gdb: spread a little 'const' through the target_section_table code
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82
83 /* The remote target. */
84
85 static const char remote_doc[] = N_("\
86 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
87 Specify the serial device it is connected to\n\
88 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
89
90 /* See remote.h */
91
92 bool remote_debug = false;
93
94 #define OPAQUETHREADBYTES 8
95
96 /* a 64 bit opaque identifier */
97 typedef unsigned char threadref[OPAQUETHREADBYTES];
98
99 struct gdb_ext_thread_info;
100 struct threads_listing_context;
101 typedef int (*rmt_thread_action) (threadref *ref, void *context);
102 struct protocol_feature;
103 struct packet_reg;
104
105 struct stop_reply;
106 typedef std::unique_ptr<stop_reply> stop_reply_up;
107
108 /* Generic configuration support for packets the stub optionally
109 supports. Allows the user to specify the use of the packet as well
110 as allowing GDB to auto-detect support in the remote stub. */
111
112 enum packet_support
113 {
114 PACKET_SUPPORT_UNKNOWN = 0,
115 PACKET_ENABLE,
116 PACKET_DISABLE
117 };
118
119 /* Analyze a packet's return value and update the packet config
120 accordingly. */
121
122 enum packet_result
123 {
124 PACKET_ERROR,
125 PACKET_OK,
126 PACKET_UNKNOWN
127 };
128
129 struct threads_listing_context;
130
131 /* Stub vCont actions support.
132
133 Each field is a boolean flag indicating whether the stub reports
134 support for the corresponding action. */
135
136 struct vCont_action_support
137 {
138 /* vCont;t */
139 bool t = false;
140
141 /* vCont;r */
142 bool r = false;
143
144 /* vCont;s */
145 bool s = false;
146
147 /* vCont;S */
148 bool S = false;
149 };
150
151 /* About this many threadids fit in a packet. */
152
153 #define MAXTHREADLISTRESULTS 32
154
155 /* Data for the vFile:pread readahead cache. */
156
157 struct readahead_cache
158 {
159 /* Invalidate the readahead cache. */
160 void invalidate ();
161
162 /* Invalidate the readahead cache if it is holding data for FD. */
163 void invalidate_fd (int fd);
164
165 /* Serve pread from the readahead cache. Returns number of bytes
166 read, or 0 if the request can't be served from the cache. */
167 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
168
169 /* The file descriptor for the file that is being cached. -1 if the
170 cache is invalid. */
171 int fd = -1;
172
173 /* The offset into the file that the cache buffer corresponds
174 to. */
175 ULONGEST offset = 0;
176
177 /* The buffer holding the cache contents. */
178 gdb_byte *buf = nullptr;
179 /* The buffer's size. We try to read as much as fits into a packet
180 at a time. */
181 size_t bufsize = 0;
182
183 /* Cache hit and miss counters. */
184 ULONGEST hit_count = 0;
185 ULONGEST miss_count = 0;
186 };
187
188 /* Description of the remote protocol for a given architecture. */
189
190 struct packet_reg
191 {
192 long offset; /* Offset into G packet. */
193 long regnum; /* GDB's internal register number. */
194 LONGEST pnum; /* Remote protocol register number. */
195 int in_g_packet; /* Always part of G packet. */
196 /* long size in bytes; == register_size (target_gdbarch (), regnum);
197 at present. */
198 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
199 at present. */
200 };
201
202 struct remote_arch_state
203 {
204 explicit remote_arch_state (struct gdbarch *gdbarch);
205
206 /* Description of the remote protocol registers. */
207 long sizeof_g_packet;
208
209 /* Description of the remote protocol registers indexed by REGNUM
210 (making an array gdbarch_num_regs in size). */
211 std::unique_ptr<packet_reg[]> regs;
212
213 /* This is the size (in chars) of the first response to the ``g''
214 packet. It is used as a heuristic when determining the maximum
215 size of memory-read and memory-write packets. A target will
216 typically only reserve a buffer large enough to hold the ``g''
217 packet. The size does not include packet overhead (headers and
218 trailers). */
219 long actual_register_packet_size;
220
221 /* This is the maximum size (in chars) of a non read/write packet.
222 It is also used as a cap on the size of read/write packets. */
223 long remote_packet_size;
224 };
225
226 /* Description of the remote protocol state for the currently
227 connected target. This is per-target state, and independent of the
228 selected architecture. */
229
230 class remote_state
231 {
232 public:
233
234 remote_state ();
235 ~remote_state ();
236
237 /* Get the remote arch state for GDBARCH. */
238 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
239
240 public: /* data */
241
242 /* A buffer to use for incoming packets, and its current size. The
243 buffer is grown dynamically for larger incoming packets.
244 Outgoing packets may also be constructed in this buffer.
245 The size of the buffer is always at least REMOTE_PACKET_SIZE;
246 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
247 packets. */
248 gdb::char_vector buf;
249
250 /* True if we're going through initial connection setup (finding out
251 about the remote side's threads, relocating symbols, etc.). */
252 bool starting_up = false;
253
254 /* If we negotiated packet size explicitly (and thus can bypass
255 heuristics for the largest packet size that will not overflow
256 a buffer in the stub), this will be set to that packet size.
257 Otherwise zero, meaning to use the guessed size. */
258 long explicit_packet_size = 0;
259
260 /* remote_wait is normally called when the target is running and
261 waits for a stop reply packet. But sometimes we need to call it
262 when the target is already stopped. We can send a "?" packet
263 and have remote_wait read the response. Or, if we already have
264 the response, we can stash it in BUF and tell remote_wait to
265 skip calling getpkt. This flag is set when BUF contains a
266 stop reply packet and the target is not waiting. */
267 int cached_wait_status = 0;
268
269 /* True, if in no ack mode. That is, neither GDB nor the stub will
270 expect acks from each other. The connection is assumed to be
271 reliable. */
272 bool noack_mode = false;
273
274 /* True if we're connected in extended remote mode. */
275 bool extended = false;
276
277 /* True if we resumed the target and we're waiting for the target to
278 stop. In the mean time, we can't start another command/query.
279 The remote server wouldn't be ready to process it, so we'd
280 timeout waiting for a reply that would never come and eventually
281 we'd close the connection. This can happen in asynchronous mode
282 because we allow GDB commands while the target is running. */
283 bool waiting_for_stop_reply = false;
284
285 /* The status of the stub support for the various vCont actions. */
286 vCont_action_support supports_vCont;
287 /* Whether vCont support was probed already. This is a workaround
288 until packet_support is per-connection. */
289 bool supports_vCont_probed;
290
291 /* True if the user has pressed Ctrl-C, but the target hasn't
292 responded to that. */
293 bool ctrlc_pending_p = false;
294
295 /* True if we saw a Ctrl-C while reading or writing from/to the
296 remote descriptor. At that point it is not safe to send a remote
297 interrupt packet, so we instead remember we saw the Ctrl-C and
298 process it once we're done with sending/receiving the current
299 packet, which should be shortly. If however that takes too long,
300 and the user presses Ctrl-C again, we offer to disconnect. */
301 bool got_ctrlc_during_io = false;
302
303 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
304 remote_open knows that we don't have a file open when the program
305 starts. */
306 struct serial *remote_desc = nullptr;
307
308 /* These are the threads which we last sent to the remote system. The
309 TID member will be -1 for all or -2 for not sent yet. */
310 ptid_t general_thread = null_ptid;
311 ptid_t continue_thread = null_ptid;
312
313 /* This is the traceframe which we last selected on the remote system.
314 It will be -1 if no traceframe is selected. */
315 int remote_traceframe_number = -1;
316
317 char *last_pass_packet = nullptr;
318
319 /* The last QProgramSignals packet sent to the target. We bypass
320 sending a new program signals list down to the target if the new
321 packet is exactly the same as the last we sent. IOW, we only let
322 the target know about program signals list changes. */
323 char *last_program_signals_packet = nullptr;
324
325 gdb_signal last_sent_signal = GDB_SIGNAL_0;
326
327 bool last_sent_step = false;
328
329 /* The execution direction of the last resume we got. */
330 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
331
332 char *finished_object = nullptr;
333 char *finished_annex = nullptr;
334 ULONGEST finished_offset = 0;
335
336 /* Should we try the 'ThreadInfo' query packet?
337
338 This variable (NOT available to the user: auto-detect only!)
339 determines whether GDB will use the new, simpler "ThreadInfo"
340 query or the older, more complex syntax for thread queries.
341 This is an auto-detect variable (set to true at each connect,
342 and set to false when the target fails to recognize it). */
343 bool use_threadinfo_query = false;
344 bool use_threadextra_query = false;
345
346 threadref echo_nextthread {};
347 threadref nextthread {};
348 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
349
350 /* The state of remote notification. */
351 struct remote_notif_state *notif_state = nullptr;
352
353 /* The branch trace configuration. */
354 struct btrace_config btrace_config {};
355
356 /* The argument to the last "vFile:setfs:" packet we sent, used
357 to avoid sending repeated unnecessary "vFile:setfs:" packets.
358 Initialized to -1 to indicate that no "vFile:setfs:" packet
359 has yet been sent. */
360 int fs_pid = -1;
361
362 /* A readahead cache for vFile:pread. Often, reading a binary
363 involves a sequence of small reads. E.g., when parsing an ELF
364 file. A readahead cache helps mostly the case of remote
365 debugging on a connection with higher latency, due to the
366 request/reply nature of the RSP. We only cache data for a single
367 file descriptor at a time. */
368 struct readahead_cache readahead_cache;
369
370 /* The list of already fetched and acknowledged stop events. This
371 queue is used for notification Stop, and other notifications
372 don't need queue for their events, because the notification
373 events of Stop can't be consumed immediately, so that events
374 should be queued first, and be consumed by remote_wait_{ns,as}
375 one per time. Other notifications can consume their events
376 immediately, so queue is not needed for them. */
377 std::vector<stop_reply_up> stop_reply_queue;
378
379 /* Asynchronous signal handle registered as event loop source for
380 when we have pending events ready to be passed to the core. */
381 struct async_event_handler *remote_async_inferior_event_token = nullptr;
382
383 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
384 ``forever'' still use the normal timeout mechanism. This is
385 currently used by the ASYNC code to guarentee that target reads
386 during the initial connect always time-out. Once getpkt has been
387 modified to return a timeout indication and, in turn
388 remote_wait()/wait_for_inferior() have gained a timeout parameter
389 this can go away. */
390 int wait_forever_enabled_p = 1;
391
392 private:
393 /* Mapping of remote protocol data for each gdbarch. Usually there
394 is only one entry here, though we may see more with stubs that
395 support multi-process. */
396 std::unordered_map<struct gdbarch *, remote_arch_state>
397 m_arch_states;
398 };
399
400 static const target_info remote_target_info = {
401 "remote",
402 N_("Remote serial target in gdb-specific protocol"),
403 remote_doc
404 };
405
406 class remote_target : public process_stratum_target
407 {
408 public:
409 remote_target () = default;
410 ~remote_target () override;
411
412 const target_info &info () const override
413 { return remote_target_info; }
414
415 const char *connection_string () override;
416
417 thread_control_capabilities get_thread_control_capabilities () override
418 { return tc_schedlock; }
419
420 /* Open a remote connection. */
421 static void open (const char *, int);
422
423 void close () override;
424
425 void detach (inferior *, int) override;
426 void disconnect (const char *, int) override;
427
428 void commit_resume () override;
429 void resume (ptid_t, int, enum gdb_signal) override;
430 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
431
432 void fetch_registers (struct regcache *, int) override;
433 void store_registers (struct regcache *, int) override;
434 void prepare_to_store (struct regcache *) override;
435
436 void files_info () override;
437
438 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
439
440 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
441 enum remove_bp_reason) override;
442
443
444 bool stopped_by_sw_breakpoint () override;
445 bool supports_stopped_by_sw_breakpoint () override;
446
447 bool stopped_by_hw_breakpoint () override;
448
449 bool supports_stopped_by_hw_breakpoint () override;
450
451 bool stopped_by_watchpoint () override;
452
453 bool stopped_data_address (CORE_ADDR *) override;
454
455 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
456
457 int can_use_hw_breakpoint (enum bptype, int, int) override;
458
459 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
464
465 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
466 struct expression *) override;
467
468 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
469 struct expression *) override;
470
471 void kill () override;
472
473 void load (const char *, int) override;
474
475 void mourn_inferior () override;
476
477 void pass_signals (gdb::array_view<const unsigned char>) override;
478
479 int set_syscall_catchpoint (int, bool, int,
480 gdb::array_view<const int>) override;
481
482 void program_signals (gdb::array_view<const unsigned char>) override;
483
484 bool thread_alive (ptid_t ptid) override;
485
486 const char *thread_name (struct thread_info *) override;
487
488 void update_thread_list () override;
489
490 std::string pid_to_str (ptid_t) override;
491
492 const char *extra_thread_info (struct thread_info *) override;
493
494 ptid_t get_ada_task_ptid (long lwp, long thread) override;
495
496 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
497 int handle_len,
498 inferior *inf) override;
499
500 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
501 override;
502
503 void stop (ptid_t) override;
504
505 void interrupt () override;
506
507 void pass_ctrlc () override;
508
509 enum target_xfer_status xfer_partial (enum target_object object,
510 const char *annex,
511 gdb_byte *readbuf,
512 const gdb_byte *writebuf,
513 ULONGEST offset, ULONGEST len,
514 ULONGEST *xfered_len) override;
515
516 ULONGEST get_memory_xfer_limit () override;
517
518 void rcmd (const char *command, struct ui_file *output) override;
519
520 char *pid_to_exec_file (int pid) override;
521
522 void log_command (const char *cmd) override
523 {
524 serial_log_command (this, cmd);
525 }
526
527 CORE_ADDR get_thread_local_address (ptid_t ptid,
528 CORE_ADDR load_module_addr,
529 CORE_ADDR offset) override;
530
531 bool can_execute_reverse () override;
532
533 std::vector<mem_region> memory_map () override;
534
535 void flash_erase (ULONGEST address, LONGEST length) override;
536
537 void flash_done () override;
538
539 const struct target_desc *read_description () override;
540
541 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
542 const gdb_byte *pattern, ULONGEST pattern_len,
543 CORE_ADDR *found_addrp) override;
544
545 bool can_async_p () override;
546
547 bool is_async_p () override;
548
549 void async (int) override;
550
551 int async_wait_fd () override;
552
553 void thread_events (int) override;
554
555 int can_do_single_step () override;
556
557 void terminal_inferior () override;
558
559 void terminal_ours () override;
560
561 bool supports_non_stop () override;
562
563 bool supports_multi_process () override;
564
565 bool supports_disable_randomization () override;
566
567 bool filesystem_is_local () override;
568
569
570 int fileio_open (struct inferior *inf, const char *filename,
571 int flags, int mode, int warn_if_slow,
572 int *target_errno) override;
573
574 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
575 ULONGEST offset, int *target_errno) override;
576
577 int fileio_pread (int fd, gdb_byte *read_buf, int len,
578 ULONGEST offset, int *target_errno) override;
579
580 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
581
582 int fileio_close (int fd, int *target_errno) override;
583
584 int fileio_unlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 gdb::optional<std::string>
589 fileio_readlink (struct inferior *inf,
590 const char *filename,
591 int *target_errno) override;
592
593 bool supports_enable_disable_tracepoint () override;
594
595 bool supports_string_tracing () override;
596
597 bool supports_evaluation_of_breakpoint_conditions () override;
598
599 bool can_run_breakpoint_commands () override;
600
601 void trace_init () override;
602
603 void download_tracepoint (struct bp_location *location) override;
604
605 bool can_download_tracepoint () override;
606
607 void download_trace_state_variable (const trace_state_variable &tsv) override;
608
609 void enable_tracepoint (struct bp_location *location) override;
610
611 void disable_tracepoint (struct bp_location *location) override;
612
613 void trace_set_readonly_regions () override;
614
615 void trace_start () override;
616
617 int get_trace_status (struct trace_status *ts) override;
618
619 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
620 override;
621
622 void trace_stop () override;
623
624 int trace_find (enum trace_find_type type, int num,
625 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
626
627 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
628
629 int save_trace_data (const char *filename) override;
630
631 int upload_tracepoints (struct uploaded_tp **utpp) override;
632
633 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
634
635 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
636
637 int get_min_fast_tracepoint_insn_len () override;
638
639 void set_disconnected_tracing (int val) override;
640
641 void set_circular_trace_buffer (int val) override;
642
643 void set_trace_buffer_size (LONGEST val) override;
644
645 bool set_trace_notes (const char *user, const char *notes,
646 const char *stopnotes) override;
647
648 int core_of_thread (ptid_t ptid) override;
649
650 int verify_memory (const gdb_byte *data,
651 CORE_ADDR memaddr, ULONGEST size) override;
652
653
654 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
655
656 void set_permissions () override;
657
658 bool static_tracepoint_marker_at (CORE_ADDR,
659 struct static_tracepoint_marker *marker)
660 override;
661
662 std::vector<static_tracepoint_marker>
663 static_tracepoint_markers_by_strid (const char *id) override;
664
665 traceframe_info_up traceframe_info () override;
666
667 bool use_agent (bool use) override;
668 bool can_use_agent () override;
669
670 struct btrace_target_info *enable_btrace (ptid_t ptid,
671 const struct btrace_config *conf) override;
672
673 void disable_btrace (struct btrace_target_info *tinfo) override;
674
675 void teardown_btrace (struct btrace_target_info *tinfo) override;
676
677 enum btrace_error read_btrace (struct btrace_data *data,
678 struct btrace_target_info *btinfo,
679 enum btrace_read_type type) override;
680
681 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
682 bool augmented_libraries_svr4_read () override;
683 bool follow_fork (bool, bool) override;
684 void follow_exec (struct inferior *, const char *) override;
685 int insert_fork_catchpoint (int) override;
686 int remove_fork_catchpoint (int) override;
687 int insert_vfork_catchpoint (int) override;
688 int remove_vfork_catchpoint (int) override;
689 int insert_exec_catchpoint (int) override;
690 int remove_exec_catchpoint (int) override;
691 enum exec_direction_kind execution_direction () override;
692
693 public: /* Remote specific methods. */
694
695 void remote_download_command_source (int num, ULONGEST addr,
696 struct command_line *cmds);
697
698 void remote_file_put (const char *local_file, const char *remote_file,
699 int from_tty);
700 void remote_file_get (const char *remote_file, const char *local_file,
701 int from_tty);
702 void remote_file_delete (const char *remote_file, int from_tty);
703
704 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
705 ULONGEST offset, int *remote_errno);
706 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
707 ULONGEST offset, int *remote_errno);
708 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
709 ULONGEST offset, int *remote_errno);
710
711 int remote_hostio_send_command (int command_bytes, int which_packet,
712 int *remote_errno, const char **attachment,
713 int *attachment_len);
714 int remote_hostio_set_filesystem (struct inferior *inf,
715 int *remote_errno);
716 /* We should get rid of this and use fileio_open directly. */
717 int remote_hostio_open (struct inferior *inf, const char *filename,
718 int flags, int mode, int warn_if_slow,
719 int *remote_errno);
720 int remote_hostio_close (int fd, int *remote_errno);
721
722 int remote_hostio_unlink (inferior *inf, const char *filename,
723 int *remote_errno);
724
725 struct remote_state *get_remote_state ();
726
727 long get_remote_packet_size (void);
728 long get_memory_packet_size (struct memory_packet_config *config);
729
730 long get_memory_write_packet_size ();
731 long get_memory_read_packet_size ();
732
733 char *append_pending_thread_resumptions (char *p, char *endp,
734 ptid_t ptid);
735 static void open_1 (const char *name, int from_tty, int extended_p);
736 void start_remote (int from_tty, int extended_p);
737 void remote_detach_1 (struct inferior *inf, int from_tty);
738
739 char *append_resumption (char *p, char *endp,
740 ptid_t ptid, int step, gdb_signal siggnal);
741 int remote_resume_with_vcont (ptid_t ptid, int step,
742 gdb_signal siggnal);
743
744 void add_current_inferior_and_thread (const char *wait_status);
745
746 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
747 target_wait_flags options);
748 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
749 target_wait_flags options);
750
751 ptid_t process_stop_reply (struct stop_reply *stop_reply,
752 target_waitstatus *status);
753
754 ptid_t select_thread_for_ambiguous_stop_reply
755 (const struct target_waitstatus *status);
756
757 void remote_notice_new_inferior (ptid_t currthread, int executing);
758
759 void process_initial_stop_replies (int from_tty);
760
761 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
762
763 void btrace_sync_conf (const btrace_config *conf);
764
765 void remote_btrace_maybe_reopen ();
766
767 void remove_new_fork_children (threads_listing_context *context);
768 void kill_new_fork_children (int pid);
769 void discard_pending_stop_replies (struct inferior *inf);
770 int stop_reply_queue_length ();
771
772 void check_pending_events_prevent_wildcard_vcont
773 (int *may_global_wildcard_vcont);
774
775 void discard_pending_stop_replies_in_queue ();
776 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
777 struct stop_reply *queued_stop_reply (ptid_t ptid);
778 int peek_stop_reply (ptid_t ptid);
779 void remote_parse_stop_reply (const char *buf, stop_reply *event);
780
781 void remote_stop_ns (ptid_t ptid);
782 void remote_interrupt_as ();
783 void remote_interrupt_ns ();
784
785 char *remote_get_noisy_reply ();
786 int remote_query_attached (int pid);
787 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
788 int try_open_exec);
789
790 ptid_t remote_current_thread (ptid_t oldpid);
791 ptid_t get_current_thread (const char *wait_status);
792
793 void set_thread (ptid_t ptid, int gen);
794 void set_general_thread (ptid_t ptid);
795 void set_continue_thread (ptid_t ptid);
796 void set_general_process ();
797
798 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
799
800 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
801 gdb_ext_thread_info *info);
802 int remote_get_threadinfo (threadref *threadid, int fieldset,
803 gdb_ext_thread_info *info);
804
805 int parse_threadlist_response (const char *pkt, int result_limit,
806 threadref *original_echo,
807 threadref *resultlist,
808 int *doneflag);
809 int remote_get_threadlist (int startflag, threadref *nextthread,
810 int result_limit, int *done, int *result_count,
811 threadref *threadlist);
812
813 int remote_threadlist_iterator (rmt_thread_action stepfunction,
814 void *context, int looplimit);
815
816 int remote_get_threads_with_ql (threads_listing_context *context);
817 int remote_get_threads_with_qxfer (threads_listing_context *context);
818 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
819
820 void extended_remote_restart ();
821
822 void get_offsets ();
823
824 void remote_check_symbols ();
825
826 void remote_supported_packet (const struct protocol_feature *feature,
827 enum packet_support support,
828 const char *argument);
829
830 void remote_query_supported ();
831
832 void remote_packet_size (const protocol_feature *feature,
833 packet_support support, const char *value);
834
835 void remote_serial_quit_handler ();
836
837 void remote_detach_pid (int pid);
838
839 void remote_vcont_probe ();
840
841 void remote_resume_with_hc (ptid_t ptid, int step,
842 gdb_signal siggnal);
843
844 void send_interrupt_sequence ();
845 void interrupt_query ();
846
847 void remote_notif_get_pending_events (notif_client *nc);
848
849 int fetch_register_using_p (struct regcache *regcache,
850 packet_reg *reg);
851 int send_g_packet ();
852 void process_g_packet (struct regcache *regcache);
853 void fetch_registers_using_g (struct regcache *regcache);
854 int store_register_using_P (const struct regcache *regcache,
855 packet_reg *reg);
856 void store_registers_using_G (const struct regcache *regcache);
857
858 void set_remote_traceframe ();
859
860 void check_binary_download (CORE_ADDR addr);
861
862 target_xfer_status remote_write_bytes_aux (const char *header,
863 CORE_ADDR memaddr,
864 const gdb_byte *myaddr,
865 ULONGEST len_units,
866 int unit_size,
867 ULONGEST *xfered_len_units,
868 char packet_format,
869 int use_length);
870
871 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
872 const gdb_byte *myaddr, ULONGEST len,
873 int unit_size, ULONGEST *xfered_len);
874
875 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size, ULONGEST *xfered_len_units);
878
879 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
880 ULONGEST memaddr,
881 ULONGEST len,
882 int unit_size,
883 ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
886 gdb_byte *myaddr, ULONGEST len,
887 int unit_size,
888 ULONGEST *xfered_len);
889
890 packet_result remote_send_printf (const char *format, ...)
891 ATTRIBUTE_PRINTF (2, 3);
892
893 target_xfer_status remote_flash_write (ULONGEST address,
894 ULONGEST length, ULONGEST *xfered_len,
895 const gdb_byte *data);
896
897 int readchar (int timeout);
898
899 void remote_serial_write (const char *str, int len);
900
901 int putpkt (const char *buf);
902 int putpkt_binary (const char *buf, int cnt);
903
904 int putpkt (const gdb::char_vector &buf)
905 {
906 return putpkt (buf.data ());
907 }
908
909 void skip_frame ();
910 long read_frame (gdb::char_vector *buf_p);
911 void getpkt (gdb::char_vector *buf, int forever);
912 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
913 int expecting_notif, int *is_notif);
914 int getpkt_sane (gdb::char_vector *buf, int forever);
915 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
916 int *is_notif);
917 int remote_vkill (int pid);
918 void remote_kill_k ();
919
920 void extended_remote_disable_randomization (int val);
921 int extended_remote_run (const std::string &args);
922
923 void send_environment_packet (const char *action,
924 const char *packet,
925 const char *value);
926
927 void extended_remote_environment_support ();
928 void extended_remote_set_inferior_cwd ();
929
930 target_xfer_status remote_write_qxfer (const char *object_name,
931 const char *annex,
932 const gdb_byte *writebuf,
933 ULONGEST offset, LONGEST len,
934 ULONGEST *xfered_len,
935 struct packet_config *packet);
936
937 target_xfer_status remote_read_qxfer (const char *object_name,
938 const char *annex,
939 gdb_byte *readbuf, ULONGEST offset,
940 LONGEST len,
941 ULONGEST *xfered_len,
942 struct packet_config *packet);
943
944 void push_stop_reply (struct stop_reply *new_event);
945
946 bool vcont_r_supported ();
947
948 void packet_command (const char *args, int from_tty);
949
950 private: /* data fields */
951
952 /* The remote state. Don't reference this directly. Use the
953 get_remote_state method instead. */
954 remote_state m_remote_state;
955 };
956
957 static const target_info extended_remote_target_info = {
958 "extended-remote",
959 N_("Extended remote serial target in gdb-specific protocol"),
960 remote_doc
961 };
962
963 /* Set up the extended remote target by extending the standard remote
964 target and adding to it. */
965
966 class extended_remote_target final : public remote_target
967 {
968 public:
969 const target_info &info () const override
970 { return extended_remote_target_info; }
971
972 /* Open an extended-remote connection. */
973 static void open (const char *, int);
974
975 bool can_create_inferior () override { return true; }
976 void create_inferior (const char *, const std::string &,
977 char **, int) override;
978
979 void detach (inferior *, int) override;
980
981 bool can_attach () override { return true; }
982 void attach (const char *, int) override;
983
984 void post_attach (int) override;
985 bool supports_disable_randomization () override;
986 };
987
988 /* Per-program-space data key. */
989 static const struct program_space_key<char, gdb::xfree_deleter<char>>
990 remote_pspace_data;
991
992 /* The variable registered as the control variable used by the
993 remote exec-file commands. While the remote exec-file setting is
994 per-program-space, the set/show machinery uses this as the
995 location of the remote exec-file value. */
996 static char *remote_exec_file_var;
997
998 /* The size to align memory write packets, when practical. The protocol
999 does not guarantee any alignment, and gdb will generate short
1000 writes and unaligned writes, but even as a best-effort attempt this
1001 can improve bulk transfers. For instance, if a write is misaligned
1002 relative to the target's data bus, the stub may need to make an extra
1003 round trip fetching data from the target. This doesn't make a
1004 huge difference, but it's easy to do, so we try to be helpful.
1005
1006 The alignment chosen is arbitrary; usually data bus width is
1007 important here, not the possibly larger cache line size. */
1008 enum { REMOTE_ALIGN_WRITES = 16 };
1009
1010 /* Prototypes for local functions. */
1011
1012 static int hexnumlen (ULONGEST num);
1013
1014 static int stubhex (int ch);
1015
1016 static int hexnumstr (char *, ULONGEST);
1017
1018 static int hexnumnstr (char *, ULONGEST, int);
1019
1020 static CORE_ADDR remote_address_masked (CORE_ADDR);
1021
1022 static void print_packet (const char *);
1023
1024 static int stub_unpack_int (const char *buff, int fieldlength);
1025
1026 struct packet_config;
1027
1028 static void show_packet_config_cmd (struct packet_config *config);
1029
1030 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1031 int from_tty,
1032 struct cmd_list_element *c,
1033 const char *value);
1034
1035 static ptid_t read_ptid (const char *buf, const char **obuf);
1036
1037 static void remote_async_inferior_event_handler (gdb_client_data);
1038
1039 static bool remote_read_description_p (struct target_ops *target);
1040
1041 static void remote_console_output (const char *msg);
1042
1043 static void remote_btrace_reset (remote_state *rs);
1044
1045 static void remote_unpush_and_throw (remote_target *target);
1046
1047 /* For "remote". */
1048
1049 static struct cmd_list_element *remote_cmdlist;
1050
1051 /* For "set remote" and "show remote". */
1052
1053 static struct cmd_list_element *remote_set_cmdlist;
1054 static struct cmd_list_element *remote_show_cmdlist;
1055
1056 /* Controls whether GDB is willing to use range stepping. */
1057
1058 static bool use_range_stepping = true;
1059
1060 /* From the remote target's point of view, each thread is in one of these three
1061 states. */
1062 enum class resume_state
1063 {
1064 /* Not resumed - we haven't been asked to resume this thread. */
1065 NOT_RESUMED,
1066
1067 /* We have been asked to resume this thread, but haven't sent a vCont action
1068 for it yet. We'll need to consider it next time commit_resume is
1069 called. */
1070 RESUMED_PENDING_VCONT,
1071
1072 /* We have been asked to resume this thread, and we have sent a vCont action
1073 for it. */
1074 RESUMED,
1075 };
1076
1077 /* Information about a thread's pending vCont-resume. Used when a thread is in
1078 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1079 stores this information which is then picked up by
1080 remote_target::commit_resume to know which is the proper action for this
1081 thread to include in the vCont packet. */
1082 struct resumed_pending_vcont_info
1083 {
1084 /* True if the last resume call for this thread was a step request, false
1085 if a continue request. */
1086 bool step;
1087
1088 /* The signal specified in the last resume call for this thread. */
1089 gdb_signal sig;
1090 };
1091
1092 /* Private data that we'll store in (struct thread_info)->priv. */
1093 struct remote_thread_info : public private_thread_info
1094 {
1095 std::string extra;
1096 std::string name;
1097 int core = -1;
1098
1099 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1100 sequence of bytes. */
1101 gdb::byte_vector thread_handle;
1102
1103 /* Whether the target stopped for a breakpoint/watchpoint. */
1104 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1105
1106 /* This is set to the data address of the access causing the target
1107 to stop for a watchpoint. */
1108 CORE_ADDR watch_data_address = 0;
1109
1110 /* Get the thread's resume state. */
1111 enum resume_state get_resume_state () const
1112 {
1113 return m_resume_state;
1114 }
1115
1116 /* Put the thread in the NOT_RESUMED state. */
1117 void set_not_resumed ()
1118 {
1119 m_resume_state = resume_state::NOT_RESUMED;
1120 }
1121
1122 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1123 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1124 {
1125 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1126 m_resumed_pending_vcont_info.step = step;
1127 m_resumed_pending_vcont_info.sig = sig;
1128 }
1129
1130 /* Get the information this thread's pending vCont-resumption.
1131
1132 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1133 state. */
1134 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1135 {
1136 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1137
1138 return m_resumed_pending_vcont_info;
1139 }
1140
1141 /* Put the thread in the VCONT_RESUMED state. */
1142 void set_resumed ()
1143 {
1144 m_resume_state = resume_state::RESUMED;
1145 }
1146
1147 private:
1148 /* Resume state for this thread. This is used to implement vCont action
1149 coalescing (only when the target operates in non-stop mode).
1150
1151 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1152 which notes that this thread must be considered in the next commit_resume
1153 call.
1154
1155 remote_target::commit_resume sends a vCont packet with actions for the
1156 threads in the RESUMED_PENDING_VCONT state and moves them to the
1157 VCONT_RESUMED state.
1158
1159 When reporting a stop to the core for a thread, that thread is moved back
1160 to the NOT_RESUMED state. */
1161 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1162
1163 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1164 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1165 };
1166
1167 remote_state::remote_state ()
1168 : buf (400)
1169 {
1170 }
1171
1172 remote_state::~remote_state ()
1173 {
1174 xfree (this->last_pass_packet);
1175 xfree (this->last_program_signals_packet);
1176 xfree (this->finished_object);
1177 xfree (this->finished_annex);
1178 }
1179
1180 /* Utility: generate error from an incoming stub packet. */
1181 static void
1182 trace_error (char *buf)
1183 {
1184 if (*buf++ != 'E')
1185 return; /* not an error msg */
1186 switch (*buf)
1187 {
1188 case '1': /* malformed packet error */
1189 if (*++buf == '0') /* general case: */
1190 error (_("remote.c: error in outgoing packet."));
1191 else
1192 error (_("remote.c: error in outgoing packet at field #%ld."),
1193 strtol (buf, NULL, 16));
1194 default:
1195 error (_("Target returns error code '%s'."), buf);
1196 }
1197 }
1198
1199 /* Utility: wait for reply from stub, while accepting "O" packets. */
1200
1201 char *
1202 remote_target::remote_get_noisy_reply ()
1203 {
1204 struct remote_state *rs = get_remote_state ();
1205
1206 do /* Loop on reply from remote stub. */
1207 {
1208 char *buf;
1209
1210 QUIT; /* Allow user to bail out with ^C. */
1211 getpkt (&rs->buf, 0);
1212 buf = rs->buf.data ();
1213 if (buf[0] == 'E')
1214 trace_error (buf);
1215 else if (startswith (buf, "qRelocInsn:"))
1216 {
1217 ULONGEST ul;
1218 CORE_ADDR from, to, org_to;
1219 const char *p, *pp;
1220 int adjusted_size = 0;
1221 int relocated = 0;
1222
1223 p = buf + strlen ("qRelocInsn:");
1224 pp = unpack_varlen_hex (p, &ul);
1225 if (*pp != ';')
1226 error (_("invalid qRelocInsn packet: %s"), buf);
1227 from = ul;
1228
1229 p = pp + 1;
1230 unpack_varlen_hex (p, &ul);
1231 to = ul;
1232
1233 org_to = to;
1234
1235 try
1236 {
1237 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1238 relocated = 1;
1239 }
1240 catch (const gdb_exception &ex)
1241 {
1242 if (ex.error == MEMORY_ERROR)
1243 {
1244 /* Propagate memory errors silently back to the
1245 target. The stub may have limited the range of
1246 addresses we can write to, for example. */
1247 }
1248 else
1249 {
1250 /* Something unexpectedly bad happened. Be verbose
1251 so we can tell what, and propagate the error back
1252 to the stub, so it doesn't get stuck waiting for
1253 a response. */
1254 exception_fprintf (gdb_stderr, ex,
1255 _("warning: relocating instruction: "));
1256 }
1257 putpkt ("E01");
1258 }
1259
1260 if (relocated)
1261 {
1262 adjusted_size = to - org_to;
1263
1264 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1265 putpkt (buf);
1266 }
1267 }
1268 else if (buf[0] == 'O' && buf[1] != 'K')
1269 remote_console_output (buf + 1); /* 'O' message from stub */
1270 else
1271 return buf; /* Here's the actual reply. */
1272 }
1273 while (1);
1274 }
1275
1276 struct remote_arch_state *
1277 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1278 {
1279 remote_arch_state *rsa;
1280
1281 auto it = this->m_arch_states.find (gdbarch);
1282 if (it == this->m_arch_states.end ())
1283 {
1284 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1285 std::forward_as_tuple (gdbarch),
1286 std::forward_as_tuple (gdbarch));
1287 rsa = &p.first->second;
1288
1289 /* Make sure that the packet buffer is plenty big enough for
1290 this architecture. */
1291 if (this->buf.size () < rsa->remote_packet_size)
1292 this->buf.resize (2 * rsa->remote_packet_size);
1293 }
1294 else
1295 rsa = &it->second;
1296
1297 return rsa;
1298 }
1299
1300 /* Fetch the global remote target state. */
1301
1302 remote_state *
1303 remote_target::get_remote_state ()
1304 {
1305 /* Make sure that the remote architecture state has been
1306 initialized, because doing so might reallocate rs->buf. Any
1307 function which calls getpkt also needs to be mindful of changes
1308 to rs->buf, but this call limits the number of places which run
1309 into trouble. */
1310 m_remote_state.get_remote_arch_state (target_gdbarch ());
1311
1312 return &m_remote_state;
1313 }
1314
1315 /* Fetch the remote exec-file from the current program space. */
1316
1317 static const char *
1318 get_remote_exec_file (void)
1319 {
1320 char *remote_exec_file;
1321
1322 remote_exec_file = remote_pspace_data.get (current_program_space);
1323 if (remote_exec_file == NULL)
1324 return "";
1325
1326 return remote_exec_file;
1327 }
1328
1329 /* Set the remote exec file for PSPACE. */
1330
1331 static void
1332 set_pspace_remote_exec_file (struct program_space *pspace,
1333 const char *remote_exec_file)
1334 {
1335 char *old_file = remote_pspace_data.get (pspace);
1336
1337 xfree (old_file);
1338 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1339 }
1340
1341 /* The "set/show remote exec-file" set command hook. */
1342
1343 static void
1344 set_remote_exec_file (const char *ignored, int from_tty,
1345 struct cmd_list_element *c)
1346 {
1347 gdb_assert (remote_exec_file_var != NULL);
1348 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1349 }
1350
1351 /* The "set/show remote exec-file" show command hook. */
1352
1353 static void
1354 show_remote_exec_file (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *cmd, const char *value)
1356 {
1357 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1358 }
1359
1360 static int
1361 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1362 {
1363 int regnum, num_remote_regs, offset;
1364 struct packet_reg **remote_regs;
1365
1366 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1367 {
1368 struct packet_reg *r = &regs[regnum];
1369
1370 if (register_size (gdbarch, regnum) == 0)
1371 /* Do not try to fetch zero-sized (placeholder) registers. */
1372 r->pnum = -1;
1373 else
1374 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1375
1376 r->regnum = regnum;
1377 }
1378
1379 /* Define the g/G packet format as the contents of each register
1380 with a remote protocol number, in order of ascending protocol
1381 number. */
1382
1383 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1384 for (num_remote_regs = 0, regnum = 0;
1385 regnum < gdbarch_num_regs (gdbarch);
1386 regnum++)
1387 if (regs[regnum].pnum != -1)
1388 remote_regs[num_remote_regs++] = &regs[regnum];
1389
1390 std::sort (remote_regs, remote_regs + num_remote_regs,
1391 [] (const packet_reg *a, const packet_reg *b)
1392 { return a->pnum < b->pnum; });
1393
1394 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1395 {
1396 remote_regs[regnum]->in_g_packet = 1;
1397 remote_regs[regnum]->offset = offset;
1398 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1399 }
1400
1401 return offset;
1402 }
1403
1404 /* Given the architecture described by GDBARCH, return the remote
1405 protocol register's number and the register's offset in the g/G
1406 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1407 If the target does not have a mapping for REGNUM, return false,
1408 otherwise, return true. */
1409
1410 int
1411 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1412 int *pnum, int *poffset)
1413 {
1414 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1415
1416 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1417
1418 map_regcache_remote_table (gdbarch, regs.data ());
1419
1420 *pnum = regs[regnum].pnum;
1421 *poffset = regs[regnum].offset;
1422
1423 return *pnum != -1;
1424 }
1425
1426 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1427 {
1428 /* Use the architecture to build a regnum<->pnum table, which will be
1429 1:1 unless a feature set specifies otherwise. */
1430 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1431
1432 /* Record the maximum possible size of the g packet - it may turn out
1433 to be smaller. */
1434 this->sizeof_g_packet
1435 = map_regcache_remote_table (gdbarch, this->regs.get ());
1436
1437 /* Default maximum number of characters in a packet body. Many
1438 remote stubs have a hardwired buffer size of 400 bytes
1439 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1440 as the maximum packet-size to ensure that the packet and an extra
1441 NUL character can always fit in the buffer. This stops GDB
1442 trashing stubs that try to squeeze an extra NUL into what is
1443 already a full buffer (As of 1999-12-04 that was most stubs). */
1444 this->remote_packet_size = 400 - 1;
1445
1446 /* This one is filled in when a ``g'' packet is received. */
1447 this->actual_register_packet_size = 0;
1448
1449 /* Should rsa->sizeof_g_packet needs more space than the
1450 default, adjust the size accordingly. Remember that each byte is
1451 encoded as two characters. 32 is the overhead for the packet
1452 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1453 (``$NN:G...#NN'') is a better guess, the below has been padded a
1454 little. */
1455 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1456 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1457 }
1458
1459 /* Get a pointer to the current remote target. If not connected to a
1460 remote target, return NULL. */
1461
1462 static remote_target *
1463 get_current_remote_target ()
1464 {
1465 target_ops *proc_target = current_inferior ()->process_target ();
1466 return dynamic_cast<remote_target *> (proc_target);
1467 }
1468
1469 /* Return the current allowed size of a remote packet. This is
1470 inferred from the current architecture, and should be used to
1471 limit the length of outgoing packets. */
1472 long
1473 remote_target::get_remote_packet_size ()
1474 {
1475 struct remote_state *rs = get_remote_state ();
1476 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1477
1478 if (rs->explicit_packet_size)
1479 return rs->explicit_packet_size;
1480
1481 return rsa->remote_packet_size;
1482 }
1483
1484 static struct packet_reg *
1485 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1486 long regnum)
1487 {
1488 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1489 return NULL;
1490 else
1491 {
1492 struct packet_reg *r = &rsa->regs[regnum];
1493
1494 gdb_assert (r->regnum == regnum);
1495 return r;
1496 }
1497 }
1498
1499 static struct packet_reg *
1500 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1501 LONGEST pnum)
1502 {
1503 int i;
1504
1505 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1506 {
1507 struct packet_reg *r = &rsa->regs[i];
1508
1509 if (r->pnum == pnum)
1510 return r;
1511 }
1512 return NULL;
1513 }
1514
1515 /* Allow the user to specify what sequence to send to the remote
1516 when he requests a program interruption: Although ^C is usually
1517 what remote systems expect (this is the default, here), it is
1518 sometimes preferable to send a break. On other systems such
1519 as the Linux kernel, a break followed by g, which is Magic SysRq g
1520 is required in order to interrupt the execution. */
1521 const char interrupt_sequence_control_c[] = "Ctrl-C";
1522 const char interrupt_sequence_break[] = "BREAK";
1523 const char interrupt_sequence_break_g[] = "BREAK-g";
1524 static const char *const interrupt_sequence_modes[] =
1525 {
1526 interrupt_sequence_control_c,
1527 interrupt_sequence_break,
1528 interrupt_sequence_break_g,
1529 NULL
1530 };
1531 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1532
1533 static void
1534 show_interrupt_sequence (struct ui_file *file, int from_tty,
1535 struct cmd_list_element *c,
1536 const char *value)
1537 {
1538 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1539 fprintf_filtered (file,
1540 _("Send the ASCII ETX character (Ctrl-c) "
1541 "to the remote target to interrupt the "
1542 "execution of the program.\n"));
1543 else if (interrupt_sequence_mode == interrupt_sequence_break)
1544 fprintf_filtered (file,
1545 _("send a break signal to the remote target "
1546 "to interrupt the execution of the program.\n"));
1547 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1548 fprintf_filtered (file,
1549 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1550 "the remote target to interrupt the execution "
1551 "of Linux kernel.\n"));
1552 else
1553 internal_error (__FILE__, __LINE__,
1554 _("Invalid value for interrupt_sequence_mode: %s."),
1555 interrupt_sequence_mode);
1556 }
1557
1558 /* This boolean variable specifies whether interrupt_sequence is sent
1559 to the remote target when gdb connects to it.
1560 This is mostly needed when you debug the Linux kernel: The Linux kernel
1561 expects BREAK g which is Magic SysRq g for connecting gdb. */
1562 static bool interrupt_on_connect = false;
1563
1564 /* This variable is used to implement the "set/show remotebreak" commands.
1565 Since these commands are now deprecated in favor of "set/show remote
1566 interrupt-sequence", it no longer has any effect on the code. */
1567 static bool remote_break;
1568
1569 static void
1570 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1571 {
1572 if (remote_break)
1573 interrupt_sequence_mode = interrupt_sequence_break;
1574 else
1575 interrupt_sequence_mode = interrupt_sequence_control_c;
1576 }
1577
1578 static void
1579 show_remotebreak (struct ui_file *file, int from_tty,
1580 struct cmd_list_element *c,
1581 const char *value)
1582 {
1583 }
1584
1585 /* This variable sets the number of bits in an address that are to be
1586 sent in a memory ("M" or "m") packet. Normally, after stripping
1587 leading zeros, the entire address would be sent. This variable
1588 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1589 initial implementation of remote.c restricted the address sent in
1590 memory packets to ``host::sizeof long'' bytes - (typically 32
1591 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1592 address was never sent. Since fixing this bug may cause a break in
1593 some remote targets this variable is principally provided to
1594 facilitate backward compatibility. */
1595
1596 static unsigned int remote_address_size;
1597
1598 \f
1599 /* User configurable variables for the number of characters in a
1600 memory read/write packet. MIN (rsa->remote_packet_size,
1601 rsa->sizeof_g_packet) is the default. Some targets need smaller
1602 values (fifo overruns, et.al.) and some users need larger values
1603 (speed up transfers). The variables ``preferred_*'' (the user
1604 request), ``current_*'' (what was actually set) and ``forced_*''
1605 (Positive - a soft limit, negative - a hard limit). */
1606
1607 struct memory_packet_config
1608 {
1609 const char *name;
1610 long size;
1611 int fixed_p;
1612 };
1613
1614 /* The default max memory-write-packet-size, when the setting is
1615 "fixed". The 16k is historical. (It came from older GDB's using
1616 alloca for buffers and the knowledge (folklore?) that some hosts
1617 don't cope very well with large alloca calls.) */
1618 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1619
1620 /* The minimum remote packet size for memory transfers. Ensures we
1621 can write at least one byte. */
1622 #define MIN_MEMORY_PACKET_SIZE 20
1623
1624 /* Get the memory packet size, assuming it is fixed. */
1625
1626 static long
1627 get_fixed_memory_packet_size (struct memory_packet_config *config)
1628 {
1629 gdb_assert (config->fixed_p);
1630
1631 if (config->size <= 0)
1632 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1633 else
1634 return config->size;
1635 }
1636
1637 /* Compute the current size of a read/write packet. Since this makes
1638 use of ``actual_register_packet_size'' the computation is dynamic. */
1639
1640 long
1641 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1642 {
1643 struct remote_state *rs = get_remote_state ();
1644 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1645
1646 long what_they_get;
1647 if (config->fixed_p)
1648 what_they_get = get_fixed_memory_packet_size (config);
1649 else
1650 {
1651 what_they_get = get_remote_packet_size ();
1652 /* Limit the packet to the size specified by the user. */
1653 if (config->size > 0
1654 && what_they_get > config->size)
1655 what_they_get = config->size;
1656
1657 /* Limit it to the size of the targets ``g'' response unless we have
1658 permission from the stub to use a larger packet size. */
1659 if (rs->explicit_packet_size == 0
1660 && rsa->actual_register_packet_size > 0
1661 && what_they_get > rsa->actual_register_packet_size)
1662 what_they_get = rsa->actual_register_packet_size;
1663 }
1664 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1665 what_they_get = MIN_MEMORY_PACKET_SIZE;
1666
1667 /* Make sure there is room in the global buffer for this packet
1668 (including its trailing NUL byte). */
1669 if (rs->buf.size () < what_they_get + 1)
1670 rs->buf.resize (2 * what_they_get);
1671
1672 return what_they_get;
1673 }
1674
1675 /* Update the size of a read/write packet. If they user wants
1676 something really big then do a sanity check. */
1677
1678 static void
1679 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1680 {
1681 int fixed_p = config->fixed_p;
1682 long size = config->size;
1683
1684 if (args == NULL)
1685 error (_("Argument required (integer, `fixed' or `limited')."));
1686 else if (strcmp (args, "hard") == 0
1687 || strcmp (args, "fixed") == 0)
1688 fixed_p = 1;
1689 else if (strcmp (args, "soft") == 0
1690 || strcmp (args, "limit") == 0)
1691 fixed_p = 0;
1692 else
1693 {
1694 char *end;
1695
1696 size = strtoul (args, &end, 0);
1697 if (args == end)
1698 error (_("Invalid %s (bad syntax)."), config->name);
1699
1700 /* Instead of explicitly capping the size of a packet to or
1701 disallowing it, the user is allowed to set the size to
1702 something arbitrarily large. */
1703 }
1704
1705 /* Extra checks? */
1706 if (fixed_p && !config->fixed_p)
1707 {
1708 /* So that the query shows the correct value. */
1709 long query_size = (size <= 0
1710 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1711 : size);
1712
1713 if (! query (_("The target may not be able to correctly handle a %s\n"
1714 "of %ld bytes. Change the packet size? "),
1715 config->name, query_size))
1716 error (_("Packet size not changed."));
1717 }
1718 /* Update the config. */
1719 config->fixed_p = fixed_p;
1720 config->size = size;
1721 }
1722
1723 static void
1724 show_memory_packet_size (struct memory_packet_config *config)
1725 {
1726 if (config->size == 0)
1727 printf_filtered (_("The %s is 0 (default). "), config->name);
1728 else
1729 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1730 if (config->fixed_p)
1731 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1732 get_fixed_memory_packet_size (config));
1733 else
1734 {
1735 remote_target *remote = get_current_remote_target ();
1736
1737 if (remote != NULL)
1738 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1739 remote->get_memory_packet_size (config));
1740 else
1741 puts_filtered ("The actual limit will be further reduced "
1742 "dependent on the target.\n");
1743 }
1744 }
1745
1746 /* FIXME: needs to be per-remote-target. */
1747 static struct memory_packet_config memory_write_packet_config =
1748 {
1749 "memory-write-packet-size",
1750 };
1751
1752 static void
1753 set_memory_write_packet_size (const char *args, int from_tty)
1754 {
1755 set_memory_packet_size (args, &memory_write_packet_config);
1756 }
1757
1758 static void
1759 show_memory_write_packet_size (const char *args, int from_tty)
1760 {
1761 show_memory_packet_size (&memory_write_packet_config);
1762 }
1763
1764 /* Show the number of hardware watchpoints that can be used. */
1765
1766 static void
1767 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1768 struct cmd_list_element *c,
1769 const char *value)
1770 {
1771 fprintf_filtered (file, _("The maximum number of target hardware "
1772 "watchpoints is %s.\n"), value);
1773 }
1774
1775 /* Show the length limit (in bytes) for hardware watchpoints. */
1776
1777 static void
1778 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1783 "hardware watchpoint is %s.\n"), value);
1784 }
1785
1786 /* Show the number of hardware breakpoints that can be used. */
1787
1788 static void
1789 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum number of target hardware "
1794 "breakpoints is %s.\n"), value);
1795 }
1796
1797 /* Controls the maximum number of characters to display in the debug output
1798 for each remote packet. The remaining characters are omitted. */
1799
1800 static int remote_packet_max_chars = 512;
1801
1802 /* Show the maximum number of characters to display for each remote packet
1803 when remote debugging is enabled. */
1804
1805 static void
1806 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1807 struct cmd_list_element *c,
1808 const char *value)
1809 {
1810 fprintf_filtered (file, _("Number of remote packet characters to "
1811 "display is %s.\n"), value);
1812 }
1813
1814 long
1815 remote_target::get_memory_write_packet_size ()
1816 {
1817 return get_memory_packet_size (&memory_write_packet_config);
1818 }
1819
1820 /* FIXME: needs to be per-remote-target. */
1821 static struct memory_packet_config memory_read_packet_config =
1822 {
1823 "memory-read-packet-size",
1824 };
1825
1826 static void
1827 set_memory_read_packet_size (const char *args, int from_tty)
1828 {
1829 set_memory_packet_size (args, &memory_read_packet_config);
1830 }
1831
1832 static void
1833 show_memory_read_packet_size (const char *args, int from_tty)
1834 {
1835 show_memory_packet_size (&memory_read_packet_config);
1836 }
1837
1838 long
1839 remote_target::get_memory_read_packet_size ()
1840 {
1841 long size = get_memory_packet_size (&memory_read_packet_config);
1842
1843 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1844 extra buffer size argument before the memory read size can be
1845 increased beyond this. */
1846 if (size > get_remote_packet_size ())
1847 size = get_remote_packet_size ();
1848 return size;
1849 }
1850
1851 \f
1852
1853 struct packet_config
1854 {
1855 const char *name;
1856 const char *title;
1857
1858 /* If auto, GDB auto-detects support for this packet or feature,
1859 either through qSupported, or by trying the packet and looking
1860 at the response. If true, GDB assumes the target supports this
1861 packet. If false, the packet is disabled. Configs that don't
1862 have an associated command always have this set to auto. */
1863 enum auto_boolean detect;
1864
1865 /* Does the target support this packet? */
1866 enum packet_support support;
1867 };
1868
1869 static enum packet_support packet_config_support (struct packet_config *config);
1870 static enum packet_support packet_support (int packet);
1871
1872 static void
1873 show_packet_config_cmd (struct packet_config *config)
1874 {
1875 const char *support = "internal-error";
1876
1877 switch (packet_config_support (config))
1878 {
1879 case PACKET_ENABLE:
1880 support = "enabled";
1881 break;
1882 case PACKET_DISABLE:
1883 support = "disabled";
1884 break;
1885 case PACKET_SUPPORT_UNKNOWN:
1886 support = "unknown";
1887 break;
1888 }
1889 switch (config->detect)
1890 {
1891 case AUTO_BOOLEAN_AUTO:
1892 printf_filtered (_("Support for the `%s' packet "
1893 "is auto-detected, currently %s.\n"),
1894 config->name, support);
1895 break;
1896 case AUTO_BOOLEAN_TRUE:
1897 case AUTO_BOOLEAN_FALSE:
1898 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1899 config->name, support);
1900 break;
1901 }
1902 }
1903
1904 static void
1905 add_packet_config_cmd (struct packet_config *config, const char *name,
1906 const char *title, int legacy)
1907 {
1908 char *set_doc;
1909 char *show_doc;
1910 char *cmd_name;
1911
1912 config->name = name;
1913 config->title = title;
1914 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1915 name, title);
1916 show_doc = xstrprintf ("Show current use of remote "
1917 "protocol `%s' (%s) packet.",
1918 name, title);
1919 /* set/show TITLE-packet {auto,on,off} */
1920 cmd_name = xstrprintf ("%s-packet", title);
1921 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1922 &config->detect, set_doc,
1923 show_doc, NULL, /* help_doc */
1924 NULL,
1925 show_remote_protocol_packet_cmd,
1926 &remote_set_cmdlist, &remote_show_cmdlist);
1927 /* The command code copies the documentation strings. */
1928 xfree (set_doc);
1929 xfree (show_doc);
1930 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1931 if (legacy)
1932 {
1933 char *legacy_name;
1934
1935 legacy_name = xstrprintf ("%s-packet", name);
1936 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1937 &remote_set_cmdlist);
1938 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1939 &remote_show_cmdlist);
1940 }
1941 }
1942
1943 static enum packet_result
1944 packet_check_result (const char *buf)
1945 {
1946 if (buf[0] != '\0')
1947 {
1948 /* The stub recognized the packet request. Check that the
1949 operation succeeded. */
1950 if (buf[0] == 'E'
1951 && isxdigit (buf[1]) && isxdigit (buf[2])
1952 && buf[3] == '\0')
1953 /* "Enn" - definitely an error. */
1954 return PACKET_ERROR;
1955
1956 /* Always treat "E." as an error. This will be used for
1957 more verbose error messages, such as E.memtypes. */
1958 if (buf[0] == 'E' && buf[1] == '.')
1959 return PACKET_ERROR;
1960
1961 /* The packet may or may not be OK. Just assume it is. */
1962 return PACKET_OK;
1963 }
1964 else
1965 /* The stub does not support the packet. */
1966 return PACKET_UNKNOWN;
1967 }
1968
1969 static enum packet_result
1970 packet_check_result (const gdb::char_vector &buf)
1971 {
1972 return packet_check_result (buf.data ());
1973 }
1974
1975 static enum packet_result
1976 packet_ok (const char *buf, struct packet_config *config)
1977 {
1978 enum packet_result result;
1979
1980 if (config->detect != AUTO_BOOLEAN_TRUE
1981 && config->support == PACKET_DISABLE)
1982 internal_error (__FILE__, __LINE__,
1983 _("packet_ok: attempt to use a disabled packet"));
1984
1985 result = packet_check_result (buf);
1986 switch (result)
1987 {
1988 case PACKET_OK:
1989 case PACKET_ERROR:
1990 /* The stub recognized the packet request. */
1991 if (config->support == PACKET_SUPPORT_UNKNOWN)
1992 {
1993 remote_debug_printf ("Packet %s (%s) is supported",
1994 config->name, config->title);
1995 config->support = PACKET_ENABLE;
1996 }
1997 break;
1998 case PACKET_UNKNOWN:
1999 /* The stub does not support the packet. */
2000 if (config->detect == AUTO_BOOLEAN_AUTO
2001 && config->support == PACKET_ENABLE)
2002 {
2003 /* If the stub previously indicated that the packet was
2004 supported then there is a protocol error. */
2005 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2006 config->name, config->title);
2007 }
2008 else if (config->detect == AUTO_BOOLEAN_TRUE)
2009 {
2010 /* The user set it wrong. */
2011 error (_("Enabled packet %s (%s) not recognized by stub"),
2012 config->name, config->title);
2013 }
2014
2015 remote_debug_printf ("Packet %s (%s) is NOT supported",
2016 config->name, config->title);
2017 config->support = PACKET_DISABLE;
2018 break;
2019 }
2020
2021 return result;
2022 }
2023
2024 static enum packet_result
2025 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2026 {
2027 return packet_ok (buf.data (), config);
2028 }
2029
2030 enum {
2031 PACKET_vCont = 0,
2032 PACKET_X,
2033 PACKET_qSymbol,
2034 PACKET_P,
2035 PACKET_p,
2036 PACKET_Z0,
2037 PACKET_Z1,
2038 PACKET_Z2,
2039 PACKET_Z3,
2040 PACKET_Z4,
2041 PACKET_vFile_setfs,
2042 PACKET_vFile_open,
2043 PACKET_vFile_pread,
2044 PACKET_vFile_pwrite,
2045 PACKET_vFile_close,
2046 PACKET_vFile_unlink,
2047 PACKET_vFile_readlink,
2048 PACKET_vFile_fstat,
2049 PACKET_qXfer_auxv,
2050 PACKET_qXfer_features,
2051 PACKET_qXfer_exec_file,
2052 PACKET_qXfer_libraries,
2053 PACKET_qXfer_libraries_svr4,
2054 PACKET_qXfer_memory_map,
2055 PACKET_qXfer_osdata,
2056 PACKET_qXfer_threads,
2057 PACKET_qXfer_statictrace_read,
2058 PACKET_qXfer_traceframe_info,
2059 PACKET_qXfer_uib,
2060 PACKET_qGetTIBAddr,
2061 PACKET_qGetTLSAddr,
2062 PACKET_qSupported,
2063 PACKET_qTStatus,
2064 PACKET_QPassSignals,
2065 PACKET_QCatchSyscalls,
2066 PACKET_QProgramSignals,
2067 PACKET_QSetWorkingDir,
2068 PACKET_QStartupWithShell,
2069 PACKET_QEnvironmentHexEncoded,
2070 PACKET_QEnvironmentReset,
2071 PACKET_QEnvironmentUnset,
2072 PACKET_qCRC,
2073 PACKET_qSearch_memory,
2074 PACKET_vAttach,
2075 PACKET_vRun,
2076 PACKET_QStartNoAckMode,
2077 PACKET_vKill,
2078 PACKET_qXfer_siginfo_read,
2079 PACKET_qXfer_siginfo_write,
2080 PACKET_qAttached,
2081
2082 /* Support for conditional tracepoints. */
2083 PACKET_ConditionalTracepoints,
2084
2085 /* Support for target-side breakpoint conditions. */
2086 PACKET_ConditionalBreakpoints,
2087
2088 /* Support for target-side breakpoint commands. */
2089 PACKET_BreakpointCommands,
2090
2091 /* Support for fast tracepoints. */
2092 PACKET_FastTracepoints,
2093
2094 /* Support for static tracepoints. */
2095 PACKET_StaticTracepoints,
2096
2097 /* Support for installing tracepoints while a trace experiment is
2098 running. */
2099 PACKET_InstallInTrace,
2100
2101 PACKET_bc,
2102 PACKET_bs,
2103 PACKET_TracepointSource,
2104 PACKET_QAllow,
2105 PACKET_qXfer_fdpic,
2106 PACKET_QDisableRandomization,
2107 PACKET_QAgent,
2108 PACKET_QTBuffer_size,
2109 PACKET_Qbtrace_off,
2110 PACKET_Qbtrace_bts,
2111 PACKET_Qbtrace_pt,
2112 PACKET_qXfer_btrace,
2113
2114 /* Support for the QNonStop packet. */
2115 PACKET_QNonStop,
2116
2117 /* Support for the QThreadEvents packet. */
2118 PACKET_QThreadEvents,
2119
2120 /* Support for multi-process extensions. */
2121 PACKET_multiprocess_feature,
2122
2123 /* Support for enabling and disabling tracepoints while a trace
2124 experiment is running. */
2125 PACKET_EnableDisableTracepoints_feature,
2126
2127 /* Support for collecting strings using the tracenz bytecode. */
2128 PACKET_tracenz_feature,
2129
2130 /* Support for continuing to run a trace experiment while GDB is
2131 disconnected. */
2132 PACKET_DisconnectedTracing_feature,
2133
2134 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2135 PACKET_augmented_libraries_svr4_read_feature,
2136
2137 /* Support for the qXfer:btrace-conf:read packet. */
2138 PACKET_qXfer_btrace_conf,
2139
2140 /* Support for the Qbtrace-conf:bts:size packet. */
2141 PACKET_Qbtrace_conf_bts_size,
2142
2143 /* Support for swbreak+ feature. */
2144 PACKET_swbreak_feature,
2145
2146 /* Support for hwbreak+ feature. */
2147 PACKET_hwbreak_feature,
2148
2149 /* Support for fork events. */
2150 PACKET_fork_event_feature,
2151
2152 /* Support for vfork events. */
2153 PACKET_vfork_event_feature,
2154
2155 /* Support for the Qbtrace-conf:pt:size packet. */
2156 PACKET_Qbtrace_conf_pt_size,
2157
2158 /* Support for exec events. */
2159 PACKET_exec_event_feature,
2160
2161 /* Support for query supported vCont actions. */
2162 PACKET_vContSupported,
2163
2164 /* Support remote CTRL-C. */
2165 PACKET_vCtrlC,
2166
2167 /* Support TARGET_WAITKIND_NO_RESUMED. */
2168 PACKET_no_resumed,
2169
2170 PACKET_MAX
2171 };
2172
2173 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2174 assuming all remote targets are the same server (thus all support
2175 the same packets). */
2176 static struct packet_config remote_protocol_packets[PACKET_MAX];
2177
2178 /* Returns the packet's corresponding "set remote foo-packet" command
2179 state. See struct packet_config for more details. */
2180
2181 static enum auto_boolean
2182 packet_set_cmd_state (int packet)
2183 {
2184 return remote_protocol_packets[packet].detect;
2185 }
2186
2187 /* Returns whether a given packet or feature is supported. This takes
2188 into account the state of the corresponding "set remote foo-packet"
2189 command, which may be used to bypass auto-detection. */
2190
2191 static enum packet_support
2192 packet_config_support (struct packet_config *config)
2193 {
2194 switch (config->detect)
2195 {
2196 case AUTO_BOOLEAN_TRUE:
2197 return PACKET_ENABLE;
2198 case AUTO_BOOLEAN_FALSE:
2199 return PACKET_DISABLE;
2200 case AUTO_BOOLEAN_AUTO:
2201 return config->support;
2202 default:
2203 gdb_assert_not_reached (_("bad switch"));
2204 }
2205 }
2206
2207 /* Same as packet_config_support, but takes the packet's enum value as
2208 argument. */
2209
2210 static enum packet_support
2211 packet_support (int packet)
2212 {
2213 struct packet_config *config = &remote_protocol_packets[packet];
2214
2215 return packet_config_support (config);
2216 }
2217
2218 static void
2219 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2220 struct cmd_list_element *c,
2221 const char *value)
2222 {
2223 struct packet_config *packet;
2224
2225 for (packet = remote_protocol_packets;
2226 packet < &remote_protocol_packets[PACKET_MAX];
2227 packet++)
2228 {
2229 if (&packet->detect == c->var)
2230 {
2231 show_packet_config_cmd (packet);
2232 return;
2233 }
2234 }
2235 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2236 c->name);
2237 }
2238
2239 /* Should we try one of the 'Z' requests? */
2240
2241 enum Z_packet_type
2242 {
2243 Z_PACKET_SOFTWARE_BP,
2244 Z_PACKET_HARDWARE_BP,
2245 Z_PACKET_WRITE_WP,
2246 Z_PACKET_READ_WP,
2247 Z_PACKET_ACCESS_WP,
2248 NR_Z_PACKET_TYPES
2249 };
2250
2251 /* For compatibility with older distributions. Provide a ``set remote
2252 Z-packet ...'' command that updates all the Z packet types. */
2253
2254 static enum auto_boolean remote_Z_packet_detect;
2255
2256 static void
2257 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2258 struct cmd_list_element *c)
2259 {
2260 int i;
2261
2262 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2263 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2264 }
2265
2266 static void
2267 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2268 struct cmd_list_element *c,
2269 const char *value)
2270 {
2271 int i;
2272
2273 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2274 {
2275 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2276 }
2277 }
2278
2279 /* Returns true if the multi-process extensions are in effect. */
2280
2281 static int
2282 remote_multi_process_p (struct remote_state *rs)
2283 {
2284 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2285 }
2286
2287 /* Returns true if fork events are supported. */
2288
2289 static int
2290 remote_fork_event_p (struct remote_state *rs)
2291 {
2292 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2293 }
2294
2295 /* Returns true if vfork events are supported. */
2296
2297 static int
2298 remote_vfork_event_p (struct remote_state *rs)
2299 {
2300 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2301 }
2302
2303 /* Returns true if exec events are supported. */
2304
2305 static int
2306 remote_exec_event_p (struct remote_state *rs)
2307 {
2308 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2309 }
2310
2311 /* Insert fork catchpoint target routine. If fork events are enabled
2312 then return success, nothing more to do. */
2313
2314 int
2315 remote_target::insert_fork_catchpoint (int pid)
2316 {
2317 struct remote_state *rs = get_remote_state ();
2318
2319 return !remote_fork_event_p (rs);
2320 }
2321
2322 /* Remove fork catchpoint target routine. Nothing to do, just
2323 return success. */
2324
2325 int
2326 remote_target::remove_fork_catchpoint (int pid)
2327 {
2328 return 0;
2329 }
2330
2331 /* Insert vfork catchpoint target routine. If vfork events are enabled
2332 then return success, nothing more to do. */
2333
2334 int
2335 remote_target::insert_vfork_catchpoint (int pid)
2336 {
2337 struct remote_state *rs = get_remote_state ();
2338
2339 return !remote_vfork_event_p (rs);
2340 }
2341
2342 /* Remove vfork catchpoint target routine. Nothing to do, just
2343 return success. */
2344
2345 int
2346 remote_target::remove_vfork_catchpoint (int pid)
2347 {
2348 return 0;
2349 }
2350
2351 /* Insert exec catchpoint target routine. If exec events are
2352 enabled, just return success. */
2353
2354 int
2355 remote_target::insert_exec_catchpoint (int pid)
2356 {
2357 struct remote_state *rs = get_remote_state ();
2358
2359 return !remote_exec_event_p (rs);
2360 }
2361
2362 /* Remove exec catchpoint target routine. Nothing to do, just
2363 return success. */
2364
2365 int
2366 remote_target::remove_exec_catchpoint (int pid)
2367 {
2368 return 0;
2369 }
2370
2371 \f
2372
2373 /* Take advantage of the fact that the TID field is not used, to tag
2374 special ptids with it set to != 0. */
2375 static const ptid_t magic_null_ptid (42000, -1, 1);
2376 static const ptid_t not_sent_ptid (42000, -2, 1);
2377 static const ptid_t any_thread_ptid (42000, 0, 1);
2378
2379 /* Find out if the stub attached to PID (and hence GDB should offer to
2380 detach instead of killing it when bailing out). */
2381
2382 int
2383 remote_target::remote_query_attached (int pid)
2384 {
2385 struct remote_state *rs = get_remote_state ();
2386 size_t size = get_remote_packet_size ();
2387
2388 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2389 return 0;
2390
2391 if (remote_multi_process_p (rs))
2392 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2393 else
2394 xsnprintf (rs->buf.data (), size, "qAttached");
2395
2396 putpkt (rs->buf);
2397 getpkt (&rs->buf, 0);
2398
2399 switch (packet_ok (rs->buf,
2400 &remote_protocol_packets[PACKET_qAttached]))
2401 {
2402 case PACKET_OK:
2403 if (strcmp (rs->buf.data (), "1") == 0)
2404 return 1;
2405 break;
2406 case PACKET_ERROR:
2407 warning (_("Remote failure reply: %s"), rs->buf.data ());
2408 break;
2409 case PACKET_UNKNOWN:
2410 break;
2411 }
2412
2413 return 0;
2414 }
2415
2416 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2417 has been invented by GDB, instead of reported by the target. Since
2418 we can be connected to a remote system before before knowing about
2419 any inferior, mark the target with execution when we find the first
2420 inferior. If ATTACHED is 1, then we had just attached to this
2421 inferior. If it is 0, then we just created this inferior. If it
2422 is -1, then try querying the remote stub to find out if it had
2423 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2424 attempt to open this inferior's executable as the main executable
2425 if no main executable is open already. */
2426
2427 inferior *
2428 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2429 int try_open_exec)
2430 {
2431 struct inferior *inf;
2432
2433 /* Check whether this process we're learning about is to be
2434 considered attached, or if is to be considered to have been
2435 spawned by the stub. */
2436 if (attached == -1)
2437 attached = remote_query_attached (pid);
2438
2439 if (gdbarch_has_global_solist (target_gdbarch ()))
2440 {
2441 /* If the target shares code across all inferiors, then every
2442 attach adds a new inferior. */
2443 inf = add_inferior (pid);
2444
2445 /* ... and every inferior is bound to the same program space.
2446 However, each inferior may still have its own address
2447 space. */
2448 inf->aspace = maybe_new_address_space ();
2449 inf->pspace = current_program_space;
2450 }
2451 else
2452 {
2453 /* In the traditional debugging scenario, there's a 1-1 match
2454 between program/address spaces. We simply bind the inferior
2455 to the program space's address space. */
2456 inf = current_inferior ();
2457
2458 /* However, if the current inferior is already bound to a
2459 process, find some other empty inferior. */
2460 if (inf->pid != 0)
2461 {
2462 inf = nullptr;
2463 for (inferior *it : all_inferiors ())
2464 if (it->pid == 0)
2465 {
2466 inf = it;
2467 break;
2468 }
2469 }
2470 if (inf == nullptr)
2471 {
2472 /* Since all inferiors were already bound to a process, add
2473 a new inferior. */
2474 inf = add_inferior_with_spaces ();
2475 }
2476 switch_to_inferior_no_thread (inf);
2477 push_target (this);
2478 inferior_appeared (inf, pid);
2479 }
2480
2481 inf->attach_flag = attached;
2482 inf->fake_pid_p = fake_pid_p;
2483
2484 /* If no main executable is currently open then attempt to
2485 open the file that was executed to create this inferior. */
2486 if (try_open_exec && get_exec_file (0) == NULL)
2487 exec_file_locate_attach (pid, 0, 1);
2488
2489 /* Check for exec file mismatch, and let the user solve it. */
2490 validate_exec_file (1);
2491
2492 return inf;
2493 }
2494
2495 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2496 static remote_thread_info *get_remote_thread_info (remote_target *target,
2497 ptid_t ptid);
2498
2499 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2500 according to RUNNING. */
2501
2502 thread_info *
2503 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2504 {
2505 struct remote_state *rs = get_remote_state ();
2506 struct thread_info *thread;
2507
2508 /* GDB historically didn't pull threads in the initial connection
2509 setup. If the remote target doesn't even have a concept of
2510 threads (e.g., a bare-metal target), even if internally we
2511 consider that a single-threaded target, mentioning a new thread
2512 might be confusing to the user. Be silent then, preserving the
2513 age old behavior. */
2514 if (rs->starting_up)
2515 thread = add_thread_silent (this, ptid);
2516 else
2517 thread = add_thread (this, ptid);
2518
2519 /* We start by assuming threads are resumed. That state then gets updated
2520 when we process a matching stop reply. */
2521 get_remote_thread_info (thread)->set_resumed ();
2522
2523 set_executing (this, ptid, executing);
2524 set_running (this, ptid, running);
2525
2526 return thread;
2527 }
2528
2529 /* Come here when we learn about a thread id from the remote target.
2530 It may be the first time we hear about such thread, so take the
2531 opportunity to add it to GDB's thread list. In case this is the
2532 first time we're noticing its corresponding inferior, add it to
2533 GDB's inferior list as well. EXECUTING indicates whether the
2534 thread is (internally) executing or stopped. */
2535
2536 void
2537 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2538 {
2539 /* In non-stop mode, we assume new found threads are (externally)
2540 running until proven otherwise with a stop reply. In all-stop,
2541 we can only get here if all threads are stopped. */
2542 int running = target_is_non_stop_p () ? 1 : 0;
2543
2544 /* If this is a new thread, add it to GDB's thread list.
2545 If we leave it up to WFI to do this, bad things will happen. */
2546
2547 thread_info *tp = find_thread_ptid (this, currthread);
2548 if (tp != NULL && tp->state == THREAD_EXITED)
2549 {
2550 /* We're seeing an event on a thread id we knew had exited.
2551 This has to be a new thread reusing the old id. Add it. */
2552 remote_add_thread (currthread, running, executing);
2553 return;
2554 }
2555
2556 if (!in_thread_list (this, currthread))
2557 {
2558 struct inferior *inf = NULL;
2559 int pid = currthread.pid ();
2560
2561 if (inferior_ptid.is_pid ()
2562 && pid == inferior_ptid.pid ())
2563 {
2564 /* inferior_ptid has no thread member yet. This can happen
2565 with the vAttach -> remote_wait,"TAAthread:" path if the
2566 stub doesn't support qC. This is the first stop reported
2567 after an attach, so this is the main thread. Update the
2568 ptid in the thread list. */
2569 if (in_thread_list (this, ptid_t (pid)))
2570 thread_change_ptid (this, inferior_ptid, currthread);
2571 else
2572 {
2573 thread_info *thr
2574 = remote_add_thread (currthread, running, executing);
2575 switch_to_thread (thr);
2576 }
2577 return;
2578 }
2579
2580 if (magic_null_ptid == inferior_ptid)
2581 {
2582 /* inferior_ptid is not set yet. This can happen with the
2583 vRun -> remote_wait,"TAAthread:" path if the stub
2584 doesn't support qC. This is the first stop reported
2585 after an attach, so this is the main thread. Update the
2586 ptid in the thread list. */
2587 thread_change_ptid (this, inferior_ptid, currthread);
2588 return;
2589 }
2590
2591 /* When connecting to a target remote, or to a target
2592 extended-remote which already was debugging an inferior, we
2593 may not know about it yet. Add it before adding its child
2594 thread, so notifications are emitted in a sensible order. */
2595 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2596 {
2597 struct remote_state *rs = get_remote_state ();
2598 bool fake_pid_p = !remote_multi_process_p (rs);
2599
2600 inf = remote_add_inferior (fake_pid_p,
2601 currthread.pid (), -1, 1);
2602 }
2603
2604 /* This is really a new thread. Add it. */
2605 thread_info *new_thr
2606 = remote_add_thread (currthread, running, executing);
2607
2608 /* If we found a new inferior, let the common code do whatever
2609 it needs to with it (e.g., read shared libraries, insert
2610 breakpoints), unless we're just setting up an all-stop
2611 connection. */
2612 if (inf != NULL)
2613 {
2614 struct remote_state *rs = get_remote_state ();
2615
2616 if (!rs->starting_up)
2617 notice_new_inferior (new_thr, executing, 0);
2618 }
2619 }
2620 }
2621
2622 /* Return THREAD's private thread data, creating it if necessary. */
2623
2624 static remote_thread_info *
2625 get_remote_thread_info (thread_info *thread)
2626 {
2627 gdb_assert (thread != NULL);
2628
2629 if (thread->priv == NULL)
2630 thread->priv.reset (new remote_thread_info);
2631
2632 return static_cast<remote_thread_info *> (thread->priv.get ());
2633 }
2634
2635 /* Return PTID's private thread data, creating it if necessary. */
2636
2637 static remote_thread_info *
2638 get_remote_thread_info (remote_target *target, ptid_t ptid)
2639 {
2640 thread_info *thr = find_thread_ptid (target, ptid);
2641 return get_remote_thread_info (thr);
2642 }
2643
2644 /* Call this function as a result of
2645 1) A halt indication (T packet) containing a thread id
2646 2) A direct query of currthread
2647 3) Successful execution of set thread */
2648
2649 static void
2650 record_currthread (struct remote_state *rs, ptid_t currthread)
2651 {
2652 rs->general_thread = currthread;
2653 }
2654
2655 /* If 'QPassSignals' is supported, tell the remote stub what signals
2656 it can simply pass through to the inferior without reporting. */
2657
2658 void
2659 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2660 {
2661 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2662 {
2663 char *pass_packet, *p;
2664 int count = 0;
2665 struct remote_state *rs = get_remote_state ();
2666
2667 gdb_assert (pass_signals.size () < 256);
2668 for (size_t i = 0; i < pass_signals.size (); i++)
2669 {
2670 if (pass_signals[i])
2671 count++;
2672 }
2673 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2674 strcpy (pass_packet, "QPassSignals:");
2675 p = pass_packet + strlen (pass_packet);
2676 for (size_t i = 0; i < pass_signals.size (); i++)
2677 {
2678 if (pass_signals[i])
2679 {
2680 if (i >= 16)
2681 *p++ = tohex (i >> 4);
2682 *p++ = tohex (i & 15);
2683 if (count)
2684 *p++ = ';';
2685 else
2686 break;
2687 count--;
2688 }
2689 }
2690 *p = 0;
2691 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2692 {
2693 putpkt (pass_packet);
2694 getpkt (&rs->buf, 0);
2695 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2696 xfree (rs->last_pass_packet);
2697 rs->last_pass_packet = pass_packet;
2698 }
2699 else
2700 xfree (pass_packet);
2701 }
2702 }
2703
2704 /* If 'QCatchSyscalls' is supported, tell the remote stub
2705 to report syscalls to GDB. */
2706
2707 int
2708 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2709 gdb::array_view<const int> syscall_counts)
2710 {
2711 const char *catch_packet;
2712 enum packet_result result;
2713 int n_sysno = 0;
2714
2715 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2716 {
2717 /* Not supported. */
2718 return 1;
2719 }
2720
2721 if (needed && any_count == 0)
2722 {
2723 /* Count how many syscalls are to be caught. */
2724 for (size_t i = 0; i < syscall_counts.size (); i++)
2725 {
2726 if (syscall_counts[i] != 0)
2727 n_sysno++;
2728 }
2729 }
2730
2731 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2732 pid, needed, any_count, n_sysno);
2733
2734 std::string built_packet;
2735 if (needed)
2736 {
2737 /* Prepare a packet with the sysno list, assuming max 8+1
2738 characters for a sysno. If the resulting packet size is too
2739 big, fallback on the non-selective packet. */
2740 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2741 built_packet.reserve (maxpktsz);
2742 built_packet = "QCatchSyscalls:1";
2743 if (any_count == 0)
2744 {
2745 /* Add in each syscall to be caught. */
2746 for (size_t i = 0; i < syscall_counts.size (); i++)
2747 {
2748 if (syscall_counts[i] != 0)
2749 string_appendf (built_packet, ";%zx", i);
2750 }
2751 }
2752 if (built_packet.size () > get_remote_packet_size ())
2753 {
2754 /* catch_packet too big. Fallback to less efficient
2755 non selective mode, with GDB doing the filtering. */
2756 catch_packet = "QCatchSyscalls:1";
2757 }
2758 else
2759 catch_packet = built_packet.c_str ();
2760 }
2761 else
2762 catch_packet = "QCatchSyscalls:0";
2763
2764 struct remote_state *rs = get_remote_state ();
2765
2766 putpkt (catch_packet);
2767 getpkt (&rs->buf, 0);
2768 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2769 if (result == PACKET_OK)
2770 return 0;
2771 else
2772 return -1;
2773 }
2774
2775 /* If 'QProgramSignals' is supported, tell the remote stub what
2776 signals it should pass through to the inferior when detaching. */
2777
2778 void
2779 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2780 {
2781 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2782 {
2783 char *packet, *p;
2784 int count = 0;
2785 struct remote_state *rs = get_remote_state ();
2786
2787 gdb_assert (signals.size () < 256);
2788 for (size_t i = 0; i < signals.size (); i++)
2789 {
2790 if (signals[i])
2791 count++;
2792 }
2793 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2794 strcpy (packet, "QProgramSignals:");
2795 p = packet + strlen (packet);
2796 for (size_t i = 0; i < signals.size (); i++)
2797 {
2798 if (signal_pass_state (i))
2799 {
2800 if (i >= 16)
2801 *p++ = tohex (i >> 4);
2802 *p++ = tohex (i & 15);
2803 if (count)
2804 *p++ = ';';
2805 else
2806 break;
2807 count--;
2808 }
2809 }
2810 *p = 0;
2811 if (!rs->last_program_signals_packet
2812 || strcmp (rs->last_program_signals_packet, packet) != 0)
2813 {
2814 putpkt (packet);
2815 getpkt (&rs->buf, 0);
2816 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2817 xfree (rs->last_program_signals_packet);
2818 rs->last_program_signals_packet = packet;
2819 }
2820 else
2821 xfree (packet);
2822 }
2823 }
2824
2825 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2826 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2827 thread. If GEN is set, set the general thread, if not, then set
2828 the step/continue thread. */
2829 void
2830 remote_target::set_thread (ptid_t ptid, int gen)
2831 {
2832 struct remote_state *rs = get_remote_state ();
2833 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2834 char *buf = rs->buf.data ();
2835 char *endbuf = buf + get_remote_packet_size ();
2836
2837 if (state == ptid)
2838 return;
2839
2840 *buf++ = 'H';
2841 *buf++ = gen ? 'g' : 'c';
2842 if (ptid == magic_null_ptid)
2843 xsnprintf (buf, endbuf - buf, "0");
2844 else if (ptid == any_thread_ptid)
2845 xsnprintf (buf, endbuf - buf, "0");
2846 else if (ptid == minus_one_ptid)
2847 xsnprintf (buf, endbuf - buf, "-1");
2848 else
2849 write_ptid (buf, endbuf, ptid);
2850 putpkt (rs->buf);
2851 getpkt (&rs->buf, 0);
2852 if (gen)
2853 rs->general_thread = ptid;
2854 else
2855 rs->continue_thread = ptid;
2856 }
2857
2858 void
2859 remote_target::set_general_thread (ptid_t ptid)
2860 {
2861 set_thread (ptid, 1);
2862 }
2863
2864 void
2865 remote_target::set_continue_thread (ptid_t ptid)
2866 {
2867 set_thread (ptid, 0);
2868 }
2869
2870 /* Change the remote current process. Which thread within the process
2871 ends up selected isn't important, as long as it is the same process
2872 as what INFERIOR_PTID points to.
2873
2874 This comes from that fact that there is no explicit notion of
2875 "selected process" in the protocol. The selected process for
2876 general operations is the process the selected general thread
2877 belongs to. */
2878
2879 void
2880 remote_target::set_general_process ()
2881 {
2882 struct remote_state *rs = get_remote_state ();
2883
2884 /* If the remote can't handle multiple processes, don't bother. */
2885 if (!remote_multi_process_p (rs))
2886 return;
2887
2888 /* We only need to change the remote current thread if it's pointing
2889 at some other process. */
2890 if (rs->general_thread.pid () != inferior_ptid.pid ())
2891 set_general_thread (inferior_ptid);
2892 }
2893
2894 \f
2895 /* Return nonzero if this is the main thread that we made up ourselves
2896 to model non-threaded targets as single-threaded. */
2897
2898 static int
2899 remote_thread_always_alive (ptid_t ptid)
2900 {
2901 if (ptid == magic_null_ptid)
2902 /* The main thread is always alive. */
2903 return 1;
2904
2905 if (ptid.pid () != 0 && ptid.lwp () == 0)
2906 /* The main thread is always alive. This can happen after a
2907 vAttach, if the remote side doesn't support
2908 multi-threading. */
2909 return 1;
2910
2911 return 0;
2912 }
2913
2914 /* Return nonzero if the thread PTID is still alive on the remote
2915 system. */
2916
2917 bool
2918 remote_target::thread_alive (ptid_t ptid)
2919 {
2920 struct remote_state *rs = get_remote_state ();
2921 char *p, *endp;
2922
2923 /* Check if this is a thread that we made up ourselves to model
2924 non-threaded targets as single-threaded. */
2925 if (remote_thread_always_alive (ptid))
2926 return 1;
2927
2928 p = rs->buf.data ();
2929 endp = p + get_remote_packet_size ();
2930
2931 *p++ = 'T';
2932 write_ptid (p, endp, ptid);
2933
2934 putpkt (rs->buf);
2935 getpkt (&rs->buf, 0);
2936 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2937 }
2938
2939 /* Return a pointer to a thread name if we know it and NULL otherwise.
2940 The thread_info object owns the memory for the name. */
2941
2942 const char *
2943 remote_target::thread_name (struct thread_info *info)
2944 {
2945 if (info->priv != NULL)
2946 {
2947 const std::string &name = get_remote_thread_info (info)->name;
2948 return !name.empty () ? name.c_str () : NULL;
2949 }
2950
2951 return NULL;
2952 }
2953
2954 /* About these extended threadlist and threadinfo packets. They are
2955 variable length packets but, the fields within them are often fixed
2956 length. They are redundant enough to send over UDP as is the
2957 remote protocol in general. There is a matching unit test module
2958 in libstub. */
2959
2960 /* WARNING: This threadref data structure comes from the remote O.S.,
2961 libstub protocol encoding, and remote.c. It is not particularly
2962 changable. */
2963
2964 /* Right now, the internal structure is int. We want it to be bigger.
2965 Plan to fix this. */
2966
2967 typedef int gdb_threadref; /* Internal GDB thread reference. */
2968
2969 /* gdb_ext_thread_info is an internal GDB data structure which is
2970 equivalent to the reply of the remote threadinfo packet. */
2971
2972 struct gdb_ext_thread_info
2973 {
2974 threadref threadid; /* External form of thread reference. */
2975 int active; /* Has state interesting to GDB?
2976 regs, stack. */
2977 char display[256]; /* Brief state display, name,
2978 blocked/suspended. */
2979 char shortname[32]; /* To be used to name threads. */
2980 char more_display[256]; /* Long info, statistics, queue depth,
2981 whatever. */
2982 };
2983
2984 /* The volume of remote transfers can be limited by submitting
2985 a mask containing bits specifying the desired information.
2986 Use a union of these values as the 'selection' parameter to
2987 get_thread_info. FIXME: Make these TAG names more thread specific. */
2988
2989 #define TAG_THREADID 1
2990 #define TAG_EXISTS 2
2991 #define TAG_DISPLAY 4
2992 #define TAG_THREADNAME 8
2993 #define TAG_MOREDISPLAY 16
2994
2995 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2996
2997 static const char *unpack_nibble (const char *buf, int *val);
2998
2999 static const char *unpack_byte (const char *buf, int *value);
3000
3001 static char *pack_int (char *buf, int value);
3002
3003 static const char *unpack_int (const char *buf, int *value);
3004
3005 static const char *unpack_string (const char *src, char *dest, int length);
3006
3007 static char *pack_threadid (char *pkt, threadref *id);
3008
3009 static const char *unpack_threadid (const char *inbuf, threadref *id);
3010
3011 void int_to_threadref (threadref *id, int value);
3012
3013 static int threadref_to_int (threadref *ref);
3014
3015 static void copy_threadref (threadref *dest, threadref *src);
3016
3017 static int threadmatch (threadref *dest, threadref *src);
3018
3019 static char *pack_threadinfo_request (char *pkt, int mode,
3020 threadref *id);
3021
3022 static char *pack_threadlist_request (char *pkt, int startflag,
3023 int threadcount,
3024 threadref *nextthread);
3025
3026 static int remote_newthread_step (threadref *ref, void *context);
3027
3028
3029 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3030 buffer we're allowed to write to. Returns
3031 BUF+CHARACTERS_WRITTEN. */
3032
3033 char *
3034 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3035 {
3036 int pid, tid;
3037 struct remote_state *rs = get_remote_state ();
3038
3039 if (remote_multi_process_p (rs))
3040 {
3041 pid = ptid.pid ();
3042 if (pid < 0)
3043 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3044 else
3045 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3046 }
3047 tid = ptid.lwp ();
3048 if (tid < 0)
3049 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3050 else
3051 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3052
3053 return buf;
3054 }
3055
3056 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3057 last parsed char. Returns null_ptid if no thread id is found, and
3058 throws an error if the thread id has an invalid format. */
3059
3060 static ptid_t
3061 read_ptid (const char *buf, const char **obuf)
3062 {
3063 const char *p = buf;
3064 const char *pp;
3065 ULONGEST pid = 0, tid = 0;
3066
3067 if (*p == 'p')
3068 {
3069 /* Multi-process ptid. */
3070 pp = unpack_varlen_hex (p + 1, &pid);
3071 if (*pp != '.')
3072 error (_("invalid remote ptid: %s"), p);
3073
3074 p = pp;
3075 pp = unpack_varlen_hex (p + 1, &tid);
3076 if (obuf)
3077 *obuf = pp;
3078 return ptid_t (pid, tid, 0);
3079 }
3080
3081 /* No multi-process. Just a tid. */
3082 pp = unpack_varlen_hex (p, &tid);
3083
3084 /* Return null_ptid when no thread id is found. */
3085 if (p == pp)
3086 {
3087 if (obuf)
3088 *obuf = pp;
3089 return null_ptid;
3090 }
3091
3092 /* Since the stub is not sending a process id, then default to
3093 what's in inferior_ptid, unless it's null at this point. If so,
3094 then since there's no way to know the pid of the reported
3095 threads, use the magic number. */
3096 if (inferior_ptid == null_ptid)
3097 pid = magic_null_ptid.pid ();
3098 else
3099 pid = inferior_ptid.pid ();
3100
3101 if (obuf)
3102 *obuf = pp;
3103 return ptid_t (pid, tid, 0);
3104 }
3105
3106 static int
3107 stubhex (int ch)
3108 {
3109 if (ch >= 'a' && ch <= 'f')
3110 return ch - 'a' + 10;
3111 if (ch >= '0' && ch <= '9')
3112 return ch - '0';
3113 if (ch >= 'A' && ch <= 'F')
3114 return ch - 'A' + 10;
3115 return -1;
3116 }
3117
3118 static int
3119 stub_unpack_int (const char *buff, int fieldlength)
3120 {
3121 int nibble;
3122 int retval = 0;
3123
3124 while (fieldlength)
3125 {
3126 nibble = stubhex (*buff++);
3127 retval |= nibble;
3128 fieldlength--;
3129 if (fieldlength)
3130 retval = retval << 4;
3131 }
3132 return retval;
3133 }
3134
3135 static const char *
3136 unpack_nibble (const char *buf, int *val)
3137 {
3138 *val = fromhex (*buf++);
3139 return buf;
3140 }
3141
3142 static const char *
3143 unpack_byte (const char *buf, int *value)
3144 {
3145 *value = stub_unpack_int (buf, 2);
3146 return buf + 2;
3147 }
3148
3149 static char *
3150 pack_int (char *buf, int value)
3151 {
3152 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3153 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3154 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3155 buf = pack_hex_byte (buf, (value & 0xff));
3156 return buf;
3157 }
3158
3159 static const char *
3160 unpack_int (const char *buf, int *value)
3161 {
3162 *value = stub_unpack_int (buf, 8);
3163 return buf + 8;
3164 }
3165
3166 #if 0 /* Currently unused, uncomment when needed. */
3167 static char *pack_string (char *pkt, char *string);
3168
3169 static char *
3170 pack_string (char *pkt, char *string)
3171 {
3172 char ch;
3173 int len;
3174
3175 len = strlen (string);
3176 if (len > 200)
3177 len = 200; /* Bigger than most GDB packets, junk??? */
3178 pkt = pack_hex_byte (pkt, len);
3179 while (len-- > 0)
3180 {
3181 ch = *string++;
3182 if ((ch == '\0') || (ch == '#'))
3183 ch = '*'; /* Protect encapsulation. */
3184 *pkt++ = ch;
3185 }
3186 return pkt;
3187 }
3188 #endif /* 0 (unused) */
3189
3190 static const char *
3191 unpack_string (const char *src, char *dest, int length)
3192 {
3193 while (length--)
3194 *dest++ = *src++;
3195 *dest = '\0';
3196 return src;
3197 }
3198
3199 static char *
3200 pack_threadid (char *pkt, threadref *id)
3201 {
3202 char *limit;
3203 unsigned char *altid;
3204
3205 altid = (unsigned char *) id;
3206 limit = pkt + BUF_THREAD_ID_SIZE;
3207 while (pkt < limit)
3208 pkt = pack_hex_byte (pkt, *altid++);
3209 return pkt;
3210 }
3211
3212
3213 static const char *
3214 unpack_threadid (const char *inbuf, threadref *id)
3215 {
3216 char *altref;
3217 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3218 int x, y;
3219
3220 altref = (char *) id;
3221
3222 while (inbuf < limit)
3223 {
3224 x = stubhex (*inbuf++);
3225 y = stubhex (*inbuf++);
3226 *altref++ = (x << 4) | y;
3227 }
3228 return inbuf;
3229 }
3230
3231 /* Externally, threadrefs are 64 bits but internally, they are still
3232 ints. This is due to a mismatch of specifications. We would like
3233 to use 64bit thread references internally. This is an adapter
3234 function. */
3235
3236 void
3237 int_to_threadref (threadref *id, int value)
3238 {
3239 unsigned char *scan;
3240
3241 scan = (unsigned char *) id;
3242 {
3243 int i = 4;
3244 while (i--)
3245 *scan++ = 0;
3246 }
3247 *scan++ = (value >> 24) & 0xff;
3248 *scan++ = (value >> 16) & 0xff;
3249 *scan++ = (value >> 8) & 0xff;
3250 *scan++ = (value & 0xff);
3251 }
3252
3253 static int
3254 threadref_to_int (threadref *ref)
3255 {
3256 int i, value = 0;
3257 unsigned char *scan;
3258
3259 scan = *ref;
3260 scan += 4;
3261 i = 4;
3262 while (i-- > 0)
3263 value = (value << 8) | ((*scan++) & 0xff);
3264 return value;
3265 }
3266
3267 static void
3268 copy_threadref (threadref *dest, threadref *src)
3269 {
3270 int i;
3271 unsigned char *csrc, *cdest;
3272
3273 csrc = (unsigned char *) src;
3274 cdest = (unsigned char *) dest;
3275 i = 8;
3276 while (i--)
3277 *cdest++ = *csrc++;
3278 }
3279
3280 static int
3281 threadmatch (threadref *dest, threadref *src)
3282 {
3283 /* Things are broken right now, so just assume we got a match. */
3284 #if 0
3285 unsigned char *srcp, *destp;
3286 int i, result;
3287 srcp = (char *) src;
3288 destp = (char *) dest;
3289
3290 result = 1;
3291 while (i-- > 0)
3292 result &= (*srcp++ == *destp++) ? 1 : 0;
3293 return result;
3294 #endif
3295 return 1;
3296 }
3297
3298 /*
3299 threadid:1, # always request threadid
3300 context_exists:2,
3301 display:4,
3302 unique_name:8,
3303 more_display:16
3304 */
3305
3306 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3307
3308 static char *
3309 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3310 {
3311 *pkt++ = 'q'; /* Info Query */
3312 *pkt++ = 'P'; /* process or thread info */
3313 pkt = pack_int (pkt, mode); /* mode */
3314 pkt = pack_threadid (pkt, id); /* threadid */
3315 *pkt = '\0'; /* terminate */
3316 return pkt;
3317 }
3318
3319 /* These values tag the fields in a thread info response packet. */
3320 /* Tagging the fields allows us to request specific fields and to
3321 add more fields as time goes by. */
3322
3323 #define TAG_THREADID 1 /* Echo the thread identifier. */
3324 #define TAG_EXISTS 2 /* Is this process defined enough to
3325 fetch registers and its stack? */
3326 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3327 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3328 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3329 the process. */
3330
3331 int
3332 remote_target::remote_unpack_thread_info_response (const char *pkt,
3333 threadref *expectedref,
3334 gdb_ext_thread_info *info)
3335 {
3336 struct remote_state *rs = get_remote_state ();
3337 int mask, length;
3338 int tag;
3339 threadref ref;
3340 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3341 int retval = 1;
3342
3343 /* info->threadid = 0; FIXME: implement zero_threadref. */
3344 info->active = 0;
3345 info->display[0] = '\0';
3346 info->shortname[0] = '\0';
3347 info->more_display[0] = '\0';
3348
3349 /* Assume the characters indicating the packet type have been
3350 stripped. */
3351 pkt = unpack_int (pkt, &mask); /* arg mask */
3352 pkt = unpack_threadid (pkt, &ref);
3353
3354 if (mask == 0)
3355 warning (_("Incomplete response to threadinfo request."));
3356 if (!threadmatch (&ref, expectedref))
3357 { /* This is an answer to a different request. */
3358 warning (_("ERROR RMT Thread info mismatch."));
3359 return 0;
3360 }
3361 copy_threadref (&info->threadid, &ref);
3362
3363 /* Loop on tagged fields , try to bail if something goes wrong. */
3364
3365 /* Packets are terminated with nulls. */
3366 while ((pkt < limit) && mask && *pkt)
3367 {
3368 pkt = unpack_int (pkt, &tag); /* tag */
3369 pkt = unpack_byte (pkt, &length); /* length */
3370 if (!(tag & mask)) /* Tags out of synch with mask. */
3371 {
3372 warning (_("ERROR RMT: threadinfo tag mismatch."));
3373 retval = 0;
3374 break;
3375 }
3376 if (tag == TAG_THREADID)
3377 {
3378 if (length != 16)
3379 {
3380 warning (_("ERROR RMT: length of threadid is not 16."));
3381 retval = 0;
3382 break;
3383 }
3384 pkt = unpack_threadid (pkt, &ref);
3385 mask = mask & ~TAG_THREADID;
3386 continue;
3387 }
3388 if (tag == TAG_EXISTS)
3389 {
3390 info->active = stub_unpack_int (pkt, length);
3391 pkt += length;
3392 mask = mask & ~(TAG_EXISTS);
3393 if (length > 8)
3394 {
3395 warning (_("ERROR RMT: 'exists' length too long."));
3396 retval = 0;
3397 break;
3398 }
3399 continue;
3400 }
3401 if (tag == TAG_THREADNAME)
3402 {
3403 pkt = unpack_string (pkt, &info->shortname[0], length);
3404 mask = mask & ~TAG_THREADNAME;
3405 continue;
3406 }
3407 if (tag == TAG_DISPLAY)
3408 {
3409 pkt = unpack_string (pkt, &info->display[0], length);
3410 mask = mask & ~TAG_DISPLAY;
3411 continue;
3412 }
3413 if (tag == TAG_MOREDISPLAY)
3414 {
3415 pkt = unpack_string (pkt, &info->more_display[0], length);
3416 mask = mask & ~TAG_MOREDISPLAY;
3417 continue;
3418 }
3419 warning (_("ERROR RMT: unknown thread info tag."));
3420 break; /* Not a tag we know about. */
3421 }
3422 return retval;
3423 }
3424
3425 int
3426 remote_target::remote_get_threadinfo (threadref *threadid,
3427 int fieldset,
3428 gdb_ext_thread_info *info)
3429 {
3430 struct remote_state *rs = get_remote_state ();
3431 int result;
3432
3433 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3434 putpkt (rs->buf);
3435 getpkt (&rs->buf, 0);
3436
3437 if (rs->buf[0] == '\0')
3438 return 0;
3439
3440 result = remote_unpack_thread_info_response (&rs->buf[2],
3441 threadid, info);
3442 return result;
3443 }
3444
3445 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3446
3447 static char *
3448 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3449 threadref *nextthread)
3450 {
3451 *pkt++ = 'q'; /* info query packet */
3452 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3453 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3454 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3455 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3456 *pkt = '\0';
3457 return pkt;
3458 }
3459
3460 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3461
3462 int
3463 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3464 threadref *original_echo,
3465 threadref *resultlist,
3466 int *doneflag)
3467 {
3468 struct remote_state *rs = get_remote_state ();
3469 int count, resultcount, done;
3470
3471 resultcount = 0;
3472 /* Assume the 'q' and 'M chars have been stripped. */
3473 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3474 /* done parse past here */
3475 pkt = unpack_byte (pkt, &count); /* count field */
3476 pkt = unpack_nibble (pkt, &done);
3477 /* The first threadid is the argument threadid. */
3478 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3479 while ((count-- > 0) && (pkt < limit))
3480 {
3481 pkt = unpack_threadid (pkt, resultlist++);
3482 if (resultcount++ >= result_limit)
3483 break;
3484 }
3485 if (doneflag)
3486 *doneflag = done;
3487 return resultcount;
3488 }
3489
3490 /* Fetch the next batch of threads from the remote. Returns -1 if the
3491 qL packet is not supported, 0 on error and 1 on success. */
3492
3493 int
3494 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3495 int result_limit, int *done, int *result_count,
3496 threadref *threadlist)
3497 {
3498 struct remote_state *rs = get_remote_state ();
3499 int result = 1;
3500
3501 /* Truncate result limit to be smaller than the packet size. */
3502 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3503 >= get_remote_packet_size ())
3504 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3505
3506 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3507 nextthread);
3508 putpkt (rs->buf);
3509 getpkt (&rs->buf, 0);
3510 if (rs->buf[0] == '\0')
3511 {
3512 /* Packet not supported. */
3513 return -1;
3514 }
3515
3516 *result_count =
3517 parse_threadlist_response (&rs->buf[2], result_limit,
3518 &rs->echo_nextthread, threadlist, done);
3519
3520 if (!threadmatch (&rs->echo_nextthread, nextthread))
3521 {
3522 /* FIXME: This is a good reason to drop the packet. */
3523 /* Possibly, there is a duplicate response. */
3524 /* Possibilities :
3525 retransmit immediatly - race conditions
3526 retransmit after timeout - yes
3527 exit
3528 wait for packet, then exit
3529 */
3530 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3531 return 0; /* I choose simply exiting. */
3532 }
3533 if (*result_count <= 0)
3534 {
3535 if (*done != 1)
3536 {
3537 warning (_("RMT ERROR : failed to get remote thread list."));
3538 result = 0;
3539 }
3540 return result; /* break; */
3541 }
3542 if (*result_count > result_limit)
3543 {
3544 *result_count = 0;
3545 warning (_("RMT ERROR: threadlist response longer than requested."));
3546 return 0;
3547 }
3548 return result;
3549 }
3550
3551 /* Fetch the list of remote threads, with the qL packet, and call
3552 STEPFUNCTION for each thread found. Stops iterating and returns 1
3553 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3554 STEPFUNCTION returns false. If the packet is not supported,
3555 returns -1. */
3556
3557 int
3558 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3559 void *context, int looplimit)
3560 {
3561 struct remote_state *rs = get_remote_state ();
3562 int done, i, result_count;
3563 int startflag = 1;
3564 int result = 1;
3565 int loopcount = 0;
3566
3567 done = 0;
3568 while (!done)
3569 {
3570 if (loopcount++ > looplimit)
3571 {
3572 result = 0;
3573 warning (_("Remote fetch threadlist -infinite loop-."));
3574 break;
3575 }
3576 result = remote_get_threadlist (startflag, &rs->nextthread,
3577 MAXTHREADLISTRESULTS,
3578 &done, &result_count,
3579 rs->resultthreadlist);
3580 if (result <= 0)
3581 break;
3582 /* Clear for later iterations. */
3583 startflag = 0;
3584 /* Setup to resume next batch of thread references, set nextthread. */
3585 if (result_count >= 1)
3586 copy_threadref (&rs->nextthread,
3587 &rs->resultthreadlist[result_count - 1]);
3588 i = 0;
3589 while (result_count--)
3590 {
3591 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3592 {
3593 result = 0;
3594 break;
3595 }
3596 }
3597 }
3598 return result;
3599 }
3600
3601 /* A thread found on the remote target. */
3602
3603 struct thread_item
3604 {
3605 explicit thread_item (ptid_t ptid_)
3606 : ptid (ptid_)
3607 {}
3608
3609 thread_item (thread_item &&other) = default;
3610 thread_item &operator= (thread_item &&other) = default;
3611
3612 DISABLE_COPY_AND_ASSIGN (thread_item);
3613
3614 /* The thread's PTID. */
3615 ptid_t ptid;
3616
3617 /* The thread's extra info. */
3618 std::string extra;
3619
3620 /* The thread's name. */
3621 std::string name;
3622
3623 /* The core the thread was running on. -1 if not known. */
3624 int core = -1;
3625
3626 /* The thread handle associated with the thread. */
3627 gdb::byte_vector thread_handle;
3628 };
3629
3630 /* Context passed around to the various methods listing remote
3631 threads. As new threads are found, they're added to the ITEMS
3632 vector. */
3633
3634 struct threads_listing_context
3635 {
3636 /* Return true if this object contains an entry for a thread with ptid
3637 PTID. */
3638
3639 bool contains_thread (ptid_t ptid) const
3640 {
3641 auto match_ptid = [&] (const thread_item &item)
3642 {
3643 return item.ptid == ptid;
3644 };
3645
3646 auto it = std::find_if (this->items.begin (),
3647 this->items.end (),
3648 match_ptid);
3649
3650 return it != this->items.end ();
3651 }
3652
3653 /* Remove the thread with ptid PTID. */
3654
3655 void remove_thread (ptid_t ptid)
3656 {
3657 auto match_ptid = [&] (const thread_item &item)
3658 {
3659 return item.ptid == ptid;
3660 };
3661
3662 auto it = std::remove_if (this->items.begin (),
3663 this->items.end (),
3664 match_ptid);
3665
3666 if (it != this->items.end ())
3667 this->items.erase (it);
3668 }
3669
3670 /* The threads found on the remote target. */
3671 std::vector<thread_item> items;
3672 };
3673
3674 static int
3675 remote_newthread_step (threadref *ref, void *data)
3676 {
3677 struct threads_listing_context *context
3678 = (struct threads_listing_context *) data;
3679 int pid = inferior_ptid.pid ();
3680 int lwp = threadref_to_int (ref);
3681 ptid_t ptid (pid, lwp);
3682
3683 context->items.emplace_back (ptid);
3684
3685 return 1; /* continue iterator */
3686 }
3687
3688 #define CRAZY_MAX_THREADS 1000
3689
3690 ptid_t
3691 remote_target::remote_current_thread (ptid_t oldpid)
3692 {
3693 struct remote_state *rs = get_remote_state ();
3694
3695 putpkt ("qC");
3696 getpkt (&rs->buf, 0);
3697 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3698 {
3699 const char *obuf;
3700 ptid_t result;
3701
3702 result = read_ptid (&rs->buf[2], &obuf);
3703 if (*obuf != '\0')
3704 remote_debug_printf ("warning: garbage in qC reply");
3705
3706 return result;
3707 }
3708 else
3709 return oldpid;
3710 }
3711
3712 /* List remote threads using the deprecated qL packet. */
3713
3714 int
3715 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3716 {
3717 if (remote_threadlist_iterator (remote_newthread_step, context,
3718 CRAZY_MAX_THREADS) >= 0)
3719 return 1;
3720
3721 return 0;
3722 }
3723
3724 #if defined(HAVE_LIBEXPAT)
3725
3726 static void
3727 start_thread (struct gdb_xml_parser *parser,
3728 const struct gdb_xml_element *element,
3729 void *user_data,
3730 std::vector<gdb_xml_value> &attributes)
3731 {
3732 struct threads_listing_context *data
3733 = (struct threads_listing_context *) user_data;
3734 struct gdb_xml_value *attr;
3735
3736 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3737 ptid_t ptid = read_ptid (id, NULL);
3738
3739 data->items.emplace_back (ptid);
3740 thread_item &item = data->items.back ();
3741
3742 attr = xml_find_attribute (attributes, "core");
3743 if (attr != NULL)
3744 item.core = *(ULONGEST *) attr->value.get ();
3745
3746 attr = xml_find_attribute (attributes, "name");
3747 if (attr != NULL)
3748 item.name = (const char *) attr->value.get ();
3749
3750 attr = xml_find_attribute (attributes, "handle");
3751 if (attr != NULL)
3752 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3753 }
3754
3755 static void
3756 end_thread (struct gdb_xml_parser *parser,
3757 const struct gdb_xml_element *element,
3758 void *user_data, const char *body_text)
3759 {
3760 struct threads_listing_context *data
3761 = (struct threads_listing_context *) user_data;
3762
3763 if (body_text != NULL && *body_text != '\0')
3764 data->items.back ().extra = body_text;
3765 }
3766
3767 const struct gdb_xml_attribute thread_attributes[] = {
3768 { "id", GDB_XML_AF_NONE, NULL, NULL },
3769 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3770 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3771 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3772 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3773 };
3774
3775 const struct gdb_xml_element thread_children[] = {
3776 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3777 };
3778
3779 const struct gdb_xml_element threads_children[] = {
3780 { "thread", thread_attributes, thread_children,
3781 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3782 start_thread, end_thread },
3783 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3784 };
3785
3786 const struct gdb_xml_element threads_elements[] = {
3787 { "threads", NULL, threads_children,
3788 GDB_XML_EF_NONE, NULL, NULL },
3789 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3790 };
3791
3792 #endif
3793
3794 /* List remote threads using qXfer:threads:read. */
3795
3796 int
3797 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3798 {
3799 #if defined(HAVE_LIBEXPAT)
3800 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3801 {
3802 gdb::optional<gdb::char_vector> xml
3803 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3804
3805 if (xml && (*xml)[0] != '\0')
3806 {
3807 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3808 threads_elements, xml->data (), context);
3809 }
3810
3811 return 1;
3812 }
3813 #endif
3814
3815 return 0;
3816 }
3817
3818 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3819
3820 int
3821 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3822 {
3823 struct remote_state *rs = get_remote_state ();
3824
3825 if (rs->use_threadinfo_query)
3826 {
3827 const char *bufp;
3828
3829 putpkt ("qfThreadInfo");
3830 getpkt (&rs->buf, 0);
3831 bufp = rs->buf.data ();
3832 if (bufp[0] != '\0') /* q packet recognized */
3833 {
3834 while (*bufp++ == 'm') /* reply contains one or more TID */
3835 {
3836 do
3837 {
3838 ptid_t ptid = read_ptid (bufp, &bufp);
3839 context->items.emplace_back (ptid);
3840 }
3841 while (*bufp++ == ','); /* comma-separated list */
3842 putpkt ("qsThreadInfo");
3843 getpkt (&rs->buf, 0);
3844 bufp = rs->buf.data ();
3845 }
3846 return 1;
3847 }
3848 else
3849 {
3850 /* Packet not recognized. */
3851 rs->use_threadinfo_query = 0;
3852 }
3853 }
3854
3855 return 0;
3856 }
3857
3858 /* Return true if INF only has one non-exited thread. */
3859
3860 static bool
3861 has_single_non_exited_thread (inferior *inf)
3862 {
3863 int count = 0;
3864 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3865 if (++count > 1)
3866 break;
3867 return count == 1;
3868 }
3869
3870 /* Implement the to_update_thread_list function for the remote
3871 targets. */
3872
3873 void
3874 remote_target::update_thread_list ()
3875 {
3876 struct threads_listing_context context;
3877 int got_list = 0;
3878
3879 /* We have a few different mechanisms to fetch the thread list. Try
3880 them all, starting with the most preferred one first, falling
3881 back to older methods. */
3882 if (remote_get_threads_with_qxfer (&context)
3883 || remote_get_threads_with_qthreadinfo (&context)
3884 || remote_get_threads_with_ql (&context))
3885 {
3886 got_list = 1;
3887
3888 if (context.items.empty ()
3889 && remote_thread_always_alive (inferior_ptid))
3890 {
3891 /* Some targets don't really support threads, but still
3892 reply an (empty) thread list in response to the thread
3893 listing packets, instead of replying "packet not
3894 supported". Exit early so we don't delete the main
3895 thread. */
3896 return;
3897 }
3898
3899 /* CONTEXT now holds the current thread list on the remote
3900 target end. Delete GDB-side threads no longer found on the
3901 target. */
3902 for (thread_info *tp : all_threads_safe ())
3903 {
3904 if (tp->inf->process_target () != this)
3905 continue;
3906
3907 if (!context.contains_thread (tp->ptid))
3908 {
3909 /* Do not remove the thread if it is the last thread in
3910 the inferior. This situation happens when we have a
3911 pending exit process status to process. Otherwise we
3912 may end up with a seemingly live inferior (i.e. pid
3913 != 0) that has no threads. */
3914 if (has_single_non_exited_thread (tp->inf))
3915 continue;
3916
3917 /* Not found. */
3918 delete_thread (tp);
3919 }
3920 }
3921
3922 /* Remove any unreported fork child threads from CONTEXT so
3923 that we don't interfere with follow fork, which is where
3924 creation of such threads is handled. */
3925 remove_new_fork_children (&context);
3926
3927 /* And now add threads we don't know about yet to our list. */
3928 for (thread_item &item : context.items)
3929 {
3930 if (item.ptid != null_ptid)
3931 {
3932 /* In non-stop mode, we assume new found threads are
3933 executing until proven otherwise with a stop reply.
3934 In all-stop, we can only get here if all threads are
3935 stopped. */
3936 int executing = target_is_non_stop_p () ? 1 : 0;
3937
3938 remote_notice_new_inferior (item.ptid, executing);
3939
3940 thread_info *tp = find_thread_ptid (this, item.ptid);
3941 remote_thread_info *info = get_remote_thread_info (tp);
3942 info->core = item.core;
3943 info->extra = std::move (item.extra);
3944 info->name = std::move (item.name);
3945 info->thread_handle = std::move (item.thread_handle);
3946 }
3947 }
3948 }
3949
3950 if (!got_list)
3951 {
3952 /* If no thread listing method is supported, then query whether
3953 each known thread is alive, one by one, with the T packet.
3954 If the target doesn't support threads at all, then this is a
3955 no-op. See remote_thread_alive. */
3956 prune_threads ();
3957 }
3958 }
3959
3960 /*
3961 * Collect a descriptive string about the given thread.
3962 * The target may say anything it wants to about the thread
3963 * (typically info about its blocked / runnable state, name, etc.).
3964 * This string will appear in the info threads display.
3965 *
3966 * Optional: targets are not required to implement this function.
3967 */
3968
3969 const char *
3970 remote_target::extra_thread_info (thread_info *tp)
3971 {
3972 struct remote_state *rs = get_remote_state ();
3973 int set;
3974 threadref id;
3975 struct gdb_ext_thread_info threadinfo;
3976
3977 if (rs->remote_desc == 0) /* paranoia */
3978 internal_error (__FILE__, __LINE__,
3979 _("remote_threads_extra_info"));
3980
3981 if (tp->ptid == magic_null_ptid
3982 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3983 /* This is the main thread which was added by GDB. The remote
3984 server doesn't know about it. */
3985 return NULL;
3986
3987 std::string &extra = get_remote_thread_info (tp)->extra;
3988
3989 /* If already have cached info, use it. */
3990 if (!extra.empty ())
3991 return extra.c_str ();
3992
3993 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3994 {
3995 /* If we're using qXfer:threads:read, then the extra info is
3996 included in the XML. So if we didn't have anything cached,
3997 it's because there's really no extra info. */
3998 return NULL;
3999 }
4000
4001 if (rs->use_threadextra_query)
4002 {
4003 char *b = rs->buf.data ();
4004 char *endb = b + get_remote_packet_size ();
4005
4006 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4007 b += strlen (b);
4008 write_ptid (b, endb, tp->ptid);
4009
4010 putpkt (rs->buf);
4011 getpkt (&rs->buf, 0);
4012 if (rs->buf[0] != 0)
4013 {
4014 extra.resize (strlen (rs->buf.data ()) / 2);
4015 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4016 return extra.c_str ();
4017 }
4018 }
4019
4020 /* If the above query fails, fall back to the old method. */
4021 rs->use_threadextra_query = 0;
4022 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4023 | TAG_MOREDISPLAY | TAG_DISPLAY;
4024 int_to_threadref (&id, tp->ptid.lwp ());
4025 if (remote_get_threadinfo (&id, set, &threadinfo))
4026 if (threadinfo.active)
4027 {
4028 if (*threadinfo.shortname)
4029 string_appendf (extra, " Name: %s", threadinfo.shortname);
4030 if (*threadinfo.display)
4031 {
4032 if (!extra.empty ())
4033 extra += ',';
4034 string_appendf (extra, " State: %s", threadinfo.display);
4035 }
4036 if (*threadinfo.more_display)
4037 {
4038 if (!extra.empty ())
4039 extra += ',';
4040 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4041 }
4042 return extra.c_str ();
4043 }
4044 return NULL;
4045 }
4046 \f
4047
4048 bool
4049 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4050 struct static_tracepoint_marker *marker)
4051 {
4052 struct remote_state *rs = get_remote_state ();
4053 char *p = rs->buf.data ();
4054
4055 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4056 p += strlen (p);
4057 p += hexnumstr (p, addr);
4058 putpkt (rs->buf);
4059 getpkt (&rs->buf, 0);
4060 p = rs->buf.data ();
4061
4062 if (*p == 'E')
4063 error (_("Remote failure reply: %s"), p);
4064
4065 if (*p++ == 'm')
4066 {
4067 parse_static_tracepoint_marker_definition (p, NULL, marker);
4068 return true;
4069 }
4070
4071 return false;
4072 }
4073
4074 std::vector<static_tracepoint_marker>
4075 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4076 {
4077 struct remote_state *rs = get_remote_state ();
4078 std::vector<static_tracepoint_marker> markers;
4079 const char *p;
4080 static_tracepoint_marker marker;
4081
4082 /* Ask for a first packet of static tracepoint marker
4083 definition. */
4084 putpkt ("qTfSTM");
4085 getpkt (&rs->buf, 0);
4086 p = rs->buf.data ();
4087 if (*p == 'E')
4088 error (_("Remote failure reply: %s"), p);
4089
4090 while (*p++ == 'm')
4091 {
4092 do
4093 {
4094 parse_static_tracepoint_marker_definition (p, &p, &marker);
4095
4096 if (strid == NULL || marker.str_id == strid)
4097 markers.push_back (std::move (marker));
4098 }
4099 while (*p++ == ','); /* comma-separated list */
4100 /* Ask for another packet of static tracepoint definition. */
4101 putpkt ("qTsSTM");
4102 getpkt (&rs->buf, 0);
4103 p = rs->buf.data ();
4104 }
4105
4106 return markers;
4107 }
4108
4109 \f
4110 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4111
4112 ptid_t
4113 remote_target::get_ada_task_ptid (long lwp, long thread)
4114 {
4115 return ptid_t (inferior_ptid.pid (), lwp, 0);
4116 }
4117 \f
4118
4119 /* Restart the remote side; this is an extended protocol operation. */
4120
4121 void
4122 remote_target::extended_remote_restart ()
4123 {
4124 struct remote_state *rs = get_remote_state ();
4125
4126 /* Send the restart command; for reasons I don't understand the
4127 remote side really expects a number after the "R". */
4128 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4129 putpkt (rs->buf);
4130
4131 remote_fileio_reset ();
4132 }
4133 \f
4134 /* Clean up connection to a remote debugger. */
4135
4136 void
4137 remote_target::close ()
4138 {
4139 /* Make sure we leave stdin registered in the event loop. */
4140 terminal_ours ();
4141
4142 trace_reset_local_state ();
4143
4144 delete this;
4145 }
4146
4147 remote_target::~remote_target ()
4148 {
4149 struct remote_state *rs = get_remote_state ();
4150
4151 /* Check for NULL because we may get here with a partially
4152 constructed target/connection. */
4153 if (rs->remote_desc == nullptr)
4154 return;
4155
4156 serial_close (rs->remote_desc);
4157
4158 /* We are destroying the remote target, so we should discard
4159 everything of this target. */
4160 discard_pending_stop_replies_in_queue ();
4161
4162 if (rs->remote_async_inferior_event_token)
4163 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4164
4165 delete rs->notif_state;
4166 }
4167
4168 /* Query the remote side for the text, data and bss offsets. */
4169
4170 void
4171 remote_target::get_offsets ()
4172 {
4173 struct remote_state *rs = get_remote_state ();
4174 char *buf;
4175 char *ptr;
4176 int lose, num_segments = 0, do_sections, do_segments;
4177 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4178
4179 if (current_program_space->symfile_object_file == NULL)
4180 return;
4181
4182 putpkt ("qOffsets");
4183 getpkt (&rs->buf, 0);
4184 buf = rs->buf.data ();
4185
4186 if (buf[0] == '\000')
4187 return; /* Return silently. Stub doesn't support
4188 this command. */
4189 if (buf[0] == 'E')
4190 {
4191 warning (_("Remote failure reply: %s"), buf);
4192 return;
4193 }
4194
4195 /* Pick up each field in turn. This used to be done with scanf, but
4196 scanf will make trouble if CORE_ADDR size doesn't match
4197 conversion directives correctly. The following code will work
4198 with any size of CORE_ADDR. */
4199 text_addr = data_addr = bss_addr = 0;
4200 ptr = buf;
4201 lose = 0;
4202
4203 if (startswith (ptr, "Text="))
4204 {
4205 ptr += 5;
4206 /* Don't use strtol, could lose on big values. */
4207 while (*ptr && *ptr != ';')
4208 text_addr = (text_addr << 4) + fromhex (*ptr++);
4209
4210 if (startswith (ptr, ";Data="))
4211 {
4212 ptr += 6;
4213 while (*ptr && *ptr != ';')
4214 data_addr = (data_addr << 4) + fromhex (*ptr++);
4215 }
4216 else
4217 lose = 1;
4218
4219 if (!lose && startswith (ptr, ";Bss="))
4220 {
4221 ptr += 5;
4222 while (*ptr && *ptr != ';')
4223 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4224
4225 if (bss_addr != data_addr)
4226 warning (_("Target reported unsupported offsets: %s"), buf);
4227 }
4228 else
4229 lose = 1;
4230 }
4231 else if (startswith (ptr, "TextSeg="))
4232 {
4233 ptr += 8;
4234 /* Don't use strtol, could lose on big values. */
4235 while (*ptr && *ptr != ';')
4236 text_addr = (text_addr << 4) + fromhex (*ptr++);
4237 num_segments = 1;
4238
4239 if (startswith (ptr, ";DataSeg="))
4240 {
4241 ptr += 9;
4242 while (*ptr && *ptr != ';')
4243 data_addr = (data_addr << 4) + fromhex (*ptr++);
4244 num_segments++;
4245 }
4246 }
4247 else
4248 lose = 1;
4249
4250 if (lose)
4251 error (_("Malformed response to offset query, %s"), buf);
4252 else if (*ptr != '\0')
4253 warning (_("Target reported unsupported offsets: %s"), buf);
4254
4255 objfile *objf = current_program_space->symfile_object_file;
4256 section_offsets offs = objf->section_offsets;
4257
4258 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4259 do_segments = (data != NULL);
4260 do_sections = num_segments == 0;
4261
4262 if (num_segments > 0)
4263 {
4264 segments[0] = text_addr;
4265 segments[1] = data_addr;
4266 }
4267 /* If we have two segments, we can still try to relocate everything
4268 by assuming that the .text and .data offsets apply to the whole
4269 text and data segments. Convert the offsets given in the packet
4270 to base addresses for symfile_map_offsets_to_segments. */
4271 else if (data != nullptr && data->segments.size () == 2)
4272 {
4273 segments[0] = data->segments[0].base + text_addr;
4274 segments[1] = data->segments[1].base + data_addr;
4275 num_segments = 2;
4276 }
4277 /* If the object file has only one segment, assume that it is text
4278 rather than data; main programs with no writable data are rare,
4279 but programs with no code are useless. Of course the code might
4280 have ended up in the data segment... to detect that we would need
4281 the permissions here. */
4282 else if (data && data->segments.size () == 1)
4283 {
4284 segments[0] = data->segments[0].base + text_addr;
4285 num_segments = 1;
4286 }
4287 /* There's no way to relocate by segment. */
4288 else
4289 do_segments = 0;
4290
4291 if (do_segments)
4292 {
4293 int ret = symfile_map_offsets_to_segments (objf->obfd,
4294 data.get (), offs,
4295 num_segments, segments);
4296
4297 if (ret == 0 && !do_sections)
4298 error (_("Can not handle qOffsets TextSeg "
4299 "response with this symbol file"));
4300
4301 if (ret > 0)
4302 do_sections = 0;
4303 }
4304
4305 if (do_sections)
4306 {
4307 offs[SECT_OFF_TEXT (objf)] = text_addr;
4308
4309 /* This is a temporary kludge to force data and bss to use the
4310 same offsets because that's what nlmconv does now. The real
4311 solution requires changes to the stub and remote.c that I
4312 don't have time to do right now. */
4313
4314 offs[SECT_OFF_DATA (objf)] = data_addr;
4315 offs[SECT_OFF_BSS (objf)] = data_addr;
4316 }
4317
4318 objfile_relocate (objf, offs);
4319 }
4320
4321 /* Send interrupt_sequence to remote target. */
4322
4323 void
4324 remote_target::send_interrupt_sequence ()
4325 {
4326 struct remote_state *rs = get_remote_state ();
4327
4328 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4329 remote_serial_write ("\x03", 1);
4330 else if (interrupt_sequence_mode == interrupt_sequence_break)
4331 serial_send_break (rs->remote_desc);
4332 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4333 {
4334 serial_send_break (rs->remote_desc);
4335 remote_serial_write ("g", 1);
4336 }
4337 else
4338 internal_error (__FILE__, __LINE__,
4339 _("Invalid value for interrupt_sequence_mode: %s."),
4340 interrupt_sequence_mode);
4341 }
4342
4343
4344 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4345 and extract the PTID. Returns NULL_PTID if not found. */
4346
4347 static ptid_t
4348 stop_reply_extract_thread (const char *stop_reply)
4349 {
4350 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4351 {
4352 const char *p;
4353
4354 /* Txx r:val ; r:val (...) */
4355 p = &stop_reply[3];
4356
4357 /* Look for "register" named "thread". */
4358 while (*p != '\0')
4359 {
4360 const char *p1;
4361
4362 p1 = strchr (p, ':');
4363 if (p1 == NULL)
4364 return null_ptid;
4365
4366 if (strncmp (p, "thread", p1 - p) == 0)
4367 return read_ptid (++p1, &p);
4368
4369 p1 = strchr (p, ';');
4370 if (p1 == NULL)
4371 return null_ptid;
4372 p1++;
4373
4374 p = p1;
4375 }
4376 }
4377
4378 return null_ptid;
4379 }
4380
4381 /* Determine the remote side's current thread. If we have a stop
4382 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4383 "thread" register we can extract the current thread from. If not,
4384 ask the remote which is the current thread with qC. The former
4385 method avoids a roundtrip. */
4386
4387 ptid_t
4388 remote_target::get_current_thread (const char *wait_status)
4389 {
4390 ptid_t ptid = null_ptid;
4391
4392 /* Note we don't use remote_parse_stop_reply as that makes use of
4393 the target architecture, which we haven't yet fully determined at
4394 this point. */
4395 if (wait_status != NULL)
4396 ptid = stop_reply_extract_thread (wait_status);
4397 if (ptid == null_ptid)
4398 ptid = remote_current_thread (inferior_ptid);
4399
4400 return ptid;
4401 }
4402
4403 /* Query the remote target for which is the current thread/process,
4404 add it to our tables, and update INFERIOR_PTID. The caller is
4405 responsible for setting the state such that the remote end is ready
4406 to return the current thread.
4407
4408 This function is called after handling the '?' or 'vRun' packets,
4409 whose response is a stop reply from which we can also try
4410 extracting the thread. If the target doesn't support the explicit
4411 qC query, we infer the current thread from that stop reply, passed
4412 in in WAIT_STATUS, which may be NULL. */
4413
4414 void
4415 remote_target::add_current_inferior_and_thread (const char *wait_status)
4416 {
4417 struct remote_state *rs = get_remote_state ();
4418 bool fake_pid_p = false;
4419
4420 switch_to_no_thread ();
4421
4422 /* Now, if we have thread information, update the current thread's
4423 ptid. */
4424 ptid_t curr_ptid = get_current_thread (wait_status);
4425
4426 if (curr_ptid != null_ptid)
4427 {
4428 if (!remote_multi_process_p (rs))
4429 fake_pid_p = true;
4430 }
4431 else
4432 {
4433 /* Without this, some commands which require an active target
4434 (such as kill) won't work. This variable serves (at least)
4435 double duty as both the pid of the target process (if it has
4436 such), and as a flag indicating that a target is active. */
4437 curr_ptid = magic_null_ptid;
4438 fake_pid_p = true;
4439 }
4440
4441 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4442
4443 /* Add the main thread and switch to it. Don't try reading
4444 registers yet, since we haven't fetched the target description
4445 yet. */
4446 thread_info *tp = add_thread_silent (this, curr_ptid);
4447 switch_to_thread_no_regs (tp);
4448 }
4449
4450 /* Print info about a thread that was found already stopped on
4451 connection. */
4452
4453 static void
4454 print_one_stopped_thread (struct thread_info *thread)
4455 {
4456 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4457
4458 switch_to_thread (thread);
4459 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4460 set_current_sal_from_frame (get_current_frame ());
4461
4462 thread->suspend.waitstatus_pending_p = 0;
4463
4464 if (ws->kind == TARGET_WAITKIND_STOPPED)
4465 {
4466 enum gdb_signal sig = ws->value.sig;
4467
4468 if (signal_print_state (sig))
4469 gdb::observers::signal_received.notify (sig);
4470 }
4471 gdb::observers::normal_stop.notify (NULL, 1);
4472 }
4473
4474 /* Process all initial stop replies the remote side sent in response
4475 to the ? packet. These indicate threads that were already stopped
4476 on initial connection. We mark these threads as stopped and print
4477 their current frame before giving the user the prompt. */
4478
4479 void
4480 remote_target::process_initial_stop_replies (int from_tty)
4481 {
4482 int pending_stop_replies = stop_reply_queue_length ();
4483 struct thread_info *selected = NULL;
4484 struct thread_info *lowest_stopped = NULL;
4485 struct thread_info *first = NULL;
4486
4487 /* Consume the initial pending events. */
4488 while (pending_stop_replies-- > 0)
4489 {
4490 ptid_t waiton_ptid = minus_one_ptid;
4491 ptid_t event_ptid;
4492 struct target_waitstatus ws;
4493 int ignore_event = 0;
4494
4495 memset (&ws, 0, sizeof (ws));
4496 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4497 if (remote_debug)
4498 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4499
4500 switch (ws.kind)
4501 {
4502 case TARGET_WAITKIND_IGNORE:
4503 case TARGET_WAITKIND_NO_RESUMED:
4504 case TARGET_WAITKIND_SIGNALLED:
4505 case TARGET_WAITKIND_EXITED:
4506 /* We shouldn't see these, but if we do, just ignore. */
4507 remote_debug_printf ("event ignored");
4508 ignore_event = 1;
4509 break;
4510
4511 case TARGET_WAITKIND_EXECD:
4512 xfree (ws.value.execd_pathname);
4513 break;
4514 default:
4515 break;
4516 }
4517
4518 if (ignore_event)
4519 continue;
4520
4521 thread_info *evthread = find_thread_ptid (this, event_ptid);
4522
4523 if (ws.kind == TARGET_WAITKIND_STOPPED)
4524 {
4525 enum gdb_signal sig = ws.value.sig;
4526
4527 /* Stubs traditionally report SIGTRAP as initial signal,
4528 instead of signal 0. Suppress it. */
4529 if (sig == GDB_SIGNAL_TRAP)
4530 sig = GDB_SIGNAL_0;
4531 evthread->suspend.stop_signal = sig;
4532 ws.value.sig = sig;
4533 }
4534
4535 evthread->suspend.waitstatus = ws;
4536
4537 if (ws.kind != TARGET_WAITKIND_STOPPED
4538 || ws.value.sig != GDB_SIGNAL_0)
4539 evthread->suspend.waitstatus_pending_p = 1;
4540
4541 set_executing (this, event_ptid, false);
4542 set_running (this, event_ptid, false);
4543 get_remote_thread_info (evthread)->set_not_resumed ();
4544 }
4545
4546 /* "Notice" the new inferiors before anything related to
4547 registers/memory. */
4548 for (inferior *inf : all_non_exited_inferiors (this))
4549 {
4550 inf->needs_setup = 1;
4551
4552 if (non_stop)
4553 {
4554 thread_info *thread = any_live_thread_of_inferior (inf);
4555 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4556 from_tty);
4557 }
4558 }
4559
4560 /* If all-stop on top of non-stop, pause all threads. Note this
4561 records the threads' stop pc, so must be done after "noticing"
4562 the inferiors. */
4563 if (!non_stop)
4564 {
4565 stop_all_threads ();
4566
4567 /* If all threads of an inferior were already stopped, we
4568 haven't setup the inferior yet. */
4569 for (inferior *inf : all_non_exited_inferiors (this))
4570 {
4571 if (inf->needs_setup)
4572 {
4573 thread_info *thread = any_live_thread_of_inferior (inf);
4574 switch_to_thread_no_regs (thread);
4575 setup_inferior (0);
4576 }
4577 }
4578 }
4579
4580 /* Now go over all threads that are stopped, and print their current
4581 frame. If all-stop, then if there's a signalled thread, pick
4582 that as current. */
4583 for (thread_info *thread : all_non_exited_threads (this))
4584 {
4585 if (first == NULL)
4586 first = thread;
4587
4588 if (!non_stop)
4589 thread->set_running (false);
4590 else if (thread->state != THREAD_STOPPED)
4591 continue;
4592
4593 if (selected == NULL
4594 && thread->suspend.waitstatus_pending_p)
4595 selected = thread;
4596
4597 if (lowest_stopped == NULL
4598 || thread->inf->num < lowest_stopped->inf->num
4599 || thread->per_inf_num < lowest_stopped->per_inf_num)
4600 lowest_stopped = thread;
4601
4602 if (non_stop)
4603 print_one_stopped_thread (thread);
4604 }
4605
4606 /* In all-stop, we only print the status of one thread, and leave
4607 others with their status pending. */
4608 if (!non_stop)
4609 {
4610 thread_info *thread = selected;
4611 if (thread == NULL)
4612 thread = lowest_stopped;
4613 if (thread == NULL)
4614 thread = first;
4615
4616 print_one_stopped_thread (thread);
4617 }
4618
4619 /* For "info program". */
4620 thread_info *thread = inferior_thread ();
4621 if (thread->state == THREAD_STOPPED)
4622 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4623 }
4624
4625 /* Start the remote connection and sync state. */
4626
4627 void
4628 remote_target::start_remote (int from_tty, int extended_p)
4629 {
4630 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4631
4632 struct remote_state *rs = get_remote_state ();
4633 struct packet_config *noack_config;
4634
4635 /* Signal other parts that we're going through the initial setup,
4636 and so things may not be stable yet. E.g., we don't try to
4637 install tracepoints until we've relocated symbols. Also, a
4638 Ctrl-C before we're connected and synced up can't interrupt the
4639 target. Instead, it offers to drop the (potentially wedged)
4640 connection. */
4641 rs->starting_up = 1;
4642
4643 QUIT;
4644
4645 if (interrupt_on_connect)
4646 send_interrupt_sequence ();
4647
4648 /* Ack any packet which the remote side has already sent. */
4649 remote_serial_write ("+", 1);
4650
4651 /* The first packet we send to the target is the optional "supported
4652 packets" request. If the target can answer this, it will tell us
4653 which later probes to skip. */
4654 remote_query_supported ();
4655
4656 /* If the stub wants to get a QAllow, compose one and send it. */
4657 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4658 set_permissions ();
4659
4660 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4661 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4662 as a reply to known packet. For packet "vFile:setfs:" it is an
4663 invalid reply and GDB would return error in
4664 remote_hostio_set_filesystem, making remote files access impossible.
4665 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4666 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4667 {
4668 const char v_mustreplyempty[] = "vMustReplyEmpty";
4669
4670 putpkt (v_mustreplyempty);
4671 getpkt (&rs->buf, 0);
4672 if (strcmp (rs->buf.data (), "OK") == 0)
4673 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4674 else if (strcmp (rs->buf.data (), "") != 0)
4675 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4676 rs->buf.data ());
4677 }
4678
4679 /* Next, we possibly activate noack mode.
4680
4681 If the QStartNoAckMode packet configuration is set to AUTO,
4682 enable noack mode if the stub reported a wish for it with
4683 qSupported.
4684
4685 If set to TRUE, then enable noack mode even if the stub didn't
4686 report it in qSupported. If the stub doesn't reply OK, the
4687 session ends with an error.
4688
4689 If FALSE, then don't activate noack mode, regardless of what the
4690 stub claimed should be the default with qSupported. */
4691
4692 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4693 if (packet_config_support (noack_config) != PACKET_DISABLE)
4694 {
4695 putpkt ("QStartNoAckMode");
4696 getpkt (&rs->buf, 0);
4697 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4698 rs->noack_mode = 1;
4699 }
4700
4701 if (extended_p)
4702 {
4703 /* Tell the remote that we are using the extended protocol. */
4704 putpkt ("!");
4705 getpkt (&rs->buf, 0);
4706 }
4707
4708 /* Let the target know which signals it is allowed to pass down to
4709 the program. */
4710 update_signals_program_target ();
4711
4712 /* Next, if the target can specify a description, read it. We do
4713 this before anything involving memory or registers. */
4714 target_find_description ();
4715
4716 /* Next, now that we know something about the target, update the
4717 address spaces in the program spaces. */
4718 update_address_spaces ();
4719
4720 /* On OSs where the list of libraries is global to all
4721 processes, we fetch them early. */
4722 if (gdbarch_has_global_solist (target_gdbarch ()))
4723 solib_add (NULL, from_tty, auto_solib_add);
4724
4725 if (target_is_non_stop_p ())
4726 {
4727 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4728 error (_("Non-stop mode requested, but remote "
4729 "does not support non-stop"));
4730
4731 putpkt ("QNonStop:1");
4732 getpkt (&rs->buf, 0);
4733
4734 if (strcmp (rs->buf.data (), "OK") != 0)
4735 error (_("Remote refused setting non-stop mode with: %s"),
4736 rs->buf.data ());
4737
4738 /* Find about threads and processes the stub is already
4739 controlling. We default to adding them in the running state.
4740 The '?' query below will then tell us about which threads are
4741 stopped. */
4742 this->update_thread_list ();
4743 }
4744 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4745 {
4746 /* Don't assume that the stub can operate in all-stop mode.
4747 Request it explicitly. */
4748 putpkt ("QNonStop:0");
4749 getpkt (&rs->buf, 0);
4750
4751 if (strcmp (rs->buf.data (), "OK") != 0)
4752 error (_("Remote refused setting all-stop mode with: %s"),
4753 rs->buf.data ());
4754 }
4755
4756 /* Upload TSVs regardless of whether the target is running or not. The
4757 remote stub, such as GDBserver, may have some predefined or builtin
4758 TSVs, even if the target is not running. */
4759 if (get_trace_status (current_trace_status ()) != -1)
4760 {
4761 struct uploaded_tsv *uploaded_tsvs = NULL;
4762
4763 upload_trace_state_variables (&uploaded_tsvs);
4764 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4765 }
4766
4767 /* Check whether the target is running now. */
4768 putpkt ("?");
4769 getpkt (&rs->buf, 0);
4770
4771 if (!target_is_non_stop_p ())
4772 {
4773 char *wait_status = NULL;
4774
4775 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4776 {
4777 if (!extended_p)
4778 error (_("The target is not running (try extended-remote?)"));
4779
4780 /* We're connected, but not running. Drop out before we
4781 call start_remote. */
4782 rs->starting_up = 0;
4783 return;
4784 }
4785 else
4786 {
4787 /* Save the reply for later. */
4788 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4789 strcpy (wait_status, rs->buf.data ());
4790 }
4791
4792 /* Fetch thread list. */
4793 target_update_thread_list ();
4794
4795 /* Let the stub know that we want it to return the thread. */
4796 set_continue_thread (minus_one_ptid);
4797
4798 if (thread_count (this) == 0)
4799 {
4800 /* Target has no concept of threads at all. GDB treats
4801 non-threaded target as single-threaded; add a main
4802 thread. */
4803 add_current_inferior_and_thread (wait_status);
4804 }
4805 else
4806 {
4807 /* We have thread information; select the thread the target
4808 says should be current. If we're reconnecting to a
4809 multi-threaded program, this will ideally be the thread
4810 that last reported an event before GDB disconnected. */
4811 ptid_t curr_thread = get_current_thread (wait_status);
4812 if (curr_thread == null_ptid)
4813 {
4814 /* Odd... The target was able to list threads, but not
4815 tell us which thread was current (no "thread"
4816 register in T stop reply?). Just pick the first
4817 thread in the thread list then. */
4818
4819 remote_debug_printf ("warning: couldn't determine remote "
4820 "current thread; picking first in list.");
4821
4822 for (thread_info *tp : all_non_exited_threads (this,
4823 minus_one_ptid))
4824 {
4825 switch_to_thread (tp);
4826 break;
4827 }
4828 }
4829 else
4830 switch_to_thread (find_thread_ptid (this, curr_thread));
4831 }
4832
4833 /* init_wait_for_inferior should be called before get_offsets in order
4834 to manage `inserted' flag in bp loc in a correct state.
4835 breakpoint_init_inferior, called from init_wait_for_inferior, set
4836 `inserted' flag to 0, while before breakpoint_re_set, called from
4837 start_remote, set `inserted' flag to 1. In the initialization of
4838 inferior, breakpoint_init_inferior should be called first, and then
4839 breakpoint_re_set can be called. If this order is broken, state of
4840 `inserted' flag is wrong, and cause some problems on breakpoint
4841 manipulation. */
4842 init_wait_for_inferior ();
4843
4844 get_offsets (); /* Get text, data & bss offsets. */
4845
4846 /* If we could not find a description using qXfer, and we know
4847 how to do it some other way, try again. This is not
4848 supported for non-stop; it could be, but it is tricky if
4849 there are no stopped threads when we connect. */
4850 if (remote_read_description_p (this)
4851 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4852 {
4853 target_clear_description ();
4854 target_find_description ();
4855 }
4856
4857 /* Use the previously fetched status. */
4858 gdb_assert (wait_status != NULL);
4859 strcpy (rs->buf.data (), wait_status);
4860 rs->cached_wait_status = 1;
4861
4862 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4863 }
4864 else
4865 {
4866 /* Clear WFI global state. Do this before finding about new
4867 threads and inferiors, and setting the current inferior.
4868 Otherwise we would clear the proceed status of the current
4869 inferior when we want its stop_soon state to be preserved
4870 (see notice_new_inferior). */
4871 init_wait_for_inferior ();
4872
4873 /* In non-stop, we will either get an "OK", meaning that there
4874 are no stopped threads at this time; or, a regular stop
4875 reply. In the latter case, there may be more than one thread
4876 stopped --- we pull them all out using the vStopped
4877 mechanism. */
4878 if (strcmp (rs->buf.data (), "OK") != 0)
4879 {
4880 struct notif_client *notif = &notif_client_stop;
4881
4882 /* remote_notif_get_pending_replies acks this one, and gets
4883 the rest out. */
4884 rs->notif_state->pending_event[notif_client_stop.id]
4885 = remote_notif_parse (this, notif, rs->buf.data ());
4886 remote_notif_get_pending_events (notif);
4887 }
4888
4889 if (thread_count (this) == 0)
4890 {
4891 if (!extended_p)
4892 error (_("The target is not running (try extended-remote?)"));
4893
4894 /* We're connected, but not running. Drop out before we
4895 call start_remote. */
4896 rs->starting_up = 0;
4897 return;
4898 }
4899
4900 /* Report all signals during attach/startup. */
4901 pass_signals ({});
4902
4903 /* If there are already stopped threads, mark them stopped and
4904 report their stops before giving the prompt to the user. */
4905 process_initial_stop_replies (from_tty);
4906
4907 if (target_can_async_p ())
4908 target_async (1);
4909 }
4910
4911 /* If we connected to a live target, do some additional setup. */
4912 if (target_has_execution ())
4913 {
4914 /* No use without a symbol-file. */
4915 if (current_program_space->symfile_object_file)
4916 remote_check_symbols ();
4917 }
4918
4919 /* Possibly the target has been engaged in a trace run started
4920 previously; find out where things are at. */
4921 if (get_trace_status (current_trace_status ()) != -1)
4922 {
4923 struct uploaded_tp *uploaded_tps = NULL;
4924
4925 if (current_trace_status ()->running)
4926 printf_filtered (_("Trace is already running on the target.\n"));
4927
4928 upload_tracepoints (&uploaded_tps);
4929
4930 merge_uploaded_tracepoints (&uploaded_tps);
4931 }
4932
4933 /* Possibly the target has been engaged in a btrace record started
4934 previously; find out where things are at. */
4935 remote_btrace_maybe_reopen ();
4936
4937 /* The thread and inferior lists are now synchronized with the
4938 target, our symbols have been relocated, and we're merged the
4939 target's tracepoints with ours. We're done with basic start
4940 up. */
4941 rs->starting_up = 0;
4942
4943 /* Maybe breakpoints are global and need to be inserted now. */
4944 if (breakpoints_should_be_inserted_now ())
4945 insert_breakpoints ();
4946 }
4947
4948 const char *
4949 remote_target::connection_string ()
4950 {
4951 remote_state *rs = get_remote_state ();
4952
4953 if (rs->remote_desc->name != NULL)
4954 return rs->remote_desc->name;
4955 else
4956 return NULL;
4957 }
4958
4959 /* Open a connection to a remote debugger.
4960 NAME is the filename used for communication. */
4961
4962 void
4963 remote_target::open (const char *name, int from_tty)
4964 {
4965 open_1 (name, from_tty, 0);
4966 }
4967
4968 /* Open a connection to a remote debugger using the extended
4969 remote gdb protocol. NAME is the filename used for communication. */
4970
4971 void
4972 extended_remote_target::open (const char *name, int from_tty)
4973 {
4974 open_1 (name, from_tty, 1 /*extended_p */);
4975 }
4976
4977 /* Reset all packets back to "unknown support". Called when opening a
4978 new connection to a remote target. */
4979
4980 static void
4981 reset_all_packet_configs_support (void)
4982 {
4983 int i;
4984
4985 for (i = 0; i < PACKET_MAX; i++)
4986 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4987 }
4988
4989 /* Initialize all packet configs. */
4990
4991 static void
4992 init_all_packet_configs (void)
4993 {
4994 int i;
4995
4996 for (i = 0; i < PACKET_MAX; i++)
4997 {
4998 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4999 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5000 }
5001 }
5002
5003 /* Symbol look-up. */
5004
5005 void
5006 remote_target::remote_check_symbols ()
5007 {
5008 char *tmp;
5009 int end;
5010
5011 /* The remote side has no concept of inferiors that aren't running
5012 yet, it only knows about running processes. If we're connected
5013 but our current inferior is not running, we should not invite the
5014 remote target to request symbol lookups related to its
5015 (unrelated) current process. */
5016 if (!target_has_execution ())
5017 return;
5018
5019 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5020 return;
5021
5022 /* Make sure the remote is pointing at the right process. Note
5023 there's no way to select "no process". */
5024 set_general_process ();
5025
5026 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5027 because we need both at the same time. */
5028 gdb::char_vector msg (get_remote_packet_size ());
5029 gdb::char_vector reply (get_remote_packet_size ());
5030
5031 /* Invite target to request symbol lookups. */
5032
5033 putpkt ("qSymbol::");
5034 getpkt (&reply, 0);
5035 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5036
5037 while (startswith (reply.data (), "qSymbol:"))
5038 {
5039 struct bound_minimal_symbol sym;
5040
5041 tmp = &reply[8];
5042 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5043 strlen (tmp) / 2);
5044 msg[end] = '\0';
5045 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5046 if (sym.minsym == NULL)
5047 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5048 &reply[8]);
5049 else
5050 {
5051 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5052 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5053
5054 /* If this is a function address, return the start of code
5055 instead of any data function descriptor. */
5056 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
5057 sym_addr,
5058 current_top_target ());
5059
5060 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5061 phex_nz (sym_addr, addr_size), &reply[8]);
5062 }
5063
5064 putpkt (msg.data ());
5065 getpkt (&reply, 0);
5066 }
5067 }
5068
5069 static struct serial *
5070 remote_serial_open (const char *name)
5071 {
5072 static int udp_warning = 0;
5073
5074 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5075 of in ser-tcp.c, because it is the remote protocol assuming that the
5076 serial connection is reliable and not the serial connection promising
5077 to be. */
5078 if (!udp_warning && startswith (name, "udp:"))
5079 {
5080 warning (_("The remote protocol may be unreliable over UDP.\n"
5081 "Some events may be lost, rendering further debugging "
5082 "impossible."));
5083 udp_warning = 1;
5084 }
5085
5086 return serial_open (name);
5087 }
5088
5089 /* Inform the target of our permission settings. The permission flags
5090 work without this, but if the target knows the settings, it can do
5091 a couple things. First, it can add its own check, to catch cases
5092 that somehow manage to get by the permissions checks in target
5093 methods. Second, if the target is wired to disallow particular
5094 settings (for instance, a system in the field that is not set up to
5095 be able to stop at a breakpoint), it can object to any unavailable
5096 permissions. */
5097
5098 void
5099 remote_target::set_permissions ()
5100 {
5101 struct remote_state *rs = get_remote_state ();
5102
5103 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5104 "WriteReg:%x;WriteMem:%x;"
5105 "InsertBreak:%x;InsertTrace:%x;"
5106 "InsertFastTrace:%x;Stop:%x",
5107 may_write_registers, may_write_memory,
5108 may_insert_breakpoints, may_insert_tracepoints,
5109 may_insert_fast_tracepoints, may_stop);
5110 putpkt (rs->buf);
5111 getpkt (&rs->buf, 0);
5112
5113 /* If the target didn't like the packet, warn the user. Do not try
5114 to undo the user's settings, that would just be maddening. */
5115 if (strcmp (rs->buf.data (), "OK") != 0)
5116 warning (_("Remote refused setting permissions with: %s"),
5117 rs->buf.data ());
5118 }
5119
5120 /* This type describes each known response to the qSupported
5121 packet. */
5122 struct protocol_feature
5123 {
5124 /* The name of this protocol feature. */
5125 const char *name;
5126
5127 /* The default for this protocol feature. */
5128 enum packet_support default_support;
5129
5130 /* The function to call when this feature is reported, or after
5131 qSupported processing if the feature is not supported.
5132 The first argument points to this structure. The second
5133 argument indicates whether the packet requested support be
5134 enabled, disabled, or probed (or the default, if this function
5135 is being called at the end of processing and this feature was
5136 not reported). The third argument may be NULL; if not NULL, it
5137 is a NUL-terminated string taken from the packet following
5138 this feature's name and an equals sign. */
5139 void (*func) (remote_target *remote, const struct protocol_feature *,
5140 enum packet_support, const char *);
5141
5142 /* The corresponding packet for this feature. Only used if
5143 FUNC is remote_supported_packet. */
5144 int packet;
5145 };
5146
5147 static void
5148 remote_supported_packet (remote_target *remote,
5149 const struct protocol_feature *feature,
5150 enum packet_support support,
5151 const char *argument)
5152 {
5153 if (argument)
5154 {
5155 warning (_("Remote qSupported response supplied an unexpected value for"
5156 " \"%s\"."), feature->name);
5157 return;
5158 }
5159
5160 remote_protocol_packets[feature->packet].support = support;
5161 }
5162
5163 void
5164 remote_target::remote_packet_size (const protocol_feature *feature,
5165 enum packet_support support, const char *value)
5166 {
5167 struct remote_state *rs = get_remote_state ();
5168
5169 int packet_size;
5170 char *value_end;
5171
5172 if (support != PACKET_ENABLE)
5173 return;
5174
5175 if (value == NULL || *value == '\0')
5176 {
5177 warning (_("Remote target reported \"%s\" without a size."),
5178 feature->name);
5179 return;
5180 }
5181
5182 errno = 0;
5183 packet_size = strtol (value, &value_end, 16);
5184 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5185 {
5186 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5187 feature->name, value);
5188 return;
5189 }
5190
5191 /* Record the new maximum packet size. */
5192 rs->explicit_packet_size = packet_size;
5193 }
5194
5195 static void
5196 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5197 enum packet_support support, const char *value)
5198 {
5199 remote->remote_packet_size (feature, support, value);
5200 }
5201
5202 static const struct protocol_feature remote_protocol_features[] = {
5203 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5204 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5205 PACKET_qXfer_auxv },
5206 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5207 PACKET_qXfer_exec_file },
5208 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5209 PACKET_qXfer_features },
5210 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5211 PACKET_qXfer_libraries },
5212 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5213 PACKET_qXfer_libraries_svr4 },
5214 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5215 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5216 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5217 PACKET_qXfer_memory_map },
5218 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5219 PACKET_qXfer_osdata },
5220 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5221 PACKET_qXfer_threads },
5222 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5223 PACKET_qXfer_traceframe_info },
5224 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5225 PACKET_QPassSignals },
5226 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5227 PACKET_QCatchSyscalls },
5228 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5229 PACKET_QProgramSignals },
5230 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5231 PACKET_QSetWorkingDir },
5232 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5233 PACKET_QStartupWithShell },
5234 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5235 PACKET_QEnvironmentHexEncoded },
5236 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5237 PACKET_QEnvironmentReset },
5238 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5239 PACKET_QEnvironmentUnset },
5240 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5241 PACKET_QStartNoAckMode },
5242 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5243 PACKET_multiprocess_feature },
5244 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5245 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_siginfo_read },
5247 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_qXfer_siginfo_write },
5249 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_ConditionalTracepoints },
5251 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_ConditionalBreakpoints },
5253 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_BreakpointCommands },
5255 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_FastTracepoints },
5257 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_StaticTracepoints },
5259 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_InstallInTrace},
5261 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_DisconnectedTracing_feature },
5263 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_bc },
5265 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_bs },
5267 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_TracepointSource },
5269 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QAllow },
5271 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_EnableDisableTracepoints_feature },
5273 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_qXfer_fdpic },
5275 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_qXfer_uib },
5277 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5278 PACKET_QDisableRandomization },
5279 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5280 { "QTBuffer:size", PACKET_DISABLE,
5281 remote_supported_packet, PACKET_QTBuffer_size},
5282 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5283 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5284 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5285 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5286 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_qXfer_btrace },
5288 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_qXfer_btrace_conf },
5290 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_Qbtrace_conf_bts_size },
5292 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5293 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5294 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_fork_event_feature },
5296 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_vfork_event_feature },
5298 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_exec_event_feature },
5300 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_Qbtrace_conf_pt_size },
5302 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5303 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5304 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5305 };
5306
5307 static char *remote_support_xml;
5308
5309 /* Register string appended to "xmlRegisters=" in qSupported query. */
5310
5311 void
5312 register_remote_support_xml (const char *xml)
5313 {
5314 #if defined(HAVE_LIBEXPAT)
5315 if (remote_support_xml == NULL)
5316 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5317 else
5318 {
5319 char *copy = xstrdup (remote_support_xml + 13);
5320 char *saveptr;
5321 char *p = strtok_r (copy, ",", &saveptr);
5322
5323 do
5324 {
5325 if (strcmp (p, xml) == 0)
5326 {
5327 /* already there */
5328 xfree (copy);
5329 return;
5330 }
5331 }
5332 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5333 xfree (copy);
5334
5335 remote_support_xml = reconcat (remote_support_xml,
5336 remote_support_xml, ",", xml,
5337 (char *) NULL);
5338 }
5339 #endif
5340 }
5341
5342 static void
5343 remote_query_supported_append (std::string *msg, const char *append)
5344 {
5345 if (!msg->empty ())
5346 msg->append (";");
5347 msg->append (append);
5348 }
5349
5350 void
5351 remote_target::remote_query_supported ()
5352 {
5353 struct remote_state *rs = get_remote_state ();
5354 char *next;
5355 int i;
5356 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5357
5358 /* The packet support flags are handled differently for this packet
5359 than for most others. We treat an error, a disabled packet, and
5360 an empty response identically: any features which must be reported
5361 to be used will be automatically disabled. An empty buffer
5362 accomplishes this, since that is also the representation for a list
5363 containing no features. */
5364
5365 rs->buf[0] = 0;
5366 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5367 {
5368 std::string q;
5369
5370 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5371 remote_query_supported_append (&q, "multiprocess+");
5372
5373 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5374 remote_query_supported_append (&q, "swbreak+");
5375 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5376 remote_query_supported_append (&q, "hwbreak+");
5377
5378 remote_query_supported_append (&q, "qRelocInsn+");
5379
5380 if (packet_set_cmd_state (PACKET_fork_event_feature)
5381 != AUTO_BOOLEAN_FALSE)
5382 remote_query_supported_append (&q, "fork-events+");
5383 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5384 != AUTO_BOOLEAN_FALSE)
5385 remote_query_supported_append (&q, "vfork-events+");
5386 if (packet_set_cmd_state (PACKET_exec_event_feature)
5387 != AUTO_BOOLEAN_FALSE)
5388 remote_query_supported_append (&q, "exec-events+");
5389
5390 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5391 remote_query_supported_append (&q, "vContSupported+");
5392
5393 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5394 remote_query_supported_append (&q, "QThreadEvents+");
5395
5396 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5397 remote_query_supported_append (&q, "no-resumed+");
5398
5399 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5400 the qSupported:xmlRegisters=i386 handling. */
5401 if (remote_support_xml != NULL
5402 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5403 remote_query_supported_append (&q, remote_support_xml);
5404
5405 q = "qSupported:" + q;
5406 putpkt (q.c_str ());
5407
5408 getpkt (&rs->buf, 0);
5409
5410 /* If an error occured, warn, but do not return - just reset the
5411 buffer to empty and go on to disable features. */
5412 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5413 == PACKET_ERROR)
5414 {
5415 warning (_("Remote failure reply: %s"), rs->buf.data ());
5416 rs->buf[0] = 0;
5417 }
5418 }
5419
5420 memset (seen, 0, sizeof (seen));
5421
5422 next = rs->buf.data ();
5423 while (*next)
5424 {
5425 enum packet_support is_supported;
5426 char *p, *end, *name_end, *value;
5427
5428 /* First separate out this item from the rest of the packet. If
5429 there's another item after this, we overwrite the separator
5430 (terminated strings are much easier to work with). */
5431 p = next;
5432 end = strchr (p, ';');
5433 if (end == NULL)
5434 {
5435 end = p + strlen (p);
5436 next = end;
5437 }
5438 else
5439 {
5440 *end = '\0';
5441 next = end + 1;
5442
5443 if (end == p)
5444 {
5445 warning (_("empty item in \"qSupported\" response"));
5446 continue;
5447 }
5448 }
5449
5450 name_end = strchr (p, '=');
5451 if (name_end)
5452 {
5453 /* This is a name=value entry. */
5454 is_supported = PACKET_ENABLE;
5455 value = name_end + 1;
5456 *name_end = '\0';
5457 }
5458 else
5459 {
5460 value = NULL;
5461 switch (end[-1])
5462 {
5463 case '+':
5464 is_supported = PACKET_ENABLE;
5465 break;
5466
5467 case '-':
5468 is_supported = PACKET_DISABLE;
5469 break;
5470
5471 case '?':
5472 is_supported = PACKET_SUPPORT_UNKNOWN;
5473 break;
5474
5475 default:
5476 warning (_("unrecognized item \"%s\" "
5477 "in \"qSupported\" response"), p);
5478 continue;
5479 }
5480 end[-1] = '\0';
5481 }
5482
5483 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5484 if (strcmp (remote_protocol_features[i].name, p) == 0)
5485 {
5486 const struct protocol_feature *feature;
5487
5488 seen[i] = 1;
5489 feature = &remote_protocol_features[i];
5490 feature->func (this, feature, is_supported, value);
5491 break;
5492 }
5493 }
5494
5495 /* If we increased the packet size, make sure to increase the global
5496 buffer size also. We delay this until after parsing the entire
5497 qSupported packet, because this is the same buffer we were
5498 parsing. */
5499 if (rs->buf.size () < rs->explicit_packet_size)
5500 rs->buf.resize (rs->explicit_packet_size);
5501
5502 /* Handle the defaults for unmentioned features. */
5503 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5504 if (!seen[i])
5505 {
5506 const struct protocol_feature *feature;
5507
5508 feature = &remote_protocol_features[i];
5509 feature->func (this, feature, feature->default_support, NULL);
5510 }
5511 }
5512
5513 /* Serial QUIT handler for the remote serial descriptor.
5514
5515 Defers handling a Ctrl-C until we're done with the current
5516 command/response packet sequence, unless:
5517
5518 - We're setting up the connection. Don't send a remote interrupt
5519 request, as we're not fully synced yet. Quit immediately
5520 instead.
5521
5522 - The target has been resumed in the foreground
5523 (target_terminal::is_ours is false) with a synchronous resume
5524 packet, and we're blocked waiting for the stop reply, thus a
5525 Ctrl-C should be immediately sent to the target.
5526
5527 - We get a second Ctrl-C while still within the same serial read or
5528 write. In that case the serial is seemingly wedged --- offer to
5529 quit/disconnect.
5530
5531 - We see a second Ctrl-C without target response, after having
5532 previously interrupted the target. In that case the target/stub
5533 is probably wedged --- offer to quit/disconnect.
5534 */
5535
5536 void
5537 remote_target::remote_serial_quit_handler ()
5538 {
5539 struct remote_state *rs = get_remote_state ();
5540
5541 if (check_quit_flag ())
5542 {
5543 /* If we're starting up, we're not fully synced yet. Quit
5544 immediately. */
5545 if (rs->starting_up)
5546 quit ();
5547 else if (rs->got_ctrlc_during_io)
5548 {
5549 if (query (_("The target is not responding to GDB commands.\n"
5550 "Stop debugging it? ")))
5551 remote_unpush_and_throw (this);
5552 }
5553 /* If ^C has already been sent once, offer to disconnect. */
5554 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5555 interrupt_query ();
5556 /* All-stop protocol, and blocked waiting for stop reply. Send
5557 an interrupt request. */
5558 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5559 target_interrupt ();
5560 else
5561 rs->got_ctrlc_during_io = 1;
5562 }
5563 }
5564
5565 /* The remote_target that is current while the quit handler is
5566 overridden with remote_serial_quit_handler. */
5567 static remote_target *curr_quit_handler_target;
5568
5569 static void
5570 remote_serial_quit_handler ()
5571 {
5572 curr_quit_handler_target->remote_serial_quit_handler ();
5573 }
5574
5575 /* Remove the remote target from the target stack of each inferior
5576 that is using it. Upper targets depend on it so remove them
5577 first. */
5578
5579 static void
5580 remote_unpush_target (remote_target *target)
5581 {
5582 /* We have to unpush the target from all inferiors, even those that
5583 aren't running. */
5584 scoped_restore_current_inferior restore_current_inferior;
5585
5586 for (inferior *inf : all_inferiors (target))
5587 {
5588 switch_to_inferior_no_thread (inf);
5589 pop_all_targets_at_and_above (process_stratum);
5590 generic_mourn_inferior ();
5591 }
5592 }
5593
5594 static void
5595 remote_unpush_and_throw (remote_target *target)
5596 {
5597 remote_unpush_target (target);
5598 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5599 }
5600
5601 void
5602 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5603 {
5604 remote_target *curr_remote = get_current_remote_target ();
5605
5606 if (name == 0)
5607 error (_("To open a remote debug connection, you need to specify what\n"
5608 "serial device is attached to the remote system\n"
5609 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5610
5611 /* If we're connected to a running target, target_preopen will kill it.
5612 Ask this question first, before target_preopen has a chance to kill
5613 anything. */
5614 if (curr_remote != NULL && !target_has_execution ())
5615 {
5616 if (from_tty
5617 && !query (_("Already connected to a remote target. Disconnect? ")))
5618 error (_("Still connected."));
5619 }
5620
5621 /* Here the possibly existing remote target gets unpushed. */
5622 target_preopen (from_tty);
5623
5624 remote_fileio_reset ();
5625 reopen_exec_file ();
5626 reread_symbols ();
5627
5628 remote_target *remote
5629 = (extended_p ? new extended_remote_target () : new remote_target ());
5630 target_ops_up target_holder (remote);
5631
5632 remote_state *rs = remote->get_remote_state ();
5633
5634 /* See FIXME above. */
5635 if (!target_async_permitted)
5636 rs->wait_forever_enabled_p = 1;
5637
5638 rs->remote_desc = remote_serial_open (name);
5639 if (!rs->remote_desc)
5640 perror_with_name (name);
5641
5642 if (baud_rate != -1)
5643 {
5644 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5645 {
5646 /* The requested speed could not be set. Error out to
5647 top level after closing remote_desc. Take care to
5648 set remote_desc to NULL to avoid closing remote_desc
5649 more than once. */
5650 serial_close (rs->remote_desc);
5651 rs->remote_desc = NULL;
5652 perror_with_name (name);
5653 }
5654 }
5655
5656 serial_setparity (rs->remote_desc, serial_parity);
5657 serial_raw (rs->remote_desc);
5658
5659 /* If there is something sitting in the buffer we might take it as a
5660 response to a command, which would be bad. */
5661 serial_flush_input (rs->remote_desc);
5662
5663 if (from_tty)
5664 {
5665 puts_filtered ("Remote debugging using ");
5666 puts_filtered (name);
5667 puts_filtered ("\n");
5668 }
5669
5670 /* Switch to using the remote target now. */
5671 push_target (std::move (target_holder));
5672
5673 /* Register extra event sources in the event loop. */
5674 rs->remote_async_inferior_event_token
5675 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5676 "remote");
5677 rs->notif_state = remote_notif_state_allocate (remote);
5678
5679 /* Reset the target state; these things will be queried either by
5680 remote_query_supported or as they are needed. */
5681 reset_all_packet_configs_support ();
5682 rs->cached_wait_status = 0;
5683 rs->explicit_packet_size = 0;
5684 rs->noack_mode = 0;
5685 rs->extended = extended_p;
5686 rs->waiting_for_stop_reply = 0;
5687 rs->ctrlc_pending_p = 0;
5688 rs->got_ctrlc_during_io = 0;
5689
5690 rs->general_thread = not_sent_ptid;
5691 rs->continue_thread = not_sent_ptid;
5692 rs->remote_traceframe_number = -1;
5693
5694 rs->last_resume_exec_dir = EXEC_FORWARD;
5695
5696 /* Probe for ability to use "ThreadInfo" query, as required. */
5697 rs->use_threadinfo_query = 1;
5698 rs->use_threadextra_query = 1;
5699
5700 rs->readahead_cache.invalidate ();
5701
5702 if (target_async_permitted)
5703 {
5704 /* FIXME: cagney/1999-09-23: During the initial connection it is
5705 assumed that the target is already ready and able to respond to
5706 requests. Unfortunately remote_start_remote() eventually calls
5707 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5708 around this. Eventually a mechanism that allows
5709 wait_for_inferior() to expect/get timeouts will be
5710 implemented. */
5711 rs->wait_forever_enabled_p = 0;
5712 }
5713
5714 /* First delete any symbols previously loaded from shared libraries. */
5715 no_shared_libraries (NULL, 0);
5716
5717 /* Start the remote connection. If error() or QUIT, discard this
5718 target (we'd otherwise be in an inconsistent state) and then
5719 propogate the error on up the exception chain. This ensures that
5720 the caller doesn't stumble along blindly assuming that the
5721 function succeeded. The CLI doesn't have this problem but other
5722 UI's, such as MI do.
5723
5724 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5725 this function should return an error indication letting the
5726 caller restore the previous state. Unfortunately the command
5727 ``target remote'' is directly wired to this function making that
5728 impossible. On a positive note, the CLI side of this problem has
5729 been fixed - the function set_cmd_context() makes it possible for
5730 all the ``target ....'' commands to share a common callback
5731 function. See cli-dump.c. */
5732 {
5733
5734 try
5735 {
5736 remote->start_remote (from_tty, extended_p);
5737 }
5738 catch (const gdb_exception &ex)
5739 {
5740 /* Pop the partially set up target - unless something else did
5741 already before throwing the exception. */
5742 if (ex.error != TARGET_CLOSE_ERROR)
5743 remote_unpush_target (remote);
5744 throw;
5745 }
5746 }
5747
5748 remote_btrace_reset (rs);
5749
5750 if (target_async_permitted)
5751 rs->wait_forever_enabled_p = 1;
5752 }
5753
5754 /* Detach the specified process. */
5755
5756 void
5757 remote_target::remote_detach_pid (int pid)
5758 {
5759 struct remote_state *rs = get_remote_state ();
5760
5761 /* This should not be necessary, but the handling for D;PID in
5762 GDBserver versions prior to 8.2 incorrectly assumes that the
5763 selected process points to the same process we're detaching,
5764 leading to misbehavior (and possibly GDBserver crashing) when it
5765 does not. Since it's easy and cheap, work around it by forcing
5766 GDBserver to select GDB's current process. */
5767 set_general_process ();
5768
5769 if (remote_multi_process_p (rs))
5770 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5771 else
5772 strcpy (rs->buf.data (), "D");
5773
5774 putpkt (rs->buf);
5775 getpkt (&rs->buf, 0);
5776
5777 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5778 ;
5779 else if (rs->buf[0] == '\0')
5780 error (_("Remote doesn't know how to detach"));
5781 else
5782 error (_("Can't detach process."));
5783 }
5784
5785 /* This detaches a program to which we previously attached, using
5786 inferior_ptid to identify the process. After this is done, GDB
5787 can be used to debug some other program. We better not have left
5788 any breakpoints in the target program or it'll die when it hits
5789 one. */
5790
5791 void
5792 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5793 {
5794 int pid = inferior_ptid.pid ();
5795 struct remote_state *rs = get_remote_state ();
5796 int is_fork_parent;
5797
5798 if (!target_has_execution ())
5799 error (_("No process to detach from."));
5800
5801 target_announce_detach (from_tty);
5802
5803 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5804 {
5805 /* If we're in breakpoints-always-inserted mode, or the inferior
5806 is running, we have to remove breakpoints before detaching.
5807 We don't do this in common code instead because not all
5808 targets support removing breakpoints while the target is
5809 running. The remote target / gdbserver does, though. */
5810 remove_breakpoints_inf (current_inferior ());
5811 }
5812
5813 /* Tell the remote target to detach. */
5814 remote_detach_pid (pid);
5815
5816 /* Exit only if this is the only active inferior. */
5817 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5818 puts_filtered (_("Ending remote debugging.\n"));
5819
5820 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5821
5822 /* Check to see if we are detaching a fork parent. Note that if we
5823 are detaching a fork child, tp == NULL. */
5824 is_fork_parent = (tp != NULL
5825 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5826
5827 /* If doing detach-on-fork, we don't mourn, because that will delete
5828 breakpoints that should be available for the followed inferior. */
5829 if (!is_fork_parent)
5830 {
5831 /* Save the pid as a string before mourning, since that will
5832 unpush the remote target, and we need the string after. */
5833 std::string infpid = target_pid_to_str (ptid_t (pid));
5834
5835 target_mourn_inferior (inferior_ptid);
5836 if (print_inferior_events)
5837 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5838 inf->num, infpid.c_str ());
5839 }
5840 else
5841 {
5842 switch_to_no_thread ();
5843 detach_inferior (current_inferior ());
5844 }
5845 }
5846
5847 void
5848 remote_target::detach (inferior *inf, int from_tty)
5849 {
5850 remote_detach_1 (inf, from_tty);
5851 }
5852
5853 void
5854 extended_remote_target::detach (inferior *inf, int from_tty)
5855 {
5856 remote_detach_1 (inf, from_tty);
5857 }
5858
5859 /* Target follow-fork function for remote targets. On entry, and
5860 at return, the current inferior is the fork parent.
5861
5862 Note that although this is currently only used for extended-remote,
5863 it is named remote_follow_fork in anticipation of using it for the
5864 remote target as well. */
5865
5866 bool
5867 remote_target::follow_fork (bool follow_child, bool detach_fork)
5868 {
5869 struct remote_state *rs = get_remote_state ();
5870 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5871
5872 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5873 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5874 {
5875 /* When following the parent and detaching the child, we detach
5876 the child here. For the case of following the child and
5877 detaching the parent, the detach is done in the target-
5878 independent follow fork code in infrun.c. We can't use
5879 target_detach when detaching an unfollowed child because
5880 the client side doesn't know anything about the child. */
5881 if (detach_fork && !follow_child)
5882 {
5883 /* Detach the fork child. */
5884 ptid_t child_ptid;
5885 pid_t child_pid;
5886
5887 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5888 child_pid = child_ptid.pid ();
5889
5890 remote_detach_pid (child_pid);
5891 }
5892 }
5893
5894 return false;
5895 }
5896
5897 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5898 in the program space of the new inferior. On entry and at return the
5899 current inferior is the exec'ing inferior. INF is the new exec'd
5900 inferior, which may be the same as the exec'ing inferior unless
5901 follow-exec-mode is "new". */
5902
5903 void
5904 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5905 {
5906 /* We know that this is a target file name, so if it has the "target:"
5907 prefix we strip it off before saving it in the program space. */
5908 if (is_target_filename (execd_pathname))
5909 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5910
5911 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5912 }
5913
5914 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5915
5916 void
5917 remote_target::disconnect (const char *args, int from_tty)
5918 {
5919 if (args)
5920 error (_("Argument given to \"disconnect\" when remotely debugging."));
5921
5922 /* Make sure we unpush even the extended remote targets. Calling
5923 target_mourn_inferior won't unpush, and
5924 remote_target::mourn_inferior won't unpush if there is more than
5925 one inferior left. */
5926 remote_unpush_target (this);
5927
5928 if (from_tty)
5929 puts_filtered ("Ending remote debugging.\n");
5930 }
5931
5932 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5933 be chatty about it. */
5934
5935 void
5936 extended_remote_target::attach (const char *args, int from_tty)
5937 {
5938 struct remote_state *rs = get_remote_state ();
5939 int pid;
5940 char *wait_status = NULL;
5941
5942 pid = parse_pid_to_attach (args);
5943
5944 /* Remote PID can be freely equal to getpid, do not check it here the same
5945 way as in other targets. */
5946
5947 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5948 error (_("This target does not support attaching to a process"));
5949
5950 if (from_tty)
5951 {
5952 const char *exec_file = get_exec_file (0);
5953
5954 if (exec_file)
5955 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5956 target_pid_to_str (ptid_t (pid)).c_str ());
5957 else
5958 printf_unfiltered (_("Attaching to %s\n"),
5959 target_pid_to_str (ptid_t (pid)).c_str ());
5960 }
5961
5962 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5963 putpkt (rs->buf);
5964 getpkt (&rs->buf, 0);
5965
5966 switch (packet_ok (rs->buf,
5967 &remote_protocol_packets[PACKET_vAttach]))
5968 {
5969 case PACKET_OK:
5970 if (!target_is_non_stop_p ())
5971 {
5972 /* Save the reply for later. */
5973 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5974 strcpy (wait_status, rs->buf.data ());
5975 }
5976 else if (strcmp (rs->buf.data (), "OK") != 0)
5977 error (_("Attaching to %s failed with: %s"),
5978 target_pid_to_str (ptid_t (pid)).c_str (),
5979 rs->buf.data ());
5980 break;
5981 case PACKET_UNKNOWN:
5982 error (_("This target does not support attaching to a process"));
5983 default:
5984 error (_("Attaching to %s failed"),
5985 target_pid_to_str (ptid_t (pid)).c_str ());
5986 }
5987
5988 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
5989
5990 inferior_ptid = ptid_t (pid);
5991
5992 if (target_is_non_stop_p ())
5993 {
5994 /* Get list of threads. */
5995 update_thread_list ();
5996
5997 thread_info *thread = first_thread_of_inferior (current_inferior ());
5998 if (thread != nullptr)
5999 switch_to_thread (thread);
6000
6001 /* Invalidate our notion of the remote current thread. */
6002 record_currthread (rs, minus_one_ptid);
6003 }
6004 else
6005 {
6006 /* Now, if we have thread information, update the main thread's
6007 ptid. */
6008 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6009
6010 /* Add the main thread to the thread list. */
6011 thread_info *thr = add_thread_silent (this, curr_ptid);
6012
6013 switch_to_thread (thr);
6014
6015 /* Don't consider the thread stopped until we've processed the
6016 saved stop reply. */
6017 set_executing (this, thr->ptid, true);
6018 }
6019
6020 /* Next, if the target can specify a description, read it. We do
6021 this before anything involving memory or registers. */
6022 target_find_description ();
6023
6024 if (!target_is_non_stop_p ())
6025 {
6026 /* Use the previously fetched status. */
6027 gdb_assert (wait_status != NULL);
6028
6029 if (target_can_async_p ())
6030 {
6031 struct notif_event *reply
6032 = remote_notif_parse (this, &notif_client_stop, wait_status);
6033
6034 push_stop_reply ((struct stop_reply *) reply);
6035
6036 target_async (1);
6037 }
6038 else
6039 {
6040 gdb_assert (wait_status != NULL);
6041 strcpy (rs->buf.data (), wait_status);
6042 rs->cached_wait_status = 1;
6043 }
6044 }
6045 else
6046 {
6047 gdb_assert (wait_status == NULL);
6048
6049 gdb_assert (target_can_async_p ());
6050 target_async (1);
6051 }
6052 }
6053
6054 /* Implementation of the to_post_attach method. */
6055
6056 void
6057 extended_remote_target::post_attach (int pid)
6058 {
6059 /* Get text, data & bss offsets. */
6060 get_offsets ();
6061
6062 /* In certain cases GDB might not have had the chance to start
6063 symbol lookup up until now. This could happen if the debugged
6064 binary is not using shared libraries, the vsyscall page is not
6065 present (on Linux) and the binary itself hadn't changed since the
6066 debugging process was started. */
6067 if (current_program_space->symfile_object_file != NULL)
6068 remote_check_symbols();
6069 }
6070
6071 \f
6072 /* Check for the availability of vCont. This function should also check
6073 the response. */
6074
6075 void
6076 remote_target::remote_vcont_probe ()
6077 {
6078 remote_state *rs = get_remote_state ();
6079 char *buf;
6080
6081 strcpy (rs->buf.data (), "vCont?");
6082 putpkt (rs->buf);
6083 getpkt (&rs->buf, 0);
6084 buf = rs->buf.data ();
6085
6086 /* Make sure that the features we assume are supported. */
6087 if (startswith (buf, "vCont"))
6088 {
6089 char *p = &buf[5];
6090 int support_c, support_C;
6091
6092 rs->supports_vCont.s = 0;
6093 rs->supports_vCont.S = 0;
6094 support_c = 0;
6095 support_C = 0;
6096 rs->supports_vCont.t = 0;
6097 rs->supports_vCont.r = 0;
6098 while (p && *p == ';')
6099 {
6100 p++;
6101 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6102 rs->supports_vCont.s = 1;
6103 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6104 rs->supports_vCont.S = 1;
6105 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6106 support_c = 1;
6107 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6108 support_C = 1;
6109 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6110 rs->supports_vCont.t = 1;
6111 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6112 rs->supports_vCont.r = 1;
6113
6114 p = strchr (p, ';');
6115 }
6116
6117 /* If c, and C are not all supported, we can't use vCont. Clearing
6118 BUF will make packet_ok disable the packet. */
6119 if (!support_c || !support_C)
6120 buf[0] = 0;
6121 }
6122
6123 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6124 rs->supports_vCont_probed = true;
6125 }
6126
6127 /* Helper function for building "vCont" resumptions. Write a
6128 resumption to P. ENDP points to one-passed-the-end of the buffer
6129 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6130 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6131 resumed thread should be single-stepped and/or signalled. If PTID
6132 equals minus_one_ptid, then all threads are resumed; if PTID
6133 represents a process, then all threads of the process are resumed;
6134 the thread to be stepped and/or signalled is given in the global
6135 INFERIOR_PTID. */
6136
6137 char *
6138 remote_target::append_resumption (char *p, char *endp,
6139 ptid_t ptid, int step, gdb_signal siggnal)
6140 {
6141 struct remote_state *rs = get_remote_state ();
6142
6143 if (step && siggnal != GDB_SIGNAL_0)
6144 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6145 else if (step
6146 /* GDB is willing to range step. */
6147 && use_range_stepping
6148 /* Target supports range stepping. */
6149 && rs->supports_vCont.r
6150 /* We don't currently support range stepping multiple
6151 threads with a wildcard (though the protocol allows it,
6152 so stubs shouldn't make an active effort to forbid
6153 it). */
6154 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6155 {
6156 struct thread_info *tp;
6157
6158 if (ptid == minus_one_ptid)
6159 {
6160 /* If we don't know about the target thread's tid, then
6161 we're resuming magic_null_ptid (see caller). */
6162 tp = find_thread_ptid (this, magic_null_ptid);
6163 }
6164 else
6165 tp = find_thread_ptid (this, ptid);
6166 gdb_assert (tp != NULL);
6167
6168 if (tp->control.may_range_step)
6169 {
6170 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6171
6172 p += xsnprintf (p, endp - p, ";r%s,%s",
6173 phex_nz (tp->control.step_range_start,
6174 addr_size),
6175 phex_nz (tp->control.step_range_end,
6176 addr_size));
6177 }
6178 else
6179 p += xsnprintf (p, endp - p, ";s");
6180 }
6181 else if (step)
6182 p += xsnprintf (p, endp - p, ";s");
6183 else if (siggnal != GDB_SIGNAL_0)
6184 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6185 else
6186 p += xsnprintf (p, endp - p, ";c");
6187
6188 if (remote_multi_process_p (rs) && ptid.is_pid ())
6189 {
6190 ptid_t nptid;
6191
6192 /* All (-1) threads of process. */
6193 nptid = ptid_t (ptid.pid (), -1, 0);
6194
6195 p += xsnprintf (p, endp - p, ":");
6196 p = write_ptid (p, endp, nptid);
6197 }
6198 else if (ptid != minus_one_ptid)
6199 {
6200 p += xsnprintf (p, endp - p, ":");
6201 p = write_ptid (p, endp, ptid);
6202 }
6203
6204 return p;
6205 }
6206
6207 /* Clear the thread's private info on resume. */
6208
6209 static void
6210 resume_clear_thread_private_info (struct thread_info *thread)
6211 {
6212 if (thread->priv != NULL)
6213 {
6214 remote_thread_info *priv = get_remote_thread_info (thread);
6215
6216 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6217 priv->watch_data_address = 0;
6218 }
6219 }
6220
6221 /* Append a vCont continue-with-signal action for threads that have a
6222 non-zero stop signal. */
6223
6224 char *
6225 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6226 ptid_t ptid)
6227 {
6228 for (thread_info *thread : all_non_exited_threads (this, ptid))
6229 if (inferior_ptid != thread->ptid
6230 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6231 {
6232 p = append_resumption (p, endp, thread->ptid,
6233 0, thread->suspend.stop_signal);
6234 thread->suspend.stop_signal = GDB_SIGNAL_0;
6235 resume_clear_thread_private_info (thread);
6236 }
6237
6238 return p;
6239 }
6240
6241 /* Set the target running, using the packets that use Hc
6242 (c/s/C/S). */
6243
6244 void
6245 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6246 gdb_signal siggnal)
6247 {
6248 struct remote_state *rs = get_remote_state ();
6249 char *buf;
6250
6251 rs->last_sent_signal = siggnal;
6252 rs->last_sent_step = step;
6253
6254 /* The c/s/C/S resume packets use Hc, so set the continue
6255 thread. */
6256 if (ptid == minus_one_ptid)
6257 set_continue_thread (any_thread_ptid);
6258 else
6259 set_continue_thread (ptid);
6260
6261 for (thread_info *thread : all_non_exited_threads (this))
6262 resume_clear_thread_private_info (thread);
6263
6264 buf = rs->buf.data ();
6265 if (::execution_direction == EXEC_REVERSE)
6266 {
6267 /* We don't pass signals to the target in reverse exec mode. */
6268 if (info_verbose && siggnal != GDB_SIGNAL_0)
6269 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6270 siggnal);
6271
6272 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6273 error (_("Remote reverse-step not supported."));
6274 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6275 error (_("Remote reverse-continue not supported."));
6276
6277 strcpy (buf, step ? "bs" : "bc");
6278 }
6279 else if (siggnal != GDB_SIGNAL_0)
6280 {
6281 buf[0] = step ? 'S' : 'C';
6282 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6283 buf[2] = tohex (((int) siggnal) & 0xf);
6284 buf[3] = '\0';
6285 }
6286 else
6287 strcpy (buf, step ? "s" : "c");
6288
6289 putpkt (buf);
6290 }
6291
6292 /* Resume the remote inferior by using a "vCont" packet. The thread
6293 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6294 resumed thread should be single-stepped and/or signalled. If PTID
6295 equals minus_one_ptid, then all threads are resumed; the thread to
6296 be stepped and/or signalled is given in the global INFERIOR_PTID.
6297 This function returns non-zero iff it resumes the inferior.
6298
6299 This function issues a strict subset of all possible vCont commands
6300 at the moment. */
6301
6302 int
6303 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6304 enum gdb_signal siggnal)
6305 {
6306 struct remote_state *rs = get_remote_state ();
6307 char *p;
6308 char *endp;
6309
6310 /* No reverse execution actions defined for vCont. */
6311 if (::execution_direction == EXEC_REVERSE)
6312 return 0;
6313
6314 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6315 remote_vcont_probe ();
6316
6317 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6318 return 0;
6319
6320 p = rs->buf.data ();
6321 endp = p + get_remote_packet_size ();
6322
6323 /* If we could generate a wider range of packets, we'd have to worry
6324 about overflowing BUF. Should there be a generic
6325 "multi-part-packet" packet? */
6326
6327 p += xsnprintf (p, endp - p, "vCont");
6328
6329 if (ptid == magic_null_ptid)
6330 {
6331 /* MAGIC_NULL_PTID means that we don't have any active threads,
6332 so we don't have any TID numbers the inferior will
6333 understand. Make sure to only send forms that do not specify
6334 a TID. */
6335 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6336 }
6337 else if (ptid == minus_one_ptid || ptid.is_pid ())
6338 {
6339 /* Resume all threads (of all processes, or of a single
6340 process), with preference for INFERIOR_PTID. This assumes
6341 inferior_ptid belongs to the set of all threads we are about
6342 to resume. */
6343 if (step || siggnal != GDB_SIGNAL_0)
6344 {
6345 /* Step inferior_ptid, with or without signal. */
6346 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6347 }
6348
6349 /* Also pass down any pending signaled resumption for other
6350 threads not the current. */
6351 p = append_pending_thread_resumptions (p, endp, ptid);
6352
6353 /* And continue others without a signal. */
6354 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6355 }
6356 else
6357 {
6358 /* Scheduler locking; resume only PTID. */
6359 append_resumption (p, endp, ptid, step, siggnal);
6360 }
6361
6362 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6363 putpkt (rs->buf);
6364
6365 if (target_is_non_stop_p ())
6366 {
6367 /* In non-stop, the stub replies to vCont with "OK". The stop
6368 reply will be reported asynchronously by means of a `%Stop'
6369 notification. */
6370 getpkt (&rs->buf, 0);
6371 if (strcmp (rs->buf.data (), "OK") != 0)
6372 error (_("Unexpected vCont reply in non-stop mode: %s"),
6373 rs->buf.data ());
6374 }
6375
6376 return 1;
6377 }
6378
6379 /* Tell the remote machine to resume. */
6380
6381 void
6382 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6383 {
6384 struct remote_state *rs = get_remote_state ();
6385
6386 /* When connected in non-stop mode, the core resumes threads
6387 individually. Resuming remote threads directly in target_resume
6388 would thus result in sending one packet per thread. Instead, to
6389 minimize roundtrip latency, here we just store the resume
6390 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6391 resumption will be done in remote_target::commit_resume, where we'll be
6392 able to do vCont action coalescing. */
6393 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6394 {
6395 remote_thread_info *remote_thr;
6396
6397 if (minus_one_ptid == ptid || ptid.is_pid ())
6398 remote_thr = get_remote_thread_info (this, inferior_ptid);
6399 else
6400 remote_thr = get_remote_thread_info (this, ptid);
6401
6402 /* We don't expect the core to ask to resume an already resumed (from
6403 its point of view) thread. */
6404 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6405
6406 remote_thr->set_resumed_pending_vcont (step, siggnal);
6407 return;
6408 }
6409
6410 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6411 (explained in remote-notif.c:handle_notification) so
6412 remote_notif_process is not called. We need find a place where
6413 it is safe to start a 'vNotif' sequence. It is good to do it
6414 before resuming inferior, because inferior was stopped and no RSP
6415 traffic at that moment. */
6416 if (!target_is_non_stop_p ())
6417 remote_notif_process (rs->notif_state, &notif_client_stop);
6418
6419 rs->last_resume_exec_dir = ::execution_direction;
6420
6421 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6422 if (!remote_resume_with_vcont (ptid, step, siggnal))
6423 remote_resume_with_hc (ptid, step, siggnal);
6424
6425 /* Update resumed state tracked by the remote target. */
6426 for (thread_info *tp : all_non_exited_threads (this, ptid))
6427 get_remote_thread_info (tp)->set_resumed ();
6428
6429 /* We are about to start executing the inferior, let's register it
6430 with the event loop. NOTE: this is the one place where all the
6431 execution commands end up. We could alternatively do this in each
6432 of the execution commands in infcmd.c. */
6433 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6434 into infcmd.c in order to allow inferior function calls to work
6435 NOT asynchronously. */
6436 if (target_can_async_p ())
6437 target_async (1);
6438
6439 /* We've just told the target to resume. The remote server will
6440 wait for the inferior to stop, and then send a stop reply. In
6441 the mean time, we can't start another command/query ourselves
6442 because the stub wouldn't be ready to process it. This applies
6443 only to the base all-stop protocol, however. In non-stop (which
6444 only supports vCont), the stub replies with an "OK", and is
6445 immediate able to process further serial input. */
6446 if (!target_is_non_stop_p ())
6447 rs->waiting_for_stop_reply = 1;
6448 }
6449
6450 static int is_pending_fork_parent_thread (struct thread_info *thread);
6451
6452 /* Private per-inferior info for target remote processes. */
6453
6454 struct remote_inferior : public private_inferior
6455 {
6456 /* Whether we can send a wildcard vCont for this process. */
6457 bool may_wildcard_vcont = true;
6458 };
6459
6460 /* Get the remote private inferior data associated to INF. */
6461
6462 static remote_inferior *
6463 get_remote_inferior (inferior *inf)
6464 {
6465 if (inf->priv == NULL)
6466 inf->priv.reset (new remote_inferior);
6467
6468 return static_cast<remote_inferior *> (inf->priv.get ());
6469 }
6470
6471 /* Class used to track the construction of a vCont packet in the
6472 outgoing packet buffer. This is used to send multiple vCont
6473 packets if we have more actions than would fit a single packet. */
6474
6475 class vcont_builder
6476 {
6477 public:
6478 explicit vcont_builder (remote_target *remote)
6479 : m_remote (remote)
6480 {
6481 restart ();
6482 }
6483
6484 void flush ();
6485 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6486
6487 private:
6488 void restart ();
6489
6490 /* The remote target. */
6491 remote_target *m_remote;
6492
6493 /* Pointer to the first action. P points here if no action has been
6494 appended yet. */
6495 char *m_first_action;
6496
6497 /* Where the next action will be appended. */
6498 char *m_p;
6499
6500 /* The end of the buffer. Must never write past this. */
6501 char *m_endp;
6502 };
6503
6504 /* Prepare the outgoing buffer for a new vCont packet. */
6505
6506 void
6507 vcont_builder::restart ()
6508 {
6509 struct remote_state *rs = m_remote->get_remote_state ();
6510
6511 m_p = rs->buf.data ();
6512 m_endp = m_p + m_remote->get_remote_packet_size ();
6513 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6514 m_first_action = m_p;
6515 }
6516
6517 /* If the vCont packet being built has any action, send it to the
6518 remote end. */
6519
6520 void
6521 vcont_builder::flush ()
6522 {
6523 struct remote_state *rs;
6524
6525 if (m_p == m_first_action)
6526 return;
6527
6528 rs = m_remote->get_remote_state ();
6529 m_remote->putpkt (rs->buf);
6530 m_remote->getpkt (&rs->buf, 0);
6531 if (strcmp (rs->buf.data (), "OK") != 0)
6532 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6533 }
6534
6535 /* The largest action is range-stepping, with its two addresses. This
6536 is more than sufficient. If a new, bigger action is created, it'll
6537 quickly trigger a failed assertion in append_resumption (and we'll
6538 just bump this). */
6539 #define MAX_ACTION_SIZE 200
6540
6541 /* Append a new vCont action in the outgoing packet being built. If
6542 the action doesn't fit the packet along with previous actions, push
6543 what we've got so far to the remote end and start over a new vCont
6544 packet (with the new action). */
6545
6546 void
6547 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6548 {
6549 char buf[MAX_ACTION_SIZE + 1];
6550
6551 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6552 ptid, step, siggnal);
6553
6554 /* Check whether this new action would fit in the vCont packet along
6555 with previous actions. If not, send what we've got so far and
6556 start a new vCont packet. */
6557 size_t rsize = endp - buf;
6558 if (rsize > m_endp - m_p)
6559 {
6560 flush ();
6561 restart ();
6562
6563 /* Should now fit. */
6564 gdb_assert (rsize <= m_endp - m_p);
6565 }
6566
6567 memcpy (m_p, buf, rsize);
6568 m_p += rsize;
6569 *m_p = '\0';
6570 }
6571
6572 /* to_commit_resume implementation. */
6573
6574 void
6575 remote_target::commit_resume ()
6576 {
6577 int any_process_wildcard;
6578 int may_global_wildcard_vcont;
6579
6580 /* If connected in all-stop mode, we'd send the remote resume
6581 request directly from remote_resume. Likewise if
6582 reverse-debugging, as there are no defined vCont actions for
6583 reverse execution. */
6584 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6585 return;
6586
6587 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6588 instead of resuming all threads of each process individually.
6589 However, if any thread of a process must remain halted, we can't
6590 send wildcard resumes and must send one action per thread.
6591
6592 Care must be taken to not resume threads/processes the server
6593 side already told us are stopped, but the core doesn't know about
6594 yet, because the events are still in the vStopped notification
6595 queue. For example:
6596
6597 #1 => vCont s:p1.1;c
6598 #2 <= OK
6599 #3 <= %Stopped T05 p1.1
6600 #4 => vStopped
6601 #5 <= T05 p1.2
6602 #6 => vStopped
6603 #7 <= OK
6604 #8 (infrun handles the stop for p1.1 and continues stepping)
6605 #9 => vCont s:p1.1;c
6606
6607 The last vCont above would resume thread p1.2 by mistake, because
6608 the server has no idea that the event for p1.2 had not been
6609 handled yet.
6610
6611 The server side must similarly ignore resume actions for the
6612 thread that has a pending %Stopped notification (and any other
6613 threads with events pending), until GDB acks the notification
6614 with vStopped. Otherwise, e.g., the following case is
6615 mishandled:
6616
6617 #1 => g (or any other packet)
6618 #2 <= [registers]
6619 #3 <= %Stopped T05 p1.2
6620 #4 => vCont s:p1.1;c
6621 #5 <= OK
6622
6623 Above, the server must not resume thread p1.2. GDB can't know
6624 that p1.2 stopped until it acks the %Stopped notification, and
6625 since from GDB's perspective all threads should be running, it
6626 sends a "c" action.
6627
6628 Finally, special care must also be given to handling fork/vfork
6629 events. A (v)fork event actually tells us that two processes
6630 stopped -- the parent and the child. Until we follow the fork,
6631 we must not resume the child. Therefore, if we have a pending
6632 fork follow, we must not send a global wildcard resume action
6633 (vCont;c). We can still send process-wide wildcards though. */
6634
6635 /* Start by assuming a global wildcard (vCont;c) is possible. */
6636 may_global_wildcard_vcont = 1;
6637
6638 /* And assume every process is individually wildcard-able too. */
6639 for (inferior *inf : all_non_exited_inferiors (this))
6640 {
6641 remote_inferior *priv = get_remote_inferior (inf);
6642
6643 priv->may_wildcard_vcont = true;
6644 }
6645
6646 /* Check for any pending events (not reported or processed yet) and
6647 disable process and global wildcard resumes appropriately. */
6648 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6649
6650 for (thread_info *tp : all_non_exited_threads (this))
6651 {
6652 remote_thread_info *priv = get_remote_thread_info (tp);
6653
6654 /* If a thread of a process is not meant to be resumed, then we
6655 can't wildcard that process. */
6656 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6657 {
6658 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6659
6660 /* And if we can't wildcard a process, we can't wildcard
6661 everything either. */
6662 may_global_wildcard_vcont = 0;
6663 continue;
6664 }
6665
6666 /* If a thread is the parent of an unfollowed fork, then we
6667 can't do a global wildcard, as that would resume the fork
6668 child. */
6669 if (is_pending_fork_parent_thread (tp))
6670 may_global_wildcard_vcont = 0;
6671 }
6672
6673 /* Now let's build the vCont packet(s). Actions must be appended
6674 from narrower to wider scopes (thread -> process -> global). If
6675 we end up with too many actions for a single packet vcont_builder
6676 flushes the current vCont packet to the remote side and starts a
6677 new one. */
6678 struct vcont_builder vcont_builder (this);
6679
6680 /* Threads first. */
6681 for (thread_info *tp : all_non_exited_threads (this))
6682 {
6683 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6684
6685 /* If the thread was previously vCont-resumed, no need to send a specific
6686 action for it. If we didn't receive a resume request for it, don't
6687 send an action for it either. */
6688 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6689 continue;
6690
6691 gdb_assert (!thread_is_in_step_over_chain (tp));
6692
6693 const resumed_pending_vcont_info &info
6694 = remote_thr->resumed_pending_vcont_info ();
6695
6696 /* Check if we need to send a specific action for this thread. If not,
6697 it will be included in a wildcard resume instead. */
6698 if (info.step || info.sig != GDB_SIGNAL_0
6699 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6700 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6701
6702 remote_thr->set_resumed ();
6703 }
6704
6705 /* Now check whether we can send any process-wide wildcard. This is
6706 to avoid sending a global wildcard in the case nothing is
6707 supposed to be resumed. */
6708 any_process_wildcard = 0;
6709
6710 for (inferior *inf : all_non_exited_inferiors (this))
6711 {
6712 if (get_remote_inferior (inf)->may_wildcard_vcont)
6713 {
6714 any_process_wildcard = 1;
6715 break;
6716 }
6717 }
6718
6719 if (any_process_wildcard)
6720 {
6721 /* If all processes are wildcard-able, then send a single "c"
6722 action, otherwise, send an "all (-1) threads of process"
6723 continue action for each running process, if any. */
6724 if (may_global_wildcard_vcont)
6725 {
6726 vcont_builder.push_action (minus_one_ptid,
6727 false, GDB_SIGNAL_0);
6728 }
6729 else
6730 {
6731 for (inferior *inf : all_non_exited_inferiors (this))
6732 {
6733 if (get_remote_inferior (inf)->may_wildcard_vcont)
6734 {
6735 vcont_builder.push_action (ptid_t (inf->pid),
6736 false, GDB_SIGNAL_0);
6737 }
6738 }
6739 }
6740 }
6741
6742 vcont_builder.flush ();
6743 }
6744
6745 \f
6746
6747 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6748 thread, all threads of a remote process, or all threads of all
6749 processes. */
6750
6751 void
6752 remote_target::remote_stop_ns (ptid_t ptid)
6753 {
6754 struct remote_state *rs = get_remote_state ();
6755 char *p = rs->buf.data ();
6756 char *endp = p + get_remote_packet_size ();
6757
6758 /* FIXME: This supports_vCont_probed check is a workaround until
6759 packet_support is per-connection. */
6760 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6761 || !rs->supports_vCont_probed)
6762 remote_vcont_probe ();
6763
6764 if (!rs->supports_vCont.t)
6765 error (_("Remote server does not support stopping threads"));
6766
6767 if (ptid == minus_one_ptid
6768 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6769 p += xsnprintf (p, endp - p, "vCont;t");
6770 else
6771 {
6772 ptid_t nptid;
6773
6774 p += xsnprintf (p, endp - p, "vCont;t:");
6775
6776 if (ptid.is_pid ())
6777 /* All (-1) threads of process. */
6778 nptid = ptid_t (ptid.pid (), -1, 0);
6779 else
6780 {
6781 /* Small optimization: if we already have a stop reply for
6782 this thread, no use in telling the stub we want this
6783 stopped. */
6784 if (peek_stop_reply (ptid))
6785 return;
6786
6787 nptid = ptid;
6788 }
6789
6790 write_ptid (p, endp, nptid);
6791 }
6792
6793 /* In non-stop, we get an immediate OK reply. The stop reply will
6794 come in asynchronously by notification. */
6795 putpkt (rs->buf);
6796 getpkt (&rs->buf, 0);
6797 if (strcmp (rs->buf.data (), "OK") != 0)
6798 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6799 rs->buf.data ());
6800 }
6801
6802 /* All-stop version of target_interrupt. Sends a break or a ^C to
6803 interrupt the remote target. It is undefined which thread of which
6804 process reports the interrupt. */
6805
6806 void
6807 remote_target::remote_interrupt_as ()
6808 {
6809 struct remote_state *rs = get_remote_state ();
6810
6811 rs->ctrlc_pending_p = 1;
6812
6813 /* If the inferior is stopped already, but the core didn't know
6814 about it yet, just ignore the request. The cached wait status
6815 will be collected in remote_wait. */
6816 if (rs->cached_wait_status)
6817 return;
6818
6819 /* Send interrupt_sequence to remote target. */
6820 send_interrupt_sequence ();
6821 }
6822
6823 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6824 the remote target. It is undefined which thread of which process
6825 reports the interrupt. Throws an error if the packet is not
6826 supported by the server. */
6827
6828 void
6829 remote_target::remote_interrupt_ns ()
6830 {
6831 struct remote_state *rs = get_remote_state ();
6832 char *p = rs->buf.data ();
6833 char *endp = p + get_remote_packet_size ();
6834
6835 xsnprintf (p, endp - p, "vCtrlC");
6836
6837 /* In non-stop, we get an immediate OK reply. The stop reply will
6838 come in asynchronously by notification. */
6839 putpkt (rs->buf);
6840 getpkt (&rs->buf, 0);
6841
6842 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6843 {
6844 case PACKET_OK:
6845 break;
6846 case PACKET_UNKNOWN:
6847 error (_("No support for interrupting the remote target."));
6848 case PACKET_ERROR:
6849 error (_("Interrupting target failed: %s"), rs->buf.data ());
6850 }
6851 }
6852
6853 /* Implement the to_stop function for the remote targets. */
6854
6855 void
6856 remote_target::stop (ptid_t ptid)
6857 {
6858 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6859
6860 if (target_is_non_stop_p ())
6861 remote_stop_ns (ptid);
6862 else
6863 {
6864 /* We don't currently have a way to transparently pause the
6865 remote target in all-stop mode. Interrupt it instead. */
6866 remote_interrupt_as ();
6867 }
6868 }
6869
6870 /* Implement the to_interrupt function for the remote targets. */
6871
6872 void
6873 remote_target::interrupt ()
6874 {
6875 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6876
6877 if (target_is_non_stop_p ())
6878 remote_interrupt_ns ();
6879 else
6880 remote_interrupt_as ();
6881 }
6882
6883 /* Implement the to_pass_ctrlc function for the remote targets. */
6884
6885 void
6886 remote_target::pass_ctrlc ()
6887 {
6888 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6889
6890 struct remote_state *rs = get_remote_state ();
6891
6892 /* If we're starting up, we're not fully synced yet. Quit
6893 immediately. */
6894 if (rs->starting_up)
6895 quit ();
6896 /* If ^C has already been sent once, offer to disconnect. */
6897 else if (rs->ctrlc_pending_p)
6898 interrupt_query ();
6899 else
6900 target_interrupt ();
6901 }
6902
6903 /* Ask the user what to do when an interrupt is received. */
6904
6905 void
6906 remote_target::interrupt_query ()
6907 {
6908 struct remote_state *rs = get_remote_state ();
6909
6910 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6911 {
6912 if (query (_("The target is not responding to interrupt requests.\n"
6913 "Stop debugging it? ")))
6914 {
6915 remote_unpush_target (this);
6916 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6917 }
6918 }
6919 else
6920 {
6921 if (query (_("Interrupted while waiting for the program.\n"
6922 "Give up waiting? ")))
6923 quit ();
6924 }
6925 }
6926
6927 /* Enable/disable target terminal ownership. Most targets can use
6928 terminal groups to control terminal ownership. Remote targets are
6929 different in that explicit transfer of ownership to/from GDB/target
6930 is required. */
6931
6932 void
6933 remote_target::terminal_inferior ()
6934 {
6935 /* NOTE: At this point we could also register our selves as the
6936 recipient of all input. Any characters typed could then be
6937 passed on down to the target. */
6938 }
6939
6940 void
6941 remote_target::terminal_ours ()
6942 {
6943 }
6944
6945 static void
6946 remote_console_output (const char *msg)
6947 {
6948 const char *p;
6949
6950 for (p = msg; p[0] && p[1]; p += 2)
6951 {
6952 char tb[2];
6953 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6954
6955 tb[0] = c;
6956 tb[1] = 0;
6957 gdb_stdtarg->puts (tb);
6958 }
6959 gdb_stdtarg->flush ();
6960 }
6961
6962 struct stop_reply : public notif_event
6963 {
6964 ~stop_reply ();
6965
6966 /* The identifier of the thread about this event */
6967 ptid_t ptid;
6968
6969 /* The remote state this event is associated with. When the remote
6970 connection, represented by a remote_state object, is closed,
6971 all the associated stop_reply events should be released. */
6972 struct remote_state *rs;
6973
6974 struct target_waitstatus ws;
6975
6976 /* The architecture associated with the expedited registers. */
6977 gdbarch *arch;
6978
6979 /* Expedited registers. This makes remote debugging a bit more
6980 efficient for those targets that provide critical registers as
6981 part of their normal status mechanism (as another roundtrip to
6982 fetch them is avoided). */
6983 std::vector<cached_reg_t> regcache;
6984
6985 enum target_stop_reason stop_reason;
6986
6987 CORE_ADDR watch_data_address;
6988
6989 int core;
6990 };
6991
6992 /* Return the length of the stop reply queue. */
6993
6994 int
6995 remote_target::stop_reply_queue_length ()
6996 {
6997 remote_state *rs = get_remote_state ();
6998 return rs->stop_reply_queue.size ();
6999 }
7000
7001 static void
7002 remote_notif_stop_parse (remote_target *remote,
7003 struct notif_client *self, const char *buf,
7004 struct notif_event *event)
7005 {
7006 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7007 }
7008
7009 static void
7010 remote_notif_stop_ack (remote_target *remote,
7011 struct notif_client *self, const char *buf,
7012 struct notif_event *event)
7013 {
7014 struct stop_reply *stop_reply = (struct stop_reply *) event;
7015
7016 /* acknowledge */
7017 putpkt (remote, self->ack_command);
7018
7019 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7020 the notification. It was left in the queue because we need to
7021 acknowledge it and pull the rest of the notifications out. */
7022 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7023 remote->push_stop_reply (stop_reply);
7024 }
7025
7026 static int
7027 remote_notif_stop_can_get_pending_events (remote_target *remote,
7028 struct notif_client *self)
7029 {
7030 /* We can't get pending events in remote_notif_process for
7031 notification stop, and we have to do this in remote_wait_ns
7032 instead. If we fetch all queued events from stub, remote stub
7033 may exit and we have no chance to process them back in
7034 remote_wait_ns. */
7035 remote_state *rs = remote->get_remote_state ();
7036 mark_async_event_handler (rs->remote_async_inferior_event_token);
7037 return 0;
7038 }
7039
7040 stop_reply::~stop_reply ()
7041 {
7042 for (cached_reg_t &reg : regcache)
7043 xfree (reg.data);
7044 }
7045
7046 static notif_event_up
7047 remote_notif_stop_alloc_reply ()
7048 {
7049 return notif_event_up (new struct stop_reply ());
7050 }
7051
7052 /* A client of notification Stop. */
7053
7054 struct notif_client notif_client_stop =
7055 {
7056 "Stop",
7057 "vStopped",
7058 remote_notif_stop_parse,
7059 remote_notif_stop_ack,
7060 remote_notif_stop_can_get_pending_events,
7061 remote_notif_stop_alloc_reply,
7062 REMOTE_NOTIF_STOP,
7063 };
7064
7065 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7066 the pid of the process that owns the threads we want to check, or
7067 -1 if we want to check all threads. */
7068
7069 static int
7070 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7071 ptid_t thread_ptid)
7072 {
7073 if (ws->kind == TARGET_WAITKIND_FORKED
7074 || ws->kind == TARGET_WAITKIND_VFORKED)
7075 {
7076 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7077 return 1;
7078 }
7079
7080 return 0;
7081 }
7082
7083 /* Return the thread's pending status used to determine whether the
7084 thread is a fork parent stopped at a fork event. */
7085
7086 static struct target_waitstatus *
7087 thread_pending_fork_status (struct thread_info *thread)
7088 {
7089 if (thread->suspend.waitstatus_pending_p)
7090 return &thread->suspend.waitstatus;
7091 else
7092 return &thread->pending_follow;
7093 }
7094
7095 /* Determine if THREAD is a pending fork parent thread. */
7096
7097 static int
7098 is_pending_fork_parent_thread (struct thread_info *thread)
7099 {
7100 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7101 int pid = -1;
7102
7103 return is_pending_fork_parent (ws, pid, thread->ptid);
7104 }
7105
7106 /* If CONTEXT contains any fork child threads that have not been
7107 reported yet, remove them from the CONTEXT list. If such a
7108 thread exists it is because we are stopped at a fork catchpoint
7109 and have not yet called follow_fork, which will set up the
7110 host-side data structures for the new process. */
7111
7112 void
7113 remote_target::remove_new_fork_children (threads_listing_context *context)
7114 {
7115 int pid = -1;
7116 struct notif_client *notif = &notif_client_stop;
7117
7118 /* For any threads stopped at a fork event, remove the corresponding
7119 fork child threads from the CONTEXT list. */
7120 for (thread_info *thread : all_non_exited_threads (this))
7121 {
7122 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7123
7124 if (is_pending_fork_parent (ws, pid, thread->ptid))
7125 context->remove_thread (ws->value.related_pid);
7126 }
7127
7128 /* Check for any pending fork events (not reported or processed yet)
7129 in process PID and remove those fork child threads from the
7130 CONTEXT list as well. */
7131 remote_notif_get_pending_events (notif);
7132 for (auto &event : get_remote_state ()->stop_reply_queue)
7133 if (event->ws.kind == TARGET_WAITKIND_FORKED
7134 || event->ws.kind == TARGET_WAITKIND_VFORKED
7135 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7136 context->remove_thread (event->ws.value.related_pid);
7137 }
7138
7139 /* Check whether any event pending in the vStopped queue would prevent
7140 a global or process wildcard vCont action. Clear
7141 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7142 and clear the event inferior's may_wildcard_vcont flag if we can't
7143 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7144
7145 void
7146 remote_target::check_pending_events_prevent_wildcard_vcont
7147 (int *may_global_wildcard)
7148 {
7149 struct notif_client *notif = &notif_client_stop;
7150
7151 remote_notif_get_pending_events (notif);
7152 for (auto &event : get_remote_state ()->stop_reply_queue)
7153 {
7154 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7155 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7156 continue;
7157
7158 if (event->ws.kind == TARGET_WAITKIND_FORKED
7159 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7160 *may_global_wildcard = 0;
7161
7162 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7163
7164 /* This may be the first time we heard about this process.
7165 Regardless, we must not do a global wildcard resume, otherwise
7166 we'd resume this process too. */
7167 *may_global_wildcard = 0;
7168 if (inf != NULL)
7169 get_remote_inferior (inf)->may_wildcard_vcont = false;
7170 }
7171 }
7172
7173 /* Discard all pending stop replies of inferior INF. */
7174
7175 void
7176 remote_target::discard_pending_stop_replies (struct inferior *inf)
7177 {
7178 struct stop_reply *reply;
7179 struct remote_state *rs = get_remote_state ();
7180 struct remote_notif_state *rns = rs->notif_state;
7181
7182 /* This function can be notified when an inferior exists. When the
7183 target is not remote, the notification state is NULL. */
7184 if (rs->remote_desc == NULL)
7185 return;
7186
7187 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7188
7189 /* Discard the in-flight notification. */
7190 if (reply != NULL && reply->ptid.pid () == inf->pid)
7191 {
7192 /* Leave the notification pending, since the server expects that
7193 we acknowledge it with vStopped. But clear its contents, so
7194 that later on when we acknowledge it, we also discard it. */
7195 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7196
7197 if (remote_debug)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "discarded in-flight notification\n");
7200 }
7201
7202 /* Discard the stop replies we have already pulled with
7203 vStopped. */
7204 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7205 rs->stop_reply_queue.end (),
7206 [=] (const stop_reply_up &event)
7207 {
7208 return event->ptid.pid () == inf->pid;
7209 });
7210 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7211 }
7212
7213 /* Discard the stop replies for RS in stop_reply_queue. */
7214
7215 void
7216 remote_target::discard_pending_stop_replies_in_queue ()
7217 {
7218 remote_state *rs = get_remote_state ();
7219
7220 /* Discard the stop replies we have already pulled with
7221 vStopped. */
7222 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7223 rs->stop_reply_queue.end (),
7224 [=] (const stop_reply_up &event)
7225 {
7226 return event->rs == rs;
7227 });
7228 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7229 }
7230
7231 /* Remove the first reply in 'stop_reply_queue' which matches
7232 PTID. */
7233
7234 struct stop_reply *
7235 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7236 {
7237 remote_state *rs = get_remote_state ();
7238
7239 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7240 rs->stop_reply_queue.end (),
7241 [=] (const stop_reply_up &event)
7242 {
7243 return event->ptid.matches (ptid);
7244 });
7245 struct stop_reply *result;
7246 if (iter == rs->stop_reply_queue.end ())
7247 result = nullptr;
7248 else
7249 {
7250 result = iter->release ();
7251 rs->stop_reply_queue.erase (iter);
7252 }
7253
7254 if (notif_debug)
7255 fprintf_unfiltered (gdb_stdlog,
7256 "notif: discard queued event: 'Stop' in %s\n",
7257 target_pid_to_str (ptid).c_str ());
7258
7259 return result;
7260 }
7261
7262 /* Look for a queued stop reply belonging to PTID. If one is found,
7263 remove it from the queue, and return it. Returns NULL if none is
7264 found. If there are still queued events left to process, tell the
7265 event loop to get back to target_wait soon. */
7266
7267 struct stop_reply *
7268 remote_target::queued_stop_reply (ptid_t ptid)
7269 {
7270 remote_state *rs = get_remote_state ();
7271 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7272
7273 if (!rs->stop_reply_queue.empty ())
7274 {
7275 /* There's still at least an event left. */
7276 mark_async_event_handler (rs->remote_async_inferior_event_token);
7277 }
7278
7279 return r;
7280 }
7281
7282 /* Push a fully parsed stop reply in the stop reply queue. Since we
7283 know that we now have at least one queued event left to pass to the
7284 core side, tell the event loop to get back to target_wait soon. */
7285
7286 void
7287 remote_target::push_stop_reply (struct stop_reply *new_event)
7288 {
7289 remote_state *rs = get_remote_state ();
7290 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7291
7292 if (notif_debug)
7293 fprintf_unfiltered (gdb_stdlog,
7294 "notif: push 'Stop' %s to queue %d\n",
7295 target_pid_to_str (new_event->ptid).c_str (),
7296 int (rs->stop_reply_queue.size ()));
7297
7298 mark_async_event_handler (rs->remote_async_inferior_event_token);
7299 }
7300
7301 /* Returns true if we have a stop reply for PTID. */
7302
7303 int
7304 remote_target::peek_stop_reply (ptid_t ptid)
7305 {
7306 remote_state *rs = get_remote_state ();
7307 for (auto &event : rs->stop_reply_queue)
7308 if (ptid == event->ptid
7309 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7310 return 1;
7311 return 0;
7312 }
7313
7314 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7315 starting with P and ending with PEND matches PREFIX. */
7316
7317 static int
7318 strprefix (const char *p, const char *pend, const char *prefix)
7319 {
7320 for ( ; p < pend; p++, prefix++)
7321 if (*p != *prefix)
7322 return 0;
7323 return *prefix == '\0';
7324 }
7325
7326 /* Parse the stop reply in BUF. Either the function succeeds, and the
7327 result is stored in EVENT, or throws an error. */
7328
7329 void
7330 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7331 {
7332 remote_arch_state *rsa = NULL;
7333 ULONGEST addr;
7334 const char *p;
7335 int skipregs = 0;
7336
7337 event->ptid = null_ptid;
7338 event->rs = get_remote_state ();
7339 event->ws.kind = TARGET_WAITKIND_IGNORE;
7340 event->ws.value.integer = 0;
7341 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7342 event->regcache.clear ();
7343 event->core = -1;
7344
7345 switch (buf[0])
7346 {
7347 case 'T': /* Status with PC, SP, FP, ... */
7348 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7349 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7350 ss = signal number
7351 n... = register number
7352 r... = register contents
7353 */
7354
7355 p = &buf[3]; /* after Txx */
7356 while (*p)
7357 {
7358 const char *p1;
7359 int fieldsize;
7360
7361 p1 = strchr (p, ':');
7362 if (p1 == NULL)
7363 error (_("Malformed packet(a) (missing colon): %s\n\
7364 Packet: '%s'\n"),
7365 p, buf);
7366 if (p == p1)
7367 error (_("Malformed packet(a) (missing register number): %s\n\
7368 Packet: '%s'\n"),
7369 p, buf);
7370
7371 /* Some "registers" are actually extended stop information.
7372 Note if you're adding a new entry here: GDB 7.9 and
7373 earlier assume that all register "numbers" that start
7374 with an hex digit are real register numbers. Make sure
7375 the server only sends such a packet if it knows the
7376 client understands it. */
7377
7378 if (strprefix (p, p1, "thread"))
7379 event->ptid = read_ptid (++p1, &p);
7380 else if (strprefix (p, p1, "syscall_entry"))
7381 {
7382 ULONGEST sysno;
7383
7384 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7385 p = unpack_varlen_hex (++p1, &sysno);
7386 event->ws.value.syscall_number = (int) sysno;
7387 }
7388 else if (strprefix (p, p1, "syscall_return"))
7389 {
7390 ULONGEST sysno;
7391
7392 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7393 p = unpack_varlen_hex (++p1, &sysno);
7394 event->ws.value.syscall_number = (int) sysno;
7395 }
7396 else if (strprefix (p, p1, "watch")
7397 || strprefix (p, p1, "rwatch")
7398 || strprefix (p, p1, "awatch"))
7399 {
7400 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7401 p = unpack_varlen_hex (++p1, &addr);
7402 event->watch_data_address = (CORE_ADDR) addr;
7403 }
7404 else if (strprefix (p, p1, "swbreak"))
7405 {
7406 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7407
7408 /* Make sure the stub doesn't forget to indicate support
7409 with qSupported. */
7410 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7411 error (_("Unexpected swbreak stop reason"));
7412
7413 /* The value part is documented as "must be empty",
7414 though we ignore it, in case we ever decide to make
7415 use of it in a backward compatible way. */
7416 p = strchrnul (p1 + 1, ';');
7417 }
7418 else if (strprefix (p, p1, "hwbreak"))
7419 {
7420 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7421
7422 /* Make sure the stub doesn't forget to indicate support
7423 with qSupported. */
7424 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7425 error (_("Unexpected hwbreak stop reason"));
7426
7427 /* See above. */
7428 p = strchrnul (p1 + 1, ';');
7429 }
7430 else if (strprefix (p, p1, "library"))
7431 {
7432 event->ws.kind = TARGET_WAITKIND_LOADED;
7433 p = strchrnul (p1 + 1, ';');
7434 }
7435 else if (strprefix (p, p1, "replaylog"))
7436 {
7437 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7438 /* p1 will indicate "begin" or "end", but it makes
7439 no difference for now, so ignore it. */
7440 p = strchrnul (p1 + 1, ';');
7441 }
7442 else if (strprefix (p, p1, "core"))
7443 {
7444 ULONGEST c;
7445
7446 p = unpack_varlen_hex (++p1, &c);
7447 event->core = c;
7448 }
7449 else if (strprefix (p, p1, "fork"))
7450 {
7451 event->ws.value.related_pid = read_ptid (++p1, &p);
7452 event->ws.kind = TARGET_WAITKIND_FORKED;
7453 }
7454 else if (strprefix (p, p1, "vfork"))
7455 {
7456 event->ws.value.related_pid = read_ptid (++p1, &p);
7457 event->ws.kind = TARGET_WAITKIND_VFORKED;
7458 }
7459 else if (strprefix (p, p1, "vforkdone"))
7460 {
7461 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7462 p = strchrnul (p1 + 1, ';');
7463 }
7464 else if (strprefix (p, p1, "exec"))
7465 {
7466 ULONGEST ignored;
7467 int pathlen;
7468
7469 /* Determine the length of the execd pathname. */
7470 p = unpack_varlen_hex (++p1, &ignored);
7471 pathlen = (p - p1) / 2;
7472
7473 /* Save the pathname for event reporting and for
7474 the next run command. */
7475 gdb::unique_xmalloc_ptr<char[]> pathname
7476 ((char *) xmalloc (pathlen + 1));
7477 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7478 pathname[pathlen] = '\0';
7479
7480 /* This is freed during event handling. */
7481 event->ws.value.execd_pathname = pathname.release ();
7482 event->ws.kind = TARGET_WAITKIND_EXECD;
7483
7484 /* Skip the registers included in this packet, since
7485 they may be for an architecture different from the
7486 one used by the original program. */
7487 skipregs = 1;
7488 }
7489 else if (strprefix (p, p1, "create"))
7490 {
7491 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7492 p = strchrnul (p1 + 1, ';');
7493 }
7494 else
7495 {
7496 ULONGEST pnum;
7497 const char *p_temp;
7498
7499 if (skipregs)
7500 {
7501 p = strchrnul (p1 + 1, ';');
7502 p++;
7503 continue;
7504 }
7505
7506 /* Maybe a real ``P'' register number. */
7507 p_temp = unpack_varlen_hex (p, &pnum);
7508 /* If the first invalid character is the colon, we got a
7509 register number. Otherwise, it's an unknown stop
7510 reason. */
7511 if (p_temp == p1)
7512 {
7513 /* If we haven't parsed the event's thread yet, find
7514 it now, in order to find the architecture of the
7515 reported expedited registers. */
7516 if (event->ptid == null_ptid)
7517 {
7518 /* If there is no thread-id information then leave
7519 the event->ptid as null_ptid. Later in
7520 process_stop_reply we will pick a suitable
7521 thread. */
7522 const char *thr = strstr (p1 + 1, ";thread:");
7523 if (thr != NULL)
7524 event->ptid = read_ptid (thr + strlen (";thread:"),
7525 NULL);
7526 }
7527
7528 if (rsa == NULL)
7529 {
7530 inferior *inf
7531 = (event->ptid == null_ptid
7532 ? NULL
7533 : find_inferior_ptid (this, event->ptid));
7534 /* If this is the first time we learn anything
7535 about this process, skip the registers
7536 included in this packet, since we don't yet
7537 know which architecture to use to parse them.
7538 We'll determine the architecture later when
7539 we process the stop reply and retrieve the
7540 target description, via
7541 remote_notice_new_inferior ->
7542 post_create_inferior. */
7543 if (inf == NULL)
7544 {
7545 p = strchrnul (p1 + 1, ';');
7546 p++;
7547 continue;
7548 }
7549
7550 event->arch = inf->gdbarch;
7551 rsa = event->rs->get_remote_arch_state (event->arch);
7552 }
7553
7554 packet_reg *reg
7555 = packet_reg_from_pnum (event->arch, rsa, pnum);
7556 cached_reg_t cached_reg;
7557
7558 if (reg == NULL)
7559 error (_("Remote sent bad register number %s: %s\n\
7560 Packet: '%s'\n"),
7561 hex_string (pnum), p, buf);
7562
7563 cached_reg.num = reg->regnum;
7564 cached_reg.data = (gdb_byte *)
7565 xmalloc (register_size (event->arch, reg->regnum));
7566
7567 p = p1 + 1;
7568 fieldsize = hex2bin (p, cached_reg.data,
7569 register_size (event->arch, reg->regnum));
7570 p += 2 * fieldsize;
7571 if (fieldsize < register_size (event->arch, reg->regnum))
7572 warning (_("Remote reply is too short: %s"), buf);
7573
7574 event->regcache.push_back (cached_reg);
7575 }
7576 else
7577 {
7578 /* Not a number. Silently skip unknown optional
7579 info. */
7580 p = strchrnul (p1 + 1, ';');
7581 }
7582 }
7583
7584 if (*p != ';')
7585 error (_("Remote register badly formatted: %s\nhere: %s"),
7586 buf, p);
7587 ++p;
7588 }
7589
7590 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7591 break;
7592
7593 /* fall through */
7594 case 'S': /* Old style status, just signal only. */
7595 {
7596 int sig;
7597
7598 event->ws.kind = TARGET_WAITKIND_STOPPED;
7599 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7600 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7601 event->ws.value.sig = (enum gdb_signal) sig;
7602 else
7603 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7604 }
7605 break;
7606 case 'w': /* Thread exited. */
7607 {
7608 ULONGEST value;
7609
7610 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7611 p = unpack_varlen_hex (&buf[1], &value);
7612 event->ws.value.integer = value;
7613 if (*p != ';')
7614 error (_("stop reply packet badly formatted: %s"), buf);
7615 event->ptid = read_ptid (++p, NULL);
7616 break;
7617 }
7618 case 'W': /* Target exited. */
7619 case 'X':
7620 {
7621 ULONGEST value;
7622
7623 /* GDB used to accept only 2 hex chars here. Stubs should
7624 only send more if they detect GDB supports multi-process
7625 support. */
7626 p = unpack_varlen_hex (&buf[1], &value);
7627
7628 if (buf[0] == 'W')
7629 {
7630 /* The remote process exited. */
7631 event->ws.kind = TARGET_WAITKIND_EXITED;
7632 event->ws.value.integer = value;
7633 }
7634 else
7635 {
7636 /* The remote process exited with a signal. */
7637 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7638 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7639 event->ws.value.sig = (enum gdb_signal) value;
7640 else
7641 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7642 }
7643
7644 /* If no process is specified, return null_ptid, and let the
7645 caller figure out the right process to use. */
7646 int pid = 0;
7647 if (*p == '\0')
7648 ;
7649 else if (*p == ';')
7650 {
7651 p++;
7652
7653 if (*p == '\0')
7654 ;
7655 else if (startswith (p, "process:"))
7656 {
7657 ULONGEST upid;
7658
7659 p += sizeof ("process:") - 1;
7660 unpack_varlen_hex (p, &upid);
7661 pid = upid;
7662 }
7663 else
7664 error (_("unknown stop reply packet: %s"), buf);
7665 }
7666 else
7667 error (_("unknown stop reply packet: %s"), buf);
7668 event->ptid = ptid_t (pid);
7669 }
7670 break;
7671 case 'N':
7672 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7673 event->ptid = minus_one_ptid;
7674 break;
7675 }
7676 }
7677
7678 /* When the stub wants to tell GDB about a new notification reply, it
7679 sends a notification (%Stop, for example). Those can come it at
7680 any time, hence, we have to make sure that any pending
7681 putpkt/getpkt sequence we're making is finished, before querying
7682 the stub for more events with the corresponding ack command
7683 (vStopped, for example). E.g., if we started a vStopped sequence
7684 immediately upon receiving the notification, something like this
7685 could happen:
7686
7687 1.1) --> Hg 1
7688 1.2) <-- OK
7689 1.3) --> g
7690 1.4) <-- %Stop
7691 1.5) --> vStopped
7692 1.6) <-- (registers reply to step #1.3)
7693
7694 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7695 query.
7696
7697 To solve this, whenever we parse a %Stop notification successfully,
7698 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7699 doing whatever we were doing:
7700
7701 2.1) --> Hg 1
7702 2.2) <-- OK
7703 2.3) --> g
7704 2.4) <-- %Stop
7705 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7706 2.5) <-- (registers reply to step #2.3)
7707
7708 Eventually after step #2.5, we return to the event loop, which
7709 notices there's an event on the
7710 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7711 associated callback --- the function below. At this point, we're
7712 always safe to start a vStopped sequence. :
7713
7714 2.6) --> vStopped
7715 2.7) <-- T05 thread:2
7716 2.8) --> vStopped
7717 2.9) --> OK
7718 */
7719
7720 void
7721 remote_target::remote_notif_get_pending_events (notif_client *nc)
7722 {
7723 struct remote_state *rs = get_remote_state ();
7724
7725 if (rs->notif_state->pending_event[nc->id] != NULL)
7726 {
7727 if (notif_debug)
7728 fprintf_unfiltered (gdb_stdlog,
7729 "notif: process: '%s' ack pending event\n",
7730 nc->name);
7731
7732 /* acknowledge */
7733 nc->ack (this, nc, rs->buf.data (),
7734 rs->notif_state->pending_event[nc->id]);
7735 rs->notif_state->pending_event[nc->id] = NULL;
7736
7737 while (1)
7738 {
7739 getpkt (&rs->buf, 0);
7740 if (strcmp (rs->buf.data (), "OK") == 0)
7741 break;
7742 else
7743 remote_notif_ack (this, nc, rs->buf.data ());
7744 }
7745 }
7746 else
7747 {
7748 if (notif_debug)
7749 fprintf_unfiltered (gdb_stdlog,
7750 "notif: process: '%s' no pending reply\n",
7751 nc->name);
7752 }
7753 }
7754
7755 /* Wrapper around remote_target::remote_notif_get_pending_events to
7756 avoid having to export the whole remote_target class. */
7757
7758 void
7759 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7760 {
7761 remote->remote_notif_get_pending_events (nc);
7762 }
7763
7764 /* Called from process_stop_reply when the stop packet we are responding
7765 to didn't include a process-id or thread-id. STATUS is the stop event
7766 we are responding to.
7767
7768 It is the task of this function to select a suitable thread (or process)
7769 and return its ptid, this is the thread (or process) we will assume the
7770 stop event came from.
7771
7772 In some cases there isn't really any choice about which thread (or
7773 process) is selected, a basic remote with a single process containing a
7774 single thread might choose not to send any process-id or thread-id in
7775 its stop packets, this function will select and return the one and only
7776 thread.
7777
7778 However, if a target supports multiple threads (or processes) and still
7779 doesn't include a thread-id (or process-id) in its stop packet then
7780 first, this is a badly behaving target, and second, we're going to have
7781 to select a thread (or process) at random and use that. This function
7782 will print a warning to the user if it detects that there is the
7783 possibility that GDB is guessing which thread (or process) to
7784 report.
7785
7786 Note that this is called before GDB fetches the updated thread list from the
7787 target. So it's possible for the stop reply to be ambiguous and for GDB to
7788 not realize it. For example, if there's initially one thread, the target
7789 spawns a second thread, and then sends a stop reply without an id that
7790 concerns the first thread. GDB will assume the stop reply is about the
7791 first thread - the only thread it knows about - without printing a warning.
7792 Anyway, if the remote meant for the stop reply to be about the second thread,
7793 then it would be really broken, because GDB doesn't know about that thread
7794 yet. */
7795
7796 ptid_t
7797 remote_target::select_thread_for_ambiguous_stop_reply
7798 (const struct target_waitstatus *status)
7799 {
7800 /* Some stop events apply to all threads in an inferior, while others
7801 only apply to a single thread. */
7802 bool process_wide_stop
7803 = (status->kind == TARGET_WAITKIND_EXITED
7804 || status->kind == TARGET_WAITKIND_SIGNALLED);
7805
7806 thread_info *first_resumed_thread = nullptr;
7807 bool ambiguous = false;
7808
7809 /* Consider all non-exited threads of the target, find the first resumed
7810 one. */
7811 for (thread_info *thr : all_non_exited_threads (this))
7812 {
7813 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7814
7815 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7816 continue;
7817
7818 if (first_resumed_thread == nullptr)
7819 first_resumed_thread = thr;
7820 else if (!process_wide_stop
7821 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7822 ambiguous = true;
7823 }
7824
7825 gdb_assert (first_resumed_thread != nullptr);
7826
7827 /* Warn if the remote target is sending ambiguous stop replies. */
7828 if (ambiguous)
7829 {
7830 static bool warned = false;
7831
7832 if (!warned)
7833 {
7834 /* If you are seeing this warning then the remote target has
7835 stopped without specifying a thread-id, but the target
7836 does have multiple threads (or inferiors), and so GDB is
7837 having to guess which thread stopped.
7838
7839 Examples of what might cause this are the target sending
7840 and 'S' stop packet, or a 'T' stop packet and not
7841 including a thread-id.
7842
7843 Additionally, the target might send a 'W' or 'X packet
7844 without including a process-id, when the target has
7845 multiple running inferiors. */
7846 if (process_wide_stop)
7847 warning (_("multi-inferior target stopped without "
7848 "sending a process-id, using first "
7849 "non-exited inferior"));
7850 else
7851 warning (_("multi-threaded target stopped without "
7852 "sending a thread-id, using first "
7853 "non-exited thread"));
7854 warned = true;
7855 }
7856 }
7857
7858 /* If this is a stop for all threads then don't use a particular threads
7859 ptid, instead create a new ptid where only the pid field is set. */
7860 if (process_wide_stop)
7861 return ptid_t (first_resumed_thread->ptid.pid ());
7862 else
7863 return first_resumed_thread->ptid;
7864 }
7865
7866 /* Called when it is decided that STOP_REPLY holds the info of the
7867 event that is to be returned to the core. This function always
7868 destroys STOP_REPLY. */
7869
7870 ptid_t
7871 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7872 struct target_waitstatus *status)
7873 {
7874 *status = stop_reply->ws;
7875 ptid_t ptid = stop_reply->ptid;
7876
7877 /* If no thread/process was reported by the stub then select a suitable
7878 thread/process. */
7879 if (ptid == null_ptid)
7880 ptid = select_thread_for_ambiguous_stop_reply (status);
7881 gdb_assert (ptid != null_ptid);
7882
7883 if (status->kind != TARGET_WAITKIND_EXITED
7884 && status->kind != TARGET_WAITKIND_SIGNALLED
7885 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7886 {
7887 /* Expedited registers. */
7888 if (!stop_reply->regcache.empty ())
7889 {
7890 struct regcache *regcache
7891 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7892
7893 for (cached_reg_t &reg : stop_reply->regcache)
7894 {
7895 regcache->raw_supply (reg.num, reg.data);
7896 xfree (reg.data);
7897 }
7898
7899 stop_reply->regcache.clear ();
7900 }
7901
7902 remote_notice_new_inferior (ptid, 0);
7903 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7904 remote_thr->core = stop_reply->core;
7905 remote_thr->stop_reason = stop_reply->stop_reason;
7906 remote_thr->watch_data_address = stop_reply->watch_data_address;
7907
7908 if (target_is_non_stop_p ())
7909 {
7910 /* If the target works in non-stop mode, a stop-reply indicates that
7911 only this thread stopped. */
7912 remote_thr->set_not_resumed ();
7913 }
7914 else
7915 {
7916 /* If the target works in all-stop mode, a stop-reply indicates that
7917 all the target's threads stopped. */
7918 for (thread_info *tp : all_non_exited_threads (this))
7919 get_remote_thread_info (tp)->set_not_resumed ();
7920 }
7921 }
7922
7923 delete stop_reply;
7924 return ptid;
7925 }
7926
7927 /* The non-stop mode version of target_wait. */
7928
7929 ptid_t
7930 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
7931 target_wait_flags options)
7932 {
7933 struct remote_state *rs = get_remote_state ();
7934 struct stop_reply *stop_reply;
7935 int ret;
7936 int is_notif = 0;
7937
7938 /* If in non-stop mode, get out of getpkt even if a
7939 notification is received. */
7940
7941 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7942 while (1)
7943 {
7944 if (ret != -1 && !is_notif)
7945 switch (rs->buf[0])
7946 {
7947 case 'E': /* Error of some sort. */
7948 /* We're out of sync with the target now. Did it continue
7949 or not? We can't tell which thread it was in non-stop,
7950 so just ignore this. */
7951 warning (_("Remote failure reply: %s"), rs->buf.data ());
7952 break;
7953 case 'O': /* Console output. */
7954 remote_console_output (&rs->buf[1]);
7955 break;
7956 default:
7957 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7958 break;
7959 }
7960
7961 /* Acknowledge a pending stop reply that may have arrived in the
7962 mean time. */
7963 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7964 remote_notif_get_pending_events (&notif_client_stop);
7965
7966 /* If indeed we noticed a stop reply, we're done. */
7967 stop_reply = queued_stop_reply (ptid);
7968 if (stop_reply != NULL)
7969 return process_stop_reply (stop_reply, status);
7970
7971 /* Still no event. If we're just polling for an event, then
7972 return to the event loop. */
7973 if (options & TARGET_WNOHANG)
7974 {
7975 status->kind = TARGET_WAITKIND_IGNORE;
7976 return minus_one_ptid;
7977 }
7978
7979 /* Otherwise do a blocking wait. */
7980 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7981 }
7982 }
7983
7984 /* Return the first resumed thread. */
7985
7986 static ptid_t
7987 first_remote_resumed_thread (remote_target *target)
7988 {
7989 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7990 if (tp->resumed)
7991 return tp->ptid;
7992 return null_ptid;
7993 }
7994
7995 /* Wait until the remote machine stops, then return, storing status in
7996 STATUS just as `wait' would. */
7997
7998 ptid_t
7999 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8000 target_wait_flags options)
8001 {
8002 struct remote_state *rs = get_remote_state ();
8003 ptid_t event_ptid = null_ptid;
8004 char *buf;
8005 struct stop_reply *stop_reply;
8006
8007 again:
8008
8009 status->kind = TARGET_WAITKIND_IGNORE;
8010 status->value.integer = 0;
8011
8012 stop_reply = queued_stop_reply (ptid);
8013 if (stop_reply != NULL)
8014 return process_stop_reply (stop_reply, status);
8015
8016 if (rs->cached_wait_status)
8017 /* Use the cached wait status, but only once. */
8018 rs->cached_wait_status = 0;
8019 else
8020 {
8021 int ret;
8022 int is_notif;
8023 int forever = ((options & TARGET_WNOHANG) == 0
8024 && rs->wait_forever_enabled_p);
8025
8026 if (!rs->waiting_for_stop_reply)
8027 {
8028 status->kind = TARGET_WAITKIND_NO_RESUMED;
8029 return minus_one_ptid;
8030 }
8031
8032 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8033 _never_ wait for ever -> test on target_is_async_p().
8034 However, before we do that we need to ensure that the caller
8035 knows how to take the target into/out of async mode. */
8036 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8037
8038 /* GDB gets a notification. Return to core as this event is
8039 not interesting. */
8040 if (ret != -1 && is_notif)
8041 return minus_one_ptid;
8042
8043 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8044 return minus_one_ptid;
8045 }
8046
8047 buf = rs->buf.data ();
8048
8049 /* Assume that the target has acknowledged Ctrl-C unless we receive
8050 an 'F' or 'O' packet. */
8051 if (buf[0] != 'F' && buf[0] != 'O')
8052 rs->ctrlc_pending_p = 0;
8053
8054 switch (buf[0])
8055 {
8056 case 'E': /* Error of some sort. */
8057 /* We're out of sync with the target now. Did it continue or
8058 not? Not is more likely, so report a stop. */
8059 rs->waiting_for_stop_reply = 0;
8060
8061 warning (_("Remote failure reply: %s"), buf);
8062 status->kind = TARGET_WAITKIND_STOPPED;
8063 status->value.sig = GDB_SIGNAL_0;
8064 break;
8065 case 'F': /* File-I/O request. */
8066 /* GDB may access the inferior memory while handling the File-I/O
8067 request, but we don't want GDB accessing memory while waiting
8068 for a stop reply. See the comments in putpkt_binary. Set
8069 waiting_for_stop_reply to 0 temporarily. */
8070 rs->waiting_for_stop_reply = 0;
8071 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8072 rs->ctrlc_pending_p = 0;
8073 /* GDB handled the File-I/O request, and the target is running
8074 again. Keep waiting for events. */
8075 rs->waiting_for_stop_reply = 1;
8076 break;
8077 case 'N': case 'T': case 'S': case 'X': case 'W':
8078 {
8079 /* There is a stop reply to handle. */
8080 rs->waiting_for_stop_reply = 0;
8081
8082 stop_reply
8083 = (struct stop_reply *) remote_notif_parse (this,
8084 &notif_client_stop,
8085 rs->buf.data ());
8086
8087 event_ptid = process_stop_reply (stop_reply, status);
8088 break;
8089 }
8090 case 'O': /* Console output. */
8091 remote_console_output (buf + 1);
8092 break;
8093 case '\0':
8094 if (rs->last_sent_signal != GDB_SIGNAL_0)
8095 {
8096 /* Zero length reply means that we tried 'S' or 'C' and the
8097 remote system doesn't support it. */
8098 target_terminal::ours_for_output ();
8099 printf_filtered
8100 ("Can't send signals to this remote system. %s not sent.\n",
8101 gdb_signal_to_name (rs->last_sent_signal));
8102 rs->last_sent_signal = GDB_SIGNAL_0;
8103 target_terminal::inferior ();
8104
8105 strcpy (buf, rs->last_sent_step ? "s" : "c");
8106 putpkt (buf);
8107 break;
8108 }
8109 /* fallthrough */
8110 default:
8111 warning (_("Invalid remote reply: %s"), buf);
8112 break;
8113 }
8114
8115 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8116 return minus_one_ptid;
8117 else if (status->kind == TARGET_WAITKIND_IGNORE)
8118 {
8119 /* Nothing interesting happened. If we're doing a non-blocking
8120 poll, we're done. Otherwise, go back to waiting. */
8121 if (options & TARGET_WNOHANG)
8122 return minus_one_ptid;
8123 else
8124 goto again;
8125 }
8126 else if (status->kind != TARGET_WAITKIND_EXITED
8127 && status->kind != TARGET_WAITKIND_SIGNALLED)
8128 {
8129 if (event_ptid != null_ptid)
8130 record_currthread (rs, event_ptid);
8131 else
8132 event_ptid = first_remote_resumed_thread (this);
8133 }
8134 else
8135 {
8136 /* A process exit. Invalidate our notion of current thread. */
8137 record_currthread (rs, minus_one_ptid);
8138 /* It's possible that the packet did not include a pid. */
8139 if (event_ptid == null_ptid)
8140 event_ptid = first_remote_resumed_thread (this);
8141 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8142 if (event_ptid == null_ptid)
8143 event_ptid = magic_null_ptid;
8144 }
8145
8146 return event_ptid;
8147 }
8148
8149 /* Wait until the remote machine stops, then return, storing status in
8150 STATUS just as `wait' would. */
8151
8152 ptid_t
8153 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8154 target_wait_flags options)
8155 {
8156 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8157
8158 remote_state *rs = get_remote_state ();
8159
8160 /* Start by clearing the flag that asks for our wait method to be called,
8161 we'll mark it again at the end if needed. */
8162 if (target_is_async_p ())
8163 clear_async_event_handler (rs->remote_async_inferior_event_token);
8164
8165 ptid_t event_ptid;
8166
8167 if (target_is_non_stop_p ())
8168 event_ptid = wait_ns (ptid, status, options);
8169 else
8170 event_ptid = wait_as (ptid, status, options);
8171
8172 if (target_is_async_p ())
8173 {
8174 /* If there are events left in the queue, or unacknowledged
8175 notifications, then tell the event loop to call us again. */
8176 if (!rs->stop_reply_queue.empty ()
8177 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8178 mark_async_event_handler (rs->remote_async_inferior_event_token);
8179 }
8180
8181 return event_ptid;
8182 }
8183
8184 /* Fetch a single register using a 'p' packet. */
8185
8186 int
8187 remote_target::fetch_register_using_p (struct regcache *regcache,
8188 packet_reg *reg)
8189 {
8190 struct gdbarch *gdbarch = regcache->arch ();
8191 struct remote_state *rs = get_remote_state ();
8192 char *buf, *p;
8193 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8194 int i;
8195
8196 if (packet_support (PACKET_p) == PACKET_DISABLE)
8197 return 0;
8198
8199 if (reg->pnum == -1)
8200 return 0;
8201
8202 p = rs->buf.data ();
8203 *p++ = 'p';
8204 p += hexnumstr (p, reg->pnum);
8205 *p++ = '\0';
8206 putpkt (rs->buf);
8207 getpkt (&rs->buf, 0);
8208
8209 buf = rs->buf.data ();
8210
8211 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8212 {
8213 case PACKET_OK:
8214 break;
8215 case PACKET_UNKNOWN:
8216 return 0;
8217 case PACKET_ERROR:
8218 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8219 gdbarch_register_name (regcache->arch (),
8220 reg->regnum),
8221 buf);
8222 }
8223
8224 /* If this register is unfetchable, tell the regcache. */
8225 if (buf[0] == 'x')
8226 {
8227 regcache->raw_supply (reg->regnum, NULL);
8228 return 1;
8229 }
8230
8231 /* Otherwise, parse and supply the value. */
8232 p = buf;
8233 i = 0;
8234 while (p[0] != 0)
8235 {
8236 if (p[1] == 0)
8237 error (_("fetch_register_using_p: early buf termination"));
8238
8239 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8240 p += 2;
8241 }
8242 regcache->raw_supply (reg->regnum, regp);
8243 return 1;
8244 }
8245
8246 /* Fetch the registers included in the target's 'g' packet. */
8247
8248 int
8249 remote_target::send_g_packet ()
8250 {
8251 struct remote_state *rs = get_remote_state ();
8252 int buf_len;
8253
8254 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8255 putpkt (rs->buf);
8256 getpkt (&rs->buf, 0);
8257 if (packet_check_result (rs->buf) == PACKET_ERROR)
8258 error (_("Could not read registers; remote failure reply '%s'"),
8259 rs->buf.data ());
8260
8261 /* We can get out of synch in various cases. If the first character
8262 in the buffer is not a hex character, assume that has happened
8263 and try to fetch another packet to read. */
8264 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8265 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8266 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8267 && rs->buf[0] != 'x') /* New: unavailable register value. */
8268 {
8269 remote_debug_printf ("Bad register packet; fetching a new packet");
8270 getpkt (&rs->buf, 0);
8271 }
8272
8273 buf_len = strlen (rs->buf.data ());
8274
8275 /* Sanity check the received packet. */
8276 if (buf_len % 2 != 0)
8277 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8278
8279 return buf_len / 2;
8280 }
8281
8282 void
8283 remote_target::process_g_packet (struct regcache *regcache)
8284 {
8285 struct gdbarch *gdbarch = regcache->arch ();
8286 struct remote_state *rs = get_remote_state ();
8287 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8288 int i, buf_len;
8289 char *p;
8290 char *regs;
8291
8292 buf_len = strlen (rs->buf.data ());
8293
8294 /* Further sanity checks, with knowledge of the architecture. */
8295 if (buf_len > 2 * rsa->sizeof_g_packet)
8296 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8297 "bytes): %s"),
8298 rsa->sizeof_g_packet, buf_len / 2,
8299 rs->buf.data ());
8300
8301 /* Save the size of the packet sent to us by the target. It is used
8302 as a heuristic when determining the max size of packets that the
8303 target can safely receive. */
8304 if (rsa->actual_register_packet_size == 0)
8305 rsa->actual_register_packet_size = buf_len;
8306
8307 /* If this is smaller than we guessed the 'g' packet would be,
8308 update our records. A 'g' reply that doesn't include a register's
8309 value implies either that the register is not available, or that
8310 the 'p' packet must be used. */
8311 if (buf_len < 2 * rsa->sizeof_g_packet)
8312 {
8313 long sizeof_g_packet = buf_len / 2;
8314
8315 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8316 {
8317 long offset = rsa->regs[i].offset;
8318 long reg_size = register_size (gdbarch, i);
8319
8320 if (rsa->regs[i].pnum == -1)
8321 continue;
8322
8323 if (offset >= sizeof_g_packet)
8324 rsa->regs[i].in_g_packet = 0;
8325 else if (offset + reg_size > sizeof_g_packet)
8326 error (_("Truncated register %d in remote 'g' packet"), i);
8327 else
8328 rsa->regs[i].in_g_packet = 1;
8329 }
8330
8331 /* Looks valid enough, we can assume this is the correct length
8332 for a 'g' packet. It's important not to adjust
8333 rsa->sizeof_g_packet if we have truncated registers otherwise
8334 this "if" won't be run the next time the method is called
8335 with a packet of the same size and one of the internal errors
8336 below will trigger instead. */
8337 rsa->sizeof_g_packet = sizeof_g_packet;
8338 }
8339
8340 regs = (char *) alloca (rsa->sizeof_g_packet);
8341
8342 /* Unimplemented registers read as all bits zero. */
8343 memset (regs, 0, rsa->sizeof_g_packet);
8344
8345 /* Reply describes registers byte by byte, each byte encoded as two
8346 hex characters. Suck them all up, then supply them to the
8347 register cacheing/storage mechanism. */
8348
8349 p = rs->buf.data ();
8350 for (i = 0; i < rsa->sizeof_g_packet; i++)
8351 {
8352 if (p[0] == 0 || p[1] == 0)
8353 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8354 internal_error (__FILE__, __LINE__,
8355 _("unexpected end of 'g' packet reply"));
8356
8357 if (p[0] == 'x' && p[1] == 'x')
8358 regs[i] = 0; /* 'x' */
8359 else
8360 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8361 p += 2;
8362 }
8363
8364 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8365 {
8366 struct packet_reg *r = &rsa->regs[i];
8367 long reg_size = register_size (gdbarch, i);
8368
8369 if (r->in_g_packet)
8370 {
8371 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8372 /* This shouldn't happen - we adjusted in_g_packet above. */
8373 internal_error (__FILE__, __LINE__,
8374 _("unexpected end of 'g' packet reply"));
8375 else if (rs->buf[r->offset * 2] == 'x')
8376 {
8377 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8378 /* The register isn't available, mark it as such (at
8379 the same time setting the value to zero). */
8380 regcache->raw_supply (r->regnum, NULL);
8381 }
8382 else
8383 regcache->raw_supply (r->regnum, regs + r->offset);
8384 }
8385 }
8386 }
8387
8388 void
8389 remote_target::fetch_registers_using_g (struct regcache *regcache)
8390 {
8391 send_g_packet ();
8392 process_g_packet (regcache);
8393 }
8394
8395 /* Make the remote selected traceframe match GDB's selected
8396 traceframe. */
8397
8398 void
8399 remote_target::set_remote_traceframe ()
8400 {
8401 int newnum;
8402 struct remote_state *rs = get_remote_state ();
8403
8404 if (rs->remote_traceframe_number == get_traceframe_number ())
8405 return;
8406
8407 /* Avoid recursion, remote_trace_find calls us again. */
8408 rs->remote_traceframe_number = get_traceframe_number ();
8409
8410 newnum = target_trace_find (tfind_number,
8411 get_traceframe_number (), 0, 0, NULL);
8412
8413 /* Should not happen. If it does, all bets are off. */
8414 if (newnum != get_traceframe_number ())
8415 warning (_("could not set remote traceframe"));
8416 }
8417
8418 void
8419 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8420 {
8421 struct gdbarch *gdbarch = regcache->arch ();
8422 struct remote_state *rs = get_remote_state ();
8423 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8424 int i;
8425
8426 set_remote_traceframe ();
8427 set_general_thread (regcache->ptid ());
8428
8429 if (regnum >= 0)
8430 {
8431 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8432
8433 gdb_assert (reg != NULL);
8434
8435 /* If this register might be in the 'g' packet, try that first -
8436 we are likely to read more than one register. If this is the
8437 first 'g' packet, we might be overly optimistic about its
8438 contents, so fall back to 'p'. */
8439 if (reg->in_g_packet)
8440 {
8441 fetch_registers_using_g (regcache);
8442 if (reg->in_g_packet)
8443 return;
8444 }
8445
8446 if (fetch_register_using_p (regcache, reg))
8447 return;
8448
8449 /* This register is not available. */
8450 regcache->raw_supply (reg->regnum, NULL);
8451
8452 return;
8453 }
8454
8455 fetch_registers_using_g (regcache);
8456
8457 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8458 if (!rsa->regs[i].in_g_packet)
8459 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8460 {
8461 /* This register is not available. */
8462 regcache->raw_supply (i, NULL);
8463 }
8464 }
8465
8466 /* Prepare to store registers. Since we may send them all (using a
8467 'G' request), we have to read out the ones we don't want to change
8468 first. */
8469
8470 void
8471 remote_target::prepare_to_store (struct regcache *regcache)
8472 {
8473 struct remote_state *rs = get_remote_state ();
8474 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8475 int i;
8476
8477 /* Make sure the entire registers array is valid. */
8478 switch (packet_support (PACKET_P))
8479 {
8480 case PACKET_DISABLE:
8481 case PACKET_SUPPORT_UNKNOWN:
8482 /* Make sure all the necessary registers are cached. */
8483 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8484 if (rsa->regs[i].in_g_packet)
8485 regcache->raw_update (rsa->regs[i].regnum);
8486 break;
8487 case PACKET_ENABLE:
8488 break;
8489 }
8490 }
8491
8492 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8493 packet was not recognized. */
8494
8495 int
8496 remote_target::store_register_using_P (const struct regcache *regcache,
8497 packet_reg *reg)
8498 {
8499 struct gdbarch *gdbarch = regcache->arch ();
8500 struct remote_state *rs = get_remote_state ();
8501 /* Try storing a single register. */
8502 char *buf = rs->buf.data ();
8503 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8504 char *p;
8505
8506 if (packet_support (PACKET_P) == PACKET_DISABLE)
8507 return 0;
8508
8509 if (reg->pnum == -1)
8510 return 0;
8511
8512 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8513 p = buf + strlen (buf);
8514 regcache->raw_collect (reg->regnum, regp);
8515 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8516 putpkt (rs->buf);
8517 getpkt (&rs->buf, 0);
8518
8519 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8520 {
8521 case PACKET_OK:
8522 return 1;
8523 case PACKET_ERROR:
8524 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8525 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8526 case PACKET_UNKNOWN:
8527 return 0;
8528 default:
8529 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8530 }
8531 }
8532
8533 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8534 contents of the register cache buffer. FIXME: ignores errors. */
8535
8536 void
8537 remote_target::store_registers_using_G (const struct regcache *regcache)
8538 {
8539 struct remote_state *rs = get_remote_state ();
8540 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8541 gdb_byte *regs;
8542 char *p;
8543
8544 /* Extract all the registers in the regcache copying them into a
8545 local buffer. */
8546 {
8547 int i;
8548
8549 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8550 memset (regs, 0, rsa->sizeof_g_packet);
8551 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8552 {
8553 struct packet_reg *r = &rsa->regs[i];
8554
8555 if (r->in_g_packet)
8556 regcache->raw_collect (r->regnum, regs + r->offset);
8557 }
8558 }
8559
8560 /* Command describes registers byte by byte,
8561 each byte encoded as two hex characters. */
8562 p = rs->buf.data ();
8563 *p++ = 'G';
8564 bin2hex (regs, p, rsa->sizeof_g_packet);
8565 putpkt (rs->buf);
8566 getpkt (&rs->buf, 0);
8567 if (packet_check_result (rs->buf) == PACKET_ERROR)
8568 error (_("Could not write registers; remote failure reply '%s'"),
8569 rs->buf.data ());
8570 }
8571
8572 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8573 of the register cache buffer. FIXME: ignores errors. */
8574
8575 void
8576 remote_target::store_registers (struct regcache *regcache, int regnum)
8577 {
8578 struct gdbarch *gdbarch = regcache->arch ();
8579 struct remote_state *rs = get_remote_state ();
8580 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8581 int i;
8582
8583 set_remote_traceframe ();
8584 set_general_thread (regcache->ptid ());
8585
8586 if (regnum >= 0)
8587 {
8588 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8589
8590 gdb_assert (reg != NULL);
8591
8592 /* Always prefer to store registers using the 'P' packet if
8593 possible; we often change only a small number of registers.
8594 Sometimes we change a larger number; we'd need help from a
8595 higher layer to know to use 'G'. */
8596 if (store_register_using_P (regcache, reg))
8597 return;
8598
8599 /* For now, don't complain if we have no way to write the
8600 register. GDB loses track of unavailable registers too
8601 easily. Some day, this may be an error. We don't have
8602 any way to read the register, either... */
8603 if (!reg->in_g_packet)
8604 return;
8605
8606 store_registers_using_G (regcache);
8607 return;
8608 }
8609
8610 store_registers_using_G (regcache);
8611
8612 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8613 if (!rsa->regs[i].in_g_packet)
8614 if (!store_register_using_P (regcache, &rsa->regs[i]))
8615 /* See above for why we do not issue an error here. */
8616 continue;
8617 }
8618 \f
8619
8620 /* Return the number of hex digits in num. */
8621
8622 static int
8623 hexnumlen (ULONGEST num)
8624 {
8625 int i;
8626
8627 for (i = 0; num != 0; i++)
8628 num >>= 4;
8629
8630 return std::max (i, 1);
8631 }
8632
8633 /* Set BUF to the minimum number of hex digits representing NUM. */
8634
8635 static int
8636 hexnumstr (char *buf, ULONGEST num)
8637 {
8638 int len = hexnumlen (num);
8639
8640 return hexnumnstr (buf, num, len);
8641 }
8642
8643
8644 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8645
8646 static int
8647 hexnumnstr (char *buf, ULONGEST num, int width)
8648 {
8649 int i;
8650
8651 buf[width] = '\0';
8652
8653 for (i = width - 1; i >= 0; i--)
8654 {
8655 buf[i] = "0123456789abcdef"[(num & 0xf)];
8656 num >>= 4;
8657 }
8658
8659 return width;
8660 }
8661
8662 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8663
8664 static CORE_ADDR
8665 remote_address_masked (CORE_ADDR addr)
8666 {
8667 unsigned int address_size = remote_address_size;
8668
8669 /* If "remoteaddresssize" was not set, default to target address size. */
8670 if (!address_size)
8671 address_size = gdbarch_addr_bit (target_gdbarch ());
8672
8673 if (address_size > 0
8674 && address_size < (sizeof (ULONGEST) * 8))
8675 {
8676 /* Only create a mask when that mask can safely be constructed
8677 in a ULONGEST variable. */
8678 ULONGEST mask = 1;
8679
8680 mask = (mask << address_size) - 1;
8681 addr &= mask;
8682 }
8683 return addr;
8684 }
8685
8686 /* Determine whether the remote target supports binary downloading.
8687 This is accomplished by sending a no-op memory write of zero length
8688 to the target at the specified address. It does not suffice to send
8689 the whole packet, since many stubs strip the eighth bit and
8690 subsequently compute a wrong checksum, which causes real havoc with
8691 remote_write_bytes.
8692
8693 NOTE: This can still lose if the serial line is not eight-bit
8694 clean. In cases like this, the user should clear "remote
8695 X-packet". */
8696
8697 void
8698 remote_target::check_binary_download (CORE_ADDR addr)
8699 {
8700 struct remote_state *rs = get_remote_state ();
8701
8702 switch (packet_support (PACKET_X))
8703 {
8704 case PACKET_DISABLE:
8705 break;
8706 case PACKET_ENABLE:
8707 break;
8708 case PACKET_SUPPORT_UNKNOWN:
8709 {
8710 char *p;
8711
8712 p = rs->buf.data ();
8713 *p++ = 'X';
8714 p += hexnumstr (p, (ULONGEST) addr);
8715 *p++ = ',';
8716 p += hexnumstr (p, (ULONGEST) 0);
8717 *p++ = ':';
8718 *p = '\0';
8719
8720 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8721 getpkt (&rs->buf, 0);
8722
8723 if (rs->buf[0] == '\0')
8724 {
8725 remote_debug_printf ("binary downloading NOT supported by target");
8726 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8727 }
8728 else
8729 {
8730 remote_debug_printf ("binary downloading supported by target");
8731 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8732 }
8733 break;
8734 }
8735 }
8736 }
8737
8738 /* Helper function to resize the payload in order to try to get a good
8739 alignment. We try to write an amount of data such that the next write will
8740 start on an address aligned on REMOTE_ALIGN_WRITES. */
8741
8742 static int
8743 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8744 {
8745 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8746 }
8747
8748 /* Write memory data directly to the remote machine.
8749 This does not inform the data cache; the data cache uses this.
8750 HEADER is the starting part of the packet.
8751 MEMADDR is the address in the remote memory space.
8752 MYADDR is the address of the buffer in our space.
8753 LEN_UNITS is the number of addressable units to write.
8754 UNIT_SIZE is the length in bytes of an addressable unit.
8755 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8756 should send data as binary ('X'), or hex-encoded ('M').
8757
8758 The function creates packet of the form
8759 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8760
8761 where encoding of <DATA> is terminated by PACKET_FORMAT.
8762
8763 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8764 are omitted.
8765
8766 Return the transferred status, error or OK (an
8767 'enum target_xfer_status' value). Save the number of addressable units
8768 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8769
8770 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8771 exchange between gdb and the stub could look like (?? in place of the
8772 checksum):
8773
8774 -> $m1000,4#??
8775 <- aaaabbbbccccdddd
8776
8777 -> $M1000,3:eeeeffffeeee#??
8778 <- OK
8779
8780 -> $m1000,4#??
8781 <- eeeeffffeeeedddd */
8782
8783 target_xfer_status
8784 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8785 const gdb_byte *myaddr,
8786 ULONGEST len_units,
8787 int unit_size,
8788 ULONGEST *xfered_len_units,
8789 char packet_format, int use_length)
8790 {
8791 struct remote_state *rs = get_remote_state ();
8792 char *p;
8793 char *plen = NULL;
8794 int plenlen = 0;
8795 int todo_units;
8796 int units_written;
8797 int payload_capacity_bytes;
8798 int payload_length_bytes;
8799
8800 if (packet_format != 'X' && packet_format != 'M')
8801 internal_error (__FILE__, __LINE__,
8802 _("remote_write_bytes_aux: bad packet format"));
8803
8804 if (len_units == 0)
8805 return TARGET_XFER_EOF;
8806
8807 payload_capacity_bytes = get_memory_write_packet_size ();
8808
8809 /* The packet buffer will be large enough for the payload;
8810 get_memory_packet_size ensures this. */
8811 rs->buf[0] = '\0';
8812
8813 /* Compute the size of the actual payload by subtracting out the
8814 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8815
8816 payload_capacity_bytes -= strlen ("$,:#NN");
8817 if (!use_length)
8818 /* The comma won't be used. */
8819 payload_capacity_bytes += 1;
8820 payload_capacity_bytes -= strlen (header);
8821 payload_capacity_bytes -= hexnumlen (memaddr);
8822
8823 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8824
8825 strcat (rs->buf.data (), header);
8826 p = rs->buf.data () + strlen (header);
8827
8828 /* Compute a best guess of the number of bytes actually transfered. */
8829 if (packet_format == 'X')
8830 {
8831 /* Best guess at number of bytes that will fit. */
8832 todo_units = std::min (len_units,
8833 (ULONGEST) payload_capacity_bytes / unit_size);
8834 if (use_length)
8835 payload_capacity_bytes -= hexnumlen (todo_units);
8836 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8837 }
8838 else
8839 {
8840 /* Number of bytes that will fit. */
8841 todo_units
8842 = std::min (len_units,
8843 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8844 if (use_length)
8845 payload_capacity_bytes -= hexnumlen (todo_units);
8846 todo_units = std::min (todo_units,
8847 (payload_capacity_bytes / unit_size) / 2);
8848 }
8849
8850 if (todo_units <= 0)
8851 internal_error (__FILE__, __LINE__,
8852 _("minimum packet size too small to write data"));
8853
8854 /* If we already need another packet, then try to align the end
8855 of this packet to a useful boundary. */
8856 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8857 todo_units = align_for_efficient_write (todo_units, memaddr);
8858
8859 /* Append "<memaddr>". */
8860 memaddr = remote_address_masked (memaddr);
8861 p += hexnumstr (p, (ULONGEST) memaddr);
8862
8863 if (use_length)
8864 {
8865 /* Append ",". */
8866 *p++ = ',';
8867
8868 /* Append the length and retain its location and size. It may need to be
8869 adjusted once the packet body has been created. */
8870 plen = p;
8871 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8872 p += plenlen;
8873 }
8874
8875 /* Append ":". */
8876 *p++ = ':';
8877 *p = '\0';
8878
8879 /* Append the packet body. */
8880 if (packet_format == 'X')
8881 {
8882 /* Binary mode. Send target system values byte by byte, in
8883 increasing byte addresses. Only escape certain critical
8884 characters. */
8885 payload_length_bytes =
8886 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8887 &units_written, payload_capacity_bytes);
8888
8889 /* If not all TODO units fit, then we'll need another packet. Make
8890 a second try to keep the end of the packet aligned. Don't do
8891 this if the packet is tiny. */
8892 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8893 {
8894 int new_todo_units;
8895
8896 new_todo_units = align_for_efficient_write (units_written, memaddr);
8897
8898 if (new_todo_units != units_written)
8899 payload_length_bytes =
8900 remote_escape_output (myaddr, new_todo_units, unit_size,
8901 (gdb_byte *) p, &units_written,
8902 payload_capacity_bytes);
8903 }
8904
8905 p += payload_length_bytes;
8906 if (use_length && units_written < todo_units)
8907 {
8908 /* Escape chars have filled up the buffer prematurely,
8909 and we have actually sent fewer units than planned.
8910 Fix-up the length field of the packet. Use the same
8911 number of characters as before. */
8912 plen += hexnumnstr (plen, (ULONGEST) units_written,
8913 plenlen);
8914 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8915 }
8916 }
8917 else
8918 {
8919 /* Normal mode: Send target system values byte by byte, in
8920 increasing byte addresses. Each byte is encoded as a two hex
8921 value. */
8922 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8923 units_written = todo_units;
8924 }
8925
8926 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8927 getpkt (&rs->buf, 0);
8928
8929 if (rs->buf[0] == 'E')
8930 return TARGET_XFER_E_IO;
8931
8932 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8933 send fewer units than we'd planned. */
8934 *xfered_len_units = (ULONGEST) units_written;
8935 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8936 }
8937
8938 /* Write memory data directly to the remote machine.
8939 This does not inform the data cache; the data cache uses this.
8940 MEMADDR is the address in the remote memory space.
8941 MYADDR is the address of the buffer in our space.
8942 LEN is the number of bytes.
8943
8944 Return the transferred status, error or OK (an
8945 'enum target_xfer_status' value). Save the number of bytes
8946 transferred in *XFERED_LEN. Only transfer a single packet. */
8947
8948 target_xfer_status
8949 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8950 ULONGEST len, int unit_size,
8951 ULONGEST *xfered_len)
8952 {
8953 const char *packet_format = NULL;
8954
8955 /* Check whether the target supports binary download. */
8956 check_binary_download (memaddr);
8957
8958 switch (packet_support (PACKET_X))
8959 {
8960 case PACKET_ENABLE:
8961 packet_format = "X";
8962 break;
8963 case PACKET_DISABLE:
8964 packet_format = "M";
8965 break;
8966 case PACKET_SUPPORT_UNKNOWN:
8967 internal_error (__FILE__, __LINE__,
8968 _("remote_write_bytes: bad internal state"));
8969 default:
8970 internal_error (__FILE__, __LINE__, _("bad switch"));
8971 }
8972
8973 return remote_write_bytes_aux (packet_format,
8974 memaddr, myaddr, len, unit_size, xfered_len,
8975 packet_format[0], 1);
8976 }
8977
8978 /* Read memory data directly from the remote machine.
8979 This does not use the data cache; the data cache uses this.
8980 MEMADDR is the address in the remote memory space.
8981 MYADDR is the address of the buffer in our space.
8982 LEN_UNITS is the number of addressable memory units to read..
8983 UNIT_SIZE is the length in bytes of an addressable unit.
8984
8985 Return the transferred status, error or OK (an
8986 'enum target_xfer_status' value). Save the number of bytes
8987 transferred in *XFERED_LEN_UNITS.
8988
8989 See the comment of remote_write_bytes_aux for an example of
8990 memory read/write exchange between gdb and the stub. */
8991
8992 target_xfer_status
8993 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8994 ULONGEST len_units,
8995 int unit_size, ULONGEST *xfered_len_units)
8996 {
8997 struct remote_state *rs = get_remote_state ();
8998 int buf_size_bytes; /* Max size of packet output buffer. */
8999 char *p;
9000 int todo_units;
9001 int decoded_bytes;
9002
9003 buf_size_bytes = get_memory_read_packet_size ();
9004 /* The packet buffer will be large enough for the payload;
9005 get_memory_packet_size ensures this. */
9006
9007 /* Number of units that will fit. */
9008 todo_units = std::min (len_units,
9009 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9010
9011 /* Construct "m"<memaddr>","<len>". */
9012 memaddr = remote_address_masked (memaddr);
9013 p = rs->buf.data ();
9014 *p++ = 'm';
9015 p += hexnumstr (p, (ULONGEST) memaddr);
9016 *p++ = ',';
9017 p += hexnumstr (p, (ULONGEST) todo_units);
9018 *p = '\0';
9019 putpkt (rs->buf);
9020 getpkt (&rs->buf, 0);
9021 if (rs->buf[0] == 'E'
9022 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9023 && rs->buf[3] == '\0')
9024 return TARGET_XFER_E_IO;
9025 /* Reply describes memory byte by byte, each byte encoded as two hex
9026 characters. */
9027 p = rs->buf.data ();
9028 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9029 /* Return what we have. Let higher layers handle partial reads. */
9030 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9031 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9032 }
9033
9034 /* Using the set of read-only target sections of remote, read live
9035 read-only memory.
9036
9037 For interface/parameters/return description see target.h,
9038 to_xfer_partial. */
9039
9040 target_xfer_status
9041 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9042 ULONGEST memaddr,
9043 ULONGEST len,
9044 int unit_size,
9045 ULONGEST *xfered_len)
9046 {
9047 const struct target_section *secp;
9048
9049 secp = target_section_by_addr (this, memaddr);
9050 if (secp != NULL
9051 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9052 {
9053 ULONGEST memend = memaddr + len;
9054
9055 const target_section_table *table = target_get_section_table (this);
9056 for (const target_section &p : *table)
9057 {
9058 if (memaddr >= p.addr)
9059 {
9060 if (memend <= p.endaddr)
9061 {
9062 /* Entire transfer is within this section. */
9063 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9064 xfered_len);
9065 }
9066 else if (memaddr >= p.endaddr)
9067 {
9068 /* This section ends before the transfer starts. */
9069 continue;
9070 }
9071 else
9072 {
9073 /* This section overlaps the transfer. Just do half. */
9074 len = p.endaddr - memaddr;
9075 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9076 xfered_len);
9077 }
9078 }
9079 }
9080 }
9081
9082 return TARGET_XFER_EOF;
9083 }
9084
9085 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9086 first if the requested memory is unavailable in traceframe.
9087 Otherwise, fall back to remote_read_bytes_1. */
9088
9089 target_xfer_status
9090 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9091 gdb_byte *myaddr, ULONGEST len, int unit_size,
9092 ULONGEST *xfered_len)
9093 {
9094 if (len == 0)
9095 return TARGET_XFER_EOF;
9096
9097 if (get_traceframe_number () != -1)
9098 {
9099 std::vector<mem_range> available;
9100
9101 /* If we fail to get the set of available memory, then the
9102 target does not support querying traceframe info, and so we
9103 attempt reading from the traceframe anyway (assuming the
9104 target implements the old QTro packet then). */
9105 if (traceframe_available_memory (&available, memaddr, len))
9106 {
9107 if (available.empty () || available[0].start != memaddr)
9108 {
9109 enum target_xfer_status res;
9110
9111 /* Don't read into the traceframe's available
9112 memory. */
9113 if (!available.empty ())
9114 {
9115 LONGEST oldlen = len;
9116
9117 len = available[0].start - memaddr;
9118 gdb_assert (len <= oldlen);
9119 }
9120
9121 /* This goes through the topmost target again. */
9122 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9123 len, unit_size, xfered_len);
9124 if (res == TARGET_XFER_OK)
9125 return TARGET_XFER_OK;
9126 else
9127 {
9128 /* No use trying further, we know some memory starting
9129 at MEMADDR isn't available. */
9130 *xfered_len = len;
9131 return (*xfered_len != 0) ?
9132 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9133 }
9134 }
9135
9136 /* Don't try to read more than how much is available, in
9137 case the target implements the deprecated QTro packet to
9138 cater for older GDBs (the target's knowledge of read-only
9139 sections may be outdated by now). */
9140 len = available[0].length;
9141 }
9142 }
9143
9144 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9145 }
9146
9147 \f
9148
9149 /* Sends a packet with content determined by the printf format string
9150 FORMAT and the remaining arguments, then gets the reply. Returns
9151 whether the packet was a success, a failure, or unknown. */
9152
9153 packet_result
9154 remote_target::remote_send_printf (const char *format, ...)
9155 {
9156 struct remote_state *rs = get_remote_state ();
9157 int max_size = get_remote_packet_size ();
9158 va_list ap;
9159
9160 va_start (ap, format);
9161
9162 rs->buf[0] = '\0';
9163 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9164
9165 va_end (ap);
9166
9167 if (size >= max_size)
9168 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9169
9170 if (putpkt (rs->buf) < 0)
9171 error (_("Communication problem with target."));
9172
9173 rs->buf[0] = '\0';
9174 getpkt (&rs->buf, 0);
9175
9176 return packet_check_result (rs->buf);
9177 }
9178
9179 /* Flash writing can take quite some time. We'll set
9180 effectively infinite timeout for flash operations.
9181 In future, we'll need to decide on a better approach. */
9182 static const int remote_flash_timeout = 1000;
9183
9184 void
9185 remote_target::flash_erase (ULONGEST address, LONGEST length)
9186 {
9187 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9188 enum packet_result ret;
9189 scoped_restore restore_timeout
9190 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9191
9192 ret = remote_send_printf ("vFlashErase:%s,%s",
9193 phex (address, addr_size),
9194 phex (length, 4));
9195 switch (ret)
9196 {
9197 case PACKET_UNKNOWN:
9198 error (_("Remote target does not support flash erase"));
9199 case PACKET_ERROR:
9200 error (_("Error erasing flash with vFlashErase packet"));
9201 default:
9202 break;
9203 }
9204 }
9205
9206 target_xfer_status
9207 remote_target::remote_flash_write (ULONGEST address,
9208 ULONGEST length, ULONGEST *xfered_len,
9209 const gdb_byte *data)
9210 {
9211 scoped_restore restore_timeout
9212 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9213 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9214 xfered_len,'X', 0);
9215 }
9216
9217 void
9218 remote_target::flash_done ()
9219 {
9220 int ret;
9221
9222 scoped_restore restore_timeout
9223 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9224
9225 ret = remote_send_printf ("vFlashDone");
9226
9227 switch (ret)
9228 {
9229 case PACKET_UNKNOWN:
9230 error (_("Remote target does not support vFlashDone"));
9231 case PACKET_ERROR:
9232 error (_("Error finishing flash operation"));
9233 default:
9234 break;
9235 }
9236 }
9237
9238 void
9239 remote_target::files_info ()
9240 {
9241 puts_filtered ("Debugging a target over a serial line.\n");
9242 }
9243 \f
9244 /* Stuff for dealing with the packets which are part of this protocol.
9245 See comment at top of file for details. */
9246
9247 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9248 error to higher layers. Called when a serial error is detected.
9249 The exception message is STRING, followed by a colon and a blank,
9250 the system error message for errno at function entry and final dot
9251 for output compatibility with throw_perror_with_name. */
9252
9253 static void
9254 unpush_and_perror (remote_target *target, const char *string)
9255 {
9256 int saved_errno = errno;
9257
9258 remote_unpush_target (target);
9259 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9260 safe_strerror (saved_errno));
9261 }
9262
9263 /* Read a single character from the remote end. The current quit
9264 handler is overridden to avoid quitting in the middle of packet
9265 sequence, as that would break communication with the remote server.
9266 See remote_serial_quit_handler for more detail. */
9267
9268 int
9269 remote_target::readchar (int timeout)
9270 {
9271 int ch;
9272 struct remote_state *rs = get_remote_state ();
9273
9274 {
9275 scoped_restore restore_quit_target
9276 = make_scoped_restore (&curr_quit_handler_target, this);
9277 scoped_restore restore_quit
9278 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9279
9280 rs->got_ctrlc_during_io = 0;
9281
9282 ch = serial_readchar (rs->remote_desc, timeout);
9283
9284 if (rs->got_ctrlc_during_io)
9285 set_quit_flag ();
9286 }
9287
9288 if (ch >= 0)
9289 return ch;
9290
9291 switch ((enum serial_rc) ch)
9292 {
9293 case SERIAL_EOF:
9294 remote_unpush_target (this);
9295 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9296 /* no return */
9297 case SERIAL_ERROR:
9298 unpush_and_perror (this, _("Remote communication error. "
9299 "Target disconnected."));
9300 /* no return */
9301 case SERIAL_TIMEOUT:
9302 break;
9303 }
9304 return ch;
9305 }
9306
9307 /* Wrapper for serial_write that closes the target and throws if
9308 writing fails. The current quit handler is overridden to avoid
9309 quitting in the middle of packet sequence, as that would break
9310 communication with the remote server. See
9311 remote_serial_quit_handler for more detail. */
9312
9313 void
9314 remote_target::remote_serial_write (const char *str, int len)
9315 {
9316 struct remote_state *rs = get_remote_state ();
9317
9318 scoped_restore restore_quit_target
9319 = make_scoped_restore (&curr_quit_handler_target, this);
9320 scoped_restore restore_quit
9321 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9322
9323 rs->got_ctrlc_during_io = 0;
9324
9325 if (serial_write (rs->remote_desc, str, len))
9326 {
9327 unpush_and_perror (this, _("Remote communication error. "
9328 "Target disconnected."));
9329 }
9330
9331 if (rs->got_ctrlc_during_io)
9332 set_quit_flag ();
9333 }
9334
9335 /* Return a string representing an escaped version of BUF, of len N.
9336 E.g. \n is converted to \\n, \t to \\t, etc. */
9337
9338 static std::string
9339 escape_buffer (const char *buf, int n)
9340 {
9341 string_file stb;
9342
9343 stb.putstrn (buf, n, '\\');
9344 return std::move (stb.string ());
9345 }
9346
9347 /* Display a null-terminated packet on stdout, for debugging, using C
9348 string notation. */
9349
9350 static void
9351 print_packet (const char *buf)
9352 {
9353 puts_filtered ("\"");
9354 fputstr_filtered (buf, '"', gdb_stdout);
9355 puts_filtered ("\"");
9356 }
9357
9358 int
9359 remote_target::putpkt (const char *buf)
9360 {
9361 return putpkt_binary (buf, strlen (buf));
9362 }
9363
9364 /* Wrapper around remote_target::putpkt to avoid exporting
9365 remote_target. */
9366
9367 int
9368 putpkt (remote_target *remote, const char *buf)
9369 {
9370 return remote->putpkt (buf);
9371 }
9372
9373 /* Send a packet to the remote machine, with error checking. The data
9374 of the packet is in BUF. The string in BUF can be at most
9375 get_remote_packet_size () - 5 to account for the $, # and checksum,
9376 and for a possible /0 if we are debugging (remote_debug) and want
9377 to print the sent packet as a string. */
9378
9379 int
9380 remote_target::putpkt_binary (const char *buf, int cnt)
9381 {
9382 struct remote_state *rs = get_remote_state ();
9383 int i;
9384 unsigned char csum = 0;
9385 gdb::def_vector<char> data (cnt + 6);
9386 char *buf2 = data.data ();
9387
9388 int ch;
9389 int tcount = 0;
9390 char *p;
9391
9392 /* Catch cases like trying to read memory or listing threads while
9393 we're waiting for a stop reply. The remote server wouldn't be
9394 ready to handle this request, so we'd hang and timeout. We don't
9395 have to worry about this in synchronous mode, because in that
9396 case it's not possible to issue a command while the target is
9397 running. This is not a problem in non-stop mode, because in that
9398 case, the stub is always ready to process serial input. */
9399 if (!target_is_non_stop_p ()
9400 && target_is_async_p ()
9401 && rs->waiting_for_stop_reply)
9402 {
9403 error (_("Cannot execute this command while the target is running.\n"
9404 "Use the \"interrupt\" command to stop the target\n"
9405 "and then try again."));
9406 }
9407
9408 /* We're sending out a new packet. Make sure we don't look at a
9409 stale cached response. */
9410 rs->cached_wait_status = 0;
9411
9412 /* Copy the packet into buffer BUF2, encapsulating it
9413 and giving it a checksum. */
9414
9415 p = buf2;
9416 *p++ = '$';
9417
9418 for (i = 0; i < cnt; i++)
9419 {
9420 csum += buf[i];
9421 *p++ = buf[i];
9422 }
9423 *p++ = '#';
9424 *p++ = tohex ((csum >> 4) & 0xf);
9425 *p++ = tohex (csum & 0xf);
9426
9427 /* Send it over and over until we get a positive ack. */
9428
9429 while (1)
9430 {
9431 if (remote_debug)
9432 {
9433 *p = '\0';
9434
9435 int len = (int) (p - buf2);
9436 int max_chars;
9437
9438 if (remote_packet_max_chars < 0)
9439 max_chars = len;
9440 else
9441 max_chars = remote_packet_max_chars;
9442
9443 std::string str
9444 = escape_buffer (buf2, std::min (len, max_chars));
9445
9446 if (len > max_chars)
9447 remote_debug_printf_nofunc
9448 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9449 len - max_chars);
9450 else
9451 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9452 }
9453 remote_serial_write (buf2, p - buf2);
9454
9455 /* If this is a no acks version of the remote protocol, send the
9456 packet and move on. */
9457 if (rs->noack_mode)
9458 break;
9459
9460 /* Read until either a timeout occurs (-2) or '+' is read.
9461 Handle any notification that arrives in the mean time. */
9462 while (1)
9463 {
9464 ch = readchar (remote_timeout);
9465
9466 switch (ch)
9467 {
9468 case '+':
9469 remote_debug_printf_nofunc ("Received Ack");
9470 return 1;
9471 case '-':
9472 remote_debug_printf_nofunc ("Received Nak");
9473 /* FALLTHROUGH */
9474 case SERIAL_TIMEOUT:
9475 tcount++;
9476 if (tcount > 3)
9477 return 0;
9478 break; /* Retransmit buffer. */
9479 case '$':
9480 {
9481 remote_debug_printf ("Packet instead of Ack, ignoring it");
9482 /* It's probably an old response sent because an ACK
9483 was lost. Gobble up the packet and ack it so it
9484 doesn't get retransmitted when we resend this
9485 packet. */
9486 skip_frame ();
9487 remote_serial_write ("+", 1);
9488 continue; /* Now, go look for +. */
9489 }
9490
9491 case '%':
9492 {
9493 int val;
9494
9495 /* If we got a notification, handle it, and go back to looking
9496 for an ack. */
9497 /* We've found the start of a notification. Now
9498 collect the data. */
9499 val = read_frame (&rs->buf);
9500 if (val >= 0)
9501 {
9502 remote_debug_printf_nofunc
9503 (" Notification received: %s",
9504 escape_buffer (rs->buf.data (), val).c_str ());
9505
9506 handle_notification (rs->notif_state, rs->buf.data ());
9507 /* We're in sync now, rewait for the ack. */
9508 tcount = 0;
9509 }
9510 else
9511 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9512 rs->buf.data ());
9513 continue;
9514 }
9515 /* fall-through */
9516 default:
9517 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9518 rs->buf.data ());
9519 continue;
9520 }
9521 break; /* Here to retransmit. */
9522 }
9523
9524 #if 0
9525 /* This is wrong. If doing a long backtrace, the user should be
9526 able to get out next time we call QUIT, without anything as
9527 violent as interrupt_query. If we want to provide a way out of
9528 here without getting to the next QUIT, it should be based on
9529 hitting ^C twice as in remote_wait. */
9530 if (quit_flag)
9531 {
9532 quit_flag = 0;
9533 interrupt_query ();
9534 }
9535 #endif
9536 }
9537
9538 return 0;
9539 }
9540
9541 /* Come here after finding the start of a frame when we expected an
9542 ack. Do our best to discard the rest of this packet. */
9543
9544 void
9545 remote_target::skip_frame ()
9546 {
9547 int c;
9548
9549 while (1)
9550 {
9551 c = readchar (remote_timeout);
9552 switch (c)
9553 {
9554 case SERIAL_TIMEOUT:
9555 /* Nothing we can do. */
9556 return;
9557 case '#':
9558 /* Discard the two bytes of checksum and stop. */
9559 c = readchar (remote_timeout);
9560 if (c >= 0)
9561 c = readchar (remote_timeout);
9562
9563 return;
9564 case '*': /* Run length encoding. */
9565 /* Discard the repeat count. */
9566 c = readchar (remote_timeout);
9567 if (c < 0)
9568 return;
9569 break;
9570 default:
9571 /* A regular character. */
9572 break;
9573 }
9574 }
9575 }
9576
9577 /* Come here after finding the start of the frame. Collect the rest
9578 into *BUF, verifying the checksum, length, and handling run-length
9579 compression. NUL terminate the buffer. If there is not enough room,
9580 expand *BUF.
9581
9582 Returns -1 on error, number of characters in buffer (ignoring the
9583 trailing NULL) on success. (could be extended to return one of the
9584 SERIAL status indications). */
9585
9586 long
9587 remote_target::read_frame (gdb::char_vector *buf_p)
9588 {
9589 unsigned char csum;
9590 long bc;
9591 int c;
9592 char *buf = buf_p->data ();
9593 struct remote_state *rs = get_remote_state ();
9594
9595 csum = 0;
9596 bc = 0;
9597
9598 while (1)
9599 {
9600 c = readchar (remote_timeout);
9601 switch (c)
9602 {
9603 case SERIAL_TIMEOUT:
9604 remote_debug_printf ("Timeout in mid-packet, retrying");
9605 return -1;
9606
9607 case '$':
9608 remote_debug_printf ("Saw new packet start in middle of old one");
9609 return -1; /* Start a new packet, count retries. */
9610
9611 case '#':
9612 {
9613 unsigned char pktcsum;
9614 int check_0 = 0;
9615 int check_1 = 0;
9616
9617 buf[bc] = '\0';
9618
9619 check_0 = readchar (remote_timeout);
9620 if (check_0 >= 0)
9621 check_1 = readchar (remote_timeout);
9622
9623 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9624 {
9625 remote_debug_printf ("Timeout in checksum, retrying");
9626 return -1;
9627 }
9628 else if (check_0 < 0 || check_1 < 0)
9629 {
9630 remote_debug_printf ("Communication error in checksum");
9631 return -1;
9632 }
9633
9634 /* Don't recompute the checksum; with no ack packets we
9635 don't have any way to indicate a packet retransmission
9636 is necessary. */
9637 if (rs->noack_mode)
9638 return bc;
9639
9640 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9641 if (csum == pktcsum)
9642 return bc;
9643
9644 remote_debug_printf
9645 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9646 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9647
9648 /* Number of characters in buffer ignoring trailing
9649 NULL. */
9650 return -1;
9651 }
9652 case '*': /* Run length encoding. */
9653 {
9654 int repeat;
9655
9656 csum += c;
9657 c = readchar (remote_timeout);
9658 csum += c;
9659 repeat = c - ' ' + 3; /* Compute repeat count. */
9660
9661 /* The character before ``*'' is repeated. */
9662
9663 if (repeat > 0 && repeat <= 255 && bc > 0)
9664 {
9665 if (bc + repeat - 1 >= buf_p->size () - 1)
9666 {
9667 /* Make some more room in the buffer. */
9668 buf_p->resize (buf_p->size () + repeat);
9669 buf = buf_p->data ();
9670 }
9671
9672 memset (&buf[bc], buf[bc - 1], repeat);
9673 bc += repeat;
9674 continue;
9675 }
9676
9677 buf[bc] = '\0';
9678 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9679 return -1;
9680 }
9681 default:
9682 if (bc >= buf_p->size () - 1)
9683 {
9684 /* Make some more room in the buffer. */
9685 buf_p->resize (buf_p->size () * 2);
9686 buf = buf_p->data ();
9687 }
9688
9689 buf[bc++] = c;
9690 csum += c;
9691 continue;
9692 }
9693 }
9694 }
9695
9696 /* Set this to the maximum number of seconds to wait instead of waiting forever
9697 in target_wait(). If this timer times out, then it generates an error and
9698 the command is aborted. This replaces most of the need for timeouts in the
9699 GDB test suite, and makes it possible to distinguish between a hung target
9700 and one with slow communications. */
9701
9702 static int watchdog = 0;
9703 static void
9704 show_watchdog (struct ui_file *file, int from_tty,
9705 struct cmd_list_element *c, const char *value)
9706 {
9707 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9708 }
9709
9710 /* Read a packet from the remote machine, with error checking, and
9711 store it in *BUF. Resize *BUF if necessary to hold the result. If
9712 FOREVER, wait forever rather than timing out; this is used (in
9713 synchronous mode) to wait for a target that is is executing user
9714 code to stop. */
9715 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9716 don't have to change all the calls to getpkt to deal with the
9717 return value, because at the moment I don't know what the right
9718 thing to do it for those. */
9719
9720 void
9721 remote_target::getpkt (gdb::char_vector *buf, int forever)
9722 {
9723 getpkt_sane (buf, forever);
9724 }
9725
9726
9727 /* Read a packet from the remote machine, with error checking, and
9728 store it in *BUF. Resize *BUF if necessary to hold the result. If
9729 FOREVER, wait forever rather than timing out; this is used (in
9730 synchronous mode) to wait for a target that is is executing user
9731 code to stop. If FOREVER == 0, this function is allowed to time
9732 out gracefully and return an indication of this to the caller.
9733 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9734 consider receiving a notification enough reason to return to the
9735 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9736 holds a notification or not (a regular packet). */
9737
9738 int
9739 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9740 int forever, int expecting_notif,
9741 int *is_notif)
9742 {
9743 struct remote_state *rs = get_remote_state ();
9744 int c;
9745 int tries;
9746 int timeout;
9747 int val = -1;
9748
9749 /* We're reading a new response. Make sure we don't look at a
9750 previously cached response. */
9751 rs->cached_wait_status = 0;
9752
9753 strcpy (buf->data (), "timeout");
9754
9755 if (forever)
9756 timeout = watchdog > 0 ? watchdog : -1;
9757 else if (expecting_notif)
9758 timeout = 0; /* There should already be a char in the buffer. If
9759 not, bail out. */
9760 else
9761 timeout = remote_timeout;
9762
9763 #define MAX_TRIES 3
9764
9765 /* Process any number of notifications, and then return when
9766 we get a packet. */
9767 for (;;)
9768 {
9769 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9770 times. */
9771 for (tries = 1; tries <= MAX_TRIES; tries++)
9772 {
9773 /* This can loop forever if the remote side sends us
9774 characters continuously, but if it pauses, we'll get
9775 SERIAL_TIMEOUT from readchar because of timeout. Then
9776 we'll count that as a retry.
9777
9778 Note that even when forever is set, we will only wait
9779 forever prior to the start of a packet. After that, we
9780 expect characters to arrive at a brisk pace. They should
9781 show up within remote_timeout intervals. */
9782 do
9783 c = readchar (timeout);
9784 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9785
9786 if (c == SERIAL_TIMEOUT)
9787 {
9788 if (expecting_notif)
9789 return -1; /* Don't complain, it's normal to not get
9790 anything in this case. */
9791
9792 if (forever) /* Watchdog went off? Kill the target. */
9793 {
9794 remote_unpush_target (this);
9795 throw_error (TARGET_CLOSE_ERROR,
9796 _("Watchdog timeout has expired. "
9797 "Target detached."));
9798 }
9799
9800 remote_debug_printf ("Timed out.");
9801 }
9802 else
9803 {
9804 /* We've found the start of a packet or notification.
9805 Now collect the data. */
9806 val = read_frame (buf);
9807 if (val >= 0)
9808 break;
9809 }
9810
9811 remote_serial_write ("-", 1);
9812 }
9813
9814 if (tries > MAX_TRIES)
9815 {
9816 /* We have tried hard enough, and just can't receive the
9817 packet/notification. Give up. */
9818 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9819
9820 /* Skip the ack char if we're in no-ack mode. */
9821 if (!rs->noack_mode)
9822 remote_serial_write ("+", 1);
9823 return -1;
9824 }
9825
9826 /* If we got an ordinary packet, return that to our caller. */
9827 if (c == '$')
9828 {
9829 if (remote_debug)
9830 {
9831 int max_chars;
9832
9833 if (remote_packet_max_chars < 0)
9834 max_chars = val;
9835 else
9836 max_chars = remote_packet_max_chars;
9837
9838 std::string str
9839 = escape_buffer (buf->data (),
9840 std::min (val, max_chars));
9841
9842 if (val > max_chars)
9843 remote_debug_printf_nofunc
9844 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9845 val - max_chars);
9846 else
9847 remote_debug_printf_nofunc ("Packet received: %s",
9848 str.c_str ());
9849 }
9850
9851 /* Skip the ack char if we're in no-ack mode. */
9852 if (!rs->noack_mode)
9853 remote_serial_write ("+", 1);
9854 if (is_notif != NULL)
9855 *is_notif = 0;
9856 return val;
9857 }
9858
9859 /* If we got a notification, handle it, and go back to looking
9860 for a packet. */
9861 else
9862 {
9863 gdb_assert (c == '%');
9864
9865 remote_debug_printf_nofunc
9866 (" Notification received: %s",
9867 escape_buffer (buf->data (), val).c_str ());
9868
9869 if (is_notif != NULL)
9870 *is_notif = 1;
9871
9872 handle_notification (rs->notif_state, buf->data ());
9873
9874 /* Notifications require no acknowledgement. */
9875
9876 if (expecting_notif)
9877 return val;
9878 }
9879 }
9880 }
9881
9882 int
9883 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9884 {
9885 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9886 }
9887
9888 int
9889 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9890 int *is_notif)
9891 {
9892 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9893 }
9894
9895 /* Kill any new fork children of process PID that haven't been
9896 processed by follow_fork. */
9897
9898 void
9899 remote_target::kill_new_fork_children (int pid)
9900 {
9901 remote_state *rs = get_remote_state ();
9902 struct notif_client *notif = &notif_client_stop;
9903
9904 /* Kill the fork child threads of any threads in process PID
9905 that are stopped at a fork event. */
9906 for (thread_info *thread : all_non_exited_threads (this))
9907 {
9908 struct target_waitstatus *ws = &thread->pending_follow;
9909
9910 if (is_pending_fork_parent (ws, pid, thread->ptid))
9911 {
9912 int child_pid = ws->value.related_pid.pid ();
9913 int res;
9914
9915 res = remote_vkill (child_pid);
9916 if (res != 0)
9917 error (_("Can't kill fork child process %d"), child_pid);
9918 }
9919 }
9920
9921 /* Check for any pending fork events (not reported or processed yet)
9922 in process PID and kill those fork child threads as well. */
9923 remote_notif_get_pending_events (notif);
9924 for (auto &event : rs->stop_reply_queue)
9925 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9926 {
9927 int child_pid = event->ws.value.related_pid.pid ();
9928 int res;
9929
9930 res = remote_vkill (child_pid);
9931 if (res != 0)
9932 error (_("Can't kill fork child process %d"), child_pid);
9933 }
9934 }
9935
9936 \f
9937 /* Target hook to kill the current inferior. */
9938
9939 void
9940 remote_target::kill ()
9941 {
9942 int res = -1;
9943 int pid = inferior_ptid.pid ();
9944 struct remote_state *rs = get_remote_state ();
9945
9946 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9947 {
9948 /* If we're stopped while forking and we haven't followed yet,
9949 kill the child task. We need to do this before killing the
9950 parent task because if this is a vfork then the parent will
9951 be sleeping. */
9952 kill_new_fork_children (pid);
9953
9954 res = remote_vkill (pid);
9955 if (res == 0)
9956 {
9957 target_mourn_inferior (inferior_ptid);
9958 return;
9959 }
9960 }
9961
9962 /* If we are in 'target remote' mode and we are killing the only
9963 inferior, then we will tell gdbserver to exit and unpush the
9964 target. */
9965 if (res == -1 && !remote_multi_process_p (rs)
9966 && number_of_live_inferiors (this) == 1)
9967 {
9968 remote_kill_k ();
9969
9970 /* We've killed the remote end, we get to mourn it. If we are
9971 not in extended mode, mourning the inferior also unpushes
9972 remote_ops from the target stack, which closes the remote
9973 connection. */
9974 target_mourn_inferior (inferior_ptid);
9975
9976 return;
9977 }
9978
9979 error (_("Can't kill process"));
9980 }
9981
9982 /* Send a kill request to the target using the 'vKill' packet. */
9983
9984 int
9985 remote_target::remote_vkill (int pid)
9986 {
9987 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9988 return -1;
9989
9990 remote_state *rs = get_remote_state ();
9991
9992 /* Tell the remote target to detach. */
9993 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9994 putpkt (rs->buf);
9995 getpkt (&rs->buf, 0);
9996
9997 switch (packet_ok (rs->buf,
9998 &remote_protocol_packets[PACKET_vKill]))
9999 {
10000 case PACKET_OK:
10001 return 0;
10002 case PACKET_ERROR:
10003 return 1;
10004 case PACKET_UNKNOWN:
10005 return -1;
10006 default:
10007 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10008 }
10009 }
10010
10011 /* Send a kill request to the target using the 'k' packet. */
10012
10013 void
10014 remote_target::remote_kill_k ()
10015 {
10016 /* Catch errors so the user can quit from gdb even when we
10017 aren't on speaking terms with the remote system. */
10018 try
10019 {
10020 putpkt ("k");
10021 }
10022 catch (const gdb_exception_error &ex)
10023 {
10024 if (ex.error == TARGET_CLOSE_ERROR)
10025 {
10026 /* If we got an (EOF) error that caused the target
10027 to go away, then we're done, that's what we wanted.
10028 "k" is susceptible to cause a premature EOF, given
10029 that the remote server isn't actually required to
10030 reply to "k", and it can happen that it doesn't
10031 even get to reply ACK to the "k". */
10032 return;
10033 }
10034
10035 /* Otherwise, something went wrong. We didn't actually kill
10036 the target. Just propagate the exception, and let the
10037 user or higher layers decide what to do. */
10038 throw;
10039 }
10040 }
10041
10042 void
10043 remote_target::mourn_inferior ()
10044 {
10045 struct remote_state *rs = get_remote_state ();
10046
10047 /* We're no longer interested in notification events of an inferior
10048 that exited or was killed/detached. */
10049 discard_pending_stop_replies (current_inferior ());
10050
10051 /* In 'target remote' mode with one inferior, we close the connection. */
10052 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10053 {
10054 remote_unpush_target (this);
10055 return;
10056 }
10057
10058 /* In case we got here due to an error, but we're going to stay
10059 connected. */
10060 rs->waiting_for_stop_reply = 0;
10061
10062 /* If the current general thread belonged to the process we just
10063 detached from or has exited, the remote side current general
10064 thread becomes undefined. Considering a case like this:
10065
10066 - We just got here due to a detach.
10067 - The process that we're detaching from happens to immediately
10068 report a global breakpoint being hit in non-stop mode, in the
10069 same thread we had selected before.
10070 - GDB attaches to this process again.
10071 - This event happens to be the next event we handle.
10072
10073 GDB would consider that the current general thread didn't need to
10074 be set on the stub side (with Hg), since for all it knew,
10075 GENERAL_THREAD hadn't changed.
10076
10077 Notice that although in all-stop mode, the remote server always
10078 sets the current thread to the thread reporting the stop event,
10079 that doesn't happen in non-stop mode; in non-stop, the stub *must
10080 not* change the current thread when reporting a breakpoint hit,
10081 due to the decoupling of event reporting and event handling.
10082
10083 To keep things simple, we always invalidate our notion of the
10084 current thread. */
10085 record_currthread (rs, minus_one_ptid);
10086
10087 /* Call common code to mark the inferior as not running. */
10088 generic_mourn_inferior ();
10089 }
10090
10091 bool
10092 extended_remote_target::supports_disable_randomization ()
10093 {
10094 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10095 }
10096
10097 void
10098 remote_target::extended_remote_disable_randomization (int val)
10099 {
10100 struct remote_state *rs = get_remote_state ();
10101 char *reply;
10102
10103 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10104 "QDisableRandomization:%x", val);
10105 putpkt (rs->buf);
10106 reply = remote_get_noisy_reply ();
10107 if (*reply == '\0')
10108 error (_("Target does not support QDisableRandomization."));
10109 if (strcmp (reply, "OK") != 0)
10110 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10111 }
10112
10113 int
10114 remote_target::extended_remote_run (const std::string &args)
10115 {
10116 struct remote_state *rs = get_remote_state ();
10117 int len;
10118 const char *remote_exec_file = get_remote_exec_file ();
10119
10120 /* If the user has disabled vRun support, or we have detected that
10121 support is not available, do not try it. */
10122 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10123 return -1;
10124
10125 strcpy (rs->buf.data (), "vRun;");
10126 len = strlen (rs->buf.data ());
10127
10128 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10129 error (_("Remote file name too long for run packet"));
10130 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10131 strlen (remote_exec_file));
10132
10133 if (!args.empty ())
10134 {
10135 int i;
10136
10137 gdb_argv argv (args.c_str ());
10138 for (i = 0; argv[i] != NULL; i++)
10139 {
10140 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10141 error (_("Argument list too long for run packet"));
10142 rs->buf[len++] = ';';
10143 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10144 strlen (argv[i]));
10145 }
10146 }
10147
10148 rs->buf[len++] = '\0';
10149
10150 putpkt (rs->buf);
10151 getpkt (&rs->buf, 0);
10152
10153 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10154 {
10155 case PACKET_OK:
10156 /* We have a wait response. All is well. */
10157 return 0;
10158 case PACKET_UNKNOWN:
10159 return -1;
10160 case PACKET_ERROR:
10161 if (remote_exec_file[0] == '\0')
10162 error (_("Running the default executable on the remote target failed; "
10163 "try \"set remote exec-file\"?"));
10164 else
10165 error (_("Running \"%s\" on the remote target failed"),
10166 remote_exec_file);
10167 default:
10168 gdb_assert_not_reached (_("bad switch"));
10169 }
10170 }
10171
10172 /* Helper function to send set/unset environment packets. ACTION is
10173 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10174 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10175 sent. */
10176
10177 void
10178 remote_target::send_environment_packet (const char *action,
10179 const char *packet,
10180 const char *value)
10181 {
10182 remote_state *rs = get_remote_state ();
10183
10184 /* Convert the environment variable to an hex string, which
10185 is the best format to be transmitted over the wire. */
10186 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10187 strlen (value));
10188
10189 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10190 "%s:%s", packet, encoded_value.c_str ());
10191
10192 putpkt (rs->buf);
10193 getpkt (&rs->buf, 0);
10194 if (strcmp (rs->buf.data (), "OK") != 0)
10195 warning (_("Unable to %s environment variable '%s' on remote."),
10196 action, value);
10197 }
10198
10199 /* Helper function to handle the QEnvironment* packets. */
10200
10201 void
10202 remote_target::extended_remote_environment_support ()
10203 {
10204 remote_state *rs = get_remote_state ();
10205
10206 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10207 {
10208 putpkt ("QEnvironmentReset");
10209 getpkt (&rs->buf, 0);
10210 if (strcmp (rs->buf.data (), "OK") != 0)
10211 warning (_("Unable to reset environment on remote."));
10212 }
10213
10214 gdb_environ *e = &current_inferior ()->environment;
10215
10216 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10217 for (const std::string &el : e->user_set_env ())
10218 send_environment_packet ("set", "QEnvironmentHexEncoded",
10219 el.c_str ());
10220
10221 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10222 for (const std::string &el : e->user_unset_env ())
10223 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10224 }
10225
10226 /* Helper function to set the current working directory for the
10227 inferior in the remote target. */
10228
10229 void
10230 remote_target::extended_remote_set_inferior_cwd ()
10231 {
10232 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10233 {
10234 const char *inferior_cwd = get_inferior_cwd ();
10235 remote_state *rs = get_remote_state ();
10236
10237 if (inferior_cwd != NULL)
10238 {
10239 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10240 strlen (inferior_cwd));
10241
10242 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10243 "QSetWorkingDir:%s", hexpath.c_str ());
10244 }
10245 else
10246 {
10247 /* An empty inferior_cwd means that the user wants us to
10248 reset the remote server's inferior's cwd. */
10249 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10250 "QSetWorkingDir:");
10251 }
10252
10253 putpkt (rs->buf);
10254 getpkt (&rs->buf, 0);
10255 if (packet_ok (rs->buf,
10256 &remote_protocol_packets[PACKET_QSetWorkingDir])
10257 != PACKET_OK)
10258 error (_("\
10259 Remote replied unexpectedly while setting the inferior's working\n\
10260 directory: %s"),
10261 rs->buf.data ());
10262
10263 }
10264 }
10265
10266 /* In the extended protocol we want to be able to do things like
10267 "run" and have them basically work as expected. So we need
10268 a special create_inferior function. We support changing the
10269 executable file and the command line arguments, but not the
10270 environment. */
10271
10272 void
10273 extended_remote_target::create_inferior (const char *exec_file,
10274 const std::string &args,
10275 char **env, int from_tty)
10276 {
10277 int run_worked;
10278 char *stop_reply;
10279 struct remote_state *rs = get_remote_state ();
10280 const char *remote_exec_file = get_remote_exec_file ();
10281
10282 /* If running asynchronously, register the target file descriptor
10283 with the event loop. */
10284 if (target_can_async_p ())
10285 target_async (1);
10286
10287 /* Disable address space randomization if requested (and supported). */
10288 if (supports_disable_randomization ())
10289 extended_remote_disable_randomization (disable_randomization);
10290
10291 /* If startup-with-shell is on, we inform gdbserver to start the
10292 remote inferior using a shell. */
10293 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10294 {
10295 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10296 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10297 putpkt (rs->buf);
10298 getpkt (&rs->buf, 0);
10299 if (strcmp (rs->buf.data (), "OK") != 0)
10300 error (_("\
10301 Remote replied unexpectedly while setting startup-with-shell: %s"),
10302 rs->buf.data ());
10303 }
10304
10305 extended_remote_environment_support ();
10306
10307 extended_remote_set_inferior_cwd ();
10308
10309 /* Now restart the remote server. */
10310 run_worked = extended_remote_run (args) != -1;
10311 if (!run_worked)
10312 {
10313 /* vRun was not supported. Fail if we need it to do what the
10314 user requested. */
10315 if (remote_exec_file[0])
10316 error (_("Remote target does not support \"set remote exec-file\""));
10317 if (!args.empty ())
10318 error (_("Remote target does not support \"set args\" or run ARGS"));
10319
10320 /* Fall back to "R". */
10321 extended_remote_restart ();
10322 }
10323
10324 /* vRun's success return is a stop reply. */
10325 stop_reply = run_worked ? rs->buf.data () : NULL;
10326 add_current_inferior_and_thread (stop_reply);
10327
10328 /* Get updated offsets, if the stub uses qOffsets. */
10329 get_offsets ();
10330 }
10331 \f
10332
10333 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10334 the list of conditions (in agent expression bytecode format), if any, the
10335 target needs to evaluate. The output is placed into the packet buffer
10336 started from BUF and ended at BUF_END. */
10337
10338 static int
10339 remote_add_target_side_condition (struct gdbarch *gdbarch,
10340 struct bp_target_info *bp_tgt, char *buf,
10341 char *buf_end)
10342 {
10343 if (bp_tgt->conditions.empty ())
10344 return 0;
10345
10346 buf += strlen (buf);
10347 xsnprintf (buf, buf_end - buf, "%s", ";");
10348 buf++;
10349
10350 /* Send conditions to the target. */
10351 for (agent_expr *aexpr : bp_tgt->conditions)
10352 {
10353 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10354 buf += strlen (buf);
10355 for (int i = 0; i < aexpr->len; ++i)
10356 buf = pack_hex_byte (buf, aexpr->buf[i]);
10357 *buf = '\0';
10358 }
10359 return 0;
10360 }
10361
10362 static void
10363 remote_add_target_side_commands (struct gdbarch *gdbarch,
10364 struct bp_target_info *bp_tgt, char *buf)
10365 {
10366 if (bp_tgt->tcommands.empty ())
10367 return;
10368
10369 buf += strlen (buf);
10370
10371 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10372 buf += strlen (buf);
10373
10374 /* Concatenate all the agent expressions that are commands into the
10375 cmds parameter. */
10376 for (agent_expr *aexpr : bp_tgt->tcommands)
10377 {
10378 sprintf (buf, "X%x,", aexpr->len);
10379 buf += strlen (buf);
10380 for (int i = 0; i < aexpr->len; ++i)
10381 buf = pack_hex_byte (buf, aexpr->buf[i]);
10382 *buf = '\0';
10383 }
10384 }
10385
10386 /* Insert a breakpoint. On targets that have software breakpoint
10387 support, we ask the remote target to do the work; on targets
10388 which don't, we insert a traditional memory breakpoint. */
10389
10390 int
10391 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10392 struct bp_target_info *bp_tgt)
10393 {
10394 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10395 If it succeeds, then set the support to PACKET_ENABLE. If it
10396 fails, and the user has explicitly requested the Z support then
10397 report an error, otherwise, mark it disabled and go on. */
10398
10399 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10400 {
10401 CORE_ADDR addr = bp_tgt->reqstd_address;
10402 struct remote_state *rs;
10403 char *p, *endbuf;
10404
10405 /* Make sure the remote is pointing at the right process, if
10406 necessary. */
10407 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10408 set_general_process ();
10409
10410 rs = get_remote_state ();
10411 p = rs->buf.data ();
10412 endbuf = p + get_remote_packet_size ();
10413
10414 *(p++) = 'Z';
10415 *(p++) = '0';
10416 *(p++) = ',';
10417 addr = (ULONGEST) remote_address_masked (addr);
10418 p += hexnumstr (p, addr);
10419 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10420
10421 if (supports_evaluation_of_breakpoint_conditions ())
10422 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10423
10424 if (can_run_breakpoint_commands ())
10425 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10426
10427 putpkt (rs->buf);
10428 getpkt (&rs->buf, 0);
10429
10430 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10431 {
10432 case PACKET_ERROR:
10433 return -1;
10434 case PACKET_OK:
10435 return 0;
10436 case PACKET_UNKNOWN:
10437 break;
10438 }
10439 }
10440
10441 /* If this breakpoint has target-side commands but this stub doesn't
10442 support Z0 packets, throw error. */
10443 if (!bp_tgt->tcommands.empty ())
10444 throw_error (NOT_SUPPORTED_ERROR, _("\
10445 Target doesn't support breakpoints that have target side commands."));
10446
10447 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10448 }
10449
10450 int
10451 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10452 struct bp_target_info *bp_tgt,
10453 enum remove_bp_reason reason)
10454 {
10455 CORE_ADDR addr = bp_tgt->placed_address;
10456 struct remote_state *rs = get_remote_state ();
10457
10458 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10459 {
10460 char *p = rs->buf.data ();
10461 char *endbuf = p + get_remote_packet_size ();
10462
10463 /* Make sure the remote is pointing at the right process, if
10464 necessary. */
10465 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10466 set_general_process ();
10467
10468 *(p++) = 'z';
10469 *(p++) = '0';
10470 *(p++) = ',';
10471
10472 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10473 p += hexnumstr (p, addr);
10474 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10475
10476 putpkt (rs->buf);
10477 getpkt (&rs->buf, 0);
10478
10479 return (rs->buf[0] == 'E');
10480 }
10481
10482 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10483 }
10484
10485 static enum Z_packet_type
10486 watchpoint_to_Z_packet (int type)
10487 {
10488 switch (type)
10489 {
10490 case hw_write:
10491 return Z_PACKET_WRITE_WP;
10492 break;
10493 case hw_read:
10494 return Z_PACKET_READ_WP;
10495 break;
10496 case hw_access:
10497 return Z_PACKET_ACCESS_WP;
10498 break;
10499 default:
10500 internal_error (__FILE__, __LINE__,
10501 _("hw_bp_to_z: bad watchpoint type %d"), type);
10502 }
10503 }
10504
10505 int
10506 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10507 enum target_hw_bp_type type, struct expression *cond)
10508 {
10509 struct remote_state *rs = get_remote_state ();
10510 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10511 char *p;
10512 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10513
10514 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10515 return 1;
10516
10517 /* Make sure the remote is pointing at the right process, if
10518 necessary. */
10519 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10520 set_general_process ();
10521
10522 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10523 p = strchr (rs->buf.data (), '\0');
10524 addr = remote_address_masked (addr);
10525 p += hexnumstr (p, (ULONGEST) addr);
10526 xsnprintf (p, endbuf - p, ",%x", len);
10527
10528 putpkt (rs->buf);
10529 getpkt (&rs->buf, 0);
10530
10531 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10532 {
10533 case PACKET_ERROR:
10534 return -1;
10535 case PACKET_UNKNOWN:
10536 return 1;
10537 case PACKET_OK:
10538 return 0;
10539 }
10540 internal_error (__FILE__, __LINE__,
10541 _("remote_insert_watchpoint: reached end of function"));
10542 }
10543
10544 bool
10545 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10546 CORE_ADDR start, int length)
10547 {
10548 CORE_ADDR diff = remote_address_masked (addr - start);
10549
10550 return diff < length;
10551 }
10552
10553
10554 int
10555 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10556 enum target_hw_bp_type type, struct expression *cond)
10557 {
10558 struct remote_state *rs = get_remote_state ();
10559 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10560 char *p;
10561 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10562
10563 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10564 return -1;
10565
10566 /* Make sure the remote is pointing at the right process, if
10567 necessary. */
10568 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10569 set_general_process ();
10570
10571 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10572 p = strchr (rs->buf.data (), '\0');
10573 addr = remote_address_masked (addr);
10574 p += hexnumstr (p, (ULONGEST) addr);
10575 xsnprintf (p, endbuf - p, ",%x", len);
10576 putpkt (rs->buf);
10577 getpkt (&rs->buf, 0);
10578
10579 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10580 {
10581 case PACKET_ERROR:
10582 case PACKET_UNKNOWN:
10583 return -1;
10584 case PACKET_OK:
10585 return 0;
10586 }
10587 internal_error (__FILE__, __LINE__,
10588 _("remote_remove_watchpoint: reached end of function"));
10589 }
10590
10591
10592 static int remote_hw_watchpoint_limit = -1;
10593 static int remote_hw_watchpoint_length_limit = -1;
10594 static int remote_hw_breakpoint_limit = -1;
10595
10596 int
10597 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10598 {
10599 if (remote_hw_watchpoint_length_limit == 0)
10600 return 0;
10601 else if (remote_hw_watchpoint_length_limit < 0)
10602 return 1;
10603 else if (len <= remote_hw_watchpoint_length_limit)
10604 return 1;
10605 else
10606 return 0;
10607 }
10608
10609 int
10610 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10611 {
10612 if (type == bp_hardware_breakpoint)
10613 {
10614 if (remote_hw_breakpoint_limit == 0)
10615 return 0;
10616 else if (remote_hw_breakpoint_limit < 0)
10617 return 1;
10618 else if (cnt <= remote_hw_breakpoint_limit)
10619 return 1;
10620 }
10621 else
10622 {
10623 if (remote_hw_watchpoint_limit == 0)
10624 return 0;
10625 else if (remote_hw_watchpoint_limit < 0)
10626 return 1;
10627 else if (ot)
10628 return -1;
10629 else if (cnt <= remote_hw_watchpoint_limit)
10630 return 1;
10631 }
10632 return -1;
10633 }
10634
10635 /* The to_stopped_by_sw_breakpoint method of target remote. */
10636
10637 bool
10638 remote_target::stopped_by_sw_breakpoint ()
10639 {
10640 struct thread_info *thread = inferior_thread ();
10641
10642 return (thread->priv != NULL
10643 && (get_remote_thread_info (thread)->stop_reason
10644 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10645 }
10646
10647 /* The to_supports_stopped_by_sw_breakpoint method of target
10648 remote. */
10649
10650 bool
10651 remote_target::supports_stopped_by_sw_breakpoint ()
10652 {
10653 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10654 }
10655
10656 /* The to_stopped_by_hw_breakpoint method of target remote. */
10657
10658 bool
10659 remote_target::stopped_by_hw_breakpoint ()
10660 {
10661 struct thread_info *thread = inferior_thread ();
10662
10663 return (thread->priv != NULL
10664 && (get_remote_thread_info (thread)->stop_reason
10665 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10666 }
10667
10668 /* The to_supports_stopped_by_hw_breakpoint method of target
10669 remote. */
10670
10671 bool
10672 remote_target::supports_stopped_by_hw_breakpoint ()
10673 {
10674 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10675 }
10676
10677 bool
10678 remote_target::stopped_by_watchpoint ()
10679 {
10680 struct thread_info *thread = inferior_thread ();
10681
10682 return (thread->priv != NULL
10683 && (get_remote_thread_info (thread)->stop_reason
10684 == TARGET_STOPPED_BY_WATCHPOINT));
10685 }
10686
10687 bool
10688 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10689 {
10690 struct thread_info *thread = inferior_thread ();
10691
10692 if (thread->priv != NULL
10693 && (get_remote_thread_info (thread)->stop_reason
10694 == TARGET_STOPPED_BY_WATCHPOINT))
10695 {
10696 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10697 return true;
10698 }
10699
10700 return false;
10701 }
10702
10703
10704 int
10705 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10706 struct bp_target_info *bp_tgt)
10707 {
10708 CORE_ADDR addr = bp_tgt->reqstd_address;
10709 struct remote_state *rs;
10710 char *p, *endbuf;
10711 char *message;
10712
10713 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10714 return -1;
10715
10716 /* Make sure the remote is pointing at the right process, if
10717 necessary. */
10718 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10719 set_general_process ();
10720
10721 rs = get_remote_state ();
10722 p = rs->buf.data ();
10723 endbuf = p + get_remote_packet_size ();
10724
10725 *(p++) = 'Z';
10726 *(p++) = '1';
10727 *(p++) = ',';
10728
10729 addr = remote_address_masked (addr);
10730 p += hexnumstr (p, (ULONGEST) addr);
10731 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10732
10733 if (supports_evaluation_of_breakpoint_conditions ())
10734 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10735
10736 if (can_run_breakpoint_commands ())
10737 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10738
10739 putpkt (rs->buf);
10740 getpkt (&rs->buf, 0);
10741
10742 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10743 {
10744 case PACKET_ERROR:
10745 if (rs->buf[1] == '.')
10746 {
10747 message = strchr (&rs->buf[2], '.');
10748 if (message)
10749 error (_("Remote failure reply: %s"), message + 1);
10750 }
10751 return -1;
10752 case PACKET_UNKNOWN:
10753 return -1;
10754 case PACKET_OK:
10755 return 0;
10756 }
10757 internal_error (__FILE__, __LINE__,
10758 _("remote_insert_hw_breakpoint: reached end of function"));
10759 }
10760
10761
10762 int
10763 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10764 struct bp_target_info *bp_tgt)
10765 {
10766 CORE_ADDR addr;
10767 struct remote_state *rs = get_remote_state ();
10768 char *p = rs->buf.data ();
10769 char *endbuf = p + get_remote_packet_size ();
10770
10771 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10772 return -1;
10773
10774 /* Make sure the remote is pointing at the right process, if
10775 necessary. */
10776 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10777 set_general_process ();
10778
10779 *(p++) = 'z';
10780 *(p++) = '1';
10781 *(p++) = ',';
10782
10783 addr = remote_address_masked (bp_tgt->placed_address);
10784 p += hexnumstr (p, (ULONGEST) addr);
10785 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10786
10787 putpkt (rs->buf);
10788 getpkt (&rs->buf, 0);
10789
10790 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10791 {
10792 case PACKET_ERROR:
10793 case PACKET_UNKNOWN:
10794 return -1;
10795 case PACKET_OK:
10796 return 0;
10797 }
10798 internal_error (__FILE__, __LINE__,
10799 _("remote_remove_hw_breakpoint: reached end of function"));
10800 }
10801
10802 /* Verify memory using the "qCRC:" request. */
10803
10804 int
10805 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10806 {
10807 struct remote_state *rs = get_remote_state ();
10808 unsigned long host_crc, target_crc;
10809 char *tmp;
10810
10811 /* It doesn't make sense to use qCRC if the remote target is
10812 connected but not running. */
10813 if (target_has_execution ()
10814 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10815 {
10816 enum packet_result result;
10817
10818 /* Make sure the remote is pointing at the right process. */
10819 set_general_process ();
10820
10821 /* FIXME: assumes lma can fit into long. */
10822 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10823 (long) lma, (long) size);
10824 putpkt (rs->buf);
10825
10826 /* Be clever; compute the host_crc before waiting for target
10827 reply. */
10828 host_crc = xcrc32 (data, size, 0xffffffff);
10829
10830 getpkt (&rs->buf, 0);
10831
10832 result = packet_ok (rs->buf,
10833 &remote_protocol_packets[PACKET_qCRC]);
10834 if (result == PACKET_ERROR)
10835 return -1;
10836 else if (result == PACKET_OK)
10837 {
10838 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10839 target_crc = target_crc * 16 + fromhex (*tmp);
10840
10841 return (host_crc == target_crc);
10842 }
10843 }
10844
10845 return simple_verify_memory (this, data, lma, size);
10846 }
10847
10848 /* compare-sections command
10849
10850 With no arguments, compares each loadable section in the exec bfd
10851 with the same memory range on the target, and reports mismatches.
10852 Useful for verifying the image on the target against the exec file. */
10853
10854 static void
10855 compare_sections_command (const char *args, int from_tty)
10856 {
10857 asection *s;
10858 const char *sectname;
10859 bfd_size_type size;
10860 bfd_vma lma;
10861 int matched = 0;
10862 int mismatched = 0;
10863 int res;
10864 int read_only = 0;
10865
10866 if (!current_program_space->exec_bfd ())
10867 error (_("command cannot be used without an exec file"));
10868
10869 if (args != NULL && strcmp (args, "-r") == 0)
10870 {
10871 read_only = 1;
10872 args = NULL;
10873 }
10874
10875 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
10876 {
10877 if (!(s->flags & SEC_LOAD))
10878 continue; /* Skip non-loadable section. */
10879
10880 if (read_only && (s->flags & SEC_READONLY) == 0)
10881 continue; /* Skip writeable sections */
10882
10883 size = bfd_section_size (s);
10884 if (size == 0)
10885 continue; /* Skip zero-length section. */
10886
10887 sectname = bfd_section_name (s);
10888 if (args && strcmp (args, sectname) != 0)
10889 continue; /* Not the section selected by user. */
10890
10891 matched = 1; /* Do this section. */
10892 lma = s->lma;
10893
10894 gdb::byte_vector sectdata (size);
10895 bfd_get_section_contents (current_program_space->exec_bfd (), s,
10896 sectdata.data (), 0, size);
10897
10898 res = target_verify_memory (sectdata.data (), lma, size);
10899
10900 if (res == -1)
10901 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10902 paddress (target_gdbarch (), lma),
10903 paddress (target_gdbarch (), lma + size));
10904
10905 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10906 paddress (target_gdbarch (), lma),
10907 paddress (target_gdbarch (), lma + size));
10908 if (res)
10909 printf_filtered ("matched.\n");
10910 else
10911 {
10912 printf_filtered ("MIS-MATCHED!\n");
10913 mismatched++;
10914 }
10915 }
10916 if (mismatched > 0)
10917 warning (_("One or more sections of the target image does not match\n\
10918 the loaded file\n"));
10919 if (args && !matched)
10920 printf_filtered (_("No loaded section named '%s'.\n"), args);
10921 }
10922
10923 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10924 into remote target. The number of bytes written to the remote
10925 target is returned, or -1 for error. */
10926
10927 target_xfer_status
10928 remote_target::remote_write_qxfer (const char *object_name,
10929 const char *annex, const gdb_byte *writebuf,
10930 ULONGEST offset, LONGEST len,
10931 ULONGEST *xfered_len,
10932 struct packet_config *packet)
10933 {
10934 int i, buf_len;
10935 ULONGEST n;
10936 struct remote_state *rs = get_remote_state ();
10937 int max_size = get_memory_write_packet_size ();
10938
10939 if (packet_config_support (packet) == PACKET_DISABLE)
10940 return TARGET_XFER_E_IO;
10941
10942 /* Insert header. */
10943 i = snprintf (rs->buf.data (), max_size,
10944 "qXfer:%s:write:%s:%s:",
10945 object_name, annex ? annex : "",
10946 phex_nz (offset, sizeof offset));
10947 max_size -= (i + 1);
10948
10949 /* Escape as much data as fits into rs->buf. */
10950 buf_len = remote_escape_output
10951 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10952
10953 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10954 || getpkt_sane (&rs->buf, 0) < 0
10955 || packet_ok (rs->buf, packet) != PACKET_OK)
10956 return TARGET_XFER_E_IO;
10957
10958 unpack_varlen_hex (rs->buf.data (), &n);
10959
10960 *xfered_len = n;
10961 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10962 }
10963
10964 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10965 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10966 number of bytes read is returned, or 0 for EOF, or -1 for error.
10967 The number of bytes read may be less than LEN without indicating an
10968 EOF. PACKET is checked and updated to indicate whether the remote
10969 target supports this object. */
10970
10971 target_xfer_status
10972 remote_target::remote_read_qxfer (const char *object_name,
10973 const char *annex,
10974 gdb_byte *readbuf, ULONGEST offset,
10975 LONGEST len,
10976 ULONGEST *xfered_len,
10977 struct packet_config *packet)
10978 {
10979 struct remote_state *rs = get_remote_state ();
10980 LONGEST i, n, packet_len;
10981
10982 if (packet_config_support (packet) == PACKET_DISABLE)
10983 return TARGET_XFER_E_IO;
10984
10985 /* Check whether we've cached an end-of-object packet that matches
10986 this request. */
10987 if (rs->finished_object)
10988 {
10989 if (strcmp (object_name, rs->finished_object) == 0
10990 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10991 && offset == rs->finished_offset)
10992 return TARGET_XFER_EOF;
10993
10994
10995 /* Otherwise, we're now reading something different. Discard
10996 the cache. */
10997 xfree (rs->finished_object);
10998 xfree (rs->finished_annex);
10999 rs->finished_object = NULL;
11000 rs->finished_annex = NULL;
11001 }
11002
11003 /* Request only enough to fit in a single packet. The actual data
11004 may not, since we don't know how much of it will need to be escaped;
11005 the target is free to respond with slightly less data. We subtract
11006 five to account for the response type and the protocol frame. */
11007 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11008 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11009 "qXfer:%s:read:%s:%s,%s",
11010 object_name, annex ? annex : "",
11011 phex_nz (offset, sizeof offset),
11012 phex_nz (n, sizeof n));
11013 i = putpkt (rs->buf);
11014 if (i < 0)
11015 return TARGET_XFER_E_IO;
11016
11017 rs->buf[0] = '\0';
11018 packet_len = getpkt_sane (&rs->buf, 0);
11019 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11020 return TARGET_XFER_E_IO;
11021
11022 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11023 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11024
11025 /* 'm' means there is (or at least might be) more data after this
11026 batch. That does not make sense unless there's at least one byte
11027 of data in this reply. */
11028 if (rs->buf[0] == 'm' && packet_len == 1)
11029 error (_("Remote qXfer reply contained no data."));
11030
11031 /* Got some data. */
11032 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11033 packet_len - 1, readbuf, n);
11034
11035 /* 'l' is an EOF marker, possibly including a final block of data,
11036 or possibly empty. If we have the final block of a non-empty
11037 object, record this fact to bypass a subsequent partial read. */
11038 if (rs->buf[0] == 'l' && offset + i > 0)
11039 {
11040 rs->finished_object = xstrdup (object_name);
11041 rs->finished_annex = xstrdup (annex ? annex : "");
11042 rs->finished_offset = offset + i;
11043 }
11044
11045 if (i == 0)
11046 return TARGET_XFER_EOF;
11047 else
11048 {
11049 *xfered_len = i;
11050 return TARGET_XFER_OK;
11051 }
11052 }
11053
11054 enum target_xfer_status
11055 remote_target::xfer_partial (enum target_object object,
11056 const char *annex, gdb_byte *readbuf,
11057 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11058 ULONGEST *xfered_len)
11059 {
11060 struct remote_state *rs;
11061 int i;
11062 char *p2;
11063 char query_type;
11064 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11065
11066 set_remote_traceframe ();
11067 set_general_thread (inferior_ptid);
11068
11069 rs = get_remote_state ();
11070
11071 /* Handle memory using the standard memory routines. */
11072 if (object == TARGET_OBJECT_MEMORY)
11073 {
11074 /* If the remote target is connected but not running, we should
11075 pass this request down to a lower stratum (e.g. the executable
11076 file). */
11077 if (!target_has_execution ())
11078 return TARGET_XFER_EOF;
11079
11080 if (writebuf != NULL)
11081 return remote_write_bytes (offset, writebuf, len, unit_size,
11082 xfered_len);
11083 else
11084 return remote_read_bytes (offset, readbuf, len, unit_size,
11085 xfered_len);
11086 }
11087
11088 /* Handle extra signal info using qxfer packets. */
11089 if (object == TARGET_OBJECT_SIGNAL_INFO)
11090 {
11091 if (readbuf)
11092 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11093 xfered_len, &remote_protocol_packets
11094 [PACKET_qXfer_siginfo_read]);
11095 else
11096 return remote_write_qxfer ("siginfo", annex,
11097 writebuf, offset, len, xfered_len,
11098 &remote_protocol_packets
11099 [PACKET_qXfer_siginfo_write]);
11100 }
11101
11102 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11103 {
11104 if (readbuf)
11105 return remote_read_qxfer ("statictrace", annex,
11106 readbuf, offset, len, xfered_len,
11107 &remote_protocol_packets
11108 [PACKET_qXfer_statictrace_read]);
11109 else
11110 return TARGET_XFER_E_IO;
11111 }
11112
11113 /* Only handle flash writes. */
11114 if (writebuf != NULL)
11115 {
11116 switch (object)
11117 {
11118 case TARGET_OBJECT_FLASH:
11119 return remote_flash_write (offset, len, xfered_len,
11120 writebuf);
11121
11122 default:
11123 return TARGET_XFER_E_IO;
11124 }
11125 }
11126
11127 /* Map pre-existing objects onto letters. DO NOT do this for new
11128 objects!!! Instead specify new query packets. */
11129 switch (object)
11130 {
11131 case TARGET_OBJECT_AVR:
11132 query_type = 'R';
11133 break;
11134
11135 case TARGET_OBJECT_AUXV:
11136 gdb_assert (annex == NULL);
11137 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11138 xfered_len,
11139 &remote_protocol_packets[PACKET_qXfer_auxv]);
11140
11141 case TARGET_OBJECT_AVAILABLE_FEATURES:
11142 return remote_read_qxfer
11143 ("features", annex, readbuf, offset, len, xfered_len,
11144 &remote_protocol_packets[PACKET_qXfer_features]);
11145
11146 case TARGET_OBJECT_LIBRARIES:
11147 return remote_read_qxfer
11148 ("libraries", annex, readbuf, offset, len, xfered_len,
11149 &remote_protocol_packets[PACKET_qXfer_libraries]);
11150
11151 case TARGET_OBJECT_LIBRARIES_SVR4:
11152 return remote_read_qxfer
11153 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11154 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11155
11156 case TARGET_OBJECT_MEMORY_MAP:
11157 gdb_assert (annex == NULL);
11158 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11159 xfered_len,
11160 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11161
11162 case TARGET_OBJECT_OSDATA:
11163 /* Should only get here if we're connected. */
11164 gdb_assert (rs->remote_desc);
11165 return remote_read_qxfer
11166 ("osdata", annex, readbuf, offset, len, xfered_len,
11167 &remote_protocol_packets[PACKET_qXfer_osdata]);
11168
11169 case TARGET_OBJECT_THREADS:
11170 gdb_assert (annex == NULL);
11171 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11172 xfered_len,
11173 &remote_protocol_packets[PACKET_qXfer_threads]);
11174
11175 case TARGET_OBJECT_TRACEFRAME_INFO:
11176 gdb_assert (annex == NULL);
11177 return remote_read_qxfer
11178 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11179 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11180
11181 case TARGET_OBJECT_FDPIC:
11182 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11183 xfered_len,
11184 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11185
11186 case TARGET_OBJECT_OPENVMS_UIB:
11187 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11188 xfered_len,
11189 &remote_protocol_packets[PACKET_qXfer_uib]);
11190
11191 case TARGET_OBJECT_BTRACE:
11192 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11193 xfered_len,
11194 &remote_protocol_packets[PACKET_qXfer_btrace]);
11195
11196 case TARGET_OBJECT_BTRACE_CONF:
11197 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11198 len, xfered_len,
11199 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11200
11201 case TARGET_OBJECT_EXEC_FILE:
11202 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11203 len, xfered_len,
11204 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11205
11206 default:
11207 return TARGET_XFER_E_IO;
11208 }
11209
11210 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11211 large enough let the caller deal with it. */
11212 if (len < get_remote_packet_size ())
11213 return TARGET_XFER_E_IO;
11214 len = get_remote_packet_size ();
11215
11216 /* Except for querying the minimum buffer size, target must be open. */
11217 if (!rs->remote_desc)
11218 error (_("remote query is only available after target open"));
11219
11220 gdb_assert (annex != NULL);
11221 gdb_assert (readbuf != NULL);
11222
11223 p2 = rs->buf.data ();
11224 *p2++ = 'q';
11225 *p2++ = query_type;
11226
11227 /* We used one buffer char for the remote protocol q command and
11228 another for the query type. As the remote protocol encapsulation
11229 uses 4 chars plus one extra in case we are debugging
11230 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11231 string. */
11232 i = 0;
11233 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11234 {
11235 /* Bad caller may have sent forbidden characters. */
11236 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11237 *p2++ = annex[i];
11238 i++;
11239 }
11240 *p2 = '\0';
11241 gdb_assert (annex[i] == '\0');
11242
11243 i = putpkt (rs->buf);
11244 if (i < 0)
11245 return TARGET_XFER_E_IO;
11246
11247 getpkt (&rs->buf, 0);
11248 strcpy ((char *) readbuf, rs->buf.data ());
11249
11250 *xfered_len = strlen ((char *) readbuf);
11251 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11252 }
11253
11254 /* Implementation of to_get_memory_xfer_limit. */
11255
11256 ULONGEST
11257 remote_target::get_memory_xfer_limit ()
11258 {
11259 return get_memory_write_packet_size ();
11260 }
11261
11262 int
11263 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11264 const gdb_byte *pattern, ULONGEST pattern_len,
11265 CORE_ADDR *found_addrp)
11266 {
11267 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11268 struct remote_state *rs = get_remote_state ();
11269 int max_size = get_memory_write_packet_size ();
11270 struct packet_config *packet =
11271 &remote_protocol_packets[PACKET_qSearch_memory];
11272 /* Number of packet bytes used to encode the pattern;
11273 this could be more than PATTERN_LEN due to escape characters. */
11274 int escaped_pattern_len;
11275 /* Amount of pattern that was encodable in the packet. */
11276 int used_pattern_len;
11277 int i;
11278 int found;
11279 ULONGEST found_addr;
11280
11281 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11282 {
11283 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11284 == len);
11285 };
11286
11287 /* Don't go to the target if we don't have to. This is done before
11288 checking packet_config_support to avoid the possibility that a
11289 success for this edge case means the facility works in
11290 general. */
11291 if (pattern_len > search_space_len)
11292 return 0;
11293 if (pattern_len == 0)
11294 {
11295 *found_addrp = start_addr;
11296 return 1;
11297 }
11298
11299 /* If we already know the packet isn't supported, fall back to the simple
11300 way of searching memory. */
11301
11302 if (packet_config_support (packet) == PACKET_DISABLE)
11303 {
11304 /* Target doesn't provided special support, fall back and use the
11305 standard support (copy memory and do the search here). */
11306 return simple_search_memory (read_memory, start_addr, search_space_len,
11307 pattern, pattern_len, found_addrp);
11308 }
11309
11310 /* Make sure the remote is pointing at the right process. */
11311 set_general_process ();
11312
11313 /* Insert header. */
11314 i = snprintf (rs->buf.data (), max_size,
11315 "qSearch:memory:%s;%s;",
11316 phex_nz (start_addr, addr_size),
11317 phex_nz (search_space_len, sizeof (search_space_len)));
11318 max_size -= (i + 1);
11319
11320 /* Escape as much data as fits into rs->buf. */
11321 escaped_pattern_len =
11322 remote_escape_output (pattern, pattern_len, 1,
11323 (gdb_byte *) rs->buf.data () + i,
11324 &used_pattern_len, max_size);
11325
11326 /* Bail if the pattern is too large. */
11327 if (used_pattern_len != pattern_len)
11328 error (_("Pattern is too large to transmit to remote target."));
11329
11330 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11331 || getpkt_sane (&rs->buf, 0) < 0
11332 || packet_ok (rs->buf, packet) != PACKET_OK)
11333 {
11334 /* The request may not have worked because the command is not
11335 supported. If so, fall back to the simple way. */
11336 if (packet_config_support (packet) == PACKET_DISABLE)
11337 {
11338 return simple_search_memory (read_memory, start_addr, search_space_len,
11339 pattern, pattern_len, found_addrp);
11340 }
11341 return -1;
11342 }
11343
11344 if (rs->buf[0] == '0')
11345 found = 0;
11346 else if (rs->buf[0] == '1')
11347 {
11348 found = 1;
11349 if (rs->buf[1] != ',')
11350 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11351 unpack_varlen_hex (&rs->buf[2], &found_addr);
11352 *found_addrp = found_addr;
11353 }
11354 else
11355 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11356
11357 return found;
11358 }
11359
11360 void
11361 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11362 {
11363 struct remote_state *rs = get_remote_state ();
11364 char *p = rs->buf.data ();
11365
11366 if (!rs->remote_desc)
11367 error (_("remote rcmd is only available after target open"));
11368
11369 /* Send a NULL command across as an empty command. */
11370 if (command == NULL)
11371 command = "";
11372
11373 /* The query prefix. */
11374 strcpy (rs->buf.data (), "qRcmd,");
11375 p = strchr (rs->buf.data (), '\0');
11376
11377 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11378 > get_remote_packet_size ())
11379 error (_("\"monitor\" command ``%s'' is too long."), command);
11380
11381 /* Encode the actual command. */
11382 bin2hex ((const gdb_byte *) command, p, strlen (command));
11383
11384 if (putpkt (rs->buf) < 0)
11385 error (_("Communication problem with target."));
11386
11387 /* get/display the response */
11388 while (1)
11389 {
11390 char *buf;
11391
11392 /* XXX - see also remote_get_noisy_reply(). */
11393 QUIT; /* Allow user to bail out with ^C. */
11394 rs->buf[0] = '\0';
11395 if (getpkt_sane (&rs->buf, 0) == -1)
11396 {
11397 /* Timeout. Continue to (try to) read responses.
11398 This is better than stopping with an error, assuming the stub
11399 is still executing the (long) monitor command.
11400 If needed, the user can interrupt gdb using C-c, obtaining
11401 an effect similar to stop on timeout. */
11402 continue;
11403 }
11404 buf = rs->buf.data ();
11405 if (buf[0] == '\0')
11406 error (_("Target does not support this command."));
11407 if (buf[0] == 'O' && buf[1] != 'K')
11408 {
11409 remote_console_output (buf + 1); /* 'O' message from stub. */
11410 continue;
11411 }
11412 if (strcmp (buf, "OK") == 0)
11413 break;
11414 if (strlen (buf) == 3 && buf[0] == 'E'
11415 && isdigit (buf[1]) && isdigit (buf[2]))
11416 {
11417 error (_("Protocol error with Rcmd"));
11418 }
11419 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11420 {
11421 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11422
11423 fputc_unfiltered (c, outbuf);
11424 }
11425 break;
11426 }
11427 }
11428
11429 std::vector<mem_region>
11430 remote_target::memory_map ()
11431 {
11432 std::vector<mem_region> result;
11433 gdb::optional<gdb::char_vector> text
11434 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11435
11436 if (text)
11437 result = parse_memory_map (text->data ());
11438
11439 return result;
11440 }
11441
11442 static void
11443 packet_command (const char *args, int from_tty)
11444 {
11445 remote_target *remote = get_current_remote_target ();
11446
11447 if (remote == nullptr)
11448 error (_("command can only be used with remote target"));
11449
11450 remote->packet_command (args, from_tty);
11451 }
11452
11453 void
11454 remote_target::packet_command (const char *args, int from_tty)
11455 {
11456 if (!args)
11457 error (_("remote-packet command requires packet text as argument"));
11458
11459 puts_filtered ("sending: ");
11460 print_packet (args);
11461 puts_filtered ("\n");
11462 putpkt (args);
11463
11464 remote_state *rs = get_remote_state ();
11465
11466 getpkt (&rs->buf, 0);
11467 puts_filtered ("received: ");
11468 print_packet (rs->buf.data ());
11469 puts_filtered ("\n");
11470 }
11471
11472 #if 0
11473 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11474
11475 static void display_thread_info (struct gdb_ext_thread_info *info);
11476
11477 static void threadset_test_cmd (char *cmd, int tty);
11478
11479 static void threadalive_test (char *cmd, int tty);
11480
11481 static void threadlist_test_cmd (char *cmd, int tty);
11482
11483 int get_and_display_threadinfo (threadref *ref);
11484
11485 static void threadinfo_test_cmd (char *cmd, int tty);
11486
11487 static int thread_display_step (threadref *ref, void *context);
11488
11489 static void threadlist_update_test_cmd (char *cmd, int tty);
11490
11491 static void init_remote_threadtests (void);
11492
11493 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11494
11495 static void
11496 threadset_test_cmd (const char *cmd, int tty)
11497 {
11498 int sample_thread = SAMPLE_THREAD;
11499
11500 printf_filtered (_("Remote threadset test\n"));
11501 set_general_thread (sample_thread);
11502 }
11503
11504
11505 static void
11506 threadalive_test (const char *cmd, int tty)
11507 {
11508 int sample_thread = SAMPLE_THREAD;
11509 int pid = inferior_ptid.pid ();
11510 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11511
11512 if (remote_thread_alive (ptid))
11513 printf_filtered ("PASS: Thread alive test\n");
11514 else
11515 printf_filtered ("FAIL: Thread alive test\n");
11516 }
11517
11518 void output_threadid (char *title, threadref *ref);
11519
11520 void
11521 output_threadid (char *title, threadref *ref)
11522 {
11523 char hexid[20];
11524
11525 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11526 hexid[16] = 0;
11527 printf_filtered ("%s %s\n", title, (&hexid[0]));
11528 }
11529
11530 static void
11531 threadlist_test_cmd (const char *cmd, int tty)
11532 {
11533 int startflag = 1;
11534 threadref nextthread;
11535 int done, result_count;
11536 threadref threadlist[3];
11537
11538 printf_filtered ("Remote Threadlist test\n");
11539 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11540 &result_count, &threadlist[0]))
11541 printf_filtered ("FAIL: threadlist test\n");
11542 else
11543 {
11544 threadref *scan = threadlist;
11545 threadref *limit = scan + result_count;
11546
11547 while (scan < limit)
11548 output_threadid (" thread ", scan++);
11549 }
11550 }
11551
11552 void
11553 display_thread_info (struct gdb_ext_thread_info *info)
11554 {
11555 output_threadid ("Threadid: ", &info->threadid);
11556 printf_filtered ("Name: %s\n ", info->shortname);
11557 printf_filtered ("State: %s\n", info->display);
11558 printf_filtered ("other: %s\n\n", info->more_display);
11559 }
11560
11561 int
11562 get_and_display_threadinfo (threadref *ref)
11563 {
11564 int result;
11565 int set;
11566 struct gdb_ext_thread_info threadinfo;
11567
11568 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11569 | TAG_MOREDISPLAY | TAG_DISPLAY;
11570 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11571 display_thread_info (&threadinfo);
11572 return result;
11573 }
11574
11575 static void
11576 threadinfo_test_cmd (const char *cmd, int tty)
11577 {
11578 int athread = SAMPLE_THREAD;
11579 threadref thread;
11580 int set;
11581
11582 int_to_threadref (&thread, athread);
11583 printf_filtered ("Remote Threadinfo test\n");
11584 if (!get_and_display_threadinfo (&thread))
11585 printf_filtered ("FAIL cannot get thread info\n");
11586 }
11587
11588 static int
11589 thread_display_step (threadref *ref, void *context)
11590 {
11591 /* output_threadid(" threadstep ",ref); *//* simple test */
11592 return get_and_display_threadinfo (ref);
11593 }
11594
11595 static void
11596 threadlist_update_test_cmd (const char *cmd, int tty)
11597 {
11598 printf_filtered ("Remote Threadlist update test\n");
11599 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11600 }
11601
11602 static void
11603 init_remote_threadtests (void)
11604 {
11605 add_com ("tlist", class_obscure, threadlist_test_cmd,
11606 _("Fetch and print the remote list of "
11607 "thread identifiers, one pkt only."));
11608 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11609 _("Fetch and display info about one thread."));
11610 add_com ("tset", class_obscure, threadset_test_cmd,
11611 _("Test setting to a different thread."));
11612 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11613 _("Iterate through updating all remote thread info."));
11614 add_com ("talive", class_obscure, threadalive_test,
11615 _("Remote thread alive test."));
11616 }
11617
11618 #endif /* 0 */
11619
11620 /* Convert a thread ID to a string. */
11621
11622 std::string
11623 remote_target::pid_to_str (ptid_t ptid)
11624 {
11625 struct remote_state *rs = get_remote_state ();
11626
11627 if (ptid == null_ptid)
11628 return normal_pid_to_str (ptid);
11629 else if (ptid.is_pid ())
11630 {
11631 /* Printing an inferior target id. */
11632
11633 /* When multi-process extensions are off, there's no way in the
11634 remote protocol to know the remote process id, if there's any
11635 at all. There's one exception --- when we're connected with
11636 target extended-remote, and we manually attached to a process
11637 with "attach PID". We don't record anywhere a flag that
11638 allows us to distinguish that case from the case of
11639 connecting with extended-remote and the stub already being
11640 attached to a process, and reporting yes to qAttached, hence
11641 no smart special casing here. */
11642 if (!remote_multi_process_p (rs))
11643 return "Remote target";
11644
11645 return normal_pid_to_str (ptid);
11646 }
11647 else
11648 {
11649 if (magic_null_ptid == ptid)
11650 return "Thread <main>";
11651 else if (remote_multi_process_p (rs))
11652 if (ptid.lwp () == 0)
11653 return normal_pid_to_str (ptid);
11654 else
11655 return string_printf ("Thread %d.%ld",
11656 ptid.pid (), ptid.lwp ());
11657 else
11658 return string_printf ("Thread %ld", ptid.lwp ());
11659 }
11660 }
11661
11662 /* Get the address of the thread local variable in OBJFILE which is
11663 stored at OFFSET within the thread local storage for thread PTID. */
11664
11665 CORE_ADDR
11666 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11667 CORE_ADDR offset)
11668 {
11669 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11670 {
11671 struct remote_state *rs = get_remote_state ();
11672 char *p = rs->buf.data ();
11673 char *endp = p + get_remote_packet_size ();
11674 enum packet_result result;
11675
11676 strcpy (p, "qGetTLSAddr:");
11677 p += strlen (p);
11678 p = write_ptid (p, endp, ptid);
11679 *p++ = ',';
11680 p += hexnumstr (p, offset);
11681 *p++ = ',';
11682 p += hexnumstr (p, lm);
11683 *p++ = '\0';
11684
11685 putpkt (rs->buf);
11686 getpkt (&rs->buf, 0);
11687 result = packet_ok (rs->buf,
11688 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11689 if (result == PACKET_OK)
11690 {
11691 ULONGEST addr;
11692
11693 unpack_varlen_hex (rs->buf.data (), &addr);
11694 return addr;
11695 }
11696 else if (result == PACKET_UNKNOWN)
11697 throw_error (TLS_GENERIC_ERROR,
11698 _("Remote target doesn't support qGetTLSAddr packet"));
11699 else
11700 throw_error (TLS_GENERIC_ERROR,
11701 _("Remote target failed to process qGetTLSAddr request"));
11702 }
11703 else
11704 throw_error (TLS_GENERIC_ERROR,
11705 _("TLS not supported or disabled on this target"));
11706 /* Not reached. */
11707 return 0;
11708 }
11709
11710 /* Provide thread local base, i.e. Thread Information Block address.
11711 Returns 1 if ptid is found and thread_local_base is non zero. */
11712
11713 bool
11714 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11715 {
11716 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11717 {
11718 struct remote_state *rs = get_remote_state ();
11719 char *p = rs->buf.data ();
11720 char *endp = p + get_remote_packet_size ();
11721 enum packet_result result;
11722
11723 strcpy (p, "qGetTIBAddr:");
11724 p += strlen (p);
11725 p = write_ptid (p, endp, ptid);
11726 *p++ = '\0';
11727
11728 putpkt (rs->buf);
11729 getpkt (&rs->buf, 0);
11730 result = packet_ok (rs->buf,
11731 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11732 if (result == PACKET_OK)
11733 {
11734 ULONGEST val;
11735 unpack_varlen_hex (rs->buf.data (), &val);
11736 if (addr)
11737 *addr = (CORE_ADDR) val;
11738 return true;
11739 }
11740 else if (result == PACKET_UNKNOWN)
11741 error (_("Remote target doesn't support qGetTIBAddr packet"));
11742 else
11743 error (_("Remote target failed to process qGetTIBAddr request"));
11744 }
11745 else
11746 error (_("qGetTIBAddr not supported or disabled on this target"));
11747 /* Not reached. */
11748 return false;
11749 }
11750
11751 /* Support for inferring a target description based on the current
11752 architecture and the size of a 'g' packet. While the 'g' packet
11753 can have any size (since optional registers can be left off the
11754 end), some sizes are easily recognizable given knowledge of the
11755 approximate architecture. */
11756
11757 struct remote_g_packet_guess
11758 {
11759 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11760 : bytes (bytes_),
11761 tdesc (tdesc_)
11762 {
11763 }
11764
11765 int bytes;
11766 const struct target_desc *tdesc;
11767 };
11768
11769 struct remote_g_packet_data : public allocate_on_obstack
11770 {
11771 std::vector<remote_g_packet_guess> guesses;
11772 };
11773
11774 static struct gdbarch_data *remote_g_packet_data_handle;
11775
11776 static void *
11777 remote_g_packet_data_init (struct obstack *obstack)
11778 {
11779 return new (obstack) remote_g_packet_data;
11780 }
11781
11782 void
11783 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11784 const struct target_desc *tdesc)
11785 {
11786 struct remote_g_packet_data *data
11787 = ((struct remote_g_packet_data *)
11788 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11789
11790 gdb_assert (tdesc != NULL);
11791
11792 for (const remote_g_packet_guess &guess : data->guesses)
11793 if (guess.bytes == bytes)
11794 internal_error (__FILE__, __LINE__,
11795 _("Duplicate g packet description added for size %d"),
11796 bytes);
11797
11798 data->guesses.emplace_back (bytes, tdesc);
11799 }
11800
11801 /* Return true if remote_read_description would do anything on this target
11802 and architecture, false otherwise. */
11803
11804 static bool
11805 remote_read_description_p (struct target_ops *target)
11806 {
11807 struct remote_g_packet_data *data
11808 = ((struct remote_g_packet_data *)
11809 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11810
11811 return !data->guesses.empty ();
11812 }
11813
11814 const struct target_desc *
11815 remote_target::read_description ()
11816 {
11817 struct remote_g_packet_data *data
11818 = ((struct remote_g_packet_data *)
11819 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11820
11821 /* Do not try this during initial connection, when we do not know
11822 whether there is a running but stopped thread. */
11823 if (!target_has_execution () || inferior_ptid == null_ptid)
11824 return beneath ()->read_description ();
11825
11826 if (!data->guesses.empty ())
11827 {
11828 int bytes = send_g_packet ();
11829
11830 for (const remote_g_packet_guess &guess : data->guesses)
11831 if (guess.bytes == bytes)
11832 return guess.tdesc;
11833
11834 /* We discard the g packet. A minor optimization would be to
11835 hold on to it, and fill the register cache once we have selected
11836 an architecture, but it's too tricky to do safely. */
11837 }
11838
11839 return beneath ()->read_description ();
11840 }
11841
11842 /* Remote file transfer support. This is host-initiated I/O, not
11843 target-initiated; for target-initiated, see remote-fileio.c. */
11844
11845 /* If *LEFT is at least the length of STRING, copy STRING to
11846 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11847 decrease *LEFT. Otherwise raise an error. */
11848
11849 static void
11850 remote_buffer_add_string (char **buffer, int *left, const char *string)
11851 {
11852 int len = strlen (string);
11853
11854 if (len > *left)
11855 error (_("Packet too long for target."));
11856
11857 memcpy (*buffer, string, len);
11858 *buffer += len;
11859 *left -= len;
11860
11861 /* NUL-terminate the buffer as a convenience, if there is
11862 room. */
11863 if (*left)
11864 **buffer = '\0';
11865 }
11866
11867 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11868 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11869 decrease *LEFT. Otherwise raise an error. */
11870
11871 static void
11872 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11873 int len)
11874 {
11875 if (2 * len > *left)
11876 error (_("Packet too long for target."));
11877
11878 bin2hex (bytes, *buffer, len);
11879 *buffer += 2 * len;
11880 *left -= 2 * len;
11881
11882 /* NUL-terminate the buffer as a convenience, if there is
11883 room. */
11884 if (*left)
11885 **buffer = '\0';
11886 }
11887
11888 /* If *LEFT is large enough, convert VALUE to hex and add it to
11889 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11890 decrease *LEFT. Otherwise raise an error. */
11891
11892 static void
11893 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11894 {
11895 int len = hexnumlen (value);
11896
11897 if (len > *left)
11898 error (_("Packet too long for target."));
11899
11900 hexnumstr (*buffer, value);
11901 *buffer += len;
11902 *left -= len;
11903
11904 /* NUL-terminate the buffer as a convenience, if there is
11905 room. */
11906 if (*left)
11907 **buffer = '\0';
11908 }
11909
11910 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11911 value, *REMOTE_ERRNO to the remote error number or zero if none
11912 was included, and *ATTACHMENT to point to the start of the annex
11913 if any. The length of the packet isn't needed here; there may
11914 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11915
11916 Return 0 if the packet could be parsed, -1 if it could not. If
11917 -1 is returned, the other variables may not be initialized. */
11918
11919 static int
11920 remote_hostio_parse_result (const char *buffer, int *retcode,
11921 int *remote_errno, const char **attachment)
11922 {
11923 char *p, *p2;
11924
11925 *remote_errno = 0;
11926 *attachment = NULL;
11927
11928 if (buffer[0] != 'F')
11929 return -1;
11930
11931 errno = 0;
11932 *retcode = strtol (&buffer[1], &p, 16);
11933 if (errno != 0 || p == &buffer[1])
11934 return -1;
11935
11936 /* Check for ",errno". */
11937 if (*p == ',')
11938 {
11939 errno = 0;
11940 *remote_errno = strtol (p + 1, &p2, 16);
11941 if (errno != 0 || p + 1 == p2)
11942 return -1;
11943 p = p2;
11944 }
11945
11946 /* Check for ";attachment". If there is no attachment, the
11947 packet should end here. */
11948 if (*p == ';')
11949 {
11950 *attachment = p + 1;
11951 return 0;
11952 }
11953 else if (*p == '\0')
11954 return 0;
11955 else
11956 return -1;
11957 }
11958
11959 /* Send a prepared I/O packet to the target and read its response.
11960 The prepared packet is in the global RS->BUF before this function
11961 is called, and the answer is there when we return.
11962
11963 COMMAND_BYTES is the length of the request to send, which may include
11964 binary data. WHICH_PACKET is the packet configuration to check
11965 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11966 is set to the error number and -1 is returned. Otherwise the value
11967 returned by the function is returned.
11968
11969 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11970 attachment is expected; an error will be reported if there's a
11971 mismatch. If one is found, *ATTACHMENT will be set to point into
11972 the packet buffer and *ATTACHMENT_LEN will be set to the
11973 attachment's length. */
11974
11975 int
11976 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11977 int *remote_errno, const char **attachment,
11978 int *attachment_len)
11979 {
11980 struct remote_state *rs = get_remote_state ();
11981 int ret, bytes_read;
11982 const char *attachment_tmp;
11983
11984 if (packet_support (which_packet) == PACKET_DISABLE)
11985 {
11986 *remote_errno = FILEIO_ENOSYS;
11987 return -1;
11988 }
11989
11990 putpkt_binary (rs->buf.data (), command_bytes);
11991 bytes_read = getpkt_sane (&rs->buf, 0);
11992
11993 /* If it timed out, something is wrong. Don't try to parse the
11994 buffer. */
11995 if (bytes_read < 0)
11996 {
11997 *remote_errno = FILEIO_EINVAL;
11998 return -1;
11999 }
12000
12001 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12002 {
12003 case PACKET_ERROR:
12004 *remote_errno = FILEIO_EINVAL;
12005 return -1;
12006 case PACKET_UNKNOWN:
12007 *remote_errno = FILEIO_ENOSYS;
12008 return -1;
12009 case PACKET_OK:
12010 break;
12011 }
12012
12013 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12014 &attachment_tmp))
12015 {
12016 *remote_errno = FILEIO_EINVAL;
12017 return -1;
12018 }
12019
12020 /* Make sure we saw an attachment if and only if we expected one. */
12021 if ((attachment_tmp == NULL && attachment != NULL)
12022 || (attachment_tmp != NULL && attachment == NULL))
12023 {
12024 *remote_errno = FILEIO_EINVAL;
12025 return -1;
12026 }
12027
12028 /* If an attachment was found, it must point into the packet buffer;
12029 work out how many bytes there were. */
12030 if (attachment_tmp != NULL)
12031 {
12032 *attachment = attachment_tmp;
12033 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12034 }
12035
12036 return ret;
12037 }
12038
12039 /* See declaration.h. */
12040
12041 void
12042 readahead_cache::invalidate ()
12043 {
12044 this->fd = -1;
12045 }
12046
12047 /* See declaration.h. */
12048
12049 void
12050 readahead_cache::invalidate_fd (int fd)
12051 {
12052 if (this->fd == fd)
12053 this->fd = -1;
12054 }
12055
12056 /* Set the filesystem remote_hostio functions that take FILENAME
12057 arguments will use. Return 0 on success, or -1 if an error
12058 occurs (and set *REMOTE_ERRNO). */
12059
12060 int
12061 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12062 int *remote_errno)
12063 {
12064 struct remote_state *rs = get_remote_state ();
12065 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12066 char *p = rs->buf.data ();
12067 int left = get_remote_packet_size () - 1;
12068 char arg[9];
12069 int ret;
12070
12071 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12072 return 0;
12073
12074 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12075 return 0;
12076
12077 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12078
12079 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12080 remote_buffer_add_string (&p, &left, arg);
12081
12082 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12083 remote_errno, NULL, NULL);
12084
12085 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12086 return 0;
12087
12088 if (ret == 0)
12089 rs->fs_pid = required_pid;
12090
12091 return ret;
12092 }
12093
12094 /* Implementation of to_fileio_open. */
12095
12096 int
12097 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12098 int flags, int mode, int warn_if_slow,
12099 int *remote_errno)
12100 {
12101 struct remote_state *rs = get_remote_state ();
12102 char *p = rs->buf.data ();
12103 int left = get_remote_packet_size () - 1;
12104
12105 if (warn_if_slow)
12106 {
12107 static int warning_issued = 0;
12108
12109 printf_unfiltered (_("Reading %s from remote target...\n"),
12110 filename);
12111
12112 if (!warning_issued)
12113 {
12114 warning (_("File transfers from remote targets can be slow."
12115 " Use \"set sysroot\" to access files locally"
12116 " instead."));
12117 warning_issued = 1;
12118 }
12119 }
12120
12121 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12122 return -1;
12123
12124 remote_buffer_add_string (&p, &left, "vFile:open:");
12125
12126 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12127 strlen (filename));
12128 remote_buffer_add_string (&p, &left, ",");
12129
12130 remote_buffer_add_int (&p, &left, flags);
12131 remote_buffer_add_string (&p, &left, ",");
12132
12133 remote_buffer_add_int (&p, &left, mode);
12134
12135 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12136 remote_errno, NULL, NULL);
12137 }
12138
12139 int
12140 remote_target::fileio_open (struct inferior *inf, const char *filename,
12141 int flags, int mode, int warn_if_slow,
12142 int *remote_errno)
12143 {
12144 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12145 remote_errno);
12146 }
12147
12148 /* Implementation of to_fileio_pwrite. */
12149
12150 int
12151 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12152 ULONGEST offset, int *remote_errno)
12153 {
12154 struct remote_state *rs = get_remote_state ();
12155 char *p = rs->buf.data ();
12156 int left = get_remote_packet_size ();
12157 int out_len;
12158
12159 rs->readahead_cache.invalidate_fd (fd);
12160
12161 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12162
12163 remote_buffer_add_int (&p, &left, fd);
12164 remote_buffer_add_string (&p, &left, ",");
12165
12166 remote_buffer_add_int (&p, &left, offset);
12167 remote_buffer_add_string (&p, &left, ",");
12168
12169 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12170 (get_remote_packet_size ()
12171 - (p - rs->buf.data ())));
12172
12173 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12174 remote_errno, NULL, NULL);
12175 }
12176
12177 int
12178 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12179 ULONGEST offset, int *remote_errno)
12180 {
12181 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12182 }
12183
12184 /* Helper for the implementation of to_fileio_pread. Read the file
12185 from the remote side with vFile:pread. */
12186
12187 int
12188 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12189 ULONGEST offset, int *remote_errno)
12190 {
12191 struct remote_state *rs = get_remote_state ();
12192 char *p = rs->buf.data ();
12193 const char *attachment;
12194 int left = get_remote_packet_size ();
12195 int ret, attachment_len;
12196 int read_len;
12197
12198 remote_buffer_add_string (&p, &left, "vFile:pread:");
12199
12200 remote_buffer_add_int (&p, &left, fd);
12201 remote_buffer_add_string (&p, &left, ",");
12202
12203 remote_buffer_add_int (&p, &left, len);
12204 remote_buffer_add_string (&p, &left, ",");
12205
12206 remote_buffer_add_int (&p, &left, offset);
12207
12208 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12209 remote_errno, &attachment,
12210 &attachment_len);
12211
12212 if (ret < 0)
12213 return ret;
12214
12215 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12216 read_buf, len);
12217 if (read_len != ret)
12218 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12219
12220 return ret;
12221 }
12222
12223 /* See declaration.h. */
12224
12225 int
12226 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12227 ULONGEST offset)
12228 {
12229 if (this->fd == fd
12230 && this->offset <= offset
12231 && offset < this->offset + this->bufsize)
12232 {
12233 ULONGEST max = this->offset + this->bufsize;
12234
12235 if (offset + len > max)
12236 len = max - offset;
12237
12238 memcpy (read_buf, this->buf + offset - this->offset, len);
12239 return len;
12240 }
12241
12242 return 0;
12243 }
12244
12245 /* Implementation of to_fileio_pread. */
12246
12247 int
12248 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12249 ULONGEST offset, int *remote_errno)
12250 {
12251 int ret;
12252 struct remote_state *rs = get_remote_state ();
12253 readahead_cache *cache = &rs->readahead_cache;
12254
12255 ret = cache->pread (fd, read_buf, len, offset);
12256 if (ret > 0)
12257 {
12258 cache->hit_count++;
12259
12260 remote_debug_printf ("readahead cache hit %s",
12261 pulongest (cache->hit_count));
12262 return ret;
12263 }
12264
12265 cache->miss_count++;
12266
12267 remote_debug_printf ("readahead cache miss %s",
12268 pulongest (cache->miss_count));
12269
12270 cache->fd = fd;
12271 cache->offset = offset;
12272 cache->bufsize = get_remote_packet_size ();
12273 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12274
12275 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12276 cache->offset, remote_errno);
12277 if (ret <= 0)
12278 {
12279 cache->invalidate_fd (fd);
12280 return ret;
12281 }
12282
12283 cache->bufsize = ret;
12284 return cache->pread (fd, read_buf, len, offset);
12285 }
12286
12287 int
12288 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12289 ULONGEST offset, int *remote_errno)
12290 {
12291 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12292 }
12293
12294 /* Implementation of to_fileio_close. */
12295
12296 int
12297 remote_target::remote_hostio_close (int fd, int *remote_errno)
12298 {
12299 struct remote_state *rs = get_remote_state ();
12300 char *p = rs->buf.data ();
12301 int left = get_remote_packet_size () - 1;
12302
12303 rs->readahead_cache.invalidate_fd (fd);
12304
12305 remote_buffer_add_string (&p, &left, "vFile:close:");
12306
12307 remote_buffer_add_int (&p, &left, fd);
12308
12309 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12310 remote_errno, NULL, NULL);
12311 }
12312
12313 int
12314 remote_target::fileio_close (int fd, int *remote_errno)
12315 {
12316 return remote_hostio_close (fd, remote_errno);
12317 }
12318
12319 /* Implementation of to_fileio_unlink. */
12320
12321 int
12322 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12323 int *remote_errno)
12324 {
12325 struct remote_state *rs = get_remote_state ();
12326 char *p = rs->buf.data ();
12327 int left = get_remote_packet_size () - 1;
12328
12329 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12330 return -1;
12331
12332 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12333
12334 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12335 strlen (filename));
12336
12337 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12338 remote_errno, NULL, NULL);
12339 }
12340
12341 int
12342 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12343 int *remote_errno)
12344 {
12345 return remote_hostio_unlink (inf, filename, remote_errno);
12346 }
12347
12348 /* Implementation of to_fileio_readlink. */
12349
12350 gdb::optional<std::string>
12351 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12352 int *remote_errno)
12353 {
12354 struct remote_state *rs = get_remote_state ();
12355 char *p = rs->buf.data ();
12356 const char *attachment;
12357 int left = get_remote_packet_size ();
12358 int len, attachment_len;
12359 int read_len;
12360
12361 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12362 return {};
12363
12364 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12365
12366 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12367 strlen (filename));
12368
12369 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12370 remote_errno, &attachment,
12371 &attachment_len);
12372
12373 if (len < 0)
12374 return {};
12375
12376 std::string ret (len, '\0');
12377
12378 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12379 (gdb_byte *) &ret[0], len);
12380 if (read_len != len)
12381 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12382
12383 return ret;
12384 }
12385
12386 /* Implementation of to_fileio_fstat. */
12387
12388 int
12389 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12390 {
12391 struct remote_state *rs = get_remote_state ();
12392 char *p = rs->buf.data ();
12393 int left = get_remote_packet_size ();
12394 int attachment_len, ret;
12395 const char *attachment;
12396 struct fio_stat fst;
12397 int read_len;
12398
12399 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12400
12401 remote_buffer_add_int (&p, &left, fd);
12402
12403 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12404 remote_errno, &attachment,
12405 &attachment_len);
12406 if (ret < 0)
12407 {
12408 if (*remote_errno != FILEIO_ENOSYS)
12409 return ret;
12410
12411 /* Strictly we should return -1, ENOSYS here, but when
12412 "set sysroot remote:" was implemented in August 2008
12413 BFD's need for a stat function was sidestepped with
12414 this hack. This was not remedied until March 2015
12415 so we retain the previous behavior to avoid breaking
12416 compatibility.
12417
12418 Note that the memset is a March 2015 addition; older
12419 GDBs set st_size *and nothing else* so the structure
12420 would have garbage in all other fields. This might
12421 break something but retaining the previous behavior
12422 here would be just too wrong. */
12423
12424 memset (st, 0, sizeof (struct stat));
12425 st->st_size = INT_MAX;
12426 return 0;
12427 }
12428
12429 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12430 (gdb_byte *) &fst, sizeof (fst));
12431
12432 if (read_len != ret)
12433 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12434
12435 if (read_len != sizeof (fst))
12436 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12437 read_len, (int) sizeof (fst));
12438
12439 remote_fileio_to_host_stat (&fst, st);
12440
12441 return 0;
12442 }
12443
12444 /* Implementation of to_filesystem_is_local. */
12445
12446 bool
12447 remote_target::filesystem_is_local ()
12448 {
12449 /* Valgrind GDB presents itself as a remote target but works
12450 on the local filesystem: it does not implement remote get
12451 and users are not expected to set a sysroot. To handle
12452 this case we treat the remote filesystem as local if the
12453 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12454 does not support vFile:open. */
12455 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12456 {
12457 enum packet_support ps = packet_support (PACKET_vFile_open);
12458
12459 if (ps == PACKET_SUPPORT_UNKNOWN)
12460 {
12461 int fd, remote_errno;
12462
12463 /* Try opening a file to probe support. The supplied
12464 filename is irrelevant, we only care about whether
12465 the stub recognizes the packet or not. */
12466 fd = remote_hostio_open (NULL, "just probing",
12467 FILEIO_O_RDONLY, 0700, 0,
12468 &remote_errno);
12469
12470 if (fd >= 0)
12471 remote_hostio_close (fd, &remote_errno);
12472
12473 ps = packet_support (PACKET_vFile_open);
12474 }
12475
12476 if (ps == PACKET_DISABLE)
12477 {
12478 static int warning_issued = 0;
12479
12480 if (!warning_issued)
12481 {
12482 warning (_("remote target does not support file"
12483 " transfer, attempting to access files"
12484 " from local filesystem."));
12485 warning_issued = 1;
12486 }
12487
12488 return true;
12489 }
12490 }
12491
12492 return false;
12493 }
12494
12495 static int
12496 remote_fileio_errno_to_host (int errnum)
12497 {
12498 switch (errnum)
12499 {
12500 case FILEIO_EPERM:
12501 return EPERM;
12502 case FILEIO_ENOENT:
12503 return ENOENT;
12504 case FILEIO_EINTR:
12505 return EINTR;
12506 case FILEIO_EIO:
12507 return EIO;
12508 case FILEIO_EBADF:
12509 return EBADF;
12510 case FILEIO_EACCES:
12511 return EACCES;
12512 case FILEIO_EFAULT:
12513 return EFAULT;
12514 case FILEIO_EBUSY:
12515 return EBUSY;
12516 case FILEIO_EEXIST:
12517 return EEXIST;
12518 case FILEIO_ENODEV:
12519 return ENODEV;
12520 case FILEIO_ENOTDIR:
12521 return ENOTDIR;
12522 case FILEIO_EISDIR:
12523 return EISDIR;
12524 case FILEIO_EINVAL:
12525 return EINVAL;
12526 case FILEIO_ENFILE:
12527 return ENFILE;
12528 case FILEIO_EMFILE:
12529 return EMFILE;
12530 case FILEIO_EFBIG:
12531 return EFBIG;
12532 case FILEIO_ENOSPC:
12533 return ENOSPC;
12534 case FILEIO_ESPIPE:
12535 return ESPIPE;
12536 case FILEIO_EROFS:
12537 return EROFS;
12538 case FILEIO_ENOSYS:
12539 return ENOSYS;
12540 case FILEIO_ENAMETOOLONG:
12541 return ENAMETOOLONG;
12542 }
12543 return -1;
12544 }
12545
12546 static char *
12547 remote_hostio_error (int errnum)
12548 {
12549 int host_error = remote_fileio_errno_to_host (errnum);
12550
12551 if (host_error == -1)
12552 error (_("Unknown remote I/O error %d"), errnum);
12553 else
12554 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12555 }
12556
12557 /* A RAII wrapper around a remote file descriptor. */
12558
12559 class scoped_remote_fd
12560 {
12561 public:
12562 scoped_remote_fd (remote_target *remote, int fd)
12563 : m_remote (remote), m_fd (fd)
12564 {
12565 }
12566
12567 ~scoped_remote_fd ()
12568 {
12569 if (m_fd != -1)
12570 {
12571 try
12572 {
12573 int remote_errno;
12574 m_remote->remote_hostio_close (m_fd, &remote_errno);
12575 }
12576 catch (...)
12577 {
12578 /* Swallow exception before it escapes the dtor. If
12579 something goes wrong, likely the connection is gone,
12580 and there's nothing else that can be done. */
12581 }
12582 }
12583 }
12584
12585 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12586
12587 /* Release ownership of the file descriptor, and return it. */
12588 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12589 {
12590 int fd = m_fd;
12591 m_fd = -1;
12592 return fd;
12593 }
12594
12595 /* Return the owned file descriptor. */
12596 int get () const noexcept
12597 {
12598 return m_fd;
12599 }
12600
12601 private:
12602 /* The remote target. */
12603 remote_target *m_remote;
12604
12605 /* The owned remote I/O file descriptor. */
12606 int m_fd;
12607 };
12608
12609 void
12610 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12611 {
12612 remote_target *remote = get_current_remote_target ();
12613
12614 if (remote == nullptr)
12615 error (_("command can only be used with remote target"));
12616
12617 remote->remote_file_put (local_file, remote_file, from_tty);
12618 }
12619
12620 void
12621 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12622 int from_tty)
12623 {
12624 int retcode, remote_errno, bytes, io_size;
12625 int bytes_in_buffer;
12626 int saw_eof;
12627 ULONGEST offset;
12628
12629 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12630 if (file == NULL)
12631 perror_with_name (local_file);
12632
12633 scoped_remote_fd fd
12634 (this, remote_hostio_open (NULL,
12635 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12636 | FILEIO_O_TRUNC),
12637 0700, 0, &remote_errno));
12638 if (fd.get () == -1)
12639 remote_hostio_error (remote_errno);
12640
12641 /* Send up to this many bytes at once. They won't all fit in the
12642 remote packet limit, so we'll transfer slightly fewer. */
12643 io_size = get_remote_packet_size ();
12644 gdb::byte_vector buffer (io_size);
12645
12646 bytes_in_buffer = 0;
12647 saw_eof = 0;
12648 offset = 0;
12649 while (bytes_in_buffer || !saw_eof)
12650 {
12651 if (!saw_eof)
12652 {
12653 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12654 io_size - bytes_in_buffer,
12655 file.get ());
12656 if (bytes == 0)
12657 {
12658 if (ferror (file.get ()))
12659 error (_("Error reading %s."), local_file);
12660 else
12661 {
12662 /* EOF. Unless there is something still in the
12663 buffer from the last iteration, we are done. */
12664 saw_eof = 1;
12665 if (bytes_in_buffer == 0)
12666 break;
12667 }
12668 }
12669 }
12670 else
12671 bytes = 0;
12672
12673 bytes += bytes_in_buffer;
12674 bytes_in_buffer = 0;
12675
12676 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12677 offset, &remote_errno);
12678
12679 if (retcode < 0)
12680 remote_hostio_error (remote_errno);
12681 else if (retcode == 0)
12682 error (_("Remote write of %d bytes returned 0!"), bytes);
12683 else if (retcode < bytes)
12684 {
12685 /* Short write. Save the rest of the read data for the next
12686 write. */
12687 bytes_in_buffer = bytes - retcode;
12688 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12689 }
12690
12691 offset += retcode;
12692 }
12693
12694 if (remote_hostio_close (fd.release (), &remote_errno))
12695 remote_hostio_error (remote_errno);
12696
12697 if (from_tty)
12698 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12699 }
12700
12701 void
12702 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12703 {
12704 remote_target *remote = get_current_remote_target ();
12705
12706 if (remote == nullptr)
12707 error (_("command can only be used with remote target"));
12708
12709 remote->remote_file_get (remote_file, local_file, from_tty);
12710 }
12711
12712 void
12713 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12714 int from_tty)
12715 {
12716 int remote_errno, bytes, io_size;
12717 ULONGEST offset;
12718
12719 scoped_remote_fd fd
12720 (this, remote_hostio_open (NULL,
12721 remote_file, FILEIO_O_RDONLY, 0, 0,
12722 &remote_errno));
12723 if (fd.get () == -1)
12724 remote_hostio_error (remote_errno);
12725
12726 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12727 if (file == NULL)
12728 perror_with_name (local_file);
12729
12730 /* Send up to this many bytes at once. They won't all fit in the
12731 remote packet limit, so we'll transfer slightly fewer. */
12732 io_size = get_remote_packet_size ();
12733 gdb::byte_vector buffer (io_size);
12734
12735 offset = 0;
12736 while (1)
12737 {
12738 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12739 &remote_errno);
12740 if (bytes == 0)
12741 /* Success, but no bytes, means end-of-file. */
12742 break;
12743 if (bytes == -1)
12744 remote_hostio_error (remote_errno);
12745
12746 offset += bytes;
12747
12748 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12749 if (bytes == 0)
12750 perror_with_name (local_file);
12751 }
12752
12753 if (remote_hostio_close (fd.release (), &remote_errno))
12754 remote_hostio_error (remote_errno);
12755
12756 if (from_tty)
12757 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12758 }
12759
12760 void
12761 remote_file_delete (const char *remote_file, int from_tty)
12762 {
12763 remote_target *remote = get_current_remote_target ();
12764
12765 if (remote == nullptr)
12766 error (_("command can only be used with remote target"));
12767
12768 remote->remote_file_delete (remote_file, from_tty);
12769 }
12770
12771 void
12772 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12773 {
12774 int retcode, remote_errno;
12775
12776 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12777 if (retcode == -1)
12778 remote_hostio_error (remote_errno);
12779
12780 if (from_tty)
12781 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12782 }
12783
12784 static void
12785 remote_put_command (const char *args, int from_tty)
12786 {
12787 if (args == NULL)
12788 error_no_arg (_("file to put"));
12789
12790 gdb_argv argv (args);
12791 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12792 error (_("Invalid parameters to remote put"));
12793
12794 remote_file_put (argv[0], argv[1], from_tty);
12795 }
12796
12797 static void
12798 remote_get_command (const char *args, int from_tty)
12799 {
12800 if (args == NULL)
12801 error_no_arg (_("file to get"));
12802
12803 gdb_argv argv (args);
12804 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12805 error (_("Invalid parameters to remote get"));
12806
12807 remote_file_get (argv[0], argv[1], from_tty);
12808 }
12809
12810 static void
12811 remote_delete_command (const char *args, int from_tty)
12812 {
12813 if (args == NULL)
12814 error_no_arg (_("file to delete"));
12815
12816 gdb_argv argv (args);
12817 if (argv[0] == NULL || argv[1] != NULL)
12818 error (_("Invalid parameters to remote delete"));
12819
12820 remote_file_delete (argv[0], from_tty);
12821 }
12822
12823 bool
12824 remote_target::can_execute_reverse ()
12825 {
12826 if (packet_support (PACKET_bs) == PACKET_ENABLE
12827 || packet_support (PACKET_bc) == PACKET_ENABLE)
12828 return true;
12829 else
12830 return false;
12831 }
12832
12833 bool
12834 remote_target::supports_non_stop ()
12835 {
12836 return true;
12837 }
12838
12839 bool
12840 remote_target::supports_disable_randomization ()
12841 {
12842 /* Only supported in extended mode. */
12843 return false;
12844 }
12845
12846 bool
12847 remote_target::supports_multi_process ()
12848 {
12849 struct remote_state *rs = get_remote_state ();
12850
12851 return remote_multi_process_p (rs);
12852 }
12853
12854 static int
12855 remote_supports_cond_tracepoints ()
12856 {
12857 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12858 }
12859
12860 bool
12861 remote_target::supports_evaluation_of_breakpoint_conditions ()
12862 {
12863 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12864 }
12865
12866 static int
12867 remote_supports_fast_tracepoints ()
12868 {
12869 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12870 }
12871
12872 static int
12873 remote_supports_static_tracepoints ()
12874 {
12875 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12876 }
12877
12878 static int
12879 remote_supports_install_in_trace ()
12880 {
12881 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12882 }
12883
12884 bool
12885 remote_target::supports_enable_disable_tracepoint ()
12886 {
12887 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12888 == PACKET_ENABLE);
12889 }
12890
12891 bool
12892 remote_target::supports_string_tracing ()
12893 {
12894 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12895 }
12896
12897 bool
12898 remote_target::can_run_breakpoint_commands ()
12899 {
12900 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12901 }
12902
12903 void
12904 remote_target::trace_init ()
12905 {
12906 struct remote_state *rs = get_remote_state ();
12907
12908 putpkt ("QTinit");
12909 remote_get_noisy_reply ();
12910 if (strcmp (rs->buf.data (), "OK") != 0)
12911 error (_("Target does not support this command."));
12912 }
12913
12914 /* Recursive routine to walk through command list including loops, and
12915 download packets for each command. */
12916
12917 void
12918 remote_target::remote_download_command_source (int num, ULONGEST addr,
12919 struct command_line *cmds)
12920 {
12921 struct remote_state *rs = get_remote_state ();
12922 struct command_line *cmd;
12923
12924 for (cmd = cmds; cmd; cmd = cmd->next)
12925 {
12926 QUIT; /* Allow user to bail out with ^C. */
12927 strcpy (rs->buf.data (), "QTDPsrc:");
12928 encode_source_string (num, addr, "cmd", cmd->line,
12929 rs->buf.data () + strlen (rs->buf.data ()),
12930 rs->buf.size () - strlen (rs->buf.data ()));
12931 putpkt (rs->buf);
12932 remote_get_noisy_reply ();
12933 if (strcmp (rs->buf.data (), "OK"))
12934 warning (_("Target does not support source download."));
12935
12936 if (cmd->control_type == while_control
12937 || cmd->control_type == while_stepping_control)
12938 {
12939 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12940
12941 QUIT; /* Allow user to bail out with ^C. */
12942 strcpy (rs->buf.data (), "QTDPsrc:");
12943 encode_source_string (num, addr, "cmd", "end",
12944 rs->buf.data () + strlen (rs->buf.data ()),
12945 rs->buf.size () - strlen (rs->buf.data ()));
12946 putpkt (rs->buf);
12947 remote_get_noisy_reply ();
12948 if (strcmp (rs->buf.data (), "OK"))
12949 warning (_("Target does not support source download."));
12950 }
12951 }
12952 }
12953
12954 void
12955 remote_target::download_tracepoint (struct bp_location *loc)
12956 {
12957 CORE_ADDR tpaddr;
12958 char addrbuf[40];
12959 std::vector<std::string> tdp_actions;
12960 std::vector<std::string> stepping_actions;
12961 char *pkt;
12962 struct breakpoint *b = loc->owner;
12963 struct tracepoint *t = (struct tracepoint *) b;
12964 struct remote_state *rs = get_remote_state ();
12965 int ret;
12966 const char *err_msg = _("Tracepoint packet too large for target.");
12967 size_t size_left;
12968
12969 /* We use a buffer other than rs->buf because we'll build strings
12970 across multiple statements, and other statements in between could
12971 modify rs->buf. */
12972 gdb::char_vector buf (get_remote_packet_size ());
12973
12974 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12975
12976 tpaddr = loc->address;
12977 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12978 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12979 b->number, addrbuf, /* address */
12980 (b->enable_state == bp_enabled ? 'E' : 'D'),
12981 t->step_count, t->pass_count);
12982
12983 if (ret < 0 || ret >= buf.size ())
12984 error ("%s", err_msg);
12985
12986 /* Fast tracepoints are mostly handled by the target, but we can
12987 tell the target how big of an instruction block should be moved
12988 around. */
12989 if (b->type == bp_fast_tracepoint)
12990 {
12991 /* Only test for support at download time; we may not know
12992 target capabilities at definition time. */
12993 if (remote_supports_fast_tracepoints ())
12994 {
12995 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12996 NULL))
12997 {
12998 size_left = buf.size () - strlen (buf.data ());
12999 ret = snprintf (buf.data () + strlen (buf.data ()),
13000 size_left, ":F%x",
13001 gdb_insn_length (loc->gdbarch, tpaddr));
13002
13003 if (ret < 0 || ret >= size_left)
13004 error ("%s", err_msg);
13005 }
13006 else
13007 /* If it passed validation at definition but fails now,
13008 something is very wrong. */
13009 internal_error (__FILE__, __LINE__,
13010 _("Fast tracepoint not "
13011 "valid during download"));
13012 }
13013 else
13014 /* Fast tracepoints are functionally identical to regular
13015 tracepoints, so don't take lack of support as a reason to
13016 give up on the trace run. */
13017 warning (_("Target does not support fast tracepoints, "
13018 "downloading %d as regular tracepoint"), b->number);
13019 }
13020 else if (b->type == bp_static_tracepoint)
13021 {
13022 /* Only test for support at download time; we may not know
13023 target capabilities at definition time. */
13024 if (remote_supports_static_tracepoints ())
13025 {
13026 struct static_tracepoint_marker marker;
13027
13028 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13029 {
13030 size_left = buf.size () - strlen (buf.data ());
13031 ret = snprintf (buf.data () + strlen (buf.data ()),
13032 size_left, ":S");
13033
13034 if (ret < 0 || ret >= size_left)
13035 error ("%s", err_msg);
13036 }
13037 else
13038 error (_("Static tracepoint not valid during download"));
13039 }
13040 else
13041 /* Fast tracepoints are functionally identical to regular
13042 tracepoints, so don't take lack of support as a reason
13043 to give up on the trace run. */
13044 error (_("Target does not support static tracepoints"));
13045 }
13046 /* If the tracepoint has a conditional, make it into an agent
13047 expression and append to the definition. */
13048 if (loc->cond)
13049 {
13050 /* Only test support at download time, we may not know target
13051 capabilities at definition time. */
13052 if (remote_supports_cond_tracepoints ())
13053 {
13054 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13055 loc->cond.get ());
13056
13057 size_left = buf.size () - strlen (buf.data ());
13058
13059 ret = snprintf (buf.data () + strlen (buf.data ()),
13060 size_left, ":X%x,", aexpr->len);
13061
13062 if (ret < 0 || ret >= size_left)
13063 error ("%s", err_msg);
13064
13065 size_left = buf.size () - strlen (buf.data ());
13066
13067 /* Two bytes to encode each aexpr byte, plus the terminating
13068 null byte. */
13069 if (aexpr->len * 2 + 1 > size_left)
13070 error ("%s", err_msg);
13071
13072 pkt = buf.data () + strlen (buf.data ());
13073
13074 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13075 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13076 *pkt = '\0';
13077 }
13078 else
13079 warning (_("Target does not support conditional tracepoints, "
13080 "ignoring tp %d cond"), b->number);
13081 }
13082
13083 if (b->commands || *default_collect)
13084 {
13085 size_left = buf.size () - strlen (buf.data ());
13086
13087 ret = snprintf (buf.data () + strlen (buf.data ()),
13088 size_left, "-");
13089
13090 if (ret < 0 || ret >= size_left)
13091 error ("%s", err_msg);
13092 }
13093
13094 putpkt (buf.data ());
13095 remote_get_noisy_reply ();
13096 if (strcmp (rs->buf.data (), "OK"))
13097 error (_("Target does not support tracepoints."));
13098
13099 /* do_single_steps (t); */
13100 for (auto action_it = tdp_actions.begin ();
13101 action_it != tdp_actions.end (); action_it++)
13102 {
13103 QUIT; /* Allow user to bail out with ^C. */
13104
13105 bool has_more = ((action_it + 1) != tdp_actions.end ()
13106 || !stepping_actions.empty ());
13107
13108 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13109 b->number, addrbuf, /* address */
13110 action_it->c_str (),
13111 has_more ? '-' : 0);
13112
13113 if (ret < 0 || ret >= buf.size ())
13114 error ("%s", err_msg);
13115
13116 putpkt (buf.data ());
13117 remote_get_noisy_reply ();
13118 if (strcmp (rs->buf.data (), "OK"))
13119 error (_("Error on target while setting tracepoints."));
13120 }
13121
13122 for (auto action_it = stepping_actions.begin ();
13123 action_it != stepping_actions.end (); action_it++)
13124 {
13125 QUIT; /* Allow user to bail out with ^C. */
13126
13127 bool is_first = action_it == stepping_actions.begin ();
13128 bool has_more = (action_it + 1) != stepping_actions.end ();
13129
13130 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13131 b->number, addrbuf, /* address */
13132 is_first ? "S" : "",
13133 action_it->c_str (),
13134 has_more ? "-" : "");
13135
13136 if (ret < 0 || ret >= buf.size ())
13137 error ("%s", err_msg);
13138
13139 putpkt (buf.data ());
13140 remote_get_noisy_reply ();
13141 if (strcmp (rs->buf.data (), "OK"))
13142 error (_("Error on target while setting tracepoints."));
13143 }
13144
13145 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13146 {
13147 if (b->location != NULL)
13148 {
13149 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13150
13151 if (ret < 0 || ret >= buf.size ())
13152 error ("%s", err_msg);
13153
13154 encode_source_string (b->number, loc->address, "at",
13155 event_location_to_string (b->location.get ()),
13156 buf.data () + strlen (buf.data ()),
13157 buf.size () - strlen (buf.data ()));
13158 putpkt (buf.data ());
13159 remote_get_noisy_reply ();
13160 if (strcmp (rs->buf.data (), "OK"))
13161 warning (_("Target does not support source download."));
13162 }
13163 if (b->cond_string)
13164 {
13165 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13166
13167 if (ret < 0 || ret >= buf.size ())
13168 error ("%s", err_msg);
13169
13170 encode_source_string (b->number, loc->address,
13171 "cond", b->cond_string,
13172 buf.data () + strlen (buf.data ()),
13173 buf.size () - strlen (buf.data ()));
13174 putpkt (buf.data ());
13175 remote_get_noisy_reply ();
13176 if (strcmp (rs->buf.data (), "OK"))
13177 warning (_("Target does not support source download."));
13178 }
13179 remote_download_command_source (b->number, loc->address,
13180 breakpoint_commands (b));
13181 }
13182 }
13183
13184 bool
13185 remote_target::can_download_tracepoint ()
13186 {
13187 struct remote_state *rs = get_remote_state ();
13188 struct trace_status *ts;
13189 int status;
13190
13191 /* Don't try to install tracepoints until we've relocated our
13192 symbols, and fetched and merged the target's tracepoint list with
13193 ours. */
13194 if (rs->starting_up)
13195 return false;
13196
13197 ts = current_trace_status ();
13198 status = get_trace_status (ts);
13199
13200 if (status == -1 || !ts->running_known || !ts->running)
13201 return false;
13202
13203 /* If we are in a tracing experiment, but remote stub doesn't support
13204 installing tracepoint in trace, we have to return. */
13205 if (!remote_supports_install_in_trace ())
13206 return false;
13207
13208 return true;
13209 }
13210
13211
13212 void
13213 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13214 {
13215 struct remote_state *rs = get_remote_state ();
13216 char *p;
13217
13218 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13219 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13220 tsv.builtin);
13221 p = rs->buf.data () + strlen (rs->buf.data ());
13222 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13223 >= get_remote_packet_size ())
13224 error (_("Trace state variable name too long for tsv definition packet"));
13225 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13226 *p++ = '\0';
13227 putpkt (rs->buf);
13228 remote_get_noisy_reply ();
13229 if (rs->buf[0] == '\0')
13230 error (_("Target does not support this command."));
13231 if (strcmp (rs->buf.data (), "OK") != 0)
13232 error (_("Error on target while downloading trace state variable."));
13233 }
13234
13235 void
13236 remote_target::enable_tracepoint (struct bp_location *location)
13237 {
13238 struct remote_state *rs = get_remote_state ();
13239
13240 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13241 location->owner->number,
13242 phex (location->address, sizeof (CORE_ADDR)));
13243 putpkt (rs->buf);
13244 remote_get_noisy_reply ();
13245 if (rs->buf[0] == '\0')
13246 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13247 if (strcmp (rs->buf.data (), "OK") != 0)
13248 error (_("Error on target while enabling tracepoint."));
13249 }
13250
13251 void
13252 remote_target::disable_tracepoint (struct bp_location *location)
13253 {
13254 struct remote_state *rs = get_remote_state ();
13255
13256 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13257 location->owner->number,
13258 phex (location->address, sizeof (CORE_ADDR)));
13259 putpkt (rs->buf);
13260 remote_get_noisy_reply ();
13261 if (rs->buf[0] == '\0')
13262 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13263 if (strcmp (rs->buf.data (), "OK") != 0)
13264 error (_("Error on target while disabling tracepoint."));
13265 }
13266
13267 void
13268 remote_target::trace_set_readonly_regions ()
13269 {
13270 asection *s;
13271 bfd_size_type size;
13272 bfd_vma vma;
13273 int anysecs = 0;
13274 int offset = 0;
13275
13276 if (!current_program_space->exec_bfd ())
13277 return; /* No information to give. */
13278
13279 struct remote_state *rs = get_remote_state ();
13280
13281 strcpy (rs->buf.data (), "QTro");
13282 offset = strlen (rs->buf.data ());
13283 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13284 {
13285 char tmp1[40], tmp2[40];
13286 int sec_length;
13287
13288 if ((s->flags & SEC_LOAD) == 0 ||
13289 /* (s->flags & SEC_CODE) == 0 || */
13290 (s->flags & SEC_READONLY) == 0)
13291 continue;
13292
13293 anysecs = 1;
13294 vma = bfd_section_vma (s);
13295 size = bfd_section_size (s);
13296 sprintf_vma (tmp1, vma);
13297 sprintf_vma (tmp2, vma + size);
13298 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13299 if (offset + sec_length + 1 > rs->buf.size ())
13300 {
13301 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13302 warning (_("\
13303 Too many sections for read-only sections definition packet."));
13304 break;
13305 }
13306 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13307 tmp1, tmp2);
13308 offset += sec_length;
13309 }
13310 if (anysecs)
13311 {
13312 putpkt (rs->buf);
13313 getpkt (&rs->buf, 0);
13314 }
13315 }
13316
13317 void
13318 remote_target::trace_start ()
13319 {
13320 struct remote_state *rs = get_remote_state ();
13321
13322 putpkt ("QTStart");
13323 remote_get_noisy_reply ();
13324 if (rs->buf[0] == '\0')
13325 error (_("Target does not support this command."));
13326 if (strcmp (rs->buf.data (), "OK") != 0)
13327 error (_("Bogus reply from target: %s"), rs->buf.data ());
13328 }
13329
13330 int
13331 remote_target::get_trace_status (struct trace_status *ts)
13332 {
13333 /* Initialize it just to avoid a GCC false warning. */
13334 char *p = NULL;
13335 enum packet_result result;
13336 struct remote_state *rs = get_remote_state ();
13337
13338 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13339 return -1;
13340
13341 /* FIXME we need to get register block size some other way. */
13342 trace_regblock_size
13343 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13344
13345 putpkt ("qTStatus");
13346
13347 try
13348 {
13349 p = remote_get_noisy_reply ();
13350 }
13351 catch (const gdb_exception_error &ex)
13352 {
13353 if (ex.error != TARGET_CLOSE_ERROR)
13354 {
13355 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13356 return -1;
13357 }
13358 throw;
13359 }
13360
13361 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13362
13363 /* If the remote target doesn't do tracing, flag it. */
13364 if (result == PACKET_UNKNOWN)
13365 return -1;
13366
13367 /* We're working with a live target. */
13368 ts->filename = NULL;
13369
13370 if (*p++ != 'T')
13371 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13372
13373 /* Function 'parse_trace_status' sets default value of each field of
13374 'ts' at first, so we don't have to do it here. */
13375 parse_trace_status (p, ts);
13376
13377 return ts->running;
13378 }
13379
13380 void
13381 remote_target::get_tracepoint_status (struct breakpoint *bp,
13382 struct uploaded_tp *utp)
13383 {
13384 struct remote_state *rs = get_remote_state ();
13385 char *reply;
13386 struct bp_location *loc;
13387 struct tracepoint *tp = (struct tracepoint *) bp;
13388 size_t size = get_remote_packet_size ();
13389
13390 if (tp)
13391 {
13392 tp->hit_count = 0;
13393 tp->traceframe_usage = 0;
13394 for (loc = tp->loc; loc; loc = loc->next)
13395 {
13396 /* If the tracepoint was never downloaded, don't go asking for
13397 any status. */
13398 if (tp->number_on_target == 0)
13399 continue;
13400 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13401 phex_nz (loc->address, 0));
13402 putpkt (rs->buf);
13403 reply = remote_get_noisy_reply ();
13404 if (reply && *reply)
13405 {
13406 if (*reply == 'V')
13407 parse_tracepoint_status (reply + 1, bp, utp);
13408 }
13409 }
13410 }
13411 else if (utp)
13412 {
13413 utp->hit_count = 0;
13414 utp->traceframe_usage = 0;
13415 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13416 phex_nz (utp->addr, 0));
13417 putpkt (rs->buf);
13418 reply = remote_get_noisy_reply ();
13419 if (reply && *reply)
13420 {
13421 if (*reply == 'V')
13422 parse_tracepoint_status (reply + 1, bp, utp);
13423 }
13424 }
13425 }
13426
13427 void
13428 remote_target::trace_stop ()
13429 {
13430 struct remote_state *rs = get_remote_state ();
13431
13432 putpkt ("QTStop");
13433 remote_get_noisy_reply ();
13434 if (rs->buf[0] == '\0')
13435 error (_("Target does not support this command."));
13436 if (strcmp (rs->buf.data (), "OK") != 0)
13437 error (_("Bogus reply from target: %s"), rs->buf.data ());
13438 }
13439
13440 int
13441 remote_target::trace_find (enum trace_find_type type, int num,
13442 CORE_ADDR addr1, CORE_ADDR addr2,
13443 int *tpp)
13444 {
13445 struct remote_state *rs = get_remote_state ();
13446 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13447 char *p, *reply;
13448 int target_frameno = -1, target_tracept = -1;
13449
13450 /* Lookups other than by absolute frame number depend on the current
13451 trace selected, so make sure it is correct on the remote end
13452 first. */
13453 if (type != tfind_number)
13454 set_remote_traceframe ();
13455
13456 p = rs->buf.data ();
13457 strcpy (p, "QTFrame:");
13458 p = strchr (p, '\0');
13459 switch (type)
13460 {
13461 case tfind_number:
13462 xsnprintf (p, endbuf - p, "%x", num);
13463 break;
13464 case tfind_pc:
13465 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13466 break;
13467 case tfind_tp:
13468 xsnprintf (p, endbuf - p, "tdp:%x", num);
13469 break;
13470 case tfind_range:
13471 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13472 phex_nz (addr2, 0));
13473 break;
13474 case tfind_outside:
13475 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13476 phex_nz (addr2, 0));
13477 break;
13478 default:
13479 error (_("Unknown trace find type %d"), type);
13480 }
13481
13482 putpkt (rs->buf);
13483 reply = remote_get_noisy_reply ();
13484 if (*reply == '\0')
13485 error (_("Target does not support this command."));
13486
13487 while (reply && *reply)
13488 switch (*reply)
13489 {
13490 case 'F':
13491 p = ++reply;
13492 target_frameno = (int) strtol (p, &reply, 16);
13493 if (reply == p)
13494 error (_("Unable to parse trace frame number"));
13495 /* Don't update our remote traceframe number cache on failure
13496 to select a remote traceframe. */
13497 if (target_frameno == -1)
13498 return -1;
13499 break;
13500 case 'T':
13501 p = ++reply;
13502 target_tracept = (int) strtol (p, &reply, 16);
13503 if (reply == p)
13504 error (_("Unable to parse tracepoint number"));
13505 break;
13506 case 'O': /* "OK"? */
13507 if (reply[1] == 'K' && reply[2] == '\0')
13508 reply += 2;
13509 else
13510 error (_("Bogus reply from target: %s"), reply);
13511 break;
13512 default:
13513 error (_("Bogus reply from target: %s"), reply);
13514 }
13515 if (tpp)
13516 *tpp = target_tracept;
13517
13518 rs->remote_traceframe_number = target_frameno;
13519 return target_frameno;
13520 }
13521
13522 bool
13523 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13524 {
13525 struct remote_state *rs = get_remote_state ();
13526 char *reply;
13527 ULONGEST uval;
13528
13529 set_remote_traceframe ();
13530
13531 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13532 putpkt (rs->buf);
13533 reply = remote_get_noisy_reply ();
13534 if (reply && *reply)
13535 {
13536 if (*reply == 'V')
13537 {
13538 unpack_varlen_hex (reply + 1, &uval);
13539 *val = (LONGEST) uval;
13540 return true;
13541 }
13542 }
13543 return false;
13544 }
13545
13546 int
13547 remote_target::save_trace_data (const char *filename)
13548 {
13549 struct remote_state *rs = get_remote_state ();
13550 char *p, *reply;
13551
13552 p = rs->buf.data ();
13553 strcpy (p, "QTSave:");
13554 p += strlen (p);
13555 if ((p - rs->buf.data ()) + strlen (filename) * 2
13556 >= get_remote_packet_size ())
13557 error (_("Remote file name too long for trace save packet"));
13558 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13559 *p++ = '\0';
13560 putpkt (rs->buf);
13561 reply = remote_get_noisy_reply ();
13562 if (*reply == '\0')
13563 error (_("Target does not support this command."));
13564 if (strcmp (reply, "OK") != 0)
13565 error (_("Bogus reply from target: %s"), reply);
13566 return 0;
13567 }
13568
13569 /* This is basically a memory transfer, but needs to be its own packet
13570 because we don't know how the target actually organizes its trace
13571 memory, plus we want to be able to ask for as much as possible, but
13572 not be unhappy if we don't get as much as we ask for. */
13573
13574 LONGEST
13575 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13576 {
13577 struct remote_state *rs = get_remote_state ();
13578 char *reply;
13579 char *p;
13580 int rslt;
13581
13582 p = rs->buf.data ();
13583 strcpy (p, "qTBuffer:");
13584 p += strlen (p);
13585 p += hexnumstr (p, offset);
13586 *p++ = ',';
13587 p += hexnumstr (p, len);
13588 *p++ = '\0';
13589
13590 putpkt (rs->buf);
13591 reply = remote_get_noisy_reply ();
13592 if (reply && *reply)
13593 {
13594 /* 'l' by itself means we're at the end of the buffer and
13595 there is nothing more to get. */
13596 if (*reply == 'l')
13597 return 0;
13598
13599 /* Convert the reply into binary. Limit the number of bytes to
13600 convert according to our passed-in buffer size, rather than
13601 what was returned in the packet; if the target is
13602 unexpectedly generous and gives us a bigger reply than we
13603 asked for, we don't want to crash. */
13604 rslt = hex2bin (reply, buf, len);
13605 return rslt;
13606 }
13607
13608 /* Something went wrong, flag as an error. */
13609 return -1;
13610 }
13611
13612 void
13613 remote_target::set_disconnected_tracing (int val)
13614 {
13615 struct remote_state *rs = get_remote_state ();
13616
13617 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13618 {
13619 char *reply;
13620
13621 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13622 "QTDisconnected:%x", val);
13623 putpkt (rs->buf);
13624 reply = remote_get_noisy_reply ();
13625 if (*reply == '\0')
13626 error (_("Target does not support this command."));
13627 if (strcmp (reply, "OK") != 0)
13628 error (_("Bogus reply from target: %s"), reply);
13629 }
13630 else if (val)
13631 warning (_("Target does not support disconnected tracing."));
13632 }
13633
13634 int
13635 remote_target::core_of_thread (ptid_t ptid)
13636 {
13637 thread_info *info = find_thread_ptid (this, ptid);
13638
13639 if (info != NULL && info->priv != NULL)
13640 return get_remote_thread_info (info)->core;
13641
13642 return -1;
13643 }
13644
13645 void
13646 remote_target::set_circular_trace_buffer (int val)
13647 {
13648 struct remote_state *rs = get_remote_state ();
13649 char *reply;
13650
13651 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13652 "QTBuffer:circular:%x", val);
13653 putpkt (rs->buf);
13654 reply = remote_get_noisy_reply ();
13655 if (*reply == '\0')
13656 error (_("Target does not support this command."));
13657 if (strcmp (reply, "OK") != 0)
13658 error (_("Bogus reply from target: %s"), reply);
13659 }
13660
13661 traceframe_info_up
13662 remote_target::traceframe_info ()
13663 {
13664 gdb::optional<gdb::char_vector> text
13665 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13666 NULL);
13667 if (text)
13668 return parse_traceframe_info (text->data ());
13669
13670 return NULL;
13671 }
13672
13673 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13674 instruction on which a fast tracepoint may be placed. Returns -1
13675 if the packet is not supported, and 0 if the minimum instruction
13676 length is unknown. */
13677
13678 int
13679 remote_target::get_min_fast_tracepoint_insn_len ()
13680 {
13681 struct remote_state *rs = get_remote_state ();
13682 char *reply;
13683
13684 /* If we're not debugging a process yet, the IPA can't be
13685 loaded. */
13686 if (!target_has_execution ())
13687 return 0;
13688
13689 /* Make sure the remote is pointing at the right process. */
13690 set_general_process ();
13691
13692 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13693 putpkt (rs->buf);
13694 reply = remote_get_noisy_reply ();
13695 if (*reply == '\0')
13696 return -1;
13697 else
13698 {
13699 ULONGEST min_insn_len;
13700
13701 unpack_varlen_hex (reply, &min_insn_len);
13702
13703 return (int) min_insn_len;
13704 }
13705 }
13706
13707 void
13708 remote_target::set_trace_buffer_size (LONGEST val)
13709 {
13710 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13711 {
13712 struct remote_state *rs = get_remote_state ();
13713 char *buf = rs->buf.data ();
13714 char *endbuf = buf + get_remote_packet_size ();
13715 enum packet_result result;
13716
13717 gdb_assert (val >= 0 || val == -1);
13718 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13719 /* Send -1 as literal "-1" to avoid host size dependency. */
13720 if (val < 0)
13721 {
13722 *buf++ = '-';
13723 buf += hexnumstr (buf, (ULONGEST) -val);
13724 }
13725 else
13726 buf += hexnumstr (buf, (ULONGEST) val);
13727
13728 putpkt (rs->buf);
13729 remote_get_noisy_reply ();
13730 result = packet_ok (rs->buf,
13731 &remote_protocol_packets[PACKET_QTBuffer_size]);
13732
13733 if (result != PACKET_OK)
13734 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13735 }
13736 }
13737
13738 bool
13739 remote_target::set_trace_notes (const char *user, const char *notes,
13740 const char *stop_notes)
13741 {
13742 struct remote_state *rs = get_remote_state ();
13743 char *reply;
13744 char *buf = rs->buf.data ();
13745 char *endbuf = buf + get_remote_packet_size ();
13746 int nbytes;
13747
13748 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13749 if (user)
13750 {
13751 buf += xsnprintf (buf, endbuf - buf, "user:");
13752 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13753 buf += 2 * nbytes;
13754 *buf++ = ';';
13755 }
13756 if (notes)
13757 {
13758 buf += xsnprintf (buf, endbuf - buf, "notes:");
13759 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13760 buf += 2 * nbytes;
13761 *buf++ = ';';
13762 }
13763 if (stop_notes)
13764 {
13765 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13766 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13767 buf += 2 * nbytes;
13768 *buf++ = ';';
13769 }
13770 /* Ensure the buffer is terminated. */
13771 *buf = '\0';
13772
13773 putpkt (rs->buf);
13774 reply = remote_get_noisy_reply ();
13775 if (*reply == '\0')
13776 return false;
13777
13778 if (strcmp (reply, "OK") != 0)
13779 error (_("Bogus reply from target: %s"), reply);
13780
13781 return true;
13782 }
13783
13784 bool
13785 remote_target::use_agent (bool use)
13786 {
13787 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13788 {
13789 struct remote_state *rs = get_remote_state ();
13790
13791 /* If the stub supports QAgent. */
13792 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13793 putpkt (rs->buf);
13794 getpkt (&rs->buf, 0);
13795
13796 if (strcmp (rs->buf.data (), "OK") == 0)
13797 {
13798 ::use_agent = use;
13799 return true;
13800 }
13801 }
13802
13803 return false;
13804 }
13805
13806 bool
13807 remote_target::can_use_agent ()
13808 {
13809 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13810 }
13811
13812 struct btrace_target_info
13813 {
13814 /* The ptid of the traced thread. */
13815 ptid_t ptid;
13816
13817 /* The obtained branch trace configuration. */
13818 struct btrace_config conf;
13819 };
13820
13821 /* Reset our idea of our target's btrace configuration. */
13822
13823 static void
13824 remote_btrace_reset (remote_state *rs)
13825 {
13826 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13827 }
13828
13829 /* Synchronize the configuration with the target. */
13830
13831 void
13832 remote_target::btrace_sync_conf (const btrace_config *conf)
13833 {
13834 struct packet_config *packet;
13835 struct remote_state *rs;
13836 char *buf, *pos, *endbuf;
13837
13838 rs = get_remote_state ();
13839 buf = rs->buf.data ();
13840 endbuf = buf + get_remote_packet_size ();
13841
13842 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13843 if (packet_config_support (packet) == PACKET_ENABLE
13844 && conf->bts.size != rs->btrace_config.bts.size)
13845 {
13846 pos = buf;
13847 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13848 conf->bts.size);
13849
13850 putpkt (buf);
13851 getpkt (&rs->buf, 0);
13852
13853 if (packet_ok (buf, packet) == PACKET_ERROR)
13854 {
13855 if (buf[0] == 'E' && buf[1] == '.')
13856 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13857 else
13858 error (_("Failed to configure the BTS buffer size."));
13859 }
13860
13861 rs->btrace_config.bts.size = conf->bts.size;
13862 }
13863
13864 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13865 if (packet_config_support (packet) == PACKET_ENABLE
13866 && conf->pt.size != rs->btrace_config.pt.size)
13867 {
13868 pos = buf;
13869 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13870 conf->pt.size);
13871
13872 putpkt (buf);
13873 getpkt (&rs->buf, 0);
13874
13875 if (packet_ok (buf, packet) == PACKET_ERROR)
13876 {
13877 if (buf[0] == 'E' && buf[1] == '.')
13878 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13879 else
13880 error (_("Failed to configure the trace buffer size."));
13881 }
13882
13883 rs->btrace_config.pt.size = conf->pt.size;
13884 }
13885 }
13886
13887 /* Read the current thread's btrace configuration from the target and
13888 store it into CONF. */
13889
13890 static void
13891 btrace_read_config (struct btrace_config *conf)
13892 {
13893 gdb::optional<gdb::char_vector> xml
13894 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13895 if (xml)
13896 parse_xml_btrace_conf (conf, xml->data ());
13897 }
13898
13899 /* Maybe reopen target btrace. */
13900
13901 void
13902 remote_target::remote_btrace_maybe_reopen ()
13903 {
13904 struct remote_state *rs = get_remote_state ();
13905 int btrace_target_pushed = 0;
13906 #if !defined (HAVE_LIBIPT)
13907 int warned = 0;
13908 #endif
13909
13910 /* Don't bother walking the entirety of the remote thread list when
13911 we know the feature isn't supported by the remote. */
13912 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13913 return;
13914
13915 scoped_restore_current_thread restore_thread;
13916
13917 for (thread_info *tp : all_non_exited_threads (this))
13918 {
13919 set_general_thread (tp->ptid);
13920
13921 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13922 btrace_read_config (&rs->btrace_config);
13923
13924 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13925 continue;
13926
13927 #if !defined (HAVE_LIBIPT)
13928 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13929 {
13930 if (!warned)
13931 {
13932 warned = 1;
13933 warning (_("Target is recording using Intel Processor Trace "
13934 "but support was disabled at compile time."));
13935 }
13936
13937 continue;
13938 }
13939 #endif /* !defined (HAVE_LIBIPT) */
13940
13941 /* Push target, once, but before anything else happens. This way our
13942 changes to the threads will be cleaned up by unpushing the target
13943 in case btrace_read_config () throws. */
13944 if (!btrace_target_pushed)
13945 {
13946 btrace_target_pushed = 1;
13947 record_btrace_push_target ();
13948 printf_filtered (_("Target is recording using %s.\n"),
13949 btrace_format_string (rs->btrace_config.format));
13950 }
13951
13952 tp->btrace.target = XCNEW (struct btrace_target_info);
13953 tp->btrace.target->ptid = tp->ptid;
13954 tp->btrace.target->conf = rs->btrace_config;
13955 }
13956 }
13957
13958 /* Enable branch tracing. */
13959
13960 struct btrace_target_info *
13961 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13962 {
13963 struct btrace_target_info *tinfo = NULL;
13964 struct packet_config *packet = NULL;
13965 struct remote_state *rs = get_remote_state ();
13966 char *buf = rs->buf.data ();
13967 char *endbuf = buf + get_remote_packet_size ();
13968
13969 switch (conf->format)
13970 {
13971 case BTRACE_FORMAT_BTS:
13972 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13973 break;
13974
13975 case BTRACE_FORMAT_PT:
13976 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13977 break;
13978 }
13979
13980 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13981 error (_("Target does not support branch tracing."));
13982
13983 btrace_sync_conf (conf);
13984
13985 set_general_thread (ptid);
13986
13987 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13988 putpkt (rs->buf);
13989 getpkt (&rs->buf, 0);
13990
13991 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13992 {
13993 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13994 error (_("Could not enable branch tracing for %s: %s"),
13995 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13996 else
13997 error (_("Could not enable branch tracing for %s."),
13998 target_pid_to_str (ptid).c_str ());
13999 }
14000
14001 tinfo = XCNEW (struct btrace_target_info);
14002 tinfo->ptid = ptid;
14003
14004 /* If we fail to read the configuration, we lose some information, but the
14005 tracing itself is not impacted. */
14006 try
14007 {
14008 btrace_read_config (&tinfo->conf);
14009 }
14010 catch (const gdb_exception_error &err)
14011 {
14012 if (err.message != NULL)
14013 warning ("%s", err.what ());
14014 }
14015
14016 return tinfo;
14017 }
14018
14019 /* Disable branch tracing. */
14020
14021 void
14022 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14023 {
14024 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14025 struct remote_state *rs = get_remote_state ();
14026 char *buf = rs->buf.data ();
14027 char *endbuf = buf + get_remote_packet_size ();
14028
14029 if (packet_config_support (packet) != PACKET_ENABLE)
14030 error (_("Target does not support branch tracing."));
14031
14032 set_general_thread (tinfo->ptid);
14033
14034 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14035 putpkt (rs->buf);
14036 getpkt (&rs->buf, 0);
14037
14038 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14039 {
14040 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14041 error (_("Could not disable branch tracing for %s: %s"),
14042 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14043 else
14044 error (_("Could not disable branch tracing for %s."),
14045 target_pid_to_str (tinfo->ptid).c_str ());
14046 }
14047
14048 xfree (tinfo);
14049 }
14050
14051 /* Teardown branch tracing. */
14052
14053 void
14054 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14055 {
14056 /* We must not talk to the target during teardown. */
14057 xfree (tinfo);
14058 }
14059
14060 /* Read the branch trace. */
14061
14062 enum btrace_error
14063 remote_target::read_btrace (struct btrace_data *btrace,
14064 struct btrace_target_info *tinfo,
14065 enum btrace_read_type type)
14066 {
14067 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14068 const char *annex;
14069
14070 if (packet_config_support (packet) != PACKET_ENABLE)
14071 error (_("Target does not support branch tracing."));
14072
14073 #if !defined(HAVE_LIBEXPAT)
14074 error (_("Cannot process branch tracing result. XML parsing not supported."));
14075 #endif
14076
14077 switch (type)
14078 {
14079 case BTRACE_READ_ALL:
14080 annex = "all";
14081 break;
14082 case BTRACE_READ_NEW:
14083 annex = "new";
14084 break;
14085 case BTRACE_READ_DELTA:
14086 annex = "delta";
14087 break;
14088 default:
14089 internal_error (__FILE__, __LINE__,
14090 _("Bad branch tracing read type: %u."),
14091 (unsigned int) type);
14092 }
14093
14094 gdb::optional<gdb::char_vector> xml
14095 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
14096 if (!xml)
14097 return BTRACE_ERR_UNKNOWN;
14098
14099 parse_xml_btrace (btrace, xml->data ());
14100
14101 return BTRACE_ERR_NONE;
14102 }
14103
14104 const struct btrace_config *
14105 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14106 {
14107 return &tinfo->conf;
14108 }
14109
14110 bool
14111 remote_target::augmented_libraries_svr4_read ()
14112 {
14113 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14114 == PACKET_ENABLE);
14115 }
14116
14117 /* Implementation of to_load. */
14118
14119 void
14120 remote_target::load (const char *name, int from_tty)
14121 {
14122 generic_load (name, from_tty);
14123 }
14124
14125 /* Accepts an integer PID; returns a string representing a file that
14126 can be opened on the remote side to get the symbols for the child
14127 process. Returns NULL if the operation is not supported. */
14128
14129 char *
14130 remote_target::pid_to_exec_file (int pid)
14131 {
14132 static gdb::optional<gdb::char_vector> filename;
14133 char *annex = NULL;
14134
14135 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14136 return NULL;
14137
14138 inferior *inf = find_inferior_pid (this, pid);
14139 if (inf == NULL)
14140 internal_error (__FILE__, __LINE__,
14141 _("not currently attached to process %d"), pid);
14142
14143 if (!inf->fake_pid_p)
14144 {
14145 const int annex_size = 9;
14146
14147 annex = (char *) alloca (annex_size);
14148 xsnprintf (annex, annex_size, "%x", pid);
14149 }
14150
14151 filename = target_read_stralloc (current_top_target (),
14152 TARGET_OBJECT_EXEC_FILE, annex);
14153
14154 return filename ? filename->data () : nullptr;
14155 }
14156
14157 /* Implement the to_can_do_single_step target_ops method. */
14158
14159 int
14160 remote_target::can_do_single_step ()
14161 {
14162 /* We can only tell whether target supports single step or not by
14163 supported s and S vCont actions if the stub supports vContSupported
14164 feature. If the stub doesn't support vContSupported feature,
14165 we have conservatively to think target doesn't supports single
14166 step. */
14167 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14168 {
14169 struct remote_state *rs = get_remote_state ();
14170
14171 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14172 remote_vcont_probe ();
14173
14174 return rs->supports_vCont.s && rs->supports_vCont.S;
14175 }
14176 else
14177 return 0;
14178 }
14179
14180 /* Implementation of the to_execution_direction method for the remote
14181 target. */
14182
14183 enum exec_direction_kind
14184 remote_target::execution_direction ()
14185 {
14186 struct remote_state *rs = get_remote_state ();
14187
14188 return rs->last_resume_exec_dir;
14189 }
14190
14191 /* Return pointer to the thread_info struct which corresponds to
14192 THREAD_HANDLE (having length HANDLE_LEN). */
14193
14194 thread_info *
14195 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14196 int handle_len,
14197 inferior *inf)
14198 {
14199 for (thread_info *tp : all_non_exited_threads (this))
14200 {
14201 remote_thread_info *priv = get_remote_thread_info (tp);
14202
14203 if (tp->inf == inf && priv != NULL)
14204 {
14205 if (handle_len != priv->thread_handle.size ())
14206 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14207 handle_len, priv->thread_handle.size ());
14208 if (memcmp (thread_handle, priv->thread_handle.data (),
14209 handle_len) == 0)
14210 return tp;
14211 }
14212 }
14213
14214 return NULL;
14215 }
14216
14217 gdb::byte_vector
14218 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14219 {
14220 remote_thread_info *priv = get_remote_thread_info (tp);
14221 return priv->thread_handle;
14222 }
14223
14224 bool
14225 remote_target::can_async_p ()
14226 {
14227 struct remote_state *rs = get_remote_state ();
14228
14229 /* We don't go async if the user has explicitly prevented it with the
14230 "maint set target-async" command. */
14231 if (!target_async_permitted)
14232 return false;
14233
14234 /* We're async whenever the serial device is. */
14235 return serial_can_async_p (rs->remote_desc);
14236 }
14237
14238 bool
14239 remote_target::is_async_p ()
14240 {
14241 struct remote_state *rs = get_remote_state ();
14242
14243 if (!target_async_permitted)
14244 /* We only enable async when the user specifically asks for it. */
14245 return false;
14246
14247 /* We're async whenever the serial device is. */
14248 return serial_is_async_p (rs->remote_desc);
14249 }
14250
14251 /* Pass the SERIAL event on and up to the client. One day this code
14252 will be able to delay notifying the client of an event until the
14253 point where an entire packet has been received. */
14254
14255 static serial_event_ftype remote_async_serial_handler;
14256
14257 static void
14258 remote_async_serial_handler (struct serial *scb, void *context)
14259 {
14260 /* Don't propogate error information up to the client. Instead let
14261 the client find out about the error by querying the target. */
14262 inferior_event_handler (INF_REG_EVENT);
14263 }
14264
14265 static void
14266 remote_async_inferior_event_handler (gdb_client_data data)
14267 {
14268 inferior_event_handler (INF_REG_EVENT);
14269 }
14270
14271 int
14272 remote_target::async_wait_fd ()
14273 {
14274 struct remote_state *rs = get_remote_state ();
14275 return rs->remote_desc->fd;
14276 }
14277
14278 void
14279 remote_target::async (int enable)
14280 {
14281 struct remote_state *rs = get_remote_state ();
14282
14283 if (enable)
14284 {
14285 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14286
14287 /* If there are pending events in the stop reply queue tell the
14288 event loop to process them. */
14289 if (!rs->stop_reply_queue.empty ())
14290 mark_async_event_handler (rs->remote_async_inferior_event_token);
14291 /* For simplicity, below we clear the pending events token
14292 without remembering whether it is marked, so here we always
14293 mark it. If there's actually no pending notification to
14294 process, this ends up being a no-op (other than a spurious
14295 event-loop wakeup). */
14296 if (target_is_non_stop_p ())
14297 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14298 }
14299 else
14300 {
14301 serial_async (rs->remote_desc, NULL, NULL);
14302 /* If the core is disabling async, it doesn't want to be
14303 disturbed with target events. Clear all async event sources
14304 too. */
14305 clear_async_event_handler (rs->remote_async_inferior_event_token);
14306 if (target_is_non_stop_p ())
14307 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14308 }
14309 }
14310
14311 /* Implementation of the to_thread_events method. */
14312
14313 void
14314 remote_target::thread_events (int enable)
14315 {
14316 struct remote_state *rs = get_remote_state ();
14317 size_t size = get_remote_packet_size ();
14318
14319 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14320 return;
14321
14322 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14323 putpkt (rs->buf);
14324 getpkt (&rs->buf, 0);
14325
14326 switch (packet_ok (rs->buf,
14327 &remote_protocol_packets[PACKET_QThreadEvents]))
14328 {
14329 case PACKET_OK:
14330 if (strcmp (rs->buf.data (), "OK") != 0)
14331 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14332 break;
14333 case PACKET_ERROR:
14334 warning (_("Remote failure reply: %s"), rs->buf.data ());
14335 break;
14336 case PACKET_UNKNOWN:
14337 break;
14338 }
14339 }
14340
14341 static void
14342 show_remote_cmd (const char *args, int from_tty)
14343 {
14344 /* We can't just use cmd_show_list here, because we want to skip
14345 the redundant "show remote Z-packet" and the legacy aliases. */
14346 struct cmd_list_element *list = remote_show_cmdlist;
14347 struct ui_out *uiout = current_uiout;
14348
14349 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14350 for (; list != NULL; list = list->next)
14351 if (strcmp (list->name, "Z-packet") == 0)
14352 continue;
14353 else if (list->type == not_set_cmd)
14354 /* Alias commands are exactly like the original, except they
14355 don't have the normal type. */
14356 continue;
14357 else
14358 {
14359 ui_out_emit_tuple option_emitter (uiout, "option");
14360
14361 uiout->field_string ("name", list->name);
14362 uiout->text (": ");
14363 if (list->type == show_cmd)
14364 do_show_command (NULL, from_tty, list);
14365 else
14366 cmd_func (list, NULL, from_tty);
14367 }
14368 }
14369
14370
14371 /* Function to be called whenever a new objfile (shlib) is detected. */
14372 static void
14373 remote_new_objfile (struct objfile *objfile)
14374 {
14375 remote_target *remote = get_current_remote_target ();
14376
14377 if (remote != NULL) /* Have a remote connection. */
14378 remote->remote_check_symbols ();
14379 }
14380
14381 /* Pull all the tracepoints defined on the target and create local
14382 data structures representing them. We don't want to create real
14383 tracepoints yet, we don't want to mess up the user's existing
14384 collection. */
14385
14386 int
14387 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14388 {
14389 struct remote_state *rs = get_remote_state ();
14390 char *p;
14391
14392 /* Ask for a first packet of tracepoint definition. */
14393 putpkt ("qTfP");
14394 getpkt (&rs->buf, 0);
14395 p = rs->buf.data ();
14396 while (*p && *p != 'l')
14397 {
14398 parse_tracepoint_definition (p, utpp);
14399 /* Ask for another packet of tracepoint definition. */
14400 putpkt ("qTsP");
14401 getpkt (&rs->buf, 0);
14402 p = rs->buf.data ();
14403 }
14404 return 0;
14405 }
14406
14407 int
14408 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14409 {
14410 struct remote_state *rs = get_remote_state ();
14411 char *p;
14412
14413 /* Ask for a first packet of variable definition. */
14414 putpkt ("qTfV");
14415 getpkt (&rs->buf, 0);
14416 p = rs->buf.data ();
14417 while (*p && *p != 'l')
14418 {
14419 parse_tsv_definition (p, utsvp);
14420 /* Ask for another packet of variable definition. */
14421 putpkt ("qTsV");
14422 getpkt (&rs->buf, 0);
14423 p = rs->buf.data ();
14424 }
14425 return 0;
14426 }
14427
14428 /* The "set/show range-stepping" show hook. */
14429
14430 static void
14431 show_range_stepping (struct ui_file *file, int from_tty,
14432 struct cmd_list_element *c,
14433 const char *value)
14434 {
14435 fprintf_filtered (file,
14436 _("Debugger's willingness to use range stepping "
14437 "is %s.\n"), value);
14438 }
14439
14440 /* Return true if the vCont;r action is supported by the remote
14441 stub. */
14442
14443 bool
14444 remote_target::vcont_r_supported ()
14445 {
14446 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14447 remote_vcont_probe ();
14448
14449 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14450 && get_remote_state ()->supports_vCont.r);
14451 }
14452
14453 /* The "set/show range-stepping" set hook. */
14454
14455 static void
14456 set_range_stepping (const char *ignore_args, int from_tty,
14457 struct cmd_list_element *c)
14458 {
14459 /* When enabling, check whether range stepping is actually supported
14460 by the target, and warn if not. */
14461 if (use_range_stepping)
14462 {
14463 remote_target *remote = get_current_remote_target ();
14464 if (remote == NULL
14465 || !remote->vcont_r_supported ())
14466 warning (_("Range stepping is not supported by the current target"));
14467 }
14468 }
14469
14470 static void
14471 show_remote_debug (struct ui_file *file, int from_tty,
14472 struct cmd_list_element *c, const char *value)
14473 {
14474 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14475 value);
14476 }
14477
14478 static void
14479 show_remote_timeout (struct ui_file *file, int from_tty,
14480 struct cmd_list_element *c, const char *value)
14481 {
14482 fprintf_filtered (file,
14483 _("Timeout limit to wait for target to respond is %s.\n"),
14484 value);
14485 }
14486
14487 void _initialize_remote ();
14488 void
14489 _initialize_remote ()
14490 {
14491 struct cmd_list_element *cmd;
14492 const char *cmd_name;
14493
14494 /* architecture specific data */
14495 remote_g_packet_data_handle =
14496 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14497
14498 add_target (remote_target_info, remote_target::open);
14499 add_target (extended_remote_target_info, extended_remote_target::open);
14500
14501 /* Hook into new objfile notification. */
14502 gdb::observers::new_objfile.attach (remote_new_objfile);
14503
14504 #if 0
14505 init_remote_threadtests ();
14506 #endif
14507
14508 /* set/show remote ... */
14509
14510 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14511 Remote protocol specific variables.\n\
14512 Configure various remote-protocol specific variables such as\n\
14513 the packets being used."),
14514 &remote_set_cmdlist, "set remote ",
14515 0 /* allow-unknown */, &setlist);
14516 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14517 Remote protocol specific variables.\n\
14518 Configure various remote-protocol specific variables such as\n\
14519 the packets being used."),
14520 &remote_show_cmdlist, "show remote ",
14521 0 /* allow-unknown */, &showlist);
14522
14523 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14524 Compare section data on target to the exec file.\n\
14525 Argument is a single section name (default: all loaded sections).\n\
14526 To compare only read-only loaded sections, specify the -r option."),
14527 &cmdlist);
14528
14529 add_cmd ("packet", class_maintenance, packet_command, _("\
14530 Send an arbitrary packet to a remote target.\n\
14531 maintenance packet TEXT\n\
14532 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14533 this command sends the string TEXT to the inferior, and displays the\n\
14534 response packet. GDB supplies the initial `$' character, and the\n\
14535 terminating `#' character and checksum."),
14536 &maintenancelist);
14537
14538 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14539 Set whether to send break if interrupted."), _("\
14540 Show whether to send break if interrupted."), _("\
14541 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14542 set_remotebreak, show_remotebreak,
14543 &setlist, &showlist);
14544 cmd_name = "remotebreak";
14545 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14546 deprecate_cmd (cmd, "set remote interrupt-sequence");
14547 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14548 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14549 deprecate_cmd (cmd, "show remote interrupt-sequence");
14550
14551 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14552 interrupt_sequence_modes, &interrupt_sequence_mode,
14553 _("\
14554 Set interrupt sequence to remote target."), _("\
14555 Show interrupt sequence to remote target."), _("\
14556 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14557 NULL, show_interrupt_sequence,
14558 &remote_set_cmdlist,
14559 &remote_show_cmdlist);
14560
14561 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14562 &interrupt_on_connect, _("\
14563 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14564 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14565 If set, interrupt sequence is sent to remote target."),
14566 NULL, NULL,
14567 &remote_set_cmdlist, &remote_show_cmdlist);
14568
14569 /* Install commands for configuring memory read/write packets. */
14570
14571 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14572 Set the maximum number of bytes per memory write packet (deprecated)."),
14573 &setlist);
14574 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14575 Show the maximum number of bytes per memory write packet (deprecated)."),
14576 &showlist);
14577 add_cmd ("memory-write-packet-size", no_class,
14578 set_memory_write_packet_size, _("\
14579 Set the maximum number of bytes per memory-write packet.\n\
14580 Specify the number of bytes in a packet or 0 (zero) for the\n\
14581 default packet size. The actual limit is further reduced\n\
14582 dependent on the target. Specify ``fixed'' to disable the\n\
14583 further restriction and ``limit'' to enable that restriction."),
14584 &remote_set_cmdlist);
14585 add_cmd ("memory-read-packet-size", no_class,
14586 set_memory_read_packet_size, _("\
14587 Set the maximum number of bytes per memory-read packet.\n\
14588 Specify the number of bytes in a packet or 0 (zero) for the\n\
14589 default packet size. The actual limit is further reduced\n\
14590 dependent on the target. Specify ``fixed'' to disable the\n\
14591 further restriction and ``limit'' to enable that restriction."),
14592 &remote_set_cmdlist);
14593 add_cmd ("memory-write-packet-size", no_class,
14594 show_memory_write_packet_size,
14595 _("Show the maximum number of bytes per memory-write packet."),
14596 &remote_show_cmdlist);
14597 add_cmd ("memory-read-packet-size", no_class,
14598 show_memory_read_packet_size,
14599 _("Show the maximum number of bytes per memory-read packet."),
14600 &remote_show_cmdlist);
14601
14602 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14603 &remote_hw_watchpoint_limit, _("\
14604 Set the maximum number of target hardware watchpoints."), _("\
14605 Show the maximum number of target hardware watchpoints."), _("\
14606 Specify \"unlimited\" for unlimited hardware watchpoints."),
14607 NULL, show_hardware_watchpoint_limit,
14608 &remote_set_cmdlist,
14609 &remote_show_cmdlist);
14610 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14611 no_class,
14612 &remote_hw_watchpoint_length_limit, _("\
14613 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14614 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14615 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14616 NULL, show_hardware_watchpoint_length_limit,
14617 &remote_set_cmdlist, &remote_show_cmdlist);
14618 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14619 &remote_hw_breakpoint_limit, _("\
14620 Set the maximum number of target hardware breakpoints."), _("\
14621 Show the maximum number of target hardware breakpoints."), _("\
14622 Specify \"unlimited\" for unlimited hardware breakpoints."),
14623 NULL, show_hardware_breakpoint_limit,
14624 &remote_set_cmdlist, &remote_show_cmdlist);
14625
14626 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14627 &remote_address_size, _("\
14628 Set the maximum size of the address (in bits) in a memory packet."), _("\
14629 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14630 NULL,
14631 NULL, /* FIXME: i18n: */
14632 &setlist, &showlist);
14633
14634 init_all_packet_configs ();
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14637 "X", "binary-download", 1);
14638
14639 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14640 "vCont", "verbose-resume", 0);
14641
14642 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14643 "QPassSignals", "pass-signals", 0);
14644
14645 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14646 "QCatchSyscalls", "catch-syscalls", 0);
14647
14648 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14649 "QProgramSignals", "program-signals", 0);
14650
14651 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14652 "QSetWorkingDir", "set-working-dir", 0);
14653
14654 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14655 "QStartupWithShell", "startup-with-shell", 0);
14656
14657 add_packet_config_cmd (&remote_protocol_packets
14658 [PACKET_QEnvironmentHexEncoded],
14659 "QEnvironmentHexEncoded", "environment-hex-encoded",
14660 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14663 "QEnvironmentReset", "environment-reset",
14664 0);
14665
14666 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14667 "QEnvironmentUnset", "environment-unset",
14668 0);
14669
14670 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14671 "qSymbol", "symbol-lookup", 0);
14672
14673 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14674 "P", "set-register", 1);
14675
14676 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14677 "p", "fetch-register", 1);
14678
14679 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14680 "Z0", "software-breakpoint", 0);
14681
14682 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14683 "Z1", "hardware-breakpoint", 0);
14684
14685 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14686 "Z2", "write-watchpoint", 0);
14687
14688 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14689 "Z3", "read-watchpoint", 0);
14690
14691 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14692 "Z4", "access-watchpoint", 0);
14693
14694 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14695 "qXfer:auxv:read", "read-aux-vector", 0);
14696
14697 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14698 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14699
14700 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14701 "qXfer:features:read", "target-features", 0);
14702
14703 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14704 "qXfer:libraries:read", "library-info", 0);
14705
14706 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14707 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14708
14709 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14710 "qXfer:memory-map:read", "memory-map", 0);
14711
14712 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14713 "qXfer:osdata:read", "osdata", 0);
14714
14715 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14716 "qXfer:threads:read", "threads", 0);
14717
14718 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14719 "qXfer:siginfo:read", "read-siginfo-object", 0);
14720
14721 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14722 "qXfer:siginfo:write", "write-siginfo-object", 0);
14723
14724 add_packet_config_cmd
14725 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14726 "qXfer:traceframe-info:read", "traceframe-info", 0);
14727
14728 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14729 "qXfer:uib:read", "unwind-info-block", 0);
14730
14731 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14732 "qGetTLSAddr", "get-thread-local-storage-address",
14733 0);
14734
14735 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14736 "qGetTIBAddr", "get-thread-information-block-address",
14737 0);
14738
14739 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14740 "bc", "reverse-continue", 0);
14741
14742 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14743 "bs", "reverse-step", 0);
14744
14745 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14746 "qSupported", "supported-packets", 0);
14747
14748 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14749 "qSearch:memory", "search-memory", 0);
14750
14751 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14752 "qTStatus", "trace-status", 0);
14753
14754 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14755 "vFile:setfs", "hostio-setfs", 0);
14756
14757 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14758 "vFile:open", "hostio-open", 0);
14759
14760 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14761 "vFile:pread", "hostio-pread", 0);
14762
14763 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14764 "vFile:pwrite", "hostio-pwrite", 0);
14765
14766 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14767 "vFile:close", "hostio-close", 0);
14768
14769 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14770 "vFile:unlink", "hostio-unlink", 0);
14771
14772 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14773 "vFile:readlink", "hostio-readlink", 0);
14774
14775 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14776 "vFile:fstat", "hostio-fstat", 0);
14777
14778 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14779 "vAttach", "attach", 0);
14780
14781 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14782 "vRun", "run", 0);
14783
14784 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14785 "QStartNoAckMode", "noack", 0);
14786
14787 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14788 "vKill", "kill", 0);
14789
14790 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14791 "qAttached", "query-attached", 0);
14792
14793 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14794 "ConditionalTracepoints",
14795 "conditional-tracepoints", 0);
14796
14797 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14798 "ConditionalBreakpoints",
14799 "conditional-breakpoints", 0);
14800
14801 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14802 "BreakpointCommands",
14803 "breakpoint-commands", 0);
14804
14805 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14806 "FastTracepoints", "fast-tracepoints", 0);
14807
14808 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14809 "TracepointSource", "TracepointSource", 0);
14810
14811 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14812 "QAllow", "allow", 0);
14813
14814 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14815 "StaticTracepoints", "static-tracepoints", 0);
14816
14817 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14818 "InstallInTrace", "install-in-trace", 0);
14819
14820 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14821 "qXfer:statictrace:read", "read-sdata-object", 0);
14822
14823 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14824 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14825
14826 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14827 "QDisableRandomization", "disable-randomization", 0);
14828
14829 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14830 "QAgent", "agent", 0);
14831
14832 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14833 "QTBuffer:size", "trace-buffer-size", 0);
14834
14835 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14836 "Qbtrace:off", "disable-btrace", 0);
14837
14838 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14839 "Qbtrace:bts", "enable-btrace-bts", 0);
14840
14841 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14842 "Qbtrace:pt", "enable-btrace-pt", 0);
14843
14844 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14845 "qXfer:btrace", "read-btrace", 0);
14846
14847 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14848 "qXfer:btrace-conf", "read-btrace-conf", 0);
14849
14850 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14851 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14852
14853 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14854 "multiprocess-feature", "multiprocess-feature", 0);
14855
14856 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14857 "swbreak-feature", "swbreak-feature", 0);
14858
14859 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14860 "hwbreak-feature", "hwbreak-feature", 0);
14861
14862 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14863 "fork-event-feature", "fork-event-feature", 0);
14864
14865 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14866 "vfork-event-feature", "vfork-event-feature", 0);
14867
14868 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14869 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14870
14871 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14872 "vContSupported", "verbose-resume-supported", 0);
14873
14874 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14875 "exec-event-feature", "exec-event-feature", 0);
14876
14877 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14878 "vCtrlC", "ctrl-c", 0);
14879
14880 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14881 "QThreadEvents", "thread-events", 0);
14882
14883 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14884 "N stop reply", "no-resumed-stop-reply", 0);
14885
14886 /* Assert that we've registered "set remote foo-packet" commands
14887 for all packet configs. */
14888 {
14889 int i;
14890
14891 for (i = 0; i < PACKET_MAX; i++)
14892 {
14893 /* Ideally all configs would have a command associated. Some
14894 still don't though. */
14895 int excepted;
14896
14897 switch (i)
14898 {
14899 case PACKET_QNonStop:
14900 case PACKET_EnableDisableTracepoints_feature:
14901 case PACKET_tracenz_feature:
14902 case PACKET_DisconnectedTracing_feature:
14903 case PACKET_augmented_libraries_svr4_read_feature:
14904 case PACKET_qCRC:
14905 /* Additions to this list need to be well justified:
14906 pre-existing packets are OK; new packets are not. */
14907 excepted = 1;
14908 break;
14909 default:
14910 excepted = 0;
14911 break;
14912 }
14913
14914 /* This catches both forgetting to add a config command, and
14915 forgetting to remove a packet from the exception list. */
14916 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14917 }
14918 }
14919
14920 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14921 Z sub-packet has its own set and show commands, but users may
14922 have sets to this variable in their .gdbinit files (or in their
14923 documentation). */
14924 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14925 &remote_Z_packet_detect, _("\
14926 Set use of remote protocol `Z' packets."), _("\
14927 Show use of remote protocol `Z' packets."), _("\
14928 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14929 packets."),
14930 set_remote_protocol_Z_packet_cmd,
14931 show_remote_protocol_Z_packet_cmd,
14932 /* FIXME: i18n: Use of remote protocol
14933 `Z' packets is %s. */
14934 &remote_set_cmdlist, &remote_show_cmdlist);
14935
14936 add_basic_prefix_cmd ("remote", class_files, _("\
14937 Manipulate files on the remote system.\n\
14938 Transfer files to and from the remote target system."),
14939 &remote_cmdlist, "remote ",
14940 0 /* allow-unknown */, &cmdlist);
14941
14942 add_cmd ("put", class_files, remote_put_command,
14943 _("Copy a local file to the remote system."),
14944 &remote_cmdlist);
14945
14946 add_cmd ("get", class_files, remote_get_command,
14947 _("Copy a remote file to the local system."),
14948 &remote_cmdlist);
14949
14950 add_cmd ("delete", class_files, remote_delete_command,
14951 _("Delete a remote file."),
14952 &remote_cmdlist);
14953
14954 add_setshow_string_noescape_cmd ("exec-file", class_files,
14955 &remote_exec_file_var, _("\
14956 Set the remote pathname for \"run\"."), _("\
14957 Show the remote pathname for \"run\"."), NULL,
14958 set_remote_exec_file,
14959 show_remote_exec_file,
14960 &remote_set_cmdlist,
14961 &remote_show_cmdlist);
14962
14963 add_setshow_boolean_cmd ("range-stepping", class_run,
14964 &use_range_stepping, _("\
14965 Enable or disable range stepping."), _("\
14966 Show whether target-assisted range stepping is enabled."), _("\
14967 If on, and the target supports it, when stepping a source line, GDB\n\
14968 tells the target to step the corresponding range of addresses itself instead\n\
14969 of issuing multiple single-steps. This speeds up source level\n\
14970 stepping. If off, GDB always issues single-steps, even if range\n\
14971 stepping is supported by the target. The default is on."),
14972 set_range_stepping,
14973 show_range_stepping,
14974 &setlist,
14975 &showlist);
14976
14977 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14978 Set watchdog timer."), _("\
14979 Show watchdog timer."), _("\
14980 When non-zero, this timeout is used instead of waiting forever for a target\n\
14981 to finish a low-level step or continue operation. If the specified amount\n\
14982 of time passes without a response from the target, an error occurs."),
14983 NULL,
14984 show_watchdog,
14985 &setlist, &showlist);
14986
14987 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14988 &remote_packet_max_chars, _("\
14989 Set the maximum number of characters to display for each remote packet."), _("\
14990 Show the maximum number of characters to display for each remote packet."), _("\
14991 Specify \"unlimited\" to display all the characters."),
14992 NULL, show_remote_packet_max_chars,
14993 &setdebuglist, &showdebuglist);
14994
14995 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
14996 _("Set debugging of remote protocol."),
14997 _("Show debugging of remote protocol."),
14998 _("\
14999 When enabled, each packet sent or received with the remote target\n\
15000 is displayed."),
15001 NULL,
15002 show_remote_debug,
15003 &setdebuglist, &showdebuglist);
15004
15005 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15006 &remote_timeout, _("\
15007 Set timeout limit to wait for target to respond."), _("\
15008 Show timeout limit to wait for target to respond."), _("\
15009 This value is used to set the time limit for gdb to wait for a response\n\
15010 from the target."),
15011 NULL,
15012 show_remote_timeout,
15013 &setlist, &showlist);
15014
15015 /* Eventually initialize fileio. See fileio.c */
15016 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15017 }
This page took 0.338071 seconds and 5 git commands to generate.