
322 && what_they_get > config->size)
323 what_they_get = config->size;
324 /* Limit it to the size of the targets ``g'' response. */
325 if (actual_register_packet_size > 0
326 && what_they_get > actual_register_packet_size)
327 what_they_get = actual_register_packet_size;
328 }
329 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
330 what_they_get = MAX_REMOTE_PACKET_SIZE;
331 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
332 what_they_get = MIN_REMOTE_PACKET_SIZE;
333 return what_they_get;
334 }
335
336 /* Update the size of a read/write packet. If they user wants
337 something really big then do a sanity check. */
338
339 static void
340 set_memory_packet_size (char *args, struct memory_packet_config *config)
341 {
342 int fixed_p = config->fixed_p;
343 long size = config->size;
344 if (args == NULL)
345 error ("Argument required (integer, `fixed' or `limited').");
346 else if (strcmp (args, "hard") == 0
347 || strcmp (args, "fixed") == 0)
348 fixed_p = 1;
349 else if (strcmp (args, "soft") == 0
350 || strcmp (args, "limit") == 0)
351 fixed_p = 0;
352 else
353 {
354 char *end;
355 size = strtoul (args, &end, 0);
356 if (args == end)
357 error ("Invalid %s (bad syntax).", config->name);
358 #if 0
359 /* Instead of explicitly capping the size of a packet to
360 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
361 instead allowed to set the size to something arbitrarily
362 large. */
363 if (size > MAX_REMOTE_PACKET_SIZE)
364 error ("Invalid %s (too large).", config->name);
365 #endif
366 }
367 /* Extra checks? */
368 if (fixed_p && !config->fixed_p)
369 {
370 if (! query ("The target may not be able to correctly handle a %s\n"
371 "of %ld bytes. Change the packet size? ",
372 config->name, size))
373 error ("Packet size not changed.");
374 }
375 /* Update the config. */
376 config->fixed_p = fixed_p;
377 config->size = size;
378 }
379
380 static void
381 show_memory_packet_size (struct memory_packet_config *config)
382 {
383 printf_filtered ("The %s is %ld. ", config->name, config->size);
384 if (config->fixed_p)
385 printf_filtered ("Packets are fixed at %ld bytes.\n",
386 get_memory_packet_size (config));
387 else
388 printf_filtered ("Packets are limited to %ld bytes.\n",
389 get_memory_packet_size (config));
390 }
391
392 static struct memory_packet_config memory_write_packet_config =
393 {
394 "memory-write-packet-size",
395 };
396
397 static void
398 set_memory_write_packet_size (char *args, int from_tty)
399 {
400 set_memory_packet_size (args, &memory_write_packet_config);
401 }
402
403 static void
404 show_memory_write_packet_size (char *args, int from_tty)
405 {
406 show_memory_packet_size (&memory_write_packet_config);
407 }
408
409 static long
410 get_memory_write_packet_size (void)
411 {
412 return get_memory_packet_size (&memory_write_packet_config);
413 }
414
415 static struct memory_packet_config memory_read_packet_config =
416 {
417 "memory-read-packet-size",
418 };
419
420 static void
421 set_memory_read_packet_size (char *args, int from_tty)
422 {
423 set_memory_packet_size (args, &memory_read_packet_config);
424 }
425
426 static void
427 show_memory_read_packet_size (char *args, int from_tty)
428 {
429 show_memory_packet_size (&memory_read_packet_config);
430 }
431
432 static long
433 get_memory_read_packet_size (void)
434 {
435 long size = get_memory_packet_size (&memory_read_packet_config);
436 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
437 extra buffer size argument before the memory read size can be
438 increased beyond PBUFSIZ. */
439 if (size > PBUFSIZ)
440 size = PBUFSIZ;
441 return size;
442 }
443
444 /* Register packet size initialization. Since the bounds change when
445 the architecture changes (namely REGISTER_BYTES) this all needs to
446 be multi-arched. */
447
448 static void
449 register_remote_packet_sizes (void)
450 {
451 REGISTER_GDBARCH_SWAP (remote_packet_size);
452 REGISTER_GDBARCH_SWAP (actual_register_packet_size);
453 }
454
455 static void
456 build_remote_packet_sizes (void)
457 {
458 /* Default maximum number of characters in a packet body. Many
459 remote stubs have a hardwired buffer size of 400 bytes
460 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
461 as the maximum packet-size to ensure that the packet and an extra
462 NUL character can always fit in the buffer. This stops GDB
463 trashing stubs that try to squeeze an extra NUL into what is
464 already a full buffer (As of 1999-12-04 that was most stubs. */
465 remote_packet_size = 400 - 1;
466 /* Should REGISTER_BYTES needs more space than the default, adjust
467 the size accordingly. Remember that each byte is encoded as two
468 characters. 32 is the overhead for the packet header /
469 footer. NOTE: cagney/1999-10-26: I suspect that 8
470 (``$NN:G...#NN'') is a better guess, the below has been padded a
471 little. */
472 if (REGISTER_BYTES > ((remote_packet_size - 32) / 2))
473 remote_packet_size = (REGISTER_BYTES * 2 + 32);
474
475 /* This one is filled in when a ``g'' packet is received. */
476 actual_register_packet_size = 0;
477 }
478 \f
479 /* Generic configuration support for packets the stub optionally
480 supports. Allows the user to specify the use of the packet as well
481 as allowing GDB to auto-detect support in the remote stub. */
482
483 enum packet_support
484 {
485 PACKET_SUPPORT_UNKNOWN = 0,
486 PACKET_ENABLE,
487 PACKET_DISABLE
488 };
489
490 struct packet_config
491 {
492 char *name;
493 char *title;
494 enum cmd_auto_boolean detect;
495 enum packet_support support;
496 };
497
498 /* Analyze a packet's return value and update the packet config
499 accordingly. */
500
501 enum packet_result
502 {
503 PACKET_ERROR,
504 PACKET_OK,
505 PACKET_UNKNOWN
506 };
507
508 static void
509 update_packet_config (struct packet_config *config)
510 {
511 switch (config->detect)
512 {
513 case CMD_AUTO_BOOLEAN_TRUE:
514 config->support = PACKET_ENABLE;
515 break;
516 case CMD_AUTO_BOOLEAN_FALSE:
517 config->support = PACKET_DISABLE;
518 break;
519 case CMD_AUTO_BOOLEAN_AUTO:
520 config->support = PACKET_SUPPORT_UNKNOWN;
521 break;
522 }
523 }
524
525 static void
526 show_packet_config_cmd (struct packet_config *config)
527 {
528 char *support = "internal-error";
529 switch (config->support)
530 {
531 case PACKET_ENABLE:
532 support = "enabled";
533 break;
534 case PACKET_DISABLE:
535 support = "disabled";
536 break;
537 case PACKET_SUPPORT_UNKNOWN:
538 support = "unknown";
539 break;
540 }
541 switch (config->detect)
542 {
543 case CMD_AUTO_BOOLEAN_AUTO:
544 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
545 config->name, config->title, support);
546 break;
547 case CMD_AUTO_BOOLEAN_TRUE:
548 case CMD_AUTO_BOOLEAN_FALSE:
549 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
550 config->name, config->title, support);
551 break;
552 }
553 }
554
555 static void
556 add_packet_config_cmd (struct packet_config *config,
557 char *name,
558 char *title,
559 void (*set_func) (char *args, int from_tty,
560 struct cmd_list_element *
561 c),
562 void (*show_func) (char *name,
563 int from_tty),
564 struct cmd_list_element **set_remote_list,
565 struct cmd_list_element **show_remote_list,
566 int legacy)
567 {
568 struct cmd_list_element *set_cmd;
569 struct cmd_list_element *show_cmd;
570 char *set_doc;
571 char *show_doc;
572 char *cmd_name;
573 config->name = name;
574 config->title = title;
575 config->detect = CMD_AUTO_BOOLEAN_AUTO;
576 config->support = PACKET_SUPPORT_UNKNOWN;
577 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
578 name, title);
579 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
580 name, title);
581 /* set/show TITLE-packet {auto,on,off} */
582 xasprintf (&cmd_name, "%s-packet", title);
583 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
584 &config->detect, set_doc,
585 set_remote_list);
586 set_cmd->function.sfunc = set_func;
587 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
588 show_remote_list);
589 /* set/show remote NAME-packet {auto,on,off} -- legacy */
590 if (legacy)
591 {
592 char *legacy_name;
593 xasprintf (&legacy_name, "%s-packet", name);
594 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
595 set_remote_list);
596 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
597 show_remote_list);
598 }
599 }
600
601 static enum packet_result
602 packet_ok (const char *buf, struct packet_config *config)
603 {
604 if (buf[0] != '\0')
605 {
606 /* The stub recognized the packet request. Check that the
607 operation succeeded. */
608 switch (config->support)
609 {
610 case PACKET_SUPPORT_UNKNOWN:
611 if (remote_debug)
612 fprintf_unfiltered (gdb_stdlog,
613 "Packet %s (%s) is supported\n",
614 config->name, config->title);
615 config->support = PACKET_ENABLE;
616 break;
617 case PACKET_DISABLE:
618 internal_error (__FILE__, __LINE__,
619 "packet_ok: attempt to use a disabled packet");
620 break;
621 case PACKET_ENABLE:
622 break;
623 }
624 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
625 /* "OK" - definitly OK. */
626 return PACKET_OK;
627 if (buf[0] == 'E'
628 && isxdigit (buf[1]) && isxdigit (buf[2])
629 && buf[3] == '\0')
630 /* "Enn" - definitly an error. */
631 return PACKET_ERROR;
632 /* The packet may or may not be OK. Just assume it is */
633 return PACKET_OK;
634 }
635 else
636 {
637 /* The stub does not support the packet. */
638 switch (config->support)
639 {
640 case PACKET_ENABLE:
641 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
642 /* If the stub previously indicated that the packet was
643 supported then there is a protocol error.. */
644 error ("Protocol error: %s (%s) conflicting enabled responses.",
645 config->name, config->title);
646 else
647 /* The user set it wrong. */
648 error ("Enabled packet %s (%s) not recognized by stub",
649 config->name, config->title);
650 break;
651 case PACKET_SUPPORT_UNKNOWN:
652 if (remote_debug)
653 fprintf_unfiltered (gdb_stdlog,
654 "Packet %s (%s) is NOT supported\n",
655 config->name, config->title);
656 config->support = PACKET_DISABLE;
657 break;
658 case PACKET_DISABLE:
659 break;
660 }
661 return PACKET_UNKNOWN;
662 }
663 }
664
665 /* Should we try the 'P' (set register) request? */
666
667 static struct packet_config remote_protocol_P;
668
669 static void
670 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
671 struct cmd_list_element *c)
672 {
673 update_packet_config (&remote_protocol_P);
674 }
675
676 static void
677 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
678 {
679 show_packet_config_cmd (&remote_protocol_P);
680 }
681
682 /* Should we try one of the 'Z' requests? */
683
684 enum Z_packet_type
685 {
686 Z_PACKET_SOFTWARE_BP,
687 Z_PACKET_HARDWARE_BP,
688 Z_PACKET_WRITE_WP,
689 Z_PACKET_READ_WP,
690 Z_PACKET_ACCESS_WP,
691 NR_Z_PACKET_TYPES
692 };
693
694 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
695
696 /* FIXME: Instead of having all these boiler plate functions, the
697 command callback should include a context argument. */
698
699 static void
700 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
701 struct cmd_list_element *c)
702 {
703 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
704 }
705
706 static void
707 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
708 {
709 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
710 }
711
712 static void
713 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
717 }
718
719 static void
720 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
721 {
722 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
723 }
724
725 static void
726 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
727 struct cmd_list_element *c)
728 {
729 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
730 }
731
732 static void
733 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
734 {
735 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
736 }
737
738 static void
739 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
740 struct cmd_list_element *c)
741 {
742 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
743 }
744
745 static void
746 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
747 {
748 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
749 }
750
751 static void
752 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
753 struct cmd_list_element *c)
754 {
755 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
756 }
757
758 static void
759 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
760 {
761 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
762 }
763
764 /* For compatibility with older distributions. Provide a ``set remote
765 Z-packet ...'' command that updates all the Z packet types. */
766
767 static enum cmd_auto_boolean remote_Z_packet_detect;
768
769 static void
770 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
771 struct cmd_list_element *c)
772 {
773 int i;
774 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
775 {
776 remote_protocol_Z[i].detect = remote_Z_packet_detect;
777 update_packet_config (&remote_protocol_Z[i]);
778 }
779 }
780
781 static void
782 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
783 {
784 int i;
785 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
786 {
787 show_packet_config_cmd (&remote_protocol_Z[i]);
788 }
789 }
790
791 /* Should we try the 'X' (remote binary download) packet?
792
793 This variable (available to the user via "set remote X-packet")
794 dictates whether downloads are sent in binary (via the 'X' packet).
795 We assume that the stub can, and attempt to do it. This will be
796 cleared if the stub does not understand it. This switch is still
797 needed, though in cases when the packet is supported in the stub,
798 but the connection does not allow it (i.e., 7-bit serial connection
799 only). */
800
801 static struct packet_config remote_protocol_binary_download;
802
803 /* Should we try the 'ThreadInfo' query packet?
804
805 This variable (NOT available to the user: auto-detect only!)
806 determines whether GDB will use the new, simpler "ThreadInfo"
807 query or the older, more complex syntax for thread queries.
808 This is an auto-detect variable (set to true at each connect,
809 and set to false when the target fails to recognize it). */
810
811 static int use_threadinfo_query;
812 static int use_threadextra_query;
813
814 static void
815 set_remote_protocol_binary_download_cmd (char *args,
816 int from_tty,
817 struct cmd_list_element *c)
818 {
819 update_packet_config (&remote_protocol_binary_download);
820 }
821
822 static void
823 show_remote_protocol_binary_download_cmd (char *args,
824 int from_tty)
825 {
826 show_packet_config_cmd (&remote_protocol_binary_download);
827 }
828
829
830 /* Tokens for use by the asynchronous signal handlers for SIGINT */
831 PTR sigint_remote_twice_token;
832 PTR sigint_remote_token;
833
834 /* These are pointers to hook functions that may be set in order to
835 modify resume/wait behavior for a particular architecture. */
836
837 void (*target_resume_hook) (void);
838 void (*target_wait_loop_hook) (void);
839 \f
840
841
842 /* These are the threads which we last sent to the remote system.
843 -1 for all or -2 for not sent yet. */
844 static int general_thread;
845 static int continue_thread;
846
847 /* Call this function as a result of
848 1) A halt indication (T packet) containing a thread id
849 2) A direct query of currthread
850 3) Successful execution of set thread
851 */
852
853 static void
854 record_currthread (int currthread)
855 {
856 general_thread = currthread;
857
858 /* If this is a new thread, add it to GDB's thread list.
859 If we leave it up to WFI to do this, bad things will happen. */
860 if (!in_thread_list (currthread))
861 {
862 add_thread (currthread);
863 #ifdef UI_OUT
864 ui_out_text (uiout, "[New ");
865 ui_out_text (uiout, target_pid_to_str (currthread));
866 ui_out_text (uiout, "]\n");
867 #else
868 printf_filtered ("[New %s]\n", target_pid_to_str (currthread));
869 #endif
870 }
871 }
872
873 #define MAGIC_NULL_PID 42000
874
875 static void
876 set_thread (int th, int gen)
877 {
878 char *buf = alloca (PBUFSIZ);
879 int state = gen ? general_thread : continue_thread;
880
881 if (state == th)
882 return;
883
884 buf[0] = 'H';
885 buf[1] = gen ? 'g' : 'c';
886 if (th == MAGIC_NULL_PID)
887 {
888 buf[2] = '0';
889 buf[3] = '\0';
890 }
891 else if (th < 0)
892 sprintf (&buf[2], "-%x", -th);
893 else
894 sprintf (&buf[2], "%x", th);
895 putpkt (buf);
896 getpkt (buf, PBUFSIZ, 0);
897 if (gen)
898 general_thread = th;
899 else
900 continue_thread = th;
901 }
902 \f
903 /* Return nonzero if the thread TH is still alive on the remote system. */
904
905 static int
906 remote_thread_alive (int tid)
907 {
908 char buf[16];
909
910 if (tid < 0)
911 sprintf (buf, "T-%08x", -tid);
912 else
913 sprintf (buf, "T%08x", tid);
914 putpkt (buf);
915 getpkt (buf, sizeof (buf), 0);
916 return (buf[0] == 'O' && buf[1] == 'K');
917 }
918
919 /* About these extended threadlist and threadinfo packets. They are
920 variable length packets but, the fields within them are often fixed
921 length. They are redundent enough to send over UDP as is the
922 remote protocol in general. There is a matching unit test module
923 in libstub. */
924
925 #define OPAQUETHREADBYTES 8
926
927 /* a 64 bit opaque identifier */
928 typedef unsigned char threadref[OPAQUETHREADBYTES];
929
930 /* WARNING: This threadref data structure comes from the remote O.S., libstub
931 protocol encoding, and remote.c. it is not particularly changable */
932
933 /* Right now, the internal structure is int. We want it to be bigger.
934 Plan to fix this.
935 */
936
937 typedef int gdb_threadref; /* internal GDB thread reference */
938
939 /* gdb_ext_thread_info is an internal GDB data structure which is
940 equivalint to the reply of the remote threadinfo packet */
941
942 struct gdb_ext_thread_info
943 {
944 threadref threadid; /* External form of thread reference */
945 int active; /* Has state interesting to GDB? , regs, stack */
946 char display[256]; /* Brief state display, name, blocked/syspended */
947 char shortname[32]; /* To be used to name threads */
948 char more_display[256]; /* Long info, statistics, queue depth, whatever */
949 };
950
951 /* The volume of remote transfers can be limited by submitting
952 a mask containing bits specifying the desired information.
953 Use a union of these values as the 'selection' parameter to
954 get_thread_info. FIXME: Make these TAG names more thread specific.
955 */
956
957 #define TAG_THREADID 1
958 #define TAG_EXISTS 2
959 #define TAG_DISPLAY 4
960 #define TAG_THREADNAME 8
961 #define TAG_MOREDISPLAY 16
962
963 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
964
965 char *unpack_varlen_hex (char *buff, int *result);
966
967 static char *unpack_nibble (char *buf, int *val);
968
969 static char *pack_nibble (char *buf, int nibble);
970
971 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
972
973 static char *unpack_byte (char *buf, int *value);
974
975 static char *pack_int (char *buf, int value);
976
977 static char *unpack_int (char *buf, int *value);
978
979 static char *unpack_string (char *src, char *dest, int length);
980
981 static char *pack_threadid (char *pkt, threadref * id);
982
983 static char *unpack_threadid (char *inbuf, threadref * id);
984
985 void int_to_threadref (threadref * id, int value);
986
987 static int threadref_to_int (threadref * ref);
988
989 static void copy_threadref (threadref * dest, threadref * src);
990
991 static int threadmatch (threadref * dest, threadref * src);
992
993 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
994
995 static int remote_unpack_thread_info_response (char *pkt,
996 threadref * expectedref,
997 struct gdb_ext_thread_info
998 *info);
999
1000
1001 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1002 struct gdb_ext_thread_info *info);
1003
1004 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1005 int selection,
1006 struct gdb_ext_thread_info *info);
1007
1008 static char *pack_threadlist_request (char *pkt, int startflag,
1009 int threadcount,
1010 threadref * nextthread);
1011
1012 static int parse_threadlist_response (char *pkt,
1013 int result_limit,
1014 threadref * original_echo,
1015 threadref * resultlist, int *doneflag);
1016
1017 static int remote_get_threadlist (int startflag,
1018 threadref * nextthread,
1019 int result_limit,
1020 int *done,
1021 int *result_count, threadref * threadlist);
1022
1023 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1024
1025 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1026 void *context, int looplimit);
1027
1028 static int remote_newthread_step (threadref * ref, void *context);
1029
1030 /* encode 64 bits in 16 chars of hex */
1031
1032 static const char hexchars[] = "0123456789abcdef";
1033
1034 static int
1035 ishex (int ch, int *val)
1036 {
1037 if ((ch >= 'a') && (ch <= 'f'))
1038 {
1039 *val = ch - 'a' + 10;
1040 return 1;
1041 }
1042 if ((ch >= 'A') && (ch <= 'F'))
1043 {
1044 *val = ch - 'A' + 10;
1045 return 1;
1046 }
1047 if ((ch >= '0') && (ch <= '9'))
1048 {
1049 *val = ch - '0';
1050 return 1;
1051 }
1052 return 0;
1053 }
1054
1055 static int
1056 stubhex (int ch)
1057 {
1058 if (ch >= 'a' && ch <= 'f')
1059 return ch - 'a' + 10;
1060 if (ch >= '0' && ch <= '9')
1061 return ch - '0';
1062 if (ch >= 'A' && ch <= 'F')
1063 return ch - 'A' + 10;
1064 return -1;
1065 }
1066
1067 static int
1068 stub_unpack_int (char *buff, int fieldlength)
1069 {
1070 int nibble;
1071 int retval = 0;
1072
1073 while (fieldlength)
1074 {
1075 nibble = stubhex (*buff++);
1076 retval |= nibble;
1077 fieldlength--;
1078 if (fieldlength)
1079 retval = retval << 4;
1080 }
1081 return retval;
1082 }
1083
1084 char *
1085 unpack_varlen_hex (char *buff, /* packet to parse */
1086 int *result)
1087 {
1088 int nibble;
1089 int retval = 0;
1090
1091 while (ishex (*buff, &nibble))
1092 {
1093 buff++;
1094 retval = retval << 4;
1095 retval |= nibble & 0x0f;
1096 }
1097 *result = retval;
1098 return buff;
1099 }
1100
1101 static char *
1102 unpack_nibble (char *buf, int *val)
1103 {
1104 ishex (*buf++, val);
1105 return buf;
1106 }
1107
1108 static char *
1109 pack_nibble (char *buf, int nibble)
1110 {
1111 *buf++ = hexchars[(nibble & 0x0f)];
1112 return buf;
1113 }
1114
1115 static char *
1116 pack_hex_byte (char *pkt, int byte)
1117 {
1118 *pkt++ = hexchars[(byte >> 4) & 0xf];
1119 *pkt++ = hexchars[(byte & 0xf)];
1120 return pkt;
1121 }
1122
1123 static char *
1124 unpack_byte (char *buf, int *value)
1125 {
1126 *value = stub_unpack_int (buf, 2);
1127 return buf + 2;
1128 }
1129
1130 static char *
1131 pack_int (char *buf, int value)
1132 {
1133 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1134 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1135 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1136 buf = pack_hex_byte (buf, (value & 0xff));
1137 return buf;
1138 }
1139
1140 static char *
1141 unpack_int (char *buf, int *value)
1142 {
1143 *value = stub_unpack_int (buf, 8);
1144 return buf + 8;
1145 }
1146
1147 #if 0 /* currently unused, uncomment when needed */
1148 static char *pack_string (char *pkt, char *string);
1149
1150 static char *
1151 pack_string (char *pkt, char *string)
1152 {
1153 char ch;
1154 int len;
1155
1156 len = strlen (string);
1157 if (len > 200)
1158 len = 200; /* Bigger than most GDB packets, junk??? */
1159 pkt = pack_hex_byte (pkt, len);
1160 while (len-- > 0)
1161 {
1162 ch = *string++;
1163 if ((ch == '\0') || (ch == '#'))
1164 ch = '*'; /* Protect encapsulation */
1165 *pkt++ = ch;
1166 }
1167 return pkt;
1168 }
1169 #endif /* 0 (unused) */
1170
1171 static char *
1172 unpack_string (char *src, char *dest, int length)
1173 {
1174 while (length--)
1175 *dest++ = *src++;
1176 *dest = '\0';
1177 return src;
1178 }
1179
1180 static char *
1181 pack_threadid (char *pkt, threadref *id)
1182 {
1183 char *limit;
1184 unsigned char *altid;
1185
1186 altid = (unsigned char *) id;
1187 limit = pkt + BUF_THREAD_ID_SIZE;
1188 while (pkt < limit)
1189 pkt = pack_hex_byte (pkt, *altid++);
1190 return pkt;
1191 }
1192
1193
1194 static char *
1195 unpack_threadid (char *inbuf, threadref *id)
1196 {
1197 char *altref;
1198 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1199 int x, y;
1200
1201 altref = (char *) id;
1202
1203 while (inbuf < limit)
1204 {
1205 x = stubhex (*inbuf++);
1206 y = stubhex (*inbuf++);
1207 *altref++ = (x << 4) | y;
1208 }
1209 return inbuf;
1210 }
1211
1212 /* Externally, threadrefs are 64 bits but internally, they are still
1213 ints. This is due to a mismatch of specifications. We would like
1214 to use 64bit thread references internally. This is an adapter
1215 function. */
1216
1217 void
1218 int_to_threadref (threadref *id, int value)
1219 {
1220 unsigned char *scan;
1221
1222 scan = (unsigned char *) id;
1223 {
1224 int i = 4;
1225 while (i--)
1226 *scan++ = 0;
1227 }
1228 *scan++ = (value >> 24) & 0xff;
1229 *scan++ = (value >> 16) & 0xff;
1230 *scan++ = (value >> 8) & 0xff;
1231 *scan++ = (value & 0xff);
1232 }
1233
1234 static int
1235 threadref_to_int (threadref *ref)
1236 {
1237 int i, value = 0;
1238 unsigned char *scan;
1239
1240 scan = (char *) ref;
1241 scan += 4;
1242 i = 4;
1243 while (i-- > 0)
1244 value = (value << 8) | ((*scan++) & 0xff);
1245 return value;
1246 }
1247
1248 static void
1249 copy_threadref (threadref *dest, threadref *src)
1250 {
1251 int i;
1252 unsigned char *csrc, *cdest;
1253
1254 csrc = (unsigned char *) src;
1255 cdest = (unsigned char *) dest;
1256 i = 8;
1257 while (i--)
1258 *cdest++ = *csrc++;
1259 }
1260
1261 static int
1262 threadmatch (threadref *dest, threadref *src)
1263 {
1264 /* things are broken right now, so just assume we got a match */
1265 #if 0
1266 unsigned char *srcp, *destp;
1267 int i, result;
1268 srcp = (char *) src;
1269 destp = (char *) dest;
1270
1271 result = 1;
1272 while (i-- > 0)
1273 result &= (*srcp++ == *destp++) ? 1 : 0;
1274 return result;
1275 #endif
1276 return 1;
1277 }
1278
1279 /*
1280 threadid:1, # always request threadid
1281 context_exists:2,
1282 display:4,
1283 unique_name:8,
1284 more_display:16
1285 */
1286
1287 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1288
1289 static char *
1290 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1291 {
1292 *pkt++ = 'q'; /* Info Query */
1293 *pkt++ = 'P'; /* process or thread info */
1294 pkt = pack_int (pkt, mode); /* mode */
1295 pkt = pack_threadid (pkt, id); /* threadid */
1296 *pkt = '\0'; /* terminate */
1297 return pkt;
1298 }
1299
1300 /* These values tag the fields in a thread info response packet */
1301 /* Tagging the fields allows us to request specific fields and to
1302 add more fields as time goes by */
1303
1304 #define TAG_THREADID 1 /* Echo the thread identifier */
1305 #define TAG_EXISTS 2 /* Is this process defined enough to
1306 fetch registers and its stack */
1307 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1308 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1309 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1310 the process */
1311
1312 static int
1313 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1314 struct gdb_ext_thread_info *info)
1315 {
1316 int mask, length;
1317 unsigned int tag;
1318 threadref ref;
1319 char *limit = pkt + PBUFSIZ; /* plausable parsing limit */
1320 int retval = 1;
1321
1322 /* info->threadid = 0; FIXME: implement zero_threadref */
1323 info->active = 0;
1324 info->display[0] = '\0';
1325 info->shortname[0] = '\0';
1326 info->more_display[0] = '\0';
1327
1328 /* Assume the characters indicating the packet type have been stripped */
1329 pkt = unpack_int (pkt, &mask); /* arg mask */
1330 pkt = unpack_threadid (pkt, &ref);
1331
1332 if (mask == 0)
1333 warning ("Incomplete response to threadinfo request\n");
1334 if (!threadmatch (&ref, expectedref))
1335 { /* This is an answer to a different request */
1336 warning ("ERROR RMT Thread info mismatch\n");
1337 return 0;
1338 }
1339 copy_threadref (&info->threadid, &ref);
1340
1341 /* Loop on tagged fields , try to bail if somthing goes wrong */
1342
1343 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1344 {
1345 pkt = unpack_int (pkt, &tag); /* tag */
1346 pkt = unpack_byte (pkt, &length); /* length */
1347 if (!(tag & mask)) /* tags out of synch with mask */
1348 {
1349 warning ("ERROR RMT: threadinfo tag mismatch\n");
1350 retval = 0;
1351 break;
1352 }
1353 if (tag == TAG_THREADID)
1354 {
1355 if (length != 16)
1356 {
1357 warning ("ERROR RMT: length of threadid is not 16\n");
1358 retval = 0;
1359 break;
1360 }
1361 pkt = unpack_threadid (pkt, &ref);
1362 mask = mask & ~TAG_THREADID;
1363 continue;
1364 }
1365 if (tag == TAG_EXISTS)
1366 {
1367 info->active = stub_unpack_int (pkt, length);
1368 pkt += length;
1369 mask = mask & ~(TAG_EXISTS);
1370 if (length > 8)
1371 {
1372 warning ("ERROR RMT: 'exists' length too long\n");
1373 retval = 0;
1374 break;
1375 }
1376 continue;
1377 }
1378 if (tag == TAG_THREADNAME)
1379 {
1380 pkt = unpack_string (pkt, &info->shortname[0], length);
1381 mask = mask & ~TAG_THREADNAME;
1382 continue;
1383 }
1384 if (tag == TAG_DISPLAY)
1385 {
1386 pkt = unpack_string (pkt, &info->display[0], length);
1387 mask = mask & ~TAG_DISPLAY;
1388 continue;
1389 }
1390 if (tag == TAG_MOREDISPLAY)
1391 {
1392 pkt = unpack_string (pkt, &info->more_display[0], length);
1393 mask = mask & ~TAG_MOREDISPLAY;
1394 continue;
1395 }
1396 warning ("ERROR RMT: unknown thread info tag\n");
1397 break; /* Not a tag we know about */
1398 }
1399 return retval;
1400 }
1401
1402 static int
1403 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1404 struct gdb_ext_thread_info *info)
1405 {
1406 int result;
1407 char *threadinfo_pkt = alloca (PBUFSIZ);
1408
1409 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1410 putpkt (threadinfo_pkt);
1411 getpkt (threadinfo_pkt, PBUFSIZ, 0);
1412 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1413 info);
1414 return result;
1415 }
1416
1417 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1418 representation of a threadid. */
1419
1420 static int
1421 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1422 struct gdb_ext_thread_info *info)
1423 {
1424 threadref lclref;
1425
1426 int_to_threadref (&lclref, *ref);
1427 return remote_get_threadinfo (&lclref, selection, info);
1428 }
1429
1430 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1431
1432 static char *
1433 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1434 threadref *nextthread)
1435 {
1436 *pkt++ = 'q'; /* info query packet */
1437 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1438 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1439 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1440 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1441 *pkt = '\0';
1442 return pkt;
1443 }
1444
1445 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1446
1447 static int
1448 parse_threadlist_response (char *pkt, int result_limit,
1449 threadref *original_echo, threadref *resultlist,
1450 int *doneflag)
1451 {
1452 char *limit;
1453 int count, resultcount, done;
1454
1455 resultcount = 0;
1456 /* Assume the 'q' and 'M chars have been stripped. */
1457 limit = pkt + (PBUFSIZ - BUF_THREAD_ID_SIZE); /* done parse past here */
1458 pkt = unpack_byte (pkt, &count); /* count field */
1459 pkt = unpack_nibble (pkt, &done);
1460 /* The first threadid is the argument threadid. */
1461 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1462 while ((count-- > 0) && (pkt < limit))
1463 {
1464 pkt = unpack_threadid (pkt, resultlist++);
1465 if (resultcount++ >= result_limit)
1466 break;
1467 }
1468 if (doneflag)
1469 *doneflag = done;
1470 return resultcount;
1471 }
1472
1473 static int
1474 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1475 int *done, int *result_count, threadref *threadlist)
1476 {
1477 static threadref echo_nextthread;
1478 char *threadlist_packet = alloca (PBUFSIZ);
1479 char *t_response = alloca (PBUFSIZ);
1480 int result = 1;
1481
1482 /* Trancate result limit to be smaller than the packet size */
1483 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= PBUFSIZ)
1484 result_limit = (PBUFSIZ / BUF_THREAD_ID_SIZE) - 2;
1485
1486 pack_threadlist_request (threadlist_packet,
1487 startflag, result_limit, nextthread);
1488 putpkt (threadlist_packet);
1489 getpkt (t_response, PBUFSIZ, 0);
1490
1491 *result_count =
1492 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1493 threadlist, done);
1494
1495 if (!threadmatch (&echo_nextthread, nextthread))
1496 {
1497 /* FIXME: This is a good reason to drop the packet */
1498 /* Possably, there is a duplicate response */
1499 /* Possabilities :
1500 retransmit immediatly - race conditions
1501 retransmit after timeout - yes
1502 exit
1503 wait for packet, then exit
1504 */
1505 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1506 return 0; /* I choose simply exiting */
1507 }
1508 if (*result_count <= 0)
1509 {
1510 if (*done != 1)
1511 {
1512 warning ("RMT ERROR : failed to get remote thread list\n");
1513 result = 0;
1514 }
1515 return result; /* break; */
1516 }
1517 if (*result_count > result_limit)
1518 {
1519 *result_count = 0;
1520 warning ("RMT ERROR: threadlist response longer than requested\n");
1521 return 0;
1522 }
1523 return result;
1524 }
1525
1526 /* This is the interface between remote and threads, remotes upper interface */
1527
1528 /* remote_find_new_threads retrieves the thread list and for each
1529 thread in the list, looks up the thread in GDB's internal list,
1530 ading the thread if it does not already exist. This involves
1531 getting partial thread lists from the remote target so, polling the
1532 quit_flag is required. */
1533
1534
1535 /* About this many threadisds fit in a packet. */
1536
1537 #define MAXTHREADLISTRESULTS 32
1538
1539 static int
1540 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1541 int looplimit)
1542 {
1543 int done, i, result_count;
1544 int startflag = 1;
1545 int result = 1;
1546 int loopcount = 0;
1547 static threadref nextthread;
1548 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1549
1550 done = 0;
1551 while (!done)
1552 {
1553 if (loopcount++ > looplimit)
1554 {
1555 result = 0;
1556 warning ("Remote fetch threadlist -infinite loop-\n");
1557 break;
1558 }
1559 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1560 &done, &result_count, resultthreadlist))
1561 {
1562 result = 0;
1563 break;
1564 }
1565 /* clear for later iterations */
1566 startflag = 0;
1567 /* Setup to resume next batch of thread references, set nextthread. */
1568 if (result_count >= 1)
1569 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1570 i = 0;
1571 while (result_count--)
1572 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1573 break;
1574 }
1575 return result;
1576 }
1577
1578 static int
1579 remote_newthread_step (threadref *ref, void *context)
1580 {
1581 int pid;
1582
1583 pid = threadref_to_int (ref);
1584 if (!in_thread_list (pid))
1585 add_thread (pid);
1586 return 1; /* continue iterator */
1587 }
1588
1589 #define CRAZY_MAX_THREADS 1000
1590
1591 static int
1592 remote_current_thread (int oldpid)
1593 {
1594 char *buf = alloca (PBUFSIZ);
1595
1596 putpkt ("qC");
1597 getpkt (buf, PBUFSIZ, 0);
1598 if (buf[0] == 'Q' && buf[1] == 'C')
1599 return strtol (&buf[2], NULL, 16);
1600 else
1601 return oldpid;
1602 }
1603
1604 /* Find new threads for info threads command.
1605 * Original version, using John Metzler's thread protocol.
1606 */
1607
1608 static void
1609 remote_find_new_threads (void)
1610 {
1611 remote_threadlist_iterator (remote_newthread_step, 0,
1612 CRAZY_MAX_THREADS);
1613 if (inferior_pid == MAGIC_NULL_PID) /* ack ack ack */
1614 inferior_pid = remote_current_thread (inferior_pid);
1615 }
1616
1617 /*
1618 * Find all threads for info threads command.
1619 * Uses new thread protocol contributed by Cisco.
1620 * Falls back and attempts to use the older method (above)
1621 * if the target doesn't respond to the new method.
1622 */
1623
1624 static void
1625 remote_threads_info (void)
1626 {
1627 char *buf = alloca (PBUFSIZ);
1628 char *bufp;
1629 int tid;
1630
1631 if (remote_desc == 0) /* paranoia */
1632 error ("Command can only be used when connected to the remote target.");
1633
1634 if (use_threadinfo_query)
1635 {
1636 putpkt ("qfThreadInfo");
1637 bufp = buf;
1638 getpkt (bufp, PBUFSIZ, 0);
1639 if (bufp[0] != '\0') /* q packet recognized */
1640 {
1641 while (*bufp++ == 'm') /* reply contains one or more TID */
1642 {
1643 do
1644 {
1645 tid = strtol (bufp, &bufp, 16);
1646 if (tid != 0 && !in_thread_list (tid))
1647 add_thread (tid);
1648 }
1649 while (*bufp++ == ','); /* comma-separated list */
1650 putpkt ("qsThreadInfo");
1651 bufp = buf;
1652 getpkt (bufp, PBUFSIZ, 0);
1653 }
1654 return; /* done */
1655 }
1656 }
1657
1658 /* Else fall back to old method based on jmetzler protocol. */
1659 use_threadinfo_query = 0;
1660 remote_find_new_threads ();
1661 return;
1662 }
1663
1664 /*
1665 * Collect a descriptive string about the given thread.
1666 * The target may say anything it wants to about the thread
1667 * (typically info about its blocked / runnable state, name, etc.).
1668 * This string will appear in the info threads display.
1669 *
1670 * Optional: targets are not required to implement this function.
1671 */
1672
1673 static char *
1674 remote_threads_extra_info (struct thread_info *tp)
1675 {
1676 int result;
1677 int set;
1678 threadref id;
1679 struct gdb_ext_thread_info threadinfo;
1680 static char display_buf[100]; /* arbitrary... */
1681 char *bufp = alloca (PBUFSIZ);
1682 int n = 0; /* position in display_buf */
1683
1684 if (remote_desc == 0) /* paranoia */
1685 internal_error (__FILE__, __LINE__,
1686 "remote_threads_extra_info");
1687
1688 if (use_threadextra_query)
1689 {
1690 sprintf (bufp, "qThreadExtraInfo,%x", tp->pid);
1691 putpkt (bufp);
1692 getpkt (bufp, PBUFSIZ, 0);
1693 if (bufp[0] != 0)
1694 {
1695 char *p;
1696
1697 for (p = display_buf;
1698 p < display_buf + sizeof(display_buf) - 1 &&
1699 bufp[0] != 0 &&
1700 bufp[1] != 0;
1701 p++, bufp+=2)
1702 {
1703 *p = fromhex (bufp[0]) * 16 + fromhex (bufp[1]);
1704 }
1705 *p = 0;
1706 return display_buf;
1707 }
1708 }
1709
1710 /* If the above query fails, fall back to the old method. */
1711 use_threadextra_query = 0;
1712 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1713 | TAG_MOREDISPLAY | TAG_DISPLAY;
1714 int_to_threadref (&id, tp->pid);
1715 if (remote_get_threadinfo (&id, set, &threadinfo))
1716 if (threadinfo.active)
1717 {
1718 if (*threadinfo.shortname)
1719 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1720 if (*threadinfo.display)
1721 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1722 if (*threadinfo.more_display)
1723 n += sprintf(&display_buf[n], " Priority: %s",
1724 threadinfo.more_display);
1725
1726 if (n > 0)
1727 {
1728 /* for purely cosmetic reasons, clear up trailing commas */
1729 if (',' == display_buf[n-1])
1730 display_buf[n-1] = ' ';
1731 return display_buf;
1732 }
1733 }
1734 return NULL;
1735 }
1736
1737 \f
1738
1739 /* Restart the remote side; this is an extended protocol operation. */
1740
1741 static void
1742 extended_remote_restart (void)
1743 {
1744 char *buf = alloca (PBUFSIZ);
1745
1746 /* Send the restart command; for reasons I don't understand the
1747 remote side really expects a number after the "R". */
1748 buf[0] = 'R';
1749 sprintf (&buf[1], "%x", 0);
1750 putpkt (buf);
1751
1752 /* Now query for status so this looks just like we restarted
1753 gdbserver from scratch. */
1754 putpkt ("?");
1755 getpkt (buf, PBUFSIZ, 0);
1756 }
1757 \f
1758 /* Clean up connection to a remote debugger. */
1759
1760 /* ARGSUSED */
1761 static void
1762 remote_close (int quitting)
1763 {
1764 if (remote_desc)
1765 SERIAL_CLOSE (remote_desc);
1766 remote_desc = NULL;
1767 }
1768
1769 /* Query the remote side for the text, data and bss offsets. */
1770
1771 static void
1772 get_offsets (void)
1773 {
1774 char *buf = alloca (PBUFSIZ);
1775 char *ptr;
1776 int lose;
1777 CORE_ADDR text_addr, data_addr, bss_addr;
1778 struct section_offsets *offs;
1779
1780 putpkt ("qOffsets");
1781
1782 getpkt (buf, PBUFSIZ, 0);
1783
1784 if (buf[0] == '\000')
1785 return; /* Return silently. Stub doesn't support
1786 this command. */
1787 if (buf[0] == 'E')
1788 {
1789 warning ("Remote failure reply: %s", buf);
1790 return;
1791 }
1792
1793 /* Pick up each field in turn. This used to be done with scanf, but
1794 scanf will make trouble if CORE_ADDR size doesn't match
1795 conversion directives correctly. The following code will work
1796 with any size of CORE_ADDR. */
1797 text_addr = data_addr = bss_addr = 0;
1798 ptr = buf;
1799 lose = 0;
1800
1801 if (strncmp (ptr, "Text=", 5) == 0)
1802 {
1803 ptr += 5;
1804 /* Don't use strtol, could lose on big values. */
1805 while (*ptr && *ptr != ';')
1806 text_addr = (text_addr << 4) + fromhex (*ptr++);
1807 }
1808 else
1809 lose = 1;
1810
1811 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1812 {
1813 ptr += 6;
1814 while (*ptr && *ptr != ';')
1815 data_addr = (data_addr << 4) + fromhex (*ptr++);
1816 }
1817 else
1818 lose = 1;
1819
1820 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1821 {
1822 ptr += 5;
1823 while (*ptr && *ptr != ';')
1824 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1825 }
1826 else
1827 lose = 1;
1828
1829 if (lose)
1830 error ("Malformed response to offset query, %s", buf);
1831
1832 if (symfile_objfile == NULL)
1833 return;
1834
1835 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1836 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1837
1838 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1839
1840 /* This is a temporary kludge to force data and bss to use the same offsets
1841 because that's what nlmconv does now. The real solution requires changes
1842 to the stub and remote.c that I don't have time to do right now. */
1843
1844 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1845 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1846
1847 objfile_relocate (symfile_objfile, offs);
1848 }
1849
1850 /*
1851 * Cisco version of section offsets:
1852 *
1853 * Instead of having GDB query the target for the section offsets,
1854 * Cisco lets the target volunteer the information! It's also in
1855 * a different format, so here are the functions that will decode
1856 * a section offset packet from a Cisco target.
1857 */
1858
1859 /*
1860 * Function: remote_cisco_section_offsets
1861 *
1862 * Returns: zero for success, non-zero for failure
1863 */
1864
1865 static int
1866 remote_cisco_section_offsets (bfd_vma text_addr,
1867 bfd_vma data_addr,
1868 bfd_vma bss_addr,
1869 bfd_signed_vma *text_offs,
1870 bfd_signed_vma *data_offs,
1871 bfd_signed_vma *bss_offs)
1872 {
1873 bfd_vma text_base, data_base, bss_base;
1874 struct minimal_symbol *start;
1875 asection *sect;
1876 bfd *abfd;
1877 int len;
1878 char *p;
1879
1880 if (symfile_objfile == NULL)
1881 return -1; /* no can do nothin' */
1882
1883 start = lookup_minimal_symbol ("_start", NULL, NULL);
1884 if (start == NULL)
1885 return -1; /* Can't find "_start" symbol */
1886
1887 data_base = bss_base = 0;
1888 text_base = SYMBOL_VALUE_ADDRESS (start);
1889
1890 abfd = symfile_objfile->obfd;
1891 for (sect = abfd->sections;
1892 sect != 0;
1893 sect = sect->next)
1894 {
1895 p = (unsigned char *) bfd_get_section_name (abfd, sect);
1896 len = strlen (p);
1897 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
1898 if (data_base == 0 ||
1899 data_base > bfd_get_section_vma (abfd, sect))
1900 data_base = bfd_get_section_vma (abfd, sect);
1901 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
1902 if (bss_base == 0 ||
1903 bss_base > bfd_get_section_vma (abfd, sect))
1904 bss_base = bfd_get_section_vma (abfd, sect);
1905 }
1906 *text_offs = text_addr - text_base;
1907 *data_offs = data_addr - data_base;
1908 *bss_offs = bss_addr - bss_base;
1909 if (remote_debug)
1910 {
1911 char tmp[128];
1912
1913 sprintf (tmp, "VMA: text = 0x");
1914 sprintf_vma (tmp + strlen (tmp), text_addr);
1915 sprintf (tmp + strlen (tmp), " data = 0x");
1916 sprintf_vma (tmp + strlen (tmp), data_addr);
1917 sprintf (tmp + strlen (tmp), " bss = 0x");
1918 sprintf_vma (tmp + strlen (tmp), bss_addr);
1919 fprintf_filtered (gdb_stdlog, tmp);
1920 fprintf_filtered (gdb_stdlog,
1921 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
1922 paddr_nz (*text_offs),
1923 paddr_nz (*data_offs),
1924 paddr_nz (*bss_offs));
1925 }
1926
1927 return 0;
1928 }
1929
1930 /*
1931 * Function: remote_cisco_objfile_relocate
1932 *
1933 * Relocate the symbol file for a remote target.
1934 */
1935
1936 void
1937 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
1938 bfd_signed_vma bss_off)
1939 {
1940 struct section_offsets *offs;
1941
1942 if (text_off != 0 || data_off != 0 || bss_off != 0)
1943 {
1944 /* FIXME: This code assumes gdb-stabs.h is being used; it's
1945 broken for xcoff, dwarf, sdb-coff, etc. But there is no
1946 simple canonical representation for this stuff. */
1947
1948 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1949 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1950
1951 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
1952 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
1953 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
1954
1955 /* First call the standard objfile_relocate. */
1956 objfile_relocate (symfile_objfile, offs);
1957
1958 /* Now we need to fix up the section entries already attached to
1959 the exec target. These entries will control memory transfers
1960 from the exec file. */
1961
1962 exec_set_section_offsets (text_off, data_off, bss_off);
1963 }
1964 }
1965
1966 /* Stub for catch_errors. */
1967
1968 static int
1969 remote_start_remote_dummy (void *dummy)
1970 {
1971 start_remote (); /* Initialize gdb process mechanisms */
1972 return 1;
1973 }
1974
1975 static int
1976 remote_start_remote (PTR dummy)
1977 {
1978 immediate_quit++; /* Allow user to interrupt it */
1979
1980 /* Ack any packet which the remote side has already sent. */
1981 SERIAL_WRITE (remote_desc, "+", 1);
1982
1983 /* Let the stub know that we want it to return the thread. */
1984 set_thread (-1, 0);
1985
1986 inferior_pid = remote_current_thread (inferior_pid);
1987
1988 get_offsets (); /* Get text, data & bss offsets */
1989
1990 putpkt ("?"); /* initiate a query from remote machine */
1991 immediate_quit--;
1992
1993 return remote_start_remote_dummy (dummy);
1994 }
1995
1996 /* Open a connection to a remote debugger.
1997 NAME is the filename used for communication. */
1998
1999 static void
2000 remote_open (char *name, int from_tty)
2001 {
2002 remote_open_1 (name, from_tty, &remote_ops, 0);
2003 }
2004
2005 /* Just like remote_open, but with asynchronous support. */
2006 static void
2007 remote_async_open (char *name, int from_tty)
2008 {
2009 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2010 }
2011
2012 /* Open a connection to a remote debugger using the extended
2013 remote gdb protocol. NAME is the filename used for communication. */
2014
2015 static void
2016 extended_remote_open (char *name, int from_tty)
2017 {
2018 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2019 }
2020
2021 /* Just like extended_remote_open, but with asynchronous support. */
2022 static void
2023 extended_remote_async_open (char *name, int from_tty)
2024 {
2025 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2026 }
2027
2028 /* Generic code for opening a connection to a remote target. */
2029
2030 static void
2031 init_all_packet_configs (void)
2032 {
2033 int i;
2034 update_packet_config (&remote_protocol_P);
2035 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2036 update_packet_config (&remote_protocol_Z[i]);
2037 /* Force remote_write_bytes to check whether target supports binary
2038 downloading. */
2039 update_packet_config (&remote_protocol_binary_download);
2040 }
2041
2042 static void
2043 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2044 int extended_p)
2045 {
2046 if (name == 0)
2047 error ("To open a remote debug connection, you need to specify what\n\
2048 serial device is attached to the remote system\n\
2049 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2050
2051 /* See FIXME above */
2052 wait_forever_enabled_p = 1;
2053
2054 target_preopen (from_tty);
2055
2056 unpush_target (target);
2057
2058 remote_desc = SERIAL_OPEN (name);
2059 if (!remote_desc)
2060 perror_with_name (name);
2061
2062 if (baud_rate != -1)
2063 {
2064 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
2065 {
2066 SERIAL_CLOSE (remote_desc);
2067 perror_with_name (name);
2068 }
2069 }
2070
2071 SERIAL_RAW (remote_desc);
2072
2073 /* If there is something sitting in the buffer we might take it as a
2074 response to a command, which would be bad. */
2075 SERIAL_FLUSH_INPUT (remote_desc);
2076
2077 if (from_tty)
2078 {
2079 puts_filtered ("Remote debugging using ");
2080 puts_filtered (name);
2081 puts_filtered ("\n");
2082 }
2083 push_target (target); /* Switch to using remote target now */
2084
2085 init_all_packet_configs ();
2086
2087 general_thread = -2;
2088 continue_thread = -2;
2089
2090 /* Probe for ability to use "ThreadInfo" query, as required. */
2091 use_threadinfo_query = 1;
2092 use_threadextra_query = 1;
2093
2094 /* Without this, some commands which require an active target (such
2095 as kill) won't work. This variable serves (at least) double duty
2096 as both the pid of the target process (if it has such), and as a
2097 flag indicating that a target is active. These functions should
2098 be split out into seperate variables, especially since GDB will
2099 someday have a notion of debugging several processes. */
2100
2101 inferior_pid = MAGIC_NULL_PID;
2102 /* Start the remote connection; if error (0), discard this target.
2103 In particular, if the user quits, be sure to discard it
2104 (we'd be in an inconsistent state otherwise). */
2105 if (!catch_errors (remote_start_remote, NULL,
2106 "Couldn't establish connection to remote target\n",
2107 RETURN_MASK_ALL))
2108 {
2109 pop_target ();
2110 return;
2111 }
2112
2113 if (extended_p)
2114 {
2115 /* tell the remote that we're using the extended protocol. */
2116 char *buf = alloca (PBUFSIZ);
2117 putpkt ("!");
2118 getpkt (buf, PBUFSIZ, 0);
2119 }
2120 }
2121
2122 /* Just like remote_open but with asynchronous support. */
2123 static void
2124 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2125 int extended_p)
2126 {
2127 if (name == 0)
2128 error ("To open a remote debug connection, you need to specify what\n\
2129 serial device is attached to the remote system\n\
2130 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2131
2132 target_preopen (from_tty);
2133
2134 unpush_target (target);
2135
2136 remote_desc = SERIAL_OPEN (name);
2137 if (!remote_desc)
2138 perror_with_name (name);
2139
2140 if (baud_rate != -1)
2141 {
2142 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
2143 {
2144 SERIAL_CLOSE (remote_desc);
2145 perror_with_name (name);
2146 }
2147 }
2148
2149 SERIAL_RAW (remote_desc);
2150
2151 /* If there is something sitting in the buffer we might take it as a
2152 response to a command, which would be bad. */
2153 SERIAL_FLUSH_INPUT (remote_desc);
2154
2155 if (from_tty)
2156 {
2157 puts_filtered ("Remote debugging using ");
2158 puts_filtered (name);
2159 puts_filtered ("\n");
2160 }
2161
2162 push_target (target); /* Switch to using remote target now */
2163
2164 init_all_packet_configs ();
2165
2166 general_thread = -2;
2167 continue_thread = -2;
2168
2169 /* Probe for ability to use "ThreadInfo" query, as required. */
2170 use_threadinfo_query = 1;
2171 use_threadextra_query = 1;
2172
2173 /* Without this, some commands which require an active target (such
2174 as kill) won't work. This variable serves (at least) double duty
2175 as both the pid of the target process (if it has such), and as a
2176 flag indicating that a target is active. These functions should
2177 be split out into seperate variables, especially since GDB will
2178 someday have a notion of debugging several processes. */
2179 inferior_pid = MAGIC_NULL_PID;
2180
2181 /* With this target we start out by owning the terminal. */
2182 remote_async_terminal_ours_p = 1;
2183
2184 /* FIXME: cagney/1999-09-23: During the initial connection it is
2185 assumed that the target is already ready and able to respond to
2186 requests. Unfortunately remote_start_remote() eventually calls
2187 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2188 around this. Eventually a mechanism that allows
2189 wait_for_inferior() to expect/get timeouts will be
2190 implemented. */
2191 wait_forever_enabled_p = 0;
2192
2193 /* Start the remote connection; if error (0), discard this target.
2194 In particular, if the user quits, be sure to discard it
2195 (we'd be in an inconsistent state otherwise). */
2196 if (!catch_errors (remote_start_remote, NULL,
2197 "Couldn't establish connection to remote target\n",
2198 RETURN_MASK_ALL))
2199 {
2200 pop_target ();
2201 wait_forever_enabled_p = 1;
2202 return;
2203 }
2204
2205 wait_forever_enabled_p = 1;
2206
2207 if (extended_p)
2208 {
2209 /* tell the remote that we're using the extended protocol. */
2210 char *buf = alloca (PBUFSIZ);
2211 putpkt ("!");
2212 getpkt (buf, PBUFSIZ, 0);
2213 }
2214 }
2215
2216 /* This takes a program previously attached to and detaches it. After
2217 this is done, GDB can be used to debug some other program. We
2218 better not have left any breakpoints in the target program or it'll
2219 die when it hits one. */
2220
2221 static void
2222 remote_detach (char *args, int from_tty)
2223 {
2224 char *buf = alloca (PBUFSIZ);
2225
2226 if (args)
2227 error ("Argument given to \"detach\" when remotely debugging.");
2228
2229 /* Tell the remote target to detach. */
2230 strcpy (buf, "D");
2231 remote_send (buf, PBUFSIZ);
2232
2233 target_mourn_inferior ();
2234 if (from_tty)
2235 puts_filtered ("Ending remote debugging.\n");
2236
2237 }
2238
2239 /* Same as remote_detach, but with async support. */
2240 static void
2241 remote_async_detach (char *args, int from_tty)
2242 {
2243 char *buf = alloca (PBUFSIZ);
2244
2245 if (args)
2246 error ("Argument given to \"detach\" when remotely debugging.");
2247
2248 /* Tell the remote target to detach. */
2249 strcpy (buf, "D");
2250 remote_send (buf, PBUFSIZ);
2251
2252 /* Unregister the file descriptor from the event loop. */
2253 if (target_is_async_p ())
2254 SERIAL_ASYNC (remote_desc, NULL, 0);
2255
2256 target_mourn_inferior ();
2257 if (from_tty)
2258 puts_filtered ("Ending remote debugging.\n");
2259 }
2260
2261 /* Convert hex digit A to a number. */
2262
2263 int
2264 fromhex (int a)
2265 {
2266 if (a >= '0' && a <= '9')
2267 return a - '0';
2268 else if (a >= 'a' && a <= 'f')
2269 return a - 'a' + 10;
2270 else if (a >= 'A' && a <= 'F')
2271 return a - 'A' + 10;
2272 else
2273 error ("Reply contains invalid hex digit %d", a);
2274 }
2275
2276 /* Convert number NIB to a hex digit. */
2277
2278 static int
2279 tohex (int nib)
2280 {
2281 if (nib < 10)
2282 return '0' + nib;
2283 else
2284 return 'a' + nib - 10;
2285 }
2286 \f
2287 /* Tell the remote machine to resume. */
2288
2289 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2290
2291 static int last_sent_step;
2292
2293 static void
2294 remote_resume (int pid, int step, enum target_signal siggnal)
2295 {
2296 char *buf = alloca (PBUFSIZ);
2297
2298 if (pid == -1)
2299 set_thread (0, 0); /* run any thread */
2300 else
2301 set_thread (pid, 0); /* run this thread */
2302
2303 last_sent_signal = siggnal;
2304 last_sent_step = step;
2305
2306 /* A hook for when we need to do something at the last moment before
2307 resumption. */
2308 if (target_resume_hook)
2309 (*target_resume_hook) ();
2310
2311 if (siggnal != TARGET_SIGNAL_0)
2312 {
2313 buf[0] = step ? 'S' : 'C';
2314 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2315 buf[2] = tohex ((int) siggnal & 0xf);
2316 buf[3] = '\0';
2317 }
2318 else
2319 strcpy (buf, step ? "s" : "c");
2320
2321 putpkt (buf);
2322 }
2323
2324 /* Same as remote_resume, but with async support. */
2325 static void
2326 remote_async_resume (int pid, int step, enum target_signal siggnal)
2327 {
2328 char *buf = alloca (PBUFSIZ);
2329
2330 if (pid == -1)
2331 set_thread (0, 0); /* run any thread */
2332 else
2333 set_thread (pid, 0); /* run this thread */
2334
2335 last_sent_signal = siggnal;
2336 last_sent_step = step;
2337
2338 /* A hook for when we need to do something at the last moment before
2339 resumption. */
2340 if (target_resume_hook)
2341 (*target_resume_hook) ();
2342
2343 if (siggnal != TARGET_SIGNAL_0)
2344 {
2345 buf[0] = step ? 'S' : 'C';
2346 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2347 buf[2] = tohex ((int) siggnal & 0xf);
2348 buf[3] = '\0';
2349 }
2350 else
2351 strcpy (buf, step ? "s" : "c");
2352
2353 /* We are about to start executing the inferior, let's register it
2354 with the event loop. NOTE: this is the one place where all the
2355 execution commands end up. We could alternatively do this in each
2356 of the execution commands in infcmd.c.*/
2357 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2358 into infcmd.c in order to allow inferior function calls to work
2359 NOT asynchronously. */
2360 if (event_loop_p && target_can_async_p ())
2361 target_async (inferior_event_handler, 0);
2362 /* Tell the world that the target is now executing. */
2363 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2364 this? Instead, should the client of target just assume (for
2365 async targets) that the target is going to start executing? Is
2366 this information already found in the continuation block? */
2367 if (target_is_async_p ())
2368 target_executing = 1;
2369 putpkt (buf);
2370 }
2371 \f
2372
2373 /* Set up the signal handler for SIGINT, while the target is
2374 executing, ovewriting the 'regular' SIGINT signal handler. */
2375 static void
2376 initialize_sigint_signal_handler (void)
2377 {
2378 sigint_remote_token =
2379 create_async_signal_handler (async_remote_interrupt, NULL);
2380 signal (SIGINT, handle_remote_sigint);
2381 }
2382
2383 /* Signal handler for SIGINT, while the target is executing. */
2384 static void
2385 handle_remote_sigint (int sig)
2386 {
2387 signal (sig, handle_remote_sigint_twice);
2388 sigint_remote_twice_token =
2389 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2390 mark_async_signal_handler_wrapper (sigint_remote_token);
2391 }
2392
2393 /* Signal handler for SIGINT, installed after SIGINT has already been
2394 sent once. It will take effect the second time that the user sends
2395 a ^C. */
2396 static void
2397 handle_remote_sigint_twice (int sig)
2398 {
2399 signal (sig, handle_sigint);
2400 sigint_remote_twice_token =
2401 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2402 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2403 }
2404
2405 /* Perform the real interruption of the target execution, in response
2406 to a ^C. */
2407 static void
2408 async_remote_interrupt (gdb_client_data arg)
2409 {
2410 if (remote_debug)
2411 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2412
2413 target_stop ();
2414 }
2415
2416 /* Perform interrupt, if the first attempt did not succeed. Just give
2417 up on the target alltogether. */
2418 void
2419 async_remote_interrupt_twice (gdb_client_data arg)
2420 {
2421 if (remote_debug)
2422 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2423 /* Do something only if the target was not killed by the previous
2424 cntl-C. */
2425 if (target_executing)
2426 {
2427 interrupt_query ();
2428 signal (SIGINT, handle_remote_sigint);
2429 }
2430 }
2431
2432 /* Reinstall the usual SIGINT handlers, after the target has
2433 stopped. */
2434 static void
2435 cleanup_sigint_signal_handler (void *dummy)
2436 {
2437 signal (SIGINT, handle_sigint);
2438 if (sigint_remote_twice_token)
2439 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2440 if (sigint_remote_token)
2441 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2442 }
2443
2444 /* Send ^C to target to halt it. Target will respond, and send us a
2445 packet. */
2446 static void (*ofunc) (int);
2447
2448 /* The command line interface's stop routine. This function is installed
2449 as a signal handler for SIGINT. The first time a user requests a
2450 stop, we call remote_stop to send a break or ^C. If there is no
2451 response from the target (it didn't stop when the user requested it),
2452 we ask the user if he'd like to detach from the target. */
2453 static void
2454 remote_interrupt (int signo)
2455 {
2456 /* If this doesn't work, try more severe steps. */
2457 signal (signo, remote_interrupt_twice);
2458
2459 if (remote_debug)
2460 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2461
2462 target_stop ();
2463 }
2464
2465 /* The user typed ^C twice. */
2466
2467 static void
2468 remote_interrupt_twice (int signo)
2469 {
2470 signal (signo, ofunc);
2471 interrupt_query ();
2472 signal (signo, remote_interrupt);
2473 }
2474
2475 /* This is the generic stop called via the target vector. When a target
2476 interrupt is requested, either by the command line or the GUI, we
2477 will eventually end up here. */
2478 static void
2479 remote_stop (void)
2480 {
2481 /* Send a break or a ^C, depending on user preference. */
2482 if (remote_debug)
2483 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2484
2485 if (remote_break)
2486 SERIAL_SEND_BREAK (remote_desc);
2487 else
2488 SERIAL_WRITE (remote_desc, "\003", 1);
2489 }
2490
2491 /* Ask the user what to do when an interrupt is received. */
2492
2493 static void
2494 interrupt_query (void)
2495 {
2496 target_terminal_ours ();
2497
2498 if (query ("Interrupted while waiting for the program.\n\
2499 Give up (and stop debugging it)? "))
2500 {
2501 target_mourn_inferior ();
2502 return_to_top_level (RETURN_QUIT);
2503 }
2504
2505 target_terminal_inferior ();
2506 }
2507
2508 /* Enable/disable target terminal ownership. Most targets can use
2509 terminal groups to control terminal ownership. Remote targets are
2510 different in that explicit transfer of ownership to/from GDB/target
2511 is required. */
2512
2513 static void
2514 remote_async_terminal_inferior (void)
2515 {
2516 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2517 sync_execution here. This function should only be called when
2518 GDB is resuming the inferior in the forground. A background
2519 resume (``run&'') should leave GDB in control of the terminal and
2520 consequently should not call this code. */
2521 if (!sync_execution)
2522 return;
2523 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2524 calls target_terminal_*() idenpotent. The event-loop GDB talking
2525 to an asynchronous target with a synchronous command calls this
2526 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2527 stops trying to transfer the terminal to the target when it
2528 shouldn't this guard can go away. */
2529 if (!remote_async_terminal_ours_p)
2530 return;
2531 delete_file_handler (input_fd);
2532 remote_async_terminal_ours_p = 0;
2533 initialize_sigint_signal_handler ();
2534 /* NOTE: At this point we could also register our selves as the
2535 recipient of all input. Any characters typed could then be
2536 passed on down to the target. */
2537 }
2538
2539 static void
2540 remote_async_terminal_ours (void)
2541 {
2542 /* See FIXME in remote_async_terminal_inferior. */
2543 if (!sync_execution)
2544 return;
2545 /* See FIXME in remote_async_terminal_inferior. */
2546 if (remote_async_terminal_ours_p)
2547 return;
2548 cleanup_sigint_signal_handler (NULL);
2549 add_file_handler (input_fd, stdin_event_handler, 0);
2550 remote_async_terminal_ours_p = 1;
2551 }
2552
2553 /* If nonzero, ignore the next kill. */
2554
2555 int kill_kludge;
2556
2557 void
2558 remote_console_output (char *msg)
2559 {
2560 char *p;
2561
2562 for (p = msg; p[0] && p[1]; p += 2)
2563 {
2564 char tb[2];
2565 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2566 tb[0] = c;
2567 tb[1] = 0;
2568 fputs_unfiltered (tb, gdb_stdtarg);
2569 }
2570 gdb_flush (gdb_stdtarg);
2571 }
2572
2573 /* Wait until the remote machine stops, then return,
2574 storing status in STATUS just as `wait' would.
2575 Returns "pid", which in the case of a multi-threaded
2576 remote OS, is the thread-id. */
2577
2578 static int
2579 remote_wait (int pid, struct target_waitstatus *status)
2580 {
2581 unsigned char *buf = alloca (PBUFSIZ);
2582 int thread_num = -1;
2583
2584 status->kind = TARGET_WAITKIND_EXITED;
2585 status->value.integer = 0;
2586
2587 while (1)
2588 {
2589 unsigned char *p;
2590
2591 ofunc = signal (SIGINT, remote_interrupt);
2592 getpkt (buf, PBUFSIZ, 1);
2593 signal (SIGINT, ofunc);
2594
2595 /* This is a hook for when we need to do something (perhaps the
2596 collection of trace data) every time the target stops. */
2597 if (target_wait_loop_hook)
2598 (*target_wait_loop_hook) ();
2599
2600 switch (buf[0])
2601 {
2602 case 'E': /* Error of some sort */
2603 warning ("Remote failure reply: %s", buf);
2604 continue;
2605 case 'T': /* Status with PC, SP, FP, ... */
2606 {
2607 int i;
2608 long regno;
2609 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2610
2611 /* Expedited reply, containing Signal, {regno, reg} repeat */
2612 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2613 ss = signal number
2614 n... = register number
2615 r... = register contents
2616 */
2617 p = &buf[3]; /* after Txx */
2618
2619 while (*p)
2620 {
2621 unsigned char *p1;
2622 char *p_temp;
2623
2624 /* Read the register number */
2625 regno = strtol ((const char *) p, &p_temp, 16);
2626 p1 = (unsigned char *) p_temp;
2627
2628 if (p1 == p) /* No register number present here */
2629 {
2630 p1 = (unsigned char *) strchr ((const char *) p, ':');
2631 if (p1 == NULL)
2632 warning ("Malformed packet(a) (missing colon): %s\n\
2633 Packet: '%s'\n",
2634 p, buf);
2635 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
2636 {
2637 p_temp = unpack_varlen_hex (++p1, &thread_num);
2638 record_currthread (thread_num);
2639 p = (unsigned char *) p_temp;
2640 }
2641 }
2642 else
2643 {
2644 p = p1;
2645
2646 if (*p++ != ':')
2647 warning ("Malformed packet(b) (missing colon): %s\n\
2648 Packet: '%s'\n",
2649 p, buf);
2650
2651 if (regno >= NUM_REGS)
2652 warning ("Remote sent bad register number %ld: %s\n\
2653 Packet: '%s'\n",
2654 regno, p, buf);
2655
2656 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
2657 {
2658 if (p[0] == 0 || p[1] == 0)
2659 warning ("Remote reply is too short: %s", buf);
2660 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
2661 p += 2;
2662 }
2663 supply_register (regno, regs);
2664 }
2665
2666 if (*p++ != ';')
2667 {
2668 warning ("Remote register badly formatted: %s", buf);
2669 warning (" here: %s", p);
2670 }
2671 }
2672 }
2673 /* fall through */
2674 case 'S': /* Old style status, just signal only */
2675 status->kind = TARGET_WAITKIND_STOPPED;
2676 status->value.sig = (enum target_signal)
2677 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2678
2679 if (buf[3] == 'p')
2680 {
2681 /* Export Cisco kernel mode as a convenience variable
2682 (so that it can be used in the GDB prompt if desired). */
2683
2684 if (cisco_kernel_mode == 1)
2685 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2686 value_from_string ("PDEBUG-"));
2687 cisco_kernel_mode = 0;
2688 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2689 record_currthread (thread_num);
2690 }
2691 else if (buf[3] == 'k')
2692 {
2693 /* Export Cisco kernel mode as a convenience variable
2694 (so that it can be used in the GDB prompt if desired). */
2695
2696 if (cisco_kernel_mode == 1)
2697 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2698 value_from_string ("KDEBUG-"));
2699 cisco_kernel_mode = 1;
2700 }
2701 goto got_status;
2702 case 'N': /* Cisco special: status and offsets */
2703 {
2704 bfd_vma text_addr, data_addr, bss_addr;
2705 bfd_signed_vma text_off, data_off, bss_off;
2706 unsigned char *p1;
2707
2708 status->kind = TARGET_WAITKIND_STOPPED;
2709 status->value.sig = (enum target_signal)
2710 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2711
2712 if (symfile_objfile == NULL)
2713 {
2714 warning ("Relocation packet received with no symbol file. \
2715 Packet Dropped");
2716 goto got_status;
2717 }
2718
2719 /* Relocate object file. Buffer format is NAATT;DD;BB
2720 * where AA is the signal number, TT is the new text
2721 * address, DD * is the new data address, and BB is the
2722 * new bss address. */
2723
2724 p = &buf[3];
2725 text_addr = strtoul (p, (char **) &p1, 16);
2726 if (p1 == p || *p1 != ';')
2727 warning ("Malformed relocation packet: Packet '%s'", buf);
2728 p = p1 + 1;
2729 data_addr = strtoul (p, (char **) &p1, 16);
2730 if (p1 == p || *p1 != ';')
2731 warning ("Malformed relocation packet: Packet '%s'", buf);
2732 p = p1 + 1;
2733 bss_addr = strtoul (p, (char **) &p1, 16);
2734 if (p1 == p)
2735 warning ("Malformed relocation packet: Packet '%s'", buf);
2736
2737 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
2738 &text_off, &data_off, &bss_off)
2739 == 0)
2740 if (text_off != 0 || data_off != 0 || bss_off != 0)
2741 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
2742
2743 goto got_status;
2744 }
2745 case 'W': /* Target exited */
2746 {
2747 /* The remote process exited. */
2748 status->kind = TARGET_WAITKIND_EXITED;
2749 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2750 goto got_status;
2751 }
2752 case 'X':
2753 status->kind = TARGET_WAITKIND_SIGNALLED;
2754 status->value.sig = (enum target_signal)
2755 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2756 kill_kludge = 1;
2757
2758 goto got_status;
2759 case 'O': /* Console output */
2760 remote_console_output (buf + 1);
2761 continue;
2762 case '\0':
2763 if (last_sent_signal != TARGET_SIGNAL_0)
2764 {
2765 /* Zero length reply means that we tried 'S' or 'C' and
2766 the remote system doesn't support it. */
2767 target_terminal_ours_for_output ();
2768 printf_filtered
2769 ("Can't send signals to this remote system. %s not sent.\n",
2770 target_signal_to_name (last_sent_signal));
2771 last_sent_signal = TARGET_SIGNAL_0;
2772 target_terminal_inferior ();
2773
2774 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2775 putpkt ((char *) buf);
2776 continue;
2777 }
2778 /* else fallthrough */
2779 default:
2780 warning ("Invalid remote reply: %s", buf);
2781 continue;
2782 }
2783 }
2784 got_status:
2785 if (thread_num != -1)
2786 {
2787 return thread_num;
2788 }
2789 return inferior_pid;
2790 }
2791
2792 /* Async version of remote_wait. */
2793 static int
2794 remote_async_wait (int pid, struct target_waitstatus *status)
2795 {
2796 unsigned char *buf = alloca (PBUFSIZ);
2797 int thread_num = -1;
2798
2799 status->kind = TARGET_WAITKIND_EXITED;
2800 status->value.integer = 0;
2801
2802 while (1)
2803 {
2804 unsigned char *p;
2805
2806 if (!target_is_async_p ())
2807 ofunc = signal (SIGINT, remote_interrupt);
2808 /* FIXME: cagney/1999-09-27: If we're in async mode we should
2809 _never_ wait for ever -> test on target_is_async_p().
2810 However, before we do that we need to ensure that the caller
2811 knows how to take the target into/out of async mode. */
2812 getpkt (buf, PBUFSIZ, wait_forever_enabled_p);
2813 if (!target_is_async_p ())
2814 signal (SIGINT, ofunc);
2815
2816 /* This is a hook for when we need to do something (perhaps the
2817 collection of trace data) every time the target stops. */
2818 if (target_wait_loop_hook)
2819 (*target_wait_loop_hook) ();
2820
2821 switch (buf[0])
2822 {
2823 case 'E': /* Error of some sort */
2824 warning ("Remote failure reply: %s", buf);
2825 continue;
2826 case 'T': /* Status with PC, SP, FP, ... */
2827 {
2828 int i;
2829 long regno;
2830 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2831
2832 /* Expedited reply, containing Signal, {regno, reg} repeat */
2833 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2834 ss = signal number
2835 n... = register number
2836 r... = register contents
2837 */
2838 p = &buf[3]; /* after Txx */
2839
2840 while (*p)
2841 {
2842 unsigned char *p1;
2843 char *p_temp;
2844
2845 /* Read the register number */
2846 regno = strtol ((const char *) p, &p_temp, 16);
2847 p1 = (unsigned char *) p_temp;
2848
2849 if (p1 == p) /* No register number present here */
2850 {
2851 p1 = (unsigned char *) strchr ((const char *) p, ':');
2852 if (p1 == NULL)
2853 warning ("Malformed packet(a) (missing colon): %s\n\
2854 Packet: '%s'\n",
2855 p, buf);
2856 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
2857 {
2858 p_temp = unpack_varlen_hex (++p1, &thread_num);
2859 record_currthread (thread_num);
2860 p = (unsigned char *) p_temp;
2861 }
2862 }
2863 else
2864 {
2865 p = p1;
2866
2867 if (*p++ != ':')
2868 warning ("Malformed packet(b) (missing colon): %s\n\
2869 Packet: '%s'\n",
2870 p, buf);
2871
2872 if (regno >= NUM_REGS)
2873 warning ("Remote sent bad register number %ld: %s\n\
2874 Packet: '%s'\n",
2875 regno, p, buf);
2876
2877 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
2878 {
2879 if (p[0] == 0 || p[1] == 0)
2880 warning ("Remote reply is too short: %s", buf);
2881 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
2882 p += 2;
2883 }
2884 supply_register (regno, regs);
2885 }
2886
2887 if (*p++ != ';')
2888 {
2889 warning ("Remote register badly formatted: %s", buf);
2890 warning (" here: %s", p);
2891 }
2892 }
2893 }
2894 /* fall through */
2895 case 'S': /* Old style status, just signal only */
2896 status->kind = TARGET_WAITKIND_STOPPED;
2897 status->value.sig = (enum target_signal)
2898 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2899
2900 if (buf[3] == 'p')
2901 {
2902 /* Export Cisco kernel mode as a convenience variable
2903 (so that it can be used in the GDB prompt if desired). */
2904
2905 if (cisco_kernel_mode == 1)
2906 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2907 value_from_string ("PDEBUG-"));
2908 cisco_kernel_mode = 0;
2909 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2910 record_currthread (thread_num);
2911 }
2912 else if (buf[3] == 'k')
2913 {
2914 /* Export Cisco kernel mode as a convenience variable
2915 (so that it can be used in the GDB prompt if desired). */
2916
2917 if (cisco_kernel_mode == 1)
2918 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2919 value_from_string ("KDEBUG-"));
2920 cisco_kernel_mode = 1;
2921 }
2922 goto got_status;
2923 case 'N': /* Cisco special: status and offsets */
2924 {
2925 bfd_vma text_addr, data_addr, bss_addr;
2926 bfd_signed_vma text_off, data_off, bss_off;
2927 unsigned char *p1;
2928
2929 status->kind = TARGET_WAITKIND_STOPPED;
2930 status->value.sig = (enum target_signal)
2931 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2932
2933 if (symfile_objfile == NULL)
2934 {
2935 warning ("Relocation packet recieved with no symbol file. \
2936 Packet Dropped");
2937 goto got_status;
2938 }
2939
2940 /* Relocate object file. Buffer format is NAATT;DD;BB
2941 * where AA is the signal number, TT is the new text
2942 * address, DD * is the new data address, and BB is the
2943 * new bss address. */
2944
2945 p = &buf[3];
2946 text_addr = strtoul (p, (char **) &p1, 16);
2947 if (p1 == p || *p1 != ';')
2948 warning ("Malformed relocation packet: Packet '%s'", buf);
2949 p = p1 + 1;
2950 data_addr = strtoul (p, (char **) &p1, 16);
2951 if (p1 == p || *p1 != ';')
2952 warning ("Malformed relocation packet: Packet '%s'", buf);
2953 p = p1 + 1;
2954 bss_addr = strtoul (p, (char **) &p1, 16);
2955 if (p1 == p)
2956 warning ("Malformed relocation packet: Packet '%s'", buf);
2957
2958 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
2959 &text_off, &data_off, &bss_off)
2960 == 0)
2961 if (text_off != 0 || data_off != 0 || bss_off != 0)
2962 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
2963
2964 goto got_status;
2965 }
2966 case 'W': /* Target exited */
2967 {
2968 /* The remote process exited. */
2969 status->kind = TARGET_WAITKIND_EXITED;
2970 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2971 goto got_status;
2972 }
2973 case 'X':
2974 status->kind = TARGET_WAITKIND_SIGNALLED;
2975 status->value.sig = (enum target_signal)
2976 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2977 kill_kludge = 1;
2978
2979 goto got_status;
2980 case 'O': /* Console output */
2981 remote_console_output (buf + 1);
2982 /* Return immediately to the event loop. The event loop will
2983 still be waiting on the inferior afterwards. */
2984 status->kind = TARGET_WAITKIND_IGNORE;
2985 goto got_status;
2986 case '\0':
2987 if (last_sent_signal != TARGET_SIGNAL_0)
2988 {
2989 /* Zero length reply means that we tried 'S' or 'C' and
2990 the remote system doesn't support it. */
2991 target_terminal_ours_for_output ();
2992 printf_filtered
2993 ("Can't send signals to this remote system. %s not sent.\n",
2994 target_signal_to_name (last_sent_signal));
2995 last_sent_signal = TARGET_SIGNAL_0;
2996 target_terminal_inferior ();
2997
2998 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2999 putpkt ((char *) buf);
3000 continue;
3001 }
3002 /* else fallthrough */
3003 default:
3004 warning ("Invalid remote reply: %s", buf);
3005 continue;
3006 }
3007 }
3008 got_status:
3009 if (thread_num != -1)
3010 {
3011 return thread_num;
3012 }
3013 return inferior_pid;
3014 }
3015
3016 /* Number of bytes of registers this stub implements. */
3017
3018 static int register_bytes_found;
3019
3020 /* Read the remote registers into the block REGS. */
3021 /* Currently we just read all the registers, so we don't use regno. */
3022
3023 /* ARGSUSED */
3024 static void
3025 remote_fetch_registers (int regno)
3026 {
3027 char *buf = alloca (PBUFSIZ);
3028 int i;
3029 char *p;
3030 char *regs = alloca (REGISTER_BYTES);
3031
3032 set_thread (inferior_pid, 1);
3033
3034 sprintf (buf, "g");
3035 remote_send (buf, PBUFSIZ);
3036
3037 /* Save the size of the packet sent to us by the target. Its used
3038 as a heuristic when determining the max size of packets that the
3039 target can safely receive. */
3040 if (actual_register_packet_size == 0)
3041 actual_register_packet_size = strlen (buf);
3042
3043 /* Unimplemented registers read as all bits zero. */
3044 memset (regs, 0, REGISTER_BYTES);
3045
3046 /* We can get out of synch in various cases. If the first character
3047 in the buffer is not a hex character, assume that has happened
3048 and try to fetch another packet to read. */
3049 while ((buf[0] < '0' || buf[0] > '9')
3050 && (buf[0] < 'a' || buf[0] > 'f')
3051 && buf[0] != 'x') /* New: unavailable register value */
3052 {
3053 if (remote_debug)
3054 fprintf_unfiltered (gdb_stdlog,
3055 "Bad register packet; fetching a new packet\n");
3056 getpkt (buf, PBUFSIZ, 0);
3057 }
3058
3059 /* Reply describes registers byte by byte, each byte encoded as two
3060 hex characters. Suck them all up, then supply them to the
3061 register cacheing/storage mechanism. */
3062
3063 p = buf;
3064 for (i = 0; i < REGISTER_BYTES; i++)
3065 {
3066 if (p[0] == 0)
3067 break;
3068 if (p[1] == 0)
3069 {
3070 warning ("Remote reply is of odd length: %s", buf);
3071 /* Don't change register_bytes_found in this case, and don't
3072 print a second warning. */
3073 goto supply_them;
3074 }
3075 if (p[0] == 'x' && p[1] == 'x')
3076 regs[i] = 0; /* 'x' */
3077 else
3078 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3079 p += 2;
3080 }
3081
3082 if (i != register_bytes_found)
3083 {
3084 register_bytes_found = i;
3085 if (REGISTER_BYTES_OK_P ()
3086 && !REGISTER_BYTES_OK (i))
3087 warning ("Remote reply is too short: %s", buf);
3088 }
3089
3090 supply_them:
3091 for (i = 0; i < NUM_REGS; i++)
3092 {
3093 supply_register (i, &regs[REGISTER_BYTE (i)]);
3094 if (buf[REGISTER_BYTE (i) * 2] == 'x')
3095 set_register_cached (i, -1);
3096 }
3097 }
3098
3099 /* Prepare to store registers. Since we may send them all (using a
3100 'G' request), we have to read out the ones we don't want to change
3101 first. */
3102
3103 static void
3104 remote_prepare_to_store (void)
3105 {
3106 /* Make sure the entire registers array is valid. */
3107 switch (remote_protocol_P.support)
3108 {
3109 case PACKET_DISABLE:
3110 case PACKET_SUPPORT_UNKNOWN:
3111 read_register_bytes (0, (char *) NULL, REGISTER_BYTES);
3112 break;
3113 case PACKET_ENABLE:
3114 break;
3115 }
3116 }
3117
3118 /* Helper: Attempt to store REGNO using the P packet. Return fail IFF
3119 packet was not recognized. */
3120
3121 static int
3122 store_register_using_P (int regno)
3123 {
3124 /* Try storing a single register. */
3125 char *buf = alloca (PBUFSIZ);
3126 char *regp;
3127 char *p;
3128 int i;
3129
3130 sprintf (buf, "P%x=", regno);
3131 p = buf + strlen (buf);
3132 regp = register_buffer (regno);
3133 for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i)
3134 {
3135 *p++ = tohex ((regp[i] >> 4) & 0xf);
3136 *p++ = tohex (regp[i] & 0xf);
3137 }
3138 *p = '\0';
3139 remote_send (buf, PBUFSIZ);
3140
3141 return buf[0] != '\0';
3142 }
3143
3144
3145 /* Store register REGNO, or all registers if REGNO == -1, from the contents
3146 of the register cache buffer. FIXME: ignores errors. */
3147
3148 static void
3149 remote_store_registers (int regno)
3150 {
3151 char *buf = alloca (PBUFSIZ);
3152 int i;
3153 char *p;
3154 char *regs;
3155
3156 set_thread (inferior_pid, 1);
3157
3158 if (regno >= 0)
3159 {
3160 switch (remote_protocol_P.support)
3161 {
3162 case PACKET_DISABLE:
3163 break;
3164 case PACKET_ENABLE:
3165 if (store_register_using_P (regno))
3166 return;
3167 else
3168 error ("Protocol error: P packet not recognized by stub");
3169 case PACKET_SUPPORT_UNKNOWN:
3170 if (store_register_using_P (regno))
3171 {
3172 /* The stub recognized the 'P' packet. Remember this. */
3173 remote_protocol_P.support = PACKET_ENABLE;
3174 return;
3175 }
3176 else
3177 {
3178 /* The stub does not support the 'P' packet. Use 'G'
3179 instead, and don't try using 'P' in the future (it
3180 will just waste our time). */
3181 remote_protocol_P.support = PACKET_DISABLE;
3182 break;
3183 }
3184 }
3185 }
3186
3187 buf[0] = 'G';
3188
3189 /* Command describes registers byte by byte,
3190 each byte encoded as two hex characters. */
3191
3192 regs = register_buffer (-1);
3193 p = buf + 1;
3194 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3195 for (i = 0; i < register_bytes_found; i++)
3196 {
3197 *p++ = tohex ((regs[i] >> 4) & 0xf);
3198 *p++ = tohex (regs[i] & 0xf);
3199 }
3200 *p = '\0';
3201
3202 remote_send (buf, PBUFSIZ);
3203 }
3204 \f
3205
3206 /* Return the number of hex digits in num. */
3207
3208 static int
3209 hexnumlen (ULONGEST num)
3210 {
3211 int i;
3212
3213 for (i = 0; num != 0; i++)
3214 num >>= 4;
3215
3216 return max (i, 1);
3217 }
3218
3219 /* Set BUF to the minimum number of hex digits representing NUM. */
3220
3221 static int
3222 hexnumstr (char *buf, ULONGEST num)
3223 {
3224 int len = hexnumlen (num);
3225 return hexnumnstr (buf, num, len);
3226 }
3227
3228
3229 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3230
3231 static int
3232 hexnumnstr (char *buf, ULONGEST num, int width)
3233 {
3234 int i;
3235
3236 buf[width] = '\0';
3237
3238 for (i = width - 1; i >= 0; i--)
3239 {
3240 buf[i] = "0123456789abcdef"[(num & 0xf)];
3241 num >>= 4;
3242 }
3243
3244 return width;
3245 }
3246
3247 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3248
3249 static CORE_ADDR
3250 remote_address_masked (CORE_ADDR addr)
3251 {
3252 if (remote_address_size > 0
3253 && remote_address_size < (sizeof (ULONGEST) * 8))
3254 {
3255 /* Only create a mask when that mask can safely be constructed
3256 in a ULONGEST variable. */
3257 ULONGEST mask = 1;
3258 mask = (mask << remote_address_size) - 1;
3259 addr &= mask;
3260 }
3261 return addr;
3262 }
3263
3264 /* Determine whether the remote target supports binary downloading.
3265 This is accomplished by sending a no-op memory write of zero length
3266 to the target at the specified address. It does not suffice to send
3267 the whole packet, since many stubs strip the eighth bit and subsequently
3268 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3269
3270 NOTE: This can still lose if the serial line is not eight-bit
3271 clean. In cases like this, the user should clear "remote
3272 X-packet". */
3273
3274 static void
3275 check_binary_download (CORE_ADDR addr)
3276 {
3277 switch (remote_protocol_binary_download.support)
3278 {
3279 case PACKET_DISABLE:
3280 break;
3281 case PACKET_ENABLE:
3282 break;
3283 case PACKET_SUPPORT_UNKNOWN:
3284 {
3285 char *buf = alloca (PBUFSIZ);
3286 char *p;
3287
3288 p = buf;
3289 *p++ = 'X';
3290 p += hexnumstr (p, (ULONGEST) addr);
3291 *p++ = ',';
3292 p += hexnumstr (p, (ULONGEST) 0);
3293 *p++ = ':';
3294 *p = '\0';
3295
3296 putpkt_binary (buf, (int) (p - buf));
3297 getpkt (buf, PBUFSIZ, 0);
3298
3299 if (buf[0] == '\0')
3300 {
3301 if (remote_debug)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "binary downloading NOT suppported by target\n");
3304 remote_protocol_binary_download.support = PACKET_DISABLE;
3305 }
3306 else
3307 {
3308 if (remote_debug)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "binary downloading suppported by target\n");
3311 remote_protocol_binary_download.support = PACKET_ENABLE;
3312 }
3313 break;
3314 }
3315 }
3316 }
3317
3318 /* Write memory data directly to the remote machine.
3319 This does not inform the data cache; the data cache uses this.
3320 MEMADDR is the address in the remote memory space.
3321 MYADDR is the address of the buffer in our space.
3322 LEN is the number of bytes.
3323
3324 Returns number of bytes transferred, or 0 (setting errno) for
3325 error. Only transfer a single packet. */
3326
3327 static int
3328 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3329 {
3330 unsigned char *buf;
3331 int max_buf_size; /* Max size of packet output buffer */
3332 unsigned char *p;
3333 unsigned char *plen;
3334 long sizeof_buf;
3335 int plenlen;
3336 int todo;
3337 int nr_bytes;
3338
3339 /* Verify that the target can support a binary download */
3340 check_binary_download (memaddr);
3341
3342 /* Determine the max packet size. */
3343 max_buf_size = get_memory_write_packet_size ();
3344 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3345 buf = alloca (sizeof_buf);
3346
3347 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3348 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3349
3350 /* construct "M"<memaddr>","<len>":" */
3351 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3352 p = buf;
3353
3354 /* Append [XM]. Compute a best guess of the number of bytes
3355 actually transfered. */
3356 switch (remote_protocol_binary_download.support)
3357 {
3358 case PACKET_ENABLE:
3359 *p++ = 'X';
3360 /* Best guess at number of bytes that will fit. */
3361 todo = min (len, max_buf_size);
3362 break;
3363 case PACKET_DISABLE:
3364 *p++ = 'M';
3365 /* num bytes that will fit */
3366 todo = min (len, max_buf_size / 2);
3367 break;
3368 case PACKET_SUPPORT_UNKNOWN:
3369 internal_error (__FILE__, __LINE__,
3370 "remote_write_bytes: bad internal state");
3371 default:
3372 internal_error (__FILE__, __LINE__, "bad switch");
3373 }
3374
3375 /* Append <memaddr> */
3376 memaddr = remote_address_masked (memaddr);
3377 p += hexnumstr (p, (ULONGEST) memaddr);
3378 *p++ = ',';
3379
3380 /* Append <len>. Retain the location/size of <len>. It may
3381 need to be adjusted once the packet body has been created. */
3382 plen = p;
3383 plenlen = hexnumstr (p, (ULONGEST) todo);
3384 p += plenlen;
3385 *p++ = ':';
3386 *p = '\0';
3387
3388 /* Append the packet body. */
3389 switch (remote_protocol_binary_download.support)
3390 {
3391 case PACKET_ENABLE:
3392 /* Binary mode. Send target system values byte by byte, in
3393 increasing byte addresses. Only escape certain critical
3394 characters. */
3395 for (nr_bytes = 0;
3396 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3397 nr_bytes++)
3398 {
3399 switch (myaddr[nr_bytes] & 0xff)
3400 {
3401 case '$':
3402 case '#':
3403 case 0x7d:
3404 /* These must be escaped */
3405 *p++ = 0x7d;
3406 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3407 break;
3408 default:
3409 *p++ = myaddr[nr_bytes] & 0xff;
3410 break;
3411 }
3412 }
3413 if (nr_bytes < todo)
3414 {
3415 /* Escape chars have filled up the buffer prematurely,
3416 and we have actually sent fewer bytes than planned.
3417 Fix-up the length field of the packet. Use the same
3418 number of characters as before. */
3419
3420 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3421 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3422 }
3423 break;
3424 case PACKET_DISABLE:
3425 /* Normal mode: Send target system values byte by byte, in
3426 increasing byte addresses. Each byte is encoded as a two hex
3427 value. */
3428 for (nr_bytes = 0; nr_bytes < todo; nr_bytes++)
3429 {
3430 *p++ = tohex ((myaddr[nr_bytes] >> 4) & 0xf);
3431 *p++ = tohex (myaddr[nr_bytes] & 0xf);
3432 }
3433 *p = '\0';
3434 break;
3435 case PACKET_SUPPORT_UNKNOWN:
3436 internal_error (__FILE__, __LINE__,
3437 "remote_write_bytes: bad internal state");
3438 default:
3439 internal_error (__FILE__, __LINE__, "bad switch");
3440 }
3441
3442 putpkt_binary (buf, (int) (p - buf));
3443 getpkt (buf, sizeof_buf, 0);
3444
3445 if (buf[0] == 'E')
3446 {
3447 /* There is no correspondance between what the remote protocol
3448 uses for errors and errno codes. We would like a cleaner way
3449 of representing errors (big enough to include errno codes,
3450 bfd_error codes, and others). But for now just return EIO. */
3451 errno = EIO;
3452 return 0;
3453 }
3454
3455 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3456 bytes than we'd planned. */
3457 return nr_bytes;
3458 }
3459
3460 /* Read memory data directly from the remote machine.
3461 This does not use the data cache; the data cache uses this.
3462 MEMADDR is the address in the remote memory space.
3463 MYADDR is the address of the buffer in our space.
3464 LEN is the number of bytes.
3465
3466 Returns number of bytes transferred, or 0 for error. */
3467
3468 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3469 remote targets) shouldn't attempt to read the entire buffer.
3470 Instead it should read a single packet worth of data and then
3471 return the byte size of that packet to the caller. The caller (its
3472 caller and its callers caller ;-) already contains code for
3473 handling partial reads. */
3474
3475 static int
3476 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3477 {
3478 char *buf;
3479 int max_buf_size; /* Max size of packet output buffer */
3480 long sizeof_buf;
3481 int origlen;
3482
3483 /* Create a buffer big enough for this packet. */
3484 max_buf_size = get_memory_read_packet_size ();
3485 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3486 buf = alloca (sizeof_buf);
3487
3488 origlen = len;
3489 while (len > 0)
3490 {
3491 char *p;
3492 int todo;
3493 int i;
3494
3495 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3496
3497 /* construct "m"<memaddr>","<len>" */
3498 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3499 memaddr = remote_address_masked (memaddr);
3500 p = buf;
3501 *p++ = 'm';
3502 p += hexnumstr (p, (ULONGEST) memaddr);
3503 *p++ = ',';
3504 p += hexnumstr (p, (ULONGEST) todo);
3505 *p = '\0';
3506
3507 putpkt (buf);
3508 getpkt (buf, sizeof_buf, 0);
3509
3510 if (buf[0] == 'E')
3511 {
3512 /* There is no correspondance between what the remote protocol uses
3513 for errors and errno codes. We would like a cleaner way of
3514 representing errors (big enough to include errno codes, bfd_error
3515 codes, and others). But for now just return EIO. */
3516 errno = EIO;
3517 return 0;
3518 }
3519
3520 /* Reply describes memory byte by byte,
3521 each byte encoded as two hex characters. */
3522
3523 p = buf;
3524 for (i = 0; i < todo; i++)
3525 {
3526 if (p[0] == 0 || p[1] == 0)
3527 /* Reply is short. This means that we were able to read
3528 only part of what we wanted to. */
3529 return i + (origlen - len);
3530 myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3531 p += 2;
3532 }
3533 myaddr += todo;
3534 memaddr += todo;
3535 len -= todo;
3536 }
3537 return origlen;
3538 }
3539 \f
3540 /* Read or write LEN bytes from inferior memory at MEMADDR,
3541 transferring to or from debugger address BUFFER. Write to inferior if
3542 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3543 for error. TARGET is unused. */
3544
3545 /* ARGSUSED */
3546 static int
3547 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3548 int should_write,
3549 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
3550 struct target_ops *target)
3551 {
3552 CORE_ADDR targ_addr;
3553 int targ_len;
3554 int res;
3555
3556 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3557 if (targ_len <= 0)
3558 return 0;
3559
3560 if (should_write)
3561 res = remote_write_bytes (targ_addr, buffer, targ_len);
3562 else
3563 res = remote_read_bytes (targ_addr, buffer, targ_len);
3564
3565 return res;
3566 }
3567
3568
3569 #if 0
3570 /* Enable after 4.12. */
3571
3572 void
3573 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3574 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3575 CORE_ADDR *addr_found, char *data_found)
3576 {
3577 if (increment == -4 && len == 4)
3578 {
3579 long mask_long, data_long;
3580 long data_found_long;
3581 CORE_ADDR addr_we_found;
3582 char *buf = alloca (PBUFSIZ);
3583 long returned_long[2];
3584 char *p;
3585
3586 mask_long = extract_unsigned_integer (mask, len);
3587 data_long = extract_unsigned_integer (data, len);
3588 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
3589 putpkt (buf);
3590 getpkt (buf, PBUFSIZ, 0);
3591 if (buf[0] == '\0')
3592 {
3593 /* The stub doesn't support the 't' request. We might want to
3594 remember this fact, but on the other hand the stub could be
3595 switched on us. Maybe we should remember it only until
3596 the next "target remote". */
3597 generic_search (len, data, mask, startaddr, increment, lorange,
3598 hirange, addr_found, data_found);
3599 return;
3600 }
3601
3602 if (buf[0] == 'E')
3603 /* There is no correspondance between what the remote protocol uses
3604 for errors and errno codes. We would like a cleaner way of
3605 representing errors (big enough to include errno codes, bfd_error
3606 codes, and others). But for now just use EIO. */
3607 memory_error (EIO, startaddr);
3608 p = buf;
3609 addr_we_found = 0;
3610 while (*p != '\0' && *p != ',')
3611 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
3612 if (*p == '\0')
3613 error ("Protocol error: short return for search");
3614
3615 data_found_long = 0;
3616 while (*p != '\0' && *p != ',')
3617 data_found_long = (data_found_long << 4) + fromhex (*p++);
3618 /* Ignore anything after this comma, for future extensions. */
3619
3620 if (addr_we_found < lorange || addr_we_found >= hirange)
3621 {
3622 *addr_found = 0;
3623 return;
3624 }
3625
3626 *addr_found = addr_we_found;
3627 *data_found = store_unsigned_integer (data_we_found, len);
3628 return;
3629 }
3630 generic_search (len, data, mask, startaddr, increment, lorange,
3631 hirange, addr_found, data_found);
3632 }
3633 #endif /* 0 */
3634 \f
3635 static void
3636 remote_files_info (struct target_ops *ignore)
3637 {
3638 puts_filtered ("Debugging a target over a serial line.\n");
3639 }
3640 \f
3641 /* Stuff for dealing with the packets which are part of this protocol.
3642 See comment at top of file for details. */
3643
3644 /* Read a single character from the remote end, masking it down to 7 bits. */
3645
3646 static int
3647 readchar (int timeout)
3648 {
3649 int ch;
3650
3651 ch = SERIAL_READCHAR (remote_desc, timeout);
3652
3653 if (ch >= 0)
3654 return (ch & 0x7f);
3655
3656 switch ((enum serial_rc) ch)
3657 {
3658 case SERIAL_EOF:
3659 target_mourn_inferior ();
3660 error ("Remote connection closed");
3661 /* no return */
3662 case SERIAL_ERROR:
3663 perror_with_name ("Remote communication error");
3664 /* no return */
3665 case SERIAL_TIMEOUT:
3666 break;
3667 }
3668 return ch;
3669 }
3670
3671 /* Send the command in BUF to the remote machine, and read the reply
3672 into BUF. Report an error if we get an error reply. */
3673
3674 static void
3675 remote_send (char *buf,
3676 long sizeof_buf)
3677 {
3678 putpkt (buf);
3679 getpkt (buf, sizeof_buf, 0);
3680
3681 if (buf[0] == 'E')
3682 error ("Remote failure reply: %s", buf);
3683 }
3684
3685 /* Display a null-terminated packet on stdout, for debugging, using C
3686 string notation. */
3687
3688 static void
3689 print_packet (char *buf)
3690 {
3691 puts_filtered ("\"");
3692 fputstr_filtered (buf, '"', gdb_stdout);
3693 puts_filtered ("\"");
3694 }
3695
3696 int
3697 putpkt (char *buf)
3698 {
3699 return putpkt_binary (buf, strlen (buf));
3700 }
3701
3702 /* Send a packet to the remote machine, with error checking. The data
3703 of the packet is in BUF. The string in BUF can be at most PBUFSIZ - 5
3704 to account for the $, # and checksum, and for a possible /0 if we are
3705 debugging (remote_debug) and want to print the sent packet as a string */
3706
3707 static int
3708 putpkt_binary (char *buf, int cnt)
3709 {
3710 int i;
3711 unsigned char csum = 0;
3712 char *buf2 = alloca (cnt + 6);
3713 long sizeof_junkbuf = PBUFSIZ;
3714 char *junkbuf = alloca (sizeof_junkbuf);
3715
3716 int ch;
3717 int tcount = 0;
3718 char *p;
3719
3720 /* Copy the packet into buffer BUF2, encapsulating it
3721 and giving it a checksum. */
3722
3723 p = buf2;
3724 *p++ = '$';
3725
3726 for (i = 0; i < cnt; i++)
3727 {
3728 csum += buf[i];
3729 *p++ = buf[i];
3730 }
3731 *p++ = '#';
3732 *p++ = tohex ((csum >> 4) & 0xf);
3733 *p++ = tohex (csum & 0xf);
3734
3735 /* Send it over and over until we get a positive ack. */
3736
3737 while (1)
3738 {
3739 int started_error_output = 0;
3740
3741 if (remote_debug)
3742 {
3743 *p = '\0';
3744 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3745 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3746 fprintf_unfiltered (gdb_stdlog, "...");
3747 gdb_flush (gdb_stdlog);
3748 }
3749 if (SERIAL_WRITE (remote_desc, buf2, p - buf2))
3750 perror_with_name ("putpkt: write failed");
3751
3752 /* read until either a timeout occurs (-2) or '+' is read */
3753 while (1)
3754 {
3755 ch = readchar (remote_timeout);
3756
3757 if (remote_debug)
3758 {
3759 switch (ch)
3760 {
3761 case '+':
3762 case '-':
3763 case SERIAL_TIMEOUT:
3764 case '$':
3765 if (started_error_output)
3766 {
3767 putchar_unfiltered ('\n');
3768 started_error_output = 0;
3769 }
3770 }
3771 }
3772
3773 switch (ch)
3774 {
3775 case '+':
3776 if (remote_debug)
3777 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3778 return 1;
3779 case '-':
3780 if (remote_debug)
3781 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3782 case SERIAL_TIMEOUT:
3783 tcount++;
3784 if (tcount > 3)
3785 return 0;
3786 break; /* Retransmit buffer */
3787 case '$':
3788 {
3789 if (remote_debug)
3790 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
3791 /* It's probably an old response, and we're out of sync.
3792 Just gobble up the packet and ignore it. */
3793 read_frame (junkbuf, sizeof_junkbuf);
3794 continue; /* Now, go look for + */
3795 }
3796 default:
3797 if (remote_debug)
3798 {
3799 if (!started_error_output)
3800 {
3801 started_error_output = 1;
3802 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
3803 }
3804 fputc_unfiltered (ch & 0177, gdb_stdlog);
3805 }
3806 continue;
3807 }
3808 break; /* Here to retransmit */
3809 }
3810
3811 #if 0
3812 /* This is wrong. If doing a long backtrace, the user should be
3813 able to get out next time we call QUIT, without anything as
3814 violent as interrupt_query. If we want to provide a way out of
3815 here without getting to the next QUIT, it should be based on
3816 hitting ^C twice as in remote_wait. */
3817 if (quit_flag)
3818 {
3819 quit_flag = 0;
3820 interrupt_query ();
3821 }
3822 #endif
3823 }
3824 }
3825
3826 static int remote_cisco_mode;
3827
3828 /* Come here after finding the start of the frame. Collect the rest
3829 into BUF, verifying the checksum, length, and handling run-length
3830 compression. No more than sizeof_buf-1 characters are read so that
3831 the buffer can be NUL terminated.
3832
3833 Returns -1 on error, number of characters in buffer (ignoring the
3834 trailing NULL) on success. (could be extended to return one of the
3835 SERIAL status indications). */
3836
3837 static long
3838 read_frame (char *buf,
3839 long sizeof_buf)
3840 {
3841 unsigned char csum;
3842 long bc;
3843 int c;
3844
3845 csum = 0;
3846 bc = 0;
3847
3848 while (1)
3849 {
3850 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
3851 c = readchar (remote_timeout);
3852 switch (c)
3853 {
3854 case SERIAL_TIMEOUT:
3855 if (remote_debug)
3856 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
3857 return -1;
3858 case '$':
3859 if (remote_debug)
3860 fputs_filtered ("Saw new packet start in middle of old one\n",
3861 gdb_stdlog);
3862 return -1; /* Start a new packet, count retries */
3863 case '#':
3864 {
3865 unsigned char pktcsum;
3866 int check_0 = 0;
3867 int check_1 = 0;
3868
3869 buf[bc] = '\0';
3870
3871 check_0 = readchar (remote_timeout);
3872 if (check_0 >= 0)
3873 check_1 = readchar (remote_timeout);
3874
3875 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
3876 {
3877 if (remote_debug)
3878 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
3879 return -1;
3880 }
3881 else if (check_0 < 0 || check_1 < 0)
3882 {
3883 if (remote_debug)
3884 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
3885 return -1;
3886 }
3887
3888 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
3889 if (csum == pktcsum)
3890 return bc;
3891
3892 if (remote_debug)
3893 {
3894 fprintf_filtered (gdb_stdlog,
3895 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
3896 pktcsum, csum);
3897 fputs_filtered (buf, gdb_stdlog);
3898 fputs_filtered ("\n", gdb_stdlog);
3899 }
3900 /* Number of characters in buffer ignoring trailing
3901 NUL. */
3902 return -1;
3903 }
3904 case '*': /* Run length encoding */
3905 {
3906 int repeat;
3907 csum += c;
3908
3909 if (remote_cisco_mode == 0)
3910 {
3911 c = readchar (remote_timeout);
3912 csum += c;
3913 repeat = c - ' ' + 3; /* Compute repeat count */
3914 }
3915 else
3916 {
3917 /* Cisco's run-length encoding variant uses two
3918 hex chars to represent the repeat count. */
3919
3920 c = readchar (remote_timeout);
3921 csum += c;
3922 repeat = fromhex (c) << 4;
3923 c = readchar (remote_timeout);
3924 csum += c;
3925 repeat += fromhex (c);
3926 }
3927
3928 /* The character before ``*'' is repeated. */
3929
3930 if (repeat > 0 && repeat <= 255
3931 && bc > 0
3932 && bc + repeat < sizeof_buf - 1)
3933 {
3934 memset (&buf[bc], buf[bc - 1], repeat);
3935 bc += repeat;
3936 continue;
3937 }
3938
3939 buf[bc] = '\0';
3940 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
3941 puts_filtered (buf);
3942 puts_filtered ("\n");
3943 return -1;
3944 }
3945 default:
3946 if (bc < sizeof_buf - 1)
3947 {
3948 buf[bc++] = c;
3949 csum += c;
3950 continue;
3951 }
3952
3953 buf[bc] = '\0';
3954 puts_filtered ("Remote packet too long: ");
3955 puts_filtered (buf);
3956 puts_filtered ("\n");
3957
3958 return -1;
3959 }
3960 }
3961 }
3962
3963 /* Read a packet from the remote machine, with error checking, and
3964 store it in BUF. If FOREVER, wait forever rather than timing out;
3965 this is used (in synchronous mode) to wait for a target that is is
3966 executing user code to stop. */
3967 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
3968 don't have to change all the calls to getpkt to deal with the
3969 return value, because at the moment I don't know what the right
3970 thing to do it for those. */
3971 void
3972 getpkt (char *buf,
3973 long sizeof_buf,
3974 int forever)
3975 {
3976 int timed_out;
3977
3978 timed_out = getpkt_sane (buf, sizeof_buf, forever);
3979 }
3980
3981
3982 /* Read a packet from the remote machine, with error checking, and
3983 store it in BUF. If FOREVER, wait forever rather than timing out;
3984 this is used (in synchronous mode) to wait for a target that is is
3985 executing user code to stop. If FOREVER == 0, this function is
3986 allowed to time out gracefully and return an indication of this to
3987 the caller. */
3988 int
3989 getpkt_sane (char *buf,
3990 long sizeof_buf,
3991 int forever)
3992 {
3993 int c;
3994 int tries;
3995 int timeout;
3996 int val;
3997
3998 strcpy (buf, "timeout");
3999
4000 if (forever)
4001 {
4002 timeout = watchdog > 0 ? watchdog : -1;
4003 }
4004
4005 else
4006 timeout = remote_timeout;
4007
4008 #define MAX_TRIES 3
4009
4010 for (tries = 1; tries <= MAX_TRIES; tries++)
4011 {
4012 /* This can loop forever if the remote side sends us characters
4013 continuously, but if it pauses, we'll get a zero from readchar
4014 because of timeout. Then we'll count that as a retry. */
4015
4016 /* Note that we will only wait forever prior to the start of a packet.
4017 After that, we expect characters to arrive at a brisk pace. They
4018 should show up within remote_timeout intervals. */
4019
4020 do
4021 {
4022 c = readchar (timeout);
4023
4024 if (c == SERIAL_TIMEOUT)
4025 {
4026 if (forever) /* Watchdog went off? Kill the target. */
4027 {
4028 QUIT;
4029 target_mourn_inferior ();
4030 error ("Watchdog has expired. Target detached.\n");
4031 }
4032 if (remote_debug)
4033 fputs_filtered ("Timed out.\n", gdb_stdlog);
4034 goto retry;
4035 }
4036 }
4037 while (c != '$');
4038
4039 /* We've found the start of a packet, now collect the data. */
4040
4041 val = read_frame (buf, sizeof_buf);
4042
4043 if (val >= 0)
4044 {
4045 if (remote_debug)
4046 {
4047 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4048 fputstr_unfiltered (buf, 0, gdb_stdlog);
4049 fprintf_unfiltered (gdb_stdlog, "\n");
4050 }
4051 SERIAL_WRITE (remote_desc, "+", 1);
4052 return 0;
4053 }
4054
4055 /* Try the whole thing again. */
4056 retry:
4057 SERIAL_WRITE (remote_desc, "-", 1);
4058 }
4059
4060 /* We have tried hard enough, and just can't receive the packet. Give up. */
4061
4062 printf_unfiltered ("Ignoring packet error, continuing...\n");
4063 SERIAL_WRITE (remote_desc, "+", 1);
4064 return 1;
4065 }
4066 \f
4067 static void
4068 remote_kill (void)
4069 {
4070 /* For some mysterious reason, wait_for_inferior calls kill instead of
4071 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4072 if (kill_kludge)
4073 {
4074 kill_kludge = 0;
4075 target_mourn_inferior ();
4076 return;
4077 }
4078
4079 /* Use catch_errors so the user can quit from gdb even when we aren't on
4080 speaking terms with the remote system. */
4081 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4082
4083 /* Don't wait for it to die. I'm not really sure it matters whether
4084 we do or not. For the existing stubs, kill is a noop. */
4085 target_mourn_inferior ();
4086 }
4087
4088 /* Async version of remote_kill. */
4089 static void
4090 remote_async_kill (void)
4091 {
4092 /* Unregister the file descriptor from the event loop. */
4093 if (target_is_async_p ())
4094 SERIAL_ASYNC (remote_desc, NULL, 0);
4095
4096 /* For some mysterious reason, wait_for_inferior calls kill instead of
4097 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4098 if (kill_kludge)
4099 {
4100 kill_kludge = 0;
4101 target_mourn_inferior ();
4102 return;
4103 }
4104
4105 /* Use catch_errors so the user can quit from gdb even when we aren't on
4106 speaking terms with the remote system. */
4107 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4108
4109 /* Don't wait for it to die. I'm not really sure it matters whether
4110 we do or not. For the existing stubs, kill is a noop. */
4111 target_mourn_inferior ();
4112 }
4113
4114 static void
4115 remote_mourn (void)
4116 {
4117 remote_mourn_1 (&remote_ops);
4118 }
4119
4120 static void
4121 remote_async_mourn (void)
4122 {
4123 remote_mourn_1 (&remote_async_ops);
4124 }
4125
4126 static void
4127 extended_remote_mourn (void)
4128 {
4129 /* We do _not_ want to mourn the target like this; this will
4130 remove the extended remote target from the target stack,
4131 and the next time the user says "run" it'll fail.
4132
4133 FIXME: What is the right thing to do here? */
4134 #if 0
4135 remote_mourn_1 (&extended_remote_ops);
4136 #endif
4137 }
4138
4139 /* Worker function for remote_mourn. */
4140 static void
4141 remote_mourn_1 (struct target_ops *target)
4142 {
4143 unpush_target (target);
4144 generic_mourn_inferior ();
4145 }
4146
4147 /* In the extended protocol we want to be able to do things like
4148 "run" and have them basically work as expected. So we need
4149 a special create_inferior function.
4150
4151 FIXME: One day add support for changing the exec file
4152 we're debugging, arguments and an environment. */
4153
4154 static void
4155 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4156 {
4157 /* Rip out the breakpoints; we'll reinsert them after restarting
4158 the remote server. */
4159 remove_breakpoints ();
4160
4161 /* Now restart the remote server. */
4162 extended_remote_restart ();
4163
4164 /* Now put the breakpoints back in. This way we're safe if the
4165 restart function works via a unix fork on the remote side. */
4166 insert_breakpoints ();
4167
4168 /* Clean up from the last time we were running. */
4169 clear_proceed_status ();
4170
4171 /* Let the remote process run. */
4172 proceed (-1, TARGET_SIGNAL_0, 0);
4173 }
4174
4175 /* Async version of extended_remote_create_inferior. */
4176 static void
4177 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4178 {
4179 /* Rip out the breakpoints; we'll reinsert them after restarting
4180 the remote server. */
4181 remove_breakpoints ();
4182
4183 /* If running asynchronously, register the target file descriptor
4184 with the event loop. */
4185 if (event_loop_p && target_can_async_p ())
4186 target_async (inferior_event_handler, 0);
4187
4188 /* Now restart the remote server. */
4189 extended_remote_restart ();
4190
4191 /* Now put the breakpoints back in. This way we're safe if the
4192 restart function works via a unix fork on the remote side. */
4193 insert_breakpoints ();
4194
4195 /* Clean up from the last time we were running. */
4196 clear_proceed_status ();
4197
4198 /* Let the remote process run. */
4199 proceed (-1, TARGET_SIGNAL_0, 0);
4200 }
4201 \f
4202
4203 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4204 than other targets; in those use REMOTE_BREAKPOINT instead of just
4205 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4206 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4207 the standard routines that are in mem-break.c. */
4208
4209 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4210 the choice of breakpoint instruction affects target program design and
4211 vice versa, and by making it user-tweakable, the special code here
4212 goes away and we need fewer special GDB configurations. */
4213
4214 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4215 #define REMOTE_BREAKPOINT
4216 #endif
4217
4218 #ifdef REMOTE_BREAKPOINT
4219
4220 /* If the target isn't bi-endian, just pretend it is. */
4221 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4222 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4223 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4224 #endif
4225
4226 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4227 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4228
4229 #endif /* REMOTE_BREAKPOINT */
4230
4231 /* Insert a breakpoint on targets that don't have any better breakpoint
4232 support. We read the contents of the target location and stash it,
4233 then overwrite it with a breakpoint instruction. ADDR is the target
4234 location in the target machine. CONTENTS_CACHE is a pointer to
4235 memory allocated for saving the target contents. It is guaranteed
4236 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4237 is accomplished via BREAKPOINT_MAX). */
4238
4239 static int
4240 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4241 {
4242 #ifdef REMOTE_BREAKPOINT
4243 int val;
4244 #endif
4245 int bp_size;
4246
4247 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4248 If it succeeds, then set the support to PACKET_ENABLE. If it
4249 fails, and the user has explicitly requested the Z support then
4250 report an error, otherwise, mark it disabled and go on. */
4251
4252 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4253 {
4254 char *buf = alloca (PBUFSIZ);
4255 char *p = buf;
4256
4257 addr = remote_address_masked (addr);
4258 *(p++) = 'Z';
4259 *(p++) = '0';
4260 *(p++) = ',';
4261 p += hexnumstr (p, (ULONGEST) addr);
4262 BREAKPOINT_FROM_PC (&addr, &bp_size);
4263 sprintf (p, ",%d", bp_size);
4264
4265 putpkt (buf);
4266 getpkt (buf, PBUFSIZ, 0);
4267
4268 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4269 {
4270 case PACKET_ERROR:
4271 return -1;
4272 case PACKET_OK:
4273 return 0;
4274 case PACKET_UNKNOWN:
4275 break;
4276 }
4277 }
4278
4279 #ifdef REMOTE_BREAKPOINT
4280 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4281
4282 if (val == 0)
4283 {
4284 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
4285 val = target_write_memory (addr, (char *) big_break_insn,
4286 sizeof big_break_insn);
4287 else
4288 val = target_write_memory (addr, (char *) little_break_insn,
4289 sizeof little_break_insn);
4290 }
4291
4292 return val;
4293 #else
4294 return memory_insert_breakpoint (addr, contents_cache);
4295 #endif /* REMOTE_BREAKPOINT */
4296 }
4297
4298 static int
4299 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4300 {
4301 int bp_size;
4302
4303 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4304 {
4305 char *buf = alloca (PBUFSIZ);
4306 char *p = buf;
4307
4308 *(p++) = 'z';
4309 *(p++) = '0';
4310 *(p++) = ',';
4311
4312 addr = remote_address_masked (addr);
4313 p += hexnumstr (p, (ULONGEST) addr);
4314 BREAKPOINT_FROM_PC (&addr, &bp_size);
4315 sprintf (p, ",%d", bp_size);
4316
4317 putpkt (buf);
4318 getpkt (buf, PBUFSIZ, 0);
4319
4320 return (buf[0] == 'E');
4321 }
4322
4323 #ifdef REMOTE_BREAKPOINT
4324 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4325 #else
4326 return memory_remove_breakpoint (addr, contents_cache);
4327 #endif /* REMOTE_BREAKPOINT */
4328 }
4329
4330 static int
4331 watchpoint_to_Z_packet (int type)
4332 {
4333 switch (type)
4334 {
4335 case hw_write:
4336 return 2;
4337 break;
4338 case hw_read:
4339 return 3;
4340 break;
4341 case hw_access:
4342 return 4;
4343 break;
4344 default:
4345 internal_error (__FILE__, __LINE__,
4346 "hw_bp_to_z: bad watchpoint type %d", type);
4347 }
4348 }
4349
4350 /* FIXME: This function should be static and a member of the remote
4351 target vector. */
4352
4353 int
4354 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4355 {
4356 char *buf = alloca (PBUFSIZ);
4357 char *p;
4358 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4359
4360 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4361 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4362 remote_protocol_Z[packet].name,
4363 remote_protocol_Z[packet].title);
4364
4365 sprintf (buf, "Z%x,", packet);
4366 p = strchr (buf, '\0');
4367 addr = remote_address_masked (addr);
4368 p += hexnumstr (p, (ULONGEST) addr);
4369 sprintf (p, ",%x", len);
4370
4371 putpkt (buf);
4372 getpkt (buf, PBUFSIZ, 0);
4373
4374 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4375 {
4376 case PACKET_ERROR:
4377 case PACKET_UNKNOWN:
4378 return -1;
4379 case PACKET_OK:
4380 return 0;
4381 }
4382 internal_error (__FILE__, __LINE__,
4383 "remote_insert_watchpoint: reached end of function");
4384 }
4385
4386 /* FIXME: This function should be static and a member of the remote
4387 target vector. */
4388
4389 int
4390 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4391 {
4392 char *buf = alloca (PBUFSIZ);
4393 char *p;
4394 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4395
4396 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4397 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4398 remote_protocol_Z[packet].name,
4399 remote_protocol_Z[packet].title);
4400
4401 sprintf (buf, "z%x,", packet);
4402 p = strchr (buf, '\0');
4403 addr = remote_address_masked (addr);
4404 p += hexnumstr (p, (ULONGEST) addr);
4405 sprintf (p, ",%x", len);
4406 putpkt (buf);
4407 getpkt (buf, PBUFSIZ, 0);
4408
4409 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4410 {
4411 case PACKET_ERROR:
4412 case PACKET_UNKNOWN:
4413 return -1;
4414 case PACKET_OK:
4415 return 0;
4416 }
4417 internal_error (__FILE__, __LINE__,
4418 "remote_remove_watchpoint: reached end of function");
4419 }
4420
4421 /* FIXME: This function should be static and a member of the remote
4422 target vector. */
4423
4424 int
4425 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4426 {
4427 char *buf = alloca (PBUFSIZ);
4428 char *p = buf;
4429
4430 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4431 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4432 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4433 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4434
4435 *(p++) = 'Z';
4436 *(p++) = '1';
4437 *(p++) = ',';
4438
4439 addr = remote_address_masked (addr);
4440 p += hexnumstr (p, (ULONGEST) addr);
4441 sprintf (p, ",%x", len);
4442
4443 putpkt (buf);
4444 getpkt (buf, PBUFSIZ, 0);
4445
4446 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4447 {
4448 case PACKET_ERROR:
4449 case PACKET_UNKNOWN:
4450 return -1;
4451 case PACKET_OK:
4452 return 0;
4453 }
4454 internal_error (__FILE__, __LINE__,
4455 "remote_remove_watchpoint: reached end of function");
4456 }
4457
4458 /* FIXME: This function should be static and a member of the remote
4459 target vector. */
4460
4461 int
4462 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4463 {
4464 char *buf = alloca (PBUFSIZ);
4465 char *p = buf;
4466
4467 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4468 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4469 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4470 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4471
4472 *(p++) = 'z';
4473 *(p++) = '1';
4474 *(p++) = ',';
4475
4476 addr = remote_address_masked (addr);
4477 p += hexnumstr (p, (ULONGEST) addr);
4478 sprintf (p, ",%x", len);
4479
4480 putpkt(buf);
4481 getpkt (buf, PBUFSIZ, 0);
4482
4483 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4484 {
4485 case PACKET_ERROR:
4486 case PACKET_UNKNOWN:
4487 return -1;
4488 case PACKET_OK:
4489 return 0;
4490 }
4491 internal_error (__FILE__, __LINE__,
4492 "remote_remove_watchpoint: reached end of function");
4493 }
4494
4495 /* Some targets are only capable of doing downloads, and afterwards
4496 they switch to the remote serial protocol. This function provides
4497 a clean way to get from the download target to the remote target.
4498 It's basically just a wrapper so that we don't have to expose any
4499 of the internal workings of remote.c.
4500
4501 Prior to calling this routine, you should shutdown the current
4502 target code, else you will get the "A program is being debugged
4503 already..." message. Usually a call to pop_target() suffices. */
4504
4505 void
4506 push_remote_target (char *name, int from_tty)
4507 {
4508 printf_filtered ("Switching to remote protocol\n");
4509 remote_open (name, from_tty);
4510 }
4511
4512 /* Other targets want to use the entire remote serial module but with
4513 certain remote_ops overridden. */
4514
4515 void
4516 open_remote_target (char *name, int from_tty, struct target_ops *target,
4517 int extended_p)
4518 {
4519 printf_filtered ("Selecting the %sremote protocol\n",
4520 (extended_p ? "extended-" : ""));
4521 remote_open_1 (name, from_tty, target, extended_p);
4522 }
4523
4524 /* Table used by the crc32 function to calcuate the checksum. */
4525
4526 static unsigned long crc32_table[256] =
4527 {0, 0};
4528
4529 static unsigned long
4530 crc32 (unsigned char *buf, int len, unsigned int crc)
4531 {
4532 if (!crc32_table[1])
4533 {
4534 /* Initialize the CRC table and the decoding table. */
4535 int i, j;
4536 unsigned int c;
4537
4538 for (i = 0; i < 256; i++)
4539 {
4540 for (c = i << 24, j = 8; j > 0; --j)
4541 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4542 crc32_table[i] = c;
4543 }
4544 }
4545
4546 while (len--)
4547 {
4548 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4549 buf++;
4550 }
4551 return crc;
4552 }
4553
4554 /* compare-sections command
4555
4556 With no arguments, compares each loadable section in the exec bfd
4557 with the same memory range on the target, and reports mismatches.
4558 Useful for verifying the image on the target against the exec file.
4559 Depends on the target understanding the new "qCRC:" request. */
4560
4561 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4562 target method (target verify memory) and generic version of the
4563 actual command. This will allow other high-level code (especially
4564 generic_load()) to make use of this target functionality. */
4565
4566 static void
4567 compare_sections_command (char *args, int from_tty)
4568 {
4569 asection *s;
4570 unsigned long host_crc, target_crc;
4571 extern bfd *exec_bfd;
4572 struct cleanup *old_chain;
4573 char *tmp;
4574 char *sectdata;
4575 char *sectname;
4576 char *buf = alloca (PBUFSIZ);
4577 bfd_size_type size;
4578 bfd_vma lma;
4579 int matched = 0;
4580 int mismatched = 0;
4581
4582 if (!exec_bfd)
4583 error ("command cannot be used without an exec file");
4584 if (!current_target.to_shortname ||
4585 strcmp (current_target.to_shortname, "remote") != 0)
4586 error ("command can only be used with remote target");
4587
4588 for (s = exec_bfd->sections; s; s = s->next)
4589 {
4590 if (!(s->flags & SEC_LOAD))
4591 continue; /* skip non-loadable section */
4592
4593 size = bfd_get_section_size_before_reloc (s);
4594 if (size == 0)
4595 continue; /* skip zero-length section */
4596
4597 sectname = (char *) bfd_get_section_name (exec_bfd, s);
4598 if (args && strcmp (args, sectname) != 0)
4599 continue; /* not the section selected by user */
4600
4601 matched = 1; /* do this section */
4602 lma = s->lma;
4603 /* FIXME: assumes lma can fit into long */
4604 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4605 putpkt (buf);
4606
4607 /* be clever; compute the host_crc before waiting for target reply */
4608 sectdata = xmalloc (size);
4609 old_chain = make_cleanup (xfree, sectdata);
4610 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4611 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4612
4613 getpkt (buf, PBUFSIZ, 0);
4614 if (buf[0] == 'E')
4615 error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
4616 sectname, lma, lma + size);
4617 if (buf[0] != 'C')
4618 error ("remote target does not support this operation");
4619
4620 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4621 target_crc = target_crc * 16 + fromhex (*tmp);
4622
4623 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4624 sectname, paddr (lma), paddr (lma + size));
4625 if (host_crc == target_crc)
4626 printf_filtered ("matched.\n");
4627 else
4628 {
4629 printf_filtered ("MIS-MATCHED!\n");
4630 mismatched++;
4631 }
4632
4633 do_cleanups (old_chain);
4634 }
4635 if (mismatched > 0)
4636 warning ("One or more sections of the remote executable does not match\n\
4637 the loaded file\n");
4638 if (args && !matched)
4639 printf_filtered ("No loaded section named '%s'.\n", args);
4640 }
4641
4642 static int
4643 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
4644 {
4645 int i;
4646 char *buf2 = alloca (PBUFSIZ);
4647 char *p2 = &buf2[0];
4648
4649 if (!bufsiz)
4650 error ("null pointer to remote bufer size specified");
4651
4652 /* minimum outbuf size is PBUFSIZ - if bufsiz is not large enough let
4653 the caller know and return what the minimum size is */
4654 /* Note: a zero bufsiz can be used to query the minimum buffer size */
4655 if (*bufsiz < PBUFSIZ)
4656 {
4657 *bufsiz = PBUFSIZ;
4658 return -1;
4659 }
4660
4661 /* except for querying the minimum buffer size, target must be open */
4662 if (!remote_desc)
4663 error ("remote query is only available after target open");
4664
4665 /* we only take uppercase letters as query types, at least for now */
4666 if ((query_type < 'A') || (query_type > 'Z'))
4667 error ("invalid remote query type");
4668
4669 if (!buf)
4670 error ("null remote query specified");
4671
4672 if (!outbuf)
4673 error ("remote query requires a buffer to receive data");
4674
4675 outbuf[0] = '\0';
4676
4677 *p2++ = 'q';
4678 *p2++ = query_type;
4679
4680 /* we used one buffer char for the remote protocol q command and another
4681 for the query type. As the remote protocol encapsulation uses 4 chars
4682 plus one extra in case we are debugging (remote_debug),
4683 we have PBUFZIZ - 7 left to pack the query string */
4684 i = 0;
4685 while (buf[i] && (i < (PBUFSIZ - 8)))
4686 {
4687 /* bad caller may have sent forbidden characters */
4688 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
4689 error ("illegal characters in query string");
4690
4691 *p2++ = buf[i];
4692 i++;
4693 }
4694 *p2 = buf[i];
4695
4696 if (buf[i])
4697 error ("query larger than available buffer");
4698
4699 i = putpkt (buf2);
4700 if (i < 0)
4701 return i;
4702
4703 getpkt (outbuf, *bufsiz, 0);
4704
4705 return 0;
4706 }
4707
4708 static void
4709 remote_rcmd (char *command,
4710 struct ui_file *outbuf)
4711 {
4712 int i;
4713 char *buf = alloca (PBUFSIZ);
4714 char *p = buf;
4715
4716 if (!remote_desc)
4717 error ("remote rcmd is only available after target open");
4718
4719 /* Send a NULL command across as an empty command */
4720 if (command == NULL)
4721 command = "";
4722
4723 /* The query prefix */
4724 strcpy (buf, "qRcmd,");
4725 p = strchr (buf, '\0');
4726
4727 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > PBUFSIZ)
4728 error ("\"monitor\" command ``%s'' is too long\n", command);
4729
4730 /* Encode the actual command */
4731 for (i = 0; command[i]; i++)
4732 {
4733 *p++ = tohex ((command[i] >> 4) & 0xf);
4734 *p++ = tohex (command[i] & 0xf);
4735 }
4736 *p = '\0';
4737
4738 if (putpkt (buf) < 0)
4739 error ("Communication problem with target\n");
4740
4741 /* get/display the response */
4742 while (1)
4743 {
4744 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
4745 buf[0] = '\0';
4746 getpkt (buf, PBUFSIZ, 0);
4747 if (buf[0] == '\0')
4748 error ("Target does not support this command\n");
4749 if (buf[0] == 'O' && buf[1] != 'K')
4750 {
4751 remote_console_output (buf + 1); /* 'O' message from stub */
4752 continue;
4753 }
4754 if (strcmp (buf, "OK") == 0)
4755 break;
4756 if (strlen (buf) == 3 && buf[0] == 'E'
4757 && isdigit (buf[1]) && isdigit (buf[2]))
4758 {
4759 error ("Protocol error with Rcmd");
4760 }
4761 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
4762 {
4763 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
4764 fputc_unfiltered (c, outbuf);
4765 }
4766 break;
4767 }
4768 }
4769
4770 static void
4771 packet_command (char *args, int from_tty)
4772 {
4773 char *buf = alloca (PBUFSIZ);
4774
4775 if (!remote_desc)
4776 error ("command can only be used with remote target");
4777
4778 if (!args)
4779 error ("remote-packet command requires packet text as argument");
4780
4781 puts_filtered ("sending: ");
4782 print_packet (args);
4783 puts_filtered ("\n");
4784 putpkt (args);
4785
4786 getpkt (buf, PBUFSIZ, 0);
4787 puts_filtered ("received: ");
4788 print_packet (buf);
4789 puts_filtered ("\n");
4790 }
4791
4792 #if 0
4793 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
4794
4795 static void display_thread_info (struct gdb_ext_thread_info *info);
4796
4797 static void threadset_test_cmd (char *cmd, int tty);
4798
4799 static void threadalive_test (char *cmd, int tty);
4800
4801 static void threadlist_test_cmd (char *cmd, int tty);
4802
4803 int get_and_display_threadinfo (threadref * ref);
4804
4805 static void threadinfo_test_cmd (char *cmd, int tty);
4806
4807 static int thread_display_step (threadref * ref, void *context);
4808
4809 static void threadlist_update_test_cmd (char *cmd, int tty);
4810
4811 static void init_remote_threadtests (void);
4812
4813 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
4814
4815 static void
4816 threadset_test_cmd (char *cmd, int tty)
4817 {
4818 int sample_thread = SAMPLE_THREAD;
4819
4820 printf_filtered ("Remote threadset test\n");
4821 set_thread (sample_thread, 1);
4822 }
4823
4824
4825 static void
4826 threadalive_test (char *cmd, int tty)
4827 {
4828 int sample_thread = SAMPLE_THREAD;
4829
4830 if (remote_thread_alive (sample_thread))
4831 printf_filtered ("PASS: Thread alive test\n");
4832 else
4833 printf_filtered ("FAIL: Thread alive test\n");
4834 }
4835
4836 void output_threadid (char *title, threadref * ref);
4837
4838 void
4839 output_threadid (char *title, threadref *ref)
4840 {
4841 char hexid[20];
4842
4843 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
4844 hexid[16] = 0;
4845 printf_filtered ("%s %s\n", title, (&hexid[0]));
4846 }
4847
4848 static void
4849 threadlist_test_cmd (char *cmd, int tty)
4850 {
4851 int startflag = 1;
4852 threadref nextthread;
4853 int done, result_count;
4854 threadref threadlist[3];
4855
4856 printf_filtered ("Remote Threadlist test\n");
4857 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
4858 &result_count, &threadlist[0]))
4859 printf_filtered ("FAIL: threadlist test\n");
4860 else
4861 {
4862 threadref *scan = threadlist;
4863 threadref *limit = scan + result_count;
4864
4865 while (scan < limit)
4866 output_threadid (" thread ", scan++);
4867 }
4868 }
4869
4870 void
4871 display_thread_info (struct gdb_ext_thread_info *info)
4872 {
4873 output_threadid ("Threadid: ", &info->threadid);
4874 printf_filtered ("Name: %s\n ", info->shortname);
4875 printf_filtered ("State: %s\n", info->display);
4876 printf_filtered ("other: %s\n\n", info->more_display);
4877 }
4878
4879 int
4880 get_and_display_threadinfo (threadref *ref)
4881 {
4882 int result;
4883 int set;
4884 struct gdb_ext_thread_info threadinfo;
4885
4886 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4887 | TAG_MOREDISPLAY | TAG_DISPLAY;
4888 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
4889 display_thread_info (&threadinfo);
4890 return result;
4891 }
4892
4893 static void
4894 threadinfo_test_cmd (char *cmd, int tty)
4895 {
4896 int athread = SAMPLE_THREAD;
4897 threadref thread;
4898 int set;
4899
4900 int_to_threadref (&thread, athread);
4901 printf_filtered ("Remote Threadinfo test\n");
4902 if (!get_and_display_threadinfo (&thread))
4903 printf_filtered ("FAIL cannot get thread info\n");
4904 }
4905
4906 static int
4907 thread_display_step (threadref *ref, void *context)
4908 {
4909 /* output_threadid(" threadstep ",ref); *//* simple test */
4910 return get_and_display_threadinfo (ref);
4911 }
4912
4913 static void
4914 threadlist_update_test_cmd (char *cmd, int tty)
4915 {
4916 printf_filtered ("Remote Threadlist update test\n");
4917 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
4918 }
4919
4920 static void
4921 init_remote_threadtests (void)
4922 {
4923 add_com ("tlist", class_obscure, threadlist_test_cmd,
4924 "Fetch and print the remote list of thread identifiers, one pkt only");
4925 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
4926 "Fetch and display info about one thread");
4927 add_com ("tset", class_obscure, threadset_test_cmd,
4928 "Test setting to a different thread");
4929 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
4930 "Iterate through updating all remote thread info");
4931 add_com ("talive", class_obscure, threadalive_test,
4932 " Remote thread alive test ");
4933 }
4934
4935 #endif /* 0 */
4936
4937 static void
4938 init_remote_ops (void)
4939 {
4940 remote_ops.to_shortname = "remote";
4941 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
4942 remote_ops.to_doc =
4943 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
4944 Specify the serial device it is connected to\n\
4945 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
4946 remote_ops.to_open = remote_open;
4947 remote_ops.to_close = remote_close;
4948 remote_ops.to_detach = remote_detach;
4949 remote_ops.to_resume = remote_resume;
4950 remote_ops.to_wait = remote_wait;
4951 remote_ops.to_fetch_registers = remote_fetch_registers;
4952 remote_ops.to_store_registers = remote_store_registers;
4953 remote_ops.to_prepare_to_store = remote_prepare_to_store;
4954 remote_ops.to_xfer_memory = remote_xfer_memory;
4955 remote_ops.to_files_info = remote_files_info;
4956 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
4957 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
4958 remote_ops.to_kill = remote_kill;
4959 remote_ops.to_load = generic_load;
4960 remote_ops.to_mourn_inferior = remote_mourn;
4961 remote_ops.to_thread_alive = remote_thread_alive;
4962 remote_ops.to_find_new_threads = remote_threads_info;
4963 remote_ops.to_extra_thread_info = remote_threads_extra_info;
4964 remote_ops.to_stop = remote_stop;
4965 remote_ops.to_query = remote_query;
4966 remote_ops.to_rcmd = remote_rcmd;
4967 remote_ops.to_stratum = process_stratum;
4968 remote_ops.to_has_all_memory = 1;
4969 remote_ops.to_has_memory = 1;
4970 remote_ops.to_has_stack = 1;
4971 remote_ops.to_has_registers = 1;
4972 remote_ops.to_has_execution = 1;
4973 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
4974 remote_ops.to_magic = OPS_MAGIC;
4975 }
4976
4977 /* Set up the extended remote vector by making a copy of the standard
4978 remote vector and adding to it. */
4979
4980 static void
4981 init_extended_remote_ops (void)
4982 {
4983 extended_remote_ops = remote_ops;
4984
4985 extended_remote_ops.to_shortname = "extended-remote";
4986 extended_remote_ops.to_longname =
4987 "Extended remote serial target in gdb-specific protocol";
4988 extended_remote_ops.to_doc =
4989 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
4990 Specify the serial device it is connected to (e.g. /dev/ttya).",
4991 extended_remote_ops.to_open = extended_remote_open;
4992 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
4993 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
4994 }
4995
4996 /*
4997 * Command: info remote-process
4998 *
4999 * This implements Cisco's version of the "info proc" command.
5000 *
5001 * This query allows the target stub to return an arbitrary string
5002 * (or strings) giving arbitrary information about the target process.
5003 * This is optional; the target stub isn't required to implement it.
5004 *
5005 * Syntax: qfProcessInfo request first string
5006 * qsProcessInfo request subsequent string
5007 * reply: 'O'<hex-encoded-string>
5008 * 'l' last reply (empty)
5009 */
5010
5011 static void
5012 remote_info_process (char *args, int from_tty)
5013 {
5014 char *buf = alloca (PBUFSIZ);
5015
5016 if (remote_desc == 0)
5017 error ("Command can only be used when connected to the remote target.");
5018
5019 putpkt ("qfProcessInfo");
5020 getpkt (buf, PBUFSIZ, 0);
5021 if (buf[0] == 0)
5022 return; /* Silently: target does not support this feature. */
5023
5024 if (buf[0] == 'E')
5025 error ("info proc: target error.");
5026
5027 while (buf[0] == 'O') /* Capitol-O packet */
5028 {
5029 remote_console_output (&buf[1]);
5030 putpkt ("qsProcessInfo");
5031 getpkt (buf, PBUFSIZ, 0);
5032 }
5033 }
5034
5035 /*
5036 * Target Cisco
5037 */
5038
5039 static void
5040 remote_cisco_open (char *name, int from_tty)
5041 {
5042 if (name == 0)
5043 error (
5044 "To open a remote debug connection, you need to specify what \n\
5045 device is attached to the remote system (e.g. host:port).");
5046
5047 /* See FIXME above */
5048 wait_forever_enabled_p = 1;
5049
5050 target_preopen (from_tty);
5051
5052 unpush_target (&remote_cisco_ops);
5053
5054 remote_desc = SERIAL_OPEN (name);
5055 if (!remote_desc)
5056 perror_with_name (name);
5057
5058 /*
5059 * If a baud rate was specified on the gdb command line it will
5060 * be greater than the initial value of -1. If it is, use it otherwise
5061 * default to 9600
5062 */
5063
5064 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5065 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
5066 {
5067 SERIAL_CLOSE (remote_desc);
5068 perror_with_name (name);
5069 }
5070
5071 SERIAL_RAW (remote_desc);
5072
5073 /* If there is something sitting in the buffer we might take it as a
5074 response to a command, which would be bad. */
5075 SERIAL_FLUSH_INPUT (remote_desc);
5076
5077 if (from_tty)
5078 {
5079 puts_filtered ("Remote debugging using ");
5080 puts_filtered (name);
5081 puts_filtered ("\n");
5082 }
5083
5084 remote_cisco_mode = 1;
5085
5086 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5087
5088 init_all_packet_configs ();
5089
5090 general_thread = -2;
5091 continue_thread = -2;
5092
5093 /* Probe for ability to use "ThreadInfo" query, as required. */
5094 use_threadinfo_query = 1;
5095 use_threadextra_query = 1;
5096
5097 /* Without this, some commands which require an active target (such
5098 as kill) won't work. This variable serves (at least) double duty
5099 as both the pid of the target process (if it has such), and as a
5100 flag indicating that a target is active. These functions should
5101 be split out into seperate variables, especially since GDB will
5102 someday have a notion of debugging several processes. */
5103 inferior_pid = MAGIC_NULL_PID;
5104
5105 /* Start the remote connection; if error (0), discard this target. */
5106
5107 if (!catch_errors (remote_start_remote_dummy, (char *) 0,
5108 "Couldn't establish connection to remote target\n",
5109 RETURN_MASK_ALL))
5110 {
5111 pop_target ();
5112 return;
5113 }
5114 }
5115
5116 static void
5117 remote_cisco_close (int quitting)
5118 {
5119 remote_cisco_mode = 0;
5120 remote_close (quitting);
5121 }
5122
5123 static void
5124 remote_cisco_mourn (void)
5125 {
5126 remote_mourn_1 (&remote_cisco_ops);
5127 }
5128
5129 enum
5130 {
5131 READ_MORE,
5132 FATAL_ERROR,
5133 ENTER_DEBUG,
5134 DISCONNECT_TELNET
5135 }
5136 minitelnet_return;
5137
5138 /* shared between readsocket() and readtty() */
5139 static char *tty_input;
5140
5141 static int escape_count;
5142 static int echo_check;
5143 extern int quit_flag;
5144
5145 static int
5146 readsocket (void)
5147 {
5148 int data;
5149
5150 /* Loop until the socket doesn't have any more data */
5151
5152 while ((data = readchar (0)) >= 0)
5153 {
5154 /* Check for the escape sequence */
5155 if (data == '|')
5156 {
5157 /* If this is the fourth escape, get out */
5158 if (++escape_count == 4)
5159 {
5160 return ENTER_DEBUG;
5161 }
5162 else
5163 { /* This is a '|', but not the fourth in a row.
5164 Continue without echoing it. If it isn't actually
5165 one of four in a row, it'll be echoed later. */
5166 continue;
5167 }
5168 }
5169 else
5170 /* Not a '|' */
5171 {
5172 /* Ensure any pending '|'s are flushed. */
5173
5174 for (; escape_count > 0; escape_count--)
5175 putchar ('|');
5176 }
5177
5178 if (data == '\r') /* If this is a return character, */
5179 continue; /* - just supress it. */
5180
5181 if (echo_check != -1) /* Check for echo of user input. */
5182 {
5183 if (tty_input[echo_check] == data)
5184 {
5185 echo_check++; /* Character matched user input: */
5186 continue; /* Continue without echoing it. */
5187 }
5188 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5189 { /* End of the line (and of echo checking). */
5190 echo_check = -1; /* No more echo supression */
5191 continue; /* Continue without echoing. */
5192 }
5193 else
5194 { /* Failed check for echo of user input.
5195 We now have some suppressed output to flush! */
5196 int j;
5197
5198 for (j = 0; j < echo_check; j++)
5199 putchar (tty_input[j]);
5200 echo_check = -1;
5201 }
5202 }
5203 putchar (data); /* Default case: output the char. */
5204 }
5205
5206 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5207 return READ_MORE; /* Try to read some more */
5208 else
5209 return FATAL_ERROR; /* Trouble, bail out */
5210 }
5211
5212 static int
5213 readtty (void)
5214 {
5215 int tty_bytecount;
5216
5217 /* First, read a buffer full from the terminal */
5218 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5219 if (tty_bytecount == -1)
5220 {
5221 perror ("readtty: read failed");
5222 return FATAL_ERROR;
5223 }
5224
5225 /* Remove a quoted newline. */
5226 if (tty_input[tty_bytecount - 1] == '\n' &&
5227 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5228 {
5229 tty_input[--tty_bytecount] = 0; /* remove newline */
5230 tty_input[--tty_bytecount] = 0; /* remove backslash */
5231 }
5232
5233 /* Turn trailing newlines into returns */
5234 if (tty_input[tty_bytecount - 1] == '\n')
5235 tty_input[tty_bytecount - 1] = '\r';
5236
5237 /* If the line consists of a ~, enter debugging mode. */
5238 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5239 return ENTER_DEBUG;
5240
5241 /* Make this a zero terminated string and write it out */
5242 tty_input[tty_bytecount] = 0;
5243 if (SERIAL_WRITE (remote_desc, tty_input, tty_bytecount))
5244 {
5245 perror_with_name ("readtty: write failed");
5246 return FATAL_ERROR;
5247 }
5248
5249 return READ_MORE;
5250 }
5251
5252 static int
5253 minitelnet (void)
5254 {
5255 fd_set input; /* file descriptors for select */
5256 int tablesize; /* max number of FDs for select */
5257 int status;
5258 int quit_count = 0;
5259
5260 extern int escape_count; /* global shared by readsocket */
5261 extern int echo_check; /* ditto */
5262
5263 escape_count = 0;
5264 echo_check = -1;
5265
5266 tablesize = 8 * sizeof (input);
5267
5268 for (;;)
5269 {
5270 /* Check for anything from our socket - doesn't block. Note that
5271 this must be done *before* the select as there may be
5272 buffered I/O waiting to be processed. */
5273
5274 if ((status = readsocket ()) == FATAL_ERROR)
5275 {
5276 error ("Debugging terminated by communications error");
5277 }
5278 else if (status != READ_MORE)
5279 {
5280 return (status);
5281 }
5282
5283 fflush (stdout); /* Flush output before blocking */
5284
5285 /* Now block on more socket input or TTY input */
5286
5287 FD_ZERO (&input);
5288 FD_SET (fileno (stdin), &input);
5289 FD_SET (DEPRECATED_SERIAL_FD (remote_desc), &input);
5290
5291 status = select (tablesize, &input, 0, 0, 0);
5292 if ((status == -1) && (errno != EINTR))
5293 {
5294 error ("Communications error on select %d", errno);
5295 }
5296
5297 /* Handle Control-C typed */
5298
5299 if (quit_flag)
5300 {
5301 if ((++quit_count) == 2)
5302 {
5303 if (query ("Interrupt GDB? "))
5304 {
5305 printf_filtered ("Interrupted by user.\n");
5306 return_to_top_level (RETURN_QUIT);
5307 }
5308 quit_count = 0;
5309 }
5310 quit_flag = 0;
5311
5312 if (remote_break)
5313 SERIAL_SEND_BREAK (remote_desc);
5314 else
5315 SERIAL_WRITE (remote_desc, "\003", 1);
5316
5317 continue;
5318 }
5319
5320 /* Handle console input */
5321
5322 if (FD_ISSET (fileno (stdin), &input))
5323 {
5324 quit_count = 0;
5325 echo_check = 0;
5326 status = readtty ();
5327 if (status == READ_MORE)
5328 continue;
5329
5330 return status; /* telnet session ended */
5331 }
5332 }
5333 }
5334
5335 static int
5336 remote_cisco_wait (int pid, struct target_waitstatus *status)
5337 {
5338 if (minitelnet () != ENTER_DEBUG)
5339 {
5340 error ("Debugging session terminated by protocol error");
5341 }
5342 putpkt ("?");
5343 return remote_wait (pid, status);
5344 }
5345
5346 static void
5347 init_remote_cisco_ops (void)
5348 {
5349 remote_cisco_ops.to_shortname = "cisco";
5350 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5351 remote_cisco_ops.to_doc =
5352 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5353 Specify the serial device it is connected to (e.g. host:2020).";
5354 remote_cisco_ops.to_open = remote_cisco_open;
5355 remote_cisco_ops.to_close = remote_cisco_close;
5356 remote_cisco_ops.to_detach = remote_detach;
5357 remote_cisco_ops.to_resume = remote_resume;
5358 remote_cisco_ops.to_wait = remote_cisco_wait;
5359 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5360 remote_cisco_ops.to_store_registers = remote_store_registers;
5361 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5362 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5363 remote_cisco_ops.to_files_info = remote_files_info;
5364 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5365 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5366 remote_cisco_ops.to_kill = remote_kill;
5367 remote_cisco_ops.to_load = generic_load;
5368 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5369 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5370 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5371 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5372 remote_cisco_ops.to_stratum = process_stratum;
5373 remote_cisco_ops.to_has_all_memory = 1;
5374 remote_cisco_ops.to_has_memory = 1;
5375 remote_cisco_ops.to_has_stack = 1;
5376 remote_cisco_ops.to_has_registers = 1;
5377 remote_cisco_ops.to_has_execution = 1;
5378 remote_cisco_ops.to_magic = OPS_MAGIC;
5379 }
5380
5381 static int
5382 remote_can_async_p (void)
5383 {
5384 /* We're async whenever the serial device is. */
5385 return (current_target.to_async_mask_value) && SERIAL_CAN_ASYNC_P (remote_desc);
5386 }
5387
5388 static int
5389 remote_is_async_p (void)
5390 {
5391 /* We're async whenever the serial device is. */
5392 return (current_target.to_async_mask_value) && SERIAL_IS_ASYNC_P (remote_desc);
5393 }
5394
5395 /* Pass the SERIAL event on and up to the client. One day this code
5396 will be able to delay notifying the client of an event until the
5397 point where an entire packet has been received. */
5398
5399 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5400 static void *async_client_context;
5401 static serial_event_ftype remote_async_serial_handler;
5402
5403 static void
5404 remote_async_serial_handler (serial_t scb, void *context)
5405 {
5406 /* Don't propogate error information up to the client. Instead let
5407 the client find out about the error by querying the target. */
5408 async_client_callback (INF_REG_EVENT, async_client_context);
5409 }
5410
5411 static void
5412 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5413 {
5414 if (current_target.to_async_mask_value == 0)
5415 internal_error (__FILE__, __LINE__,
5416 "Calling remote_async when async is masked");
5417
5418 if (callback != NULL)
5419 {
5420 SERIAL_ASYNC (remote_desc, remote_async_serial_handler, NULL);
5421 async_client_callback = callback;
5422 async_client_context = context;
5423 }
5424 else
5425 SERIAL_ASYNC (remote_desc, NULL, NULL);
5426 }
5427
5428 /* Target async and target extended-async.
5429
5430 This are temporary targets, until it is all tested. Eventually
5431 async support will be incorporated int the usual 'remote'
5432 target. */
5433
5434 static void
5435 init_remote_async_ops (void)
5436 {
5437 remote_async_ops.to_shortname = "async";
5438 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5439 remote_async_ops.to_doc =
5440 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5441 Specify the serial device it is connected to (e.g. /dev/ttya).";
5442 remote_async_ops.to_open = remote_async_open;
5443 remote_async_ops.to_close = remote_close;
5444 remote_async_ops.to_detach = remote_async_detach;
5445 remote_async_ops.to_resume = remote_async_resume;
5446 remote_async_ops.to_wait = remote_async_wait;
5447 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5448 remote_async_ops.to_store_registers = remote_store_registers;
5449 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5450 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5451 remote_async_ops.to_files_info = remote_files_info;
5452 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5453 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5454 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5455 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5456 remote_async_ops.to_kill = remote_async_kill;
5457 remote_async_ops.to_load = generic_load;
5458 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5459 remote_async_ops.to_thread_alive = remote_thread_alive;
5460 remote_async_ops.to_find_new_threads = remote_threads_info;
5461 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5462 remote_async_ops.to_stop = remote_stop;
5463 remote_async_ops.to_query = remote_query;
5464 remote_async_ops.to_rcmd = remote_rcmd;
5465 remote_async_ops.to_stratum = process_stratum;
5466 remote_async_ops.to_has_all_memory = 1;
5467 remote_async_ops.to_has_memory = 1;
5468 remote_async_ops.to_has_stack = 1;
5469 remote_async_ops.to_has_registers = 1;
5470 remote_async_ops.to_has_execution = 1;
5471 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5472 remote_async_ops.to_can_async_p = remote_can_async_p;
5473 remote_async_ops.to_is_async_p = remote_is_async_p;
5474 remote_async_ops.to_async = remote_async;
5475 remote_async_ops.to_async_mask_value = 1;
5476 remote_async_ops.to_magic = OPS_MAGIC;
5477 }
5478
5479 /* Set up the async extended remote vector by making a copy of the standard
5480 remote vector and adding to it. */
5481
5482 static void
5483 init_extended_async_remote_ops (void)
5484 {
5485 extended_async_remote_ops = remote_async_ops;
5486
5487 extended_async_remote_ops.to_shortname = "extended-async";
5488 extended_async_remote_ops.to_longname =
5489 "Extended remote serial target in async gdb-specific protocol";
5490 extended_async_remote_ops.to_doc =
5491 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5492 Specify the serial device it is connected to (e.g. /dev/ttya).",
5493 extended_async_remote_ops.to_open = extended_remote_async_open;
5494 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5495 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5496 }
5497
5498 static void
5499 set_remote_cmd (char *args, int from_tty)
5500 {
5501
5502 }
5503
5504 static void
5505 show_remote_cmd (char *args, int from_tty)
5506 {
5507 show_remote_protocol_Z_packet_cmd (args, from_tty);
5508 show_remote_protocol_P_packet_cmd (args, from_tty);
5509 show_remote_protocol_binary_download_cmd (args, from_tty);
5510 }
5511
5512 static void
5513 build_remote_gdbarch_data (void)
5514 {
5515 build_remote_packet_sizes ();
5516
5517 /* Cisco stuff */
5518 tty_input = xmalloc (PBUFSIZ);
5519 remote_address_size = TARGET_ADDR_BIT;
5520 }
5521
5522 void
5523 _initialize_remote (void)
5524 {
5525 static struct cmd_list_element *remote_set_cmdlist;
5526 static struct cmd_list_element *remote_show_cmdlist;
5527 struct cmd_list_element *tmpcmd;
5528
5529 /* architecture specific data */
5530 build_remote_gdbarch_data ();
5531 register_gdbarch_swap (&tty_input, sizeof (&tty_input), NULL);
5532 register_remote_packet_sizes ();
5533 register_gdbarch_swap (&remote_address_size,
5534 sizeof (&remote_address_size), NULL);
5535 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5536
5537 init_remote_ops ();
5538 add_target (&remote_ops);
5539
5540 init_extended_remote_ops ();
5541 add_target (&extended_remote_ops);
5542
5543 init_remote_async_ops ();
5544 add_target (&remote_async_ops);
5545
5546 init_extended_async_remote_ops ();
5547 add_target (&extended_async_remote_ops);
5548
5549 init_remote_cisco_ops ();
5550 add_target (&remote_cisco_ops);
5551
5552 #if 0
5553 init_remote_threadtests ();
5554 #endif
5555
5556 /* set/show remote ... */
5557
5558 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5559 Remote protocol specific variables\n\
5560 Configure various remote-protocol specific variables such as\n\
5561 the packets being used",
5562 &remote_set_cmdlist, "set remote ",
5563 0/*allow-unknown*/, &setlist);
5564 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5565 Remote protocol specific variables\n\
5566 Configure various remote-protocol specific variables such as\n\
5567 the packets being used",
5568 &remote_show_cmdlist, "show remote ",
5569 0/*allow-unknown*/, &showlist);
5570
5571 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5572 "Compare section data on target to the exec file.\n\
5573 Argument is a single section name (default: all loaded sections).",
5574 &cmdlist);
5575
5576 add_cmd ("packet", class_maintenance, packet_command,
5577 "Send an arbitrary packet to a remote target.\n\
5578 maintenance packet TEXT\n\
5579 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5580 this command sends the string TEXT to the inferior, and displays the\n\
5581 response packet. GDB supplies the initial `$' character, and the\n\
5582 terminating `#' character and checksum.",
5583 &maintenancelist);
5584
5585 add_show_from_set
5586 (add_set_cmd ("remotebreak", no_class,
5587 var_boolean, (char *) &remote_break,
5588 "Set whether to send break if interrupted.\n",
5589 &setlist),
5590 &showlist);
5591
5592 /* Install commands for configuring memory read/write packets. */
5593
5594 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5595 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5596 &setlist);
5597 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5598 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5599 &showlist);
5600 add_cmd ("memory-write-packet-size", no_class,
5601 set_memory_write_packet_size,
5602 "Set the maximum number of bytes per memory-write packet.\n"
5603 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5604 "default packet size. The actual limit is further reduced\n"
5605 "dependent on the target. Specify ``fixed'' to disable the\n"
5606 "further restriction and ``limit'' to enable that restriction\n",
5607 &remote_set_cmdlist);
5608 add_cmd ("memory-read-packet-size", no_class,
5609 set_memory_read_packet_size,
5610 "Set the maximum number of bytes per memory-read packet.\n"
5611 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5612 "default packet size. The actual limit is further reduced\n"
5613 "dependent on the target. Specify ``fixed'' to disable the\n"
5614 "further restriction and ``limit'' to enable that restriction\n",
5615 &remote_set_cmdlist);
5616 add_cmd ("memory-write-packet-size", no_class,
5617 show_memory_write_packet_size,
5618 "Show the maximum number of bytes per memory-write packet.\n",
5619 &remote_show_cmdlist);
5620 add_cmd ("memory-read-packet-size", no_class,
5621 show_memory_read_packet_size,
5622 "Show the maximum number of bytes per memory-read packet.\n",
5623 &remote_show_cmdlist);
5624
5625 add_show_from_set
5626 (add_set_cmd ("remoteaddresssize", class_obscure,
5627 var_integer, (char *) &remote_address_size,
5628 "Set the maximum size of the address (in bits) \
5629 in a memory packet.\n",
5630 &setlist),
5631 &showlist);
5632
5633 add_packet_config_cmd (&remote_protocol_binary_download,
5634 "X", "binary-download",
5635 set_remote_protocol_binary_download_cmd,
5636 show_remote_protocol_binary_download_cmd,
5637 &remote_set_cmdlist, &remote_show_cmdlist,
5638 1);
5639 #if 0
5640 /* XXXX - should ``set remotebinarydownload'' be retained for
5641 compatibility. */
5642 add_show_from_set
5643 (add_set_cmd ("remotebinarydownload", no_class,
5644 var_boolean, (char *) &remote_binary_download,
5645 "Set binary downloads.\n", &setlist),
5646 &showlist);
5647 #endif
5648
5649 add_info ("remote-process", remote_info_process,
5650 "Query the remote system for process info.");
5651
5652 add_packet_config_cmd (&remote_protocol_P,
5653 "P", "set-register",
5654 set_remote_protocol_P_packet_cmd,
5655 show_remote_protocol_P_packet_cmd,
5656 &remote_set_cmdlist, &remote_show_cmdlist,
5657 1);
5658
5659 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5660 "Z0", "software-breakpoint",
5661 set_remote_protocol_Z_software_bp_packet_cmd,
5662 show_remote_protocol_Z_software_bp_packet_cmd,
5663 &remote_set_cmdlist, &remote_show_cmdlist,
5664 0);
5665
5666 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5667 "Z1", "hardware-breakpoint",
5668 set_remote_protocol_Z_hardware_bp_packet_cmd,
5669 show_remote_protocol_Z_hardware_bp_packet_cmd,
5670 &remote_set_cmdlist, &remote_show_cmdlist,
5671 0);
5672
5673 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5674 "Z2", "write-watchpoint",
5675 set_remote_protocol_Z_write_wp_packet_cmd,
5676 show_remote_protocol_Z_write_wp_packet_cmd,
5677 &remote_set_cmdlist, &remote_show_cmdlist,
5678 0);
5679
5680 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5681 "Z3", "read-watchpoint",
5682 set_remote_protocol_Z_read_wp_packet_cmd,
5683 show_remote_protocol_Z_read_wp_packet_cmd,
5684 &remote_set_cmdlist, &remote_show_cmdlist,
5685 0);
5686
5687 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5688 "Z4", "access-watchpoint",
5689 set_remote_protocol_Z_access_wp_packet_cmd,
5690 show_remote_protocol_Z_access_wp_packet_cmd,
5691 &remote_set_cmdlist, &remote_show_cmdlist,
5692 0);
5693
5694 /* Keep the old ``set remote Z-packet ...'' working. */
5695 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
5696 &remote_Z_packet_detect,
5697 "\
5698 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
5699 tmpcmd->function.sfunc = set_remote_protocol_Z_packet_cmd;
5700 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
5701 "Show use of remote protocol `Z' packets ",
5702 &remote_show_cmdlist);
5703 }
This page took 0.158691 seconds and 3 git commands to generate.