fbf23b8a4378b8e5c3eac3f0239574fffceed70f
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 static const target_info remote_target_info = {
88 "remote",
89 N_("Remote serial target in gdb-specific protocol"),
90 remote_doc
91 };
92
93 class remote_target : public target_ops
94 {
95 public:
96 remote_target ()
97 {
98 to_stratum = process_stratum;
99 }
100
101 const target_info &info () const override
102 { return remote_target_info; }
103
104 thread_control_capabilities get_thread_control_capabilities () override
105 { return tc_schedlock; }
106
107 /* Open a remote connection. */
108 static void open (const char *, int);
109
110 void close () override;
111
112 void detach (inferior *, int) override;
113 void disconnect (const char *, int) override;
114
115 void commit_resume () override;
116 void resume (ptid_t, int, enum gdb_signal) override;
117 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
118
119 void fetch_registers (struct regcache *, int) override;
120 void store_registers (struct regcache *, int) override;
121 void prepare_to_store (struct regcache *) override;
122
123 void files_info () override;
124
125 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
126
127 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
128 enum remove_bp_reason) override;
129
130
131 bool stopped_by_sw_breakpoint () override;
132 bool supports_stopped_by_sw_breakpoint () override;
133
134 bool stopped_by_hw_breakpoint () override;
135
136 bool supports_stopped_by_hw_breakpoint () override;
137
138 bool stopped_by_watchpoint () override;
139
140 bool stopped_data_address (CORE_ADDR *) override;
141
142 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
143
144 int can_use_hw_breakpoint (enum bptype, int, int) override;
145
146 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
147
148 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
149
150 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
151
152 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
153 struct expression *) override;
154
155 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
156 struct expression *) override;
157
158 void kill () override;
159
160 void load (const char *, int) override;
161
162 void mourn_inferior () override;
163
164 void pass_signals (int, unsigned char *) override;
165
166 int set_syscall_catchpoint (int, bool, int,
167 gdb::array_view<const int>) override;
168
169 void program_signals (int, unsigned char *) override;
170
171 bool thread_alive (ptid_t ptid) override;
172
173 const char *thread_name (struct thread_info *) override;
174
175 void update_thread_list () override;
176
177 const char *pid_to_str (ptid_t) override;
178
179 const char *extra_thread_info (struct thread_info *) override;
180
181 ptid_t get_ada_task_ptid (long lwp, long thread) override;
182
183 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
184 int handle_len,
185 inferior *inf) override;
186
187 void stop (ptid_t) override;
188
189 void interrupt () override;
190
191 void pass_ctrlc () override;
192
193 enum target_xfer_status xfer_partial (enum target_object object,
194 const char *annex,
195 gdb_byte *readbuf,
196 const gdb_byte *writebuf,
197 ULONGEST offset, ULONGEST len,
198 ULONGEST *xfered_len) override;
199
200 ULONGEST get_memory_xfer_limit () override;
201
202 void rcmd (const char *command, struct ui_file *output) override;
203
204 char *pid_to_exec_file (int pid) override;
205
206 void log_command (const char *cmd) override
207 {
208 serial_log_command (this, cmd);
209 }
210
211 CORE_ADDR get_thread_local_address (ptid_t ptid,
212 CORE_ADDR load_module_addr,
213 CORE_ADDR offset) override;
214
215 bool has_all_memory () override { return default_child_has_all_memory (); }
216 bool has_memory () override { return default_child_has_memory (); }
217 bool has_stack () override { return default_child_has_stack (); }
218 bool has_registers () override { return default_child_has_registers (); }
219 bool has_execution (ptid_t ptid) override { return default_child_has_execution (ptid); }
220
221 bool can_execute_reverse () override;
222
223 std::vector<mem_region> memory_map () override;
224
225 void flash_erase (ULONGEST address, LONGEST length) override;
226
227 void flash_done () override;
228
229 const struct target_desc *read_description () override;
230
231 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
232 const gdb_byte *pattern, ULONGEST pattern_len,
233 CORE_ADDR *found_addrp) override;
234
235 bool can_async_p () override;
236
237 bool is_async_p () override;
238
239 void async (int) override;
240
241 void thread_events (int) override;
242
243 int can_do_single_step () override;
244
245 void terminal_inferior () override;
246
247 void terminal_ours () override;
248
249 bool supports_non_stop () override;
250
251 bool supports_multi_process () override;
252
253 bool supports_disable_randomization () override;
254
255 bool filesystem_is_local () override;
256
257
258 int fileio_open (struct inferior *inf, const char *filename,
259 int flags, int mode, int warn_if_slow,
260 int *target_errno) override;
261
262 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
263 ULONGEST offset, int *target_errno) override;
264
265 int fileio_pread (int fd, gdb_byte *read_buf, int len,
266 ULONGEST offset, int *target_errno) override;
267
268 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
269
270 int fileio_close (int fd, int *target_errno) override;
271
272 int fileio_unlink (struct inferior *inf,
273 const char *filename,
274 int *target_errno) override;
275
276 gdb::optional<std::string>
277 fileio_readlink (struct inferior *inf,
278 const char *filename,
279 int *target_errno) override;
280
281 bool supports_enable_disable_tracepoint () override;
282
283 bool supports_string_tracing () override;
284
285 bool supports_evaluation_of_breakpoint_conditions () override;
286
287 bool can_run_breakpoint_commands () override;
288
289 void trace_init () override;
290
291 void download_tracepoint (struct bp_location *location) override;
292
293 bool can_download_tracepoint () override;
294
295 void download_trace_state_variable (const trace_state_variable &tsv) override;
296
297 void enable_tracepoint (struct bp_location *location) override;
298
299 void disable_tracepoint (struct bp_location *location) override;
300
301 void trace_set_readonly_regions () override;
302
303 void trace_start () override;
304
305 int get_trace_status (struct trace_status *ts) override;
306
307 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
308 override;
309
310 void trace_stop () override;
311
312 int trace_find (enum trace_find_type type, int num,
313 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
314
315 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
316
317 int save_trace_data (const char *filename) override;
318
319 int upload_tracepoints (struct uploaded_tp **utpp) override;
320
321 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
322
323 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
324
325 int get_min_fast_tracepoint_insn_len () override;
326
327 void set_disconnected_tracing (int val) override;
328
329 void set_circular_trace_buffer (int val) override;
330
331 void set_trace_buffer_size (LONGEST val) override;
332
333 bool set_trace_notes (const char *user, const char *notes,
334 const char *stopnotes) override;
335
336 int core_of_thread (ptid_t ptid) override;
337
338 int verify_memory (const gdb_byte *data,
339 CORE_ADDR memaddr, ULONGEST size) override;
340
341
342 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
343
344 void set_permissions () override;
345
346 bool static_tracepoint_marker_at (CORE_ADDR,
347 struct static_tracepoint_marker *marker)
348 override;
349
350 std::vector<static_tracepoint_marker>
351 static_tracepoint_markers_by_strid (const char *id) override;
352
353 traceframe_info_up traceframe_info () override;
354
355 bool use_agent (bool use) override;
356 bool can_use_agent () override;
357
358 struct btrace_target_info *enable_btrace (ptid_t ptid,
359 const struct btrace_config *conf) override;
360
361 void disable_btrace (struct btrace_target_info *tinfo) override;
362
363 void teardown_btrace (struct btrace_target_info *tinfo) override;
364
365 enum btrace_error read_btrace (struct btrace_data *data,
366 struct btrace_target_info *btinfo,
367 enum btrace_read_type type) override;
368
369 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
370 bool augmented_libraries_svr4_read () override;
371 int follow_fork (int, int) override;
372 void follow_exec (struct inferior *, char *) override;
373 int insert_fork_catchpoint (int) override;
374 int remove_fork_catchpoint (int) override;
375 int insert_vfork_catchpoint (int) override;
376 int remove_vfork_catchpoint (int) override;
377 int insert_exec_catchpoint (int) override;
378 int remove_exec_catchpoint (int) override;
379 enum exec_direction_kind execution_direction () override;
380
381 protected:
382 static void open_1 (const char *name, int from_tty, int extended_p);
383 void start_remote (int from_tty, int extended_p);
384 };
385
386 static const target_info extended_remote_target_info = {
387 "extended-remote",
388 N_("Extended remote serial target in gdb-specific protocol"),
389 remote_doc
390 };
391
392 /* Set up the extended remote target by extending the standard remote
393 target and adding to it. */
394
395 class extended_remote_target final : public remote_target
396 {
397 public:
398 const target_info &info () const override
399 { return extended_remote_target_info; }
400
401 /* Open an extended-remote connection. */
402 static void open (const char *, int);
403
404 bool can_create_inferior () override { return true; }
405 void create_inferior (const char *, const std::string &,
406 char **, int) override;
407
408 void detach (inferior *, int) override;
409
410 bool can_attach () override { return true; }
411 void attach (const char *, int) override;
412
413 void post_attach (int) override;
414 bool supports_disable_randomization () override;
415 };
416
417 /* Per-program-space data key. */
418 static const struct program_space_data *remote_pspace_data;
419
420 /* The variable registered as the control variable used by the
421 remote exec-file commands. While the remote exec-file setting is
422 per-program-space, the set/show machinery uses this as the
423 location of the remote exec-file value. */
424 static char *remote_exec_file_var;
425
426 /* The size to align memory write packets, when practical. The protocol
427 does not guarantee any alignment, and gdb will generate short
428 writes and unaligned writes, but even as a best-effort attempt this
429 can improve bulk transfers. For instance, if a write is misaligned
430 relative to the target's data bus, the stub may need to make an extra
431 round trip fetching data from the target. This doesn't make a
432 huge difference, but it's easy to do, so we try to be helpful.
433
434 The alignment chosen is arbitrary; usually data bus width is
435 important here, not the possibly larger cache line size. */
436 enum { REMOTE_ALIGN_WRITES = 16 };
437
438 /* Prototypes for local functions. */
439 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
440 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
441 int forever, int *is_notif);
442
443 struct remote_state;
444
445 static int remote_vkill (int pid, struct remote_state *rs);
446
447 static void remote_kill_k (void);
448
449 static int readchar (int timeout);
450
451 static void remote_serial_write (const char *str, int len);
452
453 static void interrupt_query (void);
454
455 static void set_general_thread (ptid_t ptid);
456 static void set_continue_thread (ptid_t ptid);
457
458 static void get_offsets (void);
459
460 static void skip_frame (void);
461
462 static long read_frame (char **buf_p, long *sizeof_buf);
463
464 static int hexnumlen (ULONGEST num);
465
466 static int stubhex (int ch);
467
468 static int hexnumstr (char *, ULONGEST);
469
470 static int hexnumnstr (char *, ULONGEST, int);
471
472 static CORE_ADDR remote_address_masked (CORE_ADDR);
473
474 static void print_packet (const char *);
475
476 static int stub_unpack_int (char *buff, int fieldlength);
477
478 static ptid_t remote_current_thread (ptid_t oldptid);
479
480 static int putpkt_binary (const char *buf, int cnt);
481
482 static void check_binary_download (CORE_ADDR addr);
483
484 struct packet_config;
485
486 static void show_packet_config_cmd (struct packet_config *config);
487
488 static void show_remote_protocol_packet_cmd (struct ui_file *file,
489 int from_tty,
490 struct cmd_list_element *c,
491 const char *value);
492
493 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
494 static ptid_t read_ptid (const char *buf, const char **obuf);
495
496 static void remote_query_supported (void);
497
498 static void remote_check_symbols (void);
499
500 struct stop_reply;
501 static void stop_reply_xfree (struct stop_reply *);
502 static void remote_parse_stop_reply (char *, struct stop_reply *);
503 static void push_stop_reply (struct stop_reply *);
504 static void discard_pending_stop_replies_in_queue (struct remote_state *);
505 static int peek_stop_reply (ptid_t ptid);
506
507 struct threads_listing_context;
508 static void remove_new_fork_children (struct threads_listing_context *);
509
510 static void remote_async_inferior_event_handler (gdb_client_data);
511
512 static int remote_read_description_p (struct target_ops *target);
513
514 static void remote_console_output (char *msg);
515
516 static void remote_btrace_reset (void);
517
518 static void remote_btrace_maybe_reopen (void);
519
520 static int stop_reply_queue_length (void);
521
522 static void remote_unpush_and_throw (void);
523
524 static struct remote_state *get_remote_state (void);
525
526 /* For "remote". */
527
528 static struct cmd_list_element *remote_cmdlist;
529
530 /* For "set remote" and "show remote". */
531
532 static struct cmd_list_element *remote_set_cmdlist;
533 static struct cmd_list_element *remote_show_cmdlist;
534
535 /* Stub vCont actions support.
536
537 Each field is a boolean flag indicating whether the stub reports
538 support for the corresponding action. */
539
540 struct vCont_action_support
541 {
542 /* vCont;t */
543 bool t = false;
544
545 /* vCont;r */
546 bool r = false;
547
548 /* vCont;s */
549 bool s = false;
550
551 /* vCont;S */
552 bool S = false;
553 };
554
555 /* Controls whether GDB is willing to use range stepping. */
556
557 static int use_range_stepping = 1;
558
559 #define OPAQUETHREADBYTES 8
560
561 /* a 64 bit opaque identifier */
562 typedef unsigned char threadref[OPAQUETHREADBYTES];
563
564 /* About this many threadisds fit in a packet. */
565
566 #define MAXTHREADLISTRESULTS 32
567
568 /* The max number of chars in debug output. The rest of chars are
569 omitted. */
570
571 #define REMOTE_DEBUG_MAX_CHAR 512
572
573 /* Data for the vFile:pread readahead cache. */
574
575 struct readahead_cache
576 {
577 /* Invalidate the readahead cache. */
578 void invalidate ();
579
580 /* Invalidate the readahead cache if it is holding data for FD. */
581 void invalidate_fd (int fd);
582
583 /* Serve pread from the readahead cache. Returns number of bytes
584 read, or 0 if the request can't be served from the cache. */
585 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
586
587 /* The file descriptor for the file that is being cached. -1 if the
588 cache is invalid. */
589 int fd = -1;
590
591 /* The offset into the file that the cache buffer corresponds
592 to. */
593 ULONGEST offset = 0;
594
595 /* The buffer holding the cache contents. */
596 gdb_byte *buf = nullptr;
597 /* The buffer's size. We try to read as much as fits into a packet
598 at a time. */
599 size_t bufsize = 0;
600
601 /* Cache hit and miss counters. */
602 ULONGEST hit_count = 0;
603 ULONGEST miss_count = 0;
604 };
605
606 /* Description of the remote protocol for a given architecture. */
607
608 struct packet_reg
609 {
610 long offset; /* Offset into G packet. */
611 long regnum; /* GDB's internal register number. */
612 LONGEST pnum; /* Remote protocol register number. */
613 int in_g_packet; /* Always part of G packet. */
614 /* long size in bytes; == register_size (target_gdbarch (), regnum);
615 at present. */
616 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
617 at present. */
618 };
619
620 struct remote_arch_state
621 {
622 explicit remote_arch_state (struct gdbarch *gdbarch);
623
624 /* Description of the remote protocol registers. */
625 long sizeof_g_packet;
626
627 /* Description of the remote protocol registers indexed by REGNUM
628 (making an array gdbarch_num_regs in size). */
629 std::unique_ptr<packet_reg[]> regs;
630
631 /* This is the size (in chars) of the first response to the ``g''
632 packet. It is used as a heuristic when determining the maximum
633 size of memory-read and memory-write packets. A target will
634 typically only reserve a buffer large enough to hold the ``g''
635 packet. The size does not include packet overhead (headers and
636 trailers). */
637 long actual_register_packet_size;
638
639 /* This is the maximum size (in chars) of a non read/write packet.
640 It is also used as a cap on the size of read/write packets. */
641 long remote_packet_size;
642 };
643
644 /* Description of the remote protocol state for the currently
645 connected target. This is per-target state, and independent of the
646 selected architecture. */
647
648 class remote_state
649 {
650 public:
651
652 remote_state ();
653 ~remote_state ();
654
655 /* Get the remote arch state for GDBARCH. */
656 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
657
658 public: /* data */
659
660 /* A buffer to use for incoming packets, and its current size. The
661 buffer is grown dynamically for larger incoming packets.
662 Outgoing packets may also be constructed in this buffer.
663 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
664 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
665 packets. */
666 char *buf;
667 long buf_size;
668
669 /* True if we're going through initial connection setup (finding out
670 about the remote side's threads, relocating symbols, etc.). */
671 bool starting_up = false;
672
673 /* If we negotiated packet size explicitly (and thus can bypass
674 heuristics for the largest packet size that will not overflow
675 a buffer in the stub), this will be set to that packet size.
676 Otherwise zero, meaning to use the guessed size. */
677 long explicit_packet_size = 0;
678
679 /* remote_wait is normally called when the target is running and
680 waits for a stop reply packet. But sometimes we need to call it
681 when the target is already stopped. We can send a "?" packet
682 and have remote_wait read the response. Or, if we already have
683 the response, we can stash it in BUF and tell remote_wait to
684 skip calling getpkt. This flag is set when BUF contains a
685 stop reply packet and the target is not waiting. */
686 int cached_wait_status = 0;
687
688 /* True, if in no ack mode. That is, neither GDB nor the stub will
689 expect acks from each other. The connection is assumed to be
690 reliable. */
691 bool noack_mode = false;
692
693 /* True if we're connected in extended remote mode. */
694 bool extended = false;
695
696 /* True if we resumed the target and we're waiting for the target to
697 stop. In the mean time, we can't start another command/query.
698 The remote server wouldn't be ready to process it, so we'd
699 timeout waiting for a reply that would never come and eventually
700 we'd close the connection. This can happen in asynchronous mode
701 because we allow GDB commands while the target is running. */
702 bool waiting_for_stop_reply = false;
703
704 /* The status of the stub support for the various vCont actions. */
705 vCont_action_support supports_vCont;
706
707 /* True if the user has pressed Ctrl-C, but the target hasn't
708 responded to that. */
709 bool ctrlc_pending_p = false;
710
711 /* True if we saw a Ctrl-C while reading or writing from/to the
712 remote descriptor. At that point it is not safe to send a remote
713 interrupt packet, so we instead remember we saw the Ctrl-C and
714 process it once we're done with sending/receiving the current
715 packet, which should be shortly. If however that takes too long,
716 and the user presses Ctrl-C again, we offer to disconnect. */
717 bool got_ctrlc_during_io = false;
718
719 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
720 remote_open knows that we don't have a file open when the program
721 starts. */
722 struct serial *remote_desc = nullptr;
723
724 /* These are the threads which we last sent to the remote system. The
725 TID member will be -1 for all or -2 for not sent yet. */
726 ptid_t general_thread = null_ptid;
727 ptid_t continue_thread = null_ptid;
728
729 /* This is the traceframe which we last selected on the remote system.
730 It will be -1 if no traceframe is selected. */
731 int remote_traceframe_number = -1;
732
733 char *last_pass_packet = nullptr;
734
735 /* The last QProgramSignals packet sent to the target. We bypass
736 sending a new program signals list down to the target if the new
737 packet is exactly the same as the last we sent. IOW, we only let
738 the target know about program signals list changes. */
739 char *last_program_signals_packet = nullptr;
740
741 gdb_signal last_sent_signal = GDB_SIGNAL_0;
742
743 bool last_sent_step = false;
744
745 /* The execution direction of the last resume we got. */
746 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
747
748 char *finished_object = nullptr;
749 char *finished_annex = nullptr;
750 ULONGEST finished_offset = 0;
751
752 /* Should we try the 'ThreadInfo' query packet?
753
754 This variable (NOT available to the user: auto-detect only!)
755 determines whether GDB will use the new, simpler "ThreadInfo"
756 query or the older, more complex syntax for thread queries.
757 This is an auto-detect variable (set to true at each connect,
758 and set to false when the target fails to recognize it). */
759 bool use_threadinfo_query = false;
760 bool use_threadextra_query = false;
761
762 threadref echo_nextthread {};
763 threadref nextthread {};
764 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
765
766 /* The state of remote notification. */
767 struct remote_notif_state *notif_state = nullptr;
768
769 /* The branch trace configuration. */
770 struct btrace_config btrace_config {};
771
772 /* The argument to the last "vFile:setfs:" packet we sent, used
773 to avoid sending repeated unnecessary "vFile:setfs:" packets.
774 Initialized to -1 to indicate that no "vFile:setfs:" packet
775 has yet been sent. */
776 int fs_pid = -1;
777
778 /* A readahead cache for vFile:pread. Often, reading a binary
779 involves a sequence of small reads. E.g., when parsing an ELF
780 file. A readahead cache helps mostly the case of remote
781 debugging on a connection with higher latency, due to the
782 request/reply nature of the RSP. We only cache data for a single
783 file descriptor at a time. */
784 struct readahead_cache readahead_cache;
785
786 private:
787 /* Mapping of remote protocol data for each gdbarch. Usually there
788 is only one entry here, though we may see more with stubs that
789 support multi-process. */
790 std::unordered_map<struct gdbarch *, remote_arch_state>
791 m_arch_states;
792 };
793
794 /* Private data that we'll store in (struct thread_info)->priv. */
795 struct remote_thread_info : public private_thread_info
796 {
797 std::string extra;
798 std::string name;
799 int core = -1;
800
801 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
802 sequence of bytes. */
803 gdb::byte_vector thread_handle;
804
805 /* Whether the target stopped for a breakpoint/watchpoint. */
806 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
807
808 /* This is set to the data address of the access causing the target
809 to stop for a watchpoint. */
810 CORE_ADDR watch_data_address = 0;
811
812 /* Fields used by the vCont action coalescing implemented in
813 remote_resume / remote_commit_resume. remote_resume stores each
814 thread's last resume request in these fields, so that a later
815 remote_commit_resume knows which is the proper action for this
816 thread to include in the vCont packet. */
817
818 /* True if the last target_resume call for this thread was a step
819 request, false if a continue request. */
820 int last_resume_step = 0;
821
822 /* The signal specified in the last target_resume call for this
823 thread. */
824 gdb_signal last_resume_sig = GDB_SIGNAL_0;
825
826 /* Whether this thread was already vCont-resumed on the remote
827 side. */
828 int vcont_resumed = 0;
829 };
830
831 remote_state::remote_state ()
832 {
833 /* The default buffer size is unimportant; it will be expanded
834 whenever a larger buffer is needed. */
835 this->buf_size = 400;
836 this->buf = (char *) xmalloc (this->buf_size);
837 }
838
839 remote_state::~remote_state ()
840 {
841 xfree (this->last_pass_packet);
842 xfree (this->last_program_signals_packet);
843 xfree (this->buf);
844 xfree (this->finished_object);
845 xfree (this->finished_annex);
846 }
847
848 /* This data could be associated with a target, but we do not always
849 have access to the current target when we need it, so for now it is
850 static. This will be fine for as long as only one target is in use
851 at a time. */
852 static struct remote_state *remote_state;
853
854 static struct remote_state *
855 get_remote_state_raw (void)
856 {
857 return remote_state;
858 }
859
860 /* Utility: generate error from an incoming stub packet. */
861 static void
862 trace_error (char *buf)
863 {
864 if (*buf++ != 'E')
865 return; /* not an error msg */
866 switch (*buf)
867 {
868 case '1': /* malformed packet error */
869 if (*++buf == '0') /* general case: */
870 error (_("remote.c: error in outgoing packet."));
871 else
872 error (_("remote.c: error in outgoing packet at field #%ld."),
873 strtol (buf, NULL, 16));
874 default:
875 error (_("Target returns error code '%s'."), buf);
876 }
877 }
878
879 /* Utility: wait for reply from stub, while accepting "O" packets. */
880
881 static char *
882 remote_get_noisy_reply ()
883 {
884 struct remote_state *rs = get_remote_state ();
885
886 do /* Loop on reply from remote stub. */
887 {
888 char *buf;
889
890 QUIT; /* Allow user to bail out with ^C. */
891 getpkt (&rs->buf, &rs->buf_size, 0);
892 buf = rs->buf;
893 if (buf[0] == 'E')
894 trace_error (buf);
895 else if (startswith (buf, "qRelocInsn:"))
896 {
897 ULONGEST ul;
898 CORE_ADDR from, to, org_to;
899 const char *p, *pp;
900 int adjusted_size = 0;
901 int relocated = 0;
902
903 p = buf + strlen ("qRelocInsn:");
904 pp = unpack_varlen_hex (p, &ul);
905 if (*pp != ';')
906 error (_("invalid qRelocInsn packet: %s"), buf);
907 from = ul;
908
909 p = pp + 1;
910 unpack_varlen_hex (p, &ul);
911 to = ul;
912
913 org_to = to;
914
915 TRY
916 {
917 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
918 relocated = 1;
919 }
920 CATCH (ex, RETURN_MASK_ALL)
921 {
922 if (ex.error == MEMORY_ERROR)
923 {
924 /* Propagate memory errors silently back to the
925 target. The stub may have limited the range of
926 addresses we can write to, for example. */
927 }
928 else
929 {
930 /* Something unexpectedly bad happened. Be verbose
931 so we can tell what, and propagate the error back
932 to the stub, so it doesn't get stuck waiting for
933 a response. */
934 exception_fprintf (gdb_stderr, ex,
935 _("warning: relocating instruction: "));
936 }
937 putpkt ("E01");
938 }
939 END_CATCH
940
941 if (relocated)
942 {
943 adjusted_size = to - org_to;
944
945 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
946 putpkt (buf);
947 }
948 }
949 else if (buf[0] == 'O' && buf[1] != 'K')
950 remote_console_output (buf + 1); /* 'O' message from stub */
951 else
952 return buf; /* Here's the actual reply. */
953 }
954 while (1);
955 }
956
957 struct remote_arch_state *
958 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
959 {
960 remote_arch_state *rsa;
961
962 auto it = this->m_arch_states.find (gdbarch);
963 if (it == this->m_arch_states.end ())
964 {
965 auto p = this->m_arch_states.emplace (std::piecewise_construct,
966 std::forward_as_tuple (gdbarch),
967 std::forward_as_tuple (gdbarch));
968 rsa = &p.first->second;
969
970 /* Make sure that the packet buffer is plenty big enough for
971 this architecture. */
972 if (this->buf_size < rsa->remote_packet_size)
973 {
974 this->buf_size = 2 * rsa->remote_packet_size;
975 this->buf = (char *) xrealloc (this->buf, this->buf_size);
976 }
977 }
978 else
979 rsa = &it->second;
980
981 return rsa;
982 }
983
984 /* Fetch the global remote target state. */
985
986 static struct remote_state *
987 get_remote_state (void)
988 {
989 struct remote_state *rs = get_remote_state_raw ();
990
991 /* Make sure that the remote architecture state has been
992 initialized, because doing so might reallocate rs->buf. Any
993 function which calls getpkt also needs to be mindful of changes
994 to rs->buf, but this call limits the number of places which run
995 into trouble. */
996 rs->get_remote_arch_state (target_gdbarch ());
997
998 return rs;
999 }
1000
1001 /* Cleanup routine for the remote module's pspace data. */
1002
1003 static void
1004 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1005 {
1006 char *remote_exec_file = (char *) arg;
1007
1008 xfree (remote_exec_file);
1009 }
1010
1011 /* Fetch the remote exec-file from the current program space. */
1012
1013 static const char *
1014 get_remote_exec_file (void)
1015 {
1016 char *remote_exec_file;
1017
1018 remote_exec_file
1019 = (char *) program_space_data (current_program_space,
1020 remote_pspace_data);
1021 if (remote_exec_file == NULL)
1022 return "";
1023
1024 return remote_exec_file;
1025 }
1026
1027 /* Set the remote exec file for PSPACE. */
1028
1029 static void
1030 set_pspace_remote_exec_file (struct program_space *pspace,
1031 char *remote_exec_file)
1032 {
1033 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1034
1035 xfree (old_file);
1036 set_program_space_data (pspace, remote_pspace_data,
1037 xstrdup (remote_exec_file));
1038 }
1039
1040 /* The "set/show remote exec-file" set command hook. */
1041
1042 static void
1043 set_remote_exec_file (const char *ignored, int from_tty,
1044 struct cmd_list_element *c)
1045 {
1046 gdb_assert (remote_exec_file_var != NULL);
1047 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1048 }
1049
1050 /* The "set/show remote exec-file" show command hook. */
1051
1052 static void
1053 show_remote_exec_file (struct ui_file *file, int from_tty,
1054 struct cmd_list_element *cmd, const char *value)
1055 {
1056 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1057 }
1058
1059 static int
1060 compare_pnums (const void *lhs_, const void *rhs_)
1061 {
1062 const struct packet_reg * const *lhs
1063 = (const struct packet_reg * const *) lhs_;
1064 const struct packet_reg * const *rhs
1065 = (const struct packet_reg * const *) rhs_;
1066
1067 if ((*lhs)->pnum < (*rhs)->pnum)
1068 return -1;
1069 else if ((*lhs)->pnum == (*rhs)->pnum)
1070 return 0;
1071 else
1072 return 1;
1073 }
1074
1075 static int
1076 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1077 {
1078 int regnum, num_remote_regs, offset;
1079 struct packet_reg **remote_regs;
1080
1081 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1082 {
1083 struct packet_reg *r = &regs[regnum];
1084
1085 if (register_size (gdbarch, regnum) == 0)
1086 /* Do not try to fetch zero-sized (placeholder) registers. */
1087 r->pnum = -1;
1088 else
1089 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1090
1091 r->regnum = regnum;
1092 }
1093
1094 /* Define the g/G packet format as the contents of each register
1095 with a remote protocol number, in order of ascending protocol
1096 number. */
1097
1098 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1099 for (num_remote_regs = 0, regnum = 0;
1100 regnum < gdbarch_num_regs (gdbarch);
1101 regnum++)
1102 if (regs[regnum].pnum != -1)
1103 remote_regs[num_remote_regs++] = &regs[regnum];
1104
1105 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1106 compare_pnums);
1107
1108 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1109 {
1110 remote_regs[regnum]->in_g_packet = 1;
1111 remote_regs[regnum]->offset = offset;
1112 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1113 }
1114
1115 return offset;
1116 }
1117
1118 /* Given the architecture described by GDBARCH, return the remote
1119 protocol register's number and the register's offset in the g/G
1120 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1121 If the target does not have a mapping for REGNUM, return false,
1122 otherwise, return true. */
1123
1124 int
1125 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1126 int *pnum, int *poffset)
1127 {
1128 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1129
1130 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1131
1132 map_regcache_remote_table (gdbarch, regs.data ());
1133
1134 *pnum = regs[regnum].pnum;
1135 *poffset = regs[regnum].offset;
1136
1137 return *pnum != -1;
1138 }
1139
1140 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1141 {
1142 /* Use the architecture to build a regnum<->pnum table, which will be
1143 1:1 unless a feature set specifies otherwise. */
1144 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1145
1146 /* Record the maximum possible size of the g packet - it may turn out
1147 to be smaller. */
1148 this->sizeof_g_packet
1149 = map_regcache_remote_table (gdbarch, this->regs.get ());
1150
1151 /* Default maximum number of characters in a packet body. Many
1152 remote stubs have a hardwired buffer size of 400 bytes
1153 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1154 as the maximum packet-size to ensure that the packet and an extra
1155 NUL character can always fit in the buffer. This stops GDB
1156 trashing stubs that try to squeeze an extra NUL into what is
1157 already a full buffer (As of 1999-12-04 that was most stubs). */
1158 this->remote_packet_size = 400 - 1;
1159
1160 /* This one is filled in when a ``g'' packet is received. */
1161 this->actual_register_packet_size = 0;
1162
1163 /* Should rsa->sizeof_g_packet needs more space than the
1164 default, adjust the size accordingly. Remember that each byte is
1165 encoded as two characters. 32 is the overhead for the packet
1166 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1167 (``$NN:G...#NN'') is a better guess, the below has been padded a
1168 little. */
1169 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1170 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1171 }
1172
1173 /* Return the current allowed size of a remote packet. This is
1174 inferred from the current architecture, and should be used to
1175 limit the length of outgoing packets. */
1176 static long
1177 get_remote_packet_size (void)
1178 {
1179 struct remote_state *rs = get_remote_state ();
1180 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1181
1182 if (rs->explicit_packet_size)
1183 return rs->explicit_packet_size;
1184
1185 return rsa->remote_packet_size;
1186 }
1187
1188 static struct packet_reg *
1189 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1190 long regnum)
1191 {
1192 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1193 return NULL;
1194 else
1195 {
1196 struct packet_reg *r = &rsa->regs[regnum];
1197
1198 gdb_assert (r->regnum == regnum);
1199 return r;
1200 }
1201 }
1202
1203 static struct packet_reg *
1204 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1205 LONGEST pnum)
1206 {
1207 int i;
1208
1209 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1210 {
1211 struct packet_reg *r = &rsa->regs[i];
1212
1213 if (r->pnum == pnum)
1214 return r;
1215 }
1216 return NULL;
1217 }
1218
1219 static remote_target remote_ops;
1220
1221 static extended_remote_target extended_remote_ops;
1222
1223 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
1224 ``forever'' still use the normal timeout mechanism. This is
1225 currently used by the ASYNC code to guarentee that target reads
1226 during the initial connect always time-out. Once getpkt has been
1227 modified to return a timeout indication and, in turn
1228 remote_wait()/wait_for_inferior() have gained a timeout parameter
1229 this can go away. */
1230 static int wait_forever_enabled_p = 1;
1231
1232 /* Allow the user to specify what sequence to send to the remote
1233 when he requests a program interruption: Although ^C is usually
1234 what remote systems expect (this is the default, here), it is
1235 sometimes preferable to send a break. On other systems such
1236 as the Linux kernel, a break followed by g, which is Magic SysRq g
1237 is required in order to interrupt the execution. */
1238 const char interrupt_sequence_control_c[] = "Ctrl-C";
1239 const char interrupt_sequence_break[] = "BREAK";
1240 const char interrupt_sequence_break_g[] = "BREAK-g";
1241 static const char *const interrupt_sequence_modes[] =
1242 {
1243 interrupt_sequence_control_c,
1244 interrupt_sequence_break,
1245 interrupt_sequence_break_g,
1246 NULL
1247 };
1248 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1249
1250 static void
1251 show_interrupt_sequence (struct ui_file *file, int from_tty,
1252 struct cmd_list_element *c,
1253 const char *value)
1254 {
1255 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1256 fprintf_filtered (file,
1257 _("Send the ASCII ETX character (Ctrl-c) "
1258 "to the remote target to interrupt the "
1259 "execution of the program.\n"));
1260 else if (interrupt_sequence_mode == interrupt_sequence_break)
1261 fprintf_filtered (file,
1262 _("send a break signal to the remote target "
1263 "to interrupt the execution of the program.\n"));
1264 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1265 fprintf_filtered (file,
1266 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1267 "the remote target to interrupt the execution "
1268 "of Linux kernel.\n"));
1269 else
1270 internal_error (__FILE__, __LINE__,
1271 _("Invalid value for interrupt_sequence_mode: %s."),
1272 interrupt_sequence_mode);
1273 }
1274
1275 /* This boolean variable specifies whether interrupt_sequence is sent
1276 to the remote target when gdb connects to it.
1277 This is mostly needed when you debug the Linux kernel: The Linux kernel
1278 expects BREAK g which is Magic SysRq g for connecting gdb. */
1279 static int interrupt_on_connect = 0;
1280
1281 /* This variable is used to implement the "set/show remotebreak" commands.
1282 Since these commands are now deprecated in favor of "set/show remote
1283 interrupt-sequence", it no longer has any effect on the code. */
1284 static int remote_break;
1285
1286 static void
1287 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1288 {
1289 if (remote_break)
1290 interrupt_sequence_mode = interrupt_sequence_break;
1291 else
1292 interrupt_sequence_mode = interrupt_sequence_control_c;
1293 }
1294
1295 static void
1296 show_remotebreak (struct ui_file *file, int from_tty,
1297 struct cmd_list_element *c,
1298 const char *value)
1299 {
1300 }
1301
1302 /* This variable sets the number of bits in an address that are to be
1303 sent in a memory ("M" or "m") packet. Normally, after stripping
1304 leading zeros, the entire address would be sent. This variable
1305 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1306 initial implementation of remote.c restricted the address sent in
1307 memory packets to ``host::sizeof long'' bytes - (typically 32
1308 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1309 address was never sent. Since fixing this bug may cause a break in
1310 some remote targets this variable is principly provided to
1311 facilitate backward compatibility. */
1312
1313 static unsigned int remote_address_size;
1314
1315 \f
1316 /* User configurable variables for the number of characters in a
1317 memory read/write packet. MIN (rsa->remote_packet_size,
1318 rsa->sizeof_g_packet) is the default. Some targets need smaller
1319 values (fifo overruns, et.al.) and some users need larger values
1320 (speed up transfers). The variables ``preferred_*'' (the user
1321 request), ``current_*'' (what was actually set) and ``forced_*''
1322 (Positive - a soft limit, negative - a hard limit). */
1323
1324 struct memory_packet_config
1325 {
1326 const char *name;
1327 long size;
1328 int fixed_p;
1329 };
1330
1331 /* The default max memory-write-packet-size. The 16k is historical.
1332 (It came from older GDB's using alloca for buffers and the
1333 knowledge (folklore?) that some hosts don't cope very well with
1334 large alloca calls.) */
1335 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1336
1337 /* The minimum remote packet size for memory transfers. Ensures we
1338 can write at least one byte. */
1339 #define MIN_MEMORY_PACKET_SIZE 20
1340
1341 /* Compute the current size of a read/write packet. Since this makes
1342 use of ``actual_register_packet_size'' the computation is dynamic. */
1343
1344 static long
1345 get_memory_packet_size (struct memory_packet_config *config)
1346 {
1347 struct remote_state *rs = get_remote_state ();
1348 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1349
1350 long what_they_get;
1351 if (config->fixed_p)
1352 {
1353 if (config->size <= 0)
1354 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1355 else
1356 what_they_get = config->size;
1357 }
1358 else
1359 {
1360 what_they_get = get_remote_packet_size ();
1361 /* Limit the packet to the size specified by the user. */
1362 if (config->size > 0
1363 && what_they_get > config->size)
1364 what_they_get = config->size;
1365
1366 /* Limit it to the size of the targets ``g'' response unless we have
1367 permission from the stub to use a larger packet size. */
1368 if (rs->explicit_packet_size == 0
1369 && rsa->actual_register_packet_size > 0
1370 && what_they_get > rsa->actual_register_packet_size)
1371 what_they_get = rsa->actual_register_packet_size;
1372 }
1373 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1374 what_they_get = MIN_MEMORY_PACKET_SIZE;
1375
1376 /* Make sure there is room in the global buffer for this packet
1377 (including its trailing NUL byte). */
1378 if (rs->buf_size < what_they_get + 1)
1379 {
1380 rs->buf_size = 2 * what_they_get;
1381 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1382 }
1383
1384 return what_they_get;
1385 }
1386
1387 /* Update the size of a read/write packet. If they user wants
1388 something really big then do a sanity check. */
1389
1390 static void
1391 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1392 {
1393 int fixed_p = config->fixed_p;
1394 long size = config->size;
1395
1396 if (args == NULL)
1397 error (_("Argument required (integer, `fixed' or `limited')."));
1398 else if (strcmp (args, "hard") == 0
1399 || strcmp (args, "fixed") == 0)
1400 fixed_p = 1;
1401 else if (strcmp (args, "soft") == 0
1402 || strcmp (args, "limit") == 0)
1403 fixed_p = 0;
1404 else
1405 {
1406 char *end;
1407
1408 size = strtoul (args, &end, 0);
1409 if (args == end)
1410 error (_("Invalid %s (bad syntax)."), config->name);
1411
1412 /* Instead of explicitly capping the size of a packet to or
1413 disallowing it, the user is allowed to set the size to
1414 something arbitrarily large. */
1415 }
1416
1417 /* So that the query shows the correct value. */
1418 if (size <= 0)
1419 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1420
1421 /* Extra checks? */
1422 if (fixed_p && !config->fixed_p)
1423 {
1424 if (! query (_("The target may not be able to correctly handle a %s\n"
1425 "of %ld bytes. Change the packet size? "),
1426 config->name, size))
1427 error (_("Packet size not changed."));
1428 }
1429 /* Update the config. */
1430 config->fixed_p = fixed_p;
1431 config->size = size;
1432 }
1433
1434 static void
1435 show_memory_packet_size (struct memory_packet_config *config)
1436 {
1437 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1438 if (config->fixed_p)
1439 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1440 get_memory_packet_size (config));
1441 else
1442 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1443 get_memory_packet_size (config));
1444 }
1445
1446 static struct memory_packet_config memory_write_packet_config =
1447 {
1448 "memory-write-packet-size",
1449 };
1450
1451 static void
1452 set_memory_write_packet_size (const char *args, int from_tty)
1453 {
1454 set_memory_packet_size (args, &memory_write_packet_config);
1455 }
1456
1457 static void
1458 show_memory_write_packet_size (const char *args, int from_tty)
1459 {
1460 show_memory_packet_size (&memory_write_packet_config);
1461 }
1462
1463 static long
1464 get_memory_write_packet_size (void)
1465 {
1466 return get_memory_packet_size (&memory_write_packet_config);
1467 }
1468
1469 static struct memory_packet_config memory_read_packet_config =
1470 {
1471 "memory-read-packet-size",
1472 };
1473
1474 static void
1475 set_memory_read_packet_size (const char *args, int from_tty)
1476 {
1477 set_memory_packet_size (args, &memory_read_packet_config);
1478 }
1479
1480 static void
1481 show_memory_read_packet_size (const char *args, int from_tty)
1482 {
1483 show_memory_packet_size (&memory_read_packet_config);
1484 }
1485
1486 static long
1487 get_memory_read_packet_size (void)
1488 {
1489 long size = get_memory_packet_size (&memory_read_packet_config);
1490
1491 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1492 extra buffer size argument before the memory read size can be
1493 increased beyond this. */
1494 if (size > get_remote_packet_size ())
1495 size = get_remote_packet_size ();
1496 return size;
1497 }
1498
1499 \f
1500 /* Generic configuration support for packets the stub optionally
1501 supports. Allows the user to specify the use of the packet as well
1502 as allowing GDB to auto-detect support in the remote stub. */
1503
1504 enum packet_support
1505 {
1506 PACKET_SUPPORT_UNKNOWN = 0,
1507 PACKET_ENABLE,
1508 PACKET_DISABLE
1509 };
1510
1511 struct packet_config
1512 {
1513 const char *name;
1514 const char *title;
1515
1516 /* If auto, GDB auto-detects support for this packet or feature,
1517 either through qSupported, or by trying the packet and looking
1518 at the response. If true, GDB assumes the target supports this
1519 packet. If false, the packet is disabled. Configs that don't
1520 have an associated command always have this set to auto. */
1521 enum auto_boolean detect;
1522
1523 /* Does the target support this packet? */
1524 enum packet_support support;
1525 };
1526
1527 /* Analyze a packet's return value and update the packet config
1528 accordingly. */
1529
1530 enum packet_result
1531 {
1532 PACKET_ERROR,
1533 PACKET_OK,
1534 PACKET_UNKNOWN
1535 };
1536
1537 static enum packet_support packet_config_support (struct packet_config *config);
1538 static enum packet_support packet_support (int packet);
1539
1540 static void
1541 show_packet_config_cmd (struct packet_config *config)
1542 {
1543 const char *support = "internal-error";
1544
1545 switch (packet_config_support (config))
1546 {
1547 case PACKET_ENABLE:
1548 support = "enabled";
1549 break;
1550 case PACKET_DISABLE:
1551 support = "disabled";
1552 break;
1553 case PACKET_SUPPORT_UNKNOWN:
1554 support = "unknown";
1555 break;
1556 }
1557 switch (config->detect)
1558 {
1559 case AUTO_BOOLEAN_AUTO:
1560 printf_filtered (_("Support for the `%s' packet "
1561 "is auto-detected, currently %s.\n"),
1562 config->name, support);
1563 break;
1564 case AUTO_BOOLEAN_TRUE:
1565 case AUTO_BOOLEAN_FALSE:
1566 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1567 config->name, support);
1568 break;
1569 }
1570 }
1571
1572 static void
1573 add_packet_config_cmd (struct packet_config *config, const char *name,
1574 const char *title, int legacy)
1575 {
1576 char *set_doc;
1577 char *show_doc;
1578 char *cmd_name;
1579
1580 config->name = name;
1581 config->title = title;
1582 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1583 name, title);
1584 show_doc = xstrprintf ("Show current use of remote "
1585 "protocol `%s' (%s) packet",
1586 name, title);
1587 /* set/show TITLE-packet {auto,on,off} */
1588 cmd_name = xstrprintf ("%s-packet", title);
1589 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1590 &config->detect, set_doc,
1591 show_doc, NULL, /* help_doc */
1592 NULL,
1593 show_remote_protocol_packet_cmd,
1594 &remote_set_cmdlist, &remote_show_cmdlist);
1595 /* The command code copies the documentation strings. */
1596 xfree (set_doc);
1597 xfree (show_doc);
1598 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1599 if (legacy)
1600 {
1601 char *legacy_name;
1602
1603 legacy_name = xstrprintf ("%s-packet", name);
1604 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1605 &remote_set_cmdlist);
1606 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1607 &remote_show_cmdlist);
1608 }
1609 }
1610
1611 static enum packet_result
1612 packet_check_result (const char *buf)
1613 {
1614 if (buf[0] != '\0')
1615 {
1616 /* The stub recognized the packet request. Check that the
1617 operation succeeded. */
1618 if (buf[0] == 'E'
1619 && isxdigit (buf[1]) && isxdigit (buf[2])
1620 && buf[3] == '\0')
1621 /* "Enn" - definitly an error. */
1622 return PACKET_ERROR;
1623
1624 /* Always treat "E." as an error. This will be used for
1625 more verbose error messages, such as E.memtypes. */
1626 if (buf[0] == 'E' && buf[1] == '.')
1627 return PACKET_ERROR;
1628
1629 /* The packet may or may not be OK. Just assume it is. */
1630 return PACKET_OK;
1631 }
1632 else
1633 /* The stub does not support the packet. */
1634 return PACKET_UNKNOWN;
1635 }
1636
1637 static enum packet_result
1638 packet_ok (const char *buf, struct packet_config *config)
1639 {
1640 enum packet_result result;
1641
1642 if (config->detect != AUTO_BOOLEAN_TRUE
1643 && config->support == PACKET_DISABLE)
1644 internal_error (__FILE__, __LINE__,
1645 _("packet_ok: attempt to use a disabled packet"));
1646
1647 result = packet_check_result (buf);
1648 switch (result)
1649 {
1650 case PACKET_OK:
1651 case PACKET_ERROR:
1652 /* The stub recognized the packet request. */
1653 if (config->support == PACKET_SUPPORT_UNKNOWN)
1654 {
1655 if (remote_debug)
1656 fprintf_unfiltered (gdb_stdlog,
1657 "Packet %s (%s) is supported\n",
1658 config->name, config->title);
1659 config->support = PACKET_ENABLE;
1660 }
1661 break;
1662 case PACKET_UNKNOWN:
1663 /* The stub does not support the packet. */
1664 if (config->detect == AUTO_BOOLEAN_AUTO
1665 && config->support == PACKET_ENABLE)
1666 {
1667 /* If the stub previously indicated that the packet was
1668 supported then there is a protocol error. */
1669 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1670 config->name, config->title);
1671 }
1672 else if (config->detect == AUTO_BOOLEAN_TRUE)
1673 {
1674 /* The user set it wrong. */
1675 error (_("Enabled packet %s (%s) not recognized by stub"),
1676 config->name, config->title);
1677 }
1678
1679 if (remote_debug)
1680 fprintf_unfiltered (gdb_stdlog,
1681 "Packet %s (%s) is NOT supported\n",
1682 config->name, config->title);
1683 config->support = PACKET_DISABLE;
1684 break;
1685 }
1686
1687 return result;
1688 }
1689
1690 enum {
1691 PACKET_vCont = 0,
1692 PACKET_X,
1693 PACKET_qSymbol,
1694 PACKET_P,
1695 PACKET_p,
1696 PACKET_Z0,
1697 PACKET_Z1,
1698 PACKET_Z2,
1699 PACKET_Z3,
1700 PACKET_Z4,
1701 PACKET_vFile_setfs,
1702 PACKET_vFile_open,
1703 PACKET_vFile_pread,
1704 PACKET_vFile_pwrite,
1705 PACKET_vFile_close,
1706 PACKET_vFile_unlink,
1707 PACKET_vFile_readlink,
1708 PACKET_vFile_fstat,
1709 PACKET_qXfer_auxv,
1710 PACKET_qXfer_features,
1711 PACKET_qXfer_exec_file,
1712 PACKET_qXfer_libraries,
1713 PACKET_qXfer_libraries_svr4,
1714 PACKET_qXfer_memory_map,
1715 PACKET_qXfer_spu_read,
1716 PACKET_qXfer_spu_write,
1717 PACKET_qXfer_osdata,
1718 PACKET_qXfer_threads,
1719 PACKET_qXfer_statictrace_read,
1720 PACKET_qXfer_traceframe_info,
1721 PACKET_qXfer_uib,
1722 PACKET_qGetTIBAddr,
1723 PACKET_qGetTLSAddr,
1724 PACKET_qSupported,
1725 PACKET_qTStatus,
1726 PACKET_QPassSignals,
1727 PACKET_QCatchSyscalls,
1728 PACKET_QProgramSignals,
1729 PACKET_QSetWorkingDir,
1730 PACKET_QStartupWithShell,
1731 PACKET_QEnvironmentHexEncoded,
1732 PACKET_QEnvironmentReset,
1733 PACKET_QEnvironmentUnset,
1734 PACKET_qCRC,
1735 PACKET_qSearch_memory,
1736 PACKET_vAttach,
1737 PACKET_vRun,
1738 PACKET_QStartNoAckMode,
1739 PACKET_vKill,
1740 PACKET_qXfer_siginfo_read,
1741 PACKET_qXfer_siginfo_write,
1742 PACKET_qAttached,
1743
1744 /* Support for conditional tracepoints. */
1745 PACKET_ConditionalTracepoints,
1746
1747 /* Support for target-side breakpoint conditions. */
1748 PACKET_ConditionalBreakpoints,
1749
1750 /* Support for target-side breakpoint commands. */
1751 PACKET_BreakpointCommands,
1752
1753 /* Support for fast tracepoints. */
1754 PACKET_FastTracepoints,
1755
1756 /* Support for static tracepoints. */
1757 PACKET_StaticTracepoints,
1758
1759 /* Support for installing tracepoints while a trace experiment is
1760 running. */
1761 PACKET_InstallInTrace,
1762
1763 PACKET_bc,
1764 PACKET_bs,
1765 PACKET_TracepointSource,
1766 PACKET_QAllow,
1767 PACKET_qXfer_fdpic,
1768 PACKET_QDisableRandomization,
1769 PACKET_QAgent,
1770 PACKET_QTBuffer_size,
1771 PACKET_Qbtrace_off,
1772 PACKET_Qbtrace_bts,
1773 PACKET_Qbtrace_pt,
1774 PACKET_qXfer_btrace,
1775
1776 /* Support for the QNonStop packet. */
1777 PACKET_QNonStop,
1778
1779 /* Support for the QThreadEvents packet. */
1780 PACKET_QThreadEvents,
1781
1782 /* Support for multi-process extensions. */
1783 PACKET_multiprocess_feature,
1784
1785 /* Support for enabling and disabling tracepoints while a trace
1786 experiment is running. */
1787 PACKET_EnableDisableTracepoints_feature,
1788
1789 /* Support for collecting strings using the tracenz bytecode. */
1790 PACKET_tracenz_feature,
1791
1792 /* Support for continuing to run a trace experiment while GDB is
1793 disconnected. */
1794 PACKET_DisconnectedTracing_feature,
1795
1796 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1797 PACKET_augmented_libraries_svr4_read_feature,
1798
1799 /* Support for the qXfer:btrace-conf:read packet. */
1800 PACKET_qXfer_btrace_conf,
1801
1802 /* Support for the Qbtrace-conf:bts:size packet. */
1803 PACKET_Qbtrace_conf_bts_size,
1804
1805 /* Support for swbreak+ feature. */
1806 PACKET_swbreak_feature,
1807
1808 /* Support for hwbreak+ feature. */
1809 PACKET_hwbreak_feature,
1810
1811 /* Support for fork events. */
1812 PACKET_fork_event_feature,
1813
1814 /* Support for vfork events. */
1815 PACKET_vfork_event_feature,
1816
1817 /* Support for the Qbtrace-conf:pt:size packet. */
1818 PACKET_Qbtrace_conf_pt_size,
1819
1820 /* Support for exec events. */
1821 PACKET_exec_event_feature,
1822
1823 /* Support for query supported vCont actions. */
1824 PACKET_vContSupported,
1825
1826 /* Support remote CTRL-C. */
1827 PACKET_vCtrlC,
1828
1829 /* Support TARGET_WAITKIND_NO_RESUMED. */
1830 PACKET_no_resumed,
1831
1832 PACKET_MAX
1833 };
1834
1835 static struct packet_config remote_protocol_packets[PACKET_MAX];
1836
1837 /* Returns the packet's corresponding "set remote foo-packet" command
1838 state. See struct packet_config for more details. */
1839
1840 static enum auto_boolean
1841 packet_set_cmd_state (int packet)
1842 {
1843 return remote_protocol_packets[packet].detect;
1844 }
1845
1846 /* Returns whether a given packet or feature is supported. This takes
1847 into account the state of the corresponding "set remote foo-packet"
1848 command, which may be used to bypass auto-detection. */
1849
1850 static enum packet_support
1851 packet_config_support (struct packet_config *config)
1852 {
1853 switch (config->detect)
1854 {
1855 case AUTO_BOOLEAN_TRUE:
1856 return PACKET_ENABLE;
1857 case AUTO_BOOLEAN_FALSE:
1858 return PACKET_DISABLE;
1859 case AUTO_BOOLEAN_AUTO:
1860 return config->support;
1861 default:
1862 gdb_assert_not_reached (_("bad switch"));
1863 }
1864 }
1865
1866 /* Same as packet_config_support, but takes the packet's enum value as
1867 argument. */
1868
1869 static enum packet_support
1870 packet_support (int packet)
1871 {
1872 struct packet_config *config = &remote_protocol_packets[packet];
1873
1874 return packet_config_support (config);
1875 }
1876
1877 static void
1878 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1879 struct cmd_list_element *c,
1880 const char *value)
1881 {
1882 struct packet_config *packet;
1883
1884 for (packet = remote_protocol_packets;
1885 packet < &remote_protocol_packets[PACKET_MAX];
1886 packet++)
1887 {
1888 if (&packet->detect == c->var)
1889 {
1890 show_packet_config_cmd (packet);
1891 return;
1892 }
1893 }
1894 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1895 c->name);
1896 }
1897
1898 /* Should we try one of the 'Z' requests? */
1899
1900 enum Z_packet_type
1901 {
1902 Z_PACKET_SOFTWARE_BP,
1903 Z_PACKET_HARDWARE_BP,
1904 Z_PACKET_WRITE_WP,
1905 Z_PACKET_READ_WP,
1906 Z_PACKET_ACCESS_WP,
1907 NR_Z_PACKET_TYPES
1908 };
1909
1910 /* For compatibility with older distributions. Provide a ``set remote
1911 Z-packet ...'' command that updates all the Z packet types. */
1912
1913 static enum auto_boolean remote_Z_packet_detect;
1914
1915 static void
1916 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1917 struct cmd_list_element *c)
1918 {
1919 int i;
1920
1921 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1922 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1923 }
1924
1925 static void
1926 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1927 struct cmd_list_element *c,
1928 const char *value)
1929 {
1930 int i;
1931
1932 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1933 {
1934 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1935 }
1936 }
1937
1938 /* Returns true if the multi-process extensions are in effect. */
1939
1940 static int
1941 remote_multi_process_p (struct remote_state *rs)
1942 {
1943 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1944 }
1945
1946 /* Returns true if fork events are supported. */
1947
1948 static int
1949 remote_fork_event_p (struct remote_state *rs)
1950 {
1951 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1952 }
1953
1954 /* Returns true if vfork events are supported. */
1955
1956 static int
1957 remote_vfork_event_p (struct remote_state *rs)
1958 {
1959 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1960 }
1961
1962 /* Returns true if exec events are supported. */
1963
1964 static int
1965 remote_exec_event_p (struct remote_state *rs)
1966 {
1967 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1968 }
1969
1970 /* Insert fork catchpoint target routine. If fork events are enabled
1971 then return success, nothing more to do. */
1972
1973 int
1974 remote_target::insert_fork_catchpoint (int pid)
1975 {
1976 struct remote_state *rs = get_remote_state ();
1977
1978 return !remote_fork_event_p (rs);
1979 }
1980
1981 /* Remove fork catchpoint target routine. Nothing to do, just
1982 return success. */
1983
1984 int
1985 remote_target::remove_fork_catchpoint (int pid)
1986 {
1987 return 0;
1988 }
1989
1990 /* Insert vfork catchpoint target routine. If vfork events are enabled
1991 then return success, nothing more to do. */
1992
1993 int
1994 remote_target::insert_vfork_catchpoint (int pid)
1995 {
1996 struct remote_state *rs = get_remote_state ();
1997
1998 return !remote_vfork_event_p (rs);
1999 }
2000
2001 /* Remove vfork catchpoint target routine. Nothing to do, just
2002 return success. */
2003
2004 int
2005 remote_target::remove_vfork_catchpoint (int pid)
2006 {
2007 return 0;
2008 }
2009
2010 /* Insert exec catchpoint target routine. If exec events are
2011 enabled, just return success. */
2012
2013 int
2014 remote_target::insert_exec_catchpoint (int pid)
2015 {
2016 struct remote_state *rs = get_remote_state ();
2017
2018 return !remote_exec_event_p (rs);
2019 }
2020
2021 /* Remove exec catchpoint target routine. Nothing to do, just
2022 return success. */
2023
2024 int
2025 remote_target::remove_exec_catchpoint (int pid)
2026 {
2027 return 0;
2028 }
2029
2030 \f
2031 /* Asynchronous signal handle registered as event loop source for
2032 when we have pending events ready to be passed to the core. */
2033
2034 static struct async_event_handler *remote_async_inferior_event_token;
2035
2036 \f
2037
2038 static ptid_t magic_null_ptid;
2039 static ptid_t not_sent_ptid;
2040 static ptid_t any_thread_ptid;
2041
2042 /* Find out if the stub attached to PID (and hence GDB should offer to
2043 detach instead of killing it when bailing out). */
2044
2045 static int
2046 remote_query_attached (int pid)
2047 {
2048 struct remote_state *rs = get_remote_state ();
2049 size_t size = get_remote_packet_size ();
2050
2051 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2052 return 0;
2053
2054 if (remote_multi_process_p (rs))
2055 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2056 else
2057 xsnprintf (rs->buf, size, "qAttached");
2058
2059 putpkt (rs->buf);
2060 getpkt (&rs->buf, &rs->buf_size, 0);
2061
2062 switch (packet_ok (rs->buf,
2063 &remote_protocol_packets[PACKET_qAttached]))
2064 {
2065 case PACKET_OK:
2066 if (strcmp (rs->buf, "1") == 0)
2067 return 1;
2068 break;
2069 case PACKET_ERROR:
2070 warning (_("Remote failure reply: %s"), rs->buf);
2071 break;
2072 case PACKET_UNKNOWN:
2073 break;
2074 }
2075
2076 return 0;
2077 }
2078
2079 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2080 has been invented by GDB, instead of reported by the target. Since
2081 we can be connected to a remote system before before knowing about
2082 any inferior, mark the target with execution when we find the first
2083 inferior. If ATTACHED is 1, then we had just attached to this
2084 inferior. If it is 0, then we just created this inferior. If it
2085 is -1, then try querying the remote stub to find out if it had
2086 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2087 attempt to open this inferior's executable as the main executable
2088 if no main executable is open already. */
2089
2090 static struct inferior *
2091 remote_add_inferior (int fake_pid_p, int pid, int attached,
2092 int try_open_exec)
2093 {
2094 struct inferior *inf;
2095
2096 /* Check whether this process we're learning about is to be
2097 considered attached, or if is to be considered to have been
2098 spawned by the stub. */
2099 if (attached == -1)
2100 attached = remote_query_attached (pid);
2101
2102 if (gdbarch_has_global_solist (target_gdbarch ()))
2103 {
2104 /* If the target shares code across all inferiors, then every
2105 attach adds a new inferior. */
2106 inf = add_inferior (pid);
2107
2108 /* ... and every inferior is bound to the same program space.
2109 However, each inferior may still have its own address
2110 space. */
2111 inf->aspace = maybe_new_address_space ();
2112 inf->pspace = current_program_space;
2113 }
2114 else
2115 {
2116 /* In the traditional debugging scenario, there's a 1-1 match
2117 between program/address spaces. We simply bind the inferior
2118 to the program space's address space. */
2119 inf = current_inferior ();
2120 inferior_appeared (inf, pid);
2121 }
2122
2123 inf->attach_flag = attached;
2124 inf->fake_pid_p = fake_pid_p;
2125
2126 /* If no main executable is currently open then attempt to
2127 open the file that was executed to create this inferior. */
2128 if (try_open_exec && get_exec_file (0) == NULL)
2129 exec_file_locate_attach (pid, 0, 1);
2130
2131 return inf;
2132 }
2133
2134 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2135
2136 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2137 according to RUNNING. */
2138
2139 static void
2140 remote_add_thread (ptid_t ptid, int running, int executing)
2141 {
2142 struct remote_state *rs = get_remote_state ();
2143 struct thread_info *thread;
2144
2145 /* GDB historically didn't pull threads in the initial connection
2146 setup. If the remote target doesn't even have a concept of
2147 threads (e.g., a bare-metal target), even if internally we
2148 consider that a single-threaded target, mentioning a new thread
2149 might be confusing to the user. Be silent then, preserving the
2150 age old behavior. */
2151 if (rs->starting_up)
2152 thread = add_thread_silent (ptid);
2153 else
2154 thread = add_thread (ptid);
2155
2156 get_remote_thread_info (thread)->vcont_resumed = executing;
2157 set_executing (ptid, executing);
2158 set_running (ptid, running);
2159 }
2160
2161 /* Come here when we learn about a thread id from the remote target.
2162 It may be the first time we hear about such thread, so take the
2163 opportunity to add it to GDB's thread list. In case this is the
2164 first time we're noticing its corresponding inferior, add it to
2165 GDB's inferior list as well. EXECUTING indicates whether the
2166 thread is (internally) executing or stopped. */
2167
2168 static void
2169 remote_notice_new_inferior (ptid_t currthread, int executing)
2170 {
2171 /* In non-stop mode, we assume new found threads are (externally)
2172 running until proven otherwise with a stop reply. In all-stop,
2173 we can only get here if all threads are stopped. */
2174 int running = target_is_non_stop_p () ? 1 : 0;
2175
2176 /* If this is a new thread, add it to GDB's thread list.
2177 If we leave it up to WFI to do this, bad things will happen. */
2178
2179 if (in_thread_list (currthread) && is_exited (currthread))
2180 {
2181 /* We're seeing an event on a thread id we knew had exited.
2182 This has to be a new thread reusing the old id. Add it. */
2183 remote_add_thread (currthread, running, executing);
2184 return;
2185 }
2186
2187 if (!in_thread_list (currthread))
2188 {
2189 struct inferior *inf = NULL;
2190 int pid = ptid_get_pid (currthread);
2191
2192 if (ptid_is_pid (inferior_ptid)
2193 && pid == ptid_get_pid (inferior_ptid))
2194 {
2195 /* inferior_ptid has no thread member yet. This can happen
2196 with the vAttach -> remote_wait,"TAAthread:" path if the
2197 stub doesn't support qC. This is the first stop reported
2198 after an attach, so this is the main thread. Update the
2199 ptid in the thread list. */
2200 if (in_thread_list (pid_to_ptid (pid)))
2201 thread_change_ptid (inferior_ptid, currthread);
2202 else
2203 {
2204 remote_add_thread (currthread, running, executing);
2205 inferior_ptid = currthread;
2206 }
2207 return;
2208 }
2209
2210 if (ptid_equal (magic_null_ptid, inferior_ptid))
2211 {
2212 /* inferior_ptid is not set yet. This can happen with the
2213 vRun -> remote_wait,"TAAthread:" path if the stub
2214 doesn't support qC. This is the first stop reported
2215 after an attach, so this is the main thread. Update the
2216 ptid in the thread list. */
2217 thread_change_ptid (inferior_ptid, currthread);
2218 return;
2219 }
2220
2221 /* When connecting to a target remote, or to a target
2222 extended-remote which already was debugging an inferior, we
2223 may not know about it yet. Add it before adding its child
2224 thread, so notifications are emitted in a sensible order. */
2225 if (!in_inferior_list (ptid_get_pid (currthread)))
2226 {
2227 struct remote_state *rs = get_remote_state ();
2228 int fake_pid_p = !remote_multi_process_p (rs);
2229
2230 inf = remote_add_inferior (fake_pid_p,
2231 ptid_get_pid (currthread), -1, 1);
2232 }
2233
2234 /* This is really a new thread. Add it. */
2235 remote_add_thread (currthread, running, executing);
2236
2237 /* If we found a new inferior, let the common code do whatever
2238 it needs to with it (e.g., read shared libraries, insert
2239 breakpoints), unless we're just setting up an all-stop
2240 connection. */
2241 if (inf != NULL)
2242 {
2243 struct remote_state *rs = get_remote_state ();
2244
2245 if (!rs->starting_up)
2246 notice_new_inferior (currthread, executing, 0);
2247 }
2248 }
2249 }
2250
2251 /* Return THREAD's private thread data, creating it if necessary. */
2252
2253 static remote_thread_info *
2254 get_remote_thread_info (thread_info *thread)
2255 {
2256 gdb_assert (thread != NULL);
2257
2258 if (thread->priv == NULL)
2259 thread->priv.reset (new remote_thread_info);
2260
2261 return static_cast<remote_thread_info *> (thread->priv.get ());
2262 }
2263
2264 /* Return PTID's private thread data, creating it if necessary. */
2265
2266 static remote_thread_info *
2267 get_remote_thread_info (ptid_t ptid)
2268 {
2269 struct thread_info *info = find_thread_ptid (ptid);
2270
2271 return get_remote_thread_info (info);
2272 }
2273
2274 /* Call this function as a result of
2275 1) A halt indication (T packet) containing a thread id
2276 2) A direct query of currthread
2277 3) Successful execution of set thread */
2278
2279 static void
2280 record_currthread (struct remote_state *rs, ptid_t currthread)
2281 {
2282 rs->general_thread = currthread;
2283 }
2284
2285 /* If 'QPassSignals' is supported, tell the remote stub what signals
2286 it can simply pass through to the inferior without reporting. */
2287
2288 void
2289 remote_target::pass_signals (int numsigs, unsigned char *pass_signals)
2290 {
2291 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2292 {
2293 char *pass_packet, *p;
2294 int count = 0, i;
2295 struct remote_state *rs = get_remote_state ();
2296
2297 gdb_assert (numsigs < 256);
2298 for (i = 0; i < numsigs; i++)
2299 {
2300 if (pass_signals[i])
2301 count++;
2302 }
2303 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2304 strcpy (pass_packet, "QPassSignals:");
2305 p = pass_packet + strlen (pass_packet);
2306 for (i = 0; i < numsigs; i++)
2307 {
2308 if (pass_signals[i])
2309 {
2310 if (i >= 16)
2311 *p++ = tohex (i >> 4);
2312 *p++ = tohex (i & 15);
2313 if (count)
2314 *p++ = ';';
2315 else
2316 break;
2317 count--;
2318 }
2319 }
2320 *p = 0;
2321 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2322 {
2323 putpkt (pass_packet);
2324 getpkt (&rs->buf, &rs->buf_size, 0);
2325 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2326 if (rs->last_pass_packet)
2327 xfree (rs->last_pass_packet);
2328 rs->last_pass_packet = pass_packet;
2329 }
2330 else
2331 xfree (pass_packet);
2332 }
2333 }
2334
2335 /* If 'QCatchSyscalls' is supported, tell the remote stub
2336 to report syscalls to GDB. */
2337
2338 int
2339 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2340 gdb::array_view<const int> syscall_counts)
2341 {
2342 const char *catch_packet;
2343 enum packet_result result;
2344 int n_sysno = 0;
2345
2346 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2347 {
2348 /* Not supported. */
2349 return 1;
2350 }
2351
2352 if (needed && any_count == 0)
2353 {
2354 /* Count how many syscalls are to be caught. */
2355 for (size_t i = 0; i < syscall_counts.size (); i++)
2356 {
2357 if (syscall_counts[i] != 0)
2358 n_sysno++;
2359 }
2360 }
2361
2362 if (remote_debug)
2363 {
2364 fprintf_unfiltered (gdb_stdlog,
2365 "remote_set_syscall_catchpoint "
2366 "pid %d needed %d any_count %d n_sysno %d\n",
2367 pid, needed, any_count, n_sysno);
2368 }
2369
2370 std::string built_packet;
2371 if (needed)
2372 {
2373 /* Prepare a packet with the sysno list, assuming max 8+1
2374 characters for a sysno. If the resulting packet size is too
2375 big, fallback on the non-selective packet. */
2376 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2377 built_packet.reserve (maxpktsz);
2378 built_packet = "QCatchSyscalls:1";
2379 if (any_count == 0)
2380 {
2381 /* Add in each syscall to be caught. */
2382 for (size_t i = 0; i < syscall_counts.size (); i++)
2383 {
2384 if (syscall_counts[i] != 0)
2385 string_appendf (built_packet, ";%zx", i);
2386 }
2387 }
2388 if (built_packet.size () > get_remote_packet_size ())
2389 {
2390 /* catch_packet too big. Fallback to less efficient
2391 non selective mode, with GDB doing the filtering. */
2392 catch_packet = "QCatchSyscalls:1";
2393 }
2394 else
2395 catch_packet = built_packet.c_str ();
2396 }
2397 else
2398 catch_packet = "QCatchSyscalls:0";
2399
2400 struct remote_state *rs = get_remote_state ();
2401
2402 putpkt (catch_packet);
2403 getpkt (&rs->buf, &rs->buf_size, 0);
2404 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2405 if (result == PACKET_OK)
2406 return 0;
2407 else
2408 return -1;
2409 }
2410
2411 /* If 'QProgramSignals' is supported, tell the remote stub what
2412 signals it should pass through to the inferior when detaching. */
2413
2414 void
2415 remote_target::program_signals (int numsigs, unsigned char *signals)
2416 {
2417 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2418 {
2419 char *packet, *p;
2420 int count = 0, i;
2421 struct remote_state *rs = get_remote_state ();
2422
2423 gdb_assert (numsigs < 256);
2424 for (i = 0; i < numsigs; i++)
2425 {
2426 if (signals[i])
2427 count++;
2428 }
2429 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2430 strcpy (packet, "QProgramSignals:");
2431 p = packet + strlen (packet);
2432 for (i = 0; i < numsigs; i++)
2433 {
2434 if (signal_pass_state (i))
2435 {
2436 if (i >= 16)
2437 *p++ = tohex (i >> 4);
2438 *p++ = tohex (i & 15);
2439 if (count)
2440 *p++ = ';';
2441 else
2442 break;
2443 count--;
2444 }
2445 }
2446 *p = 0;
2447 if (!rs->last_program_signals_packet
2448 || strcmp (rs->last_program_signals_packet, packet) != 0)
2449 {
2450 putpkt (packet);
2451 getpkt (&rs->buf, &rs->buf_size, 0);
2452 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2453 xfree (rs->last_program_signals_packet);
2454 rs->last_program_signals_packet = packet;
2455 }
2456 else
2457 xfree (packet);
2458 }
2459 }
2460
2461 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2462 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2463 thread. If GEN is set, set the general thread, if not, then set
2464 the step/continue thread. */
2465 static void
2466 set_thread (ptid_t ptid, int gen)
2467 {
2468 struct remote_state *rs = get_remote_state ();
2469 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2470 char *buf = rs->buf;
2471 char *endbuf = rs->buf + get_remote_packet_size ();
2472
2473 if (ptid_equal (state, ptid))
2474 return;
2475
2476 *buf++ = 'H';
2477 *buf++ = gen ? 'g' : 'c';
2478 if (ptid_equal (ptid, magic_null_ptid))
2479 xsnprintf (buf, endbuf - buf, "0");
2480 else if (ptid_equal (ptid, any_thread_ptid))
2481 xsnprintf (buf, endbuf - buf, "0");
2482 else if (ptid_equal (ptid, minus_one_ptid))
2483 xsnprintf (buf, endbuf - buf, "-1");
2484 else
2485 write_ptid (buf, endbuf, ptid);
2486 putpkt (rs->buf);
2487 getpkt (&rs->buf, &rs->buf_size, 0);
2488 if (gen)
2489 rs->general_thread = ptid;
2490 else
2491 rs->continue_thread = ptid;
2492 }
2493
2494 static void
2495 set_general_thread (ptid_t ptid)
2496 {
2497 set_thread (ptid, 1);
2498 }
2499
2500 static void
2501 set_continue_thread (ptid_t ptid)
2502 {
2503 set_thread (ptid, 0);
2504 }
2505
2506 /* Change the remote current process. Which thread within the process
2507 ends up selected isn't important, as long as it is the same process
2508 as what INFERIOR_PTID points to.
2509
2510 This comes from that fact that there is no explicit notion of
2511 "selected process" in the protocol. The selected process for
2512 general operations is the process the selected general thread
2513 belongs to. */
2514
2515 static void
2516 set_general_process (void)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519
2520 /* If the remote can't handle multiple processes, don't bother. */
2521 if (!remote_multi_process_p (rs))
2522 return;
2523
2524 /* We only need to change the remote current thread if it's pointing
2525 at some other process. */
2526 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2527 set_general_thread (inferior_ptid);
2528 }
2529
2530 \f
2531 /* Return nonzero if this is the main thread that we made up ourselves
2532 to model non-threaded targets as single-threaded. */
2533
2534 static int
2535 remote_thread_always_alive (ptid_t ptid)
2536 {
2537 if (ptid_equal (ptid, magic_null_ptid))
2538 /* The main thread is always alive. */
2539 return 1;
2540
2541 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2542 /* The main thread is always alive. This can happen after a
2543 vAttach, if the remote side doesn't support
2544 multi-threading. */
2545 return 1;
2546
2547 return 0;
2548 }
2549
2550 /* Return nonzero if the thread PTID is still alive on the remote
2551 system. */
2552
2553 bool
2554 remote_target::thread_alive (ptid_t ptid)
2555 {
2556 struct remote_state *rs = get_remote_state ();
2557 char *p, *endp;
2558
2559 /* Check if this is a thread that we made up ourselves to model
2560 non-threaded targets as single-threaded. */
2561 if (remote_thread_always_alive (ptid))
2562 return 1;
2563
2564 p = rs->buf;
2565 endp = rs->buf + get_remote_packet_size ();
2566
2567 *p++ = 'T';
2568 write_ptid (p, endp, ptid);
2569
2570 putpkt (rs->buf);
2571 getpkt (&rs->buf, &rs->buf_size, 0);
2572 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2573 }
2574
2575 /* Return a pointer to a thread name if we know it and NULL otherwise.
2576 The thread_info object owns the memory for the name. */
2577
2578 const char *
2579 remote_target::thread_name (struct thread_info *info)
2580 {
2581 if (info->priv != NULL)
2582 {
2583 const std::string &name = get_remote_thread_info (info)->name;
2584 return !name.empty () ? name.c_str () : NULL;
2585 }
2586
2587 return NULL;
2588 }
2589
2590 /* About these extended threadlist and threadinfo packets. They are
2591 variable length packets but, the fields within them are often fixed
2592 length. They are redundent enough to send over UDP as is the
2593 remote protocol in general. There is a matching unit test module
2594 in libstub. */
2595
2596 /* WARNING: This threadref data structure comes from the remote O.S.,
2597 libstub protocol encoding, and remote.c. It is not particularly
2598 changable. */
2599
2600 /* Right now, the internal structure is int. We want it to be bigger.
2601 Plan to fix this. */
2602
2603 typedef int gdb_threadref; /* Internal GDB thread reference. */
2604
2605 /* gdb_ext_thread_info is an internal GDB data structure which is
2606 equivalent to the reply of the remote threadinfo packet. */
2607
2608 struct gdb_ext_thread_info
2609 {
2610 threadref threadid; /* External form of thread reference. */
2611 int active; /* Has state interesting to GDB?
2612 regs, stack. */
2613 char display[256]; /* Brief state display, name,
2614 blocked/suspended. */
2615 char shortname[32]; /* To be used to name threads. */
2616 char more_display[256]; /* Long info, statistics, queue depth,
2617 whatever. */
2618 };
2619
2620 /* The volume of remote transfers can be limited by submitting
2621 a mask containing bits specifying the desired information.
2622 Use a union of these values as the 'selection' parameter to
2623 get_thread_info. FIXME: Make these TAG names more thread specific. */
2624
2625 #define TAG_THREADID 1
2626 #define TAG_EXISTS 2
2627 #define TAG_DISPLAY 4
2628 #define TAG_THREADNAME 8
2629 #define TAG_MOREDISPLAY 16
2630
2631 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2632
2633 static char *unpack_nibble (char *buf, int *val);
2634
2635 static char *unpack_byte (char *buf, int *value);
2636
2637 static char *pack_int (char *buf, int value);
2638
2639 static char *unpack_int (char *buf, int *value);
2640
2641 static char *unpack_string (char *src, char *dest, int length);
2642
2643 static char *pack_threadid (char *pkt, threadref *id);
2644
2645 static char *unpack_threadid (char *inbuf, threadref *id);
2646
2647 void int_to_threadref (threadref *id, int value);
2648
2649 static int threadref_to_int (threadref *ref);
2650
2651 static void copy_threadref (threadref *dest, threadref *src);
2652
2653 static int threadmatch (threadref *dest, threadref *src);
2654
2655 static char *pack_threadinfo_request (char *pkt, int mode,
2656 threadref *id);
2657
2658 static int remote_unpack_thread_info_response (char *pkt,
2659 threadref *expectedref,
2660 struct gdb_ext_thread_info
2661 *info);
2662
2663
2664 static int remote_get_threadinfo (threadref *threadid,
2665 int fieldset, /*TAG mask */
2666 struct gdb_ext_thread_info *info);
2667
2668 static char *pack_threadlist_request (char *pkt, int startflag,
2669 int threadcount,
2670 threadref *nextthread);
2671
2672 static int parse_threadlist_response (char *pkt,
2673 int result_limit,
2674 threadref *original_echo,
2675 threadref *resultlist,
2676 int *doneflag);
2677
2678 static int remote_get_threadlist (int startflag,
2679 threadref *nextthread,
2680 int result_limit,
2681 int *done,
2682 int *result_count,
2683 threadref *threadlist);
2684
2685 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2686
2687 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2688 void *context, int looplimit);
2689
2690 static int remote_newthread_step (threadref *ref, void *context);
2691
2692
2693 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2694 buffer we're allowed to write to. Returns
2695 BUF+CHARACTERS_WRITTEN. */
2696
2697 static char *
2698 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2699 {
2700 int pid, tid;
2701 struct remote_state *rs = get_remote_state ();
2702
2703 if (remote_multi_process_p (rs))
2704 {
2705 pid = ptid_get_pid (ptid);
2706 if (pid < 0)
2707 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2708 else
2709 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2710 }
2711 tid = ptid_get_lwp (ptid);
2712 if (tid < 0)
2713 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2714 else
2715 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2716
2717 return buf;
2718 }
2719
2720 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2721 last parsed char. Returns null_ptid if no thread id is found, and
2722 throws an error if the thread id has an invalid format. */
2723
2724 static ptid_t
2725 read_ptid (const char *buf, const char **obuf)
2726 {
2727 const char *p = buf;
2728 const char *pp;
2729 ULONGEST pid = 0, tid = 0;
2730
2731 if (*p == 'p')
2732 {
2733 /* Multi-process ptid. */
2734 pp = unpack_varlen_hex (p + 1, &pid);
2735 if (*pp != '.')
2736 error (_("invalid remote ptid: %s"), p);
2737
2738 p = pp;
2739 pp = unpack_varlen_hex (p + 1, &tid);
2740 if (obuf)
2741 *obuf = pp;
2742 return ptid_build (pid, tid, 0);
2743 }
2744
2745 /* No multi-process. Just a tid. */
2746 pp = unpack_varlen_hex (p, &tid);
2747
2748 /* Return null_ptid when no thread id is found. */
2749 if (p == pp)
2750 {
2751 if (obuf)
2752 *obuf = pp;
2753 return null_ptid;
2754 }
2755
2756 /* Since the stub is not sending a process id, then default to
2757 what's in inferior_ptid, unless it's null at this point. If so,
2758 then since there's no way to know the pid of the reported
2759 threads, use the magic number. */
2760 if (ptid_equal (inferior_ptid, null_ptid))
2761 pid = ptid_get_pid (magic_null_ptid);
2762 else
2763 pid = ptid_get_pid (inferior_ptid);
2764
2765 if (obuf)
2766 *obuf = pp;
2767 return ptid_build (pid, tid, 0);
2768 }
2769
2770 static int
2771 stubhex (int ch)
2772 {
2773 if (ch >= 'a' && ch <= 'f')
2774 return ch - 'a' + 10;
2775 if (ch >= '0' && ch <= '9')
2776 return ch - '0';
2777 if (ch >= 'A' && ch <= 'F')
2778 return ch - 'A' + 10;
2779 return -1;
2780 }
2781
2782 static int
2783 stub_unpack_int (char *buff, int fieldlength)
2784 {
2785 int nibble;
2786 int retval = 0;
2787
2788 while (fieldlength)
2789 {
2790 nibble = stubhex (*buff++);
2791 retval |= nibble;
2792 fieldlength--;
2793 if (fieldlength)
2794 retval = retval << 4;
2795 }
2796 return retval;
2797 }
2798
2799 static char *
2800 unpack_nibble (char *buf, int *val)
2801 {
2802 *val = fromhex (*buf++);
2803 return buf;
2804 }
2805
2806 static char *
2807 unpack_byte (char *buf, int *value)
2808 {
2809 *value = stub_unpack_int (buf, 2);
2810 return buf + 2;
2811 }
2812
2813 static char *
2814 pack_int (char *buf, int value)
2815 {
2816 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2817 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2818 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2819 buf = pack_hex_byte (buf, (value & 0xff));
2820 return buf;
2821 }
2822
2823 static char *
2824 unpack_int (char *buf, int *value)
2825 {
2826 *value = stub_unpack_int (buf, 8);
2827 return buf + 8;
2828 }
2829
2830 #if 0 /* Currently unused, uncomment when needed. */
2831 static char *pack_string (char *pkt, char *string);
2832
2833 static char *
2834 pack_string (char *pkt, char *string)
2835 {
2836 char ch;
2837 int len;
2838
2839 len = strlen (string);
2840 if (len > 200)
2841 len = 200; /* Bigger than most GDB packets, junk??? */
2842 pkt = pack_hex_byte (pkt, len);
2843 while (len-- > 0)
2844 {
2845 ch = *string++;
2846 if ((ch == '\0') || (ch == '#'))
2847 ch = '*'; /* Protect encapsulation. */
2848 *pkt++ = ch;
2849 }
2850 return pkt;
2851 }
2852 #endif /* 0 (unused) */
2853
2854 static char *
2855 unpack_string (char *src, char *dest, int length)
2856 {
2857 while (length--)
2858 *dest++ = *src++;
2859 *dest = '\0';
2860 return src;
2861 }
2862
2863 static char *
2864 pack_threadid (char *pkt, threadref *id)
2865 {
2866 char *limit;
2867 unsigned char *altid;
2868
2869 altid = (unsigned char *) id;
2870 limit = pkt + BUF_THREAD_ID_SIZE;
2871 while (pkt < limit)
2872 pkt = pack_hex_byte (pkt, *altid++);
2873 return pkt;
2874 }
2875
2876
2877 static char *
2878 unpack_threadid (char *inbuf, threadref *id)
2879 {
2880 char *altref;
2881 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2882 int x, y;
2883
2884 altref = (char *) id;
2885
2886 while (inbuf < limit)
2887 {
2888 x = stubhex (*inbuf++);
2889 y = stubhex (*inbuf++);
2890 *altref++ = (x << 4) | y;
2891 }
2892 return inbuf;
2893 }
2894
2895 /* Externally, threadrefs are 64 bits but internally, they are still
2896 ints. This is due to a mismatch of specifications. We would like
2897 to use 64bit thread references internally. This is an adapter
2898 function. */
2899
2900 void
2901 int_to_threadref (threadref *id, int value)
2902 {
2903 unsigned char *scan;
2904
2905 scan = (unsigned char *) id;
2906 {
2907 int i = 4;
2908 while (i--)
2909 *scan++ = 0;
2910 }
2911 *scan++ = (value >> 24) & 0xff;
2912 *scan++ = (value >> 16) & 0xff;
2913 *scan++ = (value >> 8) & 0xff;
2914 *scan++ = (value & 0xff);
2915 }
2916
2917 static int
2918 threadref_to_int (threadref *ref)
2919 {
2920 int i, value = 0;
2921 unsigned char *scan;
2922
2923 scan = *ref;
2924 scan += 4;
2925 i = 4;
2926 while (i-- > 0)
2927 value = (value << 8) | ((*scan++) & 0xff);
2928 return value;
2929 }
2930
2931 static void
2932 copy_threadref (threadref *dest, threadref *src)
2933 {
2934 int i;
2935 unsigned char *csrc, *cdest;
2936
2937 csrc = (unsigned char *) src;
2938 cdest = (unsigned char *) dest;
2939 i = 8;
2940 while (i--)
2941 *cdest++ = *csrc++;
2942 }
2943
2944 static int
2945 threadmatch (threadref *dest, threadref *src)
2946 {
2947 /* Things are broken right now, so just assume we got a match. */
2948 #if 0
2949 unsigned char *srcp, *destp;
2950 int i, result;
2951 srcp = (char *) src;
2952 destp = (char *) dest;
2953
2954 result = 1;
2955 while (i-- > 0)
2956 result &= (*srcp++ == *destp++) ? 1 : 0;
2957 return result;
2958 #endif
2959 return 1;
2960 }
2961
2962 /*
2963 threadid:1, # always request threadid
2964 context_exists:2,
2965 display:4,
2966 unique_name:8,
2967 more_display:16
2968 */
2969
2970 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2971
2972 static char *
2973 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2974 {
2975 *pkt++ = 'q'; /* Info Query */
2976 *pkt++ = 'P'; /* process or thread info */
2977 pkt = pack_int (pkt, mode); /* mode */
2978 pkt = pack_threadid (pkt, id); /* threadid */
2979 *pkt = '\0'; /* terminate */
2980 return pkt;
2981 }
2982
2983 /* These values tag the fields in a thread info response packet. */
2984 /* Tagging the fields allows us to request specific fields and to
2985 add more fields as time goes by. */
2986
2987 #define TAG_THREADID 1 /* Echo the thread identifier. */
2988 #define TAG_EXISTS 2 /* Is this process defined enough to
2989 fetch registers and its stack? */
2990 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2991 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2992 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2993 the process. */
2994
2995 static int
2996 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2997 struct gdb_ext_thread_info *info)
2998 {
2999 struct remote_state *rs = get_remote_state ();
3000 int mask, length;
3001 int tag;
3002 threadref ref;
3003 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
3004 int retval = 1;
3005
3006 /* info->threadid = 0; FIXME: implement zero_threadref. */
3007 info->active = 0;
3008 info->display[0] = '\0';
3009 info->shortname[0] = '\0';
3010 info->more_display[0] = '\0';
3011
3012 /* Assume the characters indicating the packet type have been
3013 stripped. */
3014 pkt = unpack_int (pkt, &mask); /* arg mask */
3015 pkt = unpack_threadid (pkt, &ref);
3016
3017 if (mask == 0)
3018 warning (_("Incomplete response to threadinfo request."));
3019 if (!threadmatch (&ref, expectedref))
3020 { /* This is an answer to a different request. */
3021 warning (_("ERROR RMT Thread info mismatch."));
3022 return 0;
3023 }
3024 copy_threadref (&info->threadid, &ref);
3025
3026 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3027
3028 /* Packets are terminated with nulls. */
3029 while ((pkt < limit) && mask && *pkt)
3030 {
3031 pkt = unpack_int (pkt, &tag); /* tag */
3032 pkt = unpack_byte (pkt, &length); /* length */
3033 if (!(tag & mask)) /* Tags out of synch with mask. */
3034 {
3035 warning (_("ERROR RMT: threadinfo tag mismatch."));
3036 retval = 0;
3037 break;
3038 }
3039 if (tag == TAG_THREADID)
3040 {
3041 if (length != 16)
3042 {
3043 warning (_("ERROR RMT: length of threadid is not 16."));
3044 retval = 0;
3045 break;
3046 }
3047 pkt = unpack_threadid (pkt, &ref);
3048 mask = mask & ~TAG_THREADID;
3049 continue;
3050 }
3051 if (tag == TAG_EXISTS)
3052 {
3053 info->active = stub_unpack_int (pkt, length);
3054 pkt += length;
3055 mask = mask & ~(TAG_EXISTS);
3056 if (length > 8)
3057 {
3058 warning (_("ERROR RMT: 'exists' length too long."));
3059 retval = 0;
3060 break;
3061 }
3062 continue;
3063 }
3064 if (tag == TAG_THREADNAME)
3065 {
3066 pkt = unpack_string (pkt, &info->shortname[0], length);
3067 mask = mask & ~TAG_THREADNAME;
3068 continue;
3069 }
3070 if (tag == TAG_DISPLAY)
3071 {
3072 pkt = unpack_string (pkt, &info->display[0], length);
3073 mask = mask & ~TAG_DISPLAY;
3074 continue;
3075 }
3076 if (tag == TAG_MOREDISPLAY)
3077 {
3078 pkt = unpack_string (pkt, &info->more_display[0], length);
3079 mask = mask & ~TAG_MOREDISPLAY;
3080 continue;
3081 }
3082 warning (_("ERROR RMT: unknown thread info tag."));
3083 break; /* Not a tag we know about. */
3084 }
3085 return retval;
3086 }
3087
3088 static int
3089 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
3090 struct gdb_ext_thread_info *info)
3091 {
3092 struct remote_state *rs = get_remote_state ();
3093 int result;
3094
3095 pack_threadinfo_request (rs->buf, fieldset, threadid);
3096 putpkt (rs->buf);
3097 getpkt (&rs->buf, &rs->buf_size, 0);
3098
3099 if (rs->buf[0] == '\0')
3100 return 0;
3101
3102 result = remote_unpack_thread_info_response (rs->buf + 2,
3103 threadid, info);
3104 return result;
3105 }
3106
3107 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3108
3109 static char *
3110 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3111 threadref *nextthread)
3112 {
3113 *pkt++ = 'q'; /* info query packet */
3114 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3115 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3116 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3117 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3118 *pkt = '\0';
3119 return pkt;
3120 }
3121
3122 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3123
3124 static int
3125 parse_threadlist_response (char *pkt, int result_limit,
3126 threadref *original_echo, threadref *resultlist,
3127 int *doneflag)
3128 {
3129 struct remote_state *rs = get_remote_state ();
3130 char *limit;
3131 int count, resultcount, done;
3132
3133 resultcount = 0;
3134 /* Assume the 'q' and 'M chars have been stripped. */
3135 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3136 /* done parse past here */
3137 pkt = unpack_byte (pkt, &count); /* count field */
3138 pkt = unpack_nibble (pkt, &done);
3139 /* The first threadid is the argument threadid. */
3140 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3141 while ((count-- > 0) && (pkt < limit))
3142 {
3143 pkt = unpack_threadid (pkt, resultlist++);
3144 if (resultcount++ >= result_limit)
3145 break;
3146 }
3147 if (doneflag)
3148 *doneflag = done;
3149 return resultcount;
3150 }
3151
3152 /* Fetch the next batch of threads from the remote. Returns -1 if the
3153 qL packet is not supported, 0 on error and 1 on success. */
3154
3155 static int
3156 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
3157 int *done, int *result_count, threadref *threadlist)
3158 {
3159 struct remote_state *rs = get_remote_state ();
3160 int result = 1;
3161
3162 /* Trancate result limit to be smaller than the packet size. */
3163 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3164 >= get_remote_packet_size ())
3165 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3166
3167 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3168 putpkt (rs->buf);
3169 getpkt (&rs->buf, &rs->buf_size, 0);
3170 if (*rs->buf == '\0')
3171 {
3172 /* Packet not supported. */
3173 return -1;
3174 }
3175
3176 *result_count =
3177 parse_threadlist_response (rs->buf + 2, result_limit,
3178 &rs->echo_nextthread, threadlist, done);
3179
3180 if (!threadmatch (&rs->echo_nextthread, nextthread))
3181 {
3182 /* FIXME: This is a good reason to drop the packet. */
3183 /* Possably, there is a duplicate response. */
3184 /* Possabilities :
3185 retransmit immediatly - race conditions
3186 retransmit after timeout - yes
3187 exit
3188 wait for packet, then exit
3189 */
3190 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3191 return 0; /* I choose simply exiting. */
3192 }
3193 if (*result_count <= 0)
3194 {
3195 if (*done != 1)
3196 {
3197 warning (_("RMT ERROR : failed to get remote thread list."));
3198 result = 0;
3199 }
3200 return result; /* break; */
3201 }
3202 if (*result_count > result_limit)
3203 {
3204 *result_count = 0;
3205 warning (_("RMT ERROR: threadlist response longer than requested."));
3206 return 0;
3207 }
3208 return result;
3209 }
3210
3211 /* Fetch the list of remote threads, with the qL packet, and call
3212 STEPFUNCTION for each thread found. Stops iterating and returns 1
3213 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3214 STEPFUNCTION returns false. If the packet is not supported,
3215 returns -1. */
3216
3217 static int
3218 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
3219 int looplimit)
3220 {
3221 struct remote_state *rs = get_remote_state ();
3222 int done, i, result_count;
3223 int startflag = 1;
3224 int result = 1;
3225 int loopcount = 0;
3226
3227 done = 0;
3228 while (!done)
3229 {
3230 if (loopcount++ > looplimit)
3231 {
3232 result = 0;
3233 warning (_("Remote fetch threadlist -infinite loop-."));
3234 break;
3235 }
3236 result = remote_get_threadlist (startflag, &rs->nextthread,
3237 MAXTHREADLISTRESULTS,
3238 &done, &result_count,
3239 rs->resultthreadlist);
3240 if (result <= 0)
3241 break;
3242 /* Clear for later iterations. */
3243 startflag = 0;
3244 /* Setup to resume next batch of thread references, set nextthread. */
3245 if (result_count >= 1)
3246 copy_threadref (&rs->nextthread,
3247 &rs->resultthreadlist[result_count - 1]);
3248 i = 0;
3249 while (result_count--)
3250 {
3251 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3252 {
3253 result = 0;
3254 break;
3255 }
3256 }
3257 }
3258 return result;
3259 }
3260
3261 /* A thread found on the remote target. */
3262
3263 struct thread_item
3264 {
3265 explicit thread_item (ptid_t ptid_)
3266 : ptid (ptid_)
3267 {}
3268
3269 thread_item (thread_item &&other) = default;
3270 thread_item &operator= (thread_item &&other) = default;
3271
3272 DISABLE_COPY_AND_ASSIGN (thread_item);
3273
3274 /* The thread's PTID. */
3275 ptid_t ptid;
3276
3277 /* The thread's extra info. */
3278 std::string extra;
3279
3280 /* The thread's name. */
3281 std::string name;
3282
3283 /* The core the thread was running on. -1 if not known. */
3284 int core = -1;
3285
3286 /* The thread handle associated with the thread. */
3287 gdb::byte_vector thread_handle;
3288 };
3289
3290 /* Context passed around to the various methods listing remote
3291 threads. As new threads are found, they're added to the ITEMS
3292 vector. */
3293
3294 struct threads_listing_context
3295 {
3296 /* Return true if this object contains an entry for a thread with ptid
3297 PTID. */
3298
3299 bool contains_thread (ptid_t ptid) const
3300 {
3301 auto match_ptid = [&] (const thread_item &item)
3302 {
3303 return item.ptid == ptid;
3304 };
3305
3306 auto it = std::find_if (this->items.begin (),
3307 this->items.end (),
3308 match_ptid);
3309
3310 return it != this->items.end ();
3311 }
3312
3313 /* Remove the thread with ptid PTID. */
3314
3315 void remove_thread (ptid_t ptid)
3316 {
3317 auto match_ptid = [&] (const thread_item &item)
3318 {
3319 return item.ptid == ptid;
3320 };
3321
3322 auto it = std::remove_if (this->items.begin (),
3323 this->items.end (),
3324 match_ptid);
3325
3326 if (it != this->items.end ())
3327 this->items.erase (it);
3328 }
3329
3330 /* The threads found on the remote target. */
3331 std::vector<thread_item> items;
3332 };
3333
3334 static int
3335 remote_newthread_step (threadref *ref, void *data)
3336 {
3337 struct threads_listing_context *context
3338 = (struct threads_listing_context *) data;
3339 int pid = inferior_ptid.pid ();
3340 int lwp = threadref_to_int (ref);
3341 ptid_t ptid (pid, lwp);
3342
3343 context->items.emplace_back (ptid);
3344
3345 return 1; /* continue iterator */
3346 }
3347
3348 #define CRAZY_MAX_THREADS 1000
3349
3350 static ptid_t
3351 remote_current_thread (ptid_t oldpid)
3352 {
3353 struct remote_state *rs = get_remote_state ();
3354
3355 putpkt ("qC");
3356 getpkt (&rs->buf, &rs->buf_size, 0);
3357 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3358 {
3359 const char *obuf;
3360 ptid_t result;
3361
3362 result = read_ptid (&rs->buf[2], &obuf);
3363 if (*obuf != '\0' && remote_debug)
3364 fprintf_unfiltered (gdb_stdlog,
3365 "warning: garbage in qC reply\n");
3366
3367 return result;
3368 }
3369 else
3370 return oldpid;
3371 }
3372
3373 /* List remote threads using the deprecated qL packet. */
3374
3375 static int
3376 remote_get_threads_with_ql (struct target_ops *ops,
3377 struct threads_listing_context *context)
3378 {
3379 if (remote_threadlist_iterator (remote_newthread_step, context,
3380 CRAZY_MAX_THREADS) >= 0)
3381 return 1;
3382
3383 return 0;
3384 }
3385
3386 #if defined(HAVE_LIBEXPAT)
3387
3388 static void
3389 start_thread (struct gdb_xml_parser *parser,
3390 const struct gdb_xml_element *element,
3391 void *user_data,
3392 std::vector<gdb_xml_value> &attributes)
3393 {
3394 struct threads_listing_context *data
3395 = (struct threads_listing_context *) user_data;
3396 struct gdb_xml_value *attr;
3397
3398 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3399 ptid_t ptid = read_ptid (id, NULL);
3400
3401 data->items.emplace_back (ptid);
3402 thread_item &item = data->items.back ();
3403
3404 attr = xml_find_attribute (attributes, "core");
3405 if (attr != NULL)
3406 item.core = *(ULONGEST *) attr->value.get ();
3407
3408 attr = xml_find_attribute (attributes, "name");
3409 if (attr != NULL)
3410 item.name = (const char *) attr->value.get ();
3411
3412 attr = xml_find_attribute (attributes, "handle");
3413 if (attr != NULL)
3414 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3415 }
3416
3417 static void
3418 end_thread (struct gdb_xml_parser *parser,
3419 const struct gdb_xml_element *element,
3420 void *user_data, const char *body_text)
3421 {
3422 struct threads_listing_context *data
3423 = (struct threads_listing_context *) user_data;
3424
3425 if (body_text != NULL && *body_text != '\0')
3426 data->items.back ().extra = body_text;
3427 }
3428
3429 const struct gdb_xml_attribute thread_attributes[] = {
3430 { "id", GDB_XML_AF_NONE, NULL, NULL },
3431 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3432 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3433 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3434 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3435 };
3436
3437 const struct gdb_xml_element thread_children[] = {
3438 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3439 };
3440
3441 const struct gdb_xml_element threads_children[] = {
3442 { "thread", thread_attributes, thread_children,
3443 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3444 start_thread, end_thread },
3445 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3446 };
3447
3448 const struct gdb_xml_element threads_elements[] = {
3449 { "threads", NULL, threads_children,
3450 GDB_XML_EF_NONE, NULL, NULL },
3451 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3452 };
3453
3454 #endif
3455
3456 /* List remote threads using qXfer:threads:read. */
3457
3458 static int
3459 remote_get_threads_with_qxfer (struct target_ops *ops,
3460 struct threads_listing_context *context)
3461 {
3462 #if defined(HAVE_LIBEXPAT)
3463 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3464 {
3465 gdb::optional<gdb::char_vector> xml
3466 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3467
3468 if (xml && (*xml)[0] != '\0')
3469 {
3470 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3471 threads_elements, xml->data (), context);
3472 }
3473
3474 return 1;
3475 }
3476 #endif
3477
3478 return 0;
3479 }
3480
3481 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3482
3483 static int
3484 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3485 struct threads_listing_context *context)
3486 {
3487 struct remote_state *rs = get_remote_state ();
3488
3489 if (rs->use_threadinfo_query)
3490 {
3491 const char *bufp;
3492
3493 putpkt ("qfThreadInfo");
3494 getpkt (&rs->buf, &rs->buf_size, 0);
3495 bufp = rs->buf;
3496 if (bufp[0] != '\0') /* q packet recognized */
3497 {
3498 while (*bufp++ == 'm') /* reply contains one or more TID */
3499 {
3500 do
3501 {
3502 ptid_t ptid = read_ptid (bufp, &bufp);
3503 context->items.emplace_back (ptid);
3504 }
3505 while (*bufp++ == ','); /* comma-separated list */
3506 putpkt ("qsThreadInfo");
3507 getpkt (&rs->buf, &rs->buf_size, 0);
3508 bufp = rs->buf;
3509 }
3510 return 1;
3511 }
3512 else
3513 {
3514 /* Packet not recognized. */
3515 rs->use_threadinfo_query = 0;
3516 }
3517 }
3518
3519 return 0;
3520 }
3521
3522 /* Implement the to_update_thread_list function for the remote
3523 targets. */
3524
3525 void
3526 remote_target::update_thread_list ()
3527 {
3528 struct threads_listing_context context;
3529 int got_list = 0;
3530
3531 /* We have a few different mechanisms to fetch the thread list. Try
3532 them all, starting with the most preferred one first, falling
3533 back to older methods. */
3534 if (remote_get_threads_with_qxfer (this, &context)
3535 || remote_get_threads_with_qthreadinfo (this, &context)
3536 || remote_get_threads_with_ql (this, &context))
3537 {
3538 struct thread_info *tp, *tmp;
3539
3540 got_list = 1;
3541
3542 if (context.items.empty ()
3543 && remote_thread_always_alive (inferior_ptid))
3544 {
3545 /* Some targets don't really support threads, but still
3546 reply an (empty) thread list in response to the thread
3547 listing packets, instead of replying "packet not
3548 supported". Exit early so we don't delete the main
3549 thread. */
3550 return;
3551 }
3552
3553 /* CONTEXT now holds the current thread list on the remote
3554 target end. Delete GDB-side threads no longer found on the
3555 target. */
3556 ALL_THREADS_SAFE (tp, tmp)
3557 {
3558 if (!context.contains_thread (tp->ptid))
3559 {
3560 /* Not found. */
3561 delete_thread (tp->ptid);
3562 }
3563 }
3564
3565 /* Remove any unreported fork child threads from CONTEXT so
3566 that we don't interfere with follow fork, which is where
3567 creation of such threads is handled. */
3568 remove_new_fork_children (&context);
3569
3570 /* And now add threads we don't know about yet to our list. */
3571 for (thread_item &item : context.items)
3572 {
3573 if (item.ptid != null_ptid)
3574 {
3575 /* In non-stop mode, we assume new found threads are
3576 executing until proven otherwise with a stop reply.
3577 In all-stop, we can only get here if all threads are
3578 stopped. */
3579 int executing = target_is_non_stop_p () ? 1 : 0;
3580
3581 remote_notice_new_inferior (item.ptid, executing);
3582
3583 remote_thread_info *info = get_remote_thread_info (item.ptid);
3584 info->core = item.core;
3585 info->extra = std::move (item.extra);
3586 info->name = std::move (item.name);
3587 info->thread_handle = std::move (item.thread_handle);
3588 }
3589 }
3590 }
3591
3592 if (!got_list)
3593 {
3594 /* If no thread listing method is supported, then query whether
3595 each known thread is alive, one by one, with the T packet.
3596 If the target doesn't support threads at all, then this is a
3597 no-op. See remote_thread_alive. */
3598 prune_threads ();
3599 }
3600 }
3601
3602 /*
3603 * Collect a descriptive string about the given thread.
3604 * The target may say anything it wants to about the thread
3605 * (typically info about its blocked / runnable state, name, etc.).
3606 * This string will appear in the info threads display.
3607 *
3608 * Optional: targets are not required to implement this function.
3609 */
3610
3611 const char *
3612 remote_target::extra_thread_info (thread_info *tp)
3613 {
3614 struct remote_state *rs = get_remote_state ();
3615 int result;
3616 int set;
3617 threadref id;
3618 struct gdb_ext_thread_info threadinfo;
3619 static char display_buf[100]; /* arbitrary... */
3620 int n = 0; /* position in display_buf */
3621
3622 if (rs->remote_desc == 0) /* paranoia */
3623 internal_error (__FILE__, __LINE__,
3624 _("remote_threads_extra_info"));
3625
3626 if (ptid_equal (tp->ptid, magic_null_ptid)
3627 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3628 /* This is the main thread which was added by GDB. The remote
3629 server doesn't know about it. */
3630 return NULL;
3631
3632 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3633 {
3634 struct thread_info *info = find_thread_ptid (tp->ptid);
3635
3636 if (info != NULL && info->priv != NULL)
3637 {
3638 const std::string &extra = get_remote_thread_info (info)->extra;
3639 return !extra.empty () ? extra.c_str () : NULL;
3640 }
3641 else
3642 return NULL;
3643 }
3644
3645 if (rs->use_threadextra_query)
3646 {
3647 char *b = rs->buf;
3648 char *endb = rs->buf + get_remote_packet_size ();
3649
3650 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3651 b += strlen (b);
3652 write_ptid (b, endb, tp->ptid);
3653
3654 putpkt (rs->buf);
3655 getpkt (&rs->buf, &rs->buf_size, 0);
3656 if (rs->buf[0] != 0)
3657 {
3658 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3659 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3660 display_buf [result] = '\0';
3661 return display_buf;
3662 }
3663 }
3664
3665 /* If the above query fails, fall back to the old method. */
3666 rs->use_threadextra_query = 0;
3667 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3668 | TAG_MOREDISPLAY | TAG_DISPLAY;
3669 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3670 if (remote_get_threadinfo (&id, set, &threadinfo))
3671 if (threadinfo.active)
3672 {
3673 if (*threadinfo.shortname)
3674 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3675 " Name: %s,", threadinfo.shortname);
3676 if (*threadinfo.display)
3677 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3678 " State: %s,", threadinfo.display);
3679 if (*threadinfo.more_display)
3680 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3681 " Priority: %s", threadinfo.more_display);
3682
3683 if (n > 0)
3684 {
3685 /* For purely cosmetic reasons, clear up trailing commas. */
3686 if (',' == display_buf[n-1])
3687 display_buf[n-1] = ' ';
3688 return display_buf;
3689 }
3690 }
3691 return NULL;
3692 }
3693 \f
3694
3695 bool
3696 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3697 struct static_tracepoint_marker *marker)
3698 {
3699 struct remote_state *rs = get_remote_state ();
3700 char *p = rs->buf;
3701
3702 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3703 p += strlen (p);
3704 p += hexnumstr (p, addr);
3705 putpkt (rs->buf);
3706 getpkt (&rs->buf, &rs->buf_size, 0);
3707 p = rs->buf;
3708
3709 if (*p == 'E')
3710 error (_("Remote failure reply: %s"), p);
3711
3712 if (*p++ == 'm')
3713 {
3714 parse_static_tracepoint_marker_definition (p, NULL, marker);
3715 return true;
3716 }
3717
3718 return false;
3719 }
3720
3721 std::vector<static_tracepoint_marker>
3722 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3723 {
3724 struct remote_state *rs = get_remote_state ();
3725 std::vector<static_tracepoint_marker> markers;
3726 const char *p;
3727 static_tracepoint_marker marker;
3728
3729 /* Ask for a first packet of static tracepoint marker
3730 definition. */
3731 putpkt ("qTfSTM");
3732 getpkt (&rs->buf, &rs->buf_size, 0);
3733 p = rs->buf;
3734 if (*p == 'E')
3735 error (_("Remote failure reply: %s"), p);
3736
3737 while (*p++ == 'm')
3738 {
3739 do
3740 {
3741 parse_static_tracepoint_marker_definition (p, &p, &marker);
3742
3743 if (strid == NULL || marker.str_id == strid)
3744 markers.push_back (std::move (marker));
3745 }
3746 while (*p++ == ','); /* comma-separated list */
3747 /* Ask for another packet of static tracepoint definition. */
3748 putpkt ("qTsSTM");
3749 getpkt (&rs->buf, &rs->buf_size, 0);
3750 p = rs->buf;
3751 }
3752
3753 return markers;
3754 }
3755
3756 \f
3757 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3758
3759 ptid_t
3760 remote_target::get_ada_task_ptid (long lwp, long thread)
3761 {
3762 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3763 }
3764 \f
3765
3766 /* Restart the remote side; this is an extended protocol operation. */
3767
3768 static void
3769 extended_remote_restart (void)
3770 {
3771 struct remote_state *rs = get_remote_state ();
3772
3773 /* Send the restart command; for reasons I don't understand the
3774 remote side really expects a number after the "R". */
3775 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3776 putpkt (rs->buf);
3777
3778 remote_fileio_reset ();
3779 }
3780 \f
3781 /* Clean up connection to a remote debugger. */
3782
3783 void
3784 remote_target::close ()
3785 {
3786 struct remote_state *rs = get_remote_state ();
3787
3788 if (rs->remote_desc == NULL)
3789 return; /* already closed */
3790
3791 /* Make sure we leave stdin registered in the event loop. */
3792 terminal_ours ();
3793
3794 serial_close (rs->remote_desc);
3795 rs->remote_desc = NULL;
3796
3797 /* We don't have a connection to the remote stub anymore. Get rid
3798 of all the inferiors and their threads we were controlling.
3799 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3800 will be unable to find the thread corresponding to (pid, 0, 0). */
3801 inferior_ptid = null_ptid;
3802 discard_all_inferiors ();
3803
3804 /* We are closing the remote target, so we should discard
3805 everything of this target. */
3806 discard_pending_stop_replies_in_queue (rs);
3807
3808 if (remote_async_inferior_event_token)
3809 delete_async_event_handler (&remote_async_inferior_event_token);
3810
3811 remote_notif_state_xfree (rs->notif_state);
3812
3813 trace_reset_local_state ();
3814 }
3815
3816 /* Query the remote side for the text, data and bss offsets. */
3817
3818 static void
3819 get_offsets (void)
3820 {
3821 struct remote_state *rs = get_remote_state ();
3822 char *buf;
3823 char *ptr;
3824 int lose, num_segments = 0, do_sections, do_segments;
3825 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3826 struct section_offsets *offs;
3827 struct symfile_segment_data *data;
3828
3829 if (symfile_objfile == NULL)
3830 return;
3831
3832 putpkt ("qOffsets");
3833 getpkt (&rs->buf, &rs->buf_size, 0);
3834 buf = rs->buf;
3835
3836 if (buf[0] == '\000')
3837 return; /* Return silently. Stub doesn't support
3838 this command. */
3839 if (buf[0] == 'E')
3840 {
3841 warning (_("Remote failure reply: %s"), buf);
3842 return;
3843 }
3844
3845 /* Pick up each field in turn. This used to be done with scanf, but
3846 scanf will make trouble if CORE_ADDR size doesn't match
3847 conversion directives correctly. The following code will work
3848 with any size of CORE_ADDR. */
3849 text_addr = data_addr = bss_addr = 0;
3850 ptr = buf;
3851 lose = 0;
3852
3853 if (startswith (ptr, "Text="))
3854 {
3855 ptr += 5;
3856 /* Don't use strtol, could lose on big values. */
3857 while (*ptr && *ptr != ';')
3858 text_addr = (text_addr << 4) + fromhex (*ptr++);
3859
3860 if (startswith (ptr, ";Data="))
3861 {
3862 ptr += 6;
3863 while (*ptr && *ptr != ';')
3864 data_addr = (data_addr << 4) + fromhex (*ptr++);
3865 }
3866 else
3867 lose = 1;
3868
3869 if (!lose && startswith (ptr, ";Bss="))
3870 {
3871 ptr += 5;
3872 while (*ptr && *ptr != ';')
3873 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3874
3875 if (bss_addr != data_addr)
3876 warning (_("Target reported unsupported offsets: %s"), buf);
3877 }
3878 else
3879 lose = 1;
3880 }
3881 else if (startswith (ptr, "TextSeg="))
3882 {
3883 ptr += 8;
3884 /* Don't use strtol, could lose on big values. */
3885 while (*ptr && *ptr != ';')
3886 text_addr = (text_addr << 4) + fromhex (*ptr++);
3887 num_segments = 1;
3888
3889 if (startswith (ptr, ";DataSeg="))
3890 {
3891 ptr += 9;
3892 while (*ptr && *ptr != ';')
3893 data_addr = (data_addr << 4) + fromhex (*ptr++);
3894 num_segments++;
3895 }
3896 }
3897 else
3898 lose = 1;
3899
3900 if (lose)
3901 error (_("Malformed response to offset query, %s"), buf);
3902 else if (*ptr != '\0')
3903 warning (_("Target reported unsupported offsets: %s"), buf);
3904
3905 offs = ((struct section_offsets *)
3906 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3907 memcpy (offs, symfile_objfile->section_offsets,
3908 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3909
3910 data = get_symfile_segment_data (symfile_objfile->obfd);
3911 do_segments = (data != NULL);
3912 do_sections = num_segments == 0;
3913
3914 if (num_segments > 0)
3915 {
3916 segments[0] = text_addr;
3917 segments[1] = data_addr;
3918 }
3919 /* If we have two segments, we can still try to relocate everything
3920 by assuming that the .text and .data offsets apply to the whole
3921 text and data segments. Convert the offsets given in the packet
3922 to base addresses for symfile_map_offsets_to_segments. */
3923 else if (data && data->num_segments == 2)
3924 {
3925 segments[0] = data->segment_bases[0] + text_addr;
3926 segments[1] = data->segment_bases[1] + data_addr;
3927 num_segments = 2;
3928 }
3929 /* If the object file has only one segment, assume that it is text
3930 rather than data; main programs with no writable data are rare,
3931 but programs with no code are useless. Of course the code might
3932 have ended up in the data segment... to detect that we would need
3933 the permissions here. */
3934 else if (data && data->num_segments == 1)
3935 {
3936 segments[0] = data->segment_bases[0] + text_addr;
3937 num_segments = 1;
3938 }
3939 /* There's no way to relocate by segment. */
3940 else
3941 do_segments = 0;
3942
3943 if (do_segments)
3944 {
3945 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3946 offs, num_segments, segments);
3947
3948 if (ret == 0 && !do_sections)
3949 error (_("Can not handle qOffsets TextSeg "
3950 "response with this symbol file"));
3951
3952 if (ret > 0)
3953 do_sections = 0;
3954 }
3955
3956 if (data)
3957 free_symfile_segment_data (data);
3958
3959 if (do_sections)
3960 {
3961 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3962
3963 /* This is a temporary kludge to force data and bss to use the
3964 same offsets because that's what nlmconv does now. The real
3965 solution requires changes to the stub and remote.c that I
3966 don't have time to do right now. */
3967
3968 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3969 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3970 }
3971
3972 objfile_relocate (symfile_objfile, offs);
3973 }
3974
3975 /* Send interrupt_sequence to remote target. */
3976 static void
3977 send_interrupt_sequence (void)
3978 {
3979 struct remote_state *rs = get_remote_state ();
3980
3981 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3982 remote_serial_write ("\x03", 1);
3983 else if (interrupt_sequence_mode == interrupt_sequence_break)
3984 serial_send_break (rs->remote_desc);
3985 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3986 {
3987 serial_send_break (rs->remote_desc);
3988 remote_serial_write ("g", 1);
3989 }
3990 else
3991 internal_error (__FILE__, __LINE__,
3992 _("Invalid value for interrupt_sequence_mode: %s."),
3993 interrupt_sequence_mode);
3994 }
3995
3996
3997 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3998 and extract the PTID. Returns NULL_PTID if not found. */
3999
4000 static ptid_t
4001 stop_reply_extract_thread (char *stop_reply)
4002 {
4003 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4004 {
4005 const char *p;
4006
4007 /* Txx r:val ; r:val (...) */
4008 p = &stop_reply[3];
4009
4010 /* Look for "register" named "thread". */
4011 while (*p != '\0')
4012 {
4013 const char *p1;
4014
4015 p1 = strchr (p, ':');
4016 if (p1 == NULL)
4017 return null_ptid;
4018
4019 if (strncmp (p, "thread", p1 - p) == 0)
4020 return read_ptid (++p1, &p);
4021
4022 p1 = strchr (p, ';');
4023 if (p1 == NULL)
4024 return null_ptid;
4025 p1++;
4026
4027 p = p1;
4028 }
4029 }
4030
4031 return null_ptid;
4032 }
4033
4034 /* Determine the remote side's current thread. If we have a stop
4035 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4036 "thread" register we can extract the current thread from. If not,
4037 ask the remote which is the current thread with qC. The former
4038 method avoids a roundtrip. */
4039
4040 static ptid_t
4041 get_current_thread (char *wait_status)
4042 {
4043 ptid_t ptid = null_ptid;
4044
4045 /* Note we don't use remote_parse_stop_reply as that makes use of
4046 the target architecture, which we haven't yet fully determined at
4047 this point. */
4048 if (wait_status != NULL)
4049 ptid = stop_reply_extract_thread (wait_status);
4050 if (ptid_equal (ptid, null_ptid))
4051 ptid = remote_current_thread (inferior_ptid);
4052
4053 return ptid;
4054 }
4055
4056 /* Query the remote target for which is the current thread/process,
4057 add it to our tables, and update INFERIOR_PTID. The caller is
4058 responsible for setting the state such that the remote end is ready
4059 to return the current thread.
4060
4061 This function is called after handling the '?' or 'vRun' packets,
4062 whose response is a stop reply from which we can also try
4063 extracting the thread. If the target doesn't support the explicit
4064 qC query, we infer the current thread from that stop reply, passed
4065 in in WAIT_STATUS, which may be NULL. */
4066
4067 static void
4068 add_current_inferior_and_thread (char *wait_status)
4069 {
4070 struct remote_state *rs = get_remote_state ();
4071 int fake_pid_p = 0;
4072
4073 inferior_ptid = null_ptid;
4074
4075 /* Now, if we have thread information, update inferior_ptid. */
4076 ptid_t curr_ptid = get_current_thread (wait_status);
4077
4078 if (curr_ptid != null_ptid)
4079 {
4080 if (!remote_multi_process_p (rs))
4081 fake_pid_p = 1;
4082 }
4083 else
4084 {
4085 /* Without this, some commands which require an active target
4086 (such as kill) won't work. This variable serves (at least)
4087 double duty as both the pid of the target process (if it has
4088 such), and as a flag indicating that a target is active. */
4089 curr_ptid = magic_null_ptid;
4090 fake_pid_p = 1;
4091 }
4092
4093 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
4094
4095 /* Add the main thread and switch to it. Don't try reading
4096 registers yet, since we haven't fetched the target description
4097 yet. */
4098 thread_info *tp = add_thread_silent (curr_ptid);
4099 switch_to_thread_no_regs (tp);
4100 }
4101
4102 /* Print info about a thread that was found already stopped on
4103 connection. */
4104
4105 static void
4106 print_one_stopped_thread (struct thread_info *thread)
4107 {
4108 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4109
4110 switch_to_thread (thread->ptid);
4111 stop_pc = get_frame_pc (get_current_frame ());
4112 set_current_sal_from_frame (get_current_frame ());
4113
4114 thread->suspend.waitstatus_pending_p = 0;
4115
4116 if (ws->kind == TARGET_WAITKIND_STOPPED)
4117 {
4118 enum gdb_signal sig = ws->value.sig;
4119
4120 if (signal_print_state (sig))
4121 gdb::observers::signal_received.notify (sig);
4122 }
4123 gdb::observers::normal_stop.notify (NULL, 1);
4124 }
4125
4126 /* Process all initial stop replies the remote side sent in response
4127 to the ? packet. These indicate threads that were already stopped
4128 on initial connection. We mark these threads as stopped and print
4129 their current frame before giving the user the prompt. */
4130
4131 static void
4132 process_initial_stop_replies (int from_tty)
4133 {
4134 int pending_stop_replies = stop_reply_queue_length ();
4135 struct inferior *inf;
4136 struct thread_info *thread;
4137 struct thread_info *selected = NULL;
4138 struct thread_info *lowest_stopped = NULL;
4139 struct thread_info *first = NULL;
4140
4141 /* Consume the initial pending events. */
4142 while (pending_stop_replies-- > 0)
4143 {
4144 ptid_t waiton_ptid = minus_one_ptid;
4145 ptid_t event_ptid;
4146 struct target_waitstatus ws;
4147 int ignore_event = 0;
4148 struct thread_info *thread;
4149
4150 memset (&ws, 0, sizeof (ws));
4151 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4152 if (remote_debug)
4153 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4154
4155 switch (ws.kind)
4156 {
4157 case TARGET_WAITKIND_IGNORE:
4158 case TARGET_WAITKIND_NO_RESUMED:
4159 case TARGET_WAITKIND_SIGNALLED:
4160 case TARGET_WAITKIND_EXITED:
4161 /* We shouldn't see these, but if we do, just ignore. */
4162 if (remote_debug)
4163 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4164 ignore_event = 1;
4165 break;
4166
4167 case TARGET_WAITKIND_EXECD:
4168 xfree (ws.value.execd_pathname);
4169 break;
4170 default:
4171 break;
4172 }
4173
4174 if (ignore_event)
4175 continue;
4176
4177 thread = find_thread_ptid (event_ptid);
4178
4179 if (ws.kind == TARGET_WAITKIND_STOPPED)
4180 {
4181 enum gdb_signal sig = ws.value.sig;
4182
4183 /* Stubs traditionally report SIGTRAP as initial signal,
4184 instead of signal 0. Suppress it. */
4185 if (sig == GDB_SIGNAL_TRAP)
4186 sig = GDB_SIGNAL_0;
4187 thread->suspend.stop_signal = sig;
4188 ws.value.sig = sig;
4189 }
4190
4191 thread->suspend.waitstatus = ws;
4192
4193 if (ws.kind != TARGET_WAITKIND_STOPPED
4194 || ws.value.sig != GDB_SIGNAL_0)
4195 thread->suspend.waitstatus_pending_p = 1;
4196
4197 set_executing (event_ptid, 0);
4198 set_running (event_ptid, 0);
4199 get_remote_thread_info (thread)->vcont_resumed = 0;
4200 }
4201
4202 /* "Notice" the new inferiors before anything related to
4203 registers/memory. */
4204 ALL_INFERIORS (inf)
4205 {
4206 if (inf->pid == 0)
4207 continue;
4208
4209 inf->needs_setup = 1;
4210
4211 if (non_stop)
4212 {
4213 thread = any_live_thread_of_process (inf->pid);
4214 notice_new_inferior (thread->ptid,
4215 thread->state == THREAD_RUNNING,
4216 from_tty);
4217 }
4218 }
4219
4220 /* If all-stop on top of non-stop, pause all threads. Note this
4221 records the threads' stop pc, so must be done after "noticing"
4222 the inferiors. */
4223 if (!non_stop)
4224 {
4225 stop_all_threads ();
4226
4227 /* If all threads of an inferior were already stopped, we
4228 haven't setup the inferior yet. */
4229 ALL_INFERIORS (inf)
4230 {
4231 if (inf->pid == 0)
4232 continue;
4233
4234 if (inf->needs_setup)
4235 {
4236 thread = any_live_thread_of_process (inf->pid);
4237 switch_to_thread_no_regs (thread);
4238 setup_inferior (0);
4239 }
4240 }
4241 }
4242
4243 /* Now go over all threads that are stopped, and print their current
4244 frame. If all-stop, then if there's a signalled thread, pick
4245 that as current. */
4246 ALL_NON_EXITED_THREADS (thread)
4247 {
4248 if (first == NULL)
4249 first = thread;
4250
4251 if (!non_stop)
4252 set_running (thread->ptid, 0);
4253 else if (thread->state != THREAD_STOPPED)
4254 continue;
4255
4256 if (selected == NULL
4257 && thread->suspend.waitstatus_pending_p)
4258 selected = thread;
4259
4260 if (lowest_stopped == NULL
4261 || thread->inf->num < lowest_stopped->inf->num
4262 || thread->per_inf_num < lowest_stopped->per_inf_num)
4263 lowest_stopped = thread;
4264
4265 if (non_stop)
4266 print_one_stopped_thread (thread);
4267 }
4268
4269 /* In all-stop, we only print the status of one thread, and leave
4270 others with their status pending. */
4271 if (!non_stop)
4272 {
4273 thread = selected;
4274 if (thread == NULL)
4275 thread = lowest_stopped;
4276 if (thread == NULL)
4277 thread = first;
4278
4279 print_one_stopped_thread (thread);
4280 }
4281
4282 /* For "info program". */
4283 thread = inferior_thread ();
4284 if (thread->state == THREAD_STOPPED)
4285 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4286 }
4287
4288 /* Start the remote connection and sync state. */
4289
4290 void
4291 remote_target::start_remote (int from_tty, int extended_p)
4292 {
4293 struct remote_state *rs = get_remote_state ();
4294 struct packet_config *noack_config;
4295 char *wait_status = NULL;
4296
4297 /* Signal other parts that we're going through the initial setup,
4298 and so things may not be stable yet. E.g., we don't try to
4299 install tracepoints until we've relocated symbols. Also, a
4300 Ctrl-C before we're connected and synced up can't interrupt the
4301 target. Instead, it offers to drop the (potentially wedged)
4302 connection. */
4303 rs->starting_up = 1;
4304
4305 QUIT;
4306
4307 if (interrupt_on_connect)
4308 send_interrupt_sequence ();
4309
4310 /* Ack any packet which the remote side has already sent. */
4311 remote_serial_write ("+", 1);
4312
4313 /* The first packet we send to the target is the optional "supported
4314 packets" request. If the target can answer this, it will tell us
4315 which later probes to skip. */
4316 remote_query_supported ();
4317
4318 /* If the stub wants to get a QAllow, compose one and send it. */
4319 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4320 set_permissions ();
4321
4322 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4323 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4324 as a reply to known packet. For packet "vFile:setfs:" it is an
4325 invalid reply and GDB would return error in
4326 remote_hostio_set_filesystem, making remote files access impossible.
4327 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4328 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4329 {
4330 const char v_mustreplyempty[] = "vMustReplyEmpty";
4331
4332 putpkt (v_mustreplyempty);
4333 getpkt (&rs->buf, &rs->buf_size, 0);
4334 if (strcmp (rs->buf, "OK") == 0)
4335 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4336 else if (strcmp (rs->buf, "") != 0)
4337 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4338 rs->buf);
4339 }
4340
4341 /* Next, we possibly activate noack mode.
4342
4343 If the QStartNoAckMode packet configuration is set to AUTO,
4344 enable noack mode if the stub reported a wish for it with
4345 qSupported.
4346
4347 If set to TRUE, then enable noack mode even if the stub didn't
4348 report it in qSupported. If the stub doesn't reply OK, the
4349 session ends with an error.
4350
4351 If FALSE, then don't activate noack mode, regardless of what the
4352 stub claimed should be the default with qSupported. */
4353
4354 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4355 if (packet_config_support (noack_config) != PACKET_DISABLE)
4356 {
4357 putpkt ("QStartNoAckMode");
4358 getpkt (&rs->buf, &rs->buf_size, 0);
4359 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4360 rs->noack_mode = 1;
4361 }
4362
4363 if (extended_p)
4364 {
4365 /* Tell the remote that we are using the extended protocol. */
4366 putpkt ("!");
4367 getpkt (&rs->buf, &rs->buf_size, 0);
4368 }
4369
4370 /* Let the target know which signals it is allowed to pass down to
4371 the program. */
4372 update_signals_program_target ();
4373
4374 /* Next, if the target can specify a description, read it. We do
4375 this before anything involving memory or registers. */
4376 target_find_description ();
4377
4378 /* Next, now that we know something about the target, update the
4379 address spaces in the program spaces. */
4380 update_address_spaces ();
4381
4382 /* On OSs where the list of libraries is global to all
4383 processes, we fetch them early. */
4384 if (gdbarch_has_global_solist (target_gdbarch ()))
4385 solib_add (NULL, from_tty, auto_solib_add);
4386
4387 if (target_is_non_stop_p ())
4388 {
4389 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4390 error (_("Non-stop mode requested, but remote "
4391 "does not support non-stop"));
4392
4393 putpkt ("QNonStop:1");
4394 getpkt (&rs->buf, &rs->buf_size, 0);
4395
4396 if (strcmp (rs->buf, "OK") != 0)
4397 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4398
4399 /* Find about threads and processes the stub is already
4400 controlling. We default to adding them in the running state.
4401 The '?' query below will then tell us about which threads are
4402 stopped. */
4403 this->update_thread_list ();
4404 }
4405 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4406 {
4407 /* Don't assume that the stub can operate in all-stop mode.
4408 Request it explicitly. */
4409 putpkt ("QNonStop:0");
4410 getpkt (&rs->buf, &rs->buf_size, 0);
4411
4412 if (strcmp (rs->buf, "OK") != 0)
4413 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4414 }
4415
4416 /* Upload TSVs regardless of whether the target is running or not. The
4417 remote stub, such as GDBserver, may have some predefined or builtin
4418 TSVs, even if the target is not running. */
4419 if (get_trace_status (current_trace_status ()) != -1)
4420 {
4421 struct uploaded_tsv *uploaded_tsvs = NULL;
4422
4423 upload_trace_state_variables (&uploaded_tsvs);
4424 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4425 }
4426
4427 /* Check whether the target is running now. */
4428 putpkt ("?");
4429 getpkt (&rs->buf, &rs->buf_size, 0);
4430
4431 if (!target_is_non_stop_p ())
4432 {
4433 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4434 {
4435 if (!extended_p)
4436 error (_("The target is not running (try extended-remote?)"));
4437
4438 /* We're connected, but not running. Drop out before we
4439 call start_remote. */
4440 rs->starting_up = 0;
4441 return;
4442 }
4443 else
4444 {
4445 /* Save the reply for later. */
4446 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4447 strcpy (wait_status, rs->buf);
4448 }
4449
4450 /* Fetch thread list. */
4451 target_update_thread_list ();
4452
4453 /* Let the stub know that we want it to return the thread. */
4454 set_continue_thread (minus_one_ptid);
4455
4456 if (thread_count () == 0)
4457 {
4458 /* Target has no concept of threads at all. GDB treats
4459 non-threaded target as single-threaded; add a main
4460 thread. */
4461 add_current_inferior_and_thread (wait_status);
4462 }
4463 else
4464 {
4465 /* We have thread information; select the thread the target
4466 says should be current. If we're reconnecting to a
4467 multi-threaded program, this will ideally be the thread
4468 that last reported an event before GDB disconnected. */
4469 inferior_ptid = get_current_thread (wait_status);
4470 if (ptid_equal (inferior_ptid, null_ptid))
4471 {
4472 /* Odd... The target was able to list threads, but not
4473 tell us which thread was current (no "thread"
4474 register in T stop reply?). Just pick the first
4475 thread in the thread list then. */
4476
4477 if (remote_debug)
4478 fprintf_unfiltered (gdb_stdlog,
4479 "warning: couldn't determine remote "
4480 "current thread; picking first in list.\n");
4481
4482 inferior_ptid = thread_list->ptid;
4483 }
4484 }
4485
4486 /* init_wait_for_inferior should be called before get_offsets in order
4487 to manage `inserted' flag in bp loc in a correct state.
4488 breakpoint_init_inferior, called from init_wait_for_inferior, set
4489 `inserted' flag to 0, while before breakpoint_re_set, called from
4490 start_remote, set `inserted' flag to 1. In the initialization of
4491 inferior, breakpoint_init_inferior should be called first, and then
4492 breakpoint_re_set can be called. If this order is broken, state of
4493 `inserted' flag is wrong, and cause some problems on breakpoint
4494 manipulation. */
4495 init_wait_for_inferior ();
4496
4497 get_offsets (); /* Get text, data & bss offsets. */
4498
4499 /* If we could not find a description using qXfer, and we know
4500 how to do it some other way, try again. This is not
4501 supported for non-stop; it could be, but it is tricky if
4502 there are no stopped threads when we connect. */
4503 if (remote_read_description_p (this)
4504 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4505 {
4506 target_clear_description ();
4507 target_find_description ();
4508 }
4509
4510 /* Use the previously fetched status. */
4511 gdb_assert (wait_status != NULL);
4512 strcpy (rs->buf, wait_status);
4513 rs->cached_wait_status = 1;
4514
4515 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4516 }
4517 else
4518 {
4519 /* Clear WFI global state. Do this before finding about new
4520 threads and inferiors, and setting the current inferior.
4521 Otherwise we would clear the proceed status of the current
4522 inferior when we want its stop_soon state to be preserved
4523 (see notice_new_inferior). */
4524 init_wait_for_inferior ();
4525
4526 /* In non-stop, we will either get an "OK", meaning that there
4527 are no stopped threads at this time; or, a regular stop
4528 reply. In the latter case, there may be more than one thread
4529 stopped --- we pull them all out using the vStopped
4530 mechanism. */
4531 if (strcmp (rs->buf, "OK") != 0)
4532 {
4533 struct notif_client *notif = &notif_client_stop;
4534
4535 /* remote_notif_get_pending_replies acks this one, and gets
4536 the rest out. */
4537 rs->notif_state->pending_event[notif_client_stop.id]
4538 = remote_notif_parse (notif, rs->buf);
4539 remote_notif_get_pending_events (notif);
4540 }
4541
4542 if (thread_count () == 0)
4543 {
4544 if (!extended_p)
4545 error (_("The target is not running (try extended-remote?)"));
4546
4547 /* We're connected, but not running. Drop out before we
4548 call start_remote. */
4549 rs->starting_up = 0;
4550 return;
4551 }
4552
4553 /* In non-stop mode, any cached wait status will be stored in
4554 the stop reply queue. */
4555 gdb_assert (wait_status == NULL);
4556
4557 /* Report all signals during attach/startup. */
4558 pass_signals (0, NULL);
4559
4560 /* If there are already stopped threads, mark them stopped and
4561 report their stops before giving the prompt to the user. */
4562 process_initial_stop_replies (from_tty);
4563
4564 if (target_can_async_p ())
4565 target_async (1);
4566 }
4567
4568 /* If we connected to a live target, do some additional setup. */
4569 if (target_has_execution)
4570 {
4571 if (symfile_objfile) /* No use without a symbol-file. */
4572 remote_check_symbols ();
4573 }
4574
4575 /* Possibly the target has been engaged in a trace run started
4576 previously; find out where things are at. */
4577 if (get_trace_status (current_trace_status ()) != -1)
4578 {
4579 struct uploaded_tp *uploaded_tps = NULL;
4580
4581 if (current_trace_status ()->running)
4582 printf_filtered (_("Trace is already running on the target.\n"));
4583
4584 upload_tracepoints (&uploaded_tps);
4585
4586 merge_uploaded_tracepoints (&uploaded_tps);
4587 }
4588
4589 /* Possibly the target has been engaged in a btrace record started
4590 previously; find out where things are at. */
4591 remote_btrace_maybe_reopen ();
4592
4593 /* The thread and inferior lists are now synchronized with the
4594 target, our symbols have been relocated, and we're merged the
4595 target's tracepoints with ours. We're done with basic start
4596 up. */
4597 rs->starting_up = 0;
4598
4599 /* Maybe breakpoints are global and need to be inserted now. */
4600 if (breakpoints_should_be_inserted_now ())
4601 insert_breakpoints ();
4602 }
4603
4604 /* Open a connection to a remote debugger.
4605 NAME is the filename used for communication. */
4606
4607 void
4608 remote_target::open (const char *name, int from_tty)
4609 {
4610 open_1 (name, from_tty, 0);
4611 }
4612
4613 /* Open a connection to a remote debugger using the extended
4614 remote gdb protocol. NAME is the filename used for communication. */
4615
4616 void
4617 extended_remote_target::open (const char *name, int from_tty)
4618 {
4619 open_1 (name, from_tty, 1 /*extended_p */);
4620 }
4621
4622 /* Reset all packets back to "unknown support". Called when opening a
4623 new connection to a remote target. */
4624
4625 static void
4626 reset_all_packet_configs_support (void)
4627 {
4628 int i;
4629
4630 for (i = 0; i < PACKET_MAX; i++)
4631 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4632 }
4633
4634 /* Initialize all packet configs. */
4635
4636 static void
4637 init_all_packet_configs (void)
4638 {
4639 int i;
4640
4641 for (i = 0; i < PACKET_MAX; i++)
4642 {
4643 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4644 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4645 }
4646 }
4647
4648 /* Symbol look-up. */
4649
4650 static void
4651 remote_check_symbols (void)
4652 {
4653 char *msg, *reply, *tmp;
4654 int end;
4655 long reply_size;
4656 struct cleanup *old_chain;
4657
4658 /* The remote side has no concept of inferiors that aren't running
4659 yet, it only knows about running processes. If we're connected
4660 but our current inferior is not running, we should not invite the
4661 remote target to request symbol lookups related to its
4662 (unrelated) current process. */
4663 if (!target_has_execution)
4664 return;
4665
4666 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4667 return;
4668
4669 /* Make sure the remote is pointing at the right process. Note
4670 there's no way to select "no process". */
4671 set_general_process ();
4672
4673 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4674 because we need both at the same time. */
4675 msg = (char *) xmalloc (get_remote_packet_size ());
4676 old_chain = make_cleanup (xfree, msg);
4677 reply = (char *) xmalloc (get_remote_packet_size ());
4678 make_cleanup (free_current_contents, &reply);
4679 reply_size = get_remote_packet_size ();
4680
4681 /* Invite target to request symbol lookups. */
4682
4683 putpkt ("qSymbol::");
4684 getpkt (&reply, &reply_size, 0);
4685 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4686
4687 while (startswith (reply, "qSymbol:"))
4688 {
4689 struct bound_minimal_symbol sym;
4690
4691 tmp = &reply[8];
4692 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4693 msg[end] = '\0';
4694 sym = lookup_minimal_symbol (msg, NULL, NULL);
4695 if (sym.minsym == NULL)
4696 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4697 else
4698 {
4699 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4700 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4701
4702 /* If this is a function address, return the start of code
4703 instead of any data function descriptor. */
4704 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4705 sym_addr,
4706 target_stack);
4707
4708 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4709 phex_nz (sym_addr, addr_size), &reply[8]);
4710 }
4711
4712 putpkt (msg);
4713 getpkt (&reply, &reply_size, 0);
4714 }
4715
4716 do_cleanups (old_chain);
4717 }
4718
4719 static struct serial *
4720 remote_serial_open (const char *name)
4721 {
4722 static int udp_warning = 0;
4723
4724 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4725 of in ser-tcp.c, because it is the remote protocol assuming that the
4726 serial connection is reliable and not the serial connection promising
4727 to be. */
4728 if (!udp_warning && startswith (name, "udp:"))
4729 {
4730 warning (_("The remote protocol may be unreliable over UDP.\n"
4731 "Some events may be lost, rendering further debugging "
4732 "impossible."));
4733 udp_warning = 1;
4734 }
4735
4736 return serial_open (name);
4737 }
4738
4739 /* Inform the target of our permission settings. The permission flags
4740 work without this, but if the target knows the settings, it can do
4741 a couple things. First, it can add its own check, to catch cases
4742 that somehow manage to get by the permissions checks in target
4743 methods. Second, if the target is wired to disallow particular
4744 settings (for instance, a system in the field that is not set up to
4745 be able to stop at a breakpoint), it can object to any unavailable
4746 permissions. */
4747
4748 void
4749 remote_target::set_permissions ()
4750 {
4751 struct remote_state *rs = get_remote_state ();
4752
4753 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4754 "WriteReg:%x;WriteMem:%x;"
4755 "InsertBreak:%x;InsertTrace:%x;"
4756 "InsertFastTrace:%x;Stop:%x",
4757 may_write_registers, may_write_memory,
4758 may_insert_breakpoints, may_insert_tracepoints,
4759 may_insert_fast_tracepoints, may_stop);
4760 putpkt (rs->buf);
4761 getpkt (&rs->buf, &rs->buf_size, 0);
4762
4763 /* If the target didn't like the packet, warn the user. Do not try
4764 to undo the user's settings, that would just be maddening. */
4765 if (strcmp (rs->buf, "OK") != 0)
4766 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4767 }
4768
4769 /* This type describes each known response to the qSupported
4770 packet. */
4771 struct protocol_feature
4772 {
4773 /* The name of this protocol feature. */
4774 const char *name;
4775
4776 /* The default for this protocol feature. */
4777 enum packet_support default_support;
4778
4779 /* The function to call when this feature is reported, or after
4780 qSupported processing if the feature is not supported.
4781 The first argument points to this structure. The second
4782 argument indicates whether the packet requested support be
4783 enabled, disabled, or probed (or the default, if this function
4784 is being called at the end of processing and this feature was
4785 not reported). The third argument may be NULL; if not NULL, it
4786 is a NUL-terminated string taken from the packet following
4787 this feature's name and an equals sign. */
4788 void (*func) (const struct protocol_feature *, enum packet_support,
4789 const char *);
4790
4791 /* The corresponding packet for this feature. Only used if
4792 FUNC is remote_supported_packet. */
4793 int packet;
4794 };
4795
4796 static void
4797 remote_supported_packet (const struct protocol_feature *feature,
4798 enum packet_support support,
4799 const char *argument)
4800 {
4801 if (argument)
4802 {
4803 warning (_("Remote qSupported response supplied an unexpected value for"
4804 " \"%s\"."), feature->name);
4805 return;
4806 }
4807
4808 remote_protocol_packets[feature->packet].support = support;
4809 }
4810
4811 static void
4812 remote_packet_size (const struct protocol_feature *feature,
4813 enum packet_support support, const char *value)
4814 {
4815 struct remote_state *rs = get_remote_state ();
4816
4817 int packet_size;
4818 char *value_end;
4819
4820 if (support != PACKET_ENABLE)
4821 return;
4822
4823 if (value == NULL || *value == '\0')
4824 {
4825 warning (_("Remote target reported \"%s\" without a size."),
4826 feature->name);
4827 return;
4828 }
4829
4830 errno = 0;
4831 packet_size = strtol (value, &value_end, 16);
4832 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4833 {
4834 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4835 feature->name, value);
4836 return;
4837 }
4838
4839 /* Record the new maximum packet size. */
4840 rs->explicit_packet_size = packet_size;
4841 }
4842
4843 static const struct protocol_feature remote_protocol_features[] = {
4844 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4845 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4846 PACKET_qXfer_auxv },
4847 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4848 PACKET_qXfer_exec_file },
4849 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4850 PACKET_qXfer_features },
4851 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4852 PACKET_qXfer_libraries },
4853 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4854 PACKET_qXfer_libraries_svr4 },
4855 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4856 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4857 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4858 PACKET_qXfer_memory_map },
4859 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4860 PACKET_qXfer_spu_read },
4861 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4862 PACKET_qXfer_spu_write },
4863 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4864 PACKET_qXfer_osdata },
4865 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4866 PACKET_qXfer_threads },
4867 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4868 PACKET_qXfer_traceframe_info },
4869 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4870 PACKET_QPassSignals },
4871 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4872 PACKET_QCatchSyscalls },
4873 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4874 PACKET_QProgramSignals },
4875 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4876 PACKET_QSetWorkingDir },
4877 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4878 PACKET_QStartupWithShell },
4879 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4880 PACKET_QEnvironmentHexEncoded },
4881 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4882 PACKET_QEnvironmentReset },
4883 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4884 PACKET_QEnvironmentUnset },
4885 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4886 PACKET_QStartNoAckMode },
4887 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4888 PACKET_multiprocess_feature },
4889 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4890 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4891 PACKET_qXfer_siginfo_read },
4892 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4893 PACKET_qXfer_siginfo_write },
4894 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4895 PACKET_ConditionalTracepoints },
4896 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4897 PACKET_ConditionalBreakpoints },
4898 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4899 PACKET_BreakpointCommands },
4900 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4901 PACKET_FastTracepoints },
4902 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4903 PACKET_StaticTracepoints },
4904 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4905 PACKET_InstallInTrace},
4906 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4907 PACKET_DisconnectedTracing_feature },
4908 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4909 PACKET_bc },
4910 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4911 PACKET_bs },
4912 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4913 PACKET_TracepointSource },
4914 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4915 PACKET_QAllow },
4916 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4917 PACKET_EnableDisableTracepoints_feature },
4918 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4919 PACKET_qXfer_fdpic },
4920 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4921 PACKET_qXfer_uib },
4922 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4923 PACKET_QDisableRandomization },
4924 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4925 { "QTBuffer:size", PACKET_DISABLE,
4926 remote_supported_packet, PACKET_QTBuffer_size},
4927 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4928 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4929 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4930 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4931 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4932 PACKET_qXfer_btrace },
4933 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4934 PACKET_qXfer_btrace_conf },
4935 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4936 PACKET_Qbtrace_conf_bts_size },
4937 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4938 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4939 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4940 PACKET_fork_event_feature },
4941 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4942 PACKET_vfork_event_feature },
4943 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4944 PACKET_exec_event_feature },
4945 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4946 PACKET_Qbtrace_conf_pt_size },
4947 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4948 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4949 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4950 };
4951
4952 static char *remote_support_xml;
4953
4954 /* Register string appended to "xmlRegisters=" in qSupported query. */
4955
4956 void
4957 register_remote_support_xml (const char *xml)
4958 {
4959 #if defined(HAVE_LIBEXPAT)
4960 if (remote_support_xml == NULL)
4961 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4962 else
4963 {
4964 char *copy = xstrdup (remote_support_xml + 13);
4965 char *p = strtok (copy, ",");
4966
4967 do
4968 {
4969 if (strcmp (p, xml) == 0)
4970 {
4971 /* already there */
4972 xfree (copy);
4973 return;
4974 }
4975 }
4976 while ((p = strtok (NULL, ",")) != NULL);
4977 xfree (copy);
4978
4979 remote_support_xml = reconcat (remote_support_xml,
4980 remote_support_xml, ",", xml,
4981 (char *) NULL);
4982 }
4983 #endif
4984 }
4985
4986 static void
4987 remote_query_supported_append (std::string *msg, const char *append)
4988 {
4989 if (!msg->empty ())
4990 msg->append (";");
4991 msg->append (append);
4992 }
4993
4994 static void
4995 remote_query_supported (void)
4996 {
4997 struct remote_state *rs = get_remote_state ();
4998 char *next;
4999 int i;
5000 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5001
5002 /* The packet support flags are handled differently for this packet
5003 than for most others. We treat an error, a disabled packet, and
5004 an empty response identically: any features which must be reported
5005 to be used will be automatically disabled. An empty buffer
5006 accomplishes this, since that is also the representation for a list
5007 containing no features. */
5008
5009 rs->buf[0] = 0;
5010 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5011 {
5012 std::string q;
5013
5014 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5015 remote_query_supported_append (&q, "multiprocess+");
5016
5017 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5018 remote_query_supported_append (&q, "swbreak+");
5019 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5020 remote_query_supported_append (&q, "hwbreak+");
5021
5022 remote_query_supported_append (&q, "qRelocInsn+");
5023
5024 if (packet_set_cmd_state (PACKET_fork_event_feature)
5025 != AUTO_BOOLEAN_FALSE)
5026 remote_query_supported_append (&q, "fork-events+");
5027 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5028 != AUTO_BOOLEAN_FALSE)
5029 remote_query_supported_append (&q, "vfork-events+");
5030 if (packet_set_cmd_state (PACKET_exec_event_feature)
5031 != AUTO_BOOLEAN_FALSE)
5032 remote_query_supported_append (&q, "exec-events+");
5033
5034 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5035 remote_query_supported_append (&q, "vContSupported+");
5036
5037 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5038 remote_query_supported_append (&q, "QThreadEvents+");
5039
5040 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5041 remote_query_supported_append (&q, "no-resumed+");
5042
5043 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5044 the qSupported:xmlRegisters=i386 handling. */
5045 if (remote_support_xml != NULL
5046 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5047 remote_query_supported_append (&q, remote_support_xml);
5048
5049 q = "qSupported:" + q;
5050 putpkt (q.c_str ());
5051
5052 getpkt (&rs->buf, &rs->buf_size, 0);
5053
5054 /* If an error occured, warn, but do not return - just reset the
5055 buffer to empty and go on to disable features. */
5056 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5057 == PACKET_ERROR)
5058 {
5059 warning (_("Remote failure reply: %s"), rs->buf);
5060 rs->buf[0] = 0;
5061 }
5062 }
5063
5064 memset (seen, 0, sizeof (seen));
5065
5066 next = rs->buf;
5067 while (*next)
5068 {
5069 enum packet_support is_supported;
5070 char *p, *end, *name_end, *value;
5071
5072 /* First separate out this item from the rest of the packet. If
5073 there's another item after this, we overwrite the separator
5074 (terminated strings are much easier to work with). */
5075 p = next;
5076 end = strchr (p, ';');
5077 if (end == NULL)
5078 {
5079 end = p + strlen (p);
5080 next = end;
5081 }
5082 else
5083 {
5084 *end = '\0';
5085 next = end + 1;
5086
5087 if (end == p)
5088 {
5089 warning (_("empty item in \"qSupported\" response"));
5090 continue;
5091 }
5092 }
5093
5094 name_end = strchr (p, '=');
5095 if (name_end)
5096 {
5097 /* This is a name=value entry. */
5098 is_supported = PACKET_ENABLE;
5099 value = name_end + 1;
5100 *name_end = '\0';
5101 }
5102 else
5103 {
5104 value = NULL;
5105 switch (end[-1])
5106 {
5107 case '+':
5108 is_supported = PACKET_ENABLE;
5109 break;
5110
5111 case '-':
5112 is_supported = PACKET_DISABLE;
5113 break;
5114
5115 case '?':
5116 is_supported = PACKET_SUPPORT_UNKNOWN;
5117 break;
5118
5119 default:
5120 warning (_("unrecognized item \"%s\" "
5121 "in \"qSupported\" response"), p);
5122 continue;
5123 }
5124 end[-1] = '\0';
5125 }
5126
5127 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5128 if (strcmp (remote_protocol_features[i].name, p) == 0)
5129 {
5130 const struct protocol_feature *feature;
5131
5132 seen[i] = 1;
5133 feature = &remote_protocol_features[i];
5134 feature->func (feature, is_supported, value);
5135 break;
5136 }
5137 }
5138
5139 /* If we increased the packet size, make sure to increase the global
5140 buffer size also. We delay this until after parsing the entire
5141 qSupported packet, because this is the same buffer we were
5142 parsing. */
5143 if (rs->buf_size < rs->explicit_packet_size)
5144 {
5145 rs->buf_size = rs->explicit_packet_size;
5146 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5147 }
5148
5149 /* Handle the defaults for unmentioned features. */
5150 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5151 if (!seen[i])
5152 {
5153 const struct protocol_feature *feature;
5154
5155 feature = &remote_protocol_features[i];
5156 feature->func (feature, feature->default_support, NULL);
5157 }
5158 }
5159
5160 /* Serial QUIT handler for the remote serial descriptor.
5161
5162 Defers handling a Ctrl-C until we're done with the current
5163 command/response packet sequence, unless:
5164
5165 - We're setting up the connection. Don't send a remote interrupt
5166 request, as we're not fully synced yet. Quit immediately
5167 instead.
5168
5169 - The target has been resumed in the foreground
5170 (target_terminal::is_ours is false) with a synchronous resume
5171 packet, and we're blocked waiting for the stop reply, thus a
5172 Ctrl-C should be immediately sent to the target.
5173
5174 - We get a second Ctrl-C while still within the same serial read or
5175 write. In that case the serial is seemingly wedged --- offer to
5176 quit/disconnect.
5177
5178 - We see a second Ctrl-C without target response, after having
5179 previously interrupted the target. In that case the target/stub
5180 is probably wedged --- offer to quit/disconnect.
5181 */
5182
5183 static void
5184 remote_serial_quit_handler (void)
5185 {
5186 struct remote_state *rs = get_remote_state ();
5187
5188 if (check_quit_flag ())
5189 {
5190 /* If we're starting up, we're not fully synced yet. Quit
5191 immediately. */
5192 if (rs->starting_up)
5193 quit ();
5194 else if (rs->got_ctrlc_during_io)
5195 {
5196 if (query (_("The target is not responding to GDB commands.\n"
5197 "Stop debugging it? ")))
5198 remote_unpush_and_throw ();
5199 }
5200 /* If ^C has already been sent once, offer to disconnect. */
5201 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5202 interrupt_query ();
5203 /* All-stop protocol, and blocked waiting for stop reply. Send
5204 an interrupt request. */
5205 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5206 target_interrupt ();
5207 else
5208 rs->got_ctrlc_during_io = 1;
5209 }
5210 }
5211
5212 /* Remove any of the remote.c targets from target stack. Upper targets depend
5213 on it so remove them first. */
5214
5215 static void
5216 remote_unpush_target (void)
5217 {
5218 pop_all_targets_at_and_above (process_stratum);
5219 }
5220
5221 static void
5222 remote_unpush_and_throw (void)
5223 {
5224 remote_unpush_target ();
5225 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5226 }
5227
5228 void
5229 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5230 {
5231 struct remote_state *rs = get_remote_state ();
5232
5233 if (name == 0)
5234 error (_("To open a remote debug connection, you need to specify what\n"
5235 "serial device is attached to the remote system\n"
5236 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5237
5238 /* See FIXME above. */
5239 if (!target_async_permitted)
5240 wait_forever_enabled_p = 1;
5241
5242 /* If we're connected to a running target, target_preopen will kill it.
5243 Ask this question first, before target_preopen has a chance to kill
5244 anything. */
5245 if (rs->remote_desc != NULL && !have_inferiors ())
5246 {
5247 if (from_tty
5248 && !query (_("Already connected to a remote target. Disconnect? ")))
5249 error (_("Still connected."));
5250 }
5251
5252 /* Here the possibly existing remote target gets unpushed. */
5253 target_preopen (from_tty);
5254
5255 /* Make sure we send the passed signals list the next time we resume. */
5256 xfree (rs->last_pass_packet);
5257 rs->last_pass_packet = NULL;
5258
5259 /* Make sure we send the program signals list the next time we
5260 resume. */
5261 xfree (rs->last_program_signals_packet);
5262 rs->last_program_signals_packet = NULL;
5263
5264 remote_fileio_reset ();
5265 reopen_exec_file ();
5266 reread_symbols ();
5267
5268 rs->remote_desc = remote_serial_open (name);
5269 if (!rs->remote_desc)
5270 perror_with_name (name);
5271
5272 if (baud_rate != -1)
5273 {
5274 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5275 {
5276 /* The requested speed could not be set. Error out to
5277 top level after closing remote_desc. Take care to
5278 set remote_desc to NULL to avoid closing remote_desc
5279 more than once. */
5280 serial_close (rs->remote_desc);
5281 rs->remote_desc = NULL;
5282 perror_with_name (name);
5283 }
5284 }
5285
5286 serial_setparity (rs->remote_desc, serial_parity);
5287 serial_raw (rs->remote_desc);
5288
5289 /* If there is something sitting in the buffer we might take it as a
5290 response to a command, which would be bad. */
5291 serial_flush_input (rs->remote_desc);
5292
5293 if (from_tty)
5294 {
5295 puts_filtered ("Remote debugging using ");
5296 puts_filtered (name);
5297 puts_filtered ("\n");
5298 }
5299
5300 remote_target *target
5301 = extended_p ? &extended_remote_ops : &remote_ops;
5302 push_target (target); /* Switch to using remote target now. */
5303
5304 /* Register extra event sources in the event loop. */
5305 remote_async_inferior_event_token
5306 = create_async_event_handler (remote_async_inferior_event_handler,
5307 NULL);
5308 rs->notif_state = remote_notif_state_allocate ();
5309
5310 /* Reset the target state; these things will be queried either by
5311 remote_query_supported or as they are needed. */
5312 reset_all_packet_configs_support ();
5313 rs->cached_wait_status = 0;
5314 rs->explicit_packet_size = 0;
5315 rs->noack_mode = 0;
5316 rs->extended = extended_p;
5317 rs->waiting_for_stop_reply = 0;
5318 rs->ctrlc_pending_p = 0;
5319 rs->got_ctrlc_during_io = 0;
5320
5321 rs->general_thread = not_sent_ptid;
5322 rs->continue_thread = not_sent_ptid;
5323 rs->remote_traceframe_number = -1;
5324
5325 rs->last_resume_exec_dir = EXEC_FORWARD;
5326
5327 /* Probe for ability to use "ThreadInfo" query, as required. */
5328 rs->use_threadinfo_query = 1;
5329 rs->use_threadextra_query = 1;
5330
5331 rs->readahead_cache.invalidate ();
5332
5333 if (target_async_permitted)
5334 {
5335 /* FIXME: cagney/1999-09-23: During the initial connection it is
5336 assumed that the target is already ready and able to respond to
5337 requests. Unfortunately remote_start_remote() eventually calls
5338 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5339 around this. Eventually a mechanism that allows
5340 wait_for_inferior() to expect/get timeouts will be
5341 implemented. */
5342 wait_forever_enabled_p = 0;
5343 }
5344
5345 /* First delete any symbols previously loaded from shared libraries. */
5346 no_shared_libraries (NULL, 0);
5347
5348 /* Start afresh. */
5349 init_thread_list ();
5350
5351 /* Start the remote connection. If error() or QUIT, discard this
5352 target (we'd otherwise be in an inconsistent state) and then
5353 propogate the error on up the exception chain. This ensures that
5354 the caller doesn't stumble along blindly assuming that the
5355 function succeeded. The CLI doesn't have this problem but other
5356 UI's, such as MI do.
5357
5358 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5359 this function should return an error indication letting the
5360 caller restore the previous state. Unfortunately the command
5361 ``target remote'' is directly wired to this function making that
5362 impossible. On a positive note, the CLI side of this problem has
5363 been fixed - the function set_cmd_context() makes it possible for
5364 all the ``target ....'' commands to share a common callback
5365 function. See cli-dump.c. */
5366 {
5367
5368 TRY
5369 {
5370 target->start_remote (from_tty, extended_p);
5371 }
5372 CATCH (ex, RETURN_MASK_ALL)
5373 {
5374 /* Pop the partially set up target - unless something else did
5375 already before throwing the exception. */
5376 if (rs->remote_desc != NULL)
5377 remote_unpush_target ();
5378 if (target_async_permitted)
5379 wait_forever_enabled_p = 1;
5380 throw_exception (ex);
5381 }
5382 END_CATCH
5383 }
5384
5385 remote_btrace_reset ();
5386
5387 if (target_async_permitted)
5388 wait_forever_enabled_p = 1;
5389 }
5390
5391 /* Detach the specified process. */
5392
5393 static void
5394 remote_detach_pid (int pid)
5395 {
5396 struct remote_state *rs = get_remote_state ();
5397
5398 if (remote_multi_process_p (rs))
5399 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5400 else
5401 strcpy (rs->buf, "D");
5402
5403 putpkt (rs->buf);
5404 getpkt (&rs->buf, &rs->buf_size, 0);
5405
5406 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5407 ;
5408 else if (rs->buf[0] == '\0')
5409 error (_("Remote doesn't know how to detach"));
5410 else
5411 error (_("Can't detach process."));
5412 }
5413
5414 /* This detaches a program to which we previously attached, using
5415 inferior_ptid to identify the process. After this is done, GDB
5416 can be used to debug some other program. We better not have left
5417 any breakpoints in the target program or it'll die when it hits
5418 one. */
5419
5420 static void
5421 remote_detach_1 (int from_tty, inferior *inf)
5422 {
5423 int pid = ptid_get_pid (inferior_ptid);
5424 struct remote_state *rs = get_remote_state ();
5425 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5426 int is_fork_parent;
5427
5428 if (!target_has_execution)
5429 error (_("No process to detach from."));
5430
5431 target_announce_detach (from_tty);
5432
5433 /* Tell the remote target to detach. */
5434 remote_detach_pid (pid);
5435
5436 /* Exit only if this is the only active inferior. */
5437 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5438 puts_filtered (_("Ending remote debugging.\n"));
5439
5440 /* Check to see if we are detaching a fork parent. Note that if we
5441 are detaching a fork child, tp == NULL. */
5442 is_fork_parent = (tp != NULL
5443 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5444
5445 /* If doing detach-on-fork, we don't mourn, because that will delete
5446 breakpoints that should be available for the followed inferior. */
5447 if (!is_fork_parent)
5448 {
5449 /* Save the pid as a string before mourning, since that will
5450 unpush the remote target, and we need the string after. */
5451 std::string infpid = target_pid_to_str (pid_to_ptid (pid));
5452
5453 target_mourn_inferior (inferior_ptid);
5454 if (print_inferior_events)
5455 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5456 inf->num, infpid.c_str ());
5457 }
5458 else
5459 {
5460 inferior_ptid = null_ptid;
5461 detach_inferior (pid);
5462 }
5463 }
5464
5465 void
5466 remote_target::detach (inferior *inf, int from_tty)
5467 {
5468 remote_detach_1 (from_tty, inf);
5469 }
5470
5471 void
5472 extended_remote_target::detach (inferior *inf, int from_tty)
5473 {
5474 remote_detach_1 (from_tty, inf);
5475 }
5476
5477 /* Target follow-fork function for remote targets. On entry, and
5478 at return, the current inferior is the fork parent.
5479
5480 Note that although this is currently only used for extended-remote,
5481 it is named remote_follow_fork in anticipation of using it for the
5482 remote target as well. */
5483
5484 int
5485 remote_target::follow_fork (int follow_child, int detach_fork)
5486 {
5487 struct remote_state *rs = get_remote_state ();
5488 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5489
5490 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5491 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5492 {
5493 /* When following the parent and detaching the child, we detach
5494 the child here. For the case of following the child and
5495 detaching the parent, the detach is done in the target-
5496 independent follow fork code in infrun.c. We can't use
5497 target_detach when detaching an unfollowed child because
5498 the client side doesn't know anything about the child. */
5499 if (detach_fork && !follow_child)
5500 {
5501 /* Detach the fork child. */
5502 ptid_t child_ptid;
5503 pid_t child_pid;
5504
5505 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5506 child_pid = ptid_get_pid (child_ptid);
5507
5508 remote_detach_pid (child_pid);
5509 }
5510 }
5511 return 0;
5512 }
5513
5514 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5515 in the program space of the new inferior. On entry and at return the
5516 current inferior is the exec'ing inferior. INF is the new exec'd
5517 inferior, which may be the same as the exec'ing inferior unless
5518 follow-exec-mode is "new". */
5519
5520 void
5521 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5522 {
5523 /* We know that this is a target file name, so if it has the "target:"
5524 prefix we strip it off before saving it in the program space. */
5525 if (is_target_filename (execd_pathname))
5526 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5527
5528 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5529 }
5530
5531 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5532
5533 void
5534 remote_target::disconnect (const char *args, int from_tty)
5535 {
5536 if (args)
5537 error (_("Argument given to \"disconnect\" when remotely debugging."));
5538
5539 /* Make sure we unpush even the extended remote targets. Calling
5540 target_mourn_inferior won't unpush, and remote_mourn won't
5541 unpush if there is more than one inferior left. */
5542 unpush_target (this);
5543 generic_mourn_inferior ();
5544
5545 if (from_tty)
5546 puts_filtered ("Ending remote debugging.\n");
5547 }
5548
5549 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5550 be chatty about it. */
5551
5552 void
5553 extended_remote_target::attach (const char *args, int from_tty)
5554 {
5555 struct remote_state *rs = get_remote_state ();
5556 int pid;
5557 char *wait_status = NULL;
5558
5559 pid = parse_pid_to_attach (args);
5560
5561 /* Remote PID can be freely equal to getpid, do not check it here the same
5562 way as in other targets. */
5563
5564 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5565 error (_("This target does not support attaching to a process"));
5566
5567 if (from_tty)
5568 {
5569 char *exec_file = get_exec_file (0);
5570
5571 if (exec_file)
5572 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5573 target_pid_to_str (pid_to_ptid (pid)));
5574 else
5575 printf_unfiltered (_("Attaching to %s\n"),
5576 target_pid_to_str (pid_to_ptid (pid)));
5577
5578 gdb_flush (gdb_stdout);
5579 }
5580
5581 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5582 putpkt (rs->buf);
5583 getpkt (&rs->buf, &rs->buf_size, 0);
5584
5585 switch (packet_ok (rs->buf,
5586 &remote_protocol_packets[PACKET_vAttach]))
5587 {
5588 case PACKET_OK:
5589 if (!target_is_non_stop_p ())
5590 {
5591 /* Save the reply for later. */
5592 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5593 strcpy (wait_status, rs->buf);
5594 }
5595 else if (strcmp (rs->buf, "OK") != 0)
5596 error (_("Attaching to %s failed with: %s"),
5597 target_pid_to_str (pid_to_ptid (pid)),
5598 rs->buf);
5599 break;
5600 case PACKET_UNKNOWN:
5601 error (_("This target does not support attaching to a process"));
5602 default:
5603 error (_("Attaching to %s failed"),
5604 target_pid_to_str (pid_to_ptid (pid)));
5605 }
5606
5607 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5608
5609 inferior_ptid = pid_to_ptid (pid);
5610
5611 if (target_is_non_stop_p ())
5612 {
5613 struct thread_info *thread;
5614
5615 /* Get list of threads. */
5616 update_thread_list ();
5617
5618 thread = first_thread_of_process (pid);
5619 if (thread)
5620 inferior_ptid = thread->ptid;
5621 else
5622 inferior_ptid = pid_to_ptid (pid);
5623
5624 /* Invalidate our notion of the remote current thread. */
5625 record_currthread (rs, minus_one_ptid);
5626 }
5627 else
5628 {
5629 /* Now, if we have thread information, update inferior_ptid. */
5630 inferior_ptid = remote_current_thread (inferior_ptid);
5631
5632 /* Add the main thread to the thread list. */
5633 thread_info *thr = add_thread_silent (inferior_ptid);
5634 /* Don't consider the thread stopped until we've processed the
5635 saved stop reply. */
5636 set_executing (thr->ptid, true);
5637 }
5638
5639 /* Next, if the target can specify a description, read it. We do
5640 this before anything involving memory or registers. */
5641 target_find_description ();
5642
5643 if (!target_is_non_stop_p ())
5644 {
5645 /* Use the previously fetched status. */
5646 gdb_assert (wait_status != NULL);
5647
5648 if (target_can_async_p ())
5649 {
5650 struct notif_event *reply
5651 = remote_notif_parse (&notif_client_stop, wait_status);
5652
5653 push_stop_reply ((struct stop_reply *) reply);
5654
5655 target_async (1);
5656 }
5657 else
5658 {
5659 gdb_assert (wait_status != NULL);
5660 strcpy (rs->buf, wait_status);
5661 rs->cached_wait_status = 1;
5662 }
5663 }
5664 else
5665 gdb_assert (wait_status == NULL);
5666 }
5667
5668 /* Implementation of the to_post_attach method. */
5669
5670 void
5671 extended_remote_target::post_attach (int pid)
5672 {
5673 /* Get text, data & bss offsets. */
5674 get_offsets ();
5675
5676 /* In certain cases GDB might not have had the chance to start
5677 symbol lookup up until now. This could happen if the debugged
5678 binary is not using shared libraries, the vsyscall page is not
5679 present (on Linux) and the binary itself hadn't changed since the
5680 debugging process was started. */
5681 if (symfile_objfile != NULL)
5682 remote_check_symbols();
5683 }
5684
5685 \f
5686 /* Check for the availability of vCont. This function should also check
5687 the response. */
5688
5689 static void
5690 remote_vcont_probe (struct remote_state *rs)
5691 {
5692 char *buf;
5693
5694 strcpy (rs->buf, "vCont?");
5695 putpkt (rs->buf);
5696 getpkt (&rs->buf, &rs->buf_size, 0);
5697 buf = rs->buf;
5698
5699 /* Make sure that the features we assume are supported. */
5700 if (startswith (buf, "vCont"))
5701 {
5702 char *p = &buf[5];
5703 int support_c, support_C;
5704
5705 rs->supports_vCont.s = 0;
5706 rs->supports_vCont.S = 0;
5707 support_c = 0;
5708 support_C = 0;
5709 rs->supports_vCont.t = 0;
5710 rs->supports_vCont.r = 0;
5711 while (p && *p == ';')
5712 {
5713 p++;
5714 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5715 rs->supports_vCont.s = 1;
5716 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5717 rs->supports_vCont.S = 1;
5718 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5719 support_c = 1;
5720 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5721 support_C = 1;
5722 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5723 rs->supports_vCont.t = 1;
5724 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5725 rs->supports_vCont.r = 1;
5726
5727 p = strchr (p, ';');
5728 }
5729
5730 /* If c, and C are not all supported, we can't use vCont. Clearing
5731 BUF will make packet_ok disable the packet. */
5732 if (!support_c || !support_C)
5733 buf[0] = 0;
5734 }
5735
5736 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5737 }
5738
5739 /* Helper function for building "vCont" resumptions. Write a
5740 resumption to P. ENDP points to one-passed-the-end of the buffer
5741 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5742 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5743 resumed thread should be single-stepped and/or signalled. If PTID
5744 equals minus_one_ptid, then all threads are resumed; if PTID
5745 represents a process, then all threads of the process are resumed;
5746 the thread to be stepped and/or signalled is given in the global
5747 INFERIOR_PTID. */
5748
5749 static char *
5750 append_resumption (char *p, char *endp,
5751 ptid_t ptid, int step, enum gdb_signal siggnal)
5752 {
5753 struct remote_state *rs = get_remote_state ();
5754
5755 if (step && siggnal != GDB_SIGNAL_0)
5756 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5757 else if (step
5758 /* GDB is willing to range step. */
5759 && use_range_stepping
5760 /* Target supports range stepping. */
5761 && rs->supports_vCont.r
5762 /* We don't currently support range stepping multiple
5763 threads with a wildcard (though the protocol allows it,
5764 so stubs shouldn't make an active effort to forbid
5765 it). */
5766 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5767 {
5768 struct thread_info *tp;
5769
5770 if (ptid_equal (ptid, minus_one_ptid))
5771 {
5772 /* If we don't know about the target thread's tid, then
5773 we're resuming magic_null_ptid (see caller). */
5774 tp = find_thread_ptid (magic_null_ptid);
5775 }
5776 else
5777 tp = find_thread_ptid (ptid);
5778 gdb_assert (tp != NULL);
5779
5780 if (tp->control.may_range_step)
5781 {
5782 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5783
5784 p += xsnprintf (p, endp - p, ";r%s,%s",
5785 phex_nz (tp->control.step_range_start,
5786 addr_size),
5787 phex_nz (tp->control.step_range_end,
5788 addr_size));
5789 }
5790 else
5791 p += xsnprintf (p, endp - p, ";s");
5792 }
5793 else if (step)
5794 p += xsnprintf (p, endp - p, ";s");
5795 else if (siggnal != GDB_SIGNAL_0)
5796 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5797 else
5798 p += xsnprintf (p, endp - p, ";c");
5799
5800 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5801 {
5802 ptid_t nptid;
5803
5804 /* All (-1) threads of process. */
5805 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5806
5807 p += xsnprintf (p, endp - p, ":");
5808 p = write_ptid (p, endp, nptid);
5809 }
5810 else if (!ptid_equal (ptid, minus_one_ptid))
5811 {
5812 p += xsnprintf (p, endp - p, ":");
5813 p = write_ptid (p, endp, ptid);
5814 }
5815
5816 return p;
5817 }
5818
5819 /* Clear the thread's private info on resume. */
5820
5821 static void
5822 resume_clear_thread_private_info (struct thread_info *thread)
5823 {
5824 if (thread->priv != NULL)
5825 {
5826 remote_thread_info *priv = get_remote_thread_info (thread);
5827
5828 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5829 priv->watch_data_address = 0;
5830 }
5831 }
5832
5833 /* Append a vCont continue-with-signal action for threads that have a
5834 non-zero stop signal. */
5835
5836 static char *
5837 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5838 {
5839 struct thread_info *thread;
5840
5841 ALL_NON_EXITED_THREADS (thread)
5842 if (ptid_match (thread->ptid, ptid)
5843 && !ptid_equal (inferior_ptid, thread->ptid)
5844 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5845 {
5846 p = append_resumption (p, endp, thread->ptid,
5847 0, thread->suspend.stop_signal);
5848 thread->suspend.stop_signal = GDB_SIGNAL_0;
5849 resume_clear_thread_private_info (thread);
5850 }
5851
5852 return p;
5853 }
5854
5855 /* Set the target running, using the packets that use Hc
5856 (c/s/C/S). */
5857
5858 static void
5859 remote_resume_with_hc (struct target_ops *ops,
5860 ptid_t ptid, int step, enum gdb_signal siggnal)
5861 {
5862 struct remote_state *rs = get_remote_state ();
5863 struct thread_info *thread;
5864 char *buf;
5865
5866 rs->last_sent_signal = siggnal;
5867 rs->last_sent_step = step;
5868
5869 /* The c/s/C/S resume packets use Hc, so set the continue
5870 thread. */
5871 if (ptid_equal (ptid, minus_one_ptid))
5872 set_continue_thread (any_thread_ptid);
5873 else
5874 set_continue_thread (ptid);
5875
5876 ALL_NON_EXITED_THREADS (thread)
5877 resume_clear_thread_private_info (thread);
5878
5879 buf = rs->buf;
5880 if (execution_direction == EXEC_REVERSE)
5881 {
5882 /* We don't pass signals to the target in reverse exec mode. */
5883 if (info_verbose && siggnal != GDB_SIGNAL_0)
5884 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5885 siggnal);
5886
5887 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5888 error (_("Remote reverse-step not supported."));
5889 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5890 error (_("Remote reverse-continue not supported."));
5891
5892 strcpy (buf, step ? "bs" : "bc");
5893 }
5894 else if (siggnal != GDB_SIGNAL_0)
5895 {
5896 buf[0] = step ? 'S' : 'C';
5897 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5898 buf[2] = tohex (((int) siggnal) & 0xf);
5899 buf[3] = '\0';
5900 }
5901 else
5902 strcpy (buf, step ? "s" : "c");
5903
5904 putpkt (buf);
5905 }
5906
5907 /* Resume the remote inferior by using a "vCont" packet. The thread
5908 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5909 resumed thread should be single-stepped and/or signalled. If PTID
5910 equals minus_one_ptid, then all threads are resumed; the thread to
5911 be stepped and/or signalled is given in the global INFERIOR_PTID.
5912 This function returns non-zero iff it resumes the inferior.
5913
5914 This function issues a strict subset of all possible vCont commands
5915 at the moment. */
5916
5917 static int
5918 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5919 {
5920 struct remote_state *rs = get_remote_state ();
5921 char *p;
5922 char *endp;
5923
5924 /* No reverse execution actions defined for vCont. */
5925 if (execution_direction == EXEC_REVERSE)
5926 return 0;
5927
5928 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5929 remote_vcont_probe (rs);
5930
5931 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5932 return 0;
5933
5934 p = rs->buf;
5935 endp = rs->buf + get_remote_packet_size ();
5936
5937 /* If we could generate a wider range of packets, we'd have to worry
5938 about overflowing BUF. Should there be a generic
5939 "multi-part-packet" packet? */
5940
5941 p += xsnprintf (p, endp - p, "vCont");
5942
5943 if (ptid_equal (ptid, magic_null_ptid))
5944 {
5945 /* MAGIC_NULL_PTID means that we don't have any active threads,
5946 so we don't have any TID numbers the inferior will
5947 understand. Make sure to only send forms that do not specify
5948 a TID. */
5949 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5950 }
5951 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5952 {
5953 /* Resume all threads (of all processes, or of a single
5954 process), with preference for INFERIOR_PTID. This assumes
5955 inferior_ptid belongs to the set of all threads we are about
5956 to resume. */
5957 if (step || siggnal != GDB_SIGNAL_0)
5958 {
5959 /* Step inferior_ptid, with or without signal. */
5960 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5961 }
5962
5963 /* Also pass down any pending signaled resumption for other
5964 threads not the current. */
5965 p = append_pending_thread_resumptions (p, endp, ptid);
5966
5967 /* And continue others without a signal. */
5968 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5969 }
5970 else
5971 {
5972 /* Scheduler locking; resume only PTID. */
5973 append_resumption (p, endp, ptid, step, siggnal);
5974 }
5975
5976 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5977 putpkt (rs->buf);
5978
5979 if (target_is_non_stop_p ())
5980 {
5981 /* In non-stop, the stub replies to vCont with "OK". The stop
5982 reply will be reported asynchronously by means of a `%Stop'
5983 notification. */
5984 getpkt (&rs->buf, &rs->buf_size, 0);
5985 if (strcmp (rs->buf, "OK") != 0)
5986 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5987 }
5988
5989 return 1;
5990 }
5991
5992 /* Tell the remote machine to resume. */
5993
5994 void
5995 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
5996 {
5997 struct remote_state *rs = get_remote_state ();
5998
5999 /* When connected in non-stop mode, the core resumes threads
6000 individually. Resuming remote threads directly in target_resume
6001 would thus result in sending one packet per thread. Instead, to
6002 minimize roundtrip latency, here we just store the resume
6003 request; the actual remote resumption will be done in
6004 target_commit_resume / remote_commit_resume, where we'll be able
6005 to do vCont action coalescing. */
6006 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6007 {
6008 remote_thread_info *remote_thr;
6009
6010 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
6011 remote_thr = get_remote_thread_info (inferior_ptid);
6012 else
6013 remote_thr = get_remote_thread_info (ptid);
6014
6015 remote_thr->last_resume_step = step;
6016 remote_thr->last_resume_sig = siggnal;
6017 return;
6018 }
6019
6020 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6021 (explained in remote-notif.c:handle_notification) so
6022 remote_notif_process is not called. We need find a place where
6023 it is safe to start a 'vNotif' sequence. It is good to do it
6024 before resuming inferior, because inferior was stopped and no RSP
6025 traffic at that moment. */
6026 if (!target_is_non_stop_p ())
6027 remote_notif_process (rs->notif_state, &notif_client_stop);
6028
6029 rs->last_resume_exec_dir = ::execution_direction;
6030
6031 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6032 if (!remote_resume_with_vcont (ptid, step, siggnal))
6033 remote_resume_with_hc (this, ptid, step, siggnal);
6034
6035 /* We are about to start executing the inferior, let's register it
6036 with the event loop. NOTE: this is the one place where all the
6037 execution commands end up. We could alternatively do this in each
6038 of the execution commands in infcmd.c. */
6039 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6040 into infcmd.c in order to allow inferior function calls to work
6041 NOT asynchronously. */
6042 if (target_can_async_p ())
6043 target_async (1);
6044
6045 /* We've just told the target to resume. The remote server will
6046 wait for the inferior to stop, and then send a stop reply. In
6047 the mean time, we can't start another command/query ourselves
6048 because the stub wouldn't be ready to process it. This applies
6049 only to the base all-stop protocol, however. In non-stop (which
6050 only supports vCont), the stub replies with an "OK", and is
6051 immediate able to process further serial input. */
6052 if (!target_is_non_stop_p ())
6053 rs->waiting_for_stop_reply = 1;
6054 }
6055
6056 static void check_pending_events_prevent_wildcard_vcont
6057 (int *may_global_wildcard_vcont);
6058 static int is_pending_fork_parent_thread (struct thread_info *thread);
6059
6060 /* Private per-inferior info for target remote processes. */
6061
6062 struct remote_inferior : public private_inferior
6063 {
6064 /* Whether we can send a wildcard vCont for this process. */
6065 bool may_wildcard_vcont = true;
6066 };
6067
6068 /* Get the remote private inferior data associated to INF. */
6069
6070 static remote_inferior *
6071 get_remote_inferior (inferior *inf)
6072 {
6073 if (inf->priv == NULL)
6074 inf->priv.reset (new remote_inferior);
6075
6076 return static_cast<remote_inferior *> (inf->priv.get ());
6077 }
6078
6079 /* Structure used to track the construction of a vCont packet in the
6080 outgoing packet buffer. This is used to send multiple vCont
6081 packets if we have more actions than would fit a single packet. */
6082
6083 struct vcont_builder
6084 {
6085 /* Pointer to the first action. P points here if no action has been
6086 appended yet. */
6087 char *first_action;
6088
6089 /* Where the next action will be appended. */
6090 char *p;
6091
6092 /* The end of the buffer. Must never write past this. */
6093 char *endp;
6094 };
6095
6096 /* Prepare the outgoing buffer for a new vCont packet. */
6097
6098 static void
6099 vcont_builder_restart (struct vcont_builder *builder)
6100 {
6101 struct remote_state *rs = get_remote_state ();
6102
6103 builder->p = rs->buf;
6104 builder->endp = rs->buf + get_remote_packet_size ();
6105 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
6106 builder->first_action = builder->p;
6107 }
6108
6109 /* If the vCont packet being built has any action, send it to the
6110 remote end. */
6111
6112 static void
6113 vcont_builder_flush (struct vcont_builder *builder)
6114 {
6115 struct remote_state *rs;
6116
6117 if (builder->p == builder->first_action)
6118 return;
6119
6120 rs = get_remote_state ();
6121 putpkt (rs->buf);
6122 getpkt (&rs->buf, &rs->buf_size, 0);
6123 if (strcmp (rs->buf, "OK") != 0)
6124 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6125 }
6126
6127 /* The largest action is range-stepping, with its two addresses. This
6128 is more than sufficient. If a new, bigger action is created, it'll
6129 quickly trigger a failed assertion in append_resumption (and we'll
6130 just bump this). */
6131 #define MAX_ACTION_SIZE 200
6132
6133 /* Append a new vCont action in the outgoing packet being built. If
6134 the action doesn't fit the packet along with previous actions, push
6135 what we've got so far to the remote end and start over a new vCont
6136 packet (with the new action). */
6137
6138 static void
6139 vcont_builder_push_action (struct vcont_builder *builder,
6140 ptid_t ptid, int step, enum gdb_signal siggnal)
6141 {
6142 char buf[MAX_ACTION_SIZE + 1];
6143 char *endp;
6144 size_t rsize;
6145
6146 endp = append_resumption (buf, buf + sizeof (buf),
6147 ptid, step, siggnal);
6148
6149 /* Check whether this new action would fit in the vCont packet along
6150 with previous actions. If not, send what we've got so far and
6151 start a new vCont packet. */
6152 rsize = endp - buf;
6153 if (rsize > builder->endp - builder->p)
6154 {
6155 vcont_builder_flush (builder);
6156 vcont_builder_restart (builder);
6157
6158 /* Should now fit. */
6159 gdb_assert (rsize <= builder->endp - builder->p);
6160 }
6161
6162 memcpy (builder->p, buf, rsize);
6163 builder->p += rsize;
6164 *builder->p = '\0';
6165 }
6166
6167 /* to_commit_resume implementation. */
6168
6169 void
6170 remote_target::commit_resume ()
6171 {
6172 struct inferior *inf;
6173 struct thread_info *tp;
6174 int any_process_wildcard;
6175 int may_global_wildcard_vcont;
6176 struct vcont_builder vcont_builder;
6177
6178 /* If connected in all-stop mode, we'd send the remote resume
6179 request directly from remote_resume. Likewise if
6180 reverse-debugging, as there are no defined vCont actions for
6181 reverse execution. */
6182 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6183 return;
6184
6185 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6186 instead of resuming all threads of each process individually.
6187 However, if any thread of a process must remain halted, we can't
6188 send wildcard resumes and must send one action per thread.
6189
6190 Care must be taken to not resume threads/processes the server
6191 side already told us are stopped, but the core doesn't know about
6192 yet, because the events are still in the vStopped notification
6193 queue. For example:
6194
6195 #1 => vCont s:p1.1;c
6196 #2 <= OK
6197 #3 <= %Stopped T05 p1.1
6198 #4 => vStopped
6199 #5 <= T05 p1.2
6200 #6 => vStopped
6201 #7 <= OK
6202 #8 (infrun handles the stop for p1.1 and continues stepping)
6203 #9 => vCont s:p1.1;c
6204
6205 The last vCont above would resume thread p1.2 by mistake, because
6206 the server has no idea that the event for p1.2 had not been
6207 handled yet.
6208
6209 The server side must similarly ignore resume actions for the
6210 thread that has a pending %Stopped notification (and any other
6211 threads with events pending), until GDB acks the notification
6212 with vStopped. Otherwise, e.g., the following case is
6213 mishandled:
6214
6215 #1 => g (or any other packet)
6216 #2 <= [registers]
6217 #3 <= %Stopped T05 p1.2
6218 #4 => vCont s:p1.1;c
6219 #5 <= OK
6220
6221 Above, the server must not resume thread p1.2. GDB can't know
6222 that p1.2 stopped until it acks the %Stopped notification, and
6223 since from GDB's perspective all threads should be running, it
6224 sends a "c" action.
6225
6226 Finally, special care must also be given to handling fork/vfork
6227 events. A (v)fork event actually tells us that two processes
6228 stopped -- the parent and the child. Until we follow the fork,
6229 we must not resume the child. Therefore, if we have a pending
6230 fork follow, we must not send a global wildcard resume action
6231 (vCont;c). We can still send process-wide wildcards though. */
6232
6233 /* Start by assuming a global wildcard (vCont;c) is possible. */
6234 may_global_wildcard_vcont = 1;
6235
6236 /* And assume every process is individually wildcard-able too. */
6237 ALL_NON_EXITED_INFERIORS (inf)
6238 {
6239 remote_inferior *priv = get_remote_inferior (inf);
6240
6241 priv->may_wildcard_vcont = true;
6242 }
6243
6244 /* Check for any pending events (not reported or processed yet) and
6245 disable process and global wildcard resumes appropriately. */
6246 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6247
6248 ALL_NON_EXITED_THREADS (tp)
6249 {
6250 /* If a thread of a process is not meant to be resumed, then we
6251 can't wildcard that process. */
6252 if (!tp->executing)
6253 {
6254 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6255
6256 /* And if we can't wildcard a process, we can't wildcard
6257 everything either. */
6258 may_global_wildcard_vcont = 0;
6259 continue;
6260 }
6261
6262 /* If a thread is the parent of an unfollowed fork, then we
6263 can't do a global wildcard, as that would resume the fork
6264 child. */
6265 if (is_pending_fork_parent_thread (tp))
6266 may_global_wildcard_vcont = 0;
6267 }
6268
6269 /* Now let's build the vCont packet(s). Actions must be appended
6270 from narrower to wider scopes (thread -> process -> global). If
6271 we end up with too many actions for a single packet vcont_builder
6272 flushes the current vCont packet to the remote side and starts a
6273 new one. */
6274 vcont_builder_restart (&vcont_builder);
6275
6276 /* Threads first. */
6277 ALL_NON_EXITED_THREADS (tp)
6278 {
6279 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6280
6281 if (!tp->executing || remote_thr->vcont_resumed)
6282 continue;
6283
6284 gdb_assert (!thread_is_in_step_over_chain (tp));
6285
6286 if (!remote_thr->last_resume_step
6287 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6288 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6289 {
6290 /* We'll send a wildcard resume instead. */
6291 remote_thr->vcont_resumed = 1;
6292 continue;
6293 }
6294
6295 vcont_builder_push_action (&vcont_builder, tp->ptid,
6296 remote_thr->last_resume_step,
6297 remote_thr->last_resume_sig);
6298 remote_thr->vcont_resumed = 1;
6299 }
6300
6301 /* Now check whether we can send any process-wide wildcard. This is
6302 to avoid sending a global wildcard in the case nothing is
6303 supposed to be resumed. */
6304 any_process_wildcard = 0;
6305
6306 ALL_NON_EXITED_INFERIORS (inf)
6307 {
6308 if (get_remote_inferior (inf)->may_wildcard_vcont)
6309 {
6310 any_process_wildcard = 1;
6311 break;
6312 }
6313 }
6314
6315 if (any_process_wildcard)
6316 {
6317 /* If all processes are wildcard-able, then send a single "c"
6318 action, otherwise, send an "all (-1) threads of process"
6319 continue action for each running process, if any. */
6320 if (may_global_wildcard_vcont)
6321 {
6322 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6323 0, GDB_SIGNAL_0);
6324 }
6325 else
6326 {
6327 ALL_NON_EXITED_INFERIORS (inf)
6328 {
6329 if (get_remote_inferior (inf)->may_wildcard_vcont)
6330 {
6331 vcont_builder_push_action (&vcont_builder,
6332 pid_to_ptid (inf->pid),
6333 0, GDB_SIGNAL_0);
6334 }
6335 }
6336 }
6337 }
6338
6339 vcont_builder_flush (&vcont_builder);
6340 }
6341
6342 \f
6343
6344 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6345 thread, all threads of a remote process, or all threads of all
6346 processes. */
6347
6348 static void
6349 remote_stop_ns (ptid_t ptid)
6350 {
6351 struct remote_state *rs = get_remote_state ();
6352 char *p = rs->buf;
6353 char *endp = rs->buf + get_remote_packet_size ();
6354
6355 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6356 remote_vcont_probe (rs);
6357
6358 if (!rs->supports_vCont.t)
6359 error (_("Remote server does not support stopping threads"));
6360
6361 if (ptid_equal (ptid, minus_one_ptid)
6362 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6363 p += xsnprintf (p, endp - p, "vCont;t");
6364 else
6365 {
6366 ptid_t nptid;
6367
6368 p += xsnprintf (p, endp - p, "vCont;t:");
6369
6370 if (ptid_is_pid (ptid))
6371 /* All (-1) threads of process. */
6372 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6373 else
6374 {
6375 /* Small optimization: if we already have a stop reply for
6376 this thread, no use in telling the stub we want this
6377 stopped. */
6378 if (peek_stop_reply (ptid))
6379 return;
6380
6381 nptid = ptid;
6382 }
6383
6384 write_ptid (p, endp, nptid);
6385 }
6386
6387 /* In non-stop, we get an immediate OK reply. The stop reply will
6388 come in asynchronously by notification. */
6389 putpkt (rs->buf);
6390 getpkt (&rs->buf, &rs->buf_size, 0);
6391 if (strcmp (rs->buf, "OK") != 0)
6392 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6393 }
6394
6395 /* All-stop version of target_interrupt. Sends a break or a ^C to
6396 interrupt the remote target. It is undefined which thread of which
6397 process reports the interrupt. */
6398
6399 static void
6400 remote_interrupt_as (void)
6401 {
6402 struct remote_state *rs = get_remote_state ();
6403
6404 rs->ctrlc_pending_p = 1;
6405
6406 /* If the inferior is stopped already, but the core didn't know
6407 about it yet, just ignore the request. The cached wait status
6408 will be collected in remote_wait. */
6409 if (rs->cached_wait_status)
6410 return;
6411
6412 /* Send interrupt_sequence to remote target. */
6413 send_interrupt_sequence ();
6414 }
6415
6416 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6417 the remote target. It is undefined which thread of which process
6418 reports the interrupt. Throws an error if the packet is not
6419 supported by the server. */
6420
6421 static void
6422 remote_interrupt_ns (void)
6423 {
6424 struct remote_state *rs = get_remote_state ();
6425 char *p = rs->buf;
6426 char *endp = rs->buf + get_remote_packet_size ();
6427
6428 xsnprintf (p, endp - p, "vCtrlC");
6429
6430 /* In non-stop, we get an immediate OK reply. The stop reply will
6431 come in asynchronously by notification. */
6432 putpkt (rs->buf);
6433 getpkt (&rs->buf, &rs->buf_size, 0);
6434
6435 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6436 {
6437 case PACKET_OK:
6438 break;
6439 case PACKET_UNKNOWN:
6440 error (_("No support for interrupting the remote target."));
6441 case PACKET_ERROR:
6442 error (_("Interrupting target failed: %s"), rs->buf);
6443 }
6444 }
6445
6446 /* Implement the to_stop function for the remote targets. */
6447
6448 void
6449 remote_target::stop (ptid_t ptid)
6450 {
6451 if (remote_debug)
6452 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6453
6454 if (target_is_non_stop_p ())
6455 remote_stop_ns (ptid);
6456 else
6457 {
6458 /* We don't currently have a way to transparently pause the
6459 remote target in all-stop mode. Interrupt it instead. */
6460 remote_interrupt_as ();
6461 }
6462 }
6463
6464 /* Implement the to_interrupt function for the remote targets. */
6465
6466 void
6467 remote_target::interrupt ()
6468 {
6469 if (remote_debug)
6470 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6471
6472 if (target_is_non_stop_p ())
6473 remote_interrupt_ns ();
6474 else
6475 remote_interrupt_as ();
6476 }
6477
6478 /* Implement the to_pass_ctrlc function for the remote targets. */
6479
6480 void
6481 remote_target::pass_ctrlc ()
6482 {
6483 struct remote_state *rs = get_remote_state ();
6484
6485 if (remote_debug)
6486 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6487
6488 /* If we're starting up, we're not fully synced yet. Quit
6489 immediately. */
6490 if (rs->starting_up)
6491 quit ();
6492 /* If ^C has already been sent once, offer to disconnect. */
6493 else if (rs->ctrlc_pending_p)
6494 interrupt_query ();
6495 else
6496 target_interrupt ();
6497 }
6498
6499 /* Ask the user what to do when an interrupt is received. */
6500
6501 static void
6502 interrupt_query (void)
6503 {
6504 struct remote_state *rs = get_remote_state ();
6505
6506 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6507 {
6508 if (query (_("The target is not responding to interrupt requests.\n"
6509 "Stop debugging it? ")))
6510 {
6511 remote_unpush_target ();
6512 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6513 }
6514 }
6515 else
6516 {
6517 if (query (_("Interrupted while waiting for the program.\n"
6518 "Give up waiting? ")))
6519 quit ();
6520 }
6521 }
6522
6523 /* Enable/disable target terminal ownership. Most targets can use
6524 terminal groups to control terminal ownership. Remote targets are
6525 different in that explicit transfer of ownership to/from GDB/target
6526 is required. */
6527
6528 void
6529 remote_target::terminal_inferior ()
6530 {
6531 /* NOTE: At this point we could also register our selves as the
6532 recipient of all input. Any characters typed could then be
6533 passed on down to the target. */
6534 }
6535
6536 void
6537 remote_target::terminal_ours ()
6538 {
6539 }
6540
6541 static void
6542 remote_console_output (char *msg)
6543 {
6544 char *p;
6545
6546 for (p = msg; p[0] && p[1]; p += 2)
6547 {
6548 char tb[2];
6549 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6550
6551 tb[0] = c;
6552 tb[1] = 0;
6553 fputs_unfiltered (tb, gdb_stdtarg);
6554 }
6555 gdb_flush (gdb_stdtarg);
6556 }
6557
6558 DEF_VEC_O(cached_reg_t);
6559
6560 typedef struct stop_reply
6561 {
6562 struct notif_event base;
6563
6564 /* The identifier of the thread about this event */
6565 ptid_t ptid;
6566
6567 /* The remote state this event is associated with. When the remote
6568 connection, represented by a remote_state object, is closed,
6569 all the associated stop_reply events should be released. */
6570 struct remote_state *rs;
6571
6572 struct target_waitstatus ws;
6573
6574 /* The architecture associated with the expedited registers. */
6575 gdbarch *arch;
6576
6577 /* Expedited registers. This makes remote debugging a bit more
6578 efficient for those targets that provide critical registers as
6579 part of their normal status mechanism (as another roundtrip to
6580 fetch them is avoided). */
6581 VEC(cached_reg_t) *regcache;
6582
6583 enum target_stop_reason stop_reason;
6584
6585 CORE_ADDR watch_data_address;
6586
6587 int core;
6588 } *stop_reply_p;
6589
6590 DECLARE_QUEUE_P (stop_reply_p);
6591 DEFINE_QUEUE_P (stop_reply_p);
6592 /* The list of already fetched and acknowledged stop events. This
6593 queue is used for notification Stop, and other notifications
6594 don't need queue for their events, because the notification events
6595 of Stop can't be consumed immediately, so that events should be
6596 queued first, and be consumed by remote_wait_{ns,as} one per
6597 time. Other notifications can consume their events immediately,
6598 so queue is not needed for them. */
6599 static QUEUE (stop_reply_p) *stop_reply_queue;
6600
6601 static void
6602 stop_reply_xfree (struct stop_reply *r)
6603 {
6604 notif_event_xfree ((struct notif_event *) r);
6605 }
6606
6607 /* Return the length of the stop reply queue. */
6608
6609 static int
6610 stop_reply_queue_length (void)
6611 {
6612 return QUEUE_length (stop_reply_p, stop_reply_queue);
6613 }
6614
6615 static void
6616 remote_notif_stop_parse (struct notif_client *self, char *buf,
6617 struct notif_event *event)
6618 {
6619 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6620 }
6621
6622 static void
6623 remote_notif_stop_ack (struct notif_client *self, char *buf,
6624 struct notif_event *event)
6625 {
6626 struct stop_reply *stop_reply = (struct stop_reply *) event;
6627
6628 /* acknowledge */
6629 putpkt (self->ack_command);
6630
6631 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6632 /* We got an unknown stop reply. */
6633 error (_("Unknown stop reply"));
6634
6635 push_stop_reply (stop_reply);
6636 }
6637
6638 static int
6639 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6640 {
6641 /* We can't get pending events in remote_notif_process for
6642 notification stop, and we have to do this in remote_wait_ns
6643 instead. If we fetch all queued events from stub, remote stub
6644 may exit and we have no chance to process them back in
6645 remote_wait_ns. */
6646 mark_async_event_handler (remote_async_inferior_event_token);
6647 return 0;
6648 }
6649
6650 static void
6651 stop_reply_dtr (struct notif_event *event)
6652 {
6653 struct stop_reply *r = (struct stop_reply *) event;
6654 cached_reg_t *reg;
6655 int ix;
6656
6657 for (ix = 0;
6658 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6659 ix++)
6660 xfree (reg->data);
6661
6662 VEC_free (cached_reg_t, r->regcache);
6663 }
6664
6665 static struct notif_event *
6666 remote_notif_stop_alloc_reply (void)
6667 {
6668 /* We cast to a pointer to the "base class". */
6669 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6670
6671 r->dtr = stop_reply_dtr;
6672
6673 return r;
6674 }
6675
6676 /* A client of notification Stop. */
6677
6678 struct notif_client notif_client_stop =
6679 {
6680 "Stop",
6681 "vStopped",
6682 remote_notif_stop_parse,
6683 remote_notif_stop_ack,
6684 remote_notif_stop_can_get_pending_events,
6685 remote_notif_stop_alloc_reply,
6686 REMOTE_NOTIF_STOP,
6687 };
6688
6689 /* A parameter to pass data in and out. */
6690
6691 struct queue_iter_param
6692 {
6693 void *input;
6694 struct stop_reply *output;
6695 };
6696
6697 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6698 the pid of the process that owns the threads we want to check, or
6699 -1 if we want to check all threads. */
6700
6701 static int
6702 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6703 ptid_t thread_ptid)
6704 {
6705 if (ws->kind == TARGET_WAITKIND_FORKED
6706 || ws->kind == TARGET_WAITKIND_VFORKED)
6707 {
6708 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6709 return 1;
6710 }
6711
6712 return 0;
6713 }
6714
6715 /* Return the thread's pending status used to determine whether the
6716 thread is a fork parent stopped at a fork event. */
6717
6718 static struct target_waitstatus *
6719 thread_pending_fork_status (struct thread_info *thread)
6720 {
6721 if (thread->suspend.waitstatus_pending_p)
6722 return &thread->suspend.waitstatus;
6723 else
6724 return &thread->pending_follow;
6725 }
6726
6727 /* Determine if THREAD is a pending fork parent thread. */
6728
6729 static int
6730 is_pending_fork_parent_thread (struct thread_info *thread)
6731 {
6732 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6733 int pid = -1;
6734
6735 return is_pending_fork_parent (ws, pid, thread->ptid);
6736 }
6737
6738 /* Check whether EVENT is a fork event, and if it is, remove the
6739 fork child from the context list passed in DATA. */
6740
6741 static int
6742 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6743 QUEUE_ITER (stop_reply_p) *iter,
6744 stop_reply_p event,
6745 void *data)
6746 {
6747 struct queue_iter_param *param = (struct queue_iter_param *) data;
6748 struct threads_listing_context *context
6749 = (struct threads_listing_context *) param->input;
6750
6751 if (event->ws.kind == TARGET_WAITKIND_FORKED
6752 || event->ws.kind == TARGET_WAITKIND_VFORKED
6753 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6754 context->remove_thread (event->ws.value.related_pid);
6755
6756 return 1;
6757 }
6758
6759 /* If CONTEXT contains any fork child threads that have not been
6760 reported yet, remove them from the CONTEXT list. If such a
6761 thread exists it is because we are stopped at a fork catchpoint
6762 and have not yet called follow_fork, which will set up the
6763 host-side data structures for the new process. */
6764
6765 static void
6766 remove_new_fork_children (struct threads_listing_context *context)
6767 {
6768 struct thread_info * thread;
6769 int pid = -1;
6770 struct notif_client *notif = &notif_client_stop;
6771 struct queue_iter_param param;
6772
6773 /* For any threads stopped at a fork event, remove the corresponding
6774 fork child threads from the CONTEXT list. */
6775 ALL_NON_EXITED_THREADS (thread)
6776 {
6777 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6778
6779 if (is_pending_fork_parent (ws, pid, thread->ptid))
6780 context->remove_thread (ws->value.related_pid);
6781 }
6782
6783 /* Check for any pending fork events (not reported or processed yet)
6784 in process PID and remove those fork child threads from the
6785 CONTEXT list as well. */
6786 remote_notif_get_pending_events (notif);
6787 param.input = context;
6788 param.output = NULL;
6789 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6790 remove_child_of_pending_fork, &param);
6791 }
6792
6793 /* Check whether EVENT would prevent a global or process wildcard
6794 vCont action. */
6795
6796 static int
6797 check_pending_event_prevents_wildcard_vcont_callback
6798 (QUEUE (stop_reply_p) *q,
6799 QUEUE_ITER (stop_reply_p) *iter,
6800 stop_reply_p event,
6801 void *data)
6802 {
6803 struct inferior *inf;
6804 int *may_global_wildcard_vcont = (int *) data;
6805
6806 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6807 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6808 return 1;
6809
6810 if (event->ws.kind == TARGET_WAITKIND_FORKED
6811 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6812 *may_global_wildcard_vcont = 0;
6813
6814 inf = find_inferior_ptid (event->ptid);
6815
6816 /* This may be the first time we heard about this process.
6817 Regardless, we must not do a global wildcard resume, otherwise
6818 we'd resume this process too. */
6819 *may_global_wildcard_vcont = 0;
6820 if (inf != NULL)
6821 get_remote_inferior (inf)->may_wildcard_vcont = false;
6822
6823 return 1;
6824 }
6825
6826 /* Check whether any event pending in the vStopped queue would prevent
6827 a global or process wildcard vCont action. Clear
6828 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6829 and clear the event inferior's may_wildcard_vcont flag if we can't
6830 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6831
6832 static void
6833 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6834 {
6835 struct notif_client *notif = &notif_client_stop;
6836
6837 remote_notif_get_pending_events (notif);
6838 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6839 check_pending_event_prevents_wildcard_vcont_callback,
6840 may_global_wildcard);
6841 }
6842
6843 /* Remove stop replies in the queue if its pid is equal to the given
6844 inferior's pid. */
6845
6846 static int
6847 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6848 QUEUE_ITER (stop_reply_p) *iter,
6849 stop_reply_p event,
6850 void *data)
6851 {
6852 struct queue_iter_param *param = (struct queue_iter_param *) data;
6853 struct inferior *inf = (struct inferior *) param->input;
6854
6855 if (ptid_get_pid (event->ptid) == inf->pid)
6856 {
6857 stop_reply_xfree (event);
6858 QUEUE_remove_elem (stop_reply_p, q, iter);
6859 }
6860
6861 return 1;
6862 }
6863
6864 /* Discard all pending stop replies of inferior INF. */
6865
6866 static void
6867 discard_pending_stop_replies (struct inferior *inf)
6868 {
6869 struct queue_iter_param param;
6870 struct stop_reply *reply;
6871 struct remote_state *rs = get_remote_state ();
6872 struct remote_notif_state *rns = rs->notif_state;
6873
6874 /* This function can be notified when an inferior exists. When the
6875 target is not remote, the notification state is NULL. */
6876 if (rs->remote_desc == NULL)
6877 return;
6878
6879 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6880
6881 /* Discard the in-flight notification. */
6882 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6883 {
6884 stop_reply_xfree (reply);
6885 rns->pending_event[notif_client_stop.id] = NULL;
6886 }
6887
6888 param.input = inf;
6889 param.output = NULL;
6890 /* Discard the stop replies we have already pulled with
6891 vStopped. */
6892 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6893 remove_stop_reply_for_inferior, &param);
6894 }
6895
6896 /* If its remote state is equal to the given remote state,
6897 remove EVENT from the stop reply queue. */
6898
6899 static int
6900 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6901 QUEUE_ITER (stop_reply_p) *iter,
6902 stop_reply_p event,
6903 void *data)
6904 {
6905 struct queue_iter_param *param = (struct queue_iter_param *) data;
6906 struct remote_state *rs = (struct remote_state *) param->input;
6907
6908 if (event->rs == rs)
6909 {
6910 stop_reply_xfree (event);
6911 QUEUE_remove_elem (stop_reply_p, q, iter);
6912 }
6913
6914 return 1;
6915 }
6916
6917 /* Discard the stop replies for RS in stop_reply_queue. */
6918
6919 static void
6920 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6921 {
6922 struct queue_iter_param param;
6923
6924 param.input = rs;
6925 param.output = NULL;
6926 /* Discard the stop replies we have already pulled with
6927 vStopped. */
6928 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6929 remove_stop_reply_of_remote_state, &param);
6930 }
6931
6932 /* A parameter to pass data in and out. */
6933
6934 static int
6935 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6936 QUEUE_ITER (stop_reply_p) *iter,
6937 stop_reply_p event,
6938 void *data)
6939 {
6940 struct queue_iter_param *param = (struct queue_iter_param *) data;
6941 ptid_t *ptid = (ptid_t *) param->input;
6942
6943 if (ptid_match (event->ptid, *ptid))
6944 {
6945 param->output = event;
6946 QUEUE_remove_elem (stop_reply_p, q, iter);
6947 return 0;
6948 }
6949
6950 return 1;
6951 }
6952
6953 /* Remove the first reply in 'stop_reply_queue' which matches
6954 PTID. */
6955
6956 static struct stop_reply *
6957 remote_notif_remove_queued_reply (ptid_t ptid)
6958 {
6959 struct queue_iter_param param;
6960
6961 param.input = &ptid;
6962 param.output = NULL;
6963
6964 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6965 remote_notif_remove_once_on_match, &param);
6966 if (notif_debug)
6967 fprintf_unfiltered (gdb_stdlog,
6968 "notif: discard queued event: 'Stop' in %s\n",
6969 target_pid_to_str (ptid));
6970
6971 return param.output;
6972 }
6973
6974 /* Look for a queued stop reply belonging to PTID. If one is found,
6975 remove it from the queue, and return it. Returns NULL if none is
6976 found. If there are still queued events left to process, tell the
6977 event loop to get back to target_wait soon. */
6978
6979 static struct stop_reply *
6980 queued_stop_reply (ptid_t ptid)
6981 {
6982 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6983
6984 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6985 /* There's still at least an event left. */
6986 mark_async_event_handler (remote_async_inferior_event_token);
6987
6988 return r;
6989 }
6990
6991 /* Push a fully parsed stop reply in the stop reply queue. Since we
6992 know that we now have at least one queued event left to pass to the
6993 core side, tell the event loop to get back to target_wait soon. */
6994
6995 static void
6996 push_stop_reply (struct stop_reply *new_event)
6997 {
6998 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6999
7000 if (notif_debug)
7001 fprintf_unfiltered (gdb_stdlog,
7002 "notif: push 'Stop' %s to queue %d\n",
7003 target_pid_to_str (new_event->ptid),
7004 QUEUE_length (stop_reply_p,
7005 stop_reply_queue));
7006
7007 mark_async_event_handler (remote_async_inferior_event_token);
7008 }
7009
7010 static int
7011 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
7012 QUEUE_ITER (stop_reply_p) *iter,
7013 struct stop_reply *event,
7014 void *data)
7015 {
7016 ptid_t *ptid = (ptid_t *) data;
7017
7018 return !(ptid_equal (*ptid, event->ptid)
7019 && event->ws.kind == TARGET_WAITKIND_STOPPED);
7020 }
7021
7022 /* Returns true if we have a stop reply for PTID. */
7023
7024 static int
7025 peek_stop_reply (ptid_t ptid)
7026 {
7027 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
7028 stop_reply_match_ptid_and_ws, &ptid);
7029 }
7030
7031 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7032 starting with P and ending with PEND matches PREFIX. */
7033
7034 static int
7035 strprefix (const char *p, const char *pend, const char *prefix)
7036 {
7037 for ( ; p < pend; p++, prefix++)
7038 if (*p != *prefix)
7039 return 0;
7040 return *prefix == '\0';
7041 }
7042
7043 /* Parse the stop reply in BUF. Either the function succeeds, and the
7044 result is stored in EVENT, or throws an error. */
7045
7046 static void
7047 remote_parse_stop_reply (char *buf, struct stop_reply *event)
7048 {
7049 remote_arch_state *rsa = NULL;
7050 ULONGEST addr;
7051 const char *p;
7052 int skipregs = 0;
7053
7054 event->ptid = null_ptid;
7055 event->rs = get_remote_state ();
7056 event->ws.kind = TARGET_WAITKIND_IGNORE;
7057 event->ws.value.integer = 0;
7058 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7059 event->regcache = NULL;
7060 event->core = -1;
7061
7062 switch (buf[0])
7063 {
7064 case 'T': /* Status with PC, SP, FP, ... */
7065 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7066 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7067 ss = signal number
7068 n... = register number
7069 r... = register contents
7070 */
7071
7072 p = &buf[3]; /* after Txx */
7073 while (*p)
7074 {
7075 const char *p1;
7076 int fieldsize;
7077
7078 p1 = strchr (p, ':');
7079 if (p1 == NULL)
7080 error (_("Malformed packet(a) (missing colon): %s\n\
7081 Packet: '%s'\n"),
7082 p, buf);
7083 if (p == p1)
7084 error (_("Malformed packet(a) (missing register number): %s\n\
7085 Packet: '%s'\n"),
7086 p, buf);
7087
7088 /* Some "registers" are actually extended stop information.
7089 Note if you're adding a new entry here: GDB 7.9 and
7090 earlier assume that all register "numbers" that start
7091 with an hex digit are real register numbers. Make sure
7092 the server only sends such a packet if it knows the
7093 client understands it. */
7094
7095 if (strprefix (p, p1, "thread"))
7096 event->ptid = read_ptid (++p1, &p);
7097 else if (strprefix (p, p1, "syscall_entry"))
7098 {
7099 ULONGEST sysno;
7100
7101 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7102 p = unpack_varlen_hex (++p1, &sysno);
7103 event->ws.value.syscall_number = (int) sysno;
7104 }
7105 else if (strprefix (p, p1, "syscall_return"))
7106 {
7107 ULONGEST sysno;
7108
7109 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7110 p = unpack_varlen_hex (++p1, &sysno);
7111 event->ws.value.syscall_number = (int) sysno;
7112 }
7113 else if (strprefix (p, p1, "watch")
7114 || strprefix (p, p1, "rwatch")
7115 || strprefix (p, p1, "awatch"))
7116 {
7117 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7118 p = unpack_varlen_hex (++p1, &addr);
7119 event->watch_data_address = (CORE_ADDR) addr;
7120 }
7121 else if (strprefix (p, p1, "swbreak"))
7122 {
7123 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7124
7125 /* Make sure the stub doesn't forget to indicate support
7126 with qSupported. */
7127 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7128 error (_("Unexpected swbreak stop reason"));
7129
7130 /* The value part is documented as "must be empty",
7131 though we ignore it, in case we ever decide to make
7132 use of it in a backward compatible way. */
7133 p = strchrnul (p1 + 1, ';');
7134 }
7135 else if (strprefix (p, p1, "hwbreak"))
7136 {
7137 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7138
7139 /* Make sure the stub doesn't forget to indicate support
7140 with qSupported. */
7141 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7142 error (_("Unexpected hwbreak stop reason"));
7143
7144 /* See above. */
7145 p = strchrnul (p1 + 1, ';');
7146 }
7147 else if (strprefix (p, p1, "library"))
7148 {
7149 event->ws.kind = TARGET_WAITKIND_LOADED;
7150 p = strchrnul (p1 + 1, ';');
7151 }
7152 else if (strprefix (p, p1, "replaylog"))
7153 {
7154 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7155 /* p1 will indicate "begin" or "end", but it makes
7156 no difference for now, so ignore it. */
7157 p = strchrnul (p1 + 1, ';');
7158 }
7159 else if (strprefix (p, p1, "core"))
7160 {
7161 ULONGEST c;
7162
7163 p = unpack_varlen_hex (++p1, &c);
7164 event->core = c;
7165 }
7166 else if (strprefix (p, p1, "fork"))
7167 {
7168 event->ws.value.related_pid = read_ptid (++p1, &p);
7169 event->ws.kind = TARGET_WAITKIND_FORKED;
7170 }
7171 else if (strprefix (p, p1, "vfork"))
7172 {
7173 event->ws.value.related_pid = read_ptid (++p1, &p);
7174 event->ws.kind = TARGET_WAITKIND_VFORKED;
7175 }
7176 else if (strprefix (p, p1, "vforkdone"))
7177 {
7178 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7179 p = strchrnul (p1 + 1, ';');
7180 }
7181 else if (strprefix (p, p1, "exec"))
7182 {
7183 ULONGEST ignored;
7184 char pathname[PATH_MAX];
7185 int pathlen;
7186
7187 /* Determine the length of the execd pathname. */
7188 p = unpack_varlen_hex (++p1, &ignored);
7189 pathlen = (p - p1) / 2;
7190
7191 /* Save the pathname for event reporting and for
7192 the next run command. */
7193 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7194 pathname[pathlen] = '\0';
7195
7196 /* This is freed during event handling. */
7197 event->ws.value.execd_pathname = xstrdup (pathname);
7198 event->ws.kind = TARGET_WAITKIND_EXECD;
7199
7200 /* Skip the registers included in this packet, since
7201 they may be for an architecture different from the
7202 one used by the original program. */
7203 skipregs = 1;
7204 }
7205 else if (strprefix (p, p1, "create"))
7206 {
7207 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7208 p = strchrnul (p1 + 1, ';');
7209 }
7210 else
7211 {
7212 ULONGEST pnum;
7213 const char *p_temp;
7214
7215 if (skipregs)
7216 {
7217 p = strchrnul (p1 + 1, ';');
7218 p++;
7219 continue;
7220 }
7221
7222 /* Maybe a real ``P'' register number. */
7223 p_temp = unpack_varlen_hex (p, &pnum);
7224 /* If the first invalid character is the colon, we got a
7225 register number. Otherwise, it's an unknown stop
7226 reason. */
7227 if (p_temp == p1)
7228 {
7229 /* If we haven't parsed the event's thread yet, find
7230 it now, in order to find the architecture of the
7231 reported expedited registers. */
7232 if (event->ptid == null_ptid)
7233 {
7234 const char *thr = strstr (p1 + 1, ";thread:");
7235 if (thr != NULL)
7236 event->ptid = read_ptid (thr + strlen (";thread:"),
7237 NULL);
7238 else
7239 {
7240 /* Either the current thread hasn't changed,
7241 or the inferior is not multi-threaded.
7242 The event must be for the thread we last
7243 set as (or learned as being) current. */
7244 event->ptid = event->rs->general_thread;
7245 }
7246 }
7247
7248 if (rsa == NULL)
7249 {
7250 inferior *inf = (event->ptid == null_ptid
7251 ? NULL
7252 : find_inferior_ptid (event->ptid));
7253 /* If this is the first time we learn anything
7254 about this process, skip the registers
7255 included in this packet, since we don't yet
7256 know which architecture to use to parse them.
7257 We'll determine the architecture later when
7258 we process the stop reply and retrieve the
7259 target description, via
7260 remote_notice_new_inferior ->
7261 post_create_inferior. */
7262 if (inf == NULL)
7263 {
7264 p = strchrnul (p1 + 1, ';');
7265 p++;
7266 continue;
7267 }
7268
7269 event->arch = inf->gdbarch;
7270 rsa = event->rs->get_remote_arch_state (event->arch);
7271 }
7272
7273 packet_reg *reg
7274 = packet_reg_from_pnum (event->arch, rsa, pnum);
7275 cached_reg_t cached_reg;
7276
7277 if (reg == NULL)
7278 error (_("Remote sent bad register number %s: %s\n\
7279 Packet: '%s'\n"),
7280 hex_string (pnum), p, buf);
7281
7282 cached_reg.num = reg->regnum;
7283 cached_reg.data = (gdb_byte *)
7284 xmalloc (register_size (event->arch, reg->regnum));
7285
7286 p = p1 + 1;
7287 fieldsize = hex2bin (p, cached_reg.data,
7288 register_size (event->arch, reg->regnum));
7289 p += 2 * fieldsize;
7290 if (fieldsize < register_size (event->arch, reg->regnum))
7291 warning (_("Remote reply is too short: %s"), buf);
7292
7293 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7294 }
7295 else
7296 {
7297 /* Not a number. Silently skip unknown optional
7298 info. */
7299 p = strchrnul (p1 + 1, ';');
7300 }
7301 }
7302
7303 if (*p != ';')
7304 error (_("Remote register badly formatted: %s\nhere: %s"),
7305 buf, p);
7306 ++p;
7307 }
7308
7309 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7310 break;
7311
7312 /* fall through */
7313 case 'S': /* Old style status, just signal only. */
7314 {
7315 int sig;
7316
7317 event->ws.kind = TARGET_WAITKIND_STOPPED;
7318 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7319 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7320 event->ws.value.sig = (enum gdb_signal) sig;
7321 else
7322 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7323 }
7324 break;
7325 case 'w': /* Thread exited. */
7326 {
7327 const char *p;
7328 ULONGEST value;
7329
7330 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7331 p = unpack_varlen_hex (&buf[1], &value);
7332 event->ws.value.integer = value;
7333 if (*p != ';')
7334 error (_("stop reply packet badly formatted: %s"), buf);
7335 event->ptid = read_ptid (++p, NULL);
7336 break;
7337 }
7338 case 'W': /* Target exited. */
7339 case 'X':
7340 {
7341 const char *p;
7342 int pid;
7343 ULONGEST value;
7344
7345 /* GDB used to accept only 2 hex chars here. Stubs should
7346 only send more if they detect GDB supports multi-process
7347 support. */
7348 p = unpack_varlen_hex (&buf[1], &value);
7349
7350 if (buf[0] == 'W')
7351 {
7352 /* The remote process exited. */
7353 event->ws.kind = TARGET_WAITKIND_EXITED;
7354 event->ws.value.integer = value;
7355 }
7356 else
7357 {
7358 /* The remote process exited with a signal. */
7359 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7360 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7361 event->ws.value.sig = (enum gdb_signal) value;
7362 else
7363 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7364 }
7365
7366 /* If no process is specified, assume inferior_ptid. */
7367 pid = ptid_get_pid (inferior_ptid);
7368 if (*p == '\0')
7369 ;
7370 else if (*p == ';')
7371 {
7372 p++;
7373
7374 if (*p == '\0')
7375 ;
7376 else if (startswith (p, "process:"))
7377 {
7378 ULONGEST upid;
7379
7380 p += sizeof ("process:") - 1;
7381 unpack_varlen_hex (p, &upid);
7382 pid = upid;
7383 }
7384 else
7385 error (_("unknown stop reply packet: %s"), buf);
7386 }
7387 else
7388 error (_("unknown stop reply packet: %s"), buf);
7389 event->ptid = pid_to_ptid (pid);
7390 }
7391 break;
7392 case 'N':
7393 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7394 event->ptid = minus_one_ptid;
7395 break;
7396 }
7397
7398 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7399 error (_("No process or thread specified in stop reply: %s"), buf);
7400 }
7401
7402 /* When the stub wants to tell GDB about a new notification reply, it
7403 sends a notification (%Stop, for example). Those can come it at
7404 any time, hence, we have to make sure that any pending
7405 putpkt/getpkt sequence we're making is finished, before querying
7406 the stub for more events with the corresponding ack command
7407 (vStopped, for example). E.g., if we started a vStopped sequence
7408 immediately upon receiving the notification, something like this
7409 could happen:
7410
7411 1.1) --> Hg 1
7412 1.2) <-- OK
7413 1.3) --> g
7414 1.4) <-- %Stop
7415 1.5) --> vStopped
7416 1.6) <-- (registers reply to step #1.3)
7417
7418 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7419 query.
7420
7421 To solve this, whenever we parse a %Stop notification successfully,
7422 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7423 doing whatever we were doing:
7424
7425 2.1) --> Hg 1
7426 2.2) <-- OK
7427 2.3) --> g
7428 2.4) <-- %Stop
7429 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7430 2.5) <-- (registers reply to step #2.3)
7431
7432 Eventualy after step #2.5, we return to the event loop, which
7433 notices there's an event on the
7434 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7435 associated callback --- the function below. At this point, we're
7436 always safe to start a vStopped sequence. :
7437
7438 2.6) --> vStopped
7439 2.7) <-- T05 thread:2
7440 2.8) --> vStopped
7441 2.9) --> OK
7442 */
7443
7444 void
7445 remote_notif_get_pending_events (struct notif_client *nc)
7446 {
7447 struct remote_state *rs = get_remote_state ();
7448
7449 if (rs->notif_state->pending_event[nc->id] != NULL)
7450 {
7451 if (notif_debug)
7452 fprintf_unfiltered (gdb_stdlog,
7453 "notif: process: '%s' ack pending event\n",
7454 nc->name);
7455
7456 /* acknowledge */
7457 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7458 rs->notif_state->pending_event[nc->id] = NULL;
7459
7460 while (1)
7461 {
7462 getpkt (&rs->buf, &rs->buf_size, 0);
7463 if (strcmp (rs->buf, "OK") == 0)
7464 break;
7465 else
7466 remote_notif_ack (nc, rs->buf);
7467 }
7468 }
7469 else
7470 {
7471 if (notif_debug)
7472 fprintf_unfiltered (gdb_stdlog,
7473 "notif: process: '%s' no pending reply\n",
7474 nc->name);
7475 }
7476 }
7477
7478 /* Called when it is decided that STOP_REPLY holds the info of the
7479 event that is to be returned to the core. This function always
7480 destroys STOP_REPLY. */
7481
7482 static ptid_t
7483 process_stop_reply (struct stop_reply *stop_reply,
7484 struct target_waitstatus *status)
7485 {
7486 ptid_t ptid;
7487
7488 *status = stop_reply->ws;
7489 ptid = stop_reply->ptid;
7490
7491 /* If no thread/process was reported by the stub, assume the current
7492 inferior. */
7493 if (ptid_equal (ptid, null_ptid))
7494 ptid = inferior_ptid;
7495
7496 if (status->kind != TARGET_WAITKIND_EXITED
7497 && status->kind != TARGET_WAITKIND_SIGNALLED
7498 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7499 {
7500 /* Expedited registers. */
7501 if (stop_reply->regcache)
7502 {
7503 struct regcache *regcache
7504 = get_thread_arch_regcache (ptid, stop_reply->arch);
7505 cached_reg_t *reg;
7506 int ix;
7507
7508 for (ix = 0;
7509 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7510 ix++)
7511 {
7512 regcache_raw_supply (regcache, reg->num, reg->data);
7513 xfree (reg->data);
7514 }
7515
7516 VEC_free (cached_reg_t, stop_reply->regcache);
7517 }
7518
7519 remote_notice_new_inferior (ptid, 0);
7520 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7521 remote_thr->core = stop_reply->core;
7522 remote_thr->stop_reason = stop_reply->stop_reason;
7523 remote_thr->watch_data_address = stop_reply->watch_data_address;
7524 remote_thr->vcont_resumed = 0;
7525 }
7526
7527 stop_reply_xfree (stop_reply);
7528 return ptid;
7529 }
7530
7531 /* The non-stop mode version of target_wait. */
7532
7533 static ptid_t
7534 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7535 {
7536 struct remote_state *rs = get_remote_state ();
7537 struct stop_reply *stop_reply;
7538 int ret;
7539 int is_notif = 0;
7540
7541 /* If in non-stop mode, get out of getpkt even if a
7542 notification is received. */
7543
7544 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7545 0 /* forever */, &is_notif);
7546 while (1)
7547 {
7548 if (ret != -1 && !is_notif)
7549 switch (rs->buf[0])
7550 {
7551 case 'E': /* Error of some sort. */
7552 /* We're out of sync with the target now. Did it continue
7553 or not? We can't tell which thread it was in non-stop,
7554 so just ignore this. */
7555 warning (_("Remote failure reply: %s"), rs->buf);
7556 break;
7557 case 'O': /* Console output. */
7558 remote_console_output (rs->buf + 1);
7559 break;
7560 default:
7561 warning (_("Invalid remote reply: %s"), rs->buf);
7562 break;
7563 }
7564
7565 /* Acknowledge a pending stop reply that may have arrived in the
7566 mean time. */
7567 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7568 remote_notif_get_pending_events (&notif_client_stop);
7569
7570 /* If indeed we noticed a stop reply, we're done. */
7571 stop_reply = queued_stop_reply (ptid);
7572 if (stop_reply != NULL)
7573 return process_stop_reply (stop_reply, status);
7574
7575 /* Still no event. If we're just polling for an event, then
7576 return to the event loop. */
7577 if (options & TARGET_WNOHANG)
7578 {
7579 status->kind = TARGET_WAITKIND_IGNORE;
7580 return minus_one_ptid;
7581 }
7582
7583 /* Otherwise do a blocking wait. */
7584 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7585 1 /* forever */, &is_notif);
7586 }
7587 }
7588
7589 /* Wait until the remote machine stops, then return, storing status in
7590 STATUS just as `wait' would. */
7591
7592 static ptid_t
7593 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7594 {
7595 struct remote_state *rs = get_remote_state ();
7596 ptid_t event_ptid = null_ptid;
7597 char *buf;
7598 struct stop_reply *stop_reply;
7599
7600 again:
7601
7602 status->kind = TARGET_WAITKIND_IGNORE;
7603 status->value.integer = 0;
7604
7605 stop_reply = queued_stop_reply (ptid);
7606 if (stop_reply != NULL)
7607 return process_stop_reply (stop_reply, status);
7608
7609 if (rs->cached_wait_status)
7610 /* Use the cached wait status, but only once. */
7611 rs->cached_wait_status = 0;
7612 else
7613 {
7614 int ret;
7615 int is_notif;
7616 int forever = ((options & TARGET_WNOHANG) == 0
7617 && wait_forever_enabled_p);
7618
7619 if (!rs->waiting_for_stop_reply)
7620 {
7621 status->kind = TARGET_WAITKIND_NO_RESUMED;
7622 return minus_one_ptid;
7623 }
7624
7625 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7626 _never_ wait for ever -> test on target_is_async_p().
7627 However, before we do that we need to ensure that the caller
7628 knows how to take the target into/out of async mode. */
7629 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7630 forever, &is_notif);
7631
7632 /* GDB gets a notification. Return to core as this event is
7633 not interesting. */
7634 if (ret != -1 && is_notif)
7635 return minus_one_ptid;
7636
7637 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7638 return minus_one_ptid;
7639 }
7640
7641 buf = rs->buf;
7642
7643 /* Assume that the target has acknowledged Ctrl-C unless we receive
7644 an 'F' or 'O' packet. */
7645 if (buf[0] != 'F' && buf[0] != 'O')
7646 rs->ctrlc_pending_p = 0;
7647
7648 switch (buf[0])
7649 {
7650 case 'E': /* Error of some sort. */
7651 /* We're out of sync with the target now. Did it continue or
7652 not? Not is more likely, so report a stop. */
7653 rs->waiting_for_stop_reply = 0;
7654
7655 warning (_("Remote failure reply: %s"), buf);
7656 status->kind = TARGET_WAITKIND_STOPPED;
7657 status->value.sig = GDB_SIGNAL_0;
7658 break;
7659 case 'F': /* File-I/O request. */
7660 /* GDB may access the inferior memory while handling the File-I/O
7661 request, but we don't want GDB accessing memory while waiting
7662 for a stop reply. See the comments in putpkt_binary. Set
7663 waiting_for_stop_reply to 0 temporarily. */
7664 rs->waiting_for_stop_reply = 0;
7665 remote_fileio_request (buf, rs->ctrlc_pending_p);
7666 rs->ctrlc_pending_p = 0;
7667 /* GDB handled the File-I/O request, and the target is running
7668 again. Keep waiting for events. */
7669 rs->waiting_for_stop_reply = 1;
7670 break;
7671 case 'N': case 'T': case 'S': case 'X': case 'W':
7672 {
7673 struct stop_reply *stop_reply;
7674
7675 /* There is a stop reply to handle. */
7676 rs->waiting_for_stop_reply = 0;
7677
7678 stop_reply
7679 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7680 rs->buf);
7681
7682 event_ptid = process_stop_reply (stop_reply, status);
7683 break;
7684 }
7685 case 'O': /* Console output. */
7686 remote_console_output (buf + 1);
7687 break;
7688 case '\0':
7689 if (rs->last_sent_signal != GDB_SIGNAL_0)
7690 {
7691 /* Zero length reply means that we tried 'S' or 'C' and the
7692 remote system doesn't support it. */
7693 target_terminal::ours_for_output ();
7694 printf_filtered
7695 ("Can't send signals to this remote system. %s not sent.\n",
7696 gdb_signal_to_name (rs->last_sent_signal));
7697 rs->last_sent_signal = GDB_SIGNAL_0;
7698 target_terminal::inferior ();
7699
7700 strcpy (buf, rs->last_sent_step ? "s" : "c");
7701 putpkt (buf);
7702 break;
7703 }
7704 /* fallthrough */
7705 default:
7706 warning (_("Invalid remote reply: %s"), buf);
7707 break;
7708 }
7709
7710 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7711 return minus_one_ptid;
7712 else if (status->kind == TARGET_WAITKIND_IGNORE)
7713 {
7714 /* Nothing interesting happened. If we're doing a non-blocking
7715 poll, we're done. Otherwise, go back to waiting. */
7716 if (options & TARGET_WNOHANG)
7717 return minus_one_ptid;
7718 else
7719 goto again;
7720 }
7721 else if (status->kind != TARGET_WAITKIND_EXITED
7722 && status->kind != TARGET_WAITKIND_SIGNALLED)
7723 {
7724 if (!ptid_equal (event_ptid, null_ptid))
7725 record_currthread (rs, event_ptid);
7726 else
7727 event_ptid = inferior_ptid;
7728 }
7729 else
7730 /* A process exit. Invalidate our notion of current thread. */
7731 record_currthread (rs, minus_one_ptid);
7732
7733 return event_ptid;
7734 }
7735
7736 /* Wait until the remote machine stops, then return, storing status in
7737 STATUS just as `wait' would. */
7738
7739 ptid_t
7740 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7741 {
7742 ptid_t event_ptid;
7743
7744 if (target_is_non_stop_p ())
7745 event_ptid = remote_wait_ns (ptid, status, options);
7746 else
7747 event_ptid = remote_wait_as (ptid, status, options);
7748
7749 if (target_is_async_p ())
7750 {
7751 /* If there are are events left in the queue tell the event loop
7752 to return here. */
7753 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7754 mark_async_event_handler (remote_async_inferior_event_token);
7755 }
7756
7757 return event_ptid;
7758 }
7759
7760 /* Fetch a single register using a 'p' packet. */
7761
7762 static int
7763 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7764 {
7765 struct gdbarch *gdbarch = regcache->arch ();
7766 struct remote_state *rs = get_remote_state ();
7767 char *buf, *p;
7768 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7769 int i;
7770
7771 if (packet_support (PACKET_p) == PACKET_DISABLE)
7772 return 0;
7773
7774 if (reg->pnum == -1)
7775 return 0;
7776
7777 p = rs->buf;
7778 *p++ = 'p';
7779 p += hexnumstr (p, reg->pnum);
7780 *p++ = '\0';
7781 putpkt (rs->buf);
7782 getpkt (&rs->buf, &rs->buf_size, 0);
7783
7784 buf = rs->buf;
7785
7786 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7787 {
7788 case PACKET_OK:
7789 break;
7790 case PACKET_UNKNOWN:
7791 return 0;
7792 case PACKET_ERROR:
7793 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7794 gdbarch_register_name (regcache->arch (),
7795 reg->regnum),
7796 buf);
7797 }
7798
7799 /* If this register is unfetchable, tell the regcache. */
7800 if (buf[0] == 'x')
7801 {
7802 regcache_raw_supply (regcache, reg->regnum, NULL);
7803 return 1;
7804 }
7805
7806 /* Otherwise, parse and supply the value. */
7807 p = buf;
7808 i = 0;
7809 while (p[0] != 0)
7810 {
7811 if (p[1] == 0)
7812 error (_("fetch_register_using_p: early buf termination"));
7813
7814 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7815 p += 2;
7816 }
7817 regcache_raw_supply (regcache, reg->regnum, regp);
7818 return 1;
7819 }
7820
7821 /* Fetch the registers included in the target's 'g' packet. */
7822
7823 static int
7824 send_g_packet (void)
7825 {
7826 struct remote_state *rs = get_remote_state ();
7827 int buf_len;
7828
7829 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7830 putpkt (rs->buf);
7831 getpkt (&rs->buf, &rs->buf_size, 0);
7832 if (packet_check_result (rs->buf) == PACKET_ERROR)
7833 error (_("Could not read registers; remote failure reply '%s'"),
7834 rs->buf);
7835
7836 /* We can get out of synch in various cases. If the first character
7837 in the buffer is not a hex character, assume that has happened
7838 and try to fetch another packet to read. */
7839 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7840 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7841 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7842 && rs->buf[0] != 'x') /* New: unavailable register value. */
7843 {
7844 if (remote_debug)
7845 fprintf_unfiltered (gdb_stdlog,
7846 "Bad register packet; fetching a new packet\n");
7847 getpkt (&rs->buf, &rs->buf_size, 0);
7848 }
7849
7850 buf_len = strlen (rs->buf);
7851
7852 /* Sanity check the received packet. */
7853 if (buf_len % 2 != 0)
7854 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7855
7856 return buf_len / 2;
7857 }
7858
7859 static void
7860 process_g_packet (struct regcache *regcache)
7861 {
7862 struct gdbarch *gdbarch = regcache->arch ();
7863 struct remote_state *rs = get_remote_state ();
7864 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7865 int i, buf_len;
7866 char *p;
7867 char *regs;
7868
7869 buf_len = strlen (rs->buf);
7870
7871 /* Further sanity checks, with knowledge of the architecture. */
7872 if (buf_len > 2 * rsa->sizeof_g_packet)
7873 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7874 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7875
7876 /* Save the size of the packet sent to us by the target. It is used
7877 as a heuristic when determining the max size of packets that the
7878 target can safely receive. */
7879 if (rsa->actual_register_packet_size == 0)
7880 rsa->actual_register_packet_size = buf_len;
7881
7882 /* If this is smaller than we guessed the 'g' packet would be,
7883 update our records. A 'g' reply that doesn't include a register's
7884 value implies either that the register is not available, or that
7885 the 'p' packet must be used. */
7886 if (buf_len < 2 * rsa->sizeof_g_packet)
7887 {
7888 long sizeof_g_packet = buf_len / 2;
7889
7890 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7891 {
7892 long offset = rsa->regs[i].offset;
7893 long reg_size = register_size (gdbarch, i);
7894
7895 if (rsa->regs[i].pnum == -1)
7896 continue;
7897
7898 if (offset >= sizeof_g_packet)
7899 rsa->regs[i].in_g_packet = 0;
7900 else if (offset + reg_size > sizeof_g_packet)
7901 error (_("Truncated register %d in remote 'g' packet"), i);
7902 else
7903 rsa->regs[i].in_g_packet = 1;
7904 }
7905
7906 /* Looks valid enough, we can assume this is the correct length
7907 for a 'g' packet. It's important not to adjust
7908 rsa->sizeof_g_packet if we have truncated registers otherwise
7909 this "if" won't be run the next time the method is called
7910 with a packet of the same size and one of the internal errors
7911 below will trigger instead. */
7912 rsa->sizeof_g_packet = sizeof_g_packet;
7913 }
7914
7915 regs = (char *) alloca (rsa->sizeof_g_packet);
7916
7917 /* Unimplemented registers read as all bits zero. */
7918 memset (regs, 0, rsa->sizeof_g_packet);
7919
7920 /* Reply describes registers byte by byte, each byte encoded as two
7921 hex characters. Suck them all up, then supply them to the
7922 register cacheing/storage mechanism. */
7923
7924 p = rs->buf;
7925 for (i = 0; i < rsa->sizeof_g_packet; i++)
7926 {
7927 if (p[0] == 0 || p[1] == 0)
7928 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7929 internal_error (__FILE__, __LINE__,
7930 _("unexpected end of 'g' packet reply"));
7931
7932 if (p[0] == 'x' && p[1] == 'x')
7933 regs[i] = 0; /* 'x' */
7934 else
7935 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7936 p += 2;
7937 }
7938
7939 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7940 {
7941 struct packet_reg *r = &rsa->regs[i];
7942 long reg_size = register_size (gdbarch, i);
7943
7944 if (r->in_g_packet)
7945 {
7946 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7947 /* This shouldn't happen - we adjusted in_g_packet above. */
7948 internal_error (__FILE__, __LINE__,
7949 _("unexpected end of 'g' packet reply"));
7950 else if (rs->buf[r->offset * 2] == 'x')
7951 {
7952 gdb_assert (r->offset * 2 < strlen (rs->buf));
7953 /* The register isn't available, mark it as such (at
7954 the same time setting the value to zero). */
7955 regcache_raw_supply (regcache, r->regnum, NULL);
7956 }
7957 else
7958 regcache_raw_supply (regcache, r->regnum,
7959 regs + r->offset);
7960 }
7961 }
7962 }
7963
7964 static void
7965 fetch_registers_using_g (struct regcache *regcache)
7966 {
7967 send_g_packet ();
7968 process_g_packet (regcache);
7969 }
7970
7971 /* Make the remote selected traceframe match GDB's selected
7972 traceframe. */
7973
7974 static void
7975 set_remote_traceframe (void)
7976 {
7977 int newnum;
7978 struct remote_state *rs = get_remote_state ();
7979
7980 if (rs->remote_traceframe_number == get_traceframe_number ())
7981 return;
7982
7983 /* Avoid recursion, remote_trace_find calls us again. */
7984 rs->remote_traceframe_number = get_traceframe_number ();
7985
7986 newnum = target_trace_find (tfind_number,
7987 get_traceframe_number (), 0, 0, NULL);
7988
7989 /* Should not happen. If it does, all bets are off. */
7990 if (newnum != get_traceframe_number ())
7991 warning (_("could not set remote traceframe"));
7992 }
7993
7994 void
7995 remote_target::fetch_registers (struct regcache *regcache, int regnum)
7996 {
7997 struct gdbarch *gdbarch = regcache->arch ();
7998 struct remote_state *rs = get_remote_state ();
7999 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8000 int i;
8001
8002 set_remote_traceframe ();
8003 set_general_thread (regcache_get_ptid (regcache));
8004
8005 if (regnum >= 0)
8006 {
8007 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8008
8009 gdb_assert (reg != NULL);
8010
8011 /* If this register might be in the 'g' packet, try that first -
8012 we are likely to read more than one register. If this is the
8013 first 'g' packet, we might be overly optimistic about its
8014 contents, so fall back to 'p'. */
8015 if (reg->in_g_packet)
8016 {
8017 fetch_registers_using_g (regcache);
8018 if (reg->in_g_packet)
8019 return;
8020 }
8021
8022 if (fetch_register_using_p (regcache, reg))
8023 return;
8024
8025 /* This register is not available. */
8026 regcache_raw_supply (regcache, reg->regnum, NULL);
8027
8028 return;
8029 }
8030
8031 fetch_registers_using_g (regcache);
8032
8033 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8034 if (!rsa->regs[i].in_g_packet)
8035 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8036 {
8037 /* This register is not available. */
8038 regcache_raw_supply (regcache, i, NULL);
8039 }
8040 }
8041
8042 /* Prepare to store registers. Since we may send them all (using a
8043 'G' request), we have to read out the ones we don't want to change
8044 first. */
8045
8046 void
8047 remote_target::prepare_to_store (struct regcache *regcache)
8048 {
8049 struct remote_state *rs = get_remote_state ();
8050 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8051 int i;
8052
8053 /* Make sure the entire registers array is valid. */
8054 switch (packet_support (PACKET_P))
8055 {
8056 case PACKET_DISABLE:
8057 case PACKET_SUPPORT_UNKNOWN:
8058 /* Make sure all the necessary registers are cached. */
8059 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8060 if (rsa->regs[i].in_g_packet)
8061 regcache_raw_update (regcache, rsa->regs[i].regnum);
8062 break;
8063 case PACKET_ENABLE:
8064 break;
8065 }
8066 }
8067
8068 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8069 packet was not recognized. */
8070
8071 static int
8072 store_register_using_P (const struct regcache *regcache,
8073 struct packet_reg *reg)
8074 {
8075 struct gdbarch *gdbarch = regcache->arch ();
8076 struct remote_state *rs = get_remote_state ();
8077 /* Try storing a single register. */
8078 char *buf = rs->buf;
8079 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8080 char *p;
8081
8082 if (packet_support (PACKET_P) == PACKET_DISABLE)
8083 return 0;
8084
8085 if (reg->pnum == -1)
8086 return 0;
8087
8088 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8089 p = buf + strlen (buf);
8090 regcache_raw_collect (regcache, reg->regnum, regp);
8091 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8092 putpkt (rs->buf);
8093 getpkt (&rs->buf, &rs->buf_size, 0);
8094
8095 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8096 {
8097 case PACKET_OK:
8098 return 1;
8099 case PACKET_ERROR:
8100 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8101 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8102 case PACKET_UNKNOWN:
8103 return 0;
8104 default:
8105 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8106 }
8107 }
8108
8109 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8110 contents of the register cache buffer. FIXME: ignores errors. */
8111
8112 static void
8113 store_registers_using_G (const struct regcache *regcache)
8114 {
8115 struct remote_state *rs = get_remote_state ();
8116 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8117 gdb_byte *regs;
8118 char *p;
8119
8120 /* Extract all the registers in the regcache copying them into a
8121 local buffer. */
8122 {
8123 int i;
8124
8125 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8126 memset (regs, 0, rsa->sizeof_g_packet);
8127 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8128 {
8129 struct packet_reg *r = &rsa->regs[i];
8130
8131 if (r->in_g_packet)
8132 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
8133 }
8134 }
8135
8136 /* Command describes registers byte by byte,
8137 each byte encoded as two hex characters. */
8138 p = rs->buf;
8139 *p++ = 'G';
8140 bin2hex (regs, p, rsa->sizeof_g_packet);
8141 putpkt (rs->buf);
8142 getpkt (&rs->buf, &rs->buf_size, 0);
8143 if (packet_check_result (rs->buf) == PACKET_ERROR)
8144 error (_("Could not write registers; remote failure reply '%s'"),
8145 rs->buf);
8146 }
8147
8148 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8149 of the register cache buffer. FIXME: ignores errors. */
8150
8151 void
8152 remote_target::store_registers (struct regcache *regcache, int regnum)
8153 {
8154 struct gdbarch *gdbarch = regcache->arch ();
8155 struct remote_state *rs = get_remote_state ();
8156 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8157 int i;
8158
8159 set_remote_traceframe ();
8160 set_general_thread (regcache_get_ptid (regcache));
8161
8162 if (regnum >= 0)
8163 {
8164 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8165
8166 gdb_assert (reg != NULL);
8167
8168 /* Always prefer to store registers using the 'P' packet if
8169 possible; we often change only a small number of registers.
8170 Sometimes we change a larger number; we'd need help from a
8171 higher layer to know to use 'G'. */
8172 if (store_register_using_P (regcache, reg))
8173 return;
8174
8175 /* For now, don't complain if we have no way to write the
8176 register. GDB loses track of unavailable registers too
8177 easily. Some day, this may be an error. We don't have
8178 any way to read the register, either... */
8179 if (!reg->in_g_packet)
8180 return;
8181
8182 store_registers_using_G (regcache);
8183 return;
8184 }
8185
8186 store_registers_using_G (regcache);
8187
8188 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8189 if (!rsa->regs[i].in_g_packet)
8190 if (!store_register_using_P (regcache, &rsa->regs[i]))
8191 /* See above for why we do not issue an error here. */
8192 continue;
8193 }
8194 \f
8195
8196 /* Return the number of hex digits in num. */
8197
8198 static int
8199 hexnumlen (ULONGEST num)
8200 {
8201 int i;
8202
8203 for (i = 0; num != 0; i++)
8204 num >>= 4;
8205
8206 return std::max (i, 1);
8207 }
8208
8209 /* Set BUF to the minimum number of hex digits representing NUM. */
8210
8211 static int
8212 hexnumstr (char *buf, ULONGEST num)
8213 {
8214 int len = hexnumlen (num);
8215
8216 return hexnumnstr (buf, num, len);
8217 }
8218
8219
8220 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8221
8222 static int
8223 hexnumnstr (char *buf, ULONGEST num, int width)
8224 {
8225 int i;
8226
8227 buf[width] = '\0';
8228
8229 for (i = width - 1; i >= 0; i--)
8230 {
8231 buf[i] = "0123456789abcdef"[(num & 0xf)];
8232 num >>= 4;
8233 }
8234
8235 return width;
8236 }
8237
8238 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8239
8240 static CORE_ADDR
8241 remote_address_masked (CORE_ADDR addr)
8242 {
8243 unsigned int address_size = remote_address_size;
8244
8245 /* If "remoteaddresssize" was not set, default to target address size. */
8246 if (!address_size)
8247 address_size = gdbarch_addr_bit (target_gdbarch ());
8248
8249 if (address_size > 0
8250 && address_size < (sizeof (ULONGEST) * 8))
8251 {
8252 /* Only create a mask when that mask can safely be constructed
8253 in a ULONGEST variable. */
8254 ULONGEST mask = 1;
8255
8256 mask = (mask << address_size) - 1;
8257 addr &= mask;
8258 }
8259 return addr;
8260 }
8261
8262 /* Determine whether the remote target supports binary downloading.
8263 This is accomplished by sending a no-op memory write of zero length
8264 to the target at the specified address. It does not suffice to send
8265 the whole packet, since many stubs strip the eighth bit and
8266 subsequently compute a wrong checksum, which causes real havoc with
8267 remote_write_bytes.
8268
8269 NOTE: This can still lose if the serial line is not eight-bit
8270 clean. In cases like this, the user should clear "remote
8271 X-packet". */
8272
8273 static void
8274 check_binary_download (CORE_ADDR addr)
8275 {
8276 struct remote_state *rs = get_remote_state ();
8277
8278 switch (packet_support (PACKET_X))
8279 {
8280 case PACKET_DISABLE:
8281 break;
8282 case PACKET_ENABLE:
8283 break;
8284 case PACKET_SUPPORT_UNKNOWN:
8285 {
8286 char *p;
8287
8288 p = rs->buf;
8289 *p++ = 'X';
8290 p += hexnumstr (p, (ULONGEST) addr);
8291 *p++ = ',';
8292 p += hexnumstr (p, (ULONGEST) 0);
8293 *p++ = ':';
8294 *p = '\0';
8295
8296 putpkt_binary (rs->buf, (int) (p - rs->buf));
8297 getpkt (&rs->buf, &rs->buf_size, 0);
8298
8299 if (rs->buf[0] == '\0')
8300 {
8301 if (remote_debug)
8302 fprintf_unfiltered (gdb_stdlog,
8303 "binary downloading NOT "
8304 "supported by target\n");
8305 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8306 }
8307 else
8308 {
8309 if (remote_debug)
8310 fprintf_unfiltered (gdb_stdlog,
8311 "binary downloading supported by target\n");
8312 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8313 }
8314 break;
8315 }
8316 }
8317 }
8318
8319 /* Helper function to resize the payload in order to try to get a good
8320 alignment. We try to write an amount of data such that the next write will
8321 start on an address aligned on REMOTE_ALIGN_WRITES. */
8322
8323 static int
8324 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8325 {
8326 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8327 }
8328
8329 /* Write memory data directly to the remote machine.
8330 This does not inform the data cache; the data cache uses this.
8331 HEADER is the starting part of the packet.
8332 MEMADDR is the address in the remote memory space.
8333 MYADDR is the address of the buffer in our space.
8334 LEN_UNITS is the number of addressable units to write.
8335 UNIT_SIZE is the length in bytes of an addressable unit.
8336 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8337 should send data as binary ('X'), or hex-encoded ('M').
8338
8339 The function creates packet of the form
8340 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8341
8342 where encoding of <DATA> is terminated by PACKET_FORMAT.
8343
8344 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8345 are omitted.
8346
8347 Return the transferred status, error or OK (an
8348 'enum target_xfer_status' value). Save the number of addressable units
8349 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8350
8351 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8352 exchange between gdb and the stub could look like (?? in place of the
8353 checksum):
8354
8355 -> $m1000,4#??
8356 <- aaaabbbbccccdddd
8357
8358 -> $M1000,3:eeeeffffeeee#??
8359 <- OK
8360
8361 -> $m1000,4#??
8362 <- eeeeffffeeeedddd */
8363
8364 static enum target_xfer_status
8365 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8366 const gdb_byte *myaddr, ULONGEST len_units,
8367 int unit_size, ULONGEST *xfered_len_units,
8368 char packet_format, int use_length)
8369 {
8370 struct remote_state *rs = get_remote_state ();
8371 char *p;
8372 char *plen = NULL;
8373 int plenlen = 0;
8374 int todo_units;
8375 int units_written;
8376 int payload_capacity_bytes;
8377 int payload_length_bytes;
8378
8379 if (packet_format != 'X' && packet_format != 'M')
8380 internal_error (__FILE__, __LINE__,
8381 _("remote_write_bytes_aux: bad packet format"));
8382
8383 if (len_units == 0)
8384 return TARGET_XFER_EOF;
8385
8386 payload_capacity_bytes = get_memory_write_packet_size ();
8387
8388 /* The packet buffer will be large enough for the payload;
8389 get_memory_packet_size ensures this. */
8390 rs->buf[0] = '\0';
8391
8392 /* Compute the size of the actual payload by subtracting out the
8393 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8394
8395 payload_capacity_bytes -= strlen ("$,:#NN");
8396 if (!use_length)
8397 /* The comma won't be used. */
8398 payload_capacity_bytes += 1;
8399 payload_capacity_bytes -= strlen (header);
8400 payload_capacity_bytes -= hexnumlen (memaddr);
8401
8402 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8403
8404 strcat (rs->buf, header);
8405 p = rs->buf + strlen (header);
8406
8407 /* Compute a best guess of the number of bytes actually transfered. */
8408 if (packet_format == 'X')
8409 {
8410 /* Best guess at number of bytes that will fit. */
8411 todo_units = std::min (len_units,
8412 (ULONGEST) payload_capacity_bytes / unit_size);
8413 if (use_length)
8414 payload_capacity_bytes -= hexnumlen (todo_units);
8415 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8416 }
8417 else
8418 {
8419 /* Number of bytes that will fit. */
8420 todo_units
8421 = std::min (len_units,
8422 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8423 if (use_length)
8424 payload_capacity_bytes -= hexnumlen (todo_units);
8425 todo_units = std::min (todo_units,
8426 (payload_capacity_bytes / unit_size) / 2);
8427 }
8428
8429 if (todo_units <= 0)
8430 internal_error (__FILE__, __LINE__,
8431 _("minimum packet size too small to write data"));
8432
8433 /* If we already need another packet, then try to align the end
8434 of this packet to a useful boundary. */
8435 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8436 todo_units = align_for_efficient_write (todo_units, memaddr);
8437
8438 /* Append "<memaddr>". */
8439 memaddr = remote_address_masked (memaddr);
8440 p += hexnumstr (p, (ULONGEST) memaddr);
8441
8442 if (use_length)
8443 {
8444 /* Append ",". */
8445 *p++ = ',';
8446
8447 /* Append the length and retain its location and size. It may need to be
8448 adjusted once the packet body has been created. */
8449 plen = p;
8450 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8451 p += plenlen;
8452 }
8453
8454 /* Append ":". */
8455 *p++ = ':';
8456 *p = '\0';
8457
8458 /* Append the packet body. */
8459 if (packet_format == 'X')
8460 {
8461 /* Binary mode. Send target system values byte by byte, in
8462 increasing byte addresses. Only escape certain critical
8463 characters. */
8464 payload_length_bytes =
8465 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8466 &units_written, payload_capacity_bytes);
8467
8468 /* If not all TODO units fit, then we'll need another packet. Make
8469 a second try to keep the end of the packet aligned. Don't do
8470 this if the packet is tiny. */
8471 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8472 {
8473 int new_todo_units;
8474
8475 new_todo_units = align_for_efficient_write (units_written, memaddr);
8476
8477 if (new_todo_units != units_written)
8478 payload_length_bytes =
8479 remote_escape_output (myaddr, new_todo_units, unit_size,
8480 (gdb_byte *) p, &units_written,
8481 payload_capacity_bytes);
8482 }
8483
8484 p += payload_length_bytes;
8485 if (use_length && units_written < todo_units)
8486 {
8487 /* Escape chars have filled up the buffer prematurely,
8488 and we have actually sent fewer units than planned.
8489 Fix-up the length field of the packet. Use the same
8490 number of characters as before. */
8491 plen += hexnumnstr (plen, (ULONGEST) units_written,
8492 plenlen);
8493 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8494 }
8495 }
8496 else
8497 {
8498 /* Normal mode: Send target system values byte by byte, in
8499 increasing byte addresses. Each byte is encoded as a two hex
8500 value. */
8501 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8502 units_written = todo_units;
8503 }
8504
8505 putpkt_binary (rs->buf, (int) (p - rs->buf));
8506 getpkt (&rs->buf, &rs->buf_size, 0);
8507
8508 if (rs->buf[0] == 'E')
8509 return TARGET_XFER_E_IO;
8510
8511 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8512 send fewer units than we'd planned. */
8513 *xfered_len_units = (ULONGEST) units_written;
8514 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8515 }
8516
8517 /* Write memory data directly to the remote machine.
8518 This does not inform the data cache; the data cache uses this.
8519 MEMADDR is the address in the remote memory space.
8520 MYADDR is the address of the buffer in our space.
8521 LEN is the number of bytes.
8522
8523 Return the transferred status, error or OK (an
8524 'enum target_xfer_status' value). Save the number of bytes
8525 transferred in *XFERED_LEN. Only transfer a single packet. */
8526
8527 static enum target_xfer_status
8528 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8529 int unit_size, ULONGEST *xfered_len)
8530 {
8531 const char *packet_format = NULL;
8532
8533 /* Check whether the target supports binary download. */
8534 check_binary_download (memaddr);
8535
8536 switch (packet_support (PACKET_X))
8537 {
8538 case PACKET_ENABLE:
8539 packet_format = "X";
8540 break;
8541 case PACKET_DISABLE:
8542 packet_format = "M";
8543 break;
8544 case PACKET_SUPPORT_UNKNOWN:
8545 internal_error (__FILE__, __LINE__,
8546 _("remote_write_bytes: bad internal state"));
8547 default:
8548 internal_error (__FILE__, __LINE__, _("bad switch"));
8549 }
8550
8551 return remote_write_bytes_aux (packet_format,
8552 memaddr, myaddr, len, unit_size, xfered_len,
8553 packet_format[0], 1);
8554 }
8555
8556 /* Read memory data directly from the remote machine.
8557 This does not use the data cache; the data cache uses this.
8558 MEMADDR is the address in the remote memory space.
8559 MYADDR is the address of the buffer in our space.
8560 LEN_UNITS is the number of addressable memory units to read..
8561 UNIT_SIZE is the length in bytes of an addressable unit.
8562
8563 Return the transferred status, error or OK (an
8564 'enum target_xfer_status' value). Save the number of bytes
8565 transferred in *XFERED_LEN_UNITS.
8566
8567 See the comment of remote_write_bytes_aux for an example of
8568 memory read/write exchange between gdb and the stub. */
8569
8570 static enum target_xfer_status
8571 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8572 int unit_size, ULONGEST *xfered_len_units)
8573 {
8574 struct remote_state *rs = get_remote_state ();
8575 int buf_size_bytes; /* Max size of packet output buffer. */
8576 char *p;
8577 int todo_units;
8578 int decoded_bytes;
8579
8580 buf_size_bytes = get_memory_read_packet_size ();
8581 /* The packet buffer will be large enough for the payload;
8582 get_memory_packet_size ensures this. */
8583
8584 /* Number of units that will fit. */
8585 todo_units = std::min (len_units,
8586 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8587
8588 /* Construct "m"<memaddr>","<len>". */
8589 memaddr = remote_address_masked (memaddr);
8590 p = rs->buf;
8591 *p++ = 'm';
8592 p += hexnumstr (p, (ULONGEST) memaddr);
8593 *p++ = ',';
8594 p += hexnumstr (p, (ULONGEST) todo_units);
8595 *p = '\0';
8596 putpkt (rs->buf);
8597 getpkt (&rs->buf, &rs->buf_size, 0);
8598 if (rs->buf[0] == 'E'
8599 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8600 && rs->buf[3] == '\0')
8601 return TARGET_XFER_E_IO;
8602 /* Reply describes memory byte by byte, each byte encoded as two hex
8603 characters. */
8604 p = rs->buf;
8605 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8606 /* Return what we have. Let higher layers handle partial reads. */
8607 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8608 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8609 }
8610
8611 /* Using the set of read-only target sections of remote, read live
8612 read-only memory.
8613
8614 For interface/parameters/return description see target.h,
8615 to_xfer_partial. */
8616
8617 static enum target_xfer_status
8618 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8619 ULONGEST memaddr, ULONGEST len,
8620 int unit_size, ULONGEST *xfered_len)
8621 {
8622 struct target_section *secp;
8623 struct target_section_table *table;
8624
8625 secp = target_section_by_addr (ops, memaddr);
8626 if (secp != NULL
8627 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8628 secp->the_bfd_section)
8629 & SEC_READONLY))
8630 {
8631 struct target_section *p;
8632 ULONGEST memend = memaddr + len;
8633
8634 table = target_get_section_table (ops);
8635
8636 for (p = table->sections; p < table->sections_end; p++)
8637 {
8638 if (memaddr >= p->addr)
8639 {
8640 if (memend <= p->endaddr)
8641 {
8642 /* Entire transfer is within this section. */
8643 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8644 xfered_len);
8645 }
8646 else if (memaddr >= p->endaddr)
8647 {
8648 /* This section ends before the transfer starts. */
8649 continue;
8650 }
8651 else
8652 {
8653 /* This section overlaps the transfer. Just do half. */
8654 len = p->endaddr - memaddr;
8655 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8656 xfered_len);
8657 }
8658 }
8659 }
8660 }
8661
8662 return TARGET_XFER_EOF;
8663 }
8664
8665 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8666 first if the requested memory is unavailable in traceframe.
8667 Otherwise, fall back to remote_read_bytes_1. */
8668
8669 static enum target_xfer_status
8670 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8671 gdb_byte *myaddr, ULONGEST len, int unit_size,
8672 ULONGEST *xfered_len)
8673 {
8674 if (len == 0)
8675 return TARGET_XFER_EOF;
8676
8677 if (get_traceframe_number () != -1)
8678 {
8679 std::vector<mem_range> available;
8680
8681 /* If we fail to get the set of available memory, then the
8682 target does not support querying traceframe info, and so we
8683 attempt reading from the traceframe anyway (assuming the
8684 target implements the old QTro packet then). */
8685 if (traceframe_available_memory (&available, memaddr, len))
8686 {
8687 if (available.empty () || available[0].start != memaddr)
8688 {
8689 enum target_xfer_status res;
8690
8691 /* Don't read into the traceframe's available
8692 memory. */
8693 if (!available.empty ())
8694 {
8695 LONGEST oldlen = len;
8696
8697 len = available[0].start - memaddr;
8698 gdb_assert (len <= oldlen);
8699 }
8700
8701 /* This goes through the topmost target again. */
8702 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8703 len, unit_size, xfered_len);
8704 if (res == TARGET_XFER_OK)
8705 return TARGET_XFER_OK;
8706 else
8707 {
8708 /* No use trying further, we know some memory starting
8709 at MEMADDR isn't available. */
8710 *xfered_len = len;
8711 return (*xfered_len != 0) ?
8712 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8713 }
8714 }
8715
8716 /* Don't try to read more than how much is available, in
8717 case the target implements the deprecated QTro packet to
8718 cater for older GDBs (the target's knowledge of read-only
8719 sections may be outdated by now). */
8720 len = available[0].length;
8721 }
8722 }
8723
8724 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8725 }
8726
8727 \f
8728
8729 /* Sends a packet with content determined by the printf format string
8730 FORMAT and the remaining arguments, then gets the reply. Returns
8731 whether the packet was a success, a failure, or unknown. */
8732
8733 static enum packet_result remote_send_printf (const char *format, ...)
8734 ATTRIBUTE_PRINTF (1, 2);
8735
8736 static enum packet_result
8737 remote_send_printf (const char *format, ...)
8738 {
8739 struct remote_state *rs = get_remote_state ();
8740 int max_size = get_remote_packet_size ();
8741 va_list ap;
8742
8743 va_start (ap, format);
8744
8745 rs->buf[0] = '\0';
8746 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8747 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8748
8749 if (putpkt (rs->buf) < 0)
8750 error (_("Communication problem with target."));
8751
8752 rs->buf[0] = '\0';
8753 getpkt (&rs->buf, &rs->buf_size, 0);
8754
8755 return packet_check_result (rs->buf);
8756 }
8757
8758 /* Flash writing can take quite some time. We'll set
8759 effectively infinite timeout for flash operations.
8760 In future, we'll need to decide on a better approach. */
8761 static const int remote_flash_timeout = 1000;
8762
8763 void
8764 remote_target::flash_erase (ULONGEST address, LONGEST length)
8765 {
8766 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8767 enum packet_result ret;
8768 scoped_restore restore_timeout
8769 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8770
8771 ret = remote_send_printf ("vFlashErase:%s,%s",
8772 phex (address, addr_size),
8773 phex (length, 4));
8774 switch (ret)
8775 {
8776 case PACKET_UNKNOWN:
8777 error (_("Remote target does not support flash erase"));
8778 case PACKET_ERROR:
8779 error (_("Error erasing flash with vFlashErase packet"));
8780 default:
8781 break;
8782 }
8783 }
8784
8785 static enum target_xfer_status
8786 remote_flash_write (struct target_ops *ops, ULONGEST address,
8787 ULONGEST length, ULONGEST *xfered_len,
8788 const gdb_byte *data)
8789 {
8790 scoped_restore restore_timeout
8791 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8792 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8793 xfered_len,'X', 0);
8794 }
8795
8796 void
8797 remote_target::flash_done ()
8798 {
8799 int ret;
8800
8801 scoped_restore restore_timeout
8802 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8803
8804 ret = remote_send_printf ("vFlashDone");
8805
8806 switch (ret)
8807 {
8808 case PACKET_UNKNOWN:
8809 error (_("Remote target does not support vFlashDone"));
8810 case PACKET_ERROR:
8811 error (_("Error finishing flash operation"));
8812 default:
8813 break;
8814 }
8815 }
8816
8817 void
8818 remote_target::files_info ()
8819 {
8820 puts_filtered ("Debugging a target over a serial line.\n");
8821 }
8822 \f
8823 /* Stuff for dealing with the packets which are part of this protocol.
8824 See comment at top of file for details. */
8825
8826 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8827 error to higher layers. Called when a serial error is detected.
8828 The exception message is STRING, followed by a colon and a blank,
8829 the system error message for errno at function entry and final dot
8830 for output compatibility with throw_perror_with_name. */
8831
8832 static void
8833 unpush_and_perror (const char *string)
8834 {
8835 int saved_errno = errno;
8836
8837 remote_unpush_target ();
8838 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8839 safe_strerror (saved_errno));
8840 }
8841
8842 /* Read a single character from the remote end. The current quit
8843 handler is overridden to avoid quitting in the middle of packet
8844 sequence, as that would break communication with the remote server.
8845 See remote_serial_quit_handler for more detail. */
8846
8847 static int
8848 readchar (int timeout)
8849 {
8850 int ch;
8851 struct remote_state *rs = get_remote_state ();
8852
8853 {
8854 scoped_restore restore_quit
8855 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8856
8857 rs->got_ctrlc_during_io = 0;
8858
8859 ch = serial_readchar (rs->remote_desc, timeout);
8860
8861 if (rs->got_ctrlc_during_io)
8862 set_quit_flag ();
8863 }
8864
8865 if (ch >= 0)
8866 return ch;
8867
8868 switch ((enum serial_rc) ch)
8869 {
8870 case SERIAL_EOF:
8871 remote_unpush_target ();
8872 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8873 /* no return */
8874 case SERIAL_ERROR:
8875 unpush_and_perror (_("Remote communication error. "
8876 "Target disconnected."));
8877 /* no return */
8878 case SERIAL_TIMEOUT:
8879 break;
8880 }
8881 return ch;
8882 }
8883
8884 /* Wrapper for serial_write that closes the target and throws if
8885 writing fails. The current quit handler is overridden to avoid
8886 quitting in the middle of packet sequence, as that would break
8887 communication with the remote server. See
8888 remote_serial_quit_handler for more detail. */
8889
8890 static void
8891 remote_serial_write (const char *str, int len)
8892 {
8893 struct remote_state *rs = get_remote_state ();
8894
8895 scoped_restore restore_quit
8896 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8897
8898 rs->got_ctrlc_during_io = 0;
8899
8900 if (serial_write (rs->remote_desc, str, len))
8901 {
8902 unpush_and_perror (_("Remote communication error. "
8903 "Target disconnected."));
8904 }
8905
8906 if (rs->got_ctrlc_during_io)
8907 set_quit_flag ();
8908 }
8909
8910 /* Return a string representing an escaped version of BUF, of len N.
8911 E.g. \n is converted to \\n, \t to \\t, etc. */
8912
8913 static std::string
8914 escape_buffer (const char *buf, int n)
8915 {
8916 string_file stb;
8917
8918 stb.putstrn (buf, n, '\\');
8919 return std::move (stb.string ());
8920 }
8921
8922 /* Display a null-terminated packet on stdout, for debugging, using C
8923 string notation. */
8924
8925 static void
8926 print_packet (const char *buf)
8927 {
8928 puts_filtered ("\"");
8929 fputstr_filtered (buf, '"', gdb_stdout);
8930 puts_filtered ("\"");
8931 }
8932
8933 int
8934 putpkt (const char *buf)
8935 {
8936 return putpkt_binary (buf, strlen (buf));
8937 }
8938
8939 /* Send a packet to the remote machine, with error checking. The data
8940 of the packet is in BUF. The string in BUF can be at most
8941 get_remote_packet_size () - 5 to account for the $, # and checksum,
8942 and for a possible /0 if we are debugging (remote_debug) and want
8943 to print the sent packet as a string. */
8944
8945 static int
8946 putpkt_binary (const char *buf, int cnt)
8947 {
8948 struct remote_state *rs = get_remote_state ();
8949 int i;
8950 unsigned char csum = 0;
8951 gdb::def_vector<char> data (cnt + 6);
8952 char *buf2 = data.data ();
8953
8954 int ch;
8955 int tcount = 0;
8956 char *p;
8957
8958 /* Catch cases like trying to read memory or listing threads while
8959 we're waiting for a stop reply. The remote server wouldn't be
8960 ready to handle this request, so we'd hang and timeout. We don't
8961 have to worry about this in synchronous mode, because in that
8962 case it's not possible to issue a command while the target is
8963 running. This is not a problem in non-stop mode, because in that
8964 case, the stub is always ready to process serial input. */
8965 if (!target_is_non_stop_p ()
8966 && target_is_async_p ()
8967 && rs->waiting_for_stop_reply)
8968 {
8969 error (_("Cannot execute this command while the target is running.\n"
8970 "Use the \"interrupt\" command to stop the target\n"
8971 "and then try again."));
8972 }
8973
8974 /* We're sending out a new packet. Make sure we don't look at a
8975 stale cached response. */
8976 rs->cached_wait_status = 0;
8977
8978 /* Copy the packet into buffer BUF2, encapsulating it
8979 and giving it a checksum. */
8980
8981 p = buf2;
8982 *p++ = '$';
8983
8984 for (i = 0; i < cnt; i++)
8985 {
8986 csum += buf[i];
8987 *p++ = buf[i];
8988 }
8989 *p++ = '#';
8990 *p++ = tohex ((csum >> 4) & 0xf);
8991 *p++ = tohex (csum & 0xf);
8992
8993 /* Send it over and over until we get a positive ack. */
8994
8995 while (1)
8996 {
8997 int started_error_output = 0;
8998
8999 if (remote_debug)
9000 {
9001 *p = '\0';
9002
9003 int len = (int) (p - buf2);
9004
9005 std::string str
9006 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9007
9008 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9009
9010 if (len > REMOTE_DEBUG_MAX_CHAR)
9011 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9012 len - REMOTE_DEBUG_MAX_CHAR);
9013
9014 fprintf_unfiltered (gdb_stdlog, "...");
9015
9016 gdb_flush (gdb_stdlog);
9017 }
9018 remote_serial_write (buf2, p - buf2);
9019
9020 /* If this is a no acks version of the remote protocol, send the
9021 packet and move on. */
9022 if (rs->noack_mode)
9023 break;
9024
9025 /* Read until either a timeout occurs (-2) or '+' is read.
9026 Handle any notification that arrives in the mean time. */
9027 while (1)
9028 {
9029 ch = readchar (remote_timeout);
9030
9031 if (remote_debug)
9032 {
9033 switch (ch)
9034 {
9035 case '+':
9036 case '-':
9037 case SERIAL_TIMEOUT:
9038 case '$':
9039 case '%':
9040 if (started_error_output)
9041 {
9042 putchar_unfiltered ('\n');
9043 started_error_output = 0;
9044 }
9045 }
9046 }
9047
9048 switch (ch)
9049 {
9050 case '+':
9051 if (remote_debug)
9052 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9053 return 1;
9054 case '-':
9055 if (remote_debug)
9056 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9057 /* FALLTHROUGH */
9058 case SERIAL_TIMEOUT:
9059 tcount++;
9060 if (tcount > 3)
9061 return 0;
9062 break; /* Retransmit buffer. */
9063 case '$':
9064 {
9065 if (remote_debug)
9066 fprintf_unfiltered (gdb_stdlog,
9067 "Packet instead of Ack, ignoring it\n");
9068 /* It's probably an old response sent because an ACK
9069 was lost. Gobble up the packet and ack it so it
9070 doesn't get retransmitted when we resend this
9071 packet. */
9072 skip_frame ();
9073 remote_serial_write ("+", 1);
9074 continue; /* Now, go look for +. */
9075 }
9076
9077 case '%':
9078 {
9079 int val;
9080
9081 /* If we got a notification, handle it, and go back to looking
9082 for an ack. */
9083 /* We've found the start of a notification. Now
9084 collect the data. */
9085 val = read_frame (&rs->buf, &rs->buf_size);
9086 if (val >= 0)
9087 {
9088 if (remote_debug)
9089 {
9090 std::string str = escape_buffer (rs->buf, val);
9091
9092 fprintf_unfiltered (gdb_stdlog,
9093 " Notification received: %s\n",
9094 str.c_str ());
9095 }
9096 handle_notification (rs->notif_state, rs->buf);
9097 /* We're in sync now, rewait for the ack. */
9098 tcount = 0;
9099 }
9100 else
9101 {
9102 if (remote_debug)
9103 {
9104 if (!started_error_output)
9105 {
9106 started_error_output = 1;
9107 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9108 }
9109 fputc_unfiltered (ch & 0177, gdb_stdlog);
9110 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9111 }
9112 }
9113 continue;
9114 }
9115 /* fall-through */
9116 default:
9117 if (remote_debug)
9118 {
9119 if (!started_error_output)
9120 {
9121 started_error_output = 1;
9122 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9123 }
9124 fputc_unfiltered (ch & 0177, gdb_stdlog);
9125 }
9126 continue;
9127 }
9128 break; /* Here to retransmit. */
9129 }
9130
9131 #if 0
9132 /* This is wrong. If doing a long backtrace, the user should be
9133 able to get out next time we call QUIT, without anything as
9134 violent as interrupt_query. If we want to provide a way out of
9135 here without getting to the next QUIT, it should be based on
9136 hitting ^C twice as in remote_wait. */
9137 if (quit_flag)
9138 {
9139 quit_flag = 0;
9140 interrupt_query ();
9141 }
9142 #endif
9143 }
9144
9145 return 0;
9146 }
9147
9148 /* Come here after finding the start of a frame when we expected an
9149 ack. Do our best to discard the rest of this packet. */
9150
9151 static void
9152 skip_frame (void)
9153 {
9154 int c;
9155
9156 while (1)
9157 {
9158 c = readchar (remote_timeout);
9159 switch (c)
9160 {
9161 case SERIAL_TIMEOUT:
9162 /* Nothing we can do. */
9163 return;
9164 case '#':
9165 /* Discard the two bytes of checksum and stop. */
9166 c = readchar (remote_timeout);
9167 if (c >= 0)
9168 c = readchar (remote_timeout);
9169
9170 return;
9171 case '*': /* Run length encoding. */
9172 /* Discard the repeat count. */
9173 c = readchar (remote_timeout);
9174 if (c < 0)
9175 return;
9176 break;
9177 default:
9178 /* A regular character. */
9179 break;
9180 }
9181 }
9182 }
9183
9184 /* Come here after finding the start of the frame. Collect the rest
9185 into *BUF, verifying the checksum, length, and handling run-length
9186 compression. NUL terminate the buffer. If there is not enough room,
9187 expand *BUF using xrealloc.
9188
9189 Returns -1 on error, number of characters in buffer (ignoring the
9190 trailing NULL) on success. (could be extended to return one of the
9191 SERIAL status indications). */
9192
9193 static long
9194 read_frame (char **buf_p,
9195 long *sizeof_buf)
9196 {
9197 unsigned char csum;
9198 long bc;
9199 int c;
9200 char *buf = *buf_p;
9201 struct remote_state *rs = get_remote_state ();
9202
9203 csum = 0;
9204 bc = 0;
9205
9206 while (1)
9207 {
9208 c = readchar (remote_timeout);
9209 switch (c)
9210 {
9211 case SERIAL_TIMEOUT:
9212 if (remote_debug)
9213 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9214 return -1;
9215 case '$':
9216 if (remote_debug)
9217 fputs_filtered ("Saw new packet start in middle of old one\n",
9218 gdb_stdlog);
9219 return -1; /* Start a new packet, count retries. */
9220 case '#':
9221 {
9222 unsigned char pktcsum;
9223 int check_0 = 0;
9224 int check_1 = 0;
9225
9226 buf[bc] = '\0';
9227
9228 check_0 = readchar (remote_timeout);
9229 if (check_0 >= 0)
9230 check_1 = readchar (remote_timeout);
9231
9232 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9233 {
9234 if (remote_debug)
9235 fputs_filtered ("Timeout in checksum, retrying\n",
9236 gdb_stdlog);
9237 return -1;
9238 }
9239 else if (check_0 < 0 || check_1 < 0)
9240 {
9241 if (remote_debug)
9242 fputs_filtered ("Communication error in checksum\n",
9243 gdb_stdlog);
9244 return -1;
9245 }
9246
9247 /* Don't recompute the checksum; with no ack packets we
9248 don't have any way to indicate a packet retransmission
9249 is necessary. */
9250 if (rs->noack_mode)
9251 return bc;
9252
9253 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9254 if (csum == pktcsum)
9255 return bc;
9256
9257 if (remote_debug)
9258 {
9259 std::string str = escape_buffer (buf, bc);
9260
9261 fprintf_unfiltered (gdb_stdlog,
9262 "Bad checksum, sentsum=0x%x, "
9263 "csum=0x%x, buf=%s\n",
9264 pktcsum, csum, str.c_str ());
9265 }
9266 /* Number of characters in buffer ignoring trailing
9267 NULL. */
9268 return -1;
9269 }
9270 case '*': /* Run length encoding. */
9271 {
9272 int repeat;
9273
9274 csum += c;
9275 c = readchar (remote_timeout);
9276 csum += c;
9277 repeat = c - ' ' + 3; /* Compute repeat count. */
9278
9279 /* The character before ``*'' is repeated. */
9280
9281 if (repeat > 0 && repeat <= 255 && bc > 0)
9282 {
9283 if (bc + repeat - 1 >= *sizeof_buf - 1)
9284 {
9285 /* Make some more room in the buffer. */
9286 *sizeof_buf += repeat;
9287 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9288 buf = *buf_p;
9289 }
9290
9291 memset (&buf[bc], buf[bc - 1], repeat);
9292 bc += repeat;
9293 continue;
9294 }
9295
9296 buf[bc] = '\0';
9297 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9298 return -1;
9299 }
9300 default:
9301 if (bc >= *sizeof_buf - 1)
9302 {
9303 /* Make some more room in the buffer. */
9304 *sizeof_buf *= 2;
9305 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9306 buf = *buf_p;
9307 }
9308
9309 buf[bc++] = c;
9310 csum += c;
9311 continue;
9312 }
9313 }
9314 }
9315
9316 /* Read a packet from the remote machine, with error checking, and
9317 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9318 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9319 rather than timing out; this is used (in synchronous mode) to wait
9320 for a target that is is executing user code to stop. */
9321 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9322 don't have to change all the calls to getpkt to deal with the
9323 return value, because at the moment I don't know what the right
9324 thing to do it for those. */
9325 void
9326 getpkt (char **buf,
9327 long *sizeof_buf,
9328 int forever)
9329 {
9330 getpkt_sane (buf, sizeof_buf, forever);
9331 }
9332
9333
9334 /* Read a packet from the remote machine, with error checking, and
9335 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9336 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9337 rather than timing out; this is used (in synchronous mode) to wait
9338 for a target that is is executing user code to stop. If FOREVER ==
9339 0, this function is allowed to time out gracefully and return an
9340 indication of this to the caller. Otherwise return the number of
9341 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9342 enough reason to return to the caller. *IS_NOTIF is an output
9343 boolean that indicates whether *BUF holds a notification or not
9344 (a regular packet). */
9345
9346 static int
9347 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9348 int expecting_notif, int *is_notif)
9349 {
9350 struct remote_state *rs = get_remote_state ();
9351 int c;
9352 int tries;
9353 int timeout;
9354 int val = -1;
9355
9356 /* We're reading a new response. Make sure we don't look at a
9357 previously cached response. */
9358 rs->cached_wait_status = 0;
9359
9360 strcpy (*buf, "timeout");
9361
9362 if (forever)
9363 timeout = watchdog > 0 ? watchdog : -1;
9364 else if (expecting_notif)
9365 timeout = 0; /* There should already be a char in the buffer. If
9366 not, bail out. */
9367 else
9368 timeout = remote_timeout;
9369
9370 #define MAX_TRIES 3
9371
9372 /* Process any number of notifications, and then return when
9373 we get a packet. */
9374 for (;;)
9375 {
9376 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9377 times. */
9378 for (tries = 1; tries <= MAX_TRIES; tries++)
9379 {
9380 /* This can loop forever if the remote side sends us
9381 characters continuously, but if it pauses, we'll get
9382 SERIAL_TIMEOUT from readchar because of timeout. Then
9383 we'll count that as a retry.
9384
9385 Note that even when forever is set, we will only wait
9386 forever prior to the start of a packet. After that, we
9387 expect characters to arrive at a brisk pace. They should
9388 show up within remote_timeout intervals. */
9389 do
9390 c = readchar (timeout);
9391 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9392
9393 if (c == SERIAL_TIMEOUT)
9394 {
9395 if (expecting_notif)
9396 return -1; /* Don't complain, it's normal to not get
9397 anything in this case. */
9398
9399 if (forever) /* Watchdog went off? Kill the target. */
9400 {
9401 remote_unpush_target ();
9402 throw_error (TARGET_CLOSE_ERROR,
9403 _("Watchdog timeout has expired. "
9404 "Target detached."));
9405 }
9406 if (remote_debug)
9407 fputs_filtered ("Timed out.\n", gdb_stdlog);
9408 }
9409 else
9410 {
9411 /* We've found the start of a packet or notification.
9412 Now collect the data. */
9413 val = read_frame (buf, sizeof_buf);
9414 if (val >= 0)
9415 break;
9416 }
9417
9418 remote_serial_write ("-", 1);
9419 }
9420
9421 if (tries > MAX_TRIES)
9422 {
9423 /* We have tried hard enough, and just can't receive the
9424 packet/notification. Give up. */
9425 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9426
9427 /* Skip the ack char if we're in no-ack mode. */
9428 if (!rs->noack_mode)
9429 remote_serial_write ("+", 1);
9430 return -1;
9431 }
9432
9433 /* If we got an ordinary packet, return that to our caller. */
9434 if (c == '$')
9435 {
9436 if (remote_debug)
9437 {
9438 std::string str
9439 = escape_buffer (*buf,
9440 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9441
9442 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9443 str.c_str ());
9444
9445 if (val > REMOTE_DEBUG_MAX_CHAR)
9446 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9447 val - REMOTE_DEBUG_MAX_CHAR);
9448
9449 fprintf_unfiltered (gdb_stdlog, "\n");
9450 }
9451
9452 /* Skip the ack char if we're in no-ack mode. */
9453 if (!rs->noack_mode)
9454 remote_serial_write ("+", 1);
9455 if (is_notif != NULL)
9456 *is_notif = 0;
9457 return val;
9458 }
9459
9460 /* If we got a notification, handle it, and go back to looking
9461 for a packet. */
9462 else
9463 {
9464 gdb_assert (c == '%');
9465
9466 if (remote_debug)
9467 {
9468 std::string str = escape_buffer (*buf, val);
9469
9470 fprintf_unfiltered (gdb_stdlog,
9471 " Notification received: %s\n",
9472 str.c_str ());
9473 }
9474 if (is_notif != NULL)
9475 *is_notif = 1;
9476
9477 handle_notification (rs->notif_state, *buf);
9478
9479 /* Notifications require no acknowledgement. */
9480
9481 if (expecting_notif)
9482 return val;
9483 }
9484 }
9485 }
9486
9487 static int
9488 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9489 {
9490 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9491 }
9492
9493 static int
9494 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9495 int *is_notif)
9496 {
9497 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9498 is_notif);
9499 }
9500
9501 /* Check whether EVENT is a fork event for the process specified
9502 by the pid passed in DATA, and if it is, kill the fork child. */
9503
9504 static int
9505 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9506 QUEUE_ITER (stop_reply_p) *iter,
9507 stop_reply_p event,
9508 void *data)
9509 {
9510 struct queue_iter_param *param = (struct queue_iter_param *) data;
9511 int parent_pid = *(int *) param->input;
9512
9513 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9514 {
9515 struct remote_state *rs = get_remote_state ();
9516 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9517 int res;
9518
9519 res = remote_vkill (child_pid, rs);
9520 if (res != 0)
9521 error (_("Can't kill fork child process %d"), child_pid);
9522 }
9523
9524 return 1;
9525 }
9526
9527 /* Kill any new fork children of process PID that haven't been
9528 processed by follow_fork. */
9529
9530 static void
9531 kill_new_fork_children (int pid, struct remote_state *rs)
9532 {
9533 struct thread_info *thread;
9534 struct notif_client *notif = &notif_client_stop;
9535 struct queue_iter_param param;
9536
9537 /* Kill the fork child threads of any threads in process PID
9538 that are stopped at a fork event. */
9539 ALL_NON_EXITED_THREADS (thread)
9540 {
9541 struct target_waitstatus *ws = &thread->pending_follow;
9542
9543 if (is_pending_fork_parent (ws, pid, thread->ptid))
9544 {
9545 struct remote_state *rs = get_remote_state ();
9546 int child_pid = ptid_get_pid (ws->value.related_pid);
9547 int res;
9548
9549 res = remote_vkill (child_pid, rs);
9550 if (res != 0)
9551 error (_("Can't kill fork child process %d"), child_pid);
9552 }
9553 }
9554
9555 /* Check for any pending fork events (not reported or processed yet)
9556 in process PID and kill those fork child threads as well. */
9557 remote_notif_get_pending_events (notif);
9558 param.input = &pid;
9559 param.output = NULL;
9560 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9561 kill_child_of_pending_fork, &param);
9562 }
9563
9564 \f
9565 /* Target hook to kill the current inferior. */
9566
9567 void
9568 remote_target::kill ()
9569 {
9570 int res = -1;
9571 int pid = ptid_get_pid (inferior_ptid);
9572 struct remote_state *rs = get_remote_state ();
9573
9574 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9575 {
9576 /* If we're stopped while forking and we haven't followed yet,
9577 kill the child task. We need to do this before killing the
9578 parent task because if this is a vfork then the parent will
9579 be sleeping. */
9580 kill_new_fork_children (pid, rs);
9581
9582 res = remote_vkill (pid, rs);
9583 if (res == 0)
9584 {
9585 target_mourn_inferior (inferior_ptid);
9586 return;
9587 }
9588 }
9589
9590 /* If we are in 'target remote' mode and we are killing the only
9591 inferior, then we will tell gdbserver to exit and unpush the
9592 target. */
9593 if (res == -1 && !remote_multi_process_p (rs)
9594 && number_of_live_inferiors () == 1)
9595 {
9596 remote_kill_k ();
9597
9598 /* We've killed the remote end, we get to mourn it. If we are
9599 not in extended mode, mourning the inferior also unpushes
9600 remote_ops from the target stack, which closes the remote
9601 connection. */
9602 target_mourn_inferior (inferior_ptid);
9603
9604 return;
9605 }
9606
9607 error (_("Can't kill process"));
9608 }
9609
9610 /* Send a kill request to the target using the 'vKill' packet. */
9611
9612 static int
9613 remote_vkill (int pid, struct remote_state *rs)
9614 {
9615 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9616 return -1;
9617
9618 /* Tell the remote target to detach. */
9619 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9620 putpkt (rs->buf);
9621 getpkt (&rs->buf, &rs->buf_size, 0);
9622
9623 switch (packet_ok (rs->buf,
9624 &remote_protocol_packets[PACKET_vKill]))
9625 {
9626 case PACKET_OK:
9627 return 0;
9628 case PACKET_ERROR:
9629 return 1;
9630 case PACKET_UNKNOWN:
9631 return -1;
9632 default:
9633 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9634 }
9635 }
9636
9637 /* Send a kill request to the target using the 'k' packet. */
9638
9639 static void
9640 remote_kill_k (void)
9641 {
9642 /* Catch errors so the user can quit from gdb even when we
9643 aren't on speaking terms with the remote system. */
9644 TRY
9645 {
9646 putpkt ("k");
9647 }
9648 CATCH (ex, RETURN_MASK_ERROR)
9649 {
9650 if (ex.error == TARGET_CLOSE_ERROR)
9651 {
9652 /* If we got an (EOF) error that caused the target
9653 to go away, then we're done, that's what we wanted.
9654 "k" is susceptible to cause a premature EOF, given
9655 that the remote server isn't actually required to
9656 reply to "k", and it can happen that it doesn't
9657 even get to reply ACK to the "k". */
9658 return;
9659 }
9660
9661 /* Otherwise, something went wrong. We didn't actually kill
9662 the target. Just propagate the exception, and let the
9663 user or higher layers decide what to do. */
9664 throw_exception (ex);
9665 }
9666 END_CATCH
9667 }
9668
9669 void
9670 remote_target::mourn_inferior ()
9671 {
9672 struct remote_state *rs = get_remote_state ();
9673
9674 /* In 'target remote' mode with one inferior, we close the connection. */
9675 if (!rs->extended && number_of_live_inferiors () <= 1)
9676 {
9677 unpush_target (this);
9678
9679 /* remote_close takes care of doing most of the clean up. */
9680 generic_mourn_inferior ();
9681 return;
9682 }
9683
9684 /* In case we got here due to an error, but we're going to stay
9685 connected. */
9686 rs->waiting_for_stop_reply = 0;
9687
9688 /* If the current general thread belonged to the process we just
9689 detached from or has exited, the remote side current general
9690 thread becomes undefined. Considering a case like this:
9691
9692 - We just got here due to a detach.
9693 - The process that we're detaching from happens to immediately
9694 report a global breakpoint being hit in non-stop mode, in the
9695 same thread we had selected before.
9696 - GDB attaches to this process again.
9697 - This event happens to be the next event we handle.
9698
9699 GDB would consider that the current general thread didn't need to
9700 be set on the stub side (with Hg), since for all it knew,
9701 GENERAL_THREAD hadn't changed.
9702
9703 Notice that although in all-stop mode, the remote server always
9704 sets the current thread to the thread reporting the stop event,
9705 that doesn't happen in non-stop mode; in non-stop, the stub *must
9706 not* change the current thread when reporting a breakpoint hit,
9707 due to the decoupling of event reporting and event handling.
9708
9709 To keep things simple, we always invalidate our notion of the
9710 current thread. */
9711 record_currthread (rs, minus_one_ptid);
9712
9713 /* Call common code to mark the inferior as not running. */
9714 generic_mourn_inferior ();
9715
9716 if (!have_inferiors ())
9717 {
9718 if (!remote_multi_process_p (rs))
9719 {
9720 /* Check whether the target is running now - some remote stubs
9721 automatically restart after kill. */
9722 putpkt ("?");
9723 getpkt (&rs->buf, &rs->buf_size, 0);
9724
9725 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9726 {
9727 /* Assume that the target has been restarted. Set
9728 inferior_ptid so that bits of core GDB realizes
9729 there's something here, e.g., so that the user can
9730 say "kill" again. */
9731 inferior_ptid = magic_null_ptid;
9732 }
9733 }
9734 }
9735 }
9736
9737 bool
9738 extended_remote_target::supports_disable_randomization ()
9739 {
9740 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9741 }
9742
9743 static void
9744 extended_remote_disable_randomization (int val)
9745 {
9746 struct remote_state *rs = get_remote_state ();
9747 char *reply;
9748
9749 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9750 val);
9751 putpkt (rs->buf);
9752 reply = remote_get_noisy_reply ();
9753 if (*reply == '\0')
9754 error (_("Target does not support QDisableRandomization."));
9755 if (strcmp (reply, "OK") != 0)
9756 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9757 }
9758
9759 static int
9760 extended_remote_run (const std::string &args)
9761 {
9762 struct remote_state *rs = get_remote_state ();
9763 int len;
9764 const char *remote_exec_file = get_remote_exec_file ();
9765
9766 /* If the user has disabled vRun support, or we have detected that
9767 support is not available, do not try it. */
9768 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9769 return -1;
9770
9771 strcpy (rs->buf, "vRun;");
9772 len = strlen (rs->buf);
9773
9774 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9775 error (_("Remote file name too long for run packet"));
9776 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9777 strlen (remote_exec_file));
9778
9779 if (!args.empty ())
9780 {
9781 int i;
9782
9783 gdb_argv argv (args.c_str ());
9784 for (i = 0; argv[i] != NULL; i++)
9785 {
9786 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9787 error (_("Argument list too long for run packet"));
9788 rs->buf[len++] = ';';
9789 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9790 strlen (argv[i]));
9791 }
9792 }
9793
9794 rs->buf[len++] = '\0';
9795
9796 putpkt (rs->buf);
9797 getpkt (&rs->buf, &rs->buf_size, 0);
9798
9799 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9800 {
9801 case PACKET_OK:
9802 /* We have a wait response. All is well. */
9803 return 0;
9804 case PACKET_UNKNOWN:
9805 return -1;
9806 case PACKET_ERROR:
9807 if (remote_exec_file[0] == '\0')
9808 error (_("Running the default executable on the remote target failed; "
9809 "try \"set remote exec-file\"?"));
9810 else
9811 error (_("Running \"%s\" on the remote target failed"),
9812 remote_exec_file);
9813 default:
9814 gdb_assert_not_reached (_("bad switch"));
9815 }
9816 }
9817
9818 /* Helper function to send set/unset environment packets. ACTION is
9819 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9820 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9821 sent. */
9822
9823 static void
9824 send_environment_packet (struct remote_state *rs,
9825 const char *action,
9826 const char *packet,
9827 const char *value)
9828 {
9829 /* Convert the environment variable to an hex string, which
9830 is the best format to be transmitted over the wire. */
9831 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9832 strlen (value));
9833
9834 xsnprintf (rs->buf, get_remote_packet_size (),
9835 "%s:%s", packet, encoded_value.c_str ());
9836
9837 putpkt (rs->buf);
9838 getpkt (&rs->buf, &rs->buf_size, 0);
9839 if (strcmp (rs->buf, "OK") != 0)
9840 warning (_("Unable to %s environment variable '%s' on remote."),
9841 action, value);
9842 }
9843
9844 /* Helper function to handle the QEnvironment* packets. */
9845
9846 static void
9847 extended_remote_environment_support (struct remote_state *rs)
9848 {
9849 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9850 {
9851 putpkt ("QEnvironmentReset");
9852 getpkt (&rs->buf, &rs->buf_size, 0);
9853 if (strcmp (rs->buf, "OK") != 0)
9854 warning (_("Unable to reset environment on remote."));
9855 }
9856
9857 gdb_environ *e = &current_inferior ()->environment;
9858
9859 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9860 for (const std::string &el : e->user_set_env ())
9861 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9862 el.c_str ());
9863
9864 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9865 for (const std::string &el : e->user_unset_env ())
9866 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9867 }
9868
9869 /* Helper function to set the current working directory for the
9870 inferior in the remote target. */
9871
9872 static void
9873 extended_remote_set_inferior_cwd (struct remote_state *rs)
9874 {
9875 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9876 {
9877 const char *inferior_cwd = get_inferior_cwd ();
9878
9879 if (inferior_cwd != NULL)
9880 {
9881 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9882 strlen (inferior_cwd));
9883
9884 xsnprintf (rs->buf, get_remote_packet_size (),
9885 "QSetWorkingDir:%s", hexpath.c_str ());
9886 }
9887 else
9888 {
9889 /* An empty inferior_cwd means that the user wants us to
9890 reset the remote server's inferior's cwd. */
9891 xsnprintf (rs->buf, get_remote_packet_size (),
9892 "QSetWorkingDir:");
9893 }
9894
9895 putpkt (rs->buf);
9896 getpkt (&rs->buf, &rs->buf_size, 0);
9897 if (packet_ok (rs->buf,
9898 &remote_protocol_packets[PACKET_QSetWorkingDir])
9899 != PACKET_OK)
9900 error (_("\
9901 Remote replied unexpectedly while setting the inferior's working\n\
9902 directory: %s"),
9903 rs->buf);
9904
9905 }
9906 }
9907
9908 /* In the extended protocol we want to be able to do things like
9909 "run" and have them basically work as expected. So we need
9910 a special create_inferior function. We support changing the
9911 executable file and the command line arguments, but not the
9912 environment. */
9913
9914 void
9915 extended_remote_target::create_inferior (const char *exec_file,
9916 const std::string &args,
9917 char **env, int from_tty)
9918 {
9919 int run_worked;
9920 char *stop_reply;
9921 struct remote_state *rs = get_remote_state ();
9922 const char *remote_exec_file = get_remote_exec_file ();
9923
9924 /* If running asynchronously, register the target file descriptor
9925 with the event loop. */
9926 if (target_can_async_p ())
9927 target_async (1);
9928
9929 /* Disable address space randomization if requested (and supported). */
9930 if (supports_disable_randomization ())
9931 extended_remote_disable_randomization (disable_randomization);
9932
9933 /* If startup-with-shell is on, we inform gdbserver to start the
9934 remote inferior using a shell. */
9935 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9936 {
9937 xsnprintf (rs->buf, get_remote_packet_size (),
9938 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9939 putpkt (rs->buf);
9940 getpkt (&rs->buf, &rs->buf_size, 0);
9941 if (strcmp (rs->buf, "OK") != 0)
9942 error (_("\
9943 Remote replied unexpectedly while setting startup-with-shell: %s"),
9944 rs->buf);
9945 }
9946
9947 extended_remote_environment_support (rs);
9948
9949 extended_remote_set_inferior_cwd (rs);
9950
9951 /* Now restart the remote server. */
9952 run_worked = extended_remote_run (args) != -1;
9953 if (!run_worked)
9954 {
9955 /* vRun was not supported. Fail if we need it to do what the
9956 user requested. */
9957 if (remote_exec_file[0])
9958 error (_("Remote target does not support \"set remote exec-file\""));
9959 if (!args.empty ())
9960 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9961
9962 /* Fall back to "R". */
9963 extended_remote_restart ();
9964 }
9965
9966 if (!have_inferiors ())
9967 {
9968 /* Clean up from the last time we ran, before we mark the target
9969 running again. This will mark breakpoints uninserted, and
9970 get_offsets may insert breakpoints. */
9971 init_thread_list ();
9972 init_wait_for_inferior ();
9973 }
9974
9975 /* vRun's success return is a stop reply. */
9976 stop_reply = run_worked ? rs->buf : NULL;
9977 add_current_inferior_and_thread (stop_reply);
9978
9979 /* Get updated offsets, if the stub uses qOffsets. */
9980 get_offsets ();
9981 }
9982 \f
9983
9984 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9985 the list of conditions (in agent expression bytecode format), if any, the
9986 target needs to evaluate. The output is placed into the packet buffer
9987 started from BUF and ended at BUF_END. */
9988
9989 static int
9990 remote_add_target_side_condition (struct gdbarch *gdbarch,
9991 struct bp_target_info *bp_tgt, char *buf,
9992 char *buf_end)
9993 {
9994 if (bp_tgt->conditions.empty ())
9995 return 0;
9996
9997 buf += strlen (buf);
9998 xsnprintf (buf, buf_end - buf, "%s", ";");
9999 buf++;
10000
10001 /* Send conditions to the target. */
10002 for (agent_expr *aexpr : bp_tgt->conditions)
10003 {
10004 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10005 buf += strlen (buf);
10006 for (int i = 0; i < aexpr->len; ++i)
10007 buf = pack_hex_byte (buf, aexpr->buf[i]);
10008 *buf = '\0';
10009 }
10010 return 0;
10011 }
10012
10013 static void
10014 remote_add_target_side_commands (struct gdbarch *gdbarch,
10015 struct bp_target_info *bp_tgt, char *buf)
10016 {
10017 if (bp_tgt->tcommands.empty ())
10018 return;
10019
10020 buf += strlen (buf);
10021
10022 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10023 buf += strlen (buf);
10024
10025 /* Concatenate all the agent expressions that are commands into the
10026 cmds parameter. */
10027 for (agent_expr *aexpr : bp_tgt->tcommands)
10028 {
10029 sprintf (buf, "X%x,", aexpr->len);
10030 buf += strlen (buf);
10031 for (int i = 0; i < aexpr->len; ++i)
10032 buf = pack_hex_byte (buf, aexpr->buf[i]);
10033 *buf = '\0';
10034 }
10035 }
10036
10037 /* Insert a breakpoint. On targets that have software breakpoint
10038 support, we ask the remote target to do the work; on targets
10039 which don't, we insert a traditional memory breakpoint. */
10040
10041 int
10042 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10043 struct bp_target_info *bp_tgt)
10044 {
10045 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10046 If it succeeds, then set the support to PACKET_ENABLE. If it
10047 fails, and the user has explicitly requested the Z support then
10048 report an error, otherwise, mark it disabled and go on. */
10049
10050 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10051 {
10052 CORE_ADDR addr = bp_tgt->reqstd_address;
10053 struct remote_state *rs;
10054 char *p, *endbuf;
10055
10056 /* Make sure the remote is pointing at the right process, if
10057 necessary. */
10058 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10059 set_general_process ();
10060
10061 rs = get_remote_state ();
10062 p = rs->buf;
10063 endbuf = rs->buf + get_remote_packet_size ();
10064
10065 *(p++) = 'Z';
10066 *(p++) = '0';
10067 *(p++) = ',';
10068 addr = (ULONGEST) remote_address_masked (addr);
10069 p += hexnumstr (p, addr);
10070 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10071
10072 if (supports_evaluation_of_breakpoint_conditions ())
10073 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10074
10075 if (can_run_breakpoint_commands ())
10076 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10077
10078 putpkt (rs->buf);
10079 getpkt (&rs->buf, &rs->buf_size, 0);
10080
10081 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10082 {
10083 case PACKET_ERROR:
10084 return -1;
10085 case PACKET_OK:
10086 return 0;
10087 case PACKET_UNKNOWN:
10088 break;
10089 }
10090 }
10091
10092 /* If this breakpoint has target-side commands but this stub doesn't
10093 support Z0 packets, throw error. */
10094 if (!bp_tgt->tcommands.empty ())
10095 throw_error (NOT_SUPPORTED_ERROR, _("\
10096 Target doesn't support breakpoints that have target side commands."));
10097
10098 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10099 }
10100
10101 int
10102 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10103 struct bp_target_info *bp_tgt,
10104 enum remove_bp_reason reason)
10105 {
10106 CORE_ADDR addr = bp_tgt->placed_address;
10107 struct remote_state *rs = get_remote_state ();
10108
10109 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10110 {
10111 char *p = rs->buf;
10112 char *endbuf = rs->buf + get_remote_packet_size ();
10113
10114 /* Make sure the remote is pointing at the right process, if
10115 necessary. */
10116 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10117 set_general_process ();
10118
10119 *(p++) = 'z';
10120 *(p++) = '0';
10121 *(p++) = ',';
10122
10123 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10124 p += hexnumstr (p, addr);
10125 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10126
10127 putpkt (rs->buf);
10128 getpkt (&rs->buf, &rs->buf_size, 0);
10129
10130 return (rs->buf[0] == 'E');
10131 }
10132
10133 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10134 }
10135
10136 static enum Z_packet_type
10137 watchpoint_to_Z_packet (int type)
10138 {
10139 switch (type)
10140 {
10141 case hw_write:
10142 return Z_PACKET_WRITE_WP;
10143 break;
10144 case hw_read:
10145 return Z_PACKET_READ_WP;
10146 break;
10147 case hw_access:
10148 return Z_PACKET_ACCESS_WP;
10149 break;
10150 default:
10151 internal_error (__FILE__, __LINE__,
10152 _("hw_bp_to_z: bad watchpoint type %d"), type);
10153 }
10154 }
10155
10156 int
10157 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10158 enum target_hw_bp_type type, struct expression *cond)
10159 {
10160 struct remote_state *rs = get_remote_state ();
10161 char *endbuf = rs->buf + get_remote_packet_size ();
10162 char *p;
10163 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10164
10165 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10166 return 1;
10167
10168 /* Make sure the remote is pointing at the right process, if
10169 necessary. */
10170 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10171 set_general_process ();
10172
10173 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10174 p = strchr (rs->buf, '\0');
10175 addr = remote_address_masked (addr);
10176 p += hexnumstr (p, (ULONGEST) addr);
10177 xsnprintf (p, endbuf - p, ",%x", len);
10178
10179 putpkt (rs->buf);
10180 getpkt (&rs->buf, &rs->buf_size, 0);
10181
10182 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10183 {
10184 case PACKET_ERROR:
10185 return -1;
10186 case PACKET_UNKNOWN:
10187 return 1;
10188 case PACKET_OK:
10189 return 0;
10190 }
10191 internal_error (__FILE__, __LINE__,
10192 _("remote_insert_watchpoint: reached end of function"));
10193 }
10194
10195 bool
10196 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10197 CORE_ADDR start, int length)
10198 {
10199 CORE_ADDR diff = remote_address_masked (addr - start);
10200
10201 return diff < length;
10202 }
10203
10204
10205 int
10206 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10207 enum target_hw_bp_type type, struct expression *cond)
10208 {
10209 struct remote_state *rs = get_remote_state ();
10210 char *endbuf = rs->buf + get_remote_packet_size ();
10211 char *p;
10212 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10213
10214 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10215 return -1;
10216
10217 /* Make sure the remote is pointing at the right process, if
10218 necessary. */
10219 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10220 set_general_process ();
10221
10222 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10223 p = strchr (rs->buf, '\0');
10224 addr = remote_address_masked (addr);
10225 p += hexnumstr (p, (ULONGEST) addr);
10226 xsnprintf (p, endbuf - p, ",%x", len);
10227 putpkt (rs->buf);
10228 getpkt (&rs->buf, &rs->buf_size, 0);
10229
10230 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10231 {
10232 case PACKET_ERROR:
10233 case PACKET_UNKNOWN:
10234 return -1;
10235 case PACKET_OK:
10236 return 0;
10237 }
10238 internal_error (__FILE__, __LINE__,
10239 _("remote_remove_watchpoint: reached end of function"));
10240 }
10241
10242
10243 int remote_hw_watchpoint_limit = -1;
10244 int remote_hw_watchpoint_length_limit = -1;
10245 int remote_hw_breakpoint_limit = -1;
10246
10247 int
10248 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10249 {
10250 if (remote_hw_watchpoint_length_limit == 0)
10251 return 0;
10252 else if (remote_hw_watchpoint_length_limit < 0)
10253 return 1;
10254 else if (len <= remote_hw_watchpoint_length_limit)
10255 return 1;
10256 else
10257 return 0;
10258 }
10259
10260 int
10261 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10262 {
10263 if (type == bp_hardware_breakpoint)
10264 {
10265 if (remote_hw_breakpoint_limit == 0)
10266 return 0;
10267 else if (remote_hw_breakpoint_limit < 0)
10268 return 1;
10269 else if (cnt <= remote_hw_breakpoint_limit)
10270 return 1;
10271 }
10272 else
10273 {
10274 if (remote_hw_watchpoint_limit == 0)
10275 return 0;
10276 else if (remote_hw_watchpoint_limit < 0)
10277 return 1;
10278 else if (ot)
10279 return -1;
10280 else if (cnt <= remote_hw_watchpoint_limit)
10281 return 1;
10282 }
10283 return -1;
10284 }
10285
10286 /* The to_stopped_by_sw_breakpoint method of target remote. */
10287
10288 bool
10289 remote_target::stopped_by_sw_breakpoint ()
10290 {
10291 struct thread_info *thread = inferior_thread ();
10292
10293 return (thread->priv != NULL
10294 && (get_remote_thread_info (thread)->stop_reason
10295 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10296 }
10297
10298 /* The to_supports_stopped_by_sw_breakpoint method of target
10299 remote. */
10300
10301 bool
10302 remote_target::supports_stopped_by_sw_breakpoint ()
10303 {
10304 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10305 }
10306
10307 /* The to_stopped_by_hw_breakpoint method of target remote. */
10308
10309 bool
10310 remote_target::stopped_by_hw_breakpoint ()
10311 {
10312 struct thread_info *thread = inferior_thread ();
10313
10314 return (thread->priv != NULL
10315 && (get_remote_thread_info (thread)->stop_reason
10316 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10317 }
10318
10319 /* The to_supports_stopped_by_hw_breakpoint method of target
10320 remote. */
10321
10322 bool
10323 remote_target::supports_stopped_by_hw_breakpoint ()
10324 {
10325 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10326 }
10327
10328 bool
10329 remote_target::stopped_by_watchpoint ()
10330 {
10331 struct thread_info *thread = inferior_thread ();
10332
10333 return (thread->priv != NULL
10334 && (get_remote_thread_info (thread)->stop_reason
10335 == TARGET_STOPPED_BY_WATCHPOINT));
10336 }
10337
10338 bool
10339 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10340 {
10341 struct thread_info *thread = inferior_thread ();
10342
10343 if (thread->priv != NULL
10344 && (get_remote_thread_info (thread)->stop_reason
10345 == TARGET_STOPPED_BY_WATCHPOINT))
10346 {
10347 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10348 return true;
10349 }
10350
10351 return false;
10352 }
10353
10354
10355 int
10356 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10357 struct bp_target_info *bp_tgt)
10358 {
10359 CORE_ADDR addr = bp_tgt->reqstd_address;
10360 struct remote_state *rs;
10361 char *p, *endbuf;
10362 char *message;
10363
10364 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10365 return -1;
10366
10367 /* Make sure the remote is pointing at the right process, if
10368 necessary. */
10369 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10370 set_general_process ();
10371
10372 rs = get_remote_state ();
10373 p = rs->buf;
10374 endbuf = rs->buf + get_remote_packet_size ();
10375
10376 *(p++) = 'Z';
10377 *(p++) = '1';
10378 *(p++) = ',';
10379
10380 addr = remote_address_masked (addr);
10381 p += hexnumstr (p, (ULONGEST) addr);
10382 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10383
10384 if (supports_evaluation_of_breakpoint_conditions ())
10385 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10386
10387 if (can_run_breakpoint_commands ())
10388 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10389
10390 putpkt (rs->buf);
10391 getpkt (&rs->buf, &rs->buf_size, 0);
10392
10393 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10394 {
10395 case PACKET_ERROR:
10396 if (rs->buf[1] == '.')
10397 {
10398 message = strchr (rs->buf + 2, '.');
10399 if (message)
10400 error (_("Remote failure reply: %s"), message + 1);
10401 }
10402 return -1;
10403 case PACKET_UNKNOWN:
10404 return -1;
10405 case PACKET_OK:
10406 return 0;
10407 }
10408 internal_error (__FILE__, __LINE__,
10409 _("remote_insert_hw_breakpoint: reached end of function"));
10410 }
10411
10412
10413 int
10414 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10415 struct bp_target_info *bp_tgt)
10416 {
10417 CORE_ADDR addr;
10418 struct remote_state *rs = get_remote_state ();
10419 char *p = rs->buf;
10420 char *endbuf = rs->buf + get_remote_packet_size ();
10421
10422 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10423 return -1;
10424
10425 /* Make sure the remote is pointing at the right process, if
10426 necessary. */
10427 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10428 set_general_process ();
10429
10430 *(p++) = 'z';
10431 *(p++) = '1';
10432 *(p++) = ',';
10433
10434 addr = remote_address_masked (bp_tgt->placed_address);
10435 p += hexnumstr (p, (ULONGEST) addr);
10436 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10437
10438 putpkt (rs->buf);
10439 getpkt (&rs->buf, &rs->buf_size, 0);
10440
10441 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10442 {
10443 case PACKET_ERROR:
10444 case PACKET_UNKNOWN:
10445 return -1;
10446 case PACKET_OK:
10447 return 0;
10448 }
10449 internal_error (__FILE__, __LINE__,
10450 _("remote_remove_hw_breakpoint: reached end of function"));
10451 }
10452
10453 /* Verify memory using the "qCRC:" request. */
10454
10455 int
10456 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10457 {
10458 struct remote_state *rs = get_remote_state ();
10459 unsigned long host_crc, target_crc;
10460 char *tmp;
10461
10462 /* It doesn't make sense to use qCRC if the remote target is
10463 connected but not running. */
10464 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10465 {
10466 enum packet_result result;
10467
10468 /* Make sure the remote is pointing at the right process. */
10469 set_general_process ();
10470
10471 /* FIXME: assumes lma can fit into long. */
10472 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10473 (long) lma, (long) size);
10474 putpkt (rs->buf);
10475
10476 /* Be clever; compute the host_crc before waiting for target
10477 reply. */
10478 host_crc = xcrc32 (data, size, 0xffffffff);
10479
10480 getpkt (&rs->buf, &rs->buf_size, 0);
10481
10482 result = packet_ok (rs->buf,
10483 &remote_protocol_packets[PACKET_qCRC]);
10484 if (result == PACKET_ERROR)
10485 return -1;
10486 else if (result == PACKET_OK)
10487 {
10488 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10489 target_crc = target_crc * 16 + fromhex (*tmp);
10490
10491 return (host_crc == target_crc);
10492 }
10493 }
10494
10495 return simple_verify_memory (this, data, lma, size);
10496 }
10497
10498 /* compare-sections command
10499
10500 With no arguments, compares each loadable section in the exec bfd
10501 with the same memory range on the target, and reports mismatches.
10502 Useful for verifying the image on the target against the exec file. */
10503
10504 static void
10505 compare_sections_command (const char *args, int from_tty)
10506 {
10507 asection *s;
10508 const char *sectname;
10509 bfd_size_type size;
10510 bfd_vma lma;
10511 int matched = 0;
10512 int mismatched = 0;
10513 int res;
10514 int read_only = 0;
10515
10516 if (!exec_bfd)
10517 error (_("command cannot be used without an exec file"));
10518
10519 if (args != NULL && strcmp (args, "-r") == 0)
10520 {
10521 read_only = 1;
10522 args = NULL;
10523 }
10524
10525 for (s = exec_bfd->sections; s; s = s->next)
10526 {
10527 if (!(s->flags & SEC_LOAD))
10528 continue; /* Skip non-loadable section. */
10529
10530 if (read_only && (s->flags & SEC_READONLY) == 0)
10531 continue; /* Skip writeable sections */
10532
10533 size = bfd_get_section_size (s);
10534 if (size == 0)
10535 continue; /* Skip zero-length section. */
10536
10537 sectname = bfd_get_section_name (exec_bfd, s);
10538 if (args && strcmp (args, sectname) != 0)
10539 continue; /* Not the section selected by user. */
10540
10541 matched = 1; /* Do this section. */
10542 lma = s->lma;
10543
10544 gdb::byte_vector sectdata (size);
10545 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10546
10547 res = target_verify_memory (sectdata.data (), lma, size);
10548
10549 if (res == -1)
10550 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10551 paddress (target_gdbarch (), lma),
10552 paddress (target_gdbarch (), lma + size));
10553
10554 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10555 paddress (target_gdbarch (), lma),
10556 paddress (target_gdbarch (), lma + size));
10557 if (res)
10558 printf_filtered ("matched.\n");
10559 else
10560 {
10561 printf_filtered ("MIS-MATCHED!\n");
10562 mismatched++;
10563 }
10564 }
10565 if (mismatched > 0)
10566 warning (_("One or more sections of the target image does not match\n\
10567 the loaded file\n"));
10568 if (args && !matched)
10569 printf_filtered (_("No loaded section named '%s'.\n"), args);
10570 }
10571
10572 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10573 into remote target. The number of bytes written to the remote
10574 target is returned, or -1 for error. */
10575
10576 static enum target_xfer_status
10577 remote_write_qxfer (const char *object_name,
10578 const char *annex, const gdb_byte *writebuf,
10579 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10580 struct packet_config *packet)
10581 {
10582 int i, buf_len;
10583 ULONGEST n;
10584 struct remote_state *rs = get_remote_state ();
10585 int max_size = get_memory_write_packet_size ();
10586
10587 if (packet_config_support (packet) == PACKET_DISABLE)
10588 return TARGET_XFER_E_IO;
10589
10590 /* Insert header. */
10591 i = snprintf (rs->buf, max_size,
10592 "qXfer:%s:write:%s:%s:",
10593 object_name, annex ? annex : "",
10594 phex_nz (offset, sizeof offset));
10595 max_size -= (i + 1);
10596
10597 /* Escape as much data as fits into rs->buf. */
10598 buf_len = remote_escape_output
10599 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10600
10601 if (putpkt_binary (rs->buf, i + buf_len) < 0
10602 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10603 || packet_ok (rs->buf, packet) != PACKET_OK)
10604 return TARGET_XFER_E_IO;
10605
10606 unpack_varlen_hex (rs->buf, &n);
10607
10608 *xfered_len = n;
10609 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10610 }
10611
10612 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10613 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10614 number of bytes read is returned, or 0 for EOF, or -1 for error.
10615 The number of bytes read may be less than LEN without indicating an
10616 EOF. PACKET is checked and updated to indicate whether the remote
10617 target supports this object. */
10618
10619 static enum target_xfer_status
10620 remote_read_qxfer (const char *object_name,
10621 const char *annex,
10622 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10623 ULONGEST *xfered_len,
10624 struct packet_config *packet)
10625 {
10626 struct remote_state *rs = get_remote_state ();
10627 LONGEST i, n, packet_len;
10628
10629 if (packet_config_support (packet) == PACKET_DISABLE)
10630 return TARGET_XFER_E_IO;
10631
10632 /* Check whether we've cached an end-of-object packet that matches
10633 this request. */
10634 if (rs->finished_object)
10635 {
10636 if (strcmp (object_name, rs->finished_object) == 0
10637 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10638 && offset == rs->finished_offset)
10639 return TARGET_XFER_EOF;
10640
10641
10642 /* Otherwise, we're now reading something different. Discard
10643 the cache. */
10644 xfree (rs->finished_object);
10645 xfree (rs->finished_annex);
10646 rs->finished_object = NULL;
10647 rs->finished_annex = NULL;
10648 }
10649
10650 /* Request only enough to fit in a single packet. The actual data
10651 may not, since we don't know how much of it will need to be escaped;
10652 the target is free to respond with slightly less data. We subtract
10653 five to account for the response type and the protocol frame. */
10654 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10655 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10656 object_name, annex ? annex : "",
10657 phex_nz (offset, sizeof offset),
10658 phex_nz (n, sizeof n));
10659 i = putpkt (rs->buf);
10660 if (i < 0)
10661 return TARGET_XFER_E_IO;
10662
10663 rs->buf[0] = '\0';
10664 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10665 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10666 return TARGET_XFER_E_IO;
10667
10668 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10669 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10670
10671 /* 'm' means there is (or at least might be) more data after this
10672 batch. That does not make sense unless there's at least one byte
10673 of data in this reply. */
10674 if (rs->buf[0] == 'm' && packet_len == 1)
10675 error (_("Remote qXfer reply contained no data."));
10676
10677 /* Got some data. */
10678 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10679 packet_len - 1, readbuf, n);
10680
10681 /* 'l' is an EOF marker, possibly including a final block of data,
10682 or possibly empty. If we have the final block of a non-empty
10683 object, record this fact to bypass a subsequent partial read. */
10684 if (rs->buf[0] == 'l' && offset + i > 0)
10685 {
10686 rs->finished_object = xstrdup (object_name);
10687 rs->finished_annex = xstrdup (annex ? annex : "");
10688 rs->finished_offset = offset + i;
10689 }
10690
10691 if (i == 0)
10692 return TARGET_XFER_EOF;
10693 else
10694 {
10695 *xfered_len = i;
10696 return TARGET_XFER_OK;
10697 }
10698 }
10699
10700 enum target_xfer_status
10701 remote_target::xfer_partial (enum target_object object,
10702 const char *annex, gdb_byte *readbuf,
10703 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10704 ULONGEST *xfered_len)
10705 {
10706 struct remote_state *rs;
10707 int i;
10708 char *p2;
10709 char query_type;
10710 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10711
10712 set_remote_traceframe ();
10713 set_general_thread (inferior_ptid);
10714
10715 rs = get_remote_state ();
10716
10717 /* Handle memory using the standard memory routines. */
10718 if (object == TARGET_OBJECT_MEMORY)
10719 {
10720 /* If the remote target is connected but not running, we should
10721 pass this request down to a lower stratum (e.g. the executable
10722 file). */
10723 if (!target_has_execution)
10724 return TARGET_XFER_EOF;
10725
10726 if (writebuf != NULL)
10727 return remote_write_bytes (offset, writebuf, len, unit_size,
10728 xfered_len);
10729 else
10730 return remote_read_bytes (this, offset, readbuf, len, unit_size,
10731 xfered_len);
10732 }
10733
10734 /* Handle SPU memory using qxfer packets. */
10735 if (object == TARGET_OBJECT_SPU)
10736 {
10737 if (readbuf)
10738 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10739 xfered_len, &remote_protocol_packets
10740 [PACKET_qXfer_spu_read]);
10741 else
10742 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10743 xfered_len, &remote_protocol_packets
10744 [PACKET_qXfer_spu_write]);
10745 }
10746
10747 /* Handle extra signal info using qxfer packets. */
10748 if (object == TARGET_OBJECT_SIGNAL_INFO)
10749 {
10750 if (readbuf)
10751 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10752 xfered_len, &remote_protocol_packets
10753 [PACKET_qXfer_siginfo_read]);
10754 else
10755 return remote_write_qxfer ("siginfo", annex,
10756 writebuf, offset, len, xfered_len,
10757 &remote_protocol_packets
10758 [PACKET_qXfer_siginfo_write]);
10759 }
10760
10761 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10762 {
10763 if (readbuf)
10764 return remote_read_qxfer ("statictrace", annex,
10765 readbuf, offset, len, xfered_len,
10766 &remote_protocol_packets
10767 [PACKET_qXfer_statictrace_read]);
10768 else
10769 return TARGET_XFER_E_IO;
10770 }
10771
10772 /* Only handle flash writes. */
10773 if (writebuf != NULL)
10774 {
10775 switch (object)
10776 {
10777 case TARGET_OBJECT_FLASH:
10778 return remote_flash_write (this, offset, len, xfered_len,
10779 writebuf);
10780
10781 default:
10782 return TARGET_XFER_E_IO;
10783 }
10784 }
10785
10786 /* Map pre-existing objects onto letters. DO NOT do this for new
10787 objects!!! Instead specify new query packets. */
10788 switch (object)
10789 {
10790 case TARGET_OBJECT_AVR:
10791 query_type = 'R';
10792 break;
10793
10794 case TARGET_OBJECT_AUXV:
10795 gdb_assert (annex == NULL);
10796 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10797 xfered_len,
10798 &remote_protocol_packets[PACKET_qXfer_auxv]);
10799
10800 case TARGET_OBJECT_AVAILABLE_FEATURES:
10801 return remote_read_qxfer
10802 ("features", annex, readbuf, offset, len, xfered_len,
10803 &remote_protocol_packets[PACKET_qXfer_features]);
10804
10805 case TARGET_OBJECT_LIBRARIES:
10806 return remote_read_qxfer
10807 ("libraries", annex, readbuf, offset, len, xfered_len,
10808 &remote_protocol_packets[PACKET_qXfer_libraries]);
10809
10810 case TARGET_OBJECT_LIBRARIES_SVR4:
10811 return remote_read_qxfer
10812 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10813 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10814
10815 case TARGET_OBJECT_MEMORY_MAP:
10816 gdb_assert (annex == NULL);
10817 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10818 xfered_len,
10819 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10820
10821 case TARGET_OBJECT_OSDATA:
10822 /* Should only get here if we're connected. */
10823 gdb_assert (rs->remote_desc);
10824 return remote_read_qxfer
10825 ("osdata", annex, readbuf, offset, len, xfered_len,
10826 &remote_protocol_packets[PACKET_qXfer_osdata]);
10827
10828 case TARGET_OBJECT_THREADS:
10829 gdb_assert (annex == NULL);
10830 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10831 xfered_len,
10832 &remote_protocol_packets[PACKET_qXfer_threads]);
10833
10834 case TARGET_OBJECT_TRACEFRAME_INFO:
10835 gdb_assert (annex == NULL);
10836 return remote_read_qxfer
10837 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10838 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10839
10840 case TARGET_OBJECT_FDPIC:
10841 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10842 xfered_len,
10843 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10844
10845 case TARGET_OBJECT_OPENVMS_UIB:
10846 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10847 xfered_len,
10848 &remote_protocol_packets[PACKET_qXfer_uib]);
10849
10850 case TARGET_OBJECT_BTRACE:
10851 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10852 xfered_len,
10853 &remote_protocol_packets[PACKET_qXfer_btrace]);
10854
10855 case TARGET_OBJECT_BTRACE_CONF:
10856 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10857 len, xfered_len,
10858 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10859
10860 case TARGET_OBJECT_EXEC_FILE:
10861 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10862 len, xfered_len,
10863 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10864
10865 default:
10866 return TARGET_XFER_E_IO;
10867 }
10868
10869 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10870 large enough let the caller deal with it. */
10871 if (len < get_remote_packet_size ())
10872 return TARGET_XFER_E_IO;
10873 len = get_remote_packet_size ();
10874
10875 /* Except for querying the minimum buffer size, target must be open. */
10876 if (!rs->remote_desc)
10877 error (_("remote query is only available after target open"));
10878
10879 gdb_assert (annex != NULL);
10880 gdb_assert (readbuf != NULL);
10881
10882 p2 = rs->buf;
10883 *p2++ = 'q';
10884 *p2++ = query_type;
10885
10886 /* We used one buffer char for the remote protocol q command and
10887 another for the query type. As the remote protocol encapsulation
10888 uses 4 chars plus one extra in case we are debugging
10889 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10890 string. */
10891 i = 0;
10892 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10893 {
10894 /* Bad caller may have sent forbidden characters. */
10895 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10896 *p2++ = annex[i];
10897 i++;
10898 }
10899 *p2 = '\0';
10900 gdb_assert (annex[i] == '\0');
10901
10902 i = putpkt (rs->buf);
10903 if (i < 0)
10904 return TARGET_XFER_E_IO;
10905
10906 getpkt (&rs->buf, &rs->buf_size, 0);
10907 strcpy ((char *) readbuf, rs->buf);
10908
10909 *xfered_len = strlen ((char *) readbuf);
10910 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10911 }
10912
10913 /* Implementation of to_get_memory_xfer_limit. */
10914
10915 ULONGEST
10916 remote_target::get_memory_xfer_limit ()
10917 {
10918 return get_memory_write_packet_size ();
10919 }
10920
10921 int
10922 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
10923 const gdb_byte *pattern, ULONGEST pattern_len,
10924 CORE_ADDR *found_addrp)
10925 {
10926 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10927 struct remote_state *rs = get_remote_state ();
10928 int max_size = get_memory_write_packet_size ();
10929 struct packet_config *packet =
10930 &remote_protocol_packets[PACKET_qSearch_memory];
10931 /* Number of packet bytes used to encode the pattern;
10932 this could be more than PATTERN_LEN due to escape characters. */
10933 int escaped_pattern_len;
10934 /* Amount of pattern that was encodable in the packet. */
10935 int used_pattern_len;
10936 int i;
10937 int found;
10938 ULONGEST found_addr;
10939
10940 /* Don't go to the target if we don't have to. This is done before
10941 checking packet_config_support to avoid the possibility that a
10942 success for this edge case means the facility works in
10943 general. */
10944 if (pattern_len > search_space_len)
10945 return 0;
10946 if (pattern_len == 0)
10947 {
10948 *found_addrp = start_addr;
10949 return 1;
10950 }
10951
10952 /* If we already know the packet isn't supported, fall back to the simple
10953 way of searching memory. */
10954
10955 if (packet_config_support (packet) == PACKET_DISABLE)
10956 {
10957 /* Target doesn't provided special support, fall back and use the
10958 standard support (copy memory and do the search here). */
10959 return simple_search_memory (this, start_addr, search_space_len,
10960 pattern, pattern_len, found_addrp);
10961 }
10962
10963 /* Make sure the remote is pointing at the right process. */
10964 set_general_process ();
10965
10966 /* Insert header. */
10967 i = snprintf (rs->buf, max_size,
10968 "qSearch:memory:%s;%s;",
10969 phex_nz (start_addr, addr_size),
10970 phex_nz (search_space_len, sizeof (search_space_len)));
10971 max_size -= (i + 1);
10972
10973 /* Escape as much data as fits into rs->buf. */
10974 escaped_pattern_len =
10975 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10976 &used_pattern_len, max_size);
10977
10978 /* Bail if the pattern is too large. */
10979 if (used_pattern_len != pattern_len)
10980 error (_("Pattern is too large to transmit to remote target."));
10981
10982 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10983 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10984 || packet_ok (rs->buf, packet) != PACKET_OK)
10985 {
10986 /* The request may not have worked because the command is not
10987 supported. If so, fall back to the simple way. */
10988 if (packet_config_support (packet) == PACKET_DISABLE)
10989 {
10990 return simple_search_memory (this, start_addr, search_space_len,
10991 pattern, pattern_len, found_addrp);
10992 }
10993 return -1;
10994 }
10995
10996 if (rs->buf[0] == '0')
10997 found = 0;
10998 else if (rs->buf[0] == '1')
10999 {
11000 found = 1;
11001 if (rs->buf[1] != ',')
11002 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11003 unpack_varlen_hex (rs->buf + 2, &found_addr);
11004 *found_addrp = found_addr;
11005 }
11006 else
11007 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11008
11009 return found;
11010 }
11011
11012 void
11013 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11014 {
11015 struct remote_state *rs = get_remote_state ();
11016 char *p = rs->buf;
11017
11018 if (!rs->remote_desc)
11019 error (_("remote rcmd is only available after target open"));
11020
11021 /* Send a NULL command across as an empty command. */
11022 if (command == NULL)
11023 command = "";
11024
11025 /* The query prefix. */
11026 strcpy (rs->buf, "qRcmd,");
11027 p = strchr (rs->buf, '\0');
11028
11029 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11030 > get_remote_packet_size ())
11031 error (_("\"monitor\" command ``%s'' is too long."), command);
11032
11033 /* Encode the actual command. */
11034 bin2hex ((const gdb_byte *) command, p, strlen (command));
11035
11036 if (putpkt (rs->buf) < 0)
11037 error (_("Communication problem with target."));
11038
11039 /* get/display the response */
11040 while (1)
11041 {
11042 char *buf;
11043
11044 /* XXX - see also remote_get_noisy_reply(). */
11045 QUIT; /* Allow user to bail out with ^C. */
11046 rs->buf[0] = '\0';
11047 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11048 {
11049 /* Timeout. Continue to (try to) read responses.
11050 This is better than stopping with an error, assuming the stub
11051 is still executing the (long) monitor command.
11052 If needed, the user can interrupt gdb using C-c, obtaining
11053 an effect similar to stop on timeout. */
11054 continue;
11055 }
11056 buf = rs->buf;
11057 if (buf[0] == '\0')
11058 error (_("Target does not support this command."));
11059 if (buf[0] == 'O' && buf[1] != 'K')
11060 {
11061 remote_console_output (buf + 1); /* 'O' message from stub. */
11062 continue;
11063 }
11064 if (strcmp (buf, "OK") == 0)
11065 break;
11066 if (strlen (buf) == 3 && buf[0] == 'E'
11067 && isdigit (buf[1]) && isdigit (buf[2]))
11068 {
11069 error (_("Protocol error with Rcmd"));
11070 }
11071 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11072 {
11073 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11074
11075 fputc_unfiltered (c, outbuf);
11076 }
11077 break;
11078 }
11079 }
11080
11081 std::vector<mem_region>
11082 remote_target::memory_map ()
11083 {
11084 std::vector<mem_region> result;
11085 gdb::optional<gdb::char_vector> text
11086 = target_read_stralloc (target_stack, TARGET_OBJECT_MEMORY_MAP, NULL);
11087
11088 if (text)
11089 result = parse_memory_map (text->data ());
11090
11091 return result;
11092 }
11093
11094 static void
11095 packet_command (const char *args, int from_tty)
11096 {
11097 struct remote_state *rs = get_remote_state ();
11098
11099 if (!rs->remote_desc)
11100 error (_("command can only be used with remote target"));
11101
11102 if (!args)
11103 error (_("remote-packet command requires packet text as argument"));
11104
11105 puts_filtered ("sending: ");
11106 print_packet (args);
11107 puts_filtered ("\n");
11108 putpkt (args);
11109
11110 getpkt (&rs->buf, &rs->buf_size, 0);
11111 puts_filtered ("received: ");
11112 print_packet (rs->buf);
11113 puts_filtered ("\n");
11114 }
11115
11116 #if 0
11117 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11118
11119 static void display_thread_info (struct gdb_ext_thread_info *info);
11120
11121 static void threadset_test_cmd (char *cmd, int tty);
11122
11123 static void threadalive_test (char *cmd, int tty);
11124
11125 static void threadlist_test_cmd (char *cmd, int tty);
11126
11127 int get_and_display_threadinfo (threadref *ref);
11128
11129 static void threadinfo_test_cmd (char *cmd, int tty);
11130
11131 static int thread_display_step (threadref *ref, void *context);
11132
11133 static void threadlist_update_test_cmd (char *cmd, int tty);
11134
11135 static void init_remote_threadtests (void);
11136
11137 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11138
11139 static void
11140 threadset_test_cmd (const char *cmd, int tty)
11141 {
11142 int sample_thread = SAMPLE_THREAD;
11143
11144 printf_filtered (_("Remote threadset test\n"));
11145 set_general_thread (sample_thread);
11146 }
11147
11148
11149 static void
11150 threadalive_test (const char *cmd, int tty)
11151 {
11152 int sample_thread = SAMPLE_THREAD;
11153 int pid = ptid_get_pid (inferior_ptid);
11154 ptid_t ptid = ptid_build (pid, sample_thread, 0);
11155
11156 if (remote_thread_alive (ptid))
11157 printf_filtered ("PASS: Thread alive test\n");
11158 else
11159 printf_filtered ("FAIL: Thread alive test\n");
11160 }
11161
11162 void output_threadid (char *title, threadref *ref);
11163
11164 void
11165 output_threadid (char *title, threadref *ref)
11166 {
11167 char hexid[20];
11168
11169 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11170 hexid[16] = 0;
11171 printf_filtered ("%s %s\n", title, (&hexid[0]));
11172 }
11173
11174 static void
11175 threadlist_test_cmd (const char *cmd, int tty)
11176 {
11177 int startflag = 1;
11178 threadref nextthread;
11179 int done, result_count;
11180 threadref threadlist[3];
11181
11182 printf_filtered ("Remote Threadlist test\n");
11183 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11184 &result_count, &threadlist[0]))
11185 printf_filtered ("FAIL: threadlist test\n");
11186 else
11187 {
11188 threadref *scan = threadlist;
11189 threadref *limit = scan + result_count;
11190
11191 while (scan < limit)
11192 output_threadid (" thread ", scan++);
11193 }
11194 }
11195
11196 void
11197 display_thread_info (struct gdb_ext_thread_info *info)
11198 {
11199 output_threadid ("Threadid: ", &info->threadid);
11200 printf_filtered ("Name: %s\n ", info->shortname);
11201 printf_filtered ("State: %s\n", info->display);
11202 printf_filtered ("other: %s\n\n", info->more_display);
11203 }
11204
11205 int
11206 get_and_display_threadinfo (threadref *ref)
11207 {
11208 int result;
11209 int set;
11210 struct gdb_ext_thread_info threadinfo;
11211
11212 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11213 | TAG_MOREDISPLAY | TAG_DISPLAY;
11214 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11215 display_thread_info (&threadinfo);
11216 return result;
11217 }
11218
11219 static void
11220 threadinfo_test_cmd (const char *cmd, int tty)
11221 {
11222 int athread = SAMPLE_THREAD;
11223 threadref thread;
11224 int set;
11225
11226 int_to_threadref (&thread, athread);
11227 printf_filtered ("Remote Threadinfo test\n");
11228 if (!get_and_display_threadinfo (&thread))
11229 printf_filtered ("FAIL cannot get thread info\n");
11230 }
11231
11232 static int
11233 thread_display_step (threadref *ref, void *context)
11234 {
11235 /* output_threadid(" threadstep ",ref); *//* simple test */
11236 return get_and_display_threadinfo (ref);
11237 }
11238
11239 static void
11240 threadlist_update_test_cmd (const char *cmd, int tty)
11241 {
11242 printf_filtered ("Remote Threadlist update test\n");
11243 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11244 }
11245
11246 static void
11247 init_remote_threadtests (void)
11248 {
11249 add_com ("tlist", class_obscure, threadlist_test_cmd,
11250 _("Fetch and print the remote list of "
11251 "thread identifiers, one pkt only"));
11252 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11253 _("Fetch and display info about one thread"));
11254 add_com ("tset", class_obscure, threadset_test_cmd,
11255 _("Test setting to a different thread"));
11256 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11257 _("Iterate through updating all remote thread info"));
11258 add_com ("talive", class_obscure, threadalive_test,
11259 _(" Remote thread alive test "));
11260 }
11261
11262 #endif /* 0 */
11263
11264 /* Convert a thread ID to a string. Returns the string in a static
11265 buffer. */
11266
11267 const char *
11268 remote_target::pid_to_str (ptid_t ptid)
11269 {
11270 static char buf[64];
11271 struct remote_state *rs = get_remote_state ();
11272
11273 if (ptid_equal (ptid, null_ptid))
11274 return normal_pid_to_str (ptid);
11275 else if (ptid_is_pid (ptid))
11276 {
11277 /* Printing an inferior target id. */
11278
11279 /* When multi-process extensions are off, there's no way in the
11280 remote protocol to know the remote process id, if there's any
11281 at all. There's one exception --- when we're connected with
11282 target extended-remote, and we manually attached to a process
11283 with "attach PID". We don't record anywhere a flag that
11284 allows us to distinguish that case from the case of
11285 connecting with extended-remote and the stub already being
11286 attached to a process, and reporting yes to qAttached, hence
11287 no smart special casing here. */
11288 if (!remote_multi_process_p (rs))
11289 {
11290 xsnprintf (buf, sizeof buf, "Remote target");
11291 return buf;
11292 }
11293
11294 return normal_pid_to_str (ptid);
11295 }
11296 else
11297 {
11298 if (ptid_equal (magic_null_ptid, ptid))
11299 xsnprintf (buf, sizeof buf, "Thread <main>");
11300 else if (remote_multi_process_p (rs))
11301 if (ptid_get_lwp (ptid) == 0)
11302 return normal_pid_to_str (ptid);
11303 else
11304 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11305 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11306 else
11307 xsnprintf (buf, sizeof buf, "Thread %ld",
11308 ptid_get_lwp (ptid));
11309 return buf;
11310 }
11311 }
11312
11313 /* Get the address of the thread local variable in OBJFILE which is
11314 stored at OFFSET within the thread local storage for thread PTID. */
11315
11316 CORE_ADDR
11317 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11318 CORE_ADDR offset)
11319 {
11320 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11321 {
11322 struct remote_state *rs = get_remote_state ();
11323 char *p = rs->buf;
11324 char *endp = rs->buf + get_remote_packet_size ();
11325 enum packet_result result;
11326
11327 strcpy (p, "qGetTLSAddr:");
11328 p += strlen (p);
11329 p = write_ptid (p, endp, ptid);
11330 *p++ = ',';
11331 p += hexnumstr (p, offset);
11332 *p++ = ',';
11333 p += hexnumstr (p, lm);
11334 *p++ = '\0';
11335
11336 putpkt (rs->buf);
11337 getpkt (&rs->buf, &rs->buf_size, 0);
11338 result = packet_ok (rs->buf,
11339 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11340 if (result == PACKET_OK)
11341 {
11342 ULONGEST result;
11343
11344 unpack_varlen_hex (rs->buf, &result);
11345 return result;
11346 }
11347 else if (result == PACKET_UNKNOWN)
11348 throw_error (TLS_GENERIC_ERROR,
11349 _("Remote target doesn't support qGetTLSAddr packet"));
11350 else
11351 throw_error (TLS_GENERIC_ERROR,
11352 _("Remote target failed to process qGetTLSAddr request"));
11353 }
11354 else
11355 throw_error (TLS_GENERIC_ERROR,
11356 _("TLS not supported or disabled on this target"));
11357 /* Not reached. */
11358 return 0;
11359 }
11360
11361 /* Provide thread local base, i.e. Thread Information Block address.
11362 Returns 1 if ptid is found and thread_local_base is non zero. */
11363
11364 bool
11365 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11366 {
11367 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11368 {
11369 struct remote_state *rs = get_remote_state ();
11370 char *p = rs->buf;
11371 char *endp = rs->buf + get_remote_packet_size ();
11372 enum packet_result result;
11373
11374 strcpy (p, "qGetTIBAddr:");
11375 p += strlen (p);
11376 p = write_ptid (p, endp, ptid);
11377 *p++ = '\0';
11378
11379 putpkt (rs->buf);
11380 getpkt (&rs->buf, &rs->buf_size, 0);
11381 result = packet_ok (rs->buf,
11382 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11383 if (result == PACKET_OK)
11384 {
11385 ULONGEST result;
11386
11387 unpack_varlen_hex (rs->buf, &result);
11388 if (addr)
11389 *addr = (CORE_ADDR) result;
11390 return true;
11391 }
11392 else if (result == PACKET_UNKNOWN)
11393 error (_("Remote target doesn't support qGetTIBAddr packet"));
11394 else
11395 error (_("Remote target failed to process qGetTIBAddr request"));
11396 }
11397 else
11398 error (_("qGetTIBAddr not supported or disabled on this target"));
11399 /* Not reached. */
11400 return false;
11401 }
11402
11403 /* Support for inferring a target description based on the current
11404 architecture and the size of a 'g' packet. While the 'g' packet
11405 can have any size (since optional registers can be left off the
11406 end), some sizes are easily recognizable given knowledge of the
11407 approximate architecture. */
11408
11409 struct remote_g_packet_guess
11410 {
11411 int bytes;
11412 const struct target_desc *tdesc;
11413 };
11414 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11415 DEF_VEC_O(remote_g_packet_guess_s);
11416
11417 struct remote_g_packet_data
11418 {
11419 VEC(remote_g_packet_guess_s) *guesses;
11420 };
11421
11422 static struct gdbarch_data *remote_g_packet_data_handle;
11423
11424 static void *
11425 remote_g_packet_data_init (struct obstack *obstack)
11426 {
11427 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11428 }
11429
11430 void
11431 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11432 const struct target_desc *tdesc)
11433 {
11434 struct remote_g_packet_data *data
11435 = ((struct remote_g_packet_data *)
11436 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11437 struct remote_g_packet_guess new_guess, *guess;
11438 int ix;
11439
11440 gdb_assert (tdesc != NULL);
11441
11442 for (ix = 0;
11443 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11444 ix++)
11445 if (guess->bytes == bytes)
11446 internal_error (__FILE__, __LINE__,
11447 _("Duplicate g packet description added for size %d"),
11448 bytes);
11449
11450 new_guess.bytes = bytes;
11451 new_guess.tdesc = tdesc;
11452 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11453 }
11454
11455 /* Return 1 if remote_read_description would do anything on this target
11456 and architecture, 0 otherwise. */
11457
11458 static int
11459 remote_read_description_p (struct target_ops *target)
11460 {
11461 struct remote_g_packet_data *data
11462 = ((struct remote_g_packet_data *)
11463 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11464
11465 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11466 return 1;
11467
11468 return 0;
11469 }
11470
11471 const struct target_desc *
11472 remote_target::read_description ()
11473 {
11474 struct remote_g_packet_data *data
11475 = ((struct remote_g_packet_data *)
11476 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11477
11478 /* Do not try this during initial connection, when we do not know
11479 whether there is a running but stopped thread. */
11480 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11481 return beneath->read_description ();
11482
11483 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11484 {
11485 struct remote_g_packet_guess *guess;
11486 int ix;
11487 int bytes = send_g_packet ();
11488
11489 for (ix = 0;
11490 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11491 ix++)
11492 if (guess->bytes == bytes)
11493 return guess->tdesc;
11494
11495 /* We discard the g packet. A minor optimization would be to
11496 hold on to it, and fill the register cache once we have selected
11497 an architecture, but it's too tricky to do safely. */
11498 }
11499
11500 return beneath->read_description ();
11501 }
11502
11503 /* Remote file transfer support. This is host-initiated I/O, not
11504 target-initiated; for target-initiated, see remote-fileio.c. */
11505
11506 /* If *LEFT is at least the length of STRING, copy STRING to
11507 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11508 decrease *LEFT. Otherwise raise an error. */
11509
11510 static void
11511 remote_buffer_add_string (char **buffer, int *left, const char *string)
11512 {
11513 int len = strlen (string);
11514
11515 if (len > *left)
11516 error (_("Packet too long for target."));
11517
11518 memcpy (*buffer, string, len);
11519 *buffer += len;
11520 *left -= len;
11521
11522 /* NUL-terminate the buffer as a convenience, if there is
11523 room. */
11524 if (*left)
11525 **buffer = '\0';
11526 }
11527
11528 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11529 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11530 decrease *LEFT. Otherwise raise an error. */
11531
11532 static void
11533 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11534 int len)
11535 {
11536 if (2 * len > *left)
11537 error (_("Packet too long for target."));
11538
11539 bin2hex (bytes, *buffer, len);
11540 *buffer += 2 * len;
11541 *left -= 2 * len;
11542
11543 /* NUL-terminate the buffer as a convenience, if there is
11544 room. */
11545 if (*left)
11546 **buffer = '\0';
11547 }
11548
11549 /* If *LEFT is large enough, convert VALUE to hex and add it to
11550 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11551 decrease *LEFT. Otherwise raise an error. */
11552
11553 static void
11554 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11555 {
11556 int len = hexnumlen (value);
11557
11558 if (len > *left)
11559 error (_("Packet too long for target."));
11560
11561 hexnumstr (*buffer, value);
11562 *buffer += len;
11563 *left -= len;
11564
11565 /* NUL-terminate the buffer as a convenience, if there is
11566 room. */
11567 if (*left)
11568 **buffer = '\0';
11569 }
11570
11571 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11572 value, *REMOTE_ERRNO to the remote error number or zero if none
11573 was included, and *ATTACHMENT to point to the start of the annex
11574 if any. The length of the packet isn't needed here; there may
11575 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11576
11577 Return 0 if the packet could be parsed, -1 if it could not. If
11578 -1 is returned, the other variables may not be initialized. */
11579
11580 static int
11581 remote_hostio_parse_result (char *buffer, int *retcode,
11582 int *remote_errno, char **attachment)
11583 {
11584 char *p, *p2;
11585
11586 *remote_errno = 0;
11587 *attachment = NULL;
11588
11589 if (buffer[0] != 'F')
11590 return -1;
11591
11592 errno = 0;
11593 *retcode = strtol (&buffer[1], &p, 16);
11594 if (errno != 0 || p == &buffer[1])
11595 return -1;
11596
11597 /* Check for ",errno". */
11598 if (*p == ',')
11599 {
11600 errno = 0;
11601 *remote_errno = strtol (p + 1, &p2, 16);
11602 if (errno != 0 || p + 1 == p2)
11603 return -1;
11604 p = p2;
11605 }
11606
11607 /* Check for ";attachment". If there is no attachment, the
11608 packet should end here. */
11609 if (*p == ';')
11610 {
11611 *attachment = p + 1;
11612 return 0;
11613 }
11614 else if (*p == '\0')
11615 return 0;
11616 else
11617 return -1;
11618 }
11619
11620 /* Send a prepared I/O packet to the target and read its response.
11621 The prepared packet is in the global RS->BUF before this function
11622 is called, and the answer is there when we return.
11623
11624 COMMAND_BYTES is the length of the request to send, which may include
11625 binary data. WHICH_PACKET is the packet configuration to check
11626 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11627 is set to the error number and -1 is returned. Otherwise the value
11628 returned by the function is returned.
11629
11630 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11631 attachment is expected; an error will be reported if there's a
11632 mismatch. If one is found, *ATTACHMENT will be set to point into
11633 the packet buffer and *ATTACHMENT_LEN will be set to the
11634 attachment's length. */
11635
11636 static int
11637 remote_hostio_send_command (int command_bytes, int which_packet,
11638 int *remote_errno, char **attachment,
11639 int *attachment_len)
11640 {
11641 struct remote_state *rs = get_remote_state ();
11642 int ret, bytes_read;
11643 char *attachment_tmp;
11644
11645 if (packet_support (which_packet) == PACKET_DISABLE)
11646 {
11647 *remote_errno = FILEIO_ENOSYS;
11648 return -1;
11649 }
11650
11651 putpkt_binary (rs->buf, command_bytes);
11652 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11653
11654 /* If it timed out, something is wrong. Don't try to parse the
11655 buffer. */
11656 if (bytes_read < 0)
11657 {
11658 *remote_errno = FILEIO_EINVAL;
11659 return -1;
11660 }
11661
11662 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11663 {
11664 case PACKET_ERROR:
11665 *remote_errno = FILEIO_EINVAL;
11666 return -1;
11667 case PACKET_UNKNOWN:
11668 *remote_errno = FILEIO_ENOSYS;
11669 return -1;
11670 case PACKET_OK:
11671 break;
11672 }
11673
11674 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11675 &attachment_tmp))
11676 {
11677 *remote_errno = FILEIO_EINVAL;
11678 return -1;
11679 }
11680
11681 /* Make sure we saw an attachment if and only if we expected one. */
11682 if ((attachment_tmp == NULL && attachment != NULL)
11683 || (attachment_tmp != NULL && attachment == NULL))
11684 {
11685 *remote_errno = FILEIO_EINVAL;
11686 return -1;
11687 }
11688
11689 /* If an attachment was found, it must point into the packet buffer;
11690 work out how many bytes there were. */
11691 if (attachment_tmp != NULL)
11692 {
11693 *attachment = attachment_tmp;
11694 *attachment_len = bytes_read - (*attachment - rs->buf);
11695 }
11696
11697 return ret;
11698 }
11699
11700 /* See declaration.h. */
11701
11702 void
11703 readahead_cache::invalidate ()
11704 {
11705 this->fd = -1;
11706 }
11707
11708 /* See declaration.h. */
11709
11710 void
11711 readahead_cache::invalidate_fd (int fd)
11712 {
11713 if (this->fd == fd)
11714 this->fd = -1;
11715 }
11716
11717 /* Set the filesystem remote_hostio functions that take FILENAME
11718 arguments will use. Return 0 on success, or -1 if an error
11719 occurs (and set *REMOTE_ERRNO). */
11720
11721 static int
11722 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11723 {
11724 struct remote_state *rs = get_remote_state ();
11725 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11726 char *p = rs->buf;
11727 int left = get_remote_packet_size () - 1;
11728 char arg[9];
11729 int ret;
11730
11731 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11732 return 0;
11733
11734 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11735 return 0;
11736
11737 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11738
11739 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11740 remote_buffer_add_string (&p, &left, arg);
11741
11742 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11743 remote_errno, NULL, NULL);
11744
11745 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11746 return 0;
11747
11748 if (ret == 0)
11749 rs->fs_pid = required_pid;
11750
11751 return ret;
11752 }
11753
11754 /* Implementation of to_fileio_open. */
11755
11756 static int
11757 remote_hostio_open (struct target_ops *self,
11758 struct inferior *inf, const char *filename,
11759 int flags, int mode, int warn_if_slow,
11760 int *remote_errno)
11761 {
11762 struct remote_state *rs = get_remote_state ();
11763 char *p = rs->buf;
11764 int left = get_remote_packet_size () - 1;
11765
11766 if (warn_if_slow)
11767 {
11768 static int warning_issued = 0;
11769
11770 printf_unfiltered (_("Reading %s from remote target...\n"),
11771 filename);
11772
11773 if (!warning_issued)
11774 {
11775 warning (_("File transfers from remote targets can be slow."
11776 " Use \"set sysroot\" to access files locally"
11777 " instead."));
11778 warning_issued = 1;
11779 }
11780 }
11781
11782 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11783 return -1;
11784
11785 remote_buffer_add_string (&p, &left, "vFile:open:");
11786
11787 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11788 strlen (filename));
11789 remote_buffer_add_string (&p, &left, ",");
11790
11791 remote_buffer_add_int (&p, &left, flags);
11792 remote_buffer_add_string (&p, &left, ",");
11793
11794 remote_buffer_add_int (&p, &left, mode);
11795
11796 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11797 remote_errno, NULL, NULL);
11798 }
11799
11800 int
11801 remote_target::fileio_open (struct inferior *inf, const char *filename,
11802 int flags, int mode, int warn_if_slow,
11803 int *remote_errno)
11804 {
11805 return remote_hostio_open (this, inf, filename, flags, mode, warn_if_slow,
11806 remote_errno);
11807 }
11808
11809 /* Implementation of to_fileio_pwrite. */
11810
11811 static int
11812 remote_hostio_pwrite (struct target_ops *self,
11813 int fd, const gdb_byte *write_buf, int len,
11814 ULONGEST offset, int *remote_errno)
11815 {
11816 struct remote_state *rs = get_remote_state ();
11817 char *p = rs->buf;
11818 int left = get_remote_packet_size ();
11819 int out_len;
11820
11821 rs->readahead_cache.invalidate_fd (fd);
11822
11823 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11824
11825 remote_buffer_add_int (&p, &left, fd);
11826 remote_buffer_add_string (&p, &left, ",");
11827
11828 remote_buffer_add_int (&p, &left, offset);
11829 remote_buffer_add_string (&p, &left, ",");
11830
11831 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11832 get_remote_packet_size () - (p - rs->buf));
11833
11834 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11835 remote_errno, NULL, NULL);
11836 }
11837
11838 int
11839 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11840 ULONGEST offset, int *remote_errno)
11841 {
11842 return remote_hostio_pwrite (this, fd, write_buf, len, offset, remote_errno);
11843 }
11844
11845 /* Helper for the implementation of to_fileio_pread. Read the file
11846 from the remote side with vFile:pread. */
11847
11848 static int
11849 remote_hostio_pread_vFile (struct target_ops *self,
11850 int fd, gdb_byte *read_buf, int len,
11851 ULONGEST offset, int *remote_errno)
11852 {
11853 struct remote_state *rs = get_remote_state ();
11854 char *p = rs->buf;
11855 char *attachment;
11856 int left = get_remote_packet_size ();
11857 int ret, attachment_len;
11858 int read_len;
11859
11860 remote_buffer_add_string (&p, &left, "vFile:pread:");
11861
11862 remote_buffer_add_int (&p, &left, fd);
11863 remote_buffer_add_string (&p, &left, ",");
11864
11865 remote_buffer_add_int (&p, &left, len);
11866 remote_buffer_add_string (&p, &left, ",");
11867
11868 remote_buffer_add_int (&p, &left, offset);
11869
11870 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11871 remote_errno, &attachment,
11872 &attachment_len);
11873
11874 if (ret < 0)
11875 return ret;
11876
11877 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11878 read_buf, len);
11879 if (read_len != ret)
11880 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11881
11882 return ret;
11883 }
11884
11885 /* See declaration.h. */
11886
11887 int
11888 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
11889 ULONGEST offset)
11890 {
11891 if (this->fd == fd
11892 && this->offset <= offset
11893 && offset < this->offset + this->bufsize)
11894 {
11895 ULONGEST max = this->offset + this->bufsize;
11896
11897 if (offset + len > max)
11898 len = max - offset;
11899
11900 memcpy (read_buf, this->buf + offset - this->offset, len);
11901 return len;
11902 }
11903
11904 return 0;
11905 }
11906
11907 /* Implementation of to_fileio_pread. */
11908
11909 static int
11910 remote_hostio_pread (struct target_ops *self,
11911 int fd, gdb_byte *read_buf, int len,
11912 ULONGEST offset, int *remote_errno)
11913 {
11914 int ret;
11915 struct remote_state *rs = get_remote_state ();
11916 readahead_cache *cache = &rs->readahead_cache;
11917
11918 ret = cache->pread (fd, read_buf, len, offset);
11919 if (ret > 0)
11920 {
11921 cache->hit_count++;
11922
11923 if (remote_debug)
11924 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11925 pulongest (cache->hit_count));
11926 return ret;
11927 }
11928
11929 cache->miss_count++;
11930 if (remote_debug)
11931 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11932 pulongest (cache->miss_count));
11933
11934 cache->fd = fd;
11935 cache->offset = offset;
11936 cache->bufsize = get_remote_packet_size ();
11937 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11938
11939 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11940 cache->offset, remote_errno);
11941 if (ret <= 0)
11942 {
11943 cache->invalidate_fd (fd);
11944 return ret;
11945 }
11946
11947 cache->bufsize = ret;
11948 return cache->pread (fd, read_buf, len, offset);
11949 }
11950
11951 int
11952 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
11953 ULONGEST offset, int *remote_errno)
11954 {
11955 return remote_hostio_pread (this, fd, read_buf, len, offset, remote_errno);
11956 }
11957
11958 /* Implementation of to_fileio_close. */
11959
11960 static int
11961 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11962 {
11963 struct remote_state *rs = get_remote_state ();
11964 char *p = rs->buf;
11965 int left = get_remote_packet_size () - 1;
11966
11967 rs->readahead_cache.invalidate_fd (fd);
11968
11969 remote_buffer_add_string (&p, &left, "vFile:close:");
11970
11971 remote_buffer_add_int (&p, &left, fd);
11972
11973 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11974 remote_errno, NULL, NULL);
11975 }
11976
11977 int
11978 remote_target::fileio_close (int fd, int *remote_errno)
11979 {
11980 return remote_hostio_close (this, fd, remote_errno);
11981 }
11982
11983 /* Implementation of to_fileio_unlink. */
11984
11985 static int
11986 remote_hostio_unlink (struct target_ops *self,
11987 struct inferior *inf, const char *filename,
11988 int *remote_errno)
11989 {
11990 struct remote_state *rs = get_remote_state ();
11991 char *p = rs->buf;
11992 int left = get_remote_packet_size () - 1;
11993
11994 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11995 return -1;
11996
11997 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11998
11999 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12000 strlen (filename));
12001
12002 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
12003 remote_errno, NULL, NULL);
12004 }
12005
12006 int
12007 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12008 int *remote_errno)
12009 {
12010 return remote_hostio_unlink (this, inf, filename, remote_errno);
12011 }
12012
12013 /* Implementation of to_fileio_readlink. */
12014
12015 gdb::optional<std::string>
12016 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12017 int *remote_errno)
12018 {
12019 struct remote_state *rs = get_remote_state ();
12020 char *p = rs->buf;
12021 char *attachment;
12022 int left = get_remote_packet_size ();
12023 int len, attachment_len;
12024 int read_len;
12025
12026 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12027 return {};
12028
12029 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12030
12031 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12032 strlen (filename));
12033
12034 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12035 remote_errno, &attachment,
12036 &attachment_len);
12037
12038 if (len < 0)
12039 return {};
12040
12041 std::string ret (len, '\0');
12042
12043 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12044 (gdb_byte *) &ret[0], len);
12045 if (read_len != len)
12046 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12047
12048 return ret;
12049 }
12050
12051 /* Implementation of to_fileio_fstat. */
12052
12053 int
12054 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12055 {
12056 struct remote_state *rs = get_remote_state ();
12057 char *p = rs->buf;
12058 int left = get_remote_packet_size ();
12059 int attachment_len, ret;
12060 char *attachment;
12061 struct fio_stat fst;
12062 int read_len;
12063
12064 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12065
12066 remote_buffer_add_int (&p, &left, fd);
12067
12068 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12069 remote_errno, &attachment,
12070 &attachment_len);
12071 if (ret < 0)
12072 {
12073 if (*remote_errno != FILEIO_ENOSYS)
12074 return ret;
12075
12076 /* Strictly we should return -1, ENOSYS here, but when
12077 "set sysroot remote:" was implemented in August 2008
12078 BFD's need for a stat function was sidestepped with
12079 this hack. This was not remedied until March 2015
12080 so we retain the previous behavior to avoid breaking
12081 compatibility.
12082
12083 Note that the memset is a March 2015 addition; older
12084 GDBs set st_size *and nothing else* so the structure
12085 would have garbage in all other fields. This might
12086 break something but retaining the previous behavior
12087 here would be just too wrong. */
12088
12089 memset (st, 0, sizeof (struct stat));
12090 st->st_size = INT_MAX;
12091 return 0;
12092 }
12093
12094 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12095 (gdb_byte *) &fst, sizeof (fst));
12096
12097 if (read_len != ret)
12098 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12099
12100 if (read_len != sizeof (fst))
12101 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12102 read_len, (int) sizeof (fst));
12103
12104 remote_fileio_to_host_stat (&fst, st);
12105
12106 return 0;
12107 }
12108
12109 /* Implementation of to_filesystem_is_local. */
12110
12111 bool
12112 remote_target::filesystem_is_local ()
12113 {
12114 /* Valgrind GDB presents itself as a remote target but works
12115 on the local filesystem: it does not implement remote get
12116 and users are not expected to set a sysroot. To handle
12117 this case we treat the remote filesystem as local if the
12118 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12119 does not support vFile:open. */
12120 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12121 {
12122 enum packet_support ps = packet_support (PACKET_vFile_open);
12123
12124 if (ps == PACKET_SUPPORT_UNKNOWN)
12125 {
12126 int fd, remote_errno;
12127
12128 /* Try opening a file to probe support. The supplied
12129 filename is irrelevant, we only care about whether
12130 the stub recognizes the packet or not. */
12131 fd = remote_hostio_open (this, NULL, "just probing",
12132 FILEIO_O_RDONLY, 0700, 0,
12133 &remote_errno);
12134
12135 if (fd >= 0)
12136 remote_hostio_close (this, fd, &remote_errno);
12137
12138 ps = packet_support (PACKET_vFile_open);
12139 }
12140
12141 if (ps == PACKET_DISABLE)
12142 {
12143 static int warning_issued = 0;
12144
12145 if (!warning_issued)
12146 {
12147 warning (_("remote target does not support file"
12148 " transfer, attempting to access files"
12149 " from local filesystem."));
12150 warning_issued = 1;
12151 }
12152
12153 return true;
12154 }
12155 }
12156
12157 return false;
12158 }
12159
12160 static int
12161 remote_fileio_errno_to_host (int errnum)
12162 {
12163 switch (errnum)
12164 {
12165 case FILEIO_EPERM:
12166 return EPERM;
12167 case FILEIO_ENOENT:
12168 return ENOENT;
12169 case FILEIO_EINTR:
12170 return EINTR;
12171 case FILEIO_EIO:
12172 return EIO;
12173 case FILEIO_EBADF:
12174 return EBADF;
12175 case FILEIO_EACCES:
12176 return EACCES;
12177 case FILEIO_EFAULT:
12178 return EFAULT;
12179 case FILEIO_EBUSY:
12180 return EBUSY;
12181 case FILEIO_EEXIST:
12182 return EEXIST;
12183 case FILEIO_ENODEV:
12184 return ENODEV;
12185 case FILEIO_ENOTDIR:
12186 return ENOTDIR;
12187 case FILEIO_EISDIR:
12188 return EISDIR;
12189 case FILEIO_EINVAL:
12190 return EINVAL;
12191 case FILEIO_ENFILE:
12192 return ENFILE;
12193 case FILEIO_EMFILE:
12194 return EMFILE;
12195 case FILEIO_EFBIG:
12196 return EFBIG;
12197 case FILEIO_ENOSPC:
12198 return ENOSPC;
12199 case FILEIO_ESPIPE:
12200 return ESPIPE;
12201 case FILEIO_EROFS:
12202 return EROFS;
12203 case FILEIO_ENOSYS:
12204 return ENOSYS;
12205 case FILEIO_ENAMETOOLONG:
12206 return ENAMETOOLONG;
12207 }
12208 return -1;
12209 }
12210
12211 static char *
12212 remote_hostio_error (int errnum)
12213 {
12214 int host_error = remote_fileio_errno_to_host (errnum);
12215
12216 if (host_error == -1)
12217 error (_("Unknown remote I/O error %d"), errnum);
12218 else
12219 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12220 }
12221
12222 /* A RAII wrapper around a remote file descriptor. */
12223
12224 class scoped_remote_fd
12225 {
12226 public:
12227 explicit scoped_remote_fd (int fd)
12228 : m_fd (fd)
12229 {
12230 }
12231
12232 ~scoped_remote_fd ()
12233 {
12234 if (m_fd != -1)
12235 {
12236 try
12237 {
12238 int remote_errno;
12239 remote_hostio_close (find_target_at (process_stratum),
12240 m_fd, &remote_errno);
12241 }
12242 catch (...)
12243 {
12244 /* Swallow exception before it escapes the dtor. If
12245 something goes wrong, likely the connection is gone,
12246 and there's nothing else that can be done. */
12247 }
12248 }
12249 }
12250
12251 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12252
12253 /* Release ownership of the file descriptor, and return it. */
12254 int release () noexcept
12255 {
12256 int fd = m_fd;
12257 m_fd = -1;
12258 return fd;
12259 }
12260
12261 /* Return the owned file descriptor. */
12262 int get () const noexcept
12263 {
12264 return m_fd;
12265 }
12266
12267 private:
12268 /* The owned remote I/O file descriptor. */
12269 int m_fd;
12270 };
12271
12272 void
12273 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12274 {
12275 struct cleanup *back_to;
12276 int retcode, remote_errno, bytes, io_size;
12277 gdb_byte *buffer;
12278 int bytes_in_buffer;
12279 int saw_eof;
12280 ULONGEST offset;
12281 struct remote_state *rs = get_remote_state ();
12282
12283 if (!rs->remote_desc)
12284 error (_("command can only be used with remote target"));
12285
12286 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12287 if (file == NULL)
12288 perror_with_name (local_file);
12289
12290 scoped_remote_fd fd
12291 (remote_hostio_open (find_target_at (process_stratum), NULL,
12292 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12293 | FILEIO_O_TRUNC),
12294 0700, 0, &remote_errno));
12295 if (fd.get () == -1)
12296 remote_hostio_error (remote_errno);
12297
12298 /* Send up to this many bytes at once. They won't all fit in the
12299 remote packet limit, so we'll transfer slightly fewer. */
12300 io_size = get_remote_packet_size ();
12301 buffer = (gdb_byte *) xmalloc (io_size);
12302 back_to = make_cleanup (xfree, buffer);
12303
12304 bytes_in_buffer = 0;
12305 saw_eof = 0;
12306 offset = 0;
12307 while (bytes_in_buffer || !saw_eof)
12308 {
12309 if (!saw_eof)
12310 {
12311 bytes = fread (buffer + bytes_in_buffer, 1,
12312 io_size - bytes_in_buffer,
12313 file.get ());
12314 if (bytes == 0)
12315 {
12316 if (ferror (file.get ()))
12317 error (_("Error reading %s."), local_file);
12318 else
12319 {
12320 /* EOF. Unless there is something still in the
12321 buffer from the last iteration, we are done. */
12322 saw_eof = 1;
12323 if (bytes_in_buffer == 0)
12324 break;
12325 }
12326 }
12327 }
12328 else
12329 bytes = 0;
12330
12331 bytes += bytes_in_buffer;
12332 bytes_in_buffer = 0;
12333
12334 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
12335 fd.get (), buffer, bytes,
12336 offset, &remote_errno);
12337
12338 if (retcode < 0)
12339 remote_hostio_error (remote_errno);
12340 else if (retcode == 0)
12341 error (_("Remote write of %d bytes returned 0!"), bytes);
12342 else if (retcode < bytes)
12343 {
12344 /* Short write. Save the rest of the read data for the next
12345 write. */
12346 bytes_in_buffer = bytes - retcode;
12347 memmove (buffer, buffer + retcode, bytes_in_buffer);
12348 }
12349
12350 offset += retcode;
12351 }
12352
12353 if (remote_hostio_close (find_target_at (process_stratum),
12354 fd.release (), &remote_errno))
12355 remote_hostio_error (remote_errno);
12356
12357 if (from_tty)
12358 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12359 do_cleanups (back_to);
12360 }
12361
12362 void
12363 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12364 {
12365 struct cleanup *back_to;
12366 int remote_errno, bytes, io_size;
12367 gdb_byte *buffer;
12368 ULONGEST offset;
12369 struct remote_state *rs = get_remote_state ();
12370
12371 if (!rs->remote_desc)
12372 error (_("command can only be used with remote target"));
12373
12374 scoped_remote_fd fd
12375 (remote_hostio_open (find_target_at (process_stratum), NULL,
12376 remote_file, FILEIO_O_RDONLY, 0, 0,
12377 &remote_errno));
12378 if (fd.get () == -1)
12379 remote_hostio_error (remote_errno);
12380
12381 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12382 if (file == NULL)
12383 perror_with_name (local_file);
12384
12385 /* Send up to this many bytes at once. They won't all fit in the
12386 remote packet limit, so we'll transfer slightly fewer. */
12387 io_size = get_remote_packet_size ();
12388 buffer = (gdb_byte *) xmalloc (io_size);
12389 back_to = make_cleanup (xfree, buffer);
12390
12391 offset = 0;
12392 while (1)
12393 {
12394 bytes = remote_hostio_pread (find_target_at (process_stratum),
12395 fd.get (), buffer, io_size, offset,
12396 &remote_errno);
12397 if (bytes == 0)
12398 /* Success, but no bytes, means end-of-file. */
12399 break;
12400 if (bytes == -1)
12401 remote_hostio_error (remote_errno);
12402
12403 offset += bytes;
12404
12405 bytes = fwrite (buffer, 1, bytes, file.get ());
12406 if (bytes == 0)
12407 perror_with_name (local_file);
12408 }
12409
12410 if (remote_hostio_close (find_target_at (process_stratum),
12411 fd.release (), &remote_errno))
12412 remote_hostio_error (remote_errno);
12413
12414 if (from_tty)
12415 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12416 do_cleanups (back_to);
12417 }
12418
12419 void
12420 remote_file_delete (const char *remote_file, int from_tty)
12421 {
12422 int retcode, remote_errno;
12423 struct remote_state *rs = get_remote_state ();
12424
12425 if (!rs->remote_desc)
12426 error (_("command can only be used with remote target"));
12427
12428 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12429 NULL, remote_file, &remote_errno);
12430 if (retcode == -1)
12431 remote_hostio_error (remote_errno);
12432
12433 if (from_tty)
12434 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12435 }
12436
12437 static void
12438 remote_put_command (const char *args, int from_tty)
12439 {
12440 if (args == NULL)
12441 error_no_arg (_("file to put"));
12442
12443 gdb_argv argv (args);
12444 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12445 error (_("Invalid parameters to remote put"));
12446
12447 remote_file_put (argv[0], argv[1], from_tty);
12448 }
12449
12450 static void
12451 remote_get_command (const char *args, int from_tty)
12452 {
12453 if (args == NULL)
12454 error_no_arg (_("file to get"));
12455
12456 gdb_argv argv (args);
12457 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12458 error (_("Invalid parameters to remote get"));
12459
12460 remote_file_get (argv[0], argv[1], from_tty);
12461 }
12462
12463 static void
12464 remote_delete_command (const char *args, int from_tty)
12465 {
12466 if (args == NULL)
12467 error_no_arg (_("file to delete"));
12468
12469 gdb_argv argv (args);
12470 if (argv[0] == NULL || argv[1] != NULL)
12471 error (_("Invalid parameters to remote delete"));
12472
12473 remote_file_delete (argv[0], from_tty);
12474 }
12475
12476 static void
12477 remote_command (const char *args, int from_tty)
12478 {
12479 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12480 }
12481
12482 bool
12483 remote_target::can_execute_reverse ()
12484 {
12485 if (packet_support (PACKET_bs) == PACKET_ENABLE
12486 || packet_support (PACKET_bc) == PACKET_ENABLE)
12487 return true;
12488 else
12489 return false;
12490 }
12491
12492 bool
12493 remote_target::supports_non_stop ()
12494 {
12495 return true;
12496 }
12497
12498 bool
12499 remote_target::supports_disable_randomization ()
12500 {
12501 /* Only supported in extended mode. */
12502 return false;
12503 }
12504
12505 bool
12506 remote_target::supports_multi_process ()
12507 {
12508 struct remote_state *rs = get_remote_state ();
12509
12510 return remote_multi_process_p (rs);
12511 }
12512
12513 static int
12514 remote_supports_cond_tracepoints ()
12515 {
12516 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12517 }
12518
12519 bool
12520 remote_target::supports_evaluation_of_breakpoint_conditions ()
12521 {
12522 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12523 }
12524
12525 static int
12526 remote_supports_fast_tracepoints ()
12527 {
12528 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12529 }
12530
12531 static int
12532 remote_supports_static_tracepoints ()
12533 {
12534 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12535 }
12536
12537 static int
12538 remote_supports_install_in_trace ()
12539 {
12540 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12541 }
12542
12543 bool
12544 remote_target::supports_enable_disable_tracepoint ()
12545 {
12546 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12547 == PACKET_ENABLE);
12548 }
12549
12550 bool
12551 remote_target::supports_string_tracing ()
12552 {
12553 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12554 }
12555
12556 bool
12557 remote_target::can_run_breakpoint_commands ()
12558 {
12559 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12560 }
12561
12562 void
12563 remote_target::trace_init ()
12564 {
12565 struct remote_state *rs = get_remote_state ();
12566
12567 putpkt ("QTinit");
12568 remote_get_noisy_reply ();
12569 if (strcmp (rs->buf, "OK") != 0)
12570 error (_("Target does not support this command."));
12571 }
12572
12573 /* Recursive routine to walk through command list including loops, and
12574 download packets for each command. */
12575
12576 static void
12577 remote_download_command_source (int num, ULONGEST addr,
12578 struct command_line *cmds)
12579 {
12580 struct remote_state *rs = get_remote_state ();
12581 struct command_line *cmd;
12582
12583 for (cmd = cmds; cmd; cmd = cmd->next)
12584 {
12585 QUIT; /* Allow user to bail out with ^C. */
12586 strcpy (rs->buf, "QTDPsrc:");
12587 encode_source_string (num, addr, "cmd", cmd->line,
12588 rs->buf + strlen (rs->buf),
12589 rs->buf_size - strlen (rs->buf));
12590 putpkt (rs->buf);
12591 remote_get_noisy_reply ();
12592 if (strcmp (rs->buf, "OK"))
12593 warning (_("Target does not support source download."));
12594
12595 if (cmd->control_type == while_control
12596 || cmd->control_type == while_stepping_control)
12597 {
12598 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12599
12600 QUIT; /* Allow user to bail out with ^C. */
12601 strcpy (rs->buf, "QTDPsrc:");
12602 encode_source_string (num, addr, "cmd", "end",
12603 rs->buf + strlen (rs->buf),
12604 rs->buf_size - strlen (rs->buf));
12605 putpkt (rs->buf);
12606 remote_get_noisy_reply ();
12607 if (strcmp (rs->buf, "OK"))
12608 warning (_("Target does not support source download."));
12609 }
12610 }
12611 }
12612
12613 void
12614 remote_target::download_tracepoint (struct bp_location *loc)
12615 {
12616 #define BUF_SIZE 2048
12617
12618 CORE_ADDR tpaddr;
12619 char addrbuf[40];
12620 char buf[BUF_SIZE];
12621 std::vector<std::string> tdp_actions;
12622 std::vector<std::string> stepping_actions;
12623 char *pkt;
12624 struct breakpoint *b = loc->owner;
12625 struct tracepoint *t = (struct tracepoint *) b;
12626 struct remote_state *rs = get_remote_state ();
12627
12628 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12629
12630 tpaddr = loc->address;
12631 sprintf_vma (addrbuf, tpaddr);
12632 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12633 addrbuf, /* address */
12634 (b->enable_state == bp_enabled ? 'E' : 'D'),
12635 t->step_count, t->pass_count);
12636 /* Fast tracepoints are mostly handled by the target, but we can
12637 tell the target how big of an instruction block should be moved
12638 around. */
12639 if (b->type == bp_fast_tracepoint)
12640 {
12641 /* Only test for support at download time; we may not know
12642 target capabilities at definition time. */
12643 if (remote_supports_fast_tracepoints ())
12644 {
12645 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12646 NULL))
12647 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12648 gdb_insn_length (loc->gdbarch, tpaddr));
12649 else
12650 /* If it passed validation at definition but fails now,
12651 something is very wrong. */
12652 internal_error (__FILE__, __LINE__,
12653 _("Fast tracepoint not "
12654 "valid during download"));
12655 }
12656 else
12657 /* Fast tracepoints are functionally identical to regular
12658 tracepoints, so don't take lack of support as a reason to
12659 give up on the trace run. */
12660 warning (_("Target does not support fast tracepoints, "
12661 "downloading %d as regular tracepoint"), b->number);
12662 }
12663 else if (b->type == bp_static_tracepoint)
12664 {
12665 /* Only test for support at download time; we may not know
12666 target capabilities at definition time. */
12667 if (remote_supports_static_tracepoints ())
12668 {
12669 struct static_tracepoint_marker marker;
12670
12671 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12672 strcat (buf, ":S");
12673 else
12674 error (_("Static tracepoint not valid during download"));
12675 }
12676 else
12677 /* Fast tracepoints are functionally identical to regular
12678 tracepoints, so don't take lack of support as a reason
12679 to give up on the trace run. */
12680 error (_("Target does not support static tracepoints"));
12681 }
12682 /* If the tracepoint has a conditional, make it into an agent
12683 expression and append to the definition. */
12684 if (loc->cond)
12685 {
12686 /* Only test support at download time, we may not know target
12687 capabilities at definition time. */
12688 if (remote_supports_cond_tracepoints ())
12689 {
12690 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12691 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12692 aexpr->len);
12693 pkt = buf + strlen (buf);
12694 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12695 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12696 *pkt = '\0';
12697 }
12698 else
12699 warning (_("Target does not support conditional tracepoints, "
12700 "ignoring tp %d cond"), b->number);
12701 }
12702
12703 if (b->commands || *default_collect)
12704 strcat (buf, "-");
12705 putpkt (buf);
12706 remote_get_noisy_reply ();
12707 if (strcmp (rs->buf, "OK"))
12708 error (_("Target does not support tracepoints."));
12709
12710 /* do_single_steps (t); */
12711 for (auto action_it = tdp_actions.begin ();
12712 action_it != tdp_actions.end (); action_it++)
12713 {
12714 QUIT; /* Allow user to bail out with ^C. */
12715
12716 bool has_more = (action_it != tdp_actions.end ()
12717 || !stepping_actions.empty ());
12718
12719 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12720 b->number, addrbuf, /* address */
12721 action_it->c_str (),
12722 has_more ? '-' : 0);
12723 putpkt (buf);
12724 remote_get_noisy_reply ();
12725 if (strcmp (rs->buf, "OK"))
12726 error (_("Error on target while setting tracepoints."));
12727 }
12728
12729 for (auto action_it = stepping_actions.begin ();
12730 action_it != stepping_actions.end (); action_it++)
12731 {
12732 QUIT; /* Allow user to bail out with ^C. */
12733
12734 bool is_first = action_it == stepping_actions.begin ();
12735 bool has_more = action_it != stepping_actions.end ();
12736
12737 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12738 b->number, addrbuf, /* address */
12739 is_first ? "S" : "",
12740 action_it->c_str (),
12741 has_more ? "-" : "");
12742 putpkt (buf);
12743 remote_get_noisy_reply ();
12744 if (strcmp (rs->buf, "OK"))
12745 error (_("Error on target while setting tracepoints."));
12746 }
12747
12748 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12749 {
12750 if (b->location != NULL)
12751 {
12752 strcpy (buf, "QTDPsrc:");
12753 encode_source_string (b->number, loc->address, "at",
12754 event_location_to_string (b->location.get ()),
12755 buf + strlen (buf), 2048 - strlen (buf));
12756 putpkt (buf);
12757 remote_get_noisy_reply ();
12758 if (strcmp (rs->buf, "OK"))
12759 warning (_("Target does not support source download."));
12760 }
12761 if (b->cond_string)
12762 {
12763 strcpy (buf, "QTDPsrc:");
12764 encode_source_string (b->number, loc->address,
12765 "cond", b->cond_string, buf + strlen (buf),
12766 2048 - strlen (buf));
12767 putpkt (buf);
12768 remote_get_noisy_reply ();
12769 if (strcmp (rs->buf, "OK"))
12770 warning (_("Target does not support source download."));
12771 }
12772 remote_download_command_source (b->number, loc->address,
12773 breakpoint_commands (b));
12774 }
12775 }
12776
12777 bool
12778 remote_target::can_download_tracepoint ()
12779 {
12780 struct remote_state *rs = get_remote_state ();
12781 struct trace_status *ts;
12782 int status;
12783
12784 /* Don't try to install tracepoints until we've relocated our
12785 symbols, and fetched and merged the target's tracepoint list with
12786 ours. */
12787 if (rs->starting_up)
12788 return false;
12789
12790 ts = current_trace_status ();
12791 status = get_trace_status (ts);
12792
12793 if (status == -1 || !ts->running_known || !ts->running)
12794 return false;
12795
12796 /* If we are in a tracing experiment, but remote stub doesn't support
12797 installing tracepoint in trace, we have to return. */
12798 if (!remote_supports_install_in_trace ())
12799 return false;
12800
12801 return true;
12802 }
12803
12804
12805 void
12806 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
12807 {
12808 struct remote_state *rs = get_remote_state ();
12809 char *p;
12810
12811 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12812 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12813 tsv.builtin);
12814 p = rs->buf + strlen (rs->buf);
12815 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
12816 error (_("Trace state variable name too long for tsv definition packet"));
12817 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
12818 *p++ = '\0';
12819 putpkt (rs->buf);
12820 remote_get_noisy_reply ();
12821 if (*rs->buf == '\0')
12822 error (_("Target does not support this command."));
12823 if (strcmp (rs->buf, "OK") != 0)
12824 error (_("Error on target while downloading trace state variable."));
12825 }
12826
12827 void
12828 remote_target::enable_tracepoint (struct bp_location *location)
12829 {
12830 struct remote_state *rs = get_remote_state ();
12831 char addr_buf[40];
12832
12833 sprintf_vma (addr_buf, location->address);
12834 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12835 location->owner->number, addr_buf);
12836 putpkt (rs->buf);
12837 remote_get_noisy_reply ();
12838 if (*rs->buf == '\0')
12839 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12840 if (strcmp (rs->buf, "OK") != 0)
12841 error (_("Error on target while enabling tracepoint."));
12842 }
12843
12844 void
12845 remote_target::disable_tracepoint (struct bp_location *location)
12846 {
12847 struct remote_state *rs = get_remote_state ();
12848 char addr_buf[40];
12849
12850 sprintf_vma (addr_buf, location->address);
12851 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12852 location->owner->number, addr_buf);
12853 putpkt (rs->buf);
12854 remote_get_noisy_reply ();
12855 if (*rs->buf == '\0')
12856 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12857 if (strcmp (rs->buf, "OK") != 0)
12858 error (_("Error on target while disabling tracepoint."));
12859 }
12860
12861 void
12862 remote_target::trace_set_readonly_regions ()
12863 {
12864 asection *s;
12865 bfd *abfd = NULL;
12866 bfd_size_type size;
12867 bfd_vma vma;
12868 int anysecs = 0;
12869 int offset = 0;
12870
12871 if (!exec_bfd)
12872 return; /* No information to give. */
12873
12874 struct remote_state *rs = get_remote_state ();
12875
12876 strcpy (rs->buf, "QTro");
12877 offset = strlen (rs->buf);
12878 for (s = exec_bfd->sections; s; s = s->next)
12879 {
12880 char tmp1[40], tmp2[40];
12881 int sec_length;
12882
12883 if ((s->flags & SEC_LOAD) == 0 ||
12884 /* (s->flags & SEC_CODE) == 0 || */
12885 (s->flags & SEC_READONLY) == 0)
12886 continue;
12887
12888 anysecs = 1;
12889 vma = bfd_get_section_vma (abfd, s);
12890 size = bfd_get_section_size (s);
12891 sprintf_vma (tmp1, vma);
12892 sprintf_vma (tmp2, vma + size);
12893 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12894 if (offset + sec_length + 1 > rs->buf_size)
12895 {
12896 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12897 warning (_("\
12898 Too many sections for read-only sections definition packet."));
12899 break;
12900 }
12901 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12902 tmp1, tmp2);
12903 offset += sec_length;
12904 }
12905 if (anysecs)
12906 {
12907 putpkt (rs->buf);
12908 getpkt (&rs->buf, &rs->buf_size, 0);
12909 }
12910 }
12911
12912 void
12913 remote_target::trace_start ()
12914 {
12915 struct remote_state *rs = get_remote_state ();
12916
12917 putpkt ("QTStart");
12918 remote_get_noisy_reply ();
12919 if (*rs->buf == '\0')
12920 error (_("Target does not support this command."));
12921 if (strcmp (rs->buf, "OK") != 0)
12922 error (_("Bogus reply from target: %s"), rs->buf);
12923 }
12924
12925 int
12926 remote_target::get_trace_status (struct trace_status *ts)
12927 {
12928 /* Initialize it just to avoid a GCC false warning. */
12929 char *p = NULL;
12930 /* FIXME we need to get register block size some other way. */
12931 extern int trace_regblock_size;
12932 enum packet_result result;
12933 struct remote_state *rs = get_remote_state ();
12934
12935 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12936 return -1;
12937
12938 trace_regblock_size
12939 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12940
12941 putpkt ("qTStatus");
12942
12943 TRY
12944 {
12945 p = remote_get_noisy_reply ();
12946 }
12947 CATCH (ex, RETURN_MASK_ERROR)
12948 {
12949 if (ex.error != TARGET_CLOSE_ERROR)
12950 {
12951 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12952 return -1;
12953 }
12954 throw_exception (ex);
12955 }
12956 END_CATCH
12957
12958 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12959
12960 /* If the remote target doesn't do tracing, flag it. */
12961 if (result == PACKET_UNKNOWN)
12962 return -1;
12963
12964 /* We're working with a live target. */
12965 ts->filename = NULL;
12966
12967 if (*p++ != 'T')
12968 error (_("Bogus trace status reply from target: %s"), rs->buf);
12969
12970 /* Function 'parse_trace_status' sets default value of each field of
12971 'ts' at first, so we don't have to do it here. */
12972 parse_trace_status (p, ts);
12973
12974 return ts->running;
12975 }
12976
12977 void
12978 remote_target::get_tracepoint_status (struct breakpoint *bp,
12979 struct uploaded_tp *utp)
12980 {
12981 struct remote_state *rs = get_remote_state ();
12982 char *reply;
12983 struct bp_location *loc;
12984 struct tracepoint *tp = (struct tracepoint *) bp;
12985 size_t size = get_remote_packet_size ();
12986
12987 if (tp)
12988 {
12989 tp->hit_count = 0;
12990 tp->traceframe_usage = 0;
12991 for (loc = tp->loc; loc; loc = loc->next)
12992 {
12993 /* If the tracepoint was never downloaded, don't go asking for
12994 any status. */
12995 if (tp->number_on_target == 0)
12996 continue;
12997 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12998 phex_nz (loc->address, 0));
12999 putpkt (rs->buf);
13000 reply = remote_get_noisy_reply ();
13001 if (reply && *reply)
13002 {
13003 if (*reply == 'V')
13004 parse_tracepoint_status (reply + 1, bp, utp);
13005 }
13006 }
13007 }
13008 else if (utp)
13009 {
13010 utp->hit_count = 0;
13011 utp->traceframe_usage = 0;
13012 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
13013 phex_nz (utp->addr, 0));
13014 putpkt (rs->buf);
13015 reply = remote_get_noisy_reply ();
13016 if (reply && *reply)
13017 {
13018 if (*reply == 'V')
13019 parse_tracepoint_status (reply + 1, bp, utp);
13020 }
13021 }
13022 }
13023
13024 void
13025 remote_target::trace_stop ()
13026 {
13027 struct remote_state *rs = get_remote_state ();
13028
13029 putpkt ("QTStop");
13030 remote_get_noisy_reply ();
13031 if (*rs->buf == '\0')
13032 error (_("Target does not support this command."));
13033 if (strcmp (rs->buf, "OK") != 0)
13034 error (_("Bogus reply from target: %s"), rs->buf);
13035 }
13036
13037 int
13038 remote_target::trace_find (enum trace_find_type type, int num,
13039 CORE_ADDR addr1, CORE_ADDR addr2,
13040 int *tpp)
13041 {
13042 struct remote_state *rs = get_remote_state ();
13043 char *endbuf = rs->buf + get_remote_packet_size ();
13044 char *p, *reply;
13045 int target_frameno = -1, target_tracept = -1;
13046
13047 /* Lookups other than by absolute frame number depend on the current
13048 trace selected, so make sure it is correct on the remote end
13049 first. */
13050 if (type != tfind_number)
13051 set_remote_traceframe ();
13052
13053 p = rs->buf;
13054 strcpy (p, "QTFrame:");
13055 p = strchr (p, '\0');
13056 switch (type)
13057 {
13058 case tfind_number:
13059 xsnprintf (p, endbuf - p, "%x", num);
13060 break;
13061 case tfind_pc:
13062 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13063 break;
13064 case tfind_tp:
13065 xsnprintf (p, endbuf - p, "tdp:%x", num);
13066 break;
13067 case tfind_range:
13068 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13069 phex_nz (addr2, 0));
13070 break;
13071 case tfind_outside:
13072 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13073 phex_nz (addr2, 0));
13074 break;
13075 default:
13076 error (_("Unknown trace find type %d"), type);
13077 }
13078
13079 putpkt (rs->buf);
13080 reply = remote_get_noisy_reply ();
13081 if (*reply == '\0')
13082 error (_("Target does not support this command."));
13083
13084 while (reply && *reply)
13085 switch (*reply)
13086 {
13087 case 'F':
13088 p = ++reply;
13089 target_frameno = (int) strtol (p, &reply, 16);
13090 if (reply == p)
13091 error (_("Unable to parse trace frame number"));
13092 /* Don't update our remote traceframe number cache on failure
13093 to select a remote traceframe. */
13094 if (target_frameno == -1)
13095 return -1;
13096 break;
13097 case 'T':
13098 p = ++reply;
13099 target_tracept = (int) strtol (p, &reply, 16);
13100 if (reply == p)
13101 error (_("Unable to parse tracepoint number"));
13102 break;
13103 case 'O': /* "OK"? */
13104 if (reply[1] == 'K' && reply[2] == '\0')
13105 reply += 2;
13106 else
13107 error (_("Bogus reply from target: %s"), reply);
13108 break;
13109 default:
13110 error (_("Bogus reply from target: %s"), reply);
13111 }
13112 if (tpp)
13113 *tpp = target_tracept;
13114
13115 rs->remote_traceframe_number = target_frameno;
13116 return target_frameno;
13117 }
13118
13119 bool
13120 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13121 {
13122 struct remote_state *rs = get_remote_state ();
13123 char *reply;
13124 ULONGEST uval;
13125
13126 set_remote_traceframe ();
13127
13128 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13129 putpkt (rs->buf);
13130 reply = remote_get_noisy_reply ();
13131 if (reply && *reply)
13132 {
13133 if (*reply == 'V')
13134 {
13135 unpack_varlen_hex (reply + 1, &uval);
13136 *val = (LONGEST) uval;
13137 return true;
13138 }
13139 }
13140 return false;
13141 }
13142
13143 int
13144 remote_target::save_trace_data (const char *filename)
13145 {
13146 struct remote_state *rs = get_remote_state ();
13147 char *p, *reply;
13148
13149 p = rs->buf;
13150 strcpy (p, "QTSave:");
13151 p += strlen (p);
13152 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13153 error (_("Remote file name too long for trace save packet"));
13154 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13155 *p++ = '\0';
13156 putpkt (rs->buf);
13157 reply = remote_get_noisy_reply ();
13158 if (*reply == '\0')
13159 error (_("Target does not support this command."));
13160 if (strcmp (reply, "OK") != 0)
13161 error (_("Bogus reply from target: %s"), reply);
13162 return 0;
13163 }
13164
13165 /* This is basically a memory transfer, but needs to be its own packet
13166 because we don't know how the target actually organizes its trace
13167 memory, plus we want to be able to ask for as much as possible, but
13168 not be unhappy if we don't get as much as we ask for. */
13169
13170 LONGEST
13171 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13172 {
13173 struct remote_state *rs = get_remote_state ();
13174 char *reply;
13175 char *p;
13176 int rslt;
13177
13178 p = rs->buf;
13179 strcpy (p, "qTBuffer:");
13180 p += strlen (p);
13181 p += hexnumstr (p, offset);
13182 *p++ = ',';
13183 p += hexnumstr (p, len);
13184 *p++ = '\0';
13185
13186 putpkt (rs->buf);
13187 reply = remote_get_noisy_reply ();
13188 if (reply && *reply)
13189 {
13190 /* 'l' by itself means we're at the end of the buffer and
13191 there is nothing more to get. */
13192 if (*reply == 'l')
13193 return 0;
13194
13195 /* Convert the reply into binary. Limit the number of bytes to
13196 convert according to our passed-in buffer size, rather than
13197 what was returned in the packet; if the target is
13198 unexpectedly generous and gives us a bigger reply than we
13199 asked for, we don't want to crash. */
13200 rslt = hex2bin (reply, buf, len);
13201 return rslt;
13202 }
13203
13204 /* Something went wrong, flag as an error. */
13205 return -1;
13206 }
13207
13208 void
13209 remote_target::set_disconnected_tracing (int val)
13210 {
13211 struct remote_state *rs = get_remote_state ();
13212
13213 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13214 {
13215 char *reply;
13216
13217 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13218 putpkt (rs->buf);
13219 reply = remote_get_noisy_reply ();
13220 if (*reply == '\0')
13221 error (_("Target does not support this command."));
13222 if (strcmp (reply, "OK") != 0)
13223 error (_("Bogus reply from target: %s"), reply);
13224 }
13225 else if (val)
13226 warning (_("Target does not support disconnected tracing."));
13227 }
13228
13229 int
13230 remote_target::core_of_thread (ptid_t ptid)
13231 {
13232 struct thread_info *info = find_thread_ptid (ptid);
13233
13234 if (info != NULL && info->priv != NULL)
13235 return get_remote_thread_info (info)->core;
13236
13237 return -1;
13238 }
13239
13240 void
13241 remote_target::set_circular_trace_buffer (int val)
13242 {
13243 struct remote_state *rs = get_remote_state ();
13244 char *reply;
13245
13246 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13247 putpkt (rs->buf);
13248 reply = remote_get_noisy_reply ();
13249 if (*reply == '\0')
13250 error (_("Target does not support this command."));
13251 if (strcmp (reply, "OK") != 0)
13252 error (_("Bogus reply from target: %s"), reply);
13253 }
13254
13255 traceframe_info_up
13256 remote_target::traceframe_info ()
13257 {
13258 gdb::optional<gdb::char_vector> text
13259 = target_read_stralloc (target_stack, TARGET_OBJECT_TRACEFRAME_INFO,
13260 NULL);
13261 if (text)
13262 return parse_traceframe_info (text->data ());
13263
13264 return NULL;
13265 }
13266
13267 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13268 instruction on which a fast tracepoint may be placed. Returns -1
13269 if the packet is not supported, and 0 if the minimum instruction
13270 length is unknown. */
13271
13272 int
13273 remote_target::get_min_fast_tracepoint_insn_len ()
13274 {
13275 struct remote_state *rs = get_remote_state ();
13276 char *reply;
13277
13278 /* If we're not debugging a process yet, the IPA can't be
13279 loaded. */
13280 if (!target_has_execution)
13281 return 0;
13282
13283 /* Make sure the remote is pointing at the right process. */
13284 set_general_process ();
13285
13286 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13287 putpkt (rs->buf);
13288 reply = remote_get_noisy_reply ();
13289 if (*reply == '\0')
13290 return -1;
13291 else
13292 {
13293 ULONGEST min_insn_len;
13294
13295 unpack_varlen_hex (reply, &min_insn_len);
13296
13297 return (int) min_insn_len;
13298 }
13299 }
13300
13301 void
13302 remote_target::set_trace_buffer_size (LONGEST val)
13303 {
13304 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13305 {
13306 struct remote_state *rs = get_remote_state ();
13307 char *buf = rs->buf;
13308 char *endbuf = rs->buf + get_remote_packet_size ();
13309 enum packet_result result;
13310
13311 gdb_assert (val >= 0 || val == -1);
13312 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13313 /* Send -1 as literal "-1" to avoid host size dependency. */
13314 if (val < 0)
13315 {
13316 *buf++ = '-';
13317 buf += hexnumstr (buf, (ULONGEST) -val);
13318 }
13319 else
13320 buf += hexnumstr (buf, (ULONGEST) val);
13321
13322 putpkt (rs->buf);
13323 remote_get_noisy_reply ();
13324 result = packet_ok (rs->buf,
13325 &remote_protocol_packets[PACKET_QTBuffer_size]);
13326
13327 if (result != PACKET_OK)
13328 warning (_("Bogus reply from target: %s"), rs->buf);
13329 }
13330 }
13331
13332 bool
13333 remote_target::set_trace_notes (const char *user, const char *notes,
13334 const char *stop_notes)
13335 {
13336 struct remote_state *rs = get_remote_state ();
13337 char *reply;
13338 char *buf = rs->buf;
13339 char *endbuf = rs->buf + get_remote_packet_size ();
13340 int nbytes;
13341
13342 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13343 if (user)
13344 {
13345 buf += xsnprintf (buf, endbuf - buf, "user:");
13346 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13347 buf += 2 * nbytes;
13348 *buf++ = ';';
13349 }
13350 if (notes)
13351 {
13352 buf += xsnprintf (buf, endbuf - buf, "notes:");
13353 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13354 buf += 2 * nbytes;
13355 *buf++ = ';';
13356 }
13357 if (stop_notes)
13358 {
13359 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13360 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13361 buf += 2 * nbytes;
13362 *buf++ = ';';
13363 }
13364 /* Ensure the buffer is terminated. */
13365 *buf = '\0';
13366
13367 putpkt (rs->buf);
13368 reply = remote_get_noisy_reply ();
13369 if (*reply == '\0')
13370 return false;
13371
13372 if (strcmp (reply, "OK") != 0)
13373 error (_("Bogus reply from target: %s"), reply);
13374
13375 return true;
13376 }
13377
13378 bool
13379 remote_target::use_agent (bool use)
13380 {
13381 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13382 {
13383 struct remote_state *rs = get_remote_state ();
13384
13385 /* If the stub supports QAgent. */
13386 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13387 putpkt (rs->buf);
13388 getpkt (&rs->buf, &rs->buf_size, 0);
13389
13390 if (strcmp (rs->buf, "OK") == 0)
13391 {
13392 ::use_agent = use;
13393 return true;
13394 }
13395 }
13396
13397 return false;
13398 }
13399
13400 bool
13401 remote_target::can_use_agent ()
13402 {
13403 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13404 }
13405
13406 struct btrace_target_info
13407 {
13408 /* The ptid of the traced thread. */
13409 ptid_t ptid;
13410
13411 /* The obtained branch trace configuration. */
13412 struct btrace_config conf;
13413 };
13414
13415 /* Reset our idea of our target's btrace configuration. */
13416
13417 static void
13418 remote_btrace_reset (void)
13419 {
13420 struct remote_state *rs = get_remote_state ();
13421
13422 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13423 }
13424
13425 /* Synchronize the configuration with the target. */
13426
13427 static void
13428 btrace_sync_conf (const struct btrace_config *conf)
13429 {
13430 struct packet_config *packet;
13431 struct remote_state *rs;
13432 char *buf, *pos, *endbuf;
13433
13434 rs = get_remote_state ();
13435 buf = rs->buf;
13436 endbuf = buf + get_remote_packet_size ();
13437
13438 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13439 if (packet_config_support (packet) == PACKET_ENABLE
13440 && conf->bts.size != rs->btrace_config.bts.size)
13441 {
13442 pos = buf;
13443 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13444 conf->bts.size);
13445
13446 putpkt (buf);
13447 getpkt (&buf, &rs->buf_size, 0);
13448
13449 if (packet_ok (buf, packet) == PACKET_ERROR)
13450 {
13451 if (buf[0] == 'E' && buf[1] == '.')
13452 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13453 else
13454 error (_("Failed to configure the BTS buffer size."));
13455 }
13456
13457 rs->btrace_config.bts.size = conf->bts.size;
13458 }
13459
13460 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13461 if (packet_config_support (packet) == PACKET_ENABLE
13462 && conf->pt.size != rs->btrace_config.pt.size)
13463 {
13464 pos = buf;
13465 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13466 conf->pt.size);
13467
13468 putpkt (buf);
13469 getpkt (&buf, &rs->buf_size, 0);
13470
13471 if (packet_ok (buf, packet) == PACKET_ERROR)
13472 {
13473 if (buf[0] == 'E' && buf[1] == '.')
13474 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13475 else
13476 error (_("Failed to configure the trace buffer size."));
13477 }
13478
13479 rs->btrace_config.pt.size = conf->pt.size;
13480 }
13481 }
13482
13483 /* Read the current thread's btrace configuration from the target and
13484 store it into CONF. */
13485
13486 static void
13487 btrace_read_config (struct btrace_config *conf)
13488 {
13489 gdb::optional<gdb::char_vector> xml
13490 = target_read_stralloc (target_stack, TARGET_OBJECT_BTRACE_CONF, "");
13491 if (xml)
13492 parse_xml_btrace_conf (conf, xml->data ());
13493 }
13494
13495 /* Maybe reopen target btrace. */
13496
13497 static void
13498 remote_btrace_maybe_reopen (void)
13499 {
13500 struct remote_state *rs = get_remote_state ();
13501 struct thread_info *tp;
13502 int btrace_target_pushed = 0;
13503 int warned = 0;
13504
13505 scoped_restore_current_thread restore_thread;
13506
13507 ALL_NON_EXITED_THREADS (tp)
13508 {
13509 set_general_thread (tp->ptid);
13510
13511 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13512 btrace_read_config (&rs->btrace_config);
13513
13514 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13515 continue;
13516
13517 #if !defined (HAVE_LIBIPT)
13518 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13519 {
13520 if (!warned)
13521 {
13522 warned = 1;
13523 warning (_("Target is recording using Intel Processor Trace "
13524 "but support was disabled at compile time."));
13525 }
13526
13527 continue;
13528 }
13529 #endif /* !defined (HAVE_LIBIPT) */
13530
13531 /* Push target, once, but before anything else happens. This way our
13532 changes to the threads will be cleaned up by unpushing the target
13533 in case btrace_read_config () throws. */
13534 if (!btrace_target_pushed)
13535 {
13536 btrace_target_pushed = 1;
13537 record_btrace_push_target ();
13538 printf_filtered (_("Target is recording using %s.\n"),
13539 btrace_format_string (rs->btrace_config.format));
13540 }
13541
13542 tp->btrace.target = XCNEW (struct btrace_target_info);
13543 tp->btrace.target->ptid = tp->ptid;
13544 tp->btrace.target->conf = rs->btrace_config;
13545 }
13546 }
13547
13548 /* Enable branch tracing. */
13549
13550 struct btrace_target_info *
13551 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13552 {
13553 struct btrace_target_info *tinfo = NULL;
13554 struct packet_config *packet = NULL;
13555 struct remote_state *rs = get_remote_state ();
13556 char *buf = rs->buf;
13557 char *endbuf = rs->buf + get_remote_packet_size ();
13558
13559 switch (conf->format)
13560 {
13561 case BTRACE_FORMAT_BTS:
13562 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13563 break;
13564
13565 case BTRACE_FORMAT_PT:
13566 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13567 break;
13568 }
13569
13570 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13571 error (_("Target does not support branch tracing."));
13572
13573 btrace_sync_conf (conf);
13574
13575 set_general_thread (ptid);
13576
13577 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13578 putpkt (rs->buf);
13579 getpkt (&rs->buf, &rs->buf_size, 0);
13580
13581 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13582 {
13583 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13584 error (_("Could not enable branch tracing for %s: %s"),
13585 target_pid_to_str (ptid), rs->buf + 2);
13586 else
13587 error (_("Could not enable branch tracing for %s."),
13588 target_pid_to_str (ptid));
13589 }
13590
13591 tinfo = XCNEW (struct btrace_target_info);
13592 tinfo->ptid = ptid;
13593
13594 /* If we fail to read the configuration, we lose some information, but the
13595 tracing itself is not impacted. */
13596 TRY
13597 {
13598 btrace_read_config (&tinfo->conf);
13599 }
13600 CATCH (err, RETURN_MASK_ERROR)
13601 {
13602 if (err.message != NULL)
13603 warning ("%s", err.message);
13604 }
13605 END_CATCH
13606
13607 return tinfo;
13608 }
13609
13610 /* Disable branch tracing. */
13611
13612 void
13613 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13614 {
13615 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13616 struct remote_state *rs = get_remote_state ();
13617 char *buf = rs->buf;
13618 char *endbuf = rs->buf + get_remote_packet_size ();
13619
13620 if (packet_config_support (packet) != PACKET_ENABLE)
13621 error (_("Target does not support branch tracing."));
13622
13623 set_general_thread (tinfo->ptid);
13624
13625 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13626 putpkt (rs->buf);
13627 getpkt (&rs->buf, &rs->buf_size, 0);
13628
13629 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13630 {
13631 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13632 error (_("Could not disable branch tracing for %s: %s"),
13633 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13634 else
13635 error (_("Could not disable branch tracing for %s."),
13636 target_pid_to_str (tinfo->ptid));
13637 }
13638
13639 xfree (tinfo);
13640 }
13641
13642 /* Teardown branch tracing. */
13643
13644 void
13645 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13646 {
13647 /* We must not talk to the target during teardown. */
13648 xfree (tinfo);
13649 }
13650
13651 /* Read the branch trace. */
13652
13653 enum btrace_error
13654 remote_target::read_btrace (struct btrace_data *btrace,
13655 struct btrace_target_info *tinfo,
13656 enum btrace_read_type type)
13657 {
13658 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13659 const char *annex;
13660
13661 if (packet_config_support (packet) != PACKET_ENABLE)
13662 error (_("Target does not support branch tracing."));
13663
13664 #if !defined(HAVE_LIBEXPAT)
13665 error (_("Cannot process branch tracing result. XML parsing not supported."));
13666 #endif
13667
13668 switch (type)
13669 {
13670 case BTRACE_READ_ALL:
13671 annex = "all";
13672 break;
13673 case BTRACE_READ_NEW:
13674 annex = "new";
13675 break;
13676 case BTRACE_READ_DELTA:
13677 annex = "delta";
13678 break;
13679 default:
13680 internal_error (__FILE__, __LINE__,
13681 _("Bad branch tracing read type: %u."),
13682 (unsigned int) type);
13683 }
13684
13685 gdb::optional<gdb::char_vector> xml
13686 = target_read_stralloc (target_stack, TARGET_OBJECT_BTRACE, annex);
13687 if (!xml)
13688 return BTRACE_ERR_UNKNOWN;
13689
13690 parse_xml_btrace (btrace, xml->data ());
13691
13692 return BTRACE_ERR_NONE;
13693 }
13694
13695 const struct btrace_config *
13696 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13697 {
13698 return &tinfo->conf;
13699 }
13700
13701 bool
13702 remote_target::augmented_libraries_svr4_read ()
13703 {
13704 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13705 == PACKET_ENABLE);
13706 }
13707
13708 /* Implementation of to_load. */
13709
13710 void
13711 remote_target::load (const char *name, int from_tty)
13712 {
13713 generic_load (name, from_tty);
13714 }
13715
13716 /* Accepts an integer PID; returns a string representing a file that
13717 can be opened on the remote side to get the symbols for the child
13718 process. Returns NULL if the operation is not supported. */
13719
13720 char *
13721 remote_target::pid_to_exec_file (int pid)
13722 {
13723 static gdb::optional<gdb::char_vector> filename;
13724 struct inferior *inf;
13725 char *annex = NULL;
13726
13727 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13728 return NULL;
13729
13730 inf = find_inferior_pid (pid);
13731 if (inf == NULL)
13732 internal_error (__FILE__, __LINE__,
13733 _("not currently attached to process %d"), pid);
13734
13735 if (!inf->fake_pid_p)
13736 {
13737 const int annex_size = 9;
13738
13739 annex = (char *) alloca (annex_size);
13740 xsnprintf (annex, annex_size, "%x", pid);
13741 }
13742
13743 filename = target_read_stralloc (target_stack,
13744 TARGET_OBJECT_EXEC_FILE, annex);
13745
13746 return filename ? filename->data () : nullptr;
13747 }
13748
13749 /* Implement the to_can_do_single_step target_ops method. */
13750
13751 int
13752 remote_target::can_do_single_step ()
13753 {
13754 /* We can only tell whether target supports single step or not by
13755 supported s and S vCont actions if the stub supports vContSupported
13756 feature. If the stub doesn't support vContSupported feature,
13757 we have conservatively to think target doesn't supports single
13758 step. */
13759 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13760 {
13761 struct remote_state *rs = get_remote_state ();
13762
13763 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13764 remote_vcont_probe (rs);
13765
13766 return rs->supports_vCont.s && rs->supports_vCont.S;
13767 }
13768 else
13769 return 0;
13770 }
13771
13772 /* Implementation of the to_execution_direction method for the remote
13773 target. */
13774
13775 enum exec_direction_kind
13776 remote_target::execution_direction ()
13777 {
13778 struct remote_state *rs = get_remote_state ();
13779
13780 return rs->last_resume_exec_dir;
13781 }
13782
13783 /* Return pointer to the thread_info struct which corresponds to
13784 THREAD_HANDLE (having length HANDLE_LEN). */
13785
13786 thread_info *
13787 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13788 int handle_len,
13789 inferior *inf)
13790 {
13791 struct thread_info *tp;
13792
13793 ALL_NON_EXITED_THREADS (tp)
13794 {
13795 remote_thread_info *priv = get_remote_thread_info (tp);
13796
13797 if (tp->inf == inf && priv != NULL)
13798 {
13799 if (handle_len != priv->thread_handle.size ())
13800 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13801 handle_len, priv->thread_handle.size ());
13802 if (memcmp (thread_handle, priv->thread_handle.data (),
13803 handle_len) == 0)
13804 return tp;
13805 }
13806 }
13807
13808 return NULL;
13809 }
13810
13811 bool
13812 remote_target::can_async_p ()
13813 {
13814 struct remote_state *rs = get_remote_state ();
13815
13816 /* We don't go async if the user has explicitly prevented it with the
13817 "maint set target-async" command. */
13818 if (!target_async_permitted)
13819 return false;
13820
13821 /* We're async whenever the serial device is. */
13822 return serial_can_async_p (rs->remote_desc);
13823 }
13824
13825 bool
13826 remote_target::is_async_p ()
13827 {
13828 struct remote_state *rs = get_remote_state ();
13829
13830 if (!target_async_permitted)
13831 /* We only enable async when the user specifically asks for it. */
13832 return false;
13833
13834 /* We're async whenever the serial device is. */
13835 return serial_is_async_p (rs->remote_desc);
13836 }
13837
13838 /* Pass the SERIAL event on and up to the client. One day this code
13839 will be able to delay notifying the client of an event until the
13840 point where an entire packet has been received. */
13841
13842 static serial_event_ftype remote_async_serial_handler;
13843
13844 static void
13845 remote_async_serial_handler (struct serial *scb, void *context)
13846 {
13847 /* Don't propogate error information up to the client. Instead let
13848 the client find out about the error by querying the target. */
13849 inferior_event_handler (INF_REG_EVENT, NULL);
13850 }
13851
13852 static void
13853 remote_async_inferior_event_handler (gdb_client_data data)
13854 {
13855 inferior_event_handler (INF_REG_EVENT, NULL);
13856 }
13857
13858 void
13859 remote_target::async (int enable)
13860 {
13861 struct remote_state *rs = get_remote_state ();
13862
13863 if (enable)
13864 {
13865 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13866
13867 /* If there are pending events in the stop reply queue tell the
13868 event loop to process them. */
13869 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13870 mark_async_event_handler (remote_async_inferior_event_token);
13871 /* For simplicity, below we clear the pending events token
13872 without remembering whether it is marked, so here we always
13873 mark it. If there's actually no pending notification to
13874 process, this ends up being a no-op (other than a spurious
13875 event-loop wakeup). */
13876 if (target_is_non_stop_p ())
13877 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13878 }
13879 else
13880 {
13881 serial_async (rs->remote_desc, NULL, NULL);
13882 /* If the core is disabling async, it doesn't want to be
13883 disturbed with target events. Clear all async event sources
13884 too. */
13885 clear_async_event_handler (remote_async_inferior_event_token);
13886 if (target_is_non_stop_p ())
13887 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13888 }
13889 }
13890
13891 /* Implementation of the to_thread_events method. */
13892
13893 void
13894 remote_target::thread_events (int enable)
13895 {
13896 struct remote_state *rs = get_remote_state ();
13897 size_t size = get_remote_packet_size ();
13898
13899 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13900 return;
13901
13902 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13903 putpkt (rs->buf);
13904 getpkt (&rs->buf, &rs->buf_size, 0);
13905
13906 switch (packet_ok (rs->buf,
13907 &remote_protocol_packets[PACKET_QThreadEvents]))
13908 {
13909 case PACKET_OK:
13910 if (strcmp (rs->buf, "OK") != 0)
13911 error (_("Remote refused setting thread events: %s"), rs->buf);
13912 break;
13913 case PACKET_ERROR:
13914 warning (_("Remote failure reply: %s"), rs->buf);
13915 break;
13916 case PACKET_UNKNOWN:
13917 break;
13918 }
13919 }
13920
13921 static void
13922 set_remote_cmd (const char *args, int from_tty)
13923 {
13924 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13925 }
13926
13927 static void
13928 show_remote_cmd (const char *args, int from_tty)
13929 {
13930 /* We can't just use cmd_show_list here, because we want to skip
13931 the redundant "show remote Z-packet" and the legacy aliases. */
13932 struct cmd_list_element *list = remote_show_cmdlist;
13933 struct ui_out *uiout = current_uiout;
13934
13935 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13936 for (; list != NULL; list = list->next)
13937 if (strcmp (list->name, "Z-packet") == 0)
13938 continue;
13939 else if (list->type == not_set_cmd)
13940 /* Alias commands are exactly like the original, except they
13941 don't have the normal type. */
13942 continue;
13943 else
13944 {
13945 ui_out_emit_tuple option_emitter (uiout, "option");
13946
13947 uiout->field_string ("name", list->name);
13948 uiout->text (": ");
13949 if (list->type == show_cmd)
13950 do_show_command (NULL, from_tty, list);
13951 else
13952 cmd_func (list, NULL, from_tty);
13953 }
13954 }
13955
13956
13957 /* Function to be called whenever a new objfile (shlib) is detected. */
13958 static void
13959 remote_new_objfile (struct objfile *objfile)
13960 {
13961 struct remote_state *rs = get_remote_state ();
13962
13963 if (rs->remote_desc != 0) /* Have a remote connection. */
13964 remote_check_symbols ();
13965 }
13966
13967 /* Pull all the tracepoints defined on the target and create local
13968 data structures representing them. We don't want to create real
13969 tracepoints yet, we don't want to mess up the user's existing
13970 collection. */
13971
13972 int
13973 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
13974 {
13975 struct remote_state *rs = get_remote_state ();
13976 char *p;
13977
13978 /* Ask for a first packet of tracepoint definition. */
13979 putpkt ("qTfP");
13980 getpkt (&rs->buf, &rs->buf_size, 0);
13981 p = rs->buf;
13982 while (*p && *p != 'l')
13983 {
13984 parse_tracepoint_definition (p, utpp);
13985 /* Ask for another packet of tracepoint definition. */
13986 putpkt ("qTsP");
13987 getpkt (&rs->buf, &rs->buf_size, 0);
13988 p = rs->buf;
13989 }
13990 return 0;
13991 }
13992
13993 int
13994 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
13995 {
13996 struct remote_state *rs = get_remote_state ();
13997 char *p;
13998
13999 /* Ask for a first packet of variable definition. */
14000 putpkt ("qTfV");
14001 getpkt (&rs->buf, &rs->buf_size, 0);
14002 p = rs->buf;
14003 while (*p && *p != 'l')
14004 {
14005 parse_tsv_definition (p, utsvp);
14006 /* Ask for another packet of variable definition. */
14007 putpkt ("qTsV");
14008 getpkt (&rs->buf, &rs->buf_size, 0);
14009 p = rs->buf;
14010 }
14011 return 0;
14012 }
14013
14014 /* The "set/show range-stepping" show hook. */
14015
14016 static void
14017 show_range_stepping (struct ui_file *file, int from_tty,
14018 struct cmd_list_element *c,
14019 const char *value)
14020 {
14021 fprintf_filtered (file,
14022 _("Debugger's willingness to use range stepping "
14023 "is %s.\n"), value);
14024 }
14025
14026 /* The "set/show range-stepping" set hook. */
14027
14028 static void
14029 set_range_stepping (const char *ignore_args, int from_tty,
14030 struct cmd_list_element *c)
14031 {
14032 struct remote_state *rs = get_remote_state ();
14033
14034 /* Whene enabling, check whether range stepping is actually
14035 supported by the target, and warn if not. */
14036 if (use_range_stepping)
14037 {
14038 if (rs->remote_desc != NULL)
14039 {
14040 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14041 remote_vcont_probe (rs);
14042
14043 if (packet_support (PACKET_vCont) == PACKET_ENABLE
14044 && rs->supports_vCont.r)
14045 return;
14046 }
14047
14048 warning (_("Range stepping is not supported by the current target"));
14049 }
14050 }
14051
14052 void
14053 _initialize_remote (void)
14054 {
14055 struct cmd_list_element *cmd;
14056 const char *cmd_name;
14057
14058 /* architecture specific data */
14059 remote_g_packet_data_handle =
14060 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14061
14062 remote_pspace_data
14063 = register_program_space_data_with_cleanup (NULL,
14064 remote_pspace_data_cleanup);
14065
14066 /* Initialize the per-target state. At the moment there is only one
14067 of these, not one per target. Only one target is active at a
14068 time. */
14069 remote_state = new struct remote_state ();
14070
14071 add_target (remote_target_info, remote_target::open);
14072 add_target (extended_remote_target_info, extended_remote_target::open);
14073
14074 /* Hook into new objfile notification. */
14075 gdb::observers::new_objfile.attach (remote_new_objfile);
14076 /* We're no longer interested in notification events of an inferior
14077 when it exits. */
14078 gdb::observers::inferior_exit.attach (discard_pending_stop_replies);
14079
14080 #if 0
14081 init_remote_threadtests ();
14082 #endif
14083
14084 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
14085 /* set/show remote ... */
14086
14087 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14088 Remote protocol specific variables\n\
14089 Configure various remote-protocol specific variables such as\n\
14090 the packets being used"),
14091 &remote_set_cmdlist, "set remote ",
14092 0 /* allow-unknown */, &setlist);
14093 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14094 Remote protocol specific variables\n\
14095 Configure various remote-protocol specific variables such as\n\
14096 the packets being used"),
14097 &remote_show_cmdlist, "show remote ",
14098 0 /* allow-unknown */, &showlist);
14099
14100 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14101 Compare section data on target to the exec file.\n\
14102 Argument is a single section name (default: all loaded sections).\n\
14103 To compare only read-only loaded sections, specify the -r option."),
14104 &cmdlist);
14105
14106 add_cmd ("packet", class_maintenance, packet_command, _("\
14107 Send an arbitrary packet to a remote target.\n\
14108 maintenance packet TEXT\n\
14109 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14110 this command sends the string TEXT to the inferior, and displays the\n\
14111 response packet. GDB supplies the initial `$' character, and the\n\
14112 terminating `#' character and checksum."),
14113 &maintenancelist);
14114
14115 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14116 Set whether to send break if interrupted."), _("\
14117 Show whether to send break if interrupted."), _("\
14118 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14119 set_remotebreak, show_remotebreak,
14120 &setlist, &showlist);
14121 cmd_name = "remotebreak";
14122 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14123 deprecate_cmd (cmd, "set remote interrupt-sequence");
14124 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14125 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14126 deprecate_cmd (cmd, "show remote interrupt-sequence");
14127
14128 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14129 interrupt_sequence_modes, &interrupt_sequence_mode,
14130 _("\
14131 Set interrupt sequence to remote target."), _("\
14132 Show interrupt sequence to remote target."), _("\
14133 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14134 NULL, show_interrupt_sequence,
14135 &remote_set_cmdlist,
14136 &remote_show_cmdlist);
14137
14138 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14139 &interrupt_on_connect, _("\
14140 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14141 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14142 If set, interrupt sequence is sent to remote target."),
14143 NULL, NULL,
14144 &remote_set_cmdlist, &remote_show_cmdlist);
14145
14146 /* Install commands for configuring memory read/write packets. */
14147
14148 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14149 Set the maximum number of bytes per memory write packet (deprecated)."),
14150 &setlist);
14151 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14152 Show the maximum number of bytes per memory write packet (deprecated)."),
14153 &showlist);
14154 add_cmd ("memory-write-packet-size", no_class,
14155 set_memory_write_packet_size, _("\
14156 Set the maximum number of bytes per memory-write packet.\n\
14157 Specify the number of bytes in a packet or 0 (zero) for the\n\
14158 default packet size. The actual limit is further reduced\n\
14159 dependent on the target. Specify ``fixed'' to disable the\n\
14160 further restriction and ``limit'' to enable that restriction."),
14161 &remote_set_cmdlist);
14162 add_cmd ("memory-read-packet-size", no_class,
14163 set_memory_read_packet_size, _("\
14164 Set the maximum number of bytes per memory-read packet.\n\
14165 Specify the number of bytes in a packet or 0 (zero) for the\n\
14166 default packet size. The actual limit is further reduced\n\
14167 dependent on the target. Specify ``fixed'' to disable the\n\
14168 further restriction and ``limit'' to enable that restriction."),
14169 &remote_set_cmdlist);
14170 add_cmd ("memory-write-packet-size", no_class,
14171 show_memory_write_packet_size,
14172 _("Show the maximum number of bytes per memory-write packet."),
14173 &remote_show_cmdlist);
14174 add_cmd ("memory-read-packet-size", no_class,
14175 show_memory_read_packet_size,
14176 _("Show the maximum number of bytes per memory-read packet."),
14177 &remote_show_cmdlist);
14178
14179 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14180 &remote_hw_watchpoint_limit, _("\
14181 Set the maximum number of target hardware watchpoints."), _("\
14182 Show the maximum number of target hardware watchpoints."), _("\
14183 Specify a negative limit for unlimited."),
14184 NULL, NULL, /* FIXME: i18n: The maximum
14185 number of target hardware
14186 watchpoints is %s. */
14187 &remote_set_cmdlist, &remote_show_cmdlist);
14188 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14189 &remote_hw_watchpoint_length_limit, _("\
14190 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14191 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14192 Specify a negative limit for unlimited."),
14193 NULL, NULL, /* FIXME: i18n: The maximum
14194 length (in bytes) of a target
14195 hardware watchpoint is %s. */
14196 &remote_set_cmdlist, &remote_show_cmdlist);
14197 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14198 &remote_hw_breakpoint_limit, _("\
14199 Set the maximum number of target hardware breakpoints."), _("\
14200 Show the maximum number of target hardware breakpoints."), _("\
14201 Specify a negative limit for unlimited."),
14202 NULL, NULL, /* FIXME: i18n: The maximum
14203 number of target hardware
14204 breakpoints is %s. */
14205 &remote_set_cmdlist, &remote_show_cmdlist);
14206
14207 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14208 &remote_address_size, _("\
14209 Set the maximum size of the address (in bits) in a memory packet."), _("\
14210 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14211 NULL,
14212 NULL, /* FIXME: i18n: */
14213 &setlist, &showlist);
14214
14215 init_all_packet_configs ();
14216
14217 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14218 "X", "binary-download", 1);
14219
14220 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14221 "vCont", "verbose-resume", 0);
14222
14223 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14224 "QPassSignals", "pass-signals", 0);
14225
14226 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14227 "QCatchSyscalls", "catch-syscalls", 0);
14228
14229 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14230 "QProgramSignals", "program-signals", 0);
14231
14232 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14233 "QSetWorkingDir", "set-working-dir", 0);
14234
14235 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14236 "QStartupWithShell", "startup-with-shell", 0);
14237
14238 add_packet_config_cmd (&remote_protocol_packets
14239 [PACKET_QEnvironmentHexEncoded],
14240 "QEnvironmentHexEncoded", "environment-hex-encoded",
14241 0);
14242
14243 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14244 "QEnvironmentReset", "environment-reset",
14245 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14248 "QEnvironmentUnset", "environment-unset",
14249 0);
14250
14251 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14252 "qSymbol", "symbol-lookup", 0);
14253
14254 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14255 "P", "set-register", 1);
14256
14257 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14258 "p", "fetch-register", 1);
14259
14260 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14261 "Z0", "software-breakpoint", 0);
14262
14263 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14264 "Z1", "hardware-breakpoint", 0);
14265
14266 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14267 "Z2", "write-watchpoint", 0);
14268
14269 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14270 "Z3", "read-watchpoint", 0);
14271
14272 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14273 "Z4", "access-watchpoint", 0);
14274
14275 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14276 "qXfer:auxv:read", "read-aux-vector", 0);
14277
14278 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14279 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14280
14281 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14282 "qXfer:features:read", "target-features", 0);
14283
14284 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14285 "qXfer:libraries:read", "library-info", 0);
14286
14287 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14288 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14289
14290 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14291 "qXfer:memory-map:read", "memory-map", 0);
14292
14293 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14294 "qXfer:spu:read", "read-spu-object", 0);
14295
14296 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14297 "qXfer:spu:write", "write-spu-object", 0);
14298
14299 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14300 "qXfer:osdata:read", "osdata", 0);
14301
14302 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14303 "qXfer:threads:read", "threads", 0);
14304
14305 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14306 "qXfer:siginfo:read", "read-siginfo-object", 0);
14307
14308 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14309 "qXfer:siginfo:write", "write-siginfo-object", 0);
14310
14311 add_packet_config_cmd
14312 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14313 "qXfer:traceframe-info:read", "traceframe-info", 0);
14314
14315 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14316 "qXfer:uib:read", "unwind-info-block", 0);
14317
14318 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14319 "qGetTLSAddr", "get-thread-local-storage-address",
14320 0);
14321
14322 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14323 "qGetTIBAddr", "get-thread-information-block-address",
14324 0);
14325
14326 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14327 "bc", "reverse-continue", 0);
14328
14329 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14330 "bs", "reverse-step", 0);
14331
14332 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14333 "qSupported", "supported-packets", 0);
14334
14335 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14336 "qSearch:memory", "search-memory", 0);
14337
14338 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14339 "qTStatus", "trace-status", 0);
14340
14341 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14342 "vFile:setfs", "hostio-setfs", 0);
14343
14344 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14345 "vFile:open", "hostio-open", 0);
14346
14347 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14348 "vFile:pread", "hostio-pread", 0);
14349
14350 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14351 "vFile:pwrite", "hostio-pwrite", 0);
14352
14353 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14354 "vFile:close", "hostio-close", 0);
14355
14356 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14357 "vFile:unlink", "hostio-unlink", 0);
14358
14359 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14360 "vFile:readlink", "hostio-readlink", 0);
14361
14362 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14363 "vFile:fstat", "hostio-fstat", 0);
14364
14365 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14366 "vAttach", "attach", 0);
14367
14368 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14369 "vRun", "run", 0);
14370
14371 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14372 "QStartNoAckMode", "noack", 0);
14373
14374 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14375 "vKill", "kill", 0);
14376
14377 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14378 "qAttached", "query-attached", 0);
14379
14380 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14381 "ConditionalTracepoints",
14382 "conditional-tracepoints", 0);
14383
14384 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14385 "ConditionalBreakpoints",
14386 "conditional-breakpoints", 0);
14387
14388 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14389 "BreakpointCommands",
14390 "breakpoint-commands", 0);
14391
14392 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14393 "FastTracepoints", "fast-tracepoints", 0);
14394
14395 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14396 "TracepointSource", "TracepointSource", 0);
14397
14398 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14399 "QAllow", "allow", 0);
14400
14401 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14402 "StaticTracepoints", "static-tracepoints", 0);
14403
14404 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14405 "InstallInTrace", "install-in-trace", 0);
14406
14407 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14408 "qXfer:statictrace:read", "read-sdata-object", 0);
14409
14410 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14411 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14412
14413 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14414 "QDisableRandomization", "disable-randomization", 0);
14415
14416 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14417 "QAgent", "agent", 0);
14418
14419 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14420 "QTBuffer:size", "trace-buffer-size", 0);
14421
14422 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14423 "Qbtrace:off", "disable-btrace", 0);
14424
14425 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14426 "Qbtrace:bts", "enable-btrace-bts", 0);
14427
14428 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14429 "Qbtrace:pt", "enable-btrace-pt", 0);
14430
14431 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14432 "qXfer:btrace", "read-btrace", 0);
14433
14434 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14435 "qXfer:btrace-conf", "read-btrace-conf", 0);
14436
14437 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14438 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14439
14440 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14441 "multiprocess-feature", "multiprocess-feature", 0);
14442
14443 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14444 "swbreak-feature", "swbreak-feature", 0);
14445
14446 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14447 "hwbreak-feature", "hwbreak-feature", 0);
14448
14449 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14450 "fork-event-feature", "fork-event-feature", 0);
14451
14452 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14453 "vfork-event-feature", "vfork-event-feature", 0);
14454
14455 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14456 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14457
14458 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14459 "vContSupported", "verbose-resume-supported", 0);
14460
14461 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14462 "exec-event-feature", "exec-event-feature", 0);
14463
14464 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14465 "vCtrlC", "ctrl-c", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14468 "QThreadEvents", "thread-events", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14471 "N stop reply", "no-resumed-stop-reply", 0);
14472
14473 /* Assert that we've registered "set remote foo-packet" commands
14474 for all packet configs. */
14475 {
14476 int i;
14477
14478 for (i = 0; i < PACKET_MAX; i++)
14479 {
14480 /* Ideally all configs would have a command associated. Some
14481 still don't though. */
14482 int excepted;
14483
14484 switch (i)
14485 {
14486 case PACKET_QNonStop:
14487 case PACKET_EnableDisableTracepoints_feature:
14488 case PACKET_tracenz_feature:
14489 case PACKET_DisconnectedTracing_feature:
14490 case PACKET_augmented_libraries_svr4_read_feature:
14491 case PACKET_qCRC:
14492 /* Additions to this list need to be well justified:
14493 pre-existing packets are OK; new packets are not. */
14494 excepted = 1;
14495 break;
14496 default:
14497 excepted = 0;
14498 break;
14499 }
14500
14501 /* This catches both forgetting to add a config command, and
14502 forgetting to remove a packet from the exception list. */
14503 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14504 }
14505 }
14506
14507 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14508 Z sub-packet has its own set and show commands, but users may
14509 have sets to this variable in their .gdbinit files (or in their
14510 documentation). */
14511 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14512 &remote_Z_packet_detect, _("\
14513 Set use of remote protocol `Z' packets"), _("\
14514 Show use of remote protocol `Z' packets "), _("\
14515 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14516 packets."),
14517 set_remote_protocol_Z_packet_cmd,
14518 show_remote_protocol_Z_packet_cmd,
14519 /* FIXME: i18n: Use of remote protocol
14520 `Z' packets is %s. */
14521 &remote_set_cmdlist, &remote_show_cmdlist);
14522
14523 add_prefix_cmd ("remote", class_files, remote_command, _("\
14524 Manipulate files on the remote system\n\
14525 Transfer files to and from the remote target system."),
14526 &remote_cmdlist, "remote ",
14527 0 /* allow-unknown */, &cmdlist);
14528
14529 add_cmd ("put", class_files, remote_put_command,
14530 _("Copy a local file to the remote system."),
14531 &remote_cmdlist);
14532
14533 add_cmd ("get", class_files, remote_get_command,
14534 _("Copy a remote file to the local system."),
14535 &remote_cmdlist);
14536
14537 add_cmd ("delete", class_files, remote_delete_command,
14538 _("Delete a remote file."),
14539 &remote_cmdlist);
14540
14541 add_setshow_string_noescape_cmd ("exec-file", class_files,
14542 &remote_exec_file_var, _("\
14543 Set the remote pathname for \"run\""), _("\
14544 Show the remote pathname for \"run\""), NULL,
14545 set_remote_exec_file,
14546 show_remote_exec_file,
14547 &remote_set_cmdlist,
14548 &remote_show_cmdlist);
14549
14550 add_setshow_boolean_cmd ("range-stepping", class_run,
14551 &use_range_stepping, _("\
14552 Enable or disable range stepping."), _("\
14553 Show whether target-assisted range stepping is enabled."), _("\
14554 If on, and the target supports it, when stepping a source line, GDB\n\
14555 tells the target to step the corresponding range of addresses itself instead\n\
14556 of issuing multiple single-steps. This speeds up source level\n\
14557 stepping. If off, GDB always issues single-steps, even if range\n\
14558 stepping is supported by the target. The default is on."),
14559 set_range_stepping,
14560 show_range_stepping,
14561 &setlist,
14562 &showlist);
14563
14564 /* Eventually initialize fileio. See fileio.c */
14565 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14566
14567 /* Take advantage of the fact that the TID field is not used, to tag
14568 special ptids with it set to != 0. */
14569 magic_null_ptid = ptid_build (42000, -1, 1);
14570 not_sent_ptid = ptid_build (42000, -2, 1);
14571 any_thread_ptid = ptid_build (42000, 0, 1);
14572 }
This page took 0.382048 seconds and 4 git commands to generate.