doc/ChangeLog:
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (struct regcache *regcache, int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == REGISTER_NAME (regnum); at present. */
264 };
265
266 struct remote_arch_state
267 {
268 /* Description of the remote protocol registers. */
269 long sizeof_g_packet;
270
271 /* Description of the remote protocol registers indexed by REGNUM
272 (making an array NUM_REGS in size). */
273 struct packet_reg *regs;
274
275 /* This is the size (in chars) of the first response to the ``g''
276 packet. It is used as a heuristic when determining the maximum
277 size of memory-read and memory-write packets. A target will
278 typically only reserve a buffer large enough to hold the ``g''
279 packet. The size does not include packet overhead (headers and
280 trailers). */
281 long actual_register_packet_size;
282
283 /* This is the maximum size (in chars) of a non read/write packet.
284 It is also used as a cap on the size of read/write packets. */
285 long remote_packet_size;
286 };
287
288
289 /* Handle for retreving the remote protocol data from gdbarch. */
290 static struct gdbarch_data *remote_gdbarch_data_handle;
291
292 static struct remote_arch_state *
293 get_remote_arch_state (void)
294 {
295 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
296 }
297
298 /* Fetch the global remote target state. */
299
300 static struct remote_state *
301 get_remote_state (void)
302 {
303 /* Make sure that the remote architecture state has been
304 initialized, because doing so might reallocate rs->buf. Any
305 function which calls getpkt also needs to be mindful of changes
306 to rs->buf, but this call limits the number of places which run
307 into trouble. */
308 get_remote_arch_state ();
309
310 return get_remote_state_raw ();
311 }
312
313 static int
314 compare_pnums (const void *lhs_, const void *rhs_)
315 {
316 const struct packet_reg * const *lhs = lhs_;
317 const struct packet_reg * const *rhs = rhs_;
318
319 if ((*lhs)->pnum < (*rhs)->pnum)
320 return -1;
321 else if ((*lhs)->pnum == (*rhs)->pnum)
322 return 0;
323 else
324 return 1;
325 }
326
327 static void *
328 init_remote_state (struct gdbarch *gdbarch)
329 {
330 int regnum, num_remote_regs, offset;
331 struct remote_state *rs = get_remote_state_raw ();
332 struct remote_arch_state *rsa;
333 struct packet_reg **remote_regs;
334
335 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
336
337 /* Use the architecture to build a regnum<->pnum table, which will be
338 1:1 unless a feature set specifies otherwise. */
339 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS, struct packet_reg);
340 for (regnum = 0; regnum < NUM_REGS; regnum++)
341 {
342 struct packet_reg *r = &rsa->regs[regnum];
343
344 if (register_size (current_gdbarch, regnum) == 0)
345 /* Do not try to fetch zero-sized (placeholder) registers. */
346 r->pnum = -1;
347 else
348 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
349
350 r->regnum = regnum;
351 }
352
353 /* Define the g/G packet format as the contents of each register
354 with a remote protocol number, in order of ascending protocol
355 number. */
356
357 remote_regs = alloca (NUM_REGS * sizeof (struct packet_reg *));
358 for (num_remote_regs = 0, regnum = 0; regnum < NUM_REGS; regnum++)
359 if (rsa->regs[regnum].pnum != -1)
360 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
361
362 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
363 compare_pnums);
364
365 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
366 {
367 remote_regs[regnum]->in_g_packet = 1;
368 remote_regs[regnum]->offset = offset;
369 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
370 }
371
372 /* Record the maximum possible size of the g packet - it may turn out
373 to be smaller. */
374 rsa->sizeof_g_packet = offset;
375
376 /* Default maximum number of characters in a packet body. Many
377 remote stubs have a hardwired buffer size of 400 bytes
378 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
379 as the maximum packet-size to ensure that the packet and an extra
380 NUL character can always fit in the buffer. This stops GDB
381 trashing stubs that try to squeeze an extra NUL into what is
382 already a full buffer (As of 1999-12-04 that was most stubs). */
383 rsa->remote_packet_size = 400 - 1;
384
385 /* This one is filled in when a ``g'' packet is received. */
386 rsa->actual_register_packet_size = 0;
387
388 /* Should rsa->sizeof_g_packet needs more space than the
389 default, adjust the size accordingly. Remember that each byte is
390 encoded as two characters. 32 is the overhead for the packet
391 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
392 (``$NN:G...#NN'') is a better guess, the below has been padded a
393 little. */
394 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
395 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
396
397 /* Make sure that the packet buffer is plenty big enough for
398 this architecture. */
399 if (rs->buf_size < rsa->remote_packet_size)
400 {
401 rs->buf_size = 2 * rsa->remote_packet_size;
402 rs->buf = xrealloc (rs->buf, rs->buf_size);
403 }
404
405 return rsa;
406 }
407
408 /* Return the current allowed size of a remote packet. This is
409 inferred from the current architecture, and should be used to
410 limit the length of outgoing packets. */
411 static long
412 get_remote_packet_size (void)
413 {
414 struct remote_state *rs = get_remote_state ();
415 struct remote_arch_state *rsa = get_remote_arch_state ();
416
417 if (rs->explicit_packet_size)
418 return rs->explicit_packet_size;
419
420 return rsa->remote_packet_size;
421 }
422
423 static struct packet_reg *
424 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
425 {
426 if (regnum < 0 && regnum >= NUM_REGS)
427 return NULL;
428 else
429 {
430 struct packet_reg *r = &rsa->regs[regnum];
431 gdb_assert (r->regnum == regnum);
432 return r;
433 }
434 }
435
436 static struct packet_reg *
437 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
438 {
439 int i;
440 for (i = 0; i < NUM_REGS; i++)
441 {
442 struct packet_reg *r = &rsa->regs[i];
443 if (r->pnum == pnum)
444 return r;
445 }
446 return NULL;
447 }
448
449 /* FIXME: graces/2002-08-08: These variables should eventually be
450 bound to an instance of the target object (as in gdbarch-tdep()),
451 when such a thing exists. */
452
453 /* This is set to the data address of the access causing the target
454 to stop for a watchpoint. */
455 static CORE_ADDR remote_watch_data_address;
456
457 /* This is non-zero if target stopped for a watchpoint. */
458 static int remote_stopped_by_watchpoint_p;
459
460 static struct target_ops remote_ops;
461
462 static struct target_ops extended_remote_ops;
463
464 /* Temporary target ops. Just like the remote_ops and
465 extended_remote_ops, but with asynchronous support. */
466 static struct target_ops remote_async_ops;
467
468 static struct target_ops extended_async_remote_ops;
469
470 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
471 ``forever'' still use the normal timeout mechanism. This is
472 currently used by the ASYNC code to guarentee that target reads
473 during the initial connect always time-out. Once getpkt has been
474 modified to return a timeout indication and, in turn
475 remote_wait()/wait_for_inferior() have gained a timeout parameter
476 this can go away. */
477 static int wait_forever_enabled_p = 1;
478
479
480 /* This variable chooses whether to send a ^C or a break when the user
481 requests program interruption. Although ^C is usually what remote
482 systems expect, and that is the default here, sometimes a break is
483 preferable instead. */
484
485 static int remote_break;
486
487 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
488 remote_open knows that we don't have a file open when the program
489 starts. */
490 static struct serial *remote_desc = NULL;
491
492 /* This variable sets the number of bits in an address that are to be
493 sent in a memory ("M" or "m") packet. Normally, after stripping
494 leading zeros, the entire address would be sent. This variable
495 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
496 initial implementation of remote.c restricted the address sent in
497 memory packets to ``host::sizeof long'' bytes - (typically 32
498 bits). Consequently, for 64 bit targets, the upper 32 bits of an
499 address was never sent. Since fixing this bug may cause a break in
500 some remote targets this variable is principly provided to
501 facilitate backward compatibility. */
502
503 static int remote_address_size;
504
505 /* Tempoary to track who currently owns the terminal. See
506 target_async_terminal_* for more details. */
507
508 static int remote_async_terminal_ours_p;
509
510 \f
511 /* User configurable variables for the number of characters in a
512 memory read/write packet. MIN (rsa->remote_packet_size,
513 rsa->sizeof_g_packet) is the default. Some targets need smaller
514 values (fifo overruns, et.al.) and some users need larger values
515 (speed up transfers). The variables ``preferred_*'' (the user
516 request), ``current_*'' (what was actually set) and ``forced_*''
517 (Positive - a soft limit, negative - a hard limit). */
518
519 struct memory_packet_config
520 {
521 char *name;
522 long size;
523 int fixed_p;
524 };
525
526 /* Compute the current size of a read/write packet. Since this makes
527 use of ``actual_register_packet_size'' the computation is dynamic. */
528
529 static long
530 get_memory_packet_size (struct memory_packet_config *config)
531 {
532 struct remote_state *rs = get_remote_state ();
533 struct remote_arch_state *rsa = get_remote_arch_state ();
534
535 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
536 law?) that some hosts don't cope very well with large alloca()
537 calls. Eventually the alloca() code will be replaced by calls to
538 xmalloc() and make_cleanups() allowing this restriction to either
539 be lifted or removed. */
540 #ifndef MAX_REMOTE_PACKET_SIZE
541 #define MAX_REMOTE_PACKET_SIZE 16384
542 #endif
543 /* NOTE: 20 ensures we can write at least one byte. */
544 #ifndef MIN_REMOTE_PACKET_SIZE
545 #define MIN_REMOTE_PACKET_SIZE 20
546 #endif
547 long what_they_get;
548 if (config->fixed_p)
549 {
550 if (config->size <= 0)
551 what_they_get = MAX_REMOTE_PACKET_SIZE;
552 else
553 what_they_get = config->size;
554 }
555 else
556 {
557 what_they_get = get_remote_packet_size ();
558 /* Limit the packet to the size specified by the user. */
559 if (config->size > 0
560 && what_they_get > config->size)
561 what_they_get = config->size;
562
563 /* Limit it to the size of the targets ``g'' response unless we have
564 permission from the stub to use a larger packet size. */
565 if (rs->explicit_packet_size == 0
566 && rsa->actual_register_packet_size > 0
567 && what_they_get > rsa->actual_register_packet_size)
568 what_they_get = rsa->actual_register_packet_size;
569 }
570 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
571 what_they_get = MAX_REMOTE_PACKET_SIZE;
572 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
573 what_they_get = MIN_REMOTE_PACKET_SIZE;
574
575 /* Make sure there is room in the global buffer for this packet
576 (including its trailing NUL byte). */
577 if (rs->buf_size < what_they_get + 1)
578 {
579 rs->buf_size = 2 * what_they_get;
580 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
581 }
582
583 return what_they_get;
584 }
585
586 /* Update the size of a read/write packet. If they user wants
587 something really big then do a sanity check. */
588
589 static void
590 set_memory_packet_size (char *args, struct memory_packet_config *config)
591 {
592 int fixed_p = config->fixed_p;
593 long size = config->size;
594 if (args == NULL)
595 error (_("Argument required (integer, `fixed' or `limited')."));
596 else if (strcmp (args, "hard") == 0
597 || strcmp (args, "fixed") == 0)
598 fixed_p = 1;
599 else if (strcmp (args, "soft") == 0
600 || strcmp (args, "limit") == 0)
601 fixed_p = 0;
602 else
603 {
604 char *end;
605 size = strtoul (args, &end, 0);
606 if (args == end)
607 error (_("Invalid %s (bad syntax)."), config->name);
608 #if 0
609 /* Instead of explicitly capping the size of a packet to
610 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
611 instead allowed to set the size to something arbitrarily
612 large. */
613 if (size > MAX_REMOTE_PACKET_SIZE)
614 error (_("Invalid %s (too large)."), config->name);
615 #endif
616 }
617 /* Extra checks? */
618 if (fixed_p && !config->fixed_p)
619 {
620 if (! query (_("The target may not be able to correctly handle a %s\n"
621 "of %ld bytes. Change the packet size? "),
622 config->name, size))
623 error (_("Packet size not changed."));
624 }
625 /* Update the config. */
626 config->fixed_p = fixed_p;
627 config->size = size;
628 }
629
630 static void
631 show_memory_packet_size (struct memory_packet_config *config)
632 {
633 printf_filtered (_("The %s is %ld. "), config->name, config->size);
634 if (config->fixed_p)
635 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
636 get_memory_packet_size (config));
637 else
638 printf_filtered (_("Packets are limited to %ld bytes.\n"),
639 get_memory_packet_size (config));
640 }
641
642 static struct memory_packet_config memory_write_packet_config =
643 {
644 "memory-write-packet-size",
645 };
646
647 static void
648 set_memory_write_packet_size (char *args, int from_tty)
649 {
650 set_memory_packet_size (args, &memory_write_packet_config);
651 }
652
653 static void
654 show_memory_write_packet_size (char *args, int from_tty)
655 {
656 show_memory_packet_size (&memory_write_packet_config);
657 }
658
659 static long
660 get_memory_write_packet_size (void)
661 {
662 return get_memory_packet_size (&memory_write_packet_config);
663 }
664
665 static struct memory_packet_config memory_read_packet_config =
666 {
667 "memory-read-packet-size",
668 };
669
670 static void
671 set_memory_read_packet_size (char *args, int from_tty)
672 {
673 set_memory_packet_size (args, &memory_read_packet_config);
674 }
675
676 static void
677 show_memory_read_packet_size (char *args, int from_tty)
678 {
679 show_memory_packet_size (&memory_read_packet_config);
680 }
681
682 static long
683 get_memory_read_packet_size (void)
684 {
685 long size = get_memory_packet_size (&memory_read_packet_config);
686 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
687 extra buffer size argument before the memory read size can be
688 increased beyond this. */
689 if (size > get_remote_packet_size ())
690 size = get_remote_packet_size ();
691 return size;
692 }
693
694 \f
695 /* Generic configuration support for packets the stub optionally
696 supports. Allows the user to specify the use of the packet as well
697 as allowing GDB to auto-detect support in the remote stub. */
698
699 enum packet_support
700 {
701 PACKET_SUPPORT_UNKNOWN = 0,
702 PACKET_ENABLE,
703 PACKET_DISABLE
704 };
705
706 struct packet_config
707 {
708 const char *name;
709 const char *title;
710 enum auto_boolean detect;
711 enum packet_support support;
712 };
713
714 /* Analyze a packet's return value and update the packet config
715 accordingly. */
716
717 enum packet_result
718 {
719 PACKET_ERROR,
720 PACKET_OK,
721 PACKET_UNKNOWN
722 };
723
724 static void
725 update_packet_config (struct packet_config *config)
726 {
727 switch (config->detect)
728 {
729 case AUTO_BOOLEAN_TRUE:
730 config->support = PACKET_ENABLE;
731 break;
732 case AUTO_BOOLEAN_FALSE:
733 config->support = PACKET_DISABLE;
734 break;
735 case AUTO_BOOLEAN_AUTO:
736 config->support = PACKET_SUPPORT_UNKNOWN;
737 break;
738 }
739 }
740
741 static void
742 show_packet_config_cmd (struct packet_config *config)
743 {
744 char *support = "internal-error";
745 switch (config->support)
746 {
747 case PACKET_ENABLE:
748 support = "enabled";
749 break;
750 case PACKET_DISABLE:
751 support = "disabled";
752 break;
753 case PACKET_SUPPORT_UNKNOWN:
754 support = "unknown";
755 break;
756 }
757 switch (config->detect)
758 {
759 case AUTO_BOOLEAN_AUTO:
760 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
761 config->name, support);
762 break;
763 case AUTO_BOOLEAN_TRUE:
764 case AUTO_BOOLEAN_FALSE:
765 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
766 config->name, support);
767 break;
768 }
769 }
770
771 static void
772 add_packet_config_cmd (struct packet_config *config, const char *name,
773 const char *title, int legacy)
774 {
775 char *set_doc;
776 char *show_doc;
777 char *cmd_name;
778
779 config->name = name;
780 config->title = title;
781 config->detect = AUTO_BOOLEAN_AUTO;
782 config->support = PACKET_SUPPORT_UNKNOWN;
783 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
784 name, title);
785 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
786 name, title);
787 /* set/show TITLE-packet {auto,on,off} */
788 cmd_name = xstrprintf ("%s-packet", title);
789 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
790 &config->detect, set_doc, show_doc, NULL, /* help_doc */
791 set_remote_protocol_packet_cmd,
792 show_remote_protocol_packet_cmd,
793 &remote_set_cmdlist, &remote_show_cmdlist);
794 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
795 if (legacy)
796 {
797 char *legacy_name;
798 legacy_name = xstrprintf ("%s-packet", name);
799 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
800 &remote_set_cmdlist);
801 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
802 &remote_show_cmdlist);
803 }
804 }
805
806 static enum packet_result
807 packet_check_result (const char *buf)
808 {
809 if (buf[0] != '\0')
810 {
811 /* The stub recognized the packet request. Check that the
812 operation succeeded. */
813 if (buf[0] == 'E'
814 && isxdigit (buf[1]) && isxdigit (buf[2])
815 && buf[3] == '\0')
816 /* "Enn" - definitly an error. */
817 return PACKET_ERROR;
818
819 /* Always treat "E." as an error. This will be used for
820 more verbose error messages, such as E.memtypes. */
821 if (buf[0] == 'E' && buf[1] == '.')
822 return PACKET_ERROR;
823
824 /* The packet may or may not be OK. Just assume it is. */
825 return PACKET_OK;
826 }
827 else
828 /* The stub does not support the packet. */
829 return PACKET_UNKNOWN;
830 }
831
832 static enum packet_result
833 packet_ok (const char *buf, struct packet_config *config)
834 {
835 enum packet_result result;
836
837 result = packet_check_result (buf);
838 switch (result)
839 {
840 case PACKET_OK:
841 case PACKET_ERROR:
842 /* The stub recognized the packet request. */
843 switch (config->support)
844 {
845 case PACKET_SUPPORT_UNKNOWN:
846 if (remote_debug)
847 fprintf_unfiltered (gdb_stdlog,
848 "Packet %s (%s) is supported\n",
849 config->name, config->title);
850 config->support = PACKET_ENABLE;
851 break;
852 case PACKET_DISABLE:
853 internal_error (__FILE__, __LINE__,
854 _("packet_ok: attempt to use a disabled packet"));
855 break;
856 case PACKET_ENABLE:
857 break;
858 }
859 break;
860 case PACKET_UNKNOWN:
861 /* The stub does not support the packet. */
862 switch (config->support)
863 {
864 case PACKET_ENABLE:
865 if (config->detect == AUTO_BOOLEAN_AUTO)
866 /* If the stub previously indicated that the packet was
867 supported then there is a protocol error.. */
868 error (_("Protocol error: %s (%s) conflicting enabled responses."),
869 config->name, config->title);
870 else
871 /* The user set it wrong. */
872 error (_("Enabled packet %s (%s) not recognized by stub"),
873 config->name, config->title);
874 break;
875 case PACKET_SUPPORT_UNKNOWN:
876 if (remote_debug)
877 fprintf_unfiltered (gdb_stdlog,
878 "Packet %s (%s) is NOT supported\n",
879 config->name, config->title);
880 config->support = PACKET_DISABLE;
881 break;
882 case PACKET_DISABLE:
883 break;
884 }
885 break;
886 }
887
888 return result;
889 }
890
891 enum {
892 PACKET_vCont = 0,
893 PACKET_X,
894 PACKET_qSymbol,
895 PACKET_P,
896 PACKET_p,
897 PACKET_Z0,
898 PACKET_Z1,
899 PACKET_Z2,
900 PACKET_Z3,
901 PACKET_Z4,
902 PACKET_qXfer_auxv,
903 PACKET_qXfer_features,
904 PACKET_qXfer_memory_map,
905 PACKET_qGetTLSAddr,
906 PACKET_qSupported,
907 PACKET_QPassSignals,
908 PACKET_MAX
909 };
910
911 static struct packet_config remote_protocol_packets[PACKET_MAX];
912
913 static void
914 set_remote_protocol_packet_cmd (char *args, int from_tty,
915 struct cmd_list_element *c)
916 {
917 struct packet_config *packet;
918
919 for (packet = remote_protocol_packets;
920 packet < &remote_protocol_packets[PACKET_MAX];
921 packet++)
922 {
923 if (&packet->detect == c->var)
924 {
925 update_packet_config (packet);
926 return;
927 }
928 }
929 internal_error (__FILE__, __LINE__, "Could not find config for %s",
930 c->name);
931 }
932
933 static void
934 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
935 struct cmd_list_element *c,
936 const char *value)
937 {
938 struct packet_config *packet;
939
940 for (packet = remote_protocol_packets;
941 packet < &remote_protocol_packets[PACKET_MAX];
942 packet++)
943 {
944 if (&packet->detect == c->var)
945 {
946 show_packet_config_cmd (packet);
947 return;
948 }
949 }
950 internal_error (__FILE__, __LINE__, "Could not find config for %s",
951 c->name);
952 }
953
954 /* Should we try one of the 'Z' requests? */
955
956 enum Z_packet_type
957 {
958 Z_PACKET_SOFTWARE_BP,
959 Z_PACKET_HARDWARE_BP,
960 Z_PACKET_WRITE_WP,
961 Z_PACKET_READ_WP,
962 Z_PACKET_ACCESS_WP,
963 NR_Z_PACKET_TYPES
964 };
965
966 /* For compatibility with older distributions. Provide a ``set remote
967 Z-packet ...'' command that updates all the Z packet types. */
968
969 static enum auto_boolean remote_Z_packet_detect;
970
971 static void
972 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
973 struct cmd_list_element *c)
974 {
975 int i;
976 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
977 {
978 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
979 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
980 }
981 }
982
983 static void
984 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
985 struct cmd_list_element *c,
986 const char *value)
987 {
988 int i;
989 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
990 {
991 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
992 }
993 }
994
995 /* Should we try the 'ThreadInfo' query packet?
996
997 This variable (NOT available to the user: auto-detect only!)
998 determines whether GDB will use the new, simpler "ThreadInfo"
999 query or the older, more complex syntax for thread queries.
1000 This is an auto-detect variable (set to true at each connect,
1001 and set to false when the target fails to recognize it). */
1002
1003 static int use_threadinfo_query;
1004 static int use_threadextra_query;
1005
1006 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1007 static struct async_signal_handler *sigint_remote_twice_token;
1008 static struct async_signal_handler *sigint_remote_token;
1009
1010 /* These are pointers to hook functions that may be set in order to
1011 modify resume/wait behavior for a particular architecture. */
1012
1013 void (*deprecated_target_resume_hook) (void);
1014 void (*deprecated_target_wait_loop_hook) (void);
1015 \f
1016
1017
1018 /* These are the threads which we last sent to the remote system.
1019 -1 for all or -2 for not sent yet. */
1020 static int general_thread;
1021 static int continue_thread;
1022
1023 /* Call this function as a result of
1024 1) A halt indication (T packet) containing a thread id
1025 2) A direct query of currthread
1026 3) Successful execution of set thread
1027 */
1028
1029 static void
1030 record_currthread (int currthread)
1031 {
1032 general_thread = currthread;
1033
1034 /* If this is a new thread, add it to GDB's thread list.
1035 If we leave it up to WFI to do this, bad things will happen. */
1036 if (!in_thread_list (pid_to_ptid (currthread)))
1037 {
1038 add_thread (pid_to_ptid (currthread));
1039 ui_out_text (uiout, "[New ");
1040 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1041 ui_out_text (uiout, "]\n");
1042 }
1043 }
1044
1045 static char *last_pass_packet;
1046
1047 /* If 'QPassSignals' is supported, tell the remote stub what signals
1048 it can simply pass through to the inferior without reporting. */
1049
1050 static void
1051 remote_pass_signals (void)
1052 {
1053 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1054 {
1055 char *pass_packet, *p;
1056 int numsigs = (int) TARGET_SIGNAL_LAST;
1057 int count = 0, i;
1058
1059 gdb_assert (numsigs < 256);
1060 for (i = 0; i < numsigs; i++)
1061 {
1062 if (signal_stop_state (i) == 0
1063 && signal_print_state (i) == 0
1064 && signal_pass_state (i) == 1)
1065 count++;
1066 }
1067 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1068 strcpy (pass_packet, "QPassSignals:");
1069 p = pass_packet + strlen (pass_packet);
1070 for (i = 0; i < numsigs; i++)
1071 {
1072 if (signal_stop_state (i) == 0
1073 && signal_print_state (i) == 0
1074 && signal_pass_state (i) == 1)
1075 {
1076 if (i >= 16)
1077 *p++ = tohex (i >> 4);
1078 *p++ = tohex (i & 15);
1079 if (count)
1080 *p++ = ';';
1081 else
1082 break;
1083 count--;
1084 }
1085 }
1086 *p = 0;
1087 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1088 {
1089 struct remote_state *rs = get_remote_state ();
1090 char *buf = rs->buf;
1091
1092 putpkt (pass_packet);
1093 getpkt (&rs->buf, &rs->buf_size, 0);
1094 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1095 if (last_pass_packet)
1096 xfree (last_pass_packet);
1097 last_pass_packet = pass_packet;
1098 }
1099 else
1100 xfree (pass_packet);
1101 }
1102 }
1103
1104 #define MAGIC_NULL_PID 42000
1105
1106 static void
1107 set_thread (int th, int gen)
1108 {
1109 struct remote_state *rs = get_remote_state ();
1110 char *buf = rs->buf;
1111 int state = gen ? general_thread : continue_thread;
1112
1113 if (state == th)
1114 return;
1115
1116 buf[0] = 'H';
1117 buf[1] = gen ? 'g' : 'c';
1118 if (th == MAGIC_NULL_PID)
1119 {
1120 buf[2] = '0';
1121 buf[3] = '\0';
1122 }
1123 else if (th < 0)
1124 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1125 else
1126 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1127 putpkt (buf);
1128 getpkt (&rs->buf, &rs->buf_size, 0);
1129 if (gen)
1130 general_thread = th;
1131 else
1132 continue_thread = th;
1133 }
1134 \f
1135 /* Return nonzero if the thread TH is still alive on the remote system. */
1136
1137 static int
1138 remote_thread_alive (ptid_t ptid)
1139 {
1140 struct remote_state *rs = get_remote_state ();
1141 int tid = PIDGET (ptid);
1142
1143 if (tid < 0)
1144 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1145 else
1146 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1147 putpkt (rs->buf);
1148 getpkt (&rs->buf, &rs->buf_size, 0);
1149 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1150 }
1151
1152 /* About these extended threadlist and threadinfo packets. They are
1153 variable length packets but, the fields within them are often fixed
1154 length. They are redundent enough to send over UDP as is the
1155 remote protocol in general. There is a matching unit test module
1156 in libstub. */
1157
1158 #define OPAQUETHREADBYTES 8
1159
1160 /* a 64 bit opaque identifier */
1161 typedef unsigned char threadref[OPAQUETHREADBYTES];
1162
1163 /* WARNING: This threadref data structure comes from the remote O.S.,
1164 libstub protocol encoding, and remote.c. it is not particularly
1165 changable. */
1166
1167 /* Right now, the internal structure is int. We want it to be bigger.
1168 Plan to fix this.
1169 */
1170
1171 typedef int gdb_threadref; /* Internal GDB thread reference. */
1172
1173 /* gdb_ext_thread_info is an internal GDB data structure which is
1174 equivalent to the reply of the remote threadinfo packet. */
1175
1176 struct gdb_ext_thread_info
1177 {
1178 threadref threadid; /* External form of thread reference. */
1179 int active; /* Has state interesting to GDB?
1180 regs, stack. */
1181 char display[256]; /* Brief state display, name,
1182 blocked/suspended. */
1183 char shortname[32]; /* To be used to name threads. */
1184 char more_display[256]; /* Long info, statistics, queue depth,
1185 whatever. */
1186 };
1187
1188 /* The volume of remote transfers can be limited by submitting
1189 a mask containing bits specifying the desired information.
1190 Use a union of these values as the 'selection' parameter to
1191 get_thread_info. FIXME: Make these TAG names more thread specific.
1192 */
1193
1194 #define TAG_THREADID 1
1195 #define TAG_EXISTS 2
1196 #define TAG_DISPLAY 4
1197 #define TAG_THREADNAME 8
1198 #define TAG_MOREDISPLAY 16
1199
1200 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1201
1202 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1203
1204 static char *unpack_nibble (char *buf, int *val);
1205
1206 static char *pack_nibble (char *buf, int nibble);
1207
1208 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1209
1210 static char *unpack_byte (char *buf, int *value);
1211
1212 static char *pack_int (char *buf, int value);
1213
1214 static char *unpack_int (char *buf, int *value);
1215
1216 static char *unpack_string (char *src, char *dest, int length);
1217
1218 static char *pack_threadid (char *pkt, threadref *id);
1219
1220 static char *unpack_threadid (char *inbuf, threadref *id);
1221
1222 void int_to_threadref (threadref *id, int value);
1223
1224 static int threadref_to_int (threadref *ref);
1225
1226 static void copy_threadref (threadref *dest, threadref *src);
1227
1228 static int threadmatch (threadref *dest, threadref *src);
1229
1230 static char *pack_threadinfo_request (char *pkt, int mode,
1231 threadref *id);
1232
1233 static int remote_unpack_thread_info_response (char *pkt,
1234 threadref *expectedref,
1235 struct gdb_ext_thread_info
1236 *info);
1237
1238
1239 static int remote_get_threadinfo (threadref *threadid,
1240 int fieldset, /*TAG mask */
1241 struct gdb_ext_thread_info *info);
1242
1243 static char *pack_threadlist_request (char *pkt, int startflag,
1244 int threadcount,
1245 threadref *nextthread);
1246
1247 static int parse_threadlist_response (char *pkt,
1248 int result_limit,
1249 threadref *original_echo,
1250 threadref *resultlist,
1251 int *doneflag);
1252
1253 static int remote_get_threadlist (int startflag,
1254 threadref *nextthread,
1255 int result_limit,
1256 int *done,
1257 int *result_count,
1258 threadref *threadlist);
1259
1260 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1261
1262 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1263 void *context, int looplimit);
1264
1265 static int remote_newthread_step (threadref *ref, void *context);
1266
1267 /* Encode 64 bits in 16 chars of hex. */
1268
1269 static const char hexchars[] = "0123456789abcdef";
1270
1271 static int
1272 ishex (int ch, int *val)
1273 {
1274 if ((ch >= 'a') && (ch <= 'f'))
1275 {
1276 *val = ch - 'a' + 10;
1277 return 1;
1278 }
1279 if ((ch >= 'A') && (ch <= 'F'))
1280 {
1281 *val = ch - 'A' + 10;
1282 return 1;
1283 }
1284 if ((ch >= '0') && (ch <= '9'))
1285 {
1286 *val = ch - '0';
1287 return 1;
1288 }
1289 return 0;
1290 }
1291
1292 static int
1293 stubhex (int ch)
1294 {
1295 if (ch >= 'a' && ch <= 'f')
1296 return ch - 'a' + 10;
1297 if (ch >= '0' && ch <= '9')
1298 return ch - '0';
1299 if (ch >= 'A' && ch <= 'F')
1300 return ch - 'A' + 10;
1301 return -1;
1302 }
1303
1304 static int
1305 stub_unpack_int (char *buff, int fieldlength)
1306 {
1307 int nibble;
1308 int retval = 0;
1309
1310 while (fieldlength)
1311 {
1312 nibble = stubhex (*buff++);
1313 retval |= nibble;
1314 fieldlength--;
1315 if (fieldlength)
1316 retval = retval << 4;
1317 }
1318 return retval;
1319 }
1320
1321 char *
1322 unpack_varlen_hex (char *buff, /* packet to parse */
1323 ULONGEST *result)
1324 {
1325 int nibble;
1326 ULONGEST retval = 0;
1327
1328 while (ishex (*buff, &nibble))
1329 {
1330 buff++;
1331 retval = retval << 4;
1332 retval |= nibble & 0x0f;
1333 }
1334 *result = retval;
1335 return buff;
1336 }
1337
1338 static char *
1339 unpack_nibble (char *buf, int *val)
1340 {
1341 ishex (*buf++, val);
1342 return buf;
1343 }
1344
1345 static char *
1346 pack_nibble (char *buf, int nibble)
1347 {
1348 *buf++ = hexchars[(nibble & 0x0f)];
1349 return buf;
1350 }
1351
1352 static char *
1353 pack_hex_byte (char *pkt, int byte)
1354 {
1355 *pkt++ = hexchars[(byte >> 4) & 0xf];
1356 *pkt++ = hexchars[(byte & 0xf)];
1357 return pkt;
1358 }
1359
1360 static char *
1361 unpack_byte (char *buf, int *value)
1362 {
1363 *value = stub_unpack_int (buf, 2);
1364 return buf + 2;
1365 }
1366
1367 static char *
1368 pack_int (char *buf, int value)
1369 {
1370 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1371 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1372 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1373 buf = pack_hex_byte (buf, (value & 0xff));
1374 return buf;
1375 }
1376
1377 static char *
1378 unpack_int (char *buf, int *value)
1379 {
1380 *value = stub_unpack_int (buf, 8);
1381 return buf + 8;
1382 }
1383
1384 #if 0 /* Currently unused, uncomment when needed. */
1385 static char *pack_string (char *pkt, char *string);
1386
1387 static char *
1388 pack_string (char *pkt, char *string)
1389 {
1390 char ch;
1391 int len;
1392
1393 len = strlen (string);
1394 if (len > 200)
1395 len = 200; /* Bigger than most GDB packets, junk??? */
1396 pkt = pack_hex_byte (pkt, len);
1397 while (len-- > 0)
1398 {
1399 ch = *string++;
1400 if ((ch == '\0') || (ch == '#'))
1401 ch = '*'; /* Protect encapsulation. */
1402 *pkt++ = ch;
1403 }
1404 return pkt;
1405 }
1406 #endif /* 0 (unused) */
1407
1408 static char *
1409 unpack_string (char *src, char *dest, int length)
1410 {
1411 while (length--)
1412 *dest++ = *src++;
1413 *dest = '\0';
1414 return src;
1415 }
1416
1417 static char *
1418 pack_threadid (char *pkt, threadref *id)
1419 {
1420 char *limit;
1421 unsigned char *altid;
1422
1423 altid = (unsigned char *) id;
1424 limit = pkt + BUF_THREAD_ID_SIZE;
1425 while (pkt < limit)
1426 pkt = pack_hex_byte (pkt, *altid++);
1427 return pkt;
1428 }
1429
1430
1431 static char *
1432 unpack_threadid (char *inbuf, threadref *id)
1433 {
1434 char *altref;
1435 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1436 int x, y;
1437
1438 altref = (char *) id;
1439
1440 while (inbuf < limit)
1441 {
1442 x = stubhex (*inbuf++);
1443 y = stubhex (*inbuf++);
1444 *altref++ = (x << 4) | y;
1445 }
1446 return inbuf;
1447 }
1448
1449 /* Externally, threadrefs are 64 bits but internally, they are still
1450 ints. This is due to a mismatch of specifications. We would like
1451 to use 64bit thread references internally. This is an adapter
1452 function. */
1453
1454 void
1455 int_to_threadref (threadref *id, int value)
1456 {
1457 unsigned char *scan;
1458
1459 scan = (unsigned char *) id;
1460 {
1461 int i = 4;
1462 while (i--)
1463 *scan++ = 0;
1464 }
1465 *scan++ = (value >> 24) & 0xff;
1466 *scan++ = (value >> 16) & 0xff;
1467 *scan++ = (value >> 8) & 0xff;
1468 *scan++ = (value & 0xff);
1469 }
1470
1471 static int
1472 threadref_to_int (threadref *ref)
1473 {
1474 int i, value = 0;
1475 unsigned char *scan;
1476
1477 scan = *ref;
1478 scan += 4;
1479 i = 4;
1480 while (i-- > 0)
1481 value = (value << 8) | ((*scan++) & 0xff);
1482 return value;
1483 }
1484
1485 static void
1486 copy_threadref (threadref *dest, threadref *src)
1487 {
1488 int i;
1489 unsigned char *csrc, *cdest;
1490
1491 csrc = (unsigned char *) src;
1492 cdest = (unsigned char *) dest;
1493 i = 8;
1494 while (i--)
1495 *cdest++ = *csrc++;
1496 }
1497
1498 static int
1499 threadmatch (threadref *dest, threadref *src)
1500 {
1501 /* Things are broken right now, so just assume we got a match. */
1502 #if 0
1503 unsigned char *srcp, *destp;
1504 int i, result;
1505 srcp = (char *) src;
1506 destp = (char *) dest;
1507
1508 result = 1;
1509 while (i-- > 0)
1510 result &= (*srcp++ == *destp++) ? 1 : 0;
1511 return result;
1512 #endif
1513 return 1;
1514 }
1515
1516 /*
1517 threadid:1, # always request threadid
1518 context_exists:2,
1519 display:4,
1520 unique_name:8,
1521 more_display:16
1522 */
1523
1524 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1525
1526 static char *
1527 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1528 {
1529 *pkt++ = 'q'; /* Info Query */
1530 *pkt++ = 'P'; /* process or thread info */
1531 pkt = pack_int (pkt, mode); /* mode */
1532 pkt = pack_threadid (pkt, id); /* threadid */
1533 *pkt = '\0'; /* terminate */
1534 return pkt;
1535 }
1536
1537 /* These values tag the fields in a thread info response packet. */
1538 /* Tagging the fields allows us to request specific fields and to
1539 add more fields as time goes by. */
1540
1541 #define TAG_THREADID 1 /* Echo the thread identifier. */
1542 #define TAG_EXISTS 2 /* Is this process defined enough to
1543 fetch registers and its stack? */
1544 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1545 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1546 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1547 the process. */
1548
1549 static int
1550 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1551 struct gdb_ext_thread_info *info)
1552 {
1553 struct remote_state *rs = get_remote_state ();
1554 int mask, length;
1555 int tag;
1556 threadref ref;
1557 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1558 int retval = 1;
1559
1560 /* info->threadid = 0; FIXME: implement zero_threadref. */
1561 info->active = 0;
1562 info->display[0] = '\0';
1563 info->shortname[0] = '\0';
1564 info->more_display[0] = '\0';
1565
1566 /* Assume the characters indicating the packet type have been
1567 stripped. */
1568 pkt = unpack_int (pkt, &mask); /* arg mask */
1569 pkt = unpack_threadid (pkt, &ref);
1570
1571 if (mask == 0)
1572 warning (_("Incomplete response to threadinfo request."));
1573 if (!threadmatch (&ref, expectedref))
1574 { /* This is an answer to a different request. */
1575 warning (_("ERROR RMT Thread info mismatch."));
1576 return 0;
1577 }
1578 copy_threadref (&info->threadid, &ref);
1579
1580 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1581
1582 /* Packets are terminated with nulls. */
1583 while ((pkt < limit) && mask && *pkt)
1584 {
1585 pkt = unpack_int (pkt, &tag); /* tag */
1586 pkt = unpack_byte (pkt, &length); /* length */
1587 if (!(tag & mask)) /* Tags out of synch with mask. */
1588 {
1589 warning (_("ERROR RMT: threadinfo tag mismatch."));
1590 retval = 0;
1591 break;
1592 }
1593 if (tag == TAG_THREADID)
1594 {
1595 if (length != 16)
1596 {
1597 warning (_("ERROR RMT: length of threadid is not 16."));
1598 retval = 0;
1599 break;
1600 }
1601 pkt = unpack_threadid (pkt, &ref);
1602 mask = mask & ~TAG_THREADID;
1603 continue;
1604 }
1605 if (tag == TAG_EXISTS)
1606 {
1607 info->active = stub_unpack_int (pkt, length);
1608 pkt += length;
1609 mask = mask & ~(TAG_EXISTS);
1610 if (length > 8)
1611 {
1612 warning (_("ERROR RMT: 'exists' length too long."));
1613 retval = 0;
1614 break;
1615 }
1616 continue;
1617 }
1618 if (tag == TAG_THREADNAME)
1619 {
1620 pkt = unpack_string (pkt, &info->shortname[0], length);
1621 mask = mask & ~TAG_THREADNAME;
1622 continue;
1623 }
1624 if (tag == TAG_DISPLAY)
1625 {
1626 pkt = unpack_string (pkt, &info->display[0], length);
1627 mask = mask & ~TAG_DISPLAY;
1628 continue;
1629 }
1630 if (tag == TAG_MOREDISPLAY)
1631 {
1632 pkt = unpack_string (pkt, &info->more_display[0], length);
1633 mask = mask & ~TAG_MOREDISPLAY;
1634 continue;
1635 }
1636 warning (_("ERROR RMT: unknown thread info tag."));
1637 break; /* Not a tag we know about. */
1638 }
1639 return retval;
1640 }
1641
1642 static int
1643 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1644 struct gdb_ext_thread_info *info)
1645 {
1646 struct remote_state *rs = get_remote_state ();
1647 int result;
1648
1649 pack_threadinfo_request (rs->buf, fieldset, threadid);
1650 putpkt (rs->buf);
1651 getpkt (&rs->buf, &rs->buf_size, 0);
1652 result = remote_unpack_thread_info_response (rs->buf + 2,
1653 threadid, info);
1654 return result;
1655 }
1656
1657 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1658
1659 static char *
1660 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1661 threadref *nextthread)
1662 {
1663 *pkt++ = 'q'; /* info query packet */
1664 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1665 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1666 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1667 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1668 *pkt = '\0';
1669 return pkt;
1670 }
1671
1672 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1673
1674 static int
1675 parse_threadlist_response (char *pkt, int result_limit,
1676 threadref *original_echo, threadref *resultlist,
1677 int *doneflag)
1678 {
1679 struct remote_state *rs = get_remote_state ();
1680 char *limit;
1681 int count, resultcount, done;
1682
1683 resultcount = 0;
1684 /* Assume the 'q' and 'M chars have been stripped. */
1685 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1686 /* done parse past here */
1687 pkt = unpack_byte (pkt, &count); /* count field */
1688 pkt = unpack_nibble (pkt, &done);
1689 /* The first threadid is the argument threadid. */
1690 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1691 while ((count-- > 0) && (pkt < limit))
1692 {
1693 pkt = unpack_threadid (pkt, resultlist++);
1694 if (resultcount++ >= result_limit)
1695 break;
1696 }
1697 if (doneflag)
1698 *doneflag = done;
1699 return resultcount;
1700 }
1701
1702 static int
1703 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1704 int *done, int *result_count, threadref *threadlist)
1705 {
1706 struct remote_state *rs = get_remote_state ();
1707 static threadref echo_nextthread;
1708 int result = 1;
1709
1710 /* Trancate result limit to be smaller than the packet size. */
1711 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1712 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1713
1714 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1715 putpkt (rs->buf);
1716 getpkt (&rs->buf, &rs->buf_size, 0);
1717
1718 *result_count =
1719 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1720 threadlist, done);
1721
1722 if (!threadmatch (&echo_nextthread, nextthread))
1723 {
1724 /* FIXME: This is a good reason to drop the packet. */
1725 /* Possably, there is a duplicate response. */
1726 /* Possabilities :
1727 retransmit immediatly - race conditions
1728 retransmit after timeout - yes
1729 exit
1730 wait for packet, then exit
1731 */
1732 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1733 return 0; /* I choose simply exiting. */
1734 }
1735 if (*result_count <= 0)
1736 {
1737 if (*done != 1)
1738 {
1739 warning (_("RMT ERROR : failed to get remote thread list."));
1740 result = 0;
1741 }
1742 return result; /* break; */
1743 }
1744 if (*result_count > result_limit)
1745 {
1746 *result_count = 0;
1747 warning (_("RMT ERROR: threadlist response longer than requested."));
1748 return 0;
1749 }
1750 return result;
1751 }
1752
1753 /* This is the interface between remote and threads, remotes upper
1754 interface. */
1755
1756 /* remote_find_new_threads retrieves the thread list and for each
1757 thread in the list, looks up the thread in GDB's internal list,
1758 ading the thread if it does not already exist. This involves
1759 getting partial thread lists from the remote target so, polling the
1760 quit_flag is required. */
1761
1762
1763 /* About this many threadisds fit in a packet. */
1764
1765 #define MAXTHREADLISTRESULTS 32
1766
1767 static int
1768 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1769 int looplimit)
1770 {
1771 int done, i, result_count;
1772 int startflag = 1;
1773 int result = 1;
1774 int loopcount = 0;
1775 static threadref nextthread;
1776 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1777
1778 done = 0;
1779 while (!done)
1780 {
1781 if (loopcount++ > looplimit)
1782 {
1783 result = 0;
1784 warning (_("Remote fetch threadlist -infinite loop-."));
1785 break;
1786 }
1787 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1788 &done, &result_count, resultthreadlist))
1789 {
1790 result = 0;
1791 break;
1792 }
1793 /* Clear for later iterations. */
1794 startflag = 0;
1795 /* Setup to resume next batch of thread references, set nextthread. */
1796 if (result_count >= 1)
1797 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1798 i = 0;
1799 while (result_count--)
1800 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1801 break;
1802 }
1803 return result;
1804 }
1805
1806 static int
1807 remote_newthread_step (threadref *ref, void *context)
1808 {
1809 ptid_t ptid;
1810
1811 ptid = pid_to_ptid (threadref_to_int (ref));
1812
1813 if (!in_thread_list (ptid))
1814 add_thread (ptid);
1815 return 1; /* continue iterator */
1816 }
1817
1818 #define CRAZY_MAX_THREADS 1000
1819
1820 static ptid_t
1821 remote_current_thread (ptid_t oldpid)
1822 {
1823 struct remote_state *rs = get_remote_state ();
1824
1825 putpkt ("qC");
1826 getpkt (&rs->buf, &rs->buf_size, 0);
1827 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1828 /* Use strtoul here, so we'll correctly parse values whose highest
1829 bit is set. The protocol carries them as a simple series of
1830 hex digits; in the absence of a sign, strtol will see such
1831 values as positive numbers out of range for signed 'long', and
1832 return LONG_MAX to indicate an overflow. */
1833 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1834 else
1835 return oldpid;
1836 }
1837
1838 /* Find new threads for info threads command.
1839 * Original version, using John Metzler's thread protocol.
1840 */
1841
1842 static void
1843 remote_find_new_threads (void)
1844 {
1845 remote_threadlist_iterator (remote_newthread_step, 0,
1846 CRAZY_MAX_THREADS);
1847 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1848 inferior_ptid = remote_current_thread (inferior_ptid);
1849 }
1850
1851 /*
1852 * Find all threads for info threads command.
1853 * Uses new thread protocol contributed by Cisco.
1854 * Falls back and attempts to use the older method (above)
1855 * if the target doesn't respond to the new method.
1856 */
1857
1858 static void
1859 remote_threads_info (void)
1860 {
1861 struct remote_state *rs = get_remote_state ();
1862 char *bufp;
1863 int tid;
1864
1865 if (remote_desc == 0) /* paranoia */
1866 error (_("Command can only be used when connected to the remote target."));
1867
1868 if (use_threadinfo_query)
1869 {
1870 putpkt ("qfThreadInfo");
1871 getpkt (&rs->buf, &rs->buf_size, 0);
1872 bufp = rs->buf;
1873 if (bufp[0] != '\0') /* q packet recognized */
1874 {
1875 while (*bufp++ == 'm') /* reply contains one or more TID */
1876 {
1877 do
1878 {
1879 /* Use strtoul here, so we'll correctly parse values
1880 whose highest bit is set. The protocol carries
1881 them as a simple series of hex digits; in the
1882 absence of a sign, strtol will see such values as
1883 positive numbers out of range for signed 'long',
1884 and return LONG_MAX to indicate an overflow. */
1885 tid = strtoul (bufp, &bufp, 16);
1886 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1887 add_thread (pid_to_ptid (tid));
1888 }
1889 while (*bufp++ == ','); /* comma-separated list */
1890 putpkt ("qsThreadInfo");
1891 getpkt (&rs->buf, &rs->buf_size, 0);
1892 bufp = rs->buf;
1893 }
1894 return; /* done */
1895 }
1896 }
1897
1898 /* Else fall back to old method based on jmetzler protocol. */
1899 use_threadinfo_query = 0;
1900 remote_find_new_threads ();
1901 return;
1902 }
1903
1904 /*
1905 * Collect a descriptive string about the given thread.
1906 * The target may say anything it wants to about the thread
1907 * (typically info about its blocked / runnable state, name, etc.).
1908 * This string will appear in the info threads display.
1909 *
1910 * Optional: targets are not required to implement this function.
1911 */
1912
1913 static char *
1914 remote_threads_extra_info (struct thread_info *tp)
1915 {
1916 struct remote_state *rs = get_remote_state ();
1917 int result;
1918 int set;
1919 threadref id;
1920 struct gdb_ext_thread_info threadinfo;
1921 static char display_buf[100]; /* arbitrary... */
1922 int n = 0; /* position in display_buf */
1923
1924 if (remote_desc == 0) /* paranoia */
1925 internal_error (__FILE__, __LINE__,
1926 _("remote_threads_extra_info"));
1927
1928 if (use_threadextra_query)
1929 {
1930 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1931 PIDGET (tp->ptid));
1932 putpkt (rs->buf);
1933 getpkt (&rs->buf, &rs->buf_size, 0);
1934 if (rs->buf[0] != 0)
1935 {
1936 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1937 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1938 display_buf [result] = '\0';
1939 return display_buf;
1940 }
1941 }
1942
1943 /* If the above query fails, fall back to the old method. */
1944 use_threadextra_query = 0;
1945 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1946 | TAG_MOREDISPLAY | TAG_DISPLAY;
1947 int_to_threadref (&id, PIDGET (tp->ptid));
1948 if (remote_get_threadinfo (&id, set, &threadinfo))
1949 if (threadinfo.active)
1950 {
1951 if (*threadinfo.shortname)
1952 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1953 " Name: %s,", threadinfo.shortname);
1954 if (*threadinfo.display)
1955 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1956 " State: %s,", threadinfo.display);
1957 if (*threadinfo.more_display)
1958 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1959 " Priority: %s", threadinfo.more_display);
1960
1961 if (n > 0)
1962 {
1963 /* For purely cosmetic reasons, clear up trailing commas. */
1964 if (',' == display_buf[n-1])
1965 display_buf[n-1] = ' ';
1966 return display_buf;
1967 }
1968 }
1969 return NULL;
1970 }
1971 \f
1972
1973 /* Restart the remote side; this is an extended protocol operation. */
1974
1975 static void
1976 extended_remote_restart (void)
1977 {
1978 struct remote_state *rs = get_remote_state ();
1979
1980 /* Send the restart command; for reasons I don't understand the
1981 remote side really expects a number after the "R". */
1982 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1983 putpkt (rs->buf);
1984
1985 remote_fileio_reset ();
1986
1987 /* Now query for status so this looks just like we restarted
1988 gdbserver from scratch. */
1989 putpkt ("?");
1990 getpkt (&rs->buf, &rs->buf_size, 0);
1991 }
1992 \f
1993 /* Clean up connection to a remote debugger. */
1994
1995 static void
1996 remote_close (int quitting)
1997 {
1998 if (remote_desc)
1999 serial_close (remote_desc);
2000 remote_desc = NULL;
2001 }
2002
2003 /* Query the remote side for the text, data and bss offsets. */
2004
2005 static void
2006 get_offsets (void)
2007 {
2008 struct remote_state *rs = get_remote_state ();
2009 char *buf;
2010 char *ptr;
2011 int lose;
2012 CORE_ADDR text_addr, data_addr, bss_addr;
2013 struct section_offsets *offs;
2014
2015 putpkt ("qOffsets");
2016 getpkt (&rs->buf, &rs->buf_size, 0);
2017 buf = rs->buf;
2018
2019 if (buf[0] == '\000')
2020 return; /* Return silently. Stub doesn't support
2021 this command. */
2022 if (buf[0] == 'E')
2023 {
2024 warning (_("Remote failure reply: %s"), buf);
2025 return;
2026 }
2027
2028 /* Pick up each field in turn. This used to be done with scanf, but
2029 scanf will make trouble if CORE_ADDR size doesn't match
2030 conversion directives correctly. The following code will work
2031 with any size of CORE_ADDR. */
2032 text_addr = data_addr = bss_addr = 0;
2033 ptr = buf;
2034 lose = 0;
2035
2036 if (strncmp (ptr, "Text=", 5) == 0)
2037 {
2038 ptr += 5;
2039 /* Don't use strtol, could lose on big values. */
2040 while (*ptr && *ptr != ';')
2041 text_addr = (text_addr << 4) + fromhex (*ptr++);
2042 }
2043 else
2044 lose = 1;
2045
2046 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2047 {
2048 ptr += 6;
2049 while (*ptr && *ptr != ';')
2050 data_addr = (data_addr << 4) + fromhex (*ptr++);
2051 }
2052 else
2053 lose = 1;
2054
2055 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2056 {
2057 ptr += 5;
2058 while (*ptr && *ptr != ';')
2059 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2060 }
2061 else
2062 lose = 1;
2063
2064 if (lose)
2065 error (_("Malformed response to offset query, %s"), buf);
2066
2067 if (symfile_objfile == NULL)
2068 return;
2069
2070 offs = ((struct section_offsets *)
2071 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2072 memcpy (offs, symfile_objfile->section_offsets,
2073 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2074
2075 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2076
2077 /* This is a temporary kludge to force data and bss to use the same offsets
2078 because that's what nlmconv does now. The real solution requires changes
2079 to the stub and remote.c that I don't have time to do right now. */
2080
2081 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2082 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2083
2084 objfile_relocate (symfile_objfile, offs);
2085 }
2086
2087 /* Stub for catch_exception. */
2088
2089 static void
2090 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2091 {
2092 int from_tty = * (int *) from_tty_p;
2093
2094 immediate_quit++; /* Allow user to interrupt it. */
2095
2096 /* Ack any packet which the remote side has already sent. */
2097 serial_write (remote_desc, "+", 1);
2098
2099 /* Let the stub know that we want it to return the thread. */
2100 set_thread (-1, 0);
2101
2102 inferior_ptid = remote_current_thread (inferior_ptid);
2103
2104 get_offsets (); /* Get text, data & bss offsets. */
2105
2106 putpkt ("?"); /* Initiate a query from remote machine. */
2107 immediate_quit--;
2108
2109 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2110 }
2111
2112 /* Open a connection to a remote debugger.
2113 NAME is the filename used for communication. */
2114
2115 static void
2116 remote_open (char *name, int from_tty)
2117 {
2118 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2119 }
2120
2121 /* Just like remote_open, but with asynchronous support. */
2122 static void
2123 remote_async_open (char *name, int from_tty)
2124 {
2125 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2126 }
2127
2128 /* Open a connection to a remote debugger using the extended
2129 remote gdb protocol. NAME is the filename used for communication. */
2130
2131 static void
2132 extended_remote_open (char *name, int from_tty)
2133 {
2134 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2135 0 /* async_p */);
2136 }
2137
2138 /* Just like extended_remote_open, but with asynchronous support. */
2139 static void
2140 extended_remote_async_open (char *name, int from_tty)
2141 {
2142 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2143 1 /*extended_p */, 1 /* async_p */);
2144 }
2145
2146 /* Generic code for opening a connection to a remote target. */
2147
2148 static void
2149 init_all_packet_configs (void)
2150 {
2151 int i;
2152 for (i = 0; i < PACKET_MAX; i++)
2153 update_packet_config (&remote_protocol_packets[i]);
2154 }
2155
2156 /* Symbol look-up. */
2157
2158 static void
2159 remote_check_symbols (struct objfile *objfile)
2160 {
2161 struct remote_state *rs = get_remote_state ();
2162 char *msg, *reply, *tmp;
2163 struct minimal_symbol *sym;
2164 int end;
2165
2166 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2167 return;
2168
2169 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2170 because we need both at the same time. */
2171 msg = alloca (get_remote_packet_size ());
2172
2173 /* Invite target to request symbol lookups. */
2174
2175 putpkt ("qSymbol::");
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2178 reply = rs->buf;
2179
2180 while (strncmp (reply, "qSymbol:", 8) == 0)
2181 {
2182 tmp = &reply[8];
2183 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2184 msg[end] = '\0';
2185 sym = lookup_minimal_symbol (msg, NULL, NULL);
2186 if (sym == NULL)
2187 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2188 else
2189 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2190 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2191 &reply[8]);
2192 putpkt (msg);
2193 getpkt (&rs->buf, &rs->buf_size, 0);
2194 reply = rs->buf;
2195 }
2196 }
2197
2198 static struct serial *
2199 remote_serial_open (char *name)
2200 {
2201 static int udp_warning = 0;
2202
2203 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2204 of in ser-tcp.c, because it is the remote protocol assuming that the
2205 serial connection is reliable and not the serial connection promising
2206 to be. */
2207 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2208 {
2209 warning (_("\
2210 The remote protocol may be unreliable over UDP.\n\
2211 Some events may be lost, rendering further debugging impossible."));
2212 udp_warning = 1;
2213 }
2214
2215 return serial_open (name);
2216 }
2217
2218 /* This type describes each known response to the qSupported
2219 packet. */
2220 struct protocol_feature
2221 {
2222 /* The name of this protocol feature. */
2223 const char *name;
2224
2225 /* The default for this protocol feature. */
2226 enum packet_support default_support;
2227
2228 /* The function to call when this feature is reported, or after
2229 qSupported processing if the feature is not supported.
2230 The first argument points to this structure. The second
2231 argument indicates whether the packet requested support be
2232 enabled, disabled, or probed (or the default, if this function
2233 is being called at the end of processing and this feature was
2234 not reported). The third argument may be NULL; if not NULL, it
2235 is a NUL-terminated string taken from the packet following
2236 this feature's name and an equals sign. */
2237 void (*func) (const struct protocol_feature *, enum packet_support,
2238 const char *);
2239
2240 /* The corresponding packet for this feature. Only used if
2241 FUNC is remote_supported_packet. */
2242 int packet;
2243 };
2244
2245 static void
2246 remote_supported_packet (const struct protocol_feature *feature,
2247 enum packet_support support,
2248 const char *argument)
2249 {
2250 if (argument)
2251 {
2252 warning (_("Remote qSupported response supplied an unexpected value for"
2253 " \"%s\"."), feature->name);
2254 return;
2255 }
2256
2257 if (remote_protocol_packets[feature->packet].support
2258 == PACKET_SUPPORT_UNKNOWN)
2259 remote_protocol_packets[feature->packet].support = support;
2260 }
2261
2262 static void
2263 remote_packet_size (const struct protocol_feature *feature,
2264 enum packet_support support, const char *value)
2265 {
2266 struct remote_state *rs = get_remote_state ();
2267
2268 int packet_size;
2269 char *value_end;
2270
2271 if (support != PACKET_ENABLE)
2272 return;
2273
2274 if (value == NULL || *value == '\0')
2275 {
2276 warning (_("Remote target reported \"%s\" without a size."),
2277 feature->name);
2278 return;
2279 }
2280
2281 errno = 0;
2282 packet_size = strtol (value, &value_end, 16);
2283 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2284 {
2285 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2286 feature->name, value);
2287 return;
2288 }
2289
2290 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2291 {
2292 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2293 packet_size, MAX_REMOTE_PACKET_SIZE);
2294 packet_size = MAX_REMOTE_PACKET_SIZE;
2295 }
2296
2297 /* Record the new maximum packet size. */
2298 rs->explicit_packet_size = packet_size;
2299 }
2300
2301 static struct protocol_feature remote_protocol_features[] = {
2302 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2303 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2304 PACKET_qXfer_auxv },
2305 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2306 PACKET_qXfer_features },
2307 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2308 PACKET_qXfer_memory_map },
2309 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2310 PACKET_QPassSignals },
2311 };
2312
2313 static void
2314 remote_query_supported (void)
2315 {
2316 struct remote_state *rs = get_remote_state ();
2317 char *next;
2318 int i;
2319 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2320
2321 /* The packet support flags are handled differently for this packet
2322 than for most others. We treat an error, a disabled packet, and
2323 an empty response identically: any features which must be reported
2324 to be used will be automatically disabled. An empty buffer
2325 accomplishes this, since that is also the representation for a list
2326 containing no features. */
2327
2328 rs->buf[0] = 0;
2329 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2330 {
2331 putpkt ("qSupported");
2332 getpkt (&rs->buf, &rs->buf_size, 0);
2333
2334 /* If an error occured, warn, but do not return - just reset the
2335 buffer to empty and go on to disable features. */
2336 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2337 == PACKET_ERROR)
2338 {
2339 warning (_("Remote failure reply: %s"), rs->buf);
2340 rs->buf[0] = 0;
2341 }
2342 }
2343
2344 memset (seen, 0, sizeof (seen));
2345
2346 next = rs->buf;
2347 while (*next)
2348 {
2349 enum packet_support is_supported;
2350 char *p, *end, *name_end, *value;
2351
2352 /* First separate out this item from the rest of the packet. If
2353 there's another item after this, we overwrite the separator
2354 (terminated strings are much easier to work with). */
2355 p = next;
2356 end = strchr (p, ';');
2357 if (end == NULL)
2358 {
2359 end = p + strlen (p);
2360 next = end;
2361 }
2362 else
2363 {
2364 *end = '\0';
2365 next = end + 1;
2366
2367 if (end == p)
2368 {
2369 warning (_("empty item in \"qSupported\" response"));
2370 continue;
2371 }
2372 }
2373
2374 name_end = strchr (p, '=');
2375 if (name_end)
2376 {
2377 /* This is a name=value entry. */
2378 is_supported = PACKET_ENABLE;
2379 value = name_end + 1;
2380 *name_end = '\0';
2381 }
2382 else
2383 {
2384 value = NULL;
2385 switch (end[-1])
2386 {
2387 case '+':
2388 is_supported = PACKET_ENABLE;
2389 break;
2390
2391 case '-':
2392 is_supported = PACKET_DISABLE;
2393 break;
2394
2395 case '?':
2396 is_supported = PACKET_SUPPORT_UNKNOWN;
2397 break;
2398
2399 default:
2400 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2401 continue;
2402 }
2403 end[-1] = '\0';
2404 }
2405
2406 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2407 if (strcmp (remote_protocol_features[i].name, p) == 0)
2408 {
2409 const struct protocol_feature *feature;
2410
2411 seen[i] = 1;
2412 feature = &remote_protocol_features[i];
2413 feature->func (feature, is_supported, value);
2414 break;
2415 }
2416 }
2417
2418 /* If we increased the packet size, make sure to increase the global
2419 buffer size also. We delay this until after parsing the entire
2420 qSupported packet, because this is the same buffer we were
2421 parsing. */
2422 if (rs->buf_size < rs->explicit_packet_size)
2423 {
2424 rs->buf_size = rs->explicit_packet_size;
2425 rs->buf = xrealloc (rs->buf, rs->buf_size);
2426 }
2427
2428 /* Handle the defaults for unmentioned features. */
2429 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2430 if (!seen[i])
2431 {
2432 const struct protocol_feature *feature;
2433
2434 feature = &remote_protocol_features[i];
2435 feature->func (feature, feature->default_support, NULL);
2436 }
2437 }
2438
2439
2440 static void
2441 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2442 int extended_p, int async_p)
2443 {
2444 struct remote_state *rs = get_remote_state ();
2445 if (name == 0)
2446 error (_("To open a remote debug connection, you need to specify what\n"
2447 "serial device is attached to the remote system\n"
2448 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2449
2450 /* See FIXME above. */
2451 if (!async_p)
2452 wait_forever_enabled_p = 1;
2453
2454 target_preopen (from_tty);
2455
2456 unpush_target (target);
2457
2458 /* Make sure we send the passed signals list the next time we resume. */
2459 xfree (last_pass_packet);
2460 last_pass_packet = NULL;
2461
2462 remote_fileio_reset ();
2463 reopen_exec_file ();
2464 reread_symbols ();
2465
2466 remote_desc = remote_serial_open (name);
2467 if (!remote_desc)
2468 perror_with_name (name);
2469
2470 if (baud_rate != -1)
2471 {
2472 if (serial_setbaudrate (remote_desc, baud_rate))
2473 {
2474 /* The requested speed could not be set. Error out to
2475 top level after closing remote_desc. Take care to
2476 set remote_desc to NULL to avoid closing remote_desc
2477 more than once. */
2478 serial_close (remote_desc);
2479 remote_desc = NULL;
2480 perror_with_name (name);
2481 }
2482 }
2483
2484 serial_raw (remote_desc);
2485
2486 /* If there is something sitting in the buffer we might take it as a
2487 response to a command, which would be bad. */
2488 serial_flush_input (remote_desc);
2489
2490 if (from_tty)
2491 {
2492 puts_filtered ("Remote debugging using ");
2493 puts_filtered (name);
2494 puts_filtered ("\n");
2495 }
2496 push_target (target); /* Switch to using remote target now. */
2497
2498 /* Reset the target state; these things will be queried either by
2499 remote_query_supported or as they are needed. */
2500 init_all_packet_configs ();
2501 rs->explicit_packet_size = 0;
2502
2503 general_thread = -2;
2504 continue_thread = -2;
2505
2506 /* Probe for ability to use "ThreadInfo" query, as required. */
2507 use_threadinfo_query = 1;
2508 use_threadextra_query = 1;
2509
2510 /* The first packet we send to the target is the optional "supported
2511 packets" request. If the target can answer this, it will tell us
2512 which later probes to skip. */
2513 remote_query_supported ();
2514
2515 /* Next, if the target can specify a description, read it. We do
2516 this before anything involving memory or registers. */
2517 target_find_description ();
2518
2519 /* Without this, some commands which require an active target (such
2520 as kill) won't work. This variable serves (at least) double duty
2521 as both the pid of the target process (if it has such), and as a
2522 flag indicating that a target is active. These functions should
2523 be split out into seperate variables, especially since GDB will
2524 someday have a notion of debugging several processes. */
2525
2526 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2527
2528 if (async_p)
2529 {
2530 /* With this target we start out by owning the terminal. */
2531 remote_async_terminal_ours_p = 1;
2532
2533 /* FIXME: cagney/1999-09-23: During the initial connection it is
2534 assumed that the target is already ready and able to respond to
2535 requests. Unfortunately remote_start_remote() eventually calls
2536 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2537 around this. Eventually a mechanism that allows
2538 wait_for_inferior() to expect/get timeouts will be
2539 implemented. */
2540 wait_forever_enabled_p = 0;
2541 }
2542
2543 /* First delete any symbols previously loaded from shared libraries. */
2544 no_shared_libraries (NULL, 0);
2545
2546 /* Start the remote connection. If error() or QUIT, discard this
2547 target (we'd otherwise be in an inconsistent state) and then
2548 propogate the error on up the exception chain. This ensures that
2549 the caller doesn't stumble along blindly assuming that the
2550 function succeeded. The CLI doesn't have this problem but other
2551 UI's, such as MI do.
2552
2553 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2554 this function should return an error indication letting the
2555 caller restore the previous state. Unfortunately the command
2556 ``target remote'' is directly wired to this function making that
2557 impossible. On a positive note, the CLI side of this problem has
2558 been fixed - the function set_cmd_context() makes it possible for
2559 all the ``target ....'' commands to share a common callback
2560 function. See cli-dump.c. */
2561 {
2562 struct gdb_exception ex
2563 = catch_exception (uiout, remote_start_remote, &from_tty,
2564 RETURN_MASK_ALL);
2565 if (ex.reason < 0)
2566 {
2567 pop_target ();
2568 if (async_p)
2569 wait_forever_enabled_p = 1;
2570 throw_exception (ex);
2571 }
2572 }
2573
2574 if (async_p)
2575 wait_forever_enabled_p = 1;
2576
2577 if (extended_p)
2578 {
2579 /* Tell the remote that we are using the extended protocol. */
2580 putpkt ("!");
2581 getpkt (&rs->buf, &rs->buf_size, 0);
2582 }
2583
2584 if (exec_bfd) /* No use without an exec file. */
2585 remote_check_symbols (symfile_objfile);
2586 }
2587
2588 /* This takes a program previously attached to and detaches it. After
2589 this is done, GDB can be used to debug some other program. We
2590 better not have left any breakpoints in the target program or it'll
2591 die when it hits one. */
2592
2593 static void
2594 remote_detach (char *args, int from_tty)
2595 {
2596 struct remote_state *rs = get_remote_state ();
2597
2598 if (args)
2599 error (_("Argument given to \"detach\" when remotely debugging."));
2600
2601 /* Tell the remote target to detach. */
2602 strcpy (rs->buf, "D");
2603 putpkt (rs->buf);
2604 getpkt (&rs->buf, &rs->buf_size, 0);
2605
2606 if (rs->buf[0] == 'E')
2607 error (_("Can't detach process."));
2608
2609 /* Unregister the file descriptor from the event loop. */
2610 if (target_is_async_p ())
2611 serial_async (remote_desc, NULL, 0);
2612
2613 target_mourn_inferior ();
2614 if (from_tty)
2615 puts_filtered ("Ending remote debugging.\n");
2616 }
2617
2618 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2619
2620 static void
2621 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2622 {
2623 if (args)
2624 error (_("Argument given to \"detach\" when remotely debugging."));
2625
2626 /* Unregister the file descriptor from the event loop. */
2627 if (target_is_async_p ())
2628 serial_async (remote_desc, NULL, 0);
2629
2630 target_mourn_inferior ();
2631 if (from_tty)
2632 puts_filtered ("Ending remote debugging.\n");
2633 }
2634
2635 /* Convert hex digit A to a number. */
2636
2637 static int
2638 fromhex (int a)
2639 {
2640 if (a >= '0' && a <= '9')
2641 return a - '0';
2642 else if (a >= 'a' && a <= 'f')
2643 return a - 'a' + 10;
2644 else if (a >= 'A' && a <= 'F')
2645 return a - 'A' + 10;
2646 else
2647 error (_("Reply contains invalid hex digit %d"), a);
2648 }
2649
2650 static int
2651 hex2bin (const char *hex, gdb_byte *bin, int count)
2652 {
2653 int i;
2654
2655 for (i = 0; i < count; i++)
2656 {
2657 if (hex[0] == 0 || hex[1] == 0)
2658 {
2659 /* Hex string is short, or of uneven length.
2660 Return the count that has been converted so far. */
2661 return i;
2662 }
2663 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2664 hex += 2;
2665 }
2666 return i;
2667 }
2668
2669 /* Convert number NIB to a hex digit. */
2670
2671 static int
2672 tohex (int nib)
2673 {
2674 if (nib < 10)
2675 return '0' + nib;
2676 else
2677 return 'a' + nib - 10;
2678 }
2679
2680 static int
2681 bin2hex (const gdb_byte *bin, char *hex, int count)
2682 {
2683 int i;
2684 /* May use a length, or a nul-terminated string as input. */
2685 if (count == 0)
2686 count = strlen ((char *) bin);
2687
2688 for (i = 0; i < count; i++)
2689 {
2690 *hex++ = tohex ((*bin >> 4) & 0xf);
2691 *hex++ = tohex (*bin++ & 0xf);
2692 }
2693 *hex = 0;
2694 return i;
2695 }
2696 \f
2697 /* Check for the availability of vCont. This function should also check
2698 the response. */
2699
2700 static void
2701 remote_vcont_probe (struct remote_state *rs)
2702 {
2703 char *buf;
2704
2705 strcpy (rs->buf, "vCont?");
2706 putpkt (rs->buf);
2707 getpkt (&rs->buf, &rs->buf_size, 0);
2708 buf = rs->buf;
2709
2710 /* Make sure that the features we assume are supported. */
2711 if (strncmp (buf, "vCont", 5) == 0)
2712 {
2713 char *p = &buf[5];
2714 int support_s, support_S, support_c, support_C;
2715
2716 support_s = 0;
2717 support_S = 0;
2718 support_c = 0;
2719 support_C = 0;
2720 while (p && *p == ';')
2721 {
2722 p++;
2723 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2724 support_s = 1;
2725 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2726 support_S = 1;
2727 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2728 support_c = 1;
2729 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2730 support_C = 1;
2731
2732 p = strchr (p, ';');
2733 }
2734
2735 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2736 BUF will make packet_ok disable the packet. */
2737 if (!support_s || !support_S || !support_c || !support_C)
2738 buf[0] = 0;
2739 }
2740
2741 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2742 }
2743
2744 /* Resume the remote inferior by using a "vCont" packet. The thread
2745 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2746 resumed thread should be single-stepped and/or signalled. If PTID's
2747 PID is -1, then all threads are resumed; the thread to be stepped and/or
2748 signalled is given in the global INFERIOR_PTID. This function returns
2749 non-zero iff it resumes the inferior.
2750
2751 This function issues a strict subset of all possible vCont commands at the
2752 moment. */
2753
2754 static int
2755 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2756 {
2757 struct remote_state *rs = get_remote_state ();
2758 int pid = PIDGET (ptid);
2759 char *buf = NULL, *outbuf;
2760 struct cleanup *old_cleanup;
2761
2762 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2763 remote_vcont_probe (rs);
2764
2765 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2766 return 0;
2767
2768 /* If we could generate a wider range of packets, we'd have to worry
2769 about overflowing BUF. Should there be a generic
2770 "multi-part-packet" packet? */
2771
2772 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2773 {
2774 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2775 don't have any PID numbers the inferior will understand. Make sure
2776 to only send forms that do not specify a PID. */
2777 if (step && siggnal != TARGET_SIGNAL_0)
2778 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2779 else if (step)
2780 outbuf = xstrprintf ("vCont;s");
2781 else if (siggnal != TARGET_SIGNAL_0)
2782 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2783 else
2784 outbuf = xstrprintf ("vCont;c");
2785 }
2786 else if (pid == -1)
2787 {
2788 /* Resume all threads, with preference for INFERIOR_PTID. */
2789 if (step && siggnal != TARGET_SIGNAL_0)
2790 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2791 PIDGET (inferior_ptid));
2792 else if (step)
2793 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2794 else if (siggnal != TARGET_SIGNAL_0)
2795 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2796 PIDGET (inferior_ptid));
2797 else
2798 outbuf = xstrprintf ("vCont;c");
2799 }
2800 else
2801 {
2802 /* Scheduler locking; resume only PTID. */
2803 if (step && siggnal != TARGET_SIGNAL_0)
2804 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2805 else if (step)
2806 outbuf = xstrprintf ("vCont;s:%x", pid);
2807 else if (siggnal != TARGET_SIGNAL_0)
2808 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2809 else
2810 outbuf = xstrprintf ("vCont;c:%x", pid);
2811 }
2812
2813 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2814 old_cleanup = make_cleanup (xfree, outbuf);
2815
2816 putpkt (outbuf);
2817
2818 do_cleanups (old_cleanup);
2819
2820 return 1;
2821 }
2822
2823 /* Tell the remote machine to resume. */
2824
2825 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2826
2827 static int last_sent_step;
2828
2829 static void
2830 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2831 {
2832 struct remote_state *rs = get_remote_state ();
2833 char *buf;
2834 int pid = PIDGET (ptid);
2835
2836 last_sent_signal = siggnal;
2837 last_sent_step = step;
2838
2839 /* A hook for when we need to do something at the last moment before
2840 resumption. */
2841 if (deprecated_target_resume_hook)
2842 (*deprecated_target_resume_hook) ();
2843
2844 /* Update the inferior on signals to silently pass, if they've changed. */
2845 remote_pass_signals ();
2846
2847 /* The vCont packet doesn't need to specify threads via Hc. */
2848 if (remote_vcont_resume (ptid, step, siggnal))
2849 return;
2850
2851 /* All other supported resume packets do use Hc, so call set_thread. */
2852 if (pid == -1)
2853 set_thread (0, 0); /* Run any thread. */
2854 else
2855 set_thread (pid, 0); /* Run this thread. */
2856
2857 buf = rs->buf;
2858 if (siggnal != TARGET_SIGNAL_0)
2859 {
2860 buf[0] = step ? 'S' : 'C';
2861 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2862 buf[2] = tohex (((int) siggnal) & 0xf);
2863 buf[3] = '\0';
2864 }
2865 else
2866 strcpy (buf, step ? "s" : "c");
2867
2868 putpkt (buf);
2869 }
2870
2871 /* Same as remote_resume, but with async support. */
2872 static void
2873 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2874 {
2875 remote_resume (ptid, step, siggnal);
2876
2877 /* We are about to start executing the inferior, let's register it
2878 with the event loop. NOTE: this is the one place where all the
2879 execution commands end up. We could alternatively do this in each
2880 of the execution commands in infcmd.c. */
2881 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2882 into infcmd.c in order to allow inferior function calls to work
2883 NOT asynchronously. */
2884 if (target_can_async_p ())
2885 target_async (inferior_event_handler, 0);
2886 /* Tell the world that the target is now executing. */
2887 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2888 this? Instead, should the client of target just assume (for
2889 async targets) that the target is going to start executing? Is
2890 this information already found in the continuation block? */
2891 if (target_is_async_p ())
2892 target_executing = 1;
2893 }
2894 \f
2895
2896 /* Set up the signal handler for SIGINT, while the target is
2897 executing, ovewriting the 'regular' SIGINT signal handler. */
2898 static void
2899 initialize_sigint_signal_handler (void)
2900 {
2901 sigint_remote_token =
2902 create_async_signal_handler (async_remote_interrupt, NULL);
2903 signal (SIGINT, handle_remote_sigint);
2904 }
2905
2906 /* Signal handler for SIGINT, while the target is executing. */
2907 static void
2908 handle_remote_sigint (int sig)
2909 {
2910 signal (sig, handle_remote_sigint_twice);
2911 sigint_remote_twice_token =
2912 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2913 mark_async_signal_handler_wrapper (sigint_remote_token);
2914 }
2915
2916 /* Signal handler for SIGINT, installed after SIGINT has already been
2917 sent once. It will take effect the second time that the user sends
2918 a ^C. */
2919 static void
2920 handle_remote_sigint_twice (int sig)
2921 {
2922 signal (sig, handle_sigint);
2923 sigint_remote_twice_token =
2924 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2925 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2926 }
2927
2928 /* Perform the real interruption of the target execution, in response
2929 to a ^C. */
2930 static void
2931 async_remote_interrupt (gdb_client_data arg)
2932 {
2933 if (remote_debug)
2934 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2935
2936 target_stop ();
2937 }
2938
2939 /* Perform interrupt, if the first attempt did not succeed. Just give
2940 up on the target alltogether. */
2941 void
2942 async_remote_interrupt_twice (gdb_client_data arg)
2943 {
2944 if (remote_debug)
2945 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2946 /* Do something only if the target was not killed by the previous
2947 cntl-C. */
2948 if (target_executing)
2949 {
2950 interrupt_query ();
2951 signal (SIGINT, handle_remote_sigint);
2952 }
2953 }
2954
2955 /* Reinstall the usual SIGINT handlers, after the target has
2956 stopped. */
2957 static void
2958 cleanup_sigint_signal_handler (void *dummy)
2959 {
2960 signal (SIGINT, handle_sigint);
2961 if (sigint_remote_twice_token)
2962 delete_async_signal_handler (&sigint_remote_twice_token);
2963 if (sigint_remote_token)
2964 delete_async_signal_handler (&sigint_remote_token);
2965 }
2966
2967 /* Send ^C to target to halt it. Target will respond, and send us a
2968 packet. */
2969 static void (*ofunc) (int);
2970
2971 /* The command line interface's stop routine. This function is installed
2972 as a signal handler for SIGINT. The first time a user requests a
2973 stop, we call remote_stop to send a break or ^C. If there is no
2974 response from the target (it didn't stop when the user requested it),
2975 we ask the user if he'd like to detach from the target. */
2976 static void
2977 remote_interrupt (int signo)
2978 {
2979 /* If this doesn't work, try more severe steps. */
2980 signal (signo, remote_interrupt_twice);
2981
2982 if (remote_debug)
2983 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2984
2985 target_stop ();
2986 }
2987
2988 /* The user typed ^C twice. */
2989
2990 static void
2991 remote_interrupt_twice (int signo)
2992 {
2993 signal (signo, ofunc);
2994 interrupt_query ();
2995 signal (signo, remote_interrupt);
2996 }
2997
2998 /* This is the generic stop called via the target vector. When a target
2999 interrupt is requested, either by the command line or the GUI, we
3000 will eventually end up here. */
3001 static void
3002 remote_stop (void)
3003 {
3004 /* Send a break or a ^C, depending on user preference. */
3005 if (remote_debug)
3006 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3007
3008 if (remote_break)
3009 serial_send_break (remote_desc);
3010 else
3011 serial_write (remote_desc, "\003", 1);
3012 }
3013
3014 /* Ask the user what to do when an interrupt is received. */
3015
3016 static void
3017 interrupt_query (void)
3018 {
3019 target_terminal_ours ();
3020
3021 if (query ("Interrupted while waiting for the program.\n\
3022 Give up (and stop debugging it)? "))
3023 {
3024 target_mourn_inferior ();
3025 deprecated_throw_reason (RETURN_QUIT);
3026 }
3027
3028 target_terminal_inferior ();
3029 }
3030
3031 /* Enable/disable target terminal ownership. Most targets can use
3032 terminal groups to control terminal ownership. Remote targets are
3033 different in that explicit transfer of ownership to/from GDB/target
3034 is required. */
3035
3036 static void
3037 remote_async_terminal_inferior (void)
3038 {
3039 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3040 sync_execution here. This function should only be called when
3041 GDB is resuming the inferior in the forground. A background
3042 resume (``run&'') should leave GDB in control of the terminal and
3043 consequently should not call this code. */
3044 if (!sync_execution)
3045 return;
3046 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3047 calls target_terminal_*() idenpotent. The event-loop GDB talking
3048 to an asynchronous target with a synchronous command calls this
3049 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3050 stops trying to transfer the terminal to the target when it
3051 shouldn't this guard can go away. */
3052 if (!remote_async_terminal_ours_p)
3053 return;
3054 delete_file_handler (input_fd);
3055 remote_async_terminal_ours_p = 0;
3056 initialize_sigint_signal_handler ();
3057 /* NOTE: At this point we could also register our selves as the
3058 recipient of all input. Any characters typed could then be
3059 passed on down to the target. */
3060 }
3061
3062 static void
3063 remote_async_terminal_ours (void)
3064 {
3065 /* See FIXME in remote_async_terminal_inferior. */
3066 if (!sync_execution)
3067 return;
3068 /* See FIXME in remote_async_terminal_inferior. */
3069 if (remote_async_terminal_ours_p)
3070 return;
3071 cleanup_sigint_signal_handler (NULL);
3072 add_file_handler (input_fd, stdin_event_handler, 0);
3073 remote_async_terminal_ours_p = 1;
3074 }
3075
3076 /* If nonzero, ignore the next kill. */
3077
3078 int kill_kludge;
3079
3080 void
3081 remote_console_output (char *msg)
3082 {
3083 char *p;
3084
3085 for (p = msg; p[0] && p[1]; p += 2)
3086 {
3087 char tb[2];
3088 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3089 tb[0] = c;
3090 tb[1] = 0;
3091 fputs_unfiltered (tb, gdb_stdtarg);
3092 }
3093 gdb_flush (gdb_stdtarg);
3094 }
3095
3096 /* Wait until the remote machine stops, then return,
3097 storing status in STATUS just as `wait' would.
3098 Returns "pid", which in the case of a multi-threaded
3099 remote OS, is the thread-id. */
3100
3101 static ptid_t
3102 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3103 {
3104 struct remote_state *rs = get_remote_state ();
3105 struct remote_arch_state *rsa = get_remote_arch_state ();
3106 ULONGEST thread_num = -1;
3107 ULONGEST addr;
3108
3109 status->kind = TARGET_WAITKIND_EXITED;
3110 status->value.integer = 0;
3111
3112 while (1)
3113 {
3114 char *buf, *p;
3115
3116 ofunc = signal (SIGINT, remote_interrupt);
3117 getpkt (&rs->buf, &rs->buf_size, 1);
3118 signal (SIGINT, ofunc);
3119
3120 buf = rs->buf;
3121
3122 /* This is a hook for when we need to do something (perhaps the
3123 collection of trace data) every time the target stops. */
3124 if (deprecated_target_wait_loop_hook)
3125 (*deprecated_target_wait_loop_hook) ();
3126
3127 remote_stopped_by_watchpoint_p = 0;
3128
3129 switch (buf[0])
3130 {
3131 case 'E': /* Error of some sort. */
3132 warning (_("Remote failure reply: %s"), buf);
3133 continue;
3134 case 'F': /* File-I/O request. */
3135 remote_fileio_request (buf);
3136 continue;
3137 case 'T': /* Status with PC, SP, FP, ... */
3138 {
3139 gdb_byte regs[MAX_REGISTER_SIZE];
3140
3141 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3142 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3143 ss = signal number
3144 n... = register number
3145 r... = register contents
3146 */
3147 p = &buf[3]; /* after Txx */
3148
3149 while (*p)
3150 {
3151 char *p1;
3152 char *p_temp;
3153 int fieldsize;
3154 LONGEST pnum = 0;
3155
3156 /* If the packet contains a register number save it in
3157 pnum and set p1 to point to the character following
3158 it. Otherwise p1 points to p. */
3159
3160 /* If this packet is an awatch packet, don't parse the
3161 'a' as a register number. */
3162
3163 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3164 {
3165 /* Read the ``P'' register number. */
3166 pnum = strtol (p, &p_temp, 16);
3167 p1 = p_temp;
3168 }
3169 else
3170 p1 = p;
3171
3172 if (p1 == p) /* No register number present here. */
3173 {
3174 p1 = strchr (p, ':');
3175 if (p1 == NULL)
3176 error (_("Malformed packet(a) (missing colon): %s\n\
3177 Packet: '%s'\n"),
3178 p, buf);
3179 if (strncmp (p, "thread", p1 - p) == 0)
3180 {
3181 p_temp = unpack_varlen_hex (++p1, &thread_num);
3182 record_currthread (thread_num);
3183 p = p_temp;
3184 }
3185 else if ((strncmp (p, "watch", p1 - p) == 0)
3186 || (strncmp (p, "rwatch", p1 - p) == 0)
3187 || (strncmp (p, "awatch", p1 - p) == 0))
3188 {
3189 remote_stopped_by_watchpoint_p = 1;
3190 p = unpack_varlen_hex (++p1, &addr);
3191 remote_watch_data_address = (CORE_ADDR)addr;
3192 }
3193 else
3194 {
3195 /* Silently skip unknown optional info. */
3196 p_temp = strchr (p1 + 1, ';');
3197 if (p_temp)
3198 p = p_temp;
3199 }
3200 }
3201 else
3202 {
3203 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3204 p = p1;
3205
3206 if (*p++ != ':')
3207 error (_("Malformed packet(b) (missing colon): %s\n\
3208 Packet: '%s'\n"),
3209 p, buf);
3210
3211 if (reg == NULL)
3212 error (_("Remote sent bad register number %s: %s\n\
3213 Packet: '%s'\n"),
3214 phex_nz (pnum, 0), p, buf);
3215
3216 fieldsize = hex2bin (p, regs,
3217 register_size (current_gdbarch,
3218 reg->regnum));
3219 p += 2 * fieldsize;
3220 if (fieldsize < register_size (current_gdbarch,
3221 reg->regnum))
3222 warning (_("Remote reply is too short: %s"), buf);
3223 regcache_raw_supply (current_regcache,
3224 reg->regnum, regs);
3225 }
3226
3227 if (*p++ != ';')
3228 error (_("Remote register badly formatted: %s\nhere: %s"),
3229 buf, p);
3230 }
3231 }
3232 /* fall through */
3233 case 'S': /* Old style status, just signal only. */
3234 status->kind = TARGET_WAITKIND_STOPPED;
3235 status->value.sig = (enum target_signal)
3236 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3237
3238 if (buf[3] == 'p')
3239 {
3240 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3241 record_currthread (thread_num);
3242 }
3243 goto got_status;
3244 case 'W': /* Target exited. */
3245 {
3246 /* The remote process exited. */
3247 status->kind = TARGET_WAITKIND_EXITED;
3248 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3249 goto got_status;
3250 }
3251 case 'X':
3252 status->kind = TARGET_WAITKIND_SIGNALLED;
3253 status->value.sig = (enum target_signal)
3254 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3255 kill_kludge = 1;
3256
3257 goto got_status;
3258 case 'O': /* Console output. */
3259 remote_console_output (buf + 1);
3260 continue;
3261 case '\0':
3262 if (last_sent_signal != TARGET_SIGNAL_0)
3263 {
3264 /* Zero length reply means that we tried 'S' or 'C' and
3265 the remote system doesn't support it. */
3266 target_terminal_ours_for_output ();
3267 printf_filtered
3268 ("Can't send signals to this remote system. %s not sent.\n",
3269 target_signal_to_name (last_sent_signal));
3270 last_sent_signal = TARGET_SIGNAL_0;
3271 target_terminal_inferior ();
3272
3273 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3274 putpkt ((char *) buf);
3275 continue;
3276 }
3277 /* else fallthrough */
3278 default:
3279 warning (_("Invalid remote reply: %s"), buf);
3280 continue;
3281 }
3282 }
3283 got_status:
3284 if (thread_num != -1)
3285 {
3286 return pid_to_ptid (thread_num);
3287 }
3288 return inferior_ptid;
3289 }
3290
3291 /* Async version of remote_wait. */
3292 static ptid_t
3293 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3294 {
3295 struct remote_state *rs = get_remote_state ();
3296 struct remote_arch_state *rsa = get_remote_arch_state ();
3297 ULONGEST thread_num = -1;
3298 ULONGEST addr;
3299
3300 status->kind = TARGET_WAITKIND_EXITED;
3301 status->value.integer = 0;
3302
3303 remote_stopped_by_watchpoint_p = 0;
3304
3305 while (1)
3306 {
3307 char *buf, *p;
3308
3309 if (!target_is_async_p ())
3310 ofunc = signal (SIGINT, remote_interrupt);
3311 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3312 _never_ wait for ever -> test on target_is_async_p().
3313 However, before we do that we need to ensure that the caller
3314 knows how to take the target into/out of async mode. */
3315 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3316 if (!target_is_async_p ())
3317 signal (SIGINT, ofunc);
3318
3319 buf = rs->buf;
3320
3321 /* This is a hook for when we need to do something (perhaps the
3322 collection of trace data) every time the target stops. */
3323 if (deprecated_target_wait_loop_hook)
3324 (*deprecated_target_wait_loop_hook) ();
3325
3326 switch (buf[0])
3327 {
3328 case 'E': /* Error of some sort. */
3329 warning (_("Remote failure reply: %s"), buf);
3330 continue;
3331 case 'F': /* File-I/O request. */
3332 remote_fileio_request (buf);
3333 continue;
3334 case 'T': /* Status with PC, SP, FP, ... */
3335 {
3336 gdb_byte regs[MAX_REGISTER_SIZE];
3337
3338 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3339 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3340 ss = signal number
3341 n... = register number
3342 r... = register contents
3343 */
3344 p = &buf[3]; /* after Txx */
3345
3346 while (*p)
3347 {
3348 char *p1;
3349 char *p_temp;
3350 int fieldsize;
3351 long pnum = 0;
3352
3353 /* If the packet contains a register number, save it
3354 in pnum and set p1 to point to the character
3355 following it. Otherwise p1 points to p. */
3356
3357 /* If this packet is an awatch packet, don't parse the 'a'
3358 as a register number. */
3359
3360 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3361 {
3362 /* Read the register number. */
3363 pnum = strtol (p, &p_temp, 16);
3364 p1 = p_temp;
3365 }
3366 else
3367 p1 = p;
3368
3369 if (p1 == p) /* No register number present here. */
3370 {
3371 p1 = strchr (p, ':');
3372 if (p1 == NULL)
3373 error (_("Malformed packet(a) (missing colon): %s\n\
3374 Packet: '%s'\n"),
3375 p, buf);
3376 if (strncmp (p, "thread", p1 - p) == 0)
3377 {
3378 p_temp = unpack_varlen_hex (++p1, &thread_num);
3379 record_currthread (thread_num);
3380 p = p_temp;
3381 }
3382 else if ((strncmp (p, "watch", p1 - p) == 0)
3383 || (strncmp (p, "rwatch", p1 - p) == 0)
3384 || (strncmp (p, "awatch", p1 - p) == 0))
3385 {
3386 remote_stopped_by_watchpoint_p = 1;
3387 p = unpack_varlen_hex (++p1, &addr);
3388 remote_watch_data_address = (CORE_ADDR)addr;
3389 }
3390 else
3391 {
3392 /* Silently skip unknown optional info. */
3393 p_temp = strchr (p1 + 1, ';');
3394 if (p_temp)
3395 p = p_temp;
3396 }
3397 }
3398
3399 else
3400 {
3401 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3402 p = p1;
3403 if (*p++ != ':')
3404 error (_("Malformed packet(b) (missing colon): %s\n\
3405 Packet: '%s'\n"),
3406 p, buf);
3407
3408 if (reg == NULL)
3409 error (_("Remote sent bad register number %ld: %s\n\
3410 Packet: '%s'\n"),
3411 pnum, p, buf);
3412
3413 fieldsize = hex2bin (p, regs,
3414 register_size (current_gdbarch,
3415 reg->regnum));
3416 p += 2 * fieldsize;
3417 if (fieldsize < register_size (current_gdbarch,
3418 reg->regnum))
3419 warning (_("Remote reply is too short: %s"), buf);
3420 regcache_raw_supply (current_regcache, reg->regnum, regs);
3421 }
3422
3423 if (*p++ != ';')
3424 error (_("Remote register badly formatted: %s\nhere: %s"),
3425 buf, p);
3426 }
3427 }
3428 /* fall through */
3429 case 'S': /* Old style status, just signal only. */
3430 status->kind = TARGET_WAITKIND_STOPPED;
3431 status->value.sig = (enum target_signal)
3432 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3433
3434 if (buf[3] == 'p')
3435 {
3436 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3437 record_currthread (thread_num);
3438 }
3439 goto got_status;
3440 case 'W': /* Target exited. */
3441 {
3442 /* The remote process exited. */
3443 status->kind = TARGET_WAITKIND_EXITED;
3444 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3445 goto got_status;
3446 }
3447 case 'X':
3448 status->kind = TARGET_WAITKIND_SIGNALLED;
3449 status->value.sig = (enum target_signal)
3450 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3451 kill_kludge = 1;
3452
3453 goto got_status;
3454 case 'O': /* Console output. */
3455 remote_console_output (buf + 1);
3456 /* Return immediately to the event loop. The event loop will
3457 still be waiting on the inferior afterwards. */
3458 status->kind = TARGET_WAITKIND_IGNORE;
3459 goto got_status;
3460 case '\0':
3461 if (last_sent_signal != TARGET_SIGNAL_0)
3462 {
3463 /* Zero length reply means that we tried 'S' or 'C' and
3464 the remote system doesn't support it. */
3465 target_terminal_ours_for_output ();
3466 printf_filtered
3467 ("Can't send signals to this remote system. %s not sent.\n",
3468 target_signal_to_name (last_sent_signal));
3469 last_sent_signal = TARGET_SIGNAL_0;
3470 target_terminal_inferior ();
3471
3472 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3473 putpkt ((char *) buf);
3474 continue;
3475 }
3476 /* else fallthrough */
3477 default:
3478 warning (_("Invalid remote reply: %s"), buf);
3479 continue;
3480 }
3481 }
3482 got_status:
3483 if (thread_num != -1)
3484 {
3485 return pid_to_ptid (thread_num);
3486 }
3487 return inferior_ptid;
3488 }
3489
3490 /* Fetch a single register using a 'p' packet. */
3491
3492 static int
3493 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3494 {
3495 struct remote_state *rs = get_remote_state ();
3496 char *buf, *p;
3497 char regp[MAX_REGISTER_SIZE];
3498 int i;
3499
3500 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3501 return 0;
3502
3503 if (reg->pnum == -1)
3504 return 0;
3505
3506 p = rs->buf;
3507 *p++ = 'p';
3508 p += hexnumstr (p, reg->pnum);
3509 *p++ = '\0';
3510 remote_send (&rs->buf, &rs->buf_size);
3511
3512 buf = rs->buf;
3513
3514 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3515 {
3516 case PACKET_OK:
3517 break;
3518 case PACKET_UNKNOWN:
3519 return 0;
3520 case PACKET_ERROR:
3521 error (_("Could not fetch register \"%s\""),
3522 gdbarch_register_name (current_gdbarch, reg->regnum));
3523 }
3524
3525 /* If this register is unfetchable, tell the regcache. */
3526 if (buf[0] == 'x')
3527 {
3528 regcache_raw_supply (regcache, reg->regnum, NULL);
3529 return 1;
3530 }
3531
3532 /* Otherwise, parse and supply the value. */
3533 p = buf;
3534 i = 0;
3535 while (p[0] != 0)
3536 {
3537 if (p[1] == 0)
3538 error (_("fetch_register_using_p: early buf termination"));
3539
3540 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3541 p += 2;
3542 }
3543 regcache_raw_supply (regcache, reg->regnum, regp);
3544 return 1;
3545 }
3546
3547 /* Fetch the registers included in the target's 'g' packet. */
3548
3549 static int
3550 send_g_packet (void)
3551 {
3552 struct remote_state *rs = get_remote_state ();
3553 int i, buf_len;
3554 char *p;
3555 char *regs;
3556
3557 sprintf (rs->buf, "g");
3558 remote_send (&rs->buf, &rs->buf_size);
3559
3560 /* We can get out of synch in various cases. If the first character
3561 in the buffer is not a hex character, assume that has happened
3562 and try to fetch another packet to read. */
3563 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3564 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3565 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3566 && rs->buf[0] != 'x') /* New: unavailable register value. */
3567 {
3568 if (remote_debug)
3569 fprintf_unfiltered (gdb_stdlog,
3570 "Bad register packet; fetching a new packet\n");
3571 getpkt (&rs->buf, &rs->buf_size, 0);
3572 }
3573
3574 buf_len = strlen (rs->buf);
3575
3576 /* Sanity check the received packet. */
3577 if (buf_len % 2 != 0)
3578 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3579
3580 return buf_len / 2;
3581 }
3582
3583 static void
3584 process_g_packet (struct regcache *regcache)
3585 {
3586 struct remote_state *rs = get_remote_state ();
3587 struct remote_arch_state *rsa = get_remote_arch_state ();
3588 int i, buf_len;
3589 char *p;
3590 char *regs;
3591
3592 buf_len = strlen (rs->buf);
3593
3594 /* Further sanity checks, with knowledge of the architecture. */
3595 if (REGISTER_BYTES_OK_P () && !REGISTER_BYTES_OK (buf_len / 2))
3596 error (_("Remote 'g' packet reply is wrong length: %s"), rs->buf);
3597 if (buf_len > 2 * rsa->sizeof_g_packet)
3598 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3599
3600 /* Save the size of the packet sent to us by the target. It is used
3601 as a heuristic when determining the max size of packets that the
3602 target can safely receive. */
3603 if (rsa->actual_register_packet_size == 0)
3604 rsa->actual_register_packet_size = buf_len;
3605
3606 /* If this is smaller than we guessed the 'g' packet would be,
3607 update our records. A 'g' reply that doesn't include a register's
3608 value implies either that the register is not available, or that
3609 the 'p' packet must be used. */
3610 if (buf_len < 2 * rsa->sizeof_g_packet)
3611 {
3612 rsa->sizeof_g_packet = buf_len / 2;
3613
3614 for (i = 0; i < NUM_REGS; i++)
3615 {
3616 if (rsa->regs[i].pnum == -1)
3617 continue;
3618
3619 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3620 rsa->regs[i].in_g_packet = 0;
3621 else
3622 rsa->regs[i].in_g_packet = 1;
3623 }
3624 }
3625
3626 regs = alloca (rsa->sizeof_g_packet);
3627
3628 /* Unimplemented registers read as all bits zero. */
3629 memset (regs, 0, rsa->sizeof_g_packet);
3630
3631 /* Reply describes registers byte by byte, each byte encoded as two
3632 hex characters. Suck them all up, then supply them to the
3633 register cacheing/storage mechanism. */
3634
3635 p = rs->buf;
3636 for (i = 0; i < rsa->sizeof_g_packet; i++)
3637 {
3638 if (p[0] == 0 || p[1] == 0)
3639 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3640 internal_error (__FILE__, __LINE__,
3641 "unexpected end of 'g' packet reply");
3642
3643 if (p[0] == 'x' && p[1] == 'x')
3644 regs[i] = 0; /* 'x' */
3645 else
3646 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3647 p += 2;
3648 }
3649
3650 {
3651 int i;
3652 for (i = 0; i < NUM_REGS; i++)
3653 {
3654 struct packet_reg *r = &rsa->regs[i];
3655 if (r->in_g_packet)
3656 {
3657 if (r->offset * 2 >= strlen (rs->buf))
3658 /* This shouldn't happen - we adjusted in_g_packet above. */
3659 internal_error (__FILE__, __LINE__,
3660 "unexpected end of 'g' packet reply");
3661 else if (rs->buf[r->offset * 2] == 'x')
3662 {
3663 gdb_assert (r->offset * 2 < strlen (rs->buf));
3664 /* The register isn't available, mark it as such (at
3665 the same time setting the value to zero). */
3666 regcache_raw_supply (regcache, r->regnum, NULL);
3667 }
3668 else
3669 regcache_raw_supply (regcache, r->regnum,
3670 regs + r->offset);
3671 }
3672 }
3673 }
3674 }
3675
3676 static void
3677 fetch_registers_using_g (struct regcache *regcache)
3678 {
3679 send_g_packet ();
3680 process_g_packet (regcache);
3681 }
3682
3683 static void
3684 remote_fetch_registers (struct regcache *regcache, int regnum)
3685 {
3686 struct remote_state *rs = get_remote_state ();
3687 struct remote_arch_state *rsa = get_remote_arch_state ();
3688 int i;
3689
3690 set_thread (PIDGET (inferior_ptid), 1);
3691
3692 if (regnum >= 0)
3693 {
3694 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3695 gdb_assert (reg != NULL);
3696
3697 /* If this register might be in the 'g' packet, try that first -
3698 we are likely to read more than one register. If this is the
3699 first 'g' packet, we might be overly optimistic about its
3700 contents, so fall back to 'p'. */
3701 if (reg->in_g_packet)
3702 {
3703 fetch_registers_using_g (regcache);
3704 if (reg->in_g_packet)
3705 return;
3706 }
3707
3708 if (fetch_register_using_p (regcache, reg))
3709 return;
3710
3711 /* This register is not available. */
3712 regcache_raw_supply (regcache, reg->regnum, NULL);
3713
3714 return;
3715 }
3716
3717 fetch_registers_using_g (regcache);
3718
3719 for (i = 0; i < NUM_REGS; i++)
3720 if (!rsa->regs[i].in_g_packet)
3721 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3722 {
3723 /* This register is not available. */
3724 regcache_raw_supply (regcache, i, NULL);
3725 }
3726 }
3727
3728 /* Prepare to store registers. Since we may send them all (using a
3729 'G' request), we have to read out the ones we don't want to change
3730 first. */
3731
3732 static void
3733 remote_prepare_to_store (struct regcache *regcache)
3734 {
3735 struct remote_arch_state *rsa = get_remote_arch_state ();
3736 int i;
3737 gdb_byte buf[MAX_REGISTER_SIZE];
3738
3739 /* Make sure the entire registers array is valid. */
3740 switch (remote_protocol_packets[PACKET_P].support)
3741 {
3742 case PACKET_DISABLE:
3743 case PACKET_SUPPORT_UNKNOWN:
3744 /* Make sure all the necessary registers are cached. */
3745 for (i = 0; i < NUM_REGS; i++)
3746 if (rsa->regs[i].in_g_packet)
3747 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3748 break;
3749 case PACKET_ENABLE:
3750 break;
3751 }
3752 }
3753
3754 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3755 packet was not recognized. */
3756
3757 static int
3758 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3759 {
3760 struct remote_state *rs = get_remote_state ();
3761 struct remote_arch_state *rsa = get_remote_arch_state ();
3762 /* Try storing a single register. */
3763 char *buf = rs->buf;
3764 gdb_byte regp[MAX_REGISTER_SIZE];
3765 char *p;
3766
3767 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3768 return 0;
3769
3770 if (reg->pnum == -1)
3771 return 0;
3772
3773 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3774 p = buf + strlen (buf);
3775 regcache_raw_collect (regcache, reg->regnum, regp);
3776 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3777 remote_send (&rs->buf, &rs->buf_size);
3778
3779 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3780 {
3781 case PACKET_OK:
3782 return 1;
3783 case PACKET_ERROR:
3784 error (_("Could not write register \"%s\""),
3785 gdbarch_register_name (current_gdbarch, reg->regnum));
3786 case PACKET_UNKNOWN:
3787 return 0;
3788 default:
3789 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3790 }
3791 }
3792
3793 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3794 contents of the register cache buffer. FIXME: ignores errors. */
3795
3796 static void
3797 store_registers_using_G (const struct regcache *regcache)
3798 {
3799 struct remote_state *rs = get_remote_state ();
3800 struct remote_arch_state *rsa = get_remote_arch_state ();
3801 gdb_byte *regs;
3802 char *p;
3803
3804 /* Extract all the registers in the regcache copying them into a
3805 local buffer. */
3806 {
3807 int i;
3808 regs = alloca (rsa->sizeof_g_packet);
3809 memset (regs, 0, rsa->sizeof_g_packet);
3810 for (i = 0; i < NUM_REGS; i++)
3811 {
3812 struct packet_reg *r = &rsa->regs[i];
3813 if (r->in_g_packet)
3814 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3815 }
3816 }
3817
3818 /* Command describes registers byte by byte,
3819 each byte encoded as two hex characters. */
3820 p = rs->buf;
3821 *p++ = 'G';
3822 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3823 updated. */
3824 bin2hex (regs, p, rsa->sizeof_g_packet);
3825 remote_send (&rs->buf, &rs->buf_size);
3826 }
3827
3828 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3829 of the register cache buffer. FIXME: ignores errors. */
3830
3831 static void
3832 remote_store_registers (struct regcache *regcache, int regnum)
3833 {
3834 struct remote_state *rs = get_remote_state ();
3835 struct remote_arch_state *rsa = get_remote_arch_state ();
3836 int i;
3837
3838 set_thread (PIDGET (inferior_ptid), 1);
3839
3840 if (regnum >= 0)
3841 {
3842 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3843 gdb_assert (reg != NULL);
3844
3845 /* Always prefer to store registers using the 'P' packet if
3846 possible; we often change only a small number of registers.
3847 Sometimes we change a larger number; we'd need help from a
3848 higher layer to know to use 'G'. */
3849 if (store_register_using_P (regcache, reg))
3850 return;
3851
3852 /* For now, don't complain if we have no way to write the
3853 register. GDB loses track of unavailable registers too
3854 easily. Some day, this may be an error. We don't have
3855 any way to read the register, either... */
3856 if (!reg->in_g_packet)
3857 return;
3858
3859 store_registers_using_G (regcache);
3860 return;
3861 }
3862
3863 store_registers_using_G (regcache);
3864
3865 for (i = 0; i < NUM_REGS; i++)
3866 if (!rsa->regs[i].in_g_packet)
3867 if (!store_register_using_P (regcache, &rsa->regs[i]))
3868 /* See above for why we do not issue an error here. */
3869 continue;
3870 }
3871 \f
3872
3873 /* Return the number of hex digits in num. */
3874
3875 static int
3876 hexnumlen (ULONGEST num)
3877 {
3878 int i;
3879
3880 for (i = 0; num != 0; i++)
3881 num >>= 4;
3882
3883 return max (i, 1);
3884 }
3885
3886 /* Set BUF to the minimum number of hex digits representing NUM. */
3887
3888 static int
3889 hexnumstr (char *buf, ULONGEST num)
3890 {
3891 int len = hexnumlen (num);
3892 return hexnumnstr (buf, num, len);
3893 }
3894
3895
3896 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3897
3898 static int
3899 hexnumnstr (char *buf, ULONGEST num, int width)
3900 {
3901 int i;
3902
3903 buf[width] = '\0';
3904
3905 for (i = width - 1; i >= 0; i--)
3906 {
3907 buf[i] = "0123456789abcdef"[(num & 0xf)];
3908 num >>= 4;
3909 }
3910
3911 return width;
3912 }
3913
3914 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3915
3916 static CORE_ADDR
3917 remote_address_masked (CORE_ADDR addr)
3918 {
3919 if (remote_address_size > 0
3920 && remote_address_size < (sizeof (ULONGEST) * 8))
3921 {
3922 /* Only create a mask when that mask can safely be constructed
3923 in a ULONGEST variable. */
3924 ULONGEST mask = 1;
3925 mask = (mask << remote_address_size) - 1;
3926 addr &= mask;
3927 }
3928 return addr;
3929 }
3930
3931 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3932 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3933 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3934 (which may be more than *OUT_LEN due to escape characters). The
3935 total number of bytes in the output buffer will be at most
3936 OUT_MAXLEN. */
3937
3938 static int
3939 remote_escape_output (const gdb_byte *buffer, int len,
3940 gdb_byte *out_buf, int *out_len,
3941 int out_maxlen)
3942 {
3943 int input_index, output_index;
3944
3945 output_index = 0;
3946 for (input_index = 0; input_index < len; input_index++)
3947 {
3948 gdb_byte b = buffer[input_index];
3949
3950 if (b == '$' || b == '#' || b == '}')
3951 {
3952 /* These must be escaped. */
3953 if (output_index + 2 > out_maxlen)
3954 break;
3955 out_buf[output_index++] = '}';
3956 out_buf[output_index++] = b ^ 0x20;
3957 }
3958 else
3959 {
3960 if (output_index + 1 > out_maxlen)
3961 break;
3962 out_buf[output_index++] = b;
3963 }
3964 }
3965
3966 *out_len = input_index;
3967 return output_index;
3968 }
3969
3970 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3971 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3972 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3973
3974 This function reverses remote_escape_output. It allows more
3975 escaped characters than that function does, in particular because
3976 '*' must be escaped to avoid the run-length encoding processing
3977 in reading packets. */
3978
3979 static int
3980 remote_unescape_input (const gdb_byte *buffer, int len,
3981 gdb_byte *out_buf, int out_maxlen)
3982 {
3983 int input_index, output_index;
3984 int escaped;
3985
3986 output_index = 0;
3987 escaped = 0;
3988 for (input_index = 0; input_index < len; input_index++)
3989 {
3990 gdb_byte b = buffer[input_index];
3991
3992 if (output_index + 1 > out_maxlen)
3993 {
3994 warning (_("Received too much data from remote target;"
3995 " ignoring overflow."));
3996 return output_index;
3997 }
3998
3999 if (escaped)
4000 {
4001 out_buf[output_index++] = b ^ 0x20;
4002 escaped = 0;
4003 }
4004 else if (b == '}')
4005 escaped = 1;
4006 else
4007 out_buf[output_index++] = b;
4008 }
4009
4010 if (escaped)
4011 error (_("Unmatched escape character in target response."));
4012
4013 return output_index;
4014 }
4015
4016 /* Determine whether the remote target supports binary downloading.
4017 This is accomplished by sending a no-op memory write of zero length
4018 to the target at the specified address. It does not suffice to send
4019 the whole packet, since many stubs strip the eighth bit and
4020 subsequently compute a wrong checksum, which causes real havoc with
4021 remote_write_bytes.
4022
4023 NOTE: This can still lose if the serial line is not eight-bit
4024 clean. In cases like this, the user should clear "remote
4025 X-packet". */
4026
4027 static void
4028 check_binary_download (CORE_ADDR addr)
4029 {
4030 struct remote_state *rs = get_remote_state ();
4031
4032 switch (remote_protocol_packets[PACKET_X].support)
4033 {
4034 case PACKET_DISABLE:
4035 break;
4036 case PACKET_ENABLE:
4037 break;
4038 case PACKET_SUPPORT_UNKNOWN:
4039 {
4040 char *p;
4041
4042 p = rs->buf;
4043 *p++ = 'X';
4044 p += hexnumstr (p, (ULONGEST) addr);
4045 *p++ = ',';
4046 p += hexnumstr (p, (ULONGEST) 0);
4047 *p++ = ':';
4048 *p = '\0';
4049
4050 putpkt_binary (rs->buf, (int) (p - rs->buf));
4051 getpkt (&rs->buf, &rs->buf_size, 0);
4052
4053 if (rs->buf[0] == '\0')
4054 {
4055 if (remote_debug)
4056 fprintf_unfiltered (gdb_stdlog,
4057 "binary downloading NOT suppported by target\n");
4058 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4059 }
4060 else
4061 {
4062 if (remote_debug)
4063 fprintf_unfiltered (gdb_stdlog,
4064 "binary downloading suppported by target\n");
4065 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4066 }
4067 break;
4068 }
4069 }
4070 }
4071
4072 /* Write memory data directly to the remote machine.
4073 This does not inform the data cache; the data cache uses this.
4074 HEADER is the starting part of the packet.
4075 MEMADDR is the address in the remote memory space.
4076 MYADDR is the address of the buffer in our space.
4077 LEN is the number of bytes.
4078 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4079 should send data as binary ('X'), or hex-encoded ('M').
4080
4081 The function creates packet of the form
4082 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4083
4084 where encoding of <DATA> is termined by PACKET_FORMAT.
4085
4086 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4087 are omitted.
4088
4089 Returns the number of bytes transferred, or 0 (setting errno) for
4090 error. Only transfer a single packet. */
4091
4092 static int
4093 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4094 const gdb_byte *myaddr, int len,
4095 char packet_format, int use_length)
4096 {
4097 struct remote_state *rs = get_remote_state ();
4098 char *p;
4099 char *plen = NULL;
4100 int plenlen = 0;
4101 int todo;
4102 int nr_bytes;
4103 int payload_size;
4104 int payload_length;
4105 int header_length;
4106
4107 if (packet_format != 'X' && packet_format != 'M')
4108 internal_error (__FILE__, __LINE__,
4109 "remote_write_bytes_aux: bad packet format");
4110
4111 if (len <= 0)
4112 return 0;
4113
4114 payload_size = get_memory_write_packet_size ();
4115
4116 /* The packet buffer will be large enough for the payload;
4117 get_memory_packet_size ensures this. */
4118 rs->buf[0] = '\0';
4119
4120 /* Compute the size of the actual payload by subtracting out the
4121 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4122 */
4123 payload_size -= strlen ("$,:#NN");
4124 if (!use_length)
4125 /* The comma won't be used. */
4126 payload_size += 1;
4127 header_length = strlen (header);
4128 payload_size -= header_length;
4129 payload_size -= hexnumlen (memaddr);
4130
4131 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4132
4133 strcat (rs->buf, header);
4134 p = rs->buf + strlen (header);
4135
4136 /* Compute a best guess of the number of bytes actually transfered. */
4137 if (packet_format == 'X')
4138 {
4139 /* Best guess at number of bytes that will fit. */
4140 todo = min (len, payload_size);
4141 if (use_length)
4142 payload_size -= hexnumlen (todo);
4143 todo = min (todo, payload_size);
4144 }
4145 else
4146 {
4147 /* Num bytes that will fit. */
4148 todo = min (len, payload_size / 2);
4149 if (use_length)
4150 payload_size -= hexnumlen (todo);
4151 todo = min (todo, payload_size / 2);
4152 }
4153
4154 if (todo <= 0)
4155 internal_error (__FILE__, __LINE__,
4156 _("minumum packet size too small to write data"));
4157
4158 /* If we already need another packet, then try to align the end
4159 of this packet to a useful boundary. */
4160 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4161 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4162
4163 /* Append "<memaddr>". */
4164 memaddr = remote_address_masked (memaddr);
4165 p += hexnumstr (p, (ULONGEST) memaddr);
4166
4167 if (use_length)
4168 {
4169 /* Append ",". */
4170 *p++ = ',';
4171
4172 /* Append <len>. Retain the location/size of <len>. It may need to
4173 be adjusted once the packet body has been created. */
4174 plen = p;
4175 plenlen = hexnumstr (p, (ULONGEST) todo);
4176 p += plenlen;
4177 }
4178
4179 /* Append ":". */
4180 *p++ = ':';
4181 *p = '\0';
4182
4183 /* Append the packet body. */
4184 if (packet_format == 'X')
4185 {
4186 /* Binary mode. Send target system values byte by byte, in
4187 increasing byte addresses. Only escape certain critical
4188 characters. */
4189 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4190 payload_size);
4191
4192 /* If not all TODO bytes fit, then we'll need another packet. Make
4193 a second try to keep the end of the packet aligned. Don't do
4194 this if the packet is tiny. */
4195 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4196 {
4197 int new_nr_bytes;
4198
4199 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4200 - memaddr);
4201 if (new_nr_bytes != nr_bytes)
4202 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4203 p, &nr_bytes,
4204 payload_size);
4205 }
4206
4207 p += payload_length;
4208 if (use_length && nr_bytes < todo)
4209 {
4210 /* Escape chars have filled up the buffer prematurely,
4211 and we have actually sent fewer bytes than planned.
4212 Fix-up the length field of the packet. Use the same
4213 number of characters as before. */
4214 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4215 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4216 }
4217 }
4218 else
4219 {
4220 /* Normal mode: Send target system values byte by byte, in
4221 increasing byte addresses. Each byte is encoded as a two hex
4222 value. */
4223 nr_bytes = bin2hex (myaddr, p, todo);
4224 p += 2 * nr_bytes;
4225 }
4226
4227 putpkt_binary (rs->buf, (int) (p - rs->buf));
4228 getpkt (&rs->buf, &rs->buf_size, 0);
4229
4230 if (rs->buf[0] == 'E')
4231 {
4232 /* There is no correspondance between what the remote protocol
4233 uses for errors and errno codes. We would like a cleaner way
4234 of representing errors (big enough to include errno codes,
4235 bfd_error codes, and others). But for now just return EIO. */
4236 errno = EIO;
4237 return 0;
4238 }
4239
4240 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4241 fewer bytes than we'd planned. */
4242 return nr_bytes;
4243 }
4244
4245 /* Write memory data directly to the remote machine.
4246 This does not inform the data cache; the data cache uses this.
4247 MEMADDR is the address in the remote memory space.
4248 MYADDR is the address of the buffer in our space.
4249 LEN is the number of bytes.
4250
4251 Returns number of bytes transferred, or 0 (setting errno) for
4252 error. Only transfer a single packet. */
4253
4254 int
4255 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4256 {
4257 char *packet_format = 0;
4258
4259 /* Check whether the target supports binary download. */
4260 check_binary_download (memaddr);
4261
4262 switch (remote_protocol_packets[PACKET_X].support)
4263 {
4264 case PACKET_ENABLE:
4265 packet_format = "X";
4266 break;
4267 case PACKET_DISABLE:
4268 packet_format = "M";
4269 break;
4270 case PACKET_SUPPORT_UNKNOWN:
4271 internal_error (__FILE__, __LINE__,
4272 _("remote_write_bytes: bad internal state"));
4273 default:
4274 internal_error (__FILE__, __LINE__, _("bad switch"));
4275 }
4276
4277 return remote_write_bytes_aux (packet_format,
4278 memaddr, myaddr, len, packet_format[0], 1);
4279 }
4280
4281 /* Read memory data directly from the remote machine.
4282 This does not use the data cache; the data cache uses this.
4283 MEMADDR is the address in the remote memory space.
4284 MYADDR is the address of the buffer in our space.
4285 LEN is the number of bytes.
4286
4287 Returns number of bytes transferred, or 0 for error. */
4288
4289 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4290 remote targets) shouldn't attempt to read the entire buffer.
4291 Instead it should read a single packet worth of data and then
4292 return the byte size of that packet to the caller. The caller (its
4293 caller and its callers caller ;-) already contains code for
4294 handling partial reads. */
4295
4296 int
4297 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4298 {
4299 struct remote_state *rs = get_remote_state ();
4300 int max_buf_size; /* Max size of packet output buffer. */
4301 int origlen;
4302
4303 if (len <= 0)
4304 return 0;
4305
4306 max_buf_size = get_memory_read_packet_size ();
4307 /* The packet buffer will be large enough for the payload;
4308 get_memory_packet_size ensures this. */
4309
4310 origlen = len;
4311 while (len > 0)
4312 {
4313 char *p;
4314 int todo;
4315 int i;
4316
4317 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4318
4319 /* construct "m"<memaddr>","<len>" */
4320 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4321 memaddr = remote_address_masked (memaddr);
4322 p = rs->buf;
4323 *p++ = 'm';
4324 p += hexnumstr (p, (ULONGEST) memaddr);
4325 *p++ = ',';
4326 p += hexnumstr (p, (ULONGEST) todo);
4327 *p = '\0';
4328
4329 putpkt (rs->buf);
4330 getpkt (&rs->buf, &rs->buf_size, 0);
4331
4332 if (rs->buf[0] == 'E'
4333 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4334 && rs->buf[3] == '\0')
4335 {
4336 /* There is no correspondance between what the remote
4337 protocol uses for errors and errno codes. We would like
4338 a cleaner way of representing errors (big enough to
4339 include errno codes, bfd_error codes, and others). But
4340 for now just return EIO. */
4341 errno = EIO;
4342 return 0;
4343 }
4344
4345 /* Reply describes memory byte by byte,
4346 each byte encoded as two hex characters. */
4347
4348 p = rs->buf;
4349 if ((i = hex2bin (p, myaddr, todo)) < todo)
4350 {
4351 /* Reply is short. This means that we were able to read
4352 only part of what we wanted to. */
4353 return i + (origlen - len);
4354 }
4355 myaddr += todo;
4356 memaddr += todo;
4357 len -= todo;
4358 }
4359 return origlen;
4360 }
4361 \f
4362 /* Read or write LEN bytes from inferior memory at MEMADDR,
4363 transferring to or from debugger address BUFFER. Write to inferior
4364 if SHOULD_WRITE is nonzero. Returns length of data written or
4365 read; 0 for error. TARGET is unused. */
4366
4367 static int
4368 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4369 int should_write, struct mem_attrib *attrib,
4370 struct target_ops *target)
4371 {
4372 int res;
4373
4374 if (should_write)
4375 res = remote_write_bytes (mem_addr, buffer, mem_len);
4376 else
4377 res = remote_read_bytes (mem_addr, buffer, mem_len);
4378
4379 return res;
4380 }
4381
4382 /* Sends a packet with content determined by the printf format string
4383 FORMAT and the remaining arguments, then gets the reply. Returns
4384 whether the packet was a success, a failure, or unknown. */
4385
4386 enum packet_result
4387 remote_send_printf (const char *format, ...)
4388 {
4389 struct remote_state *rs = get_remote_state ();
4390 int max_size = get_remote_packet_size ();
4391
4392 va_list ap;
4393 va_start (ap, format);
4394
4395 rs->buf[0] = '\0';
4396 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4397 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4398
4399 if (putpkt (rs->buf) < 0)
4400 error (_("Communication problem with target."));
4401
4402 rs->buf[0] = '\0';
4403 getpkt (&rs->buf, &rs->buf_size, 0);
4404
4405 return packet_check_result (rs->buf);
4406 }
4407
4408 static void
4409 restore_remote_timeout (void *p)
4410 {
4411 int value = *(int *)p;
4412 remote_timeout = value;
4413 }
4414
4415 /* Flash writing can take quite some time. We'll set
4416 effectively infinite timeout for flash operations.
4417 In future, we'll need to decide on a better approach. */
4418 static const int remote_flash_timeout = 1000;
4419
4420 static void
4421 remote_flash_erase (struct target_ops *ops,
4422 ULONGEST address, LONGEST length)
4423 {
4424 int saved_remote_timeout = remote_timeout;
4425 enum packet_result ret;
4426
4427 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4428 &saved_remote_timeout);
4429 remote_timeout = remote_flash_timeout;
4430
4431 ret = remote_send_printf ("vFlashErase:%s,%s",
4432 paddr (address),
4433 phex (length, 4));
4434 switch (ret)
4435 {
4436 case PACKET_UNKNOWN:
4437 error (_("Remote target does not support flash erase"));
4438 case PACKET_ERROR:
4439 error (_("Error erasing flash with vFlashErase packet"));
4440 default:
4441 break;
4442 }
4443
4444 do_cleanups (back_to);
4445 }
4446
4447 static LONGEST
4448 remote_flash_write (struct target_ops *ops,
4449 ULONGEST address, LONGEST length,
4450 const gdb_byte *data)
4451 {
4452 int saved_remote_timeout = remote_timeout;
4453 int ret;
4454 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4455 &saved_remote_timeout);
4456
4457 remote_timeout = remote_flash_timeout;
4458 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4459 do_cleanups (back_to);
4460
4461 return ret;
4462 }
4463
4464 static void
4465 remote_flash_done (struct target_ops *ops)
4466 {
4467 int saved_remote_timeout = remote_timeout;
4468 int ret;
4469 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4470 &saved_remote_timeout);
4471
4472 remote_timeout = remote_flash_timeout;
4473 ret = remote_send_printf ("vFlashDone");
4474 do_cleanups (back_to);
4475
4476 switch (ret)
4477 {
4478 case PACKET_UNKNOWN:
4479 error (_("Remote target does not support vFlashDone"));
4480 case PACKET_ERROR:
4481 error (_("Error finishing flash operation"));
4482 default:
4483 break;
4484 }
4485 }
4486
4487 static void
4488 remote_files_info (struct target_ops *ignore)
4489 {
4490 puts_filtered ("Debugging a target over a serial line.\n");
4491 }
4492 \f
4493 /* Stuff for dealing with the packets which are part of this protocol.
4494 See comment at top of file for details. */
4495
4496 /* Read a single character from the remote end. */
4497
4498 static int
4499 readchar (int timeout)
4500 {
4501 int ch;
4502
4503 ch = serial_readchar (remote_desc, timeout);
4504
4505 if (ch >= 0)
4506 return ch;
4507
4508 switch ((enum serial_rc) ch)
4509 {
4510 case SERIAL_EOF:
4511 target_mourn_inferior ();
4512 error (_("Remote connection closed"));
4513 /* no return */
4514 case SERIAL_ERROR:
4515 perror_with_name (_("Remote communication error"));
4516 /* no return */
4517 case SERIAL_TIMEOUT:
4518 break;
4519 }
4520 return ch;
4521 }
4522
4523 /* Send the command in *BUF to the remote machine, and read the reply
4524 into *BUF. Report an error if we get an error reply. Resize
4525 *BUF using xrealloc if necessary to hold the result, and update
4526 *SIZEOF_BUF. */
4527
4528 static void
4529 remote_send (char **buf,
4530 long *sizeof_buf)
4531 {
4532 putpkt (*buf);
4533 getpkt (buf, sizeof_buf, 0);
4534
4535 if ((*buf)[0] == 'E')
4536 error (_("Remote failure reply: %s"), *buf);
4537 }
4538
4539 /* Display a null-terminated packet on stdout, for debugging, using C
4540 string notation. */
4541
4542 static void
4543 print_packet (char *buf)
4544 {
4545 puts_filtered ("\"");
4546 fputstr_filtered (buf, '"', gdb_stdout);
4547 puts_filtered ("\"");
4548 }
4549
4550 int
4551 putpkt (char *buf)
4552 {
4553 return putpkt_binary (buf, strlen (buf));
4554 }
4555
4556 /* Send a packet to the remote machine, with error checking. The data
4557 of the packet is in BUF. The string in BUF can be at most
4558 get_remote_packet_size () - 5 to account for the $, # and checksum,
4559 and for a possible /0 if we are debugging (remote_debug) and want
4560 to print the sent packet as a string. */
4561
4562 static int
4563 putpkt_binary (char *buf, int cnt)
4564 {
4565 int i;
4566 unsigned char csum = 0;
4567 char *buf2 = alloca (cnt + 6);
4568
4569 int ch;
4570 int tcount = 0;
4571 char *p;
4572
4573 /* Copy the packet into buffer BUF2, encapsulating it
4574 and giving it a checksum. */
4575
4576 p = buf2;
4577 *p++ = '$';
4578
4579 for (i = 0; i < cnt; i++)
4580 {
4581 csum += buf[i];
4582 *p++ = buf[i];
4583 }
4584 *p++ = '#';
4585 *p++ = tohex ((csum >> 4) & 0xf);
4586 *p++ = tohex (csum & 0xf);
4587
4588 /* Send it over and over until we get a positive ack. */
4589
4590 while (1)
4591 {
4592 int started_error_output = 0;
4593
4594 if (remote_debug)
4595 {
4596 *p = '\0';
4597 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4598 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4599 fprintf_unfiltered (gdb_stdlog, "...");
4600 gdb_flush (gdb_stdlog);
4601 }
4602 if (serial_write (remote_desc, buf2, p - buf2))
4603 perror_with_name (_("putpkt: write failed"));
4604
4605 /* Read until either a timeout occurs (-2) or '+' is read. */
4606 while (1)
4607 {
4608 ch = readchar (remote_timeout);
4609
4610 if (remote_debug)
4611 {
4612 switch (ch)
4613 {
4614 case '+':
4615 case '-':
4616 case SERIAL_TIMEOUT:
4617 case '$':
4618 if (started_error_output)
4619 {
4620 putchar_unfiltered ('\n');
4621 started_error_output = 0;
4622 }
4623 }
4624 }
4625
4626 switch (ch)
4627 {
4628 case '+':
4629 if (remote_debug)
4630 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4631 return 1;
4632 case '-':
4633 if (remote_debug)
4634 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4635 case SERIAL_TIMEOUT:
4636 tcount++;
4637 if (tcount > 3)
4638 return 0;
4639 break; /* Retransmit buffer. */
4640 case '$':
4641 {
4642 if (remote_debug)
4643 fprintf_unfiltered (gdb_stdlog,
4644 "Packet instead of Ack, ignoring it\n");
4645 /* It's probably an old response sent because an ACK
4646 was lost. Gobble up the packet and ack it so it
4647 doesn't get retransmitted when we resend this
4648 packet. */
4649 skip_frame ();
4650 serial_write (remote_desc, "+", 1);
4651 continue; /* Now, go look for +. */
4652 }
4653 default:
4654 if (remote_debug)
4655 {
4656 if (!started_error_output)
4657 {
4658 started_error_output = 1;
4659 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4660 }
4661 fputc_unfiltered (ch & 0177, gdb_stdlog);
4662 }
4663 continue;
4664 }
4665 break; /* Here to retransmit. */
4666 }
4667
4668 #if 0
4669 /* This is wrong. If doing a long backtrace, the user should be
4670 able to get out next time we call QUIT, without anything as
4671 violent as interrupt_query. If we want to provide a way out of
4672 here without getting to the next QUIT, it should be based on
4673 hitting ^C twice as in remote_wait. */
4674 if (quit_flag)
4675 {
4676 quit_flag = 0;
4677 interrupt_query ();
4678 }
4679 #endif
4680 }
4681 }
4682
4683 /* Come here after finding the start of a frame when we expected an
4684 ack. Do our best to discard the rest of this packet. */
4685
4686 static void
4687 skip_frame (void)
4688 {
4689 int c;
4690
4691 while (1)
4692 {
4693 c = readchar (remote_timeout);
4694 switch (c)
4695 {
4696 case SERIAL_TIMEOUT:
4697 /* Nothing we can do. */
4698 return;
4699 case '#':
4700 /* Discard the two bytes of checksum and stop. */
4701 c = readchar (remote_timeout);
4702 if (c >= 0)
4703 c = readchar (remote_timeout);
4704
4705 return;
4706 case '*': /* Run length encoding. */
4707 /* Discard the repeat count. */
4708 c = readchar (remote_timeout);
4709 if (c < 0)
4710 return;
4711 break;
4712 default:
4713 /* A regular character. */
4714 break;
4715 }
4716 }
4717 }
4718
4719 /* Come here after finding the start of the frame. Collect the rest
4720 into *BUF, verifying the checksum, length, and handling run-length
4721 compression. NUL terminate the buffer. If there is not enough room,
4722 expand *BUF using xrealloc.
4723
4724 Returns -1 on error, number of characters in buffer (ignoring the
4725 trailing NULL) on success. (could be extended to return one of the
4726 SERIAL status indications). */
4727
4728 static long
4729 read_frame (char **buf_p,
4730 long *sizeof_buf)
4731 {
4732 unsigned char csum;
4733 long bc;
4734 int c;
4735 char *buf = *buf_p;
4736
4737 csum = 0;
4738 bc = 0;
4739
4740 while (1)
4741 {
4742 c = readchar (remote_timeout);
4743 switch (c)
4744 {
4745 case SERIAL_TIMEOUT:
4746 if (remote_debug)
4747 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4748 return -1;
4749 case '$':
4750 if (remote_debug)
4751 fputs_filtered ("Saw new packet start in middle of old one\n",
4752 gdb_stdlog);
4753 return -1; /* Start a new packet, count retries. */
4754 case '#':
4755 {
4756 unsigned char pktcsum;
4757 int check_0 = 0;
4758 int check_1 = 0;
4759
4760 buf[bc] = '\0';
4761
4762 check_0 = readchar (remote_timeout);
4763 if (check_0 >= 0)
4764 check_1 = readchar (remote_timeout);
4765
4766 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4767 {
4768 if (remote_debug)
4769 fputs_filtered ("Timeout in checksum, retrying\n",
4770 gdb_stdlog);
4771 return -1;
4772 }
4773 else if (check_0 < 0 || check_1 < 0)
4774 {
4775 if (remote_debug)
4776 fputs_filtered ("Communication error in checksum\n",
4777 gdb_stdlog);
4778 return -1;
4779 }
4780
4781 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4782 if (csum == pktcsum)
4783 return bc;
4784
4785 if (remote_debug)
4786 {
4787 fprintf_filtered (gdb_stdlog,
4788 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4789 pktcsum, csum);
4790 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4791 fputs_filtered ("\n", gdb_stdlog);
4792 }
4793 /* Number of characters in buffer ignoring trailing
4794 NULL. */
4795 return -1;
4796 }
4797 case '*': /* Run length encoding. */
4798 {
4799 int repeat;
4800 csum += c;
4801
4802 c = readchar (remote_timeout);
4803 csum += c;
4804 repeat = c - ' ' + 3; /* Compute repeat count. */
4805
4806 /* The character before ``*'' is repeated. */
4807
4808 if (repeat > 0 && repeat <= 255 && bc > 0)
4809 {
4810 if (bc + repeat - 1 >= *sizeof_buf - 1)
4811 {
4812 /* Make some more room in the buffer. */
4813 *sizeof_buf += repeat;
4814 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4815 buf = *buf_p;
4816 }
4817
4818 memset (&buf[bc], buf[bc - 1], repeat);
4819 bc += repeat;
4820 continue;
4821 }
4822
4823 buf[bc] = '\0';
4824 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4825 return -1;
4826 }
4827 default:
4828 if (bc >= *sizeof_buf - 1)
4829 {
4830 /* Make some more room in the buffer. */
4831 *sizeof_buf *= 2;
4832 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4833 buf = *buf_p;
4834 }
4835
4836 buf[bc++] = c;
4837 csum += c;
4838 continue;
4839 }
4840 }
4841 }
4842
4843 /* Read a packet from the remote machine, with error checking, and
4844 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4845 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4846 rather than timing out; this is used (in synchronous mode) to wait
4847 for a target that is is executing user code to stop. */
4848 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4849 don't have to change all the calls to getpkt to deal with the
4850 return value, because at the moment I don't know what the right
4851 thing to do it for those. */
4852 void
4853 getpkt (char **buf,
4854 long *sizeof_buf,
4855 int forever)
4856 {
4857 int timed_out;
4858
4859 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4860 }
4861
4862
4863 /* Read a packet from the remote machine, with error checking, and
4864 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4865 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4866 rather than timing out; this is used (in synchronous mode) to wait
4867 for a target that is is executing user code to stop. If FOREVER ==
4868 0, this function is allowed to time out gracefully and return an
4869 indication of this to the caller. Otherwise return the number
4870 of bytes read. */
4871 static int
4872 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4873 {
4874 int c;
4875 int tries;
4876 int timeout;
4877 int val;
4878
4879 strcpy (*buf, "timeout");
4880
4881 if (forever)
4882 {
4883 timeout = watchdog > 0 ? watchdog : -1;
4884 }
4885
4886 else
4887 timeout = remote_timeout;
4888
4889 #define MAX_TRIES 3
4890
4891 for (tries = 1; tries <= MAX_TRIES; tries++)
4892 {
4893 /* This can loop forever if the remote side sends us characters
4894 continuously, but if it pauses, we'll get a zero from
4895 readchar because of timeout. Then we'll count that as a
4896 retry. */
4897
4898 /* Note that we will only wait forever prior to the start of a
4899 packet. After that, we expect characters to arrive at a
4900 brisk pace. They should show up within remote_timeout
4901 intervals. */
4902
4903 do
4904 {
4905 c = readchar (timeout);
4906
4907 if (c == SERIAL_TIMEOUT)
4908 {
4909 if (forever) /* Watchdog went off? Kill the target. */
4910 {
4911 QUIT;
4912 target_mourn_inferior ();
4913 error (_("Watchdog has expired. Target detached."));
4914 }
4915 if (remote_debug)
4916 fputs_filtered ("Timed out.\n", gdb_stdlog);
4917 goto retry;
4918 }
4919 }
4920 while (c != '$');
4921
4922 /* We've found the start of a packet, now collect the data. */
4923
4924 val = read_frame (buf, sizeof_buf);
4925
4926 if (val >= 0)
4927 {
4928 if (remote_debug)
4929 {
4930 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4931 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4932 fprintf_unfiltered (gdb_stdlog, "\n");
4933 }
4934 serial_write (remote_desc, "+", 1);
4935 return val;
4936 }
4937
4938 /* Try the whole thing again. */
4939 retry:
4940 serial_write (remote_desc, "-", 1);
4941 }
4942
4943 /* We have tried hard enough, and just can't receive the packet.
4944 Give up. */
4945
4946 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4947 serial_write (remote_desc, "+", 1);
4948 return -1;
4949 }
4950 \f
4951 static void
4952 remote_kill (void)
4953 {
4954 /* For some mysterious reason, wait_for_inferior calls kill instead of
4955 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4956 if (kill_kludge)
4957 {
4958 kill_kludge = 0;
4959 target_mourn_inferior ();
4960 return;
4961 }
4962
4963 /* Use catch_errors so the user can quit from gdb even when we aren't on
4964 speaking terms with the remote system. */
4965 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4966
4967 /* Don't wait for it to die. I'm not really sure it matters whether
4968 we do or not. For the existing stubs, kill is a noop. */
4969 target_mourn_inferior ();
4970 }
4971
4972 /* Async version of remote_kill. */
4973 static void
4974 remote_async_kill (void)
4975 {
4976 /* Unregister the file descriptor from the event loop. */
4977 if (target_is_async_p ())
4978 serial_async (remote_desc, NULL, 0);
4979
4980 /* For some mysterious reason, wait_for_inferior calls kill instead of
4981 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4982 if (kill_kludge)
4983 {
4984 kill_kludge = 0;
4985 target_mourn_inferior ();
4986 return;
4987 }
4988
4989 /* Use catch_errors so the user can quit from gdb even when we
4990 aren't on speaking terms with the remote system. */
4991 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4992
4993 /* Don't wait for it to die. I'm not really sure it matters whether
4994 we do or not. For the existing stubs, kill is a noop. */
4995 target_mourn_inferior ();
4996 }
4997
4998 static void
4999 remote_mourn (void)
5000 {
5001 remote_mourn_1 (&remote_ops);
5002 }
5003
5004 static void
5005 remote_async_mourn (void)
5006 {
5007 remote_mourn_1 (&remote_async_ops);
5008 }
5009
5010 static void
5011 extended_remote_mourn (void)
5012 {
5013 /* We do _not_ want to mourn the target like this; this will
5014 remove the extended remote target from the target stack,
5015 and the next time the user says "run" it'll fail.
5016
5017 FIXME: What is the right thing to do here? */
5018 #if 0
5019 remote_mourn_1 (&extended_remote_ops);
5020 #endif
5021 }
5022
5023 /* Worker function for remote_mourn. */
5024 static void
5025 remote_mourn_1 (struct target_ops *target)
5026 {
5027 unpush_target (target);
5028 generic_mourn_inferior ();
5029 }
5030
5031 /* In the extended protocol we want to be able to do things like
5032 "run" and have them basically work as expected. So we need
5033 a special create_inferior function.
5034
5035 FIXME: One day add support for changing the exec file
5036 we're debugging, arguments and an environment. */
5037
5038 static void
5039 extended_remote_create_inferior (char *exec_file, char *args,
5040 char **env, int from_tty)
5041 {
5042 /* Rip out the breakpoints; we'll reinsert them after restarting
5043 the remote server. */
5044 remove_breakpoints ();
5045
5046 /* Now restart the remote server. */
5047 extended_remote_restart ();
5048
5049 /* NOTE: We don't need to recheck for a target description here; but
5050 if we gain the ability to switch the remote executable we may
5051 need to, if for instance we are running a process which requested
5052 different emulated hardware from the operating system. A
5053 concrete example of this is ARM GNU/Linux, where some binaries
5054 will have a legacy FPA coprocessor emulated and others may have
5055 access to a hardware VFP unit. */
5056
5057 /* Now put the breakpoints back in. This way we're safe if the
5058 restart function works via a unix fork on the remote side. */
5059 insert_breakpoints ();
5060
5061 /* Clean up from the last time we were running. */
5062 clear_proceed_status ();
5063 }
5064
5065 /* Async version of extended_remote_create_inferior. */
5066 static void
5067 extended_remote_async_create_inferior (char *exec_file, char *args,
5068 char **env, int from_tty)
5069 {
5070 /* Rip out the breakpoints; we'll reinsert them after restarting
5071 the remote server. */
5072 remove_breakpoints ();
5073
5074 /* If running asynchronously, register the target file descriptor
5075 with the event loop. */
5076 if (target_can_async_p ())
5077 target_async (inferior_event_handler, 0);
5078
5079 /* Now restart the remote server. */
5080 extended_remote_restart ();
5081
5082 /* NOTE: We don't need to recheck for a target description here; but
5083 if we gain the ability to switch the remote executable we may
5084 need to, if for instance we are running a process which requested
5085 different emulated hardware from the operating system. A
5086 concrete example of this is ARM GNU/Linux, where some binaries
5087 will have a legacy FPA coprocessor emulated and others may have
5088 access to a hardware VFP unit. */
5089
5090 /* Now put the breakpoints back in. This way we're safe if the
5091 restart function works via a unix fork on the remote side. */
5092 insert_breakpoints ();
5093
5094 /* Clean up from the last time we were running. */
5095 clear_proceed_status ();
5096 }
5097 \f
5098
5099 /* Insert a breakpoint. On targets that have software breakpoint
5100 support, we ask the remote target to do the work; on targets
5101 which don't, we insert a traditional memory breakpoint. */
5102
5103 static int
5104 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5105 {
5106 CORE_ADDR addr = bp_tgt->placed_address;
5107 struct remote_state *rs = get_remote_state ();
5108
5109 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5110 If it succeeds, then set the support to PACKET_ENABLE. If it
5111 fails, and the user has explicitly requested the Z support then
5112 report an error, otherwise, mark it disabled and go on. */
5113
5114 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5115 {
5116 char *p = rs->buf;
5117
5118 *(p++) = 'Z';
5119 *(p++) = '0';
5120 *(p++) = ',';
5121 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5122 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5123 p += hexnumstr (p, addr);
5124 sprintf (p, ",%d", bp_tgt->placed_size);
5125
5126 putpkt (rs->buf);
5127 getpkt (&rs->buf, &rs->buf_size, 0);
5128
5129 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5130 {
5131 case PACKET_ERROR:
5132 return -1;
5133 case PACKET_OK:
5134 return 0;
5135 case PACKET_UNKNOWN:
5136 break;
5137 }
5138 }
5139
5140 return memory_insert_breakpoint (bp_tgt);
5141 }
5142
5143 static int
5144 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5145 {
5146 CORE_ADDR addr = bp_tgt->placed_address;
5147 struct remote_state *rs = get_remote_state ();
5148 int bp_size;
5149
5150 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5151 {
5152 char *p = rs->buf;
5153
5154 *(p++) = 'z';
5155 *(p++) = '0';
5156 *(p++) = ',';
5157
5158 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5159 p += hexnumstr (p, addr);
5160 sprintf (p, ",%d", bp_tgt->placed_size);
5161
5162 putpkt (rs->buf);
5163 getpkt (&rs->buf, &rs->buf_size, 0);
5164
5165 return (rs->buf[0] == 'E');
5166 }
5167
5168 return memory_remove_breakpoint (bp_tgt);
5169 }
5170
5171 static int
5172 watchpoint_to_Z_packet (int type)
5173 {
5174 switch (type)
5175 {
5176 case hw_write:
5177 return Z_PACKET_WRITE_WP;
5178 break;
5179 case hw_read:
5180 return Z_PACKET_READ_WP;
5181 break;
5182 case hw_access:
5183 return Z_PACKET_ACCESS_WP;
5184 break;
5185 default:
5186 internal_error (__FILE__, __LINE__,
5187 _("hw_bp_to_z: bad watchpoint type %d"), type);
5188 }
5189 }
5190
5191 static int
5192 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5193 {
5194 struct remote_state *rs = get_remote_state ();
5195 char *p;
5196 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5197
5198 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5199 return -1;
5200
5201 sprintf (rs->buf, "Z%x,", packet);
5202 p = strchr (rs->buf, '\0');
5203 addr = remote_address_masked (addr);
5204 p += hexnumstr (p, (ULONGEST) addr);
5205 sprintf (p, ",%x", len);
5206
5207 putpkt (rs->buf);
5208 getpkt (&rs->buf, &rs->buf_size, 0);
5209
5210 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5211 {
5212 case PACKET_ERROR:
5213 case PACKET_UNKNOWN:
5214 return -1;
5215 case PACKET_OK:
5216 return 0;
5217 }
5218 internal_error (__FILE__, __LINE__,
5219 _("remote_insert_watchpoint: reached end of function"));
5220 }
5221
5222
5223 static int
5224 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5225 {
5226 struct remote_state *rs = get_remote_state ();
5227 char *p;
5228 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5229
5230 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5231 return -1;
5232
5233 sprintf (rs->buf, "z%x,", packet);
5234 p = strchr (rs->buf, '\0');
5235 addr = remote_address_masked (addr);
5236 p += hexnumstr (p, (ULONGEST) addr);
5237 sprintf (p, ",%x", len);
5238 putpkt (rs->buf);
5239 getpkt (&rs->buf, &rs->buf_size, 0);
5240
5241 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5242 {
5243 case PACKET_ERROR:
5244 case PACKET_UNKNOWN:
5245 return -1;
5246 case PACKET_OK:
5247 return 0;
5248 }
5249 internal_error (__FILE__, __LINE__,
5250 _("remote_remove_watchpoint: reached end of function"));
5251 }
5252
5253
5254 int remote_hw_watchpoint_limit = -1;
5255 int remote_hw_breakpoint_limit = -1;
5256
5257 static int
5258 remote_check_watch_resources (int type, int cnt, int ot)
5259 {
5260 if (type == bp_hardware_breakpoint)
5261 {
5262 if (remote_hw_breakpoint_limit == 0)
5263 return 0;
5264 else if (remote_hw_breakpoint_limit < 0)
5265 return 1;
5266 else if (cnt <= remote_hw_breakpoint_limit)
5267 return 1;
5268 }
5269 else
5270 {
5271 if (remote_hw_watchpoint_limit == 0)
5272 return 0;
5273 else if (remote_hw_watchpoint_limit < 0)
5274 return 1;
5275 else if (ot)
5276 return -1;
5277 else if (cnt <= remote_hw_watchpoint_limit)
5278 return 1;
5279 }
5280 return -1;
5281 }
5282
5283 static int
5284 remote_stopped_by_watchpoint (void)
5285 {
5286 return remote_stopped_by_watchpoint_p;
5287 }
5288
5289 extern int stepped_after_stopped_by_watchpoint;
5290
5291 static int
5292 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5293 {
5294 int rc = 0;
5295 if (remote_stopped_by_watchpoint ()
5296 || stepped_after_stopped_by_watchpoint)
5297 {
5298 *addr_p = remote_watch_data_address;
5299 rc = 1;
5300 }
5301
5302 return rc;
5303 }
5304
5305
5306 static int
5307 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5308 {
5309 CORE_ADDR addr;
5310 struct remote_state *rs = get_remote_state ();
5311 char *p = rs->buf;
5312
5313 /* The length field should be set to the size of a breakpoint
5314 instruction, even though we aren't inserting one ourselves. */
5315
5316 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5317
5318 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5319 return -1;
5320
5321 *(p++) = 'Z';
5322 *(p++) = '1';
5323 *(p++) = ',';
5324
5325 addr = remote_address_masked (bp_tgt->placed_address);
5326 p += hexnumstr (p, (ULONGEST) addr);
5327 sprintf (p, ",%x", bp_tgt->placed_size);
5328
5329 putpkt (rs->buf);
5330 getpkt (&rs->buf, &rs->buf_size, 0);
5331
5332 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5333 {
5334 case PACKET_ERROR:
5335 case PACKET_UNKNOWN:
5336 return -1;
5337 case PACKET_OK:
5338 return 0;
5339 }
5340 internal_error (__FILE__, __LINE__,
5341 _("remote_insert_hw_breakpoint: reached end of function"));
5342 }
5343
5344
5345 static int
5346 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5347 {
5348 CORE_ADDR addr;
5349 struct remote_state *rs = get_remote_state ();
5350 char *p = rs->buf;
5351
5352 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5353 return -1;
5354
5355 *(p++) = 'z';
5356 *(p++) = '1';
5357 *(p++) = ',';
5358
5359 addr = remote_address_masked (bp_tgt->placed_address);
5360 p += hexnumstr (p, (ULONGEST) addr);
5361 sprintf (p, ",%x", bp_tgt->placed_size);
5362
5363 putpkt (rs->buf);
5364 getpkt (&rs->buf, &rs->buf_size, 0);
5365
5366 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5367 {
5368 case PACKET_ERROR:
5369 case PACKET_UNKNOWN:
5370 return -1;
5371 case PACKET_OK:
5372 return 0;
5373 }
5374 internal_error (__FILE__, __LINE__,
5375 _("remote_remove_hw_breakpoint: reached end of function"));
5376 }
5377
5378 /* Some targets are only capable of doing downloads, and afterwards
5379 they switch to the remote serial protocol. This function provides
5380 a clean way to get from the download target to the remote target.
5381 It's basically just a wrapper so that we don't have to expose any
5382 of the internal workings of remote.c.
5383
5384 Prior to calling this routine, you should shutdown the current
5385 target code, else you will get the "A program is being debugged
5386 already..." message. Usually a call to pop_target() suffices. */
5387
5388 void
5389 push_remote_target (char *name, int from_tty)
5390 {
5391 printf_filtered (_("Switching to remote protocol\n"));
5392 remote_open (name, from_tty);
5393 }
5394
5395 /* Table used by the crc32 function to calcuate the checksum. */
5396
5397 static unsigned long crc32_table[256] =
5398 {0, 0};
5399
5400 static unsigned long
5401 crc32 (unsigned char *buf, int len, unsigned int crc)
5402 {
5403 if (!crc32_table[1])
5404 {
5405 /* Initialize the CRC table and the decoding table. */
5406 int i, j;
5407 unsigned int c;
5408
5409 for (i = 0; i < 256; i++)
5410 {
5411 for (c = i << 24, j = 8; j > 0; --j)
5412 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5413 crc32_table[i] = c;
5414 }
5415 }
5416
5417 while (len--)
5418 {
5419 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5420 buf++;
5421 }
5422 return crc;
5423 }
5424
5425 /* compare-sections command
5426
5427 With no arguments, compares each loadable section in the exec bfd
5428 with the same memory range on the target, and reports mismatches.
5429 Useful for verifying the image on the target against the exec file.
5430 Depends on the target understanding the new "qCRC:" request. */
5431
5432 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5433 target method (target verify memory) and generic version of the
5434 actual command. This will allow other high-level code (especially
5435 generic_load()) to make use of this target functionality. */
5436
5437 static void
5438 compare_sections_command (char *args, int from_tty)
5439 {
5440 struct remote_state *rs = get_remote_state ();
5441 asection *s;
5442 unsigned long host_crc, target_crc;
5443 extern bfd *exec_bfd;
5444 struct cleanup *old_chain;
5445 char *tmp;
5446 char *sectdata;
5447 const char *sectname;
5448 bfd_size_type size;
5449 bfd_vma lma;
5450 int matched = 0;
5451 int mismatched = 0;
5452
5453 if (!exec_bfd)
5454 error (_("command cannot be used without an exec file"));
5455 if (!current_target.to_shortname ||
5456 strcmp (current_target.to_shortname, "remote") != 0)
5457 error (_("command can only be used with remote target"));
5458
5459 for (s = exec_bfd->sections; s; s = s->next)
5460 {
5461 if (!(s->flags & SEC_LOAD))
5462 continue; /* skip non-loadable section */
5463
5464 size = bfd_get_section_size (s);
5465 if (size == 0)
5466 continue; /* skip zero-length section */
5467
5468 sectname = bfd_get_section_name (exec_bfd, s);
5469 if (args && strcmp (args, sectname) != 0)
5470 continue; /* not the section selected by user */
5471
5472 matched = 1; /* do this section */
5473 lma = s->lma;
5474 /* FIXME: assumes lma can fit into long. */
5475 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5476 (long) lma, (long) size);
5477 putpkt (rs->buf);
5478
5479 /* Be clever; compute the host_crc before waiting for target
5480 reply. */
5481 sectdata = xmalloc (size);
5482 old_chain = make_cleanup (xfree, sectdata);
5483 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5484 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5485
5486 getpkt (&rs->buf, &rs->buf_size, 0);
5487 if (rs->buf[0] == 'E')
5488 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5489 sectname, paddr (lma), paddr (lma + size));
5490 if (rs->buf[0] != 'C')
5491 error (_("remote target does not support this operation"));
5492
5493 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5494 target_crc = target_crc * 16 + fromhex (*tmp);
5495
5496 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5497 sectname, paddr (lma), paddr (lma + size));
5498 if (host_crc == target_crc)
5499 printf_filtered ("matched.\n");
5500 else
5501 {
5502 printf_filtered ("MIS-MATCHED!\n");
5503 mismatched++;
5504 }
5505
5506 do_cleanups (old_chain);
5507 }
5508 if (mismatched > 0)
5509 warning (_("One or more sections of the remote executable does not match\n\
5510 the loaded file\n"));
5511 if (args && !matched)
5512 printf_filtered (_("No loaded section named '%s'.\n"), args);
5513 }
5514
5515 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5516 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5517 number of bytes read is returned, or 0 for EOF, or -1 for error.
5518 The number of bytes read may be less than LEN without indicating an
5519 EOF. PACKET is checked and updated to indicate whether the remote
5520 target supports this object. */
5521
5522 static LONGEST
5523 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5524 const char *annex,
5525 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5526 struct packet_config *packet)
5527 {
5528 static char *finished_object;
5529 static char *finished_annex;
5530 static ULONGEST finished_offset;
5531
5532 struct remote_state *rs = get_remote_state ();
5533 unsigned int total = 0;
5534 LONGEST i, n, packet_len;
5535
5536 if (packet->support == PACKET_DISABLE)
5537 return -1;
5538
5539 /* Check whether we've cached an end-of-object packet that matches
5540 this request. */
5541 if (finished_object)
5542 {
5543 if (strcmp (object_name, finished_object) == 0
5544 && strcmp (annex ? annex : "", finished_annex) == 0
5545 && offset == finished_offset)
5546 return 0;
5547
5548 /* Otherwise, we're now reading something different. Discard
5549 the cache. */
5550 xfree (finished_object);
5551 xfree (finished_annex);
5552 finished_object = NULL;
5553 finished_annex = NULL;
5554 }
5555
5556 /* Request only enough to fit in a single packet. The actual data
5557 may not, since we don't know how much of it will need to be escaped;
5558 the target is free to respond with slightly less data. We subtract
5559 five to account for the response type and the protocol frame. */
5560 n = min (get_remote_packet_size () - 5, len);
5561 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5562 object_name, annex ? annex : "",
5563 phex_nz (offset, sizeof offset),
5564 phex_nz (n, sizeof n));
5565 i = putpkt (rs->buf);
5566 if (i < 0)
5567 return -1;
5568
5569 rs->buf[0] = '\0';
5570 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5571 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5572 return -1;
5573
5574 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5575 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5576
5577 /* 'm' means there is (or at least might be) more data after this
5578 batch. That does not make sense unless there's at least one byte
5579 of data in this reply. */
5580 if (rs->buf[0] == 'm' && packet_len == 1)
5581 error (_("Remote qXfer reply contained no data."));
5582
5583 /* Got some data. */
5584 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5585
5586 /* 'l' is an EOF marker, possibly including a final block of data,
5587 or possibly empty. Record it to bypass the next read, if one is
5588 issued. */
5589 if (rs->buf[0] == 'l')
5590 {
5591 finished_object = xstrdup (object_name);
5592 finished_annex = xstrdup (annex ? annex : "");
5593 finished_offset = offset + i;
5594 }
5595
5596 return i;
5597 }
5598
5599 static LONGEST
5600 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5601 const char *annex, gdb_byte *readbuf,
5602 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5603 {
5604 struct remote_state *rs = get_remote_state ();
5605 int i;
5606 char *p2;
5607 char query_type;
5608
5609 /* Handle memory using the standard memory routines. */
5610 if (object == TARGET_OBJECT_MEMORY)
5611 {
5612 int xfered;
5613 errno = 0;
5614
5615 if (writebuf != NULL)
5616 xfered = remote_write_bytes (offset, writebuf, len);
5617 else
5618 xfered = remote_read_bytes (offset, readbuf, len);
5619
5620 if (xfered > 0)
5621 return xfered;
5622 else if (xfered == 0 && errno == 0)
5623 return 0;
5624 else
5625 return -1;
5626 }
5627
5628 /* Only handle flash writes. */
5629 if (writebuf != NULL)
5630 {
5631 LONGEST xfered;
5632
5633 switch (object)
5634 {
5635 case TARGET_OBJECT_FLASH:
5636 xfered = remote_flash_write (ops, offset, len, writebuf);
5637
5638 if (xfered > 0)
5639 return xfered;
5640 else if (xfered == 0 && errno == 0)
5641 return 0;
5642 else
5643 return -1;
5644
5645 default:
5646 return -1;
5647 }
5648 }
5649
5650 /* Map pre-existing objects onto letters. DO NOT do this for new
5651 objects!!! Instead specify new query packets. */
5652 switch (object)
5653 {
5654 case TARGET_OBJECT_AVR:
5655 query_type = 'R';
5656 break;
5657
5658 case TARGET_OBJECT_AUXV:
5659 gdb_assert (annex == NULL);
5660 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5661 &remote_protocol_packets[PACKET_qXfer_auxv]);
5662
5663 case TARGET_OBJECT_AVAILABLE_FEATURES:
5664 return remote_read_qxfer
5665 (ops, "features", annex, readbuf, offset, len,
5666 &remote_protocol_packets[PACKET_qXfer_features]);
5667
5668 case TARGET_OBJECT_MEMORY_MAP:
5669 gdb_assert (annex == NULL);
5670 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5671 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5672
5673 default:
5674 return -1;
5675 }
5676
5677 /* Note: a zero OFFSET and LEN can be used to query the minimum
5678 buffer size. */
5679 if (offset == 0 && len == 0)
5680 return (get_remote_packet_size ());
5681 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5682 large enough let the caller deal with it. */
5683 if (len < get_remote_packet_size ())
5684 return -1;
5685 len = get_remote_packet_size ();
5686
5687 /* Except for querying the minimum buffer size, target must be open. */
5688 if (!remote_desc)
5689 error (_("remote query is only available after target open"));
5690
5691 gdb_assert (annex != NULL);
5692 gdb_assert (readbuf != NULL);
5693
5694 p2 = rs->buf;
5695 *p2++ = 'q';
5696 *p2++ = query_type;
5697
5698 /* We used one buffer char for the remote protocol q command and
5699 another for the query type. As the remote protocol encapsulation
5700 uses 4 chars plus one extra in case we are debugging
5701 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5702 string. */
5703 i = 0;
5704 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5705 {
5706 /* Bad caller may have sent forbidden characters. */
5707 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5708 *p2++ = annex[i];
5709 i++;
5710 }
5711 *p2 = '\0';
5712 gdb_assert (annex[i] == '\0');
5713
5714 i = putpkt (rs->buf);
5715 if (i < 0)
5716 return i;
5717
5718 getpkt (&rs->buf, &rs->buf_size, 0);
5719 strcpy ((char *) readbuf, rs->buf);
5720
5721 return strlen ((char *) readbuf);
5722 }
5723
5724 static void
5725 remote_rcmd (char *command,
5726 struct ui_file *outbuf)
5727 {
5728 struct remote_state *rs = get_remote_state ();
5729 char *p = rs->buf;
5730
5731 if (!remote_desc)
5732 error (_("remote rcmd is only available after target open"));
5733
5734 /* Send a NULL command across as an empty command. */
5735 if (command == NULL)
5736 command = "";
5737
5738 /* The query prefix. */
5739 strcpy (rs->buf, "qRcmd,");
5740 p = strchr (rs->buf, '\0');
5741
5742 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5743 error (_("\"monitor\" command ``%s'' is too long."), command);
5744
5745 /* Encode the actual command. */
5746 bin2hex ((gdb_byte *) command, p, 0);
5747
5748 if (putpkt (rs->buf) < 0)
5749 error (_("Communication problem with target."));
5750
5751 /* get/display the response */
5752 while (1)
5753 {
5754 char *buf;
5755
5756 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5757 rs->buf[0] = '\0';
5758 getpkt (&rs->buf, &rs->buf_size, 0);
5759 buf = rs->buf;
5760 if (buf[0] == '\0')
5761 error (_("Target does not support this command."));
5762 if (buf[0] == 'O' && buf[1] != 'K')
5763 {
5764 remote_console_output (buf + 1); /* 'O' message from stub. */
5765 continue;
5766 }
5767 if (strcmp (buf, "OK") == 0)
5768 break;
5769 if (strlen (buf) == 3 && buf[0] == 'E'
5770 && isdigit (buf[1]) && isdigit (buf[2]))
5771 {
5772 error (_("Protocol error with Rcmd"));
5773 }
5774 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5775 {
5776 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5777 fputc_unfiltered (c, outbuf);
5778 }
5779 break;
5780 }
5781 }
5782
5783 static VEC(mem_region_s) *
5784 remote_memory_map (struct target_ops *ops)
5785 {
5786 VEC(mem_region_s) *result = NULL;
5787 char *text = target_read_stralloc (&current_target,
5788 TARGET_OBJECT_MEMORY_MAP, NULL);
5789
5790 if (text)
5791 {
5792 struct cleanup *back_to = make_cleanup (xfree, text);
5793 result = parse_memory_map (text);
5794 do_cleanups (back_to);
5795 }
5796
5797 return result;
5798 }
5799
5800 static void
5801 packet_command (char *args, int from_tty)
5802 {
5803 struct remote_state *rs = get_remote_state ();
5804
5805 if (!remote_desc)
5806 error (_("command can only be used with remote target"));
5807
5808 if (!args)
5809 error (_("remote-packet command requires packet text as argument"));
5810
5811 puts_filtered ("sending: ");
5812 print_packet (args);
5813 puts_filtered ("\n");
5814 putpkt (args);
5815
5816 getpkt (&rs->buf, &rs->buf_size, 0);
5817 puts_filtered ("received: ");
5818 print_packet (rs->buf);
5819 puts_filtered ("\n");
5820 }
5821
5822 #if 0
5823 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5824
5825 static void display_thread_info (struct gdb_ext_thread_info *info);
5826
5827 static void threadset_test_cmd (char *cmd, int tty);
5828
5829 static void threadalive_test (char *cmd, int tty);
5830
5831 static void threadlist_test_cmd (char *cmd, int tty);
5832
5833 int get_and_display_threadinfo (threadref *ref);
5834
5835 static void threadinfo_test_cmd (char *cmd, int tty);
5836
5837 static int thread_display_step (threadref *ref, void *context);
5838
5839 static void threadlist_update_test_cmd (char *cmd, int tty);
5840
5841 static void init_remote_threadtests (void);
5842
5843 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5844
5845 static void
5846 threadset_test_cmd (char *cmd, int tty)
5847 {
5848 int sample_thread = SAMPLE_THREAD;
5849
5850 printf_filtered (_("Remote threadset test\n"));
5851 set_thread (sample_thread, 1);
5852 }
5853
5854
5855 static void
5856 threadalive_test (char *cmd, int tty)
5857 {
5858 int sample_thread = SAMPLE_THREAD;
5859
5860 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5861 printf_filtered ("PASS: Thread alive test\n");
5862 else
5863 printf_filtered ("FAIL: Thread alive test\n");
5864 }
5865
5866 void output_threadid (char *title, threadref *ref);
5867
5868 void
5869 output_threadid (char *title, threadref *ref)
5870 {
5871 char hexid[20];
5872
5873 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5874 hexid[16] = 0;
5875 printf_filtered ("%s %s\n", title, (&hexid[0]));
5876 }
5877
5878 static void
5879 threadlist_test_cmd (char *cmd, int tty)
5880 {
5881 int startflag = 1;
5882 threadref nextthread;
5883 int done, result_count;
5884 threadref threadlist[3];
5885
5886 printf_filtered ("Remote Threadlist test\n");
5887 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5888 &result_count, &threadlist[0]))
5889 printf_filtered ("FAIL: threadlist test\n");
5890 else
5891 {
5892 threadref *scan = threadlist;
5893 threadref *limit = scan + result_count;
5894
5895 while (scan < limit)
5896 output_threadid (" thread ", scan++);
5897 }
5898 }
5899
5900 void
5901 display_thread_info (struct gdb_ext_thread_info *info)
5902 {
5903 output_threadid ("Threadid: ", &info->threadid);
5904 printf_filtered ("Name: %s\n ", info->shortname);
5905 printf_filtered ("State: %s\n", info->display);
5906 printf_filtered ("other: %s\n\n", info->more_display);
5907 }
5908
5909 int
5910 get_and_display_threadinfo (threadref *ref)
5911 {
5912 int result;
5913 int set;
5914 struct gdb_ext_thread_info threadinfo;
5915
5916 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5917 | TAG_MOREDISPLAY | TAG_DISPLAY;
5918 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5919 display_thread_info (&threadinfo);
5920 return result;
5921 }
5922
5923 static void
5924 threadinfo_test_cmd (char *cmd, int tty)
5925 {
5926 int athread = SAMPLE_THREAD;
5927 threadref thread;
5928 int set;
5929
5930 int_to_threadref (&thread, athread);
5931 printf_filtered ("Remote Threadinfo test\n");
5932 if (!get_and_display_threadinfo (&thread))
5933 printf_filtered ("FAIL cannot get thread info\n");
5934 }
5935
5936 static int
5937 thread_display_step (threadref *ref, void *context)
5938 {
5939 /* output_threadid(" threadstep ",ref); *//* simple test */
5940 return get_and_display_threadinfo (ref);
5941 }
5942
5943 static void
5944 threadlist_update_test_cmd (char *cmd, int tty)
5945 {
5946 printf_filtered ("Remote Threadlist update test\n");
5947 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5948 }
5949
5950 static void
5951 init_remote_threadtests (void)
5952 {
5953 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5954 Fetch and print the remote list of thread identifiers, one pkt only"));
5955 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5956 _("Fetch and display info about one thread"));
5957 add_com ("tset", class_obscure, threadset_test_cmd,
5958 _("Test setting to a different thread"));
5959 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5960 _("Iterate through updating all remote thread info"));
5961 add_com ("talive", class_obscure, threadalive_test,
5962 _(" Remote thread alive test "));
5963 }
5964
5965 #endif /* 0 */
5966
5967 /* Convert a thread ID to a string. Returns the string in a static
5968 buffer. */
5969
5970 static char *
5971 remote_pid_to_str (ptid_t ptid)
5972 {
5973 static char buf[32];
5974
5975 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
5976 return buf;
5977 }
5978
5979 /* Get the address of the thread local variable in OBJFILE which is
5980 stored at OFFSET within the thread local storage for thread PTID. */
5981
5982 static CORE_ADDR
5983 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5984 {
5985 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
5986 {
5987 struct remote_state *rs = get_remote_state ();
5988 char *p = rs->buf;
5989 enum packet_result result;
5990
5991 strcpy (p, "qGetTLSAddr:");
5992 p += strlen (p);
5993 p += hexnumstr (p, PIDGET (ptid));
5994 *p++ = ',';
5995 p += hexnumstr (p, offset);
5996 *p++ = ',';
5997 p += hexnumstr (p, lm);
5998 *p++ = '\0';
5999
6000 putpkt (rs->buf);
6001 getpkt (&rs->buf, &rs->buf_size, 0);
6002 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6003 if (result == PACKET_OK)
6004 {
6005 ULONGEST result;
6006
6007 unpack_varlen_hex (rs->buf, &result);
6008 return result;
6009 }
6010 else if (result == PACKET_UNKNOWN)
6011 throw_error (TLS_GENERIC_ERROR,
6012 _("Remote target doesn't support qGetTLSAddr packet"));
6013 else
6014 throw_error (TLS_GENERIC_ERROR,
6015 _("Remote target failed to process qGetTLSAddr request"));
6016 }
6017 else
6018 throw_error (TLS_GENERIC_ERROR,
6019 _("TLS not supported or disabled on this target"));
6020 /* Not reached. */
6021 return 0;
6022 }
6023
6024 /* Support for inferring a target description based on the current
6025 architecture and the size of a 'g' packet. While the 'g' packet
6026 can have any size (since optional registers can be left off the
6027 end), some sizes are easily recognizable given knowledge of the
6028 approximate architecture. */
6029
6030 struct remote_g_packet_guess
6031 {
6032 int bytes;
6033 const struct target_desc *tdesc;
6034 };
6035 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6036 DEF_VEC_O(remote_g_packet_guess_s);
6037
6038 struct remote_g_packet_data
6039 {
6040 VEC(remote_g_packet_guess_s) *guesses;
6041 };
6042
6043 static struct gdbarch_data *remote_g_packet_data_handle;
6044
6045 static void *
6046 remote_g_packet_data_init (struct obstack *obstack)
6047 {
6048 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6049 }
6050
6051 void
6052 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6053 const struct target_desc *tdesc)
6054 {
6055 struct remote_g_packet_data *data
6056 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6057 struct remote_g_packet_guess new_guess, *guess;
6058 int ix;
6059
6060 gdb_assert (tdesc != NULL);
6061
6062 for (ix = 0;
6063 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6064 ix++)
6065 if (guess->bytes == bytes)
6066 internal_error (__FILE__, __LINE__,
6067 "Duplicate g packet description added for size %d",
6068 bytes);
6069
6070 new_guess.bytes = bytes;
6071 new_guess.tdesc = tdesc;
6072 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6073 }
6074
6075 static const struct target_desc *
6076 remote_read_description (struct target_ops *target)
6077 {
6078 struct remote_g_packet_data *data
6079 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6080
6081 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6082 {
6083 struct remote_g_packet_guess *guess;
6084 int ix;
6085 int bytes = send_g_packet ();
6086
6087 for (ix = 0;
6088 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6089 ix++)
6090 if (guess->bytes == bytes)
6091 return guess->tdesc;
6092
6093 /* We discard the g packet. A minor optimization would be to
6094 hold on to it, and fill the register cache once we have selected
6095 an architecture, but it's too tricky to do safely. */
6096 }
6097
6098 return NULL;
6099 }
6100
6101 static void
6102 init_remote_ops (void)
6103 {
6104 remote_ops.to_shortname = "remote";
6105 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6106 remote_ops.to_doc =
6107 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6108 Specify the serial device it is connected to\n\
6109 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6110 remote_ops.to_open = remote_open;
6111 remote_ops.to_close = remote_close;
6112 remote_ops.to_detach = remote_detach;
6113 remote_ops.to_disconnect = remote_disconnect;
6114 remote_ops.to_resume = remote_resume;
6115 remote_ops.to_wait = remote_wait;
6116 remote_ops.to_fetch_registers = remote_fetch_registers;
6117 remote_ops.to_store_registers = remote_store_registers;
6118 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6119 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6120 remote_ops.to_files_info = remote_files_info;
6121 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6122 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6123 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6124 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6125 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6126 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6127 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6128 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6129 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6130 remote_ops.to_kill = remote_kill;
6131 remote_ops.to_load = generic_load;
6132 remote_ops.to_mourn_inferior = remote_mourn;
6133 remote_ops.to_thread_alive = remote_thread_alive;
6134 remote_ops.to_find_new_threads = remote_threads_info;
6135 remote_ops.to_pid_to_str = remote_pid_to_str;
6136 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6137 remote_ops.to_stop = remote_stop;
6138 remote_ops.to_xfer_partial = remote_xfer_partial;
6139 remote_ops.to_rcmd = remote_rcmd;
6140 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6141 remote_ops.to_stratum = process_stratum;
6142 remote_ops.to_has_all_memory = 1;
6143 remote_ops.to_has_memory = 1;
6144 remote_ops.to_has_stack = 1;
6145 remote_ops.to_has_registers = 1;
6146 remote_ops.to_has_execution = 1;
6147 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6148 remote_ops.to_magic = OPS_MAGIC;
6149 remote_ops.to_memory_map = remote_memory_map;
6150 remote_ops.to_flash_erase = remote_flash_erase;
6151 remote_ops.to_flash_done = remote_flash_done;
6152 remote_ops.to_read_description = remote_read_description;
6153 }
6154
6155 /* Set up the extended remote vector by making a copy of the standard
6156 remote vector and adding to it. */
6157
6158 static void
6159 init_extended_remote_ops (void)
6160 {
6161 extended_remote_ops = remote_ops;
6162
6163 extended_remote_ops.to_shortname = "extended-remote";
6164 extended_remote_ops.to_longname =
6165 "Extended remote serial target in gdb-specific protocol";
6166 extended_remote_ops.to_doc =
6167 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6168 Specify the serial device it is connected to (e.g. /dev/ttya).",
6169 extended_remote_ops.to_open = extended_remote_open;
6170 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6171 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6172 }
6173
6174 static int
6175 remote_can_async_p (void)
6176 {
6177 /* We're async whenever the serial device is. */
6178 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6179 }
6180
6181 static int
6182 remote_is_async_p (void)
6183 {
6184 /* We're async whenever the serial device is. */
6185 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6186 }
6187
6188 /* Pass the SERIAL event on and up to the client. One day this code
6189 will be able to delay notifying the client of an event until the
6190 point where an entire packet has been received. */
6191
6192 static void (*async_client_callback) (enum inferior_event_type event_type,
6193 void *context);
6194 static void *async_client_context;
6195 static serial_event_ftype remote_async_serial_handler;
6196
6197 static void
6198 remote_async_serial_handler (struct serial *scb, void *context)
6199 {
6200 /* Don't propogate error information up to the client. Instead let
6201 the client find out about the error by querying the target. */
6202 async_client_callback (INF_REG_EVENT, async_client_context);
6203 }
6204
6205 static void
6206 remote_async (void (*callback) (enum inferior_event_type event_type,
6207 void *context), void *context)
6208 {
6209 if (current_target.to_async_mask_value == 0)
6210 internal_error (__FILE__, __LINE__,
6211 _("Calling remote_async when async is masked"));
6212
6213 if (callback != NULL)
6214 {
6215 serial_async (remote_desc, remote_async_serial_handler, NULL);
6216 async_client_callback = callback;
6217 async_client_context = context;
6218 }
6219 else
6220 serial_async (remote_desc, NULL, NULL);
6221 }
6222
6223 /* Target async and target extended-async.
6224
6225 This are temporary targets, until it is all tested. Eventually
6226 async support will be incorporated int the usual 'remote'
6227 target. */
6228
6229 static void
6230 init_remote_async_ops (void)
6231 {
6232 remote_async_ops.to_shortname = "async";
6233 remote_async_ops.to_longname =
6234 "Remote serial target in async version of the gdb-specific protocol";
6235 remote_async_ops.to_doc =
6236 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6237 Specify the serial device it is connected to (e.g. /dev/ttya).";
6238 remote_async_ops.to_open = remote_async_open;
6239 remote_async_ops.to_close = remote_close;
6240 remote_async_ops.to_detach = remote_detach;
6241 remote_async_ops.to_disconnect = remote_disconnect;
6242 remote_async_ops.to_resume = remote_async_resume;
6243 remote_async_ops.to_wait = remote_async_wait;
6244 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6245 remote_async_ops.to_store_registers = remote_store_registers;
6246 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6247 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6248 remote_async_ops.to_files_info = remote_files_info;
6249 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6250 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6251 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6252 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6253 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6254 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6255 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6256 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6257 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6258 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6259 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6260 remote_async_ops.to_kill = remote_async_kill;
6261 remote_async_ops.to_load = generic_load;
6262 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6263 remote_async_ops.to_thread_alive = remote_thread_alive;
6264 remote_async_ops.to_find_new_threads = remote_threads_info;
6265 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6266 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6267 remote_async_ops.to_stop = remote_stop;
6268 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6269 remote_async_ops.to_rcmd = remote_rcmd;
6270 remote_async_ops.to_stratum = process_stratum;
6271 remote_async_ops.to_has_all_memory = 1;
6272 remote_async_ops.to_has_memory = 1;
6273 remote_async_ops.to_has_stack = 1;
6274 remote_async_ops.to_has_registers = 1;
6275 remote_async_ops.to_has_execution = 1;
6276 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6277 remote_async_ops.to_can_async_p = remote_can_async_p;
6278 remote_async_ops.to_is_async_p = remote_is_async_p;
6279 remote_async_ops.to_async = remote_async;
6280 remote_async_ops.to_async_mask_value = 1;
6281 remote_async_ops.to_magic = OPS_MAGIC;
6282 remote_async_ops.to_memory_map = remote_memory_map;
6283 remote_async_ops.to_flash_erase = remote_flash_erase;
6284 remote_async_ops.to_flash_done = remote_flash_done;
6285 remote_ops.to_read_description = remote_read_description;
6286 }
6287
6288 /* Set up the async extended remote vector by making a copy of the standard
6289 remote vector and adding to it. */
6290
6291 static void
6292 init_extended_async_remote_ops (void)
6293 {
6294 extended_async_remote_ops = remote_async_ops;
6295
6296 extended_async_remote_ops.to_shortname = "extended-async";
6297 extended_async_remote_ops.to_longname =
6298 "Extended remote serial target in async gdb-specific protocol";
6299 extended_async_remote_ops.to_doc =
6300 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6301 Specify the serial device it is connected to (e.g. /dev/ttya).",
6302 extended_async_remote_ops.to_open = extended_remote_async_open;
6303 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6304 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6305 }
6306
6307 static void
6308 set_remote_cmd (char *args, int from_tty)
6309 {
6310 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6311 }
6312
6313 static void
6314 show_remote_cmd (char *args, int from_tty)
6315 {
6316 /* We can't just use cmd_show_list here, because we want to skip
6317 the redundant "show remote Z-packet" and the legacy aliases. */
6318 struct cleanup *showlist_chain;
6319 struct cmd_list_element *list = remote_show_cmdlist;
6320
6321 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6322 for (; list != NULL; list = list->next)
6323 if (strcmp (list->name, "Z-packet") == 0)
6324 continue;
6325 else if (list->type == not_set_cmd)
6326 /* Alias commands are exactly like the original, except they
6327 don't have the normal type. */
6328 continue;
6329 else
6330 {
6331 struct cleanup *option_chain
6332 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6333 ui_out_field_string (uiout, "name", list->name);
6334 ui_out_text (uiout, ": ");
6335 if (list->type == show_cmd)
6336 do_setshow_command ((char *) NULL, from_tty, list);
6337 else
6338 cmd_func (list, NULL, from_tty);
6339 /* Close the tuple. */
6340 do_cleanups (option_chain);
6341 }
6342
6343 /* Close the tuple. */
6344 do_cleanups (showlist_chain);
6345 }
6346
6347 static void
6348 build_remote_gdbarch_data (void)
6349 {
6350 remote_address_size = TARGET_ADDR_BIT;
6351 }
6352
6353 /* Function to be called whenever a new objfile (shlib) is detected. */
6354 static void
6355 remote_new_objfile (struct objfile *objfile)
6356 {
6357 if (remote_desc != 0) /* Have a remote connection. */
6358 remote_check_symbols (objfile);
6359 }
6360
6361 void
6362 _initialize_remote (void)
6363 {
6364 struct remote_state *rs;
6365
6366 /* architecture specific data */
6367 remote_gdbarch_data_handle =
6368 gdbarch_data_register_post_init (init_remote_state);
6369 remote_g_packet_data_handle =
6370 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6371
6372 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6373 that the remote protocol has been initialized. */
6374 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6375 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6376
6377 /* Initialize the per-target state. At the moment there is only one
6378 of these, not one per target. Only one target is active at a
6379 time. The default buffer size is unimportant; it will be expanded
6380 whenever a larger buffer is needed. */
6381 rs = get_remote_state_raw ();
6382 rs->buf_size = 400;
6383 rs->buf = xmalloc (rs->buf_size);
6384
6385 init_remote_ops ();
6386 add_target (&remote_ops);
6387
6388 init_extended_remote_ops ();
6389 add_target (&extended_remote_ops);
6390
6391 init_remote_async_ops ();
6392 add_target (&remote_async_ops);
6393
6394 init_extended_async_remote_ops ();
6395 add_target (&extended_async_remote_ops);
6396
6397 /* Hook into new objfile notification. */
6398 observer_attach_new_objfile (remote_new_objfile);
6399
6400 #if 0
6401 init_remote_threadtests ();
6402 #endif
6403
6404 /* set/show remote ... */
6405
6406 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6407 Remote protocol specific variables\n\
6408 Configure various remote-protocol specific variables such as\n\
6409 the packets being used"),
6410 &remote_set_cmdlist, "set remote ",
6411 0 /* allow-unknown */, &setlist);
6412 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6413 Remote protocol specific variables\n\
6414 Configure various remote-protocol specific variables such as\n\
6415 the packets being used"),
6416 &remote_show_cmdlist, "show remote ",
6417 0 /* allow-unknown */, &showlist);
6418
6419 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6420 Compare section data on target to the exec file.\n\
6421 Argument is a single section name (default: all loaded sections)."),
6422 &cmdlist);
6423
6424 add_cmd ("packet", class_maintenance, packet_command, _("\
6425 Send an arbitrary packet to a remote target.\n\
6426 maintenance packet TEXT\n\
6427 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6428 this command sends the string TEXT to the inferior, and displays the\n\
6429 response packet. GDB supplies the initial `$' character, and the\n\
6430 terminating `#' character and checksum."),
6431 &maintenancelist);
6432
6433 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6434 Set whether to send break if interrupted."), _("\
6435 Show whether to send break if interrupted."), _("\
6436 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6437 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6438 &setlist, &showlist);
6439
6440 /* Install commands for configuring memory read/write packets. */
6441
6442 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6443 Set the maximum number of bytes per memory write packet (deprecated)."),
6444 &setlist);
6445 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6446 Show the maximum number of bytes per memory write packet (deprecated)."),
6447 &showlist);
6448 add_cmd ("memory-write-packet-size", no_class,
6449 set_memory_write_packet_size, _("\
6450 Set the maximum number of bytes per memory-write packet.\n\
6451 Specify the number of bytes in a packet or 0 (zero) for the\n\
6452 default packet size. The actual limit is further reduced\n\
6453 dependent on the target. Specify ``fixed'' to disable the\n\
6454 further restriction and ``limit'' to enable that restriction."),
6455 &remote_set_cmdlist);
6456 add_cmd ("memory-read-packet-size", no_class,
6457 set_memory_read_packet_size, _("\
6458 Set the maximum number of bytes per memory-read packet.\n\
6459 Specify the number of bytes in a packet or 0 (zero) for the\n\
6460 default packet size. The actual limit is further reduced\n\
6461 dependent on the target. Specify ``fixed'' to disable the\n\
6462 further restriction and ``limit'' to enable that restriction."),
6463 &remote_set_cmdlist);
6464 add_cmd ("memory-write-packet-size", no_class,
6465 show_memory_write_packet_size,
6466 _("Show the maximum number of bytes per memory-write packet."),
6467 &remote_show_cmdlist);
6468 add_cmd ("memory-read-packet-size", no_class,
6469 show_memory_read_packet_size,
6470 _("Show the maximum number of bytes per memory-read packet."),
6471 &remote_show_cmdlist);
6472
6473 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6474 &remote_hw_watchpoint_limit, _("\
6475 Set the maximum number of target hardware watchpoints."), _("\
6476 Show the maximum number of target hardware watchpoints."), _("\
6477 Specify a negative limit for unlimited."),
6478 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6479 &remote_set_cmdlist, &remote_show_cmdlist);
6480 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6481 &remote_hw_breakpoint_limit, _("\
6482 Set the maximum number of target hardware breakpoints."), _("\
6483 Show the maximum number of target hardware breakpoints."), _("\
6484 Specify a negative limit for unlimited."),
6485 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6486 &remote_set_cmdlist, &remote_show_cmdlist);
6487
6488 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6489 &remote_address_size, _("\
6490 Set the maximum size of the address (in bits) in a memory packet."), _("\
6491 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6492 NULL,
6493 NULL, /* FIXME: i18n: */
6494 &setlist, &showlist);
6495
6496 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6497 "X", "binary-download", 1);
6498
6499 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6500 "vCont", "verbose-resume", 0);
6501
6502 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6503 "QPassSignals", "pass-signals", 0);
6504
6505 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6506 "qSymbol", "symbol-lookup", 0);
6507
6508 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6509 "P", "set-register", 1);
6510
6511 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6512 "p", "fetch-register", 1);
6513
6514 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6515 "Z0", "software-breakpoint", 0);
6516
6517 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6518 "Z1", "hardware-breakpoint", 0);
6519
6520 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6521 "Z2", "write-watchpoint", 0);
6522
6523 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6524 "Z3", "read-watchpoint", 0);
6525
6526 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6527 "Z4", "access-watchpoint", 0);
6528
6529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6530 "qXfer:auxv:read", "read-aux-vector", 0);
6531
6532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6533 "qXfer:features:read", "target-features", 0);
6534
6535 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6536 "qXfer:memory-map:read", "memory-map", 0);
6537
6538 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6539 "qGetTLSAddr", "get-thread-local-storage-address",
6540 0);
6541
6542 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6543 "qSupported", "supported-packets", 0);
6544
6545 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6546 Z sub-packet has its own set and show commands, but users may
6547 have sets to this variable in their .gdbinit files (or in their
6548 documentation). */
6549 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6550 &remote_Z_packet_detect, _("\
6551 Set use of remote protocol `Z' packets"), _("\
6552 Show use of remote protocol `Z' packets "), _("\
6553 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6554 packets."),
6555 set_remote_protocol_Z_packet_cmd,
6556 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6557 &remote_set_cmdlist, &remote_show_cmdlist);
6558
6559 /* Eventually initialize fileio. See fileio.c */
6560 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6561 }
This page took 0.20998 seconds and 5 git commands to generate.