e600b4c69fcf64fbc406db39b4c00280a51041bc
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* The remote target. */
80
81 static const char remote_doc[] = N_("\
82 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
83 Specify the serial device it is connected to\n\
84 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
85
86 static const target_info remote_target_info = {
87 "remote",
88 N_("Remote serial target in gdb-specific protocol"),
89 remote_doc
90 };
91
92 class remote_target : public target_ops
93 {
94 public:
95 remote_target ()
96 {
97 to_stratum = process_stratum;
98 }
99
100 const target_info &info () const override
101 { return remote_target_info; }
102
103 thread_control_capabilities get_thread_control_capabilities () override
104 { return tc_schedlock; }
105
106 /* Open a remote connection. */
107 static void open (const char *, int);
108
109 void close () override;
110
111 void detach (inferior *, int) override;
112 void disconnect (const char *, int) override;
113
114 void commit_resume () override;
115 void resume (ptid_t, int, enum gdb_signal) override;
116 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
117
118 void fetch_registers (struct regcache *, int) override;
119 void store_registers (struct regcache *, int) override;
120 void prepare_to_store (struct regcache *) override;
121
122 void files_info () override;
123
124 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
125
126 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
127 enum remove_bp_reason) override;
128
129
130 bool stopped_by_sw_breakpoint () override;
131 bool supports_stopped_by_sw_breakpoint () override;
132
133 bool stopped_by_hw_breakpoint () override;
134
135 bool supports_stopped_by_hw_breakpoint () override;
136
137 bool stopped_by_watchpoint () override;
138
139 bool stopped_data_address (CORE_ADDR *) override;
140
141 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
142
143 int can_use_hw_breakpoint (enum bptype, int, int) override;
144
145 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
146
147 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
148
149 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
150
151 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
152 struct expression *) override;
153
154 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
155 struct expression *) override;
156
157 void kill () override;
158
159 void load (const char *, int) override;
160
161 void mourn_inferior () override;
162
163 void pass_signals (int, unsigned char *) override;
164
165 int set_syscall_catchpoint (int, bool, int,
166 gdb::array_view<const int>) override;
167
168 void program_signals (int, unsigned char *) override;
169
170 bool thread_alive (ptid_t ptid) override;
171
172 const char *thread_name (struct thread_info *) override;
173
174 void update_thread_list () override;
175
176 const char *pid_to_str (ptid_t) override;
177
178 const char *extra_thread_info (struct thread_info *) override;
179
180 ptid_t get_ada_task_ptid (long lwp, long thread) override;
181
182 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
183 int handle_len,
184 inferior *inf) override;
185
186 void stop (ptid_t) override;
187
188 void interrupt () override;
189
190 void pass_ctrlc () override;
191
192 enum target_xfer_status xfer_partial (enum target_object object,
193 const char *annex,
194 gdb_byte *readbuf,
195 const gdb_byte *writebuf,
196 ULONGEST offset, ULONGEST len,
197 ULONGEST *xfered_len) override;
198
199 ULONGEST get_memory_xfer_limit () override;
200
201 void rcmd (const char *command, struct ui_file *output) override;
202
203 char *pid_to_exec_file (int pid) override;
204
205 void log_command (const char *cmd) override
206 {
207 serial_log_command (this, cmd);
208 }
209
210 CORE_ADDR get_thread_local_address (ptid_t ptid,
211 CORE_ADDR load_module_addr,
212 CORE_ADDR offset) override;
213
214 bool has_all_memory () override { return default_child_has_all_memory (); }
215 bool has_memory () override { return default_child_has_memory (); }
216 bool has_stack () override { return default_child_has_stack (); }
217 bool has_registers () override { return default_child_has_registers (); }
218 bool has_execution (ptid_t ptid) override { return default_child_has_execution (ptid); }
219
220 bool can_execute_reverse () override;
221
222 std::vector<mem_region> memory_map () override;
223
224 void flash_erase (ULONGEST address, LONGEST length) override;
225
226 void flash_done () override;
227
228 const struct target_desc *read_description () override;
229
230 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
231 const gdb_byte *pattern, ULONGEST pattern_len,
232 CORE_ADDR *found_addrp) override;
233
234 bool can_async_p () override;
235
236 bool is_async_p () override;
237
238 void async (int) override;
239
240 void thread_events (int) override;
241
242 int can_do_single_step () override;
243
244 void terminal_inferior () override;
245
246 void terminal_ours () override;
247
248 bool supports_non_stop () override;
249
250 bool supports_multi_process () override;
251
252 bool supports_disable_randomization () override;
253
254 bool filesystem_is_local () override;
255
256
257 int fileio_open (struct inferior *inf, const char *filename,
258 int flags, int mode, int warn_if_slow,
259 int *target_errno) override;
260
261 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
262 ULONGEST offset, int *target_errno) override;
263
264 int fileio_pread (int fd, gdb_byte *read_buf, int len,
265 ULONGEST offset, int *target_errno) override;
266
267 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
268
269 int fileio_close (int fd, int *target_errno) override;
270
271 int fileio_unlink (struct inferior *inf,
272 const char *filename,
273 int *target_errno) override;
274
275 gdb::optional<std::string>
276 fileio_readlink (struct inferior *inf,
277 const char *filename,
278 int *target_errno) override;
279
280 bool supports_enable_disable_tracepoint () override;
281
282 bool supports_string_tracing () override;
283
284 bool supports_evaluation_of_breakpoint_conditions () override;
285
286 bool can_run_breakpoint_commands () override;
287
288 void trace_init () override;
289
290 void download_tracepoint (struct bp_location *location) override;
291
292 bool can_download_tracepoint () override;
293
294 void download_trace_state_variable (const trace_state_variable &tsv) override;
295
296 void enable_tracepoint (struct bp_location *location) override;
297
298 void disable_tracepoint (struct bp_location *location) override;
299
300 void trace_set_readonly_regions () override;
301
302 void trace_start () override;
303
304 int get_trace_status (struct trace_status *ts) override;
305
306 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
307 override;
308
309 void trace_stop () override;
310
311 int trace_find (enum trace_find_type type, int num,
312 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
313
314 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
315
316 int save_trace_data (const char *filename) override;
317
318 int upload_tracepoints (struct uploaded_tp **utpp) override;
319
320 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
321
322 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
323
324 int get_min_fast_tracepoint_insn_len () override;
325
326 void set_disconnected_tracing (int val) override;
327
328 void set_circular_trace_buffer (int val) override;
329
330 void set_trace_buffer_size (LONGEST val) override;
331
332 bool set_trace_notes (const char *user, const char *notes,
333 const char *stopnotes) override;
334
335 int core_of_thread (ptid_t ptid) override;
336
337 int verify_memory (const gdb_byte *data,
338 CORE_ADDR memaddr, ULONGEST size) override;
339
340
341 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
342
343 void set_permissions () override;
344
345 bool static_tracepoint_marker_at (CORE_ADDR,
346 struct static_tracepoint_marker *marker)
347 override;
348
349 std::vector<static_tracepoint_marker>
350 static_tracepoint_markers_by_strid (const char *id) override;
351
352 traceframe_info_up traceframe_info () override;
353
354 bool use_agent (bool use) override;
355 bool can_use_agent () override;
356
357 struct btrace_target_info *enable_btrace (ptid_t ptid,
358 const struct btrace_config *conf) override;
359
360 void disable_btrace (struct btrace_target_info *tinfo) override;
361
362 void teardown_btrace (struct btrace_target_info *tinfo) override;
363
364 enum btrace_error read_btrace (struct btrace_data *data,
365 struct btrace_target_info *btinfo,
366 enum btrace_read_type type) override;
367
368 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
369 bool augmented_libraries_svr4_read () override;
370 int follow_fork (int, int) override;
371 void follow_exec (struct inferior *, char *) override;
372 int insert_fork_catchpoint (int) override;
373 int remove_fork_catchpoint (int) override;
374 int insert_vfork_catchpoint (int) override;
375 int remove_vfork_catchpoint (int) override;
376 int insert_exec_catchpoint (int) override;
377 int remove_exec_catchpoint (int) override;
378 enum exec_direction_kind execution_direction () override;
379
380 protected:
381 static void open_1 (const char *name, int from_tty, int extended_p);
382 void start_remote (int from_tty, int extended_p);
383 };
384
385 static const target_info extended_remote_target_info = {
386 "extended-remote",
387 N_("Extended remote serial target in gdb-specific protocol"),
388 remote_doc
389 };
390
391 /* Set up the extended remote target by extending the standard remote
392 target and adding to it. */
393
394 class extended_remote_target final : public remote_target
395 {
396 public:
397 const target_info &info () const override
398 { return extended_remote_target_info; }
399
400 /* Open an extended-remote connection. */
401 static void open (const char *, int);
402
403 bool can_create_inferior () override { return true; }
404 void create_inferior (const char *, const std::string &,
405 char **, int) override;
406
407 void detach (inferior *, int) override;
408
409 bool can_attach () override { return true; }
410 void attach (const char *, int) override;
411
412 void post_attach (int) override;
413 bool supports_disable_randomization () override;
414 };
415
416 /* Per-program-space data key. */
417 static const struct program_space_data *remote_pspace_data;
418
419 /* The variable registered as the control variable used by the
420 remote exec-file commands. While the remote exec-file setting is
421 per-program-space, the set/show machinery uses this as the
422 location of the remote exec-file value. */
423 static char *remote_exec_file_var;
424
425 /* The size to align memory write packets, when practical. The protocol
426 does not guarantee any alignment, and gdb will generate short
427 writes and unaligned writes, but even as a best-effort attempt this
428 can improve bulk transfers. For instance, if a write is misaligned
429 relative to the target's data bus, the stub may need to make an extra
430 round trip fetching data from the target. This doesn't make a
431 huge difference, but it's easy to do, so we try to be helpful.
432
433 The alignment chosen is arbitrary; usually data bus width is
434 important here, not the possibly larger cache line size. */
435 enum { REMOTE_ALIGN_WRITES = 16 };
436
437 /* Prototypes for local functions. */
438 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
439 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
440 int forever, int *is_notif);
441
442 struct remote_state;
443
444 static int remote_vkill (int pid, struct remote_state *rs);
445
446 static void remote_kill_k (void);
447
448 static int readchar (int timeout);
449
450 static void remote_serial_write (const char *str, int len);
451
452 static void interrupt_query (void);
453
454 static void set_general_thread (ptid_t ptid);
455 static void set_continue_thread (ptid_t ptid);
456
457 static void get_offsets (void);
458
459 static void skip_frame (void);
460
461 static long read_frame (char **buf_p, long *sizeof_buf);
462
463 static int hexnumlen (ULONGEST num);
464
465 static int stubhex (int ch);
466
467 static int hexnumstr (char *, ULONGEST);
468
469 static int hexnumnstr (char *, ULONGEST, int);
470
471 static CORE_ADDR remote_address_masked (CORE_ADDR);
472
473 static void print_packet (const char *);
474
475 static int stub_unpack_int (char *buff, int fieldlength);
476
477 static ptid_t remote_current_thread (ptid_t oldptid);
478
479 static int putpkt_binary (const char *buf, int cnt);
480
481 static void check_binary_download (CORE_ADDR addr);
482
483 struct packet_config;
484
485 static void show_packet_config_cmd (struct packet_config *config);
486
487 static void show_remote_protocol_packet_cmd (struct ui_file *file,
488 int from_tty,
489 struct cmd_list_element *c,
490 const char *value);
491
492 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
493 static ptid_t read_ptid (const char *buf, const char **obuf);
494
495 static void remote_query_supported (void);
496
497 static void remote_check_symbols (void);
498
499 struct stop_reply;
500 static void stop_reply_xfree (struct stop_reply *);
501 static void remote_parse_stop_reply (char *, struct stop_reply *);
502 static void push_stop_reply (struct stop_reply *);
503 static void discard_pending_stop_replies_in_queue (struct remote_state *);
504 static int peek_stop_reply (ptid_t ptid);
505
506 struct threads_listing_context;
507 static void remove_new_fork_children (struct threads_listing_context *);
508
509 static void remote_async_inferior_event_handler (gdb_client_data);
510
511 static int remote_read_description_p (struct target_ops *target);
512
513 static void remote_console_output (char *msg);
514
515 static void remote_btrace_reset (void);
516
517 static void remote_btrace_maybe_reopen (void);
518
519 static int stop_reply_queue_length (void);
520
521 static void remote_unpush_and_throw (void);
522
523 static struct remote_state *get_remote_state (void);
524
525 /* For "remote". */
526
527 static struct cmd_list_element *remote_cmdlist;
528
529 /* For "set remote" and "show remote". */
530
531 static struct cmd_list_element *remote_set_cmdlist;
532 static struct cmd_list_element *remote_show_cmdlist;
533
534 /* Stub vCont actions support.
535
536 Each field is a boolean flag indicating whether the stub reports
537 support for the corresponding action. */
538
539 struct vCont_action_support
540 {
541 /* vCont;t */
542 bool t = false;
543
544 /* vCont;r */
545 bool r = false;
546
547 /* vCont;s */
548 bool s = false;
549
550 /* vCont;S */
551 bool S = false;
552 };
553
554 /* Controls whether GDB is willing to use range stepping. */
555
556 static int use_range_stepping = 1;
557
558 #define OPAQUETHREADBYTES 8
559
560 /* a 64 bit opaque identifier */
561 typedef unsigned char threadref[OPAQUETHREADBYTES];
562
563 /* About this many threadisds fit in a packet. */
564
565 #define MAXTHREADLISTRESULTS 32
566
567 /* The max number of chars in debug output. The rest of chars are
568 omitted. */
569
570 #define REMOTE_DEBUG_MAX_CHAR 512
571
572 /* Data for the vFile:pread readahead cache. */
573
574 struct readahead_cache
575 {
576 /* Invalidate the readahead cache. */
577 void invalidate ();
578
579 /* Invalidate the readahead cache if it is holding data for FD. */
580 void invalidate_fd (int fd);
581
582 /* Serve pread from the readahead cache. Returns number of bytes
583 read, or 0 if the request can't be served from the cache. */
584 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
585
586 /* The file descriptor for the file that is being cached. -1 if the
587 cache is invalid. */
588 int fd = -1;
589
590 /* The offset into the file that the cache buffer corresponds
591 to. */
592 ULONGEST offset = 0;
593
594 /* The buffer holding the cache contents. */
595 gdb_byte *buf = nullptr;
596 /* The buffer's size. We try to read as much as fits into a packet
597 at a time. */
598 size_t bufsize = 0;
599
600 /* Cache hit and miss counters. */
601 ULONGEST hit_count = 0;
602 ULONGEST miss_count = 0;
603 };
604
605 /* Description of the remote protocol state for the currently
606 connected target. This is per-target state, and independent of the
607 selected architecture. */
608
609 struct remote_state
610 {
611 remote_state ();
612 ~remote_state ();
613
614 /* A buffer to use for incoming packets, and its current size. The
615 buffer is grown dynamically for larger incoming packets.
616 Outgoing packets may also be constructed in this buffer.
617 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
618 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
619 packets. */
620 char *buf;
621 long buf_size;
622
623 /* True if we're going through initial connection setup (finding out
624 about the remote side's threads, relocating symbols, etc.). */
625 bool starting_up = false;
626
627 /* If we negotiated packet size explicitly (and thus can bypass
628 heuristics for the largest packet size that will not overflow
629 a buffer in the stub), this will be set to that packet size.
630 Otherwise zero, meaning to use the guessed size. */
631 long explicit_packet_size = 0;
632
633 /* remote_wait is normally called when the target is running and
634 waits for a stop reply packet. But sometimes we need to call it
635 when the target is already stopped. We can send a "?" packet
636 and have remote_wait read the response. Or, if we already have
637 the response, we can stash it in BUF and tell remote_wait to
638 skip calling getpkt. This flag is set when BUF contains a
639 stop reply packet and the target is not waiting. */
640 int cached_wait_status = 0;
641
642 /* True, if in no ack mode. That is, neither GDB nor the stub will
643 expect acks from each other. The connection is assumed to be
644 reliable. */
645 bool noack_mode = false;
646
647 /* True if we're connected in extended remote mode. */
648 bool extended = false;
649
650 /* True if we resumed the target and we're waiting for the target to
651 stop. In the mean time, we can't start another command/query.
652 The remote server wouldn't be ready to process it, so we'd
653 timeout waiting for a reply that would never come and eventually
654 we'd close the connection. This can happen in asynchronous mode
655 because we allow GDB commands while the target is running. */
656 bool waiting_for_stop_reply = false;
657
658 /* The status of the stub support for the various vCont actions. */
659 vCont_action_support supports_vCont;
660
661 /* True if the user has pressed Ctrl-C, but the target hasn't
662 responded to that. */
663 bool ctrlc_pending_p = false;
664
665 /* True if we saw a Ctrl-C while reading or writing from/to the
666 remote descriptor. At that point it is not safe to send a remote
667 interrupt packet, so we instead remember we saw the Ctrl-C and
668 process it once we're done with sending/receiving the current
669 packet, which should be shortly. If however that takes too long,
670 and the user presses Ctrl-C again, we offer to disconnect. */
671 bool got_ctrlc_during_io = false;
672
673 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
674 remote_open knows that we don't have a file open when the program
675 starts. */
676 struct serial *remote_desc = nullptr;
677
678 /* These are the threads which we last sent to the remote system. The
679 TID member will be -1 for all or -2 for not sent yet. */
680 ptid_t general_thread = null_ptid;
681 ptid_t continue_thread = null_ptid;
682
683 /* This is the traceframe which we last selected on the remote system.
684 It will be -1 if no traceframe is selected. */
685 int remote_traceframe_number = -1;
686
687 char *last_pass_packet = nullptr;
688
689 /* The last QProgramSignals packet sent to the target. We bypass
690 sending a new program signals list down to the target if the new
691 packet is exactly the same as the last we sent. IOW, we only let
692 the target know about program signals list changes. */
693 char *last_program_signals_packet = nullptr;
694
695 gdb_signal last_sent_signal = GDB_SIGNAL_0;
696
697 bool last_sent_step = false;
698
699 /* The execution direction of the last resume we got. */
700 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
701
702 char *finished_object = nullptr;
703 char *finished_annex = nullptr;
704 ULONGEST finished_offset = 0;
705
706 /* Should we try the 'ThreadInfo' query packet?
707
708 This variable (NOT available to the user: auto-detect only!)
709 determines whether GDB will use the new, simpler "ThreadInfo"
710 query or the older, more complex syntax for thread queries.
711 This is an auto-detect variable (set to true at each connect,
712 and set to false when the target fails to recognize it). */
713 bool use_threadinfo_query = false;
714 bool use_threadextra_query = false;
715
716 threadref echo_nextthread {};
717 threadref nextthread {};
718 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
719
720 /* The state of remote notification. */
721 struct remote_notif_state *notif_state = nullptr;
722
723 /* The branch trace configuration. */
724 struct btrace_config btrace_config {};
725
726 /* The argument to the last "vFile:setfs:" packet we sent, used
727 to avoid sending repeated unnecessary "vFile:setfs:" packets.
728 Initialized to -1 to indicate that no "vFile:setfs:" packet
729 has yet been sent. */
730 int fs_pid = -1;
731
732 /* A readahead cache for vFile:pread. Often, reading a binary
733 involves a sequence of small reads. E.g., when parsing an ELF
734 file. A readahead cache helps mostly the case of remote
735 debugging on a connection with higher latency, due to the
736 request/reply nature of the RSP. We only cache data for a single
737 file descriptor at a time. */
738 struct readahead_cache readahead_cache;
739 };
740
741 /* Private data that we'll store in (struct thread_info)->priv. */
742 struct remote_thread_info : public private_thread_info
743 {
744 std::string extra;
745 std::string name;
746 int core = -1;
747
748 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
749 sequence of bytes. */
750 gdb::byte_vector thread_handle;
751
752 /* Whether the target stopped for a breakpoint/watchpoint. */
753 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
754
755 /* This is set to the data address of the access causing the target
756 to stop for a watchpoint. */
757 CORE_ADDR watch_data_address = 0;
758
759 /* Fields used by the vCont action coalescing implemented in
760 remote_resume / remote_commit_resume. remote_resume stores each
761 thread's last resume request in these fields, so that a later
762 remote_commit_resume knows which is the proper action for this
763 thread to include in the vCont packet. */
764
765 /* True if the last target_resume call for this thread was a step
766 request, false if a continue request. */
767 int last_resume_step = 0;
768
769 /* The signal specified in the last target_resume call for this
770 thread. */
771 gdb_signal last_resume_sig = GDB_SIGNAL_0;
772
773 /* Whether this thread was already vCont-resumed on the remote
774 side. */
775 int vcont_resumed = 0;
776 };
777
778 remote_state::remote_state ()
779 {
780 /* The default buffer size is unimportant; it will be expanded
781 whenever a larger buffer is needed. */
782 this->buf_size = 400;
783 this->buf = (char *) xmalloc (this->buf_size);
784 }
785
786 remote_state::~remote_state ()
787 {
788 xfree (this->last_pass_packet);
789 xfree (this->last_program_signals_packet);
790 xfree (this->buf);
791 xfree (this->finished_object);
792 xfree (this->finished_annex);
793 }
794
795 /* This data could be associated with a target, but we do not always
796 have access to the current target when we need it, so for now it is
797 static. This will be fine for as long as only one target is in use
798 at a time. */
799 static struct remote_state *remote_state;
800
801 static struct remote_state *
802 get_remote_state_raw (void)
803 {
804 return remote_state;
805 }
806
807 /* Description of the remote protocol for a given architecture. */
808
809 struct packet_reg
810 {
811 long offset; /* Offset into G packet. */
812 long regnum; /* GDB's internal register number. */
813 LONGEST pnum; /* Remote protocol register number. */
814 int in_g_packet; /* Always part of G packet. */
815 /* long size in bytes; == register_size (target_gdbarch (), regnum);
816 at present. */
817 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
818 at present. */
819 };
820
821 struct remote_arch_state
822 {
823 /* Description of the remote protocol registers. */
824 long sizeof_g_packet;
825
826 /* Description of the remote protocol registers indexed by REGNUM
827 (making an array gdbarch_num_regs in size). */
828 struct packet_reg *regs;
829
830 /* This is the size (in chars) of the first response to the ``g''
831 packet. It is used as a heuristic when determining the maximum
832 size of memory-read and memory-write packets. A target will
833 typically only reserve a buffer large enough to hold the ``g''
834 packet. The size does not include packet overhead (headers and
835 trailers). */
836 long actual_register_packet_size;
837
838 /* This is the maximum size (in chars) of a non read/write packet.
839 It is also used as a cap on the size of read/write packets. */
840 long remote_packet_size;
841 };
842
843 /* Utility: generate error from an incoming stub packet. */
844 static void
845 trace_error (char *buf)
846 {
847 if (*buf++ != 'E')
848 return; /* not an error msg */
849 switch (*buf)
850 {
851 case '1': /* malformed packet error */
852 if (*++buf == '0') /* general case: */
853 error (_("remote.c: error in outgoing packet."));
854 else
855 error (_("remote.c: error in outgoing packet at field #%ld."),
856 strtol (buf, NULL, 16));
857 default:
858 error (_("Target returns error code '%s'."), buf);
859 }
860 }
861
862 /* Utility: wait for reply from stub, while accepting "O" packets. */
863
864 static char *
865 remote_get_noisy_reply ()
866 {
867 struct remote_state *rs = get_remote_state ();
868
869 do /* Loop on reply from remote stub. */
870 {
871 char *buf;
872
873 QUIT; /* Allow user to bail out with ^C. */
874 getpkt (&rs->buf, &rs->buf_size, 0);
875 buf = rs->buf;
876 if (buf[0] == 'E')
877 trace_error (buf);
878 else if (startswith (buf, "qRelocInsn:"))
879 {
880 ULONGEST ul;
881 CORE_ADDR from, to, org_to;
882 const char *p, *pp;
883 int adjusted_size = 0;
884 int relocated = 0;
885
886 p = buf + strlen ("qRelocInsn:");
887 pp = unpack_varlen_hex (p, &ul);
888 if (*pp != ';')
889 error (_("invalid qRelocInsn packet: %s"), buf);
890 from = ul;
891
892 p = pp + 1;
893 unpack_varlen_hex (p, &ul);
894 to = ul;
895
896 org_to = to;
897
898 TRY
899 {
900 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
901 relocated = 1;
902 }
903 CATCH (ex, RETURN_MASK_ALL)
904 {
905 if (ex.error == MEMORY_ERROR)
906 {
907 /* Propagate memory errors silently back to the
908 target. The stub may have limited the range of
909 addresses we can write to, for example. */
910 }
911 else
912 {
913 /* Something unexpectedly bad happened. Be verbose
914 so we can tell what, and propagate the error back
915 to the stub, so it doesn't get stuck waiting for
916 a response. */
917 exception_fprintf (gdb_stderr, ex,
918 _("warning: relocating instruction: "));
919 }
920 putpkt ("E01");
921 }
922 END_CATCH
923
924 if (relocated)
925 {
926 adjusted_size = to - org_to;
927
928 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
929 putpkt (buf);
930 }
931 }
932 else if (buf[0] == 'O' && buf[1] != 'K')
933 remote_console_output (buf + 1); /* 'O' message from stub */
934 else
935 return buf; /* Here's the actual reply. */
936 }
937 while (1);
938 }
939
940 /* Handle for retreving the remote protocol data from gdbarch. */
941 static struct gdbarch_data *remote_gdbarch_data_handle;
942
943 static struct remote_arch_state *
944 get_remote_arch_state (struct gdbarch *gdbarch)
945 {
946 gdb_assert (gdbarch != NULL);
947 return ((struct remote_arch_state *)
948 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
949 }
950
951 /* Fetch the global remote target state. */
952
953 static struct remote_state *
954 get_remote_state (void)
955 {
956 /* Make sure that the remote architecture state has been
957 initialized, because doing so might reallocate rs->buf. Any
958 function which calls getpkt also needs to be mindful of changes
959 to rs->buf, but this call limits the number of places which run
960 into trouble. */
961 get_remote_arch_state (target_gdbarch ());
962
963 return get_remote_state_raw ();
964 }
965
966 /* Cleanup routine for the remote module's pspace data. */
967
968 static void
969 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
970 {
971 char *remote_exec_file = (char *) arg;
972
973 xfree (remote_exec_file);
974 }
975
976 /* Fetch the remote exec-file from the current program space. */
977
978 static const char *
979 get_remote_exec_file (void)
980 {
981 char *remote_exec_file;
982
983 remote_exec_file
984 = (char *) program_space_data (current_program_space,
985 remote_pspace_data);
986 if (remote_exec_file == NULL)
987 return "";
988
989 return remote_exec_file;
990 }
991
992 /* Set the remote exec file for PSPACE. */
993
994 static void
995 set_pspace_remote_exec_file (struct program_space *pspace,
996 char *remote_exec_file)
997 {
998 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
999
1000 xfree (old_file);
1001 set_program_space_data (pspace, remote_pspace_data,
1002 xstrdup (remote_exec_file));
1003 }
1004
1005 /* The "set/show remote exec-file" set command hook. */
1006
1007 static void
1008 set_remote_exec_file (const char *ignored, int from_tty,
1009 struct cmd_list_element *c)
1010 {
1011 gdb_assert (remote_exec_file_var != NULL);
1012 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1013 }
1014
1015 /* The "set/show remote exec-file" show command hook. */
1016
1017 static void
1018 show_remote_exec_file (struct ui_file *file, int from_tty,
1019 struct cmd_list_element *cmd, const char *value)
1020 {
1021 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1022 }
1023
1024 static int
1025 compare_pnums (const void *lhs_, const void *rhs_)
1026 {
1027 const struct packet_reg * const *lhs
1028 = (const struct packet_reg * const *) lhs_;
1029 const struct packet_reg * const *rhs
1030 = (const struct packet_reg * const *) rhs_;
1031
1032 if ((*lhs)->pnum < (*rhs)->pnum)
1033 return -1;
1034 else if ((*lhs)->pnum == (*rhs)->pnum)
1035 return 0;
1036 else
1037 return 1;
1038 }
1039
1040 static int
1041 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1042 {
1043 int regnum, num_remote_regs, offset;
1044 struct packet_reg **remote_regs;
1045
1046 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1047 {
1048 struct packet_reg *r = &regs[regnum];
1049
1050 if (register_size (gdbarch, regnum) == 0)
1051 /* Do not try to fetch zero-sized (placeholder) registers. */
1052 r->pnum = -1;
1053 else
1054 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1055
1056 r->regnum = regnum;
1057 }
1058
1059 /* Define the g/G packet format as the contents of each register
1060 with a remote protocol number, in order of ascending protocol
1061 number. */
1062
1063 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1064 for (num_remote_regs = 0, regnum = 0;
1065 regnum < gdbarch_num_regs (gdbarch);
1066 regnum++)
1067 if (regs[regnum].pnum != -1)
1068 remote_regs[num_remote_regs++] = &regs[regnum];
1069
1070 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1071 compare_pnums);
1072
1073 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1074 {
1075 remote_regs[regnum]->in_g_packet = 1;
1076 remote_regs[regnum]->offset = offset;
1077 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1078 }
1079
1080 return offset;
1081 }
1082
1083 /* Given the architecture described by GDBARCH, return the remote
1084 protocol register's number and the register's offset in the g/G
1085 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1086 If the target does not have a mapping for REGNUM, return false,
1087 otherwise, return true. */
1088
1089 int
1090 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1091 int *pnum, int *poffset)
1092 {
1093 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1094
1095 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1096
1097 map_regcache_remote_table (gdbarch, regs.data ());
1098
1099 *pnum = regs[regnum].pnum;
1100 *poffset = regs[regnum].offset;
1101
1102 return *pnum != -1;
1103 }
1104
1105 static void *
1106 init_remote_state (struct gdbarch *gdbarch)
1107 {
1108 struct remote_state *rs = get_remote_state_raw ();
1109 struct remote_arch_state *rsa;
1110
1111 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
1112
1113 /* Use the architecture to build a regnum<->pnum table, which will be
1114 1:1 unless a feature set specifies otherwise. */
1115 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
1116 gdbarch_num_regs (gdbarch),
1117 struct packet_reg);
1118
1119 /* Record the maximum possible size of the g packet - it may turn out
1120 to be smaller. */
1121 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
1122
1123 /* Default maximum number of characters in a packet body. Many
1124 remote stubs have a hardwired buffer size of 400 bytes
1125 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1126 as the maximum packet-size to ensure that the packet and an extra
1127 NUL character can always fit in the buffer. This stops GDB
1128 trashing stubs that try to squeeze an extra NUL into what is
1129 already a full buffer (As of 1999-12-04 that was most stubs). */
1130 rsa->remote_packet_size = 400 - 1;
1131
1132 /* This one is filled in when a ``g'' packet is received. */
1133 rsa->actual_register_packet_size = 0;
1134
1135 /* Should rsa->sizeof_g_packet needs more space than the
1136 default, adjust the size accordingly. Remember that each byte is
1137 encoded as two characters. 32 is the overhead for the packet
1138 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1139 (``$NN:G...#NN'') is a better guess, the below has been padded a
1140 little. */
1141 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
1142 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
1143
1144 /* Make sure that the packet buffer is plenty big enough for
1145 this architecture. */
1146 if (rs->buf_size < rsa->remote_packet_size)
1147 {
1148 rs->buf_size = 2 * rsa->remote_packet_size;
1149 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
1150 }
1151
1152 return rsa;
1153 }
1154
1155 /* Return the current allowed size of a remote packet. This is
1156 inferred from the current architecture, and should be used to
1157 limit the length of outgoing packets. */
1158 static long
1159 get_remote_packet_size (void)
1160 {
1161 struct remote_state *rs = get_remote_state ();
1162 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1163
1164 if (rs->explicit_packet_size)
1165 return rs->explicit_packet_size;
1166
1167 return rsa->remote_packet_size;
1168 }
1169
1170 static struct packet_reg *
1171 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1172 long regnum)
1173 {
1174 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1175 return NULL;
1176 else
1177 {
1178 struct packet_reg *r = &rsa->regs[regnum];
1179
1180 gdb_assert (r->regnum == regnum);
1181 return r;
1182 }
1183 }
1184
1185 static struct packet_reg *
1186 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1187 LONGEST pnum)
1188 {
1189 int i;
1190
1191 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1192 {
1193 struct packet_reg *r = &rsa->regs[i];
1194
1195 if (r->pnum == pnum)
1196 return r;
1197 }
1198 return NULL;
1199 }
1200
1201 static remote_target remote_ops;
1202
1203 static extended_remote_target extended_remote_ops;
1204
1205 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
1206 ``forever'' still use the normal timeout mechanism. This is
1207 currently used by the ASYNC code to guarentee that target reads
1208 during the initial connect always time-out. Once getpkt has been
1209 modified to return a timeout indication and, in turn
1210 remote_wait()/wait_for_inferior() have gained a timeout parameter
1211 this can go away. */
1212 static int wait_forever_enabled_p = 1;
1213
1214 /* Allow the user to specify what sequence to send to the remote
1215 when he requests a program interruption: Although ^C is usually
1216 what remote systems expect (this is the default, here), it is
1217 sometimes preferable to send a break. On other systems such
1218 as the Linux kernel, a break followed by g, which is Magic SysRq g
1219 is required in order to interrupt the execution. */
1220 const char interrupt_sequence_control_c[] = "Ctrl-C";
1221 const char interrupt_sequence_break[] = "BREAK";
1222 const char interrupt_sequence_break_g[] = "BREAK-g";
1223 static const char *const interrupt_sequence_modes[] =
1224 {
1225 interrupt_sequence_control_c,
1226 interrupt_sequence_break,
1227 interrupt_sequence_break_g,
1228 NULL
1229 };
1230 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1231
1232 static void
1233 show_interrupt_sequence (struct ui_file *file, int from_tty,
1234 struct cmd_list_element *c,
1235 const char *value)
1236 {
1237 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1238 fprintf_filtered (file,
1239 _("Send the ASCII ETX character (Ctrl-c) "
1240 "to the remote target to interrupt the "
1241 "execution of the program.\n"));
1242 else if (interrupt_sequence_mode == interrupt_sequence_break)
1243 fprintf_filtered (file,
1244 _("send a break signal to the remote target "
1245 "to interrupt the execution of the program.\n"));
1246 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1247 fprintf_filtered (file,
1248 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1249 "the remote target to interrupt the execution "
1250 "of Linux kernel.\n"));
1251 else
1252 internal_error (__FILE__, __LINE__,
1253 _("Invalid value for interrupt_sequence_mode: %s."),
1254 interrupt_sequence_mode);
1255 }
1256
1257 /* This boolean variable specifies whether interrupt_sequence is sent
1258 to the remote target when gdb connects to it.
1259 This is mostly needed when you debug the Linux kernel: The Linux kernel
1260 expects BREAK g which is Magic SysRq g for connecting gdb. */
1261 static int interrupt_on_connect = 0;
1262
1263 /* This variable is used to implement the "set/show remotebreak" commands.
1264 Since these commands are now deprecated in favor of "set/show remote
1265 interrupt-sequence", it no longer has any effect on the code. */
1266 static int remote_break;
1267
1268 static void
1269 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1270 {
1271 if (remote_break)
1272 interrupt_sequence_mode = interrupt_sequence_break;
1273 else
1274 interrupt_sequence_mode = interrupt_sequence_control_c;
1275 }
1276
1277 static void
1278 show_remotebreak (struct ui_file *file, int from_tty,
1279 struct cmd_list_element *c,
1280 const char *value)
1281 {
1282 }
1283
1284 /* This variable sets the number of bits in an address that are to be
1285 sent in a memory ("M" or "m") packet. Normally, after stripping
1286 leading zeros, the entire address would be sent. This variable
1287 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1288 initial implementation of remote.c restricted the address sent in
1289 memory packets to ``host::sizeof long'' bytes - (typically 32
1290 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1291 address was never sent. Since fixing this bug may cause a break in
1292 some remote targets this variable is principly provided to
1293 facilitate backward compatibility. */
1294
1295 static unsigned int remote_address_size;
1296
1297 \f
1298 /* User configurable variables for the number of characters in a
1299 memory read/write packet. MIN (rsa->remote_packet_size,
1300 rsa->sizeof_g_packet) is the default. Some targets need smaller
1301 values (fifo overruns, et.al.) and some users need larger values
1302 (speed up transfers). The variables ``preferred_*'' (the user
1303 request), ``current_*'' (what was actually set) and ``forced_*''
1304 (Positive - a soft limit, negative - a hard limit). */
1305
1306 struct memory_packet_config
1307 {
1308 const char *name;
1309 long size;
1310 int fixed_p;
1311 };
1312
1313 /* The default max memory-write-packet-size. The 16k is historical.
1314 (It came from older GDB's using alloca for buffers and the
1315 knowledge (folklore?) that some hosts don't cope very well with
1316 large alloca calls.) */
1317 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1318
1319 /* The minimum remote packet size for memory transfers. Ensures we
1320 can write at least one byte. */
1321 #define MIN_MEMORY_PACKET_SIZE 20
1322
1323 /* Compute the current size of a read/write packet. Since this makes
1324 use of ``actual_register_packet_size'' the computation is dynamic. */
1325
1326 static long
1327 get_memory_packet_size (struct memory_packet_config *config)
1328 {
1329 struct remote_state *rs = get_remote_state ();
1330 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1331
1332 long what_they_get;
1333 if (config->fixed_p)
1334 {
1335 if (config->size <= 0)
1336 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1337 else
1338 what_they_get = config->size;
1339 }
1340 else
1341 {
1342 what_they_get = get_remote_packet_size ();
1343 /* Limit the packet to the size specified by the user. */
1344 if (config->size > 0
1345 && what_they_get > config->size)
1346 what_they_get = config->size;
1347
1348 /* Limit it to the size of the targets ``g'' response unless we have
1349 permission from the stub to use a larger packet size. */
1350 if (rs->explicit_packet_size == 0
1351 && rsa->actual_register_packet_size > 0
1352 && what_they_get > rsa->actual_register_packet_size)
1353 what_they_get = rsa->actual_register_packet_size;
1354 }
1355 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1356 what_they_get = MIN_MEMORY_PACKET_SIZE;
1357
1358 /* Make sure there is room in the global buffer for this packet
1359 (including its trailing NUL byte). */
1360 if (rs->buf_size < what_they_get + 1)
1361 {
1362 rs->buf_size = 2 * what_they_get;
1363 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1364 }
1365
1366 return what_they_get;
1367 }
1368
1369 /* Update the size of a read/write packet. If they user wants
1370 something really big then do a sanity check. */
1371
1372 static void
1373 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1374 {
1375 int fixed_p = config->fixed_p;
1376 long size = config->size;
1377
1378 if (args == NULL)
1379 error (_("Argument required (integer, `fixed' or `limited')."));
1380 else if (strcmp (args, "hard") == 0
1381 || strcmp (args, "fixed") == 0)
1382 fixed_p = 1;
1383 else if (strcmp (args, "soft") == 0
1384 || strcmp (args, "limit") == 0)
1385 fixed_p = 0;
1386 else
1387 {
1388 char *end;
1389
1390 size = strtoul (args, &end, 0);
1391 if (args == end)
1392 error (_("Invalid %s (bad syntax)."), config->name);
1393
1394 /* Instead of explicitly capping the size of a packet to or
1395 disallowing it, the user is allowed to set the size to
1396 something arbitrarily large. */
1397 }
1398
1399 /* So that the query shows the correct value. */
1400 if (size <= 0)
1401 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1402
1403 /* Extra checks? */
1404 if (fixed_p && !config->fixed_p)
1405 {
1406 if (! query (_("The target may not be able to correctly handle a %s\n"
1407 "of %ld bytes. Change the packet size? "),
1408 config->name, size))
1409 error (_("Packet size not changed."));
1410 }
1411 /* Update the config. */
1412 config->fixed_p = fixed_p;
1413 config->size = size;
1414 }
1415
1416 static void
1417 show_memory_packet_size (struct memory_packet_config *config)
1418 {
1419 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1420 if (config->fixed_p)
1421 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1422 get_memory_packet_size (config));
1423 else
1424 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1425 get_memory_packet_size (config));
1426 }
1427
1428 static struct memory_packet_config memory_write_packet_config =
1429 {
1430 "memory-write-packet-size",
1431 };
1432
1433 static void
1434 set_memory_write_packet_size (const char *args, int from_tty)
1435 {
1436 set_memory_packet_size (args, &memory_write_packet_config);
1437 }
1438
1439 static void
1440 show_memory_write_packet_size (const char *args, int from_tty)
1441 {
1442 show_memory_packet_size (&memory_write_packet_config);
1443 }
1444
1445 static long
1446 get_memory_write_packet_size (void)
1447 {
1448 return get_memory_packet_size (&memory_write_packet_config);
1449 }
1450
1451 static struct memory_packet_config memory_read_packet_config =
1452 {
1453 "memory-read-packet-size",
1454 };
1455
1456 static void
1457 set_memory_read_packet_size (const char *args, int from_tty)
1458 {
1459 set_memory_packet_size (args, &memory_read_packet_config);
1460 }
1461
1462 static void
1463 show_memory_read_packet_size (const char *args, int from_tty)
1464 {
1465 show_memory_packet_size (&memory_read_packet_config);
1466 }
1467
1468 static long
1469 get_memory_read_packet_size (void)
1470 {
1471 long size = get_memory_packet_size (&memory_read_packet_config);
1472
1473 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1474 extra buffer size argument before the memory read size can be
1475 increased beyond this. */
1476 if (size > get_remote_packet_size ())
1477 size = get_remote_packet_size ();
1478 return size;
1479 }
1480
1481 \f
1482 /* Generic configuration support for packets the stub optionally
1483 supports. Allows the user to specify the use of the packet as well
1484 as allowing GDB to auto-detect support in the remote stub. */
1485
1486 enum packet_support
1487 {
1488 PACKET_SUPPORT_UNKNOWN = 0,
1489 PACKET_ENABLE,
1490 PACKET_DISABLE
1491 };
1492
1493 struct packet_config
1494 {
1495 const char *name;
1496 const char *title;
1497
1498 /* If auto, GDB auto-detects support for this packet or feature,
1499 either through qSupported, or by trying the packet and looking
1500 at the response. If true, GDB assumes the target supports this
1501 packet. If false, the packet is disabled. Configs that don't
1502 have an associated command always have this set to auto. */
1503 enum auto_boolean detect;
1504
1505 /* Does the target support this packet? */
1506 enum packet_support support;
1507 };
1508
1509 /* Analyze a packet's return value and update the packet config
1510 accordingly. */
1511
1512 enum packet_result
1513 {
1514 PACKET_ERROR,
1515 PACKET_OK,
1516 PACKET_UNKNOWN
1517 };
1518
1519 static enum packet_support packet_config_support (struct packet_config *config);
1520 static enum packet_support packet_support (int packet);
1521
1522 static void
1523 show_packet_config_cmd (struct packet_config *config)
1524 {
1525 const char *support = "internal-error";
1526
1527 switch (packet_config_support (config))
1528 {
1529 case PACKET_ENABLE:
1530 support = "enabled";
1531 break;
1532 case PACKET_DISABLE:
1533 support = "disabled";
1534 break;
1535 case PACKET_SUPPORT_UNKNOWN:
1536 support = "unknown";
1537 break;
1538 }
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_AUTO:
1542 printf_filtered (_("Support for the `%s' packet "
1543 "is auto-detected, currently %s.\n"),
1544 config->name, support);
1545 break;
1546 case AUTO_BOOLEAN_TRUE:
1547 case AUTO_BOOLEAN_FALSE:
1548 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1549 config->name, support);
1550 break;
1551 }
1552 }
1553
1554 static void
1555 add_packet_config_cmd (struct packet_config *config, const char *name,
1556 const char *title, int legacy)
1557 {
1558 char *set_doc;
1559 char *show_doc;
1560 char *cmd_name;
1561
1562 config->name = name;
1563 config->title = title;
1564 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1565 name, title);
1566 show_doc = xstrprintf ("Show current use of remote "
1567 "protocol `%s' (%s) packet",
1568 name, title);
1569 /* set/show TITLE-packet {auto,on,off} */
1570 cmd_name = xstrprintf ("%s-packet", title);
1571 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1572 &config->detect, set_doc,
1573 show_doc, NULL, /* help_doc */
1574 NULL,
1575 show_remote_protocol_packet_cmd,
1576 &remote_set_cmdlist, &remote_show_cmdlist);
1577 /* The command code copies the documentation strings. */
1578 xfree (set_doc);
1579 xfree (show_doc);
1580 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1581 if (legacy)
1582 {
1583 char *legacy_name;
1584
1585 legacy_name = xstrprintf ("%s-packet", name);
1586 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1587 &remote_set_cmdlist);
1588 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1589 &remote_show_cmdlist);
1590 }
1591 }
1592
1593 static enum packet_result
1594 packet_check_result (const char *buf)
1595 {
1596 if (buf[0] != '\0')
1597 {
1598 /* The stub recognized the packet request. Check that the
1599 operation succeeded. */
1600 if (buf[0] == 'E'
1601 && isxdigit (buf[1]) && isxdigit (buf[2])
1602 && buf[3] == '\0')
1603 /* "Enn" - definitly an error. */
1604 return PACKET_ERROR;
1605
1606 /* Always treat "E." as an error. This will be used for
1607 more verbose error messages, such as E.memtypes. */
1608 if (buf[0] == 'E' && buf[1] == '.')
1609 return PACKET_ERROR;
1610
1611 /* The packet may or may not be OK. Just assume it is. */
1612 return PACKET_OK;
1613 }
1614 else
1615 /* The stub does not support the packet. */
1616 return PACKET_UNKNOWN;
1617 }
1618
1619 static enum packet_result
1620 packet_ok (const char *buf, struct packet_config *config)
1621 {
1622 enum packet_result result;
1623
1624 if (config->detect != AUTO_BOOLEAN_TRUE
1625 && config->support == PACKET_DISABLE)
1626 internal_error (__FILE__, __LINE__,
1627 _("packet_ok: attempt to use a disabled packet"));
1628
1629 result = packet_check_result (buf);
1630 switch (result)
1631 {
1632 case PACKET_OK:
1633 case PACKET_ERROR:
1634 /* The stub recognized the packet request. */
1635 if (config->support == PACKET_SUPPORT_UNKNOWN)
1636 {
1637 if (remote_debug)
1638 fprintf_unfiltered (gdb_stdlog,
1639 "Packet %s (%s) is supported\n",
1640 config->name, config->title);
1641 config->support = PACKET_ENABLE;
1642 }
1643 break;
1644 case PACKET_UNKNOWN:
1645 /* The stub does not support the packet. */
1646 if (config->detect == AUTO_BOOLEAN_AUTO
1647 && config->support == PACKET_ENABLE)
1648 {
1649 /* If the stub previously indicated that the packet was
1650 supported then there is a protocol error. */
1651 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1652 config->name, config->title);
1653 }
1654 else if (config->detect == AUTO_BOOLEAN_TRUE)
1655 {
1656 /* The user set it wrong. */
1657 error (_("Enabled packet %s (%s) not recognized by stub"),
1658 config->name, config->title);
1659 }
1660
1661 if (remote_debug)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "Packet %s (%s) is NOT supported\n",
1664 config->name, config->title);
1665 config->support = PACKET_DISABLE;
1666 break;
1667 }
1668
1669 return result;
1670 }
1671
1672 enum {
1673 PACKET_vCont = 0,
1674 PACKET_X,
1675 PACKET_qSymbol,
1676 PACKET_P,
1677 PACKET_p,
1678 PACKET_Z0,
1679 PACKET_Z1,
1680 PACKET_Z2,
1681 PACKET_Z3,
1682 PACKET_Z4,
1683 PACKET_vFile_setfs,
1684 PACKET_vFile_open,
1685 PACKET_vFile_pread,
1686 PACKET_vFile_pwrite,
1687 PACKET_vFile_close,
1688 PACKET_vFile_unlink,
1689 PACKET_vFile_readlink,
1690 PACKET_vFile_fstat,
1691 PACKET_qXfer_auxv,
1692 PACKET_qXfer_features,
1693 PACKET_qXfer_exec_file,
1694 PACKET_qXfer_libraries,
1695 PACKET_qXfer_libraries_svr4,
1696 PACKET_qXfer_memory_map,
1697 PACKET_qXfer_spu_read,
1698 PACKET_qXfer_spu_write,
1699 PACKET_qXfer_osdata,
1700 PACKET_qXfer_threads,
1701 PACKET_qXfer_statictrace_read,
1702 PACKET_qXfer_traceframe_info,
1703 PACKET_qXfer_uib,
1704 PACKET_qGetTIBAddr,
1705 PACKET_qGetTLSAddr,
1706 PACKET_qSupported,
1707 PACKET_qTStatus,
1708 PACKET_QPassSignals,
1709 PACKET_QCatchSyscalls,
1710 PACKET_QProgramSignals,
1711 PACKET_QSetWorkingDir,
1712 PACKET_QStartupWithShell,
1713 PACKET_QEnvironmentHexEncoded,
1714 PACKET_QEnvironmentReset,
1715 PACKET_QEnvironmentUnset,
1716 PACKET_qCRC,
1717 PACKET_qSearch_memory,
1718 PACKET_vAttach,
1719 PACKET_vRun,
1720 PACKET_QStartNoAckMode,
1721 PACKET_vKill,
1722 PACKET_qXfer_siginfo_read,
1723 PACKET_qXfer_siginfo_write,
1724 PACKET_qAttached,
1725
1726 /* Support for conditional tracepoints. */
1727 PACKET_ConditionalTracepoints,
1728
1729 /* Support for target-side breakpoint conditions. */
1730 PACKET_ConditionalBreakpoints,
1731
1732 /* Support for target-side breakpoint commands. */
1733 PACKET_BreakpointCommands,
1734
1735 /* Support for fast tracepoints. */
1736 PACKET_FastTracepoints,
1737
1738 /* Support for static tracepoints. */
1739 PACKET_StaticTracepoints,
1740
1741 /* Support for installing tracepoints while a trace experiment is
1742 running. */
1743 PACKET_InstallInTrace,
1744
1745 PACKET_bc,
1746 PACKET_bs,
1747 PACKET_TracepointSource,
1748 PACKET_QAllow,
1749 PACKET_qXfer_fdpic,
1750 PACKET_QDisableRandomization,
1751 PACKET_QAgent,
1752 PACKET_QTBuffer_size,
1753 PACKET_Qbtrace_off,
1754 PACKET_Qbtrace_bts,
1755 PACKET_Qbtrace_pt,
1756 PACKET_qXfer_btrace,
1757
1758 /* Support for the QNonStop packet. */
1759 PACKET_QNonStop,
1760
1761 /* Support for the QThreadEvents packet. */
1762 PACKET_QThreadEvents,
1763
1764 /* Support for multi-process extensions. */
1765 PACKET_multiprocess_feature,
1766
1767 /* Support for enabling and disabling tracepoints while a trace
1768 experiment is running. */
1769 PACKET_EnableDisableTracepoints_feature,
1770
1771 /* Support for collecting strings using the tracenz bytecode. */
1772 PACKET_tracenz_feature,
1773
1774 /* Support for continuing to run a trace experiment while GDB is
1775 disconnected. */
1776 PACKET_DisconnectedTracing_feature,
1777
1778 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1779 PACKET_augmented_libraries_svr4_read_feature,
1780
1781 /* Support for the qXfer:btrace-conf:read packet. */
1782 PACKET_qXfer_btrace_conf,
1783
1784 /* Support for the Qbtrace-conf:bts:size packet. */
1785 PACKET_Qbtrace_conf_bts_size,
1786
1787 /* Support for swbreak+ feature. */
1788 PACKET_swbreak_feature,
1789
1790 /* Support for hwbreak+ feature. */
1791 PACKET_hwbreak_feature,
1792
1793 /* Support for fork events. */
1794 PACKET_fork_event_feature,
1795
1796 /* Support for vfork events. */
1797 PACKET_vfork_event_feature,
1798
1799 /* Support for the Qbtrace-conf:pt:size packet. */
1800 PACKET_Qbtrace_conf_pt_size,
1801
1802 /* Support for exec events. */
1803 PACKET_exec_event_feature,
1804
1805 /* Support for query supported vCont actions. */
1806 PACKET_vContSupported,
1807
1808 /* Support remote CTRL-C. */
1809 PACKET_vCtrlC,
1810
1811 /* Support TARGET_WAITKIND_NO_RESUMED. */
1812 PACKET_no_resumed,
1813
1814 PACKET_MAX
1815 };
1816
1817 static struct packet_config remote_protocol_packets[PACKET_MAX];
1818
1819 /* Returns the packet's corresponding "set remote foo-packet" command
1820 state. See struct packet_config for more details. */
1821
1822 static enum auto_boolean
1823 packet_set_cmd_state (int packet)
1824 {
1825 return remote_protocol_packets[packet].detect;
1826 }
1827
1828 /* Returns whether a given packet or feature is supported. This takes
1829 into account the state of the corresponding "set remote foo-packet"
1830 command, which may be used to bypass auto-detection. */
1831
1832 static enum packet_support
1833 packet_config_support (struct packet_config *config)
1834 {
1835 switch (config->detect)
1836 {
1837 case AUTO_BOOLEAN_TRUE:
1838 return PACKET_ENABLE;
1839 case AUTO_BOOLEAN_FALSE:
1840 return PACKET_DISABLE;
1841 case AUTO_BOOLEAN_AUTO:
1842 return config->support;
1843 default:
1844 gdb_assert_not_reached (_("bad switch"));
1845 }
1846 }
1847
1848 /* Same as packet_config_support, but takes the packet's enum value as
1849 argument. */
1850
1851 static enum packet_support
1852 packet_support (int packet)
1853 {
1854 struct packet_config *config = &remote_protocol_packets[packet];
1855
1856 return packet_config_support (config);
1857 }
1858
1859 static void
1860 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1861 struct cmd_list_element *c,
1862 const char *value)
1863 {
1864 struct packet_config *packet;
1865
1866 for (packet = remote_protocol_packets;
1867 packet < &remote_protocol_packets[PACKET_MAX];
1868 packet++)
1869 {
1870 if (&packet->detect == c->var)
1871 {
1872 show_packet_config_cmd (packet);
1873 return;
1874 }
1875 }
1876 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1877 c->name);
1878 }
1879
1880 /* Should we try one of the 'Z' requests? */
1881
1882 enum Z_packet_type
1883 {
1884 Z_PACKET_SOFTWARE_BP,
1885 Z_PACKET_HARDWARE_BP,
1886 Z_PACKET_WRITE_WP,
1887 Z_PACKET_READ_WP,
1888 Z_PACKET_ACCESS_WP,
1889 NR_Z_PACKET_TYPES
1890 };
1891
1892 /* For compatibility with older distributions. Provide a ``set remote
1893 Z-packet ...'' command that updates all the Z packet types. */
1894
1895 static enum auto_boolean remote_Z_packet_detect;
1896
1897 static void
1898 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1899 struct cmd_list_element *c)
1900 {
1901 int i;
1902
1903 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1904 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1905 }
1906
1907 static void
1908 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1909 struct cmd_list_element *c,
1910 const char *value)
1911 {
1912 int i;
1913
1914 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1915 {
1916 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1917 }
1918 }
1919
1920 /* Returns true if the multi-process extensions are in effect. */
1921
1922 static int
1923 remote_multi_process_p (struct remote_state *rs)
1924 {
1925 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1926 }
1927
1928 /* Returns true if fork events are supported. */
1929
1930 static int
1931 remote_fork_event_p (struct remote_state *rs)
1932 {
1933 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1934 }
1935
1936 /* Returns true if vfork events are supported. */
1937
1938 static int
1939 remote_vfork_event_p (struct remote_state *rs)
1940 {
1941 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1942 }
1943
1944 /* Returns true if exec events are supported. */
1945
1946 static int
1947 remote_exec_event_p (struct remote_state *rs)
1948 {
1949 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1950 }
1951
1952 /* Insert fork catchpoint target routine. If fork events are enabled
1953 then return success, nothing more to do. */
1954
1955 int
1956 remote_target::insert_fork_catchpoint (int pid)
1957 {
1958 struct remote_state *rs = get_remote_state ();
1959
1960 return !remote_fork_event_p (rs);
1961 }
1962
1963 /* Remove fork catchpoint target routine. Nothing to do, just
1964 return success. */
1965
1966 int
1967 remote_target::remove_fork_catchpoint (int pid)
1968 {
1969 return 0;
1970 }
1971
1972 /* Insert vfork catchpoint target routine. If vfork events are enabled
1973 then return success, nothing more to do. */
1974
1975 int
1976 remote_target::insert_vfork_catchpoint (int pid)
1977 {
1978 struct remote_state *rs = get_remote_state ();
1979
1980 return !remote_vfork_event_p (rs);
1981 }
1982
1983 /* Remove vfork catchpoint target routine. Nothing to do, just
1984 return success. */
1985
1986 int
1987 remote_target::remove_vfork_catchpoint (int pid)
1988 {
1989 return 0;
1990 }
1991
1992 /* Insert exec catchpoint target routine. If exec events are
1993 enabled, just return success. */
1994
1995 int
1996 remote_target::insert_exec_catchpoint (int pid)
1997 {
1998 struct remote_state *rs = get_remote_state ();
1999
2000 return !remote_exec_event_p (rs);
2001 }
2002
2003 /* Remove exec catchpoint target routine. Nothing to do, just
2004 return success. */
2005
2006 int
2007 remote_target::remove_exec_catchpoint (int pid)
2008 {
2009 return 0;
2010 }
2011
2012 \f
2013 /* Asynchronous signal handle registered as event loop source for
2014 when we have pending events ready to be passed to the core. */
2015
2016 static struct async_event_handler *remote_async_inferior_event_token;
2017
2018 \f
2019
2020 static ptid_t magic_null_ptid;
2021 static ptid_t not_sent_ptid;
2022 static ptid_t any_thread_ptid;
2023
2024 /* Find out if the stub attached to PID (and hence GDB should offer to
2025 detach instead of killing it when bailing out). */
2026
2027 static int
2028 remote_query_attached (int pid)
2029 {
2030 struct remote_state *rs = get_remote_state ();
2031 size_t size = get_remote_packet_size ();
2032
2033 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2034 return 0;
2035
2036 if (remote_multi_process_p (rs))
2037 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2038 else
2039 xsnprintf (rs->buf, size, "qAttached");
2040
2041 putpkt (rs->buf);
2042 getpkt (&rs->buf, &rs->buf_size, 0);
2043
2044 switch (packet_ok (rs->buf,
2045 &remote_protocol_packets[PACKET_qAttached]))
2046 {
2047 case PACKET_OK:
2048 if (strcmp (rs->buf, "1") == 0)
2049 return 1;
2050 break;
2051 case PACKET_ERROR:
2052 warning (_("Remote failure reply: %s"), rs->buf);
2053 break;
2054 case PACKET_UNKNOWN:
2055 break;
2056 }
2057
2058 return 0;
2059 }
2060
2061 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2062 has been invented by GDB, instead of reported by the target. Since
2063 we can be connected to a remote system before before knowing about
2064 any inferior, mark the target with execution when we find the first
2065 inferior. If ATTACHED is 1, then we had just attached to this
2066 inferior. If it is 0, then we just created this inferior. If it
2067 is -1, then try querying the remote stub to find out if it had
2068 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2069 attempt to open this inferior's executable as the main executable
2070 if no main executable is open already. */
2071
2072 static struct inferior *
2073 remote_add_inferior (int fake_pid_p, int pid, int attached,
2074 int try_open_exec)
2075 {
2076 struct inferior *inf;
2077
2078 /* Check whether this process we're learning about is to be
2079 considered attached, or if is to be considered to have been
2080 spawned by the stub. */
2081 if (attached == -1)
2082 attached = remote_query_attached (pid);
2083
2084 if (gdbarch_has_global_solist (target_gdbarch ()))
2085 {
2086 /* If the target shares code across all inferiors, then every
2087 attach adds a new inferior. */
2088 inf = add_inferior (pid);
2089
2090 /* ... and every inferior is bound to the same program space.
2091 However, each inferior may still have its own address
2092 space. */
2093 inf->aspace = maybe_new_address_space ();
2094 inf->pspace = current_program_space;
2095 }
2096 else
2097 {
2098 /* In the traditional debugging scenario, there's a 1-1 match
2099 between program/address spaces. We simply bind the inferior
2100 to the program space's address space. */
2101 inf = current_inferior ();
2102 inferior_appeared (inf, pid);
2103 }
2104
2105 inf->attach_flag = attached;
2106 inf->fake_pid_p = fake_pid_p;
2107
2108 /* If no main executable is currently open then attempt to
2109 open the file that was executed to create this inferior. */
2110 if (try_open_exec && get_exec_file (0) == NULL)
2111 exec_file_locate_attach (pid, 0, 1);
2112
2113 return inf;
2114 }
2115
2116 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2117
2118 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2119 according to RUNNING. */
2120
2121 static void
2122 remote_add_thread (ptid_t ptid, int running, int executing)
2123 {
2124 struct remote_state *rs = get_remote_state ();
2125 struct thread_info *thread;
2126
2127 /* GDB historically didn't pull threads in the initial connection
2128 setup. If the remote target doesn't even have a concept of
2129 threads (e.g., a bare-metal target), even if internally we
2130 consider that a single-threaded target, mentioning a new thread
2131 might be confusing to the user. Be silent then, preserving the
2132 age old behavior. */
2133 if (rs->starting_up)
2134 thread = add_thread_silent (ptid);
2135 else
2136 thread = add_thread (ptid);
2137
2138 get_remote_thread_info (thread)->vcont_resumed = executing;
2139 set_executing (ptid, executing);
2140 set_running (ptid, running);
2141 }
2142
2143 /* Come here when we learn about a thread id from the remote target.
2144 It may be the first time we hear about such thread, so take the
2145 opportunity to add it to GDB's thread list. In case this is the
2146 first time we're noticing its corresponding inferior, add it to
2147 GDB's inferior list as well. EXECUTING indicates whether the
2148 thread is (internally) executing or stopped. */
2149
2150 static void
2151 remote_notice_new_inferior (ptid_t currthread, int executing)
2152 {
2153 /* In non-stop mode, we assume new found threads are (externally)
2154 running until proven otherwise with a stop reply. In all-stop,
2155 we can only get here if all threads are stopped. */
2156 int running = target_is_non_stop_p () ? 1 : 0;
2157
2158 /* If this is a new thread, add it to GDB's thread list.
2159 If we leave it up to WFI to do this, bad things will happen. */
2160
2161 if (in_thread_list (currthread) && is_exited (currthread))
2162 {
2163 /* We're seeing an event on a thread id we knew had exited.
2164 This has to be a new thread reusing the old id. Add it. */
2165 remote_add_thread (currthread, running, executing);
2166 return;
2167 }
2168
2169 if (!in_thread_list (currthread))
2170 {
2171 struct inferior *inf = NULL;
2172 int pid = ptid_get_pid (currthread);
2173
2174 if (ptid_is_pid (inferior_ptid)
2175 && pid == ptid_get_pid (inferior_ptid))
2176 {
2177 /* inferior_ptid has no thread member yet. This can happen
2178 with the vAttach -> remote_wait,"TAAthread:" path if the
2179 stub doesn't support qC. This is the first stop reported
2180 after an attach, so this is the main thread. Update the
2181 ptid in the thread list. */
2182 if (in_thread_list (pid_to_ptid (pid)))
2183 thread_change_ptid (inferior_ptid, currthread);
2184 else
2185 {
2186 remote_add_thread (currthread, running, executing);
2187 inferior_ptid = currthread;
2188 }
2189 return;
2190 }
2191
2192 if (ptid_equal (magic_null_ptid, inferior_ptid))
2193 {
2194 /* inferior_ptid is not set yet. This can happen with the
2195 vRun -> remote_wait,"TAAthread:" path if the stub
2196 doesn't support qC. This is the first stop reported
2197 after an attach, so this is the main thread. Update the
2198 ptid in the thread list. */
2199 thread_change_ptid (inferior_ptid, currthread);
2200 return;
2201 }
2202
2203 /* When connecting to a target remote, or to a target
2204 extended-remote which already was debugging an inferior, we
2205 may not know about it yet. Add it before adding its child
2206 thread, so notifications are emitted in a sensible order. */
2207 if (!in_inferior_list (ptid_get_pid (currthread)))
2208 {
2209 struct remote_state *rs = get_remote_state ();
2210 int fake_pid_p = !remote_multi_process_p (rs);
2211
2212 inf = remote_add_inferior (fake_pid_p,
2213 ptid_get_pid (currthread), -1, 1);
2214 }
2215
2216 /* This is really a new thread. Add it. */
2217 remote_add_thread (currthread, running, executing);
2218
2219 /* If we found a new inferior, let the common code do whatever
2220 it needs to with it (e.g., read shared libraries, insert
2221 breakpoints), unless we're just setting up an all-stop
2222 connection. */
2223 if (inf != NULL)
2224 {
2225 struct remote_state *rs = get_remote_state ();
2226
2227 if (!rs->starting_up)
2228 notice_new_inferior (currthread, executing, 0);
2229 }
2230 }
2231 }
2232
2233 /* Return THREAD's private thread data, creating it if necessary. */
2234
2235 static remote_thread_info *
2236 get_remote_thread_info (thread_info *thread)
2237 {
2238 gdb_assert (thread != NULL);
2239
2240 if (thread->priv == NULL)
2241 thread->priv.reset (new remote_thread_info);
2242
2243 return static_cast<remote_thread_info *> (thread->priv.get ());
2244 }
2245
2246 /* Return PTID's private thread data, creating it if necessary. */
2247
2248 static remote_thread_info *
2249 get_remote_thread_info (ptid_t ptid)
2250 {
2251 struct thread_info *info = find_thread_ptid (ptid);
2252
2253 return get_remote_thread_info (info);
2254 }
2255
2256 /* Call this function as a result of
2257 1) A halt indication (T packet) containing a thread id
2258 2) A direct query of currthread
2259 3) Successful execution of set thread */
2260
2261 static void
2262 record_currthread (struct remote_state *rs, ptid_t currthread)
2263 {
2264 rs->general_thread = currthread;
2265 }
2266
2267 /* If 'QPassSignals' is supported, tell the remote stub what signals
2268 it can simply pass through to the inferior without reporting. */
2269
2270 void
2271 remote_target::pass_signals (int numsigs, unsigned char *pass_signals)
2272 {
2273 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2274 {
2275 char *pass_packet, *p;
2276 int count = 0, i;
2277 struct remote_state *rs = get_remote_state ();
2278
2279 gdb_assert (numsigs < 256);
2280 for (i = 0; i < numsigs; i++)
2281 {
2282 if (pass_signals[i])
2283 count++;
2284 }
2285 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2286 strcpy (pass_packet, "QPassSignals:");
2287 p = pass_packet + strlen (pass_packet);
2288 for (i = 0; i < numsigs; i++)
2289 {
2290 if (pass_signals[i])
2291 {
2292 if (i >= 16)
2293 *p++ = tohex (i >> 4);
2294 *p++ = tohex (i & 15);
2295 if (count)
2296 *p++ = ';';
2297 else
2298 break;
2299 count--;
2300 }
2301 }
2302 *p = 0;
2303 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2304 {
2305 putpkt (pass_packet);
2306 getpkt (&rs->buf, &rs->buf_size, 0);
2307 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2308 if (rs->last_pass_packet)
2309 xfree (rs->last_pass_packet);
2310 rs->last_pass_packet = pass_packet;
2311 }
2312 else
2313 xfree (pass_packet);
2314 }
2315 }
2316
2317 /* If 'QCatchSyscalls' is supported, tell the remote stub
2318 to report syscalls to GDB. */
2319
2320 int
2321 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2322 gdb::array_view<const int> syscall_counts)
2323 {
2324 const char *catch_packet;
2325 enum packet_result result;
2326 int n_sysno = 0;
2327
2328 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2329 {
2330 /* Not supported. */
2331 return 1;
2332 }
2333
2334 if (needed && any_count == 0)
2335 {
2336 /* Count how many syscalls are to be caught. */
2337 for (size_t i = 0; i < syscall_counts.size (); i++)
2338 {
2339 if (syscall_counts[i] != 0)
2340 n_sysno++;
2341 }
2342 }
2343
2344 if (remote_debug)
2345 {
2346 fprintf_unfiltered (gdb_stdlog,
2347 "remote_set_syscall_catchpoint "
2348 "pid %d needed %d any_count %d n_sysno %d\n",
2349 pid, needed, any_count, n_sysno);
2350 }
2351
2352 std::string built_packet;
2353 if (needed)
2354 {
2355 /* Prepare a packet with the sysno list, assuming max 8+1
2356 characters for a sysno. If the resulting packet size is too
2357 big, fallback on the non-selective packet. */
2358 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2359 built_packet.reserve (maxpktsz);
2360 built_packet = "QCatchSyscalls:1";
2361 if (any_count == 0)
2362 {
2363 /* Add in each syscall to be caught. */
2364 for (size_t i = 0; i < syscall_counts.size (); i++)
2365 {
2366 if (syscall_counts[i] != 0)
2367 string_appendf (built_packet, ";%zx", i);
2368 }
2369 }
2370 if (built_packet.size () > get_remote_packet_size ())
2371 {
2372 /* catch_packet too big. Fallback to less efficient
2373 non selective mode, with GDB doing the filtering. */
2374 catch_packet = "QCatchSyscalls:1";
2375 }
2376 else
2377 catch_packet = built_packet.c_str ();
2378 }
2379 else
2380 catch_packet = "QCatchSyscalls:0";
2381
2382 struct remote_state *rs = get_remote_state ();
2383
2384 putpkt (catch_packet);
2385 getpkt (&rs->buf, &rs->buf_size, 0);
2386 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2387 if (result == PACKET_OK)
2388 return 0;
2389 else
2390 return -1;
2391 }
2392
2393 /* If 'QProgramSignals' is supported, tell the remote stub what
2394 signals it should pass through to the inferior when detaching. */
2395
2396 void
2397 remote_target::program_signals (int numsigs, unsigned char *signals)
2398 {
2399 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2400 {
2401 char *packet, *p;
2402 int count = 0, i;
2403 struct remote_state *rs = get_remote_state ();
2404
2405 gdb_assert (numsigs < 256);
2406 for (i = 0; i < numsigs; i++)
2407 {
2408 if (signals[i])
2409 count++;
2410 }
2411 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2412 strcpy (packet, "QProgramSignals:");
2413 p = packet + strlen (packet);
2414 for (i = 0; i < numsigs; i++)
2415 {
2416 if (signal_pass_state (i))
2417 {
2418 if (i >= 16)
2419 *p++ = tohex (i >> 4);
2420 *p++ = tohex (i & 15);
2421 if (count)
2422 *p++ = ';';
2423 else
2424 break;
2425 count--;
2426 }
2427 }
2428 *p = 0;
2429 if (!rs->last_program_signals_packet
2430 || strcmp (rs->last_program_signals_packet, packet) != 0)
2431 {
2432 putpkt (packet);
2433 getpkt (&rs->buf, &rs->buf_size, 0);
2434 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2435 xfree (rs->last_program_signals_packet);
2436 rs->last_program_signals_packet = packet;
2437 }
2438 else
2439 xfree (packet);
2440 }
2441 }
2442
2443 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2444 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2445 thread. If GEN is set, set the general thread, if not, then set
2446 the step/continue thread. */
2447 static void
2448 set_thread (ptid_t ptid, int gen)
2449 {
2450 struct remote_state *rs = get_remote_state ();
2451 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2452 char *buf = rs->buf;
2453 char *endbuf = rs->buf + get_remote_packet_size ();
2454
2455 if (ptid_equal (state, ptid))
2456 return;
2457
2458 *buf++ = 'H';
2459 *buf++ = gen ? 'g' : 'c';
2460 if (ptid_equal (ptid, magic_null_ptid))
2461 xsnprintf (buf, endbuf - buf, "0");
2462 else if (ptid_equal (ptid, any_thread_ptid))
2463 xsnprintf (buf, endbuf - buf, "0");
2464 else if (ptid_equal (ptid, minus_one_ptid))
2465 xsnprintf (buf, endbuf - buf, "-1");
2466 else
2467 write_ptid (buf, endbuf, ptid);
2468 putpkt (rs->buf);
2469 getpkt (&rs->buf, &rs->buf_size, 0);
2470 if (gen)
2471 rs->general_thread = ptid;
2472 else
2473 rs->continue_thread = ptid;
2474 }
2475
2476 static void
2477 set_general_thread (ptid_t ptid)
2478 {
2479 set_thread (ptid, 1);
2480 }
2481
2482 static void
2483 set_continue_thread (ptid_t ptid)
2484 {
2485 set_thread (ptid, 0);
2486 }
2487
2488 /* Change the remote current process. Which thread within the process
2489 ends up selected isn't important, as long as it is the same process
2490 as what INFERIOR_PTID points to.
2491
2492 This comes from that fact that there is no explicit notion of
2493 "selected process" in the protocol. The selected process for
2494 general operations is the process the selected general thread
2495 belongs to. */
2496
2497 static void
2498 set_general_process (void)
2499 {
2500 struct remote_state *rs = get_remote_state ();
2501
2502 /* If the remote can't handle multiple processes, don't bother. */
2503 if (!remote_multi_process_p (rs))
2504 return;
2505
2506 /* We only need to change the remote current thread if it's pointing
2507 at some other process. */
2508 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2509 set_general_thread (inferior_ptid);
2510 }
2511
2512 \f
2513 /* Return nonzero if this is the main thread that we made up ourselves
2514 to model non-threaded targets as single-threaded. */
2515
2516 static int
2517 remote_thread_always_alive (ptid_t ptid)
2518 {
2519 if (ptid_equal (ptid, magic_null_ptid))
2520 /* The main thread is always alive. */
2521 return 1;
2522
2523 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2524 /* The main thread is always alive. This can happen after a
2525 vAttach, if the remote side doesn't support
2526 multi-threading. */
2527 return 1;
2528
2529 return 0;
2530 }
2531
2532 /* Return nonzero if the thread PTID is still alive on the remote
2533 system. */
2534
2535 bool
2536 remote_target::thread_alive (ptid_t ptid)
2537 {
2538 struct remote_state *rs = get_remote_state ();
2539 char *p, *endp;
2540
2541 /* Check if this is a thread that we made up ourselves to model
2542 non-threaded targets as single-threaded. */
2543 if (remote_thread_always_alive (ptid))
2544 return 1;
2545
2546 p = rs->buf;
2547 endp = rs->buf + get_remote_packet_size ();
2548
2549 *p++ = 'T';
2550 write_ptid (p, endp, ptid);
2551
2552 putpkt (rs->buf);
2553 getpkt (&rs->buf, &rs->buf_size, 0);
2554 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2555 }
2556
2557 /* Return a pointer to a thread name if we know it and NULL otherwise.
2558 The thread_info object owns the memory for the name. */
2559
2560 const char *
2561 remote_target::thread_name (struct thread_info *info)
2562 {
2563 if (info->priv != NULL)
2564 {
2565 const std::string &name = get_remote_thread_info (info)->name;
2566 return !name.empty () ? name.c_str () : NULL;
2567 }
2568
2569 return NULL;
2570 }
2571
2572 /* About these extended threadlist and threadinfo packets. They are
2573 variable length packets but, the fields within them are often fixed
2574 length. They are redundent enough to send over UDP as is the
2575 remote protocol in general. There is a matching unit test module
2576 in libstub. */
2577
2578 /* WARNING: This threadref data structure comes from the remote O.S.,
2579 libstub protocol encoding, and remote.c. It is not particularly
2580 changable. */
2581
2582 /* Right now, the internal structure is int. We want it to be bigger.
2583 Plan to fix this. */
2584
2585 typedef int gdb_threadref; /* Internal GDB thread reference. */
2586
2587 /* gdb_ext_thread_info is an internal GDB data structure which is
2588 equivalent to the reply of the remote threadinfo packet. */
2589
2590 struct gdb_ext_thread_info
2591 {
2592 threadref threadid; /* External form of thread reference. */
2593 int active; /* Has state interesting to GDB?
2594 regs, stack. */
2595 char display[256]; /* Brief state display, name,
2596 blocked/suspended. */
2597 char shortname[32]; /* To be used to name threads. */
2598 char more_display[256]; /* Long info, statistics, queue depth,
2599 whatever. */
2600 };
2601
2602 /* The volume of remote transfers can be limited by submitting
2603 a mask containing bits specifying the desired information.
2604 Use a union of these values as the 'selection' parameter to
2605 get_thread_info. FIXME: Make these TAG names more thread specific. */
2606
2607 #define TAG_THREADID 1
2608 #define TAG_EXISTS 2
2609 #define TAG_DISPLAY 4
2610 #define TAG_THREADNAME 8
2611 #define TAG_MOREDISPLAY 16
2612
2613 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2614
2615 static char *unpack_nibble (char *buf, int *val);
2616
2617 static char *unpack_byte (char *buf, int *value);
2618
2619 static char *pack_int (char *buf, int value);
2620
2621 static char *unpack_int (char *buf, int *value);
2622
2623 static char *unpack_string (char *src, char *dest, int length);
2624
2625 static char *pack_threadid (char *pkt, threadref *id);
2626
2627 static char *unpack_threadid (char *inbuf, threadref *id);
2628
2629 void int_to_threadref (threadref *id, int value);
2630
2631 static int threadref_to_int (threadref *ref);
2632
2633 static void copy_threadref (threadref *dest, threadref *src);
2634
2635 static int threadmatch (threadref *dest, threadref *src);
2636
2637 static char *pack_threadinfo_request (char *pkt, int mode,
2638 threadref *id);
2639
2640 static int remote_unpack_thread_info_response (char *pkt,
2641 threadref *expectedref,
2642 struct gdb_ext_thread_info
2643 *info);
2644
2645
2646 static int remote_get_threadinfo (threadref *threadid,
2647 int fieldset, /*TAG mask */
2648 struct gdb_ext_thread_info *info);
2649
2650 static char *pack_threadlist_request (char *pkt, int startflag,
2651 int threadcount,
2652 threadref *nextthread);
2653
2654 static int parse_threadlist_response (char *pkt,
2655 int result_limit,
2656 threadref *original_echo,
2657 threadref *resultlist,
2658 int *doneflag);
2659
2660 static int remote_get_threadlist (int startflag,
2661 threadref *nextthread,
2662 int result_limit,
2663 int *done,
2664 int *result_count,
2665 threadref *threadlist);
2666
2667 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2668
2669 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2670 void *context, int looplimit);
2671
2672 static int remote_newthread_step (threadref *ref, void *context);
2673
2674
2675 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2676 buffer we're allowed to write to. Returns
2677 BUF+CHARACTERS_WRITTEN. */
2678
2679 static char *
2680 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2681 {
2682 int pid, tid;
2683 struct remote_state *rs = get_remote_state ();
2684
2685 if (remote_multi_process_p (rs))
2686 {
2687 pid = ptid_get_pid (ptid);
2688 if (pid < 0)
2689 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2690 else
2691 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2692 }
2693 tid = ptid_get_lwp (ptid);
2694 if (tid < 0)
2695 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2696 else
2697 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2698
2699 return buf;
2700 }
2701
2702 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2703 last parsed char. Returns null_ptid if no thread id is found, and
2704 throws an error if the thread id has an invalid format. */
2705
2706 static ptid_t
2707 read_ptid (const char *buf, const char **obuf)
2708 {
2709 const char *p = buf;
2710 const char *pp;
2711 ULONGEST pid = 0, tid = 0;
2712
2713 if (*p == 'p')
2714 {
2715 /* Multi-process ptid. */
2716 pp = unpack_varlen_hex (p + 1, &pid);
2717 if (*pp != '.')
2718 error (_("invalid remote ptid: %s"), p);
2719
2720 p = pp;
2721 pp = unpack_varlen_hex (p + 1, &tid);
2722 if (obuf)
2723 *obuf = pp;
2724 return ptid_build (pid, tid, 0);
2725 }
2726
2727 /* No multi-process. Just a tid. */
2728 pp = unpack_varlen_hex (p, &tid);
2729
2730 /* Return null_ptid when no thread id is found. */
2731 if (p == pp)
2732 {
2733 if (obuf)
2734 *obuf = pp;
2735 return null_ptid;
2736 }
2737
2738 /* Since the stub is not sending a process id, then default to
2739 what's in inferior_ptid, unless it's null at this point. If so,
2740 then since there's no way to know the pid of the reported
2741 threads, use the magic number. */
2742 if (ptid_equal (inferior_ptid, null_ptid))
2743 pid = ptid_get_pid (magic_null_ptid);
2744 else
2745 pid = ptid_get_pid (inferior_ptid);
2746
2747 if (obuf)
2748 *obuf = pp;
2749 return ptid_build (pid, tid, 0);
2750 }
2751
2752 static int
2753 stubhex (int ch)
2754 {
2755 if (ch >= 'a' && ch <= 'f')
2756 return ch - 'a' + 10;
2757 if (ch >= '0' && ch <= '9')
2758 return ch - '0';
2759 if (ch >= 'A' && ch <= 'F')
2760 return ch - 'A' + 10;
2761 return -1;
2762 }
2763
2764 static int
2765 stub_unpack_int (char *buff, int fieldlength)
2766 {
2767 int nibble;
2768 int retval = 0;
2769
2770 while (fieldlength)
2771 {
2772 nibble = stubhex (*buff++);
2773 retval |= nibble;
2774 fieldlength--;
2775 if (fieldlength)
2776 retval = retval << 4;
2777 }
2778 return retval;
2779 }
2780
2781 static char *
2782 unpack_nibble (char *buf, int *val)
2783 {
2784 *val = fromhex (*buf++);
2785 return buf;
2786 }
2787
2788 static char *
2789 unpack_byte (char *buf, int *value)
2790 {
2791 *value = stub_unpack_int (buf, 2);
2792 return buf + 2;
2793 }
2794
2795 static char *
2796 pack_int (char *buf, int value)
2797 {
2798 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2799 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2800 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2801 buf = pack_hex_byte (buf, (value & 0xff));
2802 return buf;
2803 }
2804
2805 static char *
2806 unpack_int (char *buf, int *value)
2807 {
2808 *value = stub_unpack_int (buf, 8);
2809 return buf + 8;
2810 }
2811
2812 #if 0 /* Currently unused, uncomment when needed. */
2813 static char *pack_string (char *pkt, char *string);
2814
2815 static char *
2816 pack_string (char *pkt, char *string)
2817 {
2818 char ch;
2819 int len;
2820
2821 len = strlen (string);
2822 if (len > 200)
2823 len = 200; /* Bigger than most GDB packets, junk??? */
2824 pkt = pack_hex_byte (pkt, len);
2825 while (len-- > 0)
2826 {
2827 ch = *string++;
2828 if ((ch == '\0') || (ch == '#'))
2829 ch = '*'; /* Protect encapsulation. */
2830 *pkt++ = ch;
2831 }
2832 return pkt;
2833 }
2834 #endif /* 0 (unused) */
2835
2836 static char *
2837 unpack_string (char *src, char *dest, int length)
2838 {
2839 while (length--)
2840 *dest++ = *src++;
2841 *dest = '\0';
2842 return src;
2843 }
2844
2845 static char *
2846 pack_threadid (char *pkt, threadref *id)
2847 {
2848 char *limit;
2849 unsigned char *altid;
2850
2851 altid = (unsigned char *) id;
2852 limit = pkt + BUF_THREAD_ID_SIZE;
2853 while (pkt < limit)
2854 pkt = pack_hex_byte (pkt, *altid++);
2855 return pkt;
2856 }
2857
2858
2859 static char *
2860 unpack_threadid (char *inbuf, threadref *id)
2861 {
2862 char *altref;
2863 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2864 int x, y;
2865
2866 altref = (char *) id;
2867
2868 while (inbuf < limit)
2869 {
2870 x = stubhex (*inbuf++);
2871 y = stubhex (*inbuf++);
2872 *altref++ = (x << 4) | y;
2873 }
2874 return inbuf;
2875 }
2876
2877 /* Externally, threadrefs are 64 bits but internally, they are still
2878 ints. This is due to a mismatch of specifications. We would like
2879 to use 64bit thread references internally. This is an adapter
2880 function. */
2881
2882 void
2883 int_to_threadref (threadref *id, int value)
2884 {
2885 unsigned char *scan;
2886
2887 scan = (unsigned char *) id;
2888 {
2889 int i = 4;
2890 while (i--)
2891 *scan++ = 0;
2892 }
2893 *scan++ = (value >> 24) & 0xff;
2894 *scan++ = (value >> 16) & 0xff;
2895 *scan++ = (value >> 8) & 0xff;
2896 *scan++ = (value & 0xff);
2897 }
2898
2899 static int
2900 threadref_to_int (threadref *ref)
2901 {
2902 int i, value = 0;
2903 unsigned char *scan;
2904
2905 scan = *ref;
2906 scan += 4;
2907 i = 4;
2908 while (i-- > 0)
2909 value = (value << 8) | ((*scan++) & 0xff);
2910 return value;
2911 }
2912
2913 static void
2914 copy_threadref (threadref *dest, threadref *src)
2915 {
2916 int i;
2917 unsigned char *csrc, *cdest;
2918
2919 csrc = (unsigned char *) src;
2920 cdest = (unsigned char *) dest;
2921 i = 8;
2922 while (i--)
2923 *cdest++ = *csrc++;
2924 }
2925
2926 static int
2927 threadmatch (threadref *dest, threadref *src)
2928 {
2929 /* Things are broken right now, so just assume we got a match. */
2930 #if 0
2931 unsigned char *srcp, *destp;
2932 int i, result;
2933 srcp = (char *) src;
2934 destp = (char *) dest;
2935
2936 result = 1;
2937 while (i-- > 0)
2938 result &= (*srcp++ == *destp++) ? 1 : 0;
2939 return result;
2940 #endif
2941 return 1;
2942 }
2943
2944 /*
2945 threadid:1, # always request threadid
2946 context_exists:2,
2947 display:4,
2948 unique_name:8,
2949 more_display:16
2950 */
2951
2952 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2953
2954 static char *
2955 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2956 {
2957 *pkt++ = 'q'; /* Info Query */
2958 *pkt++ = 'P'; /* process or thread info */
2959 pkt = pack_int (pkt, mode); /* mode */
2960 pkt = pack_threadid (pkt, id); /* threadid */
2961 *pkt = '\0'; /* terminate */
2962 return pkt;
2963 }
2964
2965 /* These values tag the fields in a thread info response packet. */
2966 /* Tagging the fields allows us to request specific fields and to
2967 add more fields as time goes by. */
2968
2969 #define TAG_THREADID 1 /* Echo the thread identifier. */
2970 #define TAG_EXISTS 2 /* Is this process defined enough to
2971 fetch registers and its stack? */
2972 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2973 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2974 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2975 the process. */
2976
2977 static int
2978 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2979 struct gdb_ext_thread_info *info)
2980 {
2981 struct remote_state *rs = get_remote_state ();
2982 int mask, length;
2983 int tag;
2984 threadref ref;
2985 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2986 int retval = 1;
2987
2988 /* info->threadid = 0; FIXME: implement zero_threadref. */
2989 info->active = 0;
2990 info->display[0] = '\0';
2991 info->shortname[0] = '\0';
2992 info->more_display[0] = '\0';
2993
2994 /* Assume the characters indicating the packet type have been
2995 stripped. */
2996 pkt = unpack_int (pkt, &mask); /* arg mask */
2997 pkt = unpack_threadid (pkt, &ref);
2998
2999 if (mask == 0)
3000 warning (_("Incomplete response to threadinfo request."));
3001 if (!threadmatch (&ref, expectedref))
3002 { /* This is an answer to a different request. */
3003 warning (_("ERROR RMT Thread info mismatch."));
3004 return 0;
3005 }
3006 copy_threadref (&info->threadid, &ref);
3007
3008 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3009
3010 /* Packets are terminated with nulls. */
3011 while ((pkt < limit) && mask && *pkt)
3012 {
3013 pkt = unpack_int (pkt, &tag); /* tag */
3014 pkt = unpack_byte (pkt, &length); /* length */
3015 if (!(tag & mask)) /* Tags out of synch with mask. */
3016 {
3017 warning (_("ERROR RMT: threadinfo tag mismatch."));
3018 retval = 0;
3019 break;
3020 }
3021 if (tag == TAG_THREADID)
3022 {
3023 if (length != 16)
3024 {
3025 warning (_("ERROR RMT: length of threadid is not 16."));
3026 retval = 0;
3027 break;
3028 }
3029 pkt = unpack_threadid (pkt, &ref);
3030 mask = mask & ~TAG_THREADID;
3031 continue;
3032 }
3033 if (tag == TAG_EXISTS)
3034 {
3035 info->active = stub_unpack_int (pkt, length);
3036 pkt += length;
3037 mask = mask & ~(TAG_EXISTS);
3038 if (length > 8)
3039 {
3040 warning (_("ERROR RMT: 'exists' length too long."));
3041 retval = 0;
3042 break;
3043 }
3044 continue;
3045 }
3046 if (tag == TAG_THREADNAME)
3047 {
3048 pkt = unpack_string (pkt, &info->shortname[0], length);
3049 mask = mask & ~TAG_THREADNAME;
3050 continue;
3051 }
3052 if (tag == TAG_DISPLAY)
3053 {
3054 pkt = unpack_string (pkt, &info->display[0], length);
3055 mask = mask & ~TAG_DISPLAY;
3056 continue;
3057 }
3058 if (tag == TAG_MOREDISPLAY)
3059 {
3060 pkt = unpack_string (pkt, &info->more_display[0], length);
3061 mask = mask & ~TAG_MOREDISPLAY;
3062 continue;
3063 }
3064 warning (_("ERROR RMT: unknown thread info tag."));
3065 break; /* Not a tag we know about. */
3066 }
3067 return retval;
3068 }
3069
3070 static int
3071 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
3072 struct gdb_ext_thread_info *info)
3073 {
3074 struct remote_state *rs = get_remote_state ();
3075 int result;
3076
3077 pack_threadinfo_request (rs->buf, fieldset, threadid);
3078 putpkt (rs->buf);
3079 getpkt (&rs->buf, &rs->buf_size, 0);
3080
3081 if (rs->buf[0] == '\0')
3082 return 0;
3083
3084 result = remote_unpack_thread_info_response (rs->buf + 2,
3085 threadid, info);
3086 return result;
3087 }
3088
3089 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3090
3091 static char *
3092 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3093 threadref *nextthread)
3094 {
3095 *pkt++ = 'q'; /* info query packet */
3096 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3097 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3098 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3099 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3100 *pkt = '\0';
3101 return pkt;
3102 }
3103
3104 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3105
3106 static int
3107 parse_threadlist_response (char *pkt, int result_limit,
3108 threadref *original_echo, threadref *resultlist,
3109 int *doneflag)
3110 {
3111 struct remote_state *rs = get_remote_state ();
3112 char *limit;
3113 int count, resultcount, done;
3114
3115 resultcount = 0;
3116 /* Assume the 'q' and 'M chars have been stripped. */
3117 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3118 /* done parse past here */
3119 pkt = unpack_byte (pkt, &count); /* count field */
3120 pkt = unpack_nibble (pkt, &done);
3121 /* The first threadid is the argument threadid. */
3122 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3123 while ((count-- > 0) && (pkt < limit))
3124 {
3125 pkt = unpack_threadid (pkt, resultlist++);
3126 if (resultcount++ >= result_limit)
3127 break;
3128 }
3129 if (doneflag)
3130 *doneflag = done;
3131 return resultcount;
3132 }
3133
3134 /* Fetch the next batch of threads from the remote. Returns -1 if the
3135 qL packet is not supported, 0 on error and 1 on success. */
3136
3137 static int
3138 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
3139 int *done, int *result_count, threadref *threadlist)
3140 {
3141 struct remote_state *rs = get_remote_state ();
3142 int result = 1;
3143
3144 /* Trancate result limit to be smaller than the packet size. */
3145 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3146 >= get_remote_packet_size ())
3147 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3148
3149 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3150 putpkt (rs->buf);
3151 getpkt (&rs->buf, &rs->buf_size, 0);
3152 if (*rs->buf == '\0')
3153 {
3154 /* Packet not supported. */
3155 return -1;
3156 }
3157
3158 *result_count =
3159 parse_threadlist_response (rs->buf + 2, result_limit,
3160 &rs->echo_nextthread, threadlist, done);
3161
3162 if (!threadmatch (&rs->echo_nextthread, nextthread))
3163 {
3164 /* FIXME: This is a good reason to drop the packet. */
3165 /* Possably, there is a duplicate response. */
3166 /* Possabilities :
3167 retransmit immediatly - race conditions
3168 retransmit after timeout - yes
3169 exit
3170 wait for packet, then exit
3171 */
3172 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3173 return 0; /* I choose simply exiting. */
3174 }
3175 if (*result_count <= 0)
3176 {
3177 if (*done != 1)
3178 {
3179 warning (_("RMT ERROR : failed to get remote thread list."));
3180 result = 0;
3181 }
3182 return result; /* break; */
3183 }
3184 if (*result_count > result_limit)
3185 {
3186 *result_count = 0;
3187 warning (_("RMT ERROR: threadlist response longer than requested."));
3188 return 0;
3189 }
3190 return result;
3191 }
3192
3193 /* Fetch the list of remote threads, with the qL packet, and call
3194 STEPFUNCTION for each thread found. Stops iterating and returns 1
3195 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3196 STEPFUNCTION returns false. If the packet is not supported,
3197 returns -1. */
3198
3199 static int
3200 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
3201 int looplimit)
3202 {
3203 struct remote_state *rs = get_remote_state ();
3204 int done, i, result_count;
3205 int startflag = 1;
3206 int result = 1;
3207 int loopcount = 0;
3208
3209 done = 0;
3210 while (!done)
3211 {
3212 if (loopcount++ > looplimit)
3213 {
3214 result = 0;
3215 warning (_("Remote fetch threadlist -infinite loop-."));
3216 break;
3217 }
3218 result = remote_get_threadlist (startflag, &rs->nextthread,
3219 MAXTHREADLISTRESULTS,
3220 &done, &result_count,
3221 rs->resultthreadlist);
3222 if (result <= 0)
3223 break;
3224 /* Clear for later iterations. */
3225 startflag = 0;
3226 /* Setup to resume next batch of thread references, set nextthread. */
3227 if (result_count >= 1)
3228 copy_threadref (&rs->nextthread,
3229 &rs->resultthreadlist[result_count - 1]);
3230 i = 0;
3231 while (result_count--)
3232 {
3233 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3234 {
3235 result = 0;
3236 break;
3237 }
3238 }
3239 }
3240 return result;
3241 }
3242
3243 /* A thread found on the remote target. */
3244
3245 struct thread_item
3246 {
3247 explicit thread_item (ptid_t ptid_)
3248 : ptid (ptid_)
3249 {}
3250
3251 thread_item (thread_item &&other) = default;
3252 thread_item &operator= (thread_item &&other) = default;
3253
3254 DISABLE_COPY_AND_ASSIGN (thread_item);
3255
3256 /* The thread's PTID. */
3257 ptid_t ptid;
3258
3259 /* The thread's extra info. */
3260 std::string extra;
3261
3262 /* The thread's name. */
3263 std::string name;
3264
3265 /* The core the thread was running on. -1 if not known. */
3266 int core = -1;
3267
3268 /* The thread handle associated with the thread. */
3269 gdb::byte_vector thread_handle;
3270 };
3271
3272 /* Context passed around to the various methods listing remote
3273 threads. As new threads are found, they're added to the ITEMS
3274 vector. */
3275
3276 struct threads_listing_context
3277 {
3278 /* Return true if this object contains an entry for a thread with ptid
3279 PTID. */
3280
3281 bool contains_thread (ptid_t ptid) const
3282 {
3283 auto match_ptid = [&] (const thread_item &item)
3284 {
3285 return item.ptid == ptid;
3286 };
3287
3288 auto it = std::find_if (this->items.begin (),
3289 this->items.end (),
3290 match_ptid);
3291
3292 return it != this->items.end ();
3293 }
3294
3295 /* Remove the thread with ptid PTID. */
3296
3297 void remove_thread (ptid_t ptid)
3298 {
3299 auto match_ptid = [&] (const thread_item &item)
3300 {
3301 return item.ptid == ptid;
3302 };
3303
3304 auto it = std::remove_if (this->items.begin (),
3305 this->items.end (),
3306 match_ptid);
3307
3308 if (it != this->items.end ())
3309 this->items.erase (it);
3310 }
3311
3312 /* The threads found on the remote target. */
3313 std::vector<thread_item> items;
3314 };
3315
3316 static int
3317 remote_newthread_step (threadref *ref, void *data)
3318 {
3319 struct threads_listing_context *context
3320 = (struct threads_listing_context *) data;
3321 int pid = inferior_ptid.pid ();
3322 int lwp = threadref_to_int (ref);
3323 ptid_t ptid (pid, lwp);
3324
3325 context->items.emplace_back (ptid);
3326
3327 return 1; /* continue iterator */
3328 }
3329
3330 #define CRAZY_MAX_THREADS 1000
3331
3332 static ptid_t
3333 remote_current_thread (ptid_t oldpid)
3334 {
3335 struct remote_state *rs = get_remote_state ();
3336
3337 putpkt ("qC");
3338 getpkt (&rs->buf, &rs->buf_size, 0);
3339 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3340 {
3341 const char *obuf;
3342 ptid_t result;
3343
3344 result = read_ptid (&rs->buf[2], &obuf);
3345 if (*obuf != '\0' && remote_debug)
3346 fprintf_unfiltered (gdb_stdlog,
3347 "warning: garbage in qC reply\n");
3348
3349 return result;
3350 }
3351 else
3352 return oldpid;
3353 }
3354
3355 /* List remote threads using the deprecated qL packet. */
3356
3357 static int
3358 remote_get_threads_with_ql (struct target_ops *ops,
3359 struct threads_listing_context *context)
3360 {
3361 if (remote_threadlist_iterator (remote_newthread_step, context,
3362 CRAZY_MAX_THREADS) >= 0)
3363 return 1;
3364
3365 return 0;
3366 }
3367
3368 #if defined(HAVE_LIBEXPAT)
3369
3370 static void
3371 start_thread (struct gdb_xml_parser *parser,
3372 const struct gdb_xml_element *element,
3373 void *user_data,
3374 std::vector<gdb_xml_value> &attributes)
3375 {
3376 struct threads_listing_context *data
3377 = (struct threads_listing_context *) user_data;
3378 struct gdb_xml_value *attr;
3379
3380 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3381 ptid_t ptid = read_ptid (id, NULL);
3382
3383 data->items.emplace_back (ptid);
3384 thread_item &item = data->items.back ();
3385
3386 attr = xml_find_attribute (attributes, "core");
3387 if (attr != NULL)
3388 item.core = *(ULONGEST *) attr->value.get ();
3389
3390 attr = xml_find_attribute (attributes, "name");
3391 if (attr != NULL)
3392 item.name = (const char *) attr->value.get ();
3393
3394 attr = xml_find_attribute (attributes, "handle");
3395 if (attr != NULL)
3396 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3397 }
3398
3399 static void
3400 end_thread (struct gdb_xml_parser *parser,
3401 const struct gdb_xml_element *element,
3402 void *user_data, const char *body_text)
3403 {
3404 struct threads_listing_context *data
3405 = (struct threads_listing_context *) user_data;
3406
3407 if (body_text != NULL && *body_text != '\0')
3408 data->items.back ().extra = body_text;
3409 }
3410
3411 const struct gdb_xml_attribute thread_attributes[] = {
3412 { "id", GDB_XML_AF_NONE, NULL, NULL },
3413 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3414 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3415 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3416 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3417 };
3418
3419 const struct gdb_xml_element thread_children[] = {
3420 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3421 };
3422
3423 const struct gdb_xml_element threads_children[] = {
3424 { "thread", thread_attributes, thread_children,
3425 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3426 start_thread, end_thread },
3427 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3428 };
3429
3430 const struct gdb_xml_element threads_elements[] = {
3431 { "threads", NULL, threads_children,
3432 GDB_XML_EF_NONE, NULL, NULL },
3433 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3434 };
3435
3436 #endif
3437
3438 /* List remote threads using qXfer:threads:read. */
3439
3440 static int
3441 remote_get_threads_with_qxfer (struct target_ops *ops,
3442 struct threads_listing_context *context)
3443 {
3444 #if defined(HAVE_LIBEXPAT)
3445 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3446 {
3447 gdb::optional<gdb::char_vector> xml
3448 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3449
3450 if (xml && (*xml)[0] != '\0')
3451 {
3452 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3453 threads_elements, xml->data (), context);
3454 }
3455
3456 return 1;
3457 }
3458 #endif
3459
3460 return 0;
3461 }
3462
3463 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3464
3465 static int
3466 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3467 struct threads_listing_context *context)
3468 {
3469 struct remote_state *rs = get_remote_state ();
3470
3471 if (rs->use_threadinfo_query)
3472 {
3473 const char *bufp;
3474
3475 putpkt ("qfThreadInfo");
3476 getpkt (&rs->buf, &rs->buf_size, 0);
3477 bufp = rs->buf;
3478 if (bufp[0] != '\0') /* q packet recognized */
3479 {
3480 while (*bufp++ == 'm') /* reply contains one or more TID */
3481 {
3482 do
3483 {
3484 ptid_t ptid = read_ptid (bufp, &bufp);
3485 context->items.emplace_back (ptid);
3486 }
3487 while (*bufp++ == ','); /* comma-separated list */
3488 putpkt ("qsThreadInfo");
3489 getpkt (&rs->buf, &rs->buf_size, 0);
3490 bufp = rs->buf;
3491 }
3492 return 1;
3493 }
3494 else
3495 {
3496 /* Packet not recognized. */
3497 rs->use_threadinfo_query = 0;
3498 }
3499 }
3500
3501 return 0;
3502 }
3503
3504 /* Implement the to_update_thread_list function for the remote
3505 targets. */
3506
3507 void
3508 remote_target::update_thread_list ()
3509 {
3510 struct threads_listing_context context;
3511 int got_list = 0;
3512
3513 /* We have a few different mechanisms to fetch the thread list. Try
3514 them all, starting with the most preferred one first, falling
3515 back to older methods. */
3516 if (remote_get_threads_with_qxfer (this, &context)
3517 || remote_get_threads_with_qthreadinfo (this, &context)
3518 || remote_get_threads_with_ql (this, &context))
3519 {
3520 struct thread_info *tp, *tmp;
3521
3522 got_list = 1;
3523
3524 if (context.items.empty ()
3525 && remote_thread_always_alive (inferior_ptid))
3526 {
3527 /* Some targets don't really support threads, but still
3528 reply an (empty) thread list in response to the thread
3529 listing packets, instead of replying "packet not
3530 supported". Exit early so we don't delete the main
3531 thread. */
3532 return;
3533 }
3534
3535 /* CONTEXT now holds the current thread list on the remote
3536 target end. Delete GDB-side threads no longer found on the
3537 target. */
3538 ALL_THREADS_SAFE (tp, tmp)
3539 {
3540 if (!context.contains_thread (tp->ptid))
3541 {
3542 /* Not found. */
3543 delete_thread (tp->ptid);
3544 }
3545 }
3546
3547 /* Remove any unreported fork child threads from CONTEXT so
3548 that we don't interfere with follow fork, which is where
3549 creation of such threads is handled. */
3550 remove_new_fork_children (&context);
3551
3552 /* And now add threads we don't know about yet to our list. */
3553 for (thread_item &item : context.items)
3554 {
3555 if (item.ptid != null_ptid)
3556 {
3557 /* In non-stop mode, we assume new found threads are
3558 executing until proven otherwise with a stop reply.
3559 In all-stop, we can only get here if all threads are
3560 stopped. */
3561 int executing = target_is_non_stop_p () ? 1 : 0;
3562
3563 remote_notice_new_inferior (item.ptid, executing);
3564
3565 remote_thread_info *info = get_remote_thread_info (item.ptid);
3566 info->core = item.core;
3567 info->extra = std::move (item.extra);
3568 info->name = std::move (item.name);
3569 info->thread_handle = std::move (item.thread_handle);
3570 }
3571 }
3572 }
3573
3574 if (!got_list)
3575 {
3576 /* If no thread listing method is supported, then query whether
3577 each known thread is alive, one by one, with the T packet.
3578 If the target doesn't support threads at all, then this is a
3579 no-op. See remote_thread_alive. */
3580 prune_threads ();
3581 }
3582 }
3583
3584 /*
3585 * Collect a descriptive string about the given thread.
3586 * The target may say anything it wants to about the thread
3587 * (typically info about its blocked / runnable state, name, etc.).
3588 * This string will appear in the info threads display.
3589 *
3590 * Optional: targets are not required to implement this function.
3591 */
3592
3593 const char *
3594 remote_target::extra_thread_info (thread_info *tp)
3595 {
3596 struct remote_state *rs = get_remote_state ();
3597 int result;
3598 int set;
3599 threadref id;
3600 struct gdb_ext_thread_info threadinfo;
3601 static char display_buf[100]; /* arbitrary... */
3602 int n = 0; /* position in display_buf */
3603
3604 if (rs->remote_desc == 0) /* paranoia */
3605 internal_error (__FILE__, __LINE__,
3606 _("remote_threads_extra_info"));
3607
3608 if (ptid_equal (tp->ptid, magic_null_ptid)
3609 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3610 /* This is the main thread which was added by GDB. The remote
3611 server doesn't know about it. */
3612 return NULL;
3613
3614 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3615 {
3616 struct thread_info *info = find_thread_ptid (tp->ptid);
3617
3618 if (info != NULL && info->priv != NULL)
3619 {
3620 const std::string &extra = get_remote_thread_info (info)->extra;
3621 return !extra.empty () ? extra.c_str () : NULL;
3622 }
3623 else
3624 return NULL;
3625 }
3626
3627 if (rs->use_threadextra_query)
3628 {
3629 char *b = rs->buf;
3630 char *endb = rs->buf + get_remote_packet_size ();
3631
3632 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3633 b += strlen (b);
3634 write_ptid (b, endb, tp->ptid);
3635
3636 putpkt (rs->buf);
3637 getpkt (&rs->buf, &rs->buf_size, 0);
3638 if (rs->buf[0] != 0)
3639 {
3640 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3641 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3642 display_buf [result] = '\0';
3643 return display_buf;
3644 }
3645 }
3646
3647 /* If the above query fails, fall back to the old method. */
3648 rs->use_threadextra_query = 0;
3649 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3650 | TAG_MOREDISPLAY | TAG_DISPLAY;
3651 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3652 if (remote_get_threadinfo (&id, set, &threadinfo))
3653 if (threadinfo.active)
3654 {
3655 if (*threadinfo.shortname)
3656 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3657 " Name: %s,", threadinfo.shortname);
3658 if (*threadinfo.display)
3659 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3660 " State: %s,", threadinfo.display);
3661 if (*threadinfo.more_display)
3662 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3663 " Priority: %s", threadinfo.more_display);
3664
3665 if (n > 0)
3666 {
3667 /* For purely cosmetic reasons, clear up trailing commas. */
3668 if (',' == display_buf[n-1])
3669 display_buf[n-1] = ' ';
3670 return display_buf;
3671 }
3672 }
3673 return NULL;
3674 }
3675 \f
3676
3677 bool
3678 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3679 struct static_tracepoint_marker *marker)
3680 {
3681 struct remote_state *rs = get_remote_state ();
3682 char *p = rs->buf;
3683
3684 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3685 p += strlen (p);
3686 p += hexnumstr (p, addr);
3687 putpkt (rs->buf);
3688 getpkt (&rs->buf, &rs->buf_size, 0);
3689 p = rs->buf;
3690
3691 if (*p == 'E')
3692 error (_("Remote failure reply: %s"), p);
3693
3694 if (*p++ == 'm')
3695 {
3696 parse_static_tracepoint_marker_definition (p, NULL, marker);
3697 return true;
3698 }
3699
3700 return false;
3701 }
3702
3703 std::vector<static_tracepoint_marker>
3704 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3705 {
3706 struct remote_state *rs = get_remote_state ();
3707 std::vector<static_tracepoint_marker> markers;
3708 const char *p;
3709 static_tracepoint_marker marker;
3710
3711 /* Ask for a first packet of static tracepoint marker
3712 definition. */
3713 putpkt ("qTfSTM");
3714 getpkt (&rs->buf, &rs->buf_size, 0);
3715 p = rs->buf;
3716 if (*p == 'E')
3717 error (_("Remote failure reply: %s"), p);
3718
3719 while (*p++ == 'm')
3720 {
3721 do
3722 {
3723 parse_static_tracepoint_marker_definition (p, &p, &marker);
3724
3725 if (strid == NULL || marker.str_id == strid)
3726 markers.push_back (std::move (marker));
3727 }
3728 while (*p++ == ','); /* comma-separated list */
3729 /* Ask for another packet of static tracepoint definition. */
3730 putpkt ("qTsSTM");
3731 getpkt (&rs->buf, &rs->buf_size, 0);
3732 p = rs->buf;
3733 }
3734
3735 return markers;
3736 }
3737
3738 \f
3739 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3740
3741 ptid_t
3742 remote_target::get_ada_task_ptid (long lwp, long thread)
3743 {
3744 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3745 }
3746 \f
3747
3748 /* Restart the remote side; this is an extended protocol operation. */
3749
3750 static void
3751 extended_remote_restart (void)
3752 {
3753 struct remote_state *rs = get_remote_state ();
3754
3755 /* Send the restart command; for reasons I don't understand the
3756 remote side really expects a number after the "R". */
3757 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3758 putpkt (rs->buf);
3759
3760 remote_fileio_reset ();
3761 }
3762 \f
3763 /* Clean up connection to a remote debugger. */
3764
3765 void
3766 remote_target::close ()
3767 {
3768 struct remote_state *rs = get_remote_state ();
3769
3770 if (rs->remote_desc == NULL)
3771 return; /* already closed */
3772
3773 /* Make sure we leave stdin registered in the event loop. */
3774 terminal_ours ();
3775
3776 serial_close (rs->remote_desc);
3777 rs->remote_desc = NULL;
3778
3779 /* We don't have a connection to the remote stub anymore. Get rid
3780 of all the inferiors and their threads we were controlling.
3781 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3782 will be unable to find the thread corresponding to (pid, 0, 0). */
3783 inferior_ptid = null_ptid;
3784 discard_all_inferiors ();
3785
3786 /* We are closing the remote target, so we should discard
3787 everything of this target. */
3788 discard_pending_stop_replies_in_queue (rs);
3789
3790 if (remote_async_inferior_event_token)
3791 delete_async_event_handler (&remote_async_inferior_event_token);
3792
3793 remote_notif_state_xfree (rs->notif_state);
3794
3795 trace_reset_local_state ();
3796 }
3797
3798 /* Query the remote side for the text, data and bss offsets. */
3799
3800 static void
3801 get_offsets (void)
3802 {
3803 struct remote_state *rs = get_remote_state ();
3804 char *buf;
3805 char *ptr;
3806 int lose, num_segments = 0, do_sections, do_segments;
3807 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3808 struct section_offsets *offs;
3809 struct symfile_segment_data *data;
3810
3811 if (symfile_objfile == NULL)
3812 return;
3813
3814 putpkt ("qOffsets");
3815 getpkt (&rs->buf, &rs->buf_size, 0);
3816 buf = rs->buf;
3817
3818 if (buf[0] == '\000')
3819 return; /* Return silently. Stub doesn't support
3820 this command. */
3821 if (buf[0] == 'E')
3822 {
3823 warning (_("Remote failure reply: %s"), buf);
3824 return;
3825 }
3826
3827 /* Pick up each field in turn. This used to be done with scanf, but
3828 scanf will make trouble if CORE_ADDR size doesn't match
3829 conversion directives correctly. The following code will work
3830 with any size of CORE_ADDR. */
3831 text_addr = data_addr = bss_addr = 0;
3832 ptr = buf;
3833 lose = 0;
3834
3835 if (startswith (ptr, "Text="))
3836 {
3837 ptr += 5;
3838 /* Don't use strtol, could lose on big values. */
3839 while (*ptr && *ptr != ';')
3840 text_addr = (text_addr << 4) + fromhex (*ptr++);
3841
3842 if (startswith (ptr, ";Data="))
3843 {
3844 ptr += 6;
3845 while (*ptr && *ptr != ';')
3846 data_addr = (data_addr << 4) + fromhex (*ptr++);
3847 }
3848 else
3849 lose = 1;
3850
3851 if (!lose && startswith (ptr, ";Bss="))
3852 {
3853 ptr += 5;
3854 while (*ptr && *ptr != ';')
3855 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3856
3857 if (bss_addr != data_addr)
3858 warning (_("Target reported unsupported offsets: %s"), buf);
3859 }
3860 else
3861 lose = 1;
3862 }
3863 else if (startswith (ptr, "TextSeg="))
3864 {
3865 ptr += 8;
3866 /* Don't use strtol, could lose on big values. */
3867 while (*ptr && *ptr != ';')
3868 text_addr = (text_addr << 4) + fromhex (*ptr++);
3869 num_segments = 1;
3870
3871 if (startswith (ptr, ";DataSeg="))
3872 {
3873 ptr += 9;
3874 while (*ptr && *ptr != ';')
3875 data_addr = (data_addr << 4) + fromhex (*ptr++);
3876 num_segments++;
3877 }
3878 }
3879 else
3880 lose = 1;
3881
3882 if (lose)
3883 error (_("Malformed response to offset query, %s"), buf);
3884 else if (*ptr != '\0')
3885 warning (_("Target reported unsupported offsets: %s"), buf);
3886
3887 offs = ((struct section_offsets *)
3888 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3889 memcpy (offs, symfile_objfile->section_offsets,
3890 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3891
3892 data = get_symfile_segment_data (symfile_objfile->obfd);
3893 do_segments = (data != NULL);
3894 do_sections = num_segments == 0;
3895
3896 if (num_segments > 0)
3897 {
3898 segments[0] = text_addr;
3899 segments[1] = data_addr;
3900 }
3901 /* If we have two segments, we can still try to relocate everything
3902 by assuming that the .text and .data offsets apply to the whole
3903 text and data segments. Convert the offsets given in the packet
3904 to base addresses for symfile_map_offsets_to_segments. */
3905 else if (data && data->num_segments == 2)
3906 {
3907 segments[0] = data->segment_bases[0] + text_addr;
3908 segments[1] = data->segment_bases[1] + data_addr;
3909 num_segments = 2;
3910 }
3911 /* If the object file has only one segment, assume that it is text
3912 rather than data; main programs with no writable data are rare,
3913 but programs with no code are useless. Of course the code might
3914 have ended up in the data segment... to detect that we would need
3915 the permissions here. */
3916 else if (data && data->num_segments == 1)
3917 {
3918 segments[0] = data->segment_bases[0] + text_addr;
3919 num_segments = 1;
3920 }
3921 /* There's no way to relocate by segment. */
3922 else
3923 do_segments = 0;
3924
3925 if (do_segments)
3926 {
3927 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3928 offs, num_segments, segments);
3929
3930 if (ret == 0 && !do_sections)
3931 error (_("Can not handle qOffsets TextSeg "
3932 "response with this symbol file"));
3933
3934 if (ret > 0)
3935 do_sections = 0;
3936 }
3937
3938 if (data)
3939 free_symfile_segment_data (data);
3940
3941 if (do_sections)
3942 {
3943 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3944
3945 /* This is a temporary kludge to force data and bss to use the
3946 same offsets because that's what nlmconv does now. The real
3947 solution requires changes to the stub and remote.c that I
3948 don't have time to do right now. */
3949
3950 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3951 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3952 }
3953
3954 objfile_relocate (symfile_objfile, offs);
3955 }
3956
3957 /* Send interrupt_sequence to remote target. */
3958 static void
3959 send_interrupt_sequence (void)
3960 {
3961 struct remote_state *rs = get_remote_state ();
3962
3963 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3964 remote_serial_write ("\x03", 1);
3965 else if (interrupt_sequence_mode == interrupt_sequence_break)
3966 serial_send_break (rs->remote_desc);
3967 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3968 {
3969 serial_send_break (rs->remote_desc);
3970 remote_serial_write ("g", 1);
3971 }
3972 else
3973 internal_error (__FILE__, __LINE__,
3974 _("Invalid value for interrupt_sequence_mode: %s."),
3975 interrupt_sequence_mode);
3976 }
3977
3978
3979 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3980 and extract the PTID. Returns NULL_PTID if not found. */
3981
3982 static ptid_t
3983 stop_reply_extract_thread (char *stop_reply)
3984 {
3985 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3986 {
3987 const char *p;
3988
3989 /* Txx r:val ; r:val (...) */
3990 p = &stop_reply[3];
3991
3992 /* Look for "register" named "thread". */
3993 while (*p != '\0')
3994 {
3995 const char *p1;
3996
3997 p1 = strchr (p, ':');
3998 if (p1 == NULL)
3999 return null_ptid;
4000
4001 if (strncmp (p, "thread", p1 - p) == 0)
4002 return read_ptid (++p1, &p);
4003
4004 p1 = strchr (p, ';');
4005 if (p1 == NULL)
4006 return null_ptid;
4007 p1++;
4008
4009 p = p1;
4010 }
4011 }
4012
4013 return null_ptid;
4014 }
4015
4016 /* Determine the remote side's current thread. If we have a stop
4017 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4018 "thread" register we can extract the current thread from. If not,
4019 ask the remote which is the current thread with qC. The former
4020 method avoids a roundtrip. */
4021
4022 static ptid_t
4023 get_current_thread (char *wait_status)
4024 {
4025 ptid_t ptid = null_ptid;
4026
4027 /* Note we don't use remote_parse_stop_reply as that makes use of
4028 the target architecture, which we haven't yet fully determined at
4029 this point. */
4030 if (wait_status != NULL)
4031 ptid = stop_reply_extract_thread (wait_status);
4032 if (ptid_equal (ptid, null_ptid))
4033 ptid = remote_current_thread (inferior_ptid);
4034
4035 return ptid;
4036 }
4037
4038 /* Query the remote target for which is the current thread/process,
4039 add it to our tables, and update INFERIOR_PTID. The caller is
4040 responsible for setting the state such that the remote end is ready
4041 to return the current thread.
4042
4043 This function is called after handling the '?' or 'vRun' packets,
4044 whose response is a stop reply from which we can also try
4045 extracting the thread. If the target doesn't support the explicit
4046 qC query, we infer the current thread from that stop reply, passed
4047 in in WAIT_STATUS, which may be NULL. */
4048
4049 static void
4050 add_current_inferior_and_thread (char *wait_status)
4051 {
4052 struct remote_state *rs = get_remote_state ();
4053 int fake_pid_p = 0;
4054
4055 inferior_ptid = null_ptid;
4056
4057 /* Now, if we have thread information, update inferior_ptid. */
4058 ptid_t curr_ptid = get_current_thread (wait_status);
4059
4060 if (curr_ptid != null_ptid)
4061 {
4062 if (!remote_multi_process_p (rs))
4063 fake_pid_p = 1;
4064 }
4065 else
4066 {
4067 /* Without this, some commands which require an active target
4068 (such as kill) won't work. This variable serves (at least)
4069 double duty as both the pid of the target process (if it has
4070 such), and as a flag indicating that a target is active. */
4071 curr_ptid = magic_null_ptid;
4072 fake_pid_p = 1;
4073 }
4074
4075 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
4076
4077 /* Add the main thread and switch to it. Don't try reading
4078 registers yet, since we haven't fetched the target description
4079 yet. */
4080 thread_info *tp = add_thread_silent (curr_ptid);
4081 switch_to_thread_no_regs (tp);
4082 }
4083
4084 /* Print info about a thread that was found already stopped on
4085 connection. */
4086
4087 static void
4088 print_one_stopped_thread (struct thread_info *thread)
4089 {
4090 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4091
4092 switch_to_thread (thread->ptid);
4093 stop_pc = get_frame_pc (get_current_frame ());
4094 set_current_sal_from_frame (get_current_frame ());
4095
4096 thread->suspend.waitstatus_pending_p = 0;
4097
4098 if (ws->kind == TARGET_WAITKIND_STOPPED)
4099 {
4100 enum gdb_signal sig = ws->value.sig;
4101
4102 if (signal_print_state (sig))
4103 gdb::observers::signal_received.notify (sig);
4104 }
4105 gdb::observers::normal_stop.notify (NULL, 1);
4106 }
4107
4108 /* Process all initial stop replies the remote side sent in response
4109 to the ? packet. These indicate threads that were already stopped
4110 on initial connection. We mark these threads as stopped and print
4111 their current frame before giving the user the prompt. */
4112
4113 static void
4114 process_initial_stop_replies (int from_tty)
4115 {
4116 int pending_stop_replies = stop_reply_queue_length ();
4117 struct inferior *inf;
4118 struct thread_info *thread;
4119 struct thread_info *selected = NULL;
4120 struct thread_info *lowest_stopped = NULL;
4121 struct thread_info *first = NULL;
4122
4123 /* Consume the initial pending events. */
4124 while (pending_stop_replies-- > 0)
4125 {
4126 ptid_t waiton_ptid = minus_one_ptid;
4127 ptid_t event_ptid;
4128 struct target_waitstatus ws;
4129 int ignore_event = 0;
4130 struct thread_info *thread;
4131
4132 memset (&ws, 0, sizeof (ws));
4133 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4134 if (remote_debug)
4135 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4136
4137 switch (ws.kind)
4138 {
4139 case TARGET_WAITKIND_IGNORE:
4140 case TARGET_WAITKIND_NO_RESUMED:
4141 case TARGET_WAITKIND_SIGNALLED:
4142 case TARGET_WAITKIND_EXITED:
4143 /* We shouldn't see these, but if we do, just ignore. */
4144 if (remote_debug)
4145 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4146 ignore_event = 1;
4147 break;
4148
4149 case TARGET_WAITKIND_EXECD:
4150 xfree (ws.value.execd_pathname);
4151 break;
4152 default:
4153 break;
4154 }
4155
4156 if (ignore_event)
4157 continue;
4158
4159 thread = find_thread_ptid (event_ptid);
4160
4161 if (ws.kind == TARGET_WAITKIND_STOPPED)
4162 {
4163 enum gdb_signal sig = ws.value.sig;
4164
4165 /* Stubs traditionally report SIGTRAP as initial signal,
4166 instead of signal 0. Suppress it. */
4167 if (sig == GDB_SIGNAL_TRAP)
4168 sig = GDB_SIGNAL_0;
4169 thread->suspend.stop_signal = sig;
4170 ws.value.sig = sig;
4171 }
4172
4173 thread->suspend.waitstatus = ws;
4174
4175 if (ws.kind != TARGET_WAITKIND_STOPPED
4176 || ws.value.sig != GDB_SIGNAL_0)
4177 thread->suspend.waitstatus_pending_p = 1;
4178
4179 set_executing (event_ptid, 0);
4180 set_running (event_ptid, 0);
4181 get_remote_thread_info (thread)->vcont_resumed = 0;
4182 }
4183
4184 /* "Notice" the new inferiors before anything related to
4185 registers/memory. */
4186 ALL_INFERIORS (inf)
4187 {
4188 if (inf->pid == 0)
4189 continue;
4190
4191 inf->needs_setup = 1;
4192
4193 if (non_stop)
4194 {
4195 thread = any_live_thread_of_process (inf->pid);
4196 notice_new_inferior (thread->ptid,
4197 thread->state == THREAD_RUNNING,
4198 from_tty);
4199 }
4200 }
4201
4202 /* If all-stop on top of non-stop, pause all threads. Note this
4203 records the threads' stop pc, so must be done after "noticing"
4204 the inferiors. */
4205 if (!non_stop)
4206 {
4207 stop_all_threads ();
4208
4209 /* If all threads of an inferior were already stopped, we
4210 haven't setup the inferior yet. */
4211 ALL_INFERIORS (inf)
4212 {
4213 if (inf->pid == 0)
4214 continue;
4215
4216 if (inf->needs_setup)
4217 {
4218 thread = any_live_thread_of_process (inf->pid);
4219 switch_to_thread_no_regs (thread);
4220 setup_inferior (0);
4221 }
4222 }
4223 }
4224
4225 /* Now go over all threads that are stopped, and print their current
4226 frame. If all-stop, then if there's a signalled thread, pick
4227 that as current. */
4228 ALL_NON_EXITED_THREADS (thread)
4229 {
4230 if (first == NULL)
4231 first = thread;
4232
4233 if (!non_stop)
4234 set_running (thread->ptid, 0);
4235 else if (thread->state != THREAD_STOPPED)
4236 continue;
4237
4238 if (selected == NULL
4239 && thread->suspend.waitstatus_pending_p)
4240 selected = thread;
4241
4242 if (lowest_stopped == NULL
4243 || thread->inf->num < lowest_stopped->inf->num
4244 || thread->per_inf_num < lowest_stopped->per_inf_num)
4245 lowest_stopped = thread;
4246
4247 if (non_stop)
4248 print_one_stopped_thread (thread);
4249 }
4250
4251 /* In all-stop, we only print the status of one thread, and leave
4252 others with their status pending. */
4253 if (!non_stop)
4254 {
4255 thread = selected;
4256 if (thread == NULL)
4257 thread = lowest_stopped;
4258 if (thread == NULL)
4259 thread = first;
4260
4261 print_one_stopped_thread (thread);
4262 }
4263
4264 /* For "info program". */
4265 thread = inferior_thread ();
4266 if (thread->state == THREAD_STOPPED)
4267 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4268 }
4269
4270 /* Start the remote connection and sync state. */
4271
4272 void
4273 remote_target::start_remote (int from_tty, int extended_p)
4274 {
4275 struct remote_state *rs = get_remote_state ();
4276 struct packet_config *noack_config;
4277 char *wait_status = NULL;
4278
4279 /* Signal other parts that we're going through the initial setup,
4280 and so things may not be stable yet. E.g., we don't try to
4281 install tracepoints until we've relocated symbols. Also, a
4282 Ctrl-C before we're connected and synced up can't interrupt the
4283 target. Instead, it offers to drop the (potentially wedged)
4284 connection. */
4285 rs->starting_up = 1;
4286
4287 QUIT;
4288
4289 if (interrupt_on_connect)
4290 send_interrupt_sequence ();
4291
4292 /* Ack any packet which the remote side has already sent. */
4293 remote_serial_write ("+", 1);
4294
4295 /* The first packet we send to the target is the optional "supported
4296 packets" request. If the target can answer this, it will tell us
4297 which later probes to skip. */
4298 remote_query_supported ();
4299
4300 /* If the stub wants to get a QAllow, compose one and send it. */
4301 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4302 set_permissions ();
4303
4304 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4305 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4306 as a reply to known packet. For packet "vFile:setfs:" it is an
4307 invalid reply and GDB would return error in
4308 remote_hostio_set_filesystem, making remote files access impossible.
4309 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4310 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4311 {
4312 const char v_mustreplyempty[] = "vMustReplyEmpty";
4313
4314 putpkt (v_mustreplyempty);
4315 getpkt (&rs->buf, &rs->buf_size, 0);
4316 if (strcmp (rs->buf, "OK") == 0)
4317 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4318 else if (strcmp (rs->buf, "") != 0)
4319 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4320 rs->buf);
4321 }
4322
4323 /* Next, we possibly activate noack mode.
4324
4325 If the QStartNoAckMode packet configuration is set to AUTO,
4326 enable noack mode if the stub reported a wish for it with
4327 qSupported.
4328
4329 If set to TRUE, then enable noack mode even if the stub didn't
4330 report it in qSupported. If the stub doesn't reply OK, the
4331 session ends with an error.
4332
4333 If FALSE, then don't activate noack mode, regardless of what the
4334 stub claimed should be the default with qSupported. */
4335
4336 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4337 if (packet_config_support (noack_config) != PACKET_DISABLE)
4338 {
4339 putpkt ("QStartNoAckMode");
4340 getpkt (&rs->buf, &rs->buf_size, 0);
4341 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4342 rs->noack_mode = 1;
4343 }
4344
4345 if (extended_p)
4346 {
4347 /* Tell the remote that we are using the extended protocol. */
4348 putpkt ("!");
4349 getpkt (&rs->buf, &rs->buf_size, 0);
4350 }
4351
4352 /* Let the target know which signals it is allowed to pass down to
4353 the program. */
4354 update_signals_program_target ();
4355
4356 /* Next, if the target can specify a description, read it. We do
4357 this before anything involving memory or registers. */
4358 target_find_description ();
4359
4360 /* Next, now that we know something about the target, update the
4361 address spaces in the program spaces. */
4362 update_address_spaces ();
4363
4364 /* On OSs where the list of libraries is global to all
4365 processes, we fetch them early. */
4366 if (gdbarch_has_global_solist (target_gdbarch ()))
4367 solib_add (NULL, from_tty, auto_solib_add);
4368
4369 if (target_is_non_stop_p ())
4370 {
4371 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4372 error (_("Non-stop mode requested, but remote "
4373 "does not support non-stop"));
4374
4375 putpkt ("QNonStop:1");
4376 getpkt (&rs->buf, &rs->buf_size, 0);
4377
4378 if (strcmp (rs->buf, "OK") != 0)
4379 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4380
4381 /* Find about threads and processes the stub is already
4382 controlling. We default to adding them in the running state.
4383 The '?' query below will then tell us about which threads are
4384 stopped. */
4385 this->update_thread_list ();
4386 }
4387 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4388 {
4389 /* Don't assume that the stub can operate in all-stop mode.
4390 Request it explicitly. */
4391 putpkt ("QNonStop:0");
4392 getpkt (&rs->buf, &rs->buf_size, 0);
4393
4394 if (strcmp (rs->buf, "OK") != 0)
4395 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4396 }
4397
4398 /* Upload TSVs regardless of whether the target is running or not. The
4399 remote stub, such as GDBserver, may have some predefined or builtin
4400 TSVs, even if the target is not running. */
4401 if (get_trace_status (current_trace_status ()) != -1)
4402 {
4403 struct uploaded_tsv *uploaded_tsvs = NULL;
4404
4405 upload_trace_state_variables (&uploaded_tsvs);
4406 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4407 }
4408
4409 /* Check whether the target is running now. */
4410 putpkt ("?");
4411 getpkt (&rs->buf, &rs->buf_size, 0);
4412
4413 if (!target_is_non_stop_p ())
4414 {
4415 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4416 {
4417 if (!extended_p)
4418 error (_("The target is not running (try extended-remote?)"));
4419
4420 /* We're connected, but not running. Drop out before we
4421 call start_remote. */
4422 rs->starting_up = 0;
4423 return;
4424 }
4425 else
4426 {
4427 /* Save the reply for later. */
4428 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4429 strcpy (wait_status, rs->buf);
4430 }
4431
4432 /* Fetch thread list. */
4433 target_update_thread_list ();
4434
4435 /* Let the stub know that we want it to return the thread. */
4436 set_continue_thread (minus_one_ptid);
4437
4438 if (thread_count () == 0)
4439 {
4440 /* Target has no concept of threads at all. GDB treats
4441 non-threaded target as single-threaded; add a main
4442 thread. */
4443 add_current_inferior_and_thread (wait_status);
4444 }
4445 else
4446 {
4447 /* We have thread information; select the thread the target
4448 says should be current. If we're reconnecting to a
4449 multi-threaded program, this will ideally be the thread
4450 that last reported an event before GDB disconnected. */
4451 inferior_ptid = get_current_thread (wait_status);
4452 if (ptid_equal (inferior_ptid, null_ptid))
4453 {
4454 /* Odd... The target was able to list threads, but not
4455 tell us which thread was current (no "thread"
4456 register in T stop reply?). Just pick the first
4457 thread in the thread list then. */
4458
4459 if (remote_debug)
4460 fprintf_unfiltered (gdb_stdlog,
4461 "warning: couldn't determine remote "
4462 "current thread; picking first in list.\n");
4463
4464 inferior_ptid = thread_list->ptid;
4465 }
4466 }
4467
4468 /* init_wait_for_inferior should be called before get_offsets in order
4469 to manage `inserted' flag in bp loc in a correct state.
4470 breakpoint_init_inferior, called from init_wait_for_inferior, set
4471 `inserted' flag to 0, while before breakpoint_re_set, called from
4472 start_remote, set `inserted' flag to 1. In the initialization of
4473 inferior, breakpoint_init_inferior should be called first, and then
4474 breakpoint_re_set can be called. If this order is broken, state of
4475 `inserted' flag is wrong, and cause some problems on breakpoint
4476 manipulation. */
4477 init_wait_for_inferior ();
4478
4479 get_offsets (); /* Get text, data & bss offsets. */
4480
4481 /* If we could not find a description using qXfer, and we know
4482 how to do it some other way, try again. This is not
4483 supported for non-stop; it could be, but it is tricky if
4484 there are no stopped threads when we connect. */
4485 if (remote_read_description_p (this)
4486 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4487 {
4488 target_clear_description ();
4489 target_find_description ();
4490 }
4491
4492 /* Use the previously fetched status. */
4493 gdb_assert (wait_status != NULL);
4494 strcpy (rs->buf, wait_status);
4495 rs->cached_wait_status = 1;
4496
4497 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4498 }
4499 else
4500 {
4501 /* Clear WFI global state. Do this before finding about new
4502 threads and inferiors, and setting the current inferior.
4503 Otherwise we would clear the proceed status of the current
4504 inferior when we want its stop_soon state to be preserved
4505 (see notice_new_inferior). */
4506 init_wait_for_inferior ();
4507
4508 /* In non-stop, we will either get an "OK", meaning that there
4509 are no stopped threads at this time; or, a regular stop
4510 reply. In the latter case, there may be more than one thread
4511 stopped --- we pull them all out using the vStopped
4512 mechanism. */
4513 if (strcmp (rs->buf, "OK") != 0)
4514 {
4515 struct notif_client *notif = &notif_client_stop;
4516
4517 /* remote_notif_get_pending_replies acks this one, and gets
4518 the rest out. */
4519 rs->notif_state->pending_event[notif_client_stop.id]
4520 = remote_notif_parse (notif, rs->buf);
4521 remote_notif_get_pending_events (notif);
4522 }
4523
4524 if (thread_count () == 0)
4525 {
4526 if (!extended_p)
4527 error (_("The target is not running (try extended-remote?)"));
4528
4529 /* We're connected, but not running. Drop out before we
4530 call start_remote. */
4531 rs->starting_up = 0;
4532 return;
4533 }
4534
4535 /* In non-stop mode, any cached wait status will be stored in
4536 the stop reply queue. */
4537 gdb_assert (wait_status == NULL);
4538
4539 /* Report all signals during attach/startup. */
4540 pass_signals (0, NULL);
4541
4542 /* If there are already stopped threads, mark them stopped and
4543 report their stops before giving the prompt to the user. */
4544 process_initial_stop_replies (from_tty);
4545
4546 if (target_can_async_p ())
4547 target_async (1);
4548 }
4549
4550 /* If we connected to a live target, do some additional setup. */
4551 if (target_has_execution)
4552 {
4553 if (symfile_objfile) /* No use without a symbol-file. */
4554 remote_check_symbols ();
4555 }
4556
4557 /* Possibly the target has been engaged in a trace run started
4558 previously; find out where things are at. */
4559 if (get_trace_status (current_trace_status ()) != -1)
4560 {
4561 struct uploaded_tp *uploaded_tps = NULL;
4562
4563 if (current_trace_status ()->running)
4564 printf_filtered (_("Trace is already running on the target.\n"));
4565
4566 upload_tracepoints (&uploaded_tps);
4567
4568 merge_uploaded_tracepoints (&uploaded_tps);
4569 }
4570
4571 /* Possibly the target has been engaged in a btrace record started
4572 previously; find out where things are at. */
4573 remote_btrace_maybe_reopen ();
4574
4575 /* The thread and inferior lists are now synchronized with the
4576 target, our symbols have been relocated, and we're merged the
4577 target's tracepoints with ours. We're done with basic start
4578 up. */
4579 rs->starting_up = 0;
4580
4581 /* Maybe breakpoints are global and need to be inserted now. */
4582 if (breakpoints_should_be_inserted_now ())
4583 insert_breakpoints ();
4584 }
4585
4586 /* Open a connection to a remote debugger.
4587 NAME is the filename used for communication. */
4588
4589 void
4590 remote_target::open (const char *name, int from_tty)
4591 {
4592 open_1 (name, from_tty, 0);
4593 }
4594
4595 /* Open a connection to a remote debugger using the extended
4596 remote gdb protocol. NAME is the filename used for communication. */
4597
4598 void
4599 extended_remote_target::open (const char *name, int from_tty)
4600 {
4601 open_1 (name, from_tty, 1 /*extended_p */);
4602 }
4603
4604 /* Reset all packets back to "unknown support". Called when opening a
4605 new connection to a remote target. */
4606
4607 static void
4608 reset_all_packet_configs_support (void)
4609 {
4610 int i;
4611
4612 for (i = 0; i < PACKET_MAX; i++)
4613 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4614 }
4615
4616 /* Initialize all packet configs. */
4617
4618 static void
4619 init_all_packet_configs (void)
4620 {
4621 int i;
4622
4623 for (i = 0; i < PACKET_MAX; i++)
4624 {
4625 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4626 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4627 }
4628 }
4629
4630 /* Symbol look-up. */
4631
4632 static void
4633 remote_check_symbols (void)
4634 {
4635 char *msg, *reply, *tmp;
4636 int end;
4637 long reply_size;
4638 struct cleanup *old_chain;
4639
4640 /* The remote side has no concept of inferiors that aren't running
4641 yet, it only knows about running processes. If we're connected
4642 but our current inferior is not running, we should not invite the
4643 remote target to request symbol lookups related to its
4644 (unrelated) current process. */
4645 if (!target_has_execution)
4646 return;
4647
4648 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4649 return;
4650
4651 /* Make sure the remote is pointing at the right process. Note
4652 there's no way to select "no process". */
4653 set_general_process ();
4654
4655 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4656 because we need both at the same time. */
4657 msg = (char *) xmalloc (get_remote_packet_size ());
4658 old_chain = make_cleanup (xfree, msg);
4659 reply = (char *) xmalloc (get_remote_packet_size ());
4660 make_cleanup (free_current_contents, &reply);
4661 reply_size = get_remote_packet_size ();
4662
4663 /* Invite target to request symbol lookups. */
4664
4665 putpkt ("qSymbol::");
4666 getpkt (&reply, &reply_size, 0);
4667 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4668
4669 while (startswith (reply, "qSymbol:"))
4670 {
4671 struct bound_minimal_symbol sym;
4672
4673 tmp = &reply[8];
4674 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4675 msg[end] = '\0';
4676 sym = lookup_minimal_symbol (msg, NULL, NULL);
4677 if (sym.minsym == NULL)
4678 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4679 else
4680 {
4681 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4682 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4683
4684 /* If this is a function address, return the start of code
4685 instead of any data function descriptor. */
4686 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4687 sym_addr,
4688 target_stack);
4689
4690 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4691 phex_nz (sym_addr, addr_size), &reply[8]);
4692 }
4693
4694 putpkt (msg);
4695 getpkt (&reply, &reply_size, 0);
4696 }
4697
4698 do_cleanups (old_chain);
4699 }
4700
4701 static struct serial *
4702 remote_serial_open (const char *name)
4703 {
4704 static int udp_warning = 0;
4705
4706 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4707 of in ser-tcp.c, because it is the remote protocol assuming that the
4708 serial connection is reliable and not the serial connection promising
4709 to be. */
4710 if (!udp_warning && startswith (name, "udp:"))
4711 {
4712 warning (_("The remote protocol may be unreliable over UDP.\n"
4713 "Some events may be lost, rendering further debugging "
4714 "impossible."));
4715 udp_warning = 1;
4716 }
4717
4718 return serial_open (name);
4719 }
4720
4721 /* Inform the target of our permission settings. The permission flags
4722 work without this, but if the target knows the settings, it can do
4723 a couple things. First, it can add its own check, to catch cases
4724 that somehow manage to get by the permissions checks in target
4725 methods. Second, if the target is wired to disallow particular
4726 settings (for instance, a system in the field that is not set up to
4727 be able to stop at a breakpoint), it can object to any unavailable
4728 permissions. */
4729
4730 void
4731 remote_target::set_permissions ()
4732 {
4733 struct remote_state *rs = get_remote_state ();
4734
4735 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4736 "WriteReg:%x;WriteMem:%x;"
4737 "InsertBreak:%x;InsertTrace:%x;"
4738 "InsertFastTrace:%x;Stop:%x",
4739 may_write_registers, may_write_memory,
4740 may_insert_breakpoints, may_insert_tracepoints,
4741 may_insert_fast_tracepoints, may_stop);
4742 putpkt (rs->buf);
4743 getpkt (&rs->buf, &rs->buf_size, 0);
4744
4745 /* If the target didn't like the packet, warn the user. Do not try
4746 to undo the user's settings, that would just be maddening. */
4747 if (strcmp (rs->buf, "OK") != 0)
4748 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4749 }
4750
4751 /* This type describes each known response to the qSupported
4752 packet. */
4753 struct protocol_feature
4754 {
4755 /* The name of this protocol feature. */
4756 const char *name;
4757
4758 /* The default for this protocol feature. */
4759 enum packet_support default_support;
4760
4761 /* The function to call when this feature is reported, or after
4762 qSupported processing if the feature is not supported.
4763 The first argument points to this structure. The second
4764 argument indicates whether the packet requested support be
4765 enabled, disabled, or probed (or the default, if this function
4766 is being called at the end of processing and this feature was
4767 not reported). The third argument may be NULL; if not NULL, it
4768 is a NUL-terminated string taken from the packet following
4769 this feature's name and an equals sign. */
4770 void (*func) (const struct protocol_feature *, enum packet_support,
4771 const char *);
4772
4773 /* The corresponding packet for this feature. Only used if
4774 FUNC is remote_supported_packet. */
4775 int packet;
4776 };
4777
4778 static void
4779 remote_supported_packet (const struct protocol_feature *feature,
4780 enum packet_support support,
4781 const char *argument)
4782 {
4783 if (argument)
4784 {
4785 warning (_("Remote qSupported response supplied an unexpected value for"
4786 " \"%s\"."), feature->name);
4787 return;
4788 }
4789
4790 remote_protocol_packets[feature->packet].support = support;
4791 }
4792
4793 static void
4794 remote_packet_size (const struct protocol_feature *feature,
4795 enum packet_support support, const char *value)
4796 {
4797 struct remote_state *rs = get_remote_state ();
4798
4799 int packet_size;
4800 char *value_end;
4801
4802 if (support != PACKET_ENABLE)
4803 return;
4804
4805 if (value == NULL || *value == '\0')
4806 {
4807 warning (_("Remote target reported \"%s\" without a size."),
4808 feature->name);
4809 return;
4810 }
4811
4812 errno = 0;
4813 packet_size = strtol (value, &value_end, 16);
4814 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4815 {
4816 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4817 feature->name, value);
4818 return;
4819 }
4820
4821 /* Record the new maximum packet size. */
4822 rs->explicit_packet_size = packet_size;
4823 }
4824
4825 static const struct protocol_feature remote_protocol_features[] = {
4826 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4827 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4828 PACKET_qXfer_auxv },
4829 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4830 PACKET_qXfer_exec_file },
4831 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4832 PACKET_qXfer_features },
4833 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4834 PACKET_qXfer_libraries },
4835 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4836 PACKET_qXfer_libraries_svr4 },
4837 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4838 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4839 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4840 PACKET_qXfer_memory_map },
4841 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4842 PACKET_qXfer_spu_read },
4843 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4844 PACKET_qXfer_spu_write },
4845 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4846 PACKET_qXfer_osdata },
4847 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4848 PACKET_qXfer_threads },
4849 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4850 PACKET_qXfer_traceframe_info },
4851 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4852 PACKET_QPassSignals },
4853 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4854 PACKET_QCatchSyscalls },
4855 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4856 PACKET_QProgramSignals },
4857 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4858 PACKET_QSetWorkingDir },
4859 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4860 PACKET_QStartupWithShell },
4861 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4862 PACKET_QEnvironmentHexEncoded },
4863 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4864 PACKET_QEnvironmentReset },
4865 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4866 PACKET_QEnvironmentUnset },
4867 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4868 PACKET_QStartNoAckMode },
4869 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4870 PACKET_multiprocess_feature },
4871 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4872 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4873 PACKET_qXfer_siginfo_read },
4874 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4875 PACKET_qXfer_siginfo_write },
4876 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4877 PACKET_ConditionalTracepoints },
4878 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4879 PACKET_ConditionalBreakpoints },
4880 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4881 PACKET_BreakpointCommands },
4882 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4883 PACKET_FastTracepoints },
4884 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4885 PACKET_StaticTracepoints },
4886 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4887 PACKET_InstallInTrace},
4888 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4889 PACKET_DisconnectedTracing_feature },
4890 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4891 PACKET_bc },
4892 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4893 PACKET_bs },
4894 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4895 PACKET_TracepointSource },
4896 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4897 PACKET_QAllow },
4898 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4899 PACKET_EnableDisableTracepoints_feature },
4900 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4901 PACKET_qXfer_fdpic },
4902 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4903 PACKET_qXfer_uib },
4904 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4905 PACKET_QDisableRandomization },
4906 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4907 { "QTBuffer:size", PACKET_DISABLE,
4908 remote_supported_packet, PACKET_QTBuffer_size},
4909 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4910 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4911 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4912 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4913 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4914 PACKET_qXfer_btrace },
4915 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4916 PACKET_qXfer_btrace_conf },
4917 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4918 PACKET_Qbtrace_conf_bts_size },
4919 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4920 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4921 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4922 PACKET_fork_event_feature },
4923 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4924 PACKET_vfork_event_feature },
4925 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4926 PACKET_exec_event_feature },
4927 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4928 PACKET_Qbtrace_conf_pt_size },
4929 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4930 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4931 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4932 };
4933
4934 static char *remote_support_xml;
4935
4936 /* Register string appended to "xmlRegisters=" in qSupported query. */
4937
4938 void
4939 register_remote_support_xml (const char *xml)
4940 {
4941 #if defined(HAVE_LIBEXPAT)
4942 if (remote_support_xml == NULL)
4943 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4944 else
4945 {
4946 char *copy = xstrdup (remote_support_xml + 13);
4947 char *p = strtok (copy, ",");
4948
4949 do
4950 {
4951 if (strcmp (p, xml) == 0)
4952 {
4953 /* already there */
4954 xfree (copy);
4955 return;
4956 }
4957 }
4958 while ((p = strtok (NULL, ",")) != NULL);
4959 xfree (copy);
4960
4961 remote_support_xml = reconcat (remote_support_xml,
4962 remote_support_xml, ",", xml,
4963 (char *) NULL);
4964 }
4965 #endif
4966 }
4967
4968 static void
4969 remote_query_supported_append (std::string *msg, const char *append)
4970 {
4971 if (!msg->empty ())
4972 msg->append (";");
4973 msg->append (append);
4974 }
4975
4976 static void
4977 remote_query_supported (void)
4978 {
4979 struct remote_state *rs = get_remote_state ();
4980 char *next;
4981 int i;
4982 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4983
4984 /* The packet support flags are handled differently for this packet
4985 than for most others. We treat an error, a disabled packet, and
4986 an empty response identically: any features which must be reported
4987 to be used will be automatically disabled. An empty buffer
4988 accomplishes this, since that is also the representation for a list
4989 containing no features. */
4990
4991 rs->buf[0] = 0;
4992 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4993 {
4994 std::string q;
4995
4996 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4997 remote_query_supported_append (&q, "multiprocess+");
4998
4999 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5000 remote_query_supported_append (&q, "swbreak+");
5001 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5002 remote_query_supported_append (&q, "hwbreak+");
5003
5004 remote_query_supported_append (&q, "qRelocInsn+");
5005
5006 if (packet_set_cmd_state (PACKET_fork_event_feature)
5007 != AUTO_BOOLEAN_FALSE)
5008 remote_query_supported_append (&q, "fork-events+");
5009 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5010 != AUTO_BOOLEAN_FALSE)
5011 remote_query_supported_append (&q, "vfork-events+");
5012 if (packet_set_cmd_state (PACKET_exec_event_feature)
5013 != AUTO_BOOLEAN_FALSE)
5014 remote_query_supported_append (&q, "exec-events+");
5015
5016 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5017 remote_query_supported_append (&q, "vContSupported+");
5018
5019 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5020 remote_query_supported_append (&q, "QThreadEvents+");
5021
5022 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5023 remote_query_supported_append (&q, "no-resumed+");
5024
5025 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5026 the qSupported:xmlRegisters=i386 handling. */
5027 if (remote_support_xml != NULL
5028 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5029 remote_query_supported_append (&q, remote_support_xml);
5030
5031 q = "qSupported:" + q;
5032 putpkt (q.c_str ());
5033
5034 getpkt (&rs->buf, &rs->buf_size, 0);
5035
5036 /* If an error occured, warn, but do not return - just reset the
5037 buffer to empty and go on to disable features. */
5038 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5039 == PACKET_ERROR)
5040 {
5041 warning (_("Remote failure reply: %s"), rs->buf);
5042 rs->buf[0] = 0;
5043 }
5044 }
5045
5046 memset (seen, 0, sizeof (seen));
5047
5048 next = rs->buf;
5049 while (*next)
5050 {
5051 enum packet_support is_supported;
5052 char *p, *end, *name_end, *value;
5053
5054 /* First separate out this item from the rest of the packet. If
5055 there's another item after this, we overwrite the separator
5056 (terminated strings are much easier to work with). */
5057 p = next;
5058 end = strchr (p, ';');
5059 if (end == NULL)
5060 {
5061 end = p + strlen (p);
5062 next = end;
5063 }
5064 else
5065 {
5066 *end = '\0';
5067 next = end + 1;
5068
5069 if (end == p)
5070 {
5071 warning (_("empty item in \"qSupported\" response"));
5072 continue;
5073 }
5074 }
5075
5076 name_end = strchr (p, '=');
5077 if (name_end)
5078 {
5079 /* This is a name=value entry. */
5080 is_supported = PACKET_ENABLE;
5081 value = name_end + 1;
5082 *name_end = '\0';
5083 }
5084 else
5085 {
5086 value = NULL;
5087 switch (end[-1])
5088 {
5089 case '+':
5090 is_supported = PACKET_ENABLE;
5091 break;
5092
5093 case '-':
5094 is_supported = PACKET_DISABLE;
5095 break;
5096
5097 case '?':
5098 is_supported = PACKET_SUPPORT_UNKNOWN;
5099 break;
5100
5101 default:
5102 warning (_("unrecognized item \"%s\" "
5103 "in \"qSupported\" response"), p);
5104 continue;
5105 }
5106 end[-1] = '\0';
5107 }
5108
5109 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5110 if (strcmp (remote_protocol_features[i].name, p) == 0)
5111 {
5112 const struct protocol_feature *feature;
5113
5114 seen[i] = 1;
5115 feature = &remote_protocol_features[i];
5116 feature->func (feature, is_supported, value);
5117 break;
5118 }
5119 }
5120
5121 /* If we increased the packet size, make sure to increase the global
5122 buffer size also. We delay this until after parsing the entire
5123 qSupported packet, because this is the same buffer we were
5124 parsing. */
5125 if (rs->buf_size < rs->explicit_packet_size)
5126 {
5127 rs->buf_size = rs->explicit_packet_size;
5128 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5129 }
5130
5131 /* Handle the defaults for unmentioned features. */
5132 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5133 if (!seen[i])
5134 {
5135 const struct protocol_feature *feature;
5136
5137 feature = &remote_protocol_features[i];
5138 feature->func (feature, feature->default_support, NULL);
5139 }
5140 }
5141
5142 /* Serial QUIT handler for the remote serial descriptor.
5143
5144 Defers handling a Ctrl-C until we're done with the current
5145 command/response packet sequence, unless:
5146
5147 - We're setting up the connection. Don't send a remote interrupt
5148 request, as we're not fully synced yet. Quit immediately
5149 instead.
5150
5151 - The target has been resumed in the foreground
5152 (target_terminal::is_ours is false) with a synchronous resume
5153 packet, and we're blocked waiting for the stop reply, thus a
5154 Ctrl-C should be immediately sent to the target.
5155
5156 - We get a second Ctrl-C while still within the same serial read or
5157 write. In that case the serial is seemingly wedged --- offer to
5158 quit/disconnect.
5159
5160 - We see a second Ctrl-C without target response, after having
5161 previously interrupted the target. In that case the target/stub
5162 is probably wedged --- offer to quit/disconnect.
5163 */
5164
5165 static void
5166 remote_serial_quit_handler (void)
5167 {
5168 struct remote_state *rs = get_remote_state ();
5169
5170 if (check_quit_flag ())
5171 {
5172 /* If we're starting up, we're not fully synced yet. Quit
5173 immediately. */
5174 if (rs->starting_up)
5175 quit ();
5176 else if (rs->got_ctrlc_during_io)
5177 {
5178 if (query (_("The target is not responding to GDB commands.\n"
5179 "Stop debugging it? ")))
5180 remote_unpush_and_throw ();
5181 }
5182 /* If ^C has already been sent once, offer to disconnect. */
5183 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5184 interrupt_query ();
5185 /* All-stop protocol, and blocked waiting for stop reply. Send
5186 an interrupt request. */
5187 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5188 target_interrupt ();
5189 else
5190 rs->got_ctrlc_during_io = 1;
5191 }
5192 }
5193
5194 /* Remove any of the remote.c targets from target stack. Upper targets depend
5195 on it so remove them first. */
5196
5197 static void
5198 remote_unpush_target (void)
5199 {
5200 pop_all_targets_at_and_above (process_stratum);
5201 }
5202
5203 static void
5204 remote_unpush_and_throw (void)
5205 {
5206 remote_unpush_target ();
5207 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5208 }
5209
5210 void
5211 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5212 {
5213 struct remote_state *rs = get_remote_state ();
5214
5215 if (name == 0)
5216 error (_("To open a remote debug connection, you need to specify what\n"
5217 "serial device is attached to the remote system\n"
5218 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5219
5220 /* See FIXME above. */
5221 if (!target_async_permitted)
5222 wait_forever_enabled_p = 1;
5223
5224 /* If we're connected to a running target, target_preopen will kill it.
5225 Ask this question first, before target_preopen has a chance to kill
5226 anything. */
5227 if (rs->remote_desc != NULL && !have_inferiors ())
5228 {
5229 if (from_tty
5230 && !query (_("Already connected to a remote target. Disconnect? ")))
5231 error (_("Still connected."));
5232 }
5233
5234 /* Here the possibly existing remote target gets unpushed. */
5235 target_preopen (from_tty);
5236
5237 /* Make sure we send the passed signals list the next time we resume. */
5238 xfree (rs->last_pass_packet);
5239 rs->last_pass_packet = NULL;
5240
5241 /* Make sure we send the program signals list the next time we
5242 resume. */
5243 xfree (rs->last_program_signals_packet);
5244 rs->last_program_signals_packet = NULL;
5245
5246 remote_fileio_reset ();
5247 reopen_exec_file ();
5248 reread_symbols ();
5249
5250 rs->remote_desc = remote_serial_open (name);
5251 if (!rs->remote_desc)
5252 perror_with_name (name);
5253
5254 if (baud_rate != -1)
5255 {
5256 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5257 {
5258 /* The requested speed could not be set. Error out to
5259 top level after closing remote_desc. Take care to
5260 set remote_desc to NULL to avoid closing remote_desc
5261 more than once. */
5262 serial_close (rs->remote_desc);
5263 rs->remote_desc = NULL;
5264 perror_with_name (name);
5265 }
5266 }
5267
5268 serial_setparity (rs->remote_desc, serial_parity);
5269 serial_raw (rs->remote_desc);
5270
5271 /* If there is something sitting in the buffer we might take it as a
5272 response to a command, which would be bad. */
5273 serial_flush_input (rs->remote_desc);
5274
5275 if (from_tty)
5276 {
5277 puts_filtered ("Remote debugging using ");
5278 puts_filtered (name);
5279 puts_filtered ("\n");
5280 }
5281
5282 remote_target *target
5283 = extended_p ? &extended_remote_ops : &remote_ops;
5284 push_target (target); /* Switch to using remote target now. */
5285
5286 /* Register extra event sources in the event loop. */
5287 remote_async_inferior_event_token
5288 = create_async_event_handler (remote_async_inferior_event_handler,
5289 NULL);
5290 rs->notif_state = remote_notif_state_allocate ();
5291
5292 /* Reset the target state; these things will be queried either by
5293 remote_query_supported or as they are needed. */
5294 reset_all_packet_configs_support ();
5295 rs->cached_wait_status = 0;
5296 rs->explicit_packet_size = 0;
5297 rs->noack_mode = 0;
5298 rs->extended = extended_p;
5299 rs->waiting_for_stop_reply = 0;
5300 rs->ctrlc_pending_p = 0;
5301 rs->got_ctrlc_during_io = 0;
5302
5303 rs->general_thread = not_sent_ptid;
5304 rs->continue_thread = not_sent_ptid;
5305 rs->remote_traceframe_number = -1;
5306
5307 rs->last_resume_exec_dir = EXEC_FORWARD;
5308
5309 /* Probe for ability to use "ThreadInfo" query, as required. */
5310 rs->use_threadinfo_query = 1;
5311 rs->use_threadextra_query = 1;
5312
5313 rs->readahead_cache.invalidate ();
5314
5315 if (target_async_permitted)
5316 {
5317 /* FIXME: cagney/1999-09-23: During the initial connection it is
5318 assumed that the target is already ready and able to respond to
5319 requests. Unfortunately remote_start_remote() eventually calls
5320 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5321 around this. Eventually a mechanism that allows
5322 wait_for_inferior() to expect/get timeouts will be
5323 implemented. */
5324 wait_forever_enabled_p = 0;
5325 }
5326
5327 /* First delete any symbols previously loaded from shared libraries. */
5328 no_shared_libraries (NULL, 0);
5329
5330 /* Start afresh. */
5331 init_thread_list ();
5332
5333 /* Start the remote connection. If error() or QUIT, discard this
5334 target (we'd otherwise be in an inconsistent state) and then
5335 propogate the error on up the exception chain. This ensures that
5336 the caller doesn't stumble along blindly assuming that the
5337 function succeeded. The CLI doesn't have this problem but other
5338 UI's, such as MI do.
5339
5340 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5341 this function should return an error indication letting the
5342 caller restore the previous state. Unfortunately the command
5343 ``target remote'' is directly wired to this function making that
5344 impossible. On a positive note, the CLI side of this problem has
5345 been fixed - the function set_cmd_context() makes it possible for
5346 all the ``target ....'' commands to share a common callback
5347 function. See cli-dump.c. */
5348 {
5349
5350 TRY
5351 {
5352 target->start_remote (from_tty, extended_p);
5353 }
5354 CATCH (ex, RETURN_MASK_ALL)
5355 {
5356 /* Pop the partially set up target - unless something else did
5357 already before throwing the exception. */
5358 if (rs->remote_desc != NULL)
5359 remote_unpush_target ();
5360 if (target_async_permitted)
5361 wait_forever_enabled_p = 1;
5362 throw_exception (ex);
5363 }
5364 END_CATCH
5365 }
5366
5367 remote_btrace_reset ();
5368
5369 if (target_async_permitted)
5370 wait_forever_enabled_p = 1;
5371 }
5372
5373 /* Detach the specified process. */
5374
5375 static void
5376 remote_detach_pid (int pid)
5377 {
5378 struct remote_state *rs = get_remote_state ();
5379
5380 if (remote_multi_process_p (rs))
5381 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5382 else
5383 strcpy (rs->buf, "D");
5384
5385 putpkt (rs->buf);
5386 getpkt (&rs->buf, &rs->buf_size, 0);
5387
5388 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5389 ;
5390 else if (rs->buf[0] == '\0')
5391 error (_("Remote doesn't know how to detach"));
5392 else
5393 error (_("Can't detach process."));
5394 }
5395
5396 /* This detaches a program to which we previously attached, using
5397 inferior_ptid to identify the process. After this is done, GDB
5398 can be used to debug some other program. We better not have left
5399 any breakpoints in the target program or it'll die when it hits
5400 one. */
5401
5402 static void
5403 remote_detach_1 (int from_tty, inferior *inf)
5404 {
5405 int pid = ptid_get_pid (inferior_ptid);
5406 struct remote_state *rs = get_remote_state ();
5407 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5408 int is_fork_parent;
5409
5410 if (!target_has_execution)
5411 error (_("No process to detach from."));
5412
5413 target_announce_detach (from_tty);
5414
5415 /* Tell the remote target to detach. */
5416 remote_detach_pid (pid);
5417
5418 /* Exit only if this is the only active inferior. */
5419 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5420 puts_filtered (_("Ending remote debugging.\n"));
5421
5422 /* Check to see if we are detaching a fork parent. Note that if we
5423 are detaching a fork child, tp == NULL. */
5424 is_fork_parent = (tp != NULL
5425 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5426
5427 /* If doing detach-on-fork, we don't mourn, because that will delete
5428 breakpoints that should be available for the followed inferior. */
5429 if (!is_fork_parent)
5430 {
5431 /* Save the pid as a string before mourning, since that will
5432 unpush the remote target, and we need the string after. */
5433 std::string infpid = target_pid_to_str (pid_to_ptid (pid));
5434
5435 target_mourn_inferior (inferior_ptid);
5436 if (print_inferior_events)
5437 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5438 inf->num, infpid.c_str ());
5439 }
5440 else
5441 {
5442 inferior_ptid = null_ptid;
5443 detach_inferior (pid);
5444 }
5445 }
5446
5447 void
5448 remote_target::detach (inferior *inf, int from_tty)
5449 {
5450 remote_detach_1 (from_tty, inf);
5451 }
5452
5453 void
5454 extended_remote_target::detach (inferior *inf, int from_tty)
5455 {
5456 remote_detach_1 (from_tty, inf);
5457 }
5458
5459 /* Target follow-fork function for remote targets. On entry, and
5460 at return, the current inferior is the fork parent.
5461
5462 Note that although this is currently only used for extended-remote,
5463 it is named remote_follow_fork in anticipation of using it for the
5464 remote target as well. */
5465
5466 int
5467 remote_target::follow_fork (int follow_child, int detach_fork)
5468 {
5469 struct remote_state *rs = get_remote_state ();
5470 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5471
5472 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5473 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5474 {
5475 /* When following the parent and detaching the child, we detach
5476 the child here. For the case of following the child and
5477 detaching the parent, the detach is done in the target-
5478 independent follow fork code in infrun.c. We can't use
5479 target_detach when detaching an unfollowed child because
5480 the client side doesn't know anything about the child. */
5481 if (detach_fork && !follow_child)
5482 {
5483 /* Detach the fork child. */
5484 ptid_t child_ptid;
5485 pid_t child_pid;
5486
5487 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5488 child_pid = ptid_get_pid (child_ptid);
5489
5490 remote_detach_pid (child_pid);
5491 }
5492 }
5493 return 0;
5494 }
5495
5496 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5497 in the program space of the new inferior. On entry and at return the
5498 current inferior is the exec'ing inferior. INF is the new exec'd
5499 inferior, which may be the same as the exec'ing inferior unless
5500 follow-exec-mode is "new". */
5501
5502 void
5503 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5504 {
5505 /* We know that this is a target file name, so if it has the "target:"
5506 prefix we strip it off before saving it in the program space. */
5507 if (is_target_filename (execd_pathname))
5508 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5509
5510 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5511 }
5512
5513 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5514
5515 void
5516 remote_target::disconnect (const char *args, int from_tty)
5517 {
5518 if (args)
5519 error (_("Argument given to \"disconnect\" when remotely debugging."));
5520
5521 /* Make sure we unpush even the extended remote targets. Calling
5522 target_mourn_inferior won't unpush, and remote_mourn won't
5523 unpush if there is more than one inferior left. */
5524 unpush_target (this);
5525 generic_mourn_inferior ();
5526
5527 if (from_tty)
5528 puts_filtered ("Ending remote debugging.\n");
5529 }
5530
5531 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5532 be chatty about it. */
5533
5534 void
5535 extended_remote_target::attach (const char *args, int from_tty)
5536 {
5537 struct remote_state *rs = get_remote_state ();
5538 int pid;
5539 char *wait_status = NULL;
5540
5541 pid = parse_pid_to_attach (args);
5542
5543 /* Remote PID can be freely equal to getpid, do not check it here the same
5544 way as in other targets. */
5545
5546 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5547 error (_("This target does not support attaching to a process"));
5548
5549 if (from_tty)
5550 {
5551 char *exec_file = get_exec_file (0);
5552
5553 if (exec_file)
5554 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5555 target_pid_to_str (pid_to_ptid (pid)));
5556 else
5557 printf_unfiltered (_("Attaching to %s\n"),
5558 target_pid_to_str (pid_to_ptid (pid)));
5559
5560 gdb_flush (gdb_stdout);
5561 }
5562
5563 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5564 putpkt (rs->buf);
5565 getpkt (&rs->buf, &rs->buf_size, 0);
5566
5567 switch (packet_ok (rs->buf,
5568 &remote_protocol_packets[PACKET_vAttach]))
5569 {
5570 case PACKET_OK:
5571 if (!target_is_non_stop_p ())
5572 {
5573 /* Save the reply for later. */
5574 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5575 strcpy (wait_status, rs->buf);
5576 }
5577 else if (strcmp (rs->buf, "OK") != 0)
5578 error (_("Attaching to %s failed with: %s"),
5579 target_pid_to_str (pid_to_ptid (pid)),
5580 rs->buf);
5581 break;
5582 case PACKET_UNKNOWN:
5583 error (_("This target does not support attaching to a process"));
5584 default:
5585 error (_("Attaching to %s failed"),
5586 target_pid_to_str (pid_to_ptid (pid)));
5587 }
5588
5589 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5590
5591 inferior_ptid = pid_to_ptid (pid);
5592
5593 if (target_is_non_stop_p ())
5594 {
5595 struct thread_info *thread;
5596
5597 /* Get list of threads. */
5598 update_thread_list ();
5599
5600 thread = first_thread_of_process (pid);
5601 if (thread)
5602 inferior_ptid = thread->ptid;
5603 else
5604 inferior_ptid = pid_to_ptid (pid);
5605
5606 /* Invalidate our notion of the remote current thread. */
5607 record_currthread (rs, minus_one_ptid);
5608 }
5609 else
5610 {
5611 /* Now, if we have thread information, update inferior_ptid. */
5612 inferior_ptid = remote_current_thread (inferior_ptid);
5613
5614 /* Add the main thread to the thread list. */
5615 thread_info *thr = add_thread_silent (inferior_ptid);
5616 /* Don't consider the thread stopped until we've processed the
5617 saved stop reply. */
5618 set_executing (thr->ptid, true);
5619 }
5620
5621 /* Next, if the target can specify a description, read it. We do
5622 this before anything involving memory or registers. */
5623 target_find_description ();
5624
5625 if (!target_is_non_stop_p ())
5626 {
5627 /* Use the previously fetched status. */
5628 gdb_assert (wait_status != NULL);
5629
5630 if (target_can_async_p ())
5631 {
5632 struct notif_event *reply
5633 = remote_notif_parse (&notif_client_stop, wait_status);
5634
5635 push_stop_reply ((struct stop_reply *) reply);
5636
5637 target_async (1);
5638 }
5639 else
5640 {
5641 gdb_assert (wait_status != NULL);
5642 strcpy (rs->buf, wait_status);
5643 rs->cached_wait_status = 1;
5644 }
5645 }
5646 else
5647 gdb_assert (wait_status == NULL);
5648 }
5649
5650 /* Implementation of the to_post_attach method. */
5651
5652 void
5653 extended_remote_target::post_attach (int pid)
5654 {
5655 /* Get text, data & bss offsets. */
5656 get_offsets ();
5657
5658 /* In certain cases GDB might not have had the chance to start
5659 symbol lookup up until now. This could happen if the debugged
5660 binary is not using shared libraries, the vsyscall page is not
5661 present (on Linux) and the binary itself hadn't changed since the
5662 debugging process was started. */
5663 if (symfile_objfile != NULL)
5664 remote_check_symbols();
5665 }
5666
5667 \f
5668 /* Check for the availability of vCont. This function should also check
5669 the response. */
5670
5671 static void
5672 remote_vcont_probe (struct remote_state *rs)
5673 {
5674 char *buf;
5675
5676 strcpy (rs->buf, "vCont?");
5677 putpkt (rs->buf);
5678 getpkt (&rs->buf, &rs->buf_size, 0);
5679 buf = rs->buf;
5680
5681 /* Make sure that the features we assume are supported. */
5682 if (startswith (buf, "vCont"))
5683 {
5684 char *p = &buf[5];
5685 int support_c, support_C;
5686
5687 rs->supports_vCont.s = 0;
5688 rs->supports_vCont.S = 0;
5689 support_c = 0;
5690 support_C = 0;
5691 rs->supports_vCont.t = 0;
5692 rs->supports_vCont.r = 0;
5693 while (p && *p == ';')
5694 {
5695 p++;
5696 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5697 rs->supports_vCont.s = 1;
5698 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5699 rs->supports_vCont.S = 1;
5700 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5701 support_c = 1;
5702 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5703 support_C = 1;
5704 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5705 rs->supports_vCont.t = 1;
5706 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5707 rs->supports_vCont.r = 1;
5708
5709 p = strchr (p, ';');
5710 }
5711
5712 /* If c, and C are not all supported, we can't use vCont. Clearing
5713 BUF will make packet_ok disable the packet. */
5714 if (!support_c || !support_C)
5715 buf[0] = 0;
5716 }
5717
5718 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5719 }
5720
5721 /* Helper function for building "vCont" resumptions. Write a
5722 resumption to P. ENDP points to one-passed-the-end of the buffer
5723 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5724 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5725 resumed thread should be single-stepped and/or signalled. If PTID
5726 equals minus_one_ptid, then all threads are resumed; if PTID
5727 represents a process, then all threads of the process are resumed;
5728 the thread to be stepped and/or signalled is given in the global
5729 INFERIOR_PTID. */
5730
5731 static char *
5732 append_resumption (char *p, char *endp,
5733 ptid_t ptid, int step, enum gdb_signal siggnal)
5734 {
5735 struct remote_state *rs = get_remote_state ();
5736
5737 if (step && siggnal != GDB_SIGNAL_0)
5738 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5739 else if (step
5740 /* GDB is willing to range step. */
5741 && use_range_stepping
5742 /* Target supports range stepping. */
5743 && rs->supports_vCont.r
5744 /* We don't currently support range stepping multiple
5745 threads with a wildcard (though the protocol allows it,
5746 so stubs shouldn't make an active effort to forbid
5747 it). */
5748 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5749 {
5750 struct thread_info *tp;
5751
5752 if (ptid_equal (ptid, minus_one_ptid))
5753 {
5754 /* If we don't know about the target thread's tid, then
5755 we're resuming magic_null_ptid (see caller). */
5756 tp = find_thread_ptid (magic_null_ptid);
5757 }
5758 else
5759 tp = find_thread_ptid (ptid);
5760 gdb_assert (tp != NULL);
5761
5762 if (tp->control.may_range_step)
5763 {
5764 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5765
5766 p += xsnprintf (p, endp - p, ";r%s,%s",
5767 phex_nz (tp->control.step_range_start,
5768 addr_size),
5769 phex_nz (tp->control.step_range_end,
5770 addr_size));
5771 }
5772 else
5773 p += xsnprintf (p, endp - p, ";s");
5774 }
5775 else if (step)
5776 p += xsnprintf (p, endp - p, ";s");
5777 else if (siggnal != GDB_SIGNAL_0)
5778 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5779 else
5780 p += xsnprintf (p, endp - p, ";c");
5781
5782 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5783 {
5784 ptid_t nptid;
5785
5786 /* All (-1) threads of process. */
5787 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5788
5789 p += xsnprintf (p, endp - p, ":");
5790 p = write_ptid (p, endp, nptid);
5791 }
5792 else if (!ptid_equal (ptid, minus_one_ptid))
5793 {
5794 p += xsnprintf (p, endp - p, ":");
5795 p = write_ptid (p, endp, ptid);
5796 }
5797
5798 return p;
5799 }
5800
5801 /* Clear the thread's private info on resume. */
5802
5803 static void
5804 resume_clear_thread_private_info (struct thread_info *thread)
5805 {
5806 if (thread->priv != NULL)
5807 {
5808 remote_thread_info *priv = get_remote_thread_info (thread);
5809
5810 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5811 priv->watch_data_address = 0;
5812 }
5813 }
5814
5815 /* Append a vCont continue-with-signal action for threads that have a
5816 non-zero stop signal. */
5817
5818 static char *
5819 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5820 {
5821 struct thread_info *thread;
5822
5823 ALL_NON_EXITED_THREADS (thread)
5824 if (ptid_match (thread->ptid, ptid)
5825 && !ptid_equal (inferior_ptid, thread->ptid)
5826 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5827 {
5828 p = append_resumption (p, endp, thread->ptid,
5829 0, thread->suspend.stop_signal);
5830 thread->suspend.stop_signal = GDB_SIGNAL_0;
5831 resume_clear_thread_private_info (thread);
5832 }
5833
5834 return p;
5835 }
5836
5837 /* Set the target running, using the packets that use Hc
5838 (c/s/C/S). */
5839
5840 static void
5841 remote_resume_with_hc (struct target_ops *ops,
5842 ptid_t ptid, int step, enum gdb_signal siggnal)
5843 {
5844 struct remote_state *rs = get_remote_state ();
5845 struct thread_info *thread;
5846 char *buf;
5847
5848 rs->last_sent_signal = siggnal;
5849 rs->last_sent_step = step;
5850
5851 /* The c/s/C/S resume packets use Hc, so set the continue
5852 thread. */
5853 if (ptid_equal (ptid, minus_one_ptid))
5854 set_continue_thread (any_thread_ptid);
5855 else
5856 set_continue_thread (ptid);
5857
5858 ALL_NON_EXITED_THREADS (thread)
5859 resume_clear_thread_private_info (thread);
5860
5861 buf = rs->buf;
5862 if (execution_direction == EXEC_REVERSE)
5863 {
5864 /* We don't pass signals to the target in reverse exec mode. */
5865 if (info_verbose && siggnal != GDB_SIGNAL_0)
5866 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5867 siggnal);
5868
5869 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5870 error (_("Remote reverse-step not supported."));
5871 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5872 error (_("Remote reverse-continue not supported."));
5873
5874 strcpy (buf, step ? "bs" : "bc");
5875 }
5876 else if (siggnal != GDB_SIGNAL_0)
5877 {
5878 buf[0] = step ? 'S' : 'C';
5879 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5880 buf[2] = tohex (((int) siggnal) & 0xf);
5881 buf[3] = '\0';
5882 }
5883 else
5884 strcpy (buf, step ? "s" : "c");
5885
5886 putpkt (buf);
5887 }
5888
5889 /* Resume the remote inferior by using a "vCont" packet. The thread
5890 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5891 resumed thread should be single-stepped and/or signalled. If PTID
5892 equals minus_one_ptid, then all threads are resumed; the thread to
5893 be stepped and/or signalled is given in the global INFERIOR_PTID.
5894 This function returns non-zero iff it resumes the inferior.
5895
5896 This function issues a strict subset of all possible vCont commands
5897 at the moment. */
5898
5899 static int
5900 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5901 {
5902 struct remote_state *rs = get_remote_state ();
5903 char *p;
5904 char *endp;
5905
5906 /* No reverse execution actions defined for vCont. */
5907 if (execution_direction == EXEC_REVERSE)
5908 return 0;
5909
5910 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5911 remote_vcont_probe (rs);
5912
5913 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5914 return 0;
5915
5916 p = rs->buf;
5917 endp = rs->buf + get_remote_packet_size ();
5918
5919 /* If we could generate a wider range of packets, we'd have to worry
5920 about overflowing BUF. Should there be a generic
5921 "multi-part-packet" packet? */
5922
5923 p += xsnprintf (p, endp - p, "vCont");
5924
5925 if (ptid_equal (ptid, magic_null_ptid))
5926 {
5927 /* MAGIC_NULL_PTID means that we don't have any active threads,
5928 so we don't have any TID numbers the inferior will
5929 understand. Make sure to only send forms that do not specify
5930 a TID. */
5931 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5932 }
5933 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5934 {
5935 /* Resume all threads (of all processes, or of a single
5936 process), with preference for INFERIOR_PTID. This assumes
5937 inferior_ptid belongs to the set of all threads we are about
5938 to resume. */
5939 if (step || siggnal != GDB_SIGNAL_0)
5940 {
5941 /* Step inferior_ptid, with or without signal. */
5942 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5943 }
5944
5945 /* Also pass down any pending signaled resumption for other
5946 threads not the current. */
5947 p = append_pending_thread_resumptions (p, endp, ptid);
5948
5949 /* And continue others without a signal. */
5950 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5951 }
5952 else
5953 {
5954 /* Scheduler locking; resume only PTID. */
5955 append_resumption (p, endp, ptid, step, siggnal);
5956 }
5957
5958 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5959 putpkt (rs->buf);
5960
5961 if (target_is_non_stop_p ())
5962 {
5963 /* In non-stop, the stub replies to vCont with "OK". The stop
5964 reply will be reported asynchronously by means of a `%Stop'
5965 notification. */
5966 getpkt (&rs->buf, &rs->buf_size, 0);
5967 if (strcmp (rs->buf, "OK") != 0)
5968 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5969 }
5970
5971 return 1;
5972 }
5973
5974 /* Tell the remote machine to resume. */
5975
5976 void
5977 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
5978 {
5979 struct remote_state *rs = get_remote_state ();
5980
5981 /* When connected in non-stop mode, the core resumes threads
5982 individually. Resuming remote threads directly in target_resume
5983 would thus result in sending one packet per thread. Instead, to
5984 minimize roundtrip latency, here we just store the resume
5985 request; the actual remote resumption will be done in
5986 target_commit_resume / remote_commit_resume, where we'll be able
5987 to do vCont action coalescing. */
5988 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
5989 {
5990 remote_thread_info *remote_thr;
5991
5992 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5993 remote_thr = get_remote_thread_info (inferior_ptid);
5994 else
5995 remote_thr = get_remote_thread_info (ptid);
5996
5997 remote_thr->last_resume_step = step;
5998 remote_thr->last_resume_sig = siggnal;
5999 return;
6000 }
6001
6002 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6003 (explained in remote-notif.c:handle_notification) so
6004 remote_notif_process is not called. We need find a place where
6005 it is safe to start a 'vNotif' sequence. It is good to do it
6006 before resuming inferior, because inferior was stopped and no RSP
6007 traffic at that moment. */
6008 if (!target_is_non_stop_p ())
6009 remote_notif_process (rs->notif_state, &notif_client_stop);
6010
6011 rs->last_resume_exec_dir = ::execution_direction;
6012
6013 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6014 if (!remote_resume_with_vcont (ptid, step, siggnal))
6015 remote_resume_with_hc (this, ptid, step, siggnal);
6016
6017 /* We are about to start executing the inferior, let's register it
6018 with the event loop. NOTE: this is the one place where all the
6019 execution commands end up. We could alternatively do this in each
6020 of the execution commands in infcmd.c. */
6021 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6022 into infcmd.c in order to allow inferior function calls to work
6023 NOT asynchronously. */
6024 if (target_can_async_p ())
6025 target_async (1);
6026
6027 /* We've just told the target to resume. The remote server will
6028 wait for the inferior to stop, and then send a stop reply. In
6029 the mean time, we can't start another command/query ourselves
6030 because the stub wouldn't be ready to process it. This applies
6031 only to the base all-stop protocol, however. In non-stop (which
6032 only supports vCont), the stub replies with an "OK", and is
6033 immediate able to process further serial input. */
6034 if (!target_is_non_stop_p ())
6035 rs->waiting_for_stop_reply = 1;
6036 }
6037
6038 static void check_pending_events_prevent_wildcard_vcont
6039 (int *may_global_wildcard_vcont);
6040 static int is_pending_fork_parent_thread (struct thread_info *thread);
6041
6042 /* Private per-inferior info for target remote processes. */
6043
6044 struct remote_inferior : public private_inferior
6045 {
6046 /* Whether we can send a wildcard vCont for this process. */
6047 bool may_wildcard_vcont = true;
6048 };
6049
6050 /* Get the remote private inferior data associated to INF. */
6051
6052 static remote_inferior *
6053 get_remote_inferior (inferior *inf)
6054 {
6055 if (inf->priv == NULL)
6056 inf->priv.reset (new remote_inferior);
6057
6058 return static_cast<remote_inferior *> (inf->priv.get ());
6059 }
6060
6061 /* Structure used to track the construction of a vCont packet in the
6062 outgoing packet buffer. This is used to send multiple vCont
6063 packets if we have more actions than would fit a single packet. */
6064
6065 struct vcont_builder
6066 {
6067 /* Pointer to the first action. P points here if no action has been
6068 appended yet. */
6069 char *first_action;
6070
6071 /* Where the next action will be appended. */
6072 char *p;
6073
6074 /* The end of the buffer. Must never write past this. */
6075 char *endp;
6076 };
6077
6078 /* Prepare the outgoing buffer for a new vCont packet. */
6079
6080 static void
6081 vcont_builder_restart (struct vcont_builder *builder)
6082 {
6083 struct remote_state *rs = get_remote_state ();
6084
6085 builder->p = rs->buf;
6086 builder->endp = rs->buf + get_remote_packet_size ();
6087 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
6088 builder->first_action = builder->p;
6089 }
6090
6091 /* If the vCont packet being built has any action, send it to the
6092 remote end. */
6093
6094 static void
6095 vcont_builder_flush (struct vcont_builder *builder)
6096 {
6097 struct remote_state *rs;
6098
6099 if (builder->p == builder->first_action)
6100 return;
6101
6102 rs = get_remote_state ();
6103 putpkt (rs->buf);
6104 getpkt (&rs->buf, &rs->buf_size, 0);
6105 if (strcmp (rs->buf, "OK") != 0)
6106 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6107 }
6108
6109 /* The largest action is range-stepping, with its two addresses. This
6110 is more than sufficient. If a new, bigger action is created, it'll
6111 quickly trigger a failed assertion in append_resumption (and we'll
6112 just bump this). */
6113 #define MAX_ACTION_SIZE 200
6114
6115 /* Append a new vCont action in the outgoing packet being built. If
6116 the action doesn't fit the packet along with previous actions, push
6117 what we've got so far to the remote end and start over a new vCont
6118 packet (with the new action). */
6119
6120 static void
6121 vcont_builder_push_action (struct vcont_builder *builder,
6122 ptid_t ptid, int step, enum gdb_signal siggnal)
6123 {
6124 char buf[MAX_ACTION_SIZE + 1];
6125 char *endp;
6126 size_t rsize;
6127
6128 endp = append_resumption (buf, buf + sizeof (buf),
6129 ptid, step, siggnal);
6130
6131 /* Check whether this new action would fit in the vCont packet along
6132 with previous actions. If not, send what we've got so far and
6133 start a new vCont packet. */
6134 rsize = endp - buf;
6135 if (rsize > builder->endp - builder->p)
6136 {
6137 vcont_builder_flush (builder);
6138 vcont_builder_restart (builder);
6139
6140 /* Should now fit. */
6141 gdb_assert (rsize <= builder->endp - builder->p);
6142 }
6143
6144 memcpy (builder->p, buf, rsize);
6145 builder->p += rsize;
6146 *builder->p = '\0';
6147 }
6148
6149 /* to_commit_resume implementation. */
6150
6151 void
6152 remote_target::commit_resume ()
6153 {
6154 struct inferior *inf;
6155 struct thread_info *tp;
6156 int any_process_wildcard;
6157 int may_global_wildcard_vcont;
6158 struct vcont_builder vcont_builder;
6159
6160 /* If connected in all-stop mode, we'd send the remote resume
6161 request directly from remote_resume. Likewise if
6162 reverse-debugging, as there are no defined vCont actions for
6163 reverse execution. */
6164 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6165 return;
6166
6167 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6168 instead of resuming all threads of each process individually.
6169 However, if any thread of a process must remain halted, we can't
6170 send wildcard resumes and must send one action per thread.
6171
6172 Care must be taken to not resume threads/processes the server
6173 side already told us are stopped, but the core doesn't know about
6174 yet, because the events are still in the vStopped notification
6175 queue. For example:
6176
6177 #1 => vCont s:p1.1;c
6178 #2 <= OK
6179 #3 <= %Stopped T05 p1.1
6180 #4 => vStopped
6181 #5 <= T05 p1.2
6182 #6 => vStopped
6183 #7 <= OK
6184 #8 (infrun handles the stop for p1.1 and continues stepping)
6185 #9 => vCont s:p1.1;c
6186
6187 The last vCont above would resume thread p1.2 by mistake, because
6188 the server has no idea that the event for p1.2 had not been
6189 handled yet.
6190
6191 The server side must similarly ignore resume actions for the
6192 thread that has a pending %Stopped notification (and any other
6193 threads with events pending), until GDB acks the notification
6194 with vStopped. Otherwise, e.g., the following case is
6195 mishandled:
6196
6197 #1 => g (or any other packet)
6198 #2 <= [registers]
6199 #3 <= %Stopped T05 p1.2
6200 #4 => vCont s:p1.1;c
6201 #5 <= OK
6202
6203 Above, the server must not resume thread p1.2. GDB can't know
6204 that p1.2 stopped until it acks the %Stopped notification, and
6205 since from GDB's perspective all threads should be running, it
6206 sends a "c" action.
6207
6208 Finally, special care must also be given to handling fork/vfork
6209 events. A (v)fork event actually tells us that two processes
6210 stopped -- the parent and the child. Until we follow the fork,
6211 we must not resume the child. Therefore, if we have a pending
6212 fork follow, we must not send a global wildcard resume action
6213 (vCont;c). We can still send process-wide wildcards though. */
6214
6215 /* Start by assuming a global wildcard (vCont;c) is possible. */
6216 may_global_wildcard_vcont = 1;
6217
6218 /* And assume every process is individually wildcard-able too. */
6219 ALL_NON_EXITED_INFERIORS (inf)
6220 {
6221 remote_inferior *priv = get_remote_inferior (inf);
6222
6223 priv->may_wildcard_vcont = true;
6224 }
6225
6226 /* Check for any pending events (not reported or processed yet) and
6227 disable process and global wildcard resumes appropriately. */
6228 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6229
6230 ALL_NON_EXITED_THREADS (tp)
6231 {
6232 /* If a thread of a process is not meant to be resumed, then we
6233 can't wildcard that process. */
6234 if (!tp->executing)
6235 {
6236 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6237
6238 /* And if we can't wildcard a process, we can't wildcard
6239 everything either. */
6240 may_global_wildcard_vcont = 0;
6241 continue;
6242 }
6243
6244 /* If a thread is the parent of an unfollowed fork, then we
6245 can't do a global wildcard, as that would resume the fork
6246 child. */
6247 if (is_pending_fork_parent_thread (tp))
6248 may_global_wildcard_vcont = 0;
6249 }
6250
6251 /* Now let's build the vCont packet(s). Actions must be appended
6252 from narrower to wider scopes (thread -> process -> global). If
6253 we end up with too many actions for a single packet vcont_builder
6254 flushes the current vCont packet to the remote side and starts a
6255 new one. */
6256 vcont_builder_restart (&vcont_builder);
6257
6258 /* Threads first. */
6259 ALL_NON_EXITED_THREADS (tp)
6260 {
6261 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6262
6263 if (!tp->executing || remote_thr->vcont_resumed)
6264 continue;
6265
6266 gdb_assert (!thread_is_in_step_over_chain (tp));
6267
6268 if (!remote_thr->last_resume_step
6269 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6270 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6271 {
6272 /* We'll send a wildcard resume instead. */
6273 remote_thr->vcont_resumed = 1;
6274 continue;
6275 }
6276
6277 vcont_builder_push_action (&vcont_builder, tp->ptid,
6278 remote_thr->last_resume_step,
6279 remote_thr->last_resume_sig);
6280 remote_thr->vcont_resumed = 1;
6281 }
6282
6283 /* Now check whether we can send any process-wide wildcard. This is
6284 to avoid sending a global wildcard in the case nothing is
6285 supposed to be resumed. */
6286 any_process_wildcard = 0;
6287
6288 ALL_NON_EXITED_INFERIORS (inf)
6289 {
6290 if (get_remote_inferior (inf)->may_wildcard_vcont)
6291 {
6292 any_process_wildcard = 1;
6293 break;
6294 }
6295 }
6296
6297 if (any_process_wildcard)
6298 {
6299 /* If all processes are wildcard-able, then send a single "c"
6300 action, otherwise, send an "all (-1) threads of process"
6301 continue action for each running process, if any. */
6302 if (may_global_wildcard_vcont)
6303 {
6304 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6305 0, GDB_SIGNAL_0);
6306 }
6307 else
6308 {
6309 ALL_NON_EXITED_INFERIORS (inf)
6310 {
6311 if (get_remote_inferior (inf)->may_wildcard_vcont)
6312 {
6313 vcont_builder_push_action (&vcont_builder,
6314 pid_to_ptid (inf->pid),
6315 0, GDB_SIGNAL_0);
6316 }
6317 }
6318 }
6319 }
6320
6321 vcont_builder_flush (&vcont_builder);
6322 }
6323
6324 \f
6325
6326 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6327 thread, all threads of a remote process, or all threads of all
6328 processes. */
6329
6330 static void
6331 remote_stop_ns (ptid_t ptid)
6332 {
6333 struct remote_state *rs = get_remote_state ();
6334 char *p = rs->buf;
6335 char *endp = rs->buf + get_remote_packet_size ();
6336
6337 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6338 remote_vcont_probe (rs);
6339
6340 if (!rs->supports_vCont.t)
6341 error (_("Remote server does not support stopping threads"));
6342
6343 if (ptid_equal (ptid, minus_one_ptid)
6344 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6345 p += xsnprintf (p, endp - p, "vCont;t");
6346 else
6347 {
6348 ptid_t nptid;
6349
6350 p += xsnprintf (p, endp - p, "vCont;t:");
6351
6352 if (ptid_is_pid (ptid))
6353 /* All (-1) threads of process. */
6354 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6355 else
6356 {
6357 /* Small optimization: if we already have a stop reply for
6358 this thread, no use in telling the stub we want this
6359 stopped. */
6360 if (peek_stop_reply (ptid))
6361 return;
6362
6363 nptid = ptid;
6364 }
6365
6366 write_ptid (p, endp, nptid);
6367 }
6368
6369 /* In non-stop, we get an immediate OK reply. The stop reply will
6370 come in asynchronously by notification. */
6371 putpkt (rs->buf);
6372 getpkt (&rs->buf, &rs->buf_size, 0);
6373 if (strcmp (rs->buf, "OK") != 0)
6374 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6375 }
6376
6377 /* All-stop version of target_interrupt. Sends a break or a ^C to
6378 interrupt the remote target. It is undefined which thread of which
6379 process reports the interrupt. */
6380
6381 static void
6382 remote_interrupt_as (void)
6383 {
6384 struct remote_state *rs = get_remote_state ();
6385
6386 rs->ctrlc_pending_p = 1;
6387
6388 /* If the inferior is stopped already, but the core didn't know
6389 about it yet, just ignore the request. The cached wait status
6390 will be collected in remote_wait. */
6391 if (rs->cached_wait_status)
6392 return;
6393
6394 /* Send interrupt_sequence to remote target. */
6395 send_interrupt_sequence ();
6396 }
6397
6398 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6399 the remote target. It is undefined which thread of which process
6400 reports the interrupt. Throws an error if the packet is not
6401 supported by the server. */
6402
6403 static void
6404 remote_interrupt_ns (void)
6405 {
6406 struct remote_state *rs = get_remote_state ();
6407 char *p = rs->buf;
6408 char *endp = rs->buf + get_remote_packet_size ();
6409
6410 xsnprintf (p, endp - p, "vCtrlC");
6411
6412 /* In non-stop, we get an immediate OK reply. The stop reply will
6413 come in asynchronously by notification. */
6414 putpkt (rs->buf);
6415 getpkt (&rs->buf, &rs->buf_size, 0);
6416
6417 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6418 {
6419 case PACKET_OK:
6420 break;
6421 case PACKET_UNKNOWN:
6422 error (_("No support for interrupting the remote target."));
6423 case PACKET_ERROR:
6424 error (_("Interrupting target failed: %s"), rs->buf);
6425 }
6426 }
6427
6428 /* Implement the to_stop function for the remote targets. */
6429
6430 void
6431 remote_target::stop (ptid_t ptid)
6432 {
6433 if (remote_debug)
6434 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6435
6436 if (target_is_non_stop_p ())
6437 remote_stop_ns (ptid);
6438 else
6439 {
6440 /* We don't currently have a way to transparently pause the
6441 remote target in all-stop mode. Interrupt it instead. */
6442 remote_interrupt_as ();
6443 }
6444 }
6445
6446 /* Implement the to_interrupt function for the remote targets. */
6447
6448 void
6449 remote_target::interrupt ()
6450 {
6451 if (remote_debug)
6452 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6453
6454 if (target_is_non_stop_p ())
6455 remote_interrupt_ns ();
6456 else
6457 remote_interrupt_as ();
6458 }
6459
6460 /* Implement the to_pass_ctrlc function for the remote targets. */
6461
6462 void
6463 remote_target::pass_ctrlc ()
6464 {
6465 struct remote_state *rs = get_remote_state ();
6466
6467 if (remote_debug)
6468 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6469
6470 /* If we're starting up, we're not fully synced yet. Quit
6471 immediately. */
6472 if (rs->starting_up)
6473 quit ();
6474 /* If ^C has already been sent once, offer to disconnect. */
6475 else if (rs->ctrlc_pending_p)
6476 interrupt_query ();
6477 else
6478 target_interrupt ();
6479 }
6480
6481 /* Ask the user what to do when an interrupt is received. */
6482
6483 static void
6484 interrupt_query (void)
6485 {
6486 struct remote_state *rs = get_remote_state ();
6487
6488 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6489 {
6490 if (query (_("The target is not responding to interrupt requests.\n"
6491 "Stop debugging it? ")))
6492 {
6493 remote_unpush_target ();
6494 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6495 }
6496 }
6497 else
6498 {
6499 if (query (_("Interrupted while waiting for the program.\n"
6500 "Give up waiting? ")))
6501 quit ();
6502 }
6503 }
6504
6505 /* Enable/disable target terminal ownership. Most targets can use
6506 terminal groups to control terminal ownership. Remote targets are
6507 different in that explicit transfer of ownership to/from GDB/target
6508 is required. */
6509
6510 void
6511 remote_target::terminal_inferior ()
6512 {
6513 /* NOTE: At this point we could also register our selves as the
6514 recipient of all input. Any characters typed could then be
6515 passed on down to the target. */
6516 }
6517
6518 void
6519 remote_target::terminal_ours ()
6520 {
6521 }
6522
6523 static void
6524 remote_console_output (char *msg)
6525 {
6526 char *p;
6527
6528 for (p = msg; p[0] && p[1]; p += 2)
6529 {
6530 char tb[2];
6531 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6532
6533 tb[0] = c;
6534 tb[1] = 0;
6535 fputs_unfiltered (tb, gdb_stdtarg);
6536 }
6537 gdb_flush (gdb_stdtarg);
6538 }
6539
6540 DEF_VEC_O(cached_reg_t);
6541
6542 typedef struct stop_reply
6543 {
6544 struct notif_event base;
6545
6546 /* The identifier of the thread about this event */
6547 ptid_t ptid;
6548
6549 /* The remote state this event is associated with. When the remote
6550 connection, represented by a remote_state object, is closed,
6551 all the associated stop_reply events should be released. */
6552 struct remote_state *rs;
6553
6554 struct target_waitstatus ws;
6555
6556 /* The architecture associated with the expedited registers. */
6557 gdbarch *arch;
6558
6559 /* Expedited registers. This makes remote debugging a bit more
6560 efficient for those targets that provide critical registers as
6561 part of their normal status mechanism (as another roundtrip to
6562 fetch them is avoided). */
6563 VEC(cached_reg_t) *regcache;
6564
6565 enum target_stop_reason stop_reason;
6566
6567 CORE_ADDR watch_data_address;
6568
6569 int core;
6570 } *stop_reply_p;
6571
6572 DECLARE_QUEUE_P (stop_reply_p);
6573 DEFINE_QUEUE_P (stop_reply_p);
6574 /* The list of already fetched and acknowledged stop events. This
6575 queue is used for notification Stop, and other notifications
6576 don't need queue for their events, because the notification events
6577 of Stop can't be consumed immediately, so that events should be
6578 queued first, and be consumed by remote_wait_{ns,as} one per
6579 time. Other notifications can consume their events immediately,
6580 so queue is not needed for them. */
6581 static QUEUE (stop_reply_p) *stop_reply_queue;
6582
6583 static void
6584 stop_reply_xfree (struct stop_reply *r)
6585 {
6586 notif_event_xfree ((struct notif_event *) r);
6587 }
6588
6589 /* Return the length of the stop reply queue. */
6590
6591 static int
6592 stop_reply_queue_length (void)
6593 {
6594 return QUEUE_length (stop_reply_p, stop_reply_queue);
6595 }
6596
6597 static void
6598 remote_notif_stop_parse (struct notif_client *self, char *buf,
6599 struct notif_event *event)
6600 {
6601 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6602 }
6603
6604 static void
6605 remote_notif_stop_ack (struct notif_client *self, char *buf,
6606 struct notif_event *event)
6607 {
6608 struct stop_reply *stop_reply = (struct stop_reply *) event;
6609
6610 /* acknowledge */
6611 putpkt (self->ack_command);
6612
6613 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6614 /* We got an unknown stop reply. */
6615 error (_("Unknown stop reply"));
6616
6617 push_stop_reply (stop_reply);
6618 }
6619
6620 static int
6621 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6622 {
6623 /* We can't get pending events in remote_notif_process for
6624 notification stop, and we have to do this in remote_wait_ns
6625 instead. If we fetch all queued events from stub, remote stub
6626 may exit and we have no chance to process them back in
6627 remote_wait_ns. */
6628 mark_async_event_handler (remote_async_inferior_event_token);
6629 return 0;
6630 }
6631
6632 static void
6633 stop_reply_dtr (struct notif_event *event)
6634 {
6635 struct stop_reply *r = (struct stop_reply *) event;
6636 cached_reg_t *reg;
6637 int ix;
6638
6639 for (ix = 0;
6640 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6641 ix++)
6642 xfree (reg->data);
6643
6644 VEC_free (cached_reg_t, r->regcache);
6645 }
6646
6647 static struct notif_event *
6648 remote_notif_stop_alloc_reply (void)
6649 {
6650 /* We cast to a pointer to the "base class". */
6651 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6652
6653 r->dtr = stop_reply_dtr;
6654
6655 return r;
6656 }
6657
6658 /* A client of notification Stop. */
6659
6660 struct notif_client notif_client_stop =
6661 {
6662 "Stop",
6663 "vStopped",
6664 remote_notif_stop_parse,
6665 remote_notif_stop_ack,
6666 remote_notif_stop_can_get_pending_events,
6667 remote_notif_stop_alloc_reply,
6668 REMOTE_NOTIF_STOP,
6669 };
6670
6671 /* A parameter to pass data in and out. */
6672
6673 struct queue_iter_param
6674 {
6675 void *input;
6676 struct stop_reply *output;
6677 };
6678
6679 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6680 the pid of the process that owns the threads we want to check, or
6681 -1 if we want to check all threads. */
6682
6683 static int
6684 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6685 ptid_t thread_ptid)
6686 {
6687 if (ws->kind == TARGET_WAITKIND_FORKED
6688 || ws->kind == TARGET_WAITKIND_VFORKED)
6689 {
6690 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6691 return 1;
6692 }
6693
6694 return 0;
6695 }
6696
6697 /* Return the thread's pending status used to determine whether the
6698 thread is a fork parent stopped at a fork event. */
6699
6700 static struct target_waitstatus *
6701 thread_pending_fork_status (struct thread_info *thread)
6702 {
6703 if (thread->suspend.waitstatus_pending_p)
6704 return &thread->suspend.waitstatus;
6705 else
6706 return &thread->pending_follow;
6707 }
6708
6709 /* Determine if THREAD is a pending fork parent thread. */
6710
6711 static int
6712 is_pending_fork_parent_thread (struct thread_info *thread)
6713 {
6714 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6715 int pid = -1;
6716
6717 return is_pending_fork_parent (ws, pid, thread->ptid);
6718 }
6719
6720 /* Check whether EVENT is a fork event, and if it is, remove the
6721 fork child from the context list passed in DATA. */
6722
6723 static int
6724 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6725 QUEUE_ITER (stop_reply_p) *iter,
6726 stop_reply_p event,
6727 void *data)
6728 {
6729 struct queue_iter_param *param = (struct queue_iter_param *) data;
6730 struct threads_listing_context *context
6731 = (struct threads_listing_context *) param->input;
6732
6733 if (event->ws.kind == TARGET_WAITKIND_FORKED
6734 || event->ws.kind == TARGET_WAITKIND_VFORKED
6735 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6736 context->remove_thread (event->ws.value.related_pid);
6737
6738 return 1;
6739 }
6740
6741 /* If CONTEXT contains any fork child threads that have not been
6742 reported yet, remove them from the CONTEXT list. If such a
6743 thread exists it is because we are stopped at a fork catchpoint
6744 and have not yet called follow_fork, which will set up the
6745 host-side data structures for the new process. */
6746
6747 static void
6748 remove_new_fork_children (struct threads_listing_context *context)
6749 {
6750 struct thread_info * thread;
6751 int pid = -1;
6752 struct notif_client *notif = &notif_client_stop;
6753 struct queue_iter_param param;
6754
6755 /* For any threads stopped at a fork event, remove the corresponding
6756 fork child threads from the CONTEXT list. */
6757 ALL_NON_EXITED_THREADS (thread)
6758 {
6759 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6760
6761 if (is_pending_fork_parent (ws, pid, thread->ptid))
6762 context->remove_thread (ws->value.related_pid);
6763 }
6764
6765 /* Check for any pending fork events (not reported or processed yet)
6766 in process PID and remove those fork child threads from the
6767 CONTEXT list as well. */
6768 remote_notif_get_pending_events (notif);
6769 param.input = context;
6770 param.output = NULL;
6771 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6772 remove_child_of_pending_fork, &param);
6773 }
6774
6775 /* Check whether EVENT would prevent a global or process wildcard
6776 vCont action. */
6777
6778 static int
6779 check_pending_event_prevents_wildcard_vcont_callback
6780 (QUEUE (stop_reply_p) *q,
6781 QUEUE_ITER (stop_reply_p) *iter,
6782 stop_reply_p event,
6783 void *data)
6784 {
6785 struct inferior *inf;
6786 int *may_global_wildcard_vcont = (int *) data;
6787
6788 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6789 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6790 return 1;
6791
6792 if (event->ws.kind == TARGET_WAITKIND_FORKED
6793 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6794 *may_global_wildcard_vcont = 0;
6795
6796 inf = find_inferior_ptid (event->ptid);
6797
6798 /* This may be the first time we heard about this process.
6799 Regardless, we must not do a global wildcard resume, otherwise
6800 we'd resume this process too. */
6801 *may_global_wildcard_vcont = 0;
6802 if (inf != NULL)
6803 get_remote_inferior (inf)->may_wildcard_vcont = false;
6804
6805 return 1;
6806 }
6807
6808 /* Check whether any event pending in the vStopped queue would prevent
6809 a global or process wildcard vCont action. Clear
6810 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6811 and clear the event inferior's may_wildcard_vcont flag if we can't
6812 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6813
6814 static void
6815 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6816 {
6817 struct notif_client *notif = &notif_client_stop;
6818
6819 remote_notif_get_pending_events (notif);
6820 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6821 check_pending_event_prevents_wildcard_vcont_callback,
6822 may_global_wildcard);
6823 }
6824
6825 /* Remove stop replies in the queue if its pid is equal to the given
6826 inferior's pid. */
6827
6828 static int
6829 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6830 QUEUE_ITER (stop_reply_p) *iter,
6831 stop_reply_p event,
6832 void *data)
6833 {
6834 struct queue_iter_param *param = (struct queue_iter_param *) data;
6835 struct inferior *inf = (struct inferior *) param->input;
6836
6837 if (ptid_get_pid (event->ptid) == inf->pid)
6838 {
6839 stop_reply_xfree (event);
6840 QUEUE_remove_elem (stop_reply_p, q, iter);
6841 }
6842
6843 return 1;
6844 }
6845
6846 /* Discard all pending stop replies of inferior INF. */
6847
6848 static void
6849 discard_pending_stop_replies (struct inferior *inf)
6850 {
6851 struct queue_iter_param param;
6852 struct stop_reply *reply;
6853 struct remote_state *rs = get_remote_state ();
6854 struct remote_notif_state *rns = rs->notif_state;
6855
6856 /* This function can be notified when an inferior exists. When the
6857 target is not remote, the notification state is NULL. */
6858 if (rs->remote_desc == NULL)
6859 return;
6860
6861 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6862
6863 /* Discard the in-flight notification. */
6864 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6865 {
6866 stop_reply_xfree (reply);
6867 rns->pending_event[notif_client_stop.id] = NULL;
6868 }
6869
6870 param.input = inf;
6871 param.output = NULL;
6872 /* Discard the stop replies we have already pulled with
6873 vStopped. */
6874 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6875 remove_stop_reply_for_inferior, &param);
6876 }
6877
6878 /* If its remote state is equal to the given remote state,
6879 remove EVENT from the stop reply queue. */
6880
6881 static int
6882 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6883 QUEUE_ITER (stop_reply_p) *iter,
6884 stop_reply_p event,
6885 void *data)
6886 {
6887 struct queue_iter_param *param = (struct queue_iter_param *) data;
6888 struct remote_state *rs = (struct remote_state *) param->input;
6889
6890 if (event->rs == rs)
6891 {
6892 stop_reply_xfree (event);
6893 QUEUE_remove_elem (stop_reply_p, q, iter);
6894 }
6895
6896 return 1;
6897 }
6898
6899 /* Discard the stop replies for RS in stop_reply_queue. */
6900
6901 static void
6902 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6903 {
6904 struct queue_iter_param param;
6905
6906 param.input = rs;
6907 param.output = NULL;
6908 /* Discard the stop replies we have already pulled with
6909 vStopped. */
6910 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6911 remove_stop_reply_of_remote_state, &param);
6912 }
6913
6914 /* A parameter to pass data in and out. */
6915
6916 static int
6917 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6918 QUEUE_ITER (stop_reply_p) *iter,
6919 stop_reply_p event,
6920 void *data)
6921 {
6922 struct queue_iter_param *param = (struct queue_iter_param *) data;
6923 ptid_t *ptid = (ptid_t *) param->input;
6924
6925 if (ptid_match (event->ptid, *ptid))
6926 {
6927 param->output = event;
6928 QUEUE_remove_elem (stop_reply_p, q, iter);
6929 return 0;
6930 }
6931
6932 return 1;
6933 }
6934
6935 /* Remove the first reply in 'stop_reply_queue' which matches
6936 PTID. */
6937
6938 static struct stop_reply *
6939 remote_notif_remove_queued_reply (ptid_t ptid)
6940 {
6941 struct queue_iter_param param;
6942
6943 param.input = &ptid;
6944 param.output = NULL;
6945
6946 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6947 remote_notif_remove_once_on_match, &param);
6948 if (notif_debug)
6949 fprintf_unfiltered (gdb_stdlog,
6950 "notif: discard queued event: 'Stop' in %s\n",
6951 target_pid_to_str (ptid));
6952
6953 return param.output;
6954 }
6955
6956 /* Look for a queued stop reply belonging to PTID. If one is found,
6957 remove it from the queue, and return it. Returns NULL if none is
6958 found. If there are still queued events left to process, tell the
6959 event loop to get back to target_wait soon. */
6960
6961 static struct stop_reply *
6962 queued_stop_reply (ptid_t ptid)
6963 {
6964 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6965
6966 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6967 /* There's still at least an event left. */
6968 mark_async_event_handler (remote_async_inferior_event_token);
6969
6970 return r;
6971 }
6972
6973 /* Push a fully parsed stop reply in the stop reply queue. Since we
6974 know that we now have at least one queued event left to pass to the
6975 core side, tell the event loop to get back to target_wait soon. */
6976
6977 static void
6978 push_stop_reply (struct stop_reply *new_event)
6979 {
6980 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6981
6982 if (notif_debug)
6983 fprintf_unfiltered (gdb_stdlog,
6984 "notif: push 'Stop' %s to queue %d\n",
6985 target_pid_to_str (new_event->ptid),
6986 QUEUE_length (stop_reply_p,
6987 stop_reply_queue));
6988
6989 mark_async_event_handler (remote_async_inferior_event_token);
6990 }
6991
6992 static int
6993 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6994 QUEUE_ITER (stop_reply_p) *iter,
6995 struct stop_reply *event,
6996 void *data)
6997 {
6998 ptid_t *ptid = (ptid_t *) data;
6999
7000 return !(ptid_equal (*ptid, event->ptid)
7001 && event->ws.kind == TARGET_WAITKIND_STOPPED);
7002 }
7003
7004 /* Returns true if we have a stop reply for PTID. */
7005
7006 static int
7007 peek_stop_reply (ptid_t ptid)
7008 {
7009 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
7010 stop_reply_match_ptid_and_ws, &ptid);
7011 }
7012
7013 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7014 starting with P and ending with PEND matches PREFIX. */
7015
7016 static int
7017 strprefix (const char *p, const char *pend, const char *prefix)
7018 {
7019 for ( ; p < pend; p++, prefix++)
7020 if (*p != *prefix)
7021 return 0;
7022 return *prefix == '\0';
7023 }
7024
7025 /* Parse the stop reply in BUF. Either the function succeeds, and the
7026 result is stored in EVENT, or throws an error. */
7027
7028 static void
7029 remote_parse_stop_reply (char *buf, struct stop_reply *event)
7030 {
7031 remote_arch_state *rsa = NULL;
7032 ULONGEST addr;
7033 const char *p;
7034 int skipregs = 0;
7035
7036 event->ptid = null_ptid;
7037 event->rs = get_remote_state ();
7038 event->ws.kind = TARGET_WAITKIND_IGNORE;
7039 event->ws.value.integer = 0;
7040 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7041 event->regcache = NULL;
7042 event->core = -1;
7043
7044 switch (buf[0])
7045 {
7046 case 'T': /* Status with PC, SP, FP, ... */
7047 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7048 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7049 ss = signal number
7050 n... = register number
7051 r... = register contents
7052 */
7053
7054 p = &buf[3]; /* after Txx */
7055 while (*p)
7056 {
7057 const char *p1;
7058 int fieldsize;
7059
7060 p1 = strchr (p, ':');
7061 if (p1 == NULL)
7062 error (_("Malformed packet(a) (missing colon): %s\n\
7063 Packet: '%s'\n"),
7064 p, buf);
7065 if (p == p1)
7066 error (_("Malformed packet(a) (missing register number): %s\n\
7067 Packet: '%s'\n"),
7068 p, buf);
7069
7070 /* Some "registers" are actually extended stop information.
7071 Note if you're adding a new entry here: GDB 7.9 and
7072 earlier assume that all register "numbers" that start
7073 with an hex digit are real register numbers. Make sure
7074 the server only sends such a packet if it knows the
7075 client understands it. */
7076
7077 if (strprefix (p, p1, "thread"))
7078 event->ptid = read_ptid (++p1, &p);
7079 else if (strprefix (p, p1, "syscall_entry"))
7080 {
7081 ULONGEST sysno;
7082
7083 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7084 p = unpack_varlen_hex (++p1, &sysno);
7085 event->ws.value.syscall_number = (int) sysno;
7086 }
7087 else if (strprefix (p, p1, "syscall_return"))
7088 {
7089 ULONGEST sysno;
7090
7091 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7092 p = unpack_varlen_hex (++p1, &sysno);
7093 event->ws.value.syscall_number = (int) sysno;
7094 }
7095 else if (strprefix (p, p1, "watch")
7096 || strprefix (p, p1, "rwatch")
7097 || strprefix (p, p1, "awatch"))
7098 {
7099 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7100 p = unpack_varlen_hex (++p1, &addr);
7101 event->watch_data_address = (CORE_ADDR) addr;
7102 }
7103 else if (strprefix (p, p1, "swbreak"))
7104 {
7105 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7106
7107 /* Make sure the stub doesn't forget to indicate support
7108 with qSupported. */
7109 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7110 error (_("Unexpected swbreak stop reason"));
7111
7112 /* The value part is documented as "must be empty",
7113 though we ignore it, in case we ever decide to make
7114 use of it in a backward compatible way. */
7115 p = strchrnul (p1 + 1, ';');
7116 }
7117 else if (strprefix (p, p1, "hwbreak"))
7118 {
7119 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7120
7121 /* Make sure the stub doesn't forget to indicate support
7122 with qSupported. */
7123 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7124 error (_("Unexpected hwbreak stop reason"));
7125
7126 /* See above. */
7127 p = strchrnul (p1 + 1, ';');
7128 }
7129 else if (strprefix (p, p1, "library"))
7130 {
7131 event->ws.kind = TARGET_WAITKIND_LOADED;
7132 p = strchrnul (p1 + 1, ';');
7133 }
7134 else if (strprefix (p, p1, "replaylog"))
7135 {
7136 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7137 /* p1 will indicate "begin" or "end", but it makes
7138 no difference for now, so ignore it. */
7139 p = strchrnul (p1 + 1, ';');
7140 }
7141 else if (strprefix (p, p1, "core"))
7142 {
7143 ULONGEST c;
7144
7145 p = unpack_varlen_hex (++p1, &c);
7146 event->core = c;
7147 }
7148 else if (strprefix (p, p1, "fork"))
7149 {
7150 event->ws.value.related_pid = read_ptid (++p1, &p);
7151 event->ws.kind = TARGET_WAITKIND_FORKED;
7152 }
7153 else if (strprefix (p, p1, "vfork"))
7154 {
7155 event->ws.value.related_pid = read_ptid (++p1, &p);
7156 event->ws.kind = TARGET_WAITKIND_VFORKED;
7157 }
7158 else if (strprefix (p, p1, "vforkdone"))
7159 {
7160 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7161 p = strchrnul (p1 + 1, ';');
7162 }
7163 else if (strprefix (p, p1, "exec"))
7164 {
7165 ULONGEST ignored;
7166 char pathname[PATH_MAX];
7167 int pathlen;
7168
7169 /* Determine the length of the execd pathname. */
7170 p = unpack_varlen_hex (++p1, &ignored);
7171 pathlen = (p - p1) / 2;
7172
7173 /* Save the pathname for event reporting and for
7174 the next run command. */
7175 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7176 pathname[pathlen] = '\0';
7177
7178 /* This is freed during event handling. */
7179 event->ws.value.execd_pathname = xstrdup (pathname);
7180 event->ws.kind = TARGET_WAITKIND_EXECD;
7181
7182 /* Skip the registers included in this packet, since
7183 they may be for an architecture different from the
7184 one used by the original program. */
7185 skipregs = 1;
7186 }
7187 else if (strprefix (p, p1, "create"))
7188 {
7189 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7190 p = strchrnul (p1 + 1, ';');
7191 }
7192 else
7193 {
7194 ULONGEST pnum;
7195 const char *p_temp;
7196
7197 if (skipregs)
7198 {
7199 p = strchrnul (p1 + 1, ';');
7200 p++;
7201 continue;
7202 }
7203
7204 /* Maybe a real ``P'' register number. */
7205 p_temp = unpack_varlen_hex (p, &pnum);
7206 /* If the first invalid character is the colon, we got a
7207 register number. Otherwise, it's an unknown stop
7208 reason. */
7209 if (p_temp == p1)
7210 {
7211 /* If we haven't parsed the event's thread yet, find
7212 it now, in order to find the architecture of the
7213 reported expedited registers. */
7214 if (event->ptid == null_ptid)
7215 {
7216 const char *thr = strstr (p1 + 1, ";thread:");
7217 if (thr != NULL)
7218 event->ptid = read_ptid (thr + strlen (";thread:"),
7219 NULL);
7220 else
7221 {
7222 /* Either the current thread hasn't changed,
7223 or the inferior is not multi-threaded.
7224 The event must be for the thread we last
7225 set as (or learned as being) current. */
7226 event->ptid = event->rs->general_thread;
7227 }
7228 }
7229
7230 if (rsa == NULL)
7231 {
7232 inferior *inf = (event->ptid == null_ptid
7233 ? NULL
7234 : find_inferior_ptid (event->ptid));
7235 /* If this is the first time we learn anything
7236 about this process, skip the registers
7237 included in this packet, since we don't yet
7238 know which architecture to use to parse them.
7239 We'll determine the architecture later when
7240 we process the stop reply and retrieve the
7241 target description, via
7242 remote_notice_new_inferior ->
7243 post_create_inferior. */
7244 if (inf == NULL)
7245 {
7246 p = strchrnul (p1 + 1, ';');
7247 p++;
7248 continue;
7249 }
7250
7251 event->arch = inf->gdbarch;
7252 rsa = get_remote_arch_state (event->arch);
7253 }
7254
7255 packet_reg *reg
7256 = packet_reg_from_pnum (event->arch, rsa, pnum);
7257 cached_reg_t cached_reg;
7258
7259 if (reg == NULL)
7260 error (_("Remote sent bad register number %s: %s\n\
7261 Packet: '%s'\n"),
7262 hex_string (pnum), p, buf);
7263
7264 cached_reg.num = reg->regnum;
7265 cached_reg.data = (gdb_byte *)
7266 xmalloc (register_size (event->arch, reg->regnum));
7267
7268 p = p1 + 1;
7269 fieldsize = hex2bin (p, cached_reg.data,
7270 register_size (event->arch, reg->regnum));
7271 p += 2 * fieldsize;
7272 if (fieldsize < register_size (event->arch, reg->regnum))
7273 warning (_("Remote reply is too short: %s"), buf);
7274
7275 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7276 }
7277 else
7278 {
7279 /* Not a number. Silently skip unknown optional
7280 info. */
7281 p = strchrnul (p1 + 1, ';');
7282 }
7283 }
7284
7285 if (*p != ';')
7286 error (_("Remote register badly formatted: %s\nhere: %s"),
7287 buf, p);
7288 ++p;
7289 }
7290
7291 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7292 break;
7293
7294 /* fall through */
7295 case 'S': /* Old style status, just signal only. */
7296 {
7297 int sig;
7298
7299 event->ws.kind = TARGET_WAITKIND_STOPPED;
7300 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7301 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7302 event->ws.value.sig = (enum gdb_signal) sig;
7303 else
7304 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7305 }
7306 break;
7307 case 'w': /* Thread exited. */
7308 {
7309 const char *p;
7310 ULONGEST value;
7311
7312 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7313 p = unpack_varlen_hex (&buf[1], &value);
7314 event->ws.value.integer = value;
7315 if (*p != ';')
7316 error (_("stop reply packet badly formatted: %s"), buf);
7317 event->ptid = read_ptid (++p, NULL);
7318 break;
7319 }
7320 case 'W': /* Target exited. */
7321 case 'X':
7322 {
7323 const char *p;
7324 int pid;
7325 ULONGEST value;
7326
7327 /* GDB used to accept only 2 hex chars here. Stubs should
7328 only send more if they detect GDB supports multi-process
7329 support. */
7330 p = unpack_varlen_hex (&buf[1], &value);
7331
7332 if (buf[0] == 'W')
7333 {
7334 /* The remote process exited. */
7335 event->ws.kind = TARGET_WAITKIND_EXITED;
7336 event->ws.value.integer = value;
7337 }
7338 else
7339 {
7340 /* The remote process exited with a signal. */
7341 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7342 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7343 event->ws.value.sig = (enum gdb_signal) value;
7344 else
7345 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7346 }
7347
7348 /* If no process is specified, assume inferior_ptid. */
7349 pid = ptid_get_pid (inferior_ptid);
7350 if (*p == '\0')
7351 ;
7352 else if (*p == ';')
7353 {
7354 p++;
7355
7356 if (*p == '\0')
7357 ;
7358 else if (startswith (p, "process:"))
7359 {
7360 ULONGEST upid;
7361
7362 p += sizeof ("process:") - 1;
7363 unpack_varlen_hex (p, &upid);
7364 pid = upid;
7365 }
7366 else
7367 error (_("unknown stop reply packet: %s"), buf);
7368 }
7369 else
7370 error (_("unknown stop reply packet: %s"), buf);
7371 event->ptid = pid_to_ptid (pid);
7372 }
7373 break;
7374 case 'N':
7375 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7376 event->ptid = minus_one_ptid;
7377 break;
7378 }
7379
7380 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7381 error (_("No process or thread specified in stop reply: %s"), buf);
7382 }
7383
7384 /* When the stub wants to tell GDB about a new notification reply, it
7385 sends a notification (%Stop, for example). Those can come it at
7386 any time, hence, we have to make sure that any pending
7387 putpkt/getpkt sequence we're making is finished, before querying
7388 the stub for more events with the corresponding ack command
7389 (vStopped, for example). E.g., if we started a vStopped sequence
7390 immediately upon receiving the notification, something like this
7391 could happen:
7392
7393 1.1) --> Hg 1
7394 1.2) <-- OK
7395 1.3) --> g
7396 1.4) <-- %Stop
7397 1.5) --> vStopped
7398 1.6) <-- (registers reply to step #1.3)
7399
7400 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7401 query.
7402
7403 To solve this, whenever we parse a %Stop notification successfully,
7404 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7405 doing whatever we were doing:
7406
7407 2.1) --> Hg 1
7408 2.2) <-- OK
7409 2.3) --> g
7410 2.4) <-- %Stop
7411 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7412 2.5) <-- (registers reply to step #2.3)
7413
7414 Eventualy after step #2.5, we return to the event loop, which
7415 notices there's an event on the
7416 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7417 associated callback --- the function below. At this point, we're
7418 always safe to start a vStopped sequence. :
7419
7420 2.6) --> vStopped
7421 2.7) <-- T05 thread:2
7422 2.8) --> vStopped
7423 2.9) --> OK
7424 */
7425
7426 void
7427 remote_notif_get_pending_events (struct notif_client *nc)
7428 {
7429 struct remote_state *rs = get_remote_state ();
7430
7431 if (rs->notif_state->pending_event[nc->id] != NULL)
7432 {
7433 if (notif_debug)
7434 fprintf_unfiltered (gdb_stdlog,
7435 "notif: process: '%s' ack pending event\n",
7436 nc->name);
7437
7438 /* acknowledge */
7439 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7440 rs->notif_state->pending_event[nc->id] = NULL;
7441
7442 while (1)
7443 {
7444 getpkt (&rs->buf, &rs->buf_size, 0);
7445 if (strcmp (rs->buf, "OK") == 0)
7446 break;
7447 else
7448 remote_notif_ack (nc, rs->buf);
7449 }
7450 }
7451 else
7452 {
7453 if (notif_debug)
7454 fprintf_unfiltered (gdb_stdlog,
7455 "notif: process: '%s' no pending reply\n",
7456 nc->name);
7457 }
7458 }
7459
7460 /* Called when it is decided that STOP_REPLY holds the info of the
7461 event that is to be returned to the core. This function always
7462 destroys STOP_REPLY. */
7463
7464 static ptid_t
7465 process_stop_reply (struct stop_reply *stop_reply,
7466 struct target_waitstatus *status)
7467 {
7468 ptid_t ptid;
7469
7470 *status = stop_reply->ws;
7471 ptid = stop_reply->ptid;
7472
7473 /* If no thread/process was reported by the stub, assume the current
7474 inferior. */
7475 if (ptid_equal (ptid, null_ptid))
7476 ptid = inferior_ptid;
7477
7478 if (status->kind != TARGET_WAITKIND_EXITED
7479 && status->kind != TARGET_WAITKIND_SIGNALLED
7480 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7481 {
7482 /* Expedited registers. */
7483 if (stop_reply->regcache)
7484 {
7485 struct regcache *regcache
7486 = get_thread_arch_regcache (ptid, stop_reply->arch);
7487 cached_reg_t *reg;
7488 int ix;
7489
7490 for (ix = 0;
7491 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7492 ix++)
7493 {
7494 regcache_raw_supply (regcache, reg->num, reg->data);
7495 xfree (reg->data);
7496 }
7497
7498 VEC_free (cached_reg_t, stop_reply->regcache);
7499 }
7500
7501 remote_notice_new_inferior (ptid, 0);
7502 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7503 remote_thr->core = stop_reply->core;
7504 remote_thr->stop_reason = stop_reply->stop_reason;
7505 remote_thr->watch_data_address = stop_reply->watch_data_address;
7506 remote_thr->vcont_resumed = 0;
7507 }
7508
7509 stop_reply_xfree (stop_reply);
7510 return ptid;
7511 }
7512
7513 /* The non-stop mode version of target_wait. */
7514
7515 static ptid_t
7516 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7517 {
7518 struct remote_state *rs = get_remote_state ();
7519 struct stop_reply *stop_reply;
7520 int ret;
7521 int is_notif = 0;
7522
7523 /* If in non-stop mode, get out of getpkt even if a
7524 notification is received. */
7525
7526 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7527 0 /* forever */, &is_notif);
7528 while (1)
7529 {
7530 if (ret != -1 && !is_notif)
7531 switch (rs->buf[0])
7532 {
7533 case 'E': /* Error of some sort. */
7534 /* We're out of sync with the target now. Did it continue
7535 or not? We can't tell which thread it was in non-stop,
7536 so just ignore this. */
7537 warning (_("Remote failure reply: %s"), rs->buf);
7538 break;
7539 case 'O': /* Console output. */
7540 remote_console_output (rs->buf + 1);
7541 break;
7542 default:
7543 warning (_("Invalid remote reply: %s"), rs->buf);
7544 break;
7545 }
7546
7547 /* Acknowledge a pending stop reply that may have arrived in the
7548 mean time. */
7549 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7550 remote_notif_get_pending_events (&notif_client_stop);
7551
7552 /* If indeed we noticed a stop reply, we're done. */
7553 stop_reply = queued_stop_reply (ptid);
7554 if (stop_reply != NULL)
7555 return process_stop_reply (stop_reply, status);
7556
7557 /* Still no event. If we're just polling for an event, then
7558 return to the event loop. */
7559 if (options & TARGET_WNOHANG)
7560 {
7561 status->kind = TARGET_WAITKIND_IGNORE;
7562 return minus_one_ptid;
7563 }
7564
7565 /* Otherwise do a blocking wait. */
7566 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7567 1 /* forever */, &is_notif);
7568 }
7569 }
7570
7571 /* Wait until the remote machine stops, then return, storing status in
7572 STATUS just as `wait' would. */
7573
7574 static ptid_t
7575 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7576 {
7577 struct remote_state *rs = get_remote_state ();
7578 ptid_t event_ptid = null_ptid;
7579 char *buf;
7580 struct stop_reply *stop_reply;
7581
7582 again:
7583
7584 status->kind = TARGET_WAITKIND_IGNORE;
7585 status->value.integer = 0;
7586
7587 stop_reply = queued_stop_reply (ptid);
7588 if (stop_reply != NULL)
7589 return process_stop_reply (stop_reply, status);
7590
7591 if (rs->cached_wait_status)
7592 /* Use the cached wait status, but only once. */
7593 rs->cached_wait_status = 0;
7594 else
7595 {
7596 int ret;
7597 int is_notif;
7598 int forever = ((options & TARGET_WNOHANG) == 0
7599 && wait_forever_enabled_p);
7600
7601 if (!rs->waiting_for_stop_reply)
7602 {
7603 status->kind = TARGET_WAITKIND_NO_RESUMED;
7604 return minus_one_ptid;
7605 }
7606
7607 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7608 _never_ wait for ever -> test on target_is_async_p().
7609 However, before we do that we need to ensure that the caller
7610 knows how to take the target into/out of async mode. */
7611 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7612 forever, &is_notif);
7613
7614 /* GDB gets a notification. Return to core as this event is
7615 not interesting. */
7616 if (ret != -1 && is_notif)
7617 return minus_one_ptid;
7618
7619 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7620 return minus_one_ptid;
7621 }
7622
7623 buf = rs->buf;
7624
7625 /* Assume that the target has acknowledged Ctrl-C unless we receive
7626 an 'F' or 'O' packet. */
7627 if (buf[0] != 'F' && buf[0] != 'O')
7628 rs->ctrlc_pending_p = 0;
7629
7630 switch (buf[0])
7631 {
7632 case 'E': /* Error of some sort. */
7633 /* We're out of sync with the target now. Did it continue or
7634 not? Not is more likely, so report a stop. */
7635 rs->waiting_for_stop_reply = 0;
7636
7637 warning (_("Remote failure reply: %s"), buf);
7638 status->kind = TARGET_WAITKIND_STOPPED;
7639 status->value.sig = GDB_SIGNAL_0;
7640 break;
7641 case 'F': /* File-I/O request. */
7642 /* GDB may access the inferior memory while handling the File-I/O
7643 request, but we don't want GDB accessing memory while waiting
7644 for a stop reply. See the comments in putpkt_binary. Set
7645 waiting_for_stop_reply to 0 temporarily. */
7646 rs->waiting_for_stop_reply = 0;
7647 remote_fileio_request (buf, rs->ctrlc_pending_p);
7648 rs->ctrlc_pending_p = 0;
7649 /* GDB handled the File-I/O request, and the target is running
7650 again. Keep waiting for events. */
7651 rs->waiting_for_stop_reply = 1;
7652 break;
7653 case 'N': case 'T': case 'S': case 'X': case 'W':
7654 {
7655 struct stop_reply *stop_reply;
7656
7657 /* There is a stop reply to handle. */
7658 rs->waiting_for_stop_reply = 0;
7659
7660 stop_reply
7661 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7662 rs->buf);
7663
7664 event_ptid = process_stop_reply (stop_reply, status);
7665 break;
7666 }
7667 case 'O': /* Console output. */
7668 remote_console_output (buf + 1);
7669 break;
7670 case '\0':
7671 if (rs->last_sent_signal != GDB_SIGNAL_0)
7672 {
7673 /* Zero length reply means that we tried 'S' or 'C' and the
7674 remote system doesn't support it. */
7675 target_terminal::ours_for_output ();
7676 printf_filtered
7677 ("Can't send signals to this remote system. %s not sent.\n",
7678 gdb_signal_to_name (rs->last_sent_signal));
7679 rs->last_sent_signal = GDB_SIGNAL_0;
7680 target_terminal::inferior ();
7681
7682 strcpy (buf, rs->last_sent_step ? "s" : "c");
7683 putpkt (buf);
7684 break;
7685 }
7686 /* fallthrough */
7687 default:
7688 warning (_("Invalid remote reply: %s"), buf);
7689 break;
7690 }
7691
7692 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7693 return minus_one_ptid;
7694 else if (status->kind == TARGET_WAITKIND_IGNORE)
7695 {
7696 /* Nothing interesting happened. If we're doing a non-blocking
7697 poll, we're done. Otherwise, go back to waiting. */
7698 if (options & TARGET_WNOHANG)
7699 return minus_one_ptid;
7700 else
7701 goto again;
7702 }
7703 else if (status->kind != TARGET_WAITKIND_EXITED
7704 && status->kind != TARGET_WAITKIND_SIGNALLED)
7705 {
7706 if (!ptid_equal (event_ptid, null_ptid))
7707 record_currthread (rs, event_ptid);
7708 else
7709 event_ptid = inferior_ptid;
7710 }
7711 else
7712 /* A process exit. Invalidate our notion of current thread. */
7713 record_currthread (rs, minus_one_ptid);
7714
7715 return event_ptid;
7716 }
7717
7718 /* Wait until the remote machine stops, then return, storing status in
7719 STATUS just as `wait' would. */
7720
7721 ptid_t
7722 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7723 {
7724 ptid_t event_ptid;
7725
7726 if (target_is_non_stop_p ())
7727 event_ptid = remote_wait_ns (ptid, status, options);
7728 else
7729 event_ptid = remote_wait_as (ptid, status, options);
7730
7731 if (target_is_async_p ())
7732 {
7733 /* If there are are events left in the queue tell the event loop
7734 to return here. */
7735 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7736 mark_async_event_handler (remote_async_inferior_event_token);
7737 }
7738
7739 return event_ptid;
7740 }
7741
7742 /* Fetch a single register using a 'p' packet. */
7743
7744 static int
7745 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7746 {
7747 struct gdbarch *gdbarch = regcache->arch ();
7748 struct remote_state *rs = get_remote_state ();
7749 char *buf, *p;
7750 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7751 int i;
7752
7753 if (packet_support (PACKET_p) == PACKET_DISABLE)
7754 return 0;
7755
7756 if (reg->pnum == -1)
7757 return 0;
7758
7759 p = rs->buf;
7760 *p++ = 'p';
7761 p += hexnumstr (p, reg->pnum);
7762 *p++ = '\0';
7763 putpkt (rs->buf);
7764 getpkt (&rs->buf, &rs->buf_size, 0);
7765
7766 buf = rs->buf;
7767
7768 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7769 {
7770 case PACKET_OK:
7771 break;
7772 case PACKET_UNKNOWN:
7773 return 0;
7774 case PACKET_ERROR:
7775 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7776 gdbarch_register_name (regcache->arch (),
7777 reg->regnum),
7778 buf);
7779 }
7780
7781 /* If this register is unfetchable, tell the regcache. */
7782 if (buf[0] == 'x')
7783 {
7784 regcache_raw_supply (regcache, reg->regnum, NULL);
7785 return 1;
7786 }
7787
7788 /* Otherwise, parse and supply the value. */
7789 p = buf;
7790 i = 0;
7791 while (p[0] != 0)
7792 {
7793 if (p[1] == 0)
7794 error (_("fetch_register_using_p: early buf termination"));
7795
7796 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7797 p += 2;
7798 }
7799 regcache_raw_supply (regcache, reg->regnum, regp);
7800 return 1;
7801 }
7802
7803 /* Fetch the registers included in the target's 'g' packet. */
7804
7805 static int
7806 send_g_packet (void)
7807 {
7808 struct remote_state *rs = get_remote_state ();
7809 int buf_len;
7810
7811 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7812 putpkt (rs->buf);
7813 getpkt (&rs->buf, &rs->buf_size, 0);
7814 if (packet_check_result (rs->buf) == PACKET_ERROR)
7815 error (_("Could not read registers; remote failure reply '%s'"),
7816 rs->buf);
7817
7818 /* We can get out of synch in various cases. If the first character
7819 in the buffer is not a hex character, assume that has happened
7820 and try to fetch another packet to read. */
7821 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7822 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7823 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7824 && rs->buf[0] != 'x') /* New: unavailable register value. */
7825 {
7826 if (remote_debug)
7827 fprintf_unfiltered (gdb_stdlog,
7828 "Bad register packet; fetching a new packet\n");
7829 getpkt (&rs->buf, &rs->buf_size, 0);
7830 }
7831
7832 buf_len = strlen (rs->buf);
7833
7834 /* Sanity check the received packet. */
7835 if (buf_len % 2 != 0)
7836 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7837
7838 return buf_len / 2;
7839 }
7840
7841 static void
7842 process_g_packet (struct regcache *regcache)
7843 {
7844 struct gdbarch *gdbarch = regcache->arch ();
7845 struct remote_state *rs = get_remote_state ();
7846 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7847 int i, buf_len;
7848 char *p;
7849 char *regs;
7850
7851 buf_len = strlen (rs->buf);
7852
7853 /* Further sanity checks, with knowledge of the architecture. */
7854 if (buf_len > 2 * rsa->sizeof_g_packet)
7855 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7856 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7857
7858 /* Save the size of the packet sent to us by the target. It is used
7859 as a heuristic when determining the max size of packets that the
7860 target can safely receive. */
7861 if (rsa->actual_register_packet_size == 0)
7862 rsa->actual_register_packet_size = buf_len;
7863
7864 /* If this is smaller than we guessed the 'g' packet would be,
7865 update our records. A 'g' reply that doesn't include a register's
7866 value implies either that the register is not available, or that
7867 the 'p' packet must be used. */
7868 if (buf_len < 2 * rsa->sizeof_g_packet)
7869 {
7870 long sizeof_g_packet = buf_len / 2;
7871
7872 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7873 {
7874 long offset = rsa->regs[i].offset;
7875 long reg_size = register_size (gdbarch, i);
7876
7877 if (rsa->regs[i].pnum == -1)
7878 continue;
7879
7880 if (offset >= sizeof_g_packet)
7881 rsa->regs[i].in_g_packet = 0;
7882 else if (offset + reg_size > sizeof_g_packet)
7883 error (_("Truncated register %d in remote 'g' packet"), i);
7884 else
7885 rsa->regs[i].in_g_packet = 1;
7886 }
7887
7888 /* Looks valid enough, we can assume this is the correct length
7889 for a 'g' packet. It's important not to adjust
7890 rsa->sizeof_g_packet if we have truncated registers otherwise
7891 this "if" won't be run the next time the method is called
7892 with a packet of the same size and one of the internal errors
7893 below will trigger instead. */
7894 rsa->sizeof_g_packet = sizeof_g_packet;
7895 }
7896
7897 regs = (char *) alloca (rsa->sizeof_g_packet);
7898
7899 /* Unimplemented registers read as all bits zero. */
7900 memset (regs, 0, rsa->sizeof_g_packet);
7901
7902 /* Reply describes registers byte by byte, each byte encoded as two
7903 hex characters. Suck them all up, then supply them to the
7904 register cacheing/storage mechanism. */
7905
7906 p = rs->buf;
7907 for (i = 0; i < rsa->sizeof_g_packet; i++)
7908 {
7909 if (p[0] == 0 || p[1] == 0)
7910 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7911 internal_error (__FILE__, __LINE__,
7912 _("unexpected end of 'g' packet reply"));
7913
7914 if (p[0] == 'x' && p[1] == 'x')
7915 regs[i] = 0; /* 'x' */
7916 else
7917 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7918 p += 2;
7919 }
7920
7921 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7922 {
7923 struct packet_reg *r = &rsa->regs[i];
7924 long reg_size = register_size (gdbarch, i);
7925
7926 if (r->in_g_packet)
7927 {
7928 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7929 /* This shouldn't happen - we adjusted in_g_packet above. */
7930 internal_error (__FILE__, __LINE__,
7931 _("unexpected end of 'g' packet reply"));
7932 else if (rs->buf[r->offset * 2] == 'x')
7933 {
7934 gdb_assert (r->offset * 2 < strlen (rs->buf));
7935 /* The register isn't available, mark it as such (at
7936 the same time setting the value to zero). */
7937 regcache_raw_supply (regcache, r->regnum, NULL);
7938 }
7939 else
7940 regcache_raw_supply (regcache, r->regnum,
7941 regs + r->offset);
7942 }
7943 }
7944 }
7945
7946 static void
7947 fetch_registers_using_g (struct regcache *regcache)
7948 {
7949 send_g_packet ();
7950 process_g_packet (regcache);
7951 }
7952
7953 /* Make the remote selected traceframe match GDB's selected
7954 traceframe. */
7955
7956 static void
7957 set_remote_traceframe (void)
7958 {
7959 int newnum;
7960 struct remote_state *rs = get_remote_state ();
7961
7962 if (rs->remote_traceframe_number == get_traceframe_number ())
7963 return;
7964
7965 /* Avoid recursion, remote_trace_find calls us again. */
7966 rs->remote_traceframe_number = get_traceframe_number ();
7967
7968 newnum = target_trace_find (tfind_number,
7969 get_traceframe_number (), 0, 0, NULL);
7970
7971 /* Should not happen. If it does, all bets are off. */
7972 if (newnum != get_traceframe_number ())
7973 warning (_("could not set remote traceframe"));
7974 }
7975
7976 void
7977 remote_target::fetch_registers (struct regcache *regcache, int regnum)
7978 {
7979 struct gdbarch *gdbarch = regcache->arch ();
7980 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7981 int i;
7982
7983 set_remote_traceframe ();
7984 set_general_thread (regcache_get_ptid (regcache));
7985
7986 if (regnum >= 0)
7987 {
7988 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7989
7990 gdb_assert (reg != NULL);
7991
7992 /* If this register might be in the 'g' packet, try that first -
7993 we are likely to read more than one register. If this is the
7994 first 'g' packet, we might be overly optimistic about its
7995 contents, so fall back to 'p'. */
7996 if (reg->in_g_packet)
7997 {
7998 fetch_registers_using_g (regcache);
7999 if (reg->in_g_packet)
8000 return;
8001 }
8002
8003 if (fetch_register_using_p (regcache, reg))
8004 return;
8005
8006 /* This register is not available. */
8007 regcache_raw_supply (regcache, reg->regnum, NULL);
8008
8009 return;
8010 }
8011
8012 fetch_registers_using_g (regcache);
8013
8014 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8015 if (!rsa->regs[i].in_g_packet)
8016 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8017 {
8018 /* This register is not available. */
8019 regcache_raw_supply (regcache, i, NULL);
8020 }
8021 }
8022
8023 /* Prepare to store registers. Since we may send them all (using a
8024 'G' request), we have to read out the ones we don't want to change
8025 first. */
8026
8027 void
8028 remote_target::prepare_to_store (struct regcache *regcache)
8029 {
8030 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
8031 int i;
8032
8033 /* Make sure the entire registers array is valid. */
8034 switch (packet_support (PACKET_P))
8035 {
8036 case PACKET_DISABLE:
8037 case PACKET_SUPPORT_UNKNOWN:
8038 /* Make sure all the necessary registers are cached. */
8039 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8040 if (rsa->regs[i].in_g_packet)
8041 regcache_raw_update (regcache, rsa->regs[i].regnum);
8042 break;
8043 case PACKET_ENABLE:
8044 break;
8045 }
8046 }
8047
8048 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8049 packet was not recognized. */
8050
8051 static int
8052 store_register_using_P (const struct regcache *regcache,
8053 struct packet_reg *reg)
8054 {
8055 struct gdbarch *gdbarch = regcache->arch ();
8056 struct remote_state *rs = get_remote_state ();
8057 /* Try storing a single register. */
8058 char *buf = rs->buf;
8059 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8060 char *p;
8061
8062 if (packet_support (PACKET_P) == PACKET_DISABLE)
8063 return 0;
8064
8065 if (reg->pnum == -1)
8066 return 0;
8067
8068 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8069 p = buf + strlen (buf);
8070 regcache_raw_collect (regcache, reg->regnum, regp);
8071 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8072 putpkt (rs->buf);
8073 getpkt (&rs->buf, &rs->buf_size, 0);
8074
8075 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8076 {
8077 case PACKET_OK:
8078 return 1;
8079 case PACKET_ERROR:
8080 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8081 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8082 case PACKET_UNKNOWN:
8083 return 0;
8084 default:
8085 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8086 }
8087 }
8088
8089 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8090 contents of the register cache buffer. FIXME: ignores errors. */
8091
8092 static void
8093 store_registers_using_G (const struct regcache *regcache)
8094 {
8095 struct remote_state *rs = get_remote_state ();
8096 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
8097 gdb_byte *regs;
8098 char *p;
8099
8100 /* Extract all the registers in the regcache copying them into a
8101 local buffer. */
8102 {
8103 int i;
8104
8105 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8106 memset (regs, 0, rsa->sizeof_g_packet);
8107 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8108 {
8109 struct packet_reg *r = &rsa->regs[i];
8110
8111 if (r->in_g_packet)
8112 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
8113 }
8114 }
8115
8116 /* Command describes registers byte by byte,
8117 each byte encoded as two hex characters. */
8118 p = rs->buf;
8119 *p++ = 'G';
8120 bin2hex (regs, p, rsa->sizeof_g_packet);
8121 putpkt (rs->buf);
8122 getpkt (&rs->buf, &rs->buf_size, 0);
8123 if (packet_check_result (rs->buf) == PACKET_ERROR)
8124 error (_("Could not write registers; remote failure reply '%s'"),
8125 rs->buf);
8126 }
8127
8128 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8129 of the register cache buffer. FIXME: ignores errors. */
8130
8131 void
8132 remote_target::store_registers (struct regcache *regcache, int regnum)
8133 {
8134 struct gdbarch *gdbarch = regcache->arch ();
8135 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
8136 int i;
8137
8138 set_remote_traceframe ();
8139 set_general_thread (regcache_get_ptid (regcache));
8140
8141 if (regnum >= 0)
8142 {
8143 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8144
8145 gdb_assert (reg != NULL);
8146
8147 /* Always prefer to store registers using the 'P' packet if
8148 possible; we often change only a small number of registers.
8149 Sometimes we change a larger number; we'd need help from a
8150 higher layer to know to use 'G'. */
8151 if (store_register_using_P (regcache, reg))
8152 return;
8153
8154 /* For now, don't complain if we have no way to write the
8155 register. GDB loses track of unavailable registers too
8156 easily. Some day, this may be an error. We don't have
8157 any way to read the register, either... */
8158 if (!reg->in_g_packet)
8159 return;
8160
8161 store_registers_using_G (regcache);
8162 return;
8163 }
8164
8165 store_registers_using_G (regcache);
8166
8167 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8168 if (!rsa->regs[i].in_g_packet)
8169 if (!store_register_using_P (regcache, &rsa->regs[i]))
8170 /* See above for why we do not issue an error here. */
8171 continue;
8172 }
8173 \f
8174
8175 /* Return the number of hex digits in num. */
8176
8177 static int
8178 hexnumlen (ULONGEST num)
8179 {
8180 int i;
8181
8182 for (i = 0; num != 0; i++)
8183 num >>= 4;
8184
8185 return std::max (i, 1);
8186 }
8187
8188 /* Set BUF to the minimum number of hex digits representing NUM. */
8189
8190 static int
8191 hexnumstr (char *buf, ULONGEST num)
8192 {
8193 int len = hexnumlen (num);
8194
8195 return hexnumnstr (buf, num, len);
8196 }
8197
8198
8199 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8200
8201 static int
8202 hexnumnstr (char *buf, ULONGEST num, int width)
8203 {
8204 int i;
8205
8206 buf[width] = '\0';
8207
8208 for (i = width - 1; i >= 0; i--)
8209 {
8210 buf[i] = "0123456789abcdef"[(num & 0xf)];
8211 num >>= 4;
8212 }
8213
8214 return width;
8215 }
8216
8217 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8218
8219 static CORE_ADDR
8220 remote_address_masked (CORE_ADDR addr)
8221 {
8222 unsigned int address_size = remote_address_size;
8223
8224 /* If "remoteaddresssize" was not set, default to target address size. */
8225 if (!address_size)
8226 address_size = gdbarch_addr_bit (target_gdbarch ());
8227
8228 if (address_size > 0
8229 && address_size < (sizeof (ULONGEST) * 8))
8230 {
8231 /* Only create a mask when that mask can safely be constructed
8232 in a ULONGEST variable. */
8233 ULONGEST mask = 1;
8234
8235 mask = (mask << address_size) - 1;
8236 addr &= mask;
8237 }
8238 return addr;
8239 }
8240
8241 /* Determine whether the remote target supports binary downloading.
8242 This is accomplished by sending a no-op memory write of zero length
8243 to the target at the specified address. It does not suffice to send
8244 the whole packet, since many stubs strip the eighth bit and
8245 subsequently compute a wrong checksum, which causes real havoc with
8246 remote_write_bytes.
8247
8248 NOTE: This can still lose if the serial line is not eight-bit
8249 clean. In cases like this, the user should clear "remote
8250 X-packet". */
8251
8252 static void
8253 check_binary_download (CORE_ADDR addr)
8254 {
8255 struct remote_state *rs = get_remote_state ();
8256
8257 switch (packet_support (PACKET_X))
8258 {
8259 case PACKET_DISABLE:
8260 break;
8261 case PACKET_ENABLE:
8262 break;
8263 case PACKET_SUPPORT_UNKNOWN:
8264 {
8265 char *p;
8266
8267 p = rs->buf;
8268 *p++ = 'X';
8269 p += hexnumstr (p, (ULONGEST) addr);
8270 *p++ = ',';
8271 p += hexnumstr (p, (ULONGEST) 0);
8272 *p++ = ':';
8273 *p = '\0';
8274
8275 putpkt_binary (rs->buf, (int) (p - rs->buf));
8276 getpkt (&rs->buf, &rs->buf_size, 0);
8277
8278 if (rs->buf[0] == '\0')
8279 {
8280 if (remote_debug)
8281 fprintf_unfiltered (gdb_stdlog,
8282 "binary downloading NOT "
8283 "supported by target\n");
8284 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8285 }
8286 else
8287 {
8288 if (remote_debug)
8289 fprintf_unfiltered (gdb_stdlog,
8290 "binary downloading supported by target\n");
8291 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8292 }
8293 break;
8294 }
8295 }
8296 }
8297
8298 /* Helper function to resize the payload in order to try to get a good
8299 alignment. We try to write an amount of data such that the next write will
8300 start on an address aligned on REMOTE_ALIGN_WRITES. */
8301
8302 static int
8303 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8304 {
8305 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8306 }
8307
8308 /* Write memory data directly to the remote machine.
8309 This does not inform the data cache; the data cache uses this.
8310 HEADER is the starting part of the packet.
8311 MEMADDR is the address in the remote memory space.
8312 MYADDR is the address of the buffer in our space.
8313 LEN_UNITS is the number of addressable units to write.
8314 UNIT_SIZE is the length in bytes of an addressable unit.
8315 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8316 should send data as binary ('X'), or hex-encoded ('M').
8317
8318 The function creates packet of the form
8319 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8320
8321 where encoding of <DATA> is terminated by PACKET_FORMAT.
8322
8323 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8324 are omitted.
8325
8326 Return the transferred status, error or OK (an
8327 'enum target_xfer_status' value). Save the number of addressable units
8328 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8329
8330 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8331 exchange between gdb and the stub could look like (?? in place of the
8332 checksum):
8333
8334 -> $m1000,4#??
8335 <- aaaabbbbccccdddd
8336
8337 -> $M1000,3:eeeeffffeeee#??
8338 <- OK
8339
8340 -> $m1000,4#??
8341 <- eeeeffffeeeedddd */
8342
8343 static enum target_xfer_status
8344 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8345 const gdb_byte *myaddr, ULONGEST len_units,
8346 int unit_size, ULONGEST *xfered_len_units,
8347 char packet_format, int use_length)
8348 {
8349 struct remote_state *rs = get_remote_state ();
8350 char *p;
8351 char *plen = NULL;
8352 int plenlen = 0;
8353 int todo_units;
8354 int units_written;
8355 int payload_capacity_bytes;
8356 int payload_length_bytes;
8357
8358 if (packet_format != 'X' && packet_format != 'M')
8359 internal_error (__FILE__, __LINE__,
8360 _("remote_write_bytes_aux: bad packet format"));
8361
8362 if (len_units == 0)
8363 return TARGET_XFER_EOF;
8364
8365 payload_capacity_bytes = get_memory_write_packet_size ();
8366
8367 /* The packet buffer will be large enough for the payload;
8368 get_memory_packet_size ensures this. */
8369 rs->buf[0] = '\0';
8370
8371 /* Compute the size of the actual payload by subtracting out the
8372 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8373
8374 payload_capacity_bytes -= strlen ("$,:#NN");
8375 if (!use_length)
8376 /* The comma won't be used. */
8377 payload_capacity_bytes += 1;
8378 payload_capacity_bytes -= strlen (header);
8379 payload_capacity_bytes -= hexnumlen (memaddr);
8380
8381 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8382
8383 strcat (rs->buf, header);
8384 p = rs->buf + strlen (header);
8385
8386 /* Compute a best guess of the number of bytes actually transfered. */
8387 if (packet_format == 'X')
8388 {
8389 /* Best guess at number of bytes that will fit. */
8390 todo_units = std::min (len_units,
8391 (ULONGEST) payload_capacity_bytes / unit_size);
8392 if (use_length)
8393 payload_capacity_bytes -= hexnumlen (todo_units);
8394 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8395 }
8396 else
8397 {
8398 /* Number of bytes that will fit. */
8399 todo_units
8400 = std::min (len_units,
8401 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8402 if (use_length)
8403 payload_capacity_bytes -= hexnumlen (todo_units);
8404 todo_units = std::min (todo_units,
8405 (payload_capacity_bytes / unit_size) / 2);
8406 }
8407
8408 if (todo_units <= 0)
8409 internal_error (__FILE__, __LINE__,
8410 _("minimum packet size too small to write data"));
8411
8412 /* If we already need another packet, then try to align the end
8413 of this packet to a useful boundary. */
8414 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8415 todo_units = align_for_efficient_write (todo_units, memaddr);
8416
8417 /* Append "<memaddr>". */
8418 memaddr = remote_address_masked (memaddr);
8419 p += hexnumstr (p, (ULONGEST) memaddr);
8420
8421 if (use_length)
8422 {
8423 /* Append ",". */
8424 *p++ = ',';
8425
8426 /* Append the length and retain its location and size. It may need to be
8427 adjusted once the packet body has been created. */
8428 plen = p;
8429 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8430 p += plenlen;
8431 }
8432
8433 /* Append ":". */
8434 *p++ = ':';
8435 *p = '\0';
8436
8437 /* Append the packet body. */
8438 if (packet_format == 'X')
8439 {
8440 /* Binary mode. Send target system values byte by byte, in
8441 increasing byte addresses. Only escape certain critical
8442 characters. */
8443 payload_length_bytes =
8444 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8445 &units_written, payload_capacity_bytes);
8446
8447 /* If not all TODO units fit, then we'll need another packet. Make
8448 a second try to keep the end of the packet aligned. Don't do
8449 this if the packet is tiny. */
8450 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8451 {
8452 int new_todo_units;
8453
8454 new_todo_units = align_for_efficient_write (units_written, memaddr);
8455
8456 if (new_todo_units != units_written)
8457 payload_length_bytes =
8458 remote_escape_output (myaddr, new_todo_units, unit_size,
8459 (gdb_byte *) p, &units_written,
8460 payload_capacity_bytes);
8461 }
8462
8463 p += payload_length_bytes;
8464 if (use_length && units_written < todo_units)
8465 {
8466 /* Escape chars have filled up the buffer prematurely,
8467 and we have actually sent fewer units than planned.
8468 Fix-up the length field of the packet. Use the same
8469 number of characters as before. */
8470 plen += hexnumnstr (plen, (ULONGEST) units_written,
8471 plenlen);
8472 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8473 }
8474 }
8475 else
8476 {
8477 /* Normal mode: Send target system values byte by byte, in
8478 increasing byte addresses. Each byte is encoded as a two hex
8479 value. */
8480 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8481 units_written = todo_units;
8482 }
8483
8484 putpkt_binary (rs->buf, (int) (p - rs->buf));
8485 getpkt (&rs->buf, &rs->buf_size, 0);
8486
8487 if (rs->buf[0] == 'E')
8488 return TARGET_XFER_E_IO;
8489
8490 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8491 send fewer units than we'd planned. */
8492 *xfered_len_units = (ULONGEST) units_written;
8493 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8494 }
8495
8496 /* Write memory data directly to the remote machine.
8497 This does not inform the data cache; the data cache uses this.
8498 MEMADDR is the address in the remote memory space.
8499 MYADDR is the address of the buffer in our space.
8500 LEN is the number of bytes.
8501
8502 Return the transferred status, error or OK (an
8503 'enum target_xfer_status' value). Save the number of bytes
8504 transferred in *XFERED_LEN. Only transfer a single packet. */
8505
8506 static enum target_xfer_status
8507 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8508 int unit_size, ULONGEST *xfered_len)
8509 {
8510 const char *packet_format = NULL;
8511
8512 /* Check whether the target supports binary download. */
8513 check_binary_download (memaddr);
8514
8515 switch (packet_support (PACKET_X))
8516 {
8517 case PACKET_ENABLE:
8518 packet_format = "X";
8519 break;
8520 case PACKET_DISABLE:
8521 packet_format = "M";
8522 break;
8523 case PACKET_SUPPORT_UNKNOWN:
8524 internal_error (__FILE__, __LINE__,
8525 _("remote_write_bytes: bad internal state"));
8526 default:
8527 internal_error (__FILE__, __LINE__, _("bad switch"));
8528 }
8529
8530 return remote_write_bytes_aux (packet_format,
8531 memaddr, myaddr, len, unit_size, xfered_len,
8532 packet_format[0], 1);
8533 }
8534
8535 /* Read memory data directly from the remote machine.
8536 This does not use the data cache; the data cache uses this.
8537 MEMADDR is the address in the remote memory space.
8538 MYADDR is the address of the buffer in our space.
8539 LEN_UNITS is the number of addressable memory units to read..
8540 UNIT_SIZE is the length in bytes of an addressable unit.
8541
8542 Return the transferred status, error or OK (an
8543 'enum target_xfer_status' value). Save the number of bytes
8544 transferred in *XFERED_LEN_UNITS.
8545
8546 See the comment of remote_write_bytes_aux for an example of
8547 memory read/write exchange between gdb and the stub. */
8548
8549 static enum target_xfer_status
8550 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8551 int unit_size, ULONGEST *xfered_len_units)
8552 {
8553 struct remote_state *rs = get_remote_state ();
8554 int buf_size_bytes; /* Max size of packet output buffer. */
8555 char *p;
8556 int todo_units;
8557 int decoded_bytes;
8558
8559 buf_size_bytes = get_memory_read_packet_size ();
8560 /* The packet buffer will be large enough for the payload;
8561 get_memory_packet_size ensures this. */
8562
8563 /* Number of units that will fit. */
8564 todo_units = std::min (len_units,
8565 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8566
8567 /* Construct "m"<memaddr>","<len>". */
8568 memaddr = remote_address_masked (memaddr);
8569 p = rs->buf;
8570 *p++ = 'm';
8571 p += hexnumstr (p, (ULONGEST) memaddr);
8572 *p++ = ',';
8573 p += hexnumstr (p, (ULONGEST) todo_units);
8574 *p = '\0';
8575 putpkt (rs->buf);
8576 getpkt (&rs->buf, &rs->buf_size, 0);
8577 if (rs->buf[0] == 'E'
8578 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8579 && rs->buf[3] == '\0')
8580 return TARGET_XFER_E_IO;
8581 /* Reply describes memory byte by byte, each byte encoded as two hex
8582 characters. */
8583 p = rs->buf;
8584 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8585 /* Return what we have. Let higher layers handle partial reads. */
8586 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8587 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8588 }
8589
8590 /* Using the set of read-only target sections of remote, read live
8591 read-only memory.
8592
8593 For interface/parameters/return description see target.h,
8594 to_xfer_partial. */
8595
8596 static enum target_xfer_status
8597 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8598 ULONGEST memaddr, ULONGEST len,
8599 int unit_size, ULONGEST *xfered_len)
8600 {
8601 struct target_section *secp;
8602 struct target_section_table *table;
8603
8604 secp = target_section_by_addr (ops, memaddr);
8605 if (secp != NULL
8606 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8607 secp->the_bfd_section)
8608 & SEC_READONLY))
8609 {
8610 struct target_section *p;
8611 ULONGEST memend = memaddr + len;
8612
8613 table = target_get_section_table (ops);
8614
8615 for (p = table->sections; p < table->sections_end; p++)
8616 {
8617 if (memaddr >= p->addr)
8618 {
8619 if (memend <= p->endaddr)
8620 {
8621 /* Entire transfer is within this section. */
8622 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8623 xfered_len);
8624 }
8625 else if (memaddr >= p->endaddr)
8626 {
8627 /* This section ends before the transfer starts. */
8628 continue;
8629 }
8630 else
8631 {
8632 /* This section overlaps the transfer. Just do half. */
8633 len = p->endaddr - memaddr;
8634 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8635 xfered_len);
8636 }
8637 }
8638 }
8639 }
8640
8641 return TARGET_XFER_EOF;
8642 }
8643
8644 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8645 first if the requested memory is unavailable in traceframe.
8646 Otherwise, fall back to remote_read_bytes_1. */
8647
8648 static enum target_xfer_status
8649 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8650 gdb_byte *myaddr, ULONGEST len, int unit_size,
8651 ULONGEST *xfered_len)
8652 {
8653 if (len == 0)
8654 return TARGET_XFER_EOF;
8655
8656 if (get_traceframe_number () != -1)
8657 {
8658 std::vector<mem_range> available;
8659
8660 /* If we fail to get the set of available memory, then the
8661 target does not support querying traceframe info, and so we
8662 attempt reading from the traceframe anyway (assuming the
8663 target implements the old QTro packet then). */
8664 if (traceframe_available_memory (&available, memaddr, len))
8665 {
8666 if (available.empty () || available[0].start != memaddr)
8667 {
8668 enum target_xfer_status res;
8669
8670 /* Don't read into the traceframe's available
8671 memory. */
8672 if (!available.empty ())
8673 {
8674 LONGEST oldlen = len;
8675
8676 len = available[0].start - memaddr;
8677 gdb_assert (len <= oldlen);
8678 }
8679
8680 /* This goes through the topmost target again. */
8681 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8682 len, unit_size, xfered_len);
8683 if (res == TARGET_XFER_OK)
8684 return TARGET_XFER_OK;
8685 else
8686 {
8687 /* No use trying further, we know some memory starting
8688 at MEMADDR isn't available. */
8689 *xfered_len = len;
8690 return (*xfered_len != 0) ?
8691 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8692 }
8693 }
8694
8695 /* Don't try to read more than how much is available, in
8696 case the target implements the deprecated QTro packet to
8697 cater for older GDBs (the target's knowledge of read-only
8698 sections may be outdated by now). */
8699 len = available[0].length;
8700 }
8701 }
8702
8703 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8704 }
8705
8706 \f
8707
8708 /* Sends a packet with content determined by the printf format string
8709 FORMAT and the remaining arguments, then gets the reply. Returns
8710 whether the packet was a success, a failure, or unknown. */
8711
8712 static enum packet_result remote_send_printf (const char *format, ...)
8713 ATTRIBUTE_PRINTF (1, 2);
8714
8715 static enum packet_result
8716 remote_send_printf (const char *format, ...)
8717 {
8718 struct remote_state *rs = get_remote_state ();
8719 int max_size = get_remote_packet_size ();
8720 va_list ap;
8721
8722 va_start (ap, format);
8723
8724 rs->buf[0] = '\0';
8725 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8726 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8727
8728 if (putpkt (rs->buf) < 0)
8729 error (_("Communication problem with target."));
8730
8731 rs->buf[0] = '\0';
8732 getpkt (&rs->buf, &rs->buf_size, 0);
8733
8734 return packet_check_result (rs->buf);
8735 }
8736
8737 /* Flash writing can take quite some time. We'll set
8738 effectively infinite timeout for flash operations.
8739 In future, we'll need to decide on a better approach. */
8740 static const int remote_flash_timeout = 1000;
8741
8742 void
8743 remote_target::flash_erase (ULONGEST address, LONGEST length)
8744 {
8745 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8746 enum packet_result ret;
8747 scoped_restore restore_timeout
8748 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8749
8750 ret = remote_send_printf ("vFlashErase:%s,%s",
8751 phex (address, addr_size),
8752 phex (length, 4));
8753 switch (ret)
8754 {
8755 case PACKET_UNKNOWN:
8756 error (_("Remote target does not support flash erase"));
8757 case PACKET_ERROR:
8758 error (_("Error erasing flash with vFlashErase packet"));
8759 default:
8760 break;
8761 }
8762 }
8763
8764 static enum target_xfer_status
8765 remote_flash_write (struct target_ops *ops, ULONGEST address,
8766 ULONGEST length, ULONGEST *xfered_len,
8767 const gdb_byte *data)
8768 {
8769 scoped_restore restore_timeout
8770 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8771 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8772 xfered_len,'X', 0);
8773 }
8774
8775 void
8776 remote_target::flash_done ()
8777 {
8778 int ret;
8779
8780 scoped_restore restore_timeout
8781 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8782
8783 ret = remote_send_printf ("vFlashDone");
8784
8785 switch (ret)
8786 {
8787 case PACKET_UNKNOWN:
8788 error (_("Remote target does not support vFlashDone"));
8789 case PACKET_ERROR:
8790 error (_("Error finishing flash operation"));
8791 default:
8792 break;
8793 }
8794 }
8795
8796 void
8797 remote_target::files_info ()
8798 {
8799 puts_filtered ("Debugging a target over a serial line.\n");
8800 }
8801 \f
8802 /* Stuff for dealing with the packets which are part of this protocol.
8803 See comment at top of file for details. */
8804
8805 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8806 error to higher layers. Called when a serial error is detected.
8807 The exception message is STRING, followed by a colon and a blank,
8808 the system error message for errno at function entry and final dot
8809 for output compatibility with throw_perror_with_name. */
8810
8811 static void
8812 unpush_and_perror (const char *string)
8813 {
8814 int saved_errno = errno;
8815
8816 remote_unpush_target ();
8817 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8818 safe_strerror (saved_errno));
8819 }
8820
8821 /* Read a single character from the remote end. The current quit
8822 handler is overridden to avoid quitting in the middle of packet
8823 sequence, as that would break communication with the remote server.
8824 See remote_serial_quit_handler for more detail. */
8825
8826 static int
8827 readchar (int timeout)
8828 {
8829 int ch;
8830 struct remote_state *rs = get_remote_state ();
8831
8832 {
8833 scoped_restore restore_quit
8834 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8835
8836 rs->got_ctrlc_during_io = 0;
8837
8838 ch = serial_readchar (rs->remote_desc, timeout);
8839
8840 if (rs->got_ctrlc_during_io)
8841 set_quit_flag ();
8842 }
8843
8844 if (ch >= 0)
8845 return ch;
8846
8847 switch ((enum serial_rc) ch)
8848 {
8849 case SERIAL_EOF:
8850 remote_unpush_target ();
8851 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8852 /* no return */
8853 case SERIAL_ERROR:
8854 unpush_and_perror (_("Remote communication error. "
8855 "Target disconnected."));
8856 /* no return */
8857 case SERIAL_TIMEOUT:
8858 break;
8859 }
8860 return ch;
8861 }
8862
8863 /* Wrapper for serial_write that closes the target and throws if
8864 writing fails. The current quit handler is overridden to avoid
8865 quitting in the middle of packet sequence, as that would break
8866 communication with the remote server. See
8867 remote_serial_quit_handler for more detail. */
8868
8869 static void
8870 remote_serial_write (const char *str, int len)
8871 {
8872 struct remote_state *rs = get_remote_state ();
8873
8874 scoped_restore restore_quit
8875 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8876
8877 rs->got_ctrlc_during_io = 0;
8878
8879 if (serial_write (rs->remote_desc, str, len))
8880 {
8881 unpush_and_perror (_("Remote communication error. "
8882 "Target disconnected."));
8883 }
8884
8885 if (rs->got_ctrlc_during_io)
8886 set_quit_flag ();
8887 }
8888
8889 /* Return a string representing an escaped version of BUF, of len N.
8890 E.g. \n is converted to \\n, \t to \\t, etc. */
8891
8892 static std::string
8893 escape_buffer (const char *buf, int n)
8894 {
8895 string_file stb;
8896
8897 stb.putstrn (buf, n, '\\');
8898 return std::move (stb.string ());
8899 }
8900
8901 /* Display a null-terminated packet on stdout, for debugging, using C
8902 string notation. */
8903
8904 static void
8905 print_packet (const char *buf)
8906 {
8907 puts_filtered ("\"");
8908 fputstr_filtered (buf, '"', gdb_stdout);
8909 puts_filtered ("\"");
8910 }
8911
8912 int
8913 putpkt (const char *buf)
8914 {
8915 return putpkt_binary (buf, strlen (buf));
8916 }
8917
8918 /* Send a packet to the remote machine, with error checking. The data
8919 of the packet is in BUF. The string in BUF can be at most
8920 get_remote_packet_size () - 5 to account for the $, # and checksum,
8921 and for a possible /0 if we are debugging (remote_debug) and want
8922 to print the sent packet as a string. */
8923
8924 static int
8925 putpkt_binary (const char *buf, int cnt)
8926 {
8927 struct remote_state *rs = get_remote_state ();
8928 int i;
8929 unsigned char csum = 0;
8930 gdb::def_vector<char> data (cnt + 6);
8931 char *buf2 = data.data ();
8932
8933 int ch;
8934 int tcount = 0;
8935 char *p;
8936
8937 /* Catch cases like trying to read memory or listing threads while
8938 we're waiting for a stop reply. The remote server wouldn't be
8939 ready to handle this request, so we'd hang and timeout. We don't
8940 have to worry about this in synchronous mode, because in that
8941 case it's not possible to issue a command while the target is
8942 running. This is not a problem in non-stop mode, because in that
8943 case, the stub is always ready to process serial input. */
8944 if (!target_is_non_stop_p ()
8945 && target_is_async_p ()
8946 && rs->waiting_for_stop_reply)
8947 {
8948 error (_("Cannot execute this command while the target is running.\n"
8949 "Use the \"interrupt\" command to stop the target\n"
8950 "and then try again."));
8951 }
8952
8953 /* We're sending out a new packet. Make sure we don't look at a
8954 stale cached response. */
8955 rs->cached_wait_status = 0;
8956
8957 /* Copy the packet into buffer BUF2, encapsulating it
8958 and giving it a checksum. */
8959
8960 p = buf2;
8961 *p++ = '$';
8962
8963 for (i = 0; i < cnt; i++)
8964 {
8965 csum += buf[i];
8966 *p++ = buf[i];
8967 }
8968 *p++ = '#';
8969 *p++ = tohex ((csum >> 4) & 0xf);
8970 *p++ = tohex (csum & 0xf);
8971
8972 /* Send it over and over until we get a positive ack. */
8973
8974 while (1)
8975 {
8976 int started_error_output = 0;
8977
8978 if (remote_debug)
8979 {
8980 *p = '\0';
8981
8982 int len = (int) (p - buf2);
8983
8984 std::string str
8985 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8986
8987 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8988
8989 if (len > REMOTE_DEBUG_MAX_CHAR)
8990 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
8991 len - REMOTE_DEBUG_MAX_CHAR);
8992
8993 fprintf_unfiltered (gdb_stdlog, "...");
8994
8995 gdb_flush (gdb_stdlog);
8996 }
8997 remote_serial_write (buf2, p - buf2);
8998
8999 /* If this is a no acks version of the remote protocol, send the
9000 packet and move on. */
9001 if (rs->noack_mode)
9002 break;
9003
9004 /* Read until either a timeout occurs (-2) or '+' is read.
9005 Handle any notification that arrives in the mean time. */
9006 while (1)
9007 {
9008 ch = readchar (remote_timeout);
9009
9010 if (remote_debug)
9011 {
9012 switch (ch)
9013 {
9014 case '+':
9015 case '-':
9016 case SERIAL_TIMEOUT:
9017 case '$':
9018 case '%':
9019 if (started_error_output)
9020 {
9021 putchar_unfiltered ('\n');
9022 started_error_output = 0;
9023 }
9024 }
9025 }
9026
9027 switch (ch)
9028 {
9029 case '+':
9030 if (remote_debug)
9031 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9032 return 1;
9033 case '-':
9034 if (remote_debug)
9035 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9036 /* FALLTHROUGH */
9037 case SERIAL_TIMEOUT:
9038 tcount++;
9039 if (tcount > 3)
9040 return 0;
9041 break; /* Retransmit buffer. */
9042 case '$':
9043 {
9044 if (remote_debug)
9045 fprintf_unfiltered (gdb_stdlog,
9046 "Packet instead of Ack, ignoring it\n");
9047 /* It's probably an old response sent because an ACK
9048 was lost. Gobble up the packet and ack it so it
9049 doesn't get retransmitted when we resend this
9050 packet. */
9051 skip_frame ();
9052 remote_serial_write ("+", 1);
9053 continue; /* Now, go look for +. */
9054 }
9055
9056 case '%':
9057 {
9058 int val;
9059
9060 /* If we got a notification, handle it, and go back to looking
9061 for an ack. */
9062 /* We've found the start of a notification. Now
9063 collect the data. */
9064 val = read_frame (&rs->buf, &rs->buf_size);
9065 if (val >= 0)
9066 {
9067 if (remote_debug)
9068 {
9069 std::string str = escape_buffer (rs->buf, val);
9070
9071 fprintf_unfiltered (gdb_stdlog,
9072 " Notification received: %s\n",
9073 str.c_str ());
9074 }
9075 handle_notification (rs->notif_state, rs->buf);
9076 /* We're in sync now, rewait for the ack. */
9077 tcount = 0;
9078 }
9079 else
9080 {
9081 if (remote_debug)
9082 {
9083 if (!started_error_output)
9084 {
9085 started_error_output = 1;
9086 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9087 }
9088 fputc_unfiltered (ch & 0177, gdb_stdlog);
9089 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9090 }
9091 }
9092 continue;
9093 }
9094 /* fall-through */
9095 default:
9096 if (remote_debug)
9097 {
9098 if (!started_error_output)
9099 {
9100 started_error_output = 1;
9101 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9102 }
9103 fputc_unfiltered (ch & 0177, gdb_stdlog);
9104 }
9105 continue;
9106 }
9107 break; /* Here to retransmit. */
9108 }
9109
9110 #if 0
9111 /* This is wrong. If doing a long backtrace, the user should be
9112 able to get out next time we call QUIT, without anything as
9113 violent as interrupt_query. If we want to provide a way out of
9114 here without getting to the next QUIT, it should be based on
9115 hitting ^C twice as in remote_wait. */
9116 if (quit_flag)
9117 {
9118 quit_flag = 0;
9119 interrupt_query ();
9120 }
9121 #endif
9122 }
9123
9124 return 0;
9125 }
9126
9127 /* Come here after finding the start of a frame when we expected an
9128 ack. Do our best to discard the rest of this packet. */
9129
9130 static void
9131 skip_frame (void)
9132 {
9133 int c;
9134
9135 while (1)
9136 {
9137 c = readchar (remote_timeout);
9138 switch (c)
9139 {
9140 case SERIAL_TIMEOUT:
9141 /* Nothing we can do. */
9142 return;
9143 case '#':
9144 /* Discard the two bytes of checksum and stop. */
9145 c = readchar (remote_timeout);
9146 if (c >= 0)
9147 c = readchar (remote_timeout);
9148
9149 return;
9150 case '*': /* Run length encoding. */
9151 /* Discard the repeat count. */
9152 c = readchar (remote_timeout);
9153 if (c < 0)
9154 return;
9155 break;
9156 default:
9157 /* A regular character. */
9158 break;
9159 }
9160 }
9161 }
9162
9163 /* Come here after finding the start of the frame. Collect the rest
9164 into *BUF, verifying the checksum, length, and handling run-length
9165 compression. NUL terminate the buffer. If there is not enough room,
9166 expand *BUF using xrealloc.
9167
9168 Returns -1 on error, number of characters in buffer (ignoring the
9169 trailing NULL) on success. (could be extended to return one of the
9170 SERIAL status indications). */
9171
9172 static long
9173 read_frame (char **buf_p,
9174 long *sizeof_buf)
9175 {
9176 unsigned char csum;
9177 long bc;
9178 int c;
9179 char *buf = *buf_p;
9180 struct remote_state *rs = get_remote_state ();
9181
9182 csum = 0;
9183 bc = 0;
9184
9185 while (1)
9186 {
9187 c = readchar (remote_timeout);
9188 switch (c)
9189 {
9190 case SERIAL_TIMEOUT:
9191 if (remote_debug)
9192 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9193 return -1;
9194 case '$':
9195 if (remote_debug)
9196 fputs_filtered ("Saw new packet start in middle of old one\n",
9197 gdb_stdlog);
9198 return -1; /* Start a new packet, count retries. */
9199 case '#':
9200 {
9201 unsigned char pktcsum;
9202 int check_0 = 0;
9203 int check_1 = 0;
9204
9205 buf[bc] = '\0';
9206
9207 check_0 = readchar (remote_timeout);
9208 if (check_0 >= 0)
9209 check_1 = readchar (remote_timeout);
9210
9211 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9212 {
9213 if (remote_debug)
9214 fputs_filtered ("Timeout in checksum, retrying\n",
9215 gdb_stdlog);
9216 return -1;
9217 }
9218 else if (check_0 < 0 || check_1 < 0)
9219 {
9220 if (remote_debug)
9221 fputs_filtered ("Communication error in checksum\n",
9222 gdb_stdlog);
9223 return -1;
9224 }
9225
9226 /* Don't recompute the checksum; with no ack packets we
9227 don't have any way to indicate a packet retransmission
9228 is necessary. */
9229 if (rs->noack_mode)
9230 return bc;
9231
9232 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9233 if (csum == pktcsum)
9234 return bc;
9235
9236 if (remote_debug)
9237 {
9238 std::string str = escape_buffer (buf, bc);
9239
9240 fprintf_unfiltered (gdb_stdlog,
9241 "Bad checksum, sentsum=0x%x, "
9242 "csum=0x%x, buf=%s\n",
9243 pktcsum, csum, str.c_str ());
9244 }
9245 /* Number of characters in buffer ignoring trailing
9246 NULL. */
9247 return -1;
9248 }
9249 case '*': /* Run length encoding. */
9250 {
9251 int repeat;
9252
9253 csum += c;
9254 c = readchar (remote_timeout);
9255 csum += c;
9256 repeat = c - ' ' + 3; /* Compute repeat count. */
9257
9258 /* The character before ``*'' is repeated. */
9259
9260 if (repeat > 0 && repeat <= 255 && bc > 0)
9261 {
9262 if (bc + repeat - 1 >= *sizeof_buf - 1)
9263 {
9264 /* Make some more room in the buffer. */
9265 *sizeof_buf += repeat;
9266 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9267 buf = *buf_p;
9268 }
9269
9270 memset (&buf[bc], buf[bc - 1], repeat);
9271 bc += repeat;
9272 continue;
9273 }
9274
9275 buf[bc] = '\0';
9276 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9277 return -1;
9278 }
9279 default:
9280 if (bc >= *sizeof_buf - 1)
9281 {
9282 /* Make some more room in the buffer. */
9283 *sizeof_buf *= 2;
9284 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9285 buf = *buf_p;
9286 }
9287
9288 buf[bc++] = c;
9289 csum += c;
9290 continue;
9291 }
9292 }
9293 }
9294
9295 /* Read a packet from the remote machine, with error checking, and
9296 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9297 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9298 rather than timing out; this is used (in synchronous mode) to wait
9299 for a target that is is executing user code to stop. */
9300 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9301 don't have to change all the calls to getpkt to deal with the
9302 return value, because at the moment I don't know what the right
9303 thing to do it for those. */
9304 void
9305 getpkt (char **buf,
9306 long *sizeof_buf,
9307 int forever)
9308 {
9309 getpkt_sane (buf, sizeof_buf, forever);
9310 }
9311
9312
9313 /* Read a packet from the remote machine, with error checking, and
9314 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9315 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9316 rather than timing out; this is used (in synchronous mode) to wait
9317 for a target that is is executing user code to stop. If FOREVER ==
9318 0, this function is allowed to time out gracefully and return an
9319 indication of this to the caller. Otherwise return the number of
9320 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9321 enough reason to return to the caller. *IS_NOTIF is an output
9322 boolean that indicates whether *BUF holds a notification or not
9323 (a regular packet). */
9324
9325 static int
9326 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9327 int expecting_notif, int *is_notif)
9328 {
9329 struct remote_state *rs = get_remote_state ();
9330 int c;
9331 int tries;
9332 int timeout;
9333 int val = -1;
9334
9335 /* We're reading a new response. Make sure we don't look at a
9336 previously cached response. */
9337 rs->cached_wait_status = 0;
9338
9339 strcpy (*buf, "timeout");
9340
9341 if (forever)
9342 timeout = watchdog > 0 ? watchdog : -1;
9343 else if (expecting_notif)
9344 timeout = 0; /* There should already be a char in the buffer. If
9345 not, bail out. */
9346 else
9347 timeout = remote_timeout;
9348
9349 #define MAX_TRIES 3
9350
9351 /* Process any number of notifications, and then return when
9352 we get a packet. */
9353 for (;;)
9354 {
9355 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9356 times. */
9357 for (tries = 1; tries <= MAX_TRIES; tries++)
9358 {
9359 /* This can loop forever if the remote side sends us
9360 characters continuously, but if it pauses, we'll get
9361 SERIAL_TIMEOUT from readchar because of timeout. Then
9362 we'll count that as a retry.
9363
9364 Note that even when forever is set, we will only wait
9365 forever prior to the start of a packet. After that, we
9366 expect characters to arrive at a brisk pace. They should
9367 show up within remote_timeout intervals. */
9368 do
9369 c = readchar (timeout);
9370 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9371
9372 if (c == SERIAL_TIMEOUT)
9373 {
9374 if (expecting_notif)
9375 return -1; /* Don't complain, it's normal to not get
9376 anything in this case. */
9377
9378 if (forever) /* Watchdog went off? Kill the target. */
9379 {
9380 remote_unpush_target ();
9381 throw_error (TARGET_CLOSE_ERROR,
9382 _("Watchdog timeout has expired. "
9383 "Target detached."));
9384 }
9385 if (remote_debug)
9386 fputs_filtered ("Timed out.\n", gdb_stdlog);
9387 }
9388 else
9389 {
9390 /* We've found the start of a packet or notification.
9391 Now collect the data. */
9392 val = read_frame (buf, sizeof_buf);
9393 if (val >= 0)
9394 break;
9395 }
9396
9397 remote_serial_write ("-", 1);
9398 }
9399
9400 if (tries > MAX_TRIES)
9401 {
9402 /* We have tried hard enough, and just can't receive the
9403 packet/notification. Give up. */
9404 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9405
9406 /* Skip the ack char if we're in no-ack mode. */
9407 if (!rs->noack_mode)
9408 remote_serial_write ("+", 1);
9409 return -1;
9410 }
9411
9412 /* If we got an ordinary packet, return that to our caller. */
9413 if (c == '$')
9414 {
9415 if (remote_debug)
9416 {
9417 std::string str
9418 = escape_buffer (*buf,
9419 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9420
9421 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9422 str.c_str ());
9423
9424 if (val > REMOTE_DEBUG_MAX_CHAR)
9425 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9426 val - REMOTE_DEBUG_MAX_CHAR);
9427
9428 fprintf_unfiltered (gdb_stdlog, "\n");
9429 }
9430
9431 /* Skip the ack char if we're in no-ack mode. */
9432 if (!rs->noack_mode)
9433 remote_serial_write ("+", 1);
9434 if (is_notif != NULL)
9435 *is_notif = 0;
9436 return val;
9437 }
9438
9439 /* If we got a notification, handle it, and go back to looking
9440 for a packet. */
9441 else
9442 {
9443 gdb_assert (c == '%');
9444
9445 if (remote_debug)
9446 {
9447 std::string str = escape_buffer (*buf, val);
9448
9449 fprintf_unfiltered (gdb_stdlog,
9450 " Notification received: %s\n",
9451 str.c_str ());
9452 }
9453 if (is_notif != NULL)
9454 *is_notif = 1;
9455
9456 handle_notification (rs->notif_state, *buf);
9457
9458 /* Notifications require no acknowledgement. */
9459
9460 if (expecting_notif)
9461 return val;
9462 }
9463 }
9464 }
9465
9466 static int
9467 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9468 {
9469 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9470 }
9471
9472 static int
9473 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9474 int *is_notif)
9475 {
9476 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9477 is_notif);
9478 }
9479
9480 /* Check whether EVENT is a fork event for the process specified
9481 by the pid passed in DATA, and if it is, kill the fork child. */
9482
9483 static int
9484 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9485 QUEUE_ITER (stop_reply_p) *iter,
9486 stop_reply_p event,
9487 void *data)
9488 {
9489 struct queue_iter_param *param = (struct queue_iter_param *) data;
9490 int parent_pid = *(int *) param->input;
9491
9492 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9493 {
9494 struct remote_state *rs = get_remote_state ();
9495 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9496 int res;
9497
9498 res = remote_vkill (child_pid, rs);
9499 if (res != 0)
9500 error (_("Can't kill fork child process %d"), child_pid);
9501 }
9502
9503 return 1;
9504 }
9505
9506 /* Kill any new fork children of process PID that haven't been
9507 processed by follow_fork. */
9508
9509 static void
9510 kill_new_fork_children (int pid, struct remote_state *rs)
9511 {
9512 struct thread_info *thread;
9513 struct notif_client *notif = &notif_client_stop;
9514 struct queue_iter_param param;
9515
9516 /* Kill the fork child threads of any threads in process PID
9517 that are stopped at a fork event. */
9518 ALL_NON_EXITED_THREADS (thread)
9519 {
9520 struct target_waitstatus *ws = &thread->pending_follow;
9521
9522 if (is_pending_fork_parent (ws, pid, thread->ptid))
9523 {
9524 struct remote_state *rs = get_remote_state ();
9525 int child_pid = ptid_get_pid (ws->value.related_pid);
9526 int res;
9527
9528 res = remote_vkill (child_pid, rs);
9529 if (res != 0)
9530 error (_("Can't kill fork child process %d"), child_pid);
9531 }
9532 }
9533
9534 /* Check for any pending fork events (not reported or processed yet)
9535 in process PID and kill those fork child threads as well. */
9536 remote_notif_get_pending_events (notif);
9537 param.input = &pid;
9538 param.output = NULL;
9539 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9540 kill_child_of_pending_fork, &param);
9541 }
9542
9543 \f
9544 /* Target hook to kill the current inferior. */
9545
9546 void
9547 remote_target::kill ()
9548 {
9549 int res = -1;
9550 int pid = ptid_get_pid (inferior_ptid);
9551 struct remote_state *rs = get_remote_state ();
9552
9553 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9554 {
9555 /* If we're stopped while forking and we haven't followed yet,
9556 kill the child task. We need to do this before killing the
9557 parent task because if this is a vfork then the parent will
9558 be sleeping. */
9559 kill_new_fork_children (pid, rs);
9560
9561 res = remote_vkill (pid, rs);
9562 if (res == 0)
9563 {
9564 target_mourn_inferior (inferior_ptid);
9565 return;
9566 }
9567 }
9568
9569 /* If we are in 'target remote' mode and we are killing the only
9570 inferior, then we will tell gdbserver to exit and unpush the
9571 target. */
9572 if (res == -1 && !remote_multi_process_p (rs)
9573 && number_of_live_inferiors () == 1)
9574 {
9575 remote_kill_k ();
9576
9577 /* We've killed the remote end, we get to mourn it. If we are
9578 not in extended mode, mourning the inferior also unpushes
9579 remote_ops from the target stack, which closes the remote
9580 connection. */
9581 target_mourn_inferior (inferior_ptid);
9582
9583 return;
9584 }
9585
9586 error (_("Can't kill process"));
9587 }
9588
9589 /* Send a kill request to the target using the 'vKill' packet. */
9590
9591 static int
9592 remote_vkill (int pid, struct remote_state *rs)
9593 {
9594 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9595 return -1;
9596
9597 /* Tell the remote target to detach. */
9598 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9599 putpkt (rs->buf);
9600 getpkt (&rs->buf, &rs->buf_size, 0);
9601
9602 switch (packet_ok (rs->buf,
9603 &remote_protocol_packets[PACKET_vKill]))
9604 {
9605 case PACKET_OK:
9606 return 0;
9607 case PACKET_ERROR:
9608 return 1;
9609 case PACKET_UNKNOWN:
9610 return -1;
9611 default:
9612 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9613 }
9614 }
9615
9616 /* Send a kill request to the target using the 'k' packet. */
9617
9618 static void
9619 remote_kill_k (void)
9620 {
9621 /* Catch errors so the user can quit from gdb even when we
9622 aren't on speaking terms with the remote system. */
9623 TRY
9624 {
9625 putpkt ("k");
9626 }
9627 CATCH (ex, RETURN_MASK_ERROR)
9628 {
9629 if (ex.error == TARGET_CLOSE_ERROR)
9630 {
9631 /* If we got an (EOF) error that caused the target
9632 to go away, then we're done, that's what we wanted.
9633 "k" is susceptible to cause a premature EOF, given
9634 that the remote server isn't actually required to
9635 reply to "k", and it can happen that it doesn't
9636 even get to reply ACK to the "k". */
9637 return;
9638 }
9639
9640 /* Otherwise, something went wrong. We didn't actually kill
9641 the target. Just propagate the exception, and let the
9642 user or higher layers decide what to do. */
9643 throw_exception (ex);
9644 }
9645 END_CATCH
9646 }
9647
9648 void
9649 remote_target::mourn_inferior ()
9650 {
9651 struct remote_state *rs = get_remote_state ();
9652
9653 /* In 'target remote' mode with one inferior, we close the connection. */
9654 if (!rs->extended && number_of_live_inferiors () <= 1)
9655 {
9656 unpush_target (this);
9657
9658 /* remote_close takes care of doing most of the clean up. */
9659 generic_mourn_inferior ();
9660 return;
9661 }
9662
9663 /* In case we got here due to an error, but we're going to stay
9664 connected. */
9665 rs->waiting_for_stop_reply = 0;
9666
9667 /* If the current general thread belonged to the process we just
9668 detached from or has exited, the remote side current general
9669 thread becomes undefined. Considering a case like this:
9670
9671 - We just got here due to a detach.
9672 - The process that we're detaching from happens to immediately
9673 report a global breakpoint being hit in non-stop mode, in the
9674 same thread we had selected before.
9675 - GDB attaches to this process again.
9676 - This event happens to be the next event we handle.
9677
9678 GDB would consider that the current general thread didn't need to
9679 be set on the stub side (with Hg), since for all it knew,
9680 GENERAL_THREAD hadn't changed.
9681
9682 Notice that although in all-stop mode, the remote server always
9683 sets the current thread to the thread reporting the stop event,
9684 that doesn't happen in non-stop mode; in non-stop, the stub *must
9685 not* change the current thread when reporting a breakpoint hit,
9686 due to the decoupling of event reporting and event handling.
9687
9688 To keep things simple, we always invalidate our notion of the
9689 current thread. */
9690 record_currthread (rs, minus_one_ptid);
9691
9692 /* Call common code to mark the inferior as not running. */
9693 generic_mourn_inferior ();
9694
9695 if (!have_inferiors ())
9696 {
9697 if (!remote_multi_process_p (rs))
9698 {
9699 /* Check whether the target is running now - some remote stubs
9700 automatically restart after kill. */
9701 putpkt ("?");
9702 getpkt (&rs->buf, &rs->buf_size, 0);
9703
9704 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9705 {
9706 /* Assume that the target has been restarted. Set
9707 inferior_ptid so that bits of core GDB realizes
9708 there's something here, e.g., so that the user can
9709 say "kill" again. */
9710 inferior_ptid = magic_null_ptid;
9711 }
9712 }
9713 }
9714 }
9715
9716 bool
9717 extended_remote_target::supports_disable_randomization ()
9718 {
9719 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9720 }
9721
9722 static void
9723 extended_remote_disable_randomization (int val)
9724 {
9725 struct remote_state *rs = get_remote_state ();
9726 char *reply;
9727
9728 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9729 val);
9730 putpkt (rs->buf);
9731 reply = remote_get_noisy_reply ();
9732 if (*reply == '\0')
9733 error (_("Target does not support QDisableRandomization."));
9734 if (strcmp (reply, "OK") != 0)
9735 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9736 }
9737
9738 static int
9739 extended_remote_run (const std::string &args)
9740 {
9741 struct remote_state *rs = get_remote_state ();
9742 int len;
9743 const char *remote_exec_file = get_remote_exec_file ();
9744
9745 /* If the user has disabled vRun support, or we have detected that
9746 support is not available, do not try it. */
9747 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9748 return -1;
9749
9750 strcpy (rs->buf, "vRun;");
9751 len = strlen (rs->buf);
9752
9753 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9754 error (_("Remote file name too long for run packet"));
9755 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9756 strlen (remote_exec_file));
9757
9758 if (!args.empty ())
9759 {
9760 int i;
9761
9762 gdb_argv argv (args.c_str ());
9763 for (i = 0; argv[i] != NULL; i++)
9764 {
9765 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9766 error (_("Argument list too long for run packet"));
9767 rs->buf[len++] = ';';
9768 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9769 strlen (argv[i]));
9770 }
9771 }
9772
9773 rs->buf[len++] = '\0';
9774
9775 putpkt (rs->buf);
9776 getpkt (&rs->buf, &rs->buf_size, 0);
9777
9778 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9779 {
9780 case PACKET_OK:
9781 /* We have a wait response. All is well. */
9782 return 0;
9783 case PACKET_UNKNOWN:
9784 return -1;
9785 case PACKET_ERROR:
9786 if (remote_exec_file[0] == '\0')
9787 error (_("Running the default executable on the remote target failed; "
9788 "try \"set remote exec-file\"?"));
9789 else
9790 error (_("Running \"%s\" on the remote target failed"),
9791 remote_exec_file);
9792 default:
9793 gdb_assert_not_reached (_("bad switch"));
9794 }
9795 }
9796
9797 /* Helper function to send set/unset environment packets. ACTION is
9798 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9799 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9800 sent. */
9801
9802 static void
9803 send_environment_packet (struct remote_state *rs,
9804 const char *action,
9805 const char *packet,
9806 const char *value)
9807 {
9808 /* Convert the environment variable to an hex string, which
9809 is the best format to be transmitted over the wire. */
9810 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9811 strlen (value));
9812
9813 xsnprintf (rs->buf, get_remote_packet_size (),
9814 "%s:%s", packet, encoded_value.c_str ());
9815
9816 putpkt (rs->buf);
9817 getpkt (&rs->buf, &rs->buf_size, 0);
9818 if (strcmp (rs->buf, "OK") != 0)
9819 warning (_("Unable to %s environment variable '%s' on remote."),
9820 action, value);
9821 }
9822
9823 /* Helper function to handle the QEnvironment* packets. */
9824
9825 static void
9826 extended_remote_environment_support (struct remote_state *rs)
9827 {
9828 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9829 {
9830 putpkt ("QEnvironmentReset");
9831 getpkt (&rs->buf, &rs->buf_size, 0);
9832 if (strcmp (rs->buf, "OK") != 0)
9833 warning (_("Unable to reset environment on remote."));
9834 }
9835
9836 gdb_environ *e = &current_inferior ()->environment;
9837
9838 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9839 for (const std::string &el : e->user_set_env ())
9840 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9841 el.c_str ());
9842
9843 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9844 for (const std::string &el : e->user_unset_env ())
9845 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9846 }
9847
9848 /* Helper function to set the current working directory for the
9849 inferior in the remote target. */
9850
9851 static void
9852 extended_remote_set_inferior_cwd (struct remote_state *rs)
9853 {
9854 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9855 {
9856 const char *inferior_cwd = get_inferior_cwd ();
9857
9858 if (inferior_cwd != NULL)
9859 {
9860 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9861 strlen (inferior_cwd));
9862
9863 xsnprintf (rs->buf, get_remote_packet_size (),
9864 "QSetWorkingDir:%s", hexpath.c_str ());
9865 }
9866 else
9867 {
9868 /* An empty inferior_cwd means that the user wants us to
9869 reset the remote server's inferior's cwd. */
9870 xsnprintf (rs->buf, get_remote_packet_size (),
9871 "QSetWorkingDir:");
9872 }
9873
9874 putpkt (rs->buf);
9875 getpkt (&rs->buf, &rs->buf_size, 0);
9876 if (packet_ok (rs->buf,
9877 &remote_protocol_packets[PACKET_QSetWorkingDir])
9878 != PACKET_OK)
9879 error (_("\
9880 Remote replied unexpectedly while setting the inferior's working\n\
9881 directory: %s"),
9882 rs->buf);
9883
9884 }
9885 }
9886
9887 /* In the extended protocol we want to be able to do things like
9888 "run" and have them basically work as expected. So we need
9889 a special create_inferior function. We support changing the
9890 executable file and the command line arguments, but not the
9891 environment. */
9892
9893 void
9894 extended_remote_target::create_inferior (const char *exec_file,
9895 const std::string &args,
9896 char **env, int from_tty)
9897 {
9898 int run_worked;
9899 char *stop_reply;
9900 struct remote_state *rs = get_remote_state ();
9901 const char *remote_exec_file = get_remote_exec_file ();
9902
9903 /* If running asynchronously, register the target file descriptor
9904 with the event loop. */
9905 if (target_can_async_p ())
9906 target_async (1);
9907
9908 /* Disable address space randomization if requested (and supported). */
9909 if (supports_disable_randomization ())
9910 extended_remote_disable_randomization (disable_randomization);
9911
9912 /* If startup-with-shell is on, we inform gdbserver to start the
9913 remote inferior using a shell. */
9914 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9915 {
9916 xsnprintf (rs->buf, get_remote_packet_size (),
9917 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9918 putpkt (rs->buf);
9919 getpkt (&rs->buf, &rs->buf_size, 0);
9920 if (strcmp (rs->buf, "OK") != 0)
9921 error (_("\
9922 Remote replied unexpectedly while setting startup-with-shell: %s"),
9923 rs->buf);
9924 }
9925
9926 extended_remote_environment_support (rs);
9927
9928 extended_remote_set_inferior_cwd (rs);
9929
9930 /* Now restart the remote server. */
9931 run_worked = extended_remote_run (args) != -1;
9932 if (!run_worked)
9933 {
9934 /* vRun was not supported. Fail if we need it to do what the
9935 user requested. */
9936 if (remote_exec_file[0])
9937 error (_("Remote target does not support \"set remote exec-file\""));
9938 if (!args.empty ())
9939 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9940
9941 /* Fall back to "R". */
9942 extended_remote_restart ();
9943 }
9944
9945 if (!have_inferiors ())
9946 {
9947 /* Clean up from the last time we ran, before we mark the target
9948 running again. This will mark breakpoints uninserted, and
9949 get_offsets may insert breakpoints. */
9950 init_thread_list ();
9951 init_wait_for_inferior ();
9952 }
9953
9954 /* vRun's success return is a stop reply. */
9955 stop_reply = run_worked ? rs->buf : NULL;
9956 add_current_inferior_and_thread (stop_reply);
9957
9958 /* Get updated offsets, if the stub uses qOffsets. */
9959 get_offsets ();
9960 }
9961 \f
9962
9963 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9964 the list of conditions (in agent expression bytecode format), if any, the
9965 target needs to evaluate. The output is placed into the packet buffer
9966 started from BUF and ended at BUF_END. */
9967
9968 static int
9969 remote_add_target_side_condition (struct gdbarch *gdbarch,
9970 struct bp_target_info *bp_tgt, char *buf,
9971 char *buf_end)
9972 {
9973 if (bp_tgt->conditions.empty ())
9974 return 0;
9975
9976 buf += strlen (buf);
9977 xsnprintf (buf, buf_end - buf, "%s", ";");
9978 buf++;
9979
9980 /* Send conditions to the target. */
9981 for (agent_expr *aexpr : bp_tgt->conditions)
9982 {
9983 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9984 buf += strlen (buf);
9985 for (int i = 0; i < aexpr->len; ++i)
9986 buf = pack_hex_byte (buf, aexpr->buf[i]);
9987 *buf = '\0';
9988 }
9989 return 0;
9990 }
9991
9992 static void
9993 remote_add_target_side_commands (struct gdbarch *gdbarch,
9994 struct bp_target_info *bp_tgt, char *buf)
9995 {
9996 if (bp_tgt->tcommands.empty ())
9997 return;
9998
9999 buf += strlen (buf);
10000
10001 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10002 buf += strlen (buf);
10003
10004 /* Concatenate all the agent expressions that are commands into the
10005 cmds parameter. */
10006 for (agent_expr *aexpr : bp_tgt->tcommands)
10007 {
10008 sprintf (buf, "X%x,", aexpr->len);
10009 buf += strlen (buf);
10010 for (int i = 0; i < aexpr->len; ++i)
10011 buf = pack_hex_byte (buf, aexpr->buf[i]);
10012 *buf = '\0';
10013 }
10014 }
10015
10016 /* Insert a breakpoint. On targets that have software breakpoint
10017 support, we ask the remote target to do the work; on targets
10018 which don't, we insert a traditional memory breakpoint. */
10019
10020 int
10021 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10022 struct bp_target_info *bp_tgt)
10023 {
10024 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10025 If it succeeds, then set the support to PACKET_ENABLE. If it
10026 fails, and the user has explicitly requested the Z support then
10027 report an error, otherwise, mark it disabled and go on. */
10028
10029 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10030 {
10031 CORE_ADDR addr = bp_tgt->reqstd_address;
10032 struct remote_state *rs;
10033 char *p, *endbuf;
10034
10035 /* Make sure the remote is pointing at the right process, if
10036 necessary. */
10037 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10038 set_general_process ();
10039
10040 rs = get_remote_state ();
10041 p = rs->buf;
10042 endbuf = rs->buf + get_remote_packet_size ();
10043
10044 *(p++) = 'Z';
10045 *(p++) = '0';
10046 *(p++) = ',';
10047 addr = (ULONGEST) remote_address_masked (addr);
10048 p += hexnumstr (p, addr);
10049 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10050
10051 if (supports_evaluation_of_breakpoint_conditions ())
10052 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10053
10054 if (can_run_breakpoint_commands ())
10055 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10056
10057 putpkt (rs->buf);
10058 getpkt (&rs->buf, &rs->buf_size, 0);
10059
10060 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10061 {
10062 case PACKET_ERROR:
10063 return -1;
10064 case PACKET_OK:
10065 return 0;
10066 case PACKET_UNKNOWN:
10067 break;
10068 }
10069 }
10070
10071 /* If this breakpoint has target-side commands but this stub doesn't
10072 support Z0 packets, throw error. */
10073 if (!bp_tgt->tcommands.empty ())
10074 throw_error (NOT_SUPPORTED_ERROR, _("\
10075 Target doesn't support breakpoints that have target side commands."));
10076
10077 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10078 }
10079
10080 int
10081 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10082 struct bp_target_info *bp_tgt,
10083 enum remove_bp_reason reason)
10084 {
10085 CORE_ADDR addr = bp_tgt->placed_address;
10086 struct remote_state *rs = get_remote_state ();
10087
10088 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10089 {
10090 char *p = rs->buf;
10091 char *endbuf = rs->buf + get_remote_packet_size ();
10092
10093 /* Make sure the remote is pointing at the right process, if
10094 necessary. */
10095 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10096 set_general_process ();
10097
10098 *(p++) = 'z';
10099 *(p++) = '0';
10100 *(p++) = ',';
10101
10102 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10103 p += hexnumstr (p, addr);
10104 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10105
10106 putpkt (rs->buf);
10107 getpkt (&rs->buf, &rs->buf_size, 0);
10108
10109 return (rs->buf[0] == 'E');
10110 }
10111
10112 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10113 }
10114
10115 static enum Z_packet_type
10116 watchpoint_to_Z_packet (int type)
10117 {
10118 switch (type)
10119 {
10120 case hw_write:
10121 return Z_PACKET_WRITE_WP;
10122 break;
10123 case hw_read:
10124 return Z_PACKET_READ_WP;
10125 break;
10126 case hw_access:
10127 return Z_PACKET_ACCESS_WP;
10128 break;
10129 default:
10130 internal_error (__FILE__, __LINE__,
10131 _("hw_bp_to_z: bad watchpoint type %d"), type);
10132 }
10133 }
10134
10135 int
10136 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10137 enum target_hw_bp_type type, struct expression *cond)
10138 {
10139 struct remote_state *rs = get_remote_state ();
10140 char *endbuf = rs->buf + get_remote_packet_size ();
10141 char *p;
10142 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10143
10144 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10145 return 1;
10146
10147 /* Make sure the remote is pointing at the right process, if
10148 necessary. */
10149 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10150 set_general_process ();
10151
10152 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10153 p = strchr (rs->buf, '\0');
10154 addr = remote_address_masked (addr);
10155 p += hexnumstr (p, (ULONGEST) addr);
10156 xsnprintf (p, endbuf - p, ",%x", len);
10157
10158 putpkt (rs->buf);
10159 getpkt (&rs->buf, &rs->buf_size, 0);
10160
10161 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10162 {
10163 case PACKET_ERROR:
10164 return -1;
10165 case PACKET_UNKNOWN:
10166 return 1;
10167 case PACKET_OK:
10168 return 0;
10169 }
10170 internal_error (__FILE__, __LINE__,
10171 _("remote_insert_watchpoint: reached end of function"));
10172 }
10173
10174 bool
10175 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10176 CORE_ADDR start, int length)
10177 {
10178 CORE_ADDR diff = remote_address_masked (addr - start);
10179
10180 return diff < length;
10181 }
10182
10183
10184 int
10185 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10186 enum target_hw_bp_type type, struct expression *cond)
10187 {
10188 struct remote_state *rs = get_remote_state ();
10189 char *endbuf = rs->buf + get_remote_packet_size ();
10190 char *p;
10191 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10192
10193 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10194 return -1;
10195
10196 /* Make sure the remote is pointing at the right process, if
10197 necessary. */
10198 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10199 set_general_process ();
10200
10201 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10202 p = strchr (rs->buf, '\0');
10203 addr = remote_address_masked (addr);
10204 p += hexnumstr (p, (ULONGEST) addr);
10205 xsnprintf (p, endbuf - p, ",%x", len);
10206 putpkt (rs->buf);
10207 getpkt (&rs->buf, &rs->buf_size, 0);
10208
10209 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10210 {
10211 case PACKET_ERROR:
10212 case PACKET_UNKNOWN:
10213 return -1;
10214 case PACKET_OK:
10215 return 0;
10216 }
10217 internal_error (__FILE__, __LINE__,
10218 _("remote_remove_watchpoint: reached end of function"));
10219 }
10220
10221
10222 int remote_hw_watchpoint_limit = -1;
10223 int remote_hw_watchpoint_length_limit = -1;
10224 int remote_hw_breakpoint_limit = -1;
10225
10226 int
10227 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10228 {
10229 if (remote_hw_watchpoint_length_limit == 0)
10230 return 0;
10231 else if (remote_hw_watchpoint_length_limit < 0)
10232 return 1;
10233 else if (len <= remote_hw_watchpoint_length_limit)
10234 return 1;
10235 else
10236 return 0;
10237 }
10238
10239 int
10240 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10241 {
10242 if (type == bp_hardware_breakpoint)
10243 {
10244 if (remote_hw_breakpoint_limit == 0)
10245 return 0;
10246 else if (remote_hw_breakpoint_limit < 0)
10247 return 1;
10248 else if (cnt <= remote_hw_breakpoint_limit)
10249 return 1;
10250 }
10251 else
10252 {
10253 if (remote_hw_watchpoint_limit == 0)
10254 return 0;
10255 else if (remote_hw_watchpoint_limit < 0)
10256 return 1;
10257 else if (ot)
10258 return -1;
10259 else if (cnt <= remote_hw_watchpoint_limit)
10260 return 1;
10261 }
10262 return -1;
10263 }
10264
10265 /* The to_stopped_by_sw_breakpoint method of target remote. */
10266
10267 bool
10268 remote_target::stopped_by_sw_breakpoint ()
10269 {
10270 struct thread_info *thread = inferior_thread ();
10271
10272 return (thread->priv != NULL
10273 && (get_remote_thread_info (thread)->stop_reason
10274 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10275 }
10276
10277 /* The to_supports_stopped_by_sw_breakpoint method of target
10278 remote. */
10279
10280 bool
10281 remote_target::supports_stopped_by_sw_breakpoint ()
10282 {
10283 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10284 }
10285
10286 /* The to_stopped_by_hw_breakpoint method of target remote. */
10287
10288 bool
10289 remote_target::stopped_by_hw_breakpoint ()
10290 {
10291 struct thread_info *thread = inferior_thread ();
10292
10293 return (thread->priv != NULL
10294 && (get_remote_thread_info (thread)->stop_reason
10295 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10296 }
10297
10298 /* The to_supports_stopped_by_hw_breakpoint method of target
10299 remote. */
10300
10301 bool
10302 remote_target::supports_stopped_by_hw_breakpoint ()
10303 {
10304 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10305 }
10306
10307 bool
10308 remote_target::stopped_by_watchpoint ()
10309 {
10310 struct thread_info *thread = inferior_thread ();
10311
10312 return (thread->priv != NULL
10313 && (get_remote_thread_info (thread)->stop_reason
10314 == TARGET_STOPPED_BY_WATCHPOINT));
10315 }
10316
10317 bool
10318 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10319 {
10320 struct thread_info *thread = inferior_thread ();
10321
10322 if (thread->priv != NULL
10323 && (get_remote_thread_info (thread)->stop_reason
10324 == TARGET_STOPPED_BY_WATCHPOINT))
10325 {
10326 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10327 return true;
10328 }
10329
10330 return false;
10331 }
10332
10333
10334 int
10335 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10336 struct bp_target_info *bp_tgt)
10337 {
10338 CORE_ADDR addr = bp_tgt->reqstd_address;
10339 struct remote_state *rs;
10340 char *p, *endbuf;
10341 char *message;
10342
10343 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10344 return -1;
10345
10346 /* Make sure the remote is pointing at the right process, if
10347 necessary. */
10348 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10349 set_general_process ();
10350
10351 rs = get_remote_state ();
10352 p = rs->buf;
10353 endbuf = rs->buf + get_remote_packet_size ();
10354
10355 *(p++) = 'Z';
10356 *(p++) = '1';
10357 *(p++) = ',';
10358
10359 addr = remote_address_masked (addr);
10360 p += hexnumstr (p, (ULONGEST) addr);
10361 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10362
10363 if (supports_evaluation_of_breakpoint_conditions ())
10364 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10365
10366 if (can_run_breakpoint_commands ())
10367 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10368
10369 putpkt (rs->buf);
10370 getpkt (&rs->buf, &rs->buf_size, 0);
10371
10372 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10373 {
10374 case PACKET_ERROR:
10375 if (rs->buf[1] == '.')
10376 {
10377 message = strchr (rs->buf + 2, '.');
10378 if (message)
10379 error (_("Remote failure reply: %s"), message + 1);
10380 }
10381 return -1;
10382 case PACKET_UNKNOWN:
10383 return -1;
10384 case PACKET_OK:
10385 return 0;
10386 }
10387 internal_error (__FILE__, __LINE__,
10388 _("remote_insert_hw_breakpoint: reached end of function"));
10389 }
10390
10391
10392 int
10393 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10394 struct bp_target_info *bp_tgt)
10395 {
10396 CORE_ADDR addr;
10397 struct remote_state *rs = get_remote_state ();
10398 char *p = rs->buf;
10399 char *endbuf = rs->buf + get_remote_packet_size ();
10400
10401 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10402 return -1;
10403
10404 /* Make sure the remote is pointing at the right process, if
10405 necessary. */
10406 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10407 set_general_process ();
10408
10409 *(p++) = 'z';
10410 *(p++) = '1';
10411 *(p++) = ',';
10412
10413 addr = remote_address_masked (bp_tgt->placed_address);
10414 p += hexnumstr (p, (ULONGEST) addr);
10415 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10416
10417 putpkt (rs->buf);
10418 getpkt (&rs->buf, &rs->buf_size, 0);
10419
10420 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10421 {
10422 case PACKET_ERROR:
10423 case PACKET_UNKNOWN:
10424 return -1;
10425 case PACKET_OK:
10426 return 0;
10427 }
10428 internal_error (__FILE__, __LINE__,
10429 _("remote_remove_hw_breakpoint: reached end of function"));
10430 }
10431
10432 /* Verify memory using the "qCRC:" request. */
10433
10434 int
10435 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10436 {
10437 struct remote_state *rs = get_remote_state ();
10438 unsigned long host_crc, target_crc;
10439 char *tmp;
10440
10441 /* It doesn't make sense to use qCRC if the remote target is
10442 connected but not running. */
10443 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10444 {
10445 enum packet_result result;
10446
10447 /* Make sure the remote is pointing at the right process. */
10448 set_general_process ();
10449
10450 /* FIXME: assumes lma can fit into long. */
10451 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10452 (long) lma, (long) size);
10453 putpkt (rs->buf);
10454
10455 /* Be clever; compute the host_crc before waiting for target
10456 reply. */
10457 host_crc = xcrc32 (data, size, 0xffffffff);
10458
10459 getpkt (&rs->buf, &rs->buf_size, 0);
10460
10461 result = packet_ok (rs->buf,
10462 &remote_protocol_packets[PACKET_qCRC]);
10463 if (result == PACKET_ERROR)
10464 return -1;
10465 else if (result == PACKET_OK)
10466 {
10467 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10468 target_crc = target_crc * 16 + fromhex (*tmp);
10469
10470 return (host_crc == target_crc);
10471 }
10472 }
10473
10474 return simple_verify_memory (this, data, lma, size);
10475 }
10476
10477 /* compare-sections command
10478
10479 With no arguments, compares each loadable section in the exec bfd
10480 with the same memory range on the target, and reports mismatches.
10481 Useful for verifying the image on the target against the exec file. */
10482
10483 static void
10484 compare_sections_command (const char *args, int from_tty)
10485 {
10486 asection *s;
10487 const char *sectname;
10488 bfd_size_type size;
10489 bfd_vma lma;
10490 int matched = 0;
10491 int mismatched = 0;
10492 int res;
10493 int read_only = 0;
10494
10495 if (!exec_bfd)
10496 error (_("command cannot be used without an exec file"));
10497
10498 /* Make sure the remote is pointing at the right process. */
10499 set_general_process ();
10500
10501 if (args != NULL && strcmp (args, "-r") == 0)
10502 {
10503 read_only = 1;
10504 args = NULL;
10505 }
10506
10507 for (s = exec_bfd->sections; s; s = s->next)
10508 {
10509 if (!(s->flags & SEC_LOAD))
10510 continue; /* Skip non-loadable section. */
10511
10512 if (read_only && (s->flags & SEC_READONLY) == 0)
10513 continue; /* Skip writeable sections */
10514
10515 size = bfd_get_section_size (s);
10516 if (size == 0)
10517 continue; /* Skip zero-length section. */
10518
10519 sectname = bfd_get_section_name (exec_bfd, s);
10520 if (args && strcmp (args, sectname) != 0)
10521 continue; /* Not the section selected by user. */
10522
10523 matched = 1; /* Do this section. */
10524 lma = s->lma;
10525
10526 gdb::byte_vector sectdata (size);
10527 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10528
10529 res = target_verify_memory (sectdata.data (), lma, size);
10530
10531 if (res == -1)
10532 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10533 paddress (target_gdbarch (), lma),
10534 paddress (target_gdbarch (), lma + size));
10535
10536 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10537 paddress (target_gdbarch (), lma),
10538 paddress (target_gdbarch (), lma + size));
10539 if (res)
10540 printf_filtered ("matched.\n");
10541 else
10542 {
10543 printf_filtered ("MIS-MATCHED!\n");
10544 mismatched++;
10545 }
10546 }
10547 if (mismatched > 0)
10548 warning (_("One or more sections of the target image does not match\n\
10549 the loaded file\n"));
10550 if (args && !matched)
10551 printf_filtered (_("No loaded section named '%s'.\n"), args);
10552 }
10553
10554 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10555 into remote target. The number of bytes written to the remote
10556 target is returned, or -1 for error. */
10557
10558 static enum target_xfer_status
10559 remote_write_qxfer (const char *object_name,
10560 const char *annex, const gdb_byte *writebuf,
10561 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10562 struct packet_config *packet)
10563 {
10564 int i, buf_len;
10565 ULONGEST n;
10566 struct remote_state *rs = get_remote_state ();
10567 int max_size = get_memory_write_packet_size ();
10568
10569 if (packet_config_support (packet) == PACKET_DISABLE)
10570 return TARGET_XFER_E_IO;
10571
10572 /* Insert header. */
10573 i = snprintf (rs->buf, max_size,
10574 "qXfer:%s:write:%s:%s:",
10575 object_name, annex ? annex : "",
10576 phex_nz (offset, sizeof offset));
10577 max_size -= (i + 1);
10578
10579 /* Escape as much data as fits into rs->buf. */
10580 buf_len = remote_escape_output
10581 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10582
10583 if (putpkt_binary (rs->buf, i + buf_len) < 0
10584 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10585 || packet_ok (rs->buf, packet) != PACKET_OK)
10586 return TARGET_XFER_E_IO;
10587
10588 unpack_varlen_hex (rs->buf, &n);
10589
10590 *xfered_len = n;
10591 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10592 }
10593
10594 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10595 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10596 number of bytes read is returned, or 0 for EOF, or -1 for error.
10597 The number of bytes read may be less than LEN without indicating an
10598 EOF. PACKET is checked and updated to indicate whether the remote
10599 target supports this object. */
10600
10601 static enum target_xfer_status
10602 remote_read_qxfer (const char *object_name,
10603 const char *annex,
10604 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10605 ULONGEST *xfered_len,
10606 struct packet_config *packet)
10607 {
10608 struct remote_state *rs = get_remote_state ();
10609 LONGEST i, n, packet_len;
10610
10611 if (packet_config_support (packet) == PACKET_DISABLE)
10612 return TARGET_XFER_E_IO;
10613
10614 /* Check whether we've cached an end-of-object packet that matches
10615 this request. */
10616 if (rs->finished_object)
10617 {
10618 if (strcmp (object_name, rs->finished_object) == 0
10619 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10620 && offset == rs->finished_offset)
10621 return TARGET_XFER_EOF;
10622
10623
10624 /* Otherwise, we're now reading something different. Discard
10625 the cache. */
10626 xfree (rs->finished_object);
10627 xfree (rs->finished_annex);
10628 rs->finished_object = NULL;
10629 rs->finished_annex = NULL;
10630 }
10631
10632 /* Request only enough to fit in a single packet. The actual data
10633 may not, since we don't know how much of it will need to be escaped;
10634 the target is free to respond with slightly less data. We subtract
10635 five to account for the response type and the protocol frame. */
10636 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10637 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10638 object_name, annex ? annex : "",
10639 phex_nz (offset, sizeof offset),
10640 phex_nz (n, sizeof n));
10641 i = putpkt (rs->buf);
10642 if (i < 0)
10643 return TARGET_XFER_E_IO;
10644
10645 rs->buf[0] = '\0';
10646 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10647 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10648 return TARGET_XFER_E_IO;
10649
10650 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10651 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10652
10653 /* 'm' means there is (or at least might be) more data after this
10654 batch. That does not make sense unless there's at least one byte
10655 of data in this reply. */
10656 if (rs->buf[0] == 'm' && packet_len == 1)
10657 error (_("Remote qXfer reply contained no data."));
10658
10659 /* Got some data. */
10660 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10661 packet_len - 1, readbuf, n);
10662
10663 /* 'l' is an EOF marker, possibly including a final block of data,
10664 or possibly empty. If we have the final block of a non-empty
10665 object, record this fact to bypass a subsequent partial read. */
10666 if (rs->buf[0] == 'l' && offset + i > 0)
10667 {
10668 rs->finished_object = xstrdup (object_name);
10669 rs->finished_annex = xstrdup (annex ? annex : "");
10670 rs->finished_offset = offset + i;
10671 }
10672
10673 if (i == 0)
10674 return TARGET_XFER_EOF;
10675 else
10676 {
10677 *xfered_len = i;
10678 return TARGET_XFER_OK;
10679 }
10680 }
10681
10682 enum target_xfer_status
10683 remote_target::xfer_partial (enum target_object object,
10684 const char *annex, gdb_byte *readbuf,
10685 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10686 ULONGEST *xfered_len)
10687 {
10688 struct remote_state *rs;
10689 int i;
10690 char *p2;
10691 char query_type;
10692 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10693
10694 set_remote_traceframe ();
10695 set_general_thread (inferior_ptid);
10696
10697 rs = get_remote_state ();
10698
10699 /* Handle memory using the standard memory routines. */
10700 if (object == TARGET_OBJECT_MEMORY)
10701 {
10702 /* If the remote target is connected but not running, we should
10703 pass this request down to a lower stratum (e.g. the executable
10704 file). */
10705 if (!target_has_execution)
10706 return TARGET_XFER_EOF;
10707
10708 if (writebuf != NULL)
10709 return remote_write_bytes (offset, writebuf, len, unit_size,
10710 xfered_len);
10711 else
10712 return remote_read_bytes (this, offset, readbuf, len, unit_size,
10713 xfered_len);
10714 }
10715
10716 /* Handle SPU memory using qxfer packets. */
10717 if (object == TARGET_OBJECT_SPU)
10718 {
10719 if (readbuf)
10720 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10721 xfered_len, &remote_protocol_packets
10722 [PACKET_qXfer_spu_read]);
10723 else
10724 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10725 xfered_len, &remote_protocol_packets
10726 [PACKET_qXfer_spu_write]);
10727 }
10728
10729 /* Handle extra signal info using qxfer packets. */
10730 if (object == TARGET_OBJECT_SIGNAL_INFO)
10731 {
10732 if (readbuf)
10733 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10734 xfered_len, &remote_protocol_packets
10735 [PACKET_qXfer_siginfo_read]);
10736 else
10737 return remote_write_qxfer ("siginfo", annex,
10738 writebuf, offset, len, xfered_len,
10739 &remote_protocol_packets
10740 [PACKET_qXfer_siginfo_write]);
10741 }
10742
10743 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10744 {
10745 if (readbuf)
10746 return remote_read_qxfer ("statictrace", annex,
10747 readbuf, offset, len, xfered_len,
10748 &remote_protocol_packets
10749 [PACKET_qXfer_statictrace_read]);
10750 else
10751 return TARGET_XFER_E_IO;
10752 }
10753
10754 /* Only handle flash writes. */
10755 if (writebuf != NULL)
10756 {
10757 switch (object)
10758 {
10759 case TARGET_OBJECT_FLASH:
10760 return remote_flash_write (this, offset, len, xfered_len,
10761 writebuf);
10762
10763 default:
10764 return TARGET_XFER_E_IO;
10765 }
10766 }
10767
10768 /* Map pre-existing objects onto letters. DO NOT do this for new
10769 objects!!! Instead specify new query packets. */
10770 switch (object)
10771 {
10772 case TARGET_OBJECT_AVR:
10773 query_type = 'R';
10774 break;
10775
10776 case TARGET_OBJECT_AUXV:
10777 gdb_assert (annex == NULL);
10778 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10779 xfered_len,
10780 &remote_protocol_packets[PACKET_qXfer_auxv]);
10781
10782 case TARGET_OBJECT_AVAILABLE_FEATURES:
10783 return remote_read_qxfer
10784 ("features", annex, readbuf, offset, len, xfered_len,
10785 &remote_protocol_packets[PACKET_qXfer_features]);
10786
10787 case TARGET_OBJECT_LIBRARIES:
10788 return remote_read_qxfer
10789 ("libraries", annex, readbuf, offset, len, xfered_len,
10790 &remote_protocol_packets[PACKET_qXfer_libraries]);
10791
10792 case TARGET_OBJECT_LIBRARIES_SVR4:
10793 return remote_read_qxfer
10794 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10795 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10796
10797 case TARGET_OBJECT_MEMORY_MAP:
10798 gdb_assert (annex == NULL);
10799 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10800 xfered_len,
10801 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10802
10803 case TARGET_OBJECT_OSDATA:
10804 /* Should only get here if we're connected. */
10805 gdb_assert (rs->remote_desc);
10806 return remote_read_qxfer
10807 ("osdata", annex, readbuf, offset, len, xfered_len,
10808 &remote_protocol_packets[PACKET_qXfer_osdata]);
10809
10810 case TARGET_OBJECT_THREADS:
10811 gdb_assert (annex == NULL);
10812 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10813 xfered_len,
10814 &remote_protocol_packets[PACKET_qXfer_threads]);
10815
10816 case TARGET_OBJECT_TRACEFRAME_INFO:
10817 gdb_assert (annex == NULL);
10818 return remote_read_qxfer
10819 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10820 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10821
10822 case TARGET_OBJECT_FDPIC:
10823 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10824 xfered_len,
10825 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10826
10827 case TARGET_OBJECT_OPENVMS_UIB:
10828 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10829 xfered_len,
10830 &remote_protocol_packets[PACKET_qXfer_uib]);
10831
10832 case TARGET_OBJECT_BTRACE:
10833 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10834 xfered_len,
10835 &remote_protocol_packets[PACKET_qXfer_btrace]);
10836
10837 case TARGET_OBJECT_BTRACE_CONF:
10838 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10839 len, xfered_len,
10840 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10841
10842 case TARGET_OBJECT_EXEC_FILE:
10843 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10844 len, xfered_len,
10845 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10846
10847 default:
10848 return TARGET_XFER_E_IO;
10849 }
10850
10851 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10852 large enough let the caller deal with it. */
10853 if (len < get_remote_packet_size ())
10854 return TARGET_XFER_E_IO;
10855 len = get_remote_packet_size ();
10856
10857 /* Except for querying the minimum buffer size, target must be open. */
10858 if (!rs->remote_desc)
10859 error (_("remote query is only available after target open"));
10860
10861 gdb_assert (annex != NULL);
10862 gdb_assert (readbuf != NULL);
10863
10864 p2 = rs->buf;
10865 *p2++ = 'q';
10866 *p2++ = query_type;
10867
10868 /* We used one buffer char for the remote protocol q command and
10869 another for the query type. As the remote protocol encapsulation
10870 uses 4 chars plus one extra in case we are debugging
10871 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10872 string. */
10873 i = 0;
10874 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10875 {
10876 /* Bad caller may have sent forbidden characters. */
10877 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10878 *p2++ = annex[i];
10879 i++;
10880 }
10881 *p2 = '\0';
10882 gdb_assert (annex[i] == '\0');
10883
10884 i = putpkt (rs->buf);
10885 if (i < 0)
10886 return TARGET_XFER_E_IO;
10887
10888 getpkt (&rs->buf, &rs->buf_size, 0);
10889 strcpy ((char *) readbuf, rs->buf);
10890
10891 *xfered_len = strlen ((char *) readbuf);
10892 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10893 }
10894
10895 /* Implementation of to_get_memory_xfer_limit. */
10896
10897 ULONGEST
10898 remote_target::get_memory_xfer_limit ()
10899 {
10900 return get_memory_write_packet_size ();
10901 }
10902
10903 int
10904 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
10905 const gdb_byte *pattern, ULONGEST pattern_len,
10906 CORE_ADDR *found_addrp)
10907 {
10908 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10909 struct remote_state *rs = get_remote_state ();
10910 int max_size = get_memory_write_packet_size ();
10911 struct packet_config *packet =
10912 &remote_protocol_packets[PACKET_qSearch_memory];
10913 /* Number of packet bytes used to encode the pattern;
10914 this could be more than PATTERN_LEN due to escape characters. */
10915 int escaped_pattern_len;
10916 /* Amount of pattern that was encodable in the packet. */
10917 int used_pattern_len;
10918 int i;
10919 int found;
10920 ULONGEST found_addr;
10921
10922 /* Don't go to the target if we don't have to. This is done before
10923 checking packet_config_support to avoid the possibility that a
10924 success for this edge case means the facility works in
10925 general. */
10926 if (pattern_len > search_space_len)
10927 return 0;
10928 if (pattern_len == 0)
10929 {
10930 *found_addrp = start_addr;
10931 return 1;
10932 }
10933
10934 /* If we already know the packet isn't supported, fall back to the simple
10935 way of searching memory. */
10936
10937 if (packet_config_support (packet) == PACKET_DISABLE)
10938 {
10939 /* Target doesn't provided special support, fall back and use the
10940 standard support (copy memory and do the search here). */
10941 return simple_search_memory (this, start_addr, search_space_len,
10942 pattern, pattern_len, found_addrp);
10943 }
10944
10945 /* Make sure the remote is pointing at the right process. */
10946 set_general_process ();
10947
10948 /* Insert header. */
10949 i = snprintf (rs->buf, max_size,
10950 "qSearch:memory:%s;%s;",
10951 phex_nz (start_addr, addr_size),
10952 phex_nz (search_space_len, sizeof (search_space_len)));
10953 max_size -= (i + 1);
10954
10955 /* Escape as much data as fits into rs->buf. */
10956 escaped_pattern_len =
10957 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10958 &used_pattern_len, max_size);
10959
10960 /* Bail if the pattern is too large. */
10961 if (used_pattern_len != pattern_len)
10962 error (_("Pattern is too large to transmit to remote target."));
10963
10964 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10965 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10966 || packet_ok (rs->buf, packet) != PACKET_OK)
10967 {
10968 /* The request may not have worked because the command is not
10969 supported. If so, fall back to the simple way. */
10970 if (packet_config_support (packet) == PACKET_DISABLE)
10971 {
10972 return simple_search_memory (this, start_addr, search_space_len,
10973 pattern, pattern_len, found_addrp);
10974 }
10975 return -1;
10976 }
10977
10978 if (rs->buf[0] == '0')
10979 found = 0;
10980 else if (rs->buf[0] == '1')
10981 {
10982 found = 1;
10983 if (rs->buf[1] != ',')
10984 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10985 unpack_varlen_hex (rs->buf + 2, &found_addr);
10986 *found_addrp = found_addr;
10987 }
10988 else
10989 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10990
10991 return found;
10992 }
10993
10994 void
10995 remote_target::rcmd (const char *command, struct ui_file *outbuf)
10996 {
10997 struct remote_state *rs = get_remote_state ();
10998 char *p = rs->buf;
10999
11000 if (!rs->remote_desc)
11001 error (_("remote rcmd is only available after target open"));
11002
11003 /* Send a NULL command across as an empty command. */
11004 if (command == NULL)
11005 command = "";
11006
11007 /* The query prefix. */
11008 strcpy (rs->buf, "qRcmd,");
11009 p = strchr (rs->buf, '\0');
11010
11011 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11012 > get_remote_packet_size ())
11013 error (_("\"monitor\" command ``%s'' is too long."), command);
11014
11015 /* Encode the actual command. */
11016 bin2hex ((const gdb_byte *) command, p, strlen (command));
11017
11018 if (putpkt (rs->buf) < 0)
11019 error (_("Communication problem with target."));
11020
11021 /* get/display the response */
11022 while (1)
11023 {
11024 char *buf;
11025
11026 /* XXX - see also remote_get_noisy_reply(). */
11027 QUIT; /* Allow user to bail out with ^C. */
11028 rs->buf[0] = '\0';
11029 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11030 {
11031 /* Timeout. Continue to (try to) read responses.
11032 This is better than stopping with an error, assuming the stub
11033 is still executing the (long) monitor command.
11034 If needed, the user can interrupt gdb using C-c, obtaining
11035 an effect similar to stop on timeout. */
11036 continue;
11037 }
11038 buf = rs->buf;
11039 if (buf[0] == '\0')
11040 error (_("Target does not support this command."));
11041 if (buf[0] == 'O' && buf[1] != 'K')
11042 {
11043 remote_console_output (buf + 1); /* 'O' message from stub. */
11044 continue;
11045 }
11046 if (strcmp (buf, "OK") == 0)
11047 break;
11048 if (strlen (buf) == 3 && buf[0] == 'E'
11049 && isdigit (buf[1]) && isdigit (buf[2]))
11050 {
11051 error (_("Protocol error with Rcmd"));
11052 }
11053 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11054 {
11055 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11056
11057 fputc_unfiltered (c, outbuf);
11058 }
11059 break;
11060 }
11061 }
11062
11063 std::vector<mem_region>
11064 remote_target::memory_map ()
11065 {
11066 std::vector<mem_region> result;
11067 gdb::optional<gdb::char_vector> text
11068 = target_read_stralloc (target_stack, TARGET_OBJECT_MEMORY_MAP, NULL);
11069
11070 if (text)
11071 result = parse_memory_map (text->data ());
11072
11073 return result;
11074 }
11075
11076 static void
11077 packet_command (const char *args, int from_tty)
11078 {
11079 struct remote_state *rs = get_remote_state ();
11080
11081 if (!rs->remote_desc)
11082 error (_("command can only be used with remote target"));
11083
11084 if (!args)
11085 error (_("remote-packet command requires packet text as argument"));
11086
11087 puts_filtered ("sending: ");
11088 print_packet (args);
11089 puts_filtered ("\n");
11090 putpkt (args);
11091
11092 getpkt (&rs->buf, &rs->buf_size, 0);
11093 puts_filtered ("received: ");
11094 print_packet (rs->buf);
11095 puts_filtered ("\n");
11096 }
11097
11098 #if 0
11099 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11100
11101 static void display_thread_info (struct gdb_ext_thread_info *info);
11102
11103 static void threadset_test_cmd (char *cmd, int tty);
11104
11105 static void threadalive_test (char *cmd, int tty);
11106
11107 static void threadlist_test_cmd (char *cmd, int tty);
11108
11109 int get_and_display_threadinfo (threadref *ref);
11110
11111 static void threadinfo_test_cmd (char *cmd, int tty);
11112
11113 static int thread_display_step (threadref *ref, void *context);
11114
11115 static void threadlist_update_test_cmd (char *cmd, int tty);
11116
11117 static void init_remote_threadtests (void);
11118
11119 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11120
11121 static void
11122 threadset_test_cmd (const char *cmd, int tty)
11123 {
11124 int sample_thread = SAMPLE_THREAD;
11125
11126 printf_filtered (_("Remote threadset test\n"));
11127 set_general_thread (sample_thread);
11128 }
11129
11130
11131 static void
11132 threadalive_test (const char *cmd, int tty)
11133 {
11134 int sample_thread = SAMPLE_THREAD;
11135 int pid = ptid_get_pid (inferior_ptid);
11136 ptid_t ptid = ptid_build (pid, sample_thread, 0);
11137
11138 if (remote_thread_alive (ptid))
11139 printf_filtered ("PASS: Thread alive test\n");
11140 else
11141 printf_filtered ("FAIL: Thread alive test\n");
11142 }
11143
11144 void output_threadid (char *title, threadref *ref);
11145
11146 void
11147 output_threadid (char *title, threadref *ref)
11148 {
11149 char hexid[20];
11150
11151 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11152 hexid[16] = 0;
11153 printf_filtered ("%s %s\n", title, (&hexid[0]));
11154 }
11155
11156 static void
11157 threadlist_test_cmd (const char *cmd, int tty)
11158 {
11159 int startflag = 1;
11160 threadref nextthread;
11161 int done, result_count;
11162 threadref threadlist[3];
11163
11164 printf_filtered ("Remote Threadlist test\n");
11165 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11166 &result_count, &threadlist[0]))
11167 printf_filtered ("FAIL: threadlist test\n");
11168 else
11169 {
11170 threadref *scan = threadlist;
11171 threadref *limit = scan + result_count;
11172
11173 while (scan < limit)
11174 output_threadid (" thread ", scan++);
11175 }
11176 }
11177
11178 void
11179 display_thread_info (struct gdb_ext_thread_info *info)
11180 {
11181 output_threadid ("Threadid: ", &info->threadid);
11182 printf_filtered ("Name: %s\n ", info->shortname);
11183 printf_filtered ("State: %s\n", info->display);
11184 printf_filtered ("other: %s\n\n", info->more_display);
11185 }
11186
11187 int
11188 get_and_display_threadinfo (threadref *ref)
11189 {
11190 int result;
11191 int set;
11192 struct gdb_ext_thread_info threadinfo;
11193
11194 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11195 | TAG_MOREDISPLAY | TAG_DISPLAY;
11196 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11197 display_thread_info (&threadinfo);
11198 return result;
11199 }
11200
11201 static void
11202 threadinfo_test_cmd (const char *cmd, int tty)
11203 {
11204 int athread = SAMPLE_THREAD;
11205 threadref thread;
11206 int set;
11207
11208 int_to_threadref (&thread, athread);
11209 printf_filtered ("Remote Threadinfo test\n");
11210 if (!get_and_display_threadinfo (&thread))
11211 printf_filtered ("FAIL cannot get thread info\n");
11212 }
11213
11214 static int
11215 thread_display_step (threadref *ref, void *context)
11216 {
11217 /* output_threadid(" threadstep ",ref); *//* simple test */
11218 return get_and_display_threadinfo (ref);
11219 }
11220
11221 static void
11222 threadlist_update_test_cmd (const char *cmd, int tty)
11223 {
11224 printf_filtered ("Remote Threadlist update test\n");
11225 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11226 }
11227
11228 static void
11229 init_remote_threadtests (void)
11230 {
11231 add_com ("tlist", class_obscure, threadlist_test_cmd,
11232 _("Fetch and print the remote list of "
11233 "thread identifiers, one pkt only"));
11234 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11235 _("Fetch and display info about one thread"));
11236 add_com ("tset", class_obscure, threadset_test_cmd,
11237 _("Test setting to a different thread"));
11238 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11239 _("Iterate through updating all remote thread info"));
11240 add_com ("talive", class_obscure, threadalive_test,
11241 _(" Remote thread alive test "));
11242 }
11243
11244 #endif /* 0 */
11245
11246 /* Convert a thread ID to a string. Returns the string in a static
11247 buffer. */
11248
11249 const char *
11250 remote_target::pid_to_str (ptid_t ptid)
11251 {
11252 static char buf[64];
11253 struct remote_state *rs = get_remote_state ();
11254
11255 if (ptid_equal (ptid, null_ptid))
11256 return normal_pid_to_str (ptid);
11257 else if (ptid_is_pid (ptid))
11258 {
11259 /* Printing an inferior target id. */
11260
11261 /* When multi-process extensions are off, there's no way in the
11262 remote protocol to know the remote process id, if there's any
11263 at all. There's one exception --- when we're connected with
11264 target extended-remote, and we manually attached to a process
11265 with "attach PID". We don't record anywhere a flag that
11266 allows us to distinguish that case from the case of
11267 connecting with extended-remote and the stub already being
11268 attached to a process, and reporting yes to qAttached, hence
11269 no smart special casing here. */
11270 if (!remote_multi_process_p (rs))
11271 {
11272 xsnprintf (buf, sizeof buf, "Remote target");
11273 return buf;
11274 }
11275
11276 return normal_pid_to_str (ptid);
11277 }
11278 else
11279 {
11280 if (ptid_equal (magic_null_ptid, ptid))
11281 xsnprintf (buf, sizeof buf, "Thread <main>");
11282 else if (remote_multi_process_p (rs))
11283 if (ptid_get_lwp (ptid) == 0)
11284 return normal_pid_to_str (ptid);
11285 else
11286 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11287 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11288 else
11289 xsnprintf (buf, sizeof buf, "Thread %ld",
11290 ptid_get_lwp (ptid));
11291 return buf;
11292 }
11293 }
11294
11295 /* Get the address of the thread local variable in OBJFILE which is
11296 stored at OFFSET within the thread local storage for thread PTID. */
11297
11298 CORE_ADDR
11299 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11300 CORE_ADDR offset)
11301 {
11302 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11303 {
11304 struct remote_state *rs = get_remote_state ();
11305 char *p = rs->buf;
11306 char *endp = rs->buf + get_remote_packet_size ();
11307 enum packet_result result;
11308
11309 strcpy (p, "qGetTLSAddr:");
11310 p += strlen (p);
11311 p = write_ptid (p, endp, ptid);
11312 *p++ = ',';
11313 p += hexnumstr (p, offset);
11314 *p++ = ',';
11315 p += hexnumstr (p, lm);
11316 *p++ = '\0';
11317
11318 putpkt (rs->buf);
11319 getpkt (&rs->buf, &rs->buf_size, 0);
11320 result = packet_ok (rs->buf,
11321 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11322 if (result == PACKET_OK)
11323 {
11324 ULONGEST result;
11325
11326 unpack_varlen_hex (rs->buf, &result);
11327 return result;
11328 }
11329 else if (result == PACKET_UNKNOWN)
11330 throw_error (TLS_GENERIC_ERROR,
11331 _("Remote target doesn't support qGetTLSAddr packet"));
11332 else
11333 throw_error (TLS_GENERIC_ERROR,
11334 _("Remote target failed to process qGetTLSAddr request"));
11335 }
11336 else
11337 throw_error (TLS_GENERIC_ERROR,
11338 _("TLS not supported or disabled on this target"));
11339 /* Not reached. */
11340 return 0;
11341 }
11342
11343 /* Provide thread local base, i.e. Thread Information Block address.
11344 Returns 1 if ptid is found and thread_local_base is non zero. */
11345
11346 bool
11347 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11348 {
11349 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11350 {
11351 struct remote_state *rs = get_remote_state ();
11352 char *p = rs->buf;
11353 char *endp = rs->buf + get_remote_packet_size ();
11354 enum packet_result result;
11355
11356 strcpy (p, "qGetTIBAddr:");
11357 p += strlen (p);
11358 p = write_ptid (p, endp, ptid);
11359 *p++ = '\0';
11360
11361 putpkt (rs->buf);
11362 getpkt (&rs->buf, &rs->buf_size, 0);
11363 result = packet_ok (rs->buf,
11364 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11365 if (result == PACKET_OK)
11366 {
11367 ULONGEST result;
11368
11369 unpack_varlen_hex (rs->buf, &result);
11370 if (addr)
11371 *addr = (CORE_ADDR) result;
11372 return true;
11373 }
11374 else if (result == PACKET_UNKNOWN)
11375 error (_("Remote target doesn't support qGetTIBAddr packet"));
11376 else
11377 error (_("Remote target failed to process qGetTIBAddr request"));
11378 }
11379 else
11380 error (_("qGetTIBAddr not supported or disabled on this target"));
11381 /* Not reached. */
11382 return false;
11383 }
11384
11385 /* Support for inferring a target description based on the current
11386 architecture and the size of a 'g' packet. While the 'g' packet
11387 can have any size (since optional registers can be left off the
11388 end), some sizes are easily recognizable given knowledge of the
11389 approximate architecture. */
11390
11391 struct remote_g_packet_guess
11392 {
11393 int bytes;
11394 const struct target_desc *tdesc;
11395 };
11396 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11397 DEF_VEC_O(remote_g_packet_guess_s);
11398
11399 struct remote_g_packet_data
11400 {
11401 VEC(remote_g_packet_guess_s) *guesses;
11402 };
11403
11404 static struct gdbarch_data *remote_g_packet_data_handle;
11405
11406 static void *
11407 remote_g_packet_data_init (struct obstack *obstack)
11408 {
11409 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11410 }
11411
11412 void
11413 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11414 const struct target_desc *tdesc)
11415 {
11416 struct remote_g_packet_data *data
11417 = ((struct remote_g_packet_data *)
11418 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11419 struct remote_g_packet_guess new_guess, *guess;
11420 int ix;
11421
11422 gdb_assert (tdesc != NULL);
11423
11424 for (ix = 0;
11425 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11426 ix++)
11427 if (guess->bytes == bytes)
11428 internal_error (__FILE__, __LINE__,
11429 _("Duplicate g packet description added for size %d"),
11430 bytes);
11431
11432 new_guess.bytes = bytes;
11433 new_guess.tdesc = tdesc;
11434 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11435 }
11436
11437 /* Return 1 if remote_read_description would do anything on this target
11438 and architecture, 0 otherwise. */
11439
11440 static int
11441 remote_read_description_p (struct target_ops *target)
11442 {
11443 struct remote_g_packet_data *data
11444 = ((struct remote_g_packet_data *)
11445 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11446
11447 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11448 return 1;
11449
11450 return 0;
11451 }
11452
11453 const struct target_desc *
11454 remote_target::read_description ()
11455 {
11456 struct remote_g_packet_data *data
11457 = ((struct remote_g_packet_data *)
11458 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11459
11460 /* Do not try this during initial connection, when we do not know
11461 whether there is a running but stopped thread. */
11462 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11463 return beneath->read_description ();
11464
11465 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11466 {
11467 struct remote_g_packet_guess *guess;
11468 int ix;
11469 int bytes = send_g_packet ();
11470
11471 for (ix = 0;
11472 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11473 ix++)
11474 if (guess->bytes == bytes)
11475 return guess->tdesc;
11476
11477 /* We discard the g packet. A minor optimization would be to
11478 hold on to it, and fill the register cache once we have selected
11479 an architecture, but it's too tricky to do safely. */
11480 }
11481
11482 return beneath->read_description ();
11483 }
11484
11485 /* Remote file transfer support. This is host-initiated I/O, not
11486 target-initiated; for target-initiated, see remote-fileio.c. */
11487
11488 /* If *LEFT is at least the length of STRING, copy STRING to
11489 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11490 decrease *LEFT. Otherwise raise an error. */
11491
11492 static void
11493 remote_buffer_add_string (char **buffer, int *left, const char *string)
11494 {
11495 int len = strlen (string);
11496
11497 if (len > *left)
11498 error (_("Packet too long for target."));
11499
11500 memcpy (*buffer, string, len);
11501 *buffer += len;
11502 *left -= len;
11503
11504 /* NUL-terminate the buffer as a convenience, if there is
11505 room. */
11506 if (*left)
11507 **buffer = '\0';
11508 }
11509
11510 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11511 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11512 decrease *LEFT. Otherwise raise an error. */
11513
11514 static void
11515 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11516 int len)
11517 {
11518 if (2 * len > *left)
11519 error (_("Packet too long for target."));
11520
11521 bin2hex (bytes, *buffer, len);
11522 *buffer += 2 * len;
11523 *left -= 2 * len;
11524
11525 /* NUL-terminate the buffer as a convenience, if there is
11526 room. */
11527 if (*left)
11528 **buffer = '\0';
11529 }
11530
11531 /* If *LEFT is large enough, convert VALUE to hex and add it to
11532 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11533 decrease *LEFT. Otherwise raise an error. */
11534
11535 static void
11536 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11537 {
11538 int len = hexnumlen (value);
11539
11540 if (len > *left)
11541 error (_("Packet too long for target."));
11542
11543 hexnumstr (*buffer, value);
11544 *buffer += len;
11545 *left -= len;
11546
11547 /* NUL-terminate the buffer as a convenience, if there is
11548 room. */
11549 if (*left)
11550 **buffer = '\0';
11551 }
11552
11553 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11554 value, *REMOTE_ERRNO to the remote error number or zero if none
11555 was included, and *ATTACHMENT to point to the start of the annex
11556 if any. The length of the packet isn't needed here; there may
11557 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11558
11559 Return 0 if the packet could be parsed, -1 if it could not. If
11560 -1 is returned, the other variables may not be initialized. */
11561
11562 static int
11563 remote_hostio_parse_result (char *buffer, int *retcode,
11564 int *remote_errno, char **attachment)
11565 {
11566 char *p, *p2;
11567
11568 *remote_errno = 0;
11569 *attachment = NULL;
11570
11571 if (buffer[0] != 'F')
11572 return -1;
11573
11574 errno = 0;
11575 *retcode = strtol (&buffer[1], &p, 16);
11576 if (errno != 0 || p == &buffer[1])
11577 return -1;
11578
11579 /* Check for ",errno". */
11580 if (*p == ',')
11581 {
11582 errno = 0;
11583 *remote_errno = strtol (p + 1, &p2, 16);
11584 if (errno != 0 || p + 1 == p2)
11585 return -1;
11586 p = p2;
11587 }
11588
11589 /* Check for ";attachment". If there is no attachment, the
11590 packet should end here. */
11591 if (*p == ';')
11592 {
11593 *attachment = p + 1;
11594 return 0;
11595 }
11596 else if (*p == '\0')
11597 return 0;
11598 else
11599 return -1;
11600 }
11601
11602 /* Send a prepared I/O packet to the target and read its response.
11603 The prepared packet is in the global RS->BUF before this function
11604 is called, and the answer is there when we return.
11605
11606 COMMAND_BYTES is the length of the request to send, which may include
11607 binary data. WHICH_PACKET is the packet configuration to check
11608 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11609 is set to the error number and -1 is returned. Otherwise the value
11610 returned by the function is returned.
11611
11612 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11613 attachment is expected; an error will be reported if there's a
11614 mismatch. If one is found, *ATTACHMENT will be set to point into
11615 the packet buffer and *ATTACHMENT_LEN will be set to the
11616 attachment's length. */
11617
11618 static int
11619 remote_hostio_send_command (int command_bytes, int which_packet,
11620 int *remote_errno, char **attachment,
11621 int *attachment_len)
11622 {
11623 struct remote_state *rs = get_remote_state ();
11624 int ret, bytes_read;
11625 char *attachment_tmp;
11626
11627 if (packet_support (which_packet) == PACKET_DISABLE)
11628 {
11629 *remote_errno = FILEIO_ENOSYS;
11630 return -1;
11631 }
11632
11633 putpkt_binary (rs->buf, command_bytes);
11634 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11635
11636 /* If it timed out, something is wrong. Don't try to parse the
11637 buffer. */
11638 if (bytes_read < 0)
11639 {
11640 *remote_errno = FILEIO_EINVAL;
11641 return -1;
11642 }
11643
11644 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11645 {
11646 case PACKET_ERROR:
11647 *remote_errno = FILEIO_EINVAL;
11648 return -1;
11649 case PACKET_UNKNOWN:
11650 *remote_errno = FILEIO_ENOSYS;
11651 return -1;
11652 case PACKET_OK:
11653 break;
11654 }
11655
11656 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11657 &attachment_tmp))
11658 {
11659 *remote_errno = FILEIO_EINVAL;
11660 return -1;
11661 }
11662
11663 /* Make sure we saw an attachment if and only if we expected one. */
11664 if ((attachment_tmp == NULL && attachment != NULL)
11665 || (attachment_tmp != NULL && attachment == NULL))
11666 {
11667 *remote_errno = FILEIO_EINVAL;
11668 return -1;
11669 }
11670
11671 /* If an attachment was found, it must point into the packet buffer;
11672 work out how many bytes there were. */
11673 if (attachment_tmp != NULL)
11674 {
11675 *attachment = attachment_tmp;
11676 *attachment_len = bytes_read - (*attachment - rs->buf);
11677 }
11678
11679 return ret;
11680 }
11681
11682 /* See declaration.h. */
11683
11684 void
11685 readahead_cache::invalidate ()
11686 {
11687 this->fd = -1;
11688 }
11689
11690 /* See declaration.h. */
11691
11692 void
11693 readahead_cache::invalidate_fd (int fd)
11694 {
11695 if (this->fd == fd)
11696 this->fd = -1;
11697 }
11698
11699 /* Set the filesystem remote_hostio functions that take FILENAME
11700 arguments will use. Return 0 on success, or -1 if an error
11701 occurs (and set *REMOTE_ERRNO). */
11702
11703 static int
11704 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11705 {
11706 struct remote_state *rs = get_remote_state ();
11707 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11708 char *p = rs->buf;
11709 int left = get_remote_packet_size () - 1;
11710 char arg[9];
11711 int ret;
11712
11713 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11714 return 0;
11715
11716 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11717 return 0;
11718
11719 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11720
11721 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11722 remote_buffer_add_string (&p, &left, arg);
11723
11724 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11725 remote_errno, NULL, NULL);
11726
11727 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11728 return 0;
11729
11730 if (ret == 0)
11731 rs->fs_pid = required_pid;
11732
11733 return ret;
11734 }
11735
11736 /* Implementation of to_fileio_open. */
11737
11738 static int
11739 remote_hostio_open (struct target_ops *self,
11740 struct inferior *inf, const char *filename,
11741 int flags, int mode, int warn_if_slow,
11742 int *remote_errno)
11743 {
11744 struct remote_state *rs = get_remote_state ();
11745 char *p = rs->buf;
11746 int left = get_remote_packet_size () - 1;
11747
11748 if (warn_if_slow)
11749 {
11750 static int warning_issued = 0;
11751
11752 printf_unfiltered (_("Reading %s from remote target...\n"),
11753 filename);
11754
11755 if (!warning_issued)
11756 {
11757 warning (_("File transfers from remote targets can be slow."
11758 " Use \"set sysroot\" to access files locally"
11759 " instead."));
11760 warning_issued = 1;
11761 }
11762 }
11763
11764 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11765 return -1;
11766
11767 remote_buffer_add_string (&p, &left, "vFile:open:");
11768
11769 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11770 strlen (filename));
11771 remote_buffer_add_string (&p, &left, ",");
11772
11773 remote_buffer_add_int (&p, &left, flags);
11774 remote_buffer_add_string (&p, &left, ",");
11775
11776 remote_buffer_add_int (&p, &left, mode);
11777
11778 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11779 remote_errno, NULL, NULL);
11780 }
11781
11782 int
11783 remote_target::fileio_open (struct inferior *inf, const char *filename,
11784 int flags, int mode, int warn_if_slow,
11785 int *remote_errno)
11786 {
11787 return remote_hostio_open (this, inf, filename, flags, mode, warn_if_slow,
11788 remote_errno);
11789 }
11790
11791 /* Implementation of to_fileio_pwrite. */
11792
11793 static int
11794 remote_hostio_pwrite (struct target_ops *self,
11795 int fd, const gdb_byte *write_buf, int len,
11796 ULONGEST offset, int *remote_errno)
11797 {
11798 struct remote_state *rs = get_remote_state ();
11799 char *p = rs->buf;
11800 int left = get_remote_packet_size ();
11801 int out_len;
11802
11803 rs->readahead_cache.invalidate_fd (fd);
11804
11805 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11806
11807 remote_buffer_add_int (&p, &left, fd);
11808 remote_buffer_add_string (&p, &left, ",");
11809
11810 remote_buffer_add_int (&p, &left, offset);
11811 remote_buffer_add_string (&p, &left, ",");
11812
11813 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11814 get_remote_packet_size () - (p - rs->buf));
11815
11816 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11817 remote_errno, NULL, NULL);
11818 }
11819
11820 int
11821 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11822 ULONGEST offset, int *remote_errno)
11823 {
11824 return remote_hostio_pwrite (this, fd, write_buf, len, offset, remote_errno);
11825 }
11826
11827 /* Helper for the implementation of to_fileio_pread. Read the file
11828 from the remote side with vFile:pread. */
11829
11830 static int
11831 remote_hostio_pread_vFile (struct target_ops *self,
11832 int fd, gdb_byte *read_buf, int len,
11833 ULONGEST offset, int *remote_errno)
11834 {
11835 struct remote_state *rs = get_remote_state ();
11836 char *p = rs->buf;
11837 char *attachment;
11838 int left = get_remote_packet_size ();
11839 int ret, attachment_len;
11840 int read_len;
11841
11842 remote_buffer_add_string (&p, &left, "vFile:pread:");
11843
11844 remote_buffer_add_int (&p, &left, fd);
11845 remote_buffer_add_string (&p, &left, ",");
11846
11847 remote_buffer_add_int (&p, &left, len);
11848 remote_buffer_add_string (&p, &left, ",");
11849
11850 remote_buffer_add_int (&p, &left, offset);
11851
11852 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11853 remote_errno, &attachment,
11854 &attachment_len);
11855
11856 if (ret < 0)
11857 return ret;
11858
11859 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11860 read_buf, len);
11861 if (read_len != ret)
11862 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11863
11864 return ret;
11865 }
11866
11867 /* See declaration.h. */
11868
11869 int
11870 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
11871 ULONGEST offset)
11872 {
11873 if (this->fd == fd
11874 && this->offset <= offset
11875 && offset < this->offset + this->bufsize)
11876 {
11877 ULONGEST max = this->offset + this->bufsize;
11878
11879 if (offset + len > max)
11880 len = max - offset;
11881
11882 memcpy (read_buf, this->buf + offset - this->offset, len);
11883 return len;
11884 }
11885
11886 return 0;
11887 }
11888
11889 /* Implementation of to_fileio_pread. */
11890
11891 static int
11892 remote_hostio_pread (struct target_ops *self,
11893 int fd, gdb_byte *read_buf, int len,
11894 ULONGEST offset, int *remote_errno)
11895 {
11896 int ret;
11897 struct remote_state *rs = get_remote_state ();
11898 readahead_cache *cache = &rs->readahead_cache;
11899
11900 ret = cache->pread (fd, read_buf, len, offset);
11901 if (ret > 0)
11902 {
11903 cache->hit_count++;
11904
11905 if (remote_debug)
11906 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11907 pulongest (cache->hit_count));
11908 return ret;
11909 }
11910
11911 cache->miss_count++;
11912 if (remote_debug)
11913 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11914 pulongest (cache->miss_count));
11915
11916 cache->fd = fd;
11917 cache->offset = offset;
11918 cache->bufsize = get_remote_packet_size ();
11919 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11920
11921 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11922 cache->offset, remote_errno);
11923 if (ret <= 0)
11924 {
11925 cache->invalidate_fd (fd);
11926 return ret;
11927 }
11928
11929 cache->bufsize = ret;
11930 return cache->pread (fd, read_buf, len, offset);
11931 }
11932
11933 int
11934 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
11935 ULONGEST offset, int *remote_errno)
11936 {
11937 return remote_hostio_pread (this, fd, read_buf, len, offset, remote_errno);
11938 }
11939
11940 /* Implementation of to_fileio_close. */
11941
11942 static int
11943 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11944 {
11945 struct remote_state *rs = get_remote_state ();
11946 char *p = rs->buf;
11947 int left = get_remote_packet_size () - 1;
11948
11949 rs->readahead_cache.invalidate_fd (fd);
11950
11951 remote_buffer_add_string (&p, &left, "vFile:close:");
11952
11953 remote_buffer_add_int (&p, &left, fd);
11954
11955 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11956 remote_errno, NULL, NULL);
11957 }
11958
11959 int
11960 remote_target::fileio_close (int fd, int *remote_errno)
11961 {
11962 return remote_hostio_close (this, fd, remote_errno);
11963 }
11964
11965 /* Implementation of to_fileio_unlink. */
11966
11967 static int
11968 remote_hostio_unlink (struct target_ops *self,
11969 struct inferior *inf, const char *filename,
11970 int *remote_errno)
11971 {
11972 struct remote_state *rs = get_remote_state ();
11973 char *p = rs->buf;
11974 int left = get_remote_packet_size () - 1;
11975
11976 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11977 return -1;
11978
11979 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11980
11981 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11982 strlen (filename));
11983
11984 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11985 remote_errno, NULL, NULL);
11986 }
11987
11988 int
11989 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
11990 int *remote_errno)
11991 {
11992 return remote_hostio_unlink (this, inf, filename, remote_errno);
11993 }
11994
11995 /* Implementation of to_fileio_readlink. */
11996
11997 gdb::optional<std::string>
11998 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
11999 int *remote_errno)
12000 {
12001 struct remote_state *rs = get_remote_state ();
12002 char *p = rs->buf;
12003 char *attachment;
12004 int left = get_remote_packet_size ();
12005 int len, attachment_len;
12006 int read_len;
12007
12008 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12009 return {};
12010
12011 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12012
12013 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12014 strlen (filename));
12015
12016 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12017 remote_errno, &attachment,
12018 &attachment_len);
12019
12020 if (len < 0)
12021 return {};
12022
12023 std::string ret (len, '\0');
12024
12025 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12026 (gdb_byte *) &ret[0], len);
12027 if (read_len != len)
12028 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12029
12030 return ret;
12031 }
12032
12033 /* Implementation of to_fileio_fstat. */
12034
12035 int
12036 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12037 {
12038 struct remote_state *rs = get_remote_state ();
12039 char *p = rs->buf;
12040 int left = get_remote_packet_size ();
12041 int attachment_len, ret;
12042 char *attachment;
12043 struct fio_stat fst;
12044 int read_len;
12045
12046 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12047
12048 remote_buffer_add_int (&p, &left, fd);
12049
12050 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12051 remote_errno, &attachment,
12052 &attachment_len);
12053 if (ret < 0)
12054 {
12055 if (*remote_errno != FILEIO_ENOSYS)
12056 return ret;
12057
12058 /* Strictly we should return -1, ENOSYS here, but when
12059 "set sysroot remote:" was implemented in August 2008
12060 BFD's need for a stat function was sidestepped with
12061 this hack. This was not remedied until March 2015
12062 so we retain the previous behavior to avoid breaking
12063 compatibility.
12064
12065 Note that the memset is a March 2015 addition; older
12066 GDBs set st_size *and nothing else* so the structure
12067 would have garbage in all other fields. This might
12068 break something but retaining the previous behavior
12069 here would be just too wrong. */
12070
12071 memset (st, 0, sizeof (struct stat));
12072 st->st_size = INT_MAX;
12073 return 0;
12074 }
12075
12076 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12077 (gdb_byte *) &fst, sizeof (fst));
12078
12079 if (read_len != ret)
12080 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12081
12082 if (read_len != sizeof (fst))
12083 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12084 read_len, (int) sizeof (fst));
12085
12086 remote_fileio_to_host_stat (&fst, st);
12087
12088 return 0;
12089 }
12090
12091 /* Implementation of to_filesystem_is_local. */
12092
12093 bool
12094 remote_target::filesystem_is_local ()
12095 {
12096 /* Valgrind GDB presents itself as a remote target but works
12097 on the local filesystem: it does not implement remote get
12098 and users are not expected to set a sysroot. To handle
12099 this case we treat the remote filesystem as local if the
12100 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12101 does not support vFile:open. */
12102 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12103 {
12104 enum packet_support ps = packet_support (PACKET_vFile_open);
12105
12106 if (ps == PACKET_SUPPORT_UNKNOWN)
12107 {
12108 int fd, remote_errno;
12109
12110 /* Try opening a file to probe support. The supplied
12111 filename is irrelevant, we only care about whether
12112 the stub recognizes the packet or not. */
12113 fd = remote_hostio_open (this, NULL, "just probing",
12114 FILEIO_O_RDONLY, 0700, 0,
12115 &remote_errno);
12116
12117 if (fd >= 0)
12118 remote_hostio_close (this, fd, &remote_errno);
12119
12120 ps = packet_support (PACKET_vFile_open);
12121 }
12122
12123 if (ps == PACKET_DISABLE)
12124 {
12125 static int warning_issued = 0;
12126
12127 if (!warning_issued)
12128 {
12129 warning (_("remote target does not support file"
12130 " transfer, attempting to access files"
12131 " from local filesystem."));
12132 warning_issued = 1;
12133 }
12134
12135 return true;
12136 }
12137 }
12138
12139 return false;
12140 }
12141
12142 static int
12143 remote_fileio_errno_to_host (int errnum)
12144 {
12145 switch (errnum)
12146 {
12147 case FILEIO_EPERM:
12148 return EPERM;
12149 case FILEIO_ENOENT:
12150 return ENOENT;
12151 case FILEIO_EINTR:
12152 return EINTR;
12153 case FILEIO_EIO:
12154 return EIO;
12155 case FILEIO_EBADF:
12156 return EBADF;
12157 case FILEIO_EACCES:
12158 return EACCES;
12159 case FILEIO_EFAULT:
12160 return EFAULT;
12161 case FILEIO_EBUSY:
12162 return EBUSY;
12163 case FILEIO_EEXIST:
12164 return EEXIST;
12165 case FILEIO_ENODEV:
12166 return ENODEV;
12167 case FILEIO_ENOTDIR:
12168 return ENOTDIR;
12169 case FILEIO_EISDIR:
12170 return EISDIR;
12171 case FILEIO_EINVAL:
12172 return EINVAL;
12173 case FILEIO_ENFILE:
12174 return ENFILE;
12175 case FILEIO_EMFILE:
12176 return EMFILE;
12177 case FILEIO_EFBIG:
12178 return EFBIG;
12179 case FILEIO_ENOSPC:
12180 return ENOSPC;
12181 case FILEIO_ESPIPE:
12182 return ESPIPE;
12183 case FILEIO_EROFS:
12184 return EROFS;
12185 case FILEIO_ENOSYS:
12186 return ENOSYS;
12187 case FILEIO_ENAMETOOLONG:
12188 return ENAMETOOLONG;
12189 }
12190 return -1;
12191 }
12192
12193 static char *
12194 remote_hostio_error (int errnum)
12195 {
12196 int host_error = remote_fileio_errno_to_host (errnum);
12197
12198 if (host_error == -1)
12199 error (_("Unknown remote I/O error %d"), errnum);
12200 else
12201 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12202 }
12203
12204 /* A RAII wrapper around a remote file descriptor. */
12205
12206 class scoped_remote_fd
12207 {
12208 public:
12209 explicit scoped_remote_fd (int fd)
12210 : m_fd (fd)
12211 {
12212 }
12213
12214 ~scoped_remote_fd ()
12215 {
12216 if (m_fd != -1)
12217 {
12218 try
12219 {
12220 int remote_errno;
12221 remote_hostio_close (find_target_at (process_stratum),
12222 m_fd, &remote_errno);
12223 }
12224 catch (...)
12225 {
12226 /* Swallow exception before it escapes the dtor. If
12227 something goes wrong, likely the connection is gone,
12228 and there's nothing else that can be done. */
12229 }
12230 }
12231 }
12232
12233 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12234
12235 /* Release ownership of the file descriptor, and return it. */
12236 int release () noexcept
12237 {
12238 int fd = m_fd;
12239 m_fd = -1;
12240 return fd;
12241 }
12242
12243 /* Return the owned file descriptor. */
12244 int get () const noexcept
12245 {
12246 return m_fd;
12247 }
12248
12249 private:
12250 /* The owned remote I/O file descriptor. */
12251 int m_fd;
12252 };
12253
12254 void
12255 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12256 {
12257 struct cleanup *back_to;
12258 int retcode, remote_errno, bytes, io_size;
12259 gdb_byte *buffer;
12260 int bytes_in_buffer;
12261 int saw_eof;
12262 ULONGEST offset;
12263 struct remote_state *rs = get_remote_state ();
12264
12265 if (!rs->remote_desc)
12266 error (_("command can only be used with remote target"));
12267
12268 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12269 if (file == NULL)
12270 perror_with_name (local_file);
12271
12272 scoped_remote_fd fd
12273 (remote_hostio_open (find_target_at (process_stratum), NULL,
12274 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12275 | FILEIO_O_TRUNC),
12276 0700, 0, &remote_errno));
12277 if (fd.get () == -1)
12278 remote_hostio_error (remote_errno);
12279
12280 /* Send up to this many bytes at once. They won't all fit in the
12281 remote packet limit, so we'll transfer slightly fewer. */
12282 io_size = get_remote_packet_size ();
12283 buffer = (gdb_byte *) xmalloc (io_size);
12284 back_to = make_cleanup (xfree, buffer);
12285
12286 bytes_in_buffer = 0;
12287 saw_eof = 0;
12288 offset = 0;
12289 while (bytes_in_buffer || !saw_eof)
12290 {
12291 if (!saw_eof)
12292 {
12293 bytes = fread (buffer + bytes_in_buffer, 1,
12294 io_size - bytes_in_buffer,
12295 file.get ());
12296 if (bytes == 0)
12297 {
12298 if (ferror (file.get ()))
12299 error (_("Error reading %s."), local_file);
12300 else
12301 {
12302 /* EOF. Unless there is something still in the
12303 buffer from the last iteration, we are done. */
12304 saw_eof = 1;
12305 if (bytes_in_buffer == 0)
12306 break;
12307 }
12308 }
12309 }
12310 else
12311 bytes = 0;
12312
12313 bytes += bytes_in_buffer;
12314 bytes_in_buffer = 0;
12315
12316 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12317 fd.get (), buffer, bytes,
12318 offset, &remote_errno);
12319
12320 if (retcode < 0)
12321 remote_hostio_error (remote_errno);
12322 else if (retcode == 0)
12323 error (_("Remote write of %d bytes returned 0!"), bytes);
12324 else if (retcode < bytes)
12325 {
12326 /* Short write. Save the rest of the read data for the next
12327 write. */
12328 bytes_in_buffer = bytes - retcode;
12329 memmove (buffer, buffer + retcode, bytes_in_buffer);
12330 }
12331
12332 offset += retcode;
12333 }
12334
12335 if (remote_hostio_close (find_target_at (process_stratum),
12336 fd.release (), &remote_errno))
12337 remote_hostio_error (remote_errno);
12338
12339 if (from_tty)
12340 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12341 do_cleanups (back_to);
12342 }
12343
12344 void
12345 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12346 {
12347 struct cleanup *back_to;
12348 int remote_errno, bytes, io_size;
12349 gdb_byte *buffer;
12350 ULONGEST offset;
12351 struct remote_state *rs = get_remote_state ();
12352
12353 if (!rs->remote_desc)
12354 error (_("command can only be used with remote target"));
12355
12356 scoped_remote_fd fd
12357 (remote_hostio_open (find_target_at (process_stratum), NULL,
12358 remote_file, FILEIO_O_RDONLY, 0, 0,
12359 &remote_errno));
12360 if (fd.get () == -1)
12361 remote_hostio_error (remote_errno);
12362
12363 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12364 if (file == NULL)
12365 perror_with_name (local_file);
12366
12367 /* Send up to this many bytes at once. They won't all fit in the
12368 remote packet limit, so we'll transfer slightly fewer. */
12369 io_size = get_remote_packet_size ();
12370 buffer = (gdb_byte *) xmalloc (io_size);
12371 back_to = make_cleanup (xfree, buffer);
12372
12373 offset = 0;
12374 while (1)
12375 {
12376 bytes = remote_hostio_pread (find_target_at (process_stratum),
12377 fd.get (), buffer, io_size, offset,
12378 &remote_errno);
12379 if (bytes == 0)
12380 /* Success, but no bytes, means end-of-file. */
12381 break;
12382 if (bytes == -1)
12383 remote_hostio_error (remote_errno);
12384
12385 offset += bytes;
12386
12387 bytes = fwrite (buffer, 1, bytes, file.get ());
12388 if (bytes == 0)
12389 perror_with_name (local_file);
12390 }
12391
12392 if (remote_hostio_close (find_target_at (process_stratum),
12393 fd.release (), &remote_errno))
12394 remote_hostio_error (remote_errno);
12395
12396 if (from_tty)
12397 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12398 do_cleanups (back_to);
12399 }
12400
12401 void
12402 remote_file_delete (const char *remote_file, int from_tty)
12403 {
12404 int retcode, remote_errno;
12405 struct remote_state *rs = get_remote_state ();
12406
12407 if (!rs->remote_desc)
12408 error (_("command can only be used with remote target"));
12409
12410 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12411 NULL, remote_file, &remote_errno);
12412 if (retcode == -1)
12413 remote_hostio_error (remote_errno);
12414
12415 if (from_tty)
12416 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12417 }
12418
12419 static void
12420 remote_put_command (const char *args, int from_tty)
12421 {
12422 if (args == NULL)
12423 error_no_arg (_("file to put"));
12424
12425 gdb_argv argv (args);
12426 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12427 error (_("Invalid parameters to remote put"));
12428
12429 remote_file_put (argv[0], argv[1], from_tty);
12430 }
12431
12432 static void
12433 remote_get_command (const char *args, int from_tty)
12434 {
12435 if (args == NULL)
12436 error_no_arg (_("file to get"));
12437
12438 gdb_argv argv (args);
12439 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12440 error (_("Invalid parameters to remote get"));
12441
12442 remote_file_get (argv[0], argv[1], from_tty);
12443 }
12444
12445 static void
12446 remote_delete_command (const char *args, int from_tty)
12447 {
12448 if (args == NULL)
12449 error_no_arg (_("file to delete"));
12450
12451 gdb_argv argv (args);
12452 if (argv[0] == NULL || argv[1] != NULL)
12453 error (_("Invalid parameters to remote delete"));
12454
12455 remote_file_delete (argv[0], from_tty);
12456 }
12457
12458 static void
12459 remote_command (const char *args, int from_tty)
12460 {
12461 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12462 }
12463
12464 bool
12465 remote_target::can_execute_reverse ()
12466 {
12467 if (packet_support (PACKET_bs) == PACKET_ENABLE
12468 || packet_support (PACKET_bc) == PACKET_ENABLE)
12469 return true;
12470 else
12471 return false;
12472 }
12473
12474 bool
12475 remote_target::supports_non_stop ()
12476 {
12477 return true;
12478 }
12479
12480 bool
12481 remote_target::supports_disable_randomization ()
12482 {
12483 /* Only supported in extended mode. */
12484 return false;
12485 }
12486
12487 bool
12488 remote_target::supports_multi_process ()
12489 {
12490 struct remote_state *rs = get_remote_state ();
12491
12492 return remote_multi_process_p (rs);
12493 }
12494
12495 static int
12496 remote_supports_cond_tracepoints ()
12497 {
12498 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12499 }
12500
12501 bool
12502 remote_target::supports_evaluation_of_breakpoint_conditions ()
12503 {
12504 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12505 }
12506
12507 static int
12508 remote_supports_fast_tracepoints ()
12509 {
12510 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12511 }
12512
12513 static int
12514 remote_supports_static_tracepoints ()
12515 {
12516 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12517 }
12518
12519 static int
12520 remote_supports_install_in_trace ()
12521 {
12522 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12523 }
12524
12525 bool
12526 remote_target::supports_enable_disable_tracepoint ()
12527 {
12528 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12529 == PACKET_ENABLE);
12530 }
12531
12532 bool
12533 remote_target::supports_string_tracing ()
12534 {
12535 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12536 }
12537
12538 bool
12539 remote_target::can_run_breakpoint_commands ()
12540 {
12541 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12542 }
12543
12544 void
12545 remote_target::trace_init ()
12546 {
12547 struct remote_state *rs = get_remote_state ();
12548
12549 putpkt ("QTinit");
12550 remote_get_noisy_reply ();
12551 if (strcmp (rs->buf, "OK") != 0)
12552 error (_("Target does not support this command."));
12553 }
12554
12555 /* Recursive routine to walk through command list including loops, and
12556 download packets for each command. */
12557
12558 static void
12559 remote_download_command_source (int num, ULONGEST addr,
12560 struct command_line *cmds)
12561 {
12562 struct remote_state *rs = get_remote_state ();
12563 struct command_line *cmd;
12564
12565 for (cmd = cmds; cmd; cmd = cmd->next)
12566 {
12567 QUIT; /* Allow user to bail out with ^C. */
12568 strcpy (rs->buf, "QTDPsrc:");
12569 encode_source_string (num, addr, "cmd", cmd->line,
12570 rs->buf + strlen (rs->buf),
12571 rs->buf_size - strlen (rs->buf));
12572 putpkt (rs->buf);
12573 remote_get_noisy_reply ();
12574 if (strcmp (rs->buf, "OK"))
12575 warning (_("Target does not support source download."));
12576
12577 if (cmd->control_type == while_control
12578 || cmd->control_type == while_stepping_control)
12579 {
12580 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12581
12582 QUIT; /* Allow user to bail out with ^C. */
12583 strcpy (rs->buf, "QTDPsrc:");
12584 encode_source_string (num, addr, "cmd", "end",
12585 rs->buf + strlen (rs->buf),
12586 rs->buf_size - strlen (rs->buf));
12587 putpkt (rs->buf);
12588 remote_get_noisy_reply ();
12589 if (strcmp (rs->buf, "OK"))
12590 warning (_("Target does not support source download."));
12591 }
12592 }
12593 }
12594
12595 void
12596 remote_target::download_tracepoint (struct bp_location *loc)
12597 {
12598 #define BUF_SIZE 2048
12599
12600 CORE_ADDR tpaddr;
12601 char addrbuf[40];
12602 char buf[BUF_SIZE];
12603 std::vector<std::string> tdp_actions;
12604 std::vector<std::string> stepping_actions;
12605 char *pkt;
12606 struct breakpoint *b = loc->owner;
12607 struct tracepoint *t = (struct tracepoint *) b;
12608 struct remote_state *rs = get_remote_state ();
12609
12610 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12611
12612 tpaddr = loc->address;
12613 sprintf_vma (addrbuf, tpaddr);
12614 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12615 addrbuf, /* address */
12616 (b->enable_state == bp_enabled ? 'E' : 'D'),
12617 t->step_count, t->pass_count);
12618 /* Fast tracepoints are mostly handled by the target, but we can
12619 tell the target how big of an instruction block should be moved
12620 around. */
12621 if (b->type == bp_fast_tracepoint)
12622 {
12623 /* Only test for support at download time; we may not know
12624 target capabilities at definition time. */
12625 if (remote_supports_fast_tracepoints ())
12626 {
12627 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12628 NULL))
12629 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12630 gdb_insn_length (loc->gdbarch, tpaddr));
12631 else
12632 /* If it passed validation at definition but fails now,
12633 something is very wrong. */
12634 internal_error (__FILE__, __LINE__,
12635 _("Fast tracepoint not "
12636 "valid during download"));
12637 }
12638 else
12639 /* Fast tracepoints are functionally identical to regular
12640 tracepoints, so don't take lack of support as a reason to
12641 give up on the trace run. */
12642 warning (_("Target does not support fast tracepoints, "
12643 "downloading %d as regular tracepoint"), b->number);
12644 }
12645 else if (b->type == bp_static_tracepoint)
12646 {
12647 /* Only test for support at download time; we may not know
12648 target capabilities at definition time. */
12649 if (remote_supports_static_tracepoints ())
12650 {
12651 struct static_tracepoint_marker marker;
12652
12653 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12654 strcat (buf, ":S");
12655 else
12656 error (_("Static tracepoint not valid during download"));
12657 }
12658 else
12659 /* Fast tracepoints are functionally identical to regular
12660 tracepoints, so don't take lack of support as a reason
12661 to give up on the trace run. */
12662 error (_("Target does not support static tracepoints"));
12663 }
12664 /* If the tracepoint has a conditional, make it into an agent
12665 expression and append to the definition. */
12666 if (loc->cond)
12667 {
12668 /* Only test support at download time, we may not know target
12669 capabilities at definition time. */
12670 if (remote_supports_cond_tracepoints ())
12671 {
12672 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12673 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12674 aexpr->len);
12675 pkt = buf + strlen (buf);
12676 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12677 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12678 *pkt = '\0';
12679 }
12680 else
12681 warning (_("Target does not support conditional tracepoints, "
12682 "ignoring tp %d cond"), b->number);
12683 }
12684
12685 if (b->commands || *default_collect)
12686 strcat (buf, "-");
12687 putpkt (buf);
12688 remote_get_noisy_reply ();
12689 if (strcmp (rs->buf, "OK"))
12690 error (_("Target does not support tracepoints."));
12691
12692 /* do_single_steps (t); */
12693 for (auto action_it = tdp_actions.begin ();
12694 action_it != tdp_actions.end (); action_it++)
12695 {
12696 QUIT; /* Allow user to bail out with ^C. */
12697
12698 bool has_more = (action_it != tdp_actions.end ()
12699 || !stepping_actions.empty ());
12700
12701 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12702 b->number, addrbuf, /* address */
12703 action_it->c_str (),
12704 has_more ? '-' : 0);
12705 putpkt (buf);
12706 remote_get_noisy_reply ();
12707 if (strcmp (rs->buf, "OK"))
12708 error (_("Error on target while setting tracepoints."));
12709 }
12710
12711 for (auto action_it = stepping_actions.begin ();
12712 action_it != stepping_actions.end (); action_it++)
12713 {
12714 QUIT; /* Allow user to bail out with ^C. */
12715
12716 bool is_first = action_it == stepping_actions.begin ();
12717 bool has_more = action_it != stepping_actions.end ();
12718
12719 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12720 b->number, addrbuf, /* address */
12721 is_first ? "S" : "",
12722 action_it->c_str (),
12723 has_more ? "-" : "");
12724 putpkt (buf);
12725 remote_get_noisy_reply ();
12726 if (strcmp (rs->buf, "OK"))
12727 error (_("Error on target while setting tracepoints."));
12728 }
12729
12730 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12731 {
12732 if (b->location != NULL)
12733 {
12734 strcpy (buf, "QTDPsrc:");
12735 encode_source_string (b->number, loc->address, "at",
12736 event_location_to_string (b->location.get ()),
12737 buf + strlen (buf), 2048 - strlen (buf));
12738 putpkt (buf);
12739 remote_get_noisy_reply ();
12740 if (strcmp (rs->buf, "OK"))
12741 warning (_("Target does not support source download."));
12742 }
12743 if (b->cond_string)
12744 {
12745 strcpy (buf, "QTDPsrc:");
12746 encode_source_string (b->number, loc->address,
12747 "cond", b->cond_string, buf + strlen (buf),
12748 2048 - strlen (buf));
12749 putpkt (buf);
12750 remote_get_noisy_reply ();
12751 if (strcmp (rs->buf, "OK"))
12752 warning (_("Target does not support source download."));
12753 }
12754 remote_download_command_source (b->number, loc->address,
12755 breakpoint_commands (b));
12756 }
12757 }
12758
12759 bool
12760 remote_target::can_download_tracepoint ()
12761 {
12762 struct remote_state *rs = get_remote_state ();
12763 struct trace_status *ts;
12764 int status;
12765
12766 /* Don't try to install tracepoints until we've relocated our
12767 symbols, and fetched and merged the target's tracepoint list with
12768 ours. */
12769 if (rs->starting_up)
12770 return false;
12771
12772 ts = current_trace_status ();
12773 status = get_trace_status (ts);
12774
12775 if (status == -1 || !ts->running_known || !ts->running)
12776 return false;
12777
12778 /* If we are in a tracing experiment, but remote stub doesn't support
12779 installing tracepoint in trace, we have to return. */
12780 if (!remote_supports_install_in_trace ())
12781 return false;
12782
12783 return true;
12784 }
12785
12786
12787 void
12788 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
12789 {
12790 struct remote_state *rs = get_remote_state ();
12791 char *p;
12792
12793 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12794 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12795 tsv.builtin);
12796 p = rs->buf + strlen (rs->buf);
12797 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
12798 error (_("Trace state variable name too long for tsv definition packet"));
12799 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
12800 *p++ = '\0';
12801 putpkt (rs->buf);
12802 remote_get_noisy_reply ();
12803 if (*rs->buf == '\0')
12804 error (_("Target does not support this command."));
12805 if (strcmp (rs->buf, "OK") != 0)
12806 error (_("Error on target while downloading trace state variable."));
12807 }
12808
12809 void
12810 remote_target::enable_tracepoint (struct bp_location *location)
12811 {
12812 struct remote_state *rs = get_remote_state ();
12813 char addr_buf[40];
12814
12815 sprintf_vma (addr_buf, location->address);
12816 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12817 location->owner->number, addr_buf);
12818 putpkt (rs->buf);
12819 remote_get_noisy_reply ();
12820 if (*rs->buf == '\0')
12821 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12822 if (strcmp (rs->buf, "OK") != 0)
12823 error (_("Error on target while enabling tracepoint."));
12824 }
12825
12826 void
12827 remote_target::disable_tracepoint (struct bp_location *location)
12828 {
12829 struct remote_state *rs = get_remote_state ();
12830 char addr_buf[40];
12831
12832 sprintf_vma (addr_buf, location->address);
12833 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12834 location->owner->number, addr_buf);
12835 putpkt (rs->buf);
12836 remote_get_noisy_reply ();
12837 if (*rs->buf == '\0')
12838 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12839 if (strcmp (rs->buf, "OK") != 0)
12840 error (_("Error on target while disabling tracepoint."));
12841 }
12842
12843 void
12844 remote_target::trace_set_readonly_regions ()
12845 {
12846 asection *s;
12847 bfd *abfd = NULL;
12848 bfd_size_type size;
12849 bfd_vma vma;
12850 int anysecs = 0;
12851 int offset = 0;
12852
12853 if (!exec_bfd)
12854 return; /* No information to give. */
12855
12856 struct remote_state *rs = get_remote_state ();
12857
12858 strcpy (rs->buf, "QTro");
12859 offset = strlen (rs->buf);
12860 for (s = exec_bfd->sections; s; s = s->next)
12861 {
12862 char tmp1[40], tmp2[40];
12863 int sec_length;
12864
12865 if ((s->flags & SEC_LOAD) == 0 ||
12866 /* (s->flags & SEC_CODE) == 0 || */
12867 (s->flags & SEC_READONLY) == 0)
12868 continue;
12869
12870 anysecs = 1;
12871 vma = bfd_get_section_vma (abfd, s);
12872 size = bfd_get_section_size (s);
12873 sprintf_vma (tmp1, vma);
12874 sprintf_vma (tmp2, vma + size);
12875 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12876 if (offset + sec_length + 1 > rs->buf_size)
12877 {
12878 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12879 warning (_("\
12880 Too many sections for read-only sections definition packet."));
12881 break;
12882 }
12883 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12884 tmp1, tmp2);
12885 offset += sec_length;
12886 }
12887 if (anysecs)
12888 {
12889 putpkt (rs->buf);
12890 getpkt (&rs->buf, &rs->buf_size, 0);
12891 }
12892 }
12893
12894 void
12895 remote_target::trace_start ()
12896 {
12897 struct remote_state *rs = get_remote_state ();
12898
12899 putpkt ("QTStart");
12900 remote_get_noisy_reply ();
12901 if (*rs->buf == '\0')
12902 error (_("Target does not support this command."));
12903 if (strcmp (rs->buf, "OK") != 0)
12904 error (_("Bogus reply from target: %s"), rs->buf);
12905 }
12906
12907 int
12908 remote_target::get_trace_status (struct trace_status *ts)
12909 {
12910 /* Initialize it just to avoid a GCC false warning. */
12911 char *p = NULL;
12912 /* FIXME we need to get register block size some other way. */
12913 extern int trace_regblock_size;
12914 enum packet_result result;
12915 struct remote_state *rs = get_remote_state ();
12916
12917 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12918 return -1;
12919
12920 trace_regblock_size
12921 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12922
12923 putpkt ("qTStatus");
12924
12925 TRY
12926 {
12927 p = remote_get_noisy_reply ();
12928 }
12929 CATCH (ex, RETURN_MASK_ERROR)
12930 {
12931 if (ex.error != TARGET_CLOSE_ERROR)
12932 {
12933 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12934 return -1;
12935 }
12936 throw_exception (ex);
12937 }
12938 END_CATCH
12939
12940 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12941
12942 /* If the remote target doesn't do tracing, flag it. */
12943 if (result == PACKET_UNKNOWN)
12944 return -1;
12945
12946 /* We're working with a live target. */
12947 ts->filename = NULL;
12948
12949 if (*p++ != 'T')
12950 error (_("Bogus trace status reply from target: %s"), rs->buf);
12951
12952 /* Function 'parse_trace_status' sets default value of each field of
12953 'ts' at first, so we don't have to do it here. */
12954 parse_trace_status (p, ts);
12955
12956 return ts->running;
12957 }
12958
12959 void
12960 remote_target::get_tracepoint_status (struct breakpoint *bp,
12961 struct uploaded_tp *utp)
12962 {
12963 struct remote_state *rs = get_remote_state ();
12964 char *reply;
12965 struct bp_location *loc;
12966 struct tracepoint *tp = (struct tracepoint *) bp;
12967 size_t size = get_remote_packet_size ();
12968
12969 if (tp)
12970 {
12971 tp->hit_count = 0;
12972 tp->traceframe_usage = 0;
12973 for (loc = tp->loc; loc; loc = loc->next)
12974 {
12975 /* If the tracepoint was never downloaded, don't go asking for
12976 any status. */
12977 if (tp->number_on_target == 0)
12978 continue;
12979 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12980 phex_nz (loc->address, 0));
12981 putpkt (rs->buf);
12982 reply = remote_get_noisy_reply ();
12983 if (reply && *reply)
12984 {
12985 if (*reply == 'V')
12986 parse_tracepoint_status (reply + 1, bp, utp);
12987 }
12988 }
12989 }
12990 else if (utp)
12991 {
12992 utp->hit_count = 0;
12993 utp->traceframe_usage = 0;
12994 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12995 phex_nz (utp->addr, 0));
12996 putpkt (rs->buf);
12997 reply = remote_get_noisy_reply ();
12998 if (reply && *reply)
12999 {
13000 if (*reply == 'V')
13001 parse_tracepoint_status (reply + 1, bp, utp);
13002 }
13003 }
13004 }
13005
13006 void
13007 remote_target::trace_stop ()
13008 {
13009 struct remote_state *rs = get_remote_state ();
13010
13011 putpkt ("QTStop");
13012 remote_get_noisy_reply ();
13013 if (*rs->buf == '\0')
13014 error (_("Target does not support this command."));
13015 if (strcmp (rs->buf, "OK") != 0)
13016 error (_("Bogus reply from target: %s"), rs->buf);
13017 }
13018
13019 int
13020 remote_target::trace_find (enum trace_find_type type, int num,
13021 CORE_ADDR addr1, CORE_ADDR addr2,
13022 int *tpp)
13023 {
13024 struct remote_state *rs = get_remote_state ();
13025 char *endbuf = rs->buf + get_remote_packet_size ();
13026 char *p, *reply;
13027 int target_frameno = -1, target_tracept = -1;
13028
13029 /* Lookups other than by absolute frame number depend on the current
13030 trace selected, so make sure it is correct on the remote end
13031 first. */
13032 if (type != tfind_number)
13033 set_remote_traceframe ();
13034
13035 p = rs->buf;
13036 strcpy (p, "QTFrame:");
13037 p = strchr (p, '\0');
13038 switch (type)
13039 {
13040 case tfind_number:
13041 xsnprintf (p, endbuf - p, "%x", num);
13042 break;
13043 case tfind_pc:
13044 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13045 break;
13046 case tfind_tp:
13047 xsnprintf (p, endbuf - p, "tdp:%x", num);
13048 break;
13049 case tfind_range:
13050 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13051 phex_nz (addr2, 0));
13052 break;
13053 case tfind_outside:
13054 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13055 phex_nz (addr2, 0));
13056 break;
13057 default:
13058 error (_("Unknown trace find type %d"), type);
13059 }
13060
13061 putpkt (rs->buf);
13062 reply = remote_get_noisy_reply ();
13063 if (*reply == '\0')
13064 error (_("Target does not support this command."));
13065
13066 while (reply && *reply)
13067 switch (*reply)
13068 {
13069 case 'F':
13070 p = ++reply;
13071 target_frameno = (int) strtol (p, &reply, 16);
13072 if (reply == p)
13073 error (_("Unable to parse trace frame number"));
13074 /* Don't update our remote traceframe number cache on failure
13075 to select a remote traceframe. */
13076 if (target_frameno == -1)
13077 return -1;
13078 break;
13079 case 'T':
13080 p = ++reply;
13081 target_tracept = (int) strtol (p, &reply, 16);
13082 if (reply == p)
13083 error (_("Unable to parse tracepoint number"));
13084 break;
13085 case 'O': /* "OK"? */
13086 if (reply[1] == 'K' && reply[2] == '\0')
13087 reply += 2;
13088 else
13089 error (_("Bogus reply from target: %s"), reply);
13090 break;
13091 default:
13092 error (_("Bogus reply from target: %s"), reply);
13093 }
13094 if (tpp)
13095 *tpp = target_tracept;
13096
13097 rs->remote_traceframe_number = target_frameno;
13098 return target_frameno;
13099 }
13100
13101 bool
13102 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13103 {
13104 struct remote_state *rs = get_remote_state ();
13105 char *reply;
13106 ULONGEST uval;
13107
13108 set_remote_traceframe ();
13109
13110 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13111 putpkt (rs->buf);
13112 reply = remote_get_noisy_reply ();
13113 if (reply && *reply)
13114 {
13115 if (*reply == 'V')
13116 {
13117 unpack_varlen_hex (reply + 1, &uval);
13118 *val = (LONGEST) uval;
13119 return true;
13120 }
13121 }
13122 return false;
13123 }
13124
13125 int
13126 remote_target::save_trace_data (const char *filename)
13127 {
13128 struct remote_state *rs = get_remote_state ();
13129 char *p, *reply;
13130
13131 p = rs->buf;
13132 strcpy (p, "QTSave:");
13133 p += strlen (p);
13134 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13135 error (_("Remote file name too long for trace save packet"));
13136 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13137 *p++ = '\0';
13138 putpkt (rs->buf);
13139 reply = remote_get_noisy_reply ();
13140 if (*reply == '\0')
13141 error (_("Target does not support this command."));
13142 if (strcmp (reply, "OK") != 0)
13143 error (_("Bogus reply from target: %s"), reply);
13144 return 0;
13145 }
13146
13147 /* This is basically a memory transfer, but needs to be its own packet
13148 because we don't know how the target actually organizes its trace
13149 memory, plus we want to be able to ask for as much as possible, but
13150 not be unhappy if we don't get as much as we ask for. */
13151
13152 LONGEST
13153 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13154 {
13155 struct remote_state *rs = get_remote_state ();
13156 char *reply;
13157 char *p;
13158 int rslt;
13159
13160 p = rs->buf;
13161 strcpy (p, "qTBuffer:");
13162 p += strlen (p);
13163 p += hexnumstr (p, offset);
13164 *p++ = ',';
13165 p += hexnumstr (p, len);
13166 *p++ = '\0';
13167
13168 putpkt (rs->buf);
13169 reply = remote_get_noisy_reply ();
13170 if (reply && *reply)
13171 {
13172 /* 'l' by itself means we're at the end of the buffer and
13173 there is nothing more to get. */
13174 if (*reply == 'l')
13175 return 0;
13176
13177 /* Convert the reply into binary. Limit the number of bytes to
13178 convert according to our passed-in buffer size, rather than
13179 what was returned in the packet; if the target is
13180 unexpectedly generous and gives us a bigger reply than we
13181 asked for, we don't want to crash. */
13182 rslt = hex2bin (reply, buf, len);
13183 return rslt;
13184 }
13185
13186 /* Something went wrong, flag as an error. */
13187 return -1;
13188 }
13189
13190 void
13191 remote_target::set_disconnected_tracing (int val)
13192 {
13193 struct remote_state *rs = get_remote_state ();
13194
13195 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13196 {
13197 char *reply;
13198
13199 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13200 putpkt (rs->buf);
13201 reply = remote_get_noisy_reply ();
13202 if (*reply == '\0')
13203 error (_("Target does not support this command."));
13204 if (strcmp (reply, "OK") != 0)
13205 error (_("Bogus reply from target: %s"), reply);
13206 }
13207 else if (val)
13208 warning (_("Target does not support disconnected tracing."));
13209 }
13210
13211 int
13212 remote_target::core_of_thread (ptid_t ptid)
13213 {
13214 struct thread_info *info = find_thread_ptid (ptid);
13215
13216 if (info != NULL && info->priv != NULL)
13217 return get_remote_thread_info (info)->core;
13218
13219 return -1;
13220 }
13221
13222 void
13223 remote_target::set_circular_trace_buffer (int val)
13224 {
13225 struct remote_state *rs = get_remote_state ();
13226 char *reply;
13227
13228 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13229 putpkt (rs->buf);
13230 reply = remote_get_noisy_reply ();
13231 if (*reply == '\0')
13232 error (_("Target does not support this command."));
13233 if (strcmp (reply, "OK") != 0)
13234 error (_("Bogus reply from target: %s"), reply);
13235 }
13236
13237 traceframe_info_up
13238 remote_target::traceframe_info ()
13239 {
13240 gdb::optional<gdb::char_vector> text
13241 = target_read_stralloc (target_stack, TARGET_OBJECT_TRACEFRAME_INFO,
13242 NULL);
13243 if (text)
13244 return parse_traceframe_info (text->data ());
13245
13246 return NULL;
13247 }
13248
13249 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13250 instruction on which a fast tracepoint may be placed. Returns -1
13251 if the packet is not supported, and 0 if the minimum instruction
13252 length is unknown. */
13253
13254 int
13255 remote_target::get_min_fast_tracepoint_insn_len ()
13256 {
13257 struct remote_state *rs = get_remote_state ();
13258 char *reply;
13259
13260 /* If we're not debugging a process yet, the IPA can't be
13261 loaded. */
13262 if (!target_has_execution)
13263 return 0;
13264
13265 /* Make sure the remote is pointing at the right process. */
13266 set_general_process ();
13267
13268 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13269 putpkt (rs->buf);
13270 reply = remote_get_noisy_reply ();
13271 if (*reply == '\0')
13272 return -1;
13273 else
13274 {
13275 ULONGEST min_insn_len;
13276
13277 unpack_varlen_hex (reply, &min_insn_len);
13278
13279 return (int) min_insn_len;
13280 }
13281 }
13282
13283 void
13284 remote_target::set_trace_buffer_size (LONGEST val)
13285 {
13286 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13287 {
13288 struct remote_state *rs = get_remote_state ();
13289 char *buf = rs->buf;
13290 char *endbuf = rs->buf + get_remote_packet_size ();
13291 enum packet_result result;
13292
13293 gdb_assert (val >= 0 || val == -1);
13294 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13295 /* Send -1 as literal "-1" to avoid host size dependency. */
13296 if (val < 0)
13297 {
13298 *buf++ = '-';
13299 buf += hexnumstr (buf, (ULONGEST) -val);
13300 }
13301 else
13302 buf += hexnumstr (buf, (ULONGEST) val);
13303
13304 putpkt (rs->buf);
13305 remote_get_noisy_reply ();
13306 result = packet_ok (rs->buf,
13307 &remote_protocol_packets[PACKET_QTBuffer_size]);
13308
13309 if (result != PACKET_OK)
13310 warning (_("Bogus reply from target: %s"), rs->buf);
13311 }
13312 }
13313
13314 bool
13315 remote_target::set_trace_notes (const char *user, const char *notes,
13316 const char *stop_notes)
13317 {
13318 struct remote_state *rs = get_remote_state ();
13319 char *reply;
13320 char *buf = rs->buf;
13321 char *endbuf = rs->buf + get_remote_packet_size ();
13322 int nbytes;
13323
13324 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13325 if (user)
13326 {
13327 buf += xsnprintf (buf, endbuf - buf, "user:");
13328 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13329 buf += 2 * nbytes;
13330 *buf++ = ';';
13331 }
13332 if (notes)
13333 {
13334 buf += xsnprintf (buf, endbuf - buf, "notes:");
13335 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13336 buf += 2 * nbytes;
13337 *buf++ = ';';
13338 }
13339 if (stop_notes)
13340 {
13341 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13342 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13343 buf += 2 * nbytes;
13344 *buf++ = ';';
13345 }
13346 /* Ensure the buffer is terminated. */
13347 *buf = '\0';
13348
13349 putpkt (rs->buf);
13350 reply = remote_get_noisy_reply ();
13351 if (*reply == '\0')
13352 return false;
13353
13354 if (strcmp (reply, "OK") != 0)
13355 error (_("Bogus reply from target: %s"), reply);
13356
13357 return true;
13358 }
13359
13360 bool
13361 remote_target::use_agent (bool use)
13362 {
13363 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13364 {
13365 struct remote_state *rs = get_remote_state ();
13366
13367 /* If the stub supports QAgent. */
13368 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13369 putpkt (rs->buf);
13370 getpkt (&rs->buf, &rs->buf_size, 0);
13371
13372 if (strcmp (rs->buf, "OK") == 0)
13373 {
13374 ::use_agent = use;
13375 return true;
13376 }
13377 }
13378
13379 return false;
13380 }
13381
13382 bool
13383 remote_target::can_use_agent ()
13384 {
13385 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13386 }
13387
13388 struct btrace_target_info
13389 {
13390 /* The ptid of the traced thread. */
13391 ptid_t ptid;
13392
13393 /* The obtained branch trace configuration. */
13394 struct btrace_config conf;
13395 };
13396
13397 /* Reset our idea of our target's btrace configuration. */
13398
13399 static void
13400 remote_btrace_reset (void)
13401 {
13402 struct remote_state *rs = get_remote_state ();
13403
13404 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13405 }
13406
13407 /* Synchronize the configuration with the target. */
13408
13409 static void
13410 btrace_sync_conf (const struct btrace_config *conf)
13411 {
13412 struct packet_config *packet;
13413 struct remote_state *rs;
13414 char *buf, *pos, *endbuf;
13415
13416 rs = get_remote_state ();
13417 buf = rs->buf;
13418 endbuf = buf + get_remote_packet_size ();
13419
13420 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13421 if (packet_config_support (packet) == PACKET_ENABLE
13422 && conf->bts.size != rs->btrace_config.bts.size)
13423 {
13424 pos = buf;
13425 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13426 conf->bts.size);
13427
13428 putpkt (buf);
13429 getpkt (&buf, &rs->buf_size, 0);
13430
13431 if (packet_ok (buf, packet) == PACKET_ERROR)
13432 {
13433 if (buf[0] == 'E' && buf[1] == '.')
13434 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13435 else
13436 error (_("Failed to configure the BTS buffer size."));
13437 }
13438
13439 rs->btrace_config.bts.size = conf->bts.size;
13440 }
13441
13442 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13443 if (packet_config_support (packet) == PACKET_ENABLE
13444 && conf->pt.size != rs->btrace_config.pt.size)
13445 {
13446 pos = buf;
13447 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13448 conf->pt.size);
13449
13450 putpkt (buf);
13451 getpkt (&buf, &rs->buf_size, 0);
13452
13453 if (packet_ok (buf, packet) == PACKET_ERROR)
13454 {
13455 if (buf[0] == 'E' && buf[1] == '.')
13456 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13457 else
13458 error (_("Failed to configure the trace buffer size."));
13459 }
13460
13461 rs->btrace_config.pt.size = conf->pt.size;
13462 }
13463 }
13464
13465 /* Read the current thread's btrace configuration from the target and
13466 store it into CONF. */
13467
13468 static void
13469 btrace_read_config (struct btrace_config *conf)
13470 {
13471 gdb::optional<gdb::char_vector> xml
13472 = target_read_stralloc (target_stack, TARGET_OBJECT_BTRACE_CONF, "");
13473 if (xml)
13474 parse_xml_btrace_conf (conf, xml->data ());
13475 }
13476
13477 /* Maybe reopen target btrace. */
13478
13479 static void
13480 remote_btrace_maybe_reopen (void)
13481 {
13482 struct remote_state *rs = get_remote_state ();
13483 struct thread_info *tp;
13484 int btrace_target_pushed = 0;
13485 int warned = 0;
13486
13487 scoped_restore_current_thread restore_thread;
13488
13489 ALL_NON_EXITED_THREADS (tp)
13490 {
13491 set_general_thread (tp->ptid);
13492
13493 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13494 btrace_read_config (&rs->btrace_config);
13495
13496 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13497 continue;
13498
13499 #if !defined (HAVE_LIBIPT)
13500 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13501 {
13502 if (!warned)
13503 {
13504 warned = 1;
13505 warning (_("Target is recording using Intel Processor Trace "
13506 "but support was disabled at compile time."));
13507 }
13508
13509 continue;
13510 }
13511 #endif /* !defined (HAVE_LIBIPT) */
13512
13513 /* Push target, once, but before anything else happens. This way our
13514 changes to the threads will be cleaned up by unpushing the target
13515 in case btrace_read_config () throws. */
13516 if (!btrace_target_pushed)
13517 {
13518 btrace_target_pushed = 1;
13519 record_btrace_push_target ();
13520 printf_filtered (_("Target is recording using %s.\n"),
13521 btrace_format_string (rs->btrace_config.format));
13522 }
13523
13524 tp->btrace.target = XCNEW (struct btrace_target_info);
13525 tp->btrace.target->ptid = tp->ptid;
13526 tp->btrace.target->conf = rs->btrace_config;
13527 }
13528 }
13529
13530 /* Enable branch tracing. */
13531
13532 struct btrace_target_info *
13533 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13534 {
13535 struct btrace_target_info *tinfo = NULL;
13536 struct packet_config *packet = NULL;
13537 struct remote_state *rs = get_remote_state ();
13538 char *buf = rs->buf;
13539 char *endbuf = rs->buf + get_remote_packet_size ();
13540
13541 switch (conf->format)
13542 {
13543 case BTRACE_FORMAT_BTS:
13544 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13545 break;
13546
13547 case BTRACE_FORMAT_PT:
13548 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13549 break;
13550 }
13551
13552 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13553 error (_("Target does not support branch tracing."));
13554
13555 btrace_sync_conf (conf);
13556
13557 set_general_thread (ptid);
13558
13559 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13560 putpkt (rs->buf);
13561 getpkt (&rs->buf, &rs->buf_size, 0);
13562
13563 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13564 {
13565 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13566 error (_("Could not enable branch tracing for %s: %s"),
13567 target_pid_to_str (ptid), rs->buf + 2);
13568 else
13569 error (_("Could not enable branch tracing for %s."),
13570 target_pid_to_str (ptid));
13571 }
13572
13573 tinfo = XCNEW (struct btrace_target_info);
13574 tinfo->ptid = ptid;
13575
13576 /* If we fail to read the configuration, we lose some information, but the
13577 tracing itself is not impacted. */
13578 TRY
13579 {
13580 btrace_read_config (&tinfo->conf);
13581 }
13582 CATCH (err, RETURN_MASK_ERROR)
13583 {
13584 if (err.message != NULL)
13585 warning ("%s", err.message);
13586 }
13587 END_CATCH
13588
13589 return tinfo;
13590 }
13591
13592 /* Disable branch tracing. */
13593
13594 void
13595 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13596 {
13597 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13598 struct remote_state *rs = get_remote_state ();
13599 char *buf = rs->buf;
13600 char *endbuf = rs->buf + get_remote_packet_size ();
13601
13602 if (packet_config_support (packet) != PACKET_ENABLE)
13603 error (_("Target does not support branch tracing."));
13604
13605 set_general_thread (tinfo->ptid);
13606
13607 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13608 putpkt (rs->buf);
13609 getpkt (&rs->buf, &rs->buf_size, 0);
13610
13611 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13612 {
13613 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13614 error (_("Could not disable branch tracing for %s: %s"),
13615 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13616 else
13617 error (_("Could not disable branch tracing for %s."),
13618 target_pid_to_str (tinfo->ptid));
13619 }
13620
13621 xfree (tinfo);
13622 }
13623
13624 /* Teardown branch tracing. */
13625
13626 void
13627 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13628 {
13629 /* We must not talk to the target during teardown. */
13630 xfree (tinfo);
13631 }
13632
13633 /* Read the branch trace. */
13634
13635 enum btrace_error
13636 remote_target::read_btrace (struct btrace_data *btrace,
13637 struct btrace_target_info *tinfo,
13638 enum btrace_read_type type)
13639 {
13640 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13641 const char *annex;
13642
13643 if (packet_config_support (packet) != PACKET_ENABLE)
13644 error (_("Target does not support branch tracing."));
13645
13646 #if !defined(HAVE_LIBEXPAT)
13647 error (_("Cannot process branch tracing result. XML parsing not supported."));
13648 #endif
13649
13650 switch (type)
13651 {
13652 case BTRACE_READ_ALL:
13653 annex = "all";
13654 break;
13655 case BTRACE_READ_NEW:
13656 annex = "new";
13657 break;
13658 case BTRACE_READ_DELTA:
13659 annex = "delta";
13660 break;
13661 default:
13662 internal_error (__FILE__, __LINE__,
13663 _("Bad branch tracing read type: %u."),
13664 (unsigned int) type);
13665 }
13666
13667 gdb::optional<gdb::char_vector> xml
13668 = target_read_stralloc (target_stack, TARGET_OBJECT_BTRACE, annex);
13669 if (!xml)
13670 return BTRACE_ERR_UNKNOWN;
13671
13672 parse_xml_btrace (btrace, xml->data ());
13673
13674 return BTRACE_ERR_NONE;
13675 }
13676
13677 const struct btrace_config *
13678 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13679 {
13680 return &tinfo->conf;
13681 }
13682
13683 bool
13684 remote_target::augmented_libraries_svr4_read ()
13685 {
13686 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13687 == PACKET_ENABLE);
13688 }
13689
13690 /* Implementation of to_load. */
13691
13692 void
13693 remote_target::load (const char *name, int from_tty)
13694 {
13695 generic_load (name, from_tty);
13696 }
13697
13698 /* Accepts an integer PID; returns a string representing a file that
13699 can be opened on the remote side to get the symbols for the child
13700 process. Returns NULL if the operation is not supported. */
13701
13702 char *
13703 remote_target::pid_to_exec_file (int pid)
13704 {
13705 static gdb::optional<gdb::char_vector> filename;
13706 struct inferior *inf;
13707 char *annex = NULL;
13708
13709 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13710 return NULL;
13711
13712 inf = find_inferior_pid (pid);
13713 if (inf == NULL)
13714 internal_error (__FILE__, __LINE__,
13715 _("not currently attached to process %d"), pid);
13716
13717 if (!inf->fake_pid_p)
13718 {
13719 const int annex_size = 9;
13720
13721 annex = (char *) alloca (annex_size);
13722 xsnprintf (annex, annex_size, "%x", pid);
13723 }
13724
13725 filename = target_read_stralloc (target_stack,
13726 TARGET_OBJECT_EXEC_FILE, annex);
13727
13728 return filename ? filename->data () : nullptr;
13729 }
13730
13731 /* Implement the to_can_do_single_step target_ops method. */
13732
13733 int
13734 remote_target::can_do_single_step ()
13735 {
13736 /* We can only tell whether target supports single step or not by
13737 supported s and S vCont actions if the stub supports vContSupported
13738 feature. If the stub doesn't support vContSupported feature,
13739 we have conservatively to think target doesn't supports single
13740 step. */
13741 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13742 {
13743 struct remote_state *rs = get_remote_state ();
13744
13745 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13746 remote_vcont_probe (rs);
13747
13748 return rs->supports_vCont.s && rs->supports_vCont.S;
13749 }
13750 else
13751 return 0;
13752 }
13753
13754 /* Implementation of the to_execution_direction method for the remote
13755 target. */
13756
13757 enum exec_direction_kind
13758 remote_target::execution_direction ()
13759 {
13760 struct remote_state *rs = get_remote_state ();
13761
13762 return rs->last_resume_exec_dir;
13763 }
13764
13765 /* Return pointer to the thread_info struct which corresponds to
13766 THREAD_HANDLE (having length HANDLE_LEN). */
13767
13768 thread_info *
13769 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13770 int handle_len,
13771 inferior *inf)
13772 {
13773 struct thread_info *tp;
13774
13775 ALL_NON_EXITED_THREADS (tp)
13776 {
13777 remote_thread_info *priv = get_remote_thread_info (tp);
13778
13779 if (tp->inf == inf && priv != NULL)
13780 {
13781 if (handle_len != priv->thread_handle.size ())
13782 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13783 handle_len, priv->thread_handle.size ());
13784 if (memcmp (thread_handle, priv->thread_handle.data (),
13785 handle_len) == 0)
13786 return tp;
13787 }
13788 }
13789
13790 return NULL;
13791 }
13792
13793 bool
13794 remote_target::can_async_p ()
13795 {
13796 struct remote_state *rs = get_remote_state ();
13797
13798 /* We don't go async if the user has explicitly prevented it with the
13799 "maint set target-async" command. */
13800 if (!target_async_permitted)
13801 return false;
13802
13803 /* We're async whenever the serial device is. */
13804 return serial_can_async_p (rs->remote_desc);
13805 }
13806
13807 bool
13808 remote_target::is_async_p ()
13809 {
13810 struct remote_state *rs = get_remote_state ();
13811
13812 if (!target_async_permitted)
13813 /* We only enable async when the user specifically asks for it. */
13814 return false;
13815
13816 /* We're async whenever the serial device is. */
13817 return serial_is_async_p (rs->remote_desc);
13818 }
13819
13820 /* Pass the SERIAL event on and up to the client. One day this code
13821 will be able to delay notifying the client of an event until the
13822 point where an entire packet has been received. */
13823
13824 static serial_event_ftype remote_async_serial_handler;
13825
13826 static void
13827 remote_async_serial_handler (struct serial *scb, void *context)
13828 {
13829 /* Don't propogate error information up to the client. Instead let
13830 the client find out about the error by querying the target. */
13831 inferior_event_handler (INF_REG_EVENT, NULL);
13832 }
13833
13834 static void
13835 remote_async_inferior_event_handler (gdb_client_data data)
13836 {
13837 inferior_event_handler (INF_REG_EVENT, NULL);
13838 }
13839
13840 void
13841 remote_target::async (int enable)
13842 {
13843 struct remote_state *rs = get_remote_state ();
13844
13845 if (enable)
13846 {
13847 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13848
13849 /* If there are pending events in the stop reply queue tell the
13850 event loop to process them. */
13851 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13852 mark_async_event_handler (remote_async_inferior_event_token);
13853 /* For simplicity, below we clear the pending events token
13854 without remembering whether it is marked, so here we always
13855 mark it. If there's actually no pending notification to
13856 process, this ends up being a no-op (other than a spurious
13857 event-loop wakeup). */
13858 if (target_is_non_stop_p ())
13859 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13860 }
13861 else
13862 {
13863 serial_async (rs->remote_desc, NULL, NULL);
13864 /* If the core is disabling async, it doesn't want to be
13865 disturbed with target events. Clear all async event sources
13866 too. */
13867 clear_async_event_handler (remote_async_inferior_event_token);
13868 if (target_is_non_stop_p ())
13869 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13870 }
13871 }
13872
13873 /* Implementation of the to_thread_events method. */
13874
13875 void
13876 remote_target::thread_events (int enable)
13877 {
13878 struct remote_state *rs = get_remote_state ();
13879 size_t size = get_remote_packet_size ();
13880
13881 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13882 return;
13883
13884 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13885 putpkt (rs->buf);
13886 getpkt (&rs->buf, &rs->buf_size, 0);
13887
13888 switch (packet_ok (rs->buf,
13889 &remote_protocol_packets[PACKET_QThreadEvents]))
13890 {
13891 case PACKET_OK:
13892 if (strcmp (rs->buf, "OK") != 0)
13893 error (_("Remote refused setting thread events: %s"), rs->buf);
13894 break;
13895 case PACKET_ERROR:
13896 warning (_("Remote failure reply: %s"), rs->buf);
13897 break;
13898 case PACKET_UNKNOWN:
13899 break;
13900 }
13901 }
13902
13903 static void
13904 set_remote_cmd (const char *args, int from_tty)
13905 {
13906 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13907 }
13908
13909 static void
13910 show_remote_cmd (const char *args, int from_tty)
13911 {
13912 /* We can't just use cmd_show_list here, because we want to skip
13913 the redundant "show remote Z-packet" and the legacy aliases. */
13914 struct cmd_list_element *list = remote_show_cmdlist;
13915 struct ui_out *uiout = current_uiout;
13916
13917 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13918 for (; list != NULL; list = list->next)
13919 if (strcmp (list->name, "Z-packet") == 0)
13920 continue;
13921 else if (list->type == not_set_cmd)
13922 /* Alias commands are exactly like the original, except they
13923 don't have the normal type. */
13924 continue;
13925 else
13926 {
13927 ui_out_emit_tuple option_emitter (uiout, "option");
13928
13929 uiout->field_string ("name", list->name);
13930 uiout->text (": ");
13931 if (list->type == show_cmd)
13932 do_show_command (NULL, from_tty, list);
13933 else
13934 cmd_func (list, NULL, from_tty);
13935 }
13936 }
13937
13938
13939 /* Function to be called whenever a new objfile (shlib) is detected. */
13940 static void
13941 remote_new_objfile (struct objfile *objfile)
13942 {
13943 struct remote_state *rs = get_remote_state ();
13944
13945 if (rs->remote_desc != 0) /* Have a remote connection. */
13946 remote_check_symbols ();
13947 }
13948
13949 /* Pull all the tracepoints defined on the target and create local
13950 data structures representing them. We don't want to create real
13951 tracepoints yet, we don't want to mess up the user's existing
13952 collection. */
13953
13954 int
13955 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
13956 {
13957 struct remote_state *rs = get_remote_state ();
13958 char *p;
13959
13960 /* Ask for a first packet of tracepoint definition. */
13961 putpkt ("qTfP");
13962 getpkt (&rs->buf, &rs->buf_size, 0);
13963 p = rs->buf;
13964 while (*p && *p != 'l')
13965 {
13966 parse_tracepoint_definition (p, utpp);
13967 /* Ask for another packet of tracepoint definition. */
13968 putpkt ("qTsP");
13969 getpkt (&rs->buf, &rs->buf_size, 0);
13970 p = rs->buf;
13971 }
13972 return 0;
13973 }
13974
13975 int
13976 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
13977 {
13978 struct remote_state *rs = get_remote_state ();
13979 char *p;
13980
13981 /* Ask for a first packet of variable definition. */
13982 putpkt ("qTfV");
13983 getpkt (&rs->buf, &rs->buf_size, 0);
13984 p = rs->buf;
13985 while (*p && *p != 'l')
13986 {
13987 parse_tsv_definition (p, utsvp);
13988 /* Ask for another packet of variable definition. */
13989 putpkt ("qTsV");
13990 getpkt (&rs->buf, &rs->buf_size, 0);
13991 p = rs->buf;
13992 }
13993 return 0;
13994 }
13995
13996 /* The "set/show range-stepping" show hook. */
13997
13998 static void
13999 show_range_stepping (struct ui_file *file, int from_tty,
14000 struct cmd_list_element *c,
14001 const char *value)
14002 {
14003 fprintf_filtered (file,
14004 _("Debugger's willingness to use range stepping "
14005 "is %s.\n"), value);
14006 }
14007
14008 /* The "set/show range-stepping" set hook. */
14009
14010 static void
14011 set_range_stepping (const char *ignore_args, int from_tty,
14012 struct cmd_list_element *c)
14013 {
14014 struct remote_state *rs = get_remote_state ();
14015
14016 /* Whene enabling, check whether range stepping is actually
14017 supported by the target, and warn if not. */
14018 if (use_range_stepping)
14019 {
14020 if (rs->remote_desc != NULL)
14021 {
14022 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14023 remote_vcont_probe (rs);
14024
14025 if (packet_support (PACKET_vCont) == PACKET_ENABLE
14026 && rs->supports_vCont.r)
14027 return;
14028 }
14029
14030 warning (_("Range stepping is not supported by the current target"));
14031 }
14032 }
14033
14034 void
14035 _initialize_remote (void)
14036 {
14037 struct cmd_list_element *cmd;
14038 const char *cmd_name;
14039
14040 /* architecture specific data */
14041 remote_gdbarch_data_handle =
14042 gdbarch_data_register_post_init (init_remote_state);
14043 remote_g_packet_data_handle =
14044 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14045
14046 remote_pspace_data
14047 = register_program_space_data_with_cleanup (NULL,
14048 remote_pspace_data_cleanup);
14049
14050 /* Initialize the per-target state. At the moment there is only one
14051 of these, not one per target. Only one target is active at a
14052 time. */
14053 remote_state = new struct remote_state ();
14054
14055 add_target (remote_target_info, remote_target::open);
14056 add_target (extended_remote_target_info, extended_remote_target::open);
14057
14058 /* Hook into new objfile notification. */
14059 gdb::observers::new_objfile.attach (remote_new_objfile);
14060 /* We're no longer interested in notification events of an inferior
14061 when it exits. */
14062 gdb::observers::inferior_exit.attach (discard_pending_stop_replies);
14063
14064 #if 0
14065 init_remote_threadtests ();
14066 #endif
14067
14068 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
14069 /* set/show remote ... */
14070
14071 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14072 Remote protocol specific variables\n\
14073 Configure various remote-protocol specific variables such as\n\
14074 the packets being used"),
14075 &remote_set_cmdlist, "set remote ",
14076 0 /* allow-unknown */, &setlist);
14077 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14078 Remote protocol specific variables\n\
14079 Configure various remote-protocol specific variables such as\n\
14080 the packets being used"),
14081 &remote_show_cmdlist, "show remote ",
14082 0 /* allow-unknown */, &showlist);
14083
14084 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14085 Compare section data on target to the exec file.\n\
14086 Argument is a single section name (default: all loaded sections).\n\
14087 To compare only read-only loaded sections, specify the -r option."),
14088 &cmdlist);
14089
14090 add_cmd ("packet", class_maintenance, packet_command, _("\
14091 Send an arbitrary packet to a remote target.\n\
14092 maintenance packet TEXT\n\
14093 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14094 this command sends the string TEXT to the inferior, and displays the\n\
14095 response packet. GDB supplies the initial `$' character, and the\n\
14096 terminating `#' character and checksum."),
14097 &maintenancelist);
14098
14099 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14100 Set whether to send break if interrupted."), _("\
14101 Show whether to send break if interrupted."), _("\
14102 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14103 set_remotebreak, show_remotebreak,
14104 &setlist, &showlist);
14105 cmd_name = "remotebreak";
14106 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14107 deprecate_cmd (cmd, "set remote interrupt-sequence");
14108 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14109 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14110 deprecate_cmd (cmd, "show remote interrupt-sequence");
14111
14112 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14113 interrupt_sequence_modes, &interrupt_sequence_mode,
14114 _("\
14115 Set interrupt sequence to remote target."), _("\
14116 Show interrupt sequence to remote target."), _("\
14117 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14118 NULL, show_interrupt_sequence,
14119 &remote_set_cmdlist,
14120 &remote_show_cmdlist);
14121
14122 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14123 &interrupt_on_connect, _("\
14124 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14125 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14126 If set, interrupt sequence is sent to remote target."),
14127 NULL, NULL,
14128 &remote_set_cmdlist, &remote_show_cmdlist);
14129
14130 /* Install commands for configuring memory read/write packets. */
14131
14132 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14133 Set the maximum number of bytes per memory write packet (deprecated)."),
14134 &setlist);
14135 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14136 Show the maximum number of bytes per memory write packet (deprecated)."),
14137 &showlist);
14138 add_cmd ("memory-write-packet-size", no_class,
14139 set_memory_write_packet_size, _("\
14140 Set the maximum number of bytes per memory-write packet.\n\
14141 Specify the number of bytes in a packet or 0 (zero) for the\n\
14142 default packet size. The actual limit is further reduced\n\
14143 dependent on the target. Specify ``fixed'' to disable the\n\
14144 further restriction and ``limit'' to enable that restriction."),
14145 &remote_set_cmdlist);
14146 add_cmd ("memory-read-packet-size", no_class,
14147 set_memory_read_packet_size, _("\
14148 Set the maximum number of bytes per memory-read packet.\n\
14149 Specify the number of bytes in a packet or 0 (zero) for the\n\
14150 default packet size. The actual limit is further reduced\n\
14151 dependent on the target. Specify ``fixed'' to disable the\n\
14152 further restriction and ``limit'' to enable that restriction."),
14153 &remote_set_cmdlist);
14154 add_cmd ("memory-write-packet-size", no_class,
14155 show_memory_write_packet_size,
14156 _("Show the maximum number of bytes per memory-write packet."),
14157 &remote_show_cmdlist);
14158 add_cmd ("memory-read-packet-size", no_class,
14159 show_memory_read_packet_size,
14160 _("Show the maximum number of bytes per memory-read packet."),
14161 &remote_show_cmdlist);
14162
14163 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14164 &remote_hw_watchpoint_limit, _("\
14165 Set the maximum number of target hardware watchpoints."), _("\
14166 Show the maximum number of target hardware watchpoints."), _("\
14167 Specify a negative limit for unlimited."),
14168 NULL, NULL, /* FIXME: i18n: The maximum
14169 number of target hardware
14170 watchpoints is %s. */
14171 &remote_set_cmdlist, &remote_show_cmdlist);
14172 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14173 &remote_hw_watchpoint_length_limit, _("\
14174 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14175 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14176 Specify a negative limit for unlimited."),
14177 NULL, NULL, /* FIXME: i18n: The maximum
14178 length (in bytes) of a target
14179 hardware watchpoint is %s. */
14180 &remote_set_cmdlist, &remote_show_cmdlist);
14181 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14182 &remote_hw_breakpoint_limit, _("\
14183 Set the maximum number of target hardware breakpoints."), _("\
14184 Show the maximum number of target hardware breakpoints."), _("\
14185 Specify a negative limit for unlimited."),
14186 NULL, NULL, /* FIXME: i18n: The maximum
14187 number of target hardware
14188 breakpoints is %s. */
14189 &remote_set_cmdlist, &remote_show_cmdlist);
14190
14191 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14192 &remote_address_size, _("\
14193 Set the maximum size of the address (in bits) in a memory packet."), _("\
14194 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14195 NULL,
14196 NULL, /* FIXME: i18n: */
14197 &setlist, &showlist);
14198
14199 init_all_packet_configs ();
14200
14201 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14202 "X", "binary-download", 1);
14203
14204 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14205 "vCont", "verbose-resume", 0);
14206
14207 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14208 "QPassSignals", "pass-signals", 0);
14209
14210 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14211 "QCatchSyscalls", "catch-syscalls", 0);
14212
14213 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14214 "QProgramSignals", "program-signals", 0);
14215
14216 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14217 "QSetWorkingDir", "set-working-dir", 0);
14218
14219 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14220 "QStartupWithShell", "startup-with-shell", 0);
14221
14222 add_packet_config_cmd (&remote_protocol_packets
14223 [PACKET_QEnvironmentHexEncoded],
14224 "QEnvironmentHexEncoded", "environment-hex-encoded",
14225 0);
14226
14227 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14228 "QEnvironmentReset", "environment-reset",
14229 0);
14230
14231 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14232 "QEnvironmentUnset", "environment-unset",
14233 0);
14234
14235 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14236 "qSymbol", "symbol-lookup", 0);
14237
14238 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14239 "P", "set-register", 1);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14242 "p", "fetch-register", 1);
14243
14244 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14245 "Z0", "software-breakpoint", 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14248 "Z1", "hardware-breakpoint", 0);
14249
14250 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14251 "Z2", "write-watchpoint", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14254 "Z3", "read-watchpoint", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14257 "Z4", "access-watchpoint", 0);
14258
14259 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14260 "qXfer:auxv:read", "read-aux-vector", 0);
14261
14262 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14263 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14264
14265 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14266 "qXfer:features:read", "target-features", 0);
14267
14268 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14269 "qXfer:libraries:read", "library-info", 0);
14270
14271 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14272 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14273
14274 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14275 "qXfer:memory-map:read", "memory-map", 0);
14276
14277 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14278 "qXfer:spu:read", "read-spu-object", 0);
14279
14280 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14281 "qXfer:spu:write", "write-spu-object", 0);
14282
14283 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14284 "qXfer:osdata:read", "osdata", 0);
14285
14286 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14287 "qXfer:threads:read", "threads", 0);
14288
14289 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14290 "qXfer:siginfo:read", "read-siginfo-object", 0);
14291
14292 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14293 "qXfer:siginfo:write", "write-siginfo-object", 0);
14294
14295 add_packet_config_cmd
14296 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14297 "qXfer:traceframe-info:read", "traceframe-info", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14300 "qXfer:uib:read", "unwind-info-block", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14303 "qGetTLSAddr", "get-thread-local-storage-address",
14304 0);
14305
14306 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14307 "qGetTIBAddr", "get-thread-information-block-address",
14308 0);
14309
14310 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14311 "bc", "reverse-continue", 0);
14312
14313 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14314 "bs", "reverse-step", 0);
14315
14316 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14317 "qSupported", "supported-packets", 0);
14318
14319 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14320 "qSearch:memory", "search-memory", 0);
14321
14322 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14323 "qTStatus", "trace-status", 0);
14324
14325 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14326 "vFile:setfs", "hostio-setfs", 0);
14327
14328 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14329 "vFile:open", "hostio-open", 0);
14330
14331 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14332 "vFile:pread", "hostio-pread", 0);
14333
14334 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14335 "vFile:pwrite", "hostio-pwrite", 0);
14336
14337 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14338 "vFile:close", "hostio-close", 0);
14339
14340 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14341 "vFile:unlink", "hostio-unlink", 0);
14342
14343 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14344 "vFile:readlink", "hostio-readlink", 0);
14345
14346 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14347 "vFile:fstat", "hostio-fstat", 0);
14348
14349 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14350 "vAttach", "attach", 0);
14351
14352 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14353 "vRun", "run", 0);
14354
14355 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14356 "QStartNoAckMode", "noack", 0);
14357
14358 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14359 "vKill", "kill", 0);
14360
14361 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14362 "qAttached", "query-attached", 0);
14363
14364 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14365 "ConditionalTracepoints",
14366 "conditional-tracepoints", 0);
14367
14368 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14369 "ConditionalBreakpoints",
14370 "conditional-breakpoints", 0);
14371
14372 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14373 "BreakpointCommands",
14374 "breakpoint-commands", 0);
14375
14376 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14377 "FastTracepoints", "fast-tracepoints", 0);
14378
14379 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14380 "TracepointSource", "TracepointSource", 0);
14381
14382 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14383 "QAllow", "allow", 0);
14384
14385 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14386 "StaticTracepoints", "static-tracepoints", 0);
14387
14388 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14389 "InstallInTrace", "install-in-trace", 0);
14390
14391 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14392 "qXfer:statictrace:read", "read-sdata-object", 0);
14393
14394 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14395 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14396
14397 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14398 "QDisableRandomization", "disable-randomization", 0);
14399
14400 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14401 "QAgent", "agent", 0);
14402
14403 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14404 "QTBuffer:size", "trace-buffer-size", 0);
14405
14406 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14407 "Qbtrace:off", "disable-btrace", 0);
14408
14409 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14410 "Qbtrace:bts", "enable-btrace-bts", 0);
14411
14412 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14413 "Qbtrace:pt", "enable-btrace-pt", 0);
14414
14415 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14416 "qXfer:btrace", "read-btrace", 0);
14417
14418 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14419 "qXfer:btrace-conf", "read-btrace-conf", 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14422 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14423
14424 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14425 "multiprocess-feature", "multiprocess-feature", 0);
14426
14427 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14428 "swbreak-feature", "swbreak-feature", 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14431 "hwbreak-feature", "hwbreak-feature", 0);
14432
14433 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14434 "fork-event-feature", "fork-event-feature", 0);
14435
14436 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14437 "vfork-event-feature", "vfork-event-feature", 0);
14438
14439 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14440 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14441
14442 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14443 "vContSupported", "verbose-resume-supported", 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14446 "exec-event-feature", "exec-event-feature", 0);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14449 "vCtrlC", "ctrl-c", 0);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14452 "QThreadEvents", "thread-events", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14455 "N stop reply", "no-resumed-stop-reply", 0);
14456
14457 /* Assert that we've registered "set remote foo-packet" commands
14458 for all packet configs. */
14459 {
14460 int i;
14461
14462 for (i = 0; i < PACKET_MAX; i++)
14463 {
14464 /* Ideally all configs would have a command associated. Some
14465 still don't though. */
14466 int excepted;
14467
14468 switch (i)
14469 {
14470 case PACKET_QNonStop:
14471 case PACKET_EnableDisableTracepoints_feature:
14472 case PACKET_tracenz_feature:
14473 case PACKET_DisconnectedTracing_feature:
14474 case PACKET_augmented_libraries_svr4_read_feature:
14475 case PACKET_qCRC:
14476 /* Additions to this list need to be well justified:
14477 pre-existing packets are OK; new packets are not. */
14478 excepted = 1;
14479 break;
14480 default:
14481 excepted = 0;
14482 break;
14483 }
14484
14485 /* This catches both forgetting to add a config command, and
14486 forgetting to remove a packet from the exception list. */
14487 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14488 }
14489 }
14490
14491 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14492 Z sub-packet has its own set and show commands, but users may
14493 have sets to this variable in their .gdbinit files (or in their
14494 documentation). */
14495 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14496 &remote_Z_packet_detect, _("\
14497 Set use of remote protocol `Z' packets"), _("\
14498 Show use of remote protocol `Z' packets "), _("\
14499 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14500 packets."),
14501 set_remote_protocol_Z_packet_cmd,
14502 show_remote_protocol_Z_packet_cmd,
14503 /* FIXME: i18n: Use of remote protocol
14504 `Z' packets is %s. */
14505 &remote_set_cmdlist, &remote_show_cmdlist);
14506
14507 add_prefix_cmd ("remote", class_files, remote_command, _("\
14508 Manipulate files on the remote system\n\
14509 Transfer files to and from the remote target system."),
14510 &remote_cmdlist, "remote ",
14511 0 /* allow-unknown */, &cmdlist);
14512
14513 add_cmd ("put", class_files, remote_put_command,
14514 _("Copy a local file to the remote system."),
14515 &remote_cmdlist);
14516
14517 add_cmd ("get", class_files, remote_get_command,
14518 _("Copy a remote file to the local system."),
14519 &remote_cmdlist);
14520
14521 add_cmd ("delete", class_files, remote_delete_command,
14522 _("Delete a remote file."),
14523 &remote_cmdlist);
14524
14525 add_setshow_string_noescape_cmd ("exec-file", class_files,
14526 &remote_exec_file_var, _("\
14527 Set the remote pathname for \"run\""), _("\
14528 Show the remote pathname for \"run\""), NULL,
14529 set_remote_exec_file,
14530 show_remote_exec_file,
14531 &remote_set_cmdlist,
14532 &remote_show_cmdlist);
14533
14534 add_setshow_boolean_cmd ("range-stepping", class_run,
14535 &use_range_stepping, _("\
14536 Enable or disable range stepping."), _("\
14537 Show whether target-assisted range stepping is enabled."), _("\
14538 If on, and the target supports it, when stepping a source line, GDB\n\
14539 tells the target to step the corresponding range of addresses itself instead\n\
14540 of issuing multiple single-steps. This speeds up source level\n\
14541 stepping. If off, GDB always issues single-steps, even if range\n\
14542 stepping is supported by the target. The default is on."),
14543 set_range_stepping,
14544 show_range_stepping,
14545 &setlist,
14546 &showlist);
14547
14548 /* Eventually initialize fileio. See fileio.c */
14549 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14550
14551 /* Take advantage of the fact that the TID field is not used, to tag
14552 special ptids with it set to != 0. */
14553 magic_null_ptid = ptid_build (42000, -1, 1);
14554 not_sent_ptid = ptid_build (42000, -2, 1);
14555 any_thread_ptid = ptid_build (42000, 0, 1);
14556 }
This page took 0.52416 seconds and 4 git commands to generate.