push remote_traceframe_number into struct remote_state
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <ctype.h>
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include "gdb_stat.h"
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73
74 /* Temp hacks for tracepoint encoding migration. */
75 static char *target_buf;
76 static long target_buf_size;
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void async_cleanup_sigint_signal_handler (void *dummy);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void async_handle_remote_sigint (int);
97 static void async_handle_remote_sigint_twice (int);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (void);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_serial_write (const char *str, int len);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void sync_remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (ptid_t);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static int fromhex (int a);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
194 struct cmd_list_element *c);
195
196 static void show_remote_protocol_packet_cmd (struct ui_file *file,
197 int from_tty,
198 struct cmd_list_element *c,
199 const char *value);
200
201 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
202 static ptid_t read_ptid (char *buf, char **obuf);
203
204 static void remote_set_permissions (void);
205
206 struct remote_state;
207 static int remote_get_trace_status (struct trace_status *ts);
208
209 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
210
211 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
212
213 static void remote_query_supported (void);
214
215 static void remote_check_symbols (void);
216
217 void _initialize_remote (void);
218
219 struct stop_reply;
220 static void stop_reply_xfree (struct stop_reply *);
221 static void remote_parse_stop_reply (char *, struct stop_reply *);
222 static void push_stop_reply (struct stop_reply *);
223 static void discard_pending_stop_replies (struct inferior *);
224 static int peek_stop_reply (ptid_t ptid);
225
226 static void remote_async_inferior_event_handler (gdb_client_data);
227
228 static void remote_terminal_ours (void);
229
230 static int remote_read_description_p (struct target_ops *target);
231
232 static void remote_console_output (char *msg);
233
234 static int remote_supports_cond_breakpoints (void);
235
236 static int remote_can_run_breakpoint_commands (void);
237
238 /* For "remote". */
239
240 static struct cmd_list_element *remote_cmdlist;
241
242 /* For "set remote" and "show remote". */
243
244 static struct cmd_list_element *remote_set_cmdlist;
245 static struct cmd_list_element *remote_show_cmdlist;
246
247 /* Stub vCont actions support.
248
249 Each field is a boolean flag indicating whether the stub reports
250 support for the corresponding action. */
251
252 struct vCont_action_support
253 {
254 /* vCont;t */
255 int t;
256
257 /* vCont;r */
258 int r;
259 };
260
261 /* Controls whether GDB is willing to use range stepping. */
262
263 static int use_range_stepping = 1;
264
265 /* Description of the remote protocol state for the currently
266 connected target. This is per-target state, and independent of the
267 selected architecture. */
268
269 struct remote_state
270 {
271 /* A buffer to use for incoming packets, and its current size. The
272 buffer is grown dynamically for larger incoming packets.
273 Outgoing packets may also be constructed in this buffer.
274 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
275 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
276 packets. */
277 char *buf;
278 long buf_size;
279
280 /* True if we're going through initial connection setup (finding out
281 about the remote side's threads, relocating symbols, etc.). */
282 int starting_up;
283
284 /* If we negotiated packet size explicitly (and thus can bypass
285 heuristics for the largest packet size that will not overflow
286 a buffer in the stub), this will be set to that packet size.
287 Otherwise zero, meaning to use the guessed size. */
288 long explicit_packet_size;
289
290 /* remote_wait is normally called when the target is running and
291 waits for a stop reply packet. But sometimes we need to call it
292 when the target is already stopped. We can send a "?" packet
293 and have remote_wait read the response. Or, if we already have
294 the response, we can stash it in BUF and tell remote_wait to
295 skip calling getpkt. This flag is set when BUF contains a
296 stop reply packet and the target is not waiting. */
297 int cached_wait_status;
298
299 /* True, if in no ack mode. That is, neither GDB nor the stub will
300 expect acks from each other. The connection is assumed to be
301 reliable. */
302 int noack_mode;
303
304 /* True if we're connected in extended remote mode. */
305 int extended;
306
307 /* True if the stub reported support for multi-process
308 extensions. */
309 int multi_process_aware;
310
311 /* True if we resumed the target and we're waiting for the target to
312 stop. In the mean time, we can't start another command/query.
313 The remote server wouldn't be ready to process it, so we'd
314 timeout waiting for a reply that would never come and eventually
315 we'd close the connection. This can happen in asynchronous mode
316 because we allow GDB commands while the target is running. */
317 int waiting_for_stop_reply;
318
319 /* True if the stub reports support for non-stop mode. */
320 int non_stop_aware;
321
322 /* The status of the stub support for the various vCont actions. */
323 struct vCont_action_support supports_vCont;
324
325 /* True if the stub reports support for conditional tracepoints. */
326 int cond_tracepoints;
327
328 /* True if the stub reports support for target-side breakpoint
329 conditions. */
330 int cond_breakpoints;
331
332 /* True if the stub reports support for target-side breakpoint
333 commands. */
334 int breakpoint_commands;
335
336 /* True if the stub reports support for fast tracepoints. */
337 int fast_tracepoints;
338
339 /* True if the stub reports support for static tracepoints. */
340 int static_tracepoints;
341
342 /* True if the stub reports support for installing tracepoint while
343 tracing. */
344 int install_in_trace;
345
346 /* True if the stub can continue running a trace while GDB is
347 disconnected. */
348 int disconnected_tracing;
349
350 /* True if the stub reports support for enabling and disabling
351 tracepoints while a trace experiment is running. */
352 int enable_disable_tracepoints;
353
354 /* True if the stub can collect strings using tracenz bytecode. */
355 int string_tracing;
356
357 /* True if the stub supports qXfer:libraries-svr4:read with a
358 non-empty annex. */
359 int augmented_libraries_svr4_read;
360
361 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
362 responded to that. */
363 int ctrlc_pending_p;
364
365 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
366 remote_open knows that we don't have a file open when the program
367 starts. */
368 struct serial *remote_desc;
369
370 /* These are the threads which we last sent to the remote system. The
371 TID member will be -1 for all or -2 for not sent yet. */
372 ptid_t general_thread;
373 ptid_t continue_thread;
374
375 /* This is the traceframe which we last selected on the remote system.
376 It will be -1 if no traceframe is selected. */
377 int remote_traceframe_number;
378 };
379
380 /* Private data that we'll store in (struct thread_info)->private. */
381 struct private_thread_info
382 {
383 char *extra;
384 int core;
385 };
386
387 static void
388 free_private_thread_info (struct private_thread_info *info)
389 {
390 xfree (info->extra);
391 xfree (info);
392 }
393
394 /* Returns true if the multi-process extensions are in effect. */
395 static int
396 remote_multi_process_p (struct remote_state *rs)
397 {
398 return rs->multi_process_aware;
399 }
400
401 /* This data could be associated with a target, but we do not always
402 have access to the current target when we need it, so for now it is
403 static. This will be fine for as long as only one target is in use
404 at a time. */
405 static struct remote_state *remote_state;
406
407 static struct remote_state *
408 get_remote_state_raw (void)
409 {
410 return remote_state;
411 }
412
413 /* Allocate a new struct remote_state with xmalloc, initialize it, and
414 return it. */
415
416 static struct remote_state *
417 new_remote_state (void)
418 {
419 struct remote_state *result = XCNEW (struct remote_state);
420
421 /* The default buffer size is unimportant; it will be expanded
422 whenever a larger buffer is needed. */
423 result->buf_size = 400;
424 result->buf = xmalloc (result->buf_size);
425 result->remote_traceframe_number = -1;
426
427 return result;
428 }
429
430 /* Description of the remote protocol for a given architecture. */
431
432 struct packet_reg
433 {
434 long offset; /* Offset into G packet. */
435 long regnum; /* GDB's internal register number. */
436 LONGEST pnum; /* Remote protocol register number. */
437 int in_g_packet; /* Always part of G packet. */
438 /* long size in bytes; == register_size (target_gdbarch (), regnum);
439 at present. */
440 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
441 at present. */
442 };
443
444 struct remote_arch_state
445 {
446 /* Description of the remote protocol registers. */
447 long sizeof_g_packet;
448
449 /* Description of the remote protocol registers indexed by REGNUM
450 (making an array gdbarch_num_regs in size). */
451 struct packet_reg *regs;
452
453 /* This is the size (in chars) of the first response to the ``g''
454 packet. It is used as a heuristic when determining the maximum
455 size of memory-read and memory-write packets. A target will
456 typically only reserve a buffer large enough to hold the ``g''
457 packet. The size does not include packet overhead (headers and
458 trailers). */
459 long actual_register_packet_size;
460
461 /* This is the maximum size (in chars) of a non read/write packet.
462 It is also used as a cap on the size of read/write packets. */
463 long remote_packet_size;
464 };
465
466 long sizeof_pkt = 2000;
467
468 /* Utility: generate error from an incoming stub packet. */
469 static void
470 trace_error (char *buf)
471 {
472 if (*buf++ != 'E')
473 return; /* not an error msg */
474 switch (*buf)
475 {
476 case '1': /* malformed packet error */
477 if (*++buf == '0') /* general case: */
478 error (_("remote.c: error in outgoing packet."));
479 else
480 error (_("remote.c: error in outgoing packet at field #%ld."),
481 strtol (buf, NULL, 16));
482 default:
483 error (_("Target returns error code '%s'."), buf);
484 }
485 }
486
487 /* Utility: wait for reply from stub, while accepting "O" packets. */
488 static char *
489 remote_get_noisy_reply (char **buf_p,
490 long *sizeof_buf)
491 {
492 do /* Loop on reply from remote stub. */
493 {
494 char *buf;
495
496 QUIT; /* Allow user to bail out with ^C. */
497 getpkt (buf_p, sizeof_buf, 0);
498 buf = *buf_p;
499 if (buf[0] == 'E')
500 trace_error (buf);
501 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
502 {
503 ULONGEST ul;
504 CORE_ADDR from, to, org_to;
505 char *p, *pp;
506 int adjusted_size = 0;
507 volatile struct gdb_exception ex;
508
509 p = buf + strlen ("qRelocInsn:");
510 pp = unpack_varlen_hex (p, &ul);
511 if (*pp != ';')
512 error (_("invalid qRelocInsn packet: %s"), buf);
513 from = ul;
514
515 p = pp + 1;
516 unpack_varlen_hex (p, &ul);
517 to = ul;
518
519 org_to = to;
520
521 TRY_CATCH (ex, RETURN_MASK_ALL)
522 {
523 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
524 }
525 if (ex.reason >= 0)
526 {
527 adjusted_size = to - org_to;
528
529 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
530 putpkt (buf);
531 }
532 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
533 {
534 /* Propagate memory errors silently back to the target.
535 The stub may have limited the range of addresses we
536 can write to, for example. */
537 putpkt ("E01");
538 }
539 else
540 {
541 /* Something unexpectedly bad happened. Be verbose so
542 we can tell what, and propagate the error back to the
543 stub, so it doesn't get stuck waiting for a
544 response. */
545 exception_fprintf (gdb_stderr, ex,
546 _("warning: relocating instruction: "));
547 putpkt ("E01");
548 }
549 }
550 else if (buf[0] == 'O' && buf[1] != 'K')
551 remote_console_output (buf + 1); /* 'O' message from stub */
552 else
553 return buf; /* Here's the actual reply. */
554 }
555 while (1);
556 }
557
558 /* Handle for retreving the remote protocol data from gdbarch. */
559 static struct gdbarch_data *remote_gdbarch_data_handle;
560
561 static struct remote_arch_state *
562 get_remote_arch_state (void)
563 {
564 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
565 }
566
567 /* Fetch the global remote target state. */
568
569 static struct remote_state *
570 get_remote_state (void)
571 {
572 /* Make sure that the remote architecture state has been
573 initialized, because doing so might reallocate rs->buf. Any
574 function which calls getpkt also needs to be mindful of changes
575 to rs->buf, but this call limits the number of places which run
576 into trouble. */
577 get_remote_arch_state ();
578
579 return get_remote_state_raw ();
580 }
581
582 static int
583 compare_pnums (const void *lhs_, const void *rhs_)
584 {
585 const struct packet_reg * const *lhs = lhs_;
586 const struct packet_reg * const *rhs = rhs_;
587
588 if ((*lhs)->pnum < (*rhs)->pnum)
589 return -1;
590 else if ((*lhs)->pnum == (*rhs)->pnum)
591 return 0;
592 else
593 return 1;
594 }
595
596 static int
597 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
598 {
599 int regnum, num_remote_regs, offset;
600 struct packet_reg **remote_regs;
601
602 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
603 {
604 struct packet_reg *r = &regs[regnum];
605
606 if (register_size (gdbarch, regnum) == 0)
607 /* Do not try to fetch zero-sized (placeholder) registers. */
608 r->pnum = -1;
609 else
610 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
611
612 r->regnum = regnum;
613 }
614
615 /* Define the g/G packet format as the contents of each register
616 with a remote protocol number, in order of ascending protocol
617 number. */
618
619 remote_regs = alloca (gdbarch_num_regs (gdbarch)
620 * sizeof (struct packet_reg *));
621 for (num_remote_regs = 0, regnum = 0;
622 regnum < gdbarch_num_regs (gdbarch);
623 regnum++)
624 if (regs[regnum].pnum != -1)
625 remote_regs[num_remote_regs++] = &regs[regnum];
626
627 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
628 compare_pnums);
629
630 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
631 {
632 remote_regs[regnum]->in_g_packet = 1;
633 remote_regs[regnum]->offset = offset;
634 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
635 }
636
637 return offset;
638 }
639
640 /* Given the architecture described by GDBARCH, return the remote
641 protocol register's number and the register's offset in the g/G
642 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
643 If the target does not have a mapping for REGNUM, return false,
644 otherwise, return true. */
645
646 int
647 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
648 int *pnum, int *poffset)
649 {
650 int sizeof_g_packet;
651 struct packet_reg *regs;
652 struct cleanup *old_chain;
653
654 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
655
656 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
657 old_chain = make_cleanup (xfree, regs);
658
659 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
660
661 *pnum = regs[regnum].pnum;
662 *poffset = regs[regnum].offset;
663
664 do_cleanups (old_chain);
665
666 return *pnum != -1;
667 }
668
669 static void *
670 init_remote_state (struct gdbarch *gdbarch)
671 {
672 struct remote_state *rs = get_remote_state_raw ();
673 struct remote_arch_state *rsa;
674
675 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
676
677 /* Use the architecture to build a regnum<->pnum table, which will be
678 1:1 unless a feature set specifies otherwise. */
679 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
680 gdbarch_num_regs (gdbarch),
681 struct packet_reg);
682
683 /* Record the maximum possible size of the g packet - it may turn out
684 to be smaller. */
685 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
686
687 /* Default maximum number of characters in a packet body. Many
688 remote stubs have a hardwired buffer size of 400 bytes
689 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
690 as the maximum packet-size to ensure that the packet and an extra
691 NUL character can always fit in the buffer. This stops GDB
692 trashing stubs that try to squeeze an extra NUL into what is
693 already a full buffer (As of 1999-12-04 that was most stubs). */
694 rsa->remote_packet_size = 400 - 1;
695
696 /* This one is filled in when a ``g'' packet is received. */
697 rsa->actual_register_packet_size = 0;
698
699 /* Should rsa->sizeof_g_packet needs more space than the
700 default, adjust the size accordingly. Remember that each byte is
701 encoded as two characters. 32 is the overhead for the packet
702 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
703 (``$NN:G...#NN'') is a better guess, the below has been padded a
704 little. */
705 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
706 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
707
708 /* Make sure that the packet buffer is plenty big enough for
709 this architecture. */
710 if (rs->buf_size < rsa->remote_packet_size)
711 {
712 rs->buf_size = 2 * rsa->remote_packet_size;
713 rs->buf = xrealloc (rs->buf, rs->buf_size);
714 }
715
716 return rsa;
717 }
718
719 /* Return the current allowed size of a remote packet. This is
720 inferred from the current architecture, and should be used to
721 limit the length of outgoing packets. */
722 static long
723 get_remote_packet_size (void)
724 {
725 struct remote_state *rs = get_remote_state ();
726 struct remote_arch_state *rsa = get_remote_arch_state ();
727
728 if (rs->explicit_packet_size)
729 return rs->explicit_packet_size;
730
731 return rsa->remote_packet_size;
732 }
733
734 static struct packet_reg *
735 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
736 {
737 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
738 return NULL;
739 else
740 {
741 struct packet_reg *r = &rsa->regs[regnum];
742
743 gdb_assert (r->regnum == regnum);
744 return r;
745 }
746 }
747
748 static struct packet_reg *
749 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
750 {
751 int i;
752
753 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
754 {
755 struct packet_reg *r = &rsa->regs[i];
756
757 if (r->pnum == pnum)
758 return r;
759 }
760 return NULL;
761 }
762
763 /* FIXME: graces/2002-08-08: These variables should eventually be
764 bound to an instance of the target object (as in gdbarch-tdep()),
765 when such a thing exists. */
766
767 /* This is set to the data address of the access causing the target
768 to stop for a watchpoint. */
769 static CORE_ADDR remote_watch_data_address;
770
771 /* This is non-zero if target stopped for a watchpoint. */
772 static int remote_stopped_by_watchpoint_p;
773
774 static struct target_ops remote_ops;
775
776 static struct target_ops extended_remote_ops;
777
778 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
779 ``forever'' still use the normal timeout mechanism. This is
780 currently used by the ASYNC code to guarentee that target reads
781 during the initial connect always time-out. Once getpkt has been
782 modified to return a timeout indication and, in turn
783 remote_wait()/wait_for_inferior() have gained a timeout parameter
784 this can go away. */
785 static int wait_forever_enabled_p = 1;
786
787 /* Allow the user to specify what sequence to send to the remote
788 when he requests a program interruption: Although ^C is usually
789 what remote systems expect (this is the default, here), it is
790 sometimes preferable to send a break. On other systems such
791 as the Linux kernel, a break followed by g, which is Magic SysRq g
792 is required in order to interrupt the execution. */
793 const char interrupt_sequence_control_c[] = "Ctrl-C";
794 const char interrupt_sequence_break[] = "BREAK";
795 const char interrupt_sequence_break_g[] = "BREAK-g";
796 static const char *const interrupt_sequence_modes[] =
797 {
798 interrupt_sequence_control_c,
799 interrupt_sequence_break,
800 interrupt_sequence_break_g,
801 NULL
802 };
803 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
804
805 static void
806 show_interrupt_sequence (struct ui_file *file, int from_tty,
807 struct cmd_list_element *c,
808 const char *value)
809 {
810 if (interrupt_sequence_mode == interrupt_sequence_control_c)
811 fprintf_filtered (file,
812 _("Send the ASCII ETX character (Ctrl-c) "
813 "to the remote target to interrupt the "
814 "execution of the program.\n"));
815 else if (interrupt_sequence_mode == interrupt_sequence_break)
816 fprintf_filtered (file,
817 _("send a break signal to the remote target "
818 "to interrupt the execution of the program.\n"));
819 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
820 fprintf_filtered (file,
821 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
822 "the remote target to interrupt the execution "
823 "of Linux kernel.\n"));
824 else
825 internal_error (__FILE__, __LINE__,
826 _("Invalid value for interrupt_sequence_mode: %s."),
827 interrupt_sequence_mode);
828 }
829
830 /* This boolean variable specifies whether interrupt_sequence is sent
831 to the remote target when gdb connects to it.
832 This is mostly needed when you debug the Linux kernel: The Linux kernel
833 expects BREAK g which is Magic SysRq g for connecting gdb. */
834 static int interrupt_on_connect = 0;
835
836 /* This variable is used to implement the "set/show remotebreak" commands.
837 Since these commands are now deprecated in favor of "set/show remote
838 interrupt-sequence", it no longer has any effect on the code. */
839 static int remote_break;
840
841 static void
842 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
843 {
844 if (remote_break)
845 interrupt_sequence_mode = interrupt_sequence_break;
846 else
847 interrupt_sequence_mode = interrupt_sequence_control_c;
848 }
849
850 static void
851 show_remotebreak (struct ui_file *file, int from_tty,
852 struct cmd_list_element *c,
853 const char *value)
854 {
855 }
856
857 /* This variable sets the number of bits in an address that are to be
858 sent in a memory ("M" or "m") packet. Normally, after stripping
859 leading zeros, the entire address would be sent. This variable
860 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
861 initial implementation of remote.c restricted the address sent in
862 memory packets to ``host::sizeof long'' bytes - (typically 32
863 bits). Consequently, for 64 bit targets, the upper 32 bits of an
864 address was never sent. Since fixing this bug may cause a break in
865 some remote targets this variable is principly provided to
866 facilitate backward compatibility. */
867
868 static unsigned int remote_address_size;
869
870 /* Temporary to track who currently owns the terminal. See
871 remote_terminal_* for more details. */
872
873 static int remote_async_terminal_ours_p;
874
875 /* The executable file to use for "run" on the remote side. */
876
877 static char *remote_exec_file = "";
878
879 \f
880 /* User configurable variables for the number of characters in a
881 memory read/write packet. MIN (rsa->remote_packet_size,
882 rsa->sizeof_g_packet) is the default. Some targets need smaller
883 values (fifo overruns, et.al.) and some users need larger values
884 (speed up transfers). The variables ``preferred_*'' (the user
885 request), ``current_*'' (what was actually set) and ``forced_*''
886 (Positive - a soft limit, negative - a hard limit). */
887
888 struct memory_packet_config
889 {
890 char *name;
891 long size;
892 int fixed_p;
893 };
894
895 /* Compute the current size of a read/write packet. Since this makes
896 use of ``actual_register_packet_size'' the computation is dynamic. */
897
898 static long
899 get_memory_packet_size (struct memory_packet_config *config)
900 {
901 struct remote_state *rs = get_remote_state ();
902 struct remote_arch_state *rsa = get_remote_arch_state ();
903
904 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
905 law?) that some hosts don't cope very well with large alloca()
906 calls. Eventually the alloca() code will be replaced by calls to
907 xmalloc() and make_cleanups() allowing this restriction to either
908 be lifted or removed. */
909 #ifndef MAX_REMOTE_PACKET_SIZE
910 #define MAX_REMOTE_PACKET_SIZE 16384
911 #endif
912 /* NOTE: 20 ensures we can write at least one byte. */
913 #ifndef MIN_REMOTE_PACKET_SIZE
914 #define MIN_REMOTE_PACKET_SIZE 20
915 #endif
916 long what_they_get;
917 if (config->fixed_p)
918 {
919 if (config->size <= 0)
920 what_they_get = MAX_REMOTE_PACKET_SIZE;
921 else
922 what_they_get = config->size;
923 }
924 else
925 {
926 what_they_get = get_remote_packet_size ();
927 /* Limit the packet to the size specified by the user. */
928 if (config->size > 0
929 && what_they_get > config->size)
930 what_they_get = config->size;
931
932 /* Limit it to the size of the targets ``g'' response unless we have
933 permission from the stub to use a larger packet size. */
934 if (rs->explicit_packet_size == 0
935 && rsa->actual_register_packet_size > 0
936 && what_they_get > rsa->actual_register_packet_size)
937 what_they_get = rsa->actual_register_packet_size;
938 }
939 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
940 what_they_get = MAX_REMOTE_PACKET_SIZE;
941 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
942 what_they_get = MIN_REMOTE_PACKET_SIZE;
943
944 /* Make sure there is room in the global buffer for this packet
945 (including its trailing NUL byte). */
946 if (rs->buf_size < what_they_get + 1)
947 {
948 rs->buf_size = 2 * what_they_get;
949 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
950 }
951
952 return what_they_get;
953 }
954
955 /* Update the size of a read/write packet. If they user wants
956 something really big then do a sanity check. */
957
958 static void
959 set_memory_packet_size (char *args, struct memory_packet_config *config)
960 {
961 int fixed_p = config->fixed_p;
962 long size = config->size;
963
964 if (args == NULL)
965 error (_("Argument required (integer, `fixed' or `limited')."));
966 else if (strcmp (args, "hard") == 0
967 || strcmp (args, "fixed") == 0)
968 fixed_p = 1;
969 else if (strcmp (args, "soft") == 0
970 || strcmp (args, "limit") == 0)
971 fixed_p = 0;
972 else
973 {
974 char *end;
975
976 size = strtoul (args, &end, 0);
977 if (args == end)
978 error (_("Invalid %s (bad syntax)."), config->name);
979 #if 0
980 /* Instead of explicitly capping the size of a packet to
981 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
982 instead allowed to set the size to something arbitrarily
983 large. */
984 if (size > MAX_REMOTE_PACKET_SIZE)
985 error (_("Invalid %s (too large)."), config->name);
986 #endif
987 }
988 /* Extra checks? */
989 if (fixed_p && !config->fixed_p)
990 {
991 if (! query (_("The target may not be able to correctly handle a %s\n"
992 "of %ld bytes. Change the packet size? "),
993 config->name, size))
994 error (_("Packet size not changed."));
995 }
996 /* Update the config. */
997 config->fixed_p = fixed_p;
998 config->size = size;
999 }
1000
1001 static void
1002 show_memory_packet_size (struct memory_packet_config *config)
1003 {
1004 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1005 if (config->fixed_p)
1006 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1007 get_memory_packet_size (config));
1008 else
1009 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1010 get_memory_packet_size (config));
1011 }
1012
1013 static struct memory_packet_config memory_write_packet_config =
1014 {
1015 "memory-write-packet-size",
1016 };
1017
1018 static void
1019 set_memory_write_packet_size (char *args, int from_tty)
1020 {
1021 set_memory_packet_size (args, &memory_write_packet_config);
1022 }
1023
1024 static void
1025 show_memory_write_packet_size (char *args, int from_tty)
1026 {
1027 show_memory_packet_size (&memory_write_packet_config);
1028 }
1029
1030 static long
1031 get_memory_write_packet_size (void)
1032 {
1033 return get_memory_packet_size (&memory_write_packet_config);
1034 }
1035
1036 static struct memory_packet_config memory_read_packet_config =
1037 {
1038 "memory-read-packet-size",
1039 };
1040
1041 static void
1042 set_memory_read_packet_size (char *args, int from_tty)
1043 {
1044 set_memory_packet_size (args, &memory_read_packet_config);
1045 }
1046
1047 static void
1048 show_memory_read_packet_size (char *args, int from_tty)
1049 {
1050 show_memory_packet_size (&memory_read_packet_config);
1051 }
1052
1053 static long
1054 get_memory_read_packet_size (void)
1055 {
1056 long size = get_memory_packet_size (&memory_read_packet_config);
1057
1058 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1059 extra buffer size argument before the memory read size can be
1060 increased beyond this. */
1061 if (size > get_remote_packet_size ())
1062 size = get_remote_packet_size ();
1063 return size;
1064 }
1065
1066 \f
1067 /* Generic configuration support for packets the stub optionally
1068 supports. Allows the user to specify the use of the packet as well
1069 as allowing GDB to auto-detect support in the remote stub. */
1070
1071 enum packet_support
1072 {
1073 PACKET_SUPPORT_UNKNOWN = 0,
1074 PACKET_ENABLE,
1075 PACKET_DISABLE
1076 };
1077
1078 struct packet_config
1079 {
1080 const char *name;
1081 const char *title;
1082 enum auto_boolean detect;
1083 enum packet_support support;
1084 };
1085
1086 /* Analyze a packet's return value and update the packet config
1087 accordingly. */
1088
1089 enum packet_result
1090 {
1091 PACKET_ERROR,
1092 PACKET_OK,
1093 PACKET_UNKNOWN
1094 };
1095
1096 static void
1097 update_packet_config (struct packet_config *config)
1098 {
1099 switch (config->detect)
1100 {
1101 case AUTO_BOOLEAN_TRUE:
1102 config->support = PACKET_ENABLE;
1103 break;
1104 case AUTO_BOOLEAN_FALSE:
1105 config->support = PACKET_DISABLE;
1106 break;
1107 case AUTO_BOOLEAN_AUTO:
1108 config->support = PACKET_SUPPORT_UNKNOWN;
1109 break;
1110 }
1111 }
1112
1113 static void
1114 show_packet_config_cmd (struct packet_config *config)
1115 {
1116 char *support = "internal-error";
1117
1118 switch (config->support)
1119 {
1120 case PACKET_ENABLE:
1121 support = "enabled";
1122 break;
1123 case PACKET_DISABLE:
1124 support = "disabled";
1125 break;
1126 case PACKET_SUPPORT_UNKNOWN:
1127 support = "unknown";
1128 break;
1129 }
1130 switch (config->detect)
1131 {
1132 case AUTO_BOOLEAN_AUTO:
1133 printf_filtered (_("Support for the `%s' packet "
1134 "is auto-detected, currently %s.\n"),
1135 config->name, support);
1136 break;
1137 case AUTO_BOOLEAN_TRUE:
1138 case AUTO_BOOLEAN_FALSE:
1139 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1140 config->name, support);
1141 break;
1142 }
1143 }
1144
1145 static void
1146 add_packet_config_cmd (struct packet_config *config, const char *name,
1147 const char *title, int legacy)
1148 {
1149 char *set_doc;
1150 char *show_doc;
1151 char *cmd_name;
1152
1153 config->name = name;
1154 config->title = title;
1155 config->detect = AUTO_BOOLEAN_AUTO;
1156 config->support = PACKET_SUPPORT_UNKNOWN;
1157 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1158 name, title);
1159 show_doc = xstrprintf ("Show current use of remote "
1160 "protocol `%s' (%s) packet",
1161 name, title);
1162 /* set/show TITLE-packet {auto,on,off} */
1163 cmd_name = xstrprintf ("%s-packet", title);
1164 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1165 &config->detect, set_doc,
1166 show_doc, NULL, /* help_doc */
1167 set_remote_protocol_packet_cmd,
1168 show_remote_protocol_packet_cmd,
1169 &remote_set_cmdlist, &remote_show_cmdlist);
1170 /* The command code copies the documentation strings. */
1171 xfree (set_doc);
1172 xfree (show_doc);
1173 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1174 if (legacy)
1175 {
1176 char *legacy_name;
1177
1178 legacy_name = xstrprintf ("%s-packet", name);
1179 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1180 &remote_set_cmdlist);
1181 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1182 &remote_show_cmdlist);
1183 }
1184 }
1185
1186 static enum packet_result
1187 packet_check_result (const char *buf)
1188 {
1189 if (buf[0] != '\0')
1190 {
1191 /* The stub recognized the packet request. Check that the
1192 operation succeeded. */
1193 if (buf[0] == 'E'
1194 && isxdigit (buf[1]) && isxdigit (buf[2])
1195 && buf[3] == '\0')
1196 /* "Enn" - definitly an error. */
1197 return PACKET_ERROR;
1198
1199 /* Always treat "E." as an error. This will be used for
1200 more verbose error messages, such as E.memtypes. */
1201 if (buf[0] == 'E' && buf[1] == '.')
1202 return PACKET_ERROR;
1203
1204 /* The packet may or may not be OK. Just assume it is. */
1205 return PACKET_OK;
1206 }
1207 else
1208 /* The stub does not support the packet. */
1209 return PACKET_UNKNOWN;
1210 }
1211
1212 static enum packet_result
1213 packet_ok (const char *buf, struct packet_config *config)
1214 {
1215 enum packet_result result;
1216
1217 result = packet_check_result (buf);
1218 switch (result)
1219 {
1220 case PACKET_OK:
1221 case PACKET_ERROR:
1222 /* The stub recognized the packet request. */
1223 switch (config->support)
1224 {
1225 case PACKET_SUPPORT_UNKNOWN:
1226 if (remote_debug)
1227 fprintf_unfiltered (gdb_stdlog,
1228 "Packet %s (%s) is supported\n",
1229 config->name, config->title);
1230 config->support = PACKET_ENABLE;
1231 break;
1232 case PACKET_DISABLE:
1233 internal_error (__FILE__, __LINE__,
1234 _("packet_ok: attempt to use a disabled packet"));
1235 break;
1236 case PACKET_ENABLE:
1237 break;
1238 }
1239 break;
1240 case PACKET_UNKNOWN:
1241 /* The stub does not support the packet. */
1242 switch (config->support)
1243 {
1244 case PACKET_ENABLE:
1245 if (config->detect == AUTO_BOOLEAN_AUTO)
1246 /* If the stub previously indicated that the packet was
1247 supported then there is a protocol error.. */
1248 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1249 config->name, config->title);
1250 else
1251 /* The user set it wrong. */
1252 error (_("Enabled packet %s (%s) not recognized by stub"),
1253 config->name, config->title);
1254 break;
1255 case PACKET_SUPPORT_UNKNOWN:
1256 if (remote_debug)
1257 fprintf_unfiltered (gdb_stdlog,
1258 "Packet %s (%s) is NOT supported\n",
1259 config->name, config->title);
1260 config->support = PACKET_DISABLE;
1261 break;
1262 case PACKET_DISABLE:
1263 break;
1264 }
1265 break;
1266 }
1267
1268 return result;
1269 }
1270
1271 enum {
1272 PACKET_vCont = 0,
1273 PACKET_X,
1274 PACKET_qSymbol,
1275 PACKET_P,
1276 PACKET_p,
1277 PACKET_Z0,
1278 PACKET_Z1,
1279 PACKET_Z2,
1280 PACKET_Z3,
1281 PACKET_Z4,
1282 PACKET_vFile_open,
1283 PACKET_vFile_pread,
1284 PACKET_vFile_pwrite,
1285 PACKET_vFile_close,
1286 PACKET_vFile_unlink,
1287 PACKET_vFile_readlink,
1288 PACKET_qXfer_auxv,
1289 PACKET_qXfer_features,
1290 PACKET_qXfer_libraries,
1291 PACKET_qXfer_libraries_svr4,
1292 PACKET_qXfer_memory_map,
1293 PACKET_qXfer_spu_read,
1294 PACKET_qXfer_spu_write,
1295 PACKET_qXfer_osdata,
1296 PACKET_qXfer_threads,
1297 PACKET_qXfer_statictrace_read,
1298 PACKET_qXfer_traceframe_info,
1299 PACKET_qXfer_uib,
1300 PACKET_qGetTIBAddr,
1301 PACKET_qGetTLSAddr,
1302 PACKET_qSupported,
1303 PACKET_qTStatus,
1304 PACKET_QPassSignals,
1305 PACKET_QProgramSignals,
1306 PACKET_qSearch_memory,
1307 PACKET_vAttach,
1308 PACKET_vRun,
1309 PACKET_QStartNoAckMode,
1310 PACKET_vKill,
1311 PACKET_qXfer_siginfo_read,
1312 PACKET_qXfer_siginfo_write,
1313 PACKET_qAttached,
1314 PACKET_ConditionalTracepoints,
1315 PACKET_ConditionalBreakpoints,
1316 PACKET_BreakpointCommands,
1317 PACKET_FastTracepoints,
1318 PACKET_StaticTracepoints,
1319 PACKET_InstallInTrace,
1320 PACKET_bc,
1321 PACKET_bs,
1322 PACKET_TracepointSource,
1323 PACKET_QAllow,
1324 PACKET_qXfer_fdpic,
1325 PACKET_QDisableRandomization,
1326 PACKET_QAgent,
1327 PACKET_QTBuffer_size,
1328 PACKET_Qbtrace_off,
1329 PACKET_Qbtrace_bts,
1330 PACKET_qXfer_btrace,
1331 PACKET_MAX
1332 };
1333
1334 static struct packet_config remote_protocol_packets[PACKET_MAX];
1335
1336 static void
1337 set_remote_protocol_packet_cmd (char *args, int from_tty,
1338 struct cmd_list_element *c)
1339 {
1340 struct packet_config *packet;
1341
1342 for (packet = remote_protocol_packets;
1343 packet < &remote_protocol_packets[PACKET_MAX];
1344 packet++)
1345 {
1346 if (&packet->detect == c->var)
1347 {
1348 update_packet_config (packet);
1349 return;
1350 }
1351 }
1352 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1353 c->name);
1354 }
1355
1356 static void
1357 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c,
1359 const char *value)
1360 {
1361 struct packet_config *packet;
1362
1363 for (packet = remote_protocol_packets;
1364 packet < &remote_protocol_packets[PACKET_MAX];
1365 packet++)
1366 {
1367 if (&packet->detect == c->var)
1368 {
1369 show_packet_config_cmd (packet);
1370 return;
1371 }
1372 }
1373 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1374 c->name);
1375 }
1376
1377 /* Should we try one of the 'Z' requests? */
1378
1379 enum Z_packet_type
1380 {
1381 Z_PACKET_SOFTWARE_BP,
1382 Z_PACKET_HARDWARE_BP,
1383 Z_PACKET_WRITE_WP,
1384 Z_PACKET_READ_WP,
1385 Z_PACKET_ACCESS_WP,
1386 NR_Z_PACKET_TYPES
1387 };
1388
1389 /* For compatibility with older distributions. Provide a ``set remote
1390 Z-packet ...'' command that updates all the Z packet types. */
1391
1392 static enum auto_boolean remote_Z_packet_detect;
1393
1394 static void
1395 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1396 struct cmd_list_element *c)
1397 {
1398 int i;
1399
1400 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1401 {
1402 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1403 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1404 }
1405 }
1406
1407 static void
1408 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c,
1410 const char *value)
1411 {
1412 int i;
1413
1414 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1415 {
1416 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1417 }
1418 }
1419
1420 /* Should we try the 'ThreadInfo' query packet?
1421
1422 This variable (NOT available to the user: auto-detect only!)
1423 determines whether GDB will use the new, simpler "ThreadInfo"
1424 query or the older, more complex syntax for thread queries.
1425 This is an auto-detect variable (set to true at each connect,
1426 and set to false when the target fails to recognize it). */
1427
1428 static int use_threadinfo_query;
1429 static int use_threadextra_query;
1430
1431 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1432 static struct async_signal_handler *async_sigint_remote_twice_token;
1433 static struct async_signal_handler *async_sigint_remote_token;
1434
1435 \f
1436 /* Asynchronous signal handle registered as event loop source for
1437 when we have pending events ready to be passed to the core. */
1438
1439 static struct async_event_handler *remote_async_inferior_event_token;
1440
1441 \f
1442
1443 static ptid_t magic_null_ptid;
1444 static ptid_t not_sent_ptid;
1445 static ptid_t any_thread_ptid;
1446
1447 /* Find out if the stub attached to PID (and hence GDB should offer to
1448 detach instead of killing it when bailing out). */
1449
1450 static int
1451 remote_query_attached (int pid)
1452 {
1453 struct remote_state *rs = get_remote_state ();
1454 size_t size = get_remote_packet_size ();
1455
1456 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1457 return 0;
1458
1459 if (remote_multi_process_p (rs))
1460 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1461 else
1462 xsnprintf (rs->buf, size, "qAttached");
1463
1464 putpkt (rs->buf);
1465 getpkt (&rs->buf, &rs->buf_size, 0);
1466
1467 switch (packet_ok (rs->buf,
1468 &remote_protocol_packets[PACKET_qAttached]))
1469 {
1470 case PACKET_OK:
1471 if (strcmp (rs->buf, "1") == 0)
1472 return 1;
1473 break;
1474 case PACKET_ERROR:
1475 warning (_("Remote failure reply: %s"), rs->buf);
1476 break;
1477 case PACKET_UNKNOWN:
1478 break;
1479 }
1480
1481 return 0;
1482 }
1483
1484 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1485 has been invented by GDB, instead of reported by the target. Since
1486 we can be connected to a remote system before before knowing about
1487 any inferior, mark the target with execution when we find the first
1488 inferior. If ATTACHED is 1, then we had just attached to this
1489 inferior. If it is 0, then we just created this inferior. If it
1490 is -1, then try querying the remote stub to find out if it had
1491 attached to the inferior or not. */
1492
1493 static struct inferior *
1494 remote_add_inferior (int fake_pid_p, int pid, int attached)
1495 {
1496 struct inferior *inf;
1497
1498 /* Check whether this process we're learning about is to be
1499 considered attached, or if is to be considered to have been
1500 spawned by the stub. */
1501 if (attached == -1)
1502 attached = remote_query_attached (pid);
1503
1504 if (gdbarch_has_global_solist (target_gdbarch ()))
1505 {
1506 /* If the target shares code across all inferiors, then every
1507 attach adds a new inferior. */
1508 inf = add_inferior (pid);
1509
1510 /* ... and every inferior is bound to the same program space.
1511 However, each inferior may still have its own address
1512 space. */
1513 inf->aspace = maybe_new_address_space ();
1514 inf->pspace = current_program_space;
1515 }
1516 else
1517 {
1518 /* In the traditional debugging scenario, there's a 1-1 match
1519 between program/address spaces. We simply bind the inferior
1520 to the program space's address space. */
1521 inf = current_inferior ();
1522 inferior_appeared (inf, pid);
1523 }
1524
1525 inf->attach_flag = attached;
1526 inf->fake_pid_p = fake_pid_p;
1527
1528 return inf;
1529 }
1530
1531 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1532 according to RUNNING. */
1533
1534 static void
1535 remote_add_thread (ptid_t ptid, int running)
1536 {
1537 add_thread (ptid);
1538
1539 set_executing (ptid, running);
1540 set_running (ptid, running);
1541 }
1542
1543 /* Come here when we learn about a thread id from the remote target.
1544 It may be the first time we hear about such thread, so take the
1545 opportunity to add it to GDB's thread list. In case this is the
1546 first time we're noticing its corresponding inferior, add it to
1547 GDB's inferior list as well. */
1548
1549 static void
1550 remote_notice_new_inferior (ptid_t currthread, int running)
1551 {
1552 /* If this is a new thread, add it to GDB's thread list.
1553 If we leave it up to WFI to do this, bad things will happen. */
1554
1555 if (in_thread_list (currthread) && is_exited (currthread))
1556 {
1557 /* We're seeing an event on a thread id we knew had exited.
1558 This has to be a new thread reusing the old id. Add it. */
1559 remote_add_thread (currthread, running);
1560 return;
1561 }
1562
1563 if (!in_thread_list (currthread))
1564 {
1565 struct inferior *inf = NULL;
1566 int pid = ptid_get_pid (currthread);
1567
1568 if (ptid_is_pid (inferior_ptid)
1569 && pid == ptid_get_pid (inferior_ptid))
1570 {
1571 /* inferior_ptid has no thread member yet. This can happen
1572 with the vAttach -> remote_wait,"TAAthread:" path if the
1573 stub doesn't support qC. This is the first stop reported
1574 after an attach, so this is the main thread. Update the
1575 ptid in the thread list. */
1576 if (in_thread_list (pid_to_ptid (pid)))
1577 thread_change_ptid (inferior_ptid, currthread);
1578 else
1579 {
1580 remote_add_thread (currthread, running);
1581 inferior_ptid = currthread;
1582 }
1583 return;
1584 }
1585
1586 if (ptid_equal (magic_null_ptid, inferior_ptid))
1587 {
1588 /* inferior_ptid is not set yet. This can happen with the
1589 vRun -> remote_wait,"TAAthread:" path if the stub
1590 doesn't support qC. This is the first stop reported
1591 after an attach, so this is the main thread. Update the
1592 ptid in the thread list. */
1593 thread_change_ptid (inferior_ptid, currthread);
1594 return;
1595 }
1596
1597 /* When connecting to a target remote, or to a target
1598 extended-remote which already was debugging an inferior, we
1599 may not know about it yet. Add it before adding its child
1600 thread, so notifications are emitted in a sensible order. */
1601 if (!in_inferior_list (ptid_get_pid (currthread)))
1602 {
1603 struct remote_state *rs = get_remote_state ();
1604 int fake_pid_p = !remote_multi_process_p (rs);
1605
1606 inf = remote_add_inferior (fake_pid_p,
1607 ptid_get_pid (currthread), -1);
1608 }
1609
1610 /* This is really a new thread. Add it. */
1611 remote_add_thread (currthread, running);
1612
1613 /* If we found a new inferior, let the common code do whatever
1614 it needs to with it (e.g., read shared libraries, insert
1615 breakpoints). */
1616 if (inf != NULL)
1617 notice_new_inferior (currthread, running, 0);
1618 }
1619 }
1620
1621 /* Return the private thread data, creating it if necessary. */
1622
1623 static struct private_thread_info *
1624 demand_private_info (ptid_t ptid)
1625 {
1626 struct thread_info *info = find_thread_ptid (ptid);
1627
1628 gdb_assert (info);
1629
1630 if (!info->private)
1631 {
1632 info->private = xmalloc (sizeof (*(info->private)));
1633 info->private_dtor = free_private_thread_info;
1634 info->private->core = -1;
1635 info->private->extra = 0;
1636 }
1637
1638 return info->private;
1639 }
1640
1641 /* Call this function as a result of
1642 1) A halt indication (T packet) containing a thread id
1643 2) A direct query of currthread
1644 3) Successful execution of set thread */
1645
1646 static void
1647 record_currthread (struct remote_state *rs, ptid_t currthread)
1648 {
1649 rs->general_thread = currthread;
1650 }
1651
1652 static char *last_pass_packet;
1653
1654 /* If 'QPassSignals' is supported, tell the remote stub what signals
1655 it can simply pass through to the inferior without reporting. */
1656
1657 static void
1658 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1659 {
1660 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1661 {
1662 char *pass_packet, *p;
1663 int count = 0, i;
1664
1665 gdb_assert (numsigs < 256);
1666 for (i = 0; i < numsigs; i++)
1667 {
1668 if (pass_signals[i])
1669 count++;
1670 }
1671 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1672 strcpy (pass_packet, "QPassSignals:");
1673 p = pass_packet + strlen (pass_packet);
1674 for (i = 0; i < numsigs; i++)
1675 {
1676 if (pass_signals[i])
1677 {
1678 if (i >= 16)
1679 *p++ = tohex (i >> 4);
1680 *p++ = tohex (i & 15);
1681 if (count)
1682 *p++ = ';';
1683 else
1684 break;
1685 count--;
1686 }
1687 }
1688 *p = 0;
1689 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1690 {
1691 struct remote_state *rs = get_remote_state ();
1692 char *buf = rs->buf;
1693
1694 putpkt (pass_packet);
1695 getpkt (&rs->buf, &rs->buf_size, 0);
1696 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1697 if (last_pass_packet)
1698 xfree (last_pass_packet);
1699 last_pass_packet = pass_packet;
1700 }
1701 else
1702 xfree (pass_packet);
1703 }
1704 }
1705
1706 /* The last QProgramSignals packet sent to the target. We bypass
1707 sending a new program signals list down to the target if the new
1708 packet is exactly the same as the last we sent. IOW, we only let
1709 the target know about program signals list changes. */
1710
1711 static char *last_program_signals_packet;
1712
1713 /* If 'QProgramSignals' is supported, tell the remote stub what
1714 signals it should pass through to the inferior when detaching. */
1715
1716 static void
1717 remote_program_signals (int numsigs, unsigned char *signals)
1718 {
1719 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1720 {
1721 char *packet, *p;
1722 int count = 0, i;
1723
1724 gdb_assert (numsigs < 256);
1725 for (i = 0; i < numsigs; i++)
1726 {
1727 if (signals[i])
1728 count++;
1729 }
1730 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1731 strcpy (packet, "QProgramSignals:");
1732 p = packet + strlen (packet);
1733 for (i = 0; i < numsigs; i++)
1734 {
1735 if (signal_pass_state (i))
1736 {
1737 if (i >= 16)
1738 *p++ = tohex (i >> 4);
1739 *p++ = tohex (i & 15);
1740 if (count)
1741 *p++ = ';';
1742 else
1743 break;
1744 count--;
1745 }
1746 }
1747 *p = 0;
1748 if (!last_program_signals_packet
1749 || strcmp (last_program_signals_packet, packet) != 0)
1750 {
1751 struct remote_state *rs = get_remote_state ();
1752 char *buf = rs->buf;
1753
1754 putpkt (packet);
1755 getpkt (&rs->buf, &rs->buf_size, 0);
1756 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1757 xfree (last_program_signals_packet);
1758 last_program_signals_packet = packet;
1759 }
1760 else
1761 xfree (packet);
1762 }
1763 }
1764
1765 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1766 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1767 thread. If GEN is set, set the general thread, if not, then set
1768 the step/continue thread. */
1769 static void
1770 set_thread (struct ptid ptid, int gen)
1771 {
1772 struct remote_state *rs = get_remote_state ();
1773 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1774 char *buf = rs->buf;
1775 char *endbuf = rs->buf + get_remote_packet_size ();
1776
1777 if (ptid_equal (state, ptid))
1778 return;
1779
1780 *buf++ = 'H';
1781 *buf++ = gen ? 'g' : 'c';
1782 if (ptid_equal (ptid, magic_null_ptid))
1783 xsnprintf (buf, endbuf - buf, "0");
1784 else if (ptid_equal (ptid, any_thread_ptid))
1785 xsnprintf (buf, endbuf - buf, "0");
1786 else if (ptid_equal (ptid, minus_one_ptid))
1787 xsnprintf (buf, endbuf - buf, "-1");
1788 else
1789 write_ptid (buf, endbuf, ptid);
1790 putpkt (rs->buf);
1791 getpkt (&rs->buf, &rs->buf_size, 0);
1792 if (gen)
1793 rs->general_thread = ptid;
1794 else
1795 rs->continue_thread = ptid;
1796 }
1797
1798 static void
1799 set_general_thread (struct ptid ptid)
1800 {
1801 set_thread (ptid, 1);
1802 }
1803
1804 static void
1805 set_continue_thread (struct ptid ptid)
1806 {
1807 set_thread (ptid, 0);
1808 }
1809
1810 /* Change the remote current process. Which thread within the process
1811 ends up selected isn't important, as long as it is the same process
1812 as what INFERIOR_PTID points to.
1813
1814 This comes from that fact that there is no explicit notion of
1815 "selected process" in the protocol. The selected process for
1816 general operations is the process the selected general thread
1817 belongs to. */
1818
1819 static void
1820 set_general_process (void)
1821 {
1822 struct remote_state *rs = get_remote_state ();
1823
1824 /* If the remote can't handle multiple processes, don't bother. */
1825 if (!rs->extended || !remote_multi_process_p (rs))
1826 return;
1827
1828 /* We only need to change the remote current thread if it's pointing
1829 at some other process. */
1830 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1831 set_general_thread (inferior_ptid);
1832 }
1833
1834 \f
1835 /* Return nonzero if the thread PTID is still alive on the remote
1836 system. */
1837
1838 static int
1839 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1840 {
1841 struct remote_state *rs = get_remote_state ();
1842 char *p, *endp;
1843
1844 if (ptid_equal (ptid, magic_null_ptid))
1845 /* The main thread is always alive. */
1846 return 1;
1847
1848 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1849 /* The main thread is always alive. This can happen after a
1850 vAttach, if the remote side doesn't support
1851 multi-threading. */
1852 return 1;
1853
1854 p = rs->buf;
1855 endp = rs->buf + get_remote_packet_size ();
1856
1857 *p++ = 'T';
1858 write_ptid (p, endp, ptid);
1859
1860 putpkt (rs->buf);
1861 getpkt (&rs->buf, &rs->buf_size, 0);
1862 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1863 }
1864
1865 /* About these extended threadlist and threadinfo packets. They are
1866 variable length packets but, the fields within them are often fixed
1867 length. They are redundent enough to send over UDP as is the
1868 remote protocol in general. There is a matching unit test module
1869 in libstub. */
1870
1871 #define OPAQUETHREADBYTES 8
1872
1873 /* a 64 bit opaque identifier */
1874 typedef unsigned char threadref[OPAQUETHREADBYTES];
1875
1876 /* WARNING: This threadref data structure comes from the remote O.S.,
1877 libstub protocol encoding, and remote.c. It is not particularly
1878 changable. */
1879
1880 /* Right now, the internal structure is int. We want it to be bigger.
1881 Plan to fix this. */
1882
1883 typedef int gdb_threadref; /* Internal GDB thread reference. */
1884
1885 /* gdb_ext_thread_info is an internal GDB data structure which is
1886 equivalent to the reply of the remote threadinfo packet. */
1887
1888 struct gdb_ext_thread_info
1889 {
1890 threadref threadid; /* External form of thread reference. */
1891 int active; /* Has state interesting to GDB?
1892 regs, stack. */
1893 char display[256]; /* Brief state display, name,
1894 blocked/suspended. */
1895 char shortname[32]; /* To be used to name threads. */
1896 char more_display[256]; /* Long info, statistics, queue depth,
1897 whatever. */
1898 };
1899
1900 /* The volume of remote transfers can be limited by submitting
1901 a mask containing bits specifying the desired information.
1902 Use a union of these values as the 'selection' parameter to
1903 get_thread_info. FIXME: Make these TAG names more thread specific. */
1904
1905 #define TAG_THREADID 1
1906 #define TAG_EXISTS 2
1907 #define TAG_DISPLAY 4
1908 #define TAG_THREADNAME 8
1909 #define TAG_MOREDISPLAY 16
1910
1911 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1912
1913 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1914
1915 static char *unpack_nibble (char *buf, int *val);
1916
1917 static char *pack_nibble (char *buf, int nibble);
1918
1919 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1920
1921 static char *unpack_byte (char *buf, int *value);
1922
1923 static char *pack_int (char *buf, int value);
1924
1925 static char *unpack_int (char *buf, int *value);
1926
1927 static char *unpack_string (char *src, char *dest, int length);
1928
1929 static char *pack_threadid (char *pkt, threadref *id);
1930
1931 static char *unpack_threadid (char *inbuf, threadref *id);
1932
1933 void int_to_threadref (threadref *id, int value);
1934
1935 static int threadref_to_int (threadref *ref);
1936
1937 static void copy_threadref (threadref *dest, threadref *src);
1938
1939 static int threadmatch (threadref *dest, threadref *src);
1940
1941 static char *pack_threadinfo_request (char *pkt, int mode,
1942 threadref *id);
1943
1944 static int remote_unpack_thread_info_response (char *pkt,
1945 threadref *expectedref,
1946 struct gdb_ext_thread_info
1947 *info);
1948
1949
1950 static int remote_get_threadinfo (threadref *threadid,
1951 int fieldset, /*TAG mask */
1952 struct gdb_ext_thread_info *info);
1953
1954 static char *pack_threadlist_request (char *pkt, int startflag,
1955 int threadcount,
1956 threadref *nextthread);
1957
1958 static int parse_threadlist_response (char *pkt,
1959 int result_limit,
1960 threadref *original_echo,
1961 threadref *resultlist,
1962 int *doneflag);
1963
1964 static int remote_get_threadlist (int startflag,
1965 threadref *nextthread,
1966 int result_limit,
1967 int *done,
1968 int *result_count,
1969 threadref *threadlist);
1970
1971 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1972
1973 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1974 void *context, int looplimit);
1975
1976 static int remote_newthread_step (threadref *ref, void *context);
1977
1978
1979 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1980 buffer we're allowed to write to. Returns
1981 BUF+CHARACTERS_WRITTEN. */
1982
1983 static char *
1984 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1985 {
1986 int pid, tid;
1987 struct remote_state *rs = get_remote_state ();
1988
1989 if (remote_multi_process_p (rs))
1990 {
1991 pid = ptid_get_pid (ptid);
1992 if (pid < 0)
1993 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1994 else
1995 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1996 }
1997 tid = ptid_get_tid (ptid);
1998 if (tid < 0)
1999 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2000 else
2001 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2002
2003 return buf;
2004 }
2005
2006 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2007 passed the last parsed char. Returns null_ptid on error. */
2008
2009 static ptid_t
2010 read_ptid (char *buf, char **obuf)
2011 {
2012 char *p = buf;
2013 char *pp;
2014 ULONGEST pid = 0, tid = 0;
2015
2016 if (*p == 'p')
2017 {
2018 /* Multi-process ptid. */
2019 pp = unpack_varlen_hex (p + 1, &pid);
2020 if (*pp != '.')
2021 error (_("invalid remote ptid: %s"), p);
2022
2023 p = pp;
2024 pp = unpack_varlen_hex (p + 1, &tid);
2025 if (obuf)
2026 *obuf = pp;
2027 return ptid_build (pid, 0, tid);
2028 }
2029
2030 /* No multi-process. Just a tid. */
2031 pp = unpack_varlen_hex (p, &tid);
2032
2033 /* Since the stub is not sending a process id, then default to
2034 what's in inferior_ptid, unless it's null at this point. If so,
2035 then since there's no way to know the pid of the reported
2036 threads, use the magic number. */
2037 if (ptid_equal (inferior_ptid, null_ptid))
2038 pid = ptid_get_pid (magic_null_ptid);
2039 else
2040 pid = ptid_get_pid (inferior_ptid);
2041
2042 if (obuf)
2043 *obuf = pp;
2044 return ptid_build (pid, 0, tid);
2045 }
2046
2047 /* Encode 64 bits in 16 chars of hex. */
2048
2049 static const char hexchars[] = "0123456789abcdef";
2050
2051 static int
2052 ishex (int ch, int *val)
2053 {
2054 if ((ch >= 'a') && (ch <= 'f'))
2055 {
2056 *val = ch - 'a' + 10;
2057 return 1;
2058 }
2059 if ((ch >= 'A') && (ch <= 'F'))
2060 {
2061 *val = ch - 'A' + 10;
2062 return 1;
2063 }
2064 if ((ch >= '0') && (ch <= '9'))
2065 {
2066 *val = ch - '0';
2067 return 1;
2068 }
2069 return 0;
2070 }
2071
2072 static int
2073 stubhex (int ch)
2074 {
2075 if (ch >= 'a' && ch <= 'f')
2076 return ch - 'a' + 10;
2077 if (ch >= '0' && ch <= '9')
2078 return ch - '0';
2079 if (ch >= 'A' && ch <= 'F')
2080 return ch - 'A' + 10;
2081 return -1;
2082 }
2083
2084 static int
2085 stub_unpack_int (char *buff, int fieldlength)
2086 {
2087 int nibble;
2088 int retval = 0;
2089
2090 while (fieldlength)
2091 {
2092 nibble = stubhex (*buff++);
2093 retval |= nibble;
2094 fieldlength--;
2095 if (fieldlength)
2096 retval = retval << 4;
2097 }
2098 return retval;
2099 }
2100
2101 char *
2102 unpack_varlen_hex (char *buff, /* packet to parse */
2103 ULONGEST *result)
2104 {
2105 int nibble;
2106 ULONGEST retval = 0;
2107
2108 while (ishex (*buff, &nibble))
2109 {
2110 buff++;
2111 retval = retval << 4;
2112 retval |= nibble & 0x0f;
2113 }
2114 *result = retval;
2115 return buff;
2116 }
2117
2118 static char *
2119 unpack_nibble (char *buf, int *val)
2120 {
2121 *val = fromhex (*buf++);
2122 return buf;
2123 }
2124
2125 static char *
2126 pack_nibble (char *buf, int nibble)
2127 {
2128 *buf++ = hexchars[(nibble & 0x0f)];
2129 return buf;
2130 }
2131
2132 static char *
2133 pack_hex_byte (char *pkt, int byte)
2134 {
2135 *pkt++ = hexchars[(byte >> 4) & 0xf];
2136 *pkt++ = hexchars[(byte & 0xf)];
2137 return pkt;
2138 }
2139
2140 static char *
2141 unpack_byte (char *buf, int *value)
2142 {
2143 *value = stub_unpack_int (buf, 2);
2144 return buf + 2;
2145 }
2146
2147 static char *
2148 pack_int (char *buf, int value)
2149 {
2150 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2151 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2152 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2153 buf = pack_hex_byte (buf, (value & 0xff));
2154 return buf;
2155 }
2156
2157 static char *
2158 unpack_int (char *buf, int *value)
2159 {
2160 *value = stub_unpack_int (buf, 8);
2161 return buf + 8;
2162 }
2163
2164 #if 0 /* Currently unused, uncomment when needed. */
2165 static char *pack_string (char *pkt, char *string);
2166
2167 static char *
2168 pack_string (char *pkt, char *string)
2169 {
2170 char ch;
2171 int len;
2172
2173 len = strlen (string);
2174 if (len > 200)
2175 len = 200; /* Bigger than most GDB packets, junk??? */
2176 pkt = pack_hex_byte (pkt, len);
2177 while (len-- > 0)
2178 {
2179 ch = *string++;
2180 if ((ch == '\0') || (ch == '#'))
2181 ch = '*'; /* Protect encapsulation. */
2182 *pkt++ = ch;
2183 }
2184 return pkt;
2185 }
2186 #endif /* 0 (unused) */
2187
2188 static char *
2189 unpack_string (char *src, char *dest, int length)
2190 {
2191 while (length--)
2192 *dest++ = *src++;
2193 *dest = '\0';
2194 return src;
2195 }
2196
2197 static char *
2198 pack_threadid (char *pkt, threadref *id)
2199 {
2200 char *limit;
2201 unsigned char *altid;
2202
2203 altid = (unsigned char *) id;
2204 limit = pkt + BUF_THREAD_ID_SIZE;
2205 while (pkt < limit)
2206 pkt = pack_hex_byte (pkt, *altid++);
2207 return pkt;
2208 }
2209
2210
2211 static char *
2212 unpack_threadid (char *inbuf, threadref *id)
2213 {
2214 char *altref;
2215 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2216 int x, y;
2217
2218 altref = (char *) id;
2219
2220 while (inbuf < limit)
2221 {
2222 x = stubhex (*inbuf++);
2223 y = stubhex (*inbuf++);
2224 *altref++ = (x << 4) | y;
2225 }
2226 return inbuf;
2227 }
2228
2229 /* Externally, threadrefs are 64 bits but internally, they are still
2230 ints. This is due to a mismatch of specifications. We would like
2231 to use 64bit thread references internally. This is an adapter
2232 function. */
2233
2234 void
2235 int_to_threadref (threadref *id, int value)
2236 {
2237 unsigned char *scan;
2238
2239 scan = (unsigned char *) id;
2240 {
2241 int i = 4;
2242 while (i--)
2243 *scan++ = 0;
2244 }
2245 *scan++ = (value >> 24) & 0xff;
2246 *scan++ = (value >> 16) & 0xff;
2247 *scan++ = (value >> 8) & 0xff;
2248 *scan++ = (value & 0xff);
2249 }
2250
2251 static int
2252 threadref_to_int (threadref *ref)
2253 {
2254 int i, value = 0;
2255 unsigned char *scan;
2256
2257 scan = *ref;
2258 scan += 4;
2259 i = 4;
2260 while (i-- > 0)
2261 value = (value << 8) | ((*scan++) & 0xff);
2262 return value;
2263 }
2264
2265 static void
2266 copy_threadref (threadref *dest, threadref *src)
2267 {
2268 int i;
2269 unsigned char *csrc, *cdest;
2270
2271 csrc = (unsigned char *) src;
2272 cdest = (unsigned char *) dest;
2273 i = 8;
2274 while (i--)
2275 *cdest++ = *csrc++;
2276 }
2277
2278 static int
2279 threadmatch (threadref *dest, threadref *src)
2280 {
2281 /* Things are broken right now, so just assume we got a match. */
2282 #if 0
2283 unsigned char *srcp, *destp;
2284 int i, result;
2285 srcp = (char *) src;
2286 destp = (char *) dest;
2287
2288 result = 1;
2289 while (i-- > 0)
2290 result &= (*srcp++ == *destp++) ? 1 : 0;
2291 return result;
2292 #endif
2293 return 1;
2294 }
2295
2296 /*
2297 threadid:1, # always request threadid
2298 context_exists:2,
2299 display:4,
2300 unique_name:8,
2301 more_display:16
2302 */
2303
2304 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2305
2306 static char *
2307 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2308 {
2309 *pkt++ = 'q'; /* Info Query */
2310 *pkt++ = 'P'; /* process or thread info */
2311 pkt = pack_int (pkt, mode); /* mode */
2312 pkt = pack_threadid (pkt, id); /* threadid */
2313 *pkt = '\0'; /* terminate */
2314 return pkt;
2315 }
2316
2317 /* These values tag the fields in a thread info response packet. */
2318 /* Tagging the fields allows us to request specific fields and to
2319 add more fields as time goes by. */
2320
2321 #define TAG_THREADID 1 /* Echo the thread identifier. */
2322 #define TAG_EXISTS 2 /* Is this process defined enough to
2323 fetch registers and its stack? */
2324 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2325 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2326 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2327 the process. */
2328
2329 static int
2330 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2331 struct gdb_ext_thread_info *info)
2332 {
2333 struct remote_state *rs = get_remote_state ();
2334 int mask, length;
2335 int tag;
2336 threadref ref;
2337 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2338 int retval = 1;
2339
2340 /* info->threadid = 0; FIXME: implement zero_threadref. */
2341 info->active = 0;
2342 info->display[0] = '\0';
2343 info->shortname[0] = '\0';
2344 info->more_display[0] = '\0';
2345
2346 /* Assume the characters indicating the packet type have been
2347 stripped. */
2348 pkt = unpack_int (pkt, &mask); /* arg mask */
2349 pkt = unpack_threadid (pkt, &ref);
2350
2351 if (mask == 0)
2352 warning (_("Incomplete response to threadinfo request."));
2353 if (!threadmatch (&ref, expectedref))
2354 { /* This is an answer to a different request. */
2355 warning (_("ERROR RMT Thread info mismatch."));
2356 return 0;
2357 }
2358 copy_threadref (&info->threadid, &ref);
2359
2360 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2361
2362 /* Packets are terminated with nulls. */
2363 while ((pkt < limit) && mask && *pkt)
2364 {
2365 pkt = unpack_int (pkt, &tag); /* tag */
2366 pkt = unpack_byte (pkt, &length); /* length */
2367 if (!(tag & mask)) /* Tags out of synch with mask. */
2368 {
2369 warning (_("ERROR RMT: threadinfo tag mismatch."));
2370 retval = 0;
2371 break;
2372 }
2373 if (tag == TAG_THREADID)
2374 {
2375 if (length != 16)
2376 {
2377 warning (_("ERROR RMT: length of threadid is not 16."));
2378 retval = 0;
2379 break;
2380 }
2381 pkt = unpack_threadid (pkt, &ref);
2382 mask = mask & ~TAG_THREADID;
2383 continue;
2384 }
2385 if (tag == TAG_EXISTS)
2386 {
2387 info->active = stub_unpack_int (pkt, length);
2388 pkt += length;
2389 mask = mask & ~(TAG_EXISTS);
2390 if (length > 8)
2391 {
2392 warning (_("ERROR RMT: 'exists' length too long."));
2393 retval = 0;
2394 break;
2395 }
2396 continue;
2397 }
2398 if (tag == TAG_THREADNAME)
2399 {
2400 pkt = unpack_string (pkt, &info->shortname[0], length);
2401 mask = mask & ~TAG_THREADNAME;
2402 continue;
2403 }
2404 if (tag == TAG_DISPLAY)
2405 {
2406 pkt = unpack_string (pkt, &info->display[0], length);
2407 mask = mask & ~TAG_DISPLAY;
2408 continue;
2409 }
2410 if (tag == TAG_MOREDISPLAY)
2411 {
2412 pkt = unpack_string (pkt, &info->more_display[0], length);
2413 mask = mask & ~TAG_MOREDISPLAY;
2414 continue;
2415 }
2416 warning (_("ERROR RMT: unknown thread info tag."));
2417 break; /* Not a tag we know about. */
2418 }
2419 return retval;
2420 }
2421
2422 static int
2423 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2424 struct gdb_ext_thread_info *info)
2425 {
2426 struct remote_state *rs = get_remote_state ();
2427 int result;
2428
2429 pack_threadinfo_request (rs->buf, fieldset, threadid);
2430 putpkt (rs->buf);
2431 getpkt (&rs->buf, &rs->buf_size, 0);
2432
2433 if (rs->buf[0] == '\0')
2434 return 0;
2435
2436 result = remote_unpack_thread_info_response (rs->buf + 2,
2437 threadid, info);
2438 return result;
2439 }
2440
2441 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2442
2443 static char *
2444 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2445 threadref *nextthread)
2446 {
2447 *pkt++ = 'q'; /* info query packet */
2448 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2449 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2450 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2451 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2452 *pkt = '\0';
2453 return pkt;
2454 }
2455
2456 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2457
2458 static int
2459 parse_threadlist_response (char *pkt, int result_limit,
2460 threadref *original_echo, threadref *resultlist,
2461 int *doneflag)
2462 {
2463 struct remote_state *rs = get_remote_state ();
2464 char *limit;
2465 int count, resultcount, done;
2466
2467 resultcount = 0;
2468 /* Assume the 'q' and 'M chars have been stripped. */
2469 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2470 /* done parse past here */
2471 pkt = unpack_byte (pkt, &count); /* count field */
2472 pkt = unpack_nibble (pkt, &done);
2473 /* The first threadid is the argument threadid. */
2474 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2475 while ((count-- > 0) && (pkt < limit))
2476 {
2477 pkt = unpack_threadid (pkt, resultlist++);
2478 if (resultcount++ >= result_limit)
2479 break;
2480 }
2481 if (doneflag)
2482 *doneflag = done;
2483 return resultcount;
2484 }
2485
2486 static int
2487 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2488 int *done, int *result_count, threadref *threadlist)
2489 {
2490 struct remote_state *rs = get_remote_state ();
2491 static threadref echo_nextthread;
2492 int result = 1;
2493
2494 /* Trancate result limit to be smaller than the packet size. */
2495 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2496 >= get_remote_packet_size ())
2497 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2498
2499 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2500 putpkt (rs->buf);
2501 getpkt (&rs->buf, &rs->buf_size, 0);
2502
2503 if (*rs->buf == '\0')
2504 return 0;
2505 else
2506 *result_count =
2507 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2508 threadlist, done);
2509
2510 if (!threadmatch (&echo_nextthread, nextthread))
2511 {
2512 /* FIXME: This is a good reason to drop the packet. */
2513 /* Possably, there is a duplicate response. */
2514 /* Possabilities :
2515 retransmit immediatly - race conditions
2516 retransmit after timeout - yes
2517 exit
2518 wait for packet, then exit
2519 */
2520 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2521 return 0; /* I choose simply exiting. */
2522 }
2523 if (*result_count <= 0)
2524 {
2525 if (*done != 1)
2526 {
2527 warning (_("RMT ERROR : failed to get remote thread list."));
2528 result = 0;
2529 }
2530 return result; /* break; */
2531 }
2532 if (*result_count > result_limit)
2533 {
2534 *result_count = 0;
2535 warning (_("RMT ERROR: threadlist response longer than requested."));
2536 return 0;
2537 }
2538 return result;
2539 }
2540
2541 /* This is the interface between remote and threads, remotes upper
2542 interface. */
2543
2544 /* remote_find_new_threads retrieves the thread list and for each
2545 thread in the list, looks up the thread in GDB's internal list,
2546 adding the thread if it does not already exist. This involves
2547 getting partial thread lists from the remote target so, polling the
2548 quit_flag is required. */
2549
2550
2551 /* About this many threadisds fit in a packet. */
2552
2553 #define MAXTHREADLISTRESULTS 32
2554
2555 static int
2556 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2557 int looplimit)
2558 {
2559 int done, i, result_count;
2560 int startflag = 1;
2561 int result = 1;
2562 int loopcount = 0;
2563 static threadref nextthread;
2564 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2565
2566 done = 0;
2567 while (!done)
2568 {
2569 if (loopcount++ > looplimit)
2570 {
2571 result = 0;
2572 warning (_("Remote fetch threadlist -infinite loop-."));
2573 break;
2574 }
2575 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2576 &done, &result_count, resultthreadlist))
2577 {
2578 result = 0;
2579 break;
2580 }
2581 /* Clear for later iterations. */
2582 startflag = 0;
2583 /* Setup to resume next batch of thread references, set nextthread. */
2584 if (result_count >= 1)
2585 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2586 i = 0;
2587 while (result_count--)
2588 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2589 break;
2590 }
2591 return result;
2592 }
2593
2594 static int
2595 remote_newthread_step (threadref *ref, void *context)
2596 {
2597 int pid = ptid_get_pid (inferior_ptid);
2598 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2599
2600 if (!in_thread_list (ptid))
2601 add_thread (ptid);
2602 return 1; /* continue iterator */
2603 }
2604
2605 #define CRAZY_MAX_THREADS 1000
2606
2607 static ptid_t
2608 remote_current_thread (ptid_t oldpid)
2609 {
2610 struct remote_state *rs = get_remote_state ();
2611
2612 putpkt ("qC");
2613 getpkt (&rs->buf, &rs->buf_size, 0);
2614 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2615 return read_ptid (&rs->buf[2], NULL);
2616 else
2617 return oldpid;
2618 }
2619
2620 /* Find new threads for info threads command.
2621 * Original version, using John Metzler's thread protocol.
2622 */
2623
2624 static void
2625 remote_find_new_threads (void)
2626 {
2627 remote_threadlist_iterator (remote_newthread_step, 0,
2628 CRAZY_MAX_THREADS);
2629 }
2630
2631 #if defined(HAVE_LIBEXPAT)
2632
2633 typedef struct thread_item
2634 {
2635 ptid_t ptid;
2636 char *extra;
2637 int core;
2638 } thread_item_t;
2639 DEF_VEC_O(thread_item_t);
2640
2641 struct threads_parsing_context
2642 {
2643 VEC (thread_item_t) *items;
2644 };
2645
2646 static void
2647 start_thread (struct gdb_xml_parser *parser,
2648 const struct gdb_xml_element *element,
2649 void *user_data, VEC(gdb_xml_value_s) *attributes)
2650 {
2651 struct threads_parsing_context *data = user_data;
2652
2653 struct thread_item item;
2654 char *id;
2655 struct gdb_xml_value *attr;
2656
2657 id = xml_find_attribute (attributes, "id")->value;
2658 item.ptid = read_ptid (id, NULL);
2659
2660 attr = xml_find_attribute (attributes, "core");
2661 if (attr != NULL)
2662 item.core = *(ULONGEST *) attr->value;
2663 else
2664 item.core = -1;
2665
2666 item.extra = 0;
2667
2668 VEC_safe_push (thread_item_t, data->items, &item);
2669 }
2670
2671 static void
2672 end_thread (struct gdb_xml_parser *parser,
2673 const struct gdb_xml_element *element,
2674 void *user_data, const char *body_text)
2675 {
2676 struct threads_parsing_context *data = user_data;
2677
2678 if (body_text && *body_text)
2679 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2680 }
2681
2682 const struct gdb_xml_attribute thread_attributes[] = {
2683 { "id", GDB_XML_AF_NONE, NULL, NULL },
2684 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2685 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2686 };
2687
2688 const struct gdb_xml_element thread_children[] = {
2689 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2690 };
2691
2692 const struct gdb_xml_element threads_children[] = {
2693 { "thread", thread_attributes, thread_children,
2694 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2695 start_thread, end_thread },
2696 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2697 };
2698
2699 const struct gdb_xml_element threads_elements[] = {
2700 { "threads", NULL, threads_children,
2701 GDB_XML_EF_NONE, NULL, NULL },
2702 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2703 };
2704
2705 /* Discard the contents of the constructed thread info context. */
2706
2707 static void
2708 clear_threads_parsing_context (void *p)
2709 {
2710 struct threads_parsing_context *context = p;
2711 int i;
2712 struct thread_item *item;
2713
2714 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2715 xfree (item->extra);
2716
2717 VEC_free (thread_item_t, context->items);
2718 }
2719
2720 #endif
2721
2722 /*
2723 * Find all threads for info threads command.
2724 * Uses new thread protocol contributed by Cisco.
2725 * Falls back and attempts to use the older method (above)
2726 * if the target doesn't respond to the new method.
2727 */
2728
2729 static void
2730 remote_threads_info (struct target_ops *ops)
2731 {
2732 struct remote_state *rs = get_remote_state ();
2733 char *bufp;
2734 ptid_t new_thread;
2735
2736 if (rs->remote_desc == 0) /* paranoia */
2737 error (_("Command can only be used when connected to the remote target."));
2738
2739 #if defined(HAVE_LIBEXPAT)
2740 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2741 {
2742 char *xml = target_read_stralloc (&current_target,
2743 TARGET_OBJECT_THREADS, NULL);
2744
2745 struct cleanup *back_to = make_cleanup (xfree, xml);
2746
2747 if (xml && *xml)
2748 {
2749 struct threads_parsing_context context;
2750
2751 context.items = NULL;
2752 make_cleanup (clear_threads_parsing_context, &context);
2753
2754 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2755 threads_elements, xml, &context) == 0)
2756 {
2757 int i;
2758 struct thread_item *item;
2759
2760 for (i = 0;
2761 VEC_iterate (thread_item_t, context.items, i, item);
2762 ++i)
2763 {
2764 if (!ptid_equal (item->ptid, null_ptid))
2765 {
2766 struct private_thread_info *info;
2767 /* In non-stop mode, we assume new found threads
2768 are running until proven otherwise with a
2769 stop reply. In all-stop, we can only get
2770 here if all threads are stopped. */
2771 int running = non_stop ? 1 : 0;
2772
2773 remote_notice_new_inferior (item->ptid, running);
2774
2775 info = demand_private_info (item->ptid);
2776 info->core = item->core;
2777 info->extra = item->extra;
2778 item->extra = NULL;
2779 }
2780 }
2781 }
2782 }
2783
2784 do_cleanups (back_to);
2785 return;
2786 }
2787 #endif
2788
2789 if (use_threadinfo_query)
2790 {
2791 putpkt ("qfThreadInfo");
2792 getpkt (&rs->buf, &rs->buf_size, 0);
2793 bufp = rs->buf;
2794 if (bufp[0] != '\0') /* q packet recognized */
2795 {
2796 struct cleanup *old_chain;
2797 char *saved_reply;
2798
2799 /* remote_notice_new_inferior (in the loop below) may make
2800 new RSP calls, which clobber rs->buf. Work with a
2801 copy. */
2802 bufp = saved_reply = xstrdup (rs->buf);
2803 old_chain = make_cleanup (free_current_contents, &saved_reply);
2804
2805 while (*bufp++ == 'm') /* reply contains one or more TID */
2806 {
2807 do
2808 {
2809 new_thread = read_ptid (bufp, &bufp);
2810 if (!ptid_equal (new_thread, null_ptid))
2811 {
2812 /* In non-stop mode, we assume new found threads
2813 are running until proven otherwise with a
2814 stop reply. In all-stop, we can only get
2815 here if all threads are stopped. */
2816 int running = non_stop ? 1 : 0;
2817
2818 remote_notice_new_inferior (new_thread, running);
2819 }
2820 }
2821 while (*bufp++ == ','); /* comma-separated list */
2822 free_current_contents (&saved_reply);
2823 putpkt ("qsThreadInfo");
2824 getpkt (&rs->buf, &rs->buf_size, 0);
2825 bufp = saved_reply = xstrdup (rs->buf);
2826 }
2827 do_cleanups (old_chain);
2828 return; /* done */
2829 }
2830 }
2831
2832 /* Only qfThreadInfo is supported in non-stop mode. */
2833 if (non_stop)
2834 return;
2835
2836 /* Else fall back to old method based on jmetzler protocol. */
2837 use_threadinfo_query = 0;
2838 remote_find_new_threads ();
2839 return;
2840 }
2841
2842 /*
2843 * Collect a descriptive string about the given thread.
2844 * The target may say anything it wants to about the thread
2845 * (typically info about its blocked / runnable state, name, etc.).
2846 * This string will appear in the info threads display.
2847 *
2848 * Optional: targets are not required to implement this function.
2849 */
2850
2851 static char *
2852 remote_threads_extra_info (struct thread_info *tp)
2853 {
2854 struct remote_state *rs = get_remote_state ();
2855 int result;
2856 int set;
2857 threadref id;
2858 struct gdb_ext_thread_info threadinfo;
2859 static char display_buf[100]; /* arbitrary... */
2860 int n = 0; /* position in display_buf */
2861
2862 if (rs->remote_desc == 0) /* paranoia */
2863 internal_error (__FILE__, __LINE__,
2864 _("remote_threads_extra_info"));
2865
2866 if (ptid_equal (tp->ptid, magic_null_ptid)
2867 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2868 /* This is the main thread which was added by GDB. The remote
2869 server doesn't know about it. */
2870 return NULL;
2871
2872 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2873 {
2874 struct thread_info *info = find_thread_ptid (tp->ptid);
2875
2876 if (info && info->private)
2877 return info->private->extra;
2878 else
2879 return NULL;
2880 }
2881
2882 if (use_threadextra_query)
2883 {
2884 char *b = rs->buf;
2885 char *endb = rs->buf + get_remote_packet_size ();
2886
2887 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2888 b += strlen (b);
2889 write_ptid (b, endb, tp->ptid);
2890
2891 putpkt (rs->buf);
2892 getpkt (&rs->buf, &rs->buf_size, 0);
2893 if (rs->buf[0] != 0)
2894 {
2895 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2896 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2897 display_buf [result] = '\0';
2898 return display_buf;
2899 }
2900 }
2901
2902 /* If the above query fails, fall back to the old method. */
2903 use_threadextra_query = 0;
2904 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2905 | TAG_MOREDISPLAY | TAG_DISPLAY;
2906 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2907 if (remote_get_threadinfo (&id, set, &threadinfo))
2908 if (threadinfo.active)
2909 {
2910 if (*threadinfo.shortname)
2911 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2912 " Name: %s,", threadinfo.shortname);
2913 if (*threadinfo.display)
2914 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2915 " State: %s,", threadinfo.display);
2916 if (*threadinfo.more_display)
2917 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2918 " Priority: %s", threadinfo.more_display);
2919
2920 if (n > 0)
2921 {
2922 /* For purely cosmetic reasons, clear up trailing commas. */
2923 if (',' == display_buf[n-1])
2924 display_buf[n-1] = ' ';
2925 return display_buf;
2926 }
2927 }
2928 return NULL;
2929 }
2930 \f
2931
2932 static int
2933 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2934 struct static_tracepoint_marker *marker)
2935 {
2936 struct remote_state *rs = get_remote_state ();
2937 char *p = rs->buf;
2938
2939 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2940 p += strlen (p);
2941 p += hexnumstr (p, addr);
2942 putpkt (rs->buf);
2943 getpkt (&rs->buf, &rs->buf_size, 0);
2944 p = rs->buf;
2945
2946 if (*p == 'E')
2947 error (_("Remote failure reply: %s"), p);
2948
2949 if (*p++ == 'm')
2950 {
2951 parse_static_tracepoint_marker_definition (p, &p, marker);
2952 return 1;
2953 }
2954
2955 return 0;
2956 }
2957
2958 static VEC(static_tracepoint_marker_p) *
2959 remote_static_tracepoint_markers_by_strid (const char *strid)
2960 {
2961 struct remote_state *rs = get_remote_state ();
2962 VEC(static_tracepoint_marker_p) *markers = NULL;
2963 struct static_tracepoint_marker *marker = NULL;
2964 struct cleanup *old_chain;
2965 char *p;
2966
2967 /* Ask for a first packet of static tracepoint marker
2968 definition. */
2969 putpkt ("qTfSTM");
2970 getpkt (&rs->buf, &rs->buf_size, 0);
2971 p = rs->buf;
2972 if (*p == 'E')
2973 error (_("Remote failure reply: %s"), p);
2974
2975 old_chain = make_cleanup (free_current_marker, &marker);
2976
2977 while (*p++ == 'm')
2978 {
2979 if (marker == NULL)
2980 marker = XCNEW (struct static_tracepoint_marker);
2981
2982 do
2983 {
2984 parse_static_tracepoint_marker_definition (p, &p, marker);
2985
2986 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2987 {
2988 VEC_safe_push (static_tracepoint_marker_p,
2989 markers, marker);
2990 marker = NULL;
2991 }
2992 else
2993 {
2994 release_static_tracepoint_marker (marker);
2995 memset (marker, 0, sizeof (*marker));
2996 }
2997 }
2998 while (*p++ == ','); /* comma-separated list */
2999 /* Ask for another packet of static tracepoint definition. */
3000 putpkt ("qTsSTM");
3001 getpkt (&rs->buf, &rs->buf_size, 0);
3002 p = rs->buf;
3003 }
3004
3005 do_cleanups (old_chain);
3006 return markers;
3007 }
3008
3009 \f
3010 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3011
3012 static ptid_t
3013 remote_get_ada_task_ptid (long lwp, long thread)
3014 {
3015 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3016 }
3017 \f
3018
3019 /* Restart the remote side; this is an extended protocol operation. */
3020
3021 static void
3022 extended_remote_restart (void)
3023 {
3024 struct remote_state *rs = get_remote_state ();
3025
3026 /* Send the restart command; for reasons I don't understand the
3027 remote side really expects a number after the "R". */
3028 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3029 putpkt (rs->buf);
3030
3031 remote_fileio_reset ();
3032 }
3033 \f
3034 /* Clean up connection to a remote debugger. */
3035
3036 static void
3037 remote_close (void)
3038 {
3039 struct remote_state *rs = get_remote_state ();
3040
3041 if (rs->remote_desc == NULL)
3042 return; /* already closed */
3043
3044 /* Make sure we leave stdin registered in the event loop, and we
3045 don't leave the async SIGINT signal handler installed. */
3046 remote_terminal_ours ();
3047
3048 serial_close (rs->remote_desc);
3049 rs->remote_desc = NULL;
3050
3051 /* We don't have a connection to the remote stub anymore. Get rid
3052 of all the inferiors and their threads we were controlling.
3053 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3054 will be unable to find the thread corresponding to (pid, 0, 0). */
3055 inferior_ptid = null_ptid;
3056 discard_all_inferiors ();
3057
3058 /* Stop replies may from inferiors which are still unknown to GDB.
3059 We are closing the remote target, so we should discard
3060 everything, including the stop replies from GDB-unknown
3061 inferiors. */
3062 discard_pending_stop_replies (NULL);
3063
3064 if (remote_async_inferior_event_token)
3065 delete_async_event_handler (&remote_async_inferior_event_token);
3066
3067 remote_notif_unregister_async_event_handler ();
3068
3069 trace_reset_local_state ();
3070 }
3071
3072 /* Query the remote side for the text, data and bss offsets. */
3073
3074 static void
3075 get_offsets (void)
3076 {
3077 struct remote_state *rs = get_remote_state ();
3078 char *buf;
3079 char *ptr;
3080 int lose, num_segments = 0, do_sections, do_segments;
3081 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3082 struct section_offsets *offs;
3083 struct symfile_segment_data *data;
3084
3085 if (symfile_objfile == NULL)
3086 return;
3087
3088 putpkt ("qOffsets");
3089 getpkt (&rs->buf, &rs->buf_size, 0);
3090 buf = rs->buf;
3091
3092 if (buf[0] == '\000')
3093 return; /* Return silently. Stub doesn't support
3094 this command. */
3095 if (buf[0] == 'E')
3096 {
3097 warning (_("Remote failure reply: %s"), buf);
3098 return;
3099 }
3100
3101 /* Pick up each field in turn. This used to be done with scanf, but
3102 scanf will make trouble if CORE_ADDR size doesn't match
3103 conversion directives correctly. The following code will work
3104 with any size of CORE_ADDR. */
3105 text_addr = data_addr = bss_addr = 0;
3106 ptr = buf;
3107 lose = 0;
3108
3109 if (strncmp (ptr, "Text=", 5) == 0)
3110 {
3111 ptr += 5;
3112 /* Don't use strtol, could lose on big values. */
3113 while (*ptr && *ptr != ';')
3114 text_addr = (text_addr << 4) + fromhex (*ptr++);
3115
3116 if (strncmp (ptr, ";Data=", 6) == 0)
3117 {
3118 ptr += 6;
3119 while (*ptr && *ptr != ';')
3120 data_addr = (data_addr << 4) + fromhex (*ptr++);
3121 }
3122 else
3123 lose = 1;
3124
3125 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3126 {
3127 ptr += 5;
3128 while (*ptr && *ptr != ';')
3129 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3130
3131 if (bss_addr != data_addr)
3132 warning (_("Target reported unsupported offsets: %s"), buf);
3133 }
3134 else
3135 lose = 1;
3136 }
3137 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3138 {
3139 ptr += 8;
3140 /* Don't use strtol, could lose on big values. */
3141 while (*ptr && *ptr != ';')
3142 text_addr = (text_addr << 4) + fromhex (*ptr++);
3143 num_segments = 1;
3144
3145 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3146 {
3147 ptr += 9;
3148 while (*ptr && *ptr != ';')
3149 data_addr = (data_addr << 4) + fromhex (*ptr++);
3150 num_segments++;
3151 }
3152 }
3153 else
3154 lose = 1;
3155
3156 if (lose)
3157 error (_("Malformed response to offset query, %s"), buf);
3158 else if (*ptr != '\0')
3159 warning (_("Target reported unsupported offsets: %s"), buf);
3160
3161 offs = ((struct section_offsets *)
3162 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3163 memcpy (offs, symfile_objfile->section_offsets,
3164 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3165
3166 data = get_symfile_segment_data (symfile_objfile->obfd);
3167 do_segments = (data != NULL);
3168 do_sections = num_segments == 0;
3169
3170 if (num_segments > 0)
3171 {
3172 segments[0] = text_addr;
3173 segments[1] = data_addr;
3174 }
3175 /* If we have two segments, we can still try to relocate everything
3176 by assuming that the .text and .data offsets apply to the whole
3177 text and data segments. Convert the offsets given in the packet
3178 to base addresses for symfile_map_offsets_to_segments. */
3179 else if (data && data->num_segments == 2)
3180 {
3181 segments[0] = data->segment_bases[0] + text_addr;
3182 segments[1] = data->segment_bases[1] + data_addr;
3183 num_segments = 2;
3184 }
3185 /* If the object file has only one segment, assume that it is text
3186 rather than data; main programs with no writable data are rare,
3187 but programs with no code are useless. Of course the code might
3188 have ended up in the data segment... to detect that we would need
3189 the permissions here. */
3190 else if (data && data->num_segments == 1)
3191 {
3192 segments[0] = data->segment_bases[0] + text_addr;
3193 num_segments = 1;
3194 }
3195 /* There's no way to relocate by segment. */
3196 else
3197 do_segments = 0;
3198
3199 if (do_segments)
3200 {
3201 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3202 offs, num_segments, segments);
3203
3204 if (ret == 0 && !do_sections)
3205 error (_("Can not handle qOffsets TextSeg "
3206 "response with this symbol file"));
3207
3208 if (ret > 0)
3209 do_sections = 0;
3210 }
3211
3212 if (data)
3213 free_symfile_segment_data (data);
3214
3215 if (do_sections)
3216 {
3217 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3218
3219 /* This is a temporary kludge to force data and bss to use the
3220 same offsets because that's what nlmconv does now. The real
3221 solution requires changes to the stub and remote.c that I
3222 don't have time to do right now. */
3223
3224 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3225 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3226 }
3227
3228 objfile_relocate (symfile_objfile, offs);
3229 }
3230
3231 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3232 threads we know are stopped already. This is used during the
3233 initial remote connection in non-stop mode --- threads that are
3234 reported as already being stopped are left stopped. */
3235
3236 static int
3237 set_stop_requested_callback (struct thread_info *thread, void *data)
3238 {
3239 /* If we have a stop reply for this thread, it must be stopped. */
3240 if (peek_stop_reply (thread->ptid))
3241 set_stop_requested (thread->ptid, 1);
3242
3243 return 0;
3244 }
3245
3246 /* Send interrupt_sequence to remote target. */
3247 static void
3248 send_interrupt_sequence (void)
3249 {
3250 struct remote_state *rs = get_remote_state ();
3251
3252 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3253 remote_serial_write ("\x03", 1);
3254 else if (interrupt_sequence_mode == interrupt_sequence_break)
3255 serial_send_break (rs->remote_desc);
3256 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3257 {
3258 serial_send_break (rs->remote_desc);
3259 remote_serial_write ("g", 1);
3260 }
3261 else
3262 internal_error (__FILE__, __LINE__,
3263 _("Invalid value for interrupt_sequence_mode: %s."),
3264 interrupt_sequence_mode);
3265 }
3266
3267
3268 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3269 and extract the PTID. Returns NULL_PTID if not found. */
3270
3271 static ptid_t
3272 stop_reply_extract_thread (char *stop_reply)
3273 {
3274 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3275 {
3276 char *p;
3277
3278 /* Txx r:val ; r:val (...) */
3279 p = &stop_reply[3];
3280
3281 /* Look for "register" named "thread". */
3282 while (*p != '\0')
3283 {
3284 char *p1;
3285
3286 p1 = strchr (p, ':');
3287 if (p1 == NULL)
3288 return null_ptid;
3289
3290 if (strncmp (p, "thread", p1 - p) == 0)
3291 return read_ptid (++p1, &p);
3292
3293 p1 = strchr (p, ';');
3294 if (p1 == NULL)
3295 return null_ptid;
3296 p1++;
3297
3298 p = p1;
3299 }
3300 }
3301
3302 return null_ptid;
3303 }
3304
3305 /* Query the remote target for which is the current thread/process,
3306 add it to our tables, and update INFERIOR_PTID. The caller is
3307 responsible for setting the state such that the remote end is ready
3308 to return the current thread.
3309
3310 This function is called after handling the '?' or 'vRun' packets,
3311 whose response is a stop reply from which we can also try
3312 extracting the thread. If the target doesn't support the explicit
3313 qC query, we infer the current thread from that stop reply, passed
3314 in in WAIT_STATUS, which may be NULL. */
3315
3316 static void
3317 add_current_inferior_and_thread (char *wait_status)
3318 {
3319 struct remote_state *rs = get_remote_state ();
3320 int fake_pid_p = 0;
3321 ptid_t ptid = null_ptid;
3322
3323 inferior_ptid = null_ptid;
3324
3325 /* Now, if we have thread information, update inferior_ptid. First
3326 if we have a stop reply handy, maybe it's a T stop reply with a
3327 "thread" register we can extract the current thread from. If
3328 not, ask the remote which is the current thread, with qC. The
3329 former method avoids a roundtrip. Note we don't use
3330 remote_parse_stop_reply as that makes use of the target
3331 architecture, which we haven't yet fully determined at this
3332 point. */
3333 if (wait_status != NULL)
3334 ptid = stop_reply_extract_thread (wait_status);
3335 if (ptid_equal (ptid, null_ptid))
3336 ptid = remote_current_thread (inferior_ptid);
3337
3338 if (!ptid_equal (ptid, null_ptid))
3339 {
3340 if (!remote_multi_process_p (rs))
3341 fake_pid_p = 1;
3342
3343 inferior_ptid = ptid;
3344 }
3345 else
3346 {
3347 /* Without this, some commands which require an active target
3348 (such as kill) won't work. This variable serves (at least)
3349 double duty as both the pid of the target process (if it has
3350 such), and as a flag indicating that a target is active. */
3351 inferior_ptid = magic_null_ptid;
3352 fake_pid_p = 1;
3353 }
3354
3355 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3356
3357 /* Add the main thread. */
3358 add_thread_silent (inferior_ptid);
3359 }
3360
3361 static void
3362 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3363 {
3364 struct remote_state *rs = get_remote_state ();
3365 struct packet_config *noack_config;
3366 char *wait_status = NULL;
3367
3368 immediate_quit++; /* Allow user to interrupt it. */
3369 QUIT;
3370
3371 if (interrupt_on_connect)
3372 send_interrupt_sequence ();
3373
3374 /* Ack any packet which the remote side has already sent. */
3375 serial_write (rs->remote_desc, "+", 1);
3376
3377 /* Signal other parts that we're going through the initial setup,
3378 and so things may not be stable yet. */
3379 rs->starting_up = 1;
3380
3381 /* The first packet we send to the target is the optional "supported
3382 packets" request. If the target can answer this, it will tell us
3383 which later probes to skip. */
3384 remote_query_supported ();
3385
3386 /* If the stub wants to get a QAllow, compose one and send it. */
3387 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3388 remote_set_permissions ();
3389
3390 /* Next, we possibly activate noack mode.
3391
3392 If the QStartNoAckMode packet configuration is set to AUTO,
3393 enable noack mode if the stub reported a wish for it with
3394 qSupported.
3395
3396 If set to TRUE, then enable noack mode even if the stub didn't
3397 report it in qSupported. If the stub doesn't reply OK, the
3398 session ends with an error.
3399
3400 If FALSE, then don't activate noack mode, regardless of what the
3401 stub claimed should be the default with qSupported. */
3402
3403 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3404
3405 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3406 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3407 && noack_config->support == PACKET_ENABLE))
3408 {
3409 putpkt ("QStartNoAckMode");
3410 getpkt (&rs->buf, &rs->buf_size, 0);
3411 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3412 rs->noack_mode = 1;
3413 }
3414
3415 if (extended_p)
3416 {
3417 /* Tell the remote that we are using the extended protocol. */
3418 putpkt ("!");
3419 getpkt (&rs->buf, &rs->buf_size, 0);
3420 }
3421
3422 /* Let the target know which signals it is allowed to pass down to
3423 the program. */
3424 update_signals_program_target ();
3425
3426 /* Next, if the target can specify a description, read it. We do
3427 this before anything involving memory or registers. */
3428 target_find_description ();
3429
3430 /* Next, now that we know something about the target, update the
3431 address spaces in the program spaces. */
3432 update_address_spaces ();
3433
3434 /* On OSs where the list of libraries is global to all
3435 processes, we fetch them early. */
3436 if (gdbarch_has_global_solist (target_gdbarch ()))
3437 solib_add (NULL, from_tty, target, auto_solib_add);
3438
3439 if (non_stop)
3440 {
3441 if (!rs->non_stop_aware)
3442 error (_("Non-stop mode requested, but remote "
3443 "does not support non-stop"));
3444
3445 putpkt ("QNonStop:1");
3446 getpkt (&rs->buf, &rs->buf_size, 0);
3447
3448 if (strcmp (rs->buf, "OK") != 0)
3449 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3450
3451 /* Find about threads and processes the stub is already
3452 controlling. We default to adding them in the running state.
3453 The '?' query below will then tell us about which threads are
3454 stopped. */
3455 remote_threads_info (target);
3456 }
3457 else if (rs->non_stop_aware)
3458 {
3459 /* Don't assume that the stub can operate in all-stop mode.
3460 Request it explicitly. */
3461 putpkt ("QNonStop:0");
3462 getpkt (&rs->buf, &rs->buf_size, 0);
3463
3464 if (strcmp (rs->buf, "OK") != 0)
3465 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3466 }
3467
3468 /* Upload TSVs regardless of whether the target is running or not. The
3469 remote stub, such as GDBserver, may have some predefined or builtin
3470 TSVs, even if the target is not running. */
3471 if (remote_get_trace_status (current_trace_status ()) != -1)
3472 {
3473 struct uploaded_tsv *uploaded_tsvs = NULL;
3474
3475 remote_upload_trace_state_variables (&uploaded_tsvs);
3476 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3477 }
3478
3479 /* Check whether the target is running now. */
3480 putpkt ("?");
3481 getpkt (&rs->buf, &rs->buf_size, 0);
3482
3483 if (!non_stop)
3484 {
3485 ptid_t ptid;
3486 int fake_pid_p = 0;
3487 struct inferior *inf;
3488
3489 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3490 {
3491 if (!extended_p)
3492 error (_("The target is not running (try extended-remote?)"));
3493
3494 /* We're connected, but not running. Drop out before we
3495 call start_remote. */
3496 rs->starting_up = 0;
3497 return;
3498 }
3499 else
3500 {
3501 /* Save the reply for later. */
3502 wait_status = alloca (strlen (rs->buf) + 1);
3503 strcpy (wait_status, rs->buf);
3504 }
3505
3506 /* Let the stub know that we want it to return the thread. */
3507 set_continue_thread (minus_one_ptid);
3508
3509 add_current_inferior_and_thread (wait_status);
3510
3511 /* init_wait_for_inferior should be called before get_offsets in order
3512 to manage `inserted' flag in bp loc in a correct state.
3513 breakpoint_init_inferior, called from init_wait_for_inferior, set
3514 `inserted' flag to 0, while before breakpoint_re_set, called from
3515 start_remote, set `inserted' flag to 1. In the initialization of
3516 inferior, breakpoint_init_inferior should be called first, and then
3517 breakpoint_re_set can be called. If this order is broken, state of
3518 `inserted' flag is wrong, and cause some problems on breakpoint
3519 manipulation. */
3520 init_wait_for_inferior ();
3521
3522 get_offsets (); /* Get text, data & bss offsets. */
3523
3524 /* If we could not find a description using qXfer, and we know
3525 how to do it some other way, try again. This is not
3526 supported for non-stop; it could be, but it is tricky if
3527 there are no stopped threads when we connect. */
3528 if (remote_read_description_p (target)
3529 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3530 {
3531 target_clear_description ();
3532 target_find_description ();
3533 }
3534
3535 /* Use the previously fetched status. */
3536 gdb_assert (wait_status != NULL);
3537 strcpy (rs->buf, wait_status);
3538 rs->cached_wait_status = 1;
3539
3540 immediate_quit--;
3541 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3542 }
3543 else
3544 {
3545 /* Clear WFI global state. Do this before finding about new
3546 threads and inferiors, and setting the current inferior.
3547 Otherwise we would clear the proceed status of the current
3548 inferior when we want its stop_soon state to be preserved
3549 (see notice_new_inferior). */
3550 init_wait_for_inferior ();
3551
3552 /* In non-stop, we will either get an "OK", meaning that there
3553 are no stopped threads at this time; or, a regular stop
3554 reply. In the latter case, there may be more than one thread
3555 stopped --- we pull them all out using the vStopped
3556 mechanism. */
3557 if (strcmp (rs->buf, "OK") != 0)
3558 {
3559 struct notif_client *notif = &notif_client_stop;
3560
3561 /* remote_notif_get_pending_replies acks this one, and gets
3562 the rest out. */
3563 notif_client_stop.pending_event
3564 = remote_notif_parse (notif, rs->buf);
3565 remote_notif_get_pending_events (notif);
3566
3567 /* Make sure that threads that were stopped remain
3568 stopped. */
3569 iterate_over_threads (set_stop_requested_callback, NULL);
3570 }
3571
3572 if (target_can_async_p ())
3573 target_async (inferior_event_handler, 0);
3574
3575 if (thread_count () == 0)
3576 {
3577 if (!extended_p)
3578 error (_("The target is not running (try extended-remote?)"));
3579
3580 /* We're connected, but not running. Drop out before we
3581 call start_remote. */
3582 rs->starting_up = 0;
3583 return;
3584 }
3585
3586 /* Let the stub know that we want it to return the thread. */
3587
3588 /* Force the stub to choose a thread. */
3589 set_general_thread (null_ptid);
3590
3591 /* Query it. */
3592 inferior_ptid = remote_current_thread (minus_one_ptid);
3593 if (ptid_equal (inferior_ptid, minus_one_ptid))
3594 error (_("remote didn't report the current thread in non-stop mode"));
3595
3596 get_offsets (); /* Get text, data & bss offsets. */
3597
3598 /* In non-stop mode, any cached wait status will be stored in
3599 the stop reply queue. */
3600 gdb_assert (wait_status == NULL);
3601
3602 /* Report all signals during attach/startup. */
3603 remote_pass_signals (0, NULL);
3604 }
3605
3606 /* If we connected to a live target, do some additional setup. */
3607 if (target_has_execution)
3608 {
3609 if (exec_bfd) /* No use without an exec file. */
3610 remote_check_symbols ();
3611 }
3612
3613 /* Possibly the target has been engaged in a trace run started
3614 previously; find out where things are at. */
3615 if (remote_get_trace_status (current_trace_status ()) != -1)
3616 {
3617 struct uploaded_tp *uploaded_tps = NULL;
3618
3619 if (current_trace_status ()->running)
3620 printf_filtered (_("Trace is already running on the target.\n"));
3621
3622 remote_upload_tracepoints (&uploaded_tps);
3623
3624 merge_uploaded_tracepoints (&uploaded_tps);
3625 }
3626
3627 /* The thread and inferior lists are now synchronized with the
3628 target, our symbols have been relocated, and we're merged the
3629 target's tracepoints with ours. We're done with basic start
3630 up. */
3631 rs->starting_up = 0;
3632
3633 /* If breakpoints are global, insert them now. */
3634 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3635 && breakpoints_always_inserted_mode ())
3636 insert_breakpoints ();
3637 }
3638
3639 /* Open a connection to a remote debugger.
3640 NAME is the filename used for communication. */
3641
3642 static void
3643 remote_open (char *name, int from_tty)
3644 {
3645 remote_open_1 (name, from_tty, &remote_ops, 0);
3646 }
3647
3648 /* Open a connection to a remote debugger using the extended
3649 remote gdb protocol. NAME is the filename used for communication. */
3650
3651 static void
3652 extended_remote_open (char *name, int from_tty)
3653 {
3654 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3655 }
3656
3657 /* Generic code for opening a connection to a remote target. */
3658
3659 static void
3660 init_all_packet_configs (void)
3661 {
3662 int i;
3663
3664 for (i = 0; i < PACKET_MAX; i++)
3665 update_packet_config (&remote_protocol_packets[i]);
3666 }
3667
3668 /* Symbol look-up. */
3669
3670 static void
3671 remote_check_symbols (void)
3672 {
3673 struct remote_state *rs = get_remote_state ();
3674 char *msg, *reply, *tmp;
3675 struct minimal_symbol *sym;
3676 int end;
3677
3678 /* The remote side has no concept of inferiors that aren't running
3679 yet, it only knows about running processes. If we're connected
3680 but our current inferior is not running, we should not invite the
3681 remote target to request symbol lookups related to its
3682 (unrelated) current process. */
3683 if (!target_has_execution)
3684 return;
3685
3686 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3687 return;
3688
3689 /* Make sure the remote is pointing at the right process. Note
3690 there's no way to select "no process". */
3691 set_general_process ();
3692
3693 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3694 because we need both at the same time. */
3695 msg = alloca (get_remote_packet_size ());
3696
3697 /* Invite target to request symbol lookups. */
3698
3699 putpkt ("qSymbol::");
3700 getpkt (&rs->buf, &rs->buf_size, 0);
3701 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3702 reply = rs->buf;
3703
3704 while (strncmp (reply, "qSymbol:", 8) == 0)
3705 {
3706 tmp = &reply[8];
3707 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3708 msg[end] = '\0';
3709 sym = lookup_minimal_symbol (msg, NULL, NULL);
3710 if (sym == NULL)
3711 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3712 else
3713 {
3714 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3715 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3716
3717 /* If this is a function address, return the start of code
3718 instead of any data function descriptor. */
3719 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3720 sym_addr,
3721 &current_target);
3722
3723 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3724 phex_nz (sym_addr, addr_size), &reply[8]);
3725 }
3726
3727 putpkt (msg);
3728 getpkt (&rs->buf, &rs->buf_size, 0);
3729 reply = rs->buf;
3730 }
3731 }
3732
3733 static struct serial *
3734 remote_serial_open (char *name)
3735 {
3736 static int udp_warning = 0;
3737
3738 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3739 of in ser-tcp.c, because it is the remote protocol assuming that the
3740 serial connection is reliable and not the serial connection promising
3741 to be. */
3742 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3743 {
3744 warning (_("The remote protocol may be unreliable over UDP.\n"
3745 "Some events may be lost, rendering further debugging "
3746 "impossible."));
3747 udp_warning = 1;
3748 }
3749
3750 return serial_open (name);
3751 }
3752
3753 /* Inform the target of our permission settings. The permission flags
3754 work without this, but if the target knows the settings, it can do
3755 a couple things. First, it can add its own check, to catch cases
3756 that somehow manage to get by the permissions checks in target
3757 methods. Second, if the target is wired to disallow particular
3758 settings (for instance, a system in the field that is not set up to
3759 be able to stop at a breakpoint), it can object to any unavailable
3760 permissions. */
3761
3762 void
3763 remote_set_permissions (void)
3764 {
3765 struct remote_state *rs = get_remote_state ();
3766
3767 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3768 "WriteReg:%x;WriteMem:%x;"
3769 "InsertBreak:%x;InsertTrace:%x;"
3770 "InsertFastTrace:%x;Stop:%x",
3771 may_write_registers, may_write_memory,
3772 may_insert_breakpoints, may_insert_tracepoints,
3773 may_insert_fast_tracepoints, may_stop);
3774 putpkt (rs->buf);
3775 getpkt (&rs->buf, &rs->buf_size, 0);
3776
3777 /* If the target didn't like the packet, warn the user. Do not try
3778 to undo the user's settings, that would just be maddening. */
3779 if (strcmp (rs->buf, "OK") != 0)
3780 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3781 }
3782
3783 /* This type describes each known response to the qSupported
3784 packet. */
3785 struct protocol_feature
3786 {
3787 /* The name of this protocol feature. */
3788 const char *name;
3789
3790 /* The default for this protocol feature. */
3791 enum packet_support default_support;
3792
3793 /* The function to call when this feature is reported, or after
3794 qSupported processing if the feature is not supported.
3795 The first argument points to this structure. The second
3796 argument indicates whether the packet requested support be
3797 enabled, disabled, or probed (or the default, if this function
3798 is being called at the end of processing and this feature was
3799 not reported). The third argument may be NULL; if not NULL, it
3800 is a NUL-terminated string taken from the packet following
3801 this feature's name and an equals sign. */
3802 void (*func) (const struct protocol_feature *, enum packet_support,
3803 const char *);
3804
3805 /* The corresponding packet for this feature. Only used if
3806 FUNC is remote_supported_packet. */
3807 int packet;
3808 };
3809
3810 static void
3811 remote_supported_packet (const struct protocol_feature *feature,
3812 enum packet_support support,
3813 const char *argument)
3814 {
3815 if (argument)
3816 {
3817 warning (_("Remote qSupported response supplied an unexpected value for"
3818 " \"%s\"."), feature->name);
3819 return;
3820 }
3821
3822 if (remote_protocol_packets[feature->packet].support
3823 == PACKET_SUPPORT_UNKNOWN)
3824 remote_protocol_packets[feature->packet].support = support;
3825 }
3826
3827 static void
3828 remote_packet_size (const struct protocol_feature *feature,
3829 enum packet_support support, const char *value)
3830 {
3831 struct remote_state *rs = get_remote_state ();
3832
3833 int packet_size;
3834 char *value_end;
3835
3836 if (support != PACKET_ENABLE)
3837 return;
3838
3839 if (value == NULL || *value == '\0')
3840 {
3841 warning (_("Remote target reported \"%s\" without a size."),
3842 feature->name);
3843 return;
3844 }
3845
3846 errno = 0;
3847 packet_size = strtol (value, &value_end, 16);
3848 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3849 {
3850 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3851 feature->name, value);
3852 return;
3853 }
3854
3855 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3856 {
3857 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3858 packet_size, MAX_REMOTE_PACKET_SIZE);
3859 packet_size = MAX_REMOTE_PACKET_SIZE;
3860 }
3861
3862 /* Record the new maximum packet size. */
3863 rs->explicit_packet_size = packet_size;
3864 }
3865
3866 static void
3867 remote_multi_process_feature (const struct protocol_feature *feature,
3868 enum packet_support support, const char *value)
3869 {
3870 struct remote_state *rs = get_remote_state ();
3871
3872 rs->multi_process_aware = (support == PACKET_ENABLE);
3873 }
3874
3875 static void
3876 remote_non_stop_feature (const struct protocol_feature *feature,
3877 enum packet_support support, const char *value)
3878 {
3879 struct remote_state *rs = get_remote_state ();
3880
3881 rs->non_stop_aware = (support == PACKET_ENABLE);
3882 }
3883
3884 static void
3885 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3886 enum packet_support support,
3887 const char *value)
3888 {
3889 struct remote_state *rs = get_remote_state ();
3890
3891 rs->cond_tracepoints = (support == PACKET_ENABLE);
3892 }
3893
3894 static void
3895 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3896 enum packet_support support,
3897 const char *value)
3898 {
3899 struct remote_state *rs = get_remote_state ();
3900
3901 rs->cond_breakpoints = (support == PACKET_ENABLE);
3902 }
3903
3904 static void
3905 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3906 enum packet_support support,
3907 const char *value)
3908 {
3909 struct remote_state *rs = get_remote_state ();
3910
3911 rs->breakpoint_commands = (support == PACKET_ENABLE);
3912 }
3913
3914 static void
3915 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3916 enum packet_support support,
3917 const char *value)
3918 {
3919 struct remote_state *rs = get_remote_state ();
3920
3921 rs->fast_tracepoints = (support == PACKET_ENABLE);
3922 }
3923
3924 static void
3925 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3926 enum packet_support support,
3927 const char *value)
3928 {
3929 struct remote_state *rs = get_remote_state ();
3930
3931 rs->static_tracepoints = (support == PACKET_ENABLE);
3932 }
3933
3934 static void
3935 remote_install_in_trace_feature (const struct protocol_feature *feature,
3936 enum packet_support support,
3937 const char *value)
3938 {
3939 struct remote_state *rs = get_remote_state ();
3940
3941 rs->install_in_trace = (support == PACKET_ENABLE);
3942 }
3943
3944 static void
3945 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3946 enum packet_support support,
3947 const char *value)
3948 {
3949 struct remote_state *rs = get_remote_state ();
3950
3951 rs->disconnected_tracing = (support == PACKET_ENABLE);
3952 }
3953
3954 static void
3955 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3956 enum packet_support support,
3957 const char *value)
3958 {
3959 struct remote_state *rs = get_remote_state ();
3960
3961 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3962 }
3963
3964 static void
3965 remote_string_tracing_feature (const struct protocol_feature *feature,
3966 enum packet_support support,
3967 const char *value)
3968 {
3969 struct remote_state *rs = get_remote_state ();
3970
3971 rs->string_tracing = (support == PACKET_ENABLE);
3972 }
3973
3974 static void
3975 remote_augmented_libraries_svr4_read_feature
3976 (const struct protocol_feature *feature,
3977 enum packet_support support, const char *value)
3978 {
3979 struct remote_state *rs = get_remote_state ();
3980
3981 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
3982 }
3983
3984 static const struct protocol_feature remote_protocol_features[] = {
3985 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3986 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3987 PACKET_qXfer_auxv },
3988 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3989 PACKET_qXfer_features },
3990 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3991 PACKET_qXfer_libraries },
3992 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3993 PACKET_qXfer_libraries_svr4 },
3994 { "augmented-libraries-svr4-read", PACKET_DISABLE,
3995 remote_augmented_libraries_svr4_read_feature, -1 },
3996 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3997 PACKET_qXfer_memory_map },
3998 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3999 PACKET_qXfer_spu_read },
4000 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4001 PACKET_qXfer_spu_write },
4002 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4003 PACKET_qXfer_osdata },
4004 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4005 PACKET_qXfer_threads },
4006 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4007 PACKET_qXfer_traceframe_info },
4008 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4009 PACKET_QPassSignals },
4010 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4011 PACKET_QProgramSignals },
4012 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4013 PACKET_QStartNoAckMode },
4014 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4015 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4016 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4017 PACKET_qXfer_siginfo_read },
4018 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4019 PACKET_qXfer_siginfo_write },
4020 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4021 PACKET_ConditionalTracepoints },
4022 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4023 PACKET_ConditionalBreakpoints },
4024 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4025 PACKET_BreakpointCommands },
4026 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4027 PACKET_FastTracepoints },
4028 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4029 PACKET_StaticTracepoints },
4030 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4031 PACKET_InstallInTrace},
4032 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4033 -1 },
4034 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4035 PACKET_bc },
4036 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4037 PACKET_bs },
4038 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4039 PACKET_TracepointSource },
4040 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4041 PACKET_QAllow },
4042 { "EnableDisableTracepoints", PACKET_DISABLE,
4043 remote_enable_disable_tracepoint_feature, -1 },
4044 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4045 PACKET_qXfer_fdpic },
4046 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4047 PACKET_qXfer_uib },
4048 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4049 PACKET_QDisableRandomization },
4050 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4051 { "QTBuffer:size", PACKET_DISABLE,
4052 remote_supported_packet, PACKET_QTBuffer_size},
4053 { "tracenz", PACKET_DISABLE,
4054 remote_string_tracing_feature, -1 },
4055 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4056 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4057 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4058 PACKET_qXfer_btrace }
4059 };
4060
4061 static char *remote_support_xml;
4062
4063 /* Register string appended to "xmlRegisters=" in qSupported query. */
4064
4065 void
4066 register_remote_support_xml (const char *xml)
4067 {
4068 #if defined(HAVE_LIBEXPAT)
4069 if (remote_support_xml == NULL)
4070 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4071 else
4072 {
4073 char *copy = xstrdup (remote_support_xml + 13);
4074 char *p = strtok (copy, ",");
4075
4076 do
4077 {
4078 if (strcmp (p, xml) == 0)
4079 {
4080 /* already there */
4081 xfree (copy);
4082 return;
4083 }
4084 }
4085 while ((p = strtok (NULL, ",")) != NULL);
4086 xfree (copy);
4087
4088 remote_support_xml = reconcat (remote_support_xml,
4089 remote_support_xml, ",", xml,
4090 (char *) NULL);
4091 }
4092 #endif
4093 }
4094
4095 static char *
4096 remote_query_supported_append (char *msg, const char *append)
4097 {
4098 if (msg)
4099 return reconcat (msg, msg, ";", append, (char *) NULL);
4100 else
4101 return xstrdup (append);
4102 }
4103
4104 static void
4105 remote_query_supported (void)
4106 {
4107 struct remote_state *rs = get_remote_state ();
4108 char *next;
4109 int i;
4110 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4111
4112 /* The packet support flags are handled differently for this packet
4113 than for most others. We treat an error, a disabled packet, and
4114 an empty response identically: any features which must be reported
4115 to be used will be automatically disabled. An empty buffer
4116 accomplishes this, since that is also the representation for a list
4117 containing no features. */
4118
4119 rs->buf[0] = 0;
4120 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4121 {
4122 char *q = NULL;
4123 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4124
4125 q = remote_query_supported_append (q, "multiprocess+");
4126
4127 if (remote_support_xml)
4128 q = remote_query_supported_append (q, remote_support_xml);
4129
4130 q = remote_query_supported_append (q, "qRelocInsn+");
4131
4132 q = reconcat (q, "qSupported:", q, (char *) NULL);
4133 putpkt (q);
4134
4135 do_cleanups (old_chain);
4136
4137 getpkt (&rs->buf, &rs->buf_size, 0);
4138
4139 /* If an error occured, warn, but do not return - just reset the
4140 buffer to empty and go on to disable features. */
4141 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4142 == PACKET_ERROR)
4143 {
4144 warning (_("Remote failure reply: %s"), rs->buf);
4145 rs->buf[0] = 0;
4146 }
4147 }
4148
4149 memset (seen, 0, sizeof (seen));
4150
4151 next = rs->buf;
4152 while (*next)
4153 {
4154 enum packet_support is_supported;
4155 char *p, *end, *name_end, *value;
4156
4157 /* First separate out this item from the rest of the packet. If
4158 there's another item after this, we overwrite the separator
4159 (terminated strings are much easier to work with). */
4160 p = next;
4161 end = strchr (p, ';');
4162 if (end == NULL)
4163 {
4164 end = p + strlen (p);
4165 next = end;
4166 }
4167 else
4168 {
4169 *end = '\0';
4170 next = end + 1;
4171
4172 if (end == p)
4173 {
4174 warning (_("empty item in \"qSupported\" response"));
4175 continue;
4176 }
4177 }
4178
4179 name_end = strchr (p, '=');
4180 if (name_end)
4181 {
4182 /* This is a name=value entry. */
4183 is_supported = PACKET_ENABLE;
4184 value = name_end + 1;
4185 *name_end = '\0';
4186 }
4187 else
4188 {
4189 value = NULL;
4190 switch (end[-1])
4191 {
4192 case '+':
4193 is_supported = PACKET_ENABLE;
4194 break;
4195
4196 case '-':
4197 is_supported = PACKET_DISABLE;
4198 break;
4199
4200 case '?':
4201 is_supported = PACKET_SUPPORT_UNKNOWN;
4202 break;
4203
4204 default:
4205 warning (_("unrecognized item \"%s\" "
4206 "in \"qSupported\" response"), p);
4207 continue;
4208 }
4209 end[-1] = '\0';
4210 }
4211
4212 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4213 if (strcmp (remote_protocol_features[i].name, p) == 0)
4214 {
4215 const struct protocol_feature *feature;
4216
4217 seen[i] = 1;
4218 feature = &remote_protocol_features[i];
4219 feature->func (feature, is_supported, value);
4220 break;
4221 }
4222 }
4223
4224 /* If we increased the packet size, make sure to increase the global
4225 buffer size also. We delay this until after parsing the entire
4226 qSupported packet, because this is the same buffer we were
4227 parsing. */
4228 if (rs->buf_size < rs->explicit_packet_size)
4229 {
4230 rs->buf_size = rs->explicit_packet_size;
4231 rs->buf = xrealloc (rs->buf, rs->buf_size);
4232 }
4233
4234 /* Handle the defaults for unmentioned features. */
4235 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4236 if (!seen[i])
4237 {
4238 const struct protocol_feature *feature;
4239
4240 feature = &remote_protocol_features[i];
4241 feature->func (feature, feature->default_support, NULL);
4242 }
4243 }
4244
4245 /* Remove any of the remote.c targets from target stack. Upper targets depend
4246 on it so remove them first. */
4247
4248 static void
4249 remote_unpush_target (void)
4250 {
4251 pop_all_targets_above (process_stratum - 1);
4252 }
4253
4254 static void
4255 remote_open_1 (char *name, int from_tty,
4256 struct target_ops *target, int extended_p)
4257 {
4258 struct remote_state *rs = get_remote_state ();
4259
4260 if (name == 0)
4261 error (_("To open a remote debug connection, you need to specify what\n"
4262 "serial device is attached to the remote system\n"
4263 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4264
4265 /* See FIXME above. */
4266 if (!target_async_permitted)
4267 wait_forever_enabled_p = 1;
4268
4269 /* If we're connected to a running target, target_preopen will kill it.
4270 Ask this question first, before target_preopen has a chance to kill
4271 anything. */
4272 if (rs->remote_desc != NULL && !have_inferiors ())
4273 {
4274 if (from_tty
4275 && !query (_("Already connected to a remote target. Disconnect? ")))
4276 error (_("Still connected."));
4277 }
4278
4279 /* Here the possibly existing remote target gets unpushed. */
4280 target_preopen (from_tty);
4281
4282 /* Make sure we send the passed signals list the next time we resume. */
4283 xfree (last_pass_packet);
4284 last_pass_packet = NULL;
4285
4286 /* Make sure we send the program signals list the next time we
4287 resume. */
4288 xfree (last_program_signals_packet);
4289 last_program_signals_packet = NULL;
4290
4291 remote_fileio_reset ();
4292 reopen_exec_file ();
4293 reread_symbols ();
4294
4295 rs->remote_desc = remote_serial_open (name);
4296 if (!rs->remote_desc)
4297 perror_with_name (name);
4298
4299 if (baud_rate != -1)
4300 {
4301 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4302 {
4303 /* The requested speed could not be set. Error out to
4304 top level after closing remote_desc. Take care to
4305 set remote_desc to NULL to avoid closing remote_desc
4306 more than once. */
4307 serial_close (rs->remote_desc);
4308 rs->remote_desc = NULL;
4309 perror_with_name (name);
4310 }
4311 }
4312
4313 serial_raw (rs->remote_desc);
4314
4315 /* If there is something sitting in the buffer we might take it as a
4316 response to a command, which would be bad. */
4317 serial_flush_input (rs->remote_desc);
4318
4319 if (from_tty)
4320 {
4321 puts_filtered ("Remote debugging using ");
4322 puts_filtered (name);
4323 puts_filtered ("\n");
4324 }
4325 push_target (target); /* Switch to using remote target now. */
4326
4327 /* Register extra event sources in the event loop. */
4328 remote_async_inferior_event_token
4329 = create_async_event_handler (remote_async_inferior_event_handler,
4330 NULL);
4331 remote_notif_register_async_event_handler ();
4332
4333 /* Reset the target state; these things will be queried either by
4334 remote_query_supported or as they are needed. */
4335 init_all_packet_configs ();
4336 rs->cached_wait_status = 0;
4337 rs->explicit_packet_size = 0;
4338 rs->noack_mode = 0;
4339 rs->multi_process_aware = 0;
4340 rs->extended = extended_p;
4341 rs->non_stop_aware = 0;
4342 rs->waiting_for_stop_reply = 0;
4343 rs->ctrlc_pending_p = 0;
4344
4345 rs->general_thread = not_sent_ptid;
4346 rs->continue_thread = not_sent_ptid;
4347 rs->remote_traceframe_number = -1;
4348
4349 /* Probe for ability to use "ThreadInfo" query, as required. */
4350 use_threadinfo_query = 1;
4351 use_threadextra_query = 1;
4352
4353 if (target_async_permitted)
4354 {
4355 /* With this target we start out by owning the terminal. */
4356 remote_async_terminal_ours_p = 1;
4357
4358 /* FIXME: cagney/1999-09-23: During the initial connection it is
4359 assumed that the target is already ready and able to respond to
4360 requests. Unfortunately remote_start_remote() eventually calls
4361 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4362 around this. Eventually a mechanism that allows
4363 wait_for_inferior() to expect/get timeouts will be
4364 implemented. */
4365 wait_forever_enabled_p = 0;
4366 }
4367
4368 /* First delete any symbols previously loaded from shared libraries. */
4369 no_shared_libraries (NULL, 0);
4370
4371 /* Start afresh. */
4372 init_thread_list ();
4373
4374 /* Start the remote connection. If error() or QUIT, discard this
4375 target (we'd otherwise be in an inconsistent state) and then
4376 propogate the error on up the exception chain. This ensures that
4377 the caller doesn't stumble along blindly assuming that the
4378 function succeeded. The CLI doesn't have this problem but other
4379 UI's, such as MI do.
4380
4381 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4382 this function should return an error indication letting the
4383 caller restore the previous state. Unfortunately the command
4384 ``target remote'' is directly wired to this function making that
4385 impossible. On a positive note, the CLI side of this problem has
4386 been fixed - the function set_cmd_context() makes it possible for
4387 all the ``target ....'' commands to share a common callback
4388 function. See cli-dump.c. */
4389 {
4390 volatile struct gdb_exception ex;
4391
4392 TRY_CATCH (ex, RETURN_MASK_ALL)
4393 {
4394 remote_start_remote (from_tty, target, extended_p);
4395 }
4396 if (ex.reason < 0)
4397 {
4398 /* Pop the partially set up target - unless something else did
4399 already before throwing the exception. */
4400 if (rs->remote_desc != NULL)
4401 remote_unpush_target ();
4402 if (target_async_permitted)
4403 wait_forever_enabled_p = 1;
4404 throw_exception (ex);
4405 }
4406 }
4407
4408 if (target_async_permitted)
4409 wait_forever_enabled_p = 1;
4410 }
4411
4412 /* This takes a program previously attached to and detaches it. After
4413 this is done, GDB can be used to debug some other program. We
4414 better not have left any breakpoints in the target program or it'll
4415 die when it hits one. */
4416
4417 static void
4418 remote_detach_1 (char *args, int from_tty, int extended)
4419 {
4420 int pid = ptid_get_pid (inferior_ptid);
4421 struct remote_state *rs = get_remote_state ();
4422
4423 if (args)
4424 error (_("Argument given to \"detach\" when remotely debugging."));
4425
4426 if (!target_has_execution)
4427 error (_("No process to detach from."));
4428
4429 if (from_tty)
4430 {
4431 char *exec_file = get_exec_file (0);
4432 if (exec_file == NULL)
4433 exec_file = "";
4434 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4435 target_pid_to_str (pid_to_ptid (pid)));
4436 gdb_flush (gdb_stdout);
4437 }
4438
4439 /* Tell the remote target to detach. */
4440 if (remote_multi_process_p (rs))
4441 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4442 else
4443 strcpy (rs->buf, "D");
4444
4445 putpkt (rs->buf);
4446 getpkt (&rs->buf, &rs->buf_size, 0);
4447
4448 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4449 ;
4450 else if (rs->buf[0] == '\0')
4451 error (_("Remote doesn't know how to detach"));
4452 else
4453 error (_("Can't detach process."));
4454
4455 if (from_tty && !extended)
4456 puts_filtered (_("Ending remote debugging.\n"));
4457
4458 target_mourn_inferior ();
4459 }
4460
4461 static void
4462 remote_detach (struct target_ops *ops, char *args, int from_tty)
4463 {
4464 remote_detach_1 (args, from_tty, 0);
4465 }
4466
4467 static void
4468 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4469 {
4470 remote_detach_1 (args, from_tty, 1);
4471 }
4472
4473 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4474
4475 static void
4476 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4477 {
4478 if (args)
4479 error (_("Argument given to \"disconnect\" when remotely debugging."));
4480
4481 /* Make sure we unpush even the extended remote targets; mourn
4482 won't do it. So call remote_mourn_1 directly instead of
4483 target_mourn_inferior. */
4484 remote_mourn_1 (target);
4485
4486 if (from_tty)
4487 puts_filtered ("Ending remote debugging.\n");
4488 }
4489
4490 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4491 be chatty about it. */
4492
4493 static void
4494 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4495 {
4496 struct remote_state *rs = get_remote_state ();
4497 int pid;
4498 char *wait_status = NULL;
4499
4500 pid = parse_pid_to_attach (args);
4501
4502 /* Remote PID can be freely equal to getpid, do not check it here the same
4503 way as in other targets. */
4504
4505 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4506 error (_("This target does not support attaching to a process"));
4507
4508 if (from_tty)
4509 {
4510 char *exec_file = get_exec_file (0);
4511
4512 if (exec_file)
4513 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4514 target_pid_to_str (pid_to_ptid (pid)));
4515 else
4516 printf_unfiltered (_("Attaching to %s\n"),
4517 target_pid_to_str (pid_to_ptid (pid)));
4518
4519 gdb_flush (gdb_stdout);
4520 }
4521
4522 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4523 putpkt (rs->buf);
4524 getpkt (&rs->buf, &rs->buf_size, 0);
4525
4526 if (packet_ok (rs->buf,
4527 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4528 {
4529 if (!non_stop)
4530 {
4531 /* Save the reply for later. */
4532 wait_status = alloca (strlen (rs->buf) + 1);
4533 strcpy (wait_status, rs->buf);
4534 }
4535 else if (strcmp (rs->buf, "OK") != 0)
4536 error (_("Attaching to %s failed with: %s"),
4537 target_pid_to_str (pid_to_ptid (pid)),
4538 rs->buf);
4539 }
4540 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4541 error (_("This target does not support attaching to a process"));
4542 else
4543 error (_("Attaching to %s failed"),
4544 target_pid_to_str (pid_to_ptid (pid)));
4545
4546 set_current_inferior (remote_add_inferior (0, pid, 1));
4547
4548 inferior_ptid = pid_to_ptid (pid);
4549
4550 if (non_stop)
4551 {
4552 struct thread_info *thread;
4553
4554 /* Get list of threads. */
4555 remote_threads_info (target);
4556
4557 thread = first_thread_of_process (pid);
4558 if (thread)
4559 inferior_ptid = thread->ptid;
4560 else
4561 inferior_ptid = pid_to_ptid (pid);
4562
4563 /* Invalidate our notion of the remote current thread. */
4564 record_currthread (rs, minus_one_ptid);
4565 }
4566 else
4567 {
4568 /* Now, if we have thread information, update inferior_ptid. */
4569 inferior_ptid = remote_current_thread (inferior_ptid);
4570
4571 /* Add the main thread to the thread list. */
4572 add_thread_silent (inferior_ptid);
4573 }
4574
4575 /* Next, if the target can specify a description, read it. We do
4576 this before anything involving memory or registers. */
4577 target_find_description ();
4578
4579 if (!non_stop)
4580 {
4581 /* Use the previously fetched status. */
4582 gdb_assert (wait_status != NULL);
4583
4584 if (target_can_async_p ())
4585 {
4586 struct notif_event *reply
4587 = remote_notif_parse (&notif_client_stop, wait_status);
4588
4589 push_stop_reply ((struct stop_reply *) reply);
4590
4591 target_async (inferior_event_handler, 0);
4592 }
4593 else
4594 {
4595 gdb_assert (wait_status != NULL);
4596 strcpy (rs->buf, wait_status);
4597 rs->cached_wait_status = 1;
4598 }
4599 }
4600 else
4601 gdb_assert (wait_status == NULL);
4602 }
4603
4604 static void
4605 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4606 {
4607 extended_remote_attach_1 (ops, args, from_tty);
4608 }
4609
4610 /* Convert hex digit A to a number. */
4611
4612 static int
4613 fromhex (int a)
4614 {
4615 if (a >= '0' && a <= '9')
4616 return a - '0';
4617 else if (a >= 'a' && a <= 'f')
4618 return a - 'a' + 10;
4619 else if (a >= 'A' && a <= 'F')
4620 return a - 'A' + 10;
4621 else
4622 error (_("Reply contains invalid hex digit %d"), a);
4623 }
4624
4625 int
4626 hex2bin (const char *hex, gdb_byte *bin, int count)
4627 {
4628 int i;
4629
4630 for (i = 0; i < count; i++)
4631 {
4632 if (hex[0] == 0 || hex[1] == 0)
4633 {
4634 /* Hex string is short, or of uneven length.
4635 Return the count that has been converted so far. */
4636 return i;
4637 }
4638 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4639 hex += 2;
4640 }
4641 return i;
4642 }
4643
4644 /* Convert number NIB to a hex digit. */
4645
4646 static int
4647 tohex (int nib)
4648 {
4649 if (nib < 10)
4650 return '0' + nib;
4651 else
4652 return 'a' + nib - 10;
4653 }
4654
4655 int
4656 bin2hex (const gdb_byte *bin, char *hex, int count)
4657 {
4658 int i;
4659
4660 /* May use a length, or a nul-terminated string as input. */
4661 if (count == 0)
4662 count = strlen ((char *) bin);
4663
4664 for (i = 0; i < count; i++)
4665 {
4666 *hex++ = tohex ((*bin >> 4) & 0xf);
4667 *hex++ = tohex (*bin++ & 0xf);
4668 }
4669 *hex = 0;
4670 return i;
4671 }
4672 \f
4673 /* Check for the availability of vCont. This function should also check
4674 the response. */
4675
4676 static void
4677 remote_vcont_probe (struct remote_state *rs)
4678 {
4679 char *buf;
4680
4681 strcpy (rs->buf, "vCont?");
4682 putpkt (rs->buf);
4683 getpkt (&rs->buf, &rs->buf_size, 0);
4684 buf = rs->buf;
4685
4686 /* Make sure that the features we assume are supported. */
4687 if (strncmp (buf, "vCont", 5) == 0)
4688 {
4689 char *p = &buf[5];
4690 int support_s, support_S, support_c, support_C;
4691
4692 support_s = 0;
4693 support_S = 0;
4694 support_c = 0;
4695 support_C = 0;
4696 rs->supports_vCont.t = 0;
4697 rs->supports_vCont.r = 0;
4698 while (p && *p == ';')
4699 {
4700 p++;
4701 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4702 support_s = 1;
4703 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4704 support_S = 1;
4705 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4706 support_c = 1;
4707 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4708 support_C = 1;
4709 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4710 rs->supports_vCont.t = 1;
4711 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4712 rs->supports_vCont.r = 1;
4713
4714 p = strchr (p, ';');
4715 }
4716
4717 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4718 BUF will make packet_ok disable the packet. */
4719 if (!support_s || !support_S || !support_c || !support_C)
4720 buf[0] = 0;
4721 }
4722
4723 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4724 }
4725
4726 /* Helper function for building "vCont" resumptions. Write a
4727 resumption to P. ENDP points to one-passed-the-end of the buffer
4728 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4729 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4730 resumed thread should be single-stepped and/or signalled. If PTID
4731 equals minus_one_ptid, then all threads are resumed; if PTID
4732 represents a process, then all threads of the process are resumed;
4733 the thread to be stepped and/or signalled is given in the global
4734 INFERIOR_PTID. */
4735
4736 static char *
4737 append_resumption (char *p, char *endp,
4738 ptid_t ptid, int step, enum gdb_signal siggnal)
4739 {
4740 struct remote_state *rs = get_remote_state ();
4741
4742 if (step && siggnal != GDB_SIGNAL_0)
4743 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4744 else if (step
4745 /* GDB is willing to range step. */
4746 && use_range_stepping
4747 /* Target supports range stepping. */
4748 && rs->supports_vCont.r
4749 /* We don't currently support range stepping multiple
4750 threads with a wildcard (though the protocol allows it,
4751 so stubs shouldn't make an active effort to forbid
4752 it). */
4753 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4754 {
4755 struct thread_info *tp;
4756
4757 if (ptid_equal (ptid, minus_one_ptid))
4758 {
4759 /* If we don't know about the target thread's tid, then
4760 we're resuming magic_null_ptid (see caller). */
4761 tp = find_thread_ptid (magic_null_ptid);
4762 }
4763 else
4764 tp = find_thread_ptid (ptid);
4765 gdb_assert (tp != NULL);
4766
4767 if (tp->control.may_range_step)
4768 {
4769 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4770
4771 p += xsnprintf (p, endp - p, ";r%s,%s",
4772 phex_nz (tp->control.step_range_start,
4773 addr_size),
4774 phex_nz (tp->control.step_range_end,
4775 addr_size));
4776 }
4777 else
4778 p += xsnprintf (p, endp - p, ";s");
4779 }
4780 else if (step)
4781 p += xsnprintf (p, endp - p, ";s");
4782 else if (siggnal != GDB_SIGNAL_0)
4783 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4784 else
4785 p += xsnprintf (p, endp - p, ";c");
4786
4787 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4788 {
4789 ptid_t nptid;
4790
4791 /* All (-1) threads of process. */
4792 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4793
4794 p += xsnprintf (p, endp - p, ":");
4795 p = write_ptid (p, endp, nptid);
4796 }
4797 else if (!ptid_equal (ptid, minus_one_ptid))
4798 {
4799 p += xsnprintf (p, endp - p, ":");
4800 p = write_ptid (p, endp, ptid);
4801 }
4802
4803 return p;
4804 }
4805
4806 /* Append a vCont continue-with-signal action for threads that have a
4807 non-zero stop signal. */
4808
4809 static char *
4810 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4811 {
4812 struct thread_info *thread;
4813
4814 ALL_THREADS (thread)
4815 if (ptid_match (thread->ptid, ptid)
4816 && !ptid_equal (inferior_ptid, thread->ptid)
4817 && thread->suspend.stop_signal != GDB_SIGNAL_0
4818 && signal_pass_state (thread->suspend.stop_signal))
4819 {
4820 p = append_resumption (p, endp, thread->ptid,
4821 0, thread->suspend.stop_signal);
4822 thread->suspend.stop_signal = GDB_SIGNAL_0;
4823 }
4824
4825 return p;
4826 }
4827
4828 /* Resume the remote inferior by using a "vCont" packet. The thread
4829 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4830 resumed thread should be single-stepped and/or signalled. If PTID
4831 equals minus_one_ptid, then all threads are resumed; the thread to
4832 be stepped and/or signalled is given in the global INFERIOR_PTID.
4833 This function returns non-zero iff it resumes the inferior.
4834
4835 This function issues a strict subset of all possible vCont commands at the
4836 moment. */
4837
4838 static int
4839 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4840 {
4841 struct remote_state *rs = get_remote_state ();
4842 char *p;
4843 char *endp;
4844
4845 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4846 remote_vcont_probe (rs);
4847
4848 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4849 return 0;
4850
4851 p = rs->buf;
4852 endp = rs->buf + get_remote_packet_size ();
4853
4854 /* If we could generate a wider range of packets, we'd have to worry
4855 about overflowing BUF. Should there be a generic
4856 "multi-part-packet" packet? */
4857
4858 p += xsnprintf (p, endp - p, "vCont");
4859
4860 if (ptid_equal (ptid, magic_null_ptid))
4861 {
4862 /* MAGIC_NULL_PTID means that we don't have any active threads,
4863 so we don't have any TID numbers the inferior will
4864 understand. Make sure to only send forms that do not specify
4865 a TID. */
4866 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4867 }
4868 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4869 {
4870 /* Resume all threads (of all processes, or of a single
4871 process), with preference for INFERIOR_PTID. This assumes
4872 inferior_ptid belongs to the set of all threads we are about
4873 to resume. */
4874 if (step || siggnal != GDB_SIGNAL_0)
4875 {
4876 /* Step inferior_ptid, with or without signal. */
4877 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4878 }
4879
4880 /* Also pass down any pending signaled resumption for other
4881 threads not the current. */
4882 p = append_pending_thread_resumptions (p, endp, ptid);
4883
4884 /* And continue others without a signal. */
4885 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4886 }
4887 else
4888 {
4889 /* Scheduler locking; resume only PTID. */
4890 append_resumption (p, endp, ptid, step, siggnal);
4891 }
4892
4893 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4894 putpkt (rs->buf);
4895
4896 if (non_stop)
4897 {
4898 /* In non-stop, the stub replies to vCont with "OK". The stop
4899 reply will be reported asynchronously by means of a `%Stop'
4900 notification. */
4901 getpkt (&rs->buf, &rs->buf_size, 0);
4902 if (strcmp (rs->buf, "OK") != 0)
4903 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4904 }
4905
4906 return 1;
4907 }
4908
4909 /* Tell the remote machine to resume. */
4910
4911 static enum gdb_signal last_sent_signal = GDB_SIGNAL_0;
4912
4913 static int last_sent_step;
4914
4915 static void
4916 remote_resume (struct target_ops *ops,
4917 ptid_t ptid, int step, enum gdb_signal siggnal)
4918 {
4919 struct remote_state *rs = get_remote_state ();
4920 char *buf;
4921
4922 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4923 (explained in remote-notif.c:handle_notification) so
4924 remote_notif_process is not called. We need find a place where
4925 it is safe to start a 'vNotif' sequence. It is good to do it
4926 before resuming inferior, because inferior was stopped and no RSP
4927 traffic at that moment. */
4928 if (!non_stop)
4929 remote_notif_process (&notif_client_stop);
4930
4931 last_sent_signal = siggnal;
4932 last_sent_step = step;
4933
4934 /* The vCont packet doesn't need to specify threads via Hc. */
4935 /* No reverse support (yet) for vCont. */
4936 if (execution_direction != EXEC_REVERSE)
4937 if (remote_vcont_resume (ptid, step, siggnal))
4938 goto done;
4939
4940 /* All other supported resume packets do use Hc, so set the continue
4941 thread. */
4942 if (ptid_equal (ptid, minus_one_ptid))
4943 set_continue_thread (any_thread_ptid);
4944 else
4945 set_continue_thread (ptid);
4946
4947 buf = rs->buf;
4948 if (execution_direction == EXEC_REVERSE)
4949 {
4950 /* We don't pass signals to the target in reverse exec mode. */
4951 if (info_verbose && siggnal != GDB_SIGNAL_0)
4952 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4953 siggnal);
4954
4955 if (step
4956 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4957 error (_("Remote reverse-step not supported."));
4958 if (!step
4959 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4960 error (_("Remote reverse-continue not supported."));
4961
4962 strcpy (buf, step ? "bs" : "bc");
4963 }
4964 else if (siggnal != GDB_SIGNAL_0)
4965 {
4966 buf[0] = step ? 'S' : 'C';
4967 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4968 buf[2] = tohex (((int) siggnal) & 0xf);
4969 buf[3] = '\0';
4970 }
4971 else
4972 strcpy (buf, step ? "s" : "c");
4973
4974 putpkt (buf);
4975
4976 done:
4977 /* We are about to start executing the inferior, let's register it
4978 with the event loop. NOTE: this is the one place where all the
4979 execution commands end up. We could alternatively do this in each
4980 of the execution commands in infcmd.c. */
4981 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4982 into infcmd.c in order to allow inferior function calls to work
4983 NOT asynchronously. */
4984 if (target_can_async_p ())
4985 target_async (inferior_event_handler, 0);
4986
4987 /* We've just told the target to resume. The remote server will
4988 wait for the inferior to stop, and then send a stop reply. In
4989 the mean time, we can't start another command/query ourselves
4990 because the stub wouldn't be ready to process it. This applies
4991 only to the base all-stop protocol, however. In non-stop (which
4992 only supports vCont), the stub replies with an "OK", and is
4993 immediate able to process further serial input. */
4994 if (!non_stop)
4995 rs->waiting_for_stop_reply = 1;
4996 }
4997 \f
4998
4999 /* Set up the signal handler for SIGINT, while the target is
5000 executing, ovewriting the 'regular' SIGINT signal handler. */
5001 static void
5002 async_initialize_sigint_signal_handler (void)
5003 {
5004 signal (SIGINT, async_handle_remote_sigint);
5005 }
5006
5007 /* Signal handler for SIGINT, while the target is executing. */
5008 static void
5009 async_handle_remote_sigint (int sig)
5010 {
5011 signal (sig, async_handle_remote_sigint_twice);
5012 mark_async_signal_handler (async_sigint_remote_token);
5013 }
5014
5015 /* Signal handler for SIGINT, installed after SIGINT has already been
5016 sent once. It will take effect the second time that the user sends
5017 a ^C. */
5018 static void
5019 async_handle_remote_sigint_twice (int sig)
5020 {
5021 signal (sig, async_handle_remote_sigint);
5022 mark_async_signal_handler (async_sigint_remote_twice_token);
5023 }
5024
5025 /* Perform the real interruption of the target execution, in response
5026 to a ^C. */
5027 static void
5028 async_remote_interrupt (gdb_client_data arg)
5029 {
5030 if (remote_debug)
5031 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5032
5033 target_stop (inferior_ptid);
5034 }
5035
5036 /* Perform interrupt, if the first attempt did not succeed. Just give
5037 up on the target alltogether. */
5038 static void
5039 async_remote_interrupt_twice (gdb_client_data arg)
5040 {
5041 if (remote_debug)
5042 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5043
5044 interrupt_query ();
5045 }
5046
5047 /* Reinstall the usual SIGINT handlers, after the target has
5048 stopped. */
5049 static void
5050 async_cleanup_sigint_signal_handler (void *dummy)
5051 {
5052 signal (SIGINT, handle_sigint);
5053 }
5054
5055 /* Send ^C to target to halt it. Target will respond, and send us a
5056 packet. */
5057 static void (*ofunc) (int);
5058
5059 /* The command line interface's stop routine. This function is installed
5060 as a signal handler for SIGINT. The first time a user requests a
5061 stop, we call remote_stop to send a break or ^C. If there is no
5062 response from the target (it didn't stop when the user requested it),
5063 we ask the user if he'd like to detach from the target. */
5064 static void
5065 sync_remote_interrupt (int signo)
5066 {
5067 /* If this doesn't work, try more severe steps. */
5068 signal (signo, sync_remote_interrupt_twice);
5069
5070 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5071 }
5072
5073 /* The user typed ^C twice. */
5074
5075 static void
5076 sync_remote_interrupt_twice (int signo)
5077 {
5078 signal (signo, ofunc);
5079 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5080 signal (signo, sync_remote_interrupt);
5081 }
5082
5083 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5084 thread, all threads of a remote process, or all threads of all
5085 processes. */
5086
5087 static void
5088 remote_stop_ns (ptid_t ptid)
5089 {
5090 struct remote_state *rs = get_remote_state ();
5091 char *p = rs->buf;
5092 char *endp = rs->buf + get_remote_packet_size ();
5093
5094 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5095 remote_vcont_probe (rs);
5096
5097 if (!rs->supports_vCont.t)
5098 error (_("Remote server does not support stopping threads"));
5099
5100 if (ptid_equal (ptid, minus_one_ptid)
5101 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5102 p += xsnprintf (p, endp - p, "vCont;t");
5103 else
5104 {
5105 ptid_t nptid;
5106
5107 p += xsnprintf (p, endp - p, "vCont;t:");
5108
5109 if (ptid_is_pid (ptid))
5110 /* All (-1) threads of process. */
5111 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5112 else
5113 {
5114 /* Small optimization: if we already have a stop reply for
5115 this thread, no use in telling the stub we want this
5116 stopped. */
5117 if (peek_stop_reply (ptid))
5118 return;
5119
5120 nptid = ptid;
5121 }
5122
5123 write_ptid (p, endp, nptid);
5124 }
5125
5126 /* In non-stop, we get an immediate OK reply. The stop reply will
5127 come in asynchronously by notification. */
5128 putpkt (rs->buf);
5129 getpkt (&rs->buf, &rs->buf_size, 0);
5130 if (strcmp (rs->buf, "OK") != 0)
5131 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5132 }
5133
5134 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5135 remote target. It is undefined which thread of which process
5136 reports the stop. */
5137
5138 static void
5139 remote_stop_as (ptid_t ptid)
5140 {
5141 struct remote_state *rs = get_remote_state ();
5142
5143 rs->ctrlc_pending_p = 1;
5144
5145 /* If the inferior is stopped already, but the core didn't know
5146 about it yet, just ignore the request. The cached wait status
5147 will be collected in remote_wait. */
5148 if (rs->cached_wait_status)
5149 return;
5150
5151 /* Send interrupt_sequence to remote target. */
5152 send_interrupt_sequence ();
5153 }
5154
5155 /* This is the generic stop called via the target vector. When a target
5156 interrupt is requested, either by the command line or the GUI, we
5157 will eventually end up here. */
5158
5159 static void
5160 remote_stop (ptid_t ptid)
5161 {
5162 if (remote_debug)
5163 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5164
5165 if (non_stop)
5166 remote_stop_ns (ptid);
5167 else
5168 remote_stop_as (ptid);
5169 }
5170
5171 /* Ask the user what to do when an interrupt is received. */
5172
5173 static void
5174 interrupt_query (void)
5175 {
5176 target_terminal_ours ();
5177
5178 if (target_can_async_p ())
5179 {
5180 signal (SIGINT, handle_sigint);
5181 quit ();
5182 }
5183 else
5184 {
5185 if (query (_("Interrupted while waiting for the program.\n\
5186 Give up (and stop debugging it)? ")))
5187 {
5188 remote_unpush_target ();
5189 quit ();
5190 }
5191 }
5192
5193 target_terminal_inferior ();
5194 }
5195
5196 /* Enable/disable target terminal ownership. Most targets can use
5197 terminal groups to control terminal ownership. Remote targets are
5198 different in that explicit transfer of ownership to/from GDB/target
5199 is required. */
5200
5201 static void
5202 remote_terminal_inferior (void)
5203 {
5204 if (!target_async_permitted)
5205 /* Nothing to do. */
5206 return;
5207
5208 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5209 idempotent. The event-loop GDB talking to an asynchronous target
5210 with a synchronous command calls this function from both
5211 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5212 transfer the terminal to the target when it shouldn't this guard
5213 can go away. */
5214 if (!remote_async_terminal_ours_p)
5215 return;
5216 delete_file_handler (input_fd);
5217 remote_async_terminal_ours_p = 0;
5218 async_initialize_sigint_signal_handler ();
5219 /* NOTE: At this point we could also register our selves as the
5220 recipient of all input. Any characters typed could then be
5221 passed on down to the target. */
5222 }
5223
5224 static void
5225 remote_terminal_ours (void)
5226 {
5227 if (!target_async_permitted)
5228 /* Nothing to do. */
5229 return;
5230
5231 /* See FIXME in remote_terminal_inferior. */
5232 if (remote_async_terminal_ours_p)
5233 return;
5234 async_cleanup_sigint_signal_handler (NULL);
5235 add_file_handler (input_fd, stdin_event_handler, 0);
5236 remote_async_terminal_ours_p = 1;
5237 }
5238
5239 static void
5240 remote_console_output (char *msg)
5241 {
5242 char *p;
5243
5244 for (p = msg; p[0] && p[1]; p += 2)
5245 {
5246 char tb[2];
5247 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5248
5249 tb[0] = c;
5250 tb[1] = 0;
5251 fputs_unfiltered (tb, gdb_stdtarg);
5252 }
5253 gdb_flush (gdb_stdtarg);
5254 }
5255
5256 typedef struct cached_reg
5257 {
5258 int num;
5259 gdb_byte data[MAX_REGISTER_SIZE];
5260 } cached_reg_t;
5261
5262 DEF_VEC_O(cached_reg_t);
5263
5264 typedef struct stop_reply
5265 {
5266 struct notif_event base;
5267
5268 /* The identifier of the thread about this event */
5269 ptid_t ptid;
5270
5271 struct target_waitstatus ws;
5272
5273 /* Expedited registers. This makes remote debugging a bit more
5274 efficient for those targets that provide critical registers as
5275 part of their normal status mechanism (as another roundtrip to
5276 fetch them is avoided). */
5277 VEC(cached_reg_t) *regcache;
5278
5279 int stopped_by_watchpoint_p;
5280 CORE_ADDR watch_data_address;
5281
5282 int solibs_changed;
5283 int replay_event;
5284
5285 int core;
5286 } *stop_reply_p;
5287
5288 DECLARE_QUEUE_P (stop_reply_p);
5289 DEFINE_QUEUE_P (stop_reply_p);
5290 /* The list of already fetched and acknowledged stop events. This
5291 queue is used for notification Stop, and other notifications
5292 don't need queue for their events, because the notification events
5293 of Stop can't be consumed immediately, so that events should be
5294 queued first, and be consumed by remote_wait_{ns,as} one per
5295 time. Other notifications can consume their events immediately,
5296 so queue is not needed for them. */
5297 static QUEUE (stop_reply_p) *stop_reply_queue;
5298
5299 static void
5300 stop_reply_xfree (struct stop_reply *r)
5301 {
5302 if (r != NULL)
5303 {
5304 VEC_free (cached_reg_t, r->regcache);
5305 xfree (r);
5306 }
5307 }
5308
5309 static void
5310 remote_notif_stop_parse (struct notif_client *self, char *buf,
5311 struct notif_event *event)
5312 {
5313 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5314 }
5315
5316 static void
5317 remote_notif_stop_ack (struct notif_client *self, char *buf,
5318 struct notif_event *event)
5319 {
5320 struct stop_reply *stop_reply = (struct stop_reply *) event;
5321
5322 /* acknowledge */
5323 putpkt ((char *) self->ack_command);
5324
5325 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5326 /* We got an unknown stop reply. */
5327 error (_("Unknown stop reply"));
5328
5329 push_stop_reply (stop_reply);
5330 }
5331
5332 static int
5333 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5334 {
5335 /* We can't get pending events in remote_notif_process for
5336 notification stop, and we have to do this in remote_wait_ns
5337 instead. If we fetch all queued events from stub, remote stub
5338 may exit and we have no chance to process them back in
5339 remote_wait_ns. */
5340 mark_async_event_handler (remote_async_inferior_event_token);
5341 return 0;
5342 }
5343
5344 static void
5345 stop_reply_dtr (struct notif_event *event)
5346 {
5347 struct stop_reply *r = (struct stop_reply *) event;
5348
5349 VEC_free (cached_reg_t, r->regcache);
5350 }
5351
5352 static struct notif_event *
5353 remote_notif_stop_alloc_reply (void)
5354 {
5355 struct notif_event *r
5356 = (struct notif_event *) XMALLOC (struct stop_reply);
5357
5358 r->dtr = stop_reply_dtr;
5359
5360 return r;
5361 }
5362
5363 /* A client of notification Stop. */
5364
5365 struct notif_client notif_client_stop =
5366 {
5367 "Stop",
5368 "vStopped",
5369 remote_notif_stop_parse,
5370 remote_notif_stop_ack,
5371 remote_notif_stop_can_get_pending_events,
5372 remote_notif_stop_alloc_reply,
5373 NULL,
5374 };
5375
5376 /* A parameter to pass data in and out. */
5377
5378 struct queue_iter_param
5379 {
5380 void *input;
5381 struct stop_reply *output;
5382 };
5383
5384 /* Remove all queue elements meet the condition it checks. */
5385
5386 static int
5387 remote_notif_remove_all (QUEUE (stop_reply_p) *q,
5388 QUEUE_ITER (stop_reply_p) *iter,
5389 stop_reply_p event,
5390 void *data)
5391 {
5392 struct queue_iter_param *param = data;
5393 struct inferior *inf = param->input;
5394
5395 if (inf == NULL || ptid_get_pid (event->ptid) == inf->pid)
5396 {
5397 stop_reply_xfree (event);
5398 QUEUE_remove_elem (stop_reply_p, q, iter);
5399 }
5400
5401 return 1;
5402 }
5403
5404 /* Discard all pending stop replies of inferior INF. If INF is NULL,
5405 discard everything. */
5406
5407 static void
5408 discard_pending_stop_replies (struct inferior *inf)
5409 {
5410 int i;
5411 struct queue_iter_param param;
5412 struct stop_reply *reply
5413 = (struct stop_reply *) notif_client_stop.pending_event;
5414
5415 /* Discard the in-flight notification. */
5416 if (reply != NULL
5417 && (inf == NULL
5418 || ptid_get_pid (reply->ptid) == inf->pid))
5419 {
5420 stop_reply_xfree (reply);
5421 notif_client_stop.pending_event = NULL;
5422 }
5423
5424 param.input = inf;
5425 param.output = NULL;
5426 /* Discard the stop replies we have already pulled with
5427 vStopped. */
5428 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5429 remote_notif_remove_all, &param);
5430 }
5431
5432 /* A parameter to pass data in and out. */
5433
5434 static int
5435 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5436 QUEUE_ITER (stop_reply_p) *iter,
5437 stop_reply_p event,
5438 void *data)
5439 {
5440 struct queue_iter_param *param = data;
5441 ptid_t *ptid = param->input;
5442
5443 if (ptid_match (event->ptid, *ptid))
5444 {
5445 param->output = event;
5446 QUEUE_remove_elem (stop_reply_p, q, iter);
5447 return 0;
5448 }
5449
5450 return 1;
5451 }
5452
5453 /* Remove the first reply in 'stop_reply_queue' which matches
5454 PTID. */
5455
5456 static struct stop_reply *
5457 remote_notif_remove_queued_reply (ptid_t ptid)
5458 {
5459 struct queue_iter_param param;
5460
5461 param.input = &ptid;
5462 param.output = NULL;
5463
5464 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5465 remote_notif_remove_once_on_match, &param);
5466 if (notif_debug)
5467 fprintf_unfiltered (gdb_stdlog,
5468 "notif: discard queued event: 'Stop' in %s\n",
5469 target_pid_to_str (ptid));
5470
5471 return param.output;
5472 }
5473
5474 /* Look for a queued stop reply belonging to PTID. If one is found,
5475 remove it from the queue, and return it. Returns NULL if none is
5476 found. If there are still queued events left to process, tell the
5477 event loop to get back to target_wait soon. */
5478
5479 static struct stop_reply *
5480 queued_stop_reply (ptid_t ptid)
5481 {
5482 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5483
5484 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5485 /* There's still at least an event left. */
5486 mark_async_event_handler (remote_async_inferior_event_token);
5487
5488 return r;
5489 }
5490
5491 /* Push a fully parsed stop reply in the stop reply queue. Since we
5492 know that we now have at least one queued event left to pass to the
5493 core side, tell the event loop to get back to target_wait soon. */
5494
5495 static void
5496 push_stop_reply (struct stop_reply *new_event)
5497 {
5498 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5499
5500 if (notif_debug)
5501 fprintf_unfiltered (gdb_stdlog,
5502 "notif: push 'Stop' %s to queue %d\n",
5503 target_pid_to_str (new_event->ptid),
5504 QUEUE_length (stop_reply_p,
5505 stop_reply_queue));
5506
5507 mark_async_event_handler (remote_async_inferior_event_token);
5508 }
5509
5510 static int
5511 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5512 QUEUE_ITER (stop_reply_p) *iter,
5513 struct stop_reply *event,
5514 void *data)
5515 {
5516 ptid_t *ptid = data;
5517
5518 return !(ptid_equal (*ptid, event->ptid)
5519 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5520 }
5521
5522 /* Returns true if we have a stop reply for PTID. */
5523
5524 static int
5525 peek_stop_reply (ptid_t ptid)
5526 {
5527 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5528 stop_reply_match_ptid_and_ws, &ptid);
5529 }
5530
5531 /* Parse the stop reply in BUF. Either the function succeeds, and the
5532 result is stored in EVENT, or throws an error. */
5533
5534 static void
5535 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5536 {
5537 struct remote_arch_state *rsa = get_remote_arch_state ();
5538 ULONGEST addr;
5539 char *p;
5540
5541 event->ptid = null_ptid;
5542 event->ws.kind = TARGET_WAITKIND_IGNORE;
5543 event->ws.value.integer = 0;
5544 event->solibs_changed = 0;
5545 event->replay_event = 0;
5546 event->stopped_by_watchpoint_p = 0;
5547 event->regcache = NULL;
5548 event->core = -1;
5549
5550 switch (buf[0])
5551 {
5552 case 'T': /* Status with PC, SP, FP, ... */
5553 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5554 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5555 ss = signal number
5556 n... = register number
5557 r... = register contents
5558 */
5559
5560 p = &buf[3]; /* after Txx */
5561 while (*p)
5562 {
5563 char *p1;
5564 char *p_temp;
5565 int fieldsize;
5566 LONGEST pnum = 0;
5567
5568 /* If the packet contains a register number, save it in
5569 pnum and set p1 to point to the character following it.
5570 Otherwise p1 points to p. */
5571
5572 /* If this packet is an awatch packet, don't parse the 'a'
5573 as a register number. */
5574
5575 if (strncmp (p, "awatch", strlen("awatch")) != 0
5576 && strncmp (p, "core", strlen ("core") != 0))
5577 {
5578 /* Read the ``P'' register number. */
5579 pnum = strtol (p, &p_temp, 16);
5580 p1 = p_temp;
5581 }
5582 else
5583 p1 = p;
5584
5585 if (p1 == p) /* No register number present here. */
5586 {
5587 p1 = strchr (p, ':');
5588 if (p1 == NULL)
5589 error (_("Malformed packet(a) (missing colon): %s\n\
5590 Packet: '%s'\n"),
5591 p, buf);
5592 if (strncmp (p, "thread", p1 - p) == 0)
5593 event->ptid = read_ptid (++p1, &p);
5594 else if ((strncmp (p, "watch", p1 - p) == 0)
5595 || (strncmp (p, "rwatch", p1 - p) == 0)
5596 || (strncmp (p, "awatch", p1 - p) == 0))
5597 {
5598 event->stopped_by_watchpoint_p = 1;
5599 p = unpack_varlen_hex (++p1, &addr);
5600 event->watch_data_address = (CORE_ADDR) addr;
5601 }
5602 else if (strncmp (p, "library", p1 - p) == 0)
5603 {
5604 p1++;
5605 p_temp = p1;
5606 while (*p_temp && *p_temp != ';')
5607 p_temp++;
5608
5609 event->solibs_changed = 1;
5610 p = p_temp;
5611 }
5612 else if (strncmp (p, "replaylog", p1 - p) == 0)
5613 {
5614 /* NO_HISTORY event.
5615 p1 will indicate "begin" or "end", but
5616 it makes no difference for now, so ignore it. */
5617 event->replay_event = 1;
5618 p_temp = strchr (p1 + 1, ';');
5619 if (p_temp)
5620 p = p_temp;
5621 }
5622 else if (strncmp (p, "core", p1 - p) == 0)
5623 {
5624 ULONGEST c;
5625
5626 p = unpack_varlen_hex (++p1, &c);
5627 event->core = c;
5628 }
5629 else
5630 {
5631 /* Silently skip unknown optional info. */
5632 p_temp = strchr (p1 + 1, ';');
5633 if (p_temp)
5634 p = p_temp;
5635 }
5636 }
5637 else
5638 {
5639 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5640 cached_reg_t cached_reg;
5641
5642 p = p1;
5643
5644 if (*p != ':')
5645 error (_("Malformed packet(b) (missing colon): %s\n\
5646 Packet: '%s'\n"),
5647 p, buf);
5648 ++p;
5649
5650 if (reg == NULL)
5651 error (_("Remote sent bad register number %s: %s\n\
5652 Packet: '%s'\n"),
5653 hex_string (pnum), p, buf);
5654
5655 cached_reg.num = reg->regnum;
5656
5657 fieldsize = hex2bin (p, cached_reg.data,
5658 register_size (target_gdbarch (),
5659 reg->regnum));
5660 p += 2 * fieldsize;
5661 if (fieldsize < register_size (target_gdbarch (),
5662 reg->regnum))
5663 warning (_("Remote reply is too short: %s"), buf);
5664
5665 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5666 }
5667
5668 if (*p != ';')
5669 error (_("Remote register badly formatted: %s\nhere: %s"),
5670 buf, p);
5671 ++p;
5672 }
5673 /* fall through */
5674 case 'S': /* Old style status, just signal only. */
5675 if (event->solibs_changed)
5676 event->ws.kind = TARGET_WAITKIND_LOADED;
5677 else if (event->replay_event)
5678 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5679 else
5680 {
5681 event->ws.kind = TARGET_WAITKIND_STOPPED;
5682 event->ws.value.sig = (enum gdb_signal)
5683 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5684 }
5685 break;
5686 case 'W': /* Target exited. */
5687 case 'X':
5688 {
5689 char *p;
5690 int pid;
5691 ULONGEST value;
5692
5693 /* GDB used to accept only 2 hex chars here. Stubs should
5694 only send more if they detect GDB supports multi-process
5695 support. */
5696 p = unpack_varlen_hex (&buf[1], &value);
5697
5698 if (buf[0] == 'W')
5699 {
5700 /* The remote process exited. */
5701 event->ws.kind = TARGET_WAITKIND_EXITED;
5702 event->ws.value.integer = value;
5703 }
5704 else
5705 {
5706 /* The remote process exited with a signal. */
5707 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5708 event->ws.value.sig = (enum gdb_signal) value;
5709 }
5710
5711 /* If no process is specified, assume inferior_ptid. */
5712 pid = ptid_get_pid (inferior_ptid);
5713 if (*p == '\0')
5714 ;
5715 else if (*p == ';')
5716 {
5717 p++;
5718
5719 if (p == '\0')
5720 ;
5721 else if (strncmp (p,
5722 "process:", sizeof ("process:") - 1) == 0)
5723 {
5724 ULONGEST upid;
5725
5726 p += sizeof ("process:") - 1;
5727 unpack_varlen_hex (p, &upid);
5728 pid = upid;
5729 }
5730 else
5731 error (_("unknown stop reply packet: %s"), buf);
5732 }
5733 else
5734 error (_("unknown stop reply packet: %s"), buf);
5735 event->ptid = pid_to_ptid (pid);
5736 }
5737 break;
5738 }
5739
5740 if (non_stop && ptid_equal (event->ptid, null_ptid))
5741 error (_("No process or thread specified in stop reply: %s"), buf);
5742 }
5743
5744 /* When the stub wants to tell GDB about a new notification reply, it
5745 sends a notification (%Stop, for example). Those can come it at
5746 any time, hence, we have to make sure that any pending
5747 putpkt/getpkt sequence we're making is finished, before querying
5748 the stub for more events with the corresponding ack command
5749 (vStopped, for example). E.g., if we started a vStopped sequence
5750 immediately upon receiving the notification, something like this
5751 could happen:
5752
5753 1.1) --> Hg 1
5754 1.2) <-- OK
5755 1.3) --> g
5756 1.4) <-- %Stop
5757 1.5) --> vStopped
5758 1.6) <-- (registers reply to step #1.3)
5759
5760 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5761 query.
5762
5763 To solve this, whenever we parse a %Stop notification successfully,
5764 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5765 doing whatever we were doing:
5766
5767 2.1) --> Hg 1
5768 2.2) <-- OK
5769 2.3) --> g
5770 2.4) <-- %Stop
5771 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5772 2.5) <-- (registers reply to step #2.3)
5773
5774 Eventualy after step #2.5, we return to the event loop, which
5775 notices there's an event on the
5776 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5777 associated callback --- the function below. At this point, we're
5778 always safe to start a vStopped sequence. :
5779
5780 2.6) --> vStopped
5781 2.7) <-- T05 thread:2
5782 2.8) --> vStopped
5783 2.9) --> OK
5784 */
5785
5786 void
5787 remote_notif_get_pending_events (struct notif_client *nc)
5788 {
5789 struct remote_state *rs = get_remote_state ();
5790
5791 if (nc->pending_event)
5792 {
5793 if (notif_debug)
5794 fprintf_unfiltered (gdb_stdlog,
5795 "notif: process: '%s' ack pending event\n",
5796 nc->name);
5797
5798 /* acknowledge */
5799 nc->ack (nc, rs->buf, nc->pending_event);
5800 nc->pending_event = NULL;
5801
5802 while (1)
5803 {
5804 getpkt (&rs->buf, &rs->buf_size, 0);
5805 if (strcmp (rs->buf, "OK") == 0)
5806 break;
5807 else
5808 remote_notif_ack (nc, rs->buf);
5809 }
5810 }
5811 else
5812 {
5813 if (notif_debug)
5814 fprintf_unfiltered (gdb_stdlog,
5815 "notif: process: '%s' no pending reply\n",
5816 nc->name);
5817 }
5818 }
5819
5820 /* Called when it is decided that STOP_REPLY holds the info of the
5821 event that is to be returned to the core. This function always
5822 destroys STOP_REPLY. */
5823
5824 static ptid_t
5825 process_stop_reply (struct stop_reply *stop_reply,
5826 struct target_waitstatus *status)
5827 {
5828 ptid_t ptid;
5829
5830 *status = stop_reply->ws;
5831 ptid = stop_reply->ptid;
5832
5833 /* If no thread/process was reported by the stub, assume the current
5834 inferior. */
5835 if (ptid_equal (ptid, null_ptid))
5836 ptid = inferior_ptid;
5837
5838 if (status->kind != TARGET_WAITKIND_EXITED
5839 && status->kind != TARGET_WAITKIND_SIGNALLED)
5840 {
5841 /* Expedited registers. */
5842 if (stop_reply->regcache)
5843 {
5844 struct regcache *regcache
5845 = get_thread_arch_regcache (ptid, target_gdbarch ());
5846 cached_reg_t *reg;
5847 int ix;
5848
5849 for (ix = 0;
5850 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5851 ix++)
5852 regcache_raw_supply (regcache, reg->num, reg->data);
5853 VEC_free (cached_reg_t, stop_reply->regcache);
5854 }
5855
5856 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5857 remote_watch_data_address = stop_reply->watch_data_address;
5858
5859 remote_notice_new_inferior (ptid, 0);
5860 demand_private_info (ptid)->core = stop_reply->core;
5861 }
5862
5863 stop_reply_xfree (stop_reply);
5864 return ptid;
5865 }
5866
5867 /* The non-stop mode version of target_wait. */
5868
5869 static ptid_t
5870 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5871 {
5872 struct remote_state *rs = get_remote_state ();
5873 struct stop_reply *stop_reply;
5874 int ret;
5875 int is_notif = 0;
5876
5877 /* If in non-stop mode, get out of getpkt even if a
5878 notification is received. */
5879
5880 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5881 0 /* forever */, &is_notif);
5882 while (1)
5883 {
5884 if (ret != -1 && !is_notif)
5885 switch (rs->buf[0])
5886 {
5887 case 'E': /* Error of some sort. */
5888 /* We're out of sync with the target now. Did it continue
5889 or not? We can't tell which thread it was in non-stop,
5890 so just ignore this. */
5891 warning (_("Remote failure reply: %s"), rs->buf);
5892 break;
5893 case 'O': /* Console output. */
5894 remote_console_output (rs->buf + 1);
5895 break;
5896 default:
5897 warning (_("Invalid remote reply: %s"), rs->buf);
5898 break;
5899 }
5900
5901 /* Acknowledge a pending stop reply that may have arrived in the
5902 mean time. */
5903 if (notif_client_stop.pending_event != NULL)
5904 remote_notif_get_pending_events (&notif_client_stop);
5905
5906 /* If indeed we noticed a stop reply, we're done. */
5907 stop_reply = queued_stop_reply (ptid);
5908 if (stop_reply != NULL)
5909 return process_stop_reply (stop_reply, status);
5910
5911 /* Still no event. If we're just polling for an event, then
5912 return to the event loop. */
5913 if (options & TARGET_WNOHANG)
5914 {
5915 status->kind = TARGET_WAITKIND_IGNORE;
5916 return minus_one_ptid;
5917 }
5918
5919 /* Otherwise do a blocking wait. */
5920 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5921 1 /* forever */, &is_notif);
5922 }
5923 }
5924
5925 /* Wait until the remote machine stops, then return, storing status in
5926 STATUS just as `wait' would. */
5927
5928 static ptid_t
5929 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5930 {
5931 struct remote_state *rs = get_remote_state ();
5932 ptid_t event_ptid = null_ptid;
5933 char *buf;
5934 struct stop_reply *stop_reply;
5935
5936 again:
5937
5938 status->kind = TARGET_WAITKIND_IGNORE;
5939 status->value.integer = 0;
5940
5941 stop_reply = queued_stop_reply (ptid);
5942 if (stop_reply != NULL)
5943 return process_stop_reply (stop_reply, status);
5944
5945 if (rs->cached_wait_status)
5946 /* Use the cached wait status, but only once. */
5947 rs->cached_wait_status = 0;
5948 else
5949 {
5950 int ret;
5951 int is_notif;
5952
5953 if (!target_is_async_p ())
5954 {
5955 ofunc = signal (SIGINT, sync_remote_interrupt);
5956 /* If the user hit C-c before this packet, or between packets,
5957 pretend that it was hit right here. */
5958 if (check_quit_flag ())
5959 {
5960 clear_quit_flag ();
5961 sync_remote_interrupt (SIGINT);
5962 }
5963 }
5964
5965 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5966 _never_ wait for ever -> test on target_is_async_p().
5967 However, before we do that we need to ensure that the caller
5968 knows how to take the target into/out of async mode. */
5969 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5970 wait_forever_enabled_p, &is_notif);
5971
5972 if (!target_is_async_p ())
5973 signal (SIGINT, ofunc);
5974
5975 /* GDB gets a notification. Return to core as this event is
5976 not interesting. */
5977 if (ret != -1 && is_notif)
5978 return minus_one_ptid;
5979 }
5980
5981 buf = rs->buf;
5982
5983 remote_stopped_by_watchpoint_p = 0;
5984
5985 /* We got something. */
5986 rs->waiting_for_stop_reply = 0;
5987
5988 /* Assume that the target has acknowledged Ctrl-C unless we receive
5989 an 'F' or 'O' packet. */
5990 if (buf[0] != 'F' && buf[0] != 'O')
5991 rs->ctrlc_pending_p = 0;
5992
5993 switch (buf[0])
5994 {
5995 case 'E': /* Error of some sort. */
5996 /* We're out of sync with the target now. Did it continue or
5997 not? Not is more likely, so report a stop. */
5998 warning (_("Remote failure reply: %s"), buf);
5999 status->kind = TARGET_WAITKIND_STOPPED;
6000 status->value.sig = GDB_SIGNAL_0;
6001 break;
6002 case 'F': /* File-I/O request. */
6003 remote_fileio_request (buf, rs->ctrlc_pending_p);
6004 rs->ctrlc_pending_p = 0;
6005 break;
6006 case 'T': case 'S': case 'X': case 'W':
6007 {
6008 struct stop_reply *stop_reply
6009 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6010 rs->buf);
6011
6012 event_ptid = process_stop_reply (stop_reply, status);
6013 break;
6014 }
6015 case 'O': /* Console output. */
6016 remote_console_output (buf + 1);
6017
6018 /* The target didn't really stop; keep waiting. */
6019 rs->waiting_for_stop_reply = 1;
6020
6021 break;
6022 case '\0':
6023 if (last_sent_signal != GDB_SIGNAL_0)
6024 {
6025 /* Zero length reply means that we tried 'S' or 'C' and the
6026 remote system doesn't support it. */
6027 target_terminal_ours_for_output ();
6028 printf_filtered
6029 ("Can't send signals to this remote system. %s not sent.\n",
6030 gdb_signal_to_name (last_sent_signal));
6031 last_sent_signal = GDB_SIGNAL_0;
6032 target_terminal_inferior ();
6033
6034 strcpy ((char *) buf, last_sent_step ? "s" : "c");
6035 putpkt ((char *) buf);
6036
6037 /* We just told the target to resume, so a stop reply is in
6038 order. */
6039 rs->waiting_for_stop_reply = 1;
6040 break;
6041 }
6042 /* else fallthrough */
6043 default:
6044 warning (_("Invalid remote reply: %s"), buf);
6045 /* Keep waiting. */
6046 rs->waiting_for_stop_reply = 1;
6047 break;
6048 }
6049
6050 if (status->kind == TARGET_WAITKIND_IGNORE)
6051 {
6052 /* Nothing interesting happened. If we're doing a non-blocking
6053 poll, we're done. Otherwise, go back to waiting. */
6054 if (options & TARGET_WNOHANG)
6055 return minus_one_ptid;
6056 else
6057 goto again;
6058 }
6059 else if (status->kind != TARGET_WAITKIND_EXITED
6060 && status->kind != TARGET_WAITKIND_SIGNALLED)
6061 {
6062 if (!ptid_equal (event_ptid, null_ptid))
6063 record_currthread (rs, event_ptid);
6064 else
6065 event_ptid = inferior_ptid;
6066 }
6067 else
6068 /* A process exit. Invalidate our notion of current thread. */
6069 record_currthread (rs, minus_one_ptid);
6070
6071 return event_ptid;
6072 }
6073
6074 /* Wait until the remote machine stops, then return, storing status in
6075 STATUS just as `wait' would. */
6076
6077 static ptid_t
6078 remote_wait (struct target_ops *ops,
6079 ptid_t ptid, struct target_waitstatus *status, int options)
6080 {
6081 ptid_t event_ptid;
6082
6083 if (non_stop)
6084 event_ptid = remote_wait_ns (ptid, status, options);
6085 else
6086 event_ptid = remote_wait_as (ptid, status, options);
6087
6088 if (target_can_async_p ())
6089 {
6090 /* If there are are events left in the queue tell the event loop
6091 to return here. */
6092 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6093 mark_async_event_handler (remote_async_inferior_event_token);
6094 }
6095
6096 return event_ptid;
6097 }
6098
6099 /* Fetch a single register using a 'p' packet. */
6100
6101 static int
6102 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6103 {
6104 struct remote_state *rs = get_remote_state ();
6105 char *buf, *p;
6106 char regp[MAX_REGISTER_SIZE];
6107 int i;
6108
6109 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6110 return 0;
6111
6112 if (reg->pnum == -1)
6113 return 0;
6114
6115 p = rs->buf;
6116 *p++ = 'p';
6117 p += hexnumstr (p, reg->pnum);
6118 *p++ = '\0';
6119 putpkt (rs->buf);
6120 getpkt (&rs->buf, &rs->buf_size, 0);
6121
6122 buf = rs->buf;
6123
6124 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6125 {
6126 case PACKET_OK:
6127 break;
6128 case PACKET_UNKNOWN:
6129 return 0;
6130 case PACKET_ERROR:
6131 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6132 gdbarch_register_name (get_regcache_arch (regcache),
6133 reg->regnum),
6134 buf);
6135 }
6136
6137 /* If this register is unfetchable, tell the regcache. */
6138 if (buf[0] == 'x')
6139 {
6140 regcache_raw_supply (regcache, reg->regnum, NULL);
6141 return 1;
6142 }
6143
6144 /* Otherwise, parse and supply the value. */
6145 p = buf;
6146 i = 0;
6147 while (p[0] != 0)
6148 {
6149 if (p[1] == 0)
6150 error (_("fetch_register_using_p: early buf termination"));
6151
6152 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6153 p += 2;
6154 }
6155 regcache_raw_supply (regcache, reg->regnum, regp);
6156 return 1;
6157 }
6158
6159 /* Fetch the registers included in the target's 'g' packet. */
6160
6161 static int
6162 send_g_packet (void)
6163 {
6164 struct remote_state *rs = get_remote_state ();
6165 int buf_len;
6166
6167 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6168 remote_send (&rs->buf, &rs->buf_size);
6169
6170 /* We can get out of synch in various cases. If the first character
6171 in the buffer is not a hex character, assume that has happened
6172 and try to fetch another packet to read. */
6173 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6174 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6175 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6176 && rs->buf[0] != 'x') /* New: unavailable register value. */
6177 {
6178 if (remote_debug)
6179 fprintf_unfiltered (gdb_stdlog,
6180 "Bad register packet; fetching a new packet\n");
6181 getpkt (&rs->buf, &rs->buf_size, 0);
6182 }
6183
6184 buf_len = strlen (rs->buf);
6185
6186 /* Sanity check the received packet. */
6187 if (buf_len % 2 != 0)
6188 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6189
6190 return buf_len / 2;
6191 }
6192
6193 static void
6194 process_g_packet (struct regcache *regcache)
6195 {
6196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6197 struct remote_state *rs = get_remote_state ();
6198 struct remote_arch_state *rsa = get_remote_arch_state ();
6199 int i, buf_len;
6200 char *p;
6201 char *regs;
6202
6203 buf_len = strlen (rs->buf);
6204
6205 /* Further sanity checks, with knowledge of the architecture. */
6206 if (buf_len > 2 * rsa->sizeof_g_packet)
6207 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6208
6209 /* Save the size of the packet sent to us by the target. It is used
6210 as a heuristic when determining the max size of packets that the
6211 target can safely receive. */
6212 if (rsa->actual_register_packet_size == 0)
6213 rsa->actual_register_packet_size = buf_len;
6214
6215 /* If this is smaller than we guessed the 'g' packet would be,
6216 update our records. A 'g' reply that doesn't include a register's
6217 value implies either that the register is not available, or that
6218 the 'p' packet must be used. */
6219 if (buf_len < 2 * rsa->sizeof_g_packet)
6220 {
6221 rsa->sizeof_g_packet = buf_len / 2;
6222
6223 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6224 {
6225 if (rsa->regs[i].pnum == -1)
6226 continue;
6227
6228 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6229 rsa->regs[i].in_g_packet = 0;
6230 else
6231 rsa->regs[i].in_g_packet = 1;
6232 }
6233 }
6234
6235 regs = alloca (rsa->sizeof_g_packet);
6236
6237 /* Unimplemented registers read as all bits zero. */
6238 memset (regs, 0, rsa->sizeof_g_packet);
6239
6240 /* Reply describes registers byte by byte, each byte encoded as two
6241 hex characters. Suck them all up, then supply them to the
6242 register cacheing/storage mechanism. */
6243
6244 p = rs->buf;
6245 for (i = 0; i < rsa->sizeof_g_packet; i++)
6246 {
6247 if (p[0] == 0 || p[1] == 0)
6248 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6249 internal_error (__FILE__, __LINE__,
6250 _("unexpected end of 'g' packet reply"));
6251
6252 if (p[0] == 'x' && p[1] == 'x')
6253 regs[i] = 0; /* 'x' */
6254 else
6255 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6256 p += 2;
6257 }
6258
6259 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6260 {
6261 struct packet_reg *r = &rsa->regs[i];
6262
6263 if (r->in_g_packet)
6264 {
6265 if (r->offset * 2 >= strlen (rs->buf))
6266 /* This shouldn't happen - we adjusted in_g_packet above. */
6267 internal_error (__FILE__, __LINE__,
6268 _("unexpected end of 'g' packet reply"));
6269 else if (rs->buf[r->offset * 2] == 'x')
6270 {
6271 gdb_assert (r->offset * 2 < strlen (rs->buf));
6272 /* The register isn't available, mark it as such (at
6273 the same time setting the value to zero). */
6274 regcache_raw_supply (regcache, r->regnum, NULL);
6275 }
6276 else
6277 regcache_raw_supply (regcache, r->regnum,
6278 regs + r->offset);
6279 }
6280 }
6281 }
6282
6283 static void
6284 fetch_registers_using_g (struct regcache *regcache)
6285 {
6286 send_g_packet ();
6287 process_g_packet (regcache);
6288 }
6289
6290 /* Make the remote selected traceframe match GDB's selected
6291 traceframe. */
6292
6293 static void
6294 set_remote_traceframe (void)
6295 {
6296 int newnum;
6297 struct remote_state *rs = get_remote_state ();
6298
6299 if (rs->remote_traceframe_number == get_traceframe_number ())
6300 return;
6301
6302 /* Avoid recursion, remote_trace_find calls us again. */
6303 rs->remote_traceframe_number = get_traceframe_number ();
6304
6305 newnum = target_trace_find (tfind_number,
6306 get_traceframe_number (), 0, 0, NULL);
6307
6308 /* Should not happen. If it does, all bets are off. */
6309 if (newnum != get_traceframe_number ())
6310 warning (_("could not set remote traceframe"));
6311 }
6312
6313 static void
6314 remote_fetch_registers (struct target_ops *ops,
6315 struct regcache *regcache, int regnum)
6316 {
6317 struct remote_arch_state *rsa = get_remote_arch_state ();
6318 int i;
6319
6320 set_remote_traceframe ();
6321 set_general_thread (inferior_ptid);
6322
6323 if (regnum >= 0)
6324 {
6325 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6326
6327 gdb_assert (reg != NULL);
6328
6329 /* If this register might be in the 'g' packet, try that first -
6330 we are likely to read more than one register. If this is the
6331 first 'g' packet, we might be overly optimistic about its
6332 contents, so fall back to 'p'. */
6333 if (reg->in_g_packet)
6334 {
6335 fetch_registers_using_g (regcache);
6336 if (reg->in_g_packet)
6337 return;
6338 }
6339
6340 if (fetch_register_using_p (regcache, reg))
6341 return;
6342
6343 /* This register is not available. */
6344 regcache_raw_supply (regcache, reg->regnum, NULL);
6345
6346 return;
6347 }
6348
6349 fetch_registers_using_g (regcache);
6350
6351 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6352 if (!rsa->regs[i].in_g_packet)
6353 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6354 {
6355 /* This register is not available. */
6356 regcache_raw_supply (regcache, i, NULL);
6357 }
6358 }
6359
6360 /* Prepare to store registers. Since we may send them all (using a
6361 'G' request), we have to read out the ones we don't want to change
6362 first. */
6363
6364 static void
6365 remote_prepare_to_store (struct regcache *regcache)
6366 {
6367 struct remote_arch_state *rsa = get_remote_arch_state ();
6368 int i;
6369 gdb_byte buf[MAX_REGISTER_SIZE];
6370
6371 /* Make sure the entire registers array is valid. */
6372 switch (remote_protocol_packets[PACKET_P].support)
6373 {
6374 case PACKET_DISABLE:
6375 case PACKET_SUPPORT_UNKNOWN:
6376 /* Make sure all the necessary registers are cached. */
6377 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6378 if (rsa->regs[i].in_g_packet)
6379 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6380 break;
6381 case PACKET_ENABLE:
6382 break;
6383 }
6384 }
6385
6386 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6387 packet was not recognized. */
6388
6389 static int
6390 store_register_using_P (const struct regcache *regcache,
6391 struct packet_reg *reg)
6392 {
6393 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6394 struct remote_state *rs = get_remote_state ();
6395 /* Try storing a single register. */
6396 char *buf = rs->buf;
6397 gdb_byte regp[MAX_REGISTER_SIZE];
6398 char *p;
6399
6400 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6401 return 0;
6402
6403 if (reg->pnum == -1)
6404 return 0;
6405
6406 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6407 p = buf + strlen (buf);
6408 regcache_raw_collect (regcache, reg->regnum, regp);
6409 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6410 putpkt (rs->buf);
6411 getpkt (&rs->buf, &rs->buf_size, 0);
6412
6413 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6414 {
6415 case PACKET_OK:
6416 return 1;
6417 case PACKET_ERROR:
6418 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6419 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6420 case PACKET_UNKNOWN:
6421 return 0;
6422 default:
6423 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6424 }
6425 }
6426
6427 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6428 contents of the register cache buffer. FIXME: ignores errors. */
6429
6430 static void
6431 store_registers_using_G (const struct regcache *regcache)
6432 {
6433 struct remote_state *rs = get_remote_state ();
6434 struct remote_arch_state *rsa = get_remote_arch_state ();
6435 gdb_byte *regs;
6436 char *p;
6437
6438 /* Extract all the registers in the regcache copying them into a
6439 local buffer. */
6440 {
6441 int i;
6442
6443 regs = alloca (rsa->sizeof_g_packet);
6444 memset (regs, 0, rsa->sizeof_g_packet);
6445 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6446 {
6447 struct packet_reg *r = &rsa->regs[i];
6448
6449 if (r->in_g_packet)
6450 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6451 }
6452 }
6453
6454 /* Command describes registers byte by byte,
6455 each byte encoded as two hex characters. */
6456 p = rs->buf;
6457 *p++ = 'G';
6458 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6459 updated. */
6460 bin2hex (regs, p, rsa->sizeof_g_packet);
6461 putpkt (rs->buf);
6462 getpkt (&rs->buf, &rs->buf_size, 0);
6463 if (packet_check_result (rs->buf) == PACKET_ERROR)
6464 error (_("Could not write registers; remote failure reply '%s'"),
6465 rs->buf);
6466 }
6467
6468 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6469 of the register cache buffer. FIXME: ignores errors. */
6470
6471 static void
6472 remote_store_registers (struct target_ops *ops,
6473 struct regcache *regcache, int regnum)
6474 {
6475 struct remote_arch_state *rsa = get_remote_arch_state ();
6476 int i;
6477
6478 set_remote_traceframe ();
6479 set_general_thread (inferior_ptid);
6480
6481 if (regnum >= 0)
6482 {
6483 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6484
6485 gdb_assert (reg != NULL);
6486
6487 /* Always prefer to store registers using the 'P' packet if
6488 possible; we often change only a small number of registers.
6489 Sometimes we change a larger number; we'd need help from a
6490 higher layer to know to use 'G'. */
6491 if (store_register_using_P (regcache, reg))
6492 return;
6493
6494 /* For now, don't complain if we have no way to write the
6495 register. GDB loses track of unavailable registers too
6496 easily. Some day, this may be an error. We don't have
6497 any way to read the register, either... */
6498 if (!reg->in_g_packet)
6499 return;
6500
6501 store_registers_using_G (regcache);
6502 return;
6503 }
6504
6505 store_registers_using_G (regcache);
6506
6507 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6508 if (!rsa->regs[i].in_g_packet)
6509 if (!store_register_using_P (regcache, &rsa->regs[i]))
6510 /* See above for why we do not issue an error here. */
6511 continue;
6512 }
6513 \f
6514
6515 /* Return the number of hex digits in num. */
6516
6517 static int
6518 hexnumlen (ULONGEST num)
6519 {
6520 int i;
6521
6522 for (i = 0; num != 0; i++)
6523 num >>= 4;
6524
6525 return max (i, 1);
6526 }
6527
6528 /* Set BUF to the minimum number of hex digits representing NUM. */
6529
6530 static int
6531 hexnumstr (char *buf, ULONGEST num)
6532 {
6533 int len = hexnumlen (num);
6534
6535 return hexnumnstr (buf, num, len);
6536 }
6537
6538
6539 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6540
6541 static int
6542 hexnumnstr (char *buf, ULONGEST num, int width)
6543 {
6544 int i;
6545
6546 buf[width] = '\0';
6547
6548 for (i = width - 1; i >= 0; i--)
6549 {
6550 buf[i] = "0123456789abcdef"[(num & 0xf)];
6551 num >>= 4;
6552 }
6553
6554 return width;
6555 }
6556
6557 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6558
6559 static CORE_ADDR
6560 remote_address_masked (CORE_ADDR addr)
6561 {
6562 unsigned int address_size = remote_address_size;
6563
6564 /* If "remoteaddresssize" was not set, default to target address size. */
6565 if (!address_size)
6566 address_size = gdbarch_addr_bit (target_gdbarch ());
6567
6568 if (address_size > 0
6569 && address_size < (sizeof (ULONGEST) * 8))
6570 {
6571 /* Only create a mask when that mask can safely be constructed
6572 in a ULONGEST variable. */
6573 ULONGEST mask = 1;
6574
6575 mask = (mask << address_size) - 1;
6576 addr &= mask;
6577 }
6578 return addr;
6579 }
6580
6581 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6582 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6583 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6584 (which may be more than *OUT_LEN due to escape characters). The
6585 total number of bytes in the output buffer will be at most
6586 OUT_MAXLEN. */
6587
6588 static int
6589 remote_escape_output (const gdb_byte *buffer, int len,
6590 gdb_byte *out_buf, int *out_len,
6591 int out_maxlen)
6592 {
6593 int input_index, output_index;
6594
6595 output_index = 0;
6596 for (input_index = 0; input_index < len; input_index++)
6597 {
6598 gdb_byte b = buffer[input_index];
6599
6600 if (b == '$' || b == '#' || b == '}')
6601 {
6602 /* These must be escaped. */
6603 if (output_index + 2 > out_maxlen)
6604 break;
6605 out_buf[output_index++] = '}';
6606 out_buf[output_index++] = b ^ 0x20;
6607 }
6608 else
6609 {
6610 if (output_index + 1 > out_maxlen)
6611 break;
6612 out_buf[output_index++] = b;
6613 }
6614 }
6615
6616 *out_len = input_index;
6617 return output_index;
6618 }
6619
6620 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6621 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6622 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6623
6624 This function reverses remote_escape_output. It allows more
6625 escaped characters than that function does, in particular because
6626 '*' must be escaped to avoid the run-length encoding processing
6627 in reading packets. */
6628
6629 static int
6630 remote_unescape_input (const gdb_byte *buffer, int len,
6631 gdb_byte *out_buf, int out_maxlen)
6632 {
6633 int input_index, output_index;
6634 int escaped;
6635
6636 output_index = 0;
6637 escaped = 0;
6638 for (input_index = 0; input_index < len; input_index++)
6639 {
6640 gdb_byte b = buffer[input_index];
6641
6642 if (output_index + 1 > out_maxlen)
6643 {
6644 warning (_("Received too much data from remote target;"
6645 " ignoring overflow."));
6646 return output_index;
6647 }
6648
6649 if (escaped)
6650 {
6651 out_buf[output_index++] = b ^ 0x20;
6652 escaped = 0;
6653 }
6654 else if (b == '}')
6655 escaped = 1;
6656 else
6657 out_buf[output_index++] = b;
6658 }
6659
6660 if (escaped)
6661 error (_("Unmatched escape character in target response."));
6662
6663 return output_index;
6664 }
6665
6666 /* Determine whether the remote target supports binary downloading.
6667 This is accomplished by sending a no-op memory write of zero length
6668 to the target at the specified address. It does not suffice to send
6669 the whole packet, since many stubs strip the eighth bit and
6670 subsequently compute a wrong checksum, which causes real havoc with
6671 remote_write_bytes.
6672
6673 NOTE: This can still lose if the serial line is not eight-bit
6674 clean. In cases like this, the user should clear "remote
6675 X-packet". */
6676
6677 static void
6678 check_binary_download (CORE_ADDR addr)
6679 {
6680 struct remote_state *rs = get_remote_state ();
6681
6682 switch (remote_protocol_packets[PACKET_X].support)
6683 {
6684 case PACKET_DISABLE:
6685 break;
6686 case PACKET_ENABLE:
6687 break;
6688 case PACKET_SUPPORT_UNKNOWN:
6689 {
6690 char *p;
6691
6692 p = rs->buf;
6693 *p++ = 'X';
6694 p += hexnumstr (p, (ULONGEST) addr);
6695 *p++ = ',';
6696 p += hexnumstr (p, (ULONGEST) 0);
6697 *p++ = ':';
6698 *p = '\0';
6699
6700 putpkt_binary (rs->buf, (int) (p - rs->buf));
6701 getpkt (&rs->buf, &rs->buf_size, 0);
6702
6703 if (rs->buf[0] == '\0')
6704 {
6705 if (remote_debug)
6706 fprintf_unfiltered (gdb_stdlog,
6707 "binary downloading NOT "
6708 "supported by target\n");
6709 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6710 }
6711 else
6712 {
6713 if (remote_debug)
6714 fprintf_unfiltered (gdb_stdlog,
6715 "binary downloading supported by target\n");
6716 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6717 }
6718 break;
6719 }
6720 }
6721 }
6722
6723 /* Write memory data directly to the remote machine.
6724 This does not inform the data cache; the data cache uses this.
6725 HEADER is the starting part of the packet.
6726 MEMADDR is the address in the remote memory space.
6727 MYADDR is the address of the buffer in our space.
6728 LEN is the number of bytes.
6729 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6730 should send data as binary ('X'), or hex-encoded ('M').
6731
6732 The function creates packet of the form
6733 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6734
6735 where encoding of <DATA> is termined by PACKET_FORMAT.
6736
6737 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6738 are omitted.
6739
6740 Returns the number of bytes transferred, or 0 (setting errno) for
6741 error. Only transfer a single packet. */
6742
6743 static int
6744 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6745 const gdb_byte *myaddr, ssize_t len,
6746 char packet_format, int use_length)
6747 {
6748 struct remote_state *rs = get_remote_state ();
6749 char *p;
6750 char *plen = NULL;
6751 int plenlen = 0;
6752 int todo;
6753 int nr_bytes;
6754 int payload_size;
6755 int payload_length;
6756 int header_length;
6757
6758 if (packet_format != 'X' && packet_format != 'M')
6759 internal_error (__FILE__, __LINE__,
6760 _("remote_write_bytes_aux: bad packet format"));
6761
6762 if (len <= 0)
6763 return 0;
6764
6765 payload_size = get_memory_write_packet_size ();
6766
6767 /* The packet buffer will be large enough for the payload;
6768 get_memory_packet_size ensures this. */
6769 rs->buf[0] = '\0';
6770
6771 /* Compute the size of the actual payload by subtracting out the
6772 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6773
6774 payload_size -= strlen ("$,:#NN");
6775 if (!use_length)
6776 /* The comma won't be used. */
6777 payload_size += 1;
6778 header_length = strlen (header);
6779 payload_size -= header_length;
6780 payload_size -= hexnumlen (memaddr);
6781
6782 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6783
6784 strcat (rs->buf, header);
6785 p = rs->buf + strlen (header);
6786
6787 /* Compute a best guess of the number of bytes actually transfered. */
6788 if (packet_format == 'X')
6789 {
6790 /* Best guess at number of bytes that will fit. */
6791 todo = min (len, payload_size);
6792 if (use_length)
6793 payload_size -= hexnumlen (todo);
6794 todo = min (todo, payload_size);
6795 }
6796 else
6797 {
6798 /* Num bytes that will fit. */
6799 todo = min (len, payload_size / 2);
6800 if (use_length)
6801 payload_size -= hexnumlen (todo);
6802 todo = min (todo, payload_size / 2);
6803 }
6804
6805 if (todo <= 0)
6806 internal_error (__FILE__, __LINE__,
6807 _("minimum packet size too small to write data"));
6808
6809 /* If we already need another packet, then try to align the end
6810 of this packet to a useful boundary. */
6811 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6812 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6813
6814 /* Append "<memaddr>". */
6815 memaddr = remote_address_masked (memaddr);
6816 p += hexnumstr (p, (ULONGEST) memaddr);
6817
6818 if (use_length)
6819 {
6820 /* Append ",". */
6821 *p++ = ',';
6822
6823 /* Append <len>. Retain the location/size of <len>. It may need to
6824 be adjusted once the packet body has been created. */
6825 plen = p;
6826 plenlen = hexnumstr (p, (ULONGEST) todo);
6827 p += plenlen;
6828 }
6829
6830 /* Append ":". */
6831 *p++ = ':';
6832 *p = '\0';
6833
6834 /* Append the packet body. */
6835 if (packet_format == 'X')
6836 {
6837 /* Binary mode. Send target system values byte by byte, in
6838 increasing byte addresses. Only escape certain critical
6839 characters. */
6840 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6841 &nr_bytes, payload_size);
6842
6843 /* If not all TODO bytes fit, then we'll need another packet. Make
6844 a second try to keep the end of the packet aligned. Don't do
6845 this if the packet is tiny. */
6846 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6847 {
6848 int new_nr_bytes;
6849
6850 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6851 - memaddr);
6852 if (new_nr_bytes != nr_bytes)
6853 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6854 (gdb_byte *) p, &nr_bytes,
6855 payload_size);
6856 }
6857
6858 p += payload_length;
6859 if (use_length && nr_bytes < todo)
6860 {
6861 /* Escape chars have filled up the buffer prematurely,
6862 and we have actually sent fewer bytes than planned.
6863 Fix-up the length field of the packet. Use the same
6864 number of characters as before. */
6865 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6866 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6867 }
6868 }
6869 else
6870 {
6871 /* Normal mode: Send target system values byte by byte, in
6872 increasing byte addresses. Each byte is encoded as a two hex
6873 value. */
6874 nr_bytes = bin2hex (myaddr, p, todo);
6875 p += 2 * nr_bytes;
6876 }
6877
6878 putpkt_binary (rs->buf, (int) (p - rs->buf));
6879 getpkt (&rs->buf, &rs->buf_size, 0);
6880
6881 if (rs->buf[0] == 'E')
6882 {
6883 /* There is no correspondance between what the remote protocol
6884 uses for errors and errno codes. We would like a cleaner way
6885 of representing errors (big enough to include errno codes,
6886 bfd_error codes, and others). But for now just return EIO. */
6887 errno = EIO;
6888 return 0;
6889 }
6890
6891 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6892 fewer bytes than we'd planned. */
6893 return nr_bytes;
6894 }
6895
6896 /* Write memory data directly to the remote machine.
6897 This does not inform the data cache; the data cache uses this.
6898 MEMADDR is the address in the remote memory space.
6899 MYADDR is the address of the buffer in our space.
6900 LEN is the number of bytes.
6901
6902 Returns number of bytes transferred, or 0 (setting errno) for
6903 error. Only transfer a single packet. */
6904
6905 static int
6906 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6907 {
6908 char *packet_format = 0;
6909
6910 /* Check whether the target supports binary download. */
6911 check_binary_download (memaddr);
6912
6913 switch (remote_protocol_packets[PACKET_X].support)
6914 {
6915 case PACKET_ENABLE:
6916 packet_format = "X";
6917 break;
6918 case PACKET_DISABLE:
6919 packet_format = "M";
6920 break;
6921 case PACKET_SUPPORT_UNKNOWN:
6922 internal_error (__FILE__, __LINE__,
6923 _("remote_write_bytes: bad internal state"));
6924 default:
6925 internal_error (__FILE__, __LINE__, _("bad switch"));
6926 }
6927
6928 return remote_write_bytes_aux (packet_format,
6929 memaddr, myaddr, len, packet_format[0], 1);
6930 }
6931
6932 /* Read memory data directly from the remote machine.
6933 This does not use the data cache; the data cache uses this.
6934 MEMADDR is the address in the remote memory space.
6935 MYADDR is the address of the buffer in our space.
6936 LEN is the number of bytes.
6937
6938 Returns number of bytes transferred, or 0 for error. */
6939
6940 static int
6941 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6942 {
6943 struct remote_state *rs = get_remote_state ();
6944 int max_buf_size; /* Max size of packet output buffer. */
6945 char *p;
6946 int todo;
6947 int i;
6948
6949 if (len <= 0)
6950 return 0;
6951
6952 max_buf_size = get_memory_read_packet_size ();
6953 /* The packet buffer will be large enough for the payload;
6954 get_memory_packet_size ensures this. */
6955
6956 /* Number if bytes that will fit. */
6957 todo = min (len, max_buf_size / 2);
6958
6959 /* Construct "m"<memaddr>","<len>". */
6960 memaddr = remote_address_masked (memaddr);
6961 p = rs->buf;
6962 *p++ = 'm';
6963 p += hexnumstr (p, (ULONGEST) memaddr);
6964 *p++ = ',';
6965 p += hexnumstr (p, (ULONGEST) todo);
6966 *p = '\0';
6967 putpkt (rs->buf);
6968 getpkt (&rs->buf, &rs->buf_size, 0);
6969 if (rs->buf[0] == 'E'
6970 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6971 && rs->buf[3] == '\0')
6972 {
6973 /* There is no correspondance between what the remote protocol
6974 uses for errors and errno codes. We would like a cleaner way
6975 of representing errors (big enough to include errno codes,
6976 bfd_error codes, and others). But for now just return
6977 EIO. */
6978 errno = EIO;
6979 return 0;
6980 }
6981 /* Reply describes memory byte by byte, each byte encoded as two hex
6982 characters. */
6983 p = rs->buf;
6984 i = hex2bin (p, myaddr, todo);
6985 /* Return what we have. Let higher layers handle partial reads. */
6986 return i;
6987 }
6988
6989 \f
6990 /* Read or write LEN bytes from inferior memory at MEMADDR,
6991 transferring to or from debugger address BUFFER. Write to inferior
6992 if SHOULD_WRITE is nonzero. Returns length of data written or
6993 read; 0 for error. TARGET is unused. */
6994
6995 static int
6996 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6997 int should_write, struct mem_attrib *attrib,
6998 struct target_ops *target)
6999 {
7000 int res;
7001
7002 set_remote_traceframe ();
7003 set_general_thread (inferior_ptid);
7004
7005 if (should_write)
7006 res = remote_write_bytes (mem_addr, buffer, mem_len);
7007 else
7008 res = remote_read_bytes (mem_addr, buffer, mem_len);
7009
7010 return res;
7011 }
7012
7013 /* Sends a packet with content determined by the printf format string
7014 FORMAT and the remaining arguments, then gets the reply. Returns
7015 whether the packet was a success, a failure, or unknown. */
7016
7017 static enum packet_result
7018 remote_send_printf (const char *format, ...)
7019 {
7020 struct remote_state *rs = get_remote_state ();
7021 int max_size = get_remote_packet_size ();
7022 va_list ap;
7023
7024 va_start (ap, format);
7025
7026 rs->buf[0] = '\0';
7027 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7028 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7029
7030 if (putpkt (rs->buf) < 0)
7031 error (_("Communication problem with target."));
7032
7033 rs->buf[0] = '\0';
7034 getpkt (&rs->buf, &rs->buf_size, 0);
7035
7036 return packet_check_result (rs->buf);
7037 }
7038
7039 static void
7040 restore_remote_timeout (void *p)
7041 {
7042 int value = *(int *)p;
7043
7044 remote_timeout = value;
7045 }
7046
7047 /* Flash writing can take quite some time. We'll set
7048 effectively infinite timeout for flash operations.
7049 In future, we'll need to decide on a better approach. */
7050 static const int remote_flash_timeout = 1000;
7051
7052 static void
7053 remote_flash_erase (struct target_ops *ops,
7054 ULONGEST address, LONGEST length)
7055 {
7056 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7057 int saved_remote_timeout = remote_timeout;
7058 enum packet_result ret;
7059 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7060 &saved_remote_timeout);
7061
7062 remote_timeout = remote_flash_timeout;
7063
7064 ret = remote_send_printf ("vFlashErase:%s,%s",
7065 phex (address, addr_size),
7066 phex (length, 4));
7067 switch (ret)
7068 {
7069 case PACKET_UNKNOWN:
7070 error (_("Remote target does not support flash erase"));
7071 case PACKET_ERROR:
7072 error (_("Error erasing flash with vFlashErase packet"));
7073 default:
7074 break;
7075 }
7076
7077 do_cleanups (back_to);
7078 }
7079
7080 static LONGEST
7081 remote_flash_write (struct target_ops *ops,
7082 ULONGEST address, LONGEST length,
7083 const gdb_byte *data)
7084 {
7085 int saved_remote_timeout = remote_timeout;
7086 int ret;
7087 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7088 &saved_remote_timeout);
7089
7090 remote_timeout = remote_flash_timeout;
7091 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7092 do_cleanups (back_to);
7093
7094 return ret;
7095 }
7096
7097 static void
7098 remote_flash_done (struct target_ops *ops)
7099 {
7100 int saved_remote_timeout = remote_timeout;
7101 int ret;
7102 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7103 &saved_remote_timeout);
7104
7105 remote_timeout = remote_flash_timeout;
7106 ret = remote_send_printf ("vFlashDone");
7107 do_cleanups (back_to);
7108
7109 switch (ret)
7110 {
7111 case PACKET_UNKNOWN:
7112 error (_("Remote target does not support vFlashDone"));
7113 case PACKET_ERROR:
7114 error (_("Error finishing flash operation"));
7115 default:
7116 break;
7117 }
7118 }
7119
7120 static void
7121 remote_files_info (struct target_ops *ignore)
7122 {
7123 puts_filtered ("Debugging a target over a serial line.\n");
7124 }
7125 \f
7126 /* Stuff for dealing with the packets which are part of this protocol.
7127 See comment at top of file for details. */
7128
7129 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7130 error to higher layers. Called when a serial error is detected.
7131 The exception message is STRING, followed by a colon and a blank,
7132 the system error message for errno at function entry and final dot
7133 for output compatibility with throw_perror_with_name. */
7134
7135 static void
7136 unpush_and_perror (const char *string)
7137 {
7138 int saved_errno = errno;
7139
7140 remote_unpush_target ();
7141 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7142 safe_strerror (saved_errno));
7143 }
7144
7145 /* Read a single character from the remote end. */
7146
7147 static int
7148 readchar (int timeout)
7149 {
7150 int ch;
7151 struct remote_state *rs = get_remote_state ();
7152
7153 ch = serial_readchar (rs->remote_desc, timeout);
7154
7155 if (ch >= 0)
7156 return ch;
7157
7158 switch ((enum serial_rc) ch)
7159 {
7160 case SERIAL_EOF:
7161 remote_unpush_target ();
7162 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7163 /* no return */
7164 case SERIAL_ERROR:
7165 unpush_and_perror (_("Remote communication error. "
7166 "Target disconnected."));
7167 /* no return */
7168 case SERIAL_TIMEOUT:
7169 break;
7170 }
7171 return ch;
7172 }
7173
7174 /* Wrapper for serial_write that closes the target and throws if
7175 writing fails. */
7176
7177 static void
7178 remote_serial_write (const char *str, int len)
7179 {
7180 struct remote_state *rs = get_remote_state ();
7181
7182 if (serial_write (rs->remote_desc, str, len))
7183 {
7184 unpush_and_perror (_("Remote communication error. "
7185 "Target disconnected."));
7186 }
7187 }
7188
7189 /* Send the command in *BUF to the remote machine, and read the reply
7190 into *BUF. Report an error if we get an error reply. Resize
7191 *BUF using xrealloc if necessary to hold the result, and update
7192 *SIZEOF_BUF. */
7193
7194 static void
7195 remote_send (char **buf,
7196 long *sizeof_buf)
7197 {
7198 putpkt (*buf);
7199 getpkt (buf, sizeof_buf, 0);
7200
7201 if ((*buf)[0] == 'E')
7202 error (_("Remote failure reply: %s"), *buf);
7203 }
7204
7205 /* Return a pointer to an xmalloc'ed string representing an escaped
7206 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7207 etc. The caller is responsible for releasing the returned
7208 memory. */
7209
7210 static char *
7211 escape_buffer (const char *buf, int n)
7212 {
7213 struct cleanup *old_chain;
7214 struct ui_file *stb;
7215 char *str;
7216
7217 stb = mem_fileopen ();
7218 old_chain = make_cleanup_ui_file_delete (stb);
7219
7220 fputstrn_unfiltered (buf, n, 0, stb);
7221 str = ui_file_xstrdup (stb, NULL);
7222 do_cleanups (old_chain);
7223 return str;
7224 }
7225
7226 /* Display a null-terminated packet on stdout, for debugging, using C
7227 string notation. */
7228
7229 static void
7230 print_packet (char *buf)
7231 {
7232 puts_filtered ("\"");
7233 fputstr_filtered (buf, '"', gdb_stdout);
7234 puts_filtered ("\"");
7235 }
7236
7237 int
7238 putpkt (char *buf)
7239 {
7240 return putpkt_binary (buf, strlen (buf));
7241 }
7242
7243 /* Send a packet to the remote machine, with error checking. The data
7244 of the packet is in BUF. The string in BUF can be at most
7245 get_remote_packet_size () - 5 to account for the $, # and checksum,
7246 and for a possible /0 if we are debugging (remote_debug) and want
7247 to print the sent packet as a string. */
7248
7249 static int
7250 putpkt_binary (char *buf, int cnt)
7251 {
7252 struct remote_state *rs = get_remote_state ();
7253 int i;
7254 unsigned char csum = 0;
7255 char *buf2 = alloca (cnt + 6);
7256
7257 int ch;
7258 int tcount = 0;
7259 char *p;
7260 char *message;
7261
7262 /* Catch cases like trying to read memory or listing threads while
7263 we're waiting for a stop reply. The remote server wouldn't be
7264 ready to handle this request, so we'd hang and timeout. We don't
7265 have to worry about this in synchronous mode, because in that
7266 case it's not possible to issue a command while the target is
7267 running. This is not a problem in non-stop mode, because in that
7268 case, the stub is always ready to process serial input. */
7269 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7270 error (_("Cannot execute this command while the target is running."));
7271
7272 /* We're sending out a new packet. Make sure we don't look at a
7273 stale cached response. */
7274 rs->cached_wait_status = 0;
7275
7276 /* Copy the packet into buffer BUF2, encapsulating it
7277 and giving it a checksum. */
7278
7279 p = buf2;
7280 *p++ = '$';
7281
7282 for (i = 0; i < cnt; i++)
7283 {
7284 csum += buf[i];
7285 *p++ = buf[i];
7286 }
7287 *p++ = '#';
7288 *p++ = tohex ((csum >> 4) & 0xf);
7289 *p++ = tohex (csum & 0xf);
7290
7291 /* Send it over and over until we get a positive ack. */
7292
7293 while (1)
7294 {
7295 int started_error_output = 0;
7296
7297 if (remote_debug)
7298 {
7299 struct cleanup *old_chain;
7300 char *str;
7301
7302 *p = '\0';
7303 str = escape_buffer (buf2, p - buf2);
7304 old_chain = make_cleanup (xfree, str);
7305 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7306 gdb_flush (gdb_stdlog);
7307 do_cleanups (old_chain);
7308 }
7309 remote_serial_write (buf2, p - buf2);
7310
7311 /* If this is a no acks version of the remote protocol, send the
7312 packet and move on. */
7313 if (rs->noack_mode)
7314 break;
7315
7316 /* Read until either a timeout occurs (-2) or '+' is read.
7317 Handle any notification that arrives in the mean time. */
7318 while (1)
7319 {
7320 ch = readchar (remote_timeout);
7321
7322 if (remote_debug)
7323 {
7324 switch (ch)
7325 {
7326 case '+':
7327 case '-':
7328 case SERIAL_TIMEOUT:
7329 case '$':
7330 case '%':
7331 if (started_error_output)
7332 {
7333 putchar_unfiltered ('\n');
7334 started_error_output = 0;
7335 }
7336 }
7337 }
7338
7339 switch (ch)
7340 {
7341 case '+':
7342 if (remote_debug)
7343 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7344 return 1;
7345 case '-':
7346 if (remote_debug)
7347 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7348 /* FALLTHROUGH */
7349 case SERIAL_TIMEOUT:
7350 tcount++;
7351 if (tcount > 3)
7352 return 0;
7353 break; /* Retransmit buffer. */
7354 case '$':
7355 {
7356 if (remote_debug)
7357 fprintf_unfiltered (gdb_stdlog,
7358 "Packet instead of Ack, ignoring it\n");
7359 /* It's probably an old response sent because an ACK
7360 was lost. Gobble up the packet and ack it so it
7361 doesn't get retransmitted when we resend this
7362 packet. */
7363 skip_frame ();
7364 remote_serial_write ("+", 1);
7365 continue; /* Now, go look for +. */
7366 }
7367
7368 case '%':
7369 {
7370 int val;
7371
7372 /* If we got a notification, handle it, and go back to looking
7373 for an ack. */
7374 /* We've found the start of a notification. Now
7375 collect the data. */
7376 val = read_frame (&rs->buf, &rs->buf_size);
7377 if (val >= 0)
7378 {
7379 if (remote_debug)
7380 {
7381 struct cleanup *old_chain;
7382 char *str;
7383
7384 str = escape_buffer (rs->buf, val);
7385 old_chain = make_cleanup (xfree, str);
7386 fprintf_unfiltered (gdb_stdlog,
7387 " Notification received: %s\n",
7388 str);
7389 do_cleanups (old_chain);
7390 }
7391 handle_notification (rs->buf);
7392 /* We're in sync now, rewait for the ack. */
7393 tcount = 0;
7394 }
7395 else
7396 {
7397 if (remote_debug)
7398 {
7399 if (!started_error_output)
7400 {
7401 started_error_output = 1;
7402 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7403 }
7404 fputc_unfiltered (ch & 0177, gdb_stdlog);
7405 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7406 }
7407 }
7408 continue;
7409 }
7410 /* fall-through */
7411 default:
7412 if (remote_debug)
7413 {
7414 if (!started_error_output)
7415 {
7416 started_error_output = 1;
7417 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7418 }
7419 fputc_unfiltered (ch & 0177, gdb_stdlog);
7420 }
7421 continue;
7422 }
7423 break; /* Here to retransmit. */
7424 }
7425
7426 #if 0
7427 /* This is wrong. If doing a long backtrace, the user should be
7428 able to get out next time we call QUIT, without anything as
7429 violent as interrupt_query. If we want to provide a way out of
7430 here without getting to the next QUIT, it should be based on
7431 hitting ^C twice as in remote_wait. */
7432 if (quit_flag)
7433 {
7434 quit_flag = 0;
7435 interrupt_query ();
7436 }
7437 #endif
7438 }
7439 return 0;
7440 }
7441
7442 /* Come here after finding the start of a frame when we expected an
7443 ack. Do our best to discard the rest of this packet. */
7444
7445 static void
7446 skip_frame (void)
7447 {
7448 int c;
7449
7450 while (1)
7451 {
7452 c = readchar (remote_timeout);
7453 switch (c)
7454 {
7455 case SERIAL_TIMEOUT:
7456 /* Nothing we can do. */
7457 return;
7458 case '#':
7459 /* Discard the two bytes of checksum and stop. */
7460 c = readchar (remote_timeout);
7461 if (c >= 0)
7462 c = readchar (remote_timeout);
7463
7464 return;
7465 case '*': /* Run length encoding. */
7466 /* Discard the repeat count. */
7467 c = readchar (remote_timeout);
7468 if (c < 0)
7469 return;
7470 break;
7471 default:
7472 /* A regular character. */
7473 break;
7474 }
7475 }
7476 }
7477
7478 /* Come here after finding the start of the frame. Collect the rest
7479 into *BUF, verifying the checksum, length, and handling run-length
7480 compression. NUL terminate the buffer. If there is not enough room,
7481 expand *BUF using xrealloc.
7482
7483 Returns -1 on error, number of characters in buffer (ignoring the
7484 trailing NULL) on success. (could be extended to return one of the
7485 SERIAL status indications). */
7486
7487 static long
7488 read_frame (char **buf_p,
7489 long *sizeof_buf)
7490 {
7491 unsigned char csum;
7492 long bc;
7493 int c;
7494 char *buf = *buf_p;
7495 struct remote_state *rs = get_remote_state ();
7496
7497 csum = 0;
7498 bc = 0;
7499
7500 while (1)
7501 {
7502 c = readchar (remote_timeout);
7503 switch (c)
7504 {
7505 case SERIAL_TIMEOUT:
7506 if (remote_debug)
7507 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7508 return -1;
7509 case '$':
7510 if (remote_debug)
7511 fputs_filtered ("Saw new packet start in middle of old one\n",
7512 gdb_stdlog);
7513 return -1; /* Start a new packet, count retries. */
7514 case '#':
7515 {
7516 unsigned char pktcsum;
7517 int check_0 = 0;
7518 int check_1 = 0;
7519
7520 buf[bc] = '\0';
7521
7522 check_0 = readchar (remote_timeout);
7523 if (check_0 >= 0)
7524 check_1 = readchar (remote_timeout);
7525
7526 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7527 {
7528 if (remote_debug)
7529 fputs_filtered ("Timeout in checksum, retrying\n",
7530 gdb_stdlog);
7531 return -1;
7532 }
7533 else if (check_0 < 0 || check_1 < 0)
7534 {
7535 if (remote_debug)
7536 fputs_filtered ("Communication error in checksum\n",
7537 gdb_stdlog);
7538 return -1;
7539 }
7540
7541 /* Don't recompute the checksum; with no ack packets we
7542 don't have any way to indicate a packet retransmission
7543 is necessary. */
7544 if (rs->noack_mode)
7545 return bc;
7546
7547 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7548 if (csum == pktcsum)
7549 return bc;
7550
7551 if (remote_debug)
7552 {
7553 struct cleanup *old_chain;
7554 char *str;
7555
7556 str = escape_buffer (buf, bc);
7557 old_chain = make_cleanup (xfree, str);
7558 fprintf_unfiltered (gdb_stdlog,
7559 "Bad checksum, sentsum=0x%x, "
7560 "csum=0x%x, buf=%s\n",
7561 pktcsum, csum, str);
7562 do_cleanups (old_chain);
7563 }
7564 /* Number of characters in buffer ignoring trailing
7565 NULL. */
7566 return -1;
7567 }
7568 case '*': /* Run length encoding. */
7569 {
7570 int repeat;
7571
7572 csum += c;
7573 c = readchar (remote_timeout);
7574 csum += c;
7575 repeat = c - ' ' + 3; /* Compute repeat count. */
7576
7577 /* The character before ``*'' is repeated. */
7578
7579 if (repeat > 0 && repeat <= 255 && bc > 0)
7580 {
7581 if (bc + repeat - 1 >= *sizeof_buf - 1)
7582 {
7583 /* Make some more room in the buffer. */
7584 *sizeof_buf += repeat;
7585 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7586 buf = *buf_p;
7587 }
7588
7589 memset (&buf[bc], buf[bc - 1], repeat);
7590 bc += repeat;
7591 continue;
7592 }
7593
7594 buf[bc] = '\0';
7595 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7596 return -1;
7597 }
7598 default:
7599 if (bc >= *sizeof_buf - 1)
7600 {
7601 /* Make some more room in the buffer. */
7602 *sizeof_buf *= 2;
7603 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7604 buf = *buf_p;
7605 }
7606
7607 buf[bc++] = c;
7608 csum += c;
7609 continue;
7610 }
7611 }
7612 }
7613
7614 /* Read a packet from the remote machine, with error checking, and
7615 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7616 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7617 rather than timing out; this is used (in synchronous mode) to wait
7618 for a target that is is executing user code to stop. */
7619 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7620 don't have to change all the calls to getpkt to deal with the
7621 return value, because at the moment I don't know what the right
7622 thing to do it for those. */
7623 void
7624 getpkt (char **buf,
7625 long *sizeof_buf,
7626 int forever)
7627 {
7628 int timed_out;
7629
7630 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7631 }
7632
7633
7634 /* Read a packet from the remote machine, with error checking, and
7635 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7636 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7637 rather than timing out; this is used (in synchronous mode) to wait
7638 for a target that is is executing user code to stop. If FOREVER ==
7639 0, this function is allowed to time out gracefully and return an
7640 indication of this to the caller. Otherwise return the number of
7641 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7642 enough reason to return to the caller. *IS_NOTIF is an output
7643 boolean that indicates whether *BUF holds a notification or not
7644 (a regular packet). */
7645
7646 static int
7647 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7648 int expecting_notif, int *is_notif)
7649 {
7650 struct remote_state *rs = get_remote_state ();
7651 int c;
7652 int tries;
7653 int timeout;
7654 int val = -1;
7655
7656 /* We're reading a new response. Make sure we don't look at a
7657 previously cached response. */
7658 rs->cached_wait_status = 0;
7659
7660 strcpy (*buf, "timeout");
7661
7662 if (forever)
7663 timeout = watchdog > 0 ? watchdog : -1;
7664 else if (expecting_notif)
7665 timeout = 0; /* There should already be a char in the buffer. If
7666 not, bail out. */
7667 else
7668 timeout = remote_timeout;
7669
7670 #define MAX_TRIES 3
7671
7672 /* Process any number of notifications, and then return when
7673 we get a packet. */
7674 for (;;)
7675 {
7676 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7677 times. */
7678 for (tries = 1; tries <= MAX_TRIES; tries++)
7679 {
7680 /* This can loop forever if the remote side sends us
7681 characters continuously, but if it pauses, we'll get
7682 SERIAL_TIMEOUT from readchar because of timeout. Then
7683 we'll count that as a retry.
7684
7685 Note that even when forever is set, we will only wait
7686 forever prior to the start of a packet. After that, we
7687 expect characters to arrive at a brisk pace. They should
7688 show up within remote_timeout intervals. */
7689 do
7690 c = readchar (timeout);
7691 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7692
7693 if (c == SERIAL_TIMEOUT)
7694 {
7695 if (expecting_notif)
7696 return -1; /* Don't complain, it's normal to not get
7697 anything in this case. */
7698
7699 if (forever) /* Watchdog went off? Kill the target. */
7700 {
7701 QUIT;
7702 remote_unpush_target ();
7703 throw_error (TARGET_CLOSE_ERROR,
7704 _("Watchdog timeout has expired. "
7705 "Target detached."));
7706 }
7707 if (remote_debug)
7708 fputs_filtered ("Timed out.\n", gdb_stdlog);
7709 }
7710 else
7711 {
7712 /* We've found the start of a packet or notification.
7713 Now collect the data. */
7714 val = read_frame (buf, sizeof_buf);
7715 if (val >= 0)
7716 break;
7717 }
7718
7719 remote_serial_write ("-", 1);
7720 }
7721
7722 if (tries > MAX_TRIES)
7723 {
7724 /* We have tried hard enough, and just can't receive the
7725 packet/notification. Give up. */
7726 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7727
7728 /* Skip the ack char if we're in no-ack mode. */
7729 if (!rs->noack_mode)
7730 remote_serial_write ("+", 1);
7731 return -1;
7732 }
7733
7734 /* If we got an ordinary packet, return that to our caller. */
7735 if (c == '$')
7736 {
7737 if (remote_debug)
7738 {
7739 struct cleanup *old_chain;
7740 char *str;
7741
7742 str = escape_buffer (*buf, val);
7743 old_chain = make_cleanup (xfree, str);
7744 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7745 do_cleanups (old_chain);
7746 }
7747
7748 /* Skip the ack char if we're in no-ack mode. */
7749 if (!rs->noack_mode)
7750 remote_serial_write ("+", 1);
7751 if (is_notif != NULL)
7752 *is_notif = 0;
7753 return val;
7754 }
7755
7756 /* If we got a notification, handle it, and go back to looking
7757 for a packet. */
7758 else
7759 {
7760 gdb_assert (c == '%');
7761
7762 if (remote_debug)
7763 {
7764 struct cleanup *old_chain;
7765 char *str;
7766
7767 str = escape_buffer (*buf, val);
7768 old_chain = make_cleanup (xfree, str);
7769 fprintf_unfiltered (gdb_stdlog,
7770 " Notification received: %s\n",
7771 str);
7772 do_cleanups (old_chain);
7773 }
7774 if (is_notif != NULL)
7775 *is_notif = 1;
7776
7777 handle_notification (*buf);
7778
7779 /* Notifications require no acknowledgement. */
7780
7781 if (expecting_notif)
7782 return val;
7783 }
7784 }
7785 }
7786
7787 static int
7788 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7789 {
7790 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7791 }
7792
7793 static int
7794 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7795 int *is_notif)
7796 {
7797 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7798 is_notif);
7799 }
7800
7801 \f
7802 /* A helper function that just calls putpkt; for type correctness. */
7803
7804 static int
7805 putpkt_for_catch_errors (void *arg)
7806 {
7807 return putpkt (arg);
7808 }
7809
7810 static void
7811 remote_kill (struct target_ops *ops)
7812 {
7813 /* Use catch_errors so the user can quit from gdb even when we
7814 aren't on speaking terms with the remote system. */
7815 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7816
7817 /* Don't wait for it to die. I'm not really sure it matters whether
7818 we do or not. For the existing stubs, kill is a noop. */
7819 target_mourn_inferior ();
7820 }
7821
7822 static int
7823 remote_vkill (int pid, struct remote_state *rs)
7824 {
7825 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7826 return -1;
7827
7828 /* Tell the remote target to detach. */
7829 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7830 putpkt (rs->buf);
7831 getpkt (&rs->buf, &rs->buf_size, 0);
7832
7833 if (packet_ok (rs->buf,
7834 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7835 return 0;
7836 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7837 return -1;
7838 else
7839 return 1;
7840 }
7841
7842 static void
7843 extended_remote_kill (struct target_ops *ops)
7844 {
7845 int res;
7846 int pid = ptid_get_pid (inferior_ptid);
7847 struct remote_state *rs = get_remote_state ();
7848
7849 res = remote_vkill (pid, rs);
7850 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7851 {
7852 /* Don't try 'k' on a multi-process aware stub -- it has no way
7853 to specify the pid. */
7854
7855 putpkt ("k");
7856 #if 0
7857 getpkt (&rs->buf, &rs->buf_size, 0);
7858 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7859 res = 1;
7860 #else
7861 /* Don't wait for it to die. I'm not really sure it matters whether
7862 we do or not. For the existing stubs, kill is a noop. */
7863 res = 0;
7864 #endif
7865 }
7866
7867 if (res != 0)
7868 error (_("Can't kill process"));
7869
7870 target_mourn_inferior ();
7871 }
7872
7873 static void
7874 remote_mourn (struct target_ops *ops)
7875 {
7876 remote_mourn_1 (ops);
7877 }
7878
7879 /* Worker function for remote_mourn. */
7880 static void
7881 remote_mourn_1 (struct target_ops *target)
7882 {
7883 unpush_target (target);
7884
7885 /* remote_close takes care of doing most of the clean up. */
7886 generic_mourn_inferior ();
7887 }
7888
7889 static void
7890 extended_remote_mourn_1 (struct target_ops *target)
7891 {
7892 struct remote_state *rs = get_remote_state ();
7893
7894 /* In case we got here due to an error, but we're going to stay
7895 connected. */
7896 rs->waiting_for_stop_reply = 0;
7897
7898 /* If the current general thread belonged to the process we just
7899 detached from or has exited, the remote side current general
7900 thread becomes undefined. Considering a case like this:
7901
7902 - We just got here due to a detach.
7903 - The process that we're detaching from happens to immediately
7904 report a global breakpoint being hit in non-stop mode, in the
7905 same thread we had selected before.
7906 - GDB attaches to this process again.
7907 - This event happens to be the next event we handle.
7908
7909 GDB would consider that the current general thread didn't need to
7910 be set on the stub side (with Hg), since for all it knew,
7911 GENERAL_THREAD hadn't changed.
7912
7913 Notice that although in all-stop mode, the remote server always
7914 sets the current thread to the thread reporting the stop event,
7915 that doesn't happen in non-stop mode; in non-stop, the stub *must
7916 not* change the current thread when reporting a breakpoint hit,
7917 due to the decoupling of event reporting and event handling.
7918
7919 To keep things simple, we always invalidate our notion of the
7920 current thread. */
7921 record_currthread (rs, minus_one_ptid);
7922
7923 /* Unlike "target remote", we do not want to unpush the target; then
7924 the next time the user says "run", we won't be connected. */
7925
7926 /* Call common code to mark the inferior as not running. */
7927 generic_mourn_inferior ();
7928
7929 if (!have_inferiors ())
7930 {
7931 if (!remote_multi_process_p (rs))
7932 {
7933 /* Check whether the target is running now - some remote stubs
7934 automatically restart after kill. */
7935 putpkt ("?");
7936 getpkt (&rs->buf, &rs->buf_size, 0);
7937
7938 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7939 {
7940 /* Assume that the target has been restarted. Set
7941 inferior_ptid so that bits of core GDB realizes
7942 there's something here, e.g., so that the user can
7943 say "kill" again. */
7944 inferior_ptid = magic_null_ptid;
7945 }
7946 }
7947 }
7948 }
7949
7950 static void
7951 extended_remote_mourn (struct target_ops *ops)
7952 {
7953 extended_remote_mourn_1 (ops);
7954 }
7955
7956 static int
7957 extended_remote_supports_disable_randomization (void)
7958 {
7959 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7960 == PACKET_ENABLE);
7961 }
7962
7963 static void
7964 extended_remote_disable_randomization (int val)
7965 {
7966 struct remote_state *rs = get_remote_state ();
7967 char *reply;
7968
7969 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7970 val);
7971 putpkt (rs->buf);
7972 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7973 if (*reply == '\0')
7974 error (_("Target does not support QDisableRandomization."));
7975 if (strcmp (reply, "OK") != 0)
7976 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7977 }
7978
7979 static int
7980 extended_remote_run (char *args)
7981 {
7982 struct remote_state *rs = get_remote_state ();
7983 int len;
7984
7985 /* If the user has disabled vRun support, or we have detected that
7986 support is not available, do not try it. */
7987 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7988 return -1;
7989
7990 strcpy (rs->buf, "vRun;");
7991 len = strlen (rs->buf);
7992
7993 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7994 error (_("Remote file name too long for run packet"));
7995 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7996
7997 gdb_assert (args != NULL);
7998 if (*args)
7999 {
8000 struct cleanup *back_to;
8001 int i;
8002 char **argv;
8003
8004 argv = gdb_buildargv (args);
8005 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8006 for (i = 0; argv[i] != NULL; i++)
8007 {
8008 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8009 error (_("Argument list too long for run packet"));
8010 rs->buf[len++] = ';';
8011 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8012 }
8013 do_cleanups (back_to);
8014 }
8015
8016 rs->buf[len++] = '\0';
8017
8018 putpkt (rs->buf);
8019 getpkt (&rs->buf, &rs->buf_size, 0);
8020
8021 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8022 {
8023 /* We have a wait response. All is well. */
8024 return 0;
8025 }
8026 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8027 /* It wasn't disabled before, but it is now. */
8028 return -1;
8029 else
8030 {
8031 if (remote_exec_file[0] == '\0')
8032 error (_("Running the default executable on the remote target failed; "
8033 "try \"set remote exec-file\"?"));
8034 else
8035 error (_("Running \"%s\" on the remote target failed"),
8036 remote_exec_file);
8037 }
8038 }
8039
8040 /* In the extended protocol we want to be able to do things like
8041 "run" and have them basically work as expected. So we need
8042 a special create_inferior function. We support changing the
8043 executable file and the command line arguments, but not the
8044 environment. */
8045
8046 static void
8047 extended_remote_create_inferior_1 (char *exec_file, char *args,
8048 char **env, int from_tty)
8049 {
8050 int run_worked;
8051 char *stop_reply;
8052 struct remote_state *rs = get_remote_state ();
8053
8054 /* If running asynchronously, register the target file descriptor
8055 with the event loop. */
8056 if (target_can_async_p ())
8057 target_async (inferior_event_handler, 0);
8058
8059 /* Disable address space randomization if requested (and supported). */
8060 if (extended_remote_supports_disable_randomization ())
8061 extended_remote_disable_randomization (disable_randomization);
8062
8063 /* Now restart the remote server. */
8064 run_worked = extended_remote_run (args) != -1;
8065 if (!run_worked)
8066 {
8067 /* vRun was not supported. Fail if we need it to do what the
8068 user requested. */
8069 if (remote_exec_file[0])
8070 error (_("Remote target does not support \"set remote exec-file\""));
8071 if (args[0])
8072 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8073
8074 /* Fall back to "R". */
8075 extended_remote_restart ();
8076 }
8077
8078 if (!have_inferiors ())
8079 {
8080 /* Clean up from the last time we ran, before we mark the target
8081 running again. This will mark breakpoints uninserted, and
8082 get_offsets may insert breakpoints. */
8083 init_thread_list ();
8084 init_wait_for_inferior ();
8085 }
8086
8087 /* vRun's success return is a stop reply. */
8088 stop_reply = run_worked ? rs->buf : NULL;
8089 add_current_inferior_and_thread (stop_reply);
8090
8091 /* Get updated offsets, if the stub uses qOffsets. */
8092 get_offsets ();
8093 }
8094
8095 static void
8096 extended_remote_create_inferior (struct target_ops *ops,
8097 char *exec_file, char *args,
8098 char **env, int from_tty)
8099 {
8100 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8101 }
8102 \f
8103
8104 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8105 the list of conditions (in agent expression bytecode format), if any, the
8106 target needs to evaluate. The output is placed into the packet buffer
8107 started from BUF and ended at BUF_END. */
8108
8109 static int
8110 remote_add_target_side_condition (struct gdbarch *gdbarch,
8111 struct bp_target_info *bp_tgt, char *buf,
8112 char *buf_end)
8113 {
8114 struct agent_expr *aexpr = NULL;
8115 int i, ix;
8116 char *pkt;
8117 char *buf_start = buf;
8118
8119 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8120 return 0;
8121
8122 buf += strlen (buf);
8123 xsnprintf (buf, buf_end - buf, "%s", ";");
8124 buf++;
8125
8126 /* Send conditions to the target and free the vector. */
8127 for (ix = 0;
8128 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8129 ix++)
8130 {
8131 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8132 buf += strlen (buf);
8133 for (i = 0; i < aexpr->len; ++i)
8134 buf = pack_hex_byte (buf, aexpr->buf[i]);
8135 *buf = '\0';
8136 }
8137
8138 VEC_free (agent_expr_p, bp_tgt->conditions);
8139 return 0;
8140 }
8141
8142 static void
8143 remote_add_target_side_commands (struct gdbarch *gdbarch,
8144 struct bp_target_info *bp_tgt, char *buf)
8145 {
8146 struct agent_expr *aexpr = NULL;
8147 int i, ix;
8148
8149 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8150 return;
8151
8152 buf += strlen (buf);
8153
8154 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8155 buf += strlen (buf);
8156
8157 /* Concatenate all the agent expressions that are commands into the
8158 cmds parameter. */
8159 for (ix = 0;
8160 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8161 ix++)
8162 {
8163 sprintf (buf, "X%x,", aexpr->len);
8164 buf += strlen (buf);
8165 for (i = 0; i < aexpr->len; ++i)
8166 buf = pack_hex_byte (buf, aexpr->buf[i]);
8167 *buf = '\0';
8168 }
8169
8170 VEC_free (agent_expr_p, bp_tgt->tcommands);
8171 }
8172
8173 /* Insert a breakpoint. On targets that have software breakpoint
8174 support, we ask the remote target to do the work; on targets
8175 which don't, we insert a traditional memory breakpoint. */
8176
8177 static int
8178 remote_insert_breakpoint (struct gdbarch *gdbarch,
8179 struct bp_target_info *bp_tgt)
8180 {
8181 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8182 If it succeeds, then set the support to PACKET_ENABLE. If it
8183 fails, and the user has explicitly requested the Z support then
8184 report an error, otherwise, mark it disabled and go on. */
8185
8186 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8187 {
8188 CORE_ADDR addr = bp_tgt->placed_address;
8189 struct remote_state *rs;
8190 char *p, *endbuf;
8191 int bpsize;
8192 struct condition_list *cond = NULL;
8193
8194 /* Make sure the remote is pointing at the right process, if
8195 necessary. */
8196 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8197 set_general_process ();
8198
8199 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8200
8201 rs = get_remote_state ();
8202 p = rs->buf;
8203 endbuf = rs->buf + get_remote_packet_size ();
8204
8205 *(p++) = 'Z';
8206 *(p++) = '0';
8207 *(p++) = ',';
8208 addr = (ULONGEST) remote_address_masked (addr);
8209 p += hexnumstr (p, addr);
8210 xsnprintf (p, endbuf - p, ",%d", bpsize);
8211
8212 if (remote_supports_cond_breakpoints ())
8213 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8214
8215 if (remote_can_run_breakpoint_commands ())
8216 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8217
8218 putpkt (rs->buf);
8219 getpkt (&rs->buf, &rs->buf_size, 0);
8220
8221 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8222 {
8223 case PACKET_ERROR:
8224 return -1;
8225 case PACKET_OK:
8226 bp_tgt->placed_address = addr;
8227 bp_tgt->placed_size = bpsize;
8228 return 0;
8229 case PACKET_UNKNOWN:
8230 break;
8231 }
8232 }
8233
8234 return memory_insert_breakpoint (gdbarch, bp_tgt);
8235 }
8236
8237 static int
8238 remote_remove_breakpoint (struct gdbarch *gdbarch,
8239 struct bp_target_info *bp_tgt)
8240 {
8241 CORE_ADDR addr = bp_tgt->placed_address;
8242 struct remote_state *rs = get_remote_state ();
8243
8244 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8245 {
8246 char *p = rs->buf;
8247 char *endbuf = rs->buf + get_remote_packet_size ();
8248
8249 /* Make sure the remote is pointing at the right process, if
8250 necessary. */
8251 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8252 set_general_process ();
8253
8254 *(p++) = 'z';
8255 *(p++) = '0';
8256 *(p++) = ',';
8257
8258 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8259 p += hexnumstr (p, addr);
8260 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8261
8262 putpkt (rs->buf);
8263 getpkt (&rs->buf, &rs->buf_size, 0);
8264
8265 return (rs->buf[0] == 'E');
8266 }
8267
8268 return memory_remove_breakpoint (gdbarch, bp_tgt);
8269 }
8270
8271 static int
8272 watchpoint_to_Z_packet (int type)
8273 {
8274 switch (type)
8275 {
8276 case hw_write:
8277 return Z_PACKET_WRITE_WP;
8278 break;
8279 case hw_read:
8280 return Z_PACKET_READ_WP;
8281 break;
8282 case hw_access:
8283 return Z_PACKET_ACCESS_WP;
8284 break;
8285 default:
8286 internal_error (__FILE__, __LINE__,
8287 _("hw_bp_to_z: bad watchpoint type %d"), type);
8288 }
8289 }
8290
8291 static int
8292 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8293 struct expression *cond)
8294 {
8295 struct remote_state *rs = get_remote_state ();
8296 char *endbuf = rs->buf + get_remote_packet_size ();
8297 char *p;
8298 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8299
8300 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8301 return 1;
8302
8303 /* Make sure the remote is pointing at the right process, if
8304 necessary. */
8305 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8306 set_general_process ();
8307
8308 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8309 p = strchr (rs->buf, '\0');
8310 addr = remote_address_masked (addr);
8311 p += hexnumstr (p, (ULONGEST) addr);
8312 xsnprintf (p, endbuf - p, ",%x", len);
8313
8314 putpkt (rs->buf);
8315 getpkt (&rs->buf, &rs->buf_size, 0);
8316
8317 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8318 {
8319 case PACKET_ERROR:
8320 return -1;
8321 case PACKET_UNKNOWN:
8322 return 1;
8323 case PACKET_OK:
8324 return 0;
8325 }
8326 internal_error (__FILE__, __LINE__,
8327 _("remote_insert_watchpoint: reached end of function"));
8328 }
8329
8330 static int
8331 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8332 CORE_ADDR start, int length)
8333 {
8334 CORE_ADDR diff = remote_address_masked (addr - start);
8335
8336 return diff < length;
8337 }
8338
8339
8340 static int
8341 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8342 struct expression *cond)
8343 {
8344 struct remote_state *rs = get_remote_state ();
8345 char *endbuf = rs->buf + get_remote_packet_size ();
8346 char *p;
8347 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8348
8349 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8350 return -1;
8351
8352 /* Make sure the remote is pointing at the right process, if
8353 necessary. */
8354 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8355 set_general_process ();
8356
8357 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8358 p = strchr (rs->buf, '\0');
8359 addr = remote_address_masked (addr);
8360 p += hexnumstr (p, (ULONGEST) addr);
8361 xsnprintf (p, endbuf - p, ",%x", len);
8362 putpkt (rs->buf);
8363 getpkt (&rs->buf, &rs->buf_size, 0);
8364
8365 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8366 {
8367 case PACKET_ERROR:
8368 case PACKET_UNKNOWN:
8369 return -1;
8370 case PACKET_OK:
8371 return 0;
8372 }
8373 internal_error (__FILE__, __LINE__,
8374 _("remote_remove_watchpoint: reached end of function"));
8375 }
8376
8377
8378 int remote_hw_watchpoint_limit = -1;
8379 int remote_hw_watchpoint_length_limit = -1;
8380 int remote_hw_breakpoint_limit = -1;
8381
8382 static int
8383 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8384 {
8385 if (remote_hw_watchpoint_length_limit == 0)
8386 return 0;
8387 else if (remote_hw_watchpoint_length_limit < 0)
8388 return 1;
8389 else if (len <= remote_hw_watchpoint_length_limit)
8390 return 1;
8391 else
8392 return 0;
8393 }
8394
8395 static int
8396 remote_check_watch_resources (int type, int cnt, int ot)
8397 {
8398 if (type == bp_hardware_breakpoint)
8399 {
8400 if (remote_hw_breakpoint_limit == 0)
8401 return 0;
8402 else if (remote_hw_breakpoint_limit < 0)
8403 return 1;
8404 else if (cnt <= remote_hw_breakpoint_limit)
8405 return 1;
8406 }
8407 else
8408 {
8409 if (remote_hw_watchpoint_limit == 0)
8410 return 0;
8411 else if (remote_hw_watchpoint_limit < 0)
8412 return 1;
8413 else if (ot)
8414 return -1;
8415 else if (cnt <= remote_hw_watchpoint_limit)
8416 return 1;
8417 }
8418 return -1;
8419 }
8420
8421 static int
8422 remote_stopped_by_watchpoint (void)
8423 {
8424 return remote_stopped_by_watchpoint_p;
8425 }
8426
8427 static int
8428 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8429 {
8430 int rc = 0;
8431
8432 if (remote_stopped_by_watchpoint ())
8433 {
8434 *addr_p = remote_watch_data_address;
8435 rc = 1;
8436 }
8437
8438 return rc;
8439 }
8440
8441
8442 static int
8443 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8444 struct bp_target_info *bp_tgt)
8445 {
8446 CORE_ADDR addr;
8447 struct remote_state *rs;
8448 char *p, *endbuf;
8449 char *message;
8450
8451 /* The length field should be set to the size of a breakpoint
8452 instruction, even though we aren't inserting one ourselves. */
8453
8454 gdbarch_remote_breakpoint_from_pc
8455 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8456
8457 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8458 return -1;
8459
8460 /* Make sure the remote is pointing at the right process, if
8461 necessary. */
8462 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8463 set_general_process ();
8464
8465 rs = get_remote_state ();
8466 p = rs->buf;
8467 endbuf = rs->buf + get_remote_packet_size ();
8468
8469 *(p++) = 'Z';
8470 *(p++) = '1';
8471 *(p++) = ',';
8472
8473 addr = remote_address_masked (bp_tgt->placed_address);
8474 p += hexnumstr (p, (ULONGEST) addr);
8475 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8476
8477 if (remote_supports_cond_breakpoints ())
8478 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8479
8480 if (remote_can_run_breakpoint_commands ())
8481 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8482
8483 putpkt (rs->buf);
8484 getpkt (&rs->buf, &rs->buf_size, 0);
8485
8486 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8487 {
8488 case PACKET_ERROR:
8489 if (rs->buf[1] == '.')
8490 {
8491 message = strchr (rs->buf + 2, '.');
8492 if (message)
8493 error (_("Remote failure reply: %s"), message + 1);
8494 }
8495 return -1;
8496 case PACKET_UNKNOWN:
8497 return -1;
8498 case PACKET_OK:
8499 return 0;
8500 }
8501 internal_error (__FILE__, __LINE__,
8502 _("remote_insert_hw_breakpoint: reached end of function"));
8503 }
8504
8505
8506 static int
8507 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8508 struct bp_target_info *bp_tgt)
8509 {
8510 CORE_ADDR addr;
8511 struct remote_state *rs = get_remote_state ();
8512 char *p = rs->buf;
8513 char *endbuf = rs->buf + get_remote_packet_size ();
8514
8515 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8516 return -1;
8517
8518 /* Make sure the remote is pointing at the right process, if
8519 necessary. */
8520 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8521 set_general_process ();
8522
8523 *(p++) = 'z';
8524 *(p++) = '1';
8525 *(p++) = ',';
8526
8527 addr = remote_address_masked (bp_tgt->placed_address);
8528 p += hexnumstr (p, (ULONGEST) addr);
8529 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8530
8531 putpkt (rs->buf);
8532 getpkt (&rs->buf, &rs->buf_size, 0);
8533
8534 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8535 {
8536 case PACKET_ERROR:
8537 case PACKET_UNKNOWN:
8538 return -1;
8539 case PACKET_OK:
8540 return 0;
8541 }
8542 internal_error (__FILE__, __LINE__,
8543 _("remote_remove_hw_breakpoint: reached end of function"));
8544 }
8545
8546 /* Verify memory using the "qCRC:" request. */
8547
8548 static int
8549 remote_verify_memory (struct target_ops *ops,
8550 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8551 {
8552 struct remote_state *rs = get_remote_state ();
8553 unsigned long host_crc, target_crc;
8554 char *tmp;
8555
8556 /* Make sure the remote is pointing at the right process. */
8557 set_general_process ();
8558
8559 /* FIXME: assumes lma can fit into long. */
8560 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8561 (long) lma, (long) size);
8562 putpkt (rs->buf);
8563
8564 /* Be clever; compute the host_crc before waiting for target
8565 reply. */
8566 host_crc = xcrc32 (data, size, 0xffffffff);
8567
8568 getpkt (&rs->buf, &rs->buf_size, 0);
8569 if (rs->buf[0] == 'E')
8570 return -1;
8571
8572 if (rs->buf[0] != 'C')
8573 error (_("remote target does not support this operation"));
8574
8575 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8576 target_crc = target_crc * 16 + fromhex (*tmp);
8577
8578 return (host_crc == target_crc);
8579 }
8580
8581 /* compare-sections command
8582
8583 With no arguments, compares each loadable section in the exec bfd
8584 with the same memory range on the target, and reports mismatches.
8585 Useful for verifying the image on the target against the exec file. */
8586
8587 static void
8588 compare_sections_command (char *args, int from_tty)
8589 {
8590 asection *s;
8591 struct cleanup *old_chain;
8592 gdb_byte *sectdata;
8593 const char *sectname;
8594 bfd_size_type size;
8595 bfd_vma lma;
8596 int matched = 0;
8597 int mismatched = 0;
8598 int res;
8599
8600 if (!exec_bfd)
8601 error (_("command cannot be used without an exec file"));
8602
8603 /* Make sure the remote is pointing at the right process. */
8604 set_general_process ();
8605
8606 for (s = exec_bfd->sections; s; s = s->next)
8607 {
8608 if (!(s->flags & SEC_LOAD))
8609 continue; /* Skip non-loadable section. */
8610
8611 size = bfd_get_section_size (s);
8612 if (size == 0)
8613 continue; /* Skip zero-length section. */
8614
8615 sectname = bfd_get_section_name (exec_bfd, s);
8616 if (args && strcmp (args, sectname) != 0)
8617 continue; /* Not the section selected by user. */
8618
8619 matched = 1; /* Do this section. */
8620 lma = s->lma;
8621
8622 sectdata = xmalloc (size);
8623 old_chain = make_cleanup (xfree, sectdata);
8624 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8625
8626 res = target_verify_memory (sectdata, lma, size);
8627
8628 if (res == -1)
8629 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8630 paddress (target_gdbarch (), lma),
8631 paddress (target_gdbarch (), lma + size));
8632
8633 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8634 paddress (target_gdbarch (), lma),
8635 paddress (target_gdbarch (), lma + size));
8636 if (res)
8637 printf_filtered ("matched.\n");
8638 else
8639 {
8640 printf_filtered ("MIS-MATCHED!\n");
8641 mismatched++;
8642 }
8643
8644 do_cleanups (old_chain);
8645 }
8646 if (mismatched > 0)
8647 warning (_("One or more sections of the remote executable does not match\n\
8648 the loaded file\n"));
8649 if (args && !matched)
8650 printf_filtered (_("No loaded section named '%s'.\n"), args);
8651 }
8652
8653 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8654 into remote target. The number of bytes written to the remote
8655 target is returned, or -1 for error. */
8656
8657 static LONGEST
8658 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8659 const char *annex, const gdb_byte *writebuf,
8660 ULONGEST offset, LONGEST len,
8661 struct packet_config *packet)
8662 {
8663 int i, buf_len;
8664 ULONGEST n;
8665 struct remote_state *rs = get_remote_state ();
8666 int max_size = get_memory_write_packet_size ();
8667
8668 if (packet->support == PACKET_DISABLE)
8669 return -1;
8670
8671 /* Insert header. */
8672 i = snprintf (rs->buf, max_size,
8673 "qXfer:%s:write:%s:%s:",
8674 object_name, annex ? annex : "",
8675 phex_nz (offset, sizeof offset));
8676 max_size -= (i + 1);
8677
8678 /* Escape as much data as fits into rs->buf. */
8679 buf_len = remote_escape_output
8680 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8681
8682 if (putpkt_binary (rs->buf, i + buf_len) < 0
8683 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8684 || packet_ok (rs->buf, packet) != PACKET_OK)
8685 return -1;
8686
8687 unpack_varlen_hex (rs->buf, &n);
8688 return n;
8689 }
8690
8691 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8692 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8693 number of bytes read is returned, or 0 for EOF, or -1 for error.
8694 The number of bytes read may be less than LEN without indicating an
8695 EOF. PACKET is checked and updated to indicate whether the remote
8696 target supports this object. */
8697
8698 static LONGEST
8699 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8700 const char *annex,
8701 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8702 struct packet_config *packet)
8703 {
8704 static char *finished_object;
8705 static char *finished_annex;
8706 static ULONGEST finished_offset;
8707
8708 struct remote_state *rs = get_remote_state ();
8709 LONGEST i, n, packet_len;
8710
8711 if (packet->support == PACKET_DISABLE)
8712 return -1;
8713
8714 /* Check whether we've cached an end-of-object packet that matches
8715 this request. */
8716 if (finished_object)
8717 {
8718 if (strcmp (object_name, finished_object) == 0
8719 && strcmp (annex ? annex : "", finished_annex) == 0
8720 && offset == finished_offset)
8721 return 0;
8722
8723 /* Otherwise, we're now reading something different. Discard
8724 the cache. */
8725 xfree (finished_object);
8726 xfree (finished_annex);
8727 finished_object = NULL;
8728 finished_annex = NULL;
8729 }
8730
8731 /* Request only enough to fit in a single packet. The actual data
8732 may not, since we don't know how much of it will need to be escaped;
8733 the target is free to respond with slightly less data. We subtract
8734 five to account for the response type and the protocol frame. */
8735 n = min (get_remote_packet_size () - 5, len);
8736 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8737 object_name, annex ? annex : "",
8738 phex_nz (offset, sizeof offset),
8739 phex_nz (n, sizeof n));
8740 i = putpkt (rs->buf);
8741 if (i < 0)
8742 return -1;
8743
8744 rs->buf[0] = '\0';
8745 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8746 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8747 return -1;
8748
8749 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8750 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8751
8752 /* 'm' means there is (or at least might be) more data after this
8753 batch. That does not make sense unless there's at least one byte
8754 of data in this reply. */
8755 if (rs->buf[0] == 'm' && packet_len == 1)
8756 error (_("Remote qXfer reply contained no data."));
8757
8758 /* Got some data. */
8759 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8760 packet_len - 1, readbuf, n);
8761
8762 /* 'l' is an EOF marker, possibly including a final block of data,
8763 or possibly empty. If we have the final block of a non-empty
8764 object, record this fact to bypass a subsequent partial read. */
8765 if (rs->buf[0] == 'l' && offset + i > 0)
8766 {
8767 finished_object = xstrdup (object_name);
8768 finished_annex = xstrdup (annex ? annex : "");
8769 finished_offset = offset + i;
8770 }
8771
8772 return i;
8773 }
8774
8775 static LONGEST
8776 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8777 const char *annex, gdb_byte *readbuf,
8778 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8779 {
8780 struct remote_state *rs;
8781 int i;
8782 char *p2;
8783 char query_type;
8784
8785 set_remote_traceframe ();
8786 set_general_thread (inferior_ptid);
8787
8788 rs = get_remote_state ();
8789
8790 /* Handle memory using the standard memory routines. */
8791 if (object == TARGET_OBJECT_MEMORY)
8792 {
8793 int xfered;
8794
8795 errno = 0;
8796
8797 /* If the remote target is connected but not running, we should
8798 pass this request down to a lower stratum (e.g. the executable
8799 file). */
8800 if (!target_has_execution)
8801 return 0;
8802
8803 if (writebuf != NULL)
8804 xfered = remote_write_bytes (offset, writebuf, len);
8805 else
8806 xfered = remote_read_bytes (offset, readbuf, len);
8807
8808 if (xfered > 0)
8809 return xfered;
8810 else if (xfered == 0 && errno == 0)
8811 return 0;
8812 else
8813 return -1;
8814 }
8815
8816 /* Handle SPU memory using qxfer packets. */
8817 if (object == TARGET_OBJECT_SPU)
8818 {
8819 if (readbuf)
8820 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8821 &remote_protocol_packets
8822 [PACKET_qXfer_spu_read]);
8823 else
8824 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8825 &remote_protocol_packets
8826 [PACKET_qXfer_spu_write]);
8827 }
8828
8829 /* Handle extra signal info using qxfer packets. */
8830 if (object == TARGET_OBJECT_SIGNAL_INFO)
8831 {
8832 if (readbuf)
8833 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8834 &remote_protocol_packets
8835 [PACKET_qXfer_siginfo_read]);
8836 else
8837 return remote_write_qxfer (ops, "siginfo", annex,
8838 writebuf, offset, len,
8839 &remote_protocol_packets
8840 [PACKET_qXfer_siginfo_write]);
8841 }
8842
8843 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8844 {
8845 if (readbuf)
8846 return remote_read_qxfer (ops, "statictrace", annex,
8847 readbuf, offset, len,
8848 &remote_protocol_packets
8849 [PACKET_qXfer_statictrace_read]);
8850 else
8851 return -1;
8852 }
8853
8854 /* Only handle flash writes. */
8855 if (writebuf != NULL)
8856 {
8857 LONGEST xfered;
8858
8859 switch (object)
8860 {
8861 case TARGET_OBJECT_FLASH:
8862 xfered = remote_flash_write (ops, offset, len, writebuf);
8863
8864 if (xfered > 0)
8865 return xfered;
8866 else if (xfered == 0 && errno == 0)
8867 return 0;
8868 else
8869 return -1;
8870
8871 default:
8872 return -1;
8873 }
8874 }
8875
8876 /* Map pre-existing objects onto letters. DO NOT do this for new
8877 objects!!! Instead specify new query packets. */
8878 switch (object)
8879 {
8880 case TARGET_OBJECT_AVR:
8881 query_type = 'R';
8882 break;
8883
8884 case TARGET_OBJECT_AUXV:
8885 gdb_assert (annex == NULL);
8886 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8887 &remote_protocol_packets[PACKET_qXfer_auxv]);
8888
8889 case TARGET_OBJECT_AVAILABLE_FEATURES:
8890 return remote_read_qxfer
8891 (ops, "features", annex, readbuf, offset, len,
8892 &remote_protocol_packets[PACKET_qXfer_features]);
8893
8894 case TARGET_OBJECT_LIBRARIES:
8895 return remote_read_qxfer
8896 (ops, "libraries", annex, readbuf, offset, len,
8897 &remote_protocol_packets[PACKET_qXfer_libraries]);
8898
8899 case TARGET_OBJECT_LIBRARIES_SVR4:
8900 return remote_read_qxfer
8901 (ops, "libraries-svr4", annex, readbuf, offset, len,
8902 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8903
8904 case TARGET_OBJECT_MEMORY_MAP:
8905 gdb_assert (annex == NULL);
8906 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8907 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8908
8909 case TARGET_OBJECT_OSDATA:
8910 /* Should only get here if we're connected. */
8911 gdb_assert (rs->remote_desc);
8912 return remote_read_qxfer
8913 (ops, "osdata", annex, readbuf, offset, len,
8914 &remote_protocol_packets[PACKET_qXfer_osdata]);
8915
8916 case TARGET_OBJECT_THREADS:
8917 gdb_assert (annex == NULL);
8918 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8919 &remote_protocol_packets[PACKET_qXfer_threads]);
8920
8921 case TARGET_OBJECT_TRACEFRAME_INFO:
8922 gdb_assert (annex == NULL);
8923 return remote_read_qxfer
8924 (ops, "traceframe-info", annex, readbuf, offset, len,
8925 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8926
8927 case TARGET_OBJECT_FDPIC:
8928 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8929 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8930
8931 case TARGET_OBJECT_OPENVMS_UIB:
8932 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8933 &remote_protocol_packets[PACKET_qXfer_uib]);
8934
8935 case TARGET_OBJECT_BTRACE:
8936 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8937 &remote_protocol_packets[PACKET_qXfer_btrace]);
8938
8939 default:
8940 return -1;
8941 }
8942
8943 /* Note: a zero OFFSET and LEN can be used to query the minimum
8944 buffer size. */
8945 if (offset == 0 && len == 0)
8946 return (get_remote_packet_size ());
8947 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8948 large enough let the caller deal with it. */
8949 if (len < get_remote_packet_size ())
8950 return -1;
8951 len = get_remote_packet_size ();
8952
8953 /* Except for querying the minimum buffer size, target must be open. */
8954 if (!rs->remote_desc)
8955 error (_("remote query is only available after target open"));
8956
8957 gdb_assert (annex != NULL);
8958 gdb_assert (readbuf != NULL);
8959
8960 p2 = rs->buf;
8961 *p2++ = 'q';
8962 *p2++ = query_type;
8963
8964 /* We used one buffer char for the remote protocol q command and
8965 another for the query type. As the remote protocol encapsulation
8966 uses 4 chars plus one extra in case we are debugging
8967 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8968 string. */
8969 i = 0;
8970 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8971 {
8972 /* Bad caller may have sent forbidden characters. */
8973 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8974 *p2++ = annex[i];
8975 i++;
8976 }
8977 *p2 = '\0';
8978 gdb_assert (annex[i] == '\0');
8979
8980 i = putpkt (rs->buf);
8981 if (i < 0)
8982 return i;
8983
8984 getpkt (&rs->buf, &rs->buf_size, 0);
8985 strcpy ((char *) readbuf, rs->buf);
8986
8987 return strlen ((char *) readbuf);
8988 }
8989
8990 static int
8991 remote_search_memory (struct target_ops* ops,
8992 CORE_ADDR start_addr, ULONGEST search_space_len,
8993 const gdb_byte *pattern, ULONGEST pattern_len,
8994 CORE_ADDR *found_addrp)
8995 {
8996 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8997 struct remote_state *rs = get_remote_state ();
8998 int max_size = get_memory_write_packet_size ();
8999 struct packet_config *packet =
9000 &remote_protocol_packets[PACKET_qSearch_memory];
9001 /* Number of packet bytes used to encode the pattern;
9002 this could be more than PATTERN_LEN due to escape characters. */
9003 int escaped_pattern_len;
9004 /* Amount of pattern that was encodable in the packet. */
9005 int used_pattern_len;
9006 int i;
9007 int found;
9008 ULONGEST found_addr;
9009
9010 /* Don't go to the target if we don't have to.
9011 This is done before checking packet->support to avoid the possibility that
9012 a success for this edge case means the facility works in general. */
9013 if (pattern_len > search_space_len)
9014 return 0;
9015 if (pattern_len == 0)
9016 {
9017 *found_addrp = start_addr;
9018 return 1;
9019 }
9020
9021 /* If we already know the packet isn't supported, fall back to the simple
9022 way of searching memory. */
9023
9024 if (packet->support == PACKET_DISABLE)
9025 {
9026 /* Target doesn't provided special support, fall back and use the
9027 standard support (copy memory and do the search here). */
9028 return simple_search_memory (ops, start_addr, search_space_len,
9029 pattern, pattern_len, found_addrp);
9030 }
9031
9032 /* Make sure the remote is pointing at the right process. */
9033 set_general_process ();
9034
9035 /* Insert header. */
9036 i = snprintf (rs->buf, max_size,
9037 "qSearch:memory:%s;%s;",
9038 phex_nz (start_addr, addr_size),
9039 phex_nz (search_space_len, sizeof (search_space_len)));
9040 max_size -= (i + 1);
9041
9042 /* Escape as much data as fits into rs->buf. */
9043 escaped_pattern_len =
9044 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9045 &used_pattern_len, max_size);
9046
9047 /* Bail if the pattern is too large. */
9048 if (used_pattern_len != pattern_len)
9049 error (_("Pattern is too large to transmit to remote target."));
9050
9051 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9052 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9053 || packet_ok (rs->buf, packet) != PACKET_OK)
9054 {
9055 /* The request may not have worked because the command is not
9056 supported. If so, fall back to the simple way. */
9057 if (packet->support == PACKET_DISABLE)
9058 {
9059 return simple_search_memory (ops, start_addr, search_space_len,
9060 pattern, pattern_len, found_addrp);
9061 }
9062 return -1;
9063 }
9064
9065 if (rs->buf[0] == '0')
9066 found = 0;
9067 else if (rs->buf[0] == '1')
9068 {
9069 found = 1;
9070 if (rs->buf[1] != ',')
9071 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9072 unpack_varlen_hex (rs->buf + 2, &found_addr);
9073 *found_addrp = found_addr;
9074 }
9075 else
9076 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9077
9078 return found;
9079 }
9080
9081 static void
9082 remote_rcmd (char *command,
9083 struct ui_file *outbuf)
9084 {
9085 struct remote_state *rs = get_remote_state ();
9086 char *p = rs->buf;
9087
9088 if (!rs->remote_desc)
9089 error (_("remote rcmd is only available after target open"));
9090
9091 /* Send a NULL command across as an empty command. */
9092 if (command == NULL)
9093 command = "";
9094
9095 /* The query prefix. */
9096 strcpy (rs->buf, "qRcmd,");
9097 p = strchr (rs->buf, '\0');
9098
9099 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9100 > get_remote_packet_size ())
9101 error (_("\"monitor\" command ``%s'' is too long."), command);
9102
9103 /* Encode the actual command. */
9104 bin2hex ((gdb_byte *) command, p, 0);
9105
9106 if (putpkt (rs->buf) < 0)
9107 error (_("Communication problem with target."));
9108
9109 /* get/display the response */
9110 while (1)
9111 {
9112 char *buf;
9113
9114 /* XXX - see also remote_get_noisy_reply(). */
9115 QUIT; /* Allow user to bail out with ^C. */
9116 rs->buf[0] = '\0';
9117 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9118 {
9119 /* Timeout. Continue to (try to) read responses.
9120 This is better than stopping with an error, assuming the stub
9121 is still executing the (long) monitor command.
9122 If needed, the user can interrupt gdb using C-c, obtaining
9123 an effect similar to stop on timeout. */
9124 continue;
9125 }
9126 buf = rs->buf;
9127 if (buf[0] == '\0')
9128 error (_("Target does not support this command."));
9129 if (buf[0] == 'O' && buf[1] != 'K')
9130 {
9131 remote_console_output (buf + 1); /* 'O' message from stub. */
9132 continue;
9133 }
9134 if (strcmp (buf, "OK") == 0)
9135 break;
9136 if (strlen (buf) == 3 && buf[0] == 'E'
9137 && isdigit (buf[1]) && isdigit (buf[2]))
9138 {
9139 error (_("Protocol error with Rcmd"));
9140 }
9141 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9142 {
9143 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9144
9145 fputc_unfiltered (c, outbuf);
9146 }
9147 break;
9148 }
9149 }
9150
9151 static VEC(mem_region_s) *
9152 remote_memory_map (struct target_ops *ops)
9153 {
9154 VEC(mem_region_s) *result = NULL;
9155 char *text = target_read_stralloc (&current_target,
9156 TARGET_OBJECT_MEMORY_MAP, NULL);
9157
9158 if (text)
9159 {
9160 struct cleanup *back_to = make_cleanup (xfree, text);
9161
9162 result = parse_memory_map (text);
9163 do_cleanups (back_to);
9164 }
9165
9166 return result;
9167 }
9168
9169 static void
9170 packet_command (char *args, int from_tty)
9171 {
9172 struct remote_state *rs = get_remote_state ();
9173
9174 if (!rs->remote_desc)
9175 error (_("command can only be used with remote target"));
9176
9177 if (!args)
9178 error (_("remote-packet command requires packet text as argument"));
9179
9180 puts_filtered ("sending: ");
9181 print_packet (args);
9182 puts_filtered ("\n");
9183 putpkt (args);
9184
9185 getpkt (&rs->buf, &rs->buf_size, 0);
9186 puts_filtered ("received: ");
9187 print_packet (rs->buf);
9188 puts_filtered ("\n");
9189 }
9190
9191 #if 0
9192 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9193
9194 static void display_thread_info (struct gdb_ext_thread_info *info);
9195
9196 static void threadset_test_cmd (char *cmd, int tty);
9197
9198 static void threadalive_test (char *cmd, int tty);
9199
9200 static void threadlist_test_cmd (char *cmd, int tty);
9201
9202 int get_and_display_threadinfo (threadref *ref);
9203
9204 static void threadinfo_test_cmd (char *cmd, int tty);
9205
9206 static int thread_display_step (threadref *ref, void *context);
9207
9208 static void threadlist_update_test_cmd (char *cmd, int tty);
9209
9210 static void init_remote_threadtests (void);
9211
9212 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9213
9214 static void
9215 threadset_test_cmd (char *cmd, int tty)
9216 {
9217 int sample_thread = SAMPLE_THREAD;
9218
9219 printf_filtered (_("Remote threadset test\n"));
9220 set_general_thread (sample_thread);
9221 }
9222
9223
9224 static void
9225 threadalive_test (char *cmd, int tty)
9226 {
9227 int sample_thread = SAMPLE_THREAD;
9228 int pid = ptid_get_pid (inferior_ptid);
9229 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9230
9231 if (remote_thread_alive (ptid))
9232 printf_filtered ("PASS: Thread alive test\n");
9233 else
9234 printf_filtered ("FAIL: Thread alive test\n");
9235 }
9236
9237 void output_threadid (char *title, threadref *ref);
9238
9239 void
9240 output_threadid (char *title, threadref *ref)
9241 {
9242 char hexid[20];
9243
9244 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9245 hexid[16] = 0;
9246 printf_filtered ("%s %s\n", title, (&hexid[0]));
9247 }
9248
9249 static void
9250 threadlist_test_cmd (char *cmd, int tty)
9251 {
9252 int startflag = 1;
9253 threadref nextthread;
9254 int done, result_count;
9255 threadref threadlist[3];
9256
9257 printf_filtered ("Remote Threadlist test\n");
9258 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9259 &result_count, &threadlist[0]))
9260 printf_filtered ("FAIL: threadlist test\n");
9261 else
9262 {
9263 threadref *scan = threadlist;
9264 threadref *limit = scan + result_count;
9265
9266 while (scan < limit)
9267 output_threadid (" thread ", scan++);
9268 }
9269 }
9270
9271 void
9272 display_thread_info (struct gdb_ext_thread_info *info)
9273 {
9274 output_threadid ("Threadid: ", &info->threadid);
9275 printf_filtered ("Name: %s\n ", info->shortname);
9276 printf_filtered ("State: %s\n", info->display);
9277 printf_filtered ("other: %s\n\n", info->more_display);
9278 }
9279
9280 int
9281 get_and_display_threadinfo (threadref *ref)
9282 {
9283 int result;
9284 int set;
9285 struct gdb_ext_thread_info threadinfo;
9286
9287 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9288 | TAG_MOREDISPLAY | TAG_DISPLAY;
9289 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9290 display_thread_info (&threadinfo);
9291 return result;
9292 }
9293
9294 static void
9295 threadinfo_test_cmd (char *cmd, int tty)
9296 {
9297 int athread = SAMPLE_THREAD;
9298 threadref thread;
9299 int set;
9300
9301 int_to_threadref (&thread, athread);
9302 printf_filtered ("Remote Threadinfo test\n");
9303 if (!get_and_display_threadinfo (&thread))
9304 printf_filtered ("FAIL cannot get thread info\n");
9305 }
9306
9307 static int
9308 thread_display_step (threadref *ref, void *context)
9309 {
9310 /* output_threadid(" threadstep ",ref); *//* simple test */
9311 return get_and_display_threadinfo (ref);
9312 }
9313
9314 static void
9315 threadlist_update_test_cmd (char *cmd, int tty)
9316 {
9317 printf_filtered ("Remote Threadlist update test\n");
9318 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9319 }
9320
9321 static void
9322 init_remote_threadtests (void)
9323 {
9324 add_com ("tlist", class_obscure, threadlist_test_cmd,
9325 _("Fetch and print the remote list of "
9326 "thread identifiers, one pkt only"));
9327 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9328 _("Fetch and display info about one thread"));
9329 add_com ("tset", class_obscure, threadset_test_cmd,
9330 _("Test setting to a different thread"));
9331 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9332 _("Iterate through updating all remote thread info"));
9333 add_com ("talive", class_obscure, threadalive_test,
9334 _(" Remote thread alive test "));
9335 }
9336
9337 #endif /* 0 */
9338
9339 /* Convert a thread ID to a string. Returns the string in a static
9340 buffer. */
9341
9342 static char *
9343 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9344 {
9345 static char buf[64];
9346 struct remote_state *rs = get_remote_state ();
9347
9348 if (ptid_equal (ptid, null_ptid))
9349 return normal_pid_to_str (ptid);
9350 else if (ptid_is_pid (ptid))
9351 {
9352 /* Printing an inferior target id. */
9353
9354 /* When multi-process extensions are off, there's no way in the
9355 remote protocol to know the remote process id, if there's any
9356 at all. There's one exception --- when we're connected with
9357 target extended-remote, and we manually attached to a process
9358 with "attach PID". We don't record anywhere a flag that
9359 allows us to distinguish that case from the case of
9360 connecting with extended-remote and the stub already being
9361 attached to a process, and reporting yes to qAttached, hence
9362 no smart special casing here. */
9363 if (!remote_multi_process_p (rs))
9364 {
9365 xsnprintf (buf, sizeof buf, "Remote target");
9366 return buf;
9367 }
9368
9369 return normal_pid_to_str (ptid);
9370 }
9371 else
9372 {
9373 if (ptid_equal (magic_null_ptid, ptid))
9374 xsnprintf (buf, sizeof buf, "Thread <main>");
9375 else if (rs->extended && remote_multi_process_p (rs))
9376 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9377 ptid_get_pid (ptid), ptid_get_tid (ptid));
9378 else
9379 xsnprintf (buf, sizeof buf, "Thread %ld",
9380 ptid_get_tid (ptid));
9381 return buf;
9382 }
9383 }
9384
9385 /* Get the address of the thread local variable in OBJFILE which is
9386 stored at OFFSET within the thread local storage for thread PTID. */
9387
9388 static CORE_ADDR
9389 remote_get_thread_local_address (struct target_ops *ops,
9390 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9391 {
9392 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9393 {
9394 struct remote_state *rs = get_remote_state ();
9395 char *p = rs->buf;
9396 char *endp = rs->buf + get_remote_packet_size ();
9397 enum packet_result result;
9398
9399 strcpy (p, "qGetTLSAddr:");
9400 p += strlen (p);
9401 p = write_ptid (p, endp, ptid);
9402 *p++ = ',';
9403 p += hexnumstr (p, offset);
9404 *p++ = ',';
9405 p += hexnumstr (p, lm);
9406 *p++ = '\0';
9407
9408 putpkt (rs->buf);
9409 getpkt (&rs->buf, &rs->buf_size, 0);
9410 result = packet_ok (rs->buf,
9411 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9412 if (result == PACKET_OK)
9413 {
9414 ULONGEST result;
9415
9416 unpack_varlen_hex (rs->buf, &result);
9417 return result;
9418 }
9419 else if (result == PACKET_UNKNOWN)
9420 throw_error (TLS_GENERIC_ERROR,
9421 _("Remote target doesn't support qGetTLSAddr packet"));
9422 else
9423 throw_error (TLS_GENERIC_ERROR,
9424 _("Remote target failed to process qGetTLSAddr request"));
9425 }
9426 else
9427 throw_error (TLS_GENERIC_ERROR,
9428 _("TLS not supported or disabled on this target"));
9429 /* Not reached. */
9430 return 0;
9431 }
9432
9433 /* Provide thread local base, i.e. Thread Information Block address.
9434 Returns 1 if ptid is found and thread_local_base is non zero. */
9435
9436 static int
9437 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9438 {
9439 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9440 {
9441 struct remote_state *rs = get_remote_state ();
9442 char *p = rs->buf;
9443 char *endp = rs->buf + get_remote_packet_size ();
9444 enum packet_result result;
9445
9446 strcpy (p, "qGetTIBAddr:");
9447 p += strlen (p);
9448 p = write_ptid (p, endp, ptid);
9449 *p++ = '\0';
9450
9451 putpkt (rs->buf);
9452 getpkt (&rs->buf, &rs->buf_size, 0);
9453 result = packet_ok (rs->buf,
9454 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9455 if (result == PACKET_OK)
9456 {
9457 ULONGEST result;
9458
9459 unpack_varlen_hex (rs->buf, &result);
9460 if (addr)
9461 *addr = (CORE_ADDR) result;
9462 return 1;
9463 }
9464 else if (result == PACKET_UNKNOWN)
9465 error (_("Remote target doesn't support qGetTIBAddr packet"));
9466 else
9467 error (_("Remote target failed to process qGetTIBAddr request"));
9468 }
9469 else
9470 error (_("qGetTIBAddr not supported or disabled on this target"));
9471 /* Not reached. */
9472 return 0;
9473 }
9474
9475 /* Support for inferring a target description based on the current
9476 architecture and the size of a 'g' packet. While the 'g' packet
9477 can have any size (since optional registers can be left off the
9478 end), some sizes are easily recognizable given knowledge of the
9479 approximate architecture. */
9480
9481 struct remote_g_packet_guess
9482 {
9483 int bytes;
9484 const struct target_desc *tdesc;
9485 };
9486 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9487 DEF_VEC_O(remote_g_packet_guess_s);
9488
9489 struct remote_g_packet_data
9490 {
9491 VEC(remote_g_packet_guess_s) *guesses;
9492 };
9493
9494 static struct gdbarch_data *remote_g_packet_data_handle;
9495
9496 static void *
9497 remote_g_packet_data_init (struct obstack *obstack)
9498 {
9499 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9500 }
9501
9502 void
9503 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9504 const struct target_desc *tdesc)
9505 {
9506 struct remote_g_packet_data *data
9507 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9508 struct remote_g_packet_guess new_guess, *guess;
9509 int ix;
9510
9511 gdb_assert (tdesc != NULL);
9512
9513 for (ix = 0;
9514 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9515 ix++)
9516 if (guess->bytes == bytes)
9517 internal_error (__FILE__, __LINE__,
9518 _("Duplicate g packet description added for size %d"),
9519 bytes);
9520
9521 new_guess.bytes = bytes;
9522 new_guess.tdesc = tdesc;
9523 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9524 }
9525
9526 /* Return 1 if remote_read_description would do anything on this target
9527 and architecture, 0 otherwise. */
9528
9529 static int
9530 remote_read_description_p (struct target_ops *target)
9531 {
9532 struct remote_g_packet_data *data
9533 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9534
9535 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9536 return 1;
9537
9538 return 0;
9539 }
9540
9541 static const struct target_desc *
9542 remote_read_description (struct target_ops *target)
9543 {
9544 struct remote_g_packet_data *data
9545 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9546
9547 /* Do not try this during initial connection, when we do not know
9548 whether there is a running but stopped thread. */
9549 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9550 return NULL;
9551
9552 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9553 {
9554 struct remote_g_packet_guess *guess;
9555 int ix;
9556 int bytes = send_g_packet ();
9557
9558 for (ix = 0;
9559 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9560 ix++)
9561 if (guess->bytes == bytes)
9562 return guess->tdesc;
9563
9564 /* We discard the g packet. A minor optimization would be to
9565 hold on to it, and fill the register cache once we have selected
9566 an architecture, but it's too tricky to do safely. */
9567 }
9568
9569 return NULL;
9570 }
9571
9572 /* Remote file transfer support. This is host-initiated I/O, not
9573 target-initiated; for target-initiated, see remote-fileio.c. */
9574
9575 /* If *LEFT is at least the length of STRING, copy STRING to
9576 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9577 decrease *LEFT. Otherwise raise an error. */
9578
9579 static void
9580 remote_buffer_add_string (char **buffer, int *left, char *string)
9581 {
9582 int len = strlen (string);
9583
9584 if (len > *left)
9585 error (_("Packet too long for target."));
9586
9587 memcpy (*buffer, string, len);
9588 *buffer += len;
9589 *left -= len;
9590
9591 /* NUL-terminate the buffer as a convenience, if there is
9592 room. */
9593 if (*left)
9594 **buffer = '\0';
9595 }
9596
9597 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9598 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9599 decrease *LEFT. Otherwise raise an error. */
9600
9601 static void
9602 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9603 int len)
9604 {
9605 if (2 * len > *left)
9606 error (_("Packet too long for target."));
9607
9608 bin2hex (bytes, *buffer, len);
9609 *buffer += 2 * len;
9610 *left -= 2 * len;
9611
9612 /* NUL-terminate the buffer as a convenience, if there is
9613 room. */
9614 if (*left)
9615 **buffer = '\0';
9616 }
9617
9618 /* If *LEFT is large enough, convert VALUE to hex and add it to
9619 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9620 decrease *LEFT. Otherwise raise an error. */
9621
9622 static void
9623 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9624 {
9625 int len = hexnumlen (value);
9626
9627 if (len > *left)
9628 error (_("Packet too long for target."));
9629
9630 hexnumstr (*buffer, value);
9631 *buffer += len;
9632 *left -= len;
9633
9634 /* NUL-terminate the buffer as a convenience, if there is
9635 room. */
9636 if (*left)
9637 **buffer = '\0';
9638 }
9639
9640 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9641 value, *REMOTE_ERRNO to the remote error number or zero if none
9642 was included, and *ATTACHMENT to point to the start of the annex
9643 if any. The length of the packet isn't needed here; there may
9644 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9645
9646 Return 0 if the packet could be parsed, -1 if it could not. If
9647 -1 is returned, the other variables may not be initialized. */
9648
9649 static int
9650 remote_hostio_parse_result (char *buffer, int *retcode,
9651 int *remote_errno, char **attachment)
9652 {
9653 char *p, *p2;
9654
9655 *remote_errno = 0;
9656 *attachment = NULL;
9657
9658 if (buffer[0] != 'F')
9659 return -1;
9660
9661 errno = 0;
9662 *retcode = strtol (&buffer[1], &p, 16);
9663 if (errno != 0 || p == &buffer[1])
9664 return -1;
9665
9666 /* Check for ",errno". */
9667 if (*p == ',')
9668 {
9669 errno = 0;
9670 *remote_errno = strtol (p + 1, &p2, 16);
9671 if (errno != 0 || p + 1 == p2)
9672 return -1;
9673 p = p2;
9674 }
9675
9676 /* Check for ";attachment". If there is no attachment, the
9677 packet should end here. */
9678 if (*p == ';')
9679 {
9680 *attachment = p + 1;
9681 return 0;
9682 }
9683 else if (*p == '\0')
9684 return 0;
9685 else
9686 return -1;
9687 }
9688
9689 /* Send a prepared I/O packet to the target and read its response.
9690 The prepared packet is in the global RS->BUF before this function
9691 is called, and the answer is there when we return.
9692
9693 COMMAND_BYTES is the length of the request to send, which may include
9694 binary data. WHICH_PACKET is the packet configuration to check
9695 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9696 is set to the error number and -1 is returned. Otherwise the value
9697 returned by the function is returned.
9698
9699 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9700 attachment is expected; an error will be reported if there's a
9701 mismatch. If one is found, *ATTACHMENT will be set to point into
9702 the packet buffer and *ATTACHMENT_LEN will be set to the
9703 attachment's length. */
9704
9705 static int
9706 remote_hostio_send_command (int command_bytes, int which_packet,
9707 int *remote_errno, char **attachment,
9708 int *attachment_len)
9709 {
9710 struct remote_state *rs = get_remote_state ();
9711 int ret, bytes_read;
9712 char *attachment_tmp;
9713
9714 if (!rs->remote_desc
9715 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9716 {
9717 *remote_errno = FILEIO_ENOSYS;
9718 return -1;
9719 }
9720
9721 putpkt_binary (rs->buf, command_bytes);
9722 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9723
9724 /* If it timed out, something is wrong. Don't try to parse the
9725 buffer. */
9726 if (bytes_read < 0)
9727 {
9728 *remote_errno = FILEIO_EINVAL;
9729 return -1;
9730 }
9731
9732 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9733 {
9734 case PACKET_ERROR:
9735 *remote_errno = FILEIO_EINVAL;
9736 return -1;
9737 case PACKET_UNKNOWN:
9738 *remote_errno = FILEIO_ENOSYS;
9739 return -1;
9740 case PACKET_OK:
9741 break;
9742 }
9743
9744 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9745 &attachment_tmp))
9746 {
9747 *remote_errno = FILEIO_EINVAL;
9748 return -1;
9749 }
9750
9751 /* Make sure we saw an attachment if and only if we expected one. */
9752 if ((attachment_tmp == NULL && attachment != NULL)
9753 || (attachment_tmp != NULL && attachment == NULL))
9754 {
9755 *remote_errno = FILEIO_EINVAL;
9756 return -1;
9757 }
9758
9759 /* If an attachment was found, it must point into the packet buffer;
9760 work out how many bytes there were. */
9761 if (attachment_tmp != NULL)
9762 {
9763 *attachment = attachment_tmp;
9764 *attachment_len = bytes_read - (*attachment - rs->buf);
9765 }
9766
9767 return ret;
9768 }
9769
9770 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9771 remote file descriptor, or -1 if an error occurs (and set
9772 *REMOTE_ERRNO). */
9773
9774 static int
9775 remote_hostio_open (const char *filename, int flags, int mode,
9776 int *remote_errno)
9777 {
9778 struct remote_state *rs = get_remote_state ();
9779 char *p = rs->buf;
9780 int left = get_remote_packet_size () - 1;
9781
9782 remote_buffer_add_string (&p, &left, "vFile:open:");
9783
9784 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9785 strlen (filename));
9786 remote_buffer_add_string (&p, &left, ",");
9787
9788 remote_buffer_add_int (&p, &left, flags);
9789 remote_buffer_add_string (&p, &left, ",");
9790
9791 remote_buffer_add_int (&p, &left, mode);
9792
9793 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9794 remote_errno, NULL, NULL);
9795 }
9796
9797 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9798 Return the number of bytes written, or -1 if an error occurs (and
9799 set *REMOTE_ERRNO). */
9800
9801 static int
9802 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9803 ULONGEST offset, int *remote_errno)
9804 {
9805 struct remote_state *rs = get_remote_state ();
9806 char *p = rs->buf;
9807 int left = get_remote_packet_size ();
9808 int out_len;
9809
9810 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9811
9812 remote_buffer_add_int (&p, &left, fd);
9813 remote_buffer_add_string (&p, &left, ",");
9814
9815 remote_buffer_add_int (&p, &left, offset);
9816 remote_buffer_add_string (&p, &left, ",");
9817
9818 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9819 get_remote_packet_size () - (p - rs->buf));
9820
9821 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9822 remote_errno, NULL, NULL);
9823 }
9824
9825 /* Read up to LEN bytes FD on the remote target into READ_BUF
9826 Return the number of bytes read, or -1 if an error occurs (and
9827 set *REMOTE_ERRNO). */
9828
9829 static int
9830 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9831 ULONGEST offset, int *remote_errno)
9832 {
9833 struct remote_state *rs = get_remote_state ();
9834 char *p = rs->buf;
9835 char *attachment;
9836 int left = get_remote_packet_size ();
9837 int ret, attachment_len;
9838 int read_len;
9839
9840 remote_buffer_add_string (&p, &left, "vFile:pread:");
9841
9842 remote_buffer_add_int (&p, &left, fd);
9843 remote_buffer_add_string (&p, &left, ",");
9844
9845 remote_buffer_add_int (&p, &left, len);
9846 remote_buffer_add_string (&p, &left, ",");
9847
9848 remote_buffer_add_int (&p, &left, offset);
9849
9850 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9851 remote_errno, &attachment,
9852 &attachment_len);
9853
9854 if (ret < 0)
9855 return ret;
9856
9857 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9858 read_buf, len);
9859 if (read_len != ret)
9860 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9861
9862 return ret;
9863 }
9864
9865 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9866 (and set *REMOTE_ERRNO). */
9867
9868 static int
9869 remote_hostio_close (int fd, int *remote_errno)
9870 {
9871 struct remote_state *rs = get_remote_state ();
9872 char *p = rs->buf;
9873 int left = get_remote_packet_size () - 1;
9874
9875 remote_buffer_add_string (&p, &left, "vFile:close:");
9876
9877 remote_buffer_add_int (&p, &left, fd);
9878
9879 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9880 remote_errno, NULL, NULL);
9881 }
9882
9883 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9884 occurs (and set *REMOTE_ERRNO). */
9885
9886 static int
9887 remote_hostio_unlink (const char *filename, int *remote_errno)
9888 {
9889 struct remote_state *rs = get_remote_state ();
9890 char *p = rs->buf;
9891 int left = get_remote_packet_size () - 1;
9892
9893 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9894
9895 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9896 strlen (filename));
9897
9898 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9899 remote_errno, NULL, NULL);
9900 }
9901
9902 /* Read value of symbolic link FILENAME on the remote target. Return
9903 a null-terminated string allocated via xmalloc, or NULL if an error
9904 occurs (and set *REMOTE_ERRNO). */
9905
9906 static char *
9907 remote_hostio_readlink (const char *filename, int *remote_errno)
9908 {
9909 struct remote_state *rs = get_remote_state ();
9910 char *p = rs->buf;
9911 char *attachment;
9912 int left = get_remote_packet_size ();
9913 int len, attachment_len;
9914 int read_len;
9915 char *ret;
9916
9917 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9918
9919 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9920 strlen (filename));
9921
9922 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9923 remote_errno, &attachment,
9924 &attachment_len);
9925
9926 if (len < 0)
9927 return NULL;
9928
9929 ret = xmalloc (len + 1);
9930
9931 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9932 (gdb_byte *) ret, len);
9933 if (read_len != len)
9934 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9935
9936 ret[len] = '\0';
9937 return ret;
9938 }
9939
9940 static int
9941 remote_fileio_errno_to_host (int errnum)
9942 {
9943 switch (errnum)
9944 {
9945 case FILEIO_EPERM:
9946 return EPERM;
9947 case FILEIO_ENOENT:
9948 return ENOENT;
9949 case FILEIO_EINTR:
9950 return EINTR;
9951 case FILEIO_EIO:
9952 return EIO;
9953 case FILEIO_EBADF:
9954 return EBADF;
9955 case FILEIO_EACCES:
9956 return EACCES;
9957 case FILEIO_EFAULT:
9958 return EFAULT;
9959 case FILEIO_EBUSY:
9960 return EBUSY;
9961 case FILEIO_EEXIST:
9962 return EEXIST;
9963 case FILEIO_ENODEV:
9964 return ENODEV;
9965 case FILEIO_ENOTDIR:
9966 return ENOTDIR;
9967 case FILEIO_EISDIR:
9968 return EISDIR;
9969 case FILEIO_EINVAL:
9970 return EINVAL;
9971 case FILEIO_ENFILE:
9972 return ENFILE;
9973 case FILEIO_EMFILE:
9974 return EMFILE;
9975 case FILEIO_EFBIG:
9976 return EFBIG;
9977 case FILEIO_ENOSPC:
9978 return ENOSPC;
9979 case FILEIO_ESPIPE:
9980 return ESPIPE;
9981 case FILEIO_EROFS:
9982 return EROFS;
9983 case FILEIO_ENOSYS:
9984 return ENOSYS;
9985 case FILEIO_ENAMETOOLONG:
9986 return ENAMETOOLONG;
9987 }
9988 return -1;
9989 }
9990
9991 static char *
9992 remote_hostio_error (int errnum)
9993 {
9994 int host_error = remote_fileio_errno_to_host (errnum);
9995
9996 if (host_error == -1)
9997 error (_("Unknown remote I/O error %d"), errnum);
9998 else
9999 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10000 }
10001
10002 static void
10003 remote_hostio_close_cleanup (void *opaque)
10004 {
10005 int fd = *(int *) opaque;
10006 int remote_errno;
10007
10008 remote_hostio_close (fd, &remote_errno);
10009 }
10010
10011
10012 static void *
10013 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10014 {
10015 const char *filename = bfd_get_filename (abfd);
10016 int fd, remote_errno;
10017 int *stream;
10018
10019 gdb_assert (remote_filename_p (filename));
10020
10021 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10022 if (fd == -1)
10023 {
10024 errno = remote_fileio_errno_to_host (remote_errno);
10025 bfd_set_error (bfd_error_system_call);
10026 return NULL;
10027 }
10028
10029 stream = xmalloc (sizeof (int));
10030 *stream = fd;
10031 return stream;
10032 }
10033
10034 static int
10035 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10036 {
10037 int fd = *(int *)stream;
10038 int remote_errno;
10039
10040 xfree (stream);
10041
10042 /* Ignore errors on close; these may happen if the remote
10043 connection was already torn down. */
10044 remote_hostio_close (fd, &remote_errno);
10045
10046 /* Zero means success. */
10047 return 0;
10048 }
10049
10050 static file_ptr
10051 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10052 file_ptr nbytes, file_ptr offset)
10053 {
10054 int fd = *(int *)stream;
10055 int remote_errno;
10056 file_ptr pos, bytes;
10057
10058 pos = 0;
10059 while (nbytes > pos)
10060 {
10061 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10062 offset + pos, &remote_errno);
10063 if (bytes == 0)
10064 /* Success, but no bytes, means end-of-file. */
10065 break;
10066 if (bytes == -1)
10067 {
10068 errno = remote_fileio_errno_to_host (remote_errno);
10069 bfd_set_error (bfd_error_system_call);
10070 return -1;
10071 }
10072
10073 pos += bytes;
10074 }
10075
10076 return pos;
10077 }
10078
10079 static int
10080 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10081 {
10082 /* FIXME: We should probably implement remote_hostio_stat. */
10083 sb->st_size = INT_MAX;
10084 return 0;
10085 }
10086
10087 int
10088 remote_filename_p (const char *filename)
10089 {
10090 return strncmp (filename, "remote:", 7) == 0;
10091 }
10092
10093 bfd *
10094 remote_bfd_open (const char *remote_file, const char *target)
10095 {
10096 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10097 remote_bfd_iovec_open, NULL,
10098 remote_bfd_iovec_pread,
10099 remote_bfd_iovec_close,
10100 remote_bfd_iovec_stat);
10101
10102 return abfd;
10103 }
10104
10105 void
10106 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10107 {
10108 struct cleanup *back_to, *close_cleanup;
10109 int retcode, fd, remote_errno, bytes, io_size;
10110 FILE *file;
10111 gdb_byte *buffer;
10112 int bytes_in_buffer;
10113 int saw_eof;
10114 ULONGEST offset;
10115 struct remote_state *rs = get_remote_state ();
10116
10117 if (!rs->remote_desc)
10118 error (_("command can only be used with remote target"));
10119
10120 file = gdb_fopen_cloexec (local_file, "rb");
10121 if (file == NULL)
10122 perror_with_name (local_file);
10123 back_to = make_cleanup_fclose (file);
10124
10125 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10126 | FILEIO_O_TRUNC),
10127 0700, &remote_errno);
10128 if (fd == -1)
10129 remote_hostio_error (remote_errno);
10130
10131 /* Send up to this many bytes at once. They won't all fit in the
10132 remote packet limit, so we'll transfer slightly fewer. */
10133 io_size = get_remote_packet_size ();
10134 buffer = xmalloc (io_size);
10135 make_cleanup (xfree, buffer);
10136
10137 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10138
10139 bytes_in_buffer = 0;
10140 saw_eof = 0;
10141 offset = 0;
10142 while (bytes_in_buffer || !saw_eof)
10143 {
10144 if (!saw_eof)
10145 {
10146 bytes = fread (buffer + bytes_in_buffer, 1,
10147 io_size - bytes_in_buffer,
10148 file);
10149 if (bytes == 0)
10150 {
10151 if (ferror (file))
10152 error (_("Error reading %s."), local_file);
10153 else
10154 {
10155 /* EOF. Unless there is something still in the
10156 buffer from the last iteration, we are done. */
10157 saw_eof = 1;
10158 if (bytes_in_buffer == 0)
10159 break;
10160 }
10161 }
10162 }
10163 else
10164 bytes = 0;
10165
10166 bytes += bytes_in_buffer;
10167 bytes_in_buffer = 0;
10168
10169 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10170 offset, &remote_errno);
10171
10172 if (retcode < 0)
10173 remote_hostio_error (remote_errno);
10174 else if (retcode == 0)
10175 error (_("Remote write of %d bytes returned 0!"), bytes);
10176 else if (retcode < bytes)
10177 {
10178 /* Short write. Save the rest of the read data for the next
10179 write. */
10180 bytes_in_buffer = bytes - retcode;
10181 memmove (buffer, buffer + retcode, bytes_in_buffer);
10182 }
10183
10184 offset += retcode;
10185 }
10186
10187 discard_cleanups (close_cleanup);
10188 if (remote_hostio_close (fd, &remote_errno))
10189 remote_hostio_error (remote_errno);
10190
10191 if (from_tty)
10192 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10193 do_cleanups (back_to);
10194 }
10195
10196 void
10197 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10198 {
10199 struct cleanup *back_to, *close_cleanup;
10200 int fd, remote_errno, bytes, io_size;
10201 FILE *file;
10202 gdb_byte *buffer;
10203 ULONGEST offset;
10204 struct remote_state *rs = get_remote_state ();
10205
10206 if (!rs->remote_desc)
10207 error (_("command can only be used with remote target"));
10208
10209 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10210 if (fd == -1)
10211 remote_hostio_error (remote_errno);
10212
10213 file = gdb_fopen_cloexec (local_file, "wb");
10214 if (file == NULL)
10215 perror_with_name (local_file);
10216 back_to = make_cleanup_fclose (file);
10217
10218 /* Send up to this many bytes at once. They won't all fit in the
10219 remote packet limit, so we'll transfer slightly fewer. */
10220 io_size = get_remote_packet_size ();
10221 buffer = xmalloc (io_size);
10222 make_cleanup (xfree, buffer);
10223
10224 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10225
10226 offset = 0;
10227 while (1)
10228 {
10229 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10230 if (bytes == 0)
10231 /* Success, but no bytes, means end-of-file. */
10232 break;
10233 if (bytes == -1)
10234 remote_hostio_error (remote_errno);
10235
10236 offset += bytes;
10237
10238 bytes = fwrite (buffer, 1, bytes, file);
10239 if (bytes == 0)
10240 perror_with_name (local_file);
10241 }
10242
10243 discard_cleanups (close_cleanup);
10244 if (remote_hostio_close (fd, &remote_errno))
10245 remote_hostio_error (remote_errno);
10246
10247 if (from_tty)
10248 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10249 do_cleanups (back_to);
10250 }
10251
10252 void
10253 remote_file_delete (const char *remote_file, int from_tty)
10254 {
10255 int retcode, remote_errno;
10256 struct remote_state *rs = get_remote_state ();
10257
10258 if (!rs->remote_desc)
10259 error (_("command can only be used with remote target"));
10260
10261 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10262 if (retcode == -1)
10263 remote_hostio_error (remote_errno);
10264
10265 if (from_tty)
10266 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10267 }
10268
10269 static void
10270 remote_put_command (char *args, int from_tty)
10271 {
10272 struct cleanup *back_to;
10273 char **argv;
10274
10275 if (args == NULL)
10276 error_no_arg (_("file to put"));
10277
10278 argv = gdb_buildargv (args);
10279 back_to = make_cleanup_freeargv (argv);
10280 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10281 error (_("Invalid parameters to remote put"));
10282
10283 remote_file_put (argv[0], argv[1], from_tty);
10284
10285 do_cleanups (back_to);
10286 }
10287
10288 static void
10289 remote_get_command (char *args, int from_tty)
10290 {
10291 struct cleanup *back_to;
10292 char **argv;
10293
10294 if (args == NULL)
10295 error_no_arg (_("file to get"));
10296
10297 argv = gdb_buildargv (args);
10298 back_to = make_cleanup_freeargv (argv);
10299 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10300 error (_("Invalid parameters to remote get"));
10301
10302 remote_file_get (argv[0], argv[1], from_tty);
10303
10304 do_cleanups (back_to);
10305 }
10306
10307 static void
10308 remote_delete_command (char *args, int from_tty)
10309 {
10310 struct cleanup *back_to;
10311 char **argv;
10312
10313 if (args == NULL)
10314 error_no_arg (_("file to delete"));
10315
10316 argv = gdb_buildargv (args);
10317 back_to = make_cleanup_freeargv (argv);
10318 if (argv[0] == NULL || argv[1] != NULL)
10319 error (_("Invalid parameters to remote delete"));
10320
10321 remote_file_delete (argv[0], from_tty);
10322
10323 do_cleanups (back_to);
10324 }
10325
10326 static void
10327 remote_command (char *args, int from_tty)
10328 {
10329 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10330 }
10331
10332 static int
10333 remote_can_execute_reverse (void)
10334 {
10335 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10336 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10337 return 1;
10338 else
10339 return 0;
10340 }
10341
10342 static int
10343 remote_supports_non_stop (void)
10344 {
10345 return 1;
10346 }
10347
10348 static int
10349 remote_supports_disable_randomization (void)
10350 {
10351 /* Only supported in extended mode. */
10352 return 0;
10353 }
10354
10355 static int
10356 remote_supports_multi_process (void)
10357 {
10358 struct remote_state *rs = get_remote_state ();
10359
10360 /* Only extended-remote handles being attached to multiple
10361 processes, even though plain remote can use the multi-process
10362 thread id extensions, so that GDB knows the target process's
10363 PID. */
10364 return rs->extended && remote_multi_process_p (rs);
10365 }
10366
10367 static int
10368 remote_supports_cond_tracepoints (void)
10369 {
10370 struct remote_state *rs = get_remote_state ();
10371
10372 return rs->cond_tracepoints;
10373 }
10374
10375 static int
10376 remote_supports_cond_breakpoints (void)
10377 {
10378 struct remote_state *rs = get_remote_state ();
10379
10380 return rs->cond_breakpoints;
10381 }
10382
10383 static int
10384 remote_supports_fast_tracepoints (void)
10385 {
10386 struct remote_state *rs = get_remote_state ();
10387
10388 return rs->fast_tracepoints;
10389 }
10390
10391 static int
10392 remote_supports_static_tracepoints (void)
10393 {
10394 struct remote_state *rs = get_remote_state ();
10395
10396 return rs->static_tracepoints;
10397 }
10398
10399 static int
10400 remote_supports_install_in_trace (void)
10401 {
10402 struct remote_state *rs = get_remote_state ();
10403
10404 return rs->install_in_trace;
10405 }
10406
10407 static int
10408 remote_supports_enable_disable_tracepoint (void)
10409 {
10410 struct remote_state *rs = get_remote_state ();
10411
10412 return rs->enable_disable_tracepoints;
10413 }
10414
10415 static int
10416 remote_supports_string_tracing (void)
10417 {
10418 struct remote_state *rs = get_remote_state ();
10419
10420 return rs->string_tracing;
10421 }
10422
10423 static int
10424 remote_can_run_breakpoint_commands (void)
10425 {
10426 struct remote_state *rs = get_remote_state ();
10427
10428 return rs->breakpoint_commands;
10429 }
10430
10431 static void
10432 remote_trace_init (void)
10433 {
10434 putpkt ("QTinit");
10435 remote_get_noisy_reply (&target_buf, &target_buf_size);
10436 if (strcmp (target_buf, "OK") != 0)
10437 error (_("Target does not support this command."));
10438 }
10439
10440 static void free_actions_list (char **actions_list);
10441 static void free_actions_list_cleanup_wrapper (void *);
10442 static void
10443 free_actions_list_cleanup_wrapper (void *al)
10444 {
10445 free_actions_list (al);
10446 }
10447
10448 static void
10449 free_actions_list (char **actions_list)
10450 {
10451 int ndx;
10452
10453 if (actions_list == 0)
10454 return;
10455
10456 for (ndx = 0; actions_list[ndx]; ndx++)
10457 xfree (actions_list[ndx]);
10458
10459 xfree (actions_list);
10460 }
10461
10462 /* Recursive routine to walk through command list including loops, and
10463 download packets for each command. */
10464
10465 static void
10466 remote_download_command_source (int num, ULONGEST addr,
10467 struct command_line *cmds)
10468 {
10469 struct remote_state *rs = get_remote_state ();
10470 struct command_line *cmd;
10471
10472 for (cmd = cmds; cmd; cmd = cmd->next)
10473 {
10474 QUIT; /* Allow user to bail out with ^C. */
10475 strcpy (rs->buf, "QTDPsrc:");
10476 encode_source_string (num, addr, "cmd", cmd->line,
10477 rs->buf + strlen (rs->buf),
10478 rs->buf_size - strlen (rs->buf));
10479 putpkt (rs->buf);
10480 remote_get_noisy_reply (&target_buf, &target_buf_size);
10481 if (strcmp (target_buf, "OK"))
10482 warning (_("Target does not support source download."));
10483
10484 if (cmd->control_type == while_control
10485 || cmd->control_type == while_stepping_control)
10486 {
10487 remote_download_command_source (num, addr, *cmd->body_list);
10488
10489 QUIT; /* Allow user to bail out with ^C. */
10490 strcpy (rs->buf, "QTDPsrc:");
10491 encode_source_string (num, addr, "cmd", "end",
10492 rs->buf + strlen (rs->buf),
10493 rs->buf_size - strlen (rs->buf));
10494 putpkt (rs->buf);
10495 remote_get_noisy_reply (&target_buf, &target_buf_size);
10496 if (strcmp (target_buf, "OK"))
10497 warning (_("Target does not support source download."));
10498 }
10499 }
10500 }
10501
10502 static void
10503 remote_download_tracepoint (struct bp_location *loc)
10504 {
10505 #define BUF_SIZE 2048
10506
10507 CORE_ADDR tpaddr;
10508 char addrbuf[40];
10509 char buf[BUF_SIZE];
10510 char **tdp_actions;
10511 char **stepping_actions;
10512 int ndx;
10513 struct cleanup *old_chain = NULL;
10514 struct agent_expr *aexpr;
10515 struct cleanup *aexpr_chain = NULL;
10516 char *pkt;
10517 struct breakpoint *b = loc->owner;
10518 struct tracepoint *t = (struct tracepoint *) b;
10519
10520 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10521 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10522 tdp_actions);
10523 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10524 stepping_actions);
10525
10526 tpaddr = loc->address;
10527 sprintf_vma (addrbuf, tpaddr);
10528 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10529 addrbuf, /* address */
10530 (b->enable_state == bp_enabled ? 'E' : 'D'),
10531 t->step_count, t->pass_count);
10532 /* Fast tracepoints are mostly handled by the target, but we can
10533 tell the target how big of an instruction block should be moved
10534 around. */
10535 if (b->type == bp_fast_tracepoint)
10536 {
10537 /* Only test for support at download time; we may not know
10538 target capabilities at definition time. */
10539 if (remote_supports_fast_tracepoints ())
10540 {
10541 int isize;
10542
10543 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10544 tpaddr, &isize, NULL))
10545 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10546 isize);
10547 else
10548 /* If it passed validation at definition but fails now,
10549 something is very wrong. */
10550 internal_error (__FILE__, __LINE__,
10551 _("Fast tracepoint not "
10552 "valid during download"));
10553 }
10554 else
10555 /* Fast tracepoints are functionally identical to regular
10556 tracepoints, so don't take lack of support as a reason to
10557 give up on the trace run. */
10558 warning (_("Target does not support fast tracepoints, "
10559 "downloading %d as regular tracepoint"), b->number);
10560 }
10561 else if (b->type == bp_static_tracepoint)
10562 {
10563 /* Only test for support at download time; we may not know
10564 target capabilities at definition time. */
10565 if (remote_supports_static_tracepoints ())
10566 {
10567 struct static_tracepoint_marker marker;
10568
10569 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10570 strcat (buf, ":S");
10571 else
10572 error (_("Static tracepoint not valid during download"));
10573 }
10574 else
10575 /* Fast tracepoints are functionally identical to regular
10576 tracepoints, so don't take lack of support as a reason
10577 to give up on the trace run. */
10578 error (_("Target does not support static tracepoints"));
10579 }
10580 /* If the tracepoint has a conditional, make it into an agent
10581 expression and append to the definition. */
10582 if (loc->cond)
10583 {
10584 /* Only test support at download time, we may not know target
10585 capabilities at definition time. */
10586 if (remote_supports_cond_tracepoints ())
10587 {
10588 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10589 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10590 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10591 aexpr->len);
10592 pkt = buf + strlen (buf);
10593 for (ndx = 0; ndx < aexpr->len; ++ndx)
10594 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10595 *pkt = '\0';
10596 do_cleanups (aexpr_chain);
10597 }
10598 else
10599 warning (_("Target does not support conditional tracepoints, "
10600 "ignoring tp %d cond"), b->number);
10601 }
10602
10603 if (b->commands || *default_collect)
10604 strcat (buf, "-");
10605 putpkt (buf);
10606 remote_get_noisy_reply (&target_buf, &target_buf_size);
10607 if (strcmp (target_buf, "OK"))
10608 error (_("Target does not support tracepoints."));
10609
10610 /* do_single_steps (t); */
10611 if (tdp_actions)
10612 {
10613 for (ndx = 0; tdp_actions[ndx]; ndx++)
10614 {
10615 QUIT; /* Allow user to bail out with ^C. */
10616 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10617 b->number, addrbuf, /* address */
10618 tdp_actions[ndx],
10619 ((tdp_actions[ndx + 1] || stepping_actions)
10620 ? '-' : 0));
10621 putpkt (buf);
10622 remote_get_noisy_reply (&target_buf,
10623 &target_buf_size);
10624 if (strcmp (target_buf, "OK"))
10625 error (_("Error on target while setting tracepoints."));
10626 }
10627 }
10628 if (stepping_actions)
10629 {
10630 for (ndx = 0; stepping_actions[ndx]; ndx++)
10631 {
10632 QUIT; /* Allow user to bail out with ^C. */
10633 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10634 b->number, addrbuf, /* address */
10635 ((ndx == 0) ? "S" : ""),
10636 stepping_actions[ndx],
10637 (stepping_actions[ndx + 1] ? "-" : ""));
10638 putpkt (buf);
10639 remote_get_noisy_reply (&target_buf,
10640 &target_buf_size);
10641 if (strcmp (target_buf, "OK"))
10642 error (_("Error on target while setting tracepoints."));
10643 }
10644 }
10645
10646 if (remote_protocol_packets[PACKET_TracepointSource].support
10647 == PACKET_ENABLE)
10648 {
10649 if (b->addr_string)
10650 {
10651 strcpy (buf, "QTDPsrc:");
10652 encode_source_string (b->number, loc->address,
10653 "at", b->addr_string, buf + strlen (buf),
10654 2048 - strlen (buf));
10655
10656 putpkt (buf);
10657 remote_get_noisy_reply (&target_buf, &target_buf_size);
10658 if (strcmp (target_buf, "OK"))
10659 warning (_("Target does not support source download."));
10660 }
10661 if (b->cond_string)
10662 {
10663 strcpy (buf, "QTDPsrc:");
10664 encode_source_string (b->number, loc->address,
10665 "cond", b->cond_string, buf + strlen (buf),
10666 2048 - strlen (buf));
10667 putpkt (buf);
10668 remote_get_noisy_reply (&target_buf, &target_buf_size);
10669 if (strcmp (target_buf, "OK"))
10670 warning (_("Target does not support source download."));
10671 }
10672 remote_download_command_source (b->number, loc->address,
10673 breakpoint_commands (b));
10674 }
10675
10676 do_cleanups (old_chain);
10677 }
10678
10679 static int
10680 remote_can_download_tracepoint (void)
10681 {
10682 struct remote_state *rs = get_remote_state ();
10683 struct trace_status *ts;
10684 int status;
10685
10686 /* Don't try to install tracepoints until we've relocated our
10687 symbols, and fetched and merged the target's tracepoint list with
10688 ours. */
10689 if (rs->starting_up)
10690 return 0;
10691
10692 ts = current_trace_status ();
10693 status = remote_get_trace_status (ts);
10694
10695 if (status == -1 || !ts->running_known || !ts->running)
10696 return 0;
10697
10698 /* If we are in a tracing experiment, but remote stub doesn't support
10699 installing tracepoint in trace, we have to return. */
10700 if (!remote_supports_install_in_trace ())
10701 return 0;
10702
10703 return 1;
10704 }
10705
10706
10707 static void
10708 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10709 {
10710 struct remote_state *rs = get_remote_state ();
10711 char *p;
10712
10713 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10714 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10715 tsv->builtin);
10716 p = rs->buf + strlen (rs->buf);
10717 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10718 error (_("Trace state variable name too long for tsv definition packet"));
10719 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10720 *p++ = '\0';
10721 putpkt (rs->buf);
10722 remote_get_noisy_reply (&target_buf, &target_buf_size);
10723 if (*target_buf == '\0')
10724 error (_("Target does not support this command."));
10725 if (strcmp (target_buf, "OK") != 0)
10726 error (_("Error on target while downloading trace state variable."));
10727 }
10728
10729 static void
10730 remote_enable_tracepoint (struct bp_location *location)
10731 {
10732 struct remote_state *rs = get_remote_state ();
10733 char addr_buf[40];
10734
10735 sprintf_vma (addr_buf, location->address);
10736 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10737 location->owner->number, addr_buf);
10738 putpkt (rs->buf);
10739 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10740 if (*rs->buf == '\0')
10741 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10742 if (strcmp (rs->buf, "OK") != 0)
10743 error (_("Error on target while enabling tracepoint."));
10744 }
10745
10746 static void
10747 remote_disable_tracepoint (struct bp_location *location)
10748 {
10749 struct remote_state *rs = get_remote_state ();
10750 char addr_buf[40];
10751
10752 sprintf_vma (addr_buf, location->address);
10753 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10754 location->owner->number, addr_buf);
10755 putpkt (rs->buf);
10756 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10757 if (*rs->buf == '\0')
10758 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10759 if (strcmp (rs->buf, "OK") != 0)
10760 error (_("Error on target while disabling tracepoint."));
10761 }
10762
10763 static void
10764 remote_trace_set_readonly_regions (void)
10765 {
10766 asection *s;
10767 bfd *abfd = NULL;
10768 bfd_size_type size;
10769 bfd_vma vma;
10770 int anysecs = 0;
10771 int offset = 0;
10772
10773 if (!exec_bfd)
10774 return; /* No information to give. */
10775
10776 strcpy (target_buf, "QTro");
10777 offset = strlen (target_buf);
10778 for (s = exec_bfd->sections; s; s = s->next)
10779 {
10780 char tmp1[40], tmp2[40];
10781 int sec_length;
10782
10783 if ((s->flags & SEC_LOAD) == 0 ||
10784 /* (s->flags & SEC_CODE) == 0 || */
10785 (s->flags & SEC_READONLY) == 0)
10786 continue;
10787
10788 anysecs = 1;
10789 vma = bfd_get_section_vma (abfd, s);
10790 size = bfd_get_section_size (s);
10791 sprintf_vma (tmp1, vma);
10792 sprintf_vma (tmp2, vma + size);
10793 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10794 if (offset + sec_length + 1 > target_buf_size)
10795 {
10796 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10797 != PACKET_ENABLE)
10798 warning (_("\
10799 Too many sections for read-only sections definition packet."));
10800 break;
10801 }
10802 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10803 tmp1, tmp2);
10804 offset += sec_length;
10805 }
10806 if (anysecs)
10807 {
10808 putpkt (target_buf);
10809 getpkt (&target_buf, &target_buf_size, 0);
10810 }
10811 }
10812
10813 static void
10814 remote_trace_start (void)
10815 {
10816 putpkt ("QTStart");
10817 remote_get_noisy_reply (&target_buf, &target_buf_size);
10818 if (*target_buf == '\0')
10819 error (_("Target does not support this command."));
10820 if (strcmp (target_buf, "OK") != 0)
10821 error (_("Bogus reply from target: %s"), target_buf);
10822 }
10823
10824 static int
10825 remote_get_trace_status (struct trace_status *ts)
10826 {
10827 /* Initialize it just to avoid a GCC false warning. */
10828 char *p = NULL;
10829 /* FIXME we need to get register block size some other way. */
10830 extern int trace_regblock_size;
10831 volatile struct gdb_exception ex;
10832 enum packet_result result;
10833
10834 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10835 return -1;
10836
10837 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10838
10839 putpkt ("qTStatus");
10840
10841 TRY_CATCH (ex, RETURN_MASK_ERROR)
10842 {
10843 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10844 }
10845 if (ex.reason < 0)
10846 {
10847 if (ex.error != TARGET_CLOSE_ERROR)
10848 {
10849 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10850 return -1;
10851 }
10852 throw_exception (ex);
10853 }
10854
10855 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10856
10857 /* If the remote target doesn't do tracing, flag it. */
10858 if (result == PACKET_UNKNOWN)
10859 return -1;
10860
10861 /* We're working with a live target. */
10862 ts->filename = NULL;
10863
10864 if (*p++ != 'T')
10865 error (_("Bogus trace status reply from target: %s"), target_buf);
10866
10867 /* Function 'parse_trace_status' sets default value of each field of
10868 'ts' at first, so we don't have to do it here. */
10869 parse_trace_status (p, ts);
10870
10871 return ts->running;
10872 }
10873
10874 static void
10875 remote_get_tracepoint_status (struct breakpoint *bp,
10876 struct uploaded_tp *utp)
10877 {
10878 struct remote_state *rs = get_remote_state ();
10879 char *reply;
10880 struct bp_location *loc;
10881 struct tracepoint *tp = (struct tracepoint *) bp;
10882 size_t size = get_remote_packet_size ();
10883
10884 if (tp)
10885 {
10886 tp->base.hit_count = 0;
10887 tp->traceframe_usage = 0;
10888 for (loc = tp->base.loc; loc; loc = loc->next)
10889 {
10890 /* If the tracepoint was never downloaded, don't go asking for
10891 any status. */
10892 if (tp->number_on_target == 0)
10893 continue;
10894 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10895 phex_nz (loc->address, 0));
10896 putpkt (rs->buf);
10897 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10898 if (reply && *reply)
10899 {
10900 if (*reply == 'V')
10901 parse_tracepoint_status (reply + 1, bp, utp);
10902 }
10903 }
10904 }
10905 else if (utp)
10906 {
10907 utp->hit_count = 0;
10908 utp->traceframe_usage = 0;
10909 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10910 phex_nz (utp->addr, 0));
10911 putpkt (rs->buf);
10912 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10913 if (reply && *reply)
10914 {
10915 if (*reply == 'V')
10916 parse_tracepoint_status (reply + 1, bp, utp);
10917 }
10918 }
10919 }
10920
10921 static void
10922 remote_trace_stop (void)
10923 {
10924 putpkt ("QTStop");
10925 remote_get_noisy_reply (&target_buf, &target_buf_size);
10926 if (*target_buf == '\0')
10927 error (_("Target does not support this command."));
10928 if (strcmp (target_buf, "OK") != 0)
10929 error (_("Bogus reply from target: %s"), target_buf);
10930 }
10931
10932 static int
10933 remote_trace_find (enum trace_find_type type, int num,
10934 CORE_ADDR addr1, CORE_ADDR addr2,
10935 int *tpp)
10936 {
10937 struct remote_state *rs = get_remote_state ();
10938 char *endbuf = rs->buf + get_remote_packet_size ();
10939 char *p, *reply;
10940 int target_frameno = -1, target_tracept = -1;
10941
10942 /* Lookups other than by absolute frame number depend on the current
10943 trace selected, so make sure it is correct on the remote end
10944 first. */
10945 if (type != tfind_number)
10946 set_remote_traceframe ();
10947
10948 p = rs->buf;
10949 strcpy (p, "QTFrame:");
10950 p = strchr (p, '\0');
10951 switch (type)
10952 {
10953 case tfind_number:
10954 xsnprintf (p, endbuf - p, "%x", num);
10955 break;
10956 case tfind_pc:
10957 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10958 break;
10959 case tfind_tp:
10960 xsnprintf (p, endbuf - p, "tdp:%x", num);
10961 break;
10962 case tfind_range:
10963 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10964 phex_nz (addr2, 0));
10965 break;
10966 case tfind_outside:
10967 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10968 phex_nz (addr2, 0));
10969 break;
10970 default:
10971 error (_("Unknown trace find type %d"), type);
10972 }
10973
10974 putpkt (rs->buf);
10975 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10976 if (*reply == '\0')
10977 error (_("Target does not support this command."));
10978
10979 while (reply && *reply)
10980 switch (*reply)
10981 {
10982 case 'F':
10983 p = ++reply;
10984 target_frameno = (int) strtol (p, &reply, 16);
10985 if (reply == p)
10986 error (_("Unable to parse trace frame number"));
10987 /* Don't update our remote traceframe number cache on failure
10988 to select a remote traceframe. */
10989 if (target_frameno == -1)
10990 return -1;
10991 break;
10992 case 'T':
10993 p = ++reply;
10994 target_tracept = (int) strtol (p, &reply, 16);
10995 if (reply == p)
10996 error (_("Unable to parse tracepoint number"));
10997 break;
10998 case 'O': /* "OK"? */
10999 if (reply[1] == 'K' && reply[2] == '\0')
11000 reply += 2;
11001 else
11002 error (_("Bogus reply from target: %s"), reply);
11003 break;
11004 default:
11005 error (_("Bogus reply from target: %s"), reply);
11006 }
11007 if (tpp)
11008 *tpp = target_tracept;
11009
11010 rs->remote_traceframe_number = target_frameno;
11011 return target_frameno;
11012 }
11013
11014 static int
11015 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11016 {
11017 struct remote_state *rs = get_remote_state ();
11018 char *reply;
11019 ULONGEST uval;
11020
11021 set_remote_traceframe ();
11022
11023 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11024 putpkt (rs->buf);
11025 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11026 if (reply && *reply)
11027 {
11028 if (*reply == 'V')
11029 {
11030 unpack_varlen_hex (reply + 1, &uval);
11031 *val = (LONGEST) uval;
11032 return 1;
11033 }
11034 }
11035 return 0;
11036 }
11037
11038 static int
11039 remote_save_trace_data (const char *filename)
11040 {
11041 struct remote_state *rs = get_remote_state ();
11042 char *p, *reply;
11043
11044 p = rs->buf;
11045 strcpy (p, "QTSave:");
11046 p += strlen (p);
11047 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11048 error (_("Remote file name too long for trace save packet"));
11049 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11050 *p++ = '\0';
11051 putpkt (rs->buf);
11052 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11053 if (*reply == '\0')
11054 error (_("Target does not support this command."));
11055 if (strcmp (reply, "OK") != 0)
11056 error (_("Bogus reply from target: %s"), reply);
11057 return 0;
11058 }
11059
11060 /* This is basically a memory transfer, but needs to be its own packet
11061 because we don't know how the target actually organizes its trace
11062 memory, plus we want to be able to ask for as much as possible, but
11063 not be unhappy if we don't get as much as we ask for. */
11064
11065 static LONGEST
11066 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11067 {
11068 struct remote_state *rs = get_remote_state ();
11069 char *reply;
11070 char *p;
11071 int rslt;
11072
11073 p = rs->buf;
11074 strcpy (p, "qTBuffer:");
11075 p += strlen (p);
11076 p += hexnumstr (p, offset);
11077 *p++ = ',';
11078 p += hexnumstr (p, len);
11079 *p++ = '\0';
11080
11081 putpkt (rs->buf);
11082 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11083 if (reply && *reply)
11084 {
11085 /* 'l' by itself means we're at the end of the buffer and
11086 there is nothing more to get. */
11087 if (*reply == 'l')
11088 return 0;
11089
11090 /* Convert the reply into binary. Limit the number of bytes to
11091 convert according to our passed-in buffer size, rather than
11092 what was returned in the packet; if the target is
11093 unexpectedly generous and gives us a bigger reply than we
11094 asked for, we don't want to crash. */
11095 rslt = hex2bin (target_buf, buf, len);
11096 return rslt;
11097 }
11098
11099 /* Something went wrong, flag as an error. */
11100 return -1;
11101 }
11102
11103 static void
11104 remote_set_disconnected_tracing (int val)
11105 {
11106 struct remote_state *rs = get_remote_state ();
11107
11108 if (rs->disconnected_tracing)
11109 {
11110 char *reply;
11111
11112 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11113 putpkt (rs->buf);
11114 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11115 if (*reply == '\0')
11116 error (_("Target does not support this command."));
11117 if (strcmp (reply, "OK") != 0)
11118 error (_("Bogus reply from target: %s"), reply);
11119 }
11120 else if (val)
11121 warning (_("Target does not support disconnected tracing."));
11122 }
11123
11124 static int
11125 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11126 {
11127 struct thread_info *info = find_thread_ptid (ptid);
11128
11129 if (info && info->private)
11130 return info->private->core;
11131 return -1;
11132 }
11133
11134 static void
11135 remote_set_circular_trace_buffer (int val)
11136 {
11137 struct remote_state *rs = get_remote_state ();
11138 char *reply;
11139
11140 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11141 putpkt (rs->buf);
11142 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11143 if (*reply == '\0')
11144 error (_("Target does not support this command."));
11145 if (strcmp (reply, "OK") != 0)
11146 error (_("Bogus reply from target: %s"), reply);
11147 }
11148
11149 static struct traceframe_info *
11150 remote_traceframe_info (void)
11151 {
11152 char *text;
11153
11154 text = target_read_stralloc (&current_target,
11155 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11156 if (text != NULL)
11157 {
11158 struct traceframe_info *info;
11159 struct cleanup *back_to = make_cleanup (xfree, text);
11160
11161 info = parse_traceframe_info (text);
11162 do_cleanups (back_to);
11163 return info;
11164 }
11165
11166 return NULL;
11167 }
11168
11169 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11170 instruction on which a fast tracepoint may be placed. Returns -1
11171 if the packet is not supported, and 0 if the minimum instruction
11172 length is unknown. */
11173
11174 static int
11175 remote_get_min_fast_tracepoint_insn_len (void)
11176 {
11177 struct remote_state *rs = get_remote_state ();
11178 char *reply;
11179
11180 /* If we're not debugging a process yet, the IPA can't be
11181 loaded. */
11182 if (!target_has_execution)
11183 return 0;
11184
11185 /* Make sure the remote is pointing at the right process. */
11186 set_general_process ();
11187
11188 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11189 putpkt (rs->buf);
11190 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11191 if (*reply == '\0')
11192 return -1;
11193 else
11194 {
11195 ULONGEST min_insn_len;
11196
11197 unpack_varlen_hex (reply, &min_insn_len);
11198
11199 return (int) min_insn_len;
11200 }
11201 }
11202
11203 static void
11204 remote_set_trace_buffer_size (LONGEST val)
11205 {
11206 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11207 != PACKET_DISABLE)
11208 {
11209 struct remote_state *rs = get_remote_state ();
11210 char *buf = rs->buf;
11211 char *endbuf = rs->buf + get_remote_packet_size ();
11212 enum packet_result result;
11213
11214 gdb_assert (val >= 0 || val == -1);
11215 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11216 /* Send -1 as literal "-1" to avoid host size dependency. */
11217 if (val < 0)
11218 {
11219 *buf++ = '-';
11220 buf += hexnumstr (buf, (ULONGEST) -val);
11221 }
11222 else
11223 buf += hexnumstr (buf, (ULONGEST) val);
11224
11225 putpkt (rs->buf);
11226 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11227 result = packet_ok (rs->buf,
11228 &remote_protocol_packets[PACKET_QTBuffer_size]);
11229
11230 if (result != PACKET_OK)
11231 warning (_("Bogus reply from target: %s"), rs->buf);
11232 }
11233 }
11234
11235 static int
11236 remote_set_trace_notes (const char *user, const char *notes,
11237 const char *stop_notes)
11238 {
11239 struct remote_state *rs = get_remote_state ();
11240 char *reply;
11241 char *buf = rs->buf;
11242 char *endbuf = rs->buf + get_remote_packet_size ();
11243 int nbytes;
11244
11245 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11246 if (user)
11247 {
11248 buf += xsnprintf (buf, endbuf - buf, "user:");
11249 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11250 buf += 2 * nbytes;
11251 *buf++ = ';';
11252 }
11253 if (notes)
11254 {
11255 buf += xsnprintf (buf, endbuf - buf, "notes:");
11256 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11257 buf += 2 * nbytes;
11258 *buf++ = ';';
11259 }
11260 if (stop_notes)
11261 {
11262 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11263 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11264 buf += 2 * nbytes;
11265 *buf++ = ';';
11266 }
11267 /* Ensure the buffer is terminated. */
11268 *buf = '\0';
11269
11270 putpkt (rs->buf);
11271 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11272 if (*reply == '\0')
11273 return 0;
11274
11275 if (strcmp (reply, "OK") != 0)
11276 error (_("Bogus reply from target: %s"), reply);
11277
11278 return 1;
11279 }
11280
11281 static int
11282 remote_use_agent (int use)
11283 {
11284 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11285 {
11286 struct remote_state *rs = get_remote_state ();
11287
11288 /* If the stub supports QAgent. */
11289 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11290 putpkt (rs->buf);
11291 getpkt (&rs->buf, &rs->buf_size, 0);
11292
11293 if (strcmp (rs->buf, "OK") == 0)
11294 {
11295 use_agent = use;
11296 return 1;
11297 }
11298 }
11299
11300 return 0;
11301 }
11302
11303 static int
11304 remote_can_use_agent (void)
11305 {
11306 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11307 }
11308
11309 struct btrace_target_info
11310 {
11311 /* The ptid of the traced thread. */
11312 ptid_t ptid;
11313 };
11314
11315 /* Check whether the target supports branch tracing. */
11316
11317 static int
11318 remote_supports_btrace (void)
11319 {
11320 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11321 return 0;
11322 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11323 return 0;
11324 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11325 return 0;
11326
11327 return 1;
11328 }
11329
11330 /* Enable branch tracing. */
11331
11332 static struct btrace_target_info *
11333 remote_enable_btrace (ptid_t ptid)
11334 {
11335 struct btrace_target_info *tinfo = NULL;
11336 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11337 struct remote_state *rs = get_remote_state ();
11338 char *buf = rs->buf;
11339 char *endbuf = rs->buf + get_remote_packet_size ();
11340
11341 if (packet->support != PACKET_ENABLE)
11342 error (_("Target does not support branch tracing."));
11343
11344 set_general_thread (ptid);
11345
11346 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11347 putpkt (rs->buf);
11348 getpkt (&rs->buf, &rs->buf_size, 0);
11349
11350 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11351 {
11352 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11353 error (_("Could not enable branch tracing for %s: %s"),
11354 target_pid_to_str (ptid), rs->buf + 2);
11355 else
11356 error (_("Could not enable branch tracing for %s."),
11357 target_pid_to_str (ptid));
11358 }
11359
11360 tinfo = xzalloc (sizeof (*tinfo));
11361 tinfo->ptid = ptid;
11362
11363 return tinfo;
11364 }
11365
11366 /* Disable branch tracing. */
11367
11368 static void
11369 remote_disable_btrace (struct btrace_target_info *tinfo)
11370 {
11371 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11372 struct remote_state *rs = get_remote_state ();
11373 char *buf = rs->buf;
11374 char *endbuf = rs->buf + get_remote_packet_size ();
11375
11376 if (packet->support != PACKET_ENABLE)
11377 error (_("Target does not support branch tracing."));
11378
11379 set_general_thread (tinfo->ptid);
11380
11381 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11382 putpkt (rs->buf);
11383 getpkt (&rs->buf, &rs->buf_size, 0);
11384
11385 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11386 {
11387 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11388 error (_("Could not disable branch tracing for %s: %s"),
11389 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11390 else
11391 error (_("Could not disable branch tracing for %s."),
11392 target_pid_to_str (tinfo->ptid));
11393 }
11394
11395 xfree (tinfo);
11396 }
11397
11398 /* Teardown branch tracing. */
11399
11400 static void
11401 remote_teardown_btrace (struct btrace_target_info *tinfo)
11402 {
11403 /* We must not talk to the target during teardown. */
11404 xfree (tinfo);
11405 }
11406
11407 /* Read the branch trace. */
11408
11409 static VEC (btrace_block_s) *
11410 remote_read_btrace (struct btrace_target_info *tinfo,
11411 enum btrace_read_type type)
11412 {
11413 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11414 struct remote_state *rs = get_remote_state ();
11415 VEC (btrace_block_s) *btrace = NULL;
11416 const char *annex;
11417 char *xml;
11418
11419 if (packet->support != PACKET_ENABLE)
11420 error (_("Target does not support branch tracing."));
11421
11422 #if !defined(HAVE_LIBEXPAT)
11423 error (_("Cannot process branch tracing result. XML parsing not supported."));
11424 #endif
11425
11426 switch (type)
11427 {
11428 case btrace_read_all:
11429 annex = "all";
11430 break;
11431 case btrace_read_new:
11432 annex = "new";
11433 break;
11434 default:
11435 internal_error (__FILE__, __LINE__,
11436 _("Bad branch tracing read type: %u."),
11437 (unsigned int) type);
11438 }
11439
11440 xml = target_read_stralloc (&current_target,
11441 TARGET_OBJECT_BTRACE, annex);
11442 if (xml != NULL)
11443 {
11444 struct cleanup *cleanup = make_cleanup (xfree, xml);
11445
11446 btrace = parse_xml_btrace (xml);
11447 do_cleanups (cleanup);
11448 }
11449
11450 return btrace;
11451 }
11452
11453 static int
11454 remote_augmented_libraries_svr4_read (void)
11455 {
11456 struct remote_state *rs = get_remote_state ();
11457
11458 return rs->augmented_libraries_svr4_read;
11459 }
11460
11461 static void
11462 init_remote_ops (void)
11463 {
11464 remote_ops.to_shortname = "remote";
11465 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11466 remote_ops.to_doc =
11467 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11468 Specify the serial device it is connected to\n\
11469 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11470 remote_ops.to_open = remote_open;
11471 remote_ops.to_close = remote_close;
11472 remote_ops.to_detach = remote_detach;
11473 remote_ops.to_disconnect = remote_disconnect;
11474 remote_ops.to_resume = remote_resume;
11475 remote_ops.to_wait = remote_wait;
11476 remote_ops.to_fetch_registers = remote_fetch_registers;
11477 remote_ops.to_store_registers = remote_store_registers;
11478 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11479 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11480 remote_ops.to_files_info = remote_files_info;
11481 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11482 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11483 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11484 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11485 remote_ops.to_watchpoint_addr_within_range =
11486 remote_watchpoint_addr_within_range;
11487 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11488 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11489 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11490 remote_ops.to_region_ok_for_hw_watchpoint
11491 = remote_region_ok_for_hw_watchpoint;
11492 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11493 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11494 remote_ops.to_kill = remote_kill;
11495 remote_ops.to_load = generic_load;
11496 remote_ops.to_mourn_inferior = remote_mourn;
11497 remote_ops.to_pass_signals = remote_pass_signals;
11498 remote_ops.to_program_signals = remote_program_signals;
11499 remote_ops.to_thread_alive = remote_thread_alive;
11500 remote_ops.to_find_new_threads = remote_threads_info;
11501 remote_ops.to_pid_to_str = remote_pid_to_str;
11502 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11503 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11504 remote_ops.to_stop = remote_stop;
11505 remote_ops.to_xfer_partial = remote_xfer_partial;
11506 remote_ops.to_rcmd = remote_rcmd;
11507 remote_ops.to_log_command = serial_log_command;
11508 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11509 remote_ops.to_stratum = process_stratum;
11510 remote_ops.to_has_all_memory = default_child_has_all_memory;
11511 remote_ops.to_has_memory = default_child_has_memory;
11512 remote_ops.to_has_stack = default_child_has_stack;
11513 remote_ops.to_has_registers = default_child_has_registers;
11514 remote_ops.to_has_execution = default_child_has_execution;
11515 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11516 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11517 remote_ops.to_magic = OPS_MAGIC;
11518 remote_ops.to_memory_map = remote_memory_map;
11519 remote_ops.to_flash_erase = remote_flash_erase;
11520 remote_ops.to_flash_done = remote_flash_done;
11521 remote_ops.to_read_description = remote_read_description;
11522 remote_ops.to_search_memory = remote_search_memory;
11523 remote_ops.to_can_async_p = remote_can_async_p;
11524 remote_ops.to_is_async_p = remote_is_async_p;
11525 remote_ops.to_async = remote_async;
11526 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11527 remote_ops.to_terminal_ours = remote_terminal_ours;
11528 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11529 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11530 remote_ops.to_supports_disable_randomization
11531 = remote_supports_disable_randomization;
11532 remote_ops.to_fileio_open = remote_hostio_open;
11533 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11534 remote_ops.to_fileio_pread = remote_hostio_pread;
11535 remote_ops.to_fileio_close = remote_hostio_close;
11536 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11537 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11538 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11539 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11540 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11541 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11542 remote_ops.to_trace_init = remote_trace_init;
11543 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11544 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11545 remote_ops.to_download_trace_state_variable
11546 = remote_download_trace_state_variable;
11547 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11548 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11549 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11550 remote_ops.to_trace_start = remote_trace_start;
11551 remote_ops.to_get_trace_status = remote_get_trace_status;
11552 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11553 remote_ops.to_trace_stop = remote_trace_stop;
11554 remote_ops.to_trace_find = remote_trace_find;
11555 remote_ops.to_get_trace_state_variable_value
11556 = remote_get_trace_state_variable_value;
11557 remote_ops.to_save_trace_data = remote_save_trace_data;
11558 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11559 remote_ops.to_upload_trace_state_variables
11560 = remote_upload_trace_state_variables;
11561 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11562 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11563 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11564 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11565 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11566 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11567 remote_ops.to_core_of_thread = remote_core_of_thread;
11568 remote_ops.to_verify_memory = remote_verify_memory;
11569 remote_ops.to_get_tib_address = remote_get_tib_address;
11570 remote_ops.to_set_permissions = remote_set_permissions;
11571 remote_ops.to_static_tracepoint_marker_at
11572 = remote_static_tracepoint_marker_at;
11573 remote_ops.to_static_tracepoint_markers_by_strid
11574 = remote_static_tracepoint_markers_by_strid;
11575 remote_ops.to_traceframe_info = remote_traceframe_info;
11576 remote_ops.to_use_agent = remote_use_agent;
11577 remote_ops.to_can_use_agent = remote_can_use_agent;
11578 remote_ops.to_supports_btrace = remote_supports_btrace;
11579 remote_ops.to_enable_btrace = remote_enable_btrace;
11580 remote_ops.to_disable_btrace = remote_disable_btrace;
11581 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11582 remote_ops.to_read_btrace = remote_read_btrace;
11583 remote_ops.to_augmented_libraries_svr4_read =
11584 remote_augmented_libraries_svr4_read;
11585 }
11586
11587 /* Set up the extended remote vector by making a copy of the standard
11588 remote vector and adding to it. */
11589
11590 static void
11591 init_extended_remote_ops (void)
11592 {
11593 extended_remote_ops = remote_ops;
11594
11595 extended_remote_ops.to_shortname = "extended-remote";
11596 extended_remote_ops.to_longname =
11597 "Extended remote serial target in gdb-specific protocol";
11598 extended_remote_ops.to_doc =
11599 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11600 Specify the serial device it is connected to (e.g. /dev/ttya).";
11601 extended_remote_ops.to_open = extended_remote_open;
11602 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11603 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11604 extended_remote_ops.to_detach = extended_remote_detach;
11605 extended_remote_ops.to_attach = extended_remote_attach;
11606 extended_remote_ops.to_kill = extended_remote_kill;
11607 extended_remote_ops.to_supports_disable_randomization
11608 = extended_remote_supports_disable_randomization;
11609 }
11610
11611 static int
11612 remote_can_async_p (void)
11613 {
11614 struct remote_state *rs = get_remote_state ();
11615
11616 if (!target_async_permitted)
11617 /* We only enable async when the user specifically asks for it. */
11618 return 0;
11619
11620 /* We're async whenever the serial device is. */
11621 return serial_can_async_p (rs->remote_desc);
11622 }
11623
11624 static int
11625 remote_is_async_p (void)
11626 {
11627 struct remote_state *rs = get_remote_state ();
11628
11629 if (!target_async_permitted)
11630 /* We only enable async when the user specifically asks for it. */
11631 return 0;
11632
11633 /* We're async whenever the serial device is. */
11634 return serial_is_async_p (rs->remote_desc);
11635 }
11636
11637 /* Pass the SERIAL event on and up to the client. One day this code
11638 will be able to delay notifying the client of an event until the
11639 point where an entire packet has been received. */
11640
11641 static void (*async_client_callback) (enum inferior_event_type event_type,
11642 void *context);
11643 static void *async_client_context;
11644 static serial_event_ftype remote_async_serial_handler;
11645
11646 static void
11647 remote_async_serial_handler (struct serial *scb, void *context)
11648 {
11649 /* Don't propogate error information up to the client. Instead let
11650 the client find out about the error by querying the target. */
11651 async_client_callback (INF_REG_EVENT, async_client_context);
11652 }
11653
11654 static void
11655 remote_async_inferior_event_handler (gdb_client_data data)
11656 {
11657 inferior_event_handler (INF_REG_EVENT, NULL);
11658 }
11659
11660 static void
11661 remote_async (void (*callback) (enum inferior_event_type event_type,
11662 void *context), void *context)
11663 {
11664 struct remote_state *rs = get_remote_state ();
11665
11666 if (callback != NULL)
11667 {
11668 serial_async (rs->remote_desc, remote_async_serial_handler, NULL);
11669 async_client_callback = callback;
11670 async_client_context = context;
11671 }
11672 else
11673 serial_async (rs->remote_desc, NULL, NULL);
11674 }
11675
11676 static void
11677 set_remote_cmd (char *args, int from_tty)
11678 {
11679 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11680 }
11681
11682 static void
11683 show_remote_cmd (char *args, int from_tty)
11684 {
11685 /* We can't just use cmd_show_list here, because we want to skip
11686 the redundant "show remote Z-packet" and the legacy aliases. */
11687 struct cleanup *showlist_chain;
11688 struct cmd_list_element *list = remote_show_cmdlist;
11689 struct ui_out *uiout = current_uiout;
11690
11691 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11692 for (; list != NULL; list = list->next)
11693 if (strcmp (list->name, "Z-packet") == 0)
11694 continue;
11695 else if (list->type == not_set_cmd)
11696 /* Alias commands are exactly like the original, except they
11697 don't have the normal type. */
11698 continue;
11699 else
11700 {
11701 struct cleanup *option_chain
11702 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11703
11704 ui_out_field_string (uiout, "name", list->name);
11705 ui_out_text (uiout, ": ");
11706 if (list->type == show_cmd)
11707 do_show_command ((char *) NULL, from_tty, list);
11708 else
11709 cmd_func (list, NULL, from_tty);
11710 /* Close the tuple. */
11711 do_cleanups (option_chain);
11712 }
11713
11714 /* Close the tuple. */
11715 do_cleanups (showlist_chain);
11716 }
11717
11718
11719 /* Function to be called whenever a new objfile (shlib) is detected. */
11720 static void
11721 remote_new_objfile (struct objfile *objfile)
11722 {
11723 struct remote_state *rs = get_remote_state ();
11724
11725 if (rs->remote_desc != 0) /* Have a remote connection. */
11726 remote_check_symbols ();
11727 }
11728
11729 /* Pull all the tracepoints defined on the target and create local
11730 data structures representing them. We don't want to create real
11731 tracepoints yet, we don't want to mess up the user's existing
11732 collection. */
11733
11734 static int
11735 remote_upload_tracepoints (struct uploaded_tp **utpp)
11736 {
11737 struct remote_state *rs = get_remote_state ();
11738 char *p;
11739
11740 /* Ask for a first packet of tracepoint definition. */
11741 putpkt ("qTfP");
11742 getpkt (&rs->buf, &rs->buf_size, 0);
11743 p = rs->buf;
11744 while (*p && *p != 'l')
11745 {
11746 parse_tracepoint_definition (p, utpp);
11747 /* Ask for another packet of tracepoint definition. */
11748 putpkt ("qTsP");
11749 getpkt (&rs->buf, &rs->buf_size, 0);
11750 p = rs->buf;
11751 }
11752 return 0;
11753 }
11754
11755 static int
11756 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11757 {
11758 struct remote_state *rs = get_remote_state ();
11759 char *p;
11760
11761 /* Ask for a first packet of variable definition. */
11762 putpkt ("qTfV");
11763 getpkt (&rs->buf, &rs->buf_size, 0);
11764 p = rs->buf;
11765 while (*p && *p != 'l')
11766 {
11767 parse_tsv_definition (p, utsvp);
11768 /* Ask for another packet of variable definition. */
11769 putpkt ("qTsV");
11770 getpkt (&rs->buf, &rs->buf_size, 0);
11771 p = rs->buf;
11772 }
11773 return 0;
11774 }
11775
11776 /* The "set/show range-stepping" show hook. */
11777
11778 static void
11779 show_range_stepping (struct ui_file *file, int from_tty,
11780 struct cmd_list_element *c,
11781 const char *value)
11782 {
11783 fprintf_filtered (file,
11784 _("Debugger's willingness to use range stepping "
11785 "is %s.\n"), value);
11786 }
11787
11788 /* The "set/show range-stepping" set hook. */
11789
11790 static void
11791 set_range_stepping (char *ignore_args, int from_tty,
11792 struct cmd_list_element *c)
11793 {
11794 struct remote_state *rs = get_remote_state ();
11795
11796 /* Whene enabling, check whether range stepping is actually
11797 supported by the target, and warn if not. */
11798 if (use_range_stepping)
11799 {
11800 if (rs->remote_desc != NULL)
11801 {
11802 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11803 remote_vcont_probe (rs);
11804
11805 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11806 && rs->supports_vCont.r)
11807 return;
11808 }
11809
11810 warning (_("Range stepping is not supported by the current target"));
11811 }
11812 }
11813
11814 void
11815 _initialize_remote (void)
11816 {
11817 struct remote_state *rs;
11818 struct cmd_list_element *cmd;
11819 const char *cmd_name;
11820
11821 /* architecture specific data */
11822 remote_gdbarch_data_handle =
11823 gdbarch_data_register_post_init (init_remote_state);
11824 remote_g_packet_data_handle =
11825 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11826
11827 /* Initialize the per-target state. At the moment there is only one
11828 of these, not one per target. Only one target is active at a
11829 time. */
11830 remote_state = new_remote_state ();
11831
11832 init_remote_ops ();
11833 add_target (&remote_ops);
11834
11835 init_extended_remote_ops ();
11836 add_target (&extended_remote_ops);
11837
11838 /* Hook into new objfile notification. */
11839 observer_attach_new_objfile (remote_new_objfile);
11840 /* We're no longer interested in notification events of an inferior
11841 when it exits. */
11842 observer_attach_inferior_exit (discard_pending_stop_replies);
11843
11844 /* Set up signal handlers. */
11845 async_sigint_remote_token =
11846 create_async_signal_handler (async_remote_interrupt, NULL);
11847 async_sigint_remote_twice_token =
11848 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11849
11850 #if 0
11851 init_remote_threadtests ();
11852 #endif
11853
11854 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11855 /* set/show remote ... */
11856
11857 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11858 Remote protocol specific variables\n\
11859 Configure various remote-protocol specific variables such as\n\
11860 the packets being used"),
11861 &remote_set_cmdlist, "set remote ",
11862 0 /* allow-unknown */, &setlist);
11863 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11864 Remote protocol specific variables\n\
11865 Configure various remote-protocol specific variables such as\n\
11866 the packets being used"),
11867 &remote_show_cmdlist, "show remote ",
11868 0 /* allow-unknown */, &showlist);
11869
11870 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11871 Compare section data on target to the exec file.\n\
11872 Argument is a single section name (default: all loaded sections)."),
11873 &cmdlist);
11874
11875 add_cmd ("packet", class_maintenance, packet_command, _("\
11876 Send an arbitrary packet to a remote target.\n\
11877 maintenance packet TEXT\n\
11878 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11879 this command sends the string TEXT to the inferior, and displays the\n\
11880 response packet. GDB supplies the initial `$' character, and the\n\
11881 terminating `#' character and checksum."),
11882 &maintenancelist);
11883
11884 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11885 Set whether to send break if interrupted."), _("\
11886 Show whether to send break if interrupted."), _("\
11887 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11888 set_remotebreak, show_remotebreak,
11889 &setlist, &showlist);
11890 cmd_name = "remotebreak";
11891 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11892 deprecate_cmd (cmd, "set remote interrupt-sequence");
11893 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11894 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11895 deprecate_cmd (cmd, "show remote interrupt-sequence");
11896
11897 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11898 interrupt_sequence_modes, &interrupt_sequence_mode,
11899 _("\
11900 Set interrupt sequence to remote target."), _("\
11901 Show interrupt sequence to remote target."), _("\
11902 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11903 NULL, show_interrupt_sequence,
11904 &remote_set_cmdlist,
11905 &remote_show_cmdlist);
11906
11907 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11908 &interrupt_on_connect, _("\
11909 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11910 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11911 If set, interrupt sequence is sent to remote target."),
11912 NULL, NULL,
11913 &remote_set_cmdlist, &remote_show_cmdlist);
11914
11915 /* Install commands for configuring memory read/write packets. */
11916
11917 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11918 Set the maximum number of bytes per memory write packet (deprecated)."),
11919 &setlist);
11920 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11921 Show the maximum number of bytes per memory write packet (deprecated)."),
11922 &showlist);
11923 add_cmd ("memory-write-packet-size", no_class,
11924 set_memory_write_packet_size, _("\
11925 Set the maximum number of bytes per memory-write packet.\n\
11926 Specify the number of bytes in a packet or 0 (zero) for the\n\
11927 default packet size. The actual limit is further reduced\n\
11928 dependent on the target. Specify ``fixed'' to disable the\n\
11929 further restriction and ``limit'' to enable that restriction."),
11930 &remote_set_cmdlist);
11931 add_cmd ("memory-read-packet-size", no_class,
11932 set_memory_read_packet_size, _("\
11933 Set the maximum number of bytes per memory-read packet.\n\
11934 Specify the number of bytes in a packet or 0 (zero) for the\n\
11935 default packet size. The actual limit is further reduced\n\
11936 dependent on the target. Specify ``fixed'' to disable the\n\
11937 further restriction and ``limit'' to enable that restriction."),
11938 &remote_set_cmdlist);
11939 add_cmd ("memory-write-packet-size", no_class,
11940 show_memory_write_packet_size,
11941 _("Show the maximum number of bytes per memory-write packet."),
11942 &remote_show_cmdlist);
11943 add_cmd ("memory-read-packet-size", no_class,
11944 show_memory_read_packet_size,
11945 _("Show the maximum number of bytes per memory-read packet."),
11946 &remote_show_cmdlist);
11947
11948 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11949 &remote_hw_watchpoint_limit, _("\
11950 Set the maximum number of target hardware watchpoints."), _("\
11951 Show the maximum number of target hardware watchpoints."), _("\
11952 Specify a negative limit for unlimited."),
11953 NULL, NULL, /* FIXME: i18n: The maximum
11954 number of target hardware
11955 watchpoints is %s. */
11956 &remote_set_cmdlist, &remote_show_cmdlist);
11957 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11958 &remote_hw_watchpoint_length_limit, _("\
11959 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11960 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11961 Specify a negative limit for unlimited."),
11962 NULL, NULL, /* FIXME: i18n: The maximum
11963 length (in bytes) of a target
11964 hardware watchpoint is %s. */
11965 &remote_set_cmdlist, &remote_show_cmdlist);
11966 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11967 &remote_hw_breakpoint_limit, _("\
11968 Set the maximum number of target hardware breakpoints."), _("\
11969 Show the maximum number of target hardware breakpoints."), _("\
11970 Specify a negative limit for unlimited."),
11971 NULL, NULL, /* FIXME: i18n: The maximum
11972 number of target hardware
11973 breakpoints is %s. */
11974 &remote_set_cmdlist, &remote_show_cmdlist);
11975
11976 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
11977 &remote_address_size, _("\
11978 Set the maximum size of the address (in bits) in a memory packet."), _("\
11979 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11980 NULL,
11981 NULL, /* FIXME: i18n: */
11982 &setlist, &showlist);
11983
11984 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11985 "X", "binary-download", 1);
11986
11987 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11988 "vCont", "verbose-resume", 0);
11989
11990 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11991 "QPassSignals", "pass-signals", 0);
11992
11993 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11994 "QProgramSignals", "program-signals", 0);
11995
11996 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11997 "qSymbol", "symbol-lookup", 0);
11998
11999 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12000 "P", "set-register", 1);
12001
12002 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12003 "p", "fetch-register", 1);
12004
12005 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12006 "Z0", "software-breakpoint", 0);
12007
12008 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12009 "Z1", "hardware-breakpoint", 0);
12010
12011 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12012 "Z2", "write-watchpoint", 0);
12013
12014 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12015 "Z3", "read-watchpoint", 0);
12016
12017 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12018 "Z4", "access-watchpoint", 0);
12019
12020 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12021 "qXfer:auxv:read", "read-aux-vector", 0);
12022
12023 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12024 "qXfer:features:read", "target-features", 0);
12025
12026 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12027 "qXfer:libraries:read", "library-info", 0);
12028
12029 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12030 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12031
12032 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12033 "qXfer:memory-map:read", "memory-map", 0);
12034
12035 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12036 "qXfer:spu:read", "read-spu-object", 0);
12037
12038 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12039 "qXfer:spu:write", "write-spu-object", 0);
12040
12041 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12042 "qXfer:osdata:read", "osdata", 0);
12043
12044 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12045 "qXfer:threads:read", "threads", 0);
12046
12047 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12048 "qXfer:siginfo:read", "read-siginfo-object", 0);
12049
12050 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12051 "qXfer:siginfo:write", "write-siginfo-object", 0);
12052
12053 add_packet_config_cmd
12054 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12055 "qXfer:traceframe-info:read", "traceframe-info", 0);
12056
12057 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12058 "qXfer:uib:read", "unwind-info-block", 0);
12059
12060 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12061 "qGetTLSAddr", "get-thread-local-storage-address",
12062 0);
12063
12064 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12065 "qGetTIBAddr", "get-thread-information-block-address",
12066 0);
12067
12068 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12069 "bc", "reverse-continue", 0);
12070
12071 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12072 "bs", "reverse-step", 0);
12073
12074 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12075 "qSupported", "supported-packets", 0);
12076
12077 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12078 "qSearch:memory", "search-memory", 0);
12079
12080 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12081 "qTStatus", "trace-status", 0);
12082
12083 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12084 "vFile:open", "hostio-open", 0);
12085
12086 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12087 "vFile:pread", "hostio-pread", 0);
12088
12089 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12090 "vFile:pwrite", "hostio-pwrite", 0);
12091
12092 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12093 "vFile:close", "hostio-close", 0);
12094
12095 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12096 "vFile:unlink", "hostio-unlink", 0);
12097
12098 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12099 "vFile:readlink", "hostio-readlink", 0);
12100
12101 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12102 "vAttach", "attach", 0);
12103
12104 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12105 "vRun", "run", 0);
12106
12107 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12108 "QStartNoAckMode", "noack", 0);
12109
12110 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12111 "vKill", "kill", 0);
12112
12113 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12114 "qAttached", "query-attached", 0);
12115
12116 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12117 "ConditionalTracepoints",
12118 "conditional-tracepoints", 0);
12119
12120 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12121 "ConditionalBreakpoints",
12122 "conditional-breakpoints", 0);
12123
12124 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12125 "BreakpointCommands",
12126 "breakpoint-commands", 0);
12127
12128 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12129 "FastTracepoints", "fast-tracepoints", 0);
12130
12131 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12132 "TracepointSource", "TracepointSource", 0);
12133
12134 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12135 "QAllow", "allow", 0);
12136
12137 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12138 "StaticTracepoints", "static-tracepoints", 0);
12139
12140 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12141 "InstallInTrace", "install-in-trace", 0);
12142
12143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12144 "qXfer:statictrace:read", "read-sdata-object", 0);
12145
12146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12147 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12148
12149 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12150 "QDisableRandomization", "disable-randomization", 0);
12151
12152 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12153 "QAgent", "agent", 0);
12154
12155 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12156 "QTBuffer:size", "trace-buffer-size", 0);
12157
12158 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12159 "Qbtrace:off", "disable-btrace", 0);
12160
12161 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12162 "Qbtrace:bts", "enable-btrace", 0);
12163
12164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12165 "qXfer:btrace", "read-btrace", 0);
12166
12167 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12168 Z sub-packet has its own set and show commands, but users may
12169 have sets to this variable in their .gdbinit files (or in their
12170 documentation). */
12171 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12172 &remote_Z_packet_detect, _("\
12173 Set use of remote protocol `Z' packets"), _("\
12174 Show use of remote protocol `Z' packets "), _("\
12175 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12176 packets."),
12177 set_remote_protocol_Z_packet_cmd,
12178 show_remote_protocol_Z_packet_cmd,
12179 /* FIXME: i18n: Use of remote protocol
12180 `Z' packets is %s. */
12181 &remote_set_cmdlist, &remote_show_cmdlist);
12182
12183 add_prefix_cmd ("remote", class_files, remote_command, _("\
12184 Manipulate files on the remote system\n\
12185 Transfer files to and from the remote target system."),
12186 &remote_cmdlist, "remote ",
12187 0 /* allow-unknown */, &cmdlist);
12188
12189 add_cmd ("put", class_files, remote_put_command,
12190 _("Copy a local file to the remote system."),
12191 &remote_cmdlist);
12192
12193 add_cmd ("get", class_files, remote_get_command,
12194 _("Copy a remote file to the local system."),
12195 &remote_cmdlist);
12196
12197 add_cmd ("delete", class_files, remote_delete_command,
12198 _("Delete a remote file."),
12199 &remote_cmdlist);
12200
12201 remote_exec_file = xstrdup ("");
12202 add_setshow_string_noescape_cmd ("exec-file", class_files,
12203 &remote_exec_file, _("\
12204 Set the remote pathname for \"run\""), _("\
12205 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12206 &remote_set_cmdlist, &remote_show_cmdlist);
12207
12208 add_setshow_boolean_cmd ("range-stepping", class_run,
12209 &use_range_stepping, _("\
12210 Enable or disable range stepping."), _("\
12211 Show whether target-assisted range stepping is enabled."), _("\
12212 If on, and the target supports it, when stepping a source line, GDB\n\
12213 tells the target to step the corresponding range of addresses itself instead\n\
12214 of issuing multiple single-steps. This speeds up source level\n\
12215 stepping. If off, GDB always issues single-steps, even if range\n\
12216 stepping is supported by the target. The default is on."),
12217 set_range_stepping,
12218 show_range_stepping,
12219 &setlist,
12220 &showlist);
12221
12222 /* Eventually initialize fileio. See fileio.c */
12223 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12224
12225 /* Take advantage of the fact that the LWP field is not used, to tag
12226 special ptids with it set to != 0. */
12227 magic_null_ptid = ptid_build (42000, 1, -1);
12228 not_sent_ptid = ptid_build (42000, 1, -2);
12229 any_thread_ptid = ptid_build (42000, 1, 0);
12230
12231 target_buf_size = 2048;
12232 target_buf = xmalloc (target_buf_size);
12233 }
12234
This page took 0.280859 seconds and 4 git commands to generate.