bfd/
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_open (char *name, int from_tty);
96
97 static void extended_remote_open (char *name, int from_tty);
98
99 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
100
101 static void remote_close (int quitting);
102
103 static void remote_store_registers (struct regcache *regcache, int regno);
104
105 static void remote_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void remote_mourn_1 (struct target_ops *);
112
113 static void remote_send (char **buf, long *sizeof_buf_p);
114
115 static int readchar (int timeout);
116
117 static ptid_t remote_wait (ptid_t ptid,
118 struct target_waitstatus *status);
119
120 static void remote_kill (void);
121
122 static int tohex (int nib);
123
124 static int remote_can_async_p (void);
125
126 static int remote_is_async_p (void);
127
128 static void remote_async (void (*callback) (enum inferior_event_type event_type,
129 void *context), void *context);
130
131 static int remote_async_mask (int new_mask);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_general_thread (struct ptid ptid);
142 static void set_continue_thread (struct ptid ptid);
143
144 static int remote_thread_alive (ptid_t);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (void);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static unsigned long crc32 (unsigned char *, int, unsigned int);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (ptid_t currthread);
185
186 static int fromhex (int a);
187
188 static int hex2bin (const char *hex, gdb_byte *bin, int count);
189
190 static int bin2hex (const gdb_byte *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
204
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
206 int from_tty,
207 struct cmd_list_element *c,
208 const char *value);
209
210 void _initialize_remote (void);
211
212 /* Controls if async mode is permitted. */
213 static int remote_async_permitted = 0;
214
215 static int remote_async_permitted_set = 0;
216
217 static void
218 set_maintenance_remote_async_permitted (char *args, int from_tty,
219 struct cmd_list_element *c)
220 {
221 if (target_has_execution)
222 {
223 remote_async_permitted_set = remote_async_permitted; /* revert */
224 error (_("Cannot change this setting while the inferior is running."));
225 }
226
227 remote_async_permitted = remote_async_permitted_set;
228 }
229
230 static void
231 show_maintenance_remote_async_permitted (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file, _("\
235 Controlling the remote inferior in asynchronous mode is %s.\n"),
236 value);
237 }
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Description of the remote protocol state for the currently
249 connected target. This is per-target state, and independent of the
250 selected architecture. */
251
252 struct remote_state
253 {
254 /* A buffer to use for incoming packets, and its current size. The
255 buffer is grown dynamically for larger incoming packets.
256 Outgoing packets may also be constructed in this buffer.
257 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
258 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
259 packets. */
260 char *buf;
261 long buf_size;
262
263 /* If we negotiated packet size explicitly (and thus can bypass
264 heuristics for the largest packet size that will not overflow
265 a buffer in the stub), this will be set to that packet size.
266 Otherwise zero, meaning to use the guessed size. */
267 long explicit_packet_size;
268
269 /* remote_wait is normally called when the target is running and
270 waits for a stop reply packet. But sometimes we need to call it
271 when the target is already stopped. We can send a "?" packet
272 and have remote_wait read the response. Or, if we already have
273 the response, we can stash it in BUF and tell remote_wait to
274 skip calling getpkt. This flag is set when BUF contains a
275 stop reply packet and the target is not waiting. */
276 int cached_wait_status;
277 };
278
279 /* This data could be associated with a target, but we do not always
280 have access to the current target when we need it, so for now it is
281 static. This will be fine for as long as only one target is in use
282 at a time. */
283 static struct remote_state remote_state;
284
285 static struct remote_state *
286 get_remote_state_raw (void)
287 {
288 return &remote_state;
289 }
290
291 /* Description of the remote protocol for a given architecture. */
292
293 struct packet_reg
294 {
295 long offset; /* Offset into G packet. */
296 long regnum; /* GDB's internal register number. */
297 LONGEST pnum; /* Remote protocol register number. */
298 int in_g_packet; /* Always part of G packet. */
299 /* long size in bytes; == register_size (current_gdbarch, regnum);
300 at present. */
301 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
302 at present. */
303 };
304
305 struct remote_arch_state
306 {
307 /* Description of the remote protocol registers. */
308 long sizeof_g_packet;
309
310 /* Description of the remote protocol registers indexed by REGNUM
311 (making an array gdbarch_num_regs in size). */
312 struct packet_reg *regs;
313
314 /* This is the size (in chars) of the first response to the ``g''
315 packet. It is used as a heuristic when determining the maximum
316 size of memory-read and memory-write packets. A target will
317 typically only reserve a buffer large enough to hold the ``g''
318 packet. The size does not include packet overhead (headers and
319 trailers). */
320 long actual_register_packet_size;
321
322 /* This is the maximum size (in chars) of a non read/write packet.
323 It is also used as a cap on the size of read/write packets. */
324 long remote_packet_size;
325 };
326
327
328 /* Handle for retreving the remote protocol data from gdbarch. */
329 static struct gdbarch_data *remote_gdbarch_data_handle;
330
331 static struct remote_arch_state *
332 get_remote_arch_state (void)
333 {
334 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
335 }
336
337 /* Fetch the global remote target state. */
338
339 static struct remote_state *
340 get_remote_state (void)
341 {
342 /* Make sure that the remote architecture state has been
343 initialized, because doing so might reallocate rs->buf. Any
344 function which calls getpkt also needs to be mindful of changes
345 to rs->buf, but this call limits the number of places which run
346 into trouble. */
347 get_remote_arch_state ();
348
349 return get_remote_state_raw ();
350 }
351
352 static int
353 compare_pnums (const void *lhs_, const void *rhs_)
354 {
355 const struct packet_reg * const *lhs = lhs_;
356 const struct packet_reg * const *rhs = rhs_;
357
358 if ((*lhs)->pnum < (*rhs)->pnum)
359 return -1;
360 else if ((*lhs)->pnum == (*rhs)->pnum)
361 return 0;
362 else
363 return 1;
364 }
365
366 static void *
367 init_remote_state (struct gdbarch *gdbarch)
368 {
369 int regnum, num_remote_regs, offset;
370 struct remote_state *rs = get_remote_state_raw ();
371 struct remote_arch_state *rsa;
372 struct packet_reg **remote_regs;
373
374 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
375
376 /* Use the architecture to build a regnum<->pnum table, which will be
377 1:1 unless a feature set specifies otherwise. */
378 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
379 gdbarch_num_regs (gdbarch),
380 struct packet_reg);
381 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
382 {
383 struct packet_reg *r = &rsa->regs[regnum];
384
385 if (register_size (gdbarch, regnum) == 0)
386 /* Do not try to fetch zero-sized (placeholder) registers. */
387 r->pnum = -1;
388 else
389 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
390
391 r->regnum = regnum;
392 }
393
394 /* Define the g/G packet format as the contents of each register
395 with a remote protocol number, in order of ascending protocol
396 number. */
397
398 remote_regs = alloca (gdbarch_num_regs (gdbarch)
399 * sizeof (struct packet_reg *));
400 for (num_remote_regs = 0, regnum = 0;
401 regnum < gdbarch_num_regs (gdbarch);
402 regnum++)
403 if (rsa->regs[regnum].pnum != -1)
404 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
405
406 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
407 compare_pnums);
408
409 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
410 {
411 remote_regs[regnum]->in_g_packet = 1;
412 remote_regs[regnum]->offset = offset;
413 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
414 }
415
416 /* Record the maximum possible size of the g packet - it may turn out
417 to be smaller. */
418 rsa->sizeof_g_packet = offset;
419
420 /* Default maximum number of characters in a packet body. Many
421 remote stubs have a hardwired buffer size of 400 bytes
422 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
423 as the maximum packet-size to ensure that the packet and an extra
424 NUL character can always fit in the buffer. This stops GDB
425 trashing stubs that try to squeeze an extra NUL into what is
426 already a full buffer (As of 1999-12-04 that was most stubs). */
427 rsa->remote_packet_size = 400 - 1;
428
429 /* This one is filled in when a ``g'' packet is received. */
430 rsa->actual_register_packet_size = 0;
431
432 /* Should rsa->sizeof_g_packet needs more space than the
433 default, adjust the size accordingly. Remember that each byte is
434 encoded as two characters. 32 is the overhead for the packet
435 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
436 (``$NN:G...#NN'') is a better guess, the below has been padded a
437 little. */
438 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
439 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
440
441 /* Make sure that the packet buffer is plenty big enough for
442 this architecture. */
443 if (rs->buf_size < rsa->remote_packet_size)
444 {
445 rs->buf_size = 2 * rsa->remote_packet_size;
446 rs->buf = xrealloc (rs->buf, rs->buf_size);
447 }
448
449 return rsa;
450 }
451
452 /* Return the current allowed size of a remote packet. This is
453 inferred from the current architecture, and should be used to
454 limit the length of outgoing packets. */
455 static long
456 get_remote_packet_size (void)
457 {
458 struct remote_state *rs = get_remote_state ();
459 struct remote_arch_state *rsa = get_remote_arch_state ();
460
461 if (rs->explicit_packet_size)
462 return rs->explicit_packet_size;
463
464 return rsa->remote_packet_size;
465 }
466
467 static struct packet_reg *
468 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
469 {
470 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
471 return NULL;
472 else
473 {
474 struct packet_reg *r = &rsa->regs[regnum];
475 gdb_assert (r->regnum == regnum);
476 return r;
477 }
478 }
479
480 static struct packet_reg *
481 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
482 {
483 int i;
484 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
485 {
486 struct packet_reg *r = &rsa->regs[i];
487 if (r->pnum == pnum)
488 return r;
489 }
490 return NULL;
491 }
492
493 /* FIXME: graces/2002-08-08: These variables should eventually be
494 bound to an instance of the target object (as in gdbarch-tdep()),
495 when such a thing exists. */
496
497 /* This is set to the data address of the access causing the target
498 to stop for a watchpoint. */
499 static CORE_ADDR remote_watch_data_address;
500
501 /* This is non-zero if target stopped for a watchpoint. */
502 static int remote_stopped_by_watchpoint_p;
503
504 static struct target_ops remote_ops;
505
506 static struct target_ops extended_remote_ops;
507
508 static int remote_async_mask_value = 1;
509
510 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
511 ``forever'' still use the normal timeout mechanism. This is
512 currently used by the ASYNC code to guarentee that target reads
513 during the initial connect always time-out. Once getpkt has been
514 modified to return a timeout indication and, in turn
515 remote_wait()/wait_for_inferior() have gained a timeout parameter
516 this can go away. */
517 static int wait_forever_enabled_p = 1;
518
519
520 /* This variable chooses whether to send a ^C or a break when the user
521 requests program interruption. Although ^C is usually what remote
522 systems expect, and that is the default here, sometimes a break is
523 preferable instead. */
524
525 static int remote_break;
526
527 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
528 remote_open knows that we don't have a file open when the program
529 starts. */
530 static struct serial *remote_desc = NULL;
531
532 /* This variable sets the number of bits in an address that are to be
533 sent in a memory ("M" or "m") packet. Normally, after stripping
534 leading zeros, the entire address would be sent. This variable
535 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
536 initial implementation of remote.c restricted the address sent in
537 memory packets to ``host::sizeof long'' bytes - (typically 32
538 bits). Consequently, for 64 bit targets, the upper 32 bits of an
539 address was never sent. Since fixing this bug may cause a break in
540 some remote targets this variable is principly provided to
541 facilitate backward compatibility. */
542
543 static int remote_address_size;
544
545 /* Temporary to track who currently owns the terminal. See
546 remote_terminal_* for more details. */
547
548 static int remote_async_terminal_ours_p;
549
550 /* The executable file to use for "run" on the remote side. */
551
552 static char *remote_exec_file = "";
553
554 \f
555 /* User configurable variables for the number of characters in a
556 memory read/write packet. MIN (rsa->remote_packet_size,
557 rsa->sizeof_g_packet) is the default. Some targets need smaller
558 values (fifo overruns, et.al.) and some users need larger values
559 (speed up transfers). The variables ``preferred_*'' (the user
560 request), ``current_*'' (what was actually set) and ``forced_*''
561 (Positive - a soft limit, negative - a hard limit). */
562
563 struct memory_packet_config
564 {
565 char *name;
566 long size;
567 int fixed_p;
568 };
569
570 /* Compute the current size of a read/write packet. Since this makes
571 use of ``actual_register_packet_size'' the computation is dynamic. */
572
573 static long
574 get_memory_packet_size (struct memory_packet_config *config)
575 {
576 struct remote_state *rs = get_remote_state ();
577 struct remote_arch_state *rsa = get_remote_arch_state ();
578
579 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
580 law?) that some hosts don't cope very well with large alloca()
581 calls. Eventually the alloca() code will be replaced by calls to
582 xmalloc() and make_cleanups() allowing this restriction to either
583 be lifted or removed. */
584 #ifndef MAX_REMOTE_PACKET_SIZE
585 #define MAX_REMOTE_PACKET_SIZE 16384
586 #endif
587 /* NOTE: 20 ensures we can write at least one byte. */
588 #ifndef MIN_REMOTE_PACKET_SIZE
589 #define MIN_REMOTE_PACKET_SIZE 20
590 #endif
591 long what_they_get;
592 if (config->fixed_p)
593 {
594 if (config->size <= 0)
595 what_they_get = MAX_REMOTE_PACKET_SIZE;
596 else
597 what_they_get = config->size;
598 }
599 else
600 {
601 what_they_get = get_remote_packet_size ();
602 /* Limit the packet to the size specified by the user. */
603 if (config->size > 0
604 && what_they_get > config->size)
605 what_they_get = config->size;
606
607 /* Limit it to the size of the targets ``g'' response unless we have
608 permission from the stub to use a larger packet size. */
609 if (rs->explicit_packet_size == 0
610 && rsa->actual_register_packet_size > 0
611 && what_they_get > rsa->actual_register_packet_size)
612 what_they_get = rsa->actual_register_packet_size;
613 }
614 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
615 what_they_get = MAX_REMOTE_PACKET_SIZE;
616 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
617 what_they_get = MIN_REMOTE_PACKET_SIZE;
618
619 /* Make sure there is room in the global buffer for this packet
620 (including its trailing NUL byte). */
621 if (rs->buf_size < what_they_get + 1)
622 {
623 rs->buf_size = 2 * what_they_get;
624 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
625 }
626
627 return what_they_get;
628 }
629
630 /* Update the size of a read/write packet. If they user wants
631 something really big then do a sanity check. */
632
633 static void
634 set_memory_packet_size (char *args, struct memory_packet_config *config)
635 {
636 int fixed_p = config->fixed_p;
637 long size = config->size;
638 if (args == NULL)
639 error (_("Argument required (integer, `fixed' or `limited')."));
640 else if (strcmp (args, "hard") == 0
641 || strcmp (args, "fixed") == 0)
642 fixed_p = 1;
643 else if (strcmp (args, "soft") == 0
644 || strcmp (args, "limit") == 0)
645 fixed_p = 0;
646 else
647 {
648 char *end;
649 size = strtoul (args, &end, 0);
650 if (args == end)
651 error (_("Invalid %s (bad syntax)."), config->name);
652 #if 0
653 /* Instead of explicitly capping the size of a packet to
654 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
655 instead allowed to set the size to something arbitrarily
656 large. */
657 if (size > MAX_REMOTE_PACKET_SIZE)
658 error (_("Invalid %s (too large)."), config->name);
659 #endif
660 }
661 /* Extra checks? */
662 if (fixed_p && !config->fixed_p)
663 {
664 if (! query (_("The target may not be able to correctly handle a %s\n"
665 "of %ld bytes. Change the packet size? "),
666 config->name, size))
667 error (_("Packet size not changed."));
668 }
669 /* Update the config. */
670 config->fixed_p = fixed_p;
671 config->size = size;
672 }
673
674 static void
675 show_memory_packet_size (struct memory_packet_config *config)
676 {
677 printf_filtered (_("The %s is %ld. "), config->name, config->size);
678 if (config->fixed_p)
679 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
680 get_memory_packet_size (config));
681 else
682 printf_filtered (_("Packets are limited to %ld bytes.\n"),
683 get_memory_packet_size (config));
684 }
685
686 static struct memory_packet_config memory_write_packet_config =
687 {
688 "memory-write-packet-size",
689 };
690
691 static void
692 set_memory_write_packet_size (char *args, int from_tty)
693 {
694 set_memory_packet_size (args, &memory_write_packet_config);
695 }
696
697 static void
698 show_memory_write_packet_size (char *args, int from_tty)
699 {
700 show_memory_packet_size (&memory_write_packet_config);
701 }
702
703 static long
704 get_memory_write_packet_size (void)
705 {
706 return get_memory_packet_size (&memory_write_packet_config);
707 }
708
709 static struct memory_packet_config memory_read_packet_config =
710 {
711 "memory-read-packet-size",
712 };
713
714 static void
715 set_memory_read_packet_size (char *args, int from_tty)
716 {
717 set_memory_packet_size (args, &memory_read_packet_config);
718 }
719
720 static void
721 show_memory_read_packet_size (char *args, int from_tty)
722 {
723 show_memory_packet_size (&memory_read_packet_config);
724 }
725
726 static long
727 get_memory_read_packet_size (void)
728 {
729 long size = get_memory_packet_size (&memory_read_packet_config);
730 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
731 extra buffer size argument before the memory read size can be
732 increased beyond this. */
733 if (size > get_remote_packet_size ())
734 size = get_remote_packet_size ();
735 return size;
736 }
737
738 \f
739 /* Generic configuration support for packets the stub optionally
740 supports. Allows the user to specify the use of the packet as well
741 as allowing GDB to auto-detect support in the remote stub. */
742
743 enum packet_support
744 {
745 PACKET_SUPPORT_UNKNOWN = 0,
746 PACKET_ENABLE,
747 PACKET_DISABLE
748 };
749
750 struct packet_config
751 {
752 const char *name;
753 const char *title;
754 enum auto_boolean detect;
755 enum packet_support support;
756 };
757
758 /* Analyze a packet's return value and update the packet config
759 accordingly. */
760
761 enum packet_result
762 {
763 PACKET_ERROR,
764 PACKET_OK,
765 PACKET_UNKNOWN
766 };
767
768 static void
769 update_packet_config (struct packet_config *config)
770 {
771 switch (config->detect)
772 {
773 case AUTO_BOOLEAN_TRUE:
774 config->support = PACKET_ENABLE;
775 break;
776 case AUTO_BOOLEAN_FALSE:
777 config->support = PACKET_DISABLE;
778 break;
779 case AUTO_BOOLEAN_AUTO:
780 config->support = PACKET_SUPPORT_UNKNOWN;
781 break;
782 }
783 }
784
785 static void
786 show_packet_config_cmd (struct packet_config *config)
787 {
788 char *support = "internal-error";
789 switch (config->support)
790 {
791 case PACKET_ENABLE:
792 support = "enabled";
793 break;
794 case PACKET_DISABLE:
795 support = "disabled";
796 break;
797 case PACKET_SUPPORT_UNKNOWN:
798 support = "unknown";
799 break;
800 }
801 switch (config->detect)
802 {
803 case AUTO_BOOLEAN_AUTO:
804 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
805 config->name, support);
806 break;
807 case AUTO_BOOLEAN_TRUE:
808 case AUTO_BOOLEAN_FALSE:
809 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
810 config->name, support);
811 break;
812 }
813 }
814
815 static void
816 add_packet_config_cmd (struct packet_config *config, const char *name,
817 const char *title, int legacy)
818 {
819 char *set_doc;
820 char *show_doc;
821 char *cmd_name;
822
823 config->name = name;
824 config->title = title;
825 config->detect = AUTO_BOOLEAN_AUTO;
826 config->support = PACKET_SUPPORT_UNKNOWN;
827 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
828 name, title);
829 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
830 name, title);
831 /* set/show TITLE-packet {auto,on,off} */
832 cmd_name = xstrprintf ("%s-packet", title);
833 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
834 &config->detect, set_doc, show_doc, NULL, /* help_doc */
835 set_remote_protocol_packet_cmd,
836 show_remote_protocol_packet_cmd,
837 &remote_set_cmdlist, &remote_show_cmdlist);
838 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
839 if (legacy)
840 {
841 char *legacy_name;
842 legacy_name = xstrprintf ("%s-packet", name);
843 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
844 &remote_set_cmdlist);
845 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
846 &remote_show_cmdlist);
847 }
848 }
849
850 static enum packet_result
851 packet_check_result (const char *buf)
852 {
853 if (buf[0] != '\0')
854 {
855 /* The stub recognized the packet request. Check that the
856 operation succeeded. */
857 if (buf[0] == 'E'
858 && isxdigit (buf[1]) && isxdigit (buf[2])
859 && buf[3] == '\0')
860 /* "Enn" - definitly an error. */
861 return PACKET_ERROR;
862
863 /* Always treat "E." as an error. This will be used for
864 more verbose error messages, such as E.memtypes. */
865 if (buf[0] == 'E' && buf[1] == '.')
866 return PACKET_ERROR;
867
868 /* The packet may or may not be OK. Just assume it is. */
869 return PACKET_OK;
870 }
871 else
872 /* The stub does not support the packet. */
873 return PACKET_UNKNOWN;
874 }
875
876 static enum packet_result
877 packet_ok (const char *buf, struct packet_config *config)
878 {
879 enum packet_result result;
880
881 result = packet_check_result (buf);
882 switch (result)
883 {
884 case PACKET_OK:
885 case PACKET_ERROR:
886 /* The stub recognized the packet request. */
887 switch (config->support)
888 {
889 case PACKET_SUPPORT_UNKNOWN:
890 if (remote_debug)
891 fprintf_unfiltered (gdb_stdlog,
892 "Packet %s (%s) is supported\n",
893 config->name, config->title);
894 config->support = PACKET_ENABLE;
895 break;
896 case PACKET_DISABLE:
897 internal_error (__FILE__, __LINE__,
898 _("packet_ok: attempt to use a disabled packet"));
899 break;
900 case PACKET_ENABLE:
901 break;
902 }
903 break;
904 case PACKET_UNKNOWN:
905 /* The stub does not support the packet. */
906 switch (config->support)
907 {
908 case PACKET_ENABLE:
909 if (config->detect == AUTO_BOOLEAN_AUTO)
910 /* If the stub previously indicated that the packet was
911 supported then there is a protocol error.. */
912 error (_("Protocol error: %s (%s) conflicting enabled responses."),
913 config->name, config->title);
914 else
915 /* The user set it wrong. */
916 error (_("Enabled packet %s (%s) not recognized by stub"),
917 config->name, config->title);
918 break;
919 case PACKET_SUPPORT_UNKNOWN:
920 if (remote_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "Packet %s (%s) is NOT supported\n",
923 config->name, config->title);
924 config->support = PACKET_DISABLE;
925 break;
926 case PACKET_DISABLE:
927 break;
928 }
929 break;
930 }
931
932 return result;
933 }
934
935 enum {
936 PACKET_vCont = 0,
937 PACKET_X,
938 PACKET_qSymbol,
939 PACKET_P,
940 PACKET_p,
941 PACKET_Z0,
942 PACKET_Z1,
943 PACKET_Z2,
944 PACKET_Z3,
945 PACKET_Z4,
946 PACKET_vFile_open,
947 PACKET_vFile_pread,
948 PACKET_vFile_pwrite,
949 PACKET_vFile_close,
950 PACKET_vFile_unlink,
951 PACKET_qXfer_auxv,
952 PACKET_qXfer_features,
953 PACKET_qXfer_libraries,
954 PACKET_qXfer_memory_map,
955 PACKET_qXfer_spu_read,
956 PACKET_qXfer_spu_write,
957 PACKET_qGetTLSAddr,
958 PACKET_qSupported,
959 PACKET_QPassSignals,
960 PACKET_qSearch_memory,
961 PACKET_vAttach,
962 PACKET_vRun,
963 PACKET_MAX
964 };
965
966 static struct packet_config remote_protocol_packets[PACKET_MAX];
967
968 static void
969 set_remote_protocol_packet_cmd (char *args, int from_tty,
970 struct cmd_list_element *c)
971 {
972 struct packet_config *packet;
973
974 for (packet = remote_protocol_packets;
975 packet < &remote_protocol_packets[PACKET_MAX];
976 packet++)
977 {
978 if (&packet->detect == c->var)
979 {
980 update_packet_config (packet);
981 return;
982 }
983 }
984 internal_error (__FILE__, __LINE__, "Could not find config for %s",
985 c->name);
986 }
987
988 static void
989 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
991 const char *value)
992 {
993 struct packet_config *packet;
994
995 for (packet = remote_protocol_packets;
996 packet < &remote_protocol_packets[PACKET_MAX];
997 packet++)
998 {
999 if (&packet->detect == c->var)
1000 {
1001 show_packet_config_cmd (packet);
1002 return;
1003 }
1004 }
1005 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1006 c->name);
1007 }
1008
1009 /* Should we try one of the 'Z' requests? */
1010
1011 enum Z_packet_type
1012 {
1013 Z_PACKET_SOFTWARE_BP,
1014 Z_PACKET_HARDWARE_BP,
1015 Z_PACKET_WRITE_WP,
1016 Z_PACKET_READ_WP,
1017 Z_PACKET_ACCESS_WP,
1018 NR_Z_PACKET_TYPES
1019 };
1020
1021 /* For compatibility with older distributions. Provide a ``set remote
1022 Z-packet ...'' command that updates all the Z packet types. */
1023
1024 static enum auto_boolean remote_Z_packet_detect;
1025
1026 static void
1027 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1028 struct cmd_list_element *c)
1029 {
1030 int i;
1031 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1032 {
1033 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1034 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1035 }
1036 }
1037
1038 static void
1039 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1040 struct cmd_list_element *c,
1041 const char *value)
1042 {
1043 int i;
1044 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1045 {
1046 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1047 }
1048 }
1049
1050 /* Should we try the 'ThreadInfo' query packet?
1051
1052 This variable (NOT available to the user: auto-detect only!)
1053 determines whether GDB will use the new, simpler "ThreadInfo"
1054 query or the older, more complex syntax for thread queries.
1055 This is an auto-detect variable (set to true at each connect,
1056 and set to false when the target fails to recognize it). */
1057
1058 static int use_threadinfo_query;
1059 static int use_threadextra_query;
1060
1061 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1062 static struct async_signal_handler *sigint_remote_twice_token;
1063 static struct async_signal_handler *sigint_remote_token;
1064
1065 \f
1066
1067 static ptid_t magic_null_ptid;
1068 static ptid_t not_sent_ptid;
1069 static ptid_t any_thread_ptid;
1070
1071 /* These are the threads which we last sent to the remote system. The
1072 TID member will be -1 for all or -2 for not sent yet. */
1073
1074 static ptid_t general_thread;
1075 static ptid_t continue_thread;
1076
1077
1078 /* Call this function as a result of
1079 1) A halt indication (T packet) containing a thread id
1080 2) A direct query of currthread
1081 3) Successful execution of set thread
1082 */
1083
1084 static void
1085 record_currthread (ptid_t currthread)
1086 {
1087 general_thread = currthread;
1088
1089 /* If this is a new thread, add it to GDB's thread list.
1090 If we leave it up to WFI to do this, bad things will happen. */
1091 if (!in_thread_list (currthread))
1092 {
1093 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1094 {
1095 /* inferior_ptid has no thread member yet. This can happen
1096 with the vAttach -> remote_wait,"TAAthread:" path if the
1097 stub doesn't support qC. This is the first stop reported
1098 after an attach, so this is the main thread. Update the
1099 ptid in the thread list. */
1100 struct thread_info *th = find_thread_pid (inferior_ptid);
1101 inferior_ptid = th->ptid = currthread;
1102 }
1103 else if (ptid_equal (magic_null_ptid, inferior_ptid))
1104 {
1105 /* inferior_ptid is not set yet. This can happen with the
1106 vRun -> remote_wait,"TAAthread:" path if the stub
1107 doesn't support qC. This is the first stop reported
1108 after an attach, so this is the main thread. Update the
1109 ptid in the thread list. */
1110 struct thread_info *th = find_thread_pid (inferior_ptid);
1111 inferior_ptid = th->ptid = currthread;
1112 }
1113 else
1114 /* This is really a new thread. Add it. */
1115 add_thread (currthread);
1116 }
1117 }
1118
1119 static char *last_pass_packet;
1120
1121 /* If 'QPassSignals' is supported, tell the remote stub what signals
1122 it can simply pass through to the inferior without reporting. */
1123
1124 static void
1125 remote_pass_signals (void)
1126 {
1127 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1128 {
1129 char *pass_packet, *p;
1130 int numsigs = (int) TARGET_SIGNAL_LAST;
1131 int count = 0, i;
1132
1133 gdb_assert (numsigs < 256);
1134 for (i = 0; i < numsigs; i++)
1135 {
1136 if (signal_stop_state (i) == 0
1137 && signal_print_state (i) == 0
1138 && signal_pass_state (i) == 1)
1139 count++;
1140 }
1141 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1142 strcpy (pass_packet, "QPassSignals:");
1143 p = pass_packet + strlen (pass_packet);
1144 for (i = 0; i < numsigs; i++)
1145 {
1146 if (signal_stop_state (i) == 0
1147 && signal_print_state (i) == 0
1148 && signal_pass_state (i) == 1)
1149 {
1150 if (i >= 16)
1151 *p++ = tohex (i >> 4);
1152 *p++ = tohex (i & 15);
1153 if (count)
1154 *p++ = ';';
1155 else
1156 break;
1157 count--;
1158 }
1159 }
1160 *p = 0;
1161 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1162 {
1163 struct remote_state *rs = get_remote_state ();
1164 char *buf = rs->buf;
1165
1166 putpkt (pass_packet);
1167 getpkt (&rs->buf, &rs->buf_size, 0);
1168 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1169 if (last_pass_packet)
1170 xfree (last_pass_packet);
1171 last_pass_packet = pass_packet;
1172 }
1173 else
1174 xfree (pass_packet);
1175 }
1176 }
1177
1178 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1179 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1180 thread. If GEN is set, set the general thread, if not, then set
1181 the step/continue thread. */
1182 static void
1183 set_thread (struct ptid ptid, int gen)
1184 {
1185 struct remote_state *rs = get_remote_state ();
1186 ptid_t state = gen ? general_thread : continue_thread;
1187 char *buf = rs->buf;
1188 char *endbuf = rs->buf + get_remote_packet_size ();
1189
1190 if (ptid_equal (state, ptid))
1191 return;
1192
1193 *buf++ = 'H';
1194 *buf++ = gen ? 'g' : 'c';
1195 if (ptid_equal (ptid, magic_null_ptid))
1196 xsnprintf (buf, endbuf - buf, "0");
1197 else if (ptid_equal (ptid, any_thread_ptid))
1198 xsnprintf (buf, endbuf - buf, "0");
1199 else if (ptid_equal (ptid, minus_one_ptid))
1200 xsnprintf (buf, endbuf - buf, "-1");
1201 else
1202 {
1203 int tid = ptid_get_tid (ptid);
1204 if (tid < 0)
1205 xsnprintf (buf, endbuf - buf, "-%x", -tid);
1206 else
1207 xsnprintf (buf, endbuf - buf, "%x", tid);
1208 }
1209 putpkt (rs->buf);
1210 getpkt (&rs->buf, &rs->buf_size, 0);
1211 if (gen)
1212 general_thread = ptid;
1213 else
1214 continue_thread = ptid;
1215 }
1216
1217 static void
1218 set_general_thread (struct ptid ptid)
1219 {
1220 set_thread (ptid, 1);
1221 }
1222
1223 static void
1224 set_continue_thread (struct ptid ptid)
1225 {
1226 set_thread (ptid, 0);
1227 }
1228
1229 \f
1230 /* Return nonzero if the thread PTID is still alive on the remote
1231 system. */
1232
1233 static int
1234 remote_thread_alive (ptid_t ptid)
1235 {
1236 struct remote_state *rs = get_remote_state ();
1237 int tid = ptid_get_tid (ptid);
1238
1239 if (ptid_equal (ptid, magic_null_ptid))
1240 /* The main thread is always alive. */
1241 return 1;
1242
1243 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1244 /* The main thread is always alive. This can happen after a
1245 vAttach, if the remote side doesn't support
1246 multi-threading. */
1247 return 1;
1248
1249 if (tid < 0)
1250 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1251 else
1252 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1253 putpkt (rs->buf);
1254 getpkt (&rs->buf, &rs->buf_size, 0);
1255 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1256 }
1257
1258 /* About these extended threadlist and threadinfo packets. They are
1259 variable length packets but, the fields within them are often fixed
1260 length. They are redundent enough to send over UDP as is the
1261 remote protocol in general. There is a matching unit test module
1262 in libstub. */
1263
1264 #define OPAQUETHREADBYTES 8
1265
1266 /* a 64 bit opaque identifier */
1267 typedef unsigned char threadref[OPAQUETHREADBYTES];
1268
1269 /* WARNING: This threadref data structure comes from the remote O.S.,
1270 libstub protocol encoding, and remote.c. it is not particularly
1271 changable. */
1272
1273 /* Right now, the internal structure is int. We want it to be bigger.
1274 Plan to fix this.
1275 */
1276
1277 typedef int gdb_threadref; /* Internal GDB thread reference. */
1278
1279 /* gdb_ext_thread_info is an internal GDB data structure which is
1280 equivalent to the reply of the remote threadinfo packet. */
1281
1282 struct gdb_ext_thread_info
1283 {
1284 threadref threadid; /* External form of thread reference. */
1285 int active; /* Has state interesting to GDB?
1286 regs, stack. */
1287 char display[256]; /* Brief state display, name,
1288 blocked/suspended. */
1289 char shortname[32]; /* To be used to name threads. */
1290 char more_display[256]; /* Long info, statistics, queue depth,
1291 whatever. */
1292 };
1293
1294 /* The volume of remote transfers can be limited by submitting
1295 a mask containing bits specifying the desired information.
1296 Use a union of these values as the 'selection' parameter to
1297 get_thread_info. FIXME: Make these TAG names more thread specific.
1298 */
1299
1300 #define TAG_THREADID 1
1301 #define TAG_EXISTS 2
1302 #define TAG_DISPLAY 4
1303 #define TAG_THREADNAME 8
1304 #define TAG_MOREDISPLAY 16
1305
1306 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1307
1308 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1309
1310 static char *unpack_nibble (char *buf, int *val);
1311
1312 static char *pack_nibble (char *buf, int nibble);
1313
1314 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1315
1316 static char *unpack_byte (char *buf, int *value);
1317
1318 static char *pack_int (char *buf, int value);
1319
1320 static char *unpack_int (char *buf, int *value);
1321
1322 static char *unpack_string (char *src, char *dest, int length);
1323
1324 static char *pack_threadid (char *pkt, threadref *id);
1325
1326 static char *unpack_threadid (char *inbuf, threadref *id);
1327
1328 void int_to_threadref (threadref *id, int value);
1329
1330 static int threadref_to_int (threadref *ref);
1331
1332 static void copy_threadref (threadref *dest, threadref *src);
1333
1334 static int threadmatch (threadref *dest, threadref *src);
1335
1336 static char *pack_threadinfo_request (char *pkt, int mode,
1337 threadref *id);
1338
1339 static int remote_unpack_thread_info_response (char *pkt,
1340 threadref *expectedref,
1341 struct gdb_ext_thread_info
1342 *info);
1343
1344
1345 static int remote_get_threadinfo (threadref *threadid,
1346 int fieldset, /*TAG mask */
1347 struct gdb_ext_thread_info *info);
1348
1349 static char *pack_threadlist_request (char *pkt, int startflag,
1350 int threadcount,
1351 threadref *nextthread);
1352
1353 static int parse_threadlist_response (char *pkt,
1354 int result_limit,
1355 threadref *original_echo,
1356 threadref *resultlist,
1357 int *doneflag);
1358
1359 static int remote_get_threadlist (int startflag,
1360 threadref *nextthread,
1361 int result_limit,
1362 int *done,
1363 int *result_count,
1364 threadref *threadlist);
1365
1366 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1367
1368 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1369 void *context, int looplimit);
1370
1371 static int remote_newthread_step (threadref *ref, void *context);
1372
1373 /* Encode 64 bits in 16 chars of hex. */
1374
1375 static const char hexchars[] = "0123456789abcdef";
1376
1377 static int
1378 ishex (int ch, int *val)
1379 {
1380 if ((ch >= 'a') && (ch <= 'f'))
1381 {
1382 *val = ch - 'a' + 10;
1383 return 1;
1384 }
1385 if ((ch >= 'A') && (ch <= 'F'))
1386 {
1387 *val = ch - 'A' + 10;
1388 return 1;
1389 }
1390 if ((ch >= '0') && (ch <= '9'))
1391 {
1392 *val = ch - '0';
1393 return 1;
1394 }
1395 return 0;
1396 }
1397
1398 static int
1399 stubhex (int ch)
1400 {
1401 if (ch >= 'a' && ch <= 'f')
1402 return ch - 'a' + 10;
1403 if (ch >= '0' && ch <= '9')
1404 return ch - '0';
1405 if (ch >= 'A' && ch <= 'F')
1406 return ch - 'A' + 10;
1407 return -1;
1408 }
1409
1410 static int
1411 stub_unpack_int (char *buff, int fieldlength)
1412 {
1413 int nibble;
1414 int retval = 0;
1415
1416 while (fieldlength)
1417 {
1418 nibble = stubhex (*buff++);
1419 retval |= nibble;
1420 fieldlength--;
1421 if (fieldlength)
1422 retval = retval << 4;
1423 }
1424 return retval;
1425 }
1426
1427 char *
1428 unpack_varlen_hex (char *buff, /* packet to parse */
1429 ULONGEST *result)
1430 {
1431 int nibble;
1432 ULONGEST retval = 0;
1433
1434 while (ishex (*buff, &nibble))
1435 {
1436 buff++;
1437 retval = retval << 4;
1438 retval |= nibble & 0x0f;
1439 }
1440 *result = retval;
1441 return buff;
1442 }
1443
1444 static char *
1445 unpack_nibble (char *buf, int *val)
1446 {
1447 *val = fromhex (*buf++);
1448 return buf;
1449 }
1450
1451 static char *
1452 pack_nibble (char *buf, int nibble)
1453 {
1454 *buf++ = hexchars[(nibble & 0x0f)];
1455 return buf;
1456 }
1457
1458 static char *
1459 pack_hex_byte (char *pkt, int byte)
1460 {
1461 *pkt++ = hexchars[(byte >> 4) & 0xf];
1462 *pkt++ = hexchars[(byte & 0xf)];
1463 return pkt;
1464 }
1465
1466 static char *
1467 unpack_byte (char *buf, int *value)
1468 {
1469 *value = stub_unpack_int (buf, 2);
1470 return buf + 2;
1471 }
1472
1473 static char *
1474 pack_int (char *buf, int value)
1475 {
1476 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1477 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1478 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1479 buf = pack_hex_byte (buf, (value & 0xff));
1480 return buf;
1481 }
1482
1483 static char *
1484 unpack_int (char *buf, int *value)
1485 {
1486 *value = stub_unpack_int (buf, 8);
1487 return buf + 8;
1488 }
1489
1490 #if 0 /* Currently unused, uncomment when needed. */
1491 static char *pack_string (char *pkt, char *string);
1492
1493 static char *
1494 pack_string (char *pkt, char *string)
1495 {
1496 char ch;
1497 int len;
1498
1499 len = strlen (string);
1500 if (len > 200)
1501 len = 200; /* Bigger than most GDB packets, junk??? */
1502 pkt = pack_hex_byte (pkt, len);
1503 while (len-- > 0)
1504 {
1505 ch = *string++;
1506 if ((ch == '\0') || (ch == '#'))
1507 ch = '*'; /* Protect encapsulation. */
1508 *pkt++ = ch;
1509 }
1510 return pkt;
1511 }
1512 #endif /* 0 (unused) */
1513
1514 static char *
1515 unpack_string (char *src, char *dest, int length)
1516 {
1517 while (length--)
1518 *dest++ = *src++;
1519 *dest = '\0';
1520 return src;
1521 }
1522
1523 static char *
1524 pack_threadid (char *pkt, threadref *id)
1525 {
1526 char *limit;
1527 unsigned char *altid;
1528
1529 altid = (unsigned char *) id;
1530 limit = pkt + BUF_THREAD_ID_SIZE;
1531 while (pkt < limit)
1532 pkt = pack_hex_byte (pkt, *altid++);
1533 return pkt;
1534 }
1535
1536
1537 static char *
1538 unpack_threadid (char *inbuf, threadref *id)
1539 {
1540 char *altref;
1541 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1542 int x, y;
1543
1544 altref = (char *) id;
1545
1546 while (inbuf < limit)
1547 {
1548 x = stubhex (*inbuf++);
1549 y = stubhex (*inbuf++);
1550 *altref++ = (x << 4) | y;
1551 }
1552 return inbuf;
1553 }
1554
1555 /* Externally, threadrefs are 64 bits but internally, they are still
1556 ints. This is due to a mismatch of specifications. We would like
1557 to use 64bit thread references internally. This is an adapter
1558 function. */
1559
1560 void
1561 int_to_threadref (threadref *id, int value)
1562 {
1563 unsigned char *scan;
1564
1565 scan = (unsigned char *) id;
1566 {
1567 int i = 4;
1568 while (i--)
1569 *scan++ = 0;
1570 }
1571 *scan++ = (value >> 24) & 0xff;
1572 *scan++ = (value >> 16) & 0xff;
1573 *scan++ = (value >> 8) & 0xff;
1574 *scan++ = (value & 0xff);
1575 }
1576
1577 static int
1578 threadref_to_int (threadref *ref)
1579 {
1580 int i, value = 0;
1581 unsigned char *scan;
1582
1583 scan = *ref;
1584 scan += 4;
1585 i = 4;
1586 while (i-- > 0)
1587 value = (value << 8) | ((*scan++) & 0xff);
1588 return value;
1589 }
1590
1591 static void
1592 copy_threadref (threadref *dest, threadref *src)
1593 {
1594 int i;
1595 unsigned char *csrc, *cdest;
1596
1597 csrc = (unsigned char *) src;
1598 cdest = (unsigned char *) dest;
1599 i = 8;
1600 while (i--)
1601 *cdest++ = *csrc++;
1602 }
1603
1604 static int
1605 threadmatch (threadref *dest, threadref *src)
1606 {
1607 /* Things are broken right now, so just assume we got a match. */
1608 #if 0
1609 unsigned char *srcp, *destp;
1610 int i, result;
1611 srcp = (char *) src;
1612 destp = (char *) dest;
1613
1614 result = 1;
1615 while (i-- > 0)
1616 result &= (*srcp++ == *destp++) ? 1 : 0;
1617 return result;
1618 #endif
1619 return 1;
1620 }
1621
1622 /*
1623 threadid:1, # always request threadid
1624 context_exists:2,
1625 display:4,
1626 unique_name:8,
1627 more_display:16
1628 */
1629
1630 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1631
1632 static char *
1633 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1634 {
1635 *pkt++ = 'q'; /* Info Query */
1636 *pkt++ = 'P'; /* process or thread info */
1637 pkt = pack_int (pkt, mode); /* mode */
1638 pkt = pack_threadid (pkt, id); /* threadid */
1639 *pkt = '\0'; /* terminate */
1640 return pkt;
1641 }
1642
1643 /* These values tag the fields in a thread info response packet. */
1644 /* Tagging the fields allows us to request specific fields and to
1645 add more fields as time goes by. */
1646
1647 #define TAG_THREADID 1 /* Echo the thread identifier. */
1648 #define TAG_EXISTS 2 /* Is this process defined enough to
1649 fetch registers and its stack? */
1650 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1651 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1652 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1653 the process. */
1654
1655 static int
1656 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1657 struct gdb_ext_thread_info *info)
1658 {
1659 struct remote_state *rs = get_remote_state ();
1660 int mask, length;
1661 int tag;
1662 threadref ref;
1663 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1664 int retval = 1;
1665
1666 /* info->threadid = 0; FIXME: implement zero_threadref. */
1667 info->active = 0;
1668 info->display[0] = '\0';
1669 info->shortname[0] = '\0';
1670 info->more_display[0] = '\0';
1671
1672 /* Assume the characters indicating the packet type have been
1673 stripped. */
1674 pkt = unpack_int (pkt, &mask); /* arg mask */
1675 pkt = unpack_threadid (pkt, &ref);
1676
1677 if (mask == 0)
1678 warning (_("Incomplete response to threadinfo request."));
1679 if (!threadmatch (&ref, expectedref))
1680 { /* This is an answer to a different request. */
1681 warning (_("ERROR RMT Thread info mismatch."));
1682 return 0;
1683 }
1684 copy_threadref (&info->threadid, &ref);
1685
1686 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1687
1688 /* Packets are terminated with nulls. */
1689 while ((pkt < limit) && mask && *pkt)
1690 {
1691 pkt = unpack_int (pkt, &tag); /* tag */
1692 pkt = unpack_byte (pkt, &length); /* length */
1693 if (!(tag & mask)) /* Tags out of synch with mask. */
1694 {
1695 warning (_("ERROR RMT: threadinfo tag mismatch."));
1696 retval = 0;
1697 break;
1698 }
1699 if (tag == TAG_THREADID)
1700 {
1701 if (length != 16)
1702 {
1703 warning (_("ERROR RMT: length of threadid is not 16."));
1704 retval = 0;
1705 break;
1706 }
1707 pkt = unpack_threadid (pkt, &ref);
1708 mask = mask & ~TAG_THREADID;
1709 continue;
1710 }
1711 if (tag == TAG_EXISTS)
1712 {
1713 info->active = stub_unpack_int (pkt, length);
1714 pkt += length;
1715 mask = mask & ~(TAG_EXISTS);
1716 if (length > 8)
1717 {
1718 warning (_("ERROR RMT: 'exists' length too long."));
1719 retval = 0;
1720 break;
1721 }
1722 continue;
1723 }
1724 if (tag == TAG_THREADNAME)
1725 {
1726 pkt = unpack_string (pkt, &info->shortname[0], length);
1727 mask = mask & ~TAG_THREADNAME;
1728 continue;
1729 }
1730 if (tag == TAG_DISPLAY)
1731 {
1732 pkt = unpack_string (pkt, &info->display[0], length);
1733 mask = mask & ~TAG_DISPLAY;
1734 continue;
1735 }
1736 if (tag == TAG_MOREDISPLAY)
1737 {
1738 pkt = unpack_string (pkt, &info->more_display[0], length);
1739 mask = mask & ~TAG_MOREDISPLAY;
1740 continue;
1741 }
1742 warning (_("ERROR RMT: unknown thread info tag."));
1743 break; /* Not a tag we know about. */
1744 }
1745 return retval;
1746 }
1747
1748 static int
1749 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1750 struct gdb_ext_thread_info *info)
1751 {
1752 struct remote_state *rs = get_remote_state ();
1753 int result;
1754
1755 pack_threadinfo_request (rs->buf, fieldset, threadid);
1756 putpkt (rs->buf);
1757 getpkt (&rs->buf, &rs->buf_size, 0);
1758 result = remote_unpack_thread_info_response (rs->buf + 2,
1759 threadid, info);
1760 return result;
1761 }
1762
1763 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1764
1765 static char *
1766 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1767 threadref *nextthread)
1768 {
1769 *pkt++ = 'q'; /* info query packet */
1770 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1771 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1772 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1773 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1774 *pkt = '\0';
1775 return pkt;
1776 }
1777
1778 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1779
1780 static int
1781 parse_threadlist_response (char *pkt, int result_limit,
1782 threadref *original_echo, threadref *resultlist,
1783 int *doneflag)
1784 {
1785 struct remote_state *rs = get_remote_state ();
1786 char *limit;
1787 int count, resultcount, done;
1788
1789 resultcount = 0;
1790 /* Assume the 'q' and 'M chars have been stripped. */
1791 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1792 /* done parse past here */
1793 pkt = unpack_byte (pkt, &count); /* count field */
1794 pkt = unpack_nibble (pkt, &done);
1795 /* The first threadid is the argument threadid. */
1796 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1797 while ((count-- > 0) && (pkt < limit))
1798 {
1799 pkt = unpack_threadid (pkt, resultlist++);
1800 if (resultcount++ >= result_limit)
1801 break;
1802 }
1803 if (doneflag)
1804 *doneflag = done;
1805 return resultcount;
1806 }
1807
1808 static int
1809 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1810 int *done, int *result_count, threadref *threadlist)
1811 {
1812 struct remote_state *rs = get_remote_state ();
1813 static threadref echo_nextthread;
1814 int result = 1;
1815
1816 /* Trancate result limit to be smaller than the packet size. */
1817 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1818 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1819
1820 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1821 putpkt (rs->buf);
1822 getpkt (&rs->buf, &rs->buf_size, 0);
1823
1824 if (*rs->buf == '\0')
1825 *result_count = 0;
1826 else
1827 *result_count =
1828 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1829 threadlist, done);
1830
1831 if (!threadmatch (&echo_nextthread, nextthread))
1832 {
1833 /* FIXME: This is a good reason to drop the packet. */
1834 /* Possably, there is a duplicate response. */
1835 /* Possabilities :
1836 retransmit immediatly - race conditions
1837 retransmit after timeout - yes
1838 exit
1839 wait for packet, then exit
1840 */
1841 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1842 return 0; /* I choose simply exiting. */
1843 }
1844 if (*result_count <= 0)
1845 {
1846 if (*done != 1)
1847 {
1848 warning (_("RMT ERROR : failed to get remote thread list."));
1849 result = 0;
1850 }
1851 return result; /* break; */
1852 }
1853 if (*result_count > result_limit)
1854 {
1855 *result_count = 0;
1856 warning (_("RMT ERROR: threadlist response longer than requested."));
1857 return 0;
1858 }
1859 return result;
1860 }
1861
1862 /* This is the interface between remote and threads, remotes upper
1863 interface. */
1864
1865 /* remote_find_new_threads retrieves the thread list and for each
1866 thread in the list, looks up the thread in GDB's internal list,
1867 adding the thread if it does not already exist. This involves
1868 getting partial thread lists from the remote target so, polling the
1869 quit_flag is required. */
1870
1871
1872 /* About this many threadisds fit in a packet. */
1873
1874 #define MAXTHREADLISTRESULTS 32
1875
1876 static int
1877 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1878 int looplimit)
1879 {
1880 int done, i, result_count;
1881 int startflag = 1;
1882 int result = 1;
1883 int loopcount = 0;
1884 static threadref nextthread;
1885 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1886
1887 done = 0;
1888 while (!done)
1889 {
1890 if (loopcount++ > looplimit)
1891 {
1892 result = 0;
1893 warning (_("Remote fetch threadlist -infinite loop-."));
1894 break;
1895 }
1896 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1897 &done, &result_count, resultthreadlist))
1898 {
1899 result = 0;
1900 break;
1901 }
1902 /* Clear for later iterations. */
1903 startflag = 0;
1904 /* Setup to resume next batch of thread references, set nextthread. */
1905 if (result_count >= 1)
1906 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1907 i = 0;
1908 while (result_count--)
1909 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1910 break;
1911 }
1912 return result;
1913 }
1914
1915 static int
1916 remote_newthread_step (threadref *ref, void *context)
1917 {
1918 int pid = ptid_get_pid (inferior_ptid);
1919 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
1920
1921 if (!in_thread_list (ptid))
1922 add_thread (ptid);
1923 return 1; /* continue iterator */
1924 }
1925
1926 #define CRAZY_MAX_THREADS 1000
1927
1928 static ptid_t
1929 remote_current_thread (ptid_t oldpid)
1930 {
1931 struct remote_state *rs = get_remote_state ();
1932 char *p = rs->buf;
1933 int tid;
1934 int pid;
1935
1936 putpkt ("qC");
1937 getpkt (&rs->buf, &rs->buf_size, 0);
1938 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1939 {
1940 /* Use strtoul here, so we'll correctly parse values whose
1941 highest bit is set. The protocol carries them as a simple
1942 series of hex digits; in the absence of a sign, strtol will
1943 see such values as positive numbers out of range for signed
1944 'long', and return LONG_MAX to indicate an overflow. */
1945 tid = strtoul (&rs->buf[2], NULL, 16);
1946 pid = ptid_get_pid (oldpid);
1947 return ptid_build (pid, 0, tid);
1948 }
1949 else
1950 return oldpid;
1951 }
1952
1953 /* Find new threads for info threads command.
1954 * Original version, using John Metzler's thread protocol.
1955 */
1956
1957 static void
1958 remote_find_new_threads (void)
1959 {
1960 remote_threadlist_iterator (remote_newthread_step, 0,
1961 CRAZY_MAX_THREADS);
1962 }
1963
1964 /*
1965 * Find all threads for info threads command.
1966 * Uses new thread protocol contributed by Cisco.
1967 * Falls back and attempts to use the older method (above)
1968 * if the target doesn't respond to the new method.
1969 */
1970
1971 static void
1972 remote_threads_info (void)
1973 {
1974 struct remote_state *rs = get_remote_state ();
1975 char *bufp;
1976 int tid;
1977 int pid;
1978 ptid_t new_thread;
1979
1980 if (remote_desc == 0) /* paranoia */
1981 error (_("Command can only be used when connected to the remote target."));
1982
1983 if (use_threadinfo_query)
1984 {
1985 putpkt ("qfThreadInfo");
1986 getpkt (&rs->buf, &rs->buf_size, 0);
1987 bufp = rs->buf;
1988 if (bufp[0] != '\0') /* q packet recognized */
1989 {
1990 while (*bufp++ == 'm') /* reply contains one or more TID */
1991 {
1992 do
1993 {
1994 /* Use strtoul here, so we'll correctly parse values
1995 whose highest bit is set. The protocol carries
1996 them as a simple series of hex digits; in the
1997 absence of a sign, strtol will see such values as
1998 positive numbers out of range for signed 'long',
1999 and return LONG_MAX to indicate an overflow. */
2000 tid = strtoul (bufp, &bufp, 16);
2001 pid = ptid_get_pid (inferior_ptid);
2002 new_thread = ptid_build (pid, 0, tid);
2003 if (tid != 0 && !in_thread_list (new_thread))
2004 add_thread (new_thread);
2005 }
2006 while (*bufp++ == ','); /* comma-separated list */
2007 putpkt ("qsThreadInfo");
2008 getpkt (&rs->buf, &rs->buf_size, 0);
2009 bufp = rs->buf;
2010 }
2011 return; /* done */
2012 }
2013 }
2014
2015 /* Else fall back to old method based on jmetzler protocol. */
2016 use_threadinfo_query = 0;
2017 remote_find_new_threads ();
2018 return;
2019 }
2020
2021 /*
2022 * Collect a descriptive string about the given thread.
2023 * The target may say anything it wants to about the thread
2024 * (typically info about its blocked / runnable state, name, etc.).
2025 * This string will appear in the info threads display.
2026 *
2027 * Optional: targets are not required to implement this function.
2028 */
2029
2030 static char *
2031 remote_threads_extra_info (struct thread_info *tp)
2032 {
2033 struct remote_state *rs = get_remote_state ();
2034 int result;
2035 int set;
2036 threadref id;
2037 struct gdb_ext_thread_info threadinfo;
2038 static char display_buf[100]; /* arbitrary... */
2039 int n = 0; /* position in display_buf */
2040
2041 if (remote_desc == 0) /* paranoia */
2042 internal_error (__FILE__, __LINE__,
2043 _("remote_threads_extra_info"));
2044
2045 if (use_threadextra_query)
2046 {
2047 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%lx",
2048 ptid_get_tid (tp->ptid));
2049 putpkt (rs->buf);
2050 getpkt (&rs->buf, &rs->buf_size, 0);
2051 if (rs->buf[0] != 0)
2052 {
2053 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2054 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2055 display_buf [result] = '\0';
2056 return display_buf;
2057 }
2058 }
2059
2060 /* If the above query fails, fall back to the old method. */
2061 use_threadextra_query = 0;
2062 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2063 | TAG_MOREDISPLAY | TAG_DISPLAY;
2064 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2065 if (remote_get_threadinfo (&id, set, &threadinfo))
2066 if (threadinfo.active)
2067 {
2068 if (*threadinfo.shortname)
2069 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2070 " Name: %s,", threadinfo.shortname);
2071 if (*threadinfo.display)
2072 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2073 " State: %s,", threadinfo.display);
2074 if (*threadinfo.more_display)
2075 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2076 " Priority: %s", threadinfo.more_display);
2077
2078 if (n > 0)
2079 {
2080 /* For purely cosmetic reasons, clear up trailing commas. */
2081 if (',' == display_buf[n-1])
2082 display_buf[n-1] = ' ';
2083 return display_buf;
2084 }
2085 }
2086 return NULL;
2087 }
2088 \f
2089
2090 /* Restart the remote side; this is an extended protocol operation. */
2091
2092 static void
2093 extended_remote_restart (void)
2094 {
2095 struct remote_state *rs = get_remote_state ();
2096
2097 /* Send the restart command; for reasons I don't understand the
2098 remote side really expects a number after the "R". */
2099 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2100 putpkt (rs->buf);
2101
2102 remote_fileio_reset ();
2103 }
2104 \f
2105 /* Clean up connection to a remote debugger. */
2106
2107 static void
2108 remote_close (int quitting)
2109 {
2110 if (remote_desc)
2111 serial_close (remote_desc);
2112 remote_desc = NULL;
2113 }
2114
2115 /* Query the remote side for the text, data and bss offsets. */
2116
2117 static void
2118 get_offsets (void)
2119 {
2120 struct remote_state *rs = get_remote_state ();
2121 char *buf;
2122 char *ptr;
2123 int lose, num_segments = 0, do_sections, do_segments;
2124 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2125 struct section_offsets *offs;
2126 struct symfile_segment_data *data;
2127
2128 if (symfile_objfile == NULL)
2129 return;
2130
2131 putpkt ("qOffsets");
2132 getpkt (&rs->buf, &rs->buf_size, 0);
2133 buf = rs->buf;
2134
2135 if (buf[0] == '\000')
2136 return; /* Return silently. Stub doesn't support
2137 this command. */
2138 if (buf[0] == 'E')
2139 {
2140 warning (_("Remote failure reply: %s"), buf);
2141 return;
2142 }
2143
2144 /* Pick up each field in turn. This used to be done with scanf, but
2145 scanf will make trouble if CORE_ADDR size doesn't match
2146 conversion directives correctly. The following code will work
2147 with any size of CORE_ADDR. */
2148 text_addr = data_addr = bss_addr = 0;
2149 ptr = buf;
2150 lose = 0;
2151
2152 if (strncmp (ptr, "Text=", 5) == 0)
2153 {
2154 ptr += 5;
2155 /* Don't use strtol, could lose on big values. */
2156 while (*ptr && *ptr != ';')
2157 text_addr = (text_addr << 4) + fromhex (*ptr++);
2158
2159 if (strncmp (ptr, ";Data=", 6) == 0)
2160 {
2161 ptr += 6;
2162 while (*ptr && *ptr != ';')
2163 data_addr = (data_addr << 4) + fromhex (*ptr++);
2164 }
2165 else
2166 lose = 1;
2167
2168 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2169 {
2170 ptr += 5;
2171 while (*ptr && *ptr != ';')
2172 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2173
2174 if (bss_addr != data_addr)
2175 warning (_("Target reported unsupported offsets: %s"), buf);
2176 }
2177 else
2178 lose = 1;
2179 }
2180 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2181 {
2182 ptr += 8;
2183 /* Don't use strtol, could lose on big values. */
2184 while (*ptr && *ptr != ';')
2185 text_addr = (text_addr << 4) + fromhex (*ptr++);
2186 num_segments = 1;
2187
2188 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2189 {
2190 ptr += 9;
2191 while (*ptr && *ptr != ';')
2192 data_addr = (data_addr << 4) + fromhex (*ptr++);
2193 num_segments++;
2194 }
2195 }
2196 else
2197 lose = 1;
2198
2199 if (lose)
2200 error (_("Malformed response to offset query, %s"), buf);
2201 else if (*ptr != '\0')
2202 warning (_("Target reported unsupported offsets: %s"), buf);
2203
2204 offs = ((struct section_offsets *)
2205 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2206 memcpy (offs, symfile_objfile->section_offsets,
2207 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2208
2209 data = get_symfile_segment_data (symfile_objfile->obfd);
2210 do_segments = (data != NULL);
2211 do_sections = num_segments == 0;
2212
2213 if (num_segments > 0)
2214 {
2215 segments[0] = text_addr;
2216 segments[1] = data_addr;
2217 }
2218 /* If we have two segments, we can still try to relocate everything
2219 by assuming that the .text and .data offsets apply to the whole
2220 text and data segments. Convert the offsets given in the packet
2221 to base addresses for symfile_map_offsets_to_segments. */
2222 else if (data && data->num_segments == 2)
2223 {
2224 segments[0] = data->segment_bases[0] + text_addr;
2225 segments[1] = data->segment_bases[1] + data_addr;
2226 num_segments = 2;
2227 }
2228 /* If the object file has only one segment, assume that it is text
2229 rather than data; main programs with no writable data are rare,
2230 but programs with no code are useless. Of course the code might
2231 have ended up in the data segment... to detect that we would need
2232 the permissions here. */
2233 else if (data && data->num_segments == 1)
2234 {
2235 segments[0] = data->segment_bases[0] + text_addr;
2236 num_segments = 1;
2237 }
2238 /* There's no way to relocate by segment. */
2239 else
2240 do_segments = 0;
2241
2242 if (do_segments)
2243 {
2244 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2245 offs, num_segments, segments);
2246
2247 if (ret == 0 && !do_sections)
2248 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2249
2250 if (ret > 0)
2251 do_sections = 0;
2252 }
2253
2254 if (data)
2255 free_symfile_segment_data (data);
2256
2257 if (do_sections)
2258 {
2259 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2260
2261 /* This is a temporary kludge to force data and bss to use the same offsets
2262 because that's what nlmconv does now. The real solution requires changes
2263 to the stub and remote.c that I don't have time to do right now. */
2264
2265 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2266 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2267 }
2268
2269 objfile_relocate (symfile_objfile, offs);
2270 }
2271
2272 /* Stub for catch_exception. */
2273
2274 struct start_remote_args
2275 {
2276 int from_tty;
2277
2278 /* The current target. */
2279 struct target_ops *target;
2280
2281 /* Non-zero if this is an extended-remote target. */
2282 int extended_p;
2283 };
2284
2285 static void
2286 remote_start_remote (struct ui_out *uiout, void *opaque)
2287 {
2288 struct remote_state *rs = get_remote_state ();
2289 struct start_remote_args *args = opaque;
2290 char *wait_status = NULL;
2291
2292 immediate_quit++; /* Allow user to interrupt it. */
2293
2294 /* Ack any packet which the remote side has already sent. */
2295 serial_write (remote_desc, "+", 1);
2296
2297 /* Check whether the target is running now. */
2298 putpkt ("?");
2299 getpkt (&rs->buf, &rs->buf_size, 0);
2300
2301 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2302 {
2303 if (args->extended_p)
2304 {
2305 /* We're connected, but not running. Drop out before we
2306 call start_remote. */
2307 target_mark_exited (args->target);
2308 return;
2309 }
2310 else
2311 error (_("The target is not running (try extended-remote?)"));
2312 }
2313 else
2314 {
2315 if (args->extended_p)
2316 target_mark_running (args->target);
2317
2318 /* Save the reply for later. */
2319 wait_status = alloca (strlen (rs->buf) + 1);
2320 strcpy (wait_status, rs->buf);
2321 }
2322
2323 /* Start afresh. */
2324 init_thread_list ();
2325
2326 /* Let the stub know that we want it to return the thread. */
2327 set_continue_thread (minus_one_ptid);
2328
2329 /* Without this, some commands which require an active target
2330 (such as kill) won't work. This variable serves (at least)
2331 double duty as both the pid of the target process (if it has
2332 such), and as a flag indicating that a target is active.
2333 These functions should be split out into seperate variables,
2334 especially since GDB will someday have a notion of debugging
2335 several processes. */
2336 inferior_ptid = magic_null_ptid;
2337
2338 /* Now, if we have thread information, update inferior_ptid. */
2339 inferior_ptid = remote_current_thread (inferior_ptid);
2340
2341 /* Always add the main thread. */
2342 add_thread_silent (inferior_ptid);
2343
2344 get_offsets (); /* Get text, data & bss offsets. */
2345
2346 /* Use the previously fetched status. */
2347 gdb_assert (wait_status != NULL);
2348 strcpy (rs->buf, wait_status);
2349 rs->cached_wait_status = 1;
2350
2351 immediate_quit--;
2352 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2353 }
2354
2355 /* Open a connection to a remote debugger.
2356 NAME is the filename used for communication. */
2357
2358 static void
2359 remote_open (char *name, int from_tty)
2360 {
2361 remote_open_1 (name, from_tty, &remote_ops, 0);
2362 }
2363
2364 /* Open a connection to a remote debugger using the extended
2365 remote gdb protocol. NAME is the filename used for communication. */
2366
2367 static void
2368 extended_remote_open (char *name, int from_tty)
2369 {
2370 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2371 }
2372
2373 /* Generic code for opening a connection to a remote target. */
2374
2375 static void
2376 init_all_packet_configs (void)
2377 {
2378 int i;
2379 for (i = 0; i < PACKET_MAX; i++)
2380 update_packet_config (&remote_protocol_packets[i]);
2381 }
2382
2383 /* Symbol look-up. */
2384
2385 static void
2386 remote_check_symbols (struct objfile *objfile)
2387 {
2388 struct remote_state *rs = get_remote_state ();
2389 char *msg, *reply, *tmp;
2390 struct minimal_symbol *sym;
2391 int end;
2392
2393 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2394 return;
2395
2396 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2397 because we need both at the same time. */
2398 msg = alloca (get_remote_packet_size ());
2399
2400 /* Invite target to request symbol lookups. */
2401
2402 putpkt ("qSymbol::");
2403 getpkt (&rs->buf, &rs->buf_size, 0);
2404 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2405 reply = rs->buf;
2406
2407 while (strncmp (reply, "qSymbol:", 8) == 0)
2408 {
2409 tmp = &reply[8];
2410 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2411 msg[end] = '\0';
2412 sym = lookup_minimal_symbol (msg, NULL, NULL);
2413 if (sym == NULL)
2414 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2415 else
2416 {
2417 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2418
2419 /* If this is a function address, return the start of code
2420 instead of any data function descriptor. */
2421 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2422 sym_addr,
2423 &current_target);
2424
2425 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2426 paddr_nz (sym_addr), &reply[8]);
2427 }
2428
2429 putpkt (msg);
2430 getpkt (&rs->buf, &rs->buf_size, 0);
2431 reply = rs->buf;
2432 }
2433 }
2434
2435 static struct serial *
2436 remote_serial_open (char *name)
2437 {
2438 static int udp_warning = 0;
2439
2440 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2441 of in ser-tcp.c, because it is the remote protocol assuming that the
2442 serial connection is reliable and not the serial connection promising
2443 to be. */
2444 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2445 {
2446 warning (_("\
2447 The remote protocol may be unreliable over UDP.\n\
2448 Some events may be lost, rendering further debugging impossible."));
2449 udp_warning = 1;
2450 }
2451
2452 return serial_open (name);
2453 }
2454
2455 /* This type describes each known response to the qSupported
2456 packet. */
2457 struct protocol_feature
2458 {
2459 /* The name of this protocol feature. */
2460 const char *name;
2461
2462 /* The default for this protocol feature. */
2463 enum packet_support default_support;
2464
2465 /* The function to call when this feature is reported, or after
2466 qSupported processing if the feature is not supported.
2467 The first argument points to this structure. The second
2468 argument indicates whether the packet requested support be
2469 enabled, disabled, or probed (or the default, if this function
2470 is being called at the end of processing and this feature was
2471 not reported). The third argument may be NULL; if not NULL, it
2472 is a NUL-terminated string taken from the packet following
2473 this feature's name and an equals sign. */
2474 void (*func) (const struct protocol_feature *, enum packet_support,
2475 const char *);
2476
2477 /* The corresponding packet for this feature. Only used if
2478 FUNC is remote_supported_packet. */
2479 int packet;
2480 };
2481
2482 static void
2483 remote_supported_packet (const struct protocol_feature *feature,
2484 enum packet_support support,
2485 const char *argument)
2486 {
2487 if (argument)
2488 {
2489 warning (_("Remote qSupported response supplied an unexpected value for"
2490 " \"%s\"."), feature->name);
2491 return;
2492 }
2493
2494 if (remote_protocol_packets[feature->packet].support
2495 == PACKET_SUPPORT_UNKNOWN)
2496 remote_protocol_packets[feature->packet].support = support;
2497 }
2498
2499 static void
2500 remote_packet_size (const struct protocol_feature *feature,
2501 enum packet_support support, const char *value)
2502 {
2503 struct remote_state *rs = get_remote_state ();
2504
2505 int packet_size;
2506 char *value_end;
2507
2508 if (support != PACKET_ENABLE)
2509 return;
2510
2511 if (value == NULL || *value == '\0')
2512 {
2513 warning (_("Remote target reported \"%s\" without a size."),
2514 feature->name);
2515 return;
2516 }
2517
2518 errno = 0;
2519 packet_size = strtol (value, &value_end, 16);
2520 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2521 {
2522 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2523 feature->name, value);
2524 return;
2525 }
2526
2527 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2528 {
2529 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2530 packet_size, MAX_REMOTE_PACKET_SIZE);
2531 packet_size = MAX_REMOTE_PACKET_SIZE;
2532 }
2533
2534 /* Record the new maximum packet size. */
2535 rs->explicit_packet_size = packet_size;
2536 }
2537
2538 static struct protocol_feature remote_protocol_features[] = {
2539 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2540 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2541 PACKET_qXfer_auxv },
2542 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2543 PACKET_qXfer_features },
2544 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2545 PACKET_qXfer_libraries },
2546 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2547 PACKET_qXfer_memory_map },
2548 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2549 PACKET_qXfer_spu_read },
2550 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2551 PACKET_qXfer_spu_write },
2552 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2553 PACKET_QPassSignals },
2554 };
2555
2556 static void
2557 remote_query_supported (void)
2558 {
2559 struct remote_state *rs = get_remote_state ();
2560 char *next;
2561 int i;
2562 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2563
2564 /* The packet support flags are handled differently for this packet
2565 than for most others. We treat an error, a disabled packet, and
2566 an empty response identically: any features which must be reported
2567 to be used will be automatically disabled. An empty buffer
2568 accomplishes this, since that is also the representation for a list
2569 containing no features. */
2570
2571 rs->buf[0] = 0;
2572 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2573 {
2574 putpkt ("qSupported");
2575 getpkt (&rs->buf, &rs->buf_size, 0);
2576
2577 /* If an error occured, warn, but do not return - just reset the
2578 buffer to empty and go on to disable features. */
2579 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2580 == PACKET_ERROR)
2581 {
2582 warning (_("Remote failure reply: %s"), rs->buf);
2583 rs->buf[0] = 0;
2584 }
2585 }
2586
2587 memset (seen, 0, sizeof (seen));
2588
2589 next = rs->buf;
2590 while (*next)
2591 {
2592 enum packet_support is_supported;
2593 char *p, *end, *name_end, *value;
2594
2595 /* First separate out this item from the rest of the packet. If
2596 there's another item after this, we overwrite the separator
2597 (terminated strings are much easier to work with). */
2598 p = next;
2599 end = strchr (p, ';');
2600 if (end == NULL)
2601 {
2602 end = p + strlen (p);
2603 next = end;
2604 }
2605 else
2606 {
2607 *end = '\0';
2608 next = end + 1;
2609
2610 if (end == p)
2611 {
2612 warning (_("empty item in \"qSupported\" response"));
2613 continue;
2614 }
2615 }
2616
2617 name_end = strchr (p, '=');
2618 if (name_end)
2619 {
2620 /* This is a name=value entry. */
2621 is_supported = PACKET_ENABLE;
2622 value = name_end + 1;
2623 *name_end = '\0';
2624 }
2625 else
2626 {
2627 value = NULL;
2628 switch (end[-1])
2629 {
2630 case '+':
2631 is_supported = PACKET_ENABLE;
2632 break;
2633
2634 case '-':
2635 is_supported = PACKET_DISABLE;
2636 break;
2637
2638 case '?':
2639 is_supported = PACKET_SUPPORT_UNKNOWN;
2640 break;
2641
2642 default:
2643 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2644 continue;
2645 }
2646 end[-1] = '\0';
2647 }
2648
2649 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2650 if (strcmp (remote_protocol_features[i].name, p) == 0)
2651 {
2652 const struct protocol_feature *feature;
2653
2654 seen[i] = 1;
2655 feature = &remote_protocol_features[i];
2656 feature->func (feature, is_supported, value);
2657 break;
2658 }
2659 }
2660
2661 /* If we increased the packet size, make sure to increase the global
2662 buffer size also. We delay this until after parsing the entire
2663 qSupported packet, because this is the same buffer we were
2664 parsing. */
2665 if (rs->buf_size < rs->explicit_packet_size)
2666 {
2667 rs->buf_size = rs->explicit_packet_size;
2668 rs->buf = xrealloc (rs->buf, rs->buf_size);
2669 }
2670
2671 /* Handle the defaults for unmentioned features. */
2672 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2673 if (!seen[i])
2674 {
2675 const struct protocol_feature *feature;
2676
2677 feature = &remote_protocol_features[i];
2678 feature->func (feature, feature->default_support, NULL);
2679 }
2680 }
2681
2682
2683 static void
2684 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
2685 {
2686 struct remote_state *rs = get_remote_state ();
2687 if (name == 0)
2688 error (_("To open a remote debug connection, you need to specify what\n"
2689 "serial device is attached to the remote system\n"
2690 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2691
2692 /* See FIXME above. */
2693 if (!remote_async_permitted)
2694 wait_forever_enabled_p = 1;
2695
2696 /* If we're connected to a running target, target_preopen will kill it.
2697 But if we're connected to a target system with no running process,
2698 then we will still be connected when it returns. Ask this question
2699 first, before target_preopen has a chance to kill anything. */
2700 if (remote_desc != NULL && !target_has_execution)
2701 {
2702 if (!from_tty
2703 || query (_("Already connected to a remote target. Disconnect? ")))
2704 pop_target ();
2705 else
2706 error (_("Still connected."));
2707 }
2708
2709 target_preopen (from_tty);
2710
2711 unpush_target (target);
2712
2713 /* This time without a query. If we were connected to an
2714 extended-remote target and target_preopen killed the running
2715 process, we may still be connected. If we are starting "target
2716 remote" now, the extended-remote target will not have been
2717 removed by unpush_target. */
2718 if (remote_desc != NULL && !target_has_execution)
2719 pop_target ();
2720
2721 /* Make sure we send the passed signals list the next time we resume. */
2722 xfree (last_pass_packet);
2723 last_pass_packet = NULL;
2724
2725 remote_fileio_reset ();
2726 reopen_exec_file ();
2727 reread_symbols ();
2728
2729 remote_desc = remote_serial_open (name);
2730 if (!remote_desc)
2731 perror_with_name (name);
2732
2733 if (baud_rate != -1)
2734 {
2735 if (serial_setbaudrate (remote_desc, baud_rate))
2736 {
2737 /* The requested speed could not be set. Error out to
2738 top level after closing remote_desc. Take care to
2739 set remote_desc to NULL to avoid closing remote_desc
2740 more than once. */
2741 serial_close (remote_desc);
2742 remote_desc = NULL;
2743 perror_with_name (name);
2744 }
2745 }
2746
2747 serial_raw (remote_desc);
2748
2749 /* If there is something sitting in the buffer we might take it as a
2750 response to a command, which would be bad. */
2751 serial_flush_input (remote_desc);
2752
2753 if (from_tty)
2754 {
2755 puts_filtered ("Remote debugging using ");
2756 puts_filtered (name);
2757 puts_filtered ("\n");
2758 }
2759 push_target (target); /* Switch to using remote target now. */
2760
2761 /* Assume that the target is running, unless we learn otherwise. */
2762 target_mark_running (target);
2763
2764 /* Reset the target state; these things will be queried either by
2765 remote_query_supported or as they are needed. */
2766 init_all_packet_configs ();
2767 rs->explicit_packet_size = 0;
2768
2769 general_thread = not_sent_ptid;
2770 continue_thread = not_sent_ptid;
2771
2772 /* Probe for ability to use "ThreadInfo" query, as required. */
2773 use_threadinfo_query = 1;
2774 use_threadextra_query = 1;
2775
2776 /* The first packet we send to the target is the optional "supported
2777 packets" request. If the target can answer this, it will tell us
2778 which later probes to skip. */
2779 remote_query_supported ();
2780
2781 /* Next, if the target can specify a description, read it. We do
2782 this before anything involving memory or registers. */
2783 target_find_description ();
2784
2785 if (remote_async_permitted)
2786 {
2787 /* With this target we start out by owning the terminal. */
2788 remote_async_terminal_ours_p = 1;
2789
2790 /* FIXME: cagney/1999-09-23: During the initial connection it is
2791 assumed that the target is already ready and able to respond to
2792 requests. Unfortunately remote_start_remote() eventually calls
2793 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2794 around this. Eventually a mechanism that allows
2795 wait_for_inferior() to expect/get timeouts will be
2796 implemented. */
2797 wait_forever_enabled_p = 0;
2798 }
2799
2800 /* First delete any symbols previously loaded from shared libraries. */
2801 no_shared_libraries (NULL, 0);
2802
2803 /* Start the remote connection. If error() or QUIT, discard this
2804 target (we'd otherwise be in an inconsistent state) and then
2805 propogate the error on up the exception chain. This ensures that
2806 the caller doesn't stumble along blindly assuming that the
2807 function succeeded. The CLI doesn't have this problem but other
2808 UI's, such as MI do.
2809
2810 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2811 this function should return an error indication letting the
2812 caller restore the previous state. Unfortunately the command
2813 ``target remote'' is directly wired to this function making that
2814 impossible. On a positive note, the CLI side of this problem has
2815 been fixed - the function set_cmd_context() makes it possible for
2816 all the ``target ....'' commands to share a common callback
2817 function. See cli-dump.c. */
2818 {
2819 struct gdb_exception ex;
2820 struct start_remote_args args;
2821
2822 args.from_tty = from_tty;
2823 args.target = target;
2824 args.extended_p = extended_p;
2825
2826 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2827 if (ex.reason < 0)
2828 {
2829 pop_target ();
2830 if (remote_async_permitted)
2831 wait_forever_enabled_p = 1;
2832 throw_exception (ex);
2833 }
2834 }
2835
2836 if (remote_async_permitted)
2837 wait_forever_enabled_p = 1;
2838
2839 if (extended_p)
2840 {
2841 /* Tell the remote that we are using the extended protocol. */
2842 putpkt ("!");
2843 getpkt (&rs->buf, &rs->buf_size, 0);
2844 }
2845
2846 /* If we connected to a live target, do some additional setup. */
2847 if (target_has_execution)
2848 {
2849 if (exec_bfd) /* No use without an exec file. */
2850 remote_check_symbols (symfile_objfile);
2851 }
2852 }
2853
2854 /* This takes a program previously attached to and detaches it. After
2855 this is done, GDB can be used to debug some other program. We
2856 better not have left any breakpoints in the target program or it'll
2857 die when it hits one. */
2858
2859 static void
2860 remote_detach_1 (char *args, int from_tty, int extended)
2861 {
2862 struct remote_state *rs = get_remote_state ();
2863
2864 if (args)
2865 error (_("Argument given to \"detach\" when remotely debugging."));
2866
2867 if (!target_has_execution)
2868 error (_("No process to detach from."));
2869
2870 /* Tell the remote target to detach. */
2871 strcpy (rs->buf, "D");
2872 putpkt (rs->buf);
2873 getpkt (&rs->buf, &rs->buf_size, 0);
2874
2875 if (rs->buf[0] == 'E')
2876 error (_("Can't detach process."));
2877
2878 /* Unregister the file descriptor from the event loop. */
2879 if (target_is_async_p ())
2880 serial_async (remote_desc, NULL, 0);
2881
2882 target_mourn_inferior ();
2883 if (from_tty)
2884 {
2885 if (extended)
2886 puts_filtered ("Detached from remote process.\n");
2887 else
2888 puts_filtered ("Ending remote debugging.\n");
2889 }
2890 }
2891
2892 static void
2893 remote_detach (char *args, int from_tty)
2894 {
2895 remote_detach_1 (args, from_tty, 0);
2896 }
2897
2898 static void
2899 extended_remote_detach (char *args, int from_tty)
2900 {
2901 remote_detach_1 (args, from_tty, 1);
2902 }
2903
2904 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2905
2906 static void
2907 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2908 {
2909 if (args)
2910 error (_("Argument given to \"disconnect\" when remotely debugging."));
2911
2912 /* Unregister the file descriptor from the event loop. */
2913 if (target_is_async_p ())
2914 serial_async (remote_desc, NULL, 0);
2915
2916 /* Make sure we unpush even the extended remote targets; mourn
2917 won't do it. So call remote_mourn_1 directly instead of
2918 target_mourn_inferior. */
2919 remote_mourn_1 (target);
2920
2921 if (from_tty)
2922 puts_filtered ("Ending remote debugging.\n");
2923 }
2924
2925 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2926 be chatty about it. */
2927
2928 static void
2929 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2930 {
2931 struct remote_state *rs = get_remote_state ();
2932 int pid;
2933 char *dummy;
2934 char *wait_status = NULL;
2935
2936 if (!args)
2937 error_no_arg (_("process-id to attach"));
2938
2939 dummy = args;
2940 pid = strtol (args, &dummy, 0);
2941 /* Some targets don't set errno on errors, grrr! */
2942 if (pid == 0 && args == dummy)
2943 error (_("Illegal process-id: %s."), args);
2944
2945 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2946 error (_("This target does not support attaching to a process"));
2947
2948 sprintf (rs->buf, "vAttach;%x", pid);
2949 putpkt (rs->buf);
2950 getpkt (&rs->buf, &rs->buf_size, 0);
2951
2952 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2953 {
2954 if (from_tty)
2955 printf_unfiltered (_("Attached to %s\n"),
2956 target_pid_to_str (pid_to_ptid (pid)));
2957
2958 /* Save the reply for later. */
2959 wait_status = alloca (strlen (rs->buf) + 1);
2960 strcpy (wait_status, rs->buf);
2961 }
2962 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2963 error (_("This target does not support attaching to a process"));
2964 else
2965 error (_("Attaching to %s failed"),
2966 target_pid_to_str (pid_to_ptid (pid)));
2967
2968 target_mark_running (target);
2969 inferior_ptid = pid_to_ptid (pid);
2970
2971 /* Now, if we have thread information, update inferior_ptid. */
2972 inferior_ptid = remote_current_thread (inferior_ptid);
2973
2974 /* Now, add the main thread to the thread list. */
2975 add_thread_silent (inferior_ptid);
2976
2977 attach_flag = 1;
2978
2979 /* Next, if the target can specify a description, read it. We do
2980 this before anything involving memory or registers. */
2981 target_find_description ();
2982
2983 /* Use the previously fetched status. */
2984 gdb_assert (wait_status != NULL);
2985 strcpy (rs->buf, wait_status);
2986 rs->cached_wait_status = 1;
2987 }
2988
2989 static void
2990 extended_remote_attach (char *args, int from_tty)
2991 {
2992 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2993 }
2994
2995 /* Convert hex digit A to a number. */
2996
2997 static int
2998 fromhex (int a)
2999 {
3000 if (a >= '0' && a <= '9')
3001 return a - '0';
3002 else if (a >= 'a' && a <= 'f')
3003 return a - 'a' + 10;
3004 else if (a >= 'A' && a <= 'F')
3005 return a - 'A' + 10;
3006 else
3007 error (_("Reply contains invalid hex digit %d"), a);
3008 }
3009
3010 static int
3011 hex2bin (const char *hex, gdb_byte *bin, int count)
3012 {
3013 int i;
3014
3015 for (i = 0; i < count; i++)
3016 {
3017 if (hex[0] == 0 || hex[1] == 0)
3018 {
3019 /* Hex string is short, or of uneven length.
3020 Return the count that has been converted so far. */
3021 return i;
3022 }
3023 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3024 hex += 2;
3025 }
3026 return i;
3027 }
3028
3029 /* Convert number NIB to a hex digit. */
3030
3031 static int
3032 tohex (int nib)
3033 {
3034 if (nib < 10)
3035 return '0' + nib;
3036 else
3037 return 'a' + nib - 10;
3038 }
3039
3040 static int
3041 bin2hex (const gdb_byte *bin, char *hex, int count)
3042 {
3043 int i;
3044 /* May use a length, or a nul-terminated string as input. */
3045 if (count == 0)
3046 count = strlen ((char *) bin);
3047
3048 for (i = 0; i < count; i++)
3049 {
3050 *hex++ = tohex ((*bin >> 4) & 0xf);
3051 *hex++ = tohex (*bin++ & 0xf);
3052 }
3053 *hex = 0;
3054 return i;
3055 }
3056 \f
3057 /* Check for the availability of vCont. This function should also check
3058 the response. */
3059
3060 static void
3061 remote_vcont_probe (struct remote_state *rs)
3062 {
3063 char *buf;
3064
3065 strcpy (rs->buf, "vCont?");
3066 putpkt (rs->buf);
3067 getpkt (&rs->buf, &rs->buf_size, 0);
3068 buf = rs->buf;
3069
3070 /* Make sure that the features we assume are supported. */
3071 if (strncmp (buf, "vCont", 5) == 0)
3072 {
3073 char *p = &buf[5];
3074 int support_s, support_S, support_c, support_C;
3075
3076 support_s = 0;
3077 support_S = 0;
3078 support_c = 0;
3079 support_C = 0;
3080 while (p && *p == ';')
3081 {
3082 p++;
3083 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3084 support_s = 1;
3085 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3086 support_S = 1;
3087 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3088 support_c = 1;
3089 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3090 support_C = 1;
3091
3092 p = strchr (p, ';');
3093 }
3094
3095 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3096 BUF will make packet_ok disable the packet. */
3097 if (!support_s || !support_S || !support_c || !support_C)
3098 buf[0] = 0;
3099 }
3100
3101 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3102 }
3103
3104 /* Resume the remote inferior by using a "vCont" packet. The thread
3105 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3106 resumed thread should be single-stepped and/or signalled. If PTID
3107 equals minus_one_ptid, then all threads are resumed; the thread to
3108 be stepped and/or signalled is given in the global INFERIOR_PTID.
3109 This function returns non-zero iff it resumes the inferior.
3110
3111 This function issues a strict subset of all possible vCont commands at the
3112 moment. */
3113
3114 static int
3115 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3116 {
3117 struct remote_state *rs = get_remote_state ();
3118 char *outbuf;
3119 struct cleanup *old_cleanup;
3120
3121 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3122 remote_vcont_probe (rs);
3123
3124 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3125 return 0;
3126
3127 /* If we could generate a wider range of packets, we'd have to worry
3128 about overflowing BUF. Should there be a generic
3129 "multi-part-packet" packet? */
3130
3131 if (ptid_equal (ptid, magic_null_ptid))
3132 {
3133 /* MAGIC_NULL_PTID means that we don't have any active threads,
3134 so we don't have any TID numbers the inferior will
3135 understand. Make sure to only send forms that do not specify
3136 a TID. */
3137 if (step && siggnal != TARGET_SIGNAL_0)
3138 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3139 else if (step)
3140 outbuf = xstrprintf ("vCont;s");
3141 else if (siggnal != TARGET_SIGNAL_0)
3142 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3143 else
3144 outbuf = xstrprintf ("vCont;c");
3145 }
3146 else if (ptid_equal (ptid, minus_one_ptid))
3147 {
3148 /* Resume all threads, with preference for INFERIOR_PTID. */
3149 int tid = ptid_get_tid (inferior_ptid);
3150 if (step && siggnal != TARGET_SIGNAL_0)
3151 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal, tid);
3152 else if (step)
3153 outbuf = xstrprintf ("vCont;s:%x;c", tid);
3154 else if (siggnal != TARGET_SIGNAL_0)
3155 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal, tid);
3156 else
3157 outbuf = xstrprintf ("vCont;c");
3158 }
3159 else
3160 {
3161 /* Scheduler locking; resume only PTID. */
3162 int tid = ptid_get_tid (ptid);
3163 if (step && siggnal != TARGET_SIGNAL_0)
3164 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, tid);
3165 else if (step)
3166 outbuf = xstrprintf ("vCont;s:%x", tid);
3167 else if (siggnal != TARGET_SIGNAL_0)
3168 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, tid);
3169 else
3170 outbuf = xstrprintf ("vCont;c:%x", tid);
3171 }
3172
3173 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3174 old_cleanup = make_cleanup (xfree, outbuf);
3175
3176 putpkt (outbuf);
3177
3178 do_cleanups (old_cleanup);
3179
3180 return 1;
3181 }
3182
3183 /* Tell the remote machine to resume. */
3184
3185 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3186
3187 static int last_sent_step;
3188
3189 static void
3190 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3191 {
3192 struct remote_state *rs = get_remote_state ();
3193 char *buf;
3194
3195 last_sent_signal = siggnal;
3196 last_sent_step = step;
3197
3198 /* Update the inferior on signals to silently pass, if they've changed. */
3199 remote_pass_signals ();
3200
3201 /* The vCont packet doesn't need to specify threads via Hc. */
3202 if (remote_vcont_resume (ptid, step, siggnal))
3203 goto done;
3204
3205 /* All other supported resume packets do use Hc, so set the continue
3206 thread. */
3207 if (ptid_equal (ptid, minus_one_ptid))
3208 set_continue_thread (any_thread_ptid);
3209 else
3210 set_continue_thread (ptid);
3211
3212 buf = rs->buf;
3213 if (siggnal != TARGET_SIGNAL_0)
3214 {
3215 buf[0] = step ? 'S' : 'C';
3216 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3217 buf[2] = tohex (((int) siggnal) & 0xf);
3218 buf[3] = '\0';
3219 }
3220 else
3221 strcpy (buf, step ? "s" : "c");
3222
3223 putpkt (buf);
3224
3225 done:
3226 /* We are about to start executing the inferior, let's register it
3227 with the event loop. NOTE: this is the one place where all the
3228 execution commands end up. We could alternatively do this in each
3229 of the execution commands in infcmd.c. */
3230 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3231 into infcmd.c in order to allow inferior function calls to work
3232 NOT asynchronously. */
3233 if (target_can_async_p ())
3234 target_async (inferior_event_handler, 0);
3235 /* Tell the world that the target is now executing. */
3236 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3237 this? Instead, should the client of target just assume (for
3238 async targets) that the target is going to start executing? Is
3239 this information already found in the continuation block? */
3240 if (target_is_async_p ())
3241 target_executing = 1;
3242 }
3243 \f
3244
3245 /* Set up the signal handler for SIGINT, while the target is
3246 executing, ovewriting the 'regular' SIGINT signal handler. */
3247 static void
3248 initialize_sigint_signal_handler (void)
3249 {
3250 signal (SIGINT, handle_remote_sigint);
3251 }
3252
3253 /* Signal handler for SIGINT, while the target is executing. */
3254 static void
3255 handle_remote_sigint (int sig)
3256 {
3257 signal (sig, handle_remote_sigint_twice);
3258 mark_async_signal_handler_wrapper (sigint_remote_token);
3259 }
3260
3261 /* Signal handler for SIGINT, installed after SIGINT has already been
3262 sent once. It will take effect the second time that the user sends
3263 a ^C. */
3264 static void
3265 handle_remote_sigint_twice (int sig)
3266 {
3267 signal (sig, handle_remote_sigint);
3268 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3269 }
3270
3271 /* Perform the real interruption of the target execution, in response
3272 to a ^C. */
3273 static void
3274 async_remote_interrupt (gdb_client_data arg)
3275 {
3276 if (remote_debug)
3277 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3278
3279 target_stop ();
3280 }
3281
3282 /* Perform interrupt, if the first attempt did not succeed. Just give
3283 up on the target alltogether. */
3284 void
3285 async_remote_interrupt_twice (gdb_client_data arg)
3286 {
3287 if (remote_debug)
3288 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3289
3290 interrupt_query ();
3291 }
3292
3293 /* Reinstall the usual SIGINT handlers, after the target has
3294 stopped. */
3295 static void
3296 cleanup_sigint_signal_handler (void *dummy)
3297 {
3298 signal (SIGINT, handle_sigint);
3299 }
3300
3301 /* Send ^C to target to halt it. Target will respond, and send us a
3302 packet. */
3303 static void (*ofunc) (int);
3304
3305 /* The command line interface's stop routine. This function is installed
3306 as a signal handler for SIGINT. The first time a user requests a
3307 stop, we call remote_stop to send a break or ^C. If there is no
3308 response from the target (it didn't stop when the user requested it),
3309 we ask the user if he'd like to detach from the target. */
3310 static void
3311 remote_interrupt (int signo)
3312 {
3313 /* If this doesn't work, try more severe steps. */
3314 signal (signo, remote_interrupt_twice);
3315
3316 gdb_call_async_signal_handler (sigint_remote_token, 1);
3317 }
3318
3319 /* The user typed ^C twice. */
3320
3321 static void
3322 remote_interrupt_twice (int signo)
3323 {
3324 signal (signo, ofunc);
3325 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3326 signal (signo, remote_interrupt);
3327 }
3328
3329 /* This is the generic stop called via the target vector. When a target
3330 interrupt is requested, either by the command line or the GUI, we
3331 will eventually end up here. */
3332 static void
3333 remote_stop (void)
3334 {
3335 /* Send a break or a ^C, depending on user preference. */
3336 if (remote_debug)
3337 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3338
3339 if (remote_break)
3340 serial_send_break (remote_desc);
3341 else
3342 serial_write (remote_desc, "\003", 1);
3343 }
3344
3345 /* Ask the user what to do when an interrupt is received. */
3346
3347 static void
3348 interrupt_query (void)
3349 {
3350 target_terminal_ours ();
3351
3352 if (query ("Interrupted while waiting for the program.\n\
3353 Give up (and stop debugging it)? "))
3354 {
3355 target_mourn_inferior ();
3356 signal (SIGINT, handle_sigint);
3357 deprecated_throw_reason (RETURN_QUIT);
3358 }
3359
3360 target_terminal_inferior ();
3361 }
3362
3363 /* Enable/disable target terminal ownership. Most targets can use
3364 terminal groups to control terminal ownership. Remote targets are
3365 different in that explicit transfer of ownership to/from GDB/target
3366 is required. */
3367
3368 static void
3369 remote_terminal_inferior (void)
3370 {
3371 if (!remote_async_permitted)
3372 /* Nothing to do. */
3373 return;
3374
3375 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3376 sync_execution here. This function should only be called when
3377 GDB is resuming the inferior in the forground. A background
3378 resume (``run&'') should leave GDB in control of the terminal and
3379 consequently should not call this code. */
3380 if (!sync_execution)
3381 return;
3382 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3383 calls target_terminal_*() idenpotent. The event-loop GDB talking
3384 to an asynchronous target with a synchronous command calls this
3385 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3386 stops trying to transfer the terminal to the target when it
3387 shouldn't this guard can go away. */
3388 if (!remote_async_terminal_ours_p)
3389 return;
3390 delete_file_handler (input_fd);
3391 remote_async_terminal_ours_p = 0;
3392 initialize_sigint_signal_handler ();
3393 /* NOTE: At this point we could also register our selves as the
3394 recipient of all input. Any characters typed could then be
3395 passed on down to the target. */
3396 }
3397
3398 static void
3399 remote_terminal_ours (void)
3400 {
3401 if (!remote_async_permitted)
3402 /* Nothing to do. */
3403 return;
3404
3405 /* See FIXME in remote_terminal_inferior. */
3406 if (!sync_execution)
3407 return;
3408 /* See FIXME in remote_terminal_inferior. */
3409 if (remote_async_terminal_ours_p)
3410 return;
3411 cleanup_sigint_signal_handler (NULL);
3412 add_file_handler (input_fd, stdin_event_handler, 0);
3413 remote_async_terminal_ours_p = 1;
3414 }
3415
3416 void
3417 remote_console_output (char *msg)
3418 {
3419 char *p;
3420
3421 for (p = msg; p[0] && p[1]; p += 2)
3422 {
3423 char tb[2];
3424 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3425 tb[0] = c;
3426 tb[1] = 0;
3427 fputs_unfiltered (tb, gdb_stdtarg);
3428 }
3429 gdb_flush (gdb_stdtarg);
3430 }
3431
3432 /* Wait until the remote machine stops, then return,
3433 storing status in STATUS just as `wait' would. */
3434
3435 static ptid_t
3436 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3437 {
3438 struct remote_state *rs = get_remote_state ();
3439 struct remote_arch_state *rsa = get_remote_arch_state ();
3440 ULONGEST thread_num = -1;
3441 ULONGEST process_num = -1;
3442 ULONGEST addr;
3443 int solibs_changed = 0;
3444
3445 status->kind = TARGET_WAITKIND_EXITED;
3446 status->value.integer = 0;
3447
3448 while (1)
3449 {
3450 char *buf, *p;
3451
3452 if (rs->cached_wait_status)
3453 /* Use the cached wait status, but only once. */
3454 rs->cached_wait_status = 0;
3455 else
3456 {
3457 if (!target_is_async_p ())
3458 {
3459 ofunc = signal (SIGINT, remote_interrupt);
3460 /* If the user hit C-c before this packet, or between packets,
3461 pretend that it was hit right here. */
3462 if (quit_flag)
3463 {
3464 quit_flag = 0;
3465 remote_interrupt (SIGINT);
3466 }
3467 }
3468 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3469 _never_ wait for ever -> test on target_is_async_p().
3470 However, before we do that we need to ensure that the caller
3471 knows how to take the target into/out of async mode. */
3472 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3473 if (!target_is_async_p ())
3474 signal (SIGINT, ofunc);
3475 }
3476
3477 buf = rs->buf;
3478
3479 remote_stopped_by_watchpoint_p = 0;
3480
3481 switch (buf[0])
3482 {
3483 case 'E': /* Error of some sort. */
3484 /* We're out of sync with the target now. Did it continue or not?
3485 Not is more likely, so report a stop. */
3486 warning (_("Remote failure reply: %s"), buf);
3487 status->kind = TARGET_WAITKIND_STOPPED;
3488 status->value.sig = TARGET_SIGNAL_0;
3489 goto got_status;
3490 case 'F': /* File-I/O request. */
3491 remote_fileio_request (buf);
3492 continue;
3493 case 'T': /* Status with PC, SP, FP, ... */
3494 {
3495 gdb_byte regs[MAX_REGISTER_SIZE];
3496
3497 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3498 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3499 ss = signal number
3500 n... = register number
3501 r... = register contents
3502 */
3503 p = &buf[3]; /* after Txx */
3504
3505 while (*p)
3506 {
3507 char *p1;
3508 char *p_temp;
3509 int fieldsize;
3510 LONGEST pnum = 0;
3511
3512 /* If the packet contains a register number, save it
3513 in pnum and set p1 to point to the character
3514 following it. Otherwise p1 points to p. */
3515
3516 /* If this packet is an awatch packet, don't parse the
3517 'a' as a register number. */
3518
3519 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3520 {
3521 /* Read the ``P'' register number. */
3522 pnum = strtol (p, &p_temp, 16);
3523 p1 = p_temp;
3524 }
3525 else
3526 p1 = p;
3527
3528 if (p1 == p) /* No register number present here. */
3529 {
3530 p1 = strchr (p, ':');
3531 if (p1 == NULL)
3532 error (_("Malformed packet(a) (missing colon): %s\n\
3533 Packet: '%s'\n"),
3534 p, buf);
3535 if (strncmp (p, "thread", p1 - p) == 0)
3536 {
3537 p_temp = unpack_varlen_hex (++p1, &thread_num);
3538 p = p_temp;
3539 }
3540 else if ((strncmp (p, "watch", p1 - p) == 0)
3541 || (strncmp (p, "rwatch", p1 - p) == 0)
3542 || (strncmp (p, "awatch", p1 - p) == 0))
3543 {
3544 remote_stopped_by_watchpoint_p = 1;
3545 p = unpack_varlen_hex (++p1, &addr);
3546 remote_watch_data_address = (CORE_ADDR)addr;
3547 }
3548 else if (strncmp (p, "library", p1 - p) == 0)
3549 {
3550 p1++;
3551 p_temp = p1;
3552 while (*p_temp && *p_temp != ';')
3553 p_temp++;
3554
3555 solibs_changed = 1;
3556 p = p_temp;
3557 }
3558 else
3559 {
3560 /* Silently skip unknown optional info. */
3561 p_temp = strchr (p1 + 1, ';');
3562 if (p_temp)
3563 p = p_temp;
3564 }
3565 }
3566 else
3567 {
3568 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3569 p = p1;
3570
3571 if (*p != ':')
3572 error (_("Malformed packet(b) (missing colon): %s\n\
3573 Packet: '%s'\n"),
3574 p, buf);
3575 ++p;
3576
3577 if (reg == NULL)
3578 error (_("Remote sent bad register number %s: %s\n\
3579 Packet: '%s'\n"),
3580 phex_nz (pnum, 0), p, buf);
3581
3582 fieldsize = hex2bin (p, regs,
3583 register_size (current_gdbarch,
3584 reg->regnum));
3585 p += 2 * fieldsize;
3586 if (fieldsize < register_size (current_gdbarch,
3587 reg->regnum))
3588 warning (_("Remote reply is too short: %s"), buf);
3589 regcache_raw_supply (get_current_regcache (),
3590 reg->regnum, regs);
3591 }
3592
3593 if (*p != ';')
3594 error (_("Remote register badly formatted: %s\nhere: %s"),
3595 buf, p);
3596 ++p;
3597 }
3598 }
3599 /* fall through */
3600 case 'S': /* Old style status, just signal only. */
3601 if (solibs_changed)
3602 status->kind = TARGET_WAITKIND_LOADED;
3603 else
3604 {
3605 status->kind = TARGET_WAITKIND_STOPPED;
3606 status->value.sig = (enum target_signal)
3607 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3608 }
3609 goto got_status;
3610 case 'W': /* Target exited. */
3611 {
3612 /* The remote process exited. */
3613 status->kind = TARGET_WAITKIND_EXITED;
3614 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3615 goto got_status;
3616 }
3617 case 'X':
3618 status->kind = TARGET_WAITKIND_SIGNALLED;
3619 status->value.sig = (enum target_signal)
3620 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3621
3622 goto got_status;
3623 case 'O': /* Console output. */
3624 remote_console_output (buf + 1);
3625 if (target_can_async_p ())
3626 {
3627 /* Return immediately to the event loop. The event loop
3628 will still be waiting on the inferior afterwards. */
3629 status->kind = TARGET_WAITKIND_IGNORE;
3630 goto got_status;
3631 }
3632 else
3633 continue;
3634 case '\0':
3635 if (last_sent_signal != TARGET_SIGNAL_0)
3636 {
3637 /* Zero length reply means that we tried 'S' or 'C' and
3638 the remote system doesn't support it. */
3639 target_terminal_ours_for_output ();
3640 printf_filtered
3641 ("Can't send signals to this remote system. %s not sent.\n",
3642 target_signal_to_name (last_sent_signal));
3643 last_sent_signal = TARGET_SIGNAL_0;
3644 target_terminal_inferior ();
3645
3646 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3647 putpkt ((char *) buf);
3648 continue;
3649 }
3650 /* else fallthrough */
3651 default:
3652 warning (_("Invalid remote reply: %s"), buf);
3653 continue;
3654 }
3655 }
3656 got_status:
3657 if (thread_num != -1)
3658 {
3659 ptid_t ptid;
3660 ptid = ptid_build (ptid_get_pid (inferior_ptid), 0, thread_num);
3661 record_currthread (ptid);
3662 return ptid;
3663 }
3664
3665 return inferior_ptid;
3666 }
3667
3668 /* Fetch a single register using a 'p' packet. */
3669
3670 static int
3671 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3672 {
3673 struct remote_state *rs = get_remote_state ();
3674 char *buf, *p;
3675 char regp[MAX_REGISTER_SIZE];
3676 int i;
3677
3678 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3679 return 0;
3680
3681 if (reg->pnum == -1)
3682 return 0;
3683
3684 p = rs->buf;
3685 *p++ = 'p';
3686 p += hexnumstr (p, reg->pnum);
3687 *p++ = '\0';
3688 remote_send (&rs->buf, &rs->buf_size);
3689
3690 buf = rs->buf;
3691
3692 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3693 {
3694 case PACKET_OK:
3695 break;
3696 case PACKET_UNKNOWN:
3697 return 0;
3698 case PACKET_ERROR:
3699 error (_("Could not fetch register \"%s\""),
3700 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3701 }
3702
3703 /* If this register is unfetchable, tell the regcache. */
3704 if (buf[0] == 'x')
3705 {
3706 regcache_raw_supply (regcache, reg->regnum, NULL);
3707 return 1;
3708 }
3709
3710 /* Otherwise, parse and supply the value. */
3711 p = buf;
3712 i = 0;
3713 while (p[0] != 0)
3714 {
3715 if (p[1] == 0)
3716 error (_("fetch_register_using_p: early buf termination"));
3717
3718 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3719 p += 2;
3720 }
3721 regcache_raw_supply (regcache, reg->regnum, regp);
3722 return 1;
3723 }
3724
3725 /* Fetch the registers included in the target's 'g' packet. */
3726
3727 static int
3728 send_g_packet (void)
3729 {
3730 struct remote_state *rs = get_remote_state ();
3731 int i, buf_len;
3732 char *p;
3733 char *regs;
3734
3735 sprintf (rs->buf, "g");
3736 remote_send (&rs->buf, &rs->buf_size);
3737
3738 /* We can get out of synch in various cases. If the first character
3739 in the buffer is not a hex character, assume that has happened
3740 and try to fetch another packet to read. */
3741 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3742 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3743 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3744 && rs->buf[0] != 'x') /* New: unavailable register value. */
3745 {
3746 if (remote_debug)
3747 fprintf_unfiltered (gdb_stdlog,
3748 "Bad register packet; fetching a new packet\n");
3749 getpkt (&rs->buf, &rs->buf_size, 0);
3750 }
3751
3752 buf_len = strlen (rs->buf);
3753
3754 /* Sanity check the received packet. */
3755 if (buf_len % 2 != 0)
3756 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3757
3758 return buf_len / 2;
3759 }
3760
3761 static void
3762 process_g_packet (struct regcache *regcache)
3763 {
3764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3765 struct remote_state *rs = get_remote_state ();
3766 struct remote_arch_state *rsa = get_remote_arch_state ();
3767 int i, buf_len;
3768 char *p;
3769 char *regs;
3770
3771 buf_len = strlen (rs->buf);
3772
3773 /* Further sanity checks, with knowledge of the architecture. */
3774 if (buf_len > 2 * rsa->sizeof_g_packet)
3775 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3776
3777 /* Save the size of the packet sent to us by the target. It is used
3778 as a heuristic when determining the max size of packets that the
3779 target can safely receive. */
3780 if (rsa->actual_register_packet_size == 0)
3781 rsa->actual_register_packet_size = buf_len;
3782
3783 /* If this is smaller than we guessed the 'g' packet would be,
3784 update our records. A 'g' reply that doesn't include a register's
3785 value implies either that the register is not available, or that
3786 the 'p' packet must be used. */
3787 if (buf_len < 2 * rsa->sizeof_g_packet)
3788 {
3789 rsa->sizeof_g_packet = buf_len / 2;
3790
3791 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3792 {
3793 if (rsa->regs[i].pnum == -1)
3794 continue;
3795
3796 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3797 rsa->regs[i].in_g_packet = 0;
3798 else
3799 rsa->regs[i].in_g_packet = 1;
3800 }
3801 }
3802
3803 regs = alloca (rsa->sizeof_g_packet);
3804
3805 /* Unimplemented registers read as all bits zero. */
3806 memset (regs, 0, rsa->sizeof_g_packet);
3807
3808 /* Reply describes registers byte by byte, each byte encoded as two
3809 hex characters. Suck them all up, then supply them to the
3810 register cacheing/storage mechanism. */
3811
3812 p = rs->buf;
3813 for (i = 0; i < rsa->sizeof_g_packet; i++)
3814 {
3815 if (p[0] == 0 || p[1] == 0)
3816 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3817 internal_error (__FILE__, __LINE__,
3818 "unexpected end of 'g' packet reply");
3819
3820 if (p[0] == 'x' && p[1] == 'x')
3821 regs[i] = 0; /* 'x' */
3822 else
3823 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3824 p += 2;
3825 }
3826
3827 {
3828 int i;
3829 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3830 {
3831 struct packet_reg *r = &rsa->regs[i];
3832 if (r->in_g_packet)
3833 {
3834 if (r->offset * 2 >= strlen (rs->buf))
3835 /* This shouldn't happen - we adjusted in_g_packet above. */
3836 internal_error (__FILE__, __LINE__,
3837 "unexpected end of 'g' packet reply");
3838 else if (rs->buf[r->offset * 2] == 'x')
3839 {
3840 gdb_assert (r->offset * 2 < strlen (rs->buf));
3841 /* The register isn't available, mark it as such (at
3842 the same time setting the value to zero). */
3843 regcache_raw_supply (regcache, r->regnum, NULL);
3844 }
3845 else
3846 regcache_raw_supply (regcache, r->regnum,
3847 regs + r->offset);
3848 }
3849 }
3850 }
3851 }
3852
3853 static void
3854 fetch_registers_using_g (struct regcache *regcache)
3855 {
3856 send_g_packet ();
3857 process_g_packet (regcache);
3858 }
3859
3860 static void
3861 remote_fetch_registers (struct regcache *regcache, int regnum)
3862 {
3863 struct remote_state *rs = get_remote_state ();
3864 struct remote_arch_state *rsa = get_remote_arch_state ();
3865 int i;
3866
3867 set_general_thread (inferior_ptid);
3868
3869 if (regnum >= 0)
3870 {
3871 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3872 gdb_assert (reg != NULL);
3873
3874 /* If this register might be in the 'g' packet, try that first -
3875 we are likely to read more than one register. If this is the
3876 first 'g' packet, we might be overly optimistic about its
3877 contents, so fall back to 'p'. */
3878 if (reg->in_g_packet)
3879 {
3880 fetch_registers_using_g (regcache);
3881 if (reg->in_g_packet)
3882 return;
3883 }
3884
3885 if (fetch_register_using_p (regcache, reg))
3886 return;
3887
3888 /* This register is not available. */
3889 regcache_raw_supply (regcache, reg->regnum, NULL);
3890
3891 return;
3892 }
3893
3894 fetch_registers_using_g (regcache);
3895
3896 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3897 if (!rsa->regs[i].in_g_packet)
3898 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3899 {
3900 /* This register is not available. */
3901 regcache_raw_supply (regcache, i, NULL);
3902 }
3903 }
3904
3905 /* Prepare to store registers. Since we may send them all (using a
3906 'G' request), we have to read out the ones we don't want to change
3907 first. */
3908
3909 static void
3910 remote_prepare_to_store (struct regcache *regcache)
3911 {
3912 struct remote_arch_state *rsa = get_remote_arch_state ();
3913 int i;
3914 gdb_byte buf[MAX_REGISTER_SIZE];
3915
3916 /* Make sure the entire registers array is valid. */
3917 switch (remote_protocol_packets[PACKET_P].support)
3918 {
3919 case PACKET_DISABLE:
3920 case PACKET_SUPPORT_UNKNOWN:
3921 /* Make sure all the necessary registers are cached. */
3922 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3923 if (rsa->regs[i].in_g_packet)
3924 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3925 break;
3926 case PACKET_ENABLE:
3927 break;
3928 }
3929 }
3930
3931 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3932 packet was not recognized. */
3933
3934 static int
3935 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3936 {
3937 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3938 struct remote_state *rs = get_remote_state ();
3939 struct remote_arch_state *rsa = get_remote_arch_state ();
3940 /* Try storing a single register. */
3941 char *buf = rs->buf;
3942 gdb_byte regp[MAX_REGISTER_SIZE];
3943 char *p;
3944
3945 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3946 return 0;
3947
3948 if (reg->pnum == -1)
3949 return 0;
3950
3951 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3952 p = buf + strlen (buf);
3953 regcache_raw_collect (regcache, reg->regnum, regp);
3954 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
3955 remote_send (&rs->buf, &rs->buf_size);
3956
3957 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3958 {
3959 case PACKET_OK:
3960 return 1;
3961 case PACKET_ERROR:
3962 error (_("Could not write register \"%s\""),
3963 gdbarch_register_name (gdbarch, reg->regnum));
3964 case PACKET_UNKNOWN:
3965 return 0;
3966 default:
3967 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3968 }
3969 }
3970
3971 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3972 contents of the register cache buffer. FIXME: ignores errors. */
3973
3974 static void
3975 store_registers_using_G (const struct regcache *regcache)
3976 {
3977 struct remote_state *rs = get_remote_state ();
3978 struct remote_arch_state *rsa = get_remote_arch_state ();
3979 gdb_byte *regs;
3980 char *p;
3981
3982 /* Extract all the registers in the regcache copying them into a
3983 local buffer. */
3984 {
3985 int i;
3986 regs = alloca (rsa->sizeof_g_packet);
3987 memset (regs, 0, rsa->sizeof_g_packet);
3988 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3989 {
3990 struct packet_reg *r = &rsa->regs[i];
3991 if (r->in_g_packet)
3992 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3993 }
3994 }
3995
3996 /* Command describes registers byte by byte,
3997 each byte encoded as two hex characters. */
3998 p = rs->buf;
3999 *p++ = 'G';
4000 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4001 updated. */
4002 bin2hex (regs, p, rsa->sizeof_g_packet);
4003 remote_send (&rs->buf, &rs->buf_size);
4004 }
4005
4006 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4007 of the register cache buffer. FIXME: ignores errors. */
4008
4009 static void
4010 remote_store_registers (struct regcache *regcache, int regnum)
4011 {
4012 struct remote_state *rs = get_remote_state ();
4013 struct remote_arch_state *rsa = get_remote_arch_state ();
4014 int i;
4015
4016 set_general_thread (inferior_ptid);
4017
4018 if (regnum >= 0)
4019 {
4020 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4021 gdb_assert (reg != NULL);
4022
4023 /* Always prefer to store registers using the 'P' packet if
4024 possible; we often change only a small number of registers.
4025 Sometimes we change a larger number; we'd need help from a
4026 higher layer to know to use 'G'. */
4027 if (store_register_using_P (regcache, reg))
4028 return;
4029
4030 /* For now, don't complain if we have no way to write the
4031 register. GDB loses track of unavailable registers too
4032 easily. Some day, this may be an error. We don't have
4033 any way to read the register, either... */
4034 if (!reg->in_g_packet)
4035 return;
4036
4037 store_registers_using_G (regcache);
4038 return;
4039 }
4040
4041 store_registers_using_G (regcache);
4042
4043 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4044 if (!rsa->regs[i].in_g_packet)
4045 if (!store_register_using_P (regcache, &rsa->regs[i]))
4046 /* See above for why we do not issue an error here. */
4047 continue;
4048 }
4049 \f
4050
4051 /* Return the number of hex digits in num. */
4052
4053 static int
4054 hexnumlen (ULONGEST num)
4055 {
4056 int i;
4057
4058 for (i = 0; num != 0; i++)
4059 num >>= 4;
4060
4061 return max (i, 1);
4062 }
4063
4064 /* Set BUF to the minimum number of hex digits representing NUM. */
4065
4066 static int
4067 hexnumstr (char *buf, ULONGEST num)
4068 {
4069 int len = hexnumlen (num);
4070 return hexnumnstr (buf, num, len);
4071 }
4072
4073
4074 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4075
4076 static int
4077 hexnumnstr (char *buf, ULONGEST num, int width)
4078 {
4079 int i;
4080
4081 buf[width] = '\0';
4082
4083 for (i = width - 1; i >= 0; i--)
4084 {
4085 buf[i] = "0123456789abcdef"[(num & 0xf)];
4086 num >>= 4;
4087 }
4088
4089 return width;
4090 }
4091
4092 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4093
4094 static CORE_ADDR
4095 remote_address_masked (CORE_ADDR addr)
4096 {
4097 int address_size = remote_address_size;
4098 /* If "remoteaddresssize" was not set, default to target address size. */
4099 if (!address_size)
4100 address_size = gdbarch_addr_bit (current_gdbarch);
4101
4102 if (address_size > 0
4103 && address_size < (sizeof (ULONGEST) * 8))
4104 {
4105 /* Only create a mask when that mask can safely be constructed
4106 in a ULONGEST variable. */
4107 ULONGEST mask = 1;
4108 mask = (mask << address_size) - 1;
4109 addr &= mask;
4110 }
4111 return addr;
4112 }
4113
4114 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4115 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4116 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4117 (which may be more than *OUT_LEN due to escape characters). The
4118 total number of bytes in the output buffer will be at most
4119 OUT_MAXLEN. */
4120
4121 static int
4122 remote_escape_output (const gdb_byte *buffer, int len,
4123 gdb_byte *out_buf, int *out_len,
4124 int out_maxlen)
4125 {
4126 int input_index, output_index;
4127
4128 output_index = 0;
4129 for (input_index = 0; input_index < len; input_index++)
4130 {
4131 gdb_byte b = buffer[input_index];
4132
4133 if (b == '$' || b == '#' || b == '}')
4134 {
4135 /* These must be escaped. */
4136 if (output_index + 2 > out_maxlen)
4137 break;
4138 out_buf[output_index++] = '}';
4139 out_buf[output_index++] = b ^ 0x20;
4140 }
4141 else
4142 {
4143 if (output_index + 1 > out_maxlen)
4144 break;
4145 out_buf[output_index++] = b;
4146 }
4147 }
4148
4149 *out_len = input_index;
4150 return output_index;
4151 }
4152
4153 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4154 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4155 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4156
4157 This function reverses remote_escape_output. It allows more
4158 escaped characters than that function does, in particular because
4159 '*' must be escaped to avoid the run-length encoding processing
4160 in reading packets. */
4161
4162 static int
4163 remote_unescape_input (const gdb_byte *buffer, int len,
4164 gdb_byte *out_buf, int out_maxlen)
4165 {
4166 int input_index, output_index;
4167 int escaped;
4168
4169 output_index = 0;
4170 escaped = 0;
4171 for (input_index = 0; input_index < len; input_index++)
4172 {
4173 gdb_byte b = buffer[input_index];
4174
4175 if (output_index + 1 > out_maxlen)
4176 {
4177 warning (_("Received too much data from remote target;"
4178 " ignoring overflow."));
4179 return output_index;
4180 }
4181
4182 if (escaped)
4183 {
4184 out_buf[output_index++] = b ^ 0x20;
4185 escaped = 0;
4186 }
4187 else if (b == '}')
4188 escaped = 1;
4189 else
4190 out_buf[output_index++] = b;
4191 }
4192
4193 if (escaped)
4194 error (_("Unmatched escape character in target response."));
4195
4196 return output_index;
4197 }
4198
4199 /* Determine whether the remote target supports binary downloading.
4200 This is accomplished by sending a no-op memory write of zero length
4201 to the target at the specified address. It does not suffice to send
4202 the whole packet, since many stubs strip the eighth bit and
4203 subsequently compute a wrong checksum, which causes real havoc with
4204 remote_write_bytes.
4205
4206 NOTE: This can still lose if the serial line is not eight-bit
4207 clean. In cases like this, the user should clear "remote
4208 X-packet". */
4209
4210 static void
4211 check_binary_download (CORE_ADDR addr)
4212 {
4213 struct remote_state *rs = get_remote_state ();
4214
4215 switch (remote_protocol_packets[PACKET_X].support)
4216 {
4217 case PACKET_DISABLE:
4218 break;
4219 case PACKET_ENABLE:
4220 break;
4221 case PACKET_SUPPORT_UNKNOWN:
4222 {
4223 char *p;
4224
4225 p = rs->buf;
4226 *p++ = 'X';
4227 p += hexnumstr (p, (ULONGEST) addr);
4228 *p++ = ',';
4229 p += hexnumstr (p, (ULONGEST) 0);
4230 *p++ = ':';
4231 *p = '\0';
4232
4233 putpkt_binary (rs->buf, (int) (p - rs->buf));
4234 getpkt (&rs->buf, &rs->buf_size, 0);
4235
4236 if (rs->buf[0] == '\0')
4237 {
4238 if (remote_debug)
4239 fprintf_unfiltered (gdb_stdlog,
4240 "binary downloading NOT suppported by target\n");
4241 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4242 }
4243 else
4244 {
4245 if (remote_debug)
4246 fprintf_unfiltered (gdb_stdlog,
4247 "binary downloading suppported by target\n");
4248 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4249 }
4250 break;
4251 }
4252 }
4253 }
4254
4255 /* Write memory data directly to the remote machine.
4256 This does not inform the data cache; the data cache uses this.
4257 HEADER is the starting part of the packet.
4258 MEMADDR is the address in the remote memory space.
4259 MYADDR is the address of the buffer in our space.
4260 LEN is the number of bytes.
4261 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4262 should send data as binary ('X'), or hex-encoded ('M').
4263
4264 The function creates packet of the form
4265 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4266
4267 where encoding of <DATA> is termined by PACKET_FORMAT.
4268
4269 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4270 are omitted.
4271
4272 Returns the number of bytes transferred, or 0 (setting errno) for
4273 error. Only transfer a single packet. */
4274
4275 static int
4276 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4277 const gdb_byte *myaddr, int len,
4278 char packet_format, int use_length)
4279 {
4280 struct remote_state *rs = get_remote_state ();
4281 char *p;
4282 char *plen = NULL;
4283 int plenlen = 0;
4284 int todo;
4285 int nr_bytes;
4286 int payload_size;
4287 int payload_length;
4288 int header_length;
4289
4290 if (packet_format != 'X' && packet_format != 'M')
4291 internal_error (__FILE__, __LINE__,
4292 "remote_write_bytes_aux: bad packet format");
4293
4294 if (len <= 0)
4295 return 0;
4296
4297 payload_size = get_memory_write_packet_size ();
4298
4299 /* The packet buffer will be large enough for the payload;
4300 get_memory_packet_size ensures this. */
4301 rs->buf[0] = '\0';
4302
4303 /* Compute the size of the actual payload by subtracting out the
4304 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4305 */
4306 payload_size -= strlen ("$,:#NN");
4307 if (!use_length)
4308 /* The comma won't be used. */
4309 payload_size += 1;
4310 header_length = strlen (header);
4311 payload_size -= header_length;
4312 payload_size -= hexnumlen (memaddr);
4313
4314 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4315
4316 strcat (rs->buf, header);
4317 p = rs->buf + strlen (header);
4318
4319 /* Compute a best guess of the number of bytes actually transfered. */
4320 if (packet_format == 'X')
4321 {
4322 /* Best guess at number of bytes that will fit. */
4323 todo = min (len, payload_size);
4324 if (use_length)
4325 payload_size -= hexnumlen (todo);
4326 todo = min (todo, payload_size);
4327 }
4328 else
4329 {
4330 /* Num bytes that will fit. */
4331 todo = min (len, payload_size / 2);
4332 if (use_length)
4333 payload_size -= hexnumlen (todo);
4334 todo = min (todo, payload_size / 2);
4335 }
4336
4337 if (todo <= 0)
4338 internal_error (__FILE__, __LINE__,
4339 _("minumum packet size too small to write data"));
4340
4341 /* If we already need another packet, then try to align the end
4342 of this packet to a useful boundary. */
4343 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4344 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4345
4346 /* Append "<memaddr>". */
4347 memaddr = remote_address_masked (memaddr);
4348 p += hexnumstr (p, (ULONGEST) memaddr);
4349
4350 if (use_length)
4351 {
4352 /* Append ",". */
4353 *p++ = ',';
4354
4355 /* Append <len>. Retain the location/size of <len>. It may need to
4356 be adjusted once the packet body has been created. */
4357 plen = p;
4358 plenlen = hexnumstr (p, (ULONGEST) todo);
4359 p += plenlen;
4360 }
4361
4362 /* Append ":". */
4363 *p++ = ':';
4364 *p = '\0';
4365
4366 /* Append the packet body. */
4367 if (packet_format == 'X')
4368 {
4369 /* Binary mode. Send target system values byte by byte, in
4370 increasing byte addresses. Only escape certain critical
4371 characters. */
4372 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4373 payload_size);
4374
4375 /* If not all TODO bytes fit, then we'll need another packet. Make
4376 a second try to keep the end of the packet aligned. Don't do
4377 this if the packet is tiny. */
4378 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4379 {
4380 int new_nr_bytes;
4381
4382 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4383 - memaddr);
4384 if (new_nr_bytes != nr_bytes)
4385 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4386 p, &nr_bytes,
4387 payload_size);
4388 }
4389
4390 p += payload_length;
4391 if (use_length && nr_bytes < todo)
4392 {
4393 /* Escape chars have filled up the buffer prematurely,
4394 and we have actually sent fewer bytes than planned.
4395 Fix-up the length field of the packet. Use the same
4396 number of characters as before. */
4397 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4398 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4399 }
4400 }
4401 else
4402 {
4403 /* Normal mode: Send target system values byte by byte, in
4404 increasing byte addresses. Each byte is encoded as a two hex
4405 value. */
4406 nr_bytes = bin2hex (myaddr, p, todo);
4407 p += 2 * nr_bytes;
4408 }
4409
4410 putpkt_binary (rs->buf, (int) (p - rs->buf));
4411 getpkt (&rs->buf, &rs->buf_size, 0);
4412
4413 if (rs->buf[0] == 'E')
4414 {
4415 /* There is no correspondance between what the remote protocol
4416 uses for errors and errno codes. We would like a cleaner way
4417 of representing errors (big enough to include errno codes,
4418 bfd_error codes, and others). But for now just return EIO. */
4419 errno = EIO;
4420 return 0;
4421 }
4422
4423 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4424 fewer bytes than we'd planned. */
4425 return nr_bytes;
4426 }
4427
4428 /* Write memory data directly to the remote machine.
4429 This does not inform the data cache; the data cache uses this.
4430 MEMADDR is the address in the remote memory space.
4431 MYADDR is the address of the buffer in our space.
4432 LEN is the number of bytes.
4433
4434 Returns number of bytes transferred, or 0 (setting errno) for
4435 error. Only transfer a single packet. */
4436
4437 int
4438 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4439 {
4440 char *packet_format = 0;
4441
4442 /* Check whether the target supports binary download. */
4443 check_binary_download (memaddr);
4444
4445 switch (remote_protocol_packets[PACKET_X].support)
4446 {
4447 case PACKET_ENABLE:
4448 packet_format = "X";
4449 break;
4450 case PACKET_DISABLE:
4451 packet_format = "M";
4452 break;
4453 case PACKET_SUPPORT_UNKNOWN:
4454 internal_error (__FILE__, __LINE__,
4455 _("remote_write_bytes: bad internal state"));
4456 default:
4457 internal_error (__FILE__, __LINE__, _("bad switch"));
4458 }
4459
4460 return remote_write_bytes_aux (packet_format,
4461 memaddr, myaddr, len, packet_format[0], 1);
4462 }
4463
4464 /* Read memory data directly from the remote machine.
4465 This does not use the data cache; the data cache uses this.
4466 MEMADDR is the address in the remote memory space.
4467 MYADDR is the address of the buffer in our space.
4468 LEN is the number of bytes.
4469
4470 Returns number of bytes transferred, or 0 for error. */
4471
4472 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4473 remote targets) shouldn't attempt to read the entire buffer.
4474 Instead it should read a single packet worth of data and then
4475 return the byte size of that packet to the caller. The caller (its
4476 caller and its callers caller ;-) already contains code for
4477 handling partial reads. */
4478
4479 int
4480 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4481 {
4482 struct remote_state *rs = get_remote_state ();
4483 int max_buf_size; /* Max size of packet output buffer. */
4484 int origlen;
4485
4486 if (len <= 0)
4487 return 0;
4488
4489 max_buf_size = get_memory_read_packet_size ();
4490 /* The packet buffer will be large enough for the payload;
4491 get_memory_packet_size ensures this. */
4492
4493 origlen = len;
4494 while (len > 0)
4495 {
4496 char *p;
4497 int todo;
4498 int i;
4499
4500 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4501
4502 /* construct "m"<memaddr>","<len>" */
4503 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4504 memaddr = remote_address_masked (memaddr);
4505 p = rs->buf;
4506 *p++ = 'm';
4507 p += hexnumstr (p, (ULONGEST) memaddr);
4508 *p++ = ',';
4509 p += hexnumstr (p, (ULONGEST) todo);
4510 *p = '\0';
4511
4512 putpkt (rs->buf);
4513 getpkt (&rs->buf, &rs->buf_size, 0);
4514
4515 if (rs->buf[0] == 'E'
4516 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4517 && rs->buf[3] == '\0')
4518 {
4519 /* There is no correspondance between what the remote
4520 protocol uses for errors and errno codes. We would like
4521 a cleaner way of representing errors (big enough to
4522 include errno codes, bfd_error codes, and others). But
4523 for now just return EIO. */
4524 errno = EIO;
4525 return 0;
4526 }
4527
4528 /* Reply describes memory byte by byte,
4529 each byte encoded as two hex characters. */
4530
4531 p = rs->buf;
4532 if ((i = hex2bin (p, myaddr, todo)) < todo)
4533 {
4534 /* Reply is short. This means that we were able to read
4535 only part of what we wanted to. */
4536 return i + (origlen - len);
4537 }
4538 myaddr += todo;
4539 memaddr += todo;
4540 len -= todo;
4541 }
4542 return origlen;
4543 }
4544 \f
4545 /* Read or write LEN bytes from inferior memory at MEMADDR,
4546 transferring to or from debugger address BUFFER. Write to inferior
4547 if SHOULD_WRITE is nonzero. Returns length of data written or
4548 read; 0 for error. TARGET is unused. */
4549
4550 static int
4551 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4552 int should_write, struct mem_attrib *attrib,
4553 struct target_ops *target)
4554 {
4555 int res;
4556
4557 if (should_write)
4558 res = remote_write_bytes (mem_addr, buffer, mem_len);
4559 else
4560 res = remote_read_bytes (mem_addr, buffer, mem_len);
4561
4562 return res;
4563 }
4564
4565 /* Sends a packet with content determined by the printf format string
4566 FORMAT and the remaining arguments, then gets the reply. Returns
4567 whether the packet was a success, a failure, or unknown. */
4568
4569 enum packet_result
4570 remote_send_printf (const char *format, ...)
4571 {
4572 struct remote_state *rs = get_remote_state ();
4573 int max_size = get_remote_packet_size ();
4574
4575 va_list ap;
4576 va_start (ap, format);
4577
4578 rs->buf[0] = '\0';
4579 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4580 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4581
4582 if (putpkt (rs->buf) < 0)
4583 error (_("Communication problem with target."));
4584
4585 rs->buf[0] = '\0';
4586 getpkt (&rs->buf, &rs->buf_size, 0);
4587
4588 return packet_check_result (rs->buf);
4589 }
4590
4591 static void
4592 restore_remote_timeout (void *p)
4593 {
4594 int value = *(int *)p;
4595 remote_timeout = value;
4596 }
4597
4598 /* Flash writing can take quite some time. We'll set
4599 effectively infinite timeout for flash operations.
4600 In future, we'll need to decide on a better approach. */
4601 static const int remote_flash_timeout = 1000;
4602
4603 static void
4604 remote_flash_erase (struct target_ops *ops,
4605 ULONGEST address, LONGEST length)
4606 {
4607 int saved_remote_timeout = remote_timeout;
4608 enum packet_result ret;
4609
4610 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4611 &saved_remote_timeout);
4612 remote_timeout = remote_flash_timeout;
4613
4614 ret = remote_send_printf ("vFlashErase:%s,%s",
4615 paddr (address),
4616 phex (length, 4));
4617 switch (ret)
4618 {
4619 case PACKET_UNKNOWN:
4620 error (_("Remote target does not support flash erase"));
4621 case PACKET_ERROR:
4622 error (_("Error erasing flash with vFlashErase packet"));
4623 default:
4624 break;
4625 }
4626
4627 do_cleanups (back_to);
4628 }
4629
4630 static LONGEST
4631 remote_flash_write (struct target_ops *ops,
4632 ULONGEST address, LONGEST length,
4633 const gdb_byte *data)
4634 {
4635 int saved_remote_timeout = remote_timeout;
4636 int ret;
4637 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4638 &saved_remote_timeout);
4639
4640 remote_timeout = remote_flash_timeout;
4641 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4642 do_cleanups (back_to);
4643
4644 return ret;
4645 }
4646
4647 static void
4648 remote_flash_done (struct target_ops *ops)
4649 {
4650 int saved_remote_timeout = remote_timeout;
4651 int ret;
4652 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4653 &saved_remote_timeout);
4654
4655 remote_timeout = remote_flash_timeout;
4656 ret = remote_send_printf ("vFlashDone");
4657 do_cleanups (back_to);
4658
4659 switch (ret)
4660 {
4661 case PACKET_UNKNOWN:
4662 error (_("Remote target does not support vFlashDone"));
4663 case PACKET_ERROR:
4664 error (_("Error finishing flash operation"));
4665 default:
4666 break;
4667 }
4668 }
4669
4670 static void
4671 remote_files_info (struct target_ops *ignore)
4672 {
4673 puts_filtered ("Debugging a target over a serial line.\n");
4674 }
4675 \f
4676 /* Stuff for dealing with the packets which are part of this protocol.
4677 See comment at top of file for details. */
4678
4679 /* Read a single character from the remote end. */
4680
4681 static int
4682 readchar (int timeout)
4683 {
4684 int ch;
4685
4686 ch = serial_readchar (remote_desc, timeout);
4687
4688 if (ch >= 0)
4689 return ch;
4690
4691 switch ((enum serial_rc) ch)
4692 {
4693 case SERIAL_EOF:
4694 target_mourn_inferior ();
4695 error (_("Remote connection closed"));
4696 /* no return */
4697 case SERIAL_ERROR:
4698 perror_with_name (_("Remote communication error"));
4699 /* no return */
4700 case SERIAL_TIMEOUT:
4701 break;
4702 }
4703 return ch;
4704 }
4705
4706 /* Send the command in *BUF to the remote machine, and read the reply
4707 into *BUF. Report an error if we get an error reply. Resize
4708 *BUF using xrealloc if necessary to hold the result, and update
4709 *SIZEOF_BUF. */
4710
4711 static void
4712 remote_send (char **buf,
4713 long *sizeof_buf)
4714 {
4715 putpkt (*buf);
4716 getpkt (buf, sizeof_buf, 0);
4717
4718 if ((*buf)[0] == 'E')
4719 error (_("Remote failure reply: %s"), *buf);
4720 }
4721
4722 /* Display a null-terminated packet on stdout, for debugging, using C
4723 string notation. */
4724
4725 static void
4726 print_packet (char *buf)
4727 {
4728 puts_filtered ("\"");
4729 fputstr_filtered (buf, '"', gdb_stdout);
4730 puts_filtered ("\"");
4731 }
4732
4733 int
4734 putpkt (char *buf)
4735 {
4736 return putpkt_binary (buf, strlen (buf));
4737 }
4738
4739 /* Send a packet to the remote machine, with error checking. The data
4740 of the packet is in BUF. The string in BUF can be at most
4741 get_remote_packet_size () - 5 to account for the $, # and checksum,
4742 and for a possible /0 if we are debugging (remote_debug) and want
4743 to print the sent packet as a string. */
4744
4745 static int
4746 putpkt_binary (char *buf, int cnt)
4747 {
4748 struct remote_state *rs = get_remote_state ();
4749 int i;
4750 unsigned char csum = 0;
4751 char *buf2 = alloca (cnt + 6);
4752
4753 int ch;
4754 int tcount = 0;
4755 char *p;
4756
4757 /* We're sending out a new packet. Make sure we don't look at a
4758 stale cached response. */
4759 rs->cached_wait_status = 0;
4760
4761 /* Copy the packet into buffer BUF2, encapsulating it
4762 and giving it a checksum. */
4763
4764 p = buf2;
4765 *p++ = '$';
4766
4767 for (i = 0; i < cnt; i++)
4768 {
4769 csum += buf[i];
4770 *p++ = buf[i];
4771 }
4772 *p++ = '#';
4773 *p++ = tohex ((csum >> 4) & 0xf);
4774 *p++ = tohex (csum & 0xf);
4775
4776 /* Send it over and over until we get a positive ack. */
4777
4778 while (1)
4779 {
4780 int started_error_output = 0;
4781
4782 if (remote_debug)
4783 {
4784 *p = '\0';
4785 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4786 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4787 fprintf_unfiltered (gdb_stdlog, "...");
4788 gdb_flush (gdb_stdlog);
4789 }
4790 if (serial_write (remote_desc, buf2, p - buf2))
4791 perror_with_name (_("putpkt: write failed"));
4792
4793 /* Read until either a timeout occurs (-2) or '+' is read. */
4794 while (1)
4795 {
4796 ch = readchar (remote_timeout);
4797
4798 if (remote_debug)
4799 {
4800 switch (ch)
4801 {
4802 case '+':
4803 case '-':
4804 case SERIAL_TIMEOUT:
4805 case '$':
4806 if (started_error_output)
4807 {
4808 putchar_unfiltered ('\n');
4809 started_error_output = 0;
4810 }
4811 }
4812 }
4813
4814 switch (ch)
4815 {
4816 case '+':
4817 if (remote_debug)
4818 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4819 return 1;
4820 case '-':
4821 if (remote_debug)
4822 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4823 case SERIAL_TIMEOUT:
4824 tcount++;
4825 if (tcount > 3)
4826 return 0;
4827 break; /* Retransmit buffer. */
4828 case '$':
4829 {
4830 if (remote_debug)
4831 fprintf_unfiltered (gdb_stdlog,
4832 "Packet instead of Ack, ignoring it\n");
4833 /* It's probably an old response sent because an ACK
4834 was lost. Gobble up the packet and ack it so it
4835 doesn't get retransmitted when we resend this
4836 packet. */
4837 skip_frame ();
4838 serial_write (remote_desc, "+", 1);
4839 continue; /* Now, go look for +. */
4840 }
4841 default:
4842 if (remote_debug)
4843 {
4844 if (!started_error_output)
4845 {
4846 started_error_output = 1;
4847 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4848 }
4849 fputc_unfiltered (ch & 0177, gdb_stdlog);
4850 }
4851 continue;
4852 }
4853 break; /* Here to retransmit. */
4854 }
4855
4856 #if 0
4857 /* This is wrong. If doing a long backtrace, the user should be
4858 able to get out next time we call QUIT, without anything as
4859 violent as interrupt_query. If we want to provide a way out of
4860 here without getting to the next QUIT, it should be based on
4861 hitting ^C twice as in remote_wait. */
4862 if (quit_flag)
4863 {
4864 quit_flag = 0;
4865 interrupt_query ();
4866 }
4867 #endif
4868 }
4869 }
4870
4871 /* Come here after finding the start of a frame when we expected an
4872 ack. Do our best to discard the rest of this packet. */
4873
4874 static void
4875 skip_frame (void)
4876 {
4877 int c;
4878
4879 while (1)
4880 {
4881 c = readchar (remote_timeout);
4882 switch (c)
4883 {
4884 case SERIAL_TIMEOUT:
4885 /* Nothing we can do. */
4886 return;
4887 case '#':
4888 /* Discard the two bytes of checksum and stop. */
4889 c = readchar (remote_timeout);
4890 if (c >= 0)
4891 c = readchar (remote_timeout);
4892
4893 return;
4894 case '*': /* Run length encoding. */
4895 /* Discard the repeat count. */
4896 c = readchar (remote_timeout);
4897 if (c < 0)
4898 return;
4899 break;
4900 default:
4901 /* A regular character. */
4902 break;
4903 }
4904 }
4905 }
4906
4907 /* Come here after finding the start of the frame. Collect the rest
4908 into *BUF, verifying the checksum, length, and handling run-length
4909 compression. NUL terminate the buffer. If there is not enough room,
4910 expand *BUF using xrealloc.
4911
4912 Returns -1 on error, number of characters in buffer (ignoring the
4913 trailing NULL) on success. (could be extended to return one of the
4914 SERIAL status indications). */
4915
4916 static long
4917 read_frame (char **buf_p,
4918 long *sizeof_buf)
4919 {
4920 unsigned char csum;
4921 long bc;
4922 int c;
4923 char *buf = *buf_p;
4924
4925 csum = 0;
4926 bc = 0;
4927
4928 while (1)
4929 {
4930 c = readchar (remote_timeout);
4931 switch (c)
4932 {
4933 case SERIAL_TIMEOUT:
4934 if (remote_debug)
4935 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4936 return -1;
4937 case '$':
4938 if (remote_debug)
4939 fputs_filtered ("Saw new packet start in middle of old one\n",
4940 gdb_stdlog);
4941 return -1; /* Start a new packet, count retries. */
4942 case '#':
4943 {
4944 unsigned char pktcsum;
4945 int check_0 = 0;
4946 int check_1 = 0;
4947
4948 buf[bc] = '\0';
4949
4950 check_0 = readchar (remote_timeout);
4951 if (check_0 >= 0)
4952 check_1 = readchar (remote_timeout);
4953
4954 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4955 {
4956 if (remote_debug)
4957 fputs_filtered ("Timeout in checksum, retrying\n",
4958 gdb_stdlog);
4959 return -1;
4960 }
4961 else if (check_0 < 0 || check_1 < 0)
4962 {
4963 if (remote_debug)
4964 fputs_filtered ("Communication error in checksum\n",
4965 gdb_stdlog);
4966 return -1;
4967 }
4968
4969 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4970 if (csum == pktcsum)
4971 return bc;
4972
4973 if (remote_debug)
4974 {
4975 fprintf_filtered (gdb_stdlog,
4976 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4977 pktcsum, csum);
4978 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4979 fputs_filtered ("\n", gdb_stdlog);
4980 }
4981 /* Number of characters in buffer ignoring trailing
4982 NULL. */
4983 return -1;
4984 }
4985 case '*': /* Run length encoding. */
4986 {
4987 int repeat;
4988 csum += c;
4989
4990 c = readchar (remote_timeout);
4991 csum += c;
4992 repeat = c - ' ' + 3; /* Compute repeat count. */
4993
4994 /* The character before ``*'' is repeated. */
4995
4996 if (repeat > 0 && repeat <= 255 && bc > 0)
4997 {
4998 if (bc + repeat - 1 >= *sizeof_buf - 1)
4999 {
5000 /* Make some more room in the buffer. */
5001 *sizeof_buf += repeat;
5002 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5003 buf = *buf_p;
5004 }
5005
5006 memset (&buf[bc], buf[bc - 1], repeat);
5007 bc += repeat;
5008 continue;
5009 }
5010
5011 buf[bc] = '\0';
5012 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5013 return -1;
5014 }
5015 default:
5016 if (bc >= *sizeof_buf - 1)
5017 {
5018 /* Make some more room in the buffer. */
5019 *sizeof_buf *= 2;
5020 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5021 buf = *buf_p;
5022 }
5023
5024 buf[bc++] = c;
5025 csum += c;
5026 continue;
5027 }
5028 }
5029 }
5030
5031 /* Read a packet from the remote machine, with error checking, and
5032 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5033 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5034 rather than timing out; this is used (in synchronous mode) to wait
5035 for a target that is is executing user code to stop. */
5036 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5037 don't have to change all the calls to getpkt to deal with the
5038 return value, because at the moment I don't know what the right
5039 thing to do it for those. */
5040 void
5041 getpkt (char **buf,
5042 long *sizeof_buf,
5043 int forever)
5044 {
5045 int timed_out;
5046
5047 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5048 }
5049
5050
5051 /* Read a packet from the remote machine, with error checking, and
5052 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5053 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5054 rather than timing out; this is used (in synchronous mode) to wait
5055 for a target that is is executing user code to stop. If FOREVER ==
5056 0, this function is allowed to time out gracefully and return an
5057 indication of this to the caller. Otherwise return the number
5058 of bytes read. */
5059 static int
5060 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5061 {
5062 struct remote_state *rs = get_remote_state ();
5063 int c;
5064 int tries;
5065 int timeout;
5066 int val;
5067
5068 /* We're reading a new response. Make sure we don't look at a
5069 previously cached response. */
5070 rs->cached_wait_status = 0;
5071
5072 strcpy (*buf, "timeout");
5073
5074 if (forever)
5075 {
5076 timeout = watchdog > 0 ? watchdog : -1;
5077 }
5078
5079 else
5080 timeout = remote_timeout;
5081
5082 #define MAX_TRIES 3
5083
5084 for (tries = 1; tries <= MAX_TRIES; tries++)
5085 {
5086 /* This can loop forever if the remote side sends us characters
5087 continuously, but if it pauses, we'll get a zero from
5088 readchar because of timeout. Then we'll count that as a
5089 retry. */
5090
5091 /* Note that we will only wait forever prior to the start of a
5092 packet. After that, we expect characters to arrive at a
5093 brisk pace. They should show up within remote_timeout
5094 intervals. */
5095
5096 do
5097 {
5098 c = readchar (timeout);
5099
5100 if (c == SERIAL_TIMEOUT)
5101 {
5102 if (forever) /* Watchdog went off? Kill the target. */
5103 {
5104 QUIT;
5105 target_mourn_inferior ();
5106 error (_("Watchdog timeout has expired. Target detached."));
5107 }
5108 if (remote_debug)
5109 fputs_filtered ("Timed out.\n", gdb_stdlog);
5110 goto retry;
5111 }
5112 }
5113 while (c != '$');
5114
5115 /* We've found the start of a packet, now collect the data. */
5116
5117 val = read_frame (buf, sizeof_buf);
5118
5119 if (val >= 0)
5120 {
5121 if (remote_debug)
5122 {
5123 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5124 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5125 fprintf_unfiltered (gdb_stdlog, "\n");
5126 }
5127 serial_write (remote_desc, "+", 1);
5128 return val;
5129 }
5130
5131 /* Try the whole thing again. */
5132 retry:
5133 serial_write (remote_desc, "-", 1);
5134 }
5135
5136 /* We have tried hard enough, and just can't receive the packet.
5137 Give up. */
5138
5139 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5140 serial_write (remote_desc, "+", 1);
5141 return -1;
5142 }
5143 \f
5144 static void
5145 remote_kill (void)
5146 {
5147 /* Unregister the file descriptor from the event loop. */
5148 if (target_is_async_p ())
5149 serial_async (remote_desc, NULL, 0);
5150
5151 /* Use catch_errors so the user can quit from gdb even when we
5152 aren't on speaking terms with the remote system. */
5153 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5154
5155 /* Don't wait for it to die. I'm not really sure it matters whether
5156 we do or not. For the existing stubs, kill is a noop. */
5157 target_mourn_inferior ();
5158 }
5159
5160 static void
5161 remote_mourn (void)
5162 {
5163 remote_mourn_1 (&remote_ops);
5164 }
5165
5166 /* Worker function for remote_mourn. */
5167 static void
5168 remote_mourn_1 (struct target_ops *target)
5169 {
5170 unpush_target (target);
5171 generic_mourn_inferior ();
5172 }
5173
5174 static void
5175 extended_remote_mourn_1 (struct target_ops *target)
5176 {
5177 struct remote_state *rs = get_remote_state ();
5178
5179 /* Unlike "target remote", we do not want to unpush the target; then
5180 the next time the user says "run", we won't be connected. */
5181
5182 /* Call common code to mark the inferior as not running. */
5183 generic_mourn_inferior ();
5184
5185 /* Check whether the target is running now - some remote stubs
5186 automatically restart after kill. */
5187 putpkt ("?");
5188 getpkt (&rs->buf, &rs->buf_size, 0);
5189
5190 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5191 {
5192 /* Assume that the target has been restarted. Set inferior_ptid
5193 so that bits of core GDB realizes there's something here, e.g.,
5194 so that the user can say "kill" again. */
5195 inferior_ptid = remote_current_thread (magic_null_ptid);
5196 add_thread_silent (inferior_ptid);
5197 }
5198 else
5199 {
5200 /* Mark this (still pushed) target as not executable until we
5201 restart it. */
5202 target_mark_exited (target);
5203 }
5204 }
5205
5206 static void
5207 extended_remote_mourn (void)
5208 {
5209 extended_remote_mourn_1 (&extended_remote_ops);
5210 }
5211
5212 static int
5213 extended_remote_run (char *args)
5214 {
5215 struct remote_state *rs = get_remote_state ();
5216 char *p;
5217 int len;
5218
5219 /* If the user has disabled vRun support, or we have detected that
5220 support is not available, do not try it. */
5221 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5222 return -1;
5223
5224 strcpy (rs->buf, "vRun;");
5225 len = strlen (rs->buf);
5226
5227 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5228 error (_("Remote file name too long for run packet"));
5229 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5230
5231 if (*args)
5232 {
5233 struct cleanup *back_to;
5234 int i;
5235 char **argv;
5236
5237 argv = buildargv (args);
5238 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5239 for (i = 0; argv[i] != NULL; i++)
5240 {
5241 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5242 error (_("Argument list too long for run packet"));
5243 rs->buf[len++] = ';';
5244 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5245 }
5246 do_cleanups (back_to);
5247 }
5248
5249 rs->buf[len++] = '\0';
5250
5251 putpkt (rs->buf);
5252 getpkt (&rs->buf, &rs->buf_size, 0);
5253
5254 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5255 {
5256 /* We have a wait response; we don't need it, though. All is well. */
5257 return 0;
5258 }
5259 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5260 /* It wasn't disabled before, but it is now. */
5261 return -1;
5262 else
5263 {
5264 if (remote_exec_file[0] == '\0')
5265 error (_("Running the default executable on the remote target failed; "
5266 "try \"set remote exec-file\"?"));
5267 else
5268 error (_("Running \"%s\" on the remote target failed"),
5269 remote_exec_file);
5270 }
5271 }
5272
5273 /* In the extended protocol we want to be able to do things like
5274 "run" and have them basically work as expected. So we need
5275 a special create_inferior function. We support changing the
5276 executable file and the command line arguments, but not the
5277 environment. */
5278
5279 static void
5280 extended_remote_create_inferior_1 (char *exec_file, char *args,
5281 char **env, int from_tty)
5282 {
5283 /* If running asynchronously, register the target file descriptor
5284 with the event loop. */
5285 if (target_can_async_p ())
5286 target_async (inferior_event_handler, 0);
5287
5288 /* Now restart the remote server. */
5289 if (extended_remote_run (args) == -1)
5290 {
5291 /* vRun was not supported. Fail if we need it to do what the
5292 user requested. */
5293 if (remote_exec_file[0])
5294 error (_("Remote target does not support \"set remote exec-file\""));
5295 if (args[0])
5296 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5297
5298 /* Fall back to "R". */
5299 extended_remote_restart ();
5300 }
5301
5302 /* Clean up from the last time we ran, before we mark the target
5303 running again. This will mark breakpoints uninserted, and
5304 get_offsets may insert breakpoints. */
5305 init_thread_list ();
5306 init_wait_for_inferior ();
5307
5308 /* Now mark the inferior as running before we do anything else. */
5309 attach_flag = 0;
5310 inferior_ptid = magic_null_ptid;
5311
5312 add_thread_silent (inferior_ptid);
5313
5314 target_mark_running (&extended_remote_ops);
5315
5316 /* Get updated offsets, if the stub uses qOffsets. */
5317 get_offsets ();
5318 }
5319
5320 static void
5321 extended_remote_create_inferior (char *exec_file, char *args,
5322 char **env, int from_tty)
5323 {
5324 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
5325 }
5326 \f
5327
5328 /* Insert a breakpoint. On targets that have software breakpoint
5329 support, we ask the remote target to do the work; on targets
5330 which don't, we insert a traditional memory breakpoint. */
5331
5332 static int
5333 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5334 {
5335 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5336 If it succeeds, then set the support to PACKET_ENABLE. If it
5337 fails, and the user has explicitly requested the Z support then
5338 report an error, otherwise, mark it disabled and go on. */
5339
5340 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5341 {
5342 CORE_ADDR addr = bp_tgt->placed_address;
5343 struct remote_state *rs;
5344 char *p;
5345 int bpsize;
5346
5347 gdbarch_breakpoint_from_pc
5348 (current_gdbarch, &addr, &bpsize);
5349
5350 rs = get_remote_state ();
5351 p = rs->buf;
5352
5353 *(p++) = 'Z';
5354 *(p++) = '0';
5355 *(p++) = ',';
5356 addr = (ULONGEST) remote_address_masked (addr);
5357 p += hexnumstr (p, addr);
5358 sprintf (p, ",%d", bpsize);
5359
5360 putpkt (rs->buf);
5361 getpkt (&rs->buf, &rs->buf_size, 0);
5362
5363 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5364 {
5365 case PACKET_ERROR:
5366 return -1;
5367 case PACKET_OK:
5368 bp_tgt->placed_address = addr;
5369 bp_tgt->placed_size = bpsize;
5370 return 0;
5371 case PACKET_UNKNOWN:
5372 break;
5373 }
5374 }
5375
5376 return memory_insert_breakpoint (bp_tgt);
5377 }
5378
5379 static int
5380 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5381 {
5382 CORE_ADDR addr = bp_tgt->placed_address;
5383 struct remote_state *rs = get_remote_state ();
5384 int bp_size;
5385
5386 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5387 {
5388 char *p = rs->buf;
5389
5390 *(p++) = 'z';
5391 *(p++) = '0';
5392 *(p++) = ',';
5393
5394 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5395 p += hexnumstr (p, addr);
5396 sprintf (p, ",%d", bp_tgt->placed_size);
5397
5398 putpkt (rs->buf);
5399 getpkt (&rs->buf, &rs->buf_size, 0);
5400
5401 return (rs->buf[0] == 'E');
5402 }
5403
5404 return memory_remove_breakpoint (bp_tgt);
5405 }
5406
5407 static int
5408 watchpoint_to_Z_packet (int type)
5409 {
5410 switch (type)
5411 {
5412 case hw_write:
5413 return Z_PACKET_WRITE_WP;
5414 break;
5415 case hw_read:
5416 return Z_PACKET_READ_WP;
5417 break;
5418 case hw_access:
5419 return Z_PACKET_ACCESS_WP;
5420 break;
5421 default:
5422 internal_error (__FILE__, __LINE__,
5423 _("hw_bp_to_z: bad watchpoint type %d"), type);
5424 }
5425 }
5426
5427 static int
5428 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5429 {
5430 struct remote_state *rs = get_remote_state ();
5431 char *p;
5432 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5433
5434 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5435 return -1;
5436
5437 sprintf (rs->buf, "Z%x,", packet);
5438 p = strchr (rs->buf, '\0');
5439 addr = remote_address_masked (addr);
5440 p += hexnumstr (p, (ULONGEST) addr);
5441 sprintf (p, ",%x", len);
5442
5443 putpkt (rs->buf);
5444 getpkt (&rs->buf, &rs->buf_size, 0);
5445
5446 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5447 {
5448 case PACKET_ERROR:
5449 case PACKET_UNKNOWN:
5450 return -1;
5451 case PACKET_OK:
5452 return 0;
5453 }
5454 internal_error (__FILE__, __LINE__,
5455 _("remote_insert_watchpoint: reached end of function"));
5456 }
5457
5458
5459 static int
5460 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5461 {
5462 struct remote_state *rs = get_remote_state ();
5463 char *p;
5464 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5465
5466 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5467 return -1;
5468
5469 sprintf (rs->buf, "z%x,", packet);
5470 p = strchr (rs->buf, '\0');
5471 addr = remote_address_masked (addr);
5472 p += hexnumstr (p, (ULONGEST) addr);
5473 sprintf (p, ",%x", len);
5474 putpkt (rs->buf);
5475 getpkt (&rs->buf, &rs->buf_size, 0);
5476
5477 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5478 {
5479 case PACKET_ERROR:
5480 case PACKET_UNKNOWN:
5481 return -1;
5482 case PACKET_OK:
5483 return 0;
5484 }
5485 internal_error (__FILE__, __LINE__,
5486 _("remote_remove_watchpoint: reached end of function"));
5487 }
5488
5489
5490 int remote_hw_watchpoint_limit = -1;
5491 int remote_hw_breakpoint_limit = -1;
5492
5493 static int
5494 remote_check_watch_resources (int type, int cnt, int ot)
5495 {
5496 if (type == bp_hardware_breakpoint)
5497 {
5498 if (remote_hw_breakpoint_limit == 0)
5499 return 0;
5500 else if (remote_hw_breakpoint_limit < 0)
5501 return 1;
5502 else if (cnt <= remote_hw_breakpoint_limit)
5503 return 1;
5504 }
5505 else
5506 {
5507 if (remote_hw_watchpoint_limit == 0)
5508 return 0;
5509 else if (remote_hw_watchpoint_limit < 0)
5510 return 1;
5511 else if (ot)
5512 return -1;
5513 else if (cnt <= remote_hw_watchpoint_limit)
5514 return 1;
5515 }
5516 return -1;
5517 }
5518
5519 static int
5520 remote_stopped_by_watchpoint (void)
5521 {
5522 return remote_stopped_by_watchpoint_p;
5523 }
5524
5525 static int
5526 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5527 {
5528 int rc = 0;
5529 if (remote_stopped_by_watchpoint ())
5530 {
5531 *addr_p = remote_watch_data_address;
5532 rc = 1;
5533 }
5534
5535 return rc;
5536 }
5537
5538
5539 static int
5540 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5541 {
5542 CORE_ADDR addr;
5543 struct remote_state *rs;
5544 char *p;
5545
5546 /* The length field should be set to the size of a breakpoint
5547 instruction, even though we aren't inserting one ourselves. */
5548
5549 gdbarch_breakpoint_from_pc
5550 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5551
5552 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5553 return -1;
5554
5555 rs = get_remote_state ();
5556 p = rs->buf;
5557
5558 *(p++) = 'Z';
5559 *(p++) = '1';
5560 *(p++) = ',';
5561
5562 addr = remote_address_masked (bp_tgt->placed_address);
5563 p += hexnumstr (p, (ULONGEST) addr);
5564 sprintf (p, ",%x", bp_tgt->placed_size);
5565
5566 putpkt (rs->buf);
5567 getpkt (&rs->buf, &rs->buf_size, 0);
5568
5569 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5570 {
5571 case PACKET_ERROR:
5572 case PACKET_UNKNOWN:
5573 return -1;
5574 case PACKET_OK:
5575 return 0;
5576 }
5577 internal_error (__FILE__, __LINE__,
5578 _("remote_insert_hw_breakpoint: reached end of function"));
5579 }
5580
5581
5582 static int
5583 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5584 {
5585 CORE_ADDR addr;
5586 struct remote_state *rs = get_remote_state ();
5587 char *p = rs->buf;
5588
5589 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5590 return -1;
5591
5592 *(p++) = 'z';
5593 *(p++) = '1';
5594 *(p++) = ',';
5595
5596 addr = remote_address_masked (bp_tgt->placed_address);
5597 p += hexnumstr (p, (ULONGEST) addr);
5598 sprintf (p, ",%x", bp_tgt->placed_size);
5599
5600 putpkt (rs->buf);
5601 getpkt (&rs->buf, &rs->buf_size, 0);
5602
5603 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5604 {
5605 case PACKET_ERROR:
5606 case PACKET_UNKNOWN:
5607 return -1;
5608 case PACKET_OK:
5609 return 0;
5610 }
5611 internal_error (__FILE__, __LINE__,
5612 _("remote_remove_hw_breakpoint: reached end of function"));
5613 }
5614
5615 /* Some targets are only capable of doing downloads, and afterwards
5616 they switch to the remote serial protocol. This function provides
5617 a clean way to get from the download target to the remote target.
5618 It's basically just a wrapper so that we don't have to expose any
5619 of the internal workings of remote.c.
5620
5621 Prior to calling this routine, you should shutdown the current
5622 target code, else you will get the "A program is being debugged
5623 already..." message. Usually a call to pop_target() suffices. */
5624
5625 void
5626 push_remote_target (char *name, int from_tty)
5627 {
5628 printf_filtered (_("Switching to remote protocol\n"));
5629 remote_open (name, from_tty);
5630 }
5631
5632 /* Table used by the crc32 function to calcuate the checksum. */
5633
5634 static unsigned long crc32_table[256] =
5635 {0, 0};
5636
5637 static unsigned long
5638 crc32 (unsigned char *buf, int len, unsigned int crc)
5639 {
5640 if (!crc32_table[1])
5641 {
5642 /* Initialize the CRC table and the decoding table. */
5643 int i, j;
5644 unsigned int c;
5645
5646 for (i = 0; i < 256; i++)
5647 {
5648 for (c = i << 24, j = 8; j > 0; --j)
5649 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5650 crc32_table[i] = c;
5651 }
5652 }
5653
5654 while (len--)
5655 {
5656 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5657 buf++;
5658 }
5659 return crc;
5660 }
5661
5662 /* compare-sections command
5663
5664 With no arguments, compares each loadable section in the exec bfd
5665 with the same memory range on the target, and reports mismatches.
5666 Useful for verifying the image on the target against the exec file.
5667 Depends on the target understanding the new "qCRC:" request. */
5668
5669 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5670 target method (target verify memory) and generic version of the
5671 actual command. This will allow other high-level code (especially
5672 generic_load()) to make use of this target functionality. */
5673
5674 static void
5675 compare_sections_command (char *args, int from_tty)
5676 {
5677 struct remote_state *rs = get_remote_state ();
5678 asection *s;
5679 unsigned long host_crc, target_crc;
5680 extern bfd *exec_bfd;
5681 struct cleanup *old_chain;
5682 char *tmp;
5683 char *sectdata;
5684 const char *sectname;
5685 bfd_size_type size;
5686 bfd_vma lma;
5687 int matched = 0;
5688 int mismatched = 0;
5689
5690 if (!exec_bfd)
5691 error (_("command cannot be used without an exec file"));
5692 if (!current_target.to_shortname ||
5693 strcmp (current_target.to_shortname, "remote") != 0)
5694 error (_("command can only be used with remote target"));
5695
5696 for (s = exec_bfd->sections; s; s = s->next)
5697 {
5698 if (!(s->flags & SEC_LOAD))
5699 continue; /* skip non-loadable section */
5700
5701 size = bfd_get_section_size (s);
5702 if (size == 0)
5703 continue; /* skip zero-length section */
5704
5705 sectname = bfd_get_section_name (exec_bfd, s);
5706 if (args && strcmp (args, sectname) != 0)
5707 continue; /* not the section selected by user */
5708
5709 matched = 1; /* do this section */
5710 lma = s->lma;
5711 /* FIXME: assumes lma can fit into long. */
5712 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5713 (long) lma, (long) size);
5714 putpkt (rs->buf);
5715
5716 /* Be clever; compute the host_crc before waiting for target
5717 reply. */
5718 sectdata = xmalloc (size);
5719 old_chain = make_cleanup (xfree, sectdata);
5720 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5721 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5722
5723 getpkt (&rs->buf, &rs->buf_size, 0);
5724 if (rs->buf[0] == 'E')
5725 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5726 sectname, paddr (lma), paddr (lma + size));
5727 if (rs->buf[0] != 'C')
5728 error (_("remote target does not support this operation"));
5729
5730 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5731 target_crc = target_crc * 16 + fromhex (*tmp);
5732
5733 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5734 sectname, paddr (lma), paddr (lma + size));
5735 if (host_crc == target_crc)
5736 printf_filtered ("matched.\n");
5737 else
5738 {
5739 printf_filtered ("MIS-MATCHED!\n");
5740 mismatched++;
5741 }
5742
5743 do_cleanups (old_chain);
5744 }
5745 if (mismatched > 0)
5746 warning (_("One or more sections of the remote executable does not match\n\
5747 the loaded file\n"));
5748 if (args && !matched)
5749 printf_filtered (_("No loaded section named '%s'.\n"), args);
5750 }
5751
5752 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5753 into remote target. The number of bytes written to the remote
5754 target is returned, or -1 for error. */
5755
5756 static LONGEST
5757 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5758 const char *annex, const gdb_byte *writebuf,
5759 ULONGEST offset, LONGEST len,
5760 struct packet_config *packet)
5761 {
5762 int i, buf_len;
5763 ULONGEST n;
5764 gdb_byte *wbuf;
5765 struct remote_state *rs = get_remote_state ();
5766 int max_size = get_memory_write_packet_size ();
5767
5768 if (packet->support == PACKET_DISABLE)
5769 return -1;
5770
5771 /* Insert header. */
5772 i = snprintf (rs->buf, max_size,
5773 "qXfer:%s:write:%s:%s:",
5774 object_name, annex ? annex : "",
5775 phex_nz (offset, sizeof offset));
5776 max_size -= (i + 1);
5777
5778 /* Escape as much data as fits into rs->buf. */
5779 buf_len = remote_escape_output
5780 (writebuf, len, (rs->buf + i), &max_size, max_size);
5781
5782 if (putpkt_binary (rs->buf, i + buf_len) < 0
5783 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5784 || packet_ok (rs->buf, packet) != PACKET_OK)
5785 return -1;
5786
5787 unpack_varlen_hex (rs->buf, &n);
5788 return n;
5789 }
5790
5791 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5792 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5793 number of bytes read is returned, or 0 for EOF, or -1 for error.
5794 The number of bytes read may be less than LEN without indicating an
5795 EOF. PACKET is checked and updated to indicate whether the remote
5796 target supports this object. */
5797
5798 static LONGEST
5799 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5800 const char *annex,
5801 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5802 struct packet_config *packet)
5803 {
5804 static char *finished_object;
5805 static char *finished_annex;
5806 static ULONGEST finished_offset;
5807
5808 struct remote_state *rs = get_remote_state ();
5809 unsigned int total = 0;
5810 LONGEST i, n, packet_len;
5811
5812 if (packet->support == PACKET_DISABLE)
5813 return -1;
5814
5815 /* Check whether we've cached an end-of-object packet that matches
5816 this request. */
5817 if (finished_object)
5818 {
5819 if (strcmp (object_name, finished_object) == 0
5820 && strcmp (annex ? annex : "", finished_annex) == 0
5821 && offset == finished_offset)
5822 return 0;
5823
5824 /* Otherwise, we're now reading something different. Discard
5825 the cache. */
5826 xfree (finished_object);
5827 xfree (finished_annex);
5828 finished_object = NULL;
5829 finished_annex = NULL;
5830 }
5831
5832 /* Request only enough to fit in a single packet. The actual data
5833 may not, since we don't know how much of it will need to be escaped;
5834 the target is free to respond with slightly less data. We subtract
5835 five to account for the response type and the protocol frame. */
5836 n = min (get_remote_packet_size () - 5, len);
5837 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5838 object_name, annex ? annex : "",
5839 phex_nz (offset, sizeof offset),
5840 phex_nz (n, sizeof n));
5841 i = putpkt (rs->buf);
5842 if (i < 0)
5843 return -1;
5844
5845 rs->buf[0] = '\0';
5846 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5847 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5848 return -1;
5849
5850 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5851 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5852
5853 /* 'm' means there is (or at least might be) more data after this
5854 batch. That does not make sense unless there's at least one byte
5855 of data in this reply. */
5856 if (rs->buf[0] == 'm' && packet_len == 1)
5857 error (_("Remote qXfer reply contained no data."));
5858
5859 /* Got some data. */
5860 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5861
5862 /* 'l' is an EOF marker, possibly including a final block of data,
5863 or possibly empty. If we have the final block of a non-empty
5864 object, record this fact to bypass a subsequent partial read. */
5865 if (rs->buf[0] == 'l' && offset + i > 0)
5866 {
5867 finished_object = xstrdup (object_name);
5868 finished_annex = xstrdup (annex ? annex : "");
5869 finished_offset = offset + i;
5870 }
5871
5872 return i;
5873 }
5874
5875 static LONGEST
5876 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5877 const char *annex, gdb_byte *readbuf,
5878 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5879 {
5880 struct remote_state *rs = get_remote_state ();
5881 int i;
5882 char *p2;
5883 char query_type;
5884
5885 /* Handle memory using the standard memory routines. */
5886 if (object == TARGET_OBJECT_MEMORY)
5887 {
5888 int xfered;
5889 errno = 0;
5890
5891 /* If the remote target is connected but not running, we should
5892 pass this request down to a lower stratum (e.g. the executable
5893 file). */
5894 if (!target_has_execution)
5895 return 0;
5896
5897 if (writebuf != NULL)
5898 xfered = remote_write_bytes (offset, writebuf, len);
5899 else
5900 xfered = remote_read_bytes (offset, readbuf, len);
5901
5902 if (xfered > 0)
5903 return xfered;
5904 else if (xfered == 0 && errno == 0)
5905 return 0;
5906 else
5907 return -1;
5908 }
5909
5910 /* Handle SPU memory using qxfer packets. */
5911 if (object == TARGET_OBJECT_SPU)
5912 {
5913 if (readbuf)
5914 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5915 &remote_protocol_packets
5916 [PACKET_qXfer_spu_read]);
5917 else
5918 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5919 &remote_protocol_packets
5920 [PACKET_qXfer_spu_write]);
5921 }
5922
5923 /* Only handle flash writes. */
5924 if (writebuf != NULL)
5925 {
5926 LONGEST xfered;
5927
5928 switch (object)
5929 {
5930 case TARGET_OBJECT_FLASH:
5931 xfered = remote_flash_write (ops, offset, len, writebuf);
5932
5933 if (xfered > 0)
5934 return xfered;
5935 else if (xfered == 0 && errno == 0)
5936 return 0;
5937 else
5938 return -1;
5939
5940 default:
5941 return -1;
5942 }
5943 }
5944
5945 /* Map pre-existing objects onto letters. DO NOT do this for new
5946 objects!!! Instead specify new query packets. */
5947 switch (object)
5948 {
5949 case TARGET_OBJECT_AVR:
5950 query_type = 'R';
5951 break;
5952
5953 case TARGET_OBJECT_AUXV:
5954 gdb_assert (annex == NULL);
5955 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5956 &remote_protocol_packets[PACKET_qXfer_auxv]);
5957
5958 case TARGET_OBJECT_AVAILABLE_FEATURES:
5959 return remote_read_qxfer
5960 (ops, "features", annex, readbuf, offset, len,
5961 &remote_protocol_packets[PACKET_qXfer_features]);
5962
5963 case TARGET_OBJECT_LIBRARIES:
5964 return remote_read_qxfer
5965 (ops, "libraries", annex, readbuf, offset, len,
5966 &remote_protocol_packets[PACKET_qXfer_libraries]);
5967
5968 case TARGET_OBJECT_MEMORY_MAP:
5969 gdb_assert (annex == NULL);
5970 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5971 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5972
5973 default:
5974 return -1;
5975 }
5976
5977 /* Note: a zero OFFSET and LEN can be used to query the minimum
5978 buffer size. */
5979 if (offset == 0 && len == 0)
5980 return (get_remote_packet_size ());
5981 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5982 large enough let the caller deal with it. */
5983 if (len < get_remote_packet_size ())
5984 return -1;
5985 len = get_remote_packet_size ();
5986
5987 /* Except for querying the minimum buffer size, target must be open. */
5988 if (!remote_desc)
5989 error (_("remote query is only available after target open"));
5990
5991 gdb_assert (annex != NULL);
5992 gdb_assert (readbuf != NULL);
5993
5994 p2 = rs->buf;
5995 *p2++ = 'q';
5996 *p2++ = query_type;
5997
5998 /* We used one buffer char for the remote protocol q command and
5999 another for the query type. As the remote protocol encapsulation
6000 uses 4 chars plus one extra in case we are debugging
6001 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6002 string. */
6003 i = 0;
6004 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6005 {
6006 /* Bad caller may have sent forbidden characters. */
6007 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6008 *p2++ = annex[i];
6009 i++;
6010 }
6011 *p2 = '\0';
6012 gdb_assert (annex[i] == '\0');
6013
6014 i = putpkt (rs->buf);
6015 if (i < 0)
6016 return i;
6017
6018 getpkt (&rs->buf, &rs->buf_size, 0);
6019 strcpy ((char *) readbuf, rs->buf);
6020
6021 return strlen ((char *) readbuf);
6022 }
6023
6024 static int
6025 remote_search_memory (struct target_ops* ops,
6026 CORE_ADDR start_addr, ULONGEST search_space_len,
6027 const gdb_byte *pattern, ULONGEST pattern_len,
6028 CORE_ADDR *found_addrp)
6029 {
6030 struct remote_state *rs = get_remote_state ();
6031 int max_size = get_memory_write_packet_size ();
6032 struct packet_config *packet =
6033 &remote_protocol_packets[PACKET_qSearch_memory];
6034 /* number of packet bytes used to encode the pattern,
6035 this could be more than PATTERN_LEN due to escape characters */
6036 int escaped_pattern_len;
6037 /* amount of pattern that was encodable in the packet */
6038 int used_pattern_len;
6039 int i;
6040 int found;
6041 ULONGEST found_addr;
6042
6043 /* Don't go to the target if we don't have to.
6044 This is done before checking packet->support to avoid the possibility that
6045 a success for this edge case means the facility works in general. */
6046 if (pattern_len > search_space_len)
6047 return 0;
6048 if (pattern_len == 0)
6049 {
6050 *found_addrp = start_addr;
6051 return 1;
6052 }
6053
6054 /* If we already know the packet isn't supported, fall back to the simple
6055 way of searching memory. */
6056
6057 if (packet->support == PACKET_DISABLE)
6058 {
6059 /* Target doesn't provided special support, fall back and use the
6060 standard support (copy memory and do the search here). */
6061 return simple_search_memory (ops, start_addr, search_space_len,
6062 pattern, pattern_len, found_addrp);
6063 }
6064
6065 /* Insert header. */
6066 i = snprintf (rs->buf, max_size,
6067 "qSearch:memory:%s;%s;",
6068 paddr_nz (start_addr),
6069 phex_nz (search_space_len, sizeof (search_space_len)));
6070 max_size -= (i + 1);
6071
6072 /* Escape as much data as fits into rs->buf. */
6073 escaped_pattern_len =
6074 remote_escape_output (pattern, pattern_len, (rs->buf + i),
6075 &used_pattern_len, max_size);
6076
6077 /* Bail if the pattern is too large. */
6078 if (used_pattern_len != pattern_len)
6079 error ("Pattern is too large to transmit to remote target.");
6080
6081 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
6082 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6083 || packet_ok (rs->buf, packet) != PACKET_OK)
6084 {
6085 /* The request may not have worked because the command is not
6086 supported. If so, fall back to the simple way. */
6087 if (packet->support == PACKET_DISABLE)
6088 {
6089 return simple_search_memory (ops, start_addr, search_space_len,
6090 pattern, pattern_len, found_addrp);
6091 }
6092 return -1;
6093 }
6094
6095 if (rs->buf[0] == '0')
6096 found = 0;
6097 else if (rs->buf[0] == '1')
6098 {
6099 found = 1;
6100 if (rs->buf[1] != ',')
6101 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6102 unpack_varlen_hex (rs->buf + 2, &found_addr);
6103 *found_addrp = found_addr;
6104 }
6105 else
6106 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6107
6108 return found;
6109 }
6110
6111 static void
6112 remote_rcmd (char *command,
6113 struct ui_file *outbuf)
6114 {
6115 struct remote_state *rs = get_remote_state ();
6116 char *p = rs->buf;
6117
6118 if (!remote_desc)
6119 error (_("remote rcmd is only available after target open"));
6120
6121 /* Send a NULL command across as an empty command. */
6122 if (command == NULL)
6123 command = "";
6124
6125 /* The query prefix. */
6126 strcpy (rs->buf, "qRcmd,");
6127 p = strchr (rs->buf, '\0');
6128
6129 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6130 error (_("\"monitor\" command ``%s'' is too long."), command);
6131
6132 /* Encode the actual command. */
6133 bin2hex ((gdb_byte *) command, p, 0);
6134
6135 if (putpkt (rs->buf) < 0)
6136 error (_("Communication problem with target."));
6137
6138 /* get/display the response */
6139 while (1)
6140 {
6141 char *buf;
6142
6143 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6144 rs->buf[0] = '\0';
6145 getpkt (&rs->buf, &rs->buf_size, 0);
6146 buf = rs->buf;
6147 if (buf[0] == '\0')
6148 error (_("Target does not support this command."));
6149 if (buf[0] == 'O' && buf[1] != 'K')
6150 {
6151 remote_console_output (buf + 1); /* 'O' message from stub. */
6152 continue;
6153 }
6154 if (strcmp (buf, "OK") == 0)
6155 break;
6156 if (strlen (buf) == 3 && buf[0] == 'E'
6157 && isdigit (buf[1]) && isdigit (buf[2]))
6158 {
6159 error (_("Protocol error with Rcmd"));
6160 }
6161 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6162 {
6163 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6164 fputc_unfiltered (c, outbuf);
6165 }
6166 break;
6167 }
6168 }
6169
6170 static VEC(mem_region_s) *
6171 remote_memory_map (struct target_ops *ops)
6172 {
6173 VEC(mem_region_s) *result = NULL;
6174 char *text = target_read_stralloc (&current_target,
6175 TARGET_OBJECT_MEMORY_MAP, NULL);
6176
6177 if (text)
6178 {
6179 struct cleanup *back_to = make_cleanup (xfree, text);
6180 result = parse_memory_map (text);
6181 do_cleanups (back_to);
6182 }
6183
6184 return result;
6185 }
6186
6187 static void
6188 packet_command (char *args, int from_tty)
6189 {
6190 struct remote_state *rs = get_remote_state ();
6191
6192 if (!remote_desc)
6193 error (_("command can only be used with remote target"));
6194
6195 if (!args)
6196 error (_("remote-packet command requires packet text as argument"));
6197
6198 puts_filtered ("sending: ");
6199 print_packet (args);
6200 puts_filtered ("\n");
6201 putpkt (args);
6202
6203 getpkt (&rs->buf, &rs->buf_size, 0);
6204 puts_filtered ("received: ");
6205 print_packet (rs->buf);
6206 puts_filtered ("\n");
6207 }
6208
6209 #if 0
6210 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6211
6212 static void display_thread_info (struct gdb_ext_thread_info *info);
6213
6214 static void threadset_test_cmd (char *cmd, int tty);
6215
6216 static void threadalive_test (char *cmd, int tty);
6217
6218 static void threadlist_test_cmd (char *cmd, int tty);
6219
6220 int get_and_display_threadinfo (threadref *ref);
6221
6222 static void threadinfo_test_cmd (char *cmd, int tty);
6223
6224 static int thread_display_step (threadref *ref, void *context);
6225
6226 static void threadlist_update_test_cmd (char *cmd, int tty);
6227
6228 static void init_remote_threadtests (void);
6229
6230 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6231
6232 static void
6233 threadset_test_cmd (char *cmd, int tty)
6234 {
6235 int sample_thread = SAMPLE_THREAD;
6236
6237 printf_filtered (_("Remote threadset test\n"));
6238 set_general_thread (sample_thread);
6239 }
6240
6241
6242 static void
6243 threadalive_test (char *cmd, int tty)
6244 {
6245 int sample_thread = SAMPLE_THREAD;
6246 int pid = ptid_get_pid (inferior_ptid);
6247 ptid_t ptid = ptid_build (pid, 0, sample_thread);
6248
6249 if (remote_thread_alive (ptid))
6250 printf_filtered ("PASS: Thread alive test\n");
6251 else
6252 printf_filtered ("FAIL: Thread alive test\n");
6253 }
6254
6255 void output_threadid (char *title, threadref *ref);
6256
6257 void
6258 output_threadid (char *title, threadref *ref)
6259 {
6260 char hexid[20];
6261
6262 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6263 hexid[16] = 0;
6264 printf_filtered ("%s %s\n", title, (&hexid[0]));
6265 }
6266
6267 static void
6268 threadlist_test_cmd (char *cmd, int tty)
6269 {
6270 int startflag = 1;
6271 threadref nextthread;
6272 int done, result_count;
6273 threadref threadlist[3];
6274
6275 printf_filtered ("Remote Threadlist test\n");
6276 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6277 &result_count, &threadlist[0]))
6278 printf_filtered ("FAIL: threadlist test\n");
6279 else
6280 {
6281 threadref *scan = threadlist;
6282 threadref *limit = scan + result_count;
6283
6284 while (scan < limit)
6285 output_threadid (" thread ", scan++);
6286 }
6287 }
6288
6289 void
6290 display_thread_info (struct gdb_ext_thread_info *info)
6291 {
6292 output_threadid ("Threadid: ", &info->threadid);
6293 printf_filtered ("Name: %s\n ", info->shortname);
6294 printf_filtered ("State: %s\n", info->display);
6295 printf_filtered ("other: %s\n\n", info->more_display);
6296 }
6297
6298 int
6299 get_and_display_threadinfo (threadref *ref)
6300 {
6301 int result;
6302 int set;
6303 struct gdb_ext_thread_info threadinfo;
6304
6305 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6306 | TAG_MOREDISPLAY | TAG_DISPLAY;
6307 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6308 display_thread_info (&threadinfo);
6309 return result;
6310 }
6311
6312 static void
6313 threadinfo_test_cmd (char *cmd, int tty)
6314 {
6315 int athread = SAMPLE_THREAD;
6316 threadref thread;
6317 int set;
6318
6319 int_to_threadref (&thread, athread);
6320 printf_filtered ("Remote Threadinfo test\n");
6321 if (!get_and_display_threadinfo (&thread))
6322 printf_filtered ("FAIL cannot get thread info\n");
6323 }
6324
6325 static int
6326 thread_display_step (threadref *ref, void *context)
6327 {
6328 /* output_threadid(" threadstep ",ref); *//* simple test */
6329 return get_and_display_threadinfo (ref);
6330 }
6331
6332 static void
6333 threadlist_update_test_cmd (char *cmd, int tty)
6334 {
6335 printf_filtered ("Remote Threadlist update test\n");
6336 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6337 }
6338
6339 static void
6340 init_remote_threadtests (void)
6341 {
6342 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6343 Fetch and print the remote list of thread identifiers, one pkt only"));
6344 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6345 _("Fetch and display info about one thread"));
6346 add_com ("tset", class_obscure, threadset_test_cmd,
6347 _("Test setting to a different thread"));
6348 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6349 _("Iterate through updating all remote thread info"));
6350 add_com ("talive", class_obscure, threadalive_test,
6351 _(" Remote thread alive test "));
6352 }
6353
6354 #endif /* 0 */
6355
6356 /* Convert a thread ID to a string. Returns the string in a static
6357 buffer. */
6358
6359 static char *
6360 remote_pid_to_str (ptid_t ptid)
6361 {
6362 static char buf[64];
6363
6364 if (ptid_equal (magic_null_ptid, ptid))
6365 {
6366 xsnprintf (buf, sizeof buf, "Thread <main>");
6367 return buf;
6368 }
6369 else if (ptid_get_tid (ptid) != 0)
6370 {
6371 xsnprintf (buf, sizeof buf, "Thread %ld",
6372 ptid_get_tid (ptid));
6373 return buf;
6374 }
6375
6376 return normal_pid_to_str (ptid);
6377 }
6378
6379 /* Get the address of the thread local variable in OBJFILE which is
6380 stored at OFFSET within the thread local storage for thread PTID. */
6381
6382 static CORE_ADDR
6383 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6384 {
6385 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6386 {
6387 struct remote_state *rs = get_remote_state ();
6388 char *p = rs->buf;
6389 enum packet_result result;
6390
6391 strcpy (p, "qGetTLSAddr:");
6392 p += strlen (p);
6393 p += hexnumstr (p, ptid_get_tid (ptid));
6394 *p++ = ',';
6395 p += hexnumstr (p, offset);
6396 *p++ = ',';
6397 p += hexnumstr (p, lm);
6398 *p++ = '\0';
6399
6400 putpkt (rs->buf);
6401 getpkt (&rs->buf, &rs->buf_size, 0);
6402 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6403 if (result == PACKET_OK)
6404 {
6405 ULONGEST result;
6406
6407 unpack_varlen_hex (rs->buf, &result);
6408 return result;
6409 }
6410 else if (result == PACKET_UNKNOWN)
6411 throw_error (TLS_GENERIC_ERROR,
6412 _("Remote target doesn't support qGetTLSAddr packet"));
6413 else
6414 throw_error (TLS_GENERIC_ERROR,
6415 _("Remote target failed to process qGetTLSAddr request"));
6416 }
6417 else
6418 throw_error (TLS_GENERIC_ERROR,
6419 _("TLS not supported or disabled on this target"));
6420 /* Not reached. */
6421 return 0;
6422 }
6423
6424 /* Support for inferring a target description based on the current
6425 architecture and the size of a 'g' packet. While the 'g' packet
6426 can have any size (since optional registers can be left off the
6427 end), some sizes are easily recognizable given knowledge of the
6428 approximate architecture. */
6429
6430 struct remote_g_packet_guess
6431 {
6432 int bytes;
6433 const struct target_desc *tdesc;
6434 };
6435 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6436 DEF_VEC_O(remote_g_packet_guess_s);
6437
6438 struct remote_g_packet_data
6439 {
6440 VEC(remote_g_packet_guess_s) *guesses;
6441 };
6442
6443 static struct gdbarch_data *remote_g_packet_data_handle;
6444
6445 static void *
6446 remote_g_packet_data_init (struct obstack *obstack)
6447 {
6448 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6449 }
6450
6451 void
6452 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6453 const struct target_desc *tdesc)
6454 {
6455 struct remote_g_packet_data *data
6456 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6457 struct remote_g_packet_guess new_guess, *guess;
6458 int ix;
6459
6460 gdb_assert (tdesc != NULL);
6461
6462 for (ix = 0;
6463 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6464 ix++)
6465 if (guess->bytes == bytes)
6466 internal_error (__FILE__, __LINE__,
6467 "Duplicate g packet description added for size %d",
6468 bytes);
6469
6470 new_guess.bytes = bytes;
6471 new_guess.tdesc = tdesc;
6472 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6473 }
6474
6475 static const struct target_desc *
6476 remote_read_description (struct target_ops *target)
6477 {
6478 struct remote_g_packet_data *data
6479 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6480
6481 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6482 {
6483 struct remote_g_packet_guess *guess;
6484 int ix;
6485 int bytes = send_g_packet ();
6486
6487 for (ix = 0;
6488 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6489 ix++)
6490 if (guess->bytes == bytes)
6491 return guess->tdesc;
6492
6493 /* We discard the g packet. A minor optimization would be to
6494 hold on to it, and fill the register cache once we have selected
6495 an architecture, but it's too tricky to do safely. */
6496 }
6497
6498 return NULL;
6499 }
6500
6501 /* Remote file transfer support. This is host-initiated I/O, not
6502 target-initiated; for target-initiated, see remote-fileio.c. */
6503
6504 /* If *LEFT is at least the length of STRING, copy STRING to
6505 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6506 decrease *LEFT. Otherwise raise an error. */
6507
6508 static void
6509 remote_buffer_add_string (char **buffer, int *left, char *string)
6510 {
6511 int len = strlen (string);
6512
6513 if (len > *left)
6514 error (_("Packet too long for target."));
6515
6516 memcpy (*buffer, string, len);
6517 *buffer += len;
6518 *left -= len;
6519
6520 /* NUL-terminate the buffer as a convenience, if there is
6521 room. */
6522 if (*left)
6523 **buffer = '\0';
6524 }
6525
6526 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6527 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6528 decrease *LEFT. Otherwise raise an error. */
6529
6530 static void
6531 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6532 int len)
6533 {
6534 if (2 * len > *left)
6535 error (_("Packet too long for target."));
6536
6537 bin2hex (bytes, *buffer, len);
6538 *buffer += 2 * len;
6539 *left -= 2 * len;
6540
6541 /* NUL-terminate the buffer as a convenience, if there is
6542 room. */
6543 if (*left)
6544 **buffer = '\0';
6545 }
6546
6547 /* If *LEFT is large enough, convert VALUE to hex and add it to
6548 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6549 decrease *LEFT. Otherwise raise an error. */
6550
6551 static void
6552 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6553 {
6554 int len = hexnumlen (value);
6555
6556 if (len > *left)
6557 error (_("Packet too long for target."));
6558
6559 hexnumstr (*buffer, value);
6560 *buffer += len;
6561 *left -= len;
6562
6563 /* NUL-terminate the buffer as a convenience, if there is
6564 room. */
6565 if (*left)
6566 **buffer = '\0';
6567 }
6568
6569 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6570 value, *REMOTE_ERRNO to the remote error number or zero if none
6571 was included, and *ATTACHMENT to point to the start of the annex
6572 if any. The length of the packet isn't needed here; there may
6573 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6574
6575 Return 0 if the packet could be parsed, -1 if it could not. If
6576 -1 is returned, the other variables may not be initialized. */
6577
6578 static int
6579 remote_hostio_parse_result (char *buffer, int *retcode,
6580 int *remote_errno, char **attachment)
6581 {
6582 char *p, *p2;
6583
6584 *remote_errno = 0;
6585 *attachment = NULL;
6586
6587 if (buffer[0] != 'F')
6588 return -1;
6589
6590 errno = 0;
6591 *retcode = strtol (&buffer[1], &p, 16);
6592 if (errno != 0 || p == &buffer[1])
6593 return -1;
6594
6595 /* Check for ",errno". */
6596 if (*p == ',')
6597 {
6598 errno = 0;
6599 *remote_errno = strtol (p + 1, &p2, 16);
6600 if (errno != 0 || p + 1 == p2)
6601 return -1;
6602 p = p2;
6603 }
6604
6605 /* Check for ";attachment". If there is no attachment, the
6606 packet should end here. */
6607 if (*p == ';')
6608 {
6609 *attachment = p + 1;
6610 return 0;
6611 }
6612 else if (*p == '\0')
6613 return 0;
6614 else
6615 return -1;
6616 }
6617
6618 /* Send a prepared I/O packet to the target and read its response.
6619 The prepared packet is in the global RS->BUF before this function
6620 is called, and the answer is there when we return.
6621
6622 COMMAND_BYTES is the length of the request to send, which may include
6623 binary data. WHICH_PACKET is the packet configuration to check
6624 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6625 is set to the error number and -1 is returned. Otherwise the value
6626 returned by the function is returned.
6627
6628 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6629 attachment is expected; an error will be reported if there's a
6630 mismatch. If one is found, *ATTACHMENT will be set to point into
6631 the packet buffer and *ATTACHMENT_LEN will be set to the
6632 attachment's length. */
6633
6634 static int
6635 remote_hostio_send_command (int command_bytes, int which_packet,
6636 int *remote_errno, char **attachment,
6637 int *attachment_len)
6638 {
6639 struct remote_state *rs = get_remote_state ();
6640 int ret, bytes_read;
6641 char *attachment_tmp;
6642
6643 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6644 {
6645 *remote_errno = FILEIO_ENOSYS;
6646 return -1;
6647 }
6648
6649 putpkt_binary (rs->buf, command_bytes);
6650 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6651
6652 /* If it timed out, something is wrong. Don't try to parse the
6653 buffer. */
6654 if (bytes_read < 0)
6655 {
6656 *remote_errno = FILEIO_EINVAL;
6657 return -1;
6658 }
6659
6660 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6661 {
6662 case PACKET_ERROR:
6663 *remote_errno = FILEIO_EINVAL;
6664 return -1;
6665 case PACKET_UNKNOWN:
6666 *remote_errno = FILEIO_ENOSYS;
6667 return -1;
6668 case PACKET_OK:
6669 break;
6670 }
6671
6672 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6673 &attachment_tmp))
6674 {
6675 *remote_errno = FILEIO_EINVAL;
6676 return -1;
6677 }
6678
6679 /* Make sure we saw an attachment if and only if we expected one. */
6680 if ((attachment_tmp == NULL && attachment != NULL)
6681 || (attachment_tmp != NULL && attachment == NULL))
6682 {
6683 *remote_errno = FILEIO_EINVAL;
6684 return -1;
6685 }
6686
6687 /* If an attachment was found, it must point into the packet buffer;
6688 work out how many bytes there were. */
6689 if (attachment_tmp != NULL)
6690 {
6691 *attachment = attachment_tmp;
6692 *attachment_len = bytes_read - (*attachment - rs->buf);
6693 }
6694
6695 return ret;
6696 }
6697
6698 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6699 remote file descriptor, or -1 if an error occurs (and set
6700 *REMOTE_ERRNO). */
6701
6702 static int
6703 remote_hostio_open (const char *filename, int flags, int mode,
6704 int *remote_errno)
6705 {
6706 struct remote_state *rs = get_remote_state ();
6707 char *p = rs->buf;
6708 int left = get_remote_packet_size () - 1;
6709
6710 remote_buffer_add_string (&p, &left, "vFile:open:");
6711
6712 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6713 strlen (filename));
6714 remote_buffer_add_string (&p, &left, ",");
6715
6716 remote_buffer_add_int (&p, &left, flags);
6717 remote_buffer_add_string (&p, &left, ",");
6718
6719 remote_buffer_add_int (&p, &left, mode);
6720
6721 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6722 remote_errno, NULL, NULL);
6723 }
6724
6725 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6726 Return the number of bytes written, or -1 if an error occurs (and
6727 set *REMOTE_ERRNO). */
6728
6729 static int
6730 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6731 ULONGEST offset, int *remote_errno)
6732 {
6733 struct remote_state *rs = get_remote_state ();
6734 char *p = rs->buf;
6735 int left = get_remote_packet_size ();
6736 int out_len;
6737
6738 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6739
6740 remote_buffer_add_int (&p, &left, fd);
6741 remote_buffer_add_string (&p, &left, ",");
6742
6743 remote_buffer_add_int (&p, &left, offset);
6744 remote_buffer_add_string (&p, &left, ",");
6745
6746 p += remote_escape_output (write_buf, len, p, &out_len,
6747 get_remote_packet_size () - (p - rs->buf));
6748
6749 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6750 remote_errno, NULL, NULL);
6751 }
6752
6753 /* Read up to LEN bytes FD on the remote target into READ_BUF
6754 Return the number of bytes read, or -1 if an error occurs (and
6755 set *REMOTE_ERRNO). */
6756
6757 static int
6758 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6759 ULONGEST offset, int *remote_errno)
6760 {
6761 struct remote_state *rs = get_remote_state ();
6762 char *p = rs->buf;
6763 char *attachment;
6764 int left = get_remote_packet_size ();
6765 int ret, attachment_len;
6766 int read_len;
6767
6768 remote_buffer_add_string (&p, &left, "vFile:pread:");
6769
6770 remote_buffer_add_int (&p, &left, fd);
6771 remote_buffer_add_string (&p, &left, ",");
6772
6773 remote_buffer_add_int (&p, &left, len);
6774 remote_buffer_add_string (&p, &left, ",");
6775
6776 remote_buffer_add_int (&p, &left, offset);
6777
6778 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6779 remote_errno, &attachment,
6780 &attachment_len);
6781
6782 if (ret < 0)
6783 return ret;
6784
6785 read_len = remote_unescape_input (attachment, attachment_len,
6786 read_buf, len);
6787 if (read_len != ret)
6788 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6789
6790 return ret;
6791 }
6792
6793 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6794 (and set *REMOTE_ERRNO). */
6795
6796 static int
6797 remote_hostio_close (int fd, int *remote_errno)
6798 {
6799 struct remote_state *rs = get_remote_state ();
6800 char *p = rs->buf;
6801 int left = get_remote_packet_size () - 1;
6802
6803 remote_buffer_add_string (&p, &left, "vFile:close:");
6804
6805 remote_buffer_add_int (&p, &left, fd);
6806
6807 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6808 remote_errno, NULL, NULL);
6809 }
6810
6811 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6812 occurs (and set *REMOTE_ERRNO). */
6813
6814 static int
6815 remote_hostio_unlink (const char *filename, int *remote_errno)
6816 {
6817 struct remote_state *rs = get_remote_state ();
6818 char *p = rs->buf;
6819 int left = get_remote_packet_size () - 1;
6820
6821 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6822
6823 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6824 strlen (filename));
6825
6826 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6827 remote_errno, NULL, NULL);
6828 }
6829
6830 static int
6831 remote_fileio_errno_to_host (int errnum)
6832 {
6833 switch (errnum)
6834 {
6835 case FILEIO_EPERM:
6836 return EPERM;
6837 case FILEIO_ENOENT:
6838 return ENOENT;
6839 case FILEIO_EINTR:
6840 return EINTR;
6841 case FILEIO_EIO:
6842 return EIO;
6843 case FILEIO_EBADF:
6844 return EBADF;
6845 case FILEIO_EACCES:
6846 return EACCES;
6847 case FILEIO_EFAULT:
6848 return EFAULT;
6849 case FILEIO_EBUSY:
6850 return EBUSY;
6851 case FILEIO_EEXIST:
6852 return EEXIST;
6853 case FILEIO_ENODEV:
6854 return ENODEV;
6855 case FILEIO_ENOTDIR:
6856 return ENOTDIR;
6857 case FILEIO_EISDIR:
6858 return EISDIR;
6859 case FILEIO_EINVAL:
6860 return EINVAL;
6861 case FILEIO_ENFILE:
6862 return ENFILE;
6863 case FILEIO_EMFILE:
6864 return EMFILE;
6865 case FILEIO_EFBIG:
6866 return EFBIG;
6867 case FILEIO_ENOSPC:
6868 return ENOSPC;
6869 case FILEIO_ESPIPE:
6870 return ESPIPE;
6871 case FILEIO_EROFS:
6872 return EROFS;
6873 case FILEIO_ENOSYS:
6874 return ENOSYS;
6875 case FILEIO_ENAMETOOLONG:
6876 return ENAMETOOLONG;
6877 }
6878 return -1;
6879 }
6880
6881 static char *
6882 remote_hostio_error (int errnum)
6883 {
6884 int host_error = remote_fileio_errno_to_host (errnum);
6885
6886 if (host_error == -1)
6887 error (_("Unknown remote I/O error %d"), errnum);
6888 else
6889 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6890 }
6891
6892 static void
6893 fclose_cleanup (void *file)
6894 {
6895 fclose (file);
6896 }
6897
6898 static void
6899 remote_hostio_close_cleanup (void *opaque)
6900 {
6901 int fd = *(int *) opaque;
6902 int remote_errno;
6903
6904 remote_hostio_close (fd, &remote_errno);
6905 }
6906
6907 void
6908 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6909 {
6910 struct cleanup *back_to, *close_cleanup;
6911 int retcode, fd, remote_errno, bytes, io_size;
6912 FILE *file;
6913 gdb_byte *buffer;
6914 int bytes_in_buffer;
6915 int saw_eof;
6916 ULONGEST offset;
6917
6918 if (!remote_desc)
6919 error (_("command can only be used with remote target"));
6920
6921 file = fopen (local_file, "rb");
6922 if (file == NULL)
6923 perror_with_name (local_file);
6924 back_to = make_cleanup (fclose_cleanup, file);
6925
6926 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
6927 | FILEIO_O_TRUNC),
6928 0700, &remote_errno);
6929 if (fd == -1)
6930 remote_hostio_error (remote_errno);
6931
6932 /* Send up to this many bytes at once. They won't all fit in the
6933 remote packet limit, so we'll transfer slightly fewer. */
6934 io_size = get_remote_packet_size ();
6935 buffer = xmalloc (io_size);
6936 make_cleanup (xfree, buffer);
6937
6938 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6939
6940 bytes_in_buffer = 0;
6941 saw_eof = 0;
6942 offset = 0;
6943 while (bytes_in_buffer || !saw_eof)
6944 {
6945 if (!saw_eof)
6946 {
6947 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
6948 file);
6949 if (bytes == 0)
6950 {
6951 if (ferror (file))
6952 error (_("Error reading %s."), local_file);
6953 else
6954 {
6955 /* EOF. Unless there is something still in the
6956 buffer from the last iteration, we are done. */
6957 saw_eof = 1;
6958 if (bytes_in_buffer == 0)
6959 break;
6960 }
6961 }
6962 }
6963 else
6964 bytes = 0;
6965
6966 bytes += bytes_in_buffer;
6967 bytes_in_buffer = 0;
6968
6969 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
6970
6971 if (retcode < 0)
6972 remote_hostio_error (remote_errno);
6973 else if (retcode == 0)
6974 error (_("Remote write of %d bytes returned 0!"), bytes);
6975 else if (retcode < bytes)
6976 {
6977 /* Short write. Save the rest of the read data for the next
6978 write. */
6979 bytes_in_buffer = bytes - retcode;
6980 memmove (buffer, buffer + retcode, bytes_in_buffer);
6981 }
6982
6983 offset += retcode;
6984 }
6985
6986 discard_cleanups (close_cleanup);
6987 if (remote_hostio_close (fd, &remote_errno))
6988 remote_hostio_error (remote_errno);
6989
6990 if (from_tty)
6991 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
6992 do_cleanups (back_to);
6993 }
6994
6995 void
6996 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
6997 {
6998 struct cleanup *back_to, *close_cleanup;
6999 int retcode, fd, remote_errno, bytes, io_size;
7000 FILE *file;
7001 gdb_byte *buffer;
7002 ULONGEST offset;
7003
7004 if (!remote_desc)
7005 error (_("command can only be used with remote target"));
7006
7007 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7008 if (fd == -1)
7009 remote_hostio_error (remote_errno);
7010
7011 file = fopen (local_file, "wb");
7012 if (file == NULL)
7013 perror_with_name (local_file);
7014 back_to = make_cleanup (fclose_cleanup, file);
7015
7016 /* Send up to this many bytes at once. They won't all fit in the
7017 remote packet limit, so we'll transfer slightly fewer. */
7018 io_size = get_remote_packet_size ();
7019 buffer = xmalloc (io_size);
7020 make_cleanup (xfree, buffer);
7021
7022 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7023
7024 offset = 0;
7025 while (1)
7026 {
7027 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7028 if (bytes == 0)
7029 /* Success, but no bytes, means end-of-file. */
7030 break;
7031 if (bytes == -1)
7032 remote_hostio_error (remote_errno);
7033
7034 offset += bytes;
7035
7036 bytes = fwrite (buffer, 1, bytes, file);
7037 if (bytes == 0)
7038 perror_with_name (local_file);
7039 }
7040
7041 discard_cleanups (close_cleanup);
7042 if (remote_hostio_close (fd, &remote_errno))
7043 remote_hostio_error (remote_errno);
7044
7045 if (from_tty)
7046 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7047 do_cleanups (back_to);
7048 }
7049
7050 void
7051 remote_file_delete (const char *remote_file, int from_tty)
7052 {
7053 int retcode, remote_errno;
7054
7055 if (!remote_desc)
7056 error (_("command can only be used with remote target"));
7057
7058 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7059 if (retcode == -1)
7060 remote_hostio_error (remote_errno);
7061
7062 if (from_tty)
7063 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7064 }
7065
7066 static void
7067 remote_put_command (char *args, int from_tty)
7068 {
7069 struct cleanup *back_to;
7070 char **argv;
7071
7072 argv = buildargv (args);
7073 if (argv == NULL)
7074 nomem (0);
7075 back_to = make_cleanup_freeargv (argv);
7076 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7077 error (_("Invalid parameters to remote put"));
7078
7079 remote_file_put (argv[0], argv[1], from_tty);
7080
7081 do_cleanups (back_to);
7082 }
7083
7084 static void
7085 remote_get_command (char *args, int from_tty)
7086 {
7087 struct cleanup *back_to;
7088 char **argv;
7089
7090 argv = buildargv (args);
7091 if (argv == NULL)
7092 nomem (0);
7093 back_to = make_cleanup_freeargv (argv);
7094 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7095 error (_("Invalid parameters to remote get"));
7096
7097 remote_file_get (argv[0], argv[1], from_tty);
7098
7099 do_cleanups (back_to);
7100 }
7101
7102 static void
7103 remote_delete_command (char *args, int from_tty)
7104 {
7105 struct cleanup *back_to;
7106 char **argv;
7107
7108 argv = buildargv (args);
7109 if (argv == NULL)
7110 nomem (0);
7111 back_to = make_cleanup_freeargv (argv);
7112 if (argv[0] == NULL || argv[1] != NULL)
7113 error (_("Invalid parameters to remote delete"));
7114
7115 remote_file_delete (argv[0], from_tty);
7116
7117 do_cleanups (back_to);
7118 }
7119
7120 static void
7121 remote_command (char *args, int from_tty)
7122 {
7123 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7124 }
7125
7126 static void
7127 init_remote_ops (void)
7128 {
7129 remote_ops.to_shortname = "remote";
7130 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7131 remote_ops.to_doc =
7132 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7133 Specify the serial device it is connected to\n\
7134 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7135 remote_ops.to_open = remote_open;
7136 remote_ops.to_close = remote_close;
7137 remote_ops.to_detach = remote_detach;
7138 remote_ops.to_disconnect = remote_disconnect;
7139 remote_ops.to_resume = remote_resume;
7140 remote_ops.to_wait = remote_wait;
7141 remote_ops.to_fetch_registers = remote_fetch_registers;
7142 remote_ops.to_store_registers = remote_store_registers;
7143 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7144 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7145 remote_ops.to_files_info = remote_files_info;
7146 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7147 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7148 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7149 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7150 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7151 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7152 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7153 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7154 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7155 remote_ops.to_kill = remote_kill;
7156 remote_ops.to_load = generic_load;
7157 remote_ops.to_mourn_inferior = remote_mourn;
7158 remote_ops.to_thread_alive = remote_thread_alive;
7159 remote_ops.to_find_new_threads = remote_threads_info;
7160 remote_ops.to_pid_to_str = remote_pid_to_str;
7161 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7162 remote_ops.to_stop = remote_stop;
7163 remote_ops.to_xfer_partial = remote_xfer_partial;
7164 remote_ops.to_rcmd = remote_rcmd;
7165 remote_ops.to_log_command = serial_log_command;
7166 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7167 remote_ops.to_stratum = process_stratum;
7168 remote_ops.to_has_all_memory = 1;
7169 remote_ops.to_has_memory = 1;
7170 remote_ops.to_has_stack = 1;
7171 remote_ops.to_has_registers = 1;
7172 remote_ops.to_has_execution = 1;
7173 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7174 remote_ops.to_magic = OPS_MAGIC;
7175 remote_ops.to_memory_map = remote_memory_map;
7176 remote_ops.to_flash_erase = remote_flash_erase;
7177 remote_ops.to_flash_done = remote_flash_done;
7178 remote_ops.to_read_description = remote_read_description;
7179 remote_ops.to_search_memory = remote_search_memory;
7180 remote_ops.to_can_async_p = remote_can_async_p;
7181 remote_ops.to_is_async_p = remote_is_async_p;
7182 remote_ops.to_async = remote_async;
7183 remote_ops.to_async_mask = remote_async_mask;
7184 remote_ops.to_terminal_inferior = remote_terminal_inferior;
7185 remote_ops.to_terminal_ours = remote_terminal_ours;
7186 }
7187
7188 /* Set up the extended remote vector by making a copy of the standard
7189 remote vector and adding to it. */
7190
7191 static void
7192 init_extended_remote_ops (void)
7193 {
7194 extended_remote_ops = remote_ops;
7195
7196 extended_remote_ops.to_shortname = "extended-remote";
7197 extended_remote_ops.to_longname =
7198 "Extended remote serial target in gdb-specific protocol";
7199 extended_remote_ops.to_doc =
7200 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7201 Specify the serial device it is connected to (e.g. /dev/ttya).";
7202 extended_remote_ops.to_open = extended_remote_open;
7203 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7204 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7205 extended_remote_ops.to_detach = extended_remote_detach;
7206 extended_remote_ops.to_attach = extended_remote_attach;
7207 }
7208
7209 static int
7210 remote_can_async_p (void)
7211 {
7212 if (!remote_async_permitted)
7213 /* We only enable async when the user specifically asks for it. */
7214 return 0;
7215
7216 /* We're async whenever the serial device is. */
7217 return remote_async_mask_value && serial_can_async_p (remote_desc);
7218 }
7219
7220 static int
7221 remote_is_async_p (void)
7222 {
7223 if (!remote_async_permitted)
7224 /* We only enable async when the user specifically asks for it. */
7225 return 0;
7226
7227 /* We're async whenever the serial device is. */
7228 return remote_async_mask_value && serial_is_async_p (remote_desc);
7229 }
7230
7231 /* Pass the SERIAL event on and up to the client. One day this code
7232 will be able to delay notifying the client of an event until the
7233 point where an entire packet has been received. */
7234
7235 static void (*async_client_callback) (enum inferior_event_type event_type,
7236 void *context);
7237 static void *async_client_context;
7238 static serial_event_ftype remote_async_serial_handler;
7239
7240 static void
7241 remote_async_serial_handler (struct serial *scb, void *context)
7242 {
7243 /* Don't propogate error information up to the client. Instead let
7244 the client find out about the error by querying the target. */
7245 async_client_callback (INF_REG_EVENT, async_client_context);
7246 }
7247
7248 static void
7249 remote_async (void (*callback) (enum inferior_event_type event_type,
7250 void *context), void *context)
7251 {
7252 if (remote_async_mask_value == 0)
7253 internal_error (__FILE__, __LINE__,
7254 _("Calling remote_async when async is masked"));
7255
7256 if (callback != NULL)
7257 {
7258 serial_async (remote_desc, remote_async_serial_handler, NULL);
7259 async_client_callback = callback;
7260 async_client_context = context;
7261 }
7262 else
7263 serial_async (remote_desc, NULL, NULL);
7264 }
7265
7266 static int
7267 remote_async_mask (int new_mask)
7268 {
7269 int curr_mask = remote_async_mask_value;
7270 remote_async_mask_value = new_mask;
7271 return curr_mask;
7272 }
7273
7274 static void
7275 set_remote_cmd (char *args, int from_tty)
7276 {
7277 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7278 }
7279
7280 static void
7281 show_remote_cmd (char *args, int from_tty)
7282 {
7283 /* We can't just use cmd_show_list here, because we want to skip
7284 the redundant "show remote Z-packet" and the legacy aliases. */
7285 struct cleanup *showlist_chain;
7286 struct cmd_list_element *list = remote_show_cmdlist;
7287
7288 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7289 for (; list != NULL; list = list->next)
7290 if (strcmp (list->name, "Z-packet") == 0)
7291 continue;
7292 else if (list->type == not_set_cmd)
7293 /* Alias commands are exactly like the original, except they
7294 don't have the normal type. */
7295 continue;
7296 else
7297 {
7298 struct cleanup *option_chain
7299 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7300 ui_out_field_string (uiout, "name", list->name);
7301 ui_out_text (uiout, ": ");
7302 if (list->type == show_cmd)
7303 do_setshow_command ((char *) NULL, from_tty, list);
7304 else
7305 cmd_func (list, NULL, from_tty);
7306 /* Close the tuple. */
7307 do_cleanups (option_chain);
7308 }
7309
7310 /* Close the tuple. */
7311 do_cleanups (showlist_chain);
7312 }
7313
7314
7315 /* Function to be called whenever a new objfile (shlib) is detected. */
7316 static void
7317 remote_new_objfile (struct objfile *objfile)
7318 {
7319 if (remote_desc != 0) /* Have a remote connection. */
7320 remote_check_symbols (objfile);
7321 }
7322
7323 void
7324 _initialize_remote (void)
7325 {
7326 struct remote_state *rs;
7327
7328 /* architecture specific data */
7329 remote_gdbarch_data_handle =
7330 gdbarch_data_register_post_init (init_remote_state);
7331 remote_g_packet_data_handle =
7332 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7333
7334 /* Initialize the per-target state. At the moment there is only one
7335 of these, not one per target. Only one target is active at a
7336 time. The default buffer size is unimportant; it will be expanded
7337 whenever a larger buffer is needed. */
7338 rs = get_remote_state_raw ();
7339 rs->buf_size = 400;
7340 rs->buf = xmalloc (rs->buf_size);
7341
7342 init_remote_ops ();
7343 add_target (&remote_ops);
7344
7345 init_extended_remote_ops ();
7346 add_target (&extended_remote_ops);
7347
7348 /* Hook into new objfile notification. */
7349 observer_attach_new_objfile (remote_new_objfile);
7350
7351 /* Set up signal handlers. */
7352 sigint_remote_token =
7353 create_async_signal_handler (async_remote_interrupt, NULL);
7354 sigint_remote_twice_token =
7355 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7356
7357 #if 0
7358 init_remote_threadtests ();
7359 #endif
7360
7361 /* set/show remote ... */
7362
7363 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7364 Remote protocol specific variables\n\
7365 Configure various remote-protocol specific variables such as\n\
7366 the packets being used"),
7367 &remote_set_cmdlist, "set remote ",
7368 0 /* allow-unknown */, &setlist);
7369 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7370 Remote protocol specific variables\n\
7371 Configure various remote-protocol specific variables such as\n\
7372 the packets being used"),
7373 &remote_show_cmdlist, "show remote ",
7374 0 /* allow-unknown */, &showlist);
7375
7376 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7377 Compare section data on target to the exec file.\n\
7378 Argument is a single section name (default: all loaded sections)."),
7379 &cmdlist);
7380
7381 add_cmd ("packet", class_maintenance, packet_command, _("\
7382 Send an arbitrary packet to a remote target.\n\
7383 maintenance packet TEXT\n\
7384 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7385 this command sends the string TEXT to the inferior, and displays the\n\
7386 response packet. GDB supplies the initial `$' character, and the\n\
7387 terminating `#' character and checksum."),
7388 &maintenancelist);
7389
7390 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7391 Set whether to send break if interrupted."), _("\
7392 Show whether to send break if interrupted."), _("\
7393 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7394 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7395 &setlist, &showlist);
7396
7397 /* Install commands for configuring memory read/write packets. */
7398
7399 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7400 Set the maximum number of bytes per memory write packet (deprecated)."),
7401 &setlist);
7402 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7403 Show the maximum number of bytes per memory write packet (deprecated)."),
7404 &showlist);
7405 add_cmd ("memory-write-packet-size", no_class,
7406 set_memory_write_packet_size, _("\
7407 Set the maximum number of bytes per memory-write packet.\n\
7408 Specify the number of bytes in a packet or 0 (zero) for the\n\
7409 default packet size. The actual limit is further reduced\n\
7410 dependent on the target. Specify ``fixed'' to disable the\n\
7411 further restriction and ``limit'' to enable that restriction."),
7412 &remote_set_cmdlist);
7413 add_cmd ("memory-read-packet-size", no_class,
7414 set_memory_read_packet_size, _("\
7415 Set the maximum number of bytes per memory-read packet.\n\
7416 Specify the number of bytes in a packet or 0 (zero) for the\n\
7417 default packet size. The actual limit is further reduced\n\
7418 dependent on the target. Specify ``fixed'' to disable the\n\
7419 further restriction and ``limit'' to enable that restriction."),
7420 &remote_set_cmdlist);
7421 add_cmd ("memory-write-packet-size", no_class,
7422 show_memory_write_packet_size,
7423 _("Show the maximum number of bytes per memory-write packet."),
7424 &remote_show_cmdlist);
7425 add_cmd ("memory-read-packet-size", no_class,
7426 show_memory_read_packet_size,
7427 _("Show the maximum number of bytes per memory-read packet."),
7428 &remote_show_cmdlist);
7429
7430 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7431 &remote_hw_watchpoint_limit, _("\
7432 Set the maximum number of target hardware watchpoints."), _("\
7433 Show the maximum number of target hardware watchpoints."), _("\
7434 Specify a negative limit for unlimited."),
7435 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7436 &remote_set_cmdlist, &remote_show_cmdlist);
7437 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7438 &remote_hw_breakpoint_limit, _("\
7439 Set the maximum number of target hardware breakpoints."), _("\
7440 Show the maximum number of target hardware breakpoints."), _("\
7441 Specify a negative limit for unlimited."),
7442 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7443 &remote_set_cmdlist, &remote_show_cmdlist);
7444
7445 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7446 &remote_address_size, _("\
7447 Set the maximum size of the address (in bits) in a memory packet."), _("\
7448 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7449 NULL,
7450 NULL, /* FIXME: i18n: */
7451 &setlist, &showlist);
7452
7453 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7454 "X", "binary-download", 1);
7455
7456 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7457 "vCont", "verbose-resume", 0);
7458
7459 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7460 "QPassSignals", "pass-signals", 0);
7461
7462 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7463 "qSymbol", "symbol-lookup", 0);
7464
7465 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7466 "P", "set-register", 1);
7467
7468 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7469 "p", "fetch-register", 1);
7470
7471 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7472 "Z0", "software-breakpoint", 0);
7473
7474 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7475 "Z1", "hardware-breakpoint", 0);
7476
7477 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7478 "Z2", "write-watchpoint", 0);
7479
7480 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7481 "Z3", "read-watchpoint", 0);
7482
7483 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7484 "Z4", "access-watchpoint", 0);
7485
7486 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7487 "qXfer:auxv:read", "read-aux-vector", 0);
7488
7489 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7490 "qXfer:features:read", "target-features", 0);
7491
7492 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7493 "qXfer:libraries:read", "library-info", 0);
7494
7495 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7496 "qXfer:memory-map:read", "memory-map", 0);
7497
7498 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7499 "qXfer:spu:read", "read-spu-object", 0);
7500
7501 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7502 "qXfer:spu:write", "write-spu-object", 0);
7503
7504 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7505 "qGetTLSAddr", "get-thread-local-storage-address",
7506 0);
7507
7508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7509 "qSupported", "supported-packets", 0);
7510
7511 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7512 "qSearch:memory", "search-memory", 0);
7513
7514 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7515 "vFile:open", "hostio-open", 0);
7516
7517 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7518 "vFile:pread", "hostio-pread", 0);
7519
7520 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7521 "vFile:pwrite", "hostio-pwrite", 0);
7522
7523 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7524 "vFile:close", "hostio-close", 0);
7525
7526 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7527 "vFile:unlink", "hostio-unlink", 0);
7528
7529 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7530 "vAttach", "attach", 0);
7531
7532 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7533 "vRun", "run", 0);
7534
7535 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7536 Z sub-packet has its own set and show commands, but users may
7537 have sets to this variable in their .gdbinit files (or in their
7538 documentation). */
7539 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7540 &remote_Z_packet_detect, _("\
7541 Set use of remote protocol `Z' packets"), _("\
7542 Show use of remote protocol `Z' packets "), _("\
7543 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7544 packets."),
7545 set_remote_protocol_Z_packet_cmd,
7546 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7547 &remote_set_cmdlist, &remote_show_cmdlist);
7548
7549 add_prefix_cmd ("remote", class_files, remote_command, _("\
7550 Manipulate files on the remote system\n\
7551 Transfer files to and from the remote target system."),
7552 &remote_cmdlist, "remote ",
7553 0 /* allow-unknown */, &cmdlist);
7554
7555 add_cmd ("put", class_files, remote_put_command,
7556 _("Copy a local file to the remote system."),
7557 &remote_cmdlist);
7558
7559 add_cmd ("get", class_files, remote_get_command,
7560 _("Copy a remote file to the local system."),
7561 &remote_cmdlist);
7562
7563 add_cmd ("delete", class_files, remote_delete_command,
7564 _("Delete a remote file."),
7565 &remote_cmdlist);
7566
7567 remote_exec_file = xstrdup ("");
7568 add_setshow_string_noescape_cmd ("exec-file", class_files,
7569 &remote_exec_file, _("\
7570 Set the remote pathname for \"run\""), _("\
7571 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7572 &remote_set_cmdlist, &remote_show_cmdlist);
7573
7574 add_setshow_boolean_cmd ("remote-async", class_maintenance,
7575 &remote_async_permitted_set, _("\
7576 Set whether gdb controls the remote inferior in asynchronous mode."), _("\
7577 Show whether gdb controls the remote inferior in asynchronous mode."), _("\
7578 Tells gdb whether to control the remote inferior in asynchronous mode."),
7579 set_maintenance_remote_async_permitted,
7580 show_maintenance_remote_async_permitted,
7581 &maintenance_set_cmdlist,
7582 &maintenance_show_cmdlist);
7583
7584
7585 /* Eventually initialize fileio. See fileio.c */
7586 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7587
7588 /* Take advantage of the fact that the LWP field is not used, to tag
7589 special ptids with it set to != 0. */
7590 magic_null_ptid = ptid_build (0, 1, -1);
7591 not_sent_ptid = ptid_build (0, 1, -2);
7592 any_thread_ptid = ptid_build (0, 1, 0);
7593 }
This page took 0.189976 seconds and 4 git commands to generate.