2003-11-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59
60 /* Prototypes for local functions */
61 static void cleanup_sigint_signal_handler (void *dummy);
62 static void initialize_sigint_signal_handler (void);
63 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65 static void handle_remote_sigint (int);
66 static void handle_remote_sigint_twice (int);
67 static void async_remote_interrupt (gdb_client_data);
68 void async_remote_interrupt_twice (gdb_client_data);
69
70 static void build_remote_gdbarch_data (void);
71
72 static void remote_files_info (struct target_ops *ignore);
73
74 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79 static void remote_prepare_to_store (void);
80
81 static void remote_fetch_registers (int regno);
82
83 static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static int remote_start_remote (struct ui_out *uiout, void *dummy);
88
89 static void remote_open (char *name, int from_tty);
90 static void remote_async_open (char *name, int from_tty);
91
92 static void extended_remote_open (char *name, int from_tty);
93 static void extended_remote_async_open (char *name, int from_tty);
94
95 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
96 int async_p);
97
98 static void remote_close (int quitting);
99
100 static void remote_store_registers (int regno);
101
102 static void remote_mourn (void);
103 static void remote_async_mourn (void);
104
105 static void extended_remote_restart (void);
106
107 static void extended_remote_mourn (void);
108
109 static void extended_remote_create_inferior (char *, char *, char **);
110 static void extended_remote_async_create_inferior (char *, char *, char **);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char *buf, long sizeof_buf);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120 static ptid_t remote_async_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124 static void remote_async_kill (void);
125
126 static int tohex (int nib);
127
128 static void remote_detach (char *args, int from_tty);
129
130 static void remote_interrupt (int signo);
131
132 static void remote_interrupt_twice (int signo);
133
134 static void interrupt_query (void);
135
136 static void set_thread (int, int);
137
138 static int remote_thread_alive (ptid_t);
139
140 static void get_offsets (void);
141
142 static long read_frame (char *buf, long sizeof_buf);
143
144 static int remote_insert_breakpoint (CORE_ADDR, char *);
145
146 static int remote_remove_breakpoint (CORE_ADDR, char *);
147
148 static int hexnumlen (ULONGEST num);
149
150 static void init_remote_ops (void);
151
152 static void init_extended_remote_ops (void);
153
154 static void init_remote_cisco_ops (void);
155
156 static struct target_ops remote_cisco_ops;
157
158 static void remote_stop (void);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static unsigned long crc32 (unsigned char *, int, unsigned int);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (int currthread);
185
186 static int fromhex (int a);
187
188 static int hex2bin (const char *hex, char *bin, int count);
189
190 static int bin2hex (const char *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 void _initialize_remote (void);
203
204 /* Description of the remote protocol. Strictly speaking, when the
205 target is open()ed, remote.c should create a per-target description
206 of the remote protocol using that target's architecture.
207 Unfortunately, the target stack doesn't include local state. For
208 the moment keep the information in the target's architecture
209 object. Sigh.. */
210
211 struct packet_reg
212 {
213 long offset; /* Offset into G packet. */
214 long regnum; /* GDB's internal register number. */
215 LONGEST pnum; /* Remote protocol register number. */
216 int in_g_packet; /* Always part of G packet. */
217 /* long size in bytes; == DEPRECATED_REGISTER_RAW_SIZE (regnum); at present. */
218 /* char *name; == REGISTER_NAME (regnum); at present. */
219 };
220
221 struct remote_state
222 {
223 /* Description of the remote protocol registers. */
224 long sizeof_g_packet;
225
226 /* Description of the remote protocol registers indexed by REGNUM
227 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
228 struct packet_reg *regs;
229
230 /* This is the size (in chars) of the first response to the ``g''
231 packet. It is used as a heuristic when determining the maximum
232 size of memory-read and memory-write packets. A target will
233 typically only reserve a buffer large enough to hold the ``g''
234 packet. The size does not include packet overhead (headers and
235 trailers). */
236 long actual_register_packet_size;
237
238 /* This is the maximum size (in chars) of a non read/write packet.
239 It is also used as a cap on the size of read/write packets. */
240 long remote_packet_size;
241 };
242
243
244 /* Handle for retreving the remote protocol data from gdbarch. */
245 static struct gdbarch_data *remote_gdbarch_data_handle;
246
247 static struct remote_state *
248 get_remote_state (void)
249 {
250 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
251 }
252
253 static void *
254 init_remote_state (struct gdbarch *gdbarch)
255 {
256 int regnum;
257 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
258
259 if (DEPRECATED_REGISTER_BYTES != 0)
260 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
261 else
262 rs->sizeof_g_packet = 0;
263
264 /* Assume a 1:1 regnum<->pnum table. */
265 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
266 struct packet_reg);
267 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
268 {
269 struct packet_reg *r = &rs->regs[regnum];
270 r->pnum = regnum;
271 r->regnum = regnum;
272 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
273 r->in_g_packet = (regnum < NUM_REGS);
274 /* ...name = REGISTER_NAME (regnum); */
275
276 /* Compute packet size by accumulating the size of all registers. */
277 if (DEPRECATED_REGISTER_BYTES == 0)
278 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
279 }
280
281 /* Default maximum number of characters in a packet body. Many
282 remote stubs have a hardwired buffer size of 400 bytes
283 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
284 as the maximum packet-size to ensure that the packet and an extra
285 NUL character can always fit in the buffer. This stops GDB
286 trashing stubs that try to squeeze an extra NUL into what is
287 already a full buffer (As of 1999-12-04 that was most stubs. */
288 rs->remote_packet_size = 400 - 1;
289
290 /* Should rs->sizeof_g_packet needs more space than the
291 default, adjust the size accordingly. Remember that each byte is
292 encoded as two characters. 32 is the overhead for the packet
293 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
294 (``$NN:G...#NN'') is a better guess, the below has been padded a
295 little. */
296 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
297 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
298
299 /* This one is filled in when a ``g'' packet is received. */
300 rs->actual_register_packet_size = 0;
301
302 return rs;
303 }
304
305 static struct packet_reg *
306 packet_reg_from_regnum (struct remote_state *rs, long regnum)
307 {
308 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
309 return NULL;
310 else
311 {
312 struct packet_reg *r = &rs->regs[regnum];
313 gdb_assert (r->regnum == regnum);
314 return r;
315 }
316 }
317
318 static struct packet_reg *
319 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
320 {
321 int i;
322 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
323 {
324 struct packet_reg *r = &rs->regs[i];
325 if (r->pnum == pnum)
326 return r;
327 }
328 return NULL;
329 }
330
331 /* FIXME: graces/2002-08-08: These variables should eventually be
332 bound to an instance of the target object (as in gdbarch-tdep()),
333 when such a thing exists. */
334
335 /* This is set to the data address of the access causing the target
336 to stop for a watchpoint. */
337 static CORE_ADDR remote_watch_data_address;
338
339 /* This is non-zero if taregt stopped for a watchpoint. */
340 static int remote_stopped_by_watchpoint_p;
341
342
343 static struct target_ops remote_ops;
344
345 static struct target_ops extended_remote_ops;
346
347 /* Temporary target ops. Just like the remote_ops and
348 extended_remote_ops, but with asynchronous support. */
349 static struct target_ops remote_async_ops;
350
351 static struct target_ops extended_async_remote_ops;
352
353 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
354 ``forever'' still use the normal timeout mechanism. This is
355 currently used by the ASYNC code to guarentee that target reads
356 during the initial connect always time-out. Once getpkt has been
357 modified to return a timeout indication and, in turn
358 remote_wait()/wait_for_inferior() have gained a timeout parameter
359 this can go away. */
360 static int wait_forever_enabled_p = 1;
361
362
363 /* This variable chooses whether to send a ^C or a break when the user
364 requests program interruption. Although ^C is usually what remote
365 systems expect, and that is the default here, sometimes a break is
366 preferable instead. */
367
368 static int remote_break;
369
370 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
371 remote_open knows that we don't have a file open when the program
372 starts. */
373 static struct serial *remote_desc = NULL;
374
375 /* This is set by the target (thru the 'S' message)
376 to denote that the target is in kernel mode. */
377 static int cisco_kernel_mode = 0;
378
379 /* This variable sets the number of bits in an address that are to be
380 sent in a memory ("M" or "m") packet. Normally, after stripping
381 leading zeros, the entire address would be sent. This variable
382 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
383 initial implementation of remote.c restricted the address sent in
384 memory packets to ``host::sizeof long'' bytes - (typically 32
385 bits). Consequently, for 64 bit targets, the upper 32 bits of an
386 address was never sent. Since fixing this bug may cause a break in
387 some remote targets this variable is principly provided to
388 facilitate backward compatibility. */
389
390 static int remote_address_size;
391
392 /* Tempoary to track who currently owns the terminal. See
393 target_async_terminal_* for more details. */
394
395 static int remote_async_terminal_ours_p;
396
397 \f
398 /* User configurable variables for the number of characters in a
399 memory read/write packet. MIN ((rs->remote_packet_size),
400 rs->sizeof_g_packet) is the default. Some targets need smaller
401 values (fifo overruns, et.al.) and some users need larger values
402 (speed up transfers). The variables ``preferred_*'' (the user
403 request), ``current_*'' (what was actually set) and ``forced_*''
404 (Positive - a soft limit, negative - a hard limit). */
405
406 struct memory_packet_config
407 {
408 char *name;
409 long size;
410 int fixed_p;
411 };
412
413 /* Compute the current size of a read/write packet. Since this makes
414 use of ``actual_register_packet_size'' the computation is dynamic. */
415
416 static long
417 get_memory_packet_size (struct memory_packet_config *config)
418 {
419 struct remote_state *rs = get_remote_state ();
420 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
421 law?) that some hosts don't cope very well with large alloca()
422 calls. Eventually the alloca() code will be replaced by calls to
423 xmalloc() and make_cleanups() allowing this restriction to either
424 be lifted or removed. */
425 #ifndef MAX_REMOTE_PACKET_SIZE
426 #define MAX_REMOTE_PACKET_SIZE 16384
427 #endif
428 /* NOTE: 16 is just chosen at random. */
429 #ifndef MIN_REMOTE_PACKET_SIZE
430 #define MIN_REMOTE_PACKET_SIZE 16
431 #endif
432 long what_they_get;
433 if (config->fixed_p)
434 {
435 if (config->size <= 0)
436 what_they_get = MAX_REMOTE_PACKET_SIZE;
437 else
438 what_they_get = config->size;
439 }
440 else
441 {
442 what_they_get = (rs->remote_packet_size);
443 /* Limit the packet to the size specified by the user. */
444 if (config->size > 0
445 && what_they_get > config->size)
446 what_they_get = config->size;
447 /* Limit it to the size of the targets ``g'' response. */
448 if ((rs->actual_register_packet_size) > 0
449 && what_they_get > (rs->actual_register_packet_size))
450 what_they_get = (rs->actual_register_packet_size);
451 }
452 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
453 what_they_get = MAX_REMOTE_PACKET_SIZE;
454 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
455 what_they_get = MIN_REMOTE_PACKET_SIZE;
456 return what_they_get;
457 }
458
459 /* Update the size of a read/write packet. If they user wants
460 something really big then do a sanity check. */
461
462 static void
463 set_memory_packet_size (char *args, struct memory_packet_config *config)
464 {
465 int fixed_p = config->fixed_p;
466 long size = config->size;
467 if (args == NULL)
468 error ("Argument required (integer, `fixed' or `limited').");
469 else if (strcmp (args, "hard") == 0
470 || strcmp (args, "fixed") == 0)
471 fixed_p = 1;
472 else if (strcmp (args, "soft") == 0
473 || strcmp (args, "limit") == 0)
474 fixed_p = 0;
475 else
476 {
477 char *end;
478 size = strtoul (args, &end, 0);
479 if (args == end)
480 error ("Invalid %s (bad syntax).", config->name);
481 #if 0
482 /* Instead of explicitly capping the size of a packet to
483 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
484 instead allowed to set the size to something arbitrarily
485 large. */
486 if (size > MAX_REMOTE_PACKET_SIZE)
487 error ("Invalid %s (too large).", config->name);
488 #endif
489 }
490 /* Extra checks? */
491 if (fixed_p && !config->fixed_p)
492 {
493 if (! query ("The target may not be able to correctly handle a %s\n"
494 "of %ld bytes. Change the packet size? ",
495 config->name, size))
496 error ("Packet size not changed.");
497 }
498 /* Update the config. */
499 config->fixed_p = fixed_p;
500 config->size = size;
501 }
502
503 static void
504 show_memory_packet_size (struct memory_packet_config *config)
505 {
506 printf_filtered ("The %s is %ld. ", config->name, config->size);
507 if (config->fixed_p)
508 printf_filtered ("Packets are fixed at %ld bytes.\n",
509 get_memory_packet_size (config));
510 else
511 printf_filtered ("Packets are limited to %ld bytes.\n",
512 get_memory_packet_size (config));
513 }
514
515 static struct memory_packet_config memory_write_packet_config =
516 {
517 "memory-write-packet-size",
518 };
519
520 static void
521 set_memory_write_packet_size (char *args, int from_tty)
522 {
523 set_memory_packet_size (args, &memory_write_packet_config);
524 }
525
526 static void
527 show_memory_write_packet_size (char *args, int from_tty)
528 {
529 show_memory_packet_size (&memory_write_packet_config);
530 }
531
532 static long
533 get_memory_write_packet_size (void)
534 {
535 return get_memory_packet_size (&memory_write_packet_config);
536 }
537
538 static struct memory_packet_config memory_read_packet_config =
539 {
540 "memory-read-packet-size",
541 };
542
543 static void
544 set_memory_read_packet_size (char *args, int from_tty)
545 {
546 set_memory_packet_size (args, &memory_read_packet_config);
547 }
548
549 static void
550 show_memory_read_packet_size (char *args, int from_tty)
551 {
552 show_memory_packet_size (&memory_read_packet_config);
553 }
554
555 static long
556 get_memory_read_packet_size (void)
557 {
558 struct remote_state *rs = get_remote_state ();
559 long size = get_memory_packet_size (&memory_read_packet_config);
560 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
561 extra buffer size argument before the memory read size can be
562 increased beyond (rs->remote_packet_size). */
563 if (size > (rs->remote_packet_size))
564 size = (rs->remote_packet_size);
565 return size;
566 }
567
568 \f
569 /* Generic configuration support for packets the stub optionally
570 supports. Allows the user to specify the use of the packet as well
571 as allowing GDB to auto-detect support in the remote stub. */
572
573 enum packet_support
574 {
575 PACKET_SUPPORT_UNKNOWN = 0,
576 PACKET_ENABLE,
577 PACKET_DISABLE
578 };
579
580 struct packet_config
581 {
582 char *name;
583 char *title;
584 enum auto_boolean detect;
585 enum packet_support support;
586 };
587
588 /* Analyze a packet's return value and update the packet config
589 accordingly. */
590
591 enum packet_result
592 {
593 PACKET_ERROR,
594 PACKET_OK,
595 PACKET_UNKNOWN
596 };
597
598 static void
599 update_packet_config (struct packet_config *config)
600 {
601 switch (config->detect)
602 {
603 case AUTO_BOOLEAN_TRUE:
604 config->support = PACKET_ENABLE;
605 break;
606 case AUTO_BOOLEAN_FALSE:
607 config->support = PACKET_DISABLE;
608 break;
609 case AUTO_BOOLEAN_AUTO:
610 config->support = PACKET_SUPPORT_UNKNOWN;
611 break;
612 }
613 }
614
615 static void
616 show_packet_config_cmd (struct packet_config *config)
617 {
618 char *support = "internal-error";
619 switch (config->support)
620 {
621 case PACKET_ENABLE:
622 support = "enabled";
623 break;
624 case PACKET_DISABLE:
625 support = "disabled";
626 break;
627 case PACKET_SUPPORT_UNKNOWN:
628 support = "unknown";
629 break;
630 }
631 switch (config->detect)
632 {
633 case AUTO_BOOLEAN_AUTO:
634 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
635 config->name, config->title, support);
636 break;
637 case AUTO_BOOLEAN_TRUE:
638 case AUTO_BOOLEAN_FALSE:
639 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
640 config->name, config->title, support);
641 break;
642 }
643 }
644
645 static void
646 add_packet_config_cmd (struct packet_config *config,
647 char *name,
648 char *title,
649 cmd_sfunc_ftype *set_func,
650 cmd_sfunc_ftype *show_func,
651 struct cmd_list_element **set_remote_list,
652 struct cmd_list_element **show_remote_list,
653 int legacy)
654 {
655 struct cmd_list_element *set_cmd;
656 struct cmd_list_element *show_cmd;
657 char *set_doc;
658 char *show_doc;
659 char *cmd_name;
660 config->name = name;
661 config->title = title;
662 config->detect = AUTO_BOOLEAN_AUTO;
663 config->support = PACKET_SUPPORT_UNKNOWN;
664 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
665 name, title);
666 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
667 name, title);
668 /* set/show TITLE-packet {auto,on,off} */
669 xasprintf (&cmd_name, "%s-packet", title);
670 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
671 &config->detect, set_doc, show_doc,
672 set_func, show_func,
673 set_remote_list, show_remote_list);
674 /* set/show remote NAME-packet {auto,on,off} -- legacy */
675 if (legacy)
676 {
677 char *legacy_name;
678 xasprintf (&legacy_name, "%s-packet", name);
679 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
680 set_remote_list);
681 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
682 show_remote_list);
683 }
684 }
685
686 static enum packet_result
687 packet_ok (const char *buf, struct packet_config *config)
688 {
689 if (buf[0] != '\0')
690 {
691 /* The stub recognized the packet request. Check that the
692 operation succeeded. */
693 switch (config->support)
694 {
695 case PACKET_SUPPORT_UNKNOWN:
696 if (remote_debug)
697 fprintf_unfiltered (gdb_stdlog,
698 "Packet %s (%s) is supported\n",
699 config->name, config->title);
700 config->support = PACKET_ENABLE;
701 break;
702 case PACKET_DISABLE:
703 internal_error (__FILE__, __LINE__,
704 "packet_ok: attempt to use a disabled packet");
705 break;
706 case PACKET_ENABLE:
707 break;
708 }
709 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
710 /* "OK" - definitly OK. */
711 return PACKET_OK;
712 if (buf[0] == 'E'
713 && isxdigit (buf[1]) && isxdigit (buf[2])
714 && buf[3] == '\0')
715 /* "Enn" - definitly an error. */
716 return PACKET_ERROR;
717 /* The packet may or may not be OK. Just assume it is */
718 return PACKET_OK;
719 }
720 else
721 {
722 /* The stub does not support the packet. */
723 switch (config->support)
724 {
725 case PACKET_ENABLE:
726 if (config->detect == AUTO_BOOLEAN_AUTO)
727 /* If the stub previously indicated that the packet was
728 supported then there is a protocol error.. */
729 error ("Protocol error: %s (%s) conflicting enabled responses.",
730 config->name, config->title);
731 else
732 /* The user set it wrong. */
733 error ("Enabled packet %s (%s) not recognized by stub",
734 config->name, config->title);
735 break;
736 case PACKET_SUPPORT_UNKNOWN:
737 if (remote_debug)
738 fprintf_unfiltered (gdb_stdlog,
739 "Packet %s (%s) is NOT supported\n",
740 config->name, config->title);
741 config->support = PACKET_DISABLE;
742 break;
743 case PACKET_DISABLE:
744 break;
745 }
746 return PACKET_UNKNOWN;
747 }
748 }
749
750 /* Should we try the 'vCont' (descriptive resume) request? */
751 static struct packet_config remote_protocol_vcont;
752
753 static void
754 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
755 struct cmd_list_element *c)
756 {
757 update_packet_config (&remote_protocol_vcont);
758 }
759
760 static void
761 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
762 struct cmd_list_element *c)
763 {
764 show_packet_config_cmd (&remote_protocol_vcont);
765 }
766
767 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
768 static struct packet_config remote_protocol_qSymbol;
769
770 static void
771 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 update_packet_config (&remote_protocol_qSymbol);
775 }
776
777 static void
778 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
779 struct cmd_list_element *c)
780 {
781 show_packet_config_cmd (&remote_protocol_qSymbol);
782 }
783
784 /* Should we try the 'e' (step over range) request? */
785 static struct packet_config remote_protocol_e;
786
787 static void
788 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 update_packet_config (&remote_protocol_e);
792 }
793
794 static void
795 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
796 struct cmd_list_element *c)
797 {
798 show_packet_config_cmd (&remote_protocol_e);
799 }
800
801
802 /* Should we try the 'E' (step over range / w signal #) request? */
803 static struct packet_config remote_protocol_E;
804
805 static void
806 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
807 struct cmd_list_element *c)
808 {
809 update_packet_config (&remote_protocol_E);
810 }
811
812 static void
813 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
814 struct cmd_list_element *c)
815 {
816 show_packet_config_cmd (&remote_protocol_E);
817 }
818
819
820 /* Should we try the 'P' (set register) request? */
821
822 static struct packet_config remote_protocol_P;
823
824 static void
825 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
826 struct cmd_list_element *c)
827 {
828 update_packet_config (&remote_protocol_P);
829 }
830
831 static void
832 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
833 struct cmd_list_element *c)
834 {
835 show_packet_config_cmd (&remote_protocol_P);
836 }
837
838 /* Should we try one of the 'Z' requests? */
839
840 enum Z_packet_type
841 {
842 Z_PACKET_SOFTWARE_BP,
843 Z_PACKET_HARDWARE_BP,
844 Z_PACKET_WRITE_WP,
845 Z_PACKET_READ_WP,
846 Z_PACKET_ACCESS_WP,
847 NR_Z_PACKET_TYPES
848 };
849
850 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
851
852 /* FIXME: Instead of having all these boiler plate functions, the
853 command callback should include a context argument. */
854
855 static void
856 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
857 struct cmd_list_element *c)
858 {
859 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
860 }
861
862 static void
863 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
864 struct cmd_list_element *c)
865 {
866 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
867 }
868
869 static void
870 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
871 struct cmd_list_element *c)
872 {
873 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
874 }
875
876 static void
877 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
878 struct cmd_list_element *c)
879 {
880 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
881 }
882
883 static void
884 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
885 struct cmd_list_element *c)
886 {
887 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
888 }
889
890 static void
891 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
892 struct cmd_list_element *c)
893 {
894 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
895 }
896
897 static void
898 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
899 struct cmd_list_element *c)
900 {
901 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
902 }
903
904 static void
905 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
906 struct cmd_list_element *c)
907 {
908 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
909 }
910
911 static void
912 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914 {
915 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
916 }
917
918 static void
919 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
923 }
924
925 /* For compatibility with older distributions. Provide a ``set remote
926 Z-packet ...'' command that updates all the Z packet types. */
927
928 static enum auto_boolean remote_Z_packet_detect;
929
930 static void
931 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
932 struct cmd_list_element *c)
933 {
934 int i;
935 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
936 {
937 remote_protocol_Z[i].detect = remote_Z_packet_detect;
938 update_packet_config (&remote_protocol_Z[i]);
939 }
940 }
941
942 static void
943 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
944 struct cmd_list_element *c)
945 {
946 int i;
947 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
948 {
949 show_packet_config_cmd (&remote_protocol_Z[i]);
950 }
951 }
952
953 /* Should we try the 'X' (remote binary download) packet?
954
955 This variable (available to the user via "set remote X-packet")
956 dictates whether downloads are sent in binary (via the 'X' packet).
957 We assume that the stub can, and attempt to do it. This will be
958 cleared if the stub does not understand it. This switch is still
959 needed, though in cases when the packet is supported in the stub,
960 but the connection does not allow it (i.e., 7-bit serial connection
961 only). */
962
963 static struct packet_config remote_protocol_binary_download;
964
965 /* Should we try the 'ThreadInfo' query packet?
966
967 This variable (NOT available to the user: auto-detect only!)
968 determines whether GDB will use the new, simpler "ThreadInfo"
969 query or the older, more complex syntax for thread queries.
970 This is an auto-detect variable (set to true at each connect,
971 and set to false when the target fails to recognize it). */
972
973 static int use_threadinfo_query;
974 static int use_threadextra_query;
975
976 static void
977 set_remote_protocol_binary_download_cmd (char *args,
978 int from_tty,
979 struct cmd_list_element *c)
980 {
981 update_packet_config (&remote_protocol_binary_download);
982 }
983
984 static void
985 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
986 struct cmd_list_element *c)
987 {
988 show_packet_config_cmd (&remote_protocol_binary_download);
989 }
990
991
992 /* Tokens for use by the asynchronous signal handlers for SIGINT */
993 static void *sigint_remote_twice_token;
994 static void *sigint_remote_token;
995
996 /* These are pointers to hook functions that may be set in order to
997 modify resume/wait behavior for a particular architecture. */
998
999 void (*target_resume_hook) (void);
1000 void (*target_wait_loop_hook) (void);
1001 \f
1002
1003
1004 /* These are the threads which we last sent to the remote system.
1005 -1 for all or -2 for not sent yet. */
1006 static int general_thread;
1007 static int continue_thread;
1008
1009 /* Call this function as a result of
1010 1) A halt indication (T packet) containing a thread id
1011 2) A direct query of currthread
1012 3) Successful execution of set thread
1013 */
1014
1015 static void
1016 record_currthread (int currthread)
1017 {
1018 general_thread = currthread;
1019
1020 /* If this is a new thread, add it to GDB's thread list.
1021 If we leave it up to WFI to do this, bad things will happen. */
1022 if (!in_thread_list (pid_to_ptid (currthread)))
1023 {
1024 add_thread (pid_to_ptid (currthread));
1025 ui_out_text (uiout, "[New ");
1026 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1027 ui_out_text (uiout, "]\n");
1028 }
1029 }
1030
1031 #define MAGIC_NULL_PID 42000
1032
1033 static void
1034 set_thread (int th, int gen)
1035 {
1036 struct remote_state *rs = get_remote_state ();
1037 char *buf = alloca (rs->remote_packet_size);
1038 int state = gen ? general_thread : continue_thread;
1039
1040 if (state == th)
1041 return;
1042
1043 buf[0] = 'H';
1044 buf[1] = gen ? 'g' : 'c';
1045 if (th == MAGIC_NULL_PID)
1046 {
1047 buf[2] = '0';
1048 buf[3] = '\0';
1049 }
1050 else if (th < 0)
1051 sprintf (&buf[2], "-%x", -th);
1052 else
1053 sprintf (&buf[2], "%x", th);
1054 putpkt (buf);
1055 getpkt (buf, (rs->remote_packet_size), 0);
1056 if (gen)
1057 general_thread = th;
1058 else
1059 continue_thread = th;
1060 }
1061 \f
1062 /* Return nonzero if the thread TH is still alive on the remote system. */
1063
1064 static int
1065 remote_thread_alive (ptid_t ptid)
1066 {
1067 int tid = PIDGET (ptid);
1068 char buf[16];
1069
1070 if (tid < 0)
1071 sprintf (buf, "T-%08x", -tid);
1072 else
1073 sprintf (buf, "T%08x", tid);
1074 putpkt (buf);
1075 getpkt (buf, sizeof (buf), 0);
1076 return (buf[0] == 'O' && buf[1] == 'K');
1077 }
1078
1079 /* About these extended threadlist and threadinfo packets. They are
1080 variable length packets but, the fields within them are often fixed
1081 length. They are redundent enough to send over UDP as is the
1082 remote protocol in general. There is a matching unit test module
1083 in libstub. */
1084
1085 #define OPAQUETHREADBYTES 8
1086
1087 /* a 64 bit opaque identifier */
1088 typedef unsigned char threadref[OPAQUETHREADBYTES];
1089
1090 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1091 protocol encoding, and remote.c. it is not particularly changable */
1092
1093 /* Right now, the internal structure is int. We want it to be bigger.
1094 Plan to fix this.
1095 */
1096
1097 typedef int gdb_threadref; /* internal GDB thread reference */
1098
1099 /* gdb_ext_thread_info is an internal GDB data structure which is
1100 equivalint to the reply of the remote threadinfo packet */
1101
1102 struct gdb_ext_thread_info
1103 {
1104 threadref threadid; /* External form of thread reference */
1105 int active; /* Has state interesting to GDB? , regs, stack */
1106 char display[256]; /* Brief state display, name, blocked/syspended */
1107 char shortname[32]; /* To be used to name threads */
1108 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1109 };
1110
1111 /* The volume of remote transfers can be limited by submitting
1112 a mask containing bits specifying the desired information.
1113 Use a union of these values as the 'selection' parameter to
1114 get_thread_info. FIXME: Make these TAG names more thread specific.
1115 */
1116
1117 #define TAG_THREADID 1
1118 #define TAG_EXISTS 2
1119 #define TAG_DISPLAY 4
1120 #define TAG_THREADNAME 8
1121 #define TAG_MOREDISPLAY 16
1122
1123 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1124
1125 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1126
1127 static char *unpack_nibble (char *buf, int *val);
1128
1129 static char *pack_nibble (char *buf, int nibble);
1130
1131 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1132
1133 static char *unpack_byte (char *buf, int *value);
1134
1135 static char *pack_int (char *buf, int value);
1136
1137 static char *unpack_int (char *buf, int *value);
1138
1139 static char *unpack_string (char *src, char *dest, int length);
1140
1141 static char *pack_threadid (char *pkt, threadref * id);
1142
1143 static char *unpack_threadid (char *inbuf, threadref * id);
1144
1145 void int_to_threadref (threadref * id, int value);
1146
1147 static int threadref_to_int (threadref * ref);
1148
1149 static void copy_threadref (threadref * dest, threadref * src);
1150
1151 static int threadmatch (threadref * dest, threadref * src);
1152
1153 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1154
1155 static int remote_unpack_thread_info_response (char *pkt,
1156 threadref * expectedref,
1157 struct gdb_ext_thread_info
1158 *info);
1159
1160
1161 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1162 struct gdb_ext_thread_info *info);
1163
1164 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1165 int selection,
1166 struct gdb_ext_thread_info *info);
1167
1168 static char *pack_threadlist_request (char *pkt, int startflag,
1169 int threadcount,
1170 threadref * nextthread);
1171
1172 static int parse_threadlist_response (char *pkt,
1173 int result_limit,
1174 threadref * original_echo,
1175 threadref * resultlist, int *doneflag);
1176
1177 static int remote_get_threadlist (int startflag,
1178 threadref * nextthread,
1179 int result_limit,
1180 int *done,
1181 int *result_count, threadref * threadlist);
1182
1183 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1184
1185 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1186 void *context, int looplimit);
1187
1188 static int remote_newthread_step (threadref * ref, void *context);
1189
1190 /* encode 64 bits in 16 chars of hex */
1191
1192 static const char hexchars[] = "0123456789abcdef";
1193
1194 static int
1195 ishex (int ch, int *val)
1196 {
1197 if ((ch >= 'a') && (ch <= 'f'))
1198 {
1199 *val = ch - 'a' + 10;
1200 return 1;
1201 }
1202 if ((ch >= 'A') && (ch <= 'F'))
1203 {
1204 *val = ch - 'A' + 10;
1205 return 1;
1206 }
1207 if ((ch >= '0') && (ch <= '9'))
1208 {
1209 *val = ch - '0';
1210 return 1;
1211 }
1212 return 0;
1213 }
1214
1215 static int
1216 stubhex (int ch)
1217 {
1218 if (ch >= 'a' && ch <= 'f')
1219 return ch - 'a' + 10;
1220 if (ch >= '0' && ch <= '9')
1221 return ch - '0';
1222 if (ch >= 'A' && ch <= 'F')
1223 return ch - 'A' + 10;
1224 return -1;
1225 }
1226
1227 static int
1228 stub_unpack_int (char *buff, int fieldlength)
1229 {
1230 int nibble;
1231 int retval = 0;
1232
1233 while (fieldlength)
1234 {
1235 nibble = stubhex (*buff++);
1236 retval |= nibble;
1237 fieldlength--;
1238 if (fieldlength)
1239 retval = retval << 4;
1240 }
1241 return retval;
1242 }
1243
1244 char *
1245 unpack_varlen_hex (char *buff, /* packet to parse */
1246 ULONGEST *result)
1247 {
1248 int nibble;
1249 int retval = 0;
1250
1251 while (ishex (*buff, &nibble))
1252 {
1253 buff++;
1254 retval = retval << 4;
1255 retval |= nibble & 0x0f;
1256 }
1257 *result = retval;
1258 return buff;
1259 }
1260
1261 static char *
1262 unpack_nibble (char *buf, int *val)
1263 {
1264 ishex (*buf++, val);
1265 return buf;
1266 }
1267
1268 static char *
1269 pack_nibble (char *buf, int nibble)
1270 {
1271 *buf++ = hexchars[(nibble & 0x0f)];
1272 return buf;
1273 }
1274
1275 static char *
1276 pack_hex_byte (char *pkt, int byte)
1277 {
1278 *pkt++ = hexchars[(byte >> 4) & 0xf];
1279 *pkt++ = hexchars[(byte & 0xf)];
1280 return pkt;
1281 }
1282
1283 static char *
1284 unpack_byte (char *buf, int *value)
1285 {
1286 *value = stub_unpack_int (buf, 2);
1287 return buf + 2;
1288 }
1289
1290 static char *
1291 pack_int (char *buf, int value)
1292 {
1293 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1294 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1295 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1296 buf = pack_hex_byte (buf, (value & 0xff));
1297 return buf;
1298 }
1299
1300 static char *
1301 unpack_int (char *buf, int *value)
1302 {
1303 *value = stub_unpack_int (buf, 8);
1304 return buf + 8;
1305 }
1306
1307 #if 0 /* currently unused, uncomment when needed */
1308 static char *pack_string (char *pkt, char *string);
1309
1310 static char *
1311 pack_string (char *pkt, char *string)
1312 {
1313 char ch;
1314 int len;
1315
1316 len = strlen (string);
1317 if (len > 200)
1318 len = 200; /* Bigger than most GDB packets, junk??? */
1319 pkt = pack_hex_byte (pkt, len);
1320 while (len-- > 0)
1321 {
1322 ch = *string++;
1323 if ((ch == '\0') || (ch == '#'))
1324 ch = '*'; /* Protect encapsulation */
1325 *pkt++ = ch;
1326 }
1327 return pkt;
1328 }
1329 #endif /* 0 (unused) */
1330
1331 static char *
1332 unpack_string (char *src, char *dest, int length)
1333 {
1334 while (length--)
1335 *dest++ = *src++;
1336 *dest = '\0';
1337 return src;
1338 }
1339
1340 static char *
1341 pack_threadid (char *pkt, threadref *id)
1342 {
1343 char *limit;
1344 unsigned char *altid;
1345
1346 altid = (unsigned char *) id;
1347 limit = pkt + BUF_THREAD_ID_SIZE;
1348 while (pkt < limit)
1349 pkt = pack_hex_byte (pkt, *altid++);
1350 return pkt;
1351 }
1352
1353
1354 static char *
1355 unpack_threadid (char *inbuf, threadref *id)
1356 {
1357 char *altref;
1358 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1359 int x, y;
1360
1361 altref = (char *) id;
1362
1363 while (inbuf < limit)
1364 {
1365 x = stubhex (*inbuf++);
1366 y = stubhex (*inbuf++);
1367 *altref++ = (x << 4) | y;
1368 }
1369 return inbuf;
1370 }
1371
1372 /* Externally, threadrefs are 64 bits but internally, they are still
1373 ints. This is due to a mismatch of specifications. We would like
1374 to use 64bit thread references internally. This is an adapter
1375 function. */
1376
1377 void
1378 int_to_threadref (threadref *id, int value)
1379 {
1380 unsigned char *scan;
1381
1382 scan = (unsigned char *) id;
1383 {
1384 int i = 4;
1385 while (i--)
1386 *scan++ = 0;
1387 }
1388 *scan++ = (value >> 24) & 0xff;
1389 *scan++ = (value >> 16) & 0xff;
1390 *scan++ = (value >> 8) & 0xff;
1391 *scan++ = (value & 0xff);
1392 }
1393
1394 static int
1395 threadref_to_int (threadref *ref)
1396 {
1397 int i, value = 0;
1398 unsigned char *scan;
1399
1400 scan = (char *) ref;
1401 scan += 4;
1402 i = 4;
1403 while (i-- > 0)
1404 value = (value << 8) | ((*scan++) & 0xff);
1405 return value;
1406 }
1407
1408 static void
1409 copy_threadref (threadref *dest, threadref *src)
1410 {
1411 int i;
1412 unsigned char *csrc, *cdest;
1413
1414 csrc = (unsigned char *) src;
1415 cdest = (unsigned char *) dest;
1416 i = 8;
1417 while (i--)
1418 *cdest++ = *csrc++;
1419 }
1420
1421 static int
1422 threadmatch (threadref *dest, threadref *src)
1423 {
1424 /* things are broken right now, so just assume we got a match */
1425 #if 0
1426 unsigned char *srcp, *destp;
1427 int i, result;
1428 srcp = (char *) src;
1429 destp = (char *) dest;
1430
1431 result = 1;
1432 while (i-- > 0)
1433 result &= (*srcp++ == *destp++) ? 1 : 0;
1434 return result;
1435 #endif
1436 return 1;
1437 }
1438
1439 /*
1440 threadid:1, # always request threadid
1441 context_exists:2,
1442 display:4,
1443 unique_name:8,
1444 more_display:16
1445 */
1446
1447 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1448
1449 static char *
1450 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1451 {
1452 *pkt++ = 'q'; /* Info Query */
1453 *pkt++ = 'P'; /* process or thread info */
1454 pkt = pack_int (pkt, mode); /* mode */
1455 pkt = pack_threadid (pkt, id); /* threadid */
1456 *pkt = '\0'; /* terminate */
1457 return pkt;
1458 }
1459
1460 /* These values tag the fields in a thread info response packet */
1461 /* Tagging the fields allows us to request specific fields and to
1462 add more fields as time goes by */
1463
1464 #define TAG_THREADID 1 /* Echo the thread identifier */
1465 #define TAG_EXISTS 2 /* Is this process defined enough to
1466 fetch registers and its stack */
1467 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1468 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1469 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1470 the process */
1471
1472 static int
1473 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1474 struct gdb_ext_thread_info *info)
1475 {
1476 struct remote_state *rs = get_remote_state ();
1477 int mask, length;
1478 unsigned int tag;
1479 threadref ref;
1480 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1481 int retval = 1;
1482
1483 /* info->threadid = 0; FIXME: implement zero_threadref */
1484 info->active = 0;
1485 info->display[0] = '\0';
1486 info->shortname[0] = '\0';
1487 info->more_display[0] = '\0';
1488
1489 /* Assume the characters indicating the packet type have been stripped */
1490 pkt = unpack_int (pkt, &mask); /* arg mask */
1491 pkt = unpack_threadid (pkt, &ref);
1492
1493 if (mask == 0)
1494 warning ("Incomplete response to threadinfo request\n");
1495 if (!threadmatch (&ref, expectedref))
1496 { /* This is an answer to a different request */
1497 warning ("ERROR RMT Thread info mismatch\n");
1498 return 0;
1499 }
1500 copy_threadref (&info->threadid, &ref);
1501
1502 /* Loop on tagged fields , try to bail if somthing goes wrong */
1503
1504 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1505 {
1506 pkt = unpack_int (pkt, &tag); /* tag */
1507 pkt = unpack_byte (pkt, &length); /* length */
1508 if (!(tag & mask)) /* tags out of synch with mask */
1509 {
1510 warning ("ERROR RMT: threadinfo tag mismatch\n");
1511 retval = 0;
1512 break;
1513 }
1514 if (tag == TAG_THREADID)
1515 {
1516 if (length != 16)
1517 {
1518 warning ("ERROR RMT: length of threadid is not 16\n");
1519 retval = 0;
1520 break;
1521 }
1522 pkt = unpack_threadid (pkt, &ref);
1523 mask = mask & ~TAG_THREADID;
1524 continue;
1525 }
1526 if (tag == TAG_EXISTS)
1527 {
1528 info->active = stub_unpack_int (pkt, length);
1529 pkt += length;
1530 mask = mask & ~(TAG_EXISTS);
1531 if (length > 8)
1532 {
1533 warning ("ERROR RMT: 'exists' length too long\n");
1534 retval = 0;
1535 break;
1536 }
1537 continue;
1538 }
1539 if (tag == TAG_THREADNAME)
1540 {
1541 pkt = unpack_string (pkt, &info->shortname[0], length);
1542 mask = mask & ~TAG_THREADNAME;
1543 continue;
1544 }
1545 if (tag == TAG_DISPLAY)
1546 {
1547 pkt = unpack_string (pkt, &info->display[0], length);
1548 mask = mask & ~TAG_DISPLAY;
1549 continue;
1550 }
1551 if (tag == TAG_MOREDISPLAY)
1552 {
1553 pkt = unpack_string (pkt, &info->more_display[0], length);
1554 mask = mask & ~TAG_MOREDISPLAY;
1555 continue;
1556 }
1557 warning ("ERROR RMT: unknown thread info tag\n");
1558 break; /* Not a tag we know about */
1559 }
1560 return retval;
1561 }
1562
1563 static int
1564 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1565 struct gdb_ext_thread_info *info)
1566 {
1567 struct remote_state *rs = get_remote_state ();
1568 int result;
1569 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1570
1571 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1572 putpkt (threadinfo_pkt);
1573 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1574 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1575 info);
1576 return result;
1577 }
1578
1579 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1580 representation of a threadid. */
1581
1582 static int
1583 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1584 struct gdb_ext_thread_info *info)
1585 {
1586 threadref lclref;
1587
1588 int_to_threadref (&lclref, *ref);
1589 return remote_get_threadinfo (&lclref, selection, info);
1590 }
1591
1592 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1593
1594 static char *
1595 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1596 threadref *nextthread)
1597 {
1598 *pkt++ = 'q'; /* info query packet */
1599 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1600 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1601 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1602 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1603 *pkt = '\0';
1604 return pkt;
1605 }
1606
1607 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1608
1609 static int
1610 parse_threadlist_response (char *pkt, int result_limit,
1611 threadref *original_echo, threadref *resultlist,
1612 int *doneflag)
1613 {
1614 struct remote_state *rs = get_remote_state ();
1615 char *limit;
1616 int count, resultcount, done;
1617
1618 resultcount = 0;
1619 /* Assume the 'q' and 'M chars have been stripped. */
1620 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1621 pkt = unpack_byte (pkt, &count); /* count field */
1622 pkt = unpack_nibble (pkt, &done);
1623 /* The first threadid is the argument threadid. */
1624 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1625 while ((count-- > 0) && (pkt < limit))
1626 {
1627 pkt = unpack_threadid (pkt, resultlist++);
1628 if (resultcount++ >= result_limit)
1629 break;
1630 }
1631 if (doneflag)
1632 *doneflag = done;
1633 return resultcount;
1634 }
1635
1636 static int
1637 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1638 int *done, int *result_count, threadref *threadlist)
1639 {
1640 struct remote_state *rs = get_remote_state ();
1641 static threadref echo_nextthread;
1642 char *threadlist_packet = alloca (rs->remote_packet_size);
1643 char *t_response = alloca (rs->remote_packet_size);
1644 int result = 1;
1645
1646 /* Trancate result limit to be smaller than the packet size */
1647 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1648 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1649
1650 pack_threadlist_request (threadlist_packet,
1651 startflag, result_limit, nextthread);
1652 putpkt (threadlist_packet);
1653 getpkt (t_response, (rs->remote_packet_size), 0);
1654
1655 *result_count =
1656 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1657 threadlist, done);
1658
1659 if (!threadmatch (&echo_nextthread, nextthread))
1660 {
1661 /* FIXME: This is a good reason to drop the packet */
1662 /* Possably, there is a duplicate response */
1663 /* Possabilities :
1664 retransmit immediatly - race conditions
1665 retransmit after timeout - yes
1666 exit
1667 wait for packet, then exit
1668 */
1669 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1670 return 0; /* I choose simply exiting */
1671 }
1672 if (*result_count <= 0)
1673 {
1674 if (*done != 1)
1675 {
1676 warning ("RMT ERROR : failed to get remote thread list\n");
1677 result = 0;
1678 }
1679 return result; /* break; */
1680 }
1681 if (*result_count > result_limit)
1682 {
1683 *result_count = 0;
1684 warning ("RMT ERROR: threadlist response longer than requested\n");
1685 return 0;
1686 }
1687 return result;
1688 }
1689
1690 /* This is the interface between remote and threads, remotes upper interface */
1691
1692 /* remote_find_new_threads retrieves the thread list and for each
1693 thread in the list, looks up the thread in GDB's internal list,
1694 ading the thread if it does not already exist. This involves
1695 getting partial thread lists from the remote target so, polling the
1696 quit_flag is required. */
1697
1698
1699 /* About this many threadisds fit in a packet. */
1700
1701 #define MAXTHREADLISTRESULTS 32
1702
1703 static int
1704 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1705 int looplimit)
1706 {
1707 int done, i, result_count;
1708 int startflag = 1;
1709 int result = 1;
1710 int loopcount = 0;
1711 static threadref nextthread;
1712 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1713
1714 done = 0;
1715 while (!done)
1716 {
1717 if (loopcount++ > looplimit)
1718 {
1719 result = 0;
1720 warning ("Remote fetch threadlist -infinite loop-\n");
1721 break;
1722 }
1723 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1724 &done, &result_count, resultthreadlist))
1725 {
1726 result = 0;
1727 break;
1728 }
1729 /* clear for later iterations */
1730 startflag = 0;
1731 /* Setup to resume next batch of thread references, set nextthread. */
1732 if (result_count >= 1)
1733 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1734 i = 0;
1735 while (result_count--)
1736 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1737 break;
1738 }
1739 return result;
1740 }
1741
1742 static int
1743 remote_newthread_step (threadref *ref, void *context)
1744 {
1745 ptid_t ptid;
1746
1747 ptid = pid_to_ptid (threadref_to_int (ref));
1748
1749 if (!in_thread_list (ptid))
1750 add_thread (ptid);
1751 return 1; /* continue iterator */
1752 }
1753
1754 #define CRAZY_MAX_THREADS 1000
1755
1756 static ptid_t
1757 remote_current_thread (ptid_t oldpid)
1758 {
1759 struct remote_state *rs = get_remote_state ();
1760 char *buf = alloca (rs->remote_packet_size);
1761
1762 putpkt ("qC");
1763 getpkt (buf, (rs->remote_packet_size), 0);
1764 if (buf[0] == 'Q' && buf[1] == 'C')
1765 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1766 else
1767 return oldpid;
1768 }
1769
1770 /* Find new threads for info threads command.
1771 * Original version, using John Metzler's thread protocol.
1772 */
1773
1774 static void
1775 remote_find_new_threads (void)
1776 {
1777 remote_threadlist_iterator (remote_newthread_step, 0,
1778 CRAZY_MAX_THREADS);
1779 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1780 inferior_ptid = remote_current_thread (inferior_ptid);
1781 }
1782
1783 /*
1784 * Find all threads for info threads command.
1785 * Uses new thread protocol contributed by Cisco.
1786 * Falls back and attempts to use the older method (above)
1787 * if the target doesn't respond to the new method.
1788 */
1789
1790 static void
1791 remote_threads_info (void)
1792 {
1793 struct remote_state *rs = get_remote_state ();
1794 char *buf = alloca (rs->remote_packet_size);
1795 char *bufp;
1796 int tid;
1797
1798 if (remote_desc == 0) /* paranoia */
1799 error ("Command can only be used when connected to the remote target.");
1800
1801 if (use_threadinfo_query)
1802 {
1803 putpkt ("qfThreadInfo");
1804 bufp = buf;
1805 getpkt (bufp, (rs->remote_packet_size), 0);
1806 if (bufp[0] != '\0') /* q packet recognized */
1807 {
1808 while (*bufp++ == 'm') /* reply contains one or more TID */
1809 {
1810 do
1811 {
1812 tid = strtol (bufp, &bufp, 16);
1813 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1814 add_thread (pid_to_ptid (tid));
1815 }
1816 while (*bufp++ == ','); /* comma-separated list */
1817 putpkt ("qsThreadInfo");
1818 bufp = buf;
1819 getpkt (bufp, (rs->remote_packet_size), 0);
1820 }
1821 return; /* done */
1822 }
1823 }
1824
1825 /* Else fall back to old method based on jmetzler protocol. */
1826 use_threadinfo_query = 0;
1827 remote_find_new_threads ();
1828 return;
1829 }
1830
1831 /*
1832 * Collect a descriptive string about the given thread.
1833 * The target may say anything it wants to about the thread
1834 * (typically info about its blocked / runnable state, name, etc.).
1835 * This string will appear in the info threads display.
1836 *
1837 * Optional: targets are not required to implement this function.
1838 */
1839
1840 static char *
1841 remote_threads_extra_info (struct thread_info *tp)
1842 {
1843 struct remote_state *rs = get_remote_state ();
1844 int result;
1845 int set;
1846 threadref id;
1847 struct gdb_ext_thread_info threadinfo;
1848 static char display_buf[100]; /* arbitrary... */
1849 char *bufp = alloca (rs->remote_packet_size);
1850 int n = 0; /* position in display_buf */
1851
1852 if (remote_desc == 0) /* paranoia */
1853 internal_error (__FILE__, __LINE__,
1854 "remote_threads_extra_info");
1855
1856 if (use_threadextra_query)
1857 {
1858 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1859 putpkt (bufp);
1860 getpkt (bufp, (rs->remote_packet_size), 0);
1861 if (bufp[0] != 0)
1862 {
1863 n = min (strlen (bufp) / 2, sizeof (display_buf));
1864 result = hex2bin (bufp, display_buf, n);
1865 display_buf [result] = '\0';
1866 return display_buf;
1867 }
1868 }
1869
1870 /* If the above query fails, fall back to the old method. */
1871 use_threadextra_query = 0;
1872 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1873 | TAG_MOREDISPLAY | TAG_DISPLAY;
1874 int_to_threadref (&id, PIDGET (tp->ptid));
1875 if (remote_get_threadinfo (&id, set, &threadinfo))
1876 if (threadinfo.active)
1877 {
1878 if (*threadinfo.shortname)
1879 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1880 if (*threadinfo.display)
1881 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1882 if (*threadinfo.more_display)
1883 n += sprintf(&display_buf[n], " Priority: %s",
1884 threadinfo.more_display);
1885
1886 if (n > 0)
1887 {
1888 /* for purely cosmetic reasons, clear up trailing commas */
1889 if (',' == display_buf[n-1])
1890 display_buf[n-1] = ' ';
1891 return display_buf;
1892 }
1893 }
1894 return NULL;
1895 }
1896
1897 \f
1898
1899 /* Restart the remote side; this is an extended protocol operation. */
1900
1901 static void
1902 extended_remote_restart (void)
1903 {
1904 struct remote_state *rs = get_remote_state ();
1905 char *buf = alloca (rs->remote_packet_size);
1906
1907 /* Send the restart command; for reasons I don't understand the
1908 remote side really expects a number after the "R". */
1909 buf[0] = 'R';
1910 sprintf (&buf[1], "%x", 0);
1911 putpkt (buf);
1912
1913 /* Now query for status so this looks just like we restarted
1914 gdbserver from scratch. */
1915 putpkt ("?");
1916 getpkt (buf, (rs->remote_packet_size), 0);
1917 }
1918 \f
1919 /* Clean up connection to a remote debugger. */
1920
1921 static void
1922 remote_close (int quitting)
1923 {
1924 if (remote_desc)
1925 serial_close (remote_desc);
1926 remote_desc = NULL;
1927 }
1928
1929 /* Query the remote side for the text, data and bss offsets. */
1930
1931 static void
1932 get_offsets (void)
1933 {
1934 struct remote_state *rs = get_remote_state ();
1935 char *buf = alloca (rs->remote_packet_size);
1936 char *ptr;
1937 int lose;
1938 CORE_ADDR text_addr, data_addr, bss_addr;
1939 struct section_offsets *offs;
1940
1941 putpkt ("qOffsets");
1942
1943 getpkt (buf, (rs->remote_packet_size), 0);
1944
1945 if (buf[0] == '\000')
1946 return; /* Return silently. Stub doesn't support
1947 this command. */
1948 if (buf[0] == 'E')
1949 {
1950 warning ("Remote failure reply: %s", buf);
1951 return;
1952 }
1953
1954 /* Pick up each field in turn. This used to be done with scanf, but
1955 scanf will make trouble if CORE_ADDR size doesn't match
1956 conversion directives correctly. The following code will work
1957 with any size of CORE_ADDR. */
1958 text_addr = data_addr = bss_addr = 0;
1959 ptr = buf;
1960 lose = 0;
1961
1962 if (strncmp (ptr, "Text=", 5) == 0)
1963 {
1964 ptr += 5;
1965 /* Don't use strtol, could lose on big values. */
1966 while (*ptr && *ptr != ';')
1967 text_addr = (text_addr << 4) + fromhex (*ptr++);
1968 }
1969 else
1970 lose = 1;
1971
1972 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1973 {
1974 ptr += 6;
1975 while (*ptr && *ptr != ';')
1976 data_addr = (data_addr << 4) + fromhex (*ptr++);
1977 }
1978 else
1979 lose = 1;
1980
1981 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1982 {
1983 ptr += 5;
1984 while (*ptr && *ptr != ';')
1985 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1986 }
1987 else
1988 lose = 1;
1989
1990 if (lose)
1991 error ("Malformed response to offset query, %s", buf);
1992
1993 if (symfile_objfile == NULL)
1994 return;
1995
1996 offs = ((struct section_offsets *)
1997 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1998 memcpy (offs, symfile_objfile->section_offsets,
1999 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2000
2001 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2002
2003 /* This is a temporary kludge to force data and bss to use the same offsets
2004 because that's what nlmconv does now. The real solution requires changes
2005 to the stub and remote.c that I don't have time to do right now. */
2006
2007 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2008 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2009
2010 objfile_relocate (symfile_objfile, offs);
2011 }
2012
2013 /*
2014 * Cisco version of section offsets:
2015 *
2016 * Instead of having GDB query the target for the section offsets,
2017 * Cisco lets the target volunteer the information! It's also in
2018 * a different format, so here are the functions that will decode
2019 * a section offset packet from a Cisco target.
2020 */
2021
2022 /*
2023 * Function: remote_cisco_section_offsets
2024 *
2025 * Returns: zero for success, non-zero for failure
2026 */
2027
2028 static int
2029 remote_cisco_section_offsets (bfd_vma text_addr,
2030 bfd_vma data_addr,
2031 bfd_vma bss_addr,
2032 bfd_signed_vma *text_offs,
2033 bfd_signed_vma *data_offs,
2034 bfd_signed_vma *bss_offs)
2035 {
2036 bfd_vma text_base, data_base, bss_base;
2037 struct minimal_symbol *start;
2038 asection *sect;
2039 bfd *abfd;
2040 int len;
2041
2042 if (symfile_objfile == NULL)
2043 return -1; /* no can do nothin' */
2044
2045 start = lookup_minimal_symbol ("_start", NULL, NULL);
2046 if (start == NULL)
2047 return -1; /* Can't find "_start" symbol */
2048
2049 data_base = bss_base = 0;
2050 text_base = SYMBOL_VALUE_ADDRESS (start);
2051
2052 abfd = symfile_objfile->obfd;
2053 for (sect = abfd->sections;
2054 sect != 0;
2055 sect = sect->next)
2056 {
2057 const char *p = bfd_get_section_name (abfd, sect);
2058 len = strlen (p);
2059 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2060 if (data_base == 0 ||
2061 data_base > bfd_get_section_vma (abfd, sect))
2062 data_base = bfd_get_section_vma (abfd, sect);
2063 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2064 if (bss_base == 0 ||
2065 bss_base > bfd_get_section_vma (abfd, sect))
2066 bss_base = bfd_get_section_vma (abfd, sect);
2067 }
2068 *text_offs = text_addr - text_base;
2069 *data_offs = data_addr - data_base;
2070 *bss_offs = bss_addr - bss_base;
2071 if (remote_debug)
2072 {
2073 char tmp[128];
2074
2075 sprintf (tmp, "VMA: text = 0x");
2076 sprintf_vma (tmp + strlen (tmp), text_addr);
2077 sprintf (tmp + strlen (tmp), " data = 0x");
2078 sprintf_vma (tmp + strlen (tmp), data_addr);
2079 sprintf (tmp + strlen (tmp), " bss = 0x");
2080 sprintf_vma (tmp + strlen (tmp), bss_addr);
2081 fputs_filtered (tmp, gdb_stdlog);
2082 fprintf_filtered (gdb_stdlog,
2083 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2084 paddr_nz (*text_offs),
2085 paddr_nz (*data_offs),
2086 paddr_nz (*bss_offs));
2087 }
2088
2089 return 0;
2090 }
2091
2092 /*
2093 * Function: remote_cisco_objfile_relocate
2094 *
2095 * Relocate the symbol file for a remote target.
2096 */
2097
2098 void
2099 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2100 bfd_signed_vma bss_off)
2101 {
2102 struct section_offsets *offs;
2103
2104 if (text_off != 0 || data_off != 0 || bss_off != 0)
2105 {
2106 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2107 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2108 simple canonical representation for this stuff. */
2109
2110 offs = (struct section_offsets *)
2111 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2112 memcpy (offs, symfile_objfile->section_offsets,
2113 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2114
2115 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2116 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2117 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2118
2119 /* First call the standard objfile_relocate. */
2120 objfile_relocate (symfile_objfile, offs);
2121
2122 /* Now we need to fix up the section entries already attached to
2123 the exec target. These entries will control memory transfers
2124 from the exec file. */
2125
2126 exec_set_section_offsets (text_off, data_off, bss_off);
2127 }
2128 }
2129
2130 /* Stub for catch_errors. */
2131
2132 static int
2133 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2134 {
2135 start_remote (); /* Initialize gdb process mechanisms */
2136 /* NOTE: Return something >=0. A -ve value is reserved for
2137 catch_exceptions. */
2138 return 1;
2139 }
2140
2141 static int
2142 remote_start_remote (struct ui_out *uiout, void *dummy)
2143 {
2144 immediate_quit++; /* Allow user to interrupt it */
2145
2146 /* Ack any packet which the remote side has already sent. */
2147 serial_write (remote_desc, "+", 1);
2148
2149 /* Let the stub know that we want it to return the thread. */
2150 set_thread (-1, 0);
2151
2152 inferior_ptid = remote_current_thread (inferior_ptid);
2153
2154 get_offsets (); /* Get text, data & bss offsets */
2155
2156 putpkt ("?"); /* initiate a query from remote machine */
2157 immediate_quit--;
2158
2159 /* NOTE: See comment above in remote_start_remote_dummy(). This
2160 function returns something >=0. */
2161 return remote_start_remote_dummy (uiout, dummy);
2162 }
2163
2164 /* Open a connection to a remote debugger.
2165 NAME is the filename used for communication. */
2166
2167 static void
2168 remote_open (char *name, int from_tty)
2169 {
2170 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2171 }
2172
2173 /* Just like remote_open, but with asynchronous support. */
2174 static void
2175 remote_async_open (char *name, int from_tty)
2176 {
2177 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2178 }
2179
2180 /* Open a connection to a remote debugger using the extended
2181 remote gdb protocol. NAME is the filename used for communication. */
2182
2183 static void
2184 extended_remote_open (char *name, int from_tty)
2185 {
2186 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2187 0 /* async_p */);
2188 }
2189
2190 /* Just like extended_remote_open, but with asynchronous support. */
2191 static void
2192 extended_remote_async_open (char *name, int from_tty)
2193 {
2194 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2195 1 /*extended_p */, 1 /* async_p */);
2196 }
2197
2198 /* Generic code for opening a connection to a remote target. */
2199
2200 static void
2201 init_all_packet_configs (void)
2202 {
2203 int i;
2204 update_packet_config (&remote_protocol_e);
2205 update_packet_config (&remote_protocol_E);
2206 update_packet_config (&remote_protocol_P);
2207 update_packet_config (&remote_protocol_qSymbol);
2208 update_packet_config (&remote_protocol_vcont);
2209 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2210 update_packet_config (&remote_protocol_Z[i]);
2211 /* Force remote_write_bytes to check whether target supports binary
2212 downloading. */
2213 update_packet_config (&remote_protocol_binary_download);
2214 }
2215
2216 /* Symbol look-up. */
2217
2218 static void
2219 remote_check_symbols (struct objfile *objfile)
2220 {
2221 struct remote_state *rs = get_remote_state ();
2222 char *msg, *reply, *tmp;
2223 struct minimal_symbol *sym;
2224 int end;
2225
2226 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2227 return;
2228
2229 msg = alloca (rs->remote_packet_size);
2230 reply = alloca (rs->remote_packet_size);
2231
2232 /* Invite target to request symbol lookups. */
2233
2234 putpkt ("qSymbol::");
2235 getpkt (reply, (rs->remote_packet_size), 0);
2236 packet_ok (reply, &remote_protocol_qSymbol);
2237
2238 while (strncmp (reply, "qSymbol:", 8) == 0)
2239 {
2240 tmp = &reply[8];
2241 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2242 msg[end] = '\0';
2243 sym = lookup_minimal_symbol (msg, NULL, NULL);
2244 if (sym == NULL)
2245 sprintf (msg, "qSymbol::%s", &reply[8]);
2246 else
2247 sprintf (msg, "qSymbol:%s:%s",
2248 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2249 &reply[8]);
2250 putpkt (msg);
2251 getpkt (reply, (rs->remote_packet_size), 0);
2252 }
2253 }
2254
2255 static struct serial *
2256 remote_serial_open (char *name)
2257 {
2258 static int udp_warning = 0;
2259
2260 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2261 of in ser-tcp.c, because it is the remote protocol assuming that the
2262 serial connection is reliable and not the serial connection promising
2263 to be. */
2264 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2265 {
2266 warning ("The remote protocol may be unreliable over UDP.");
2267 warning ("Some events may be lost, rendering further debugging "
2268 "impossible.");
2269 udp_warning = 1;
2270 }
2271
2272 return serial_open (name);
2273 }
2274
2275 static void
2276 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2277 int extended_p, int async_p)
2278 {
2279 int ex;
2280 struct remote_state *rs = get_remote_state ();
2281 if (name == 0)
2282 error ("To open a remote debug connection, you need to specify what\n"
2283 "serial device is attached to the remote system\n"
2284 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2285
2286 /* See FIXME above */
2287 if (!async_p)
2288 wait_forever_enabled_p = 1;
2289
2290 target_preopen (from_tty);
2291
2292 unpush_target (target);
2293
2294 remote_desc = remote_serial_open (name);
2295 if (!remote_desc)
2296 perror_with_name (name);
2297
2298 if (baud_rate != -1)
2299 {
2300 if (serial_setbaudrate (remote_desc, baud_rate))
2301 {
2302 serial_close (remote_desc);
2303 perror_with_name (name);
2304 }
2305 }
2306
2307 serial_raw (remote_desc);
2308
2309 /* If there is something sitting in the buffer we might take it as a
2310 response to a command, which would be bad. */
2311 serial_flush_input (remote_desc);
2312
2313 if (from_tty)
2314 {
2315 puts_filtered ("Remote debugging using ");
2316 puts_filtered (name);
2317 puts_filtered ("\n");
2318 }
2319 push_target (target); /* Switch to using remote target now */
2320
2321 init_all_packet_configs ();
2322
2323 general_thread = -2;
2324 continue_thread = -2;
2325
2326 /* Probe for ability to use "ThreadInfo" query, as required. */
2327 use_threadinfo_query = 1;
2328 use_threadextra_query = 1;
2329
2330 /* Without this, some commands which require an active target (such
2331 as kill) won't work. This variable serves (at least) double duty
2332 as both the pid of the target process (if it has such), and as a
2333 flag indicating that a target is active. These functions should
2334 be split out into seperate variables, especially since GDB will
2335 someday have a notion of debugging several processes. */
2336
2337 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2338
2339 if (async_p)
2340 {
2341 /* With this target we start out by owning the terminal. */
2342 remote_async_terminal_ours_p = 1;
2343
2344 /* FIXME: cagney/1999-09-23: During the initial connection it is
2345 assumed that the target is already ready and able to respond to
2346 requests. Unfortunately remote_start_remote() eventually calls
2347 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2348 around this. Eventually a mechanism that allows
2349 wait_for_inferior() to expect/get timeouts will be
2350 implemented. */
2351 wait_forever_enabled_p = 0;
2352 }
2353
2354 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2355 /* First delete any symbols previously loaded from shared libraries. */
2356 no_shared_libraries (NULL, 0);
2357 #endif
2358
2359 /* Start the remote connection. If error() or QUIT, discard this
2360 target (we'd otherwise be in an inconsistent state) and then
2361 propogate the error on up the exception chain. This ensures that
2362 the caller doesn't stumble along blindly assuming that the
2363 function succeeded. The CLI doesn't have this problem but other
2364 UI's, such as MI do.
2365
2366 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2367 this function should return an error indication letting the
2368 caller restore the previous state. Unfortunately the command
2369 ``target remote'' is directly wired to this function making that
2370 impossible. On a positive note, the CLI side of this problem has
2371 been fixed - the function set_cmd_context() makes it possible for
2372 all the ``target ....'' commands to share a common callback
2373 function. See cli-dump.c. */
2374 ex = catch_exceptions (uiout,
2375 remote_start_remote, NULL,
2376 "Couldn't establish connection to remote"
2377 " target\n",
2378 RETURN_MASK_ALL);
2379 if (ex < 0)
2380 {
2381 pop_target ();
2382 if (async_p)
2383 wait_forever_enabled_p = 1;
2384 throw_exception (ex);
2385 }
2386
2387 if (async_p)
2388 wait_forever_enabled_p = 1;
2389
2390 if (extended_p)
2391 {
2392 /* Tell the remote that we are using the extended protocol. */
2393 char *buf = alloca (rs->remote_packet_size);
2394 putpkt ("!");
2395 getpkt (buf, (rs->remote_packet_size), 0);
2396 }
2397 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2398 /* FIXME: need a master target_open vector from which all
2399 remote_opens can be called, so that stuff like this can
2400 go there. Failing that, the following code must be copied
2401 to the open function for any remote target that wants to
2402 support svr4 shared libraries. */
2403
2404 /* Set up to detect and load shared libraries. */
2405 if (exec_bfd) /* No use without an exec file. */
2406 {
2407 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2408 remote_check_symbols (symfile_objfile);
2409 }
2410 #endif
2411 }
2412
2413 /* This takes a program previously attached to and detaches it. After
2414 this is done, GDB can be used to debug some other program. We
2415 better not have left any breakpoints in the target program or it'll
2416 die when it hits one. */
2417
2418 static void
2419 remote_detach (char *args, int from_tty)
2420 {
2421 struct remote_state *rs = get_remote_state ();
2422 char *buf = alloca (rs->remote_packet_size);
2423
2424 if (args)
2425 error ("Argument given to \"detach\" when remotely debugging.");
2426
2427 /* Tell the remote target to detach. */
2428 strcpy (buf, "D");
2429 remote_send (buf, (rs->remote_packet_size));
2430
2431 /* Unregister the file descriptor from the event loop. */
2432 if (target_is_async_p ())
2433 serial_async (remote_desc, NULL, 0);
2434
2435 target_mourn_inferior ();
2436 if (from_tty)
2437 puts_filtered ("Ending remote debugging.\n");
2438 }
2439
2440 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2441
2442 static void
2443 remote_disconnect (char *args, int from_tty)
2444 {
2445 struct remote_state *rs = get_remote_state ();
2446 char *buf = alloca (rs->remote_packet_size);
2447
2448 if (args)
2449 error ("Argument given to \"detach\" when remotely debugging.");
2450
2451 /* Unregister the file descriptor from the event loop. */
2452 if (target_is_async_p ())
2453 serial_async (remote_desc, NULL, 0);
2454
2455 target_mourn_inferior ();
2456 if (from_tty)
2457 puts_filtered ("Ending remote debugging.\n");
2458 }
2459
2460 /* Convert hex digit A to a number. */
2461
2462 static int
2463 fromhex (int a)
2464 {
2465 if (a >= '0' && a <= '9')
2466 return a - '0';
2467 else if (a >= 'a' && a <= 'f')
2468 return a - 'a' + 10;
2469 else if (a >= 'A' && a <= 'F')
2470 return a - 'A' + 10;
2471 else
2472 error ("Reply contains invalid hex digit %d", a);
2473 }
2474
2475 static int
2476 hex2bin (const char *hex, char *bin, int count)
2477 {
2478 int i;
2479
2480 for (i = 0; i < count; i++)
2481 {
2482 if (hex[0] == 0 || hex[1] == 0)
2483 {
2484 /* Hex string is short, or of uneven length.
2485 Return the count that has been converted so far. */
2486 return i;
2487 }
2488 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2489 hex += 2;
2490 }
2491 return i;
2492 }
2493
2494 /* Convert number NIB to a hex digit. */
2495
2496 static int
2497 tohex (int nib)
2498 {
2499 if (nib < 10)
2500 return '0' + nib;
2501 else
2502 return 'a' + nib - 10;
2503 }
2504
2505 static int
2506 bin2hex (const char *bin, char *hex, int count)
2507 {
2508 int i;
2509 /* May use a length, or a nul-terminated string as input. */
2510 if (count == 0)
2511 count = strlen (bin);
2512
2513 for (i = 0; i < count; i++)
2514 {
2515 *hex++ = tohex ((*bin >> 4) & 0xf);
2516 *hex++ = tohex (*bin++ & 0xf);
2517 }
2518 *hex = 0;
2519 return i;
2520 }
2521 \f
2522 /* Check for the availability of vCont. This function should also check
2523 the response. */
2524
2525 static void
2526 remote_vcont_probe (struct remote_state *rs, char *buf)
2527 {
2528 strcpy (buf, "vCont?");
2529 putpkt (buf);
2530 getpkt (buf, rs->remote_packet_size, 0);
2531
2532 /* Make sure that the features we assume are supported. */
2533 if (strncmp (buf, "vCont", 5) == 0)
2534 {
2535 char *p = &buf[5];
2536 int support_s, support_S, support_c, support_C;
2537
2538 support_s = 0;
2539 support_S = 0;
2540 support_c = 0;
2541 support_C = 0;
2542 while (p && *p == ';')
2543 {
2544 p++;
2545 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2546 support_s = 1;
2547 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2548 support_S = 1;
2549 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2550 support_c = 1;
2551 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2552 support_C = 1;
2553
2554 p = strchr (p, ';');
2555 }
2556
2557 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2558 BUF will make packet_ok disable the packet. */
2559 if (!support_s || !support_S || !support_c || !support_C)
2560 buf[0] = 0;
2561 }
2562
2563 packet_ok (buf, &remote_protocol_vcont);
2564 }
2565
2566 /* Resume the remote inferior by using a "vCont" packet. The thread
2567 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2568 resumed thread should be single-stepped and/or signalled. If PTID's
2569 PID is -1, then all threads are resumed; the thread to be stepped and/or
2570 signalled is given in the global INFERIOR_PTID. This function returns
2571 non-zero iff it resumes the inferior.
2572
2573 This function issues a strict subset of all possible vCont commands at the
2574 moment. */
2575
2576 static int
2577 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2578 {
2579 struct remote_state *rs = get_remote_state ();
2580 int pid = PIDGET (ptid);
2581 char *buf = NULL;
2582 struct cleanup *old_cleanup;
2583
2584 buf = xmalloc (rs->remote_packet_size);
2585 old_cleanup = make_cleanup (xfree, buf);
2586
2587 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2588 remote_vcont_probe (rs, buf);
2589
2590 if (remote_protocol_vcont.support == PACKET_DISABLE)
2591 {
2592 do_cleanups (old_cleanup);
2593 return 0;
2594 }
2595
2596 /* If we could generate a wider range of packets, we'd have to worry
2597 about overflowing BUF. Should there be a generic
2598 "multi-part-packet" packet? */
2599
2600 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2601 {
2602 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2603 don't have any PID numbers the inferior will understand. Make sure
2604 to only send forms that do not specify a PID. */
2605 if (step && siggnal != TARGET_SIGNAL_0)
2606 sprintf (buf, "vCont;S%02x", siggnal);
2607 else if (step)
2608 sprintf (buf, "vCont;s");
2609 else if (siggnal != TARGET_SIGNAL_0)
2610 sprintf (buf, "vCont;C%02x", siggnal);
2611 else
2612 sprintf (buf, "vCont;c");
2613 }
2614 else if (pid == -1)
2615 {
2616 /* Resume all threads, with preference for INFERIOR_PTID. */
2617 if (step && siggnal != TARGET_SIGNAL_0)
2618 sprintf (buf, "vCont;S%02x:%x;c", siggnal, PIDGET (inferior_ptid));
2619 else if (step)
2620 sprintf (buf, "vCont;s:%x;c", PIDGET (inferior_ptid));
2621 else if (siggnal != TARGET_SIGNAL_0)
2622 sprintf (buf, "vCont;C%02x:%x;c", siggnal, PIDGET (inferior_ptid));
2623 else
2624 sprintf (buf, "vCont;c");
2625 }
2626 else
2627 {
2628 /* Scheduler locking; resume only PTID. */
2629 if (step && siggnal != TARGET_SIGNAL_0)
2630 sprintf (buf, "vCont;S%02x:%x", siggnal, pid);
2631 else if (step)
2632 sprintf (buf, "vCont;s:%x", pid);
2633 else if (siggnal != TARGET_SIGNAL_0)
2634 sprintf (buf, "vCont;C%02x:%x", siggnal, pid);
2635 else
2636 sprintf (buf, "vCont;c:%x", pid);
2637 }
2638
2639 putpkt (buf);
2640
2641 do_cleanups (old_cleanup);
2642
2643 return 1;
2644 }
2645
2646 /* Tell the remote machine to resume. */
2647
2648 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2649
2650 static int last_sent_step;
2651
2652 static void
2653 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2654 {
2655 struct remote_state *rs = get_remote_state ();
2656 char *buf = alloca (rs->remote_packet_size);
2657 int pid = PIDGET (ptid);
2658 char *p;
2659
2660 last_sent_signal = siggnal;
2661 last_sent_step = step;
2662
2663 /* A hook for when we need to do something at the last moment before
2664 resumption. */
2665 if (target_resume_hook)
2666 (*target_resume_hook) ();
2667
2668 /* The vCont packet doesn't need to specify threads via Hc. */
2669 if (remote_vcont_resume (ptid, step, siggnal))
2670 return;
2671
2672 /* All other supported resume packets do use Hc, so call set_thread. */
2673 if (pid == -1)
2674 set_thread (0, 0); /* run any thread */
2675 else
2676 set_thread (pid, 0); /* run this thread */
2677
2678 /* The s/S/c/C packets do not return status. So if the target does
2679 not support the S or C packets, the debug agent returns an empty
2680 string which is detected in remote_wait(). This protocol defect
2681 is fixed in the e/E packets. */
2682
2683 if (step && step_range_end)
2684 {
2685 /* If the target does not support the 'E' packet, we try the 'S'
2686 packet. Ideally we would fall back to the 'e' packet if that
2687 too is not supported. But that would require another copy of
2688 the code to issue the 'e' packet (and fall back to 's' if not
2689 supported) in remote_wait(). */
2690
2691 if (siggnal != TARGET_SIGNAL_0)
2692 {
2693 if (remote_protocol_E.support != PACKET_DISABLE)
2694 {
2695 p = buf;
2696 *p++ = 'E';
2697 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2698 *p++ = tohex (((int) siggnal) & 0xf);
2699 *p++ = ',';
2700 p += hexnumstr (p, (ULONGEST) step_range_start);
2701 *p++ = ',';
2702 p += hexnumstr (p, (ULONGEST) step_range_end);
2703 *p++ = 0;
2704
2705 putpkt (buf);
2706 getpkt (buf, (rs->remote_packet_size), 0);
2707
2708 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2709 return;
2710 }
2711 }
2712 else
2713 {
2714 if (remote_protocol_e.support != PACKET_DISABLE)
2715 {
2716 p = buf;
2717 *p++ = 'e';
2718 p += hexnumstr (p, (ULONGEST) step_range_start);
2719 *p++ = ',';
2720 p += hexnumstr (p, (ULONGEST) step_range_end);
2721 *p++ = 0;
2722
2723 putpkt (buf);
2724 getpkt (buf, (rs->remote_packet_size), 0);
2725
2726 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2727 return;
2728 }
2729 }
2730 }
2731
2732 if (siggnal != TARGET_SIGNAL_0)
2733 {
2734 buf[0] = step ? 'S' : 'C';
2735 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2736 buf[2] = tohex (((int) siggnal) & 0xf);
2737 buf[3] = '\0';
2738 }
2739 else
2740 strcpy (buf, step ? "s" : "c");
2741
2742 putpkt (buf);
2743 }
2744
2745 /* Same as remote_resume, but with async support. */
2746 static void
2747 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2748 {
2749 remote_resume (ptid, step, siggnal);
2750
2751 /* We are about to start executing the inferior, let's register it
2752 with the event loop. NOTE: this is the one place where all the
2753 execution commands end up. We could alternatively do this in each
2754 of the execution commands in infcmd.c.*/
2755 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2756 into infcmd.c in order to allow inferior function calls to work
2757 NOT asynchronously. */
2758 if (event_loop_p && target_can_async_p ())
2759 target_async (inferior_event_handler, 0);
2760 /* Tell the world that the target is now executing. */
2761 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2762 this? Instead, should the client of target just assume (for
2763 async targets) that the target is going to start executing? Is
2764 this information already found in the continuation block? */
2765 if (target_is_async_p ())
2766 target_executing = 1;
2767 }
2768 \f
2769
2770 /* Set up the signal handler for SIGINT, while the target is
2771 executing, ovewriting the 'regular' SIGINT signal handler. */
2772 static void
2773 initialize_sigint_signal_handler (void)
2774 {
2775 sigint_remote_token =
2776 create_async_signal_handler (async_remote_interrupt, NULL);
2777 signal (SIGINT, handle_remote_sigint);
2778 }
2779
2780 /* Signal handler for SIGINT, while the target is executing. */
2781 static void
2782 handle_remote_sigint (int sig)
2783 {
2784 signal (sig, handle_remote_sigint_twice);
2785 sigint_remote_twice_token =
2786 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2787 mark_async_signal_handler_wrapper (sigint_remote_token);
2788 }
2789
2790 /* Signal handler for SIGINT, installed after SIGINT has already been
2791 sent once. It will take effect the second time that the user sends
2792 a ^C. */
2793 static void
2794 handle_remote_sigint_twice (int sig)
2795 {
2796 signal (sig, handle_sigint);
2797 sigint_remote_twice_token =
2798 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2799 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2800 }
2801
2802 /* Perform the real interruption of the target execution, in response
2803 to a ^C. */
2804 static void
2805 async_remote_interrupt (gdb_client_data arg)
2806 {
2807 if (remote_debug)
2808 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2809
2810 target_stop ();
2811 }
2812
2813 /* Perform interrupt, if the first attempt did not succeed. Just give
2814 up on the target alltogether. */
2815 void
2816 async_remote_interrupt_twice (gdb_client_data arg)
2817 {
2818 if (remote_debug)
2819 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2820 /* Do something only if the target was not killed by the previous
2821 cntl-C. */
2822 if (target_executing)
2823 {
2824 interrupt_query ();
2825 signal (SIGINT, handle_remote_sigint);
2826 }
2827 }
2828
2829 /* Reinstall the usual SIGINT handlers, after the target has
2830 stopped. */
2831 static void
2832 cleanup_sigint_signal_handler (void *dummy)
2833 {
2834 signal (SIGINT, handle_sigint);
2835 if (sigint_remote_twice_token)
2836 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2837 if (sigint_remote_token)
2838 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2839 }
2840
2841 /* Send ^C to target to halt it. Target will respond, and send us a
2842 packet. */
2843 static void (*ofunc) (int);
2844
2845 /* The command line interface's stop routine. This function is installed
2846 as a signal handler for SIGINT. The first time a user requests a
2847 stop, we call remote_stop to send a break or ^C. If there is no
2848 response from the target (it didn't stop when the user requested it),
2849 we ask the user if he'd like to detach from the target. */
2850 static void
2851 remote_interrupt (int signo)
2852 {
2853 /* If this doesn't work, try more severe steps. */
2854 signal (signo, remote_interrupt_twice);
2855
2856 if (remote_debug)
2857 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2858
2859 target_stop ();
2860 }
2861
2862 /* The user typed ^C twice. */
2863
2864 static void
2865 remote_interrupt_twice (int signo)
2866 {
2867 signal (signo, ofunc);
2868 interrupt_query ();
2869 signal (signo, remote_interrupt);
2870 }
2871
2872 /* This is the generic stop called via the target vector. When a target
2873 interrupt is requested, either by the command line or the GUI, we
2874 will eventually end up here. */
2875 static void
2876 remote_stop (void)
2877 {
2878 /* Send a break or a ^C, depending on user preference. */
2879 if (remote_debug)
2880 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2881
2882 if (remote_break)
2883 serial_send_break (remote_desc);
2884 else
2885 serial_write (remote_desc, "\003", 1);
2886 }
2887
2888 /* Ask the user what to do when an interrupt is received. */
2889
2890 static void
2891 interrupt_query (void)
2892 {
2893 target_terminal_ours ();
2894
2895 if (query ("Interrupted while waiting for the program.\n\
2896 Give up (and stop debugging it)? "))
2897 {
2898 target_mourn_inferior ();
2899 throw_exception (RETURN_QUIT);
2900 }
2901
2902 target_terminal_inferior ();
2903 }
2904
2905 /* Enable/disable target terminal ownership. Most targets can use
2906 terminal groups to control terminal ownership. Remote targets are
2907 different in that explicit transfer of ownership to/from GDB/target
2908 is required. */
2909
2910 static void
2911 remote_async_terminal_inferior (void)
2912 {
2913 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2914 sync_execution here. This function should only be called when
2915 GDB is resuming the inferior in the forground. A background
2916 resume (``run&'') should leave GDB in control of the terminal and
2917 consequently should not call this code. */
2918 if (!sync_execution)
2919 return;
2920 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2921 calls target_terminal_*() idenpotent. The event-loop GDB talking
2922 to an asynchronous target with a synchronous command calls this
2923 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2924 stops trying to transfer the terminal to the target when it
2925 shouldn't this guard can go away. */
2926 if (!remote_async_terminal_ours_p)
2927 return;
2928 delete_file_handler (input_fd);
2929 remote_async_terminal_ours_p = 0;
2930 initialize_sigint_signal_handler ();
2931 /* NOTE: At this point we could also register our selves as the
2932 recipient of all input. Any characters typed could then be
2933 passed on down to the target. */
2934 }
2935
2936 static void
2937 remote_async_terminal_ours (void)
2938 {
2939 /* See FIXME in remote_async_terminal_inferior. */
2940 if (!sync_execution)
2941 return;
2942 /* See FIXME in remote_async_terminal_inferior. */
2943 if (remote_async_terminal_ours_p)
2944 return;
2945 cleanup_sigint_signal_handler (NULL);
2946 add_file_handler (input_fd, stdin_event_handler, 0);
2947 remote_async_terminal_ours_p = 1;
2948 }
2949
2950 /* If nonzero, ignore the next kill. */
2951
2952 int kill_kludge;
2953
2954 void
2955 remote_console_output (char *msg)
2956 {
2957 char *p;
2958
2959 for (p = msg; p[0] && p[1]; p += 2)
2960 {
2961 char tb[2];
2962 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2963 tb[0] = c;
2964 tb[1] = 0;
2965 fputs_unfiltered (tb, gdb_stdtarg);
2966 }
2967 gdb_flush (gdb_stdtarg);
2968 }
2969
2970 /* Wait until the remote machine stops, then return,
2971 storing status in STATUS just as `wait' would.
2972 Returns "pid", which in the case of a multi-threaded
2973 remote OS, is the thread-id. */
2974
2975 static ptid_t
2976 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2977 {
2978 struct remote_state *rs = get_remote_state ();
2979 unsigned char *buf = alloca (rs->remote_packet_size);
2980 ULONGEST thread_num = -1;
2981 ULONGEST addr;
2982
2983 status->kind = TARGET_WAITKIND_EXITED;
2984 status->value.integer = 0;
2985
2986 while (1)
2987 {
2988 unsigned char *p;
2989
2990 ofunc = signal (SIGINT, remote_interrupt);
2991 getpkt (buf, (rs->remote_packet_size), 1);
2992 signal (SIGINT, ofunc);
2993
2994 /* This is a hook for when we need to do something (perhaps the
2995 collection of trace data) every time the target stops. */
2996 if (target_wait_loop_hook)
2997 (*target_wait_loop_hook) ();
2998
2999 remote_stopped_by_watchpoint_p = 0;
3000
3001 switch (buf[0])
3002 {
3003 case 'E': /* Error of some sort */
3004 warning ("Remote failure reply: %s", buf);
3005 continue;
3006 case 'F': /* File-I/O request */
3007 remote_fileio_request (buf);
3008 continue;
3009 case 'T': /* Status with PC, SP, FP, ... */
3010 {
3011 int i;
3012 char regs[MAX_REGISTER_SIZE];
3013
3014 /* Expedited reply, containing Signal, {regno, reg} repeat */
3015 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3016 ss = signal number
3017 n... = register number
3018 r... = register contents
3019 */
3020 p = &buf[3]; /* after Txx */
3021
3022 while (*p)
3023 {
3024 unsigned char *p1;
3025 char *p_temp;
3026 int fieldsize;
3027 LONGEST pnum = 0;
3028
3029 /* If the packet contains a register number save it in pnum
3030 and set p1 to point to the character following it.
3031 Otherwise p1 points to p. */
3032
3033 /* If this packet is an awatch packet, don't parse the 'a'
3034 as a register number. */
3035
3036 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3037 {
3038 /* Read the ``P'' register number. */
3039 pnum = strtol (p, &p_temp, 16);
3040 p1 = (unsigned char *) p_temp;
3041 }
3042 else
3043 p1 = p;
3044
3045 if (p1 == p) /* No register number present here */
3046 {
3047 p1 = (unsigned char *) strchr (p, ':');
3048 if (p1 == NULL)
3049 warning ("Malformed packet(a) (missing colon): %s\n\
3050 Packet: '%s'\n",
3051 p, buf);
3052 if (strncmp (p, "thread", p1 - p) == 0)
3053 {
3054 p_temp = unpack_varlen_hex (++p1, &thread_num);
3055 record_currthread (thread_num);
3056 p = (unsigned char *) p_temp;
3057 }
3058 else if ((strncmp (p, "watch", p1 - p) == 0)
3059 || (strncmp (p, "rwatch", p1 - p) == 0)
3060 || (strncmp (p, "awatch", p1 - p) == 0))
3061 {
3062 remote_stopped_by_watchpoint_p = 1;
3063 p = unpack_varlen_hex (++p1, &addr);
3064 remote_watch_data_address = (CORE_ADDR)addr;
3065 }
3066 else
3067 {
3068 /* Silently skip unknown optional info. */
3069 p_temp = strchr (p1 + 1, ';');
3070 if (p_temp)
3071 p = (unsigned char *) p_temp;
3072 }
3073 }
3074 else
3075 {
3076 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3077 p = p1;
3078
3079 if (*p++ != ':')
3080 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3081 p, buf);
3082
3083 if (reg == NULL)
3084 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
3085 phex_nz (pnum, 0), p, buf);
3086
3087 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3088 p += 2 * fieldsize;
3089 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3090 warning ("Remote reply is too short: %s", buf);
3091 supply_register (reg->regnum, regs);
3092 }
3093
3094 if (*p++ != ';')
3095 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
3096 }
3097 }
3098 /* fall through */
3099 case 'S': /* Old style status, just signal only */
3100 status->kind = TARGET_WAITKIND_STOPPED;
3101 status->value.sig = (enum target_signal)
3102 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3103
3104 if (buf[3] == 'p')
3105 {
3106 /* Export Cisco kernel mode as a convenience variable
3107 (so that it can be used in the GDB prompt if desired). */
3108
3109 if (cisco_kernel_mode == 1)
3110 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3111 value_from_string ("PDEBUG-"));
3112 cisco_kernel_mode = 0;
3113 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3114 record_currthread (thread_num);
3115 }
3116 else if (buf[3] == 'k')
3117 {
3118 /* Export Cisco kernel mode as a convenience variable
3119 (so that it can be used in the GDB prompt if desired). */
3120
3121 if (cisco_kernel_mode == 1)
3122 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3123 value_from_string ("KDEBUG-"));
3124 cisco_kernel_mode = 1;
3125 }
3126 goto got_status;
3127 case 'N': /* Cisco special: status and offsets */
3128 {
3129 bfd_vma text_addr, data_addr, bss_addr;
3130 bfd_signed_vma text_off, data_off, bss_off;
3131 unsigned char *p1;
3132
3133 status->kind = TARGET_WAITKIND_STOPPED;
3134 status->value.sig = (enum target_signal)
3135 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3136
3137 if (symfile_objfile == NULL)
3138 {
3139 warning ("Relocation packet received with no symbol file. \
3140 Packet Dropped");
3141 goto got_status;
3142 }
3143
3144 /* Relocate object file. Buffer format is NAATT;DD;BB
3145 * where AA is the signal number, TT is the new text
3146 * address, DD * is the new data address, and BB is the
3147 * new bss address. */
3148
3149 p = &buf[3];
3150 text_addr = strtoul (p, (char **) &p1, 16);
3151 if (p1 == p || *p1 != ';')
3152 warning ("Malformed relocation packet: Packet '%s'", buf);
3153 p = p1 + 1;
3154 data_addr = strtoul (p, (char **) &p1, 16);
3155 if (p1 == p || *p1 != ';')
3156 warning ("Malformed relocation packet: Packet '%s'", buf);
3157 p = p1 + 1;
3158 bss_addr = strtoul (p, (char **) &p1, 16);
3159 if (p1 == p)
3160 warning ("Malformed relocation packet: Packet '%s'", buf);
3161
3162 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3163 &text_off, &data_off, &bss_off)
3164 == 0)
3165 if (text_off != 0 || data_off != 0 || bss_off != 0)
3166 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3167
3168 goto got_status;
3169 }
3170 case 'W': /* Target exited */
3171 {
3172 /* The remote process exited. */
3173 status->kind = TARGET_WAITKIND_EXITED;
3174 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3175 goto got_status;
3176 }
3177 case 'X':
3178 status->kind = TARGET_WAITKIND_SIGNALLED;
3179 status->value.sig = (enum target_signal)
3180 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3181 kill_kludge = 1;
3182
3183 goto got_status;
3184 case 'O': /* Console output */
3185 remote_console_output (buf + 1);
3186 continue;
3187 case '\0':
3188 if (last_sent_signal != TARGET_SIGNAL_0)
3189 {
3190 /* Zero length reply means that we tried 'S' or 'C' and
3191 the remote system doesn't support it. */
3192 target_terminal_ours_for_output ();
3193 printf_filtered
3194 ("Can't send signals to this remote system. %s not sent.\n",
3195 target_signal_to_name (last_sent_signal));
3196 last_sent_signal = TARGET_SIGNAL_0;
3197 target_terminal_inferior ();
3198
3199 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3200 putpkt ((char *) buf);
3201 continue;
3202 }
3203 /* else fallthrough */
3204 default:
3205 warning ("Invalid remote reply: %s", buf);
3206 continue;
3207 }
3208 }
3209 got_status:
3210 if (thread_num != -1)
3211 {
3212 return pid_to_ptid (thread_num);
3213 }
3214 return inferior_ptid;
3215 }
3216
3217 /* Async version of remote_wait. */
3218 static ptid_t
3219 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3220 {
3221 struct remote_state *rs = get_remote_state ();
3222 unsigned char *buf = alloca (rs->remote_packet_size);
3223 ULONGEST thread_num = -1;
3224 ULONGEST addr;
3225
3226 status->kind = TARGET_WAITKIND_EXITED;
3227 status->value.integer = 0;
3228
3229 remote_stopped_by_watchpoint_p = 0;
3230
3231 while (1)
3232 {
3233 unsigned char *p;
3234
3235 if (!target_is_async_p ())
3236 ofunc = signal (SIGINT, remote_interrupt);
3237 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3238 _never_ wait for ever -> test on target_is_async_p().
3239 However, before we do that we need to ensure that the caller
3240 knows how to take the target into/out of async mode. */
3241 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3242 if (!target_is_async_p ())
3243 signal (SIGINT, ofunc);
3244
3245 /* This is a hook for when we need to do something (perhaps the
3246 collection of trace data) every time the target stops. */
3247 if (target_wait_loop_hook)
3248 (*target_wait_loop_hook) ();
3249
3250 switch (buf[0])
3251 {
3252 case 'E': /* Error of some sort */
3253 warning ("Remote failure reply: %s", buf);
3254 continue;
3255 case 'F': /* File-I/O request */
3256 remote_fileio_request (buf);
3257 continue;
3258 case 'T': /* Status with PC, SP, FP, ... */
3259 {
3260 int i;
3261 char regs[MAX_REGISTER_SIZE];
3262
3263 /* Expedited reply, containing Signal, {regno, reg} repeat */
3264 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3265 ss = signal number
3266 n... = register number
3267 r... = register contents
3268 */
3269 p = &buf[3]; /* after Txx */
3270
3271 while (*p)
3272 {
3273 unsigned char *p1;
3274 char *p_temp;
3275 int fieldsize;
3276 long pnum = 0;
3277
3278 /* If the packet contains a register number, save it in pnum
3279 and set p1 to point to the character following it.
3280 Otherwise p1 points to p. */
3281
3282 /* If this packet is an awatch packet, don't parse the 'a'
3283 as a register number. */
3284
3285 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3286 {
3287 /* Read the register number. */
3288 pnum = strtol (p, &p_temp, 16);
3289 p1 = (unsigned char *) p_temp;
3290 }
3291 else
3292 p1 = p;
3293
3294 if (p1 == p) /* No register number present here */
3295 {
3296 p1 = (unsigned char *) strchr (p, ':');
3297 if (p1 == NULL)
3298 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3299 p, buf);
3300 if (strncmp (p, "thread", p1 - p) == 0)
3301 {
3302 p_temp = unpack_varlen_hex (++p1, &thread_num);
3303 record_currthread (thread_num);
3304 p = (unsigned char *) p_temp;
3305 }
3306 else if ((strncmp (p, "watch", p1 - p) == 0)
3307 || (strncmp (p, "rwatch", p1 - p) == 0)
3308 || (strncmp (p, "awatch", p1 - p) == 0))
3309 {
3310 remote_stopped_by_watchpoint_p = 1;
3311 p = unpack_varlen_hex (++p1, &addr);
3312 remote_watch_data_address = (CORE_ADDR)addr;
3313 }
3314 else
3315 {
3316 /* Silently skip unknown optional info. */
3317 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3318 if (p_temp)
3319 p = p_temp;
3320 }
3321 }
3322
3323 else
3324 {
3325 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3326 p = p1;
3327 if (*p++ != ':')
3328 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3329 p, buf);
3330
3331 if (reg == NULL)
3332 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3333 pnum, p, buf);
3334
3335 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3336 p += 2 * fieldsize;
3337 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3338 warning ("Remote reply is too short: %s", buf);
3339 supply_register (reg->regnum, regs);
3340 }
3341
3342 if (*p++ != ';')
3343 error ("Remote register badly formatted: %s\nhere: %s",
3344 buf, p);
3345 }
3346 }
3347 /* fall through */
3348 case 'S': /* Old style status, just signal only */
3349 status->kind = TARGET_WAITKIND_STOPPED;
3350 status->value.sig = (enum target_signal)
3351 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3352
3353 if (buf[3] == 'p')
3354 {
3355 /* Export Cisco kernel mode as a convenience variable
3356 (so that it can be used in the GDB prompt if desired). */
3357
3358 if (cisco_kernel_mode == 1)
3359 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3360 value_from_string ("PDEBUG-"));
3361 cisco_kernel_mode = 0;
3362 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3363 record_currthread (thread_num);
3364 }
3365 else if (buf[3] == 'k')
3366 {
3367 /* Export Cisco kernel mode as a convenience variable
3368 (so that it can be used in the GDB prompt if desired). */
3369
3370 if (cisco_kernel_mode == 1)
3371 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3372 value_from_string ("KDEBUG-"));
3373 cisco_kernel_mode = 1;
3374 }
3375 goto got_status;
3376 case 'N': /* Cisco special: status and offsets */
3377 {
3378 bfd_vma text_addr, data_addr, bss_addr;
3379 bfd_signed_vma text_off, data_off, bss_off;
3380 unsigned char *p1;
3381
3382 status->kind = TARGET_WAITKIND_STOPPED;
3383 status->value.sig = (enum target_signal)
3384 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3385
3386 if (symfile_objfile == NULL)
3387 {
3388 warning ("Relocation packet recieved with no symbol file. \
3389 Packet Dropped");
3390 goto got_status;
3391 }
3392
3393 /* Relocate object file. Buffer format is NAATT;DD;BB
3394 * where AA is the signal number, TT is the new text
3395 * address, DD * is the new data address, and BB is the
3396 * new bss address. */
3397
3398 p = &buf[3];
3399 text_addr = strtoul (p, (char **) &p1, 16);
3400 if (p1 == p || *p1 != ';')
3401 warning ("Malformed relocation packet: Packet '%s'", buf);
3402 p = p1 + 1;
3403 data_addr = strtoul (p, (char **) &p1, 16);
3404 if (p1 == p || *p1 != ';')
3405 warning ("Malformed relocation packet: Packet '%s'", buf);
3406 p = p1 + 1;
3407 bss_addr = strtoul (p, (char **) &p1, 16);
3408 if (p1 == p)
3409 warning ("Malformed relocation packet: Packet '%s'", buf);
3410
3411 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3412 &text_off, &data_off, &bss_off)
3413 == 0)
3414 if (text_off != 0 || data_off != 0 || bss_off != 0)
3415 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3416
3417 goto got_status;
3418 }
3419 case 'W': /* Target exited */
3420 {
3421 /* The remote process exited. */
3422 status->kind = TARGET_WAITKIND_EXITED;
3423 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3424 goto got_status;
3425 }
3426 case 'X':
3427 status->kind = TARGET_WAITKIND_SIGNALLED;
3428 status->value.sig = (enum target_signal)
3429 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3430 kill_kludge = 1;
3431
3432 goto got_status;
3433 case 'O': /* Console output */
3434 remote_console_output (buf + 1);
3435 /* Return immediately to the event loop. The event loop will
3436 still be waiting on the inferior afterwards. */
3437 status->kind = TARGET_WAITKIND_IGNORE;
3438 goto got_status;
3439 case '\0':
3440 if (last_sent_signal != TARGET_SIGNAL_0)
3441 {
3442 /* Zero length reply means that we tried 'S' or 'C' and
3443 the remote system doesn't support it. */
3444 target_terminal_ours_for_output ();
3445 printf_filtered
3446 ("Can't send signals to this remote system. %s not sent.\n",
3447 target_signal_to_name (last_sent_signal));
3448 last_sent_signal = TARGET_SIGNAL_0;
3449 target_terminal_inferior ();
3450
3451 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3452 putpkt ((char *) buf);
3453 continue;
3454 }
3455 /* else fallthrough */
3456 default:
3457 warning ("Invalid remote reply: %s", buf);
3458 continue;
3459 }
3460 }
3461 got_status:
3462 if (thread_num != -1)
3463 {
3464 return pid_to_ptid (thread_num);
3465 }
3466 return inferior_ptid;
3467 }
3468
3469 /* Number of bytes of registers this stub implements. */
3470
3471 static int register_bytes_found;
3472
3473 /* Read the remote registers into the block REGS. */
3474 /* Currently we just read all the registers, so we don't use regnum. */
3475
3476 static void
3477 remote_fetch_registers (int regnum)
3478 {
3479 struct remote_state *rs = get_remote_state ();
3480 char *buf = alloca (rs->remote_packet_size);
3481 int i;
3482 char *p;
3483 char *regs = alloca (rs->sizeof_g_packet);
3484
3485 set_thread (PIDGET (inferior_ptid), 1);
3486
3487 if (regnum >= 0)
3488 {
3489 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3490 gdb_assert (reg != NULL);
3491 if (!reg->in_g_packet)
3492 internal_error (__FILE__, __LINE__,
3493 "Attempt to fetch a non G-packet register when this "
3494 "remote.c does not support the p-packet.");
3495 }
3496
3497 sprintf (buf, "g");
3498 remote_send (buf, (rs->remote_packet_size));
3499
3500 /* Save the size of the packet sent to us by the target. Its used
3501 as a heuristic when determining the max size of packets that the
3502 target can safely receive. */
3503 if ((rs->actual_register_packet_size) == 0)
3504 (rs->actual_register_packet_size) = strlen (buf);
3505
3506 /* Unimplemented registers read as all bits zero. */
3507 memset (regs, 0, rs->sizeof_g_packet);
3508
3509 /* We can get out of synch in various cases. If the first character
3510 in the buffer is not a hex character, assume that has happened
3511 and try to fetch another packet to read. */
3512 while ((buf[0] < '0' || buf[0] > '9')
3513 && (buf[0] < 'a' || buf[0] > 'f')
3514 && buf[0] != 'x') /* New: unavailable register value */
3515 {
3516 if (remote_debug)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "Bad register packet; fetching a new packet\n");
3519 getpkt (buf, (rs->remote_packet_size), 0);
3520 }
3521
3522 /* Reply describes registers byte by byte, each byte encoded as two
3523 hex characters. Suck them all up, then supply them to the
3524 register cacheing/storage mechanism. */
3525
3526 p = buf;
3527 for (i = 0; i < rs->sizeof_g_packet; i++)
3528 {
3529 if (p[0] == 0)
3530 break;
3531 if (p[1] == 0)
3532 {
3533 warning ("Remote reply is of odd length: %s", buf);
3534 /* Don't change register_bytes_found in this case, and don't
3535 print a second warning. */
3536 goto supply_them;
3537 }
3538 if (p[0] == 'x' && p[1] == 'x')
3539 regs[i] = 0; /* 'x' */
3540 else
3541 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3542 p += 2;
3543 }
3544
3545 if (i != register_bytes_found)
3546 {
3547 register_bytes_found = i;
3548 if (REGISTER_BYTES_OK_P ()
3549 && !REGISTER_BYTES_OK (i))
3550 warning ("Remote reply is too short: %s", buf);
3551 }
3552
3553 supply_them:
3554 {
3555 int i;
3556 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3557 {
3558 struct packet_reg *r = &rs->regs[i];
3559 if (r->in_g_packet)
3560 {
3561 supply_register (r->regnum, regs + r->offset);
3562 if (buf[r->offset * 2] == 'x')
3563 set_register_cached (i, -1);
3564 }
3565 }
3566 }
3567 }
3568
3569 /* Prepare to store registers. Since we may send them all (using a
3570 'G' request), we have to read out the ones we don't want to change
3571 first. */
3572
3573 static void
3574 remote_prepare_to_store (void)
3575 {
3576 struct remote_state *rs = get_remote_state ();
3577 int i;
3578 char buf[MAX_REGISTER_SIZE];
3579
3580 /* Make sure the entire registers array is valid. */
3581 switch (remote_protocol_P.support)
3582 {
3583 case PACKET_DISABLE:
3584 case PACKET_SUPPORT_UNKNOWN:
3585 /* Make sure all the necessary registers are cached. */
3586 for (i = 0; i < NUM_REGS; i++)
3587 if (rs->regs[i].in_g_packet)
3588 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3589 break;
3590 case PACKET_ENABLE:
3591 break;
3592 }
3593 }
3594
3595 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3596 packet was not recognized. */
3597
3598 static int
3599 store_register_using_P (int regnum)
3600 {
3601 struct remote_state *rs = get_remote_state ();
3602 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3603 /* Try storing a single register. */
3604 char *buf = alloca (rs->remote_packet_size);
3605 char regp[MAX_REGISTER_SIZE];
3606 char *p;
3607 int i;
3608
3609 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3610 p = buf + strlen (buf);
3611 regcache_collect (reg->regnum, regp);
3612 bin2hex (regp, p, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3613 remote_send (buf, rs->remote_packet_size);
3614
3615 return buf[0] != '\0';
3616 }
3617
3618
3619 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3620 of the register cache buffer. FIXME: ignores errors. */
3621
3622 static void
3623 remote_store_registers (int regnum)
3624 {
3625 struct remote_state *rs = get_remote_state ();
3626 char *buf;
3627 char *regs;
3628 int i;
3629 char *p;
3630
3631 set_thread (PIDGET (inferior_ptid), 1);
3632
3633 if (regnum >= 0)
3634 {
3635 switch (remote_protocol_P.support)
3636 {
3637 case PACKET_DISABLE:
3638 break;
3639 case PACKET_ENABLE:
3640 if (store_register_using_P (regnum))
3641 return;
3642 else
3643 error ("Protocol error: P packet not recognized by stub");
3644 case PACKET_SUPPORT_UNKNOWN:
3645 if (store_register_using_P (regnum))
3646 {
3647 /* The stub recognized the 'P' packet. Remember this. */
3648 remote_protocol_P.support = PACKET_ENABLE;
3649 return;
3650 }
3651 else
3652 {
3653 /* The stub does not support the 'P' packet. Use 'G'
3654 instead, and don't try using 'P' in the future (it
3655 will just waste our time). */
3656 remote_protocol_P.support = PACKET_DISABLE;
3657 break;
3658 }
3659 }
3660 }
3661
3662 /* Extract all the registers in the regcache copying them into a
3663 local buffer. */
3664 {
3665 int i;
3666 regs = alloca (rs->sizeof_g_packet);
3667 memset (regs, rs->sizeof_g_packet, 0);
3668 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3669 {
3670 struct packet_reg *r = &rs->regs[i];
3671 if (r->in_g_packet)
3672 regcache_collect (r->regnum, regs + r->offset);
3673 }
3674 }
3675
3676 /* Command describes registers byte by byte,
3677 each byte encoded as two hex characters. */
3678 buf = alloca (rs->remote_packet_size);
3679 p = buf;
3680 *p++ = 'G';
3681 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3682 bin2hex (regs, p, register_bytes_found);
3683 remote_send (buf, (rs->remote_packet_size));
3684 }
3685 \f
3686
3687 /* Return the number of hex digits in num. */
3688
3689 static int
3690 hexnumlen (ULONGEST num)
3691 {
3692 int i;
3693
3694 for (i = 0; num != 0; i++)
3695 num >>= 4;
3696
3697 return max (i, 1);
3698 }
3699
3700 /* Set BUF to the minimum number of hex digits representing NUM. */
3701
3702 static int
3703 hexnumstr (char *buf, ULONGEST num)
3704 {
3705 int len = hexnumlen (num);
3706 return hexnumnstr (buf, num, len);
3707 }
3708
3709
3710 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3711
3712 static int
3713 hexnumnstr (char *buf, ULONGEST num, int width)
3714 {
3715 int i;
3716
3717 buf[width] = '\0';
3718
3719 for (i = width - 1; i >= 0; i--)
3720 {
3721 buf[i] = "0123456789abcdef"[(num & 0xf)];
3722 num >>= 4;
3723 }
3724
3725 return width;
3726 }
3727
3728 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3729
3730 static CORE_ADDR
3731 remote_address_masked (CORE_ADDR addr)
3732 {
3733 if (remote_address_size > 0
3734 && remote_address_size < (sizeof (ULONGEST) * 8))
3735 {
3736 /* Only create a mask when that mask can safely be constructed
3737 in a ULONGEST variable. */
3738 ULONGEST mask = 1;
3739 mask = (mask << remote_address_size) - 1;
3740 addr &= mask;
3741 }
3742 return addr;
3743 }
3744
3745 /* Determine whether the remote target supports binary downloading.
3746 This is accomplished by sending a no-op memory write of zero length
3747 to the target at the specified address. It does not suffice to send
3748 the whole packet, since many stubs strip the eighth bit and subsequently
3749 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3750
3751 NOTE: This can still lose if the serial line is not eight-bit
3752 clean. In cases like this, the user should clear "remote
3753 X-packet". */
3754
3755 static void
3756 check_binary_download (CORE_ADDR addr)
3757 {
3758 struct remote_state *rs = get_remote_state ();
3759 switch (remote_protocol_binary_download.support)
3760 {
3761 case PACKET_DISABLE:
3762 break;
3763 case PACKET_ENABLE:
3764 break;
3765 case PACKET_SUPPORT_UNKNOWN:
3766 {
3767 char *buf = alloca (rs->remote_packet_size);
3768 char *p;
3769
3770 p = buf;
3771 *p++ = 'X';
3772 p += hexnumstr (p, (ULONGEST) addr);
3773 *p++ = ',';
3774 p += hexnumstr (p, (ULONGEST) 0);
3775 *p++ = ':';
3776 *p = '\0';
3777
3778 putpkt_binary (buf, (int) (p - buf));
3779 getpkt (buf, (rs->remote_packet_size), 0);
3780
3781 if (buf[0] == '\0')
3782 {
3783 if (remote_debug)
3784 fprintf_unfiltered (gdb_stdlog,
3785 "binary downloading NOT suppported by target\n");
3786 remote_protocol_binary_download.support = PACKET_DISABLE;
3787 }
3788 else
3789 {
3790 if (remote_debug)
3791 fprintf_unfiltered (gdb_stdlog,
3792 "binary downloading suppported by target\n");
3793 remote_protocol_binary_download.support = PACKET_ENABLE;
3794 }
3795 break;
3796 }
3797 }
3798 }
3799
3800 /* Write memory data directly to the remote machine.
3801 This does not inform the data cache; the data cache uses this.
3802 MEMADDR is the address in the remote memory space.
3803 MYADDR is the address of the buffer in our space.
3804 LEN is the number of bytes.
3805
3806 Returns number of bytes transferred, or 0 (setting errno) for
3807 error. Only transfer a single packet. */
3808
3809 int
3810 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3811 {
3812 unsigned char *buf;
3813 unsigned char *p;
3814 unsigned char *plen;
3815 long sizeof_buf;
3816 int plenlen;
3817 int todo;
3818 int nr_bytes;
3819 int payload_size;
3820 unsigned char *payload_start;
3821
3822 /* Verify that the target can support a binary download. */
3823 check_binary_download (memaddr);
3824
3825 /* Compute the size, and then allocate space for the largest
3826 possible packet. Include space for an extra trailing NUL. */
3827 sizeof_buf = get_memory_write_packet_size () + 1;
3828 buf = alloca (sizeof_buf);
3829
3830 /* Compute the size of the actual payload by subtracting out the
3831 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3832 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3833 + hexnumlen (memaddr)
3834 + hexnumlen (len)));
3835
3836 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3837
3838 /* Append "[XM]". Compute a best guess of the number of bytes
3839 actually transfered. */
3840 p = buf;
3841 switch (remote_protocol_binary_download.support)
3842 {
3843 case PACKET_ENABLE:
3844 *p++ = 'X';
3845 /* Best guess at number of bytes that will fit. */
3846 todo = min (len, payload_size);
3847 break;
3848 case PACKET_DISABLE:
3849 *p++ = 'M';
3850 /* num bytes that will fit */
3851 todo = min (len, payload_size / 2);
3852 break;
3853 case PACKET_SUPPORT_UNKNOWN:
3854 internal_error (__FILE__, __LINE__,
3855 "remote_write_bytes: bad internal state");
3856 default:
3857 internal_error (__FILE__, __LINE__, "bad switch");
3858 }
3859
3860 /* Append "<memaddr>". */
3861 memaddr = remote_address_masked (memaddr);
3862 p += hexnumstr (p, (ULONGEST) memaddr);
3863
3864 /* Append ",". */
3865 *p++ = ',';
3866
3867 /* Append <len>. Retain the location/size of <len>. It may need to
3868 be adjusted once the packet body has been created. */
3869 plen = p;
3870 plenlen = hexnumstr (p, (ULONGEST) todo);
3871 p += plenlen;
3872
3873 /* Append ":". */
3874 *p++ = ':';
3875 *p = '\0';
3876
3877 /* Append the packet body. */
3878 payload_start = p;
3879 switch (remote_protocol_binary_download.support)
3880 {
3881 case PACKET_ENABLE:
3882 /* Binary mode. Send target system values byte by byte, in
3883 increasing byte addresses. Only escape certain critical
3884 characters. */
3885 for (nr_bytes = 0;
3886 (nr_bytes < todo) && (p - payload_start) < payload_size;
3887 nr_bytes++)
3888 {
3889 switch (myaddr[nr_bytes] & 0xff)
3890 {
3891 case '$':
3892 case '#':
3893 case 0x7d:
3894 /* These must be escaped */
3895 *p++ = 0x7d;
3896 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3897 break;
3898 default:
3899 *p++ = myaddr[nr_bytes] & 0xff;
3900 break;
3901 }
3902 }
3903 if (nr_bytes < todo)
3904 {
3905 /* Escape chars have filled up the buffer prematurely,
3906 and we have actually sent fewer bytes than planned.
3907 Fix-up the length field of the packet. Use the same
3908 number of characters as before. */
3909 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3910 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3911 }
3912 break;
3913 case PACKET_DISABLE:
3914 /* Normal mode: Send target system values byte by byte, in
3915 increasing byte addresses. Each byte is encoded as a two hex
3916 value. */
3917 nr_bytes = bin2hex (myaddr, p, todo);
3918 p += 2 * nr_bytes;
3919 break;
3920 case PACKET_SUPPORT_UNKNOWN:
3921 internal_error (__FILE__, __LINE__,
3922 "remote_write_bytes: bad internal state");
3923 default:
3924 internal_error (__FILE__, __LINE__, "bad switch");
3925 }
3926
3927 putpkt_binary (buf, (int) (p - buf));
3928 getpkt (buf, sizeof_buf, 0);
3929
3930 if (buf[0] == 'E')
3931 {
3932 /* There is no correspondance between what the remote protocol
3933 uses for errors and errno codes. We would like a cleaner way
3934 of representing errors (big enough to include errno codes,
3935 bfd_error codes, and others). But for now just return EIO. */
3936 errno = EIO;
3937 return 0;
3938 }
3939
3940 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3941 bytes than we'd planned. */
3942 return nr_bytes;
3943 }
3944
3945 /* Read memory data directly from the remote machine.
3946 This does not use the data cache; the data cache uses this.
3947 MEMADDR is the address in the remote memory space.
3948 MYADDR is the address of the buffer in our space.
3949 LEN is the number of bytes.
3950
3951 Returns number of bytes transferred, or 0 for error. */
3952
3953 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3954 remote targets) shouldn't attempt to read the entire buffer.
3955 Instead it should read a single packet worth of data and then
3956 return the byte size of that packet to the caller. The caller (its
3957 caller and its callers caller ;-) already contains code for
3958 handling partial reads. */
3959
3960 int
3961 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3962 {
3963 char *buf;
3964 int max_buf_size; /* Max size of packet output buffer */
3965 long sizeof_buf;
3966 int origlen;
3967
3968 /* Create a buffer big enough for this packet. */
3969 max_buf_size = get_memory_read_packet_size ();
3970 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3971 buf = alloca (sizeof_buf);
3972
3973 origlen = len;
3974 while (len > 0)
3975 {
3976 char *p;
3977 int todo;
3978 int i;
3979
3980 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3981
3982 /* construct "m"<memaddr>","<len>" */
3983 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3984 memaddr = remote_address_masked (memaddr);
3985 p = buf;
3986 *p++ = 'm';
3987 p += hexnumstr (p, (ULONGEST) memaddr);
3988 *p++ = ',';
3989 p += hexnumstr (p, (ULONGEST) todo);
3990 *p = '\0';
3991
3992 putpkt (buf);
3993 getpkt (buf, sizeof_buf, 0);
3994
3995 if (buf[0] == 'E'
3996 && isxdigit (buf[1]) && isxdigit (buf[2])
3997 && buf[3] == '\0')
3998 {
3999 /* There is no correspondance between what the remote protocol uses
4000 for errors and errno codes. We would like a cleaner way of
4001 representing errors (big enough to include errno codes, bfd_error
4002 codes, and others). But for now just return EIO. */
4003 errno = EIO;
4004 return 0;
4005 }
4006
4007 /* Reply describes memory byte by byte,
4008 each byte encoded as two hex characters. */
4009
4010 p = buf;
4011 if ((i = hex2bin (p, myaddr, todo)) < todo)
4012 {
4013 /* Reply is short. This means that we were able to read
4014 only part of what we wanted to. */
4015 return i + (origlen - len);
4016 }
4017 myaddr += todo;
4018 memaddr += todo;
4019 len -= todo;
4020 }
4021 return origlen;
4022 }
4023 \f
4024 /* Read or write LEN bytes from inferior memory at MEMADDR,
4025 transferring to or from debugger address BUFFER. Write to inferior if
4026 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
4027 for error. TARGET is unused. */
4028
4029 static int
4030 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
4031 int should_write, struct mem_attrib *attrib,
4032 struct target_ops *target)
4033 {
4034 CORE_ADDR targ_addr;
4035 int targ_len;
4036 int res;
4037
4038 /* Should this be the selected frame? */
4039 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
4040 mem_addr, mem_len,
4041 &targ_addr, &targ_len);
4042 if (targ_len <= 0)
4043 return 0;
4044
4045 if (should_write)
4046 res = remote_write_bytes (targ_addr, buffer, targ_len);
4047 else
4048 res = remote_read_bytes (targ_addr, buffer, targ_len);
4049
4050 return res;
4051 }
4052
4053 static void
4054 remote_files_info (struct target_ops *ignore)
4055 {
4056 puts_filtered ("Debugging a target over a serial line.\n");
4057 }
4058 \f
4059 /* Stuff for dealing with the packets which are part of this protocol.
4060 See comment at top of file for details. */
4061
4062 /* Read a single character from the remote end, masking it down to 7 bits. */
4063
4064 static int
4065 readchar (int timeout)
4066 {
4067 int ch;
4068
4069 ch = serial_readchar (remote_desc, timeout);
4070
4071 if (ch >= 0)
4072 return (ch & 0x7f);
4073
4074 switch ((enum serial_rc) ch)
4075 {
4076 case SERIAL_EOF:
4077 target_mourn_inferior ();
4078 error ("Remote connection closed");
4079 /* no return */
4080 case SERIAL_ERROR:
4081 perror_with_name ("Remote communication error");
4082 /* no return */
4083 case SERIAL_TIMEOUT:
4084 break;
4085 }
4086 return ch;
4087 }
4088
4089 /* Send the command in BUF to the remote machine, and read the reply
4090 into BUF. Report an error if we get an error reply. */
4091
4092 static void
4093 remote_send (char *buf,
4094 long sizeof_buf)
4095 {
4096 putpkt (buf);
4097 getpkt (buf, sizeof_buf, 0);
4098
4099 if (buf[0] == 'E')
4100 error ("Remote failure reply: %s", buf);
4101 }
4102
4103 /* Display a null-terminated packet on stdout, for debugging, using C
4104 string notation. */
4105
4106 static void
4107 print_packet (char *buf)
4108 {
4109 puts_filtered ("\"");
4110 fputstr_filtered (buf, '"', gdb_stdout);
4111 puts_filtered ("\"");
4112 }
4113
4114 int
4115 putpkt (char *buf)
4116 {
4117 return putpkt_binary (buf, strlen (buf));
4118 }
4119
4120 /* Send a packet to the remote machine, with error checking. The data
4121 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4122 to account for the $, # and checksum, and for a possible /0 if we are
4123 debugging (remote_debug) and want to print the sent packet as a string */
4124
4125 static int
4126 putpkt_binary (char *buf, int cnt)
4127 {
4128 struct remote_state *rs = get_remote_state ();
4129 int i;
4130 unsigned char csum = 0;
4131 char *buf2 = alloca (cnt + 6);
4132 long sizeof_junkbuf = (rs->remote_packet_size);
4133 char *junkbuf = alloca (sizeof_junkbuf);
4134
4135 int ch;
4136 int tcount = 0;
4137 char *p;
4138
4139 /* Copy the packet into buffer BUF2, encapsulating it
4140 and giving it a checksum. */
4141
4142 p = buf2;
4143 *p++ = '$';
4144
4145 for (i = 0; i < cnt; i++)
4146 {
4147 csum += buf[i];
4148 *p++ = buf[i];
4149 }
4150 *p++ = '#';
4151 *p++ = tohex ((csum >> 4) & 0xf);
4152 *p++ = tohex (csum & 0xf);
4153
4154 /* Send it over and over until we get a positive ack. */
4155
4156 while (1)
4157 {
4158 int started_error_output = 0;
4159
4160 if (remote_debug)
4161 {
4162 *p = '\0';
4163 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4164 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4165 fprintf_unfiltered (gdb_stdlog, "...");
4166 gdb_flush (gdb_stdlog);
4167 }
4168 if (serial_write (remote_desc, buf2, p - buf2))
4169 perror_with_name ("putpkt: write failed");
4170
4171 /* read until either a timeout occurs (-2) or '+' is read */
4172 while (1)
4173 {
4174 ch = readchar (remote_timeout);
4175
4176 if (remote_debug)
4177 {
4178 switch (ch)
4179 {
4180 case '+':
4181 case '-':
4182 case SERIAL_TIMEOUT:
4183 case '$':
4184 if (started_error_output)
4185 {
4186 putchar_unfiltered ('\n');
4187 started_error_output = 0;
4188 }
4189 }
4190 }
4191
4192 switch (ch)
4193 {
4194 case '+':
4195 if (remote_debug)
4196 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4197 return 1;
4198 case '-':
4199 if (remote_debug)
4200 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4201 case SERIAL_TIMEOUT:
4202 tcount++;
4203 if (tcount > 3)
4204 return 0;
4205 break; /* Retransmit buffer */
4206 case '$':
4207 {
4208 if (remote_debug)
4209 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4210 /* It's probably an old response, and we're out of sync.
4211 Just gobble up the packet and ignore it. */
4212 read_frame (junkbuf, sizeof_junkbuf);
4213 continue; /* Now, go look for + */
4214 }
4215 default:
4216 if (remote_debug)
4217 {
4218 if (!started_error_output)
4219 {
4220 started_error_output = 1;
4221 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4222 }
4223 fputc_unfiltered (ch & 0177, gdb_stdlog);
4224 }
4225 continue;
4226 }
4227 break; /* Here to retransmit */
4228 }
4229
4230 #if 0
4231 /* This is wrong. If doing a long backtrace, the user should be
4232 able to get out next time we call QUIT, without anything as
4233 violent as interrupt_query. If we want to provide a way out of
4234 here without getting to the next QUIT, it should be based on
4235 hitting ^C twice as in remote_wait. */
4236 if (quit_flag)
4237 {
4238 quit_flag = 0;
4239 interrupt_query ();
4240 }
4241 #endif
4242 }
4243 }
4244
4245 static int remote_cisco_mode;
4246
4247 /* Come here after finding the start of the frame. Collect the rest
4248 into BUF, verifying the checksum, length, and handling run-length
4249 compression. No more than sizeof_buf-1 characters are read so that
4250 the buffer can be NUL terminated.
4251
4252 Returns -1 on error, number of characters in buffer (ignoring the
4253 trailing NULL) on success. (could be extended to return one of the
4254 SERIAL status indications). */
4255
4256 static long
4257 read_frame (char *buf,
4258 long sizeof_buf)
4259 {
4260 unsigned char csum;
4261 long bc;
4262 int c;
4263
4264 csum = 0;
4265 bc = 0;
4266
4267 while (1)
4268 {
4269 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4270 c = readchar (remote_timeout);
4271 switch (c)
4272 {
4273 case SERIAL_TIMEOUT:
4274 if (remote_debug)
4275 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4276 return -1;
4277 case '$':
4278 if (remote_debug)
4279 fputs_filtered ("Saw new packet start in middle of old one\n",
4280 gdb_stdlog);
4281 return -1; /* Start a new packet, count retries */
4282 case '#':
4283 {
4284 unsigned char pktcsum;
4285 int check_0 = 0;
4286 int check_1 = 0;
4287
4288 buf[bc] = '\0';
4289
4290 check_0 = readchar (remote_timeout);
4291 if (check_0 >= 0)
4292 check_1 = readchar (remote_timeout);
4293
4294 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4295 {
4296 if (remote_debug)
4297 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4298 return -1;
4299 }
4300 else if (check_0 < 0 || check_1 < 0)
4301 {
4302 if (remote_debug)
4303 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4304 return -1;
4305 }
4306
4307 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4308 if (csum == pktcsum)
4309 return bc;
4310
4311 if (remote_debug)
4312 {
4313 fprintf_filtered (gdb_stdlog,
4314 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4315 pktcsum, csum);
4316 fputs_filtered (buf, gdb_stdlog);
4317 fputs_filtered ("\n", gdb_stdlog);
4318 }
4319 /* Number of characters in buffer ignoring trailing
4320 NUL. */
4321 return -1;
4322 }
4323 case '*': /* Run length encoding */
4324 {
4325 int repeat;
4326 csum += c;
4327
4328 if (remote_cisco_mode == 0)
4329 {
4330 c = readchar (remote_timeout);
4331 csum += c;
4332 repeat = c - ' ' + 3; /* Compute repeat count */
4333 }
4334 else
4335 {
4336 /* Cisco's run-length encoding variant uses two
4337 hex chars to represent the repeat count. */
4338
4339 c = readchar (remote_timeout);
4340 csum += c;
4341 repeat = fromhex (c) << 4;
4342 c = readchar (remote_timeout);
4343 csum += c;
4344 repeat += fromhex (c);
4345 }
4346
4347 /* The character before ``*'' is repeated. */
4348
4349 if (repeat > 0 && repeat <= 255
4350 && bc > 0
4351 && bc + repeat - 1 < sizeof_buf - 1)
4352 {
4353 memset (&buf[bc], buf[bc - 1], repeat);
4354 bc += repeat;
4355 continue;
4356 }
4357
4358 buf[bc] = '\0';
4359 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4360 puts_filtered (buf);
4361 puts_filtered ("\n");
4362 return -1;
4363 }
4364 default:
4365 if (bc < sizeof_buf - 1)
4366 {
4367 buf[bc++] = c;
4368 csum += c;
4369 continue;
4370 }
4371
4372 buf[bc] = '\0';
4373 puts_filtered ("Remote packet too long: ");
4374 puts_filtered (buf);
4375 puts_filtered ("\n");
4376
4377 return -1;
4378 }
4379 }
4380 }
4381
4382 /* Read a packet from the remote machine, with error checking, and
4383 store it in BUF. If FOREVER, wait forever rather than timing out;
4384 this is used (in synchronous mode) to wait for a target that is is
4385 executing user code to stop. */
4386 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4387 don't have to change all the calls to getpkt to deal with the
4388 return value, because at the moment I don't know what the right
4389 thing to do it for those. */
4390 void
4391 getpkt (char *buf,
4392 long sizeof_buf,
4393 int forever)
4394 {
4395 int timed_out;
4396
4397 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4398 }
4399
4400
4401 /* Read a packet from the remote machine, with error checking, and
4402 store it in BUF. If FOREVER, wait forever rather than timing out;
4403 this is used (in synchronous mode) to wait for a target that is is
4404 executing user code to stop. If FOREVER == 0, this function is
4405 allowed to time out gracefully and return an indication of this to
4406 the caller. */
4407 static int
4408 getpkt_sane (char *buf,
4409 long sizeof_buf,
4410 int forever)
4411 {
4412 int c;
4413 int tries;
4414 int timeout;
4415 int val;
4416
4417 strcpy (buf, "timeout");
4418
4419 if (forever)
4420 {
4421 timeout = watchdog > 0 ? watchdog : -1;
4422 }
4423
4424 else
4425 timeout = remote_timeout;
4426
4427 #define MAX_TRIES 3
4428
4429 for (tries = 1; tries <= MAX_TRIES; tries++)
4430 {
4431 /* This can loop forever if the remote side sends us characters
4432 continuously, but if it pauses, we'll get a zero from readchar
4433 because of timeout. Then we'll count that as a retry. */
4434
4435 /* Note that we will only wait forever prior to the start of a packet.
4436 After that, we expect characters to arrive at a brisk pace. They
4437 should show up within remote_timeout intervals. */
4438
4439 do
4440 {
4441 c = readchar (timeout);
4442
4443 if (c == SERIAL_TIMEOUT)
4444 {
4445 if (forever) /* Watchdog went off? Kill the target. */
4446 {
4447 QUIT;
4448 target_mourn_inferior ();
4449 error ("Watchdog has expired. Target detached.\n");
4450 }
4451 if (remote_debug)
4452 fputs_filtered ("Timed out.\n", gdb_stdlog);
4453 goto retry;
4454 }
4455 }
4456 while (c != '$');
4457
4458 /* We've found the start of a packet, now collect the data. */
4459
4460 val = read_frame (buf, sizeof_buf);
4461
4462 if (val >= 0)
4463 {
4464 if (remote_debug)
4465 {
4466 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4467 fputstr_unfiltered (buf, 0, gdb_stdlog);
4468 fprintf_unfiltered (gdb_stdlog, "\n");
4469 }
4470 serial_write (remote_desc, "+", 1);
4471 return 0;
4472 }
4473
4474 /* Try the whole thing again. */
4475 retry:
4476 serial_write (remote_desc, "-", 1);
4477 }
4478
4479 /* We have tried hard enough, and just can't receive the packet. Give up. */
4480
4481 printf_unfiltered ("Ignoring packet error, continuing...\n");
4482 serial_write (remote_desc, "+", 1);
4483 return 1;
4484 }
4485 \f
4486 static void
4487 remote_kill (void)
4488 {
4489 /* For some mysterious reason, wait_for_inferior calls kill instead of
4490 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4491 if (kill_kludge)
4492 {
4493 kill_kludge = 0;
4494 target_mourn_inferior ();
4495 return;
4496 }
4497
4498 /* Use catch_errors so the user can quit from gdb even when we aren't on
4499 speaking terms with the remote system. */
4500 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4501
4502 /* Don't wait for it to die. I'm not really sure it matters whether
4503 we do or not. For the existing stubs, kill is a noop. */
4504 target_mourn_inferior ();
4505 }
4506
4507 /* Async version of remote_kill. */
4508 static void
4509 remote_async_kill (void)
4510 {
4511 /* Unregister the file descriptor from the event loop. */
4512 if (target_is_async_p ())
4513 serial_async (remote_desc, NULL, 0);
4514
4515 /* For some mysterious reason, wait_for_inferior calls kill instead of
4516 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4517 if (kill_kludge)
4518 {
4519 kill_kludge = 0;
4520 target_mourn_inferior ();
4521 return;
4522 }
4523
4524 /* Use catch_errors so the user can quit from gdb even when we aren't on
4525 speaking terms with the remote system. */
4526 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4527
4528 /* Don't wait for it to die. I'm not really sure it matters whether
4529 we do or not. For the existing stubs, kill is a noop. */
4530 target_mourn_inferior ();
4531 }
4532
4533 static void
4534 remote_mourn (void)
4535 {
4536 remote_mourn_1 (&remote_ops);
4537 }
4538
4539 static void
4540 remote_async_mourn (void)
4541 {
4542 remote_mourn_1 (&remote_async_ops);
4543 }
4544
4545 static void
4546 extended_remote_mourn (void)
4547 {
4548 /* We do _not_ want to mourn the target like this; this will
4549 remove the extended remote target from the target stack,
4550 and the next time the user says "run" it'll fail.
4551
4552 FIXME: What is the right thing to do here? */
4553 #if 0
4554 remote_mourn_1 (&extended_remote_ops);
4555 #endif
4556 }
4557
4558 /* Worker function for remote_mourn. */
4559 static void
4560 remote_mourn_1 (struct target_ops *target)
4561 {
4562 unpush_target (target);
4563 generic_mourn_inferior ();
4564 }
4565
4566 /* In the extended protocol we want to be able to do things like
4567 "run" and have them basically work as expected. So we need
4568 a special create_inferior function.
4569
4570 FIXME: One day add support for changing the exec file
4571 we're debugging, arguments and an environment. */
4572
4573 static void
4574 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4575 {
4576 /* Rip out the breakpoints; we'll reinsert them after restarting
4577 the remote server. */
4578 remove_breakpoints ();
4579
4580 /* Now restart the remote server. */
4581 extended_remote_restart ();
4582
4583 /* Now put the breakpoints back in. This way we're safe if the
4584 restart function works via a unix fork on the remote side. */
4585 insert_breakpoints ();
4586
4587 /* Clean up from the last time we were running. */
4588 clear_proceed_status ();
4589
4590 /* Let the remote process run. */
4591 proceed (-1, TARGET_SIGNAL_0, 0);
4592 }
4593
4594 /* Async version of extended_remote_create_inferior. */
4595 static void
4596 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4597 {
4598 /* Rip out the breakpoints; we'll reinsert them after restarting
4599 the remote server. */
4600 remove_breakpoints ();
4601
4602 /* If running asynchronously, register the target file descriptor
4603 with the event loop. */
4604 if (event_loop_p && target_can_async_p ())
4605 target_async (inferior_event_handler, 0);
4606
4607 /* Now restart the remote server. */
4608 extended_remote_restart ();
4609
4610 /* Now put the breakpoints back in. This way we're safe if the
4611 restart function works via a unix fork on the remote side. */
4612 insert_breakpoints ();
4613
4614 /* Clean up from the last time we were running. */
4615 clear_proceed_status ();
4616
4617 /* Let the remote process run. */
4618 proceed (-1, TARGET_SIGNAL_0, 0);
4619 }
4620 \f
4621
4622 /* On some machines, e.g. 68k, we may use a different breakpoint
4623 instruction than other targets; in those use
4624 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4625 Also, bi-endian targets may define
4626 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4627 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4628 just call the standard routines that are in mem-break.c. */
4629
4630 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4631 target should use an identical BREAKPOINT_FROM_PC. As for native,
4632 the ARCH-OS-tdep.c code can override the default. */
4633
4634 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4635 #define DEPRECATED_REMOTE_BREAKPOINT
4636 #endif
4637
4638 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4639
4640 /* If the target isn't bi-endian, just pretend it is. */
4641 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4642 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4643 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4644 #endif
4645
4646 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4647 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4648
4649 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4650
4651 /* Insert a breakpoint on targets that don't have any better
4652 breakpoint support. We read the contents of the target location
4653 and stash it, then overwrite it with a breakpoint instruction.
4654 ADDR is the target location in the target machine. CONTENTS_CACHE
4655 is a pointer to memory allocated for saving the target contents.
4656 It is guaranteed by the caller to be long enough to save the number
4657 of bytes returned by BREAKPOINT_FROM_PC. */
4658
4659 static int
4660 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4661 {
4662 struct remote_state *rs = get_remote_state ();
4663 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4664 int val;
4665 #endif
4666 int bp_size;
4667
4668 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4669 If it succeeds, then set the support to PACKET_ENABLE. If it
4670 fails, and the user has explicitly requested the Z support then
4671 report an error, otherwise, mark it disabled and go on. */
4672
4673 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4674 {
4675 char *buf = alloca (rs->remote_packet_size);
4676 char *p = buf;
4677
4678 addr = remote_address_masked (addr);
4679 *(p++) = 'Z';
4680 *(p++) = '0';
4681 *(p++) = ',';
4682 p += hexnumstr (p, (ULONGEST) addr);
4683 BREAKPOINT_FROM_PC (&addr, &bp_size);
4684 sprintf (p, ",%d", bp_size);
4685
4686 putpkt (buf);
4687 getpkt (buf, (rs->remote_packet_size), 0);
4688
4689 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4690 {
4691 case PACKET_ERROR:
4692 return -1;
4693 case PACKET_OK:
4694 return 0;
4695 case PACKET_UNKNOWN:
4696 break;
4697 }
4698 }
4699
4700 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4701 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4702
4703 if (val == 0)
4704 {
4705 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4706 val = target_write_memory (addr, (char *) big_break_insn,
4707 sizeof big_break_insn);
4708 else
4709 val = target_write_memory (addr, (char *) little_break_insn,
4710 sizeof little_break_insn);
4711 }
4712
4713 return val;
4714 #else
4715 return memory_insert_breakpoint (addr, contents_cache);
4716 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4717 }
4718
4719 static int
4720 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4721 {
4722 struct remote_state *rs = get_remote_state ();
4723 int bp_size;
4724
4725 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4726 {
4727 char *buf = alloca (rs->remote_packet_size);
4728 char *p = buf;
4729
4730 *(p++) = 'z';
4731 *(p++) = '0';
4732 *(p++) = ',';
4733
4734 addr = remote_address_masked (addr);
4735 p += hexnumstr (p, (ULONGEST) addr);
4736 BREAKPOINT_FROM_PC (&addr, &bp_size);
4737 sprintf (p, ",%d", bp_size);
4738
4739 putpkt (buf);
4740 getpkt (buf, (rs->remote_packet_size), 0);
4741
4742 return (buf[0] == 'E');
4743 }
4744
4745 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4746 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4747 #else
4748 return memory_remove_breakpoint (addr, contents_cache);
4749 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4750 }
4751
4752 static int
4753 watchpoint_to_Z_packet (int type)
4754 {
4755 switch (type)
4756 {
4757 case hw_write:
4758 return 2;
4759 break;
4760 case hw_read:
4761 return 3;
4762 break;
4763 case hw_access:
4764 return 4;
4765 break;
4766 default:
4767 internal_error (__FILE__, __LINE__,
4768 "hw_bp_to_z: bad watchpoint type %d", type);
4769 }
4770 }
4771
4772 static int
4773 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4774 {
4775 struct remote_state *rs = get_remote_state ();
4776 char *buf = alloca (rs->remote_packet_size);
4777 char *p;
4778 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4779
4780 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4781 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4782 remote_protocol_Z[packet].name,
4783 remote_protocol_Z[packet].title);
4784
4785 sprintf (buf, "Z%x,", packet);
4786 p = strchr (buf, '\0');
4787 addr = remote_address_masked (addr);
4788 p += hexnumstr (p, (ULONGEST) addr);
4789 sprintf (p, ",%x", len);
4790
4791 putpkt (buf);
4792 getpkt (buf, (rs->remote_packet_size), 0);
4793
4794 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4795 {
4796 case PACKET_ERROR:
4797 case PACKET_UNKNOWN:
4798 return -1;
4799 case PACKET_OK:
4800 return 0;
4801 }
4802 internal_error (__FILE__, __LINE__,
4803 "remote_insert_watchpoint: reached end of function");
4804 }
4805
4806
4807 static int
4808 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4809 {
4810 struct remote_state *rs = get_remote_state ();
4811 char *buf = alloca (rs->remote_packet_size);
4812 char *p;
4813 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4814
4815 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4816 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4817 remote_protocol_Z[packet].name,
4818 remote_protocol_Z[packet].title);
4819
4820 sprintf (buf, "z%x,", packet);
4821 p = strchr (buf, '\0');
4822 addr = remote_address_masked (addr);
4823 p += hexnumstr (p, (ULONGEST) addr);
4824 sprintf (p, ",%x", len);
4825 putpkt (buf);
4826 getpkt (buf, (rs->remote_packet_size), 0);
4827
4828 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4829 {
4830 case PACKET_ERROR:
4831 case PACKET_UNKNOWN:
4832 return -1;
4833 case PACKET_OK:
4834 return 0;
4835 }
4836 internal_error (__FILE__, __LINE__,
4837 "remote_remove_watchpoint: reached end of function");
4838 }
4839
4840
4841 int remote_hw_watchpoint_limit = -1;
4842 int remote_hw_breakpoint_limit = -1;
4843
4844 static int
4845 remote_check_watch_resources (int type, int cnt, int ot)
4846 {
4847 if (type == bp_hardware_breakpoint)
4848 {
4849 if (remote_hw_breakpoint_limit == 0)
4850 return 0;
4851 else if (remote_hw_breakpoint_limit < 0)
4852 return 1;
4853 else if (cnt <= remote_hw_breakpoint_limit)
4854 return 1;
4855 }
4856 else
4857 {
4858 if (remote_hw_watchpoint_limit == 0)
4859 return 0;
4860 else if (remote_hw_watchpoint_limit < 0)
4861 return 1;
4862 else if (ot)
4863 return -1;
4864 else if (cnt <= remote_hw_watchpoint_limit)
4865 return 1;
4866 }
4867 return -1;
4868 }
4869
4870 static int
4871 remote_stopped_by_watchpoint (void)
4872 {
4873 return remote_stopped_by_watchpoint_p;
4874 }
4875
4876 static CORE_ADDR
4877 remote_stopped_data_address (void)
4878 {
4879 if (remote_stopped_by_watchpoint ())
4880 return remote_watch_data_address;
4881 return (CORE_ADDR)0;
4882 }
4883
4884
4885 static int
4886 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4887 {
4888 int len = 0;
4889 struct remote_state *rs = get_remote_state ();
4890 char *buf = alloca (rs->remote_packet_size);
4891 char *p = buf;
4892
4893 /* The length field should be set to the size of a breakpoint
4894 instruction. */
4895
4896 BREAKPOINT_FROM_PC (&addr, &len);
4897
4898 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4899 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4900 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4901 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4902
4903 *(p++) = 'Z';
4904 *(p++) = '1';
4905 *(p++) = ',';
4906
4907 addr = remote_address_masked (addr);
4908 p += hexnumstr (p, (ULONGEST) addr);
4909 sprintf (p, ",%x", len);
4910
4911 putpkt (buf);
4912 getpkt (buf, (rs->remote_packet_size), 0);
4913
4914 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4915 {
4916 case PACKET_ERROR:
4917 case PACKET_UNKNOWN:
4918 return -1;
4919 case PACKET_OK:
4920 return 0;
4921 }
4922 internal_error (__FILE__, __LINE__,
4923 "remote_insert_hw_breakpoint: reached end of function");
4924 }
4925
4926
4927 static int
4928 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4929 {
4930 int len;
4931 struct remote_state *rs = get_remote_state ();
4932 char *buf = alloca (rs->remote_packet_size);
4933 char *p = buf;
4934
4935 /* The length field should be set to the size of a breakpoint
4936 instruction. */
4937
4938 BREAKPOINT_FROM_PC (&addr, &len);
4939
4940 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4941 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4942 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4943 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4944
4945 *(p++) = 'z';
4946 *(p++) = '1';
4947 *(p++) = ',';
4948
4949 addr = remote_address_masked (addr);
4950 p += hexnumstr (p, (ULONGEST) addr);
4951 sprintf (p, ",%x", len);
4952
4953 putpkt(buf);
4954 getpkt (buf, (rs->remote_packet_size), 0);
4955
4956 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4957 {
4958 case PACKET_ERROR:
4959 case PACKET_UNKNOWN:
4960 return -1;
4961 case PACKET_OK:
4962 return 0;
4963 }
4964 internal_error (__FILE__, __LINE__,
4965 "remote_remove_hw_breakpoint: reached end of function");
4966 }
4967
4968 /* Some targets are only capable of doing downloads, and afterwards
4969 they switch to the remote serial protocol. This function provides
4970 a clean way to get from the download target to the remote target.
4971 It's basically just a wrapper so that we don't have to expose any
4972 of the internal workings of remote.c.
4973
4974 Prior to calling this routine, you should shutdown the current
4975 target code, else you will get the "A program is being debugged
4976 already..." message. Usually a call to pop_target() suffices. */
4977
4978 void
4979 push_remote_target (char *name, int from_tty)
4980 {
4981 printf_filtered ("Switching to remote protocol\n");
4982 remote_open (name, from_tty);
4983 }
4984
4985 /* Table used by the crc32 function to calcuate the checksum. */
4986
4987 static unsigned long crc32_table[256] =
4988 {0, 0};
4989
4990 static unsigned long
4991 crc32 (unsigned char *buf, int len, unsigned int crc)
4992 {
4993 if (!crc32_table[1])
4994 {
4995 /* Initialize the CRC table and the decoding table. */
4996 int i, j;
4997 unsigned int c;
4998
4999 for (i = 0; i < 256; i++)
5000 {
5001 for (c = i << 24, j = 8; j > 0; --j)
5002 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5003 crc32_table[i] = c;
5004 }
5005 }
5006
5007 while (len--)
5008 {
5009 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5010 buf++;
5011 }
5012 return crc;
5013 }
5014
5015 /* compare-sections command
5016
5017 With no arguments, compares each loadable section in the exec bfd
5018 with the same memory range on the target, and reports mismatches.
5019 Useful for verifying the image on the target against the exec file.
5020 Depends on the target understanding the new "qCRC:" request. */
5021
5022 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5023 target method (target verify memory) and generic version of the
5024 actual command. This will allow other high-level code (especially
5025 generic_load()) to make use of this target functionality. */
5026
5027 static void
5028 compare_sections_command (char *args, int from_tty)
5029 {
5030 struct remote_state *rs = get_remote_state ();
5031 asection *s;
5032 unsigned long host_crc, target_crc;
5033 extern bfd *exec_bfd;
5034 struct cleanup *old_chain;
5035 char *tmp;
5036 char *sectdata;
5037 const char *sectname;
5038 char *buf = alloca (rs->remote_packet_size);
5039 bfd_size_type size;
5040 bfd_vma lma;
5041 int matched = 0;
5042 int mismatched = 0;
5043
5044 if (!exec_bfd)
5045 error ("command cannot be used without an exec file");
5046 if (!current_target.to_shortname ||
5047 strcmp (current_target.to_shortname, "remote") != 0)
5048 error ("command can only be used with remote target");
5049
5050 for (s = exec_bfd->sections; s; s = s->next)
5051 {
5052 if (!(s->flags & SEC_LOAD))
5053 continue; /* skip non-loadable section */
5054
5055 size = bfd_get_section_size_before_reloc (s);
5056 if (size == 0)
5057 continue; /* skip zero-length section */
5058
5059 sectname = bfd_get_section_name (exec_bfd, s);
5060 if (args && strcmp (args, sectname) != 0)
5061 continue; /* not the section selected by user */
5062
5063 matched = 1; /* do this section */
5064 lma = s->lma;
5065 /* FIXME: assumes lma can fit into long */
5066 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5067 putpkt (buf);
5068
5069 /* be clever; compute the host_crc before waiting for target reply */
5070 sectdata = xmalloc (size);
5071 old_chain = make_cleanup (xfree, sectdata);
5072 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5073 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5074
5075 getpkt (buf, (rs->remote_packet_size), 0);
5076 if (buf[0] == 'E')
5077 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5078 sectname, paddr (lma), paddr (lma + size));
5079 if (buf[0] != 'C')
5080 error ("remote target does not support this operation");
5081
5082 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5083 target_crc = target_crc * 16 + fromhex (*tmp);
5084
5085 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5086 sectname, paddr (lma), paddr (lma + size));
5087 if (host_crc == target_crc)
5088 printf_filtered ("matched.\n");
5089 else
5090 {
5091 printf_filtered ("MIS-MATCHED!\n");
5092 mismatched++;
5093 }
5094
5095 do_cleanups (old_chain);
5096 }
5097 if (mismatched > 0)
5098 warning ("One or more sections of the remote executable does not match\n\
5099 the loaded file\n");
5100 if (args && !matched)
5101 printf_filtered ("No loaded section named '%s'.\n", args);
5102 }
5103
5104 static LONGEST
5105 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5106 const char *annex, void *readbuf, const void *writebuf,
5107 ULONGEST offset, LONGEST len)
5108 {
5109 struct remote_state *rs = get_remote_state ();
5110 int i;
5111 char *buf2 = alloca (rs->remote_packet_size);
5112 char *p2 = &buf2[0];
5113 char query_type;
5114
5115 /* Only handle reads. */
5116 if (writebuf != NULL || readbuf == NULL)
5117 return -1;
5118
5119 /* Map pre-existing objects onto letters. DO NOT do this for new
5120 objects!!! Instead specify new query packets. */
5121 switch (object)
5122 {
5123 case TARGET_OBJECT_KOD:
5124 query_type = 'K';
5125 break;
5126 case TARGET_OBJECT_AVR:
5127 query_type = 'R';
5128 break;
5129 default:
5130 return -1;
5131 }
5132
5133 /* Note: a zero OFFSET and LEN can be used to query the minimum
5134 buffer size. */
5135 if (offset == 0 && len == 0)
5136 return (rs->remote_packet_size);
5137 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
5138 not large enough let the caller. */
5139 if (len < (rs->remote_packet_size))
5140 return -1;
5141 len = rs->remote_packet_size;
5142
5143 /* except for querying the minimum buffer size, target must be open */
5144 if (!remote_desc)
5145 error ("remote query is only available after target open");
5146
5147 gdb_assert (annex != NULL);
5148 gdb_assert (readbuf != NULL);
5149
5150 *p2++ = 'q';
5151 *p2++ = query_type;
5152
5153 /* we used one buffer char for the remote protocol q command and another
5154 for the query type. As the remote protocol encapsulation uses 4 chars
5155 plus one extra in case we are debugging (remote_debug),
5156 we have PBUFZIZ - 7 left to pack the query string */
5157 i = 0;
5158 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5159 {
5160 /* Bad caller may have sent forbidden characters. */
5161 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5162 *p2++ = annex[i];
5163 i++;
5164 }
5165 *p2 = '\0';
5166 gdb_assert (annex[i] == '\0');
5167
5168 i = putpkt (buf2);
5169 if (i < 0)
5170 return i;
5171
5172 getpkt (readbuf, len, 0);
5173
5174 return strlen (readbuf);
5175 }
5176
5177 static void
5178 remote_rcmd (char *command,
5179 struct ui_file *outbuf)
5180 {
5181 struct remote_state *rs = get_remote_state ();
5182 int i;
5183 char *buf = alloca (rs->remote_packet_size);
5184 char *p = buf;
5185
5186 if (!remote_desc)
5187 error ("remote rcmd is only available after target open");
5188
5189 /* Send a NULL command across as an empty command */
5190 if (command == NULL)
5191 command = "";
5192
5193 /* The query prefix */
5194 strcpy (buf, "qRcmd,");
5195 p = strchr (buf, '\0');
5196
5197 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5198 error ("\"monitor\" command ``%s'' is too long\n", command);
5199
5200 /* Encode the actual command */
5201 bin2hex (command, p, 0);
5202
5203 if (putpkt (buf) < 0)
5204 error ("Communication problem with target\n");
5205
5206 /* get/display the response */
5207 while (1)
5208 {
5209 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5210 buf[0] = '\0';
5211 getpkt (buf, (rs->remote_packet_size), 0);
5212 if (buf[0] == '\0')
5213 error ("Target does not support this command\n");
5214 if (buf[0] == 'O' && buf[1] != 'K')
5215 {
5216 remote_console_output (buf + 1); /* 'O' message from stub */
5217 continue;
5218 }
5219 if (strcmp (buf, "OK") == 0)
5220 break;
5221 if (strlen (buf) == 3 && buf[0] == 'E'
5222 && isdigit (buf[1]) && isdigit (buf[2]))
5223 {
5224 error ("Protocol error with Rcmd");
5225 }
5226 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5227 {
5228 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5229 fputc_unfiltered (c, outbuf);
5230 }
5231 break;
5232 }
5233 }
5234
5235 static void
5236 packet_command (char *args, int from_tty)
5237 {
5238 struct remote_state *rs = get_remote_state ();
5239 char *buf = alloca (rs->remote_packet_size);
5240
5241 if (!remote_desc)
5242 error ("command can only be used with remote target");
5243
5244 if (!args)
5245 error ("remote-packet command requires packet text as argument");
5246
5247 puts_filtered ("sending: ");
5248 print_packet (args);
5249 puts_filtered ("\n");
5250 putpkt (args);
5251
5252 getpkt (buf, (rs->remote_packet_size), 0);
5253 puts_filtered ("received: ");
5254 print_packet (buf);
5255 puts_filtered ("\n");
5256 }
5257
5258 #if 0
5259 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5260
5261 static void display_thread_info (struct gdb_ext_thread_info *info);
5262
5263 static void threadset_test_cmd (char *cmd, int tty);
5264
5265 static void threadalive_test (char *cmd, int tty);
5266
5267 static void threadlist_test_cmd (char *cmd, int tty);
5268
5269 int get_and_display_threadinfo (threadref * ref);
5270
5271 static void threadinfo_test_cmd (char *cmd, int tty);
5272
5273 static int thread_display_step (threadref * ref, void *context);
5274
5275 static void threadlist_update_test_cmd (char *cmd, int tty);
5276
5277 static void init_remote_threadtests (void);
5278
5279 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5280
5281 static void
5282 threadset_test_cmd (char *cmd, int tty)
5283 {
5284 int sample_thread = SAMPLE_THREAD;
5285
5286 printf_filtered ("Remote threadset test\n");
5287 set_thread (sample_thread, 1);
5288 }
5289
5290
5291 static void
5292 threadalive_test (char *cmd, int tty)
5293 {
5294 int sample_thread = SAMPLE_THREAD;
5295
5296 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5297 printf_filtered ("PASS: Thread alive test\n");
5298 else
5299 printf_filtered ("FAIL: Thread alive test\n");
5300 }
5301
5302 void output_threadid (char *title, threadref * ref);
5303
5304 void
5305 output_threadid (char *title, threadref *ref)
5306 {
5307 char hexid[20];
5308
5309 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5310 hexid[16] = 0;
5311 printf_filtered ("%s %s\n", title, (&hexid[0]));
5312 }
5313
5314 static void
5315 threadlist_test_cmd (char *cmd, int tty)
5316 {
5317 int startflag = 1;
5318 threadref nextthread;
5319 int done, result_count;
5320 threadref threadlist[3];
5321
5322 printf_filtered ("Remote Threadlist test\n");
5323 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5324 &result_count, &threadlist[0]))
5325 printf_filtered ("FAIL: threadlist test\n");
5326 else
5327 {
5328 threadref *scan = threadlist;
5329 threadref *limit = scan + result_count;
5330
5331 while (scan < limit)
5332 output_threadid (" thread ", scan++);
5333 }
5334 }
5335
5336 void
5337 display_thread_info (struct gdb_ext_thread_info *info)
5338 {
5339 output_threadid ("Threadid: ", &info->threadid);
5340 printf_filtered ("Name: %s\n ", info->shortname);
5341 printf_filtered ("State: %s\n", info->display);
5342 printf_filtered ("other: %s\n\n", info->more_display);
5343 }
5344
5345 int
5346 get_and_display_threadinfo (threadref *ref)
5347 {
5348 int result;
5349 int set;
5350 struct gdb_ext_thread_info threadinfo;
5351
5352 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5353 | TAG_MOREDISPLAY | TAG_DISPLAY;
5354 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5355 display_thread_info (&threadinfo);
5356 return result;
5357 }
5358
5359 static void
5360 threadinfo_test_cmd (char *cmd, int tty)
5361 {
5362 int athread = SAMPLE_THREAD;
5363 threadref thread;
5364 int set;
5365
5366 int_to_threadref (&thread, athread);
5367 printf_filtered ("Remote Threadinfo test\n");
5368 if (!get_and_display_threadinfo (&thread))
5369 printf_filtered ("FAIL cannot get thread info\n");
5370 }
5371
5372 static int
5373 thread_display_step (threadref *ref, void *context)
5374 {
5375 /* output_threadid(" threadstep ",ref); *//* simple test */
5376 return get_and_display_threadinfo (ref);
5377 }
5378
5379 static void
5380 threadlist_update_test_cmd (char *cmd, int tty)
5381 {
5382 printf_filtered ("Remote Threadlist update test\n");
5383 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5384 }
5385
5386 static void
5387 init_remote_threadtests (void)
5388 {
5389 add_com ("tlist", class_obscure, threadlist_test_cmd,
5390 "Fetch and print the remote list of thread identifiers, one pkt only");
5391 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5392 "Fetch and display info about one thread");
5393 add_com ("tset", class_obscure, threadset_test_cmd,
5394 "Test setting to a different thread");
5395 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5396 "Iterate through updating all remote thread info");
5397 add_com ("talive", class_obscure, threadalive_test,
5398 " Remote thread alive test ");
5399 }
5400
5401 #endif /* 0 */
5402
5403 /* Convert a thread ID to a string. Returns the string in a static
5404 buffer. */
5405
5406 static char *
5407 remote_pid_to_str (ptid_t ptid)
5408 {
5409 static char buf[30];
5410
5411 sprintf (buf, "Thread %d", PIDGET (ptid));
5412 return buf;
5413 }
5414
5415 static void
5416 init_remote_ops (void)
5417 {
5418 remote_ops.to_shortname = "remote";
5419 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5420 remote_ops.to_doc =
5421 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5422 Specify the serial device it is connected to\n\
5423 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5424 remote_ops.to_open = remote_open;
5425 remote_ops.to_close = remote_close;
5426 remote_ops.to_detach = remote_detach;
5427 remote_ops.to_disconnect = remote_disconnect;
5428 remote_ops.to_resume = remote_resume;
5429 remote_ops.to_wait = remote_wait;
5430 remote_ops.to_fetch_registers = remote_fetch_registers;
5431 remote_ops.to_store_registers = remote_store_registers;
5432 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5433 remote_ops.to_xfer_memory = remote_xfer_memory;
5434 remote_ops.to_files_info = remote_files_info;
5435 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5436 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5437 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5438 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5439 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5440 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5441 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5442 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5443 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5444 remote_ops.to_kill = remote_kill;
5445 remote_ops.to_load = generic_load;
5446 remote_ops.to_mourn_inferior = remote_mourn;
5447 remote_ops.to_thread_alive = remote_thread_alive;
5448 remote_ops.to_find_new_threads = remote_threads_info;
5449 remote_ops.to_pid_to_str = remote_pid_to_str;
5450 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5451 remote_ops.to_stop = remote_stop;
5452 remote_ops.to_xfer_partial = remote_xfer_partial;
5453 remote_ops.to_rcmd = remote_rcmd;
5454 remote_ops.to_stratum = process_stratum;
5455 remote_ops.to_has_all_memory = 1;
5456 remote_ops.to_has_memory = 1;
5457 remote_ops.to_has_stack = 1;
5458 remote_ops.to_has_registers = 1;
5459 remote_ops.to_has_execution = 1;
5460 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5461 remote_ops.to_magic = OPS_MAGIC;
5462 }
5463
5464 /* Set up the extended remote vector by making a copy of the standard
5465 remote vector and adding to it. */
5466
5467 static void
5468 init_extended_remote_ops (void)
5469 {
5470 extended_remote_ops = remote_ops;
5471
5472 extended_remote_ops.to_shortname = "extended-remote";
5473 extended_remote_ops.to_longname =
5474 "Extended remote serial target in gdb-specific protocol";
5475 extended_remote_ops.to_doc =
5476 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5477 Specify the serial device it is connected to (e.g. /dev/ttya).",
5478 extended_remote_ops.to_open = extended_remote_open;
5479 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5480 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5481 }
5482
5483 /*
5484 * Command: info remote-process
5485 *
5486 * This implements Cisco's version of the "info proc" command.
5487 *
5488 * This query allows the target stub to return an arbitrary string
5489 * (or strings) giving arbitrary information about the target process.
5490 * This is optional; the target stub isn't required to implement it.
5491 *
5492 * Syntax: qfProcessInfo request first string
5493 * qsProcessInfo request subsequent string
5494 * reply: 'O'<hex-encoded-string>
5495 * 'l' last reply (empty)
5496 */
5497
5498 static void
5499 remote_info_process (char *args, int from_tty)
5500 {
5501 struct remote_state *rs = get_remote_state ();
5502 char *buf = alloca (rs->remote_packet_size);
5503
5504 if (remote_desc == 0)
5505 error ("Command can only be used when connected to the remote target.");
5506
5507 putpkt ("qfProcessInfo");
5508 getpkt (buf, (rs->remote_packet_size), 0);
5509 if (buf[0] == 0)
5510 return; /* Silently: target does not support this feature. */
5511
5512 if (buf[0] == 'E')
5513 error ("info proc: target error.");
5514
5515 while (buf[0] == 'O') /* Capitol-O packet */
5516 {
5517 remote_console_output (&buf[1]);
5518 putpkt ("qsProcessInfo");
5519 getpkt (buf, (rs->remote_packet_size), 0);
5520 }
5521 }
5522
5523 /*
5524 * Target Cisco
5525 */
5526
5527 static void
5528 remote_cisco_open (char *name, int from_tty)
5529 {
5530 int ex;
5531 if (name == 0)
5532 error ("To open a remote debug connection, you need to specify what \n"
5533 "device is attached to the remote system (e.g. host:port).");
5534
5535 /* See FIXME above */
5536 wait_forever_enabled_p = 1;
5537
5538 target_preopen (from_tty);
5539
5540 unpush_target (&remote_cisco_ops);
5541
5542 remote_desc = remote_serial_open (name);
5543 if (!remote_desc)
5544 perror_with_name (name);
5545
5546 /*
5547 * If a baud rate was specified on the gdb command line it will
5548 * be greater than the initial value of -1. If it is, use it otherwise
5549 * default to 9600
5550 */
5551
5552 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5553 if (serial_setbaudrate (remote_desc, baud_rate))
5554 {
5555 serial_close (remote_desc);
5556 perror_with_name (name);
5557 }
5558
5559 serial_raw (remote_desc);
5560
5561 /* If there is something sitting in the buffer we might take it as a
5562 response to a command, which would be bad. */
5563 serial_flush_input (remote_desc);
5564
5565 if (from_tty)
5566 {
5567 puts_filtered ("Remote debugging using ");
5568 puts_filtered (name);
5569 puts_filtered ("\n");
5570 }
5571
5572 remote_cisco_mode = 1;
5573
5574 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5575
5576 init_all_packet_configs ();
5577
5578 general_thread = -2;
5579 continue_thread = -2;
5580
5581 /* Probe for ability to use "ThreadInfo" query, as required. */
5582 use_threadinfo_query = 1;
5583 use_threadextra_query = 1;
5584
5585 /* Without this, some commands which require an active target (such
5586 as kill) won't work. This variable serves (at least) double duty
5587 as both the pid of the target process (if it has such), and as a
5588 flag indicating that a target is active. These functions should
5589 be split out into seperate variables, especially since GDB will
5590 someday have a notion of debugging several processes. */
5591 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5592
5593 /* Start the remote connection; if error, discard this target. See
5594 the comments in remote_open_1() for further details such as the
5595 need to re-throw the exception. */
5596 ex = catch_exceptions (uiout,
5597 remote_start_remote_dummy, NULL,
5598 "Couldn't establish connection to remote"
5599 " target\n",
5600 RETURN_MASK_ALL);
5601 if (ex < 0)
5602 {
5603 pop_target ();
5604 throw_exception (ex);
5605 }
5606 }
5607
5608 static void
5609 remote_cisco_close (int quitting)
5610 {
5611 remote_cisco_mode = 0;
5612 remote_close (quitting);
5613 }
5614
5615 static void
5616 remote_cisco_mourn (void)
5617 {
5618 remote_mourn_1 (&remote_cisco_ops);
5619 }
5620
5621 enum
5622 {
5623 READ_MORE,
5624 FATAL_ERROR,
5625 ENTER_DEBUG,
5626 DISCONNECT_TELNET
5627 }
5628 minitelnet_return;
5629
5630 /* Shared between readsocket() and readtty(). The size is arbitrary,
5631 however all targets are known to support a 400 character packet. */
5632 static char tty_input[400];
5633
5634 static int escape_count;
5635 static int echo_check;
5636 extern int quit_flag;
5637
5638 static int
5639 readsocket (void)
5640 {
5641 int data;
5642
5643 /* Loop until the socket doesn't have any more data */
5644
5645 while ((data = readchar (0)) >= 0)
5646 {
5647 /* Check for the escape sequence */
5648 if (data == '|')
5649 {
5650 /* If this is the fourth escape, get out */
5651 if (++escape_count == 4)
5652 {
5653 return ENTER_DEBUG;
5654 }
5655 else
5656 { /* This is a '|', but not the fourth in a row.
5657 Continue without echoing it. If it isn't actually
5658 one of four in a row, it'll be echoed later. */
5659 continue;
5660 }
5661 }
5662 else
5663 /* Not a '|' */
5664 {
5665 /* Ensure any pending '|'s are flushed. */
5666
5667 for (; escape_count > 0; escape_count--)
5668 putchar ('|');
5669 }
5670
5671 if (data == '\r') /* If this is a return character, */
5672 continue; /* - just supress it. */
5673
5674 if (echo_check != -1) /* Check for echo of user input. */
5675 {
5676 if (tty_input[echo_check] == data)
5677 {
5678 gdb_assert (echo_check <= sizeof (tty_input));
5679 echo_check++; /* Character matched user input: */
5680 continue; /* Continue without echoing it. */
5681 }
5682 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5683 { /* End of the line (and of echo checking). */
5684 echo_check = -1; /* No more echo supression */
5685 continue; /* Continue without echoing. */
5686 }
5687 else
5688 { /* Failed check for echo of user input.
5689 We now have some suppressed output to flush! */
5690 int j;
5691
5692 for (j = 0; j < echo_check; j++)
5693 putchar (tty_input[j]);
5694 echo_check = -1;
5695 }
5696 }
5697 putchar (data); /* Default case: output the char. */
5698 }
5699
5700 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5701 return READ_MORE; /* Try to read some more */
5702 else
5703 return FATAL_ERROR; /* Trouble, bail out */
5704 }
5705
5706 static int
5707 readtty (void)
5708 {
5709 int tty_bytecount;
5710
5711 /* First, read a buffer full from the terminal */
5712 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5713 if (tty_bytecount == -1)
5714 {
5715 perror ("readtty: read failed");
5716 return FATAL_ERROR;
5717 }
5718
5719 /* Remove a quoted newline. */
5720 if (tty_input[tty_bytecount - 1] == '\n' &&
5721 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5722 {
5723 tty_input[--tty_bytecount] = 0; /* remove newline */
5724 tty_input[--tty_bytecount] = 0; /* remove backslash */
5725 }
5726
5727 /* Turn trailing newlines into returns */
5728 if (tty_input[tty_bytecount - 1] == '\n')
5729 tty_input[tty_bytecount - 1] = '\r';
5730
5731 /* If the line consists of a ~, enter debugging mode. */
5732 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5733 return ENTER_DEBUG;
5734
5735 /* Make this a zero terminated string and write it out */
5736 tty_input[tty_bytecount] = 0;
5737 if (serial_write (remote_desc, tty_input, tty_bytecount))
5738 {
5739 perror_with_name ("readtty: write failed");
5740 return FATAL_ERROR;
5741 }
5742
5743 return READ_MORE;
5744 }
5745
5746 static int
5747 minitelnet (void)
5748 {
5749 fd_set input; /* file descriptors for select */
5750 int tablesize; /* max number of FDs for select */
5751 int status;
5752 int quit_count = 0;
5753
5754 escape_count = 0;
5755 echo_check = -1;
5756
5757 tablesize = 8 * sizeof (input);
5758
5759 for (;;)
5760 {
5761 /* Check for anything from our socket - doesn't block. Note that
5762 this must be done *before* the select as there may be
5763 buffered I/O waiting to be processed. */
5764
5765 if ((status = readsocket ()) == FATAL_ERROR)
5766 {
5767 error ("Debugging terminated by communications error");
5768 }
5769 else if (status != READ_MORE)
5770 {
5771 return (status);
5772 }
5773
5774 fflush (stdout); /* Flush output before blocking */
5775
5776 /* Now block on more socket input or TTY input */
5777
5778 FD_ZERO (&input);
5779 FD_SET (fileno (stdin), &input);
5780 FD_SET (deprecated_serial_fd (remote_desc), &input);
5781
5782 status = select (tablesize, &input, 0, 0, 0);
5783 if ((status == -1) && (errno != EINTR))
5784 {
5785 error ("Communications error on select %d", errno);
5786 }
5787
5788 /* Handle Control-C typed */
5789
5790 if (quit_flag)
5791 {
5792 if ((++quit_count) == 2)
5793 {
5794 if (query ("Interrupt GDB? "))
5795 {
5796 printf_filtered ("Interrupted by user.\n");
5797 throw_exception (RETURN_QUIT);
5798 }
5799 quit_count = 0;
5800 }
5801 quit_flag = 0;
5802
5803 if (remote_break)
5804 serial_send_break (remote_desc);
5805 else
5806 serial_write (remote_desc, "\003", 1);
5807
5808 continue;
5809 }
5810
5811 /* Handle console input */
5812
5813 if (FD_ISSET (fileno (stdin), &input))
5814 {
5815 quit_count = 0;
5816 echo_check = 0;
5817 status = readtty ();
5818 if (status == READ_MORE)
5819 continue;
5820
5821 return status; /* telnet session ended */
5822 }
5823 }
5824 }
5825
5826 static ptid_t
5827 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5828 {
5829 if (minitelnet () != ENTER_DEBUG)
5830 {
5831 error ("Debugging session terminated by protocol error");
5832 }
5833 putpkt ("?");
5834 return remote_wait (ptid, status);
5835 }
5836
5837 static void
5838 init_remote_cisco_ops (void)
5839 {
5840 remote_cisco_ops.to_shortname = "cisco";
5841 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5842 remote_cisco_ops.to_doc =
5843 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5844 Specify the serial device it is connected to (e.g. host:2020).";
5845 remote_cisco_ops.to_open = remote_cisco_open;
5846 remote_cisco_ops.to_close = remote_cisco_close;
5847 remote_cisco_ops.to_detach = remote_detach;
5848 remote_cisco_ops.to_disconnect = remote_disconnect;
5849 remote_cisco_ops.to_resume = remote_resume;
5850 remote_cisco_ops.to_wait = remote_cisco_wait;
5851 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5852 remote_cisco_ops.to_store_registers = remote_store_registers;
5853 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5854 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5855 remote_cisco_ops.to_files_info = remote_files_info;
5856 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5857 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5858 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5859 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5860 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5861 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5862 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5863 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5864 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5865 remote_cisco_ops.to_kill = remote_kill;
5866 remote_cisco_ops.to_load = generic_load;
5867 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5868 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5869 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5870 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5871 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5872 remote_cisco_ops.to_stratum = process_stratum;
5873 remote_cisco_ops.to_has_all_memory = 1;
5874 remote_cisco_ops.to_has_memory = 1;
5875 remote_cisco_ops.to_has_stack = 1;
5876 remote_cisco_ops.to_has_registers = 1;
5877 remote_cisco_ops.to_has_execution = 1;
5878 remote_cisco_ops.to_magic = OPS_MAGIC;
5879 }
5880
5881 static int
5882 remote_can_async_p (void)
5883 {
5884 /* We're async whenever the serial device is. */
5885 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5886 }
5887
5888 static int
5889 remote_is_async_p (void)
5890 {
5891 /* We're async whenever the serial device is. */
5892 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5893 }
5894
5895 /* Pass the SERIAL event on and up to the client. One day this code
5896 will be able to delay notifying the client of an event until the
5897 point where an entire packet has been received. */
5898
5899 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5900 static void *async_client_context;
5901 static serial_event_ftype remote_async_serial_handler;
5902
5903 static void
5904 remote_async_serial_handler (struct serial *scb, void *context)
5905 {
5906 /* Don't propogate error information up to the client. Instead let
5907 the client find out about the error by querying the target. */
5908 async_client_callback (INF_REG_EVENT, async_client_context);
5909 }
5910
5911 static void
5912 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5913 {
5914 if (current_target.to_async_mask_value == 0)
5915 internal_error (__FILE__, __LINE__,
5916 "Calling remote_async when async is masked");
5917
5918 if (callback != NULL)
5919 {
5920 serial_async (remote_desc, remote_async_serial_handler, NULL);
5921 async_client_callback = callback;
5922 async_client_context = context;
5923 }
5924 else
5925 serial_async (remote_desc, NULL, NULL);
5926 }
5927
5928 /* Target async and target extended-async.
5929
5930 This are temporary targets, until it is all tested. Eventually
5931 async support will be incorporated int the usual 'remote'
5932 target. */
5933
5934 static void
5935 init_remote_async_ops (void)
5936 {
5937 remote_async_ops.to_shortname = "async";
5938 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5939 remote_async_ops.to_doc =
5940 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5941 Specify the serial device it is connected to (e.g. /dev/ttya).";
5942 remote_async_ops.to_open = remote_async_open;
5943 remote_async_ops.to_close = remote_close;
5944 remote_async_ops.to_detach = remote_detach;
5945 remote_async_ops.to_disconnect = remote_disconnect;
5946 remote_async_ops.to_resume = remote_async_resume;
5947 remote_async_ops.to_wait = remote_async_wait;
5948 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5949 remote_async_ops.to_store_registers = remote_store_registers;
5950 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5951 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5952 remote_async_ops.to_files_info = remote_files_info;
5953 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5954 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5955 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5956 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5957 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5958 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5959 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5960 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5961 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5962 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5963 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5964 remote_async_ops.to_kill = remote_async_kill;
5965 remote_async_ops.to_load = generic_load;
5966 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5967 remote_async_ops.to_thread_alive = remote_thread_alive;
5968 remote_async_ops.to_find_new_threads = remote_threads_info;
5969 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5970 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5971 remote_async_ops.to_stop = remote_stop;
5972 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5973 remote_async_ops.to_rcmd = remote_rcmd;
5974 remote_async_ops.to_stratum = process_stratum;
5975 remote_async_ops.to_has_all_memory = 1;
5976 remote_async_ops.to_has_memory = 1;
5977 remote_async_ops.to_has_stack = 1;
5978 remote_async_ops.to_has_registers = 1;
5979 remote_async_ops.to_has_execution = 1;
5980 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5981 remote_async_ops.to_can_async_p = remote_can_async_p;
5982 remote_async_ops.to_is_async_p = remote_is_async_p;
5983 remote_async_ops.to_async = remote_async;
5984 remote_async_ops.to_async_mask_value = 1;
5985 remote_async_ops.to_magic = OPS_MAGIC;
5986 }
5987
5988 /* Set up the async extended remote vector by making a copy of the standard
5989 remote vector and adding to it. */
5990
5991 static void
5992 init_extended_async_remote_ops (void)
5993 {
5994 extended_async_remote_ops = remote_async_ops;
5995
5996 extended_async_remote_ops.to_shortname = "extended-async";
5997 extended_async_remote_ops.to_longname =
5998 "Extended remote serial target in async gdb-specific protocol";
5999 extended_async_remote_ops.to_doc =
6000 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6001 Specify the serial device it is connected to (e.g. /dev/ttya).",
6002 extended_async_remote_ops.to_open = extended_remote_async_open;
6003 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6004 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6005 }
6006
6007 static void
6008 set_remote_cmd (char *args, int from_tty)
6009 {
6010 }
6011
6012 static void
6013 show_remote_cmd (char *args, int from_tty)
6014 {
6015 /* FIXME: cagney/2002-06-15: This function should iterate over
6016 remote_show_cmdlist for a list of sub commands to show. */
6017 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6018 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6019 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6020 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6021 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6022 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
6023 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6024 }
6025
6026 static void
6027 build_remote_gdbarch_data (void)
6028 {
6029 remote_address_size = TARGET_ADDR_BIT;
6030 }
6031
6032 /* Saved pointer to previous owner of the new_objfile event. */
6033 static void (*remote_new_objfile_chain) (struct objfile *);
6034
6035 /* Function to be called whenever a new objfile (shlib) is detected. */
6036 static void
6037 remote_new_objfile (struct objfile *objfile)
6038 {
6039 if (remote_desc != 0) /* Have a remote connection */
6040 {
6041 remote_check_symbols (objfile);
6042 }
6043 /* Call predecessor on chain, if any. */
6044 if (remote_new_objfile_chain != 0 &&
6045 remote_desc == 0)
6046 remote_new_objfile_chain (objfile);
6047 }
6048
6049 void
6050 _initialize_remote (void)
6051 {
6052 static struct cmd_list_element *remote_set_cmdlist;
6053 static struct cmd_list_element *remote_show_cmdlist;
6054 struct cmd_list_element *tmpcmd;
6055
6056 /* architecture specific data */
6057 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state);
6058
6059 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6060 that the remote protocol has been initialized. */
6061 register_gdbarch_swap (&remote_address_size,
6062 sizeof (&remote_address_size), NULL);
6063 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6064
6065 init_remote_ops ();
6066 add_target (&remote_ops);
6067
6068 init_extended_remote_ops ();
6069 add_target (&extended_remote_ops);
6070
6071 init_remote_async_ops ();
6072 add_target (&remote_async_ops);
6073
6074 init_extended_async_remote_ops ();
6075 add_target (&extended_async_remote_ops);
6076
6077 init_remote_cisco_ops ();
6078 add_target (&remote_cisco_ops);
6079
6080 /* Hook into new objfile notification. */
6081 remote_new_objfile_chain = target_new_objfile_hook;
6082 target_new_objfile_hook = remote_new_objfile;
6083
6084 #if 0
6085 init_remote_threadtests ();
6086 #endif
6087
6088 /* set/show remote ... */
6089
6090 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6091 Remote protocol specific variables\n\
6092 Configure various remote-protocol specific variables such as\n\
6093 the packets being used",
6094 &remote_set_cmdlist, "set remote ",
6095 0/*allow-unknown*/, &setlist);
6096 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6097 Remote protocol specific variables\n\
6098 Configure various remote-protocol specific variables such as\n\
6099 the packets being used",
6100 &remote_show_cmdlist, "show remote ",
6101 0/*allow-unknown*/, &showlist);
6102
6103 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6104 "Compare section data on target to the exec file.\n\
6105 Argument is a single section name (default: all loaded sections).",
6106 &cmdlist);
6107
6108 add_cmd ("packet", class_maintenance, packet_command,
6109 "Send an arbitrary packet to a remote target.\n\
6110 maintenance packet TEXT\n\
6111 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6112 this command sends the string TEXT to the inferior, and displays the\n\
6113 response packet. GDB supplies the initial `$' character, and the\n\
6114 terminating `#' character and checksum.",
6115 &maintenancelist);
6116
6117 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6118 "Set whether to send break if interrupted.\n",
6119 "Show whether to send break if interrupted.\n",
6120 NULL, NULL,
6121 &setlist, &showlist);
6122
6123 /* Install commands for configuring memory read/write packets. */
6124
6125 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6126 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6127 &setlist);
6128 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6129 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6130 &showlist);
6131 add_cmd ("memory-write-packet-size", no_class,
6132 set_memory_write_packet_size,
6133 "Set the maximum number of bytes per memory-write packet.\n"
6134 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6135 "default packet size. The actual limit is further reduced\n"
6136 "dependent on the target. Specify ``fixed'' to disable the\n"
6137 "further restriction and ``limit'' to enable that restriction\n",
6138 &remote_set_cmdlist);
6139 add_cmd ("memory-read-packet-size", no_class,
6140 set_memory_read_packet_size,
6141 "Set the maximum number of bytes per memory-read packet.\n"
6142 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6143 "default packet size. The actual limit is further reduced\n"
6144 "dependent on the target. Specify ``fixed'' to disable the\n"
6145 "further restriction and ``limit'' to enable that restriction\n",
6146 &remote_set_cmdlist);
6147 add_cmd ("memory-write-packet-size", no_class,
6148 show_memory_write_packet_size,
6149 "Show the maximum number of bytes per memory-write packet.\n",
6150 &remote_show_cmdlist);
6151 add_cmd ("memory-read-packet-size", no_class,
6152 show_memory_read_packet_size,
6153 "Show the maximum number of bytes per memory-read packet.\n",
6154 &remote_show_cmdlist);
6155
6156 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6157 var_zinteger, &remote_hw_watchpoint_limit, "\
6158 Set the maximum number of target hardware watchpoints.\n\
6159 Specify a negative limit for unlimited.", "\
6160 Show the maximum number of target hardware watchpoints.\n",
6161 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6162 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6163 var_zinteger, &remote_hw_breakpoint_limit, "\
6164 Set the maximum number of target hardware breakpoints.\n\
6165 Specify a negative limit for unlimited.", "\
6166 Show the maximum number of target hardware breakpoints.\n",
6167 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6168
6169 add_show_from_set
6170 (add_set_cmd ("remoteaddresssize", class_obscure,
6171 var_integer, (char *) &remote_address_size,
6172 "Set the maximum size of the address (in bits) \
6173 in a memory packet.\n",
6174 &setlist),
6175 &showlist);
6176
6177 add_packet_config_cmd (&remote_protocol_binary_download,
6178 "X", "binary-download",
6179 set_remote_protocol_binary_download_cmd,
6180 show_remote_protocol_binary_download_cmd,
6181 &remote_set_cmdlist, &remote_show_cmdlist,
6182 1);
6183 #if 0
6184 /* XXXX - should ``set remotebinarydownload'' be retained for
6185 compatibility. */
6186 add_show_from_set
6187 (add_set_cmd ("remotebinarydownload", no_class,
6188 var_boolean, (char *) &remote_binary_download,
6189 "Set binary downloads.\n", &setlist),
6190 &showlist);
6191 #endif
6192
6193 add_info ("remote-process", remote_info_process,
6194 "Query the remote system for process info.");
6195
6196 add_packet_config_cmd (&remote_protocol_vcont,
6197 "vCont", "verbose-resume",
6198 set_remote_protocol_vcont_packet_cmd,
6199 show_remote_protocol_vcont_packet_cmd,
6200 &remote_set_cmdlist, &remote_show_cmdlist,
6201 0);
6202
6203 add_packet_config_cmd (&remote_protocol_qSymbol,
6204 "qSymbol", "symbol-lookup",
6205 set_remote_protocol_qSymbol_packet_cmd,
6206 show_remote_protocol_qSymbol_packet_cmd,
6207 &remote_set_cmdlist, &remote_show_cmdlist,
6208 0);
6209
6210 add_packet_config_cmd (&remote_protocol_e,
6211 "e", "step-over-range",
6212 set_remote_protocol_e_packet_cmd,
6213 show_remote_protocol_e_packet_cmd,
6214 &remote_set_cmdlist, &remote_show_cmdlist,
6215 0);
6216 /* Disable by default. The ``e'' packet has nasty interactions with
6217 the threading code - it relies on global state. */
6218 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6219 update_packet_config (&remote_protocol_e);
6220
6221 add_packet_config_cmd (&remote_protocol_E,
6222 "E", "step-over-range-w-signal",
6223 set_remote_protocol_E_packet_cmd,
6224 show_remote_protocol_E_packet_cmd,
6225 &remote_set_cmdlist, &remote_show_cmdlist,
6226 0);
6227 /* Disable by default. The ``e'' packet has nasty interactions with
6228 the threading code - it relies on global state. */
6229 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6230 update_packet_config (&remote_protocol_E);
6231
6232 add_packet_config_cmd (&remote_protocol_P,
6233 "P", "set-register",
6234 set_remote_protocol_P_packet_cmd,
6235 show_remote_protocol_P_packet_cmd,
6236 &remote_set_cmdlist, &remote_show_cmdlist,
6237 1);
6238
6239 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6240 "Z0", "software-breakpoint",
6241 set_remote_protocol_Z_software_bp_packet_cmd,
6242 show_remote_protocol_Z_software_bp_packet_cmd,
6243 &remote_set_cmdlist, &remote_show_cmdlist,
6244 0);
6245
6246 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6247 "Z1", "hardware-breakpoint",
6248 set_remote_protocol_Z_hardware_bp_packet_cmd,
6249 show_remote_protocol_Z_hardware_bp_packet_cmd,
6250 &remote_set_cmdlist, &remote_show_cmdlist,
6251 0);
6252
6253 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6254 "Z2", "write-watchpoint",
6255 set_remote_protocol_Z_write_wp_packet_cmd,
6256 show_remote_protocol_Z_write_wp_packet_cmd,
6257 &remote_set_cmdlist, &remote_show_cmdlist,
6258 0);
6259
6260 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6261 "Z3", "read-watchpoint",
6262 set_remote_protocol_Z_read_wp_packet_cmd,
6263 show_remote_protocol_Z_read_wp_packet_cmd,
6264 &remote_set_cmdlist, &remote_show_cmdlist,
6265 0);
6266
6267 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6268 "Z4", "access-watchpoint",
6269 set_remote_protocol_Z_access_wp_packet_cmd,
6270 show_remote_protocol_Z_access_wp_packet_cmd,
6271 &remote_set_cmdlist, &remote_show_cmdlist,
6272 0);
6273
6274 /* Keep the old ``set remote Z-packet ...'' working. */
6275 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6276 &remote_Z_packet_detect, "\
6277 Set use of remote protocol `Z' packets",
6278 "Show use of remote protocol `Z' packets ",
6279 set_remote_protocol_Z_packet_cmd,
6280 show_remote_protocol_Z_packet_cmd,
6281 &remote_set_cmdlist, &remote_show_cmdlist);
6282
6283 /* Eventually initialize fileio. See fileio.c */
6284 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6285 }
This page took 0.189761 seconds and 4 git commands to generate.