* configure: Rebuild.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297 };
298
299 /* Returns true if the multi-process extensions are in effect. */
300 static int
301 remote_multi_process_p (struct remote_state *rs)
302 {
303 return rs->extended && rs->multi_process_aware;
304 }
305
306 /* This data could be associated with a target, but we do not always
307 have access to the current target when we need it, so for now it is
308 static. This will be fine for as long as only one target is in use
309 at a time. */
310 static struct remote_state remote_state;
311
312 static struct remote_state *
313 get_remote_state_raw (void)
314 {
315 return &remote_state;
316 }
317
318 /* Description of the remote protocol for a given architecture. */
319
320 struct packet_reg
321 {
322 long offset; /* Offset into G packet. */
323 long regnum; /* GDB's internal register number. */
324 LONGEST pnum; /* Remote protocol register number. */
325 int in_g_packet; /* Always part of G packet. */
326 /* long size in bytes; == register_size (target_gdbarch, regnum);
327 at present. */
328 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
329 at present. */
330 };
331
332 struct remote_arch_state
333 {
334 /* Description of the remote protocol registers. */
335 long sizeof_g_packet;
336
337 /* Description of the remote protocol registers indexed by REGNUM
338 (making an array gdbarch_num_regs in size). */
339 struct packet_reg *regs;
340
341 /* This is the size (in chars) of the first response to the ``g''
342 packet. It is used as a heuristic when determining the maximum
343 size of memory-read and memory-write packets. A target will
344 typically only reserve a buffer large enough to hold the ``g''
345 packet. The size does not include packet overhead (headers and
346 trailers). */
347 long actual_register_packet_size;
348
349 /* This is the maximum size (in chars) of a non read/write packet.
350 It is also used as a cap on the size of read/write packets. */
351 long remote_packet_size;
352 };
353
354
355 /* Handle for retreving the remote protocol data from gdbarch. */
356 static struct gdbarch_data *remote_gdbarch_data_handle;
357
358 static struct remote_arch_state *
359 get_remote_arch_state (void)
360 {
361 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
362 }
363
364 /* Fetch the global remote target state. */
365
366 static struct remote_state *
367 get_remote_state (void)
368 {
369 /* Make sure that the remote architecture state has been
370 initialized, because doing so might reallocate rs->buf. Any
371 function which calls getpkt also needs to be mindful of changes
372 to rs->buf, but this call limits the number of places which run
373 into trouble. */
374 get_remote_arch_state ();
375
376 return get_remote_state_raw ();
377 }
378
379 static int
380 compare_pnums (const void *lhs_, const void *rhs_)
381 {
382 const struct packet_reg * const *lhs = lhs_;
383 const struct packet_reg * const *rhs = rhs_;
384
385 if ((*lhs)->pnum < (*rhs)->pnum)
386 return -1;
387 else if ((*lhs)->pnum == (*rhs)->pnum)
388 return 0;
389 else
390 return 1;
391 }
392
393 static void *
394 init_remote_state (struct gdbarch *gdbarch)
395 {
396 int regnum, num_remote_regs, offset;
397 struct remote_state *rs = get_remote_state_raw ();
398 struct remote_arch_state *rsa;
399 struct packet_reg **remote_regs;
400
401 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
402
403 /* Use the architecture to build a regnum<->pnum table, which will be
404 1:1 unless a feature set specifies otherwise. */
405 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
406 gdbarch_num_regs (gdbarch),
407 struct packet_reg);
408 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
409 {
410 struct packet_reg *r = &rsa->regs[regnum];
411
412 if (register_size (gdbarch, regnum) == 0)
413 /* Do not try to fetch zero-sized (placeholder) registers. */
414 r->pnum = -1;
415 else
416 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
417
418 r->regnum = regnum;
419 }
420
421 /* Define the g/G packet format as the contents of each register
422 with a remote protocol number, in order of ascending protocol
423 number. */
424
425 remote_regs = alloca (gdbarch_num_regs (gdbarch)
426 * sizeof (struct packet_reg *));
427 for (num_remote_regs = 0, regnum = 0;
428 regnum < gdbarch_num_regs (gdbarch);
429 regnum++)
430 if (rsa->regs[regnum].pnum != -1)
431 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
432
433 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
434 compare_pnums);
435
436 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
437 {
438 remote_regs[regnum]->in_g_packet = 1;
439 remote_regs[regnum]->offset = offset;
440 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
441 }
442
443 /* Record the maximum possible size of the g packet - it may turn out
444 to be smaller. */
445 rsa->sizeof_g_packet = offset;
446
447 /* Default maximum number of characters in a packet body. Many
448 remote stubs have a hardwired buffer size of 400 bytes
449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
450 as the maximum packet-size to ensure that the packet and an extra
451 NUL character can always fit in the buffer. This stops GDB
452 trashing stubs that try to squeeze an extra NUL into what is
453 already a full buffer (As of 1999-12-04 that was most stubs). */
454 rsa->remote_packet_size = 400 - 1;
455
456 /* This one is filled in when a ``g'' packet is received. */
457 rsa->actual_register_packet_size = 0;
458
459 /* Should rsa->sizeof_g_packet needs more space than the
460 default, adjust the size accordingly. Remember that each byte is
461 encoded as two characters. 32 is the overhead for the packet
462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
463 (``$NN:G...#NN'') is a better guess, the below has been padded a
464 little. */
465 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
466 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
467
468 /* Make sure that the packet buffer is plenty big enough for
469 this architecture. */
470 if (rs->buf_size < rsa->remote_packet_size)
471 {
472 rs->buf_size = 2 * rsa->remote_packet_size;
473 rs->buf = xrealloc (rs->buf, rs->buf_size);
474 }
475
476 return rsa;
477 }
478
479 /* Return the current allowed size of a remote packet. This is
480 inferred from the current architecture, and should be used to
481 limit the length of outgoing packets. */
482 static long
483 get_remote_packet_size (void)
484 {
485 struct remote_state *rs = get_remote_state ();
486 struct remote_arch_state *rsa = get_remote_arch_state ();
487
488 if (rs->explicit_packet_size)
489 return rs->explicit_packet_size;
490
491 return rsa->remote_packet_size;
492 }
493
494 static struct packet_reg *
495 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
496 {
497 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
498 return NULL;
499 else
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502 gdb_assert (r->regnum == regnum);
503 return r;
504 }
505 }
506
507 static struct packet_reg *
508 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
509 {
510 int i;
511 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
512 {
513 struct packet_reg *r = &rsa->regs[i];
514 if (r->pnum == pnum)
515 return r;
516 }
517 return NULL;
518 }
519
520 /* FIXME: graces/2002-08-08: These variables should eventually be
521 bound to an instance of the target object (as in gdbarch-tdep()),
522 when such a thing exists. */
523
524 /* This is set to the data address of the access causing the target
525 to stop for a watchpoint. */
526 static CORE_ADDR remote_watch_data_address;
527
528 /* This is non-zero if target stopped for a watchpoint. */
529 static int remote_stopped_by_watchpoint_p;
530
531 static struct target_ops remote_ops;
532
533 static struct target_ops extended_remote_ops;
534
535 static int remote_async_mask_value = 1;
536
537 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
538 ``forever'' still use the normal timeout mechanism. This is
539 currently used by the ASYNC code to guarentee that target reads
540 during the initial connect always time-out. Once getpkt has been
541 modified to return a timeout indication and, in turn
542 remote_wait()/wait_for_inferior() have gained a timeout parameter
543 this can go away. */
544 static int wait_forever_enabled_p = 1;
545
546
547 /* This variable chooses whether to send a ^C or a break when the user
548 requests program interruption. Although ^C is usually what remote
549 systems expect, and that is the default here, sometimes a break is
550 preferable instead. */
551
552 static int remote_break;
553
554 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
555 remote_open knows that we don't have a file open when the program
556 starts. */
557 static struct serial *remote_desc = NULL;
558
559 /* This variable sets the number of bits in an address that are to be
560 sent in a memory ("M" or "m") packet. Normally, after stripping
561 leading zeros, the entire address would be sent. This variable
562 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
563 initial implementation of remote.c restricted the address sent in
564 memory packets to ``host::sizeof long'' bytes - (typically 32
565 bits). Consequently, for 64 bit targets, the upper 32 bits of an
566 address was never sent. Since fixing this bug may cause a break in
567 some remote targets this variable is principly provided to
568 facilitate backward compatibility. */
569
570 static int remote_address_size;
571
572 /* Temporary to track who currently owns the terminal. See
573 remote_terminal_* for more details. */
574
575 static int remote_async_terminal_ours_p;
576
577 /* The executable file to use for "run" on the remote side. */
578
579 static char *remote_exec_file = "";
580
581 \f
582 /* User configurable variables for the number of characters in a
583 memory read/write packet. MIN (rsa->remote_packet_size,
584 rsa->sizeof_g_packet) is the default. Some targets need smaller
585 values (fifo overruns, et.al.) and some users need larger values
586 (speed up transfers). The variables ``preferred_*'' (the user
587 request), ``current_*'' (what was actually set) and ``forced_*''
588 (Positive - a soft limit, negative - a hard limit). */
589
590 struct memory_packet_config
591 {
592 char *name;
593 long size;
594 int fixed_p;
595 };
596
597 /* Compute the current size of a read/write packet. Since this makes
598 use of ``actual_register_packet_size'' the computation is dynamic. */
599
600 static long
601 get_memory_packet_size (struct memory_packet_config *config)
602 {
603 struct remote_state *rs = get_remote_state ();
604 struct remote_arch_state *rsa = get_remote_arch_state ();
605
606 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
607 law?) that some hosts don't cope very well with large alloca()
608 calls. Eventually the alloca() code will be replaced by calls to
609 xmalloc() and make_cleanups() allowing this restriction to either
610 be lifted or removed. */
611 #ifndef MAX_REMOTE_PACKET_SIZE
612 #define MAX_REMOTE_PACKET_SIZE 16384
613 #endif
614 /* NOTE: 20 ensures we can write at least one byte. */
615 #ifndef MIN_REMOTE_PACKET_SIZE
616 #define MIN_REMOTE_PACKET_SIZE 20
617 #endif
618 long what_they_get;
619 if (config->fixed_p)
620 {
621 if (config->size <= 0)
622 what_they_get = MAX_REMOTE_PACKET_SIZE;
623 else
624 what_they_get = config->size;
625 }
626 else
627 {
628 what_they_get = get_remote_packet_size ();
629 /* Limit the packet to the size specified by the user. */
630 if (config->size > 0
631 && what_they_get > config->size)
632 what_they_get = config->size;
633
634 /* Limit it to the size of the targets ``g'' response unless we have
635 permission from the stub to use a larger packet size. */
636 if (rs->explicit_packet_size == 0
637 && rsa->actual_register_packet_size > 0
638 && what_they_get > rsa->actual_register_packet_size)
639 what_they_get = rsa->actual_register_packet_size;
640 }
641 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
642 what_they_get = MAX_REMOTE_PACKET_SIZE;
643 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
644 what_they_get = MIN_REMOTE_PACKET_SIZE;
645
646 /* Make sure there is room in the global buffer for this packet
647 (including its trailing NUL byte). */
648 if (rs->buf_size < what_they_get + 1)
649 {
650 rs->buf_size = 2 * what_they_get;
651 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
652 }
653
654 return what_they_get;
655 }
656
657 /* Update the size of a read/write packet. If they user wants
658 something really big then do a sanity check. */
659
660 static void
661 set_memory_packet_size (char *args, struct memory_packet_config *config)
662 {
663 int fixed_p = config->fixed_p;
664 long size = config->size;
665 if (args == NULL)
666 error (_("Argument required (integer, `fixed' or `limited')."));
667 else if (strcmp (args, "hard") == 0
668 || strcmp (args, "fixed") == 0)
669 fixed_p = 1;
670 else if (strcmp (args, "soft") == 0
671 || strcmp (args, "limit") == 0)
672 fixed_p = 0;
673 else
674 {
675 char *end;
676 size = strtoul (args, &end, 0);
677 if (args == end)
678 error (_("Invalid %s (bad syntax)."), config->name);
679 #if 0
680 /* Instead of explicitly capping the size of a packet to
681 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
682 instead allowed to set the size to something arbitrarily
683 large. */
684 if (size > MAX_REMOTE_PACKET_SIZE)
685 error (_("Invalid %s (too large)."), config->name);
686 #endif
687 }
688 /* Extra checks? */
689 if (fixed_p && !config->fixed_p)
690 {
691 if (! query (_("The target may not be able to correctly handle a %s\n"
692 "of %ld bytes. Change the packet size? "),
693 config->name, size))
694 error (_("Packet size not changed."));
695 }
696 /* Update the config. */
697 config->fixed_p = fixed_p;
698 config->size = size;
699 }
700
701 static void
702 show_memory_packet_size (struct memory_packet_config *config)
703 {
704 printf_filtered (_("The %s is %ld. "), config->name, config->size);
705 if (config->fixed_p)
706 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
707 get_memory_packet_size (config));
708 else
709 printf_filtered (_("Packets are limited to %ld bytes.\n"),
710 get_memory_packet_size (config));
711 }
712
713 static struct memory_packet_config memory_write_packet_config =
714 {
715 "memory-write-packet-size",
716 };
717
718 static void
719 set_memory_write_packet_size (char *args, int from_tty)
720 {
721 set_memory_packet_size (args, &memory_write_packet_config);
722 }
723
724 static void
725 show_memory_write_packet_size (char *args, int from_tty)
726 {
727 show_memory_packet_size (&memory_write_packet_config);
728 }
729
730 static long
731 get_memory_write_packet_size (void)
732 {
733 return get_memory_packet_size (&memory_write_packet_config);
734 }
735
736 static struct memory_packet_config memory_read_packet_config =
737 {
738 "memory-read-packet-size",
739 };
740
741 static void
742 set_memory_read_packet_size (char *args, int from_tty)
743 {
744 set_memory_packet_size (args, &memory_read_packet_config);
745 }
746
747 static void
748 show_memory_read_packet_size (char *args, int from_tty)
749 {
750 show_memory_packet_size (&memory_read_packet_config);
751 }
752
753 static long
754 get_memory_read_packet_size (void)
755 {
756 long size = get_memory_packet_size (&memory_read_packet_config);
757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
758 extra buffer size argument before the memory read size can be
759 increased beyond this. */
760 if (size > get_remote_packet_size ())
761 size = get_remote_packet_size ();
762 return size;
763 }
764
765 \f
766 /* Generic configuration support for packets the stub optionally
767 supports. Allows the user to specify the use of the packet as well
768 as allowing GDB to auto-detect support in the remote stub. */
769
770 enum packet_support
771 {
772 PACKET_SUPPORT_UNKNOWN = 0,
773 PACKET_ENABLE,
774 PACKET_DISABLE
775 };
776
777 struct packet_config
778 {
779 const char *name;
780 const char *title;
781 enum auto_boolean detect;
782 enum packet_support support;
783 };
784
785 /* Analyze a packet's return value and update the packet config
786 accordingly. */
787
788 enum packet_result
789 {
790 PACKET_ERROR,
791 PACKET_OK,
792 PACKET_UNKNOWN
793 };
794
795 static void
796 update_packet_config (struct packet_config *config)
797 {
798 switch (config->detect)
799 {
800 case AUTO_BOOLEAN_TRUE:
801 config->support = PACKET_ENABLE;
802 break;
803 case AUTO_BOOLEAN_FALSE:
804 config->support = PACKET_DISABLE;
805 break;
806 case AUTO_BOOLEAN_AUTO:
807 config->support = PACKET_SUPPORT_UNKNOWN;
808 break;
809 }
810 }
811
812 static void
813 show_packet_config_cmd (struct packet_config *config)
814 {
815 char *support = "internal-error";
816 switch (config->support)
817 {
818 case PACKET_ENABLE:
819 support = "enabled";
820 break;
821 case PACKET_DISABLE:
822 support = "disabled";
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 support = "unknown";
826 break;
827 }
828 switch (config->detect)
829 {
830 case AUTO_BOOLEAN_AUTO:
831 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
832 config->name, support);
833 break;
834 case AUTO_BOOLEAN_TRUE:
835 case AUTO_BOOLEAN_FALSE:
836 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
837 config->name, support);
838 break;
839 }
840 }
841
842 static void
843 add_packet_config_cmd (struct packet_config *config, const char *name,
844 const char *title, int legacy)
845 {
846 char *set_doc;
847 char *show_doc;
848 char *cmd_name;
849
850 config->name = name;
851 config->title = title;
852 config->detect = AUTO_BOOLEAN_AUTO;
853 config->support = PACKET_SUPPORT_UNKNOWN;
854 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
855 name, title);
856 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
857 name, title);
858 /* set/show TITLE-packet {auto,on,off} */
859 cmd_name = xstrprintf ("%s-packet", title);
860 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
861 &config->detect, set_doc, show_doc, NULL, /* help_doc */
862 set_remote_protocol_packet_cmd,
863 show_remote_protocol_packet_cmd,
864 &remote_set_cmdlist, &remote_show_cmdlist);
865 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
866 if (legacy)
867 {
868 char *legacy_name;
869 legacy_name = xstrprintf ("%s-packet", name);
870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
871 &remote_set_cmdlist);
872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
873 &remote_show_cmdlist);
874 }
875 }
876
877 static enum packet_result
878 packet_check_result (const char *buf)
879 {
880 if (buf[0] != '\0')
881 {
882 /* The stub recognized the packet request. Check that the
883 operation succeeded. */
884 if (buf[0] == 'E'
885 && isxdigit (buf[1]) && isxdigit (buf[2])
886 && buf[3] == '\0')
887 /* "Enn" - definitly an error. */
888 return PACKET_ERROR;
889
890 /* Always treat "E." as an error. This will be used for
891 more verbose error messages, such as E.memtypes. */
892 if (buf[0] == 'E' && buf[1] == '.')
893 return PACKET_ERROR;
894
895 /* The packet may or may not be OK. Just assume it is. */
896 return PACKET_OK;
897 }
898 else
899 /* The stub does not support the packet. */
900 return PACKET_UNKNOWN;
901 }
902
903 static enum packet_result
904 packet_ok (const char *buf, struct packet_config *config)
905 {
906 enum packet_result result;
907
908 result = packet_check_result (buf);
909 switch (result)
910 {
911 case PACKET_OK:
912 case PACKET_ERROR:
913 /* The stub recognized the packet request. */
914 switch (config->support)
915 {
916 case PACKET_SUPPORT_UNKNOWN:
917 if (remote_debug)
918 fprintf_unfiltered (gdb_stdlog,
919 "Packet %s (%s) is supported\n",
920 config->name, config->title);
921 config->support = PACKET_ENABLE;
922 break;
923 case PACKET_DISABLE:
924 internal_error (__FILE__, __LINE__,
925 _("packet_ok: attempt to use a disabled packet"));
926 break;
927 case PACKET_ENABLE:
928 break;
929 }
930 break;
931 case PACKET_UNKNOWN:
932 /* The stub does not support the packet. */
933 switch (config->support)
934 {
935 case PACKET_ENABLE:
936 if (config->detect == AUTO_BOOLEAN_AUTO)
937 /* If the stub previously indicated that the packet was
938 supported then there is a protocol error.. */
939 error (_("Protocol error: %s (%s) conflicting enabled responses."),
940 config->name, config->title);
941 else
942 /* The user set it wrong. */
943 error (_("Enabled packet %s (%s) not recognized by stub"),
944 config->name, config->title);
945 break;
946 case PACKET_SUPPORT_UNKNOWN:
947 if (remote_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "Packet %s (%s) is NOT supported\n",
950 config->name, config->title);
951 config->support = PACKET_DISABLE;
952 break;
953 case PACKET_DISABLE:
954 break;
955 }
956 break;
957 }
958
959 return result;
960 }
961
962 enum {
963 PACKET_vCont = 0,
964 PACKET_X,
965 PACKET_qSymbol,
966 PACKET_P,
967 PACKET_p,
968 PACKET_Z0,
969 PACKET_Z1,
970 PACKET_Z2,
971 PACKET_Z3,
972 PACKET_Z4,
973 PACKET_vFile_open,
974 PACKET_vFile_pread,
975 PACKET_vFile_pwrite,
976 PACKET_vFile_close,
977 PACKET_vFile_unlink,
978 PACKET_qXfer_auxv,
979 PACKET_qXfer_features,
980 PACKET_qXfer_libraries,
981 PACKET_qXfer_memory_map,
982 PACKET_qXfer_spu_read,
983 PACKET_qXfer_spu_write,
984 PACKET_qXfer_osdata,
985 PACKET_qGetTLSAddr,
986 PACKET_qSupported,
987 PACKET_QPassSignals,
988 PACKET_qSearch_memory,
989 PACKET_vAttach,
990 PACKET_vRun,
991 PACKET_QStartNoAckMode,
992 PACKET_vKill,
993 PACKET_qXfer_siginfo_read,
994 PACKET_qXfer_siginfo_write,
995 PACKET_qAttached,
996 PACKET_MAX
997 };
998
999 static struct packet_config remote_protocol_packets[PACKET_MAX];
1000
1001 static void
1002 set_remote_protocol_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 struct packet_config *packet;
1006
1007 for (packet = remote_protocol_packets;
1008 packet < &remote_protocol_packets[PACKET_MAX];
1009 packet++)
1010 {
1011 if (&packet->detect == c->var)
1012 {
1013 update_packet_config (packet);
1014 return;
1015 }
1016 }
1017 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1018 c->name);
1019 }
1020
1021 static void
1022 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value)
1025 {
1026 struct packet_config *packet;
1027
1028 for (packet = remote_protocol_packets;
1029 packet < &remote_protocol_packets[PACKET_MAX];
1030 packet++)
1031 {
1032 if (&packet->detect == c->var)
1033 {
1034 show_packet_config_cmd (packet);
1035 return;
1036 }
1037 }
1038 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1039 c->name);
1040 }
1041
1042 /* Should we try one of the 'Z' requests? */
1043
1044 enum Z_packet_type
1045 {
1046 Z_PACKET_SOFTWARE_BP,
1047 Z_PACKET_HARDWARE_BP,
1048 Z_PACKET_WRITE_WP,
1049 Z_PACKET_READ_WP,
1050 Z_PACKET_ACCESS_WP,
1051 NR_Z_PACKET_TYPES
1052 };
1053
1054 /* For compatibility with older distributions. Provide a ``set remote
1055 Z-packet ...'' command that updates all the Z packet types. */
1056
1057 static enum auto_boolean remote_Z_packet_detect;
1058
1059 static void
1060 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1061 struct cmd_list_element *c)
1062 {
1063 int i;
1064 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1065 {
1066 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1067 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1068 }
1069 }
1070
1071 static void
1072 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c,
1074 const char *value)
1075 {
1076 int i;
1077 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1078 {
1079 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1080 }
1081 }
1082
1083 /* Should we try the 'ThreadInfo' query packet?
1084
1085 This variable (NOT available to the user: auto-detect only!)
1086 determines whether GDB will use the new, simpler "ThreadInfo"
1087 query or the older, more complex syntax for thread queries.
1088 This is an auto-detect variable (set to true at each connect,
1089 and set to false when the target fails to recognize it). */
1090
1091 static int use_threadinfo_query;
1092 static int use_threadextra_query;
1093
1094 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1095 static struct async_signal_handler *sigint_remote_twice_token;
1096 static struct async_signal_handler *sigint_remote_token;
1097
1098 \f
1099 /* Asynchronous signal handle registered as event loop source for
1100 when we have pending events ready to be passed to the core. */
1101
1102 static struct async_event_handler *remote_async_inferior_event_token;
1103
1104 /* Asynchronous signal handle registered as event loop source for when
1105 the remote sent us a %Stop notification. The registered callback
1106 will do a vStopped sequence to pull the rest of the events out of
1107 the remote side into our event queue. */
1108
1109 static struct async_event_handler *remote_async_get_pending_events_token;
1110 \f
1111
1112 static ptid_t magic_null_ptid;
1113 static ptid_t not_sent_ptid;
1114 static ptid_t any_thread_ptid;
1115
1116 /* These are the threads which we last sent to the remote system. The
1117 TID member will be -1 for all or -2 for not sent yet. */
1118
1119 static ptid_t general_thread;
1120 static ptid_t continue_thread;
1121
1122 /* Find out if the stub attached to PID (and hence GDB should offer to
1123 detach instead of killing it when bailing out). */
1124
1125 static int
1126 remote_query_attached (int pid)
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1131 return 0;
1132
1133 if (remote_multi_process_p (rs))
1134 sprintf (rs->buf, "qAttached:%x", pid);
1135 else
1136 sprintf (rs->buf, "qAttached");
1137
1138 putpkt (rs->buf);
1139 getpkt (&rs->buf, &rs->buf_size, 0);
1140
1141 switch (packet_ok (rs->buf,
1142 &remote_protocol_packets[PACKET_qAttached]) == PACKET_OK)
1143 {
1144 case PACKET_OK:
1145 if (strcmp (rs->buf, "1") == 0)
1146 return 1;
1147 break;
1148 case PACKET_ERROR:
1149 warning (_("Remote failure reply: %s"), rs->buf);
1150 break;
1151 case PACKET_UNKNOWN:
1152 break;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /* Add PID to GDB's inferior table. Since we can be connected to a
1159 remote system before before knowing about any inferior, mark the
1160 target with execution when we find the first inferior. If ATTACHED
1161 is 1, then we had just attached to this inferior. If it is 0, then
1162 we just created this inferior. If it is -1, then try querying the
1163 remote stub to find out if it had attached to the inferior or
1164 not. */
1165
1166 static struct inferior *
1167 remote_add_inferior (int pid, int attached)
1168 {
1169 struct remote_state *rs = get_remote_state ();
1170 struct inferior *inf;
1171
1172 /* Check whether this process we're learning about is to be
1173 considered attached, or if is to be considered to have been
1174 spawned by the stub. */
1175 if (attached == -1)
1176 attached = remote_query_attached (pid);
1177
1178 inf = add_inferior (pid);
1179
1180 inf->attach_flag = attached;
1181
1182 /* This may be the first inferior we hear about. */
1183 if (!target_has_execution)
1184 {
1185 if (rs->extended)
1186 target_mark_running (&extended_remote_ops);
1187 else
1188 target_mark_running (&remote_ops);
1189 }
1190
1191 return inf;
1192 }
1193
1194 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1195 according to RUNNING. */
1196
1197 static void
1198 remote_add_thread (ptid_t ptid, int running)
1199 {
1200 add_thread (ptid);
1201
1202 set_executing (ptid, running);
1203 set_running (ptid, running);
1204 }
1205
1206 /* Come here when we learn about a thread id from the remote target.
1207 It may be the first time we hear about such thread, so take the
1208 opportunity to add it to GDB's thread list. In case this is the
1209 first time we're noticing its corresponding inferior, add it to
1210 GDB's inferior list as well. */
1211
1212 static void
1213 remote_notice_new_inferior (ptid_t currthread, int running)
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 /* If this is a new thread, add it to GDB's thread list.
1218 If we leave it up to WFI to do this, bad things will happen. */
1219
1220 if (in_thread_list (currthread) && is_exited (currthread))
1221 {
1222 /* We're seeing an event on a thread id we knew had exited.
1223 This has to be a new thread reusing the old id. Add it. */
1224 remote_add_thread (currthread, running);
1225 return;
1226 }
1227
1228 if (!in_thread_list (currthread))
1229 {
1230 struct inferior *inf = NULL;
1231
1232 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1233 {
1234 /* inferior_ptid has no thread member yet. This can happen
1235 with the vAttach -> remote_wait,"TAAthread:" path if the
1236 stub doesn't support qC. This is the first stop reported
1237 after an attach, so this is the main thread. Update the
1238 ptid in the thread list. */
1239 thread_change_ptid (inferior_ptid, currthread);
1240 return;
1241 }
1242
1243 if (ptid_equal (magic_null_ptid, inferior_ptid))
1244 {
1245 /* inferior_ptid is not set yet. This can happen with the
1246 vRun -> remote_wait,"TAAthread:" path if the stub
1247 doesn't support qC. This is the first stop reported
1248 after an attach, so this is the main thread. Update the
1249 ptid in the thread list. */
1250 thread_change_ptid (inferior_ptid, currthread);
1251 return;
1252 }
1253
1254 /* When connecting to a target remote, or to a target
1255 extended-remote which already was debugging an inferior, we
1256 may not know about it yet. Add it before adding its child
1257 thread, so notifications are emitted in a sensible order. */
1258 if (!in_inferior_list (ptid_get_pid (currthread)))
1259 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1260
1261 /* This is really a new thread. Add it. */
1262 remote_add_thread (currthread, running);
1263
1264 /* If we found a new inferior, let the common code do whatever
1265 it needs to with it (e.g., read shared libraries, insert
1266 breakpoints). */
1267 if (inf != NULL)
1268 notice_new_inferior (currthread, running, 0);
1269 }
1270 }
1271
1272 /* Call this function as a result of
1273 1) A halt indication (T packet) containing a thread id
1274 2) A direct query of currthread
1275 3) Successful execution of set thread
1276 */
1277
1278 static void
1279 record_currthread (ptid_t currthread)
1280 {
1281 general_thread = currthread;
1282
1283 if (ptid_equal (currthread, minus_one_ptid))
1284 /* We're just invalidating the local thread mirror. */
1285 return;
1286
1287 remote_notice_new_inferior (currthread, 0);
1288 }
1289
1290 static char *last_pass_packet;
1291
1292 /* If 'QPassSignals' is supported, tell the remote stub what signals
1293 it can simply pass through to the inferior without reporting. */
1294
1295 static void
1296 remote_pass_signals (void)
1297 {
1298 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1299 {
1300 char *pass_packet, *p;
1301 int numsigs = (int) TARGET_SIGNAL_LAST;
1302 int count = 0, i;
1303
1304 gdb_assert (numsigs < 256);
1305 for (i = 0; i < numsigs; i++)
1306 {
1307 if (signal_stop_state (i) == 0
1308 && signal_print_state (i) == 0
1309 && signal_pass_state (i) == 1)
1310 count++;
1311 }
1312 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1313 strcpy (pass_packet, "QPassSignals:");
1314 p = pass_packet + strlen (pass_packet);
1315 for (i = 0; i < numsigs; i++)
1316 {
1317 if (signal_stop_state (i) == 0
1318 && signal_print_state (i) == 0
1319 && signal_pass_state (i) == 1)
1320 {
1321 if (i >= 16)
1322 *p++ = tohex (i >> 4);
1323 *p++ = tohex (i & 15);
1324 if (count)
1325 *p++ = ';';
1326 else
1327 break;
1328 count--;
1329 }
1330 }
1331 *p = 0;
1332 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1333 {
1334 struct remote_state *rs = get_remote_state ();
1335 char *buf = rs->buf;
1336
1337 putpkt (pass_packet);
1338 getpkt (&rs->buf, &rs->buf_size, 0);
1339 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1340 if (last_pass_packet)
1341 xfree (last_pass_packet);
1342 last_pass_packet = pass_packet;
1343 }
1344 else
1345 xfree (pass_packet);
1346 }
1347 }
1348
1349 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1350 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1351 thread. If GEN is set, set the general thread, if not, then set
1352 the step/continue thread. */
1353 static void
1354 set_thread (struct ptid ptid, int gen)
1355 {
1356 struct remote_state *rs = get_remote_state ();
1357 ptid_t state = gen ? general_thread : continue_thread;
1358 char *buf = rs->buf;
1359 char *endbuf = rs->buf + get_remote_packet_size ();
1360
1361 if (ptid_equal (state, ptid))
1362 return;
1363
1364 *buf++ = 'H';
1365 *buf++ = gen ? 'g' : 'c';
1366 if (ptid_equal (ptid, magic_null_ptid))
1367 xsnprintf (buf, endbuf - buf, "0");
1368 else if (ptid_equal (ptid, any_thread_ptid))
1369 xsnprintf (buf, endbuf - buf, "0");
1370 else if (ptid_equal (ptid, minus_one_ptid))
1371 xsnprintf (buf, endbuf - buf, "-1");
1372 else
1373 write_ptid (buf, endbuf, ptid);
1374 putpkt (rs->buf);
1375 getpkt (&rs->buf, &rs->buf_size, 0);
1376 if (gen)
1377 general_thread = ptid;
1378 else
1379 continue_thread = ptid;
1380 }
1381
1382 static void
1383 set_general_thread (struct ptid ptid)
1384 {
1385 set_thread (ptid, 1);
1386 }
1387
1388 static void
1389 set_continue_thread (struct ptid ptid)
1390 {
1391 set_thread (ptid, 0);
1392 }
1393
1394 /* Change the remote current process. Which thread within the process
1395 ends up selected isn't important, as long as it is the same process
1396 as what INFERIOR_PTID points to.
1397
1398 This comes from that fact that there is no explicit notion of
1399 "selected process" in the protocol. The selected process for
1400 general operations is the process the selected general thread
1401 belongs to. */
1402
1403 static void
1404 set_general_process (void)
1405 {
1406 struct remote_state *rs = get_remote_state ();
1407
1408 /* If the remote can't handle multiple processes, don't bother. */
1409 if (!remote_multi_process_p (rs))
1410 return;
1411
1412 /* We only need to change the remote current thread if it's pointing
1413 at some other process. */
1414 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1415 set_general_thread (inferior_ptid);
1416 }
1417
1418 \f
1419 /* Return nonzero if the thread PTID is still alive on the remote
1420 system. */
1421
1422 static int
1423 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1424 {
1425 struct remote_state *rs = get_remote_state ();
1426 int tid = ptid_get_tid (ptid);
1427 char *p, *endp;
1428
1429 if (ptid_equal (ptid, magic_null_ptid))
1430 /* The main thread is always alive. */
1431 return 1;
1432
1433 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1434 /* The main thread is always alive. This can happen after a
1435 vAttach, if the remote side doesn't support
1436 multi-threading. */
1437 return 1;
1438
1439 p = rs->buf;
1440 endp = rs->buf + get_remote_packet_size ();
1441
1442 *p++ = 'T';
1443 write_ptid (p, endp, ptid);
1444
1445 putpkt (rs->buf);
1446 getpkt (&rs->buf, &rs->buf_size, 0);
1447 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1448 }
1449
1450 /* About these extended threadlist and threadinfo packets. They are
1451 variable length packets but, the fields within them are often fixed
1452 length. They are redundent enough to send over UDP as is the
1453 remote protocol in general. There is a matching unit test module
1454 in libstub. */
1455
1456 #define OPAQUETHREADBYTES 8
1457
1458 /* a 64 bit opaque identifier */
1459 typedef unsigned char threadref[OPAQUETHREADBYTES];
1460
1461 /* WARNING: This threadref data structure comes from the remote O.S.,
1462 libstub protocol encoding, and remote.c. it is not particularly
1463 changable. */
1464
1465 /* Right now, the internal structure is int. We want it to be bigger.
1466 Plan to fix this.
1467 */
1468
1469 typedef int gdb_threadref; /* Internal GDB thread reference. */
1470
1471 /* gdb_ext_thread_info is an internal GDB data structure which is
1472 equivalent to the reply of the remote threadinfo packet. */
1473
1474 struct gdb_ext_thread_info
1475 {
1476 threadref threadid; /* External form of thread reference. */
1477 int active; /* Has state interesting to GDB?
1478 regs, stack. */
1479 char display[256]; /* Brief state display, name,
1480 blocked/suspended. */
1481 char shortname[32]; /* To be used to name threads. */
1482 char more_display[256]; /* Long info, statistics, queue depth,
1483 whatever. */
1484 };
1485
1486 /* The volume of remote transfers can be limited by submitting
1487 a mask containing bits specifying the desired information.
1488 Use a union of these values as the 'selection' parameter to
1489 get_thread_info. FIXME: Make these TAG names more thread specific.
1490 */
1491
1492 #define TAG_THREADID 1
1493 #define TAG_EXISTS 2
1494 #define TAG_DISPLAY 4
1495 #define TAG_THREADNAME 8
1496 #define TAG_MOREDISPLAY 16
1497
1498 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1499
1500 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1501
1502 static char *unpack_nibble (char *buf, int *val);
1503
1504 static char *pack_nibble (char *buf, int nibble);
1505
1506 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1507
1508 static char *unpack_byte (char *buf, int *value);
1509
1510 static char *pack_int (char *buf, int value);
1511
1512 static char *unpack_int (char *buf, int *value);
1513
1514 static char *unpack_string (char *src, char *dest, int length);
1515
1516 static char *pack_threadid (char *pkt, threadref *id);
1517
1518 static char *unpack_threadid (char *inbuf, threadref *id);
1519
1520 void int_to_threadref (threadref *id, int value);
1521
1522 static int threadref_to_int (threadref *ref);
1523
1524 static void copy_threadref (threadref *dest, threadref *src);
1525
1526 static int threadmatch (threadref *dest, threadref *src);
1527
1528 static char *pack_threadinfo_request (char *pkt, int mode,
1529 threadref *id);
1530
1531 static int remote_unpack_thread_info_response (char *pkt,
1532 threadref *expectedref,
1533 struct gdb_ext_thread_info
1534 *info);
1535
1536
1537 static int remote_get_threadinfo (threadref *threadid,
1538 int fieldset, /*TAG mask */
1539 struct gdb_ext_thread_info *info);
1540
1541 static char *pack_threadlist_request (char *pkt, int startflag,
1542 int threadcount,
1543 threadref *nextthread);
1544
1545 static int parse_threadlist_response (char *pkt,
1546 int result_limit,
1547 threadref *original_echo,
1548 threadref *resultlist,
1549 int *doneflag);
1550
1551 static int remote_get_threadlist (int startflag,
1552 threadref *nextthread,
1553 int result_limit,
1554 int *done,
1555 int *result_count,
1556 threadref *threadlist);
1557
1558 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1559
1560 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1561 void *context, int looplimit);
1562
1563 static int remote_newthread_step (threadref *ref, void *context);
1564
1565
1566 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1567 buffer we're allowed to write to. Returns
1568 BUF+CHARACTERS_WRITTEN. */
1569
1570 static char *
1571 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1572 {
1573 int pid, tid;
1574 struct remote_state *rs = get_remote_state ();
1575
1576 if (remote_multi_process_p (rs))
1577 {
1578 pid = ptid_get_pid (ptid);
1579 if (pid < 0)
1580 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1581 else
1582 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1583 }
1584 tid = ptid_get_tid (ptid);
1585 if (tid < 0)
1586 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1587 else
1588 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1589
1590 return buf;
1591 }
1592
1593 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1594 passed the last parsed char. Returns null_ptid on error. */
1595
1596 static ptid_t
1597 read_ptid (char *buf, char **obuf)
1598 {
1599 char *p = buf;
1600 char *pp;
1601 ULONGEST pid = 0, tid = 0;
1602 ptid_t ptid;
1603
1604 if (*p == 'p')
1605 {
1606 /* Multi-process ptid. */
1607 pp = unpack_varlen_hex (p + 1, &pid);
1608 if (*pp != '.')
1609 error (_("invalid remote ptid: %s\n"), p);
1610
1611 p = pp;
1612 pp = unpack_varlen_hex (p + 1, &tid);
1613 if (obuf)
1614 *obuf = pp;
1615 return ptid_build (pid, 0, tid);
1616 }
1617
1618 /* No multi-process. Just a tid. */
1619 pp = unpack_varlen_hex (p, &tid);
1620
1621 /* Since the stub is not sending a process id, then default to
1622 what's in inferior_ptid, unless it's null at this point. If so,
1623 then since there's no way to know the pid of the reported
1624 threads, use the magic number. */
1625 if (ptid_equal (inferior_ptid, null_ptid))
1626 pid = ptid_get_pid (magic_null_ptid);
1627 else
1628 pid = ptid_get_pid (inferior_ptid);
1629
1630 if (obuf)
1631 *obuf = pp;
1632 return ptid_build (pid, 0, tid);
1633 }
1634
1635 /* Encode 64 bits in 16 chars of hex. */
1636
1637 static const char hexchars[] = "0123456789abcdef";
1638
1639 static int
1640 ishex (int ch, int *val)
1641 {
1642 if ((ch >= 'a') && (ch <= 'f'))
1643 {
1644 *val = ch - 'a' + 10;
1645 return 1;
1646 }
1647 if ((ch >= 'A') && (ch <= 'F'))
1648 {
1649 *val = ch - 'A' + 10;
1650 return 1;
1651 }
1652 if ((ch >= '0') && (ch <= '9'))
1653 {
1654 *val = ch - '0';
1655 return 1;
1656 }
1657 return 0;
1658 }
1659
1660 static int
1661 stubhex (int ch)
1662 {
1663 if (ch >= 'a' && ch <= 'f')
1664 return ch - 'a' + 10;
1665 if (ch >= '0' && ch <= '9')
1666 return ch - '0';
1667 if (ch >= 'A' && ch <= 'F')
1668 return ch - 'A' + 10;
1669 return -1;
1670 }
1671
1672 static int
1673 stub_unpack_int (char *buff, int fieldlength)
1674 {
1675 int nibble;
1676 int retval = 0;
1677
1678 while (fieldlength)
1679 {
1680 nibble = stubhex (*buff++);
1681 retval |= nibble;
1682 fieldlength--;
1683 if (fieldlength)
1684 retval = retval << 4;
1685 }
1686 return retval;
1687 }
1688
1689 char *
1690 unpack_varlen_hex (char *buff, /* packet to parse */
1691 ULONGEST *result)
1692 {
1693 int nibble;
1694 ULONGEST retval = 0;
1695
1696 while (ishex (*buff, &nibble))
1697 {
1698 buff++;
1699 retval = retval << 4;
1700 retval |= nibble & 0x0f;
1701 }
1702 *result = retval;
1703 return buff;
1704 }
1705
1706 static char *
1707 unpack_nibble (char *buf, int *val)
1708 {
1709 *val = fromhex (*buf++);
1710 return buf;
1711 }
1712
1713 static char *
1714 pack_nibble (char *buf, int nibble)
1715 {
1716 *buf++ = hexchars[(nibble & 0x0f)];
1717 return buf;
1718 }
1719
1720 static char *
1721 pack_hex_byte (char *pkt, int byte)
1722 {
1723 *pkt++ = hexchars[(byte >> 4) & 0xf];
1724 *pkt++ = hexchars[(byte & 0xf)];
1725 return pkt;
1726 }
1727
1728 static char *
1729 unpack_byte (char *buf, int *value)
1730 {
1731 *value = stub_unpack_int (buf, 2);
1732 return buf + 2;
1733 }
1734
1735 static char *
1736 pack_int (char *buf, int value)
1737 {
1738 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1739 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1740 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1741 buf = pack_hex_byte (buf, (value & 0xff));
1742 return buf;
1743 }
1744
1745 static char *
1746 unpack_int (char *buf, int *value)
1747 {
1748 *value = stub_unpack_int (buf, 8);
1749 return buf + 8;
1750 }
1751
1752 #if 0 /* Currently unused, uncomment when needed. */
1753 static char *pack_string (char *pkt, char *string);
1754
1755 static char *
1756 pack_string (char *pkt, char *string)
1757 {
1758 char ch;
1759 int len;
1760
1761 len = strlen (string);
1762 if (len > 200)
1763 len = 200; /* Bigger than most GDB packets, junk??? */
1764 pkt = pack_hex_byte (pkt, len);
1765 while (len-- > 0)
1766 {
1767 ch = *string++;
1768 if ((ch == '\0') || (ch == '#'))
1769 ch = '*'; /* Protect encapsulation. */
1770 *pkt++ = ch;
1771 }
1772 return pkt;
1773 }
1774 #endif /* 0 (unused) */
1775
1776 static char *
1777 unpack_string (char *src, char *dest, int length)
1778 {
1779 while (length--)
1780 *dest++ = *src++;
1781 *dest = '\0';
1782 return src;
1783 }
1784
1785 static char *
1786 pack_threadid (char *pkt, threadref *id)
1787 {
1788 char *limit;
1789 unsigned char *altid;
1790
1791 altid = (unsigned char *) id;
1792 limit = pkt + BUF_THREAD_ID_SIZE;
1793 while (pkt < limit)
1794 pkt = pack_hex_byte (pkt, *altid++);
1795 return pkt;
1796 }
1797
1798
1799 static char *
1800 unpack_threadid (char *inbuf, threadref *id)
1801 {
1802 char *altref;
1803 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1804 int x, y;
1805
1806 altref = (char *) id;
1807
1808 while (inbuf < limit)
1809 {
1810 x = stubhex (*inbuf++);
1811 y = stubhex (*inbuf++);
1812 *altref++ = (x << 4) | y;
1813 }
1814 return inbuf;
1815 }
1816
1817 /* Externally, threadrefs are 64 bits but internally, they are still
1818 ints. This is due to a mismatch of specifications. We would like
1819 to use 64bit thread references internally. This is an adapter
1820 function. */
1821
1822 void
1823 int_to_threadref (threadref *id, int value)
1824 {
1825 unsigned char *scan;
1826
1827 scan = (unsigned char *) id;
1828 {
1829 int i = 4;
1830 while (i--)
1831 *scan++ = 0;
1832 }
1833 *scan++ = (value >> 24) & 0xff;
1834 *scan++ = (value >> 16) & 0xff;
1835 *scan++ = (value >> 8) & 0xff;
1836 *scan++ = (value & 0xff);
1837 }
1838
1839 static int
1840 threadref_to_int (threadref *ref)
1841 {
1842 int i, value = 0;
1843 unsigned char *scan;
1844
1845 scan = *ref;
1846 scan += 4;
1847 i = 4;
1848 while (i-- > 0)
1849 value = (value << 8) | ((*scan++) & 0xff);
1850 return value;
1851 }
1852
1853 static void
1854 copy_threadref (threadref *dest, threadref *src)
1855 {
1856 int i;
1857 unsigned char *csrc, *cdest;
1858
1859 csrc = (unsigned char *) src;
1860 cdest = (unsigned char *) dest;
1861 i = 8;
1862 while (i--)
1863 *cdest++ = *csrc++;
1864 }
1865
1866 static int
1867 threadmatch (threadref *dest, threadref *src)
1868 {
1869 /* Things are broken right now, so just assume we got a match. */
1870 #if 0
1871 unsigned char *srcp, *destp;
1872 int i, result;
1873 srcp = (char *) src;
1874 destp = (char *) dest;
1875
1876 result = 1;
1877 while (i-- > 0)
1878 result &= (*srcp++ == *destp++) ? 1 : 0;
1879 return result;
1880 #endif
1881 return 1;
1882 }
1883
1884 /*
1885 threadid:1, # always request threadid
1886 context_exists:2,
1887 display:4,
1888 unique_name:8,
1889 more_display:16
1890 */
1891
1892 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1893
1894 static char *
1895 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1896 {
1897 *pkt++ = 'q'; /* Info Query */
1898 *pkt++ = 'P'; /* process or thread info */
1899 pkt = pack_int (pkt, mode); /* mode */
1900 pkt = pack_threadid (pkt, id); /* threadid */
1901 *pkt = '\0'; /* terminate */
1902 return pkt;
1903 }
1904
1905 /* These values tag the fields in a thread info response packet. */
1906 /* Tagging the fields allows us to request specific fields and to
1907 add more fields as time goes by. */
1908
1909 #define TAG_THREADID 1 /* Echo the thread identifier. */
1910 #define TAG_EXISTS 2 /* Is this process defined enough to
1911 fetch registers and its stack? */
1912 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1913 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1914 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1915 the process. */
1916
1917 static int
1918 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1919 struct gdb_ext_thread_info *info)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int mask, length;
1923 int tag;
1924 threadref ref;
1925 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1926 int retval = 1;
1927
1928 /* info->threadid = 0; FIXME: implement zero_threadref. */
1929 info->active = 0;
1930 info->display[0] = '\0';
1931 info->shortname[0] = '\0';
1932 info->more_display[0] = '\0';
1933
1934 /* Assume the characters indicating the packet type have been
1935 stripped. */
1936 pkt = unpack_int (pkt, &mask); /* arg mask */
1937 pkt = unpack_threadid (pkt, &ref);
1938
1939 if (mask == 0)
1940 warning (_("Incomplete response to threadinfo request."));
1941 if (!threadmatch (&ref, expectedref))
1942 { /* This is an answer to a different request. */
1943 warning (_("ERROR RMT Thread info mismatch."));
1944 return 0;
1945 }
1946 copy_threadref (&info->threadid, &ref);
1947
1948 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1949
1950 /* Packets are terminated with nulls. */
1951 while ((pkt < limit) && mask && *pkt)
1952 {
1953 pkt = unpack_int (pkt, &tag); /* tag */
1954 pkt = unpack_byte (pkt, &length); /* length */
1955 if (!(tag & mask)) /* Tags out of synch with mask. */
1956 {
1957 warning (_("ERROR RMT: threadinfo tag mismatch."));
1958 retval = 0;
1959 break;
1960 }
1961 if (tag == TAG_THREADID)
1962 {
1963 if (length != 16)
1964 {
1965 warning (_("ERROR RMT: length of threadid is not 16."));
1966 retval = 0;
1967 break;
1968 }
1969 pkt = unpack_threadid (pkt, &ref);
1970 mask = mask & ~TAG_THREADID;
1971 continue;
1972 }
1973 if (tag == TAG_EXISTS)
1974 {
1975 info->active = stub_unpack_int (pkt, length);
1976 pkt += length;
1977 mask = mask & ~(TAG_EXISTS);
1978 if (length > 8)
1979 {
1980 warning (_("ERROR RMT: 'exists' length too long."));
1981 retval = 0;
1982 break;
1983 }
1984 continue;
1985 }
1986 if (tag == TAG_THREADNAME)
1987 {
1988 pkt = unpack_string (pkt, &info->shortname[0], length);
1989 mask = mask & ~TAG_THREADNAME;
1990 continue;
1991 }
1992 if (tag == TAG_DISPLAY)
1993 {
1994 pkt = unpack_string (pkt, &info->display[0], length);
1995 mask = mask & ~TAG_DISPLAY;
1996 continue;
1997 }
1998 if (tag == TAG_MOREDISPLAY)
1999 {
2000 pkt = unpack_string (pkt, &info->more_display[0], length);
2001 mask = mask & ~TAG_MOREDISPLAY;
2002 continue;
2003 }
2004 warning (_("ERROR RMT: unknown thread info tag."));
2005 break; /* Not a tag we know about. */
2006 }
2007 return retval;
2008 }
2009
2010 static int
2011 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2012 struct gdb_ext_thread_info *info)
2013 {
2014 struct remote_state *rs = get_remote_state ();
2015 int result;
2016
2017 pack_threadinfo_request (rs->buf, fieldset, threadid);
2018 putpkt (rs->buf);
2019 getpkt (&rs->buf, &rs->buf_size, 0);
2020
2021 if (rs->buf[0] == '\0')
2022 return 0;
2023
2024 result = remote_unpack_thread_info_response (rs->buf + 2,
2025 threadid, info);
2026 return result;
2027 }
2028
2029 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2030
2031 static char *
2032 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2033 threadref *nextthread)
2034 {
2035 *pkt++ = 'q'; /* info query packet */
2036 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2037 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2038 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2039 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2040 *pkt = '\0';
2041 return pkt;
2042 }
2043
2044 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2045
2046 static int
2047 parse_threadlist_response (char *pkt, int result_limit,
2048 threadref *original_echo, threadref *resultlist,
2049 int *doneflag)
2050 {
2051 struct remote_state *rs = get_remote_state ();
2052 char *limit;
2053 int count, resultcount, done;
2054
2055 resultcount = 0;
2056 /* Assume the 'q' and 'M chars have been stripped. */
2057 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2058 /* done parse past here */
2059 pkt = unpack_byte (pkt, &count); /* count field */
2060 pkt = unpack_nibble (pkt, &done);
2061 /* The first threadid is the argument threadid. */
2062 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2063 while ((count-- > 0) && (pkt < limit))
2064 {
2065 pkt = unpack_threadid (pkt, resultlist++);
2066 if (resultcount++ >= result_limit)
2067 break;
2068 }
2069 if (doneflag)
2070 *doneflag = done;
2071 return resultcount;
2072 }
2073
2074 static int
2075 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2076 int *done, int *result_count, threadref *threadlist)
2077 {
2078 struct remote_state *rs = get_remote_state ();
2079 static threadref echo_nextthread;
2080 int result = 1;
2081
2082 /* Trancate result limit to be smaller than the packet size. */
2083 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2084 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2085
2086 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2087 putpkt (rs->buf);
2088 getpkt (&rs->buf, &rs->buf_size, 0);
2089
2090 if (*rs->buf == '\0')
2091 *result_count = 0;
2092 else
2093 *result_count =
2094 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2095 threadlist, done);
2096
2097 if (!threadmatch (&echo_nextthread, nextthread))
2098 {
2099 /* FIXME: This is a good reason to drop the packet. */
2100 /* Possably, there is a duplicate response. */
2101 /* Possabilities :
2102 retransmit immediatly - race conditions
2103 retransmit after timeout - yes
2104 exit
2105 wait for packet, then exit
2106 */
2107 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2108 return 0; /* I choose simply exiting. */
2109 }
2110 if (*result_count <= 0)
2111 {
2112 if (*done != 1)
2113 {
2114 warning (_("RMT ERROR : failed to get remote thread list."));
2115 result = 0;
2116 }
2117 return result; /* break; */
2118 }
2119 if (*result_count > result_limit)
2120 {
2121 *result_count = 0;
2122 warning (_("RMT ERROR: threadlist response longer than requested."));
2123 return 0;
2124 }
2125 return result;
2126 }
2127
2128 /* This is the interface between remote and threads, remotes upper
2129 interface. */
2130
2131 /* remote_find_new_threads retrieves the thread list and for each
2132 thread in the list, looks up the thread in GDB's internal list,
2133 adding the thread if it does not already exist. This involves
2134 getting partial thread lists from the remote target so, polling the
2135 quit_flag is required. */
2136
2137
2138 /* About this many threadisds fit in a packet. */
2139
2140 #define MAXTHREADLISTRESULTS 32
2141
2142 static int
2143 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2144 int looplimit)
2145 {
2146 int done, i, result_count;
2147 int startflag = 1;
2148 int result = 1;
2149 int loopcount = 0;
2150 static threadref nextthread;
2151 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2152
2153 done = 0;
2154 while (!done)
2155 {
2156 if (loopcount++ > looplimit)
2157 {
2158 result = 0;
2159 warning (_("Remote fetch threadlist -infinite loop-."));
2160 break;
2161 }
2162 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2163 &done, &result_count, resultthreadlist))
2164 {
2165 result = 0;
2166 break;
2167 }
2168 /* Clear for later iterations. */
2169 startflag = 0;
2170 /* Setup to resume next batch of thread references, set nextthread. */
2171 if (result_count >= 1)
2172 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2173 i = 0;
2174 while (result_count--)
2175 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2176 break;
2177 }
2178 return result;
2179 }
2180
2181 static int
2182 remote_newthread_step (threadref *ref, void *context)
2183 {
2184 int pid = ptid_get_pid (inferior_ptid);
2185 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2186
2187 if (!in_thread_list (ptid))
2188 add_thread (ptid);
2189 return 1; /* continue iterator */
2190 }
2191
2192 #define CRAZY_MAX_THREADS 1000
2193
2194 static ptid_t
2195 remote_current_thread (ptid_t oldpid)
2196 {
2197 struct remote_state *rs = get_remote_state ();
2198 char *p = rs->buf;
2199 int tid;
2200 int pid;
2201
2202 putpkt ("qC");
2203 getpkt (&rs->buf, &rs->buf_size, 0);
2204 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2205 return read_ptid (&rs->buf[2], NULL);
2206 else
2207 return oldpid;
2208 }
2209
2210 /* Find new threads for info threads command.
2211 * Original version, using John Metzler's thread protocol.
2212 */
2213
2214 static void
2215 remote_find_new_threads (void)
2216 {
2217 remote_threadlist_iterator (remote_newthread_step, 0,
2218 CRAZY_MAX_THREADS);
2219 }
2220
2221 /*
2222 * Find all threads for info threads command.
2223 * Uses new thread protocol contributed by Cisco.
2224 * Falls back and attempts to use the older method (above)
2225 * if the target doesn't respond to the new method.
2226 */
2227
2228 static void
2229 remote_threads_info (struct target_ops *ops)
2230 {
2231 struct remote_state *rs = get_remote_state ();
2232 char *bufp;
2233 ptid_t new_thread;
2234
2235 if (remote_desc == 0) /* paranoia */
2236 error (_("Command can only be used when connected to the remote target."));
2237
2238 if (use_threadinfo_query)
2239 {
2240 putpkt ("qfThreadInfo");
2241 getpkt (&rs->buf, &rs->buf_size, 0);
2242 bufp = rs->buf;
2243 if (bufp[0] != '\0') /* q packet recognized */
2244 {
2245 while (*bufp++ == 'm') /* reply contains one or more TID */
2246 {
2247 do
2248 {
2249 new_thread = read_ptid (bufp, &bufp);
2250 if (!ptid_equal (new_thread, null_ptid))
2251 {
2252 /* In non-stop mode, we assume new found threads
2253 are running until proven otherwise with a
2254 stop reply. In all-stop, we can only get
2255 here if all threads are stopped. */
2256 int running = non_stop ? 1 : 0;
2257
2258 remote_notice_new_inferior (new_thread, running);
2259 }
2260 }
2261 while (*bufp++ == ','); /* comma-separated list */
2262 putpkt ("qsThreadInfo");
2263 getpkt (&rs->buf, &rs->buf_size, 0);
2264 bufp = rs->buf;
2265 }
2266 return; /* done */
2267 }
2268 }
2269
2270 /* Only qfThreadInfo is supported in non-stop mode. */
2271 if (non_stop)
2272 return;
2273
2274 /* Else fall back to old method based on jmetzler protocol. */
2275 use_threadinfo_query = 0;
2276 remote_find_new_threads ();
2277 return;
2278 }
2279
2280 /*
2281 * Collect a descriptive string about the given thread.
2282 * The target may say anything it wants to about the thread
2283 * (typically info about its blocked / runnable state, name, etc.).
2284 * This string will appear in the info threads display.
2285 *
2286 * Optional: targets are not required to implement this function.
2287 */
2288
2289 static char *
2290 remote_threads_extra_info (struct thread_info *tp)
2291 {
2292 struct remote_state *rs = get_remote_state ();
2293 int result;
2294 int set;
2295 threadref id;
2296 struct gdb_ext_thread_info threadinfo;
2297 static char display_buf[100]; /* arbitrary... */
2298 int n = 0; /* position in display_buf */
2299
2300 if (remote_desc == 0) /* paranoia */
2301 internal_error (__FILE__, __LINE__,
2302 _("remote_threads_extra_info"));
2303
2304 if (ptid_equal (tp->ptid, magic_null_ptid)
2305 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2306 /* This is the main thread which was added by GDB. The remote
2307 server doesn't know about it. */
2308 return NULL;
2309
2310 if (use_threadextra_query)
2311 {
2312 char *b = rs->buf;
2313 char *endb = rs->buf + get_remote_packet_size ();
2314
2315 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2316 b += strlen (b);
2317 write_ptid (b, endb, tp->ptid);
2318
2319 putpkt (rs->buf);
2320 getpkt (&rs->buf, &rs->buf_size, 0);
2321 if (rs->buf[0] != 0)
2322 {
2323 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2324 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2325 display_buf [result] = '\0';
2326 return display_buf;
2327 }
2328 }
2329
2330 /* If the above query fails, fall back to the old method. */
2331 use_threadextra_query = 0;
2332 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2333 | TAG_MOREDISPLAY | TAG_DISPLAY;
2334 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2335 if (remote_get_threadinfo (&id, set, &threadinfo))
2336 if (threadinfo.active)
2337 {
2338 if (*threadinfo.shortname)
2339 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2340 " Name: %s,", threadinfo.shortname);
2341 if (*threadinfo.display)
2342 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2343 " State: %s,", threadinfo.display);
2344 if (*threadinfo.more_display)
2345 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2346 " Priority: %s", threadinfo.more_display);
2347
2348 if (n > 0)
2349 {
2350 /* For purely cosmetic reasons, clear up trailing commas. */
2351 if (',' == display_buf[n-1])
2352 display_buf[n-1] = ' ';
2353 return display_buf;
2354 }
2355 }
2356 return NULL;
2357 }
2358 \f
2359
2360 /* Restart the remote side; this is an extended protocol operation. */
2361
2362 static void
2363 extended_remote_restart (void)
2364 {
2365 struct remote_state *rs = get_remote_state ();
2366
2367 /* Send the restart command; for reasons I don't understand the
2368 remote side really expects a number after the "R". */
2369 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2370 putpkt (rs->buf);
2371
2372 remote_fileio_reset ();
2373 }
2374 \f
2375 /* Clean up connection to a remote debugger. */
2376
2377 static void
2378 remote_close (int quitting)
2379 {
2380 if (remote_desc == NULL)
2381 return; /* already closed */
2382
2383 /* Make sure we leave stdin registered in the event loop, and we
2384 don't leave the async SIGINT signal handler installed. */
2385 remote_terminal_ours ();
2386
2387 serial_close (remote_desc);
2388 remote_desc = NULL;
2389
2390 /* We don't have a connection to the remote stub anymore. Get rid
2391 of all the inferiors and their threads we were controlling. */
2392 discard_all_inferiors ();
2393
2394 /* We're no longer interested in any of these events. */
2395 discard_pending_stop_replies (-1);
2396
2397 if (remote_async_inferior_event_token)
2398 delete_async_event_handler (&remote_async_inferior_event_token);
2399 if (remote_async_get_pending_events_token)
2400 delete_async_event_handler (&remote_async_get_pending_events_token);
2401 }
2402
2403 /* Query the remote side for the text, data and bss offsets. */
2404
2405 static void
2406 get_offsets (void)
2407 {
2408 struct remote_state *rs = get_remote_state ();
2409 char *buf;
2410 char *ptr;
2411 int lose, num_segments = 0, do_sections, do_segments;
2412 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2413 struct section_offsets *offs;
2414 struct symfile_segment_data *data;
2415
2416 if (symfile_objfile == NULL)
2417 return;
2418
2419 putpkt ("qOffsets");
2420 getpkt (&rs->buf, &rs->buf_size, 0);
2421 buf = rs->buf;
2422
2423 if (buf[0] == '\000')
2424 return; /* Return silently. Stub doesn't support
2425 this command. */
2426 if (buf[0] == 'E')
2427 {
2428 warning (_("Remote failure reply: %s"), buf);
2429 return;
2430 }
2431
2432 /* Pick up each field in turn. This used to be done with scanf, but
2433 scanf will make trouble if CORE_ADDR size doesn't match
2434 conversion directives correctly. The following code will work
2435 with any size of CORE_ADDR. */
2436 text_addr = data_addr = bss_addr = 0;
2437 ptr = buf;
2438 lose = 0;
2439
2440 if (strncmp (ptr, "Text=", 5) == 0)
2441 {
2442 ptr += 5;
2443 /* Don't use strtol, could lose on big values. */
2444 while (*ptr && *ptr != ';')
2445 text_addr = (text_addr << 4) + fromhex (*ptr++);
2446
2447 if (strncmp (ptr, ";Data=", 6) == 0)
2448 {
2449 ptr += 6;
2450 while (*ptr && *ptr != ';')
2451 data_addr = (data_addr << 4) + fromhex (*ptr++);
2452 }
2453 else
2454 lose = 1;
2455
2456 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2457 {
2458 ptr += 5;
2459 while (*ptr && *ptr != ';')
2460 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2461
2462 if (bss_addr != data_addr)
2463 warning (_("Target reported unsupported offsets: %s"), buf);
2464 }
2465 else
2466 lose = 1;
2467 }
2468 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2469 {
2470 ptr += 8;
2471 /* Don't use strtol, could lose on big values. */
2472 while (*ptr && *ptr != ';')
2473 text_addr = (text_addr << 4) + fromhex (*ptr++);
2474 num_segments = 1;
2475
2476 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2477 {
2478 ptr += 9;
2479 while (*ptr && *ptr != ';')
2480 data_addr = (data_addr << 4) + fromhex (*ptr++);
2481 num_segments++;
2482 }
2483 }
2484 else
2485 lose = 1;
2486
2487 if (lose)
2488 error (_("Malformed response to offset query, %s"), buf);
2489 else if (*ptr != '\0')
2490 warning (_("Target reported unsupported offsets: %s"), buf);
2491
2492 offs = ((struct section_offsets *)
2493 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2494 memcpy (offs, symfile_objfile->section_offsets,
2495 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2496
2497 data = get_symfile_segment_data (symfile_objfile->obfd);
2498 do_segments = (data != NULL);
2499 do_sections = num_segments == 0;
2500
2501 if (num_segments > 0)
2502 {
2503 segments[0] = text_addr;
2504 segments[1] = data_addr;
2505 }
2506 /* If we have two segments, we can still try to relocate everything
2507 by assuming that the .text and .data offsets apply to the whole
2508 text and data segments. Convert the offsets given in the packet
2509 to base addresses for symfile_map_offsets_to_segments. */
2510 else if (data && data->num_segments == 2)
2511 {
2512 segments[0] = data->segment_bases[0] + text_addr;
2513 segments[1] = data->segment_bases[1] + data_addr;
2514 num_segments = 2;
2515 }
2516 /* If the object file has only one segment, assume that it is text
2517 rather than data; main programs with no writable data are rare,
2518 but programs with no code are useless. Of course the code might
2519 have ended up in the data segment... to detect that we would need
2520 the permissions here. */
2521 else if (data && data->num_segments == 1)
2522 {
2523 segments[0] = data->segment_bases[0] + text_addr;
2524 num_segments = 1;
2525 }
2526 /* There's no way to relocate by segment. */
2527 else
2528 do_segments = 0;
2529
2530 if (do_segments)
2531 {
2532 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2533 offs, num_segments, segments);
2534
2535 if (ret == 0 && !do_sections)
2536 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2537
2538 if (ret > 0)
2539 do_sections = 0;
2540 }
2541
2542 if (data)
2543 free_symfile_segment_data (data);
2544
2545 if (do_sections)
2546 {
2547 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2548
2549 /* This is a temporary kludge to force data and bss to use the same offsets
2550 because that's what nlmconv does now. The real solution requires changes
2551 to the stub and remote.c that I don't have time to do right now. */
2552
2553 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2554 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2555 }
2556
2557 objfile_relocate (symfile_objfile, offs);
2558 }
2559
2560 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2561 threads we know are stopped already. This is used during the
2562 initial remote connection in non-stop mode --- threads that are
2563 reported as already being stopped are left stopped. */
2564
2565 static int
2566 set_stop_requested_callback (struct thread_info *thread, void *data)
2567 {
2568 /* If we have a stop reply for this thread, it must be stopped. */
2569 if (peek_stop_reply (thread->ptid))
2570 set_stop_requested (thread->ptid, 1);
2571
2572 return 0;
2573 }
2574
2575 /* Stub for catch_exception. */
2576
2577 struct start_remote_args
2578 {
2579 int from_tty;
2580
2581 /* The current target. */
2582 struct target_ops *target;
2583
2584 /* Non-zero if this is an extended-remote target. */
2585 int extended_p;
2586 };
2587
2588 static void
2589 remote_start_remote (struct ui_out *uiout, void *opaque)
2590 {
2591 struct start_remote_args *args = opaque;
2592 struct remote_state *rs = get_remote_state ();
2593 struct packet_config *noack_config;
2594 char *wait_status = NULL;
2595
2596 immediate_quit++; /* Allow user to interrupt it. */
2597
2598 /* Ack any packet which the remote side has already sent. */
2599 serial_write (remote_desc, "+", 1);
2600
2601 /* The first packet we send to the target is the optional "supported
2602 packets" request. If the target can answer this, it will tell us
2603 which later probes to skip. */
2604 remote_query_supported ();
2605
2606 /* Next, we possibly activate noack mode.
2607
2608 If the QStartNoAckMode packet configuration is set to AUTO,
2609 enable noack mode if the stub reported a wish for it with
2610 qSupported.
2611
2612 If set to TRUE, then enable noack mode even if the stub didn't
2613 report it in qSupported. If the stub doesn't reply OK, the
2614 session ends with an error.
2615
2616 If FALSE, then don't activate noack mode, regardless of what the
2617 stub claimed should be the default with qSupported. */
2618
2619 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2620
2621 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2622 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2623 && noack_config->support == PACKET_ENABLE))
2624 {
2625 putpkt ("QStartNoAckMode");
2626 getpkt (&rs->buf, &rs->buf_size, 0);
2627 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2628 rs->noack_mode = 1;
2629 }
2630
2631 if (args->extended_p)
2632 {
2633 /* Tell the remote that we are using the extended protocol. */
2634 putpkt ("!");
2635 getpkt (&rs->buf, &rs->buf_size, 0);
2636 }
2637
2638 /* Next, if the target can specify a description, read it. We do
2639 this before anything involving memory or registers. */
2640 target_find_description ();
2641
2642 /* On OSs where the list of libraries is global to all
2643 processes, we fetch them early. */
2644 if (gdbarch_has_global_solist (target_gdbarch))
2645 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2646
2647 if (non_stop)
2648 {
2649 if (!rs->non_stop_aware)
2650 error (_("Non-stop mode requested, but remote does not support non-stop"));
2651
2652 putpkt ("QNonStop:1");
2653 getpkt (&rs->buf, &rs->buf_size, 0);
2654
2655 if (strcmp (rs->buf, "OK") != 0)
2656 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2657
2658 /* Find about threads and processes the stub is already
2659 controlling. We default to adding them in the running state.
2660 The '?' query below will then tell us about which threads are
2661 stopped. */
2662 remote_threads_info (args->target);
2663 }
2664 else if (rs->non_stop_aware)
2665 {
2666 /* Don't assume that the stub can operate in all-stop mode.
2667 Request it explicitely. */
2668 putpkt ("QNonStop:0");
2669 getpkt (&rs->buf, &rs->buf_size, 0);
2670
2671 if (strcmp (rs->buf, "OK") != 0)
2672 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2673 }
2674
2675 /* Check whether the target is running now. */
2676 putpkt ("?");
2677 getpkt (&rs->buf, &rs->buf_size, 0);
2678
2679 if (!non_stop)
2680 {
2681 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2682 {
2683 if (args->extended_p)
2684 {
2685 /* We're connected, but not running. Drop out before we
2686 call start_remote. */
2687 target_mark_exited (args->target);
2688 return;
2689 }
2690 else
2691 error (_("The target is not running (try extended-remote?)"));
2692 }
2693 else
2694 {
2695 /* Save the reply for later. */
2696 wait_status = alloca (strlen (rs->buf) + 1);
2697 strcpy (wait_status, rs->buf);
2698 }
2699
2700 /* Let the stub know that we want it to return the thread. */
2701 set_continue_thread (minus_one_ptid);
2702
2703 /* Without this, some commands which require an active target
2704 (such as kill) won't work. This variable serves (at least)
2705 double duty as both the pid of the target process (if it has
2706 such), and as a flag indicating that a target is active.
2707 These functions should be split out into seperate variables,
2708 especially since GDB will someday have a notion of debugging
2709 several processes. */
2710 inferior_ptid = magic_null_ptid;
2711
2712 /* Now, if we have thread information, update inferior_ptid. */
2713 inferior_ptid = remote_current_thread (inferior_ptid);
2714
2715 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2716
2717 /* Always add the main thread. */
2718 add_thread_silent (inferior_ptid);
2719
2720 get_offsets (); /* Get text, data & bss offsets. */
2721
2722 /* If we could not find a description using qXfer, and we know
2723 how to do it some other way, try again. This is not
2724 supported for non-stop; it could be, but it is tricky if
2725 there are no stopped threads when we connect. */
2726 if (remote_read_description_p (args->target)
2727 && gdbarch_target_desc (target_gdbarch) == NULL)
2728 {
2729 target_clear_description ();
2730 target_find_description ();
2731 }
2732
2733 /* Use the previously fetched status. */
2734 gdb_assert (wait_status != NULL);
2735 strcpy (rs->buf, wait_status);
2736 rs->cached_wait_status = 1;
2737
2738 immediate_quit--;
2739 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2740 }
2741 else
2742 {
2743 /* Clear WFI global state. Do this before finding about new
2744 threads and inferiors, and setting the current inferior.
2745 Otherwise we would clear the proceed status of the current
2746 inferior when we want its stop_soon state to be preserved
2747 (see notice_new_inferior). */
2748 init_wait_for_inferior ();
2749
2750 /* In non-stop, we will either get an "OK", meaning that there
2751 are no stopped threads at this time; or, a regular stop
2752 reply. In the latter case, there may be more than one thread
2753 stopped --- we pull them all out using the vStopped
2754 mechanism. */
2755 if (strcmp (rs->buf, "OK") != 0)
2756 {
2757 struct stop_reply *stop_reply;
2758 struct cleanup *old_chain;
2759
2760 stop_reply = stop_reply_xmalloc ();
2761 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2762
2763 remote_parse_stop_reply (rs->buf, stop_reply);
2764 discard_cleanups (old_chain);
2765
2766 /* get_pending_stop_replies acks this one, and gets the rest
2767 out. */
2768 pending_stop_reply = stop_reply;
2769 remote_get_pending_stop_replies ();
2770
2771 /* Make sure that threads that were stopped remain
2772 stopped. */
2773 iterate_over_threads (set_stop_requested_callback, NULL);
2774 }
2775
2776 if (target_can_async_p ())
2777 target_async (inferior_event_handler, 0);
2778
2779 if (thread_count () == 0)
2780 {
2781 if (args->extended_p)
2782 {
2783 /* We're connected, but not running. Drop out before we
2784 call start_remote. */
2785 target_mark_exited (args->target);
2786 return;
2787 }
2788 else
2789 error (_("The target is not running (try extended-remote?)"));
2790 }
2791
2792 if (args->extended_p)
2793 target_mark_running (args->target);
2794
2795 /* Let the stub know that we want it to return the thread. */
2796
2797 /* Force the stub to choose a thread. */
2798 set_general_thread (null_ptid);
2799
2800 /* Query it. */
2801 inferior_ptid = remote_current_thread (minus_one_ptid);
2802 if (ptid_equal (inferior_ptid, minus_one_ptid))
2803 error (_("remote didn't report the current thread in non-stop mode"));
2804
2805 get_offsets (); /* Get text, data & bss offsets. */
2806
2807 /* In non-stop mode, any cached wait status will be stored in
2808 the stop reply queue. */
2809 gdb_assert (wait_status == NULL);
2810 }
2811
2812 /* If we connected to a live target, do some additional setup. */
2813 if (target_has_execution)
2814 {
2815 if (exec_bfd) /* No use without an exec file. */
2816 remote_check_symbols (symfile_objfile);
2817 }
2818
2819 /* If code is shared between processes, then breakpoints are global
2820 too; Insert them now. */
2821 if (gdbarch_has_global_solist (target_gdbarch)
2822 && breakpoints_always_inserted_mode ())
2823 insert_breakpoints ();
2824 }
2825
2826 /* Open a connection to a remote debugger.
2827 NAME is the filename used for communication. */
2828
2829 static void
2830 remote_open (char *name, int from_tty)
2831 {
2832 remote_open_1 (name, from_tty, &remote_ops, 0);
2833 }
2834
2835 /* Open a connection to a remote debugger using the extended
2836 remote gdb protocol. NAME is the filename used for communication. */
2837
2838 static void
2839 extended_remote_open (char *name, int from_tty)
2840 {
2841 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2842 }
2843
2844 /* Generic code for opening a connection to a remote target. */
2845
2846 static void
2847 init_all_packet_configs (void)
2848 {
2849 int i;
2850 for (i = 0; i < PACKET_MAX; i++)
2851 update_packet_config (&remote_protocol_packets[i]);
2852 }
2853
2854 /* Symbol look-up. */
2855
2856 static void
2857 remote_check_symbols (struct objfile *objfile)
2858 {
2859 struct remote_state *rs = get_remote_state ();
2860 char *msg, *reply, *tmp;
2861 struct minimal_symbol *sym;
2862 int end;
2863
2864 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2865 return;
2866
2867 /* Make sure the remote is pointing at the right process. */
2868 set_general_process ();
2869
2870 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2871 because we need both at the same time. */
2872 msg = alloca (get_remote_packet_size ());
2873
2874 /* Invite target to request symbol lookups. */
2875
2876 putpkt ("qSymbol::");
2877 getpkt (&rs->buf, &rs->buf_size, 0);
2878 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2879 reply = rs->buf;
2880
2881 while (strncmp (reply, "qSymbol:", 8) == 0)
2882 {
2883 tmp = &reply[8];
2884 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2885 msg[end] = '\0';
2886 sym = lookup_minimal_symbol (msg, NULL, NULL);
2887 if (sym == NULL)
2888 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2889 else
2890 {
2891 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2892
2893 /* If this is a function address, return the start of code
2894 instead of any data function descriptor. */
2895 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2896 sym_addr,
2897 &current_target);
2898
2899 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2900 paddr_nz (sym_addr), &reply[8]);
2901 }
2902
2903 putpkt (msg);
2904 getpkt (&rs->buf, &rs->buf_size, 0);
2905 reply = rs->buf;
2906 }
2907 }
2908
2909 static struct serial *
2910 remote_serial_open (char *name)
2911 {
2912 static int udp_warning = 0;
2913
2914 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2915 of in ser-tcp.c, because it is the remote protocol assuming that the
2916 serial connection is reliable and not the serial connection promising
2917 to be. */
2918 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2919 {
2920 warning (_("\
2921 The remote protocol may be unreliable over UDP.\n\
2922 Some events may be lost, rendering further debugging impossible."));
2923 udp_warning = 1;
2924 }
2925
2926 return serial_open (name);
2927 }
2928
2929 /* This type describes each known response to the qSupported
2930 packet. */
2931 struct protocol_feature
2932 {
2933 /* The name of this protocol feature. */
2934 const char *name;
2935
2936 /* The default for this protocol feature. */
2937 enum packet_support default_support;
2938
2939 /* The function to call when this feature is reported, or after
2940 qSupported processing if the feature is not supported.
2941 The first argument points to this structure. The second
2942 argument indicates whether the packet requested support be
2943 enabled, disabled, or probed (or the default, if this function
2944 is being called at the end of processing and this feature was
2945 not reported). The third argument may be NULL; if not NULL, it
2946 is a NUL-terminated string taken from the packet following
2947 this feature's name and an equals sign. */
2948 void (*func) (const struct protocol_feature *, enum packet_support,
2949 const char *);
2950
2951 /* The corresponding packet for this feature. Only used if
2952 FUNC is remote_supported_packet. */
2953 int packet;
2954 };
2955
2956 static void
2957 remote_supported_packet (const struct protocol_feature *feature,
2958 enum packet_support support,
2959 const char *argument)
2960 {
2961 if (argument)
2962 {
2963 warning (_("Remote qSupported response supplied an unexpected value for"
2964 " \"%s\"."), feature->name);
2965 return;
2966 }
2967
2968 if (remote_protocol_packets[feature->packet].support
2969 == PACKET_SUPPORT_UNKNOWN)
2970 remote_protocol_packets[feature->packet].support = support;
2971 }
2972
2973 static void
2974 remote_packet_size (const struct protocol_feature *feature,
2975 enum packet_support support, const char *value)
2976 {
2977 struct remote_state *rs = get_remote_state ();
2978
2979 int packet_size;
2980 char *value_end;
2981
2982 if (support != PACKET_ENABLE)
2983 return;
2984
2985 if (value == NULL || *value == '\0')
2986 {
2987 warning (_("Remote target reported \"%s\" without a size."),
2988 feature->name);
2989 return;
2990 }
2991
2992 errno = 0;
2993 packet_size = strtol (value, &value_end, 16);
2994 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2995 {
2996 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2997 feature->name, value);
2998 return;
2999 }
3000
3001 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3002 {
3003 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3004 packet_size, MAX_REMOTE_PACKET_SIZE);
3005 packet_size = MAX_REMOTE_PACKET_SIZE;
3006 }
3007
3008 /* Record the new maximum packet size. */
3009 rs->explicit_packet_size = packet_size;
3010 }
3011
3012 static void
3013 remote_multi_process_feature (const struct protocol_feature *feature,
3014 enum packet_support support, const char *value)
3015 {
3016 struct remote_state *rs = get_remote_state ();
3017 rs->multi_process_aware = (support == PACKET_ENABLE);
3018 }
3019
3020 static void
3021 remote_non_stop_feature (const struct protocol_feature *feature,
3022 enum packet_support support, const char *value)
3023 {
3024 struct remote_state *rs = get_remote_state ();
3025 rs->non_stop_aware = (support == PACKET_ENABLE);
3026 }
3027
3028 static struct protocol_feature remote_protocol_features[] = {
3029 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3030 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3031 PACKET_qXfer_auxv },
3032 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3033 PACKET_qXfer_features },
3034 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3035 PACKET_qXfer_libraries },
3036 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3037 PACKET_qXfer_memory_map },
3038 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3039 PACKET_qXfer_spu_read },
3040 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3041 PACKET_qXfer_spu_write },
3042 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3043 PACKET_qXfer_osdata },
3044 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3045 PACKET_QPassSignals },
3046 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3047 PACKET_QStartNoAckMode },
3048 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3049 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3050 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3051 PACKET_qXfer_siginfo_read },
3052 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3053 PACKET_qXfer_siginfo_write },
3054 };
3055
3056 static void
3057 remote_query_supported (void)
3058 {
3059 struct remote_state *rs = get_remote_state ();
3060 char *next;
3061 int i;
3062 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3063
3064 /* The packet support flags are handled differently for this packet
3065 than for most others. We treat an error, a disabled packet, and
3066 an empty response identically: any features which must be reported
3067 to be used will be automatically disabled. An empty buffer
3068 accomplishes this, since that is also the representation for a list
3069 containing no features. */
3070
3071 rs->buf[0] = 0;
3072 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3073 {
3074 if (rs->extended)
3075 putpkt ("qSupported:multiprocess+");
3076 else
3077 putpkt ("qSupported");
3078
3079 getpkt (&rs->buf, &rs->buf_size, 0);
3080
3081 /* If an error occured, warn, but do not return - just reset the
3082 buffer to empty and go on to disable features. */
3083 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3084 == PACKET_ERROR)
3085 {
3086 warning (_("Remote failure reply: %s"), rs->buf);
3087 rs->buf[0] = 0;
3088 }
3089 }
3090
3091 memset (seen, 0, sizeof (seen));
3092
3093 next = rs->buf;
3094 while (*next)
3095 {
3096 enum packet_support is_supported;
3097 char *p, *end, *name_end, *value;
3098
3099 /* First separate out this item from the rest of the packet. If
3100 there's another item after this, we overwrite the separator
3101 (terminated strings are much easier to work with). */
3102 p = next;
3103 end = strchr (p, ';');
3104 if (end == NULL)
3105 {
3106 end = p + strlen (p);
3107 next = end;
3108 }
3109 else
3110 {
3111 *end = '\0';
3112 next = end + 1;
3113
3114 if (end == p)
3115 {
3116 warning (_("empty item in \"qSupported\" response"));
3117 continue;
3118 }
3119 }
3120
3121 name_end = strchr (p, '=');
3122 if (name_end)
3123 {
3124 /* This is a name=value entry. */
3125 is_supported = PACKET_ENABLE;
3126 value = name_end + 1;
3127 *name_end = '\0';
3128 }
3129 else
3130 {
3131 value = NULL;
3132 switch (end[-1])
3133 {
3134 case '+':
3135 is_supported = PACKET_ENABLE;
3136 break;
3137
3138 case '-':
3139 is_supported = PACKET_DISABLE;
3140 break;
3141
3142 case '?':
3143 is_supported = PACKET_SUPPORT_UNKNOWN;
3144 break;
3145
3146 default:
3147 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3148 continue;
3149 }
3150 end[-1] = '\0';
3151 }
3152
3153 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3154 if (strcmp (remote_protocol_features[i].name, p) == 0)
3155 {
3156 const struct protocol_feature *feature;
3157
3158 seen[i] = 1;
3159 feature = &remote_protocol_features[i];
3160 feature->func (feature, is_supported, value);
3161 break;
3162 }
3163 }
3164
3165 /* If we increased the packet size, make sure to increase the global
3166 buffer size also. We delay this until after parsing the entire
3167 qSupported packet, because this is the same buffer we were
3168 parsing. */
3169 if (rs->buf_size < rs->explicit_packet_size)
3170 {
3171 rs->buf_size = rs->explicit_packet_size;
3172 rs->buf = xrealloc (rs->buf, rs->buf_size);
3173 }
3174
3175 /* Handle the defaults for unmentioned features. */
3176 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3177 if (!seen[i])
3178 {
3179 const struct protocol_feature *feature;
3180
3181 feature = &remote_protocol_features[i];
3182 feature->func (feature, feature->default_support, NULL);
3183 }
3184 }
3185
3186
3187 static void
3188 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3189 {
3190 struct remote_state *rs = get_remote_state ();
3191
3192 if (name == 0)
3193 error (_("To open a remote debug connection, you need to specify what\n"
3194 "serial device is attached to the remote system\n"
3195 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3196
3197 /* See FIXME above. */
3198 if (!target_async_permitted)
3199 wait_forever_enabled_p = 1;
3200
3201 /* If we're connected to a running target, target_preopen will kill it.
3202 But if we're connected to a target system with no running process,
3203 then we will still be connected when it returns. Ask this question
3204 first, before target_preopen has a chance to kill anything. */
3205 if (remote_desc != NULL && !target_has_execution)
3206 {
3207 if (!from_tty
3208 || query (_("Already connected to a remote target. Disconnect? ")))
3209 pop_target ();
3210 else
3211 error (_("Still connected."));
3212 }
3213
3214 target_preopen (from_tty);
3215
3216 unpush_target (target);
3217
3218 /* This time without a query. If we were connected to an
3219 extended-remote target and target_preopen killed the running
3220 process, we may still be connected. If we are starting "target
3221 remote" now, the extended-remote target will not have been
3222 removed by unpush_target. */
3223 if (remote_desc != NULL && !target_has_execution)
3224 pop_target ();
3225
3226 /* Make sure we send the passed signals list the next time we resume. */
3227 xfree (last_pass_packet);
3228 last_pass_packet = NULL;
3229
3230 remote_fileio_reset ();
3231 reopen_exec_file ();
3232 reread_symbols ();
3233
3234 remote_desc = remote_serial_open (name);
3235 if (!remote_desc)
3236 perror_with_name (name);
3237
3238 if (baud_rate != -1)
3239 {
3240 if (serial_setbaudrate (remote_desc, baud_rate))
3241 {
3242 /* The requested speed could not be set. Error out to
3243 top level after closing remote_desc. Take care to
3244 set remote_desc to NULL to avoid closing remote_desc
3245 more than once. */
3246 serial_close (remote_desc);
3247 remote_desc = NULL;
3248 perror_with_name (name);
3249 }
3250 }
3251
3252 serial_raw (remote_desc);
3253
3254 /* If there is something sitting in the buffer we might take it as a
3255 response to a command, which would be bad. */
3256 serial_flush_input (remote_desc);
3257
3258 if (from_tty)
3259 {
3260 puts_filtered ("Remote debugging using ");
3261 puts_filtered (name);
3262 puts_filtered ("\n");
3263 }
3264 push_target (target); /* Switch to using remote target now. */
3265
3266 /* Assume that the target is not running, until we learn otherwise. */
3267 if (extended_p)
3268 target_mark_exited (target);
3269
3270 /* Register extra event sources in the event loop. */
3271 remote_async_inferior_event_token
3272 = create_async_event_handler (remote_async_inferior_event_handler,
3273 NULL);
3274 remote_async_get_pending_events_token
3275 = create_async_event_handler (remote_async_get_pending_events_handler,
3276 NULL);
3277
3278 /* Reset the target state; these things will be queried either by
3279 remote_query_supported or as they are needed. */
3280 init_all_packet_configs ();
3281 rs->cached_wait_status = 0;
3282 rs->explicit_packet_size = 0;
3283 rs->noack_mode = 0;
3284 rs->multi_process_aware = 0;
3285 rs->extended = extended_p;
3286 rs->non_stop_aware = 0;
3287 rs->waiting_for_stop_reply = 0;
3288
3289 general_thread = not_sent_ptid;
3290 continue_thread = not_sent_ptid;
3291
3292 /* Probe for ability to use "ThreadInfo" query, as required. */
3293 use_threadinfo_query = 1;
3294 use_threadextra_query = 1;
3295
3296 if (target_async_permitted)
3297 {
3298 /* With this target we start out by owning the terminal. */
3299 remote_async_terminal_ours_p = 1;
3300
3301 /* FIXME: cagney/1999-09-23: During the initial connection it is
3302 assumed that the target is already ready and able to respond to
3303 requests. Unfortunately remote_start_remote() eventually calls
3304 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3305 around this. Eventually a mechanism that allows
3306 wait_for_inferior() to expect/get timeouts will be
3307 implemented. */
3308 wait_forever_enabled_p = 0;
3309 }
3310
3311 /* First delete any symbols previously loaded from shared libraries. */
3312 no_shared_libraries (NULL, 0);
3313
3314 /* Start afresh. */
3315 init_thread_list ();
3316
3317 /* Start the remote connection. If error() or QUIT, discard this
3318 target (we'd otherwise be in an inconsistent state) and then
3319 propogate the error on up the exception chain. This ensures that
3320 the caller doesn't stumble along blindly assuming that the
3321 function succeeded. The CLI doesn't have this problem but other
3322 UI's, such as MI do.
3323
3324 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3325 this function should return an error indication letting the
3326 caller restore the previous state. Unfortunately the command
3327 ``target remote'' is directly wired to this function making that
3328 impossible. On a positive note, the CLI side of this problem has
3329 been fixed - the function set_cmd_context() makes it possible for
3330 all the ``target ....'' commands to share a common callback
3331 function. See cli-dump.c. */
3332 {
3333 struct gdb_exception ex;
3334 struct start_remote_args args;
3335
3336 args.from_tty = from_tty;
3337 args.target = target;
3338 args.extended_p = extended_p;
3339
3340 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3341 if (ex.reason < 0)
3342 {
3343 /* Pop the partially set up target - unless something else did
3344 already before throwing the exception. */
3345 if (remote_desc != NULL)
3346 pop_target ();
3347 if (target_async_permitted)
3348 wait_forever_enabled_p = 1;
3349 throw_exception (ex);
3350 }
3351 }
3352
3353 if (target_async_permitted)
3354 wait_forever_enabled_p = 1;
3355 }
3356
3357 /* This takes a program previously attached to and detaches it. After
3358 this is done, GDB can be used to debug some other program. We
3359 better not have left any breakpoints in the target program or it'll
3360 die when it hits one. */
3361
3362 static void
3363 remote_detach_1 (char *args, int from_tty, int extended)
3364 {
3365 int pid = ptid_get_pid (inferior_ptid);
3366 struct remote_state *rs = get_remote_state ();
3367
3368 if (args)
3369 error (_("Argument given to \"detach\" when remotely debugging."));
3370
3371 if (!target_has_execution)
3372 error (_("No process to detach from."));
3373
3374 /* Tell the remote target to detach. */
3375 if (remote_multi_process_p (rs))
3376 sprintf (rs->buf, "D;%x", pid);
3377 else
3378 strcpy (rs->buf, "D");
3379
3380 putpkt (rs->buf);
3381 getpkt (&rs->buf, &rs->buf_size, 0);
3382
3383 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3384 ;
3385 else if (rs->buf[0] == '\0')
3386 error (_("Remote doesn't know how to detach"));
3387 else
3388 error (_("Can't detach process."));
3389
3390 if (from_tty)
3391 {
3392 if (remote_multi_process_p (rs))
3393 printf_filtered (_("Detached from remote %s.\n"),
3394 target_pid_to_str (pid_to_ptid (pid)));
3395 else
3396 {
3397 if (extended)
3398 puts_filtered (_("Detached from remote process.\n"));
3399 else
3400 puts_filtered (_("Ending remote debugging.\n"));
3401 }
3402 }
3403
3404 discard_pending_stop_replies (pid);
3405 target_mourn_inferior ();
3406 }
3407
3408 static void
3409 remote_detach (struct target_ops *ops, char *args, int from_tty)
3410 {
3411 remote_detach_1 (args, from_tty, 0);
3412 }
3413
3414 static void
3415 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3416 {
3417 remote_detach_1 (args, from_tty, 1);
3418 }
3419
3420 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3421
3422 static void
3423 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3424 {
3425 if (args)
3426 error (_("Argument given to \"disconnect\" when remotely debugging."));
3427
3428 /* Make sure we unpush even the extended remote targets; mourn
3429 won't do it. So call remote_mourn_1 directly instead of
3430 target_mourn_inferior. */
3431 remote_mourn_1 (target);
3432
3433 if (from_tty)
3434 puts_filtered ("Ending remote debugging.\n");
3435 }
3436
3437 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3438 be chatty about it. */
3439
3440 static void
3441 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3442 {
3443 struct remote_state *rs = get_remote_state ();
3444 int pid;
3445 char *dummy;
3446 char *wait_status = NULL;
3447
3448 if (!args)
3449 error_no_arg (_("process-id to attach"));
3450
3451 dummy = args;
3452 pid = strtol (args, &dummy, 0);
3453 /* Some targets don't set errno on errors, grrr! */
3454 if (pid == 0 && args == dummy)
3455 error (_("Illegal process-id: %s."), args);
3456
3457 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3458 error (_("This target does not support attaching to a process"));
3459
3460 sprintf (rs->buf, "vAttach;%x", pid);
3461 putpkt (rs->buf);
3462 getpkt (&rs->buf, &rs->buf_size, 0);
3463
3464 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3465 {
3466 if (from_tty)
3467 printf_unfiltered (_("Attached to %s\n"),
3468 target_pid_to_str (pid_to_ptid (pid)));
3469
3470 if (!non_stop)
3471 {
3472 /* Save the reply for later. */
3473 wait_status = alloca (strlen (rs->buf) + 1);
3474 strcpy (wait_status, rs->buf);
3475 }
3476 else if (strcmp (rs->buf, "OK") != 0)
3477 error (_("Attaching to %s failed with: %s"),
3478 target_pid_to_str (pid_to_ptid (pid)),
3479 rs->buf);
3480 }
3481 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3482 error (_("This target does not support attaching to a process"));
3483 else
3484 error (_("Attaching to %s failed"),
3485 target_pid_to_str (pid_to_ptid (pid)));
3486
3487 inferior_ptid = pid_to_ptid (pid);
3488
3489 /* Now, if we have thread information, update inferior_ptid. */
3490 inferior_ptid = remote_current_thread (inferior_ptid);
3491
3492 remote_add_inferior (pid, 1);
3493
3494 if (non_stop)
3495 /* Get list of threads. */
3496 remote_threads_info (target);
3497 else
3498 /* Add the main thread to the thread list. */
3499 add_thread_silent (inferior_ptid);
3500
3501 /* Next, if the target can specify a description, read it. We do
3502 this before anything involving memory or registers. */
3503 target_find_description ();
3504
3505 if (!non_stop)
3506 {
3507 /* Use the previously fetched status. */
3508 gdb_assert (wait_status != NULL);
3509
3510 if (target_can_async_p ())
3511 {
3512 struct stop_reply *stop_reply;
3513 struct cleanup *old_chain;
3514
3515 stop_reply = stop_reply_xmalloc ();
3516 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3517 remote_parse_stop_reply (wait_status, stop_reply);
3518 discard_cleanups (old_chain);
3519 push_stop_reply (stop_reply);
3520
3521 target_async (inferior_event_handler, 0);
3522 }
3523 else
3524 {
3525 gdb_assert (wait_status != NULL);
3526 strcpy (rs->buf, wait_status);
3527 rs->cached_wait_status = 1;
3528 }
3529 }
3530 else
3531 gdb_assert (wait_status == NULL);
3532 }
3533
3534 static void
3535 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3536 {
3537 extended_remote_attach_1 (ops, args, from_tty);
3538 }
3539
3540 /* Convert hex digit A to a number. */
3541
3542 static int
3543 fromhex (int a)
3544 {
3545 if (a >= '0' && a <= '9')
3546 return a - '0';
3547 else if (a >= 'a' && a <= 'f')
3548 return a - 'a' + 10;
3549 else if (a >= 'A' && a <= 'F')
3550 return a - 'A' + 10;
3551 else
3552 error (_("Reply contains invalid hex digit %d"), a);
3553 }
3554
3555 static int
3556 hex2bin (const char *hex, gdb_byte *bin, int count)
3557 {
3558 int i;
3559
3560 for (i = 0; i < count; i++)
3561 {
3562 if (hex[0] == 0 || hex[1] == 0)
3563 {
3564 /* Hex string is short, or of uneven length.
3565 Return the count that has been converted so far. */
3566 return i;
3567 }
3568 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3569 hex += 2;
3570 }
3571 return i;
3572 }
3573
3574 /* Convert number NIB to a hex digit. */
3575
3576 static int
3577 tohex (int nib)
3578 {
3579 if (nib < 10)
3580 return '0' + nib;
3581 else
3582 return 'a' + nib - 10;
3583 }
3584
3585 static int
3586 bin2hex (const gdb_byte *bin, char *hex, int count)
3587 {
3588 int i;
3589 /* May use a length, or a nul-terminated string as input. */
3590 if (count == 0)
3591 count = strlen ((char *) bin);
3592
3593 for (i = 0; i < count; i++)
3594 {
3595 *hex++ = tohex ((*bin >> 4) & 0xf);
3596 *hex++ = tohex (*bin++ & 0xf);
3597 }
3598 *hex = 0;
3599 return i;
3600 }
3601 \f
3602 /* Check for the availability of vCont. This function should also check
3603 the response. */
3604
3605 static void
3606 remote_vcont_probe (struct remote_state *rs)
3607 {
3608 char *buf;
3609
3610 strcpy (rs->buf, "vCont?");
3611 putpkt (rs->buf);
3612 getpkt (&rs->buf, &rs->buf_size, 0);
3613 buf = rs->buf;
3614
3615 /* Make sure that the features we assume are supported. */
3616 if (strncmp (buf, "vCont", 5) == 0)
3617 {
3618 char *p = &buf[5];
3619 int support_s, support_S, support_c, support_C;
3620
3621 support_s = 0;
3622 support_S = 0;
3623 support_c = 0;
3624 support_C = 0;
3625 rs->support_vCont_t = 0;
3626 while (p && *p == ';')
3627 {
3628 p++;
3629 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3630 support_s = 1;
3631 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3632 support_S = 1;
3633 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3634 support_c = 1;
3635 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3636 support_C = 1;
3637 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3638 rs->support_vCont_t = 1;
3639
3640 p = strchr (p, ';');
3641 }
3642
3643 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3644 BUF will make packet_ok disable the packet. */
3645 if (!support_s || !support_S || !support_c || !support_C)
3646 buf[0] = 0;
3647 }
3648
3649 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3650 }
3651
3652 /* Resume the remote inferior by using a "vCont" packet. The thread
3653 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3654 resumed thread should be single-stepped and/or signalled. If PTID
3655 equals minus_one_ptid, then all threads are resumed; the thread to
3656 be stepped and/or signalled is given in the global INFERIOR_PTID.
3657 This function returns non-zero iff it resumes the inferior.
3658
3659 This function issues a strict subset of all possible vCont commands at the
3660 moment. */
3661
3662 static int
3663 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3664 {
3665 struct remote_state *rs = get_remote_state ();
3666 char *p;
3667 char *endp;
3668
3669 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3670 remote_vcont_probe (rs);
3671
3672 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3673 return 0;
3674
3675 p = rs->buf;
3676 endp = rs->buf + get_remote_packet_size ();
3677
3678 /* If we could generate a wider range of packets, we'd have to worry
3679 about overflowing BUF. Should there be a generic
3680 "multi-part-packet" packet? */
3681
3682 if (ptid_equal (ptid, magic_null_ptid))
3683 {
3684 /* MAGIC_NULL_PTID means that we don't have any active threads,
3685 so we don't have any TID numbers the inferior will
3686 understand. Make sure to only send forms that do not specify
3687 a TID. */
3688 if (step && siggnal != TARGET_SIGNAL_0)
3689 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3690 else if (step)
3691 xsnprintf (p, endp - p, "vCont;s");
3692 else if (siggnal != TARGET_SIGNAL_0)
3693 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3694 else
3695 xsnprintf (p, endp - p, "vCont;c");
3696 }
3697 else if (ptid_equal (ptid, minus_one_ptid))
3698 {
3699 /* Resume all threads, with preference for INFERIOR_PTID. */
3700 if (step && siggnal != TARGET_SIGNAL_0)
3701 {
3702 /* Step inferior_ptid with signal. */
3703 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3704 p = write_ptid (p, endp, inferior_ptid);
3705 /* And continue others. */
3706 p += xsnprintf (p, endp - p, ";c");
3707 }
3708 else if (step)
3709 {
3710 /* Step inferior_ptid. */
3711 p += xsnprintf (p, endp - p, "vCont;s:");
3712 p = write_ptid (p, endp, inferior_ptid);
3713 /* And continue others. */
3714 p += xsnprintf (p, endp - p, ";c");
3715 }
3716 else if (siggnal != TARGET_SIGNAL_0)
3717 {
3718 /* Continue inferior_ptid with signal. */
3719 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3720 p = write_ptid (p, endp, inferior_ptid);
3721 /* And continue others. */
3722 p += xsnprintf (p, endp - p, ";c");
3723 }
3724 else
3725 xsnprintf (p, endp - p, "vCont;c");
3726 }
3727 else
3728 {
3729 /* Scheduler locking; resume only PTID. */
3730 if (step && siggnal != TARGET_SIGNAL_0)
3731 {
3732 /* Step ptid with signal. */
3733 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3734 p = write_ptid (p, endp, ptid);
3735 }
3736 else if (step)
3737 {
3738 /* Step ptid. */
3739 p += xsnprintf (p, endp - p, "vCont;s:");
3740 p = write_ptid (p, endp, ptid);
3741 }
3742 else if (siggnal != TARGET_SIGNAL_0)
3743 {
3744 /* Continue ptid with signal. */
3745 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3746 p = write_ptid (p, endp, ptid);
3747 }
3748 else
3749 {
3750 /* Continue ptid. */
3751 p += xsnprintf (p, endp - p, "vCont;c:");
3752 p = write_ptid (p, endp, ptid);
3753 }
3754 }
3755
3756 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3757 putpkt (rs->buf);
3758
3759 if (non_stop)
3760 {
3761 /* In non-stop, the stub replies to vCont with "OK". The stop
3762 reply will be reported asynchronously by means of a `%Stop'
3763 notification. */
3764 getpkt (&rs->buf, &rs->buf_size, 0);
3765 if (strcmp (rs->buf, "OK") != 0)
3766 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3767 }
3768
3769 return 1;
3770 }
3771
3772 /* Tell the remote machine to resume. */
3773
3774 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3775
3776 static int last_sent_step;
3777
3778 static void
3779 remote_resume (struct target_ops *ops,
3780 ptid_t ptid, int step, enum target_signal siggnal)
3781 {
3782 struct remote_state *rs = get_remote_state ();
3783 char *buf;
3784
3785 last_sent_signal = siggnal;
3786 last_sent_step = step;
3787
3788 /* Update the inferior on signals to silently pass, if they've changed. */
3789 remote_pass_signals ();
3790
3791 /* The vCont packet doesn't need to specify threads via Hc. */
3792 if (remote_vcont_resume (ptid, step, siggnal))
3793 goto done;
3794
3795 /* All other supported resume packets do use Hc, so set the continue
3796 thread. */
3797 if (ptid_equal (ptid, minus_one_ptid))
3798 set_continue_thread (any_thread_ptid);
3799 else
3800 set_continue_thread (ptid);
3801
3802 buf = rs->buf;
3803 if (execution_direction == EXEC_REVERSE)
3804 {
3805 /* We don't pass signals to the target in reverse exec mode. */
3806 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3807 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3808 siggnal);
3809 strcpy (buf, step ? "bs" : "bc");
3810 }
3811 else if (siggnal != TARGET_SIGNAL_0)
3812 {
3813 buf[0] = step ? 'S' : 'C';
3814 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3815 buf[2] = tohex (((int) siggnal) & 0xf);
3816 buf[3] = '\0';
3817 }
3818 else
3819 strcpy (buf, step ? "s" : "c");
3820
3821 putpkt (buf);
3822
3823 done:
3824 /* We are about to start executing the inferior, let's register it
3825 with the event loop. NOTE: this is the one place where all the
3826 execution commands end up. We could alternatively do this in each
3827 of the execution commands in infcmd.c. */
3828 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3829 into infcmd.c in order to allow inferior function calls to work
3830 NOT asynchronously. */
3831 if (target_can_async_p ())
3832 target_async (inferior_event_handler, 0);
3833
3834 /* We've just told the target to resume. The remote server will
3835 wait for the inferior to stop, and then send a stop reply. In
3836 the mean time, we can't start another command/query ourselves
3837 because the stub wouldn't be ready to process it. This applies
3838 only to the base all-stop protocol, however. In non-stop (which
3839 only supports vCont), the stub replies with an "OK", and is
3840 immediate able to process further serial input. */
3841 if (!non_stop)
3842 rs->waiting_for_stop_reply = 1;
3843 }
3844 \f
3845
3846 /* Set up the signal handler for SIGINT, while the target is
3847 executing, ovewriting the 'regular' SIGINT signal handler. */
3848 static void
3849 initialize_sigint_signal_handler (void)
3850 {
3851 signal (SIGINT, handle_remote_sigint);
3852 }
3853
3854 /* Signal handler for SIGINT, while the target is executing. */
3855 static void
3856 handle_remote_sigint (int sig)
3857 {
3858 signal (sig, handle_remote_sigint_twice);
3859 mark_async_signal_handler_wrapper (sigint_remote_token);
3860 }
3861
3862 /* Signal handler for SIGINT, installed after SIGINT has already been
3863 sent once. It will take effect the second time that the user sends
3864 a ^C. */
3865 static void
3866 handle_remote_sigint_twice (int sig)
3867 {
3868 signal (sig, handle_remote_sigint);
3869 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3870 }
3871
3872 /* Perform the real interruption of the target execution, in response
3873 to a ^C. */
3874 static void
3875 async_remote_interrupt (gdb_client_data arg)
3876 {
3877 if (remote_debug)
3878 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3879
3880 target_stop (inferior_ptid);
3881 }
3882
3883 /* Perform interrupt, if the first attempt did not succeed. Just give
3884 up on the target alltogether. */
3885 void
3886 async_remote_interrupt_twice (gdb_client_data arg)
3887 {
3888 if (remote_debug)
3889 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3890
3891 interrupt_query ();
3892 }
3893
3894 /* Reinstall the usual SIGINT handlers, after the target has
3895 stopped. */
3896 static void
3897 cleanup_sigint_signal_handler (void *dummy)
3898 {
3899 signal (SIGINT, handle_sigint);
3900 }
3901
3902 /* Send ^C to target to halt it. Target will respond, and send us a
3903 packet. */
3904 static void (*ofunc) (int);
3905
3906 /* The command line interface's stop routine. This function is installed
3907 as a signal handler for SIGINT. The first time a user requests a
3908 stop, we call remote_stop to send a break or ^C. If there is no
3909 response from the target (it didn't stop when the user requested it),
3910 we ask the user if he'd like to detach from the target. */
3911 static void
3912 remote_interrupt (int signo)
3913 {
3914 /* If this doesn't work, try more severe steps. */
3915 signal (signo, remote_interrupt_twice);
3916
3917 gdb_call_async_signal_handler (sigint_remote_token, 1);
3918 }
3919
3920 /* The user typed ^C twice. */
3921
3922 static void
3923 remote_interrupt_twice (int signo)
3924 {
3925 signal (signo, ofunc);
3926 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3927 signal (signo, remote_interrupt);
3928 }
3929
3930 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3931 thread, all threads of a remote process, or all threads of all
3932 processes. */
3933
3934 static void
3935 remote_stop_ns (ptid_t ptid)
3936 {
3937 struct remote_state *rs = get_remote_state ();
3938 char *p = rs->buf;
3939 char *endp = rs->buf + get_remote_packet_size ();
3940 struct stop_reply *reply, *next;
3941
3942 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3943 remote_vcont_probe (rs);
3944
3945 if (!rs->support_vCont_t)
3946 error (_("Remote server does not support stopping threads"));
3947
3948 if (ptid_equal (ptid, minus_one_ptid))
3949 p += xsnprintf (p, endp - p, "vCont;t");
3950 else
3951 {
3952 ptid_t nptid;
3953
3954 /* Step inferior_ptid. */
3955 p += xsnprintf (p, endp - p, "vCont;t:");
3956
3957 if (ptid_is_pid (ptid))
3958 /* All (-1) threads of process. */
3959 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3960 else
3961 {
3962 /* Small optimization: if we already have a stop reply for
3963 this thread, no use in telling the stub we want this
3964 stopped. */
3965 if (peek_stop_reply (ptid))
3966 return;
3967
3968 nptid = ptid;
3969 }
3970
3971 p = write_ptid (p, endp, nptid);
3972 }
3973
3974 /* In non-stop, we get an immediate OK reply. The stop reply will
3975 come in asynchronously by notification. */
3976 putpkt (rs->buf);
3977 getpkt (&rs->buf, &rs->buf_size, 0);
3978 if (strcmp (rs->buf, "OK") != 0)
3979 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3980 }
3981
3982 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3983 remote target. It is undefined which thread of which process
3984 reports the stop. */
3985
3986 static void
3987 remote_stop_as (ptid_t ptid)
3988 {
3989 struct remote_state *rs = get_remote_state ();
3990
3991 /* If the inferior is stopped already, but the core didn't know
3992 about it yet, just ignore the request. The cached wait status
3993 will be collected in remote_wait. */
3994 if (rs->cached_wait_status)
3995 return;
3996
3997 /* Send a break or a ^C, depending on user preference. */
3998
3999 if (remote_break)
4000 serial_send_break (remote_desc);
4001 else
4002 serial_write (remote_desc, "\003", 1);
4003 }
4004
4005 /* This is the generic stop called via the target vector. When a target
4006 interrupt is requested, either by the command line or the GUI, we
4007 will eventually end up here. */
4008
4009 static void
4010 remote_stop (ptid_t ptid)
4011 {
4012 if (remote_debug)
4013 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4014
4015 if (non_stop)
4016 remote_stop_ns (ptid);
4017 else
4018 remote_stop_as (ptid);
4019 }
4020
4021 /* Ask the user what to do when an interrupt is received. */
4022
4023 static void
4024 interrupt_query (void)
4025 {
4026 target_terminal_ours ();
4027
4028 if (target_can_async_p ())
4029 {
4030 signal (SIGINT, handle_sigint);
4031 deprecated_throw_reason (RETURN_QUIT);
4032 }
4033 else
4034 {
4035 if (query (_("Interrupted while waiting for the program.\n\
4036 Give up (and stop debugging it)? ")))
4037 {
4038 pop_target ();
4039 deprecated_throw_reason (RETURN_QUIT);
4040 }
4041 }
4042
4043 target_terminal_inferior ();
4044 }
4045
4046 /* Enable/disable target terminal ownership. Most targets can use
4047 terminal groups to control terminal ownership. Remote targets are
4048 different in that explicit transfer of ownership to/from GDB/target
4049 is required. */
4050
4051 static void
4052 remote_terminal_inferior (void)
4053 {
4054 if (!target_async_permitted)
4055 /* Nothing to do. */
4056 return;
4057
4058 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
4059 sync_execution here. This function should only be called when
4060 GDB is resuming the inferior in the forground. A background
4061 resume (``run&'') should leave GDB in control of the terminal and
4062 consequently should not call this code. */
4063 if (!sync_execution)
4064 return;
4065 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
4066 calls target_terminal_*() idenpotent. The event-loop GDB talking
4067 to an asynchronous target with a synchronous command calls this
4068 function from both event-top.c and infrun.c/infcmd.c. Once GDB
4069 stops trying to transfer the terminal to the target when it
4070 shouldn't this guard can go away. */
4071 if (!remote_async_terminal_ours_p)
4072 return;
4073 delete_file_handler (input_fd);
4074 remote_async_terminal_ours_p = 0;
4075 initialize_sigint_signal_handler ();
4076 /* NOTE: At this point we could also register our selves as the
4077 recipient of all input. Any characters typed could then be
4078 passed on down to the target. */
4079 }
4080
4081 static void
4082 remote_terminal_ours (void)
4083 {
4084 if (!target_async_permitted)
4085 /* Nothing to do. */
4086 return;
4087
4088 /* See FIXME in remote_terminal_inferior. */
4089 if (!sync_execution)
4090 return;
4091 /* See FIXME in remote_terminal_inferior. */
4092 if (remote_async_terminal_ours_p)
4093 return;
4094 cleanup_sigint_signal_handler (NULL);
4095 add_file_handler (input_fd, stdin_event_handler, 0);
4096 remote_async_terminal_ours_p = 1;
4097 }
4098
4099 void
4100 remote_console_output (char *msg)
4101 {
4102 char *p;
4103
4104 for (p = msg; p[0] && p[1]; p += 2)
4105 {
4106 char tb[2];
4107 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4108 tb[0] = c;
4109 tb[1] = 0;
4110 fputs_unfiltered (tb, gdb_stdtarg);
4111 }
4112 gdb_flush (gdb_stdtarg);
4113 }
4114
4115 typedef struct cached_reg
4116 {
4117 int num;
4118 gdb_byte data[MAX_REGISTER_SIZE];
4119 } cached_reg_t;
4120
4121 DEF_VEC_O(cached_reg_t);
4122
4123 struct stop_reply
4124 {
4125 struct stop_reply *next;
4126
4127 ptid_t ptid;
4128
4129 struct target_waitstatus ws;
4130
4131 VEC(cached_reg_t) *regcache;
4132
4133 int stopped_by_watchpoint_p;
4134 CORE_ADDR watch_data_address;
4135
4136 int solibs_changed;
4137 int replay_event;
4138 };
4139
4140 /* The list of already fetched and acknowledged stop events. */
4141 static struct stop_reply *stop_reply_queue;
4142
4143 static struct stop_reply *
4144 stop_reply_xmalloc (void)
4145 {
4146 struct stop_reply *r = XMALLOC (struct stop_reply);
4147 r->next = NULL;
4148 return r;
4149 }
4150
4151 static void
4152 stop_reply_xfree (struct stop_reply *r)
4153 {
4154 if (r != NULL)
4155 {
4156 VEC_free (cached_reg_t, r->regcache);
4157 xfree (r);
4158 }
4159 }
4160
4161 /* Discard all pending stop replies of inferior PID. If PID is -1,
4162 discard everything. */
4163
4164 static void
4165 discard_pending_stop_replies (int pid)
4166 {
4167 struct stop_reply *prev = NULL, *reply, *next;
4168
4169 /* Discard the in-flight notification. */
4170 if (pending_stop_reply != NULL
4171 && (pid == -1
4172 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4173 {
4174 stop_reply_xfree (pending_stop_reply);
4175 pending_stop_reply = NULL;
4176 }
4177
4178 /* Discard the stop replies we have already pulled with
4179 vStopped. */
4180 for (reply = stop_reply_queue; reply; reply = next)
4181 {
4182 next = reply->next;
4183 if (pid == -1
4184 || ptid_get_pid (reply->ptid) == pid)
4185 {
4186 if (reply == stop_reply_queue)
4187 stop_reply_queue = reply->next;
4188 else
4189 prev->next = reply->next;
4190
4191 stop_reply_xfree (reply);
4192 }
4193 else
4194 prev = reply;
4195 }
4196 }
4197
4198 /* Cleanup wrapper. */
4199
4200 static void
4201 do_stop_reply_xfree (void *arg)
4202 {
4203 struct stop_reply *r = arg;
4204 stop_reply_xfree (r);
4205 }
4206
4207 /* Look for a queued stop reply belonging to PTID. If one is found,
4208 remove it from the queue, and return it. Returns NULL if none is
4209 found. If there are still queued events left to process, tell the
4210 event loop to get back to target_wait soon. */
4211
4212 static struct stop_reply *
4213 queued_stop_reply (ptid_t ptid)
4214 {
4215 struct stop_reply *it, *prev;
4216 struct stop_reply head;
4217
4218 head.next = stop_reply_queue;
4219 prev = &head;
4220
4221 it = head.next;
4222
4223 if (!ptid_equal (ptid, minus_one_ptid))
4224 for (; it; prev = it, it = it->next)
4225 if (ptid_equal (ptid, it->ptid))
4226 break;
4227
4228 if (it)
4229 {
4230 prev->next = it->next;
4231 it->next = NULL;
4232 }
4233
4234 stop_reply_queue = head.next;
4235
4236 if (stop_reply_queue)
4237 /* There's still at least an event left. */
4238 mark_async_event_handler (remote_async_inferior_event_token);
4239
4240 return it;
4241 }
4242
4243 /* Push a fully parsed stop reply in the stop reply queue. Since we
4244 know that we now have at least one queued event left to pass to the
4245 core side, tell the event loop to get back to target_wait soon. */
4246
4247 static void
4248 push_stop_reply (struct stop_reply *new_event)
4249 {
4250 struct stop_reply *event;
4251
4252 if (stop_reply_queue)
4253 {
4254 for (event = stop_reply_queue;
4255 event && event->next;
4256 event = event->next)
4257 ;
4258
4259 event->next = new_event;
4260 }
4261 else
4262 stop_reply_queue = new_event;
4263
4264 mark_async_event_handler (remote_async_inferior_event_token);
4265 }
4266
4267 /* Returns true if we have a stop reply for PTID. */
4268
4269 static int
4270 peek_stop_reply (ptid_t ptid)
4271 {
4272 struct stop_reply *it;
4273
4274 for (it = stop_reply_queue; it; it = it->next)
4275 if (ptid_equal (ptid, it->ptid))
4276 {
4277 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4278 return 1;
4279 }
4280
4281 return 0;
4282 }
4283
4284 /* Parse the stop reply in BUF. Either the function succeeds, and the
4285 result is stored in EVENT, or throws an error. */
4286
4287 static void
4288 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4289 {
4290 struct remote_arch_state *rsa = get_remote_arch_state ();
4291 ULONGEST addr;
4292 char *p;
4293
4294 event->ptid = null_ptid;
4295 event->ws.kind = TARGET_WAITKIND_IGNORE;
4296 event->ws.value.integer = 0;
4297 event->solibs_changed = 0;
4298 event->replay_event = 0;
4299 event->stopped_by_watchpoint_p = 0;
4300 event->regcache = NULL;
4301
4302 switch (buf[0])
4303 {
4304 case 'T': /* Status with PC, SP, FP, ... */
4305 {
4306 gdb_byte regs[MAX_REGISTER_SIZE];
4307
4308 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4309 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4310 ss = signal number
4311 n... = register number
4312 r... = register contents
4313 */
4314
4315 p = &buf[3]; /* after Txx */
4316 while (*p)
4317 {
4318 char *p1;
4319 char *p_temp;
4320 int fieldsize;
4321 LONGEST pnum = 0;
4322
4323 /* If the packet contains a register number, save it in
4324 pnum and set p1 to point to the character following it.
4325 Otherwise p1 points to p. */
4326
4327 /* If this packet is an awatch packet, don't parse the 'a'
4328 as a register number. */
4329
4330 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4331 {
4332 /* Read the ``P'' register number. */
4333 pnum = strtol (p, &p_temp, 16);
4334 p1 = p_temp;
4335 }
4336 else
4337 p1 = p;
4338
4339 if (p1 == p) /* No register number present here. */
4340 {
4341 p1 = strchr (p, ':');
4342 if (p1 == NULL)
4343 error (_("Malformed packet(a) (missing colon): %s\n\
4344 Packet: '%s'\n"),
4345 p, buf);
4346 if (strncmp (p, "thread", p1 - p) == 0)
4347 event->ptid = read_ptid (++p1, &p);
4348 else if ((strncmp (p, "watch", p1 - p) == 0)
4349 || (strncmp (p, "rwatch", p1 - p) == 0)
4350 || (strncmp (p, "awatch", p1 - p) == 0))
4351 {
4352 event->stopped_by_watchpoint_p = 1;
4353 p = unpack_varlen_hex (++p1, &addr);
4354 event->watch_data_address = (CORE_ADDR) addr;
4355 }
4356 else if (strncmp (p, "library", p1 - p) == 0)
4357 {
4358 p1++;
4359 p_temp = p1;
4360 while (*p_temp && *p_temp != ';')
4361 p_temp++;
4362
4363 event->solibs_changed = 1;
4364 p = p_temp;
4365 }
4366 else if (strncmp (p, "replaylog", p1 - p) == 0)
4367 {
4368 /* NO_HISTORY event.
4369 p1 will indicate "begin" or "end", but
4370 it makes no difference for now, so ignore it. */
4371 event->replay_event = 1;
4372 p_temp = strchr (p1 + 1, ';');
4373 if (p_temp)
4374 p = p_temp;
4375 }
4376 else
4377 {
4378 /* Silently skip unknown optional info. */
4379 p_temp = strchr (p1 + 1, ';');
4380 if (p_temp)
4381 p = p_temp;
4382 }
4383 }
4384 else
4385 {
4386 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4387 cached_reg_t cached_reg;
4388
4389 p = p1;
4390
4391 if (*p != ':')
4392 error (_("Malformed packet(b) (missing colon): %s\n\
4393 Packet: '%s'\n"),
4394 p, buf);
4395 ++p;
4396
4397 if (reg == NULL)
4398 error (_("Remote sent bad register number %s: %s\n\
4399 Packet: '%s'\n"),
4400 phex_nz (pnum, 0), p, buf);
4401
4402 cached_reg.num = reg->regnum;
4403
4404 fieldsize = hex2bin (p, cached_reg.data,
4405 register_size (target_gdbarch,
4406 reg->regnum));
4407 p += 2 * fieldsize;
4408 if (fieldsize < register_size (target_gdbarch,
4409 reg->regnum))
4410 warning (_("Remote reply is too short: %s"), buf);
4411
4412 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4413 }
4414
4415 if (*p != ';')
4416 error (_("Remote register badly formatted: %s\nhere: %s"),
4417 buf, p);
4418 ++p;
4419 }
4420 }
4421 /* fall through */
4422 case 'S': /* Old style status, just signal only. */
4423 if (event->solibs_changed)
4424 event->ws.kind = TARGET_WAITKIND_LOADED;
4425 else if (event->replay_event)
4426 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4427 else
4428 {
4429 event->ws.kind = TARGET_WAITKIND_STOPPED;
4430 event->ws.value.sig = (enum target_signal)
4431 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4432 }
4433 break;
4434 case 'W': /* Target exited. */
4435 case 'X':
4436 {
4437 char *p;
4438 int pid;
4439 ULONGEST value;
4440
4441 /* GDB used to accept only 2 hex chars here. Stubs should
4442 only send more if they detect GDB supports multi-process
4443 support. */
4444 p = unpack_varlen_hex (&buf[1], &value);
4445
4446 if (buf[0] == 'W')
4447 {
4448 /* The remote process exited. */
4449 event->ws.kind = TARGET_WAITKIND_EXITED;
4450 event->ws.value.integer = value;
4451 }
4452 else
4453 {
4454 /* The remote process exited with a signal. */
4455 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4456 event->ws.value.sig = (enum target_signal) value;
4457 }
4458
4459 /* If no process is specified, assume inferior_ptid. */
4460 pid = ptid_get_pid (inferior_ptid);
4461 if (*p == '\0')
4462 ;
4463 else if (*p == ';')
4464 {
4465 p++;
4466
4467 if (p == '\0')
4468 ;
4469 else if (strncmp (p,
4470 "process:", sizeof ("process:") - 1) == 0)
4471 {
4472 ULONGEST upid;
4473 p += sizeof ("process:") - 1;
4474 unpack_varlen_hex (p, &upid);
4475 pid = upid;
4476 }
4477 else
4478 error (_("unknown stop reply packet: %s"), buf);
4479 }
4480 else
4481 error (_("unknown stop reply packet: %s"), buf);
4482 event->ptid = pid_to_ptid (pid);
4483 }
4484 break;
4485 }
4486
4487 if (non_stop && ptid_equal (event->ptid, null_ptid))
4488 error (_("No process or thread specified in stop reply: %s"), buf);
4489 }
4490
4491 /* When the stub wants to tell GDB about a new stop reply, it sends a
4492 stop notification (%Stop). Those can come it at any time, hence,
4493 we have to make sure that any pending putpkt/getpkt sequence we're
4494 making is finished, before querying the stub for more events with
4495 vStopped. E.g., if we started a vStopped sequence immediatelly
4496 upon receiving the %Stop notification, something like this could
4497 happen:
4498
4499 1.1) --> Hg 1
4500 1.2) <-- OK
4501 1.3) --> g
4502 1.4) <-- %Stop
4503 1.5) --> vStopped
4504 1.6) <-- (registers reply to step #1.3)
4505
4506 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4507 query.
4508
4509 To solve this, whenever we parse a %Stop notification sucessfully,
4510 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4511 doing whatever we were doing:
4512
4513 2.1) --> Hg 1
4514 2.2) <-- OK
4515 2.3) --> g
4516 2.4) <-- %Stop
4517 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4518 2.5) <-- (registers reply to step #2.3)
4519
4520 Eventualy after step #2.5, we return to the event loop, which
4521 notices there's an event on the
4522 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4523 associated callback --- the function below. At this point, we're
4524 always safe to start a vStopped sequence. :
4525
4526 2.6) --> vStopped
4527 2.7) <-- T05 thread:2
4528 2.8) --> vStopped
4529 2.9) --> OK
4530 */
4531
4532 static void
4533 remote_get_pending_stop_replies (void)
4534 {
4535 struct remote_state *rs = get_remote_state ();
4536 int ret;
4537
4538 if (pending_stop_reply)
4539 {
4540 /* acknowledge */
4541 putpkt ("vStopped");
4542
4543 /* Now we can rely on it. */
4544 push_stop_reply (pending_stop_reply);
4545 pending_stop_reply = NULL;
4546
4547 while (1)
4548 {
4549 getpkt (&rs->buf, &rs->buf_size, 0);
4550 if (strcmp (rs->buf, "OK") == 0)
4551 break;
4552 else
4553 {
4554 struct cleanup *old_chain;
4555 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4556
4557 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4558 remote_parse_stop_reply (rs->buf, stop_reply);
4559
4560 /* acknowledge */
4561 putpkt ("vStopped");
4562
4563 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4564 {
4565 /* Now we can rely on it. */
4566 discard_cleanups (old_chain);
4567 push_stop_reply (stop_reply);
4568 }
4569 else
4570 /* We got an unknown stop reply. */
4571 do_cleanups (old_chain);
4572 }
4573 }
4574 }
4575 }
4576
4577
4578 /* Called when it is decided that STOP_REPLY holds the info of the
4579 event that is to be returned to the core. This function always
4580 destroys STOP_REPLY. */
4581
4582 static ptid_t
4583 process_stop_reply (struct stop_reply *stop_reply,
4584 struct target_waitstatus *status)
4585 {
4586 ptid_t ptid;
4587
4588 *status = stop_reply->ws;
4589 ptid = stop_reply->ptid;
4590
4591 /* If no thread/process was reported by the stub, assume the current
4592 inferior. */
4593 if (ptid_equal (ptid, null_ptid))
4594 ptid = inferior_ptid;
4595
4596 if (status->kind != TARGET_WAITKIND_EXITED
4597 && status->kind != TARGET_WAITKIND_SIGNALLED)
4598 {
4599 /* Expedited registers. */
4600 if (stop_reply->regcache)
4601 {
4602 cached_reg_t *reg;
4603 int ix;
4604
4605 for (ix = 0;
4606 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4607 ix++)
4608 regcache_raw_supply (get_thread_regcache (ptid),
4609 reg->num, reg->data);
4610 VEC_free (cached_reg_t, stop_reply->regcache);
4611 }
4612
4613 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4614 remote_watch_data_address = stop_reply->watch_data_address;
4615
4616 remote_notice_new_inferior (ptid, 0);
4617 }
4618
4619 stop_reply_xfree (stop_reply);
4620 return ptid;
4621 }
4622
4623 /* The non-stop mode version of target_wait. */
4624
4625 static ptid_t
4626 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4627 {
4628 struct remote_state *rs = get_remote_state ();
4629 struct remote_arch_state *rsa = get_remote_arch_state ();
4630 ptid_t event_ptid = null_ptid;
4631 struct stop_reply *stop_reply;
4632 int ret;
4633
4634 /* If in non-stop mode, get out of getpkt even if a
4635 notification is received. */
4636
4637 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4638 0 /* forever */);
4639 while (1)
4640 {
4641 if (ret != -1)
4642 switch (rs->buf[0])
4643 {
4644 case 'E': /* Error of some sort. */
4645 /* We're out of sync with the target now. Did it continue
4646 or not? We can't tell which thread it was in non-stop,
4647 so just ignore this. */
4648 warning (_("Remote failure reply: %s"), rs->buf);
4649 break;
4650 case 'O': /* Console output. */
4651 remote_console_output (rs->buf + 1);
4652 break;
4653 default:
4654 warning (_("Invalid remote reply: %s"), rs->buf);
4655 break;
4656 }
4657
4658 /* Acknowledge a pending stop reply that may have arrived in the
4659 mean time. */
4660 if (pending_stop_reply != NULL)
4661 remote_get_pending_stop_replies ();
4662
4663 /* If indeed we noticed a stop reply, we're done. */
4664 stop_reply = queued_stop_reply (ptid);
4665 if (stop_reply != NULL)
4666 return process_stop_reply (stop_reply, status);
4667
4668 /* Still no event. If we're in asynchronous mode, then just
4669 return to the event loop. */
4670 if (remote_is_async_p ())
4671 {
4672 status->kind = TARGET_WAITKIND_IGNORE;
4673 return minus_one_ptid;
4674 }
4675
4676 /* Otherwise, asynchronous mode is masked, so do a blocking
4677 wait. */
4678 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4679 1 /* forever */);
4680 }
4681 }
4682
4683 /* Wait until the remote machine stops, then return, storing status in
4684 STATUS just as `wait' would. */
4685
4686 static ptid_t
4687 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4688 {
4689 struct remote_state *rs = get_remote_state ();
4690 struct remote_arch_state *rsa = get_remote_arch_state ();
4691 ptid_t event_ptid = null_ptid;
4692 ULONGEST addr;
4693 int solibs_changed = 0;
4694 char *buf, *p;
4695 struct stop_reply *stop_reply;
4696
4697 status->kind = TARGET_WAITKIND_IGNORE;
4698 status->value.integer = 0;
4699
4700 stop_reply = queued_stop_reply (ptid);
4701 if (stop_reply != NULL)
4702 return process_stop_reply (stop_reply, status);
4703
4704 if (rs->cached_wait_status)
4705 /* Use the cached wait status, but only once. */
4706 rs->cached_wait_status = 0;
4707 else
4708 {
4709 int ret;
4710
4711 if (!target_is_async_p ())
4712 {
4713 ofunc = signal (SIGINT, remote_interrupt);
4714 /* If the user hit C-c before this packet, or between packets,
4715 pretend that it was hit right here. */
4716 if (quit_flag)
4717 {
4718 quit_flag = 0;
4719 remote_interrupt (SIGINT);
4720 }
4721 }
4722
4723 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4724 _never_ wait for ever -> test on target_is_async_p().
4725 However, before we do that we need to ensure that the caller
4726 knows how to take the target into/out of async mode. */
4727 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4728 if (!target_is_async_p ())
4729 signal (SIGINT, ofunc);
4730 }
4731
4732 buf = rs->buf;
4733
4734 remote_stopped_by_watchpoint_p = 0;
4735
4736 /* We got something. */
4737 rs->waiting_for_stop_reply = 0;
4738
4739 switch (buf[0])
4740 {
4741 case 'E': /* Error of some sort. */
4742 /* We're out of sync with the target now. Did it continue or
4743 not? Not is more likely, so report a stop. */
4744 warning (_("Remote failure reply: %s"), buf);
4745 status->kind = TARGET_WAITKIND_STOPPED;
4746 status->value.sig = TARGET_SIGNAL_0;
4747 break;
4748 case 'F': /* File-I/O request. */
4749 remote_fileio_request (buf);
4750 break;
4751 case 'T': case 'S': case 'X': case 'W':
4752 {
4753 struct stop_reply *stop_reply;
4754 struct cleanup *old_chain;
4755
4756 stop_reply = stop_reply_xmalloc ();
4757 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4758 remote_parse_stop_reply (buf, stop_reply);
4759 discard_cleanups (old_chain);
4760 event_ptid = process_stop_reply (stop_reply, status);
4761 break;
4762 }
4763 case 'O': /* Console output. */
4764 remote_console_output (buf + 1);
4765
4766 /* The target didn't really stop; keep waiting. */
4767 rs->waiting_for_stop_reply = 1;
4768
4769 break;
4770 case '\0':
4771 if (last_sent_signal != TARGET_SIGNAL_0)
4772 {
4773 /* Zero length reply means that we tried 'S' or 'C' and the
4774 remote system doesn't support it. */
4775 target_terminal_ours_for_output ();
4776 printf_filtered
4777 ("Can't send signals to this remote system. %s not sent.\n",
4778 target_signal_to_name (last_sent_signal));
4779 last_sent_signal = TARGET_SIGNAL_0;
4780 target_terminal_inferior ();
4781
4782 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4783 putpkt ((char *) buf);
4784
4785 /* We just told the target to resume, so a stop reply is in
4786 order. */
4787 rs->waiting_for_stop_reply = 1;
4788 break;
4789 }
4790 /* else fallthrough */
4791 default:
4792 warning (_("Invalid remote reply: %s"), buf);
4793 /* Keep waiting. */
4794 rs->waiting_for_stop_reply = 1;
4795 break;
4796 }
4797
4798 if (status->kind == TARGET_WAITKIND_IGNORE)
4799 /* Nothing interesting happened. */
4800 return minus_one_ptid;
4801 else if (status->kind != TARGET_WAITKIND_EXITED
4802 && status->kind != TARGET_WAITKIND_SIGNALLED)
4803 {
4804 if (!ptid_equal (event_ptid, null_ptid))
4805 record_currthread (event_ptid);
4806 else
4807 event_ptid = inferior_ptid;
4808 }
4809 else
4810 /* A process exit. Invalidate our notion of current thread. */
4811 record_currthread (minus_one_ptid);
4812
4813 return event_ptid;
4814 }
4815
4816 /* Wait until the remote machine stops, then return, storing status in
4817 STATUS just as `wait' would. */
4818
4819 static ptid_t
4820 remote_wait (struct target_ops *ops,
4821 ptid_t ptid, struct target_waitstatus *status)
4822 {
4823 ptid_t event_ptid;
4824
4825 if (non_stop)
4826 event_ptid = remote_wait_ns (ptid, status);
4827 else
4828 {
4829 /* In synchronous mode, keep waiting until the target stops. In
4830 asynchronous mode, always return to the event loop. */
4831
4832 do
4833 {
4834 event_ptid = remote_wait_as (ptid, status);
4835 }
4836 while (status->kind == TARGET_WAITKIND_IGNORE
4837 && !target_can_async_p ());
4838 }
4839
4840 if (target_can_async_p ())
4841 {
4842 /* If there are are events left in the queue tell the event loop
4843 to return here. */
4844 if (stop_reply_queue)
4845 mark_async_event_handler (remote_async_inferior_event_token);
4846 }
4847
4848 return event_ptid;
4849 }
4850
4851 /* Fetch a single register using a 'p' packet. */
4852
4853 static int
4854 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4855 {
4856 struct remote_state *rs = get_remote_state ();
4857 char *buf, *p;
4858 char regp[MAX_REGISTER_SIZE];
4859 int i;
4860
4861 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4862 return 0;
4863
4864 if (reg->pnum == -1)
4865 return 0;
4866
4867 p = rs->buf;
4868 *p++ = 'p';
4869 p += hexnumstr (p, reg->pnum);
4870 *p++ = '\0';
4871 remote_send (&rs->buf, &rs->buf_size);
4872
4873 buf = rs->buf;
4874
4875 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4876 {
4877 case PACKET_OK:
4878 break;
4879 case PACKET_UNKNOWN:
4880 return 0;
4881 case PACKET_ERROR:
4882 error (_("Could not fetch register \"%s\""),
4883 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4884 }
4885
4886 /* If this register is unfetchable, tell the regcache. */
4887 if (buf[0] == 'x')
4888 {
4889 regcache_raw_supply (regcache, reg->regnum, NULL);
4890 return 1;
4891 }
4892
4893 /* Otherwise, parse and supply the value. */
4894 p = buf;
4895 i = 0;
4896 while (p[0] != 0)
4897 {
4898 if (p[1] == 0)
4899 error (_("fetch_register_using_p: early buf termination"));
4900
4901 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4902 p += 2;
4903 }
4904 regcache_raw_supply (regcache, reg->regnum, regp);
4905 return 1;
4906 }
4907
4908 /* Fetch the registers included in the target's 'g' packet. */
4909
4910 static int
4911 send_g_packet (void)
4912 {
4913 struct remote_state *rs = get_remote_state ();
4914 int i, buf_len;
4915 char *p;
4916 char *regs;
4917
4918 sprintf (rs->buf, "g");
4919 remote_send (&rs->buf, &rs->buf_size);
4920
4921 /* We can get out of synch in various cases. If the first character
4922 in the buffer is not a hex character, assume that has happened
4923 and try to fetch another packet to read. */
4924 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4925 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4926 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4927 && rs->buf[0] != 'x') /* New: unavailable register value. */
4928 {
4929 if (remote_debug)
4930 fprintf_unfiltered (gdb_stdlog,
4931 "Bad register packet; fetching a new packet\n");
4932 getpkt (&rs->buf, &rs->buf_size, 0);
4933 }
4934
4935 buf_len = strlen (rs->buf);
4936
4937 /* Sanity check the received packet. */
4938 if (buf_len % 2 != 0)
4939 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4940
4941 return buf_len / 2;
4942 }
4943
4944 static void
4945 process_g_packet (struct regcache *regcache)
4946 {
4947 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4948 struct remote_state *rs = get_remote_state ();
4949 struct remote_arch_state *rsa = get_remote_arch_state ();
4950 int i, buf_len;
4951 char *p;
4952 char *regs;
4953
4954 buf_len = strlen (rs->buf);
4955
4956 /* Further sanity checks, with knowledge of the architecture. */
4957 if (buf_len > 2 * rsa->sizeof_g_packet)
4958 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4959
4960 /* Save the size of the packet sent to us by the target. It is used
4961 as a heuristic when determining the max size of packets that the
4962 target can safely receive. */
4963 if (rsa->actual_register_packet_size == 0)
4964 rsa->actual_register_packet_size = buf_len;
4965
4966 /* If this is smaller than we guessed the 'g' packet would be,
4967 update our records. A 'g' reply that doesn't include a register's
4968 value implies either that the register is not available, or that
4969 the 'p' packet must be used. */
4970 if (buf_len < 2 * rsa->sizeof_g_packet)
4971 {
4972 rsa->sizeof_g_packet = buf_len / 2;
4973
4974 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4975 {
4976 if (rsa->regs[i].pnum == -1)
4977 continue;
4978
4979 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4980 rsa->regs[i].in_g_packet = 0;
4981 else
4982 rsa->regs[i].in_g_packet = 1;
4983 }
4984 }
4985
4986 regs = alloca (rsa->sizeof_g_packet);
4987
4988 /* Unimplemented registers read as all bits zero. */
4989 memset (regs, 0, rsa->sizeof_g_packet);
4990
4991 /* Reply describes registers byte by byte, each byte encoded as two
4992 hex characters. Suck them all up, then supply them to the
4993 register cacheing/storage mechanism. */
4994
4995 p = rs->buf;
4996 for (i = 0; i < rsa->sizeof_g_packet; i++)
4997 {
4998 if (p[0] == 0 || p[1] == 0)
4999 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5000 internal_error (__FILE__, __LINE__,
5001 "unexpected end of 'g' packet reply");
5002
5003 if (p[0] == 'x' && p[1] == 'x')
5004 regs[i] = 0; /* 'x' */
5005 else
5006 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5007 p += 2;
5008 }
5009
5010 {
5011 int i;
5012 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5013 {
5014 struct packet_reg *r = &rsa->regs[i];
5015 if (r->in_g_packet)
5016 {
5017 if (r->offset * 2 >= strlen (rs->buf))
5018 /* This shouldn't happen - we adjusted in_g_packet above. */
5019 internal_error (__FILE__, __LINE__,
5020 "unexpected end of 'g' packet reply");
5021 else if (rs->buf[r->offset * 2] == 'x')
5022 {
5023 gdb_assert (r->offset * 2 < strlen (rs->buf));
5024 /* The register isn't available, mark it as such (at
5025 the same time setting the value to zero). */
5026 regcache_raw_supply (regcache, r->regnum, NULL);
5027 }
5028 else
5029 regcache_raw_supply (regcache, r->regnum,
5030 regs + r->offset);
5031 }
5032 }
5033 }
5034 }
5035
5036 static void
5037 fetch_registers_using_g (struct regcache *regcache)
5038 {
5039 send_g_packet ();
5040 process_g_packet (regcache);
5041 }
5042
5043 static void
5044 remote_fetch_registers (struct target_ops *ops,
5045 struct regcache *regcache, int regnum)
5046 {
5047 struct remote_state *rs = get_remote_state ();
5048 struct remote_arch_state *rsa = get_remote_arch_state ();
5049 int i;
5050
5051 set_general_thread (inferior_ptid);
5052
5053 if (regnum >= 0)
5054 {
5055 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5056 gdb_assert (reg != NULL);
5057
5058 /* If this register might be in the 'g' packet, try that first -
5059 we are likely to read more than one register. If this is the
5060 first 'g' packet, we might be overly optimistic about its
5061 contents, so fall back to 'p'. */
5062 if (reg->in_g_packet)
5063 {
5064 fetch_registers_using_g (regcache);
5065 if (reg->in_g_packet)
5066 return;
5067 }
5068
5069 if (fetch_register_using_p (regcache, reg))
5070 return;
5071
5072 /* This register is not available. */
5073 regcache_raw_supply (regcache, reg->regnum, NULL);
5074
5075 return;
5076 }
5077
5078 fetch_registers_using_g (regcache);
5079
5080 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5081 if (!rsa->regs[i].in_g_packet)
5082 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5083 {
5084 /* This register is not available. */
5085 regcache_raw_supply (regcache, i, NULL);
5086 }
5087 }
5088
5089 /* Prepare to store registers. Since we may send them all (using a
5090 'G' request), we have to read out the ones we don't want to change
5091 first. */
5092
5093 static void
5094 remote_prepare_to_store (struct regcache *regcache)
5095 {
5096 struct remote_arch_state *rsa = get_remote_arch_state ();
5097 int i;
5098 gdb_byte buf[MAX_REGISTER_SIZE];
5099
5100 /* Make sure the entire registers array is valid. */
5101 switch (remote_protocol_packets[PACKET_P].support)
5102 {
5103 case PACKET_DISABLE:
5104 case PACKET_SUPPORT_UNKNOWN:
5105 /* Make sure all the necessary registers are cached. */
5106 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5107 if (rsa->regs[i].in_g_packet)
5108 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5109 break;
5110 case PACKET_ENABLE:
5111 break;
5112 }
5113 }
5114
5115 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5116 packet was not recognized. */
5117
5118 static int
5119 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5120 {
5121 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5122 struct remote_state *rs = get_remote_state ();
5123 struct remote_arch_state *rsa = get_remote_arch_state ();
5124 /* Try storing a single register. */
5125 char *buf = rs->buf;
5126 gdb_byte regp[MAX_REGISTER_SIZE];
5127 char *p;
5128
5129 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5130 return 0;
5131
5132 if (reg->pnum == -1)
5133 return 0;
5134
5135 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5136 p = buf + strlen (buf);
5137 regcache_raw_collect (regcache, reg->regnum, regp);
5138 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5139 remote_send (&rs->buf, &rs->buf_size);
5140
5141 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5142 {
5143 case PACKET_OK:
5144 return 1;
5145 case PACKET_ERROR:
5146 error (_("Could not write register \"%s\""),
5147 gdbarch_register_name (gdbarch, reg->regnum));
5148 case PACKET_UNKNOWN:
5149 return 0;
5150 default:
5151 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5152 }
5153 }
5154
5155 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5156 contents of the register cache buffer. FIXME: ignores errors. */
5157
5158 static void
5159 store_registers_using_G (const struct regcache *regcache)
5160 {
5161 struct remote_state *rs = get_remote_state ();
5162 struct remote_arch_state *rsa = get_remote_arch_state ();
5163 gdb_byte *regs;
5164 char *p;
5165
5166 /* Extract all the registers in the regcache copying them into a
5167 local buffer. */
5168 {
5169 int i;
5170 regs = alloca (rsa->sizeof_g_packet);
5171 memset (regs, 0, rsa->sizeof_g_packet);
5172 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5173 {
5174 struct packet_reg *r = &rsa->regs[i];
5175 if (r->in_g_packet)
5176 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5177 }
5178 }
5179
5180 /* Command describes registers byte by byte,
5181 each byte encoded as two hex characters. */
5182 p = rs->buf;
5183 *p++ = 'G';
5184 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5185 updated. */
5186 bin2hex (regs, p, rsa->sizeof_g_packet);
5187 remote_send (&rs->buf, &rs->buf_size);
5188 }
5189
5190 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5191 of the register cache buffer. FIXME: ignores errors. */
5192
5193 static void
5194 remote_store_registers (struct target_ops *ops,
5195 struct regcache *regcache, int regnum)
5196 {
5197 struct remote_state *rs = get_remote_state ();
5198 struct remote_arch_state *rsa = get_remote_arch_state ();
5199 int i;
5200
5201 set_general_thread (inferior_ptid);
5202
5203 if (regnum >= 0)
5204 {
5205 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5206 gdb_assert (reg != NULL);
5207
5208 /* Always prefer to store registers using the 'P' packet if
5209 possible; we often change only a small number of registers.
5210 Sometimes we change a larger number; we'd need help from a
5211 higher layer to know to use 'G'. */
5212 if (store_register_using_P (regcache, reg))
5213 return;
5214
5215 /* For now, don't complain if we have no way to write the
5216 register. GDB loses track of unavailable registers too
5217 easily. Some day, this may be an error. We don't have
5218 any way to read the register, either... */
5219 if (!reg->in_g_packet)
5220 return;
5221
5222 store_registers_using_G (regcache);
5223 return;
5224 }
5225
5226 store_registers_using_G (regcache);
5227
5228 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5229 if (!rsa->regs[i].in_g_packet)
5230 if (!store_register_using_P (regcache, &rsa->regs[i]))
5231 /* See above for why we do not issue an error here. */
5232 continue;
5233 }
5234 \f
5235
5236 /* Return the number of hex digits in num. */
5237
5238 static int
5239 hexnumlen (ULONGEST num)
5240 {
5241 int i;
5242
5243 for (i = 0; num != 0; i++)
5244 num >>= 4;
5245
5246 return max (i, 1);
5247 }
5248
5249 /* Set BUF to the minimum number of hex digits representing NUM. */
5250
5251 static int
5252 hexnumstr (char *buf, ULONGEST num)
5253 {
5254 int len = hexnumlen (num);
5255 return hexnumnstr (buf, num, len);
5256 }
5257
5258
5259 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5260
5261 static int
5262 hexnumnstr (char *buf, ULONGEST num, int width)
5263 {
5264 int i;
5265
5266 buf[width] = '\0';
5267
5268 for (i = width - 1; i >= 0; i--)
5269 {
5270 buf[i] = "0123456789abcdef"[(num & 0xf)];
5271 num >>= 4;
5272 }
5273
5274 return width;
5275 }
5276
5277 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5278
5279 static CORE_ADDR
5280 remote_address_masked (CORE_ADDR addr)
5281 {
5282 int address_size = remote_address_size;
5283 /* If "remoteaddresssize" was not set, default to target address size. */
5284 if (!address_size)
5285 address_size = gdbarch_addr_bit (target_gdbarch);
5286
5287 if (address_size > 0
5288 && address_size < (sizeof (ULONGEST) * 8))
5289 {
5290 /* Only create a mask when that mask can safely be constructed
5291 in a ULONGEST variable. */
5292 ULONGEST mask = 1;
5293 mask = (mask << address_size) - 1;
5294 addr &= mask;
5295 }
5296 return addr;
5297 }
5298
5299 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5300 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5301 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5302 (which may be more than *OUT_LEN due to escape characters). The
5303 total number of bytes in the output buffer will be at most
5304 OUT_MAXLEN. */
5305
5306 static int
5307 remote_escape_output (const gdb_byte *buffer, int len,
5308 gdb_byte *out_buf, int *out_len,
5309 int out_maxlen)
5310 {
5311 int input_index, output_index;
5312
5313 output_index = 0;
5314 for (input_index = 0; input_index < len; input_index++)
5315 {
5316 gdb_byte b = buffer[input_index];
5317
5318 if (b == '$' || b == '#' || b == '}')
5319 {
5320 /* These must be escaped. */
5321 if (output_index + 2 > out_maxlen)
5322 break;
5323 out_buf[output_index++] = '}';
5324 out_buf[output_index++] = b ^ 0x20;
5325 }
5326 else
5327 {
5328 if (output_index + 1 > out_maxlen)
5329 break;
5330 out_buf[output_index++] = b;
5331 }
5332 }
5333
5334 *out_len = input_index;
5335 return output_index;
5336 }
5337
5338 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5339 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5340 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5341
5342 This function reverses remote_escape_output. It allows more
5343 escaped characters than that function does, in particular because
5344 '*' must be escaped to avoid the run-length encoding processing
5345 in reading packets. */
5346
5347 static int
5348 remote_unescape_input (const gdb_byte *buffer, int len,
5349 gdb_byte *out_buf, int out_maxlen)
5350 {
5351 int input_index, output_index;
5352 int escaped;
5353
5354 output_index = 0;
5355 escaped = 0;
5356 for (input_index = 0; input_index < len; input_index++)
5357 {
5358 gdb_byte b = buffer[input_index];
5359
5360 if (output_index + 1 > out_maxlen)
5361 {
5362 warning (_("Received too much data from remote target;"
5363 " ignoring overflow."));
5364 return output_index;
5365 }
5366
5367 if (escaped)
5368 {
5369 out_buf[output_index++] = b ^ 0x20;
5370 escaped = 0;
5371 }
5372 else if (b == '}')
5373 escaped = 1;
5374 else
5375 out_buf[output_index++] = b;
5376 }
5377
5378 if (escaped)
5379 error (_("Unmatched escape character in target response."));
5380
5381 return output_index;
5382 }
5383
5384 /* Determine whether the remote target supports binary downloading.
5385 This is accomplished by sending a no-op memory write of zero length
5386 to the target at the specified address. It does not suffice to send
5387 the whole packet, since many stubs strip the eighth bit and
5388 subsequently compute a wrong checksum, which causes real havoc with
5389 remote_write_bytes.
5390
5391 NOTE: This can still lose if the serial line is not eight-bit
5392 clean. In cases like this, the user should clear "remote
5393 X-packet". */
5394
5395 static void
5396 check_binary_download (CORE_ADDR addr)
5397 {
5398 struct remote_state *rs = get_remote_state ();
5399
5400 switch (remote_protocol_packets[PACKET_X].support)
5401 {
5402 case PACKET_DISABLE:
5403 break;
5404 case PACKET_ENABLE:
5405 break;
5406 case PACKET_SUPPORT_UNKNOWN:
5407 {
5408 char *p;
5409
5410 p = rs->buf;
5411 *p++ = 'X';
5412 p += hexnumstr (p, (ULONGEST) addr);
5413 *p++ = ',';
5414 p += hexnumstr (p, (ULONGEST) 0);
5415 *p++ = ':';
5416 *p = '\0';
5417
5418 putpkt_binary (rs->buf, (int) (p - rs->buf));
5419 getpkt (&rs->buf, &rs->buf_size, 0);
5420
5421 if (rs->buf[0] == '\0')
5422 {
5423 if (remote_debug)
5424 fprintf_unfiltered (gdb_stdlog,
5425 "binary downloading NOT suppported by target\n");
5426 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5427 }
5428 else
5429 {
5430 if (remote_debug)
5431 fprintf_unfiltered (gdb_stdlog,
5432 "binary downloading suppported by target\n");
5433 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5434 }
5435 break;
5436 }
5437 }
5438 }
5439
5440 /* Write memory data directly to the remote machine.
5441 This does not inform the data cache; the data cache uses this.
5442 HEADER is the starting part of the packet.
5443 MEMADDR is the address in the remote memory space.
5444 MYADDR is the address of the buffer in our space.
5445 LEN is the number of bytes.
5446 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5447 should send data as binary ('X'), or hex-encoded ('M').
5448
5449 The function creates packet of the form
5450 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5451
5452 where encoding of <DATA> is termined by PACKET_FORMAT.
5453
5454 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5455 are omitted.
5456
5457 Returns the number of bytes transferred, or 0 (setting errno) for
5458 error. Only transfer a single packet. */
5459
5460 static int
5461 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5462 const gdb_byte *myaddr, int len,
5463 char packet_format, int use_length)
5464 {
5465 struct remote_state *rs = get_remote_state ();
5466 char *p;
5467 char *plen = NULL;
5468 int plenlen = 0;
5469 int todo;
5470 int nr_bytes;
5471 int payload_size;
5472 int payload_length;
5473 int header_length;
5474
5475 if (packet_format != 'X' && packet_format != 'M')
5476 internal_error (__FILE__, __LINE__,
5477 "remote_write_bytes_aux: bad packet format");
5478
5479 if (len <= 0)
5480 return 0;
5481
5482 payload_size = get_memory_write_packet_size ();
5483
5484 /* The packet buffer will be large enough for the payload;
5485 get_memory_packet_size ensures this. */
5486 rs->buf[0] = '\0';
5487
5488 /* Compute the size of the actual payload by subtracting out the
5489 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5490 */
5491 payload_size -= strlen ("$,:#NN");
5492 if (!use_length)
5493 /* The comma won't be used. */
5494 payload_size += 1;
5495 header_length = strlen (header);
5496 payload_size -= header_length;
5497 payload_size -= hexnumlen (memaddr);
5498
5499 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5500
5501 strcat (rs->buf, header);
5502 p = rs->buf + strlen (header);
5503
5504 /* Compute a best guess of the number of bytes actually transfered. */
5505 if (packet_format == 'X')
5506 {
5507 /* Best guess at number of bytes that will fit. */
5508 todo = min (len, payload_size);
5509 if (use_length)
5510 payload_size -= hexnumlen (todo);
5511 todo = min (todo, payload_size);
5512 }
5513 else
5514 {
5515 /* Num bytes that will fit. */
5516 todo = min (len, payload_size / 2);
5517 if (use_length)
5518 payload_size -= hexnumlen (todo);
5519 todo = min (todo, payload_size / 2);
5520 }
5521
5522 if (todo <= 0)
5523 internal_error (__FILE__, __LINE__,
5524 _("minumum packet size too small to write data"));
5525
5526 /* If we already need another packet, then try to align the end
5527 of this packet to a useful boundary. */
5528 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5529 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5530
5531 /* Append "<memaddr>". */
5532 memaddr = remote_address_masked (memaddr);
5533 p += hexnumstr (p, (ULONGEST) memaddr);
5534
5535 if (use_length)
5536 {
5537 /* Append ",". */
5538 *p++ = ',';
5539
5540 /* Append <len>. Retain the location/size of <len>. It may need to
5541 be adjusted once the packet body has been created. */
5542 plen = p;
5543 plenlen = hexnumstr (p, (ULONGEST) todo);
5544 p += plenlen;
5545 }
5546
5547 /* Append ":". */
5548 *p++ = ':';
5549 *p = '\0';
5550
5551 /* Append the packet body. */
5552 if (packet_format == 'X')
5553 {
5554 /* Binary mode. Send target system values byte by byte, in
5555 increasing byte addresses. Only escape certain critical
5556 characters. */
5557 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5558 payload_size);
5559
5560 /* If not all TODO bytes fit, then we'll need another packet. Make
5561 a second try to keep the end of the packet aligned. Don't do
5562 this if the packet is tiny. */
5563 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5564 {
5565 int new_nr_bytes;
5566
5567 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5568 - memaddr);
5569 if (new_nr_bytes != nr_bytes)
5570 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5571 p, &nr_bytes,
5572 payload_size);
5573 }
5574
5575 p += payload_length;
5576 if (use_length && nr_bytes < todo)
5577 {
5578 /* Escape chars have filled up the buffer prematurely,
5579 and we have actually sent fewer bytes than planned.
5580 Fix-up the length field of the packet. Use the same
5581 number of characters as before. */
5582 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5583 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5584 }
5585 }
5586 else
5587 {
5588 /* Normal mode: Send target system values byte by byte, in
5589 increasing byte addresses. Each byte is encoded as a two hex
5590 value. */
5591 nr_bytes = bin2hex (myaddr, p, todo);
5592 p += 2 * nr_bytes;
5593 }
5594
5595 putpkt_binary (rs->buf, (int) (p - rs->buf));
5596 getpkt (&rs->buf, &rs->buf_size, 0);
5597
5598 if (rs->buf[0] == 'E')
5599 {
5600 /* There is no correspondance between what the remote protocol
5601 uses for errors and errno codes. We would like a cleaner way
5602 of representing errors (big enough to include errno codes,
5603 bfd_error codes, and others). But for now just return EIO. */
5604 errno = EIO;
5605 return 0;
5606 }
5607
5608 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5609 fewer bytes than we'd planned. */
5610 return nr_bytes;
5611 }
5612
5613 /* Write memory data directly to the remote machine.
5614 This does not inform the data cache; the data cache uses this.
5615 MEMADDR is the address in the remote memory space.
5616 MYADDR is the address of the buffer in our space.
5617 LEN is the number of bytes.
5618
5619 Returns number of bytes transferred, or 0 (setting errno) for
5620 error. Only transfer a single packet. */
5621
5622 int
5623 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5624 {
5625 char *packet_format = 0;
5626
5627 /* Check whether the target supports binary download. */
5628 check_binary_download (memaddr);
5629
5630 switch (remote_protocol_packets[PACKET_X].support)
5631 {
5632 case PACKET_ENABLE:
5633 packet_format = "X";
5634 break;
5635 case PACKET_DISABLE:
5636 packet_format = "M";
5637 break;
5638 case PACKET_SUPPORT_UNKNOWN:
5639 internal_error (__FILE__, __LINE__,
5640 _("remote_write_bytes: bad internal state"));
5641 default:
5642 internal_error (__FILE__, __LINE__, _("bad switch"));
5643 }
5644
5645 return remote_write_bytes_aux (packet_format,
5646 memaddr, myaddr, len, packet_format[0], 1);
5647 }
5648
5649 /* Read memory data directly from the remote machine.
5650 This does not use the data cache; the data cache uses this.
5651 MEMADDR is the address in the remote memory space.
5652 MYADDR is the address of the buffer in our space.
5653 LEN is the number of bytes.
5654
5655 Returns number of bytes transferred, or 0 for error. */
5656
5657 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5658 remote targets) shouldn't attempt to read the entire buffer.
5659 Instead it should read a single packet worth of data and then
5660 return the byte size of that packet to the caller. The caller (its
5661 caller and its callers caller ;-) already contains code for
5662 handling partial reads. */
5663
5664 int
5665 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5666 {
5667 struct remote_state *rs = get_remote_state ();
5668 int max_buf_size; /* Max size of packet output buffer. */
5669 int origlen;
5670
5671 if (len <= 0)
5672 return 0;
5673
5674 max_buf_size = get_memory_read_packet_size ();
5675 /* The packet buffer will be large enough for the payload;
5676 get_memory_packet_size ensures this. */
5677
5678 origlen = len;
5679 while (len > 0)
5680 {
5681 char *p;
5682 int todo;
5683 int i;
5684
5685 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5686
5687 /* construct "m"<memaddr>","<len>" */
5688 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5689 memaddr = remote_address_masked (memaddr);
5690 p = rs->buf;
5691 *p++ = 'm';
5692 p += hexnumstr (p, (ULONGEST) memaddr);
5693 *p++ = ',';
5694 p += hexnumstr (p, (ULONGEST) todo);
5695 *p = '\0';
5696
5697 putpkt (rs->buf);
5698 getpkt (&rs->buf, &rs->buf_size, 0);
5699
5700 if (rs->buf[0] == 'E'
5701 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5702 && rs->buf[3] == '\0')
5703 {
5704 /* There is no correspondance between what the remote
5705 protocol uses for errors and errno codes. We would like
5706 a cleaner way of representing errors (big enough to
5707 include errno codes, bfd_error codes, and others). But
5708 for now just return EIO. */
5709 errno = EIO;
5710 return 0;
5711 }
5712
5713 /* Reply describes memory byte by byte,
5714 each byte encoded as two hex characters. */
5715
5716 p = rs->buf;
5717 if ((i = hex2bin (p, myaddr, todo)) < todo)
5718 {
5719 /* Reply is short. This means that we were able to read
5720 only part of what we wanted to. */
5721 return i + (origlen - len);
5722 }
5723 myaddr += todo;
5724 memaddr += todo;
5725 len -= todo;
5726 }
5727 return origlen;
5728 }
5729 \f
5730
5731 /* Remote notification handler. */
5732
5733 static void
5734 handle_notification (char *buf, size_t length)
5735 {
5736 if (strncmp (buf, "Stop:", 5) == 0)
5737 {
5738 if (pending_stop_reply)
5739 /* We've already parsed the in-flight stop-reply, but the stub
5740 for some reason thought we didn't, possibly due to timeout
5741 on its side. Just ignore it. */
5742 ;
5743 else
5744 {
5745 struct cleanup *old_chain;
5746 struct stop_reply *reply = stop_reply_xmalloc ();
5747 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5748
5749 remote_parse_stop_reply (buf + 5, reply);
5750
5751 discard_cleanups (old_chain);
5752
5753 /* Be careful to only set it after parsing, since an error
5754 may be thrown then. */
5755 pending_stop_reply = reply;
5756
5757 /* Notify the event loop there's a stop reply to acknowledge
5758 and that there may be more events to fetch. */
5759 mark_async_event_handler (remote_async_get_pending_events_token);
5760 }
5761 }
5762 else
5763 /* We ignore notifications we don't recognize, for compatibility
5764 with newer stubs. */
5765 ;
5766 }
5767
5768 \f
5769 /* Read or write LEN bytes from inferior memory at MEMADDR,
5770 transferring to or from debugger address BUFFER. Write to inferior
5771 if SHOULD_WRITE is nonzero. Returns length of data written or
5772 read; 0 for error. TARGET is unused. */
5773
5774 static int
5775 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5776 int should_write, struct mem_attrib *attrib,
5777 struct target_ops *target)
5778 {
5779 int res;
5780
5781 set_general_thread (inferior_ptid);
5782
5783 if (should_write)
5784 res = remote_write_bytes (mem_addr, buffer, mem_len);
5785 else
5786 res = remote_read_bytes (mem_addr, buffer, mem_len);
5787
5788 return res;
5789 }
5790
5791 /* Sends a packet with content determined by the printf format string
5792 FORMAT and the remaining arguments, then gets the reply. Returns
5793 whether the packet was a success, a failure, or unknown. */
5794
5795 static enum packet_result
5796 remote_send_printf (const char *format, ...)
5797 {
5798 struct remote_state *rs = get_remote_state ();
5799 int max_size = get_remote_packet_size ();
5800
5801 va_list ap;
5802 va_start (ap, format);
5803
5804 rs->buf[0] = '\0';
5805 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5806 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5807
5808 if (putpkt (rs->buf) < 0)
5809 error (_("Communication problem with target."));
5810
5811 rs->buf[0] = '\0';
5812 getpkt (&rs->buf, &rs->buf_size, 0);
5813
5814 return packet_check_result (rs->buf);
5815 }
5816
5817 static void
5818 restore_remote_timeout (void *p)
5819 {
5820 int value = *(int *)p;
5821 remote_timeout = value;
5822 }
5823
5824 /* Flash writing can take quite some time. We'll set
5825 effectively infinite timeout for flash operations.
5826 In future, we'll need to decide on a better approach. */
5827 static const int remote_flash_timeout = 1000;
5828
5829 static void
5830 remote_flash_erase (struct target_ops *ops,
5831 ULONGEST address, LONGEST length)
5832 {
5833 int saved_remote_timeout = remote_timeout;
5834 enum packet_result ret;
5835
5836 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5837 &saved_remote_timeout);
5838 remote_timeout = remote_flash_timeout;
5839
5840 ret = remote_send_printf ("vFlashErase:%s,%s",
5841 paddr (address),
5842 phex (length, 4));
5843 switch (ret)
5844 {
5845 case PACKET_UNKNOWN:
5846 error (_("Remote target does not support flash erase"));
5847 case PACKET_ERROR:
5848 error (_("Error erasing flash with vFlashErase packet"));
5849 default:
5850 break;
5851 }
5852
5853 do_cleanups (back_to);
5854 }
5855
5856 static LONGEST
5857 remote_flash_write (struct target_ops *ops,
5858 ULONGEST address, LONGEST length,
5859 const gdb_byte *data)
5860 {
5861 int saved_remote_timeout = remote_timeout;
5862 int ret;
5863 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5864 &saved_remote_timeout);
5865
5866 remote_timeout = remote_flash_timeout;
5867 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5868 do_cleanups (back_to);
5869
5870 return ret;
5871 }
5872
5873 static void
5874 remote_flash_done (struct target_ops *ops)
5875 {
5876 int saved_remote_timeout = remote_timeout;
5877 int ret;
5878 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5879 &saved_remote_timeout);
5880
5881 remote_timeout = remote_flash_timeout;
5882 ret = remote_send_printf ("vFlashDone");
5883 do_cleanups (back_to);
5884
5885 switch (ret)
5886 {
5887 case PACKET_UNKNOWN:
5888 error (_("Remote target does not support vFlashDone"));
5889 case PACKET_ERROR:
5890 error (_("Error finishing flash operation"));
5891 default:
5892 break;
5893 }
5894 }
5895
5896 static void
5897 remote_files_info (struct target_ops *ignore)
5898 {
5899 puts_filtered ("Debugging a target over a serial line.\n");
5900 }
5901 \f
5902 /* Stuff for dealing with the packets which are part of this protocol.
5903 See comment at top of file for details. */
5904
5905 /* Read a single character from the remote end. */
5906
5907 static int
5908 readchar (int timeout)
5909 {
5910 int ch;
5911
5912 ch = serial_readchar (remote_desc, timeout);
5913
5914 if (ch >= 0)
5915 return ch;
5916
5917 switch ((enum serial_rc) ch)
5918 {
5919 case SERIAL_EOF:
5920 pop_target ();
5921 error (_("Remote connection closed"));
5922 /* no return */
5923 case SERIAL_ERROR:
5924 perror_with_name (_("Remote communication error"));
5925 /* no return */
5926 case SERIAL_TIMEOUT:
5927 break;
5928 }
5929 return ch;
5930 }
5931
5932 /* Send the command in *BUF to the remote machine, and read the reply
5933 into *BUF. Report an error if we get an error reply. Resize
5934 *BUF using xrealloc if necessary to hold the result, and update
5935 *SIZEOF_BUF. */
5936
5937 static void
5938 remote_send (char **buf,
5939 long *sizeof_buf)
5940 {
5941 putpkt (*buf);
5942 getpkt (buf, sizeof_buf, 0);
5943
5944 if ((*buf)[0] == 'E')
5945 error (_("Remote failure reply: %s"), *buf);
5946 }
5947
5948 /* Return a pointer to an xmalloc'ed string representing an escaped
5949 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5950 etc. The caller is responsible for releasing the returned
5951 memory. */
5952
5953 static char *
5954 escape_buffer (const char *buf, int n)
5955 {
5956 struct cleanup *old_chain;
5957 struct ui_file *stb;
5958 char *str;
5959 long length;
5960
5961 stb = mem_fileopen ();
5962 old_chain = make_cleanup_ui_file_delete (stb);
5963
5964 fputstrn_unfiltered (buf, n, 0, stb);
5965 str = ui_file_xstrdup (stb, &length);
5966 do_cleanups (old_chain);
5967 return str;
5968 }
5969
5970 /* Display a null-terminated packet on stdout, for debugging, using C
5971 string notation. */
5972
5973 static void
5974 print_packet (char *buf)
5975 {
5976 puts_filtered ("\"");
5977 fputstr_filtered (buf, '"', gdb_stdout);
5978 puts_filtered ("\"");
5979 }
5980
5981 int
5982 putpkt (char *buf)
5983 {
5984 return putpkt_binary (buf, strlen (buf));
5985 }
5986
5987 /* Send a packet to the remote machine, with error checking. The data
5988 of the packet is in BUF. The string in BUF can be at most
5989 get_remote_packet_size () - 5 to account for the $, # and checksum,
5990 and for a possible /0 if we are debugging (remote_debug) and want
5991 to print the sent packet as a string. */
5992
5993 static int
5994 putpkt_binary (char *buf, int cnt)
5995 {
5996 struct remote_state *rs = get_remote_state ();
5997 int i;
5998 unsigned char csum = 0;
5999 char *buf2 = alloca (cnt + 6);
6000
6001 int ch;
6002 int tcount = 0;
6003 char *p;
6004
6005 /* Catch cases like trying to read memory or listing threads while
6006 we're waiting for a stop reply. The remote server wouldn't be
6007 ready to handle this request, so we'd hang and timeout. We don't
6008 have to worry about this in synchronous mode, because in that
6009 case it's not possible to issue a command while the target is
6010 running. This is not a problem in non-stop mode, because in that
6011 case, the stub is always ready to process serial input. */
6012 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6013 error (_("Cannot execute this command while the target is running."));
6014
6015 /* We're sending out a new packet. Make sure we don't look at a
6016 stale cached response. */
6017 rs->cached_wait_status = 0;
6018
6019 /* Copy the packet into buffer BUF2, encapsulating it
6020 and giving it a checksum. */
6021
6022 p = buf2;
6023 *p++ = '$';
6024
6025 for (i = 0; i < cnt; i++)
6026 {
6027 csum += buf[i];
6028 *p++ = buf[i];
6029 }
6030 *p++ = '#';
6031 *p++ = tohex ((csum >> 4) & 0xf);
6032 *p++ = tohex (csum & 0xf);
6033
6034 /* Send it over and over until we get a positive ack. */
6035
6036 while (1)
6037 {
6038 int started_error_output = 0;
6039
6040 if (remote_debug)
6041 {
6042 struct cleanup *old_chain;
6043 char *str;
6044
6045 *p = '\0';
6046 str = escape_buffer (buf2, p - buf2);
6047 old_chain = make_cleanup (xfree, str);
6048 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6049 gdb_flush (gdb_stdlog);
6050 do_cleanups (old_chain);
6051 }
6052 if (serial_write (remote_desc, buf2, p - buf2))
6053 perror_with_name (_("putpkt: write failed"));
6054
6055 /* If this is a no acks version of the remote protocol, send the
6056 packet and move on. */
6057 if (rs->noack_mode)
6058 break;
6059
6060 /* Read until either a timeout occurs (-2) or '+' is read.
6061 Handle any notification that arrives in the mean time. */
6062 while (1)
6063 {
6064 ch = readchar (remote_timeout);
6065
6066 if (remote_debug)
6067 {
6068 switch (ch)
6069 {
6070 case '+':
6071 case '-':
6072 case SERIAL_TIMEOUT:
6073 case '$':
6074 case '%':
6075 if (started_error_output)
6076 {
6077 putchar_unfiltered ('\n');
6078 started_error_output = 0;
6079 }
6080 }
6081 }
6082
6083 switch (ch)
6084 {
6085 case '+':
6086 if (remote_debug)
6087 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6088 return 1;
6089 case '-':
6090 if (remote_debug)
6091 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6092 case SERIAL_TIMEOUT:
6093 tcount++;
6094 if (tcount > 3)
6095 return 0;
6096 break; /* Retransmit buffer. */
6097 case '$':
6098 {
6099 if (remote_debug)
6100 fprintf_unfiltered (gdb_stdlog,
6101 "Packet instead of Ack, ignoring it\n");
6102 /* It's probably an old response sent because an ACK
6103 was lost. Gobble up the packet and ack it so it
6104 doesn't get retransmitted when we resend this
6105 packet. */
6106 skip_frame ();
6107 serial_write (remote_desc, "+", 1);
6108 continue; /* Now, go look for +. */
6109 }
6110
6111 case '%':
6112 {
6113 int val;
6114
6115 /* If we got a notification, handle it, and go back to looking
6116 for an ack. */
6117 /* We've found the start of a notification. Now
6118 collect the data. */
6119 val = read_frame (&rs->buf, &rs->buf_size);
6120 if (val >= 0)
6121 {
6122 if (remote_debug)
6123 {
6124 struct cleanup *old_chain;
6125 char *str;
6126
6127 str = escape_buffer (rs->buf, val);
6128 old_chain = make_cleanup (xfree, str);
6129 fprintf_unfiltered (gdb_stdlog,
6130 " Notification received: %s\n",
6131 str);
6132 do_cleanups (old_chain);
6133 }
6134 handle_notification (rs->buf, val);
6135 /* We're in sync now, rewait for the ack. */
6136 tcount = 0;
6137 }
6138 else
6139 {
6140 if (remote_debug)
6141 {
6142 if (!started_error_output)
6143 {
6144 started_error_output = 1;
6145 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6146 }
6147 fputc_unfiltered (ch & 0177, gdb_stdlog);
6148 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6149 }
6150 }
6151 continue;
6152 }
6153 /* fall-through */
6154 default:
6155 if (remote_debug)
6156 {
6157 if (!started_error_output)
6158 {
6159 started_error_output = 1;
6160 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6161 }
6162 fputc_unfiltered (ch & 0177, gdb_stdlog);
6163 }
6164 continue;
6165 }
6166 break; /* Here to retransmit. */
6167 }
6168
6169 #if 0
6170 /* This is wrong. If doing a long backtrace, the user should be
6171 able to get out next time we call QUIT, without anything as
6172 violent as interrupt_query. If we want to provide a way out of
6173 here without getting to the next QUIT, it should be based on
6174 hitting ^C twice as in remote_wait. */
6175 if (quit_flag)
6176 {
6177 quit_flag = 0;
6178 interrupt_query ();
6179 }
6180 #endif
6181 }
6182 return 0;
6183 }
6184
6185 /* Come here after finding the start of a frame when we expected an
6186 ack. Do our best to discard the rest of this packet. */
6187
6188 static void
6189 skip_frame (void)
6190 {
6191 int c;
6192
6193 while (1)
6194 {
6195 c = readchar (remote_timeout);
6196 switch (c)
6197 {
6198 case SERIAL_TIMEOUT:
6199 /* Nothing we can do. */
6200 return;
6201 case '#':
6202 /* Discard the two bytes of checksum and stop. */
6203 c = readchar (remote_timeout);
6204 if (c >= 0)
6205 c = readchar (remote_timeout);
6206
6207 return;
6208 case '*': /* Run length encoding. */
6209 /* Discard the repeat count. */
6210 c = readchar (remote_timeout);
6211 if (c < 0)
6212 return;
6213 break;
6214 default:
6215 /* A regular character. */
6216 break;
6217 }
6218 }
6219 }
6220
6221 /* Come here after finding the start of the frame. Collect the rest
6222 into *BUF, verifying the checksum, length, and handling run-length
6223 compression. NUL terminate the buffer. If there is not enough room,
6224 expand *BUF using xrealloc.
6225
6226 Returns -1 on error, number of characters in buffer (ignoring the
6227 trailing NULL) on success. (could be extended to return one of the
6228 SERIAL status indications). */
6229
6230 static long
6231 read_frame (char **buf_p,
6232 long *sizeof_buf)
6233 {
6234 unsigned char csum;
6235 long bc;
6236 int c;
6237 char *buf = *buf_p;
6238 struct remote_state *rs = get_remote_state ();
6239
6240 csum = 0;
6241 bc = 0;
6242
6243 while (1)
6244 {
6245 c = readchar (remote_timeout);
6246 switch (c)
6247 {
6248 case SERIAL_TIMEOUT:
6249 if (remote_debug)
6250 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6251 return -1;
6252 case '$':
6253 if (remote_debug)
6254 fputs_filtered ("Saw new packet start in middle of old one\n",
6255 gdb_stdlog);
6256 return -1; /* Start a new packet, count retries. */
6257 case '#':
6258 {
6259 unsigned char pktcsum;
6260 int check_0 = 0;
6261 int check_1 = 0;
6262
6263 buf[bc] = '\0';
6264
6265 check_0 = readchar (remote_timeout);
6266 if (check_0 >= 0)
6267 check_1 = readchar (remote_timeout);
6268
6269 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6270 {
6271 if (remote_debug)
6272 fputs_filtered ("Timeout in checksum, retrying\n",
6273 gdb_stdlog);
6274 return -1;
6275 }
6276 else if (check_0 < 0 || check_1 < 0)
6277 {
6278 if (remote_debug)
6279 fputs_filtered ("Communication error in checksum\n",
6280 gdb_stdlog);
6281 return -1;
6282 }
6283
6284 /* Don't recompute the checksum; with no ack packets we
6285 don't have any way to indicate a packet retransmission
6286 is necessary. */
6287 if (rs->noack_mode)
6288 return bc;
6289
6290 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6291 if (csum == pktcsum)
6292 return bc;
6293
6294 if (remote_debug)
6295 {
6296 struct cleanup *old_chain;
6297 char *str;
6298
6299 str = escape_buffer (buf, bc);
6300 old_chain = make_cleanup (xfree, str);
6301 fprintf_unfiltered (gdb_stdlog,
6302 "\
6303 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6304 pktcsum, csum, str);
6305 do_cleanups (old_chain);
6306 }
6307 /* Number of characters in buffer ignoring trailing
6308 NULL. */
6309 return -1;
6310 }
6311 case '*': /* Run length encoding. */
6312 {
6313 int repeat;
6314 csum += c;
6315
6316 c = readchar (remote_timeout);
6317 csum += c;
6318 repeat = c - ' ' + 3; /* Compute repeat count. */
6319
6320 /* The character before ``*'' is repeated. */
6321
6322 if (repeat > 0 && repeat <= 255 && bc > 0)
6323 {
6324 if (bc + repeat - 1 >= *sizeof_buf - 1)
6325 {
6326 /* Make some more room in the buffer. */
6327 *sizeof_buf += repeat;
6328 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6329 buf = *buf_p;
6330 }
6331
6332 memset (&buf[bc], buf[bc - 1], repeat);
6333 bc += repeat;
6334 continue;
6335 }
6336
6337 buf[bc] = '\0';
6338 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6339 return -1;
6340 }
6341 default:
6342 if (bc >= *sizeof_buf - 1)
6343 {
6344 /* Make some more room in the buffer. */
6345 *sizeof_buf *= 2;
6346 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6347 buf = *buf_p;
6348 }
6349
6350 buf[bc++] = c;
6351 csum += c;
6352 continue;
6353 }
6354 }
6355 }
6356
6357 /* Read a packet from the remote machine, with error checking, and
6358 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6359 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6360 rather than timing out; this is used (in synchronous mode) to wait
6361 for a target that is is executing user code to stop. */
6362 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6363 don't have to change all the calls to getpkt to deal with the
6364 return value, because at the moment I don't know what the right
6365 thing to do it for those. */
6366 void
6367 getpkt (char **buf,
6368 long *sizeof_buf,
6369 int forever)
6370 {
6371 int timed_out;
6372
6373 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6374 }
6375
6376
6377 /* Read a packet from the remote machine, with error checking, and
6378 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6379 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6380 rather than timing out; this is used (in synchronous mode) to wait
6381 for a target that is is executing user code to stop. If FOREVER ==
6382 0, this function is allowed to time out gracefully and return an
6383 indication of this to the caller. Otherwise return the number of
6384 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6385 enough reason to return to the caller. */
6386
6387 static int
6388 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6389 int expecting_notif)
6390 {
6391 struct remote_state *rs = get_remote_state ();
6392 int c;
6393 int tries;
6394 int timeout;
6395 int val;
6396
6397 /* We're reading a new response. Make sure we don't look at a
6398 previously cached response. */
6399 rs->cached_wait_status = 0;
6400
6401 strcpy (*buf, "timeout");
6402
6403 if (forever)
6404 timeout = watchdog > 0 ? watchdog : -1;
6405 else if (expecting_notif)
6406 timeout = 0; /* There should already be a char in the buffer. If
6407 not, bail out. */
6408 else
6409 timeout = remote_timeout;
6410
6411 #define MAX_TRIES 3
6412
6413 /* Process any number of notifications, and then return when
6414 we get a packet. */
6415 for (;;)
6416 {
6417 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6418 times. */
6419 for (tries = 1; tries <= MAX_TRIES; tries++)
6420 {
6421 /* This can loop forever if the remote side sends us
6422 characters continuously, but if it pauses, we'll get
6423 SERIAL_TIMEOUT from readchar because of timeout. Then
6424 we'll count that as a retry.
6425
6426 Note that even when forever is set, we will only wait
6427 forever prior to the start of a packet. After that, we
6428 expect characters to arrive at a brisk pace. They should
6429 show up within remote_timeout intervals. */
6430 do
6431 c = readchar (timeout);
6432 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6433
6434 if (c == SERIAL_TIMEOUT)
6435 {
6436 if (expecting_notif)
6437 return -1; /* Don't complain, it's normal to not get
6438 anything in this case. */
6439
6440 if (forever) /* Watchdog went off? Kill the target. */
6441 {
6442 QUIT;
6443 pop_target ();
6444 error (_("Watchdog timeout has expired. Target detached."));
6445 }
6446 if (remote_debug)
6447 fputs_filtered ("Timed out.\n", gdb_stdlog);
6448 }
6449 else
6450 {
6451 /* We've found the start of a packet or notification.
6452 Now collect the data. */
6453 val = read_frame (buf, sizeof_buf);
6454 if (val >= 0)
6455 break;
6456 }
6457
6458 serial_write (remote_desc, "-", 1);
6459 }
6460
6461 if (tries > MAX_TRIES)
6462 {
6463 /* We have tried hard enough, and just can't receive the
6464 packet/notification. Give up. */
6465 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6466
6467 /* Skip the ack char if we're in no-ack mode. */
6468 if (!rs->noack_mode)
6469 serial_write (remote_desc, "+", 1);
6470 return -1;
6471 }
6472
6473 /* If we got an ordinary packet, return that to our caller. */
6474 if (c == '$')
6475 {
6476 if (remote_debug)
6477 {
6478 struct cleanup *old_chain;
6479 char *str;
6480
6481 str = escape_buffer (*buf, val);
6482 old_chain = make_cleanup (xfree, str);
6483 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6484 do_cleanups (old_chain);
6485 }
6486
6487 /* Skip the ack char if we're in no-ack mode. */
6488 if (!rs->noack_mode)
6489 serial_write (remote_desc, "+", 1);
6490 return val;
6491 }
6492
6493 /* If we got a notification, handle it, and go back to looking
6494 for a packet. */
6495 else
6496 {
6497 gdb_assert (c == '%');
6498
6499 if (remote_debug)
6500 {
6501 struct cleanup *old_chain;
6502 char *str;
6503
6504 str = escape_buffer (*buf, val);
6505 old_chain = make_cleanup (xfree, str);
6506 fprintf_unfiltered (gdb_stdlog,
6507 " Notification received: %s\n",
6508 str);
6509 do_cleanups (old_chain);
6510 }
6511
6512 handle_notification (*buf, val);
6513
6514 /* Notifications require no acknowledgement. */
6515
6516 if (expecting_notif)
6517 return -1;
6518 }
6519 }
6520 }
6521
6522 static int
6523 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6524 {
6525 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6526 }
6527
6528 static int
6529 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6530 {
6531 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6532 }
6533
6534 \f
6535 static void
6536 remote_kill (struct target_ops *ops)
6537 {
6538 /* Use catch_errors so the user can quit from gdb even when we
6539 aren't on speaking terms with the remote system. */
6540 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6541
6542 /* Don't wait for it to die. I'm not really sure it matters whether
6543 we do or not. For the existing stubs, kill is a noop. */
6544 target_mourn_inferior ();
6545 }
6546
6547 static int
6548 remote_vkill (int pid, struct remote_state *rs)
6549 {
6550 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6551 return -1;
6552
6553 /* Tell the remote target to detach. */
6554 sprintf (rs->buf, "vKill;%x", pid);
6555 putpkt (rs->buf);
6556 getpkt (&rs->buf, &rs->buf_size, 0);
6557
6558 if (packet_ok (rs->buf,
6559 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6560 return 0;
6561 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6562 return -1;
6563 else
6564 return 1;
6565 }
6566
6567 static void
6568 extended_remote_kill (struct target_ops *ops)
6569 {
6570 int res;
6571 int pid = ptid_get_pid (inferior_ptid);
6572 struct remote_state *rs = get_remote_state ();
6573
6574 res = remote_vkill (pid, rs);
6575 if (res == -1 && !remote_multi_process_p (rs))
6576 {
6577 /* Don't try 'k' on a multi-process aware stub -- it has no way
6578 to specify the pid. */
6579
6580 putpkt ("k");
6581 #if 0
6582 getpkt (&rs->buf, &rs->buf_size, 0);
6583 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6584 res = 1;
6585 #else
6586 /* Don't wait for it to die. I'm not really sure it matters whether
6587 we do or not. For the existing stubs, kill is a noop. */
6588 res = 0;
6589 #endif
6590 }
6591
6592 if (res != 0)
6593 error (_("Can't kill process"));
6594
6595 target_mourn_inferior ();
6596 }
6597
6598 static void
6599 remote_mourn (struct target_ops *ops)
6600 {
6601 remote_mourn_1 (ops);
6602 }
6603
6604 /* Worker function for remote_mourn. */
6605 static void
6606 remote_mourn_1 (struct target_ops *target)
6607 {
6608 unpush_target (target);
6609
6610 /* remote_close takes care of doing most of the clean up. */
6611 generic_mourn_inferior ();
6612 }
6613
6614 static void
6615 extended_remote_mourn_1 (struct target_ops *target)
6616 {
6617 struct remote_state *rs = get_remote_state ();
6618
6619 /* In case we got here due to an error, but we're going to stay
6620 connected. */
6621 rs->waiting_for_stop_reply = 0;
6622
6623 /* We're no longer interested in these events. */
6624 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6625
6626 /* If the current general thread belonged to the process we just
6627 detached from or has exited, the remote side current general
6628 thread becomes undefined. Considering a case like this:
6629
6630 - We just got here due to a detach.
6631 - The process that we're detaching from happens to immediately
6632 report a global breakpoint being hit in non-stop mode, in the
6633 same thread we had selected before.
6634 - GDB attaches to this process again.
6635 - This event happens to be the next event we handle.
6636
6637 GDB would consider that the current general thread didn't need to
6638 be set on the stub side (with Hg), since for all it knew,
6639 GENERAL_THREAD hadn't changed.
6640
6641 Notice that although in all-stop mode, the remote server always
6642 sets the current thread to the thread reporting the stop event,
6643 that doesn't happen in non-stop mode; in non-stop, the stub *must
6644 not* change the current thread when reporting a breakpoint hit,
6645 due to the decoupling of event reporting and event handling.
6646
6647 To keep things simple, we always invalidate our notion of the
6648 current thread. */
6649 record_currthread (minus_one_ptid);
6650
6651 /* Unlike "target remote", we do not want to unpush the target; then
6652 the next time the user says "run", we won't be connected. */
6653
6654 /* Call common code to mark the inferior as not running. */
6655 generic_mourn_inferior ();
6656
6657 if (!have_inferiors ())
6658 {
6659 if (!remote_multi_process_p (rs))
6660 {
6661 /* Check whether the target is running now - some remote stubs
6662 automatically restart after kill. */
6663 putpkt ("?");
6664 getpkt (&rs->buf, &rs->buf_size, 0);
6665
6666 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6667 {
6668 /* Assume that the target has been restarted. Set inferior_ptid
6669 so that bits of core GDB realizes there's something here, e.g.,
6670 so that the user can say "kill" again. */
6671 inferior_ptid = magic_null_ptid;
6672 }
6673 else
6674 {
6675 /* Mark this (still pushed) target as not executable until we
6676 restart it. */
6677 target_mark_exited (target);
6678 }
6679 }
6680 else
6681 /* Always remove execution if this was the last process. */
6682 target_mark_exited (target);
6683 }
6684 }
6685
6686 static void
6687 extended_remote_mourn (struct target_ops *ops)
6688 {
6689 extended_remote_mourn_1 (ops);
6690 }
6691
6692 static int
6693 extended_remote_run (char *args)
6694 {
6695 struct remote_state *rs = get_remote_state ();
6696 char *p;
6697 int len;
6698
6699 /* If the user has disabled vRun support, or we have detected that
6700 support is not available, do not try it. */
6701 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6702 return -1;
6703
6704 strcpy (rs->buf, "vRun;");
6705 len = strlen (rs->buf);
6706
6707 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6708 error (_("Remote file name too long for run packet"));
6709 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6710
6711 gdb_assert (args != NULL);
6712 if (*args)
6713 {
6714 struct cleanup *back_to;
6715 int i;
6716 char **argv;
6717
6718 argv = gdb_buildargv (args);
6719 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6720 for (i = 0; argv[i] != NULL; i++)
6721 {
6722 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6723 error (_("Argument list too long for run packet"));
6724 rs->buf[len++] = ';';
6725 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6726 }
6727 do_cleanups (back_to);
6728 }
6729
6730 rs->buf[len++] = '\0';
6731
6732 putpkt (rs->buf);
6733 getpkt (&rs->buf, &rs->buf_size, 0);
6734
6735 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6736 {
6737 /* We have a wait response; we don't need it, though. All is well. */
6738 return 0;
6739 }
6740 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6741 /* It wasn't disabled before, but it is now. */
6742 return -1;
6743 else
6744 {
6745 if (remote_exec_file[0] == '\0')
6746 error (_("Running the default executable on the remote target failed; "
6747 "try \"set remote exec-file\"?"));
6748 else
6749 error (_("Running \"%s\" on the remote target failed"),
6750 remote_exec_file);
6751 }
6752 }
6753
6754 /* In the extended protocol we want to be able to do things like
6755 "run" and have them basically work as expected. So we need
6756 a special create_inferior function. We support changing the
6757 executable file and the command line arguments, but not the
6758 environment. */
6759
6760 static void
6761 extended_remote_create_inferior_1 (char *exec_file, char *args,
6762 char **env, int from_tty)
6763 {
6764 /* If running asynchronously, register the target file descriptor
6765 with the event loop. */
6766 if (target_can_async_p ())
6767 target_async (inferior_event_handler, 0);
6768
6769 /* Now restart the remote server. */
6770 if (extended_remote_run (args) == -1)
6771 {
6772 /* vRun was not supported. Fail if we need it to do what the
6773 user requested. */
6774 if (remote_exec_file[0])
6775 error (_("Remote target does not support \"set remote exec-file\""));
6776 if (args[0])
6777 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6778
6779 /* Fall back to "R". */
6780 extended_remote_restart ();
6781 }
6782
6783 /* Clean up from the last time we ran, before we mark the target
6784 running again. This will mark breakpoints uninserted, and
6785 get_offsets may insert breakpoints. */
6786 init_thread_list ();
6787 init_wait_for_inferior ();
6788
6789 /* Now mark the inferior as running before we do anything else. */
6790 inferior_ptid = magic_null_ptid;
6791
6792 /* Now, if we have thread information, update inferior_ptid. */
6793 inferior_ptid = remote_current_thread (inferior_ptid);
6794
6795 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6796 add_thread_silent (inferior_ptid);
6797
6798 /* Get updated offsets, if the stub uses qOffsets. */
6799 get_offsets ();
6800 }
6801
6802 static void
6803 extended_remote_create_inferior (struct target_ops *ops,
6804 char *exec_file, char *args,
6805 char **env, int from_tty)
6806 {
6807 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6808 }
6809 \f
6810
6811 /* Insert a breakpoint. On targets that have software breakpoint
6812 support, we ask the remote target to do the work; on targets
6813 which don't, we insert a traditional memory breakpoint. */
6814
6815 static int
6816 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6817 {
6818 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6819 If it succeeds, then set the support to PACKET_ENABLE. If it
6820 fails, and the user has explicitly requested the Z support then
6821 report an error, otherwise, mark it disabled and go on. */
6822
6823 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6824 {
6825 CORE_ADDR addr = bp_tgt->placed_address;
6826 struct remote_state *rs;
6827 char *p;
6828 int bpsize;
6829
6830 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6831
6832 rs = get_remote_state ();
6833 p = rs->buf;
6834
6835 *(p++) = 'Z';
6836 *(p++) = '0';
6837 *(p++) = ',';
6838 addr = (ULONGEST) remote_address_masked (addr);
6839 p += hexnumstr (p, addr);
6840 sprintf (p, ",%d", bpsize);
6841
6842 putpkt (rs->buf);
6843 getpkt (&rs->buf, &rs->buf_size, 0);
6844
6845 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6846 {
6847 case PACKET_ERROR:
6848 return -1;
6849 case PACKET_OK:
6850 bp_tgt->placed_address = addr;
6851 bp_tgt->placed_size = bpsize;
6852 return 0;
6853 case PACKET_UNKNOWN:
6854 break;
6855 }
6856 }
6857
6858 return memory_insert_breakpoint (bp_tgt);
6859 }
6860
6861 static int
6862 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6863 {
6864 CORE_ADDR addr = bp_tgt->placed_address;
6865 struct remote_state *rs = get_remote_state ();
6866 int bp_size;
6867
6868 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6869 {
6870 char *p = rs->buf;
6871
6872 *(p++) = 'z';
6873 *(p++) = '0';
6874 *(p++) = ',';
6875
6876 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6877 p += hexnumstr (p, addr);
6878 sprintf (p, ",%d", bp_tgt->placed_size);
6879
6880 putpkt (rs->buf);
6881 getpkt (&rs->buf, &rs->buf_size, 0);
6882
6883 return (rs->buf[0] == 'E');
6884 }
6885
6886 return memory_remove_breakpoint (bp_tgt);
6887 }
6888
6889 static int
6890 watchpoint_to_Z_packet (int type)
6891 {
6892 switch (type)
6893 {
6894 case hw_write:
6895 return Z_PACKET_WRITE_WP;
6896 break;
6897 case hw_read:
6898 return Z_PACKET_READ_WP;
6899 break;
6900 case hw_access:
6901 return Z_PACKET_ACCESS_WP;
6902 break;
6903 default:
6904 internal_error (__FILE__, __LINE__,
6905 _("hw_bp_to_z: bad watchpoint type %d"), type);
6906 }
6907 }
6908
6909 static int
6910 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6911 {
6912 struct remote_state *rs = get_remote_state ();
6913 char *p;
6914 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6915
6916 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6917 return -1;
6918
6919 sprintf (rs->buf, "Z%x,", packet);
6920 p = strchr (rs->buf, '\0');
6921 addr = remote_address_masked (addr);
6922 p += hexnumstr (p, (ULONGEST) addr);
6923 sprintf (p, ",%x", len);
6924
6925 putpkt (rs->buf);
6926 getpkt (&rs->buf, &rs->buf_size, 0);
6927
6928 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6929 {
6930 case PACKET_ERROR:
6931 case PACKET_UNKNOWN:
6932 return -1;
6933 case PACKET_OK:
6934 return 0;
6935 }
6936 internal_error (__FILE__, __LINE__,
6937 _("remote_insert_watchpoint: reached end of function"));
6938 }
6939
6940
6941 static int
6942 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6943 {
6944 struct remote_state *rs = get_remote_state ();
6945 char *p;
6946 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6947
6948 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6949 return -1;
6950
6951 sprintf (rs->buf, "z%x,", packet);
6952 p = strchr (rs->buf, '\0');
6953 addr = remote_address_masked (addr);
6954 p += hexnumstr (p, (ULONGEST) addr);
6955 sprintf (p, ",%x", len);
6956 putpkt (rs->buf);
6957 getpkt (&rs->buf, &rs->buf_size, 0);
6958
6959 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6960 {
6961 case PACKET_ERROR:
6962 case PACKET_UNKNOWN:
6963 return -1;
6964 case PACKET_OK:
6965 return 0;
6966 }
6967 internal_error (__FILE__, __LINE__,
6968 _("remote_remove_watchpoint: reached end of function"));
6969 }
6970
6971
6972 int remote_hw_watchpoint_limit = -1;
6973 int remote_hw_breakpoint_limit = -1;
6974
6975 static int
6976 remote_check_watch_resources (int type, int cnt, int ot)
6977 {
6978 if (type == bp_hardware_breakpoint)
6979 {
6980 if (remote_hw_breakpoint_limit == 0)
6981 return 0;
6982 else if (remote_hw_breakpoint_limit < 0)
6983 return 1;
6984 else if (cnt <= remote_hw_breakpoint_limit)
6985 return 1;
6986 }
6987 else
6988 {
6989 if (remote_hw_watchpoint_limit == 0)
6990 return 0;
6991 else if (remote_hw_watchpoint_limit < 0)
6992 return 1;
6993 else if (ot)
6994 return -1;
6995 else if (cnt <= remote_hw_watchpoint_limit)
6996 return 1;
6997 }
6998 return -1;
6999 }
7000
7001 static int
7002 remote_stopped_by_watchpoint (void)
7003 {
7004 return remote_stopped_by_watchpoint_p;
7005 }
7006
7007 static int
7008 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7009 {
7010 int rc = 0;
7011 if (remote_stopped_by_watchpoint ())
7012 {
7013 *addr_p = remote_watch_data_address;
7014 rc = 1;
7015 }
7016
7017 return rc;
7018 }
7019
7020
7021 static int
7022 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
7023 {
7024 CORE_ADDR addr;
7025 struct remote_state *rs;
7026 char *p;
7027
7028 /* The length field should be set to the size of a breakpoint
7029 instruction, even though we aren't inserting one ourselves. */
7030
7031 gdbarch_breakpoint_from_pc
7032 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7033
7034 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7035 return -1;
7036
7037 rs = get_remote_state ();
7038 p = rs->buf;
7039
7040 *(p++) = 'Z';
7041 *(p++) = '1';
7042 *(p++) = ',';
7043
7044 addr = remote_address_masked (bp_tgt->placed_address);
7045 p += hexnumstr (p, (ULONGEST) addr);
7046 sprintf (p, ",%x", bp_tgt->placed_size);
7047
7048 putpkt (rs->buf);
7049 getpkt (&rs->buf, &rs->buf_size, 0);
7050
7051 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7052 {
7053 case PACKET_ERROR:
7054 case PACKET_UNKNOWN:
7055 return -1;
7056 case PACKET_OK:
7057 return 0;
7058 }
7059 internal_error (__FILE__, __LINE__,
7060 _("remote_insert_hw_breakpoint: reached end of function"));
7061 }
7062
7063
7064 static int
7065 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
7066 {
7067 CORE_ADDR addr;
7068 struct remote_state *rs = get_remote_state ();
7069 char *p = rs->buf;
7070
7071 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7072 return -1;
7073
7074 *(p++) = 'z';
7075 *(p++) = '1';
7076 *(p++) = ',';
7077
7078 addr = remote_address_masked (bp_tgt->placed_address);
7079 p += hexnumstr (p, (ULONGEST) addr);
7080 sprintf (p, ",%x", bp_tgt->placed_size);
7081
7082 putpkt (rs->buf);
7083 getpkt (&rs->buf, &rs->buf_size, 0);
7084
7085 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7086 {
7087 case PACKET_ERROR:
7088 case PACKET_UNKNOWN:
7089 return -1;
7090 case PACKET_OK:
7091 return 0;
7092 }
7093 internal_error (__FILE__, __LINE__,
7094 _("remote_remove_hw_breakpoint: reached end of function"));
7095 }
7096
7097 /* Table used by the crc32 function to calcuate the checksum. */
7098
7099 static unsigned long crc32_table[256] =
7100 {0, 0};
7101
7102 static unsigned long
7103 crc32 (unsigned char *buf, int len, unsigned int crc)
7104 {
7105 if (!crc32_table[1])
7106 {
7107 /* Initialize the CRC table and the decoding table. */
7108 int i, j;
7109 unsigned int c;
7110
7111 for (i = 0; i < 256; i++)
7112 {
7113 for (c = i << 24, j = 8; j > 0; --j)
7114 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7115 crc32_table[i] = c;
7116 }
7117 }
7118
7119 while (len--)
7120 {
7121 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7122 buf++;
7123 }
7124 return crc;
7125 }
7126
7127 /* compare-sections command
7128
7129 With no arguments, compares each loadable section in the exec bfd
7130 with the same memory range on the target, and reports mismatches.
7131 Useful for verifying the image on the target against the exec file.
7132 Depends on the target understanding the new "qCRC:" request. */
7133
7134 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7135 target method (target verify memory) and generic version of the
7136 actual command. This will allow other high-level code (especially
7137 generic_load()) to make use of this target functionality. */
7138
7139 static void
7140 compare_sections_command (char *args, int from_tty)
7141 {
7142 struct remote_state *rs = get_remote_state ();
7143 asection *s;
7144 unsigned long host_crc, target_crc;
7145 extern bfd *exec_bfd;
7146 struct cleanup *old_chain;
7147 char *tmp;
7148 char *sectdata;
7149 const char *sectname;
7150 bfd_size_type size;
7151 bfd_vma lma;
7152 int matched = 0;
7153 int mismatched = 0;
7154
7155 if (!exec_bfd)
7156 error (_("command cannot be used without an exec file"));
7157 if (!current_target.to_shortname ||
7158 strcmp (current_target.to_shortname, "remote") != 0)
7159 error (_("command can only be used with remote target"));
7160
7161 for (s = exec_bfd->sections; s; s = s->next)
7162 {
7163 if (!(s->flags & SEC_LOAD))
7164 continue; /* skip non-loadable section */
7165
7166 size = bfd_get_section_size (s);
7167 if (size == 0)
7168 continue; /* skip zero-length section */
7169
7170 sectname = bfd_get_section_name (exec_bfd, s);
7171 if (args && strcmp (args, sectname) != 0)
7172 continue; /* not the section selected by user */
7173
7174 matched = 1; /* do this section */
7175 lma = s->lma;
7176 /* FIXME: assumes lma can fit into long. */
7177 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7178 (long) lma, (long) size);
7179 putpkt (rs->buf);
7180
7181 /* Be clever; compute the host_crc before waiting for target
7182 reply. */
7183 sectdata = xmalloc (size);
7184 old_chain = make_cleanup (xfree, sectdata);
7185 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7186 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7187
7188 getpkt (&rs->buf, &rs->buf_size, 0);
7189 if (rs->buf[0] == 'E')
7190 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7191 sectname, paddr (lma), paddr (lma + size));
7192 if (rs->buf[0] != 'C')
7193 error (_("remote target does not support this operation"));
7194
7195 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7196 target_crc = target_crc * 16 + fromhex (*tmp);
7197
7198 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7199 sectname, paddr (lma), paddr (lma + size));
7200 if (host_crc == target_crc)
7201 printf_filtered ("matched.\n");
7202 else
7203 {
7204 printf_filtered ("MIS-MATCHED!\n");
7205 mismatched++;
7206 }
7207
7208 do_cleanups (old_chain);
7209 }
7210 if (mismatched > 0)
7211 warning (_("One or more sections of the remote executable does not match\n\
7212 the loaded file\n"));
7213 if (args && !matched)
7214 printf_filtered (_("No loaded section named '%s'.\n"), args);
7215 }
7216
7217 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7218 into remote target. The number of bytes written to the remote
7219 target is returned, or -1 for error. */
7220
7221 static LONGEST
7222 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7223 const char *annex, const gdb_byte *writebuf,
7224 ULONGEST offset, LONGEST len,
7225 struct packet_config *packet)
7226 {
7227 int i, buf_len;
7228 ULONGEST n;
7229 gdb_byte *wbuf;
7230 struct remote_state *rs = get_remote_state ();
7231 int max_size = get_memory_write_packet_size ();
7232
7233 if (packet->support == PACKET_DISABLE)
7234 return -1;
7235
7236 /* Insert header. */
7237 i = snprintf (rs->buf, max_size,
7238 "qXfer:%s:write:%s:%s:",
7239 object_name, annex ? annex : "",
7240 phex_nz (offset, sizeof offset));
7241 max_size -= (i + 1);
7242
7243 /* Escape as much data as fits into rs->buf. */
7244 buf_len = remote_escape_output
7245 (writebuf, len, (rs->buf + i), &max_size, max_size);
7246
7247 if (putpkt_binary (rs->buf, i + buf_len) < 0
7248 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7249 || packet_ok (rs->buf, packet) != PACKET_OK)
7250 return -1;
7251
7252 unpack_varlen_hex (rs->buf, &n);
7253 return n;
7254 }
7255
7256 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7257 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7258 number of bytes read is returned, or 0 for EOF, or -1 for error.
7259 The number of bytes read may be less than LEN without indicating an
7260 EOF. PACKET is checked and updated to indicate whether the remote
7261 target supports this object. */
7262
7263 static LONGEST
7264 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7265 const char *annex,
7266 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7267 struct packet_config *packet)
7268 {
7269 static char *finished_object;
7270 static char *finished_annex;
7271 static ULONGEST finished_offset;
7272
7273 struct remote_state *rs = get_remote_state ();
7274 unsigned int total = 0;
7275 LONGEST i, n, packet_len;
7276
7277 if (packet->support == PACKET_DISABLE)
7278 return -1;
7279
7280 /* Check whether we've cached an end-of-object packet that matches
7281 this request. */
7282 if (finished_object)
7283 {
7284 if (strcmp (object_name, finished_object) == 0
7285 && strcmp (annex ? annex : "", finished_annex) == 0
7286 && offset == finished_offset)
7287 return 0;
7288
7289 /* Otherwise, we're now reading something different. Discard
7290 the cache. */
7291 xfree (finished_object);
7292 xfree (finished_annex);
7293 finished_object = NULL;
7294 finished_annex = NULL;
7295 }
7296
7297 /* Request only enough to fit in a single packet. The actual data
7298 may not, since we don't know how much of it will need to be escaped;
7299 the target is free to respond with slightly less data. We subtract
7300 five to account for the response type and the protocol frame. */
7301 n = min (get_remote_packet_size () - 5, len);
7302 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7303 object_name, annex ? annex : "",
7304 phex_nz (offset, sizeof offset),
7305 phex_nz (n, sizeof n));
7306 i = putpkt (rs->buf);
7307 if (i < 0)
7308 return -1;
7309
7310 rs->buf[0] = '\0';
7311 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7312 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7313 return -1;
7314
7315 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7316 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7317
7318 /* 'm' means there is (or at least might be) more data after this
7319 batch. That does not make sense unless there's at least one byte
7320 of data in this reply. */
7321 if (rs->buf[0] == 'm' && packet_len == 1)
7322 error (_("Remote qXfer reply contained no data."));
7323
7324 /* Got some data. */
7325 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7326
7327 /* 'l' is an EOF marker, possibly including a final block of data,
7328 or possibly empty. If we have the final block of a non-empty
7329 object, record this fact to bypass a subsequent partial read. */
7330 if (rs->buf[0] == 'l' && offset + i > 0)
7331 {
7332 finished_object = xstrdup (object_name);
7333 finished_annex = xstrdup (annex ? annex : "");
7334 finished_offset = offset + i;
7335 }
7336
7337 return i;
7338 }
7339
7340 static LONGEST
7341 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7342 const char *annex, gdb_byte *readbuf,
7343 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7344 {
7345 struct remote_state *rs;
7346 int i;
7347 char *p2;
7348 char query_type;
7349
7350 set_general_thread (inferior_ptid);
7351
7352 rs = get_remote_state ();
7353
7354 /* Handle memory using the standard memory routines. */
7355 if (object == TARGET_OBJECT_MEMORY)
7356 {
7357 int xfered;
7358 errno = 0;
7359
7360 /* If the remote target is connected but not running, we should
7361 pass this request down to a lower stratum (e.g. the executable
7362 file). */
7363 if (!target_has_execution)
7364 return 0;
7365
7366 if (writebuf != NULL)
7367 xfered = remote_write_bytes (offset, writebuf, len);
7368 else
7369 xfered = remote_read_bytes (offset, readbuf, len);
7370
7371 if (xfered > 0)
7372 return xfered;
7373 else if (xfered == 0 && errno == 0)
7374 return 0;
7375 else
7376 return -1;
7377 }
7378
7379 /* Handle SPU memory using qxfer packets. */
7380 if (object == TARGET_OBJECT_SPU)
7381 {
7382 if (readbuf)
7383 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7384 &remote_protocol_packets
7385 [PACKET_qXfer_spu_read]);
7386 else
7387 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7388 &remote_protocol_packets
7389 [PACKET_qXfer_spu_write]);
7390 }
7391
7392 /* Handle extra signal info using qxfer packets. */
7393 if (object == TARGET_OBJECT_SIGNAL_INFO)
7394 {
7395 if (readbuf)
7396 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7397 &remote_protocol_packets
7398 [PACKET_qXfer_siginfo_read]);
7399 else
7400 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7401 &remote_protocol_packets
7402 [PACKET_qXfer_siginfo_write]);
7403 }
7404
7405 /* Only handle flash writes. */
7406 if (writebuf != NULL)
7407 {
7408 LONGEST xfered;
7409
7410 switch (object)
7411 {
7412 case TARGET_OBJECT_FLASH:
7413 xfered = remote_flash_write (ops, offset, len, writebuf);
7414
7415 if (xfered > 0)
7416 return xfered;
7417 else if (xfered == 0 && errno == 0)
7418 return 0;
7419 else
7420 return -1;
7421
7422 default:
7423 return -1;
7424 }
7425 }
7426
7427 /* Map pre-existing objects onto letters. DO NOT do this for new
7428 objects!!! Instead specify new query packets. */
7429 switch (object)
7430 {
7431 case TARGET_OBJECT_AVR:
7432 query_type = 'R';
7433 break;
7434
7435 case TARGET_OBJECT_AUXV:
7436 gdb_assert (annex == NULL);
7437 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7438 &remote_protocol_packets[PACKET_qXfer_auxv]);
7439
7440 case TARGET_OBJECT_AVAILABLE_FEATURES:
7441 return remote_read_qxfer
7442 (ops, "features", annex, readbuf, offset, len,
7443 &remote_protocol_packets[PACKET_qXfer_features]);
7444
7445 case TARGET_OBJECT_LIBRARIES:
7446 return remote_read_qxfer
7447 (ops, "libraries", annex, readbuf, offset, len,
7448 &remote_protocol_packets[PACKET_qXfer_libraries]);
7449
7450 case TARGET_OBJECT_MEMORY_MAP:
7451 gdb_assert (annex == NULL);
7452 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7453 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7454
7455 case TARGET_OBJECT_OSDATA:
7456 /* Should only get here if we're connected. */
7457 gdb_assert (remote_desc);
7458 return remote_read_qxfer
7459 (ops, "osdata", annex, readbuf, offset, len,
7460 &remote_protocol_packets[PACKET_qXfer_osdata]);
7461
7462 default:
7463 return -1;
7464 }
7465
7466 /* Note: a zero OFFSET and LEN can be used to query the minimum
7467 buffer size. */
7468 if (offset == 0 && len == 0)
7469 return (get_remote_packet_size ());
7470 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7471 large enough let the caller deal with it. */
7472 if (len < get_remote_packet_size ())
7473 return -1;
7474 len = get_remote_packet_size ();
7475
7476 /* Except for querying the minimum buffer size, target must be open. */
7477 if (!remote_desc)
7478 error (_("remote query is only available after target open"));
7479
7480 gdb_assert (annex != NULL);
7481 gdb_assert (readbuf != NULL);
7482
7483 p2 = rs->buf;
7484 *p2++ = 'q';
7485 *p2++ = query_type;
7486
7487 /* We used one buffer char for the remote protocol q command and
7488 another for the query type. As the remote protocol encapsulation
7489 uses 4 chars plus one extra in case we are debugging
7490 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7491 string. */
7492 i = 0;
7493 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7494 {
7495 /* Bad caller may have sent forbidden characters. */
7496 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7497 *p2++ = annex[i];
7498 i++;
7499 }
7500 *p2 = '\0';
7501 gdb_assert (annex[i] == '\0');
7502
7503 i = putpkt (rs->buf);
7504 if (i < 0)
7505 return i;
7506
7507 getpkt (&rs->buf, &rs->buf_size, 0);
7508 strcpy ((char *) readbuf, rs->buf);
7509
7510 return strlen ((char *) readbuf);
7511 }
7512
7513 static int
7514 remote_search_memory (struct target_ops* ops,
7515 CORE_ADDR start_addr, ULONGEST search_space_len,
7516 const gdb_byte *pattern, ULONGEST pattern_len,
7517 CORE_ADDR *found_addrp)
7518 {
7519 struct remote_state *rs = get_remote_state ();
7520 int max_size = get_memory_write_packet_size ();
7521 struct packet_config *packet =
7522 &remote_protocol_packets[PACKET_qSearch_memory];
7523 /* number of packet bytes used to encode the pattern,
7524 this could be more than PATTERN_LEN due to escape characters */
7525 int escaped_pattern_len;
7526 /* amount of pattern that was encodable in the packet */
7527 int used_pattern_len;
7528 int i;
7529 int found;
7530 ULONGEST found_addr;
7531
7532 /* Don't go to the target if we don't have to.
7533 This is done before checking packet->support to avoid the possibility that
7534 a success for this edge case means the facility works in general. */
7535 if (pattern_len > search_space_len)
7536 return 0;
7537 if (pattern_len == 0)
7538 {
7539 *found_addrp = start_addr;
7540 return 1;
7541 }
7542
7543 /* If we already know the packet isn't supported, fall back to the simple
7544 way of searching memory. */
7545
7546 if (packet->support == PACKET_DISABLE)
7547 {
7548 /* Target doesn't provided special support, fall back and use the
7549 standard support (copy memory and do the search here). */
7550 return simple_search_memory (ops, start_addr, search_space_len,
7551 pattern, pattern_len, found_addrp);
7552 }
7553
7554 /* Insert header. */
7555 i = snprintf (rs->buf, max_size,
7556 "qSearch:memory:%s;%s;",
7557 paddr_nz (start_addr),
7558 phex_nz (search_space_len, sizeof (search_space_len)));
7559 max_size -= (i + 1);
7560
7561 /* Escape as much data as fits into rs->buf. */
7562 escaped_pattern_len =
7563 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7564 &used_pattern_len, max_size);
7565
7566 /* Bail if the pattern is too large. */
7567 if (used_pattern_len != pattern_len)
7568 error ("Pattern is too large to transmit to remote target.");
7569
7570 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7571 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7572 || packet_ok (rs->buf, packet) != PACKET_OK)
7573 {
7574 /* The request may not have worked because the command is not
7575 supported. If so, fall back to the simple way. */
7576 if (packet->support == PACKET_DISABLE)
7577 {
7578 return simple_search_memory (ops, start_addr, search_space_len,
7579 pattern, pattern_len, found_addrp);
7580 }
7581 return -1;
7582 }
7583
7584 if (rs->buf[0] == '0')
7585 found = 0;
7586 else if (rs->buf[0] == '1')
7587 {
7588 found = 1;
7589 if (rs->buf[1] != ',')
7590 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7591 unpack_varlen_hex (rs->buf + 2, &found_addr);
7592 *found_addrp = found_addr;
7593 }
7594 else
7595 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7596
7597 return found;
7598 }
7599
7600 static void
7601 remote_rcmd (char *command,
7602 struct ui_file *outbuf)
7603 {
7604 struct remote_state *rs = get_remote_state ();
7605 char *p = rs->buf;
7606
7607 if (!remote_desc)
7608 error (_("remote rcmd is only available after target open"));
7609
7610 /* Send a NULL command across as an empty command. */
7611 if (command == NULL)
7612 command = "";
7613
7614 /* The query prefix. */
7615 strcpy (rs->buf, "qRcmd,");
7616 p = strchr (rs->buf, '\0');
7617
7618 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7619 error (_("\"monitor\" command ``%s'' is too long."), command);
7620
7621 /* Encode the actual command. */
7622 bin2hex ((gdb_byte *) command, p, 0);
7623
7624 if (putpkt (rs->buf) < 0)
7625 error (_("Communication problem with target."));
7626
7627 /* get/display the response */
7628 while (1)
7629 {
7630 char *buf;
7631
7632 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7633 rs->buf[0] = '\0';
7634 getpkt (&rs->buf, &rs->buf_size, 0);
7635 buf = rs->buf;
7636 if (buf[0] == '\0')
7637 error (_("Target does not support this command."));
7638 if (buf[0] == 'O' && buf[1] != 'K')
7639 {
7640 remote_console_output (buf + 1); /* 'O' message from stub. */
7641 continue;
7642 }
7643 if (strcmp (buf, "OK") == 0)
7644 break;
7645 if (strlen (buf) == 3 && buf[0] == 'E'
7646 && isdigit (buf[1]) && isdigit (buf[2]))
7647 {
7648 error (_("Protocol error with Rcmd"));
7649 }
7650 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7651 {
7652 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7653 fputc_unfiltered (c, outbuf);
7654 }
7655 break;
7656 }
7657 }
7658
7659 static VEC(mem_region_s) *
7660 remote_memory_map (struct target_ops *ops)
7661 {
7662 VEC(mem_region_s) *result = NULL;
7663 char *text = target_read_stralloc (&current_target,
7664 TARGET_OBJECT_MEMORY_MAP, NULL);
7665
7666 if (text)
7667 {
7668 struct cleanup *back_to = make_cleanup (xfree, text);
7669 result = parse_memory_map (text);
7670 do_cleanups (back_to);
7671 }
7672
7673 return result;
7674 }
7675
7676 static void
7677 packet_command (char *args, int from_tty)
7678 {
7679 struct remote_state *rs = get_remote_state ();
7680
7681 if (!remote_desc)
7682 error (_("command can only be used with remote target"));
7683
7684 if (!args)
7685 error (_("remote-packet command requires packet text as argument"));
7686
7687 puts_filtered ("sending: ");
7688 print_packet (args);
7689 puts_filtered ("\n");
7690 putpkt (args);
7691
7692 getpkt (&rs->buf, &rs->buf_size, 0);
7693 puts_filtered ("received: ");
7694 print_packet (rs->buf);
7695 puts_filtered ("\n");
7696 }
7697
7698 #if 0
7699 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7700
7701 static void display_thread_info (struct gdb_ext_thread_info *info);
7702
7703 static void threadset_test_cmd (char *cmd, int tty);
7704
7705 static void threadalive_test (char *cmd, int tty);
7706
7707 static void threadlist_test_cmd (char *cmd, int tty);
7708
7709 int get_and_display_threadinfo (threadref *ref);
7710
7711 static void threadinfo_test_cmd (char *cmd, int tty);
7712
7713 static int thread_display_step (threadref *ref, void *context);
7714
7715 static void threadlist_update_test_cmd (char *cmd, int tty);
7716
7717 static void init_remote_threadtests (void);
7718
7719 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7720
7721 static void
7722 threadset_test_cmd (char *cmd, int tty)
7723 {
7724 int sample_thread = SAMPLE_THREAD;
7725
7726 printf_filtered (_("Remote threadset test\n"));
7727 set_general_thread (sample_thread);
7728 }
7729
7730
7731 static void
7732 threadalive_test (char *cmd, int tty)
7733 {
7734 int sample_thread = SAMPLE_THREAD;
7735 int pid = ptid_get_pid (inferior_ptid);
7736 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7737
7738 if (remote_thread_alive (ptid))
7739 printf_filtered ("PASS: Thread alive test\n");
7740 else
7741 printf_filtered ("FAIL: Thread alive test\n");
7742 }
7743
7744 void output_threadid (char *title, threadref *ref);
7745
7746 void
7747 output_threadid (char *title, threadref *ref)
7748 {
7749 char hexid[20];
7750
7751 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7752 hexid[16] = 0;
7753 printf_filtered ("%s %s\n", title, (&hexid[0]));
7754 }
7755
7756 static void
7757 threadlist_test_cmd (char *cmd, int tty)
7758 {
7759 int startflag = 1;
7760 threadref nextthread;
7761 int done, result_count;
7762 threadref threadlist[3];
7763
7764 printf_filtered ("Remote Threadlist test\n");
7765 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7766 &result_count, &threadlist[0]))
7767 printf_filtered ("FAIL: threadlist test\n");
7768 else
7769 {
7770 threadref *scan = threadlist;
7771 threadref *limit = scan + result_count;
7772
7773 while (scan < limit)
7774 output_threadid (" thread ", scan++);
7775 }
7776 }
7777
7778 void
7779 display_thread_info (struct gdb_ext_thread_info *info)
7780 {
7781 output_threadid ("Threadid: ", &info->threadid);
7782 printf_filtered ("Name: %s\n ", info->shortname);
7783 printf_filtered ("State: %s\n", info->display);
7784 printf_filtered ("other: %s\n\n", info->more_display);
7785 }
7786
7787 int
7788 get_and_display_threadinfo (threadref *ref)
7789 {
7790 int result;
7791 int set;
7792 struct gdb_ext_thread_info threadinfo;
7793
7794 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7795 | TAG_MOREDISPLAY | TAG_DISPLAY;
7796 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7797 display_thread_info (&threadinfo);
7798 return result;
7799 }
7800
7801 static void
7802 threadinfo_test_cmd (char *cmd, int tty)
7803 {
7804 int athread = SAMPLE_THREAD;
7805 threadref thread;
7806 int set;
7807
7808 int_to_threadref (&thread, athread);
7809 printf_filtered ("Remote Threadinfo test\n");
7810 if (!get_and_display_threadinfo (&thread))
7811 printf_filtered ("FAIL cannot get thread info\n");
7812 }
7813
7814 static int
7815 thread_display_step (threadref *ref, void *context)
7816 {
7817 /* output_threadid(" threadstep ",ref); *//* simple test */
7818 return get_and_display_threadinfo (ref);
7819 }
7820
7821 static void
7822 threadlist_update_test_cmd (char *cmd, int tty)
7823 {
7824 printf_filtered ("Remote Threadlist update test\n");
7825 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7826 }
7827
7828 static void
7829 init_remote_threadtests (void)
7830 {
7831 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7832 Fetch and print the remote list of thread identifiers, one pkt only"));
7833 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7834 _("Fetch and display info about one thread"));
7835 add_com ("tset", class_obscure, threadset_test_cmd,
7836 _("Test setting to a different thread"));
7837 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7838 _("Iterate through updating all remote thread info"));
7839 add_com ("talive", class_obscure, threadalive_test,
7840 _(" Remote thread alive test "));
7841 }
7842
7843 #endif /* 0 */
7844
7845 /* Convert a thread ID to a string. Returns the string in a static
7846 buffer. */
7847
7848 static char *
7849 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7850 {
7851 static char buf[64];
7852 struct remote_state *rs = get_remote_state ();
7853
7854 if (ptid_equal (magic_null_ptid, ptid))
7855 {
7856 xsnprintf (buf, sizeof buf, "Thread <main>");
7857 return buf;
7858 }
7859 else if (remote_multi_process_p (rs)
7860 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7861 {
7862 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7863 ptid_get_pid (ptid), ptid_get_tid (ptid));
7864 return buf;
7865 }
7866 else if (ptid_get_tid (ptid) != 0)
7867 {
7868 xsnprintf (buf, sizeof buf, "Thread %ld",
7869 ptid_get_tid (ptid));
7870 return buf;
7871 }
7872
7873 return normal_pid_to_str (ptid);
7874 }
7875
7876 /* Get the address of the thread local variable in OBJFILE which is
7877 stored at OFFSET within the thread local storage for thread PTID. */
7878
7879 static CORE_ADDR
7880 remote_get_thread_local_address (struct target_ops *ops,
7881 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7882 {
7883 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7884 {
7885 struct remote_state *rs = get_remote_state ();
7886 char *p = rs->buf;
7887 char *endp = rs->buf + get_remote_packet_size ();
7888 enum packet_result result;
7889
7890 strcpy (p, "qGetTLSAddr:");
7891 p += strlen (p);
7892 p = write_ptid (p, endp, ptid);
7893 *p++ = ',';
7894 p += hexnumstr (p, offset);
7895 *p++ = ',';
7896 p += hexnumstr (p, lm);
7897 *p++ = '\0';
7898
7899 putpkt (rs->buf);
7900 getpkt (&rs->buf, &rs->buf_size, 0);
7901 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7902 if (result == PACKET_OK)
7903 {
7904 ULONGEST result;
7905
7906 unpack_varlen_hex (rs->buf, &result);
7907 return result;
7908 }
7909 else if (result == PACKET_UNKNOWN)
7910 throw_error (TLS_GENERIC_ERROR,
7911 _("Remote target doesn't support qGetTLSAddr packet"));
7912 else
7913 throw_error (TLS_GENERIC_ERROR,
7914 _("Remote target failed to process qGetTLSAddr request"));
7915 }
7916 else
7917 throw_error (TLS_GENERIC_ERROR,
7918 _("TLS not supported or disabled on this target"));
7919 /* Not reached. */
7920 return 0;
7921 }
7922
7923 /* Support for inferring a target description based on the current
7924 architecture and the size of a 'g' packet. While the 'g' packet
7925 can have any size (since optional registers can be left off the
7926 end), some sizes are easily recognizable given knowledge of the
7927 approximate architecture. */
7928
7929 struct remote_g_packet_guess
7930 {
7931 int bytes;
7932 const struct target_desc *tdesc;
7933 };
7934 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7935 DEF_VEC_O(remote_g_packet_guess_s);
7936
7937 struct remote_g_packet_data
7938 {
7939 VEC(remote_g_packet_guess_s) *guesses;
7940 };
7941
7942 static struct gdbarch_data *remote_g_packet_data_handle;
7943
7944 static void *
7945 remote_g_packet_data_init (struct obstack *obstack)
7946 {
7947 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7948 }
7949
7950 void
7951 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7952 const struct target_desc *tdesc)
7953 {
7954 struct remote_g_packet_data *data
7955 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7956 struct remote_g_packet_guess new_guess, *guess;
7957 int ix;
7958
7959 gdb_assert (tdesc != NULL);
7960
7961 for (ix = 0;
7962 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7963 ix++)
7964 if (guess->bytes == bytes)
7965 internal_error (__FILE__, __LINE__,
7966 "Duplicate g packet description added for size %d",
7967 bytes);
7968
7969 new_guess.bytes = bytes;
7970 new_guess.tdesc = tdesc;
7971 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7972 }
7973
7974 /* Return 1 if remote_read_description would do anything on this target
7975 and architecture, 0 otherwise. */
7976
7977 static int
7978 remote_read_description_p (struct target_ops *target)
7979 {
7980 struct remote_g_packet_data *data
7981 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7982
7983 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7984 return 1;
7985
7986 return 0;
7987 }
7988
7989 static const struct target_desc *
7990 remote_read_description (struct target_ops *target)
7991 {
7992 struct remote_g_packet_data *data
7993 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7994
7995 /* Do not try this during initial connection, when we do not know
7996 whether there is a running but stopped thread. */
7997 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
7998 return NULL;
7999
8000 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8001 {
8002 struct remote_g_packet_guess *guess;
8003 int ix;
8004 int bytes = send_g_packet ();
8005
8006 for (ix = 0;
8007 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8008 ix++)
8009 if (guess->bytes == bytes)
8010 return guess->tdesc;
8011
8012 /* We discard the g packet. A minor optimization would be to
8013 hold on to it, and fill the register cache once we have selected
8014 an architecture, but it's too tricky to do safely. */
8015 }
8016
8017 return NULL;
8018 }
8019
8020 /* Remote file transfer support. This is host-initiated I/O, not
8021 target-initiated; for target-initiated, see remote-fileio.c. */
8022
8023 /* If *LEFT is at least the length of STRING, copy STRING to
8024 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8025 decrease *LEFT. Otherwise raise an error. */
8026
8027 static void
8028 remote_buffer_add_string (char **buffer, int *left, char *string)
8029 {
8030 int len = strlen (string);
8031
8032 if (len > *left)
8033 error (_("Packet too long for target."));
8034
8035 memcpy (*buffer, string, len);
8036 *buffer += len;
8037 *left -= len;
8038
8039 /* NUL-terminate the buffer as a convenience, if there is
8040 room. */
8041 if (*left)
8042 **buffer = '\0';
8043 }
8044
8045 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8046 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8047 decrease *LEFT. Otherwise raise an error. */
8048
8049 static void
8050 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8051 int len)
8052 {
8053 if (2 * len > *left)
8054 error (_("Packet too long for target."));
8055
8056 bin2hex (bytes, *buffer, len);
8057 *buffer += 2 * len;
8058 *left -= 2 * len;
8059
8060 /* NUL-terminate the buffer as a convenience, if there is
8061 room. */
8062 if (*left)
8063 **buffer = '\0';
8064 }
8065
8066 /* If *LEFT is large enough, convert VALUE to hex and add it to
8067 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8068 decrease *LEFT. Otherwise raise an error. */
8069
8070 static void
8071 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8072 {
8073 int len = hexnumlen (value);
8074
8075 if (len > *left)
8076 error (_("Packet too long for target."));
8077
8078 hexnumstr (*buffer, value);
8079 *buffer += len;
8080 *left -= len;
8081
8082 /* NUL-terminate the buffer as a convenience, if there is
8083 room. */
8084 if (*left)
8085 **buffer = '\0';
8086 }
8087
8088 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8089 value, *REMOTE_ERRNO to the remote error number or zero if none
8090 was included, and *ATTACHMENT to point to the start of the annex
8091 if any. The length of the packet isn't needed here; there may
8092 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8093
8094 Return 0 if the packet could be parsed, -1 if it could not. If
8095 -1 is returned, the other variables may not be initialized. */
8096
8097 static int
8098 remote_hostio_parse_result (char *buffer, int *retcode,
8099 int *remote_errno, char **attachment)
8100 {
8101 char *p, *p2;
8102
8103 *remote_errno = 0;
8104 *attachment = NULL;
8105
8106 if (buffer[0] != 'F')
8107 return -1;
8108
8109 errno = 0;
8110 *retcode = strtol (&buffer[1], &p, 16);
8111 if (errno != 0 || p == &buffer[1])
8112 return -1;
8113
8114 /* Check for ",errno". */
8115 if (*p == ',')
8116 {
8117 errno = 0;
8118 *remote_errno = strtol (p + 1, &p2, 16);
8119 if (errno != 0 || p + 1 == p2)
8120 return -1;
8121 p = p2;
8122 }
8123
8124 /* Check for ";attachment". If there is no attachment, the
8125 packet should end here. */
8126 if (*p == ';')
8127 {
8128 *attachment = p + 1;
8129 return 0;
8130 }
8131 else if (*p == '\0')
8132 return 0;
8133 else
8134 return -1;
8135 }
8136
8137 /* Send a prepared I/O packet to the target and read its response.
8138 The prepared packet is in the global RS->BUF before this function
8139 is called, and the answer is there when we return.
8140
8141 COMMAND_BYTES is the length of the request to send, which may include
8142 binary data. WHICH_PACKET is the packet configuration to check
8143 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8144 is set to the error number and -1 is returned. Otherwise the value
8145 returned by the function is returned.
8146
8147 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8148 attachment is expected; an error will be reported if there's a
8149 mismatch. If one is found, *ATTACHMENT will be set to point into
8150 the packet buffer and *ATTACHMENT_LEN will be set to the
8151 attachment's length. */
8152
8153 static int
8154 remote_hostio_send_command (int command_bytes, int which_packet,
8155 int *remote_errno, char **attachment,
8156 int *attachment_len)
8157 {
8158 struct remote_state *rs = get_remote_state ();
8159 int ret, bytes_read;
8160 char *attachment_tmp;
8161
8162 if (!remote_desc
8163 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8164 {
8165 *remote_errno = FILEIO_ENOSYS;
8166 return -1;
8167 }
8168
8169 putpkt_binary (rs->buf, command_bytes);
8170 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8171
8172 /* If it timed out, something is wrong. Don't try to parse the
8173 buffer. */
8174 if (bytes_read < 0)
8175 {
8176 *remote_errno = FILEIO_EINVAL;
8177 return -1;
8178 }
8179
8180 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8181 {
8182 case PACKET_ERROR:
8183 *remote_errno = FILEIO_EINVAL;
8184 return -1;
8185 case PACKET_UNKNOWN:
8186 *remote_errno = FILEIO_ENOSYS;
8187 return -1;
8188 case PACKET_OK:
8189 break;
8190 }
8191
8192 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8193 &attachment_tmp))
8194 {
8195 *remote_errno = FILEIO_EINVAL;
8196 return -1;
8197 }
8198
8199 /* Make sure we saw an attachment if and only if we expected one. */
8200 if ((attachment_tmp == NULL && attachment != NULL)
8201 || (attachment_tmp != NULL && attachment == NULL))
8202 {
8203 *remote_errno = FILEIO_EINVAL;
8204 return -1;
8205 }
8206
8207 /* If an attachment was found, it must point into the packet buffer;
8208 work out how many bytes there were. */
8209 if (attachment_tmp != NULL)
8210 {
8211 *attachment = attachment_tmp;
8212 *attachment_len = bytes_read - (*attachment - rs->buf);
8213 }
8214
8215 return ret;
8216 }
8217
8218 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8219 remote file descriptor, or -1 if an error occurs (and set
8220 *REMOTE_ERRNO). */
8221
8222 static int
8223 remote_hostio_open (const char *filename, int flags, int mode,
8224 int *remote_errno)
8225 {
8226 struct remote_state *rs = get_remote_state ();
8227 char *p = rs->buf;
8228 int left = get_remote_packet_size () - 1;
8229
8230 remote_buffer_add_string (&p, &left, "vFile:open:");
8231
8232 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8233 strlen (filename));
8234 remote_buffer_add_string (&p, &left, ",");
8235
8236 remote_buffer_add_int (&p, &left, flags);
8237 remote_buffer_add_string (&p, &left, ",");
8238
8239 remote_buffer_add_int (&p, &left, mode);
8240
8241 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8242 remote_errno, NULL, NULL);
8243 }
8244
8245 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8246 Return the number of bytes written, or -1 if an error occurs (and
8247 set *REMOTE_ERRNO). */
8248
8249 static int
8250 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8251 ULONGEST offset, int *remote_errno)
8252 {
8253 struct remote_state *rs = get_remote_state ();
8254 char *p = rs->buf;
8255 int left = get_remote_packet_size ();
8256 int out_len;
8257
8258 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8259
8260 remote_buffer_add_int (&p, &left, fd);
8261 remote_buffer_add_string (&p, &left, ",");
8262
8263 remote_buffer_add_int (&p, &left, offset);
8264 remote_buffer_add_string (&p, &left, ",");
8265
8266 p += remote_escape_output (write_buf, len, p, &out_len,
8267 get_remote_packet_size () - (p - rs->buf));
8268
8269 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8270 remote_errno, NULL, NULL);
8271 }
8272
8273 /* Read up to LEN bytes FD on the remote target into READ_BUF
8274 Return the number of bytes read, or -1 if an error occurs (and
8275 set *REMOTE_ERRNO). */
8276
8277 static int
8278 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8279 ULONGEST offset, int *remote_errno)
8280 {
8281 struct remote_state *rs = get_remote_state ();
8282 char *p = rs->buf;
8283 char *attachment;
8284 int left = get_remote_packet_size ();
8285 int ret, attachment_len;
8286 int read_len;
8287
8288 remote_buffer_add_string (&p, &left, "vFile:pread:");
8289
8290 remote_buffer_add_int (&p, &left, fd);
8291 remote_buffer_add_string (&p, &left, ",");
8292
8293 remote_buffer_add_int (&p, &left, len);
8294 remote_buffer_add_string (&p, &left, ",");
8295
8296 remote_buffer_add_int (&p, &left, offset);
8297
8298 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8299 remote_errno, &attachment,
8300 &attachment_len);
8301
8302 if (ret < 0)
8303 return ret;
8304
8305 read_len = remote_unescape_input (attachment, attachment_len,
8306 read_buf, len);
8307 if (read_len != ret)
8308 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8309
8310 return ret;
8311 }
8312
8313 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8314 (and set *REMOTE_ERRNO). */
8315
8316 static int
8317 remote_hostio_close (int fd, int *remote_errno)
8318 {
8319 struct remote_state *rs = get_remote_state ();
8320 char *p = rs->buf;
8321 int left = get_remote_packet_size () - 1;
8322
8323 remote_buffer_add_string (&p, &left, "vFile:close:");
8324
8325 remote_buffer_add_int (&p, &left, fd);
8326
8327 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8328 remote_errno, NULL, NULL);
8329 }
8330
8331 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8332 occurs (and set *REMOTE_ERRNO). */
8333
8334 static int
8335 remote_hostio_unlink (const char *filename, int *remote_errno)
8336 {
8337 struct remote_state *rs = get_remote_state ();
8338 char *p = rs->buf;
8339 int left = get_remote_packet_size () - 1;
8340
8341 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8342
8343 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8344 strlen (filename));
8345
8346 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8347 remote_errno, NULL, NULL);
8348 }
8349
8350 static int
8351 remote_fileio_errno_to_host (int errnum)
8352 {
8353 switch (errnum)
8354 {
8355 case FILEIO_EPERM:
8356 return EPERM;
8357 case FILEIO_ENOENT:
8358 return ENOENT;
8359 case FILEIO_EINTR:
8360 return EINTR;
8361 case FILEIO_EIO:
8362 return EIO;
8363 case FILEIO_EBADF:
8364 return EBADF;
8365 case FILEIO_EACCES:
8366 return EACCES;
8367 case FILEIO_EFAULT:
8368 return EFAULT;
8369 case FILEIO_EBUSY:
8370 return EBUSY;
8371 case FILEIO_EEXIST:
8372 return EEXIST;
8373 case FILEIO_ENODEV:
8374 return ENODEV;
8375 case FILEIO_ENOTDIR:
8376 return ENOTDIR;
8377 case FILEIO_EISDIR:
8378 return EISDIR;
8379 case FILEIO_EINVAL:
8380 return EINVAL;
8381 case FILEIO_ENFILE:
8382 return ENFILE;
8383 case FILEIO_EMFILE:
8384 return EMFILE;
8385 case FILEIO_EFBIG:
8386 return EFBIG;
8387 case FILEIO_ENOSPC:
8388 return ENOSPC;
8389 case FILEIO_ESPIPE:
8390 return ESPIPE;
8391 case FILEIO_EROFS:
8392 return EROFS;
8393 case FILEIO_ENOSYS:
8394 return ENOSYS;
8395 case FILEIO_ENAMETOOLONG:
8396 return ENAMETOOLONG;
8397 }
8398 return -1;
8399 }
8400
8401 static char *
8402 remote_hostio_error (int errnum)
8403 {
8404 int host_error = remote_fileio_errno_to_host (errnum);
8405
8406 if (host_error == -1)
8407 error (_("Unknown remote I/O error %d"), errnum);
8408 else
8409 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8410 }
8411
8412 static void
8413 remote_hostio_close_cleanup (void *opaque)
8414 {
8415 int fd = *(int *) opaque;
8416 int remote_errno;
8417
8418 remote_hostio_close (fd, &remote_errno);
8419 }
8420
8421
8422 static void *
8423 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8424 {
8425 const char *filename = bfd_get_filename (abfd);
8426 int fd, remote_errno;
8427 int *stream;
8428
8429 gdb_assert (remote_filename_p (filename));
8430
8431 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8432 if (fd == -1)
8433 {
8434 errno = remote_fileio_errno_to_host (remote_errno);
8435 bfd_set_error (bfd_error_system_call);
8436 return NULL;
8437 }
8438
8439 stream = xmalloc (sizeof (int));
8440 *stream = fd;
8441 return stream;
8442 }
8443
8444 static int
8445 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8446 {
8447 int fd = *(int *)stream;
8448 int remote_errno;
8449
8450 xfree (stream);
8451
8452 /* Ignore errors on close; these may happen if the remote
8453 connection was already torn down. */
8454 remote_hostio_close (fd, &remote_errno);
8455
8456 return 1;
8457 }
8458
8459 static file_ptr
8460 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8461 file_ptr nbytes, file_ptr offset)
8462 {
8463 int fd = *(int *)stream;
8464 int remote_errno;
8465 file_ptr pos, bytes;
8466
8467 pos = 0;
8468 while (nbytes > pos)
8469 {
8470 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8471 offset + pos, &remote_errno);
8472 if (bytes == 0)
8473 /* Success, but no bytes, means end-of-file. */
8474 break;
8475 if (bytes == -1)
8476 {
8477 errno = remote_fileio_errno_to_host (remote_errno);
8478 bfd_set_error (bfd_error_system_call);
8479 return -1;
8480 }
8481
8482 pos += bytes;
8483 }
8484
8485 return pos;
8486 }
8487
8488 static int
8489 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8490 {
8491 /* FIXME: We should probably implement remote_hostio_stat. */
8492 sb->st_size = INT_MAX;
8493 return 0;
8494 }
8495
8496 int
8497 remote_filename_p (const char *filename)
8498 {
8499 return strncmp (filename, "remote:", 7) == 0;
8500 }
8501
8502 bfd *
8503 remote_bfd_open (const char *remote_file, const char *target)
8504 {
8505 return bfd_openr_iovec (remote_file, target,
8506 remote_bfd_iovec_open, NULL,
8507 remote_bfd_iovec_pread,
8508 remote_bfd_iovec_close,
8509 remote_bfd_iovec_stat);
8510 }
8511
8512 void
8513 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8514 {
8515 struct cleanup *back_to, *close_cleanup;
8516 int retcode, fd, remote_errno, bytes, io_size;
8517 FILE *file;
8518 gdb_byte *buffer;
8519 int bytes_in_buffer;
8520 int saw_eof;
8521 ULONGEST offset;
8522
8523 if (!remote_desc)
8524 error (_("command can only be used with remote target"));
8525
8526 file = fopen (local_file, "rb");
8527 if (file == NULL)
8528 perror_with_name (local_file);
8529 back_to = make_cleanup_fclose (file);
8530
8531 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8532 | FILEIO_O_TRUNC),
8533 0700, &remote_errno);
8534 if (fd == -1)
8535 remote_hostio_error (remote_errno);
8536
8537 /* Send up to this many bytes at once. They won't all fit in the
8538 remote packet limit, so we'll transfer slightly fewer. */
8539 io_size = get_remote_packet_size ();
8540 buffer = xmalloc (io_size);
8541 make_cleanup (xfree, buffer);
8542
8543 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8544
8545 bytes_in_buffer = 0;
8546 saw_eof = 0;
8547 offset = 0;
8548 while (bytes_in_buffer || !saw_eof)
8549 {
8550 if (!saw_eof)
8551 {
8552 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8553 file);
8554 if (bytes == 0)
8555 {
8556 if (ferror (file))
8557 error (_("Error reading %s."), local_file);
8558 else
8559 {
8560 /* EOF. Unless there is something still in the
8561 buffer from the last iteration, we are done. */
8562 saw_eof = 1;
8563 if (bytes_in_buffer == 0)
8564 break;
8565 }
8566 }
8567 }
8568 else
8569 bytes = 0;
8570
8571 bytes += bytes_in_buffer;
8572 bytes_in_buffer = 0;
8573
8574 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8575
8576 if (retcode < 0)
8577 remote_hostio_error (remote_errno);
8578 else if (retcode == 0)
8579 error (_("Remote write of %d bytes returned 0!"), bytes);
8580 else if (retcode < bytes)
8581 {
8582 /* Short write. Save the rest of the read data for the next
8583 write. */
8584 bytes_in_buffer = bytes - retcode;
8585 memmove (buffer, buffer + retcode, bytes_in_buffer);
8586 }
8587
8588 offset += retcode;
8589 }
8590
8591 discard_cleanups (close_cleanup);
8592 if (remote_hostio_close (fd, &remote_errno))
8593 remote_hostio_error (remote_errno);
8594
8595 if (from_tty)
8596 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8597 do_cleanups (back_to);
8598 }
8599
8600 void
8601 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8602 {
8603 struct cleanup *back_to, *close_cleanup;
8604 int retcode, fd, remote_errno, bytes, io_size;
8605 FILE *file;
8606 gdb_byte *buffer;
8607 ULONGEST offset;
8608
8609 if (!remote_desc)
8610 error (_("command can only be used with remote target"));
8611
8612 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8613 if (fd == -1)
8614 remote_hostio_error (remote_errno);
8615
8616 file = fopen (local_file, "wb");
8617 if (file == NULL)
8618 perror_with_name (local_file);
8619 back_to = make_cleanup_fclose (file);
8620
8621 /* Send up to this many bytes at once. They won't all fit in the
8622 remote packet limit, so we'll transfer slightly fewer. */
8623 io_size = get_remote_packet_size ();
8624 buffer = xmalloc (io_size);
8625 make_cleanup (xfree, buffer);
8626
8627 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8628
8629 offset = 0;
8630 while (1)
8631 {
8632 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8633 if (bytes == 0)
8634 /* Success, but no bytes, means end-of-file. */
8635 break;
8636 if (bytes == -1)
8637 remote_hostio_error (remote_errno);
8638
8639 offset += bytes;
8640
8641 bytes = fwrite (buffer, 1, bytes, file);
8642 if (bytes == 0)
8643 perror_with_name (local_file);
8644 }
8645
8646 discard_cleanups (close_cleanup);
8647 if (remote_hostio_close (fd, &remote_errno))
8648 remote_hostio_error (remote_errno);
8649
8650 if (from_tty)
8651 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8652 do_cleanups (back_to);
8653 }
8654
8655 void
8656 remote_file_delete (const char *remote_file, int from_tty)
8657 {
8658 int retcode, remote_errno;
8659
8660 if (!remote_desc)
8661 error (_("command can only be used with remote target"));
8662
8663 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8664 if (retcode == -1)
8665 remote_hostio_error (remote_errno);
8666
8667 if (from_tty)
8668 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8669 }
8670
8671 static void
8672 remote_put_command (char *args, int from_tty)
8673 {
8674 struct cleanup *back_to;
8675 char **argv;
8676
8677 if (args == NULL)
8678 error_no_arg (_("file to put"));
8679
8680 argv = gdb_buildargv (args);
8681 back_to = make_cleanup_freeargv (argv);
8682 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8683 error (_("Invalid parameters to remote put"));
8684
8685 remote_file_put (argv[0], argv[1], from_tty);
8686
8687 do_cleanups (back_to);
8688 }
8689
8690 static void
8691 remote_get_command (char *args, int from_tty)
8692 {
8693 struct cleanup *back_to;
8694 char **argv;
8695
8696 if (args == NULL)
8697 error_no_arg (_("file to get"));
8698
8699 argv = gdb_buildargv (args);
8700 back_to = make_cleanup_freeargv (argv);
8701 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8702 error (_("Invalid parameters to remote get"));
8703
8704 remote_file_get (argv[0], argv[1], from_tty);
8705
8706 do_cleanups (back_to);
8707 }
8708
8709 static void
8710 remote_delete_command (char *args, int from_tty)
8711 {
8712 struct cleanup *back_to;
8713 char **argv;
8714
8715 if (args == NULL)
8716 error_no_arg (_("file to delete"));
8717
8718 argv = gdb_buildargv (args);
8719 back_to = make_cleanup_freeargv (argv);
8720 if (argv[0] == NULL || argv[1] != NULL)
8721 error (_("Invalid parameters to remote delete"));
8722
8723 remote_file_delete (argv[0], from_tty);
8724
8725 do_cleanups (back_to);
8726 }
8727
8728 static void
8729 remote_command (char *args, int from_tty)
8730 {
8731 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8732 }
8733
8734 static int remote_target_can_reverse = 1;
8735
8736 static int
8737 remote_can_execute_reverse (void)
8738 {
8739 return remote_target_can_reverse;
8740 }
8741
8742 static int
8743 remote_supports_non_stop (void)
8744 {
8745 return 1;
8746 }
8747
8748 static int
8749 remote_supports_multi_process (void)
8750 {
8751 struct remote_state *rs = get_remote_state ();
8752 return remote_multi_process_p (rs);
8753 }
8754
8755 static void
8756 init_remote_ops (void)
8757 {
8758 remote_ops.to_shortname = "remote";
8759 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8760 remote_ops.to_doc =
8761 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8762 Specify the serial device it is connected to\n\
8763 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8764 remote_ops.to_open = remote_open;
8765 remote_ops.to_close = remote_close;
8766 remote_ops.to_detach = remote_detach;
8767 remote_ops.to_disconnect = remote_disconnect;
8768 remote_ops.to_resume = remote_resume;
8769 remote_ops.to_wait = remote_wait;
8770 remote_ops.to_fetch_registers = remote_fetch_registers;
8771 remote_ops.to_store_registers = remote_store_registers;
8772 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8773 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8774 remote_ops.to_files_info = remote_files_info;
8775 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8776 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8777 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8778 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8779 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8780 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8781 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8782 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8783 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8784 remote_ops.to_kill = remote_kill;
8785 remote_ops.to_load = generic_load;
8786 remote_ops.to_mourn_inferior = remote_mourn;
8787 remote_ops.to_thread_alive = remote_thread_alive;
8788 remote_ops.to_find_new_threads = remote_threads_info;
8789 remote_ops.to_pid_to_str = remote_pid_to_str;
8790 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8791 remote_ops.to_stop = remote_stop;
8792 remote_ops.to_xfer_partial = remote_xfer_partial;
8793 remote_ops.to_rcmd = remote_rcmd;
8794 remote_ops.to_log_command = serial_log_command;
8795 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8796 remote_ops.to_stratum = process_stratum;
8797 remote_ops.to_has_all_memory = 1;
8798 remote_ops.to_has_memory = 1;
8799 remote_ops.to_has_stack = 1;
8800 remote_ops.to_has_registers = 1;
8801 remote_ops.to_has_execution = 1;
8802 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8803 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8804 remote_ops.to_magic = OPS_MAGIC;
8805 remote_ops.to_memory_map = remote_memory_map;
8806 remote_ops.to_flash_erase = remote_flash_erase;
8807 remote_ops.to_flash_done = remote_flash_done;
8808 remote_ops.to_read_description = remote_read_description;
8809 remote_ops.to_search_memory = remote_search_memory;
8810 remote_ops.to_can_async_p = remote_can_async_p;
8811 remote_ops.to_is_async_p = remote_is_async_p;
8812 remote_ops.to_async = remote_async;
8813 remote_ops.to_async_mask = remote_async_mask;
8814 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8815 remote_ops.to_terminal_ours = remote_terminal_ours;
8816 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8817 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8818 }
8819
8820 /* Set up the extended remote vector by making a copy of the standard
8821 remote vector and adding to it. */
8822
8823 static void
8824 init_extended_remote_ops (void)
8825 {
8826 extended_remote_ops = remote_ops;
8827
8828 extended_remote_ops.to_shortname = "extended-remote";
8829 extended_remote_ops.to_longname =
8830 "Extended remote serial target in gdb-specific protocol";
8831 extended_remote_ops.to_doc =
8832 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8833 Specify the serial device it is connected to (e.g. /dev/ttya).";
8834 extended_remote_ops.to_open = extended_remote_open;
8835 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8836 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8837 extended_remote_ops.to_detach = extended_remote_detach;
8838 extended_remote_ops.to_attach = extended_remote_attach;
8839 extended_remote_ops.to_kill = extended_remote_kill;
8840 }
8841
8842 static int
8843 remote_can_async_p (void)
8844 {
8845 if (!target_async_permitted)
8846 /* We only enable async when the user specifically asks for it. */
8847 return 0;
8848
8849 /* We're async whenever the serial device is. */
8850 return remote_async_mask_value && serial_can_async_p (remote_desc);
8851 }
8852
8853 static int
8854 remote_is_async_p (void)
8855 {
8856 if (!target_async_permitted)
8857 /* We only enable async when the user specifically asks for it. */
8858 return 0;
8859
8860 /* We're async whenever the serial device is. */
8861 return remote_async_mask_value && serial_is_async_p (remote_desc);
8862 }
8863
8864 /* Pass the SERIAL event on and up to the client. One day this code
8865 will be able to delay notifying the client of an event until the
8866 point where an entire packet has been received. */
8867
8868 static void (*async_client_callback) (enum inferior_event_type event_type,
8869 void *context);
8870 static void *async_client_context;
8871 static serial_event_ftype remote_async_serial_handler;
8872
8873 static void
8874 remote_async_serial_handler (struct serial *scb, void *context)
8875 {
8876 /* Don't propogate error information up to the client. Instead let
8877 the client find out about the error by querying the target. */
8878 async_client_callback (INF_REG_EVENT, async_client_context);
8879 }
8880
8881 static void
8882 remote_async_inferior_event_handler (gdb_client_data data)
8883 {
8884 inferior_event_handler (INF_REG_EVENT, NULL);
8885 }
8886
8887 static void
8888 remote_async_get_pending_events_handler (gdb_client_data data)
8889 {
8890 remote_get_pending_stop_replies ();
8891 }
8892
8893 static void
8894 remote_async (void (*callback) (enum inferior_event_type event_type,
8895 void *context), void *context)
8896 {
8897 if (remote_async_mask_value == 0)
8898 internal_error (__FILE__, __LINE__,
8899 _("Calling remote_async when async is masked"));
8900
8901 if (callback != NULL)
8902 {
8903 serial_async (remote_desc, remote_async_serial_handler, NULL);
8904 async_client_callback = callback;
8905 async_client_context = context;
8906 }
8907 else
8908 serial_async (remote_desc, NULL, NULL);
8909 }
8910
8911 static int
8912 remote_async_mask (int new_mask)
8913 {
8914 int curr_mask = remote_async_mask_value;
8915 remote_async_mask_value = new_mask;
8916 return curr_mask;
8917 }
8918
8919 static void
8920 set_remote_cmd (char *args, int from_tty)
8921 {
8922 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8923 }
8924
8925 static void
8926 show_remote_cmd (char *args, int from_tty)
8927 {
8928 /* We can't just use cmd_show_list here, because we want to skip
8929 the redundant "show remote Z-packet" and the legacy aliases. */
8930 struct cleanup *showlist_chain;
8931 struct cmd_list_element *list = remote_show_cmdlist;
8932
8933 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8934 for (; list != NULL; list = list->next)
8935 if (strcmp (list->name, "Z-packet") == 0)
8936 continue;
8937 else if (list->type == not_set_cmd)
8938 /* Alias commands are exactly like the original, except they
8939 don't have the normal type. */
8940 continue;
8941 else
8942 {
8943 struct cleanup *option_chain
8944 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8945 ui_out_field_string (uiout, "name", list->name);
8946 ui_out_text (uiout, ": ");
8947 if (list->type == show_cmd)
8948 do_setshow_command ((char *) NULL, from_tty, list);
8949 else
8950 cmd_func (list, NULL, from_tty);
8951 /* Close the tuple. */
8952 do_cleanups (option_chain);
8953 }
8954
8955 /* Close the tuple. */
8956 do_cleanups (showlist_chain);
8957 }
8958
8959
8960 /* Function to be called whenever a new objfile (shlib) is detected. */
8961 static void
8962 remote_new_objfile (struct objfile *objfile)
8963 {
8964 if (remote_desc != 0) /* Have a remote connection. */
8965 remote_check_symbols (objfile);
8966 }
8967
8968 void
8969 _initialize_remote (void)
8970 {
8971 struct remote_state *rs;
8972
8973 /* architecture specific data */
8974 remote_gdbarch_data_handle =
8975 gdbarch_data_register_post_init (init_remote_state);
8976 remote_g_packet_data_handle =
8977 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8978
8979 /* Initialize the per-target state. At the moment there is only one
8980 of these, not one per target. Only one target is active at a
8981 time. The default buffer size is unimportant; it will be expanded
8982 whenever a larger buffer is needed. */
8983 rs = get_remote_state_raw ();
8984 rs->buf_size = 400;
8985 rs->buf = xmalloc (rs->buf_size);
8986
8987 init_remote_ops ();
8988 add_target (&remote_ops);
8989
8990 init_extended_remote_ops ();
8991 add_target (&extended_remote_ops);
8992
8993 /* Hook into new objfile notification. */
8994 observer_attach_new_objfile (remote_new_objfile);
8995
8996 /* Set up signal handlers. */
8997 sigint_remote_token =
8998 create_async_signal_handler (async_remote_interrupt, NULL);
8999 sigint_remote_twice_token =
9000 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9001
9002 #if 0
9003 init_remote_threadtests ();
9004 #endif
9005
9006 /* set/show remote ... */
9007
9008 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9009 Remote protocol specific variables\n\
9010 Configure various remote-protocol specific variables such as\n\
9011 the packets being used"),
9012 &remote_set_cmdlist, "set remote ",
9013 0 /* allow-unknown */, &setlist);
9014 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9015 Remote protocol specific variables\n\
9016 Configure various remote-protocol specific variables such as\n\
9017 the packets being used"),
9018 &remote_show_cmdlist, "show remote ",
9019 0 /* allow-unknown */, &showlist);
9020
9021 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9022 Compare section data on target to the exec file.\n\
9023 Argument is a single section name (default: all loaded sections)."),
9024 &cmdlist);
9025
9026 add_cmd ("packet", class_maintenance, packet_command, _("\
9027 Send an arbitrary packet to a remote target.\n\
9028 maintenance packet TEXT\n\
9029 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9030 this command sends the string TEXT to the inferior, and displays the\n\
9031 response packet. GDB supplies the initial `$' character, and the\n\
9032 terminating `#' character and checksum."),
9033 &maintenancelist);
9034
9035 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9036 Set whether to send break if interrupted."), _("\
9037 Show whether to send break if interrupted."), _("\
9038 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9039 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9040 &setlist, &showlist);
9041
9042 /* Install commands for configuring memory read/write packets. */
9043
9044 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9045 Set the maximum number of bytes per memory write packet (deprecated)."),
9046 &setlist);
9047 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9048 Show the maximum number of bytes per memory write packet (deprecated)."),
9049 &showlist);
9050 add_cmd ("memory-write-packet-size", no_class,
9051 set_memory_write_packet_size, _("\
9052 Set the maximum number of bytes per memory-write packet.\n\
9053 Specify the number of bytes in a packet or 0 (zero) for the\n\
9054 default packet size. The actual limit is further reduced\n\
9055 dependent on the target. Specify ``fixed'' to disable the\n\
9056 further restriction and ``limit'' to enable that restriction."),
9057 &remote_set_cmdlist);
9058 add_cmd ("memory-read-packet-size", no_class,
9059 set_memory_read_packet_size, _("\
9060 Set the maximum number of bytes per memory-read packet.\n\
9061 Specify the number of bytes in a packet or 0 (zero) for the\n\
9062 default packet size. The actual limit is further reduced\n\
9063 dependent on the target. Specify ``fixed'' to disable the\n\
9064 further restriction and ``limit'' to enable that restriction."),
9065 &remote_set_cmdlist);
9066 add_cmd ("memory-write-packet-size", no_class,
9067 show_memory_write_packet_size,
9068 _("Show the maximum number of bytes per memory-write packet."),
9069 &remote_show_cmdlist);
9070 add_cmd ("memory-read-packet-size", no_class,
9071 show_memory_read_packet_size,
9072 _("Show the maximum number of bytes per memory-read packet."),
9073 &remote_show_cmdlist);
9074
9075 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9076 &remote_hw_watchpoint_limit, _("\
9077 Set the maximum number of target hardware watchpoints."), _("\
9078 Show the maximum number of target hardware watchpoints."), _("\
9079 Specify a negative limit for unlimited."),
9080 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9081 &remote_set_cmdlist, &remote_show_cmdlist);
9082 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9083 &remote_hw_breakpoint_limit, _("\
9084 Set the maximum number of target hardware breakpoints."), _("\
9085 Show the maximum number of target hardware breakpoints."), _("\
9086 Specify a negative limit for unlimited."),
9087 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9088 &remote_set_cmdlist, &remote_show_cmdlist);
9089
9090 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9091 &remote_address_size, _("\
9092 Set the maximum size of the address (in bits) in a memory packet."), _("\
9093 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9094 NULL,
9095 NULL, /* FIXME: i18n: */
9096 &setlist, &showlist);
9097
9098 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9099 "X", "binary-download", 1);
9100
9101 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9102 "vCont", "verbose-resume", 0);
9103
9104 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9105 "QPassSignals", "pass-signals", 0);
9106
9107 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9108 "qSymbol", "symbol-lookup", 0);
9109
9110 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9111 "P", "set-register", 1);
9112
9113 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9114 "p", "fetch-register", 1);
9115
9116 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9117 "Z0", "software-breakpoint", 0);
9118
9119 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9120 "Z1", "hardware-breakpoint", 0);
9121
9122 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9123 "Z2", "write-watchpoint", 0);
9124
9125 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9126 "Z3", "read-watchpoint", 0);
9127
9128 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9129 "Z4", "access-watchpoint", 0);
9130
9131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9132 "qXfer:auxv:read", "read-aux-vector", 0);
9133
9134 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9135 "qXfer:features:read", "target-features", 0);
9136
9137 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9138 "qXfer:libraries:read", "library-info", 0);
9139
9140 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9141 "qXfer:memory-map:read", "memory-map", 0);
9142
9143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9144 "qXfer:spu:read", "read-spu-object", 0);
9145
9146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9147 "qXfer:spu:write", "write-spu-object", 0);
9148
9149 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9150 "qXfer:osdata:read", "osdata", 0);
9151
9152 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9153 "qXfer:siginfo:read", "read-siginfo-object", 0);
9154
9155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9156 "qXfer:siginfo:write", "write-siginfo-object", 0);
9157
9158 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9159 "qGetTLSAddr", "get-thread-local-storage-address",
9160 0);
9161
9162 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9163 "qSupported", "supported-packets", 0);
9164
9165 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9166 "qSearch:memory", "search-memory", 0);
9167
9168 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9169 "vFile:open", "hostio-open", 0);
9170
9171 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9172 "vFile:pread", "hostio-pread", 0);
9173
9174 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9175 "vFile:pwrite", "hostio-pwrite", 0);
9176
9177 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9178 "vFile:close", "hostio-close", 0);
9179
9180 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9181 "vFile:unlink", "hostio-unlink", 0);
9182
9183 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9184 "vAttach", "attach", 0);
9185
9186 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9187 "vRun", "run", 0);
9188
9189 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9190 "QStartNoAckMode", "noack", 0);
9191
9192 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9193 "vKill", "kill", 0);
9194
9195 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9196 "qAttached", "query-attached", 0);
9197
9198 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9199 Z sub-packet has its own set and show commands, but users may
9200 have sets to this variable in their .gdbinit files (or in their
9201 documentation). */
9202 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9203 &remote_Z_packet_detect, _("\
9204 Set use of remote protocol `Z' packets"), _("\
9205 Show use of remote protocol `Z' packets "), _("\
9206 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9207 packets."),
9208 set_remote_protocol_Z_packet_cmd,
9209 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9210 &remote_set_cmdlist, &remote_show_cmdlist);
9211
9212 add_prefix_cmd ("remote", class_files, remote_command, _("\
9213 Manipulate files on the remote system\n\
9214 Transfer files to and from the remote target system."),
9215 &remote_cmdlist, "remote ",
9216 0 /* allow-unknown */, &cmdlist);
9217
9218 add_cmd ("put", class_files, remote_put_command,
9219 _("Copy a local file to the remote system."),
9220 &remote_cmdlist);
9221
9222 add_cmd ("get", class_files, remote_get_command,
9223 _("Copy a remote file to the local system."),
9224 &remote_cmdlist);
9225
9226 add_cmd ("delete", class_files, remote_delete_command,
9227 _("Delete a remote file."),
9228 &remote_cmdlist);
9229
9230 remote_exec_file = xstrdup ("");
9231 add_setshow_string_noescape_cmd ("exec-file", class_files,
9232 &remote_exec_file, _("\
9233 Set the remote pathname for \"run\""), _("\
9234 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9235 &remote_set_cmdlist, &remote_show_cmdlist);
9236
9237 /* Eventually initialize fileio. See fileio.c */
9238 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9239
9240 /* Take advantage of the fact that the LWP field is not used, to tag
9241 special ptids with it set to != 0. */
9242 magic_null_ptid = ptid_build (42000, 1, -1);
9243 not_sent_ptid = ptid_build (42000, 1, -2);
9244 any_thread_ptid = ptid_build (42000, 1, 0);
9245 }
This page took 0.243409 seconds and 4 git commands to generate.