* remote.c (getpkt): If we get a timeout, actually retry rather
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Remote communication protocol.
21
22 A debug packet whose contents are <data>
23 is encapsulated for transmission in the form:
24
25 $ <data> # CSUM1 CSUM2
26
27 <data> must be ASCII alphanumeric and cannot include characters
28 '$' or '#'. If <data> starts with two characters followed by
29 ':', then the existing stubs interpret this as a sequence number.
30
31 CSUM1 and CSUM2 are ascii hex representation of an 8-bit
32 checksum of <data>, the most significant nibble is sent first.
33 the hex digits 0-9,a-f are used.
34
35 Receiver responds with:
36
37 + - if CSUM is correct and ready for next packet
38 - - if CSUM is incorrect
39
40 <data> is as follows:
41 All values are encoded in ascii hex digits.
42
43 Request Packet
44
45 read registers g
46 reply XX....X Each byte of register data
47 is described by two hex digits.
48 Registers are in the internal order
49 for GDB, and the bytes in a register
50 are in the same order the machine uses.
51 or ENN for an error.
52
53 write regs GXX..XX Each byte of register data
54 is described by two hex digits.
55 reply OK for success
56 ENN for an error
57
58 write reg Pn...=r... Write register n... with value r...,
59 which contains two hex digits for each
60 byte in the register (target byte
61 order).
62 reply OK for success
63 ENN for an error
64 (not supported by all stubs).
65
66 read mem mAA..AA,LLLL AA..AA is address, LLLL is length.
67 reply XX..XX XX..XX is mem contents
68 Can be fewer bytes than requested
69 if able to read only part of the data.
70 or ENN NN is errno
71
72 write mem MAA..AA,LLLL:XX..XX
73 AA..AA is address,
74 LLLL is number of bytes,
75 XX..XX is data
76 reply OK for success
77 ENN for an error (this includes the case
78 where only part of the data was
79 written).
80
81 cont cAA..AA AA..AA is address to resume
82 If AA..AA is omitted,
83 resume at same address.
84
85 step sAA..AA AA..AA is address to resume
86 If AA..AA is omitted,
87 resume at same address.
88
89 last signal ? Reply the current reason for stopping.
90 This is the same reply as is generated
91 for step or cont : SAA where AA is the
92 signal number.
93
94 There is no immediate reply to step or cont.
95 The reply comes when the machine stops.
96 It is SAA AA is the "signal number"
97
98 or... TAAn...:r...;n:r...;n...:r...;
99 AA = signal number
100 n... = register number
101 r... = register contents
102 or... WAA The process exited, and AA is
103 the exit status. This is only
104 applicable for certains sorts of
105 targets.
106 kill request k
107
108 toggle debug d toggle debug flag (see 386 & 68k stubs)
109 reset r reset -- see sparc stub.
110 reserved <other> On other requests, the stub should
111 ignore the request and send an empty
112 response ($#<checksum>). This way
113 we can extend the protocol and GDB
114 can tell whether the stub it is
115 talking to uses the old or the new.
116 search tAA:PP,MM Search backwards starting at address
117 AA for a match with pattern PP and
118 mask MM. PP and MM are 4 bytes.
119 Not supported by all stubs.
120
121 general query qXXXX Request info about XXXX.
122 general set QXXXX=yyyy Set value of XXXX to yyyy.
123 query sect offs qOffsets Get section offsets. Reply is
124 Text=xxx;Data=yyy;Bss=zzz
125
126 Responses can be run-length encoded to save space. A '*' means that
127 the next two characters are hex digits giving a repeat count which
128 stands for that many repititions of the character preceding the '*'.
129 Note that this means that responses cannot contain '*'. Example:
130 "0*03" means the same as "0000". */
131
132 #include "defs.h"
133 #include <string.h>
134 #include <fcntl.h>
135 #include "frame.h"
136 #include "inferior.h"
137 #include "bfd.h"
138 #include "symfile.h"
139 #include "target.h"
140 #include "wait.h"
141 #include "terminal.h"
142 #include "gdbcmd.h"
143 #include "objfiles.h"
144 #include "gdb-stabs.h"
145
146 #include "dcache.h"
147
148 #if !defined(DONT_USE_REMOTE)
149 #ifdef USG
150 #include <sys/types.h>
151 #endif
152
153 #include <signal.h>
154 #include "serial.h"
155
156 /* Prototypes for local functions */
157
158 static int
159 remote_write_bytes PARAMS ((CORE_ADDR memaddr, unsigned char *myaddr, int len));
160
161 static int
162 remote_read_bytes PARAMS ((CORE_ADDR memaddr, unsigned char *myaddr, int len));
163
164 static void
165 remote_files_info PARAMS ((struct target_ops *ignore));
166
167 static int
168 remote_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
169 int should_write, struct target_ops *target));
170
171 static void
172 remote_prepare_to_store PARAMS ((void));
173
174 static void
175 remote_fetch_registers PARAMS ((int regno));
176
177 static void
178 remote_resume PARAMS ((int pid, int step, enum target_signal siggnal));
179
180 static int
181 remote_start_remote PARAMS ((char *dummy));
182
183 static void
184 remote_open PARAMS ((char *name, int from_tty));
185
186 static void
187 remote_close PARAMS ((int quitting));
188
189 static void
190 remote_store_registers PARAMS ((int regno));
191
192 static void
193 getpkt PARAMS ((char *buf, int forever));
194
195 static void
196 putpkt PARAMS ((char *buf));
197
198 static void
199 remote_send PARAMS ((char *buf));
200
201 static int
202 readchar PARAMS ((void));
203
204 static int remote_wait PARAMS ((int pid, struct target_waitstatus *status));
205
206 static int
207 tohex PARAMS ((int nib));
208
209 static int
210 fromhex PARAMS ((int a));
211
212 static void
213 remote_detach PARAMS ((char *args, int from_tty));
214
215 static void
216 remote_interrupt PARAMS ((int signo));
217
218 static void
219 remote_interrupt_twice PARAMS ((int signo));
220
221 static void
222 interrupt_query PARAMS ((void));
223
224 extern struct target_ops remote_ops; /* Forward decl */
225
226 /* This was 5 seconds, which is a long time to sit and wait.
227 Unless this is going though some terminal server or multiplexer or
228 other form of hairy serial connection, I would think 2 seconds would
229 be plenty. */
230 static int timeout = 2;
231
232 #if 0
233 int icache;
234 #endif
235
236 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
237 remote_open knows that we don't have a file open when the program
238 starts. */
239 serial_t remote_desc = NULL;
240
241 /* Having this larger than 400 causes us to be incompatible with m68k-stub.c
242 and i386-stub.c. Normally, no one would notice because it only matters
243 for writing large chunks of memory (e.g. in downloads). Also, this needs
244 to be more than 400 if required to hold the registers (see below, where
245 we round it up based on REGISTER_BYTES). */
246 #define PBUFSIZ 400
247
248 /* Maximum number of bytes to read/write at once. The value here
249 is chosen to fill up a packet (the headers account for the 32). */
250 #define MAXBUFBYTES ((PBUFSIZ-32)/2)
251
252 /* Round up PBUFSIZ to hold all the registers, at least. */
253 #if REGISTER_BYTES > MAXBUFBYTES
254 #undef PBUFSIZ
255 #define PBUFSIZ (REGISTER_BYTES * 2 + 32)
256 #endif
257
258 /* Should we try the 'P' request? If this is set to one when the stub
259 doesn't support 'P', the only consequence is some unnecessary traffic. */
260 static int stub_supports_P = 1;
261
262 \f
263 /* Clean up connection to a remote debugger. */
264
265 /* ARGSUSED */
266 static void
267 remote_close (quitting)
268 int quitting;
269 {
270 if (remote_desc)
271 SERIAL_CLOSE (remote_desc);
272 remote_desc = NULL;
273 }
274
275 /* Query the remote side for the text, data and bss offsets. */
276
277 static void
278 get_offsets ()
279 {
280 unsigned char buf [PBUFSIZ];
281 int nvals;
282 CORE_ADDR text_addr, data_addr, bss_addr;
283 struct section_offsets *offs;
284
285 putpkt ("qOffsets");
286
287 getpkt (buf, 1);
288
289 if (buf[0] == 'E')
290 {
291 warning ("Remote failure reply: %s", buf);
292 return;
293 }
294
295 nvals = sscanf (buf, "Text=%lx;Data=%lx;Bss=%lx", &text_addr, &data_addr,
296 &bss_addr);
297 if (nvals != 3)
298 error ("Malformed response to offset query, %s", buf);
299
300 if (symfile_objfile == NULL)
301 return;
302
303 offs = (struct section_offsets *) alloca (sizeof (struct section_offsets)
304 + symfile_objfile->num_sections
305 * sizeof (offs->offsets));
306 memcpy (offs, symfile_objfile->section_offsets,
307 sizeof (struct section_offsets)
308 + symfile_objfile->num_sections
309 * sizeof (offs->offsets));
310
311 /* FIXME: This code assumes gdb-stabs.h is being used; it's broken
312 for xcoff, dwarf, sdb-coff, etc. But there is no simple
313 canonical representation for this stuff. (Just what does "text"
314 as seen by the stub mean, anyway? I think it means all sections
315 with SEC_CODE set, but we currently have no way to deal with that). */
316
317 ANOFFSET (offs, SECT_OFF_TEXT) = text_addr;
318 ANOFFSET (offs, SECT_OFF_DATA) = data_addr;
319 ANOFFSET (offs, SECT_OFF_BSS) = bss_addr;
320
321 objfile_relocate (symfile_objfile, offs);
322 }
323
324 /* Stub for catch_errors. */
325
326 static int
327 remote_start_remote (dummy)
328 char *dummy;
329 {
330 immediate_quit = 1; /* Allow user to interrupt it */
331
332 /* Ack any packet which the remote side has already sent. */
333
334 SERIAL_WRITE (remote_desc, "+", 1);
335
336 get_offsets (); /* Get text, data & bss offsets */
337
338 putpkt ("?"); /* initiate a query from remote machine */
339 immediate_quit = 0;
340
341 start_remote (); /* Initialize gdb process mechanisms */
342
343 return 1;
344 }
345
346 /* Open a connection to a remote debugger.
347 NAME is the filename used for communication. */
348
349 static DCACHE *remote_dcache;
350
351 static void
352 remote_open (name, from_tty)
353 char *name;
354 int from_tty;
355 {
356 if (name == 0)
357 error (
358 "To open a remote debug connection, you need to specify what serial\n\
359 device is attached to the remote system (e.g. /dev/ttya).");
360
361 target_preopen (from_tty);
362
363 unpush_target (&remote_ops);
364
365 remote_dcache = dcache_init (remote_read_bytes, remote_write_bytes);
366
367 remote_desc = SERIAL_OPEN (name);
368 if (!remote_desc)
369 perror_with_name (name);
370
371 if (baud_rate != -1)
372 {
373 if (SERIAL_SETBAUDRATE (remote_desc, baud_rate))
374 {
375 SERIAL_CLOSE (remote_desc);
376 perror_with_name (name);
377 }
378 }
379
380 SERIAL_RAW (remote_desc);
381
382 /* If there is something sitting in the buffer we might take it as a
383 response to a command, which would be bad. */
384 SERIAL_FLUSH_INPUT (remote_desc);
385
386 if (from_tty)
387 {
388 puts_filtered ("Remote debugging using ");
389 puts_filtered (name);
390 puts_filtered ("\n");
391 }
392 push_target (&remote_ops); /* Switch to using remote target now */
393
394 /* Start out by trying the 'P' request to set registers. We set this each
395 time that we open a new target so that if the user switches from one
396 stub to another, we can (if the target is closed and reopened) cope. */
397 stub_supports_P = 1;
398
399 /* Start the remote connection; if error (0), discard this target.
400 In particular, if the user quits, be sure to discard it
401 (we'd be in an inconsistent state otherwise). */
402 if (!catch_errors (remote_start_remote, (char *)0,
403 "Couldn't establish connection to remote target\n", RETURN_MASK_ALL))
404 pop_target();
405 }
406
407 /* remote_detach()
408 takes a program previously attached to and detaches it.
409 We better not have left any breakpoints
410 in the program or it'll die when it hits one.
411 Close the open connection to the remote debugger.
412 Use this when you want to detach and do something else
413 with your gdb. */
414
415 static void
416 remote_detach (args, from_tty)
417 char *args;
418 int from_tty;
419 {
420 if (args)
421 error ("Argument given to \"detach\" when remotely debugging.");
422
423 pop_target ();
424 if (from_tty)
425 puts_filtered ("Ending remote debugging.\n");
426 }
427
428 /* Convert hex digit A to a number. */
429
430 static int
431 fromhex (a)
432 int a;
433 {
434 if (a >= '0' && a <= '9')
435 return a - '0';
436 else if (a >= 'a' && a <= 'f')
437 return a - 'a' + 10;
438 else
439 error ("Reply contains invalid hex digit");
440 return -1;
441 }
442
443 /* Convert number NIB to a hex digit. */
444
445 static int
446 tohex (nib)
447 int nib;
448 {
449 if (nib < 10)
450 return '0'+nib;
451 else
452 return 'a'+nib-10;
453 }
454 \f
455 /* Tell the remote machine to resume. */
456
457 static void
458 remote_resume (pid, step, siggnal)
459 int pid, step;
460 enum target_signal siggnal;
461 {
462 char buf[PBUFSIZ];
463
464 if (siggnal)
465 {
466 char *name;
467 target_terminal_ours_for_output ();
468 printf_filtered
469 ("Can't send signals to a remote system. %s not sent.\n",
470 target_signal_to_name (siggnal));
471 target_terminal_inferior ();
472 }
473
474 dcache_flush (remote_dcache);
475
476 strcpy (buf, step ? "s": "c");
477
478 putpkt (buf);
479 }
480 \f
481 /* Send ^C to target to halt it. Target will respond, and send us a
482 packet. */
483
484 static void
485 remote_interrupt (signo)
486 int signo;
487 {
488 /* If this doesn't work, try more severe steps. */
489 signal (signo, remote_interrupt_twice);
490
491 if (remote_debug)
492 printf_unfiltered ("remote_interrupt called\n");
493
494 SERIAL_WRITE (remote_desc, "\003", 1); /* Send a ^C */
495 }
496
497 static void (*ofunc)();
498
499 /* The user typed ^C twice. */
500 static void
501 remote_interrupt_twice (signo)
502 int signo;
503 {
504 signal (signo, ofunc);
505
506 interrupt_query ();
507
508 signal (signo, remote_interrupt);
509 }
510
511 /* Ask the user what to do when an interrupt is received. */
512
513 static void
514 interrupt_query ()
515 {
516 target_terminal_ours ();
517
518 if (query ("Interrupted while waiting for the program.\n\
519 Give up (and stop debugging it)? "))
520 {
521 target_mourn_inferior ();
522 return_to_top_level (RETURN_QUIT);
523 }
524
525 target_terminal_inferior ();
526 }
527
528 /* Wait until the remote machine stops, then return,
529 storing status in STATUS just as `wait' would.
530 Returns "pid" (though it's not clear what, if anything, that
531 means in the case of this target). */
532
533 static int
534 remote_wait (pid, status)
535 int pid;
536 struct target_waitstatus *status;
537 {
538 unsigned char buf[PBUFSIZ];
539
540 status->kind = TARGET_WAITKIND_EXITED;
541 status->value.integer = 0;
542
543 while (1)
544 {
545 unsigned char *p;
546
547 ofunc = (void (*)()) signal (SIGINT, remote_interrupt);
548 getpkt ((char *) buf, 1);
549 signal (SIGINT, ofunc);
550
551 if (buf[0] == 'E')
552 warning ("Remote failure reply: %s", buf);
553 else if (buf[0] == 'T')
554 {
555 int i;
556 long regno;
557 char regs[MAX_REGISTER_RAW_SIZE];
558
559 /* Expedited reply, containing Signal, {regno, reg} repeat */
560 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
561 ss = signal number
562 n... = register number
563 r... = register contents
564 */
565
566 p = &buf[3]; /* after Txx */
567
568 while (*p)
569 {
570 unsigned char *p1;
571
572 regno = strtol (p, &p1, 16); /* Read the register number */
573
574 if (p1 == p)
575 warning ("Remote sent badly formed register number: %s\nPacket: '%s'\n",
576 p1, buf);
577
578 p = p1;
579
580 if (*p++ != ':')
581 warning ("Malformed packet (missing colon): %s\nPacket: '%s'\n",
582 p, buf);
583
584 if (regno >= NUM_REGS)
585 warning ("Remote sent bad register number %d: %s\nPacket: '%s'\n",
586 regno, p, buf);
587
588 for (i = 0; i < REGISTER_RAW_SIZE (regno); i++)
589 {
590 if (p[0] == 0 || p[1] == 0)
591 warning ("Remote reply is too short: %s", buf);
592 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
593 p += 2;
594 }
595
596 if (*p++ != ';')
597 warning ("Remote register badly formatted: %s", buf);
598
599 supply_register (regno, regs);
600 }
601 break;
602 }
603 else if (buf[0] == 'W')
604 {
605 /* The remote process exited. */
606 status->kind = TARGET_WAITKIND_EXITED;
607 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
608 return 0;
609 }
610 else if (buf[0] == 'S')
611 break;
612 else
613 warning ("Invalid remote reply: %s", buf);
614 }
615
616 status->kind = TARGET_WAITKIND_STOPPED;
617 status->value.sig = (enum target_signal)
618 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
619
620 return 0;
621 }
622
623 /* Number of bytes of registers this stub implements. */
624 static int register_bytes_found;
625
626 /* Read the remote registers into the block REGS. */
627 /* Currently we just read all the registers, so we don't use regno. */
628 /* ARGSUSED */
629 static void
630 remote_fetch_registers (regno)
631 int regno;
632 {
633 char buf[PBUFSIZ];
634 int i;
635 char *p;
636 char regs[REGISTER_BYTES];
637
638 sprintf (buf, "g");
639 remote_send (buf);
640
641 /* Unimplemented registers read as all bits zero. */
642 memset (regs, 0, REGISTER_BYTES);
643
644 /* We can get out of synch in various cases. If the first character
645 in the buffer is not a hex character, assume that has happened
646 and try to fetch another packet to read. */
647 while ((buf[0] < '0' || buf[0] > '9')
648 && (buf[0] < 'a' || buf[0] > 'f'))
649 {
650 if (remote_debug)
651 printf_unfiltered ("Bad register packet; fetching a new packet\n");
652 getpkt (buf, 0);
653 }
654
655 /* Reply describes registers byte by byte, each byte encoded as two
656 hex characters. Suck them all up, then supply them to the
657 register cacheing/storage mechanism. */
658
659 p = buf;
660 for (i = 0; i < REGISTER_BYTES; i++)
661 {
662 if (p[0] == 0)
663 break;
664 if (p[1] == 0)
665 {
666 warning ("Remote reply is of odd length: %s", buf);
667 /* Don't change register_bytes_found in this case, and don't
668 print a second warning. */
669 goto supply_them;
670 }
671 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
672 p += 2;
673 }
674
675 if (i != register_bytes_found)
676 {
677 register_bytes_found = i;
678 #ifdef REGISTER_BYTES_OK
679 if (!REGISTER_BYTES_OK (i))
680 warning ("Remote reply is too short: %s", buf);
681 #endif
682 }
683
684 supply_them:
685 for (i = 0; i < NUM_REGS; i++)
686 supply_register (i, &regs[REGISTER_BYTE(i)]);
687 }
688
689 /* Prepare to store registers. Since we may send them all (using a
690 'G' request), we have to read out the ones we don't want to change
691 first. */
692
693 static void
694 remote_prepare_to_store ()
695 {
696 /* Make sure the entire registers array is valid. */
697 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
698 }
699
700 /* Store register REGNO, or all registers if REGNO == -1, from the contents
701 of REGISTERS. FIXME: ignores errors. */
702
703 static void
704 remote_store_registers (regno)
705 int regno;
706 {
707 char buf[PBUFSIZ];
708 int i;
709 char *p;
710
711 if (regno >= 0 && stub_supports_P)
712 {
713 /* Try storing a single register. */
714 char *regp;
715
716 sprintf (buf, "P%x=", regno);
717 p = buf + strlen (buf);
718 regp = &registers[REGISTER_BYTE (regno)];
719 for (i = 0; i < REGISTER_RAW_SIZE (regno); ++i)
720 {
721 *p++ = tohex ((regp[i] >> 4) & 0xf);
722 *p++ = tohex (regp[i] & 0xf);
723 }
724 *p = '\0';
725 remote_send (buf);
726 if (buf[0] != '\0')
727 {
728 /* The stub understands the 'P' request. We are done. */
729 return;
730 }
731
732 /* The stub does not support the 'P' request. Use 'G' instead,
733 and don't try using 'P' in the future (it will just waste our
734 time). */
735 stub_supports_P = 0;
736 }
737
738 buf[0] = 'G';
739
740 /* Command describes registers byte by byte,
741 each byte encoded as two hex characters. */
742
743 p = buf + 1;
744 /* remote_prepare_to_store insures that register_bytes_found gets set. */
745 for (i = 0; i < register_bytes_found; i++)
746 {
747 *p++ = tohex ((registers[i] >> 4) & 0xf);
748 *p++ = tohex (registers[i] & 0xf);
749 }
750 *p = '\0';
751
752 remote_send (buf);
753 }
754
755 #if 0
756
757 /* Use of the data cache is disabled because it loses for looking at
758 and changing hardware I/O ports and the like. Accepting `volatile'
759 would perhaps be one way to fix it, but a better way which would
760 win for more cases would be to use the executable file for the text
761 segment, like the `icache' code below but done cleanly (in some
762 target-independent place, perhaps in target_xfer_memory, perhaps
763 based on assigning each target a speed or perhaps by some simpler
764 mechanism). */
765
766 /* Read a word from remote address ADDR and return it.
767 This goes through the data cache. */
768
769 static int
770 remote_fetch_word (addr)
771 CORE_ADDR addr;
772 {
773 #if 0
774 if (icache)
775 {
776 extern CORE_ADDR text_start, text_end;
777
778 if (addr >= text_start && addr < text_end)
779 {
780 int buffer;
781 xfer_core_file (addr, &buffer, sizeof (int));
782 return buffer;
783 }
784 }
785 #endif
786 return dcache_fetch (remote_dcache, addr);
787 }
788
789 /* Write a word WORD into remote address ADDR.
790 This goes through the data cache. */
791
792 static void
793 remote_store_word (addr, word)
794 CORE_ADDR addr;
795 int word;
796 {
797 dcache_poke (remote_dcache, addr, word);
798 }
799 #endif /* 0 */
800 \f
801 /* Write memory data directly to the remote machine.
802 This does not inform the data cache; the data cache uses this.
803 MEMADDR is the address in the remote memory space.
804 MYADDR is the address of the buffer in our space.
805 LEN is the number of bytes.
806
807 Returns number of bytes transferred, or 0 for error. */
808
809 static int
810 remote_write_bytes (memaddr, myaddr, len)
811 CORE_ADDR memaddr;
812 unsigned char *myaddr;
813 int len;
814 {
815 char buf[PBUFSIZ];
816 int i;
817 char *p;
818
819 /* FIXME-32x64: Need a version of print_address_numeric which doesn't
820 set use_local (and also puts the result in a buffer like sprintf). */
821 sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, len);
822
823 /* We send target system values byte by byte, in increasing byte addresses,
824 each byte encoded as two hex characters. */
825
826 p = buf + strlen (buf);
827 for (i = 0; i < len; i++)
828 {
829 *p++ = tohex ((myaddr[i] >> 4) & 0xf);
830 *p++ = tohex (myaddr[i] & 0xf);
831 }
832 *p = '\0';
833
834 putpkt (buf);
835 getpkt (buf, 0);
836
837 if (buf[0] == 'E')
838 {
839 /* There is no correspondance between what the remote protocol uses
840 for errors and errno codes. We would like a cleaner way of
841 representing errors (big enough to include errno codes, bfd_error
842 codes, and others). But for now just return EIO. */
843 errno = EIO;
844 return 0;
845 }
846 return len;
847 }
848
849 /* Read memory data directly from the remote machine.
850 This does not use the data cache; the data cache uses this.
851 MEMADDR is the address in the remote memory space.
852 MYADDR is the address of the buffer in our space.
853 LEN is the number of bytes.
854
855 Returns number of bytes transferred, or 0 for error. */
856
857 static int
858 remote_read_bytes (memaddr, myaddr, len)
859 CORE_ADDR memaddr;
860 unsigned char *myaddr;
861 int len;
862 {
863 char buf[PBUFSIZ];
864 int i;
865 char *p;
866
867 if (len > PBUFSIZ / 2 - 1)
868 abort ();
869
870 /* FIXME-32x64: Need a version of print_address_numeric which doesn't
871 set use_local (and also puts the result in a buffer like sprintf). */
872 sprintf (buf, "m%lx,%x", (unsigned long) memaddr, len);
873 putpkt (buf);
874 getpkt (buf, 0);
875
876 if (buf[0] == 'E')
877 {
878 /* There is no correspondance between what the remote protocol uses
879 for errors and errno codes. We would like a cleaner way of
880 representing errors (big enough to include errno codes, bfd_error
881 codes, and others). But for now just return EIO. */
882 errno = EIO;
883 return 0;
884 }
885
886 /* Reply describes memory byte by byte,
887 each byte encoded as two hex characters. */
888
889 p = buf;
890 for (i = 0; i < len; i++)
891 {
892 if (p[0] == 0 || p[1] == 0)
893 /* Reply is short. This means that we were able to read only part
894 of what we wanted to. */
895 break;
896 myaddr[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
897 p += 2;
898 }
899 return i;
900 }
901 \f
902 /* Read or write LEN bytes from inferior memory at MEMADDR, transferring
903 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
904 nonzero. Returns length of data written or read; 0 for error. */
905
906 /* ARGSUSED */
907 static int
908 remote_xfer_memory(memaddr, myaddr, len, should_write, target)
909 CORE_ADDR memaddr;
910 char *myaddr;
911 int len;
912 int should_write;
913 struct target_ops *target; /* ignored */
914 {
915 int xfersize;
916 int bytes_xferred;
917 int total_xferred = 0;
918
919 while (len > 0)
920 {
921 if (len > MAXBUFBYTES)
922 xfersize = MAXBUFBYTES;
923 else
924 xfersize = len;
925
926 if (should_write)
927 bytes_xferred = remote_write_bytes (memaddr,
928 (unsigned char *)myaddr, xfersize);
929 else
930 bytes_xferred = remote_read_bytes (memaddr,
931 (unsigned char *)myaddr, xfersize);
932
933 /* If we get an error, we are done xferring. */
934 if (bytes_xferred == 0)
935 break;
936
937 memaddr += bytes_xferred;
938 myaddr += bytes_xferred;
939 len -= bytes_xferred;
940 total_xferred += bytes_xferred;
941 }
942 return total_xferred;
943 }
944
945 #if 0
946 /* Enable after 4.12. */
947
948 void
949 remote_search (len, data, mask, startaddr, increment, lorange, hirange
950 addr_found, data_found)
951 int len;
952 char *data;
953 char *mask;
954 CORE_ADDR startaddr;
955 int increment;
956 CORE_ADDR lorange;
957 CORE_ADDR hirange;
958 CORE_ADDR *addr_found;
959 char *data_found;
960 {
961 if (increment == -4 && len == 4)
962 {
963 long mask_long, data_long;
964 long data_found_long;
965 CORE_ADDR addr_we_found;
966 char buf[PBUFSIZ];
967 long returned_long[2];
968 char *p;
969
970 mask_long = extract_unsigned_integer (mask, len);
971 data_long = extract_unsigned_integer (data, len);
972 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
973 putpkt (buf);
974 getpkt (buf, 0);
975 if (buf[0] == '\0')
976 {
977 /* The stub doesn't support the 't' request. We might want to
978 remember this fact, but on the other hand the stub could be
979 switched on us. Maybe we should remember it only until
980 the next "target remote". */
981 generic_search (len, data, mask, startaddr, increment, lorange,
982 hirange, addr_found, data_found);
983 return;
984 }
985
986 if (buf[0] == 'E')
987 /* There is no correspondance between what the remote protocol uses
988 for errors and errno codes. We would like a cleaner way of
989 representing errors (big enough to include errno codes, bfd_error
990 codes, and others). But for now just use EIO. */
991 memory_error (EIO, startaddr);
992 p = buf;
993 addr_we_found = 0;
994 while (*p != '\0' && *p != ',')
995 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
996 if (*p == '\0')
997 error ("Protocol error: short return for search");
998
999 data_found_long = 0;
1000 while (*p != '\0' && *p != ',')
1001 data_found_long = (data_found_long << 4) + fromhex (*p++);
1002 /* Ignore anything after this comma, for future extensions. */
1003
1004 if (addr_we_found < lorange || addr_we_found >= hirange)
1005 {
1006 *addr_found = 0;
1007 return;
1008 }
1009
1010 *addr_found = addr_we_found;
1011 *data_found = store_unsigned_integer (data_we_found, len);
1012 return;
1013 }
1014 generic_search (len, data, mask, startaddr, increment, lorange,
1015 hirange, addr_found, data_found);
1016 }
1017 #endif /* 0 */
1018 \f
1019 static void
1020 remote_files_info (ignore)
1021 struct target_ops *ignore;
1022 {
1023 puts_filtered ("Debugging a target over a serial line.\n");
1024 }
1025 \f
1026 /* Stuff for dealing with the packets which are part of this protocol.
1027 See comment at top of file for details. */
1028
1029 /* Read a single character from the remote end, masking it down to 7 bits. */
1030
1031 static int
1032 readchar ()
1033 {
1034 int ch;
1035
1036 ch = SERIAL_READCHAR (remote_desc, timeout);
1037
1038 if (ch < 0)
1039 return ch;
1040
1041 return ch & 0x7f;
1042 }
1043
1044 /* Send the command in BUF to the remote machine,
1045 and read the reply into BUF.
1046 Report an error if we get an error reply. */
1047
1048 static void
1049 remote_send (buf)
1050 char *buf;
1051 {
1052
1053 putpkt (buf);
1054 getpkt (buf, 0);
1055
1056 if (buf[0] == 'E')
1057 error ("Remote failure reply: %s", buf);
1058 }
1059
1060 /* Send a packet to the remote machine, with error checking.
1061 The data of the packet is in BUF. */
1062
1063 static void
1064 putpkt (buf)
1065 char *buf;
1066 {
1067 int i;
1068 unsigned char csum = 0;
1069 char buf2[PBUFSIZ];
1070 int cnt = strlen (buf);
1071 int ch;
1072 char *p;
1073
1074 /* Copy the packet into buffer BUF2, encapsulating it
1075 and giving it a checksum. */
1076
1077 if (cnt > sizeof(buf2) - 5) /* Prosanity check */
1078 abort();
1079
1080 p = buf2;
1081 *p++ = '$';
1082
1083 for (i = 0; i < cnt; i++)
1084 {
1085 csum += buf[i];
1086 *p++ = buf[i];
1087 }
1088 *p++ = '#';
1089 *p++ = tohex ((csum >> 4) & 0xf);
1090 *p++ = tohex (csum & 0xf);
1091
1092 /* Send it over and over until we get a positive ack. */
1093
1094 while (1)
1095 {
1096 if (remote_debug)
1097 {
1098 *p = '\0';
1099 printf_unfiltered ("Sending packet: %s...", buf2); gdb_flush(gdb_stdout);
1100 }
1101 if (SERIAL_WRITE (remote_desc, buf2, p - buf2))
1102 perror_with_name ("putpkt: write failed");
1103
1104 /* read until either a timeout occurs (-2) or '+' is read */
1105 while (1)
1106 {
1107 ch = readchar ();
1108
1109 switch (ch)
1110 {
1111 case '+':
1112 if (remote_debug)
1113 printf_unfiltered("Ack\n");
1114 return;
1115 case SERIAL_TIMEOUT:
1116 break; /* Retransmit buffer */
1117 case SERIAL_ERROR:
1118 perror_with_name ("putpkt: couldn't read ACK");
1119 case SERIAL_EOF:
1120 error ("putpkt: EOF while trying to read ACK");
1121 default:
1122 if (remote_debug)
1123 printf_unfiltered ("%02X %c ", ch&0xFF, ch);
1124 continue;
1125 }
1126 break; /* Here to retransmit */
1127 }
1128
1129 #if 0
1130 /* This is wrong. If doing a long backtrace, the user should be
1131 able to get out next time we call QUIT, without anything as violent
1132 as interrupt_query. If we want to provide a way out of here
1133 without getting to the next QUIT, it should be based on hitting
1134 ^C twice as in remote_wait. */
1135 if (quit_flag)
1136 {
1137 quit_flag = 0;
1138 interrupt_query ();
1139 }
1140 #endif
1141 }
1142 }
1143
1144 /* Read a packet from the remote machine, with error checking,
1145 and store it in BUF. BUF is expected to be of size PBUFSIZ.
1146 If FOREVER, wait forever rather than timing out; this is used
1147 while the target is executing user code. */
1148
1149 static void
1150 getpkt (retbuf, forever)
1151 char *retbuf;
1152 int forever;
1153 {
1154 char *bp;
1155 unsigned char csum;
1156 int c = 0;
1157 unsigned char c1, c2;
1158 int retries = 0;
1159 char buf[PBUFSIZ];
1160
1161 #define MAX_RETRIES 10
1162
1163 while (1)
1164 {
1165 #if 0
1166 /* This is wrong. If doing a long backtrace, the user should be
1167 able to get out time next we call QUIT, without anything as violent
1168 as interrupt_query. If we want to provide a way out of here
1169 without getting to the next QUIT, it should be based on hitting
1170 ^C twice as in remote_wait. */
1171 if (quit_flag)
1172 {
1173 quit_flag = 0;
1174 interrupt_query ();
1175 }
1176 #endif
1177
1178 /* This can loop forever if the remote side sends us characters
1179 continuously, but if it pauses, we'll get a zero from readchar
1180 because of timeout. Then we'll count that as a retry. */
1181
1182 c = readchar();
1183 if (c > 0 && c != '$')
1184 continue;
1185
1186 if (c == SERIAL_TIMEOUT)
1187 {
1188 if (forever)
1189 continue;
1190 if (remote_debug)
1191 puts_filtered ("Timed out.\n");
1192 goto whole;
1193 }
1194
1195 if (c == SERIAL_EOF)
1196 error ("Remote connection closed");
1197 if (c == SERIAL_ERROR)
1198 perror_with_name ("Remote communication error");
1199
1200 /* Force csum to be zero here because of possible error retry. */
1201 csum = 0;
1202 bp = buf;
1203
1204 while (1)
1205 {
1206 c = readchar ();
1207 if (c == SERIAL_TIMEOUT)
1208 {
1209 if (remote_debug)
1210 puts_filtered ("Timeout in mid-packet, retrying\n");
1211 goto whole; /* Start a new packet, count retries */
1212 }
1213 if (c == '$')
1214 {
1215 if (remote_debug)
1216 puts_filtered ("Saw new packet start in middle of old one\n");
1217 goto whole; /* Start a new packet, count retries */
1218 }
1219 if (c == '#')
1220 break;
1221 if (bp >= buf+PBUFSIZ-1)
1222 {
1223 *bp = '\0';
1224 puts_filtered ("Remote packet too long: ");
1225 puts_filtered (buf);
1226 puts_filtered ("\n");
1227 goto whole;
1228 }
1229 *bp++ = c;
1230 csum += c;
1231 }
1232 *bp = 0;
1233
1234 c1 = fromhex (readchar ());
1235 c2 = fromhex (readchar ());
1236 if ((csum & 0xff) == (c1 << 4) + c2)
1237 break;
1238 printf_filtered ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
1239 (c1 << 4) + c2, csum & 0xff);
1240 puts_filtered (buf);
1241 puts_filtered ("\n");
1242
1243 /* Try the whole thing again. */
1244 whole:
1245 if (++retries < MAX_RETRIES)
1246 {
1247 SERIAL_WRITE (remote_desc, "-", 1);
1248 }
1249 else
1250 {
1251 printf_unfiltered ("Ignoring packet error, continuing...\n");
1252 break;
1253 }
1254 }
1255
1256 /* Deal with run-length encoding. */
1257 {
1258 char *src = buf;
1259 char *dest = retbuf;
1260 int i;
1261 int repeat;
1262 do {
1263 if (*src == '*')
1264 {
1265 if (src[1] == '\0' || src[2] == '\0')
1266 {
1267 if (remote_debug)
1268 puts_filtered ("Packet too short, retrying\n");
1269 goto whole;
1270 }
1271 repeat = (fromhex (src[1]) << 4) + fromhex (src[2]);
1272 for (i = 0; i < repeat; ++i)
1273 {
1274 *dest++ = src[-1];
1275 }
1276 src += 2;
1277 }
1278 else
1279 {
1280 *dest++ = *src;
1281 }
1282 } while (*src++ != '\0');
1283 }
1284
1285 out:
1286 SERIAL_WRITE (remote_desc, "+", 1);
1287
1288 if (remote_debug)
1289 fprintf_unfiltered (gdb_stderr,"Packet received: %s\n", buf);
1290 }
1291 \f
1292 static void
1293 remote_kill ()
1294 {
1295 putpkt ("k");
1296 /* Don't wait for it to die. I'm not really sure it matters whether
1297 we do or not. For the existing stubs, kill is a noop. */
1298 target_mourn_inferior ();
1299 }
1300
1301 static void
1302 remote_mourn ()
1303 {
1304 unpush_target (&remote_ops);
1305 generic_mourn_inferior ();
1306 }
1307 \f
1308 #ifdef REMOTE_BREAKPOINT
1309
1310 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
1311 than other targets. */
1312 static unsigned char break_insn[] = REMOTE_BREAKPOINT;
1313
1314 /* Check that it fits in BREAKPOINT_MAX bytes. */
1315 static unsigned char check_break_insn_size[BREAKPOINT_MAX] = REMOTE_BREAKPOINT;
1316
1317 #else /* No REMOTE_BREAKPOINT. */
1318
1319 /* Same old breakpoint instruction. This code does nothing different
1320 than mem-break.c. */
1321 static unsigned char break_insn[] = BREAKPOINT;
1322
1323 #endif /* No REMOTE_BREAKPOINT. */
1324
1325 /* Insert a breakpoint on targets that don't have any better breakpoint
1326 support. We read the contents of the target location and stash it,
1327 then overwrite it with a breakpoint instruction. ADDR is the target
1328 location in the target machine. CONTENTS_CACHE is a pointer to
1329 memory allocated for saving the target contents. It is guaranteed
1330 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
1331 is accomplished via BREAKPOINT_MAX). */
1332
1333 static int
1334 remote_insert_breakpoint (addr, contents_cache)
1335 CORE_ADDR addr;
1336 char *contents_cache;
1337 {
1338 int val;
1339
1340 val = target_read_memory (addr, contents_cache, sizeof break_insn);
1341
1342 if (val == 0)
1343 val = target_write_memory (addr, (char *)break_insn, sizeof break_insn);
1344
1345 return val;
1346 }
1347
1348 static int
1349 remote_remove_breakpoint (addr, contents_cache)
1350 CORE_ADDR addr;
1351 char *contents_cache;
1352 {
1353 return target_write_memory (addr, contents_cache, sizeof break_insn);
1354 }
1355 \f
1356 /* Define the target subroutine names */
1357
1358 struct target_ops remote_ops = {
1359 "remote", /* to_shortname */
1360 "Remote serial target in gdb-specific protocol", /* to_longname */
1361 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
1362 Specify the serial device it is connected to (e.g. /dev/ttya).", /* to_doc */
1363 remote_open, /* to_open */
1364 remote_close, /* to_close */
1365 NULL, /* to_attach */
1366 remote_detach, /* to_detach */
1367 remote_resume, /* to_resume */
1368 remote_wait, /* to_wait */
1369 remote_fetch_registers, /* to_fetch_registers */
1370 remote_store_registers, /* to_store_registers */
1371 remote_prepare_to_store, /* to_prepare_to_store */
1372 remote_xfer_memory, /* to_xfer_memory */
1373 remote_files_info, /* to_files_info */
1374
1375 remote_insert_breakpoint, /* to_insert_breakpoint */
1376 remote_remove_breakpoint, /* to_remove_breakpoint */
1377
1378 NULL, /* to_terminal_init */
1379 NULL, /* to_terminal_inferior */
1380 NULL, /* to_terminal_ours_for_output */
1381 NULL, /* to_terminal_ours */
1382 NULL, /* to_terminal_info */
1383 remote_kill, /* to_kill */
1384 generic_load, /* to_load */
1385 NULL, /* to_lookup_symbol */
1386 NULL, /* to_create_inferior */
1387 remote_mourn, /* to_mourn_inferior */
1388 0, /* to_can_run */
1389 0, /* to_notice_signals */
1390 process_stratum, /* to_stratum */
1391 NULL, /* to_next */
1392 1, /* to_has_all_memory */
1393 1, /* to_has_memory */
1394 1, /* to_has_stack */
1395 1, /* to_has_registers */
1396 1, /* to_has_execution */
1397 NULL, /* sections */
1398 NULL, /* sections_end */
1399 OPS_MAGIC /* to_magic */
1400 };
1401 #endif /* Use remote. */
1402
1403 void
1404 _initialize_remote ()
1405 {
1406 #if !defined(DONT_USE_REMOTE)
1407 add_target (&remote_ops);
1408 #endif
1409 }
This page took 0.059383 seconds and 5 git commands to generate.