Add GDB-side remote target support for memory tagging
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82
83 /* The remote target. */
84
85 static const char remote_doc[] = N_("\
86 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
87 Specify the serial device it is connected to\n\
88 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
89
90 /* See remote.h */
91
92 bool remote_debug = false;
93
94 #define OPAQUETHREADBYTES 8
95
96 /* a 64 bit opaque identifier */
97 typedef unsigned char threadref[OPAQUETHREADBYTES];
98
99 struct gdb_ext_thread_info;
100 struct threads_listing_context;
101 typedef int (*rmt_thread_action) (threadref *ref, void *context);
102 struct protocol_feature;
103 struct packet_reg;
104
105 struct stop_reply;
106 typedef std::unique_ptr<stop_reply> stop_reply_up;
107
108 /* Generic configuration support for packets the stub optionally
109 supports. Allows the user to specify the use of the packet as well
110 as allowing GDB to auto-detect support in the remote stub. */
111
112 enum packet_support
113 {
114 PACKET_SUPPORT_UNKNOWN = 0,
115 PACKET_ENABLE,
116 PACKET_DISABLE
117 };
118
119 /* Analyze a packet's return value and update the packet config
120 accordingly. */
121
122 enum packet_result
123 {
124 PACKET_ERROR,
125 PACKET_OK,
126 PACKET_UNKNOWN
127 };
128
129 struct threads_listing_context;
130
131 /* Stub vCont actions support.
132
133 Each field is a boolean flag indicating whether the stub reports
134 support for the corresponding action. */
135
136 struct vCont_action_support
137 {
138 /* vCont;t */
139 bool t = false;
140
141 /* vCont;r */
142 bool r = false;
143
144 /* vCont;s */
145 bool s = false;
146
147 /* vCont;S */
148 bool S = false;
149 };
150
151 /* About this many threadids fit in a packet. */
152
153 #define MAXTHREADLISTRESULTS 32
154
155 /* Data for the vFile:pread readahead cache. */
156
157 struct readahead_cache
158 {
159 /* Invalidate the readahead cache. */
160 void invalidate ();
161
162 /* Invalidate the readahead cache if it is holding data for FD. */
163 void invalidate_fd (int fd);
164
165 /* Serve pread from the readahead cache. Returns number of bytes
166 read, or 0 if the request can't be served from the cache. */
167 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
168
169 /* The file descriptor for the file that is being cached. -1 if the
170 cache is invalid. */
171 int fd = -1;
172
173 /* The offset into the file that the cache buffer corresponds
174 to. */
175 ULONGEST offset = 0;
176
177 /* The buffer holding the cache contents. */
178 gdb_byte *buf = nullptr;
179 /* The buffer's size. We try to read as much as fits into a packet
180 at a time. */
181 size_t bufsize = 0;
182
183 /* Cache hit and miss counters. */
184 ULONGEST hit_count = 0;
185 ULONGEST miss_count = 0;
186 };
187
188 /* Description of the remote protocol for a given architecture. */
189
190 struct packet_reg
191 {
192 long offset; /* Offset into G packet. */
193 long regnum; /* GDB's internal register number. */
194 LONGEST pnum; /* Remote protocol register number. */
195 int in_g_packet; /* Always part of G packet. */
196 /* long size in bytes; == register_size (target_gdbarch (), regnum);
197 at present. */
198 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
199 at present. */
200 };
201
202 struct remote_arch_state
203 {
204 explicit remote_arch_state (struct gdbarch *gdbarch);
205
206 /* Description of the remote protocol registers. */
207 long sizeof_g_packet;
208
209 /* Description of the remote protocol registers indexed by REGNUM
210 (making an array gdbarch_num_regs in size). */
211 std::unique_ptr<packet_reg[]> regs;
212
213 /* This is the size (in chars) of the first response to the ``g''
214 packet. It is used as a heuristic when determining the maximum
215 size of memory-read and memory-write packets. A target will
216 typically only reserve a buffer large enough to hold the ``g''
217 packet. The size does not include packet overhead (headers and
218 trailers). */
219 long actual_register_packet_size;
220
221 /* This is the maximum size (in chars) of a non read/write packet.
222 It is also used as a cap on the size of read/write packets. */
223 long remote_packet_size;
224 };
225
226 /* Description of the remote protocol state for the currently
227 connected target. This is per-target state, and independent of the
228 selected architecture. */
229
230 class remote_state
231 {
232 public:
233
234 remote_state ();
235 ~remote_state ();
236
237 /* Get the remote arch state for GDBARCH. */
238 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
239
240 public: /* data */
241
242 /* A buffer to use for incoming packets, and its current size. The
243 buffer is grown dynamically for larger incoming packets.
244 Outgoing packets may also be constructed in this buffer.
245 The size of the buffer is always at least REMOTE_PACKET_SIZE;
246 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
247 packets. */
248 gdb::char_vector buf;
249
250 /* True if we're going through initial connection setup (finding out
251 about the remote side's threads, relocating symbols, etc.). */
252 bool starting_up = false;
253
254 /* If we negotiated packet size explicitly (and thus can bypass
255 heuristics for the largest packet size that will not overflow
256 a buffer in the stub), this will be set to that packet size.
257 Otherwise zero, meaning to use the guessed size. */
258 long explicit_packet_size = 0;
259
260 /* remote_wait is normally called when the target is running and
261 waits for a stop reply packet. But sometimes we need to call it
262 when the target is already stopped. We can send a "?" packet
263 and have remote_wait read the response. Or, if we already have
264 the response, we can stash it in BUF and tell remote_wait to
265 skip calling getpkt. This flag is set when BUF contains a
266 stop reply packet and the target is not waiting. */
267 int cached_wait_status = 0;
268
269 /* True, if in no ack mode. That is, neither GDB nor the stub will
270 expect acks from each other. The connection is assumed to be
271 reliable. */
272 bool noack_mode = false;
273
274 /* True if we're connected in extended remote mode. */
275 bool extended = false;
276
277 /* True if we resumed the target and we're waiting for the target to
278 stop. In the mean time, we can't start another command/query.
279 The remote server wouldn't be ready to process it, so we'd
280 timeout waiting for a reply that would never come and eventually
281 we'd close the connection. This can happen in asynchronous mode
282 because we allow GDB commands while the target is running. */
283 bool waiting_for_stop_reply = false;
284
285 /* The status of the stub support for the various vCont actions. */
286 vCont_action_support supports_vCont;
287 /* Whether vCont support was probed already. This is a workaround
288 until packet_support is per-connection. */
289 bool supports_vCont_probed;
290
291 /* True if the user has pressed Ctrl-C, but the target hasn't
292 responded to that. */
293 bool ctrlc_pending_p = false;
294
295 /* True if we saw a Ctrl-C while reading or writing from/to the
296 remote descriptor. At that point it is not safe to send a remote
297 interrupt packet, so we instead remember we saw the Ctrl-C and
298 process it once we're done with sending/receiving the current
299 packet, which should be shortly. If however that takes too long,
300 and the user presses Ctrl-C again, we offer to disconnect. */
301 bool got_ctrlc_during_io = false;
302
303 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
304 remote_open knows that we don't have a file open when the program
305 starts. */
306 struct serial *remote_desc = nullptr;
307
308 /* These are the threads which we last sent to the remote system. The
309 TID member will be -1 for all or -2 for not sent yet. */
310 ptid_t general_thread = null_ptid;
311 ptid_t continue_thread = null_ptid;
312
313 /* This is the traceframe which we last selected on the remote system.
314 It will be -1 if no traceframe is selected. */
315 int remote_traceframe_number = -1;
316
317 char *last_pass_packet = nullptr;
318
319 /* The last QProgramSignals packet sent to the target. We bypass
320 sending a new program signals list down to the target if the new
321 packet is exactly the same as the last we sent. IOW, we only let
322 the target know about program signals list changes. */
323 char *last_program_signals_packet = nullptr;
324
325 gdb_signal last_sent_signal = GDB_SIGNAL_0;
326
327 bool last_sent_step = false;
328
329 /* The execution direction of the last resume we got. */
330 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
331
332 char *finished_object = nullptr;
333 char *finished_annex = nullptr;
334 ULONGEST finished_offset = 0;
335
336 /* Should we try the 'ThreadInfo' query packet?
337
338 This variable (NOT available to the user: auto-detect only!)
339 determines whether GDB will use the new, simpler "ThreadInfo"
340 query or the older, more complex syntax for thread queries.
341 This is an auto-detect variable (set to true at each connect,
342 and set to false when the target fails to recognize it). */
343 bool use_threadinfo_query = false;
344 bool use_threadextra_query = false;
345
346 threadref echo_nextthread {};
347 threadref nextthread {};
348 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
349
350 /* The state of remote notification. */
351 struct remote_notif_state *notif_state = nullptr;
352
353 /* The branch trace configuration. */
354 struct btrace_config btrace_config {};
355
356 /* The argument to the last "vFile:setfs:" packet we sent, used
357 to avoid sending repeated unnecessary "vFile:setfs:" packets.
358 Initialized to -1 to indicate that no "vFile:setfs:" packet
359 has yet been sent. */
360 int fs_pid = -1;
361
362 /* A readahead cache for vFile:pread. Often, reading a binary
363 involves a sequence of small reads. E.g., when parsing an ELF
364 file. A readahead cache helps mostly the case of remote
365 debugging on a connection with higher latency, due to the
366 request/reply nature of the RSP. We only cache data for a single
367 file descriptor at a time. */
368 struct readahead_cache readahead_cache;
369
370 /* The list of already fetched and acknowledged stop events. This
371 queue is used for notification Stop, and other notifications
372 don't need queue for their events, because the notification
373 events of Stop can't be consumed immediately, so that events
374 should be queued first, and be consumed by remote_wait_{ns,as}
375 one per time. Other notifications can consume their events
376 immediately, so queue is not needed for them. */
377 std::vector<stop_reply_up> stop_reply_queue;
378
379 /* Asynchronous signal handle registered as event loop source for
380 when we have pending events ready to be passed to the core. */
381 struct async_event_handler *remote_async_inferior_event_token = nullptr;
382
383 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
384 ``forever'' still use the normal timeout mechanism. This is
385 currently used by the ASYNC code to guarentee that target reads
386 during the initial connect always time-out. Once getpkt has been
387 modified to return a timeout indication and, in turn
388 remote_wait()/wait_for_inferior() have gained a timeout parameter
389 this can go away. */
390 int wait_forever_enabled_p = 1;
391
392 private:
393 /* Mapping of remote protocol data for each gdbarch. Usually there
394 is only one entry here, though we may see more with stubs that
395 support multi-process. */
396 std::unordered_map<struct gdbarch *, remote_arch_state>
397 m_arch_states;
398 };
399
400 static const target_info remote_target_info = {
401 "remote",
402 N_("Remote serial target in gdb-specific protocol"),
403 remote_doc
404 };
405
406 class remote_target : public process_stratum_target
407 {
408 public:
409 remote_target () = default;
410 ~remote_target () override;
411
412 const target_info &info () const override
413 { return remote_target_info; }
414
415 const char *connection_string () override;
416
417 thread_control_capabilities get_thread_control_capabilities () override
418 { return tc_schedlock; }
419
420 /* Open a remote connection. */
421 static void open (const char *, int);
422
423 void close () override;
424
425 void detach (inferior *, int) override;
426 void disconnect (const char *, int) override;
427
428 void commit_resume () override;
429 void resume (ptid_t, int, enum gdb_signal) override;
430 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
431
432 void fetch_registers (struct regcache *, int) override;
433 void store_registers (struct regcache *, int) override;
434 void prepare_to_store (struct regcache *) override;
435
436 void files_info () override;
437
438 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
439
440 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
441 enum remove_bp_reason) override;
442
443
444 bool stopped_by_sw_breakpoint () override;
445 bool supports_stopped_by_sw_breakpoint () override;
446
447 bool stopped_by_hw_breakpoint () override;
448
449 bool supports_stopped_by_hw_breakpoint () override;
450
451 bool stopped_by_watchpoint () override;
452
453 bool stopped_data_address (CORE_ADDR *) override;
454
455 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
456
457 int can_use_hw_breakpoint (enum bptype, int, int) override;
458
459 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
464
465 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
466 struct expression *) override;
467
468 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
469 struct expression *) override;
470
471 void kill () override;
472
473 void load (const char *, int) override;
474
475 void mourn_inferior () override;
476
477 void pass_signals (gdb::array_view<const unsigned char>) override;
478
479 int set_syscall_catchpoint (int, bool, int,
480 gdb::array_view<const int>) override;
481
482 void program_signals (gdb::array_view<const unsigned char>) override;
483
484 bool thread_alive (ptid_t ptid) override;
485
486 const char *thread_name (struct thread_info *) override;
487
488 void update_thread_list () override;
489
490 std::string pid_to_str (ptid_t) override;
491
492 const char *extra_thread_info (struct thread_info *) override;
493
494 ptid_t get_ada_task_ptid (long lwp, long thread) override;
495
496 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
497 int handle_len,
498 inferior *inf) override;
499
500 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
501 override;
502
503 void stop (ptid_t) override;
504
505 void interrupt () override;
506
507 void pass_ctrlc () override;
508
509 enum target_xfer_status xfer_partial (enum target_object object,
510 const char *annex,
511 gdb_byte *readbuf,
512 const gdb_byte *writebuf,
513 ULONGEST offset, ULONGEST len,
514 ULONGEST *xfered_len) override;
515
516 ULONGEST get_memory_xfer_limit () override;
517
518 void rcmd (const char *command, struct ui_file *output) override;
519
520 char *pid_to_exec_file (int pid) override;
521
522 void log_command (const char *cmd) override
523 {
524 serial_log_command (this, cmd);
525 }
526
527 CORE_ADDR get_thread_local_address (ptid_t ptid,
528 CORE_ADDR load_module_addr,
529 CORE_ADDR offset) override;
530
531 bool can_execute_reverse () override;
532
533 std::vector<mem_region> memory_map () override;
534
535 void flash_erase (ULONGEST address, LONGEST length) override;
536
537 void flash_done () override;
538
539 const struct target_desc *read_description () override;
540
541 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
542 const gdb_byte *pattern, ULONGEST pattern_len,
543 CORE_ADDR *found_addrp) override;
544
545 bool can_async_p () override;
546
547 bool is_async_p () override;
548
549 void async (int) override;
550
551 int async_wait_fd () override;
552
553 void thread_events (int) override;
554
555 int can_do_single_step () override;
556
557 void terminal_inferior () override;
558
559 void terminal_ours () override;
560
561 bool supports_non_stop () override;
562
563 bool supports_multi_process () override;
564
565 bool supports_disable_randomization () override;
566
567 bool filesystem_is_local () override;
568
569
570 int fileio_open (struct inferior *inf, const char *filename,
571 int flags, int mode, int warn_if_slow,
572 int *target_errno) override;
573
574 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
575 ULONGEST offset, int *target_errno) override;
576
577 int fileio_pread (int fd, gdb_byte *read_buf, int len,
578 ULONGEST offset, int *target_errno) override;
579
580 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
581
582 int fileio_close (int fd, int *target_errno) override;
583
584 int fileio_unlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 gdb::optional<std::string>
589 fileio_readlink (struct inferior *inf,
590 const char *filename,
591 int *target_errno) override;
592
593 bool supports_enable_disable_tracepoint () override;
594
595 bool supports_string_tracing () override;
596
597 bool supports_evaluation_of_breakpoint_conditions () override;
598
599 bool can_run_breakpoint_commands () override;
600
601 void trace_init () override;
602
603 void download_tracepoint (struct bp_location *location) override;
604
605 bool can_download_tracepoint () override;
606
607 void download_trace_state_variable (const trace_state_variable &tsv) override;
608
609 void enable_tracepoint (struct bp_location *location) override;
610
611 void disable_tracepoint (struct bp_location *location) override;
612
613 void trace_set_readonly_regions () override;
614
615 void trace_start () override;
616
617 int get_trace_status (struct trace_status *ts) override;
618
619 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
620 override;
621
622 void trace_stop () override;
623
624 int trace_find (enum trace_find_type type, int num,
625 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
626
627 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
628
629 int save_trace_data (const char *filename) override;
630
631 int upload_tracepoints (struct uploaded_tp **utpp) override;
632
633 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
634
635 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
636
637 int get_min_fast_tracepoint_insn_len () override;
638
639 void set_disconnected_tracing (int val) override;
640
641 void set_circular_trace_buffer (int val) override;
642
643 void set_trace_buffer_size (LONGEST val) override;
644
645 bool set_trace_notes (const char *user, const char *notes,
646 const char *stopnotes) override;
647
648 int core_of_thread (ptid_t ptid) override;
649
650 int verify_memory (const gdb_byte *data,
651 CORE_ADDR memaddr, ULONGEST size) override;
652
653
654 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
655
656 void set_permissions () override;
657
658 bool static_tracepoint_marker_at (CORE_ADDR,
659 struct static_tracepoint_marker *marker)
660 override;
661
662 std::vector<static_tracepoint_marker>
663 static_tracepoint_markers_by_strid (const char *id) override;
664
665 traceframe_info_up traceframe_info () override;
666
667 bool use_agent (bool use) override;
668 bool can_use_agent () override;
669
670 struct btrace_target_info *enable_btrace (ptid_t ptid,
671 const struct btrace_config *conf) override;
672
673 void disable_btrace (struct btrace_target_info *tinfo) override;
674
675 void teardown_btrace (struct btrace_target_info *tinfo) override;
676
677 enum btrace_error read_btrace (struct btrace_data *data,
678 struct btrace_target_info *btinfo,
679 enum btrace_read_type type) override;
680
681 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
682 bool augmented_libraries_svr4_read () override;
683 bool follow_fork (bool, bool) override;
684 void follow_exec (struct inferior *, const char *) override;
685 int insert_fork_catchpoint (int) override;
686 int remove_fork_catchpoint (int) override;
687 int insert_vfork_catchpoint (int) override;
688 int remove_vfork_catchpoint (int) override;
689 int insert_exec_catchpoint (int) override;
690 int remove_exec_catchpoint (int) override;
691 enum exec_direction_kind execution_direction () override;
692
693 bool supports_memory_tagging () override;
694
695 bool fetch_memtags (CORE_ADDR address, size_t len,
696 gdb::byte_vector &tags, int type) override;
697
698 bool store_memtags (CORE_ADDR address, size_t len,
699 const gdb::byte_vector &tags, int type) override;
700
701 public: /* Remote specific methods. */
702
703 void remote_download_command_source (int num, ULONGEST addr,
704 struct command_line *cmds);
705
706 void remote_file_put (const char *local_file, const char *remote_file,
707 int from_tty);
708 void remote_file_get (const char *remote_file, const char *local_file,
709 int from_tty);
710 void remote_file_delete (const char *remote_file, int from_tty);
711
712 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
713 ULONGEST offset, int *remote_errno);
714 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
717 ULONGEST offset, int *remote_errno);
718
719 int remote_hostio_send_command (int command_bytes, int which_packet,
720 int *remote_errno, const char **attachment,
721 int *attachment_len);
722 int remote_hostio_set_filesystem (struct inferior *inf,
723 int *remote_errno);
724 /* We should get rid of this and use fileio_open directly. */
725 int remote_hostio_open (struct inferior *inf, const char *filename,
726 int flags, int mode, int warn_if_slow,
727 int *remote_errno);
728 int remote_hostio_close (int fd, int *remote_errno);
729
730 int remote_hostio_unlink (inferior *inf, const char *filename,
731 int *remote_errno);
732
733 struct remote_state *get_remote_state ();
734
735 long get_remote_packet_size (void);
736 long get_memory_packet_size (struct memory_packet_config *config);
737
738 long get_memory_write_packet_size ();
739 long get_memory_read_packet_size ();
740
741 char *append_pending_thread_resumptions (char *p, char *endp,
742 ptid_t ptid);
743 static void open_1 (const char *name, int from_tty, int extended_p);
744 void start_remote (int from_tty, int extended_p);
745 void remote_detach_1 (struct inferior *inf, int from_tty);
746
747 char *append_resumption (char *p, char *endp,
748 ptid_t ptid, int step, gdb_signal siggnal);
749 int remote_resume_with_vcont (ptid_t ptid, int step,
750 gdb_signal siggnal);
751
752 thread_info *add_current_inferior_and_thread (const char *wait_status);
753
754 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
755 target_wait_flags options);
756 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
757 target_wait_flags options);
758
759 ptid_t process_stop_reply (struct stop_reply *stop_reply,
760 target_waitstatus *status);
761
762 ptid_t select_thread_for_ambiguous_stop_reply
763 (const struct target_waitstatus *status);
764
765 void remote_notice_new_inferior (ptid_t currthread, int executing);
766
767 void process_initial_stop_replies (int from_tty);
768
769 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
770
771 void btrace_sync_conf (const btrace_config *conf);
772
773 void remote_btrace_maybe_reopen ();
774
775 void remove_new_fork_children (threads_listing_context *context);
776 void kill_new_fork_children (int pid);
777 void discard_pending_stop_replies (struct inferior *inf);
778 int stop_reply_queue_length ();
779
780 void check_pending_events_prevent_wildcard_vcont
781 (int *may_global_wildcard_vcont);
782
783 void discard_pending_stop_replies_in_queue ();
784 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
785 struct stop_reply *queued_stop_reply (ptid_t ptid);
786 int peek_stop_reply (ptid_t ptid);
787 void remote_parse_stop_reply (const char *buf, stop_reply *event);
788
789 void remote_stop_ns (ptid_t ptid);
790 void remote_interrupt_as ();
791 void remote_interrupt_ns ();
792
793 char *remote_get_noisy_reply ();
794 int remote_query_attached (int pid);
795 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
796 int try_open_exec);
797
798 ptid_t remote_current_thread (ptid_t oldpid);
799 ptid_t get_current_thread (const char *wait_status);
800
801 void set_thread (ptid_t ptid, int gen);
802 void set_general_thread (ptid_t ptid);
803 void set_continue_thread (ptid_t ptid);
804 void set_general_process ();
805
806 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
807
808 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
809 gdb_ext_thread_info *info);
810 int remote_get_threadinfo (threadref *threadid, int fieldset,
811 gdb_ext_thread_info *info);
812
813 int parse_threadlist_response (const char *pkt, int result_limit,
814 threadref *original_echo,
815 threadref *resultlist,
816 int *doneflag);
817 int remote_get_threadlist (int startflag, threadref *nextthread,
818 int result_limit, int *done, int *result_count,
819 threadref *threadlist);
820
821 int remote_threadlist_iterator (rmt_thread_action stepfunction,
822 void *context, int looplimit);
823
824 int remote_get_threads_with_ql (threads_listing_context *context);
825 int remote_get_threads_with_qxfer (threads_listing_context *context);
826 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
827
828 void extended_remote_restart ();
829
830 void get_offsets ();
831
832 void remote_check_symbols ();
833
834 void remote_supported_packet (const struct protocol_feature *feature,
835 enum packet_support support,
836 const char *argument);
837
838 void remote_query_supported ();
839
840 void remote_packet_size (const protocol_feature *feature,
841 packet_support support, const char *value);
842
843 void remote_serial_quit_handler ();
844
845 void remote_detach_pid (int pid);
846
847 void remote_vcont_probe ();
848
849 void remote_resume_with_hc (ptid_t ptid, int step,
850 gdb_signal siggnal);
851
852 void send_interrupt_sequence ();
853 void interrupt_query ();
854
855 void remote_notif_get_pending_events (notif_client *nc);
856
857 int fetch_register_using_p (struct regcache *regcache,
858 packet_reg *reg);
859 int send_g_packet ();
860 void process_g_packet (struct regcache *regcache);
861 void fetch_registers_using_g (struct regcache *regcache);
862 int store_register_using_P (const struct regcache *regcache,
863 packet_reg *reg);
864 void store_registers_using_G (const struct regcache *regcache);
865
866 void set_remote_traceframe ();
867
868 void check_binary_download (CORE_ADDR addr);
869
870 target_xfer_status remote_write_bytes_aux (const char *header,
871 CORE_ADDR memaddr,
872 const gdb_byte *myaddr,
873 ULONGEST len_units,
874 int unit_size,
875 ULONGEST *xfered_len_units,
876 char packet_format,
877 int use_length);
878
879 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
880 const gdb_byte *myaddr, ULONGEST len,
881 int unit_size, ULONGEST *xfered_len);
882
883 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
884 ULONGEST len_units,
885 int unit_size, ULONGEST *xfered_len_units);
886
887 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
888 ULONGEST memaddr,
889 ULONGEST len,
890 int unit_size,
891 ULONGEST *xfered_len);
892
893 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
894 gdb_byte *myaddr, ULONGEST len,
895 int unit_size,
896 ULONGEST *xfered_len);
897
898 packet_result remote_send_printf (const char *format, ...)
899 ATTRIBUTE_PRINTF (2, 3);
900
901 target_xfer_status remote_flash_write (ULONGEST address,
902 ULONGEST length, ULONGEST *xfered_len,
903 const gdb_byte *data);
904
905 int readchar (int timeout);
906
907 void remote_serial_write (const char *str, int len);
908
909 int putpkt (const char *buf);
910 int putpkt_binary (const char *buf, int cnt);
911
912 int putpkt (const gdb::char_vector &buf)
913 {
914 return putpkt (buf.data ());
915 }
916
917 void skip_frame ();
918 long read_frame (gdb::char_vector *buf_p);
919 void getpkt (gdb::char_vector *buf, int forever);
920 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
921 int expecting_notif, int *is_notif);
922 int getpkt_sane (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
924 int *is_notif);
925 int remote_vkill (int pid);
926 void remote_kill_k ();
927
928 void extended_remote_disable_randomization (int val);
929 int extended_remote_run (const std::string &args);
930
931 void send_environment_packet (const char *action,
932 const char *packet,
933 const char *value);
934
935 void extended_remote_environment_support ();
936 void extended_remote_set_inferior_cwd ();
937
938 target_xfer_status remote_write_qxfer (const char *object_name,
939 const char *annex,
940 const gdb_byte *writebuf,
941 ULONGEST offset, LONGEST len,
942 ULONGEST *xfered_len,
943 struct packet_config *packet);
944
945 target_xfer_status remote_read_qxfer (const char *object_name,
946 const char *annex,
947 gdb_byte *readbuf, ULONGEST offset,
948 LONGEST len,
949 ULONGEST *xfered_len,
950 struct packet_config *packet);
951
952 void push_stop_reply (struct stop_reply *new_event);
953
954 bool vcont_r_supported ();
955
956 void packet_command (const char *args, int from_tty);
957
958 private: /* data fields */
959
960 /* The remote state. Don't reference this directly. Use the
961 get_remote_state method instead. */
962 remote_state m_remote_state;
963 };
964
965 static const target_info extended_remote_target_info = {
966 "extended-remote",
967 N_("Extended remote serial target in gdb-specific protocol"),
968 remote_doc
969 };
970
971 /* Set up the extended remote target by extending the standard remote
972 target and adding to it. */
973
974 class extended_remote_target final : public remote_target
975 {
976 public:
977 const target_info &info () const override
978 { return extended_remote_target_info; }
979
980 /* Open an extended-remote connection. */
981 static void open (const char *, int);
982
983 bool can_create_inferior () override { return true; }
984 void create_inferior (const char *, const std::string &,
985 char **, int) override;
986
987 void detach (inferior *, int) override;
988
989 bool can_attach () override { return true; }
990 void attach (const char *, int) override;
991
992 void post_attach (int) override;
993 bool supports_disable_randomization () override;
994 };
995
996 /* Per-program-space data key. */
997 static const struct program_space_key<char, gdb::xfree_deleter<char>>
998 remote_pspace_data;
999
1000 /* The variable registered as the control variable used by the
1001 remote exec-file commands. While the remote exec-file setting is
1002 per-program-space, the set/show machinery uses this as the
1003 location of the remote exec-file value. */
1004 static char *remote_exec_file_var;
1005
1006 /* The size to align memory write packets, when practical. The protocol
1007 does not guarantee any alignment, and gdb will generate short
1008 writes and unaligned writes, but even as a best-effort attempt this
1009 can improve bulk transfers. For instance, if a write is misaligned
1010 relative to the target's data bus, the stub may need to make an extra
1011 round trip fetching data from the target. This doesn't make a
1012 huge difference, but it's easy to do, so we try to be helpful.
1013
1014 The alignment chosen is arbitrary; usually data bus width is
1015 important here, not the possibly larger cache line size. */
1016 enum { REMOTE_ALIGN_WRITES = 16 };
1017
1018 /* Prototypes for local functions. */
1019
1020 static int hexnumlen (ULONGEST num);
1021
1022 static int stubhex (int ch);
1023
1024 static int hexnumstr (char *, ULONGEST);
1025
1026 static int hexnumnstr (char *, ULONGEST, int);
1027
1028 static CORE_ADDR remote_address_masked (CORE_ADDR);
1029
1030 static void print_packet (const char *);
1031
1032 static int stub_unpack_int (const char *buff, int fieldlength);
1033
1034 struct packet_config;
1035
1036 static void show_packet_config_cmd (struct packet_config *config);
1037
1038 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1039 int from_tty,
1040 struct cmd_list_element *c,
1041 const char *value);
1042
1043 static ptid_t read_ptid (const char *buf, const char **obuf);
1044
1045 static void remote_async_inferior_event_handler (gdb_client_data);
1046
1047 static bool remote_read_description_p (struct target_ops *target);
1048
1049 static void remote_console_output (const char *msg);
1050
1051 static void remote_btrace_reset (remote_state *rs);
1052
1053 static void remote_unpush_and_throw (remote_target *target);
1054
1055 /* For "remote". */
1056
1057 static struct cmd_list_element *remote_cmdlist;
1058
1059 /* For "set remote" and "show remote". */
1060
1061 static struct cmd_list_element *remote_set_cmdlist;
1062 static struct cmd_list_element *remote_show_cmdlist;
1063
1064 /* Controls whether GDB is willing to use range stepping. */
1065
1066 static bool use_range_stepping = true;
1067
1068 /* From the remote target's point of view, each thread is in one of these three
1069 states. */
1070 enum class resume_state
1071 {
1072 /* Not resumed - we haven't been asked to resume this thread. */
1073 NOT_RESUMED,
1074
1075 /* We have been asked to resume this thread, but haven't sent a vCont action
1076 for it yet. We'll need to consider it next time commit_resume is
1077 called. */
1078 RESUMED_PENDING_VCONT,
1079
1080 /* We have been asked to resume this thread, and we have sent a vCont action
1081 for it. */
1082 RESUMED,
1083 };
1084
1085 /* Information about a thread's pending vCont-resume. Used when a thread is in
1086 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1087 stores this information which is then picked up by
1088 remote_target::commit_resume to know which is the proper action for this
1089 thread to include in the vCont packet. */
1090 struct resumed_pending_vcont_info
1091 {
1092 /* True if the last resume call for this thread was a step request, false
1093 if a continue request. */
1094 bool step;
1095
1096 /* The signal specified in the last resume call for this thread. */
1097 gdb_signal sig;
1098 };
1099
1100 /* Private data that we'll store in (struct thread_info)->priv. */
1101 struct remote_thread_info : public private_thread_info
1102 {
1103 std::string extra;
1104 std::string name;
1105 int core = -1;
1106
1107 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1108 sequence of bytes. */
1109 gdb::byte_vector thread_handle;
1110
1111 /* Whether the target stopped for a breakpoint/watchpoint. */
1112 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1113
1114 /* This is set to the data address of the access causing the target
1115 to stop for a watchpoint. */
1116 CORE_ADDR watch_data_address = 0;
1117
1118 /* Get the thread's resume state. */
1119 enum resume_state get_resume_state () const
1120 {
1121 return m_resume_state;
1122 }
1123
1124 /* Put the thread in the NOT_RESUMED state. */
1125 void set_not_resumed ()
1126 {
1127 m_resume_state = resume_state::NOT_RESUMED;
1128 }
1129
1130 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1131 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1132 {
1133 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1134 m_resumed_pending_vcont_info.step = step;
1135 m_resumed_pending_vcont_info.sig = sig;
1136 }
1137
1138 /* Get the information this thread's pending vCont-resumption.
1139
1140 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1141 state. */
1142 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1143 {
1144 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1145
1146 return m_resumed_pending_vcont_info;
1147 }
1148
1149 /* Put the thread in the VCONT_RESUMED state. */
1150 void set_resumed ()
1151 {
1152 m_resume_state = resume_state::RESUMED;
1153 }
1154
1155 private:
1156 /* Resume state for this thread. This is used to implement vCont action
1157 coalescing (only when the target operates in non-stop mode).
1158
1159 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1160 which notes that this thread must be considered in the next commit_resume
1161 call.
1162
1163 remote_target::commit_resume sends a vCont packet with actions for the
1164 threads in the RESUMED_PENDING_VCONT state and moves them to the
1165 VCONT_RESUMED state.
1166
1167 When reporting a stop to the core for a thread, that thread is moved back
1168 to the NOT_RESUMED state. */
1169 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1170
1171 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1172 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1173 };
1174
1175 remote_state::remote_state ()
1176 : buf (400)
1177 {
1178 }
1179
1180 remote_state::~remote_state ()
1181 {
1182 xfree (this->last_pass_packet);
1183 xfree (this->last_program_signals_packet);
1184 xfree (this->finished_object);
1185 xfree (this->finished_annex);
1186 }
1187
1188 /* Utility: generate error from an incoming stub packet. */
1189 static void
1190 trace_error (char *buf)
1191 {
1192 if (*buf++ != 'E')
1193 return; /* not an error msg */
1194 switch (*buf)
1195 {
1196 case '1': /* malformed packet error */
1197 if (*++buf == '0') /* general case: */
1198 error (_("remote.c: error in outgoing packet."));
1199 else
1200 error (_("remote.c: error in outgoing packet at field #%ld."),
1201 strtol (buf, NULL, 16));
1202 default:
1203 error (_("Target returns error code '%s'."), buf);
1204 }
1205 }
1206
1207 /* Utility: wait for reply from stub, while accepting "O" packets. */
1208
1209 char *
1210 remote_target::remote_get_noisy_reply ()
1211 {
1212 struct remote_state *rs = get_remote_state ();
1213
1214 do /* Loop on reply from remote stub. */
1215 {
1216 char *buf;
1217
1218 QUIT; /* Allow user to bail out with ^C. */
1219 getpkt (&rs->buf, 0);
1220 buf = rs->buf.data ();
1221 if (buf[0] == 'E')
1222 trace_error (buf);
1223 else if (startswith (buf, "qRelocInsn:"))
1224 {
1225 ULONGEST ul;
1226 CORE_ADDR from, to, org_to;
1227 const char *p, *pp;
1228 int adjusted_size = 0;
1229 int relocated = 0;
1230
1231 p = buf + strlen ("qRelocInsn:");
1232 pp = unpack_varlen_hex (p, &ul);
1233 if (*pp != ';')
1234 error (_("invalid qRelocInsn packet: %s"), buf);
1235 from = ul;
1236
1237 p = pp + 1;
1238 unpack_varlen_hex (p, &ul);
1239 to = ul;
1240
1241 org_to = to;
1242
1243 try
1244 {
1245 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1246 relocated = 1;
1247 }
1248 catch (const gdb_exception &ex)
1249 {
1250 if (ex.error == MEMORY_ERROR)
1251 {
1252 /* Propagate memory errors silently back to the
1253 target. The stub may have limited the range of
1254 addresses we can write to, for example. */
1255 }
1256 else
1257 {
1258 /* Something unexpectedly bad happened. Be verbose
1259 so we can tell what, and propagate the error back
1260 to the stub, so it doesn't get stuck waiting for
1261 a response. */
1262 exception_fprintf (gdb_stderr, ex,
1263 _("warning: relocating instruction: "));
1264 }
1265 putpkt ("E01");
1266 }
1267
1268 if (relocated)
1269 {
1270 adjusted_size = to - org_to;
1271
1272 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1273 putpkt (buf);
1274 }
1275 }
1276 else if (buf[0] == 'O' && buf[1] != 'K')
1277 remote_console_output (buf + 1); /* 'O' message from stub */
1278 else
1279 return buf; /* Here's the actual reply. */
1280 }
1281 while (1);
1282 }
1283
1284 struct remote_arch_state *
1285 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1286 {
1287 remote_arch_state *rsa;
1288
1289 auto it = this->m_arch_states.find (gdbarch);
1290 if (it == this->m_arch_states.end ())
1291 {
1292 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1293 std::forward_as_tuple (gdbarch),
1294 std::forward_as_tuple (gdbarch));
1295 rsa = &p.first->second;
1296
1297 /* Make sure that the packet buffer is plenty big enough for
1298 this architecture. */
1299 if (this->buf.size () < rsa->remote_packet_size)
1300 this->buf.resize (2 * rsa->remote_packet_size);
1301 }
1302 else
1303 rsa = &it->second;
1304
1305 return rsa;
1306 }
1307
1308 /* Fetch the global remote target state. */
1309
1310 remote_state *
1311 remote_target::get_remote_state ()
1312 {
1313 /* Make sure that the remote architecture state has been
1314 initialized, because doing so might reallocate rs->buf. Any
1315 function which calls getpkt also needs to be mindful of changes
1316 to rs->buf, but this call limits the number of places which run
1317 into trouble. */
1318 m_remote_state.get_remote_arch_state (target_gdbarch ());
1319
1320 return &m_remote_state;
1321 }
1322
1323 /* Fetch the remote exec-file from the current program space. */
1324
1325 static const char *
1326 get_remote_exec_file (void)
1327 {
1328 char *remote_exec_file;
1329
1330 remote_exec_file = remote_pspace_data.get (current_program_space);
1331 if (remote_exec_file == NULL)
1332 return "";
1333
1334 return remote_exec_file;
1335 }
1336
1337 /* Set the remote exec file for PSPACE. */
1338
1339 static void
1340 set_pspace_remote_exec_file (struct program_space *pspace,
1341 const char *remote_exec_file)
1342 {
1343 char *old_file = remote_pspace_data.get (pspace);
1344
1345 xfree (old_file);
1346 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1347 }
1348
1349 /* The "set/show remote exec-file" set command hook. */
1350
1351 static void
1352 set_remote_exec_file (const char *ignored, int from_tty,
1353 struct cmd_list_element *c)
1354 {
1355 gdb_assert (remote_exec_file_var != NULL);
1356 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1357 }
1358
1359 /* The "set/show remote exec-file" show command hook. */
1360
1361 static void
1362 show_remote_exec_file (struct ui_file *file, int from_tty,
1363 struct cmd_list_element *cmd, const char *value)
1364 {
1365 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1366 }
1367
1368 static int
1369 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1370 {
1371 int regnum, num_remote_regs, offset;
1372 struct packet_reg **remote_regs;
1373
1374 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1375 {
1376 struct packet_reg *r = &regs[regnum];
1377
1378 if (register_size (gdbarch, regnum) == 0)
1379 /* Do not try to fetch zero-sized (placeholder) registers. */
1380 r->pnum = -1;
1381 else
1382 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1383
1384 r->regnum = regnum;
1385 }
1386
1387 /* Define the g/G packet format as the contents of each register
1388 with a remote protocol number, in order of ascending protocol
1389 number. */
1390
1391 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1392 for (num_remote_regs = 0, regnum = 0;
1393 regnum < gdbarch_num_regs (gdbarch);
1394 regnum++)
1395 if (regs[regnum].pnum != -1)
1396 remote_regs[num_remote_regs++] = &regs[regnum];
1397
1398 std::sort (remote_regs, remote_regs + num_remote_regs,
1399 [] (const packet_reg *a, const packet_reg *b)
1400 { return a->pnum < b->pnum; });
1401
1402 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1403 {
1404 remote_regs[regnum]->in_g_packet = 1;
1405 remote_regs[regnum]->offset = offset;
1406 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1407 }
1408
1409 return offset;
1410 }
1411
1412 /* Given the architecture described by GDBARCH, return the remote
1413 protocol register's number and the register's offset in the g/G
1414 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1415 If the target does not have a mapping for REGNUM, return false,
1416 otherwise, return true. */
1417
1418 int
1419 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1420 int *pnum, int *poffset)
1421 {
1422 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1423
1424 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1425
1426 map_regcache_remote_table (gdbarch, regs.data ());
1427
1428 *pnum = regs[regnum].pnum;
1429 *poffset = regs[regnum].offset;
1430
1431 return *pnum != -1;
1432 }
1433
1434 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1435 {
1436 /* Use the architecture to build a regnum<->pnum table, which will be
1437 1:1 unless a feature set specifies otherwise. */
1438 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1439
1440 /* Record the maximum possible size of the g packet - it may turn out
1441 to be smaller. */
1442 this->sizeof_g_packet
1443 = map_regcache_remote_table (gdbarch, this->regs.get ());
1444
1445 /* Default maximum number of characters in a packet body. Many
1446 remote stubs have a hardwired buffer size of 400 bytes
1447 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1448 as the maximum packet-size to ensure that the packet and an extra
1449 NUL character can always fit in the buffer. This stops GDB
1450 trashing stubs that try to squeeze an extra NUL into what is
1451 already a full buffer (As of 1999-12-04 that was most stubs). */
1452 this->remote_packet_size = 400 - 1;
1453
1454 /* This one is filled in when a ``g'' packet is received. */
1455 this->actual_register_packet_size = 0;
1456
1457 /* Should rsa->sizeof_g_packet needs more space than the
1458 default, adjust the size accordingly. Remember that each byte is
1459 encoded as two characters. 32 is the overhead for the packet
1460 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1461 (``$NN:G...#NN'') is a better guess, the below has been padded a
1462 little. */
1463 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1464 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1465 }
1466
1467 /* Get a pointer to the current remote target. If not connected to a
1468 remote target, return NULL. */
1469
1470 static remote_target *
1471 get_current_remote_target ()
1472 {
1473 target_ops *proc_target = current_inferior ()->process_target ();
1474 return dynamic_cast<remote_target *> (proc_target);
1475 }
1476
1477 /* Return the current allowed size of a remote packet. This is
1478 inferred from the current architecture, and should be used to
1479 limit the length of outgoing packets. */
1480 long
1481 remote_target::get_remote_packet_size ()
1482 {
1483 struct remote_state *rs = get_remote_state ();
1484 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1485
1486 if (rs->explicit_packet_size)
1487 return rs->explicit_packet_size;
1488
1489 return rsa->remote_packet_size;
1490 }
1491
1492 static struct packet_reg *
1493 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1494 long regnum)
1495 {
1496 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1497 return NULL;
1498 else
1499 {
1500 struct packet_reg *r = &rsa->regs[regnum];
1501
1502 gdb_assert (r->regnum == regnum);
1503 return r;
1504 }
1505 }
1506
1507 static struct packet_reg *
1508 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1509 LONGEST pnum)
1510 {
1511 int i;
1512
1513 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1514 {
1515 struct packet_reg *r = &rsa->regs[i];
1516
1517 if (r->pnum == pnum)
1518 return r;
1519 }
1520 return NULL;
1521 }
1522
1523 /* Allow the user to specify what sequence to send to the remote
1524 when he requests a program interruption: Although ^C is usually
1525 what remote systems expect (this is the default, here), it is
1526 sometimes preferable to send a break. On other systems such
1527 as the Linux kernel, a break followed by g, which is Magic SysRq g
1528 is required in order to interrupt the execution. */
1529 const char interrupt_sequence_control_c[] = "Ctrl-C";
1530 const char interrupt_sequence_break[] = "BREAK";
1531 const char interrupt_sequence_break_g[] = "BREAK-g";
1532 static const char *const interrupt_sequence_modes[] =
1533 {
1534 interrupt_sequence_control_c,
1535 interrupt_sequence_break,
1536 interrupt_sequence_break_g,
1537 NULL
1538 };
1539 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1540
1541 static void
1542 show_interrupt_sequence (struct ui_file *file, int from_tty,
1543 struct cmd_list_element *c,
1544 const char *value)
1545 {
1546 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1547 fprintf_filtered (file,
1548 _("Send the ASCII ETX character (Ctrl-c) "
1549 "to the remote target to interrupt the "
1550 "execution of the program.\n"));
1551 else if (interrupt_sequence_mode == interrupt_sequence_break)
1552 fprintf_filtered (file,
1553 _("send a break signal to the remote target "
1554 "to interrupt the execution of the program.\n"));
1555 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1556 fprintf_filtered (file,
1557 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1558 "the remote target to interrupt the execution "
1559 "of Linux kernel.\n"));
1560 else
1561 internal_error (__FILE__, __LINE__,
1562 _("Invalid value for interrupt_sequence_mode: %s."),
1563 interrupt_sequence_mode);
1564 }
1565
1566 /* This boolean variable specifies whether interrupt_sequence is sent
1567 to the remote target when gdb connects to it.
1568 This is mostly needed when you debug the Linux kernel: The Linux kernel
1569 expects BREAK g which is Magic SysRq g for connecting gdb. */
1570 static bool interrupt_on_connect = false;
1571
1572 /* This variable is used to implement the "set/show remotebreak" commands.
1573 Since these commands are now deprecated in favor of "set/show remote
1574 interrupt-sequence", it no longer has any effect on the code. */
1575 static bool remote_break;
1576
1577 static void
1578 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1579 {
1580 if (remote_break)
1581 interrupt_sequence_mode = interrupt_sequence_break;
1582 else
1583 interrupt_sequence_mode = interrupt_sequence_control_c;
1584 }
1585
1586 static void
1587 show_remotebreak (struct ui_file *file, int from_tty,
1588 struct cmd_list_element *c,
1589 const char *value)
1590 {
1591 }
1592
1593 /* This variable sets the number of bits in an address that are to be
1594 sent in a memory ("M" or "m") packet. Normally, after stripping
1595 leading zeros, the entire address would be sent. This variable
1596 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1597 initial implementation of remote.c restricted the address sent in
1598 memory packets to ``host::sizeof long'' bytes - (typically 32
1599 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1600 address was never sent. Since fixing this bug may cause a break in
1601 some remote targets this variable is principally provided to
1602 facilitate backward compatibility. */
1603
1604 static unsigned int remote_address_size;
1605
1606 \f
1607 /* User configurable variables for the number of characters in a
1608 memory read/write packet. MIN (rsa->remote_packet_size,
1609 rsa->sizeof_g_packet) is the default. Some targets need smaller
1610 values (fifo overruns, et.al.) and some users need larger values
1611 (speed up transfers). The variables ``preferred_*'' (the user
1612 request), ``current_*'' (what was actually set) and ``forced_*''
1613 (Positive - a soft limit, negative - a hard limit). */
1614
1615 struct memory_packet_config
1616 {
1617 const char *name;
1618 long size;
1619 int fixed_p;
1620 };
1621
1622 /* The default max memory-write-packet-size, when the setting is
1623 "fixed". The 16k is historical. (It came from older GDB's using
1624 alloca for buffers and the knowledge (folklore?) that some hosts
1625 don't cope very well with large alloca calls.) */
1626 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1627
1628 /* The minimum remote packet size for memory transfers. Ensures we
1629 can write at least one byte. */
1630 #define MIN_MEMORY_PACKET_SIZE 20
1631
1632 /* Get the memory packet size, assuming it is fixed. */
1633
1634 static long
1635 get_fixed_memory_packet_size (struct memory_packet_config *config)
1636 {
1637 gdb_assert (config->fixed_p);
1638
1639 if (config->size <= 0)
1640 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1641 else
1642 return config->size;
1643 }
1644
1645 /* Compute the current size of a read/write packet. Since this makes
1646 use of ``actual_register_packet_size'' the computation is dynamic. */
1647
1648 long
1649 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1650 {
1651 struct remote_state *rs = get_remote_state ();
1652 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1653
1654 long what_they_get;
1655 if (config->fixed_p)
1656 what_they_get = get_fixed_memory_packet_size (config);
1657 else
1658 {
1659 what_they_get = get_remote_packet_size ();
1660 /* Limit the packet to the size specified by the user. */
1661 if (config->size > 0
1662 && what_they_get > config->size)
1663 what_they_get = config->size;
1664
1665 /* Limit it to the size of the targets ``g'' response unless we have
1666 permission from the stub to use a larger packet size. */
1667 if (rs->explicit_packet_size == 0
1668 && rsa->actual_register_packet_size > 0
1669 && what_they_get > rsa->actual_register_packet_size)
1670 what_they_get = rsa->actual_register_packet_size;
1671 }
1672 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1673 what_they_get = MIN_MEMORY_PACKET_SIZE;
1674
1675 /* Make sure there is room in the global buffer for this packet
1676 (including its trailing NUL byte). */
1677 if (rs->buf.size () < what_they_get + 1)
1678 rs->buf.resize (2 * what_they_get);
1679
1680 return what_they_get;
1681 }
1682
1683 /* Update the size of a read/write packet. If they user wants
1684 something really big then do a sanity check. */
1685
1686 static void
1687 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1688 {
1689 int fixed_p = config->fixed_p;
1690 long size = config->size;
1691
1692 if (args == NULL)
1693 error (_("Argument required (integer, `fixed' or `limited')."));
1694 else if (strcmp (args, "hard") == 0
1695 || strcmp (args, "fixed") == 0)
1696 fixed_p = 1;
1697 else if (strcmp (args, "soft") == 0
1698 || strcmp (args, "limit") == 0)
1699 fixed_p = 0;
1700 else
1701 {
1702 char *end;
1703
1704 size = strtoul (args, &end, 0);
1705 if (args == end)
1706 error (_("Invalid %s (bad syntax)."), config->name);
1707
1708 /* Instead of explicitly capping the size of a packet to or
1709 disallowing it, the user is allowed to set the size to
1710 something arbitrarily large. */
1711 }
1712
1713 /* Extra checks? */
1714 if (fixed_p && !config->fixed_p)
1715 {
1716 /* So that the query shows the correct value. */
1717 long query_size = (size <= 0
1718 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1719 : size);
1720
1721 if (! query (_("The target may not be able to correctly handle a %s\n"
1722 "of %ld bytes. Change the packet size? "),
1723 config->name, query_size))
1724 error (_("Packet size not changed."));
1725 }
1726 /* Update the config. */
1727 config->fixed_p = fixed_p;
1728 config->size = size;
1729 }
1730
1731 static void
1732 show_memory_packet_size (struct memory_packet_config *config)
1733 {
1734 if (config->size == 0)
1735 printf_filtered (_("The %s is 0 (default). "), config->name);
1736 else
1737 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1738 if (config->fixed_p)
1739 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1740 get_fixed_memory_packet_size (config));
1741 else
1742 {
1743 remote_target *remote = get_current_remote_target ();
1744
1745 if (remote != NULL)
1746 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1747 remote->get_memory_packet_size (config));
1748 else
1749 puts_filtered ("The actual limit will be further reduced "
1750 "dependent on the target.\n");
1751 }
1752 }
1753
1754 /* FIXME: needs to be per-remote-target. */
1755 static struct memory_packet_config memory_write_packet_config =
1756 {
1757 "memory-write-packet-size",
1758 };
1759
1760 static void
1761 set_memory_write_packet_size (const char *args, int from_tty)
1762 {
1763 set_memory_packet_size (args, &memory_write_packet_config);
1764 }
1765
1766 static void
1767 show_memory_write_packet_size (const char *args, int from_tty)
1768 {
1769 show_memory_packet_size (&memory_write_packet_config);
1770 }
1771
1772 /* Show the number of hardware watchpoints that can be used. */
1773
1774 static void
1775 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1776 struct cmd_list_element *c,
1777 const char *value)
1778 {
1779 fprintf_filtered (file, _("The maximum number of target hardware "
1780 "watchpoints is %s.\n"), value);
1781 }
1782
1783 /* Show the length limit (in bytes) for hardware watchpoints. */
1784
1785 static void
1786 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1787 struct cmd_list_element *c,
1788 const char *value)
1789 {
1790 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1791 "hardware watchpoint is %s.\n"), value);
1792 }
1793
1794 /* Show the number of hardware breakpoints that can be used. */
1795
1796 static void
1797 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1798 struct cmd_list_element *c,
1799 const char *value)
1800 {
1801 fprintf_filtered (file, _("The maximum number of target hardware "
1802 "breakpoints is %s.\n"), value);
1803 }
1804
1805 /* Controls the maximum number of characters to display in the debug output
1806 for each remote packet. The remaining characters are omitted. */
1807
1808 static int remote_packet_max_chars = 512;
1809
1810 /* Show the maximum number of characters to display for each remote packet
1811 when remote debugging is enabled. */
1812
1813 static void
1814 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1815 struct cmd_list_element *c,
1816 const char *value)
1817 {
1818 fprintf_filtered (file, _("Number of remote packet characters to "
1819 "display is %s.\n"), value);
1820 }
1821
1822 long
1823 remote_target::get_memory_write_packet_size ()
1824 {
1825 return get_memory_packet_size (&memory_write_packet_config);
1826 }
1827
1828 /* FIXME: needs to be per-remote-target. */
1829 static struct memory_packet_config memory_read_packet_config =
1830 {
1831 "memory-read-packet-size",
1832 };
1833
1834 static void
1835 set_memory_read_packet_size (const char *args, int from_tty)
1836 {
1837 set_memory_packet_size (args, &memory_read_packet_config);
1838 }
1839
1840 static void
1841 show_memory_read_packet_size (const char *args, int from_tty)
1842 {
1843 show_memory_packet_size (&memory_read_packet_config);
1844 }
1845
1846 long
1847 remote_target::get_memory_read_packet_size ()
1848 {
1849 long size = get_memory_packet_size (&memory_read_packet_config);
1850
1851 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1852 extra buffer size argument before the memory read size can be
1853 increased beyond this. */
1854 if (size > get_remote_packet_size ())
1855 size = get_remote_packet_size ();
1856 return size;
1857 }
1858
1859 \f
1860
1861 struct packet_config
1862 {
1863 const char *name;
1864 const char *title;
1865
1866 /* If auto, GDB auto-detects support for this packet or feature,
1867 either through qSupported, or by trying the packet and looking
1868 at the response. If true, GDB assumes the target supports this
1869 packet. If false, the packet is disabled. Configs that don't
1870 have an associated command always have this set to auto. */
1871 enum auto_boolean detect;
1872
1873 /* Does the target support this packet? */
1874 enum packet_support support;
1875 };
1876
1877 static enum packet_support packet_config_support (struct packet_config *config);
1878 static enum packet_support packet_support (int packet);
1879
1880 static void
1881 show_packet_config_cmd (struct packet_config *config)
1882 {
1883 const char *support = "internal-error";
1884
1885 switch (packet_config_support (config))
1886 {
1887 case PACKET_ENABLE:
1888 support = "enabled";
1889 break;
1890 case PACKET_DISABLE:
1891 support = "disabled";
1892 break;
1893 case PACKET_SUPPORT_UNKNOWN:
1894 support = "unknown";
1895 break;
1896 }
1897 switch (config->detect)
1898 {
1899 case AUTO_BOOLEAN_AUTO:
1900 printf_filtered (_("Support for the `%s' packet "
1901 "is auto-detected, currently %s.\n"),
1902 config->name, support);
1903 break;
1904 case AUTO_BOOLEAN_TRUE:
1905 case AUTO_BOOLEAN_FALSE:
1906 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1907 config->name, support);
1908 break;
1909 }
1910 }
1911
1912 static void
1913 add_packet_config_cmd (struct packet_config *config, const char *name,
1914 const char *title, int legacy)
1915 {
1916 char *set_doc;
1917 char *show_doc;
1918 char *cmd_name;
1919
1920 config->name = name;
1921 config->title = title;
1922 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1923 name, title);
1924 show_doc = xstrprintf ("Show current use of remote "
1925 "protocol `%s' (%s) packet.",
1926 name, title);
1927 /* set/show TITLE-packet {auto,on,off} */
1928 cmd_name = xstrprintf ("%s-packet", title);
1929 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1930 &config->detect, set_doc,
1931 show_doc, NULL, /* help_doc */
1932 NULL,
1933 show_remote_protocol_packet_cmd,
1934 &remote_set_cmdlist, &remote_show_cmdlist);
1935 /* The command code copies the documentation strings. */
1936 xfree (set_doc);
1937 xfree (show_doc);
1938 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1939 if (legacy)
1940 {
1941 char *legacy_name;
1942
1943 legacy_name = xstrprintf ("%s-packet", name);
1944 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1945 &remote_set_cmdlist);
1946 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1947 &remote_show_cmdlist);
1948 }
1949 }
1950
1951 static enum packet_result
1952 packet_check_result (const char *buf)
1953 {
1954 if (buf[0] != '\0')
1955 {
1956 /* The stub recognized the packet request. Check that the
1957 operation succeeded. */
1958 if (buf[0] == 'E'
1959 && isxdigit (buf[1]) && isxdigit (buf[2])
1960 && buf[3] == '\0')
1961 /* "Enn" - definitely an error. */
1962 return PACKET_ERROR;
1963
1964 /* Always treat "E." as an error. This will be used for
1965 more verbose error messages, such as E.memtypes. */
1966 if (buf[0] == 'E' && buf[1] == '.')
1967 return PACKET_ERROR;
1968
1969 /* The packet may or may not be OK. Just assume it is. */
1970 return PACKET_OK;
1971 }
1972 else
1973 /* The stub does not support the packet. */
1974 return PACKET_UNKNOWN;
1975 }
1976
1977 static enum packet_result
1978 packet_check_result (const gdb::char_vector &buf)
1979 {
1980 return packet_check_result (buf.data ());
1981 }
1982
1983 static enum packet_result
1984 packet_ok (const char *buf, struct packet_config *config)
1985 {
1986 enum packet_result result;
1987
1988 if (config->detect != AUTO_BOOLEAN_TRUE
1989 && config->support == PACKET_DISABLE)
1990 internal_error (__FILE__, __LINE__,
1991 _("packet_ok: attempt to use a disabled packet"));
1992
1993 result = packet_check_result (buf);
1994 switch (result)
1995 {
1996 case PACKET_OK:
1997 case PACKET_ERROR:
1998 /* The stub recognized the packet request. */
1999 if (config->support == PACKET_SUPPORT_UNKNOWN)
2000 {
2001 remote_debug_printf ("Packet %s (%s) is supported",
2002 config->name, config->title);
2003 config->support = PACKET_ENABLE;
2004 }
2005 break;
2006 case PACKET_UNKNOWN:
2007 /* The stub does not support the packet. */
2008 if (config->detect == AUTO_BOOLEAN_AUTO
2009 && config->support == PACKET_ENABLE)
2010 {
2011 /* If the stub previously indicated that the packet was
2012 supported then there is a protocol error. */
2013 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2014 config->name, config->title);
2015 }
2016 else if (config->detect == AUTO_BOOLEAN_TRUE)
2017 {
2018 /* The user set it wrong. */
2019 error (_("Enabled packet %s (%s) not recognized by stub"),
2020 config->name, config->title);
2021 }
2022
2023 remote_debug_printf ("Packet %s (%s) is NOT supported",
2024 config->name, config->title);
2025 config->support = PACKET_DISABLE;
2026 break;
2027 }
2028
2029 return result;
2030 }
2031
2032 static enum packet_result
2033 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2034 {
2035 return packet_ok (buf.data (), config);
2036 }
2037
2038 enum {
2039 PACKET_vCont = 0,
2040 PACKET_X,
2041 PACKET_qSymbol,
2042 PACKET_P,
2043 PACKET_p,
2044 PACKET_Z0,
2045 PACKET_Z1,
2046 PACKET_Z2,
2047 PACKET_Z3,
2048 PACKET_Z4,
2049 PACKET_vFile_setfs,
2050 PACKET_vFile_open,
2051 PACKET_vFile_pread,
2052 PACKET_vFile_pwrite,
2053 PACKET_vFile_close,
2054 PACKET_vFile_unlink,
2055 PACKET_vFile_readlink,
2056 PACKET_vFile_fstat,
2057 PACKET_qXfer_auxv,
2058 PACKET_qXfer_features,
2059 PACKET_qXfer_exec_file,
2060 PACKET_qXfer_libraries,
2061 PACKET_qXfer_libraries_svr4,
2062 PACKET_qXfer_memory_map,
2063 PACKET_qXfer_osdata,
2064 PACKET_qXfer_threads,
2065 PACKET_qXfer_statictrace_read,
2066 PACKET_qXfer_traceframe_info,
2067 PACKET_qXfer_uib,
2068 PACKET_qGetTIBAddr,
2069 PACKET_qGetTLSAddr,
2070 PACKET_qSupported,
2071 PACKET_qTStatus,
2072 PACKET_QPassSignals,
2073 PACKET_QCatchSyscalls,
2074 PACKET_QProgramSignals,
2075 PACKET_QSetWorkingDir,
2076 PACKET_QStartupWithShell,
2077 PACKET_QEnvironmentHexEncoded,
2078 PACKET_QEnvironmentReset,
2079 PACKET_QEnvironmentUnset,
2080 PACKET_qCRC,
2081 PACKET_qSearch_memory,
2082 PACKET_vAttach,
2083 PACKET_vRun,
2084 PACKET_QStartNoAckMode,
2085 PACKET_vKill,
2086 PACKET_qXfer_siginfo_read,
2087 PACKET_qXfer_siginfo_write,
2088 PACKET_qAttached,
2089
2090 /* Support for conditional tracepoints. */
2091 PACKET_ConditionalTracepoints,
2092
2093 /* Support for target-side breakpoint conditions. */
2094 PACKET_ConditionalBreakpoints,
2095
2096 /* Support for target-side breakpoint commands. */
2097 PACKET_BreakpointCommands,
2098
2099 /* Support for fast tracepoints. */
2100 PACKET_FastTracepoints,
2101
2102 /* Support for static tracepoints. */
2103 PACKET_StaticTracepoints,
2104
2105 /* Support for installing tracepoints while a trace experiment is
2106 running. */
2107 PACKET_InstallInTrace,
2108
2109 PACKET_bc,
2110 PACKET_bs,
2111 PACKET_TracepointSource,
2112 PACKET_QAllow,
2113 PACKET_qXfer_fdpic,
2114 PACKET_QDisableRandomization,
2115 PACKET_QAgent,
2116 PACKET_QTBuffer_size,
2117 PACKET_Qbtrace_off,
2118 PACKET_Qbtrace_bts,
2119 PACKET_Qbtrace_pt,
2120 PACKET_qXfer_btrace,
2121
2122 /* Support for the QNonStop packet. */
2123 PACKET_QNonStop,
2124
2125 /* Support for the QThreadEvents packet. */
2126 PACKET_QThreadEvents,
2127
2128 /* Support for multi-process extensions. */
2129 PACKET_multiprocess_feature,
2130
2131 /* Support for enabling and disabling tracepoints while a trace
2132 experiment is running. */
2133 PACKET_EnableDisableTracepoints_feature,
2134
2135 /* Support for collecting strings using the tracenz bytecode. */
2136 PACKET_tracenz_feature,
2137
2138 /* Support for continuing to run a trace experiment while GDB is
2139 disconnected. */
2140 PACKET_DisconnectedTracing_feature,
2141
2142 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2143 PACKET_augmented_libraries_svr4_read_feature,
2144
2145 /* Support for the qXfer:btrace-conf:read packet. */
2146 PACKET_qXfer_btrace_conf,
2147
2148 /* Support for the Qbtrace-conf:bts:size packet. */
2149 PACKET_Qbtrace_conf_bts_size,
2150
2151 /* Support for swbreak+ feature. */
2152 PACKET_swbreak_feature,
2153
2154 /* Support for hwbreak+ feature. */
2155 PACKET_hwbreak_feature,
2156
2157 /* Support for fork events. */
2158 PACKET_fork_event_feature,
2159
2160 /* Support for vfork events. */
2161 PACKET_vfork_event_feature,
2162
2163 /* Support for the Qbtrace-conf:pt:size packet. */
2164 PACKET_Qbtrace_conf_pt_size,
2165
2166 /* Support for exec events. */
2167 PACKET_exec_event_feature,
2168
2169 /* Support for query supported vCont actions. */
2170 PACKET_vContSupported,
2171
2172 /* Support remote CTRL-C. */
2173 PACKET_vCtrlC,
2174
2175 /* Support TARGET_WAITKIND_NO_RESUMED. */
2176 PACKET_no_resumed,
2177
2178 /* Support for memory tagging, allocation tag fetch/store
2179 packets and the tag violation stop replies. */
2180 PACKET_memory_tagging_feature,
2181
2182 PACKET_MAX
2183 };
2184
2185 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2186 assuming all remote targets are the same server (thus all support
2187 the same packets). */
2188 static struct packet_config remote_protocol_packets[PACKET_MAX];
2189
2190 /* Returns the packet's corresponding "set remote foo-packet" command
2191 state. See struct packet_config for more details. */
2192
2193 static enum auto_boolean
2194 packet_set_cmd_state (int packet)
2195 {
2196 return remote_protocol_packets[packet].detect;
2197 }
2198
2199 /* Returns whether a given packet or feature is supported. This takes
2200 into account the state of the corresponding "set remote foo-packet"
2201 command, which may be used to bypass auto-detection. */
2202
2203 static enum packet_support
2204 packet_config_support (struct packet_config *config)
2205 {
2206 switch (config->detect)
2207 {
2208 case AUTO_BOOLEAN_TRUE:
2209 return PACKET_ENABLE;
2210 case AUTO_BOOLEAN_FALSE:
2211 return PACKET_DISABLE;
2212 case AUTO_BOOLEAN_AUTO:
2213 return config->support;
2214 default:
2215 gdb_assert_not_reached (_("bad switch"));
2216 }
2217 }
2218
2219 /* Same as packet_config_support, but takes the packet's enum value as
2220 argument. */
2221
2222 static enum packet_support
2223 packet_support (int packet)
2224 {
2225 struct packet_config *config = &remote_protocol_packets[packet];
2226
2227 return packet_config_support (config);
2228 }
2229
2230 static void
2231 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2232 struct cmd_list_element *c,
2233 const char *value)
2234 {
2235 struct packet_config *packet;
2236
2237 for (packet = remote_protocol_packets;
2238 packet < &remote_protocol_packets[PACKET_MAX];
2239 packet++)
2240 {
2241 if (&packet->detect == c->var)
2242 {
2243 show_packet_config_cmd (packet);
2244 return;
2245 }
2246 }
2247 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2248 c->name);
2249 }
2250
2251 /* Should we try one of the 'Z' requests? */
2252
2253 enum Z_packet_type
2254 {
2255 Z_PACKET_SOFTWARE_BP,
2256 Z_PACKET_HARDWARE_BP,
2257 Z_PACKET_WRITE_WP,
2258 Z_PACKET_READ_WP,
2259 Z_PACKET_ACCESS_WP,
2260 NR_Z_PACKET_TYPES
2261 };
2262
2263 /* For compatibility with older distributions. Provide a ``set remote
2264 Z-packet ...'' command that updates all the Z packet types. */
2265
2266 static enum auto_boolean remote_Z_packet_detect;
2267
2268 static void
2269 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2270 struct cmd_list_element *c)
2271 {
2272 int i;
2273
2274 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2275 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2276 }
2277
2278 static void
2279 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2280 struct cmd_list_element *c,
2281 const char *value)
2282 {
2283 int i;
2284
2285 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2286 {
2287 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2288 }
2289 }
2290
2291 /* Returns true if the multi-process extensions are in effect. */
2292
2293 static int
2294 remote_multi_process_p (struct remote_state *rs)
2295 {
2296 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2297 }
2298
2299 /* Returns true if fork events are supported. */
2300
2301 static int
2302 remote_fork_event_p (struct remote_state *rs)
2303 {
2304 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2305 }
2306
2307 /* Returns true if vfork events are supported. */
2308
2309 static int
2310 remote_vfork_event_p (struct remote_state *rs)
2311 {
2312 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2313 }
2314
2315 /* Returns true if exec events are supported. */
2316
2317 static int
2318 remote_exec_event_p (struct remote_state *rs)
2319 {
2320 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2321 }
2322
2323 /* Returns true if memory tagging is supported, false otherwise. */
2324
2325 static bool
2326 remote_memory_tagging_p ()
2327 {
2328 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2329 }
2330
2331 /* Insert fork catchpoint target routine. If fork events are enabled
2332 then return success, nothing more to do. */
2333
2334 int
2335 remote_target::insert_fork_catchpoint (int pid)
2336 {
2337 struct remote_state *rs = get_remote_state ();
2338
2339 return !remote_fork_event_p (rs);
2340 }
2341
2342 /* Remove fork catchpoint target routine. Nothing to do, just
2343 return success. */
2344
2345 int
2346 remote_target::remove_fork_catchpoint (int pid)
2347 {
2348 return 0;
2349 }
2350
2351 /* Insert vfork catchpoint target routine. If vfork events are enabled
2352 then return success, nothing more to do. */
2353
2354 int
2355 remote_target::insert_vfork_catchpoint (int pid)
2356 {
2357 struct remote_state *rs = get_remote_state ();
2358
2359 return !remote_vfork_event_p (rs);
2360 }
2361
2362 /* Remove vfork catchpoint target routine. Nothing to do, just
2363 return success. */
2364
2365 int
2366 remote_target::remove_vfork_catchpoint (int pid)
2367 {
2368 return 0;
2369 }
2370
2371 /* Insert exec catchpoint target routine. If exec events are
2372 enabled, just return success. */
2373
2374 int
2375 remote_target::insert_exec_catchpoint (int pid)
2376 {
2377 struct remote_state *rs = get_remote_state ();
2378
2379 return !remote_exec_event_p (rs);
2380 }
2381
2382 /* Remove exec catchpoint target routine. Nothing to do, just
2383 return success. */
2384
2385 int
2386 remote_target::remove_exec_catchpoint (int pid)
2387 {
2388 return 0;
2389 }
2390
2391 \f
2392
2393 /* Take advantage of the fact that the TID field is not used, to tag
2394 special ptids with it set to != 0. */
2395 static const ptid_t magic_null_ptid (42000, -1, 1);
2396 static const ptid_t not_sent_ptid (42000, -2, 1);
2397 static const ptid_t any_thread_ptid (42000, 0, 1);
2398
2399 /* Find out if the stub attached to PID (and hence GDB should offer to
2400 detach instead of killing it when bailing out). */
2401
2402 int
2403 remote_target::remote_query_attached (int pid)
2404 {
2405 struct remote_state *rs = get_remote_state ();
2406 size_t size = get_remote_packet_size ();
2407
2408 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2409 return 0;
2410
2411 if (remote_multi_process_p (rs))
2412 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2413 else
2414 xsnprintf (rs->buf.data (), size, "qAttached");
2415
2416 putpkt (rs->buf);
2417 getpkt (&rs->buf, 0);
2418
2419 switch (packet_ok (rs->buf,
2420 &remote_protocol_packets[PACKET_qAttached]))
2421 {
2422 case PACKET_OK:
2423 if (strcmp (rs->buf.data (), "1") == 0)
2424 return 1;
2425 break;
2426 case PACKET_ERROR:
2427 warning (_("Remote failure reply: %s"), rs->buf.data ());
2428 break;
2429 case PACKET_UNKNOWN:
2430 break;
2431 }
2432
2433 return 0;
2434 }
2435
2436 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2437 has been invented by GDB, instead of reported by the target. Since
2438 we can be connected to a remote system before before knowing about
2439 any inferior, mark the target with execution when we find the first
2440 inferior. If ATTACHED is 1, then we had just attached to this
2441 inferior. If it is 0, then we just created this inferior. If it
2442 is -1, then try querying the remote stub to find out if it had
2443 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2444 attempt to open this inferior's executable as the main executable
2445 if no main executable is open already. */
2446
2447 inferior *
2448 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2449 int try_open_exec)
2450 {
2451 struct inferior *inf;
2452
2453 /* Check whether this process we're learning about is to be
2454 considered attached, or if is to be considered to have been
2455 spawned by the stub. */
2456 if (attached == -1)
2457 attached = remote_query_attached (pid);
2458
2459 if (gdbarch_has_global_solist (target_gdbarch ()))
2460 {
2461 /* If the target shares code across all inferiors, then every
2462 attach adds a new inferior. */
2463 inf = add_inferior (pid);
2464
2465 /* ... and every inferior is bound to the same program space.
2466 However, each inferior may still have its own address
2467 space. */
2468 inf->aspace = maybe_new_address_space ();
2469 inf->pspace = current_program_space;
2470 }
2471 else
2472 {
2473 /* In the traditional debugging scenario, there's a 1-1 match
2474 between program/address spaces. We simply bind the inferior
2475 to the program space's address space. */
2476 inf = current_inferior ();
2477
2478 /* However, if the current inferior is already bound to a
2479 process, find some other empty inferior. */
2480 if (inf->pid != 0)
2481 {
2482 inf = nullptr;
2483 for (inferior *it : all_inferiors ())
2484 if (it->pid == 0)
2485 {
2486 inf = it;
2487 break;
2488 }
2489 }
2490 if (inf == nullptr)
2491 {
2492 /* Since all inferiors were already bound to a process, add
2493 a new inferior. */
2494 inf = add_inferior_with_spaces ();
2495 }
2496 switch_to_inferior_no_thread (inf);
2497 inf->push_target (this);
2498 inferior_appeared (inf, pid);
2499 }
2500
2501 inf->attach_flag = attached;
2502 inf->fake_pid_p = fake_pid_p;
2503
2504 /* If no main executable is currently open then attempt to
2505 open the file that was executed to create this inferior. */
2506 if (try_open_exec && get_exec_file (0) == NULL)
2507 exec_file_locate_attach (pid, 0, 1);
2508
2509 /* Check for exec file mismatch, and let the user solve it. */
2510 validate_exec_file (1);
2511
2512 return inf;
2513 }
2514
2515 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2516 static remote_thread_info *get_remote_thread_info (remote_target *target,
2517 ptid_t ptid);
2518
2519 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2520 according to RUNNING. */
2521
2522 thread_info *
2523 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2524 {
2525 struct remote_state *rs = get_remote_state ();
2526 struct thread_info *thread;
2527
2528 /* GDB historically didn't pull threads in the initial connection
2529 setup. If the remote target doesn't even have a concept of
2530 threads (e.g., a bare-metal target), even if internally we
2531 consider that a single-threaded target, mentioning a new thread
2532 might be confusing to the user. Be silent then, preserving the
2533 age old behavior. */
2534 if (rs->starting_up)
2535 thread = add_thread_silent (this, ptid);
2536 else
2537 thread = add_thread (this, ptid);
2538
2539 /* We start by assuming threads are resumed. That state then gets updated
2540 when we process a matching stop reply. */
2541 get_remote_thread_info (thread)->set_resumed ();
2542
2543 set_executing (this, ptid, executing);
2544 set_running (this, ptid, running);
2545
2546 return thread;
2547 }
2548
2549 /* Come here when we learn about a thread id from the remote target.
2550 It may be the first time we hear about such thread, so take the
2551 opportunity to add it to GDB's thread list. In case this is the
2552 first time we're noticing its corresponding inferior, add it to
2553 GDB's inferior list as well. EXECUTING indicates whether the
2554 thread is (internally) executing or stopped. */
2555
2556 void
2557 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2558 {
2559 /* In non-stop mode, we assume new found threads are (externally)
2560 running until proven otherwise with a stop reply. In all-stop,
2561 we can only get here if all threads are stopped. */
2562 int running = target_is_non_stop_p () ? 1 : 0;
2563
2564 /* If this is a new thread, add it to GDB's thread list.
2565 If we leave it up to WFI to do this, bad things will happen. */
2566
2567 thread_info *tp = find_thread_ptid (this, currthread);
2568 if (tp != NULL && tp->state == THREAD_EXITED)
2569 {
2570 /* We're seeing an event on a thread id we knew had exited.
2571 This has to be a new thread reusing the old id. Add it. */
2572 remote_add_thread (currthread, running, executing);
2573 return;
2574 }
2575
2576 if (!in_thread_list (this, currthread))
2577 {
2578 struct inferior *inf = NULL;
2579 int pid = currthread.pid ();
2580
2581 if (inferior_ptid.is_pid ()
2582 && pid == inferior_ptid.pid ())
2583 {
2584 /* inferior_ptid has no thread member yet. This can happen
2585 with the vAttach -> remote_wait,"TAAthread:" path if the
2586 stub doesn't support qC. This is the first stop reported
2587 after an attach, so this is the main thread. Update the
2588 ptid in the thread list. */
2589 if (in_thread_list (this, ptid_t (pid)))
2590 thread_change_ptid (this, inferior_ptid, currthread);
2591 else
2592 {
2593 thread_info *thr
2594 = remote_add_thread (currthread, running, executing);
2595 switch_to_thread (thr);
2596 }
2597 return;
2598 }
2599
2600 if (magic_null_ptid == inferior_ptid)
2601 {
2602 /* inferior_ptid is not set yet. This can happen with the
2603 vRun -> remote_wait,"TAAthread:" path if the stub
2604 doesn't support qC. This is the first stop reported
2605 after an attach, so this is the main thread. Update the
2606 ptid in the thread list. */
2607 thread_change_ptid (this, inferior_ptid, currthread);
2608 return;
2609 }
2610
2611 /* When connecting to a target remote, or to a target
2612 extended-remote which already was debugging an inferior, we
2613 may not know about it yet. Add it before adding its child
2614 thread, so notifications are emitted in a sensible order. */
2615 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2616 {
2617 struct remote_state *rs = get_remote_state ();
2618 bool fake_pid_p = !remote_multi_process_p (rs);
2619
2620 inf = remote_add_inferior (fake_pid_p,
2621 currthread.pid (), -1, 1);
2622 }
2623
2624 /* This is really a new thread. Add it. */
2625 thread_info *new_thr
2626 = remote_add_thread (currthread, running, executing);
2627
2628 /* If we found a new inferior, let the common code do whatever
2629 it needs to with it (e.g., read shared libraries, insert
2630 breakpoints), unless we're just setting up an all-stop
2631 connection. */
2632 if (inf != NULL)
2633 {
2634 struct remote_state *rs = get_remote_state ();
2635
2636 if (!rs->starting_up)
2637 notice_new_inferior (new_thr, executing, 0);
2638 }
2639 }
2640 }
2641
2642 /* Return THREAD's private thread data, creating it if necessary. */
2643
2644 static remote_thread_info *
2645 get_remote_thread_info (thread_info *thread)
2646 {
2647 gdb_assert (thread != NULL);
2648
2649 if (thread->priv == NULL)
2650 thread->priv.reset (new remote_thread_info);
2651
2652 return static_cast<remote_thread_info *> (thread->priv.get ());
2653 }
2654
2655 /* Return PTID's private thread data, creating it if necessary. */
2656
2657 static remote_thread_info *
2658 get_remote_thread_info (remote_target *target, ptid_t ptid)
2659 {
2660 thread_info *thr = find_thread_ptid (target, ptid);
2661 return get_remote_thread_info (thr);
2662 }
2663
2664 /* Call this function as a result of
2665 1) A halt indication (T packet) containing a thread id
2666 2) A direct query of currthread
2667 3) Successful execution of set thread */
2668
2669 static void
2670 record_currthread (struct remote_state *rs, ptid_t currthread)
2671 {
2672 rs->general_thread = currthread;
2673 }
2674
2675 /* If 'QPassSignals' is supported, tell the remote stub what signals
2676 it can simply pass through to the inferior without reporting. */
2677
2678 void
2679 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2680 {
2681 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2682 {
2683 char *pass_packet, *p;
2684 int count = 0;
2685 struct remote_state *rs = get_remote_state ();
2686
2687 gdb_assert (pass_signals.size () < 256);
2688 for (size_t i = 0; i < pass_signals.size (); i++)
2689 {
2690 if (pass_signals[i])
2691 count++;
2692 }
2693 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2694 strcpy (pass_packet, "QPassSignals:");
2695 p = pass_packet + strlen (pass_packet);
2696 for (size_t i = 0; i < pass_signals.size (); i++)
2697 {
2698 if (pass_signals[i])
2699 {
2700 if (i >= 16)
2701 *p++ = tohex (i >> 4);
2702 *p++ = tohex (i & 15);
2703 if (count)
2704 *p++ = ';';
2705 else
2706 break;
2707 count--;
2708 }
2709 }
2710 *p = 0;
2711 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2712 {
2713 putpkt (pass_packet);
2714 getpkt (&rs->buf, 0);
2715 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2716 xfree (rs->last_pass_packet);
2717 rs->last_pass_packet = pass_packet;
2718 }
2719 else
2720 xfree (pass_packet);
2721 }
2722 }
2723
2724 /* If 'QCatchSyscalls' is supported, tell the remote stub
2725 to report syscalls to GDB. */
2726
2727 int
2728 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2729 gdb::array_view<const int> syscall_counts)
2730 {
2731 const char *catch_packet;
2732 enum packet_result result;
2733 int n_sysno = 0;
2734
2735 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2736 {
2737 /* Not supported. */
2738 return 1;
2739 }
2740
2741 if (needed && any_count == 0)
2742 {
2743 /* Count how many syscalls are to be caught. */
2744 for (size_t i = 0; i < syscall_counts.size (); i++)
2745 {
2746 if (syscall_counts[i] != 0)
2747 n_sysno++;
2748 }
2749 }
2750
2751 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2752 pid, needed, any_count, n_sysno);
2753
2754 std::string built_packet;
2755 if (needed)
2756 {
2757 /* Prepare a packet with the sysno list, assuming max 8+1
2758 characters for a sysno. If the resulting packet size is too
2759 big, fallback on the non-selective packet. */
2760 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2761 built_packet.reserve (maxpktsz);
2762 built_packet = "QCatchSyscalls:1";
2763 if (any_count == 0)
2764 {
2765 /* Add in each syscall to be caught. */
2766 for (size_t i = 0; i < syscall_counts.size (); i++)
2767 {
2768 if (syscall_counts[i] != 0)
2769 string_appendf (built_packet, ";%zx", i);
2770 }
2771 }
2772 if (built_packet.size () > get_remote_packet_size ())
2773 {
2774 /* catch_packet too big. Fallback to less efficient
2775 non selective mode, with GDB doing the filtering. */
2776 catch_packet = "QCatchSyscalls:1";
2777 }
2778 else
2779 catch_packet = built_packet.c_str ();
2780 }
2781 else
2782 catch_packet = "QCatchSyscalls:0";
2783
2784 struct remote_state *rs = get_remote_state ();
2785
2786 putpkt (catch_packet);
2787 getpkt (&rs->buf, 0);
2788 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2789 if (result == PACKET_OK)
2790 return 0;
2791 else
2792 return -1;
2793 }
2794
2795 /* If 'QProgramSignals' is supported, tell the remote stub what
2796 signals it should pass through to the inferior when detaching. */
2797
2798 void
2799 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2800 {
2801 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2802 {
2803 char *packet, *p;
2804 int count = 0;
2805 struct remote_state *rs = get_remote_state ();
2806
2807 gdb_assert (signals.size () < 256);
2808 for (size_t i = 0; i < signals.size (); i++)
2809 {
2810 if (signals[i])
2811 count++;
2812 }
2813 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2814 strcpy (packet, "QProgramSignals:");
2815 p = packet + strlen (packet);
2816 for (size_t i = 0; i < signals.size (); i++)
2817 {
2818 if (signal_pass_state (i))
2819 {
2820 if (i >= 16)
2821 *p++ = tohex (i >> 4);
2822 *p++ = tohex (i & 15);
2823 if (count)
2824 *p++ = ';';
2825 else
2826 break;
2827 count--;
2828 }
2829 }
2830 *p = 0;
2831 if (!rs->last_program_signals_packet
2832 || strcmp (rs->last_program_signals_packet, packet) != 0)
2833 {
2834 putpkt (packet);
2835 getpkt (&rs->buf, 0);
2836 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2837 xfree (rs->last_program_signals_packet);
2838 rs->last_program_signals_packet = packet;
2839 }
2840 else
2841 xfree (packet);
2842 }
2843 }
2844
2845 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2846 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2847 thread. If GEN is set, set the general thread, if not, then set
2848 the step/continue thread. */
2849 void
2850 remote_target::set_thread (ptid_t ptid, int gen)
2851 {
2852 struct remote_state *rs = get_remote_state ();
2853 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2854 char *buf = rs->buf.data ();
2855 char *endbuf = buf + get_remote_packet_size ();
2856
2857 if (state == ptid)
2858 return;
2859
2860 *buf++ = 'H';
2861 *buf++ = gen ? 'g' : 'c';
2862 if (ptid == magic_null_ptid)
2863 xsnprintf (buf, endbuf - buf, "0");
2864 else if (ptid == any_thread_ptid)
2865 xsnprintf (buf, endbuf - buf, "0");
2866 else if (ptid == minus_one_ptid)
2867 xsnprintf (buf, endbuf - buf, "-1");
2868 else
2869 write_ptid (buf, endbuf, ptid);
2870 putpkt (rs->buf);
2871 getpkt (&rs->buf, 0);
2872 if (gen)
2873 rs->general_thread = ptid;
2874 else
2875 rs->continue_thread = ptid;
2876 }
2877
2878 void
2879 remote_target::set_general_thread (ptid_t ptid)
2880 {
2881 set_thread (ptid, 1);
2882 }
2883
2884 void
2885 remote_target::set_continue_thread (ptid_t ptid)
2886 {
2887 set_thread (ptid, 0);
2888 }
2889
2890 /* Change the remote current process. Which thread within the process
2891 ends up selected isn't important, as long as it is the same process
2892 as what INFERIOR_PTID points to.
2893
2894 This comes from that fact that there is no explicit notion of
2895 "selected process" in the protocol. The selected process for
2896 general operations is the process the selected general thread
2897 belongs to. */
2898
2899 void
2900 remote_target::set_general_process ()
2901 {
2902 struct remote_state *rs = get_remote_state ();
2903
2904 /* If the remote can't handle multiple processes, don't bother. */
2905 if (!remote_multi_process_p (rs))
2906 return;
2907
2908 /* We only need to change the remote current thread if it's pointing
2909 at some other process. */
2910 if (rs->general_thread.pid () != inferior_ptid.pid ())
2911 set_general_thread (inferior_ptid);
2912 }
2913
2914 \f
2915 /* Return nonzero if this is the main thread that we made up ourselves
2916 to model non-threaded targets as single-threaded. */
2917
2918 static int
2919 remote_thread_always_alive (ptid_t ptid)
2920 {
2921 if (ptid == magic_null_ptid)
2922 /* The main thread is always alive. */
2923 return 1;
2924
2925 if (ptid.pid () != 0 && ptid.lwp () == 0)
2926 /* The main thread is always alive. This can happen after a
2927 vAttach, if the remote side doesn't support
2928 multi-threading. */
2929 return 1;
2930
2931 return 0;
2932 }
2933
2934 /* Return nonzero if the thread PTID is still alive on the remote
2935 system. */
2936
2937 bool
2938 remote_target::thread_alive (ptid_t ptid)
2939 {
2940 struct remote_state *rs = get_remote_state ();
2941 char *p, *endp;
2942
2943 /* Check if this is a thread that we made up ourselves to model
2944 non-threaded targets as single-threaded. */
2945 if (remote_thread_always_alive (ptid))
2946 return 1;
2947
2948 p = rs->buf.data ();
2949 endp = p + get_remote_packet_size ();
2950
2951 *p++ = 'T';
2952 write_ptid (p, endp, ptid);
2953
2954 putpkt (rs->buf);
2955 getpkt (&rs->buf, 0);
2956 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2957 }
2958
2959 /* Return a pointer to a thread name if we know it and NULL otherwise.
2960 The thread_info object owns the memory for the name. */
2961
2962 const char *
2963 remote_target::thread_name (struct thread_info *info)
2964 {
2965 if (info->priv != NULL)
2966 {
2967 const std::string &name = get_remote_thread_info (info)->name;
2968 return !name.empty () ? name.c_str () : NULL;
2969 }
2970
2971 return NULL;
2972 }
2973
2974 /* About these extended threadlist and threadinfo packets. They are
2975 variable length packets but, the fields within them are often fixed
2976 length. They are redundant enough to send over UDP as is the
2977 remote protocol in general. There is a matching unit test module
2978 in libstub. */
2979
2980 /* WARNING: This threadref data structure comes from the remote O.S.,
2981 libstub protocol encoding, and remote.c. It is not particularly
2982 changable. */
2983
2984 /* Right now, the internal structure is int. We want it to be bigger.
2985 Plan to fix this. */
2986
2987 typedef int gdb_threadref; /* Internal GDB thread reference. */
2988
2989 /* gdb_ext_thread_info is an internal GDB data structure which is
2990 equivalent to the reply of the remote threadinfo packet. */
2991
2992 struct gdb_ext_thread_info
2993 {
2994 threadref threadid; /* External form of thread reference. */
2995 int active; /* Has state interesting to GDB?
2996 regs, stack. */
2997 char display[256]; /* Brief state display, name,
2998 blocked/suspended. */
2999 char shortname[32]; /* To be used to name threads. */
3000 char more_display[256]; /* Long info, statistics, queue depth,
3001 whatever. */
3002 };
3003
3004 /* The volume of remote transfers can be limited by submitting
3005 a mask containing bits specifying the desired information.
3006 Use a union of these values as the 'selection' parameter to
3007 get_thread_info. FIXME: Make these TAG names more thread specific. */
3008
3009 #define TAG_THREADID 1
3010 #define TAG_EXISTS 2
3011 #define TAG_DISPLAY 4
3012 #define TAG_THREADNAME 8
3013 #define TAG_MOREDISPLAY 16
3014
3015 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3016
3017 static const char *unpack_nibble (const char *buf, int *val);
3018
3019 static const char *unpack_byte (const char *buf, int *value);
3020
3021 static char *pack_int (char *buf, int value);
3022
3023 static const char *unpack_int (const char *buf, int *value);
3024
3025 static const char *unpack_string (const char *src, char *dest, int length);
3026
3027 static char *pack_threadid (char *pkt, threadref *id);
3028
3029 static const char *unpack_threadid (const char *inbuf, threadref *id);
3030
3031 void int_to_threadref (threadref *id, int value);
3032
3033 static int threadref_to_int (threadref *ref);
3034
3035 static void copy_threadref (threadref *dest, threadref *src);
3036
3037 static int threadmatch (threadref *dest, threadref *src);
3038
3039 static char *pack_threadinfo_request (char *pkt, int mode,
3040 threadref *id);
3041
3042 static char *pack_threadlist_request (char *pkt, int startflag,
3043 int threadcount,
3044 threadref *nextthread);
3045
3046 static int remote_newthread_step (threadref *ref, void *context);
3047
3048
3049 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3050 buffer we're allowed to write to. Returns
3051 BUF+CHARACTERS_WRITTEN. */
3052
3053 char *
3054 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3055 {
3056 int pid, tid;
3057 struct remote_state *rs = get_remote_state ();
3058
3059 if (remote_multi_process_p (rs))
3060 {
3061 pid = ptid.pid ();
3062 if (pid < 0)
3063 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3064 else
3065 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3066 }
3067 tid = ptid.lwp ();
3068 if (tid < 0)
3069 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3070 else
3071 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3072
3073 return buf;
3074 }
3075
3076 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3077 last parsed char. Returns null_ptid if no thread id is found, and
3078 throws an error if the thread id has an invalid format. */
3079
3080 static ptid_t
3081 read_ptid (const char *buf, const char **obuf)
3082 {
3083 const char *p = buf;
3084 const char *pp;
3085 ULONGEST pid = 0, tid = 0;
3086
3087 if (*p == 'p')
3088 {
3089 /* Multi-process ptid. */
3090 pp = unpack_varlen_hex (p + 1, &pid);
3091 if (*pp != '.')
3092 error (_("invalid remote ptid: %s"), p);
3093
3094 p = pp;
3095 pp = unpack_varlen_hex (p + 1, &tid);
3096 if (obuf)
3097 *obuf = pp;
3098 return ptid_t (pid, tid, 0);
3099 }
3100
3101 /* No multi-process. Just a tid. */
3102 pp = unpack_varlen_hex (p, &tid);
3103
3104 /* Return null_ptid when no thread id is found. */
3105 if (p == pp)
3106 {
3107 if (obuf)
3108 *obuf = pp;
3109 return null_ptid;
3110 }
3111
3112 /* Since the stub is not sending a process id, then default to
3113 what's in inferior_ptid, unless it's null at this point. If so,
3114 then since there's no way to know the pid of the reported
3115 threads, use the magic number. */
3116 if (inferior_ptid == null_ptid)
3117 pid = magic_null_ptid.pid ();
3118 else
3119 pid = inferior_ptid.pid ();
3120
3121 if (obuf)
3122 *obuf = pp;
3123 return ptid_t (pid, tid, 0);
3124 }
3125
3126 static int
3127 stubhex (int ch)
3128 {
3129 if (ch >= 'a' && ch <= 'f')
3130 return ch - 'a' + 10;
3131 if (ch >= '0' && ch <= '9')
3132 return ch - '0';
3133 if (ch >= 'A' && ch <= 'F')
3134 return ch - 'A' + 10;
3135 return -1;
3136 }
3137
3138 static int
3139 stub_unpack_int (const char *buff, int fieldlength)
3140 {
3141 int nibble;
3142 int retval = 0;
3143
3144 while (fieldlength)
3145 {
3146 nibble = stubhex (*buff++);
3147 retval |= nibble;
3148 fieldlength--;
3149 if (fieldlength)
3150 retval = retval << 4;
3151 }
3152 return retval;
3153 }
3154
3155 static const char *
3156 unpack_nibble (const char *buf, int *val)
3157 {
3158 *val = fromhex (*buf++);
3159 return buf;
3160 }
3161
3162 static const char *
3163 unpack_byte (const char *buf, int *value)
3164 {
3165 *value = stub_unpack_int (buf, 2);
3166 return buf + 2;
3167 }
3168
3169 static char *
3170 pack_int (char *buf, int value)
3171 {
3172 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3173 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3174 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3175 buf = pack_hex_byte (buf, (value & 0xff));
3176 return buf;
3177 }
3178
3179 static const char *
3180 unpack_int (const char *buf, int *value)
3181 {
3182 *value = stub_unpack_int (buf, 8);
3183 return buf + 8;
3184 }
3185
3186 #if 0 /* Currently unused, uncomment when needed. */
3187 static char *pack_string (char *pkt, char *string);
3188
3189 static char *
3190 pack_string (char *pkt, char *string)
3191 {
3192 char ch;
3193 int len;
3194
3195 len = strlen (string);
3196 if (len > 200)
3197 len = 200; /* Bigger than most GDB packets, junk??? */
3198 pkt = pack_hex_byte (pkt, len);
3199 while (len-- > 0)
3200 {
3201 ch = *string++;
3202 if ((ch == '\0') || (ch == '#'))
3203 ch = '*'; /* Protect encapsulation. */
3204 *pkt++ = ch;
3205 }
3206 return pkt;
3207 }
3208 #endif /* 0 (unused) */
3209
3210 static const char *
3211 unpack_string (const char *src, char *dest, int length)
3212 {
3213 while (length--)
3214 *dest++ = *src++;
3215 *dest = '\0';
3216 return src;
3217 }
3218
3219 static char *
3220 pack_threadid (char *pkt, threadref *id)
3221 {
3222 char *limit;
3223 unsigned char *altid;
3224
3225 altid = (unsigned char *) id;
3226 limit = pkt + BUF_THREAD_ID_SIZE;
3227 while (pkt < limit)
3228 pkt = pack_hex_byte (pkt, *altid++);
3229 return pkt;
3230 }
3231
3232
3233 static const char *
3234 unpack_threadid (const char *inbuf, threadref *id)
3235 {
3236 char *altref;
3237 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3238 int x, y;
3239
3240 altref = (char *) id;
3241
3242 while (inbuf < limit)
3243 {
3244 x = stubhex (*inbuf++);
3245 y = stubhex (*inbuf++);
3246 *altref++ = (x << 4) | y;
3247 }
3248 return inbuf;
3249 }
3250
3251 /* Externally, threadrefs are 64 bits but internally, they are still
3252 ints. This is due to a mismatch of specifications. We would like
3253 to use 64bit thread references internally. This is an adapter
3254 function. */
3255
3256 void
3257 int_to_threadref (threadref *id, int value)
3258 {
3259 unsigned char *scan;
3260
3261 scan = (unsigned char *) id;
3262 {
3263 int i = 4;
3264 while (i--)
3265 *scan++ = 0;
3266 }
3267 *scan++ = (value >> 24) & 0xff;
3268 *scan++ = (value >> 16) & 0xff;
3269 *scan++ = (value >> 8) & 0xff;
3270 *scan++ = (value & 0xff);
3271 }
3272
3273 static int
3274 threadref_to_int (threadref *ref)
3275 {
3276 int i, value = 0;
3277 unsigned char *scan;
3278
3279 scan = *ref;
3280 scan += 4;
3281 i = 4;
3282 while (i-- > 0)
3283 value = (value << 8) | ((*scan++) & 0xff);
3284 return value;
3285 }
3286
3287 static void
3288 copy_threadref (threadref *dest, threadref *src)
3289 {
3290 int i;
3291 unsigned char *csrc, *cdest;
3292
3293 csrc = (unsigned char *) src;
3294 cdest = (unsigned char *) dest;
3295 i = 8;
3296 while (i--)
3297 *cdest++ = *csrc++;
3298 }
3299
3300 static int
3301 threadmatch (threadref *dest, threadref *src)
3302 {
3303 /* Things are broken right now, so just assume we got a match. */
3304 #if 0
3305 unsigned char *srcp, *destp;
3306 int i, result;
3307 srcp = (char *) src;
3308 destp = (char *) dest;
3309
3310 result = 1;
3311 while (i-- > 0)
3312 result &= (*srcp++ == *destp++) ? 1 : 0;
3313 return result;
3314 #endif
3315 return 1;
3316 }
3317
3318 /*
3319 threadid:1, # always request threadid
3320 context_exists:2,
3321 display:4,
3322 unique_name:8,
3323 more_display:16
3324 */
3325
3326 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3327
3328 static char *
3329 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3330 {
3331 *pkt++ = 'q'; /* Info Query */
3332 *pkt++ = 'P'; /* process or thread info */
3333 pkt = pack_int (pkt, mode); /* mode */
3334 pkt = pack_threadid (pkt, id); /* threadid */
3335 *pkt = '\0'; /* terminate */
3336 return pkt;
3337 }
3338
3339 /* These values tag the fields in a thread info response packet. */
3340 /* Tagging the fields allows us to request specific fields and to
3341 add more fields as time goes by. */
3342
3343 #define TAG_THREADID 1 /* Echo the thread identifier. */
3344 #define TAG_EXISTS 2 /* Is this process defined enough to
3345 fetch registers and its stack? */
3346 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3347 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3348 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3349 the process. */
3350
3351 int
3352 remote_target::remote_unpack_thread_info_response (const char *pkt,
3353 threadref *expectedref,
3354 gdb_ext_thread_info *info)
3355 {
3356 struct remote_state *rs = get_remote_state ();
3357 int mask, length;
3358 int tag;
3359 threadref ref;
3360 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3361 int retval = 1;
3362
3363 /* info->threadid = 0; FIXME: implement zero_threadref. */
3364 info->active = 0;
3365 info->display[0] = '\0';
3366 info->shortname[0] = '\0';
3367 info->more_display[0] = '\0';
3368
3369 /* Assume the characters indicating the packet type have been
3370 stripped. */
3371 pkt = unpack_int (pkt, &mask); /* arg mask */
3372 pkt = unpack_threadid (pkt, &ref);
3373
3374 if (mask == 0)
3375 warning (_("Incomplete response to threadinfo request."));
3376 if (!threadmatch (&ref, expectedref))
3377 { /* This is an answer to a different request. */
3378 warning (_("ERROR RMT Thread info mismatch."));
3379 return 0;
3380 }
3381 copy_threadref (&info->threadid, &ref);
3382
3383 /* Loop on tagged fields , try to bail if something goes wrong. */
3384
3385 /* Packets are terminated with nulls. */
3386 while ((pkt < limit) && mask && *pkt)
3387 {
3388 pkt = unpack_int (pkt, &tag); /* tag */
3389 pkt = unpack_byte (pkt, &length); /* length */
3390 if (!(tag & mask)) /* Tags out of synch with mask. */
3391 {
3392 warning (_("ERROR RMT: threadinfo tag mismatch."));
3393 retval = 0;
3394 break;
3395 }
3396 if (tag == TAG_THREADID)
3397 {
3398 if (length != 16)
3399 {
3400 warning (_("ERROR RMT: length of threadid is not 16."));
3401 retval = 0;
3402 break;
3403 }
3404 pkt = unpack_threadid (pkt, &ref);
3405 mask = mask & ~TAG_THREADID;
3406 continue;
3407 }
3408 if (tag == TAG_EXISTS)
3409 {
3410 info->active = stub_unpack_int (pkt, length);
3411 pkt += length;
3412 mask = mask & ~(TAG_EXISTS);
3413 if (length > 8)
3414 {
3415 warning (_("ERROR RMT: 'exists' length too long."));
3416 retval = 0;
3417 break;
3418 }
3419 continue;
3420 }
3421 if (tag == TAG_THREADNAME)
3422 {
3423 pkt = unpack_string (pkt, &info->shortname[0], length);
3424 mask = mask & ~TAG_THREADNAME;
3425 continue;
3426 }
3427 if (tag == TAG_DISPLAY)
3428 {
3429 pkt = unpack_string (pkt, &info->display[0], length);
3430 mask = mask & ~TAG_DISPLAY;
3431 continue;
3432 }
3433 if (tag == TAG_MOREDISPLAY)
3434 {
3435 pkt = unpack_string (pkt, &info->more_display[0], length);
3436 mask = mask & ~TAG_MOREDISPLAY;
3437 continue;
3438 }
3439 warning (_("ERROR RMT: unknown thread info tag."));
3440 break; /* Not a tag we know about. */
3441 }
3442 return retval;
3443 }
3444
3445 int
3446 remote_target::remote_get_threadinfo (threadref *threadid,
3447 int fieldset,
3448 gdb_ext_thread_info *info)
3449 {
3450 struct remote_state *rs = get_remote_state ();
3451 int result;
3452
3453 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3454 putpkt (rs->buf);
3455 getpkt (&rs->buf, 0);
3456
3457 if (rs->buf[0] == '\0')
3458 return 0;
3459
3460 result = remote_unpack_thread_info_response (&rs->buf[2],
3461 threadid, info);
3462 return result;
3463 }
3464
3465 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3466
3467 static char *
3468 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3469 threadref *nextthread)
3470 {
3471 *pkt++ = 'q'; /* info query packet */
3472 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3473 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3474 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3475 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3476 *pkt = '\0';
3477 return pkt;
3478 }
3479
3480 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3481
3482 int
3483 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3484 threadref *original_echo,
3485 threadref *resultlist,
3486 int *doneflag)
3487 {
3488 struct remote_state *rs = get_remote_state ();
3489 int count, resultcount, done;
3490
3491 resultcount = 0;
3492 /* Assume the 'q' and 'M chars have been stripped. */
3493 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3494 /* done parse past here */
3495 pkt = unpack_byte (pkt, &count); /* count field */
3496 pkt = unpack_nibble (pkt, &done);
3497 /* The first threadid is the argument threadid. */
3498 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3499 while ((count-- > 0) && (pkt < limit))
3500 {
3501 pkt = unpack_threadid (pkt, resultlist++);
3502 if (resultcount++ >= result_limit)
3503 break;
3504 }
3505 if (doneflag)
3506 *doneflag = done;
3507 return resultcount;
3508 }
3509
3510 /* Fetch the next batch of threads from the remote. Returns -1 if the
3511 qL packet is not supported, 0 on error and 1 on success. */
3512
3513 int
3514 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3515 int result_limit, int *done, int *result_count,
3516 threadref *threadlist)
3517 {
3518 struct remote_state *rs = get_remote_state ();
3519 int result = 1;
3520
3521 /* Truncate result limit to be smaller than the packet size. */
3522 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3523 >= get_remote_packet_size ())
3524 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3525
3526 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3527 nextthread);
3528 putpkt (rs->buf);
3529 getpkt (&rs->buf, 0);
3530 if (rs->buf[0] == '\0')
3531 {
3532 /* Packet not supported. */
3533 return -1;
3534 }
3535
3536 *result_count =
3537 parse_threadlist_response (&rs->buf[2], result_limit,
3538 &rs->echo_nextthread, threadlist, done);
3539
3540 if (!threadmatch (&rs->echo_nextthread, nextthread))
3541 {
3542 /* FIXME: This is a good reason to drop the packet. */
3543 /* Possibly, there is a duplicate response. */
3544 /* Possibilities :
3545 retransmit immediatly - race conditions
3546 retransmit after timeout - yes
3547 exit
3548 wait for packet, then exit
3549 */
3550 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3551 return 0; /* I choose simply exiting. */
3552 }
3553 if (*result_count <= 0)
3554 {
3555 if (*done != 1)
3556 {
3557 warning (_("RMT ERROR : failed to get remote thread list."));
3558 result = 0;
3559 }
3560 return result; /* break; */
3561 }
3562 if (*result_count > result_limit)
3563 {
3564 *result_count = 0;
3565 warning (_("RMT ERROR: threadlist response longer than requested."));
3566 return 0;
3567 }
3568 return result;
3569 }
3570
3571 /* Fetch the list of remote threads, with the qL packet, and call
3572 STEPFUNCTION for each thread found. Stops iterating and returns 1
3573 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3574 STEPFUNCTION returns false. If the packet is not supported,
3575 returns -1. */
3576
3577 int
3578 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3579 void *context, int looplimit)
3580 {
3581 struct remote_state *rs = get_remote_state ();
3582 int done, i, result_count;
3583 int startflag = 1;
3584 int result = 1;
3585 int loopcount = 0;
3586
3587 done = 0;
3588 while (!done)
3589 {
3590 if (loopcount++ > looplimit)
3591 {
3592 result = 0;
3593 warning (_("Remote fetch threadlist -infinite loop-."));
3594 break;
3595 }
3596 result = remote_get_threadlist (startflag, &rs->nextthread,
3597 MAXTHREADLISTRESULTS,
3598 &done, &result_count,
3599 rs->resultthreadlist);
3600 if (result <= 0)
3601 break;
3602 /* Clear for later iterations. */
3603 startflag = 0;
3604 /* Setup to resume next batch of thread references, set nextthread. */
3605 if (result_count >= 1)
3606 copy_threadref (&rs->nextthread,
3607 &rs->resultthreadlist[result_count - 1]);
3608 i = 0;
3609 while (result_count--)
3610 {
3611 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3612 {
3613 result = 0;
3614 break;
3615 }
3616 }
3617 }
3618 return result;
3619 }
3620
3621 /* A thread found on the remote target. */
3622
3623 struct thread_item
3624 {
3625 explicit thread_item (ptid_t ptid_)
3626 : ptid (ptid_)
3627 {}
3628
3629 thread_item (thread_item &&other) = default;
3630 thread_item &operator= (thread_item &&other) = default;
3631
3632 DISABLE_COPY_AND_ASSIGN (thread_item);
3633
3634 /* The thread's PTID. */
3635 ptid_t ptid;
3636
3637 /* The thread's extra info. */
3638 std::string extra;
3639
3640 /* The thread's name. */
3641 std::string name;
3642
3643 /* The core the thread was running on. -1 if not known. */
3644 int core = -1;
3645
3646 /* The thread handle associated with the thread. */
3647 gdb::byte_vector thread_handle;
3648 };
3649
3650 /* Context passed around to the various methods listing remote
3651 threads. As new threads are found, they're added to the ITEMS
3652 vector. */
3653
3654 struct threads_listing_context
3655 {
3656 /* Return true if this object contains an entry for a thread with ptid
3657 PTID. */
3658
3659 bool contains_thread (ptid_t ptid) const
3660 {
3661 auto match_ptid = [&] (const thread_item &item)
3662 {
3663 return item.ptid == ptid;
3664 };
3665
3666 auto it = std::find_if (this->items.begin (),
3667 this->items.end (),
3668 match_ptid);
3669
3670 return it != this->items.end ();
3671 }
3672
3673 /* Remove the thread with ptid PTID. */
3674
3675 void remove_thread (ptid_t ptid)
3676 {
3677 auto match_ptid = [&] (const thread_item &item)
3678 {
3679 return item.ptid == ptid;
3680 };
3681
3682 auto it = std::remove_if (this->items.begin (),
3683 this->items.end (),
3684 match_ptid);
3685
3686 if (it != this->items.end ())
3687 this->items.erase (it);
3688 }
3689
3690 /* The threads found on the remote target. */
3691 std::vector<thread_item> items;
3692 };
3693
3694 static int
3695 remote_newthread_step (threadref *ref, void *data)
3696 {
3697 struct threads_listing_context *context
3698 = (struct threads_listing_context *) data;
3699 int pid = inferior_ptid.pid ();
3700 int lwp = threadref_to_int (ref);
3701 ptid_t ptid (pid, lwp);
3702
3703 context->items.emplace_back (ptid);
3704
3705 return 1; /* continue iterator */
3706 }
3707
3708 #define CRAZY_MAX_THREADS 1000
3709
3710 ptid_t
3711 remote_target::remote_current_thread (ptid_t oldpid)
3712 {
3713 struct remote_state *rs = get_remote_state ();
3714
3715 putpkt ("qC");
3716 getpkt (&rs->buf, 0);
3717 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3718 {
3719 const char *obuf;
3720 ptid_t result;
3721
3722 result = read_ptid (&rs->buf[2], &obuf);
3723 if (*obuf != '\0')
3724 remote_debug_printf ("warning: garbage in qC reply");
3725
3726 return result;
3727 }
3728 else
3729 return oldpid;
3730 }
3731
3732 /* List remote threads using the deprecated qL packet. */
3733
3734 int
3735 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3736 {
3737 if (remote_threadlist_iterator (remote_newthread_step, context,
3738 CRAZY_MAX_THREADS) >= 0)
3739 return 1;
3740
3741 return 0;
3742 }
3743
3744 #if defined(HAVE_LIBEXPAT)
3745
3746 static void
3747 start_thread (struct gdb_xml_parser *parser,
3748 const struct gdb_xml_element *element,
3749 void *user_data,
3750 std::vector<gdb_xml_value> &attributes)
3751 {
3752 struct threads_listing_context *data
3753 = (struct threads_listing_context *) user_data;
3754 struct gdb_xml_value *attr;
3755
3756 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3757 ptid_t ptid = read_ptid (id, NULL);
3758
3759 data->items.emplace_back (ptid);
3760 thread_item &item = data->items.back ();
3761
3762 attr = xml_find_attribute (attributes, "core");
3763 if (attr != NULL)
3764 item.core = *(ULONGEST *) attr->value.get ();
3765
3766 attr = xml_find_attribute (attributes, "name");
3767 if (attr != NULL)
3768 item.name = (const char *) attr->value.get ();
3769
3770 attr = xml_find_attribute (attributes, "handle");
3771 if (attr != NULL)
3772 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3773 }
3774
3775 static void
3776 end_thread (struct gdb_xml_parser *parser,
3777 const struct gdb_xml_element *element,
3778 void *user_data, const char *body_text)
3779 {
3780 struct threads_listing_context *data
3781 = (struct threads_listing_context *) user_data;
3782
3783 if (body_text != NULL && *body_text != '\0')
3784 data->items.back ().extra = body_text;
3785 }
3786
3787 const struct gdb_xml_attribute thread_attributes[] = {
3788 { "id", GDB_XML_AF_NONE, NULL, NULL },
3789 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3790 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3791 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3792 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3793 };
3794
3795 const struct gdb_xml_element thread_children[] = {
3796 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3797 };
3798
3799 const struct gdb_xml_element threads_children[] = {
3800 { "thread", thread_attributes, thread_children,
3801 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3802 start_thread, end_thread },
3803 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3804 };
3805
3806 const struct gdb_xml_element threads_elements[] = {
3807 { "threads", NULL, threads_children,
3808 GDB_XML_EF_NONE, NULL, NULL },
3809 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3810 };
3811
3812 #endif
3813
3814 /* List remote threads using qXfer:threads:read. */
3815
3816 int
3817 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3818 {
3819 #if defined(HAVE_LIBEXPAT)
3820 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3821 {
3822 gdb::optional<gdb::char_vector> xml
3823 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3824
3825 if (xml && (*xml)[0] != '\0')
3826 {
3827 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3828 threads_elements, xml->data (), context);
3829 }
3830
3831 return 1;
3832 }
3833 #endif
3834
3835 return 0;
3836 }
3837
3838 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3839
3840 int
3841 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3842 {
3843 struct remote_state *rs = get_remote_state ();
3844
3845 if (rs->use_threadinfo_query)
3846 {
3847 const char *bufp;
3848
3849 putpkt ("qfThreadInfo");
3850 getpkt (&rs->buf, 0);
3851 bufp = rs->buf.data ();
3852 if (bufp[0] != '\0') /* q packet recognized */
3853 {
3854 while (*bufp++ == 'm') /* reply contains one or more TID */
3855 {
3856 do
3857 {
3858 ptid_t ptid = read_ptid (bufp, &bufp);
3859 context->items.emplace_back (ptid);
3860 }
3861 while (*bufp++ == ','); /* comma-separated list */
3862 putpkt ("qsThreadInfo");
3863 getpkt (&rs->buf, 0);
3864 bufp = rs->buf.data ();
3865 }
3866 return 1;
3867 }
3868 else
3869 {
3870 /* Packet not recognized. */
3871 rs->use_threadinfo_query = 0;
3872 }
3873 }
3874
3875 return 0;
3876 }
3877
3878 /* Return true if INF only has one non-exited thread. */
3879
3880 static bool
3881 has_single_non_exited_thread (inferior *inf)
3882 {
3883 int count = 0;
3884 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3885 if (++count > 1)
3886 break;
3887 return count == 1;
3888 }
3889
3890 /* Implement the to_update_thread_list function for the remote
3891 targets. */
3892
3893 void
3894 remote_target::update_thread_list ()
3895 {
3896 struct threads_listing_context context;
3897 int got_list = 0;
3898
3899 /* We have a few different mechanisms to fetch the thread list. Try
3900 them all, starting with the most preferred one first, falling
3901 back to older methods. */
3902 if (remote_get_threads_with_qxfer (&context)
3903 || remote_get_threads_with_qthreadinfo (&context)
3904 || remote_get_threads_with_ql (&context))
3905 {
3906 got_list = 1;
3907
3908 if (context.items.empty ()
3909 && remote_thread_always_alive (inferior_ptid))
3910 {
3911 /* Some targets don't really support threads, but still
3912 reply an (empty) thread list in response to the thread
3913 listing packets, instead of replying "packet not
3914 supported". Exit early so we don't delete the main
3915 thread. */
3916 return;
3917 }
3918
3919 /* CONTEXT now holds the current thread list on the remote
3920 target end. Delete GDB-side threads no longer found on the
3921 target. */
3922 for (thread_info *tp : all_threads_safe ())
3923 {
3924 if (tp->inf->process_target () != this)
3925 continue;
3926
3927 if (!context.contains_thread (tp->ptid))
3928 {
3929 /* Do not remove the thread if it is the last thread in
3930 the inferior. This situation happens when we have a
3931 pending exit process status to process. Otherwise we
3932 may end up with a seemingly live inferior (i.e. pid
3933 != 0) that has no threads. */
3934 if (has_single_non_exited_thread (tp->inf))
3935 continue;
3936
3937 /* Not found. */
3938 delete_thread (tp);
3939 }
3940 }
3941
3942 /* Remove any unreported fork child threads from CONTEXT so
3943 that we don't interfere with follow fork, which is where
3944 creation of such threads is handled. */
3945 remove_new_fork_children (&context);
3946
3947 /* And now add threads we don't know about yet to our list. */
3948 for (thread_item &item : context.items)
3949 {
3950 if (item.ptid != null_ptid)
3951 {
3952 /* In non-stop mode, we assume new found threads are
3953 executing until proven otherwise with a stop reply.
3954 In all-stop, we can only get here if all threads are
3955 stopped. */
3956 int executing = target_is_non_stop_p () ? 1 : 0;
3957
3958 remote_notice_new_inferior (item.ptid, executing);
3959
3960 thread_info *tp = find_thread_ptid (this, item.ptid);
3961 remote_thread_info *info = get_remote_thread_info (tp);
3962 info->core = item.core;
3963 info->extra = std::move (item.extra);
3964 info->name = std::move (item.name);
3965 info->thread_handle = std::move (item.thread_handle);
3966 }
3967 }
3968 }
3969
3970 if (!got_list)
3971 {
3972 /* If no thread listing method is supported, then query whether
3973 each known thread is alive, one by one, with the T packet.
3974 If the target doesn't support threads at all, then this is a
3975 no-op. See remote_thread_alive. */
3976 prune_threads ();
3977 }
3978 }
3979
3980 /*
3981 * Collect a descriptive string about the given thread.
3982 * The target may say anything it wants to about the thread
3983 * (typically info about its blocked / runnable state, name, etc.).
3984 * This string will appear in the info threads display.
3985 *
3986 * Optional: targets are not required to implement this function.
3987 */
3988
3989 const char *
3990 remote_target::extra_thread_info (thread_info *tp)
3991 {
3992 struct remote_state *rs = get_remote_state ();
3993 int set;
3994 threadref id;
3995 struct gdb_ext_thread_info threadinfo;
3996
3997 if (rs->remote_desc == 0) /* paranoia */
3998 internal_error (__FILE__, __LINE__,
3999 _("remote_threads_extra_info"));
4000
4001 if (tp->ptid == magic_null_ptid
4002 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4003 /* This is the main thread which was added by GDB. The remote
4004 server doesn't know about it. */
4005 return NULL;
4006
4007 std::string &extra = get_remote_thread_info (tp)->extra;
4008
4009 /* If already have cached info, use it. */
4010 if (!extra.empty ())
4011 return extra.c_str ();
4012
4013 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4014 {
4015 /* If we're using qXfer:threads:read, then the extra info is
4016 included in the XML. So if we didn't have anything cached,
4017 it's because there's really no extra info. */
4018 return NULL;
4019 }
4020
4021 if (rs->use_threadextra_query)
4022 {
4023 char *b = rs->buf.data ();
4024 char *endb = b + get_remote_packet_size ();
4025
4026 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4027 b += strlen (b);
4028 write_ptid (b, endb, tp->ptid);
4029
4030 putpkt (rs->buf);
4031 getpkt (&rs->buf, 0);
4032 if (rs->buf[0] != 0)
4033 {
4034 extra.resize (strlen (rs->buf.data ()) / 2);
4035 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4036 return extra.c_str ();
4037 }
4038 }
4039
4040 /* If the above query fails, fall back to the old method. */
4041 rs->use_threadextra_query = 0;
4042 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4043 | TAG_MOREDISPLAY | TAG_DISPLAY;
4044 int_to_threadref (&id, tp->ptid.lwp ());
4045 if (remote_get_threadinfo (&id, set, &threadinfo))
4046 if (threadinfo.active)
4047 {
4048 if (*threadinfo.shortname)
4049 string_appendf (extra, " Name: %s", threadinfo.shortname);
4050 if (*threadinfo.display)
4051 {
4052 if (!extra.empty ())
4053 extra += ',';
4054 string_appendf (extra, " State: %s", threadinfo.display);
4055 }
4056 if (*threadinfo.more_display)
4057 {
4058 if (!extra.empty ())
4059 extra += ',';
4060 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4061 }
4062 return extra.c_str ();
4063 }
4064 return NULL;
4065 }
4066 \f
4067
4068 bool
4069 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4070 struct static_tracepoint_marker *marker)
4071 {
4072 struct remote_state *rs = get_remote_state ();
4073 char *p = rs->buf.data ();
4074
4075 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4076 p += strlen (p);
4077 p += hexnumstr (p, addr);
4078 putpkt (rs->buf);
4079 getpkt (&rs->buf, 0);
4080 p = rs->buf.data ();
4081
4082 if (*p == 'E')
4083 error (_("Remote failure reply: %s"), p);
4084
4085 if (*p++ == 'm')
4086 {
4087 parse_static_tracepoint_marker_definition (p, NULL, marker);
4088 return true;
4089 }
4090
4091 return false;
4092 }
4093
4094 std::vector<static_tracepoint_marker>
4095 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4096 {
4097 struct remote_state *rs = get_remote_state ();
4098 std::vector<static_tracepoint_marker> markers;
4099 const char *p;
4100 static_tracepoint_marker marker;
4101
4102 /* Ask for a first packet of static tracepoint marker
4103 definition. */
4104 putpkt ("qTfSTM");
4105 getpkt (&rs->buf, 0);
4106 p = rs->buf.data ();
4107 if (*p == 'E')
4108 error (_("Remote failure reply: %s"), p);
4109
4110 while (*p++ == 'm')
4111 {
4112 do
4113 {
4114 parse_static_tracepoint_marker_definition (p, &p, &marker);
4115
4116 if (strid == NULL || marker.str_id == strid)
4117 markers.push_back (std::move (marker));
4118 }
4119 while (*p++ == ','); /* comma-separated list */
4120 /* Ask for another packet of static tracepoint definition. */
4121 putpkt ("qTsSTM");
4122 getpkt (&rs->buf, 0);
4123 p = rs->buf.data ();
4124 }
4125
4126 return markers;
4127 }
4128
4129 \f
4130 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4131
4132 ptid_t
4133 remote_target::get_ada_task_ptid (long lwp, long thread)
4134 {
4135 return ptid_t (inferior_ptid.pid (), lwp, 0);
4136 }
4137 \f
4138
4139 /* Restart the remote side; this is an extended protocol operation. */
4140
4141 void
4142 remote_target::extended_remote_restart ()
4143 {
4144 struct remote_state *rs = get_remote_state ();
4145
4146 /* Send the restart command; for reasons I don't understand the
4147 remote side really expects a number after the "R". */
4148 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4149 putpkt (rs->buf);
4150
4151 remote_fileio_reset ();
4152 }
4153 \f
4154 /* Clean up connection to a remote debugger. */
4155
4156 void
4157 remote_target::close ()
4158 {
4159 /* Make sure we leave stdin registered in the event loop. */
4160 terminal_ours ();
4161
4162 trace_reset_local_state ();
4163
4164 delete this;
4165 }
4166
4167 remote_target::~remote_target ()
4168 {
4169 struct remote_state *rs = get_remote_state ();
4170
4171 /* Check for NULL because we may get here with a partially
4172 constructed target/connection. */
4173 if (rs->remote_desc == nullptr)
4174 return;
4175
4176 serial_close (rs->remote_desc);
4177
4178 /* We are destroying the remote target, so we should discard
4179 everything of this target. */
4180 discard_pending_stop_replies_in_queue ();
4181
4182 if (rs->remote_async_inferior_event_token)
4183 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4184
4185 delete rs->notif_state;
4186 }
4187
4188 /* Query the remote side for the text, data and bss offsets. */
4189
4190 void
4191 remote_target::get_offsets ()
4192 {
4193 struct remote_state *rs = get_remote_state ();
4194 char *buf;
4195 char *ptr;
4196 int lose, num_segments = 0, do_sections, do_segments;
4197 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4198
4199 if (current_program_space->symfile_object_file == NULL)
4200 return;
4201
4202 putpkt ("qOffsets");
4203 getpkt (&rs->buf, 0);
4204 buf = rs->buf.data ();
4205
4206 if (buf[0] == '\000')
4207 return; /* Return silently. Stub doesn't support
4208 this command. */
4209 if (buf[0] == 'E')
4210 {
4211 warning (_("Remote failure reply: %s"), buf);
4212 return;
4213 }
4214
4215 /* Pick up each field in turn. This used to be done with scanf, but
4216 scanf will make trouble if CORE_ADDR size doesn't match
4217 conversion directives correctly. The following code will work
4218 with any size of CORE_ADDR. */
4219 text_addr = data_addr = bss_addr = 0;
4220 ptr = buf;
4221 lose = 0;
4222
4223 if (startswith (ptr, "Text="))
4224 {
4225 ptr += 5;
4226 /* Don't use strtol, could lose on big values. */
4227 while (*ptr && *ptr != ';')
4228 text_addr = (text_addr << 4) + fromhex (*ptr++);
4229
4230 if (startswith (ptr, ";Data="))
4231 {
4232 ptr += 6;
4233 while (*ptr && *ptr != ';')
4234 data_addr = (data_addr << 4) + fromhex (*ptr++);
4235 }
4236 else
4237 lose = 1;
4238
4239 if (!lose && startswith (ptr, ";Bss="))
4240 {
4241 ptr += 5;
4242 while (*ptr && *ptr != ';')
4243 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4244
4245 if (bss_addr != data_addr)
4246 warning (_("Target reported unsupported offsets: %s"), buf);
4247 }
4248 else
4249 lose = 1;
4250 }
4251 else if (startswith (ptr, "TextSeg="))
4252 {
4253 ptr += 8;
4254 /* Don't use strtol, could lose on big values. */
4255 while (*ptr && *ptr != ';')
4256 text_addr = (text_addr << 4) + fromhex (*ptr++);
4257 num_segments = 1;
4258
4259 if (startswith (ptr, ";DataSeg="))
4260 {
4261 ptr += 9;
4262 while (*ptr && *ptr != ';')
4263 data_addr = (data_addr << 4) + fromhex (*ptr++);
4264 num_segments++;
4265 }
4266 }
4267 else
4268 lose = 1;
4269
4270 if (lose)
4271 error (_("Malformed response to offset query, %s"), buf);
4272 else if (*ptr != '\0')
4273 warning (_("Target reported unsupported offsets: %s"), buf);
4274
4275 objfile *objf = current_program_space->symfile_object_file;
4276 section_offsets offs = objf->section_offsets;
4277
4278 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4279 do_segments = (data != NULL);
4280 do_sections = num_segments == 0;
4281
4282 if (num_segments > 0)
4283 {
4284 segments[0] = text_addr;
4285 segments[1] = data_addr;
4286 }
4287 /* If we have two segments, we can still try to relocate everything
4288 by assuming that the .text and .data offsets apply to the whole
4289 text and data segments. Convert the offsets given in the packet
4290 to base addresses for symfile_map_offsets_to_segments. */
4291 else if (data != nullptr && data->segments.size () == 2)
4292 {
4293 segments[0] = data->segments[0].base + text_addr;
4294 segments[1] = data->segments[1].base + data_addr;
4295 num_segments = 2;
4296 }
4297 /* If the object file has only one segment, assume that it is text
4298 rather than data; main programs with no writable data are rare,
4299 but programs with no code are useless. Of course the code might
4300 have ended up in the data segment... to detect that we would need
4301 the permissions here. */
4302 else if (data && data->segments.size () == 1)
4303 {
4304 segments[0] = data->segments[0].base + text_addr;
4305 num_segments = 1;
4306 }
4307 /* There's no way to relocate by segment. */
4308 else
4309 do_segments = 0;
4310
4311 if (do_segments)
4312 {
4313 int ret = symfile_map_offsets_to_segments (objf->obfd,
4314 data.get (), offs,
4315 num_segments, segments);
4316
4317 if (ret == 0 && !do_sections)
4318 error (_("Can not handle qOffsets TextSeg "
4319 "response with this symbol file"));
4320
4321 if (ret > 0)
4322 do_sections = 0;
4323 }
4324
4325 if (do_sections)
4326 {
4327 offs[SECT_OFF_TEXT (objf)] = text_addr;
4328
4329 /* This is a temporary kludge to force data and bss to use the
4330 same offsets because that's what nlmconv does now. The real
4331 solution requires changes to the stub and remote.c that I
4332 don't have time to do right now. */
4333
4334 offs[SECT_OFF_DATA (objf)] = data_addr;
4335 offs[SECT_OFF_BSS (objf)] = data_addr;
4336 }
4337
4338 objfile_relocate (objf, offs);
4339 }
4340
4341 /* Send interrupt_sequence to remote target. */
4342
4343 void
4344 remote_target::send_interrupt_sequence ()
4345 {
4346 struct remote_state *rs = get_remote_state ();
4347
4348 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4349 remote_serial_write ("\x03", 1);
4350 else if (interrupt_sequence_mode == interrupt_sequence_break)
4351 serial_send_break (rs->remote_desc);
4352 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4353 {
4354 serial_send_break (rs->remote_desc);
4355 remote_serial_write ("g", 1);
4356 }
4357 else
4358 internal_error (__FILE__, __LINE__,
4359 _("Invalid value for interrupt_sequence_mode: %s."),
4360 interrupt_sequence_mode);
4361 }
4362
4363
4364 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4365 and extract the PTID. Returns NULL_PTID if not found. */
4366
4367 static ptid_t
4368 stop_reply_extract_thread (const char *stop_reply)
4369 {
4370 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4371 {
4372 const char *p;
4373
4374 /* Txx r:val ; r:val (...) */
4375 p = &stop_reply[3];
4376
4377 /* Look for "register" named "thread". */
4378 while (*p != '\0')
4379 {
4380 const char *p1;
4381
4382 p1 = strchr (p, ':');
4383 if (p1 == NULL)
4384 return null_ptid;
4385
4386 if (strncmp (p, "thread", p1 - p) == 0)
4387 return read_ptid (++p1, &p);
4388
4389 p1 = strchr (p, ';');
4390 if (p1 == NULL)
4391 return null_ptid;
4392 p1++;
4393
4394 p = p1;
4395 }
4396 }
4397
4398 return null_ptid;
4399 }
4400
4401 /* Determine the remote side's current thread. If we have a stop
4402 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4403 "thread" register we can extract the current thread from. If not,
4404 ask the remote which is the current thread with qC. The former
4405 method avoids a roundtrip. */
4406
4407 ptid_t
4408 remote_target::get_current_thread (const char *wait_status)
4409 {
4410 ptid_t ptid = null_ptid;
4411
4412 /* Note we don't use remote_parse_stop_reply as that makes use of
4413 the target architecture, which we haven't yet fully determined at
4414 this point. */
4415 if (wait_status != NULL)
4416 ptid = stop_reply_extract_thread (wait_status);
4417 if (ptid == null_ptid)
4418 ptid = remote_current_thread (inferior_ptid);
4419
4420 return ptid;
4421 }
4422
4423 /* Query the remote target for which is the current thread/process,
4424 add it to our tables, and update INFERIOR_PTID. The caller is
4425 responsible for setting the state such that the remote end is ready
4426 to return the current thread.
4427
4428 This function is called after handling the '?' or 'vRun' packets,
4429 whose response is a stop reply from which we can also try
4430 extracting the thread. If the target doesn't support the explicit
4431 qC query, we infer the current thread from that stop reply, passed
4432 in in WAIT_STATUS, which may be NULL.
4433
4434 The function returns pointer to the main thread of the inferior. */
4435
4436 thread_info *
4437 remote_target::add_current_inferior_and_thread (const char *wait_status)
4438 {
4439 struct remote_state *rs = get_remote_state ();
4440 bool fake_pid_p = false;
4441
4442 switch_to_no_thread ();
4443
4444 /* Now, if we have thread information, update the current thread's
4445 ptid. */
4446 ptid_t curr_ptid = get_current_thread (wait_status);
4447
4448 if (curr_ptid != null_ptid)
4449 {
4450 if (!remote_multi_process_p (rs))
4451 fake_pid_p = true;
4452 }
4453 else
4454 {
4455 /* Without this, some commands which require an active target
4456 (such as kill) won't work. This variable serves (at least)
4457 double duty as both the pid of the target process (if it has
4458 such), and as a flag indicating that a target is active. */
4459 curr_ptid = magic_null_ptid;
4460 fake_pid_p = true;
4461 }
4462
4463 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4464
4465 /* Add the main thread and switch to it. Don't try reading
4466 registers yet, since we haven't fetched the target description
4467 yet. */
4468 thread_info *tp = add_thread_silent (this, curr_ptid);
4469 switch_to_thread_no_regs (tp);
4470
4471 return tp;
4472 }
4473
4474 /* Print info about a thread that was found already stopped on
4475 connection. */
4476
4477 static void
4478 print_one_stopped_thread (struct thread_info *thread)
4479 {
4480 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4481
4482 switch_to_thread (thread);
4483 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4484 set_current_sal_from_frame (get_current_frame ());
4485
4486 thread->suspend.waitstatus_pending_p = 0;
4487
4488 if (ws->kind == TARGET_WAITKIND_STOPPED)
4489 {
4490 enum gdb_signal sig = ws->value.sig;
4491
4492 if (signal_print_state (sig))
4493 gdb::observers::signal_received.notify (sig);
4494 }
4495 gdb::observers::normal_stop.notify (NULL, 1);
4496 }
4497
4498 /* Process all initial stop replies the remote side sent in response
4499 to the ? packet. These indicate threads that were already stopped
4500 on initial connection. We mark these threads as stopped and print
4501 their current frame before giving the user the prompt. */
4502
4503 void
4504 remote_target::process_initial_stop_replies (int from_tty)
4505 {
4506 int pending_stop_replies = stop_reply_queue_length ();
4507 struct thread_info *selected = NULL;
4508 struct thread_info *lowest_stopped = NULL;
4509 struct thread_info *first = NULL;
4510
4511 /* Consume the initial pending events. */
4512 while (pending_stop_replies-- > 0)
4513 {
4514 ptid_t waiton_ptid = minus_one_ptid;
4515 ptid_t event_ptid;
4516 struct target_waitstatus ws;
4517 int ignore_event = 0;
4518
4519 memset (&ws, 0, sizeof (ws));
4520 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4521 if (remote_debug)
4522 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4523
4524 switch (ws.kind)
4525 {
4526 case TARGET_WAITKIND_IGNORE:
4527 case TARGET_WAITKIND_NO_RESUMED:
4528 case TARGET_WAITKIND_SIGNALLED:
4529 case TARGET_WAITKIND_EXITED:
4530 /* We shouldn't see these, but if we do, just ignore. */
4531 remote_debug_printf ("event ignored");
4532 ignore_event = 1;
4533 break;
4534
4535 case TARGET_WAITKIND_EXECD:
4536 xfree (ws.value.execd_pathname);
4537 break;
4538 default:
4539 break;
4540 }
4541
4542 if (ignore_event)
4543 continue;
4544
4545 thread_info *evthread = find_thread_ptid (this, event_ptid);
4546
4547 if (ws.kind == TARGET_WAITKIND_STOPPED)
4548 {
4549 enum gdb_signal sig = ws.value.sig;
4550
4551 /* Stubs traditionally report SIGTRAP as initial signal,
4552 instead of signal 0. Suppress it. */
4553 if (sig == GDB_SIGNAL_TRAP)
4554 sig = GDB_SIGNAL_0;
4555 evthread->suspend.stop_signal = sig;
4556 ws.value.sig = sig;
4557 }
4558
4559 evthread->suspend.waitstatus = ws;
4560
4561 if (ws.kind != TARGET_WAITKIND_STOPPED
4562 || ws.value.sig != GDB_SIGNAL_0)
4563 evthread->suspend.waitstatus_pending_p = 1;
4564
4565 set_executing (this, event_ptid, false);
4566 set_running (this, event_ptid, false);
4567 get_remote_thread_info (evthread)->set_not_resumed ();
4568 }
4569
4570 /* "Notice" the new inferiors before anything related to
4571 registers/memory. */
4572 for (inferior *inf : all_non_exited_inferiors (this))
4573 {
4574 inf->needs_setup = 1;
4575
4576 if (non_stop)
4577 {
4578 thread_info *thread = any_live_thread_of_inferior (inf);
4579 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4580 from_tty);
4581 }
4582 }
4583
4584 /* If all-stop on top of non-stop, pause all threads. Note this
4585 records the threads' stop pc, so must be done after "noticing"
4586 the inferiors. */
4587 if (!non_stop)
4588 {
4589 stop_all_threads ();
4590
4591 /* If all threads of an inferior were already stopped, we
4592 haven't setup the inferior yet. */
4593 for (inferior *inf : all_non_exited_inferiors (this))
4594 {
4595 if (inf->needs_setup)
4596 {
4597 thread_info *thread = any_live_thread_of_inferior (inf);
4598 switch_to_thread_no_regs (thread);
4599 setup_inferior (0);
4600 }
4601 }
4602 }
4603
4604 /* Now go over all threads that are stopped, and print their current
4605 frame. If all-stop, then if there's a signalled thread, pick
4606 that as current. */
4607 for (thread_info *thread : all_non_exited_threads (this))
4608 {
4609 if (first == NULL)
4610 first = thread;
4611
4612 if (!non_stop)
4613 thread->set_running (false);
4614 else if (thread->state != THREAD_STOPPED)
4615 continue;
4616
4617 if (selected == NULL
4618 && thread->suspend.waitstatus_pending_p)
4619 selected = thread;
4620
4621 if (lowest_stopped == NULL
4622 || thread->inf->num < lowest_stopped->inf->num
4623 || thread->per_inf_num < lowest_stopped->per_inf_num)
4624 lowest_stopped = thread;
4625
4626 if (non_stop)
4627 print_one_stopped_thread (thread);
4628 }
4629
4630 /* In all-stop, we only print the status of one thread, and leave
4631 others with their status pending. */
4632 if (!non_stop)
4633 {
4634 thread_info *thread = selected;
4635 if (thread == NULL)
4636 thread = lowest_stopped;
4637 if (thread == NULL)
4638 thread = first;
4639
4640 print_one_stopped_thread (thread);
4641 }
4642
4643 /* For "info program". */
4644 thread_info *thread = inferior_thread ();
4645 if (thread->state == THREAD_STOPPED)
4646 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4647 }
4648
4649 /* Start the remote connection and sync state. */
4650
4651 void
4652 remote_target::start_remote (int from_tty, int extended_p)
4653 {
4654 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4655
4656 struct remote_state *rs = get_remote_state ();
4657 struct packet_config *noack_config;
4658
4659 /* Signal other parts that we're going through the initial setup,
4660 and so things may not be stable yet. E.g., we don't try to
4661 install tracepoints until we've relocated symbols. Also, a
4662 Ctrl-C before we're connected and synced up can't interrupt the
4663 target. Instead, it offers to drop the (potentially wedged)
4664 connection. */
4665 rs->starting_up = 1;
4666
4667 QUIT;
4668
4669 if (interrupt_on_connect)
4670 send_interrupt_sequence ();
4671
4672 /* Ack any packet which the remote side has already sent. */
4673 remote_serial_write ("+", 1);
4674
4675 /* The first packet we send to the target is the optional "supported
4676 packets" request. If the target can answer this, it will tell us
4677 which later probes to skip. */
4678 remote_query_supported ();
4679
4680 /* If the stub wants to get a QAllow, compose one and send it. */
4681 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4682 set_permissions ();
4683
4684 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4685 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4686 as a reply to known packet. For packet "vFile:setfs:" it is an
4687 invalid reply and GDB would return error in
4688 remote_hostio_set_filesystem, making remote files access impossible.
4689 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4690 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4691 {
4692 const char v_mustreplyempty[] = "vMustReplyEmpty";
4693
4694 putpkt (v_mustreplyempty);
4695 getpkt (&rs->buf, 0);
4696 if (strcmp (rs->buf.data (), "OK") == 0)
4697 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4698 else if (strcmp (rs->buf.data (), "") != 0)
4699 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4700 rs->buf.data ());
4701 }
4702
4703 /* Next, we possibly activate noack mode.
4704
4705 If the QStartNoAckMode packet configuration is set to AUTO,
4706 enable noack mode if the stub reported a wish for it with
4707 qSupported.
4708
4709 If set to TRUE, then enable noack mode even if the stub didn't
4710 report it in qSupported. If the stub doesn't reply OK, the
4711 session ends with an error.
4712
4713 If FALSE, then don't activate noack mode, regardless of what the
4714 stub claimed should be the default with qSupported. */
4715
4716 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4717 if (packet_config_support (noack_config) != PACKET_DISABLE)
4718 {
4719 putpkt ("QStartNoAckMode");
4720 getpkt (&rs->buf, 0);
4721 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4722 rs->noack_mode = 1;
4723 }
4724
4725 if (extended_p)
4726 {
4727 /* Tell the remote that we are using the extended protocol. */
4728 putpkt ("!");
4729 getpkt (&rs->buf, 0);
4730 }
4731
4732 /* Let the target know which signals it is allowed to pass down to
4733 the program. */
4734 update_signals_program_target ();
4735
4736 /* Next, if the target can specify a description, read it. We do
4737 this before anything involving memory or registers. */
4738 target_find_description ();
4739
4740 /* Next, now that we know something about the target, update the
4741 address spaces in the program spaces. */
4742 update_address_spaces ();
4743
4744 /* On OSs where the list of libraries is global to all
4745 processes, we fetch them early. */
4746 if (gdbarch_has_global_solist (target_gdbarch ()))
4747 solib_add (NULL, from_tty, auto_solib_add);
4748
4749 if (target_is_non_stop_p ())
4750 {
4751 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4752 error (_("Non-stop mode requested, but remote "
4753 "does not support non-stop"));
4754
4755 putpkt ("QNonStop:1");
4756 getpkt (&rs->buf, 0);
4757
4758 if (strcmp (rs->buf.data (), "OK") != 0)
4759 error (_("Remote refused setting non-stop mode with: %s"),
4760 rs->buf.data ());
4761
4762 /* Find about threads and processes the stub is already
4763 controlling. We default to adding them in the running state.
4764 The '?' query below will then tell us about which threads are
4765 stopped. */
4766 this->update_thread_list ();
4767 }
4768 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4769 {
4770 /* Don't assume that the stub can operate in all-stop mode.
4771 Request it explicitly. */
4772 putpkt ("QNonStop:0");
4773 getpkt (&rs->buf, 0);
4774
4775 if (strcmp (rs->buf.data (), "OK") != 0)
4776 error (_("Remote refused setting all-stop mode with: %s"),
4777 rs->buf.data ());
4778 }
4779
4780 /* Upload TSVs regardless of whether the target is running or not. The
4781 remote stub, such as GDBserver, may have some predefined or builtin
4782 TSVs, even if the target is not running. */
4783 if (get_trace_status (current_trace_status ()) != -1)
4784 {
4785 struct uploaded_tsv *uploaded_tsvs = NULL;
4786
4787 upload_trace_state_variables (&uploaded_tsvs);
4788 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4789 }
4790
4791 /* Check whether the target is running now. */
4792 putpkt ("?");
4793 getpkt (&rs->buf, 0);
4794
4795 if (!target_is_non_stop_p ())
4796 {
4797 char *wait_status = NULL;
4798
4799 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4800 {
4801 if (!extended_p)
4802 error (_("The target is not running (try extended-remote?)"));
4803
4804 /* We're connected, but not running. Drop out before we
4805 call start_remote. */
4806 rs->starting_up = 0;
4807 return;
4808 }
4809 else
4810 {
4811 /* Save the reply for later. */
4812 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4813 strcpy (wait_status, rs->buf.data ());
4814 }
4815
4816 /* Fetch thread list. */
4817 target_update_thread_list ();
4818
4819 /* Let the stub know that we want it to return the thread. */
4820 set_continue_thread (minus_one_ptid);
4821
4822 if (thread_count (this) == 0)
4823 {
4824 /* Target has no concept of threads at all. GDB treats
4825 non-threaded target as single-threaded; add a main
4826 thread. */
4827 thread_info *tp = add_current_inferior_and_thread (wait_status);
4828 get_remote_thread_info (tp)->set_resumed ();
4829 }
4830 else
4831 {
4832 /* We have thread information; select the thread the target
4833 says should be current. If we're reconnecting to a
4834 multi-threaded program, this will ideally be the thread
4835 that last reported an event before GDB disconnected. */
4836 ptid_t curr_thread = get_current_thread (wait_status);
4837 if (curr_thread == null_ptid)
4838 {
4839 /* Odd... The target was able to list threads, but not
4840 tell us which thread was current (no "thread"
4841 register in T stop reply?). Just pick the first
4842 thread in the thread list then. */
4843
4844 remote_debug_printf ("warning: couldn't determine remote "
4845 "current thread; picking first in list.");
4846
4847 for (thread_info *tp : all_non_exited_threads (this,
4848 minus_one_ptid))
4849 {
4850 switch_to_thread (tp);
4851 break;
4852 }
4853 }
4854 else
4855 switch_to_thread (find_thread_ptid (this, curr_thread));
4856 }
4857
4858 /* init_wait_for_inferior should be called before get_offsets in order
4859 to manage `inserted' flag in bp loc in a correct state.
4860 breakpoint_init_inferior, called from init_wait_for_inferior, set
4861 `inserted' flag to 0, while before breakpoint_re_set, called from
4862 start_remote, set `inserted' flag to 1. In the initialization of
4863 inferior, breakpoint_init_inferior should be called first, and then
4864 breakpoint_re_set can be called. If this order is broken, state of
4865 `inserted' flag is wrong, and cause some problems on breakpoint
4866 manipulation. */
4867 init_wait_for_inferior ();
4868
4869 get_offsets (); /* Get text, data & bss offsets. */
4870
4871 /* If we could not find a description using qXfer, and we know
4872 how to do it some other way, try again. This is not
4873 supported for non-stop; it could be, but it is tricky if
4874 there are no stopped threads when we connect. */
4875 if (remote_read_description_p (this)
4876 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4877 {
4878 target_clear_description ();
4879 target_find_description ();
4880 }
4881
4882 /* Use the previously fetched status. */
4883 gdb_assert (wait_status != NULL);
4884 strcpy (rs->buf.data (), wait_status);
4885 rs->cached_wait_status = 1;
4886
4887 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4888 }
4889 else
4890 {
4891 /* Clear WFI global state. Do this before finding about new
4892 threads and inferiors, and setting the current inferior.
4893 Otherwise we would clear the proceed status of the current
4894 inferior when we want its stop_soon state to be preserved
4895 (see notice_new_inferior). */
4896 init_wait_for_inferior ();
4897
4898 /* In non-stop, we will either get an "OK", meaning that there
4899 are no stopped threads at this time; or, a regular stop
4900 reply. In the latter case, there may be more than one thread
4901 stopped --- we pull them all out using the vStopped
4902 mechanism. */
4903 if (strcmp (rs->buf.data (), "OK") != 0)
4904 {
4905 struct notif_client *notif = &notif_client_stop;
4906
4907 /* remote_notif_get_pending_replies acks this one, and gets
4908 the rest out. */
4909 rs->notif_state->pending_event[notif_client_stop.id]
4910 = remote_notif_parse (this, notif, rs->buf.data ());
4911 remote_notif_get_pending_events (notif);
4912 }
4913
4914 if (thread_count (this) == 0)
4915 {
4916 if (!extended_p)
4917 error (_("The target is not running (try extended-remote?)"));
4918
4919 /* We're connected, but not running. Drop out before we
4920 call start_remote. */
4921 rs->starting_up = 0;
4922 return;
4923 }
4924
4925 /* Report all signals during attach/startup. */
4926 pass_signals ({});
4927
4928 /* If there are already stopped threads, mark them stopped and
4929 report their stops before giving the prompt to the user. */
4930 process_initial_stop_replies (from_tty);
4931
4932 if (target_can_async_p ())
4933 target_async (1);
4934 }
4935
4936 /* If we connected to a live target, do some additional setup. */
4937 if (target_has_execution ())
4938 {
4939 /* No use without a symbol-file. */
4940 if (current_program_space->symfile_object_file)
4941 remote_check_symbols ();
4942 }
4943
4944 /* Possibly the target has been engaged in a trace run started
4945 previously; find out where things are at. */
4946 if (get_trace_status (current_trace_status ()) != -1)
4947 {
4948 struct uploaded_tp *uploaded_tps = NULL;
4949
4950 if (current_trace_status ()->running)
4951 printf_filtered (_("Trace is already running on the target.\n"));
4952
4953 upload_tracepoints (&uploaded_tps);
4954
4955 merge_uploaded_tracepoints (&uploaded_tps);
4956 }
4957
4958 /* Possibly the target has been engaged in a btrace record started
4959 previously; find out where things are at. */
4960 remote_btrace_maybe_reopen ();
4961
4962 /* The thread and inferior lists are now synchronized with the
4963 target, our symbols have been relocated, and we're merged the
4964 target's tracepoints with ours. We're done with basic start
4965 up. */
4966 rs->starting_up = 0;
4967
4968 /* Maybe breakpoints are global and need to be inserted now. */
4969 if (breakpoints_should_be_inserted_now ())
4970 insert_breakpoints ();
4971 }
4972
4973 const char *
4974 remote_target::connection_string ()
4975 {
4976 remote_state *rs = get_remote_state ();
4977
4978 if (rs->remote_desc->name != NULL)
4979 return rs->remote_desc->name;
4980 else
4981 return NULL;
4982 }
4983
4984 /* Open a connection to a remote debugger.
4985 NAME is the filename used for communication. */
4986
4987 void
4988 remote_target::open (const char *name, int from_tty)
4989 {
4990 open_1 (name, from_tty, 0);
4991 }
4992
4993 /* Open a connection to a remote debugger using the extended
4994 remote gdb protocol. NAME is the filename used for communication. */
4995
4996 void
4997 extended_remote_target::open (const char *name, int from_tty)
4998 {
4999 open_1 (name, from_tty, 1 /*extended_p */);
5000 }
5001
5002 /* Reset all packets back to "unknown support". Called when opening a
5003 new connection to a remote target. */
5004
5005 static void
5006 reset_all_packet_configs_support (void)
5007 {
5008 int i;
5009
5010 for (i = 0; i < PACKET_MAX; i++)
5011 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5012 }
5013
5014 /* Initialize all packet configs. */
5015
5016 static void
5017 init_all_packet_configs (void)
5018 {
5019 int i;
5020
5021 for (i = 0; i < PACKET_MAX; i++)
5022 {
5023 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5024 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5025 }
5026 }
5027
5028 /* Symbol look-up. */
5029
5030 void
5031 remote_target::remote_check_symbols ()
5032 {
5033 char *tmp;
5034 int end;
5035
5036 /* The remote side has no concept of inferiors that aren't running
5037 yet, it only knows about running processes. If we're connected
5038 but our current inferior is not running, we should not invite the
5039 remote target to request symbol lookups related to its
5040 (unrelated) current process. */
5041 if (!target_has_execution ())
5042 return;
5043
5044 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5045 return;
5046
5047 /* Make sure the remote is pointing at the right process. Note
5048 there's no way to select "no process". */
5049 set_general_process ();
5050
5051 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5052 because we need both at the same time. */
5053 gdb::char_vector msg (get_remote_packet_size ());
5054 gdb::char_vector reply (get_remote_packet_size ());
5055
5056 /* Invite target to request symbol lookups. */
5057
5058 putpkt ("qSymbol::");
5059 getpkt (&reply, 0);
5060 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5061
5062 while (startswith (reply.data (), "qSymbol:"))
5063 {
5064 struct bound_minimal_symbol sym;
5065
5066 tmp = &reply[8];
5067 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5068 strlen (tmp) / 2);
5069 msg[end] = '\0';
5070 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5071 if (sym.minsym == NULL)
5072 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5073 &reply[8]);
5074 else
5075 {
5076 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5077 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5078
5079 /* If this is a function address, return the start of code
5080 instead of any data function descriptor. */
5081 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
5082 sym_addr,
5083 current_top_target ());
5084
5085 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5086 phex_nz (sym_addr, addr_size), &reply[8]);
5087 }
5088
5089 putpkt (msg.data ());
5090 getpkt (&reply, 0);
5091 }
5092 }
5093
5094 static struct serial *
5095 remote_serial_open (const char *name)
5096 {
5097 static int udp_warning = 0;
5098
5099 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5100 of in ser-tcp.c, because it is the remote protocol assuming that the
5101 serial connection is reliable and not the serial connection promising
5102 to be. */
5103 if (!udp_warning && startswith (name, "udp:"))
5104 {
5105 warning (_("The remote protocol may be unreliable over UDP.\n"
5106 "Some events may be lost, rendering further debugging "
5107 "impossible."));
5108 udp_warning = 1;
5109 }
5110
5111 return serial_open (name);
5112 }
5113
5114 /* Inform the target of our permission settings. The permission flags
5115 work without this, but if the target knows the settings, it can do
5116 a couple things. First, it can add its own check, to catch cases
5117 that somehow manage to get by the permissions checks in target
5118 methods. Second, if the target is wired to disallow particular
5119 settings (for instance, a system in the field that is not set up to
5120 be able to stop at a breakpoint), it can object to any unavailable
5121 permissions. */
5122
5123 void
5124 remote_target::set_permissions ()
5125 {
5126 struct remote_state *rs = get_remote_state ();
5127
5128 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5129 "WriteReg:%x;WriteMem:%x;"
5130 "InsertBreak:%x;InsertTrace:%x;"
5131 "InsertFastTrace:%x;Stop:%x",
5132 may_write_registers, may_write_memory,
5133 may_insert_breakpoints, may_insert_tracepoints,
5134 may_insert_fast_tracepoints, may_stop);
5135 putpkt (rs->buf);
5136 getpkt (&rs->buf, 0);
5137
5138 /* If the target didn't like the packet, warn the user. Do not try
5139 to undo the user's settings, that would just be maddening. */
5140 if (strcmp (rs->buf.data (), "OK") != 0)
5141 warning (_("Remote refused setting permissions with: %s"),
5142 rs->buf.data ());
5143 }
5144
5145 /* This type describes each known response to the qSupported
5146 packet. */
5147 struct protocol_feature
5148 {
5149 /* The name of this protocol feature. */
5150 const char *name;
5151
5152 /* The default for this protocol feature. */
5153 enum packet_support default_support;
5154
5155 /* The function to call when this feature is reported, or after
5156 qSupported processing if the feature is not supported.
5157 The first argument points to this structure. The second
5158 argument indicates whether the packet requested support be
5159 enabled, disabled, or probed (or the default, if this function
5160 is being called at the end of processing and this feature was
5161 not reported). The third argument may be NULL; if not NULL, it
5162 is a NUL-terminated string taken from the packet following
5163 this feature's name and an equals sign. */
5164 void (*func) (remote_target *remote, const struct protocol_feature *,
5165 enum packet_support, const char *);
5166
5167 /* The corresponding packet for this feature. Only used if
5168 FUNC is remote_supported_packet. */
5169 int packet;
5170 };
5171
5172 static void
5173 remote_supported_packet (remote_target *remote,
5174 const struct protocol_feature *feature,
5175 enum packet_support support,
5176 const char *argument)
5177 {
5178 if (argument)
5179 {
5180 warning (_("Remote qSupported response supplied an unexpected value for"
5181 " \"%s\"."), feature->name);
5182 return;
5183 }
5184
5185 remote_protocol_packets[feature->packet].support = support;
5186 }
5187
5188 void
5189 remote_target::remote_packet_size (const protocol_feature *feature,
5190 enum packet_support support, const char *value)
5191 {
5192 struct remote_state *rs = get_remote_state ();
5193
5194 int packet_size;
5195 char *value_end;
5196
5197 if (support != PACKET_ENABLE)
5198 return;
5199
5200 if (value == NULL || *value == '\0')
5201 {
5202 warning (_("Remote target reported \"%s\" without a size."),
5203 feature->name);
5204 return;
5205 }
5206
5207 errno = 0;
5208 packet_size = strtol (value, &value_end, 16);
5209 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5210 {
5211 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5212 feature->name, value);
5213 return;
5214 }
5215
5216 /* Record the new maximum packet size. */
5217 rs->explicit_packet_size = packet_size;
5218 }
5219
5220 static void
5221 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5222 enum packet_support support, const char *value)
5223 {
5224 remote->remote_packet_size (feature, support, value);
5225 }
5226
5227 static const struct protocol_feature remote_protocol_features[] = {
5228 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5229 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5230 PACKET_qXfer_auxv },
5231 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5232 PACKET_qXfer_exec_file },
5233 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_qXfer_features },
5235 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5236 PACKET_qXfer_libraries },
5237 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_qXfer_libraries_svr4 },
5239 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5240 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5241 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_qXfer_memory_map },
5243 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5244 PACKET_qXfer_osdata },
5245 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_threads },
5247 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_qXfer_traceframe_info },
5249 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_QPassSignals },
5251 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_QCatchSyscalls },
5253 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_QProgramSignals },
5255 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_QSetWorkingDir },
5257 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_QStartupWithShell },
5259 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_QEnvironmentHexEncoded },
5261 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_QEnvironmentReset },
5263 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_QEnvironmentUnset },
5265 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QStartNoAckMode },
5267 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_multiprocess_feature },
5269 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5270 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5271 PACKET_qXfer_siginfo_read },
5272 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5273 PACKET_qXfer_siginfo_write },
5274 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_ConditionalTracepoints },
5276 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_ConditionalBreakpoints },
5278 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_BreakpointCommands },
5280 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_FastTracepoints },
5282 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_StaticTracepoints },
5284 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_InstallInTrace},
5286 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_DisconnectedTracing_feature },
5288 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_bc },
5290 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_bs },
5292 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_TracepointSource },
5294 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_QAllow },
5296 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_EnableDisableTracepoints_feature },
5298 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_qXfer_fdpic },
5300 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_qXfer_uib },
5302 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_QDisableRandomization },
5304 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5305 { "QTBuffer:size", PACKET_DISABLE,
5306 remote_supported_packet, PACKET_QTBuffer_size},
5307 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5308 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5309 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5310 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5311 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5312 PACKET_qXfer_btrace },
5313 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5314 PACKET_qXfer_btrace_conf },
5315 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5316 PACKET_Qbtrace_conf_bts_size },
5317 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5318 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5319 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5320 PACKET_fork_event_feature },
5321 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5322 PACKET_vfork_event_feature },
5323 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5324 PACKET_exec_event_feature },
5325 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5326 PACKET_Qbtrace_conf_pt_size },
5327 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5328 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5329 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5330 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5331 PACKET_memory_tagging_feature },
5332 };
5333
5334 static char *remote_support_xml;
5335
5336 /* Register string appended to "xmlRegisters=" in qSupported query. */
5337
5338 void
5339 register_remote_support_xml (const char *xml)
5340 {
5341 #if defined(HAVE_LIBEXPAT)
5342 if (remote_support_xml == NULL)
5343 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5344 else
5345 {
5346 char *copy = xstrdup (remote_support_xml + 13);
5347 char *saveptr;
5348 char *p = strtok_r (copy, ",", &saveptr);
5349
5350 do
5351 {
5352 if (strcmp (p, xml) == 0)
5353 {
5354 /* already there */
5355 xfree (copy);
5356 return;
5357 }
5358 }
5359 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5360 xfree (copy);
5361
5362 remote_support_xml = reconcat (remote_support_xml,
5363 remote_support_xml, ",", xml,
5364 (char *) NULL);
5365 }
5366 #endif
5367 }
5368
5369 static void
5370 remote_query_supported_append (std::string *msg, const char *append)
5371 {
5372 if (!msg->empty ())
5373 msg->append (";");
5374 msg->append (append);
5375 }
5376
5377 void
5378 remote_target::remote_query_supported ()
5379 {
5380 struct remote_state *rs = get_remote_state ();
5381 char *next;
5382 int i;
5383 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5384
5385 /* The packet support flags are handled differently for this packet
5386 than for most others. We treat an error, a disabled packet, and
5387 an empty response identically: any features which must be reported
5388 to be used will be automatically disabled. An empty buffer
5389 accomplishes this, since that is also the representation for a list
5390 containing no features. */
5391
5392 rs->buf[0] = 0;
5393 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5394 {
5395 std::string q;
5396
5397 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5398 remote_query_supported_append (&q, "multiprocess+");
5399
5400 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5401 remote_query_supported_append (&q, "swbreak+");
5402 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5403 remote_query_supported_append (&q, "hwbreak+");
5404
5405 remote_query_supported_append (&q, "qRelocInsn+");
5406
5407 if (packet_set_cmd_state (PACKET_fork_event_feature)
5408 != AUTO_BOOLEAN_FALSE)
5409 remote_query_supported_append (&q, "fork-events+");
5410 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5411 != AUTO_BOOLEAN_FALSE)
5412 remote_query_supported_append (&q, "vfork-events+");
5413 if (packet_set_cmd_state (PACKET_exec_event_feature)
5414 != AUTO_BOOLEAN_FALSE)
5415 remote_query_supported_append (&q, "exec-events+");
5416
5417 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5418 remote_query_supported_append (&q, "vContSupported+");
5419
5420 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5421 remote_query_supported_append (&q, "QThreadEvents+");
5422
5423 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5424 remote_query_supported_append (&q, "no-resumed+");
5425
5426 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5427 != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "memory-tagging+");
5429
5430 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5431 the qSupported:xmlRegisters=i386 handling. */
5432 if (remote_support_xml != NULL
5433 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5434 remote_query_supported_append (&q, remote_support_xml);
5435
5436 q = "qSupported:" + q;
5437 putpkt (q.c_str ());
5438
5439 getpkt (&rs->buf, 0);
5440
5441 /* If an error occured, warn, but do not return - just reset the
5442 buffer to empty and go on to disable features. */
5443 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5444 == PACKET_ERROR)
5445 {
5446 warning (_("Remote failure reply: %s"), rs->buf.data ());
5447 rs->buf[0] = 0;
5448 }
5449 }
5450
5451 memset (seen, 0, sizeof (seen));
5452
5453 next = rs->buf.data ();
5454 while (*next)
5455 {
5456 enum packet_support is_supported;
5457 char *p, *end, *name_end, *value;
5458
5459 /* First separate out this item from the rest of the packet. If
5460 there's another item after this, we overwrite the separator
5461 (terminated strings are much easier to work with). */
5462 p = next;
5463 end = strchr (p, ';');
5464 if (end == NULL)
5465 {
5466 end = p + strlen (p);
5467 next = end;
5468 }
5469 else
5470 {
5471 *end = '\0';
5472 next = end + 1;
5473
5474 if (end == p)
5475 {
5476 warning (_("empty item in \"qSupported\" response"));
5477 continue;
5478 }
5479 }
5480
5481 name_end = strchr (p, '=');
5482 if (name_end)
5483 {
5484 /* This is a name=value entry. */
5485 is_supported = PACKET_ENABLE;
5486 value = name_end + 1;
5487 *name_end = '\0';
5488 }
5489 else
5490 {
5491 value = NULL;
5492 switch (end[-1])
5493 {
5494 case '+':
5495 is_supported = PACKET_ENABLE;
5496 break;
5497
5498 case '-':
5499 is_supported = PACKET_DISABLE;
5500 break;
5501
5502 case '?':
5503 is_supported = PACKET_SUPPORT_UNKNOWN;
5504 break;
5505
5506 default:
5507 warning (_("unrecognized item \"%s\" "
5508 "in \"qSupported\" response"), p);
5509 continue;
5510 }
5511 end[-1] = '\0';
5512 }
5513
5514 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5515 if (strcmp (remote_protocol_features[i].name, p) == 0)
5516 {
5517 const struct protocol_feature *feature;
5518
5519 seen[i] = 1;
5520 feature = &remote_protocol_features[i];
5521 feature->func (this, feature, is_supported, value);
5522 break;
5523 }
5524 }
5525
5526 /* If we increased the packet size, make sure to increase the global
5527 buffer size also. We delay this until after parsing the entire
5528 qSupported packet, because this is the same buffer we were
5529 parsing. */
5530 if (rs->buf.size () < rs->explicit_packet_size)
5531 rs->buf.resize (rs->explicit_packet_size);
5532
5533 /* Handle the defaults for unmentioned features. */
5534 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5535 if (!seen[i])
5536 {
5537 const struct protocol_feature *feature;
5538
5539 feature = &remote_protocol_features[i];
5540 feature->func (this, feature, feature->default_support, NULL);
5541 }
5542 }
5543
5544 /* Serial QUIT handler for the remote serial descriptor.
5545
5546 Defers handling a Ctrl-C until we're done with the current
5547 command/response packet sequence, unless:
5548
5549 - We're setting up the connection. Don't send a remote interrupt
5550 request, as we're not fully synced yet. Quit immediately
5551 instead.
5552
5553 - The target has been resumed in the foreground
5554 (target_terminal::is_ours is false) with a synchronous resume
5555 packet, and we're blocked waiting for the stop reply, thus a
5556 Ctrl-C should be immediately sent to the target.
5557
5558 - We get a second Ctrl-C while still within the same serial read or
5559 write. In that case the serial is seemingly wedged --- offer to
5560 quit/disconnect.
5561
5562 - We see a second Ctrl-C without target response, after having
5563 previously interrupted the target. In that case the target/stub
5564 is probably wedged --- offer to quit/disconnect.
5565 */
5566
5567 void
5568 remote_target::remote_serial_quit_handler ()
5569 {
5570 struct remote_state *rs = get_remote_state ();
5571
5572 if (check_quit_flag ())
5573 {
5574 /* If we're starting up, we're not fully synced yet. Quit
5575 immediately. */
5576 if (rs->starting_up)
5577 quit ();
5578 else if (rs->got_ctrlc_during_io)
5579 {
5580 if (query (_("The target is not responding to GDB commands.\n"
5581 "Stop debugging it? ")))
5582 remote_unpush_and_throw (this);
5583 }
5584 /* If ^C has already been sent once, offer to disconnect. */
5585 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5586 interrupt_query ();
5587 /* All-stop protocol, and blocked waiting for stop reply. Send
5588 an interrupt request. */
5589 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5590 target_interrupt ();
5591 else
5592 rs->got_ctrlc_during_io = 1;
5593 }
5594 }
5595
5596 /* The remote_target that is current while the quit handler is
5597 overridden with remote_serial_quit_handler. */
5598 static remote_target *curr_quit_handler_target;
5599
5600 static void
5601 remote_serial_quit_handler ()
5602 {
5603 curr_quit_handler_target->remote_serial_quit_handler ();
5604 }
5605
5606 /* Remove the remote target from the target stack of each inferior
5607 that is using it. Upper targets depend on it so remove them
5608 first. */
5609
5610 static void
5611 remote_unpush_target (remote_target *target)
5612 {
5613 /* We have to unpush the target from all inferiors, even those that
5614 aren't running. */
5615 scoped_restore_current_inferior restore_current_inferior;
5616
5617 for (inferior *inf : all_inferiors (target))
5618 {
5619 switch_to_inferior_no_thread (inf);
5620 pop_all_targets_at_and_above (process_stratum);
5621 generic_mourn_inferior ();
5622 }
5623 }
5624
5625 static void
5626 remote_unpush_and_throw (remote_target *target)
5627 {
5628 remote_unpush_target (target);
5629 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5630 }
5631
5632 void
5633 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5634 {
5635 remote_target *curr_remote = get_current_remote_target ();
5636
5637 if (name == 0)
5638 error (_("To open a remote debug connection, you need to specify what\n"
5639 "serial device is attached to the remote system\n"
5640 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5641
5642 /* If we're connected to a running target, target_preopen will kill it.
5643 Ask this question first, before target_preopen has a chance to kill
5644 anything. */
5645 if (curr_remote != NULL && !target_has_execution ())
5646 {
5647 if (from_tty
5648 && !query (_("Already connected to a remote target. Disconnect? ")))
5649 error (_("Still connected."));
5650 }
5651
5652 /* Here the possibly existing remote target gets unpushed. */
5653 target_preopen (from_tty);
5654
5655 remote_fileio_reset ();
5656 reopen_exec_file ();
5657 reread_symbols ();
5658
5659 remote_target *remote
5660 = (extended_p ? new extended_remote_target () : new remote_target ());
5661 target_ops_up target_holder (remote);
5662
5663 remote_state *rs = remote->get_remote_state ();
5664
5665 /* See FIXME above. */
5666 if (!target_async_permitted)
5667 rs->wait_forever_enabled_p = 1;
5668
5669 rs->remote_desc = remote_serial_open (name);
5670 if (!rs->remote_desc)
5671 perror_with_name (name);
5672
5673 if (baud_rate != -1)
5674 {
5675 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5676 {
5677 /* The requested speed could not be set. Error out to
5678 top level after closing remote_desc. Take care to
5679 set remote_desc to NULL to avoid closing remote_desc
5680 more than once. */
5681 serial_close (rs->remote_desc);
5682 rs->remote_desc = NULL;
5683 perror_with_name (name);
5684 }
5685 }
5686
5687 serial_setparity (rs->remote_desc, serial_parity);
5688 serial_raw (rs->remote_desc);
5689
5690 /* If there is something sitting in the buffer we might take it as a
5691 response to a command, which would be bad. */
5692 serial_flush_input (rs->remote_desc);
5693
5694 if (from_tty)
5695 {
5696 puts_filtered ("Remote debugging using ");
5697 puts_filtered (name);
5698 puts_filtered ("\n");
5699 }
5700
5701 /* Switch to using the remote target now. */
5702 current_inferior ()->push_target (std::move (target_holder));
5703
5704 /* Register extra event sources in the event loop. */
5705 rs->remote_async_inferior_event_token
5706 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5707 "remote");
5708 rs->notif_state = remote_notif_state_allocate (remote);
5709
5710 /* Reset the target state; these things will be queried either by
5711 remote_query_supported or as they are needed. */
5712 reset_all_packet_configs_support ();
5713 rs->cached_wait_status = 0;
5714 rs->explicit_packet_size = 0;
5715 rs->noack_mode = 0;
5716 rs->extended = extended_p;
5717 rs->waiting_for_stop_reply = 0;
5718 rs->ctrlc_pending_p = 0;
5719 rs->got_ctrlc_during_io = 0;
5720
5721 rs->general_thread = not_sent_ptid;
5722 rs->continue_thread = not_sent_ptid;
5723 rs->remote_traceframe_number = -1;
5724
5725 rs->last_resume_exec_dir = EXEC_FORWARD;
5726
5727 /* Probe for ability to use "ThreadInfo" query, as required. */
5728 rs->use_threadinfo_query = 1;
5729 rs->use_threadextra_query = 1;
5730
5731 rs->readahead_cache.invalidate ();
5732
5733 if (target_async_permitted)
5734 {
5735 /* FIXME: cagney/1999-09-23: During the initial connection it is
5736 assumed that the target is already ready and able to respond to
5737 requests. Unfortunately remote_start_remote() eventually calls
5738 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5739 around this. Eventually a mechanism that allows
5740 wait_for_inferior() to expect/get timeouts will be
5741 implemented. */
5742 rs->wait_forever_enabled_p = 0;
5743 }
5744
5745 /* First delete any symbols previously loaded from shared libraries. */
5746 no_shared_libraries (NULL, 0);
5747
5748 /* Start the remote connection. If error() or QUIT, discard this
5749 target (we'd otherwise be in an inconsistent state) and then
5750 propogate the error on up the exception chain. This ensures that
5751 the caller doesn't stumble along blindly assuming that the
5752 function succeeded. The CLI doesn't have this problem but other
5753 UI's, such as MI do.
5754
5755 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5756 this function should return an error indication letting the
5757 caller restore the previous state. Unfortunately the command
5758 ``target remote'' is directly wired to this function making that
5759 impossible. On a positive note, the CLI side of this problem has
5760 been fixed - the function set_cmd_context() makes it possible for
5761 all the ``target ....'' commands to share a common callback
5762 function. See cli-dump.c. */
5763 {
5764
5765 try
5766 {
5767 remote->start_remote (from_tty, extended_p);
5768 }
5769 catch (const gdb_exception &ex)
5770 {
5771 /* Pop the partially set up target - unless something else did
5772 already before throwing the exception. */
5773 if (ex.error != TARGET_CLOSE_ERROR)
5774 remote_unpush_target (remote);
5775 throw;
5776 }
5777 }
5778
5779 remote_btrace_reset (rs);
5780
5781 if (target_async_permitted)
5782 rs->wait_forever_enabled_p = 1;
5783 }
5784
5785 /* Detach the specified process. */
5786
5787 void
5788 remote_target::remote_detach_pid (int pid)
5789 {
5790 struct remote_state *rs = get_remote_state ();
5791
5792 /* This should not be necessary, but the handling for D;PID in
5793 GDBserver versions prior to 8.2 incorrectly assumes that the
5794 selected process points to the same process we're detaching,
5795 leading to misbehavior (and possibly GDBserver crashing) when it
5796 does not. Since it's easy and cheap, work around it by forcing
5797 GDBserver to select GDB's current process. */
5798 set_general_process ();
5799
5800 if (remote_multi_process_p (rs))
5801 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5802 else
5803 strcpy (rs->buf.data (), "D");
5804
5805 putpkt (rs->buf);
5806 getpkt (&rs->buf, 0);
5807
5808 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5809 ;
5810 else if (rs->buf[0] == '\0')
5811 error (_("Remote doesn't know how to detach"));
5812 else
5813 error (_("Can't detach process."));
5814 }
5815
5816 /* This detaches a program to which we previously attached, using
5817 inferior_ptid to identify the process. After this is done, GDB
5818 can be used to debug some other program. We better not have left
5819 any breakpoints in the target program or it'll die when it hits
5820 one. */
5821
5822 void
5823 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5824 {
5825 int pid = inferior_ptid.pid ();
5826 struct remote_state *rs = get_remote_state ();
5827 int is_fork_parent;
5828
5829 if (!target_has_execution ())
5830 error (_("No process to detach from."));
5831
5832 target_announce_detach (from_tty);
5833
5834 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5835 {
5836 /* If we're in breakpoints-always-inserted mode, or the inferior
5837 is running, we have to remove breakpoints before detaching.
5838 We don't do this in common code instead because not all
5839 targets support removing breakpoints while the target is
5840 running. The remote target / gdbserver does, though. */
5841 remove_breakpoints_inf (current_inferior ());
5842 }
5843
5844 /* Tell the remote target to detach. */
5845 remote_detach_pid (pid);
5846
5847 /* Exit only if this is the only active inferior. */
5848 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5849 puts_filtered (_("Ending remote debugging.\n"));
5850
5851 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5852
5853 /* Check to see if we are detaching a fork parent. Note that if we
5854 are detaching a fork child, tp == NULL. */
5855 is_fork_parent = (tp != NULL
5856 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5857
5858 /* If doing detach-on-fork, we don't mourn, because that will delete
5859 breakpoints that should be available for the followed inferior. */
5860 if (!is_fork_parent)
5861 {
5862 /* Save the pid as a string before mourning, since that will
5863 unpush the remote target, and we need the string after. */
5864 std::string infpid = target_pid_to_str (ptid_t (pid));
5865
5866 target_mourn_inferior (inferior_ptid);
5867 if (print_inferior_events)
5868 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5869 inf->num, infpid.c_str ());
5870 }
5871 else
5872 {
5873 switch_to_no_thread ();
5874 detach_inferior (current_inferior ());
5875 }
5876 }
5877
5878 void
5879 remote_target::detach (inferior *inf, int from_tty)
5880 {
5881 remote_detach_1 (inf, from_tty);
5882 }
5883
5884 void
5885 extended_remote_target::detach (inferior *inf, int from_tty)
5886 {
5887 remote_detach_1 (inf, from_tty);
5888 }
5889
5890 /* Target follow-fork function for remote targets. On entry, and
5891 at return, the current inferior is the fork parent.
5892
5893 Note that although this is currently only used for extended-remote,
5894 it is named remote_follow_fork in anticipation of using it for the
5895 remote target as well. */
5896
5897 bool
5898 remote_target::follow_fork (bool follow_child, bool detach_fork)
5899 {
5900 struct remote_state *rs = get_remote_state ();
5901 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5902
5903 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5904 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5905 {
5906 /* When following the parent and detaching the child, we detach
5907 the child here. For the case of following the child and
5908 detaching the parent, the detach is done in the target-
5909 independent follow fork code in infrun.c. We can't use
5910 target_detach when detaching an unfollowed child because
5911 the client side doesn't know anything about the child. */
5912 if (detach_fork && !follow_child)
5913 {
5914 /* Detach the fork child. */
5915 ptid_t child_ptid;
5916 pid_t child_pid;
5917
5918 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5919 child_pid = child_ptid.pid ();
5920
5921 remote_detach_pid (child_pid);
5922 }
5923 }
5924
5925 return false;
5926 }
5927
5928 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5929 in the program space of the new inferior. On entry and at return the
5930 current inferior is the exec'ing inferior. INF is the new exec'd
5931 inferior, which may be the same as the exec'ing inferior unless
5932 follow-exec-mode is "new". */
5933
5934 void
5935 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5936 {
5937 /* We know that this is a target file name, so if it has the "target:"
5938 prefix we strip it off before saving it in the program space. */
5939 if (is_target_filename (execd_pathname))
5940 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5941
5942 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5943 }
5944
5945 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5946
5947 void
5948 remote_target::disconnect (const char *args, int from_tty)
5949 {
5950 if (args)
5951 error (_("Argument given to \"disconnect\" when remotely debugging."));
5952
5953 /* Make sure we unpush even the extended remote targets. Calling
5954 target_mourn_inferior won't unpush, and
5955 remote_target::mourn_inferior won't unpush if there is more than
5956 one inferior left. */
5957 remote_unpush_target (this);
5958
5959 if (from_tty)
5960 puts_filtered ("Ending remote debugging.\n");
5961 }
5962
5963 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5964 be chatty about it. */
5965
5966 void
5967 extended_remote_target::attach (const char *args, int from_tty)
5968 {
5969 struct remote_state *rs = get_remote_state ();
5970 int pid;
5971 char *wait_status = NULL;
5972
5973 pid = parse_pid_to_attach (args);
5974
5975 /* Remote PID can be freely equal to getpid, do not check it here the same
5976 way as in other targets. */
5977
5978 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5979 error (_("This target does not support attaching to a process"));
5980
5981 if (from_tty)
5982 {
5983 const char *exec_file = get_exec_file (0);
5984
5985 if (exec_file)
5986 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5987 target_pid_to_str (ptid_t (pid)).c_str ());
5988 else
5989 printf_unfiltered (_("Attaching to %s\n"),
5990 target_pid_to_str (ptid_t (pid)).c_str ());
5991 }
5992
5993 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5994 putpkt (rs->buf);
5995 getpkt (&rs->buf, 0);
5996
5997 switch (packet_ok (rs->buf,
5998 &remote_protocol_packets[PACKET_vAttach]))
5999 {
6000 case PACKET_OK:
6001 if (!target_is_non_stop_p ())
6002 {
6003 /* Save the reply for later. */
6004 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6005 strcpy (wait_status, rs->buf.data ());
6006 }
6007 else if (strcmp (rs->buf.data (), "OK") != 0)
6008 error (_("Attaching to %s failed with: %s"),
6009 target_pid_to_str (ptid_t (pid)).c_str (),
6010 rs->buf.data ());
6011 break;
6012 case PACKET_UNKNOWN:
6013 error (_("This target does not support attaching to a process"));
6014 default:
6015 error (_("Attaching to %s failed"),
6016 target_pid_to_str (ptid_t (pid)).c_str ());
6017 }
6018
6019 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6020
6021 inferior_ptid = ptid_t (pid);
6022
6023 if (target_is_non_stop_p ())
6024 {
6025 /* Get list of threads. */
6026 update_thread_list ();
6027
6028 thread_info *thread = first_thread_of_inferior (current_inferior ());
6029 if (thread != nullptr)
6030 switch_to_thread (thread);
6031
6032 /* Invalidate our notion of the remote current thread. */
6033 record_currthread (rs, minus_one_ptid);
6034 }
6035 else
6036 {
6037 /* Now, if we have thread information, update the main thread's
6038 ptid. */
6039 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6040
6041 /* Add the main thread to the thread list. */
6042 thread_info *thr = add_thread_silent (this, curr_ptid);
6043
6044 switch_to_thread (thr);
6045
6046 /* Don't consider the thread stopped until we've processed the
6047 saved stop reply. */
6048 set_executing (this, thr->ptid, true);
6049 }
6050
6051 /* Next, if the target can specify a description, read it. We do
6052 this before anything involving memory or registers. */
6053 target_find_description ();
6054
6055 if (!target_is_non_stop_p ())
6056 {
6057 /* Use the previously fetched status. */
6058 gdb_assert (wait_status != NULL);
6059
6060 if (target_can_async_p ())
6061 {
6062 struct notif_event *reply
6063 = remote_notif_parse (this, &notif_client_stop, wait_status);
6064
6065 push_stop_reply ((struct stop_reply *) reply);
6066
6067 target_async (1);
6068 }
6069 else
6070 {
6071 gdb_assert (wait_status != NULL);
6072 strcpy (rs->buf.data (), wait_status);
6073 rs->cached_wait_status = 1;
6074 }
6075 }
6076 else
6077 {
6078 gdb_assert (wait_status == NULL);
6079
6080 gdb_assert (target_can_async_p ());
6081 target_async (1);
6082 }
6083 }
6084
6085 /* Implementation of the to_post_attach method. */
6086
6087 void
6088 extended_remote_target::post_attach (int pid)
6089 {
6090 /* Get text, data & bss offsets. */
6091 get_offsets ();
6092
6093 /* In certain cases GDB might not have had the chance to start
6094 symbol lookup up until now. This could happen if the debugged
6095 binary is not using shared libraries, the vsyscall page is not
6096 present (on Linux) and the binary itself hadn't changed since the
6097 debugging process was started. */
6098 if (current_program_space->symfile_object_file != NULL)
6099 remote_check_symbols();
6100 }
6101
6102 \f
6103 /* Check for the availability of vCont. This function should also check
6104 the response. */
6105
6106 void
6107 remote_target::remote_vcont_probe ()
6108 {
6109 remote_state *rs = get_remote_state ();
6110 char *buf;
6111
6112 strcpy (rs->buf.data (), "vCont?");
6113 putpkt (rs->buf);
6114 getpkt (&rs->buf, 0);
6115 buf = rs->buf.data ();
6116
6117 /* Make sure that the features we assume are supported. */
6118 if (startswith (buf, "vCont"))
6119 {
6120 char *p = &buf[5];
6121 int support_c, support_C;
6122
6123 rs->supports_vCont.s = 0;
6124 rs->supports_vCont.S = 0;
6125 support_c = 0;
6126 support_C = 0;
6127 rs->supports_vCont.t = 0;
6128 rs->supports_vCont.r = 0;
6129 while (p && *p == ';')
6130 {
6131 p++;
6132 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6133 rs->supports_vCont.s = 1;
6134 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6135 rs->supports_vCont.S = 1;
6136 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6137 support_c = 1;
6138 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6139 support_C = 1;
6140 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6141 rs->supports_vCont.t = 1;
6142 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6143 rs->supports_vCont.r = 1;
6144
6145 p = strchr (p, ';');
6146 }
6147
6148 /* If c, and C are not all supported, we can't use vCont. Clearing
6149 BUF will make packet_ok disable the packet. */
6150 if (!support_c || !support_C)
6151 buf[0] = 0;
6152 }
6153
6154 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6155 rs->supports_vCont_probed = true;
6156 }
6157
6158 /* Helper function for building "vCont" resumptions. Write a
6159 resumption to P. ENDP points to one-passed-the-end of the buffer
6160 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6161 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6162 resumed thread should be single-stepped and/or signalled. If PTID
6163 equals minus_one_ptid, then all threads are resumed; if PTID
6164 represents a process, then all threads of the process are resumed;
6165 the thread to be stepped and/or signalled is given in the global
6166 INFERIOR_PTID. */
6167
6168 char *
6169 remote_target::append_resumption (char *p, char *endp,
6170 ptid_t ptid, int step, gdb_signal siggnal)
6171 {
6172 struct remote_state *rs = get_remote_state ();
6173
6174 if (step && siggnal != GDB_SIGNAL_0)
6175 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6176 else if (step
6177 /* GDB is willing to range step. */
6178 && use_range_stepping
6179 /* Target supports range stepping. */
6180 && rs->supports_vCont.r
6181 /* We don't currently support range stepping multiple
6182 threads with a wildcard (though the protocol allows it,
6183 so stubs shouldn't make an active effort to forbid
6184 it). */
6185 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6186 {
6187 struct thread_info *tp;
6188
6189 if (ptid == minus_one_ptid)
6190 {
6191 /* If we don't know about the target thread's tid, then
6192 we're resuming magic_null_ptid (see caller). */
6193 tp = find_thread_ptid (this, magic_null_ptid);
6194 }
6195 else
6196 tp = find_thread_ptid (this, ptid);
6197 gdb_assert (tp != NULL);
6198
6199 if (tp->control.may_range_step)
6200 {
6201 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6202
6203 p += xsnprintf (p, endp - p, ";r%s,%s",
6204 phex_nz (tp->control.step_range_start,
6205 addr_size),
6206 phex_nz (tp->control.step_range_end,
6207 addr_size));
6208 }
6209 else
6210 p += xsnprintf (p, endp - p, ";s");
6211 }
6212 else if (step)
6213 p += xsnprintf (p, endp - p, ";s");
6214 else if (siggnal != GDB_SIGNAL_0)
6215 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6216 else
6217 p += xsnprintf (p, endp - p, ";c");
6218
6219 if (remote_multi_process_p (rs) && ptid.is_pid ())
6220 {
6221 ptid_t nptid;
6222
6223 /* All (-1) threads of process. */
6224 nptid = ptid_t (ptid.pid (), -1, 0);
6225
6226 p += xsnprintf (p, endp - p, ":");
6227 p = write_ptid (p, endp, nptid);
6228 }
6229 else if (ptid != minus_one_ptid)
6230 {
6231 p += xsnprintf (p, endp - p, ":");
6232 p = write_ptid (p, endp, ptid);
6233 }
6234
6235 return p;
6236 }
6237
6238 /* Clear the thread's private info on resume. */
6239
6240 static void
6241 resume_clear_thread_private_info (struct thread_info *thread)
6242 {
6243 if (thread->priv != NULL)
6244 {
6245 remote_thread_info *priv = get_remote_thread_info (thread);
6246
6247 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6248 priv->watch_data_address = 0;
6249 }
6250 }
6251
6252 /* Append a vCont continue-with-signal action for threads that have a
6253 non-zero stop signal. */
6254
6255 char *
6256 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6257 ptid_t ptid)
6258 {
6259 for (thread_info *thread : all_non_exited_threads (this, ptid))
6260 if (inferior_ptid != thread->ptid
6261 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6262 {
6263 p = append_resumption (p, endp, thread->ptid,
6264 0, thread->suspend.stop_signal);
6265 thread->suspend.stop_signal = GDB_SIGNAL_0;
6266 resume_clear_thread_private_info (thread);
6267 }
6268
6269 return p;
6270 }
6271
6272 /* Set the target running, using the packets that use Hc
6273 (c/s/C/S). */
6274
6275 void
6276 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6277 gdb_signal siggnal)
6278 {
6279 struct remote_state *rs = get_remote_state ();
6280 char *buf;
6281
6282 rs->last_sent_signal = siggnal;
6283 rs->last_sent_step = step;
6284
6285 /* The c/s/C/S resume packets use Hc, so set the continue
6286 thread. */
6287 if (ptid == minus_one_ptid)
6288 set_continue_thread (any_thread_ptid);
6289 else
6290 set_continue_thread (ptid);
6291
6292 for (thread_info *thread : all_non_exited_threads (this))
6293 resume_clear_thread_private_info (thread);
6294
6295 buf = rs->buf.data ();
6296 if (::execution_direction == EXEC_REVERSE)
6297 {
6298 /* We don't pass signals to the target in reverse exec mode. */
6299 if (info_verbose && siggnal != GDB_SIGNAL_0)
6300 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6301 siggnal);
6302
6303 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6304 error (_("Remote reverse-step not supported."));
6305 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6306 error (_("Remote reverse-continue not supported."));
6307
6308 strcpy (buf, step ? "bs" : "bc");
6309 }
6310 else if (siggnal != GDB_SIGNAL_0)
6311 {
6312 buf[0] = step ? 'S' : 'C';
6313 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6314 buf[2] = tohex (((int) siggnal) & 0xf);
6315 buf[3] = '\0';
6316 }
6317 else
6318 strcpy (buf, step ? "s" : "c");
6319
6320 putpkt (buf);
6321 }
6322
6323 /* Resume the remote inferior by using a "vCont" packet. The thread
6324 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6325 resumed thread should be single-stepped and/or signalled. If PTID
6326 equals minus_one_ptid, then all threads are resumed; the thread to
6327 be stepped and/or signalled is given in the global INFERIOR_PTID.
6328 This function returns non-zero iff it resumes the inferior.
6329
6330 This function issues a strict subset of all possible vCont commands
6331 at the moment. */
6332
6333 int
6334 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6335 enum gdb_signal siggnal)
6336 {
6337 struct remote_state *rs = get_remote_state ();
6338 char *p;
6339 char *endp;
6340
6341 /* No reverse execution actions defined for vCont. */
6342 if (::execution_direction == EXEC_REVERSE)
6343 return 0;
6344
6345 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6346 remote_vcont_probe ();
6347
6348 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6349 return 0;
6350
6351 p = rs->buf.data ();
6352 endp = p + get_remote_packet_size ();
6353
6354 /* If we could generate a wider range of packets, we'd have to worry
6355 about overflowing BUF. Should there be a generic
6356 "multi-part-packet" packet? */
6357
6358 p += xsnprintf (p, endp - p, "vCont");
6359
6360 if (ptid == magic_null_ptid)
6361 {
6362 /* MAGIC_NULL_PTID means that we don't have any active threads,
6363 so we don't have any TID numbers the inferior will
6364 understand. Make sure to only send forms that do not specify
6365 a TID. */
6366 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6367 }
6368 else if (ptid == minus_one_ptid || ptid.is_pid ())
6369 {
6370 /* Resume all threads (of all processes, or of a single
6371 process), with preference for INFERIOR_PTID. This assumes
6372 inferior_ptid belongs to the set of all threads we are about
6373 to resume. */
6374 if (step || siggnal != GDB_SIGNAL_0)
6375 {
6376 /* Step inferior_ptid, with or without signal. */
6377 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6378 }
6379
6380 /* Also pass down any pending signaled resumption for other
6381 threads not the current. */
6382 p = append_pending_thread_resumptions (p, endp, ptid);
6383
6384 /* And continue others without a signal. */
6385 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6386 }
6387 else
6388 {
6389 /* Scheduler locking; resume only PTID. */
6390 append_resumption (p, endp, ptid, step, siggnal);
6391 }
6392
6393 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6394 putpkt (rs->buf);
6395
6396 if (target_is_non_stop_p ())
6397 {
6398 /* In non-stop, the stub replies to vCont with "OK". The stop
6399 reply will be reported asynchronously by means of a `%Stop'
6400 notification. */
6401 getpkt (&rs->buf, 0);
6402 if (strcmp (rs->buf.data (), "OK") != 0)
6403 error (_("Unexpected vCont reply in non-stop mode: %s"),
6404 rs->buf.data ());
6405 }
6406
6407 return 1;
6408 }
6409
6410 /* Tell the remote machine to resume. */
6411
6412 void
6413 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6414 {
6415 struct remote_state *rs = get_remote_state ();
6416
6417 /* When connected in non-stop mode, the core resumes threads
6418 individually. Resuming remote threads directly in target_resume
6419 would thus result in sending one packet per thread. Instead, to
6420 minimize roundtrip latency, here we just store the resume
6421 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6422 resumption will be done in remote_target::commit_resume, where we'll be
6423 able to do vCont action coalescing. */
6424 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6425 {
6426 remote_thread_info *remote_thr;
6427
6428 if (minus_one_ptid == ptid || ptid.is_pid ())
6429 remote_thr = get_remote_thread_info (this, inferior_ptid);
6430 else
6431 remote_thr = get_remote_thread_info (this, ptid);
6432
6433 /* We don't expect the core to ask to resume an already resumed (from
6434 its point of view) thread. */
6435 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6436
6437 remote_thr->set_resumed_pending_vcont (step, siggnal);
6438 return;
6439 }
6440
6441 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6442 (explained in remote-notif.c:handle_notification) so
6443 remote_notif_process is not called. We need find a place where
6444 it is safe to start a 'vNotif' sequence. It is good to do it
6445 before resuming inferior, because inferior was stopped and no RSP
6446 traffic at that moment. */
6447 if (!target_is_non_stop_p ())
6448 remote_notif_process (rs->notif_state, &notif_client_stop);
6449
6450 rs->last_resume_exec_dir = ::execution_direction;
6451
6452 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6453 if (!remote_resume_with_vcont (ptid, step, siggnal))
6454 remote_resume_with_hc (ptid, step, siggnal);
6455
6456 /* Update resumed state tracked by the remote target. */
6457 for (thread_info *tp : all_non_exited_threads (this, ptid))
6458 get_remote_thread_info (tp)->set_resumed ();
6459
6460 /* We are about to start executing the inferior, let's register it
6461 with the event loop. NOTE: this is the one place where all the
6462 execution commands end up. We could alternatively do this in each
6463 of the execution commands in infcmd.c. */
6464 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6465 into infcmd.c in order to allow inferior function calls to work
6466 NOT asynchronously. */
6467 if (target_can_async_p ())
6468 target_async (1);
6469
6470 /* We've just told the target to resume. The remote server will
6471 wait for the inferior to stop, and then send a stop reply. In
6472 the mean time, we can't start another command/query ourselves
6473 because the stub wouldn't be ready to process it. This applies
6474 only to the base all-stop protocol, however. In non-stop (which
6475 only supports vCont), the stub replies with an "OK", and is
6476 immediate able to process further serial input. */
6477 if (!target_is_non_stop_p ())
6478 rs->waiting_for_stop_reply = 1;
6479 }
6480
6481 static int is_pending_fork_parent_thread (struct thread_info *thread);
6482
6483 /* Private per-inferior info for target remote processes. */
6484
6485 struct remote_inferior : public private_inferior
6486 {
6487 /* Whether we can send a wildcard vCont for this process. */
6488 bool may_wildcard_vcont = true;
6489 };
6490
6491 /* Get the remote private inferior data associated to INF. */
6492
6493 static remote_inferior *
6494 get_remote_inferior (inferior *inf)
6495 {
6496 if (inf->priv == NULL)
6497 inf->priv.reset (new remote_inferior);
6498
6499 return static_cast<remote_inferior *> (inf->priv.get ());
6500 }
6501
6502 /* Class used to track the construction of a vCont packet in the
6503 outgoing packet buffer. This is used to send multiple vCont
6504 packets if we have more actions than would fit a single packet. */
6505
6506 class vcont_builder
6507 {
6508 public:
6509 explicit vcont_builder (remote_target *remote)
6510 : m_remote (remote)
6511 {
6512 restart ();
6513 }
6514
6515 void flush ();
6516 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6517
6518 private:
6519 void restart ();
6520
6521 /* The remote target. */
6522 remote_target *m_remote;
6523
6524 /* Pointer to the first action. P points here if no action has been
6525 appended yet. */
6526 char *m_first_action;
6527
6528 /* Where the next action will be appended. */
6529 char *m_p;
6530
6531 /* The end of the buffer. Must never write past this. */
6532 char *m_endp;
6533 };
6534
6535 /* Prepare the outgoing buffer for a new vCont packet. */
6536
6537 void
6538 vcont_builder::restart ()
6539 {
6540 struct remote_state *rs = m_remote->get_remote_state ();
6541
6542 m_p = rs->buf.data ();
6543 m_endp = m_p + m_remote->get_remote_packet_size ();
6544 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6545 m_first_action = m_p;
6546 }
6547
6548 /* If the vCont packet being built has any action, send it to the
6549 remote end. */
6550
6551 void
6552 vcont_builder::flush ()
6553 {
6554 struct remote_state *rs;
6555
6556 if (m_p == m_first_action)
6557 return;
6558
6559 rs = m_remote->get_remote_state ();
6560 m_remote->putpkt (rs->buf);
6561 m_remote->getpkt (&rs->buf, 0);
6562 if (strcmp (rs->buf.data (), "OK") != 0)
6563 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6564 }
6565
6566 /* The largest action is range-stepping, with its two addresses. This
6567 is more than sufficient. If a new, bigger action is created, it'll
6568 quickly trigger a failed assertion in append_resumption (and we'll
6569 just bump this). */
6570 #define MAX_ACTION_SIZE 200
6571
6572 /* Append a new vCont action in the outgoing packet being built. If
6573 the action doesn't fit the packet along with previous actions, push
6574 what we've got so far to the remote end and start over a new vCont
6575 packet (with the new action). */
6576
6577 void
6578 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6579 {
6580 char buf[MAX_ACTION_SIZE + 1];
6581
6582 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6583 ptid, step, siggnal);
6584
6585 /* Check whether this new action would fit in the vCont packet along
6586 with previous actions. If not, send what we've got so far and
6587 start a new vCont packet. */
6588 size_t rsize = endp - buf;
6589 if (rsize > m_endp - m_p)
6590 {
6591 flush ();
6592 restart ();
6593
6594 /* Should now fit. */
6595 gdb_assert (rsize <= m_endp - m_p);
6596 }
6597
6598 memcpy (m_p, buf, rsize);
6599 m_p += rsize;
6600 *m_p = '\0';
6601 }
6602
6603 /* to_commit_resume implementation. */
6604
6605 void
6606 remote_target::commit_resume ()
6607 {
6608 int any_process_wildcard;
6609 int may_global_wildcard_vcont;
6610
6611 /* If connected in all-stop mode, we'd send the remote resume
6612 request directly from remote_resume. Likewise if
6613 reverse-debugging, as there are no defined vCont actions for
6614 reverse execution. */
6615 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6616 return;
6617
6618 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6619 instead of resuming all threads of each process individually.
6620 However, if any thread of a process must remain halted, we can't
6621 send wildcard resumes and must send one action per thread.
6622
6623 Care must be taken to not resume threads/processes the server
6624 side already told us are stopped, but the core doesn't know about
6625 yet, because the events are still in the vStopped notification
6626 queue. For example:
6627
6628 #1 => vCont s:p1.1;c
6629 #2 <= OK
6630 #3 <= %Stopped T05 p1.1
6631 #4 => vStopped
6632 #5 <= T05 p1.2
6633 #6 => vStopped
6634 #7 <= OK
6635 #8 (infrun handles the stop for p1.1 and continues stepping)
6636 #9 => vCont s:p1.1;c
6637
6638 The last vCont above would resume thread p1.2 by mistake, because
6639 the server has no idea that the event for p1.2 had not been
6640 handled yet.
6641
6642 The server side must similarly ignore resume actions for the
6643 thread that has a pending %Stopped notification (and any other
6644 threads with events pending), until GDB acks the notification
6645 with vStopped. Otherwise, e.g., the following case is
6646 mishandled:
6647
6648 #1 => g (or any other packet)
6649 #2 <= [registers]
6650 #3 <= %Stopped T05 p1.2
6651 #4 => vCont s:p1.1;c
6652 #5 <= OK
6653
6654 Above, the server must not resume thread p1.2. GDB can't know
6655 that p1.2 stopped until it acks the %Stopped notification, and
6656 since from GDB's perspective all threads should be running, it
6657 sends a "c" action.
6658
6659 Finally, special care must also be given to handling fork/vfork
6660 events. A (v)fork event actually tells us that two processes
6661 stopped -- the parent and the child. Until we follow the fork,
6662 we must not resume the child. Therefore, if we have a pending
6663 fork follow, we must not send a global wildcard resume action
6664 (vCont;c). We can still send process-wide wildcards though. */
6665
6666 /* Start by assuming a global wildcard (vCont;c) is possible. */
6667 may_global_wildcard_vcont = 1;
6668
6669 /* And assume every process is individually wildcard-able too. */
6670 for (inferior *inf : all_non_exited_inferiors (this))
6671 {
6672 remote_inferior *priv = get_remote_inferior (inf);
6673
6674 priv->may_wildcard_vcont = true;
6675 }
6676
6677 /* Check for any pending events (not reported or processed yet) and
6678 disable process and global wildcard resumes appropriately. */
6679 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6680
6681 for (thread_info *tp : all_non_exited_threads (this))
6682 {
6683 remote_thread_info *priv = get_remote_thread_info (tp);
6684
6685 /* If a thread of a process is not meant to be resumed, then we
6686 can't wildcard that process. */
6687 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6688 {
6689 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6690
6691 /* And if we can't wildcard a process, we can't wildcard
6692 everything either. */
6693 may_global_wildcard_vcont = 0;
6694 continue;
6695 }
6696
6697 /* If a thread is the parent of an unfollowed fork, then we
6698 can't do a global wildcard, as that would resume the fork
6699 child. */
6700 if (is_pending_fork_parent_thread (tp))
6701 may_global_wildcard_vcont = 0;
6702 }
6703
6704 /* Now let's build the vCont packet(s). Actions must be appended
6705 from narrower to wider scopes (thread -> process -> global). If
6706 we end up with too many actions for a single packet vcont_builder
6707 flushes the current vCont packet to the remote side and starts a
6708 new one. */
6709 struct vcont_builder vcont_builder (this);
6710
6711 /* Threads first. */
6712 for (thread_info *tp : all_non_exited_threads (this))
6713 {
6714 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6715
6716 /* If the thread was previously vCont-resumed, no need to send a specific
6717 action for it. If we didn't receive a resume request for it, don't
6718 send an action for it either. */
6719 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6720 continue;
6721
6722 gdb_assert (!thread_is_in_step_over_chain (tp));
6723
6724 const resumed_pending_vcont_info &info
6725 = remote_thr->resumed_pending_vcont_info ();
6726
6727 /* Check if we need to send a specific action for this thread. If not,
6728 it will be included in a wildcard resume instead. */
6729 if (info.step || info.sig != GDB_SIGNAL_0
6730 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6731 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6732
6733 remote_thr->set_resumed ();
6734 }
6735
6736 /* Now check whether we can send any process-wide wildcard. This is
6737 to avoid sending a global wildcard in the case nothing is
6738 supposed to be resumed. */
6739 any_process_wildcard = 0;
6740
6741 for (inferior *inf : all_non_exited_inferiors (this))
6742 {
6743 if (get_remote_inferior (inf)->may_wildcard_vcont)
6744 {
6745 any_process_wildcard = 1;
6746 break;
6747 }
6748 }
6749
6750 if (any_process_wildcard)
6751 {
6752 /* If all processes are wildcard-able, then send a single "c"
6753 action, otherwise, send an "all (-1) threads of process"
6754 continue action for each running process, if any. */
6755 if (may_global_wildcard_vcont)
6756 {
6757 vcont_builder.push_action (minus_one_ptid,
6758 false, GDB_SIGNAL_0);
6759 }
6760 else
6761 {
6762 for (inferior *inf : all_non_exited_inferiors (this))
6763 {
6764 if (get_remote_inferior (inf)->may_wildcard_vcont)
6765 {
6766 vcont_builder.push_action (ptid_t (inf->pid),
6767 false, GDB_SIGNAL_0);
6768 }
6769 }
6770 }
6771 }
6772
6773 vcont_builder.flush ();
6774 }
6775
6776 \f
6777
6778 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6779 thread, all threads of a remote process, or all threads of all
6780 processes. */
6781
6782 void
6783 remote_target::remote_stop_ns (ptid_t ptid)
6784 {
6785 struct remote_state *rs = get_remote_state ();
6786 char *p = rs->buf.data ();
6787 char *endp = p + get_remote_packet_size ();
6788
6789 /* FIXME: This supports_vCont_probed check is a workaround until
6790 packet_support is per-connection. */
6791 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6792 || !rs->supports_vCont_probed)
6793 remote_vcont_probe ();
6794
6795 if (!rs->supports_vCont.t)
6796 error (_("Remote server does not support stopping threads"));
6797
6798 if (ptid == minus_one_ptid
6799 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6800 p += xsnprintf (p, endp - p, "vCont;t");
6801 else
6802 {
6803 ptid_t nptid;
6804
6805 p += xsnprintf (p, endp - p, "vCont;t:");
6806
6807 if (ptid.is_pid ())
6808 /* All (-1) threads of process. */
6809 nptid = ptid_t (ptid.pid (), -1, 0);
6810 else
6811 {
6812 /* Small optimization: if we already have a stop reply for
6813 this thread, no use in telling the stub we want this
6814 stopped. */
6815 if (peek_stop_reply (ptid))
6816 return;
6817
6818 nptid = ptid;
6819 }
6820
6821 write_ptid (p, endp, nptid);
6822 }
6823
6824 /* In non-stop, we get an immediate OK reply. The stop reply will
6825 come in asynchronously by notification. */
6826 putpkt (rs->buf);
6827 getpkt (&rs->buf, 0);
6828 if (strcmp (rs->buf.data (), "OK") != 0)
6829 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6830 rs->buf.data ());
6831 }
6832
6833 /* All-stop version of target_interrupt. Sends a break or a ^C to
6834 interrupt the remote target. It is undefined which thread of which
6835 process reports the interrupt. */
6836
6837 void
6838 remote_target::remote_interrupt_as ()
6839 {
6840 struct remote_state *rs = get_remote_state ();
6841
6842 rs->ctrlc_pending_p = 1;
6843
6844 /* If the inferior is stopped already, but the core didn't know
6845 about it yet, just ignore the request. The cached wait status
6846 will be collected in remote_wait. */
6847 if (rs->cached_wait_status)
6848 return;
6849
6850 /* Send interrupt_sequence to remote target. */
6851 send_interrupt_sequence ();
6852 }
6853
6854 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6855 the remote target. It is undefined which thread of which process
6856 reports the interrupt. Throws an error if the packet is not
6857 supported by the server. */
6858
6859 void
6860 remote_target::remote_interrupt_ns ()
6861 {
6862 struct remote_state *rs = get_remote_state ();
6863 char *p = rs->buf.data ();
6864 char *endp = p + get_remote_packet_size ();
6865
6866 xsnprintf (p, endp - p, "vCtrlC");
6867
6868 /* In non-stop, we get an immediate OK reply. The stop reply will
6869 come in asynchronously by notification. */
6870 putpkt (rs->buf);
6871 getpkt (&rs->buf, 0);
6872
6873 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6874 {
6875 case PACKET_OK:
6876 break;
6877 case PACKET_UNKNOWN:
6878 error (_("No support for interrupting the remote target."));
6879 case PACKET_ERROR:
6880 error (_("Interrupting target failed: %s"), rs->buf.data ());
6881 }
6882 }
6883
6884 /* Implement the to_stop function for the remote targets. */
6885
6886 void
6887 remote_target::stop (ptid_t ptid)
6888 {
6889 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6890
6891 if (target_is_non_stop_p ())
6892 remote_stop_ns (ptid);
6893 else
6894 {
6895 /* We don't currently have a way to transparently pause the
6896 remote target in all-stop mode. Interrupt it instead. */
6897 remote_interrupt_as ();
6898 }
6899 }
6900
6901 /* Implement the to_interrupt function for the remote targets. */
6902
6903 void
6904 remote_target::interrupt ()
6905 {
6906 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6907
6908 if (target_is_non_stop_p ())
6909 remote_interrupt_ns ();
6910 else
6911 remote_interrupt_as ();
6912 }
6913
6914 /* Implement the to_pass_ctrlc function for the remote targets. */
6915
6916 void
6917 remote_target::pass_ctrlc ()
6918 {
6919 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6920
6921 struct remote_state *rs = get_remote_state ();
6922
6923 /* If we're starting up, we're not fully synced yet. Quit
6924 immediately. */
6925 if (rs->starting_up)
6926 quit ();
6927 /* If ^C has already been sent once, offer to disconnect. */
6928 else if (rs->ctrlc_pending_p)
6929 interrupt_query ();
6930 else
6931 target_interrupt ();
6932 }
6933
6934 /* Ask the user what to do when an interrupt is received. */
6935
6936 void
6937 remote_target::interrupt_query ()
6938 {
6939 struct remote_state *rs = get_remote_state ();
6940
6941 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6942 {
6943 if (query (_("The target is not responding to interrupt requests.\n"
6944 "Stop debugging it? ")))
6945 {
6946 remote_unpush_target (this);
6947 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6948 }
6949 }
6950 else
6951 {
6952 if (query (_("Interrupted while waiting for the program.\n"
6953 "Give up waiting? ")))
6954 quit ();
6955 }
6956 }
6957
6958 /* Enable/disable target terminal ownership. Most targets can use
6959 terminal groups to control terminal ownership. Remote targets are
6960 different in that explicit transfer of ownership to/from GDB/target
6961 is required. */
6962
6963 void
6964 remote_target::terminal_inferior ()
6965 {
6966 /* NOTE: At this point we could also register our selves as the
6967 recipient of all input. Any characters typed could then be
6968 passed on down to the target. */
6969 }
6970
6971 void
6972 remote_target::terminal_ours ()
6973 {
6974 }
6975
6976 static void
6977 remote_console_output (const char *msg)
6978 {
6979 const char *p;
6980
6981 for (p = msg; p[0] && p[1]; p += 2)
6982 {
6983 char tb[2];
6984 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6985
6986 tb[0] = c;
6987 tb[1] = 0;
6988 gdb_stdtarg->puts (tb);
6989 }
6990 gdb_stdtarg->flush ();
6991 }
6992
6993 struct stop_reply : public notif_event
6994 {
6995 ~stop_reply ();
6996
6997 /* The identifier of the thread about this event */
6998 ptid_t ptid;
6999
7000 /* The remote state this event is associated with. When the remote
7001 connection, represented by a remote_state object, is closed,
7002 all the associated stop_reply events should be released. */
7003 struct remote_state *rs;
7004
7005 struct target_waitstatus ws;
7006
7007 /* The architecture associated with the expedited registers. */
7008 gdbarch *arch;
7009
7010 /* Expedited registers. This makes remote debugging a bit more
7011 efficient for those targets that provide critical registers as
7012 part of their normal status mechanism (as another roundtrip to
7013 fetch them is avoided). */
7014 std::vector<cached_reg_t> regcache;
7015
7016 enum target_stop_reason stop_reason;
7017
7018 CORE_ADDR watch_data_address;
7019
7020 int core;
7021 };
7022
7023 /* Return the length of the stop reply queue. */
7024
7025 int
7026 remote_target::stop_reply_queue_length ()
7027 {
7028 remote_state *rs = get_remote_state ();
7029 return rs->stop_reply_queue.size ();
7030 }
7031
7032 static void
7033 remote_notif_stop_parse (remote_target *remote,
7034 struct notif_client *self, const char *buf,
7035 struct notif_event *event)
7036 {
7037 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7038 }
7039
7040 static void
7041 remote_notif_stop_ack (remote_target *remote,
7042 struct notif_client *self, const char *buf,
7043 struct notif_event *event)
7044 {
7045 struct stop_reply *stop_reply = (struct stop_reply *) event;
7046
7047 /* acknowledge */
7048 putpkt (remote, self->ack_command);
7049
7050 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7051 the notification. It was left in the queue because we need to
7052 acknowledge it and pull the rest of the notifications out. */
7053 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7054 remote->push_stop_reply (stop_reply);
7055 }
7056
7057 static int
7058 remote_notif_stop_can_get_pending_events (remote_target *remote,
7059 struct notif_client *self)
7060 {
7061 /* We can't get pending events in remote_notif_process for
7062 notification stop, and we have to do this in remote_wait_ns
7063 instead. If we fetch all queued events from stub, remote stub
7064 may exit and we have no chance to process them back in
7065 remote_wait_ns. */
7066 remote_state *rs = remote->get_remote_state ();
7067 mark_async_event_handler (rs->remote_async_inferior_event_token);
7068 return 0;
7069 }
7070
7071 stop_reply::~stop_reply ()
7072 {
7073 for (cached_reg_t &reg : regcache)
7074 xfree (reg.data);
7075 }
7076
7077 static notif_event_up
7078 remote_notif_stop_alloc_reply ()
7079 {
7080 return notif_event_up (new struct stop_reply ());
7081 }
7082
7083 /* A client of notification Stop. */
7084
7085 struct notif_client notif_client_stop =
7086 {
7087 "Stop",
7088 "vStopped",
7089 remote_notif_stop_parse,
7090 remote_notif_stop_ack,
7091 remote_notif_stop_can_get_pending_events,
7092 remote_notif_stop_alloc_reply,
7093 REMOTE_NOTIF_STOP,
7094 };
7095
7096 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7097 the pid of the process that owns the threads we want to check, or
7098 -1 if we want to check all threads. */
7099
7100 static int
7101 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7102 ptid_t thread_ptid)
7103 {
7104 if (ws->kind == TARGET_WAITKIND_FORKED
7105 || ws->kind == TARGET_WAITKIND_VFORKED)
7106 {
7107 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7108 return 1;
7109 }
7110
7111 return 0;
7112 }
7113
7114 /* Return the thread's pending status used to determine whether the
7115 thread is a fork parent stopped at a fork event. */
7116
7117 static struct target_waitstatus *
7118 thread_pending_fork_status (struct thread_info *thread)
7119 {
7120 if (thread->suspend.waitstatus_pending_p)
7121 return &thread->suspend.waitstatus;
7122 else
7123 return &thread->pending_follow;
7124 }
7125
7126 /* Determine if THREAD is a pending fork parent thread. */
7127
7128 static int
7129 is_pending_fork_parent_thread (struct thread_info *thread)
7130 {
7131 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7132 int pid = -1;
7133
7134 return is_pending_fork_parent (ws, pid, thread->ptid);
7135 }
7136
7137 /* If CONTEXT contains any fork child threads that have not been
7138 reported yet, remove them from the CONTEXT list. If such a
7139 thread exists it is because we are stopped at a fork catchpoint
7140 and have not yet called follow_fork, which will set up the
7141 host-side data structures for the new process. */
7142
7143 void
7144 remote_target::remove_new_fork_children (threads_listing_context *context)
7145 {
7146 int pid = -1;
7147 struct notif_client *notif = &notif_client_stop;
7148
7149 /* For any threads stopped at a fork event, remove the corresponding
7150 fork child threads from the CONTEXT list. */
7151 for (thread_info *thread : all_non_exited_threads (this))
7152 {
7153 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7154
7155 if (is_pending_fork_parent (ws, pid, thread->ptid))
7156 context->remove_thread (ws->value.related_pid);
7157 }
7158
7159 /* Check for any pending fork events (not reported or processed yet)
7160 in process PID and remove those fork child threads from the
7161 CONTEXT list as well. */
7162 remote_notif_get_pending_events (notif);
7163 for (auto &event : get_remote_state ()->stop_reply_queue)
7164 if (event->ws.kind == TARGET_WAITKIND_FORKED
7165 || event->ws.kind == TARGET_WAITKIND_VFORKED
7166 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7167 context->remove_thread (event->ws.value.related_pid);
7168 }
7169
7170 /* Check whether any event pending in the vStopped queue would prevent
7171 a global or process wildcard vCont action. Clear
7172 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7173 and clear the event inferior's may_wildcard_vcont flag if we can't
7174 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7175
7176 void
7177 remote_target::check_pending_events_prevent_wildcard_vcont
7178 (int *may_global_wildcard)
7179 {
7180 struct notif_client *notif = &notif_client_stop;
7181
7182 remote_notif_get_pending_events (notif);
7183 for (auto &event : get_remote_state ()->stop_reply_queue)
7184 {
7185 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7186 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7187 continue;
7188
7189 if (event->ws.kind == TARGET_WAITKIND_FORKED
7190 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7191 *may_global_wildcard = 0;
7192
7193 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7194
7195 /* This may be the first time we heard about this process.
7196 Regardless, we must not do a global wildcard resume, otherwise
7197 we'd resume this process too. */
7198 *may_global_wildcard = 0;
7199 if (inf != NULL)
7200 get_remote_inferior (inf)->may_wildcard_vcont = false;
7201 }
7202 }
7203
7204 /* Discard all pending stop replies of inferior INF. */
7205
7206 void
7207 remote_target::discard_pending_stop_replies (struct inferior *inf)
7208 {
7209 struct stop_reply *reply;
7210 struct remote_state *rs = get_remote_state ();
7211 struct remote_notif_state *rns = rs->notif_state;
7212
7213 /* This function can be notified when an inferior exists. When the
7214 target is not remote, the notification state is NULL. */
7215 if (rs->remote_desc == NULL)
7216 return;
7217
7218 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7219
7220 /* Discard the in-flight notification. */
7221 if (reply != NULL && reply->ptid.pid () == inf->pid)
7222 {
7223 /* Leave the notification pending, since the server expects that
7224 we acknowledge it with vStopped. But clear its contents, so
7225 that later on when we acknowledge it, we also discard it. */
7226 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7227
7228 if (remote_debug)
7229 fprintf_unfiltered (gdb_stdlog,
7230 "discarded in-flight notification\n");
7231 }
7232
7233 /* Discard the stop replies we have already pulled with
7234 vStopped. */
7235 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7236 rs->stop_reply_queue.end (),
7237 [=] (const stop_reply_up &event)
7238 {
7239 return event->ptid.pid () == inf->pid;
7240 });
7241 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7242 }
7243
7244 /* Discard the stop replies for RS in stop_reply_queue. */
7245
7246 void
7247 remote_target::discard_pending_stop_replies_in_queue ()
7248 {
7249 remote_state *rs = get_remote_state ();
7250
7251 /* Discard the stop replies we have already pulled with
7252 vStopped. */
7253 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7254 rs->stop_reply_queue.end (),
7255 [=] (const stop_reply_up &event)
7256 {
7257 return event->rs == rs;
7258 });
7259 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7260 }
7261
7262 /* Remove the first reply in 'stop_reply_queue' which matches
7263 PTID. */
7264
7265 struct stop_reply *
7266 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7267 {
7268 remote_state *rs = get_remote_state ();
7269
7270 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7271 rs->stop_reply_queue.end (),
7272 [=] (const stop_reply_up &event)
7273 {
7274 return event->ptid.matches (ptid);
7275 });
7276 struct stop_reply *result;
7277 if (iter == rs->stop_reply_queue.end ())
7278 result = nullptr;
7279 else
7280 {
7281 result = iter->release ();
7282 rs->stop_reply_queue.erase (iter);
7283 }
7284
7285 if (notif_debug)
7286 fprintf_unfiltered (gdb_stdlog,
7287 "notif: discard queued event: 'Stop' in %s\n",
7288 target_pid_to_str (ptid).c_str ());
7289
7290 return result;
7291 }
7292
7293 /* Look for a queued stop reply belonging to PTID. If one is found,
7294 remove it from the queue, and return it. Returns NULL if none is
7295 found. If there are still queued events left to process, tell the
7296 event loop to get back to target_wait soon. */
7297
7298 struct stop_reply *
7299 remote_target::queued_stop_reply (ptid_t ptid)
7300 {
7301 remote_state *rs = get_remote_state ();
7302 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7303
7304 if (!rs->stop_reply_queue.empty ())
7305 {
7306 /* There's still at least an event left. */
7307 mark_async_event_handler (rs->remote_async_inferior_event_token);
7308 }
7309
7310 return r;
7311 }
7312
7313 /* Push a fully parsed stop reply in the stop reply queue. Since we
7314 know that we now have at least one queued event left to pass to the
7315 core side, tell the event loop to get back to target_wait soon. */
7316
7317 void
7318 remote_target::push_stop_reply (struct stop_reply *new_event)
7319 {
7320 remote_state *rs = get_remote_state ();
7321 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7322
7323 if (notif_debug)
7324 fprintf_unfiltered (gdb_stdlog,
7325 "notif: push 'Stop' %s to queue %d\n",
7326 target_pid_to_str (new_event->ptid).c_str (),
7327 int (rs->stop_reply_queue.size ()));
7328
7329 mark_async_event_handler (rs->remote_async_inferior_event_token);
7330 }
7331
7332 /* Returns true if we have a stop reply for PTID. */
7333
7334 int
7335 remote_target::peek_stop_reply (ptid_t ptid)
7336 {
7337 remote_state *rs = get_remote_state ();
7338 for (auto &event : rs->stop_reply_queue)
7339 if (ptid == event->ptid
7340 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7341 return 1;
7342 return 0;
7343 }
7344
7345 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7346 starting with P and ending with PEND matches PREFIX. */
7347
7348 static int
7349 strprefix (const char *p, const char *pend, const char *prefix)
7350 {
7351 for ( ; p < pend; p++, prefix++)
7352 if (*p != *prefix)
7353 return 0;
7354 return *prefix == '\0';
7355 }
7356
7357 /* Parse the stop reply in BUF. Either the function succeeds, and the
7358 result is stored in EVENT, or throws an error. */
7359
7360 void
7361 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7362 {
7363 remote_arch_state *rsa = NULL;
7364 ULONGEST addr;
7365 const char *p;
7366 int skipregs = 0;
7367
7368 event->ptid = null_ptid;
7369 event->rs = get_remote_state ();
7370 event->ws.kind = TARGET_WAITKIND_IGNORE;
7371 event->ws.value.integer = 0;
7372 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7373 event->regcache.clear ();
7374 event->core = -1;
7375
7376 switch (buf[0])
7377 {
7378 case 'T': /* Status with PC, SP, FP, ... */
7379 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7380 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7381 ss = signal number
7382 n... = register number
7383 r... = register contents
7384 */
7385
7386 p = &buf[3]; /* after Txx */
7387 while (*p)
7388 {
7389 const char *p1;
7390 int fieldsize;
7391
7392 p1 = strchr (p, ':');
7393 if (p1 == NULL)
7394 error (_("Malformed packet(a) (missing colon): %s\n\
7395 Packet: '%s'\n"),
7396 p, buf);
7397 if (p == p1)
7398 error (_("Malformed packet(a) (missing register number): %s\n\
7399 Packet: '%s'\n"),
7400 p, buf);
7401
7402 /* Some "registers" are actually extended stop information.
7403 Note if you're adding a new entry here: GDB 7.9 and
7404 earlier assume that all register "numbers" that start
7405 with an hex digit are real register numbers. Make sure
7406 the server only sends such a packet if it knows the
7407 client understands it. */
7408
7409 if (strprefix (p, p1, "thread"))
7410 event->ptid = read_ptid (++p1, &p);
7411 else if (strprefix (p, p1, "syscall_entry"))
7412 {
7413 ULONGEST sysno;
7414
7415 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7416 p = unpack_varlen_hex (++p1, &sysno);
7417 event->ws.value.syscall_number = (int) sysno;
7418 }
7419 else if (strprefix (p, p1, "syscall_return"))
7420 {
7421 ULONGEST sysno;
7422
7423 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7424 p = unpack_varlen_hex (++p1, &sysno);
7425 event->ws.value.syscall_number = (int) sysno;
7426 }
7427 else if (strprefix (p, p1, "watch")
7428 || strprefix (p, p1, "rwatch")
7429 || strprefix (p, p1, "awatch"))
7430 {
7431 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7432 p = unpack_varlen_hex (++p1, &addr);
7433 event->watch_data_address = (CORE_ADDR) addr;
7434 }
7435 else if (strprefix (p, p1, "swbreak"))
7436 {
7437 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7438
7439 /* Make sure the stub doesn't forget to indicate support
7440 with qSupported. */
7441 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7442 error (_("Unexpected swbreak stop reason"));
7443
7444 /* The value part is documented as "must be empty",
7445 though we ignore it, in case we ever decide to make
7446 use of it in a backward compatible way. */
7447 p = strchrnul (p1 + 1, ';');
7448 }
7449 else if (strprefix (p, p1, "hwbreak"))
7450 {
7451 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7452
7453 /* Make sure the stub doesn't forget to indicate support
7454 with qSupported. */
7455 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7456 error (_("Unexpected hwbreak stop reason"));
7457
7458 /* See above. */
7459 p = strchrnul (p1 + 1, ';');
7460 }
7461 else if (strprefix (p, p1, "library"))
7462 {
7463 event->ws.kind = TARGET_WAITKIND_LOADED;
7464 p = strchrnul (p1 + 1, ';');
7465 }
7466 else if (strprefix (p, p1, "replaylog"))
7467 {
7468 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7469 /* p1 will indicate "begin" or "end", but it makes
7470 no difference for now, so ignore it. */
7471 p = strchrnul (p1 + 1, ';');
7472 }
7473 else if (strprefix (p, p1, "core"))
7474 {
7475 ULONGEST c;
7476
7477 p = unpack_varlen_hex (++p1, &c);
7478 event->core = c;
7479 }
7480 else if (strprefix (p, p1, "fork"))
7481 {
7482 event->ws.value.related_pid = read_ptid (++p1, &p);
7483 event->ws.kind = TARGET_WAITKIND_FORKED;
7484 }
7485 else if (strprefix (p, p1, "vfork"))
7486 {
7487 event->ws.value.related_pid = read_ptid (++p1, &p);
7488 event->ws.kind = TARGET_WAITKIND_VFORKED;
7489 }
7490 else if (strprefix (p, p1, "vforkdone"))
7491 {
7492 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7493 p = strchrnul (p1 + 1, ';');
7494 }
7495 else if (strprefix (p, p1, "exec"))
7496 {
7497 ULONGEST ignored;
7498 int pathlen;
7499
7500 /* Determine the length of the execd pathname. */
7501 p = unpack_varlen_hex (++p1, &ignored);
7502 pathlen = (p - p1) / 2;
7503
7504 /* Save the pathname for event reporting and for
7505 the next run command. */
7506 gdb::unique_xmalloc_ptr<char[]> pathname
7507 ((char *) xmalloc (pathlen + 1));
7508 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7509 pathname[pathlen] = '\0';
7510
7511 /* This is freed during event handling. */
7512 event->ws.value.execd_pathname = pathname.release ();
7513 event->ws.kind = TARGET_WAITKIND_EXECD;
7514
7515 /* Skip the registers included in this packet, since
7516 they may be for an architecture different from the
7517 one used by the original program. */
7518 skipregs = 1;
7519 }
7520 else if (strprefix (p, p1, "create"))
7521 {
7522 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7523 p = strchrnul (p1 + 1, ';');
7524 }
7525 else
7526 {
7527 ULONGEST pnum;
7528 const char *p_temp;
7529
7530 if (skipregs)
7531 {
7532 p = strchrnul (p1 + 1, ';');
7533 p++;
7534 continue;
7535 }
7536
7537 /* Maybe a real ``P'' register number. */
7538 p_temp = unpack_varlen_hex (p, &pnum);
7539 /* If the first invalid character is the colon, we got a
7540 register number. Otherwise, it's an unknown stop
7541 reason. */
7542 if (p_temp == p1)
7543 {
7544 /* If we haven't parsed the event's thread yet, find
7545 it now, in order to find the architecture of the
7546 reported expedited registers. */
7547 if (event->ptid == null_ptid)
7548 {
7549 /* If there is no thread-id information then leave
7550 the event->ptid as null_ptid. Later in
7551 process_stop_reply we will pick a suitable
7552 thread. */
7553 const char *thr = strstr (p1 + 1, ";thread:");
7554 if (thr != NULL)
7555 event->ptid = read_ptid (thr + strlen (";thread:"),
7556 NULL);
7557 }
7558
7559 if (rsa == NULL)
7560 {
7561 inferior *inf
7562 = (event->ptid == null_ptid
7563 ? NULL
7564 : find_inferior_ptid (this, event->ptid));
7565 /* If this is the first time we learn anything
7566 about this process, skip the registers
7567 included in this packet, since we don't yet
7568 know which architecture to use to parse them.
7569 We'll determine the architecture later when
7570 we process the stop reply and retrieve the
7571 target description, via
7572 remote_notice_new_inferior ->
7573 post_create_inferior. */
7574 if (inf == NULL)
7575 {
7576 p = strchrnul (p1 + 1, ';');
7577 p++;
7578 continue;
7579 }
7580
7581 event->arch = inf->gdbarch;
7582 rsa = event->rs->get_remote_arch_state (event->arch);
7583 }
7584
7585 packet_reg *reg
7586 = packet_reg_from_pnum (event->arch, rsa, pnum);
7587 cached_reg_t cached_reg;
7588
7589 if (reg == NULL)
7590 error (_("Remote sent bad register number %s: %s\n\
7591 Packet: '%s'\n"),
7592 hex_string (pnum), p, buf);
7593
7594 cached_reg.num = reg->regnum;
7595 cached_reg.data = (gdb_byte *)
7596 xmalloc (register_size (event->arch, reg->regnum));
7597
7598 p = p1 + 1;
7599 fieldsize = hex2bin (p, cached_reg.data,
7600 register_size (event->arch, reg->regnum));
7601 p += 2 * fieldsize;
7602 if (fieldsize < register_size (event->arch, reg->regnum))
7603 warning (_("Remote reply is too short: %s"), buf);
7604
7605 event->regcache.push_back (cached_reg);
7606 }
7607 else
7608 {
7609 /* Not a number. Silently skip unknown optional
7610 info. */
7611 p = strchrnul (p1 + 1, ';');
7612 }
7613 }
7614
7615 if (*p != ';')
7616 error (_("Remote register badly formatted: %s\nhere: %s"),
7617 buf, p);
7618 ++p;
7619 }
7620
7621 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7622 break;
7623
7624 /* fall through */
7625 case 'S': /* Old style status, just signal only. */
7626 {
7627 int sig;
7628
7629 event->ws.kind = TARGET_WAITKIND_STOPPED;
7630 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7631 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7632 event->ws.value.sig = (enum gdb_signal) sig;
7633 else
7634 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7635 }
7636 break;
7637 case 'w': /* Thread exited. */
7638 {
7639 ULONGEST value;
7640
7641 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7642 p = unpack_varlen_hex (&buf[1], &value);
7643 event->ws.value.integer = value;
7644 if (*p != ';')
7645 error (_("stop reply packet badly formatted: %s"), buf);
7646 event->ptid = read_ptid (++p, NULL);
7647 break;
7648 }
7649 case 'W': /* Target exited. */
7650 case 'X':
7651 {
7652 ULONGEST value;
7653
7654 /* GDB used to accept only 2 hex chars here. Stubs should
7655 only send more if they detect GDB supports multi-process
7656 support. */
7657 p = unpack_varlen_hex (&buf[1], &value);
7658
7659 if (buf[0] == 'W')
7660 {
7661 /* The remote process exited. */
7662 event->ws.kind = TARGET_WAITKIND_EXITED;
7663 event->ws.value.integer = value;
7664 }
7665 else
7666 {
7667 /* The remote process exited with a signal. */
7668 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7669 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7670 event->ws.value.sig = (enum gdb_signal) value;
7671 else
7672 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7673 }
7674
7675 /* If no process is specified, return null_ptid, and let the
7676 caller figure out the right process to use. */
7677 int pid = 0;
7678 if (*p == '\0')
7679 ;
7680 else if (*p == ';')
7681 {
7682 p++;
7683
7684 if (*p == '\0')
7685 ;
7686 else if (startswith (p, "process:"))
7687 {
7688 ULONGEST upid;
7689
7690 p += sizeof ("process:") - 1;
7691 unpack_varlen_hex (p, &upid);
7692 pid = upid;
7693 }
7694 else
7695 error (_("unknown stop reply packet: %s"), buf);
7696 }
7697 else
7698 error (_("unknown stop reply packet: %s"), buf);
7699 event->ptid = ptid_t (pid);
7700 }
7701 break;
7702 case 'N':
7703 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7704 event->ptid = minus_one_ptid;
7705 break;
7706 }
7707 }
7708
7709 /* When the stub wants to tell GDB about a new notification reply, it
7710 sends a notification (%Stop, for example). Those can come it at
7711 any time, hence, we have to make sure that any pending
7712 putpkt/getpkt sequence we're making is finished, before querying
7713 the stub for more events with the corresponding ack command
7714 (vStopped, for example). E.g., if we started a vStopped sequence
7715 immediately upon receiving the notification, something like this
7716 could happen:
7717
7718 1.1) --> Hg 1
7719 1.2) <-- OK
7720 1.3) --> g
7721 1.4) <-- %Stop
7722 1.5) --> vStopped
7723 1.6) <-- (registers reply to step #1.3)
7724
7725 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7726 query.
7727
7728 To solve this, whenever we parse a %Stop notification successfully,
7729 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7730 doing whatever we were doing:
7731
7732 2.1) --> Hg 1
7733 2.2) <-- OK
7734 2.3) --> g
7735 2.4) <-- %Stop
7736 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7737 2.5) <-- (registers reply to step #2.3)
7738
7739 Eventually after step #2.5, we return to the event loop, which
7740 notices there's an event on the
7741 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7742 associated callback --- the function below. At this point, we're
7743 always safe to start a vStopped sequence. :
7744
7745 2.6) --> vStopped
7746 2.7) <-- T05 thread:2
7747 2.8) --> vStopped
7748 2.9) --> OK
7749 */
7750
7751 void
7752 remote_target::remote_notif_get_pending_events (notif_client *nc)
7753 {
7754 struct remote_state *rs = get_remote_state ();
7755
7756 if (rs->notif_state->pending_event[nc->id] != NULL)
7757 {
7758 if (notif_debug)
7759 fprintf_unfiltered (gdb_stdlog,
7760 "notif: process: '%s' ack pending event\n",
7761 nc->name);
7762
7763 /* acknowledge */
7764 nc->ack (this, nc, rs->buf.data (),
7765 rs->notif_state->pending_event[nc->id]);
7766 rs->notif_state->pending_event[nc->id] = NULL;
7767
7768 while (1)
7769 {
7770 getpkt (&rs->buf, 0);
7771 if (strcmp (rs->buf.data (), "OK") == 0)
7772 break;
7773 else
7774 remote_notif_ack (this, nc, rs->buf.data ());
7775 }
7776 }
7777 else
7778 {
7779 if (notif_debug)
7780 fprintf_unfiltered (gdb_stdlog,
7781 "notif: process: '%s' no pending reply\n",
7782 nc->name);
7783 }
7784 }
7785
7786 /* Wrapper around remote_target::remote_notif_get_pending_events to
7787 avoid having to export the whole remote_target class. */
7788
7789 void
7790 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7791 {
7792 remote->remote_notif_get_pending_events (nc);
7793 }
7794
7795 /* Called from process_stop_reply when the stop packet we are responding
7796 to didn't include a process-id or thread-id. STATUS is the stop event
7797 we are responding to.
7798
7799 It is the task of this function to select a suitable thread (or process)
7800 and return its ptid, this is the thread (or process) we will assume the
7801 stop event came from.
7802
7803 In some cases there isn't really any choice about which thread (or
7804 process) is selected, a basic remote with a single process containing a
7805 single thread might choose not to send any process-id or thread-id in
7806 its stop packets, this function will select and return the one and only
7807 thread.
7808
7809 However, if a target supports multiple threads (or processes) and still
7810 doesn't include a thread-id (or process-id) in its stop packet then
7811 first, this is a badly behaving target, and second, we're going to have
7812 to select a thread (or process) at random and use that. This function
7813 will print a warning to the user if it detects that there is the
7814 possibility that GDB is guessing which thread (or process) to
7815 report.
7816
7817 Note that this is called before GDB fetches the updated thread list from the
7818 target. So it's possible for the stop reply to be ambiguous and for GDB to
7819 not realize it. For example, if there's initially one thread, the target
7820 spawns a second thread, and then sends a stop reply without an id that
7821 concerns the first thread. GDB will assume the stop reply is about the
7822 first thread - the only thread it knows about - without printing a warning.
7823 Anyway, if the remote meant for the stop reply to be about the second thread,
7824 then it would be really broken, because GDB doesn't know about that thread
7825 yet. */
7826
7827 ptid_t
7828 remote_target::select_thread_for_ambiguous_stop_reply
7829 (const struct target_waitstatus *status)
7830 {
7831 /* Some stop events apply to all threads in an inferior, while others
7832 only apply to a single thread. */
7833 bool process_wide_stop
7834 = (status->kind == TARGET_WAITKIND_EXITED
7835 || status->kind == TARGET_WAITKIND_SIGNALLED);
7836
7837 thread_info *first_resumed_thread = nullptr;
7838 bool ambiguous = false;
7839
7840 /* Consider all non-exited threads of the target, find the first resumed
7841 one. */
7842 for (thread_info *thr : all_non_exited_threads (this))
7843 {
7844 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7845
7846 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7847 continue;
7848
7849 if (first_resumed_thread == nullptr)
7850 first_resumed_thread = thr;
7851 else if (!process_wide_stop
7852 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7853 ambiguous = true;
7854 }
7855
7856 gdb_assert (first_resumed_thread != nullptr);
7857
7858 /* Warn if the remote target is sending ambiguous stop replies. */
7859 if (ambiguous)
7860 {
7861 static bool warned = false;
7862
7863 if (!warned)
7864 {
7865 /* If you are seeing this warning then the remote target has
7866 stopped without specifying a thread-id, but the target
7867 does have multiple threads (or inferiors), and so GDB is
7868 having to guess which thread stopped.
7869
7870 Examples of what might cause this are the target sending
7871 and 'S' stop packet, or a 'T' stop packet and not
7872 including a thread-id.
7873
7874 Additionally, the target might send a 'W' or 'X packet
7875 without including a process-id, when the target has
7876 multiple running inferiors. */
7877 if (process_wide_stop)
7878 warning (_("multi-inferior target stopped without "
7879 "sending a process-id, using first "
7880 "non-exited inferior"));
7881 else
7882 warning (_("multi-threaded target stopped without "
7883 "sending a thread-id, using first "
7884 "non-exited thread"));
7885 warned = true;
7886 }
7887 }
7888
7889 /* If this is a stop for all threads then don't use a particular threads
7890 ptid, instead create a new ptid where only the pid field is set. */
7891 if (process_wide_stop)
7892 return ptid_t (first_resumed_thread->ptid.pid ());
7893 else
7894 return first_resumed_thread->ptid;
7895 }
7896
7897 /* Called when it is decided that STOP_REPLY holds the info of the
7898 event that is to be returned to the core. This function always
7899 destroys STOP_REPLY. */
7900
7901 ptid_t
7902 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7903 struct target_waitstatus *status)
7904 {
7905 *status = stop_reply->ws;
7906 ptid_t ptid = stop_reply->ptid;
7907
7908 /* If no thread/process was reported by the stub then select a suitable
7909 thread/process. */
7910 if (ptid == null_ptid)
7911 ptid = select_thread_for_ambiguous_stop_reply (status);
7912 gdb_assert (ptid != null_ptid);
7913
7914 if (status->kind != TARGET_WAITKIND_EXITED
7915 && status->kind != TARGET_WAITKIND_SIGNALLED
7916 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7917 {
7918 /* Expedited registers. */
7919 if (!stop_reply->regcache.empty ())
7920 {
7921 struct regcache *regcache
7922 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7923
7924 for (cached_reg_t &reg : stop_reply->regcache)
7925 {
7926 regcache->raw_supply (reg.num, reg.data);
7927 xfree (reg.data);
7928 }
7929
7930 stop_reply->regcache.clear ();
7931 }
7932
7933 remote_notice_new_inferior (ptid, 0);
7934 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7935 remote_thr->core = stop_reply->core;
7936 remote_thr->stop_reason = stop_reply->stop_reason;
7937 remote_thr->watch_data_address = stop_reply->watch_data_address;
7938
7939 if (target_is_non_stop_p ())
7940 {
7941 /* If the target works in non-stop mode, a stop-reply indicates that
7942 only this thread stopped. */
7943 remote_thr->set_not_resumed ();
7944 }
7945 else
7946 {
7947 /* If the target works in all-stop mode, a stop-reply indicates that
7948 all the target's threads stopped. */
7949 for (thread_info *tp : all_non_exited_threads (this))
7950 get_remote_thread_info (tp)->set_not_resumed ();
7951 }
7952 }
7953
7954 delete stop_reply;
7955 return ptid;
7956 }
7957
7958 /* The non-stop mode version of target_wait. */
7959
7960 ptid_t
7961 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
7962 target_wait_flags options)
7963 {
7964 struct remote_state *rs = get_remote_state ();
7965 struct stop_reply *stop_reply;
7966 int ret;
7967 int is_notif = 0;
7968
7969 /* If in non-stop mode, get out of getpkt even if a
7970 notification is received. */
7971
7972 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7973 while (1)
7974 {
7975 if (ret != -1 && !is_notif)
7976 switch (rs->buf[0])
7977 {
7978 case 'E': /* Error of some sort. */
7979 /* We're out of sync with the target now. Did it continue
7980 or not? We can't tell which thread it was in non-stop,
7981 so just ignore this. */
7982 warning (_("Remote failure reply: %s"), rs->buf.data ());
7983 break;
7984 case 'O': /* Console output. */
7985 remote_console_output (&rs->buf[1]);
7986 break;
7987 default:
7988 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7989 break;
7990 }
7991
7992 /* Acknowledge a pending stop reply that may have arrived in the
7993 mean time. */
7994 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7995 remote_notif_get_pending_events (&notif_client_stop);
7996
7997 /* If indeed we noticed a stop reply, we're done. */
7998 stop_reply = queued_stop_reply (ptid);
7999 if (stop_reply != NULL)
8000 return process_stop_reply (stop_reply, status);
8001
8002 /* Still no event. If we're just polling for an event, then
8003 return to the event loop. */
8004 if (options & TARGET_WNOHANG)
8005 {
8006 status->kind = TARGET_WAITKIND_IGNORE;
8007 return minus_one_ptid;
8008 }
8009
8010 /* Otherwise do a blocking wait. */
8011 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8012 }
8013 }
8014
8015 /* Return the first resumed thread. */
8016
8017 static ptid_t
8018 first_remote_resumed_thread (remote_target *target)
8019 {
8020 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8021 if (tp->resumed)
8022 return tp->ptid;
8023 return null_ptid;
8024 }
8025
8026 /* Wait until the remote machine stops, then return, storing status in
8027 STATUS just as `wait' would. */
8028
8029 ptid_t
8030 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8031 target_wait_flags options)
8032 {
8033 struct remote_state *rs = get_remote_state ();
8034 ptid_t event_ptid = null_ptid;
8035 char *buf;
8036 struct stop_reply *stop_reply;
8037
8038 again:
8039
8040 status->kind = TARGET_WAITKIND_IGNORE;
8041 status->value.integer = 0;
8042
8043 stop_reply = queued_stop_reply (ptid);
8044 if (stop_reply != NULL)
8045 return process_stop_reply (stop_reply, status);
8046
8047 if (rs->cached_wait_status)
8048 /* Use the cached wait status, but only once. */
8049 rs->cached_wait_status = 0;
8050 else
8051 {
8052 int ret;
8053 int is_notif;
8054 int forever = ((options & TARGET_WNOHANG) == 0
8055 && rs->wait_forever_enabled_p);
8056
8057 if (!rs->waiting_for_stop_reply)
8058 {
8059 status->kind = TARGET_WAITKIND_NO_RESUMED;
8060 return minus_one_ptid;
8061 }
8062
8063 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8064 _never_ wait for ever -> test on target_is_async_p().
8065 However, before we do that we need to ensure that the caller
8066 knows how to take the target into/out of async mode. */
8067 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8068
8069 /* GDB gets a notification. Return to core as this event is
8070 not interesting. */
8071 if (ret != -1 && is_notif)
8072 return minus_one_ptid;
8073
8074 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8075 return minus_one_ptid;
8076 }
8077
8078 buf = rs->buf.data ();
8079
8080 /* Assume that the target has acknowledged Ctrl-C unless we receive
8081 an 'F' or 'O' packet. */
8082 if (buf[0] != 'F' && buf[0] != 'O')
8083 rs->ctrlc_pending_p = 0;
8084
8085 switch (buf[0])
8086 {
8087 case 'E': /* Error of some sort. */
8088 /* We're out of sync with the target now. Did it continue or
8089 not? Not is more likely, so report a stop. */
8090 rs->waiting_for_stop_reply = 0;
8091
8092 warning (_("Remote failure reply: %s"), buf);
8093 status->kind = TARGET_WAITKIND_STOPPED;
8094 status->value.sig = GDB_SIGNAL_0;
8095 break;
8096 case 'F': /* File-I/O request. */
8097 /* GDB may access the inferior memory while handling the File-I/O
8098 request, but we don't want GDB accessing memory while waiting
8099 for a stop reply. See the comments in putpkt_binary. Set
8100 waiting_for_stop_reply to 0 temporarily. */
8101 rs->waiting_for_stop_reply = 0;
8102 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8103 rs->ctrlc_pending_p = 0;
8104 /* GDB handled the File-I/O request, and the target is running
8105 again. Keep waiting for events. */
8106 rs->waiting_for_stop_reply = 1;
8107 break;
8108 case 'N': case 'T': case 'S': case 'X': case 'W':
8109 {
8110 /* There is a stop reply to handle. */
8111 rs->waiting_for_stop_reply = 0;
8112
8113 stop_reply
8114 = (struct stop_reply *) remote_notif_parse (this,
8115 &notif_client_stop,
8116 rs->buf.data ());
8117
8118 event_ptid = process_stop_reply (stop_reply, status);
8119 break;
8120 }
8121 case 'O': /* Console output. */
8122 remote_console_output (buf + 1);
8123 break;
8124 case '\0':
8125 if (rs->last_sent_signal != GDB_SIGNAL_0)
8126 {
8127 /* Zero length reply means that we tried 'S' or 'C' and the
8128 remote system doesn't support it. */
8129 target_terminal::ours_for_output ();
8130 printf_filtered
8131 ("Can't send signals to this remote system. %s not sent.\n",
8132 gdb_signal_to_name (rs->last_sent_signal));
8133 rs->last_sent_signal = GDB_SIGNAL_0;
8134 target_terminal::inferior ();
8135
8136 strcpy (buf, rs->last_sent_step ? "s" : "c");
8137 putpkt (buf);
8138 break;
8139 }
8140 /* fallthrough */
8141 default:
8142 warning (_("Invalid remote reply: %s"), buf);
8143 break;
8144 }
8145
8146 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8147 return minus_one_ptid;
8148 else if (status->kind == TARGET_WAITKIND_IGNORE)
8149 {
8150 /* Nothing interesting happened. If we're doing a non-blocking
8151 poll, we're done. Otherwise, go back to waiting. */
8152 if (options & TARGET_WNOHANG)
8153 return minus_one_ptid;
8154 else
8155 goto again;
8156 }
8157 else if (status->kind != TARGET_WAITKIND_EXITED
8158 && status->kind != TARGET_WAITKIND_SIGNALLED)
8159 {
8160 if (event_ptid != null_ptid)
8161 record_currthread (rs, event_ptid);
8162 else
8163 event_ptid = first_remote_resumed_thread (this);
8164 }
8165 else
8166 {
8167 /* A process exit. Invalidate our notion of current thread. */
8168 record_currthread (rs, minus_one_ptid);
8169 /* It's possible that the packet did not include a pid. */
8170 if (event_ptid == null_ptid)
8171 event_ptid = first_remote_resumed_thread (this);
8172 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8173 if (event_ptid == null_ptid)
8174 event_ptid = magic_null_ptid;
8175 }
8176
8177 return event_ptid;
8178 }
8179
8180 /* Wait until the remote machine stops, then return, storing status in
8181 STATUS just as `wait' would. */
8182
8183 ptid_t
8184 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8185 target_wait_flags options)
8186 {
8187 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8188
8189 remote_state *rs = get_remote_state ();
8190
8191 /* Start by clearing the flag that asks for our wait method to be called,
8192 we'll mark it again at the end if needed. */
8193 if (target_is_async_p ())
8194 clear_async_event_handler (rs->remote_async_inferior_event_token);
8195
8196 ptid_t event_ptid;
8197
8198 if (target_is_non_stop_p ())
8199 event_ptid = wait_ns (ptid, status, options);
8200 else
8201 event_ptid = wait_as (ptid, status, options);
8202
8203 if (target_is_async_p ())
8204 {
8205 /* If there are events left in the queue, or unacknowledged
8206 notifications, then tell the event loop to call us again. */
8207 if (!rs->stop_reply_queue.empty ()
8208 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8209 mark_async_event_handler (rs->remote_async_inferior_event_token);
8210 }
8211
8212 return event_ptid;
8213 }
8214
8215 /* Fetch a single register using a 'p' packet. */
8216
8217 int
8218 remote_target::fetch_register_using_p (struct regcache *regcache,
8219 packet_reg *reg)
8220 {
8221 struct gdbarch *gdbarch = regcache->arch ();
8222 struct remote_state *rs = get_remote_state ();
8223 char *buf, *p;
8224 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8225 int i;
8226
8227 if (packet_support (PACKET_p) == PACKET_DISABLE)
8228 return 0;
8229
8230 if (reg->pnum == -1)
8231 return 0;
8232
8233 p = rs->buf.data ();
8234 *p++ = 'p';
8235 p += hexnumstr (p, reg->pnum);
8236 *p++ = '\0';
8237 putpkt (rs->buf);
8238 getpkt (&rs->buf, 0);
8239
8240 buf = rs->buf.data ();
8241
8242 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8243 {
8244 case PACKET_OK:
8245 break;
8246 case PACKET_UNKNOWN:
8247 return 0;
8248 case PACKET_ERROR:
8249 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8250 gdbarch_register_name (regcache->arch (),
8251 reg->regnum),
8252 buf);
8253 }
8254
8255 /* If this register is unfetchable, tell the regcache. */
8256 if (buf[0] == 'x')
8257 {
8258 regcache->raw_supply (reg->regnum, NULL);
8259 return 1;
8260 }
8261
8262 /* Otherwise, parse and supply the value. */
8263 p = buf;
8264 i = 0;
8265 while (p[0] != 0)
8266 {
8267 if (p[1] == 0)
8268 error (_("fetch_register_using_p: early buf termination"));
8269
8270 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8271 p += 2;
8272 }
8273 regcache->raw_supply (reg->regnum, regp);
8274 return 1;
8275 }
8276
8277 /* Fetch the registers included in the target's 'g' packet. */
8278
8279 int
8280 remote_target::send_g_packet ()
8281 {
8282 struct remote_state *rs = get_remote_state ();
8283 int buf_len;
8284
8285 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8286 putpkt (rs->buf);
8287 getpkt (&rs->buf, 0);
8288 if (packet_check_result (rs->buf) == PACKET_ERROR)
8289 error (_("Could not read registers; remote failure reply '%s'"),
8290 rs->buf.data ());
8291
8292 /* We can get out of synch in various cases. If the first character
8293 in the buffer is not a hex character, assume that has happened
8294 and try to fetch another packet to read. */
8295 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8296 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8297 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8298 && rs->buf[0] != 'x') /* New: unavailable register value. */
8299 {
8300 remote_debug_printf ("Bad register packet; fetching a new packet");
8301 getpkt (&rs->buf, 0);
8302 }
8303
8304 buf_len = strlen (rs->buf.data ());
8305
8306 /* Sanity check the received packet. */
8307 if (buf_len % 2 != 0)
8308 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8309
8310 return buf_len / 2;
8311 }
8312
8313 void
8314 remote_target::process_g_packet (struct regcache *regcache)
8315 {
8316 struct gdbarch *gdbarch = regcache->arch ();
8317 struct remote_state *rs = get_remote_state ();
8318 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8319 int i, buf_len;
8320 char *p;
8321 char *regs;
8322
8323 buf_len = strlen (rs->buf.data ());
8324
8325 /* Further sanity checks, with knowledge of the architecture. */
8326 if (buf_len > 2 * rsa->sizeof_g_packet)
8327 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8328 "bytes): %s"),
8329 rsa->sizeof_g_packet, buf_len / 2,
8330 rs->buf.data ());
8331
8332 /* Save the size of the packet sent to us by the target. It is used
8333 as a heuristic when determining the max size of packets that the
8334 target can safely receive. */
8335 if (rsa->actual_register_packet_size == 0)
8336 rsa->actual_register_packet_size = buf_len;
8337
8338 /* If this is smaller than we guessed the 'g' packet would be,
8339 update our records. A 'g' reply that doesn't include a register's
8340 value implies either that the register is not available, or that
8341 the 'p' packet must be used. */
8342 if (buf_len < 2 * rsa->sizeof_g_packet)
8343 {
8344 long sizeof_g_packet = buf_len / 2;
8345
8346 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8347 {
8348 long offset = rsa->regs[i].offset;
8349 long reg_size = register_size (gdbarch, i);
8350
8351 if (rsa->regs[i].pnum == -1)
8352 continue;
8353
8354 if (offset >= sizeof_g_packet)
8355 rsa->regs[i].in_g_packet = 0;
8356 else if (offset + reg_size > sizeof_g_packet)
8357 error (_("Truncated register %d in remote 'g' packet"), i);
8358 else
8359 rsa->regs[i].in_g_packet = 1;
8360 }
8361
8362 /* Looks valid enough, we can assume this is the correct length
8363 for a 'g' packet. It's important not to adjust
8364 rsa->sizeof_g_packet if we have truncated registers otherwise
8365 this "if" won't be run the next time the method is called
8366 with a packet of the same size and one of the internal errors
8367 below will trigger instead. */
8368 rsa->sizeof_g_packet = sizeof_g_packet;
8369 }
8370
8371 regs = (char *) alloca (rsa->sizeof_g_packet);
8372
8373 /* Unimplemented registers read as all bits zero. */
8374 memset (regs, 0, rsa->sizeof_g_packet);
8375
8376 /* Reply describes registers byte by byte, each byte encoded as two
8377 hex characters. Suck them all up, then supply them to the
8378 register cacheing/storage mechanism. */
8379
8380 p = rs->buf.data ();
8381 for (i = 0; i < rsa->sizeof_g_packet; i++)
8382 {
8383 if (p[0] == 0 || p[1] == 0)
8384 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8385 internal_error (__FILE__, __LINE__,
8386 _("unexpected end of 'g' packet reply"));
8387
8388 if (p[0] == 'x' && p[1] == 'x')
8389 regs[i] = 0; /* 'x' */
8390 else
8391 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8392 p += 2;
8393 }
8394
8395 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8396 {
8397 struct packet_reg *r = &rsa->regs[i];
8398 long reg_size = register_size (gdbarch, i);
8399
8400 if (r->in_g_packet)
8401 {
8402 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8403 /* This shouldn't happen - we adjusted in_g_packet above. */
8404 internal_error (__FILE__, __LINE__,
8405 _("unexpected end of 'g' packet reply"));
8406 else if (rs->buf[r->offset * 2] == 'x')
8407 {
8408 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8409 /* The register isn't available, mark it as such (at
8410 the same time setting the value to zero). */
8411 regcache->raw_supply (r->regnum, NULL);
8412 }
8413 else
8414 regcache->raw_supply (r->regnum, regs + r->offset);
8415 }
8416 }
8417 }
8418
8419 void
8420 remote_target::fetch_registers_using_g (struct regcache *regcache)
8421 {
8422 send_g_packet ();
8423 process_g_packet (regcache);
8424 }
8425
8426 /* Make the remote selected traceframe match GDB's selected
8427 traceframe. */
8428
8429 void
8430 remote_target::set_remote_traceframe ()
8431 {
8432 int newnum;
8433 struct remote_state *rs = get_remote_state ();
8434
8435 if (rs->remote_traceframe_number == get_traceframe_number ())
8436 return;
8437
8438 /* Avoid recursion, remote_trace_find calls us again. */
8439 rs->remote_traceframe_number = get_traceframe_number ();
8440
8441 newnum = target_trace_find (tfind_number,
8442 get_traceframe_number (), 0, 0, NULL);
8443
8444 /* Should not happen. If it does, all bets are off. */
8445 if (newnum != get_traceframe_number ())
8446 warning (_("could not set remote traceframe"));
8447 }
8448
8449 void
8450 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8451 {
8452 struct gdbarch *gdbarch = regcache->arch ();
8453 struct remote_state *rs = get_remote_state ();
8454 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8455 int i;
8456
8457 set_remote_traceframe ();
8458 set_general_thread (regcache->ptid ());
8459
8460 if (regnum >= 0)
8461 {
8462 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8463
8464 gdb_assert (reg != NULL);
8465
8466 /* If this register might be in the 'g' packet, try that first -
8467 we are likely to read more than one register. If this is the
8468 first 'g' packet, we might be overly optimistic about its
8469 contents, so fall back to 'p'. */
8470 if (reg->in_g_packet)
8471 {
8472 fetch_registers_using_g (regcache);
8473 if (reg->in_g_packet)
8474 return;
8475 }
8476
8477 if (fetch_register_using_p (regcache, reg))
8478 return;
8479
8480 /* This register is not available. */
8481 regcache->raw_supply (reg->regnum, NULL);
8482
8483 return;
8484 }
8485
8486 fetch_registers_using_g (regcache);
8487
8488 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8489 if (!rsa->regs[i].in_g_packet)
8490 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8491 {
8492 /* This register is not available. */
8493 regcache->raw_supply (i, NULL);
8494 }
8495 }
8496
8497 /* Prepare to store registers. Since we may send them all (using a
8498 'G' request), we have to read out the ones we don't want to change
8499 first. */
8500
8501 void
8502 remote_target::prepare_to_store (struct regcache *regcache)
8503 {
8504 struct remote_state *rs = get_remote_state ();
8505 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8506 int i;
8507
8508 /* Make sure the entire registers array is valid. */
8509 switch (packet_support (PACKET_P))
8510 {
8511 case PACKET_DISABLE:
8512 case PACKET_SUPPORT_UNKNOWN:
8513 /* Make sure all the necessary registers are cached. */
8514 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8515 if (rsa->regs[i].in_g_packet)
8516 regcache->raw_update (rsa->regs[i].regnum);
8517 break;
8518 case PACKET_ENABLE:
8519 break;
8520 }
8521 }
8522
8523 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8524 packet was not recognized. */
8525
8526 int
8527 remote_target::store_register_using_P (const struct regcache *regcache,
8528 packet_reg *reg)
8529 {
8530 struct gdbarch *gdbarch = regcache->arch ();
8531 struct remote_state *rs = get_remote_state ();
8532 /* Try storing a single register. */
8533 char *buf = rs->buf.data ();
8534 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8535 char *p;
8536
8537 if (packet_support (PACKET_P) == PACKET_DISABLE)
8538 return 0;
8539
8540 if (reg->pnum == -1)
8541 return 0;
8542
8543 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8544 p = buf + strlen (buf);
8545 regcache->raw_collect (reg->regnum, regp);
8546 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8547 putpkt (rs->buf);
8548 getpkt (&rs->buf, 0);
8549
8550 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8551 {
8552 case PACKET_OK:
8553 return 1;
8554 case PACKET_ERROR:
8555 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8556 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8557 case PACKET_UNKNOWN:
8558 return 0;
8559 default:
8560 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8561 }
8562 }
8563
8564 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8565 contents of the register cache buffer. FIXME: ignores errors. */
8566
8567 void
8568 remote_target::store_registers_using_G (const struct regcache *regcache)
8569 {
8570 struct remote_state *rs = get_remote_state ();
8571 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8572 gdb_byte *regs;
8573 char *p;
8574
8575 /* Extract all the registers in the regcache copying them into a
8576 local buffer. */
8577 {
8578 int i;
8579
8580 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8581 memset (regs, 0, rsa->sizeof_g_packet);
8582 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8583 {
8584 struct packet_reg *r = &rsa->regs[i];
8585
8586 if (r->in_g_packet)
8587 regcache->raw_collect (r->regnum, regs + r->offset);
8588 }
8589 }
8590
8591 /* Command describes registers byte by byte,
8592 each byte encoded as two hex characters. */
8593 p = rs->buf.data ();
8594 *p++ = 'G';
8595 bin2hex (regs, p, rsa->sizeof_g_packet);
8596 putpkt (rs->buf);
8597 getpkt (&rs->buf, 0);
8598 if (packet_check_result (rs->buf) == PACKET_ERROR)
8599 error (_("Could not write registers; remote failure reply '%s'"),
8600 rs->buf.data ());
8601 }
8602
8603 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8604 of the register cache buffer. FIXME: ignores errors. */
8605
8606 void
8607 remote_target::store_registers (struct regcache *regcache, int regnum)
8608 {
8609 struct gdbarch *gdbarch = regcache->arch ();
8610 struct remote_state *rs = get_remote_state ();
8611 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8612 int i;
8613
8614 set_remote_traceframe ();
8615 set_general_thread (regcache->ptid ());
8616
8617 if (regnum >= 0)
8618 {
8619 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8620
8621 gdb_assert (reg != NULL);
8622
8623 /* Always prefer to store registers using the 'P' packet if
8624 possible; we often change only a small number of registers.
8625 Sometimes we change a larger number; we'd need help from a
8626 higher layer to know to use 'G'. */
8627 if (store_register_using_P (regcache, reg))
8628 return;
8629
8630 /* For now, don't complain if we have no way to write the
8631 register. GDB loses track of unavailable registers too
8632 easily. Some day, this may be an error. We don't have
8633 any way to read the register, either... */
8634 if (!reg->in_g_packet)
8635 return;
8636
8637 store_registers_using_G (regcache);
8638 return;
8639 }
8640
8641 store_registers_using_G (regcache);
8642
8643 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8644 if (!rsa->regs[i].in_g_packet)
8645 if (!store_register_using_P (regcache, &rsa->regs[i]))
8646 /* See above for why we do not issue an error here. */
8647 continue;
8648 }
8649 \f
8650
8651 /* Return the number of hex digits in num. */
8652
8653 static int
8654 hexnumlen (ULONGEST num)
8655 {
8656 int i;
8657
8658 for (i = 0; num != 0; i++)
8659 num >>= 4;
8660
8661 return std::max (i, 1);
8662 }
8663
8664 /* Set BUF to the minimum number of hex digits representing NUM. */
8665
8666 static int
8667 hexnumstr (char *buf, ULONGEST num)
8668 {
8669 int len = hexnumlen (num);
8670
8671 return hexnumnstr (buf, num, len);
8672 }
8673
8674
8675 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8676
8677 static int
8678 hexnumnstr (char *buf, ULONGEST num, int width)
8679 {
8680 int i;
8681
8682 buf[width] = '\0';
8683
8684 for (i = width - 1; i >= 0; i--)
8685 {
8686 buf[i] = "0123456789abcdef"[(num & 0xf)];
8687 num >>= 4;
8688 }
8689
8690 return width;
8691 }
8692
8693 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8694
8695 static CORE_ADDR
8696 remote_address_masked (CORE_ADDR addr)
8697 {
8698 unsigned int address_size = remote_address_size;
8699
8700 /* If "remoteaddresssize" was not set, default to target address size. */
8701 if (!address_size)
8702 address_size = gdbarch_addr_bit (target_gdbarch ());
8703
8704 if (address_size > 0
8705 && address_size < (sizeof (ULONGEST) * 8))
8706 {
8707 /* Only create a mask when that mask can safely be constructed
8708 in a ULONGEST variable. */
8709 ULONGEST mask = 1;
8710
8711 mask = (mask << address_size) - 1;
8712 addr &= mask;
8713 }
8714 return addr;
8715 }
8716
8717 /* Determine whether the remote target supports binary downloading.
8718 This is accomplished by sending a no-op memory write of zero length
8719 to the target at the specified address. It does not suffice to send
8720 the whole packet, since many stubs strip the eighth bit and
8721 subsequently compute a wrong checksum, which causes real havoc with
8722 remote_write_bytes.
8723
8724 NOTE: This can still lose if the serial line is not eight-bit
8725 clean. In cases like this, the user should clear "remote
8726 X-packet". */
8727
8728 void
8729 remote_target::check_binary_download (CORE_ADDR addr)
8730 {
8731 struct remote_state *rs = get_remote_state ();
8732
8733 switch (packet_support (PACKET_X))
8734 {
8735 case PACKET_DISABLE:
8736 break;
8737 case PACKET_ENABLE:
8738 break;
8739 case PACKET_SUPPORT_UNKNOWN:
8740 {
8741 char *p;
8742
8743 p = rs->buf.data ();
8744 *p++ = 'X';
8745 p += hexnumstr (p, (ULONGEST) addr);
8746 *p++ = ',';
8747 p += hexnumstr (p, (ULONGEST) 0);
8748 *p++ = ':';
8749 *p = '\0';
8750
8751 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8752 getpkt (&rs->buf, 0);
8753
8754 if (rs->buf[0] == '\0')
8755 {
8756 remote_debug_printf ("binary downloading NOT supported by target");
8757 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8758 }
8759 else
8760 {
8761 remote_debug_printf ("binary downloading supported by target");
8762 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8763 }
8764 break;
8765 }
8766 }
8767 }
8768
8769 /* Helper function to resize the payload in order to try to get a good
8770 alignment. We try to write an amount of data such that the next write will
8771 start on an address aligned on REMOTE_ALIGN_WRITES. */
8772
8773 static int
8774 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8775 {
8776 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8777 }
8778
8779 /* Write memory data directly to the remote machine.
8780 This does not inform the data cache; the data cache uses this.
8781 HEADER is the starting part of the packet.
8782 MEMADDR is the address in the remote memory space.
8783 MYADDR is the address of the buffer in our space.
8784 LEN_UNITS is the number of addressable units to write.
8785 UNIT_SIZE is the length in bytes of an addressable unit.
8786 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8787 should send data as binary ('X'), or hex-encoded ('M').
8788
8789 The function creates packet of the form
8790 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8791
8792 where encoding of <DATA> is terminated by PACKET_FORMAT.
8793
8794 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8795 are omitted.
8796
8797 Return the transferred status, error or OK (an
8798 'enum target_xfer_status' value). Save the number of addressable units
8799 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8800
8801 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8802 exchange between gdb and the stub could look like (?? in place of the
8803 checksum):
8804
8805 -> $m1000,4#??
8806 <- aaaabbbbccccdddd
8807
8808 -> $M1000,3:eeeeffffeeee#??
8809 <- OK
8810
8811 -> $m1000,4#??
8812 <- eeeeffffeeeedddd */
8813
8814 target_xfer_status
8815 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8816 const gdb_byte *myaddr,
8817 ULONGEST len_units,
8818 int unit_size,
8819 ULONGEST *xfered_len_units,
8820 char packet_format, int use_length)
8821 {
8822 struct remote_state *rs = get_remote_state ();
8823 char *p;
8824 char *plen = NULL;
8825 int plenlen = 0;
8826 int todo_units;
8827 int units_written;
8828 int payload_capacity_bytes;
8829 int payload_length_bytes;
8830
8831 if (packet_format != 'X' && packet_format != 'M')
8832 internal_error (__FILE__, __LINE__,
8833 _("remote_write_bytes_aux: bad packet format"));
8834
8835 if (len_units == 0)
8836 return TARGET_XFER_EOF;
8837
8838 payload_capacity_bytes = get_memory_write_packet_size ();
8839
8840 /* The packet buffer will be large enough for the payload;
8841 get_memory_packet_size ensures this. */
8842 rs->buf[0] = '\0';
8843
8844 /* Compute the size of the actual payload by subtracting out the
8845 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8846
8847 payload_capacity_bytes -= strlen ("$,:#NN");
8848 if (!use_length)
8849 /* The comma won't be used. */
8850 payload_capacity_bytes += 1;
8851 payload_capacity_bytes -= strlen (header);
8852 payload_capacity_bytes -= hexnumlen (memaddr);
8853
8854 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8855
8856 strcat (rs->buf.data (), header);
8857 p = rs->buf.data () + strlen (header);
8858
8859 /* Compute a best guess of the number of bytes actually transfered. */
8860 if (packet_format == 'X')
8861 {
8862 /* Best guess at number of bytes that will fit. */
8863 todo_units = std::min (len_units,
8864 (ULONGEST) payload_capacity_bytes / unit_size);
8865 if (use_length)
8866 payload_capacity_bytes -= hexnumlen (todo_units);
8867 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8868 }
8869 else
8870 {
8871 /* Number of bytes that will fit. */
8872 todo_units
8873 = std::min (len_units,
8874 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8875 if (use_length)
8876 payload_capacity_bytes -= hexnumlen (todo_units);
8877 todo_units = std::min (todo_units,
8878 (payload_capacity_bytes / unit_size) / 2);
8879 }
8880
8881 if (todo_units <= 0)
8882 internal_error (__FILE__, __LINE__,
8883 _("minimum packet size too small to write data"));
8884
8885 /* If we already need another packet, then try to align the end
8886 of this packet to a useful boundary. */
8887 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8888 todo_units = align_for_efficient_write (todo_units, memaddr);
8889
8890 /* Append "<memaddr>". */
8891 memaddr = remote_address_masked (memaddr);
8892 p += hexnumstr (p, (ULONGEST) memaddr);
8893
8894 if (use_length)
8895 {
8896 /* Append ",". */
8897 *p++ = ',';
8898
8899 /* Append the length and retain its location and size. It may need to be
8900 adjusted once the packet body has been created. */
8901 plen = p;
8902 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8903 p += plenlen;
8904 }
8905
8906 /* Append ":". */
8907 *p++ = ':';
8908 *p = '\0';
8909
8910 /* Append the packet body. */
8911 if (packet_format == 'X')
8912 {
8913 /* Binary mode. Send target system values byte by byte, in
8914 increasing byte addresses. Only escape certain critical
8915 characters. */
8916 payload_length_bytes =
8917 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8918 &units_written, payload_capacity_bytes);
8919
8920 /* If not all TODO units fit, then we'll need another packet. Make
8921 a second try to keep the end of the packet aligned. Don't do
8922 this if the packet is tiny. */
8923 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8924 {
8925 int new_todo_units;
8926
8927 new_todo_units = align_for_efficient_write (units_written, memaddr);
8928
8929 if (new_todo_units != units_written)
8930 payload_length_bytes =
8931 remote_escape_output (myaddr, new_todo_units, unit_size,
8932 (gdb_byte *) p, &units_written,
8933 payload_capacity_bytes);
8934 }
8935
8936 p += payload_length_bytes;
8937 if (use_length && units_written < todo_units)
8938 {
8939 /* Escape chars have filled up the buffer prematurely,
8940 and we have actually sent fewer units than planned.
8941 Fix-up the length field of the packet. Use the same
8942 number of characters as before. */
8943 plen += hexnumnstr (plen, (ULONGEST) units_written,
8944 plenlen);
8945 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8946 }
8947 }
8948 else
8949 {
8950 /* Normal mode: Send target system values byte by byte, in
8951 increasing byte addresses. Each byte is encoded as a two hex
8952 value. */
8953 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8954 units_written = todo_units;
8955 }
8956
8957 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8958 getpkt (&rs->buf, 0);
8959
8960 if (rs->buf[0] == 'E')
8961 return TARGET_XFER_E_IO;
8962
8963 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8964 send fewer units than we'd planned. */
8965 *xfered_len_units = (ULONGEST) units_written;
8966 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8967 }
8968
8969 /* Write memory data directly to the remote machine.
8970 This does not inform the data cache; the data cache uses this.
8971 MEMADDR is the address in the remote memory space.
8972 MYADDR is the address of the buffer in our space.
8973 LEN is the number of bytes.
8974
8975 Return the transferred status, error or OK (an
8976 'enum target_xfer_status' value). Save the number of bytes
8977 transferred in *XFERED_LEN. Only transfer a single packet. */
8978
8979 target_xfer_status
8980 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8981 ULONGEST len, int unit_size,
8982 ULONGEST *xfered_len)
8983 {
8984 const char *packet_format = NULL;
8985
8986 /* Check whether the target supports binary download. */
8987 check_binary_download (memaddr);
8988
8989 switch (packet_support (PACKET_X))
8990 {
8991 case PACKET_ENABLE:
8992 packet_format = "X";
8993 break;
8994 case PACKET_DISABLE:
8995 packet_format = "M";
8996 break;
8997 case PACKET_SUPPORT_UNKNOWN:
8998 internal_error (__FILE__, __LINE__,
8999 _("remote_write_bytes: bad internal state"));
9000 default:
9001 internal_error (__FILE__, __LINE__, _("bad switch"));
9002 }
9003
9004 return remote_write_bytes_aux (packet_format,
9005 memaddr, myaddr, len, unit_size, xfered_len,
9006 packet_format[0], 1);
9007 }
9008
9009 /* Read memory data directly from the remote machine.
9010 This does not use the data cache; the data cache uses this.
9011 MEMADDR is the address in the remote memory space.
9012 MYADDR is the address of the buffer in our space.
9013 LEN_UNITS is the number of addressable memory units to read..
9014 UNIT_SIZE is the length in bytes of an addressable unit.
9015
9016 Return the transferred status, error or OK (an
9017 'enum target_xfer_status' value). Save the number of bytes
9018 transferred in *XFERED_LEN_UNITS.
9019
9020 See the comment of remote_write_bytes_aux for an example of
9021 memory read/write exchange between gdb and the stub. */
9022
9023 target_xfer_status
9024 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9025 ULONGEST len_units,
9026 int unit_size, ULONGEST *xfered_len_units)
9027 {
9028 struct remote_state *rs = get_remote_state ();
9029 int buf_size_bytes; /* Max size of packet output buffer. */
9030 char *p;
9031 int todo_units;
9032 int decoded_bytes;
9033
9034 buf_size_bytes = get_memory_read_packet_size ();
9035 /* The packet buffer will be large enough for the payload;
9036 get_memory_packet_size ensures this. */
9037
9038 /* Number of units that will fit. */
9039 todo_units = std::min (len_units,
9040 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9041
9042 /* Construct "m"<memaddr>","<len>". */
9043 memaddr = remote_address_masked (memaddr);
9044 p = rs->buf.data ();
9045 *p++ = 'm';
9046 p += hexnumstr (p, (ULONGEST) memaddr);
9047 *p++ = ',';
9048 p += hexnumstr (p, (ULONGEST) todo_units);
9049 *p = '\0';
9050 putpkt (rs->buf);
9051 getpkt (&rs->buf, 0);
9052 if (rs->buf[0] == 'E'
9053 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9054 && rs->buf[3] == '\0')
9055 return TARGET_XFER_E_IO;
9056 /* Reply describes memory byte by byte, each byte encoded as two hex
9057 characters. */
9058 p = rs->buf.data ();
9059 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9060 /* Return what we have. Let higher layers handle partial reads. */
9061 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9062 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9063 }
9064
9065 /* Using the set of read-only target sections of remote, read live
9066 read-only memory.
9067
9068 For interface/parameters/return description see target.h,
9069 to_xfer_partial. */
9070
9071 target_xfer_status
9072 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9073 ULONGEST memaddr,
9074 ULONGEST len,
9075 int unit_size,
9076 ULONGEST *xfered_len)
9077 {
9078 const struct target_section *secp;
9079
9080 secp = target_section_by_addr (this, memaddr);
9081 if (secp != NULL
9082 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9083 {
9084 ULONGEST memend = memaddr + len;
9085
9086 const target_section_table *table = target_get_section_table (this);
9087 for (const target_section &p : *table)
9088 {
9089 if (memaddr >= p.addr)
9090 {
9091 if (memend <= p.endaddr)
9092 {
9093 /* Entire transfer is within this section. */
9094 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9095 xfered_len);
9096 }
9097 else if (memaddr >= p.endaddr)
9098 {
9099 /* This section ends before the transfer starts. */
9100 continue;
9101 }
9102 else
9103 {
9104 /* This section overlaps the transfer. Just do half. */
9105 len = p.endaddr - memaddr;
9106 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9107 xfered_len);
9108 }
9109 }
9110 }
9111 }
9112
9113 return TARGET_XFER_EOF;
9114 }
9115
9116 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9117 first if the requested memory is unavailable in traceframe.
9118 Otherwise, fall back to remote_read_bytes_1. */
9119
9120 target_xfer_status
9121 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9122 gdb_byte *myaddr, ULONGEST len, int unit_size,
9123 ULONGEST *xfered_len)
9124 {
9125 if (len == 0)
9126 return TARGET_XFER_EOF;
9127
9128 if (get_traceframe_number () != -1)
9129 {
9130 std::vector<mem_range> available;
9131
9132 /* If we fail to get the set of available memory, then the
9133 target does not support querying traceframe info, and so we
9134 attempt reading from the traceframe anyway (assuming the
9135 target implements the old QTro packet then). */
9136 if (traceframe_available_memory (&available, memaddr, len))
9137 {
9138 if (available.empty () || available[0].start != memaddr)
9139 {
9140 enum target_xfer_status res;
9141
9142 /* Don't read into the traceframe's available
9143 memory. */
9144 if (!available.empty ())
9145 {
9146 LONGEST oldlen = len;
9147
9148 len = available[0].start - memaddr;
9149 gdb_assert (len <= oldlen);
9150 }
9151
9152 /* This goes through the topmost target again. */
9153 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9154 len, unit_size, xfered_len);
9155 if (res == TARGET_XFER_OK)
9156 return TARGET_XFER_OK;
9157 else
9158 {
9159 /* No use trying further, we know some memory starting
9160 at MEMADDR isn't available. */
9161 *xfered_len = len;
9162 return (*xfered_len != 0) ?
9163 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9164 }
9165 }
9166
9167 /* Don't try to read more than how much is available, in
9168 case the target implements the deprecated QTro packet to
9169 cater for older GDBs (the target's knowledge of read-only
9170 sections may be outdated by now). */
9171 len = available[0].length;
9172 }
9173 }
9174
9175 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9176 }
9177
9178 \f
9179
9180 /* Sends a packet with content determined by the printf format string
9181 FORMAT and the remaining arguments, then gets the reply. Returns
9182 whether the packet was a success, a failure, or unknown. */
9183
9184 packet_result
9185 remote_target::remote_send_printf (const char *format, ...)
9186 {
9187 struct remote_state *rs = get_remote_state ();
9188 int max_size = get_remote_packet_size ();
9189 va_list ap;
9190
9191 va_start (ap, format);
9192
9193 rs->buf[0] = '\0';
9194 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9195
9196 va_end (ap);
9197
9198 if (size >= max_size)
9199 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9200
9201 if (putpkt (rs->buf) < 0)
9202 error (_("Communication problem with target."));
9203
9204 rs->buf[0] = '\0';
9205 getpkt (&rs->buf, 0);
9206
9207 return packet_check_result (rs->buf);
9208 }
9209
9210 /* Flash writing can take quite some time. We'll set
9211 effectively infinite timeout for flash operations.
9212 In future, we'll need to decide on a better approach. */
9213 static const int remote_flash_timeout = 1000;
9214
9215 void
9216 remote_target::flash_erase (ULONGEST address, LONGEST length)
9217 {
9218 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9219 enum packet_result ret;
9220 scoped_restore restore_timeout
9221 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9222
9223 ret = remote_send_printf ("vFlashErase:%s,%s",
9224 phex (address, addr_size),
9225 phex (length, 4));
9226 switch (ret)
9227 {
9228 case PACKET_UNKNOWN:
9229 error (_("Remote target does not support flash erase"));
9230 case PACKET_ERROR:
9231 error (_("Error erasing flash with vFlashErase packet"));
9232 default:
9233 break;
9234 }
9235 }
9236
9237 target_xfer_status
9238 remote_target::remote_flash_write (ULONGEST address,
9239 ULONGEST length, ULONGEST *xfered_len,
9240 const gdb_byte *data)
9241 {
9242 scoped_restore restore_timeout
9243 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9244 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9245 xfered_len,'X', 0);
9246 }
9247
9248 void
9249 remote_target::flash_done ()
9250 {
9251 int ret;
9252
9253 scoped_restore restore_timeout
9254 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9255
9256 ret = remote_send_printf ("vFlashDone");
9257
9258 switch (ret)
9259 {
9260 case PACKET_UNKNOWN:
9261 error (_("Remote target does not support vFlashDone"));
9262 case PACKET_ERROR:
9263 error (_("Error finishing flash operation"));
9264 default:
9265 break;
9266 }
9267 }
9268
9269 void
9270 remote_target::files_info ()
9271 {
9272 puts_filtered ("Debugging a target over a serial line.\n");
9273 }
9274 \f
9275 /* Stuff for dealing with the packets which are part of this protocol.
9276 See comment at top of file for details. */
9277
9278 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9279 error to higher layers. Called when a serial error is detected.
9280 The exception message is STRING, followed by a colon and a blank,
9281 the system error message for errno at function entry and final dot
9282 for output compatibility with throw_perror_with_name. */
9283
9284 static void
9285 unpush_and_perror (remote_target *target, const char *string)
9286 {
9287 int saved_errno = errno;
9288
9289 remote_unpush_target (target);
9290 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9291 safe_strerror (saved_errno));
9292 }
9293
9294 /* Read a single character from the remote end. The current quit
9295 handler is overridden to avoid quitting in the middle of packet
9296 sequence, as that would break communication with the remote server.
9297 See remote_serial_quit_handler for more detail. */
9298
9299 int
9300 remote_target::readchar (int timeout)
9301 {
9302 int ch;
9303 struct remote_state *rs = get_remote_state ();
9304
9305 {
9306 scoped_restore restore_quit_target
9307 = make_scoped_restore (&curr_quit_handler_target, this);
9308 scoped_restore restore_quit
9309 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9310
9311 rs->got_ctrlc_during_io = 0;
9312
9313 ch = serial_readchar (rs->remote_desc, timeout);
9314
9315 if (rs->got_ctrlc_during_io)
9316 set_quit_flag ();
9317 }
9318
9319 if (ch >= 0)
9320 return ch;
9321
9322 switch ((enum serial_rc) ch)
9323 {
9324 case SERIAL_EOF:
9325 remote_unpush_target (this);
9326 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9327 /* no return */
9328 case SERIAL_ERROR:
9329 unpush_and_perror (this, _("Remote communication error. "
9330 "Target disconnected."));
9331 /* no return */
9332 case SERIAL_TIMEOUT:
9333 break;
9334 }
9335 return ch;
9336 }
9337
9338 /* Wrapper for serial_write that closes the target and throws if
9339 writing fails. The current quit handler is overridden to avoid
9340 quitting in the middle of packet sequence, as that would break
9341 communication with the remote server. See
9342 remote_serial_quit_handler for more detail. */
9343
9344 void
9345 remote_target::remote_serial_write (const char *str, int len)
9346 {
9347 struct remote_state *rs = get_remote_state ();
9348
9349 scoped_restore restore_quit_target
9350 = make_scoped_restore (&curr_quit_handler_target, this);
9351 scoped_restore restore_quit
9352 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9353
9354 rs->got_ctrlc_during_io = 0;
9355
9356 if (serial_write (rs->remote_desc, str, len))
9357 {
9358 unpush_and_perror (this, _("Remote communication error. "
9359 "Target disconnected."));
9360 }
9361
9362 if (rs->got_ctrlc_during_io)
9363 set_quit_flag ();
9364 }
9365
9366 /* Return a string representing an escaped version of BUF, of len N.
9367 E.g. \n is converted to \\n, \t to \\t, etc. */
9368
9369 static std::string
9370 escape_buffer (const char *buf, int n)
9371 {
9372 string_file stb;
9373
9374 stb.putstrn (buf, n, '\\');
9375 return std::move (stb.string ());
9376 }
9377
9378 /* Display a null-terminated packet on stdout, for debugging, using C
9379 string notation. */
9380
9381 static void
9382 print_packet (const char *buf)
9383 {
9384 puts_filtered ("\"");
9385 fputstr_filtered (buf, '"', gdb_stdout);
9386 puts_filtered ("\"");
9387 }
9388
9389 int
9390 remote_target::putpkt (const char *buf)
9391 {
9392 return putpkt_binary (buf, strlen (buf));
9393 }
9394
9395 /* Wrapper around remote_target::putpkt to avoid exporting
9396 remote_target. */
9397
9398 int
9399 putpkt (remote_target *remote, const char *buf)
9400 {
9401 return remote->putpkt (buf);
9402 }
9403
9404 /* Send a packet to the remote machine, with error checking. The data
9405 of the packet is in BUF. The string in BUF can be at most
9406 get_remote_packet_size () - 5 to account for the $, # and checksum,
9407 and for a possible /0 if we are debugging (remote_debug) and want
9408 to print the sent packet as a string. */
9409
9410 int
9411 remote_target::putpkt_binary (const char *buf, int cnt)
9412 {
9413 struct remote_state *rs = get_remote_state ();
9414 int i;
9415 unsigned char csum = 0;
9416 gdb::def_vector<char> data (cnt + 6);
9417 char *buf2 = data.data ();
9418
9419 int ch;
9420 int tcount = 0;
9421 char *p;
9422
9423 /* Catch cases like trying to read memory or listing threads while
9424 we're waiting for a stop reply. The remote server wouldn't be
9425 ready to handle this request, so we'd hang and timeout. We don't
9426 have to worry about this in synchronous mode, because in that
9427 case it's not possible to issue a command while the target is
9428 running. This is not a problem in non-stop mode, because in that
9429 case, the stub is always ready to process serial input. */
9430 if (!target_is_non_stop_p ()
9431 && target_is_async_p ()
9432 && rs->waiting_for_stop_reply)
9433 {
9434 error (_("Cannot execute this command while the target is running.\n"
9435 "Use the \"interrupt\" command to stop the target\n"
9436 "and then try again."));
9437 }
9438
9439 /* We're sending out a new packet. Make sure we don't look at a
9440 stale cached response. */
9441 rs->cached_wait_status = 0;
9442
9443 /* Copy the packet into buffer BUF2, encapsulating it
9444 and giving it a checksum. */
9445
9446 p = buf2;
9447 *p++ = '$';
9448
9449 for (i = 0; i < cnt; i++)
9450 {
9451 csum += buf[i];
9452 *p++ = buf[i];
9453 }
9454 *p++ = '#';
9455 *p++ = tohex ((csum >> 4) & 0xf);
9456 *p++ = tohex (csum & 0xf);
9457
9458 /* Send it over and over until we get a positive ack. */
9459
9460 while (1)
9461 {
9462 if (remote_debug)
9463 {
9464 *p = '\0';
9465
9466 int len = (int) (p - buf2);
9467 int max_chars;
9468
9469 if (remote_packet_max_chars < 0)
9470 max_chars = len;
9471 else
9472 max_chars = remote_packet_max_chars;
9473
9474 std::string str
9475 = escape_buffer (buf2, std::min (len, max_chars));
9476
9477 if (len > max_chars)
9478 remote_debug_printf_nofunc
9479 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9480 len - max_chars);
9481 else
9482 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9483 }
9484 remote_serial_write (buf2, p - buf2);
9485
9486 /* If this is a no acks version of the remote protocol, send the
9487 packet and move on. */
9488 if (rs->noack_mode)
9489 break;
9490
9491 /* Read until either a timeout occurs (-2) or '+' is read.
9492 Handle any notification that arrives in the mean time. */
9493 while (1)
9494 {
9495 ch = readchar (remote_timeout);
9496
9497 switch (ch)
9498 {
9499 case '+':
9500 remote_debug_printf_nofunc ("Received Ack");
9501 return 1;
9502 case '-':
9503 remote_debug_printf_nofunc ("Received Nak");
9504 /* FALLTHROUGH */
9505 case SERIAL_TIMEOUT:
9506 tcount++;
9507 if (tcount > 3)
9508 return 0;
9509 break; /* Retransmit buffer. */
9510 case '$':
9511 {
9512 remote_debug_printf ("Packet instead of Ack, ignoring it");
9513 /* It's probably an old response sent because an ACK
9514 was lost. Gobble up the packet and ack it so it
9515 doesn't get retransmitted when we resend this
9516 packet. */
9517 skip_frame ();
9518 remote_serial_write ("+", 1);
9519 continue; /* Now, go look for +. */
9520 }
9521
9522 case '%':
9523 {
9524 int val;
9525
9526 /* If we got a notification, handle it, and go back to looking
9527 for an ack. */
9528 /* We've found the start of a notification. Now
9529 collect the data. */
9530 val = read_frame (&rs->buf);
9531 if (val >= 0)
9532 {
9533 remote_debug_printf_nofunc
9534 (" Notification received: %s",
9535 escape_buffer (rs->buf.data (), val).c_str ());
9536
9537 handle_notification (rs->notif_state, rs->buf.data ());
9538 /* We're in sync now, rewait for the ack. */
9539 tcount = 0;
9540 }
9541 else
9542 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9543 rs->buf.data ());
9544 continue;
9545 }
9546 /* fall-through */
9547 default:
9548 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9549 rs->buf.data ());
9550 continue;
9551 }
9552 break; /* Here to retransmit. */
9553 }
9554
9555 #if 0
9556 /* This is wrong. If doing a long backtrace, the user should be
9557 able to get out next time we call QUIT, without anything as
9558 violent as interrupt_query. If we want to provide a way out of
9559 here without getting to the next QUIT, it should be based on
9560 hitting ^C twice as in remote_wait. */
9561 if (quit_flag)
9562 {
9563 quit_flag = 0;
9564 interrupt_query ();
9565 }
9566 #endif
9567 }
9568
9569 return 0;
9570 }
9571
9572 /* Come here after finding the start of a frame when we expected an
9573 ack. Do our best to discard the rest of this packet. */
9574
9575 void
9576 remote_target::skip_frame ()
9577 {
9578 int c;
9579
9580 while (1)
9581 {
9582 c = readchar (remote_timeout);
9583 switch (c)
9584 {
9585 case SERIAL_TIMEOUT:
9586 /* Nothing we can do. */
9587 return;
9588 case '#':
9589 /* Discard the two bytes of checksum and stop. */
9590 c = readchar (remote_timeout);
9591 if (c >= 0)
9592 c = readchar (remote_timeout);
9593
9594 return;
9595 case '*': /* Run length encoding. */
9596 /* Discard the repeat count. */
9597 c = readchar (remote_timeout);
9598 if (c < 0)
9599 return;
9600 break;
9601 default:
9602 /* A regular character. */
9603 break;
9604 }
9605 }
9606 }
9607
9608 /* Come here after finding the start of the frame. Collect the rest
9609 into *BUF, verifying the checksum, length, and handling run-length
9610 compression. NUL terminate the buffer. If there is not enough room,
9611 expand *BUF.
9612
9613 Returns -1 on error, number of characters in buffer (ignoring the
9614 trailing NULL) on success. (could be extended to return one of the
9615 SERIAL status indications). */
9616
9617 long
9618 remote_target::read_frame (gdb::char_vector *buf_p)
9619 {
9620 unsigned char csum;
9621 long bc;
9622 int c;
9623 char *buf = buf_p->data ();
9624 struct remote_state *rs = get_remote_state ();
9625
9626 csum = 0;
9627 bc = 0;
9628
9629 while (1)
9630 {
9631 c = readchar (remote_timeout);
9632 switch (c)
9633 {
9634 case SERIAL_TIMEOUT:
9635 remote_debug_printf ("Timeout in mid-packet, retrying");
9636 return -1;
9637
9638 case '$':
9639 remote_debug_printf ("Saw new packet start in middle of old one");
9640 return -1; /* Start a new packet, count retries. */
9641
9642 case '#':
9643 {
9644 unsigned char pktcsum;
9645 int check_0 = 0;
9646 int check_1 = 0;
9647
9648 buf[bc] = '\0';
9649
9650 check_0 = readchar (remote_timeout);
9651 if (check_0 >= 0)
9652 check_1 = readchar (remote_timeout);
9653
9654 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9655 {
9656 remote_debug_printf ("Timeout in checksum, retrying");
9657 return -1;
9658 }
9659 else if (check_0 < 0 || check_1 < 0)
9660 {
9661 remote_debug_printf ("Communication error in checksum");
9662 return -1;
9663 }
9664
9665 /* Don't recompute the checksum; with no ack packets we
9666 don't have any way to indicate a packet retransmission
9667 is necessary. */
9668 if (rs->noack_mode)
9669 return bc;
9670
9671 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9672 if (csum == pktcsum)
9673 return bc;
9674
9675 remote_debug_printf
9676 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9677 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9678
9679 /* Number of characters in buffer ignoring trailing
9680 NULL. */
9681 return -1;
9682 }
9683 case '*': /* Run length encoding. */
9684 {
9685 int repeat;
9686
9687 csum += c;
9688 c = readchar (remote_timeout);
9689 csum += c;
9690 repeat = c - ' ' + 3; /* Compute repeat count. */
9691
9692 /* The character before ``*'' is repeated. */
9693
9694 if (repeat > 0 && repeat <= 255 && bc > 0)
9695 {
9696 if (bc + repeat - 1 >= buf_p->size () - 1)
9697 {
9698 /* Make some more room in the buffer. */
9699 buf_p->resize (buf_p->size () + repeat);
9700 buf = buf_p->data ();
9701 }
9702
9703 memset (&buf[bc], buf[bc - 1], repeat);
9704 bc += repeat;
9705 continue;
9706 }
9707
9708 buf[bc] = '\0';
9709 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9710 return -1;
9711 }
9712 default:
9713 if (bc >= buf_p->size () - 1)
9714 {
9715 /* Make some more room in the buffer. */
9716 buf_p->resize (buf_p->size () * 2);
9717 buf = buf_p->data ();
9718 }
9719
9720 buf[bc++] = c;
9721 csum += c;
9722 continue;
9723 }
9724 }
9725 }
9726
9727 /* Set this to the maximum number of seconds to wait instead of waiting forever
9728 in target_wait(). If this timer times out, then it generates an error and
9729 the command is aborted. This replaces most of the need for timeouts in the
9730 GDB test suite, and makes it possible to distinguish between a hung target
9731 and one with slow communications. */
9732
9733 static int watchdog = 0;
9734 static void
9735 show_watchdog (struct ui_file *file, int from_tty,
9736 struct cmd_list_element *c, const char *value)
9737 {
9738 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9739 }
9740
9741 /* Read a packet from the remote machine, with error checking, and
9742 store it in *BUF. Resize *BUF if necessary to hold the result. If
9743 FOREVER, wait forever rather than timing out; this is used (in
9744 synchronous mode) to wait for a target that is is executing user
9745 code to stop. */
9746 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9747 don't have to change all the calls to getpkt to deal with the
9748 return value, because at the moment I don't know what the right
9749 thing to do it for those. */
9750
9751 void
9752 remote_target::getpkt (gdb::char_vector *buf, int forever)
9753 {
9754 getpkt_sane (buf, forever);
9755 }
9756
9757
9758 /* Read a packet from the remote machine, with error checking, and
9759 store it in *BUF. Resize *BUF if necessary to hold the result. If
9760 FOREVER, wait forever rather than timing out; this is used (in
9761 synchronous mode) to wait for a target that is is executing user
9762 code to stop. If FOREVER == 0, this function is allowed to time
9763 out gracefully and return an indication of this to the caller.
9764 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9765 consider receiving a notification enough reason to return to the
9766 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9767 holds a notification or not (a regular packet). */
9768
9769 int
9770 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9771 int forever, int expecting_notif,
9772 int *is_notif)
9773 {
9774 struct remote_state *rs = get_remote_state ();
9775 int c;
9776 int tries;
9777 int timeout;
9778 int val = -1;
9779
9780 /* We're reading a new response. Make sure we don't look at a
9781 previously cached response. */
9782 rs->cached_wait_status = 0;
9783
9784 strcpy (buf->data (), "timeout");
9785
9786 if (forever)
9787 timeout = watchdog > 0 ? watchdog : -1;
9788 else if (expecting_notif)
9789 timeout = 0; /* There should already be a char in the buffer. If
9790 not, bail out. */
9791 else
9792 timeout = remote_timeout;
9793
9794 #define MAX_TRIES 3
9795
9796 /* Process any number of notifications, and then return when
9797 we get a packet. */
9798 for (;;)
9799 {
9800 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9801 times. */
9802 for (tries = 1; tries <= MAX_TRIES; tries++)
9803 {
9804 /* This can loop forever if the remote side sends us
9805 characters continuously, but if it pauses, we'll get
9806 SERIAL_TIMEOUT from readchar because of timeout. Then
9807 we'll count that as a retry.
9808
9809 Note that even when forever is set, we will only wait
9810 forever prior to the start of a packet. After that, we
9811 expect characters to arrive at a brisk pace. They should
9812 show up within remote_timeout intervals. */
9813 do
9814 c = readchar (timeout);
9815 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9816
9817 if (c == SERIAL_TIMEOUT)
9818 {
9819 if (expecting_notif)
9820 return -1; /* Don't complain, it's normal to not get
9821 anything in this case. */
9822
9823 if (forever) /* Watchdog went off? Kill the target. */
9824 {
9825 remote_unpush_target (this);
9826 throw_error (TARGET_CLOSE_ERROR,
9827 _("Watchdog timeout has expired. "
9828 "Target detached."));
9829 }
9830
9831 remote_debug_printf ("Timed out.");
9832 }
9833 else
9834 {
9835 /* We've found the start of a packet or notification.
9836 Now collect the data. */
9837 val = read_frame (buf);
9838 if (val >= 0)
9839 break;
9840 }
9841
9842 remote_serial_write ("-", 1);
9843 }
9844
9845 if (tries > MAX_TRIES)
9846 {
9847 /* We have tried hard enough, and just can't receive the
9848 packet/notification. Give up. */
9849 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9850
9851 /* Skip the ack char if we're in no-ack mode. */
9852 if (!rs->noack_mode)
9853 remote_serial_write ("+", 1);
9854 return -1;
9855 }
9856
9857 /* If we got an ordinary packet, return that to our caller. */
9858 if (c == '$')
9859 {
9860 if (remote_debug)
9861 {
9862 int max_chars;
9863
9864 if (remote_packet_max_chars < 0)
9865 max_chars = val;
9866 else
9867 max_chars = remote_packet_max_chars;
9868
9869 std::string str
9870 = escape_buffer (buf->data (),
9871 std::min (val, max_chars));
9872
9873 if (val > max_chars)
9874 remote_debug_printf_nofunc
9875 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9876 val - max_chars);
9877 else
9878 remote_debug_printf_nofunc ("Packet received: %s",
9879 str.c_str ());
9880 }
9881
9882 /* Skip the ack char if we're in no-ack mode. */
9883 if (!rs->noack_mode)
9884 remote_serial_write ("+", 1);
9885 if (is_notif != NULL)
9886 *is_notif = 0;
9887 return val;
9888 }
9889
9890 /* If we got a notification, handle it, and go back to looking
9891 for a packet. */
9892 else
9893 {
9894 gdb_assert (c == '%');
9895
9896 remote_debug_printf_nofunc
9897 (" Notification received: %s",
9898 escape_buffer (buf->data (), val).c_str ());
9899
9900 if (is_notif != NULL)
9901 *is_notif = 1;
9902
9903 handle_notification (rs->notif_state, buf->data ());
9904
9905 /* Notifications require no acknowledgement. */
9906
9907 if (expecting_notif)
9908 return val;
9909 }
9910 }
9911 }
9912
9913 int
9914 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9915 {
9916 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9917 }
9918
9919 int
9920 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9921 int *is_notif)
9922 {
9923 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9924 }
9925
9926 /* Kill any new fork children of process PID that haven't been
9927 processed by follow_fork. */
9928
9929 void
9930 remote_target::kill_new_fork_children (int pid)
9931 {
9932 remote_state *rs = get_remote_state ();
9933 struct notif_client *notif = &notif_client_stop;
9934
9935 /* Kill the fork child threads of any threads in process PID
9936 that are stopped at a fork event. */
9937 for (thread_info *thread : all_non_exited_threads (this))
9938 {
9939 struct target_waitstatus *ws = &thread->pending_follow;
9940
9941 if (is_pending_fork_parent (ws, pid, thread->ptid))
9942 {
9943 int child_pid = ws->value.related_pid.pid ();
9944 int res;
9945
9946 res = remote_vkill (child_pid);
9947 if (res != 0)
9948 error (_("Can't kill fork child process %d"), child_pid);
9949 }
9950 }
9951
9952 /* Check for any pending fork events (not reported or processed yet)
9953 in process PID and kill those fork child threads as well. */
9954 remote_notif_get_pending_events (notif);
9955 for (auto &event : rs->stop_reply_queue)
9956 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9957 {
9958 int child_pid = event->ws.value.related_pid.pid ();
9959 int res;
9960
9961 res = remote_vkill (child_pid);
9962 if (res != 0)
9963 error (_("Can't kill fork child process %d"), child_pid);
9964 }
9965 }
9966
9967 \f
9968 /* Target hook to kill the current inferior. */
9969
9970 void
9971 remote_target::kill ()
9972 {
9973 int res = -1;
9974 int pid = inferior_ptid.pid ();
9975 struct remote_state *rs = get_remote_state ();
9976
9977 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9978 {
9979 /* If we're stopped while forking and we haven't followed yet,
9980 kill the child task. We need to do this before killing the
9981 parent task because if this is a vfork then the parent will
9982 be sleeping. */
9983 kill_new_fork_children (pid);
9984
9985 res = remote_vkill (pid);
9986 if (res == 0)
9987 {
9988 target_mourn_inferior (inferior_ptid);
9989 return;
9990 }
9991 }
9992
9993 /* If we are in 'target remote' mode and we are killing the only
9994 inferior, then we will tell gdbserver to exit and unpush the
9995 target. */
9996 if (res == -1 && !remote_multi_process_p (rs)
9997 && number_of_live_inferiors (this) == 1)
9998 {
9999 remote_kill_k ();
10000
10001 /* We've killed the remote end, we get to mourn it. If we are
10002 not in extended mode, mourning the inferior also unpushes
10003 remote_ops from the target stack, which closes the remote
10004 connection. */
10005 target_mourn_inferior (inferior_ptid);
10006
10007 return;
10008 }
10009
10010 error (_("Can't kill process"));
10011 }
10012
10013 /* Send a kill request to the target using the 'vKill' packet. */
10014
10015 int
10016 remote_target::remote_vkill (int pid)
10017 {
10018 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10019 return -1;
10020
10021 remote_state *rs = get_remote_state ();
10022
10023 /* Tell the remote target to detach. */
10024 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10025 putpkt (rs->buf);
10026 getpkt (&rs->buf, 0);
10027
10028 switch (packet_ok (rs->buf,
10029 &remote_protocol_packets[PACKET_vKill]))
10030 {
10031 case PACKET_OK:
10032 return 0;
10033 case PACKET_ERROR:
10034 return 1;
10035 case PACKET_UNKNOWN:
10036 return -1;
10037 default:
10038 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10039 }
10040 }
10041
10042 /* Send a kill request to the target using the 'k' packet. */
10043
10044 void
10045 remote_target::remote_kill_k ()
10046 {
10047 /* Catch errors so the user can quit from gdb even when we
10048 aren't on speaking terms with the remote system. */
10049 try
10050 {
10051 putpkt ("k");
10052 }
10053 catch (const gdb_exception_error &ex)
10054 {
10055 if (ex.error == TARGET_CLOSE_ERROR)
10056 {
10057 /* If we got an (EOF) error that caused the target
10058 to go away, then we're done, that's what we wanted.
10059 "k" is susceptible to cause a premature EOF, given
10060 that the remote server isn't actually required to
10061 reply to "k", and it can happen that it doesn't
10062 even get to reply ACK to the "k". */
10063 return;
10064 }
10065
10066 /* Otherwise, something went wrong. We didn't actually kill
10067 the target. Just propagate the exception, and let the
10068 user or higher layers decide what to do. */
10069 throw;
10070 }
10071 }
10072
10073 void
10074 remote_target::mourn_inferior ()
10075 {
10076 struct remote_state *rs = get_remote_state ();
10077
10078 /* We're no longer interested in notification events of an inferior
10079 that exited or was killed/detached. */
10080 discard_pending_stop_replies (current_inferior ());
10081
10082 /* In 'target remote' mode with one inferior, we close the connection. */
10083 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10084 {
10085 remote_unpush_target (this);
10086 return;
10087 }
10088
10089 /* In case we got here due to an error, but we're going to stay
10090 connected. */
10091 rs->waiting_for_stop_reply = 0;
10092
10093 /* If the current general thread belonged to the process we just
10094 detached from or has exited, the remote side current general
10095 thread becomes undefined. Considering a case like this:
10096
10097 - We just got here due to a detach.
10098 - The process that we're detaching from happens to immediately
10099 report a global breakpoint being hit in non-stop mode, in the
10100 same thread we had selected before.
10101 - GDB attaches to this process again.
10102 - This event happens to be the next event we handle.
10103
10104 GDB would consider that the current general thread didn't need to
10105 be set on the stub side (with Hg), since for all it knew,
10106 GENERAL_THREAD hadn't changed.
10107
10108 Notice that although in all-stop mode, the remote server always
10109 sets the current thread to the thread reporting the stop event,
10110 that doesn't happen in non-stop mode; in non-stop, the stub *must
10111 not* change the current thread when reporting a breakpoint hit,
10112 due to the decoupling of event reporting and event handling.
10113
10114 To keep things simple, we always invalidate our notion of the
10115 current thread. */
10116 record_currthread (rs, minus_one_ptid);
10117
10118 /* Call common code to mark the inferior as not running. */
10119 generic_mourn_inferior ();
10120 }
10121
10122 bool
10123 extended_remote_target::supports_disable_randomization ()
10124 {
10125 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10126 }
10127
10128 void
10129 remote_target::extended_remote_disable_randomization (int val)
10130 {
10131 struct remote_state *rs = get_remote_state ();
10132 char *reply;
10133
10134 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10135 "QDisableRandomization:%x", val);
10136 putpkt (rs->buf);
10137 reply = remote_get_noisy_reply ();
10138 if (*reply == '\0')
10139 error (_("Target does not support QDisableRandomization."));
10140 if (strcmp (reply, "OK") != 0)
10141 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10142 }
10143
10144 int
10145 remote_target::extended_remote_run (const std::string &args)
10146 {
10147 struct remote_state *rs = get_remote_state ();
10148 int len;
10149 const char *remote_exec_file = get_remote_exec_file ();
10150
10151 /* If the user has disabled vRun support, or we have detected that
10152 support is not available, do not try it. */
10153 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10154 return -1;
10155
10156 strcpy (rs->buf.data (), "vRun;");
10157 len = strlen (rs->buf.data ());
10158
10159 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10160 error (_("Remote file name too long for run packet"));
10161 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10162 strlen (remote_exec_file));
10163
10164 if (!args.empty ())
10165 {
10166 int i;
10167
10168 gdb_argv argv (args.c_str ());
10169 for (i = 0; argv[i] != NULL; i++)
10170 {
10171 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10172 error (_("Argument list too long for run packet"));
10173 rs->buf[len++] = ';';
10174 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10175 strlen (argv[i]));
10176 }
10177 }
10178
10179 rs->buf[len++] = '\0';
10180
10181 putpkt (rs->buf);
10182 getpkt (&rs->buf, 0);
10183
10184 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10185 {
10186 case PACKET_OK:
10187 /* We have a wait response. All is well. */
10188 return 0;
10189 case PACKET_UNKNOWN:
10190 return -1;
10191 case PACKET_ERROR:
10192 if (remote_exec_file[0] == '\0')
10193 error (_("Running the default executable on the remote target failed; "
10194 "try \"set remote exec-file\"?"));
10195 else
10196 error (_("Running \"%s\" on the remote target failed"),
10197 remote_exec_file);
10198 default:
10199 gdb_assert_not_reached (_("bad switch"));
10200 }
10201 }
10202
10203 /* Helper function to send set/unset environment packets. ACTION is
10204 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10205 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10206 sent. */
10207
10208 void
10209 remote_target::send_environment_packet (const char *action,
10210 const char *packet,
10211 const char *value)
10212 {
10213 remote_state *rs = get_remote_state ();
10214
10215 /* Convert the environment variable to an hex string, which
10216 is the best format to be transmitted over the wire. */
10217 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10218 strlen (value));
10219
10220 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10221 "%s:%s", packet, encoded_value.c_str ());
10222
10223 putpkt (rs->buf);
10224 getpkt (&rs->buf, 0);
10225 if (strcmp (rs->buf.data (), "OK") != 0)
10226 warning (_("Unable to %s environment variable '%s' on remote."),
10227 action, value);
10228 }
10229
10230 /* Helper function to handle the QEnvironment* packets. */
10231
10232 void
10233 remote_target::extended_remote_environment_support ()
10234 {
10235 remote_state *rs = get_remote_state ();
10236
10237 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10238 {
10239 putpkt ("QEnvironmentReset");
10240 getpkt (&rs->buf, 0);
10241 if (strcmp (rs->buf.data (), "OK") != 0)
10242 warning (_("Unable to reset environment on remote."));
10243 }
10244
10245 gdb_environ *e = &current_inferior ()->environment;
10246
10247 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10248 for (const std::string &el : e->user_set_env ())
10249 send_environment_packet ("set", "QEnvironmentHexEncoded",
10250 el.c_str ());
10251
10252 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10253 for (const std::string &el : e->user_unset_env ())
10254 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10255 }
10256
10257 /* Helper function to set the current working directory for the
10258 inferior in the remote target. */
10259
10260 void
10261 remote_target::extended_remote_set_inferior_cwd ()
10262 {
10263 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10264 {
10265 const char *inferior_cwd = get_inferior_cwd ();
10266 remote_state *rs = get_remote_state ();
10267
10268 if (inferior_cwd != NULL)
10269 {
10270 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10271 strlen (inferior_cwd));
10272
10273 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10274 "QSetWorkingDir:%s", hexpath.c_str ());
10275 }
10276 else
10277 {
10278 /* An empty inferior_cwd means that the user wants us to
10279 reset the remote server's inferior's cwd. */
10280 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10281 "QSetWorkingDir:");
10282 }
10283
10284 putpkt (rs->buf);
10285 getpkt (&rs->buf, 0);
10286 if (packet_ok (rs->buf,
10287 &remote_protocol_packets[PACKET_QSetWorkingDir])
10288 != PACKET_OK)
10289 error (_("\
10290 Remote replied unexpectedly while setting the inferior's working\n\
10291 directory: %s"),
10292 rs->buf.data ());
10293
10294 }
10295 }
10296
10297 /* In the extended protocol we want to be able to do things like
10298 "run" and have them basically work as expected. So we need
10299 a special create_inferior function. We support changing the
10300 executable file and the command line arguments, but not the
10301 environment. */
10302
10303 void
10304 extended_remote_target::create_inferior (const char *exec_file,
10305 const std::string &args,
10306 char **env, int from_tty)
10307 {
10308 int run_worked;
10309 char *stop_reply;
10310 struct remote_state *rs = get_remote_state ();
10311 const char *remote_exec_file = get_remote_exec_file ();
10312
10313 /* If running asynchronously, register the target file descriptor
10314 with the event loop. */
10315 if (target_can_async_p ())
10316 target_async (1);
10317
10318 /* Disable address space randomization if requested (and supported). */
10319 if (supports_disable_randomization ())
10320 extended_remote_disable_randomization (disable_randomization);
10321
10322 /* If startup-with-shell is on, we inform gdbserver to start the
10323 remote inferior using a shell. */
10324 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10325 {
10326 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10327 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10328 putpkt (rs->buf);
10329 getpkt (&rs->buf, 0);
10330 if (strcmp (rs->buf.data (), "OK") != 0)
10331 error (_("\
10332 Remote replied unexpectedly while setting startup-with-shell: %s"),
10333 rs->buf.data ());
10334 }
10335
10336 extended_remote_environment_support ();
10337
10338 extended_remote_set_inferior_cwd ();
10339
10340 /* Now restart the remote server. */
10341 run_worked = extended_remote_run (args) != -1;
10342 if (!run_worked)
10343 {
10344 /* vRun was not supported. Fail if we need it to do what the
10345 user requested. */
10346 if (remote_exec_file[0])
10347 error (_("Remote target does not support \"set remote exec-file\""));
10348 if (!args.empty ())
10349 error (_("Remote target does not support \"set args\" or run ARGS"));
10350
10351 /* Fall back to "R". */
10352 extended_remote_restart ();
10353 }
10354
10355 /* vRun's success return is a stop reply. */
10356 stop_reply = run_worked ? rs->buf.data () : NULL;
10357 add_current_inferior_and_thread (stop_reply);
10358
10359 /* Get updated offsets, if the stub uses qOffsets. */
10360 get_offsets ();
10361 }
10362 \f
10363
10364 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10365 the list of conditions (in agent expression bytecode format), if any, the
10366 target needs to evaluate. The output is placed into the packet buffer
10367 started from BUF and ended at BUF_END. */
10368
10369 static int
10370 remote_add_target_side_condition (struct gdbarch *gdbarch,
10371 struct bp_target_info *bp_tgt, char *buf,
10372 char *buf_end)
10373 {
10374 if (bp_tgt->conditions.empty ())
10375 return 0;
10376
10377 buf += strlen (buf);
10378 xsnprintf (buf, buf_end - buf, "%s", ";");
10379 buf++;
10380
10381 /* Send conditions to the target. */
10382 for (agent_expr *aexpr : bp_tgt->conditions)
10383 {
10384 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10385 buf += strlen (buf);
10386 for (int i = 0; i < aexpr->len; ++i)
10387 buf = pack_hex_byte (buf, aexpr->buf[i]);
10388 *buf = '\0';
10389 }
10390 return 0;
10391 }
10392
10393 static void
10394 remote_add_target_side_commands (struct gdbarch *gdbarch,
10395 struct bp_target_info *bp_tgt, char *buf)
10396 {
10397 if (bp_tgt->tcommands.empty ())
10398 return;
10399
10400 buf += strlen (buf);
10401
10402 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10403 buf += strlen (buf);
10404
10405 /* Concatenate all the agent expressions that are commands into the
10406 cmds parameter. */
10407 for (agent_expr *aexpr : bp_tgt->tcommands)
10408 {
10409 sprintf (buf, "X%x,", aexpr->len);
10410 buf += strlen (buf);
10411 for (int i = 0; i < aexpr->len; ++i)
10412 buf = pack_hex_byte (buf, aexpr->buf[i]);
10413 *buf = '\0';
10414 }
10415 }
10416
10417 /* Insert a breakpoint. On targets that have software breakpoint
10418 support, we ask the remote target to do the work; on targets
10419 which don't, we insert a traditional memory breakpoint. */
10420
10421 int
10422 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10423 struct bp_target_info *bp_tgt)
10424 {
10425 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10426 If it succeeds, then set the support to PACKET_ENABLE. If it
10427 fails, and the user has explicitly requested the Z support then
10428 report an error, otherwise, mark it disabled and go on. */
10429
10430 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10431 {
10432 CORE_ADDR addr = bp_tgt->reqstd_address;
10433 struct remote_state *rs;
10434 char *p, *endbuf;
10435
10436 /* Make sure the remote is pointing at the right process, if
10437 necessary. */
10438 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10439 set_general_process ();
10440
10441 rs = get_remote_state ();
10442 p = rs->buf.data ();
10443 endbuf = p + get_remote_packet_size ();
10444
10445 *(p++) = 'Z';
10446 *(p++) = '0';
10447 *(p++) = ',';
10448 addr = (ULONGEST) remote_address_masked (addr);
10449 p += hexnumstr (p, addr);
10450 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10451
10452 if (supports_evaluation_of_breakpoint_conditions ())
10453 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10454
10455 if (can_run_breakpoint_commands ())
10456 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10457
10458 putpkt (rs->buf);
10459 getpkt (&rs->buf, 0);
10460
10461 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10462 {
10463 case PACKET_ERROR:
10464 return -1;
10465 case PACKET_OK:
10466 return 0;
10467 case PACKET_UNKNOWN:
10468 break;
10469 }
10470 }
10471
10472 /* If this breakpoint has target-side commands but this stub doesn't
10473 support Z0 packets, throw error. */
10474 if (!bp_tgt->tcommands.empty ())
10475 throw_error (NOT_SUPPORTED_ERROR, _("\
10476 Target doesn't support breakpoints that have target side commands."));
10477
10478 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10479 }
10480
10481 int
10482 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10483 struct bp_target_info *bp_tgt,
10484 enum remove_bp_reason reason)
10485 {
10486 CORE_ADDR addr = bp_tgt->placed_address;
10487 struct remote_state *rs = get_remote_state ();
10488
10489 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10490 {
10491 char *p = rs->buf.data ();
10492 char *endbuf = p + get_remote_packet_size ();
10493
10494 /* Make sure the remote is pointing at the right process, if
10495 necessary. */
10496 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10497 set_general_process ();
10498
10499 *(p++) = 'z';
10500 *(p++) = '0';
10501 *(p++) = ',';
10502
10503 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10504 p += hexnumstr (p, addr);
10505 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10506
10507 putpkt (rs->buf);
10508 getpkt (&rs->buf, 0);
10509
10510 return (rs->buf[0] == 'E');
10511 }
10512
10513 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10514 }
10515
10516 static enum Z_packet_type
10517 watchpoint_to_Z_packet (int type)
10518 {
10519 switch (type)
10520 {
10521 case hw_write:
10522 return Z_PACKET_WRITE_WP;
10523 break;
10524 case hw_read:
10525 return Z_PACKET_READ_WP;
10526 break;
10527 case hw_access:
10528 return Z_PACKET_ACCESS_WP;
10529 break;
10530 default:
10531 internal_error (__FILE__, __LINE__,
10532 _("hw_bp_to_z: bad watchpoint type %d"), type);
10533 }
10534 }
10535
10536 int
10537 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10538 enum target_hw_bp_type type, struct expression *cond)
10539 {
10540 struct remote_state *rs = get_remote_state ();
10541 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10542 char *p;
10543 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10544
10545 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10546 return 1;
10547
10548 /* Make sure the remote is pointing at the right process, if
10549 necessary. */
10550 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10551 set_general_process ();
10552
10553 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10554 p = strchr (rs->buf.data (), '\0');
10555 addr = remote_address_masked (addr);
10556 p += hexnumstr (p, (ULONGEST) addr);
10557 xsnprintf (p, endbuf - p, ",%x", len);
10558
10559 putpkt (rs->buf);
10560 getpkt (&rs->buf, 0);
10561
10562 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10563 {
10564 case PACKET_ERROR:
10565 return -1;
10566 case PACKET_UNKNOWN:
10567 return 1;
10568 case PACKET_OK:
10569 return 0;
10570 }
10571 internal_error (__FILE__, __LINE__,
10572 _("remote_insert_watchpoint: reached end of function"));
10573 }
10574
10575 bool
10576 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10577 CORE_ADDR start, int length)
10578 {
10579 CORE_ADDR diff = remote_address_masked (addr - start);
10580
10581 return diff < length;
10582 }
10583
10584
10585 int
10586 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10587 enum target_hw_bp_type type, struct expression *cond)
10588 {
10589 struct remote_state *rs = get_remote_state ();
10590 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10591 char *p;
10592 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10593
10594 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10595 return -1;
10596
10597 /* Make sure the remote is pointing at the right process, if
10598 necessary. */
10599 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10600 set_general_process ();
10601
10602 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10603 p = strchr (rs->buf.data (), '\0');
10604 addr = remote_address_masked (addr);
10605 p += hexnumstr (p, (ULONGEST) addr);
10606 xsnprintf (p, endbuf - p, ",%x", len);
10607 putpkt (rs->buf);
10608 getpkt (&rs->buf, 0);
10609
10610 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10611 {
10612 case PACKET_ERROR:
10613 case PACKET_UNKNOWN:
10614 return -1;
10615 case PACKET_OK:
10616 return 0;
10617 }
10618 internal_error (__FILE__, __LINE__,
10619 _("remote_remove_watchpoint: reached end of function"));
10620 }
10621
10622
10623 static int remote_hw_watchpoint_limit = -1;
10624 static int remote_hw_watchpoint_length_limit = -1;
10625 static int remote_hw_breakpoint_limit = -1;
10626
10627 int
10628 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10629 {
10630 if (remote_hw_watchpoint_length_limit == 0)
10631 return 0;
10632 else if (remote_hw_watchpoint_length_limit < 0)
10633 return 1;
10634 else if (len <= remote_hw_watchpoint_length_limit)
10635 return 1;
10636 else
10637 return 0;
10638 }
10639
10640 int
10641 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10642 {
10643 if (type == bp_hardware_breakpoint)
10644 {
10645 if (remote_hw_breakpoint_limit == 0)
10646 return 0;
10647 else if (remote_hw_breakpoint_limit < 0)
10648 return 1;
10649 else if (cnt <= remote_hw_breakpoint_limit)
10650 return 1;
10651 }
10652 else
10653 {
10654 if (remote_hw_watchpoint_limit == 0)
10655 return 0;
10656 else if (remote_hw_watchpoint_limit < 0)
10657 return 1;
10658 else if (ot)
10659 return -1;
10660 else if (cnt <= remote_hw_watchpoint_limit)
10661 return 1;
10662 }
10663 return -1;
10664 }
10665
10666 /* The to_stopped_by_sw_breakpoint method of target remote. */
10667
10668 bool
10669 remote_target::stopped_by_sw_breakpoint ()
10670 {
10671 struct thread_info *thread = inferior_thread ();
10672
10673 return (thread->priv != NULL
10674 && (get_remote_thread_info (thread)->stop_reason
10675 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10676 }
10677
10678 /* The to_supports_stopped_by_sw_breakpoint method of target
10679 remote. */
10680
10681 bool
10682 remote_target::supports_stopped_by_sw_breakpoint ()
10683 {
10684 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10685 }
10686
10687 /* The to_stopped_by_hw_breakpoint method of target remote. */
10688
10689 bool
10690 remote_target::stopped_by_hw_breakpoint ()
10691 {
10692 struct thread_info *thread = inferior_thread ();
10693
10694 return (thread->priv != NULL
10695 && (get_remote_thread_info (thread)->stop_reason
10696 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10697 }
10698
10699 /* The to_supports_stopped_by_hw_breakpoint method of target
10700 remote. */
10701
10702 bool
10703 remote_target::supports_stopped_by_hw_breakpoint ()
10704 {
10705 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10706 }
10707
10708 bool
10709 remote_target::stopped_by_watchpoint ()
10710 {
10711 struct thread_info *thread = inferior_thread ();
10712
10713 return (thread->priv != NULL
10714 && (get_remote_thread_info (thread)->stop_reason
10715 == TARGET_STOPPED_BY_WATCHPOINT));
10716 }
10717
10718 bool
10719 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10720 {
10721 struct thread_info *thread = inferior_thread ();
10722
10723 if (thread->priv != NULL
10724 && (get_remote_thread_info (thread)->stop_reason
10725 == TARGET_STOPPED_BY_WATCHPOINT))
10726 {
10727 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10728 return true;
10729 }
10730
10731 return false;
10732 }
10733
10734
10735 int
10736 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10737 struct bp_target_info *bp_tgt)
10738 {
10739 CORE_ADDR addr = bp_tgt->reqstd_address;
10740 struct remote_state *rs;
10741 char *p, *endbuf;
10742 char *message;
10743
10744 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10745 return -1;
10746
10747 /* Make sure the remote is pointing at the right process, if
10748 necessary. */
10749 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10750 set_general_process ();
10751
10752 rs = get_remote_state ();
10753 p = rs->buf.data ();
10754 endbuf = p + get_remote_packet_size ();
10755
10756 *(p++) = 'Z';
10757 *(p++) = '1';
10758 *(p++) = ',';
10759
10760 addr = remote_address_masked (addr);
10761 p += hexnumstr (p, (ULONGEST) addr);
10762 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10763
10764 if (supports_evaluation_of_breakpoint_conditions ())
10765 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10766
10767 if (can_run_breakpoint_commands ())
10768 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10769
10770 putpkt (rs->buf);
10771 getpkt (&rs->buf, 0);
10772
10773 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10774 {
10775 case PACKET_ERROR:
10776 if (rs->buf[1] == '.')
10777 {
10778 message = strchr (&rs->buf[2], '.');
10779 if (message)
10780 error (_("Remote failure reply: %s"), message + 1);
10781 }
10782 return -1;
10783 case PACKET_UNKNOWN:
10784 return -1;
10785 case PACKET_OK:
10786 return 0;
10787 }
10788 internal_error (__FILE__, __LINE__,
10789 _("remote_insert_hw_breakpoint: reached end of function"));
10790 }
10791
10792
10793 int
10794 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10795 struct bp_target_info *bp_tgt)
10796 {
10797 CORE_ADDR addr;
10798 struct remote_state *rs = get_remote_state ();
10799 char *p = rs->buf.data ();
10800 char *endbuf = p + get_remote_packet_size ();
10801
10802 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10803 return -1;
10804
10805 /* Make sure the remote is pointing at the right process, if
10806 necessary. */
10807 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10808 set_general_process ();
10809
10810 *(p++) = 'z';
10811 *(p++) = '1';
10812 *(p++) = ',';
10813
10814 addr = remote_address_masked (bp_tgt->placed_address);
10815 p += hexnumstr (p, (ULONGEST) addr);
10816 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10817
10818 putpkt (rs->buf);
10819 getpkt (&rs->buf, 0);
10820
10821 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10822 {
10823 case PACKET_ERROR:
10824 case PACKET_UNKNOWN:
10825 return -1;
10826 case PACKET_OK:
10827 return 0;
10828 }
10829 internal_error (__FILE__, __LINE__,
10830 _("remote_remove_hw_breakpoint: reached end of function"));
10831 }
10832
10833 /* Verify memory using the "qCRC:" request. */
10834
10835 int
10836 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10837 {
10838 struct remote_state *rs = get_remote_state ();
10839 unsigned long host_crc, target_crc;
10840 char *tmp;
10841
10842 /* It doesn't make sense to use qCRC if the remote target is
10843 connected but not running. */
10844 if (target_has_execution ()
10845 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10846 {
10847 enum packet_result result;
10848
10849 /* Make sure the remote is pointing at the right process. */
10850 set_general_process ();
10851
10852 /* FIXME: assumes lma can fit into long. */
10853 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10854 (long) lma, (long) size);
10855 putpkt (rs->buf);
10856
10857 /* Be clever; compute the host_crc before waiting for target
10858 reply. */
10859 host_crc = xcrc32 (data, size, 0xffffffff);
10860
10861 getpkt (&rs->buf, 0);
10862
10863 result = packet_ok (rs->buf,
10864 &remote_protocol_packets[PACKET_qCRC]);
10865 if (result == PACKET_ERROR)
10866 return -1;
10867 else if (result == PACKET_OK)
10868 {
10869 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10870 target_crc = target_crc * 16 + fromhex (*tmp);
10871
10872 return (host_crc == target_crc);
10873 }
10874 }
10875
10876 return simple_verify_memory (this, data, lma, size);
10877 }
10878
10879 /* compare-sections command
10880
10881 With no arguments, compares each loadable section in the exec bfd
10882 with the same memory range on the target, and reports mismatches.
10883 Useful for verifying the image on the target against the exec file. */
10884
10885 static void
10886 compare_sections_command (const char *args, int from_tty)
10887 {
10888 asection *s;
10889 const char *sectname;
10890 bfd_size_type size;
10891 bfd_vma lma;
10892 int matched = 0;
10893 int mismatched = 0;
10894 int res;
10895 int read_only = 0;
10896
10897 if (!current_program_space->exec_bfd ())
10898 error (_("command cannot be used without an exec file"));
10899
10900 if (args != NULL && strcmp (args, "-r") == 0)
10901 {
10902 read_only = 1;
10903 args = NULL;
10904 }
10905
10906 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
10907 {
10908 if (!(s->flags & SEC_LOAD))
10909 continue; /* Skip non-loadable section. */
10910
10911 if (read_only && (s->flags & SEC_READONLY) == 0)
10912 continue; /* Skip writeable sections */
10913
10914 size = bfd_section_size (s);
10915 if (size == 0)
10916 continue; /* Skip zero-length section. */
10917
10918 sectname = bfd_section_name (s);
10919 if (args && strcmp (args, sectname) != 0)
10920 continue; /* Not the section selected by user. */
10921
10922 matched = 1; /* Do this section. */
10923 lma = s->lma;
10924
10925 gdb::byte_vector sectdata (size);
10926 bfd_get_section_contents (current_program_space->exec_bfd (), s,
10927 sectdata.data (), 0, size);
10928
10929 res = target_verify_memory (sectdata.data (), lma, size);
10930
10931 if (res == -1)
10932 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10933 paddress (target_gdbarch (), lma),
10934 paddress (target_gdbarch (), lma + size));
10935
10936 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10937 paddress (target_gdbarch (), lma),
10938 paddress (target_gdbarch (), lma + size));
10939 if (res)
10940 printf_filtered ("matched.\n");
10941 else
10942 {
10943 printf_filtered ("MIS-MATCHED!\n");
10944 mismatched++;
10945 }
10946 }
10947 if (mismatched > 0)
10948 warning (_("One or more sections of the target image does not match\n\
10949 the loaded file\n"));
10950 if (args && !matched)
10951 printf_filtered (_("No loaded section named '%s'.\n"), args);
10952 }
10953
10954 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10955 into remote target. The number of bytes written to the remote
10956 target is returned, or -1 for error. */
10957
10958 target_xfer_status
10959 remote_target::remote_write_qxfer (const char *object_name,
10960 const char *annex, const gdb_byte *writebuf,
10961 ULONGEST offset, LONGEST len,
10962 ULONGEST *xfered_len,
10963 struct packet_config *packet)
10964 {
10965 int i, buf_len;
10966 ULONGEST n;
10967 struct remote_state *rs = get_remote_state ();
10968 int max_size = get_memory_write_packet_size ();
10969
10970 if (packet_config_support (packet) == PACKET_DISABLE)
10971 return TARGET_XFER_E_IO;
10972
10973 /* Insert header. */
10974 i = snprintf (rs->buf.data (), max_size,
10975 "qXfer:%s:write:%s:%s:",
10976 object_name, annex ? annex : "",
10977 phex_nz (offset, sizeof offset));
10978 max_size -= (i + 1);
10979
10980 /* Escape as much data as fits into rs->buf. */
10981 buf_len = remote_escape_output
10982 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10983
10984 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10985 || getpkt_sane (&rs->buf, 0) < 0
10986 || packet_ok (rs->buf, packet) != PACKET_OK)
10987 return TARGET_XFER_E_IO;
10988
10989 unpack_varlen_hex (rs->buf.data (), &n);
10990
10991 *xfered_len = n;
10992 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10993 }
10994
10995 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10996 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10997 number of bytes read is returned, or 0 for EOF, or -1 for error.
10998 The number of bytes read may be less than LEN without indicating an
10999 EOF. PACKET is checked and updated to indicate whether the remote
11000 target supports this object. */
11001
11002 target_xfer_status
11003 remote_target::remote_read_qxfer (const char *object_name,
11004 const char *annex,
11005 gdb_byte *readbuf, ULONGEST offset,
11006 LONGEST len,
11007 ULONGEST *xfered_len,
11008 struct packet_config *packet)
11009 {
11010 struct remote_state *rs = get_remote_state ();
11011 LONGEST i, n, packet_len;
11012
11013 if (packet_config_support (packet) == PACKET_DISABLE)
11014 return TARGET_XFER_E_IO;
11015
11016 /* Check whether we've cached an end-of-object packet that matches
11017 this request. */
11018 if (rs->finished_object)
11019 {
11020 if (strcmp (object_name, rs->finished_object) == 0
11021 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11022 && offset == rs->finished_offset)
11023 return TARGET_XFER_EOF;
11024
11025
11026 /* Otherwise, we're now reading something different. Discard
11027 the cache. */
11028 xfree (rs->finished_object);
11029 xfree (rs->finished_annex);
11030 rs->finished_object = NULL;
11031 rs->finished_annex = NULL;
11032 }
11033
11034 /* Request only enough to fit in a single packet. The actual data
11035 may not, since we don't know how much of it will need to be escaped;
11036 the target is free to respond with slightly less data. We subtract
11037 five to account for the response type and the protocol frame. */
11038 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11039 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11040 "qXfer:%s:read:%s:%s,%s",
11041 object_name, annex ? annex : "",
11042 phex_nz (offset, sizeof offset),
11043 phex_nz (n, sizeof n));
11044 i = putpkt (rs->buf);
11045 if (i < 0)
11046 return TARGET_XFER_E_IO;
11047
11048 rs->buf[0] = '\0';
11049 packet_len = getpkt_sane (&rs->buf, 0);
11050 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11051 return TARGET_XFER_E_IO;
11052
11053 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11054 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11055
11056 /* 'm' means there is (or at least might be) more data after this
11057 batch. That does not make sense unless there's at least one byte
11058 of data in this reply. */
11059 if (rs->buf[0] == 'm' && packet_len == 1)
11060 error (_("Remote qXfer reply contained no data."));
11061
11062 /* Got some data. */
11063 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11064 packet_len - 1, readbuf, n);
11065
11066 /* 'l' is an EOF marker, possibly including a final block of data,
11067 or possibly empty. If we have the final block of a non-empty
11068 object, record this fact to bypass a subsequent partial read. */
11069 if (rs->buf[0] == 'l' && offset + i > 0)
11070 {
11071 rs->finished_object = xstrdup (object_name);
11072 rs->finished_annex = xstrdup (annex ? annex : "");
11073 rs->finished_offset = offset + i;
11074 }
11075
11076 if (i == 0)
11077 return TARGET_XFER_EOF;
11078 else
11079 {
11080 *xfered_len = i;
11081 return TARGET_XFER_OK;
11082 }
11083 }
11084
11085 enum target_xfer_status
11086 remote_target::xfer_partial (enum target_object object,
11087 const char *annex, gdb_byte *readbuf,
11088 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11089 ULONGEST *xfered_len)
11090 {
11091 struct remote_state *rs;
11092 int i;
11093 char *p2;
11094 char query_type;
11095 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11096
11097 set_remote_traceframe ();
11098 set_general_thread (inferior_ptid);
11099
11100 rs = get_remote_state ();
11101
11102 /* Handle memory using the standard memory routines. */
11103 if (object == TARGET_OBJECT_MEMORY)
11104 {
11105 /* If the remote target is connected but not running, we should
11106 pass this request down to a lower stratum (e.g. the executable
11107 file). */
11108 if (!target_has_execution ())
11109 return TARGET_XFER_EOF;
11110
11111 if (writebuf != NULL)
11112 return remote_write_bytes (offset, writebuf, len, unit_size,
11113 xfered_len);
11114 else
11115 return remote_read_bytes (offset, readbuf, len, unit_size,
11116 xfered_len);
11117 }
11118
11119 /* Handle extra signal info using qxfer packets. */
11120 if (object == TARGET_OBJECT_SIGNAL_INFO)
11121 {
11122 if (readbuf)
11123 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11124 xfered_len, &remote_protocol_packets
11125 [PACKET_qXfer_siginfo_read]);
11126 else
11127 return remote_write_qxfer ("siginfo", annex,
11128 writebuf, offset, len, xfered_len,
11129 &remote_protocol_packets
11130 [PACKET_qXfer_siginfo_write]);
11131 }
11132
11133 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11134 {
11135 if (readbuf)
11136 return remote_read_qxfer ("statictrace", annex,
11137 readbuf, offset, len, xfered_len,
11138 &remote_protocol_packets
11139 [PACKET_qXfer_statictrace_read]);
11140 else
11141 return TARGET_XFER_E_IO;
11142 }
11143
11144 /* Only handle flash writes. */
11145 if (writebuf != NULL)
11146 {
11147 switch (object)
11148 {
11149 case TARGET_OBJECT_FLASH:
11150 return remote_flash_write (offset, len, xfered_len,
11151 writebuf);
11152
11153 default:
11154 return TARGET_XFER_E_IO;
11155 }
11156 }
11157
11158 /* Map pre-existing objects onto letters. DO NOT do this for new
11159 objects!!! Instead specify new query packets. */
11160 switch (object)
11161 {
11162 case TARGET_OBJECT_AVR:
11163 query_type = 'R';
11164 break;
11165
11166 case TARGET_OBJECT_AUXV:
11167 gdb_assert (annex == NULL);
11168 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11169 xfered_len,
11170 &remote_protocol_packets[PACKET_qXfer_auxv]);
11171
11172 case TARGET_OBJECT_AVAILABLE_FEATURES:
11173 return remote_read_qxfer
11174 ("features", annex, readbuf, offset, len, xfered_len,
11175 &remote_protocol_packets[PACKET_qXfer_features]);
11176
11177 case TARGET_OBJECT_LIBRARIES:
11178 return remote_read_qxfer
11179 ("libraries", annex, readbuf, offset, len, xfered_len,
11180 &remote_protocol_packets[PACKET_qXfer_libraries]);
11181
11182 case TARGET_OBJECT_LIBRARIES_SVR4:
11183 return remote_read_qxfer
11184 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11185 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11186
11187 case TARGET_OBJECT_MEMORY_MAP:
11188 gdb_assert (annex == NULL);
11189 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11190 xfered_len,
11191 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11192
11193 case TARGET_OBJECT_OSDATA:
11194 /* Should only get here if we're connected. */
11195 gdb_assert (rs->remote_desc);
11196 return remote_read_qxfer
11197 ("osdata", annex, readbuf, offset, len, xfered_len,
11198 &remote_protocol_packets[PACKET_qXfer_osdata]);
11199
11200 case TARGET_OBJECT_THREADS:
11201 gdb_assert (annex == NULL);
11202 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11203 xfered_len,
11204 &remote_protocol_packets[PACKET_qXfer_threads]);
11205
11206 case TARGET_OBJECT_TRACEFRAME_INFO:
11207 gdb_assert (annex == NULL);
11208 return remote_read_qxfer
11209 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11210 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11211
11212 case TARGET_OBJECT_FDPIC:
11213 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11214 xfered_len,
11215 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11216
11217 case TARGET_OBJECT_OPENVMS_UIB:
11218 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11219 xfered_len,
11220 &remote_protocol_packets[PACKET_qXfer_uib]);
11221
11222 case TARGET_OBJECT_BTRACE:
11223 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11224 xfered_len,
11225 &remote_protocol_packets[PACKET_qXfer_btrace]);
11226
11227 case TARGET_OBJECT_BTRACE_CONF:
11228 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11229 len, xfered_len,
11230 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11231
11232 case TARGET_OBJECT_EXEC_FILE:
11233 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11234 len, xfered_len,
11235 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11236
11237 default:
11238 return TARGET_XFER_E_IO;
11239 }
11240
11241 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11242 large enough let the caller deal with it. */
11243 if (len < get_remote_packet_size ())
11244 return TARGET_XFER_E_IO;
11245 len = get_remote_packet_size ();
11246
11247 /* Except for querying the minimum buffer size, target must be open. */
11248 if (!rs->remote_desc)
11249 error (_("remote query is only available after target open"));
11250
11251 gdb_assert (annex != NULL);
11252 gdb_assert (readbuf != NULL);
11253
11254 p2 = rs->buf.data ();
11255 *p2++ = 'q';
11256 *p2++ = query_type;
11257
11258 /* We used one buffer char for the remote protocol q command and
11259 another for the query type. As the remote protocol encapsulation
11260 uses 4 chars plus one extra in case we are debugging
11261 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11262 string. */
11263 i = 0;
11264 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11265 {
11266 /* Bad caller may have sent forbidden characters. */
11267 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11268 *p2++ = annex[i];
11269 i++;
11270 }
11271 *p2 = '\0';
11272 gdb_assert (annex[i] == '\0');
11273
11274 i = putpkt (rs->buf);
11275 if (i < 0)
11276 return TARGET_XFER_E_IO;
11277
11278 getpkt (&rs->buf, 0);
11279 strcpy ((char *) readbuf, rs->buf.data ());
11280
11281 *xfered_len = strlen ((char *) readbuf);
11282 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11283 }
11284
11285 /* Implementation of to_get_memory_xfer_limit. */
11286
11287 ULONGEST
11288 remote_target::get_memory_xfer_limit ()
11289 {
11290 return get_memory_write_packet_size ();
11291 }
11292
11293 int
11294 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11295 const gdb_byte *pattern, ULONGEST pattern_len,
11296 CORE_ADDR *found_addrp)
11297 {
11298 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11299 struct remote_state *rs = get_remote_state ();
11300 int max_size = get_memory_write_packet_size ();
11301 struct packet_config *packet =
11302 &remote_protocol_packets[PACKET_qSearch_memory];
11303 /* Number of packet bytes used to encode the pattern;
11304 this could be more than PATTERN_LEN due to escape characters. */
11305 int escaped_pattern_len;
11306 /* Amount of pattern that was encodable in the packet. */
11307 int used_pattern_len;
11308 int i;
11309 int found;
11310 ULONGEST found_addr;
11311
11312 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11313 {
11314 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11315 == len);
11316 };
11317
11318 /* Don't go to the target if we don't have to. This is done before
11319 checking packet_config_support to avoid the possibility that a
11320 success for this edge case means the facility works in
11321 general. */
11322 if (pattern_len > search_space_len)
11323 return 0;
11324 if (pattern_len == 0)
11325 {
11326 *found_addrp = start_addr;
11327 return 1;
11328 }
11329
11330 /* If we already know the packet isn't supported, fall back to the simple
11331 way of searching memory. */
11332
11333 if (packet_config_support (packet) == PACKET_DISABLE)
11334 {
11335 /* Target doesn't provided special support, fall back and use the
11336 standard support (copy memory and do the search here). */
11337 return simple_search_memory (read_memory, start_addr, search_space_len,
11338 pattern, pattern_len, found_addrp);
11339 }
11340
11341 /* Make sure the remote is pointing at the right process. */
11342 set_general_process ();
11343
11344 /* Insert header. */
11345 i = snprintf (rs->buf.data (), max_size,
11346 "qSearch:memory:%s;%s;",
11347 phex_nz (start_addr, addr_size),
11348 phex_nz (search_space_len, sizeof (search_space_len)));
11349 max_size -= (i + 1);
11350
11351 /* Escape as much data as fits into rs->buf. */
11352 escaped_pattern_len =
11353 remote_escape_output (pattern, pattern_len, 1,
11354 (gdb_byte *) rs->buf.data () + i,
11355 &used_pattern_len, max_size);
11356
11357 /* Bail if the pattern is too large. */
11358 if (used_pattern_len != pattern_len)
11359 error (_("Pattern is too large to transmit to remote target."));
11360
11361 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11362 || getpkt_sane (&rs->buf, 0) < 0
11363 || packet_ok (rs->buf, packet) != PACKET_OK)
11364 {
11365 /* The request may not have worked because the command is not
11366 supported. If so, fall back to the simple way. */
11367 if (packet_config_support (packet) == PACKET_DISABLE)
11368 {
11369 return simple_search_memory (read_memory, start_addr, search_space_len,
11370 pattern, pattern_len, found_addrp);
11371 }
11372 return -1;
11373 }
11374
11375 if (rs->buf[0] == '0')
11376 found = 0;
11377 else if (rs->buf[0] == '1')
11378 {
11379 found = 1;
11380 if (rs->buf[1] != ',')
11381 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11382 unpack_varlen_hex (&rs->buf[2], &found_addr);
11383 *found_addrp = found_addr;
11384 }
11385 else
11386 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11387
11388 return found;
11389 }
11390
11391 void
11392 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11393 {
11394 struct remote_state *rs = get_remote_state ();
11395 char *p = rs->buf.data ();
11396
11397 if (!rs->remote_desc)
11398 error (_("remote rcmd is only available after target open"));
11399
11400 /* Send a NULL command across as an empty command. */
11401 if (command == NULL)
11402 command = "";
11403
11404 /* The query prefix. */
11405 strcpy (rs->buf.data (), "qRcmd,");
11406 p = strchr (rs->buf.data (), '\0');
11407
11408 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11409 > get_remote_packet_size ())
11410 error (_("\"monitor\" command ``%s'' is too long."), command);
11411
11412 /* Encode the actual command. */
11413 bin2hex ((const gdb_byte *) command, p, strlen (command));
11414
11415 if (putpkt (rs->buf) < 0)
11416 error (_("Communication problem with target."));
11417
11418 /* get/display the response */
11419 while (1)
11420 {
11421 char *buf;
11422
11423 /* XXX - see also remote_get_noisy_reply(). */
11424 QUIT; /* Allow user to bail out with ^C. */
11425 rs->buf[0] = '\0';
11426 if (getpkt_sane (&rs->buf, 0) == -1)
11427 {
11428 /* Timeout. Continue to (try to) read responses.
11429 This is better than stopping with an error, assuming the stub
11430 is still executing the (long) monitor command.
11431 If needed, the user can interrupt gdb using C-c, obtaining
11432 an effect similar to stop on timeout. */
11433 continue;
11434 }
11435 buf = rs->buf.data ();
11436 if (buf[0] == '\0')
11437 error (_("Target does not support this command."));
11438 if (buf[0] == 'O' && buf[1] != 'K')
11439 {
11440 remote_console_output (buf + 1); /* 'O' message from stub. */
11441 continue;
11442 }
11443 if (strcmp (buf, "OK") == 0)
11444 break;
11445 if (strlen (buf) == 3 && buf[0] == 'E'
11446 && isdigit (buf[1]) && isdigit (buf[2]))
11447 {
11448 error (_("Protocol error with Rcmd"));
11449 }
11450 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11451 {
11452 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11453
11454 fputc_unfiltered (c, outbuf);
11455 }
11456 break;
11457 }
11458 }
11459
11460 std::vector<mem_region>
11461 remote_target::memory_map ()
11462 {
11463 std::vector<mem_region> result;
11464 gdb::optional<gdb::char_vector> text
11465 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11466
11467 if (text)
11468 result = parse_memory_map (text->data ());
11469
11470 return result;
11471 }
11472
11473 static void
11474 packet_command (const char *args, int from_tty)
11475 {
11476 remote_target *remote = get_current_remote_target ();
11477
11478 if (remote == nullptr)
11479 error (_("command can only be used with remote target"));
11480
11481 remote->packet_command (args, from_tty);
11482 }
11483
11484 void
11485 remote_target::packet_command (const char *args, int from_tty)
11486 {
11487 if (!args)
11488 error (_("remote-packet command requires packet text as argument"));
11489
11490 puts_filtered ("sending: ");
11491 print_packet (args);
11492 puts_filtered ("\n");
11493 putpkt (args);
11494
11495 remote_state *rs = get_remote_state ();
11496
11497 getpkt (&rs->buf, 0);
11498 puts_filtered ("received: ");
11499 print_packet (rs->buf.data ());
11500 puts_filtered ("\n");
11501 }
11502
11503 #if 0
11504 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11505
11506 static void display_thread_info (struct gdb_ext_thread_info *info);
11507
11508 static void threadset_test_cmd (char *cmd, int tty);
11509
11510 static void threadalive_test (char *cmd, int tty);
11511
11512 static void threadlist_test_cmd (char *cmd, int tty);
11513
11514 int get_and_display_threadinfo (threadref *ref);
11515
11516 static void threadinfo_test_cmd (char *cmd, int tty);
11517
11518 static int thread_display_step (threadref *ref, void *context);
11519
11520 static void threadlist_update_test_cmd (char *cmd, int tty);
11521
11522 static void init_remote_threadtests (void);
11523
11524 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11525
11526 static void
11527 threadset_test_cmd (const char *cmd, int tty)
11528 {
11529 int sample_thread = SAMPLE_THREAD;
11530
11531 printf_filtered (_("Remote threadset test\n"));
11532 set_general_thread (sample_thread);
11533 }
11534
11535
11536 static void
11537 threadalive_test (const char *cmd, int tty)
11538 {
11539 int sample_thread = SAMPLE_THREAD;
11540 int pid = inferior_ptid.pid ();
11541 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11542
11543 if (remote_thread_alive (ptid))
11544 printf_filtered ("PASS: Thread alive test\n");
11545 else
11546 printf_filtered ("FAIL: Thread alive test\n");
11547 }
11548
11549 void output_threadid (char *title, threadref *ref);
11550
11551 void
11552 output_threadid (char *title, threadref *ref)
11553 {
11554 char hexid[20];
11555
11556 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11557 hexid[16] = 0;
11558 printf_filtered ("%s %s\n", title, (&hexid[0]));
11559 }
11560
11561 static void
11562 threadlist_test_cmd (const char *cmd, int tty)
11563 {
11564 int startflag = 1;
11565 threadref nextthread;
11566 int done, result_count;
11567 threadref threadlist[3];
11568
11569 printf_filtered ("Remote Threadlist test\n");
11570 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11571 &result_count, &threadlist[0]))
11572 printf_filtered ("FAIL: threadlist test\n");
11573 else
11574 {
11575 threadref *scan = threadlist;
11576 threadref *limit = scan + result_count;
11577
11578 while (scan < limit)
11579 output_threadid (" thread ", scan++);
11580 }
11581 }
11582
11583 void
11584 display_thread_info (struct gdb_ext_thread_info *info)
11585 {
11586 output_threadid ("Threadid: ", &info->threadid);
11587 printf_filtered ("Name: %s\n ", info->shortname);
11588 printf_filtered ("State: %s\n", info->display);
11589 printf_filtered ("other: %s\n\n", info->more_display);
11590 }
11591
11592 int
11593 get_and_display_threadinfo (threadref *ref)
11594 {
11595 int result;
11596 int set;
11597 struct gdb_ext_thread_info threadinfo;
11598
11599 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11600 | TAG_MOREDISPLAY | TAG_DISPLAY;
11601 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11602 display_thread_info (&threadinfo);
11603 return result;
11604 }
11605
11606 static void
11607 threadinfo_test_cmd (const char *cmd, int tty)
11608 {
11609 int athread = SAMPLE_THREAD;
11610 threadref thread;
11611 int set;
11612
11613 int_to_threadref (&thread, athread);
11614 printf_filtered ("Remote Threadinfo test\n");
11615 if (!get_and_display_threadinfo (&thread))
11616 printf_filtered ("FAIL cannot get thread info\n");
11617 }
11618
11619 static int
11620 thread_display_step (threadref *ref, void *context)
11621 {
11622 /* output_threadid(" threadstep ",ref); *//* simple test */
11623 return get_and_display_threadinfo (ref);
11624 }
11625
11626 static void
11627 threadlist_update_test_cmd (const char *cmd, int tty)
11628 {
11629 printf_filtered ("Remote Threadlist update test\n");
11630 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11631 }
11632
11633 static void
11634 init_remote_threadtests (void)
11635 {
11636 add_com ("tlist", class_obscure, threadlist_test_cmd,
11637 _("Fetch and print the remote list of "
11638 "thread identifiers, one pkt only."));
11639 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11640 _("Fetch and display info about one thread."));
11641 add_com ("tset", class_obscure, threadset_test_cmd,
11642 _("Test setting to a different thread."));
11643 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11644 _("Iterate through updating all remote thread info."));
11645 add_com ("talive", class_obscure, threadalive_test,
11646 _("Remote thread alive test."));
11647 }
11648
11649 #endif /* 0 */
11650
11651 /* Convert a thread ID to a string. */
11652
11653 std::string
11654 remote_target::pid_to_str (ptid_t ptid)
11655 {
11656 struct remote_state *rs = get_remote_state ();
11657
11658 if (ptid == null_ptid)
11659 return normal_pid_to_str (ptid);
11660 else if (ptid.is_pid ())
11661 {
11662 /* Printing an inferior target id. */
11663
11664 /* When multi-process extensions are off, there's no way in the
11665 remote protocol to know the remote process id, if there's any
11666 at all. There's one exception --- when we're connected with
11667 target extended-remote, and we manually attached to a process
11668 with "attach PID". We don't record anywhere a flag that
11669 allows us to distinguish that case from the case of
11670 connecting with extended-remote and the stub already being
11671 attached to a process, and reporting yes to qAttached, hence
11672 no smart special casing here. */
11673 if (!remote_multi_process_p (rs))
11674 return "Remote target";
11675
11676 return normal_pid_to_str (ptid);
11677 }
11678 else
11679 {
11680 if (magic_null_ptid == ptid)
11681 return "Thread <main>";
11682 else if (remote_multi_process_p (rs))
11683 if (ptid.lwp () == 0)
11684 return normal_pid_to_str (ptid);
11685 else
11686 return string_printf ("Thread %d.%ld",
11687 ptid.pid (), ptid.lwp ());
11688 else
11689 return string_printf ("Thread %ld", ptid.lwp ());
11690 }
11691 }
11692
11693 /* Get the address of the thread local variable in OBJFILE which is
11694 stored at OFFSET within the thread local storage for thread PTID. */
11695
11696 CORE_ADDR
11697 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11698 CORE_ADDR offset)
11699 {
11700 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11701 {
11702 struct remote_state *rs = get_remote_state ();
11703 char *p = rs->buf.data ();
11704 char *endp = p + get_remote_packet_size ();
11705 enum packet_result result;
11706
11707 strcpy (p, "qGetTLSAddr:");
11708 p += strlen (p);
11709 p = write_ptid (p, endp, ptid);
11710 *p++ = ',';
11711 p += hexnumstr (p, offset);
11712 *p++ = ',';
11713 p += hexnumstr (p, lm);
11714 *p++ = '\0';
11715
11716 putpkt (rs->buf);
11717 getpkt (&rs->buf, 0);
11718 result = packet_ok (rs->buf,
11719 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11720 if (result == PACKET_OK)
11721 {
11722 ULONGEST addr;
11723
11724 unpack_varlen_hex (rs->buf.data (), &addr);
11725 return addr;
11726 }
11727 else if (result == PACKET_UNKNOWN)
11728 throw_error (TLS_GENERIC_ERROR,
11729 _("Remote target doesn't support qGetTLSAddr packet"));
11730 else
11731 throw_error (TLS_GENERIC_ERROR,
11732 _("Remote target failed to process qGetTLSAddr request"));
11733 }
11734 else
11735 throw_error (TLS_GENERIC_ERROR,
11736 _("TLS not supported or disabled on this target"));
11737 /* Not reached. */
11738 return 0;
11739 }
11740
11741 /* Provide thread local base, i.e. Thread Information Block address.
11742 Returns 1 if ptid is found and thread_local_base is non zero. */
11743
11744 bool
11745 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11746 {
11747 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11748 {
11749 struct remote_state *rs = get_remote_state ();
11750 char *p = rs->buf.data ();
11751 char *endp = p + get_remote_packet_size ();
11752 enum packet_result result;
11753
11754 strcpy (p, "qGetTIBAddr:");
11755 p += strlen (p);
11756 p = write_ptid (p, endp, ptid);
11757 *p++ = '\0';
11758
11759 putpkt (rs->buf);
11760 getpkt (&rs->buf, 0);
11761 result = packet_ok (rs->buf,
11762 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11763 if (result == PACKET_OK)
11764 {
11765 ULONGEST val;
11766 unpack_varlen_hex (rs->buf.data (), &val);
11767 if (addr)
11768 *addr = (CORE_ADDR) val;
11769 return true;
11770 }
11771 else if (result == PACKET_UNKNOWN)
11772 error (_("Remote target doesn't support qGetTIBAddr packet"));
11773 else
11774 error (_("Remote target failed to process qGetTIBAddr request"));
11775 }
11776 else
11777 error (_("qGetTIBAddr not supported or disabled on this target"));
11778 /* Not reached. */
11779 return false;
11780 }
11781
11782 /* Support for inferring a target description based on the current
11783 architecture and the size of a 'g' packet. While the 'g' packet
11784 can have any size (since optional registers can be left off the
11785 end), some sizes are easily recognizable given knowledge of the
11786 approximate architecture. */
11787
11788 struct remote_g_packet_guess
11789 {
11790 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11791 : bytes (bytes_),
11792 tdesc (tdesc_)
11793 {
11794 }
11795
11796 int bytes;
11797 const struct target_desc *tdesc;
11798 };
11799
11800 struct remote_g_packet_data : public allocate_on_obstack
11801 {
11802 std::vector<remote_g_packet_guess> guesses;
11803 };
11804
11805 static struct gdbarch_data *remote_g_packet_data_handle;
11806
11807 static void *
11808 remote_g_packet_data_init (struct obstack *obstack)
11809 {
11810 return new (obstack) remote_g_packet_data;
11811 }
11812
11813 void
11814 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11815 const struct target_desc *tdesc)
11816 {
11817 struct remote_g_packet_data *data
11818 = ((struct remote_g_packet_data *)
11819 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11820
11821 gdb_assert (tdesc != NULL);
11822
11823 for (const remote_g_packet_guess &guess : data->guesses)
11824 if (guess.bytes == bytes)
11825 internal_error (__FILE__, __LINE__,
11826 _("Duplicate g packet description added for size %d"),
11827 bytes);
11828
11829 data->guesses.emplace_back (bytes, tdesc);
11830 }
11831
11832 /* Return true if remote_read_description would do anything on this target
11833 and architecture, false otherwise. */
11834
11835 static bool
11836 remote_read_description_p (struct target_ops *target)
11837 {
11838 struct remote_g_packet_data *data
11839 = ((struct remote_g_packet_data *)
11840 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11841
11842 return !data->guesses.empty ();
11843 }
11844
11845 const struct target_desc *
11846 remote_target::read_description ()
11847 {
11848 struct remote_g_packet_data *data
11849 = ((struct remote_g_packet_data *)
11850 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11851
11852 /* Do not try this during initial connection, when we do not know
11853 whether there is a running but stopped thread. */
11854 if (!target_has_execution () || inferior_ptid == null_ptid)
11855 return beneath ()->read_description ();
11856
11857 if (!data->guesses.empty ())
11858 {
11859 int bytes = send_g_packet ();
11860
11861 for (const remote_g_packet_guess &guess : data->guesses)
11862 if (guess.bytes == bytes)
11863 return guess.tdesc;
11864
11865 /* We discard the g packet. A minor optimization would be to
11866 hold on to it, and fill the register cache once we have selected
11867 an architecture, but it's too tricky to do safely. */
11868 }
11869
11870 return beneath ()->read_description ();
11871 }
11872
11873 /* Remote file transfer support. This is host-initiated I/O, not
11874 target-initiated; for target-initiated, see remote-fileio.c. */
11875
11876 /* If *LEFT is at least the length of STRING, copy STRING to
11877 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11878 decrease *LEFT. Otherwise raise an error. */
11879
11880 static void
11881 remote_buffer_add_string (char **buffer, int *left, const char *string)
11882 {
11883 int len = strlen (string);
11884
11885 if (len > *left)
11886 error (_("Packet too long for target."));
11887
11888 memcpy (*buffer, string, len);
11889 *buffer += len;
11890 *left -= len;
11891
11892 /* NUL-terminate the buffer as a convenience, if there is
11893 room. */
11894 if (*left)
11895 **buffer = '\0';
11896 }
11897
11898 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11899 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11900 decrease *LEFT. Otherwise raise an error. */
11901
11902 static void
11903 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11904 int len)
11905 {
11906 if (2 * len > *left)
11907 error (_("Packet too long for target."));
11908
11909 bin2hex (bytes, *buffer, len);
11910 *buffer += 2 * len;
11911 *left -= 2 * len;
11912
11913 /* NUL-terminate the buffer as a convenience, if there is
11914 room. */
11915 if (*left)
11916 **buffer = '\0';
11917 }
11918
11919 /* If *LEFT is large enough, convert VALUE to hex and add it to
11920 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11921 decrease *LEFT. Otherwise raise an error. */
11922
11923 static void
11924 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11925 {
11926 int len = hexnumlen (value);
11927
11928 if (len > *left)
11929 error (_("Packet too long for target."));
11930
11931 hexnumstr (*buffer, value);
11932 *buffer += len;
11933 *left -= len;
11934
11935 /* NUL-terminate the buffer as a convenience, if there is
11936 room. */
11937 if (*left)
11938 **buffer = '\0';
11939 }
11940
11941 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11942 value, *REMOTE_ERRNO to the remote error number or zero if none
11943 was included, and *ATTACHMENT to point to the start of the annex
11944 if any. The length of the packet isn't needed here; there may
11945 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11946
11947 Return 0 if the packet could be parsed, -1 if it could not. If
11948 -1 is returned, the other variables may not be initialized. */
11949
11950 static int
11951 remote_hostio_parse_result (const char *buffer, int *retcode,
11952 int *remote_errno, const char **attachment)
11953 {
11954 char *p, *p2;
11955
11956 *remote_errno = 0;
11957 *attachment = NULL;
11958
11959 if (buffer[0] != 'F')
11960 return -1;
11961
11962 errno = 0;
11963 *retcode = strtol (&buffer[1], &p, 16);
11964 if (errno != 0 || p == &buffer[1])
11965 return -1;
11966
11967 /* Check for ",errno". */
11968 if (*p == ',')
11969 {
11970 errno = 0;
11971 *remote_errno = strtol (p + 1, &p2, 16);
11972 if (errno != 0 || p + 1 == p2)
11973 return -1;
11974 p = p2;
11975 }
11976
11977 /* Check for ";attachment". If there is no attachment, the
11978 packet should end here. */
11979 if (*p == ';')
11980 {
11981 *attachment = p + 1;
11982 return 0;
11983 }
11984 else if (*p == '\0')
11985 return 0;
11986 else
11987 return -1;
11988 }
11989
11990 /* Send a prepared I/O packet to the target and read its response.
11991 The prepared packet is in the global RS->BUF before this function
11992 is called, and the answer is there when we return.
11993
11994 COMMAND_BYTES is the length of the request to send, which may include
11995 binary data. WHICH_PACKET is the packet configuration to check
11996 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11997 is set to the error number and -1 is returned. Otherwise the value
11998 returned by the function is returned.
11999
12000 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12001 attachment is expected; an error will be reported if there's a
12002 mismatch. If one is found, *ATTACHMENT will be set to point into
12003 the packet buffer and *ATTACHMENT_LEN will be set to the
12004 attachment's length. */
12005
12006 int
12007 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12008 int *remote_errno, const char **attachment,
12009 int *attachment_len)
12010 {
12011 struct remote_state *rs = get_remote_state ();
12012 int ret, bytes_read;
12013 const char *attachment_tmp;
12014
12015 if (packet_support (which_packet) == PACKET_DISABLE)
12016 {
12017 *remote_errno = FILEIO_ENOSYS;
12018 return -1;
12019 }
12020
12021 putpkt_binary (rs->buf.data (), command_bytes);
12022 bytes_read = getpkt_sane (&rs->buf, 0);
12023
12024 /* If it timed out, something is wrong. Don't try to parse the
12025 buffer. */
12026 if (bytes_read < 0)
12027 {
12028 *remote_errno = FILEIO_EINVAL;
12029 return -1;
12030 }
12031
12032 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12033 {
12034 case PACKET_ERROR:
12035 *remote_errno = FILEIO_EINVAL;
12036 return -1;
12037 case PACKET_UNKNOWN:
12038 *remote_errno = FILEIO_ENOSYS;
12039 return -1;
12040 case PACKET_OK:
12041 break;
12042 }
12043
12044 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12045 &attachment_tmp))
12046 {
12047 *remote_errno = FILEIO_EINVAL;
12048 return -1;
12049 }
12050
12051 /* Make sure we saw an attachment if and only if we expected one. */
12052 if ((attachment_tmp == NULL && attachment != NULL)
12053 || (attachment_tmp != NULL && attachment == NULL))
12054 {
12055 *remote_errno = FILEIO_EINVAL;
12056 return -1;
12057 }
12058
12059 /* If an attachment was found, it must point into the packet buffer;
12060 work out how many bytes there were. */
12061 if (attachment_tmp != NULL)
12062 {
12063 *attachment = attachment_tmp;
12064 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12065 }
12066
12067 return ret;
12068 }
12069
12070 /* See declaration.h. */
12071
12072 void
12073 readahead_cache::invalidate ()
12074 {
12075 this->fd = -1;
12076 }
12077
12078 /* See declaration.h. */
12079
12080 void
12081 readahead_cache::invalidate_fd (int fd)
12082 {
12083 if (this->fd == fd)
12084 this->fd = -1;
12085 }
12086
12087 /* Set the filesystem remote_hostio functions that take FILENAME
12088 arguments will use. Return 0 on success, or -1 if an error
12089 occurs (and set *REMOTE_ERRNO). */
12090
12091 int
12092 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12093 int *remote_errno)
12094 {
12095 struct remote_state *rs = get_remote_state ();
12096 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12097 char *p = rs->buf.data ();
12098 int left = get_remote_packet_size () - 1;
12099 char arg[9];
12100 int ret;
12101
12102 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12103 return 0;
12104
12105 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12106 return 0;
12107
12108 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12109
12110 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12111 remote_buffer_add_string (&p, &left, arg);
12112
12113 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12114 remote_errno, NULL, NULL);
12115
12116 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12117 return 0;
12118
12119 if (ret == 0)
12120 rs->fs_pid = required_pid;
12121
12122 return ret;
12123 }
12124
12125 /* Implementation of to_fileio_open. */
12126
12127 int
12128 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12129 int flags, int mode, int warn_if_slow,
12130 int *remote_errno)
12131 {
12132 struct remote_state *rs = get_remote_state ();
12133 char *p = rs->buf.data ();
12134 int left = get_remote_packet_size () - 1;
12135
12136 if (warn_if_slow)
12137 {
12138 static int warning_issued = 0;
12139
12140 printf_unfiltered (_("Reading %s from remote target...\n"),
12141 filename);
12142
12143 if (!warning_issued)
12144 {
12145 warning (_("File transfers from remote targets can be slow."
12146 " Use \"set sysroot\" to access files locally"
12147 " instead."));
12148 warning_issued = 1;
12149 }
12150 }
12151
12152 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12153 return -1;
12154
12155 remote_buffer_add_string (&p, &left, "vFile:open:");
12156
12157 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12158 strlen (filename));
12159 remote_buffer_add_string (&p, &left, ",");
12160
12161 remote_buffer_add_int (&p, &left, flags);
12162 remote_buffer_add_string (&p, &left, ",");
12163
12164 remote_buffer_add_int (&p, &left, mode);
12165
12166 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12167 remote_errno, NULL, NULL);
12168 }
12169
12170 int
12171 remote_target::fileio_open (struct inferior *inf, const char *filename,
12172 int flags, int mode, int warn_if_slow,
12173 int *remote_errno)
12174 {
12175 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12176 remote_errno);
12177 }
12178
12179 /* Implementation of to_fileio_pwrite. */
12180
12181 int
12182 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12183 ULONGEST offset, int *remote_errno)
12184 {
12185 struct remote_state *rs = get_remote_state ();
12186 char *p = rs->buf.data ();
12187 int left = get_remote_packet_size ();
12188 int out_len;
12189
12190 rs->readahead_cache.invalidate_fd (fd);
12191
12192 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12193
12194 remote_buffer_add_int (&p, &left, fd);
12195 remote_buffer_add_string (&p, &left, ",");
12196
12197 remote_buffer_add_int (&p, &left, offset);
12198 remote_buffer_add_string (&p, &left, ",");
12199
12200 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12201 (get_remote_packet_size ()
12202 - (p - rs->buf.data ())));
12203
12204 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12205 remote_errno, NULL, NULL);
12206 }
12207
12208 int
12209 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12210 ULONGEST offset, int *remote_errno)
12211 {
12212 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12213 }
12214
12215 /* Helper for the implementation of to_fileio_pread. Read the file
12216 from the remote side with vFile:pread. */
12217
12218 int
12219 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12220 ULONGEST offset, int *remote_errno)
12221 {
12222 struct remote_state *rs = get_remote_state ();
12223 char *p = rs->buf.data ();
12224 const char *attachment;
12225 int left = get_remote_packet_size ();
12226 int ret, attachment_len;
12227 int read_len;
12228
12229 remote_buffer_add_string (&p, &left, "vFile:pread:");
12230
12231 remote_buffer_add_int (&p, &left, fd);
12232 remote_buffer_add_string (&p, &left, ",");
12233
12234 remote_buffer_add_int (&p, &left, len);
12235 remote_buffer_add_string (&p, &left, ",");
12236
12237 remote_buffer_add_int (&p, &left, offset);
12238
12239 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12240 remote_errno, &attachment,
12241 &attachment_len);
12242
12243 if (ret < 0)
12244 return ret;
12245
12246 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12247 read_buf, len);
12248 if (read_len != ret)
12249 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12250
12251 return ret;
12252 }
12253
12254 /* See declaration.h. */
12255
12256 int
12257 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12258 ULONGEST offset)
12259 {
12260 if (this->fd == fd
12261 && this->offset <= offset
12262 && offset < this->offset + this->bufsize)
12263 {
12264 ULONGEST max = this->offset + this->bufsize;
12265
12266 if (offset + len > max)
12267 len = max - offset;
12268
12269 memcpy (read_buf, this->buf + offset - this->offset, len);
12270 return len;
12271 }
12272
12273 return 0;
12274 }
12275
12276 /* Implementation of to_fileio_pread. */
12277
12278 int
12279 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12280 ULONGEST offset, int *remote_errno)
12281 {
12282 int ret;
12283 struct remote_state *rs = get_remote_state ();
12284 readahead_cache *cache = &rs->readahead_cache;
12285
12286 ret = cache->pread (fd, read_buf, len, offset);
12287 if (ret > 0)
12288 {
12289 cache->hit_count++;
12290
12291 remote_debug_printf ("readahead cache hit %s",
12292 pulongest (cache->hit_count));
12293 return ret;
12294 }
12295
12296 cache->miss_count++;
12297
12298 remote_debug_printf ("readahead cache miss %s",
12299 pulongest (cache->miss_count));
12300
12301 cache->fd = fd;
12302 cache->offset = offset;
12303 cache->bufsize = get_remote_packet_size ();
12304 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12305
12306 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12307 cache->offset, remote_errno);
12308 if (ret <= 0)
12309 {
12310 cache->invalidate_fd (fd);
12311 return ret;
12312 }
12313
12314 cache->bufsize = ret;
12315 return cache->pread (fd, read_buf, len, offset);
12316 }
12317
12318 int
12319 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12320 ULONGEST offset, int *remote_errno)
12321 {
12322 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12323 }
12324
12325 /* Implementation of to_fileio_close. */
12326
12327 int
12328 remote_target::remote_hostio_close (int fd, int *remote_errno)
12329 {
12330 struct remote_state *rs = get_remote_state ();
12331 char *p = rs->buf.data ();
12332 int left = get_remote_packet_size () - 1;
12333
12334 rs->readahead_cache.invalidate_fd (fd);
12335
12336 remote_buffer_add_string (&p, &left, "vFile:close:");
12337
12338 remote_buffer_add_int (&p, &left, fd);
12339
12340 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12341 remote_errno, NULL, NULL);
12342 }
12343
12344 int
12345 remote_target::fileio_close (int fd, int *remote_errno)
12346 {
12347 return remote_hostio_close (fd, remote_errno);
12348 }
12349
12350 /* Implementation of to_fileio_unlink. */
12351
12352 int
12353 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12354 int *remote_errno)
12355 {
12356 struct remote_state *rs = get_remote_state ();
12357 char *p = rs->buf.data ();
12358 int left = get_remote_packet_size () - 1;
12359
12360 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12361 return -1;
12362
12363 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12364
12365 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12366 strlen (filename));
12367
12368 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12369 remote_errno, NULL, NULL);
12370 }
12371
12372 int
12373 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12374 int *remote_errno)
12375 {
12376 return remote_hostio_unlink (inf, filename, remote_errno);
12377 }
12378
12379 /* Implementation of to_fileio_readlink. */
12380
12381 gdb::optional<std::string>
12382 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12383 int *remote_errno)
12384 {
12385 struct remote_state *rs = get_remote_state ();
12386 char *p = rs->buf.data ();
12387 const char *attachment;
12388 int left = get_remote_packet_size ();
12389 int len, attachment_len;
12390 int read_len;
12391
12392 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12393 return {};
12394
12395 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12396
12397 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12398 strlen (filename));
12399
12400 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12401 remote_errno, &attachment,
12402 &attachment_len);
12403
12404 if (len < 0)
12405 return {};
12406
12407 std::string ret (len, '\0');
12408
12409 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12410 (gdb_byte *) &ret[0], len);
12411 if (read_len != len)
12412 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12413
12414 return ret;
12415 }
12416
12417 /* Implementation of to_fileio_fstat. */
12418
12419 int
12420 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12421 {
12422 struct remote_state *rs = get_remote_state ();
12423 char *p = rs->buf.data ();
12424 int left = get_remote_packet_size ();
12425 int attachment_len, ret;
12426 const char *attachment;
12427 struct fio_stat fst;
12428 int read_len;
12429
12430 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12431
12432 remote_buffer_add_int (&p, &left, fd);
12433
12434 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12435 remote_errno, &attachment,
12436 &attachment_len);
12437 if (ret < 0)
12438 {
12439 if (*remote_errno != FILEIO_ENOSYS)
12440 return ret;
12441
12442 /* Strictly we should return -1, ENOSYS here, but when
12443 "set sysroot remote:" was implemented in August 2008
12444 BFD's need for a stat function was sidestepped with
12445 this hack. This was not remedied until March 2015
12446 so we retain the previous behavior to avoid breaking
12447 compatibility.
12448
12449 Note that the memset is a March 2015 addition; older
12450 GDBs set st_size *and nothing else* so the structure
12451 would have garbage in all other fields. This might
12452 break something but retaining the previous behavior
12453 here would be just too wrong. */
12454
12455 memset (st, 0, sizeof (struct stat));
12456 st->st_size = INT_MAX;
12457 return 0;
12458 }
12459
12460 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12461 (gdb_byte *) &fst, sizeof (fst));
12462
12463 if (read_len != ret)
12464 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12465
12466 if (read_len != sizeof (fst))
12467 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12468 read_len, (int) sizeof (fst));
12469
12470 remote_fileio_to_host_stat (&fst, st);
12471
12472 return 0;
12473 }
12474
12475 /* Implementation of to_filesystem_is_local. */
12476
12477 bool
12478 remote_target::filesystem_is_local ()
12479 {
12480 /* Valgrind GDB presents itself as a remote target but works
12481 on the local filesystem: it does not implement remote get
12482 and users are not expected to set a sysroot. To handle
12483 this case we treat the remote filesystem as local if the
12484 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12485 does not support vFile:open. */
12486 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12487 {
12488 enum packet_support ps = packet_support (PACKET_vFile_open);
12489
12490 if (ps == PACKET_SUPPORT_UNKNOWN)
12491 {
12492 int fd, remote_errno;
12493
12494 /* Try opening a file to probe support. The supplied
12495 filename is irrelevant, we only care about whether
12496 the stub recognizes the packet or not. */
12497 fd = remote_hostio_open (NULL, "just probing",
12498 FILEIO_O_RDONLY, 0700, 0,
12499 &remote_errno);
12500
12501 if (fd >= 0)
12502 remote_hostio_close (fd, &remote_errno);
12503
12504 ps = packet_support (PACKET_vFile_open);
12505 }
12506
12507 if (ps == PACKET_DISABLE)
12508 {
12509 static int warning_issued = 0;
12510
12511 if (!warning_issued)
12512 {
12513 warning (_("remote target does not support file"
12514 " transfer, attempting to access files"
12515 " from local filesystem."));
12516 warning_issued = 1;
12517 }
12518
12519 return true;
12520 }
12521 }
12522
12523 return false;
12524 }
12525
12526 static int
12527 remote_fileio_errno_to_host (int errnum)
12528 {
12529 switch (errnum)
12530 {
12531 case FILEIO_EPERM:
12532 return EPERM;
12533 case FILEIO_ENOENT:
12534 return ENOENT;
12535 case FILEIO_EINTR:
12536 return EINTR;
12537 case FILEIO_EIO:
12538 return EIO;
12539 case FILEIO_EBADF:
12540 return EBADF;
12541 case FILEIO_EACCES:
12542 return EACCES;
12543 case FILEIO_EFAULT:
12544 return EFAULT;
12545 case FILEIO_EBUSY:
12546 return EBUSY;
12547 case FILEIO_EEXIST:
12548 return EEXIST;
12549 case FILEIO_ENODEV:
12550 return ENODEV;
12551 case FILEIO_ENOTDIR:
12552 return ENOTDIR;
12553 case FILEIO_EISDIR:
12554 return EISDIR;
12555 case FILEIO_EINVAL:
12556 return EINVAL;
12557 case FILEIO_ENFILE:
12558 return ENFILE;
12559 case FILEIO_EMFILE:
12560 return EMFILE;
12561 case FILEIO_EFBIG:
12562 return EFBIG;
12563 case FILEIO_ENOSPC:
12564 return ENOSPC;
12565 case FILEIO_ESPIPE:
12566 return ESPIPE;
12567 case FILEIO_EROFS:
12568 return EROFS;
12569 case FILEIO_ENOSYS:
12570 return ENOSYS;
12571 case FILEIO_ENAMETOOLONG:
12572 return ENAMETOOLONG;
12573 }
12574 return -1;
12575 }
12576
12577 static char *
12578 remote_hostio_error (int errnum)
12579 {
12580 int host_error = remote_fileio_errno_to_host (errnum);
12581
12582 if (host_error == -1)
12583 error (_("Unknown remote I/O error %d"), errnum);
12584 else
12585 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12586 }
12587
12588 /* A RAII wrapper around a remote file descriptor. */
12589
12590 class scoped_remote_fd
12591 {
12592 public:
12593 scoped_remote_fd (remote_target *remote, int fd)
12594 : m_remote (remote), m_fd (fd)
12595 {
12596 }
12597
12598 ~scoped_remote_fd ()
12599 {
12600 if (m_fd != -1)
12601 {
12602 try
12603 {
12604 int remote_errno;
12605 m_remote->remote_hostio_close (m_fd, &remote_errno);
12606 }
12607 catch (...)
12608 {
12609 /* Swallow exception before it escapes the dtor. If
12610 something goes wrong, likely the connection is gone,
12611 and there's nothing else that can be done. */
12612 }
12613 }
12614 }
12615
12616 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12617
12618 /* Release ownership of the file descriptor, and return it. */
12619 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12620 {
12621 int fd = m_fd;
12622 m_fd = -1;
12623 return fd;
12624 }
12625
12626 /* Return the owned file descriptor. */
12627 int get () const noexcept
12628 {
12629 return m_fd;
12630 }
12631
12632 private:
12633 /* The remote target. */
12634 remote_target *m_remote;
12635
12636 /* The owned remote I/O file descriptor. */
12637 int m_fd;
12638 };
12639
12640 void
12641 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12642 {
12643 remote_target *remote = get_current_remote_target ();
12644
12645 if (remote == nullptr)
12646 error (_("command can only be used with remote target"));
12647
12648 remote->remote_file_put (local_file, remote_file, from_tty);
12649 }
12650
12651 void
12652 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12653 int from_tty)
12654 {
12655 int retcode, remote_errno, bytes, io_size;
12656 int bytes_in_buffer;
12657 int saw_eof;
12658 ULONGEST offset;
12659
12660 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12661 if (file == NULL)
12662 perror_with_name (local_file);
12663
12664 scoped_remote_fd fd
12665 (this, remote_hostio_open (NULL,
12666 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12667 | FILEIO_O_TRUNC),
12668 0700, 0, &remote_errno));
12669 if (fd.get () == -1)
12670 remote_hostio_error (remote_errno);
12671
12672 /* Send up to this many bytes at once. They won't all fit in the
12673 remote packet limit, so we'll transfer slightly fewer. */
12674 io_size = get_remote_packet_size ();
12675 gdb::byte_vector buffer (io_size);
12676
12677 bytes_in_buffer = 0;
12678 saw_eof = 0;
12679 offset = 0;
12680 while (bytes_in_buffer || !saw_eof)
12681 {
12682 if (!saw_eof)
12683 {
12684 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12685 io_size - bytes_in_buffer,
12686 file.get ());
12687 if (bytes == 0)
12688 {
12689 if (ferror (file.get ()))
12690 error (_("Error reading %s."), local_file);
12691 else
12692 {
12693 /* EOF. Unless there is something still in the
12694 buffer from the last iteration, we are done. */
12695 saw_eof = 1;
12696 if (bytes_in_buffer == 0)
12697 break;
12698 }
12699 }
12700 }
12701 else
12702 bytes = 0;
12703
12704 bytes += bytes_in_buffer;
12705 bytes_in_buffer = 0;
12706
12707 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12708 offset, &remote_errno);
12709
12710 if (retcode < 0)
12711 remote_hostio_error (remote_errno);
12712 else if (retcode == 0)
12713 error (_("Remote write of %d bytes returned 0!"), bytes);
12714 else if (retcode < bytes)
12715 {
12716 /* Short write. Save the rest of the read data for the next
12717 write. */
12718 bytes_in_buffer = bytes - retcode;
12719 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12720 }
12721
12722 offset += retcode;
12723 }
12724
12725 if (remote_hostio_close (fd.release (), &remote_errno))
12726 remote_hostio_error (remote_errno);
12727
12728 if (from_tty)
12729 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12730 }
12731
12732 void
12733 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12734 {
12735 remote_target *remote = get_current_remote_target ();
12736
12737 if (remote == nullptr)
12738 error (_("command can only be used with remote target"));
12739
12740 remote->remote_file_get (remote_file, local_file, from_tty);
12741 }
12742
12743 void
12744 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12745 int from_tty)
12746 {
12747 int remote_errno, bytes, io_size;
12748 ULONGEST offset;
12749
12750 scoped_remote_fd fd
12751 (this, remote_hostio_open (NULL,
12752 remote_file, FILEIO_O_RDONLY, 0, 0,
12753 &remote_errno));
12754 if (fd.get () == -1)
12755 remote_hostio_error (remote_errno);
12756
12757 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12758 if (file == NULL)
12759 perror_with_name (local_file);
12760
12761 /* Send up to this many bytes at once. They won't all fit in the
12762 remote packet limit, so we'll transfer slightly fewer. */
12763 io_size = get_remote_packet_size ();
12764 gdb::byte_vector buffer (io_size);
12765
12766 offset = 0;
12767 while (1)
12768 {
12769 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12770 &remote_errno);
12771 if (bytes == 0)
12772 /* Success, but no bytes, means end-of-file. */
12773 break;
12774 if (bytes == -1)
12775 remote_hostio_error (remote_errno);
12776
12777 offset += bytes;
12778
12779 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12780 if (bytes == 0)
12781 perror_with_name (local_file);
12782 }
12783
12784 if (remote_hostio_close (fd.release (), &remote_errno))
12785 remote_hostio_error (remote_errno);
12786
12787 if (from_tty)
12788 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12789 }
12790
12791 void
12792 remote_file_delete (const char *remote_file, int from_tty)
12793 {
12794 remote_target *remote = get_current_remote_target ();
12795
12796 if (remote == nullptr)
12797 error (_("command can only be used with remote target"));
12798
12799 remote->remote_file_delete (remote_file, from_tty);
12800 }
12801
12802 void
12803 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12804 {
12805 int retcode, remote_errno;
12806
12807 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12808 if (retcode == -1)
12809 remote_hostio_error (remote_errno);
12810
12811 if (from_tty)
12812 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12813 }
12814
12815 static void
12816 remote_put_command (const char *args, int from_tty)
12817 {
12818 if (args == NULL)
12819 error_no_arg (_("file to put"));
12820
12821 gdb_argv argv (args);
12822 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12823 error (_("Invalid parameters to remote put"));
12824
12825 remote_file_put (argv[0], argv[1], from_tty);
12826 }
12827
12828 static void
12829 remote_get_command (const char *args, int from_tty)
12830 {
12831 if (args == NULL)
12832 error_no_arg (_("file to get"));
12833
12834 gdb_argv argv (args);
12835 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12836 error (_("Invalid parameters to remote get"));
12837
12838 remote_file_get (argv[0], argv[1], from_tty);
12839 }
12840
12841 static void
12842 remote_delete_command (const char *args, int from_tty)
12843 {
12844 if (args == NULL)
12845 error_no_arg (_("file to delete"));
12846
12847 gdb_argv argv (args);
12848 if (argv[0] == NULL || argv[1] != NULL)
12849 error (_("Invalid parameters to remote delete"));
12850
12851 remote_file_delete (argv[0], from_tty);
12852 }
12853
12854 bool
12855 remote_target::can_execute_reverse ()
12856 {
12857 if (packet_support (PACKET_bs) == PACKET_ENABLE
12858 || packet_support (PACKET_bc) == PACKET_ENABLE)
12859 return true;
12860 else
12861 return false;
12862 }
12863
12864 bool
12865 remote_target::supports_non_stop ()
12866 {
12867 return true;
12868 }
12869
12870 bool
12871 remote_target::supports_disable_randomization ()
12872 {
12873 /* Only supported in extended mode. */
12874 return false;
12875 }
12876
12877 bool
12878 remote_target::supports_multi_process ()
12879 {
12880 struct remote_state *rs = get_remote_state ();
12881
12882 return remote_multi_process_p (rs);
12883 }
12884
12885 static int
12886 remote_supports_cond_tracepoints ()
12887 {
12888 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12889 }
12890
12891 bool
12892 remote_target::supports_evaluation_of_breakpoint_conditions ()
12893 {
12894 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12895 }
12896
12897 static int
12898 remote_supports_fast_tracepoints ()
12899 {
12900 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12901 }
12902
12903 static int
12904 remote_supports_static_tracepoints ()
12905 {
12906 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12907 }
12908
12909 static int
12910 remote_supports_install_in_trace ()
12911 {
12912 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12913 }
12914
12915 bool
12916 remote_target::supports_enable_disable_tracepoint ()
12917 {
12918 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12919 == PACKET_ENABLE);
12920 }
12921
12922 bool
12923 remote_target::supports_string_tracing ()
12924 {
12925 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12926 }
12927
12928 bool
12929 remote_target::can_run_breakpoint_commands ()
12930 {
12931 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12932 }
12933
12934 void
12935 remote_target::trace_init ()
12936 {
12937 struct remote_state *rs = get_remote_state ();
12938
12939 putpkt ("QTinit");
12940 remote_get_noisy_reply ();
12941 if (strcmp (rs->buf.data (), "OK") != 0)
12942 error (_("Target does not support this command."));
12943 }
12944
12945 /* Recursive routine to walk through command list including loops, and
12946 download packets for each command. */
12947
12948 void
12949 remote_target::remote_download_command_source (int num, ULONGEST addr,
12950 struct command_line *cmds)
12951 {
12952 struct remote_state *rs = get_remote_state ();
12953 struct command_line *cmd;
12954
12955 for (cmd = cmds; cmd; cmd = cmd->next)
12956 {
12957 QUIT; /* Allow user to bail out with ^C. */
12958 strcpy (rs->buf.data (), "QTDPsrc:");
12959 encode_source_string (num, addr, "cmd", cmd->line,
12960 rs->buf.data () + strlen (rs->buf.data ()),
12961 rs->buf.size () - strlen (rs->buf.data ()));
12962 putpkt (rs->buf);
12963 remote_get_noisy_reply ();
12964 if (strcmp (rs->buf.data (), "OK"))
12965 warning (_("Target does not support source download."));
12966
12967 if (cmd->control_type == while_control
12968 || cmd->control_type == while_stepping_control)
12969 {
12970 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12971
12972 QUIT; /* Allow user to bail out with ^C. */
12973 strcpy (rs->buf.data (), "QTDPsrc:");
12974 encode_source_string (num, addr, "cmd", "end",
12975 rs->buf.data () + strlen (rs->buf.data ()),
12976 rs->buf.size () - strlen (rs->buf.data ()));
12977 putpkt (rs->buf);
12978 remote_get_noisy_reply ();
12979 if (strcmp (rs->buf.data (), "OK"))
12980 warning (_("Target does not support source download."));
12981 }
12982 }
12983 }
12984
12985 void
12986 remote_target::download_tracepoint (struct bp_location *loc)
12987 {
12988 CORE_ADDR tpaddr;
12989 char addrbuf[40];
12990 std::vector<std::string> tdp_actions;
12991 std::vector<std::string> stepping_actions;
12992 char *pkt;
12993 struct breakpoint *b = loc->owner;
12994 struct tracepoint *t = (struct tracepoint *) b;
12995 struct remote_state *rs = get_remote_state ();
12996 int ret;
12997 const char *err_msg = _("Tracepoint packet too large for target.");
12998 size_t size_left;
12999
13000 /* We use a buffer other than rs->buf because we'll build strings
13001 across multiple statements, and other statements in between could
13002 modify rs->buf. */
13003 gdb::char_vector buf (get_remote_packet_size ());
13004
13005 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13006
13007 tpaddr = loc->address;
13008 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13009 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13010 b->number, addrbuf, /* address */
13011 (b->enable_state == bp_enabled ? 'E' : 'D'),
13012 t->step_count, t->pass_count);
13013
13014 if (ret < 0 || ret >= buf.size ())
13015 error ("%s", err_msg);
13016
13017 /* Fast tracepoints are mostly handled by the target, but we can
13018 tell the target how big of an instruction block should be moved
13019 around. */
13020 if (b->type == bp_fast_tracepoint)
13021 {
13022 /* Only test for support at download time; we may not know
13023 target capabilities at definition time. */
13024 if (remote_supports_fast_tracepoints ())
13025 {
13026 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13027 NULL))
13028 {
13029 size_left = buf.size () - strlen (buf.data ());
13030 ret = snprintf (buf.data () + strlen (buf.data ()),
13031 size_left, ":F%x",
13032 gdb_insn_length (loc->gdbarch, tpaddr));
13033
13034 if (ret < 0 || ret >= size_left)
13035 error ("%s", err_msg);
13036 }
13037 else
13038 /* If it passed validation at definition but fails now,
13039 something is very wrong. */
13040 internal_error (__FILE__, __LINE__,
13041 _("Fast tracepoint not "
13042 "valid during download"));
13043 }
13044 else
13045 /* Fast tracepoints are functionally identical to regular
13046 tracepoints, so don't take lack of support as a reason to
13047 give up on the trace run. */
13048 warning (_("Target does not support fast tracepoints, "
13049 "downloading %d as regular tracepoint"), b->number);
13050 }
13051 else if (b->type == bp_static_tracepoint)
13052 {
13053 /* Only test for support at download time; we may not know
13054 target capabilities at definition time. */
13055 if (remote_supports_static_tracepoints ())
13056 {
13057 struct static_tracepoint_marker marker;
13058
13059 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13060 {
13061 size_left = buf.size () - strlen (buf.data ());
13062 ret = snprintf (buf.data () + strlen (buf.data ()),
13063 size_left, ":S");
13064
13065 if (ret < 0 || ret >= size_left)
13066 error ("%s", err_msg);
13067 }
13068 else
13069 error (_("Static tracepoint not valid during download"));
13070 }
13071 else
13072 /* Fast tracepoints are functionally identical to regular
13073 tracepoints, so don't take lack of support as a reason
13074 to give up on the trace run. */
13075 error (_("Target does not support static tracepoints"));
13076 }
13077 /* If the tracepoint has a conditional, make it into an agent
13078 expression and append to the definition. */
13079 if (loc->cond)
13080 {
13081 /* Only test support at download time, we may not know target
13082 capabilities at definition time. */
13083 if (remote_supports_cond_tracepoints ())
13084 {
13085 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13086 loc->cond.get ());
13087
13088 size_left = buf.size () - strlen (buf.data ());
13089
13090 ret = snprintf (buf.data () + strlen (buf.data ()),
13091 size_left, ":X%x,", aexpr->len);
13092
13093 if (ret < 0 || ret >= size_left)
13094 error ("%s", err_msg);
13095
13096 size_left = buf.size () - strlen (buf.data ());
13097
13098 /* Two bytes to encode each aexpr byte, plus the terminating
13099 null byte. */
13100 if (aexpr->len * 2 + 1 > size_left)
13101 error ("%s", err_msg);
13102
13103 pkt = buf.data () + strlen (buf.data ());
13104
13105 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13106 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13107 *pkt = '\0';
13108 }
13109 else
13110 warning (_("Target does not support conditional tracepoints, "
13111 "ignoring tp %d cond"), b->number);
13112 }
13113
13114 if (b->commands || *default_collect)
13115 {
13116 size_left = buf.size () - strlen (buf.data ());
13117
13118 ret = snprintf (buf.data () + strlen (buf.data ()),
13119 size_left, "-");
13120
13121 if (ret < 0 || ret >= size_left)
13122 error ("%s", err_msg);
13123 }
13124
13125 putpkt (buf.data ());
13126 remote_get_noisy_reply ();
13127 if (strcmp (rs->buf.data (), "OK"))
13128 error (_("Target does not support tracepoints."));
13129
13130 /* do_single_steps (t); */
13131 for (auto action_it = tdp_actions.begin ();
13132 action_it != tdp_actions.end (); action_it++)
13133 {
13134 QUIT; /* Allow user to bail out with ^C. */
13135
13136 bool has_more = ((action_it + 1) != tdp_actions.end ()
13137 || !stepping_actions.empty ());
13138
13139 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13140 b->number, addrbuf, /* address */
13141 action_it->c_str (),
13142 has_more ? '-' : 0);
13143
13144 if (ret < 0 || ret >= buf.size ())
13145 error ("%s", err_msg);
13146
13147 putpkt (buf.data ());
13148 remote_get_noisy_reply ();
13149 if (strcmp (rs->buf.data (), "OK"))
13150 error (_("Error on target while setting tracepoints."));
13151 }
13152
13153 for (auto action_it = stepping_actions.begin ();
13154 action_it != stepping_actions.end (); action_it++)
13155 {
13156 QUIT; /* Allow user to bail out with ^C. */
13157
13158 bool is_first = action_it == stepping_actions.begin ();
13159 bool has_more = (action_it + 1) != stepping_actions.end ();
13160
13161 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13162 b->number, addrbuf, /* address */
13163 is_first ? "S" : "",
13164 action_it->c_str (),
13165 has_more ? "-" : "");
13166
13167 if (ret < 0 || ret >= buf.size ())
13168 error ("%s", err_msg);
13169
13170 putpkt (buf.data ());
13171 remote_get_noisy_reply ();
13172 if (strcmp (rs->buf.data (), "OK"))
13173 error (_("Error on target while setting tracepoints."));
13174 }
13175
13176 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13177 {
13178 if (b->location != NULL)
13179 {
13180 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13181
13182 if (ret < 0 || ret >= buf.size ())
13183 error ("%s", err_msg);
13184
13185 encode_source_string (b->number, loc->address, "at",
13186 event_location_to_string (b->location.get ()),
13187 buf.data () + strlen (buf.data ()),
13188 buf.size () - strlen (buf.data ()));
13189 putpkt (buf.data ());
13190 remote_get_noisy_reply ();
13191 if (strcmp (rs->buf.data (), "OK"))
13192 warning (_("Target does not support source download."));
13193 }
13194 if (b->cond_string)
13195 {
13196 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13197
13198 if (ret < 0 || ret >= buf.size ())
13199 error ("%s", err_msg);
13200
13201 encode_source_string (b->number, loc->address,
13202 "cond", b->cond_string,
13203 buf.data () + strlen (buf.data ()),
13204 buf.size () - strlen (buf.data ()));
13205 putpkt (buf.data ());
13206 remote_get_noisy_reply ();
13207 if (strcmp (rs->buf.data (), "OK"))
13208 warning (_("Target does not support source download."));
13209 }
13210 remote_download_command_source (b->number, loc->address,
13211 breakpoint_commands (b));
13212 }
13213 }
13214
13215 bool
13216 remote_target::can_download_tracepoint ()
13217 {
13218 struct remote_state *rs = get_remote_state ();
13219 struct trace_status *ts;
13220 int status;
13221
13222 /* Don't try to install tracepoints until we've relocated our
13223 symbols, and fetched and merged the target's tracepoint list with
13224 ours. */
13225 if (rs->starting_up)
13226 return false;
13227
13228 ts = current_trace_status ();
13229 status = get_trace_status (ts);
13230
13231 if (status == -1 || !ts->running_known || !ts->running)
13232 return false;
13233
13234 /* If we are in a tracing experiment, but remote stub doesn't support
13235 installing tracepoint in trace, we have to return. */
13236 if (!remote_supports_install_in_trace ())
13237 return false;
13238
13239 return true;
13240 }
13241
13242
13243 void
13244 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13245 {
13246 struct remote_state *rs = get_remote_state ();
13247 char *p;
13248
13249 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13250 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13251 tsv.builtin);
13252 p = rs->buf.data () + strlen (rs->buf.data ());
13253 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13254 >= get_remote_packet_size ())
13255 error (_("Trace state variable name too long for tsv definition packet"));
13256 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13257 *p++ = '\0';
13258 putpkt (rs->buf);
13259 remote_get_noisy_reply ();
13260 if (rs->buf[0] == '\0')
13261 error (_("Target does not support this command."));
13262 if (strcmp (rs->buf.data (), "OK") != 0)
13263 error (_("Error on target while downloading trace state variable."));
13264 }
13265
13266 void
13267 remote_target::enable_tracepoint (struct bp_location *location)
13268 {
13269 struct remote_state *rs = get_remote_state ();
13270
13271 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13272 location->owner->number,
13273 phex (location->address, sizeof (CORE_ADDR)));
13274 putpkt (rs->buf);
13275 remote_get_noisy_reply ();
13276 if (rs->buf[0] == '\0')
13277 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13278 if (strcmp (rs->buf.data (), "OK") != 0)
13279 error (_("Error on target while enabling tracepoint."));
13280 }
13281
13282 void
13283 remote_target::disable_tracepoint (struct bp_location *location)
13284 {
13285 struct remote_state *rs = get_remote_state ();
13286
13287 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13288 location->owner->number,
13289 phex (location->address, sizeof (CORE_ADDR)));
13290 putpkt (rs->buf);
13291 remote_get_noisy_reply ();
13292 if (rs->buf[0] == '\0')
13293 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13294 if (strcmp (rs->buf.data (), "OK") != 0)
13295 error (_("Error on target while disabling tracepoint."));
13296 }
13297
13298 void
13299 remote_target::trace_set_readonly_regions ()
13300 {
13301 asection *s;
13302 bfd_size_type size;
13303 bfd_vma vma;
13304 int anysecs = 0;
13305 int offset = 0;
13306
13307 if (!current_program_space->exec_bfd ())
13308 return; /* No information to give. */
13309
13310 struct remote_state *rs = get_remote_state ();
13311
13312 strcpy (rs->buf.data (), "QTro");
13313 offset = strlen (rs->buf.data ());
13314 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13315 {
13316 char tmp1[40], tmp2[40];
13317 int sec_length;
13318
13319 if ((s->flags & SEC_LOAD) == 0 ||
13320 /* (s->flags & SEC_CODE) == 0 || */
13321 (s->flags & SEC_READONLY) == 0)
13322 continue;
13323
13324 anysecs = 1;
13325 vma = bfd_section_vma (s);
13326 size = bfd_section_size (s);
13327 sprintf_vma (tmp1, vma);
13328 sprintf_vma (tmp2, vma + size);
13329 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13330 if (offset + sec_length + 1 > rs->buf.size ())
13331 {
13332 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13333 warning (_("\
13334 Too many sections for read-only sections definition packet."));
13335 break;
13336 }
13337 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13338 tmp1, tmp2);
13339 offset += sec_length;
13340 }
13341 if (anysecs)
13342 {
13343 putpkt (rs->buf);
13344 getpkt (&rs->buf, 0);
13345 }
13346 }
13347
13348 void
13349 remote_target::trace_start ()
13350 {
13351 struct remote_state *rs = get_remote_state ();
13352
13353 putpkt ("QTStart");
13354 remote_get_noisy_reply ();
13355 if (rs->buf[0] == '\0')
13356 error (_("Target does not support this command."));
13357 if (strcmp (rs->buf.data (), "OK") != 0)
13358 error (_("Bogus reply from target: %s"), rs->buf.data ());
13359 }
13360
13361 int
13362 remote_target::get_trace_status (struct trace_status *ts)
13363 {
13364 /* Initialize it just to avoid a GCC false warning. */
13365 char *p = NULL;
13366 enum packet_result result;
13367 struct remote_state *rs = get_remote_state ();
13368
13369 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13370 return -1;
13371
13372 /* FIXME we need to get register block size some other way. */
13373 trace_regblock_size
13374 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13375
13376 putpkt ("qTStatus");
13377
13378 try
13379 {
13380 p = remote_get_noisy_reply ();
13381 }
13382 catch (const gdb_exception_error &ex)
13383 {
13384 if (ex.error != TARGET_CLOSE_ERROR)
13385 {
13386 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13387 return -1;
13388 }
13389 throw;
13390 }
13391
13392 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13393
13394 /* If the remote target doesn't do tracing, flag it. */
13395 if (result == PACKET_UNKNOWN)
13396 return -1;
13397
13398 /* We're working with a live target. */
13399 ts->filename = NULL;
13400
13401 if (*p++ != 'T')
13402 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13403
13404 /* Function 'parse_trace_status' sets default value of each field of
13405 'ts' at first, so we don't have to do it here. */
13406 parse_trace_status (p, ts);
13407
13408 return ts->running;
13409 }
13410
13411 void
13412 remote_target::get_tracepoint_status (struct breakpoint *bp,
13413 struct uploaded_tp *utp)
13414 {
13415 struct remote_state *rs = get_remote_state ();
13416 char *reply;
13417 struct bp_location *loc;
13418 struct tracepoint *tp = (struct tracepoint *) bp;
13419 size_t size = get_remote_packet_size ();
13420
13421 if (tp)
13422 {
13423 tp->hit_count = 0;
13424 tp->traceframe_usage = 0;
13425 for (loc = tp->loc; loc; loc = loc->next)
13426 {
13427 /* If the tracepoint was never downloaded, don't go asking for
13428 any status. */
13429 if (tp->number_on_target == 0)
13430 continue;
13431 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13432 phex_nz (loc->address, 0));
13433 putpkt (rs->buf);
13434 reply = remote_get_noisy_reply ();
13435 if (reply && *reply)
13436 {
13437 if (*reply == 'V')
13438 parse_tracepoint_status (reply + 1, bp, utp);
13439 }
13440 }
13441 }
13442 else if (utp)
13443 {
13444 utp->hit_count = 0;
13445 utp->traceframe_usage = 0;
13446 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13447 phex_nz (utp->addr, 0));
13448 putpkt (rs->buf);
13449 reply = remote_get_noisy_reply ();
13450 if (reply && *reply)
13451 {
13452 if (*reply == 'V')
13453 parse_tracepoint_status (reply + 1, bp, utp);
13454 }
13455 }
13456 }
13457
13458 void
13459 remote_target::trace_stop ()
13460 {
13461 struct remote_state *rs = get_remote_state ();
13462
13463 putpkt ("QTStop");
13464 remote_get_noisy_reply ();
13465 if (rs->buf[0] == '\0')
13466 error (_("Target does not support this command."));
13467 if (strcmp (rs->buf.data (), "OK") != 0)
13468 error (_("Bogus reply from target: %s"), rs->buf.data ());
13469 }
13470
13471 int
13472 remote_target::trace_find (enum trace_find_type type, int num,
13473 CORE_ADDR addr1, CORE_ADDR addr2,
13474 int *tpp)
13475 {
13476 struct remote_state *rs = get_remote_state ();
13477 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13478 char *p, *reply;
13479 int target_frameno = -1, target_tracept = -1;
13480
13481 /* Lookups other than by absolute frame number depend on the current
13482 trace selected, so make sure it is correct on the remote end
13483 first. */
13484 if (type != tfind_number)
13485 set_remote_traceframe ();
13486
13487 p = rs->buf.data ();
13488 strcpy (p, "QTFrame:");
13489 p = strchr (p, '\0');
13490 switch (type)
13491 {
13492 case tfind_number:
13493 xsnprintf (p, endbuf - p, "%x", num);
13494 break;
13495 case tfind_pc:
13496 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13497 break;
13498 case tfind_tp:
13499 xsnprintf (p, endbuf - p, "tdp:%x", num);
13500 break;
13501 case tfind_range:
13502 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13503 phex_nz (addr2, 0));
13504 break;
13505 case tfind_outside:
13506 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13507 phex_nz (addr2, 0));
13508 break;
13509 default:
13510 error (_("Unknown trace find type %d"), type);
13511 }
13512
13513 putpkt (rs->buf);
13514 reply = remote_get_noisy_reply ();
13515 if (*reply == '\0')
13516 error (_("Target does not support this command."));
13517
13518 while (reply && *reply)
13519 switch (*reply)
13520 {
13521 case 'F':
13522 p = ++reply;
13523 target_frameno = (int) strtol (p, &reply, 16);
13524 if (reply == p)
13525 error (_("Unable to parse trace frame number"));
13526 /* Don't update our remote traceframe number cache on failure
13527 to select a remote traceframe. */
13528 if (target_frameno == -1)
13529 return -1;
13530 break;
13531 case 'T':
13532 p = ++reply;
13533 target_tracept = (int) strtol (p, &reply, 16);
13534 if (reply == p)
13535 error (_("Unable to parse tracepoint number"));
13536 break;
13537 case 'O': /* "OK"? */
13538 if (reply[1] == 'K' && reply[2] == '\0')
13539 reply += 2;
13540 else
13541 error (_("Bogus reply from target: %s"), reply);
13542 break;
13543 default:
13544 error (_("Bogus reply from target: %s"), reply);
13545 }
13546 if (tpp)
13547 *tpp = target_tracept;
13548
13549 rs->remote_traceframe_number = target_frameno;
13550 return target_frameno;
13551 }
13552
13553 bool
13554 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13555 {
13556 struct remote_state *rs = get_remote_state ();
13557 char *reply;
13558 ULONGEST uval;
13559
13560 set_remote_traceframe ();
13561
13562 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13563 putpkt (rs->buf);
13564 reply = remote_get_noisy_reply ();
13565 if (reply && *reply)
13566 {
13567 if (*reply == 'V')
13568 {
13569 unpack_varlen_hex (reply + 1, &uval);
13570 *val = (LONGEST) uval;
13571 return true;
13572 }
13573 }
13574 return false;
13575 }
13576
13577 int
13578 remote_target::save_trace_data (const char *filename)
13579 {
13580 struct remote_state *rs = get_remote_state ();
13581 char *p, *reply;
13582
13583 p = rs->buf.data ();
13584 strcpy (p, "QTSave:");
13585 p += strlen (p);
13586 if ((p - rs->buf.data ()) + strlen (filename) * 2
13587 >= get_remote_packet_size ())
13588 error (_("Remote file name too long for trace save packet"));
13589 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13590 *p++ = '\0';
13591 putpkt (rs->buf);
13592 reply = remote_get_noisy_reply ();
13593 if (*reply == '\0')
13594 error (_("Target does not support this command."));
13595 if (strcmp (reply, "OK") != 0)
13596 error (_("Bogus reply from target: %s"), reply);
13597 return 0;
13598 }
13599
13600 /* This is basically a memory transfer, but needs to be its own packet
13601 because we don't know how the target actually organizes its trace
13602 memory, plus we want to be able to ask for as much as possible, but
13603 not be unhappy if we don't get as much as we ask for. */
13604
13605 LONGEST
13606 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13607 {
13608 struct remote_state *rs = get_remote_state ();
13609 char *reply;
13610 char *p;
13611 int rslt;
13612
13613 p = rs->buf.data ();
13614 strcpy (p, "qTBuffer:");
13615 p += strlen (p);
13616 p += hexnumstr (p, offset);
13617 *p++ = ',';
13618 p += hexnumstr (p, len);
13619 *p++ = '\0';
13620
13621 putpkt (rs->buf);
13622 reply = remote_get_noisy_reply ();
13623 if (reply && *reply)
13624 {
13625 /* 'l' by itself means we're at the end of the buffer and
13626 there is nothing more to get. */
13627 if (*reply == 'l')
13628 return 0;
13629
13630 /* Convert the reply into binary. Limit the number of bytes to
13631 convert according to our passed-in buffer size, rather than
13632 what was returned in the packet; if the target is
13633 unexpectedly generous and gives us a bigger reply than we
13634 asked for, we don't want to crash. */
13635 rslt = hex2bin (reply, buf, len);
13636 return rslt;
13637 }
13638
13639 /* Something went wrong, flag as an error. */
13640 return -1;
13641 }
13642
13643 void
13644 remote_target::set_disconnected_tracing (int val)
13645 {
13646 struct remote_state *rs = get_remote_state ();
13647
13648 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13649 {
13650 char *reply;
13651
13652 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13653 "QTDisconnected:%x", val);
13654 putpkt (rs->buf);
13655 reply = remote_get_noisy_reply ();
13656 if (*reply == '\0')
13657 error (_("Target does not support this command."));
13658 if (strcmp (reply, "OK") != 0)
13659 error (_("Bogus reply from target: %s"), reply);
13660 }
13661 else if (val)
13662 warning (_("Target does not support disconnected tracing."));
13663 }
13664
13665 int
13666 remote_target::core_of_thread (ptid_t ptid)
13667 {
13668 thread_info *info = find_thread_ptid (this, ptid);
13669
13670 if (info != NULL && info->priv != NULL)
13671 return get_remote_thread_info (info)->core;
13672
13673 return -1;
13674 }
13675
13676 void
13677 remote_target::set_circular_trace_buffer (int val)
13678 {
13679 struct remote_state *rs = get_remote_state ();
13680 char *reply;
13681
13682 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13683 "QTBuffer:circular:%x", val);
13684 putpkt (rs->buf);
13685 reply = remote_get_noisy_reply ();
13686 if (*reply == '\0')
13687 error (_("Target does not support this command."));
13688 if (strcmp (reply, "OK") != 0)
13689 error (_("Bogus reply from target: %s"), reply);
13690 }
13691
13692 traceframe_info_up
13693 remote_target::traceframe_info ()
13694 {
13695 gdb::optional<gdb::char_vector> text
13696 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13697 NULL);
13698 if (text)
13699 return parse_traceframe_info (text->data ());
13700
13701 return NULL;
13702 }
13703
13704 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13705 instruction on which a fast tracepoint may be placed. Returns -1
13706 if the packet is not supported, and 0 if the minimum instruction
13707 length is unknown. */
13708
13709 int
13710 remote_target::get_min_fast_tracepoint_insn_len ()
13711 {
13712 struct remote_state *rs = get_remote_state ();
13713 char *reply;
13714
13715 /* If we're not debugging a process yet, the IPA can't be
13716 loaded. */
13717 if (!target_has_execution ())
13718 return 0;
13719
13720 /* Make sure the remote is pointing at the right process. */
13721 set_general_process ();
13722
13723 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13724 putpkt (rs->buf);
13725 reply = remote_get_noisy_reply ();
13726 if (*reply == '\0')
13727 return -1;
13728 else
13729 {
13730 ULONGEST min_insn_len;
13731
13732 unpack_varlen_hex (reply, &min_insn_len);
13733
13734 return (int) min_insn_len;
13735 }
13736 }
13737
13738 void
13739 remote_target::set_trace_buffer_size (LONGEST val)
13740 {
13741 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13742 {
13743 struct remote_state *rs = get_remote_state ();
13744 char *buf = rs->buf.data ();
13745 char *endbuf = buf + get_remote_packet_size ();
13746 enum packet_result result;
13747
13748 gdb_assert (val >= 0 || val == -1);
13749 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13750 /* Send -1 as literal "-1" to avoid host size dependency. */
13751 if (val < 0)
13752 {
13753 *buf++ = '-';
13754 buf += hexnumstr (buf, (ULONGEST) -val);
13755 }
13756 else
13757 buf += hexnumstr (buf, (ULONGEST) val);
13758
13759 putpkt (rs->buf);
13760 remote_get_noisy_reply ();
13761 result = packet_ok (rs->buf,
13762 &remote_protocol_packets[PACKET_QTBuffer_size]);
13763
13764 if (result != PACKET_OK)
13765 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13766 }
13767 }
13768
13769 bool
13770 remote_target::set_trace_notes (const char *user, const char *notes,
13771 const char *stop_notes)
13772 {
13773 struct remote_state *rs = get_remote_state ();
13774 char *reply;
13775 char *buf = rs->buf.data ();
13776 char *endbuf = buf + get_remote_packet_size ();
13777 int nbytes;
13778
13779 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13780 if (user)
13781 {
13782 buf += xsnprintf (buf, endbuf - buf, "user:");
13783 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13784 buf += 2 * nbytes;
13785 *buf++ = ';';
13786 }
13787 if (notes)
13788 {
13789 buf += xsnprintf (buf, endbuf - buf, "notes:");
13790 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13791 buf += 2 * nbytes;
13792 *buf++ = ';';
13793 }
13794 if (stop_notes)
13795 {
13796 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13797 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13798 buf += 2 * nbytes;
13799 *buf++ = ';';
13800 }
13801 /* Ensure the buffer is terminated. */
13802 *buf = '\0';
13803
13804 putpkt (rs->buf);
13805 reply = remote_get_noisy_reply ();
13806 if (*reply == '\0')
13807 return false;
13808
13809 if (strcmp (reply, "OK") != 0)
13810 error (_("Bogus reply from target: %s"), reply);
13811
13812 return true;
13813 }
13814
13815 bool
13816 remote_target::use_agent (bool use)
13817 {
13818 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13819 {
13820 struct remote_state *rs = get_remote_state ();
13821
13822 /* If the stub supports QAgent. */
13823 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13824 putpkt (rs->buf);
13825 getpkt (&rs->buf, 0);
13826
13827 if (strcmp (rs->buf.data (), "OK") == 0)
13828 {
13829 ::use_agent = use;
13830 return true;
13831 }
13832 }
13833
13834 return false;
13835 }
13836
13837 bool
13838 remote_target::can_use_agent ()
13839 {
13840 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13841 }
13842
13843 struct btrace_target_info
13844 {
13845 /* The ptid of the traced thread. */
13846 ptid_t ptid;
13847
13848 /* The obtained branch trace configuration. */
13849 struct btrace_config conf;
13850 };
13851
13852 /* Reset our idea of our target's btrace configuration. */
13853
13854 static void
13855 remote_btrace_reset (remote_state *rs)
13856 {
13857 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13858 }
13859
13860 /* Synchronize the configuration with the target. */
13861
13862 void
13863 remote_target::btrace_sync_conf (const btrace_config *conf)
13864 {
13865 struct packet_config *packet;
13866 struct remote_state *rs;
13867 char *buf, *pos, *endbuf;
13868
13869 rs = get_remote_state ();
13870 buf = rs->buf.data ();
13871 endbuf = buf + get_remote_packet_size ();
13872
13873 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13874 if (packet_config_support (packet) == PACKET_ENABLE
13875 && conf->bts.size != rs->btrace_config.bts.size)
13876 {
13877 pos = buf;
13878 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13879 conf->bts.size);
13880
13881 putpkt (buf);
13882 getpkt (&rs->buf, 0);
13883
13884 if (packet_ok (buf, packet) == PACKET_ERROR)
13885 {
13886 if (buf[0] == 'E' && buf[1] == '.')
13887 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13888 else
13889 error (_("Failed to configure the BTS buffer size."));
13890 }
13891
13892 rs->btrace_config.bts.size = conf->bts.size;
13893 }
13894
13895 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13896 if (packet_config_support (packet) == PACKET_ENABLE
13897 && conf->pt.size != rs->btrace_config.pt.size)
13898 {
13899 pos = buf;
13900 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13901 conf->pt.size);
13902
13903 putpkt (buf);
13904 getpkt (&rs->buf, 0);
13905
13906 if (packet_ok (buf, packet) == PACKET_ERROR)
13907 {
13908 if (buf[0] == 'E' && buf[1] == '.')
13909 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13910 else
13911 error (_("Failed to configure the trace buffer size."));
13912 }
13913
13914 rs->btrace_config.pt.size = conf->pt.size;
13915 }
13916 }
13917
13918 /* Read the current thread's btrace configuration from the target and
13919 store it into CONF. */
13920
13921 static void
13922 btrace_read_config (struct btrace_config *conf)
13923 {
13924 gdb::optional<gdb::char_vector> xml
13925 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13926 if (xml)
13927 parse_xml_btrace_conf (conf, xml->data ());
13928 }
13929
13930 /* Maybe reopen target btrace. */
13931
13932 void
13933 remote_target::remote_btrace_maybe_reopen ()
13934 {
13935 struct remote_state *rs = get_remote_state ();
13936 int btrace_target_pushed = 0;
13937 #if !defined (HAVE_LIBIPT)
13938 int warned = 0;
13939 #endif
13940
13941 /* Don't bother walking the entirety of the remote thread list when
13942 we know the feature isn't supported by the remote. */
13943 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13944 return;
13945
13946 scoped_restore_current_thread restore_thread;
13947
13948 for (thread_info *tp : all_non_exited_threads (this))
13949 {
13950 set_general_thread (tp->ptid);
13951
13952 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13953 btrace_read_config (&rs->btrace_config);
13954
13955 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13956 continue;
13957
13958 #if !defined (HAVE_LIBIPT)
13959 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13960 {
13961 if (!warned)
13962 {
13963 warned = 1;
13964 warning (_("Target is recording using Intel Processor Trace "
13965 "but support was disabled at compile time."));
13966 }
13967
13968 continue;
13969 }
13970 #endif /* !defined (HAVE_LIBIPT) */
13971
13972 /* Push target, once, but before anything else happens. This way our
13973 changes to the threads will be cleaned up by unpushing the target
13974 in case btrace_read_config () throws. */
13975 if (!btrace_target_pushed)
13976 {
13977 btrace_target_pushed = 1;
13978 record_btrace_push_target ();
13979 printf_filtered (_("Target is recording using %s.\n"),
13980 btrace_format_string (rs->btrace_config.format));
13981 }
13982
13983 tp->btrace.target = XCNEW (struct btrace_target_info);
13984 tp->btrace.target->ptid = tp->ptid;
13985 tp->btrace.target->conf = rs->btrace_config;
13986 }
13987 }
13988
13989 /* Enable branch tracing. */
13990
13991 struct btrace_target_info *
13992 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13993 {
13994 struct btrace_target_info *tinfo = NULL;
13995 struct packet_config *packet = NULL;
13996 struct remote_state *rs = get_remote_state ();
13997 char *buf = rs->buf.data ();
13998 char *endbuf = buf + get_remote_packet_size ();
13999
14000 switch (conf->format)
14001 {
14002 case BTRACE_FORMAT_BTS:
14003 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14004 break;
14005
14006 case BTRACE_FORMAT_PT:
14007 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14008 break;
14009 }
14010
14011 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14012 error (_("Target does not support branch tracing."));
14013
14014 btrace_sync_conf (conf);
14015
14016 set_general_thread (ptid);
14017
14018 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14019 putpkt (rs->buf);
14020 getpkt (&rs->buf, 0);
14021
14022 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14023 {
14024 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14025 error (_("Could not enable branch tracing for %s: %s"),
14026 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14027 else
14028 error (_("Could not enable branch tracing for %s."),
14029 target_pid_to_str (ptid).c_str ());
14030 }
14031
14032 tinfo = XCNEW (struct btrace_target_info);
14033 tinfo->ptid = ptid;
14034
14035 /* If we fail to read the configuration, we lose some information, but the
14036 tracing itself is not impacted. */
14037 try
14038 {
14039 btrace_read_config (&tinfo->conf);
14040 }
14041 catch (const gdb_exception_error &err)
14042 {
14043 if (err.message != NULL)
14044 warning ("%s", err.what ());
14045 }
14046
14047 return tinfo;
14048 }
14049
14050 /* Disable branch tracing. */
14051
14052 void
14053 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14054 {
14055 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14056 struct remote_state *rs = get_remote_state ();
14057 char *buf = rs->buf.data ();
14058 char *endbuf = buf + get_remote_packet_size ();
14059
14060 if (packet_config_support (packet) != PACKET_ENABLE)
14061 error (_("Target does not support branch tracing."));
14062
14063 set_general_thread (tinfo->ptid);
14064
14065 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14066 putpkt (rs->buf);
14067 getpkt (&rs->buf, 0);
14068
14069 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14070 {
14071 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14072 error (_("Could not disable branch tracing for %s: %s"),
14073 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14074 else
14075 error (_("Could not disable branch tracing for %s."),
14076 target_pid_to_str (tinfo->ptid).c_str ());
14077 }
14078
14079 xfree (tinfo);
14080 }
14081
14082 /* Teardown branch tracing. */
14083
14084 void
14085 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14086 {
14087 /* We must not talk to the target during teardown. */
14088 xfree (tinfo);
14089 }
14090
14091 /* Read the branch trace. */
14092
14093 enum btrace_error
14094 remote_target::read_btrace (struct btrace_data *btrace,
14095 struct btrace_target_info *tinfo,
14096 enum btrace_read_type type)
14097 {
14098 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14099 const char *annex;
14100
14101 if (packet_config_support (packet) != PACKET_ENABLE)
14102 error (_("Target does not support branch tracing."));
14103
14104 #if !defined(HAVE_LIBEXPAT)
14105 error (_("Cannot process branch tracing result. XML parsing not supported."));
14106 #endif
14107
14108 switch (type)
14109 {
14110 case BTRACE_READ_ALL:
14111 annex = "all";
14112 break;
14113 case BTRACE_READ_NEW:
14114 annex = "new";
14115 break;
14116 case BTRACE_READ_DELTA:
14117 annex = "delta";
14118 break;
14119 default:
14120 internal_error (__FILE__, __LINE__,
14121 _("Bad branch tracing read type: %u."),
14122 (unsigned int) type);
14123 }
14124
14125 gdb::optional<gdb::char_vector> xml
14126 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
14127 if (!xml)
14128 return BTRACE_ERR_UNKNOWN;
14129
14130 parse_xml_btrace (btrace, xml->data ());
14131
14132 return BTRACE_ERR_NONE;
14133 }
14134
14135 const struct btrace_config *
14136 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14137 {
14138 return &tinfo->conf;
14139 }
14140
14141 bool
14142 remote_target::augmented_libraries_svr4_read ()
14143 {
14144 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14145 == PACKET_ENABLE);
14146 }
14147
14148 /* Implementation of to_load. */
14149
14150 void
14151 remote_target::load (const char *name, int from_tty)
14152 {
14153 generic_load (name, from_tty);
14154 }
14155
14156 /* Accepts an integer PID; returns a string representing a file that
14157 can be opened on the remote side to get the symbols for the child
14158 process. Returns NULL if the operation is not supported. */
14159
14160 char *
14161 remote_target::pid_to_exec_file (int pid)
14162 {
14163 static gdb::optional<gdb::char_vector> filename;
14164 char *annex = NULL;
14165
14166 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14167 return NULL;
14168
14169 inferior *inf = find_inferior_pid (this, pid);
14170 if (inf == NULL)
14171 internal_error (__FILE__, __LINE__,
14172 _("not currently attached to process %d"), pid);
14173
14174 if (!inf->fake_pid_p)
14175 {
14176 const int annex_size = 9;
14177
14178 annex = (char *) alloca (annex_size);
14179 xsnprintf (annex, annex_size, "%x", pid);
14180 }
14181
14182 filename = target_read_stralloc (current_top_target (),
14183 TARGET_OBJECT_EXEC_FILE, annex);
14184
14185 return filename ? filename->data () : nullptr;
14186 }
14187
14188 /* Implement the to_can_do_single_step target_ops method. */
14189
14190 int
14191 remote_target::can_do_single_step ()
14192 {
14193 /* We can only tell whether target supports single step or not by
14194 supported s and S vCont actions if the stub supports vContSupported
14195 feature. If the stub doesn't support vContSupported feature,
14196 we have conservatively to think target doesn't supports single
14197 step. */
14198 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14199 {
14200 struct remote_state *rs = get_remote_state ();
14201
14202 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14203 remote_vcont_probe ();
14204
14205 return rs->supports_vCont.s && rs->supports_vCont.S;
14206 }
14207 else
14208 return 0;
14209 }
14210
14211 /* Implementation of the to_execution_direction method for the remote
14212 target. */
14213
14214 enum exec_direction_kind
14215 remote_target::execution_direction ()
14216 {
14217 struct remote_state *rs = get_remote_state ();
14218
14219 return rs->last_resume_exec_dir;
14220 }
14221
14222 /* Return pointer to the thread_info struct which corresponds to
14223 THREAD_HANDLE (having length HANDLE_LEN). */
14224
14225 thread_info *
14226 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14227 int handle_len,
14228 inferior *inf)
14229 {
14230 for (thread_info *tp : all_non_exited_threads (this))
14231 {
14232 remote_thread_info *priv = get_remote_thread_info (tp);
14233
14234 if (tp->inf == inf && priv != NULL)
14235 {
14236 if (handle_len != priv->thread_handle.size ())
14237 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14238 handle_len, priv->thread_handle.size ());
14239 if (memcmp (thread_handle, priv->thread_handle.data (),
14240 handle_len) == 0)
14241 return tp;
14242 }
14243 }
14244
14245 return NULL;
14246 }
14247
14248 gdb::byte_vector
14249 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14250 {
14251 remote_thread_info *priv = get_remote_thread_info (tp);
14252 return priv->thread_handle;
14253 }
14254
14255 bool
14256 remote_target::can_async_p ()
14257 {
14258 struct remote_state *rs = get_remote_state ();
14259
14260 /* We don't go async if the user has explicitly prevented it with the
14261 "maint set target-async" command. */
14262 if (!target_async_permitted)
14263 return false;
14264
14265 /* We're async whenever the serial device is. */
14266 return serial_can_async_p (rs->remote_desc);
14267 }
14268
14269 bool
14270 remote_target::is_async_p ()
14271 {
14272 struct remote_state *rs = get_remote_state ();
14273
14274 if (!target_async_permitted)
14275 /* We only enable async when the user specifically asks for it. */
14276 return false;
14277
14278 /* We're async whenever the serial device is. */
14279 return serial_is_async_p (rs->remote_desc);
14280 }
14281
14282 /* Pass the SERIAL event on and up to the client. One day this code
14283 will be able to delay notifying the client of an event until the
14284 point where an entire packet has been received. */
14285
14286 static serial_event_ftype remote_async_serial_handler;
14287
14288 static void
14289 remote_async_serial_handler (struct serial *scb, void *context)
14290 {
14291 /* Don't propogate error information up to the client. Instead let
14292 the client find out about the error by querying the target. */
14293 inferior_event_handler (INF_REG_EVENT);
14294 }
14295
14296 static void
14297 remote_async_inferior_event_handler (gdb_client_data data)
14298 {
14299 inferior_event_handler (INF_REG_EVENT);
14300 }
14301
14302 int
14303 remote_target::async_wait_fd ()
14304 {
14305 struct remote_state *rs = get_remote_state ();
14306 return rs->remote_desc->fd;
14307 }
14308
14309 void
14310 remote_target::async (int enable)
14311 {
14312 struct remote_state *rs = get_remote_state ();
14313
14314 if (enable)
14315 {
14316 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14317
14318 /* If there are pending events in the stop reply queue tell the
14319 event loop to process them. */
14320 if (!rs->stop_reply_queue.empty ())
14321 mark_async_event_handler (rs->remote_async_inferior_event_token);
14322 /* For simplicity, below we clear the pending events token
14323 without remembering whether it is marked, so here we always
14324 mark it. If there's actually no pending notification to
14325 process, this ends up being a no-op (other than a spurious
14326 event-loop wakeup). */
14327 if (target_is_non_stop_p ())
14328 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14329 }
14330 else
14331 {
14332 serial_async (rs->remote_desc, NULL, NULL);
14333 /* If the core is disabling async, it doesn't want to be
14334 disturbed with target events. Clear all async event sources
14335 too. */
14336 clear_async_event_handler (rs->remote_async_inferior_event_token);
14337 if (target_is_non_stop_p ())
14338 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14339 }
14340 }
14341
14342 /* Implementation of the to_thread_events method. */
14343
14344 void
14345 remote_target::thread_events (int enable)
14346 {
14347 struct remote_state *rs = get_remote_state ();
14348 size_t size = get_remote_packet_size ();
14349
14350 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14351 return;
14352
14353 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14354 putpkt (rs->buf);
14355 getpkt (&rs->buf, 0);
14356
14357 switch (packet_ok (rs->buf,
14358 &remote_protocol_packets[PACKET_QThreadEvents]))
14359 {
14360 case PACKET_OK:
14361 if (strcmp (rs->buf.data (), "OK") != 0)
14362 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14363 break;
14364 case PACKET_ERROR:
14365 warning (_("Remote failure reply: %s"), rs->buf.data ());
14366 break;
14367 case PACKET_UNKNOWN:
14368 break;
14369 }
14370 }
14371
14372 static void
14373 show_remote_cmd (const char *args, int from_tty)
14374 {
14375 /* We can't just use cmd_show_list here, because we want to skip
14376 the redundant "show remote Z-packet" and the legacy aliases. */
14377 struct cmd_list_element *list = remote_show_cmdlist;
14378 struct ui_out *uiout = current_uiout;
14379
14380 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14381 for (; list != NULL; list = list->next)
14382 if (strcmp (list->name, "Z-packet") == 0)
14383 continue;
14384 else if (list->type == not_set_cmd)
14385 /* Alias commands are exactly like the original, except they
14386 don't have the normal type. */
14387 continue;
14388 else
14389 {
14390 ui_out_emit_tuple option_emitter (uiout, "option");
14391
14392 uiout->field_string ("name", list->name);
14393 uiout->text (": ");
14394 if (list->type == show_cmd)
14395 do_show_command (NULL, from_tty, list);
14396 else
14397 cmd_func (list, NULL, from_tty);
14398 }
14399 }
14400
14401
14402 /* Function to be called whenever a new objfile (shlib) is detected. */
14403 static void
14404 remote_new_objfile (struct objfile *objfile)
14405 {
14406 remote_target *remote = get_current_remote_target ();
14407
14408 if (remote != NULL) /* Have a remote connection. */
14409 remote->remote_check_symbols ();
14410 }
14411
14412 /* Pull all the tracepoints defined on the target and create local
14413 data structures representing them. We don't want to create real
14414 tracepoints yet, we don't want to mess up the user's existing
14415 collection. */
14416
14417 int
14418 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14419 {
14420 struct remote_state *rs = get_remote_state ();
14421 char *p;
14422
14423 /* Ask for a first packet of tracepoint definition. */
14424 putpkt ("qTfP");
14425 getpkt (&rs->buf, 0);
14426 p = rs->buf.data ();
14427 while (*p && *p != 'l')
14428 {
14429 parse_tracepoint_definition (p, utpp);
14430 /* Ask for another packet of tracepoint definition. */
14431 putpkt ("qTsP");
14432 getpkt (&rs->buf, 0);
14433 p = rs->buf.data ();
14434 }
14435 return 0;
14436 }
14437
14438 int
14439 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14440 {
14441 struct remote_state *rs = get_remote_state ();
14442 char *p;
14443
14444 /* Ask for a first packet of variable definition. */
14445 putpkt ("qTfV");
14446 getpkt (&rs->buf, 0);
14447 p = rs->buf.data ();
14448 while (*p && *p != 'l')
14449 {
14450 parse_tsv_definition (p, utsvp);
14451 /* Ask for another packet of variable definition. */
14452 putpkt ("qTsV");
14453 getpkt (&rs->buf, 0);
14454 p = rs->buf.data ();
14455 }
14456 return 0;
14457 }
14458
14459 /* The "set/show range-stepping" show hook. */
14460
14461 static void
14462 show_range_stepping (struct ui_file *file, int from_tty,
14463 struct cmd_list_element *c,
14464 const char *value)
14465 {
14466 fprintf_filtered (file,
14467 _("Debugger's willingness to use range stepping "
14468 "is %s.\n"), value);
14469 }
14470
14471 /* Return true if the vCont;r action is supported by the remote
14472 stub. */
14473
14474 bool
14475 remote_target::vcont_r_supported ()
14476 {
14477 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14478 remote_vcont_probe ();
14479
14480 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14481 && get_remote_state ()->supports_vCont.r);
14482 }
14483
14484 /* The "set/show range-stepping" set hook. */
14485
14486 static void
14487 set_range_stepping (const char *ignore_args, int from_tty,
14488 struct cmd_list_element *c)
14489 {
14490 /* When enabling, check whether range stepping is actually supported
14491 by the target, and warn if not. */
14492 if (use_range_stepping)
14493 {
14494 remote_target *remote = get_current_remote_target ();
14495 if (remote == NULL
14496 || !remote->vcont_r_supported ())
14497 warning (_("Range stepping is not supported by the current target"));
14498 }
14499 }
14500
14501 static void
14502 show_remote_debug (struct ui_file *file, int from_tty,
14503 struct cmd_list_element *c, const char *value)
14504 {
14505 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14506 value);
14507 }
14508
14509 static void
14510 show_remote_timeout (struct ui_file *file, int from_tty,
14511 struct cmd_list_element *c, const char *value)
14512 {
14513 fprintf_filtered (file,
14514 _("Timeout limit to wait for target to respond is %s.\n"),
14515 value);
14516 }
14517
14518 /* Implement the "supports_memory_tagging" target_ops method. */
14519
14520 bool
14521 remote_target::supports_memory_tagging ()
14522 {
14523 return remote_memory_tagging_p ();
14524 }
14525
14526 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14527
14528 static void
14529 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14530 size_t len, int type)
14531 {
14532 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14533
14534 std::string request = string_printf ("qMemTags:%s,%s:%s",
14535 phex_nz (address, addr_size),
14536 phex_nz (len, sizeof (len)),
14537 phex_nz (type, sizeof (type)));
14538
14539 strcpy (packet.data (), request.c_str ());
14540 }
14541
14542 /* Parse the qMemTags packet reply into TAGS.
14543
14544 Return true if successful, false otherwise. */
14545
14546 static bool
14547 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14548 gdb::byte_vector &tags)
14549 {
14550 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14551 return false;
14552
14553 /* Copy the tag data. */
14554 tags = hex2bin (reply.data () + 1);
14555
14556 return true;
14557 }
14558
14559 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14560
14561 static void
14562 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14563 size_t len, int type,
14564 const gdb::byte_vector &tags)
14565 {
14566 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14567
14568 /* Put together the main packet, address and length. */
14569 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14570 phex_nz (address, addr_size),
14571 phex_nz (len, sizeof (len)),
14572 phex_nz (type, sizeof (type)));
14573 request += bin2hex (tags.data (), tags.size ());
14574
14575 /* Check if we have exceeded the maximum packet size. */
14576 if (packet.size () < request.length ())
14577 error (_("Contents too big for packet QMemTags."));
14578
14579 strcpy (packet.data (), request.c_str ());
14580 }
14581
14582 /* Implement the "fetch_memtags" target_ops method. */
14583
14584 bool
14585 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14586 gdb::byte_vector &tags, int type)
14587 {
14588 /* Make sure the qMemTags packet is supported. */
14589 if (!remote_memory_tagging_p ())
14590 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14591
14592 struct remote_state *rs = get_remote_state ();
14593
14594 create_fetch_memtags_request (rs->buf, address, len, type);
14595
14596 putpkt (rs->buf);
14597 getpkt (&rs->buf, 0);
14598
14599 return parse_fetch_memtags_reply (rs->buf, tags);
14600 }
14601
14602 /* Implement the "store_memtags" target_ops method. */
14603
14604 bool
14605 remote_target::store_memtags (CORE_ADDR address, size_t len,
14606 const gdb::byte_vector &tags, int type)
14607 {
14608 /* Make sure the QMemTags packet is supported. */
14609 if (!remote_memory_tagging_p ())
14610 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14611
14612 struct remote_state *rs = get_remote_state ();
14613
14614 create_store_memtags_request (rs->buf, address, len, type, tags);
14615
14616 putpkt (rs->buf);
14617 getpkt (&rs->buf, 0);
14618
14619 /* Verify if the request was successful. */
14620 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14621 }
14622
14623 void _initialize_remote ();
14624 void
14625 _initialize_remote ()
14626 {
14627 struct cmd_list_element *cmd;
14628 const char *cmd_name;
14629
14630 /* architecture specific data */
14631 remote_g_packet_data_handle =
14632 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14633
14634 add_target (remote_target_info, remote_target::open);
14635 add_target (extended_remote_target_info, extended_remote_target::open);
14636
14637 /* Hook into new objfile notification. */
14638 gdb::observers::new_objfile.attach (remote_new_objfile);
14639
14640 #if 0
14641 init_remote_threadtests ();
14642 #endif
14643
14644 /* set/show remote ... */
14645
14646 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14647 Remote protocol specific variables.\n\
14648 Configure various remote-protocol specific variables such as\n\
14649 the packets being used."),
14650 &remote_set_cmdlist, "set remote ",
14651 0 /* allow-unknown */, &setlist);
14652 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14653 Remote protocol specific variables.\n\
14654 Configure various remote-protocol specific variables such as\n\
14655 the packets being used."),
14656 &remote_show_cmdlist, "show remote ",
14657 0 /* allow-unknown */, &showlist);
14658
14659 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14660 Compare section data on target to the exec file.\n\
14661 Argument is a single section name (default: all loaded sections).\n\
14662 To compare only read-only loaded sections, specify the -r option."),
14663 &cmdlist);
14664
14665 add_cmd ("packet", class_maintenance, packet_command, _("\
14666 Send an arbitrary packet to a remote target.\n\
14667 maintenance packet TEXT\n\
14668 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14669 this command sends the string TEXT to the inferior, and displays the\n\
14670 response packet. GDB supplies the initial `$' character, and the\n\
14671 terminating `#' character and checksum."),
14672 &maintenancelist);
14673
14674 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14675 Set whether to send break if interrupted."), _("\
14676 Show whether to send break if interrupted."), _("\
14677 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14678 set_remotebreak, show_remotebreak,
14679 &setlist, &showlist);
14680 cmd_name = "remotebreak";
14681 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14682 deprecate_cmd (cmd, "set remote interrupt-sequence");
14683 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14684 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14685 deprecate_cmd (cmd, "show remote interrupt-sequence");
14686
14687 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14688 interrupt_sequence_modes, &interrupt_sequence_mode,
14689 _("\
14690 Set interrupt sequence to remote target."), _("\
14691 Show interrupt sequence to remote target."), _("\
14692 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14693 NULL, show_interrupt_sequence,
14694 &remote_set_cmdlist,
14695 &remote_show_cmdlist);
14696
14697 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14698 &interrupt_on_connect, _("\
14699 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14700 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14701 If set, interrupt sequence is sent to remote target."),
14702 NULL, NULL,
14703 &remote_set_cmdlist, &remote_show_cmdlist);
14704
14705 /* Install commands for configuring memory read/write packets. */
14706
14707 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14708 Set the maximum number of bytes per memory write packet (deprecated)."),
14709 &setlist);
14710 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14711 Show the maximum number of bytes per memory write packet (deprecated)."),
14712 &showlist);
14713 add_cmd ("memory-write-packet-size", no_class,
14714 set_memory_write_packet_size, _("\
14715 Set the maximum number of bytes per memory-write packet.\n\
14716 Specify the number of bytes in a packet or 0 (zero) for the\n\
14717 default packet size. The actual limit is further reduced\n\
14718 dependent on the target. Specify ``fixed'' to disable the\n\
14719 further restriction and ``limit'' to enable that restriction."),
14720 &remote_set_cmdlist);
14721 add_cmd ("memory-read-packet-size", no_class,
14722 set_memory_read_packet_size, _("\
14723 Set the maximum number of bytes per memory-read packet.\n\
14724 Specify the number of bytes in a packet or 0 (zero) for the\n\
14725 default packet size. The actual limit is further reduced\n\
14726 dependent on the target. Specify ``fixed'' to disable the\n\
14727 further restriction and ``limit'' to enable that restriction."),
14728 &remote_set_cmdlist);
14729 add_cmd ("memory-write-packet-size", no_class,
14730 show_memory_write_packet_size,
14731 _("Show the maximum number of bytes per memory-write packet."),
14732 &remote_show_cmdlist);
14733 add_cmd ("memory-read-packet-size", no_class,
14734 show_memory_read_packet_size,
14735 _("Show the maximum number of bytes per memory-read packet."),
14736 &remote_show_cmdlist);
14737
14738 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14739 &remote_hw_watchpoint_limit, _("\
14740 Set the maximum number of target hardware watchpoints."), _("\
14741 Show the maximum number of target hardware watchpoints."), _("\
14742 Specify \"unlimited\" for unlimited hardware watchpoints."),
14743 NULL, show_hardware_watchpoint_limit,
14744 &remote_set_cmdlist,
14745 &remote_show_cmdlist);
14746 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14747 no_class,
14748 &remote_hw_watchpoint_length_limit, _("\
14749 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14750 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14751 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14752 NULL, show_hardware_watchpoint_length_limit,
14753 &remote_set_cmdlist, &remote_show_cmdlist);
14754 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14755 &remote_hw_breakpoint_limit, _("\
14756 Set the maximum number of target hardware breakpoints."), _("\
14757 Show the maximum number of target hardware breakpoints."), _("\
14758 Specify \"unlimited\" for unlimited hardware breakpoints."),
14759 NULL, show_hardware_breakpoint_limit,
14760 &remote_set_cmdlist, &remote_show_cmdlist);
14761
14762 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14763 &remote_address_size, _("\
14764 Set the maximum size of the address (in bits) in a memory packet."), _("\
14765 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14766 NULL,
14767 NULL, /* FIXME: i18n: */
14768 &setlist, &showlist);
14769
14770 init_all_packet_configs ();
14771
14772 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14773 "X", "binary-download", 1);
14774
14775 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14776 "vCont", "verbose-resume", 0);
14777
14778 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14779 "QPassSignals", "pass-signals", 0);
14780
14781 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14782 "QCatchSyscalls", "catch-syscalls", 0);
14783
14784 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14785 "QProgramSignals", "program-signals", 0);
14786
14787 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14788 "QSetWorkingDir", "set-working-dir", 0);
14789
14790 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14791 "QStartupWithShell", "startup-with-shell", 0);
14792
14793 add_packet_config_cmd (&remote_protocol_packets
14794 [PACKET_QEnvironmentHexEncoded],
14795 "QEnvironmentHexEncoded", "environment-hex-encoded",
14796 0);
14797
14798 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14799 "QEnvironmentReset", "environment-reset",
14800 0);
14801
14802 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14803 "QEnvironmentUnset", "environment-unset",
14804 0);
14805
14806 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14807 "qSymbol", "symbol-lookup", 0);
14808
14809 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14810 "P", "set-register", 1);
14811
14812 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14813 "p", "fetch-register", 1);
14814
14815 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14816 "Z0", "software-breakpoint", 0);
14817
14818 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14819 "Z1", "hardware-breakpoint", 0);
14820
14821 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14822 "Z2", "write-watchpoint", 0);
14823
14824 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14825 "Z3", "read-watchpoint", 0);
14826
14827 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14828 "Z4", "access-watchpoint", 0);
14829
14830 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14831 "qXfer:auxv:read", "read-aux-vector", 0);
14832
14833 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14834 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14835
14836 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14837 "qXfer:features:read", "target-features", 0);
14838
14839 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14840 "qXfer:libraries:read", "library-info", 0);
14841
14842 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14843 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14844
14845 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14846 "qXfer:memory-map:read", "memory-map", 0);
14847
14848 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14849 "qXfer:osdata:read", "osdata", 0);
14850
14851 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14852 "qXfer:threads:read", "threads", 0);
14853
14854 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14855 "qXfer:siginfo:read", "read-siginfo-object", 0);
14856
14857 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14858 "qXfer:siginfo:write", "write-siginfo-object", 0);
14859
14860 add_packet_config_cmd
14861 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14862 "qXfer:traceframe-info:read", "traceframe-info", 0);
14863
14864 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14865 "qXfer:uib:read", "unwind-info-block", 0);
14866
14867 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14868 "qGetTLSAddr", "get-thread-local-storage-address",
14869 0);
14870
14871 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14872 "qGetTIBAddr", "get-thread-information-block-address",
14873 0);
14874
14875 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14876 "bc", "reverse-continue", 0);
14877
14878 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14879 "bs", "reverse-step", 0);
14880
14881 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14882 "qSupported", "supported-packets", 0);
14883
14884 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14885 "qSearch:memory", "search-memory", 0);
14886
14887 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14888 "qTStatus", "trace-status", 0);
14889
14890 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14891 "vFile:setfs", "hostio-setfs", 0);
14892
14893 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14894 "vFile:open", "hostio-open", 0);
14895
14896 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14897 "vFile:pread", "hostio-pread", 0);
14898
14899 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14900 "vFile:pwrite", "hostio-pwrite", 0);
14901
14902 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14903 "vFile:close", "hostio-close", 0);
14904
14905 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14906 "vFile:unlink", "hostio-unlink", 0);
14907
14908 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14909 "vFile:readlink", "hostio-readlink", 0);
14910
14911 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14912 "vFile:fstat", "hostio-fstat", 0);
14913
14914 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14915 "vAttach", "attach", 0);
14916
14917 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14918 "vRun", "run", 0);
14919
14920 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14921 "QStartNoAckMode", "noack", 0);
14922
14923 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14924 "vKill", "kill", 0);
14925
14926 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14927 "qAttached", "query-attached", 0);
14928
14929 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14930 "ConditionalTracepoints",
14931 "conditional-tracepoints", 0);
14932
14933 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14934 "ConditionalBreakpoints",
14935 "conditional-breakpoints", 0);
14936
14937 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14938 "BreakpointCommands",
14939 "breakpoint-commands", 0);
14940
14941 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14942 "FastTracepoints", "fast-tracepoints", 0);
14943
14944 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14945 "TracepointSource", "TracepointSource", 0);
14946
14947 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14948 "QAllow", "allow", 0);
14949
14950 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14951 "StaticTracepoints", "static-tracepoints", 0);
14952
14953 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14954 "InstallInTrace", "install-in-trace", 0);
14955
14956 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14957 "qXfer:statictrace:read", "read-sdata-object", 0);
14958
14959 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14960 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14961
14962 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14963 "QDisableRandomization", "disable-randomization", 0);
14964
14965 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14966 "QAgent", "agent", 0);
14967
14968 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14969 "QTBuffer:size", "trace-buffer-size", 0);
14970
14971 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14972 "Qbtrace:off", "disable-btrace", 0);
14973
14974 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14975 "Qbtrace:bts", "enable-btrace-bts", 0);
14976
14977 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14978 "Qbtrace:pt", "enable-btrace-pt", 0);
14979
14980 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14981 "qXfer:btrace", "read-btrace", 0);
14982
14983 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14984 "qXfer:btrace-conf", "read-btrace-conf", 0);
14985
14986 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14987 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14988
14989 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14990 "multiprocess-feature", "multiprocess-feature", 0);
14991
14992 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14993 "swbreak-feature", "swbreak-feature", 0);
14994
14995 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14996 "hwbreak-feature", "hwbreak-feature", 0);
14997
14998 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14999 "fork-event-feature", "fork-event-feature", 0);
15000
15001 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15002 "vfork-event-feature", "vfork-event-feature", 0);
15003
15004 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15005 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15006
15007 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15008 "vContSupported", "verbose-resume-supported", 0);
15009
15010 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15011 "exec-event-feature", "exec-event-feature", 0);
15012
15013 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15014 "vCtrlC", "ctrl-c", 0);
15015
15016 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15017 "QThreadEvents", "thread-events", 0);
15018
15019 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15020 "N stop reply", "no-resumed-stop-reply", 0);
15021
15022 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15023 "memory-tagging-feature", "memory-tagging-feature", 0);
15024
15025 /* Assert that we've registered "set remote foo-packet" commands
15026 for all packet configs. */
15027 {
15028 int i;
15029
15030 for (i = 0; i < PACKET_MAX; i++)
15031 {
15032 /* Ideally all configs would have a command associated. Some
15033 still don't though. */
15034 int excepted;
15035
15036 switch (i)
15037 {
15038 case PACKET_QNonStop:
15039 case PACKET_EnableDisableTracepoints_feature:
15040 case PACKET_tracenz_feature:
15041 case PACKET_DisconnectedTracing_feature:
15042 case PACKET_augmented_libraries_svr4_read_feature:
15043 case PACKET_qCRC:
15044 /* Additions to this list need to be well justified:
15045 pre-existing packets are OK; new packets are not. */
15046 excepted = 1;
15047 break;
15048 default:
15049 excepted = 0;
15050 break;
15051 }
15052
15053 /* This catches both forgetting to add a config command, and
15054 forgetting to remove a packet from the exception list. */
15055 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15056 }
15057 }
15058
15059 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15060 Z sub-packet has its own set and show commands, but users may
15061 have sets to this variable in their .gdbinit files (or in their
15062 documentation). */
15063 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15064 &remote_Z_packet_detect, _("\
15065 Set use of remote protocol `Z' packets."), _("\
15066 Show use of remote protocol `Z' packets."), _("\
15067 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15068 packets."),
15069 set_remote_protocol_Z_packet_cmd,
15070 show_remote_protocol_Z_packet_cmd,
15071 /* FIXME: i18n: Use of remote protocol
15072 `Z' packets is %s. */
15073 &remote_set_cmdlist, &remote_show_cmdlist);
15074
15075 add_basic_prefix_cmd ("remote", class_files, _("\
15076 Manipulate files on the remote system.\n\
15077 Transfer files to and from the remote target system."),
15078 &remote_cmdlist, "remote ",
15079 0 /* allow-unknown */, &cmdlist);
15080
15081 add_cmd ("put", class_files, remote_put_command,
15082 _("Copy a local file to the remote system."),
15083 &remote_cmdlist);
15084
15085 add_cmd ("get", class_files, remote_get_command,
15086 _("Copy a remote file to the local system."),
15087 &remote_cmdlist);
15088
15089 add_cmd ("delete", class_files, remote_delete_command,
15090 _("Delete a remote file."),
15091 &remote_cmdlist);
15092
15093 add_setshow_string_noescape_cmd ("exec-file", class_files,
15094 &remote_exec_file_var, _("\
15095 Set the remote pathname for \"run\"."), _("\
15096 Show the remote pathname for \"run\"."), NULL,
15097 set_remote_exec_file,
15098 show_remote_exec_file,
15099 &remote_set_cmdlist,
15100 &remote_show_cmdlist);
15101
15102 add_setshow_boolean_cmd ("range-stepping", class_run,
15103 &use_range_stepping, _("\
15104 Enable or disable range stepping."), _("\
15105 Show whether target-assisted range stepping is enabled."), _("\
15106 If on, and the target supports it, when stepping a source line, GDB\n\
15107 tells the target to step the corresponding range of addresses itself instead\n\
15108 of issuing multiple single-steps. This speeds up source level\n\
15109 stepping. If off, GDB always issues single-steps, even if range\n\
15110 stepping is supported by the target. The default is on."),
15111 set_range_stepping,
15112 show_range_stepping,
15113 &setlist,
15114 &showlist);
15115
15116 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15117 Set watchdog timer."), _("\
15118 Show watchdog timer."), _("\
15119 When non-zero, this timeout is used instead of waiting forever for a target\n\
15120 to finish a low-level step or continue operation. If the specified amount\n\
15121 of time passes without a response from the target, an error occurs."),
15122 NULL,
15123 show_watchdog,
15124 &setlist, &showlist);
15125
15126 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15127 &remote_packet_max_chars, _("\
15128 Set the maximum number of characters to display for each remote packet."), _("\
15129 Show the maximum number of characters to display for each remote packet."), _("\
15130 Specify \"unlimited\" to display all the characters."),
15131 NULL, show_remote_packet_max_chars,
15132 &setdebuglist, &showdebuglist);
15133
15134 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15135 _("Set debugging of remote protocol."),
15136 _("Show debugging of remote protocol."),
15137 _("\
15138 When enabled, each packet sent or received with the remote target\n\
15139 is displayed."),
15140 NULL,
15141 show_remote_debug,
15142 &setdebuglist, &showdebuglist);
15143
15144 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15145 &remote_timeout, _("\
15146 Set timeout limit to wait for target to respond."), _("\
15147 Show timeout limit to wait for target to respond."), _("\
15148 This value is used to set the time limit for gdb to wait for a response\n\
15149 from the target."),
15150 NULL,
15151 show_remote_timeout,
15152 &setlist, &showlist);
15153
15154 /* Eventually initialize fileio. See fileio.c */
15155 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15156 }
This page took 0.338868 seconds and 5 git commands to generate.