gdb/
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
138
139 static void remote_interrupt (int signo);
140
141 static void remote_interrupt_twice (int signo);
142
143 static void interrupt_query (void);
144
145 static void set_general_thread (struct ptid ptid);
146 static void set_continue_thread (struct ptid ptid);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (ptid_t);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (ptid_t currthread);
185
186 static int fromhex (int a);
187
188 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
189
190 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
204
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
206 int from_tty,
207 struct cmd_list_element *c,
208 const char *value);
209
210 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
211 static ptid_t read_ptid (char *buf, char **obuf);
212
213 static void remote_set_permissions (void);
214
215 struct remote_state;
216 static int remote_get_trace_status (struct trace_status *ts);
217
218 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
219
220 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
221
222 static void remote_query_supported (void);
223
224 static void remote_check_symbols (struct objfile *objfile);
225
226 void _initialize_remote (void);
227
228 struct stop_reply;
229 static struct stop_reply *stop_reply_xmalloc (void);
230 static void stop_reply_xfree (struct stop_reply *);
231 static void do_stop_reply_xfree (void *arg);
232 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
233 static void push_stop_reply (struct stop_reply *);
234 static void remote_get_pending_stop_replies (void);
235 static void discard_pending_stop_replies (int pid);
236 static int peek_stop_reply (ptid_t ptid);
237
238 static void remote_async_inferior_event_handler (gdb_client_data);
239 static void remote_async_get_pending_events_handler (gdb_client_data);
240
241 static void remote_terminal_ours (void);
242
243 static int remote_read_description_p (struct target_ops *target);
244
245 static void remote_console_output (char *msg);
246
247 /* The non-stop remote protocol provisions for one pending stop reply.
248 This is where we keep it until it is acknowledged. */
249
250 static struct stop_reply *pending_stop_reply = NULL;
251
252 /* For "remote". */
253
254 static struct cmd_list_element *remote_cmdlist;
255
256 /* For "set remote" and "show remote". */
257
258 static struct cmd_list_element *remote_set_cmdlist;
259 static struct cmd_list_element *remote_show_cmdlist;
260
261 /* Description of the remote protocol state for the currently
262 connected target. This is per-target state, and independent of the
263 selected architecture. */
264
265 struct remote_state
266 {
267 /* A buffer to use for incoming packets, and its current size. The
268 buffer is grown dynamically for larger incoming packets.
269 Outgoing packets may also be constructed in this buffer.
270 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
271 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
272 packets. */
273 char *buf;
274 long buf_size;
275
276 /* If we negotiated packet size explicitly (and thus can bypass
277 heuristics for the largest packet size that will not overflow
278 a buffer in the stub), this will be set to that packet size.
279 Otherwise zero, meaning to use the guessed size. */
280 long explicit_packet_size;
281
282 /* remote_wait is normally called when the target is running and
283 waits for a stop reply packet. But sometimes we need to call it
284 when the target is already stopped. We can send a "?" packet
285 and have remote_wait read the response. Or, if we already have
286 the response, we can stash it in BUF and tell remote_wait to
287 skip calling getpkt. This flag is set when BUF contains a
288 stop reply packet and the target is not waiting. */
289 int cached_wait_status;
290
291 /* True, if in no ack mode. That is, neither GDB nor the stub will
292 expect acks from each other. The connection is assumed to be
293 reliable. */
294 int noack_mode;
295
296 /* True if we're connected in extended remote mode. */
297 int extended;
298
299 /* True if the stub reported support for multi-process
300 extensions. */
301 int multi_process_aware;
302
303 /* True if we resumed the target and we're waiting for the target to
304 stop. In the mean time, we can't start another command/query.
305 The remote server wouldn't be ready to process it, so we'd
306 timeout waiting for a reply that would never come and eventually
307 we'd close the connection. This can happen in asynchronous mode
308 because we allow GDB commands while the target is running. */
309 int waiting_for_stop_reply;
310
311 /* True if the stub reports support for non-stop mode. */
312 int non_stop_aware;
313
314 /* True if the stub reports support for vCont;t. */
315 int support_vCont_t;
316
317 /* True if the stub reports support for conditional tracepoints. */
318 int cond_tracepoints;
319
320 /* True if the stub reports support for fast tracepoints. */
321 int fast_tracepoints;
322
323 /* True if the stub reports support for static tracepoints. */
324 int static_tracepoints;
325
326 /* True if the stub reports support for installing tracepoint while
327 tracing. */
328 int install_in_trace;
329
330 /* True if the stub can continue running a trace while GDB is
331 disconnected. */
332 int disconnected_tracing;
333
334 /* True if the stub reports support for enabling and disabling
335 tracepoints while a trace experiment is running. */
336 int enable_disable_tracepoints;
337
338 /* True if the stub can collect strings using tracenz bytecode. */
339 int string_tracing;
340
341 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
342 responded to that. */
343 int ctrlc_pending_p;
344 };
345
346 /* Private data that we'll store in (struct thread_info)->private. */
347 struct private_thread_info
348 {
349 char *extra;
350 int core;
351 };
352
353 static void
354 free_private_thread_info (struct private_thread_info *info)
355 {
356 xfree (info->extra);
357 xfree (info);
358 }
359
360 /* Returns true if the multi-process extensions are in effect. */
361 static int
362 remote_multi_process_p (struct remote_state *rs)
363 {
364 return rs->extended && rs->multi_process_aware;
365 }
366
367 /* This data could be associated with a target, but we do not always
368 have access to the current target when we need it, so for now it is
369 static. This will be fine for as long as only one target is in use
370 at a time. */
371 static struct remote_state remote_state;
372
373 static struct remote_state *
374 get_remote_state_raw (void)
375 {
376 return &remote_state;
377 }
378
379 /* Description of the remote protocol for a given architecture. */
380
381 struct packet_reg
382 {
383 long offset; /* Offset into G packet. */
384 long regnum; /* GDB's internal register number. */
385 LONGEST pnum; /* Remote protocol register number. */
386 int in_g_packet; /* Always part of G packet. */
387 /* long size in bytes; == register_size (target_gdbarch, regnum);
388 at present. */
389 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
390 at present. */
391 };
392
393 struct remote_arch_state
394 {
395 /* Description of the remote protocol registers. */
396 long sizeof_g_packet;
397
398 /* Description of the remote protocol registers indexed by REGNUM
399 (making an array gdbarch_num_regs in size). */
400 struct packet_reg *regs;
401
402 /* This is the size (in chars) of the first response to the ``g''
403 packet. It is used as a heuristic when determining the maximum
404 size of memory-read and memory-write packets. A target will
405 typically only reserve a buffer large enough to hold the ``g''
406 packet. The size does not include packet overhead (headers and
407 trailers). */
408 long actual_register_packet_size;
409
410 /* This is the maximum size (in chars) of a non read/write packet.
411 It is also used as a cap on the size of read/write packets. */
412 long remote_packet_size;
413 };
414
415 long sizeof_pkt = 2000;
416
417 /* Utility: generate error from an incoming stub packet. */
418 static void
419 trace_error (char *buf)
420 {
421 if (*buf++ != 'E')
422 return; /* not an error msg */
423 switch (*buf)
424 {
425 case '1': /* malformed packet error */
426 if (*++buf == '0') /* general case: */
427 error (_("remote.c: error in outgoing packet."));
428 else
429 error (_("remote.c: error in outgoing packet at field #%ld."),
430 strtol (buf, NULL, 16));
431 case '2':
432 error (_("trace API error 0x%s."), ++buf);
433 default:
434 error (_("Target returns error code '%s'."), buf);
435 }
436 }
437
438 /* Utility: wait for reply from stub, while accepting "O" packets. */
439 static char *
440 remote_get_noisy_reply (char **buf_p,
441 long *sizeof_buf)
442 {
443 do /* Loop on reply from remote stub. */
444 {
445 char *buf;
446
447 QUIT; /* Allow user to bail out with ^C. */
448 getpkt (buf_p, sizeof_buf, 0);
449 buf = *buf_p;
450 if (buf[0] == 'E')
451 trace_error (buf);
452 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
453 {
454 ULONGEST ul;
455 CORE_ADDR from, to, org_to;
456 char *p, *pp;
457 int adjusted_size = 0;
458 volatile struct gdb_exception ex;
459
460 p = buf + strlen ("qRelocInsn:");
461 pp = unpack_varlen_hex (p, &ul);
462 if (*pp != ';')
463 error (_("invalid qRelocInsn packet: %s"), buf);
464 from = ul;
465
466 p = pp + 1;
467 unpack_varlen_hex (p, &ul);
468 to = ul;
469
470 org_to = to;
471
472 TRY_CATCH (ex, RETURN_MASK_ALL)
473 {
474 gdbarch_relocate_instruction (target_gdbarch, &to, from);
475 }
476 if (ex.reason >= 0)
477 {
478 adjusted_size = to - org_to;
479
480 sprintf (buf, "qRelocInsn:%x", adjusted_size);
481 putpkt (buf);
482 }
483 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
484 {
485 /* Propagate memory errors silently back to the target.
486 The stub may have limited the range of addresses we
487 can write to, for example. */
488 putpkt ("E01");
489 }
490 else
491 {
492 /* Something unexpectedly bad happened. Be verbose so
493 we can tell what, and propagate the error back to the
494 stub, so it doesn't get stuck waiting for a
495 response. */
496 exception_fprintf (gdb_stderr, ex,
497 _("warning: relocating instruction: "));
498 putpkt ("E01");
499 }
500 }
501 else if (buf[0] == 'O' && buf[1] != 'K')
502 remote_console_output (buf + 1); /* 'O' message from stub */
503 else
504 return buf; /* Here's the actual reply. */
505 }
506 while (1);
507 }
508
509 /* Handle for retreving the remote protocol data from gdbarch. */
510 static struct gdbarch_data *remote_gdbarch_data_handle;
511
512 static struct remote_arch_state *
513 get_remote_arch_state (void)
514 {
515 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
516 }
517
518 /* Fetch the global remote target state. */
519
520 static struct remote_state *
521 get_remote_state (void)
522 {
523 /* Make sure that the remote architecture state has been
524 initialized, because doing so might reallocate rs->buf. Any
525 function which calls getpkt also needs to be mindful of changes
526 to rs->buf, but this call limits the number of places which run
527 into trouble. */
528 get_remote_arch_state ();
529
530 return get_remote_state_raw ();
531 }
532
533 static int
534 compare_pnums (const void *lhs_, const void *rhs_)
535 {
536 const struct packet_reg * const *lhs = lhs_;
537 const struct packet_reg * const *rhs = rhs_;
538
539 if ((*lhs)->pnum < (*rhs)->pnum)
540 return -1;
541 else if ((*lhs)->pnum == (*rhs)->pnum)
542 return 0;
543 else
544 return 1;
545 }
546
547 static int
548 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
549 {
550 int regnum, num_remote_regs, offset;
551 struct packet_reg **remote_regs;
552
553 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
554 {
555 struct packet_reg *r = &regs[regnum];
556
557 if (register_size (gdbarch, regnum) == 0)
558 /* Do not try to fetch zero-sized (placeholder) registers. */
559 r->pnum = -1;
560 else
561 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
562
563 r->regnum = regnum;
564 }
565
566 /* Define the g/G packet format as the contents of each register
567 with a remote protocol number, in order of ascending protocol
568 number. */
569
570 remote_regs = alloca (gdbarch_num_regs (gdbarch)
571 * sizeof (struct packet_reg *));
572 for (num_remote_regs = 0, regnum = 0;
573 regnum < gdbarch_num_regs (gdbarch);
574 regnum++)
575 if (regs[regnum].pnum != -1)
576 remote_regs[num_remote_regs++] = &regs[regnum];
577
578 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
579 compare_pnums);
580
581 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
582 {
583 remote_regs[regnum]->in_g_packet = 1;
584 remote_regs[regnum]->offset = offset;
585 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
586 }
587
588 return offset;
589 }
590
591 /* Given the architecture described by GDBARCH, return the remote
592 protocol register's number and the register's offset in the g/G
593 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
594 If the target does not have a mapping for REGNUM, return false,
595 otherwise, return true. */
596
597 int
598 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
599 int *pnum, int *poffset)
600 {
601 int sizeof_g_packet;
602 struct packet_reg *regs;
603 struct cleanup *old_chain;
604
605 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
606
607 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
608 old_chain = make_cleanup (xfree, regs);
609
610 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
611
612 *pnum = regs[regnum].pnum;
613 *poffset = regs[regnum].offset;
614
615 do_cleanups (old_chain);
616
617 return *pnum != -1;
618 }
619
620 static void *
621 init_remote_state (struct gdbarch *gdbarch)
622 {
623 struct remote_state *rs = get_remote_state_raw ();
624 struct remote_arch_state *rsa;
625
626 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
627
628 /* Use the architecture to build a regnum<->pnum table, which will be
629 1:1 unless a feature set specifies otherwise. */
630 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
631 gdbarch_num_regs (gdbarch),
632 struct packet_reg);
633
634 /* Record the maximum possible size of the g packet - it may turn out
635 to be smaller. */
636 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
637
638 /* Default maximum number of characters in a packet body. Many
639 remote stubs have a hardwired buffer size of 400 bytes
640 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
641 as the maximum packet-size to ensure that the packet and an extra
642 NUL character can always fit in the buffer. This stops GDB
643 trashing stubs that try to squeeze an extra NUL into what is
644 already a full buffer (As of 1999-12-04 that was most stubs). */
645 rsa->remote_packet_size = 400 - 1;
646
647 /* This one is filled in when a ``g'' packet is received. */
648 rsa->actual_register_packet_size = 0;
649
650 /* Should rsa->sizeof_g_packet needs more space than the
651 default, adjust the size accordingly. Remember that each byte is
652 encoded as two characters. 32 is the overhead for the packet
653 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
654 (``$NN:G...#NN'') is a better guess, the below has been padded a
655 little. */
656 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
657 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
658
659 /* Make sure that the packet buffer is plenty big enough for
660 this architecture. */
661 if (rs->buf_size < rsa->remote_packet_size)
662 {
663 rs->buf_size = 2 * rsa->remote_packet_size;
664 rs->buf = xrealloc (rs->buf, rs->buf_size);
665 }
666
667 return rsa;
668 }
669
670 /* Return the current allowed size of a remote packet. This is
671 inferred from the current architecture, and should be used to
672 limit the length of outgoing packets. */
673 static long
674 get_remote_packet_size (void)
675 {
676 struct remote_state *rs = get_remote_state ();
677 struct remote_arch_state *rsa = get_remote_arch_state ();
678
679 if (rs->explicit_packet_size)
680 return rs->explicit_packet_size;
681
682 return rsa->remote_packet_size;
683 }
684
685 static struct packet_reg *
686 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
687 {
688 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
689 return NULL;
690 else
691 {
692 struct packet_reg *r = &rsa->regs[regnum];
693
694 gdb_assert (r->regnum == regnum);
695 return r;
696 }
697 }
698
699 static struct packet_reg *
700 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
701 {
702 int i;
703
704 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
705 {
706 struct packet_reg *r = &rsa->regs[i];
707
708 if (r->pnum == pnum)
709 return r;
710 }
711 return NULL;
712 }
713
714 /* FIXME: graces/2002-08-08: These variables should eventually be
715 bound to an instance of the target object (as in gdbarch-tdep()),
716 when such a thing exists. */
717
718 /* This is set to the data address of the access causing the target
719 to stop for a watchpoint. */
720 static CORE_ADDR remote_watch_data_address;
721
722 /* This is non-zero if target stopped for a watchpoint. */
723 static int remote_stopped_by_watchpoint_p;
724
725 static struct target_ops remote_ops;
726
727 static struct target_ops extended_remote_ops;
728
729 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
730 ``forever'' still use the normal timeout mechanism. This is
731 currently used by the ASYNC code to guarentee that target reads
732 during the initial connect always time-out. Once getpkt has been
733 modified to return a timeout indication and, in turn
734 remote_wait()/wait_for_inferior() have gained a timeout parameter
735 this can go away. */
736 static int wait_forever_enabled_p = 1;
737
738 /* Allow the user to specify what sequence to send to the remote
739 when he requests a program interruption: Although ^C is usually
740 what remote systems expect (this is the default, here), it is
741 sometimes preferable to send a break. On other systems such
742 as the Linux kernel, a break followed by g, which is Magic SysRq g
743 is required in order to interrupt the execution. */
744 const char interrupt_sequence_control_c[] = "Ctrl-C";
745 const char interrupt_sequence_break[] = "BREAK";
746 const char interrupt_sequence_break_g[] = "BREAK-g";
747 static const char *interrupt_sequence_modes[] =
748 {
749 interrupt_sequence_control_c,
750 interrupt_sequence_break,
751 interrupt_sequence_break_g,
752 NULL
753 };
754 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
755
756 static void
757 show_interrupt_sequence (struct ui_file *file, int from_tty,
758 struct cmd_list_element *c,
759 const char *value)
760 {
761 if (interrupt_sequence_mode == interrupt_sequence_control_c)
762 fprintf_filtered (file,
763 _("Send the ASCII ETX character (Ctrl-c) "
764 "to the remote target to interrupt the "
765 "execution of the program.\n"));
766 else if (interrupt_sequence_mode == interrupt_sequence_break)
767 fprintf_filtered (file,
768 _("send a break signal to the remote target "
769 "to interrupt the execution of the program.\n"));
770 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
771 fprintf_filtered (file,
772 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
773 "the remote target to interrupt the execution "
774 "of Linux kernel.\n"));
775 else
776 internal_error (__FILE__, __LINE__,
777 _("Invalid value for interrupt_sequence_mode: %s."),
778 interrupt_sequence_mode);
779 }
780
781 /* This boolean variable specifies whether interrupt_sequence is sent
782 to the remote target when gdb connects to it.
783 This is mostly needed when you debug the Linux kernel: The Linux kernel
784 expects BREAK g which is Magic SysRq g for connecting gdb. */
785 static int interrupt_on_connect = 0;
786
787 /* This variable is used to implement the "set/show remotebreak" commands.
788 Since these commands are now deprecated in favor of "set/show remote
789 interrupt-sequence", it no longer has any effect on the code. */
790 static int remote_break;
791
792 static void
793 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
794 {
795 if (remote_break)
796 interrupt_sequence_mode = interrupt_sequence_break;
797 else
798 interrupt_sequence_mode = interrupt_sequence_control_c;
799 }
800
801 static void
802 show_remotebreak (struct ui_file *file, int from_tty,
803 struct cmd_list_element *c,
804 const char *value)
805 {
806 }
807
808 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
809 remote_open knows that we don't have a file open when the program
810 starts. */
811 static struct serial *remote_desc = NULL;
812
813 /* This variable sets the number of bits in an address that are to be
814 sent in a memory ("M" or "m") packet. Normally, after stripping
815 leading zeros, the entire address would be sent. This variable
816 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
817 initial implementation of remote.c restricted the address sent in
818 memory packets to ``host::sizeof long'' bytes - (typically 32
819 bits). Consequently, for 64 bit targets, the upper 32 bits of an
820 address was never sent. Since fixing this bug may cause a break in
821 some remote targets this variable is principly provided to
822 facilitate backward compatibility. */
823
824 static int remote_address_size;
825
826 /* Temporary to track who currently owns the terminal. See
827 remote_terminal_* for more details. */
828
829 static int remote_async_terminal_ours_p;
830
831 /* The executable file to use for "run" on the remote side. */
832
833 static char *remote_exec_file = "";
834
835 \f
836 /* User configurable variables for the number of characters in a
837 memory read/write packet. MIN (rsa->remote_packet_size,
838 rsa->sizeof_g_packet) is the default. Some targets need smaller
839 values (fifo overruns, et.al.) and some users need larger values
840 (speed up transfers). The variables ``preferred_*'' (the user
841 request), ``current_*'' (what was actually set) and ``forced_*''
842 (Positive - a soft limit, negative - a hard limit). */
843
844 struct memory_packet_config
845 {
846 char *name;
847 long size;
848 int fixed_p;
849 };
850
851 /* Compute the current size of a read/write packet. Since this makes
852 use of ``actual_register_packet_size'' the computation is dynamic. */
853
854 static long
855 get_memory_packet_size (struct memory_packet_config *config)
856 {
857 struct remote_state *rs = get_remote_state ();
858 struct remote_arch_state *rsa = get_remote_arch_state ();
859
860 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
861 law?) that some hosts don't cope very well with large alloca()
862 calls. Eventually the alloca() code will be replaced by calls to
863 xmalloc() and make_cleanups() allowing this restriction to either
864 be lifted or removed. */
865 #ifndef MAX_REMOTE_PACKET_SIZE
866 #define MAX_REMOTE_PACKET_SIZE 16384
867 #endif
868 /* NOTE: 20 ensures we can write at least one byte. */
869 #ifndef MIN_REMOTE_PACKET_SIZE
870 #define MIN_REMOTE_PACKET_SIZE 20
871 #endif
872 long what_they_get;
873 if (config->fixed_p)
874 {
875 if (config->size <= 0)
876 what_they_get = MAX_REMOTE_PACKET_SIZE;
877 else
878 what_they_get = config->size;
879 }
880 else
881 {
882 what_they_get = get_remote_packet_size ();
883 /* Limit the packet to the size specified by the user. */
884 if (config->size > 0
885 && what_they_get > config->size)
886 what_they_get = config->size;
887
888 /* Limit it to the size of the targets ``g'' response unless we have
889 permission from the stub to use a larger packet size. */
890 if (rs->explicit_packet_size == 0
891 && rsa->actual_register_packet_size > 0
892 && what_they_get > rsa->actual_register_packet_size)
893 what_they_get = rsa->actual_register_packet_size;
894 }
895 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
896 what_they_get = MAX_REMOTE_PACKET_SIZE;
897 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
898 what_they_get = MIN_REMOTE_PACKET_SIZE;
899
900 /* Make sure there is room in the global buffer for this packet
901 (including its trailing NUL byte). */
902 if (rs->buf_size < what_they_get + 1)
903 {
904 rs->buf_size = 2 * what_they_get;
905 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
906 }
907
908 return what_they_get;
909 }
910
911 /* Update the size of a read/write packet. If they user wants
912 something really big then do a sanity check. */
913
914 static void
915 set_memory_packet_size (char *args, struct memory_packet_config *config)
916 {
917 int fixed_p = config->fixed_p;
918 long size = config->size;
919
920 if (args == NULL)
921 error (_("Argument required (integer, `fixed' or `limited')."));
922 else if (strcmp (args, "hard") == 0
923 || strcmp (args, "fixed") == 0)
924 fixed_p = 1;
925 else if (strcmp (args, "soft") == 0
926 || strcmp (args, "limit") == 0)
927 fixed_p = 0;
928 else
929 {
930 char *end;
931
932 size = strtoul (args, &end, 0);
933 if (args == end)
934 error (_("Invalid %s (bad syntax)."), config->name);
935 #if 0
936 /* Instead of explicitly capping the size of a packet to
937 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
938 instead allowed to set the size to something arbitrarily
939 large. */
940 if (size > MAX_REMOTE_PACKET_SIZE)
941 error (_("Invalid %s (too large)."), config->name);
942 #endif
943 }
944 /* Extra checks? */
945 if (fixed_p && !config->fixed_p)
946 {
947 if (! query (_("The target may not be able to correctly handle a %s\n"
948 "of %ld bytes. Change the packet size? "),
949 config->name, size))
950 error (_("Packet size not changed."));
951 }
952 /* Update the config. */
953 config->fixed_p = fixed_p;
954 config->size = size;
955 }
956
957 static void
958 show_memory_packet_size (struct memory_packet_config *config)
959 {
960 printf_filtered (_("The %s is %ld. "), config->name, config->size);
961 if (config->fixed_p)
962 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
963 get_memory_packet_size (config));
964 else
965 printf_filtered (_("Packets are limited to %ld bytes.\n"),
966 get_memory_packet_size (config));
967 }
968
969 static struct memory_packet_config memory_write_packet_config =
970 {
971 "memory-write-packet-size",
972 };
973
974 static void
975 set_memory_write_packet_size (char *args, int from_tty)
976 {
977 set_memory_packet_size (args, &memory_write_packet_config);
978 }
979
980 static void
981 show_memory_write_packet_size (char *args, int from_tty)
982 {
983 show_memory_packet_size (&memory_write_packet_config);
984 }
985
986 static long
987 get_memory_write_packet_size (void)
988 {
989 return get_memory_packet_size (&memory_write_packet_config);
990 }
991
992 static struct memory_packet_config memory_read_packet_config =
993 {
994 "memory-read-packet-size",
995 };
996
997 static void
998 set_memory_read_packet_size (char *args, int from_tty)
999 {
1000 set_memory_packet_size (args, &memory_read_packet_config);
1001 }
1002
1003 static void
1004 show_memory_read_packet_size (char *args, int from_tty)
1005 {
1006 show_memory_packet_size (&memory_read_packet_config);
1007 }
1008
1009 static long
1010 get_memory_read_packet_size (void)
1011 {
1012 long size = get_memory_packet_size (&memory_read_packet_config);
1013
1014 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1015 extra buffer size argument before the memory read size can be
1016 increased beyond this. */
1017 if (size > get_remote_packet_size ())
1018 size = get_remote_packet_size ();
1019 return size;
1020 }
1021
1022 \f
1023 /* Generic configuration support for packets the stub optionally
1024 supports. Allows the user to specify the use of the packet as well
1025 as allowing GDB to auto-detect support in the remote stub. */
1026
1027 enum packet_support
1028 {
1029 PACKET_SUPPORT_UNKNOWN = 0,
1030 PACKET_ENABLE,
1031 PACKET_DISABLE
1032 };
1033
1034 struct packet_config
1035 {
1036 const char *name;
1037 const char *title;
1038 enum auto_boolean detect;
1039 enum packet_support support;
1040 };
1041
1042 /* Analyze a packet's return value and update the packet config
1043 accordingly. */
1044
1045 enum packet_result
1046 {
1047 PACKET_ERROR,
1048 PACKET_OK,
1049 PACKET_UNKNOWN
1050 };
1051
1052 static void
1053 update_packet_config (struct packet_config *config)
1054 {
1055 switch (config->detect)
1056 {
1057 case AUTO_BOOLEAN_TRUE:
1058 config->support = PACKET_ENABLE;
1059 break;
1060 case AUTO_BOOLEAN_FALSE:
1061 config->support = PACKET_DISABLE;
1062 break;
1063 case AUTO_BOOLEAN_AUTO:
1064 config->support = PACKET_SUPPORT_UNKNOWN;
1065 break;
1066 }
1067 }
1068
1069 static void
1070 show_packet_config_cmd (struct packet_config *config)
1071 {
1072 char *support = "internal-error";
1073
1074 switch (config->support)
1075 {
1076 case PACKET_ENABLE:
1077 support = "enabled";
1078 break;
1079 case PACKET_DISABLE:
1080 support = "disabled";
1081 break;
1082 case PACKET_SUPPORT_UNKNOWN:
1083 support = "unknown";
1084 break;
1085 }
1086 switch (config->detect)
1087 {
1088 case AUTO_BOOLEAN_AUTO:
1089 printf_filtered (_("Support for the `%s' packet "
1090 "is auto-detected, currently %s.\n"),
1091 config->name, support);
1092 break;
1093 case AUTO_BOOLEAN_TRUE:
1094 case AUTO_BOOLEAN_FALSE:
1095 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1096 config->name, support);
1097 break;
1098 }
1099 }
1100
1101 static void
1102 add_packet_config_cmd (struct packet_config *config, const char *name,
1103 const char *title, int legacy)
1104 {
1105 char *set_doc;
1106 char *show_doc;
1107 char *cmd_name;
1108
1109 config->name = name;
1110 config->title = title;
1111 config->detect = AUTO_BOOLEAN_AUTO;
1112 config->support = PACKET_SUPPORT_UNKNOWN;
1113 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1114 name, title);
1115 show_doc = xstrprintf ("Show current use of remote "
1116 "protocol `%s' (%s) packet",
1117 name, title);
1118 /* set/show TITLE-packet {auto,on,off} */
1119 cmd_name = xstrprintf ("%s-packet", title);
1120 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1121 &config->detect, set_doc,
1122 show_doc, NULL, /* help_doc */
1123 set_remote_protocol_packet_cmd,
1124 show_remote_protocol_packet_cmd,
1125 &remote_set_cmdlist, &remote_show_cmdlist);
1126 /* The command code copies the documentation strings. */
1127 xfree (set_doc);
1128 xfree (show_doc);
1129 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1130 if (legacy)
1131 {
1132 char *legacy_name;
1133
1134 legacy_name = xstrprintf ("%s-packet", name);
1135 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1136 &remote_set_cmdlist);
1137 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1138 &remote_show_cmdlist);
1139 }
1140 }
1141
1142 static enum packet_result
1143 packet_check_result (const char *buf)
1144 {
1145 if (buf[0] != '\0')
1146 {
1147 /* The stub recognized the packet request. Check that the
1148 operation succeeded. */
1149 if (buf[0] == 'E'
1150 && isxdigit (buf[1]) && isxdigit (buf[2])
1151 && buf[3] == '\0')
1152 /* "Enn" - definitly an error. */
1153 return PACKET_ERROR;
1154
1155 /* Always treat "E." as an error. This will be used for
1156 more verbose error messages, such as E.memtypes. */
1157 if (buf[0] == 'E' && buf[1] == '.')
1158 return PACKET_ERROR;
1159
1160 /* The packet may or may not be OK. Just assume it is. */
1161 return PACKET_OK;
1162 }
1163 else
1164 /* The stub does not support the packet. */
1165 return PACKET_UNKNOWN;
1166 }
1167
1168 static enum packet_result
1169 packet_ok (const char *buf, struct packet_config *config)
1170 {
1171 enum packet_result result;
1172
1173 result = packet_check_result (buf);
1174 switch (result)
1175 {
1176 case PACKET_OK:
1177 case PACKET_ERROR:
1178 /* The stub recognized the packet request. */
1179 switch (config->support)
1180 {
1181 case PACKET_SUPPORT_UNKNOWN:
1182 if (remote_debug)
1183 fprintf_unfiltered (gdb_stdlog,
1184 "Packet %s (%s) is supported\n",
1185 config->name, config->title);
1186 config->support = PACKET_ENABLE;
1187 break;
1188 case PACKET_DISABLE:
1189 internal_error (__FILE__, __LINE__,
1190 _("packet_ok: attempt to use a disabled packet"));
1191 break;
1192 case PACKET_ENABLE:
1193 break;
1194 }
1195 break;
1196 case PACKET_UNKNOWN:
1197 /* The stub does not support the packet. */
1198 switch (config->support)
1199 {
1200 case PACKET_ENABLE:
1201 if (config->detect == AUTO_BOOLEAN_AUTO)
1202 /* If the stub previously indicated that the packet was
1203 supported then there is a protocol error.. */
1204 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1205 config->name, config->title);
1206 else
1207 /* The user set it wrong. */
1208 error (_("Enabled packet %s (%s) not recognized by stub"),
1209 config->name, config->title);
1210 break;
1211 case PACKET_SUPPORT_UNKNOWN:
1212 if (remote_debug)
1213 fprintf_unfiltered (gdb_stdlog,
1214 "Packet %s (%s) is NOT supported\n",
1215 config->name, config->title);
1216 config->support = PACKET_DISABLE;
1217 break;
1218 case PACKET_DISABLE:
1219 break;
1220 }
1221 break;
1222 }
1223
1224 return result;
1225 }
1226
1227 enum {
1228 PACKET_vCont = 0,
1229 PACKET_X,
1230 PACKET_qSymbol,
1231 PACKET_P,
1232 PACKET_p,
1233 PACKET_Z0,
1234 PACKET_Z1,
1235 PACKET_Z2,
1236 PACKET_Z3,
1237 PACKET_Z4,
1238 PACKET_vFile_open,
1239 PACKET_vFile_pread,
1240 PACKET_vFile_pwrite,
1241 PACKET_vFile_close,
1242 PACKET_vFile_unlink,
1243 PACKET_qXfer_auxv,
1244 PACKET_qXfer_features,
1245 PACKET_qXfer_libraries,
1246 PACKET_qXfer_memory_map,
1247 PACKET_qXfer_spu_read,
1248 PACKET_qXfer_spu_write,
1249 PACKET_qXfer_osdata,
1250 PACKET_qXfer_threads,
1251 PACKET_qXfer_statictrace_read,
1252 PACKET_qXfer_traceframe_info,
1253 PACKET_qGetTIBAddr,
1254 PACKET_qGetTLSAddr,
1255 PACKET_qSupported,
1256 PACKET_QPassSignals,
1257 PACKET_qSearch_memory,
1258 PACKET_vAttach,
1259 PACKET_vRun,
1260 PACKET_QStartNoAckMode,
1261 PACKET_vKill,
1262 PACKET_qXfer_siginfo_read,
1263 PACKET_qXfer_siginfo_write,
1264 PACKET_qAttached,
1265 PACKET_ConditionalTracepoints,
1266 PACKET_FastTracepoints,
1267 PACKET_StaticTracepoints,
1268 PACKET_InstallInTrace,
1269 PACKET_bc,
1270 PACKET_bs,
1271 PACKET_TracepointSource,
1272 PACKET_QAllow,
1273 PACKET_qXfer_fdpic,
1274 PACKET_QDisableRandomization,
1275 PACKET_MAX
1276 };
1277
1278 static struct packet_config remote_protocol_packets[PACKET_MAX];
1279
1280 static void
1281 set_remote_protocol_packet_cmd (char *args, int from_tty,
1282 struct cmd_list_element *c)
1283 {
1284 struct packet_config *packet;
1285
1286 for (packet = remote_protocol_packets;
1287 packet < &remote_protocol_packets[PACKET_MAX];
1288 packet++)
1289 {
1290 if (&packet->detect == c->var)
1291 {
1292 update_packet_config (packet);
1293 return;
1294 }
1295 }
1296 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1297 c->name);
1298 }
1299
1300 static void
1301 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1302 struct cmd_list_element *c,
1303 const char *value)
1304 {
1305 struct packet_config *packet;
1306
1307 for (packet = remote_protocol_packets;
1308 packet < &remote_protocol_packets[PACKET_MAX];
1309 packet++)
1310 {
1311 if (&packet->detect == c->var)
1312 {
1313 show_packet_config_cmd (packet);
1314 return;
1315 }
1316 }
1317 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1318 c->name);
1319 }
1320
1321 /* Should we try one of the 'Z' requests? */
1322
1323 enum Z_packet_type
1324 {
1325 Z_PACKET_SOFTWARE_BP,
1326 Z_PACKET_HARDWARE_BP,
1327 Z_PACKET_WRITE_WP,
1328 Z_PACKET_READ_WP,
1329 Z_PACKET_ACCESS_WP,
1330 NR_Z_PACKET_TYPES
1331 };
1332
1333 /* For compatibility with older distributions. Provide a ``set remote
1334 Z-packet ...'' command that updates all the Z packet types. */
1335
1336 static enum auto_boolean remote_Z_packet_detect;
1337
1338 static void
1339 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1340 struct cmd_list_element *c)
1341 {
1342 int i;
1343
1344 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1345 {
1346 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1347 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1348 }
1349 }
1350
1351 static void
1352 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1353 struct cmd_list_element *c,
1354 const char *value)
1355 {
1356 int i;
1357
1358 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1359 {
1360 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1361 }
1362 }
1363
1364 /* Should we try the 'ThreadInfo' query packet?
1365
1366 This variable (NOT available to the user: auto-detect only!)
1367 determines whether GDB will use the new, simpler "ThreadInfo"
1368 query or the older, more complex syntax for thread queries.
1369 This is an auto-detect variable (set to true at each connect,
1370 and set to false when the target fails to recognize it). */
1371
1372 static int use_threadinfo_query;
1373 static int use_threadextra_query;
1374
1375 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1376 static struct async_signal_handler *sigint_remote_twice_token;
1377 static struct async_signal_handler *sigint_remote_token;
1378
1379 \f
1380 /* Asynchronous signal handle registered as event loop source for
1381 when we have pending events ready to be passed to the core. */
1382
1383 static struct async_event_handler *remote_async_inferior_event_token;
1384
1385 /* Asynchronous signal handle registered as event loop source for when
1386 the remote sent us a %Stop notification. The registered callback
1387 will do a vStopped sequence to pull the rest of the events out of
1388 the remote side into our event queue. */
1389
1390 static struct async_event_handler *remote_async_get_pending_events_token;
1391 \f
1392
1393 static ptid_t magic_null_ptid;
1394 static ptid_t not_sent_ptid;
1395 static ptid_t any_thread_ptid;
1396
1397 /* These are the threads which we last sent to the remote system. The
1398 TID member will be -1 for all or -2 for not sent yet. */
1399
1400 static ptid_t general_thread;
1401 static ptid_t continue_thread;
1402
1403 /* This the traceframe which we last selected on the remote system.
1404 It will be -1 if no traceframe is selected. */
1405 static int remote_traceframe_number = -1;
1406
1407 /* Find out if the stub attached to PID (and hence GDB should offer to
1408 detach instead of killing it when bailing out). */
1409
1410 static int
1411 remote_query_attached (int pid)
1412 {
1413 struct remote_state *rs = get_remote_state ();
1414
1415 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1416 return 0;
1417
1418 if (remote_multi_process_p (rs))
1419 sprintf (rs->buf, "qAttached:%x", pid);
1420 else
1421 sprintf (rs->buf, "qAttached");
1422
1423 putpkt (rs->buf);
1424 getpkt (&rs->buf, &rs->buf_size, 0);
1425
1426 switch (packet_ok (rs->buf,
1427 &remote_protocol_packets[PACKET_qAttached]))
1428 {
1429 case PACKET_OK:
1430 if (strcmp (rs->buf, "1") == 0)
1431 return 1;
1432 break;
1433 case PACKET_ERROR:
1434 warning (_("Remote failure reply: %s"), rs->buf);
1435 break;
1436 case PACKET_UNKNOWN:
1437 break;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /* Add PID to GDB's inferior table. Since we can be connected to a
1444 remote system before before knowing about any inferior, mark the
1445 target with execution when we find the first inferior. If ATTACHED
1446 is 1, then we had just attached to this inferior. If it is 0, then
1447 we just created this inferior. If it is -1, then try querying the
1448 remote stub to find out if it had attached to the inferior or
1449 not. */
1450
1451 static struct inferior *
1452 remote_add_inferior (int pid, int attached)
1453 {
1454 struct inferior *inf;
1455
1456 /* Check whether this process we're learning about is to be
1457 considered attached, or if is to be considered to have been
1458 spawned by the stub. */
1459 if (attached == -1)
1460 attached = remote_query_attached (pid);
1461
1462 if (gdbarch_has_global_solist (target_gdbarch))
1463 {
1464 /* If the target shares code across all inferiors, then every
1465 attach adds a new inferior. */
1466 inf = add_inferior (pid);
1467
1468 /* ... and every inferior is bound to the same program space.
1469 However, each inferior may still have its own address
1470 space. */
1471 inf->aspace = maybe_new_address_space ();
1472 inf->pspace = current_program_space;
1473 }
1474 else
1475 {
1476 /* In the traditional debugging scenario, there's a 1-1 match
1477 between program/address spaces. We simply bind the inferior
1478 to the program space's address space. */
1479 inf = current_inferior ();
1480 inferior_appeared (inf, pid);
1481 }
1482
1483 inf->attach_flag = attached;
1484
1485 return inf;
1486 }
1487
1488 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1489 according to RUNNING. */
1490
1491 static void
1492 remote_add_thread (ptid_t ptid, int running)
1493 {
1494 add_thread (ptid);
1495
1496 set_executing (ptid, running);
1497 set_running (ptid, running);
1498 }
1499
1500 /* Come here when we learn about a thread id from the remote target.
1501 It may be the first time we hear about such thread, so take the
1502 opportunity to add it to GDB's thread list. In case this is the
1503 first time we're noticing its corresponding inferior, add it to
1504 GDB's inferior list as well. */
1505
1506 static void
1507 remote_notice_new_inferior (ptid_t currthread, int running)
1508 {
1509 /* If this is a new thread, add it to GDB's thread list.
1510 If we leave it up to WFI to do this, bad things will happen. */
1511
1512 if (in_thread_list (currthread) && is_exited (currthread))
1513 {
1514 /* We're seeing an event on a thread id we knew had exited.
1515 This has to be a new thread reusing the old id. Add it. */
1516 remote_add_thread (currthread, running);
1517 return;
1518 }
1519
1520 if (!in_thread_list (currthread))
1521 {
1522 struct inferior *inf = NULL;
1523 int pid = ptid_get_pid (currthread);
1524
1525 if (ptid_is_pid (inferior_ptid)
1526 && pid == ptid_get_pid (inferior_ptid))
1527 {
1528 /* inferior_ptid has no thread member yet. This can happen
1529 with the vAttach -> remote_wait,"TAAthread:" path if the
1530 stub doesn't support qC. This is the first stop reported
1531 after an attach, so this is the main thread. Update the
1532 ptid in the thread list. */
1533 if (in_thread_list (pid_to_ptid (pid)))
1534 thread_change_ptid (inferior_ptid, currthread);
1535 else
1536 {
1537 remote_add_thread (currthread, running);
1538 inferior_ptid = currthread;
1539 }
1540 return;
1541 }
1542
1543 if (ptid_equal (magic_null_ptid, inferior_ptid))
1544 {
1545 /* inferior_ptid is not set yet. This can happen with the
1546 vRun -> remote_wait,"TAAthread:" path if the stub
1547 doesn't support qC. This is the first stop reported
1548 after an attach, so this is the main thread. Update the
1549 ptid in the thread list. */
1550 thread_change_ptid (inferior_ptid, currthread);
1551 return;
1552 }
1553
1554 /* When connecting to a target remote, or to a target
1555 extended-remote which already was debugging an inferior, we
1556 may not know about it yet. Add it before adding its child
1557 thread, so notifications are emitted in a sensible order. */
1558 if (!in_inferior_list (ptid_get_pid (currthread)))
1559 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1560
1561 /* This is really a new thread. Add it. */
1562 remote_add_thread (currthread, running);
1563
1564 /* If we found a new inferior, let the common code do whatever
1565 it needs to with it (e.g., read shared libraries, insert
1566 breakpoints). */
1567 if (inf != NULL)
1568 notice_new_inferior (currthread, running, 0);
1569 }
1570 }
1571
1572 /* Return the private thread data, creating it if necessary. */
1573
1574 struct private_thread_info *
1575 demand_private_info (ptid_t ptid)
1576 {
1577 struct thread_info *info = find_thread_ptid (ptid);
1578
1579 gdb_assert (info);
1580
1581 if (!info->private)
1582 {
1583 info->private = xmalloc (sizeof (*(info->private)));
1584 info->private_dtor = free_private_thread_info;
1585 info->private->core = -1;
1586 info->private->extra = 0;
1587 }
1588
1589 return info->private;
1590 }
1591
1592 /* Call this function as a result of
1593 1) A halt indication (T packet) containing a thread id
1594 2) A direct query of currthread
1595 3) Successful execution of set thread */
1596
1597 static void
1598 record_currthread (ptid_t currthread)
1599 {
1600 general_thread = currthread;
1601 }
1602
1603 static char *last_pass_packet;
1604
1605 /* If 'QPassSignals' is supported, tell the remote stub what signals
1606 it can simply pass through to the inferior without reporting. */
1607
1608 static void
1609 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1610 {
1611 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1612 {
1613 char *pass_packet, *p;
1614 int count = 0, i;
1615
1616 gdb_assert (numsigs < 256);
1617 for (i = 0; i < numsigs; i++)
1618 {
1619 if (pass_signals[i])
1620 count++;
1621 }
1622 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1623 strcpy (pass_packet, "QPassSignals:");
1624 p = pass_packet + strlen (pass_packet);
1625 for (i = 0; i < numsigs; i++)
1626 {
1627 if (pass_signals[i])
1628 {
1629 if (i >= 16)
1630 *p++ = tohex (i >> 4);
1631 *p++ = tohex (i & 15);
1632 if (count)
1633 *p++ = ';';
1634 else
1635 break;
1636 count--;
1637 }
1638 }
1639 *p = 0;
1640 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1641 {
1642 struct remote_state *rs = get_remote_state ();
1643 char *buf = rs->buf;
1644
1645 putpkt (pass_packet);
1646 getpkt (&rs->buf, &rs->buf_size, 0);
1647 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1648 if (last_pass_packet)
1649 xfree (last_pass_packet);
1650 last_pass_packet = pass_packet;
1651 }
1652 else
1653 xfree (pass_packet);
1654 }
1655 }
1656
1657 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1658 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1659 thread. If GEN is set, set the general thread, if not, then set
1660 the step/continue thread. */
1661 static void
1662 set_thread (struct ptid ptid, int gen)
1663 {
1664 struct remote_state *rs = get_remote_state ();
1665 ptid_t state = gen ? general_thread : continue_thread;
1666 char *buf = rs->buf;
1667 char *endbuf = rs->buf + get_remote_packet_size ();
1668
1669 if (ptid_equal (state, ptid))
1670 return;
1671
1672 *buf++ = 'H';
1673 *buf++ = gen ? 'g' : 'c';
1674 if (ptid_equal (ptid, magic_null_ptid))
1675 xsnprintf (buf, endbuf - buf, "0");
1676 else if (ptid_equal (ptid, any_thread_ptid))
1677 xsnprintf (buf, endbuf - buf, "0");
1678 else if (ptid_equal (ptid, minus_one_ptid))
1679 xsnprintf (buf, endbuf - buf, "-1");
1680 else
1681 write_ptid (buf, endbuf, ptid);
1682 putpkt (rs->buf);
1683 getpkt (&rs->buf, &rs->buf_size, 0);
1684 if (gen)
1685 general_thread = ptid;
1686 else
1687 continue_thread = ptid;
1688 }
1689
1690 static void
1691 set_general_thread (struct ptid ptid)
1692 {
1693 set_thread (ptid, 1);
1694 }
1695
1696 static void
1697 set_continue_thread (struct ptid ptid)
1698 {
1699 set_thread (ptid, 0);
1700 }
1701
1702 /* Change the remote current process. Which thread within the process
1703 ends up selected isn't important, as long as it is the same process
1704 as what INFERIOR_PTID points to.
1705
1706 This comes from that fact that there is no explicit notion of
1707 "selected process" in the protocol. The selected process for
1708 general operations is the process the selected general thread
1709 belongs to. */
1710
1711 static void
1712 set_general_process (void)
1713 {
1714 struct remote_state *rs = get_remote_state ();
1715
1716 /* If the remote can't handle multiple processes, don't bother. */
1717 if (!remote_multi_process_p (rs))
1718 return;
1719
1720 /* We only need to change the remote current thread if it's pointing
1721 at some other process. */
1722 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1723 set_general_thread (inferior_ptid);
1724 }
1725
1726 \f
1727 /* Return nonzero if the thread PTID is still alive on the remote
1728 system. */
1729
1730 static int
1731 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1732 {
1733 struct remote_state *rs = get_remote_state ();
1734 char *p, *endp;
1735
1736 if (ptid_equal (ptid, magic_null_ptid))
1737 /* The main thread is always alive. */
1738 return 1;
1739
1740 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1741 /* The main thread is always alive. This can happen after a
1742 vAttach, if the remote side doesn't support
1743 multi-threading. */
1744 return 1;
1745
1746 p = rs->buf;
1747 endp = rs->buf + get_remote_packet_size ();
1748
1749 *p++ = 'T';
1750 write_ptid (p, endp, ptid);
1751
1752 putpkt (rs->buf);
1753 getpkt (&rs->buf, &rs->buf_size, 0);
1754 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1755 }
1756
1757 /* About these extended threadlist and threadinfo packets. They are
1758 variable length packets but, the fields within them are often fixed
1759 length. They are redundent enough to send over UDP as is the
1760 remote protocol in general. There is a matching unit test module
1761 in libstub. */
1762
1763 #define OPAQUETHREADBYTES 8
1764
1765 /* a 64 bit opaque identifier */
1766 typedef unsigned char threadref[OPAQUETHREADBYTES];
1767
1768 /* WARNING: This threadref data structure comes from the remote O.S.,
1769 libstub protocol encoding, and remote.c. It is not particularly
1770 changable. */
1771
1772 /* Right now, the internal structure is int. We want it to be bigger.
1773 Plan to fix this. */
1774
1775 typedef int gdb_threadref; /* Internal GDB thread reference. */
1776
1777 /* gdb_ext_thread_info is an internal GDB data structure which is
1778 equivalent to the reply of the remote threadinfo packet. */
1779
1780 struct gdb_ext_thread_info
1781 {
1782 threadref threadid; /* External form of thread reference. */
1783 int active; /* Has state interesting to GDB?
1784 regs, stack. */
1785 char display[256]; /* Brief state display, name,
1786 blocked/suspended. */
1787 char shortname[32]; /* To be used to name threads. */
1788 char more_display[256]; /* Long info, statistics, queue depth,
1789 whatever. */
1790 };
1791
1792 /* The volume of remote transfers can be limited by submitting
1793 a mask containing bits specifying the desired information.
1794 Use a union of these values as the 'selection' parameter to
1795 get_thread_info. FIXME: Make these TAG names more thread specific. */
1796
1797 #define TAG_THREADID 1
1798 #define TAG_EXISTS 2
1799 #define TAG_DISPLAY 4
1800 #define TAG_THREADNAME 8
1801 #define TAG_MOREDISPLAY 16
1802
1803 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1804
1805 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1806
1807 static char *unpack_nibble (char *buf, int *val);
1808
1809 static char *pack_nibble (char *buf, int nibble);
1810
1811 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1812
1813 static char *unpack_byte (char *buf, int *value);
1814
1815 static char *pack_int (char *buf, int value);
1816
1817 static char *unpack_int (char *buf, int *value);
1818
1819 static char *unpack_string (char *src, char *dest, int length);
1820
1821 static char *pack_threadid (char *pkt, threadref *id);
1822
1823 static char *unpack_threadid (char *inbuf, threadref *id);
1824
1825 void int_to_threadref (threadref *id, int value);
1826
1827 static int threadref_to_int (threadref *ref);
1828
1829 static void copy_threadref (threadref *dest, threadref *src);
1830
1831 static int threadmatch (threadref *dest, threadref *src);
1832
1833 static char *pack_threadinfo_request (char *pkt, int mode,
1834 threadref *id);
1835
1836 static int remote_unpack_thread_info_response (char *pkt,
1837 threadref *expectedref,
1838 struct gdb_ext_thread_info
1839 *info);
1840
1841
1842 static int remote_get_threadinfo (threadref *threadid,
1843 int fieldset, /*TAG mask */
1844 struct gdb_ext_thread_info *info);
1845
1846 static char *pack_threadlist_request (char *pkt, int startflag,
1847 int threadcount,
1848 threadref *nextthread);
1849
1850 static int parse_threadlist_response (char *pkt,
1851 int result_limit,
1852 threadref *original_echo,
1853 threadref *resultlist,
1854 int *doneflag);
1855
1856 static int remote_get_threadlist (int startflag,
1857 threadref *nextthread,
1858 int result_limit,
1859 int *done,
1860 int *result_count,
1861 threadref *threadlist);
1862
1863 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1864
1865 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1866 void *context, int looplimit);
1867
1868 static int remote_newthread_step (threadref *ref, void *context);
1869
1870
1871 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1872 buffer we're allowed to write to. Returns
1873 BUF+CHARACTERS_WRITTEN. */
1874
1875 static char *
1876 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1877 {
1878 int pid, tid;
1879 struct remote_state *rs = get_remote_state ();
1880
1881 if (remote_multi_process_p (rs))
1882 {
1883 pid = ptid_get_pid (ptid);
1884 if (pid < 0)
1885 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1886 else
1887 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1888 }
1889 tid = ptid_get_tid (ptid);
1890 if (tid < 0)
1891 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1892 else
1893 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1894
1895 return buf;
1896 }
1897
1898 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1899 passed the last parsed char. Returns null_ptid on error. */
1900
1901 static ptid_t
1902 read_ptid (char *buf, char **obuf)
1903 {
1904 char *p = buf;
1905 char *pp;
1906 ULONGEST pid = 0, tid = 0;
1907
1908 if (*p == 'p')
1909 {
1910 /* Multi-process ptid. */
1911 pp = unpack_varlen_hex (p + 1, &pid);
1912 if (*pp != '.')
1913 error (_("invalid remote ptid: %s"), p);
1914
1915 p = pp;
1916 pp = unpack_varlen_hex (p + 1, &tid);
1917 if (obuf)
1918 *obuf = pp;
1919 return ptid_build (pid, 0, tid);
1920 }
1921
1922 /* No multi-process. Just a tid. */
1923 pp = unpack_varlen_hex (p, &tid);
1924
1925 /* Since the stub is not sending a process id, then default to
1926 what's in inferior_ptid, unless it's null at this point. If so,
1927 then since there's no way to know the pid of the reported
1928 threads, use the magic number. */
1929 if (ptid_equal (inferior_ptid, null_ptid))
1930 pid = ptid_get_pid (magic_null_ptid);
1931 else
1932 pid = ptid_get_pid (inferior_ptid);
1933
1934 if (obuf)
1935 *obuf = pp;
1936 return ptid_build (pid, 0, tid);
1937 }
1938
1939 /* Encode 64 bits in 16 chars of hex. */
1940
1941 static const char hexchars[] = "0123456789abcdef";
1942
1943 static int
1944 ishex (int ch, int *val)
1945 {
1946 if ((ch >= 'a') && (ch <= 'f'))
1947 {
1948 *val = ch - 'a' + 10;
1949 return 1;
1950 }
1951 if ((ch >= 'A') && (ch <= 'F'))
1952 {
1953 *val = ch - 'A' + 10;
1954 return 1;
1955 }
1956 if ((ch >= '0') && (ch <= '9'))
1957 {
1958 *val = ch - '0';
1959 return 1;
1960 }
1961 return 0;
1962 }
1963
1964 static int
1965 stubhex (int ch)
1966 {
1967 if (ch >= 'a' && ch <= 'f')
1968 return ch - 'a' + 10;
1969 if (ch >= '0' && ch <= '9')
1970 return ch - '0';
1971 if (ch >= 'A' && ch <= 'F')
1972 return ch - 'A' + 10;
1973 return -1;
1974 }
1975
1976 static int
1977 stub_unpack_int (char *buff, int fieldlength)
1978 {
1979 int nibble;
1980 int retval = 0;
1981
1982 while (fieldlength)
1983 {
1984 nibble = stubhex (*buff++);
1985 retval |= nibble;
1986 fieldlength--;
1987 if (fieldlength)
1988 retval = retval << 4;
1989 }
1990 return retval;
1991 }
1992
1993 char *
1994 unpack_varlen_hex (char *buff, /* packet to parse */
1995 ULONGEST *result)
1996 {
1997 int nibble;
1998 ULONGEST retval = 0;
1999
2000 while (ishex (*buff, &nibble))
2001 {
2002 buff++;
2003 retval = retval << 4;
2004 retval |= nibble & 0x0f;
2005 }
2006 *result = retval;
2007 return buff;
2008 }
2009
2010 static char *
2011 unpack_nibble (char *buf, int *val)
2012 {
2013 *val = fromhex (*buf++);
2014 return buf;
2015 }
2016
2017 static char *
2018 pack_nibble (char *buf, int nibble)
2019 {
2020 *buf++ = hexchars[(nibble & 0x0f)];
2021 return buf;
2022 }
2023
2024 static char *
2025 pack_hex_byte (char *pkt, int byte)
2026 {
2027 *pkt++ = hexchars[(byte >> 4) & 0xf];
2028 *pkt++ = hexchars[(byte & 0xf)];
2029 return pkt;
2030 }
2031
2032 static char *
2033 unpack_byte (char *buf, int *value)
2034 {
2035 *value = stub_unpack_int (buf, 2);
2036 return buf + 2;
2037 }
2038
2039 static char *
2040 pack_int (char *buf, int value)
2041 {
2042 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2043 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2044 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2045 buf = pack_hex_byte (buf, (value & 0xff));
2046 return buf;
2047 }
2048
2049 static char *
2050 unpack_int (char *buf, int *value)
2051 {
2052 *value = stub_unpack_int (buf, 8);
2053 return buf + 8;
2054 }
2055
2056 #if 0 /* Currently unused, uncomment when needed. */
2057 static char *pack_string (char *pkt, char *string);
2058
2059 static char *
2060 pack_string (char *pkt, char *string)
2061 {
2062 char ch;
2063 int len;
2064
2065 len = strlen (string);
2066 if (len > 200)
2067 len = 200; /* Bigger than most GDB packets, junk??? */
2068 pkt = pack_hex_byte (pkt, len);
2069 while (len-- > 0)
2070 {
2071 ch = *string++;
2072 if ((ch == '\0') || (ch == '#'))
2073 ch = '*'; /* Protect encapsulation. */
2074 *pkt++ = ch;
2075 }
2076 return pkt;
2077 }
2078 #endif /* 0 (unused) */
2079
2080 static char *
2081 unpack_string (char *src, char *dest, int length)
2082 {
2083 while (length--)
2084 *dest++ = *src++;
2085 *dest = '\0';
2086 return src;
2087 }
2088
2089 static char *
2090 pack_threadid (char *pkt, threadref *id)
2091 {
2092 char *limit;
2093 unsigned char *altid;
2094
2095 altid = (unsigned char *) id;
2096 limit = pkt + BUF_THREAD_ID_SIZE;
2097 while (pkt < limit)
2098 pkt = pack_hex_byte (pkt, *altid++);
2099 return pkt;
2100 }
2101
2102
2103 static char *
2104 unpack_threadid (char *inbuf, threadref *id)
2105 {
2106 char *altref;
2107 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2108 int x, y;
2109
2110 altref = (char *) id;
2111
2112 while (inbuf < limit)
2113 {
2114 x = stubhex (*inbuf++);
2115 y = stubhex (*inbuf++);
2116 *altref++ = (x << 4) | y;
2117 }
2118 return inbuf;
2119 }
2120
2121 /* Externally, threadrefs are 64 bits but internally, they are still
2122 ints. This is due to a mismatch of specifications. We would like
2123 to use 64bit thread references internally. This is an adapter
2124 function. */
2125
2126 void
2127 int_to_threadref (threadref *id, int value)
2128 {
2129 unsigned char *scan;
2130
2131 scan = (unsigned char *) id;
2132 {
2133 int i = 4;
2134 while (i--)
2135 *scan++ = 0;
2136 }
2137 *scan++ = (value >> 24) & 0xff;
2138 *scan++ = (value >> 16) & 0xff;
2139 *scan++ = (value >> 8) & 0xff;
2140 *scan++ = (value & 0xff);
2141 }
2142
2143 static int
2144 threadref_to_int (threadref *ref)
2145 {
2146 int i, value = 0;
2147 unsigned char *scan;
2148
2149 scan = *ref;
2150 scan += 4;
2151 i = 4;
2152 while (i-- > 0)
2153 value = (value << 8) | ((*scan++) & 0xff);
2154 return value;
2155 }
2156
2157 static void
2158 copy_threadref (threadref *dest, threadref *src)
2159 {
2160 int i;
2161 unsigned char *csrc, *cdest;
2162
2163 csrc = (unsigned char *) src;
2164 cdest = (unsigned char *) dest;
2165 i = 8;
2166 while (i--)
2167 *cdest++ = *csrc++;
2168 }
2169
2170 static int
2171 threadmatch (threadref *dest, threadref *src)
2172 {
2173 /* Things are broken right now, so just assume we got a match. */
2174 #if 0
2175 unsigned char *srcp, *destp;
2176 int i, result;
2177 srcp = (char *) src;
2178 destp = (char *) dest;
2179
2180 result = 1;
2181 while (i-- > 0)
2182 result &= (*srcp++ == *destp++) ? 1 : 0;
2183 return result;
2184 #endif
2185 return 1;
2186 }
2187
2188 /*
2189 threadid:1, # always request threadid
2190 context_exists:2,
2191 display:4,
2192 unique_name:8,
2193 more_display:16
2194 */
2195
2196 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2197
2198 static char *
2199 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2200 {
2201 *pkt++ = 'q'; /* Info Query */
2202 *pkt++ = 'P'; /* process or thread info */
2203 pkt = pack_int (pkt, mode); /* mode */
2204 pkt = pack_threadid (pkt, id); /* threadid */
2205 *pkt = '\0'; /* terminate */
2206 return pkt;
2207 }
2208
2209 /* These values tag the fields in a thread info response packet. */
2210 /* Tagging the fields allows us to request specific fields and to
2211 add more fields as time goes by. */
2212
2213 #define TAG_THREADID 1 /* Echo the thread identifier. */
2214 #define TAG_EXISTS 2 /* Is this process defined enough to
2215 fetch registers and its stack? */
2216 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2217 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2218 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2219 the process. */
2220
2221 static int
2222 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2223 struct gdb_ext_thread_info *info)
2224 {
2225 struct remote_state *rs = get_remote_state ();
2226 int mask, length;
2227 int tag;
2228 threadref ref;
2229 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2230 int retval = 1;
2231
2232 /* info->threadid = 0; FIXME: implement zero_threadref. */
2233 info->active = 0;
2234 info->display[0] = '\0';
2235 info->shortname[0] = '\0';
2236 info->more_display[0] = '\0';
2237
2238 /* Assume the characters indicating the packet type have been
2239 stripped. */
2240 pkt = unpack_int (pkt, &mask); /* arg mask */
2241 pkt = unpack_threadid (pkt, &ref);
2242
2243 if (mask == 0)
2244 warning (_("Incomplete response to threadinfo request."));
2245 if (!threadmatch (&ref, expectedref))
2246 { /* This is an answer to a different request. */
2247 warning (_("ERROR RMT Thread info mismatch."));
2248 return 0;
2249 }
2250 copy_threadref (&info->threadid, &ref);
2251
2252 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2253
2254 /* Packets are terminated with nulls. */
2255 while ((pkt < limit) && mask && *pkt)
2256 {
2257 pkt = unpack_int (pkt, &tag); /* tag */
2258 pkt = unpack_byte (pkt, &length); /* length */
2259 if (!(tag & mask)) /* Tags out of synch with mask. */
2260 {
2261 warning (_("ERROR RMT: threadinfo tag mismatch."));
2262 retval = 0;
2263 break;
2264 }
2265 if (tag == TAG_THREADID)
2266 {
2267 if (length != 16)
2268 {
2269 warning (_("ERROR RMT: length of threadid is not 16."));
2270 retval = 0;
2271 break;
2272 }
2273 pkt = unpack_threadid (pkt, &ref);
2274 mask = mask & ~TAG_THREADID;
2275 continue;
2276 }
2277 if (tag == TAG_EXISTS)
2278 {
2279 info->active = stub_unpack_int (pkt, length);
2280 pkt += length;
2281 mask = mask & ~(TAG_EXISTS);
2282 if (length > 8)
2283 {
2284 warning (_("ERROR RMT: 'exists' length too long."));
2285 retval = 0;
2286 break;
2287 }
2288 continue;
2289 }
2290 if (tag == TAG_THREADNAME)
2291 {
2292 pkt = unpack_string (pkt, &info->shortname[0], length);
2293 mask = mask & ~TAG_THREADNAME;
2294 continue;
2295 }
2296 if (tag == TAG_DISPLAY)
2297 {
2298 pkt = unpack_string (pkt, &info->display[0], length);
2299 mask = mask & ~TAG_DISPLAY;
2300 continue;
2301 }
2302 if (tag == TAG_MOREDISPLAY)
2303 {
2304 pkt = unpack_string (pkt, &info->more_display[0], length);
2305 mask = mask & ~TAG_MOREDISPLAY;
2306 continue;
2307 }
2308 warning (_("ERROR RMT: unknown thread info tag."));
2309 break; /* Not a tag we know about. */
2310 }
2311 return retval;
2312 }
2313
2314 static int
2315 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2316 struct gdb_ext_thread_info *info)
2317 {
2318 struct remote_state *rs = get_remote_state ();
2319 int result;
2320
2321 pack_threadinfo_request (rs->buf, fieldset, threadid);
2322 putpkt (rs->buf);
2323 getpkt (&rs->buf, &rs->buf_size, 0);
2324
2325 if (rs->buf[0] == '\0')
2326 return 0;
2327
2328 result = remote_unpack_thread_info_response (rs->buf + 2,
2329 threadid, info);
2330 return result;
2331 }
2332
2333 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2334
2335 static char *
2336 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2337 threadref *nextthread)
2338 {
2339 *pkt++ = 'q'; /* info query packet */
2340 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2341 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2342 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2343 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2344 *pkt = '\0';
2345 return pkt;
2346 }
2347
2348 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2349
2350 static int
2351 parse_threadlist_response (char *pkt, int result_limit,
2352 threadref *original_echo, threadref *resultlist,
2353 int *doneflag)
2354 {
2355 struct remote_state *rs = get_remote_state ();
2356 char *limit;
2357 int count, resultcount, done;
2358
2359 resultcount = 0;
2360 /* Assume the 'q' and 'M chars have been stripped. */
2361 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2362 /* done parse past here */
2363 pkt = unpack_byte (pkt, &count); /* count field */
2364 pkt = unpack_nibble (pkt, &done);
2365 /* The first threadid is the argument threadid. */
2366 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2367 while ((count-- > 0) && (pkt < limit))
2368 {
2369 pkt = unpack_threadid (pkt, resultlist++);
2370 if (resultcount++ >= result_limit)
2371 break;
2372 }
2373 if (doneflag)
2374 *doneflag = done;
2375 return resultcount;
2376 }
2377
2378 static int
2379 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2380 int *done, int *result_count, threadref *threadlist)
2381 {
2382 struct remote_state *rs = get_remote_state ();
2383 static threadref echo_nextthread;
2384 int result = 1;
2385
2386 /* Trancate result limit to be smaller than the packet size. */
2387 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2388 >= get_remote_packet_size ())
2389 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2390
2391 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2392 putpkt (rs->buf);
2393 getpkt (&rs->buf, &rs->buf_size, 0);
2394
2395 if (*rs->buf == '\0')
2396 return 0;
2397 else
2398 *result_count =
2399 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2400 threadlist, done);
2401
2402 if (!threadmatch (&echo_nextthread, nextthread))
2403 {
2404 /* FIXME: This is a good reason to drop the packet. */
2405 /* Possably, there is a duplicate response. */
2406 /* Possabilities :
2407 retransmit immediatly - race conditions
2408 retransmit after timeout - yes
2409 exit
2410 wait for packet, then exit
2411 */
2412 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2413 return 0; /* I choose simply exiting. */
2414 }
2415 if (*result_count <= 0)
2416 {
2417 if (*done != 1)
2418 {
2419 warning (_("RMT ERROR : failed to get remote thread list."));
2420 result = 0;
2421 }
2422 return result; /* break; */
2423 }
2424 if (*result_count > result_limit)
2425 {
2426 *result_count = 0;
2427 warning (_("RMT ERROR: threadlist response longer than requested."));
2428 return 0;
2429 }
2430 return result;
2431 }
2432
2433 /* This is the interface between remote and threads, remotes upper
2434 interface. */
2435
2436 /* remote_find_new_threads retrieves the thread list and for each
2437 thread in the list, looks up the thread in GDB's internal list,
2438 adding the thread if it does not already exist. This involves
2439 getting partial thread lists from the remote target so, polling the
2440 quit_flag is required. */
2441
2442
2443 /* About this many threadisds fit in a packet. */
2444
2445 #define MAXTHREADLISTRESULTS 32
2446
2447 static int
2448 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2449 int looplimit)
2450 {
2451 int done, i, result_count;
2452 int startflag = 1;
2453 int result = 1;
2454 int loopcount = 0;
2455 static threadref nextthread;
2456 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2457
2458 done = 0;
2459 while (!done)
2460 {
2461 if (loopcount++ > looplimit)
2462 {
2463 result = 0;
2464 warning (_("Remote fetch threadlist -infinite loop-."));
2465 break;
2466 }
2467 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2468 &done, &result_count, resultthreadlist))
2469 {
2470 result = 0;
2471 break;
2472 }
2473 /* Clear for later iterations. */
2474 startflag = 0;
2475 /* Setup to resume next batch of thread references, set nextthread. */
2476 if (result_count >= 1)
2477 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2478 i = 0;
2479 while (result_count--)
2480 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2481 break;
2482 }
2483 return result;
2484 }
2485
2486 static int
2487 remote_newthread_step (threadref *ref, void *context)
2488 {
2489 int pid = ptid_get_pid (inferior_ptid);
2490 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2491
2492 if (!in_thread_list (ptid))
2493 add_thread (ptid);
2494 return 1; /* continue iterator */
2495 }
2496
2497 #define CRAZY_MAX_THREADS 1000
2498
2499 static ptid_t
2500 remote_current_thread (ptid_t oldpid)
2501 {
2502 struct remote_state *rs = get_remote_state ();
2503
2504 putpkt ("qC");
2505 getpkt (&rs->buf, &rs->buf_size, 0);
2506 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2507 return read_ptid (&rs->buf[2], NULL);
2508 else
2509 return oldpid;
2510 }
2511
2512 /* Find new threads for info threads command.
2513 * Original version, using John Metzler's thread protocol.
2514 */
2515
2516 static void
2517 remote_find_new_threads (void)
2518 {
2519 remote_threadlist_iterator (remote_newthread_step, 0,
2520 CRAZY_MAX_THREADS);
2521 }
2522
2523 #if defined(HAVE_LIBEXPAT)
2524
2525 typedef struct thread_item
2526 {
2527 ptid_t ptid;
2528 char *extra;
2529 int core;
2530 } thread_item_t;
2531 DEF_VEC_O(thread_item_t);
2532
2533 struct threads_parsing_context
2534 {
2535 VEC (thread_item_t) *items;
2536 };
2537
2538 static void
2539 start_thread (struct gdb_xml_parser *parser,
2540 const struct gdb_xml_element *element,
2541 void *user_data, VEC(gdb_xml_value_s) *attributes)
2542 {
2543 struct threads_parsing_context *data = user_data;
2544
2545 struct thread_item item;
2546 char *id;
2547 struct gdb_xml_value *attr;
2548
2549 id = xml_find_attribute (attributes, "id")->value;
2550 item.ptid = read_ptid (id, NULL);
2551
2552 attr = xml_find_attribute (attributes, "core");
2553 if (attr != NULL)
2554 item.core = *(ULONGEST *) attr->value;
2555 else
2556 item.core = -1;
2557
2558 item.extra = 0;
2559
2560 VEC_safe_push (thread_item_t, data->items, &item);
2561 }
2562
2563 static void
2564 end_thread (struct gdb_xml_parser *parser,
2565 const struct gdb_xml_element *element,
2566 void *user_data, const char *body_text)
2567 {
2568 struct threads_parsing_context *data = user_data;
2569
2570 if (body_text && *body_text)
2571 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2572 }
2573
2574 const struct gdb_xml_attribute thread_attributes[] = {
2575 { "id", GDB_XML_AF_NONE, NULL, NULL },
2576 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2577 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2578 };
2579
2580 const struct gdb_xml_element thread_children[] = {
2581 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2582 };
2583
2584 const struct gdb_xml_element threads_children[] = {
2585 { "thread", thread_attributes, thread_children,
2586 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2587 start_thread, end_thread },
2588 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2589 };
2590
2591 const struct gdb_xml_element threads_elements[] = {
2592 { "threads", NULL, threads_children,
2593 GDB_XML_EF_NONE, NULL, NULL },
2594 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2595 };
2596
2597 /* Discard the contents of the constructed thread info context. */
2598
2599 static void
2600 clear_threads_parsing_context (void *p)
2601 {
2602 struct threads_parsing_context *context = p;
2603 int i;
2604 struct thread_item *item;
2605
2606 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2607 xfree (item->extra);
2608
2609 VEC_free (thread_item_t, context->items);
2610 }
2611
2612 #endif
2613
2614 /*
2615 * Find all threads for info threads command.
2616 * Uses new thread protocol contributed by Cisco.
2617 * Falls back and attempts to use the older method (above)
2618 * if the target doesn't respond to the new method.
2619 */
2620
2621 static void
2622 remote_threads_info (struct target_ops *ops)
2623 {
2624 struct remote_state *rs = get_remote_state ();
2625 char *bufp;
2626 ptid_t new_thread;
2627
2628 if (remote_desc == 0) /* paranoia */
2629 error (_("Command can only be used when connected to the remote target."));
2630
2631 #if defined(HAVE_LIBEXPAT)
2632 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2633 {
2634 char *xml = target_read_stralloc (&current_target,
2635 TARGET_OBJECT_THREADS, NULL);
2636
2637 struct cleanup *back_to = make_cleanup (xfree, xml);
2638
2639 if (xml && *xml)
2640 {
2641 struct threads_parsing_context context;
2642
2643 context.items = NULL;
2644 make_cleanup (clear_threads_parsing_context, &context);
2645
2646 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2647 threads_elements, xml, &context) == 0)
2648 {
2649 int i;
2650 struct thread_item *item;
2651
2652 for (i = 0;
2653 VEC_iterate (thread_item_t, context.items, i, item);
2654 ++i)
2655 {
2656 if (!ptid_equal (item->ptid, null_ptid))
2657 {
2658 struct private_thread_info *info;
2659 /* In non-stop mode, we assume new found threads
2660 are running until proven otherwise with a
2661 stop reply. In all-stop, we can only get
2662 here if all threads are stopped. */
2663 int running = non_stop ? 1 : 0;
2664
2665 remote_notice_new_inferior (item->ptid, running);
2666
2667 info = demand_private_info (item->ptid);
2668 info->core = item->core;
2669 info->extra = item->extra;
2670 item->extra = NULL;
2671 }
2672 }
2673 }
2674 }
2675
2676 do_cleanups (back_to);
2677 return;
2678 }
2679 #endif
2680
2681 if (use_threadinfo_query)
2682 {
2683 putpkt ("qfThreadInfo");
2684 getpkt (&rs->buf, &rs->buf_size, 0);
2685 bufp = rs->buf;
2686 if (bufp[0] != '\0') /* q packet recognized */
2687 {
2688 while (*bufp++ == 'm') /* reply contains one or more TID */
2689 {
2690 do
2691 {
2692 new_thread = read_ptid (bufp, &bufp);
2693 if (!ptid_equal (new_thread, null_ptid))
2694 {
2695 /* In non-stop mode, we assume new found threads
2696 are running until proven otherwise with a
2697 stop reply. In all-stop, we can only get
2698 here if all threads are stopped. */
2699 int running = non_stop ? 1 : 0;
2700
2701 remote_notice_new_inferior (new_thread, running);
2702 }
2703 }
2704 while (*bufp++ == ','); /* comma-separated list */
2705 putpkt ("qsThreadInfo");
2706 getpkt (&rs->buf, &rs->buf_size, 0);
2707 bufp = rs->buf;
2708 }
2709 return; /* done */
2710 }
2711 }
2712
2713 /* Only qfThreadInfo is supported in non-stop mode. */
2714 if (non_stop)
2715 return;
2716
2717 /* Else fall back to old method based on jmetzler protocol. */
2718 use_threadinfo_query = 0;
2719 remote_find_new_threads ();
2720 return;
2721 }
2722
2723 /*
2724 * Collect a descriptive string about the given thread.
2725 * The target may say anything it wants to about the thread
2726 * (typically info about its blocked / runnable state, name, etc.).
2727 * This string will appear in the info threads display.
2728 *
2729 * Optional: targets are not required to implement this function.
2730 */
2731
2732 static char *
2733 remote_threads_extra_info (struct thread_info *tp)
2734 {
2735 struct remote_state *rs = get_remote_state ();
2736 int result;
2737 int set;
2738 threadref id;
2739 struct gdb_ext_thread_info threadinfo;
2740 static char display_buf[100]; /* arbitrary... */
2741 int n = 0; /* position in display_buf */
2742
2743 if (remote_desc == 0) /* paranoia */
2744 internal_error (__FILE__, __LINE__,
2745 _("remote_threads_extra_info"));
2746
2747 if (ptid_equal (tp->ptid, magic_null_ptid)
2748 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2749 /* This is the main thread which was added by GDB. The remote
2750 server doesn't know about it. */
2751 return NULL;
2752
2753 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2754 {
2755 struct thread_info *info = find_thread_ptid (tp->ptid);
2756
2757 if (info && info->private)
2758 return info->private->extra;
2759 else
2760 return NULL;
2761 }
2762
2763 if (use_threadextra_query)
2764 {
2765 char *b = rs->buf;
2766 char *endb = rs->buf + get_remote_packet_size ();
2767
2768 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2769 b += strlen (b);
2770 write_ptid (b, endb, tp->ptid);
2771
2772 putpkt (rs->buf);
2773 getpkt (&rs->buf, &rs->buf_size, 0);
2774 if (rs->buf[0] != 0)
2775 {
2776 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2777 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2778 display_buf [result] = '\0';
2779 return display_buf;
2780 }
2781 }
2782
2783 /* If the above query fails, fall back to the old method. */
2784 use_threadextra_query = 0;
2785 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2786 | TAG_MOREDISPLAY | TAG_DISPLAY;
2787 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2788 if (remote_get_threadinfo (&id, set, &threadinfo))
2789 if (threadinfo.active)
2790 {
2791 if (*threadinfo.shortname)
2792 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2793 " Name: %s,", threadinfo.shortname);
2794 if (*threadinfo.display)
2795 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2796 " State: %s,", threadinfo.display);
2797 if (*threadinfo.more_display)
2798 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2799 " Priority: %s", threadinfo.more_display);
2800
2801 if (n > 0)
2802 {
2803 /* For purely cosmetic reasons, clear up trailing commas. */
2804 if (',' == display_buf[n-1])
2805 display_buf[n-1] = ' ';
2806 return display_buf;
2807 }
2808 }
2809 return NULL;
2810 }
2811 \f
2812
2813 static int
2814 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2815 struct static_tracepoint_marker *marker)
2816 {
2817 struct remote_state *rs = get_remote_state ();
2818 char *p = rs->buf;
2819
2820 sprintf (p, "qTSTMat:");
2821 p += strlen (p);
2822 p += hexnumstr (p, addr);
2823 putpkt (rs->buf);
2824 getpkt (&rs->buf, &rs->buf_size, 0);
2825 p = rs->buf;
2826
2827 if (*p == 'E')
2828 error (_("Remote failure reply: %s"), p);
2829
2830 if (*p++ == 'm')
2831 {
2832 parse_static_tracepoint_marker_definition (p, &p, marker);
2833 return 1;
2834 }
2835
2836 return 0;
2837 }
2838
2839 static void
2840 free_current_marker (void *arg)
2841 {
2842 struct static_tracepoint_marker **marker_p = arg;
2843
2844 if (*marker_p != NULL)
2845 {
2846 release_static_tracepoint_marker (*marker_p);
2847 xfree (*marker_p);
2848 }
2849 else
2850 *marker_p = NULL;
2851 }
2852
2853 static VEC(static_tracepoint_marker_p) *
2854 remote_static_tracepoint_markers_by_strid (const char *strid)
2855 {
2856 struct remote_state *rs = get_remote_state ();
2857 VEC(static_tracepoint_marker_p) *markers = NULL;
2858 struct static_tracepoint_marker *marker = NULL;
2859 struct cleanup *old_chain;
2860 char *p;
2861
2862 /* Ask for a first packet of static tracepoint marker
2863 definition. */
2864 putpkt ("qTfSTM");
2865 getpkt (&rs->buf, &rs->buf_size, 0);
2866 p = rs->buf;
2867 if (*p == 'E')
2868 error (_("Remote failure reply: %s"), p);
2869
2870 old_chain = make_cleanup (free_current_marker, &marker);
2871
2872 while (*p++ == 'm')
2873 {
2874 if (marker == NULL)
2875 marker = XCNEW (struct static_tracepoint_marker);
2876
2877 do
2878 {
2879 parse_static_tracepoint_marker_definition (p, &p, marker);
2880
2881 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2882 {
2883 VEC_safe_push (static_tracepoint_marker_p,
2884 markers, marker);
2885 marker = NULL;
2886 }
2887 else
2888 {
2889 release_static_tracepoint_marker (marker);
2890 memset (marker, 0, sizeof (*marker));
2891 }
2892 }
2893 while (*p++ == ','); /* comma-separated list */
2894 /* Ask for another packet of static tracepoint definition. */
2895 putpkt ("qTsSTM");
2896 getpkt (&rs->buf, &rs->buf_size, 0);
2897 p = rs->buf;
2898 }
2899
2900 do_cleanups (old_chain);
2901 return markers;
2902 }
2903
2904 \f
2905 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2906
2907 static ptid_t
2908 remote_get_ada_task_ptid (long lwp, long thread)
2909 {
2910 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2911 }
2912 \f
2913
2914 /* Restart the remote side; this is an extended protocol operation. */
2915
2916 static void
2917 extended_remote_restart (void)
2918 {
2919 struct remote_state *rs = get_remote_state ();
2920
2921 /* Send the restart command; for reasons I don't understand the
2922 remote side really expects a number after the "R". */
2923 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2924 putpkt (rs->buf);
2925
2926 remote_fileio_reset ();
2927 }
2928 \f
2929 /* Clean up connection to a remote debugger. */
2930
2931 static void
2932 remote_close (int quitting)
2933 {
2934 if (remote_desc == NULL)
2935 return; /* already closed */
2936
2937 /* Make sure we leave stdin registered in the event loop, and we
2938 don't leave the async SIGINT signal handler installed. */
2939 remote_terminal_ours ();
2940
2941 serial_close (remote_desc);
2942 remote_desc = NULL;
2943
2944 /* We don't have a connection to the remote stub anymore. Get rid
2945 of all the inferiors and their threads we were controlling.
2946 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2947 will be unable to find the thread corresponding to (pid, 0, 0). */
2948 inferior_ptid = null_ptid;
2949 discard_all_inferiors ();
2950
2951 /* We're no longer interested in any of these events. */
2952 discard_pending_stop_replies (-1);
2953
2954 if (remote_async_inferior_event_token)
2955 delete_async_event_handler (&remote_async_inferior_event_token);
2956 if (remote_async_get_pending_events_token)
2957 delete_async_event_handler (&remote_async_get_pending_events_token);
2958 }
2959
2960 /* Query the remote side for the text, data and bss offsets. */
2961
2962 static void
2963 get_offsets (void)
2964 {
2965 struct remote_state *rs = get_remote_state ();
2966 char *buf;
2967 char *ptr;
2968 int lose, num_segments = 0, do_sections, do_segments;
2969 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2970 struct section_offsets *offs;
2971 struct symfile_segment_data *data;
2972
2973 if (symfile_objfile == NULL)
2974 return;
2975
2976 putpkt ("qOffsets");
2977 getpkt (&rs->buf, &rs->buf_size, 0);
2978 buf = rs->buf;
2979
2980 if (buf[0] == '\000')
2981 return; /* Return silently. Stub doesn't support
2982 this command. */
2983 if (buf[0] == 'E')
2984 {
2985 warning (_("Remote failure reply: %s"), buf);
2986 return;
2987 }
2988
2989 /* Pick up each field in turn. This used to be done with scanf, but
2990 scanf will make trouble if CORE_ADDR size doesn't match
2991 conversion directives correctly. The following code will work
2992 with any size of CORE_ADDR. */
2993 text_addr = data_addr = bss_addr = 0;
2994 ptr = buf;
2995 lose = 0;
2996
2997 if (strncmp (ptr, "Text=", 5) == 0)
2998 {
2999 ptr += 5;
3000 /* Don't use strtol, could lose on big values. */
3001 while (*ptr && *ptr != ';')
3002 text_addr = (text_addr << 4) + fromhex (*ptr++);
3003
3004 if (strncmp (ptr, ";Data=", 6) == 0)
3005 {
3006 ptr += 6;
3007 while (*ptr && *ptr != ';')
3008 data_addr = (data_addr << 4) + fromhex (*ptr++);
3009 }
3010 else
3011 lose = 1;
3012
3013 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3014 {
3015 ptr += 5;
3016 while (*ptr && *ptr != ';')
3017 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3018
3019 if (bss_addr != data_addr)
3020 warning (_("Target reported unsupported offsets: %s"), buf);
3021 }
3022 else
3023 lose = 1;
3024 }
3025 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3026 {
3027 ptr += 8;
3028 /* Don't use strtol, could lose on big values. */
3029 while (*ptr && *ptr != ';')
3030 text_addr = (text_addr << 4) + fromhex (*ptr++);
3031 num_segments = 1;
3032
3033 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3034 {
3035 ptr += 9;
3036 while (*ptr && *ptr != ';')
3037 data_addr = (data_addr << 4) + fromhex (*ptr++);
3038 num_segments++;
3039 }
3040 }
3041 else
3042 lose = 1;
3043
3044 if (lose)
3045 error (_("Malformed response to offset query, %s"), buf);
3046 else if (*ptr != '\0')
3047 warning (_("Target reported unsupported offsets: %s"), buf);
3048
3049 offs = ((struct section_offsets *)
3050 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3051 memcpy (offs, symfile_objfile->section_offsets,
3052 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3053
3054 data = get_symfile_segment_data (symfile_objfile->obfd);
3055 do_segments = (data != NULL);
3056 do_sections = num_segments == 0;
3057
3058 if (num_segments > 0)
3059 {
3060 segments[0] = text_addr;
3061 segments[1] = data_addr;
3062 }
3063 /* If we have two segments, we can still try to relocate everything
3064 by assuming that the .text and .data offsets apply to the whole
3065 text and data segments. Convert the offsets given in the packet
3066 to base addresses for symfile_map_offsets_to_segments. */
3067 else if (data && data->num_segments == 2)
3068 {
3069 segments[0] = data->segment_bases[0] + text_addr;
3070 segments[1] = data->segment_bases[1] + data_addr;
3071 num_segments = 2;
3072 }
3073 /* If the object file has only one segment, assume that it is text
3074 rather than data; main programs with no writable data are rare,
3075 but programs with no code are useless. Of course the code might
3076 have ended up in the data segment... to detect that we would need
3077 the permissions here. */
3078 else if (data && data->num_segments == 1)
3079 {
3080 segments[0] = data->segment_bases[0] + text_addr;
3081 num_segments = 1;
3082 }
3083 /* There's no way to relocate by segment. */
3084 else
3085 do_segments = 0;
3086
3087 if (do_segments)
3088 {
3089 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3090 offs, num_segments, segments);
3091
3092 if (ret == 0 && !do_sections)
3093 error (_("Can not handle qOffsets TextSeg "
3094 "response with this symbol file"));
3095
3096 if (ret > 0)
3097 do_sections = 0;
3098 }
3099
3100 if (data)
3101 free_symfile_segment_data (data);
3102
3103 if (do_sections)
3104 {
3105 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3106
3107 /* This is a temporary kludge to force data and bss to use the
3108 same offsets because that's what nlmconv does now. The real
3109 solution requires changes to the stub and remote.c that I
3110 don't have time to do right now. */
3111
3112 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3113 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3114 }
3115
3116 objfile_relocate (symfile_objfile, offs);
3117 }
3118
3119 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3120 threads we know are stopped already. This is used during the
3121 initial remote connection in non-stop mode --- threads that are
3122 reported as already being stopped are left stopped. */
3123
3124 static int
3125 set_stop_requested_callback (struct thread_info *thread, void *data)
3126 {
3127 /* If we have a stop reply for this thread, it must be stopped. */
3128 if (peek_stop_reply (thread->ptid))
3129 set_stop_requested (thread->ptid, 1);
3130
3131 return 0;
3132 }
3133
3134 /* Send interrupt_sequence to remote target. */
3135 static void
3136 send_interrupt_sequence (void)
3137 {
3138 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3139 serial_write (remote_desc, "\x03", 1);
3140 else if (interrupt_sequence_mode == interrupt_sequence_break)
3141 serial_send_break (remote_desc);
3142 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3143 {
3144 serial_send_break (remote_desc);
3145 serial_write (remote_desc, "g", 1);
3146 }
3147 else
3148 internal_error (__FILE__, __LINE__,
3149 _("Invalid value for interrupt_sequence_mode: %s."),
3150 interrupt_sequence_mode);
3151 }
3152
3153 static void
3154 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3155 {
3156 struct remote_state *rs = get_remote_state ();
3157 struct packet_config *noack_config;
3158 char *wait_status = NULL;
3159
3160 immediate_quit++; /* Allow user to interrupt it. */
3161
3162 if (interrupt_on_connect)
3163 send_interrupt_sequence ();
3164
3165 /* Ack any packet which the remote side has already sent. */
3166 serial_write (remote_desc, "+", 1);
3167
3168 /* The first packet we send to the target is the optional "supported
3169 packets" request. If the target can answer this, it will tell us
3170 which later probes to skip. */
3171 remote_query_supported ();
3172
3173 /* If the stub wants to get a QAllow, compose one and send it. */
3174 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3175 remote_set_permissions ();
3176
3177 /* Next, we possibly activate noack mode.
3178
3179 If the QStartNoAckMode packet configuration is set to AUTO,
3180 enable noack mode if the stub reported a wish for it with
3181 qSupported.
3182
3183 If set to TRUE, then enable noack mode even if the stub didn't
3184 report it in qSupported. If the stub doesn't reply OK, the
3185 session ends with an error.
3186
3187 If FALSE, then don't activate noack mode, regardless of what the
3188 stub claimed should be the default with qSupported. */
3189
3190 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3191
3192 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3193 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3194 && noack_config->support == PACKET_ENABLE))
3195 {
3196 putpkt ("QStartNoAckMode");
3197 getpkt (&rs->buf, &rs->buf_size, 0);
3198 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3199 rs->noack_mode = 1;
3200 }
3201
3202 if (extended_p)
3203 {
3204 /* Tell the remote that we are using the extended protocol. */
3205 putpkt ("!");
3206 getpkt (&rs->buf, &rs->buf_size, 0);
3207 }
3208
3209 /* Next, if the target can specify a description, read it. We do
3210 this before anything involving memory or registers. */
3211 target_find_description ();
3212
3213 /* Next, now that we know something about the target, update the
3214 address spaces in the program spaces. */
3215 update_address_spaces ();
3216
3217 /* On OSs where the list of libraries is global to all
3218 processes, we fetch them early. */
3219 if (gdbarch_has_global_solist (target_gdbarch))
3220 solib_add (NULL, from_tty, target, auto_solib_add);
3221
3222 if (non_stop)
3223 {
3224 if (!rs->non_stop_aware)
3225 error (_("Non-stop mode requested, but remote "
3226 "does not support non-stop"));
3227
3228 putpkt ("QNonStop:1");
3229 getpkt (&rs->buf, &rs->buf_size, 0);
3230
3231 if (strcmp (rs->buf, "OK") != 0)
3232 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3233
3234 /* Find about threads and processes the stub is already
3235 controlling. We default to adding them in the running state.
3236 The '?' query below will then tell us about which threads are
3237 stopped. */
3238 remote_threads_info (target);
3239 }
3240 else if (rs->non_stop_aware)
3241 {
3242 /* Don't assume that the stub can operate in all-stop mode.
3243 Request it explicitely. */
3244 putpkt ("QNonStop:0");
3245 getpkt (&rs->buf, &rs->buf_size, 0);
3246
3247 if (strcmp (rs->buf, "OK") != 0)
3248 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3249 }
3250
3251 /* Check whether the target is running now. */
3252 putpkt ("?");
3253 getpkt (&rs->buf, &rs->buf_size, 0);
3254
3255 if (!non_stop)
3256 {
3257 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3258 {
3259 if (!extended_p)
3260 error (_("The target is not running (try extended-remote?)"));
3261
3262 /* We're connected, but not running. Drop out before we
3263 call start_remote. */
3264 return;
3265 }
3266 else
3267 {
3268 /* Save the reply for later. */
3269 wait_status = alloca (strlen (rs->buf) + 1);
3270 strcpy (wait_status, rs->buf);
3271 }
3272
3273 /* Let the stub know that we want it to return the thread. */
3274 set_continue_thread (minus_one_ptid);
3275
3276 /* Without this, some commands which require an active target
3277 (such as kill) won't work. This variable serves (at least)
3278 double duty as both the pid of the target process (if it has
3279 such), and as a flag indicating that a target is active.
3280 These functions should be split out into seperate variables,
3281 especially since GDB will someday have a notion of debugging
3282 several processes. */
3283 inferior_ptid = magic_null_ptid;
3284
3285 /* Now, if we have thread information, update inferior_ptid. */
3286 inferior_ptid = remote_current_thread (inferior_ptid);
3287
3288 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3289
3290 /* Always add the main thread. */
3291 add_thread_silent (inferior_ptid);
3292
3293 /* init_wait_for_inferior should be called before get_offsets in order
3294 to manage `inserted' flag in bp loc in a correct state.
3295 breakpoint_init_inferior, called from init_wait_for_inferior, set
3296 `inserted' flag to 0, while before breakpoint_re_set, called from
3297 start_remote, set `inserted' flag to 1. In the initialization of
3298 inferior, breakpoint_init_inferior should be called first, and then
3299 breakpoint_re_set can be called. If this order is broken, state of
3300 `inserted' flag is wrong, and cause some problems on breakpoint
3301 manipulation. */
3302 init_wait_for_inferior ();
3303
3304 get_offsets (); /* Get text, data & bss offsets. */
3305
3306 /* If we could not find a description using qXfer, and we know
3307 how to do it some other way, try again. This is not
3308 supported for non-stop; it could be, but it is tricky if
3309 there are no stopped threads when we connect. */
3310 if (remote_read_description_p (target)
3311 && gdbarch_target_desc (target_gdbarch) == NULL)
3312 {
3313 target_clear_description ();
3314 target_find_description ();
3315 }
3316
3317 /* Use the previously fetched status. */
3318 gdb_assert (wait_status != NULL);
3319 strcpy (rs->buf, wait_status);
3320 rs->cached_wait_status = 1;
3321
3322 immediate_quit--;
3323 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3324 }
3325 else
3326 {
3327 /* Clear WFI global state. Do this before finding about new
3328 threads and inferiors, and setting the current inferior.
3329 Otherwise we would clear the proceed status of the current
3330 inferior when we want its stop_soon state to be preserved
3331 (see notice_new_inferior). */
3332 init_wait_for_inferior ();
3333
3334 /* In non-stop, we will either get an "OK", meaning that there
3335 are no stopped threads at this time; or, a regular stop
3336 reply. In the latter case, there may be more than one thread
3337 stopped --- we pull them all out using the vStopped
3338 mechanism. */
3339 if (strcmp (rs->buf, "OK") != 0)
3340 {
3341 struct stop_reply *stop_reply;
3342 struct cleanup *old_chain;
3343
3344 stop_reply = stop_reply_xmalloc ();
3345 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3346
3347 remote_parse_stop_reply (rs->buf, stop_reply);
3348 discard_cleanups (old_chain);
3349
3350 /* get_pending_stop_replies acks this one, and gets the rest
3351 out. */
3352 pending_stop_reply = stop_reply;
3353 remote_get_pending_stop_replies ();
3354
3355 /* Make sure that threads that were stopped remain
3356 stopped. */
3357 iterate_over_threads (set_stop_requested_callback, NULL);
3358 }
3359
3360 if (target_can_async_p ())
3361 target_async (inferior_event_handler, 0);
3362
3363 if (thread_count () == 0)
3364 {
3365 if (!extended_p)
3366 error (_("The target is not running (try extended-remote?)"));
3367
3368 /* We're connected, but not running. Drop out before we
3369 call start_remote. */
3370 return;
3371 }
3372
3373 /* Let the stub know that we want it to return the thread. */
3374
3375 /* Force the stub to choose a thread. */
3376 set_general_thread (null_ptid);
3377
3378 /* Query it. */
3379 inferior_ptid = remote_current_thread (minus_one_ptid);
3380 if (ptid_equal (inferior_ptid, minus_one_ptid))
3381 error (_("remote didn't report the current thread in non-stop mode"));
3382
3383 get_offsets (); /* Get text, data & bss offsets. */
3384
3385 /* In non-stop mode, any cached wait status will be stored in
3386 the stop reply queue. */
3387 gdb_assert (wait_status == NULL);
3388
3389 /* Report all signals during attach/startup. */
3390 remote_pass_signals (0, NULL);
3391 }
3392
3393 /* If we connected to a live target, do some additional setup. */
3394 if (target_has_execution)
3395 {
3396 if (exec_bfd) /* No use without an exec file. */
3397 remote_check_symbols (symfile_objfile);
3398 }
3399
3400 /* Possibly the target has been engaged in a trace run started
3401 previously; find out where things are at. */
3402 if (remote_get_trace_status (current_trace_status ()) != -1)
3403 {
3404 struct uploaded_tp *uploaded_tps = NULL;
3405 struct uploaded_tsv *uploaded_tsvs = NULL;
3406
3407 if (current_trace_status ()->running)
3408 printf_filtered (_("Trace is already running on the target.\n"));
3409
3410 /* Get trace state variables first, they may be checked when
3411 parsing uploaded commands. */
3412
3413 remote_upload_trace_state_variables (&uploaded_tsvs);
3414
3415 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3416
3417 remote_upload_tracepoints (&uploaded_tps);
3418
3419 merge_uploaded_tracepoints (&uploaded_tps);
3420 }
3421
3422 /* If breakpoints are global, insert them now. */
3423 if (gdbarch_has_global_breakpoints (target_gdbarch)
3424 && breakpoints_always_inserted_mode ())
3425 insert_breakpoints ();
3426 }
3427
3428 /* Open a connection to a remote debugger.
3429 NAME is the filename used for communication. */
3430
3431 static void
3432 remote_open (char *name, int from_tty)
3433 {
3434 remote_open_1 (name, from_tty, &remote_ops, 0);
3435 }
3436
3437 /* Open a connection to a remote debugger using the extended
3438 remote gdb protocol. NAME is the filename used for communication. */
3439
3440 static void
3441 extended_remote_open (char *name, int from_tty)
3442 {
3443 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3444 }
3445
3446 /* Generic code for opening a connection to a remote target. */
3447
3448 static void
3449 init_all_packet_configs (void)
3450 {
3451 int i;
3452
3453 for (i = 0; i < PACKET_MAX; i++)
3454 update_packet_config (&remote_protocol_packets[i]);
3455 }
3456
3457 /* Symbol look-up. */
3458
3459 static void
3460 remote_check_symbols (struct objfile *objfile)
3461 {
3462 struct remote_state *rs = get_remote_state ();
3463 char *msg, *reply, *tmp;
3464 struct minimal_symbol *sym;
3465 int end;
3466
3467 /* The remote side has no concept of inferiors that aren't running
3468 yet, it only knows about running processes. If we're connected
3469 but our current inferior is not running, we should not invite the
3470 remote target to request symbol lookups related to its
3471 (unrelated) current process. */
3472 if (!target_has_execution)
3473 return;
3474
3475 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3476 return;
3477
3478 /* Make sure the remote is pointing at the right process. Note
3479 there's no way to select "no process". */
3480 set_general_process ();
3481
3482 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3483 because we need both at the same time. */
3484 msg = alloca (get_remote_packet_size ());
3485
3486 /* Invite target to request symbol lookups. */
3487
3488 putpkt ("qSymbol::");
3489 getpkt (&rs->buf, &rs->buf_size, 0);
3490 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3491 reply = rs->buf;
3492
3493 while (strncmp (reply, "qSymbol:", 8) == 0)
3494 {
3495 tmp = &reply[8];
3496 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3497 msg[end] = '\0';
3498 sym = lookup_minimal_symbol (msg, NULL, NULL);
3499 if (sym == NULL)
3500 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3501 else
3502 {
3503 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3504 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3505
3506 /* If this is a function address, return the start of code
3507 instead of any data function descriptor. */
3508 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3509 sym_addr,
3510 &current_target);
3511
3512 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3513 phex_nz (sym_addr, addr_size), &reply[8]);
3514 }
3515
3516 putpkt (msg);
3517 getpkt (&rs->buf, &rs->buf_size, 0);
3518 reply = rs->buf;
3519 }
3520 }
3521
3522 static struct serial *
3523 remote_serial_open (char *name)
3524 {
3525 static int udp_warning = 0;
3526
3527 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3528 of in ser-tcp.c, because it is the remote protocol assuming that the
3529 serial connection is reliable and not the serial connection promising
3530 to be. */
3531 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3532 {
3533 warning (_("The remote protocol may be unreliable over UDP.\n"
3534 "Some events may be lost, rendering further debugging "
3535 "impossible."));
3536 udp_warning = 1;
3537 }
3538
3539 return serial_open (name);
3540 }
3541
3542 /* Inform the target of our permission settings. The permission flags
3543 work without this, but if the target knows the settings, it can do
3544 a couple things. First, it can add its own check, to catch cases
3545 that somehow manage to get by the permissions checks in target
3546 methods. Second, if the target is wired to disallow particular
3547 settings (for instance, a system in the field that is not set up to
3548 be able to stop at a breakpoint), it can object to any unavailable
3549 permissions. */
3550
3551 void
3552 remote_set_permissions (void)
3553 {
3554 struct remote_state *rs = get_remote_state ();
3555
3556 sprintf (rs->buf, "QAllow:"
3557 "WriteReg:%x;WriteMem:%x;"
3558 "InsertBreak:%x;InsertTrace:%x;"
3559 "InsertFastTrace:%x;Stop:%x",
3560 may_write_registers, may_write_memory,
3561 may_insert_breakpoints, may_insert_tracepoints,
3562 may_insert_fast_tracepoints, may_stop);
3563 putpkt (rs->buf);
3564 getpkt (&rs->buf, &rs->buf_size, 0);
3565
3566 /* If the target didn't like the packet, warn the user. Do not try
3567 to undo the user's settings, that would just be maddening. */
3568 if (strcmp (rs->buf, "OK") != 0)
3569 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3570 }
3571
3572 /* This type describes each known response to the qSupported
3573 packet. */
3574 struct protocol_feature
3575 {
3576 /* The name of this protocol feature. */
3577 const char *name;
3578
3579 /* The default for this protocol feature. */
3580 enum packet_support default_support;
3581
3582 /* The function to call when this feature is reported, or after
3583 qSupported processing if the feature is not supported.
3584 The first argument points to this structure. The second
3585 argument indicates whether the packet requested support be
3586 enabled, disabled, or probed (or the default, if this function
3587 is being called at the end of processing and this feature was
3588 not reported). The third argument may be NULL; if not NULL, it
3589 is a NUL-terminated string taken from the packet following
3590 this feature's name and an equals sign. */
3591 void (*func) (const struct protocol_feature *, enum packet_support,
3592 const char *);
3593
3594 /* The corresponding packet for this feature. Only used if
3595 FUNC is remote_supported_packet. */
3596 int packet;
3597 };
3598
3599 static void
3600 remote_supported_packet (const struct protocol_feature *feature,
3601 enum packet_support support,
3602 const char *argument)
3603 {
3604 if (argument)
3605 {
3606 warning (_("Remote qSupported response supplied an unexpected value for"
3607 " \"%s\"."), feature->name);
3608 return;
3609 }
3610
3611 if (remote_protocol_packets[feature->packet].support
3612 == PACKET_SUPPORT_UNKNOWN)
3613 remote_protocol_packets[feature->packet].support = support;
3614 }
3615
3616 static void
3617 remote_packet_size (const struct protocol_feature *feature,
3618 enum packet_support support, const char *value)
3619 {
3620 struct remote_state *rs = get_remote_state ();
3621
3622 int packet_size;
3623 char *value_end;
3624
3625 if (support != PACKET_ENABLE)
3626 return;
3627
3628 if (value == NULL || *value == '\0')
3629 {
3630 warning (_("Remote target reported \"%s\" without a size."),
3631 feature->name);
3632 return;
3633 }
3634
3635 errno = 0;
3636 packet_size = strtol (value, &value_end, 16);
3637 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3638 {
3639 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3640 feature->name, value);
3641 return;
3642 }
3643
3644 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3645 {
3646 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3647 packet_size, MAX_REMOTE_PACKET_SIZE);
3648 packet_size = MAX_REMOTE_PACKET_SIZE;
3649 }
3650
3651 /* Record the new maximum packet size. */
3652 rs->explicit_packet_size = packet_size;
3653 }
3654
3655 static void
3656 remote_multi_process_feature (const struct protocol_feature *feature,
3657 enum packet_support support, const char *value)
3658 {
3659 struct remote_state *rs = get_remote_state ();
3660
3661 rs->multi_process_aware = (support == PACKET_ENABLE);
3662 }
3663
3664 static void
3665 remote_non_stop_feature (const struct protocol_feature *feature,
3666 enum packet_support support, const char *value)
3667 {
3668 struct remote_state *rs = get_remote_state ();
3669
3670 rs->non_stop_aware = (support == PACKET_ENABLE);
3671 }
3672
3673 static void
3674 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3675 enum packet_support support,
3676 const char *value)
3677 {
3678 struct remote_state *rs = get_remote_state ();
3679
3680 rs->cond_tracepoints = (support == PACKET_ENABLE);
3681 }
3682
3683 static void
3684 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3685 enum packet_support support,
3686 const char *value)
3687 {
3688 struct remote_state *rs = get_remote_state ();
3689
3690 rs->fast_tracepoints = (support == PACKET_ENABLE);
3691 }
3692
3693 static void
3694 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3695 enum packet_support support,
3696 const char *value)
3697 {
3698 struct remote_state *rs = get_remote_state ();
3699
3700 rs->static_tracepoints = (support == PACKET_ENABLE);
3701 }
3702
3703 static void
3704 remote_install_in_trace_feature (const struct protocol_feature *feature,
3705 enum packet_support support,
3706 const char *value)
3707 {
3708 struct remote_state *rs = get_remote_state ();
3709
3710 rs->install_in_trace = (support == PACKET_ENABLE);
3711 }
3712
3713 static void
3714 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3715 enum packet_support support,
3716 const char *value)
3717 {
3718 struct remote_state *rs = get_remote_state ();
3719
3720 rs->disconnected_tracing = (support == PACKET_ENABLE);
3721 }
3722
3723 static void
3724 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3725 enum packet_support support,
3726 const char *value)
3727 {
3728 struct remote_state *rs = get_remote_state ();
3729
3730 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3731 }
3732
3733 static void
3734 remote_string_tracing_feature (const struct protocol_feature *feature,
3735 enum packet_support support,
3736 const char *value)
3737 {
3738 struct remote_state *rs = get_remote_state ();
3739
3740 rs->string_tracing = (support == PACKET_ENABLE);
3741 }
3742
3743 static struct protocol_feature remote_protocol_features[] = {
3744 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3745 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3746 PACKET_qXfer_auxv },
3747 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3748 PACKET_qXfer_features },
3749 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3750 PACKET_qXfer_libraries },
3751 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3752 PACKET_qXfer_memory_map },
3753 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3754 PACKET_qXfer_spu_read },
3755 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3756 PACKET_qXfer_spu_write },
3757 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3758 PACKET_qXfer_osdata },
3759 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3760 PACKET_qXfer_threads },
3761 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3762 PACKET_qXfer_traceframe_info },
3763 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3764 PACKET_QPassSignals },
3765 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3766 PACKET_QStartNoAckMode },
3767 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3768 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3769 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3770 PACKET_qXfer_siginfo_read },
3771 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3772 PACKET_qXfer_siginfo_write },
3773 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3774 PACKET_ConditionalTracepoints },
3775 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3776 PACKET_FastTracepoints },
3777 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3778 PACKET_StaticTracepoints },
3779 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3780 PACKET_InstallInTrace},
3781 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3782 -1 },
3783 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3784 PACKET_bc },
3785 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3786 PACKET_bs },
3787 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3788 PACKET_TracepointSource },
3789 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3790 PACKET_QAllow },
3791 { "EnableDisableTracepoints", PACKET_DISABLE,
3792 remote_enable_disable_tracepoint_feature, -1 },
3793 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3794 PACKET_qXfer_fdpic },
3795 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3796 PACKET_QDisableRandomization },
3797 { "tracenz", PACKET_DISABLE,
3798 remote_string_tracing_feature, -1 },
3799 };
3800
3801 static char *remote_support_xml;
3802
3803 /* Register string appended to "xmlRegisters=" in qSupported query. */
3804
3805 void
3806 register_remote_support_xml (const char *xml)
3807 {
3808 #if defined(HAVE_LIBEXPAT)
3809 if (remote_support_xml == NULL)
3810 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3811 else
3812 {
3813 char *copy = xstrdup (remote_support_xml + 13);
3814 char *p = strtok (copy, ",");
3815
3816 do
3817 {
3818 if (strcmp (p, xml) == 0)
3819 {
3820 /* already there */
3821 xfree (copy);
3822 return;
3823 }
3824 }
3825 while ((p = strtok (NULL, ",")) != NULL);
3826 xfree (copy);
3827
3828 remote_support_xml = reconcat (remote_support_xml,
3829 remote_support_xml, ",", xml,
3830 (char *) NULL);
3831 }
3832 #endif
3833 }
3834
3835 static char *
3836 remote_query_supported_append (char *msg, const char *append)
3837 {
3838 if (msg)
3839 return reconcat (msg, msg, ";", append, (char *) NULL);
3840 else
3841 return xstrdup (append);
3842 }
3843
3844 static void
3845 remote_query_supported (void)
3846 {
3847 struct remote_state *rs = get_remote_state ();
3848 char *next;
3849 int i;
3850 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3851
3852 /* The packet support flags are handled differently for this packet
3853 than for most others. We treat an error, a disabled packet, and
3854 an empty response identically: any features which must be reported
3855 to be used will be automatically disabled. An empty buffer
3856 accomplishes this, since that is also the representation for a list
3857 containing no features. */
3858
3859 rs->buf[0] = 0;
3860 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3861 {
3862 char *q = NULL;
3863 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3864
3865 if (rs->extended)
3866 q = remote_query_supported_append (q, "multiprocess+");
3867
3868 if (remote_support_xml)
3869 q = remote_query_supported_append (q, remote_support_xml);
3870
3871 q = remote_query_supported_append (q, "qRelocInsn+");
3872
3873 q = reconcat (q, "qSupported:", q, (char *) NULL);
3874 putpkt (q);
3875
3876 do_cleanups (old_chain);
3877
3878 getpkt (&rs->buf, &rs->buf_size, 0);
3879
3880 /* If an error occured, warn, but do not return - just reset the
3881 buffer to empty and go on to disable features. */
3882 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3883 == PACKET_ERROR)
3884 {
3885 warning (_("Remote failure reply: %s"), rs->buf);
3886 rs->buf[0] = 0;
3887 }
3888 }
3889
3890 memset (seen, 0, sizeof (seen));
3891
3892 next = rs->buf;
3893 while (*next)
3894 {
3895 enum packet_support is_supported;
3896 char *p, *end, *name_end, *value;
3897
3898 /* First separate out this item from the rest of the packet. If
3899 there's another item after this, we overwrite the separator
3900 (terminated strings are much easier to work with). */
3901 p = next;
3902 end = strchr (p, ';');
3903 if (end == NULL)
3904 {
3905 end = p + strlen (p);
3906 next = end;
3907 }
3908 else
3909 {
3910 *end = '\0';
3911 next = end + 1;
3912
3913 if (end == p)
3914 {
3915 warning (_("empty item in \"qSupported\" response"));
3916 continue;
3917 }
3918 }
3919
3920 name_end = strchr (p, '=');
3921 if (name_end)
3922 {
3923 /* This is a name=value entry. */
3924 is_supported = PACKET_ENABLE;
3925 value = name_end + 1;
3926 *name_end = '\0';
3927 }
3928 else
3929 {
3930 value = NULL;
3931 switch (end[-1])
3932 {
3933 case '+':
3934 is_supported = PACKET_ENABLE;
3935 break;
3936
3937 case '-':
3938 is_supported = PACKET_DISABLE;
3939 break;
3940
3941 case '?':
3942 is_supported = PACKET_SUPPORT_UNKNOWN;
3943 break;
3944
3945 default:
3946 warning (_("unrecognized item \"%s\" "
3947 "in \"qSupported\" response"), p);
3948 continue;
3949 }
3950 end[-1] = '\0';
3951 }
3952
3953 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3954 if (strcmp (remote_protocol_features[i].name, p) == 0)
3955 {
3956 const struct protocol_feature *feature;
3957
3958 seen[i] = 1;
3959 feature = &remote_protocol_features[i];
3960 feature->func (feature, is_supported, value);
3961 break;
3962 }
3963 }
3964
3965 /* If we increased the packet size, make sure to increase the global
3966 buffer size also. We delay this until after parsing the entire
3967 qSupported packet, because this is the same buffer we were
3968 parsing. */
3969 if (rs->buf_size < rs->explicit_packet_size)
3970 {
3971 rs->buf_size = rs->explicit_packet_size;
3972 rs->buf = xrealloc (rs->buf, rs->buf_size);
3973 }
3974
3975 /* Handle the defaults for unmentioned features. */
3976 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3977 if (!seen[i])
3978 {
3979 const struct protocol_feature *feature;
3980
3981 feature = &remote_protocol_features[i];
3982 feature->func (feature, feature->default_support, NULL);
3983 }
3984 }
3985
3986
3987 static void
3988 remote_open_1 (char *name, int from_tty,
3989 struct target_ops *target, int extended_p)
3990 {
3991 struct remote_state *rs = get_remote_state ();
3992
3993 if (name == 0)
3994 error (_("To open a remote debug connection, you need to specify what\n"
3995 "serial device is attached to the remote system\n"
3996 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3997
3998 /* See FIXME above. */
3999 if (!target_async_permitted)
4000 wait_forever_enabled_p = 1;
4001
4002 /* If we're connected to a running target, target_preopen will kill it.
4003 But if we're connected to a target system with no running process,
4004 then we will still be connected when it returns. Ask this question
4005 first, before target_preopen has a chance to kill anything. */
4006 if (remote_desc != NULL && !have_inferiors ())
4007 {
4008 if (!from_tty
4009 || query (_("Already connected to a remote target. Disconnect? ")))
4010 pop_target ();
4011 else
4012 error (_("Still connected."));
4013 }
4014
4015 target_preopen (from_tty);
4016
4017 unpush_target (target);
4018
4019 /* This time without a query. If we were connected to an
4020 extended-remote target and target_preopen killed the running
4021 process, we may still be connected. If we are starting "target
4022 remote" now, the extended-remote target will not have been
4023 removed by unpush_target. */
4024 if (remote_desc != NULL && !have_inferiors ())
4025 pop_target ();
4026
4027 /* Make sure we send the passed signals list the next time we resume. */
4028 xfree (last_pass_packet);
4029 last_pass_packet = NULL;
4030
4031 remote_fileio_reset ();
4032 reopen_exec_file ();
4033 reread_symbols ();
4034
4035 remote_desc = remote_serial_open (name);
4036 if (!remote_desc)
4037 perror_with_name (name);
4038
4039 if (baud_rate != -1)
4040 {
4041 if (serial_setbaudrate (remote_desc, baud_rate))
4042 {
4043 /* The requested speed could not be set. Error out to
4044 top level after closing remote_desc. Take care to
4045 set remote_desc to NULL to avoid closing remote_desc
4046 more than once. */
4047 serial_close (remote_desc);
4048 remote_desc = NULL;
4049 perror_with_name (name);
4050 }
4051 }
4052
4053 serial_raw (remote_desc);
4054
4055 /* If there is something sitting in the buffer we might take it as a
4056 response to a command, which would be bad. */
4057 serial_flush_input (remote_desc);
4058
4059 if (from_tty)
4060 {
4061 puts_filtered ("Remote debugging using ");
4062 puts_filtered (name);
4063 puts_filtered ("\n");
4064 }
4065 push_target (target); /* Switch to using remote target now. */
4066
4067 /* Register extra event sources in the event loop. */
4068 remote_async_inferior_event_token
4069 = create_async_event_handler (remote_async_inferior_event_handler,
4070 NULL);
4071 remote_async_get_pending_events_token
4072 = create_async_event_handler (remote_async_get_pending_events_handler,
4073 NULL);
4074
4075 /* Reset the target state; these things will be queried either by
4076 remote_query_supported or as they are needed. */
4077 init_all_packet_configs ();
4078 rs->cached_wait_status = 0;
4079 rs->explicit_packet_size = 0;
4080 rs->noack_mode = 0;
4081 rs->multi_process_aware = 0;
4082 rs->extended = extended_p;
4083 rs->non_stop_aware = 0;
4084 rs->waiting_for_stop_reply = 0;
4085 rs->ctrlc_pending_p = 0;
4086
4087 general_thread = not_sent_ptid;
4088 continue_thread = not_sent_ptid;
4089 remote_traceframe_number = -1;
4090
4091 /* Probe for ability to use "ThreadInfo" query, as required. */
4092 use_threadinfo_query = 1;
4093 use_threadextra_query = 1;
4094
4095 if (target_async_permitted)
4096 {
4097 /* With this target we start out by owning the terminal. */
4098 remote_async_terminal_ours_p = 1;
4099
4100 /* FIXME: cagney/1999-09-23: During the initial connection it is
4101 assumed that the target is already ready and able to respond to
4102 requests. Unfortunately remote_start_remote() eventually calls
4103 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4104 around this. Eventually a mechanism that allows
4105 wait_for_inferior() to expect/get timeouts will be
4106 implemented. */
4107 wait_forever_enabled_p = 0;
4108 }
4109
4110 /* First delete any symbols previously loaded from shared libraries. */
4111 no_shared_libraries (NULL, 0);
4112
4113 /* Start afresh. */
4114 init_thread_list ();
4115
4116 /* Start the remote connection. If error() or QUIT, discard this
4117 target (we'd otherwise be in an inconsistent state) and then
4118 propogate the error on up the exception chain. This ensures that
4119 the caller doesn't stumble along blindly assuming that the
4120 function succeeded. The CLI doesn't have this problem but other
4121 UI's, such as MI do.
4122
4123 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4124 this function should return an error indication letting the
4125 caller restore the previous state. Unfortunately the command
4126 ``target remote'' is directly wired to this function making that
4127 impossible. On a positive note, the CLI side of this problem has
4128 been fixed - the function set_cmd_context() makes it possible for
4129 all the ``target ....'' commands to share a common callback
4130 function. See cli-dump.c. */
4131 {
4132 volatile struct gdb_exception ex;
4133
4134 TRY_CATCH (ex, RETURN_MASK_ALL)
4135 {
4136 remote_start_remote (from_tty, target, extended_p);
4137 }
4138 if (ex.reason < 0)
4139 {
4140 /* Pop the partially set up target - unless something else did
4141 already before throwing the exception. */
4142 if (remote_desc != NULL)
4143 pop_target ();
4144 if (target_async_permitted)
4145 wait_forever_enabled_p = 1;
4146 throw_exception (ex);
4147 }
4148 }
4149
4150 if (target_async_permitted)
4151 wait_forever_enabled_p = 1;
4152 }
4153
4154 /* This takes a program previously attached to and detaches it. After
4155 this is done, GDB can be used to debug some other program. We
4156 better not have left any breakpoints in the target program or it'll
4157 die when it hits one. */
4158
4159 static void
4160 remote_detach_1 (char *args, int from_tty, int extended)
4161 {
4162 int pid = ptid_get_pid (inferior_ptid);
4163 struct remote_state *rs = get_remote_state ();
4164
4165 if (args)
4166 error (_("Argument given to \"detach\" when remotely debugging."));
4167
4168 if (!target_has_execution)
4169 error (_("No process to detach from."));
4170
4171 /* Tell the remote target to detach. */
4172 if (remote_multi_process_p (rs))
4173 sprintf (rs->buf, "D;%x", pid);
4174 else
4175 strcpy (rs->buf, "D");
4176
4177 putpkt (rs->buf);
4178 getpkt (&rs->buf, &rs->buf_size, 0);
4179
4180 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4181 ;
4182 else if (rs->buf[0] == '\0')
4183 error (_("Remote doesn't know how to detach"));
4184 else
4185 error (_("Can't detach process."));
4186
4187 if (from_tty)
4188 {
4189 if (remote_multi_process_p (rs))
4190 printf_filtered (_("Detached from remote %s.\n"),
4191 target_pid_to_str (pid_to_ptid (pid)));
4192 else
4193 {
4194 if (extended)
4195 puts_filtered (_("Detached from remote process.\n"));
4196 else
4197 puts_filtered (_("Ending remote debugging.\n"));
4198 }
4199 }
4200
4201 discard_pending_stop_replies (pid);
4202 target_mourn_inferior ();
4203 }
4204
4205 static void
4206 remote_detach (struct target_ops *ops, char *args, int from_tty)
4207 {
4208 remote_detach_1 (args, from_tty, 0);
4209 }
4210
4211 static void
4212 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4213 {
4214 remote_detach_1 (args, from_tty, 1);
4215 }
4216
4217 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4218
4219 static void
4220 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4221 {
4222 if (args)
4223 error (_("Argument given to \"disconnect\" when remotely debugging."));
4224
4225 /* Make sure we unpush even the extended remote targets; mourn
4226 won't do it. So call remote_mourn_1 directly instead of
4227 target_mourn_inferior. */
4228 remote_mourn_1 (target);
4229
4230 if (from_tty)
4231 puts_filtered ("Ending remote debugging.\n");
4232 }
4233
4234 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4235 be chatty about it. */
4236
4237 static void
4238 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4239 {
4240 struct remote_state *rs = get_remote_state ();
4241 int pid;
4242 char *wait_status = NULL;
4243
4244 pid = parse_pid_to_attach (args);
4245
4246 /* Remote PID can be freely equal to getpid, do not check it here the same
4247 way as in other targets. */
4248
4249 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4250 error (_("This target does not support attaching to a process"));
4251
4252 sprintf (rs->buf, "vAttach;%x", pid);
4253 putpkt (rs->buf);
4254 getpkt (&rs->buf, &rs->buf_size, 0);
4255
4256 if (packet_ok (rs->buf,
4257 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4258 {
4259 if (from_tty)
4260 printf_unfiltered (_("Attached to %s\n"),
4261 target_pid_to_str (pid_to_ptid (pid)));
4262
4263 if (!non_stop)
4264 {
4265 /* Save the reply for later. */
4266 wait_status = alloca (strlen (rs->buf) + 1);
4267 strcpy (wait_status, rs->buf);
4268 }
4269 else if (strcmp (rs->buf, "OK") != 0)
4270 error (_("Attaching to %s failed with: %s"),
4271 target_pid_to_str (pid_to_ptid (pid)),
4272 rs->buf);
4273 }
4274 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4275 error (_("This target does not support attaching to a process"));
4276 else
4277 error (_("Attaching to %s failed"),
4278 target_pid_to_str (pid_to_ptid (pid)));
4279
4280 set_current_inferior (remote_add_inferior (pid, 1));
4281
4282 inferior_ptid = pid_to_ptid (pid);
4283
4284 if (non_stop)
4285 {
4286 struct thread_info *thread;
4287
4288 /* Get list of threads. */
4289 remote_threads_info (target);
4290
4291 thread = first_thread_of_process (pid);
4292 if (thread)
4293 inferior_ptid = thread->ptid;
4294 else
4295 inferior_ptid = pid_to_ptid (pid);
4296
4297 /* Invalidate our notion of the remote current thread. */
4298 record_currthread (minus_one_ptid);
4299 }
4300 else
4301 {
4302 /* Now, if we have thread information, update inferior_ptid. */
4303 inferior_ptid = remote_current_thread (inferior_ptid);
4304
4305 /* Add the main thread to the thread list. */
4306 add_thread_silent (inferior_ptid);
4307 }
4308
4309 /* Next, if the target can specify a description, read it. We do
4310 this before anything involving memory or registers. */
4311 target_find_description ();
4312
4313 if (!non_stop)
4314 {
4315 /* Use the previously fetched status. */
4316 gdb_assert (wait_status != NULL);
4317
4318 if (target_can_async_p ())
4319 {
4320 struct stop_reply *stop_reply;
4321 struct cleanup *old_chain;
4322
4323 stop_reply = stop_reply_xmalloc ();
4324 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4325 remote_parse_stop_reply (wait_status, stop_reply);
4326 discard_cleanups (old_chain);
4327 push_stop_reply (stop_reply);
4328
4329 target_async (inferior_event_handler, 0);
4330 }
4331 else
4332 {
4333 gdb_assert (wait_status != NULL);
4334 strcpy (rs->buf, wait_status);
4335 rs->cached_wait_status = 1;
4336 }
4337 }
4338 else
4339 gdb_assert (wait_status == NULL);
4340 }
4341
4342 static void
4343 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4344 {
4345 extended_remote_attach_1 (ops, args, from_tty);
4346 }
4347
4348 /* Convert hex digit A to a number. */
4349
4350 static int
4351 fromhex (int a)
4352 {
4353 if (a >= '0' && a <= '9')
4354 return a - '0';
4355 else if (a >= 'a' && a <= 'f')
4356 return a - 'a' + 10;
4357 else if (a >= 'A' && a <= 'F')
4358 return a - 'A' + 10;
4359 else
4360 error (_("Reply contains invalid hex digit %d"), a);
4361 }
4362
4363 int
4364 hex2bin (const char *hex, gdb_byte *bin, int count)
4365 {
4366 int i;
4367
4368 for (i = 0; i < count; i++)
4369 {
4370 if (hex[0] == 0 || hex[1] == 0)
4371 {
4372 /* Hex string is short, or of uneven length.
4373 Return the count that has been converted so far. */
4374 return i;
4375 }
4376 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4377 hex += 2;
4378 }
4379 return i;
4380 }
4381
4382 /* Convert number NIB to a hex digit. */
4383
4384 static int
4385 tohex (int nib)
4386 {
4387 if (nib < 10)
4388 return '0' + nib;
4389 else
4390 return 'a' + nib - 10;
4391 }
4392
4393 int
4394 bin2hex (const gdb_byte *bin, char *hex, int count)
4395 {
4396 int i;
4397
4398 /* May use a length, or a nul-terminated string as input. */
4399 if (count == 0)
4400 count = strlen ((char *) bin);
4401
4402 for (i = 0; i < count; i++)
4403 {
4404 *hex++ = tohex ((*bin >> 4) & 0xf);
4405 *hex++ = tohex (*bin++ & 0xf);
4406 }
4407 *hex = 0;
4408 return i;
4409 }
4410 \f
4411 /* Check for the availability of vCont. This function should also check
4412 the response. */
4413
4414 static void
4415 remote_vcont_probe (struct remote_state *rs)
4416 {
4417 char *buf;
4418
4419 strcpy (rs->buf, "vCont?");
4420 putpkt (rs->buf);
4421 getpkt (&rs->buf, &rs->buf_size, 0);
4422 buf = rs->buf;
4423
4424 /* Make sure that the features we assume are supported. */
4425 if (strncmp (buf, "vCont", 5) == 0)
4426 {
4427 char *p = &buf[5];
4428 int support_s, support_S, support_c, support_C;
4429
4430 support_s = 0;
4431 support_S = 0;
4432 support_c = 0;
4433 support_C = 0;
4434 rs->support_vCont_t = 0;
4435 while (p && *p == ';')
4436 {
4437 p++;
4438 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4439 support_s = 1;
4440 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4441 support_S = 1;
4442 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4443 support_c = 1;
4444 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4445 support_C = 1;
4446 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4447 rs->support_vCont_t = 1;
4448
4449 p = strchr (p, ';');
4450 }
4451
4452 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4453 BUF will make packet_ok disable the packet. */
4454 if (!support_s || !support_S || !support_c || !support_C)
4455 buf[0] = 0;
4456 }
4457
4458 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4459 }
4460
4461 /* Helper function for building "vCont" resumptions. Write a
4462 resumption to P. ENDP points to one-passed-the-end of the buffer
4463 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4464 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4465 resumed thread should be single-stepped and/or signalled. If PTID
4466 equals minus_one_ptid, then all threads are resumed; if PTID
4467 represents a process, then all threads of the process are resumed;
4468 the thread to be stepped and/or signalled is given in the global
4469 INFERIOR_PTID. */
4470
4471 static char *
4472 append_resumption (char *p, char *endp,
4473 ptid_t ptid, int step, enum target_signal siggnal)
4474 {
4475 struct remote_state *rs = get_remote_state ();
4476
4477 if (step && siggnal != TARGET_SIGNAL_0)
4478 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4479 else if (step)
4480 p += xsnprintf (p, endp - p, ";s");
4481 else if (siggnal != TARGET_SIGNAL_0)
4482 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4483 else
4484 p += xsnprintf (p, endp - p, ";c");
4485
4486 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4487 {
4488 ptid_t nptid;
4489
4490 /* All (-1) threads of process. */
4491 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4492
4493 p += xsnprintf (p, endp - p, ":");
4494 p = write_ptid (p, endp, nptid);
4495 }
4496 else if (!ptid_equal (ptid, minus_one_ptid))
4497 {
4498 p += xsnprintf (p, endp - p, ":");
4499 p = write_ptid (p, endp, ptid);
4500 }
4501
4502 return p;
4503 }
4504
4505 /* Resume the remote inferior by using a "vCont" packet. The thread
4506 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4507 resumed thread should be single-stepped and/or signalled. If PTID
4508 equals minus_one_ptid, then all threads are resumed; the thread to
4509 be stepped and/or signalled is given in the global INFERIOR_PTID.
4510 This function returns non-zero iff it resumes the inferior.
4511
4512 This function issues a strict subset of all possible vCont commands at the
4513 moment. */
4514
4515 static int
4516 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4517 {
4518 struct remote_state *rs = get_remote_state ();
4519 char *p;
4520 char *endp;
4521
4522 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4523 remote_vcont_probe (rs);
4524
4525 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4526 return 0;
4527
4528 p = rs->buf;
4529 endp = rs->buf + get_remote_packet_size ();
4530
4531 /* If we could generate a wider range of packets, we'd have to worry
4532 about overflowing BUF. Should there be a generic
4533 "multi-part-packet" packet? */
4534
4535 p += xsnprintf (p, endp - p, "vCont");
4536
4537 if (ptid_equal (ptid, magic_null_ptid))
4538 {
4539 /* MAGIC_NULL_PTID means that we don't have any active threads,
4540 so we don't have any TID numbers the inferior will
4541 understand. Make sure to only send forms that do not specify
4542 a TID. */
4543 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4544 }
4545 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4546 {
4547 /* Resume all threads (of all processes, or of a single
4548 process), with preference for INFERIOR_PTID. This assumes
4549 inferior_ptid belongs to the set of all threads we are about
4550 to resume. */
4551 if (step || siggnal != TARGET_SIGNAL_0)
4552 {
4553 /* Step inferior_ptid, with or without signal. */
4554 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4555 }
4556
4557 /* And continue others without a signal. */
4558 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4559 }
4560 else
4561 {
4562 /* Scheduler locking; resume only PTID. */
4563 append_resumption (p, endp, ptid, step, siggnal);
4564 }
4565
4566 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4567 putpkt (rs->buf);
4568
4569 if (non_stop)
4570 {
4571 /* In non-stop, the stub replies to vCont with "OK". The stop
4572 reply will be reported asynchronously by means of a `%Stop'
4573 notification. */
4574 getpkt (&rs->buf, &rs->buf_size, 0);
4575 if (strcmp (rs->buf, "OK") != 0)
4576 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4577 }
4578
4579 return 1;
4580 }
4581
4582 /* Tell the remote machine to resume. */
4583
4584 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4585
4586 static int last_sent_step;
4587
4588 static void
4589 remote_resume (struct target_ops *ops,
4590 ptid_t ptid, int step, enum target_signal siggnal)
4591 {
4592 struct remote_state *rs = get_remote_state ();
4593 char *buf;
4594
4595 last_sent_signal = siggnal;
4596 last_sent_step = step;
4597
4598 /* The vCont packet doesn't need to specify threads via Hc. */
4599 /* No reverse support (yet) for vCont. */
4600 if (execution_direction != EXEC_REVERSE)
4601 if (remote_vcont_resume (ptid, step, siggnal))
4602 goto done;
4603
4604 /* All other supported resume packets do use Hc, so set the continue
4605 thread. */
4606 if (ptid_equal (ptid, minus_one_ptid))
4607 set_continue_thread (any_thread_ptid);
4608 else
4609 set_continue_thread (ptid);
4610
4611 buf = rs->buf;
4612 if (execution_direction == EXEC_REVERSE)
4613 {
4614 /* We don't pass signals to the target in reverse exec mode. */
4615 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4616 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4617 siggnal);
4618
4619 if (step
4620 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4621 error (_("Remote reverse-step not supported."));
4622 if (!step
4623 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4624 error (_("Remote reverse-continue not supported."));
4625
4626 strcpy (buf, step ? "bs" : "bc");
4627 }
4628 else if (siggnal != TARGET_SIGNAL_0)
4629 {
4630 buf[0] = step ? 'S' : 'C';
4631 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4632 buf[2] = tohex (((int) siggnal) & 0xf);
4633 buf[3] = '\0';
4634 }
4635 else
4636 strcpy (buf, step ? "s" : "c");
4637
4638 putpkt (buf);
4639
4640 done:
4641 /* We are about to start executing the inferior, let's register it
4642 with the event loop. NOTE: this is the one place where all the
4643 execution commands end up. We could alternatively do this in each
4644 of the execution commands in infcmd.c. */
4645 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4646 into infcmd.c in order to allow inferior function calls to work
4647 NOT asynchronously. */
4648 if (target_can_async_p ())
4649 target_async (inferior_event_handler, 0);
4650
4651 /* We've just told the target to resume. The remote server will
4652 wait for the inferior to stop, and then send a stop reply. In
4653 the mean time, we can't start another command/query ourselves
4654 because the stub wouldn't be ready to process it. This applies
4655 only to the base all-stop protocol, however. In non-stop (which
4656 only supports vCont), the stub replies with an "OK", and is
4657 immediate able to process further serial input. */
4658 if (!non_stop)
4659 rs->waiting_for_stop_reply = 1;
4660 }
4661 \f
4662
4663 /* Set up the signal handler for SIGINT, while the target is
4664 executing, ovewriting the 'regular' SIGINT signal handler. */
4665 static void
4666 initialize_sigint_signal_handler (void)
4667 {
4668 signal (SIGINT, handle_remote_sigint);
4669 }
4670
4671 /* Signal handler for SIGINT, while the target is executing. */
4672 static void
4673 handle_remote_sigint (int sig)
4674 {
4675 signal (sig, handle_remote_sigint_twice);
4676 mark_async_signal_handler_wrapper (sigint_remote_token);
4677 }
4678
4679 /* Signal handler for SIGINT, installed after SIGINT has already been
4680 sent once. It will take effect the second time that the user sends
4681 a ^C. */
4682 static void
4683 handle_remote_sigint_twice (int sig)
4684 {
4685 signal (sig, handle_remote_sigint);
4686 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4687 }
4688
4689 /* Perform the real interruption of the target execution, in response
4690 to a ^C. */
4691 static void
4692 async_remote_interrupt (gdb_client_data arg)
4693 {
4694 if (remote_debug)
4695 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4696
4697 target_stop (inferior_ptid);
4698 }
4699
4700 /* Perform interrupt, if the first attempt did not succeed. Just give
4701 up on the target alltogether. */
4702 void
4703 async_remote_interrupt_twice (gdb_client_data arg)
4704 {
4705 if (remote_debug)
4706 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4707
4708 interrupt_query ();
4709 }
4710
4711 /* Reinstall the usual SIGINT handlers, after the target has
4712 stopped. */
4713 static void
4714 cleanup_sigint_signal_handler (void *dummy)
4715 {
4716 signal (SIGINT, handle_sigint);
4717 }
4718
4719 /* Send ^C to target to halt it. Target will respond, and send us a
4720 packet. */
4721 static void (*ofunc) (int);
4722
4723 /* The command line interface's stop routine. This function is installed
4724 as a signal handler for SIGINT. The first time a user requests a
4725 stop, we call remote_stop to send a break or ^C. If there is no
4726 response from the target (it didn't stop when the user requested it),
4727 we ask the user if he'd like to detach from the target. */
4728 static void
4729 remote_interrupt (int signo)
4730 {
4731 /* If this doesn't work, try more severe steps. */
4732 signal (signo, remote_interrupt_twice);
4733
4734 gdb_call_async_signal_handler (sigint_remote_token, 1);
4735 }
4736
4737 /* The user typed ^C twice. */
4738
4739 static void
4740 remote_interrupt_twice (int signo)
4741 {
4742 signal (signo, ofunc);
4743 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4744 signal (signo, remote_interrupt);
4745 }
4746
4747 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4748 thread, all threads of a remote process, or all threads of all
4749 processes. */
4750
4751 static void
4752 remote_stop_ns (ptid_t ptid)
4753 {
4754 struct remote_state *rs = get_remote_state ();
4755 char *p = rs->buf;
4756 char *endp = rs->buf + get_remote_packet_size ();
4757
4758 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4759 remote_vcont_probe (rs);
4760
4761 if (!rs->support_vCont_t)
4762 error (_("Remote server does not support stopping threads"));
4763
4764 if (ptid_equal (ptid, minus_one_ptid)
4765 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4766 p += xsnprintf (p, endp - p, "vCont;t");
4767 else
4768 {
4769 ptid_t nptid;
4770
4771 p += xsnprintf (p, endp - p, "vCont;t:");
4772
4773 if (ptid_is_pid (ptid))
4774 /* All (-1) threads of process. */
4775 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4776 else
4777 {
4778 /* Small optimization: if we already have a stop reply for
4779 this thread, no use in telling the stub we want this
4780 stopped. */
4781 if (peek_stop_reply (ptid))
4782 return;
4783
4784 nptid = ptid;
4785 }
4786
4787 write_ptid (p, endp, nptid);
4788 }
4789
4790 /* In non-stop, we get an immediate OK reply. The stop reply will
4791 come in asynchronously by notification. */
4792 putpkt (rs->buf);
4793 getpkt (&rs->buf, &rs->buf_size, 0);
4794 if (strcmp (rs->buf, "OK") != 0)
4795 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4796 }
4797
4798 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4799 remote target. It is undefined which thread of which process
4800 reports the stop. */
4801
4802 static void
4803 remote_stop_as (ptid_t ptid)
4804 {
4805 struct remote_state *rs = get_remote_state ();
4806
4807 rs->ctrlc_pending_p = 1;
4808
4809 /* If the inferior is stopped already, but the core didn't know
4810 about it yet, just ignore the request. The cached wait status
4811 will be collected in remote_wait. */
4812 if (rs->cached_wait_status)
4813 return;
4814
4815 /* Send interrupt_sequence to remote target. */
4816 send_interrupt_sequence ();
4817 }
4818
4819 /* This is the generic stop called via the target vector. When a target
4820 interrupt is requested, either by the command line or the GUI, we
4821 will eventually end up here. */
4822
4823 static void
4824 remote_stop (ptid_t ptid)
4825 {
4826 if (remote_debug)
4827 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4828
4829 if (non_stop)
4830 remote_stop_ns (ptid);
4831 else
4832 remote_stop_as (ptid);
4833 }
4834
4835 /* Ask the user what to do when an interrupt is received. */
4836
4837 static void
4838 interrupt_query (void)
4839 {
4840 target_terminal_ours ();
4841
4842 if (target_can_async_p ())
4843 {
4844 signal (SIGINT, handle_sigint);
4845 deprecated_throw_reason (RETURN_QUIT);
4846 }
4847 else
4848 {
4849 if (query (_("Interrupted while waiting for the program.\n\
4850 Give up (and stop debugging it)? ")))
4851 {
4852 pop_target ();
4853 deprecated_throw_reason (RETURN_QUIT);
4854 }
4855 }
4856
4857 target_terminal_inferior ();
4858 }
4859
4860 /* Enable/disable target terminal ownership. Most targets can use
4861 terminal groups to control terminal ownership. Remote targets are
4862 different in that explicit transfer of ownership to/from GDB/target
4863 is required. */
4864
4865 static void
4866 remote_terminal_inferior (void)
4867 {
4868 if (!target_async_permitted)
4869 /* Nothing to do. */
4870 return;
4871
4872 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4873 idempotent. The event-loop GDB talking to an asynchronous target
4874 with a synchronous command calls this function from both
4875 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4876 transfer the terminal to the target when it shouldn't this guard
4877 can go away. */
4878 if (!remote_async_terminal_ours_p)
4879 return;
4880 delete_file_handler (input_fd);
4881 remote_async_terminal_ours_p = 0;
4882 initialize_sigint_signal_handler ();
4883 /* NOTE: At this point we could also register our selves as the
4884 recipient of all input. Any characters typed could then be
4885 passed on down to the target. */
4886 }
4887
4888 static void
4889 remote_terminal_ours (void)
4890 {
4891 if (!target_async_permitted)
4892 /* Nothing to do. */
4893 return;
4894
4895 /* See FIXME in remote_terminal_inferior. */
4896 if (remote_async_terminal_ours_p)
4897 return;
4898 cleanup_sigint_signal_handler (NULL);
4899 add_file_handler (input_fd, stdin_event_handler, 0);
4900 remote_async_terminal_ours_p = 1;
4901 }
4902
4903 static void
4904 remote_console_output (char *msg)
4905 {
4906 char *p;
4907
4908 for (p = msg; p[0] && p[1]; p += 2)
4909 {
4910 char tb[2];
4911 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4912
4913 tb[0] = c;
4914 tb[1] = 0;
4915 fputs_unfiltered (tb, gdb_stdtarg);
4916 }
4917 gdb_flush (gdb_stdtarg);
4918 }
4919
4920 typedef struct cached_reg
4921 {
4922 int num;
4923 gdb_byte data[MAX_REGISTER_SIZE];
4924 } cached_reg_t;
4925
4926 DEF_VEC_O(cached_reg_t);
4927
4928 struct stop_reply
4929 {
4930 struct stop_reply *next;
4931
4932 ptid_t ptid;
4933
4934 struct target_waitstatus ws;
4935
4936 /* Expedited registers. This makes remote debugging a bit more
4937 efficient for those targets that provide critical registers as
4938 part of their normal status mechanism (as another roundtrip to
4939 fetch them is avoided). */
4940 VEC(cached_reg_t) *regcache;
4941
4942 int stopped_by_watchpoint_p;
4943 CORE_ADDR watch_data_address;
4944
4945 int solibs_changed;
4946 int replay_event;
4947
4948 int core;
4949 };
4950
4951 /* The list of already fetched and acknowledged stop events. */
4952 static struct stop_reply *stop_reply_queue;
4953
4954 static struct stop_reply *
4955 stop_reply_xmalloc (void)
4956 {
4957 struct stop_reply *r = XMALLOC (struct stop_reply);
4958
4959 r->next = NULL;
4960 return r;
4961 }
4962
4963 static void
4964 stop_reply_xfree (struct stop_reply *r)
4965 {
4966 if (r != NULL)
4967 {
4968 VEC_free (cached_reg_t, r->regcache);
4969 xfree (r);
4970 }
4971 }
4972
4973 /* Discard all pending stop replies of inferior PID. If PID is -1,
4974 discard everything. */
4975
4976 static void
4977 discard_pending_stop_replies (int pid)
4978 {
4979 struct stop_reply *prev = NULL, *reply, *next;
4980
4981 /* Discard the in-flight notification. */
4982 if (pending_stop_reply != NULL
4983 && (pid == -1
4984 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4985 {
4986 stop_reply_xfree (pending_stop_reply);
4987 pending_stop_reply = NULL;
4988 }
4989
4990 /* Discard the stop replies we have already pulled with
4991 vStopped. */
4992 for (reply = stop_reply_queue; reply; reply = next)
4993 {
4994 next = reply->next;
4995 if (pid == -1
4996 || ptid_get_pid (reply->ptid) == pid)
4997 {
4998 if (reply == stop_reply_queue)
4999 stop_reply_queue = reply->next;
5000 else
5001 prev->next = reply->next;
5002
5003 stop_reply_xfree (reply);
5004 }
5005 else
5006 prev = reply;
5007 }
5008 }
5009
5010 /* Cleanup wrapper. */
5011
5012 static void
5013 do_stop_reply_xfree (void *arg)
5014 {
5015 struct stop_reply *r = arg;
5016
5017 stop_reply_xfree (r);
5018 }
5019
5020 /* Look for a queued stop reply belonging to PTID. If one is found,
5021 remove it from the queue, and return it. Returns NULL if none is
5022 found. If there are still queued events left to process, tell the
5023 event loop to get back to target_wait soon. */
5024
5025 static struct stop_reply *
5026 queued_stop_reply (ptid_t ptid)
5027 {
5028 struct stop_reply *it;
5029 struct stop_reply **it_link;
5030
5031 it = stop_reply_queue;
5032 it_link = &stop_reply_queue;
5033 while (it)
5034 {
5035 if (ptid_match (it->ptid, ptid))
5036 {
5037 *it_link = it->next;
5038 it->next = NULL;
5039 break;
5040 }
5041
5042 it_link = &it->next;
5043 it = *it_link;
5044 }
5045
5046 if (stop_reply_queue)
5047 /* There's still at least an event left. */
5048 mark_async_event_handler (remote_async_inferior_event_token);
5049
5050 return it;
5051 }
5052
5053 /* Push a fully parsed stop reply in the stop reply queue. Since we
5054 know that we now have at least one queued event left to pass to the
5055 core side, tell the event loop to get back to target_wait soon. */
5056
5057 static void
5058 push_stop_reply (struct stop_reply *new_event)
5059 {
5060 struct stop_reply *event;
5061
5062 if (stop_reply_queue)
5063 {
5064 for (event = stop_reply_queue;
5065 event && event->next;
5066 event = event->next)
5067 ;
5068
5069 event->next = new_event;
5070 }
5071 else
5072 stop_reply_queue = new_event;
5073
5074 mark_async_event_handler (remote_async_inferior_event_token);
5075 }
5076
5077 /* Returns true if we have a stop reply for PTID. */
5078
5079 static int
5080 peek_stop_reply (ptid_t ptid)
5081 {
5082 struct stop_reply *it;
5083
5084 for (it = stop_reply_queue; it; it = it->next)
5085 if (ptid_equal (ptid, it->ptid))
5086 {
5087 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5088 return 1;
5089 }
5090
5091 return 0;
5092 }
5093
5094 /* Parse the stop reply in BUF. Either the function succeeds, and the
5095 result is stored in EVENT, or throws an error. */
5096
5097 static void
5098 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5099 {
5100 struct remote_arch_state *rsa = get_remote_arch_state ();
5101 ULONGEST addr;
5102 char *p;
5103
5104 event->ptid = null_ptid;
5105 event->ws.kind = TARGET_WAITKIND_IGNORE;
5106 event->ws.value.integer = 0;
5107 event->solibs_changed = 0;
5108 event->replay_event = 0;
5109 event->stopped_by_watchpoint_p = 0;
5110 event->regcache = NULL;
5111 event->core = -1;
5112
5113 switch (buf[0])
5114 {
5115 case 'T': /* Status with PC, SP, FP, ... */
5116 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5117 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5118 ss = signal number
5119 n... = register number
5120 r... = register contents
5121 */
5122
5123 p = &buf[3]; /* after Txx */
5124 while (*p)
5125 {
5126 char *p1;
5127 char *p_temp;
5128 int fieldsize;
5129 LONGEST pnum = 0;
5130
5131 /* If the packet contains a register number, save it in
5132 pnum and set p1 to point to the character following it.
5133 Otherwise p1 points to p. */
5134
5135 /* If this packet is an awatch packet, don't parse the 'a'
5136 as a register number. */
5137
5138 if (strncmp (p, "awatch", strlen("awatch")) != 0
5139 && strncmp (p, "core", strlen ("core") != 0))
5140 {
5141 /* Read the ``P'' register number. */
5142 pnum = strtol (p, &p_temp, 16);
5143 p1 = p_temp;
5144 }
5145 else
5146 p1 = p;
5147
5148 if (p1 == p) /* No register number present here. */
5149 {
5150 p1 = strchr (p, ':');
5151 if (p1 == NULL)
5152 error (_("Malformed packet(a) (missing colon): %s\n\
5153 Packet: '%s'\n"),
5154 p, buf);
5155 if (strncmp (p, "thread", p1 - p) == 0)
5156 event->ptid = read_ptid (++p1, &p);
5157 else if ((strncmp (p, "watch", p1 - p) == 0)
5158 || (strncmp (p, "rwatch", p1 - p) == 0)
5159 || (strncmp (p, "awatch", p1 - p) == 0))
5160 {
5161 event->stopped_by_watchpoint_p = 1;
5162 p = unpack_varlen_hex (++p1, &addr);
5163 event->watch_data_address = (CORE_ADDR) addr;
5164 }
5165 else if (strncmp (p, "library", p1 - p) == 0)
5166 {
5167 p1++;
5168 p_temp = p1;
5169 while (*p_temp && *p_temp != ';')
5170 p_temp++;
5171
5172 event->solibs_changed = 1;
5173 p = p_temp;
5174 }
5175 else if (strncmp (p, "replaylog", p1 - p) == 0)
5176 {
5177 /* NO_HISTORY event.
5178 p1 will indicate "begin" or "end", but
5179 it makes no difference for now, so ignore it. */
5180 event->replay_event = 1;
5181 p_temp = strchr (p1 + 1, ';');
5182 if (p_temp)
5183 p = p_temp;
5184 }
5185 else if (strncmp (p, "core", p1 - p) == 0)
5186 {
5187 ULONGEST c;
5188
5189 p = unpack_varlen_hex (++p1, &c);
5190 event->core = c;
5191 }
5192 else
5193 {
5194 /* Silently skip unknown optional info. */
5195 p_temp = strchr (p1 + 1, ';');
5196 if (p_temp)
5197 p = p_temp;
5198 }
5199 }
5200 else
5201 {
5202 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5203 cached_reg_t cached_reg;
5204
5205 p = p1;
5206
5207 if (*p != ':')
5208 error (_("Malformed packet(b) (missing colon): %s\n\
5209 Packet: '%s'\n"),
5210 p, buf);
5211 ++p;
5212
5213 if (reg == NULL)
5214 error (_("Remote sent bad register number %s: %s\n\
5215 Packet: '%s'\n"),
5216 hex_string (pnum), p, buf);
5217
5218 cached_reg.num = reg->regnum;
5219
5220 fieldsize = hex2bin (p, cached_reg.data,
5221 register_size (target_gdbarch,
5222 reg->regnum));
5223 p += 2 * fieldsize;
5224 if (fieldsize < register_size (target_gdbarch,
5225 reg->regnum))
5226 warning (_("Remote reply is too short: %s"), buf);
5227
5228 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5229 }
5230
5231 if (*p != ';')
5232 error (_("Remote register badly formatted: %s\nhere: %s"),
5233 buf, p);
5234 ++p;
5235 }
5236 /* fall through */
5237 case 'S': /* Old style status, just signal only. */
5238 if (event->solibs_changed)
5239 event->ws.kind = TARGET_WAITKIND_LOADED;
5240 else if (event->replay_event)
5241 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5242 else
5243 {
5244 event->ws.kind = TARGET_WAITKIND_STOPPED;
5245 event->ws.value.sig = (enum target_signal)
5246 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5247 }
5248 break;
5249 case 'W': /* Target exited. */
5250 case 'X':
5251 {
5252 char *p;
5253 int pid;
5254 ULONGEST value;
5255
5256 /* GDB used to accept only 2 hex chars here. Stubs should
5257 only send more if they detect GDB supports multi-process
5258 support. */
5259 p = unpack_varlen_hex (&buf[1], &value);
5260
5261 if (buf[0] == 'W')
5262 {
5263 /* The remote process exited. */
5264 event->ws.kind = TARGET_WAITKIND_EXITED;
5265 event->ws.value.integer = value;
5266 }
5267 else
5268 {
5269 /* The remote process exited with a signal. */
5270 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5271 event->ws.value.sig = (enum target_signal) value;
5272 }
5273
5274 /* If no process is specified, assume inferior_ptid. */
5275 pid = ptid_get_pid (inferior_ptid);
5276 if (*p == '\0')
5277 ;
5278 else if (*p == ';')
5279 {
5280 p++;
5281
5282 if (p == '\0')
5283 ;
5284 else if (strncmp (p,
5285 "process:", sizeof ("process:") - 1) == 0)
5286 {
5287 ULONGEST upid;
5288
5289 p += sizeof ("process:") - 1;
5290 unpack_varlen_hex (p, &upid);
5291 pid = upid;
5292 }
5293 else
5294 error (_("unknown stop reply packet: %s"), buf);
5295 }
5296 else
5297 error (_("unknown stop reply packet: %s"), buf);
5298 event->ptid = pid_to_ptid (pid);
5299 }
5300 break;
5301 }
5302
5303 if (non_stop && ptid_equal (event->ptid, null_ptid))
5304 error (_("No process or thread specified in stop reply: %s"), buf);
5305 }
5306
5307 /* When the stub wants to tell GDB about a new stop reply, it sends a
5308 stop notification (%Stop). Those can come it at any time, hence,
5309 we have to make sure that any pending putpkt/getpkt sequence we're
5310 making is finished, before querying the stub for more events with
5311 vStopped. E.g., if we started a vStopped sequence immediatelly
5312 upon receiving the %Stop notification, something like this could
5313 happen:
5314
5315 1.1) --> Hg 1
5316 1.2) <-- OK
5317 1.3) --> g
5318 1.4) <-- %Stop
5319 1.5) --> vStopped
5320 1.6) <-- (registers reply to step #1.3)
5321
5322 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5323 query.
5324
5325 To solve this, whenever we parse a %Stop notification sucessfully,
5326 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5327 doing whatever we were doing:
5328
5329 2.1) --> Hg 1
5330 2.2) <-- OK
5331 2.3) --> g
5332 2.4) <-- %Stop
5333 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5334 2.5) <-- (registers reply to step #2.3)
5335
5336 Eventualy after step #2.5, we return to the event loop, which
5337 notices there's an event on the
5338 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5339 associated callback --- the function below. At this point, we're
5340 always safe to start a vStopped sequence. :
5341
5342 2.6) --> vStopped
5343 2.7) <-- T05 thread:2
5344 2.8) --> vStopped
5345 2.9) --> OK
5346 */
5347
5348 static void
5349 remote_get_pending_stop_replies (void)
5350 {
5351 struct remote_state *rs = get_remote_state ();
5352
5353 if (pending_stop_reply)
5354 {
5355 /* acknowledge */
5356 putpkt ("vStopped");
5357
5358 /* Now we can rely on it. */
5359 push_stop_reply (pending_stop_reply);
5360 pending_stop_reply = NULL;
5361
5362 while (1)
5363 {
5364 getpkt (&rs->buf, &rs->buf_size, 0);
5365 if (strcmp (rs->buf, "OK") == 0)
5366 break;
5367 else
5368 {
5369 struct cleanup *old_chain;
5370 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5371
5372 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5373 remote_parse_stop_reply (rs->buf, stop_reply);
5374
5375 /* acknowledge */
5376 putpkt ("vStopped");
5377
5378 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5379 {
5380 /* Now we can rely on it. */
5381 discard_cleanups (old_chain);
5382 push_stop_reply (stop_reply);
5383 }
5384 else
5385 /* We got an unknown stop reply. */
5386 do_cleanups (old_chain);
5387 }
5388 }
5389 }
5390 }
5391
5392
5393 /* Called when it is decided that STOP_REPLY holds the info of the
5394 event that is to be returned to the core. This function always
5395 destroys STOP_REPLY. */
5396
5397 static ptid_t
5398 process_stop_reply (struct stop_reply *stop_reply,
5399 struct target_waitstatus *status)
5400 {
5401 ptid_t ptid;
5402
5403 *status = stop_reply->ws;
5404 ptid = stop_reply->ptid;
5405
5406 /* If no thread/process was reported by the stub, assume the current
5407 inferior. */
5408 if (ptid_equal (ptid, null_ptid))
5409 ptid = inferior_ptid;
5410
5411 if (status->kind != TARGET_WAITKIND_EXITED
5412 && status->kind != TARGET_WAITKIND_SIGNALLED)
5413 {
5414 /* Expedited registers. */
5415 if (stop_reply->regcache)
5416 {
5417 struct regcache *regcache
5418 = get_thread_arch_regcache (ptid, target_gdbarch);
5419 cached_reg_t *reg;
5420 int ix;
5421
5422 for (ix = 0;
5423 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5424 ix++)
5425 regcache_raw_supply (regcache, reg->num, reg->data);
5426 VEC_free (cached_reg_t, stop_reply->regcache);
5427 }
5428
5429 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5430 remote_watch_data_address = stop_reply->watch_data_address;
5431
5432 remote_notice_new_inferior (ptid, 0);
5433 demand_private_info (ptid)->core = stop_reply->core;
5434 }
5435
5436 stop_reply_xfree (stop_reply);
5437 return ptid;
5438 }
5439
5440 /* The non-stop mode version of target_wait. */
5441
5442 static ptid_t
5443 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5444 {
5445 struct remote_state *rs = get_remote_state ();
5446 struct stop_reply *stop_reply;
5447 int ret;
5448
5449 /* If in non-stop mode, get out of getpkt even if a
5450 notification is received. */
5451
5452 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5453 0 /* forever */);
5454 while (1)
5455 {
5456 if (ret != -1)
5457 switch (rs->buf[0])
5458 {
5459 case 'E': /* Error of some sort. */
5460 /* We're out of sync with the target now. Did it continue
5461 or not? We can't tell which thread it was in non-stop,
5462 so just ignore this. */
5463 warning (_("Remote failure reply: %s"), rs->buf);
5464 break;
5465 case 'O': /* Console output. */
5466 remote_console_output (rs->buf + 1);
5467 break;
5468 default:
5469 warning (_("Invalid remote reply: %s"), rs->buf);
5470 break;
5471 }
5472
5473 /* Acknowledge a pending stop reply that may have arrived in the
5474 mean time. */
5475 if (pending_stop_reply != NULL)
5476 remote_get_pending_stop_replies ();
5477
5478 /* If indeed we noticed a stop reply, we're done. */
5479 stop_reply = queued_stop_reply (ptid);
5480 if (stop_reply != NULL)
5481 return process_stop_reply (stop_reply, status);
5482
5483 /* Still no event. If we're just polling for an event, then
5484 return to the event loop. */
5485 if (options & TARGET_WNOHANG)
5486 {
5487 status->kind = TARGET_WAITKIND_IGNORE;
5488 return minus_one_ptid;
5489 }
5490
5491 /* Otherwise do a blocking wait. */
5492 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5493 1 /* forever */);
5494 }
5495 }
5496
5497 /* Wait until the remote machine stops, then return, storing status in
5498 STATUS just as `wait' would. */
5499
5500 static ptid_t
5501 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5502 {
5503 struct remote_state *rs = get_remote_state ();
5504 ptid_t event_ptid = null_ptid;
5505 char *buf;
5506 struct stop_reply *stop_reply;
5507
5508 again:
5509
5510 status->kind = TARGET_WAITKIND_IGNORE;
5511 status->value.integer = 0;
5512
5513 stop_reply = queued_stop_reply (ptid);
5514 if (stop_reply != NULL)
5515 return process_stop_reply (stop_reply, status);
5516
5517 if (rs->cached_wait_status)
5518 /* Use the cached wait status, but only once. */
5519 rs->cached_wait_status = 0;
5520 else
5521 {
5522 int ret;
5523
5524 if (!target_is_async_p ())
5525 {
5526 ofunc = signal (SIGINT, remote_interrupt);
5527 /* If the user hit C-c before this packet, or between packets,
5528 pretend that it was hit right here. */
5529 if (quit_flag)
5530 {
5531 quit_flag = 0;
5532 remote_interrupt (SIGINT);
5533 }
5534 }
5535
5536 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5537 _never_ wait for ever -> test on target_is_async_p().
5538 However, before we do that we need to ensure that the caller
5539 knows how to take the target into/out of async mode. */
5540 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5541 if (!target_is_async_p ())
5542 signal (SIGINT, ofunc);
5543 }
5544
5545 buf = rs->buf;
5546
5547 remote_stopped_by_watchpoint_p = 0;
5548
5549 /* We got something. */
5550 rs->waiting_for_stop_reply = 0;
5551
5552 /* Assume that the target has acknowledged Ctrl-C unless we receive
5553 an 'F' or 'O' packet. */
5554 if (buf[0] != 'F' && buf[0] != 'O')
5555 rs->ctrlc_pending_p = 0;
5556
5557 switch (buf[0])
5558 {
5559 case 'E': /* Error of some sort. */
5560 /* We're out of sync with the target now. Did it continue or
5561 not? Not is more likely, so report a stop. */
5562 warning (_("Remote failure reply: %s"), buf);
5563 status->kind = TARGET_WAITKIND_STOPPED;
5564 status->value.sig = TARGET_SIGNAL_0;
5565 break;
5566 case 'F': /* File-I/O request. */
5567 remote_fileio_request (buf, rs->ctrlc_pending_p);
5568 rs->ctrlc_pending_p = 0;
5569 break;
5570 case 'T': case 'S': case 'X': case 'W':
5571 {
5572 struct stop_reply *stop_reply;
5573 struct cleanup *old_chain;
5574
5575 stop_reply = stop_reply_xmalloc ();
5576 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5577 remote_parse_stop_reply (buf, stop_reply);
5578 discard_cleanups (old_chain);
5579 event_ptid = process_stop_reply (stop_reply, status);
5580 break;
5581 }
5582 case 'O': /* Console output. */
5583 remote_console_output (buf + 1);
5584
5585 /* The target didn't really stop; keep waiting. */
5586 rs->waiting_for_stop_reply = 1;
5587
5588 break;
5589 case '\0':
5590 if (last_sent_signal != TARGET_SIGNAL_0)
5591 {
5592 /* Zero length reply means that we tried 'S' or 'C' and the
5593 remote system doesn't support it. */
5594 target_terminal_ours_for_output ();
5595 printf_filtered
5596 ("Can't send signals to this remote system. %s not sent.\n",
5597 target_signal_to_name (last_sent_signal));
5598 last_sent_signal = TARGET_SIGNAL_0;
5599 target_terminal_inferior ();
5600
5601 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5602 putpkt ((char *) buf);
5603
5604 /* We just told the target to resume, so a stop reply is in
5605 order. */
5606 rs->waiting_for_stop_reply = 1;
5607 break;
5608 }
5609 /* else fallthrough */
5610 default:
5611 warning (_("Invalid remote reply: %s"), buf);
5612 /* Keep waiting. */
5613 rs->waiting_for_stop_reply = 1;
5614 break;
5615 }
5616
5617 if (status->kind == TARGET_WAITKIND_IGNORE)
5618 {
5619 /* Nothing interesting happened. If we're doing a non-blocking
5620 poll, we're done. Otherwise, go back to waiting. */
5621 if (options & TARGET_WNOHANG)
5622 return minus_one_ptid;
5623 else
5624 goto again;
5625 }
5626 else if (status->kind != TARGET_WAITKIND_EXITED
5627 && status->kind != TARGET_WAITKIND_SIGNALLED)
5628 {
5629 if (!ptid_equal (event_ptid, null_ptid))
5630 record_currthread (event_ptid);
5631 else
5632 event_ptid = inferior_ptid;
5633 }
5634 else
5635 /* A process exit. Invalidate our notion of current thread. */
5636 record_currthread (minus_one_ptid);
5637
5638 return event_ptid;
5639 }
5640
5641 /* Wait until the remote machine stops, then return, storing status in
5642 STATUS just as `wait' would. */
5643
5644 static ptid_t
5645 remote_wait (struct target_ops *ops,
5646 ptid_t ptid, struct target_waitstatus *status, int options)
5647 {
5648 ptid_t event_ptid;
5649
5650 if (non_stop)
5651 event_ptid = remote_wait_ns (ptid, status, options);
5652 else
5653 event_ptid = remote_wait_as (ptid, status, options);
5654
5655 if (target_can_async_p ())
5656 {
5657 /* If there are are events left in the queue tell the event loop
5658 to return here. */
5659 if (stop_reply_queue)
5660 mark_async_event_handler (remote_async_inferior_event_token);
5661 }
5662
5663 return event_ptid;
5664 }
5665
5666 /* Fetch a single register using a 'p' packet. */
5667
5668 static int
5669 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5670 {
5671 struct remote_state *rs = get_remote_state ();
5672 char *buf, *p;
5673 char regp[MAX_REGISTER_SIZE];
5674 int i;
5675
5676 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5677 return 0;
5678
5679 if (reg->pnum == -1)
5680 return 0;
5681
5682 p = rs->buf;
5683 *p++ = 'p';
5684 p += hexnumstr (p, reg->pnum);
5685 *p++ = '\0';
5686 putpkt (rs->buf);
5687 getpkt (&rs->buf, &rs->buf_size, 0);
5688
5689 buf = rs->buf;
5690
5691 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5692 {
5693 case PACKET_OK:
5694 break;
5695 case PACKET_UNKNOWN:
5696 return 0;
5697 case PACKET_ERROR:
5698 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5699 gdbarch_register_name (get_regcache_arch (regcache),
5700 reg->regnum),
5701 buf);
5702 }
5703
5704 /* If this register is unfetchable, tell the regcache. */
5705 if (buf[0] == 'x')
5706 {
5707 regcache_raw_supply (regcache, reg->regnum, NULL);
5708 return 1;
5709 }
5710
5711 /* Otherwise, parse and supply the value. */
5712 p = buf;
5713 i = 0;
5714 while (p[0] != 0)
5715 {
5716 if (p[1] == 0)
5717 error (_("fetch_register_using_p: early buf termination"));
5718
5719 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5720 p += 2;
5721 }
5722 regcache_raw_supply (regcache, reg->regnum, regp);
5723 return 1;
5724 }
5725
5726 /* Fetch the registers included in the target's 'g' packet. */
5727
5728 static int
5729 send_g_packet (void)
5730 {
5731 struct remote_state *rs = get_remote_state ();
5732 int buf_len;
5733
5734 sprintf (rs->buf, "g");
5735 remote_send (&rs->buf, &rs->buf_size);
5736
5737 /* We can get out of synch in various cases. If the first character
5738 in the buffer is not a hex character, assume that has happened
5739 and try to fetch another packet to read. */
5740 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5741 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5742 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5743 && rs->buf[0] != 'x') /* New: unavailable register value. */
5744 {
5745 if (remote_debug)
5746 fprintf_unfiltered (gdb_stdlog,
5747 "Bad register packet; fetching a new packet\n");
5748 getpkt (&rs->buf, &rs->buf_size, 0);
5749 }
5750
5751 buf_len = strlen (rs->buf);
5752
5753 /* Sanity check the received packet. */
5754 if (buf_len % 2 != 0)
5755 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5756
5757 return buf_len / 2;
5758 }
5759
5760 static void
5761 process_g_packet (struct regcache *regcache)
5762 {
5763 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5764 struct remote_state *rs = get_remote_state ();
5765 struct remote_arch_state *rsa = get_remote_arch_state ();
5766 int i, buf_len;
5767 char *p;
5768 char *regs;
5769
5770 buf_len = strlen (rs->buf);
5771
5772 /* Further sanity checks, with knowledge of the architecture. */
5773 if (buf_len > 2 * rsa->sizeof_g_packet)
5774 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5775
5776 /* Save the size of the packet sent to us by the target. It is used
5777 as a heuristic when determining the max size of packets that the
5778 target can safely receive. */
5779 if (rsa->actual_register_packet_size == 0)
5780 rsa->actual_register_packet_size = buf_len;
5781
5782 /* If this is smaller than we guessed the 'g' packet would be,
5783 update our records. A 'g' reply that doesn't include a register's
5784 value implies either that the register is not available, or that
5785 the 'p' packet must be used. */
5786 if (buf_len < 2 * rsa->sizeof_g_packet)
5787 {
5788 rsa->sizeof_g_packet = buf_len / 2;
5789
5790 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5791 {
5792 if (rsa->regs[i].pnum == -1)
5793 continue;
5794
5795 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5796 rsa->regs[i].in_g_packet = 0;
5797 else
5798 rsa->regs[i].in_g_packet = 1;
5799 }
5800 }
5801
5802 regs = alloca (rsa->sizeof_g_packet);
5803
5804 /* Unimplemented registers read as all bits zero. */
5805 memset (regs, 0, rsa->sizeof_g_packet);
5806
5807 /* Reply describes registers byte by byte, each byte encoded as two
5808 hex characters. Suck them all up, then supply them to the
5809 register cacheing/storage mechanism. */
5810
5811 p = rs->buf;
5812 for (i = 0; i < rsa->sizeof_g_packet; i++)
5813 {
5814 if (p[0] == 0 || p[1] == 0)
5815 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5816 internal_error (__FILE__, __LINE__,
5817 _("unexpected end of 'g' packet reply"));
5818
5819 if (p[0] == 'x' && p[1] == 'x')
5820 regs[i] = 0; /* 'x' */
5821 else
5822 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5823 p += 2;
5824 }
5825
5826 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5827 {
5828 struct packet_reg *r = &rsa->regs[i];
5829
5830 if (r->in_g_packet)
5831 {
5832 if (r->offset * 2 >= strlen (rs->buf))
5833 /* This shouldn't happen - we adjusted in_g_packet above. */
5834 internal_error (__FILE__, __LINE__,
5835 _("unexpected end of 'g' packet reply"));
5836 else if (rs->buf[r->offset * 2] == 'x')
5837 {
5838 gdb_assert (r->offset * 2 < strlen (rs->buf));
5839 /* The register isn't available, mark it as such (at
5840 the same time setting the value to zero). */
5841 regcache_raw_supply (regcache, r->regnum, NULL);
5842 }
5843 else
5844 regcache_raw_supply (regcache, r->regnum,
5845 regs + r->offset);
5846 }
5847 }
5848 }
5849
5850 static void
5851 fetch_registers_using_g (struct regcache *regcache)
5852 {
5853 send_g_packet ();
5854 process_g_packet (regcache);
5855 }
5856
5857 /* Make the remote selected traceframe match GDB's selected
5858 traceframe. */
5859
5860 static void
5861 set_remote_traceframe (void)
5862 {
5863 int newnum;
5864
5865 if (remote_traceframe_number == get_traceframe_number ())
5866 return;
5867
5868 /* Avoid recursion, remote_trace_find calls us again. */
5869 remote_traceframe_number = get_traceframe_number ();
5870
5871 newnum = target_trace_find (tfind_number,
5872 get_traceframe_number (), 0, 0, NULL);
5873
5874 /* Should not happen. If it does, all bets are off. */
5875 if (newnum != get_traceframe_number ())
5876 warning (_("could not set remote traceframe"));
5877 }
5878
5879 static void
5880 remote_fetch_registers (struct target_ops *ops,
5881 struct regcache *regcache, int regnum)
5882 {
5883 struct remote_arch_state *rsa = get_remote_arch_state ();
5884 int i;
5885
5886 set_remote_traceframe ();
5887 set_general_thread (inferior_ptid);
5888
5889 if (regnum >= 0)
5890 {
5891 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5892
5893 gdb_assert (reg != NULL);
5894
5895 /* If this register might be in the 'g' packet, try that first -
5896 we are likely to read more than one register. If this is the
5897 first 'g' packet, we might be overly optimistic about its
5898 contents, so fall back to 'p'. */
5899 if (reg->in_g_packet)
5900 {
5901 fetch_registers_using_g (regcache);
5902 if (reg->in_g_packet)
5903 return;
5904 }
5905
5906 if (fetch_register_using_p (regcache, reg))
5907 return;
5908
5909 /* This register is not available. */
5910 regcache_raw_supply (regcache, reg->regnum, NULL);
5911
5912 return;
5913 }
5914
5915 fetch_registers_using_g (regcache);
5916
5917 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5918 if (!rsa->regs[i].in_g_packet)
5919 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5920 {
5921 /* This register is not available. */
5922 regcache_raw_supply (regcache, i, NULL);
5923 }
5924 }
5925
5926 /* Prepare to store registers. Since we may send them all (using a
5927 'G' request), we have to read out the ones we don't want to change
5928 first. */
5929
5930 static void
5931 remote_prepare_to_store (struct regcache *regcache)
5932 {
5933 struct remote_arch_state *rsa = get_remote_arch_state ();
5934 int i;
5935 gdb_byte buf[MAX_REGISTER_SIZE];
5936
5937 /* Make sure the entire registers array is valid. */
5938 switch (remote_protocol_packets[PACKET_P].support)
5939 {
5940 case PACKET_DISABLE:
5941 case PACKET_SUPPORT_UNKNOWN:
5942 /* Make sure all the necessary registers are cached. */
5943 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5944 if (rsa->regs[i].in_g_packet)
5945 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5946 break;
5947 case PACKET_ENABLE:
5948 break;
5949 }
5950 }
5951
5952 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5953 packet was not recognized. */
5954
5955 static int
5956 store_register_using_P (const struct regcache *regcache,
5957 struct packet_reg *reg)
5958 {
5959 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5960 struct remote_state *rs = get_remote_state ();
5961 /* Try storing a single register. */
5962 char *buf = rs->buf;
5963 gdb_byte regp[MAX_REGISTER_SIZE];
5964 char *p;
5965
5966 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5967 return 0;
5968
5969 if (reg->pnum == -1)
5970 return 0;
5971
5972 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5973 p = buf + strlen (buf);
5974 regcache_raw_collect (regcache, reg->regnum, regp);
5975 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5976 putpkt (rs->buf);
5977 getpkt (&rs->buf, &rs->buf_size, 0);
5978
5979 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5980 {
5981 case PACKET_OK:
5982 return 1;
5983 case PACKET_ERROR:
5984 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5985 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5986 case PACKET_UNKNOWN:
5987 return 0;
5988 default:
5989 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5990 }
5991 }
5992
5993 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5994 contents of the register cache buffer. FIXME: ignores errors. */
5995
5996 static void
5997 store_registers_using_G (const struct regcache *regcache)
5998 {
5999 struct remote_state *rs = get_remote_state ();
6000 struct remote_arch_state *rsa = get_remote_arch_state ();
6001 gdb_byte *regs;
6002 char *p;
6003
6004 /* Extract all the registers in the regcache copying them into a
6005 local buffer. */
6006 {
6007 int i;
6008
6009 regs = alloca (rsa->sizeof_g_packet);
6010 memset (regs, 0, rsa->sizeof_g_packet);
6011 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6012 {
6013 struct packet_reg *r = &rsa->regs[i];
6014
6015 if (r->in_g_packet)
6016 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6017 }
6018 }
6019
6020 /* Command describes registers byte by byte,
6021 each byte encoded as two hex characters. */
6022 p = rs->buf;
6023 *p++ = 'G';
6024 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6025 updated. */
6026 bin2hex (regs, p, rsa->sizeof_g_packet);
6027 putpkt (rs->buf);
6028 getpkt (&rs->buf, &rs->buf_size, 0);
6029 if (packet_check_result (rs->buf) == PACKET_ERROR)
6030 error (_("Could not write registers; remote failure reply '%s'"),
6031 rs->buf);
6032 }
6033
6034 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6035 of the register cache buffer. FIXME: ignores errors. */
6036
6037 static void
6038 remote_store_registers (struct target_ops *ops,
6039 struct regcache *regcache, int regnum)
6040 {
6041 struct remote_arch_state *rsa = get_remote_arch_state ();
6042 int i;
6043
6044 set_remote_traceframe ();
6045 set_general_thread (inferior_ptid);
6046
6047 if (regnum >= 0)
6048 {
6049 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6050
6051 gdb_assert (reg != NULL);
6052
6053 /* Always prefer to store registers using the 'P' packet if
6054 possible; we often change only a small number of registers.
6055 Sometimes we change a larger number; we'd need help from a
6056 higher layer to know to use 'G'. */
6057 if (store_register_using_P (regcache, reg))
6058 return;
6059
6060 /* For now, don't complain if we have no way to write the
6061 register. GDB loses track of unavailable registers too
6062 easily. Some day, this may be an error. We don't have
6063 any way to read the register, either... */
6064 if (!reg->in_g_packet)
6065 return;
6066
6067 store_registers_using_G (regcache);
6068 return;
6069 }
6070
6071 store_registers_using_G (regcache);
6072
6073 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6074 if (!rsa->regs[i].in_g_packet)
6075 if (!store_register_using_P (regcache, &rsa->regs[i]))
6076 /* See above for why we do not issue an error here. */
6077 continue;
6078 }
6079 \f
6080
6081 /* Return the number of hex digits in num. */
6082
6083 static int
6084 hexnumlen (ULONGEST num)
6085 {
6086 int i;
6087
6088 for (i = 0; num != 0; i++)
6089 num >>= 4;
6090
6091 return max (i, 1);
6092 }
6093
6094 /* Set BUF to the minimum number of hex digits representing NUM. */
6095
6096 static int
6097 hexnumstr (char *buf, ULONGEST num)
6098 {
6099 int len = hexnumlen (num);
6100
6101 return hexnumnstr (buf, num, len);
6102 }
6103
6104
6105 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6106
6107 static int
6108 hexnumnstr (char *buf, ULONGEST num, int width)
6109 {
6110 int i;
6111
6112 buf[width] = '\0';
6113
6114 for (i = width - 1; i >= 0; i--)
6115 {
6116 buf[i] = "0123456789abcdef"[(num & 0xf)];
6117 num >>= 4;
6118 }
6119
6120 return width;
6121 }
6122
6123 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6124
6125 static CORE_ADDR
6126 remote_address_masked (CORE_ADDR addr)
6127 {
6128 int address_size = remote_address_size;
6129
6130 /* If "remoteaddresssize" was not set, default to target address size. */
6131 if (!address_size)
6132 address_size = gdbarch_addr_bit (target_gdbarch);
6133
6134 if (address_size > 0
6135 && address_size < (sizeof (ULONGEST) * 8))
6136 {
6137 /* Only create a mask when that mask can safely be constructed
6138 in a ULONGEST variable. */
6139 ULONGEST mask = 1;
6140
6141 mask = (mask << address_size) - 1;
6142 addr &= mask;
6143 }
6144 return addr;
6145 }
6146
6147 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6148 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6149 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6150 (which may be more than *OUT_LEN due to escape characters). The
6151 total number of bytes in the output buffer will be at most
6152 OUT_MAXLEN. */
6153
6154 static int
6155 remote_escape_output (const gdb_byte *buffer, int len,
6156 gdb_byte *out_buf, int *out_len,
6157 int out_maxlen)
6158 {
6159 int input_index, output_index;
6160
6161 output_index = 0;
6162 for (input_index = 0; input_index < len; input_index++)
6163 {
6164 gdb_byte b = buffer[input_index];
6165
6166 if (b == '$' || b == '#' || b == '}')
6167 {
6168 /* These must be escaped. */
6169 if (output_index + 2 > out_maxlen)
6170 break;
6171 out_buf[output_index++] = '}';
6172 out_buf[output_index++] = b ^ 0x20;
6173 }
6174 else
6175 {
6176 if (output_index + 1 > out_maxlen)
6177 break;
6178 out_buf[output_index++] = b;
6179 }
6180 }
6181
6182 *out_len = input_index;
6183 return output_index;
6184 }
6185
6186 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6187 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6188 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6189
6190 This function reverses remote_escape_output. It allows more
6191 escaped characters than that function does, in particular because
6192 '*' must be escaped to avoid the run-length encoding processing
6193 in reading packets. */
6194
6195 static int
6196 remote_unescape_input (const gdb_byte *buffer, int len,
6197 gdb_byte *out_buf, int out_maxlen)
6198 {
6199 int input_index, output_index;
6200 int escaped;
6201
6202 output_index = 0;
6203 escaped = 0;
6204 for (input_index = 0; input_index < len; input_index++)
6205 {
6206 gdb_byte b = buffer[input_index];
6207
6208 if (output_index + 1 > out_maxlen)
6209 {
6210 warning (_("Received too much data from remote target;"
6211 " ignoring overflow."));
6212 return output_index;
6213 }
6214
6215 if (escaped)
6216 {
6217 out_buf[output_index++] = b ^ 0x20;
6218 escaped = 0;
6219 }
6220 else if (b == '}')
6221 escaped = 1;
6222 else
6223 out_buf[output_index++] = b;
6224 }
6225
6226 if (escaped)
6227 error (_("Unmatched escape character in target response."));
6228
6229 return output_index;
6230 }
6231
6232 /* Determine whether the remote target supports binary downloading.
6233 This is accomplished by sending a no-op memory write of zero length
6234 to the target at the specified address. It does not suffice to send
6235 the whole packet, since many stubs strip the eighth bit and
6236 subsequently compute a wrong checksum, which causes real havoc with
6237 remote_write_bytes.
6238
6239 NOTE: This can still lose if the serial line is not eight-bit
6240 clean. In cases like this, the user should clear "remote
6241 X-packet". */
6242
6243 static void
6244 check_binary_download (CORE_ADDR addr)
6245 {
6246 struct remote_state *rs = get_remote_state ();
6247
6248 switch (remote_protocol_packets[PACKET_X].support)
6249 {
6250 case PACKET_DISABLE:
6251 break;
6252 case PACKET_ENABLE:
6253 break;
6254 case PACKET_SUPPORT_UNKNOWN:
6255 {
6256 char *p;
6257
6258 p = rs->buf;
6259 *p++ = 'X';
6260 p += hexnumstr (p, (ULONGEST) addr);
6261 *p++ = ',';
6262 p += hexnumstr (p, (ULONGEST) 0);
6263 *p++ = ':';
6264 *p = '\0';
6265
6266 putpkt_binary (rs->buf, (int) (p - rs->buf));
6267 getpkt (&rs->buf, &rs->buf_size, 0);
6268
6269 if (rs->buf[0] == '\0')
6270 {
6271 if (remote_debug)
6272 fprintf_unfiltered (gdb_stdlog,
6273 "binary downloading NOT "
6274 "supported by target\n");
6275 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6276 }
6277 else
6278 {
6279 if (remote_debug)
6280 fprintf_unfiltered (gdb_stdlog,
6281 "binary downloading supported by target\n");
6282 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6283 }
6284 break;
6285 }
6286 }
6287 }
6288
6289 /* Write memory data directly to the remote machine.
6290 This does not inform the data cache; the data cache uses this.
6291 HEADER is the starting part of the packet.
6292 MEMADDR is the address in the remote memory space.
6293 MYADDR is the address of the buffer in our space.
6294 LEN is the number of bytes.
6295 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6296 should send data as binary ('X'), or hex-encoded ('M').
6297
6298 The function creates packet of the form
6299 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6300
6301 where encoding of <DATA> is termined by PACKET_FORMAT.
6302
6303 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6304 are omitted.
6305
6306 Returns the number of bytes transferred, or 0 (setting errno) for
6307 error. Only transfer a single packet. */
6308
6309 static int
6310 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6311 const gdb_byte *myaddr, int len,
6312 char packet_format, int use_length)
6313 {
6314 struct remote_state *rs = get_remote_state ();
6315 char *p;
6316 char *plen = NULL;
6317 int plenlen = 0;
6318 int todo;
6319 int nr_bytes;
6320 int payload_size;
6321 int payload_length;
6322 int header_length;
6323
6324 if (packet_format != 'X' && packet_format != 'M')
6325 internal_error (__FILE__, __LINE__,
6326 _("remote_write_bytes_aux: bad packet format"));
6327
6328 if (len <= 0)
6329 return 0;
6330
6331 payload_size = get_memory_write_packet_size ();
6332
6333 /* The packet buffer will be large enough for the payload;
6334 get_memory_packet_size ensures this. */
6335 rs->buf[0] = '\0';
6336
6337 /* Compute the size of the actual payload by subtracting out the
6338 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6339
6340 payload_size -= strlen ("$,:#NN");
6341 if (!use_length)
6342 /* The comma won't be used. */
6343 payload_size += 1;
6344 header_length = strlen (header);
6345 payload_size -= header_length;
6346 payload_size -= hexnumlen (memaddr);
6347
6348 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6349
6350 strcat (rs->buf, header);
6351 p = rs->buf + strlen (header);
6352
6353 /* Compute a best guess of the number of bytes actually transfered. */
6354 if (packet_format == 'X')
6355 {
6356 /* Best guess at number of bytes that will fit. */
6357 todo = min (len, payload_size);
6358 if (use_length)
6359 payload_size -= hexnumlen (todo);
6360 todo = min (todo, payload_size);
6361 }
6362 else
6363 {
6364 /* Num bytes that will fit. */
6365 todo = min (len, payload_size / 2);
6366 if (use_length)
6367 payload_size -= hexnumlen (todo);
6368 todo = min (todo, payload_size / 2);
6369 }
6370
6371 if (todo <= 0)
6372 internal_error (__FILE__, __LINE__,
6373 _("minumum packet size too small to write data"));
6374
6375 /* If we already need another packet, then try to align the end
6376 of this packet to a useful boundary. */
6377 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6378 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6379
6380 /* Append "<memaddr>". */
6381 memaddr = remote_address_masked (memaddr);
6382 p += hexnumstr (p, (ULONGEST) memaddr);
6383
6384 if (use_length)
6385 {
6386 /* Append ",". */
6387 *p++ = ',';
6388
6389 /* Append <len>. Retain the location/size of <len>. It may need to
6390 be adjusted once the packet body has been created. */
6391 plen = p;
6392 plenlen = hexnumstr (p, (ULONGEST) todo);
6393 p += plenlen;
6394 }
6395
6396 /* Append ":". */
6397 *p++ = ':';
6398 *p = '\0';
6399
6400 /* Append the packet body. */
6401 if (packet_format == 'X')
6402 {
6403 /* Binary mode. Send target system values byte by byte, in
6404 increasing byte addresses. Only escape certain critical
6405 characters. */
6406 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6407 payload_size);
6408
6409 /* If not all TODO bytes fit, then we'll need another packet. Make
6410 a second try to keep the end of the packet aligned. Don't do
6411 this if the packet is tiny. */
6412 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6413 {
6414 int new_nr_bytes;
6415
6416 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6417 - memaddr);
6418 if (new_nr_bytes != nr_bytes)
6419 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6420 p, &nr_bytes,
6421 payload_size);
6422 }
6423
6424 p += payload_length;
6425 if (use_length && nr_bytes < todo)
6426 {
6427 /* Escape chars have filled up the buffer prematurely,
6428 and we have actually sent fewer bytes than planned.
6429 Fix-up the length field of the packet. Use the same
6430 number of characters as before. */
6431 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6432 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6433 }
6434 }
6435 else
6436 {
6437 /* Normal mode: Send target system values byte by byte, in
6438 increasing byte addresses. Each byte is encoded as a two hex
6439 value. */
6440 nr_bytes = bin2hex (myaddr, p, todo);
6441 p += 2 * nr_bytes;
6442 }
6443
6444 putpkt_binary (rs->buf, (int) (p - rs->buf));
6445 getpkt (&rs->buf, &rs->buf_size, 0);
6446
6447 if (rs->buf[0] == 'E')
6448 {
6449 /* There is no correspondance between what the remote protocol
6450 uses for errors and errno codes. We would like a cleaner way
6451 of representing errors (big enough to include errno codes,
6452 bfd_error codes, and others). But for now just return EIO. */
6453 errno = EIO;
6454 return 0;
6455 }
6456
6457 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6458 fewer bytes than we'd planned. */
6459 return nr_bytes;
6460 }
6461
6462 /* Write memory data directly to the remote machine.
6463 This does not inform the data cache; the data cache uses this.
6464 MEMADDR is the address in the remote memory space.
6465 MYADDR is the address of the buffer in our space.
6466 LEN is the number of bytes.
6467
6468 Returns number of bytes transferred, or 0 (setting errno) for
6469 error. Only transfer a single packet. */
6470
6471 static int
6472 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6473 {
6474 char *packet_format = 0;
6475
6476 /* Check whether the target supports binary download. */
6477 check_binary_download (memaddr);
6478
6479 switch (remote_protocol_packets[PACKET_X].support)
6480 {
6481 case PACKET_ENABLE:
6482 packet_format = "X";
6483 break;
6484 case PACKET_DISABLE:
6485 packet_format = "M";
6486 break;
6487 case PACKET_SUPPORT_UNKNOWN:
6488 internal_error (__FILE__, __LINE__,
6489 _("remote_write_bytes: bad internal state"));
6490 default:
6491 internal_error (__FILE__, __LINE__, _("bad switch"));
6492 }
6493
6494 return remote_write_bytes_aux (packet_format,
6495 memaddr, myaddr, len, packet_format[0], 1);
6496 }
6497
6498 /* Read memory data directly from the remote machine.
6499 This does not use the data cache; the data cache uses this.
6500 MEMADDR is the address in the remote memory space.
6501 MYADDR is the address of the buffer in our space.
6502 LEN is the number of bytes.
6503
6504 Returns number of bytes transferred, or 0 for error. */
6505
6506 static int
6507 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6508 {
6509 struct remote_state *rs = get_remote_state ();
6510 int max_buf_size; /* Max size of packet output buffer. */
6511 char *p;
6512 int todo;
6513 int i;
6514
6515 if (len <= 0)
6516 return 0;
6517
6518 max_buf_size = get_memory_read_packet_size ();
6519 /* The packet buffer will be large enough for the payload;
6520 get_memory_packet_size ensures this. */
6521
6522 /* Number if bytes that will fit. */
6523 todo = min (len, max_buf_size / 2);
6524
6525 /* Construct "m"<memaddr>","<len>". */
6526 memaddr = remote_address_masked (memaddr);
6527 p = rs->buf;
6528 *p++ = 'm';
6529 p += hexnumstr (p, (ULONGEST) memaddr);
6530 *p++ = ',';
6531 p += hexnumstr (p, (ULONGEST) todo);
6532 *p = '\0';
6533 putpkt (rs->buf);
6534 getpkt (&rs->buf, &rs->buf_size, 0);
6535 if (rs->buf[0] == 'E'
6536 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6537 && rs->buf[3] == '\0')
6538 {
6539 /* There is no correspondance between what the remote protocol
6540 uses for errors and errno codes. We would like a cleaner way
6541 of representing errors (big enough to include errno codes,
6542 bfd_error codes, and others). But for now just return
6543 EIO. */
6544 errno = EIO;
6545 return 0;
6546 }
6547 /* Reply describes memory byte by byte, each byte encoded as two hex
6548 characters. */
6549 p = rs->buf;
6550 i = hex2bin (p, myaddr, todo);
6551 /* Return what we have. Let higher layers handle partial reads. */
6552 return i;
6553 }
6554 \f
6555
6556 /* Remote notification handler. */
6557
6558 static void
6559 handle_notification (char *buf, size_t length)
6560 {
6561 if (strncmp (buf, "Stop:", 5) == 0)
6562 {
6563 if (pending_stop_reply)
6564 {
6565 /* We've already parsed the in-flight stop-reply, but the
6566 stub for some reason thought we didn't, possibly due to
6567 timeout on its side. Just ignore it. */
6568 if (remote_debug)
6569 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6570 }
6571 else
6572 {
6573 struct cleanup *old_chain;
6574 struct stop_reply *reply = stop_reply_xmalloc ();
6575
6576 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6577
6578 remote_parse_stop_reply (buf + 5, reply);
6579
6580 discard_cleanups (old_chain);
6581
6582 /* Be careful to only set it after parsing, since an error
6583 may be thrown then. */
6584 pending_stop_reply = reply;
6585
6586 /* Notify the event loop there's a stop reply to acknowledge
6587 and that there may be more events to fetch. */
6588 mark_async_event_handler (remote_async_get_pending_events_token);
6589
6590 if (remote_debug)
6591 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6592 }
6593 }
6594 else
6595 /* We ignore notifications we don't recognize, for compatibility
6596 with newer stubs. */
6597 ;
6598 }
6599
6600 \f
6601 /* Read or write LEN bytes from inferior memory at MEMADDR,
6602 transferring to or from debugger address BUFFER. Write to inferior
6603 if SHOULD_WRITE is nonzero. Returns length of data written or
6604 read; 0 for error. TARGET is unused. */
6605
6606 static int
6607 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6608 int should_write, struct mem_attrib *attrib,
6609 struct target_ops *target)
6610 {
6611 int res;
6612
6613 set_remote_traceframe ();
6614 set_general_thread (inferior_ptid);
6615
6616 if (should_write)
6617 res = remote_write_bytes (mem_addr, buffer, mem_len);
6618 else
6619 res = remote_read_bytes (mem_addr, buffer, mem_len);
6620
6621 return res;
6622 }
6623
6624 /* Sends a packet with content determined by the printf format string
6625 FORMAT and the remaining arguments, then gets the reply. Returns
6626 whether the packet was a success, a failure, or unknown. */
6627
6628 static enum packet_result
6629 remote_send_printf (const char *format, ...)
6630 {
6631 struct remote_state *rs = get_remote_state ();
6632 int max_size = get_remote_packet_size ();
6633 va_list ap;
6634
6635 va_start (ap, format);
6636
6637 rs->buf[0] = '\0';
6638 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6639 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6640
6641 if (putpkt (rs->buf) < 0)
6642 error (_("Communication problem with target."));
6643
6644 rs->buf[0] = '\0';
6645 getpkt (&rs->buf, &rs->buf_size, 0);
6646
6647 return packet_check_result (rs->buf);
6648 }
6649
6650 static void
6651 restore_remote_timeout (void *p)
6652 {
6653 int value = *(int *)p;
6654
6655 remote_timeout = value;
6656 }
6657
6658 /* Flash writing can take quite some time. We'll set
6659 effectively infinite timeout for flash operations.
6660 In future, we'll need to decide on a better approach. */
6661 static const int remote_flash_timeout = 1000;
6662
6663 static void
6664 remote_flash_erase (struct target_ops *ops,
6665 ULONGEST address, LONGEST length)
6666 {
6667 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6668 int saved_remote_timeout = remote_timeout;
6669 enum packet_result ret;
6670 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6671 &saved_remote_timeout);
6672
6673 remote_timeout = remote_flash_timeout;
6674
6675 ret = remote_send_printf ("vFlashErase:%s,%s",
6676 phex (address, addr_size),
6677 phex (length, 4));
6678 switch (ret)
6679 {
6680 case PACKET_UNKNOWN:
6681 error (_("Remote target does not support flash erase"));
6682 case PACKET_ERROR:
6683 error (_("Error erasing flash with vFlashErase packet"));
6684 default:
6685 break;
6686 }
6687
6688 do_cleanups (back_to);
6689 }
6690
6691 static LONGEST
6692 remote_flash_write (struct target_ops *ops,
6693 ULONGEST address, LONGEST length,
6694 const gdb_byte *data)
6695 {
6696 int saved_remote_timeout = remote_timeout;
6697 int ret;
6698 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6699 &saved_remote_timeout);
6700
6701 remote_timeout = remote_flash_timeout;
6702 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6703 do_cleanups (back_to);
6704
6705 return ret;
6706 }
6707
6708 static void
6709 remote_flash_done (struct target_ops *ops)
6710 {
6711 int saved_remote_timeout = remote_timeout;
6712 int ret;
6713 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6714 &saved_remote_timeout);
6715
6716 remote_timeout = remote_flash_timeout;
6717 ret = remote_send_printf ("vFlashDone");
6718 do_cleanups (back_to);
6719
6720 switch (ret)
6721 {
6722 case PACKET_UNKNOWN:
6723 error (_("Remote target does not support vFlashDone"));
6724 case PACKET_ERROR:
6725 error (_("Error finishing flash operation"));
6726 default:
6727 break;
6728 }
6729 }
6730
6731 static void
6732 remote_files_info (struct target_ops *ignore)
6733 {
6734 puts_filtered ("Debugging a target over a serial line.\n");
6735 }
6736 \f
6737 /* Stuff for dealing with the packets which are part of this protocol.
6738 See comment at top of file for details. */
6739
6740 /* Read a single character from the remote end. */
6741
6742 static int
6743 readchar (int timeout)
6744 {
6745 int ch;
6746
6747 ch = serial_readchar (remote_desc, timeout);
6748
6749 if (ch >= 0)
6750 return ch;
6751
6752 switch ((enum serial_rc) ch)
6753 {
6754 case SERIAL_EOF:
6755 pop_target ();
6756 error (_("Remote connection closed"));
6757 /* no return */
6758 case SERIAL_ERROR:
6759 pop_target ();
6760 perror_with_name (_("Remote communication error. "
6761 "Target disconnected."));
6762 /* no return */
6763 case SERIAL_TIMEOUT:
6764 break;
6765 }
6766 return ch;
6767 }
6768
6769 /* Send the command in *BUF to the remote machine, and read the reply
6770 into *BUF. Report an error if we get an error reply. Resize
6771 *BUF using xrealloc if necessary to hold the result, and update
6772 *SIZEOF_BUF. */
6773
6774 static void
6775 remote_send (char **buf,
6776 long *sizeof_buf)
6777 {
6778 putpkt (*buf);
6779 getpkt (buf, sizeof_buf, 0);
6780
6781 if ((*buf)[0] == 'E')
6782 error (_("Remote failure reply: %s"), *buf);
6783 }
6784
6785 /* Return a pointer to an xmalloc'ed string representing an escaped
6786 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6787 etc. The caller is responsible for releasing the returned
6788 memory. */
6789
6790 static char *
6791 escape_buffer (const char *buf, int n)
6792 {
6793 struct cleanup *old_chain;
6794 struct ui_file *stb;
6795 char *str;
6796
6797 stb = mem_fileopen ();
6798 old_chain = make_cleanup_ui_file_delete (stb);
6799
6800 fputstrn_unfiltered (buf, n, 0, stb);
6801 str = ui_file_xstrdup (stb, NULL);
6802 do_cleanups (old_chain);
6803 return str;
6804 }
6805
6806 /* Display a null-terminated packet on stdout, for debugging, using C
6807 string notation. */
6808
6809 static void
6810 print_packet (char *buf)
6811 {
6812 puts_filtered ("\"");
6813 fputstr_filtered (buf, '"', gdb_stdout);
6814 puts_filtered ("\"");
6815 }
6816
6817 int
6818 putpkt (char *buf)
6819 {
6820 return putpkt_binary (buf, strlen (buf));
6821 }
6822
6823 /* Send a packet to the remote machine, with error checking. The data
6824 of the packet is in BUF. The string in BUF can be at most
6825 get_remote_packet_size () - 5 to account for the $, # and checksum,
6826 and for a possible /0 if we are debugging (remote_debug) and want
6827 to print the sent packet as a string. */
6828
6829 static int
6830 putpkt_binary (char *buf, int cnt)
6831 {
6832 struct remote_state *rs = get_remote_state ();
6833 int i;
6834 unsigned char csum = 0;
6835 char *buf2 = alloca (cnt + 6);
6836
6837 int ch;
6838 int tcount = 0;
6839 char *p;
6840
6841 /* Catch cases like trying to read memory or listing threads while
6842 we're waiting for a stop reply. The remote server wouldn't be
6843 ready to handle this request, so we'd hang and timeout. We don't
6844 have to worry about this in synchronous mode, because in that
6845 case it's not possible to issue a command while the target is
6846 running. This is not a problem in non-stop mode, because in that
6847 case, the stub is always ready to process serial input. */
6848 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6849 error (_("Cannot execute this command while the target is running."));
6850
6851 /* We're sending out a new packet. Make sure we don't look at a
6852 stale cached response. */
6853 rs->cached_wait_status = 0;
6854
6855 /* Copy the packet into buffer BUF2, encapsulating it
6856 and giving it a checksum. */
6857
6858 p = buf2;
6859 *p++ = '$';
6860
6861 for (i = 0; i < cnt; i++)
6862 {
6863 csum += buf[i];
6864 *p++ = buf[i];
6865 }
6866 *p++ = '#';
6867 *p++ = tohex ((csum >> 4) & 0xf);
6868 *p++ = tohex (csum & 0xf);
6869
6870 /* Send it over and over until we get a positive ack. */
6871
6872 while (1)
6873 {
6874 int started_error_output = 0;
6875
6876 if (remote_debug)
6877 {
6878 struct cleanup *old_chain;
6879 char *str;
6880
6881 *p = '\0';
6882 str = escape_buffer (buf2, p - buf2);
6883 old_chain = make_cleanup (xfree, str);
6884 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6885 gdb_flush (gdb_stdlog);
6886 do_cleanups (old_chain);
6887 }
6888 if (serial_write (remote_desc, buf2, p - buf2))
6889 perror_with_name (_("putpkt: write failed"));
6890
6891 /* If this is a no acks version of the remote protocol, send the
6892 packet and move on. */
6893 if (rs->noack_mode)
6894 break;
6895
6896 /* Read until either a timeout occurs (-2) or '+' is read.
6897 Handle any notification that arrives in the mean time. */
6898 while (1)
6899 {
6900 ch = readchar (remote_timeout);
6901
6902 if (remote_debug)
6903 {
6904 switch (ch)
6905 {
6906 case '+':
6907 case '-':
6908 case SERIAL_TIMEOUT:
6909 case '$':
6910 case '%':
6911 if (started_error_output)
6912 {
6913 putchar_unfiltered ('\n');
6914 started_error_output = 0;
6915 }
6916 }
6917 }
6918
6919 switch (ch)
6920 {
6921 case '+':
6922 if (remote_debug)
6923 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6924 return 1;
6925 case '-':
6926 if (remote_debug)
6927 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6928 /* FALLTHROUGH */
6929 case SERIAL_TIMEOUT:
6930 tcount++;
6931 if (tcount > 3)
6932 return 0;
6933 break; /* Retransmit buffer. */
6934 case '$':
6935 {
6936 if (remote_debug)
6937 fprintf_unfiltered (gdb_stdlog,
6938 "Packet instead of Ack, ignoring it\n");
6939 /* It's probably an old response sent because an ACK
6940 was lost. Gobble up the packet and ack it so it
6941 doesn't get retransmitted when we resend this
6942 packet. */
6943 skip_frame ();
6944 serial_write (remote_desc, "+", 1);
6945 continue; /* Now, go look for +. */
6946 }
6947
6948 case '%':
6949 {
6950 int val;
6951
6952 /* If we got a notification, handle it, and go back to looking
6953 for an ack. */
6954 /* We've found the start of a notification. Now
6955 collect the data. */
6956 val = read_frame (&rs->buf, &rs->buf_size);
6957 if (val >= 0)
6958 {
6959 if (remote_debug)
6960 {
6961 struct cleanup *old_chain;
6962 char *str;
6963
6964 str = escape_buffer (rs->buf, val);
6965 old_chain = make_cleanup (xfree, str);
6966 fprintf_unfiltered (gdb_stdlog,
6967 " Notification received: %s\n",
6968 str);
6969 do_cleanups (old_chain);
6970 }
6971 handle_notification (rs->buf, val);
6972 /* We're in sync now, rewait for the ack. */
6973 tcount = 0;
6974 }
6975 else
6976 {
6977 if (remote_debug)
6978 {
6979 if (!started_error_output)
6980 {
6981 started_error_output = 1;
6982 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6983 }
6984 fputc_unfiltered (ch & 0177, gdb_stdlog);
6985 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6986 }
6987 }
6988 continue;
6989 }
6990 /* fall-through */
6991 default:
6992 if (remote_debug)
6993 {
6994 if (!started_error_output)
6995 {
6996 started_error_output = 1;
6997 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6998 }
6999 fputc_unfiltered (ch & 0177, gdb_stdlog);
7000 }
7001 continue;
7002 }
7003 break; /* Here to retransmit. */
7004 }
7005
7006 #if 0
7007 /* This is wrong. If doing a long backtrace, the user should be
7008 able to get out next time we call QUIT, without anything as
7009 violent as interrupt_query. If we want to provide a way out of
7010 here without getting to the next QUIT, it should be based on
7011 hitting ^C twice as in remote_wait. */
7012 if (quit_flag)
7013 {
7014 quit_flag = 0;
7015 interrupt_query ();
7016 }
7017 #endif
7018 }
7019 return 0;
7020 }
7021
7022 /* Come here after finding the start of a frame when we expected an
7023 ack. Do our best to discard the rest of this packet. */
7024
7025 static void
7026 skip_frame (void)
7027 {
7028 int c;
7029
7030 while (1)
7031 {
7032 c = readchar (remote_timeout);
7033 switch (c)
7034 {
7035 case SERIAL_TIMEOUT:
7036 /* Nothing we can do. */
7037 return;
7038 case '#':
7039 /* Discard the two bytes of checksum and stop. */
7040 c = readchar (remote_timeout);
7041 if (c >= 0)
7042 c = readchar (remote_timeout);
7043
7044 return;
7045 case '*': /* Run length encoding. */
7046 /* Discard the repeat count. */
7047 c = readchar (remote_timeout);
7048 if (c < 0)
7049 return;
7050 break;
7051 default:
7052 /* A regular character. */
7053 break;
7054 }
7055 }
7056 }
7057
7058 /* Come here after finding the start of the frame. Collect the rest
7059 into *BUF, verifying the checksum, length, and handling run-length
7060 compression. NUL terminate the buffer. If there is not enough room,
7061 expand *BUF using xrealloc.
7062
7063 Returns -1 on error, number of characters in buffer (ignoring the
7064 trailing NULL) on success. (could be extended to return one of the
7065 SERIAL status indications). */
7066
7067 static long
7068 read_frame (char **buf_p,
7069 long *sizeof_buf)
7070 {
7071 unsigned char csum;
7072 long bc;
7073 int c;
7074 char *buf = *buf_p;
7075 struct remote_state *rs = get_remote_state ();
7076
7077 csum = 0;
7078 bc = 0;
7079
7080 while (1)
7081 {
7082 c = readchar (remote_timeout);
7083 switch (c)
7084 {
7085 case SERIAL_TIMEOUT:
7086 if (remote_debug)
7087 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7088 return -1;
7089 case '$':
7090 if (remote_debug)
7091 fputs_filtered ("Saw new packet start in middle of old one\n",
7092 gdb_stdlog);
7093 return -1; /* Start a new packet, count retries. */
7094 case '#':
7095 {
7096 unsigned char pktcsum;
7097 int check_0 = 0;
7098 int check_1 = 0;
7099
7100 buf[bc] = '\0';
7101
7102 check_0 = readchar (remote_timeout);
7103 if (check_0 >= 0)
7104 check_1 = readchar (remote_timeout);
7105
7106 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7107 {
7108 if (remote_debug)
7109 fputs_filtered ("Timeout in checksum, retrying\n",
7110 gdb_stdlog);
7111 return -1;
7112 }
7113 else if (check_0 < 0 || check_1 < 0)
7114 {
7115 if (remote_debug)
7116 fputs_filtered ("Communication error in checksum\n",
7117 gdb_stdlog);
7118 return -1;
7119 }
7120
7121 /* Don't recompute the checksum; with no ack packets we
7122 don't have any way to indicate a packet retransmission
7123 is necessary. */
7124 if (rs->noack_mode)
7125 return bc;
7126
7127 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7128 if (csum == pktcsum)
7129 return bc;
7130
7131 if (remote_debug)
7132 {
7133 struct cleanup *old_chain;
7134 char *str;
7135
7136 str = escape_buffer (buf, bc);
7137 old_chain = make_cleanup (xfree, str);
7138 fprintf_unfiltered (gdb_stdlog,
7139 "Bad checksum, sentsum=0x%x, "
7140 "csum=0x%x, buf=%s\n",
7141 pktcsum, csum, str);
7142 do_cleanups (old_chain);
7143 }
7144 /* Number of characters in buffer ignoring trailing
7145 NULL. */
7146 return -1;
7147 }
7148 case '*': /* Run length encoding. */
7149 {
7150 int repeat;
7151
7152 csum += c;
7153 c = readchar (remote_timeout);
7154 csum += c;
7155 repeat = c - ' ' + 3; /* Compute repeat count. */
7156
7157 /* The character before ``*'' is repeated. */
7158
7159 if (repeat > 0 && repeat <= 255 && bc > 0)
7160 {
7161 if (bc + repeat - 1 >= *sizeof_buf - 1)
7162 {
7163 /* Make some more room in the buffer. */
7164 *sizeof_buf += repeat;
7165 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7166 buf = *buf_p;
7167 }
7168
7169 memset (&buf[bc], buf[bc - 1], repeat);
7170 bc += repeat;
7171 continue;
7172 }
7173
7174 buf[bc] = '\0';
7175 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7176 return -1;
7177 }
7178 default:
7179 if (bc >= *sizeof_buf - 1)
7180 {
7181 /* Make some more room in the buffer. */
7182 *sizeof_buf *= 2;
7183 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7184 buf = *buf_p;
7185 }
7186
7187 buf[bc++] = c;
7188 csum += c;
7189 continue;
7190 }
7191 }
7192 }
7193
7194 /* Read a packet from the remote machine, with error checking, and
7195 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7196 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7197 rather than timing out; this is used (in synchronous mode) to wait
7198 for a target that is is executing user code to stop. */
7199 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7200 don't have to change all the calls to getpkt to deal with the
7201 return value, because at the moment I don't know what the right
7202 thing to do it for those. */
7203 void
7204 getpkt (char **buf,
7205 long *sizeof_buf,
7206 int forever)
7207 {
7208 int timed_out;
7209
7210 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7211 }
7212
7213
7214 /* Read a packet from the remote machine, with error checking, and
7215 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7216 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7217 rather than timing out; this is used (in synchronous mode) to wait
7218 for a target that is is executing user code to stop. If FOREVER ==
7219 0, this function is allowed to time out gracefully and return an
7220 indication of this to the caller. Otherwise return the number of
7221 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7222 enough reason to return to the caller. */
7223
7224 static int
7225 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7226 int expecting_notif)
7227 {
7228 struct remote_state *rs = get_remote_state ();
7229 int c;
7230 int tries;
7231 int timeout;
7232 int val = -1;
7233
7234 /* We're reading a new response. Make sure we don't look at a
7235 previously cached response. */
7236 rs->cached_wait_status = 0;
7237
7238 strcpy (*buf, "timeout");
7239
7240 if (forever)
7241 timeout = watchdog > 0 ? watchdog : -1;
7242 else if (expecting_notif)
7243 timeout = 0; /* There should already be a char in the buffer. If
7244 not, bail out. */
7245 else
7246 timeout = remote_timeout;
7247
7248 #define MAX_TRIES 3
7249
7250 /* Process any number of notifications, and then return when
7251 we get a packet. */
7252 for (;;)
7253 {
7254 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7255 times. */
7256 for (tries = 1; tries <= MAX_TRIES; tries++)
7257 {
7258 /* This can loop forever if the remote side sends us
7259 characters continuously, but if it pauses, we'll get
7260 SERIAL_TIMEOUT from readchar because of timeout. Then
7261 we'll count that as a retry.
7262
7263 Note that even when forever is set, we will only wait
7264 forever prior to the start of a packet. After that, we
7265 expect characters to arrive at a brisk pace. They should
7266 show up within remote_timeout intervals. */
7267 do
7268 c = readchar (timeout);
7269 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7270
7271 if (c == SERIAL_TIMEOUT)
7272 {
7273 if (expecting_notif)
7274 return -1; /* Don't complain, it's normal to not get
7275 anything in this case. */
7276
7277 if (forever) /* Watchdog went off? Kill the target. */
7278 {
7279 QUIT;
7280 pop_target ();
7281 error (_("Watchdog timeout has expired. Target detached."));
7282 }
7283 if (remote_debug)
7284 fputs_filtered ("Timed out.\n", gdb_stdlog);
7285 }
7286 else
7287 {
7288 /* We've found the start of a packet or notification.
7289 Now collect the data. */
7290 val = read_frame (buf, sizeof_buf);
7291 if (val >= 0)
7292 break;
7293 }
7294
7295 serial_write (remote_desc, "-", 1);
7296 }
7297
7298 if (tries > MAX_TRIES)
7299 {
7300 /* We have tried hard enough, and just can't receive the
7301 packet/notification. Give up. */
7302 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7303
7304 /* Skip the ack char if we're in no-ack mode. */
7305 if (!rs->noack_mode)
7306 serial_write (remote_desc, "+", 1);
7307 return -1;
7308 }
7309
7310 /* If we got an ordinary packet, return that to our caller. */
7311 if (c == '$')
7312 {
7313 if (remote_debug)
7314 {
7315 struct cleanup *old_chain;
7316 char *str;
7317
7318 str = escape_buffer (*buf, val);
7319 old_chain = make_cleanup (xfree, str);
7320 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7321 do_cleanups (old_chain);
7322 }
7323
7324 /* Skip the ack char if we're in no-ack mode. */
7325 if (!rs->noack_mode)
7326 serial_write (remote_desc, "+", 1);
7327 return val;
7328 }
7329
7330 /* If we got a notification, handle it, and go back to looking
7331 for a packet. */
7332 else
7333 {
7334 gdb_assert (c == '%');
7335
7336 if (remote_debug)
7337 {
7338 struct cleanup *old_chain;
7339 char *str;
7340
7341 str = escape_buffer (*buf, val);
7342 old_chain = make_cleanup (xfree, str);
7343 fprintf_unfiltered (gdb_stdlog,
7344 " Notification received: %s\n",
7345 str);
7346 do_cleanups (old_chain);
7347 }
7348
7349 handle_notification (*buf, val);
7350
7351 /* Notifications require no acknowledgement. */
7352
7353 if (expecting_notif)
7354 return -1;
7355 }
7356 }
7357 }
7358
7359 static int
7360 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7361 {
7362 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7363 }
7364
7365 static int
7366 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7367 {
7368 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7369 }
7370
7371 \f
7372 static void
7373 remote_kill (struct target_ops *ops)
7374 {
7375 /* Use catch_errors so the user can quit from gdb even when we
7376 aren't on speaking terms with the remote system. */
7377 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7378
7379 /* Don't wait for it to die. I'm not really sure it matters whether
7380 we do or not. For the existing stubs, kill is a noop. */
7381 target_mourn_inferior ();
7382 }
7383
7384 static int
7385 remote_vkill (int pid, struct remote_state *rs)
7386 {
7387 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7388 return -1;
7389
7390 /* Tell the remote target to detach. */
7391 sprintf (rs->buf, "vKill;%x", pid);
7392 putpkt (rs->buf);
7393 getpkt (&rs->buf, &rs->buf_size, 0);
7394
7395 if (packet_ok (rs->buf,
7396 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7397 return 0;
7398 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7399 return -1;
7400 else
7401 return 1;
7402 }
7403
7404 static void
7405 extended_remote_kill (struct target_ops *ops)
7406 {
7407 int res;
7408 int pid = ptid_get_pid (inferior_ptid);
7409 struct remote_state *rs = get_remote_state ();
7410
7411 res = remote_vkill (pid, rs);
7412 if (res == -1 && !remote_multi_process_p (rs))
7413 {
7414 /* Don't try 'k' on a multi-process aware stub -- it has no way
7415 to specify the pid. */
7416
7417 putpkt ("k");
7418 #if 0
7419 getpkt (&rs->buf, &rs->buf_size, 0);
7420 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7421 res = 1;
7422 #else
7423 /* Don't wait for it to die. I'm not really sure it matters whether
7424 we do or not. For the existing stubs, kill is a noop. */
7425 res = 0;
7426 #endif
7427 }
7428
7429 if (res != 0)
7430 error (_("Can't kill process"));
7431
7432 target_mourn_inferior ();
7433 }
7434
7435 static void
7436 remote_mourn (struct target_ops *ops)
7437 {
7438 remote_mourn_1 (ops);
7439 }
7440
7441 /* Worker function for remote_mourn. */
7442 static void
7443 remote_mourn_1 (struct target_ops *target)
7444 {
7445 unpush_target (target);
7446
7447 /* remote_close takes care of doing most of the clean up. */
7448 generic_mourn_inferior ();
7449 }
7450
7451 static void
7452 extended_remote_mourn_1 (struct target_ops *target)
7453 {
7454 struct remote_state *rs = get_remote_state ();
7455
7456 /* In case we got here due to an error, but we're going to stay
7457 connected. */
7458 rs->waiting_for_stop_reply = 0;
7459
7460 /* We're no longer interested in these events. */
7461 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7462
7463 /* If the current general thread belonged to the process we just
7464 detached from or has exited, the remote side current general
7465 thread becomes undefined. Considering a case like this:
7466
7467 - We just got here due to a detach.
7468 - The process that we're detaching from happens to immediately
7469 report a global breakpoint being hit in non-stop mode, in the
7470 same thread we had selected before.
7471 - GDB attaches to this process again.
7472 - This event happens to be the next event we handle.
7473
7474 GDB would consider that the current general thread didn't need to
7475 be set on the stub side (with Hg), since for all it knew,
7476 GENERAL_THREAD hadn't changed.
7477
7478 Notice that although in all-stop mode, the remote server always
7479 sets the current thread to the thread reporting the stop event,
7480 that doesn't happen in non-stop mode; in non-stop, the stub *must
7481 not* change the current thread when reporting a breakpoint hit,
7482 due to the decoupling of event reporting and event handling.
7483
7484 To keep things simple, we always invalidate our notion of the
7485 current thread. */
7486 record_currthread (minus_one_ptid);
7487
7488 /* Unlike "target remote", we do not want to unpush the target; then
7489 the next time the user says "run", we won't be connected. */
7490
7491 /* Call common code to mark the inferior as not running. */
7492 generic_mourn_inferior ();
7493
7494 if (!have_inferiors ())
7495 {
7496 if (!remote_multi_process_p (rs))
7497 {
7498 /* Check whether the target is running now - some remote stubs
7499 automatically restart after kill. */
7500 putpkt ("?");
7501 getpkt (&rs->buf, &rs->buf_size, 0);
7502
7503 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7504 {
7505 /* Assume that the target has been restarted. Set
7506 inferior_ptid so that bits of core GDB realizes
7507 there's something here, e.g., so that the user can
7508 say "kill" again. */
7509 inferior_ptid = magic_null_ptid;
7510 }
7511 }
7512 }
7513 }
7514
7515 static void
7516 extended_remote_mourn (struct target_ops *ops)
7517 {
7518 extended_remote_mourn_1 (ops);
7519 }
7520
7521 static int
7522 extended_remote_supports_disable_randomization (void)
7523 {
7524 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7525 == PACKET_ENABLE);
7526 }
7527
7528 static void
7529 extended_remote_disable_randomization (int val)
7530 {
7531 struct remote_state *rs = get_remote_state ();
7532 char *reply;
7533
7534 sprintf (rs->buf, "QDisableRandomization:%x", val);
7535 putpkt (rs->buf);
7536 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7537 if (*reply == '\0')
7538 error (_("Target does not support QDisableRandomization."));
7539 if (strcmp (reply, "OK") != 0)
7540 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7541 }
7542
7543 static int
7544 extended_remote_run (char *args)
7545 {
7546 struct remote_state *rs = get_remote_state ();
7547 int len;
7548
7549 /* If the user has disabled vRun support, or we have detected that
7550 support is not available, do not try it. */
7551 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7552 return -1;
7553
7554 strcpy (rs->buf, "vRun;");
7555 len = strlen (rs->buf);
7556
7557 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7558 error (_("Remote file name too long for run packet"));
7559 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7560
7561 gdb_assert (args != NULL);
7562 if (*args)
7563 {
7564 struct cleanup *back_to;
7565 int i;
7566 char **argv;
7567
7568 argv = gdb_buildargv (args);
7569 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7570 for (i = 0; argv[i] != NULL; i++)
7571 {
7572 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7573 error (_("Argument list too long for run packet"));
7574 rs->buf[len++] = ';';
7575 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7576 }
7577 do_cleanups (back_to);
7578 }
7579
7580 rs->buf[len++] = '\0';
7581
7582 putpkt (rs->buf);
7583 getpkt (&rs->buf, &rs->buf_size, 0);
7584
7585 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7586 {
7587 /* We have a wait response; we don't need it, though. All is well. */
7588 return 0;
7589 }
7590 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7591 /* It wasn't disabled before, but it is now. */
7592 return -1;
7593 else
7594 {
7595 if (remote_exec_file[0] == '\0')
7596 error (_("Running the default executable on the remote target failed; "
7597 "try \"set remote exec-file\"?"));
7598 else
7599 error (_("Running \"%s\" on the remote target failed"),
7600 remote_exec_file);
7601 }
7602 }
7603
7604 /* In the extended protocol we want to be able to do things like
7605 "run" and have them basically work as expected. So we need
7606 a special create_inferior function. We support changing the
7607 executable file and the command line arguments, but not the
7608 environment. */
7609
7610 static void
7611 extended_remote_create_inferior_1 (char *exec_file, char *args,
7612 char **env, int from_tty)
7613 {
7614 /* If running asynchronously, register the target file descriptor
7615 with the event loop. */
7616 if (target_can_async_p ())
7617 target_async (inferior_event_handler, 0);
7618
7619 /* Disable address space randomization if requested (and supported). */
7620 if (extended_remote_supports_disable_randomization ())
7621 extended_remote_disable_randomization (disable_randomization);
7622
7623 /* Now restart the remote server. */
7624 if (extended_remote_run (args) == -1)
7625 {
7626 /* vRun was not supported. Fail if we need it to do what the
7627 user requested. */
7628 if (remote_exec_file[0])
7629 error (_("Remote target does not support \"set remote exec-file\""));
7630 if (args[0])
7631 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7632
7633 /* Fall back to "R". */
7634 extended_remote_restart ();
7635 }
7636
7637 if (!have_inferiors ())
7638 {
7639 /* Clean up from the last time we ran, before we mark the target
7640 running again. This will mark breakpoints uninserted, and
7641 get_offsets may insert breakpoints. */
7642 init_thread_list ();
7643 init_wait_for_inferior ();
7644 }
7645
7646 /* Now mark the inferior as running before we do anything else. */
7647 inferior_ptid = magic_null_ptid;
7648
7649 /* Now, if we have thread information, update inferior_ptid. */
7650 inferior_ptid = remote_current_thread (inferior_ptid);
7651
7652 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7653 add_thread_silent (inferior_ptid);
7654
7655 /* Get updated offsets, if the stub uses qOffsets. */
7656 get_offsets ();
7657 }
7658
7659 static void
7660 extended_remote_create_inferior (struct target_ops *ops,
7661 char *exec_file, char *args,
7662 char **env, int from_tty)
7663 {
7664 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7665 }
7666 \f
7667
7668 /* Insert a breakpoint. On targets that have software breakpoint
7669 support, we ask the remote target to do the work; on targets
7670 which don't, we insert a traditional memory breakpoint. */
7671
7672 static int
7673 remote_insert_breakpoint (struct gdbarch *gdbarch,
7674 struct bp_target_info *bp_tgt)
7675 {
7676 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7677 If it succeeds, then set the support to PACKET_ENABLE. If it
7678 fails, and the user has explicitly requested the Z support then
7679 report an error, otherwise, mark it disabled and go on. */
7680
7681 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7682 {
7683 CORE_ADDR addr = bp_tgt->placed_address;
7684 struct remote_state *rs;
7685 char *p;
7686 int bpsize;
7687
7688 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7689
7690 rs = get_remote_state ();
7691 p = rs->buf;
7692
7693 *(p++) = 'Z';
7694 *(p++) = '0';
7695 *(p++) = ',';
7696 addr = (ULONGEST) remote_address_masked (addr);
7697 p += hexnumstr (p, addr);
7698 sprintf (p, ",%d", bpsize);
7699
7700 putpkt (rs->buf);
7701 getpkt (&rs->buf, &rs->buf_size, 0);
7702
7703 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7704 {
7705 case PACKET_ERROR:
7706 return -1;
7707 case PACKET_OK:
7708 bp_tgt->placed_address = addr;
7709 bp_tgt->placed_size = bpsize;
7710 return 0;
7711 case PACKET_UNKNOWN:
7712 break;
7713 }
7714 }
7715
7716 return memory_insert_breakpoint (gdbarch, bp_tgt);
7717 }
7718
7719 static int
7720 remote_remove_breakpoint (struct gdbarch *gdbarch,
7721 struct bp_target_info *bp_tgt)
7722 {
7723 CORE_ADDR addr = bp_tgt->placed_address;
7724 struct remote_state *rs = get_remote_state ();
7725
7726 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7727 {
7728 char *p = rs->buf;
7729
7730 *(p++) = 'z';
7731 *(p++) = '0';
7732 *(p++) = ',';
7733
7734 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7735 p += hexnumstr (p, addr);
7736 sprintf (p, ",%d", bp_tgt->placed_size);
7737
7738 putpkt (rs->buf);
7739 getpkt (&rs->buf, &rs->buf_size, 0);
7740
7741 return (rs->buf[0] == 'E');
7742 }
7743
7744 return memory_remove_breakpoint (gdbarch, bp_tgt);
7745 }
7746
7747 static int
7748 watchpoint_to_Z_packet (int type)
7749 {
7750 switch (type)
7751 {
7752 case hw_write:
7753 return Z_PACKET_WRITE_WP;
7754 break;
7755 case hw_read:
7756 return Z_PACKET_READ_WP;
7757 break;
7758 case hw_access:
7759 return Z_PACKET_ACCESS_WP;
7760 break;
7761 default:
7762 internal_error (__FILE__, __LINE__,
7763 _("hw_bp_to_z: bad watchpoint type %d"), type);
7764 }
7765 }
7766
7767 static int
7768 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7769 struct expression *cond)
7770 {
7771 struct remote_state *rs = get_remote_state ();
7772 char *p;
7773 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7774
7775 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7776 return 1;
7777
7778 sprintf (rs->buf, "Z%x,", packet);
7779 p = strchr (rs->buf, '\0');
7780 addr = remote_address_masked (addr);
7781 p += hexnumstr (p, (ULONGEST) addr);
7782 sprintf (p, ",%x", len);
7783
7784 putpkt (rs->buf);
7785 getpkt (&rs->buf, &rs->buf_size, 0);
7786
7787 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7788 {
7789 case PACKET_ERROR:
7790 return -1;
7791 case PACKET_UNKNOWN:
7792 return 1;
7793 case PACKET_OK:
7794 return 0;
7795 }
7796 internal_error (__FILE__, __LINE__,
7797 _("remote_insert_watchpoint: reached end of function"));
7798 }
7799
7800
7801 static int
7802 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7803 struct expression *cond)
7804 {
7805 struct remote_state *rs = get_remote_state ();
7806 char *p;
7807 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7808
7809 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7810 return -1;
7811
7812 sprintf (rs->buf, "z%x,", packet);
7813 p = strchr (rs->buf, '\0');
7814 addr = remote_address_masked (addr);
7815 p += hexnumstr (p, (ULONGEST) addr);
7816 sprintf (p, ",%x", len);
7817 putpkt (rs->buf);
7818 getpkt (&rs->buf, &rs->buf_size, 0);
7819
7820 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7821 {
7822 case PACKET_ERROR:
7823 case PACKET_UNKNOWN:
7824 return -1;
7825 case PACKET_OK:
7826 return 0;
7827 }
7828 internal_error (__FILE__, __LINE__,
7829 _("remote_remove_watchpoint: reached end of function"));
7830 }
7831
7832
7833 int remote_hw_watchpoint_limit = -1;
7834 int remote_hw_watchpoint_length_limit = -1;
7835 int remote_hw_breakpoint_limit = -1;
7836
7837 static int
7838 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
7839 {
7840 if (remote_hw_watchpoint_length_limit == 0)
7841 return 0;
7842 else if (remote_hw_watchpoint_length_limit < 0)
7843 return 1;
7844 else if (len <= remote_hw_watchpoint_length_limit)
7845 return 1;
7846 else
7847 return 0;
7848 }
7849
7850 static int
7851 remote_check_watch_resources (int type, int cnt, int ot)
7852 {
7853 if (type == bp_hardware_breakpoint)
7854 {
7855 if (remote_hw_breakpoint_limit == 0)
7856 return 0;
7857 else if (remote_hw_breakpoint_limit < 0)
7858 return 1;
7859 else if (cnt <= remote_hw_breakpoint_limit)
7860 return 1;
7861 }
7862 else
7863 {
7864 if (remote_hw_watchpoint_limit == 0)
7865 return 0;
7866 else if (remote_hw_watchpoint_limit < 0)
7867 return 1;
7868 else if (ot)
7869 return -1;
7870 else if (cnt <= remote_hw_watchpoint_limit)
7871 return 1;
7872 }
7873 return -1;
7874 }
7875
7876 static int
7877 remote_stopped_by_watchpoint (void)
7878 {
7879 return remote_stopped_by_watchpoint_p;
7880 }
7881
7882 static int
7883 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7884 {
7885 int rc = 0;
7886
7887 if (remote_stopped_by_watchpoint ())
7888 {
7889 *addr_p = remote_watch_data_address;
7890 rc = 1;
7891 }
7892
7893 return rc;
7894 }
7895
7896
7897 static int
7898 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7899 struct bp_target_info *bp_tgt)
7900 {
7901 CORE_ADDR addr;
7902 struct remote_state *rs;
7903 char *p;
7904
7905 /* The length field should be set to the size of a breakpoint
7906 instruction, even though we aren't inserting one ourselves. */
7907
7908 gdbarch_remote_breakpoint_from_pc
7909 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7910
7911 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7912 return -1;
7913
7914 rs = get_remote_state ();
7915 p = rs->buf;
7916
7917 *(p++) = 'Z';
7918 *(p++) = '1';
7919 *(p++) = ',';
7920
7921 addr = remote_address_masked (bp_tgt->placed_address);
7922 p += hexnumstr (p, (ULONGEST) addr);
7923 sprintf (p, ",%x", bp_tgt->placed_size);
7924
7925 putpkt (rs->buf);
7926 getpkt (&rs->buf, &rs->buf_size, 0);
7927
7928 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7929 {
7930 case PACKET_ERROR:
7931 case PACKET_UNKNOWN:
7932 return -1;
7933 case PACKET_OK:
7934 return 0;
7935 }
7936 internal_error (__FILE__, __LINE__,
7937 _("remote_insert_hw_breakpoint: reached end of function"));
7938 }
7939
7940
7941 static int
7942 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7943 struct bp_target_info *bp_tgt)
7944 {
7945 CORE_ADDR addr;
7946 struct remote_state *rs = get_remote_state ();
7947 char *p = rs->buf;
7948
7949 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7950 return -1;
7951
7952 *(p++) = 'z';
7953 *(p++) = '1';
7954 *(p++) = ',';
7955
7956 addr = remote_address_masked (bp_tgt->placed_address);
7957 p += hexnumstr (p, (ULONGEST) addr);
7958 sprintf (p, ",%x", bp_tgt->placed_size);
7959
7960 putpkt (rs->buf);
7961 getpkt (&rs->buf, &rs->buf_size, 0);
7962
7963 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7964 {
7965 case PACKET_ERROR:
7966 case PACKET_UNKNOWN:
7967 return -1;
7968 case PACKET_OK:
7969 return 0;
7970 }
7971 internal_error (__FILE__, __LINE__,
7972 _("remote_remove_hw_breakpoint: reached end of function"));
7973 }
7974
7975 /* Table used by the crc32 function to calcuate the checksum. */
7976
7977 static unsigned long crc32_table[256] =
7978 {0, 0};
7979
7980 static unsigned long
7981 crc32 (const unsigned char *buf, int len, unsigned int crc)
7982 {
7983 if (!crc32_table[1])
7984 {
7985 /* Initialize the CRC table and the decoding table. */
7986 int i, j;
7987 unsigned int c;
7988
7989 for (i = 0; i < 256; i++)
7990 {
7991 for (c = i << 24, j = 8; j > 0; --j)
7992 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7993 crc32_table[i] = c;
7994 }
7995 }
7996
7997 while (len--)
7998 {
7999 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8000 buf++;
8001 }
8002 return crc;
8003 }
8004
8005 /* Verify memory using the "qCRC:" request. */
8006
8007 static int
8008 remote_verify_memory (struct target_ops *ops,
8009 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8010 {
8011 struct remote_state *rs = get_remote_state ();
8012 unsigned long host_crc, target_crc;
8013 char *tmp;
8014
8015 /* FIXME: assumes lma can fit into long. */
8016 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8017 (long) lma, (long) size);
8018 putpkt (rs->buf);
8019
8020 /* Be clever; compute the host_crc before waiting for target
8021 reply. */
8022 host_crc = crc32 (data, size, 0xffffffff);
8023
8024 getpkt (&rs->buf, &rs->buf_size, 0);
8025 if (rs->buf[0] == 'E')
8026 return -1;
8027
8028 if (rs->buf[0] != 'C')
8029 error (_("remote target does not support this operation"));
8030
8031 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8032 target_crc = target_crc * 16 + fromhex (*tmp);
8033
8034 return (host_crc == target_crc);
8035 }
8036
8037 /* compare-sections command
8038
8039 With no arguments, compares each loadable section in the exec bfd
8040 with the same memory range on the target, and reports mismatches.
8041 Useful for verifying the image on the target against the exec file. */
8042
8043 static void
8044 compare_sections_command (char *args, int from_tty)
8045 {
8046 asection *s;
8047 struct cleanup *old_chain;
8048 char *sectdata;
8049 const char *sectname;
8050 bfd_size_type size;
8051 bfd_vma lma;
8052 int matched = 0;
8053 int mismatched = 0;
8054 int res;
8055
8056 if (!exec_bfd)
8057 error (_("command cannot be used without an exec file"));
8058
8059 for (s = exec_bfd->sections; s; s = s->next)
8060 {
8061 if (!(s->flags & SEC_LOAD))
8062 continue; /* Skip non-loadable section. */
8063
8064 size = bfd_get_section_size (s);
8065 if (size == 0)
8066 continue; /* Skip zero-length section. */
8067
8068 sectname = bfd_get_section_name (exec_bfd, s);
8069 if (args && strcmp (args, sectname) != 0)
8070 continue; /* Not the section selected by user. */
8071
8072 matched = 1; /* Do this section. */
8073 lma = s->lma;
8074
8075 sectdata = xmalloc (size);
8076 old_chain = make_cleanup (xfree, sectdata);
8077 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8078
8079 res = target_verify_memory (sectdata, lma, size);
8080
8081 if (res == -1)
8082 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8083 paddress (target_gdbarch, lma),
8084 paddress (target_gdbarch, lma + size));
8085
8086 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8087 paddress (target_gdbarch, lma),
8088 paddress (target_gdbarch, lma + size));
8089 if (res)
8090 printf_filtered ("matched.\n");
8091 else
8092 {
8093 printf_filtered ("MIS-MATCHED!\n");
8094 mismatched++;
8095 }
8096
8097 do_cleanups (old_chain);
8098 }
8099 if (mismatched > 0)
8100 warning (_("One or more sections of the remote executable does not match\n\
8101 the loaded file\n"));
8102 if (args && !matched)
8103 printf_filtered (_("No loaded section named '%s'.\n"), args);
8104 }
8105
8106 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8107 into remote target. The number of bytes written to the remote
8108 target is returned, or -1 for error. */
8109
8110 static LONGEST
8111 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8112 const char *annex, const gdb_byte *writebuf,
8113 ULONGEST offset, LONGEST len,
8114 struct packet_config *packet)
8115 {
8116 int i, buf_len;
8117 ULONGEST n;
8118 struct remote_state *rs = get_remote_state ();
8119 int max_size = get_memory_write_packet_size ();
8120
8121 if (packet->support == PACKET_DISABLE)
8122 return -1;
8123
8124 /* Insert header. */
8125 i = snprintf (rs->buf, max_size,
8126 "qXfer:%s:write:%s:%s:",
8127 object_name, annex ? annex : "",
8128 phex_nz (offset, sizeof offset));
8129 max_size -= (i + 1);
8130
8131 /* Escape as much data as fits into rs->buf. */
8132 buf_len = remote_escape_output
8133 (writebuf, len, (rs->buf + i), &max_size, max_size);
8134
8135 if (putpkt_binary (rs->buf, i + buf_len) < 0
8136 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8137 || packet_ok (rs->buf, packet) != PACKET_OK)
8138 return -1;
8139
8140 unpack_varlen_hex (rs->buf, &n);
8141 return n;
8142 }
8143
8144 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8145 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8146 number of bytes read is returned, or 0 for EOF, or -1 for error.
8147 The number of bytes read may be less than LEN without indicating an
8148 EOF. PACKET is checked and updated to indicate whether the remote
8149 target supports this object. */
8150
8151 static LONGEST
8152 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8153 const char *annex,
8154 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8155 struct packet_config *packet)
8156 {
8157 static char *finished_object;
8158 static char *finished_annex;
8159 static ULONGEST finished_offset;
8160
8161 struct remote_state *rs = get_remote_state ();
8162 LONGEST i, n, packet_len;
8163
8164 if (packet->support == PACKET_DISABLE)
8165 return -1;
8166
8167 /* Check whether we've cached an end-of-object packet that matches
8168 this request. */
8169 if (finished_object)
8170 {
8171 if (strcmp (object_name, finished_object) == 0
8172 && strcmp (annex ? annex : "", finished_annex) == 0
8173 && offset == finished_offset)
8174 return 0;
8175
8176 /* Otherwise, we're now reading something different. Discard
8177 the cache. */
8178 xfree (finished_object);
8179 xfree (finished_annex);
8180 finished_object = NULL;
8181 finished_annex = NULL;
8182 }
8183
8184 /* Request only enough to fit in a single packet. The actual data
8185 may not, since we don't know how much of it will need to be escaped;
8186 the target is free to respond with slightly less data. We subtract
8187 five to account for the response type and the protocol frame. */
8188 n = min (get_remote_packet_size () - 5, len);
8189 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8190 object_name, annex ? annex : "",
8191 phex_nz (offset, sizeof offset),
8192 phex_nz (n, sizeof n));
8193 i = putpkt (rs->buf);
8194 if (i < 0)
8195 return -1;
8196
8197 rs->buf[0] = '\0';
8198 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8199 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8200 return -1;
8201
8202 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8203 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8204
8205 /* 'm' means there is (or at least might be) more data after this
8206 batch. That does not make sense unless there's at least one byte
8207 of data in this reply. */
8208 if (rs->buf[0] == 'm' && packet_len == 1)
8209 error (_("Remote qXfer reply contained no data."));
8210
8211 /* Got some data. */
8212 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8213
8214 /* 'l' is an EOF marker, possibly including a final block of data,
8215 or possibly empty. If we have the final block of a non-empty
8216 object, record this fact to bypass a subsequent partial read. */
8217 if (rs->buf[0] == 'l' && offset + i > 0)
8218 {
8219 finished_object = xstrdup (object_name);
8220 finished_annex = xstrdup (annex ? annex : "");
8221 finished_offset = offset + i;
8222 }
8223
8224 return i;
8225 }
8226
8227 static LONGEST
8228 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8229 const char *annex, gdb_byte *readbuf,
8230 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8231 {
8232 struct remote_state *rs;
8233 int i;
8234 char *p2;
8235 char query_type;
8236
8237 set_remote_traceframe ();
8238 set_general_thread (inferior_ptid);
8239
8240 rs = get_remote_state ();
8241
8242 /* Handle memory using the standard memory routines. */
8243 if (object == TARGET_OBJECT_MEMORY)
8244 {
8245 int xfered;
8246
8247 errno = 0;
8248
8249 /* If the remote target is connected but not running, we should
8250 pass this request down to a lower stratum (e.g. the executable
8251 file). */
8252 if (!target_has_execution)
8253 return 0;
8254
8255 if (writebuf != NULL)
8256 xfered = remote_write_bytes (offset, writebuf, len);
8257 else
8258 xfered = remote_read_bytes (offset, readbuf, len);
8259
8260 if (xfered > 0)
8261 return xfered;
8262 else if (xfered == 0 && errno == 0)
8263 return 0;
8264 else
8265 return -1;
8266 }
8267
8268 /* Handle SPU memory using qxfer packets. */
8269 if (object == TARGET_OBJECT_SPU)
8270 {
8271 if (readbuf)
8272 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8273 &remote_protocol_packets
8274 [PACKET_qXfer_spu_read]);
8275 else
8276 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8277 &remote_protocol_packets
8278 [PACKET_qXfer_spu_write]);
8279 }
8280
8281 /* Handle extra signal info using qxfer packets. */
8282 if (object == TARGET_OBJECT_SIGNAL_INFO)
8283 {
8284 if (readbuf)
8285 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8286 &remote_protocol_packets
8287 [PACKET_qXfer_siginfo_read]);
8288 else
8289 return remote_write_qxfer (ops, "siginfo", annex,
8290 writebuf, offset, len,
8291 &remote_protocol_packets
8292 [PACKET_qXfer_siginfo_write]);
8293 }
8294
8295 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8296 {
8297 if (readbuf)
8298 return remote_read_qxfer (ops, "statictrace", annex,
8299 readbuf, offset, len,
8300 &remote_protocol_packets
8301 [PACKET_qXfer_statictrace_read]);
8302 else
8303 return -1;
8304 }
8305
8306 /* Only handle flash writes. */
8307 if (writebuf != NULL)
8308 {
8309 LONGEST xfered;
8310
8311 switch (object)
8312 {
8313 case TARGET_OBJECT_FLASH:
8314 xfered = remote_flash_write (ops, offset, len, writebuf);
8315
8316 if (xfered > 0)
8317 return xfered;
8318 else if (xfered == 0 && errno == 0)
8319 return 0;
8320 else
8321 return -1;
8322
8323 default:
8324 return -1;
8325 }
8326 }
8327
8328 /* Map pre-existing objects onto letters. DO NOT do this for new
8329 objects!!! Instead specify new query packets. */
8330 switch (object)
8331 {
8332 case TARGET_OBJECT_AVR:
8333 query_type = 'R';
8334 break;
8335
8336 case TARGET_OBJECT_AUXV:
8337 gdb_assert (annex == NULL);
8338 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8339 &remote_protocol_packets[PACKET_qXfer_auxv]);
8340
8341 case TARGET_OBJECT_AVAILABLE_FEATURES:
8342 return remote_read_qxfer
8343 (ops, "features", annex, readbuf, offset, len,
8344 &remote_protocol_packets[PACKET_qXfer_features]);
8345
8346 case TARGET_OBJECT_LIBRARIES:
8347 return remote_read_qxfer
8348 (ops, "libraries", annex, readbuf, offset, len,
8349 &remote_protocol_packets[PACKET_qXfer_libraries]);
8350
8351 case TARGET_OBJECT_MEMORY_MAP:
8352 gdb_assert (annex == NULL);
8353 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8354 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8355
8356 case TARGET_OBJECT_OSDATA:
8357 /* Should only get here if we're connected. */
8358 gdb_assert (remote_desc);
8359 return remote_read_qxfer
8360 (ops, "osdata", annex, readbuf, offset, len,
8361 &remote_protocol_packets[PACKET_qXfer_osdata]);
8362
8363 case TARGET_OBJECT_THREADS:
8364 gdb_assert (annex == NULL);
8365 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8366 &remote_protocol_packets[PACKET_qXfer_threads]);
8367
8368 case TARGET_OBJECT_TRACEFRAME_INFO:
8369 gdb_assert (annex == NULL);
8370 return remote_read_qxfer
8371 (ops, "traceframe-info", annex, readbuf, offset, len,
8372 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8373
8374 case TARGET_OBJECT_FDPIC:
8375 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8376 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8377 default:
8378 return -1;
8379 }
8380
8381 /* Note: a zero OFFSET and LEN can be used to query the minimum
8382 buffer size. */
8383 if (offset == 0 && len == 0)
8384 return (get_remote_packet_size ());
8385 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8386 large enough let the caller deal with it. */
8387 if (len < get_remote_packet_size ())
8388 return -1;
8389 len = get_remote_packet_size ();
8390
8391 /* Except for querying the minimum buffer size, target must be open. */
8392 if (!remote_desc)
8393 error (_("remote query is only available after target open"));
8394
8395 gdb_assert (annex != NULL);
8396 gdb_assert (readbuf != NULL);
8397
8398 p2 = rs->buf;
8399 *p2++ = 'q';
8400 *p2++ = query_type;
8401
8402 /* We used one buffer char for the remote protocol q command and
8403 another for the query type. As the remote protocol encapsulation
8404 uses 4 chars plus one extra in case we are debugging
8405 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8406 string. */
8407 i = 0;
8408 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8409 {
8410 /* Bad caller may have sent forbidden characters. */
8411 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8412 *p2++ = annex[i];
8413 i++;
8414 }
8415 *p2 = '\0';
8416 gdb_assert (annex[i] == '\0');
8417
8418 i = putpkt (rs->buf);
8419 if (i < 0)
8420 return i;
8421
8422 getpkt (&rs->buf, &rs->buf_size, 0);
8423 strcpy ((char *) readbuf, rs->buf);
8424
8425 return strlen ((char *) readbuf);
8426 }
8427
8428 static int
8429 remote_search_memory (struct target_ops* ops,
8430 CORE_ADDR start_addr, ULONGEST search_space_len,
8431 const gdb_byte *pattern, ULONGEST pattern_len,
8432 CORE_ADDR *found_addrp)
8433 {
8434 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8435 struct remote_state *rs = get_remote_state ();
8436 int max_size = get_memory_write_packet_size ();
8437 struct packet_config *packet =
8438 &remote_protocol_packets[PACKET_qSearch_memory];
8439 /* Number of packet bytes used to encode the pattern;
8440 this could be more than PATTERN_LEN due to escape characters. */
8441 int escaped_pattern_len;
8442 /* Amount of pattern that was encodable in the packet. */
8443 int used_pattern_len;
8444 int i;
8445 int found;
8446 ULONGEST found_addr;
8447
8448 /* Don't go to the target if we don't have to.
8449 This is done before checking packet->support to avoid the possibility that
8450 a success for this edge case means the facility works in general. */
8451 if (pattern_len > search_space_len)
8452 return 0;
8453 if (pattern_len == 0)
8454 {
8455 *found_addrp = start_addr;
8456 return 1;
8457 }
8458
8459 /* If we already know the packet isn't supported, fall back to the simple
8460 way of searching memory. */
8461
8462 if (packet->support == PACKET_DISABLE)
8463 {
8464 /* Target doesn't provided special support, fall back and use the
8465 standard support (copy memory and do the search here). */
8466 return simple_search_memory (ops, start_addr, search_space_len,
8467 pattern, pattern_len, found_addrp);
8468 }
8469
8470 /* Insert header. */
8471 i = snprintf (rs->buf, max_size,
8472 "qSearch:memory:%s;%s;",
8473 phex_nz (start_addr, addr_size),
8474 phex_nz (search_space_len, sizeof (search_space_len)));
8475 max_size -= (i + 1);
8476
8477 /* Escape as much data as fits into rs->buf. */
8478 escaped_pattern_len =
8479 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8480 &used_pattern_len, max_size);
8481
8482 /* Bail if the pattern is too large. */
8483 if (used_pattern_len != pattern_len)
8484 error (_("Pattern is too large to transmit to remote target."));
8485
8486 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8487 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8488 || packet_ok (rs->buf, packet) != PACKET_OK)
8489 {
8490 /* The request may not have worked because the command is not
8491 supported. If so, fall back to the simple way. */
8492 if (packet->support == PACKET_DISABLE)
8493 {
8494 return simple_search_memory (ops, start_addr, search_space_len,
8495 pattern, pattern_len, found_addrp);
8496 }
8497 return -1;
8498 }
8499
8500 if (rs->buf[0] == '0')
8501 found = 0;
8502 else if (rs->buf[0] == '1')
8503 {
8504 found = 1;
8505 if (rs->buf[1] != ',')
8506 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8507 unpack_varlen_hex (rs->buf + 2, &found_addr);
8508 *found_addrp = found_addr;
8509 }
8510 else
8511 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8512
8513 return found;
8514 }
8515
8516 static void
8517 remote_rcmd (char *command,
8518 struct ui_file *outbuf)
8519 {
8520 struct remote_state *rs = get_remote_state ();
8521 char *p = rs->buf;
8522
8523 if (!remote_desc)
8524 error (_("remote rcmd is only available after target open"));
8525
8526 /* Send a NULL command across as an empty command. */
8527 if (command == NULL)
8528 command = "";
8529
8530 /* The query prefix. */
8531 strcpy (rs->buf, "qRcmd,");
8532 p = strchr (rs->buf, '\0');
8533
8534 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8535 > get_remote_packet_size ())
8536 error (_("\"monitor\" command ``%s'' is too long."), command);
8537
8538 /* Encode the actual command. */
8539 bin2hex ((gdb_byte *) command, p, 0);
8540
8541 if (putpkt (rs->buf) < 0)
8542 error (_("Communication problem with target."));
8543
8544 /* get/display the response */
8545 while (1)
8546 {
8547 char *buf;
8548
8549 /* XXX - see also remote_get_noisy_reply(). */
8550 rs->buf[0] = '\0';
8551 getpkt (&rs->buf, &rs->buf_size, 0);
8552 buf = rs->buf;
8553 if (buf[0] == '\0')
8554 error (_("Target does not support this command."));
8555 if (buf[0] == 'O' && buf[1] != 'K')
8556 {
8557 remote_console_output (buf + 1); /* 'O' message from stub. */
8558 continue;
8559 }
8560 if (strcmp (buf, "OK") == 0)
8561 break;
8562 if (strlen (buf) == 3 && buf[0] == 'E'
8563 && isdigit (buf[1]) && isdigit (buf[2]))
8564 {
8565 error (_("Protocol error with Rcmd"));
8566 }
8567 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8568 {
8569 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8570
8571 fputc_unfiltered (c, outbuf);
8572 }
8573 break;
8574 }
8575 }
8576
8577 static VEC(mem_region_s) *
8578 remote_memory_map (struct target_ops *ops)
8579 {
8580 VEC(mem_region_s) *result = NULL;
8581 char *text = target_read_stralloc (&current_target,
8582 TARGET_OBJECT_MEMORY_MAP, NULL);
8583
8584 if (text)
8585 {
8586 struct cleanup *back_to = make_cleanup (xfree, text);
8587
8588 result = parse_memory_map (text);
8589 do_cleanups (back_to);
8590 }
8591
8592 return result;
8593 }
8594
8595 static void
8596 packet_command (char *args, int from_tty)
8597 {
8598 struct remote_state *rs = get_remote_state ();
8599
8600 if (!remote_desc)
8601 error (_("command can only be used with remote target"));
8602
8603 if (!args)
8604 error (_("remote-packet command requires packet text as argument"));
8605
8606 puts_filtered ("sending: ");
8607 print_packet (args);
8608 puts_filtered ("\n");
8609 putpkt (args);
8610
8611 getpkt (&rs->buf, &rs->buf_size, 0);
8612 puts_filtered ("received: ");
8613 print_packet (rs->buf);
8614 puts_filtered ("\n");
8615 }
8616
8617 #if 0
8618 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8619
8620 static void display_thread_info (struct gdb_ext_thread_info *info);
8621
8622 static void threadset_test_cmd (char *cmd, int tty);
8623
8624 static void threadalive_test (char *cmd, int tty);
8625
8626 static void threadlist_test_cmd (char *cmd, int tty);
8627
8628 int get_and_display_threadinfo (threadref *ref);
8629
8630 static void threadinfo_test_cmd (char *cmd, int tty);
8631
8632 static int thread_display_step (threadref *ref, void *context);
8633
8634 static void threadlist_update_test_cmd (char *cmd, int tty);
8635
8636 static void init_remote_threadtests (void);
8637
8638 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8639
8640 static void
8641 threadset_test_cmd (char *cmd, int tty)
8642 {
8643 int sample_thread = SAMPLE_THREAD;
8644
8645 printf_filtered (_("Remote threadset test\n"));
8646 set_general_thread (sample_thread);
8647 }
8648
8649
8650 static void
8651 threadalive_test (char *cmd, int tty)
8652 {
8653 int sample_thread = SAMPLE_THREAD;
8654 int pid = ptid_get_pid (inferior_ptid);
8655 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8656
8657 if (remote_thread_alive (ptid))
8658 printf_filtered ("PASS: Thread alive test\n");
8659 else
8660 printf_filtered ("FAIL: Thread alive test\n");
8661 }
8662
8663 void output_threadid (char *title, threadref *ref);
8664
8665 void
8666 output_threadid (char *title, threadref *ref)
8667 {
8668 char hexid[20];
8669
8670 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8671 hexid[16] = 0;
8672 printf_filtered ("%s %s\n", title, (&hexid[0]));
8673 }
8674
8675 static void
8676 threadlist_test_cmd (char *cmd, int tty)
8677 {
8678 int startflag = 1;
8679 threadref nextthread;
8680 int done, result_count;
8681 threadref threadlist[3];
8682
8683 printf_filtered ("Remote Threadlist test\n");
8684 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8685 &result_count, &threadlist[0]))
8686 printf_filtered ("FAIL: threadlist test\n");
8687 else
8688 {
8689 threadref *scan = threadlist;
8690 threadref *limit = scan + result_count;
8691
8692 while (scan < limit)
8693 output_threadid (" thread ", scan++);
8694 }
8695 }
8696
8697 void
8698 display_thread_info (struct gdb_ext_thread_info *info)
8699 {
8700 output_threadid ("Threadid: ", &info->threadid);
8701 printf_filtered ("Name: %s\n ", info->shortname);
8702 printf_filtered ("State: %s\n", info->display);
8703 printf_filtered ("other: %s\n\n", info->more_display);
8704 }
8705
8706 int
8707 get_and_display_threadinfo (threadref *ref)
8708 {
8709 int result;
8710 int set;
8711 struct gdb_ext_thread_info threadinfo;
8712
8713 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8714 | TAG_MOREDISPLAY | TAG_DISPLAY;
8715 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8716 display_thread_info (&threadinfo);
8717 return result;
8718 }
8719
8720 static void
8721 threadinfo_test_cmd (char *cmd, int tty)
8722 {
8723 int athread = SAMPLE_THREAD;
8724 threadref thread;
8725 int set;
8726
8727 int_to_threadref (&thread, athread);
8728 printf_filtered ("Remote Threadinfo test\n");
8729 if (!get_and_display_threadinfo (&thread))
8730 printf_filtered ("FAIL cannot get thread info\n");
8731 }
8732
8733 static int
8734 thread_display_step (threadref *ref, void *context)
8735 {
8736 /* output_threadid(" threadstep ",ref); *//* simple test */
8737 return get_and_display_threadinfo (ref);
8738 }
8739
8740 static void
8741 threadlist_update_test_cmd (char *cmd, int tty)
8742 {
8743 printf_filtered ("Remote Threadlist update test\n");
8744 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8745 }
8746
8747 static void
8748 init_remote_threadtests (void)
8749 {
8750 add_com ("tlist", class_obscure, threadlist_test_cmd,
8751 _("Fetch and print the remote list of "
8752 "thread identifiers, one pkt only"));
8753 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8754 _("Fetch and display info about one thread"));
8755 add_com ("tset", class_obscure, threadset_test_cmd,
8756 _("Test setting to a different thread"));
8757 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8758 _("Iterate through updating all remote thread info"));
8759 add_com ("talive", class_obscure, threadalive_test,
8760 _(" Remote thread alive test "));
8761 }
8762
8763 #endif /* 0 */
8764
8765 /* Convert a thread ID to a string. Returns the string in a static
8766 buffer. */
8767
8768 static char *
8769 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8770 {
8771 static char buf[64];
8772 struct remote_state *rs = get_remote_state ();
8773
8774 if (ptid_is_pid (ptid))
8775 {
8776 /* Printing an inferior target id. */
8777
8778 /* When multi-process extensions are off, there's no way in the
8779 remote protocol to know the remote process id, if there's any
8780 at all. There's one exception --- when we're connected with
8781 target extended-remote, and we manually attached to a process
8782 with "attach PID". We don't record anywhere a flag that
8783 allows us to distinguish that case from the case of
8784 connecting with extended-remote and the stub already being
8785 attached to a process, and reporting yes to qAttached, hence
8786 no smart special casing here. */
8787 if (!remote_multi_process_p (rs))
8788 {
8789 xsnprintf (buf, sizeof buf, "Remote target");
8790 return buf;
8791 }
8792
8793 return normal_pid_to_str (ptid);
8794 }
8795 else
8796 {
8797 if (ptid_equal (magic_null_ptid, ptid))
8798 xsnprintf (buf, sizeof buf, "Thread <main>");
8799 else if (remote_multi_process_p (rs))
8800 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8801 ptid_get_pid (ptid), ptid_get_tid (ptid));
8802 else
8803 xsnprintf (buf, sizeof buf, "Thread %ld",
8804 ptid_get_tid (ptid));
8805 return buf;
8806 }
8807 }
8808
8809 /* Get the address of the thread local variable in OBJFILE which is
8810 stored at OFFSET within the thread local storage for thread PTID. */
8811
8812 static CORE_ADDR
8813 remote_get_thread_local_address (struct target_ops *ops,
8814 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8815 {
8816 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8817 {
8818 struct remote_state *rs = get_remote_state ();
8819 char *p = rs->buf;
8820 char *endp = rs->buf + get_remote_packet_size ();
8821 enum packet_result result;
8822
8823 strcpy (p, "qGetTLSAddr:");
8824 p += strlen (p);
8825 p = write_ptid (p, endp, ptid);
8826 *p++ = ',';
8827 p += hexnumstr (p, offset);
8828 *p++ = ',';
8829 p += hexnumstr (p, lm);
8830 *p++ = '\0';
8831
8832 putpkt (rs->buf);
8833 getpkt (&rs->buf, &rs->buf_size, 0);
8834 result = packet_ok (rs->buf,
8835 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8836 if (result == PACKET_OK)
8837 {
8838 ULONGEST result;
8839
8840 unpack_varlen_hex (rs->buf, &result);
8841 return result;
8842 }
8843 else if (result == PACKET_UNKNOWN)
8844 throw_error (TLS_GENERIC_ERROR,
8845 _("Remote target doesn't support qGetTLSAddr packet"));
8846 else
8847 throw_error (TLS_GENERIC_ERROR,
8848 _("Remote target failed to process qGetTLSAddr request"));
8849 }
8850 else
8851 throw_error (TLS_GENERIC_ERROR,
8852 _("TLS not supported or disabled on this target"));
8853 /* Not reached. */
8854 return 0;
8855 }
8856
8857 /* Provide thread local base, i.e. Thread Information Block address.
8858 Returns 1 if ptid is found and thread_local_base is non zero. */
8859
8860 int
8861 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8862 {
8863 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8864 {
8865 struct remote_state *rs = get_remote_state ();
8866 char *p = rs->buf;
8867 char *endp = rs->buf + get_remote_packet_size ();
8868 enum packet_result result;
8869
8870 strcpy (p, "qGetTIBAddr:");
8871 p += strlen (p);
8872 p = write_ptid (p, endp, ptid);
8873 *p++ = '\0';
8874
8875 putpkt (rs->buf);
8876 getpkt (&rs->buf, &rs->buf_size, 0);
8877 result = packet_ok (rs->buf,
8878 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8879 if (result == PACKET_OK)
8880 {
8881 ULONGEST result;
8882
8883 unpack_varlen_hex (rs->buf, &result);
8884 if (addr)
8885 *addr = (CORE_ADDR) result;
8886 return 1;
8887 }
8888 else if (result == PACKET_UNKNOWN)
8889 error (_("Remote target doesn't support qGetTIBAddr packet"));
8890 else
8891 error (_("Remote target failed to process qGetTIBAddr request"));
8892 }
8893 else
8894 error (_("qGetTIBAddr not supported or disabled on this target"));
8895 /* Not reached. */
8896 return 0;
8897 }
8898
8899 /* Support for inferring a target description based on the current
8900 architecture and the size of a 'g' packet. While the 'g' packet
8901 can have any size (since optional registers can be left off the
8902 end), some sizes are easily recognizable given knowledge of the
8903 approximate architecture. */
8904
8905 struct remote_g_packet_guess
8906 {
8907 int bytes;
8908 const struct target_desc *tdesc;
8909 };
8910 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8911 DEF_VEC_O(remote_g_packet_guess_s);
8912
8913 struct remote_g_packet_data
8914 {
8915 VEC(remote_g_packet_guess_s) *guesses;
8916 };
8917
8918 static struct gdbarch_data *remote_g_packet_data_handle;
8919
8920 static void *
8921 remote_g_packet_data_init (struct obstack *obstack)
8922 {
8923 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8924 }
8925
8926 void
8927 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8928 const struct target_desc *tdesc)
8929 {
8930 struct remote_g_packet_data *data
8931 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8932 struct remote_g_packet_guess new_guess, *guess;
8933 int ix;
8934
8935 gdb_assert (tdesc != NULL);
8936
8937 for (ix = 0;
8938 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8939 ix++)
8940 if (guess->bytes == bytes)
8941 internal_error (__FILE__, __LINE__,
8942 _("Duplicate g packet description added for size %d"),
8943 bytes);
8944
8945 new_guess.bytes = bytes;
8946 new_guess.tdesc = tdesc;
8947 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8948 }
8949
8950 /* Return 1 if remote_read_description would do anything on this target
8951 and architecture, 0 otherwise. */
8952
8953 static int
8954 remote_read_description_p (struct target_ops *target)
8955 {
8956 struct remote_g_packet_data *data
8957 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8958
8959 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8960 return 1;
8961
8962 return 0;
8963 }
8964
8965 static const struct target_desc *
8966 remote_read_description (struct target_ops *target)
8967 {
8968 struct remote_g_packet_data *data
8969 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8970
8971 /* Do not try this during initial connection, when we do not know
8972 whether there is a running but stopped thread. */
8973 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8974 return NULL;
8975
8976 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8977 {
8978 struct remote_g_packet_guess *guess;
8979 int ix;
8980 int bytes = send_g_packet ();
8981
8982 for (ix = 0;
8983 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8984 ix++)
8985 if (guess->bytes == bytes)
8986 return guess->tdesc;
8987
8988 /* We discard the g packet. A minor optimization would be to
8989 hold on to it, and fill the register cache once we have selected
8990 an architecture, but it's too tricky to do safely. */
8991 }
8992
8993 return NULL;
8994 }
8995
8996 /* Remote file transfer support. This is host-initiated I/O, not
8997 target-initiated; for target-initiated, see remote-fileio.c. */
8998
8999 /* If *LEFT is at least the length of STRING, copy STRING to
9000 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9001 decrease *LEFT. Otherwise raise an error. */
9002
9003 static void
9004 remote_buffer_add_string (char **buffer, int *left, char *string)
9005 {
9006 int len = strlen (string);
9007
9008 if (len > *left)
9009 error (_("Packet too long for target."));
9010
9011 memcpy (*buffer, string, len);
9012 *buffer += len;
9013 *left -= len;
9014
9015 /* NUL-terminate the buffer as a convenience, if there is
9016 room. */
9017 if (*left)
9018 **buffer = '\0';
9019 }
9020
9021 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9022 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9023 decrease *LEFT. Otherwise raise an error. */
9024
9025 static void
9026 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9027 int len)
9028 {
9029 if (2 * len > *left)
9030 error (_("Packet too long for target."));
9031
9032 bin2hex (bytes, *buffer, len);
9033 *buffer += 2 * len;
9034 *left -= 2 * len;
9035
9036 /* NUL-terminate the buffer as a convenience, if there is
9037 room. */
9038 if (*left)
9039 **buffer = '\0';
9040 }
9041
9042 /* If *LEFT is large enough, convert VALUE to hex and add it to
9043 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9044 decrease *LEFT. Otherwise raise an error. */
9045
9046 static void
9047 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9048 {
9049 int len = hexnumlen (value);
9050
9051 if (len > *left)
9052 error (_("Packet too long for target."));
9053
9054 hexnumstr (*buffer, value);
9055 *buffer += len;
9056 *left -= len;
9057
9058 /* NUL-terminate the buffer as a convenience, if there is
9059 room. */
9060 if (*left)
9061 **buffer = '\0';
9062 }
9063
9064 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9065 value, *REMOTE_ERRNO to the remote error number or zero if none
9066 was included, and *ATTACHMENT to point to the start of the annex
9067 if any. The length of the packet isn't needed here; there may
9068 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9069
9070 Return 0 if the packet could be parsed, -1 if it could not. If
9071 -1 is returned, the other variables may not be initialized. */
9072
9073 static int
9074 remote_hostio_parse_result (char *buffer, int *retcode,
9075 int *remote_errno, char **attachment)
9076 {
9077 char *p, *p2;
9078
9079 *remote_errno = 0;
9080 *attachment = NULL;
9081
9082 if (buffer[0] != 'F')
9083 return -1;
9084
9085 errno = 0;
9086 *retcode = strtol (&buffer[1], &p, 16);
9087 if (errno != 0 || p == &buffer[1])
9088 return -1;
9089
9090 /* Check for ",errno". */
9091 if (*p == ',')
9092 {
9093 errno = 0;
9094 *remote_errno = strtol (p + 1, &p2, 16);
9095 if (errno != 0 || p + 1 == p2)
9096 return -1;
9097 p = p2;
9098 }
9099
9100 /* Check for ";attachment". If there is no attachment, the
9101 packet should end here. */
9102 if (*p == ';')
9103 {
9104 *attachment = p + 1;
9105 return 0;
9106 }
9107 else if (*p == '\0')
9108 return 0;
9109 else
9110 return -1;
9111 }
9112
9113 /* Send a prepared I/O packet to the target and read its response.
9114 The prepared packet is in the global RS->BUF before this function
9115 is called, and the answer is there when we return.
9116
9117 COMMAND_BYTES is the length of the request to send, which may include
9118 binary data. WHICH_PACKET is the packet configuration to check
9119 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9120 is set to the error number and -1 is returned. Otherwise the value
9121 returned by the function is returned.
9122
9123 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9124 attachment is expected; an error will be reported if there's a
9125 mismatch. If one is found, *ATTACHMENT will be set to point into
9126 the packet buffer and *ATTACHMENT_LEN will be set to the
9127 attachment's length. */
9128
9129 static int
9130 remote_hostio_send_command (int command_bytes, int which_packet,
9131 int *remote_errno, char **attachment,
9132 int *attachment_len)
9133 {
9134 struct remote_state *rs = get_remote_state ();
9135 int ret, bytes_read;
9136 char *attachment_tmp;
9137
9138 if (!remote_desc
9139 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9140 {
9141 *remote_errno = FILEIO_ENOSYS;
9142 return -1;
9143 }
9144
9145 putpkt_binary (rs->buf, command_bytes);
9146 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9147
9148 /* If it timed out, something is wrong. Don't try to parse the
9149 buffer. */
9150 if (bytes_read < 0)
9151 {
9152 *remote_errno = FILEIO_EINVAL;
9153 return -1;
9154 }
9155
9156 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9157 {
9158 case PACKET_ERROR:
9159 *remote_errno = FILEIO_EINVAL;
9160 return -1;
9161 case PACKET_UNKNOWN:
9162 *remote_errno = FILEIO_ENOSYS;
9163 return -1;
9164 case PACKET_OK:
9165 break;
9166 }
9167
9168 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9169 &attachment_tmp))
9170 {
9171 *remote_errno = FILEIO_EINVAL;
9172 return -1;
9173 }
9174
9175 /* Make sure we saw an attachment if and only if we expected one. */
9176 if ((attachment_tmp == NULL && attachment != NULL)
9177 || (attachment_tmp != NULL && attachment == NULL))
9178 {
9179 *remote_errno = FILEIO_EINVAL;
9180 return -1;
9181 }
9182
9183 /* If an attachment was found, it must point into the packet buffer;
9184 work out how many bytes there were. */
9185 if (attachment_tmp != NULL)
9186 {
9187 *attachment = attachment_tmp;
9188 *attachment_len = bytes_read - (*attachment - rs->buf);
9189 }
9190
9191 return ret;
9192 }
9193
9194 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9195 remote file descriptor, or -1 if an error occurs (and set
9196 *REMOTE_ERRNO). */
9197
9198 static int
9199 remote_hostio_open (const char *filename, int flags, int mode,
9200 int *remote_errno)
9201 {
9202 struct remote_state *rs = get_remote_state ();
9203 char *p = rs->buf;
9204 int left = get_remote_packet_size () - 1;
9205
9206 remote_buffer_add_string (&p, &left, "vFile:open:");
9207
9208 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9209 strlen (filename));
9210 remote_buffer_add_string (&p, &left, ",");
9211
9212 remote_buffer_add_int (&p, &left, flags);
9213 remote_buffer_add_string (&p, &left, ",");
9214
9215 remote_buffer_add_int (&p, &left, mode);
9216
9217 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9218 remote_errno, NULL, NULL);
9219 }
9220
9221 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9222 Return the number of bytes written, or -1 if an error occurs (and
9223 set *REMOTE_ERRNO). */
9224
9225 static int
9226 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9227 ULONGEST offset, int *remote_errno)
9228 {
9229 struct remote_state *rs = get_remote_state ();
9230 char *p = rs->buf;
9231 int left = get_remote_packet_size ();
9232 int out_len;
9233
9234 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9235
9236 remote_buffer_add_int (&p, &left, fd);
9237 remote_buffer_add_string (&p, &left, ",");
9238
9239 remote_buffer_add_int (&p, &left, offset);
9240 remote_buffer_add_string (&p, &left, ",");
9241
9242 p += remote_escape_output (write_buf, len, p, &out_len,
9243 get_remote_packet_size () - (p - rs->buf));
9244
9245 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9246 remote_errno, NULL, NULL);
9247 }
9248
9249 /* Read up to LEN bytes FD on the remote target into READ_BUF
9250 Return the number of bytes read, or -1 if an error occurs (and
9251 set *REMOTE_ERRNO). */
9252
9253 static int
9254 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9255 ULONGEST offset, int *remote_errno)
9256 {
9257 struct remote_state *rs = get_remote_state ();
9258 char *p = rs->buf;
9259 char *attachment;
9260 int left = get_remote_packet_size ();
9261 int ret, attachment_len;
9262 int read_len;
9263
9264 remote_buffer_add_string (&p, &left, "vFile:pread:");
9265
9266 remote_buffer_add_int (&p, &left, fd);
9267 remote_buffer_add_string (&p, &left, ",");
9268
9269 remote_buffer_add_int (&p, &left, len);
9270 remote_buffer_add_string (&p, &left, ",");
9271
9272 remote_buffer_add_int (&p, &left, offset);
9273
9274 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9275 remote_errno, &attachment,
9276 &attachment_len);
9277
9278 if (ret < 0)
9279 return ret;
9280
9281 read_len = remote_unescape_input (attachment, attachment_len,
9282 read_buf, len);
9283 if (read_len != ret)
9284 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9285
9286 return ret;
9287 }
9288
9289 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9290 (and set *REMOTE_ERRNO). */
9291
9292 static int
9293 remote_hostio_close (int fd, int *remote_errno)
9294 {
9295 struct remote_state *rs = get_remote_state ();
9296 char *p = rs->buf;
9297 int left = get_remote_packet_size () - 1;
9298
9299 remote_buffer_add_string (&p, &left, "vFile:close:");
9300
9301 remote_buffer_add_int (&p, &left, fd);
9302
9303 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9304 remote_errno, NULL, NULL);
9305 }
9306
9307 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9308 occurs (and set *REMOTE_ERRNO). */
9309
9310 static int
9311 remote_hostio_unlink (const char *filename, int *remote_errno)
9312 {
9313 struct remote_state *rs = get_remote_state ();
9314 char *p = rs->buf;
9315 int left = get_remote_packet_size () - 1;
9316
9317 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9318
9319 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9320 strlen (filename));
9321
9322 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9323 remote_errno, NULL, NULL);
9324 }
9325
9326 static int
9327 remote_fileio_errno_to_host (int errnum)
9328 {
9329 switch (errnum)
9330 {
9331 case FILEIO_EPERM:
9332 return EPERM;
9333 case FILEIO_ENOENT:
9334 return ENOENT;
9335 case FILEIO_EINTR:
9336 return EINTR;
9337 case FILEIO_EIO:
9338 return EIO;
9339 case FILEIO_EBADF:
9340 return EBADF;
9341 case FILEIO_EACCES:
9342 return EACCES;
9343 case FILEIO_EFAULT:
9344 return EFAULT;
9345 case FILEIO_EBUSY:
9346 return EBUSY;
9347 case FILEIO_EEXIST:
9348 return EEXIST;
9349 case FILEIO_ENODEV:
9350 return ENODEV;
9351 case FILEIO_ENOTDIR:
9352 return ENOTDIR;
9353 case FILEIO_EISDIR:
9354 return EISDIR;
9355 case FILEIO_EINVAL:
9356 return EINVAL;
9357 case FILEIO_ENFILE:
9358 return ENFILE;
9359 case FILEIO_EMFILE:
9360 return EMFILE;
9361 case FILEIO_EFBIG:
9362 return EFBIG;
9363 case FILEIO_ENOSPC:
9364 return ENOSPC;
9365 case FILEIO_ESPIPE:
9366 return ESPIPE;
9367 case FILEIO_EROFS:
9368 return EROFS;
9369 case FILEIO_ENOSYS:
9370 return ENOSYS;
9371 case FILEIO_ENAMETOOLONG:
9372 return ENAMETOOLONG;
9373 }
9374 return -1;
9375 }
9376
9377 static char *
9378 remote_hostio_error (int errnum)
9379 {
9380 int host_error = remote_fileio_errno_to_host (errnum);
9381
9382 if (host_error == -1)
9383 error (_("Unknown remote I/O error %d"), errnum);
9384 else
9385 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9386 }
9387
9388 static void
9389 remote_hostio_close_cleanup (void *opaque)
9390 {
9391 int fd = *(int *) opaque;
9392 int remote_errno;
9393
9394 remote_hostio_close (fd, &remote_errno);
9395 }
9396
9397
9398 static void *
9399 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9400 {
9401 const char *filename = bfd_get_filename (abfd);
9402 int fd, remote_errno;
9403 int *stream;
9404
9405 gdb_assert (remote_filename_p (filename));
9406
9407 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9408 if (fd == -1)
9409 {
9410 errno = remote_fileio_errno_to_host (remote_errno);
9411 bfd_set_error (bfd_error_system_call);
9412 return NULL;
9413 }
9414
9415 stream = xmalloc (sizeof (int));
9416 *stream = fd;
9417 return stream;
9418 }
9419
9420 static int
9421 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9422 {
9423 int fd = *(int *)stream;
9424 int remote_errno;
9425
9426 xfree (stream);
9427
9428 /* Ignore errors on close; these may happen if the remote
9429 connection was already torn down. */
9430 remote_hostio_close (fd, &remote_errno);
9431
9432 return 1;
9433 }
9434
9435 static file_ptr
9436 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9437 file_ptr nbytes, file_ptr offset)
9438 {
9439 int fd = *(int *)stream;
9440 int remote_errno;
9441 file_ptr pos, bytes;
9442
9443 pos = 0;
9444 while (nbytes > pos)
9445 {
9446 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9447 offset + pos, &remote_errno);
9448 if (bytes == 0)
9449 /* Success, but no bytes, means end-of-file. */
9450 break;
9451 if (bytes == -1)
9452 {
9453 errno = remote_fileio_errno_to_host (remote_errno);
9454 bfd_set_error (bfd_error_system_call);
9455 return -1;
9456 }
9457
9458 pos += bytes;
9459 }
9460
9461 return pos;
9462 }
9463
9464 static int
9465 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9466 {
9467 /* FIXME: We should probably implement remote_hostio_stat. */
9468 sb->st_size = INT_MAX;
9469 return 0;
9470 }
9471
9472 int
9473 remote_filename_p (const char *filename)
9474 {
9475 return strncmp (filename, "remote:", 7) == 0;
9476 }
9477
9478 bfd *
9479 remote_bfd_open (const char *remote_file, const char *target)
9480 {
9481 return bfd_openr_iovec (remote_file, target,
9482 remote_bfd_iovec_open, NULL,
9483 remote_bfd_iovec_pread,
9484 remote_bfd_iovec_close,
9485 remote_bfd_iovec_stat);
9486 }
9487
9488 void
9489 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9490 {
9491 struct cleanup *back_to, *close_cleanup;
9492 int retcode, fd, remote_errno, bytes, io_size;
9493 FILE *file;
9494 gdb_byte *buffer;
9495 int bytes_in_buffer;
9496 int saw_eof;
9497 ULONGEST offset;
9498
9499 if (!remote_desc)
9500 error (_("command can only be used with remote target"));
9501
9502 file = fopen (local_file, "rb");
9503 if (file == NULL)
9504 perror_with_name (local_file);
9505 back_to = make_cleanup_fclose (file);
9506
9507 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9508 | FILEIO_O_TRUNC),
9509 0700, &remote_errno);
9510 if (fd == -1)
9511 remote_hostio_error (remote_errno);
9512
9513 /* Send up to this many bytes at once. They won't all fit in the
9514 remote packet limit, so we'll transfer slightly fewer. */
9515 io_size = get_remote_packet_size ();
9516 buffer = xmalloc (io_size);
9517 make_cleanup (xfree, buffer);
9518
9519 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9520
9521 bytes_in_buffer = 0;
9522 saw_eof = 0;
9523 offset = 0;
9524 while (bytes_in_buffer || !saw_eof)
9525 {
9526 if (!saw_eof)
9527 {
9528 bytes = fread (buffer + bytes_in_buffer, 1,
9529 io_size - bytes_in_buffer,
9530 file);
9531 if (bytes == 0)
9532 {
9533 if (ferror (file))
9534 error (_("Error reading %s."), local_file);
9535 else
9536 {
9537 /* EOF. Unless there is something still in the
9538 buffer from the last iteration, we are done. */
9539 saw_eof = 1;
9540 if (bytes_in_buffer == 0)
9541 break;
9542 }
9543 }
9544 }
9545 else
9546 bytes = 0;
9547
9548 bytes += bytes_in_buffer;
9549 bytes_in_buffer = 0;
9550
9551 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9552 offset, &remote_errno);
9553
9554 if (retcode < 0)
9555 remote_hostio_error (remote_errno);
9556 else if (retcode == 0)
9557 error (_("Remote write of %d bytes returned 0!"), bytes);
9558 else if (retcode < bytes)
9559 {
9560 /* Short write. Save the rest of the read data for the next
9561 write. */
9562 bytes_in_buffer = bytes - retcode;
9563 memmove (buffer, buffer + retcode, bytes_in_buffer);
9564 }
9565
9566 offset += retcode;
9567 }
9568
9569 discard_cleanups (close_cleanup);
9570 if (remote_hostio_close (fd, &remote_errno))
9571 remote_hostio_error (remote_errno);
9572
9573 if (from_tty)
9574 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9575 do_cleanups (back_to);
9576 }
9577
9578 void
9579 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9580 {
9581 struct cleanup *back_to, *close_cleanup;
9582 int fd, remote_errno, bytes, io_size;
9583 FILE *file;
9584 gdb_byte *buffer;
9585 ULONGEST offset;
9586
9587 if (!remote_desc)
9588 error (_("command can only be used with remote target"));
9589
9590 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9591 if (fd == -1)
9592 remote_hostio_error (remote_errno);
9593
9594 file = fopen (local_file, "wb");
9595 if (file == NULL)
9596 perror_with_name (local_file);
9597 back_to = make_cleanup_fclose (file);
9598
9599 /* Send up to this many bytes at once. They won't all fit in the
9600 remote packet limit, so we'll transfer slightly fewer. */
9601 io_size = get_remote_packet_size ();
9602 buffer = xmalloc (io_size);
9603 make_cleanup (xfree, buffer);
9604
9605 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9606
9607 offset = 0;
9608 while (1)
9609 {
9610 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9611 if (bytes == 0)
9612 /* Success, but no bytes, means end-of-file. */
9613 break;
9614 if (bytes == -1)
9615 remote_hostio_error (remote_errno);
9616
9617 offset += bytes;
9618
9619 bytes = fwrite (buffer, 1, bytes, file);
9620 if (bytes == 0)
9621 perror_with_name (local_file);
9622 }
9623
9624 discard_cleanups (close_cleanup);
9625 if (remote_hostio_close (fd, &remote_errno))
9626 remote_hostio_error (remote_errno);
9627
9628 if (from_tty)
9629 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9630 do_cleanups (back_to);
9631 }
9632
9633 void
9634 remote_file_delete (const char *remote_file, int from_tty)
9635 {
9636 int retcode, remote_errno;
9637
9638 if (!remote_desc)
9639 error (_("command can only be used with remote target"));
9640
9641 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9642 if (retcode == -1)
9643 remote_hostio_error (remote_errno);
9644
9645 if (from_tty)
9646 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9647 }
9648
9649 static void
9650 remote_put_command (char *args, int from_tty)
9651 {
9652 struct cleanup *back_to;
9653 char **argv;
9654
9655 if (args == NULL)
9656 error_no_arg (_("file to put"));
9657
9658 argv = gdb_buildargv (args);
9659 back_to = make_cleanup_freeargv (argv);
9660 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9661 error (_("Invalid parameters to remote put"));
9662
9663 remote_file_put (argv[0], argv[1], from_tty);
9664
9665 do_cleanups (back_to);
9666 }
9667
9668 static void
9669 remote_get_command (char *args, int from_tty)
9670 {
9671 struct cleanup *back_to;
9672 char **argv;
9673
9674 if (args == NULL)
9675 error_no_arg (_("file to get"));
9676
9677 argv = gdb_buildargv (args);
9678 back_to = make_cleanup_freeargv (argv);
9679 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9680 error (_("Invalid parameters to remote get"));
9681
9682 remote_file_get (argv[0], argv[1], from_tty);
9683
9684 do_cleanups (back_to);
9685 }
9686
9687 static void
9688 remote_delete_command (char *args, int from_tty)
9689 {
9690 struct cleanup *back_to;
9691 char **argv;
9692
9693 if (args == NULL)
9694 error_no_arg (_("file to delete"));
9695
9696 argv = gdb_buildargv (args);
9697 back_to = make_cleanup_freeargv (argv);
9698 if (argv[0] == NULL || argv[1] != NULL)
9699 error (_("Invalid parameters to remote delete"));
9700
9701 remote_file_delete (argv[0], from_tty);
9702
9703 do_cleanups (back_to);
9704 }
9705
9706 static void
9707 remote_command (char *args, int from_tty)
9708 {
9709 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9710 }
9711
9712 static int
9713 remote_can_execute_reverse (void)
9714 {
9715 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9716 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9717 return 1;
9718 else
9719 return 0;
9720 }
9721
9722 static int
9723 remote_supports_non_stop (void)
9724 {
9725 return 1;
9726 }
9727
9728 static int
9729 remote_supports_disable_randomization (void)
9730 {
9731 /* Only supported in extended mode. */
9732 return 0;
9733 }
9734
9735 static int
9736 remote_supports_multi_process (void)
9737 {
9738 struct remote_state *rs = get_remote_state ();
9739
9740 return remote_multi_process_p (rs);
9741 }
9742
9743 int
9744 remote_supports_cond_tracepoints (void)
9745 {
9746 struct remote_state *rs = get_remote_state ();
9747
9748 return rs->cond_tracepoints;
9749 }
9750
9751 int
9752 remote_supports_fast_tracepoints (void)
9753 {
9754 struct remote_state *rs = get_remote_state ();
9755
9756 return rs->fast_tracepoints;
9757 }
9758
9759 static int
9760 remote_supports_static_tracepoints (void)
9761 {
9762 struct remote_state *rs = get_remote_state ();
9763
9764 return rs->static_tracepoints;
9765 }
9766
9767 static int
9768 remote_supports_install_in_trace (void)
9769 {
9770 struct remote_state *rs = get_remote_state ();
9771
9772 return rs->install_in_trace;
9773 }
9774
9775 static int
9776 remote_supports_enable_disable_tracepoint (void)
9777 {
9778 struct remote_state *rs = get_remote_state ();
9779
9780 return rs->enable_disable_tracepoints;
9781 }
9782
9783 static int
9784 remote_supports_string_tracing (void)
9785 {
9786 struct remote_state *rs = get_remote_state ();
9787
9788 return rs->string_tracing;
9789 }
9790
9791 static void
9792 remote_trace_init (void)
9793 {
9794 putpkt ("QTinit");
9795 remote_get_noisy_reply (&target_buf, &target_buf_size);
9796 if (strcmp (target_buf, "OK") != 0)
9797 error (_("Target does not support this command."));
9798 }
9799
9800 static void free_actions_list (char **actions_list);
9801 static void free_actions_list_cleanup_wrapper (void *);
9802 static void
9803 free_actions_list_cleanup_wrapper (void *al)
9804 {
9805 free_actions_list (al);
9806 }
9807
9808 static void
9809 free_actions_list (char **actions_list)
9810 {
9811 int ndx;
9812
9813 if (actions_list == 0)
9814 return;
9815
9816 for (ndx = 0; actions_list[ndx]; ndx++)
9817 xfree (actions_list[ndx]);
9818
9819 xfree (actions_list);
9820 }
9821
9822 /* Recursive routine to walk through command list including loops, and
9823 download packets for each command. */
9824
9825 static void
9826 remote_download_command_source (int num, ULONGEST addr,
9827 struct command_line *cmds)
9828 {
9829 struct remote_state *rs = get_remote_state ();
9830 struct command_line *cmd;
9831
9832 for (cmd = cmds; cmd; cmd = cmd->next)
9833 {
9834 QUIT; /* Allow user to bail out with ^C. */
9835 strcpy (rs->buf, "QTDPsrc:");
9836 encode_source_string (num, addr, "cmd", cmd->line,
9837 rs->buf + strlen (rs->buf),
9838 rs->buf_size - strlen (rs->buf));
9839 putpkt (rs->buf);
9840 remote_get_noisy_reply (&target_buf, &target_buf_size);
9841 if (strcmp (target_buf, "OK"))
9842 warning (_("Target does not support source download."));
9843
9844 if (cmd->control_type == while_control
9845 || cmd->control_type == while_stepping_control)
9846 {
9847 remote_download_command_source (num, addr, *cmd->body_list);
9848
9849 QUIT; /* Allow user to bail out with ^C. */
9850 strcpy (rs->buf, "QTDPsrc:");
9851 encode_source_string (num, addr, "cmd", "end",
9852 rs->buf + strlen (rs->buf),
9853 rs->buf_size - strlen (rs->buf));
9854 putpkt (rs->buf);
9855 remote_get_noisy_reply (&target_buf, &target_buf_size);
9856 if (strcmp (target_buf, "OK"))
9857 warning (_("Target does not support source download."));
9858 }
9859 }
9860 }
9861
9862 static void
9863 remote_download_tracepoint (struct bp_location *loc)
9864 {
9865
9866 CORE_ADDR tpaddr;
9867 char addrbuf[40];
9868 char buf[2048];
9869 char **tdp_actions;
9870 char **stepping_actions;
9871 int ndx;
9872 struct cleanup *old_chain = NULL;
9873 struct agent_expr *aexpr;
9874 struct cleanup *aexpr_chain = NULL;
9875 char *pkt;
9876 struct breakpoint *b = loc->owner;
9877 struct tracepoint *t = (struct tracepoint *) b;
9878
9879 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
9880 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9881 tdp_actions);
9882 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9883 stepping_actions);
9884
9885 tpaddr = loc->address;
9886 sprintf_vma (addrbuf, tpaddr);
9887 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", b->number,
9888 addrbuf, /* address */
9889 (b->enable_state == bp_enabled ? 'E' : 'D'),
9890 t->step_count, t->pass_count);
9891 /* Fast tracepoints are mostly handled by the target, but we can
9892 tell the target how big of an instruction block should be moved
9893 around. */
9894 if (b->type == bp_fast_tracepoint)
9895 {
9896 /* Only test for support at download time; we may not know
9897 target capabilities at definition time. */
9898 if (remote_supports_fast_tracepoints ())
9899 {
9900 int isize;
9901
9902 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9903 tpaddr, &isize, NULL))
9904 sprintf (buf + strlen (buf), ":F%x", isize);
9905 else
9906 /* If it passed validation at definition but fails now,
9907 something is very wrong. */
9908 internal_error (__FILE__, __LINE__,
9909 _("Fast tracepoint not "
9910 "valid during download"));
9911 }
9912 else
9913 /* Fast tracepoints are functionally identical to regular
9914 tracepoints, so don't take lack of support as a reason to
9915 give up on the trace run. */
9916 warning (_("Target does not support fast tracepoints, "
9917 "downloading %d as regular tracepoint"), b->number);
9918 }
9919 else if (b->type == bp_static_tracepoint)
9920 {
9921 /* Only test for support at download time; we may not know
9922 target capabilities at definition time. */
9923 if (remote_supports_static_tracepoints ())
9924 {
9925 struct static_tracepoint_marker marker;
9926
9927 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9928 strcat (buf, ":S");
9929 else
9930 error (_("Static tracepoint not valid during download"));
9931 }
9932 else
9933 /* Fast tracepoints are functionally identical to regular
9934 tracepoints, so don't take lack of support as a reason
9935 to give up on the trace run. */
9936 error (_("Target does not support static tracepoints"));
9937 }
9938 /* If the tracepoint has a conditional, make it into an agent
9939 expression and append to the definition. */
9940 if (loc->cond)
9941 {
9942 /* Only test support at download time, we may not know target
9943 capabilities at definition time. */
9944 if (remote_supports_cond_tracepoints ())
9945 {
9946 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9947 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9948 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9949 pkt = buf + strlen (buf);
9950 for (ndx = 0; ndx < aexpr->len; ++ndx)
9951 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9952 *pkt = '\0';
9953 do_cleanups (aexpr_chain);
9954 }
9955 else
9956 warning (_("Target does not support conditional tracepoints, "
9957 "ignoring tp %d cond"), b->number);
9958 }
9959
9960 if (b->commands || *default_collect)
9961 strcat (buf, "-");
9962 putpkt (buf);
9963 remote_get_noisy_reply (&target_buf, &target_buf_size);
9964 if (strcmp (target_buf, "OK"))
9965 error (_("Target does not support tracepoints."));
9966
9967 /* do_single_steps (t); */
9968 if (tdp_actions)
9969 {
9970 for (ndx = 0; tdp_actions[ndx]; ndx++)
9971 {
9972 QUIT; /* Allow user to bail out with ^C. */
9973 sprintf (buf, "QTDP:-%x:%s:%s%c",
9974 b->number, addrbuf, /* address */
9975 tdp_actions[ndx],
9976 ((tdp_actions[ndx + 1] || stepping_actions)
9977 ? '-' : 0));
9978 putpkt (buf);
9979 remote_get_noisy_reply (&target_buf,
9980 &target_buf_size);
9981 if (strcmp (target_buf, "OK"))
9982 error (_("Error on target while setting tracepoints."));
9983 }
9984 }
9985 if (stepping_actions)
9986 {
9987 for (ndx = 0; stepping_actions[ndx]; ndx++)
9988 {
9989 QUIT; /* Allow user to bail out with ^C. */
9990 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9991 b->number, addrbuf, /* address */
9992 ((ndx == 0) ? "S" : ""),
9993 stepping_actions[ndx],
9994 (stepping_actions[ndx + 1] ? "-" : ""));
9995 putpkt (buf);
9996 remote_get_noisy_reply (&target_buf,
9997 &target_buf_size);
9998 if (strcmp (target_buf, "OK"))
9999 error (_("Error on target while setting tracepoints."));
10000 }
10001 }
10002
10003 if (remote_protocol_packets[PACKET_TracepointSource].support
10004 == PACKET_ENABLE)
10005 {
10006 if (b->addr_string)
10007 {
10008 strcpy (buf, "QTDPsrc:");
10009 encode_source_string (b->number, loc->address,
10010 "at", b->addr_string, buf + strlen (buf),
10011 2048 - strlen (buf));
10012
10013 putpkt (buf);
10014 remote_get_noisy_reply (&target_buf, &target_buf_size);
10015 if (strcmp (target_buf, "OK"))
10016 warning (_("Target does not support source download."));
10017 }
10018 if (b->cond_string)
10019 {
10020 strcpy (buf, "QTDPsrc:");
10021 encode_source_string (b->number, loc->address,
10022 "cond", b->cond_string, buf + strlen (buf),
10023 2048 - strlen (buf));
10024 putpkt (buf);
10025 remote_get_noisy_reply (&target_buf, &target_buf_size);
10026 if (strcmp (target_buf, "OK"))
10027 warning (_("Target does not support source download."));
10028 }
10029 remote_download_command_source (b->number, loc->address,
10030 breakpoint_commands (b));
10031 }
10032
10033 do_cleanups (old_chain);
10034 }
10035
10036 static int
10037 remote_can_download_tracepoint (void)
10038 {
10039 struct trace_status *ts = current_trace_status ();
10040 int status = remote_get_trace_status (ts);
10041
10042 if (status == -1 || !ts->running_known || !ts->running)
10043 return 0;
10044
10045 /* If we are in a tracing experiment, but remote stub doesn't support
10046 installing tracepoint in trace, we have to return. */
10047 if (!remote_supports_install_in_trace ())
10048 return 0;
10049
10050 return 1;
10051 }
10052
10053
10054 static void
10055 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10056 {
10057 struct remote_state *rs = get_remote_state ();
10058 char *p;
10059
10060 sprintf (rs->buf, "QTDV:%x:%s:%x:",
10061 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
10062 p = rs->buf + strlen (rs->buf);
10063 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10064 error (_("Trace state variable name too long for tsv definition packet"));
10065 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10066 *p++ = '\0';
10067 putpkt (rs->buf);
10068 remote_get_noisy_reply (&target_buf, &target_buf_size);
10069 if (*target_buf == '\0')
10070 error (_("Target does not support this command."));
10071 if (strcmp (target_buf, "OK") != 0)
10072 error (_("Error on target while downloading trace state variable."));
10073 }
10074
10075 static void
10076 remote_enable_tracepoint (struct bp_location *location)
10077 {
10078 struct remote_state *rs = get_remote_state ();
10079 char addr_buf[40];
10080
10081 sprintf_vma (addr_buf, location->address);
10082 sprintf (rs->buf, "QTEnable:%x:%s", location->owner->number, addr_buf);
10083 putpkt (rs->buf);
10084 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10085 if (*rs->buf == '\0')
10086 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10087 if (strcmp (rs->buf, "OK") != 0)
10088 error (_("Error on target while enabling tracepoint."));
10089 }
10090
10091 static void
10092 remote_disable_tracepoint (struct bp_location *location)
10093 {
10094 struct remote_state *rs = get_remote_state ();
10095 char addr_buf[40];
10096
10097 sprintf_vma (addr_buf, location->address);
10098 sprintf (rs->buf, "QTDisable:%x:%s", location->owner->number, addr_buf);
10099 putpkt (rs->buf);
10100 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10101 if (*rs->buf == '\0')
10102 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10103 if (strcmp (rs->buf, "OK") != 0)
10104 error (_("Error on target while disabling tracepoint."));
10105 }
10106
10107 static void
10108 remote_trace_set_readonly_regions (void)
10109 {
10110 asection *s;
10111 bfd_size_type size;
10112 bfd_vma vma;
10113 int anysecs = 0;
10114 int offset = 0;
10115
10116 if (!exec_bfd)
10117 return; /* No information to give. */
10118
10119 strcpy (target_buf, "QTro");
10120 for (s = exec_bfd->sections; s; s = s->next)
10121 {
10122 char tmp1[40], tmp2[40];
10123 int sec_length;
10124
10125 if ((s->flags & SEC_LOAD) == 0 ||
10126 /* (s->flags & SEC_CODE) == 0 || */
10127 (s->flags & SEC_READONLY) == 0)
10128 continue;
10129
10130 anysecs = 1;
10131 vma = bfd_get_section_vma (,s);
10132 size = bfd_get_section_size (s);
10133 sprintf_vma (tmp1, vma);
10134 sprintf_vma (tmp2, vma + size);
10135 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10136 if (offset + sec_length + 1 > target_buf_size)
10137 {
10138 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10139 != PACKET_ENABLE)
10140 warning (_("\
10141 Too many sections for read-only sections definition packet."));
10142 break;
10143 }
10144 sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
10145 offset += sec_length;
10146 }
10147 if (anysecs)
10148 {
10149 putpkt (target_buf);
10150 getpkt (&target_buf, &target_buf_size, 0);
10151 }
10152 }
10153
10154 static void
10155 remote_trace_start (void)
10156 {
10157 putpkt ("QTStart");
10158 remote_get_noisy_reply (&target_buf, &target_buf_size);
10159 if (*target_buf == '\0')
10160 error (_("Target does not support this command."));
10161 if (strcmp (target_buf, "OK") != 0)
10162 error (_("Bogus reply from target: %s"), target_buf);
10163 }
10164
10165 static int
10166 remote_get_trace_status (struct trace_status *ts)
10167 {
10168 /* Initialize it just to avoid a GCC false warning. */
10169 char *p = NULL;
10170 /* FIXME we need to get register block size some other way. */
10171 extern int trace_regblock_size;
10172 volatile struct gdb_exception ex;
10173
10174 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10175
10176 putpkt ("qTStatus");
10177
10178 TRY_CATCH (ex, RETURN_MASK_ERROR)
10179 {
10180 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10181 }
10182 if (ex.reason < 0)
10183 {
10184 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10185 return -1;
10186 }
10187
10188 /* If the remote target doesn't do tracing, flag it. */
10189 if (*p == '\0')
10190 return -1;
10191
10192 /* We're working with a live target. */
10193 ts->from_file = 0;
10194
10195 /* Set some defaults. */
10196 ts->running_known = 0;
10197 ts->stop_reason = trace_stop_reason_unknown;
10198 ts->traceframe_count = -1;
10199 ts->buffer_free = 0;
10200
10201 if (*p++ != 'T')
10202 error (_("Bogus trace status reply from target: %s"), target_buf);
10203
10204 parse_trace_status (p, ts);
10205
10206 return ts->running;
10207 }
10208
10209 static void
10210 remote_trace_stop (void)
10211 {
10212 putpkt ("QTStop");
10213 remote_get_noisy_reply (&target_buf, &target_buf_size);
10214 if (*target_buf == '\0')
10215 error (_("Target does not support this command."));
10216 if (strcmp (target_buf, "OK") != 0)
10217 error (_("Bogus reply from target: %s"), target_buf);
10218 }
10219
10220 static int
10221 remote_trace_find (enum trace_find_type type, int num,
10222 ULONGEST addr1, ULONGEST addr2,
10223 int *tpp)
10224 {
10225 struct remote_state *rs = get_remote_state ();
10226 char *p, *reply;
10227 int target_frameno = -1, target_tracept = -1;
10228
10229 /* Lookups other than by absolute frame number depend on the current
10230 trace selected, so make sure it is correct on the remote end
10231 first. */
10232 if (type != tfind_number)
10233 set_remote_traceframe ();
10234
10235 p = rs->buf;
10236 strcpy (p, "QTFrame:");
10237 p = strchr (p, '\0');
10238 switch (type)
10239 {
10240 case tfind_number:
10241 sprintf (p, "%x", num);
10242 break;
10243 case tfind_pc:
10244 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10245 break;
10246 case tfind_tp:
10247 sprintf (p, "tdp:%x", num);
10248 break;
10249 case tfind_range:
10250 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10251 break;
10252 case tfind_outside:
10253 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10254 break;
10255 default:
10256 error (_("Unknown trace find type %d"), type);
10257 }
10258
10259 putpkt (rs->buf);
10260 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10261 if (*reply == '\0')
10262 error (_("Target does not support this command."));
10263
10264 while (reply && *reply)
10265 switch (*reply)
10266 {
10267 case 'F':
10268 p = ++reply;
10269 target_frameno = (int) strtol (p, &reply, 16);
10270 if (reply == p)
10271 error (_("Unable to parse trace frame number"));
10272 /* Don't update our remote traceframe number cache on failure
10273 to select a remote traceframe. */
10274 if (target_frameno == -1)
10275 return -1;
10276 break;
10277 case 'T':
10278 p = ++reply;
10279 target_tracept = (int) strtol (p, &reply, 16);
10280 if (reply == p)
10281 error (_("Unable to parse tracepoint number"));
10282 break;
10283 case 'O': /* "OK"? */
10284 if (reply[1] == 'K' && reply[2] == '\0')
10285 reply += 2;
10286 else
10287 error (_("Bogus reply from target: %s"), reply);
10288 break;
10289 default:
10290 error (_("Bogus reply from target: %s"), reply);
10291 }
10292 if (tpp)
10293 *tpp = target_tracept;
10294
10295 remote_traceframe_number = target_frameno;
10296 return target_frameno;
10297 }
10298
10299 static int
10300 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10301 {
10302 struct remote_state *rs = get_remote_state ();
10303 char *reply;
10304 ULONGEST uval;
10305
10306 set_remote_traceframe ();
10307
10308 sprintf (rs->buf, "qTV:%x", tsvnum);
10309 putpkt (rs->buf);
10310 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10311 if (reply && *reply)
10312 {
10313 if (*reply == 'V')
10314 {
10315 unpack_varlen_hex (reply + 1, &uval);
10316 *val = (LONGEST) uval;
10317 return 1;
10318 }
10319 }
10320 return 0;
10321 }
10322
10323 static int
10324 remote_save_trace_data (const char *filename)
10325 {
10326 struct remote_state *rs = get_remote_state ();
10327 char *p, *reply;
10328
10329 p = rs->buf;
10330 strcpy (p, "QTSave:");
10331 p += strlen (p);
10332 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10333 error (_("Remote file name too long for trace save packet"));
10334 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10335 *p++ = '\0';
10336 putpkt (rs->buf);
10337 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10338 if (*reply == '\0')
10339 error (_("Target does not support this command."));
10340 if (strcmp (reply, "OK") != 0)
10341 error (_("Bogus reply from target: %s"), reply);
10342 return 0;
10343 }
10344
10345 /* This is basically a memory transfer, but needs to be its own packet
10346 because we don't know how the target actually organizes its trace
10347 memory, plus we want to be able to ask for as much as possible, but
10348 not be unhappy if we don't get as much as we ask for. */
10349
10350 static LONGEST
10351 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10352 {
10353 struct remote_state *rs = get_remote_state ();
10354 char *reply;
10355 char *p;
10356 int rslt;
10357
10358 p = rs->buf;
10359 strcpy (p, "qTBuffer:");
10360 p += strlen (p);
10361 p += hexnumstr (p, offset);
10362 *p++ = ',';
10363 p += hexnumstr (p, len);
10364 *p++ = '\0';
10365
10366 putpkt (rs->buf);
10367 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10368 if (reply && *reply)
10369 {
10370 /* 'l' by itself means we're at the end of the buffer and
10371 there is nothing more to get. */
10372 if (*reply == 'l')
10373 return 0;
10374
10375 /* Convert the reply into binary. Limit the number of bytes to
10376 convert according to our passed-in buffer size, rather than
10377 what was returned in the packet; if the target is
10378 unexpectedly generous and gives us a bigger reply than we
10379 asked for, we don't want to crash. */
10380 rslt = hex2bin (target_buf, buf, len);
10381 return rslt;
10382 }
10383
10384 /* Something went wrong, flag as an error. */
10385 return -1;
10386 }
10387
10388 static void
10389 remote_set_disconnected_tracing (int val)
10390 {
10391 struct remote_state *rs = get_remote_state ();
10392
10393 if (rs->disconnected_tracing)
10394 {
10395 char *reply;
10396
10397 sprintf (rs->buf, "QTDisconnected:%x", val);
10398 putpkt (rs->buf);
10399 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10400 if (*reply == '\0')
10401 error (_("Target does not support this command."));
10402 if (strcmp (reply, "OK") != 0)
10403 error (_("Bogus reply from target: %s"), reply);
10404 }
10405 else if (val)
10406 warning (_("Target does not support disconnected tracing."));
10407 }
10408
10409 static int
10410 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10411 {
10412 struct thread_info *info = find_thread_ptid (ptid);
10413
10414 if (info && info->private)
10415 return info->private->core;
10416 return -1;
10417 }
10418
10419 static void
10420 remote_set_circular_trace_buffer (int val)
10421 {
10422 struct remote_state *rs = get_remote_state ();
10423 char *reply;
10424
10425 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10426 putpkt (rs->buf);
10427 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10428 if (*reply == '\0')
10429 error (_("Target does not support this command."));
10430 if (strcmp (reply, "OK") != 0)
10431 error (_("Bogus reply from target: %s"), reply);
10432 }
10433
10434 static struct traceframe_info *
10435 remote_traceframe_info (void)
10436 {
10437 char *text;
10438
10439 text = target_read_stralloc (&current_target,
10440 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10441 if (text != NULL)
10442 {
10443 struct traceframe_info *info;
10444 struct cleanup *back_to = make_cleanup (xfree, text);
10445
10446 info = parse_traceframe_info (text);
10447 do_cleanups (back_to);
10448 return info;
10449 }
10450
10451 return NULL;
10452 }
10453
10454 static void
10455 init_remote_ops (void)
10456 {
10457 remote_ops.to_shortname = "remote";
10458 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10459 remote_ops.to_doc =
10460 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10461 Specify the serial device it is connected to\n\
10462 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10463 remote_ops.to_open = remote_open;
10464 remote_ops.to_close = remote_close;
10465 remote_ops.to_detach = remote_detach;
10466 remote_ops.to_disconnect = remote_disconnect;
10467 remote_ops.to_resume = remote_resume;
10468 remote_ops.to_wait = remote_wait;
10469 remote_ops.to_fetch_registers = remote_fetch_registers;
10470 remote_ops.to_store_registers = remote_store_registers;
10471 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10472 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10473 remote_ops.to_files_info = remote_files_info;
10474 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10475 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10476 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10477 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10478 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10479 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10480 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10481 remote_ops.to_region_ok_for_hw_watchpoint
10482 = remote_region_ok_for_hw_watchpoint;
10483 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10484 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10485 remote_ops.to_kill = remote_kill;
10486 remote_ops.to_load = generic_load;
10487 remote_ops.to_mourn_inferior = remote_mourn;
10488 remote_ops.to_pass_signals = remote_pass_signals;
10489 remote_ops.to_thread_alive = remote_thread_alive;
10490 remote_ops.to_find_new_threads = remote_threads_info;
10491 remote_ops.to_pid_to_str = remote_pid_to_str;
10492 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10493 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10494 remote_ops.to_stop = remote_stop;
10495 remote_ops.to_xfer_partial = remote_xfer_partial;
10496 remote_ops.to_rcmd = remote_rcmd;
10497 remote_ops.to_log_command = serial_log_command;
10498 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10499 remote_ops.to_stratum = process_stratum;
10500 remote_ops.to_has_all_memory = default_child_has_all_memory;
10501 remote_ops.to_has_memory = default_child_has_memory;
10502 remote_ops.to_has_stack = default_child_has_stack;
10503 remote_ops.to_has_registers = default_child_has_registers;
10504 remote_ops.to_has_execution = default_child_has_execution;
10505 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10506 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10507 remote_ops.to_magic = OPS_MAGIC;
10508 remote_ops.to_memory_map = remote_memory_map;
10509 remote_ops.to_flash_erase = remote_flash_erase;
10510 remote_ops.to_flash_done = remote_flash_done;
10511 remote_ops.to_read_description = remote_read_description;
10512 remote_ops.to_search_memory = remote_search_memory;
10513 remote_ops.to_can_async_p = remote_can_async_p;
10514 remote_ops.to_is_async_p = remote_is_async_p;
10515 remote_ops.to_async = remote_async;
10516 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10517 remote_ops.to_terminal_ours = remote_terminal_ours;
10518 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10519 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10520 remote_ops.to_supports_disable_randomization
10521 = remote_supports_disable_randomization;
10522 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10523 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
10524 remote_ops.to_trace_init = remote_trace_init;
10525 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10526 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
10527 remote_ops.to_download_trace_state_variable
10528 = remote_download_trace_state_variable;
10529 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10530 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10531 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10532 remote_ops.to_trace_start = remote_trace_start;
10533 remote_ops.to_get_trace_status = remote_get_trace_status;
10534 remote_ops.to_trace_stop = remote_trace_stop;
10535 remote_ops.to_trace_find = remote_trace_find;
10536 remote_ops.to_get_trace_state_variable_value
10537 = remote_get_trace_state_variable_value;
10538 remote_ops.to_save_trace_data = remote_save_trace_data;
10539 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10540 remote_ops.to_upload_trace_state_variables
10541 = remote_upload_trace_state_variables;
10542 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10543 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10544 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10545 remote_ops.to_core_of_thread = remote_core_of_thread;
10546 remote_ops.to_verify_memory = remote_verify_memory;
10547 remote_ops.to_get_tib_address = remote_get_tib_address;
10548 remote_ops.to_set_permissions = remote_set_permissions;
10549 remote_ops.to_static_tracepoint_marker_at
10550 = remote_static_tracepoint_marker_at;
10551 remote_ops.to_static_tracepoint_markers_by_strid
10552 = remote_static_tracepoint_markers_by_strid;
10553 remote_ops.to_traceframe_info = remote_traceframe_info;
10554 }
10555
10556 /* Set up the extended remote vector by making a copy of the standard
10557 remote vector and adding to it. */
10558
10559 static void
10560 init_extended_remote_ops (void)
10561 {
10562 extended_remote_ops = remote_ops;
10563
10564 extended_remote_ops.to_shortname = "extended-remote";
10565 extended_remote_ops.to_longname =
10566 "Extended remote serial target in gdb-specific protocol";
10567 extended_remote_ops.to_doc =
10568 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10569 Specify the serial device it is connected to (e.g. /dev/ttya).";
10570 extended_remote_ops.to_open = extended_remote_open;
10571 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10572 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10573 extended_remote_ops.to_detach = extended_remote_detach;
10574 extended_remote_ops.to_attach = extended_remote_attach;
10575 extended_remote_ops.to_kill = extended_remote_kill;
10576 extended_remote_ops.to_supports_disable_randomization
10577 = extended_remote_supports_disable_randomization;
10578 }
10579
10580 static int
10581 remote_can_async_p (void)
10582 {
10583 if (!target_async_permitted)
10584 /* We only enable async when the user specifically asks for it. */
10585 return 0;
10586
10587 /* We're async whenever the serial device is. */
10588 return serial_can_async_p (remote_desc);
10589 }
10590
10591 static int
10592 remote_is_async_p (void)
10593 {
10594 if (!target_async_permitted)
10595 /* We only enable async when the user specifically asks for it. */
10596 return 0;
10597
10598 /* We're async whenever the serial device is. */
10599 return serial_is_async_p (remote_desc);
10600 }
10601
10602 /* Pass the SERIAL event on and up to the client. One day this code
10603 will be able to delay notifying the client of an event until the
10604 point where an entire packet has been received. */
10605
10606 static void (*async_client_callback) (enum inferior_event_type event_type,
10607 void *context);
10608 static void *async_client_context;
10609 static serial_event_ftype remote_async_serial_handler;
10610
10611 static void
10612 remote_async_serial_handler (struct serial *scb, void *context)
10613 {
10614 /* Don't propogate error information up to the client. Instead let
10615 the client find out about the error by querying the target. */
10616 async_client_callback (INF_REG_EVENT, async_client_context);
10617 }
10618
10619 static void
10620 remote_async_inferior_event_handler (gdb_client_data data)
10621 {
10622 inferior_event_handler (INF_REG_EVENT, NULL);
10623 }
10624
10625 static void
10626 remote_async_get_pending_events_handler (gdb_client_data data)
10627 {
10628 remote_get_pending_stop_replies ();
10629 }
10630
10631 static void
10632 remote_async (void (*callback) (enum inferior_event_type event_type,
10633 void *context), void *context)
10634 {
10635 if (callback != NULL)
10636 {
10637 serial_async (remote_desc, remote_async_serial_handler, NULL);
10638 async_client_callback = callback;
10639 async_client_context = context;
10640 }
10641 else
10642 serial_async (remote_desc, NULL, NULL);
10643 }
10644
10645 static void
10646 set_remote_cmd (char *args, int from_tty)
10647 {
10648 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10649 }
10650
10651 static void
10652 show_remote_cmd (char *args, int from_tty)
10653 {
10654 /* We can't just use cmd_show_list here, because we want to skip
10655 the redundant "show remote Z-packet" and the legacy aliases. */
10656 struct cleanup *showlist_chain;
10657 struct cmd_list_element *list = remote_show_cmdlist;
10658 struct ui_out *uiout = current_uiout;
10659
10660 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10661 for (; list != NULL; list = list->next)
10662 if (strcmp (list->name, "Z-packet") == 0)
10663 continue;
10664 else if (list->type == not_set_cmd)
10665 /* Alias commands are exactly like the original, except they
10666 don't have the normal type. */
10667 continue;
10668 else
10669 {
10670 struct cleanup *option_chain
10671 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10672
10673 ui_out_field_string (uiout, "name", list->name);
10674 ui_out_text (uiout, ": ");
10675 if (list->type == show_cmd)
10676 do_setshow_command ((char *) NULL, from_tty, list);
10677 else
10678 cmd_func (list, NULL, from_tty);
10679 /* Close the tuple. */
10680 do_cleanups (option_chain);
10681 }
10682
10683 /* Close the tuple. */
10684 do_cleanups (showlist_chain);
10685 }
10686
10687
10688 /* Function to be called whenever a new objfile (shlib) is detected. */
10689 static void
10690 remote_new_objfile (struct objfile *objfile)
10691 {
10692 if (remote_desc != 0) /* Have a remote connection. */
10693 remote_check_symbols (objfile);
10694 }
10695
10696 /* Pull all the tracepoints defined on the target and create local
10697 data structures representing them. We don't want to create real
10698 tracepoints yet, we don't want to mess up the user's existing
10699 collection. */
10700
10701 static int
10702 remote_upload_tracepoints (struct uploaded_tp **utpp)
10703 {
10704 struct remote_state *rs = get_remote_state ();
10705 char *p;
10706
10707 /* Ask for a first packet of tracepoint definition. */
10708 putpkt ("qTfP");
10709 getpkt (&rs->buf, &rs->buf_size, 0);
10710 p = rs->buf;
10711 while (*p && *p != 'l')
10712 {
10713 parse_tracepoint_definition (p, utpp);
10714 /* Ask for another packet of tracepoint definition. */
10715 putpkt ("qTsP");
10716 getpkt (&rs->buf, &rs->buf_size, 0);
10717 p = rs->buf;
10718 }
10719 return 0;
10720 }
10721
10722 static int
10723 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10724 {
10725 struct remote_state *rs = get_remote_state ();
10726 char *p;
10727
10728 /* Ask for a first packet of variable definition. */
10729 putpkt ("qTfV");
10730 getpkt (&rs->buf, &rs->buf_size, 0);
10731 p = rs->buf;
10732 while (*p && *p != 'l')
10733 {
10734 parse_tsv_definition (p, utsvp);
10735 /* Ask for another packet of variable definition. */
10736 putpkt ("qTsV");
10737 getpkt (&rs->buf, &rs->buf_size, 0);
10738 p = rs->buf;
10739 }
10740 return 0;
10741 }
10742
10743 void
10744 _initialize_remote (void)
10745 {
10746 struct remote_state *rs;
10747 struct cmd_list_element *cmd;
10748 char *cmd_name;
10749
10750 /* architecture specific data */
10751 remote_gdbarch_data_handle =
10752 gdbarch_data_register_post_init (init_remote_state);
10753 remote_g_packet_data_handle =
10754 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10755
10756 /* Initialize the per-target state. At the moment there is only one
10757 of these, not one per target. Only one target is active at a
10758 time. The default buffer size is unimportant; it will be expanded
10759 whenever a larger buffer is needed. */
10760 rs = get_remote_state_raw ();
10761 rs->buf_size = 400;
10762 rs->buf = xmalloc (rs->buf_size);
10763
10764 init_remote_ops ();
10765 add_target (&remote_ops);
10766
10767 init_extended_remote_ops ();
10768 add_target (&extended_remote_ops);
10769
10770 /* Hook into new objfile notification. */
10771 observer_attach_new_objfile (remote_new_objfile);
10772
10773 /* Set up signal handlers. */
10774 sigint_remote_token =
10775 create_async_signal_handler (async_remote_interrupt, NULL);
10776 sigint_remote_twice_token =
10777 create_async_signal_handler (async_remote_interrupt_twice, NULL);
10778
10779 #if 0
10780 init_remote_threadtests ();
10781 #endif
10782
10783 /* set/show remote ... */
10784
10785 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10786 Remote protocol specific variables\n\
10787 Configure various remote-protocol specific variables such as\n\
10788 the packets being used"),
10789 &remote_set_cmdlist, "set remote ",
10790 0 /* allow-unknown */, &setlist);
10791 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10792 Remote protocol specific variables\n\
10793 Configure various remote-protocol specific variables such as\n\
10794 the packets being used"),
10795 &remote_show_cmdlist, "show remote ",
10796 0 /* allow-unknown */, &showlist);
10797
10798 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10799 Compare section data on target to the exec file.\n\
10800 Argument is a single section name (default: all loaded sections)."),
10801 &cmdlist);
10802
10803 add_cmd ("packet", class_maintenance, packet_command, _("\
10804 Send an arbitrary packet to a remote target.\n\
10805 maintenance packet TEXT\n\
10806 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10807 this command sends the string TEXT to the inferior, and displays the\n\
10808 response packet. GDB supplies the initial `$' character, and the\n\
10809 terminating `#' character and checksum."),
10810 &maintenancelist);
10811
10812 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10813 Set whether to send break if interrupted."), _("\
10814 Show whether to send break if interrupted."), _("\
10815 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10816 set_remotebreak, show_remotebreak,
10817 &setlist, &showlist);
10818 cmd_name = "remotebreak";
10819 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10820 deprecate_cmd (cmd, "set remote interrupt-sequence");
10821 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10822 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10823 deprecate_cmd (cmd, "show remote interrupt-sequence");
10824
10825 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10826 interrupt_sequence_modes, &interrupt_sequence_mode,
10827 _("\
10828 Set interrupt sequence to remote target."), _("\
10829 Show interrupt sequence to remote target."), _("\
10830 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10831 NULL, show_interrupt_sequence,
10832 &remote_set_cmdlist,
10833 &remote_show_cmdlist);
10834
10835 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10836 &interrupt_on_connect, _("\
10837 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10838 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10839 If set, interrupt sequence is sent to remote target."),
10840 NULL, NULL,
10841 &remote_set_cmdlist, &remote_show_cmdlist);
10842
10843 /* Install commands for configuring memory read/write packets. */
10844
10845 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10846 Set the maximum number of bytes per memory write packet (deprecated)."),
10847 &setlist);
10848 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10849 Show the maximum number of bytes per memory write packet (deprecated)."),
10850 &showlist);
10851 add_cmd ("memory-write-packet-size", no_class,
10852 set_memory_write_packet_size, _("\
10853 Set the maximum number of bytes per memory-write packet.\n\
10854 Specify the number of bytes in a packet or 0 (zero) for the\n\
10855 default packet size. The actual limit is further reduced\n\
10856 dependent on the target. Specify ``fixed'' to disable the\n\
10857 further restriction and ``limit'' to enable that restriction."),
10858 &remote_set_cmdlist);
10859 add_cmd ("memory-read-packet-size", no_class,
10860 set_memory_read_packet_size, _("\
10861 Set the maximum number of bytes per memory-read packet.\n\
10862 Specify the number of bytes in a packet or 0 (zero) for the\n\
10863 default packet size. The actual limit is further reduced\n\
10864 dependent on the target. Specify ``fixed'' to disable the\n\
10865 further restriction and ``limit'' to enable that restriction."),
10866 &remote_set_cmdlist);
10867 add_cmd ("memory-write-packet-size", no_class,
10868 show_memory_write_packet_size,
10869 _("Show the maximum number of bytes per memory-write packet."),
10870 &remote_show_cmdlist);
10871 add_cmd ("memory-read-packet-size", no_class,
10872 show_memory_read_packet_size,
10873 _("Show the maximum number of bytes per memory-read packet."),
10874 &remote_show_cmdlist);
10875
10876 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10877 &remote_hw_watchpoint_limit, _("\
10878 Set the maximum number of target hardware watchpoints."), _("\
10879 Show the maximum number of target hardware watchpoints."), _("\
10880 Specify a negative limit for unlimited."),
10881 NULL, NULL, /* FIXME: i18n: The maximum
10882 number of target hardware
10883 watchpoints is %s. */
10884 &remote_set_cmdlist, &remote_show_cmdlist);
10885 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
10886 &remote_hw_watchpoint_length_limit, _("\
10887 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
10888 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
10889 Specify a negative limit for unlimited."),
10890 NULL, NULL, /* FIXME: i18n: The maximum
10891 length (in bytes) of a target
10892 hardware watchpoint is %s. */
10893 &remote_set_cmdlist, &remote_show_cmdlist);
10894 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10895 &remote_hw_breakpoint_limit, _("\
10896 Set the maximum number of target hardware breakpoints."), _("\
10897 Show the maximum number of target hardware breakpoints."), _("\
10898 Specify a negative limit for unlimited."),
10899 NULL, NULL, /* FIXME: i18n: The maximum
10900 number of target hardware
10901 breakpoints is %s. */
10902 &remote_set_cmdlist, &remote_show_cmdlist);
10903
10904 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10905 &remote_address_size, _("\
10906 Set the maximum size of the address (in bits) in a memory packet."), _("\
10907 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10908 NULL,
10909 NULL, /* FIXME: i18n: */
10910 &setlist, &showlist);
10911
10912 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10913 "X", "binary-download", 1);
10914
10915 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10916 "vCont", "verbose-resume", 0);
10917
10918 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10919 "QPassSignals", "pass-signals", 0);
10920
10921 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10922 "qSymbol", "symbol-lookup", 0);
10923
10924 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10925 "P", "set-register", 1);
10926
10927 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10928 "p", "fetch-register", 1);
10929
10930 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10931 "Z0", "software-breakpoint", 0);
10932
10933 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10934 "Z1", "hardware-breakpoint", 0);
10935
10936 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10937 "Z2", "write-watchpoint", 0);
10938
10939 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10940 "Z3", "read-watchpoint", 0);
10941
10942 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10943 "Z4", "access-watchpoint", 0);
10944
10945 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10946 "qXfer:auxv:read", "read-aux-vector", 0);
10947
10948 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10949 "qXfer:features:read", "target-features", 0);
10950
10951 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10952 "qXfer:libraries:read", "library-info", 0);
10953
10954 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10955 "qXfer:memory-map:read", "memory-map", 0);
10956
10957 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10958 "qXfer:spu:read", "read-spu-object", 0);
10959
10960 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10961 "qXfer:spu:write", "write-spu-object", 0);
10962
10963 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10964 "qXfer:osdata:read", "osdata", 0);
10965
10966 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10967 "qXfer:threads:read", "threads", 0);
10968
10969 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10970 "qXfer:siginfo:read", "read-siginfo-object", 0);
10971
10972 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10973 "qXfer:siginfo:write", "write-siginfo-object", 0);
10974
10975 add_packet_config_cmd
10976 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
10977 "qXfer:trace-frame-info:read", "traceframe-info", 0);
10978
10979 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10980 "qGetTLSAddr", "get-thread-local-storage-address",
10981 0);
10982
10983 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10984 "qGetTIBAddr", "get-thread-information-block-address",
10985 0);
10986
10987 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10988 "bc", "reverse-continue", 0);
10989
10990 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10991 "bs", "reverse-step", 0);
10992
10993 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10994 "qSupported", "supported-packets", 0);
10995
10996 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10997 "qSearch:memory", "search-memory", 0);
10998
10999 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11000 "vFile:open", "hostio-open", 0);
11001
11002 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11003 "vFile:pread", "hostio-pread", 0);
11004
11005 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11006 "vFile:pwrite", "hostio-pwrite", 0);
11007
11008 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11009 "vFile:close", "hostio-close", 0);
11010
11011 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11012 "vFile:unlink", "hostio-unlink", 0);
11013
11014 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11015 "vAttach", "attach", 0);
11016
11017 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11018 "vRun", "run", 0);
11019
11020 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11021 "QStartNoAckMode", "noack", 0);
11022
11023 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11024 "vKill", "kill", 0);
11025
11026 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11027 "qAttached", "query-attached", 0);
11028
11029 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11030 "ConditionalTracepoints",
11031 "conditional-tracepoints", 0);
11032 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11033 "FastTracepoints", "fast-tracepoints", 0);
11034
11035 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11036 "TracepointSource", "TracepointSource", 0);
11037
11038 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11039 "QAllow", "allow", 0);
11040
11041 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11042 "StaticTracepoints", "static-tracepoints", 0);
11043
11044 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11045 "InstallInTrace", "install-in-trace", 0);
11046
11047 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11048 "qXfer:statictrace:read", "read-sdata-object", 0);
11049
11050 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11051 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11052
11053 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11054 "QDisableRandomization", "disable-randomization", 0);
11055
11056 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11057 Z sub-packet has its own set and show commands, but users may
11058 have sets to this variable in their .gdbinit files (or in their
11059 documentation). */
11060 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11061 &remote_Z_packet_detect, _("\
11062 Set use of remote protocol `Z' packets"), _("\
11063 Show use of remote protocol `Z' packets "), _("\
11064 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11065 packets."),
11066 set_remote_protocol_Z_packet_cmd,
11067 show_remote_protocol_Z_packet_cmd,
11068 /* FIXME: i18n: Use of remote protocol
11069 `Z' packets is %s. */
11070 &remote_set_cmdlist, &remote_show_cmdlist);
11071
11072 add_prefix_cmd ("remote", class_files, remote_command, _("\
11073 Manipulate files on the remote system\n\
11074 Transfer files to and from the remote target system."),
11075 &remote_cmdlist, "remote ",
11076 0 /* allow-unknown */, &cmdlist);
11077
11078 add_cmd ("put", class_files, remote_put_command,
11079 _("Copy a local file to the remote system."),
11080 &remote_cmdlist);
11081
11082 add_cmd ("get", class_files, remote_get_command,
11083 _("Copy a remote file to the local system."),
11084 &remote_cmdlist);
11085
11086 add_cmd ("delete", class_files, remote_delete_command,
11087 _("Delete a remote file."),
11088 &remote_cmdlist);
11089
11090 remote_exec_file = xstrdup ("");
11091 add_setshow_string_noescape_cmd ("exec-file", class_files,
11092 &remote_exec_file, _("\
11093 Set the remote pathname for \"run\""), _("\
11094 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11095 &remote_set_cmdlist, &remote_show_cmdlist);
11096
11097 /* Eventually initialize fileio. See fileio.c */
11098 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11099
11100 /* Take advantage of the fact that the LWP field is not used, to tag
11101 special ptids with it set to != 0. */
11102 magic_null_ptid = ptid_build (42000, 1, -1);
11103 not_sent_ptid = ptid_build (42000, 1, -2);
11104 any_thread_ptid = ptid_build (42000, 1, 0);
11105
11106 target_buf_size = 2048;
11107 target_buf = xmalloc (target_buf_size);
11108 }
11109
This page took 0.386929 seconds and 5 git commands to generate.