Return target_xfer_status in to_xfer_partial
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include <sys/stat.h>
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 #include "agent.h"
71 #include "btrace.h"
72
73 /* Temp hacks for tracepoint encoding migration. */
74 static char *target_buf;
75 static long target_buf_size;
76
77 /* The size to align memory write packets, when practical. The protocol
78 does not guarantee any alignment, and gdb will generate short
79 writes and unaligned writes, but even as a best-effort attempt this
80 can improve bulk transfers. For instance, if a write is misaligned
81 relative to the target's data bus, the stub may need to make an extra
82 round trip fetching data from the target. This doesn't make a
83 huge difference, but it's easy to do, so we try to be helpful.
84
85 The alignment chosen is arbitrary; usually data bus width is
86 important here, not the possibly larger cache line size. */
87 enum { REMOTE_ALIGN_WRITES = 16 };
88
89 /* Prototypes for local functions. */
90 static void async_cleanup_sigint_signal_handler (void *dummy);
91 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
92 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
93 int forever, int *is_notif);
94
95 static void async_handle_remote_sigint (int);
96 static void async_handle_remote_sigint_twice (int);
97
98 static void remote_files_info (struct target_ops *ignore);
99
100 static void remote_prepare_to_store (struct target_ops *self,
101 struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (void);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_serial_write (const char *str, int len);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void sync_remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_general_thread (struct ptid ptid);
141 static void set_continue_thread (struct ptid ptid);
142
143 static void get_offsets (void);
144
145 static void skip_frame (void);
146
147 static long read_frame (char **buf_p, long *sizeof_buf);
148
149 static int hexnumlen (ULONGEST num);
150
151 static void init_remote_ops (void);
152
153 static void init_extended_remote_ops (void);
154
155 static void remote_stop (ptid_t);
156
157 static int ishex (int ch, int *val);
158
159 static int stubhex (int ch);
160
161 static int hexnumstr (char *, ULONGEST);
162
163 static int hexnumnstr (char *, ULONGEST, int);
164
165 static CORE_ADDR remote_address_masked (CORE_ADDR);
166
167 static void print_packet (char *);
168
169 static void compare_sections_command (char *, int);
170
171 static void packet_command (char *, int);
172
173 static int stub_unpack_int (char *buff, int fieldlength);
174
175 static ptid_t remote_current_thread (ptid_t oldptid);
176
177 static void remote_find_new_threads (void);
178
179 static int fromhex (int a);
180
181 static int putpkt_binary (char *buf, int cnt);
182
183 static void check_binary_download (CORE_ADDR addr);
184
185 struct packet_config;
186
187 static void show_packet_config_cmd (struct packet_config *config);
188
189 static void update_packet_config (struct packet_config *config);
190
191 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
192 struct cmd_list_element *c);
193
194 static void show_remote_protocol_packet_cmd (struct ui_file *file,
195 int from_tty,
196 struct cmd_list_element *c,
197 const char *value);
198
199 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
200 static ptid_t read_ptid (char *buf, char **obuf);
201
202 static void remote_set_permissions (void);
203
204 struct remote_state;
205 static int remote_get_trace_status (struct trace_status *ts);
206
207 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
208
209 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
210
211 static void remote_query_supported (void);
212
213 static void remote_check_symbols (void);
214
215 void _initialize_remote (void);
216
217 struct stop_reply;
218 static void stop_reply_xfree (struct stop_reply *);
219 static void remote_parse_stop_reply (char *, struct stop_reply *);
220 static void push_stop_reply (struct stop_reply *);
221 static void discard_pending_stop_replies_in_queue (struct remote_state *);
222 static int peek_stop_reply (ptid_t ptid);
223
224 static void remote_async_inferior_event_handler (gdb_client_data);
225
226 static void remote_terminal_ours (void);
227
228 static int remote_read_description_p (struct target_ops *target);
229
230 static void remote_console_output (char *msg);
231
232 static int remote_supports_cond_breakpoints (void);
233
234 static int remote_can_run_breakpoint_commands (void);
235
236 /* For "remote". */
237
238 static struct cmd_list_element *remote_cmdlist;
239
240 /* For "set remote" and "show remote". */
241
242 static struct cmd_list_element *remote_set_cmdlist;
243 static struct cmd_list_element *remote_show_cmdlist;
244
245 /* Stub vCont actions support.
246
247 Each field is a boolean flag indicating whether the stub reports
248 support for the corresponding action. */
249
250 struct vCont_action_support
251 {
252 /* vCont;t */
253 int t;
254
255 /* vCont;r */
256 int r;
257 };
258
259 /* Controls whether GDB is willing to use range stepping. */
260
261 static int use_range_stepping = 1;
262
263 #define OPAQUETHREADBYTES 8
264
265 /* a 64 bit opaque identifier */
266 typedef unsigned char threadref[OPAQUETHREADBYTES];
267
268 /* About this many threadisds fit in a packet. */
269
270 #define MAXTHREADLISTRESULTS 32
271
272 /* Description of the remote protocol state for the currently
273 connected target. This is per-target state, and independent of the
274 selected architecture. */
275
276 struct remote_state
277 {
278 /* A buffer to use for incoming packets, and its current size. The
279 buffer is grown dynamically for larger incoming packets.
280 Outgoing packets may also be constructed in this buffer.
281 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
282 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
283 packets. */
284 char *buf;
285 long buf_size;
286
287 /* True if we're going through initial connection setup (finding out
288 about the remote side's threads, relocating symbols, etc.). */
289 int starting_up;
290
291 /* If we negotiated packet size explicitly (and thus can bypass
292 heuristics for the largest packet size that will not overflow
293 a buffer in the stub), this will be set to that packet size.
294 Otherwise zero, meaning to use the guessed size. */
295 long explicit_packet_size;
296
297 /* remote_wait is normally called when the target is running and
298 waits for a stop reply packet. But sometimes we need to call it
299 when the target is already stopped. We can send a "?" packet
300 and have remote_wait read the response. Or, if we already have
301 the response, we can stash it in BUF and tell remote_wait to
302 skip calling getpkt. This flag is set when BUF contains a
303 stop reply packet and the target is not waiting. */
304 int cached_wait_status;
305
306 /* True, if in no ack mode. That is, neither GDB nor the stub will
307 expect acks from each other. The connection is assumed to be
308 reliable. */
309 int noack_mode;
310
311 /* True if we're connected in extended remote mode. */
312 int extended;
313
314 /* True if the stub reported support for multi-process
315 extensions. */
316 int multi_process_aware;
317
318 /* True if we resumed the target and we're waiting for the target to
319 stop. In the mean time, we can't start another command/query.
320 The remote server wouldn't be ready to process it, so we'd
321 timeout waiting for a reply that would never come and eventually
322 we'd close the connection. This can happen in asynchronous mode
323 because we allow GDB commands while the target is running. */
324 int waiting_for_stop_reply;
325
326 /* True if the stub reports support for non-stop mode. */
327 int non_stop_aware;
328
329 /* The status of the stub support for the various vCont actions. */
330 struct vCont_action_support supports_vCont;
331
332 /* True if the stub reports support for conditional tracepoints. */
333 int cond_tracepoints;
334
335 /* True if the stub reports support for target-side breakpoint
336 conditions. */
337 int cond_breakpoints;
338
339 /* True if the stub reports support for target-side breakpoint
340 commands. */
341 int breakpoint_commands;
342
343 /* True if the stub reports support for fast tracepoints. */
344 int fast_tracepoints;
345
346 /* True if the stub reports support for static tracepoints. */
347 int static_tracepoints;
348
349 /* True if the stub reports support for installing tracepoint while
350 tracing. */
351 int install_in_trace;
352
353 /* True if the stub can continue running a trace while GDB is
354 disconnected. */
355 int disconnected_tracing;
356
357 /* True if the stub reports support for enabling and disabling
358 tracepoints while a trace experiment is running. */
359 int enable_disable_tracepoints;
360
361 /* True if the stub can collect strings using tracenz bytecode. */
362 int string_tracing;
363
364 /* True if the stub supports qXfer:libraries-svr4:read with a
365 non-empty annex. */
366 int augmented_libraries_svr4_read;
367
368 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
369 responded to that. */
370 int ctrlc_pending_p;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 struct serial *remote_desc;
376
377 /* These are the threads which we last sent to the remote system. The
378 TID member will be -1 for all or -2 for not sent yet. */
379 ptid_t general_thread;
380 ptid_t continue_thread;
381
382 /* This is the traceframe which we last selected on the remote system.
383 It will be -1 if no traceframe is selected. */
384 int remote_traceframe_number;
385
386 char *last_pass_packet;
387
388 /* The last QProgramSignals packet sent to the target. We bypass
389 sending a new program signals list down to the target if the new
390 packet is exactly the same as the last we sent. IOW, we only let
391 the target know about program signals list changes. */
392 char *last_program_signals_packet;
393
394 enum gdb_signal last_sent_signal;
395
396 int last_sent_step;
397
398 char *finished_object;
399 char *finished_annex;
400 ULONGEST finished_offset;
401
402 /* Should we try the 'ThreadInfo' query packet?
403
404 This variable (NOT available to the user: auto-detect only!)
405 determines whether GDB will use the new, simpler "ThreadInfo"
406 query or the older, more complex syntax for thread queries.
407 This is an auto-detect variable (set to true at each connect,
408 and set to false when the target fails to recognize it). */
409 int use_threadinfo_query;
410 int use_threadextra_query;
411
412 void (*async_client_callback) (enum inferior_event_type event_type,
413 void *context);
414 void *async_client_context;
415
416 /* This is set to the data address of the access causing the target
417 to stop for a watchpoint. */
418 CORE_ADDR remote_watch_data_address;
419
420 /* This is non-zero if target stopped for a watchpoint. */
421 int remote_stopped_by_watchpoint_p;
422
423 threadref echo_nextthread;
424 threadref nextthread;
425 threadref resultthreadlist[MAXTHREADLISTRESULTS];
426
427 /* The state of remote notification. */
428 struct remote_notif_state *notif_state;
429 };
430
431 /* Private data that we'll store in (struct thread_info)->private. */
432 struct private_thread_info
433 {
434 char *extra;
435 int core;
436 };
437
438 static void
439 free_private_thread_info (struct private_thread_info *info)
440 {
441 xfree (info->extra);
442 xfree (info);
443 }
444
445 /* Returns true if the multi-process extensions are in effect. */
446 static int
447 remote_multi_process_p (struct remote_state *rs)
448 {
449 return rs->multi_process_aware;
450 }
451
452 /* This data could be associated with a target, but we do not always
453 have access to the current target when we need it, so for now it is
454 static. This will be fine for as long as only one target is in use
455 at a time. */
456 static struct remote_state *remote_state;
457
458 static struct remote_state *
459 get_remote_state_raw (void)
460 {
461 return remote_state;
462 }
463
464 /* Allocate a new struct remote_state with xmalloc, initialize it, and
465 return it. */
466
467 static struct remote_state *
468 new_remote_state (void)
469 {
470 struct remote_state *result = XCNEW (struct remote_state);
471
472 /* The default buffer size is unimportant; it will be expanded
473 whenever a larger buffer is needed. */
474 result->buf_size = 400;
475 result->buf = xmalloc (result->buf_size);
476 result->remote_traceframe_number = -1;
477 result->last_sent_signal = GDB_SIGNAL_0;
478
479 return result;
480 }
481
482 /* Description of the remote protocol for a given architecture. */
483
484 struct packet_reg
485 {
486 long offset; /* Offset into G packet. */
487 long regnum; /* GDB's internal register number. */
488 LONGEST pnum; /* Remote protocol register number. */
489 int in_g_packet; /* Always part of G packet. */
490 /* long size in bytes; == register_size (target_gdbarch (), regnum);
491 at present. */
492 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
493 at present. */
494 };
495
496 struct remote_arch_state
497 {
498 /* Description of the remote protocol registers. */
499 long sizeof_g_packet;
500
501 /* Description of the remote protocol registers indexed by REGNUM
502 (making an array gdbarch_num_regs in size). */
503 struct packet_reg *regs;
504
505 /* This is the size (in chars) of the first response to the ``g''
506 packet. It is used as a heuristic when determining the maximum
507 size of memory-read and memory-write packets. A target will
508 typically only reserve a buffer large enough to hold the ``g''
509 packet. The size does not include packet overhead (headers and
510 trailers). */
511 long actual_register_packet_size;
512
513 /* This is the maximum size (in chars) of a non read/write packet.
514 It is also used as a cap on the size of read/write packets. */
515 long remote_packet_size;
516 };
517
518 /* Utility: generate error from an incoming stub packet. */
519 static void
520 trace_error (char *buf)
521 {
522 if (*buf++ != 'E')
523 return; /* not an error msg */
524 switch (*buf)
525 {
526 case '1': /* malformed packet error */
527 if (*++buf == '0') /* general case: */
528 error (_("remote.c: error in outgoing packet."));
529 else
530 error (_("remote.c: error in outgoing packet at field #%ld."),
531 strtol (buf, NULL, 16));
532 default:
533 error (_("Target returns error code '%s'."), buf);
534 }
535 }
536
537 /* Utility: wait for reply from stub, while accepting "O" packets. */
538 static char *
539 remote_get_noisy_reply (char **buf_p,
540 long *sizeof_buf)
541 {
542 do /* Loop on reply from remote stub. */
543 {
544 char *buf;
545
546 QUIT; /* Allow user to bail out with ^C. */
547 getpkt (buf_p, sizeof_buf, 0);
548 buf = *buf_p;
549 if (buf[0] == 'E')
550 trace_error (buf);
551 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
552 {
553 ULONGEST ul;
554 CORE_ADDR from, to, org_to;
555 char *p, *pp;
556 int adjusted_size = 0;
557 volatile struct gdb_exception ex;
558
559 p = buf + strlen ("qRelocInsn:");
560 pp = unpack_varlen_hex (p, &ul);
561 if (*pp != ';')
562 error (_("invalid qRelocInsn packet: %s"), buf);
563 from = ul;
564
565 p = pp + 1;
566 unpack_varlen_hex (p, &ul);
567 to = ul;
568
569 org_to = to;
570
571 TRY_CATCH (ex, RETURN_MASK_ALL)
572 {
573 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
574 }
575 if (ex.reason >= 0)
576 {
577 adjusted_size = to - org_to;
578
579 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
580 putpkt (buf);
581 }
582 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
583 {
584 /* Propagate memory errors silently back to the target.
585 The stub may have limited the range of addresses we
586 can write to, for example. */
587 putpkt ("E01");
588 }
589 else
590 {
591 /* Something unexpectedly bad happened. Be verbose so
592 we can tell what, and propagate the error back to the
593 stub, so it doesn't get stuck waiting for a
594 response. */
595 exception_fprintf (gdb_stderr, ex,
596 _("warning: relocating instruction: "));
597 putpkt ("E01");
598 }
599 }
600 else if (buf[0] == 'O' && buf[1] != 'K')
601 remote_console_output (buf + 1); /* 'O' message from stub */
602 else
603 return buf; /* Here's the actual reply. */
604 }
605 while (1);
606 }
607
608 /* Handle for retreving the remote protocol data from gdbarch. */
609 static struct gdbarch_data *remote_gdbarch_data_handle;
610
611 static struct remote_arch_state *
612 get_remote_arch_state (void)
613 {
614 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
615 }
616
617 /* Fetch the global remote target state. */
618
619 static struct remote_state *
620 get_remote_state (void)
621 {
622 /* Make sure that the remote architecture state has been
623 initialized, because doing so might reallocate rs->buf. Any
624 function which calls getpkt also needs to be mindful of changes
625 to rs->buf, but this call limits the number of places which run
626 into trouble. */
627 get_remote_arch_state ();
628
629 return get_remote_state_raw ();
630 }
631
632 static int
633 compare_pnums (const void *lhs_, const void *rhs_)
634 {
635 const struct packet_reg * const *lhs = lhs_;
636 const struct packet_reg * const *rhs = rhs_;
637
638 if ((*lhs)->pnum < (*rhs)->pnum)
639 return -1;
640 else if ((*lhs)->pnum == (*rhs)->pnum)
641 return 0;
642 else
643 return 1;
644 }
645
646 static int
647 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
648 {
649 int regnum, num_remote_regs, offset;
650 struct packet_reg **remote_regs;
651
652 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
653 {
654 struct packet_reg *r = &regs[regnum];
655
656 if (register_size (gdbarch, regnum) == 0)
657 /* Do not try to fetch zero-sized (placeholder) registers. */
658 r->pnum = -1;
659 else
660 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
661
662 r->regnum = regnum;
663 }
664
665 /* Define the g/G packet format as the contents of each register
666 with a remote protocol number, in order of ascending protocol
667 number. */
668
669 remote_regs = alloca (gdbarch_num_regs (gdbarch)
670 * sizeof (struct packet_reg *));
671 for (num_remote_regs = 0, regnum = 0;
672 regnum < gdbarch_num_regs (gdbarch);
673 regnum++)
674 if (regs[regnum].pnum != -1)
675 remote_regs[num_remote_regs++] = &regs[regnum];
676
677 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
678 compare_pnums);
679
680 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
681 {
682 remote_regs[regnum]->in_g_packet = 1;
683 remote_regs[regnum]->offset = offset;
684 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
685 }
686
687 return offset;
688 }
689
690 /* Given the architecture described by GDBARCH, return the remote
691 protocol register's number and the register's offset in the g/G
692 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
693 If the target does not have a mapping for REGNUM, return false,
694 otherwise, return true. */
695
696 int
697 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
698 int *pnum, int *poffset)
699 {
700 int sizeof_g_packet;
701 struct packet_reg *regs;
702 struct cleanup *old_chain;
703
704 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
705
706 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
707 old_chain = make_cleanup (xfree, regs);
708
709 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
710
711 *pnum = regs[regnum].pnum;
712 *poffset = regs[regnum].offset;
713
714 do_cleanups (old_chain);
715
716 return *pnum != -1;
717 }
718
719 static void *
720 init_remote_state (struct gdbarch *gdbarch)
721 {
722 struct remote_state *rs = get_remote_state_raw ();
723 struct remote_arch_state *rsa;
724
725 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
726
727 /* Use the architecture to build a regnum<->pnum table, which will be
728 1:1 unless a feature set specifies otherwise. */
729 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
730 gdbarch_num_regs (gdbarch),
731 struct packet_reg);
732
733 /* Record the maximum possible size of the g packet - it may turn out
734 to be smaller. */
735 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
736
737 /* Default maximum number of characters in a packet body. Many
738 remote stubs have a hardwired buffer size of 400 bytes
739 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
740 as the maximum packet-size to ensure that the packet and an extra
741 NUL character can always fit in the buffer. This stops GDB
742 trashing stubs that try to squeeze an extra NUL into what is
743 already a full buffer (As of 1999-12-04 that was most stubs). */
744 rsa->remote_packet_size = 400 - 1;
745
746 /* This one is filled in when a ``g'' packet is received. */
747 rsa->actual_register_packet_size = 0;
748
749 /* Should rsa->sizeof_g_packet needs more space than the
750 default, adjust the size accordingly. Remember that each byte is
751 encoded as two characters. 32 is the overhead for the packet
752 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
753 (``$NN:G...#NN'') is a better guess, the below has been padded a
754 little. */
755 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
756 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
757
758 /* Make sure that the packet buffer is plenty big enough for
759 this architecture. */
760 if (rs->buf_size < rsa->remote_packet_size)
761 {
762 rs->buf_size = 2 * rsa->remote_packet_size;
763 rs->buf = xrealloc (rs->buf, rs->buf_size);
764 }
765
766 return rsa;
767 }
768
769 /* Return the current allowed size of a remote packet. This is
770 inferred from the current architecture, and should be used to
771 limit the length of outgoing packets. */
772 static long
773 get_remote_packet_size (void)
774 {
775 struct remote_state *rs = get_remote_state ();
776 struct remote_arch_state *rsa = get_remote_arch_state ();
777
778 if (rs->explicit_packet_size)
779 return rs->explicit_packet_size;
780
781 return rsa->remote_packet_size;
782 }
783
784 static struct packet_reg *
785 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
786 {
787 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
788 return NULL;
789 else
790 {
791 struct packet_reg *r = &rsa->regs[regnum];
792
793 gdb_assert (r->regnum == regnum);
794 return r;
795 }
796 }
797
798 static struct packet_reg *
799 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
800 {
801 int i;
802
803 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
804 {
805 struct packet_reg *r = &rsa->regs[i];
806
807 if (r->pnum == pnum)
808 return r;
809 }
810 return NULL;
811 }
812
813 static struct target_ops remote_ops;
814
815 static struct target_ops extended_remote_ops;
816
817 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
818 ``forever'' still use the normal timeout mechanism. This is
819 currently used by the ASYNC code to guarentee that target reads
820 during the initial connect always time-out. Once getpkt has been
821 modified to return a timeout indication and, in turn
822 remote_wait()/wait_for_inferior() have gained a timeout parameter
823 this can go away. */
824 static int wait_forever_enabled_p = 1;
825
826 /* Allow the user to specify what sequence to send to the remote
827 when he requests a program interruption: Although ^C is usually
828 what remote systems expect (this is the default, here), it is
829 sometimes preferable to send a break. On other systems such
830 as the Linux kernel, a break followed by g, which is Magic SysRq g
831 is required in order to interrupt the execution. */
832 const char interrupt_sequence_control_c[] = "Ctrl-C";
833 const char interrupt_sequence_break[] = "BREAK";
834 const char interrupt_sequence_break_g[] = "BREAK-g";
835 static const char *const interrupt_sequence_modes[] =
836 {
837 interrupt_sequence_control_c,
838 interrupt_sequence_break,
839 interrupt_sequence_break_g,
840 NULL
841 };
842 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
843
844 static void
845 show_interrupt_sequence (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c,
847 const char *value)
848 {
849 if (interrupt_sequence_mode == interrupt_sequence_control_c)
850 fprintf_filtered (file,
851 _("Send the ASCII ETX character (Ctrl-c) "
852 "to the remote target to interrupt the "
853 "execution of the program.\n"));
854 else if (interrupt_sequence_mode == interrupt_sequence_break)
855 fprintf_filtered (file,
856 _("send a break signal to the remote target "
857 "to interrupt the execution of the program.\n"));
858 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
859 fprintf_filtered (file,
860 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
861 "the remote target to interrupt the execution "
862 "of Linux kernel.\n"));
863 else
864 internal_error (__FILE__, __LINE__,
865 _("Invalid value for interrupt_sequence_mode: %s."),
866 interrupt_sequence_mode);
867 }
868
869 /* This boolean variable specifies whether interrupt_sequence is sent
870 to the remote target when gdb connects to it.
871 This is mostly needed when you debug the Linux kernel: The Linux kernel
872 expects BREAK g which is Magic SysRq g for connecting gdb. */
873 static int interrupt_on_connect = 0;
874
875 /* This variable is used to implement the "set/show remotebreak" commands.
876 Since these commands are now deprecated in favor of "set/show remote
877 interrupt-sequence", it no longer has any effect on the code. */
878 static int remote_break;
879
880 static void
881 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
882 {
883 if (remote_break)
884 interrupt_sequence_mode = interrupt_sequence_break;
885 else
886 interrupt_sequence_mode = interrupt_sequence_control_c;
887 }
888
889 static void
890 show_remotebreak (struct ui_file *file, int from_tty,
891 struct cmd_list_element *c,
892 const char *value)
893 {
894 }
895
896 /* This variable sets the number of bits in an address that are to be
897 sent in a memory ("M" or "m") packet. Normally, after stripping
898 leading zeros, the entire address would be sent. This variable
899 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
900 initial implementation of remote.c restricted the address sent in
901 memory packets to ``host::sizeof long'' bytes - (typically 32
902 bits). Consequently, for 64 bit targets, the upper 32 bits of an
903 address was never sent. Since fixing this bug may cause a break in
904 some remote targets this variable is principly provided to
905 facilitate backward compatibility. */
906
907 static unsigned int remote_address_size;
908
909 /* Temporary to track who currently owns the terminal. See
910 remote_terminal_* for more details. */
911
912 static int remote_async_terminal_ours_p;
913
914 /* The executable file to use for "run" on the remote side. */
915
916 static char *remote_exec_file = "";
917
918 \f
919 /* User configurable variables for the number of characters in a
920 memory read/write packet. MIN (rsa->remote_packet_size,
921 rsa->sizeof_g_packet) is the default. Some targets need smaller
922 values (fifo overruns, et.al.) and some users need larger values
923 (speed up transfers). The variables ``preferred_*'' (the user
924 request), ``current_*'' (what was actually set) and ``forced_*''
925 (Positive - a soft limit, negative - a hard limit). */
926
927 struct memory_packet_config
928 {
929 char *name;
930 long size;
931 int fixed_p;
932 };
933
934 /* Compute the current size of a read/write packet. Since this makes
935 use of ``actual_register_packet_size'' the computation is dynamic. */
936
937 static long
938 get_memory_packet_size (struct memory_packet_config *config)
939 {
940 struct remote_state *rs = get_remote_state ();
941 struct remote_arch_state *rsa = get_remote_arch_state ();
942
943 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
944 law?) that some hosts don't cope very well with large alloca()
945 calls. Eventually the alloca() code will be replaced by calls to
946 xmalloc() and make_cleanups() allowing this restriction to either
947 be lifted or removed. */
948 #ifndef MAX_REMOTE_PACKET_SIZE
949 #define MAX_REMOTE_PACKET_SIZE 16384
950 #endif
951 /* NOTE: 20 ensures we can write at least one byte. */
952 #ifndef MIN_REMOTE_PACKET_SIZE
953 #define MIN_REMOTE_PACKET_SIZE 20
954 #endif
955 long what_they_get;
956 if (config->fixed_p)
957 {
958 if (config->size <= 0)
959 what_they_get = MAX_REMOTE_PACKET_SIZE;
960 else
961 what_they_get = config->size;
962 }
963 else
964 {
965 what_they_get = get_remote_packet_size ();
966 /* Limit the packet to the size specified by the user. */
967 if (config->size > 0
968 && what_they_get > config->size)
969 what_they_get = config->size;
970
971 /* Limit it to the size of the targets ``g'' response unless we have
972 permission from the stub to use a larger packet size. */
973 if (rs->explicit_packet_size == 0
974 && rsa->actual_register_packet_size > 0
975 && what_they_get > rsa->actual_register_packet_size)
976 what_they_get = rsa->actual_register_packet_size;
977 }
978 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
979 what_they_get = MAX_REMOTE_PACKET_SIZE;
980 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
981 what_they_get = MIN_REMOTE_PACKET_SIZE;
982
983 /* Make sure there is room in the global buffer for this packet
984 (including its trailing NUL byte). */
985 if (rs->buf_size < what_they_get + 1)
986 {
987 rs->buf_size = 2 * what_they_get;
988 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
989 }
990
991 return what_they_get;
992 }
993
994 /* Update the size of a read/write packet. If they user wants
995 something really big then do a sanity check. */
996
997 static void
998 set_memory_packet_size (char *args, struct memory_packet_config *config)
999 {
1000 int fixed_p = config->fixed_p;
1001 long size = config->size;
1002
1003 if (args == NULL)
1004 error (_("Argument required (integer, `fixed' or `limited')."));
1005 else if (strcmp (args, "hard") == 0
1006 || strcmp (args, "fixed") == 0)
1007 fixed_p = 1;
1008 else if (strcmp (args, "soft") == 0
1009 || strcmp (args, "limit") == 0)
1010 fixed_p = 0;
1011 else
1012 {
1013 char *end;
1014
1015 size = strtoul (args, &end, 0);
1016 if (args == end)
1017 error (_("Invalid %s (bad syntax)."), config->name);
1018 #if 0
1019 /* Instead of explicitly capping the size of a packet to
1020 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1021 instead allowed to set the size to something arbitrarily
1022 large. */
1023 if (size > MAX_REMOTE_PACKET_SIZE)
1024 error (_("Invalid %s (too large)."), config->name);
1025 #endif
1026 }
1027 /* Extra checks? */
1028 if (fixed_p && !config->fixed_p)
1029 {
1030 if (! query (_("The target may not be able to correctly handle a %s\n"
1031 "of %ld bytes. Change the packet size? "),
1032 config->name, size))
1033 error (_("Packet size not changed."));
1034 }
1035 /* Update the config. */
1036 config->fixed_p = fixed_p;
1037 config->size = size;
1038 }
1039
1040 static void
1041 show_memory_packet_size (struct memory_packet_config *config)
1042 {
1043 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1044 if (config->fixed_p)
1045 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1046 get_memory_packet_size (config));
1047 else
1048 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1049 get_memory_packet_size (config));
1050 }
1051
1052 static struct memory_packet_config memory_write_packet_config =
1053 {
1054 "memory-write-packet-size",
1055 };
1056
1057 static void
1058 set_memory_write_packet_size (char *args, int from_tty)
1059 {
1060 set_memory_packet_size (args, &memory_write_packet_config);
1061 }
1062
1063 static void
1064 show_memory_write_packet_size (char *args, int from_tty)
1065 {
1066 show_memory_packet_size (&memory_write_packet_config);
1067 }
1068
1069 static long
1070 get_memory_write_packet_size (void)
1071 {
1072 return get_memory_packet_size (&memory_write_packet_config);
1073 }
1074
1075 static struct memory_packet_config memory_read_packet_config =
1076 {
1077 "memory-read-packet-size",
1078 };
1079
1080 static void
1081 set_memory_read_packet_size (char *args, int from_tty)
1082 {
1083 set_memory_packet_size (args, &memory_read_packet_config);
1084 }
1085
1086 static void
1087 show_memory_read_packet_size (char *args, int from_tty)
1088 {
1089 show_memory_packet_size (&memory_read_packet_config);
1090 }
1091
1092 static long
1093 get_memory_read_packet_size (void)
1094 {
1095 long size = get_memory_packet_size (&memory_read_packet_config);
1096
1097 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1098 extra buffer size argument before the memory read size can be
1099 increased beyond this. */
1100 if (size > get_remote_packet_size ())
1101 size = get_remote_packet_size ();
1102 return size;
1103 }
1104
1105 \f
1106 /* Generic configuration support for packets the stub optionally
1107 supports. Allows the user to specify the use of the packet as well
1108 as allowing GDB to auto-detect support in the remote stub. */
1109
1110 enum packet_support
1111 {
1112 PACKET_SUPPORT_UNKNOWN = 0,
1113 PACKET_ENABLE,
1114 PACKET_DISABLE
1115 };
1116
1117 struct packet_config
1118 {
1119 const char *name;
1120 const char *title;
1121 enum auto_boolean detect;
1122 enum packet_support support;
1123 };
1124
1125 /* Analyze a packet's return value and update the packet config
1126 accordingly. */
1127
1128 enum packet_result
1129 {
1130 PACKET_ERROR,
1131 PACKET_OK,
1132 PACKET_UNKNOWN
1133 };
1134
1135 static void
1136 update_packet_config (struct packet_config *config)
1137 {
1138 switch (config->detect)
1139 {
1140 case AUTO_BOOLEAN_TRUE:
1141 config->support = PACKET_ENABLE;
1142 break;
1143 case AUTO_BOOLEAN_FALSE:
1144 config->support = PACKET_DISABLE;
1145 break;
1146 case AUTO_BOOLEAN_AUTO:
1147 config->support = PACKET_SUPPORT_UNKNOWN;
1148 break;
1149 }
1150 }
1151
1152 static void
1153 show_packet_config_cmd (struct packet_config *config)
1154 {
1155 char *support = "internal-error";
1156
1157 switch (config->support)
1158 {
1159 case PACKET_ENABLE:
1160 support = "enabled";
1161 break;
1162 case PACKET_DISABLE:
1163 support = "disabled";
1164 break;
1165 case PACKET_SUPPORT_UNKNOWN:
1166 support = "unknown";
1167 break;
1168 }
1169 switch (config->detect)
1170 {
1171 case AUTO_BOOLEAN_AUTO:
1172 printf_filtered (_("Support for the `%s' packet "
1173 "is auto-detected, currently %s.\n"),
1174 config->name, support);
1175 break;
1176 case AUTO_BOOLEAN_TRUE:
1177 case AUTO_BOOLEAN_FALSE:
1178 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1179 config->name, support);
1180 break;
1181 }
1182 }
1183
1184 static void
1185 add_packet_config_cmd (struct packet_config *config, const char *name,
1186 const char *title, int legacy)
1187 {
1188 char *set_doc;
1189 char *show_doc;
1190 char *cmd_name;
1191
1192 config->name = name;
1193 config->title = title;
1194 config->detect = AUTO_BOOLEAN_AUTO;
1195 config->support = PACKET_SUPPORT_UNKNOWN;
1196 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1197 name, title);
1198 show_doc = xstrprintf ("Show current use of remote "
1199 "protocol `%s' (%s) packet",
1200 name, title);
1201 /* set/show TITLE-packet {auto,on,off} */
1202 cmd_name = xstrprintf ("%s-packet", title);
1203 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1204 &config->detect, set_doc,
1205 show_doc, NULL, /* help_doc */
1206 set_remote_protocol_packet_cmd,
1207 show_remote_protocol_packet_cmd,
1208 &remote_set_cmdlist, &remote_show_cmdlist);
1209 /* The command code copies the documentation strings. */
1210 xfree (set_doc);
1211 xfree (show_doc);
1212 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1213 if (legacy)
1214 {
1215 char *legacy_name;
1216
1217 legacy_name = xstrprintf ("%s-packet", name);
1218 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1219 &remote_set_cmdlist);
1220 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1221 &remote_show_cmdlist);
1222 }
1223 }
1224
1225 static enum packet_result
1226 packet_check_result (const char *buf)
1227 {
1228 if (buf[0] != '\0')
1229 {
1230 /* The stub recognized the packet request. Check that the
1231 operation succeeded. */
1232 if (buf[0] == 'E'
1233 && isxdigit (buf[1]) && isxdigit (buf[2])
1234 && buf[3] == '\0')
1235 /* "Enn" - definitly an error. */
1236 return PACKET_ERROR;
1237
1238 /* Always treat "E." as an error. This will be used for
1239 more verbose error messages, such as E.memtypes. */
1240 if (buf[0] == 'E' && buf[1] == '.')
1241 return PACKET_ERROR;
1242
1243 /* The packet may or may not be OK. Just assume it is. */
1244 return PACKET_OK;
1245 }
1246 else
1247 /* The stub does not support the packet. */
1248 return PACKET_UNKNOWN;
1249 }
1250
1251 static enum packet_result
1252 packet_ok (const char *buf, struct packet_config *config)
1253 {
1254 enum packet_result result;
1255
1256 result = packet_check_result (buf);
1257 switch (result)
1258 {
1259 case PACKET_OK:
1260 case PACKET_ERROR:
1261 /* The stub recognized the packet request. */
1262 switch (config->support)
1263 {
1264 case PACKET_SUPPORT_UNKNOWN:
1265 if (remote_debug)
1266 fprintf_unfiltered (gdb_stdlog,
1267 "Packet %s (%s) is supported\n",
1268 config->name, config->title);
1269 config->support = PACKET_ENABLE;
1270 break;
1271 case PACKET_DISABLE:
1272 internal_error (__FILE__, __LINE__,
1273 _("packet_ok: attempt to use a disabled packet"));
1274 break;
1275 case PACKET_ENABLE:
1276 break;
1277 }
1278 break;
1279 case PACKET_UNKNOWN:
1280 /* The stub does not support the packet. */
1281 switch (config->support)
1282 {
1283 case PACKET_ENABLE:
1284 if (config->detect == AUTO_BOOLEAN_AUTO)
1285 /* If the stub previously indicated that the packet was
1286 supported then there is a protocol error.. */
1287 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1288 config->name, config->title);
1289 else
1290 /* The user set it wrong. */
1291 error (_("Enabled packet %s (%s) not recognized by stub"),
1292 config->name, config->title);
1293 break;
1294 case PACKET_SUPPORT_UNKNOWN:
1295 if (remote_debug)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "Packet %s (%s) is NOT supported\n",
1298 config->name, config->title);
1299 config->support = PACKET_DISABLE;
1300 break;
1301 case PACKET_DISABLE:
1302 break;
1303 }
1304 break;
1305 }
1306
1307 return result;
1308 }
1309
1310 enum {
1311 PACKET_vCont = 0,
1312 PACKET_X,
1313 PACKET_qSymbol,
1314 PACKET_P,
1315 PACKET_p,
1316 PACKET_Z0,
1317 PACKET_Z1,
1318 PACKET_Z2,
1319 PACKET_Z3,
1320 PACKET_Z4,
1321 PACKET_vFile_open,
1322 PACKET_vFile_pread,
1323 PACKET_vFile_pwrite,
1324 PACKET_vFile_close,
1325 PACKET_vFile_unlink,
1326 PACKET_vFile_readlink,
1327 PACKET_qXfer_auxv,
1328 PACKET_qXfer_features,
1329 PACKET_qXfer_libraries,
1330 PACKET_qXfer_libraries_svr4,
1331 PACKET_qXfer_memory_map,
1332 PACKET_qXfer_spu_read,
1333 PACKET_qXfer_spu_write,
1334 PACKET_qXfer_osdata,
1335 PACKET_qXfer_threads,
1336 PACKET_qXfer_statictrace_read,
1337 PACKET_qXfer_traceframe_info,
1338 PACKET_qXfer_uib,
1339 PACKET_qGetTIBAddr,
1340 PACKET_qGetTLSAddr,
1341 PACKET_qSupported,
1342 PACKET_qTStatus,
1343 PACKET_QPassSignals,
1344 PACKET_QProgramSignals,
1345 PACKET_qSearch_memory,
1346 PACKET_vAttach,
1347 PACKET_vRun,
1348 PACKET_QStartNoAckMode,
1349 PACKET_vKill,
1350 PACKET_qXfer_siginfo_read,
1351 PACKET_qXfer_siginfo_write,
1352 PACKET_qAttached,
1353 PACKET_ConditionalTracepoints,
1354 PACKET_ConditionalBreakpoints,
1355 PACKET_BreakpointCommands,
1356 PACKET_FastTracepoints,
1357 PACKET_StaticTracepoints,
1358 PACKET_InstallInTrace,
1359 PACKET_bc,
1360 PACKET_bs,
1361 PACKET_TracepointSource,
1362 PACKET_QAllow,
1363 PACKET_qXfer_fdpic,
1364 PACKET_QDisableRandomization,
1365 PACKET_QAgent,
1366 PACKET_QTBuffer_size,
1367 PACKET_Qbtrace_off,
1368 PACKET_Qbtrace_bts,
1369 PACKET_qXfer_btrace,
1370 PACKET_MAX
1371 };
1372
1373 static struct packet_config remote_protocol_packets[PACKET_MAX];
1374
1375 static void
1376 set_remote_protocol_packet_cmd (char *args, int from_tty,
1377 struct cmd_list_element *c)
1378 {
1379 struct packet_config *packet;
1380
1381 for (packet = remote_protocol_packets;
1382 packet < &remote_protocol_packets[PACKET_MAX];
1383 packet++)
1384 {
1385 if (&packet->detect == c->var)
1386 {
1387 update_packet_config (packet);
1388 return;
1389 }
1390 }
1391 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1392 c->name);
1393 }
1394
1395 static void
1396 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1397 struct cmd_list_element *c,
1398 const char *value)
1399 {
1400 struct packet_config *packet;
1401
1402 for (packet = remote_protocol_packets;
1403 packet < &remote_protocol_packets[PACKET_MAX];
1404 packet++)
1405 {
1406 if (&packet->detect == c->var)
1407 {
1408 show_packet_config_cmd (packet);
1409 return;
1410 }
1411 }
1412 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1413 c->name);
1414 }
1415
1416 /* Should we try one of the 'Z' requests? */
1417
1418 enum Z_packet_type
1419 {
1420 Z_PACKET_SOFTWARE_BP,
1421 Z_PACKET_HARDWARE_BP,
1422 Z_PACKET_WRITE_WP,
1423 Z_PACKET_READ_WP,
1424 Z_PACKET_ACCESS_WP,
1425 NR_Z_PACKET_TYPES
1426 };
1427
1428 /* For compatibility with older distributions. Provide a ``set remote
1429 Z-packet ...'' command that updates all the Z packet types. */
1430
1431 static enum auto_boolean remote_Z_packet_detect;
1432
1433 static void
1434 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1435 struct cmd_list_element *c)
1436 {
1437 int i;
1438
1439 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1440 {
1441 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1442 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1443 }
1444 }
1445
1446 static void
1447 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1448 struct cmd_list_element *c,
1449 const char *value)
1450 {
1451 int i;
1452
1453 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1454 {
1455 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1456 }
1457 }
1458
1459 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1460 static struct async_signal_handler *async_sigint_remote_twice_token;
1461 static struct async_signal_handler *async_sigint_remote_token;
1462
1463 \f
1464 /* Asynchronous signal handle registered as event loop source for
1465 when we have pending events ready to be passed to the core. */
1466
1467 static struct async_event_handler *remote_async_inferior_event_token;
1468
1469 \f
1470
1471 static ptid_t magic_null_ptid;
1472 static ptid_t not_sent_ptid;
1473 static ptid_t any_thread_ptid;
1474
1475 /* Find out if the stub attached to PID (and hence GDB should offer to
1476 detach instead of killing it when bailing out). */
1477
1478 static int
1479 remote_query_attached (int pid)
1480 {
1481 struct remote_state *rs = get_remote_state ();
1482 size_t size = get_remote_packet_size ();
1483
1484 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1485 return 0;
1486
1487 if (remote_multi_process_p (rs))
1488 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1489 else
1490 xsnprintf (rs->buf, size, "qAttached");
1491
1492 putpkt (rs->buf);
1493 getpkt (&rs->buf, &rs->buf_size, 0);
1494
1495 switch (packet_ok (rs->buf,
1496 &remote_protocol_packets[PACKET_qAttached]))
1497 {
1498 case PACKET_OK:
1499 if (strcmp (rs->buf, "1") == 0)
1500 return 1;
1501 break;
1502 case PACKET_ERROR:
1503 warning (_("Remote failure reply: %s"), rs->buf);
1504 break;
1505 case PACKET_UNKNOWN:
1506 break;
1507 }
1508
1509 return 0;
1510 }
1511
1512 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1513 has been invented by GDB, instead of reported by the target. Since
1514 we can be connected to a remote system before before knowing about
1515 any inferior, mark the target with execution when we find the first
1516 inferior. If ATTACHED is 1, then we had just attached to this
1517 inferior. If it is 0, then we just created this inferior. If it
1518 is -1, then try querying the remote stub to find out if it had
1519 attached to the inferior or not. */
1520
1521 static struct inferior *
1522 remote_add_inferior (int fake_pid_p, int pid, int attached)
1523 {
1524 struct inferior *inf;
1525
1526 /* Check whether this process we're learning about is to be
1527 considered attached, or if is to be considered to have been
1528 spawned by the stub. */
1529 if (attached == -1)
1530 attached = remote_query_attached (pid);
1531
1532 if (gdbarch_has_global_solist (target_gdbarch ()))
1533 {
1534 /* If the target shares code across all inferiors, then every
1535 attach adds a new inferior. */
1536 inf = add_inferior (pid);
1537
1538 /* ... and every inferior is bound to the same program space.
1539 However, each inferior may still have its own address
1540 space. */
1541 inf->aspace = maybe_new_address_space ();
1542 inf->pspace = current_program_space;
1543 }
1544 else
1545 {
1546 /* In the traditional debugging scenario, there's a 1-1 match
1547 between program/address spaces. We simply bind the inferior
1548 to the program space's address space. */
1549 inf = current_inferior ();
1550 inferior_appeared (inf, pid);
1551 }
1552
1553 inf->attach_flag = attached;
1554 inf->fake_pid_p = fake_pid_p;
1555
1556 return inf;
1557 }
1558
1559 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1560 according to RUNNING. */
1561
1562 static void
1563 remote_add_thread (ptid_t ptid, int running)
1564 {
1565 struct remote_state *rs = get_remote_state ();
1566
1567 /* GDB historically didn't pull threads in the initial connection
1568 setup. If the remote target doesn't even have a concept of
1569 threads (e.g., a bare-metal target), even if internally we
1570 consider that a single-threaded target, mentioning a new thread
1571 might be confusing to the user. Be silent then, preserving the
1572 age old behavior. */
1573 if (rs->starting_up)
1574 add_thread_silent (ptid);
1575 else
1576 add_thread (ptid);
1577
1578 set_executing (ptid, running);
1579 set_running (ptid, running);
1580 }
1581
1582 /* Come here when we learn about a thread id from the remote target.
1583 It may be the first time we hear about such thread, so take the
1584 opportunity to add it to GDB's thread list. In case this is the
1585 first time we're noticing its corresponding inferior, add it to
1586 GDB's inferior list as well. */
1587
1588 static void
1589 remote_notice_new_inferior (ptid_t currthread, int running)
1590 {
1591 /* If this is a new thread, add it to GDB's thread list.
1592 If we leave it up to WFI to do this, bad things will happen. */
1593
1594 if (in_thread_list (currthread) && is_exited (currthread))
1595 {
1596 /* We're seeing an event on a thread id we knew had exited.
1597 This has to be a new thread reusing the old id. Add it. */
1598 remote_add_thread (currthread, running);
1599 return;
1600 }
1601
1602 if (!in_thread_list (currthread))
1603 {
1604 struct inferior *inf = NULL;
1605 int pid = ptid_get_pid (currthread);
1606
1607 if (ptid_is_pid (inferior_ptid)
1608 && pid == ptid_get_pid (inferior_ptid))
1609 {
1610 /* inferior_ptid has no thread member yet. This can happen
1611 with the vAttach -> remote_wait,"TAAthread:" path if the
1612 stub doesn't support qC. This is the first stop reported
1613 after an attach, so this is the main thread. Update the
1614 ptid in the thread list. */
1615 if (in_thread_list (pid_to_ptid (pid)))
1616 thread_change_ptid (inferior_ptid, currthread);
1617 else
1618 {
1619 remote_add_thread (currthread, running);
1620 inferior_ptid = currthread;
1621 }
1622 return;
1623 }
1624
1625 if (ptid_equal (magic_null_ptid, inferior_ptid))
1626 {
1627 /* inferior_ptid is not set yet. This can happen with the
1628 vRun -> remote_wait,"TAAthread:" path if the stub
1629 doesn't support qC. This is the first stop reported
1630 after an attach, so this is the main thread. Update the
1631 ptid in the thread list. */
1632 thread_change_ptid (inferior_ptid, currthread);
1633 return;
1634 }
1635
1636 /* When connecting to a target remote, or to a target
1637 extended-remote which already was debugging an inferior, we
1638 may not know about it yet. Add it before adding its child
1639 thread, so notifications are emitted in a sensible order. */
1640 if (!in_inferior_list (ptid_get_pid (currthread)))
1641 {
1642 struct remote_state *rs = get_remote_state ();
1643 int fake_pid_p = !remote_multi_process_p (rs);
1644
1645 inf = remote_add_inferior (fake_pid_p,
1646 ptid_get_pid (currthread), -1);
1647 }
1648
1649 /* This is really a new thread. Add it. */
1650 remote_add_thread (currthread, running);
1651
1652 /* If we found a new inferior, let the common code do whatever
1653 it needs to with it (e.g., read shared libraries, insert
1654 breakpoints), unless we're just setting up an all-stop
1655 connection. */
1656 if (inf != NULL)
1657 {
1658 struct remote_state *rs = get_remote_state ();
1659
1660 if (non_stop || !rs->starting_up)
1661 notice_new_inferior (currthread, running, 0);
1662 }
1663 }
1664 }
1665
1666 /* Return the private thread data, creating it if necessary. */
1667
1668 static struct private_thread_info *
1669 demand_private_info (ptid_t ptid)
1670 {
1671 struct thread_info *info = find_thread_ptid (ptid);
1672
1673 gdb_assert (info);
1674
1675 if (!info->private)
1676 {
1677 info->private = xmalloc (sizeof (*(info->private)));
1678 info->private_dtor = free_private_thread_info;
1679 info->private->core = -1;
1680 info->private->extra = 0;
1681 }
1682
1683 return info->private;
1684 }
1685
1686 /* Call this function as a result of
1687 1) A halt indication (T packet) containing a thread id
1688 2) A direct query of currthread
1689 3) Successful execution of set thread */
1690
1691 static void
1692 record_currthread (struct remote_state *rs, ptid_t currthread)
1693 {
1694 rs->general_thread = currthread;
1695 }
1696
1697 /* If 'QPassSignals' is supported, tell the remote stub what signals
1698 it can simply pass through to the inferior without reporting. */
1699
1700 static void
1701 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1702 {
1703 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1704 {
1705 char *pass_packet, *p;
1706 int count = 0, i;
1707 struct remote_state *rs = get_remote_state ();
1708
1709 gdb_assert (numsigs < 256);
1710 for (i = 0; i < numsigs; i++)
1711 {
1712 if (pass_signals[i])
1713 count++;
1714 }
1715 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1716 strcpy (pass_packet, "QPassSignals:");
1717 p = pass_packet + strlen (pass_packet);
1718 for (i = 0; i < numsigs; i++)
1719 {
1720 if (pass_signals[i])
1721 {
1722 if (i >= 16)
1723 *p++ = tohex (i >> 4);
1724 *p++ = tohex (i & 15);
1725 if (count)
1726 *p++ = ';';
1727 else
1728 break;
1729 count--;
1730 }
1731 }
1732 *p = 0;
1733 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1734 {
1735 putpkt (pass_packet);
1736 getpkt (&rs->buf, &rs->buf_size, 0);
1737 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
1738 if (rs->last_pass_packet)
1739 xfree (rs->last_pass_packet);
1740 rs->last_pass_packet = pass_packet;
1741 }
1742 else
1743 xfree (pass_packet);
1744 }
1745 }
1746
1747 /* If 'QProgramSignals' is supported, tell the remote stub what
1748 signals it should pass through to the inferior when detaching. */
1749
1750 static void
1751 remote_program_signals (int numsigs, unsigned char *signals)
1752 {
1753 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1754 {
1755 char *packet, *p;
1756 int count = 0, i;
1757 struct remote_state *rs = get_remote_state ();
1758
1759 gdb_assert (numsigs < 256);
1760 for (i = 0; i < numsigs; i++)
1761 {
1762 if (signals[i])
1763 count++;
1764 }
1765 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1766 strcpy (packet, "QProgramSignals:");
1767 p = packet + strlen (packet);
1768 for (i = 0; i < numsigs; i++)
1769 {
1770 if (signal_pass_state (i))
1771 {
1772 if (i >= 16)
1773 *p++ = tohex (i >> 4);
1774 *p++ = tohex (i & 15);
1775 if (count)
1776 *p++ = ';';
1777 else
1778 break;
1779 count--;
1780 }
1781 }
1782 *p = 0;
1783 if (!rs->last_program_signals_packet
1784 || strcmp (rs->last_program_signals_packet, packet) != 0)
1785 {
1786 putpkt (packet);
1787 getpkt (&rs->buf, &rs->buf_size, 0);
1788 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1789 xfree (rs->last_program_signals_packet);
1790 rs->last_program_signals_packet = packet;
1791 }
1792 else
1793 xfree (packet);
1794 }
1795 }
1796
1797 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1798 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1799 thread. If GEN is set, set the general thread, if not, then set
1800 the step/continue thread. */
1801 static void
1802 set_thread (struct ptid ptid, int gen)
1803 {
1804 struct remote_state *rs = get_remote_state ();
1805 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1806 char *buf = rs->buf;
1807 char *endbuf = rs->buf + get_remote_packet_size ();
1808
1809 if (ptid_equal (state, ptid))
1810 return;
1811
1812 *buf++ = 'H';
1813 *buf++ = gen ? 'g' : 'c';
1814 if (ptid_equal (ptid, magic_null_ptid))
1815 xsnprintf (buf, endbuf - buf, "0");
1816 else if (ptid_equal (ptid, any_thread_ptid))
1817 xsnprintf (buf, endbuf - buf, "0");
1818 else if (ptid_equal (ptid, minus_one_ptid))
1819 xsnprintf (buf, endbuf - buf, "-1");
1820 else
1821 write_ptid (buf, endbuf, ptid);
1822 putpkt (rs->buf);
1823 getpkt (&rs->buf, &rs->buf_size, 0);
1824 if (gen)
1825 rs->general_thread = ptid;
1826 else
1827 rs->continue_thread = ptid;
1828 }
1829
1830 static void
1831 set_general_thread (struct ptid ptid)
1832 {
1833 set_thread (ptid, 1);
1834 }
1835
1836 static void
1837 set_continue_thread (struct ptid ptid)
1838 {
1839 set_thread (ptid, 0);
1840 }
1841
1842 /* Change the remote current process. Which thread within the process
1843 ends up selected isn't important, as long as it is the same process
1844 as what INFERIOR_PTID points to.
1845
1846 This comes from that fact that there is no explicit notion of
1847 "selected process" in the protocol. The selected process for
1848 general operations is the process the selected general thread
1849 belongs to. */
1850
1851 static void
1852 set_general_process (void)
1853 {
1854 struct remote_state *rs = get_remote_state ();
1855
1856 /* If the remote can't handle multiple processes, don't bother. */
1857 if (!rs->extended || !remote_multi_process_p (rs))
1858 return;
1859
1860 /* We only need to change the remote current thread if it's pointing
1861 at some other process. */
1862 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1863 set_general_thread (inferior_ptid);
1864 }
1865
1866 \f
1867 /* Return nonzero if the thread PTID is still alive on the remote
1868 system. */
1869
1870 static int
1871 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1872 {
1873 struct remote_state *rs = get_remote_state ();
1874 char *p, *endp;
1875
1876 if (ptid_equal (ptid, magic_null_ptid))
1877 /* The main thread is always alive. */
1878 return 1;
1879
1880 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1881 /* The main thread is always alive. This can happen after a
1882 vAttach, if the remote side doesn't support
1883 multi-threading. */
1884 return 1;
1885
1886 p = rs->buf;
1887 endp = rs->buf + get_remote_packet_size ();
1888
1889 *p++ = 'T';
1890 write_ptid (p, endp, ptid);
1891
1892 putpkt (rs->buf);
1893 getpkt (&rs->buf, &rs->buf_size, 0);
1894 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1895 }
1896
1897 /* About these extended threadlist and threadinfo packets. They are
1898 variable length packets but, the fields within them are often fixed
1899 length. They are redundent enough to send over UDP as is the
1900 remote protocol in general. There is a matching unit test module
1901 in libstub. */
1902
1903 /* WARNING: This threadref data structure comes from the remote O.S.,
1904 libstub protocol encoding, and remote.c. It is not particularly
1905 changable. */
1906
1907 /* Right now, the internal structure is int. We want it to be bigger.
1908 Plan to fix this. */
1909
1910 typedef int gdb_threadref; /* Internal GDB thread reference. */
1911
1912 /* gdb_ext_thread_info is an internal GDB data structure which is
1913 equivalent to the reply of the remote threadinfo packet. */
1914
1915 struct gdb_ext_thread_info
1916 {
1917 threadref threadid; /* External form of thread reference. */
1918 int active; /* Has state interesting to GDB?
1919 regs, stack. */
1920 char display[256]; /* Brief state display, name,
1921 blocked/suspended. */
1922 char shortname[32]; /* To be used to name threads. */
1923 char more_display[256]; /* Long info, statistics, queue depth,
1924 whatever. */
1925 };
1926
1927 /* The volume of remote transfers can be limited by submitting
1928 a mask containing bits specifying the desired information.
1929 Use a union of these values as the 'selection' parameter to
1930 get_thread_info. FIXME: Make these TAG names more thread specific. */
1931
1932 #define TAG_THREADID 1
1933 #define TAG_EXISTS 2
1934 #define TAG_DISPLAY 4
1935 #define TAG_THREADNAME 8
1936 #define TAG_MOREDISPLAY 16
1937
1938 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1939
1940 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1941
1942 static char *unpack_nibble (char *buf, int *val);
1943
1944 static char *pack_nibble (char *buf, int nibble);
1945
1946 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1947
1948 static char *unpack_byte (char *buf, int *value);
1949
1950 static char *pack_int (char *buf, int value);
1951
1952 static char *unpack_int (char *buf, int *value);
1953
1954 static char *unpack_string (char *src, char *dest, int length);
1955
1956 static char *pack_threadid (char *pkt, threadref *id);
1957
1958 static char *unpack_threadid (char *inbuf, threadref *id);
1959
1960 void int_to_threadref (threadref *id, int value);
1961
1962 static int threadref_to_int (threadref *ref);
1963
1964 static void copy_threadref (threadref *dest, threadref *src);
1965
1966 static int threadmatch (threadref *dest, threadref *src);
1967
1968 static char *pack_threadinfo_request (char *pkt, int mode,
1969 threadref *id);
1970
1971 static int remote_unpack_thread_info_response (char *pkt,
1972 threadref *expectedref,
1973 struct gdb_ext_thread_info
1974 *info);
1975
1976
1977 static int remote_get_threadinfo (threadref *threadid,
1978 int fieldset, /*TAG mask */
1979 struct gdb_ext_thread_info *info);
1980
1981 static char *pack_threadlist_request (char *pkt, int startflag,
1982 int threadcount,
1983 threadref *nextthread);
1984
1985 static int parse_threadlist_response (char *pkt,
1986 int result_limit,
1987 threadref *original_echo,
1988 threadref *resultlist,
1989 int *doneflag);
1990
1991 static int remote_get_threadlist (int startflag,
1992 threadref *nextthread,
1993 int result_limit,
1994 int *done,
1995 int *result_count,
1996 threadref *threadlist);
1997
1998 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1999
2000 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2001 void *context, int looplimit);
2002
2003 static int remote_newthread_step (threadref *ref, void *context);
2004
2005
2006 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2007 buffer we're allowed to write to. Returns
2008 BUF+CHARACTERS_WRITTEN. */
2009
2010 static char *
2011 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2012 {
2013 int pid, tid;
2014 struct remote_state *rs = get_remote_state ();
2015
2016 if (remote_multi_process_p (rs))
2017 {
2018 pid = ptid_get_pid (ptid);
2019 if (pid < 0)
2020 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2021 else
2022 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2023 }
2024 tid = ptid_get_tid (ptid);
2025 if (tid < 0)
2026 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2027 else
2028 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2029
2030 return buf;
2031 }
2032
2033 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2034 passed the last parsed char. Returns null_ptid on error. */
2035
2036 static ptid_t
2037 read_ptid (char *buf, char **obuf)
2038 {
2039 char *p = buf;
2040 char *pp;
2041 ULONGEST pid = 0, tid = 0;
2042
2043 if (*p == 'p')
2044 {
2045 /* Multi-process ptid. */
2046 pp = unpack_varlen_hex (p + 1, &pid);
2047 if (*pp != '.')
2048 error (_("invalid remote ptid: %s"), p);
2049
2050 p = pp;
2051 pp = unpack_varlen_hex (p + 1, &tid);
2052 if (obuf)
2053 *obuf = pp;
2054 return ptid_build (pid, 0, tid);
2055 }
2056
2057 /* No multi-process. Just a tid. */
2058 pp = unpack_varlen_hex (p, &tid);
2059
2060 /* Since the stub is not sending a process id, then default to
2061 what's in inferior_ptid, unless it's null at this point. If so,
2062 then since there's no way to know the pid of the reported
2063 threads, use the magic number. */
2064 if (ptid_equal (inferior_ptid, null_ptid))
2065 pid = ptid_get_pid (magic_null_ptid);
2066 else
2067 pid = ptid_get_pid (inferior_ptid);
2068
2069 if (obuf)
2070 *obuf = pp;
2071 return ptid_build (pid, 0, tid);
2072 }
2073
2074 /* Encode 64 bits in 16 chars of hex. */
2075
2076 static const char hexchars[] = "0123456789abcdef";
2077
2078 static int
2079 ishex (int ch, int *val)
2080 {
2081 if ((ch >= 'a') && (ch <= 'f'))
2082 {
2083 *val = ch - 'a' + 10;
2084 return 1;
2085 }
2086 if ((ch >= 'A') && (ch <= 'F'))
2087 {
2088 *val = ch - 'A' + 10;
2089 return 1;
2090 }
2091 if ((ch >= '0') && (ch <= '9'))
2092 {
2093 *val = ch - '0';
2094 return 1;
2095 }
2096 return 0;
2097 }
2098
2099 static int
2100 stubhex (int ch)
2101 {
2102 if (ch >= 'a' && ch <= 'f')
2103 return ch - 'a' + 10;
2104 if (ch >= '0' && ch <= '9')
2105 return ch - '0';
2106 if (ch >= 'A' && ch <= 'F')
2107 return ch - 'A' + 10;
2108 return -1;
2109 }
2110
2111 static int
2112 stub_unpack_int (char *buff, int fieldlength)
2113 {
2114 int nibble;
2115 int retval = 0;
2116
2117 while (fieldlength)
2118 {
2119 nibble = stubhex (*buff++);
2120 retval |= nibble;
2121 fieldlength--;
2122 if (fieldlength)
2123 retval = retval << 4;
2124 }
2125 return retval;
2126 }
2127
2128 char *
2129 unpack_varlen_hex (char *buff, /* packet to parse */
2130 ULONGEST *result)
2131 {
2132 int nibble;
2133 ULONGEST retval = 0;
2134
2135 while (ishex (*buff, &nibble))
2136 {
2137 buff++;
2138 retval = retval << 4;
2139 retval |= nibble & 0x0f;
2140 }
2141 *result = retval;
2142 return buff;
2143 }
2144
2145 static char *
2146 unpack_nibble (char *buf, int *val)
2147 {
2148 *val = fromhex (*buf++);
2149 return buf;
2150 }
2151
2152 static char *
2153 pack_nibble (char *buf, int nibble)
2154 {
2155 *buf++ = hexchars[(nibble & 0x0f)];
2156 return buf;
2157 }
2158
2159 static char *
2160 pack_hex_byte (char *pkt, int byte)
2161 {
2162 *pkt++ = hexchars[(byte >> 4) & 0xf];
2163 *pkt++ = hexchars[(byte & 0xf)];
2164 return pkt;
2165 }
2166
2167 static char *
2168 unpack_byte (char *buf, int *value)
2169 {
2170 *value = stub_unpack_int (buf, 2);
2171 return buf + 2;
2172 }
2173
2174 static char *
2175 pack_int (char *buf, int value)
2176 {
2177 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2178 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2179 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2180 buf = pack_hex_byte (buf, (value & 0xff));
2181 return buf;
2182 }
2183
2184 static char *
2185 unpack_int (char *buf, int *value)
2186 {
2187 *value = stub_unpack_int (buf, 8);
2188 return buf + 8;
2189 }
2190
2191 #if 0 /* Currently unused, uncomment when needed. */
2192 static char *pack_string (char *pkt, char *string);
2193
2194 static char *
2195 pack_string (char *pkt, char *string)
2196 {
2197 char ch;
2198 int len;
2199
2200 len = strlen (string);
2201 if (len > 200)
2202 len = 200; /* Bigger than most GDB packets, junk??? */
2203 pkt = pack_hex_byte (pkt, len);
2204 while (len-- > 0)
2205 {
2206 ch = *string++;
2207 if ((ch == '\0') || (ch == '#'))
2208 ch = '*'; /* Protect encapsulation. */
2209 *pkt++ = ch;
2210 }
2211 return pkt;
2212 }
2213 #endif /* 0 (unused) */
2214
2215 static char *
2216 unpack_string (char *src, char *dest, int length)
2217 {
2218 while (length--)
2219 *dest++ = *src++;
2220 *dest = '\0';
2221 return src;
2222 }
2223
2224 static char *
2225 pack_threadid (char *pkt, threadref *id)
2226 {
2227 char *limit;
2228 unsigned char *altid;
2229
2230 altid = (unsigned char *) id;
2231 limit = pkt + BUF_THREAD_ID_SIZE;
2232 while (pkt < limit)
2233 pkt = pack_hex_byte (pkt, *altid++);
2234 return pkt;
2235 }
2236
2237
2238 static char *
2239 unpack_threadid (char *inbuf, threadref *id)
2240 {
2241 char *altref;
2242 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2243 int x, y;
2244
2245 altref = (char *) id;
2246
2247 while (inbuf < limit)
2248 {
2249 x = stubhex (*inbuf++);
2250 y = stubhex (*inbuf++);
2251 *altref++ = (x << 4) | y;
2252 }
2253 return inbuf;
2254 }
2255
2256 /* Externally, threadrefs are 64 bits but internally, they are still
2257 ints. This is due to a mismatch of specifications. We would like
2258 to use 64bit thread references internally. This is an adapter
2259 function. */
2260
2261 void
2262 int_to_threadref (threadref *id, int value)
2263 {
2264 unsigned char *scan;
2265
2266 scan = (unsigned char *) id;
2267 {
2268 int i = 4;
2269 while (i--)
2270 *scan++ = 0;
2271 }
2272 *scan++ = (value >> 24) & 0xff;
2273 *scan++ = (value >> 16) & 0xff;
2274 *scan++ = (value >> 8) & 0xff;
2275 *scan++ = (value & 0xff);
2276 }
2277
2278 static int
2279 threadref_to_int (threadref *ref)
2280 {
2281 int i, value = 0;
2282 unsigned char *scan;
2283
2284 scan = *ref;
2285 scan += 4;
2286 i = 4;
2287 while (i-- > 0)
2288 value = (value << 8) | ((*scan++) & 0xff);
2289 return value;
2290 }
2291
2292 static void
2293 copy_threadref (threadref *dest, threadref *src)
2294 {
2295 int i;
2296 unsigned char *csrc, *cdest;
2297
2298 csrc = (unsigned char *) src;
2299 cdest = (unsigned char *) dest;
2300 i = 8;
2301 while (i--)
2302 *cdest++ = *csrc++;
2303 }
2304
2305 static int
2306 threadmatch (threadref *dest, threadref *src)
2307 {
2308 /* Things are broken right now, so just assume we got a match. */
2309 #if 0
2310 unsigned char *srcp, *destp;
2311 int i, result;
2312 srcp = (char *) src;
2313 destp = (char *) dest;
2314
2315 result = 1;
2316 while (i-- > 0)
2317 result &= (*srcp++ == *destp++) ? 1 : 0;
2318 return result;
2319 #endif
2320 return 1;
2321 }
2322
2323 /*
2324 threadid:1, # always request threadid
2325 context_exists:2,
2326 display:4,
2327 unique_name:8,
2328 more_display:16
2329 */
2330
2331 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2332
2333 static char *
2334 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2335 {
2336 *pkt++ = 'q'; /* Info Query */
2337 *pkt++ = 'P'; /* process or thread info */
2338 pkt = pack_int (pkt, mode); /* mode */
2339 pkt = pack_threadid (pkt, id); /* threadid */
2340 *pkt = '\0'; /* terminate */
2341 return pkt;
2342 }
2343
2344 /* These values tag the fields in a thread info response packet. */
2345 /* Tagging the fields allows us to request specific fields and to
2346 add more fields as time goes by. */
2347
2348 #define TAG_THREADID 1 /* Echo the thread identifier. */
2349 #define TAG_EXISTS 2 /* Is this process defined enough to
2350 fetch registers and its stack? */
2351 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2352 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2353 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2354 the process. */
2355
2356 static int
2357 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2358 struct gdb_ext_thread_info *info)
2359 {
2360 struct remote_state *rs = get_remote_state ();
2361 int mask, length;
2362 int tag;
2363 threadref ref;
2364 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2365 int retval = 1;
2366
2367 /* info->threadid = 0; FIXME: implement zero_threadref. */
2368 info->active = 0;
2369 info->display[0] = '\0';
2370 info->shortname[0] = '\0';
2371 info->more_display[0] = '\0';
2372
2373 /* Assume the characters indicating the packet type have been
2374 stripped. */
2375 pkt = unpack_int (pkt, &mask); /* arg mask */
2376 pkt = unpack_threadid (pkt, &ref);
2377
2378 if (mask == 0)
2379 warning (_("Incomplete response to threadinfo request."));
2380 if (!threadmatch (&ref, expectedref))
2381 { /* This is an answer to a different request. */
2382 warning (_("ERROR RMT Thread info mismatch."));
2383 return 0;
2384 }
2385 copy_threadref (&info->threadid, &ref);
2386
2387 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2388
2389 /* Packets are terminated with nulls. */
2390 while ((pkt < limit) && mask && *pkt)
2391 {
2392 pkt = unpack_int (pkt, &tag); /* tag */
2393 pkt = unpack_byte (pkt, &length); /* length */
2394 if (!(tag & mask)) /* Tags out of synch with mask. */
2395 {
2396 warning (_("ERROR RMT: threadinfo tag mismatch."));
2397 retval = 0;
2398 break;
2399 }
2400 if (tag == TAG_THREADID)
2401 {
2402 if (length != 16)
2403 {
2404 warning (_("ERROR RMT: length of threadid is not 16."));
2405 retval = 0;
2406 break;
2407 }
2408 pkt = unpack_threadid (pkt, &ref);
2409 mask = mask & ~TAG_THREADID;
2410 continue;
2411 }
2412 if (tag == TAG_EXISTS)
2413 {
2414 info->active = stub_unpack_int (pkt, length);
2415 pkt += length;
2416 mask = mask & ~(TAG_EXISTS);
2417 if (length > 8)
2418 {
2419 warning (_("ERROR RMT: 'exists' length too long."));
2420 retval = 0;
2421 break;
2422 }
2423 continue;
2424 }
2425 if (tag == TAG_THREADNAME)
2426 {
2427 pkt = unpack_string (pkt, &info->shortname[0], length);
2428 mask = mask & ~TAG_THREADNAME;
2429 continue;
2430 }
2431 if (tag == TAG_DISPLAY)
2432 {
2433 pkt = unpack_string (pkt, &info->display[0], length);
2434 mask = mask & ~TAG_DISPLAY;
2435 continue;
2436 }
2437 if (tag == TAG_MOREDISPLAY)
2438 {
2439 pkt = unpack_string (pkt, &info->more_display[0], length);
2440 mask = mask & ~TAG_MOREDISPLAY;
2441 continue;
2442 }
2443 warning (_("ERROR RMT: unknown thread info tag."));
2444 break; /* Not a tag we know about. */
2445 }
2446 return retval;
2447 }
2448
2449 static int
2450 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2451 struct gdb_ext_thread_info *info)
2452 {
2453 struct remote_state *rs = get_remote_state ();
2454 int result;
2455
2456 pack_threadinfo_request (rs->buf, fieldset, threadid);
2457 putpkt (rs->buf);
2458 getpkt (&rs->buf, &rs->buf_size, 0);
2459
2460 if (rs->buf[0] == '\0')
2461 return 0;
2462
2463 result = remote_unpack_thread_info_response (rs->buf + 2,
2464 threadid, info);
2465 return result;
2466 }
2467
2468 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2469
2470 static char *
2471 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2472 threadref *nextthread)
2473 {
2474 *pkt++ = 'q'; /* info query packet */
2475 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2476 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2477 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2478 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2479 *pkt = '\0';
2480 return pkt;
2481 }
2482
2483 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2484
2485 static int
2486 parse_threadlist_response (char *pkt, int result_limit,
2487 threadref *original_echo, threadref *resultlist,
2488 int *doneflag)
2489 {
2490 struct remote_state *rs = get_remote_state ();
2491 char *limit;
2492 int count, resultcount, done;
2493
2494 resultcount = 0;
2495 /* Assume the 'q' and 'M chars have been stripped. */
2496 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2497 /* done parse past here */
2498 pkt = unpack_byte (pkt, &count); /* count field */
2499 pkt = unpack_nibble (pkt, &done);
2500 /* The first threadid is the argument threadid. */
2501 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2502 while ((count-- > 0) && (pkt < limit))
2503 {
2504 pkt = unpack_threadid (pkt, resultlist++);
2505 if (resultcount++ >= result_limit)
2506 break;
2507 }
2508 if (doneflag)
2509 *doneflag = done;
2510 return resultcount;
2511 }
2512
2513 static int
2514 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2515 int *done, int *result_count, threadref *threadlist)
2516 {
2517 struct remote_state *rs = get_remote_state ();
2518 int result = 1;
2519
2520 /* Trancate result limit to be smaller than the packet size. */
2521 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2522 >= get_remote_packet_size ())
2523 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2524
2525 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2526 putpkt (rs->buf);
2527 getpkt (&rs->buf, &rs->buf_size, 0);
2528
2529 if (*rs->buf == '\0')
2530 return 0;
2531 else
2532 *result_count =
2533 parse_threadlist_response (rs->buf + 2, result_limit,
2534 &rs->echo_nextthread, threadlist, done);
2535
2536 if (!threadmatch (&rs->echo_nextthread, nextthread))
2537 {
2538 /* FIXME: This is a good reason to drop the packet. */
2539 /* Possably, there is a duplicate response. */
2540 /* Possabilities :
2541 retransmit immediatly - race conditions
2542 retransmit after timeout - yes
2543 exit
2544 wait for packet, then exit
2545 */
2546 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2547 return 0; /* I choose simply exiting. */
2548 }
2549 if (*result_count <= 0)
2550 {
2551 if (*done != 1)
2552 {
2553 warning (_("RMT ERROR : failed to get remote thread list."));
2554 result = 0;
2555 }
2556 return result; /* break; */
2557 }
2558 if (*result_count > result_limit)
2559 {
2560 *result_count = 0;
2561 warning (_("RMT ERROR: threadlist response longer than requested."));
2562 return 0;
2563 }
2564 return result;
2565 }
2566
2567 /* This is the interface between remote and threads, remotes upper
2568 interface. */
2569
2570 /* remote_find_new_threads retrieves the thread list and for each
2571 thread in the list, looks up the thread in GDB's internal list,
2572 adding the thread if it does not already exist. This involves
2573 getting partial thread lists from the remote target so, polling the
2574 quit_flag is required. */
2575
2576
2577 static int
2578 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2579 int looplimit)
2580 {
2581 struct remote_state *rs = get_remote_state ();
2582 int done, i, result_count;
2583 int startflag = 1;
2584 int result = 1;
2585 int loopcount = 0;
2586
2587 done = 0;
2588 while (!done)
2589 {
2590 if (loopcount++ > looplimit)
2591 {
2592 result = 0;
2593 warning (_("Remote fetch threadlist -infinite loop-."));
2594 break;
2595 }
2596 if (!remote_get_threadlist (startflag, &rs->nextthread,
2597 MAXTHREADLISTRESULTS,
2598 &done, &result_count, rs->resultthreadlist))
2599 {
2600 result = 0;
2601 break;
2602 }
2603 /* Clear for later iterations. */
2604 startflag = 0;
2605 /* Setup to resume next batch of thread references, set nextthread. */
2606 if (result_count >= 1)
2607 copy_threadref (&rs->nextthread,
2608 &rs->resultthreadlist[result_count - 1]);
2609 i = 0;
2610 while (result_count--)
2611 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2612 break;
2613 }
2614 return result;
2615 }
2616
2617 static int
2618 remote_newthread_step (threadref *ref, void *context)
2619 {
2620 int pid = ptid_get_pid (inferior_ptid);
2621 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2622
2623 if (!in_thread_list (ptid))
2624 add_thread (ptid);
2625 return 1; /* continue iterator */
2626 }
2627
2628 #define CRAZY_MAX_THREADS 1000
2629
2630 static ptid_t
2631 remote_current_thread (ptid_t oldpid)
2632 {
2633 struct remote_state *rs = get_remote_state ();
2634
2635 putpkt ("qC");
2636 getpkt (&rs->buf, &rs->buf_size, 0);
2637 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2638 return read_ptid (&rs->buf[2], NULL);
2639 else
2640 return oldpid;
2641 }
2642
2643 /* Find new threads for info threads command.
2644 * Original version, using John Metzler's thread protocol.
2645 */
2646
2647 static void
2648 remote_find_new_threads (void)
2649 {
2650 remote_threadlist_iterator (remote_newthread_step, 0,
2651 CRAZY_MAX_THREADS);
2652 }
2653
2654 #if defined(HAVE_LIBEXPAT)
2655
2656 typedef struct thread_item
2657 {
2658 ptid_t ptid;
2659 char *extra;
2660 int core;
2661 } thread_item_t;
2662 DEF_VEC_O(thread_item_t);
2663
2664 struct threads_parsing_context
2665 {
2666 VEC (thread_item_t) *items;
2667 };
2668
2669 static void
2670 start_thread (struct gdb_xml_parser *parser,
2671 const struct gdb_xml_element *element,
2672 void *user_data, VEC(gdb_xml_value_s) *attributes)
2673 {
2674 struct threads_parsing_context *data = user_data;
2675
2676 struct thread_item item;
2677 char *id;
2678 struct gdb_xml_value *attr;
2679
2680 id = xml_find_attribute (attributes, "id")->value;
2681 item.ptid = read_ptid (id, NULL);
2682
2683 attr = xml_find_attribute (attributes, "core");
2684 if (attr != NULL)
2685 item.core = *(ULONGEST *) attr->value;
2686 else
2687 item.core = -1;
2688
2689 item.extra = 0;
2690
2691 VEC_safe_push (thread_item_t, data->items, &item);
2692 }
2693
2694 static void
2695 end_thread (struct gdb_xml_parser *parser,
2696 const struct gdb_xml_element *element,
2697 void *user_data, const char *body_text)
2698 {
2699 struct threads_parsing_context *data = user_data;
2700
2701 if (body_text && *body_text)
2702 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2703 }
2704
2705 const struct gdb_xml_attribute thread_attributes[] = {
2706 { "id", GDB_XML_AF_NONE, NULL, NULL },
2707 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2708 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2709 };
2710
2711 const struct gdb_xml_element thread_children[] = {
2712 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2713 };
2714
2715 const struct gdb_xml_element threads_children[] = {
2716 { "thread", thread_attributes, thread_children,
2717 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2718 start_thread, end_thread },
2719 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2720 };
2721
2722 const struct gdb_xml_element threads_elements[] = {
2723 { "threads", NULL, threads_children,
2724 GDB_XML_EF_NONE, NULL, NULL },
2725 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2726 };
2727
2728 /* Discard the contents of the constructed thread info context. */
2729
2730 static void
2731 clear_threads_parsing_context (void *p)
2732 {
2733 struct threads_parsing_context *context = p;
2734 int i;
2735 struct thread_item *item;
2736
2737 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2738 xfree (item->extra);
2739
2740 VEC_free (thread_item_t, context->items);
2741 }
2742
2743 #endif
2744
2745 /*
2746 * Find all threads for info threads command.
2747 * Uses new thread protocol contributed by Cisco.
2748 * Falls back and attempts to use the older method (above)
2749 * if the target doesn't respond to the new method.
2750 */
2751
2752 static void
2753 remote_threads_info (struct target_ops *ops)
2754 {
2755 struct remote_state *rs = get_remote_state ();
2756 char *bufp;
2757 ptid_t new_thread;
2758
2759 if (rs->remote_desc == 0) /* paranoia */
2760 error (_("Command can only be used when connected to the remote target."));
2761
2762 #if defined(HAVE_LIBEXPAT)
2763 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2764 {
2765 char *xml = target_read_stralloc (&current_target,
2766 TARGET_OBJECT_THREADS, NULL);
2767
2768 struct cleanup *back_to = make_cleanup (xfree, xml);
2769
2770 if (xml && *xml)
2771 {
2772 struct threads_parsing_context context;
2773
2774 context.items = NULL;
2775 make_cleanup (clear_threads_parsing_context, &context);
2776
2777 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2778 threads_elements, xml, &context) == 0)
2779 {
2780 int i;
2781 struct thread_item *item;
2782
2783 for (i = 0;
2784 VEC_iterate (thread_item_t, context.items, i, item);
2785 ++i)
2786 {
2787 if (!ptid_equal (item->ptid, null_ptid))
2788 {
2789 struct private_thread_info *info;
2790 /* In non-stop mode, we assume new found threads
2791 are running until proven otherwise with a
2792 stop reply. In all-stop, we can only get
2793 here if all threads are stopped. */
2794 int running = non_stop ? 1 : 0;
2795
2796 remote_notice_new_inferior (item->ptid, running);
2797
2798 info = demand_private_info (item->ptid);
2799 info->core = item->core;
2800 info->extra = item->extra;
2801 item->extra = NULL;
2802 }
2803 }
2804 }
2805 }
2806
2807 do_cleanups (back_to);
2808 return;
2809 }
2810 #endif
2811
2812 if (rs->use_threadinfo_query)
2813 {
2814 putpkt ("qfThreadInfo");
2815 getpkt (&rs->buf, &rs->buf_size, 0);
2816 bufp = rs->buf;
2817 if (bufp[0] != '\0') /* q packet recognized */
2818 {
2819 struct cleanup *old_chain;
2820 char *saved_reply;
2821
2822 /* remote_notice_new_inferior (in the loop below) may make
2823 new RSP calls, which clobber rs->buf. Work with a
2824 copy. */
2825 bufp = saved_reply = xstrdup (rs->buf);
2826 old_chain = make_cleanup (free_current_contents, &saved_reply);
2827
2828 while (*bufp++ == 'm') /* reply contains one or more TID */
2829 {
2830 do
2831 {
2832 new_thread = read_ptid (bufp, &bufp);
2833 if (!ptid_equal (new_thread, null_ptid))
2834 {
2835 /* In non-stop mode, we assume new found threads
2836 are running until proven otherwise with a
2837 stop reply. In all-stop, we can only get
2838 here if all threads are stopped. */
2839 int running = non_stop ? 1 : 0;
2840
2841 remote_notice_new_inferior (new_thread, running);
2842 }
2843 }
2844 while (*bufp++ == ','); /* comma-separated list */
2845 free_current_contents (&saved_reply);
2846 putpkt ("qsThreadInfo");
2847 getpkt (&rs->buf, &rs->buf_size, 0);
2848 bufp = saved_reply = xstrdup (rs->buf);
2849 }
2850 do_cleanups (old_chain);
2851 return; /* done */
2852 }
2853 }
2854
2855 /* Only qfThreadInfo is supported in non-stop mode. */
2856 if (non_stop)
2857 return;
2858
2859 /* Else fall back to old method based on jmetzler protocol. */
2860 rs->use_threadinfo_query = 0;
2861 remote_find_new_threads ();
2862 return;
2863 }
2864
2865 /*
2866 * Collect a descriptive string about the given thread.
2867 * The target may say anything it wants to about the thread
2868 * (typically info about its blocked / runnable state, name, etc.).
2869 * This string will appear in the info threads display.
2870 *
2871 * Optional: targets are not required to implement this function.
2872 */
2873
2874 static char *
2875 remote_threads_extra_info (struct thread_info *tp)
2876 {
2877 struct remote_state *rs = get_remote_state ();
2878 int result;
2879 int set;
2880 threadref id;
2881 struct gdb_ext_thread_info threadinfo;
2882 static char display_buf[100]; /* arbitrary... */
2883 int n = 0; /* position in display_buf */
2884
2885 if (rs->remote_desc == 0) /* paranoia */
2886 internal_error (__FILE__, __LINE__,
2887 _("remote_threads_extra_info"));
2888
2889 if (ptid_equal (tp->ptid, magic_null_ptid)
2890 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2891 /* This is the main thread which was added by GDB. The remote
2892 server doesn't know about it. */
2893 return NULL;
2894
2895 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2896 {
2897 struct thread_info *info = find_thread_ptid (tp->ptid);
2898
2899 if (info && info->private)
2900 return info->private->extra;
2901 else
2902 return NULL;
2903 }
2904
2905 if (rs->use_threadextra_query)
2906 {
2907 char *b = rs->buf;
2908 char *endb = rs->buf + get_remote_packet_size ();
2909
2910 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2911 b += strlen (b);
2912 write_ptid (b, endb, tp->ptid);
2913
2914 putpkt (rs->buf);
2915 getpkt (&rs->buf, &rs->buf_size, 0);
2916 if (rs->buf[0] != 0)
2917 {
2918 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2919 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2920 display_buf [result] = '\0';
2921 return display_buf;
2922 }
2923 }
2924
2925 /* If the above query fails, fall back to the old method. */
2926 rs->use_threadextra_query = 0;
2927 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2928 | TAG_MOREDISPLAY | TAG_DISPLAY;
2929 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2930 if (remote_get_threadinfo (&id, set, &threadinfo))
2931 if (threadinfo.active)
2932 {
2933 if (*threadinfo.shortname)
2934 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2935 " Name: %s,", threadinfo.shortname);
2936 if (*threadinfo.display)
2937 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2938 " State: %s,", threadinfo.display);
2939 if (*threadinfo.more_display)
2940 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2941 " Priority: %s", threadinfo.more_display);
2942
2943 if (n > 0)
2944 {
2945 /* For purely cosmetic reasons, clear up trailing commas. */
2946 if (',' == display_buf[n-1])
2947 display_buf[n-1] = ' ';
2948 return display_buf;
2949 }
2950 }
2951 return NULL;
2952 }
2953 \f
2954
2955 static int
2956 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2957 struct static_tracepoint_marker *marker)
2958 {
2959 struct remote_state *rs = get_remote_state ();
2960 char *p = rs->buf;
2961
2962 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2963 p += strlen (p);
2964 p += hexnumstr (p, addr);
2965 putpkt (rs->buf);
2966 getpkt (&rs->buf, &rs->buf_size, 0);
2967 p = rs->buf;
2968
2969 if (*p == 'E')
2970 error (_("Remote failure reply: %s"), p);
2971
2972 if (*p++ == 'm')
2973 {
2974 parse_static_tracepoint_marker_definition (p, &p, marker);
2975 return 1;
2976 }
2977
2978 return 0;
2979 }
2980
2981 static VEC(static_tracepoint_marker_p) *
2982 remote_static_tracepoint_markers_by_strid (const char *strid)
2983 {
2984 struct remote_state *rs = get_remote_state ();
2985 VEC(static_tracepoint_marker_p) *markers = NULL;
2986 struct static_tracepoint_marker *marker = NULL;
2987 struct cleanup *old_chain;
2988 char *p;
2989
2990 /* Ask for a first packet of static tracepoint marker
2991 definition. */
2992 putpkt ("qTfSTM");
2993 getpkt (&rs->buf, &rs->buf_size, 0);
2994 p = rs->buf;
2995 if (*p == 'E')
2996 error (_("Remote failure reply: %s"), p);
2997
2998 old_chain = make_cleanup (free_current_marker, &marker);
2999
3000 while (*p++ == 'm')
3001 {
3002 if (marker == NULL)
3003 marker = XCNEW (struct static_tracepoint_marker);
3004
3005 do
3006 {
3007 parse_static_tracepoint_marker_definition (p, &p, marker);
3008
3009 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3010 {
3011 VEC_safe_push (static_tracepoint_marker_p,
3012 markers, marker);
3013 marker = NULL;
3014 }
3015 else
3016 {
3017 release_static_tracepoint_marker (marker);
3018 memset (marker, 0, sizeof (*marker));
3019 }
3020 }
3021 while (*p++ == ','); /* comma-separated list */
3022 /* Ask for another packet of static tracepoint definition. */
3023 putpkt ("qTsSTM");
3024 getpkt (&rs->buf, &rs->buf_size, 0);
3025 p = rs->buf;
3026 }
3027
3028 do_cleanups (old_chain);
3029 return markers;
3030 }
3031
3032 \f
3033 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3034
3035 static ptid_t
3036 remote_get_ada_task_ptid (long lwp, long thread)
3037 {
3038 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3039 }
3040 \f
3041
3042 /* Restart the remote side; this is an extended protocol operation. */
3043
3044 static void
3045 extended_remote_restart (void)
3046 {
3047 struct remote_state *rs = get_remote_state ();
3048
3049 /* Send the restart command; for reasons I don't understand the
3050 remote side really expects a number after the "R". */
3051 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3052 putpkt (rs->buf);
3053
3054 remote_fileio_reset ();
3055 }
3056 \f
3057 /* Clean up connection to a remote debugger. */
3058
3059 static void
3060 remote_close (void)
3061 {
3062 struct remote_state *rs = get_remote_state ();
3063
3064 if (rs->remote_desc == NULL)
3065 return; /* already closed */
3066
3067 /* Make sure we leave stdin registered in the event loop, and we
3068 don't leave the async SIGINT signal handler installed. */
3069 remote_terminal_ours ();
3070
3071 serial_close (rs->remote_desc);
3072 rs->remote_desc = NULL;
3073
3074 /* We don't have a connection to the remote stub anymore. Get rid
3075 of all the inferiors and their threads we were controlling.
3076 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3077 will be unable to find the thread corresponding to (pid, 0, 0). */
3078 inferior_ptid = null_ptid;
3079 discard_all_inferiors ();
3080
3081 /* We are closing the remote target, so we should discard
3082 everything of this target. */
3083 discard_pending_stop_replies_in_queue (rs);
3084
3085 if (remote_async_inferior_event_token)
3086 delete_async_event_handler (&remote_async_inferior_event_token);
3087
3088 remote_notif_state_xfree (rs->notif_state);
3089
3090 trace_reset_local_state ();
3091 }
3092
3093 /* Query the remote side for the text, data and bss offsets. */
3094
3095 static void
3096 get_offsets (void)
3097 {
3098 struct remote_state *rs = get_remote_state ();
3099 char *buf;
3100 char *ptr;
3101 int lose, num_segments = 0, do_sections, do_segments;
3102 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3103 struct section_offsets *offs;
3104 struct symfile_segment_data *data;
3105
3106 if (symfile_objfile == NULL)
3107 return;
3108
3109 putpkt ("qOffsets");
3110 getpkt (&rs->buf, &rs->buf_size, 0);
3111 buf = rs->buf;
3112
3113 if (buf[0] == '\000')
3114 return; /* Return silently. Stub doesn't support
3115 this command. */
3116 if (buf[0] == 'E')
3117 {
3118 warning (_("Remote failure reply: %s"), buf);
3119 return;
3120 }
3121
3122 /* Pick up each field in turn. This used to be done with scanf, but
3123 scanf will make trouble if CORE_ADDR size doesn't match
3124 conversion directives correctly. The following code will work
3125 with any size of CORE_ADDR. */
3126 text_addr = data_addr = bss_addr = 0;
3127 ptr = buf;
3128 lose = 0;
3129
3130 if (strncmp (ptr, "Text=", 5) == 0)
3131 {
3132 ptr += 5;
3133 /* Don't use strtol, could lose on big values. */
3134 while (*ptr && *ptr != ';')
3135 text_addr = (text_addr << 4) + fromhex (*ptr++);
3136
3137 if (strncmp (ptr, ";Data=", 6) == 0)
3138 {
3139 ptr += 6;
3140 while (*ptr && *ptr != ';')
3141 data_addr = (data_addr << 4) + fromhex (*ptr++);
3142 }
3143 else
3144 lose = 1;
3145
3146 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3147 {
3148 ptr += 5;
3149 while (*ptr && *ptr != ';')
3150 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3151
3152 if (bss_addr != data_addr)
3153 warning (_("Target reported unsupported offsets: %s"), buf);
3154 }
3155 else
3156 lose = 1;
3157 }
3158 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3159 {
3160 ptr += 8;
3161 /* Don't use strtol, could lose on big values. */
3162 while (*ptr && *ptr != ';')
3163 text_addr = (text_addr << 4) + fromhex (*ptr++);
3164 num_segments = 1;
3165
3166 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3167 {
3168 ptr += 9;
3169 while (*ptr && *ptr != ';')
3170 data_addr = (data_addr << 4) + fromhex (*ptr++);
3171 num_segments++;
3172 }
3173 }
3174 else
3175 lose = 1;
3176
3177 if (lose)
3178 error (_("Malformed response to offset query, %s"), buf);
3179 else if (*ptr != '\0')
3180 warning (_("Target reported unsupported offsets: %s"), buf);
3181
3182 offs = ((struct section_offsets *)
3183 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3184 memcpy (offs, symfile_objfile->section_offsets,
3185 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3186
3187 data = get_symfile_segment_data (symfile_objfile->obfd);
3188 do_segments = (data != NULL);
3189 do_sections = num_segments == 0;
3190
3191 if (num_segments > 0)
3192 {
3193 segments[0] = text_addr;
3194 segments[1] = data_addr;
3195 }
3196 /* If we have two segments, we can still try to relocate everything
3197 by assuming that the .text and .data offsets apply to the whole
3198 text and data segments. Convert the offsets given in the packet
3199 to base addresses for symfile_map_offsets_to_segments. */
3200 else if (data && data->num_segments == 2)
3201 {
3202 segments[0] = data->segment_bases[0] + text_addr;
3203 segments[1] = data->segment_bases[1] + data_addr;
3204 num_segments = 2;
3205 }
3206 /* If the object file has only one segment, assume that it is text
3207 rather than data; main programs with no writable data are rare,
3208 but programs with no code are useless. Of course the code might
3209 have ended up in the data segment... to detect that we would need
3210 the permissions here. */
3211 else if (data && data->num_segments == 1)
3212 {
3213 segments[0] = data->segment_bases[0] + text_addr;
3214 num_segments = 1;
3215 }
3216 /* There's no way to relocate by segment. */
3217 else
3218 do_segments = 0;
3219
3220 if (do_segments)
3221 {
3222 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3223 offs, num_segments, segments);
3224
3225 if (ret == 0 && !do_sections)
3226 error (_("Can not handle qOffsets TextSeg "
3227 "response with this symbol file"));
3228
3229 if (ret > 0)
3230 do_sections = 0;
3231 }
3232
3233 if (data)
3234 free_symfile_segment_data (data);
3235
3236 if (do_sections)
3237 {
3238 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3239
3240 /* This is a temporary kludge to force data and bss to use the
3241 same offsets because that's what nlmconv does now. The real
3242 solution requires changes to the stub and remote.c that I
3243 don't have time to do right now. */
3244
3245 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3246 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3247 }
3248
3249 objfile_relocate (symfile_objfile, offs);
3250 }
3251
3252 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3253 threads we know are stopped already. This is used during the
3254 initial remote connection in non-stop mode --- threads that are
3255 reported as already being stopped are left stopped. */
3256
3257 static int
3258 set_stop_requested_callback (struct thread_info *thread, void *data)
3259 {
3260 /* If we have a stop reply for this thread, it must be stopped. */
3261 if (peek_stop_reply (thread->ptid))
3262 set_stop_requested (thread->ptid, 1);
3263
3264 return 0;
3265 }
3266
3267 /* Send interrupt_sequence to remote target. */
3268 static void
3269 send_interrupt_sequence (void)
3270 {
3271 struct remote_state *rs = get_remote_state ();
3272
3273 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3274 remote_serial_write ("\x03", 1);
3275 else if (interrupt_sequence_mode == interrupt_sequence_break)
3276 serial_send_break (rs->remote_desc);
3277 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3278 {
3279 serial_send_break (rs->remote_desc);
3280 remote_serial_write ("g", 1);
3281 }
3282 else
3283 internal_error (__FILE__, __LINE__,
3284 _("Invalid value for interrupt_sequence_mode: %s."),
3285 interrupt_sequence_mode);
3286 }
3287
3288
3289 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3290 and extract the PTID. Returns NULL_PTID if not found. */
3291
3292 static ptid_t
3293 stop_reply_extract_thread (char *stop_reply)
3294 {
3295 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3296 {
3297 char *p;
3298
3299 /* Txx r:val ; r:val (...) */
3300 p = &stop_reply[3];
3301
3302 /* Look for "register" named "thread". */
3303 while (*p != '\0')
3304 {
3305 char *p1;
3306
3307 p1 = strchr (p, ':');
3308 if (p1 == NULL)
3309 return null_ptid;
3310
3311 if (strncmp (p, "thread", p1 - p) == 0)
3312 return read_ptid (++p1, &p);
3313
3314 p1 = strchr (p, ';');
3315 if (p1 == NULL)
3316 return null_ptid;
3317 p1++;
3318
3319 p = p1;
3320 }
3321 }
3322
3323 return null_ptid;
3324 }
3325
3326 /* Determine the remote side's current thread. If we have a stop
3327 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3328 "thread" register we can extract the current thread from. If not,
3329 ask the remote which is the current thread with qC. The former
3330 method avoids a roundtrip. */
3331
3332 static ptid_t
3333 get_current_thread (char *wait_status)
3334 {
3335 ptid_t ptid;
3336
3337 /* Note we don't use remote_parse_stop_reply as that makes use of
3338 the target architecture, which we haven't yet fully determined at
3339 this point. */
3340 if (wait_status != NULL)
3341 ptid = stop_reply_extract_thread (wait_status);
3342 if (ptid_equal (ptid, null_ptid))
3343 ptid = remote_current_thread (inferior_ptid);
3344
3345 return ptid;
3346 }
3347
3348 /* Query the remote target for which is the current thread/process,
3349 add it to our tables, and update INFERIOR_PTID. The caller is
3350 responsible for setting the state such that the remote end is ready
3351 to return the current thread.
3352
3353 This function is called after handling the '?' or 'vRun' packets,
3354 whose response is a stop reply from which we can also try
3355 extracting the thread. If the target doesn't support the explicit
3356 qC query, we infer the current thread from that stop reply, passed
3357 in in WAIT_STATUS, which may be NULL. */
3358
3359 static void
3360 add_current_inferior_and_thread (char *wait_status)
3361 {
3362 struct remote_state *rs = get_remote_state ();
3363 int fake_pid_p = 0;
3364 ptid_t ptid = null_ptid;
3365
3366 inferior_ptid = null_ptid;
3367
3368 /* Now, if we have thread information, update inferior_ptid. */
3369 ptid = get_current_thread (wait_status);
3370
3371 if (!ptid_equal (ptid, null_ptid))
3372 {
3373 if (!remote_multi_process_p (rs))
3374 fake_pid_p = 1;
3375
3376 inferior_ptid = ptid;
3377 }
3378 else
3379 {
3380 /* Without this, some commands which require an active target
3381 (such as kill) won't work. This variable serves (at least)
3382 double duty as both the pid of the target process (if it has
3383 such), and as a flag indicating that a target is active. */
3384 inferior_ptid = magic_null_ptid;
3385 fake_pid_p = 1;
3386 }
3387
3388 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3389
3390 /* Add the main thread. */
3391 add_thread_silent (inferior_ptid);
3392 }
3393
3394 static void
3395 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3396 {
3397 struct remote_state *rs = get_remote_state ();
3398 struct packet_config *noack_config;
3399 char *wait_status = NULL;
3400
3401 immediate_quit++; /* Allow user to interrupt it. */
3402 QUIT;
3403
3404 if (interrupt_on_connect)
3405 send_interrupt_sequence ();
3406
3407 /* Ack any packet which the remote side has already sent. */
3408 serial_write (rs->remote_desc, "+", 1);
3409
3410 /* Signal other parts that we're going through the initial setup,
3411 and so things may not be stable yet. */
3412 rs->starting_up = 1;
3413
3414 /* The first packet we send to the target is the optional "supported
3415 packets" request. If the target can answer this, it will tell us
3416 which later probes to skip. */
3417 remote_query_supported ();
3418
3419 /* If the stub wants to get a QAllow, compose one and send it. */
3420 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3421 remote_set_permissions ();
3422
3423 /* Next, we possibly activate noack mode.
3424
3425 If the QStartNoAckMode packet configuration is set to AUTO,
3426 enable noack mode if the stub reported a wish for it with
3427 qSupported.
3428
3429 If set to TRUE, then enable noack mode even if the stub didn't
3430 report it in qSupported. If the stub doesn't reply OK, the
3431 session ends with an error.
3432
3433 If FALSE, then don't activate noack mode, regardless of what the
3434 stub claimed should be the default with qSupported. */
3435
3436 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3437
3438 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3439 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3440 && noack_config->support == PACKET_ENABLE))
3441 {
3442 putpkt ("QStartNoAckMode");
3443 getpkt (&rs->buf, &rs->buf_size, 0);
3444 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3445 rs->noack_mode = 1;
3446 }
3447
3448 if (extended_p)
3449 {
3450 /* Tell the remote that we are using the extended protocol. */
3451 putpkt ("!");
3452 getpkt (&rs->buf, &rs->buf_size, 0);
3453 }
3454
3455 /* Let the target know which signals it is allowed to pass down to
3456 the program. */
3457 update_signals_program_target ();
3458
3459 /* Next, if the target can specify a description, read it. We do
3460 this before anything involving memory or registers. */
3461 target_find_description ();
3462
3463 /* Next, now that we know something about the target, update the
3464 address spaces in the program spaces. */
3465 update_address_spaces ();
3466
3467 /* On OSs where the list of libraries is global to all
3468 processes, we fetch them early. */
3469 if (gdbarch_has_global_solist (target_gdbarch ()))
3470 solib_add (NULL, from_tty, target, auto_solib_add);
3471
3472 if (non_stop)
3473 {
3474 if (!rs->non_stop_aware)
3475 error (_("Non-stop mode requested, but remote "
3476 "does not support non-stop"));
3477
3478 putpkt ("QNonStop:1");
3479 getpkt (&rs->buf, &rs->buf_size, 0);
3480
3481 if (strcmp (rs->buf, "OK") != 0)
3482 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3483
3484 /* Find about threads and processes the stub is already
3485 controlling. We default to adding them in the running state.
3486 The '?' query below will then tell us about which threads are
3487 stopped. */
3488 remote_threads_info (target);
3489 }
3490 else if (rs->non_stop_aware)
3491 {
3492 /* Don't assume that the stub can operate in all-stop mode.
3493 Request it explicitly. */
3494 putpkt ("QNonStop:0");
3495 getpkt (&rs->buf, &rs->buf_size, 0);
3496
3497 if (strcmp (rs->buf, "OK") != 0)
3498 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3499 }
3500
3501 /* Upload TSVs regardless of whether the target is running or not. The
3502 remote stub, such as GDBserver, may have some predefined or builtin
3503 TSVs, even if the target is not running. */
3504 if (remote_get_trace_status (current_trace_status ()) != -1)
3505 {
3506 struct uploaded_tsv *uploaded_tsvs = NULL;
3507
3508 remote_upload_trace_state_variables (&uploaded_tsvs);
3509 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3510 }
3511
3512 /* Check whether the target is running now. */
3513 putpkt ("?");
3514 getpkt (&rs->buf, &rs->buf_size, 0);
3515
3516 if (!non_stop)
3517 {
3518 ptid_t ptid;
3519 int fake_pid_p = 0;
3520 struct inferior *inf;
3521
3522 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3523 {
3524 if (!extended_p)
3525 error (_("The target is not running (try extended-remote?)"));
3526
3527 /* We're connected, but not running. Drop out before we
3528 call start_remote. */
3529 rs->starting_up = 0;
3530 return;
3531 }
3532 else
3533 {
3534 /* Save the reply for later. */
3535 wait_status = alloca (strlen (rs->buf) + 1);
3536 strcpy (wait_status, rs->buf);
3537 }
3538
3539 /* Fetch thread list. */
3540 target_find_new_threads ();
3541
3542 /* Let the stub know that we want it to return the thread. */
3543 set_continue_thread (minus_one_ptid);
3544
3545 if (thread_count () == 0)
3546 {
3547 /* Target has no concept of threads at all. GDB treats
3548 non-threaded target as single-threaded; add a main
3549 thread. */
3550 add_current_inferior_and_thread (wait_status);
3551 }
3552 else
3553 {
3554 /* We have thread information; select the thread the target
3555 says should be current. If we're reconnecting to a
3556 multi-threaded program, this will ideally be the thread
3557 that last reported an event before GDB disconnected. */
3558 inferior_ptid = get_current_thread (wait_status);
3559 if (ptid_equal (inferior_ptid, null_ptid))
3560 {
3561 /* Odd... The target was able to list threads, but not
3562 tell us which thread was current (no "thread"
3563 register in T stop reply?). Just pick the first
3564 thread in the thread list then. */
3565 inferior_ptid = thread_list->ptid;
3566 }
3567 }
3568
3569 /* init_wait_for_inferior should be called before get_offsets in order
3570 to manage `inserted' flag in bp loc in a correct state.
3571 breakpoint_init_inferior, called from init_wait_for_inferior, set
3572 `inserted' flag to 0, while before breakpoint_re_set, called from
3573 start_remote, set `inserted' flag to 1. In the initialization of
3574 inferior, breakpoint_init_inferior should be called first, and then
3575 breakpoint_re_set can be called. If this order is broken, state of
3576 `inserted' flag is wrong, and cause some problems on breakpoint
3577 manipulation. */
3578 init_wait_for_inferior ();
3579
3580 get_offsets (); /* Get text, data & bss offsets. */
3581
3582 /* If we could not find a description using qXfer, and we know
3583 how to do it some other way, try again. This is not
3584 supported for non-stop; it could be, but it is tricky if
3585 there are no stopped threads when we connect. */
3586 if (remote_read_description_p (target)
3587 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3588 {
3589 target_clear_description ();
3590 target_find_description ();
3591 }
3592
3593 /* Use the previously fetched status. */
3594 gdb_assert (wait_status != NULL);
3595 strcpy (rs->buf, wait_status);
3596 rs->cached_wait_status = 1;
3597
3598 immediate_quit--;
3599 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3600 }
3601 else
3602 {
3603 /* Clear WFI global state. Do this before finding about new
3604 threads and inferiors, and setting the current inferior.
3605 Otherwise we would clear the proceed status of the current
3606 inferior when we want its stop_soon state to be preserved
3607 (see notice_new_inferior). */
3608 init_wait_for_inferior ();
3609
3610 /* In non-stop, we will either get an "OK", meaning that there
3611 are no stopped threads at this time; or, a regular stop
3612 reply. In the latter case, there may be more than one thread
3613 stopped --- we pull them all out using the vStopped
3614 mechanism. */
3615 if (strcmp (rs->buf, "OK") != 0)
3616 {
3617 struct notif_client *notif = &notif_client_stop;
3618
3619 /* remote_notif_get_pending_replies acks this one, and gets
3620 the rest out. */
3621 rs->notif_state->pending_event[notif_client_stop.id]
3622 = remote_notif_parse (notif, rs->buf);
3623 remote_notif_get_pending_events (notif);
3624
3625 /* Make sure that threads that were stopped remain
3626 stopped. */
3627 iterate_over_threads (set_stop_requested_callback, NULL);
3628 }
3629
3630 if (target_can_async_p ())
3631 target_async (inferior_event_handler, 0);
3632
3633 if (thread_count () == 0)
3634 {
3635 if (!extended_p)
3636 error (_("The target is not running (try extended-remote?)"));
3637
3638 /* We're connected, but not running. Drop out before we
3639 call start_remote. */
3640 rs->starting_up = 0;
3641 return;
3642 }
3643
3644 /* Let the stub know that we want it to return the thread. */
3645
3646 /* Force the stub to choose a thread. */
3647 set_general_thread (null_ptid);
3648
3649 /* Query it. */
3650 inferior_ptid = remote_current_thread (minus_one_ptid);
3651 if (ptid_equal (inferior_ptid, minus_one_ptid))
3652 error (_("remote didn't report the current thread in non-stop mode"));
3653
3654 get_offsets (); /* Get text, data & bss offsets. */
3655
3656 /* In non-stop mode, any cached wait status will be stored in
3657 the stop reply queue. */
3658 gdb_assert (wait_status == NULL);
3659
3660 /* Report all signals during attach/startup. */
3661 remote_pass_signals (0, NULL);
3662 }
3663
3664 /* If we connected to a live target, do some additional setup. */
3665 if (target_has_execution)
3666 {
3667 if (symfile_objfile) /* No use without a symbol-file. */
3668 remote_check_symbols ();
3669 }
3670
3671 /* Possibly the target has been engaged in a trace run started
3672 previously; find out where things are at. */
3673 if (remote_get_trace_status (current_trace_status ()) != -1)
3674 {
3675 struct uploaded_tp *uploaded_tps = NULL;
3676
3677 if (current_trace_status ()->running)
3678 printf_filtered (_("Trace is already running on the target.\n"));
3679
3680 remote_upload_tracepoints (&uploaded_tps);
3681
3682 merge_uploaded_tracepoints (&uploaded_tps);
3683 }
3684
3685 /* The thread and inferior lists are now synchronized with the
3686 target, our symbols have been relocated, and we're merged the
3687 target's tracepoints with ours. We're done with basic start
3688 up. */
3689 rs->starting_up = 0;
3690
3691 /* If breakpoints are global, insert them now. */
3692 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3693 && breakpoints_always_inserted_mode ())
3694 insert_breakpoints ();
3695 }
3696
3697 /* Open a connection to a remote debugger.
3698 NAME is the filename used for communication. */
3699
3700 static void
3701 remote_open (char *name, int from_tty)
3702 {
3703 remote_open_1 (name, from_tty, &remote_ops, 0);
3704 }
3705
3706 /* Open a connection to a remote debugger using the extended
3707 remote gdb protocol. NAME is the filename used for communication. */
3708
3709 static void
3710 extended_remote_open (char *name, int from_tty)
3711 {
3712 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3713 }
3714
3715 /* Generic code for opening a connection to a remote target. */
3716
3717 static void
3718 init_all_packet_configs (void)
3719 {
3720 int i;
3721
3722 for (i = 0; i < PACKET_MAX; i++)
3723 update_packet_config (&remote_protocol_packets[i]);
3724 }
3725
3726 /* Symbol look-up. */
3727
3728 static void
3729 remote_check_symbols (void)
3730 {
3731 struct remote_state *rs = get_remote_state ();
3732 char *msg, *reply, *tmp;
3733 struct minimal_symbol *sym;
3734 int end;
3735
3736 /* The remote side has no concept of inferiors that aren't running
3737 yet, it only knows about running processes. If we're connected
3738 but our current inferior is not running, we should not invite the
3739 remote target to request symbol lookups related to its
3740 (unrelated) current process. */
3741 if (!target_has_execution)
3742 return;
3743
3744 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3745 return;
3746
3747 /* Make sure the remote is pointing at the right process. Note
3748 there's no way to select "no process". */
3749 set_general_process ();
3750
3751 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3752 because we need both at the same time. */
3753 msg = alloca (get_remote_packet_size ());
3754
3755 /* Invite target to request symbol lookups. */
3756
3757 putpkt ("qSymbol::");
3758 getpkt (&rs->buf, &rs->buf_size, 0);
3759 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3760 reply = rs->buf;
3761
3762 while (strncmp (reply, "qSymbol:", 8) == 0)
3763 {
3764 tmp = &reply[8];
3765 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3766 msg[end] = '\0';
3767 sym = lookup_minimal_symbol (msg, NULL, NULL);
3768 if (sym == NULL)
3769 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3770 else
3771 {
3772 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3773 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3774
3775 /* If this is a function address, return the start of code
3776 instead of any data function descriptor. */
3777 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3778 sym_addr,
3779 &current_target);
3780
3781 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3782 phex_nz (sym_addr, addr_size), &reply[8]);
3783 }
3784
3785 putpkt (msg);
3786 getpkt (&rs->buf, &rs->buf_size, 0);
3787 reply = rs->buf;
3788 }
3789 }
3790
3791 static struct serial *
3792 remote_serial_open (char *name)
3793 {
3794 static int udp_warning = 0;
3795
3796 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3797 of in ser-tcp.c, because it is the remote protocol assuming that the
3798 serial connection is reliable and not the serial connection promising
3799 to be. */
3800 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3801 {
3802 warning (_("The remote protocol may be unreliable over UDP.\n"
3803 "Some events may be lost, rendering further debugging "
3804 "impossible."));
3805 udp_warning = 1;
3806 }
3807
3808 return serial_open (name);
3809 }
3810
3811 /* Inform the target of our permission settings. The permission flags
3812 work without this, but if the target knows the settings, it can do
3813 a couple things. First, it can add its own check, to catch cases
3814 that somehow manage to get by the permissions checks in target
3815 methods. Second, if the target is wired to disallow particular
3816 settings (for instance, a system in the field that is not set up to
3817 be able to stop at a breakpoint), it can object to any unavailable
3818 permissions. */
3819
3820 void
3821 remote_set_permissions (void)
3822 {
3823 struct remote_state *rs = get_remote_state ();
3824
3825 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3826 "WriteReg:%x;WriteMem:%x;"
3827 "InsertBreak:%x;InsertTrace:%x;"
3828 "InsertFastTrace:%x;Stop:%x",
3829 may_write_registers, may_write_memory,
3830 may_insert_breakpoints, may_insert_tracepoints,
3831 may_insert_fast_tracepoints, may_stop);
3832 putpkt (rs->buf);
3833 getpkt (&rs->buf, &rs->buf_size, 0);
3834
3835 /* If the target didn't like the packet, warn the user. Do not try
3836 to undo the user's settings, that would just be maddening. */
3837 if (strcmp (rs->buf, "OK") != 0)
3838 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3839 }
3840
3841 /* This type describes each known response to the qSupported
3842 packet. */
3843 struct protocol_feature
3844 {
3845 /* The name of this protocol feature. */
3846 const char *name;
3847
3848 /* The default for this protocol feature. */
3849 enum packet_support default_support;
3850
3851 /* The function to call when this feature is reported, or after
3852 qSupported processing if the feature is not supported.
3853 The first argument points to this structure. The second
3854 argument indicates whether the packet requested support be
3855 enabled, disabled, or probed (or the default, if this function
3856 is being called at the end of processing and this feature was
3857 not reported). The third argument may be NULL; if not NULL, it
3858 is a NUL-terminated string taken from the packet following
3859 this feature's name and an equals sign. */
3860 void (*func) (const struct protocol_feature *, enum packet_support,
3861 const char *);
3862
3863 /* The corresponding packet for this feature. Only used if
3864 FUNC is remote_supported_packet. */
3865 int packet;
3866 };
3867
3868 static void
3869 remote_supported_packet (const struct protocol_feature *feature,
3870 enum packet_support support,
3871 const char *argument)
3872 {
3873 if (argument)
3874 {
3875 warning (_("Remote qSupported response supplied an unexpected value for"
3876 " \"%s\"."), feature->name);
3877 return;
3878 }
3879
3880 if (remote_protocol_packets[feature->packet].support
3881 == PACKET_SUPPORT_UNKNOWN)
3882 remote_protocol_packets[feature->packet].support = support;
3883 }
3884
3885 static void
3886 remote_packet_size (const struct protocol_feature *feature,
3887 enum packet_support support, const char *value)
3888 {
3889 struct remote_state *rs = get_remote_state ();
3890
3891 int packet_size;
3892 char *value_end;
3893
3894 if (support != PACKET_ENABLE)
3895 return;
3896
3897 if (value == NULL || *value == '\0')
3898 {
3899 warning (_("Remote target reported \"%s\" without a size."),
3900 feature->name);
3901 return;
3902 }
3903
3904 errno = 0;
3905 packet_size = strtol (value, &value_end, 16);
3906 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3907 {
3908 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3909 feature->name, value);
3910 return;
3911 }
3912
3913 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3914 {
3915 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3916 packet_size, MAX_REMOTE_PACKET_SIZE);
3917 packet_size = MAX_REMOTE_PACKET_SIZE;
3918 }
3919
3920 /* Record the new maximum packet size. */
3921 rs->explicit_packet_size = packet_size;
3922 }
3923
3924 static void
3925 remote_multi_process_feature (const struct protocol_feature *feature,
3926 enum packet_support support, const char *value)
3927 {
3928 struct remote_state *rs = get_remote_state ();
3929
3930 rs->multi_process_aware = (support == PACKET_ENABLE);
3931 }
3932
3933 static void
3934 remote_non_stop_feature (const struct protocol_feature *feature,
3935 enum packet_support support, const char *value)
3936 {
3937 struct remote_state *rs = get_remote_state ();
3938
3939 rs->non_stop_aware = (support == PACKET_ENABLE);
3940 }
3941
3942 static void
3943 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3944 enum packet_support support,
3945 const char *value)
3946 {
3947 struct remote_state *rs = get_remote_state ();
3948
3949 rs->cond_tracepoints = (support == PACKET_ENABLE);
3950 }
3951
3952 static void
3953 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3954 enum packet_support support,
3955 const char *value)
3956 {
3957 struct remote_state *rs = get_remote_state ();
3958
3959 rs->cond_breakpoints = (support == PACKET_ENABLE);
3960 }
3961
3962 static void
3963 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3964 enum packet_support support,
3965 const char *value)
3966 {
3967 struct remote_state *rs = get_remote_state ();
3968
3969 rs->breakpoint_commands = (support == PACKET_ENABLE);
3970 }
3971
3972 static void
3973 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3974 enum packet_support support,
3975 const char *value)
3976 {
3977 struct remote_state *rs = get_remote_state ();
3978
3979 rs->fast_tracepoints = (support == PACKET_ENABLE);
3980 }
3981
3982 static void
3983 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3984 enum packet_support support,
3985 const char *value)
3986 {
3987 struct remote_state *rs = get_remote_state ();
3988
3989 rs->static_tracepoints = (support == PACKET_ENABLE);
3990 }
3991
3992 static void
3993 remote_install_in_trace_feature (const struct protocol_feature *feature,
3994 enum packet_support support,
3995 const char *value)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998
3999 rs->install_in_trace = (support == PACKET_ENABLE);
4000 }
4001
4002 static void
4003 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
4004 enum packet_support support,
4005 const char *value)
4006 {
4007 struct remote_state *rs = get_remote_state ();
4008
4009 rs->disconnected_tracing = (support == PACKET_ENABLE);
4010 }
4011
4012 static void
4013 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
4014 enum packet_support support,
4015 const char *value)
4016 {
4017 struct remote_state *rs = get_remote_state ();
4018
4019 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
4020 }
4021
4022 static void
4023 remote_string_tracing_feature (const struct protocol_feature *feature,
4024 enum packet_support support,
4025 const char *value)
4026 {
4027 struct remote_state *rs = get_remote_state ();
4028
4029 rs->string_tracing = (support == PACKET_ENABLE);
4030 }
4031
4032 static void
4033 remote_augmented_libraries_svr4_read_feature
4034 (const struct protocol_feature *feature,
4035 enum packet_support support, const char *value)
4036 {
4037 struct remote_state *rs = get_remote_state ();
4038
4039 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
4040 }
4041
4042 static const struct protocol_feature remote_protocol_features[] = {
4043 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4044 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4045 PACKET_qXfer_auxv },
4046 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4047 PACKET_qXfer_features },
4048 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4049 PACKET_qXfer_libraries },
4050 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4051 PACKET_qXfer_libraries_svr4 },
4052 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4053 remote_augmented_libraries_svr4_read_feature, -1 },
4054 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4055 PACKET_qXfer_memory_map },
4056 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4057 PACKET_qXfer_spu_read },
4058 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4059 PACKET_qXfer_spu_write },
4060 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4061 PACKET_qXfer_osdata },
4062 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4063 PACKET_qXfer_threads },
4064 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4065 PACKET_qXfer_traceframe_info },
4066 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4067 PACKET_QPassSignals },
4068 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4069 PACKET_QProgramSignals },
4070 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4071 PACKET_QStartNoAckMode },
4072 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4073 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4074 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4075 PACKET_qXfer_siginfo_read },
4076 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4077 PACKET_qXfer_siginfo_write },
4078 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4079 PACKET_ConditionalTracepoints },
4080 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4081 PACKET_ConditionalBreakpoints },
4082 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4083 PACKET_BreakpointCommands },
4084 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4085 PACKET_FastTracepoints },
4086 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4087 PACKET_StaticTracepoints },
4088 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4089 PACKET_InstallInTrace},
4090 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4091 -1 },
4092 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4093 PACKET_bc },
4094 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4095 PACKET_bs },
4096 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4097 PACKET_TracepointSource },
4098 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4099 PACKET_QAllow },
4100 { "EnableDisableTracepoints", PACKET_DISABLE,
4101 remote_enable_disable_tracepoint_feature, -1 },
4102 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4103 PACKET_qXfer_fdpic },
4104 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4105 PACKET_qXfer_uib },
4106 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4107 PACKET_QDisableRandomization },
4108 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4109 { "QTBuffer:size", PACKET_DISABLE,
4110 remote_supported_packet, PACKET_QTBuffer_size},
4111 { "tracenz", PACKET_DISABLE,
4112 remote_string_tracing_feature, -1 },
4113 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4114 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4115 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4116 PACKET_qXfer_btrace }
4117 };
4118
4119 static char *remote_support_xml;
4120
4121 /* Register string appended to "xmlRegisters=" in qSupported query. */
4122
4123 void
4124 register_remote_support_xml (const char *xml)
4125 {
4126 #if defined(HAVE_LIBEXPAT)
4127 if (remote_support_xml == NULL)
4128 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4129 else
4130 {
4131 char *copy = xstrdup (remote_support_xml + 13);
4132 char *p = strtok (copy, ",");
4133
4134 do
4135 {
4136 if (strcmp (p, xml) == 0)
4137 {
4138 /* already there */
4139 xfree (copy);
4140 return;
4141 }
4142 }
4143 while ((p = strtok (NULL, ",")) != NULL);
4144 xfree (copy);
4145
4146 remote_support_xml = reconcat (remote_support_xml,
4147 remote_support_xml, ",", xml,
4148 (char *) NULL);
4149 }
4150 #endif
4151 }
4152
4153 static char *
4154 remote_query_supported_append (char *msg, const char *append)
4155 {
4156 if (msg)
4157 return reconcat (msg, msg, ";", append, (char *) NULL);
4158 else
4159 return xstrdup (append);
4160 }
4161
4162 static void
4163 remote_query_supported (void)
4164 {
4165 struct remote_state *rs = get_remote_state ();
4166 char *next;
4167 int i;
4168 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4169
4170 /* The packet support flags are handled differently for this packet
4171 than for most others. We treat an error, a disabled packet, and
4172 an empty response identically: any features which must be reported
4173 to be used will be automatically disabled. An empty buffer
4174 accomplishes this, since that is also the representation for a list
4175 containing no features. */
4176
4177 rs->buf[0] = 0;
4178 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4179 {
4180 char *q = NULL;
4181 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4182
4183 q = remote_query_supported_append (q, "multiprocess+");
4184
4185 if (remote_support_xml)
4186 q = remote_query_supported_append (q, remote_support_xml);
4187
4188 q = remote_query_supported_append (q, "qRelocInsn+");
4189
4190 q = reconcat (q, "qSupported:", q, (char *) NULL);
4191 putpkt (q);
4192
4193 do_cleanups (old_chain);
4194
4195 getpkt (&rs->buf, &rs->buf_size, 0);
4196
4197 /* If an error occured, warn, but do not return - just reset the
4198 buffer to empty and go on to disable features. */
4199 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4200 == PACKET_ERROR)
4201 {
4202 warning (_("Remote failure reply: %s"), rs->buf);
4203 rs->buf[0] = 0;
4204 }
4205 }
4206
4207 memset (seen, 0, sizeof (seen));
4208
4209 next = rs->buf;
4210 while (*next)
4211 {
4212 enum packet_support is_supported;
4213 char *p, *end, *name_end, *value;
4214
4215 /* First separate out this item from the rest of the packet. If
4216 there's another item after this, we overwrite the separator
4217 (terminated strings are much easier to work with). */
4218 p = next;
4219 end = strchr (p, ';');
4220 if (end == NULL)
4221 {
4222 end = p + strlen (p);
4223 next = end;
4224 }
4225 else
4226 {
4227 *end = '\0';
4228 next = end + 1;
4229
4230 if (end == p)
4231 {
4232 warning (_("empty item in \"qSupported\" response"));
4233 continue;
4234 }
4235 }
4236
4237 name_end = strchr (p, '=');
4238 if (name_end)
4239 {
4240 /* This is a name=value entry. */
4241 is_supported = PACKET_ENABLE;
4242 value = name_end + 1;
4243 *name_end = '\0';
4244 }
4245 else
4246 {
4247 value = NULL;
4248 switch (end[-1])
4249 {
4250 case '+':
4251 is_supported = PACKET_ENABLE;
4252 break;
4253
4254 case '-':
4255 is_supported = PACKET_DISABLE;
4256 break;
4257
4258 case '?':
4259 is_supported = PACKET_SUPPORT_UNKNOWN;
4260 break;
4261
4262 default:
4263 warning (_("unrecognized item \"%s\" "
4264 "in \"qSupported\" response"), p);
4265 continue;
4266 }
4267 end[-1] = '\0';
4268 }
4269
4270 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4271 if (strcmp (remote_protocol_features[i].name, p) == 0)
4272 {
4273 const struct protocol_feature *feature;
4274
4275 seen[i] = 1;
4276 feature = &remote_protocol_features[i];
4277 feature->func (feature, is_supported, value);
4278 break;
4279 }
4280 }
4281
4282 /* If we increased the packet size, make sure to increase the global
4283 buffer size also. We delay this until after parsing the entire
4284 qSupported packet, because this is the same buffer we were
4285 parsing. */
4286 if (rs->buf_size < rs->explicit_packet_size)
4287 {
4288 rs->buf_size = rs->explicit_packet_size;
4289 rs->buf = xrealloc (rs->buf, rs->buf_size);
4290 }
4291
4292 /* Handle the defaults for unmentioned features. */
4293 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4294 if (!seen[i])
4295 {
4296 const struct protocol_feature *feature;
4297
4298 feature = &remote_protocol_features[i];
4299 feature->func (feature, feature->default_support, NULL);
4300 }
4301 }
4302
4303 /* Remove any of the remote.c targets from target stack. Upper targets depend
4304 on it so remove them first. */
4305
4306 static void
4307 remote_unpush_target (void)
4308 {
4309 pop_all_targets_above (process_stratum - 1);
4310 }
4311
4312 static void
4313 remote_open_1 (char *name, int from_tty,
4314 struct target_ops *target, int extended_p)
4315 {
4316 struct remote_state *rs = get_remote_state ();
4317
4318 if (name == 0)
4319 error (_("To open a remote debug connection, you need to specify what\n"
4320 "serial device is attached to the remote system\n"
4321 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4322
4323 /* See FIXME above. */
4324 if (!target_async_permitted)
4325 wait_forever_enabled_p = 1;
4326
4327 /* If we're connected to a running target, target_preopen will kill it.
4328 Ask this question first, before target_preopen has a chance to kill
4329 anything. */
4330 if (rs->remote_desc != NULL && !have_inferiors ())
4331 {
4332 if (from_tty
4333 && !query (_("Already connected to a remote target. Disconnect? ")))
4334 error (_("Still connected."));
4335 }
4336
4337 /* Here the possibly existing remote target gets unpushed. */
4338 target_preopen (from_tty);
4339
4340 /* Make sure we send the passed signals list the next time we resume. */
4341 xfree (rs->last_pass_packet);
4342 rs->last_pass_packet = NULL;
4343
4344 /* Make sure we send the program signals list the next time we
4345 resume. */
4346 xfree (rs->last_program_signals_packet);
4347 rs->last_program_signals_packet = NULL;
4348
4349 remote_fileio_reset ();
4350 reopen_exec_file ();
4351 reread_symbols ();
4352
4353 rs->remote_desc = remote_serial_open (name);
4354 if (!rs->remote_desc)
4355 perror_with_name (name);
4356
4357 if (baud_rate != -1)
4358 {
4359 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4360 {
4361 /* The requested speed could not be set. Error out to
4362 top level after closing remote_desc. Take care to
4363 set remote_desc to NULL to avoid closing remote_desc
4364 more than once. */
4365 serial_close (rs->remote_desc);
4366 rs->remote_desc = NULL;
4367 perror_with_name (name);
4368 }
4369 }
4370
4371 serial_raw (rs->remote_desc);
4372
4373 /* If there is something sitting in the buffer we might take it as a
4374 response to a command, which would be bad. */
4375 serial_flush_input (rs->remote_desc);
4376
4377 if (from_tty)
4378 {
4379 puts_filtered ("Remote debugging using ");
4380 puts_filtered (name);
4381 puts_filtered ("\n");
4382 }
4383 push_target (target); /* Switch to using remote target now. */
4384
4385 /* Register extra event sources in the event loop. */
4386 remote_async_inferior_event_token
4387 = create_async_event_handler (remote_async_inferior_event_handler,
4388 NULL);
4389 rs->notif_state = remote_notif_state_allocate ();
4390
4391 /* Reset the target state; these things will be queried either by
4392 remote_query_supported or as they are needed. */
4393 init_all_packet_configs ();
4394 rs->cached_wait_status = 0;
4395 rs->explicit_packet_size = 0;
4396 rs->noack_mode = 0;
4397 rs->multi_process_aware = 0;
4398 rs->extended = extended_p;
4399 rs->non_stop_aware = 0;
4400 rs->waiting_for_stop_reply = 0;
4401 rs->ctrlc_pending_p = 0;
4402
4403 rs->general_thread = not_sent_ptid;
4404 rs->continue_thread = not_sent_ptid;
4405 rs->remote_traceframe_number = -1;
4406
4407 /* Probe for ability to use "ThreadInfo" query, as required. */
4408 rs->use_threadinfo_query = 1;
4409 rs->use_threadextra_query = 1;
4410
4411 if (target_async_permitted)
4412 {
4413 /* With this target we start out by owning the terminal. */
4414 remote_async_terminal_ours_p = 1;
4415
4416 /* FIXME: cagney/1999-09-23: During the initial connection it is
4417 assumed that the target is already ready and able to respond to
4418 requests. Unfortunately remote_start_remote() eventually calls
4419 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4420 around this. Eventually a mechanism that allows
4421 wait_for_inferior() to expect/get timeouts will be
4422 implemented. */
4423 wait_forever_enabled_p = 0;
4424 }
4425
4426 /* First delete any symbols previously loaded from shared libraries. */
4427 no_shared_libraries (NULL, 0);
4428
4429 /* Start afresh. */
4430 init_thread_list ();
4431
4432 /* Start the remote connection. If error() or QUIT, discard this
4433 target (we'd otherwise be in an inconsistent state) and then
4434 propogate the error on up the exception chain. This ensures that
4435 the caller doesn't stumble along blindly assuming that the
4436 function succeeded. The CLI doesn't have this problem but other
4437 UI's, such as MI do.
4438
4439 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4440 this function should return an error indication letting the
4441 caller restore the previous state. Unfortunately the command
4442 ``target remote'' is directly wired to this function making that
4443 impossible. On a positive note, the CLI side of this problem has
4444 been fixed - the function set_cmd_context() makes it possible for
4445 all the ``target ....'' commands to share a common callback
4446 function. See cli-dump.c. */
4447 {
4448 volatile struct gdb_exception ex;
4449
4450 TRY_CATCH (ex, RETURN_MASK_ALL)
4451 {
4452 remote_start_remote (from_tty, target, extended_p);
4453 }
4454 if (ex.reason < 0)
4455 {
4456 /* Pop the partially set up target - unless something else did
4457 already before throwing the exception. */
4458 if (rs->remote_desc != NULL)
4459 remote_unpush_target ();
4460 if (target_async_permitted)
4461 wait_forever_enabled_p = 1;
4462 throw_exception (ex);
4463 }
4464 }
4465
4466 if (target_async_permitted)
4467 wait_forever_enabled_p = 1;
4468 }
4469
4470 /* This takes a program previously attached to and detaches it. After
4471 this is done, GDB can be used to debug some other program. We
4472 better not have left any breakpoints in the target program or it'll
4473 die when it hits one. */
4474
4475 static void
4476 remote_detach_1 (const char *args, int from_tty, int extended)
4477 {
4478 int pid = ptid_get_pid (inferior_ptid);
4479 struct remote_state *rs = get_remote_state ();
4480
4481 if (args)
4482 error (_("Argument given to \"detach\" when remotely debugging."));
4483
4484 if (!target_has_execution)
4485 error (_("No process to detach from."));
4486
4487 if (from_tty)
4488 {
4489 char *exec_file = get_exec_file (0);
4490 if (exec_file == NULL)
4491 exec_file = "";
4492 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4493 target_pid_to_str (pid_to_ptid (pid)));
4494 gdb_flush (gdb_stdout);
4495 }
4496
4497 /* Tell the remote target to detach. */
4498 if (remote_multi_process_p (rs))
4499 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4500 else
4501 strcpy (rs->buf, "D");
4502
4503 putpkt (rs->buf);
4504 getpkt (&rs->buf, &rs->buf_size, 0);
4505
4506 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4507 ;
4508 else if (rs->buf[0] == '\0')
4509 error (_("Remote doesn't know how to detach"));
4510 else
4511 error (_("Can't detach process."));
4512
4513 if (from_tty && !extended)
4514 puts_filtered (_("Ending remote debugging.\n"));
4515
4516 target_mourn_inferior ();
4517 }
4518
4519 static void
4520 remote_detach (struct target_ops *ops, const char *args, int from_tty)
4521 {
4522 remote_detach_1 (args, from_tty, 0);
4523 }
4524
4525 static void
4526 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
4527 {
4528 remote_detach_1 (args, from_tty, 1);
4529 }
4530
4531 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4532
4533 static void
4534 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4535 {
4536 if (args)
4537 error (_("Argument given to \"disconnect\" when remotely debugging."));
4538
4539 /* Make sure we unpush even the extended remote targets; mourn
4540 won't do it. So call remote_mourn_1 directly instead of
4541 target_mourn_inferior. */
4542 remote_mourn_1 (target);
4543
4544 if (from_tty)
4545 puts_filtered ("Ending remote debugging.\n");
4546 }
4547
4548 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4549 be chatty about it. */
4550
4551 static void
4552 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4553 {
4554 struct remote_state *rs = get_remote_state ();
4555 int pid;
4556 char *wait_status = NULL;
4557
4558 pid = parse_pid_to_attach (args);
4559
4560 /* Remote PID can be freely equal to getpid, do not check it here the same
4561 way as in other targets. */
4562
4563 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4564 error (_("This target does not support attaching to a process"));
4565
4566 if (from_tty)
4567 {
4568 char *exec_file = get_exec_file (0);
4569
4570 if (exec_file)
4571 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4572 target_pid_to_str (pid_to_ptid (pid)));
4573 else
4574 printf_unfiltered (_("Attaching to %s\n"),
4575 target_pid_to_str (pid_to_ptid (pid)));
4576
4577 gdb_flush (gdb_stdout);
4578 }
4579
4580 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4581 putpkt (rs->buf);
4582 getpkt (&rs->buf, &rs->buf_size, 0);
4583
4584 if (packet_ok (rs->buf,
4585 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4586 {
4587 if (!non_stop)
4588 {
4589 /* Save the reply for later. */
4590 wait_status = alloca (strlen (rs->buf) + 1);
4591 strcpy (wait_status, rs->buf);
4592 }
4593 else if (strcmp (rs->buf, "OK") != 0)
4594 error (_("Attaching to %s failed with: %s"),
4595 target_pid_to_str (pid_to_ptid (pid)),
4596 rs->buf);
4597 }
4598 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4599 error (_("This target does not support attaching to a process"));
4600 else
4601 error (_("Attaching to %s failed"),
4602 target_pid_to_str (pid_to_ptid (pid)));
4603
4604 set_current_inferior (remote_add_inferior (0, pid, 1));
4605
4606 inferior_ptid = pid_to_ptid (pid);
4607
4608 if (non_stop)
4609 {
4610 struct thread_info *thread;
4611
4612 /* Get list of threads. */
4613 remote_threads_info (target);
4614
4615 thread = first_thread_of_process (pid);
4616 if (thread)
4617 inferior_ptid = thread->ptid;
4618 else
4619 inferior_ptid = pid_to_ptid (pid);
4620
4621 /* Invalidate our notion of the remote current thread. */
4622 record_currthread (rs, minus_one_ptid);
4623 }
4624 else
4625 {
4626 /* Now, if we have thread information, update inferior_ptid. */
4627 inferior_ptid = remote_current_thread (inferior_ptid);
4628
4629 /* Add the main thread to the thread list. */
4630 add_thread_silent (inferior_ptid);
4631 }
4632
4633 /* Next, if the target can specify a description, read it. We do
4634 this before anything involving memory or registers. */
4635 target_find_description ();
4636
4637 if (!non_stop)
4638 {
4639 /* Use the previously fetched status. */
4640 gdb_assert (wait_status != NULL);
4641
4642 if (target_can_async_p ())
4643 {
4644 struct notif_event *reply
4645 = remote_notif_parse (&notif_client_stop, wait_status);
4646
4647 push_stop_reply ((struct stop_reply *) reply);
4648
4649 target_async (inferior_event_handler, 0);
4650 }
4651 else
4652 {
4653 gdb_assert (wait_status != NULL);
4654 strcpy (rs->buf, wait_status);
4655 rs->cached_wait_status = 1;
4656 }
4657 }
4658 else
4659 gdb_assert (wait_status == NULL);
4660 }
4661
4662 static void
4663 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4664 {
4665 extended_remote_attach_1 (ops, args, from_tty);
4666 }
4667
4668 /* Convert hex digit A to a number. */
4669
4670 static int
4671 fromhex (int a)
4672 {
4673 if (a >= '0' && a <= '9')
4674 return a - '0';
4675 else if (a >= 'a' && a <= 'f')
4676 return a - 'a' + 10;
4677 else if (a >= 'A' && a <= 'F')
4678 return a - 'A' + 10;
4679 else
4680 error (_("Reply contains invalid hex digit %d"), a);
4681 }
4682
4683 int
4684 hex2bin (const char *hex, gdb_byte *bin, int count)
4685 {
4686 int i;
4687
4688 for (i = 0; i < count; i++)
4689 {
4690 if (hex[0] == 0 || hex[1] == 0)
4691 {
4692 /* Hex string is short, or of uneven length.
4693 Return the count that has been converted so far. */
4694 return i;
4695 }
4696 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4697 hex += 2;
4698 }
4699 return i;
4700 }
4701
4702 /* Convert number NIB to a hex digit. */
4703
4704 static int
4705 tohex (int nib)
4706 {
4707 if (nib < 10)
4708 return '0' + nib;
4709 else
4710 return 'a' + nib - 10;
4711 }
4712
4713 int
4714 bin2hex (const gdb_byte *bin, char *hex, int count)
4715 {
4716 int i;
4717
4718 /* May use a length, or a nul-terminated string as input. */
4719 if (count == 0)
4720 count = strlen ((char *) bin);
4721
4722 for (i = 0; i < count; i++)
4723 {
4724 *hex++ = tohex ((*bin >> 4) & 0xf);
4725 *hex++ = tohex (*bin++ & 0xf);
4726 }
4727 *hex = 0;
4728 return i;
4729 }
4730 \f
4731 /* Check for the availability of vCont. This function should also check
4732 the response. */
4733
4734 static void
4735 remote_vcont_probe (struct remote_state *rs)
4736 {
4737 char *buf;
4738
4739 strcpy (rs->buf, "vCont?");
4740 putpkt (rs->buf);
4741 getpkt (&rs->buf, &rs->buf_size, 0);
4742 buf = rs->buf;
4743
4744 /* Make sure that the features we assume are supported. */
4745 if (strncmp (buf, "vCont", 5) == 0)
4746 {
4747 char *p = &buf[5];
4748 int support_s, support_S, support_c, support_C;
4749
4750 support_s = 0;
4751 support_S = 0;
4752 support_c = 0;
4753 support_C = 0;
4754 rs->supports_vCont.t = 0;
4755 rs->supports_vCont.r = 0;
4756 while (p && *p == ';')
4757 {
4758 p++;
4759 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4760 support_s = 1;
4761 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4762 support_S = 1;
4763 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4764 support_c = 1;
4765 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4766 support_C = 1;
4767 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4768 rs->supports_vCont.t = 1;
4769 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4770 rs->supports_vCont.r = 1;
4771
4772 p = strchr (p, ';');
4773 }
4774
4775 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4776 BUF will make packet_ok disable the packet. */
4777 if (!support_s || !support_S || !support_c || !support_C)
4778 buf[0] = 0;
4779 }
4780
4781 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4782 }
4783
4784 /* Helper function for building "vCont" resumptions. Write a
4785 resumption to P. ENDP points to one-passed-the-end of the buffer
4786 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4787 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4788 resumed thread should be single-stepped and/or signalled. If PTID
4789 equals minus_one_ptid, then all threads are resumed; if PTID
4790 represents a process, then all threads of the process are resumed;
4791 the thread to be stepped and/or signalled is given in the global
4792 INFERIOR_PTID. */
4793
4794 static char *
4795 append_resumption (char *p, char *endp,
4796 ptid_t ptid, int step, enum gdb_signal siggnal)
4797 {
4798 struct remote_state *rs = get_remote_state ();
4799
4800 if (step && siggnal != GDB_SIGNAL_0)
4801 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4802 else if (step
4803 /* GDB is willing to range step. */
4804 && use_range_stepping
4805 /* Target supports range stepping. */
4806 && rs->supports_vCont.r
4807 /* We don't currently support range stepping multiple
4808 threads with a wildcard (though the protocol allows it,
4809 so stubs shouldn't make an active effort to forbid
4810 it). */
4811 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4812 {
4813 struct thread_info *tp;
4814
4815 if (ptid_equal (ptid, minus_one_ptid))
4816 {
4817 /* If we don't know about the target thread's tid, then
4818 we're resuming magic_null_ptid (see caller). */
4819 tp = find_thread_ptid (magic_null_ptid);
4820 }
4821 else
4822 tp = find_thread_ptid (ptid);
4823 gdb_assert (tp != NULL);
4824
4825 if (tp->control.may_range_step)
4826 {
4827 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4828
4829 p += xsnprintf (p, endp - p, ";r%s,%s",
4830 phex_nz (tp->control.step_range_start,
4831 addr_size),
4832 phex_nz (tp->control.step_range_end,
4833 addr_size));
4834 }
4835 else
4836 p += xsnprintf (p, endp - p, ";s");
4837 }
4838 else if (step)
4839 p += xsnprintf (p, endp - p, ";s");
4840 else if (siggnal != GDB_SIGNAL_0)
4841 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4842 else
4843 p += xsnprintf (p, endp - p, ";c");
4844
4845 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4846 {
4847 ptid_t nptid;
4848
4849 /* All (-1) threads of process. */
4850 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4851
4852 p += xsnprintf (p, endp - p, ":");
4853 p = write_ptid (p, endp, nptid);
4854 }
4855 else if (!ptid_equal (ptid, minus_one_ptid))
4856 {
4857 p += xsnprintf (p, endp - p, ":");
4858 p = write_ptid (p, endp, ptid);
4859 }
4860
4861 return p;
4862 }
4863
4864 /* Append a vCont continue-with-signal action for threads that have a
4865 non-zero stop signal. */
4866
4867 static char *
4868 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4869 {
4870 struct thread_info *thread;
4871
4872 ALL_THREADS (thread)
4873 if (ptid_match (thread->ptid, ptid)
4874 && !ptid_equal (inferior_ptid, thread->ptid)
4875 && thread->suspend.stop_signal != GDB_SIGNAL_0
4876 && signal_pass_state (thread->suspend.stop_signal))
4877 {
4878 p = append_resumption (p, endp, thread->ptid,
4879 0, thread->suspend.stop_signal);
4880 thread->suspend.stop_signal = GDB_SIGNAL_0;
4881 }
4882
4883 return p;
4884 }
4885
4886 /* Resume the remote inferior by using a "vCont" packet. The thread
4887 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4888 resumed thread should be single-stepped and/or signalled. If PTID
4889 equals minus_one_ptid, then all threads are resumed; the thread to
4890 be stepped and/or signalled is given in the global INFERIOR_PTID.
4891 This function returns non-zero iff it resumes the inferior.
4892
4893 This function issues a strict subset of all possible vCont commands at the
4894 moment. */
4895
4896 static int
4897 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4898 {
4899 struct remote_state *rs = get_remote_state ();
4900 char *p;
4901 char *endp;
4902
4903 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4904 remote_vcont_probe (rs);
4905
4906 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4907 return 0;
4908
4909 p = rs->buf;
4910 endp = rs->buf + get_remote_packet_size ();
4911
4912 /* If we could generate a wider range of packets, we'd have to worry
4913 about overflowing BUF. Should there be a generic
4914 "multi-part-packet" packet? */
4915
4916 p += xsnprintf (p, endp - p, "vCont");
4917
4918 if (ptid_equal (ptid, magic_null_ptid))
4919 {
4920 /* MAGIC_NULL_PTID means that we don't have any active threads,
4921 so we don't have any TID numbers the inferior will
4922 understand. Make sure to only send forms that do not specify
4923 a TID. */
4924 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4925 }
4926 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4927 {
4928 /* Resume all threads (of all processes, or of a single
4929 process), with preference for INFERIOR_PTID. This assumes
4930 inferior_ptid belongs to the set of all threads we are about
4931 to resume. */
4932 if (step || siggnal != GDB_SIGNAL_0)
4933 {
4934 /* Step inferior_ptid, with or without signal. */
4935 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4936 }
4937
4938 /* Also pass down any pending signaled resumption for other
4939 threads not the current. */
4940 p = append_pending_thread_resumptions (p, endp, ptid);
4941
4942 /* And continue others without a signal. */
4943 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4944 }
4945 else
4946 {
4947 /* Scheduler locking; resume only PTID. */
4948 append_resumption (p, endp, ptid, step, siggnal);
4949 }
4950
4951 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4952 putpkt (rs->buf);
4953
4954 if (non_stop)
4955 {
4956 /* In non-stop, the stub replies to vCont with "OK". The stop
4957 reply will be reported asynchronously by means of a `%Stop'
4958 notification. */
4959 getpkt (&rs->buf, &rs->buf_size, 0);
4960 if (strcmp (rs->buf, "OK") != 0)
4961 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4962 }
4963
4964 return 1;
4965 }
4966
4967 /* Tell the remote machine to resume. */
4968
4969 static void
4970 remote_resume (struct target_ops *ops,
4971 ptid_t ptid, int step, enum gdb_signal siggnal)
4972 {
4973 struct remote_state *rs = get_remote_state ();
4974 char *buf;
4975
4976 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4977 (explained in remote-notif.c:handle_notification) so
4978 remote_notif_process is not called. We need find a place where
4979 it is safe to start a 'vNotif' sequence. It is good to do it
4980 before resuming inferior, because inferior was stopped and no RSP
4981 traffic at that moment. */
4982 if (!non_stop)
4983 remote_notif_process (rs->notif_state, &notif_client_stop);
4984
4985 rs->last_sent_signal = siggnal;
4986 rs->last_sent_step = step;
4987
4988 /* The vCont packet doesn't need to specify threads via Hc. */
4989 /* No reverse support (yet) for vCont. */
4990 if (execution_direction != EXEC_REVERSE)
4991 if (remote_vcont_resume (ptid, step, siggnal))
4992 goto done;
4993
4994 /* All other supported resume packets do use Hc, so set the continue
4995 thread. */
4996 if (ptid_equal (ptid, minus_one_ptid))
4997 set_continue_thread (any_thread_ptid);
4998 else
4999 set_continue_thread (ptid);
5000
5001 buf = rs->buf;
5002 if (execution_direction == EXEC_REVERSE)
5003 {
5004 /* We don't pass signals to the target in reverse exec mode. */
5005 if (info_verbose && siggnal != GDB_SIGNAL_0)
5006 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5007 siggnal);
5008
5009 if (step
5010 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
5011 error (_("Remote reverse-step not supported."));
5012 if (!step
5013 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
5014 error (_("Remote reverse-continue not supported."));
5015
5016 strcpy (buf, step ? "bs" : "bc");
5017 }
5018 else if (siggnal != GDB_SIGNAL_0)
5019 {
5020 buf[0] = step ? 'S' : 'C';
5021 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5022 buf[2] = tohex (((int) siggnal) & 0xf);
5023 buf[3] = '\0';
5024 }
5025 else
5026 strcpy (buf, step ? "s" : "c");
5027
5028 putpkt (buf);
5029
5030 done:
5031 /* We are about to start executing the inferior, let's register it
5032 with the event loop. NOTE: this is the one place where all the
5033 execution commands end up. We could alternatively do this in each
5034 of the execution commands in infcmd.c. */
5035 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5036 into infcmd.c in order to allow inferior function calls to work
5037 NOT asynchronously. */
5038 if (target_can_async_p ())
5039 target_async (inferior_event_handler, 0);
5040
5041 /* We've just told the target to resume. The remote server will
5042 wait for the inferior to stop, and then send a stop reply. In
5043 the mean time, we can't start another command/query ourselves
5044 because the stub wouldn't be ready to process it. This applies
5045 only to the base all-stop protocol, however. In non-stop (which
5046 only supports vCont), the stub replies with an "OK", and is
5047 immediate able to process further serial input. */
5048 if (!non_stop)
5049 rs->waiting_for_stop_reply = 1;
5050 }
5051 \f
5052
5053 /* Set up the signal handler for SIGINT, while the target is
5054 executing, ovewriting the 'regular' SIGINT signal handler. */
5055 static void
5056 async_initialize_sigint_signal_handler (void)
5057 {
5058 signal (SIGINT, async_handle_remote_sigint);
5059 }
5060
5061 /* Signal handler for SIGINT, while the target is executing. */
5062 static void
5063 async_handle_remote_sigint (int sig)
5064 {
5065 signal (sig, async_handle_remote_sigint_twice);
5066 mark_async_signal_handler (async_sigint_remote_token);
5067 }
5068
5069 /* Signal handler for SIGINT, installed after SIGINT has already been
5070 sent once. It will take effect the second time that the user sends
5071 a ^C. */
5072 static void
5073 async_handle_remote_sigint_twice (int sig)
5074 {
5075 signal (sig, async_handle_remote_sigint);
5076 mark_async_signal_handler (async_sigint_remote_twice_token);
5077 }
5078
5079 /* Perform the real interruption of the target execution, in response
5080 to a ^C. */
5081 static void
5082 async_remote_interrupt (gdb_client_data arg)
5083 {
5084 if (remote_debug)
5085 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5086
5087 target_stop (inferior_ptid);
5088 }
5089
5090 /* Perform interrupt, if the first attempt did not succeed. Just give
5091 up on the target alltogether. */
5092 static void
5093 async_remote_interrupt_twice (gdb_client_data arg)
5094 {
5095 if (remote_debug)
5096 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5097
5098 interrupt_query ();
5099 }
5100
5101 /* Reinstall the usual SIGINT handlers, after the target has
5102 stopped. */
5103 static void
5104 async_cleanup_sigint_signal_handler (void *dummy)
5105 {
5106 signal (SIGINT, handle_sigint);
5107 }
5108
5109 /* Send ^C to target to halt it. Target will respond, and send us a
5110 packet. */
5111 static void (*ofunc) (int);
5112
5113 /* The command line interface's stop routine. This function is installed
5114 as a signal handler for SIGINT. The first time a user requests a
5115 stop, we call remote_stop to send a break or ^C. If there is no
5116 response from the target (it didn't stop when the user requested it),
5117 we ask the user if he'd like to detach from the target. */
5118 static void
5119 sync_remote_interrupt (int signo)
5120 {
5121 /* If this doesn't work, try more severe steps. */
5122 signal (signo, sync_remote_interrupt_twice);
5123
5124 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5125 }
5126
5127 /* The user typed ^C twice. */
5128
5129 static void
5130 sync_remote_interrupt_twice (int signo)
5131 {
5132 signal (signo, ofunc);
5133 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5134 signal (signo, sync_remote_interrupt);
5135 }
5136
5137 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5138 thread, all threads of a remote process, or all threads of all
5139 processes. */
5140
5141 static void
5142 remote_stop_ns (ptid_t ptid)
5143 {
5144 struct remote_state *rs = get_remote_state ();
5145 char *p = rs->buf;
5146 char *endp = rs->buf + get_remote_packet_size ();
5147
5148 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5149 remote_vcont_probe (rs);
5150
5151 if (!rs->supports_vCont.t)
5152 error (_("Remote server does not support stopping threads"));
5153
5154 if (ptid_equal (ptid, minus_one_ptid)
5155 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5156 p += xsnprintf (p, endp - p, "vCont;t");
5157 else
5158 {
5159 ptid_t nptid;
5160
5161 p += xsnprintf (p, endp - p, "vCont;t:");
5162
5163 if (ptid_is_pid (ptid))
5164 /* All (-1) threads of process. */
5165 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5166 else
5167 {
5168 /* Small optimization: if we already have a stop reply for
5169 this thread, no use in telling the stub we want this
5170 stopped. */
5171 if (peek_stop_reply (ptid))
5172 return;
5173
5174 nptid = ptid;
5175 }
5176
5177 write_ptid (p, endp, nptid);
5178 }
5179
5180 /* In non-stop, we get an immediate OK reply. The stop reply will
5181 come in asynchronously by notification. */
5182 putpkt (rs->buf);
5183 getpkt (&rs->buf, &rs->buf_size, 0);
5184 if (strcmp (rs->buf, "OK") != 0)
5185 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5186 }
5187
5188 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5189 remote target. It is undefined which thread of which process
5190 reports the stop. */
5191
5192 static void
5193 remote_stop_as (ptid_t ptid)
5194 {
5195 struct remote_state *rs = get_remote_state ();
5196
5197 rs->ctrlc_pending_p = 1;
5198
5199 /* If the inferior is stopped already, but the core didn't know
5200 about it yet, just ignore the request. The cached wait status
5201 will be collected in remote_wait. */
5202 if (rs->cached_wait_status)
5203 return;
5204
5205 /* Send interrupt_sequence to remote target. */
5206 send_interrupt_sequence ();
5207 }
5208
5209 /* This is the generic stop called via the target vector. When a target
5210 interrupt is requested, either by the command line or the GUI, we
5211 will eventually end up here. */
5212
5213 static void
5214 remote_stop (ptid_t ptid)
5215 {
5216 if (remote_debug)
5217 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5218
5219 if (non_stop)
5220 remote_stop_ns (ptid);
5221 else
5222 remote_stop_as (ptid);
5223 }
5224
5225 /* Ask the user what to do when an interrupt is received. */
5226
5227 static void
5228 interrupt_query (void)
5229 {
5230 target_terminal_ours ();
5231
5232 if (target_can_async_p ())
5233 {
5234 signal (SIGINT, handle_sigint);
5235 quit ();
5236 }
5237 else
5238 {
5239 if (query (_("Interrupted while waiting for the program.\n\
5240 Give up (and stop debugging it)? ")))
5241 {
5242 remote_unpush_target ();
5243 quit ();
5244 }
5245 }
5246
5247 target_terminal_inferior ();
5248 }
5249
5250 /* Enable/disable target terminal ownership. Most targets can use
5251 terminal groups to control terminal ownership. Remote targets are
5252 different in that explicit transfer of ownership to/from GDB/target
5253 is required. */
5254
5255 static void
5256 remote_terminal_inferior (void)
5257 {
5258 if (!target_async_permitted)
5259 /* Nothing to do. */
5260 return;
5261
5262 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5263 idempotent. The event-loop GDB talking to an asynchronous target
5264 with a synchronous command calls this function from both
5265 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5266 transfer the terminal to the target when it shouldn't this guard
5267 can go away. */
5268 if (!remote_async_terminal_ours_p)
5269 return;
5270 delete_file_handler (input_fd);
5271 remote_async_terminal_ours_p = 0;
5272 async_initialize_sigint_signal_handler ();
5273 /* NOTE: At this point we could also register our selves as the
5274 recipient of all input. Any characters typed could then be
5275 passed on down to the target. */
5276 }
5277
5278 static void
5279 remote_terminal_ours (void)
5280 {
5281 if (!target_async_permitted)
5282 /* Nothing to do. */
5283 return;
5284
5285 /* See FIXME in remote_terminal_inferior. */
5286 if (remote_async_terminal_ours_p)
5287 return;
5288 async_cleanup_sigint_signal_handler (NULL);
5289 add_file_handler (input_fd, stdin_event_handler, 0);
5290 remote_async_terminal_ours_p = 1;
5291 }
5292
5293 static void
5294 remote_console_output (char *msg)
5295 {
5296 char *p;
5297
5298 for (p = msg; p[0] && p[1]; p += 2)
5299 {
5300 char tb[2];
5301 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5302
5303 tb[0] = c;
5304 tb[1] = 0;
5305 fputs_unfiltered (tb, gdb_stdtarg);
5306 }
5307 gdb_flush (gdb_stdtarg);
5308 }
5309
5310 typedef struct cached_reg
5311 {
5312 int num;
5313 gdb_byte data[MAX_REGISTER_SIZE];
5314 } cached_reg_t;
5315
5316 DEF_VEC_O(cached_reg_t);
5317
5318 typedef struct stop_reply
5319 {
5320 struct notif_event base;
5321
5322 /* The identifier of the thread about this event */
5323 ptid_t ptid;
5324
5325 /* The remote state this event is associated with. When the remote
5326 connection, represented by a remote_state object, is closed,
5327 all the associated stop_reply events should be released. */
5328 struct remote_state *rs;
5329
5330 struct target_waitstatus ws;
5331
5332 /* Expedited registers. This makes remote debugging a bit more
5333 efficient for those targets that provide critical registers as
5334 part of their normal status mechanism (as another roundtrip to
5335 fetch them is avoided). */
5336 VEC(cached_reg_t) *regcache;
5337
5338 int stopped_by_watchpoint_p;
5339 CORE_ADDR watch_data_address;
5340
5341 int core;
5342 } *stop_reply_p;
5343
5344 DECLARE_QUEUE_P (stop_reply_p);
5345 DEFINE_QUEUE_P (stop_reply_p);
5346 /* The list of already fetched and acknowledged stop events. This
5347 queue is used for notification Stop, and other notifications
5348 don't need queue for their events, because the notification events
5349 of Stop can't be consumed immediately, so that events should be
5350 queued first, and be consumed by remote_wait_{ns,as} one per
5351 time. Other notifications can consume their events immediately,
5352 so queue is not needed for them. */
5353 static QUEUE (stop_reply_p) *stop_reply_queue;
5354
5355 static void
5356 stop_reply_xfree (struct stop_reply *r)
5357 {
5358 notif_event_xfree ((struct notif_event *) r);
5359 }
5360
5361 static void
5362 remote_notif_stop_parse (struct notif_client *self, char *buf,
5363 struct notif_event *event)
5364 {
5365 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5366 }
5367
5368 static void
5369 remote_notif_stop_ack (struct notif_client *self, char *buf,
5370 struct notif_event *event)
5371 {
5372 struct stop_reply *stop_reply = (struct stop_reply *) event;
5373
5374 /* acknowledge */
5375 putpkt ((char *) self->ack_command);
5376
5377 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5378 /* We got an unknown stop reply. */
5379 error (_("Unknown stop reply"));
5380
5381 push_stop_reply (stop_reply);
5382 }
5383
5384 static int
5385 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5386 {
5387 /* We can't get pending events in remote_notif_process for
5388 notification stop, and we have to do this in remote_wait_ns
5389 instead. If we fetch all queued events from stub, remote stub
5390 may exit and we have no chance to process them back in
5391 remote_wait_ns. */
5392 mark_async_event_handler (remote_async_inferior_event_token);
5393 return 0;
5394 }
5395
5396 static void
5397 stop_reply_dtr (struct notif_event *event)
5398 {
5399 struct stop_reply *r = (struct stop_reply *) event;
5400
5401 VEC_free (cached_reg_t, r->regcache);
5402 }
5403
5404 static struct notif_event *
5405 remote_notif_stop_alloc_reply (void)
5406 {
5407 struct notif_event *r
5408 = (struct notif_event *) XNEW (struct stop_reply);
5409
5410 r->dtr = stop_reply_dtr;
5411
5412 return r;
5413 }
5414
5415 /* A client of notification Stop. */
5416
5417 struct notif_client notif_client_stop =
5418 {
5419 "Stop",
5420 "vStopped",
5421 remote_notif_stop_parse,
5422 remote_notif_stop_ack,
5423 remote_notif_stop_can_get_pending_events,
5424 remote_notif_stop_alloc_reply,
5425 REMOTE_NOTIF_STOP,
5426 };
5427
5428 /* A parameter to pass data in and out. */
5429
5430 struct queue_iter_param
5431 {
5432 void *input;
5433 struct stop_reply *output;
5434 };
5435
5436 /* Remove stop replies in the queue if its pid is equal to the given
5437 inferior's pid. */
5438
5439 static int
5440 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
5441 QUEUE_ITER (stop_reply_p) *iter,
5442 stop_reply_p event,
5443 void *data)
5444 {
5445 struct queue_iter_param *param = data;
5446 struct inferior *inf = param->input;
5447
5448 if (ptid_get_pid (event->ptid) == inf->pid)
5449 {
5450 stop_reply_xfree (event);
5451 QUEUE_remove_elem (stop_reply_p, q, iter);
5452 }
5453
5454 return 1;
5455 }
5456
5457 /* Discard all pending stop replies of inferior INF. */
5458
5459 static void
5460 discard_pending_stop_replies (struct inferior *inf)
5461 {
5462 int i;
5463 struct queue_iter_param param;
5464 struct stop_reply *reply;
5465 struct remote_state *rs = get_remote_state ();
5466 struct remote_notif_state *rns = rs->notif_state;
5467
5468 /* This function can be notified when an inferior exists. When the
5469 target is not remote, the notification state is NULL. */
5470 if (rs->remote_desc == NULL)
5471 return;
5472
5473 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
5474
5475 /* Discard the in-flight notification. */
5476 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
5477 {
5478 stop_reply_xfree (reply);
5479 rns->pending_event[notif_client_stop.id] = NULL;
5480 }
5481
5482 param.input = inf;
5483 param.output = NULL;
5484 /* Discard the stop replies we have already pulled with
5485 vStopped. */
5486 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5487 remove_stop_reply_for_inferior, &param);
5488 }
5489
5490 /* If its remote state is equal to the given remote state,
5491 remove EVENT from the stop reply queue. */
5492
5493 static int
5494 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
5495 QUEUE_ITER (stop_reply_p) *iter,
5496 stop_reply_p event,
5497 void *data)
5498 {
5499 struct queue_iter_param *param = data;
5500 struct remote_state *rs = param->input;
5501
5502 if (event->rs == rs)
5503 {
5504 stop_reply_xfree (event);
5505 QUEUE_remove_elem (stop_reply_p, q, iter);
5506 }
5507
5508 return 1;
5509 }
5510
5511 /* Discard the stop replies for RS in stop_reply_queue. */
5512
5513 static void
5514 discard_pending_stop_replies_in_queue (struct remote_state *rs)
5515 {
5516 struct queue_iter_param param;
5517
5518 param.input = rs;
5519 param.output = NULL;
5520 /* Discard the stop replies we have already pulled with
5521 vStopped. */
5522 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5523 remove_stop_reply_of_remote_state, &param);
5524 }
5525
5526 /* A parameter to pass data in and out. */
5527
5528 static int
5529 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5530 QUEUE_ITER (stop_reply_p) *iter,
5531 stop_reply_p event,
5532 void *data)
5533 {
5534 struct queue_iter_param *param = data;
5535 ptid_t *ptid = param->input;
5536
5537 if (ptid_match (event->ptid, *ptid))
5538 {
5539 param->output = event;
5540 QUEUE_remove_elem (stop_reply_p, q, iter);
5541 return 0;
5542 }
5543
5544 return 1;
5545 }
5546
5547 /* Remove the first reply in 'stop_reply_queue' which matches
5548 PTID. */
5549
5550 static struct stop_reply *
5551 remote_notif_remove_queued_reply (ptid_t ptid)
5552 {
5553 struct queue_iter_param param;
5554
5555 param.input = &ptid;
5556 param.output = NULL;
5557
5558 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5559 remote_notif_remove_once_on_match, &param);
5560 if (notif_debug)
5561 fprintf_unfiltered (gdb_stdlog,
5562 "notif: discard queued event: 'Stop' in %s\n",
5563 target_pid_to_str (ptid));
5564
5565 return param.output;
5566 }
5567
5568 /* Look for a queued stop reply belonging to PTID. If one is found,
5569 remove it from the queue, and return it. Returns NULL if none is
5570 found. If there are still queued events left to process, tell the
5571 event loop to get back to target_wait soon. */
5572
5573 static struct stop_reply *
5574 queued_stop_reply (ptid_t ptid)
5575 {
5576 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5577
5578 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5579 /* There's still at least an event left. */
5580 mark_async_event_handler (remote_async_inferior_event_token);
5581
5582 return r;
5583 }
5584
5585 /* Push a fully parsed stop reply in the stop reply queue. Since we
5586 know that we now have at least one queued event left to pass to the
5587 core side, tell the event loop to get back to target_wait soon. */
5588
5589 static void
5590 push_stop_reply (struct stop_reply *new_event)
5591 {
5592 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5593
5594 if (notif_debug)
5595 fprintf_unfiltered (gdb_stdlog,
5596 "notif: push 'Stop' %s to queue %d\n",
5597 target_pid_to_str (new_event->ptid),
5598 QUEUE_length (stop_reply_p,
5599 stop_reply_queue));
5600
5601 mark_async_event_handler (remote_async_inferior_event_token);
5602 }
5603
5604 static int
5605 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5606 QUEUE_ITER (stop_reply_p) *iter,
5607 struct stop_reply *event,
5608 void *data)
5609 {
5610 ptid_t *ptid = data;
5611
5612 return !(ptid_equal (*ptid, event->ptid)
5613 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5614 }
5615
5616 /* Returns true if we have a stop reply for PTID. */
5617
5618 static int
5619 peek_stop_reply (ptid_t ptid)
5620 {
5621 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5622 stop_reply_match_ptid_and_ws, &ptid);
5623 }
5624
5625 /* Parse the stop reply in BUF. Either the function succeeds, and the
5626 result is stored in EVENT, or throws an error. */
5627
5628 static void
5629 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5630 {
5631 struct remote_arch_state *rsa = get_remote_arch_state ();
5632 ULONGEST addr;
5633 char *p;
5634
5635 event->ptid = null_ptid;
5636 event->rs = get_remote_state ();
5637 event->ws.kind = TARGET_WAITKIND_IGNORE;
5638 event->ws.value.integer = 0;
5639 event->stopped_by_watchpoint_p = 0;
5640 event->regcache = NULL;
5641 event->core = -1;
5642
5643 switch (buf[0])
5644 {
5645 case 'T': /* Status with PC, SP, FP, ... */
5646 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5647 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5648 ss = signal number
5649 n... = register number
5650 r... = register contents
5651 */
5652
5653 p = &buf[3]; /* after Txx */
5654 while (*p)
5655 {
5656 char *p1;
5657 char *p_temp;
5658 int fieldsize;
5659 LONGEST pnum = 0;
5660
5661 /* If the packet contains a register number, save it in
5662 pnum and set p1 to point to the character following it.
5663 Otherwise p1 points to p. */
5664
5665 /* If this packet is an awatch packet, don't parse the 'a'
5666 as a register number. */
5667
5668 if (strncmp (p, "awatch", strlen("awatch")) != 0
5669 && strncmp (p, "core", strlen ("core") != 0))
5670 {
5671 /* Read the ``P'' register number. */
5672 pnum = strtol (p, &p_temp, 16);
5673 p1 = p_temp;
5674 }
5675 else
5676 p1 = p;
5677
5678 if (p1 == p) /* No register number present here. */
5679 {
5680 p1 = strchr (p, ':');
5681 if (p1 == NULL)
5682 error (_("Malformed packet(a) (missing colon): %s\n\
5683 Packet: '%s'\n"),
5684 p, buf);
5685 if (strncmp (p, "thread", p1 - p) == 0)
5686 event->ptid = read_ptid (++p1, &p);
5687 else if ((strncmp (p, "watch", p1 - p) == 0)
5688 || (strncmp (p, "rwatch", p1 - p) == 0)
5689 || (strncmp (p, "awatch", p1 - p) == 0))
5690 {
5691 event->stopped_by_watchpoint_p = 1;
5692 p = unpack_varlen_hex (++p1, &addr);
5693 event->watch_data_address = (CORE_ADDR) addr;
5694 }
5695 else if (strncmp (p, "library", p1 - p) == 0)
5696 {
5697 p1++;
5698 p_temp = p1;
5699 while (*p_temp && *p_temp != ';')
5700 p_temp++;
5701
5702 event->ws.kind = TARGET_WAITKIND_LOADED;
5703 p = p_temp;
5704 }
5705 else if (strncmp (p, "replaylog", p1 - p) == 0)
5706 {
5707 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5708 /* p1 will indicate "begin" or "end", but it makes
5709 no difference for now, so ignore it. */
5710 p_temp = strchr (p1 + 1, ';');
5711 if (p_temp)
5712 p = p_temp;
5713 }
5714 else if (strncmp (p, "core", p1 - p) == 0)
5715 {
5716 ULONGEST c;
5717
5718 p = unpack_varlen_hex (++p1, &c);
5719 event->core = c;
5720 }
5721 else
5722 {
5723 /* Silently skip unknown optional info. */
5724 p_temp = strchr (p1 + 1, ';');
5725 if (p_temp)
5726 p = p_temp;
5727 }
5728 }
5729 else
5730 {
5731 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5732 cached_reg_t cached_reg;
5733
5734 p = p1;
5735
5736 if (*p != ':')
5737 error (_("Malformed packet(b) (missing colon): %s\n\
5738 Packet: '%s'\n"),
5739 p, buf);
5740 ++p;
5741
5742 if (reg == NULL)
5743 error (_("Remote sent bad register number %s: %s\n\
5744 Packet: '%s'\n"),
5745 hex_string (pnum), p, buf);
5746
5747 cached_reg.num = reg->regnum;
5748
5749 fieldsize = hex2bin (p, cached_reg.data,
5750 register_size (target_gdbarch (),
5751 reg->regnum));
5752 p += 2 * fieldsize;
5753 if (fieldsize < register_size (target_gdbarch (),
5754 reg->regnum))
5755 warning (_("Remote reply is too short: %s"), buf);
5756
5757 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5758 }
5759
5760 if (*p != ';')
5761 error (_("Remote register badly formatted: %s\nhere: %s"),
5762 buf, p);
5763 ++p;
5764 }
5765
5766 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5767 break;
5768
5769 /* fall through */
5770 case 'S': /* Old style status, just signal only. */
5771 {
5772 int sig;
5773
5774 event->ws.kind = TARGET_WAITKIND_STOPPED;
5775 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
5776 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
5777 event->ws.value.sig = (enum gdb_signal) sig;
5778 else
5779 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5780 }
5781 break;
5782 case 'W': /* Target exited. */
5783 case 'X':
5784 {
5785 char *p;
5786 int pid;
5787 ULONGEST value;
5788
5789 /* GDB used to accept only 2 hex chars here. Stubs should
5790 only send more if they detect GDB supports multi-process
5791 support. */
5792 p = unpack_varlen_hex (&buf[1], &value);
5793
5794 if (buf[0] == 'W')
5795 {
5796 /* The remote process exited. */
5797 event->ws.kind = TARGET_WAITKIND_EXITED;
5798 event->ws.value.integer = value;
5799 }
5800 else
5801 {
5802 /* The remote process exited with a signal. */
5803 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5804 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
5805 event->ws.value.sig = (enum gdb_signal) value;
5806 else
5807 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5808 }
5809
5810 /* If no process is specified, assume inferior_ptid. */
5811 pid = ptid_get_pid (inferior_ptid);
5812 if (*p == '\0')
5813 ;
5814 else if (*p == ';')
5815 {
5816 p++;
5817
5818 if (p == '\0')
5819 ;
5820 else if (strncmp (p,
5821 "process:", sizeof ("process:") - 1) == 0)
5822 {
5823 ULONGEST upid;
5824
5825 p += sizeof ("process:") - 1;
5826 unpack_varlen_hex (p, &upid);
5827 pid = upid;
5828 }
5829 else
5830 error (_("unknown stop reply packet: %s"), buf);
5831 }
5832 else
5833 error (_("unknown stop reply packet: %s"), buf);
5834 event->ptid = pid_to_ptid (pid);
5835 }
5836 break;
5837 }
5838
5839 if (non_stop && ptid_equal (event->ptid, null_ptid))
5840 error (_("No process or thread specified in stop reply: %s"), buf);
5841 }
5842
5843 /* When the stub wants to tell GDB about a new notification reply, it
5844 sends a notification (%Stop, for example). Those can come it at
5845 any time, hence, we have to make sure that any pending
5846 putpkt/getpkt sequence we're making is finished, before querying
5847 the stub for more events with the corresponding ack command
5848 (vStopped, for example). E.g., if we started a vStopped sequence
5849 immediately upon receiving the notification, something like this
5850 could happen:
5851
5852 1.1) --> Hg 1
5853 1.2) <-- OK
5854 1.3) --> g
5855 1.4) <-- %Stop
5856 1.5) --> vStopped
5857 1.6) <-- (registers reply to step #1.3)
5858
5859 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5860 query.
5861
5862 To solve this, whenever we parse a %Stop notification successfully,
5863 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5864 doing whatever we were doing:
5865
5866 2.1) --> Hg 1
5867 2.2) <-- OK
5868 2.3) --> g
5869 2.4) <-- %Stop
5870 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5871 2.5) <-- (registers reply to step #2.3)
5872
5873 Eventualy after step #2.5, we return to the event loop, which
5874 notices there's an event on the
5875 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5876 associated callback --- the function below. At this point, we're
5877 always safe to start a vStopped sequence. :
5878
5879 2.6) --> vStopped
5880 2.7) <-- T05 thread:2
5881 2.8) --> vStopped
5882 2.9) --> OK
5883 */
5884
5885 void
5886 remote_notif_get_pending_events (struct notif_client *nc)
5887 {
5888 struct remote_state *rs = get_remote_state ();
5889
5890 if (rs->notif_state->pending_event[nc->id] != NULL)
5891 {
5892 if (notif_debug)
5893 fprintf_unfiltered (gdb_stdlog,
5894 "notif: process: '%s' ack pending event\n",
5895 nc->name);
5896
5897 /* acknowledge */
5898 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
5899 rs->notif_state->pending_event[nc->id] = NULL;
5900
5901 while (1)
5902 {
5903 getpkt (&rs->buf, &rs->buf_size, 0);
5904 if (strcmp (rs->buf, "OK") == 0)
5905 break;
5906 else
5907 remote_notif_ack (nc, rs->buf);
5908 }
5909 }
5910 else
5911 {
5912 if (notif_debug)
5913 fprintf_unfiltered (gdb_stdlog,
5914 "notif: process: '%s' no pending reply\n",
5915 nc->name);
5916 }
5917 }
5918
5919 /* Called when it is decided that STOP_REPLY holds the info of the
5920 event that is to be returned to the core. This function always
5921 destroys STOP_REPLY. */
5922
5923 static ptid_t
5924 process_stop_reply (struct stop_reply *stop_reply,
5925 struct target_waitstatus *status)
5926 {
5927 ptid_t ptid;
5928
5929 *status = stop_reply->ws;
5930 ptid = stop_reply->ptid;
5931
5932 /* If no thread/process was reported by the stub, assume the current
5933 inferior. */
5934 if (ptid_equal (ptid, null_ptid))
5935 ptid = inferior_ptid;
5936
5937 if (status->kind != TARGET_WAITKIND_EXITED
5938 && status->kind != TARGET_WAITKIND_SIGNALLED)
5939 {
5940 struct remote_state *rs = get_remote_state ();
5941
5942 /* Expedited registers. */
5943 if (stop_reply->regcache)
5944 {
5945 struct regcache *regcache
5946 = get_thread_arch_regcache (ptid, target_gdbarch ());
5947 cached_reg_t *reg;
5948 int ix;
5949
5950 for (ix = 0;
5951 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5952 ix++)
5953 regcache_raw_supply (regcache, reg->num, reg->data);
5954 VEC_free (cached_reg_t, stop_reply->regcache);
5955 }
5956
5957 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5958 rs->remote_watch_data_address = stop_reply->watch_data_address;
5959
5960 remote_notice_new_inferior (ptid, 0);
5961 demand_private_info (ptid)->core = stop_reply->core;
5962 }
5963
5964 stop_reply_xfree (stop_reply);
5965 return ptid;
5966 }
5967
5968 /* The non-stop mode version of target_wait. */
5969
5970 static ptid_t
5971 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5972 {
5973 struct remote_state *rs = get_remote_state ();
5974 struct stop_reply *stop_reply;
5975 int ret;
5976 int is_notif = 0;
5977
5978 /* If in non-stop mode, get out of getpkt even if a
5979 notification is received. */
5980
5981 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5982 0 /* forever */, &is_notif);
5983 while (1)
5984 {
5985 if (ret != -1 && !is_notif)
5986 switch (rs->buf[0])
5987 {
5988 case 'E': /* Error of some sort. */
5989 /* We're out of sync with the target now. Did it continue
5990 or not? We can't tell which thread it was in non-stop,
5991 so just ignore this. */
5992 warning (_("Remote failure reply: %s"), rs->buf);
5993 break;
5994 case 'O': /* Console output. */
5995 remote_console_output (rs->buf + 1);
5996 break;
5997 default:
5998 warning (_("Invalid remote reply: %s"), rs->buf);
5999 break;
6000 }
6001
6002 /* Acknowledge a pending stop reply that may have arrived in the
6003 mean time. */
6004 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
6005 remote_notif_get_pending_events (&notif_client_stop);
6006
6007 /* If indeed we noticed a stop reply, we're done. */
6008 stop_reply = queued_stop_reply (ptid);
6009 if (stop_reply != NULL)
6010 return process_stop_reply (stop_reply, status);
6011
6012 /* Still no event. If we're just polling for an event, then
6013 return to the event loop. */
6014 if (options & TARGET_WNOHANG)
6015 {
6016 status->kind = TARGET_WAITKIND_IGNORE;
6017 return minus_one_ptid;
6018 }
6019
6020 /* Otherwise do a blocking wait. */
6021 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6022 1 /* forever */, &is_notif);
6023 }
6024 }
6025
6026 /* Wait until the remote machine stops, then return, storing status in
6027 STATUS just as `wait' would. */
6028
6029 static ptid_t
6030 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
6031 {
6032 struct remote_state *rs = get_remote_state ();
6033 ptid_t event_ptid = null_ptid;
6034 char *buf;
6035 struct stop_reply *stop_reply;
6036
6037 again:
6038
6039 status->kind = TARGET_WAITKIND_IGNORE;
6040 status->value.integer = 0;
6041
6042 stop_reply = queued_stop_reply (ptid);
6043 if (stop_reply != NULL)
6044 return process_stop_reply (stop_reply, status);
6045
6046 if (rs->cached_wait_status)
6047 /* Use the cached wait status, but only once. */
6048 rs->cached_wait_status = 0;
6049 else
6050 {
6051 int ret;
6052 int is_notif;
6053
6054 if (!target_is_async_p ())
6055 {
6056 ofunc = signal (SIGINT, sync_remote_interrupt);
6057 /* If the user hit C-c before this packet, or between packets,
6058 pretend that it was hit right here. */
6059 if (check_quit_flag ())
6060 {
6061 clear_quit_flag ();
6062 sync_remote_interrupt (SIGINT);
6063 }
6064 }
6065
6066 /* FIXME: cagney/1999-09-27: If we're in async mode we should
6067 _never_ wait for ever -> test on target_is_async_p().
6068 However, before we do that we need to ensure that the caller
6069 knows how to take the target into/out of async mode. */
6070 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6071 wait_forever_enabled_p, &is_notif);
6072
6073 if (!target_is_async_p ())
6074 signal (SIGINT, ofunc);
6075
6076 /* GDB gets a notification. Return to core as this event is
6077 not interesting. */
6078 if (ret != -1 && is_notif)
6079 return minus_one_ptid;
6080 }
6081
6082 buf = rs->buf;
6083
6084 rs->remote_stopped_by_watchpoint_p = 0;
6085
6086 /* We got something. */
6087 rs->waiting_for_stop_reply = 0;
6088
6089 /* Assume that the target has acknowledged Ctrl-C unless we receive
6090 an 'F' or 'O' packet. */
6091 if (buf[0] != 'F' && buf[0] != 'O')
6092 rs->ctrlc_pending_p = 0;
6093
6094 switch (buf[0])
6095 {
6096 case 'E': /* Error of some sort. */
6097 /* We're out of sync with the target now. Did it continue or
6098 not? Not is more likely, so report a stop. */
6099 warning (_("Remote failure reply: %s"), buf);
6100 status->kind = TARGET_WAITKIND_STOPPED;
6101 status->value.sig = GDB_SIGNAL_0;
6102 break;
6103 case 'F': /* File-I/O request. */
6104 remote_fileio_request (buf, rs->ctrlc_pending_p);
6105 rs->ctrlc_pending_p = 0;
6106 break;
6107 case 'T': case 'S': case 'X': case 'W':
6108 {
6109 struct stop_reply *stop_reply
6110 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6111 rs->buf);
6112
6113 event_ptid = process_stop_reply (stop_reply, status);
6114 break;
6115 }
6116 case 'O': /* Console output. */
6117 remote_console_output (buf + 1);
6118
6119 /* The target didn't really stop; keep waiting. */
6120 rs->waiting_for_stop_reply = 1;
6121
6122 break;
6123 case '\0':
6124 if (rs->last_sent_signal != GDB_SIGNAL_0)
6125 {
6126 /* Zero length reply means that we tried 'S' or 'C' and the
6127 remote system doesn't support it. */
6128 target_terminal_ours_for_output ();
6129 printf_filtered
6130 ("Can't send signals to this remote system. %s not sent.\n",
6131 gdb_signal_to_name (rs->last_sent_signal));
6132 rs->last_sent_signal = GDB_SIGNAL_0;
6133 target_terminal_inferior ();
6134
6135 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6136 putpkt ((char *) buf);
6137
6138 /* We just told the target to resume, so a stop reply is in
6139 order. */
6140 rs->waiting_for_stop_reply = 1;
6141 break;
6142 }
6143 /* else fallthrough */
6144 default:
6145 warning (_("Invalid remote reply: %s"), buf);
6146 /* Keep waiting. */
6147 rs->waiting_for_stop_reply = 1;
6148 break;
6149 }
6150
6151 if (status->kind == TARGET_WAITKIND_IGNORE)
6152 {
6153 /* Nothing interesting happened. If we're doing a non-blocking
6154 poll, we're done. Otherwise, go back to waiting. */
6155 if (options & TARGET_WNOHANG)
6156 return minus_one_ptid;
6157 else
6158 goto again;
6159 }
6160 else if (status->kind != TARGET_WAITKIND_EXITED
6161 && status->kind != TARGET_WAITKIND_SIGNALLED)
6162 {
6163 if (!ptid_equal (event_ptid, null_ptid))
6164 record_currthread (rs, event_ptid);
6165 else
6166 event_ptid = inferior_ptid;
6167 }
6168 else
6169 /* A process exit. Invalidate our notion of current thread. */
6170 record_currthread (rs, minus_one_ptid);
6171
6172 return event_ptid;
6173 }
6174
6175 /* Wait until the remote machine stops, then return, storing status in
6176 STATUS just as `wait' would. */
6177
6178 static ptid_t
6179 remote_wait (struct target_ops *ops,
6180 ptid_t ptid, struct target_waitstatus *status, int options)
6181 {
6182 ptid_t event_ptid;
6183
6184 if (non_stop)
6185 event_ptid = remote_wait_ns (ptid, status, options);
6186 else
6187 event_ptid = remote_wait_as (ptid, status, options);
6188
6189 if (target_can_async_p ())
6190 {
6191 /* If there are are events left in the queue tell the event loop
6192 to return here. */
6193 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6194 mark_async_event_handler (remote_async_inferior_event_token);
6195 }
6196
6197 return event_ptid;
6198 }
6199
6200 /* Fetch a single register using a 'p' packet. */
6201
6202 static int
6203 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6204 {
6205 struct remote_state *rs = get_remote_state ();
6206 char *buf, *p;
6207 char regp[MAX_REGISTER_SIZE];
6208 int i;
6209
6210 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6211 return 0;
6212
6213 if (reg->pnum == -1)
6214 return 0;
6215
6216 p = rs->buf;
6217 *p++ = 'p';
6218 p += hexnumstr (p, reg->pnum);
6219 *p++ = '\0';
6220 putpkt (rs->buf);
6221 getpkt (&rs->buf, &rs->buf_size, 0);
6222
6223 buf = rs->buf;
6224
6225 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6226 {
6227 case PACKET_OK:
6228 break;
6229 case PACKET_UNKNOWN:
6230 return 0;
6231 case PACKET_ERROR:
6232 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6233 gdbarch_register_name (get_regcache_arch (regcache),
6234 reg->regnum),
6235 buf);
6236 }
6237
6238 /* If this register is unfetchable, tell the regcache. */
6239 if (buf[0] == 'x')
6240 {
6241 regcache_raw_supply (regcache, reg->regnum, NULL);
6242 return 1;
6243 }
6244
6245 /* Otherwise, parse and supply the value. */
6246 p = buf;
6247 i = 0;
6248 while (p[0] != 0)
6249 {
6250 if (p[1] == 0)
6251 error (_("fetch_register_using_p: early buf termination"));
6252
6253 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6254 p += 2;
6255 }
6256 regcache_raw_supply (regcache, reg->regnum, regp);
6257 return 1;
6258 }
6259
6260 /* Fetch the registers included in the target's 'g' packet. */
6261
6262 static int
6263 send_g_packet (void)
6264 {
6265 struct remote_state *rs = get_remote_state ();
6266 int buf_len;
6267
6268 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6269 remote_send (&rs->buf, &rs->buf_size);
6270
6271 /* We can get out of synch in various cases. If the first character
6272 in the buffer is not a hex character, assume that has happened
6273 and try to fetch another packet to read. */
6274 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6275 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6276 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6277 && rs->buf[0] != 'x') /* New: unavailable register value. */
6278 {
6279 if (remote_debug)
6280 fprintf_unfiltered (gdb_stdlog,
6281 "Bad register packet; fetching a new packet\n");
6282 getpkt (&rs->buf, &rs->buf_size, 0);
6283 }
6284
6285 buf_len = strlen (rs->buf);
6286
6287 /* Sanity check the received packet. */
6288 if (buf_len % 2 != 0)
6289 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6290
6291 return buf_len / 2;
6292 }
6293
6294 static void
6295 process_g_packet (struct regcache *regcache)
6296 {
6297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6298 struct remote_state *rs = get_remote_state ();
6299 struct remote_arch_state *rsa = get_remote_arch_state ();
6300 int i, buf_len;
6301 char *p;
6302 char *regs;
6303
6304 buf_len = strlen (rs->buf);
6305
6306 /* Further sanity checks, with knowledge of the architecture. */
6307 if (buf_len > 2 * rsa->sizeof_g_packet)
6308 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6309
6310 /* Save the size of the packet sent to us by the target. It is used
6311 as a heuristic when determining the max size of packets that the
6312 target can safely receive. */
6313 if (rsa->actual_register_packet_size == 0)
6314 rsa->actual_register_packet_size = buf_len;
6315
6316 /* If this is smaller than we guessed the 'g' packet would be,
6317 update our records. A 'g' reply that doesn't include a register's
6318 value implies either that the register is not available, or that
6319 the 'p' packet must be used. */
6320 if (buf_len < 2 * rsa->sizeof_g_packet)
6321 {
6322 rsa->sizeof_g_packet = buf_len / 2;
6323
6324 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6325 {
6326 if (rsa->regs[i].pnum == -1)
6327 continue;
6328
6329 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6330 rsa->regs[i].in_g_packet = 0;
6331 else
6332 rsa->regs[i].in_g_packet = 1;
6333 }
6334 }
6335
6336 regs = alloca (rsa->sizeof_g_packet);
6337
6338 /* Unimplemented registers read as all bits zero. */
6339 memset (regs, 0, rsa->sizeof_g_packet);
6340
6341 /* Reply describes registers byte by byte, each byte encoded as two
6342 hex characters. Suck them all up, then supply them to the
6343 register cacheing/storage mechanism. */
6344
6345 p = rs->buf;
6346 for (i = 0; i < rsa->sizeof_g_packet; i++)
6347 {
6348 if (p[0] == 0 || p[1] == 0)
6349 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6350 internal_error (__FILE__, __LINE__,
6351 _("unexpected end of 'g' packet reply"));
6352
6353 if (p[0] == 'x' && p[1] == 'x')
6354 regs[i] = 0; /* 'x' */
6355 else
6356 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6357 p += 2;
6358 }
6359
6360 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6361 {
6362 struct packet_reg *r = &rsa->regs[i];
6363
6364 if (r->in_g_packet)
6365 {
6366 if (r->offset * 2 >= strlen (rs->buf))
6367 /* This shouldn't happen - we adjusted in_g_packet above. */
6368 internal_error (__FILE__, __LINE__,
6369 _("unexpected end of 'g' packet reply"));
6370 else if (rs->buf[r->offset * 2] == 'x')
6371 {
6372 gdb_assert (r->offset * 2 < strlen (rs->buf));
6373 /* The register isn't available, mark it as such (at
6374 the same time setting the value to zero). */
6375 regcache_raw_supply (regcache, r->regnum, NULL);
6376 }
6377 else
6378 regcache_raw_supply (regcache, r->regnum,
6379 regs + r->offset);
6380 }
6381 }
6382 }
6383
6384 static void
6385 fetch_registers_using_g (struct regcache *regcache)
6386 {
6387 send_g_packet ();
6388 process_g_packet (regcache);
6389 }
6390
6391 /* Make the remote selected traceframe match GDB's selected
6392 traceframe. */
6393
6394 static void
6395 set_remote_traceframe (void)
6396 {
6397 int newnum;
6398 struct remote_state *rs = get_remote_state ();
6399
6400 if (rs->remote_traceframe_number == get_traceframe_number ())
6401 return;
6402
6403 /* Avoid recursion, remote_trace_find calls us again. */
6404 rs->remote_traceframe_number = get_traceframe_number ();
6405
6406 newnum = target_trace_find (tfind_number,
6407 get_traceframe_number (), 0, 0, NULL);
6408
6409 /* Should not happen. If it does, all bets are off. */
6410 if (newnum != get_traceframe_number ())
6411 warning (_("could not set remote traceframe"));
6412 }
6413
6414 static void
6415 remote_fetch_registers (struct target_ops *ops,
6416 struct regcache *regcache, int regnum)
6417 {
6418 struct remote_arch_state *rsa = get_remote_arch_state ();
6419 int i;
6420
6421 set_remote_traceframe ();
6422 set_general_thread (inferior_ptid);
6423
6424 if (regnum >= 0)
6425 {
6426 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6427
6428 gdb_assert (reg != NULL);
6429
6430 /* If this register might be in the 'g' packet, try that first -
6431 we are likely to read more than one register. If this is the
6432 first 'g' packet, we might be overly optimistic about its
6433 contents, so fall back to 'p'. */
6434 if (reg->in_g_packet)
6435 {
6436 fetch_registers_using_g (regcache);
6437 if (reg->in_g_packet)
6438 return;
6439 }
6440
6441 if (fetch_register_using_p (regcache, reg))
6442 return;
6443
6444 /* This register is not available. */
6445 regcache_raw_supply (regcache, reg->regnum, NULL);
6446
6447 return;
6448 }
6449
6450 fetch_registers_using_g (regcache);
6451
6452 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6453 if (!rsa->regs[i].in_g_packet)
6454 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6455 {
6456 /* This register is not available. */
6457 regcache_raw_supply (regcache, i, NULL);
6458 }
6459 }
6460
6461 /* Prepare to store registers. Since we may send them all (using a
6462 'G' request), we have to read out the ones we don't want to change
6463 first. */
6464
6465 static void
6466 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
6467 {
6468 struct remote_arch_state *rsa = get_remote_arch_state ();
6469 int i;
6470 gdb_byte buf[MAX_REGISTER_SIZE];
6471
6472 /* Make sure the entire registers array is valid. */
6473 switch (remote_protocol_packets[PACKET_P].support)
6474 {
6475 case PACKET_DISABLE:
6476 case PACKET_SUPPORT_UNKNOWN:
6477 /* Make sure all the necessary registers are cached. */
6478 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6479 if (rsa->regs[i].in_g_packet)
6480 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6481 break;
6482 case PACKET_ENABLE:
6483 break;
6484 }
6485 }
6486
6487 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6488 packet was not recognized. */
6489
6490 static int
6491 store_register_using_P (const struct regcache *regcache,
6492 struct packet_reg *reg)
6493 {
6494 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6495 struct remote_state *rs = get_remote_state ();
6496 /* Try storing a single register. */
6497 char *buf = rs->buf;
6498 gdb_byte regp[MAX_REGISTER_SIZE];
6499 char *p;
6500
6501 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6502 return 0;
6503
6504 if (reg->pnum == -1)
6505 return 0;
6506
6507 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6508 p = buf + strlen (buf);
6509 regcache_raw_collect (regcache, reg->regnum, regp);
6510 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6511 putpkt (rs->buf);
6512 getpkt (&rs->buf, &rs->buf_size, 0);
6513
6514 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6515 {
6516 case PACKET_OK:
6517 return 1;
6518 case PACKET_ERROR:
6519 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6520 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6521 case PACKET_UNKNOWN:
6522 return 0;
6523 default:
6524 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6525 }
6526 }
6527
6528 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6529 contents of the register cache buffer. FIXME: ignores errors. */
6530
6531 static void
6532 store_registers_using_G (const struct regcache *regcache)
6533 {
6534 struct remote_state *rs = get_remote_state ();
6535 struct remote_arch_state *rsa = get_remote_arch_state ();
6536 gdb_byte *regs;
6537 char *p;
6538
6539 /* Extract all the registers in the regcache copying them into a
6540 local buffer. */
6541 {
6542 int i;
6543
6544 regs = alloca (rsa->sizeof_g_packet);
6545 memset (regs, 0, rsa->sizeof_g_packet);
6546 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6547 {
6548 struct packet_reg *r = &rsa->regs[i];
6549
6550 if (r->in_g_packet)
6551 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6552 }
6553 }
6554
6555 /* Command describes registers byte by byte,
6556 each byte encoded as two hex characters. */
6557 p = rs->buf;
6558 *p++ = 'G';
6559 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6560 updated. */
6561 bin2hex (regs, p, rsa->sizeof_g_packet);
6562 putpkt (rs->buf);
6563 getpkt (&rs->buf, &rs->buf_size, 0);
6564 if (packet_check_result (rs->buf) == PACKET_ERROR)
6565 error (_("Could not write registers; remote failure reply '%s'"),
6566 rs->buf);
6567 }
6568
6569 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6570 of the register cache buffer. FIXME: ignores errors. */
6571
6572 static void
6573 remote_store_registers (struct target_ops *ops,
6574 struct regcache *regcache, int regnum)
6575 {
6576 struct remote_arch_state *rsa = get_remote_arch_state ();
6577 int i;
6578
6579 set_remote_traceframe ();
6580 set_general_thread (inferior_ptid);
6581
6582 if (regnum >= 0)
6583 {
6584 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6585
6586 gdb_assert (reg != NULL);
6587
6588 /* Always prefer to store registers using the 'P' packet if
6589 possible; we often change only a small number of registers.
6590 Sometimes we change a larger number; we'd need help from a
6591 higher layer to know to use 'G'. */
6592 if (store_register_using_P (regcache, reg))
6593 return;
6594
6595 /* For now, don't complain if we have no way to write the
6596 register. GDB loses track of unavailable registers too
6597 easily. Some day, this may be an error. We don't have
6598 any way to read the register, either... */
6599 if (!reg->in_g_packet)
6600 return;
6601
6602 store_registers_using_G (regcache);
6603 return;
6604 }
6605
6606 store_registers_using_G (regcache);
6607
6608 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6609 if (!rsa->regs[i].in_g_packet)
6610 if (!store_register_using_P (regcache, &rsa->regs[i]))
6611 /* See above for why we do not issue an error here. */
6612 continue;
6613 }
6614 \f
6615
6616 /* Return the number of hex digits in num. */
6617
6618 static int
6619 hexnumlen (ULONGEST num)
6620 {
6621 int i;
6622
6623 for (i = 0; num != 0; i++)
6624 num >>= 4;
6625
6626 return max (i, 1);
6627 }
6628
6629 /* Set BUF to the minimum number of hex digits representing NUM. */
6630
6631 static int
6632 hexnumstr (char *buf, ULONGEST num)
6633 {
6634 int len = hexnumlen (num);
6635
6636 return hexnumnstr (buf, num, len);
6637 }
6638
6639
6640 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6641
6642 static int
6643 hexnumnstr (char *buf, ULONGEST num, int width)
6644 {
6645 int i;
6646
6647 buf[width] = '\0';
6648
6649 for (i = width - 1; i >= 0; i--)
6650 {
6651 buf[i] = "0123456789abcdef"[(num & 0xf)];
6652 num >>= 4;
6653 }
6654
6655 return width;
6656 }
6657
6658 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6659
6660 static CORE_ADDR
6661 remote_address_masked (CORE_ADDR addr)
6662 {
6663 unsigned int address_size = remote_address_size;
6664
6665 /* If "remoteaddresssize" was not set, default to target address size. */
6666 if (!address_size)
6667 address_size = gdbarch_addr_bit (target_gdbarch ());
6668
6669 if (address_size > 0
6670 && address_size < (sizeof (ULONGEST) * 8))
6671 {
6672 /* Only create a mask when that mask can safely be constructed
6673 in a ULONGEST variable. */
6674 ULONGEST mask = 1;
6675
6676 mask = (mask << address_size) - 1;
6677 addr &= mask;
6678 }
6679 return addr;
6680 }
6681
6682 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6683 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6684 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6685 (which may be more than *OUT_LEN due to escape characters). The
6686 total number of bytes in the output buffer will be at most
6687 OUT_MAXLEN. */
6688
6689 static int
6690 remote_escape_output (const gdb_byte *buffer, int len,
6691 gdb_byte *out_buf, int *out_len,
6692 int out_maxlen)
6693 {
6694 int input_index, output_index;
6695
6696 output_index = 0;
6697 for (input_index = 0; input_index < len; input_index++)
6698 {
6699 gdb_byte b = buffer[input_index];
6700
6701 if (b == '$' || b == '#' || b == '}')
6702 {
6703 /* These must be escaped. */
6704 if (output_index + 2 > out_maxlen)
6705 break;
6706 out_buf[output_index++] = '}';
6707 out_buf[output_index++] = b ^ 0x20;
6708 }
6709 else
6710 {
6711 if (output_index + 1 > out_maxlen)
6712 break;
6713 out_buf[output_index++] = b;
6714 }
6715 }
6716
6717 *out_len = input_index;
6718 return output_index;
6719 }
6720
6721 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6722 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6723 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6724
6725 This function reverses remote_escape_output. It allows more
6726 escaped characters than that function does, in particular because
6727 '*' must be escaped to avoid the run-length encoding processing
6728 in reading packets. */
6729
6730 static int
6731 remote_unescape_input (const gdb_byte *buffer, int len,
6732 gdb_byte *out_buf, int out_maxlen)
6733 {
6734 int input_index, output_index;
6735 int escaped;
6736
6737 output_index = 0;
6738 escaped = 0;
6739 for (input_index = 0; input_index < len; input_index++)
6740 {
6741 gdb_byte b = buffer[input_index];
6742
6743 if (output_index + 1 > out_maxlen)
6744 {
6745 warning (_("Received too much data from remote target;"
6746 " ignoring overflow."));
6747 return output_index;
6748 }
6749
6750 if (escaped)
6751 {
6752 out_buf[output_index++] = b ^ 0x20;
6753 escaped = 0;
6754 }
6755 else if (b == '}')
6756 escaped = 1;
6757 else
6758 out_buf[output_index++] = b;
6759 }
6760
6761 if (escaped)
6762 error (_("Unmatched escape character in target response."));
6763
6764 return output_index;
6765 }
6766
6767 /* Determine whether the remote target supports binary downloading.
6768 This is accomplished by sending a no-op memory write of zero length
6769 to the target at the specified address. It does not suffice to send
6770 the whole packet, since many stubs strip the eighth bit and
6771 subsequently compute a wrong checksum, which causes real havoc with
6772 remote_write_bytes.
6773
6774 NOTE: This can still lose if the serial line is not eight-bit
6775 clean. In cases like this, the user should clear "remote
6776 X-packet". */
6777
6778 static void
6779 check_binary_download (CORE_ADDR addr)
6780 {
6781 struct remote_state *rs = get_remote_state ();
6782
6783 switch (remote_protocol_packets[PACKET_X].support)
6784 {
6785 case PACKET_DISABLE:
6786 break;
6787 case PACKET_ENABLE:
6788 break;
6789 case PACKET_SUPPORT_UNKNOWN:
6790 {
6791 char *p;
6792
6793 p = rs->buf;
6794 *p++ = 'X';
6795 p += hexnumstr (p, (ULONGEST) addr);
6796 *p++ = ',';
6797 p += hexnumstr (p, (ULONGEST) 0);
6798 *p++ = ':';
6799 *p = '\0';
6800
6801 putpkt_binary (rs->buf, (int) (p - rs->buf));
6802 getpkt (&rs->buf, &rs->buf_size, 0);
6803
6804 if (rs->buf[0] == '\0')
6805 {
6806 if (remote_debug)
6807 fprintf_unfiltered (gdb_stdlog,
6808 "binary downloading NOT "
6809 "supported by target\n");
6810 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6811 }
6812 else
6813 {
6814 if (remote_debug)
6815 fprintf_unfiltered (gdb_stdlog,
6816 "binary downloading supported by target\n");
6817 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6818 }
6819 break;
6820 }
6821 }
6822 }
6823
6824 /* Write memory data directly to the remote machine.
6825 This does not inform the data cache; the data cache uses this.
6826 HEADER is the starting part of the packet.
6827 MEMADDR is the address in the remote memory space.
6828 MYADDR is the address of the buffer in our space.
6829 LEN is the number of bytes.
6830 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6831 should send data as binary ('X'), or hex-encoded ('M').
6832
6833 The function creates packet of the form
6834 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6835
6836 where encoding of <DATA> is termined by PACKET_FORMAT.
6837
6838 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6839 are omitted.
6840
6841 Return the transferred status, error or OK (an
6842 'enum target_xfer_status' value). Save the number of bytes
6843 transferred in *XFERED_LEN. Only transfer a single packet. */
6844
6845 static enum target_xfer_status
6846 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6847 const gdb_byte *myaddr, ULONGEST len,
6848 ULONGEST *xfered_len, char packet_format,
6849 int use_length)
6850 {
6851 struct remote_state *rs = get_remote_state ();
6852 char *p;
6853 char *plen = NULL;
6854 int plenlen = 0;
6855 int todo;
6856 int nr_bytes;
6857 int payload_size;
6858 int payload_length;
6859 int header_length;
6860
6861 if (packet_format != 'X' && packet_format != 'M')
6862 internal_error (__FILE__, __LINE__,
6863 _("remote_write_bytes_aux: bad packet format"));
6864
6865 if (len == 0)
6866 return TARGET_XFER_EOF;
6867
6868 payload_size = get_memory_write_packet_size ();
6869
6870 /* The packet buffer will be large enough for the payload;
6871 get_memory_packet_size ensures this. */
6872 rs->buf[0] = '\0';
6873
6874 /* Compute the size of the actual payload by subtracting out the
6875 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6876
6877 payload_size -= strlen ("$,:#NN");
6878 if (!use_length)
6879 /* The comma won't be used. */
6880 payload_size += 1;
6881 header_length = strlen (header);
6882 payload_size -= header_length;
6883 payload_size -= hexnumlen (memaddr);
6884
6885 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6886
6887 strcat (rs->buf, header);
6888 p = rs->buf + strlen (header);
6889
6890 /* Compute a best guess of the number of bytes actually transfered. */
6891 if (packet_format == 'X')
6892 {
6893 /* Best guess at number of bytes that will fit. */
6894 todo = min (len, payload_size);
6895 if (use_length)
6896 payload_size -= hexnumlen (todo);
6897 todo = min (todo, payload_size);
6898 }
6899 else
6900 {
6901 /* Num bytes that will fit. */
6902 todo = min (len, payload_size / 2);
6903 if (use_length)
6904 payload_size -= hexnumlen (todo);
6905 todo = min (todo, payload_size / 2);
6906 }
6907
6908 if (todo <= 0)
6909 internal_error (__FILE__, __LINE__,
6910 _("minimum packet size too small to write data"));
6911
6912 /* If we already need another packet, then try to align the end
6913 of this packet to a useful boundary. */
6914 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6915 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6916
6917 /* Append "<memaddr>". */
6918 memaddr = remote_address_masked (memaddr);
6919 p += hexnumstr (p, (ULONGEST) memaddr);
6920
6921 if (use_length)
6922 {
6923 /* Append ",". */
6924 *p++ = ',';
6925
6926 /* Append <len>. Retain the location/size of <len>. It may need to
6927 be adjusted once the packet body has been created. */
6928 plen = p;
6929 plenlen = hexnumstr (p, (ULONGEST) todo);
6930 p += plenlen;
6931 }
6932
6933 /* Append ":". */
6934 *p++ = ':';
6935 *p = '\0';
6936
6937 /* Append the packet body. */
6938 if (packet_format == 'X')
6939 {
6940 /* Binary mode. Send target system values byte by byte, in
6941 increasing byte addresses. Only escape certain critical
6942 characters. */
6943 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6944 &nr_bytes, payload_size);
6945
6946 /* If not all TODO bytes fit, then we'll need another packet. Make
6947 a second try to keep the end of the packet aligned. Don't do
6948 this if the packet is tiny. */
6949 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6950 {
6951 int new_nr_bytes;
6952
6953 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6954 - memaddr);
6955 if (new_nr_bytes != nr_bytes)
6956 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6957 (gdb_byte *) p, &nr_bytes,
6958 payload_size);
6959 }
6960
6961 p += payload_length;
6962 if (use_length && nr_bytes < todo)
6963 {
6964 /* Escape chars have filled up the buffer prematurely,
6965 and we have actually sent fewer bytes than planned.
6966 Fix-up the length field of the packet. Use the same
6967 number of characters as before. */
6968 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6969 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6970 }
6971 }
6972 else
6973 {
6974 /* Normal mode: Send target system values byte by byte, in
6975 increasing byte addresses. Each byte is encoded as a two hex
6976 value. */
6977 nr_bytes = bin2hex (myaddr, p, todo);
6978 p += 2 * nr_bytes;
6979 }
6980
6981 putpkt_binary (rs->buf, (int) (p - rs->buf));
6982 getpkt (&rs->buf, &rs->buf_size, 0);
6983
6984 if (rs->buf[0] == 'E')
6985 return TARGET_XFER_E_IO;
6986
6987 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6988 fewer bytes than we'd planned. */
6989 *xfered_len = (ULONGEST) nr_bytes;
6990 return TARGET_XFER_OK;
6991 }
6992
6993 /* Write memory data directly to the remote machine.
6994 This does not inform the data cache; the data cache uses this.
6995 MEMADDR is the address in the remote memory space.
6996 MYADDR is the address of the buffer in our space.
6997 LEN is the number of bytes.
6998
6999 Return the transferred status, error or OK (an
7000 'enum target_xfer_status' value). Save the number of bytes
7001 transferred in *XFERED_LEN. Only transfer a single packet. */
7002
7003 static enum target_xfer_status
7004 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
7005 ULONGEST *xfered_len)
7006 {
7007 char *packet_format = 0;
7008
7009 /* Check whether the target supports binary download. */
7010 check_binary_download (memaddr);
7011
7012 switch (remote_protocol_packets[PACKET_X].support)
7013 {
7014 case PACKET_ENABLE:
7015 packet_format = "X";
7016 break;
7017 case PACKET_DISABLE:
7018 packet_format = "M";
7019 break;
7020 case PACKET_SUPPORT_UNKNOWN:
7021 internal_error (__FILE__, __LINE__,
7022 _("remote_write_bytes: bad internal state"));
7023 default:
7024 internal_error (__FILE__, __LINE__, _("bad switch"));
7025 }
7026
7027 return remote_write_bytes_aux (packet_format,
7028 memaddr, myaddr, len, xfered_len,
7029 packet_format[0], 1);
7030 }
7031
7032 /* Read memory data directly from the remote machine.
7033 This does not use the data cache; the data cache uses this.
7034 MEMADDR is the address in the remote memory space.
7035 MYADDR is the address of the buffer in our space.
7036 LEN is the number of bytes.
7037
7038 Return the transferred status, error or OK (an
7039 'enum target_xfer_status' value). Save the number of bytes
7040 transferred in *XFERED_LEN. */
7041
7042 static enum target_xfer_status
7043 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len,
7044 ULONGEST *xfered_len)
7045 {
7046 struct remote_state *rs = get_remote_state ();
7047 int max_buf_size; /* Max size of packet output buffer. */
7048 char *p;
7049 int todo;
7050 int i;
7051
7052 if (len == 0)
7053 return 0;
7054
7055 max_buf_size = get_memory_read_packet_size ();
7056 /* The packet buffer will be large enough for the payload;
7057 get_memory_packet_size ensures this. */
7058
7059 /* Number if bytes that will fit. */
7060 todo = min (len, max_buf_size / 2);
7061
7062 /* Construct "m"<memaddr>","<len>". */
7063 memaddr = remote_address_masked (memaddr);
7064 p = rs->buf;
7065 *p++ = 'm';
7066 p += hexnumstr (p, (ULONGEST) memaddr);
7067 *p++ = ',';
7068 p += hexnumstr (p, (ULONGEST) todo);
7069 *p = '\0';
7070 putpkt (rs->buf);
7071 getpkt (&rs->buf, &rs->buf_size, 0);
7072 if (rs->buf[0] == 'E'
7073 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
7074 && rs->buf[3] == '\0')
7075 return TARGET_XFER_E_IO;
7076 /* Reply describes memory byte by byte, each byte encoded as two hex
7077 characters. */
7078 p = rs->buf;
7079 i = hex2bin (p, myaddr, todo);
7080 /* Return what we have. Let higher layers handle partial reads. */
7081 *xfered_len = (ULONGEST) i;
7082 return TARGET_XFER_OK;
7083 }
7084
7085 \f
7086
7087 /* Sends a packet with content determined by the printf format string
7088 FORMAT and the remaining arguments, then gets the reply. Returns
7089 whether the packet was a success, a failure, or unknown. */
7090
7091 static enum packet_result
7092 remote_send_printf (const char *format, ...)
7093 {
7094 struct remote_state *rs = get_remote_state ();
7095 int max_size = get_remote_packet_size ();
7096 va_list ap;
7097
7098 va_start (ap, format);
7099
7100 rs->buf[0] = '\0';
7101 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7102 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7103
7104 if (putpkt (rs->buf) < 0)
7105 error (_("Communication problem with target."));
7106
7107 rs->buf[0] = '\0';
7108 getpkt (&rs->buf, &rs->buf_size, 0);
7109
7110 return packet_check_result (rs->buf);
7111 }
7112
7113 static void
7114 restore_remote_timeout (void *p)
7115 {
7116 int value = *(int *)p;
7117
7118 remote_timeout = value;
7119 }
7120
7121 /* Flash writing can take quite some time. We'll set
7122 effectively infinite timeout for flash operations.
7123 In future, we'll need to decide on a better approach. */
7124 static const int remote_flash_timeout = 1000;
7125
7126 static void
7127 remote_flash_erase (struct target_ops *ops,
7128 ULONGEST address, LONGEST length)
7129 {
7130 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7131 int saved_remote_timeout = remote_timeout;
7132 enum packet_result ret;
7133 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7134 &saved_remote_timeout);
7135
7136 remote_timeout = remote_flash_timeout;
7137
7138 ret = remote_send_printf ("vFlashErase:%s,%s",
7139 phex (address, addr_size),
7140 phex (length, 4));
7141 switch (ret)
7142 {
7143 case PACKET_UNKNOWN:
7144 error (_("Remote target does not support flash erase"));
7145 case PACKET_ERROR:
7146 error (_("Error erasing flash with vFlashErase packet"));
7147 default:
7148 break;
7149 }
7150
7151 do_cleanups (back_to);
7152 }
7153
7154 static enum target_xfer_status
7155 remote_flash_write (struct target_ops *ops, ULONGEST address,
7156 ULONGEST length, ULONGEST *xfered_len,
7157 const gdb_byte *data)
7158 {
7159 int saved_remote_timeout = remote_timeout;
7160 enum target_xfer_status ret;
7161 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7162 &saved_remote_timeout);
7163
7164 remote_timeout = remote_flash_timeout;
7165 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length,
7166 xfered_len,'X', 0);
7167 do_cleanups (back_to);
7168
7169 return ret;
7170 }
7171
7172 static void
7173 remote_flash_done (struct target_ops *ops)
7174 {
7175 int saved_remote_timeout = remote_timeout;
7176 int ret;
7177 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7178 &saved_remote_timeout);
7179
7180 remote_timeout = remote_flash_timeout;
7181 ret = remote_send_printf ("vFlashDone");
7182 do_cleanups (back_to);
7183
7184 switch (ret)
7185 {
7186 case PACKET_UNKNOWN:
7187 error (_("Remote target does not support vFlashDone"));
7188 case PACKET_ERROR:
7189 error (_("Error finishing flash operation"));
7190 default:
7191 break;
7192 }
7193 }
7194
7195 static void
7196 remote_files_info (struct target_ops *ignore)
7197 {
7198 puts_filtered ("Debugging a target over a serial line.\n");
7199 }
7200 \f
7201 /* Stuff for dealing with the packets which are part of this protocol.
7202 See comment at top of file for details. */
7203
7204 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7205 error to higher layers. Called when a serial error is detected.
7206 The exception message is STRING, followed by a colon and a blank,
7207 the system error message for errno at function entry and final dot
7208 for output compatibility with throw_perror_with_name. */
7209
7210 static void
7211 unpush_and_perror (const char *string)
7212 {
7213 int saved_errno = errno;
7214
7215 remote_unpush_target ();
7216 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7217 safe_strerror (saved_errno));
7218 }
7219
7220 /* Read a single character from the remote end. */
7221
7222 static int
7223 readchar (int timeout)
7224 {
7225 int ch;
7226 struct remote_state *rs = get_remote_state ();
7227
7228 ch = serial_readchar (rs->remote_desc, timeout);
7229
7230 if (ch >= 0)
7231 return ch;
7232
7233 switch ((enum serial_rc) ch)
7234 {
7235 case SERIAL_EOF:
7236 remote_unpush_target ();
7237 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7238 /* no return */
7239 case SERIAL_ERROR:
7240 unpush_and_perror (_("Remote communication error. "
7241 "Target disconnected."));
7242 /* no return */
7243 case SERIAL_TIMEOUT:
7244 break;
7245 }
7246 return ch;
7247 }
7248
7249 /* Wrapper for serial_write that closes the target and throws if
7250 writing fails. */
7251
7252 static void
7253 remote_serial_write (const char *str, int len)
7254 {
7255 struct remote_state *rs = get_remote_state ();
7256
7257 if (serial_write (rs->remote_desc, str, len))
7258 {
7259 unpush_and_perror (_("Remote communication error. "
7260 "Target disconnected."));
7261 }
7262 }
7263
7264 /* Send the command in *BUF to the remote machine, and read the reply
7265 into *BUF. Report an error if we get an error reply. Resize
7266 *BUF using xrealloc if necessary to hold the result, and update
7267 *SIZEOF_BUF. */
7268
7269 static void
7270 remote_send (char **buf,
7271 long *sizeof_buf)
7272 {
7273 putpkt (*buf);
7274 getpkt (buf, sizeof_buf, 0);
7275
7276 if ((*buf)[0] == 'E')
7277 error (_("Remote failure reply: %s"), *buf);
7278 }
7279
7280 /* Return a pointer to an xmalloc'ed string representing an escaped
7281 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7282 etc. The caller is responsible for releasing the returned
7283 memory. */
7284
7285 static char *
7286 escape_buffer (const char *buf, int n)
7287 {
7288 struct cleanup *old_chain;
7289 struct ui_file *stb;
7290 char *str;
7291
7292 stb = mem_fileopen ();
7293 old_chain = make_cleanup_ui_file_delete (stb);
7294
7295 fputstrn_unfiltered (buf, n, 0, stb);
7296 str = ui_file_xstrdup (stb, NULL);
7297 do_cleanups (old_chain);
7298 return str;
7299 }
7300
7301 /* Display a null-terminated packet on stdout, for debugging, using C
7302 string notation. */
7303
7304 static void
7305 print_packet (char *buf)
7306 {
7307 puts_filtered ("\"");
7308 fputstr_filtered (buf, '"', gdb_stdout);
7309 puts_filtered ("\"");
7310 }
7311
7312 int
7313 putpkt (char *buf)
7314 {
7315 return putpkt_binary (buf, strlen (buf));
7316 }
7317
7318 /* Send a packet to the remote machine, with error checking. The data
7319 of the packet is in BUF. The string in BUF can be at most
7320 get_remote_packet_size () - 5 to account for the $, # and checksum,
7321 and for a possible /0 if we are debugging (remote_debug) and want
7322 to print the sent packet as a string. */
7323
7324 static int
7325 putpkt_binary (char *buf, int cnt)
7326 {
7327 struct remote_state *rs = get_remote_state ();
7328 int i;
7329 unsigned char csum = 0;
7330 char *buf2 = alloca (cnt + 6);
7331
7332 int ch;
7333 int tcount = 0;
7334 char *p;
7335 char *message;
7336
7337 /* Catch cases like trying to read memory or listing threads while
7338 we're waiting for a stop reply. The remote server wouldn't be
7339 ready to handle this request, so we'd hang and timeout. We don't
7340 have to worry about this in synchronous mode, because in that
7341 case it's not possible to issue a command while the target is
7342 running. This is not a problem in non-stop mode, because in that
7343 case, the stub is always ready to process serial input. */
7344 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7345 error (_("Cannot execute this command while the target is running."));
7346
7347 /* We're sending out a new packet. Make sure we don't look at a
7348 stale cached response. */
7349 rs->cached_wait_status = 0;
7350
7351 /* Copy the packet into buffer BUF2, encapsulating it
7352 and giving it a checksum. */
7353
7354 p = buf2;
7355 *p++ = '$';
7356
7357 for (i = 0; i < cnt; i++)
7358 {
7359 csum += buf[i];
7360 *p++ = buf[i];
7361 }
7362 *p++ = '#';
7363 *p++ = tohex ((csum >> 4) & 0xf);
7364 *p++ = tohex (csum & 0xf);
7365
7366 /* Send it over and over until we get a positive ack. */
7367
7368 while (1)
7369 {
7370 int started_error_output = 0;
7371
7372 if (remote_debug)
7373 {
7374 struct cleanup *old_chain;
7375 char *str;
7376
7377 *p = '\0';
7378 str = escape_buffer (buf2, p - buf2);
7379 old_chain = make_cleanup (xfree, str);
7380 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7381 gdb_flush (gdb_stdlog);
7382 do_cleanups (old_chain);
7383 }
7384 remote_serial_write (buf2, p - buf2);
7385
7386 /* If this is a no acks version of the remote protocol, send the
7387 packet and move on. */
7388 if (rs->noack_mode)
7389 break;
7390
7391 /* Read until either a timeout occurs (-2) or '+' is read.
7392 Handle any notification that arrives in the mean time. */
7393 while (1)
7394 {
7395 ch = readchar (remote_timeout);
7396
7397 if (remote_debug)
7398 {
7399 switch (ch)
7400 {
7401 case '+':
7402 case '-':
7403 case SERIAL_TIMEOUT:
7404 case '$':
7405 case '%':
7406 if (started_error_output)
7407 {
7408 putchar_unfiltered ('\n');
7409 started_error_output = 0;
7410 }
7411 }
7412 }
7413
7414 switch (ch)
7415 {
7416 case '+':
7417 if (remote_debug)
7418 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7419 return 1;
7420 case '-':
7421 if (remote_debug)
7422 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7423 /* FALLTHROUGH */
7424 case SERIAL_TIMEOUT:
7425 tcount++;
7426 if (tcount > 3)
7427 return 0;
7428 break; /* Retransmit buffer. */
7429 case '$':
7430 {
7431 if (remote_debug)
7432 fprintf_unfiltered (gdb_stdlog,
7433 "Packet instead of Ack, ignoring it\n");
7434 /* It's probably an old response sent because an ACK
7435 was lost. Gobble up the packet and ack it so it
7436 doesn't get retransmitted when we resend this
7437 packet. */
7438 skip_frame ();
7439 remote_serial_write ("+", 1);
7440 continue; /* Now, go look for +. */
7441 }
7442
7443 case '%':
7444 {
7445 int val;
7446
7447 /* If we got a notification, handle it, and go back to looking
7448 for an ack. */
7449 /* We've found the start of a notification. Now
7450 collect the data. */
7451 val = read_frame (&rs->buf, &rs->buf_size);
7452 if (val >= 0)
7453 {
7454 if (remote_debug)
7455 {
7456 struct cleanup *old_chain;
7457 char *str;
7458
7459 str = escape_buffer (rs->buf, val);
7460 old_chain = make_cleanup (xfree, str);
7461 fprintf_unfiltered (gdb_stdlog,
7462 " Notification received: %s\n",
7463 str);
7464 do_cleanups (old_chain);
7465 }
7466 handle_notification (rs->notif_state, rs->buf);
7467 /* We're in sync now, rewait for the ack. */
7468 tcount = 0;
7469 }
7470 else
7471 {
7472 if (remote_debug)
7473 {
7474 if (!started_error_output)
7475 {
7476 started_error_output = 1;
7477 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7478 }
7479 fputc_unfiltered (ch & 0177, gdb_stdlog);
7480 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7481 }
7482 }
7483 continue;
7484 }
7485 /* fall-through */
7486 default:
7487 if (remote_debug)
7488 {
7489 if (!started_error_output)
7490 {
7491 started_error_output = 1;
7492 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7493 }
7494 fputc_unfiltered (ch & 0177, gdb_stdlog);
7495 }
7496 continue;
7497 }
7498 break; /* Here to retransmit. */
7499 }
7500
7501 #if 0
7502 /* This is wrong. If doing a long backtrace, the user should be
7503 able to get out next time we call QUIT, without anything as
7504 violent as interrupt_query. If we want to provide a way out of
7505 here without getting to the next QUIT, it should be based on
7506 hitting ^C twice as in remote_wait. */
7507 if (quit_flag)
7508 {
7509 quit_flag = 0;
7510 interrupt_query ();
7511 }
7512 #endif
7513 }
7514 return 0;
7515 }
7516
7517 /* Come here after finding the start of a frame when we expected an
7518 ack. Do our best to discard the rest of this packet. */
7519
7520 static void
7521 skip_frame (void)
7522 {
7523 int c;
7524
7525 while (1)
7526 {
7527 c = readchar (remote_timeout);
7528 switch (c)
7529 {
7530 case SERIAL_TIMEOUT:
7531 /* Nothing we can do. */
7532 return;
7533 case '#':
7534 /* Discard the two bytes of checksum and stop. */
7535 c = readchar (remote_timeout);
7536 if (c >= 0)
7537 c = readchar (remote_timeout);
7538
7539 return;
7540 case '*': /* Run length encoding. */
7541 /* Discard the repeat count. */
7542 c = readchar (remote_timeout);
7543 if (c < 0)
7544 return;
7545 break;
7546 default:
7547 /* A regular character. */
7548 break;
7549 }
7550 }
7551 }
7552
7553 /* Come here after finding the start of the frame. Collect the rest
7554 into *BUF, verifying the checksum, length, and handling run-length
7555 compression. NUL terminate the buffer. If there is not enough room,
7556 expand *BUF using xrealloc.
7557
7558 Returns -1 on error, number of characters in buffer (ignoring the
7559 trailing NULL) on success. (could be extended to return one of the
7560 SERIAL status indications). */
7561
7562 static long
7563 read_frame (char **buf_p,
7564 long *sizeof_buf)
7565 {
7566 unsigned char csum;
7567 long bc;
7568 int c;
7569 char *buf = *buf_p;
7570 struct remote_state *rs = get_remote_state ();
7571
7572 csum = 0;
7573 bc = 0;
7574
7575 while (1)
7576 {
7577 c = readchar (remote_timeout);
7578 switch (c)
7579 {
7580 case SERIAL_TIMEOUT:
7581 if (remote_debug)
7582 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7583 return -1;
7584 case '$':
7585 if (remote_debug)
7586 fputs_filtered ("Saw new packet start in middle of old one\n",
7587 gdb_stdlog);
7588 return -1; /* Start a new packet, count retries. */
7589 case '#':
7590 {
7591 unsigned char pktcsum;
7592 int check_0 = 0;
7593 int check_1 = 0;
7594
7595 buf[bc] = '\0';
7596
7597 check_0 = readchar (remote_timeout);
7598 if (check_0 >= 0)
7599 check_1 = readchar (remote_timeout);
7600
7601 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7602 {
7603 if (remote_debug)
7604 fputs_filtered ("Timeout in checksum, retrying\n",
7605 gdb_stdlog);
7606 return -1;
7607 }
7608 else if (check_0 < 0 || check_1 < 0)
7609 {
7610 if (remote_debug)
7611 fputs_filtered ("Communication error in checksum\n",
7612 gdb_stdlog);
7613 return -1;
7614 }
7615
7616 /* Don't recompute the checksum; with no ack packets we
7617 don't have any way to indicate a packet retransmission
7618 is necessary. */
7619 if (rs->noack_mode)
7620 return bc;
7621
7622 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7623 if (csum == pktcsum)
7624 return bc;
7625
7626 if (remote_debug)
7627 {
7628 struct cleanup *old_chain;
7629 char *str;
7630
7631 str = escape_buffer (buf, bc);
7632 old_chain = make_cleanup (xfree, str);
7633 fprintf_unfiltered (gdb_stdlog,
7634 "Bad checksum, sentsum=0x%x, "
7635 "csum=0x%x, buf=%s\n",
7636 pktcsum, csum, str);
7637 do_cleanups (old_chain);
7638 }
7639 /* Number of characters in buffer ignoring trailing
7640 NULL. */
7641 return -1;
7642 }
7643 case '*': /* Run length encoding. */
7644 {
7645 int repeat;
7646
7647 csum += c;
7648 c = readchar (remote_timeout);
7649 csum += c;
7650 repeat = c - ' ' + 3; /* Compute repeat count. */
7651
7652 /* The character before ``*'' is repeated. */
7653
7654 if (repeat > 0 && repeat <= 255 && bc > 0)
7655 {
7656 if (bc + repeat - 1 >= *sizeof_buf - 1)
7657 {
7658 /* Make some more room in the buffer. */
7659 *sizeof_buf += repeat;
7660 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7661 buf = *buf_p;
7662 }
7663
7664 memset (&buf[bc], buf[bc - 1], repeat);
7665 bc += repeat;
7666 continue;
7667 }
7668
7669 buf[bc] = '\0';
7670 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7671 return -1;
7672 }
7673 default:
7674 if (bc >= *sizeof_buf - 1)
7675 {
7676 /* Make some more room in the buffer. */
7677 *sizeof_buf *= 2;
7678 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7679 buf = *buf_p;
7680 }
7681
7682 buf[bc++] = c;
7683 csum += c;
7684 continue;
7685 }
7686 }
7687 }
7688
7689 /* Read a packet from the remote machine, with error checking, and
7690 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7691 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7692 rather than timing out; this is used (in synchronous mode) to wait
7693 for a target that is is executing user code to stop. */
7694 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7695 don't have to change all the calls to getpkt to deal with the
7696 return value, because at the moment I don't know what the right
7697 thing to do it for those. */
7698 void
7699 getpkt (char **buf,
7700 long *sizeof_buf,
7701 int forever)
7702 {
7703 int timed_out;
7704
7705 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7706 }
7707
7708
7709 /* Read a packet from the remote machine, with error checking, and
7710 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7711 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7712 rather than timing out; this is used (in synchronous mode) to wait
7713 for a target that is is executing user code to stop. If FOREVER ==
7714 0, this function is allowed to time out gracefully and return an
7715 indication of this to the caller. Otherwise return the number of
7716 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7717 enough reason to return to the caller. *IS_NOTIF is an output
7718 boolean that indicates whether *BUF holds a notification or not
7719 (a regular packet). */
7720
7721 static int
7722 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7723 int expecting_notif, int *is_notif)
7724 {
7725 struct remote_state *rs = get_remote_state ();
7726 int c;
7727 int tries;
7728 int timeout;
7729 int val = -1;
7730
7731 /* We're reading a new response. Make sure we don't look at a
7732 previously cached response. */
7733 rs->cached_wait_status = 0;
7734
7735 strcpy (*buf, "timeout");
7736
7737 if (forever)
7738 timeout = watchdog > 0 ? watchdog : -1;
7739 else if (expecting_notif)
7740 timeout = 0; /* There should already be a char in the buffer. If
7741 not, bail out. */
7742 else
7743 timeout = remote_timeout;
7744
7745 #define MAX_TRIES 3
7746
7747 /* Process any number of notifications, and then return when
7748 we get a packet. */
7749 for (;;)
7750 {
7751 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
7752 times. */
7753 for (tries = 1; tries <= MAX_TRIES; tries++)
7754 {
7755 /* This can loop forever if the remote side sends us
7756 characters continuously, but if it pauses, we'll get
7757 SERIAL_TIMEOUT from readchar because of timeout. Then
7758 we'll count that as a retry.
7759
7760 Note that even when forever is set, we will only wait
7761 forever prior to the start of a packet. After that, we
7762 expect characters to arrive at a brisk pace. They should
7763 show up within remote_timeout intervals. */
7764 do
7765 c = readchar (timeout);
7766 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7767
7768 if (c == SERIAL_TIMEOUT)
7769 {
7770 if (expecting_notif)
7771 return -1; /* Don't complain, it's normal to not get
7772 anything in this case. */
7773
7774 if (forever) /* Watchdog went off? Kill the target. */
7775 {
7776 QUIT;
7777 remote_unpush_target ();
7778 throw_error (TARGET_CLOSE_ERROR,
7779 _("Watchdog timeout has expired. "
7780 "Target detached."));
7781 }
7782 if (remote_debug)
7783 fputs_filtered ("Timed out.\n", gdb_stdlog);
7784 }
7785 else
7786 {
7787 /* We've found the start of a packet or notification.
7788 Now collect the data. */
7789 val = read_frame (buf, sizeof_buf);
7790 if (val >= 0)
7791 break;
7792 }
7793
7794 remote_serial_write ("-", 1);
7795 }
7796
7797 if (tries > MAX_TRIES)
7798 {
7799 /* We have tried hard enough, and just can't receive the
7800 packet/notification. Give up. */
7801 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7802
7803 /* Skip the ack char if we're in no-ack mode. */
7804 if (!rs->noack_mode)
7805 remote_serial_write ("+", 1);
7806 return -1;
7807 }
7808
7809 /* If we got an ordinary packet, return that to our caller. */
7810 if (c == '$')
7811 {
7812 if (remote_debug)
7813 {
7814 struct cleanup *old_chain;
7815 char *str;
7816
7817 str = escape_buffer (*buf, val);
7818 old_chain = make_cleanup (xfree, str);
7819 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7820 do_cleanups (old_chain);
7821 }
7822
7823 /* Skip the ack char if we're in no-ack mode. */
7824 if (!rs->noack_mode)
7825 remote_serial_write ("+", 1);
7826 if (is_notif != NULL)
7827 *is_notif = 0;
7828 return val;
7829 }
7830
7831 /* If we got a notification, handle it, and go back to looking
7832 for a packet. */
7833 else
7834 {
7835 gdb_assert (c == '%');
7836
7837 if (remote_debug)
7838 {
7839 struct cleanup *old_chain;
7840 char *str;
7841
7842 str = escape_buffer (*buf, val);
7843 old_chain = make_cleanup (xfree, str);
7844 fprintf_unfiltered (gdb_stdlog,
7845 " Notification received: %s\n",
7846 str);
7847 do_cleanups (old_chain);
7848 }
7849 if (is_notif != NULL)
7850 *is_notif = 1;
7851
7852 handle_notification (rs->notif_state, *buf);
7853
7854 /* Notifications require no acknowledgement. */
7855
7856 if (expecting_notif)
7857 return val;
7858 }
7859 }
7860 }
7861
7862 static int
7863 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7864 {
7865 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7866 }
7867
7868 static int
7869 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7870 int *is_notif)
7871 {
7872 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7873 is_notif);
7874 }
7875
7876 \f
7877 static void
7878 remote_kill (struct target_ops *ops)
7879 {
7880 volatile struct gdb_exception ex;
7881
7882 /* Catch errors so the user can quit from gdb even when we
7883 aren't on speaking terms with the remote system. */
7884 TRY_CATCH (ex, RETURN_MASK_ERROR)
7885 {
7886 putpkt ("k");
7887 }
7888 if (ex.reason < 0)
7889 {
7890 if (ex.error == TARGET_CLOSE_ERROR)
7891 {
7892 /* If we got an (EOF) error that caused the target
7893 to go away, then we're done, that's what we wanted.
7894 "k" is susceptible to cause a premature EOF, given
7895 that the remote server isn't actually required to
7896 reply to "k", and it can happen that it doesn't
7897 even get to reply ACK to the "k". */
7898 return;
7899 }
7900
7901 /* Otherwise, something went wrong. We didn't actually kill
7902 the target. Just propagate the exception, and let the
7903 user or higher layers decide what to do. */
7904 throw_exception (ex);
7905 }
7906
7907 /* We've killed the remote end, we get to mourn it. Since this is
7908 target remote, single-process, mourning the inferior also
7909 unpushes remote_ops. */
7910 target_mourn_inferior ();
7911 }
7912
7913 static int
7914 remote_vkill (int pid, struct remote_state *rs)
7915 {
7916 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7917 return -1;
7918
7919 /* Tell the remote target to detach. */
7920 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7921 putpkt (rs->buf);
7922 getpkt (&rs->buf, &rs->buf_size, 0);
7923
7924 if (packet_ok (rs->buf,
7925 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7926 return 0;
7927 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7928 return -1;
7929 else
7930 return 1;
7931 }
7932
7933 static void
7934 extended_remote_kill (struct target_ops *ops)
7935 {
7936 int res;
7937 int pid = ptid_get_pid (inferior_ptid);
7938 struct remote_state *rs = get_remote_state ();
7939
7940 res = remote_vkill (pid, rs);
7941 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7942 {
7943 /* Don't try 'k' on a multi-process aware stub -- it has no way
7944 to specify the pid. */
7945
7946 putpkt ("k");
7947 #if 0
7948 getpkt (&rs->buf, &rs->buf_size, 0);
7949 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7950 res = 1;
7951 #else
7952 /* Don't wait for it to die. I'm not really sure it matters whether
7953 we do or not. For the existing stubs, kill is a noop. */
7954 res = 0;
7955 #endif
7956 }
7957
7958 if (res != 0)
7959 error (_("Can't kill process"));
7960
7961 target_mourn_inferior ();
7962 }
7963
7964 static void
7965 remote_mourn (struct target_ops *ops)
7966 {
7967 remote_mourn_1 (ops);
7968 }
7969
7970 /* Worker function for remote_mourn. */
7971 static void
7972 remote_mourn_1 (struct target_ops *target)
7973 {
7974 unpush_target (target);
7975
7976 /* remote_close takes care of doing most of the clean up. */
7977 generic_mourn_inferior ();
7978 }
7979
7980 static void
7981 extended_remote_mourn_1 (struct target_ops *target)
7982 {
7983 struct remote_state *rs = get_remote_state ();
7984
7985 /* In case we got here due to an error, but we're going to stay
7986 connected. */
7987 rs->waiting_for_stop_reply = 0;
7988
7989 /* If the current general thread belonged to the process we just
7990 detached from or has exited, the remote side current general
7991 thread becomes undefined. Considering a case like this:
7992
7993 - We just got here due to a detach.
7994 - The process that we're detaching from happens to immediately
7995 report a global breakpoint being hit in non-stop mode, in the
7996 same thread we had selected before.
7997 - GDB attaches to this process again.
7998 - This event happens to be the next event we handle.
7999
8000 GDB would consider that the current general thread didn't need to
8001 be set on the stub side (with Hg), since for all it knew,
8002 GENERAL_THREAD hadn't changed.
8003
8004 Notice that although in all-stop mode, the remote server always
8005 sets the current thread to the thread reporting the stop event,
8006 that doesn't happen in non-stop mode; in non-stop, the stub *must
8007 not* change the current thread when reporting a breakpoint hit,
8008 due to the decoupling of event reporting and event handling.
8009
8010 To keep things simple, we always invalidate our notion of the
8011 current thread. */
8012 record_currthread (rs, minus_one_ptid);
8013
8014 /* Unlike "target remote", we do not want to unpush the target; then
8015 the next time the user says "run", we won't be connected. */
8016
8017 /* Call common code to mark the inferior as not running. */
8018 generic_mourn_inferior ();
8019
8020 if (!have_inferiors ())
8021 {
8022 if (!remote_multi_process_p (rs))
8023 {
8024 /* Check whether the target is running now - some remote stubs
8025 automatically restart after kill. */
8026 putpkt ("?");
8027 getpkt (&rs->buf, &rs->buf_size, 0);
8028
8029 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
8030 {
8031 /* Assume that the target has been restarted. Set
8032 inferior_ptid so that bits of core GDB realizes
8033 there's something here, e.g., so that the user can
8034 say "kill" again. */
8035 inferior_ptid = magic_null_ptid;
8036 }
8037 }
8038 }
8039 }
8040
8041 static void
8042 extended_remote_mourn (struct target_ops *ops)
8043 {
8044 extended_remote_mourn_1 (ops);
8045 }
8046
8047 static int
8048 extended_remote_supports_disable_randomization (void)
8049 {
8050 return (remote_protocol_packets[PACKET_QDisableRandomization].support
8051 == PACKET_ENABLE);
8052 }
8053
8054 static void
8055 extended_remote_disable_randomization (int val)
8056 {
8057 struct remote_state *rs = get_remote_state ();
8058 char *reply;
8059
8060 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
8061 val);
8062 putpkt (rs->buf);
8063 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
8064 if (*reply == '\0')
8065 error (_("Target does not support QDisableRandomization."));
8066 if (strcmp (reply, "OK") != 0)
8067 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
8068 }
8069
8070 static int
8071 extended_remote_run (char *args)
8072 {
8073 struct remote_state *rs = get_remote_state ();
8074 int len;
8075
8076 /* If the user has disabled vRun support, or we have detected that
8077 support is not available, do not try it. */
8078 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8079 return -1;
8080
8081 strcpy (rs->buf, "vRun;");
8082 len = strlen (rs->buf);
8083
8084 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8085 error (_("Remote file name too long for run packet"));
8086 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
8087
8088 gdb_assert (args != NULL);
8089 if (*args)
8090 {
8091 struct cleanup *back_to;
8092 int i;
8093 char **argv;
8094
8095 argv = gdb_buildargv (args);
8096 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8097 for (i = 0; argv[i] != NULL; i++)
8098 {
8099 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8100 error (_("Argument list too long for run packet"));
8101 rs->buf[len++] = ';';
8102 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8103 }
8104 do_cleanups (back_to);
8105 }
8106
8107 rs->buf[len++] = '\0';
8108
8109 putpkt (rs->buf);
8110 getpkt (&rs->buf, &rs->buf_size, 0);
8111
8112 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8113 {
8114 /* We have a wait response. All is well. */
8115 return 0;
8116 }
8117 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8118 /* It wasn't disabled before, but it is now. */
8119 return -1;
8120 else
8121 {
8122 if (remote_exec_file[0] == '\0')
8123 error (_("Running the default executable on the remote target failed; "
8124 "try \"set remote exec-file\"?"));
8125 else
8126 error (_("Running \"%s\" on the remote target failed"),
8127 remote_exec_file);
8128 }
8129 }
8130
8131 /* In the extended protocol we want to be able to do things like
8132 "run" and have them basically work as expected. So we need
8133 a special create_inferior function. We support changing the
8134 executable file and the command line arguments, but not the
8135 environment. */
8136
8137 static void
8138 extended_remote_create_inferior (struct target_ops *ops,
8139 char *exec_file, char *args,
8140 char **env, int from_tty)
8141 {
8142 int run_worked;
8143 char *stop_reply;
8144 struct remote_state *rs = get_remote_state ();
8145
8146 /* If running asynchronously, register the target file descriptor
8147 with the event loop. */
8148 if (target_can_async_p ())
8149 target_async (inferior_event_handler, 0);
8150
8151 /* Disable address space randomization if requested (and supported). */
8152 if (extended_remote_supports_disable_randomization ())
8153 extended_remote_disable_randomization (disable_randomization);
8154
8155 /* Now restart the remote server. */
8156 run_worked = extended_remote_run (args) != -1;
8157 if (!run_worked)
8158 {
8159 /* vRun was not supported. Fail if we need it to do what the
8160 user requested. */
8161 if (remote_exec_file[0])
8162 error (_("Remote target does not support \"set remote exec-file\""));
8163 if (args[0])
8164 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8165
8166 /* Fall back to "R". */
8167 extended_remote_restart ();
8168 }
8169
8170 if (!have_inferiors ())
8171 {
8172 /* Clean up from the last time we ran, before we mark the target
8173 running again. This will mark breakpoints uninserted, and
8174 get_offsets may insert breakpoints. */
8175 init_thread_list ();
8176 init_wait_for_inferior ();
8177 }
8178
8179 /* vRun's success return is a stop reply. */
8180 stop_reply = run_worked ? rs->buf : NULL;
8181 add_current_inferior_and_thread (stop_reply);
8182
8183 /* Get updated offsets, if the stub uses qOffsets. */
8184 get_offsets ();
8185 }
8186 \f
8187
8188 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8189 the list of conditions (in agent expression bytecode format), if any, the
8190 target needs to evaluate. The output is placed into the packet buffer
8191 started from BUF and ended at BUF_END. */
8192
8193 static int
8194 remote_add_target_side_condition (struct gdbarch *gdbarch,
8195 struct bp_target_info *bp_tgt, char *buf,
8196 char *buf_end)
8197 {
8198 struct agent_expr *aexpr = NULL;
8199 int i, ix;
8200 char *pkt;
8201 char *buf_start = buf;
8202
8203 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8204 return 0;
8205
8206 buf += strlen (buf);
8207 xsnprintf (buf, buf_end - buf, "%s", ";");
8208 buf++;
8209
8210 /* Send conditions to the target and free the vector. */
8211 for (ix = 0;
8212 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8213 ix++)
8214 {
8215 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8216 buf += strlen (buf);
8217 for (i = 0; i < aexpr->len; ++i)
8218 buf = pack_hex_byte (buf, aexpr->buf[i]);
8219 *buf = '\0';
8220 }
8221 return 0;
8222 }
8223
8224 static void
8225 remote_add_target_side_commands (struct gdbarch *gdbarch,
8226 struct bp_target_info *bp_tgt, char *buf)
8227 {
8228 struct agent_expr *aexpr = NULL;
8229 int i, ix;
8230
8231 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8232 return;
8233
8234 buf += strlen (buf);
8235
8236 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8237 buf += strlen (buf);
8238
8239 /* Concatenate all the agent expressions that are commands into the
8240 cmds parameter. */
8241 for (ix = 0;
8242 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8243 ix++)
8244 {
8245 sprintf (buf, "X%x,", aexpr->len);
8246 buf += strlen (buf);
8247 for (i = 0; i < aexpr->len; ++i)
8248 buf = pack_hex_byte (buf, aexpr->buf[i]);
8249 *buf = '\0';
8250 }
8251 }
8252
8253 /* Insert a breakpoint. On targets that have software breakpoint
8254 support, we ask the remote target to do the work; on targets
8255 which don't, we insert a traditional memory breakpoint. */
8256
8257 static int
8258 remote_insert_breakpoint (struct target_ops *ops,
8259 struct gdbarch *gdbarch,
8260 struct bp_target_info *bp_tgt)
8261 {
8262 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8263 If it succeeds, then set the support to PACKET_ENABLE. If it
8264 fails, and the user has explicitly requested the Z support then
8265 report an error, otherwise, mark it disabled and go on. */
8266
8267 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8268 {
8269 CORE_ADDR addr = bp_tgt->placed_address;
8270 struct remote_state *rs;
8271 char *p, *endbuf;
8272 int bpsize;
8273 struct condition_list *cond = NULL;
8274
8275 /* Make sure the remote is pointing at the right process, if
8276 necessary. */
8277 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8278 set_general_process ();
8279
8280 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8281
8282 rs = get_remote_state ();
8283 p = rs->buf;
8284 endbuf = rs->buf + get_remote_packet_size ();
8285
8286 *(p++) = 'Z';
8287 *(p++) = '0';
8288 *(p++) = ',';
8289 addr = (ULONGEST) remote_address_masked (addr);
8290 p += hexnumstr (p, addr);
8291 xsnprintf (p, endbuf - p, ",%d", bpsize);
8292
8293 if (remote_supports_cond_breakpoints ())
8294 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8295
8296 if (remote_can_run_breakpoint_commands ())
8297 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8298
8299 putpkt (rs->buf);
8300 getpkt (&rs->buf, &rs->buf_size, 0);
8301
8302 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8303 {
8304 case PACKET_ERROR:
8305 return -1;
8306 case PACKET_OK:
8307 bp_tgt->placed_address = addr;
8308 bp_tgt->placed_size = bpsize;
8309 return 0;
8310 case PACKET_UNKNOWN:
8311 break;
8312 }
8313 }
8314
8315 /* If this breakpoint has target-side commands but this stub doesn't
8316 support Z0 packets, throw error. */
8317 if (!VEC_empty (agent_expr_p, bp_tgt->tcommands))
8318 throw_error (NOT_SUPPORTED_ERROR, _("\
8319 Target doesn't support breakpoints that have target side commands."));
8320
8321 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
8322 }
8323
8324 static int
8325 remote_remove_breakpoint (struct target_ops *ops,
8326 struct gdbarch *gdbarch,
8327 struct bp_target_info *bp_tgt)
8328 {
8329 CORE_ADDR addr = bp_tgt->placed_address;
8330 struct remote_state *rs = get_remote_state ();
8331
8332 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8333 {
8334 char *p = rs->buf;
8335 char *endbuf = rs->buf + get_remote_packet_size ();
8336
8337 /* Make sure the remote is pointing at the right process, if
8338 necessary. */
8339 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8340 set_general_process ();
8341
8342 *(p++) = 'z';
8343 *(p++) = '0';
8344 *(p++) = ',';
8345
8346 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8347 p += hexnumstr (p, addr);
8348 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8349
8350 putpkt (rs->buf);
8351 getpkt (&rs->buf, &rs->buf_size, 0);
8352
8353 return (rs->buf[0] == 'E');
8354 }
8355
8356 return memory_remove_breakpoint (ops, gdbarch, bp_tgt);
8357 }
8358
8359 static int
8360 watchpoint_to_Z_packet (int type)
8361 {
8362 switch (type)
8363 {
8364 case hw_write:
8365 return Z_PACKET_WRITE_WP;
8366 break;
8367 case hw_read:
8368 return Z_PACKET_READ_WP;
8369 break;
8370 case hw_access:
8371 return Z_PACKET_ACCESS_WP;
8372 break;
8373 default:
8374 internal_error (__FILE__, __LINE__,
8375 _("hw_bp_to_z: bad watchpoint type %d"), type);
8376 }
8377 }
8378
8379 static int
8380 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8381 struct expression *cond)
8382 {
8383 struct remote_state *rs = get_remote_state ();
8384 char *endbuf = rs->buf + get_remote_packet_size ();
8385 char *p;
8386 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8387
8388 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8389 return 1;
8390
8391 /* Make sure the remote is pointing at the right process, if
8392 necessary. */
8393 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8394 set_general_process ();
8395
8396 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8397 p = strchr (rs->buf, '\0');
8398 addr = remote_address_masked (addr);
8399 p += hexnumstr (p, (ULONGEST) addr);
8400 xsnprintf (p, endbuf - p, ",%x", len);
8401
8402 putpkt (rs->buf);
8403 getpkt (&rs->buf, &rs->buf_size, 0);
8404
8405 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8406 {
8407 case PACKET_ERROR:
8408 return -1;
8409 case PACKET_UNKNOWN:
8410 return 1;
8411 case PACKET_OK:
8412 return 0;
8413 }
8414 internal_error (__FILE__, __LINE__,
8415 _("remote_insert_watchpoint: reached end of function"));
8416 }
8417
8418 static int
8419 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8420 CORE_ADDR start, int length)
8421 {
8422 CORE_ADDR diff = remote_address_masked (addr - start);
8423
8424 return diff < length;
8425 }
8426
8427
8428 static int
8429 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8430 struct expression *cond)
8431 {
8432 struct remote_state *rs = get_remote_state ();
8433 char *endbuf = rs->buf + get_remote_packet_size ();
8434 char *p;
8435 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8436
8437 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8438 return -1;
8439
8440 /* Make sure the remote is pointing at the right process, if
8441 necessary. */
8442 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8443 set_general_process ();
8444
8445 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8446 p = strchr (rs->buf, '\0');
8447 addr = remote_address_masked (addr);
8448 p += hexnumstr (p, (ULONGEST) addr);
8449 xsnprintf (p, endbuf - p, ",%x", len);
8450 putpkt (rs->buf);
8451 getpkt (&rs->buf, &rs->buf_size, 0);
8452
8453 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8454 {
8455 case PACKET_ERROR:
8456 case PACKET_UNKNOWN:
8457 return -1;
8458 case PACKET_OK:
8459 return 0;
8460 }
8461 internal_error (__FILE__, __LINE__,
8462 _("remote_remove_watchpoint: reached end of function"));
8463 }
8464
8465
8466 int remote_hw_watchpoint_limit = -1;
8467 int remote_hw_watchpoint_length_limit = -1;
8468 int remote_hw_breakpoint_limit = -1;
8469
8470 static int
8471 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8472 {
8473 if (remote_hw_watchpoint_length_limit == 0)
8474 return 0;
8475 else if (remote_hw_watchpoint_length_limit < 0)
8476 return 1;
8477 else if (len <= remote_hw_watchpoint_length_limit)
8478 return 1;
8479 else
8480 return 0;
8481 }
8482
8483 static int
8484 remote_check_watch_resources (int type, int cnt, int ot)
8485 {
8486 if (type == bp_hardware_breakpoint)
8487 {
8488 if (remote_hw_breakpoint_limit == 0)
8489 return 0;
8490 else if (remote_hw_breakpoint_limit < 0)
8491 return 1;
8492 else if (cnt <= remote_hw_breakpoint_limit)
8493 return 1;
8494 }
8495 else
8496 {
8497 if (remote_hw_watchpoint_limit == 0)
8498 return 0;
8499 else if (remote_hw_watchpoint_limit < 0)
8500 return 1;
8501 else if (ot)
8502 return -1;
8503 else if (cnt <= remote_hw_watchpoint_limit)
8504 return 1;
8505 }
8506 return -1;
8507 }
8508
8509 static int
8510 remote_stopped_by_watchpoint (void)
8511 {
8512 struct remote_state *rs = get_remote_state ();
8513
8514 return rs->remote_stopped_by_watchpoint_p;
8515 }
8516
8517 static int
8518 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8519 {
8520 struct remote_state *rs = get_remote_state ();
8521 int rc = 0;
8522
8523 if (remote_stopped_by_watchpoint ())
8524 {
8525 *addr_p = rs->remote_watch_data_address;
8526 rc = 1;
8527 }
8528
8529 return rc;
8530 }
8531
8532
8533 static int
8534 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8535 struct bp_target_info *bp_tgt)
8536 {
8537 CORE_ADDR addr;
8538 struct remote_state *rs;
8539 char *p, *endbuf;
8540 char *message;
8541
8542 /* The length field should be set to the size of a breakpoint
8543 instruction, even though we aren't inserting one ourselves. */
8544
8545 gdbarch_remote_breakpoint_from_pc
8546 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8547
8548 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8549 return -1;
8550
8551 /* Make sure the remote is pointing at the right process, if
8552 necessary. */
8553 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8554 set_general_process ();
8555
8556 rs = get_remote_state ();
8557 p = rs->buf;
8558 endbuf = rs->buf + get_remote_packet_size ();
8559
8560 *(p++) = 'Z';
8561 *(p++) = '1';
8562 *(p++) = ',';
8563
8564 addr = remote_address_masked (bp_tgt->placed_address);
8565 p += hexnumstr (p, (ULONGEST) addr);
8566 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8567
8568 if (remote_supports_cond_breakpoints ())
8569 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8570
8571 if (remote_can_run_breakpoint_commands ())
8572 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8573
8574 putpkt (rs->buf);
8575 getpkt (&rs->buf, &rs->buf_size, 0);
8576
8577 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8578 {
8579 case PACKET_ERROR:
8580 if (rs->buf[1] == '.')
8581 {
8582 message = strchr (rs->buf + 2, '.');
8583 if (message)
8584 error (_("Remote failure reply: %s"), message + 1);
8585 }
8586 return -1;
8587 case PACKET_UNKNOWN:
8588 return -1;
8589 case PACKET_OK:
8590 return 0;
8591 }
8592 internal_error (__FILE__, __LINE__,
8593 _("remote_insert_hw_breakpoint: reached end of function"));
8594 }
8595
8596
8597 static int
8598 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8599 struct bp_target_info *bp_tgt)
8600 {
8601 CORE_ADDR addr;
8602 struct remote_state *rs = get_remote_state ();
8603 char *p = rs->buf;
8604 char *endbuf = rs->buf + get_remote_packet_size ();
8605
8606 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8607 return -1;
8608
8609 /* Make sure the remote is pointing at the right process, if
8610 necessary. */
8611 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8612 set_general_process ();
8613
8614 *(p++) = 'z';
8615 *(p++) = '1';
8616 *(p++) = ',';
8617
8618 addr = remote_address_masked (bp_tgt->placed_address);
8619 p += hexnumstr (p, (ULONGEST) addr);
8620 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8621
8622 putpkt (rs->buf);
8623 getpkt (&rs->buf, &rs->buf_size, 0);
8624
8625 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8626 {
8627 case PACKET_ERROR:
8628 case PACKET_UNKNOWN:
8629 return -1;
8630 case PACKET_OK:
8631 return 0;
8632 }
8633 internal_error (__FILE__, __LINE__,
8634 _("remote_remove_hw_breakpoint: reached end of function"));
8635 }
8636
8637 /* Verify memory using the "qCRC:" request. */
8638
8639 static int
8640 remote_verify_memory (struct target_ops *ops,
8641 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8642 {
8643 struct remote_state *rs = get_remote_state ();
8644 unsigned long host_crc, target_crc;
8645 char *tmp;
8646
8647 /* Make sure the remote is pointing at the right process. */
8648 set_general_process ();
8649
8650 /* FIXME: assumes lma can fit into long. */
8651 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8652 (long) lma, (long) size);
8653 putpkt (rs->buf);
8654
8655 /* Be clever; compute the host_crc before waiting for target
8656 reply. */
8657 host_crc = xcrc32 (data, size, 0xffffffff);
8658
8659 getpkt (&rs->buf, &rs->buf_size, 0);
8660 if (rs->buf[0] == 'E')
8661 return -1;
8662
8663 if (rs->buf[0] != 'C')
8664 error (_("remote target does not support this operation"));
8665
8666 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8667 target_crc = target_crc * 16 + fromhex (*tmp);
8668
8669 return (host_crc == target_crc);
8670 }
8671
8672 /* compare-sections command
8673
8674 With no arguments, compares each loadable section in the exec bfd
8675 with the same memory range on the target, and reports mismatches.
8676 Useful for verifying the image on the target against the exec file. */
8677
8678 static void
8679 compare_sections_command (char *args, int from_tty)
8680 {
8681 asection *s;
8682 struct cleanup *old_chain;
8683 gdb_byte *sectdata;
8684 const char *sectname;
8685 bfd_size_type size;
8686 bfd_vma lma;
8687 int matched = 0;
8688 int mismatched = 0;
8689 int res;
8690
8691 if (!exec_bfd)
8692 error (_("command cannot be used without an exec file"));
8693
8694 /* Make sure the remote is pointing at the right process. */
8695 set_general_process ();
8696
8697 for (s = exec_bfd->sections; s; s = s->next)
8698 {
8699 if (!(s->flags & SEC_LOAD))
8700 continue; /* Skip non-loadable section. */
8701
8702 size = bfd_get_section_size (s);
8703 if (size == 0)
8704 continue; /* Skip zero-length section. */
8705
8706 sectname = bfd_get_section_name (exec_bfd, s);
8707 if (args && strcmp (args, sectname) != 0)
8708 continue; /* Not the section selected by user. */
8709
8710 matched = 1; /* Do this section. */
8711 lma = s->lma;
8712
8713 sectdata = xmalloc (size);
8714 old_chain = make_cleanup (xfree, sectdata);
8715 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8716
8717 res = target_verify_memory (sectdata, lma, size);
8718
8719 if (res == -1)
8720 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8721 paddress (target_gdbarch (), lma),
8722 paddress (target_gdbarch (), lma + size));
8723
8724 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8725 paddress (target_gdbarch (), lma),
8726 paddress (target_gdbarch (), lma + size));
8727 if (res)
8728 printf_filtered ("matched.\n");
8729 else
8730 {
8731 printf_filtered ("MIS-MATCHED!\n");
8732 mismatched++;
8733 }
8734
8735 do_cleanups (old_chain);
8736 }
8737 if (mismatched > 0)
8738 warning (_("One or more sections of the remote executable does not match\n\
8739 the loaded file\n"));
8740 if (args && !matched)
8741 printf_filtered (_("No loaded section named '%s'.\n"), args);
8742 }
8743
8744 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8745 into remote target. The number of bytes written to the remote
8746 target is returned, or -1 for error. */
8747
8748 static enum target_xfer_status
8749 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8750 const char *annex, const gdb_byte *writebuf,
8751 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
8752 struct packet_config *packet)
8753 {
8754 int i, buf_len;
8755 ULONGEST n;
8756 struct remote_state *rs = get_remote_state ();
8757 int max_size = get_memory_write_packet_size ();
8758
8759 if (packet->support == PACKET_DISABLE)
8760 return TARGET_XFER_E_IO;
8761
8762 /* Insert header. */
8763 i = snprintf (rs->buf, max_size,
8764 "qXfer:%s:write:%s:%s:",
8765 object_name, annex ? annex : "",
8766 phex_nz (offset, sizeof offset));
8767 max_size -= (i + 1);
8768
8769 /* Escape as much data as fits into rs->buf. */
8770 buf_len = remote_escape_output
8771 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8772
8773 if (putpkt_binary (rs->buf, i + buf_len) < 0
8774 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8775 || packet_ok (rs->buf, packet) != PACKET_OK)
8776 return TARGET_XFER_E_IO;
8777
8778 unpack_varlen_hex (rs->buf, &n);
8779
8780 *xfered_len = n;
8781 return TARGET_XFER_OK;
8782 }
8783
8784 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8785 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8786 number of bytes read is returned, or 0 for EOF, or -1 for error.
8787 The number of bytes read may be less than LEN without indicating an
8788 EOF. PACKET is checked and updated to indicate whether the remote
8789 target supports this object. */
8790
8791 static enum target_xfer_status
8792 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8793 const char *annex,
8794 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8795 ULONGEST *xfered_len,
8796 struct packet_config *packet)
8797 {
8798 struct remote_state *rs = get_remote_state ();
8799 LONGEST i, n, packet_len;
8800
8801 if (packet->support == PACKET_DISABLE)
8802 return TARGET_XFER_E_IO;
8803
8804 /* Check whether we've cached an end-of-object packet that matches
8805 this request. */
8806 if (rs->finished_object)
8807 {
8808 if (strcmp (object_name, rs->finished_object) == 0
8809 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8810 && offset == rs->finished_offset)
8811 return TARGET_XFER_EOF;
8812
8813
8814 /* Otherwise, we're now reading something different. Discard
8815 the cache. */
8816 xfree (rs->finished_object);
8817 xfree (rs->finished_annex);
8818 rs->finished_object = NULL;
8819 rs->finished_annex = NULL;
8820 }
8821
8822 /* Request only enough to fit in a single packet. The actual data
8823 may not, since we don't know how much of it will need to be escaped;
8824 the target is free to respond with slightly less data. We subtract
8825 five to account for the response type and the protocol frame. */
8826 n = min (get_remote_packet_size () - 5, len);
8827 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8828 object_name, annex ? annex : "",
8829 phex_nz (offset, sizeof offset),
8830 phex_nz (n, sizeof n));
8831 i = putpkt (rs->buf);
8832 if (i < 0)
8833 return TARGET_XFER_E_IO;
8834
8835 rs->buf[0] = '\0';
8836 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8837 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8838 return TARGET_XFER_E_IO;
8839
8840 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8841 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8842
8843 /* 'm' means there is (or at least might be) more data after this
8844 batch. That does not make sense unless there's at least one byte
8845 of data in this reply. */
8846 if (rs->buf[0] == 'm' && packet_len == 1)
8847 error (_("Remote qXfer reply contained no data."));
8848
8849 /* Got some data. */
8850 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8851 packet_len - 1, readbuf, n);
8852
8853 /* 'l' is an EOF marker, possibly including a final block of data,
8854 or possibly empty. If we have the final block of a non-empty
8855 object, record this fact to bypass a subsequent partial read. */
8856 if (rs->buf[0] == 'l' && offset + i > 0)
8857 {
8858 rs->finished_object = xstrdup (object_name);
8859 rs->finished_annex = xstrdup (annex ? annex : "");
8860 rs->finished_offset = offset + i;
8861 }
8862
8863 if (i == 0)
8864 return TARGET_XFER_EOF;
8865 else
8866 {
8867 *xfered_len = i;
8868 return TARGET_XFER_OK;
8869 }
8870 }
8871
8872 static enum target_xfer_status
8873 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8874 const char *annex, gdb_byte *readbuf,
8875 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
8876 ULONGEST *xfered_len)
8877 {
8878 struct remote_state *rs;
8879 int i;
8880 char *p2;
8881 char query_type;
8882
8883 set_remote_traceframe ();
8884 set_general_thread (inferior_ptid);
8885
8886 rs = get_remote_state ();
8887
8888 /* Handle memory using the standard memory routines. */
8889 if (object == TARGET_OBJECT_MEMORY)
8890 {
8891 /* If the remote target is connected but not running, we should
8892 pass this request down to a lower stratum (e.g. the executable
8893 file). */
8894 if (!target_has_execution)
8895 return TARGET_XFER_EOF;
8896
8897 if (writebuf != NULL)
8898 return remote_write_bytes (offset, writebuf, len, xfered_len);
8899 else
8900 return remote_read_bytes (offset, readbuf, len, xfered_len);
8901 }
8902
8903 /* Handle SPU memory using qxfer packets. */
8904 if (object == TARGET_OBJECT_SPU)
8905 {
8906 if (readbuf)
8907 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8908 xfered_len, &remote_protocol_packets
8909 [PACKET_qXfer_spu_read]);
8910 else
8911 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8912 xfered_len, &remote_protocol_packets
8913 [PACKET_qXfer_spu_write]);
8914 }
8915
8916 /* Handle extra signal info using qxfer packets. */
8917 if (object == TARGET_OBJECT_SIGNAL_INFO)
8918 {
8919 if (readbuf)
8920 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8921 xfered_len, &remote_protocol_packets
8922 [PACKET_qXfer_siginfo_read]);
8923 else
8924 return remote_write_qxfer (ops, "siginfo", annex,
8925 writebuf, offset, len, xfered_len,
8926 &remote_protocol_packets
8927 [PACKET_qXfer_siginfo_write]);
8928 }
8929
8930 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8931 {
8932 if (readbuf)
8933 return remote_read_qxfer (ops, "statictrace", annex,
8934 readbuf, offset, len, xfered_len,
8935 &remote_protocol_packets
8936 [PACKET_qXfer_statictrace_read]);
8937 else
8938 return TARGET_XFER_E_IO;
8939 }
8940
8941 /* Only handle flash writes. */
8942 if (writebuf != NULL)
8943 {
8944 LONGEST xfered;
8945
8946 switch (object)
8947 {
8948 case TARGET_OBJECT_FLASH:
8949 return remote_flash_write (ops, offset, len, xfered_len,
8950 writebuf);
8951
8952 default:
8953 return TARGET_XFER_E_IO;
8954 }
8955 }
8956
8957 /* Map pre-existing objects onto letters. DO NOT do this for new
8958 objects!!! Instead specify new query packets. */
8959 switch (object)
8960 {
8961 case TARGET_OBJECT_AVR:
8962 query_type = 'R';
8963 break;
8964
8965 case TARGET_OBJECT_AUXV:
8966 gdb_assert (annex == NULL);
8967 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8968 xfered_len,
8969 &remote_protocol_packets[PACKET_qXfer_auxv]);
8970
8971 case TARGET_OBJECT_AVAILABLE_FEATURES:
8972 return remote_read_qxfer
8973 (ops, "features", annex, readbuf, offset, len, xfered_len,
8974 &remote_protocol_packets[PACKET_qXfer_features]);
8975
8976 case TARGET_OBJECT_LIBRARIES:
8977 return remote_read_qxfer
8978 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
8979 &remote_protocol_packets[PACKET_qXfer_libraries]);
8980
8981 case TARGET_OBJECT_LIBRARIES_SVR4:
8982 return remote_read_qxfer
8983 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
8984 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8985
8986 case TARGET_OBJECT_MEMORY_MAP:
8987 gdb_assert (annex == NULL);
8988 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8989 xfered_len,
8990 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8991
8992 case TARGET_OBJECT_OSDATA:
8993 /* Should only get here if we're connected. */
8994 gdb_assert (rs->remote_desc);
8995 return remote_read_qxfer
8996 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
8997 &remote_protocol_packets[PACKET_qXfer_osdata]);
8998
8999 case TARGET_OBJECT_THREADS:
9000 gdb_assert (annex == NULL);
9001 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
9002 xfered_len,
9003 &remote_protocol_packets[PACKET_qXfer_threads]);
9004
9005 case TARGET_OBJECT_TRACEFRAME_INFO:
9006 gdb_assert (annex == NULL);
9007 return remote_read_qxfer
9008 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
9009 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
9010
9011 case TARGET_OBJECT_FDPIC:
9012 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
9013 xfered_len,
9014 &remote_protocol_packets[PACKET_qXfer_fdpic]);
9015
9016 case TARGET_OBJECT_OPENVMS_UIB:
9017 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
9018 xfered_len,
9019 &remote_protocol_packets[PACKET_qXfer_uib]);
9020
9021 case TARGET_OBJECT_BTRACE:
9022 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
9023 xfered_len,
9024 &remote_protocol_packets[PACKET_qXfer_btrace]);
9025
9026 default:
9027 return TARGET_XFER_E_IO;
9028 }
9029
9030 /* Note: a zero OFFSET and LEN can be used to query the minimum
9031 buffer size. */
9032 if (offset == 0 && len == 0)
9033 return (get_remote_packet_size ());
9034 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
9035 large enough let the caller deal with it. */
9036 if (len < get_remote_packet_size ())
9037 return TARGET_XFER_E_IO;
9038 len = get_remote_packet_size ();
9039
9040 /* Except for querying the minimum buffer size, target must be open. */
9041 if (!rs->remote_desc)
9042 error (_("remote query is only available after target open"));
9043
9044 gdb_assert (annex != NULL);
9045 gdb_assert (readbuf != NULL);
9046
9047 p2 = rs->buf;
9048 *p2++ = 'q';
9049 *p2++ = query_type;
9050
9051 /* We used one buffer char for the remote protocol q command and
9052 another for the query type. As the remote protocol encapsulation
9053 uses 4 chars plus one extra in case we are debugging
9054 (remote_debug), we have PBUFZIZ - 7 left to pack the query
9055 string. */
9056 i = 0;
9057 while (annex[i] && (i < (get_remote_packet_size () - 8)))
9058 {
9059 /* Bad caller may have sent forbidden characters. */
9060 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
9061 *p2++ = annex[i];
9062 i++;
9063 }
9064 *p2 = '\0';
9065 gdb_assert (annex[i] == '\0');
9066
9067 i = putpkt (rs->buf);
9068 if (i < 0)
9069 return TARGET_XFER_E_IO;
9070
9071 getpkt (&rs->buf, &rs->buf_size, 0);
9072 strcpy ((char *) readbuf, rs->buf);
9073
9074 *xfered_len = strlen ((char *) readbuf);
9075 return TARGET_XFER_OK;
9076 }
9077
9078 static int
9079 remote_search_memory (struct target_ops* ops,
9080 CORE_ADDR start_addr, ULONGEST search_space_len,
9081 const gdb_byte *pattern, ULONGEST pattern_len,
9082 CORE_ADDR *found_addrp)
9083 {
9084 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9085 struct remote_state *rs = get_remote_state ();
9086 int max_size = get_memory_write_packet_size ();
9087 struct packet_config *packet =
9088 &remote_protocol_packets[PACKET_qSearch_memory];
9089 /* Number of packet bytes used to encode the pattern;
9090 this could be more than PATTERN_LEN due to escape characters. */
9091 int escaped_pattern_len;
9092 /* Amount of pattern that was encodable in the packet. */
9093 int used_pattern_len;
9094 int i;
9095 int found;
9096 ULONGEST found_addr;
9097
9098 /* Don't go to the target if we don't have to.
9099 This is done before checking packet->support to avoid the possibility that
9100 a success for this edge case means the facility works in general. */
9101 if (pattern_len > search_space_len)
9102 return 0;
9103 if (pattern_len == 0)
9104 {
9105 *found_addrp = start_addr;
9106 return 1;
9107 }
9108
9109 /* If we already know the packet isn't supported, fall back to the simple
9110 way of searching memory. */
9111
9112 if (packet->support == PACKET_DISABLE)
9113 {
9114 /* Target doesn't provided special support, fall back and use the
9115 standard support (copy memory and do the search here). */
9116 return simple_search_memory (ops, start_addr, search_space_len,
9117 pattern, pattern_len, found_addrp);
9118 }
9119
9120 /* Make sure the remote is pointing at the right process. */
9121 set_general_process ();
9122
9123 /* Insert header. */
9124 i = snprintf (rs->buf, max_size,
9125 "qSearch:memory:%s;%s;",
9126 phex_nz (start_addr, addr_size),
9127 phex_nz (search_space_len, sizeof (search_space_len)));
9128 max_size -= (i + 1);
9129
9130 /* Escape as much data as fits into rs->buf. */
9131 escaped_pattern_len =
9132 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9133 &used_pattern_len, max_size);
9134
9135 /* Bail if the pattern is too large. */
9136 if (used_pattern_len != pattern_len)
9137 error (_("Pattern is too large to transmit to remote target."));
9138
9139 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9140 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9141 || packet_ok (rs->buf, packet) != PACKET_OK)
9142 {
9143 /* The request may not have worked because the command is not
9144 supported. If so, fall back to the simple way. */
9145 if (packet->support == PACKET_DISABLE)
9146 {
9147 return simple_search_memory (ops, start_addr, search_space_len,
9148 pattern, pattern_len, found_addrp);
9149 }
9150 return -1;
9151 }
9152
9153 if (rs->buf[0] == '0')
9154 found = 0;
9155 else if (rs->buf[0] == '1')
9156 {
9157 found = 1;
9158 if (rs->buf[1] != ',')
9159 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9160 unpack_varlen_hex (rs->buf + 2, &found_addr);
9161 *found_addrp = found_addr;
9162 }
9163 else
9164 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9165
9166 return found;
9167 }
9168
9169 static void
9170 remote_rcmd (char *command,
9171 struct ui_file *outbuf)
9172 {
9173 struct remote_state *rs = get_remote_state ();
9174 char *p = rs->buf;
9175
9176 if (!rs->remote_desc)
9177 error (_("remote rcmd is only available after target open"));
9178
9179 /* Send a NULL command across as an empty command. */
9180 if (command == NULL)
9181 command = "";
9182
9183 /* The query prefix. */
9184 strcpy (rs->buf, "qRcmd,");
9185 p = strchr (rs->buf, '\0');
9186
9187 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9188 > get_remote_packet_size ())
9189 error (_("\"monitor\" command ``%s'' is too long."), command);
9190
9191 /* Encode the actual command. */
9192 bin2hex ((gdb_byte *) command, p, 0);
9193
9194 if (putpkt (rs->buf) < 0)
9195 error (_("Communication problem with target."));
9196
9197 /* get/display the response */
9198 while (1)
9199 {
9200 char *buf;
9201
9202 /* XXX - see also remote_get_noisy_reply(). */
9203 QUIT; /* Allow user to bail out with ^C. */
9204 rs->buf[0] = '\0';
9205 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9206 {
9207 /* Timeout. Continue to (try to) read responses.
9208 This is better than stopping with an error, assuming the stub
9209 is still executing the (long) monitor command.
9210 If needed, the user can interrupt gdb using C-c, obtaining
9211 an effect similar to stop on timeout. */
9212 continue;
9213 }
9214 buf = rs->buf;
9215 if (buf[0] == '\0')
9216 error (_("Target does not support this command."));
9217 if (buf[0] == 'O' && buf[1] != 'K')
9218 {
9219 remote_console_output (buf + 1); /* 'O' message from stub. */
9220 continue;
9221 }
9222 if (strcmp (buf, "OK") == 0)
9223 break;
9224 if (strlen (buf) == 3 && buf[0] == 'E'
9225 && isdigit (buf[1]) && isdigit (buf[2]))
9226 {
9227 error (_("Protocol error with Rcmd"));
9228 }
9229 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9230 {
9231 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9232
9233 fputc_unfiltered (c, outbuf);
9234 }
9235 break;
9236 }
9237 }
9238
9239 static VEC(mem_region_s) *
9240 remote_memory_map (struct target_ops *ops)
9241 {
9242 VEC(mem_region_s) *result = NULL;
9243 char *text = target_read_stralloc (&current_target,
9244 TARGET_OBJECT_MEMORY_MAP, NULL);
9245
9246 if (text)
9247 {
9248 struct cleanup *back_to = make_cleanup (xfree, text);
9249
9250 result = parse_memory_map (text);
9251 do_cleanups (back_to);
9252 }
9253
9254 return result;
9255 }
9256
9257 static void
9258 packet_command (char *args, int from_tty)
9259 {
9260 struct remote_state *rs = get_remote_state ();
9261
9262 if (!rs->remote_desc)
9263 error (_("command can only be used with remote target"));
9264
9265 if (!args)
9266 error (_("remote-packet command requires packet text as argument"));
9267
9268 puts_filtered ("sending: ");
9269 print_packet (args);
9270 puts_filtered ("\n");
9271 putpkt (args);
9272
9273 getpkt (&rs->buf, &rs->buf_size, 0);
9274 puts_filtered ("received: ");
9275 print_packet (rs->buf);
9276 puts_filtered ("\n");
9277 }
9278
9279 #if 0
9280 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9281
9282 static void display_thread_info (struct gdb_ext_thread_info *info);
9283
9284 static void threadset_test_cmd (char *cmd, int tty);
9285
9286 static void threadalive_test (char *cmd, int tty);
9287
9288 static void threadlist_test_cmd (char *cmd, int tty);
9289
9290 int get_and_display_threadinfo (threadref *ref);
9291
9292 static void threadinfo_test_cmd (char *cmd, int tty);
9293
9294 static int thread_display_step (threadref *ref, void *context);
9295
9296 static void threadlist_update_test_cmd (char *cmd, int tty);
9297
9298 static void init_remote_threadtests (void);
9299
9300 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9301
9302 static void
9303 threadset_test_cmd (char *cmd, int tty)
9304 {
9305 int sample_thread = SAMPLE_THREAD;
9306
9307 printf_filtered (_("Remote threadset test\n"));
9308 set_general_thread (sample_thread);
9309 }
9310
9311
9312 static void
9313 threadalive_test (char *cmd, int tty)
9314 {
9315 int sample_thread = SAMPLE_THREAD;
9316 int pid = ptid_get_pid (inferior_ptid);
9317 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9318
9319 if (remote_thread_alive (ptid))
9320 printf_filtered ("PASS: Thread alive test\n");
9321 else
9322 printf_filtered ("FAIL: Thread alive test\n");
9323 }
9324
9325 void output_threadid (char *title, threadref *ref);
9326
9327 void
9328 output_threadid (char *title, threadref *ref)
9329 {
9330 char hexid[20];
9331
9332 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9333 hexid[16] = 0;
9334 printf_filtered ("%s %s\n", title, (&hexid[0]));
9335 }
9336
9337 static void
9338 threadlist_test_cmd (char *cmd, int tty)
9339 {
9340 int startflag = 1;
9341 threadref nextthread;
9342 int done, result_count;
9343 threadref threadlist[3];
9344
9345 printf_filtered ("Remote Threadlist test\n");
9346 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9347 &result_count, &threadlist[0]))
9348 printf_filtered ("FAIL: threadlist test\n");
9349 else
9350 {
9351 threadref *scan = threadlist;
9352 threadref *limit = scan + result_count;
9353
9354 while (scan < limit)
9355 output_threadid (" thread ", scan++);
9356 }
9357 }
9358
9359 void
9360 display_thread_info (struct gdb_ext_thread_info *info)
9361 {
9362 output_threadid ("Threadid: ", &info->threadid);
9363 printf_filtered ("Name: %s\n ", info->shortname);
9364 printf_filtered ("State: %s\n", info->display);
9365 printf_filtered ("other: %s\n\n", info->more_display);
9366 }
9367
9368 int
9369 get_and_display_threadinfo (threadref *ref)
9370 {
9371 int result;
9372 int set;
9373 struct gdb_ext_thread_info threadinfo;
9374
9375 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9376 | TAG_MOREDISPLAY | TAG_DISPLAY;
9377 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9378 display_thread_info (&threadinfo);
9379 return result;
9380 }
9381
9382 static void
9383 threadinfo_test_cmd (char *cmd, int tty)
9384 {
9385 int athread = SAMPLE_THREAD;
9386 threadref thread;
9387 int set;
9388
9389 int_to_threadref (&thread, athread);
9390 printf_filtered ("Remote Threadinfo test\n");
9391 if (!get_and_display_threadinfo (&thread))
9392 printf_filtered ("FAIL cannot get thread info\n");
9393 }
9394
9395 static int
9396 thread_display_step (threadref *ref, void *context)
9397 {
9398 /* output_threadid(" threadstep ",ref); *//* simple test */
9399 return get_and_display_threadinfo (ref);
9400 }
9401
9402 static void
9403 threadlist_update_test_cmd (char *cmd, int tty)
9404 {
9405 printf_filtered ("Remote Threadlist update test\n");
9406 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9407 }
9408
9409 static void
9410 init_remote_threadtests (void)
9411 {
9412 add_com ("tlist", class_obscure, threadlist_test_cmd,
9413 _("Fetch and print the remote list of "
9414 "thread identifiers, one pkt only"));
9415 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9416 _("Fetch and display info about one thread"));
9417 add_com ("tset", class_obscure, threadset_test_cmd,
9418 _("Test setting to a different thread"));
9419 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9420 _("Iterate through updating all remote thread info"));
9421 add_com ("talive", class_obscure, threadalive_test,
9422 _(" Remote thread alive test "));
9423 }
9424
9425 #endif /* 0 */
9426
9427 /* Convert a thread ID to a string. Returns the string in a static
9428 buffer. */
9429
9430 static char *
9431 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9432 {
9433 static char buf[64];
9434 struct remote_state *rs = get_remote_state ();
9435
9436 if (ptid_equal (ptid, null_ptid))
9437 return normal_pid_to_str (ptid);
9438 else if (ptid_is_pid (ptid))
9439 {
9440 /* Printing an inferior target id. */
9441
9442 /* When multi-process extensions are off, there's no way in the
9443 remote protocol to know the remote process id, if there's any
9444 at all. There's one exception --- when we're connected with
9445 target extended-remote, and we manually attached to a process
9446 with "attach PID". We don't record anywhere a flag that
9447 allows us to distinguish that case from the case of
9448 connecting with extended-remote and the stub already being
9449 attached to a process, and reporting yes to qAttached, hence
9450 no smart special casing here. */
9451 if (!remote_multi_process_p (rs))
9452 {
9453 xsnprintf (buf, sizeof buf, "Remote target");
9454 return buf;
9455 }
9456
9457 return normal_pid_to_str (ptid);
9458 }
9459 else
9460 {
9461 if (ptid_equal (magic_null_ptid, ptid))
9462 xsnprintf (buf, sizeof buf, "Thread <main>");
9463 else if (rs->extended && remote_multi_process_p (rs))
9464 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9465 ptid_get_pid (ptid), ptid_get_tid (ptid));
9466 else
9467 xsnprintf (buf, sizeof buf, "Thread %ld",
9468 ptid_get_tid (ptid));
9469 return buf;
9470 }
9471 }
9472
9473 /* Get the address of the thread local variable in OBJFILE which is
9474 stored at OFFSET within the thread local storage for thread PTID. */
9475
9476 static CORE_ADDR
9477 remote_get_thread_local_address (struct target_ops *ops,
9478 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9479 {
9480 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9481 {
9482 struct remote_state *rs = get_remote_state ();
9483 char *p = rs->buf;
9484 char *endp = rs->buf + get_remote_packet_size ();
9485 enum packet_result result;
9486
9487 strcpy (p, "qGetTLSAddr:");
9488 p += strlen (p);
9489 p = write_ptid (p, endp, ptid);
9490 *p++ = ',';
9491 p += hexnumstr (p, offset);
9492 *p++ = ',';
9493 p += hexnumstr (p, lm);
9494 *p++ = '\0';
9495
9496 putpkt (rs->buf);
9497 getpkt (&rs->buf, &rs->buf_size, 0);
9498 result = packet_ok (rs->buf,
9499 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9500 if (result == PACKET_OK)
9501 {
9502 ULONGEST result;
9503
9504 unpack_varlen_hex (rs->buf, &result);
9505 return result;
9506 }
9507 else if (result == PACKET_UNKNOWN)
9508 throw_error (TLS_GENERIC_ERROR,
9509 _("Remote target doesn't support qGetTLSAddr packet"));
9510 else
9511 throw_error (TLS_GENERIC_ERROR,
9512 _("Remote target failed to process qGetTLSAddr request"));
9513 }
9514 else
9515 throw_error (TLS_GENERIC_ERROR,
9516 _("TLS not supported or disabled on this target"));
9517 /* Not reached. */
9518 return 0;
9519 }
9520
9521 /* Provide thread local base, i.e. Thread Information Block address.
9522 Returns 1 if ptid is found and thread_local_base is non zero. */
9523
9524 static int
9525 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9526 {
9527 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9528 {
9529 struct remote_state *rs = get_remote_state ();
9530 char *p = rs->buf;
9531 char *endp = rs->buf + get_remote_packet_size ();
9532 enum packet_result result;
9533
9534 strcpy (p, "qGetTIBAddr:");
9535 p += strlen (p);
9536 p = write_ptid (p, endp, ptid);
9537 *p++ = '\0';
9538
9539 putpkt (rs->buf);
9540 getpkt (&rs->buf, &rs->buf_size, 0);
9541 result = packet_ok (rs->buf,
9542 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9543 if (result == PACKET_OK)
9544 {
9545 ULONGEST result;
9546
9547 unpack_varlen_hex (rs->buf, &result);
9548 if (addr)
9549 *addr = (CORE_ADDR) result;
9550 return 1;
9551 }
9552 else if (result == PACKET_UNKNOWN)
9553 error (_("Remote target doesn't support qGetTIBAddr packet"));
9554 else
9555 error (_("Remote target failed to process qGetTIBAddr request"));
9556 }
9557 else
9558 error (_("qGetTIBAddr not supported or disabled on this target"));
9559 /* Not reached. */
9560 return 0;
9561 }
9562
9563 /* Support for inferring a target description based on the current
9564 architecture and the size of a 'g' packet. While the 'g' packet
9565 can have any size (since optional registers can be left off the
9566 end), some sizes are easily recognizable given knowledge of the
9567 approximate architecture. */
9568
9569 struct remote_g_packet_guess
9570 {
9571 int bytes;
9572 const struct target_desc *tdesc;
9573 };
9574 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9575 DEF_VEC_O(remote_g_packet_guess_s);
9576
9577 struct remote_g_packet_data
9578 {
9579 VEC(remote_g_packet_guess_s) *guesses;
9580 };
9581
9582 static struct gdbarch_data *remote_g_packet_data_handle;
9583
9584 static void *
9585 remote_g_packet_data_init (struct obstack *obstack)
9586 {
9587 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9588 }
9589
9590 void
9591 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9592 const struct target_desc *tdesc)
9593 {
9594 struct remote_g_packet_data *data
9595 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9596 struct remote_g_packet_guess new_guess, *guess;
9597 int ix;
9598
9599 gdb_assert (tdesc != NULL);
9600
9601 for (ix = 0;
9602 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9603 ix++)
9604 if (guess->bytes == bytes)
9605 internal_error (__FILE__, __LINE__,
9606 _("Duplicate g packet description added for size %d"),
9607 bytes);
9608
9609 new_guess.bytes = bytes;
9610 new_guess.tdesc = tdesc;
9611 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9612 }
9613
9614 /* Return 1 if remote_read_description would do anything on this target
9615 and architecture, 0 otherwise. */
9616
9617 static int
9618 remote_read_description_p (struct target_ops *target)
9619 {
9620 struct remote_g_packet_data *data
9621 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9622
9623 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9624 return 1;
9625
9626 return 0;
9627 }
9628
9629 static const struct target_desc *
9630 remote_read_description (struct target_ops *target)
9631 {
9632 struct remote_g_packet_data *data
9633 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9634
9635 /* Do not try this during initial connection, when we do not know
9636 whether there is a running but stopped thread. */
9637 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9638 return NULL;
9639
9640 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9641 {
9642 struct remote_g_packet_guess *guess;
9643 int ix;
9644 int bytes = send_g_packet ();
9645
9646 for (ix = 0;
9647 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9648 ix++)
9649 if (guess->bytes == bytes)
9650 return guess->tdesc;
9651
9652 /* We discard the g packet. A minor optimization would be to
9653 hold on to it, and fill the register cache once we have selected
9654 an architecture, but it's too tricky to do safely. */
9655 }
9656
9657 return NULL;
9658 }
9659
9660 /* Remote file transfer support. This is host-initiated I/O, not
9661 target-initiated; for target-initiated, see remote-fileio.c. */
9662
9663 /* If *LEFT is at least the length of STRING, copy STRING to
9664 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9665 decrease *LEFT. Otherwise raise an error. */
9666
9667 static void
9668 remote_buffer_add_string (char **buffer, int *left, char *string)
9669 {
9670 int len = strlen (string);
9671
9672 if (len > *left)
9673 error (_("Packet too long for target."));
9674
9675 memcpy (*buffer, string, len);
9676 *buffer += len;
9677 *left -= len;
9678
9679 /* NUL-terminate the buffer as a convenience, if there is
9680 room. */
9681 if (*left)
9682 **buffer = '\0';
9683 }
9684
9685 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9686 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9687 decrease *LEFT. Otherwise raise an error. */
9688
9689 static void
9690 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9691 int len)
9692 {
9693 if (2 * len > *left)
9694 error (_("Packet too long for target."));
9695
9696 bin2hex (bytes, *buffer, len);
9697 *buffer += 2 * len;
9698 *left -= 2 * len;
9699
9700 /* NUL-terminate the buffer as a convenience, if there is
9701 room. */
9702 if (*left)
9703 **buffer = '\0';
9704 }
9705
9706 /* If *LEFT is large enough, convert VALUE to hex and add it to
9707 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9708 decrease *LEFT. Otherwise raise an error. */
9709
9710 static void
9711 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9712 {
9713 int len = hexnumlen (value);
9714
9715 if (len > *left)
9716 error (_("Packet too long for target."));
9717
9718 hexnumstr (*buffer, value);
9719 *buffer += len;
9720 *left -= len;
9721
9722 /* NUL-terminate the buffer as a convenience, if there is
9723 room. */
9724 if (*left)
9725 **buffer = '\0';
9726 }
9727
9728 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9729 value, *REMOTE_ERRNO to the remote error number or zero if none
9730 was included, and *ATTACHMENT to point to the start of the annex
9731 if any. The length of the packet isn't needed here; there may
9732 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9733
9734 Return 0 if the packet could be parsed, -1 if it could not. If
9735 -1 is returned, the other variables may not be initialized. */
9736
9737 static int
9738 remote_hostio_parse_result (char *buffer, int *retcode,
9739 int *remote_errno, char **attachment)
9740 {
9741 char *p, *p2;
9742
9743 *remote_errno = 0;
9744 *attachment = NULL;
9745
9746 if (buffer[0] != 'F')
9747 return -1;
9748
9749 errno = 0;
9750 *retcode = strtol (&buffer[1], &p, 16);
9751 if (errno != 0 || p == &buffer[1])
9752 return -1;
9753
9754 /* Check for ",errno". */
9755 if (*p == ',')
9756 {
9757 errno = 0;
9758 *remote_errno = strtol (p + 1, &p2, 16);
9759 if (errno != 0 || p + 1 == p2)
9760 return -1;
9761 p = p2;
9762 }
9763
9764 /* Check for ";attachment". If there is no attachment, the
9765 packet should end here. */
9766 if (*p == ';')
9767 {
9768 *attachment = p + 1;
9769 return 0;
9770 }
9771 else if (*p == '\0')
9772 return 0;
9773 else
9774 return -1;
9775 }
9776
9777 /* Send a prepared I/O packet to the target and read its response.
9778 The prepared packet is in the global RS->BUF before this function
9779 is called, and the answer is there when we return.
9780
9781 COMMAND_BYTES is the length of the request to send, which may include
9782 binary data. WHICH_PACKET is the packet configuration to check
9783 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9784 is set to the error number and -1 is returned. Otherwise the value
9785 returned by the function is returned.
9786
9787 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9788 attachment is expected; an error will be reported if there's a
9789 mismatch. If one is found, *ATTACHMENT will be set to point into
9790 the packet buffer and *ATTACHMENT_LEN will be set to the
9791 attachment's length. */
9792
9793 static int
9794 remote_hostio_send_command (int command_bytes, int which_packet,
9795 int *remote_errno, char **attachment,
9796 int *attachment_len)
9797 {
9798 struct remote_state *rs = get_remote_state ();
9799 int ret, bytes_read;
9800 char *attachment_tmp;
9801
9802 if (!rs->remote_desc
9803 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9804 {
9805 *remote_errno = FILEIO_ENOSYS;
9806 return -1;
9807 }
9808
9809 putpkt_binary (rs->buf, command_bytes);
9810 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9811
9812 /* If it timed out, something is wrong. Don't try to parse the
9813 buffer. */
9814 if (bytes_read < 0)
9815 {
9816 *remote_errno = FILEIO_EINVAL;
9817 return -1;
9818 }
9819
9820 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9821 {
9822 case PACKET_ERROR:
9823 *remote_errno = FILEIO_EINVAL;
9824 return -1;
9825 case PACKET_UNKNOWN:
9826 *remote_errno = FILEIO_ENOSYS;
9827 return -1;
9828 case PACKET_OK:
9829 break;
9830 }
9831
9832 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9833 &attachment_tmp))
9834 {
9835 *remote_errno = FILEIO_EINVAL;
9836 return -1;
9837 }
9838
9839 /* Make sure we saw an attachment if and only if we expected one. */
9840 if ((attachment_tmp == NULL && attachment != NULL)
9841 || (attachment_tmp != NULL && attachment == NULL))
9842 {
9843 *remote_errno = FILEIO_EINVAL;
9844 return -1;
9845 }
9846
9847 /* If an attachment was found, it must point into the packet buffer;
9848 work out how many bytes there were. */
9849 if (attachment_tmp != NULL)
9850 {
9851 *attachment = attachment_tmp;
9852 *attachment_len = bytes_read - (*attachment - rs->buf);
9853 }
9854
9855 return ret;
9856 }
9857
9858 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9859 remote file descriptor, or -1 if an error occurs (and set
9860 *REMOTE_ERRNO). */
9861
9862 static int
9863 remote_hostio_open (const char *filename, int flags, int mode,
9864 int *remote_errno)
9865 {
9866 struct remote_state *rs = get_remote_state ();
9867 char *p = rs->buf;
9868 int left = get_remote_packet_size () - 1;
9869
9870 remote_buffer_add_string (&p, &left, "vFile:open:");
9871
9872 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9873 strlen (filename));
9874 remote_buffer_add_string (&p, &left, ",");
9875
9876 remote_buffer_add_int (&p, &left, flags);
9877 remote_buffer_add_string (&p, &left, ",");
9878
9879 remote_buffer_add_int (&p, &left, mode);
9880
9881 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9882 remote_errno, NULL, NULL);
9883 }
9884
9885 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9886 Return the number of bytes written, or -1 if an error occurs (and
9887 set *REMOTE_ERRNO). */
9888
9889 static int
9890 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9891 ULONGEST offset, int *remote_errno)
9892 {
9893 struct remote_state *rs = get_remote_state ();
9894 char *p = rs->buf;
9895 int left = get_remote_packet_size ();
9896 int out_len;
9897
9898 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9899
9900 remote_buffer_add_int (&p, &left, fd);
9901 remote_buffer_add_string (&p, &left, ",");
9902
9903 remote_buffer_add_int (&p, &left, offset);
9904 remote_buffer_add_string (&p, &left, ",");
9905
9906 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9907 get_remote_packet_size () - (p - rs->buf));
9908
9909 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9910 remote_errno, NULL, NULL);
9911 }
9912
9913 /* Read up to LEN bytes FD on the remote target into READ_BUF
9914 Return the number of bytes read, or -1 if an error occurs (and
9915 set *REMOTE_ERRNO). */
9916
9917 static int
9918 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9919 ULONGEST offset, int *remote_errno)
9920 {
9921 struct remote_state *rs = get_remote_state ();
9922 char *p = rs->buf;
9923 char *attachment;
9924 int left = get_remote_packet_size ();
9925 int ret, attachment_len;
9926 int read_len;
9927
9928 remote_buffer_add_string (&p, &left, "vFile:pread:");
9929
9930 remote_buffer_add_int (&p, &left, fd);
9931 remote_buffer_add_string (&p, &left, ",");
9932
9933 remote_buffer_add_int (&p, &left, len);
9934 remote_buffer_add_string (&p, &left, ",");
9935
9936 remote_buffer_add_int (&p, &left, offset);
9937
9938 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9939 remote_errno, &attachment,
9940 &attachment_len);
9941
9942 if (ret < 0)
9943 return ret;
9944
9945 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9946 read_buf, len);
9947 if (read_len != ret)
9948 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9949
9950 return ret;
9951 }
9952
9953 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9954 (and set *REMOTE_ERRNO). */
9955
9956 static int
9957 remote_hostio_close (int fd, int *remote_errno)
9958 {
9959 struct remote_state *rs = get_remote_state ();
9960 char *p = rs->buf;
9961 int left = get_remote_packet_size () - 1;
9962
9963 remote_buffer_add_string (&p, &left, "vFile:close:");
9964
9965 remote_buffer_add_int (&p, &left, fd);
9966
9967 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9968 remote_errno, NULL, NULL);
9969 }
9970
9971 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9972 occurs (and set *REMOTE_ERRNO). */
9973
9974 static int
9975 remote_hostio_unlink (const char *filename, int *remote_errno)
9976 {
9977 struct remote_state *rs = get_remote_state ();
9978 char *p = rs->buf;
9979 int left = get_remote_packet_size () - 1;
9980
9981 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9982
9983 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9984 strlen (filename));
9985
9986 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9987 remote_errno, NULL, NULL);
9988 }
9989
9990 /* Read value of symbolic link FILENAME on the remote target. Return
9991 a null-terminated string allocated via xmalloc, or NULL if an error
9992 occurs (and set *REMOTE_ERRNO). */
9993
9994 static char *
9995 remote_hostio_readlink (const char *filename, int *remote_errno)
9996 {
9997 struct remote_state *rs = get_remote_state ();
9998 char *p = rs->buf;
9999 char *attachment;
10000 int left = get_remote_packet_size ();
10001 int len, attachment_len;
10002 int read_len;
10003 char *ret;
10004
10005 remote_buffer_add_string (&p, &left, "vFile:readlink:");
10006
10007 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
10008 strlen (filename));
10009
10010 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
10011 remote_errno, &attachment,
10012 &attachment_len);
10013
10014 if (len < 0)
10015 return NULL;
10016
10017 ret = xmalloc (len + 1);
10018
10019 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
10020 (gdb_byte *) ret, len);
10021 if (read_len != len)
10022 error (_("Readlink returned %d, but %d bytes."), len, read_len);
10023
10024 ret[len] = '\0';
10025 return ret;
10026 }
10027
10028 static int
10029 remote_fileio_errno_to_host (int errnum)
10030 {
10031 switch (errnum)
10032 {
10033 case FILEIO_EPERM:
10034 return EPERM;
10035 case FILEIO_ENOENT:
10036 return ENOENT;
10037 case FILEIO_EINTR:
10038 return EINTR;
10039 case FILEIO_EIO:
10040 return EIO;
10041 case FILEIO_EBADF:
10042 return EBADF;
10043 case FILEIO_EACCES:
10044 return EACCES;
10045 case FILEIO_EFAULT:
10046 return EFAULT;
10047 case FILEIO_EBUSY:
10048 return EBUSY;
10049 case FILEIO_EEXIST:
10050 return EEXIST;
10051 case FILEIO_ENODEV:
10052 return ENODEV;
10053 case FILEIO_ENOTDIR:
10054 return ENOTDIR;
10055 case FILEIO_EISDIR:
10056 return EISDIR;
10057 case FILEIO_EINVAL:
10058 return EINVAL;
10059 case FILEIO_ENFILE:
10060 return ENFILE;
10061 case FILEIO_EMFILE:
10062 return EMFILE;
10063 case FILEIO_EFBIG:
10064 return EFBIG;
10065 case FILEIO_ENOSPC:
10066 return ENOSPC;
10067 case FILEIO_ESPIPE:
10068 return ESPIPE;
10069 case FILEIO_EROFS:
10070 return EROFS;
10071 case FILEIO_ENOSYS:
10072 return ENOSYS;
10073 case FILEIO_ENAMETOOLONG:
10074 return ENAMETOOLONG;
10075 }
10076 return -1;
10077 }
10078
10079 static char *
10080 remote_hostio_error (int errnum)
10081 {
10082 int host_error = remote_fileio_errno_to_host (errnum);
10083
10084 if (host_error == -1)
10085 error (_("Unknown remote I/O error %d"), errnum);
10086 else
10087 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10088 }
10089
10090 static void
10091 remote_hostio_close_cleanup (void *opaque)
10092 {
10093 int fd = *(int *) opaque;
10094 int remote_errno;
10095
10096 remote_hostio_close (fd, &remote_errno);
10097 }
10098
10099
10100 static void *
10101 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10102 {
10103 const char *filename = bfd_get_filename (abfd);
10104 int fd, remote_errno;
10105 int *stream;
10106
10107 gdb_assert (remote_filename_p (filename));
10108
10109 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10110 if (fd == -1)
10111 {
10112 errno = remote_fileio_errno_to_host (remote_errno);
10113 bfd_set_error (bfd_error_system_call);
10114 return NULL;
10115 }
10116
10117 stream = xmalloc (sizeof (int));
10118 *stream = fd;
10119 return stream;
10120 }
10121
10122 static int
10123 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10124 {
10125 int fd = *(int *)stream;
10126 int remote_errno;
10127
10128 xfree (stream);
10129
10130 /* Ignore errors on close; these may happen if the remote
10131 connection was already torn down. */
10132 remote_hostio_close (fd, &remote_errno);
10133
10134 /* Zero means success. */
10135 return 0;
10136 }
10137
10138 static file_ptr
10139 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10140 file_ptr nbytes, file_ptr offset)
10141 {
10142 int fd = *(int *)stream;
10143 int remote_errno;
10144 file_ptr pos, bytes;
10145
10146 pos = 0;
10147 while (nbytes > pos)
10148 {
10149 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10150 offset + pos, &remote_errno);
10151 if (bytes == 0)
10152 /* Success, but no bytes, means end-of-file. */
10153 break;
10154 if (bytes == -1)
10155 {
10156 errno = remote_fileio_errno_to_host (remote_errno);
10157 bfd_set_error (bfd_error_system_call);
10158 return -1;
10159 }
10160
10161 pos += bytes;
10162 }
10163
10164 return pos;
10165 }
10166
10167 static int
10168 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10169 {
10170 /* FIXME: We should probably implement remote_hostio_stat. */
10171 sb->st_size = INT_MAX;
10172 return 0;
10173 }
10174
10175 int
10176 remote_filename_p (const char *filename)
10177 {
10178 return strncmp (filename,
10179 REMOTE_SYSROOT_PREFIX,
10180 sizeof (REMOTE_SYSROOT_PREFIX) - 1) == 0;
10181 }
10182
10183 bfd *
10184 remote_bfd_open (const char *remote_file, const char *target)
10185 {
10186 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10187 remote_bfd_iovec_open, NULL,
10188 remote_bfd_iovec_pread,
10189 remote_bfd_iovec_close,
10190 remote_bfd_iovec_stat);
10191
10192 return abfd;
10193 }
10194
10195 void
10196 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10197 {
10198 struct cleanup *back_to, *close_cleanup;
10199 int retcode, fd, remote_errno, bytes, io_size;
10200 FILE *file;
10201 gdb_byte *buffer;
10202 int bytes_in_buffer;
10203 int saw_eof;
10204 ULONGEST offset;
10205 struct remote_state *rs = get_remote_state ();
10206
10207 if (!rs->remote_desc)
10208 error (_("command can only be used with remote target"));
10209
10210 file = gdb_fopen_cloexec (local_file, "rb");
10211 if (file == NULL)
10212 perror_with_name (local_file);
10213 back_to = make_cleanup_fclose (file);
10214
10215 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10216 | FILEIO_O_TRUNC),
10217 0700, &remote_errno);
10218 if (fd == -1)
10219 remote_hostio_error (remote_errno);
10220
10221 /* Send up to this many bytes at once. They won't all fit in the
10222 remote packet limit, so we'll transfer slightly fewer. */
10223 io_size = get_remote_packet_size ();
10224 buffer = xmalloc (io_size);
10225 make_cleanup (xfree, buffer);
10226
10227 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10228
10229 bytes_in_buffer = 0;
10230 saw_eof = 0;
10231 offset = 0;
10232 while (bytes_in_buffer || !saw_eof)
10233 {
10234 if (!saw_eof)
10235 {
10236 bytes = fread (buffer + bytes_in_buffer, 1,
10237 io_size - bytes_in_buffer,
10238 file);
10239 if (bytes == 0)
10240 {
10241 if (ferror (file))
10242 error (_("Error reading %s."), local_file);
10243 else
10244 {
10245 /* EOF. Unless there is something still in the
10246 buffer from the last iteration, we are done. */
10247 saw_eof = 1;
10248 if (bytes_in_buffer == 0)
10249 break;
10250 }
10251 }
10252 }
10253 else
10254 bytes = 0;
10255
10256 bytes += bytes_in_buffer;
10257 bytes_in_buffer = 0;
10258
10259 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10260 offset, &remote_errno);
10261
10262 if (retcode < 0)
10263 remote_hostio_error (remote_errno);
10264 else if (retcode == 0)
10265 error (_("Remote write of %d bytes returned 0!"), bytes);
10266 else if (retcode < bytes)
10267 {
10268 /* Short write. Save the rest of the read data for the next
10269 write. */
10270 bytes_in_buffer = bytes - retcode;
10271 memmove (buffer, buffer + retcode, bytes_in_buffer);
10272 }
10273
10274 offset += retcode;
10275 }
10276
10277 discard_cleanups (close_cleanup);
10278 if (remote_hostio_close (fd, &remote_errno))
10279 remote_hostio_error (remote_errno);
10280
10281 if (from_tty)
10282 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10283 do_cleanups (back_to);
10284 }
10285
10286 void
10287 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10288 {
10289 struct cleanup *back_to, *close_cleanup;
10290 int fd, remote_errno, bytes, io_size;
10291 FILE *file;
10292 gdb_byte *buffer;
10293 ULONGEST offset;
10294 struct remote_state *rs = get_remote_state ();
10295
10296 if (!rs->remote_desc)
10297 error (_("command can only be used with remote target"));
10298
10299 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10300 if (fd == -1)
10301 remote_hostio_error (remote_errno);
10302
10303 file = gdb_fopen_cloexec (local_file, "wb");
10304 if (file == NULL)
10305 perror_with_name (local_file);
10306 back_to = make_cleanup_fclose (file);
10307
10308 /* Send up to this many bytes at once. They won't all fit in the
10309 remote packet limit, so we'll transfer slightly fewer. */
10310 io_size = get_remote_packet_size ();
10311 buffer = xmalloc (io_size);
10312 make_cleanup (xfree, buffer);
10313
10314 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10315
10316 offset = 0;
10317 while (1)
10318 {
10319 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10320 if (bytes == 0)
10321 /* Success, but no bytes, means end-of-file. */
10322 break;
10323 if (bytes == -1)
10324 remote_hostio_error (remote_errno);
10325
10326 offset += bytes;
10327
10328 bytes = fwrite (buffer, 1, bytes, file);
10329 if (bytes == 0)
10330 perror_with_name (local_file);
10331 }
10332
10333 discard_cleanups (close_cleanup);
10334 if (remote_hostio_close (fd, &remote_errno))
10335 remote_hostio_error (remote_errno);
10336
10337 if (from_tty)
10338 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10339 do_cleanups (back_to);
10340 }
10341
10342 void
10343 remote_file_delete (const char *remote_file, int from_tty)
10344 {
10345 int retcode, remote_errno;
10346 struct remote_state *rs = get_remote_state ();
10347
10348 if (!rs->remote_desc)
10349 error (_("command can only be used with remote target"));
10350
10351 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10352 if (retcode == -1)
10353 remote_hostio_error (remote_errno);
10354
10355 if (from_tty)
10356 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10357 }
10358
10359 static void
10360 remote_put_command (char *args, int from_tty)
10361 {
10362 struct cleanup *back_to;
10363 char **argv;
10364
10365 if (args == NULL)
10366 error_no_arg (_("file to put"));
10367
10368 argv = gdb_buildargv (args);
10369 back_to = make_cleanup_freeargv (argv);
10370 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10371 error (_("Invalid parameters to remote put"));
10372
10373 remote_file_put (argv[0], argv[1], from_tty);
10374
10375 do_cleanups (back_to);
10376 }
10377
10378 static void
10379 remote_get_command (char *args, int from_tty)
10380 {
10381 struct cleanup *back_to;
10382 char **argv;
10383
10384 if (args == NULL)
10385 error_no_arg (_("file to get"));
10386
10387 argv = gdb_buildargv (args);
10388 back_to = make_cleanup_freeargv (argv);
10389 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10390 error (_("Invalid parameters to remote get"));
10391
10392 remote_file_get (argv[0], argv[1], from_tty);
10393
10394 do_cleanups (back_to);
10395 }
10396
10397 static void
10398 remote_delete_command (char *args, int from_tty)
10399 {
10400 struct cleanup *back_to;
10401 char **argv;
10402
10403 if (args == NULL)
10404 error_no_arg (_("file to delete"));
10405
10406 argv = gdb_buildargv (args);
10407 back_to = make_cleanup_freeargv (argv);
10408 if (argv[0] == NULL || argv[1] != NULL)
10409 error (_("Invalid parameters to remote delete"));
10410
10411 remote_file_delete (argv[0], from_tty);
10412
10413 do_cleanups (back_to);
10414 }
10415
10416 static void
10417 remote_command (char *args, int from_tty)
10418 {
10419 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10420 }
10421
10422 static int
10423 remote_can_execute_reverse (void)
10424 {
10425 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10426 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10427 return 1;
10428 else
10429 return 0;
10430 }
10431
10432 static int
10433 remote_supports_non_stop (void)
10434 {
10435 return 1;
10436 }
10437
10438 static int
10439 remote_supports_disable_randomization (void)
10440 {
10441 /* Only supported in extended mode. */
10442 return 0;
10443 }
10444
10445 static int
10446 remote_supports_multi_process (void)
10447 {
10448 struct remote_state *rs = get_remote_state ();
10449
10450 /* Only extended-remote handles being attached to multiple
10451 processes, even though plain remote can use the multi-process
10452 thread id extensions, so that GDB knows the target process's
10453 PID. */
10454 return rs->extended && remote_multi_process_p (rs);
10455 }
10456
10457 static int
10458 remote_supports_cond_tracepoints (void)
10459 {
10460 struct remote_state *rs = get_remote_state ();
10461
10462 return rs->cond_tracepoints;
10463 }
10464
10465 static int
10466 remote_supports_cond_breakpoints (void)
10467 {
10468 struct remote_state *rs = get_remote_state ();
10469
10470 return rs->cond_breakpoints;
10471 }
10472
10473 static int
10474 remote_supports_fast_tracepoints (void)
10475 {
10476 struct remote_state *rs = get_remote_state ();
10477
10478 return rs->fast_tracepoints;
10479 }
10480
10481 static int
10482 remote_supports_static_tracepoints (void)
10483 {
10484 struct remote_state *rs = get_remote_state ();
10485
10486 return rs->static_tracepoints;
10487 }
10488
10489 static int
10490 remote_supports_install_in_trace (void)
10491 {
10492 struct remote_state *rs = get_remote_state ();
10493
10494 return rs->install_in_trace;
10495 }
10496
10497 static int
10498 remote_supports_enable_disable_tracepoint (void)
10499 {
10500 struct remote_state *rs = get_remote_state ();
10501
10502 return rs->enable_disable_tracepoints;
10503 }
10504
10505 static int
10506 remote_supports_string_tracing (void)
10507 {
10508 struct remote_state *rs = get_remote_state ();
10509
10510 return rs->string_tracing;
10511 }
10512
10513 static int
10514 remote_can_run_breakpoint_commands (void)
10515 {
10516 struct remote_state *rs = get_remote_state ();
10517
10518 return rs->breakpoint_commands;
10519 }
10520
10521 static void
10522 remote_trace_init (void)
10523 {
10524 putpkt ("QTinit");
10525 remote_get_noisy_reply (&target_buf, &target_buf_size);
10526 if (strcmp (target_buf, "OK") != 0)
10527 error (_("Target does not support this command."));
10528 }
10529
10530 static void free_actions_list (char **actions_list);
10531 static void free_actions_list_cleanup_wrapper (void *);
10532 static void
10533 free_actions_list_cleanup_wrapper (void *al)
10534 {
10535 free_actions_list (al);
10536 }
10537
10538 static void
10539 free_actions_list (char **actions_list)
10540 {
10541 int ndx;
10542
10543 if (actions_list == 0)
10544 return;
10545
10546 for (ndx = 0; actions_list[ndx]; ndx++)
10547 xfree (actions_list[ndx]);
10548
10549 xfree (actions_list);
10550 }
10551
10552 /* Recursive routine to walk through command list including loops, and
10553 download packets for each command. */
10554
10555 static void
10556 remote_download_command_source (int num, ULONGEST addr,
10557 struct command_line *cmds)
10558 {
10559 struct remote_state *rs = get_remote_state ();
10560 struct command_line *cmd;
10561
10562 for (cmd = cmds; cmd; cmd = cmd->next)
10563 {
10564 QUIT; /* Allow user to bail out with ^C. */
10565 strcpy (rs->buf, "QTDPsrc:");
10566 encode_source_string (num, addr, "cmd", cmd->line,
10567 rs->buf + strlen (rs->buf),
10568 rs->buf_size - strlen (rs->buf));
10569 putpkt (rs->buf);
10570 remote_get_noisy_reply (&target_buf, &target_buf_size);
10571 if (strcmp (target_buf, "OK"))
10572 warning (_("Target does not support source download."));
10573
10574 if (cmd->control_type == while_control
10575 || cmd->control_type == while_stepping_control)
10576 {
10577 remote_download_command_source (num, addr, *cmd->body_list);
10578
10579 QUIT; /* Allow user to bail out with ^C. */
10580 strcpy (rs->buf, "QTDPsrc:");
10581 encode_source_string (num, addr, "cmd", "end",
10582 rs->buf + strlen (rs->buf),
10583 rs->buf_size - strlen (rs->buf));
10584 putpkt (rs->buf);
10585 remote_get_noisy_reply (&target_buf, &target_buf_size);
10586 if (strcmp (target_buf, "OK"))
10587 warning (_("Target does not support source download."));
10588 }
10589 }
10590 }
10591
10592 static void
10593 remote_download_tracepoint (struct bp_location *loc)
10594 {
10595 #define BUF_SIZE 2048
10596
10597 CORE_ADDR tpaddr;
10598 char addrbuf[40];
10599 char buf[BUF_SIZE];
10600 char **tdp_actions;
10601 char **stepping_actions;
10602 int ndx;
10603 struct cleanup *old_chain = NULL;
10604 struct agent_expr *aexpr;
10605 struct cleanup *aexpr_chain = NULL;
10606 char *pkt;
10607 struct breakpoint *b = loc->owner;
10608 struct tracepoint *t = (struct tracepoint *) b;
10609
10610 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10611 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10612 tdp_actions);
10613 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10614 stepping_actions);
10615
10616 tpaddr = loc->address;
10617 sprintf_vma (addrbuf, tpaddr);
10618 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10619 addrbuf, /* address */
10620 (b->enable_state == bp_enabled ? 'E' : 'D'),
10621 t->step_count, t->pass_count);
10622 /* Fast tracepoints are mostly handled by the target, but we can
10623 tell the target how big of an instruction block should be moved
10624 around. */
10625 if (b->type == bp_fast_tracepoint)
10626 {
10627 /* Only test for support at download time; we may not know
10628 target capabilities at definition time. */
10629 if (remote_supports_fast_tracepoints ())
10630 {
10631 int isize;
10632
10633 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10634 tpaddr, &isize, NULL))
10635 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10636 isize);
10637 else
10638 /* If it passed validation at definition but fails now,
10639 something is very wrong. */
10640 internal_error (__FILE__, __LINE__,
10641 _("Fast tracepoint not "
10642 "valid during download"));
10643 }
10644 else
10645 /* Fast tracepoints are functionally identical to regular
10646 tracepoints, so don't take lack of support as a reason to
10647 give up on the trace run. */
10648 warning (_("Target does not support fast tracepoints, "
10649 "downloading %d as regular tracepoint"), b->number);
10650 }
10651 else if (b->type == bp_static_tracepoint)
10652 {
10653 /* Only test for support at download time; we may not know
10654 target capabilities at definition time. */
10655 if (remote_supports_static_tracepoints ())
10656 {
10657 struct static_tracepoint_marker marker;
10658
10659 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10660 strcat (buf, ":S");
10661 else
10662 error (_("Static tracepoint not valid during download"));
10663 }
10664 else
10665 /* Fast tracepoints are functionally identical to regular
10666 tracepoints, so don't take lack of support as a reason
10667 to give up on the trace run. */
10668 error (_("Target does not support static tracepoints"));
10669 }
10670 /* If the tracepoint has a conditional, make it into an agent
10671 expression and append to the definition. */
10672 if (loc->cond)
10673 {
10674 /* Only test support at download time, we may not know target
10675 capabilities at definition time. */
10676 if (remote_supports_cond_tracepoints ())
10677 {
10678 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10679 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10680 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10681 aexpr->len);
10682 pkt = buf + strlen (buf);
10683 for (ndx = 0; ndx < aexpr->len; ++ndx)
10684 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10685 *pkt = '\0';
10686 do_cleanups (aexpr_chain);
10687 }
10688 else
10689 warning (_("Target does not support conditional tracepoints, "
10690 "ignoring tp %d cond"), b->number);
10691 }
10692
10693 if (b->commands || *default_collect)
10694 strcat (buf, "-");
10695 putpkt (buf);
10696 remote_get_noisy_reply (&target_buf, &target_buf_size);
10697 if (strcmp (target_buf, "OK"))
10698 error (_("Target does not support tracepoints."));
10699
10700 /* do_single_steps (t); */
10701 if (tdp_actions)
10702 {
10703 for (ndx = 0; tdp_actions[ndx]; ndx++)
10704 {
10705 QUIT; /* Allow user to bail out with ^C. */
10706 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10707 b->number, addrbuf, /* address */
10708 tdp_actions[ndx],
10709 ((tdp_actions[ndx + 1] || stepping_actions)
10710 ? '-' : 0));
10711 putpkt (buf);
10712 remote_get_noisy_reply (&target_buf,
10713 &target_buf_size);
10714 if (strcmp (target_buf, "OK"))
10715 error (_("Error on target while setting tracepoints."));
10716 }
10717 }
10718 if (stepping_actions)
10719 {
10720 for (ndx = 0; stepping_actions[ndx]; ndx++)
10721 {
10722 QUIT; /* Allow user to bail out with ^C. */
10723 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10724 b->number, addrbuf, /* address */
10725 ((ndx == 0) ? "S" : ""),
10726 stepping_actions[ndx],
10727 (stepping_actions[ndx + 1] ? "-" : ""));
10728 putpkt (buf);
10729 remote_get_noisy_reply (&target_buf,
10730 &target_buf_size);
10731 if (strcmp (target_buf, "OK"))
10732 error (_("Error on target while setting tracepoints."));
10733 }
10734 }
10735
10736 if (remote_protocol_packets[PACKET_TracepointSource].support
10737 == PACKET_ENABLE)
10738 {
10739 if (b->addr_string)
10740 {
10741 strcpy (buf, "QTDPsrc:");
10742 encode_source_string (b->number, loc->address,
10743 "at", b->addr_string, buf + strlen (buf),
10744 2048 - strlen (buf));
10745
10746 putpkt (buf);
10747 remote_get_noisy_reply (&target_buf, &target_buf_size);
10748 if (strcmp (target_buf, "OK"))
10749 warning (_("Target does not support source download."));
10750 }
10751 if (b->cond_string)
10752 {
10753 strcpy (buf, "QTDPsrc:");
10754 encode_source_string (b->number, loc->address,
10755 "cond", b->cond_string, buf + strlen (buf),
10756 2048 - strlen (buf));
10757 putpkt (buf);
10758 remote_get_noisy_reply (&target_buf, &target_buf_size);
10759 if (strcmp (target_buf, "OK"))
10760 warning (_("Target does not support source download."));
10761 }
10762 remote_download_command_source (b->number, loc->address,
10763 breakpoint_commands (b));
10764 }
10765
10766 do_cleanups (old_chain);
10767 }
10768
10769 static int
10770 remote_can_download_tracepoint (void)
10771 {
10772 struct remote_state *rs = get_remote_state ();
10773 struct trace_status *ts;
10774 int status;
10775
10776 /* Don't try to install tracepoints until we've relocated our
10777 symbols, and fetched and merged the target's tracepoint list with
10778 ours. */
10779 if (rs->starting_up)
10780 return 0;
10781
10782 ts = current_trace_status ();
10783 status = remote_get_trace_status (ts);
10784
10785 if (status == -1 || !ts->running_known || !ts->running)
10786 return 0;
10787
10788 /* If we are in a tracing experiment, but remote stub doesn't support
10789 installing tracepoint in trace, we have to return. */
10790 if (!remote_supports_install_in_trace ())
10791 return 0;
10792
10793 return 1;
10794 }
10795
10796
10797 static void
10798 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10799 {
10800 struct remote_state *rs = get_remote_state ();
10801 char *p;
10802
10803 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10804 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10805 tsv->builtin);
10806 p = rs->buf + strlen (rs->buf);
10807 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10808 error (_("Trace state variable name too long for tsv definition packet"));
10809 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10810 *p++ = '\0';
10811 putpkt (rs->buf);
10812 remote_get_noisy_reply (&target_buf, &target_buf_size);
10813 if (*target_buf == '\0')
10814 error (_("Target does not support this command."));
10815 if (strcmp (target_buf, "OK") != 0)
10816 error (_("Error on target while downloading trace state variable."));
10817 }
10818
10819 static void
10820 remote_enable_tracepoint (struct bp_location *location)
10821 {
10822 struct remote_state *rs = get_remote_state ();
10823 char addr_buf[40];
10824
10825 sprintf_vma (addr_buf, location->address);
10826 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10827 location->owner->number, addr_buf);
10828 putpkt (rs->buf);
10829 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10830 if (*rs->buf == '\0')
10831 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10832 if (strcmp (rs->buf, "OK") != 0)
10833 error (_("Error on target while enabling tracepoint."));
10834 }
10835
10836 static void
10837 remote_disable_tracepoint (struct bp_location *location)
10838 {
10839 struct remote_state *rs = get_remote_state ();
10840 char addr_buf[40];
10841
10842 sprintf_vma (addr_buf, location->address);
10843 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10844 location->owner->number, addr_buf);
10845 putpkt (rs->buf);
10846 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10847 if (*rs->buf == '\0')
10848 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10849 if (strcmp (rs->buf, "OK") != 0)
10850 error (_("Error on target while disabling tracepoint."));
10851 }
10852
10853 static void
10854 remote_trace_set_readonly_regions (void)
10855 {
10856 asection *s;
10857 bfd *abfd = NULL;
10858 bfd_size_type size;
10859 bfd_vma vma;
10860 int anysecs = 0;
10861 int offset = 0;
10862
10863 if (!exec_bfd)
10864 return; /* No information to give. */
10865
10866 strcpy (target_buf, "QTro");
10867 offset = strlen (target_buf);
10868 for (s = exec_bfd->sections; s; s = s->next)
10869 {
10870 char tmp1[40], tmp2[40];
10871 int sec_length;
10872
10873 if ((s->flags & SEC_LOAD) == 0 ||
10874 /* (s->flags & SEC_CODE) == 0 || */
10875 (s->flags & SEC_READONLY) == 0)
10876 continue;
10877
10878 anysecs = 1;
10879 vma = bfd_get_section_vma (abfd, s);
10880 size = bfd_get_section_size (s);
10881 sprintf_vma (tmp1, vma);
10882 sprintf_vma (tmp2, vma + size);
10883 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10884 if (offset + sec_length + 1 > target_buf_size)
10885 {
10886 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10887 != PACKET_ENABLE)
10888 warning (_("\
10889 Too many sections for read-only sections definition packet."));
10890 break;
10891 }
10892 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10893 tmp1, tmp2);
10894 offset += sec_length;
10895 }
10896 if (anysecs)
10897 {
10898 putpkt (target_buf);
10899 getpkt (&target_buf, &target_buf_size, 0);
10900 }
10901 }
10902
10903 static void
10904 remote_trace_start (void)
10905 {
10906 putpkt ("QTStart");
10907 remote_get_noisy_reply (&target_buf, &target_buf_size);
10908 if (*target_buf == '\0')
10909 error (_("Target does not support this command."));
10910 if (strcmp (target_buf, "OK") != 0)
10911 error (_("Bogus reply from target: %s"), target_buf);
10912 }
10913
10914 static int
10915 remote_get_trace_status (struct trace_status *ts)
10916 {
10917 /* Initialize it just to avoid a GCC false warning. */
10918 char *p = NULL;
10919 /* FIXME we need to get register block size some other way. */
10920 extern int trace_regblock_size;
10921 volatile struct gdb_exception ex;
10922 enum packet_result result;
10923
10924 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10925 return -1;
10926
10927 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10928
10929 putpkt ("qTStatus");
10930
10931 TRY_CATCH (ex, RETURN_MASK_ERROR)
10932 {
10933 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10934 }
10935 if (ex.reason < 0)
10936 {
10937 if (ex.error != TARGET_CLOSE_ERROR)
10938 {
10939 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10940 return -1;
10941 }
10942 throw_exception (ex);
10943 }
10944
10945 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10946
10947 /* If the remote target doesn't do tracing, flag it. */
10948 if (result == PACKET_UNKNOWN)
10949 return -1;
10950
10951 /* We're working with a live target. */
10952 ts->filename = NULL;
10953
10954 if (*p++ != 'T')
10955 error (_("Bogus trace status reply from target: %s"), target_buf);
10956
10957 /* Function 'parse_trace_status' sets default value of each field of
10958 'ts' at first, so we don't have to do it here. */
10959 parse_trace_status (p, ts);
10960
10961 return ts->running;
10962 }
10963
10964 static void
10965 remote_get_tracepoint_status (struct breakpoint *bp,
10966 struct uploaded_tp *utp)
10967 {
10968 struct remote_state *rs = get_remote_state ();
10969 char *reply;
10970 struct bp_location *loc;
10971 struct tracepoint *tp = (struct tracepoint *) bp;
10972 size_t size = get_remote_packet_size ();
10973
10974 if (tp)
10975 {
10976 tp->base.hit_count = 0;
10977 tp->traceframe_usage = 0;
10978 for (loc = tp->base.loc; loc; loc = loc->next)
10979 {
10980 /* If the tracepoint was never downloaded, don't go asking for
10981 any status. */
10982 if (tp->number_on_target == 0)
10983 continue;
10984 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10985 phex_nz (loc->address, 0));
10986 putpkt (rs->buf);
10987 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10988 if (reply && *reply)
10989 {
10990 if (*reply == 'V')
10991 parse_tracepoint_status (reply + 1, bp, utp);
10992 }
10993 }
10994 }
10995 else if (utp)
10996 {
10997 utp->hit_count = 0;
10998 utp->traceframe_usage = 0;
10999 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
11000 phex_nz (utp->addr, 0));
11001 putpkt (rs->buf);
11002 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11003 if (reply && *reply)
11004 {
11005 if (*reply == 'V')
11006 parse_tracepoint_status (reply + 1, bp, utp);
11007 }
11008 }
11009 }
11010
11011 static void
11012 remote_trace_stop (void)
11013 {
11014 putpkt ("QTStop");
11015 remote_get_noisy_reply (&target_buf, &target_buf_size);
11016 if (*target_buf == '\0')
11017 error (_("Target does not support this command."));
11018 if (strcmp (target_buf, "OK") != 0)
11019 error (_("Bogus reply from target: %s"), target_buf);
11020 }
11021
11022 static int
11023 remote_trace_find (enum trace_find_type type, int num,
11024 CORE_ADDR addr1, CORE_ADDR addr2,
11025 int *tpp)
11026 {
11027 struct remote_state *rs = get_remote_state ();
11028 char *endbuf = rs->buf + get_remote_packet_size ();
11029 char *p, *reply;
11030 int target_frameno = -1, target_tracept = -1;
11031
11032 /* Lookups other than by absolute frame number depend on the current
11033 trace selected, so make sure it is correct on the remote end
11034 first. */
11035 if (type != tfind_number)
11036 set_remote_traceframe ();
11037
11038 p = rs->buf;
11039 strcpy (p, "QTFrame:");
11040 p = strchr (p, '\0');
11041 switch (type)
11042 {
11043 case tfind_number:
11044 xsnprintf (p, endbuf - p, "%x", num);
11045 break;
11046 case tfind_pc:
11047 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
11048 break;
11049 case tfind_tp:
11050 xsnprintf (p, endbuf - p, "tdp:%x", num);
11051 break;
11052 case tfind_range:
11053 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
11054 phex_nz (addr2, 0));
11055 break;
11056 case tfind_outside:
11057 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
11058 phex_nz (addr2, 0));
11059 break;
11060 default:
11061 error (_("Unknown trace find type %d"), type);
11062 }
11063
11064 putpkt (rs->buf);
11065 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
11066 if (*reply == '\0')
11067 error (_("Target does not support this command."));
11068
11069 while (reply && *reply)
11070 switch (*reply)
11071 {
11072 case 'F':
11073 p = ++reply;
11074 target_frameno = (int) strtol (p, &reply, 16);
11075 if (reply == p)
11076 error (_("Unable to parse trace frame number"));
11077 /* Don't update our remote traceframe number cache on failure
11078 to select a remote traceframe. */
11079 if (target_frameno == -1)
11080 return -1;
11081 break;
11082 case 'T':
11083 p = ++reply;
11084 target_tracept = (int) strtol (p, &reply, 16);
11085 if (reply == p)
11086 error (_("Unable to parse tracepoint number"));
11087 break;
11088 case 'O': /* "OK"? */
11089 if (reply[1] == 'K' && reply[2] == '\0')
11090 reply += 2;
11091 else
11092 error (_("Bogus reply from target: %s"), reply);
11093 break;
11094 default:
11095 error (_("Bogus reply from target: %s"), reply);
11096 }
11097 if (tpp)
11098 *tpp = target_tracept;
11099
11100 rs->remote_traceframe_number = target_frameno;
11101 return target_frameno;
11102 }
11103
11104 static int
11105 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11106 {
11107 struct remote_state *rs = get_remote_state ();
11108 char *reply;
11109 ULONGEST uval;
11110
11111 set_remote_traceframe ();
11112
11113 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11114 putpkt (rs->buf);
11115 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11116 if (reply && *reply)
11117 {
11118 if (*reply == 'V')
11119 {
11120 unpack_varlen_hex (reply + 1, &uval);
11121 *val = (LONGEST) uval;
11122 return 1;
11123 }
11124 }
11125 return 0;
11126 }
11127
11128 static int
11129 remote_save_trace_data (const char *filename)
11130 {
11131 struct remote_state *rs = get_remote_state ();
11132 char *p, *reply;
11133
11134 p = rs->buf;
11135 strcpy (p, "QTSave:");
11136 p += strlen (p);
11137 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11138 error (_("Remote file name too long for trace save packet"));
11139 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11140 *p++ = '\0';
11141 putpkt (rs->buf);
11142 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11143 if (*reply == '\0')
11144 error (_("Target does not support this command."));
11145 if (strcmp (reply, "OK") != 0)
11146 error (_("Bogus reply from target: %s"), reply);
11147 return 0;
11148 }
11149
11150 /* This is basically a memory transfer, but needs to be its own packet
11151 because we don't know how the target actually organizes its trace
11152 memory, plus we want to be able to ask for as much as possible, but
11153 not be unhappy if we don't get as much as we ask for. */
11154
11155 static LONGEST
11156 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11157 {
11158 struct remote_state *rs = get_remote_state ();
11159 char *reply;
11160 char *p;
11161 int rslt;
11162
11163 p = rs->buf;
11164 strcpy (p, "qTBuffer:");
11165 p += strlen (p);
11166 p += hexnumstr (p, offset);
11167 *p++ = ',';
11168 p += hexnumstr (p, len);
11169 *p++ = '\0';
11170
11171 putpkt (rs->buf);
11172 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11173 if (reply && *reply)
11174 {
11175 /* 'l' by itself means we're at the end of the buffer and
11176 there is nothing more to get. */
11177 if (*reply == 'l')
11178 return 0;
11179
11180 /* Convert the reply into binary. Limit the number of bytes to
11181 convert according to our passed-in buffer size, rather than
11182 what was returned in the packet; if the target is
11183 unexpectedly generous and gives us a bigger reply than we
11184 asked for, we don't want to crash. */
11185 rslt = hex2bin (target_buf, buf, len);
11186 return rslt;
11187 }
11188
11189 /* Something went wrong, flag as an error. */
11190 return -1;
11191 }
11192
11193 static void
11194 remote_set_disconnected_tracing (int val)
11195 {
11196 struct remote_state *rs = get_remote_state ();
11197
11198 if (rs->disconnected_tracing)
11199 {
11200 char *reply;
11201
11202 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11203 putpkt (rs->buf);
11204 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11205 if (*reply == '\0')
11206 error (_("Target does not support this command."));
11207 if (strcmp (reply, "OK") != 0)
11208 error (_("Bogus reply from target: %s"), reply);
11209 }
11210 else if (val)
11211 warning (_("Target does not support disconnected tracing."));
11212 }
11213
11214 static int
11215 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11216 {
11217 struct thread_info *info = find_thread_ptid (ptid);
11218
11219 if (info && info->private)
11220 return info->private->core;
11221 return -1;
11222 }
11223
11224 static void
11225 remote_set_circular_trace_buffer (int val)
11226 {
11227 struct remote_state *rs = get_remote_state ();
11228 char *reply;
11229
11230 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11231 putpkt (rs->buf);
11232 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11233 if (*reply == '\0')
11234 error (_("Target does not support this command."));
11235 if (strcmp (reply, "OK") != 0)
11236 error (_("Bogus reply from target: %s"), reply);
11237 }
11238
11239 static struct traceframe_info *
11240 remote_traceframe_info (void)
11241 {
11242 char *text;
11243
11244 /* If current traceframe is not selected, don't bother the remote
11245 stub. */
11246 if (get_traceframe_number () < 0)
11247 return NULL;
11248
11249 text = target_read_stralloc (&current_target,
11250 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11251 if (text != NULL)
11252 {
11253 struct traceframe_info *info;
11254 struct cleanup *back_to = make_cleanup (xfree, text);
11255
11256 info = parse_traceframe_info (text);
11257 do_cleanups (back_to);
11258 return info;
11259 }
11260
11261 return NULL;
11262 }
11263
11264 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11265 instruction on which a fast tracepoint may be placed. Returns -1
11266 if the packet is not supported, and 0 if the minimum instruction
11267 length is unknown. */
11268
11269 static int
11270 remote_get_min_fast_tracepoint_insn_len (void)
11271 {
11272 struct remote_state *rs = get_remote_state ();
11273 char *reply;
11274
11275 /* If we're not debugging a process yet, the IPA can't be
11276 loaded. */
11277 if (!target_has_execution)
11278 return 0;
11279
11280 /* Make sure the remote is pointing at the right process. */
11281 set_general_process ();
11282
11283 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11284 putpkt (rs->buf);
11285 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11286 if (*reply == '\0')
11287 return -1;
11288 else
11289 {
11290 ULONGEST min_insn_len;
11291
11292 unpack_varlen_hex (reply, &min_insn_len);
11293
11294 return (int) min_insn_len;
11295 }
11296 }
11297
11298 static void
11299 remote_set_trace_buffer_size (LONGEST val)
11300 {
11301 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11302 != PACKET_DISABLE)
11303 {
11304 struct remote_state *rs = get_remote_state ();
11305 char *buf = rs->buf;
11306 char *endbuf = rs->buf + get_remote_packet_size ();
11307 enum packet_result result;
11308
11309 gdb_assert (val >= 0 || val == -1);
11310 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11311 /* Send -1 as literal "-1" to avoid host size dependency. */
11312 if (val < 0)
11313 {
11314 *buf++ = '-';
11315 buf += hexnumstr (buf, (ULONGEST) -val);
11316 }
11317 else
11318 buf += hexnumstr (buf, (ULONGEST) val);
11319
11320 putpkt (rs->buf);
11321 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11322 result = packet_ok (rs->buf,
11323 &remote_protocol_packets[PACKET_QTBuffer_size]);
11324
11325 if (result != PACKET_OK)
11326 warning (_("Bogus reply from target: %s"), rs->buf);
11327 }
11328 }
11329
11330 static int
11331 remote_set_trace_notes (const char *user, const char *notes,
11332 const char *stop_notes)
11333 {
11334 struct remote_state *rs = get_remote_state ();
11335 char *reply;
11336 char *buf = rs->buf;
11337 char *endbuf = rs->buf + get_remote_packet_size ();
11338 int nbytes;
11339
11340 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11341 if (user)
11342 {
11343 buf += xsnprintf (buf, endbuf - buf, "user:");
11344 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11345 buf += 2 * nbytes;
11346 *buf++ = ';';
11347 }
11348 if (notes)
11349 {
11350 buf += xsnprintf (buf, endbuf - buf, "notes:");
11351 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11352 buf += 2 * nbytes;
11353 *buf++ = ';';
11354 }
11355 if (stop_notes)
11356 {
11357 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11358 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11359 buf += 2 * nbytes;
11360 *buf++ = ';';
11361 }
11362 /* Ensure the buffer is terminated. */
11363 *buf = '\0';
11364
11365 putpkt (rs->buf);
11366 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11367 if (*reply == '\0')
11368 return 0;
11369
11370 if (strcmp (reply, "OK") != 0)
11371 error (_("Bogus reply from target: %s"), reply);
11372
11373 return 1;
11374 }
11375
11376 static int
11377 remote_use_agent (int use)
11378 {
11379 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11380 {
11381 struct remote_state *rs = get_remote_state ();
11382
11383 /* If the stub supports QAgent. */
11384 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11385 putpkt (rs->buf);
11386 getpkt (&rs->buf, &rs->buf_size, 0);
11387
11388 if (strcmp (rs->buf, "OK") == 0)
11389 {
11390 use_agent = use;
11391 return 1;
11392 }
11393 }
11394
11395 return 0;
11396 }
11397
11398 static int
11399 remote_can_use_agent (void)
11400 {
11401 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11402 }
11403
11404 struct btrace_target_info
11405 {
11406 /* The ptid of the traced thread. */
11407 ptid_t ptid;
11408 };
11409
11410 /* Check whether the target supports branch tracing. */
11411
11412 static int
11413 remote_supports_btrace (void)
11414 {
11415 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11416 return 0;
11417 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11418 return 0;
11419 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11420 return 0;
11421
11422 return 1;
11423 }
11424
11425 /* Enable branch tracing. */
11426
11427 static struct btrace_target_info *
11428 remote_enable_btrace (ptid_t ptid)
11429 {
11430 struct btrace_target_info *tinfo = NULL;
11431 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11432 struct remote_state *rs = get_remote_state ();
11433 char *buf = rs->buf;
11434 char *endbuf = rs->buf + get_remote_packet_size ();
11435
11436 if (packet->support != PACKET_ENABLE)
11437 error (_("Target does not support branch tracing."));
11438
11439 set_general_thread (ptid);
11440
11441 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11442 putpkt (rs->buf);
11443 getpkt (&rs->buf, &rs->buf_size, 0);
11444
11445 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11446 {
11447 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11448 error (_("Could not enable branch tracing for %s: %s"),
11449 target_pid_to_str (ptid), rs->buf + 2);
11450 else
11451 error (_("Could not enable branch tracing for %s."),
11452 target_pid_to_str (ptid));
11453 }
11454
11455 tinfo = xzalloc (sizeof (*tinfo));
11456 tinfo->ptid = ptid;
11457
11458 return tinfo;
11459 }
11460
11461 /* Disable branch tracing. */
11462
11463 static void
11464 remote_disable_btrace (struct btrace_target_info *tinfo)
11465 {
11466 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11467 struct remote_state *rs = get_remote_state ();
11468 char *buf = rs->buf;
11469 char *endbuf = rs->buf + get_remote_packet_size ();
11470
11471 if (packet->support != PACKET_ENABLE)
11472 error (_("Target does not support branch tracing."));
11473
11474 set_general_thread (tinfo->ptid);
11475
11476 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11477 putpkt (rs->buf);
11478 getpkt (&rs->buf, &rs->buf_size, 0);
11479
11480 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11481 {
11482 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11483 error (_("Could not disable branch tracing for %s: %s"),
11484 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11485 else
11486 error (_("Could not disable branch tracing for %s."),
11487 target_pid_to_str (tinfo->ptid));
11488 }
11489
11490 xfree (tinfo);
11491 }
11492
11493 /* Teardown branch tracing. */
11494
11495 static void
11496 remote_teardown_btrace (struct btrace_target_info *tinfo)
11497 {
11498 /* We must not talk to the target during teardown. */
11499 xfree (tinfo);
11500 }
11501
11502 /* Read the branch trace. */
11503
11504 static enum btrace_error
11505 remote_read_btrace (VEC (btrace_block_s) **btrace,
11506 struct btrace_target_info *tinfo,
11507 enum btrace_read_type type)
11508 {
11509 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11510 struct remote_state *rs = get_remote_state ();
11511 struct cleanup *cleanup;
11512 const char *annex;
11513 char *xml;
11514
11515 if (packet->support != PACKET_ENABLE)
11516 error (_("Target does not support branch tracing."));
11517
11518 #if !defined(HAVE_LIBEXPAT)
11519 error (_("Cannot process branch tracing result. XML parsing not supported."));
11520 #endif
11521
11522 switch (type)
11523 {
11524 case BTRACE_READ_ALL:
11525 annex = "all";
11526 break;
11527 case BTRACE_READ_NEW:
11528 annex = "new";
11529 break;
11530 case BTRACE_READ_DELTA:
11531 annex = "delta";
11532 break;
11533 default:
11534 internal_error (__FILE__, __LINE__,
11535 _("Bad branch tracing read type: %u."),
11536 (unsigned int) type);
11537 }
11538
11539 xml = target_read_stralloc (&current_target,
11540 TARGET_OBJECT_BTRACE, annex);
11541 if (xml == NULL)
11542 return BTRACE_ERR_UNKNOWN;
11543
11544 cleanup = make_cleanup (xfree, xml);
11545 *btrace = parse_xml_btrace (xml);
11546 do_cleanups (cleanup);
11547
11548 return BTRACE_ERR_NONE;
11549 }
11550
11551 static int
11552 remote_augmented_libraries_svr4_read (void)
11553 {
11554 struct remote_state *rs = get_remote_state ();
11555
11556 return rs->augmented_libraries_svr4_read;
11557 }
11558
11559 static void
11560 init_remote_ops (void)
11561 {
11562 remote_ops.to_shortname = "remote";
11563 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11564 remote_ops.to_doc =
11565 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11566 Specify the serial device it is connected to\n\
11567 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11568 remote_ops.to_open = remote_open;
11569 remote_ops.to_close = remote_close;
11570 remote_ops.to_detach = remote_detach;
11571 remote_ops.to_disconnect = remote_disconnect;
11572 remote_ops.to_resume = remote_resume;
11573 remote_ops.to_wait = remote_wait;
11574 remote_ops.to_fetch_registers = remote_fetch_registers;
11575 remote_ops.to_store_registers = remote_store_registers;
11576 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11577 remote_ops.to_files_info = remote_files_info;
11578 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11579 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11580 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11581 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11582 remote_ops.to_watchpoint_addr_within_range =
11583 remote_watchpoint_addr_within_range;
11584 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11585 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11586 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11587 remote_ops.to_region_ok_for_hw_watchpoint
11588 = remote_region_ok_for_hw_watchpoint;
11589 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11590 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11591 remote_ops.to_kill = remote_kill;
11592 remote_ops.to_load = generic_load;
11593 remote_ops.to_mourn_inferior = remote_mourn;
11594 remote_ops.to_pass_signals = remote_pass_signals;
11595 remote_ops.to_program_signals = remote_program_signals;
11596 remote_ops.to_thread_alive = remote_thread_alive;
11597 remote_ops.to_find_new_threads = remote_threads_info;
11598 remote_ops.to_pid_to_str = remote_pid_to_str;
11599 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11600 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11601 remote_ops.to_stop = remote_stop;
11602 remote_ops.to_xfer_partial = remote_xfer_partial;
11603 remote_ops.to_rcmd = remote_rcmd;
11604 remote_ops.to_log_command = serial_log_command;
11605 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11606 remote_ops.to_stratum = process_stratum;
11607 remote_ops.to_has_all_memory = default_child_has_all_memory;
11608 remote_ops.to_has_memory = default_child_has_memory;
11609 remote_ops.to_has_stack = default_child_has_stack;
11610 remote_ops.to_has_registers = default_child_has_registers;
11611 remote_ops.to_has_execution = default_child_has_execution;
11612 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11613 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11614 remote_ops.to_magic = OPS_MAGIC;
11615 remote_ops.to_memory_map = remote_memory_map;
11616 remote_ops.to_flash_erase = remote_flash_erase;
11617 remote_ops.to_flash_done = remote_flash_done;
11618 remote_ops.to_read_description = remote_read_description;
11619 remote_ops.to_search_memory = remote_search_memory;
11620 remote_ops.to_can_async_p = remote_can_async_p;
11621 remote_ops.to_is_async_p = remote_is_async_p;
11622 remote_ops.to_async = remote_async;
11623 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11624 remote_ops.to_terminal_ours = remote_terminal_ours;
11625 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11626 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11627 remote_ops.to_supports_disable_randomization
11628 = remote_supports_disable_randomization;
11629 remote_ops.to_fileio_open = remote_hostio_open;
11630 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11631 remote_ops.to_fileio_pread = remote_hostio_pread;
11632 remote_ops.to_fileio_close = remote_hostio_close;
11633 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11634 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11635 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11636 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11637 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11638 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11639 remote_ops.to_trace_init = remote_trace_init;
11640 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11641 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11642 remote_ops.to_download_trace_state_variable
11643 = remote_download_trace_state_variable;
11644 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11645 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11646 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11647 remote_ops.to_trace_start = remote_trace_start;
11648 remote_ops.to_get_trace_status = remote_get_trace_status;
11649 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11650 remote_ops.to_trace_stop = remote_trace_stop;
11651 remote_ops.to_trace_find = remote_trace_find;
11652 remote_ops.to_get_trace_state_variable_value
11653 = remote_get_trace_state_variable_value;
11654 remote_ops.to_save_trace_data = remote_save_trace_data;
11655 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11656 remote_ops.to_upload_trace_state_variables
11657 = remote_upload_trace_state_variables;
11658 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11659 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11660 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11661 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11662 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11663 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11664 remote_ops.to_core_of_thread = remote_core_of_thread;
11665 remote_ops.to_verify_memory = remote_verify_memory;
11666 remote_ops.to_get_tib_address = remote_get_tib_address;
11667 remote_ops.to_set_permissions = remote_set_permissions;
11668 remote_ops.to_static_tracepoint_marker_at
11669 = remote_static_tracepoint_marker_at;
11670 remote_ops.to_static_tracepoint_markers_by_strid
11671 = remote_static_tracepoint_markers_by_strid;
11672 remote_ops.to_traceframe_info = remote_traceframe_info;
11673 remote_ops.to_use_agent = remote_use_agent;
11674 remote_ops.to_can_use_agent = remote_can_use_agent;
11675 remote_ops.to_supports_btrace = remote_supports_btrace;
11676 remote_ops.to_enable_btrace = remote_enable_btrace;
11677 remote_ops.to_disable_btrace = remote_disable_btrace;
11678 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11679 remote_ops.to_read_btrace = remote_read_btrace;
11680 remote_ops.to_augmented_libraries_svr4_read =
11681 remote_augmented_libraries_svr4_read;
11682 }
11683
11684 /* Set up the extended remote vector by making a copy of the standard
11685 remote vector and adding to it. */
11686
11687 static void
11688 init_extended_remote_ops (void)
11689 {
11690 extended_remote_ops = remote_ops;
11691
11692 extended_remote_ops.to_shortname = "extended-remote";
11693 extended_remote_ops.to_longname =
11694 "Extended remote serial target in gdb-specific protocol";
11695 extended_remote_ops.to_doc =
11696 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11697 Specify the serial device it is connected to (e.g. /dev/ttya).";
11698 extended_remote_ops.to_open = extended_remote_open;
11699 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11700 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11701 extended_remote_ops.to_detach = extended_remote_detach;
11702 extended_remote_ops.to_attach = extended_remote_attach;
11703 extended_remote_ops.to_kill = extended_remote_kill;
11704 extended_remote_ops.to_supports_disable_randomization
11705 = extended_remote_supports_disable_randomization;
11706 }
11707
11708 static int
11709 remote_can_async_p (void)
11710 {
11711 struct remote_state *rs = get_remote_state ();
11712
11713 if (!target_async_permitted)
11714 /* We only enable async when the user specifically asks for it. */
11715 return 0;
11716
11717 /* We're async whenever the serial device is. */
11718 return serial_can_async_p (rs->remote_desc);
11719 }
11720
11721 static int
11722 remote_is_async_p (void)
11723 {
11724 struct remote_state *rs = get_remote_state ();
11725
11726 if (!target_async_permitted)
11727 /* We only enable async when the user specifically asks for it. */
11728 return 0;
11729
11730 /* We're async whenever the serial device is. */
11731 return serial_is_async_p (rs->remote_desc);
11732 }
11733
11734 /* Pass the SERIAL event on and up to the client. One day this code
11735 will be able to delay notifying the client of an event until the
11736 point where an entire packet has been received. */
11737
11738 static serial_event_ftype remote_async_serial_handler;
11739
11740 static void
11741 remote_async_serial_handler (struct serial *scb, void *context)
11742 {
11743 struct remote_state *rs = context;
11744
11745 /* Don't propogate error information up to the client. Instead let
11746 the client find out about the error by querying the target. */
11747 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11748 }
11749
11750 static void
11751 remote_async_inferior_event_handler (gdb_client_data data)
11752 {
11753 inferior_event_handler (INF_REG_EVENT, NULL);
11754 }
11755
11756 static void
11757 remote_async (void (*callback) (enum inferior_event_type event_type,
11758 void *context), void *context)
11759 {
11760 struct remote_state *rs = get_remote_state ();
11761
11762 if (callback != NULL)
11763 {
11764 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11765 rs->async_client_callback = callback;
11766 rs->async_client_context = context;
11767 }
11768 else
11769 serial_async (rs->remote_desc, NULL, NULL);
11770 }
11771
11772 static void
11773 set_remote_cmd (char *args, int from_tty)
11774 {
11775 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11776 }
11777
11778 static void
11779 show_remote_cmd (char *args, int from_tty)
11780 {
11781 /* We can't just use cmd_show_list here, because we want to skip
11782 the redundant "show remote Z-packet" and the legacy aliases. */
11783 struct cleanup *showlist_chain;
11784 struct cmd_list_element *list = remote_show_cmdlist;
11785 struct ui_out *uiout = current_uiout;
11786
11787 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11788 for (; list != NULL; list = list->next)
11789 if (strcmp (list->name, "Z-packet") == 0)
11790 continue;
11791 else if (list->type == not_set_cmd)
11792 /* Alias commands are exactly like the original, except they
11793 don't have the normal type. */
11794 continue;
11795 else
11796 {
11797 struct cleanup *option_chain
11798 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11799
11800 ui_out_field_string (uiout, "name", list->name);
11801 ui_out_text (uiout, ": ");
11802 if (list->type == show_cmd)
11803 do_show_command ((char *) NULL, from_tty, list);
11804 else
11805 cmd_func (list, NULL, from_tty);
11806 /* Close the tuple. */
11807 do_cleanups (option_chain);
11808 }
11809
11810 /* Close the tuple. */
11811 do_cleanups (showlist_chain);
11812 }
11813
11814
11815 /* Function to be called whenever a new objfile (shlib) is detected. */
11816 static void
11817 remote_new_objfile (struct objfile *objfile)
11818 {
11819 struct remote_state *rs = get_remote_state ();
11820
11821 if (rs->remote_desc != 0) /* Have a remote connection. */
11822 remote_check_symbols ();
11823 }
11824
11825 /* Pull all the tracepoints defined on the target and create local
11826 data structures representing them. We don't want to create real
11827 tracepoints yet, we don't want to mess up the user's existing
11828 collection. */
11829
11830 static int
11831 remote_upload_tracepoints (struct uploaded_tp **utpp)
11832 {
11833 struct remote_state *rs = get_remote_state ();
11834 char *p;
11835
11836 /* Ask for a first packet of tracepoint definition. */
11837 putpkt ("qTfP");
11838 getpkt (&rs->buf, &rs->buf_size, 0);
11839 p = rs->buf;
11840 while (*p && *p != 'l')
11841 {
11842 parse_tracepoint_definition (p, utpp);
11843 /* Ask for another packet of tracepoint definition. */
11844 putpkt ("qTsP");
11845 getpkt (&rs->buf, &rs->buf_size, 0);
11846 p = rs->buf;
11847 }
11848 return 0;
11849 }
11850
11851 static int
11852 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11853 {
11854 struct remote_state *rs = get_remote_state ();
11855 char *p;
11856
11857 /* Ask for a first packet of variable definition. */
11858 putpkt ("qTfV");
11859 getpkt (&rs->buf, &rs->buf_size, 0);
11860 p = rs->buf;
11861 while (*p && *p != 'l')
11862 {
11863 parse_tsv_definition (p, utsvp);
11864 /* Ask for another packet of variable definition. */
11865 putpkt ("qTsV");
11866 getpkt (&rs->buf, &rs->buf_size, 0);
11867 p = rs->buf;
11868 }
11869 return 0;
11870 }
11871
11872 /* The "set/show range-stepping" show hook. */
11873
11874 static void
11875 show_range_stepping (struct ui_file *file, int from_tty,
11876 struct cmd_list_element *c,
11877 const char *value)
11878 {
11879 fprintf_filtered (file,
11880 _("Debugger's willingness to use range stepping "
11881 "is %s.\n"), value);
11882 }
11883
11884 /* The "set/show range-stepping" set hook. */
11885
11886 static void
11887 set_range_stepping (char *ignore_args, int from_tty,
11888 struct cmd_list_element *c)
11889 {
11890 struct remote_state *rs = get_remote_state ();
11891
11892 /* Whene enabling, check whether range stepping is actually
11893 supported by the target, and warn if not. */
11894 if (use_range_stepping)
11895 {
11896 if (rs->remote_desc != NULL)
11897 {
11898 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11899 remote_vcont_probe (rs);
11900
11901 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11902 && rs->supports_vCont.r)
11903 return;
11904 }
11905
11906 warning (_("Range stepping is not supported by the current target"));
11907 }
11908 }
11909
11910 void
11911 _initialize_remote (void)
11912 {
11913 struct remote_state *rs;
11914 struct cmd_list_element *cmd;
11915 const char *cmd_name;
11916
11917 /* architecture specific data */
11918 remote_gdbarch_data_handle =
11919 gdbarch_data_register_post_init (init_remote_state);
11920 remote_g_packet_data_handle =
11921 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11922
11923 /* Initialize the per-target state. At the moment there is only one
11924 of these, not one per target. Only one target is active at a
11925 time. */
11926 remote_state = new_remote_state ();
11927
11928 init_remote_ops ();
11929 add_target (&remote_ops);
11930
11931 init_extended_remote_ops ();
11932 add_target (&extended_remote_ops);
11933
11934 /* Hook into new objfile notification. */
11935 observer_attach_new_objfile (remote_new_objfile);
11936 /* We're no longer interested in notification events of an inferior
11937 when it exits. */
11938 observer_attach_inferior_exit (discard_pending_stop_replies);
11939
11940 /* Set up signal handlers. */
11941 async_sigint_remote_token =
11942 create_async_signal_handler (async_remote_interrupt, NULL);
11943 async_sigint_remote_twice_token =
11944 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11945
11946 #if 0
11947 init_remote_threadtests ();
11948 #endif
11949
11950 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11951 /* set/show remote ... */
11952
11953 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11954 Remote protocol specific variables\n\
11955 Configure various remote-protocol specific variables such as\n\
11956 the packets being used"),
11957 &remote_set_cmdlist, "set remote ",
11958 0 /* allow-unknown */, &setlist);
11959 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11960 Remote protocol specific variables\n\
11961 Configure various remote-protocol specific variables such as\n\
11962 the packets being used"),
11963 &remote_show_cmdlist, "show remote ",
11964 0 /* allow-unknown */, &showlist);
11965
11966 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11967 Compare section data on target to the exec file.\n\
11968 Argument is a single section name (default: all loaded sections)."),
11969 &cmdlist);
11970
11971 add_cmd ("packet", class_maintenance, packet_command, _("\
11972 Send an arbitrary packet to a remote target.\n\
11973 maintenance packet TEXT\n\
11974 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11975 this command sends the string TEXT to the inferior, and displays the\n\
11976 response packet. GDB supplies the initial `$' character, and the\n\
11977 terminating `#' character and checksum."),
11978 &maintenancelist);
11979
11980 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11981 Set whether to send break if interrupted."), _("\
11982 Show whether to send break if interrupted."), _("\
11983 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11984 set_remotebreak, show_remotebreak,
11985 &setlist, &showlist);
11986 cmd_name = "remotebreak";
11987 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11988 deprecate_cmd (cmd, "set remote interrupt-sequence");
11989 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11990 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11991 deprecate_cmd (cmd, "show remote interrupt-sequence");
11992
11993 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11994 interrupt_sequence_modes, &interrupt_sequence_mode,
11995 _("\
11996 Set interrupt sequence to remote target."), _("\
11997 Show interrupt sequence to remote target."), _("\
11998 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11999 NULL, show_interrupt_sequence,
12000 &remote_set_cmdlist,
12001 &remote_show_cmdlist);
12002
12003 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
12004 &interrupt_on_connect, _("\
12005 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
12006 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
12007 If set, interrupt sequence is sent to remote target."),
12008 NULL, NULL,
12009 &remote_set_cmdlist, &remote_show_cmdlist);
12010
12011 /* Install commands for configuring memory read/write packets. */
12012
12013 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
12014 Set the maximum number of bytes per memory write packet (deprecated)."),
12015 &setlist);
12016 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
12017 Show the maximum number of bytes per memory write packet (deprecated)."),
12018 &showlist);
12019 add_cmd ("memory-write-packet-size", no_class,
12020 set_memory_write_packet_size, _("\
12021 Set the maximum number of bytes per memory-write packet.\n\
12022 Specify the number of bytes in a packet or 0 (zero) for the\n\
12023 default packet size. The actual limit is further reduced\n\
12024 dependent on the target. Specify ``fixed'' to disable the\n\
12025 further restriction and ``limit'' to enable that restriction."),
12026 &remote_set_cmdlist);
12027 add_cmd ("memory-read-packet-size", no_class,
12028 set_memory_read_packet_size, _("\
12029 Set the maximum number of bytes per memory-read packet.\n\
12030 Specify the number of bytes in a packet or 0 (zero) for the\n\
12031 default packet size. The actual limit is further reduced\n\
12032 dependent on the target. Specify ``fixed'' to disable the\n\
12033 further restriction and ``limit'' to enable that restriction."),
12034 &remote_set_cmdlist);
12035 add_cmd ("memory-write-packet-size", no_class,
12036 show_memory_write_packet_size,
12037 _("Show the maximum number of bytes per memory-write packet."),
12038 &remote_show_cmdlist);
12039 add_cmd ("memory-read-packet-size", no_class,
12040 show_memory_read_packet_size,
12041 _("Show the maximum number of bytes per memory-read packet."),
12042 &remote_show_cmdlist);
12043
12044 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
12045 &remote_hw_watchpoint_limit, _("\
12046 Set the maximum number of target hardware watchpoints."), _("\
12047 Show the maximum number of target hardware watchpoints."), _("\
12048 Specify a negative limit for unlimited."),
12049 NULL, NULL, /* FIXME: i18n: The maximum
12050 number of target hardware
12051 watchpoints is %s. */
12052 &remote_set_cmdlist, &remote_show_cmdlist);
12053 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
12054 &remote_hw_watchpoint_length_limit, _("\
12055 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
12056 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
12057 Specify a negative limit for unlimited."),
12058 NULL, NULL, /* FIXME: i18n: The maximum
12059 length (in bytes) of a target
12060 hardware watchpoint is %s. */
12061 &remote_set_cmdlist, &remote_show_cmdlist);
12062 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
12063 &remote_hw_breakpoint_limit, _("\
12064 Set the maximum number of target hardware breakpoints."), _("\
12065 Show the maximum number of target hardware breakpoints."), _("\
12066 Specify a negative limit for unlimited."),
12067 NULL, NULL, /* FIXME: i18n: The maximum
12068 number of target hardware
12069 breakpoints is %s. */
12070 &remote_set_cmdlist, &remote_show_cmdlist);
12071
12072 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
12073 &remote_address_size, _("\
12074 Set the maximum size of the address (in bits) in a memory packet."), _("\
12075 Show the maximum size of the address (in bits) in a memory packet."), NULL,
12076 NULL,
12077 NULL, /* FIXME: i18n: */
12078 &setlist, &showlist);
12079
12080 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
12081 "X", "binary-download", 1);
12082
12083 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
12084 "vCont", "verbose-resume", 0);
12085
12086 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
12087 "QPassSignals", "pass-signals", 0);
12088
12089 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
12090 "QProgramSignals", "program-signals", 0);
12091
12092 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
12093 "qSymbol", "symbol-lookup", 0);
12094
12095 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12096 "P", "set-register", 1);
12097
12098 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12099 "p", "fetch-register", 1);
12100
12101 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12102 "Z0", "software-breakpoint", 0);
12103
12104 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12105 "Z1", "hardware-breakpoint", 0);
12106
12107 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12108 "Z2", "write-watchpoint", 0);
12109
12110 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12111 "Z3", "read-watchpoint", 0);
12112
12113 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12114 "Z4", "access-watchpoint", 0);
12115
12116 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12117 "qXfer:auxv:read", "read-aux-vector", 0);
12118
12119 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12120 "qXfer:features:read", "target-features", 0);
12121
12122 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12123 "qXfer:libraries:read", "library-info", 0);
12124
12125 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12126 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12127
12128 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12129 "qXfer:memory-map:read", "memory-map", 0);
12130
12131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12132 "qXfer:spu:read", "read-spu-object", 0);
12133
12134 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12135 "qXfer:spu:write", "write-spu-object", 0);
12136
12137 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12138 "qXfer:osdata:read", "osdata", 0);
12139
12140 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12141 "qXfer:threads:read", "threads", 0);
12142
12143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12144 "qXfer:siginfo:read", "read-siginfo-object", 0);
12145
12146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12147 "qXfer:siginfo:write", "write-siginfo-object", 0);
12148
12149 add_packet_config_cmd
12150 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12151 "qXfer:traceframe-info:read", "traceframe-info", 0);
12152
12153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12154 "qXfer:uib:read", "unwind-info-block", 0);
12155
12156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12157 "qGetTLSAddr", "get-thread-local-storage-address",
12158 0);
12159
12160 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12161 "qGetTIBAddr", "get-thread-information-block-address",
12162 0);
12163
12164 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12165 "bc", "reverse-continue", 0);
12166
12167 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12168 "bs", "reverse-step", 0);
12169
12170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12171 "qSupported", "supported-packets", 0);
12172
12173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12174 "qSearch:memory", "search-memory", 0);
12175
12176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12177 "qTStatus", "trace-status", 0);
12178
12179 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12180 "vFile:open", "hostio-open", 0);
12181
12182 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12183 "vFile:pread", "hostio-pread", 0);
12184
12185 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12186 "vFile:pwrite", "hostio-pwrite", 0);
12187
12188 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12189 "vFile:close", "hostio-close", 0);
12190
12191 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12192 "vFile:unlink", "hostio-unlink", 0);
12193
12194 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12195 "vFile:readlink", "hostio-readlink", 0);
12196
12197 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12198 "vAttach", "attach", 0);
12199
12200 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12201 "vRun", "run", 0);
12202
12203 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12204 "QStartNoAckMode", "noack", 0);
12205
12206 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12207 "vKill", "kill", 0);
12208
12209 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12210 "qAttached", "query-attached", 0);
12211
12212 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12213 "ConditionalTracepoints",
12214 "conditional-tracepoints", 0);
12215
12216 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12217 "ConditionalBreakpoints",
12218 "conditional-breakpoints", 0);
12219
12220 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12221 "BreakpointCommands",
12222 "breakpoint-commands", 0);
12223
12224 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12225 "FastTracepoints", "fast-tracepoints", 0);
12226
12227 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12228 "TracepointSource", "TracepointSource", 0);
12229
12230 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12231 "QAllow", "allow", 0);
12232
12233 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12234 "StaticTracepoints", "static-tracepoints", 0);
12235
12236 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12237 "InstallInTrace", "install-in-trace", 0);
12238
12239 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12240 "qXfer:statictrace:read", "read-sdata-object", 0);
12241
12242 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12243 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12244
12245 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12246 "QDisableRandomization", "disable-randomization", 0);
12247
12248 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12249 "QAgent", "agent", 0);
12250
12251 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12252 "QTBuffer:size", "trace-buffer-size", 0);
12253
12254 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12255 "Qbtrace:off", "disable-btrace", 0);
12256
12257 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12258 "Qbtrace:bts", "enable-btrace", 0);
12259
12260 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12261 "qXfer:btrace", "read-btrace", 0);
12262
12263 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12264 Z sub-packet has its own set and show commands, but users may
12265 have sets to this variable in their .gdbinit files (or in their
12266 documentation). */
12267 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12268 &remote_Z_packet_detect, _("\
12269 Set use of remote protocol `Z' packets"), _("\
12270 Show use of remote protocol `Z' packets "), _("\
12271 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12272 packets."),
12273 set_remote_protocol_Z_packet_cmd,
12274 show_remote_protocol_Z_packet_cmd,
12275 /* FIXME: i18n: Use of remote protocol
12276 `Z' packets is %s. */
12277 &remote_set_cmdlist, &remote_show_cmdlist);
12278
12279 add_prefix_cmd ("remote", class_files, remote_command, _("\
12280 Manipulate files on the remote system\n\
12281 Transfer files to and from the remote target system."),
12282 &remote_cmdlist, "remote ",
12283 0 /* allow-unknown */, &cmdlist);
12284
12285 add_cmd ("put", class_files, remote_put_command,
12286 _("Copy a local file to the remote system."),
12287 &remote_cmdlist);
12288
12289 add_cmd ("get", class_files, remote_get_command,
12290 _("Copy a remote file to the local system."),
12291 &remote_cmdlist);
12292
12293 add_cmd ("delete", class_files, remote_delete_command,
12294 _("Delete a remote file."),
12295 &remote_cmdlist);
12296
12297 remote_exec_file = xstrdup ("");
12298 add_setshow_string_noescape_cmd ("exec-file", class_files,
12299 &remote_exec_file, _("\
12300 Set the remote pathname for \"run\""), _("\
12301 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12302 &remote_set_cmdlist, &remote_show_cmdlist);
12303
12304 add_setshow_boolean_cmd ("range-stepping", class_run,
12305 &use_range_stepping, _("\
12306 Enable or disable range stepping."), _("\
12307 Show whether target-assisted range stepping is enabled."), _("\
12308 If on, and the target supports it, when stepping a source line, GDB\n\
12309 tells the target to step the corresponding range of addresses itself instead\n\
12310 of issuing multiple single-steps. This speeds up source level\n\
12311 stepping. If off, GDB always issues single-steps, even if range\n\
12312 stepping is supported by the target. The default is on."),
12313 set_range_stepping,
12314 show_range_stepping,
12315 &setlist,
12316 &showlist);
12317
12318 /* Eventually initialize fileio. See fileio.c */
12319 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12320
12321 /* Take advantage of the fact that the LWP field is not used, to tag
12322 special ptids with it set to != 0. */
12323 magic_null_ptid = ptid_build (42000, 1, -1);
12324 not_sent_ptid = ptid_build (42000, 1, -2);
12325 any_thread_ptid = ptid_build (42000, 1, 0);
12326
12327 target_buf_size = 2048;
12328 target_buf = xmalloc (target_buf_size);
12329 }
12330
This page took 0.331924 seconds and 4 git commands to generate.