gdb: some int to bool conversion in remote.c
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void process_initial_stop_replies (int from_tty);
770
771 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
772
773 void btrace_sync_conf (const btrace_config *conf);
774
775 void remote_btrace_maybe_reopen ();
776
777 void remove_new_fork_children (threads_listing_context *context);
778 void kill_new_fork_children (int pid);
779 void discard_pending_stop_replies (struct inferior *inf);
780 int stop_reply_queue_length ();
781
782 void check_pending_events_prevent_wildcard_vcont
783 (bool *may_global_wildcard_vcont);
784
785 void discard_pending_stop_replies_in_queue ();
786 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
787 struct stop_reply *queued_stop_reply (ptid_t ptid);
788 int peek_stop_reply (ptid_t ptid);
789 void remote_parse_stop_reply (const char *buf, stop_reply *event);
790
791 void remote_stop_ns (ptid_t ptid);
792 void remote_interrupt_as ();
793 void remote_interrupt_ns ();
794
795 char *remote_get_noisy_reply ();
796 int remote_query_attached (int pid);
797 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
798 int try_open_exec);
799
800 ptid_t remote_current_thread (ptid_t oldpid);
801 ptid_t get_current_thread (const char *wait_status);
802
803 void set_thread (ptid_t ptid, int gen);
804 void set_general_thread (ptid_t ptid);
805 void set_continue_thread (ptid_t ptid);
806 void set_general_process ();
807
808 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
809
810 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
811 gdb_ext_thread_info *info);
812 int remote_get_threadinfo (threadref *threadid, int fieldset,
813 gdb_ext_thread_info *info);
814
815 int parse_threadlist_response (const char *pkt, int result_limit,
816 threadref *original_echo,
817 threadref *resultlist,
818 int *doneflag);
819 int remote_get_threadlist (int startflag, threadref *nextthread,
820 int result_limit, int *done, int *result_count,
821 threadref *threadlist);
822
823 int remote_threadlist_iterator (rmt_thread_action stepfunction,
824 void *context, int looplimit);
825
826 int remote_get_threads_with_ql (threads_listing_context *context);
827 int remote_get_threads_with_qxfer (threads_listing_context *context);
828 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
829
830 void extended_remote_restart ();
831
832 void get_offsets ();
833
834 void remote_check_symbols ();
835
836 void remote_supported_packet (const struct protocol_feature *feature,
837 enum packet_support support,
838 const char *argument);
839
840 void remote_query_supported ();
841
842 void remote_packet_size (const protocol_feature *feature,
843 packet_support support, const char *value);
844
845 void remote_serial_quit_handler ();
846
847 void remote_detach_pid (int pid);
848
849 void remote_vcont_probe ();
850
851 void remote_resume_with_hc (ptid_t ptid, int step,
852 gdb_signal siggnal);
853
854 void send_interrupt_sequence ();
855 void interrupt_query ();
856
857 void remote_notif_get_pending_events (notif_client *nc);
858
859 int fetch_register_using_p (struct regcache *regcache,
860 packet_reg *reg);
861 int send_g_packet ();
862 void process_g_packet (struct regcache *regcache);
863 void fetch_registers_using_g (struct regcache *regcache);
864 int store_register_using_P (const struct regcache *regcache,
865 packet_reg *reg);
866 void store_registers_using_G (const struct regcache *regcache);
867
868 void set_remote_traceframe ();
869
870 void check_binary_download (CORE_ADDR addr);
871
872 target_xfer_status remote_write_bytes_aux (const char *header,
873 CORE_ADDR memaddr,
874 const gdb_byte *myaddr,
875 ULONGEST len_units,
876 int unit_size,
877 ULONGEST *xfered_len_units,
878 char packet_format,
879 int use_length);
880
881 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
882 const gdb_byte *myaddr, ULONGEST len,
883 int unit_size, ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
886 ULONGEST len_units,
887 int unit_size, ULONGEST *xfered_len_units);
888
889 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
890 ULONGEST memaddr,
891 ULONGEST len,
892 int unit_size,
893 ULONGEST *xfered_len);
894
895 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
896 gdb_byte *myaddr, ULONGEST len,
897 int unit_size,
898 ULONGEST *xfered_len);
899
900 packet_result remote_send_printf (const char *format, ...)
901 ATTRIBUTE_PRINTF (2, 3);
902
903 target_xfer_status remote_flash_write (ULONGEST address,
904 ULONGEST length, ULONGEST *xfered_len,
905 const gdb_byte *data);
906
907 int readchar (int timeout);
908
909 void remote_serial_write (const char *str, int len);
910
911 int putpkt (const char *buf);
912 int putpkt_binary (const char *buf, int cnt);
913
914 int putpkt (const gdb::char_vector &buf)
915 {
916 return putpkt (buf.data ());
917 }
918
919 void skip_frame ();
920 long read_frame (gdb::char_vector *buf_p);
921 void getpkt (gdb::char_vector *buf, int forever);
922 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
923 int expecting_notif, int *is_notif);
924 int getpkt_sane (gdb::char_vector *buf, int forever);
925 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
926 int *is_notif);
927 int remote_vkill (int pid);
928 void remote_kill_k ();
929
930 void extended_remote_disable_randomization (int val);
931 int extended_remote_run (const std::string &args);
932
933 void send_environment_packet (const char *action,
934 const char *packet,
935 const char *value);
936
937 void extended_remote_environment_support ();
938 void extended_remote_set_inferior_cwd ();
939
940 target_xfer_status remote_write_qxfer (const char *object_name,
941 const char *annex,
942 const gdb_byte *writebuf,
943 ULONGEST offset, LONGEST len,
944 ULONGEST *xfered_len,
945 struct packet_config *packet);
946
947 target_xfer_status remote_read_qxfer (const char *object_name,
948 const char *annex,
949 gdb_byte *readbuf, ULONGEST offset,
950 LONGEST len,
951 ULONGEST *xfered_len,
952 struct packet_config *packet);
953
954 void push_stop_reply (struct stop_reply *new_event);
955
956 bool vcont_r_supported ();
957
958 void packet_command (const char *args, int from_tty);
959
960 private: /* data fields */
961
962 /* The remote state. Don't reference this directly. Use the
963 get_remote_state method instead. */
964 remote_state m_remote_state;
965 };
966
967 static const target_info extended_remote_target_info = {
968 "extended-remote",
969 N_("Extended remote serial target in gdb-specific protocol"),
970 remote_doc
971 };
972
973 /* Set up the extended remote target by extending the standard remote
974 target and adding to it. */
975
976 class extended_remote_target final : public remote_target
977 {
978 public:
979 const target_info &info () const override
980 { return extended_remote_target_info; }
981
982 /* Open an extended-remote connection. */
983 static void open (const char *, int);
984
985 bool can_create_inferior () override { return true; }
986 void create_inferior (const char *, const std::string &,
987 char **, int) override;
988
989 void detach (inferior *, int) override;
990
991 bool can_attach () override { return true; }
992 void attach (const char *, int) override;
993
994 void post_attach (int) override;
995 bool supports_disable_randomization () override;
996 };
997
998 /* Per-program-space data key. */
999 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1000 remote_pspace_data;
1001
1002 /* The variable registered as the control variable used by the
1003 remote exec-file commands. While the remote exec-file setting is
1004 per-program-space, the set/show machinery uses this as the
1005 location of the remote exec-file value. */
1006 static char *remote_exec_file_var;
1007
1008 /* The size to align memory write packets, when practical. The protocol
1009 does not guarantee any alignment, and gdb will generate short
1010 writes and unaligned writes, but even as a best-effort attempt this
1011 can improve bulk transfers. For instance, if a write is misaligned
1012 relative to the target's data bus, the stub may need to make an extra
1013 round trip fetching data from the target. This doesn't make a
1014 huge difference, but it's easy to do, so we try to be helpful.
1015
1016 The alignment chosen is arbitrary; usually data bus width is
1017 important here, not the possibly larger cache line size. */
1018 enum { REMOTE_ALIGN_WRITES = 16 };
1019
1020 /* Prototypes for local functions. */
1021
1022 static int hexnumlen (ULONGEST num);
1023
1024 static int stubhex (int ch);
1025
1026 static int hexnumstr (char *, ULONGEST);
1027
1028 static int hexnumnstr (char *, ULONGEST, int);
1029
1030 static CORE_ADDR remote_address_masked (CORE_ADDR);
1031
1032 static void print_packet (const char *);
1033
1034 static int stub_unpack_int (const char *buff, int fieldlength);
1035
1036 struct packet_config;
1037
1038 static void show_packet_config_cmd (struct packet_config *config);
1039
1040 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1041 int from_tty,
1042 struct cmd_list_element *c,
1043 const char *value);
1044
1045 static ptid_t read_ptid (const char *buf, const char **obuf);
1046
1047 static void remote_async_inferior_event_handler (gdb_client_data);
1048
1049 static bool remote_read_description_p (struct target_ops *target);
1050
1051 static void remote_console_output (const char *msg);
1052
1053 static void remote_btrace_reset (remote_state *rs);
1054
1055 static void remote_unpush_and_throw (remote_target *target);
1056
1057 /* For "remote". */
1058
1059 static struct cmd_list_element *remote_cmdlist;
1060
1061 /* For "set remote" and "show remote". */
1062
1063 static struct cmd_list_element *remote_set_cmdlist;
1064 static struct cmd_list_element *remote_show_cmdlist;
1065
1066 /* Controls whether GDB is willing to use range stepping. */
1067
1068 static bool use_range_stepping = true;
1069
1070 /* From the remote target's point of view, each thread is in one of these three
1071 states. */
1072 enum class resume_state
1073 {
1074 /* Not resumed - we haven't been asked to resume this thread. */
1075 NOT_RESUMED,
1076
1077 /* We have been asked to resume this thread, but haven't sent a vCont action
1078 for it yet. We'll need to consider it next time commit_resume is
1079 called. */
1080 RESUMED_PENDING_VCONT,
1081
1082 /* We have been asked to resume this thread, and we have sent a vCont action
1083 for it. */
1084 RESUMED,
1085 };
1086
1087 /* Information about a thread's pending vCont-resume. Used when a thread is in
1088 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1089 stores this information which is then picked up by
1090 remote_target::commit_resume to know which is the proper action for this
1091 thread to include in the vCont packet. */
1092 struct resumed_pending_vcont_info
1093 {
1094 /* True if the last resume call for this thread was a step request, false
1095 if a continue request. */
1096 bool step;
1097
1098 /* The signal specified in the last resume call for this thread. */
1099 gdb_signal sig;
1100 };
1101
1102 /* Private data that we'll store in (struct thread_info)->priv. */
1103 struct remote_thread_info : public private_thread_info
1104 {
1105 std::string extra;
1106 std::string name;
1107 int core = -1;
1108
1109 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1110 sequence of bytes. */
1111 gdb::byte_vector thread_handle;
1112
1113 /* Whether the target stopped for a breakpoint/watchpoint. */
1114 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1115
1116 /* This is set to the data address of the access causing the target
1117 to stop for a watchpoint. */
1118 CORE_ADDR watch_data_address = 0;
1119
1120 /* Get the thread's resume state. */
1121 enum resume_state get_resume_state () const
1122 {
1123 return m_resume_state;
1124 }
1125
1126 /* Put the thread in the NOT_RESUMED state. */
1127 void set_not_resumed ()
1128 {
1129 m_resume_state = resume_state::NOT_RESUMED;
1130 }
1131
1132 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1133 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1134 {
1135 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1136 m_resumed_pending_vcont_info.step = step;
1137 m_resumed_pending_vcont_info.sig = sig;
1138 }
1139
1140 /* Get the information this thread's pending vCont-resumption.
1141
1142 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1143 state. */
1144 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1145 {
1146 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1147
1148 return m_resumed_pending_vcont_info;
1149 }
1150
1151 /* Put the thread in the VCONT_RESUMED state. */
1152 void set_resumed ()
1153 {
1154 m_resume_state = resume_state::RESUMED;
1155 }
1156
1157 private:
1158 /* Resume state for this thread. This is used to implement vCont action
1159 coalescing (only when the target operates in non-stop mode).
1160
1161 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1162 which notes that this thread must be considered in the next commit_resume
1163 call.
1164
1165 remote_target::commit_resume sends a vCont packet with actions for the
1166 threads in the RESUMED_PENDING_VCONT state and moves them to the
1167 VCONT_RESUMED state.
1168
1169 When reporting a stop to the core for a thread, that thread is moved back
1170 to the NOT_RESUMED state. */
1171 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1172
1173 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1174 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1175 };
1176
1177 remote_state::remote_state ()
1178 : buf (400)
1179 {
1180 }
1181
1182 remote_state::~remote_state ()
1183 {
1184 xfree (this->last_pass_packet);
1185 xfree (this->last_program_signals_packet);
1186 xfree (this->finished_object);
1187 xfree (this->finished_annex);
1188 }
1189
1190 /* Utility: generate error from an incoming stub packet. */
1191 static void
1192 trace_error (char *buf)
1193 {
1194 if (*buf++ != 'E')
1195 return; /* not an error msg */
1196 switch (*buf)
1197 {
1198 case '1': /* malformed packet error */
1199 if (*++buf == '0') /* general case: */
1200 error (_("remote.c: error in outgoing packet."));
1201 else
1202 error (_("remote.c: error in outgoing packet at field #%ld."),
1203 strtol (buf, NULL, 16));
1204 default:
1205 error (_("Target returns error code '%s'."), buf);
1206 }
1207 }
1208
1209 /* Utility: wait for reply from stub, while accepting "O" packets. */
1210
1211 char *
1212 remote_target::remote_get_noisy_reply ()
1213 {
1214 struct remote_state *rs = get_remote_state ();
1215
1216 do /* Loop on reply from remote stub. */
1217 {
1218 char *buf;
1219
1220 QUIT; /* Allow user to bail out with ^C. */
1221 getpkt (&rs->buf, 0);
1222 buf = rs->buf.data ();
1223 if (buf[0] == 'E')
1224 trace_error (buf);
1225 else if (startswith (buf, "qRelocInsn:"))
1226 {
1227 ULONGEST ul;
1228 CORE_ADDR from, to, org_to;
1229 const char *p, *pp;
1230 int adjusted_size = 0;
1231 int relocated = 0;
1232
1233 p = buf + strlen ("qRelocInsn:");
1234 pp = unpack_varlen_hex (p, &ul);
1235 if (*pp != ';')
1236 error (_("invalid qRelocInsn packet: %s"), buf);
1237 from = ul;
1238
1239 p = pp + 1;
1240 unpack_varlen_hex (p, &ul);
1241 to = ul;
1242
1243 org_to = to;
1244
1245 try
1246 {
1247 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1248 relocated = 1;
1249 }
1250 catch (const gdb_exception &ex)
1251 {
1252 if (ex.error == MEMORY_ERROR)
1253 {
1254 /* Propagate memory errors silently back to the
1255 target. The stub may have limited the range of
1256 addresses we can write to, for example. */
1257 }
1258 else
1259 {
1260 /* Something unexpectedly bad happened. Be verbose
1261 so we can tell what, and propagate the error back
1262 to the stub, so it doesn't get stuck waiting for
1263 a response. */
1264 exception_fprintf (gdb_stderr, ex,
1265 _("warning: relocating instruction: "));
1266 }
1267 putpkt ("E01");
1268 }
1269
1270 if (relocated)
1271 {
1272 adjusted_size = to - org_to;
1273
1274 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1275 putpkt (buf);
1276 }
1277 }
1278 else if (buf[0] == 'O' && buf[1] != 'K')
1279 remote_console_output (buf + 1); /* 'O' message from stub */
1280 else
1281 return buf; /* Here's the actual reply. */
1282 }
1283 while (1);
1284 }
1285
1286 struct remote_arch_state *
1287 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1288 {
1289 remote_arch_state *rsa;
1290
1291 auto it = this->m_arch_states.find (gdbarch);
1292 if (it == this->m_arch_states.end ())
1293 {
1294 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1295 std::forward_as_tuple (gdbarch),
1296 std::forward_as_tuple (gdbarch));
1297 rsa = &p.first->second;
1298
1299 /* Make sure that the packet buffer is plenty big enough for
1300 this architecture. */
1301 if (this->buf.size () < rsa->remote_packet_size)
1302 this->buf.resize (2 * rsa->remote_packet_size);
1303 }
1304 else
1305 rsa = &it->second;
1306
1307 return rsa;
1308 }
1309
1310 /* Fetch the global remote target state. */
1311
1312 remote_state *
1313 remote_target::get_remote_state ()
1314 {
1315 /* Make sure that the remote architecture state has been
1316 initialized, because doing so might reallocate rs->buf. Any
1317 function which calls getpkt also needs to be mindful of changes
1318 to rs->buf, but this call limits the number of places which run
1319 into trouble. */
1320 m_remote_state.get_remote_arch_state (target_gdbarch ());
1321
1322 return &m_remote_state;
1323 }
1324
1325 /* Fetch the remote exec-file from the current program space. */
1326
1327 static const char *
1328 get_remote_exec_file (void)
1329 {
1330 char *remote_exec_file;
1331
1332 remote_exec_file = remote_pspace_data.get (current_program_space);
1333 if (remote_exec_file == NULL)
1334 return "";
1335
1336 return remote_exec_file;
1337 }
1338
1339 /* Set the remote exec file for PSPACE. */
1340
1341 static void
1342 set_pspace_remote_exec_file (struct program_space *pspace,
1343 const char *remote_exec_file)
1344 {
1345 char *old_file = remote_pspace_data.get (pspace);
1346
1347 xfree (old_file);
1348 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1349 }
1350
1351 /* The "set/show remote exec-file" set command hook. */
1352
1353 static void
1354 set_remote_exec_file (const char *ignored, int from_tty,
1355 struct cmd_list_element *c)
1356 {
1357 gdb_assert (remote_exec_file_var != NULL);
1358 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1359 }
1360
1361 /* The "set/show remote exec-file" show command hook. */
1362
1363 static void
1364 show_remote_exec_file (struct ui_file *file, int from_tty,
1365 struct cmd_list_element *cmd, const char *value)
1366 {
1367 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1368 }
1369
1370 static int
1371 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1372 {
1373 int regnum, num_remote_regs, offset;
1374 struct packet_reg **remote_regs;
1375
1376 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1377 {
1378 struct packet_reg *r = &regs[regnum];
1379
1380 if (register_size (gdbarch, regnum) == 0)
1381 /* Do not try to fetch zero-sized (placeholder) registers. */
1382 r->pnum = -1;
1383 else
1384 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1385
1386 r->regnum = regnum;
1387 }
1388
1389 /* Define the g/G packet format as the contents of each register
1390 with a remote protocol number, in order of ascending protocol
1391 number. */
1392
1393 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1394 for (num_remote_regs = 0, regnum = 0;
1395 regnum < gdbarch_num_regs (gdbarch);
1396 regnum++)
1397 if (regs[regnum].pnum != -1)
1398 remote_regs[num_remote_regs++] = &regs[regnum];
1399
1400 std::sort (remote_regs, remote_regs + num_remote_regs,
1401 [] (const packet_reg *a, const packet_reg *b)
1402 { return a->pnum < b->pnum; });
1403
1404 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1405 {
1406 remote_regs[regnum]->in_g_packet = 1;
1407 remote_regs[regnum]->offset = offset;
1408 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1409 }
1410
1411 return offset;
1412 }
1413
1414 /* Given the architecture described by GDBARCH, return the remote
1415 protocol register's number and the register's offset in the g/G
1416 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1417 If the target does not have a mapping for REGNUM, return false,
1418 otherwise, return true. */
1419
1420 int
1421 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1422 int *pnum, int *poffset)
1423 {
1424 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1425
1426 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1427
1428 map_regcache_remote_table (gdbarch, regs.data ());
1429
1430 *pnum = regs[regnum].pnum;
1431 *poffset = regs[regnum].offset;
1432
1433 return *pnum != -1;
1434 }
1435
1436 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1437 {
1438 /* Use the architecture to build a regnum<->pnum table, which will be
1439 1:1 unless a feature set specifies otherwise. */
1440 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1441
1442 /* Record the maximum possible size of the g packet - it may turn out
1443 to be smaller. */
1444 this->sizeof_g_packet
1445 = map_regcache_remote_table (gdbarch, this->regs.get ());
1446
1447 /* Default maximum number of characters in a packet body. Many
1448 remote stubs have a hardwired buffer size of 400 bytes
1449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1450 as the maximum packet-size to ensure that the packet and an extra
1451 NUL character can always fit in the buffer. This stops GDB
1452 trashing stubs that try to squeeze an extra NUL into what is
1453 already a full buffer (As of 1999-12-04 that was most stubs). */
1454 this->remote_packet_size = 400 - 1;
1455
1456 /* This one is filled in when a ``g'' packet is received. */
1457 this->actual_register_packet_size = 0;
1458
1459 /* Should rsa->sizeof_g_packet needs more space than the
1460 default, adjust the size accordingly. Remember that each byte is
1461 encoded as two characters. 32 is the overhead for the packet
1462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1463 (``$NN:G...#NN'') is a better guess, the below has been padded a
1464 little. */
1465 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1466 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1467 }
1468
1469 /* Get a pointer to the current remote target. If not connected to a
1470 remote target, return NULL. */
1471
1472 static remote_target *
1473 get_current_remote_target ()
1474 {
1475 target_ops *proc_target = current_inferior ()->process_target ();
1476 return dynamic_cast<remote_target *> (proc_target);
1477 }
1478
1479 /* Return the current allowed size of a remote packet. This is
1480 inferred from the current architecture, and should be used to
1481 limit the length of outgoing packets. */
1482 long
1483 remote_target::get_remote_packet_size ()
1484 {
1485 struct remote_state *rs = get_remote_state ();
1486 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1487
1488 if (rs->explicit_packet_size)
1489 return rs->explicit_packet_size;
1490
1491 return rsa->remote_packet_size;
1492 }
1493
1494 static struct packet_reg *
1495 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1496 long regnum)
1497 {
1498 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1499 return NULL;
1500 else
1501 {
1502 struct packet_reg *r = &rsa->regs[regnum];
1503
1504 gdb_assert (r->regnum == regnum);
1505 return r;
1506 }
1507 }
1508
1509 static struct packet_reg *
1510 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1511 LONGEST pnum)
1512 {
1513 int i;
1514
1515 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1516 {
1517 struct packet_reg *r = &rsa->regs[i];
1518
1519 if (r->pnum == pnum)
1520 return r;
1521 }
1522 return NULL;
1523 }
1524
1525 /* Allow the user to specify what sequence to send to the remote
1526 when he requests a program interruption: Although ^C is usually
1527 what remote systems expect (this is the default, here), it is
1528 sometimes preferable to send a break. On other systems such
1529 as the Linux kernel, a break followed by g, which is Magic SysRq g
1530 is required in order to interrupt the execution. */
1531 const char interrupt_sequence_control_c[] = "Ctrl-C";
1532 const char interrupt_sequence_break[] = "BREAK";
1533 const char interrupt_sequence_break_g[] = "BREAK-g";
1534 static const char *const interrupt_sequence_modes[] =
1535 {
1536 interrupt_sequence_control_c,
1537 interrupt_sequence_break,
1538 interrupt_sequence_break_g,
1539 NULL
1540 };
1541 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1542
1543 static void
1544 show_interrupt_sequence (struct ui_file *file, int from_tty,
1545 struct cmd_list_element *c,
1546 const char *value)
1547 {
1548 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1549 fprintf_filtered (file,
1550 _("Send the ASCII ETX character (Ctrl-c) "
1551 "to the remote target to interrupt the "
1552 "execution of the program.\n"));
1553 else if (interrupt_sequence_mode == interrupt_sequence_break)
1554 fprintf_filtered (file,
1555 _("send a break signal to the remote target "
1556 "to interrupt the execution of the program.\n"));
1557 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1558 fprintf_filtered (file,
1559 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1560 "the remote target to interrupt the execution "
1561 "of Linux kernel.\n"));
1562 else
1563 internal_error (__FILE__, __LINE__,
1564 _("Invalid value for interrupt_sequence_mode: %s."),
1565 interrupt_sequence_mode);
1566 }
1567
1568 /* This boolean variable specifies whether interrupt_sequence is sent
1569 to the remote target when gdb connects to it.
1570 This is mostly needed when you debug the Linux kernel: The Linux kernel
1571 expects BREAK g which is Magic SysRq g for connecting gdb. */
1572 static bool interrupt_on_connect = false;
1573
1574 /* This variable is used to implement the "set/show remotebreak" commands.
1575 Since these commands are now deprecated in favor of "set/show remote
1576 interrupt-sequence", it no longer has any effect on the code. */
1577 static bool remote_break;
1578
1579 static void
1580 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1581 {
1582 if (remote_break)
1583 interrupt_sequence_mode = interrupt_sequence_break;
1584 else
1585 interrupt_sequence_mode = interrupt_sequence_control_c;
1586 }
1587
1588 static void
1589 show_remotebreak (struct ui_file *file, int from_tty,
1590 struct cmd_list_element *c,
1591 const char *value)
1592 {
1593 }
1594
1595 /* This variable sets the number of bits in an address that are to be
1596 sent in a memory ("M" or "m") packet. Normally, after stripping
1597 leading zeros, the entire address would be sent. This variable
1598 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1599 initial implementation of remote.c restricted the address sent in
1600 memory packets to ``host::sizeof long'' bytes - (typically 32
1601 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1602 address was never sent. Since fixing this bug may cause a break in
1603 some remote targets this variable is principally provided to
1604 facilitate backward compatibility. */
1605
1606 static unsigned int remote_address_size;
1607
1608 \f
1609 /* User configurable variables for the number of characters in a
1610 memory read/write packet. MIN (rsa->remote_packet_size,
1611 rsa->sizeof_g_packet) is the default. Some targets need smaller
1612 values (fifo overruns, et.al.) and some users need larger values
1613 (speed up transfers). The variables ``preferred_*'' (the user
1614 request), ``current_*'' (what was actually set) and ``forced_*''
1615 (Positive - a soft limit, negative - a hard limit). */
1616
1617 struct memory_packet_config
1618 {
1619 const char *name;
1620 long size;
1621 int fixed_p;
1622 };
1623
1624 /* The default max memory-write-packet-size, when the setting is
1625 "fixed". The 16k is historical. (It came from older GDB's using
1626 alloca for buffers and the knowledge (folklore?) that some hosts
1627 don't cope very well with large alloca calls.) */
1628 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1629
1630 /* The minimum remote packet size for memory transfers. Ensures we
1631 can write at least one byte. */
1632 #define MIN_MEMORY_PACKET_SIZE 20
1633
1634 /* Get the memory packet size, assuming it is fixed. */
1635
1636 static long
1637 get_fixed_memory_packet_size (struct memory_packet_config *config)
1638 {
1639 gdb_assert (config->fixed_p);
1640
1641 if (config->size <= 0)
1642 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1643 else
1644 return config->size;
1645 }
1646
1647 /* Compute the current size of a read/write packet. Since this makes
1648 use of ``actual_register_packet_size'' the computation is dynamic. */
1649
1650 long
1651 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1652 {
1653 struct remote_state *rs = get_remote_state ();
1654 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1655
1656 long what_they_get;
1657 if (config->fixed_p)
1658 what_they_get = get_fixed_memory_packet_size (config);
1659 else
1660 {
1661 what_they_get = get_remote_packet_size ();
1662 /* Limit the packet to the size specified by the user. */
1663 if (config->size > 0
1664 && what_they_get > config->size)
1665 what_they_get = config->size;
1666
1667 /* Limit it to the size of the targets ``g'' response unless we have
1668 permission from the stub to use a larger packet size. */
1669 if (rs->explicit_packet_size == 0
1670 && rsa->actual_register_packet_size > 0
1671 && what_they_get > rsa->actual_register_packet_size)
1672 what_they_get = rsa->actual_register_packet_size;
1673 }
1674 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1675 what_they_get = MIN_MEMORY_PACKET_SIZE;
1676
1677 /* Make sure there is room in the global buffer for this packet
1678 (including its trailing NUL byte). */
1679 if (rs->buf.size () < what_they_get + 1)
1680 rs->buf.resize (2 * what_they_get);
1681
1682 return what_they_get;
1683 }
1684
1685 /* Update the size of a read/write packet. If they user wants
1686 something really big then do a sanity check. */
1687
1688 static void
1689 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1690 {
1691 int fixed_p = config->fixed_p;
1692 long size = config->size;
1693
1694 if (args == NULL)
1695 error (_("Argument required (integer, `fixed' or `limited')."));
1696 else if (strcmp (args, "hard") == 0
1697 || strcmp (args, "fixed") == 0)
1698 fixed_p = 1;
1699 else if (strcmp (args, "soft") == 0
1700 || strcmp (args, "limit") == 0)
1701 fixed_p = 0;
1702 else
1703 {
1704 char *end;
1705
1706 size = strtoul (args, &end, 0);
1707 if (args == end)
1708 error (_("Invalid %s (bad syntax)."), config->name);
1709
1710 /* Instead of explicitly capping the size of a packet to or
1711 disallowing it, the user is allowed to set the size to
1712 something arbitrarily large. */
1713 }
1714
1715 /* Extra checks? */
1716 if (fixed_p && !config->fixed_p)
1717 {
1718 /* So that the query shows the correct value. */
1719 long query_size = (size <= 0
1720 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1721 : size);
1722
1723 if (! query (_("The target may not be able to correctly handle a %s\n"
1724 "of %ld bytes. Change the packet size? "),
1725 config->name, query_size))
1726 error (_("Packet size not changed."));
1727 }
1728 /* Update the config. */
1729 config->fixed_p = fixed_p;
1730 config->size = size;
1731 }
1732
1733 static void
1734 show_memory_packet_size (struct memory_packet_config *config)
1735 {
1736 if (config->size == 0)
1737 printf_filtered (_("The %s is 0 (default). "), config->name);
1738 else
1739 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1740 if (config->fixed_p)
1741 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1742 get_fixed_memory_packet_size (config));
1743 else
1744 {
1745 remote_target *remote = get_current_remote_target ();
1746
1747 if (remote != NULL)
1748 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1749 remote->get_memory_packet_size (config));
1750 else
1751 puts_filtered ("The actual limit will be further reduced "
1752 "dependent on the target.\n");
1753 }
1754 }
1755
1756 /* FIXME: needs to be per-remote-target. */
1757 static struct memory_packet_config memory_write_packet_config =
1758 {
1759 "memory-write-packet-size",
1760 };
1761
1762 static void
1763 set_memory_write_packet_size (const char *args, int from_tty)
1764 {
1765 set_memory_packet_size (args, &memory_write_packet_config);
1766 }
1767
1768 static void
1769 show_memory_write_packet_size (const char *args, int from_tty)
1770 {
1771 show_memory_packet_size (&memory_write_packet_config);
1772 }
1773
1774 /* Show the number of hardware watchpoints that can be used. */
1775
1776 static void
1777 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1778 struct cmd_list_element *c,
1779 const char *value)
1780 {
1781 fprintf_filtered (file, _("The maximum number of target hardware "
1782 "watchpoints is %s.\n"), value);
1783 }
1784
1785 /* Show the length limit (in bytes) for hardware watchpoints. */
1786
1787 static void
1788 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1789 struct cmd_list_element *c,
1790 const char *value)
1791 {
1792 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1793 "hardware watchpoint is %s.\n"), value);
1794 }
1795
1796 /* Show the number of hardware breakpoints that can be used. */
1797
1798 static void
1799 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1800 struct cmd_list_element *c,
1801 const char *value)
1802 {
1803 fprintf_filtered (file, _("The maximum number of target hardware "
1804 "breakpoints is %s.\n"), value);
1805 }
1806
1807 /* Controls the maximum number of characters to display in the debug output
1808 for each remote packet. The remaining characters are omitted. */
1809
1810 static int remote_packet_max_chars = 512;
1811
1812 /* Show the maximum number of characters to display for each remote packet
1813 when remote debugging is enabled. */
1814
1815 static void
1816 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1817 struct cmd_list_element *c,
1818 const char *value)
1819 {
1820 fprintf_filtered (file, _("Number of remote packet characters to "
1821 "display is %s.\n"), value);
1822 }
1823
1824 long
1825 remote_target::get_memory_write_packet_size ()
1826 {
1827 return get_memory_packet_size (&memory_write_packet_config);
1828 }
1829
1830 /* FIXME: needs to be per-remote-target. */
1831 static struct memory_packet_config memory_read_packet_config =
1832 {
1833 "memory-read-packet-size",
1834 };
1835
1836 static void
1837 set_memory_read_packet_size (const char *args, int from_tty)
1838 {
1839 set_memory_packet_size (args, &memory_read_packet_config);
1840 }
1841
1842 static void
1843 show_memory_read_packet_size (const char *args, int from_tty)
1844 {
1845 show_memory_packet_size (&memory_read_packet_config);
1846 }
1847
1848 long
1849 remote_target::get_memory_read_packet_size ()
1850 {
1851 long size = get_memory_packet_size (&memory_read_packet_config);
1852
1853 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1854 extra buffer size argument before the memory read size can be
1855 increased beyond this. */
1856 if (size > get_remote_packet_size ())
1857 size = get_remote_packet_size ();
1858 return size;
1859 }
1860
1861 \f
1862
1863 struct packet_config
1864 {
1865 const char *name;
1866 const char *title;
1867
1868 /* If auto, GDB auto-detects support for this packet or feature,
1869 either through qSupported, or by trying the packet and looking
1870 at the response. If true, GDB assumes the target supports this
1871 packet. If false, the packet is disabled. Configs that don't
1872 have an associated command always have this set to auto. */
1873 enum auto_boolean detect;
1874
1875 /* Does the target support this packet? */
1876 enum packet_support support;
1877 };
1878
1879 static enum packet_support packet_config_support (struct packet_config *config);
1880 static enum packet_support packet_support (int packet);
1881
1882 static void
1883 show_packet_config_cmd (struct packet_config *config)
1884 {
1885 const char *support = "internal-error";
1886
1887 switch (packet_config_support (config))
1888 {
1889 case PACKET_ENABLE:
1890 support = "enabled";
1891 break;
1892 case PACKET_DISABLE:
1893 support = "disabled";
1894 break;
1895 case PACKET_SUPPORT_UNKNOWN:
1896 support = "unknown";
1897 break;
1898 }
1899 switch (config->detect)
1900 {
1901 case AUTO_BOOLEAN_AUTO:
1902 printf_filtered (_("Support for the `%s' packet "
1903 "is auto-detected, currently %s.\n"),
1904 config->name, support);
1905 break;
1906 case AUTO_BOOLEAN_TRUE:
1907 case AUTO_BOOLEAN_FALSE:
1908 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1909 config->name, support);
1910 break;
1911 }
1912 }
1913
1914 static void
1915 add_packet_config_cmd (struct packet_config *config, const char *name,
1916 const char *title, int legacy)
1917 {
1918 char *set_doc;
1919 char *show_doc;
1920 char *cmd_name;
1921
1922 config->name = name;
1923 config->title = title;
1924 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1925 name, title);
1926 show_doc = xstrprintf ("Show current use of remote "
1927 "protocol `%s' (%s) packet.",
1928 name, title);
1929 /* set/show TITLE-packet {auto,on,off} */
1930 cmd_name = xstrprintf ("%s-packet", title);
1931 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1932 &config->detect, set_doc,
1933 show_doc, NULL, /* help_doc */
1934 NULL,
1935 show_remote_protocol_packet_cmd,
1936 &remote_set_cmdlist, &remote_show_cmdlist);
1937 /* The command code copies the documentation strings. */
1938 xfree (set_doc);
1939 xfree (show_doc);
1940 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1941 if (legacy)
1942 {
1943 char *legacy_name;
1944
1945 legacy_name = xstrprintf ("%s-packet", name);
1946 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1947 &remote_set_cmdlist);
1948 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1949 &remote_show_cmdlist);
1950 }
1951 }
1952
1953 static enum packet_result
1954 packet_check_result (const char *buf)
1955 {
1956 if (buf[0] != '\0')
1957 {
1958 /* The stub recognized the packet request. Check that the
1959 operation succeeded. */
1960 if (buf[0] == 'E'
1961 && isxdigit (buf[1]) && isxdigit (buf[2])
1962 && buf[3] == '\0')
1963 /* "Enn" - definitely an error. */
1964 return PACKET_ERROR;
1965
1966 /* Always treat "E." as an error. This will be used for
1967 more verbose error messages, such as E.memtypes. */
1968 if (buf[0] == 'E' && buf[1] == '.')
1969 return PACKET_ERROR;
1970
1971 /* The packet may or may not be OK. Just assume it is. */
1972 return PACKET_OK;
1973 }
1974 else
1975 /* The stub does not support the packet. */
1976 return PACKET_UNKNOWN;
1977 }
1978
1979 static enum packet_result
1980 packet_check_result (const gdb::char_vector &buf)
1981 {
1982 return packet_check_result (buf.data ());
1983 }
1984
1985 static enum packet_result
1986 packet_ok (const char *buf, struct packet_config *config)
1987 {
1988 enum packet_result result;
1989
1990 if (config->detect != AUTO_BOOLEAN_TRUE
1991 && config->support == PACKET_DISABLE)
1992 internal_error (__FILE__, __LINE__,
1993 _("packet_ok: attempt to use a disabled packet"));
1994
1995 result = packet_check_result (buf);
1996 switch (result)
1997 {
1998 case PACKET_OK:
1999 case PACKET_ERROR:
2000 /* The stub recognized the packet request. */
2001 if (config->support == PACKET_SUPPORT_UNKNOWN)
2002 {
2003 remote_debug_printf ("Packet %s (%s) is supported",
2004 config->name, config->title);
2005 config->support = PACKET_ENABLE;
2006 }
2007 break;
2008 case PACKET_UNKNOWN:
2009 /* The stub does not support the packet. */
2010 if (config->detect == AUTO_BOOLEAN_AUTO
2011 && config->support == PACKET_ENABLE)
2012 {
2013 /* If the stub previously indicated that the packet was
2014 supported then there is a protocol error. */
2015 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2016 config->name, config->title);
2017 }
2018 else if (config->detect == AUTO_BOOLEAN_TRUE)
2019 {
2020 /* The user set it wrong. */
2021 error (_("Enabled packet %s (%s) not recognized by stub"),
2022 config->name, config->title);
2023 }
2024
2025 remote_debug_printf ("Packet %s (%s) is NOT supported",
2026 config->name, config->title);
2027 config->support = PACKET_DISABLE;
2028 break;
2029 }
2030
2031 return result;
2032 }
2033
2034 static enum packet_result
2035 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2036 {
2037 return packet_ok (buf.data (), config);
2038 }
2039
2040 enum {
2041 PACKET_vCont = 0,
2042 PACKET_X,
2043 PACKET_qSymbol,
2044 PACKET_P,
2045 PACKET_p,
2046 PACKET_Z0,
2047 PACKET_Z1,
2048 PACKET_Z2,
2049 PACKET_Z3,
2050 PACKET_Z4,
2051 PACKET_vFile_setfs,
2052 PACKET_vFile_open,
2053 PACKET_vFile_pread,
2054 PACKET_vFile_pwrite,
2055 PACKET_vFile_close,
2056 PACKET_vFile_unlink,
2057 PACKET_vFile_readlink,
2058 PACKET_vFile_fstat,
2059 PACKET_qXfer_auxv,
2060 PACKET_qXfer_features,
2061 PACKET_qXfer_exec_file,
2062 PACKET_qXfer_libraries,
2063 PACKET_qXfer_libraries_svr4,
2064 PACKET_qXfer_memory_map,
2065 PACKET_qXfer_osdata,
2066 PACKET_qXfer_threads,
2067 PACKET_qXfer_statictrace_read,
2068 PACKET_qXfer_traceframe_info,
2069 PACKET_qXfer_uib,
2070 PACKET_qGetTIBAddr,
2071 PACKET_qGetTLSAddr,
2072 PACKET_qSupported,
2073 PACKET_qTStatus,
2074 PACKET_QPassSignals,
2075 PACKET_QCatchSyscalls,
2076 PACKET_QProgramSignals,
2077 PACKET_QSetWorkingDir,
2078 PACKET_QStartupWithShell,
2079 PACKET_QEnvironmentHexEncoded,
2080 PACKET_QEnvironmentReset,
2081 PACKET_QEnvironmentUnset,
2082 PACKET_qCRC,
2083 PACKET_qSearch_memory,
2084 PACKET_vAttach,
2085 PACKET_vRun,
2086 PACKET_QStartNoAckMode,
2087 PACKET_vKill,
2088 PACKET_qXfer_siginfo_read,
2089 PACKET_qXfer_siginfo_write,
2090 PACKET_qAttached,
2091
2092 /* Support for conditional tracepoints. */
2093 PACKET_ConditionalTracepoints,
2094
2095 /* Support for target-side breakpoint conditions. */
2096 PACKET_ConditionalBreakpoints,
2097
2098 /* Support for target-side breakpoint commands. */
2099 PACKET_BreakpointCommands,
2100
2101 /* Support for fast tracepoints. */
2102 PACKET_FastTracepoints,
2103
2104 /* Support for static tracepoints. */
2105 PACKET_StaticTracepoints,
2106
2107 /* Support for installing tracepoints while a trace experiment is
2108 running. */
2109 PACKET_InstallInTrace,
2110
2111 PACKET_bc,
2112 PACKET_bs,
2113 PACKET_TracepointSource,
2114 PACKET_QAllow,
2115 PACKET_qXfer_fdpic,
2116 PACKET_QDisableRandomization,
2117 PACKET_QAgent,
2118 PACKET_QTBuffer_size,
2119 PACKET_Qbtrace_off,
2120 PACKET_Qbtrace_bts,
2121 PACKET_Qbtrace_pt,
2122 PACKET_qXfer_btrace,
2123
2124 /* Support for the QNonStop packet. */
2125 PACKET_QNonStop,
2126
2127 /* Support for the QThreadEvents packet. */
2128 PACKET_QThreadEvents,
2129
2130 /* Support for multi-process extensions. */
2131 PACKET_multiprocess_feature,
2132
2133 /* Support for enabling and disabling tracepoints while a trace
2134 experiment is running. */
2135 PACKET_EnableDisableTracepoints_feature,
2136
2137 /* Support for collecting strings using the tracenz bytecode. */
2138 PACKET_tracenz_feature,
2139
2140 /* Support for continuing to run a trace experiment while GDB is
2141 disconnected. */
2142 PACKET_DisconnectedTracing_feature,
2143
2144 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2145 PACKET_augmented_libraries_svr4_read_feature,
2146
2147 /* Support for the qXfer:btrace-conf:read packet. */
2148 PACKET_qXfer_btrace_conf,
2149
2150 /* Support for the Qbtrace-conf:bts:size packet. */
2151 PACKET_Qbtrace_conf_bts_size,
2152
2153 /* Support for swbreak+ feature. */
2154 PACKET_swbreak_feature,
2155
2156 /* Support for hwbreak+ feature. */
2157 PACKET_hwbreak_feature,
2158
2159 /* Support for fork events. */
2160 PACKET_fork_event_feature,
2161
2162 /* Support for vfork events. */
2163 PACKET_vfork_event_feature,
2164
2165 /* Support for the Qbtrace-conf:pt:size packet. */
2166 PACKET_Qbtrace_conf_pt_size,
2167
2168 /* Support for exec events. */
2169 PACKET_exec_event_feature,
2170
2171 /* Support for query supported vCont actions. */
2172 PACKET_vContSupported,
2173
2174 /* Support remote CTRL-C. */
2175 PACKET_vCtrlC,
2176
2177 /* Support TARGET_WAITKIND_NO_RESUMED. */
2178 PACKET_no_resumed,
2179
2180 /* Support for memory tagging, allocation tag fetch/store
2181 packets and the tag violation stop replies. */
2182 PACKET_memory_tagging_feature,
2183
2184 PACKET_MAX
2185 };
2186
2187 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2188 assuming all remote targets are the same server (thus all support
2189 the same packets). */
2190 static struct packet_config remote_protocol_packets[PACKET_MAX];
2191
2192 /* Returns the packet's corresponding "set remote foo-packet" command
2193 state. See struct packet_config for more details. */
2194
2195 static enum auto_boolean
2196 packet_set_cmd_state (int packet)
2197 {
2198 return remote_protocol_packets[packet].detect;
2199 }
2200
2201 /* Returns whether a given packet or feature is supported. This takes
2202 into account the state of the corresponding "set remote foo-packet"
2203 command, which may be used to bypass auto-detection. */
2204
2205 static enum packet_support
2206 packet_config_support (struct packet_config *config)
2207 {
2208 switch (config->detect)
2209 {
2210 case AUTO_BOOLEAN_TRUE:
2211 return PACKET_ENABLE;
2212 case AUTO_BOOLEAN_FALSE:
2213 return PACKET_DISABLE;
2214 case AUTO_BOOLEAN_AUTO:
2215 return config->support;
2216 default:
2217 gdb_assert_not_reached (_("bad switch"));
2218 }
2219 }
2220
2221 /* Same as packet_config_support, but takes the packet's enum value as
2222 argument. */
2223
2224 static enum packet_support
2225 packet_support (int packet)
2226 {
2227 struct packet_config *config = &remote_protocol_packets[packet];
2228
2229 return packet_config_support (config);
2230 }
2231
2232 static void
2233 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2234 struct cmd_list_element *c,
2235 const char *value)
2236 {
2237 struct packet_config *packet;
2238
2239 for (packet = remote_protocol_packets;
2240 packet < &remote_protocol_packets[PACKET_MAX];
2241 packet++)
2242 {
2243 if (&packet->detect == c->var)
2244 {
2245 show_packet_config_cmd (packet);
2246 return;
2247 }
2248 }
2249 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2250 c->name);
2251 }
2252
2253 /* Should we try one of the 'Z' requests? */
2254
2255 enum Z_packet_type
2256 {
2257 Z_PACKET_SOFTWARE_BP,
2258 Z_PACKET_HARDWARE_BP,
2259 Z_PACKET_WRITE_WP,
2260 Z_PACKET_READ_WP,
2261 Z_PACKET_ACCESS_WP,
2262 NR_Z_PACKET_TYPES
2263 };
2264
2265 /* For compatibility with older distributions. Provide a ``set remote
2266 Z-packet ...'' command that updates all the Z packet types. */
2267
2268 static enum auto_boolean remote_Z_packet_detect;
2269
2270 static void
2271 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2272 struct cmd_list_element *c)
2273 {
2274 int i;
2275
2276 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2277 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2278 }
2279
2280 static void
2281 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2282 struct cmd_list_element *c,
2283 const char *value)
2284 {
2285 int i;
2286
2287 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2288 {
2289 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2290 }
2291 }
2292
2293 /* Returns true if the multi-process extensions are in effect. */
2294
2295 static int
2296 remote_multi_process_p (struct remote_state *rs)
2297 {
2298 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2299 }
2300
2301 /* Returns true if fork events are supported. */
2302
2303 static int
2304 remote_fork_event_p (struct remote_state *rs)
2305 {
2306 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2307 }
2308
2309 /* Returns true if vfork events are supported. */
2310
2311 static int
2312 remote_vfork_event_p (struct remote_state *rs)
2313 {
2314 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2315 }
2316
2317 /* Returns true if exec events are supported. */
2318
2319 static int
2320 remote_exec_event_p (struct remote_state *rs)
2321 {
2322 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2323 }
2324
2325 /* Returns true if memory tagging is supported, false otherwise. */
2326
2327 static bool
2328 remote_memory_tagging_p ()
2329 {
2330 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2331 }
2332
2333 /* Insert fork catchpoint target routine. If fork events are enabled
2334 then return success, nothing more to do. */
2335
2336 int
2337 remote_target::insert_fork_catchpoint (int pid)
2338 {
2339 struct remote_state *rs = get_remote_state ();
2340
2341 return !remote_fork_event_p (rs);
2342 }
2343
2344 /* Remove fork catchpoint target routine. Nothing to do, just
2345 return success. */
2346
2347 int
2348 remote_target::remove_fork_catchpoint (int pid)
2349 {
2350 return 0;
2351 }
2352
2353 /* Insert vfork catchpoint target routine. If vfork events are enabled
2354 then return success, nothing more to do. */
2355
2356 int
2357 remote_target::insert_vfork_catchpoint (int pid)
2358 {
2359 struct remote_state *rs = get_remote_state ();
2360
2361 return !remote_vfork_event_p (rs);
2362 }
2363
2364 /* Remove vfork catchpoint target routine. Nothing to do, just
2365 return success. */
2366
2367 int
2368 remote_target::remove_vfork_catchpoint (int pid)
2369 {
2370 return 0;
2371 }
2372
2373 /* Insert exec catchpoint target routine. If exec events are
2374 enabled, just return success. */
2375
2376 int
2377 remote_target::insert_exec_catchpoint (int pid)
2378 {
2379 struct remote_state *rs = get_remote_state ();
2380
2381 return !remote_exec_event_p (rs);
2382 }
2383
2384 /* Remove exec catchpoint target routine. Nothing to do, just
2385 return success. */
2386
2387 int
2388 remote_target::remove_exec_catchpoint (int pid)
2389 {
2390 return 0;
2391 }
2392
2393 \f
2394
2395 /* Take advantage of the fact that the TID field is not used, to tag
2396 special ptids with it set to != 0. */
2397 static const ptid_t magic_null_ptid (42000, -1, 1);
2398 static const ptid_t not_sent_ptid (42000, -2, 1);
2399 static const ptid_t any_thread_ptid (42000, 0, 1);
2400
2401 /* Find out if the stub attached to PID (and hence GDB should offer to
2402 detach instead of killing it when bailing out). */
2403
2404 int
2405 remote_target::remote_query_attached (int pid)
2406 {
2407 struct remote_state *rs = get_remote_state ();
2408 size_t size = get_remote_packet_size ();
2409
2410 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2411 return 0;
2412
2413 if (remote_multi_process_p (rs))
2414 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2415 else
2416 xsnprintf (rs->buf.data (), size, "qAttached");
2417
2418 putpkt (rs->buf);
2419 getpkt (&rs->buf, 0);
2420
2421 switch (packet_ok (rs->buf,
2422 &remote_protocol_packets[PACKET_qAttached]))
2423 {
2424 case PACKET_OK:
2425 if (strcmp (rs->buf.data (), "1") == 0)
2426 return 1;
2427 break;
2428 case PACKET_ERROR:
2429 warning (_("Remote failure reply: %s"), rs->buf.data ());
2430 break;
2431 case PACKET_UNKNOWN:
2432 break;
2433 }
2434
2435 return 0;
2436 }
2437
2438 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2439 has been invented by GDB, instead of reported by the target. Since
2440 we can be connected to a remote system before before knowing about
2441 any inferior, mark the target with execution when we find the first
2442 inferior. If ATTACHED is 1, then we had just attached to this
2443 inferior. If it is 0, then we just created this inferior. If it
2444 is -1, then try querying the remote stub to find out if it had
2445 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2446 attempt to open this inferior's executable as the main executable
2447 if no main executable is open already. */
2448
2449 inferior *
2450 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2451 int try_open_exec)
2452 {
2453 struct inferior *inf;
2454
2455 /* Check whether this process we're learning about is to be
2456 considered attached, or if is to be considered to have been
2457 spawned by the stub. */
2458 if (attached == -1)
2459 attached = remote_query_attached (pid);
2460
2461 if (gdbarch_has_global_solist (target_gdbarch ()))
2462 {
2463 /* If the target shares code across all inferiors, then every
2464 attach adds a new inferior. */
2465 inf = add_inferior (pid);
2466
2467 /* ... and every inferior is bound to the same program space.
2468 However, each inferior may still have its own address
2469 space. */
2470 inf->aspace = maybe_new_address_space ();
2471 inf->pspace = current_program_space;
2472 }
2473 else
2474 {
2475 /* In the traditional debugging scenario, there's a 1-1 match
2476 between program/address spaces. We simply bind the inferior
2477 to the program space's address space. */
2478 inf = current_inferior ();
2479
2480 /* However, if the current inferior is already bound to a
2481 process, find some other empty inferior. */
2482 if (inf->pid != 0)
2483 {
2484 inf = nullptr;
2485 for (inferior *it : all_inferiors ())
2486 if (it->pid == 0)
2487 {
2488 inf = it;
2489 break;
2490 }
2491 }
2492 if (inf == nullptr)
2493 {
2494 /* Since all inferiors were already bound to a process, add
2495 a new inferior. */
2496 inf = add_inferior_with_spaces ();
2497 }
2498 switch_to_inferior_no_thread (inf);
2499 inf->push_target (this);
2500 inferior_appeared (inf, pid);
2501 }
2502
2503 inf->attach_flag = attached;
2504 inf->fake_pid_p = fake_pid_p;
2505
2506 /* If no main executable is currently open then attempt to
2507 open the file that was executed to create this inferior. */
2508 if (try_open_exec && get_exec_file (0) == NULL)
2509 exec_file_locate_attach (pid, 0, 1);
2510
2511 /* Check for exec file mismatch, and let the user solve it. */
2512 validate_exec_file (1);
2513
2514 return inf;
2515 }
2516
2517 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2518 static remote_thread_info *get_remote_thread_info (remote_target *target,
2519 ptid_t ptid);
2520
2521 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2522 according to RUNNING. */
2523
2524 thread_info *
2525 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2526 {
2527 struct remote_state *rs = get_remote_state ();
2528 struct thread_info *thread;
2529
2530 /* GDB historically didn't pull threads in the initial connection
2531 setup. If the remote target doesn't even have a concept of
2532 threads (e.g., a bare-metal target), even if internally we
2533 consider that a single-threaded target, mentioning a new thread
2534 might be confusing to the user. Be silent then, preserving the
2535 age old behavior. */
2536 if (rs->starting_up)
2537 thread = add_thread_silent (this, ptid);
2538 else
2539 thread = add_thread (this, ptid);
2540
2541 /* We start by assuming threads are resumed. That state then gets updated
2542 when we process a matching stop reply. */
2543 get_remote_thread_info (thread)->set_resumed ();
2544
2545 set_executing (this, ptid, executing);
2546 set_running (this, ptid, running);
2547
2548 return thread;
2549 }
2550
2551 /* Come here when we learn about a thread id from the remote target.
2552 It may be the first time we hear about such thread, so take the
2553 opportunity to add it to GDB's thread list. In case this is the
2554 first time we're noticing its corresponding inferior, add it to
2555 GDB's inferior list as well. EXECUTING indicates whether the
2556 thread is (internally) executing or stopped. */
2557
2558 void
2559 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2560 {
2561 /* In non-stop mode, we assume new found threads are (externally)
2562 running until proven otherwise with a stop reply. In all-stop,
2563 we can only get here if all threads are stopped. */
2564 bool running = target_is_non_stop_p ();
2565
2566 /* If this is a new thread, add it to GDB's thread list.
2567 If we leave it up to WFI to do this, bad things will happen. */
2568
2569 thread_info *tp = find_thread_ptid (this, currthread);
2570 if (tp != NULL && tp->state == THREAD_EXITED)
2571 {
2572 /* We're seeing an event on a thread id we knew had exited.
2573 This has to be a new thread reusing the old id. Add it. */
2574 remote_add_thread (currthread, running, executing);
2575 return;
2576 }
2577
2578 if (!in_thread_list (this, currthread))
2579 {
2580 struct inferior *inf = NULL;
2581 int pid = currthread.pid ();
2582
2583 if (inferior_ptid.is_pid ()
2584 && pid == inferior_ptid.pid ())
2585 {
2586 /* inferior_ptid has no thread member yet. This can happen
2587 with the vAttach -> remote_wait,"TAAthread:" path if the
2588 stub doesn't support qC. This is the first stop reported
2589 after an attach, so this is the main thread. Update the
2590 ptid in the thread list. */
2591 if (in_thread_list (this, ptid_t (pid)))
2592 thread_change_ptid (this, inferior_ptid, currthread);
2593 else
2594 {
2595 thread_info *thr
2596 = remote_add_thread (currthread, running, executing);
2597 switch_to_thread (thr);
2598 }
2599 return;
2600 }
2601
2602 if (magic_null_ptid == inferior_ptid)
2603 {
2604 /* inferior_ptid is not set yet. This can happen with the
2605 vRun -> remote_wait,"TAAthread:" path if the stub
2606 doesn't support qC. This is the first stop reported
2607 after an attach, so this is the main thread. Update the
2608 ptid in the thread list. */
2609 thread_change_ptid (this, inferior_ptid, currthread);
2610 return;
2611 }
2612
2613 /* When connecting to a target remote, or to a target
2614 extended-remote which already was debugging an inferior, we
2615 may not know about it yet. Add it before adding its child
2616 thread, so notifications are emitted in a sensible order. */
2617 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2618 {
2619 struct remote_state *rs = get_remote_state ();
2620 bool fake_pid_p = !remote_multi_process_p (rs);
2621
2622 inf = remote_add_inferior (fake_pid_p,
2623 currthread.pid (), -1, 1);
2624 }
2625
2626 /* This is really a new thread. Add it. */
2627 thread_info *new_thr
2628 = remote_add_thread (currthread, running, executing);
2629
2630 /* If we found a new inferior, let the common code do whatever
2631 it needs to with it (e.g., read shared libraries, insert
2632 breakpoints), unless we're just setting up an all-stop
2633 connection. */
2634 if (inf != NULL)
2635 {
2636 struct remote_state *rs = get_remote_state ();
2637
2638 if (!rs->starting_up)
2639 notice_new_inferior (new_thr, executing, 0);
2640 }
2641 }
2642 }
2643
2644 /* Return THREAD's private thread data, creating it if necessary. */
2645
2646 static remote_thread_info *
2647 get_remote_thread_info (thread_info *thread)
2648 {
2649 gdb_assert (thread != NULL);
2650
2651 if (thread->priv == NULL)
2652 thread->priv.reset (new remote_thread_info);
2653
2654 return static_cast<remote_thread_info *> (thread->priv.get ());
2655 }
2656
2657 /* Return PTID's private thread data, creating it if necessary. */
2658
2659 static remote_thread_info *
2660 get_remote_thread_info (remote_target *target, ptid_t ptid)
2661 {
2662 thread_info *thr = find_thread_ptid (target, ptid);
2663 return get_remote_thread_info (thr);
2664 }
2665
2666 /* Call this function as a result of
2667 1) A halt indication (T packet) containing a thread id
2668 2) A direct query of currthread
2669 3) Successful execution of set thread */
2670
2671 static void
2672 record_currthread (struct remote_state *rs, ptid_t currthread)
2673 {
2674 rs->general_thread = currthread;
2675 }
2676
2677 /* If 'QPassSignals' is supported, tell the remote stub what signals
2678 it can simply pass through to the inferior without reporting. */
2679
2680 void
2681 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2682 {
2683 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2684 {
2685 char *pass_packet, *p;
2686 int count = 0;
2687 struct remote_state *rs = get_remote_state ();
2688
2689 gdb_assert (pass_signals.size () < 256);
2690 for (size_t i = 0; i < pass_signals.size (); i++)
2691 {
2692 if (pass_signals[i])
2693 count++;
2694 }
2695 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2696 strcpy (pass_packet, "QPassSignals:");
2697 p = pass_packet + strlen (pass_packet);
2698 for (size_t i = 0; i < pass_signals.size (); i++)
2699 {
2700 if (pass_signals[i])
2701 {
2702 if (i >= 16)
2703 *p++ = tohex (i >> 4);
2704 *p++ = tohex (i & 15);
2705 if (count)
2706 *p++ = ';';
2707 else
2708 break;
2709 count--;
2710 }
2711 }
2712 *p = 0;
2713 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2714 {
2715 putpkt (pass_packet);
2716 getpkt (&rs->buf, 0);
2717 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2718 xfree (rs->last_pass_packet);
2719 rs->last_pass_packet = pass_packet;
2720 }
2721 else
2722 xfree (pass_packet);
2723 }
2724 }
2725
2726 /* If 'QCatchSyscalls' is supported, tell the remote stub
2727 to report syscalls to GDB. */
2728
2729 int
2730 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2731 gdb::array_view<const int> syscall_counts)
2732 {
2733 const char *catch_packet;
2734 enum packet_result result;
2735 int n_sysno = 0;
2736
2737 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2738 {
2739 /* Not supported. */
2740 return 1;
2741 }
2742
2743 if (needed && any_count == 0)
2744 {
2745 /* Count how many syscalls are to be caught. */
2746 for (size_t i = 0; i < syscall_counts.size (); i++)
2747 {
2748 if (syscall_counts[i] != 0)
2749 n_sysno++;
2750 }
2751 }
2752
2753 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2754 pid, needed, any_count, n_sysno);
2755
2756 std::string built_packet;
2757 if (needed)
2758 {
2759 /* Prepare a packet with the sysno list, assuming max 8+1
2760 characters for a sysno. If the resulting packet size is too
2761 big, fallback on the non-selective packet. */
2762 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2763 built_packet.reserve (maxpktsz);
2764 built_packet = "QCatchSyscalls:1";
2765 if (any_count == 0)
2766 {
2767 /* Add in each syscall to be caught. */
2768 for (size_t i = 0; i < syscall_counts.size (); i++)
2769 {
2770 if (syscall_counts[i] != 0)
2771 string_appendf (built_packet, ";%zx", i);
2772 }
2773 }
2774 if (built_packet.size () > get_remote_packet_size ())
2775 {
2776 /* catch_packet too big. Fallback to less efficient
2777 non selective mode, with GDB doing the filtering. */
2778 catch_packet = "QCatchSyscalls:1";
2779 }
2780 else
2781 catch_packet = built_packet.c_str ();
2782 }
2783 else
2784 catch_packet = "QCatchSyscalls:0";
2785
2786 struct remote_state *rs = get_remote_state ();
2787
2788 putpkt (catch_packet);
2789 getpkt (&rs->buf, 0);
2790 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2791 if (result == PACKET_OK)
2792 return 0;
2793 else
2794 return -1;
2795 }
2796
2797 /* If 'QProgramSignals' is supported, tell the remote stub what
2798 signals it should pass through to the inferior when detaching. */
2799
2800 void
2801 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2802 {
2803 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2804 {
2805 char *packet, *p;
2806 int count = 0;
2807 struct remote_state *rs = get_remote_state ();
2808
2809 gdb_assert (signals.size () < 256);
2810 for (size_t i = 0; i < signals.size (); i++)
2811 {
2812 if (signals[i])
2813 count++;
2814 }
2815 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2816 strcpy (packet, "QProgramSignals:");
2817 p = packet + strlen (packet);
2818 for (size_t i = 0; i < signals.size (); i++)
2819 {
2820 if (signal_pass_state (i))
2821 {
2822 if (i >= 16)
2823 *p++ = tohex (i >> 4);
2824 *p++ = tohex (i & 15);
2825 if (count)
2826 *p++ = ';';
2827 else
2828 break;
2829 count--;
2830 }
2831 }
2832 *p = 0;
2833 if (!rs->last_program_signals_packet
2834 || strcmp (rs->last_program_signals_packet, packet) != 0)
2835 {
2836 putpkt (packet);
2837 getpkt (&rs->buf, 0);
2838 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2839 xfree (rs->last_program_signals_packet);
2840 rs->last_program_signals_packet = packet;
2841 }
2842 else
2843 xfree (packet);
2844 }
2845 }
2846
2847 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2848 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2849 thread. If GEN is set, set the general thread, if not, then set
2850 the step/continue thread. */
2851 void
2852 remote_target::set_thread (ptid_t ptid, int gen)
2853 {
2854 struct remote_state *rs = get_remote_state ();
2855 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2856 char *buf = rs->buf.data ();
2857 char *endbuf = buf + get_remote_packet_size ();
2858
2859 if (state == ptid)
2860 return;
2861
2862 *buf++ = 'H';
2863 *buf++ = gen ? 'g' : 'c';
2864 if (ptid == magic_null_ptid)
2865 xsnprintf (buf, endbuf - buf, "0");
2866 else if (ptid == any_thread_ptid)
2867 xsnprintf (buf, endbuf - buf, "0");
2868 else if (ptid == minus_one_ptid)
2869 xsnprintf (buf, endbuf - buf, "-1");
2870 else
2871 write_ptid (buf, endbuf, ptid);
2872 putpkt (rs->buf);
2873 getpkt (&rs->buf, 0);
2874 if (gen)
2875 rs->general_thread = ptid;
2876 else
2877 rs->continue_thread = ptid;
2878 }
2879
2880 void
2881 remote_target::set_general_thread (ptid_t ptid)
2882 {
2883 set_thread (ptid, 1);
2884 }
2885
2886 void
2887 remote_target::set_continue_thread (ptid_t ptid)
2888 {
2889 set_thread (ptid, 0);
2890 }
2891
2892 /* Change the remote current process. Which thread within the process
2893 ends up selected isn't important, as long as it is the same process
2894 as what INFERIOR_PTID points to.
2895
2896 This comes from that fact that there is no explicit notion of
2897 "selected process" in the protocol. The selected process for
2898 general operations is the process the selected general thread
2899 belongs to. */
2900
2901 void
2902 remote_target::set_general_process ()
2903 {
2904 struct remote_state *rs = get_remote_state ();
2905
2906 /* If the remote can't handle multiple processes, don't bother. */
2907 if (!remote_multi_process_p (rs))
2908 return;
2909
2910 /* We only need to change the remote current thread if it's pointing
2911 at some other process. */
2912 if (rs->general_thread.pid () != inferior_ptid.pid ())
2913 set_general_thread (inferior_ptid);
2914 }
2915
2916 \f
2917 /* Return nonzero if this is the main thread that we made up ourselves
2918 to model non-threaded targets as single-threaded. */
2919
2920 static int
2921 remote_thread_always_alive (ptid_t ptid)
2922 {
2923 if (ptid == magic_null_ptid)
2924 /* The main thread is always alive. */
2925 return 1;
2926
2927 if (ptid.pid () != 0 && ptid.lwp () == 0)
2928 /* The main thread is always alive. This can happen after a
2929 vAttach, if the remote side doesn't support
2930 multi-threading. */
2931 return 1;
2932
2933 return 0;
2934 }
2935
2936 /* Return nonzero if the thread PTID is still alive on the remote
2937 system. */
2938
2939 bool
2940 remote_target::thread_alive (ptid_t ptid)
2941 {
2942 struct remote_state *rs = get_remote_state ();
2943 char *p, *endp;
2944
2945 /* Check if this is a thread that we made up ourselves to model
2946 non-threaded targets as single-threaded. */
2947 if (remote_thread_always_alive (ptid))
2948 return 1;
2949
2950 p = rs->buf.data ();
2951 endp = p + get_remote_packet_size ();
2952
2953 *p++ = 'T';
2954 write_ptid (p, endp, ptid);
2955
2956 putpkt (rs->buf);
2957 getpkt (&rs->buf, 0);
2958 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2959 }
2960
2961 /* Return a pointer to a thread name if we know it and NULL otherwise.
2962 The thread_info object owns the memory for the name. */
2963
2964 const char *
2965 remote_target::thread_name (struct thread_info *info)
2966 {
2967 if (info->priv != NULL)
2968 {
2969 const std::string &name = get_remote_thread_info (info)->name;
2970 return !name.empty () ? name.c_str () : NULL;
2971 }
2972
2973 return NULL;
2974 }
2975
2976 /* About these extended threadlist and threadinfo packets. They are
2977 variable length packets but, the fields within them are often fixed
2978 length. They are redundant enough to send over UDP as is the
2979 remote protocol in general. There is a matching unit test module
2980 in libstub. */
2981
2982 /* WARNING: This threadref data structure comes from the remote O.S.,
2983 libstub protocol encoding, and remote.c. It is not particularly
2984 changable. */
2985
2986 /* Right now, the internal structure is int. We want it to be bigger.
2987 Plan to fix this. */
2988
2989 typedef int gdb_threadref; /* Internal GDB thread reference. */
2990
2991 /* gdb_ext_thread_info is an internal GDB data structure which is
2992 equivalent to the reply of the remote threadinfo packet. */
2993
2994 struct gdb_ext_thread_info
2995 {
2996 threadref threadid; /* External form of thread reference. */
2997 int active; /* Has state interesting to GDB?
2998 regs, stack. */
2999 char display[256]; /* Brief state display, name,
3000 blocked/suspended. */
3001 char shortname[32]; /* To be used to name threads. */
3002 char more_display[256]; /* Long info, statistics, queue depth,
3003 whatever. */
3004 };
3005
3006 /* The volume of remote transfers can be limited by submitting
3007 a mask containing bits specifying the desired information.
3008 Use a union of these values as the 'selection' parameter to
3009 get_thread_info. FIXME: Make these TAG names more thread specific. */
3010
3011 #define TAG_THREADID 1
3012 #define TAG_EXISTS 2
3013 #define TAG_DISPLAY 4
3014 #define TAG_THREADNAME 8
3015 #define TAG_MOREDISPLAY 16
3016
3017 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3018
3019 static const char *unpack_nibble (const char *buf, int *val);
3020
3021 static const char *unpack_byte (const char *buf, int *value);
3022
3023 static char *pack_int (char *buf, int value);
3024
3025 static const char *unpack_int (const char *buf, int *value);
3026
3027 static const char *unpack_string (const char *src, char *dest, int length);
3028
3029 static char *pack_threadid (char *pkt, threadref *id);
3030
3031 static const char *unpack_threadid (const char *inbuf, threadref *id);
3032
3033 void int_to_threadref (threadref *id, int value);
3034
3035 static int threadref_to_int (threadref *ref);
3036
3037 static void copy_threadref (threadref *dest, threadref *src);
3038
3039 static int threadmatch (threadref *dest, threadref *src);
3040
3041 static char *pack_threadinfo_request (char *pkt, int mode,
3042 threadref *id);
3043
3044 static char *pack_threadlist_request (char *pkt, int startflag,
3045 int threadcount,
3046 threadref *nextthread);
3047
3048 static int remote_newthread_step (threadref *ref, void *context);
3049
3050
3051 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3052 buffer we're allowed to write to. Returns
3053 BUF+CHARACTERS_WRITTEN. */
3054
3055 char *
3056 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3057 {
3058 int pid, tid;
3059 struct remote_state *rs = get_remote_state ();
3060
3061 if (remote_multi_process_p (rs))
3062 {
3063 pid = ptid.pid ();
3064 if (pid < 0)
3065 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3066 else
3067 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3068 }
3069 tid = ptid.lwp ();
3070 if (tid < 0)
3071 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3072 else
3073 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3074
3075 return buf;
3076 }
3077
3078 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3079 last parsed char. Returns null_ptid if no thread id is found, and
3080 throws an error if the thread id has an invalid format. */
3081
3082 static ptid_t
3083 read_ptid (const char *buf, const char **obuf)
3084 {
3085 const char *p = buf;
3086 const char *pp;
3087 ULONGEST pid = 0, tid = 0;
3088
3089 if (*p == 'p')
3090 {
3091 /* Multi-process ptid. */
3092 pp = unpack_varlen_hex (p + 1, &pid);
3093 if (*pp != '.')
3094 error (_("invalid remote ptid: %s"), p);
3095
3096 p = pp;
3097 pp = unpack_varlen_hex (p + 1, &tid);
3098 if (obuf)
3099 *obuf = pp;
3100 return ptid_t (pid, tid, 0);
3101 }
3102
3103 /* No multi-process. Just a tid. */
3104 pp = unpack_varlen_hex (p, &tid);
3105
3106 /* Return null_ptid when no thread id is found. */
3107 if (p == pp)
3108 {
3109 if (obuf)
3110 *obuf = pp;
3111 return null_ptid;
3112 }
3113
3114 /* Since the stub is not sending a process id, then default to
3115 what's in inferior_ptid, unless it's null at this point. If so,
3116 then since there's no way to know the pid of the reported
3117 threads, use the magic number. */
3118 if (inferior_ptid == null_ptid)
3119 pid = magic_null_ptid.pid ();
3120 else
3121 pid = inferior_ptid.pid ();
3122
3123 if (obuf)
3124 *obuf = pp;
3125 return ptid_t (pid, tid, 0);
3126 }
3127
3128 static int
3129 stubhex (int ch)
3130 {
3131 if (ch >= 'a' && ch <= 'f')
3132 return ch - 'a' + 10;
3133 if (ch >= '0' && ch <= '9')
3134 return ch - '0';
3135 if (ch >= 'A' && ch <= 'F')
3136 return ch - 'A' + 10;
3137 return -1;
3138 }
3139
3140 static int
3141 stub_unpack_int (const char *buff, int fieldlength)
3142 {
3143 int nibble;
3144 int retval = 0;
3145
3146 while (fieldlength)
3147 {
3148 nibble = stubhex (*buff++);
3149 retval |= nibble;
3150 fieldlength--;
3151 if (fieldlength)
3152 retval = retval << 4;
3153 }
3154 return retval;
3155 }
3156
3157 static const char *
3158 unpack_nibble (const char *buf, int *val)
3159 {
3160 *val = fromhex (*buf++);
3161 return buf;
3162 }
3163
3164 static const char *
3165 unpack_byte (const char *buf, int *value)
3166 {
3167 *value = stub_unpack_int (buf, 2);
3168 return buf + 2;
3169 }
3170
3171 static char *
3172 pack_int (char *buf, int value)
3173 {
3174 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3175 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3176 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3177 buf = pack_hex_byte (buf, (value & 0xff));
3178 return buf;
3179 }
3180
3181 static const char *
3182 unpack_int (const char *buf, int *value)
3183 {
3184 *value = stub_unpack_int (buf, 8);
3185 return buf + 8;
3186 }
3187
3188 #if 0 /* Currently unused, uncomment when needed. */
3189 static char *pack_string (char *pkt, char *string);
3190
3191 static char *
3192 pack_string (char *pkt, char *string)
3193 {
3194 char ch;
3195 int len;
3196
3197 len = strlen (string);
3198 if (len > 200)
3199 len = 200; /* Bigger than most GDB packets, junk??? */
3200 pkt = pack_hex_byte (pkt, len);
3201 while (len-- > 0)
3202 {
3203 ch = *string++;
3204 if ((ch == '\0') || (ch == '#'))
3205 ch = '*'; /* Protect encapsulation. */
3206 *pkt++ = ch;
3207 }
3208 return pkt;
3209 }
3210 #endif /* 0 (unused) */
3211
3212 static const char *
3213 unpack_string (const char *src, char *dest, int length)
3214 {
3215 while (length--)
3216 *dest++ = *src++;
3217 *dest = '\0';
3218 return src;
3219 }
3220
3221 static char *
3222 pack_threadid (char *pkt, threadref *id)
3223 {
3224 char *limit;
3225 unsigned char *altid;
3226
3227 altid = (unsigned char *) id;
3228 limit = pkt + BUF_THREAD_ID_SIZE;
3229 while (pkt < limit)
3230 pkt = pack_hex_byte (pkt, *altid++);
3231 return pkt;
3232 }
3233
3234
3235 static const char *
3236 unpack_threadid (const char *inbuf, threadref *id)
3237 {
3238 char *altref;
3239 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3240 int x, y;
3241
3242 altref = (char *) id;
3243
3244 while (inbuf < limit)
3245 {
3246 x = stubhex (*inbuf++);
3247 y = stubhex (*inbuf++);
3248 *altref++ = (x << 4) | y;
3249 }
3250 return inbuf;
3251 }
3252
3253 /* Externally, threadrefs are 64 bits but internally, they are still
3254 ints. This is due to a mismatch of specifications. We would like
3255 to use 64bit thread references internally. This is an adapter
3256 function. */
3257
3258 void
3259 int_to_threadref (threadref *id, int value)
3260 {
3261 unsigned char *scan;
3262
3263 scan = (unsigned char *) id;
3264 {
3265 int i = 4;
3266 while (i--)
3267 *scan++ = 0;
3268 }
3269 *scan++ = (value >> 24) & 0xff;
3270 *scan++ = (value >> 16) & 0xff;
3271 *scan++ = (value >> 8) & 0xff;
3272 *scan++ = (value & 0xff);
3273 }
3274
3275 static int
3276 threadref_to_int (threadref *ref)
3277 {
3278 int i, value = 0;
3279 unsigned char *scan;
3280
3281 scan = *ref;
3282 scan += 4;
3283 i = 4;
3284 while (i-- > 0)
3285 value = (value << 8) | ((*scan++) & 0xff);
3286 return value;
3287 }
3288
3289 static void
3290 copy_threadref (threadref *dest, threadref *src)
3291 {
3292 int i;
3293 unsigned char *csrc, *cdest;
3294
3295 csrc = (unsigned char *) src;
3296 cdest = (unsigned char *) dest;
3297 i = 8;
3298 while (i--)
3299 *cdest++ = *csrc++;
3300 }
3301
3302 static int
3303 threadmatch (threadref *dest, threadref *src)
3304 {
3305 /* Things are broken right now, so just assume we got a match. */
3306 #if 0
3307 unsigned char *srcp, *destp;
3308 int i, result;
3309 srcp = (char *) src;
3310 destp = (char *) dest;
3311
3312 result = 1;
3313 while (i-- > 0)
3314 result &= (*srcp++ == *destp++) ? 1 : 0;
3315 return result;
3316 #endif
3317 return 1;
3318 }
3319
3320 /*
3321 threadid:1, # always request threadid
3322 context_exists:2,
3323 display:4,
3324 unique_name:8,
3325 more_display:16
3326 */
3327
3328 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3329
3330 static char *
3331 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3332 {
3333 *pkt++ = 'q'; /* Info Query */
3334 *pkt++ = 'P'; /* process or thread info */
3335 pkt = pack_int (pkt, mode); /* mode */
3336 pkt = pack_threadid (pkt, id); /* threadid */
3337 *pkt = '\0'; /* terminate */
3338 return pkt;
3339 }
3340
3341 /* These values tag the fields in a thread info response packet. */
3342 /* Tagging the fields allows us to request specific fields and to
3343 add more fields as time goes by. */
3344
3345 #define TAG_THREADID 1 /* Echo the thread identifier. */
3346 #define TAG_EXISTS 2 /* Is this process defined enough to
3347 fetch registers and its stack? */
3348 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3349 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3350 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3351 the process. */
3352
3353 int
3354 remote_target::remote_unpack_thread_info_response (const char *pkt,
3355 threadref *expectedref,
3356 gdb_ext_thread_info *info)
3357 {
3358 struct remote_state *rs = get_remote_state ();
3359 int mask, length;
3360 int tag;
3361 threadref ref;
3362 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3363 int retval = 1;
3364
3365 /* info->threadid = 0; FIXME: implement zero_threadref. */
3366 info->active = 0;
3367 info->display[0] = '\0';
3368 info->shortname[0] = '\0';
3369 info->more_display[0] = '\0';
3370
3371 /* Assume the characters indicating the packet type have been
3372 stripped. */
3373 pkt = unpack_int (pkt, &mask); /* arg mask */
3374 pkt = unpack_threadid (pkt, &ref);
3375
3376 if (mask == 0)
3377 warning (_("Incomplete response to threadinfo request."));
3378 if (!threadmatch (&ref, expectedref))
3379 { /* This is an answer to a different request. */
3380 warning (_("ERROR RMT Thread info mismatch."));
3381 return 0;
3382 }
3383 copy_threadref (&info->threadid, &ref);
3384
3385 /* Loop on tagged fields , try to bail if something goes wrong. */
3386
3387 /* Packets are terminated with nulls. */
3388 while ((pkt < limit) && mask && *pkt)
3389 {
3390 pkt = unpack_int (pkt, &tag); /* tag */
3391 pkt = unpack_byte (pkt, &length); /* length */
3392 if (!(tag & mask)) /* Tags out of synch with mask. */
3393 {
3394 warning (_("ERROR RMT: threadinfo tag mismatch."));
3395 retval = 0;
3396 break;
3397 }
3398 if (tag == TAG_THREADID)
3399 {
3400 if (length != 16)
3401 {
3402 warning (_("ERROR RMT: length of threadid is not 16."));
3403 retval = 0;
3404 break;
3405 }
3406 pkt = unpack_threadid (pkt, &ref);
3407 mask = mask & ~TAG_THREADID;
3408 continue;
3409 }
3410 if (tag == TAG_EXISTS)
3411 {
3412 info->active = stub_unpack_int (pkt, length);
3413 pkt += length;
3414 mask = mask & ~(TAG_EXISTS);
3415 if (length > 8)
3416 {
3417 warning (_("ERROR RMT: 'exists' length too long."));
3418 retval = 0;
3419 break;
3420 }
3421 continue;
3422 }
3423 if (tag == TAG_THREADNAME)
3424 {
3425 pkt = unpack_string (pkt, &info->shortname[0], length);
3426 mask = mask & ~TAG_THREADNAME;
3427 continue;
3428 }
3429 if (tag == TAG_DISPLAY)
3430 {
3431 pkt = unpack_string (pkt, &info->display[0], length);
3432 mask = mask & ~TAG_DISPLAY;
3433 continue;
3434 }
3435 if (tag == TAG_MOREDISPLAY)
3436 {
3437 pkt = unpack_string (pkt, &info->more_display[0], length);
3438 mask = mask & ~TAG_MOREDISPLAY;
3439 continue;
3440 }
3441 warning (_("ERROR RMT: unknown thread info tag."));
3442 break; /* Not a tag we know about. */
3443 }
3444 return retval;
3445 }
3446
3447 int
3448 remote_target::remote_get_threadinfo (threadref *threadid,
3449 int fieldset,
3450 gdb_ext_thread_info *info)
3451 {
3452 struct remote_state *rs = get_remote_state ();
3453 int result;
3454
3455 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3456 putpkt (rs->buf);
3457 getpkt (&rs->buf, 0);
3458
3459 if (rs->buf[0] == '\0')
3460 return 0;
3461
3462 result = remote_unpack_thread_info_response (&rs->buf[2],
3463 threadid, info);
3464 return result;
3465 }
3466
3467 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3468
3469 static char *
3470 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3471 threadref *nextthread)
3472 {
3473 *pkt++ = 'q'; /* info query packet */
3474 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3475 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3476 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3477 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3478 *pkt = '\0';
3479 return pkt;
3480 }
3481
3482 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3483
3484 int
3485 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3486 threadref *original_echo,
3487 threadref *resultlist,
3488 int *doneflag)
3489 {
3490 struct remote_state *rs = get_remote_state ();
3491 int count, resultcount, done;
3492
3493 resultcount = 0;
3494 /* Assume the 'q' and 'M chars have been stripped. */
3495 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3496 /* done parse past here */
3497 pkt = unpack_byte (pkt, &count); /* count field */
3498 pkt = unpack_nibble (pkt, &done);
3499 /* The first threadid is the argument threadid. */
3500 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3501 while ((count-- > 0) && (pkt < limit))
3502 {
3503 pkt = unpack_threadid (pkt, resultlist++);
3504 if (resultcount++ >= result_limit)
3505 break;
3506 }
3507 if (doneflag)
3508 *doneflag = done;
3509 return resultcount;
3510 }
3511
3512 /* Fetch the next batch of threads from the remote. Returns -1 if the
3513 qL packet is not supported, 0 on error and 1 on success. */
3514
3515 int
3516 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3517 int result_limit, int *done, int *result_count,
3518 threadref *threadlist)
3519 {
3520 struct remote_state *rs = get_remote_state ();
3521 int result = 1;
3522
3523 /* Truncate result limit to be smaller than the packet size. */
3524 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3525 >= get_remote_packet_size ())
3526 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3527
3528 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3529 nextthread);
3530 putpkt (rs->buf);
3531 getpkt (&rs->buf, 0);
3532 if (rs->buf[0] == '\0')
3533 {
3534 /* Packet not supported. */
3535 return -1;
3536 }
3537
3538 *result_count =
3539 parse_threadlist_response (&rs->buf[2], result_limit,
3540 &rs->echo_nextthread, threadlist, done);
3541
3542 if (!threadmatch (&rs->echo_nextthread, nextthread))
3543 {
3544 /* FIXME: This is a good reason to drop the packet. */
3545 /* Possibly, there is a duplicate response. */
3546 /* Possibilities :
3547 retransmit immediatly - race conditions
3548 retransmit after timeout - yes
3549 exit
3550 wait for packet, then exit
3551 */
3552 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3553 return 0; /* I choose simply exiting. */
3554 }
3555 if (*result_count <= 0)
3556 {
3557 if (*done != 1)
3558 {
3559 warning (_("RMT ERROR : failed to get remote thread list."));
3560 result = 0;
3561 }
3562 return result; /* break; */
3563 }
3564 if (*result_count > result_limit)
3565 {
3566 *result_count = 0;
3567 warning (_("RMT ERROR: threadlist response longer than requested."));
3568 return 0;
3569 }
3570 return result;
3571 }
3572
3573 /* Fetch the list of remote threads, with the qL packet, and call
3574 STEPFUNCTION for each thread found. Stops iterating and returns 1
3575 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3576 STEPFUNCTION returns false. If the packet is not supported,
3577 returns -1. */
3578
3579 int
3580 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3581 void *context, int looplimit)
3582 {
3583 struct remote_state *rs = get_remote_state ();
3584 int done, i, result_count;
3585 int startflag = 1;
3586 int result = 1;
3587 int loopcount = 0;
3588
3589 done = 0;
3590 while (!done)
3591 {
3592 if (loopcount++ > looplimit)
3593 {
3594 result = 0;
3595 warning (_("Remote fetch threadlist -infinite loop-."));
3596 break;
3597 }
3598 result = remote_get_threadlist (startflag, &rs->nextthread,
3599 MAXTHREADLISTRESULTS,
3600 &done, &result_count,
3601 rs->resultthreadlist);
3602 if (result <= 0)
3603 break;
3604 /* Clear for later iterations. */
3605 startflag = 0;
3606 /* Setup to resume next batch of thread references, set nextthread. */
3607 if (result_count >= 1)
3608 copy_threadref (&rs->nextthread,
3609 &rs->resultthreadlist[result_count - 1]);
3610 i = 0;
3611 while (result_count--)
3612 {
3613 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3614 {
3615 result = 0;
3616 break;
3617 }
3618 }
3619 }
3620 return result;
3621 }
3622
3623 /* A thread found on the remote target. */
3624
3625 struct thread_item
3626 {
3627 explicit thread_item (ptid_t ptid_)
3628 : ptid (ptid_)
3629 {}
3630
3631 thread_item (thread_item &&other) = default;
3632 thread_item &operator= (thread_item &&other) = default;
3633
3634 DISABLE_COPY_AND_ASSIGN (thread_item);
3635
3636 /* The thread's PTID. */
3637 ptid_t ptid;
3638
3639 /* The thread's extra info. */
3640 std::string extra;
3641
3642 /* The thread's name. */
3643 std::string name;
3644
3645 /* The core the thread was running on. -1 if not known. */
3646 int core = -1;
3647
3648 /* The thread handle associated with the thread. */
3649 gdb::byte_vector thread_handle;
3650 };
3651
3652 /* Context passed around to the various methods listing remote
3653 threads. As new threads are found, they're added to the ITEMS
3654 vector. */
3655
3656 struct threads_listing_context
3657 {
3658 /* Return true if this object contains an entry for a thread with ptid
3659 PTID. */
3660
3661 bool contains_thread (ptid_t ptid) const
3662 {
3663 auto match_ptid = [&] (const thread_item &item)
3664 {
3665 return item.ptid == ptid;
3666 };
3667
3668 auto it = std::find_if (this->items.begin (),
3669 this->items.end (),
3670 match_ptid);
3671
3672 return it != this->items.end ();
3673 }
3674
3675 /* Remove the thread with ptid PTID. */
3676
3677 void remove_thread (ptid_t ptid)
3678 {
3679 auto match_ptid = [&] (const thread_item &item)
3680 {
3681 return item.ptid == ptid;
3682 };
3683
3684 auto it = std::remove_if (this->items.begin (),
3685 this->items.end (),
3686 match_ptid);
3687
3688 if (it != this->items.end ())
3689 this->items.erase (it);
3690 }
3691
3692 /* The threads found on the remote target. */
3693 std::vector<thread_item> items;
3694 };
3695
3696 static int
3697 remote_newthread_step (threadref *ref, void *data)
3698 {
3699 struct threads_listing_context *context
3700 = (struct threads_listing_context *) data;
3701 int pid = inferior_ptid.pid ();
3702 int lwp = threadref_to_int (ref);
3703 ptid_t ptid (pid, lwp);
3704
3705 context->items.emplace_back (ptid);
3706
3707 return 1; /* continue iterator */
3708 }
3709
3710 #define CRAZY_MAX_THREADS 1000
3711
3712 ptid_t
3713 remote_target::remote_current_thread (ptid_t oldpid)
3714 {
3715 struct remote_state *rs = get_remote_state ();
3716
3717 putpkt ("qC");
3718 getpkt (&rs->buf, 0);
3719 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3720 {
3721 const char *obuf;
3722 ptid_t result;
3723
3724 result = read_ptid (&rs->buf[2], &obuf);
3725 if (*obuf != '\0')
3726 remote_debug_printf ("warning: garbage in qC reply");
3727
3728 return result;
3729 }
3730 else
3731 return oldpid;
3732 }
3733
3734 /* List remote threads using the deprecated qL packet. */
3735
3736 int
3737 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3738 {
3739 if (remote_threadlist_iterator (remote_newthread_step, context,
3740 CRAZY_MAX_THREADS) >= 0)
3741 return 1;
3742
3743 return 0;
3744 }
3745
3746 #if defined(HAVE_LIBEXPAT)
3747
3748 static void
3749 start_thread (struct gdb_xml_parser *parser,
3750 const struct gdb_xml_element *element,
3751 void *user_data,
3752 std::vector<gdb_xml_value> &attributes)
3753 {
3754 struct threads_listing_context *data
3755 = (struct threads_listing_context *) user_data;
3756 struct gdb_xml_value *attr;
3757
3758 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3759 ptid_t ptid = read_ptid (id, NULL);
3760
3761 data->items.emplace_back (ptid);
3762 thread_item &item = data->items.back ();
3763
3764 attr = xml_find_attribute (attributes, "core");
3765 if (attr != NULL)
3766 item.core = *(ULONGEST *) attr->value.get ();
3767
3768 attr = xml_find_attribute (attributes, "name");
3769 if (attr != NULL)
3770 item.name = (const char *) attr->value.get ();
3771
3772 attr = xml_find_attribute (attributes, "handle");
3773 if (attr != NULL)
3774 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3775 }
3776
3777 static void
3778 end_thread (struct gdb_xml_parser *parser,
3779 const struct gdb_xml_element *element,
3780 void *user_data, const char *body_text)
3781 {
3782 struct threads_listing_context *data
3783 = (struct threads_listing_context *) user_data;
3784
3785 if (body_text != NULL && *body_text != '\0')
3786 data->items.back ().extra = body_text;
3787 }
3788
3789 const struct gdb_xml_attribute thread_attributes[] = {
3790 { "id", GDB_XML_AF_NONE, NULL, NULL },
3791 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3792 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3793 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3794 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3795 };
3796
3797 const struct gdb_xml_element thread_children[] = {
3798 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3799 };
3800
3801 const struct gdb_xml_element threads_children[] = {
3802 { "thread", thread_attributes, thread_children,
3803 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3804 start_thread, end_thread },
3805 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3806 };
3807
3808 const struct gdb_xml_element threads_elements[] = {
3809 { "threads", NULL, threads_children,
3810 GDB_XML_EF_NONE, NULL, NULL },
3811 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3812 };
3813
3814 #endif
3815
3816 /* List remote threads using qXfer:threads:read. */
3817
3818 int
3819 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3820 {
3821 #if defined(HAVE_LIBEXPAT)
3822 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3823 {
3824 gdb::optional<gdb::char_vector> xml
3825 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3826
3827 if (xml && (*xml)[0] != '\0')
3828 {
3829 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3830 threads_elements, xml->data (), context);
3831 }
3832
3833 return 1;
3834 }
3835 #endif
3836
3837 return 0;
3838 }
3839
3840 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3841
3842 int
3843 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3844 {
3845 struct remote_state *rs = get_remote_state ();
3846
3847 if (rs->use_threadinfo_query)
3848 {
3849 const char *bufp;
3850
3851 putpkt ("qfThreadInfo");
3852 getpkt (&rs->buf, 0);
3853 bufp = rs->buf.data ();
3854 if (bufp[0] != '\0') /* q packet recognized */
3855 {
3856 while (*bufp++ == 'm') /* reply contains one or more TID */
3857 {
3858 do
3859 {
3860 ptid_t ptid = read_ptid (bufp, &bufp);
3861 context->items.emplace_back (ptid);
3862 }
3863 while (*bufp++ == ','); /* comma-separated list */
3864 putpkt ("qsThreadInfo");
3865 getpkt (&rs->buf, 0);
3866 bufp = rs->buf.data ();
3867 }
3868 return 1;
3869 }
3870 else
3871 {
3872 /* Packet not recognized. */
3873 rs->use_threadinfo_query = 0;
3874 }
3875 }
3876
3877 return 0;
3878 }
3879
3880 /* Return true if INF only has one non-exited thread. */
3881
3882 static bool
3883 has_single_non_exited_thread (inferior *inf)
3884 {
3885 int count = 0;
3886 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3887 if (++count > 1)
3888 break;
3889 return count == 1;
3890 }
3891
3892 /* Implement the to_update_thread_list function for the remote
3893 targets. */
3894
3895 void
3896 remote_target::update_thread_list ()
3897 {
3898 struct threads_listing_context context;
3899 int got_list = 0;
3900
3901 /* We have a few different mechanisms to fetch the thread list. Try
3902 them all, starting with the most preferred one first, falling
3903 back to older methods. */
3904 if (remote_get_threads_with_qxfer (&context)
3905 || remote_get_threads_with_qthreadinfo (&context)
3906 || remote_get_threads_with_ql (&context))
3907 {
3908 got_list = 1;
3909
3910 if (context.items.empty ()
3911 && remote_thread_always_alive (inferior_ptid))
3912 {
3913 /* Some targets don't really support threads, but still
3914 reply an (empty) thread list in response to the thread
3915 listing packets, instead of replying "packet not
3916 supported". Exit early so we don't delete the main
3917 thread. */
3918 return;
3919 }
3920
3921 /* CONTEXT now holds the current thread list on the remote
3922 target end. Delete GDB-side threads no longer found on the
3923 target. */
3924 for (thread_info *tp : all_threads_safe ())
3925 {
3926 if (tp->inf->process_target () != this)
3927 continue;
3928
3929 if (!context.contains_thread (tp->ptid))
3930 {
3931 /* Do not remove the thread if it is the last thread in
3932 the inferior. This situation happens when we have a
3933 pending exit process status to process. Otherwise we
3934 may end up with a seemingly live inferior (i.e. pid
3935 != 0) that has no threads. */
3936 if (has_single_non_exited_thread (tp->inf))
3937 continue;
3938
3939 /* Not found. */
3940 delete_thread (tp);
3941 }
3942 }
3943
3944 /* Remove any unreported fork child threads from CONTEXT so
3945 that we don't interfere with follow fork, which is where
3946 creation of such threads is handled. */
3947 remove_new_fork_children (&context);
3948
3949 /* And now add threads we don't know about yet to our list. */
3950 for (thread_item &item : context.items)
3951 {
3952 if (item.ptid != null_ptid)
3953 {
3954 /* In non-stop mode, we assume new found threads are
3955 executing until proven otherwise with a stop reply.
3956 In all-stop, we can only get here if all threads are
3957 stopped. */
3958 bool executing = target_is_non_stop_p ();
3959
3960 remote_notice_new_inferior (item.ptid, executing);
3961
3962 thread_info *tp = find_thread_ptid (this, item.ptid);
3963 remote_thread_info *info = get_remote_thread_info (tp);
3964 info->core = item.core;
3965 info->extra = std::move (item.extra);
3966 info->name = std::move (item.name);
3967 info->thread_handle = std::move (item.thread_handle);
3968 }
3969 }
3970 }
3971
3972 if (!got_list)
3973 {
3974 /* If no thread listing method is supported, then query whether
3975 each known thread is alive, one by one, with the T packet.
3976 If the target doesn't support threads at all, then this is a
3977 no-op. See remote_thread_alive. */
3978 prune_threads ();
3979 }
3980 }
3981
3982 /*
3983 * Collect a descriptive string about the given thread.
3984 * The target may say anything it wants to about the thread
3985 * (typically info about its blocked / runnable state, name, etc.).
3986 * This string will appear in the info threads display.
3987 *
3988 * Optional: targets are not required to implement this function.
3989 */
3990
3991 const char *
3992 remote_target::extra_thread_info (thread_info *tp)
3993 {
3994 struct remote_state *rs = get_remote_state ();
3995 int set;
3996 threadref id;
3997 struct gdb_ext_thread_info threadinfo;
3998
3999 if (rs->remote_desc == 0) /* paranoia */
4000 internal_error (__FILE__, __LINE__,
4001 _("remote_threads_extra_info"));
4002
4003 if (tp->ptid == magic_null_ptid
4004 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4005 /* This is the main thread which was added by GDB. The remote
4006 server doesn't know about it. */
4007 return NULL;
4008
4009 std::string &extra = get_remote_thread_info (tp)->extra;
4010
4011 /* If already have cached info, use it. */
4012 if (!extra.empty ())
4013 return extra.c_str ();
4014
4015 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4016 {
4017 /* If we're using qXfer:threads:read, then the extra info is
4018 included in the XML. So if we didn't have anything cached,
4019 it's because there's really no extra info. */
4020 return NULL;
4021 }
4022
4023 if (rs->use_threadextra_query)
4024 {
4025 char *b = rs->buf.data ();
4026 char *endb = b + get_remote_packet_size ();
4027
4028 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4029 b += strlen (b);
4030 write_ptid (b, endb, tp->ptid);
4031
4032 putpkt (rs->buf);
4033 getpkt (&rs->buf, 0);
4034 if (rs->buf[0] != 0)
4035 {
4036 extra.resize (strlen (rs->buf.data ()) / 2);
4037 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4038 return extra.c_str ();
4039 }
4040 }
4041
4042 /* If the above query fails, fall back to the old method. */
4043 rs->use_threadextra_query = 0;
4044 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4045 | TAG_MOREDISPLAY | TAG_DISPLAY;
4046 int_to_threadref (&id, tp->ptid.lwp ());
4047 if (remote_get_threadinfo (&id, set, &threadinfo))
4048 if (threadinfo.active)
4049 {
4050 if (*threadinfo.shortname)
4051 string_appendf (extra, " Name: %s", threadinfo.shortname);
4052 if (*threadinfo.display)
4053 {
4054 if (!extra.empty ())
4055 extra += ',';
4056 string_appendf (extra, " State: %s", threadinfo.display);
4057 }
4058 if (*threadinfo.more_display)
4059 {
4060 if (!extra.empty ())
4061 extra += ',';
4062 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4063 }
4064 return extra.c_str ();
4065 }
4066 return NULL;
4067 }
4068 \f
4069
4070 bool
4071 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4072 struct static_tracepoint_marker *marker)
4073 {
4074 struct remote_state *rs = get_remote_state ();
4075 char *p = rs->buf.data ();
4076
4077 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4078 p += strlen (p);
4079 p += hexnumstr (p, addr);
4080 putpkt (rs->buf);
4081 getpkt (&rs->buf, 0);
4082 p = rs->buf.data ();
4083
4084 if (*p == 'E')
4085 error (_("Remote failure reply: %s"), p);
4086
4087 if (*p++ == 'm')
4088 {
4089 parse_static_tracepoint_marker_definition (p, NULL, marker);
4090 return true;
4091 }
4092
4093 return false;
4094 }
4095
4096 std::vector<static_tracepoint_marker>
4097 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4098 {
4099 struct remote_state *rs = get_remote_state ();
4100 std::vector<static_tracepoint_marker> markers;
4101 const char *p;
4102 static_tracepoint_marker marker;
4103
4104 /* Ask for a first packet of static tracepoint marker
4105 definition. */
4106 putpkt ("qTfSTM");
4107 getpkt (&rs->buf, 0);
4108 p = rs->buf.data ();
4109 if (*p == 'E')
4110 error (_("Remote failure reply: %s"), p);
4111
4112 while (*p++ == 'm')
4113 {
4114 do
4115 {
4116 parse_static_tracepoint_marker_definition (p, &p, &marker);
4117
4118 if (strid == NULL || marker.str_id == strid)
4119 markers.push_back (std::move (marker));
4120 }
4121 while (*p++ == ','); /* comma-separated list */
4122 /* Ask for another packet of static tracepoint definition. */
4123 putpkt ("qTsSTM");
4124 getpkt (&rs->buf, 0);
4125 p = rs->buf.data ();
4126 }
4127
4128 return markers;
4129 }
4130
4131 \f
4132 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4133
4134 ptid_t
4135 remote_target::get_ada_task_ptid (long lwp, long thread)
4136 {
4137 return ptid_t (inferior_ptid.pid (), lwp, 0);
4138 }
4139 \f
4140
4141 /* Restart the remote side; this is an extended protocol operation. */
4142
4143 void
4144 remote_target::extended_remote_restart ()
4145 {
4146 struct remote_state *rs = get_remote_state ();
4147
4148 /* Send the restart command; for reasons I don't understand the
4149 remote side really expects a number after the "R". */
4150 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4151 putpkt (rs->buf);
4152
4153 remote_fileio_reset ();
4154 }
4155 \f
4156 /* Clean up connection to a remote debugger. */
4157
4158 void
4159 remote_target::close ()
4160 {
4161 /* Make sure we leave stdin registered in the event loop. */
4162 terminal_ours ();
4163
4164 trace_reset_local_state ();
4165
4166 delete this;
4167 }
4168
4169 remote_target::~remote_target ()
4170 {
4171 struct remote_state *rs = get_remote_state ();
4172
4173 /* Check for NULL because we may get here with a partially
4174 constructed target/connection. */
4175 if (rs->remote_desc == nullptr)
4176 return;
4177
4178 serial_close (rs->remote_desc);
4179
4180 /* We are destroying the remote target, so we should discard
4181 everything of this target. */
4182 discard_pending_stop_replies_in_queue ();
4183
4184 if (rs->remote_async_inferior_event_token)
4185 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4186
4187 delete rs->notif_state;
4188 }
4189
4190 /* Query the remote side for the text, data and bss offsets. */
4191
4192 void
4193 remote_target::get_offsets ()
4194 {
4195 struct remote_state *rs = get_remote_state ();
4196 char *buf;
4197 char *ptr;
4198 int lose, num_segments = 0, do_sections, do_segments;
4199 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4200
4201 if (current_program_space->symfile_object_file == NULL)
4202 return;
4203
4204 putpkt ("qOffsets");
4205 getpkt (&rs->buf, 0);
4206 buf = rs->buf.data ();
4207
4208 if (buf[0] == '\000')
4209 return; /* Return silently. Stub doesn't support
4210 this command. */
4211 if (buf[0] == 'E')
4212 {
4213 warning (_("Remote failure reply: %s"), buf);
4214 return;
4215 }
4216
4217 /* Pick up each field in turn. This used to be done with scanf, but
4218 scanf will make trouble if CORE_ADDR size doesn't match
4219 conversion directives correctly. The following code will work
4220 with any size of CORE_ADDR. */
4221 text_addr = data_addr = bss_addr = 0;
4222 ptr = buf;
4223 lose = 0;
4224
4225 if (startswith (ptr, "Text="))
4226 {
4227 ptr += 5;
4228 /* Don't use strtol, could lose on big values. */
4229 while (*ptr && *ptr != ';')
4230 text_addr = (text_addr << 4) + fromhex (*ptr++);
4231
4232 if (startswith (ptr, ";Data="))
4233 {
4234 ptr += 6;
4235 while (*ptr && *ptr != ';')
4236 data_addr = (data_addr << 4) + fromhex (*ptr++);
4237 }
4238 else
4239 lose = 1;
4240
4241 if (!lose && startswith (ptr, ";Bss="))
4242 {
4243 ptr += 5;
4244 while (*ptr && *ptr != ';')
4245 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4246
4247 if (bss_addr != data_addr)
4248 warning (_("Target reported unsupported offsets: %s"), buf);
4249 }
4250 else
4251 lose = 1;
4252 }
4253 else if (startswith (ptr, "TextSeg="))
4254 {
4255 ptr += 8;
4256 /* Don't use strtol, could lose on big values. */
4257 while (*ptr && *ptr != ';')
4258 text_addr = (text_addr << 4) + fromhex (*ptr++);
4259 num_segments = 1;
4260
4261 if (startswith (ptr, ";DataSeg="))
4262 {
4263 ptr += 9;
4264 while (*ptr && *ptr != ';')
4265 data_addr = (data_addr << 4) + fromhex (*ptr++);
4266 num_segments++;
4267 }
4268 }
4269 else
4270 lose = 1;
4271
4272 if (lose)
4273 error (_("Malformed response to offset query, %s"), buf);
4274 else if (*ptr != '\0')
4275 warning (_("Target reported unsupported offsets: %s"), buf);
4276
4277 objfile *objf = current_program_space->symfile_object_file;
4278 section_offsets offs = objf->section_offsets;
4279
4280 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4281 do_segments = (data != NULL);
4282 do_sections = num_segments == 0;
4283
4284 if (num_segments > 0)
4285 {
4286 segments[0] = text_addr;
4287 segments[1] = data_addr;
4288 }
4289 /* If we have two segments, we can still try to relocate everything
4290 by assuming that the .text and .data offsets apply to the whole
4291 text and data segments. Convert the offsets given in the packet
4292 to base addresses for symfile_map_offsets_to_segments. */
4293 else if (data != nullptr && data->segments.size () == 2)
4294 {
4295 segments[0] = data->segments[0].base + text_addr;
4296 segments[1] = data->segments[1].base + data_addr;
4297 num_segments = 2;
4298 }
4299 /* If the object file has only one segment, assume that it is text
4300 rather than data; main programs with no writable data are rare,
4301 but programs with no code are useless. Of course the code might
4302 have ended up in the data segment... to detect that we would need
4303 the permissions here. */
4304 else if (data && data->segments.size () == 1)
4305 {
4306 segments[0] = data->segments[0].base + text_addr;
4307 num_segments = 1;
4308 }
4309 /* There's no way to relocate by segment. */
4310 else
4311 do_segments = 0;
4312
4313 if (do_segments)
4314 {
4315 int ret = symfile_map_offsets_to_segments (objf->obfd,
4316 data.get (), offs,
4317 num_segments, segments);
4318
4319 if (ret == 0 && !do_sections)
4320 error (_("Can not handle qOffsets TextSeg "
4321 "response with this symbol file"));
4322
4323 if (ret > 0)
4324 do_sections = 0;
4325 }
4326
4327 if (do_sections)
4328 {
4329 offs[SECT_OFF_TEXT (objf)] = text_addr;
4330
4331 /* This is a temporary kludge to force data and bss to use the
4332 same offsets because that's what nlmconv does now. The real
4333 solution requires changes to the stub and remote.c that I
4334 don't have time to do right now. */
4335
4336 offs[SECT_OFF_DATA (objf)] = data_addr;
4337 offs[SECT_OFF_BSS (objf)] = data_addr;
4338 }
4339
4340 objfile_relocate (objf, offs);
4341 }
4342
4343 /* Send interrupt_sequence to remote target. */
4344
4345 void
4346 remote_target::send_interrupt_sequence ()
4347 {
4348 struct remote_state *rs = get_remote_state ();
4349
4350 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4351 remote_serial_write ("\x03", 1);
4352 else if (interrupt_sequence_mode == interrupt_sequence_break)
4353 serial_send_break (rs->remote_desc);
4354 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4355 {
4356 serial_send_break (rs->remote_desc);
4357 remote_serial_write ("g", 1);
4358 }
4359 else
4360 internal_error (__FILE__, __LINE__,
4361 _("Invalid value for interrupt_sequence_mode: %s."),
4362 interrupt_sequence_mode);
4363 }
4364
4365
4366 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4367 and extract the PTID. Returns NULL_PTID if not found. */
4368
4369 static ptid_t
4370 stop_reply_extract_thread (const char *stop_reply)
4371 {
4372 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4373 {
4374 const char *p;
4375
4376 /* Txx r:val ; r:val (...) */
4377 p = &stop_reply[3];
4378
4379 /* Look for "register" named "thread". */
4380 while (*p != '\0')
4381 {
4382 const char *p1;
4383
4384 p1 = strchr (p, ':');
4385 if (p1 == NULL)
4386 return null_ptid;
4387
4388 if (strncmp (p, "thread", p1 - p) == 0)
4389 return read_ptid (++p1, &p);
4390
4391 p1 = strchr (p, ';');
4392 if (p1 == NULL)
4393 return null_ptid;
4394 p1++;
4395
4396 p = p1;
4397 }
4398 }
4399
4400 return null_ptid;
4401 }
4402
4403 /* Determine the remote side's current thread. If we have a stop
4404 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4405 "thread" register we can extract the current thread from. If not,
4406 ask the remote which is the current thread with qC. The former
4407 method avoids a roundtrip. */
4408
4409 ptid_t
4410 remote_target::get_current_thread (const char *wait_status)
4411 {
4412 ptid_t ptid = null_ptid;
4413
4414 /* Note we don't use remote_parse_stop_reply as that makes use of
4415 the target architecture, which we haven't yet fully determined at
4416 this point. */
4417 if (wait_status != NULL)
4418 ptid = stop_reply_extract_thread (wait_status);
4419 if (ptid == null_ptid)
4420 ptid = remote_current_thread (inferior_ptid);
4421
4422 return ptid;
4423 }
4424
4425 /* Query the remote target for which is the current thread/process,
4426 add it to our tables, and update INFERIOR_PTID. The caller is
4427 responsible for setting the state such that the remote end is ready
4428 to return the current thread.
4429
4430 This function is called after handling the '?' or 'vRun' packets,
4431 whose response is a stop reply from which we can also try
4432 extracting the thread. If the target doesn't support the explicit
4433 qC query, we infer the current thread from that stop reply, passed
4434 in in WAIT_STATUS, which may be NULL.
4435
4436 The function returns pointer to the main thread of the inferior. */
4437
4438 thread_info *
4439 remote_target::add_current_inferior_and_thread (const char *wait_status)
4440 {
4441 struct remote_state *rs = get_remote_state ();
4442 bool fake_pid_p = false;
4443
4444 switch_to_no_thread ();
4445
4446 /* Now, if we have thread information, update the current thread's
4447 ptid. */
4448 ptid_t curr_ptid = get_current_thread (wait_status);
4449
4450 if (curr_ptid != null_ptid)
4451 {
4452 if (!remote_multi_process_p (rs))
4453 fake_pid_p = true;
4454 }
4455 else
4456 {
4457 /* Without this, some commands which require an active target
4458 (such as kill) won't work. This variable serves (at least)
4459 double duty as both the pid of the target process (if it has
4460 such), and as a flag indicating that a target is active. */
4461 curr_ptid = magic_null_ptid;
4462 fake_pid_p = true;
4463 }
4464
4465 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4466
4467 /* Add the main thread and switch to it. Don't try reading
4468 registers yet, since we haven't fetched the target description
4469 yet. */
4470 thread_info *tp = add_thread_silent (this, curr_ptid);
4471 switch_to_thread_no_regs (tp);
4472
4473 return tp;
4474 }
4475
4476 /* Print info about a thread that was found already stopped on
4477 connection. */
4478
4479 static void
4480 print_one_stopped_thread (struct thread_info *thread)
4481 {
4482 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4483
4484 switch_to_thread (thread);
4485 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4486 set_current_sal_from_frame (get_current_frame ());
4487
4488 thread->suspend.waitstatus_pending_p = 0;
4489
4490 if (ws->kind == TARGET_WAITKIND_STOPPED)
4491 {
4492 enum gdb_signal sig = ws->value.sig;
4493
4494 if (signal_print_state (sig))
4495 gdb::observers::signal_received.notify (sig);
4496 }
4497 gdb::observers::normal_stop.notify (NULL, 1);
4498 }
4499
4500 /* Process all initial stop replies the remote side sent in response
4501 to the ? packet. These indicate threads that were already stopped
4502 on initial connection. We mark these threads as stopped and print
4503 their current frame before giving the user the prompt. */
4504
4505 void
4506 remote_target::process_initial_stop_replies (int from_tty)
4507 {
4508 int pending_stop_replies = stop_reply_queue_length ();
4509 struct thread_info *selected = NULL;
4510 struct thread_info *lowest_stopped = NULL;
4511 struct thread_info *first = NULL;
4512
4513 /* Consume the initial pending events. */
4514 while (pending_stop_replies-- > 0)
4515 {
4516 ptid_t waiton_ptid = minus_one_ptid;
4517 ptid_t event_ptid;
4518 struct target_waitstatus ws;
4519 int ignore_event = 0;
4520
4521 memset (&ws, 0, sizeof (ws));
4522 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4523 if (remote_debug)
4524 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4525
4526 switch (ws.kind)
4527 {
4528 case TARGET_WAITKIND_IGNORE:
4529 case TARGET_WAITKIND_NO_RESUMED:
4530 case TARGET_WAITKIND_SIGNALLED:
4531 case TARGET_WAITKIND_EXITED:
4532 /* We shouldn't see these, but if we do, just ignore. */
4533 remote_debug_printf ("event ignored");
4534 ignore_event = 1;
4535 break;
4536
4537 case TARGET_WAITKIND_EXECD:
4538 xfree (ws.value.execd_pathname);
4539 break;
4540 default:
4541 break;
4542 }
4543
4544 if (ignore_event)
4545 continue;
4546
4547 thread_info *evthread = find_thread_ptid (this, event_ptid);
4548
4549 if (ws.kind == TARGET_WAITKIND_STOPPED)
4550 {
4551 enum gdb_signal sig = ws.value.sig;
4552
4553 /* Stubs traditionally report SIGTRAP as initial signal,
4554 instead of signal 0. Suppress it. */
4555 if (sig == GDB_SIGNAL_TRAP)
4556 sig = GDB_SIGNAL_0;
4557 evthread->suspend.stop_signal = sig;
4558 ws.value.sig = sig;
4559 }
4560
4561 evthread->suspend.waitstatus = ws;
4562
4563 if (ws.kind != TARGET_WAITKIND_STOPPED
4564 || ws.value.sig != GDB_SIGNAL_0)
4565 evthread->suspend.waitstatus_pending_p = 1;
4566
4567 set_executing (this, event_ptid, false);
4568 set_running (this, event_ptid, false);
4569 get_remote_thread_info (evthread)->set_not_resumed ();
4570 }
4571
4572 /* "Notice" the new inferiors before anything related to
4573 registers/memory. */
4574 for (inferior *inf : all_non_exited_inferiors (this))
4575 {
4576 inf->needs_setup = 1;
4577
4578 if (non_stop)
4579 {
4580 thread_info *thread = any_live_thread_of_inferior (inf);
4581 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4582 from_tty);
4583 }
4584 }
4585
4586 /* If all-stop on top of non-stop, pause all threads. Note this
4587 records the threads' stop pc, so must be done after "noticing"
4588 the inferiors. */
4589 if (!non_stop)
4590 {
4591 stop_all_threads ();
4592
4593 /* If all threads of an inferior were already stopped, we
4594 haven't setup the inferior yet. */
4595 for (inferior *inf : all_non_exited_inferiors (this))
4596 {
4597 if (inf->needs_setup)
4598 {
4599 thread_info *thread = any_live_thread_of_inferior (inf);
4600 switch_to_thread_no_regs (thread);
4601 setup_inferior (0);
4602 }
4603 }
4604 }
4605
4606 /* Now go over all threads that are stopped, and print their current
4607 frame. If all-stop, then if there's a signalled thread, pick
4608 that as current. */
4609 for (thread_info *thread : all_non_exited_threads (this))
4610 {
4611 if (first == NULL)
4612 first = thread;
4613
4614 if (!non_stop)
4615 thread->set_running (false);
4616 else if (thread->state != THREAD_STOPPED)
4617 continue;
4618
4619 if (selected == NULL
4620 && thread->suspend.waitstatus_pending_p)
4621 selected = thread;
4622
4623 if (lowest_stopped == NULL
4624 || thread->inf->num < lowest_stopped->inf->num
4625 || thread->per_inf_num < lowest_stopped->per_inf_num)
4626 lowest_stopped = thread;
4627
4628 if (non_stop)
4629 print_one_stopped_thread (thread);
4630 }
4631
4632 /* In all-stop, we only print the status of one thread, and leave
4633 others with their status pending. */
4634 if (!non_stop)
4635 {
4636 thread_info *thread = selected;
4637 if (thread == NULL)
4638 thread = lowest_stopped;
4639 if (thread == NULL)
4640 thread = first;
4641
4642 print_one_stopped_thread (thread);
4643 }
4644
4645 /* For "info program". */
4646 thread_info *thread = inferior_thread ();
4647 if (thread->state == THREAD_STOPPED)
4648 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4649 }
4650
4651 /* Start the remote connection and sync state. */
4652
4653 void
4654 remote_target::start_remote (int from_tty, int extended_p)
4655 {
4656 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4657
4658 struct remote_state *rs = get_remote_state ();
4659 struct packet_config *noack_config;
4660
4661 /* Signal other parts that we're going through the initial setup,
4662 and so things may not be stable yet. E.g., we don't try to
4663 install tracepoints until we've relocated symbols. Also, a
4664 Ctrl-C before we're connected and synced up can't interrupt the
4665 target. Instead, it offers to drop the (potentially wedged)
4666 connection. */
4667 rs->starting_up = 1;
4668
4669 QUIT;
4670
4671 if (interrupt_on_connect)
4672 send_interrupt_sequence ();
4673
4674 /* Ack any packet which the remote side has already sent. */
4675 remote_serial_write ("+", 1);
4676
4677 /* The first packet we send to the target is the optional "supported
4678 packets" request. If the target can answer this, it will tell us
4679 which later probes to skip. */
4680 remote_query_supported ();
4681
4682 /* If the stub wants to get a QAllow, compose one and send it. */
4683 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4684 set_permissions ();
4685
4686 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4687 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4688 as a reply to known packet. For packet "vFile:setfs:" it is an
4689 invalid reply and GDB would return error in
4690 remote_hostio_set_filesystem, making remote files access impossible.
4691 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4692 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4693 {
4694 const char v_mustreplyempty[] = "vMustReplyEmpty";
4695
4696 putpkt (v_mustreplyempty);
4697 getpkt (&rs->buf, 0);
4698 if (strcmp (rs->buf.data (), "OK") == 0)
4699 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4700 else if (strcmp (rs->buf.data (), "") != 0)
4701 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4702 rs->buf.data ());
4703 }
4704
4705 /* Next, we possibly activate noack mode.
4706
4707 If the QStartNoAckMode packet configuration is set to AUTO,
4708 enable noack mode if the stub reported a wish for it with
4709 qSupported.
4710
4711 If set to TRUE, then enable noack mode even if the stub didn't
4712 report it in qSupported. If the stub doesn't reply OK, the
4713 session ends with an error.
4714
4715 If FALSE, then don't activate noack mode, regardless of what the
4716 stub claimed should be the default with qSupported. */
4717
4718 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4719 if (packet_config_support (noack_config) != PACKET_DISABLE)
4720 {
4721 putpkt ("QStartNoAckMode");
4722 getpkt (&rs->buf, 0);
4723 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4724 rs->noack_mode = 1;
4725 }
4726
4727 if (extended_p)
4728 {
4729 /* Tell the remote that we are using the extended protocol. */
4730 putpkt ("!");
4731 getpkt (&rs->buf, 0);
4732 }
4733
4734 /* Let the target know which signals it is allowed to pass down to
4735 the program. */
4736 update_signals_program_target ();
4737
4738 /* Next, if the target can specify a description, read it. We do
4739 this before anything involving memory or registers. */
4740 target_find_description ();
4741
4742 /* Next, now that we know something about the target, update the
4743 address spaces in the program spaces. */
4744 update_address_spaces ();
4745
4746 /* On OSs where the list of libraries is global to all
4747 processes, we fetch them early. */
4748 if (gdbarch_has_global_solist (target_gdbarch ()))
4749 solib_add (NULL, from_tty, auto_solib_add);
4750
4751 if (target_is_non_stop_p ())
4752 {
4753 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4754 error (_("Non-stop mode requested, but remote "
4755 "does not support non-stop"));
4756
4757 putpkt ("QNonStop:1");
4758 getpkt (&rs->buf, 0);
4759
4760 if (strcmp (rs->buf.data (), "OK") != 0)
4761 error (_("Remote refused setting non-stop mode with: %s"),
4762 rs->buf.data ());
4763
4764 /* Find about threads and processes the stub is already
4765 controlling. We default to adding them in the running state.
4766 The '?' query below will then tell us about which threads are
4767 stopped. */
4768 this->update_thread_list ();
4769 }
4770 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4771 {
4772 /* Don't assume that the stub can operate in all-stop mode.
4773 Request it explicitly. */
4774 putpkt ("QNonStop:0");
4775 getpkt (&rs->buf, 0);
4776
4777 if (strcmp (rs->buf.data (), "OK") != 0)
4778 error (_("Remote refused setting all-stop mode with: %s"),
4779 rs->buf.data ());
4780 }
4781
4782 /* Upload TSVs regardless of whether the target is running or not. The
4783 remote stub, such as GDBserver, may have some predefined or builtin
4784 TSVs, even if the target is not running. */
4785 if (get_trace_status (current_trace_status ()) != -1)
4786 {
4787 struct uploaded_tsv *uploaded_tsvs = NULL;
4788
4789 upload_trace_state_variables (&uploaded_tsvs);
4790 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4791 }
4792
4793 /* Check whether the target is running now. */
4794 putpkt ("?");
4795 getpkt (&rs->buf, 0);
4796
4797 if (!target_is_non_stop_p ())
4798 {
4799 char *wait_status = NULL;
4800
4801 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4802 {
4803 if (!extended_p)
4804 error (_("The target is not running (try extended-remote?)"));
4805
4806 /* We're connected, but not running. Drop out before we
4807 call start_remote. */
4808 rs->starting_up = 0;
4809 return;
4810 }
4811 else
4812 {
4813 /* Save the reply for later. */
4814 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4815 strcpy (wait_status, rs->buf.data ());
4816 }
4817
4818 /* Fetch thread list. */
4819 target_update_thread_list ();
4820
4821 /* Let the stub know that we want it to return the thread. */
4822 set_continue_thread (minus_one_ptid);
4823
4824 if (thread_count (this) == 0)
4825 {
4826 /* Target has no concept of threads at all. GDB treats
4827 non-threaded target as single-threaded; add a main
4828 thread. */
4829 thread_info *tp = add_current_inferior_and_thread (wait_status);
4830 get_remote_thread_info (tp)->set_resumed ();
4831 }
4832 else
4833 {
4834 /* We have thread information; select the thread the target
4835 says should be current. If we're reconnecting to a
4836 multi-threaded program, this will ideally be the thread
4837 that last reported an event before GDB disconnected. */
4838 ptid_t curr_thread = get_current_thread (wait_status);
4839 if (curr_thread == null_ptid)
4840 {
4841 /* Odd... The target was able to list threads, but not
4842 tell us which thread was current (no "thread"
4843 register in T stop reply?). Just pick the first
4844 thread in the thread list then. */
4845
4846 remote_debug_printf ("warning: couldn't determine remote "
4847 "current thread; picking first in list.");
4848
4849 for (thread_info *tp : all_non_exited_threads (this,
4850 minus_one_ptid))
4851 {
4852 switch_to_thread (tp);
4853 break;
4854 }
4855 }
4856 else
4857 switch_to_thread (find_thread_ptid (this, curr_thread));
4858 }
4859
4860 /* init_wait_for_inferior should be called before get_offsets in order
4861 to manage `inserted' flag in bp loc in a correct state.
4862 breakpoint_init_inferior, called from init_wait_for_inferior, set
4863 `inserted' flag to 0, while before breakpoint_re_set, called from
4864 start_remote, set `inserted' flag to 1. In the initialization of
4865 inferior, breakpoint_init_inferior should be called first, and then
4866 breakpoint_re_set can be called. If this order is broken, state of
4867 `inserted' flag is wrong, and cause some problems on breakpoint
4868 manipulation. */
4869 init_wait_for_inferior ();
4870
4871 get_offsets (); /* Get text, data & bss offsets. */
4872
4873 /* If we could not find a description using qXfer, and we know
4874 how to do it some other way, try again. This is not
4875 supported for non-stop; it could be, but it is tricky if
4876 there are no stopped threads when we connect. */
4877 if (remote_read_description_p (this)
4878 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4879 {
4880 target_clear_description ();
4881 target_find_description ();
4882 }
4883
4884 /* Use the previously fetched status. */
4885 gdb_assert (wait_status != NULL);
4886 strcpy (rs->buf.data (), wait_status);
4887 rs->cached_wait_status = 1;
4888
4889 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4890 }
4891 else
4892 {
4893 /* Clear WFI global state. Do this before finding about new
4894 threads and inferiors, and setting the current inferior.
4895 Otherwise we would clear the proceed status of the current
4896 inferior when we want its stop_soon state to be preserved
4897 (see notice_new_inferior). */
4898 init_wait_for_inferior ();
4899
4900 /* In non-stop, we will either get an "OK", meaning that there
4901 are no stopped threads at this time; or, a regular stop
4902 reply. In the latter case, there may be more than one thread
4903 stopped --- we pull them all out using the vStopped
4904 mechanism. */
4905 if (strcmp (rs->buf.data (), "OK") != 0)
4906 {
4907 struct notif_client *notif = &notif_client_stop;
4908
4909 /* remote_notif_get_pending_replies acks this one, and gets
4910 the rest out. */
4911 rs->notif_state->pending_event[notif_client_stop.id]
4912 = remote_notif_parse (this, notif, rs->buf.data ());
4913 remote_notif_get_pending_events (notif);
4914 }
4915
4916 if (thread_count (this) == 0)
4917 {
4918 if (!extended_p)
4919 error (_("The target is not running (try extended-remote?)"));
4920
4921 /* We're connected, but not running. Drop out before we
4922 call start_remote. */
4923 rs->starting_up = 0;
4924 return;
4925 }
4926
4927 /* Report all signals during attach/startup. */
4928 pass_signals ({});
4929
4930 /* If there are already stopped threads, mark them stopped and
4931 report their stops before giving the prompt to the user. */
4932 process_initial_stop_replies (from_tty);
4933
4934 if (target_can_async_p ())
4935 target_async (1);
4936 }
4937
4938 /* If we connected to a live target, do some additional setup. */
4939 if (target_has_execution ())
4940 {
4941 /* No use without a symbol-file. */
4942 if (current_program_space->symfile_object_file)
4943 remote_check_symbols ();
4944 }
4945
4946 /* Possibly the target has been engaged in a trace run started
4947 previously; find out where things are at. */
4948 if (get_trace_status (current_trace_status ()) != -1)
4949 {
4950 struct uploaded_tp *uploaded_tps = NULL;
4951
4952 if (current_trace_status ()->running)
4953 printf_filtered (_("Trace is already running on the target.\n"));
4954
4955 upload_tracepoints (&uploaded_tps);
4956
4957 merge_uploaded_tracepoints (&uploaded_tps);
4958 }
4959
4960 /* Possibly the target has been engaged in a btrace record started
4961 previously; find out where things are at. */
4962 remote_btrace_maybe_reopen ();
4963
4964 /* The thread and inferior lists are now synchronized with the
4965 target, our symbols have been relocated, and we're merged the
4966 target's tracepoints with ours. We're done with basic start
4967 up. */
4968 rs->starting_up = 0;
4969
4970 /* Maybe breakpoints are global and need to be inserted now. */
4971 if (breakpoints_should_be_inserted_now ())
4972 insert_breakpoints ();
4973 }
4974
4975 const char *
4976 remote_target::connection_string ()
4977 {
4978 remote_state *rs = get_remote_state ();
4979
4980 if (rs->remote_desc->name != NULL)
4981 return rs->remote_desc->name;
4982 else
4983 return NULL;
4984 }
4985
4986 /* Open a connection to a remote debugger.
4987 NAME is the filename used for communication. */
4988
4989 void
4990 remote_target::open (const char *name, int from_tty)
4991 {
4992 open_1 (name, from_tty, 0);
4993 }
4994
4995 /* Open a connection to a remote debugger using the extended
4996 remote gdb protocol. NAME is the filename used for communication. */
4997
4998 void
4999 extended_remote_target::open (const char *name, int from_tty)
5000 {
5001 open_1 (name, from_tty, 1 /*extended_p */);
5002 }
5003
5004 /* Reset all packets back to "unknown support". Called when opening a
5005 new connection to a remote target. */
5006
5007 static void
5008 reset_all_packet_configs_support (void)
5009 {
5010 int i;
5011
5012 for (i = 0; i < PACKET_MAX; i++)
5013 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5014 }
5015
5016 /* Initialize all packet configs. */
5017
5018 static void
5019 init_all_packet_configs (void)
5020 {
5021 int i;
5022
5023 for (i = 0; i < PACKET_MAX; i++)
5024 {
5025 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5026 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5027 }
5028 }
5029
5030 /* Symbol look-up. */
5031
5032 void
5033 remote_target::remote_check_symbols ()
5034 {
5035 char *tmp;
5036 int end;
5037
5038 /* The remote side has no concept of inferiors that aren't running
5039 yet, it only knows about running processes. If we're connected
5040 but our current inferior is not running, we should not invite the
5041 remote target to request symbol lookups related to its
5042 (unrelated) current process. */
5043 if (!target_has_execution ())
5044 return;
5045
5046 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5047 return;
5048
5049 /* Make sure the remote is pointing at the right process. Note
5050 there's no way to select "no process". */
5051 set_general_process ();
5052
5053 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5054 because we need both at the same time. */
5055 gdb::char_vector msg (get_remote_packet_size ());
5056 gdb::char_vector reply (get_remote_packet_size ());
5057
5058 /* Invite target to request symbol lookups. */
5059
5060 putpkt ("qSymbol::");
5061 getpkt (&reply, 0);
5062 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5063
5064 while (startswith (reply.data (), "qSymbol:"))
5065 {
5066 struct bound_minimal_symbol sym;
5067
5068 tmp = &reply[8];
5069 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5070 strlen (tmp) / 2);
5071 msg[end] = '\0';
5072 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5073 if (sym.minsym == NULL)
5074 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5075 &reply[8]);
5076 else
5077 {
5078 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5079 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5080
5081 /* If this is a function address, return the start of code
5082 instead of any data function descriptor. */
5083 sym_addr = gdbarch_convert_from_func_ptr_addr
5084 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5085
5086 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5087 phex_nz (sym_addr, addr_size), &reply[8]);
5088 }
5089
5090 putpkt (msg.data ());
5091 getpkt (&reply, 0);
5092 }
5093 }
5094
5095 static struct serial *
5096 remote_serial_open (const char *name)
5097 {
5098 static int udp_warning = 0;
5099
5100 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5101 of in ser-tcp.c, because it is the remote protocol assuming that the
5102 serial connection is reliable and not the serial connection promising
5103 to be. */
5104 if (!udp_warning && startswith (name, "udp:"))
5105 {
5106 warning (_("The remote protocol may be unreliable over UDP.\n"
5107 "Some events may be lost, rendering further debugging "
5108 "impossible."));
5109 udp_warning = 1;
5110 }
5111
5112 return serial_open (name);
5113 }
5114
5115 /* Inform the target of our permission settings. The permission flags
5116 work without this, but if the target knows the settings, it can do
5117 a couple things. First, it can add its own check, to catch cases
5118 that somehow manage to get by the permissions checks in target
5119 methods. Second, if the target is wired to disallow particular
5120 settings (for instance, a system in the field that is not set up to
5121 be able to stop at a breakpoint), it can object to any unavailable
5122 permissions. */
5123
5124 void
5125 remote_target::set_permissions ()
5126 {
5127 struct remote_state *rs = get_remote_state ();
5128
5129 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5130 "WriteReg:%x;WriteMem:%x;"
5131 "InsertBreak:%x;InsertTrace:%x;"
5132 "InsertFastTrace:%x;Stop:%x",
5133 may_write_registers, may_write_memory,
5134 may_insert_breakpoints, may_insert_tracepoints,
5135 may_insert_fast_tracepoints, may_stop);
5136 putpkt (rs->buf);
5137 getpkt (&rs->buf, 0);
5138
5139 /* If the target didn't like the packet, warn the user. Do not try
5140 to undo the user's settings, that would just be maddening. */
5141 if (strcmp (rs->buf.data (), "OK") != 0)
5142 warning (_("Remote refused setting permissions with: %s"),
5143 rs->buf.data ());
5144 }
5145
5146 /* This type describes each known response to the qSupported
5147 packet. */
5148 struct protocol_feature
5149 {
5150 /* The name of this protocol feature. */
5151 const char *name;
5152
5153 /* The default for this protocol feature. */
5154 enum packet_support default_support;
5155
5156 /* The function to call when this feature is reported, or after
5157 qSupported processing if the feature is not supported.
5158 The first argument points to this structure. The second
5159 argument indicates whether the packet requested support be
5160 enabled, disabled, or probed (or the default, if this function
5161 is being called at the end of processing and this feature was
5162 not reported). The third argument may be NULL; if not NULL, it
5163 is a NUL-terminated string taken from the packet following
5164 this feature's name and an equals sign. */
5165 void (*func) (remote_target *remote, const struct protocol_feature *,
5166 enum packet_support, const char *);
5167
5168 /* The corresponding packet for this feature. Only used if
5169 FUNC is remote_supported_packet. */
5170 int packet;
5171 };
5172
5173 static void
5174 remote_supported_packet (remote_target *remote,
5175 const struct protocol_feature *feature,
5176 enum packet_support support,
5177 const char *argument)
5178 {
5179 if (argument)
5180 {
5181 warning (_("Remote qSupported response supplied an unexpected value for"
5182 " \"%s\"."), feature->name);
5183 return;
5184 }
5185
5186 remote_protocol_packets[feature->packet].support = support;
5187 }
5188
5189 void
5190 remote_target::remote_packet_size (const protocol_feature *feature,
5191 enum packet_support support, const char *value)
5192 {
5193 struct remote_state *rs = get_remote_state ();
5194
5195 int packet_size;
5196 char *value_end;
5197
5198 if (support != PACKET_ENABLE)
5199 return;
5200
5201 if (value == NULL || *value == '\0')
5202 {
5203 warning (_("Remote target reported \"%s\" without a size."),
5204 feature->name);
5205 return;
5206 }
5207
5208 errno = 0;
5209 packet_size = strtol (value, &value_end, 16);
5210 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5211 {
5212 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5213 feature->name, value);
5214 return;
5215 }
5216
5217 /* Record the new maximum packet size. */
5218 rs->explicit_packet_size = packet_size;
5219 }
5220
5221 static void
5222 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5223 enum packet_support support, const char *value)
5224 {
5225 remote->remote_packet_size (feature, support, value);
5226 }
5227
5228 static const struct protocol_feature remote_protocol_features[] = {
5229 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5230 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5231 PACKET_qXfer_auxv },
5232 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5233 PACKET_qXfer_exec_file },
5234 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5235 PACKET_qXfer_features },
5236 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5237 PACKET_qXfer_libraries },
5238 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5239 PACKET_qXfer_libraries_svr4 },
5240 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5241 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5242 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5243 PACKET_qXfer_memory_map },
5244 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5245 PACKET_qXfer_osdata },
5246 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5247 PACKET_qXfer_threads },
5248 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5249 PACKET_qXfer_traceframe_info },
5250 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5251 PACKET_QPassSignals },
5252 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5253 PACKET_QCatchSyscalls },
5254 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5255 PACKET_QProgramSignals },
5256 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5257 PACKET_QSetWorkingDir },
5258 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5259 PACKET_QStartupWithShell },
5260 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5261 PACKET_QEnvironmentHexEncoded },
5262 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5263 PACKET_QEnvironmentReset },
5264 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5265 PACKET_QEnvironmentUnset },
5266 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5267 PACKET_QStartNoAckMode },
5268 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5269 PACKET_multiprocess_feature },
5270 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5271 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_qXfer_siginfo_read },
5273 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_qXfer_siginfo_write },
5275 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_ConditionalTracepoints },
5277 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5278 PACKET_ConditionalBreakpoints },
5279 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5280 PACKET_BreakpointCommands },
5281 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5282 PACKET_FastTracepoints },
5283 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5284 PACKET_StaticTracepoints },
5285 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5286 PACKET_InstallInTrace},
5287 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5288 PACKET_DisconnectedTracing_feature },
5289 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5290 PACKET_bc },
5291 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5292 PACKET_bs },
5293 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5294 PACKET_TracepointSource },
5295 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5296 PACKET_QAllow },
5297 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5298 PACKET_EnableDisableTracepoints_feature },
5299 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5300 PACKET_qXfer_fdpic },
5301 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5302 PACKET_qXfer_uib },
5303 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5304 PACKET_QDisableRandomization },
5305 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5306 { "QTBuffer:size", PACKET_DISABLE,
5307 remote_supported_packet, PACKET_QTBuffer_size},
5308 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5309 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5310 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5311 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5312 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5313 PACKET_qXfer_btrace },
5314 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5315 PACKET_qXfer_btrace_conf },
5316 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5317 PACKET_Qbtrace_conf_bts_size },
5318 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5319 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5320 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5321 PACKET_fork_event_feature },
5322 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5323 PACKET_vfork_event_feature },
5324 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5325 PACKET_exec_event_feature },
5326 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5327 PACKET_Qbtrace_conf_pt_size },
5328 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5329 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5330 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5331 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5332 PACKET_memory_tagging_feature },
5333 };
5334
5335 static char *remote_support_xml;
5336
5337 /* Register string appended to "xmlRegisters=" in qSupported query. */
5338
5339 void
5340 register_remote_support_xml (const char *xml)
5341 {
5342 #if defined(HAVE_LIBEXPAT)
5343 if (remote_support_xml == NULL)
5344 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5345 else
5346 {
5347 char *copy = xstrdup (remote_support_xml + 13);
5348 char *saveptr;
5349 char *p = strtok_r (copy, ",", &saveptr);
5350
5351 do
5352 {
5353 if (strcmp (p, xml) == 0)
5354 {
5355 /* already there */
5356 xfree (copy);
5357 return;
5358 }
5359 }
5360 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5361 xfree (copy);
5362
5363 remote_support_xml = reconcat (remote_support_xml,
5364 remote_support_xml, ",", xml,
5365 (char *) NULL);
5366 }
5367 #endif
5368 }
5369
5370 static void
5371 remote_query_supported_append (std::string *msg, const char *append)
5372 {
5373 if (!msg->empty ())
5374 msg->append (";");
5375 msg->append (append);
5376 }
5377
5378 void
5379 remote_target::remote_query_supported ()
5380 {
5381 struct remote_state *rs = get_remote_state ();
5382 char *next;
5383 int i;
5384 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5385
5386 /* The packet support flags are handled differently for this packet
5387 than for most others. We treat an error, a disabled packet, and
5388 an empty response identically: any features which must be reported
5389 to be used will be automatically disabled. An empty buffer
5390 accomplishes this, since that is also the representation for a list
5391 containing no features. */
5392
5393 rs->buf[0] = 0;
5394 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5395 {
5396 std::string q;
5397
5398 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5399 remote_query_supported_append (&q, "multiprocess+");
5400
5401 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5402 remote_query_supported_append (&q, "swbreak+");
5403 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5404 remote_query_supported_append (&q, "hwbreak+");
5405
5406 remote_query_supported_append (&q, "qRelocInsn+");
5407
5408 if (packet_set_cmd_state (PACKET_fork_event_feature)
5409 != AUTO_BOOLEAN_FALSE)
5410 remote_query_supported_append (&q, "fork-events+");
5411 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5412 != AUTO_BOOLEAN_FALSE)
5413 remote_query_supported_append (&q, "vfork-events+");
5414 if (packet_set_cmd_state (PACKET_exec_event_feature)
5415 != AUTO_BOOLEAN_FALSE)
5416 remote_query_supported_append (&q, "exec-events+");
5417
5418 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5419 remote_query_supported_append (&q, "vContSupported+");
5420
5421 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5422 remote_query_supported_append (&q, "QThreadEvents+");
5423
5424 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5425 remote_query_supported_append (&q, "no-resumed+");
5426
5427 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5428 != AUTO_BOOLEAN_FALSE)
5429 remote_query_supported_append (&q, "memory-tagging+");
5430
5431 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5432 the qSupported:xmlRegisters=i386 handling. */
5433 if (remote_support_xml != NULL
5434 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5435 remote_query_supported_append (&q, remote_support_xml);
5436
5437 q = "qSupported:" + q;
5438 putpkt (q.c_str ());
5439
5440 getpkt (&rs->buf, 0);
5441
5442 /* If an error occured, warn, but do not return - just reset the
5443 buffer to empty and go on to disable features. */
5444 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5445 == PACKET_ERROR)
5446 {
5447 warning (_("Remote failure reply: %s"), rs->buf.data ());
5448 rs->buf[0] = 0;
5449 }
5450 }
5451
5452 memset (seen, 0, sizeof (seen));
5453
5454 next = rs->buf.data ();
5455 while (*next)
5456 {
5457 enum packet_support is_supported;
5458 char *p, *end, *name_end, *value;
5459
5460 /* First separate out this item from the rest of the packet. If
5461 there's another item after this, we overwrite the separator
5462 (terminated strings are much easier to work with). */
5463 p = next;
5464 end = strchr (p, ';');
5465 if (end == NULL)
5466 {
5467 end = p + strlen (p);
5468 next = end;
5469 }
5470 else
5471 {
5472 *end = '\0';
5473 next = end + 1;
5474
5475 if (end == p)
5476 {
5477 warning (_("empty item in \"qSupported\" response"));
5478 continue;
5479 }
5480 }
5481
5482 name_end = strchr (p, '=');
5483 if (name_end)
5484 {
5485 /* This is a name=value entry. */
5486 is_supported = PACKET_ENABLE;
5487 value = name_end + 1;
5488 *name_end = '\0';
5489 }
5490 else
5491 {
5492 value = NULL;
5493 switch (end[-1])
5494 {
5495 case '+':
5496 is_supported = PACKET_ENABLE;
5497 break;
5498
5499 case '-':
5500 is_supported = PACKET_DISABLE;
5501 break;
5502
5503 case '?':
5504 is_supported = PACKET_SUPPORT_UNKNOWN;
5505 break;
5506
5507 default:
5508 warning (_("unrecognized item \"%s\" "
5509 "in \"qSupported\" response"), p);
5510 continue;
5511 }
5512 end[-1] = '\0';
5513 }
5514
5515 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5516 if (strcmp (remote_protocol_features[i].name, p) == 0)
5517 {
5518 const struct protocol_feature *feature;
5519
5520 seen[i] = 1;
5521 feature = &remote_protocol_features[i];
5522 feature->func (this, feature, is_supported, value);
5523 break;
5524 }
5525 }
5526
5527 /* If we increased the packet size, make sure to increase the global
5528 buffer size also. We delay this until after parsing the entire
5529 qSupported packet, because this is the same buffer we were
5530 parsing. */
5531 if (rs->buf.size () < rs->explicit_packet_size)
5532 rs->buf.resize (rs->explicit_packet_size);
5533
5534 /* Handle the defaults for unmentioned features. */
5535 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5536 if (!seen[i])
5537 {
5538 const struct protocol_feature *feature;
5539
5540 feature = &remote_protocol_features[i];
5541 feature->func (this, feature, feature->default_support, NULL);
5542 }
5543 }
5544
5545 /* Serial QUIT handler for the remote serial descriptor.
5546
5547 Defers handling a Ctrl-C until we're done with the current
5548 command/response packet sequence, unless:
5549
5550 - We're setting up the connection. Don't send a remote interrupt
5551 request, as we're not fully synced yet. Quit immediately
5552 instead.
5553
5554 - The target has been resumed in the foreground
5555 (target_terminal::is_ours is false) with a synchronous resume
5556 packet, and we're blocked waiting for the stop reply, thus a
5557 Ctrl-C should be immediately sent to the target.
5558
5559 - We get a second Ctrl-C while still within the same serial read or
5560 write. In that case the serial is seemingly wedged --- offer to
5561 quit/disconnect.
5562
5563 - We see a second Ctrl-C without target response, after having
5564 previously interrupted the target. In that case the target/stub
5565 is probably wedged --- offer to quit/disconnect.
5566 */
5567
5568 void
5569 remote_target::remote_serial_quit_handler ()
5570 {
5571 struct remote_state *rs = get_remote_state ();
5572
5573 if (check_quit_flag ())
5574 {
5575 /* If we're starting up, we're not fully synced yet. Quit
5576 immediately. */
5577 if (rs->starting_up)
5578 quit ();
5579 else if (rs->got_ctrlc_during_io)
5580 {
5581 if (query (_("The target is not responding to GDB commands.\n"
5582 "Stop debugging it? ")))
5583 remote_unpush_and_throw (this);
5584 }
5585 /* If ^C has already been sent once, offer to disconnect. */
5586 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5587 interrupt_query ();
5588 /* All-stop protocol, and blocked waiting for stop reply. Send
5589 an interrupt request. */
5590 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5591 target_interrupt ();
5592 else
5593 rs->got_ctrlc_during_io = 1;
5594 }
5595 }
5596
5597 /* The remote_target that is current while the quit handler is
5598 overridden with remote_serial_quit_handler. */
5599 static remote_target *curr_quit_handler_target;
5600
5601 static void
5602 remote_serial_quit_handler ()
5603 {
5604 curr_quit_handler_target->remote_serial_quit_handler ();
5605 }
5606
5607 /* Remove the remote target from the target stack of each inferior
5608 that is using it. Upper targets depend on it so remove them
5609 first. */
5610
5611 static void
5612 remote_unpush_target (remote_target *target)
5613 {
5614 /* We have to unpush the target from all inferiors, even those that
5615 aren't running. */
5616 scoped_restore_current_inferior restore_current_inferior;
5617
5618 for (inferior *inf : all_inferiors (target))
5619 {
5620 switch_to_inferior_no_thread (inf);
5621 pop_all_targets_at_and_above (process_stratum);
5622 generic_mourn_inferior ();
5623 }
5624 }
5625
5626 static void
5627 remote_unpush_and_throw (remote_target *target)
5628 {
5629 remote_unpush_target (target);
5630 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5631 }
5632
5633 void
5634 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5635 {
5636 remote_target *curr_remote = get_current_remote_target ();
5637
5638 if (name == 0)
5639 error (_("To open a remote debug connection, you need to specify what\n"
5640 "serial device is attached to the remote system\n"
5641 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5642
5643 /* If we're connected to a running target, target_preopen will kill it.
5644 Ask this question first, before target_preopen has a chance to kill
5645 anything. */
5646 if (curr_remote != NULL && !target_has_execution ())
5647 {
5648 if (from_tty
5649 && !query (_("Already connected to a remote target. Disconnect? ")))
5650 error (_("Still connected."));
5651 }
5652
5653 /* Here the possibly existing remote target gets unpushed. */
5654 target_preopen (from_tty);
5655
5656 remote_fileio_reset ();
5657 reopen_exec_file ();
5658 reread_symbols ();
5659
5660 remote_target *remote
5661 = (extended_p ? new extended_remote_target () : new remote_target ());
5662 target_ops_up target_holder (remote);
5663
5664 remote_state *rs = remote->get_remote_state ();
5665
5666 /* See FIXME above. */
5667 if (!target_async_permitted)
5668 rs->wait_forever_enabled_p = 1;
5669
5670 rs->remote_desc = remote_serial_open (name);
5671 if (!rs->remote_desc)
5672 perror_with_name (name);
5673
5674 if (baud_rate != -1)
5675 {
5676 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5677 {
5678 /* The requested speed could not be set. Error out to
5679 top level after closing remote_desc. Take care to
5680 set remote_desc to NULL to avoid closing remote_desc
5681 more than once. */
5682 serial_close (rs->remote_desc);
5683 rs->remote_desc = NULL;
5684 perror_with_name (name);
5685 }
5686 }
5687
5688 serial_setparity (rs->remote_desc, serial_parity);
5689 serial_raw (rs->remote_desc);
5690
5691 /* If there is something sitting in the buffer we might take it as a
5692 response to a command, which would be bad. */
5693 serial_flush_input (rs->remote_desc);
5694
5695 if (from_tty)
5696 {
5697 puts_filtered ("Remote debugging using ");
5698 puts_filtered (name);
5699 puts_filtered ("\n");
5700 }
5701
5702 /* Switch to using the remote target now. */
5703 current_inferior ()->push_target (std::move (target_holder));
5704
5705 /* Register extra event sources in the event loop. */
5706 rs->remote_async_inferior_event_token
5707 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5708 "remote");
5709 rs->notif_state = remote_notif_state_allocate (remote);
5710
5711 /* Reset the target state; these things will be queried either by
5712 remote_query_supported or as they are needed. */
5713 reset_all_packet_configs_support ();
5714 rs->cached_wait_status = 0;
5715 rs->explicit_packet_size = 0;
5716 rs->noack_mode = 0;
5717 rs->extended = extended_p;
5718 rs->waiting_for_stop_reply = 0;
5719 rs->ctrlc_pending_p = 0;
5720 rs->got_ctrlc_during_io = 0;
5721
5722 rs->general_thread = not_sent_ptid;
5723 rs->continue_thread = not_sent_ptid;
5724 rs->remote_traceframe_number = -1;
5725
5726 rs->last_resume_exec_dir = EXEC_FORWARD;
5727
5728 /* Probe for ability to use "ThreadInfo" query, as required. */
5729 rs->use_threadinfo_query = 1;
5730 rs->use_threadextra_query = 1;
5731
5732 rs->readahead_cache.invalidate ();
5733
5734 if (target_async_permitted)
5735 {
5736 /* FIXME: cagney/1999-09-23: During the initial connection it is
5737 assumed that the target is already ready and able to respond to
5738 requests. Unfortunately remote_start_remote() eventually calls
5739 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5740 around this. Eventually a mechanism that allows
5741 wait_for_inferior() to expect/get timeouts will be
5742 implemented. */
5743 rs->wait_forever_enabled_p = 0;
5744 }
5745
5746 /* First delete any symbols previously loaded from shared libraries. */
5747 no_shared_libraries (NULL, 0);
5748
5749 /* Start the remote connection. If error() or QUIT, discard this
5750 target (we'd otherwise be in an inconsistent state) and then
5751 propogate the error on up the exception chain. This ensures that
5752 the caller doesn't stumble along blindly assuming that the
5753 function succeeded. The CLI doesn't have this problem but other
5754 UI's, such as MI do.
5755
5756 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5757 this function should return an error indication letting the
5758 caller restore the previous state. Unfortunately the command
5759 ``target remote'' is directly wired to this function making that
5760 impossible. On a positive note, the CLI side of this problem has
5761 been fixed - the function set_cmd_context() makes it possible for
5762 all the ``target ....'' commands to share a common callback
5763 function. See cli-dump.c. */
5764 {
5765
5766 try
5767 {
5768 remote->start_remote (from_tty, extended_p);
5769 }
5770 catch (const gdb_exception &ex)
5771 {
5772 /* Pop the partially set up target - unless something else did
5773 already before throwing the exception. */
5774 if (ex.error != TARGET_CLOSE_ERROR)
5775 remote_unpush_target (remote);
5776 throw;
5777 }
5778 }
5779
5780 remote_btrace_reset (rs);
5781
5782 if (target_async_permitted)
5783 rs->wait_forever_enabled_p = 1;
5784 }
5785
5786 /* Detach the specified process. */
5787
5788 void
5789 remote_target::remote_detach_pid (int pid)
5790 {
5791 struct remote_state *rs = get_remote_state ();
5792
5793 /* This should not be necessary, but the handling for D;PID in
5794 GDBserver versions prior to 8.2 incorrectly assumes that the
5795 selected process points to the same process we're detaching,
5796 leading to misbehavior (and possibly GDBserver crashing) when it
5797 does not. Since it's easy and cheap, work around it by forcing
5798 GDBserver to select GDB's current process. */
5799 set_general_process ();
5800
5801 if (remote_multi_process_p (rs))
5802 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5803 else
5804 strcpy (rs->buf.data (), "D");
5805
5806 putpkt (rs->buf);
5807 getpkt (&rs->buf, 0);
5808
5809 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5810 ;
5811 else if (rs->buf[0] == '\0')
5812 error (_("Remote doesn't know how to detach"));
5813 else
5814 error (_("Can't detach process."));
5815 }
5816
5817 /* This detaches a program to which we previously attached, using
5818 inferior_ptid to identify the process. After this is done, GDB
5819 can be used to debug some other program. We better not have left
5820 any breakpoints in the target program or it'll die when it hits
5821 one. */
5822
5823 void
5824 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5825 {
5826 int pid = inferior_ptid.pid ();
5827 struct remote_state *rs = get_remote_state ();
5828 int is_fork_parent;
5829
5830 if (!target_has_execution ())
5831 error (_("No process to detach from."));
5832
5833 target_announce_detach (from_tty);
5834
5835 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5836 {
5837 /* If we're in breakpoints-always-inserted mode, or the inferior
5838 is running, we have to remove breakpoints before detaching.
5839 We don't do this in common code instead because not all
5840 targets support removing breakpoints while the target is
5841 running. The remote target / gdbserver does, though. */
5842 remove_breakpoints_inf (current_inferior ());
5843 }
5844
5845 /* Tell the remote target to detach. */
5846 remote_detach_pid (pid);
5847
5848 /* Exit only if this is the only active inferior. */
5849 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5850 puts_filtered (_("Ending remote debugging.\n"));
5851
5852 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5853
5854 /* Check to see if we are detaching a fork parent. Note that if we
5855 are detaching a fork child, tp == NULL. */
5856 is_fork_parent = (tp != NULL
5857 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5858
5859 /* If doing detach-on-fork, we don't mourn, because that will delete
5860 breakpoints that should be available for the followed inferior. */
5861 if (!is_fork_parent)
5862 {
5863 /* Save the pid as a string before mourning, since that will
5864 unpush the remote target, and we need the string after. */
5865 std::string infpid = target_pid_to_str (ptid_t (pid));
5866
5867 target_mourn_inferior (inferior_ptid);
5868 if (print_inferior_events)
5869 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5870 inf->num, infpid.c_str ());
5871 }
5872 else
5873 {
5874 switch_to_no_thread ();
5875 detach_inferior (current_inferior ());
5876 }
5877 }
5878
5879 void
5880 remote_target::detach (inferior *inf, int from_tty)
5881 {
5882 remote_detach_1 (inf, from_tty);
5883 }
5884
5885 void
5886 extended_remote_target::detach (inferior *inf, int from_tty)
5887 {
5888 remote_detach_1 (inf, from_tty);
5889 }
5890
5891 /* Target follow-fork function for remote targets. On entry, and
5892 at return, the current inferior is the fork parent.
5893
5894 Note that although this is currently only used for extended-remote,
5895 it is named remote_follow_fork in anticipation of using it for the
5896 remote target as well. */
5897
5898 void
5899 remote_target::follow_fork (bool follow_child, bool detach_fork)
5900 {
5901 struct remote_state *rs = get_remote_state ();
5902 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5903
5904 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5905 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5906 {
5907 /* When following the parent and detaching the child, we detach
5908 the child here. For the case of following the child and
5909 detaching the parent, the detach is done in the target-
5910 independent follow fork code in infrun.c. We can't use
5911 target_detach when detaching an unfollowed child because
5912 the client side doesn't know anything about the child. */
5913 if (detach_fork && !follow_child)
5914 {
5915 /* Detach the fork child. */
5916 ptid_t child_ptid;
5917 pid_t child_pid;
5918
5919 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5920 child_pid = child_ptid.pid ();
5921
5922 remote_detach_pid (child_pid);
5923 }
5924 }
5925 }
5926
5927 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5928 in the program space of the new inferior. */
5929
5930 void
5931 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5932 const char *execd_pathname)
5933 {
5934 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5935
5936 /* We know that this is a target file name, so if it has the "target:"
5937 prefix we strip it off before saving it in the program space. */
5938 if (is_target_filename (execd_pathname))
5939 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5940
5941 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5942 }
5943
5944 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5945
5946 void
5947 remote_target::disconnect (const char *args, int from_tty)
5948 {
5949 if (args)
5950 error (_("Argument given to \"disconnect\" when remotely debugging."));
5951
5952 /* Make sure we unpush even the extended remote targets. Calling
5953 target_mourn_inferior won't unpush, and
5954 remote_target::mourn_inferior won't unpush if there is more than
5955 one inferior left. */
5956 remote_unpush_target (this);
5957
5958 if (from_tty)
5959 puts_filtered ("Ending remote debugging.\n");
5960 }
5961
5962 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5963 be chatty about it. */
5964
5965 void
5966 extended_remote_target::attach (const char *args, int from_tty)
5967 {
5968 struct remote_state *rs = get_remote_state ();
5969 int pid;
5970 char *wait_status = NULL;
5971
5972 pid = parse_pid_to_attach (args);
5973
5974 /* Remote PID can be freely equal to getpid, do not check it here the same
5975 way as in other targets. */
5976
5977 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5978 error (_("This target does not support attaching to a process"));
5979
5980 if (from_tty)
5981 {
5982 const char *exec_file = get_exec_file (0);
5983
5984 if (exec_file)
5985 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5986 target_pid_to_str (ptid_t (pid)).c_str ());
5987 else
5988 printf_unfiltered (_("Attaching to %s\n"),
5989 target_pid_to_str (ptid_t (pid)).c_str ());
5990 }
5991
5992 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5993 putpkt (rs->buf);
5994 getpkt (&rs->buf, 0);
5995
5996 switch (packet_ok (rs->buf,
5997 &remote_protocol_packets[PACKET_vAttach]))
5998 {
5999 case PACKET_OK:
6000 if (!target_is_non_stop_p ())
6001 {
6002 /* Save the reply for later. */
6003 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6004 strcpy (wait_status, rs->buf.data ());
6005 }
6006 else if (strcmp (rs->buf.data (), "OK") != 0)
6007 error (_("Attaching to %s failed with: %s"),
6008 target_pid_to_str (ptid_t (pid)).c_str (),
6009 rs->buf.data ());
6010 break;
6011 case PACKET_UNKNOWN:
6012 error (_("This target does not support attaching to a process"));
6013 default:
6014 error (_("Attaching to %s failed"),
6015 target_pid_to_str (ptid_t (pid)).c_str ());
6016 }
6017
6018 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6019
6020 inferior_ptid = ptid_t (pid);
6021
6022 if (target_is_non_stop_p ())
6023 {
6024 /* Get list of threads. */
6025 update_thread_list ();
6026
6027 thread_info *thread = first_thread_of_inferior (current_inferior ());
6028 if (thread != nullptr)
6029 switch_to_thread (thread);
6030
6031 /* Invalidate our notion of the remote current thread. */
6032 record_currthread (rs, minus_one_ptid);
6033 }
6034 else
6035 {
6036 /* Now, if we have thread information, update the main thread's
6037 ptid. */
6038 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6039
6040 /* Add the main thread to the thread list. */
6041 thread_info *thr = add_thread_silent (this, curr_ptid);
6042
6043 switch_to_thread (thr);
6044
6045 /* Don't consider the thread stopped until we've processed the
6046 saved stop reply. */
6047 set_executing (this, thr->ptid, true);
6048 }
6049
6050 /* Next, if the target can specify a description, read it. We do
6051 this before anything involving memory or registers. */
6052 target_find_description ();
6053
6054 if (!target_is_non_stop_p ())
6055 {
6056 /* Use the previously fetched status. */
6057 gdb_assert (wait_status != NULL);
6058
6059 if (target_can_async_p ())
6060 {
6061 struct notif_event *reply
6062 = remote_notif_parse (this, &notif_client_stop, wait_status);
6063
6064 push_stop_reply ((struct stop_reply *) reply);
6065
6066 target_async (1);
6067 }
6068 else
6069 {
6070 gdb_assert (wait_status != NULL);
6071 strcpy (rs->buf.data (), wait_status);
6072 rs->cached_wait_status = 1;
6073 }
6074 }
6075 else
6076 {
6077 gdb_assert (wait_status == NULL);
6078
6079 gdb_assert (target_can_async_p ());
6080 target_async (1);
6081 }
6082 }
6083
6084 /* Implementation of the to_post_attach method. */
6085
6086 void
6087 extended_remote_target::post_attach (int pid)
6088 {
6089 /* Get text, data & bss offsets. */
6090 get_offsets ();
6091
6092 /* In certain cases GDB might not have had the chance to start
6093 symbol lookup up until now. This could happen if the debugged
6094 binary is not using shared libraries, the vsyscall page is not
6095 present (on Linux) and the binary itself hadn't changed since the
6096 debugging process was started. */
6097 if (current_program_space->symfile_object_file != NULL)
6098 remote_check_symbols();
6099 }
6100
6101 \f
6102 /* Check for the availability of vCont. This function should also check
6103 the response. */
6104
6105 void
6106 remote_target::remote_vcont_probe ()
6107 {
6108 remote_state *rs = get_remote_state ();
6109 char *buf;
6110
6111 strcpy (rs->buf.data (), "vCont?");
6112 putpkt (rs->buf);
6113 getpkt (&rs->buf, 0);
6114 buf = rs->buf.data ();
6115
6116 /* Make sure that the features we assume are supported. */
6117 if (startswith (buf, "vCont"))
6118 {
6119 char *p = &buf[5];
6120 int support_c, support_C;
6121
6122 rs->supports_vCont.s = 0;
6123 rs->supports_vCont.S = 0;
6124 support_c = 0;
6125 support_C = 0;
6126 rs->supports_vCont.t = 0;
6127 rs->supports_vCont.r = 0;
6128 while (p && *p == ';')
6129 {
6130 p++;
6131 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6132 rs->supports_vCont.s = 1;
6133 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6134 rs->supports_vCont.S = 1;
6135 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6136 support_c = 1;
6137 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6138 support_C = 1;
6139 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6140 rs->supports_vCont.t = 1;
6141 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6142 rs->supports_vCont.r = 1;
6143
6144 p = strchr (p, ';');
6145 }
6146
6147 /* If c, and C are not all supported, we can't use vCont. Clearing
6148 BUF will make packet_ok disable the packet. */
6149 if (!support_c || !support_C)
6150 buf[0] = 0;
6151 }
6152
6153 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6154 rs->supports_vCont_probed = true;
6155 }
6156
6157 /* Helper function for building "vCont" resumptions. Write a
6158 resumption to P. ENDP points to one-passed-the-end of the buffer
6159 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6160 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6161 resumed thread should be single-stepped and/or signalled. If PTID
6162 equals minus_one_ptid, then all threads are resumed; if PTID
6163 represents a process, then all threads of the process are resumed;
6164 the thread to be stepped and/or signalled is given in the global
6165 INFERIOR_PTID. */
6166
6167 char *
6168 remote_target::append_resumption (char *p, char *endp,
6169 ptid_t ptid, int step, gdb_signal siggnal)
6170 {
6171 struct remote_state *rs = get_remote_state ();
6172
6173 if (step && siggnal != GDB_SIGNAL_0)
6174 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6175 else if (step
6176 /* GDB is willing to range step. */
6177 && use_range_stepping
6178 /* Target supports range stepping. */
6179 && rs->supports_vCont.r
6180 /* We don't currently support range stepping multiple
6181 threads with a wildcard (though the protocol allows it,
6182 so stubs shouldn't make an active effort to forbid
6183 it). */
6184 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6185 {
6186 struct thread_info *tp;
6187
6188 if (ptid == minus_one_ptid)
6189 {
6190 /* If we don't know about the target thread's tid, then
6191 we're resuming magic_null_ptid (see caller). */
6192 tp = find_thread_ptid (this, magic_null_ptid);
6193 }
6194 else
6195 tp = find_thread_ptid (this, ptid);
6196 gdb_assert (tp != NULL);
6197
6198 if (tp->control.may_range_step)
6199 {
6200 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6201
6202 p += xsnprintf (p, endp - p, ";r%s,%s",
6203 phex_nz (tp->control.step_range_start,
6204 addr_size),
6205 phex_nz (tp->control.step_range_end,
6206 addr_size));
6207 }
6208 else
6209 p += xsnprintf (p, endp - p, ";s");
6210 }
6211 else if (step)
6212 p += xsnprintf (p, endp - p, ";s");
6213 else if (siggnal != GDB_SIGNAL_0)
6214 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6215 else
6216 p += xsnprintf (p, endp - p, ";c");
6217
6218 if (remote_multi_process_p (rs) && ptid.is_pid ())
6219 {
6220 ptid_t nptid;
6221
6222 /* All (-1) threads of process. */
6223 nptid = ptid_t (ptid.pid (), -1, 0);
6224
6225 p += xsnprintf (p, endp - p, ":");
6226 p = write_ptid (p, endp, nptid);
6227 }
6228 else if (ptid != minus_one_ptid)
6229 {
6230 p += xsnprintf (p, endp - p, ":");
6231 p = write_ptid (p, endp, ptid);
6232 }
6233
6234 return p;
6235 }
6236
6237 /* Clear the thread's private info on resume. */
6238
6239 static void
6240 resume_clear_thread_private_info (struct thread_info *thread)
6241 {
6242 if (thread->priv != NULL)
6243 {
6244 remote_thread_info *priv = get_remote_thread_info (thread);
6245
6246 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6247 priv->watch_data_address = 0;
6248 }
6249 }
6250
6251 /* Append a vCont continue-with-signal action for threads that have a
6252 non-zero stop signal. */
6253
6254 char *
6255 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6256 ptid_t ptid)
6257 {
6258 for (thread_info *thread : all_non_exited_threads (this, ptid))
6259 if (inferior_ptid != thread->ptid
6260 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6261 {
6262 p = append_resumption (p, endp, thread->ptid,
6263 0, thread->suspend.stop_signal);
6264 thread->suspend.stop_signal = GDB_SIGNAL_0;
6265 resume_clear_thread_private_info (thread);
6266 }
6267
6268 return p;
6269 }
6270
6271 /* Set the target running, using the packets that use Hc
6272 (c/s/C/S). */
6273
6274 void
6275 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6276 gdb_signal siggnal)
6277 {
6278 struct remote_state *rs = get_remote_state ();
6279 char *buf;
6280
6281 rs->last_sent_signal = siggnal;
6282 rs->last_sent_step = step;
6283
6284 /* The c/s/C/S resume packets use Hc, so set the continue
6285 thread. */
6286 if (ptid == minus_one_ptid)
6287 set_continue_thread (any_thread_ptid);
6288 else
6289 set_continue_thread (ptid);
6290
6291 for (thread_info *thread : all_non_exited_threads (this))
6292 resume_clear_thread_private_info (thread);
6293
6294 buf = rs->buf.data ();
6295 if (::execution_direction == EXEC_REVERSE)
6296 {
6297 /* We don't pass signals to the target in reverse exec mode. */
6298 if (info_verbose && siggnal != GDB_SIGNAL_0)
6299 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6300 siggnal);
6301
6302 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6303 error (_("Remote reverse-step not supported."));
6304 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6305 error (_("Remote reverse-continue not supported."));
6306
6307 strcpy (buf, step ? "bs" : "bc");
6308 }
6309 else if (siggnal != GDB_SIGNAL_0)
6310 {
6311 buf[0] = step ? 'S' : 'C';
6312 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6313 buf[2] = tohex (((int) siggnal) & 0xf);
6314 buf[3] = '\0';
6315 }
6316 else
6317 strcpy (buf, step ? "s" : "c");
6318
6319 putpkt (buf);
6320 }
6321
6322 /* Resume the remote inferior by using a "vCont" packet. The thread
6323 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6324 resumed thread should be single-stepped and/or signalled. If PTID
6325 equals minus_one_ptid, then all threads are resumed; the thread to
6326 be stepped and/or signalled is given in the global INFERIOR_PTID.
6327 This function returns non-zero iff it resumes the inferior.
6328
6329 This function issues a strict subset of all possible vCont commands
6330 at the moment. */
6331
6332 int
6333 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6334 enum gdb_signal siggnal)
6335 {
6336 struct remote_state *rs = get_remote_state ();
6337 char *p;
6338 char *endp;
6339
6340 /* No reverse execution actions defined for vCont. */
6341 if (::execution_direction == EXEC_REVERSE)
6342 return 0;
6343
6344 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6345 remote_vcont_probe ();
6346
6347 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6348 return 0;
6349
6350 p = rs->buf.data ();
6351 endp = p + get_remote_packet_size ();
6352
6353 /* If we could generate a wider range of packets, we'd have to worry
6354 about overflowing BUF. Should there be a generic
6355 "multi-part-packet" packet? */
6356
6357 p += xsnprintf (p, endp - p, "vCont");
6358
6359 if (ptid == magic_null_ptid)
6360 {
6361 /* MAGIC_NULL_PTID means that we don't have any active threads,
6362 so we don't have any TID numbers the inferior will
6363 understand. Make sure to only send forms that do not specify
6364 a TID. */
6365 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6366 }
6367 else if (ptid == minus_one_ptid || ptid.is_pid ())
6368 {
6369 /* Resume all threads (of all processes, or of a single
6370 process), with preference for INFERIOR_PTID. This assumes
6371 inferior_ptid belongs to the set of all threads we are about
6372 to resume. */
6373 if (step || siggnal != GDB_SIGNAL_0)
6374 {
6375 /* Step inferior_ptid, with or without signal. */
6376 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6377 }
6378
6379 /* Also pass down any pending signaled resumption for other
6380 threads not the current. */
6381 p = append_pending_thread_resumptions (p, endp, ptid);
6382
6383 /* And continue others without a signal. */
6384 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6385 }
6386 else
6387 {
6388 /* Scheduler locking; resume only PTID. */
6389 append_resumption (p, endp, ptid, step, siggnal);
6390 }
6391
6392 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6393 putpkt (rs->buf);
6394
6395 if (target_is_non_stop_p ())
6396 {
6397 /* In non-stop, the stub replies to vCont with "OK". The stop
6398 reply will be reported asynchronously by means of a `%Stop'
6399 notification. */
6400 getpkt (&rs->buf, 0);
6401 if (strcmp (rs->buf.data (), "OK") != 0)
6402 error (_("Unexpected vCont reply in non-stop mode: %s"),
6403 rs->buf.data ());
6404 }
6405
6406 return 1;
6407 }
6408
6409 /* Tell the remote machine to resume. */
6410
6411 void
6412 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6413 {
6414 struct remote_state *rs = get_remote_state ();
6415
6416 /* When connected in non-stop mode, the core resumes threads
6417 individually. Resuming remote threads directly in target_resume
6418 would thus result in sending one packet per thread. Instead, to
6419 minimize roundtrip latency, here we just store the resume
6420 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6421 resumption will be done in remote_target::commit_resume, where we'll be
6422 able to do vCont action coalescing. */
6423 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6424 {
6425 remote_thread_info *remote_thr;
6426
6427 if (minus_one_ptid == ptid || ptid.is_pid ())
6428 remote_thr = get_remote_thread_info (this, inferior_ptid);
6429 else
6430 remote_thr = get_remote_thread_info (this, ptid);
6431
6432 /* We don't expect the core to ask to resume an already resumed (from
6433 its point of view) thread. */
6434 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6435
6436 remote_thr->set_resumed_pending_vcont (step, siggnal);
6437 return;
6438 }
6439
6440 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6441 (explained in remote-notif.c:handle_notification) so
6442 remote_notif_process is not called. We need find a place where
6443 it is safe to start a 'vNotif' sequence. It is good to do it
6444 before resuming inferior, because inferior was stopped and no RSP
6445 traffic at that moment. */
6446 if (!target_is_non_stop_p ())
6447 remote_notif_process (rs->notif_state, &notif_client_stop);
6448
6449 rs->last_resume_exec_dir = ::execution_direction;
6450
6451 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6452 if (!remote_resume_with_vcont (ptid, step, siggnal))
6453 remote_resume_with_hc (ptid, step, siggnal);
6454
6455 /* Update resumed state tracked by the remote target. */
6456 for (thread_info *tp : all_non_exited_threads (this, ptid))
6457 get_remote_thread_info (tp)->set_resumed ();
6458
6459 /* We are about to start executing the inferior, let's register it
6460 with the event loop. NOTE: this is the one place where all the
6461 execution commands end up. We could alternatively do this in each
6462 of the execution commands in infcmd.c. */
6463 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6464 into infcmd.c in order to allow inferior function calls to work
6465 NOT asynchronously. */
6466 if (target_can_async_p ())
6467 target_async (1);
6468
6469 /* We've just told the target to resume. The remote server will
6470 wait for the inferior to stop, and then send a stop reply. In
6471 the mean time, we can't start another command/query ourselves
6472 because the stub wouldn't be ready to process it. This applies
6473 only to the base all-stop protocol, however. In non-stop (which
6474 only supports vCont), the stub replies with an "OK", and is
6475 immediate able to process further serial input. */
6476 if (!target_is_non_stop_p ())
6477 rs->waiting_for_stop_reply = 1;
6478 }
6479
6480 static int is_pending_fork_parent_thread (struct thread_info *thread);
6481
6482 /* Private per-inferior info for target remote processes. */
6483
6484 struct remote_inferior : public private_inferior
6485 {
6486 /* Whether we can send a wildcard vCont for this process. */
6487 bool may_wildcard_vcont = true;
6488 };
6489
6490 /* Get the remote private inferior data associated to INF. */
6491
6492 static remote_inferior *
6493 get_remote_inferior (inferior *inf)
6494 {
6495 if (inf->priv == NULL)
6496 inf->priv.reset (new remote_inferior);
6497
6498 return static_cast<remote_inferior *> (inf->priv.get ());
6499 }
6500
6501 struct stop_reply : public notif_event
6502 {
6503 ~stop_reply ();
6504
6505 /* The identifier of the thread about this event */
6506 ptid_t ptid;
6507
6508 /* The remote state this event is associated with. When the remote
6509 connection, represented by a remote_state object, is closed,
6510 all the associated stop_reply events should be released. */
6511 struct remote_state *rs;
6512
6513 struct target_waitstatus ws;
6514
6515 /* The architecture associated with the expedited registers. */
6516 gdbarch *arch;
6517
6518 /* Expedited registers. This makes remote debugging a bit more
6519 efficient for those targets that provide critical registers as
6520 part of their normal status mechanism (as another roundtrip to
6521 fetch them is avoided). */
6522 std::vector<cached_reg_t> regcache;
6523
6524 enum target_stop_reason stop_reason;
6525
6526 CORE_ADDR watch_data_address;
6527
6528 int core;
6529 };
6530
6531 /* Class used to track the construction of a vCont packet in the
6532 outgoing packet buffer. This is used to send multiple vCont
6533 packets if we have more actions than would fit a single packet. */
6534
6535 class vcont_builder
6536 {
6537 public:
6538 explicit vcont_builder (remote_target *remote)
6539 : m_remote (remote)
6540 {
6541 restart ();
6542 }
6543
6544 void flush ();
6545 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6546
6547 private:
6548 void restart ();
6549
6550 /* The remote target. */
6551 remote_target *m_remote;
6552
6553 /* Pointer to the first action. P points here if no action has been
6554 appended yet. */
6555 char *m_first_action;
6556
6557 /* Where the next action will be appended. */
6558 char *m_p;
6559
6560 /* The end of the buffer. Must never write past this. */
6561 char *m_endp;
6562 };
6563
6564 /* Prepare the outgoing buffer for a new vCont packet. */
6565
6566 void
6567 vcont_builder::restart ()
6568 {
6569 struct remote_state *rs = m_remote->get_remote_state ();
6570
6571 m_p = rs->buf.data ();
6572 m_endp = m_p + m_remote->get_remote_packet_size ();
6573 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6574 m_first_action = m_p;
6575 }
6576
6577 /* If the vCont packet being built has any action, send it to the
6578 remote end. */
6579
6580 void
6581 vcont_builder::flush ()
6582 {
6583 struct remote_state *rs;
6584
6585 if (m_p == m_first_action)
6586 return;
6587
6588 rs = m_remote->get_remote_state ();
6589 m_remote->putpkt (rs->buf);
6590 m_remote->getpkt (&rs->buf, 0);
6591 if (strcmp (rs->buf.data (), "OK") != 0)
6592 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6593 }
6594
6595 /* The largest action is range-stepping, with its two addresses. This
6596 is more than sufficient. If a new, bigger action is created, it'll
6597 quickly trigger a failed assertion in append_resumption (and we'll
6598 just bump this). */
6599 #define MAX_ACTION_SIZE 200
6600
6601 /* Append a new vCont action in the outgoing packet being built. If
6602 the action doesn't fit the packet along with previous actions, push
6603 what we've got so far to the remote end and start over a new vCont
6604 packet (with the new action). */
6605
6606 void
6607 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6608 {
6609 char buf[MAX_ACTION_SIZE + 1];
6610
6611 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6612 ptid, step, siggnal);
6613
6614 /* Check whether this new action would fit in the vCont packet along
6615 with previous actions. If not, send what we've got so far and
6616 start a new vCont packet. */
6617 size_t rsize = endp - buf;
6618 if (rsize > m_endp - m_p)
6619 {
6620 flush ();
6621 restart ();
6622
6623 /* Should now fit. */
6624 gdb_assert (rsize <= m_endp - m_p);
6625 }
6626
6627 memcpy (m_p, buf, rsize);
6628 m_p += rsize;
6629 *m_p = '\0';
6630 }
6631
6632 /* to_commit_resume implementation. */
6633
6634 void
6635 remote_target::commit_resumed ()
6636 {
6637 /* If connected in all-stop mode, we'd send the remote resume
6638 request directly from remote_resume. Likewise if
6639 reverse-debugging, as there are no defined vCont actions for
6640 reverse execution. */
6641 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6642 return;
6643
6644 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6645 instead of resuming all threads of each process individually.
6646 However, if any thread of a process must remain halted, we can't
6647 send wildcard resumes and must send one action per thread.
6648
6649 Care must be taken to not resume threads/processes the server
6650 side already told us are stopped, but the core doesn't know about
6651 yet, because the events are still in the vStopped notification
6652 queue. For example:
6653
6654 #1 => vCont s:p1.1;c
6655 #2 <= OK
6656 #3 <= %Stopped T05 p1.1
6657 #4 => vStopped
6658 #5 <= T05 p1.2
6659 #6 => vStopped
6660 #7 <= OK
6661 #8 (infrun handles the stop for p1.1 and continues stepping)
6662 #9 => vCont s:p1.1;c
6663
6664 The last vCont above would resume thread p1.2 by mistake, because
6665 the server has no idea that the event for p1.2 had not been
6666 handled yet.
6667
6668 The server side must similarly ignore resume actions for the
6669 thread that has a pending %Stopped notification (and any other
6670 threads with events pending), until GDB acks the notification
6671 with vStopped. Otherwise, e.g., the following case is
6672 mishandled:
6673
6674 #1 => g (or any other packet)
6675 #2 <= [registers]
6676 #3 <= %Stopped T05 p1.2
6677 #4 => vCont s:p1.1;c
6678 #5 <= OK
6679
6680 Above, the server must not resume thread p1.2. GDB can't know
6681 that p1.2 stopped until it acks the %Stopped notification, and
6682 since from GDB's perspective all threads should be running, it
6683 sends a "c" action.
6684
6685 Finally, special care must also be given to handling fork/vfork
6686 events. A (v)fork event actually tells us that two processes
6687 stopped -- the parent and the child. Until we follow the fork,
6688 we must not resume the child. Therefore, if we have a pending
6689 fork follow, we must not send a global wildcard resume action
6690 (vCont;c). We can still send process-wide wildcards though. */
6691
6692 /* Start by assuming a global wildcard (vCont;c) is possible. */
6693 bool may_global_wildcard_vcont = true;
6694
6695 /* And assume every process is individually wildcard-able too. */
6696 for (inferior *inf : all_non_exited_inferiors (this))
6697 {
6698 remote_inferior *priv = get_remote_inferior (inf);
6699
6700 priv->may_wildcard_vcont = true;
6701 }
6702
6703 /* Check for any pending events (not reported or processed yet) and
6704 disable process and global wildcard resumes appropriately. */
6705 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6706
6707 bool any_pending_vcont_resume = false;
6708
6709 for (thread_info *tp : all_non_exited_threads (this))
6710 {
6711 remote_thread_info *priv = get_remote_thread_info (tp);
6712
6713 /* If a thread of a process is not meant to be resumed, then we
6714 can't wildcard that process. */
6715 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6716 {
6717 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6718
6719 /* And if we can't wildcard a process, we can't wildcard
6720 everything either. */
6721 may_global_wildcard_vcont = false;
6722 continue;
6723 }
6724
6725 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6726 any_pending_vcont_resume = true;
6727
6728 /* If a thread is the parent of an unfollowed fork, then we
6729 can't do a global wildcard, as that would resume the fork
6730 child. */
6731 if (is_pending_fork_parent_thread (tp))
6732 may_global_wildcard_vcont = false;
6733 }
6734
6735 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6736 do. */
6737 if (!any_pending_vcont_resume)
6738 return;
6739
6740 /* Now let's build the vCont packet(s). Actions must be appended
6741 from narrower to wider scopes (thread -> process -> global). If
6742 we end up with too many actions for a single packet vcont_builder
6743 flushes the current vCont packet to the remote side and starts a
6744 new one. */
6745 struct vcont_builder vcont_builder (this);
6746
6747 /* Threads first. */
6748 for (thread_info *tp : all_non_exited_threads (this))
6749 {
6750 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6751
6752 /* If the thread was previously vCont-resumed, no need to send a specific
6753 action for it. If we didn't receive a resume request for it, don't
6754 send an action for it either. */
6755 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6756 continue;
6757
6758 gdb_assert (!thread_is_in_step_over_chain (tp));
6759
6760 /* We should never be commit-resuming a thread that has a stop reply.
6761 Otherwise, we would end up reporting a stop event for a thread while
6762 it is running on the remote target. */
6763 remote_state *rs = get_remote_state ();
6764 for (const auto &stop_reply : rs->stop_reply_queue)
6765 gdb_assert (stop_reply->ptid != tp->ptid);
6766
6767 const resumed_pending_vcont_info &info
6768 = remote_thr->resumed_pending_vcont_info ();
6769
6770 /* Check if we need to send a specific action for this thread. If not,
6771 it will be included in a wildcard resume instead. */
6772 if (info.step || info.sig != GDB_SIGNAL_0
6773 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6774 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6775
6776 remote_thr->set_resumed ();
6777 }
6778
6779 /* Now check whether we can send any process-wide wildcard. This is
6780 to avoid sending a global wildcard in the case nothing is
6781 supposed to be resumed. */
6782 bool any_process_wildcard = false;
6783
6784 for (inferior *inf : all_non_exited_inferiors (this))
6785 {
6786 if (get_remote_inferior (inf)->may_wildcard_vcont)
6787 {
6788 any_process_wildcard = true;
6789 break;
6790 }
6791 }
6792
6793 if (any_process_wildcard)
6794 {
6795 /* If all processes are wildcard-able, then send a single "c"
6796 action, otherwise, send an "all (-1) threads of process"
6797 continue action for each running process, if any. */
6798 if (may_global_wildcard_vcont)
6799 {
6800 vcont_builder.push_action (minus_one_ptid,
6801 false, GDB_SIGNAL_0);
6802 }
6803 else
6804 {
6805 for (inferior *inf : all_non_exited_inferiors (this))
6806 {
6807 if (get_remote_inferior (inf)->may_wildcard_vcont)
6808 {
6809 vcont_builder.push_action (ptid_t (inf->pid),
6810 false, GDB_SIGNAL_0);
6811 }
6812 }
6813 }
6814 }
6815
6816 vcont_builder.flush ();
6817 }
6818
6819 /* Implementation of target_has_pending_events. */
6820
6821 bool
6822 remote_target::has_pending_events ()
6823 {
6824 if (target_can_async_p ())
6825 {
6826 remote_state *rs = get_remote_state ();
6827
6828 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6829 return true;
6830
6831 /* Note that BUFCNT can be negative, indicating sticky
6832 error. */
6833 if (rs->remote_desc->bufcnt != 0)
6834 return true;
6835 }
6836 return false;
6837 }
6838
6839 \f
6840
6841 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6842 thread, all threads of a remote process, or all threads of all
6843 processes. */
6844
6845 void
6846 remote_target::remote_stop_ns (ptid_t ptid)
6847 {
6848 struct remote_state *rs = get_remote_state ();
6849 char *p = rs->buf.data ();
6850 char *endp = p + get_remote_packet_size ();
6851
6852 /* If any thread that needs to stop was resumed but pending a vCont
6853 resume, generate a phony stop_reply. However, first check
6854 whether the thread wasn't resumed with a signal. Generating a
6855 phony stop in that case would result in losing the signal. */
6856 bool needs_commit = false;
6857 for (thread_info *tp : all_non_exited_threads (this, ptid))
6858 {
6859 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6860
6861 if (remote_thr->get_resume_state ()
6862 == resume_state::RESUMED_PENDING_VCONT)
6863 {
6864 const resumed_pending_vcont_info &info
6865 = remote_thr->resumed_pending_vcont_info ();
6866 if (info.sig != GDB_SIGNAL_0)
6867 {
6868 /* This signal must be forwarded to the inferior. We
6869 could commit-resume just this thread, but its simpler
6870 to just commit-resume everything. */
6871 needs_commit = true;
6872 break;
6873 }
6874 }
6875 }
6876
6877 if (needs_commit)
6878 commit_resumed ();
6879 else
6880 for (thread_info *tp : all_non_exited_threads (this, ptid))
6881 {
6882 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6883
6884 if (remote_thr->get_resume_state ()
6885 == resume_state::RESUMED_PENDING_VCONT)
6886 {
6887 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6888 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6889 tp->ptid.lwp (), tp->ptid.tid ());
6890
6891 /* Check that the thread wasn't resumed with a signal.
6892 Generating a phony stop would result in losing the
6893 signal. */
6894 const resumed_pending_vcont_info &info
6895 = remote_thr->resumed_pending_vcont_info ();
6896 gdb_assert (info.sig == GDB_SIGNAL_0);
6897
6898 stop_reply *sr = new stop_reply ();
6899 sr->ptid = tp->ptid;
6900 sr->rs = rs;
6901 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6902 sr->ws.value.sig = GDB_SIGNAL_0;
6903 sr->arch = tp->inf->gdbarch;
6904 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6905 sr->watch_data_address = 0;
6906 sr->core = 0;
6907 this->push_stop_reply (sr);
6908
6909 /* Pretend that this thread was actually resumed on the
6910 remote target, then stopped. If we leave it in the
6911 RESUMED_PENDING_VCONT state and the commit_resumed
6912 method is called while the stop reply is still in the
6913 queue, we'll end up reporting a stop event to the core
6914 for that thread while it is running on the remote
6915 target... that would be bad. */
6916 remote_thr->set_resumed ();
6917 }
6918 }
6919
6920 /* FIXME: This supports_vCont_probed check is a workaround until
6921 packet_support is per-connection. */
6922 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6923 || !rs->supports_vCont_probed)
6924 remote_vcont_probe ();
6925
6926 if (!rs->supports_vCont.t)
6927 error (_("Remote server does not support stopping threads"));
6928
6929 if (ptid == minus_one_ptid
6930 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6931 p += xsnprintf (p, endp - p, "vCont;t");
6932 else
6933 {
6934 ptid_t nptid;
6935
6936 p += xsnprintf (p, endp - p, "vCont;t:");
6937
6938 if (ptid.is_pid ())
6939 /* All (-1) threads of process. */
6940 nptid = ptid_t (ptid.pid (), -1, 0);
6941 else
6942 {
6943 /* Small optimization: if we already have a stop reply for
6944 this thread, no use in telling the stub we want this
6945 stopped. */
6946 if (peek_stop_reply (ptid))
6947 return;
6948
6949 nptid = ptid;
6950 }
6951
6952 write_ptid (p, endp, nptid);
6953 }
6954
6955 /* In non-stop, we get an immediate OK reply. The stop reply will
6956 come in asynchronously by notification. */
6957 putpkt (rs->buf);
6958 getpkt (&rs->buf, 0);
6959 if (strcmp (rs->buf.data (), "OK") != 0)
6960 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6961 rs->buf.data ());
6962 }
6963
6964 /* All-stop version of target_interrupt. Sends a break or a ^C to
6965 interrupt the remote target. It is undefined which thread of which
6966 process reports the interrupt. */
6967
6968 void
6969 remote_target::remote_interrupt_as ()
6970 {
6971 struct remote_state *rs = get_remote_state ();
6972
6973 rs->ctrlc_pending_p = 1;
6974
6975 /* If the inferior is stopped already, but the core didn't know
6976 about it yet, just ignore the request. The cached wait status
6977 will be collected in remote_wait. */
6978 if (rs->cached_wait_status)
6979 return;
6980
6981 /* Send interrupt_sequence to remote target. */
6982 send_interrupt_sequence ();
6983 }
6984
6985 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6986 the remote target. It is undefined which thread of which process
6987 reports the interrupt. Throws an error if the packet is not
6988 supported by the server. */
6989
6990 void
6991 remote_target::remote_interrupt_ns ()
6992 {
6993 struct remote_state *rs = get_remote_state ();
6994 char *p = rs->buf.data ();
6995 char *endp = p + get_remote_packet_size ();
6996
6997 xsnprintf (p, endp - p, "vCtrlC");
6998
6999 /* In non-stop, we get an immediate OK reply. The stop reply will
7000 come in asynchronously by notification. */
7001 putpkt (rs->buf);
7002 getpkt (&rs->buf, 0);
7003
7004 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7005 {
7006 case PACKET_OK:
7007 break;
7008 case PACKET_UNKNOWN:
7009 error (_("No support for interrupting the remote target."));
7010 case PACKET_ERROR:
7011 error (_("Interrupting target failed: %s"), rs->buf.data ());
7012 }
7013 }
7014
7015 /* Implement the to_stop function for the remote targets. */
7016
7017 void
7018 remote_target::stop (ptid_t ptid)
7019 {
7020 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7021
7022 if (target_is_non_stop_p ())
7023 remote_stop_ns (ptid);
7024 else
7025 {
7026 /* We don't currently have a way to transparently pause the
7027 remote target in all-stop mode. Interrupt it instead. */
7028 remote_interrupt_as ();
7029 }
7030 }
7031
7032 /* Implement the to_interrupt function for the remote targets. */
7033
7034 void
7035 remote_target::interrupt ()
7036 {
7037 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7038
7039 if (target_is_non_stop_p ())
7040 remote_interrupt_ns ();
7041 else
7042 remote_interrupt_as ();
7043 }
7044
7045 /* Implement the to_pass_ctrlc function for the remote targets. */
7046
7047 void
7048 remote_target::pass_ctrlc ()
7049 {
7050 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7051
7052 struct remote_state *rs = get_remote_state ();
7053
7054 /* If we're starting up, we're not fully synced yet. Quit
7055 immediately. */
7056 if (rs->starting_up)
7057 quit ();
7058 /* If ^C has already been sent once, offer to disconnect. */
7059 else if (rs->ctrlc_pending_p)
7060 interrupt_query ();
7061 else
7062 target_interrupt ();
7063 }
7064
7065 /* Ask the user what to do when an interrupt is received. */
7066
7067 void
7068 remote_target::interrupt_query ()
7069 {
7070 struct remote_state *rs = get_remote_state ();
7071
7072 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7073 {
7074 if (query (_("The target is not responding to interrupt requests.\n"
7075 "Stop debugging it? ")))
7076 {
7077 remote_unpush_target (this);
7078 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7079 }
7080 }
7081 else
7082 {
7083 if (query (_("Interrupted while waiting for the program.\n"
7084 "Give up waiting? ")))
7085 quit ();
7086 }
7087 }
7088
7089 /* Enable/disable target terminal ownership. Most targets can use
7090 terminal groups to control terminal ownership. Remote targets are
7091 different in that explicit transfer of ownership to/from GDB/target
7092 is required. */
7093
7094 void
7095 remote_target::terminal_inferior ()
7096 {
7097 /* NOTE: At this point we could also register our selves as the
7098 recipient of all input. Any characters typed could then be
7099 passed on down to the target. */
7100 }
7101
7102 void
7103 remote_target::terminal_ours ()
7104 {
7105 }
7106
7107 static void
7108 remote_console_output (const char *msg)
7109 {
7110 const char *p;
7111
7112 for (p = msg; p[0] && p[1]; p += 2)
7113 {
7114 char tb[2];
7115 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7116
7117 tb[0] = c;
7118 tb[1] = 0;
7119 gdb_stdtarg->puts (tb);
7120 }
7121 gdb_stdtarg->flush ();
7122 }
7123
7124 /* Return the length of the stop reply queue. */
7125
7126 int
7127 remote_target::stop_reply_queue_length ()
7128 {
7129 remote_state *rs = get_remote_state ();
7130 return rs->stop_reply_queue.size ();
7131 }
7132
7133 static void
7134 remote_notif_stop_parse (remote_target *remote,
7135 struct notif_client *self, const char *buf,
7136 struct notif_event *event)
7137 {
7138 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7139 }
7140
7141 static void
7142 remote_notif_stop_ack (remote_target *remote,
7143 struct notif_client *self, const char *buf,
7144 struct notif_event *event)
7145 {
7146 struct stop_reply *stop_reply = (struct stop_reply *) event;
7147
7148 /* acknowledge */
7149 putpkt (remote, self->ack_command);
7150
7151 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7152 the notification. It was left in the queue because we need to
7153 acknowledge it and pull the rest of the notifications out. */
7154 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7155 remote->push_stop_reply (stop_reply);
7156 }
7157
7158 static int
7159 remote_notif_stop_can_get_pending_events (remote_target *remote,
7160 struct notif_client *self)
7161 {
7162 /* We can't get pending events in remote_notif_process for
7163 notification stop, and we have to do this in remote_wait_ns
7164 instead. If we fetch all queued events from stub, remote stub
7165 may exit and we have no chance to process them back in
7166 remote_wait_ns. */
7167 remote_state *rs = remote->get_remote_state ();
7168 mark_async_event_handler (rs->remote_async_inferior_event_token);
7169 return 0;
7170 }
7171
7172 stop_reply::~stop_reply ()
7173 {
7174 for (cached_reg_t &reg : regcache)
7175 xfree (reg.data);
7176 }
7177
7178 static notif_event_up
7179 remote_notif_stop_alloc_reply ()
7180 {
7181 return notif_event_up (new struct stop_reply ());
7182 }
7183
7184 /* A client of notification Stop. */
7185
7186 struct notif_client notif_client_stop =
7187 {
7188 "Stop",
7189 "vStopped",
7190 remote_notif_stop_parse,
7191 remote_notif_stop_ack,
7192 remote_notif_stop_can_get_pending_events,
7193 remote_notif_stop_alloc_reply,
7194 REMOTE_NOTIF_STOP,
7195 };
7196
7197 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7198 the pid of the process that owns the threads we want to check, or
7199 -1 if we want to check all threads. */
7200
7201 static int
7202 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7203 ptid_t thread_ptid)
7204 {
7205 if (ws->kind == TARGET_WAITKIND_FORKED
7206 || ws->kind == TARGET_WAITKIND_VFORKED)
7207 {
7208 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7209 return 1;
7210 }
7211
7212 return 0;
7213 }
7214
7215 /* Return the thread's pending status used to determine whether the
7216 thread is a fork parent stopped at a fork event. */
7217
7218 static struct target_waitstatus *
7219 thread_pending_fork_status (struct thread_info *thread)
7220 {
7221 if (thread->suspend.waitstatus_pending_p)
7222 return &thread->suspend.waitstatus;
7223 else
7224 return &thread->pending_follow;
7225 }
7226
7227 /* Determine if THREAD is a pending fork parent thread. */
7228
7229 static int
7230 is_pending_fork_parent_thread (struct thread_info *thread)
7231 {
7232 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7233 int pid = -1;
7234
7235 return is_pending_fork_parent (ws, pid, thread->ptid);
7236 }
7237
7238 /* If CONTEXT contains any fork child threads that have not been
7239 reported yet, remove them from the CONTEXT list. If such a
7240 thread exists it is because we are stopped at a fork catchpoint
7241 and have not yet called follow_fork, which will set up the
7242 host-side data structures for the new process. */
7243
7244 void
7245 remote_target::remove_new_fork_children (threads_listing_context *context)
7246 {
7247 int pid = -1;
7248 struct notif_client *notif = &notif_client_stop;
7249
7250 /* For any threads stopped at a fork event, remove the corresponding
7251 fork child threads from the CONTEXT list. */
7252 for (thread_info *thread : all_non_exited_threads (this))
7253 {
7254 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7255
7256 if (is_pending_fork_parent (ws, pid, thread->ptid))
7257 context->remove_thread (ws->value.related_pid);
7258 }
7259
7260 /* Check for any pending fork events (not reported or processed yet)
7261 in process PID and remove those fork child threads from the
7262 CONTEXT list as well. */
7263 remote_notif_get_pending_events (notif);
7264 for (auto &event : get_remote_state ()->stop_reply_queue)
7265 if (event->ws.kind == TARGET_WAITKIND_FORKED
7266 || event->ws.kind == TARGET_WAITKIND_VFORKED
7267 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7268 context->remove_thread (event->ws.value.related_pid);
7269 }
7270
7271 /* Check whether any event pending in the vStopped queue would prevent a
7272 global or process wildcard vCont action. Set *may_global_wildcard to
7273 false if we can't do a global wildcard (vCont;c), and clear the event
7274 inferior's may_wildcard_vcont flag if we can't do a process-wide
7275 wildcard resume (vCont;c:pPID.-1). */
7276
7277 void
7278 remote_target::check_pending_events_prevent_wildcard_vcont
7279 (bool *may_global_wildcard)
7280 {
7281 struct notif_client *notif = &notif_client_stop;
7282
7283 remote_notif_get_pending_events (notif);
7284 for (auto &event : get_remote_state ()->stop_reply_queue)
7285 {
7286 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7287 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7288 continue;
7289
7290 if (event->ws.kind == TARGET_WAITKIND_FORKED
7291 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7292 *may_global_wildcard = false;
7293
7294 /* This may be the first time we heard about this process.
7295 Regardless, we must not do a global wildcard resume, otherwise
7296 we'd resume this process too. */
7297 *may_global_wildcard = false;
7298 if (event->ptid != null_ptid)
7299 {
7300 inferior *inf = find_inferior_ptid (this, event->ptid);
7301 if (inf != NULL)
7302 get_remote_inferior (inf)->may_wildcard_vcont = false;
7303 }
7304 }
7305 }
7306
7307 /* Discard all pending stop replies of inferior INF. */
7308
7309 void
7310 remote_target::discard_pending_stop_replies (struct inferior *inf)
7311 {
7312 struct stop_reply *reply;
7313 struct remote_state *rs = get_remote_state ();
7314 struct remote_notif_state *rns = rs->notif_state;
7315
7316 /* This function can be notified when an inferior exists. When the
7317 target is not remote, the notification state is NULL. */
7318 if (rs->remote_desc == NULL)
7319 return;
7320
7321 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7322
7323 /* Discard the in-flight notification. */
7324 if (reply != NULL && reply->ptid.pid () == inf->pid)
7325 {
7326 /* Leave the notification pending, since the server expects that
7327 we acknowledge it with vStopped. But clear its contents, so
7328 that later on when we acknowledge it, we also discard it. */
7329 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7330
7331 if (remote_debug)
7332 fprintf_unfiltered (gdb_stdlog,
7333 "discarded in-flight notification\n");
7334 }
7335
7336 /* Discard the stop replies we have already pulled with
7337 vStopped. */
7338 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7339 rs->stop_reply_queue.end (),
7340 [=] (const stop_reply_up &event)
7341 {
7342 return event->ptid.pid () == inf->pid;
7343 });
7344 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7345 }
7346
7347 /* Discard the stop replies for RS in stop_reply_queue. */
7348
7349 void
7350 remote_target::discard_pending_stop_replies_in_queue ()
7351 {
7352 remote_state *rs = get_remote_state ();
7353
7354 /* Discard the stop replies we have already pulled with
7355 vStopped. */
7356 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7357 rs->stop_reply_queue.end (),
7358 [=] (const stop_reply_up &event)
7359 {
7360 return event->rs == rs;
7361 });
7362 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7363 }
7364
7365 /* Remove the first reply in 'stop_reply_queue' which matches
7366 PTID. */
7367
7368 struct stop_reply *
7369 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7370 {
7371 remote_state *rs = get_remote_state ();
7372
7373 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7374 rs->stop_reply_queue.end (),
7375 [=] (const stop_reply_up &event)
7376 {
7377 return event->ptid.matches (ptid);
7378 });
7379 struct stop_reply *result;
7380 if (iter == rs->stop_reply_queue.end ())
7381 result = nullptr;
7382 else
7383 {
7384 result = iter->release ();
7385 rs->stop_reply_queue.erase (iter);
7386 }
7387
7388 if (notif_debug)
7389 fprintf_unfiltered (gdb_stdlog,
7390 "notif: discard queued event: 'Stop' in %s\n",
7391 target_pid_to_str (ptid).c_str ());
7392
7393 return result;
7394 }
7395
7396 /* Look for a queued stop reply belonging to PTID. If one is found,
7397 remove it from the queue, and return it. Returns NULL if none is
7398 found. If there are still queued events left to process, tell the
7399 event loop to get back to target_wait soon. */
7400
7401 struct stop_reply *
7402 remote_target::queued_stop_reply (ptid_t ptid)
7403 {
7404 remote_state *rs = get_remote_state ();
7405 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7406
7407 if (!rs->stop_reply_queue.empty ())
7408 {
7409 /* There's still at least an event left. */
7410 mark_async_event_handler (rs->remote_async_inferior_event_token);
7411 }
7412
7413 return r;
7414 }
7415
7416 /* Push a fully parsed stop reply in the stop reply queue. Since we
7417 know that we now have at least one queued event left to pass to the
7418 core side, tell the event loop to get back to target_wait soon. */
7419
7420 void
7421 remote_target::push_stop_reply (struct stop_reply *new_event)
7422 {
7423 remote_state *rs = get_remote_state ();
7424 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7425
7426 if (notif_debug)
7427 fprintf_unfiltered (gdb_stdlog,
7428 "notif: push 'Stop' %s to queue %d\n",
7429 target_pid_to_str (new_event->ptid).c_str (),
7430 int (rs->stop_reply_queue.size ()));
7431
7432 mark_async_event_handler (rs->remote_async_inferior_event_token);
7433 }
7434
7435 /* Returns true if we have a stop reply for PTID. */
7436
7437 int
7438 remote_target::peek_stop_reply (ptid_t ptid)
7439 {
7440 remote_state *rs = get_remote_state ();
7441 for (auto &event : rs->stop_reply_queue)
7442 if (ptid == event->ptid
7443 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7444 return 1;
7445 return 0;
7446 }
7447
7448 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7449 starting with P and ending with PEND matches PREFIX. */
7450
7451 static int
7452 strprefix (const char *p, const char *pend, const char *prefix)
7453 {
7454 for ( ; p < pend; p++, prefix++)
7455 if (*p != *prefix)
7456 return 0;
7457 return *prefix == '\0';
7458 }
7459
7460 /* Parse the stop reply in BUF. Either the function succeeds, and the
7461 result is stored in EVENT, or throws an error. */
7462
7463 void
7464 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7465 {
7466 remote_arch_state *rsa = NULL;
7467 ULONGEST addr;
7468 const char *p;
7469 int skipregs = 0;
7470
7471 event->ptid = null_ptid;
7472 event->rs = get_remote_state ();
7473 event->ws.kind = TARGET_WAITKIND_IGNORE;
7474 event->ws.value.integer = 0;
7475 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7476 event->regcache.clear ();
7477 event->core = -1;
7478
7479 switch (buf[0])
7480 {
7481 case 'T': /* Status with PC, SP, FP, ... */
7482 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7483 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7484 ss = signal number
7485 n... = register number
7486 r... = register contents
7487 */
7488
7489 p = &buf[3]; /* after Txx */
7490 while (*p)
7491 {
7492 const char *p1;
7493 int fieldsize;
7494
7495 p1 = strchr (p, ':');
7496 if (p1 == NULL)
7497 error (_("Malformed packet(a) (missing colon): %s\n\
7498 Packet: '%s'\n"),
7499 p, buf);
7500 if (p == p1)
7501 error (_("Malformed packet(a) (missing register number): %s\n\
7502 Packet: '%s'\n"),
7503 p, buf);
7504
7505 /* Some "registers" are actually extended stop information.
7506 Note if you're adding a new entry here: GDB 7.9 and
7507 earlier assume that all register "numbers" that start
7508 with an hex digit are real register numbers. Make sure
7509 the server only sends such a packet if it knows the
7510 client understands it. */
7511
7512 if (strprefix (p, p1, "thread"))
7513 event->ptid = read_ptid (++p1, &p);
7514 else if (strprefix (p, p1, "syscall_entry"))
7515 {
7516 ULONGEST sysno;
7517
7518 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7519 p = unpack_varlen_hex (++p1, &sysno);
7520 event->ws.value.syscall_number = (int) sysno;
7521 }
7522 else if (strprefix (p, p1, "syscall_return"))
7523 {
7524 ULONGEST sysno;
7525
7526 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7527 p = unpack_varlen_hex (++p1, &sysno);
7528 event->ws.value.syscall_number = (int) sysno;
7529 }
7530 else if (strprefix (p, p1, "watch")
7531 || strprefix (p, p1, "rwatch")
7532 || strprefix (p, p1, "awatch"))
7533 {
7534 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7535 p = unpack_varlen_hex (++p1, &addr);
7536 event->watch_data_address = (CORE_ADDR) addr;
7537 }
7538 else if (strprefix (p, p1, "swbreak"))
7539 {
7540 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7541
7542 /* Make sure the stub doesn't forget to indicate support
7543 with qSupported. */
7544 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7545 error (_("Unexpected swbreak stop reason"));
7546
7547 /* The value part is documented as "must be empty",
7548 though we ignore it, in case we ever decide to make
7549 use of it in a backward compatible way. */
7550 p = strchrnul (p1 + 1, ';');
7551 }
7552 else if (strprefix (p, p1, "hwbreak"))
7553 {
7554 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7555
7556 /* Make sure the stub doesn't forget to indicate support
7557 with qSupported. */
7558 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7559 error (_("Unexpected hwbreak stop reason"));
7560
7561 /* See above. */
7562 p = strchrnul (p1 + 1, ';');
7563 }
7564 else if (strprefix (p, p1, "library"))
7565 {
7566 event->ws.kind = TARGET_WAITKIND_LOADED;
7567 p = strchrnul (p1 + 1, ';');
7568 }
7569 else if (strprefix (p, p1, "replaylog"))
7570 {
7571 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7572 /* p1 will indicate "begin" or "end", but it makes
7573 no difference for now, so ignore it. */
7574 p = strchrnul (p1 + 1, ';');
7575 }
7576 else if (strprefix (p, p1, "core"))
7577 {
7578 ULONGEST c;
7579
7580 p = unpack_varlen_hex (++p1, &c);
7581 event->core = c;
7582 }
7583 else if (strprefix (p, p1, "fork"))
7584 {
7585 event->ws.value.related_pid = read_ptid (++p1, &p);
7586 event->ws.kind = TARGET_WAITKIND_FORKED;
7587 }
7588 else if (strprefix (p, p1, "vfork"))
7589 {
7590 event->ws.value.related_pid = read_ptid (++p1, &p);
7591 event->ws.kind = TARGET_WAITKIND_VFORKED;
7592 }
7593 else if (strprefix (p, p1, "vforkdone"))
7594 {
7595 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7596 p = strchrnul (p1 + 1, ';');
7597 }
7598 else if (strprefix (p, p1, "exec"))
7599 {
7600 ULONGEST ignored;
7601 int pathlen;
7602
7603 /* Determine the length of the execd pathname. */
7604 p = unpack_varlen_hex (++p1, &ignored);
7605 pathlen = (p - p1) / 2;
7606
7607 /* Save the pathname for event reporting and for
7608 the next run command. */
7609 gdb::unique_xmalloc_ptr<char[]> pathname
7610 ((char *) xmalloc (pathlen + 1));
7611 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7612 pathname[pathlen] = '\0';
7613
7614 /* This is freed during event handling. */
7615 event->ws.value.execd_pathname = pathname.release ();
7616 event->ws.kind = TARGET_WAITKIND_EXECD;
7617
7618 /* Skip the registers included in this packet, since
7619 they may be for an architecture different from the
7620 one used by the original program. */
7621 skipregs = 1;
7622 }
7623 else if (strprefix (p, p1, "create"))
7624 {
7625 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7626 p = strchrnul (p1 + 1, ';');
7627 }
7628 else
7629 {
7630 ULONGEST pnum;
7631 const char *p_temp;
7632
7633 if (skipregs)
7634 {
7635 p = strchrnul (p1 + 1, ';');
7636 p++;
7637 continue;
7638 }
7639
7640 /* Maybe a real ``P'' register number. */
7641 p_temp = unpack_varlen_hex (p, &pnum);
7642 /* If the first invalid character is the colon, we got a
7643 register number. Otherwise, it's an unknown stop
7644 reason. */
7645 if (p_temp == p1)
7646 {
7647 /* If we haven't parsed the event's thread yet, find
7648 it now, in order to find the architecture of the
7649 reported expedited registers. */
7650 if (event->ptid == null_ptid)
7651 {
7652 /* If there is no thread-id information then leave
7653 the event->ptid as null_ptid. Later in
7654 process_stop_reply we will pick a suitable
7655 thread. */
7656 const char *thr = strstr (p1 + 1, ";thread:");
7657 if (thr != NULL)
7658 event->ptid = read_ptid (thr + strlen (";thread:"),
7659 NULL);
7660 }
7661
7662 if (rsa == NULL)
7663 {
7664 inferior *inf
7665 = (event->ptid == null_ptid
7666 ? NULL
7667 : find_inferior_ptid (this, event->ptid));
7668 /* If this is the first time we learn anything
7669 about this process, skip the registers
7670 included in this packet, since we don't yet
7671 know which architecture to use to parse them.
7672 We'll determine the architecture later when
7673 we process the stop reply and retrieve the
7674 target description, via
7675 remote_notice_new_inferior ->
7676 post_create_inferior. */
7677 if (inf == NULL)
7678 {
7679 p = strchrnul (p1 + 1, ';');
7680 p++;
7681 continue;
7682 }
7683
7684 event->arch = inf->gdbarch;
7685 rsa = event->rs->get_remote_arch_state (event->arch);
7686 }
7687
7688 packet_reg *reg
7689 = packet_reg_from_pnum (event->arch, rsa, pnum);
7690 cached_reg_t cached_reg;
7691
7692 if (reg == NULL)
7693 error (_("Remote sent bad register number %s: %s\n\
7694 Packet: '%s'\n"),
7695 hex_string (pnum), p, buf);
7696
7697 cached_reg.num = reg->regnum;
7698 cached_reg.data = (gdb_byte *)
7699 xmalloc (register_size (event->arch, reg->regnum));
7700
7701 p = p1 + 1;
7702 fieldsize = hex2bin (p, cached_reg.data,
7703 register_size (event->arch, reg->regnum));
7704 p += 2 * fieldsize;
7705 if (fieldsize < register_size (event->arch, reg->regnum))
7706 warning (_("Remote reply is too short: %s"), buf);
7707
7708 event->regcache.push_back (cached_reg);
7709 }
7710 else
7711 {
7712 /* Not a number. Silently skip unknown optional
7713 info. */
7714 p = strchrnul (p1 + 1, ';');
7715 }
7716 }
7717
7718 if (*p != ';')
7719 error (_("Remote register badly formatted: %s\nhere: %s"),
7720 buf, p);
7721 ++p;
7722 }
7723
7724 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7725 break;
7726
7727 /* fall through */
7728 case 'S': /* Old style status, just signal only. */
7729 {
7730 int sig;
7731
7732 event->ws.kind = TARGET_WAITKIND_STOPPED;
7733 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7734 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7735 event->ws.value.sig = (enum gdb_signal) sig;
7736 else
7737 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7738 }
7739 break;
7740 case 'w': /* Thread exited. */
7741 {
7742 ULONGEST value;
7743
7744 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7745 p = unpack_varlen_hex (&buf[1], &value);
7746 event->ws.value.integer = value;
7747 if (*p != ';')
7748 error (_("stop reply packet badly formatted: %s"), buf);
7749 event->ptid = read_ptid (++p, NULL);
7750 break;
7751 }
7752 case 'W': /* Target exited. */
7753 case 'X':
7754 {
7755 ULONGEST value;
7756
7757 /* GDB used to accept only 2 hex chars here. Stubs should
7758 only send more if they detect GDB supports multi-process
7759 support. */
7760 p = unpack_varlen_hex (&buf[1], &value);
7761
7762 if (buf[0] == 'W')
7763 {
7764 /* The remote process exited. */
7765 event->ws.kind = TARGET_WAITKIND_EXITED;
7766 event->ws.value.integer = value;
7767 }
7768 else
7769 {
7770 /* The remote process exited with a signal. */
7771 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7772 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7773 event->ws.value.sig = (enum gdb_signal) value;
7774 else
7775 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7776 }
7777
7778 /* If no process is specified, return null_ptid, and let the
7779 caller figure out the right process to use. */
7780 int pid = 0;
7781 if (*p == '\0')
7782 ;
7783 else if (*p == ';')
7784 {
7785 p++;
7786
7787 if (*p == '\0')
7788 ;
7789 else if (startswith (p, "process:"))
7790 {
7791 ULONGEST upid;
7792
7793 p += sizeof ("process:") - 1;
7794 unpack_varlen_hex (p, &upid);
7795 pid = upid;
7796 }
7797 else
7798 error (_("unknown stop reply packet: %s"), buf);
7799 }
7800 else
7801 error (_("unknown stop reply packet: %s"), buf);
7802 event->ptid = ptid_t (pid);
7803 }
7804 break;
7805 case 'N':
7806 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7807 event->ptid = minus_one_ptid;
7808 break;
7809 }
7810 }
7811
7812 /* When the stub wants to tell GDB about a new notification reply, it
7813 sends a notification (%Stop, for example). Those can come it at
7814 any time, hence, we have to make sure that any pending
7815 putpkt/getpkt sequence we're making is finished, before querying
7816 the stub for more events with the corresponding ack command
7817 (vStopped, for example). E.g., if we started a vStopped sequence
7818 immediately upon receiving the notification, something like this
7819 could happen:
7820
7821 1.1) --> Hg 1
7822 1.2) <-- OK
7823 1.3) --> g
7824 1.4) <-- %Stop
7825 1.5) --> vStopped
7826 1.6) <-- (registers reply to step #1.3)
7827
7828 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7829 query.
7830
7831 To solve this, whenever we parse a %Stop notification successfully,
7832 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7833 doing whatever we were doing:
7834
7835 2.1) --> Hg 1
7836 2.2) <-- OK
7837 2.3) --> g
7838 2.4) <-- %Stop
7839 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7840 2.5) <-- (registers reply to step #2.3)
7841
7842 Eventually after step #2.5, we return to the event loop, which
7843 notices there's an event on the
7844 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7845 associated callback --- the function below. At this point, we're
7846 always safe to start a vStopped sequence. :
7847
7848 2.6) --> vStopped
7849 2.7) <-- T05 thread:2
7850 2.8) --> vStopped
7851 2.9) --> OK
7852 */
7853
7854 void
7855 remote_target::remote_notif_get_pending_events (notif_client *nc)
7856 {
7857 struct remote_state *rs = get_remote_state ();
7858
7859 if (rs->notif_state->pending_event[nc->id] != NULL)
7860 {
7861 if (notif_debug)
7862 fprintf_unfiltered (gdb_stdlog,
7863 "notif: process: '%s' ack pending event\n",
7864 nc->name);
7865
7866 /* acknowledge */
7867 nc->ack (this, nc, rs->buf.data (),
7868 rs->notif_state->pending_event[nc->id]);
7869 rs->notif_state->pending_event[nc->id] = NULL;
7870
7871 while (1)
7872 {
7873 getpkt (&rs->buf, 0);
7874 if (strcmp (rs->buf.data (), "OK") == 0)
7875 break;
7876 else
7877 remote_notif_ack (this, nc, rs->buf.data ());
7878 }
7879 }
7880 else
7881 {
7882 if (notif_debug)
7883 fprintf_unfiltered (gdb_stdlog,
7884 "notif: process: '%s' no pending reply\n",
7885 nc->name);
7886 }
7887 }
7888
7889 /* Wrapper around remote_target::remote_notif_get_pending_events to
7890 avoid having to export the whole remote_target class. */
7891
7892 void
7893 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7894 {
7895 remote->remote_notif_get_pending_events (nc);
7896 }
7897
7898 /* Called from process_stop_reply when the stop packet we are responding
7899 to didn't include a process-id or thread-id. STATUS is the stop event
7900 we are responding to.
7901
7902 It is the task of this function to select a suitable thread (or process)
7903 and return its ptid, this is the thread (or process) we will assume the
7904 stop event came from.
7905
7906 In some cases there isn't really any choice about which thread (or
7907 process) is selected, a basic remote with a single process containing a
7908 single thread might choose not to send any process-id or thread-id in
7909 its stop packets, this function will select and return the one and only
7910 thread.
7911
7912 However, if a target supports multiple threads (or processes) and still
7913 doesn't include a thread-id (or process-id) in its stop packet then
7914 first, this is a badly behaving target, and second, we're going to have
7915 to select a thread (or process) at random and use that. This function
7916 will print a warning to the user if it detects that there is the
7917 possibility that GDB is guessing which thread (or process) to
7918 report.
7919
7920 Note that this is called before GDB fetches the updated thread list from the
7921 target. So it's possible for the stop reply to be ambiguous and for GDB to
7922 not realize it. For example, if there's initially one thread, the target
7923 spawns a second thread, and then sends a stop reply without an id that
7924 concerns the first thread. GDB will assume the stop reply is about the
7925 first thread - the only thread it knows about - without printing a warning.
7926 Anyway, if the remote meant for the stop reply to be about the second thread,
7927 then it would be really broken, because GDB doesn't know about that thread
7928 yet. */
7929
7930 ptid_t
7931 remote_target::select_thread_for_ambiguous_stop_reply
7932 (const struct target_waitstatus *status)
7933 {
7934 /* Some stop events apply to all threads in an inferior, while others
7935 only apply to a single thread. */
7936 bool process_wide_stop
7937 = (status->kind == TARGET_WAITKIND_EXITED
7938 || status->kind == TARGET_WAITKIND_SIGNALLED);
7939
7940 thread_info *first_resumed_thread = nullptr;
7941 bool ambiguous = false;
7942
7943 /* Consider all non-exited threads of the target, find the first resumed
7944 one. */
7945 for (thread_info *thr : all_non_exited_threads (this))
7946 {
7947 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7948
7949 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7950 continue;
7951
7952 if (first_resumed_thread == nullptr)
7953 first_resumed_thread = thr;
7954 else if (!process_wide_stop
7955 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7956 ambiguous = true;
7957 }
7958
7959 gdb_assert (first_resumed_thread != nullptr);
7960
7961 /* Warn if the remote target is sending ambiguous stop replies. */
7962 if (ambiguous)
7963 {
7964 static bool warned = false;
7965
7966 if (!warned)
7967 {
7968 /* If you are seeing this warning then the remote target has
7969 stopped without specifying a thread-id, but the target
7970 does have multiple threads (or inferiors), and so GDB is
7971 having to guess which thread stopped.
7972
7973 Examples of what might cause this are the target sending
7974 and 'S' stop packet, or a 'T' stop packet and not
7975 including a thread-id.
7976
7977 Additionally, the target might send a 'W' or 'X packet
7978 without including a process-id, when the target has
7979 multiple running inferiors. */
7980 if (process_wide_stop)
7981 warning (_("multi-inferior target stopped without "
7982 "sending a process-id, using first "
7983 "non-exited inferior"));
7984 else
7985 warning (_("multi-threaded target stopped without "
7986 "sending a thread-id, using first "
7987 "non-exited thread"));
7988 warned = true;
7989 }
7990 }
7991
7992 /* If this is a stop for all threads then don't use a particular threads
7993 ptid, instead create a new ptid where only the pid field is set. */
7994 if (process_wide_stop)
7995 return ptid_t (first_resumed_thread->ptid.pid ());
7996 else
7997 return first_resumed_thread->ptid;
7998 }
7999
8000 /* Called when it is decided that STOP_REPLY holds the info of the
8001 event that is to be returned to the core. This function always
8002 destroys STOP_REPLY. */
8003
8004 ptid_t
8005 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8006 struct target_waitstatus *status)
8007 {
8008 *status = stop_reply->ws;
8009 ptid_t ptid = stop_reply->ptid;
8010
8011 /* If no thread/process was reported by the stub then select a suitable
8012 thread/process. */
8013 if (ptid == null_ptid)
8014 ptid = select_thread_for_ambiguous_stop_reply (status);
8015 gdb_assert (ptid != null_ptid);
8016
8017 if (status->kind != TARGET_WAITKIND_EXITED
8018 && status->kind != TARGET_WAITKIND_SIGNALLED
8019 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8020 {
8021 /* Expedited registers. */
8022 if (!stop_reply->regcache.empty ())
8023 {
8024 struct regcache *regcache
8025 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8026
8027 for (cached_reg_t &reg : stop_reply->regcache)
8028 {
8029 regcache->raw_supply (reg.num, reg.data);
8030 xfree (reg.data);
8031 }
8032
8033 stop_reply->regcache.clear ();
8034 }
8035
8036 remote_notice_new_inferior (ptid, false);
8037 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8038 remote_thr->core = stop_reply->core;
8039 remote_thr->stop_reason = stop_reply->stop_reason;
8040 remote_thr->watch_data_address = stop_reply->watch_data_address;
8041
8042 if (target_is_non_stop_p ())
8043 {
8044 /* If the target works in non-stop mode, a stop-reply indicates that
8045 only this thread stopped. */
8046 remote_thr->set_not_resumed ();
8047 }
8048 else
8049 {
8050 /* If the target works in all-stop mode, a stop-reply indicates that
8051 all the target's threads stopped. */
8052 for (thread_info *tp : all_non_exited_threads (this))
8053 get_remote_thread_info (tp)->set_not_resumed ();
8054 }
8055 }
8056
8057 delete stop_reply;
8058 return ptid;
8059 }
8060
8061 /* The non-stop mode version of target_wait. */
8062
8063 ptid_t
8064 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8065 target_wait_flags options)
8066 {
8067 struct remote_state *rs = get_remote_state ();
8068 struct stop_reply *stop_reply;
8069 int ret;
8070 int is_notif = 0;
8071
8072 /* If in non-stop mode, get out of getpkt even if a
8073 notification is received. */
8074
8075 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8076 while (1)
8077 {
8078 if (ret != -1 && !is_notif)
8079 switch (rs->buf[0])
8080 {
8081 case 'E': /* Error of some sort. */
8082 /* We're out of sync with the target now. Did it continue
8083 or not? We can't tell which thread it was in non-stop,
8084 so just ignore this. */
8085 warning (_("Remote failure reply: %s"), rs->buf.data ());
8086 break;
8087 case 'O': /* Console output. */
8088 remote_console_output (&rs->buf[1]);
8089 break;
8090 default:
8091 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8092 break;
8093 }
8094
8095 /* Acknowledge a pending stop reply that may have arrived in the
8096 mean time. */
8097 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8098 remote_notif_get_pending_events (&notif_client_stop);
8099
8100 /* If indeed we noticed a stop reply, we're done. */
8101 stop_reply = queued_stop_reply (ptid);
8102 if (stop_reply != NULL)
8103 return process_stop_reply (stop_reply, status);
8104
8105 /* Still no event. If we're just polling for an event, then
8106 return to the event loop. */
8107 if (options & TARGET_WNOHANG)
8108 {
8109 status->kind = TARGET_WAITKIND_IGNORE;
8110 return minus_one_ptid;
8111 }
8112
8113 /* Otherwise do a blocking wait. */
8114 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8115 }
8116 }
8117
8118 /* Return the first resumed thread. */
8119
8120 static ptid_t
8121 first_remote_resumed_thread (remote_target *target)
8122 {
8123 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8124 if (tp->resumed)
8125 return tp->ptid;
8126 return null_ptid;
8127 }
8128
8129 /* Wait until the remote machine stops, then return, storing status in
8130 STATUS just as `wait' would. */
8131
8132 ptid_t
8133 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8134 target_wait_flags options)
8135 {
8136 struct remote_state *rs = get_remote_state ();
8137 ptid_t event_ptid = null_ptid;
8138 char *buf;
8139 struct stop_reply *stop_reply;
8140
8141 again:
8142
8143 status->kind = TARGET_WAITKIND_IGNORE;
8144 status->value.integer = 0;
8145
8146 stop_reply = queued_stop_reply (ptid);
8147 if (stop_reply != NULL)
8148 return process_stop_reply (stop_reply, status);
8149
8150 if (rs->cached_wait_status)
8151 /* Use the cached wait status, but only once. */
8152 rs->cached_wait_status = 0;
8153 else
8154 {
8155 int ret;
8156 int is_notif;
8157 int forever = ((options & TARGET_WNOHANG) == 0
8158 && rs->wait_forever_enabled_p);
8159
8160 if (!rs->waiting_for_stop_reply)
8161 {
8162 status->kind = TARGET_WAITKIND_NO_RESUMED;
8163 return minus_one_ptid;
8164 }
8165
8166 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8167 _never_ wait for ever -> test on target_is_async_p().
8168 However, before we do that we need to ensure that the caller
8169 knows how to take the target into/out of async mode. */
8170 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8171
8172 /* GDB gets a notification. Return to core as this event is
8173 not interesting. */
8174 if (ret != -1 && is_notif)
8175 return minus_one_ptid;
8176
8177 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8178 return minus_one_ptid;
8179 }
8180
8181 buf = rs->buf.data ();
8182
8183 /* Assume that the target has acknowledged Ctrl-C unless we receive
8184 an 'F' or 'O' packet. */
8185 if (buf[0] != 'F' && buf[0] != 'O')
8186 rs->ctrlc_pending_p = 0;
8187
8188 switch (buf[0])
8189 {
8190 case 'E': /* Error of some sort. */
8191 /* We're out of sync with the target now. Did it continue or
8192 not? Not is more likely, so report a stop. */
8193 rs->waiting_for_stop_reply = 0;
8194
8195 warning (_("Remote failure reply: %s"), buf);
8196 status->kind = TARGET_WAITKIND_STOPPED;
8197 status->value.sig = GDB_SIGNAL_0;
8198 break;
8199 case 'F': /* File-I/O request. */
8200 /* GDB may access the inferior memory while handling the File-I/O
8201 request, but we don't want GDB accessing memory while waiting
8202 for a stop reply. See the comments in putpkt_binary. Set
8203 waiting_for_stop_reply to 0 temporarily. */
8204 rs->waiting_for_stop_reply = 0;
8205 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8206 rs->ctrlc_pending_p = 0;
8207 /* GDB handled the File-I/O request, and the target is running
8208 again. Keep waiting for events. */
8209 rs->waiting_for_stop_reply = 1;
8210 break;
8211 case 'N': case 'T': case 'S': case 'X': case 'W':
8212 {
8213 /* There is a stop reply to handle. */
8214 rs->waiting_for_stop_reply = 0;
8215
8216 stop_reply
8217 = (struct stop_reply *) remote_notif_parse (this,
8218 &notif_client_stop,
8219 rs->buf.data ());
8220
8221 event_ptid = process_stop_reply (stop_reply, status);
8222 break;
8223 }
8224 case 'O': /* Console output. */
8225 remote_console_output (buf + 1);
8226 break;
8227 case '\0':
8228 if (rs->last_sent_signal != GDB_SIGNAL_0)
8229 {
8230 /* Zero length reply means that we tried 'S' or 'C' and the
8231 remote system doesn't support it. */
8232 target_terminal::ours_for_output ();
8233 printf_filtered
8234 ("Can't send signals to this remote system. %s not sent.\n",
8235 gdb_signal_to_name (rs->last_sent_signal));
8236 rs->last_sent_signal = GDB_SIGNAL_0;
8237 target_terminal::inferior ();
8238
8239 strcpy (buf, rs->last_sent_step ? "s" : "c");
8240 putpkt (buf);
8241 break;
8242 }
8243 /* fallthrough */
8244 default:
8245 warning (_("Invalid remote reply: %s"), buf);
8246 break;
8247 }
8248
8249 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8250 return minus_one_ptid;
8251 else if (status->kind == TARGET_WAITKIND_IGNORE)
8252 {
8253 /* Nothing interesting happened. If we're doing a non-blocking
8254 poll, we're done. Otherwise, go back to waiting. */
8255 if (options & TARGET_WNOHANG)
8256 return minus_one_ptid;
8257 else
8258 goto again;
8259 }
8260 else if (status->kind != TARGET_WAITKIND_EXITED
8261 && status->kind != TARGET_WAITKIND_SIGNALLED)
8262 {
8263 if (event_ptid != null_ptid)
8264 record_currthread (rs, event_ptid);
8265 else
8266 event_ptid = first_remote_resumed_thread (this);
8267 }
8268 else
8269 {
8270 /* A process exit. Invalidate our notion of current thread. */
8271 record_currthread (rs, minus_one_ptid);
8272 /* It's possible that the packet did not include a pid. */
8273 if (event_ptid == null_ptid)
8274 event_ptid = first_remote_resumed_thread (this);
8275 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8276 if (event_ptid == null_ptid)
8277 event_ptid = magic_null_ptid;
8278 }
8279
8280 return event_ptid;
8281 }
8282
8283 /* Wait until the remote machine stops, then return, storing status in
8284 STATUS just as `wait' would. */
8285
8286 ptid_t
8287 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8288 target_wait_flags options)
8289 {
8290 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8291
8292 remote_state *rs = get_remote_state ();
8293
8294 /* Start by clearing the flag that asks for our wait method to be called,
8295 we'll mark it again at the end if needed. */
8296 if (target_is_async_p ())
8297 clear_async_event_handler (rs->remote_async_inferior_event_token);
8298
8299 ptid_t event_ptid;
8300
8301 if (target_is_non_stop_p ())
8302 event_ptid = wait_ns (ptid, status, options);
8303 else
8304 event_ptid = wait_as (ptid, status, options);
8305
8306 if (target_is_async_p ())
8307 {
8308 /* If there are events left in the queue, or unacknowledged
8309 notifications, then tell the event loop to call us again. */
8310 if (!rs->stop_reply_queue.empty ()
8311 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8312 mark_async_event_handler (rs->remote_async_inferior_event_token);
8313 }
8314
8315 return event_ptid;
8316 }
8317
8318 /* Fetch a single register using a 'p' packet. */
8319
8320 int
8321 remote_target::fetch_register_using_p (struct regcache *regcache,
8322 packet_reg *reg)
8323 {
8324 struct gdbarch *gdbarch = regcache->arch ();
8325 struct remote_state *rs = get_remote_state ();
8326 char *buf, *p;
8327 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8328 int i;
8329
8330 if (packet_support (PACKET_p) == PACKET_DISABLE)
8331 return 0;
8332
8333 if (reg->pnum == -1)
8334 return 0;
8335
8336 p = rs->buf.data ();
8337 *p++ = 'p';
8338 p += hexnumstr (p, reg->pnum);
8339 *p++ = '\0';
8340 putpkt (rs->buf);
8341 getpkt (&rs->buf, 0);
8342
8343 buf = rs->buf.data ();
8344
8345 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8346 {
8347 case PACKET_OK:
8348 break;
8349 case PACKET_UNKNOWN:
8350 return 0;
8351 case PACKET_ERROR:
8352 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8353 gdbarch_register_name (regcache->arch (),
8354 reg->regnum),
8355 buf);
8356 }
8357
8358 /* If this register is unfetchable, tell the regcache. */
8359 if (buf[0] == 'x')
8360 {
8361 regcache->raw_supply (reg->regnum, NULL);
8362 return 1;
8363 }
8364
8365 /* Otherwise, parse and supply the value. */
8366 p = buf;
8367 i = 0;
8368 while (p[0] != 0)
8369 {
8370 if (p[1] == 0)
8371 error (_("fetch_register_using_p: early buf termination"));
8372
8373 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8374 p += 2;
8375 }
8376 regcache->raw_supply (reg->regnum, regp);
8377 return 1;
8378 }
8379
8380 /* Fetch the registers included in the target's 'g' packet. */
8381
8382 int
8383 remote_target::send_g_packet ()
8384 {
8385 struct remote_state *rs = get_remote_state ();
8386 int buf_len;
8387
8388 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8389 putpkt (rs->buf);
8390 getpkt (&rs->buf, 0);
8391 if (packet_check_result (rs->buf) == PACKET_ERROR)
8392 error (_("Could not read registers; remote failure reply '%s'"),
8393 rs->buf.data ());
8394
8395 /* We can get out of synch in various cases. If the first character
8396 in the buffer is not a hex character, assume that has happened
8397 and try to fetch another packet to read. */
8398 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8399 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8400 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8401 && rs->buf[0] != 'x') /* New: unavailable register value. */
8402 {
8403 remote_debug_printf ("Bad register packet; fetching a new packet");
8404 getpkt (&rs->buf, 0);
8405 }
8406
8407 buf_len = strlen (rs->buf.data ());
8408
8409 /* Sanity check the received packet. */
8410 if (buf_len % 2 != 0)
8411 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8412
8413 return buf_len / 2;
8414 }
8415
8416 void
8417 remote_target::process_g_packet (struct regcache *regcache)
8418 {
8419 struct gdbarch *gdbarch = regcache->arch ();
8420 struct remote_state *rs = get_remote_state ();
8421 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8422 int i, buf_len;
8423 char *p;
8424 char *regs;
8425
8426 buf_len = strlen (rs->buf.data ());
8427
8428 /* Further sanity checks, with knowledge of the architecture. */
8429 if (buf_len > 2 * rsa->sizeof_g_packet)
8430 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8431 "bytes): %s"),
8432 rsa->sizeof_g_packet, buf_len / 2,
8433 rs->buf.data ());
8434
8435 /* Save the size of the packet sent to us by the target. It is used
8436 as a heuristic when determining the max size of packets that the
8437 target can safely receive. */
8438 if (rsa->actual_register_packet_size == 0)
8439 rsa->actual_register_packet_size = buf_len;
8440
8441 /* If this is smaller than we guessed the 'g' packet would be,
8442 update our records. A 'g' reply that doesn't include a register's
8443 value implies either that the register is not available, or that
8444 the 'p' packet must be used. */
8445 if (buf_len < 2 * rsa->sizeof_g_packet)
8446 {
8447 long sizeof_g_packet = buf_len / 2;
8448
8449 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8450 {
8451 long offset = rsa->regs[i].offset;
8452 long reg_size = register_size (gdbarch, i);
8453
8454 if (rsa->regs[i].pnum == -1)
8455 continue;
8456
8457 if (offset >= sizeof_g_packet)
8458 rsa->regs[i].in_g_packet = 0;
8459 else if (offset + reg_size > sizeof_g_packet)
8460 error (_("Truncated register %d in remote 'g' packet"), i);
8461 else
8462 rsa->regs[i].in_g_packet = 1;
8463 }
8464
8465 /* Looks valid enough, we can assume this is the correct length
8466 for a 'g' packet. It's important not to adjust
8467 rsa->sizeof_g_packet if we have truncated registers otherwise
8468 this "if" won't be run the next time the method is called
8469 with a packet of the same size and one of the internal errors
8470 below will trigger instead. */
8471 rsa->sizeof_g_packet = sizeof_g_packet;
8472 }
8473
8474 regs = (char *) alloca (rsa->sizeof_g_packet);
8475
8476 /* Unimplemented registers read as all bits zero. */
8477 memset (regs, 0, rsa->sizeof_g_packet);
8478
8479 /* Reply describes registers byte by byte, each byte encoded as two
8480 hex characters. Suck them all up, then supply them to the
8481 register cacheing/storage mechanism. */
8482
8483 p = rs->buf.data ();
8484 for (i = 0; i < rsa->sizeof_g_packet; i++)
8485 {
8486 if (p[0] == 0 || p[1] == 0)
8487 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8488 internal_error (__FILE__, __LINE__,
8489 _("unexpected end of 'g' packet reply"));
8490
8491 if (p[0] == 'x' && p[1] == 'x')
8492 regs[i] = 0; /* 'x' */
8493 else
8494 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8495 p += 2;
8496 }
8497
8498 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8499 {
8500 struct packet_reg *r = &rsa->regs[i];
8501 long reg_size = register_size (gdbarch, i);
8502
8503 if (r->in_g_packet)
8504 {
8505 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8506 /* This shouldn't happen - we adjusted in_g_packet above. */
8507 internal_error (__FILE__, __LINE__,
8508 _("unexpected end of 'g' packet reply"));
8509 else if (rs->buf[r->offset * 2] == 'x')
8510 {
8511 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8512 /* The register isn't available, mark it as such (at
8513 the same time setting the value to zero). */
8514 regcache->raw_supply (r->regnum, NULL);
8515 }
8516 else
8517 regcache->raw_supply (r->regnum, regs + r->offset);
8518 }
8519 }
8520 }
8521
8522 void
8523 remote_target::fetch_registers_using_g (struct regcache *regcache)
8524 {
8525 send_g_packet ();
8526 process_g_packet (regcache);
8527 }
8528
8529 /* Make the remote selected traceframe match GDB's selected
8530 traceframe. */
8531
8532 void
8533 remote_target::set_remote_traceframe ()
8534 {
8535 int newnum;
8536 struct remote_state *rs = get_remote_state ();
8537
8538 if (rs->remote_traceframe_number == get_traceframe_number ())
8539 return;
8540
8541 /* Avoid recursion, remote_trace_find calls us again. */
8542 rs->remote_traceframe_number = get_traceframe_number ();
8543
8544 newnum = target_trace_find (tfind_number,
8545 get_traceframe_number (), 0, 0, NULL);
8546
8547 /* Should not happen. If it does, all bets are off. */
8548 if (newnum != get_traceframe_number ())
8549 warning (_("could not set remote traceframe"));
8550 }
8551
8552 void
8553 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8554 {
8555 struct gdbarch *gdbarch = regcache->arch ();
8556 struct remote_state *rs = get_remote_state ();
8557 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8558 int i;
8559
8560 set_remote_traceframe ();
8561 set_general_thread (regcache->ptid ());
8562
8563 if (regnum >= 0)
8564 {
8565 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8566
8567 gdb_assert (reg != NULL);
8568
8569 /* If this register might be in the 'g' packet, try that first -
8570 we are likely to read more than one register. If this is the
8571 first 'g' packet, we might be overly optimistic about its
8572 contents, so fall back to 'p'. */
8573 if (reg->in_g_packet)
8574 {
8575 fetch_registers_using_g (regcache);
8576 if (reg->in_g_packet)
8577 return;
8578 }
8579
8580 if (fetch_register_using_p (regcache, reg))
8581 return;
8582
8583 /* This register is not available. */
8584 regcache->raw_supply (reg->regnum, NULL);
8585
8586 return;
8587 }
8588
8589 fetch_registers_using_g (regcache);
8590
8591 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8592 if (!rsa->regs[i].in_g_packet)
8593 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8594 {
8595 /* This register is not available. */
8596 regcache->raw_supply (i, NULL);
8597 }
8598 }
8599
8600 /* Prepare to store registers. Since we may send them all (using a
8601 'G' request), we have to read out the ones we don't want to change
8602 first. */
8603
8604 void
8605 remote_target::prepare_to_store (struct regcache *regcache)
8606 {
8607 struct remote_state *rs = get_remote_state ();
8608 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8609 int i;
8610
8611 /* Make sure the entire registers array is valid. */
8612 switch (packet_support (PACKET_P))
8613 {
8614 case PACKET_DISABLE:
8615 case PACKET_SUPPORT_UNKNOWN:
8616 /* Make sure all the necessary registers are cached. */
8617 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8618 if (rsa->regs[i].in_g_packet)
8619 regcache->raw_update (rsa->regs[i].regnum);
8620 break;
8621 case PACKET_ENABLE:
8622 break;
8623 }
8624 }
8625
8626 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8627 packet was not recognized. */
8628
8629 int
8630 remote_target::store_register_using_P (const struct regcache *regcache,
8631 packet_reg *reg)
8632 {
8633 struct gdbarch *gdbarch = regcache->arch ();
8634 struct remote_state *rs = get_remote_state ();
8635 /* Try storing a single register. */
8636 char *buf = rs->buf.data ();
8637 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8638 char *p;
8639
8640 if (packet_support (PACKET_P) == PACKET_DISABLE)
8641 return 0;
8642
8643 if (reg->pnum == -1)
8644 return 0;
8645
8646 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8647 p = buf + strlen (buf);
8648 regcache->raw_collect (reg->regnum, regp);
8649 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8650 putpkt (rs->buf);
8651 getpkt (&rs->buf, 0);
8652
8653 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8654 {
8655 case PACKET_OK:
8656 return 1;
8657 case PACKET_ERROR:
8658 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8659 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8660 case PACKET_UNKNOWN:
8661 return 0;
8662 default:
8663 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8664 }
8665 }
8666
8667 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8668 contents of the register cache buffer. FIXME: ignores errors. */
8669
8670 void
8671 remote_target::store_registers_using_G (const struct regcache *regcache)
8672 {
8673 struct remote_state *rs = get_remote_state ();
8674 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8675 gdb_byte *regs;
8676 char *p;
8677
8678 /* Extract all the registers in the regcache copying them into a
8679 local buffer. */
8680 {
8681 int i;
8682
8683 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8684 memset (regs, 0, rsa->sizeof_g_packet);
8685 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8686 {
8687 struct packet_reg *r = &rsa->regs[i];
8688
8689 if (r->in_g_packet)
8690 regcache->raw_collect (r->regnum, regs + r->offset);
8691 }
8692 }
8693
8694 /* Command describes registers byte by byte,
8695 each byte encoded as two hex characters. */
8696 p = rs->buf.data ();
8697 *p++ = 'G';
8698 bin2hex (regs, p, rsa->sizeof_g_packet);
8699 putpkt (rs->buf);
8700 getpkt (&rs->buf, 0);
8701 if (packet_check_result (rs->buf) == PACKET_ERROR)
8702 error (_("Could not write registers; remote failure reply '%s'"),
8703 rs->buf.data ());
8704 }
8705
8706 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8707 of the register cache buffer. FIXME: ignores errors. */
8708
8709 void
8710 remote_target::store_registers (struct regcache *regcache, int regnum)
8711 {
8712 struct gdbarch *gdbarch = regcache->arch ();
8713 struct remote_state *rs = get_remote_state ();
8714 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8715 int i;
8716
8717 set_remote_traceframe ();
8718 set_general_thread (regcache->ptid ());
8719
8720 if (regnum >= 0)
8721 {
8722 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8723
8724 gdb_assert (reg != NULL);
8725
8726 /* Always prefer to store registers using the 'P' packet if
8727 possible; we often change only a small number of registers.
8728 Sometimes we change a larger number; we'd need help from a
8729 higher layer to know to use 'G'. */
8730 if (store_register_using_P (regcache, reg))
8731 return;
8732
8733 /* For now, don't complain if we have no way to write the
8734 register. GDB loses track of unavailable registers too
8735 easily. Some day, this may be an error. We don't have
8736 any way to read the register, either... */
8737 if (!reg->in_g_packet)
8738 return;
8739
8740 store_registers_using_G (regcache);
8741 return;
8742 }
8743
8744 store_registers_using_G (regcache);
8745
8746 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8747 if (!rsa->regs[i].in_g_packet)
8748 if (!store_register_using_P (regcache, &rsa->regs[i]))
8749 /* See above for why we do not issue an error here. */
8750 continue;
8751 }
8752 \f
8753
8754 /* Return the number of hex digits in num. */
8755
8756 static int
8757 hexnumlen (ULONGEST num)
8758 {
8759 int i;
8760
8761 for (i = 0; num != 0; i++)
8762 num >>= 4;
8763
8764 return std::max (i, 1);
8765 }
8766
8767 /* Set BUF to the minimum number of hex digits representing NUM. */
8768
8769 static int
8770 hexnumstr (char *buf, ULONGEST num)
8771 {
8772 int len = hexnumlen (num);
8773
8774 return hexnumnstr (buf, num, len);
8775 }
8776
8777
8778 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8779
8780 static int
8781 hexnumnstr (char *buf, ULONGEST num, int width)
8782 {
8783 int i;
8784
8785 buf[width] = '\0';
8786
8787 for (i = width - 1; i >= 0; i--)
8788 {
8789 buf[i] = "0123456789abcdef"[(num & 0xf)];
8790 num >>= 4;
8791 }
8792
8793 return width;
8794 }
8795
8796 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8797
8798 static CORE_ADDR
8799 remote_address_masked (CORE_ADDR addr)
8800 {
8801 unsigned int address_size = remote_address_size;
8802
8803 /* If "remoteaddresssize" was not set, default to target address size. */
8804 if (!address_size)
8805 address_size = gdbarch_addr_bit (target_gdbarch ());
8806
8807 if (address_size > 0
8808 && address_size < (sizeof (ULONGEST) * 8))
8809 {
8810 /* Only create a mask when that mask can safely be constructed
8811 in a ULONGEST variable. */
8812 ULONGEST mask = 1;
8813
8814 mask = (mask << address_size) - 1;
8815 addr &= mask;
8816 }
8817 return addr;
8818 }
8819
8820 /* Determine whether the remote target supports binary downloading.
8821 This is accomplished by sending a no-op memory write of zero length
8822 to the target at the specified address. It does not suffice to send
8823 the whole packet, since many stubs strip the eighth bit and
8824 subsequently compute a wrong checksum, which causes real havoc with
8825 remote_write_bytes.
8826
8827 NOTE: This can still lose if the serial line is not eight-bit
8828 clean. In cases like this, the user should clear "remote
8829 X-packet". */
8830
8831 void
8832 remote_target::check_binary_download (CORE_ADDR addr)
8833 {
8834 struct remote_state *rs = get_remote_state ();
8835
8836 switch (packet_support (PACKET_X))
8837 {
8838 case PACKET_DISABLE:
8839 break;
8840 case PACKET_ENABLE:
8841 break;
8842 case PACKET_SUPPORT_UNKNOWN:
8843 {
8844 char *p;
8845
8846 p = rs->buf.data ();
8847 *p++ = 'X';
8848 p += hexnumstr (p, (ULONGEST) addr);
8849 *p++ = ',';
8850 p += hexnumstr (p, (ULONGEST) 0);
8851 *p++ = ':';
8852 *p = '\0';
8853
8854 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8855 getpkt (&rs->buf, 0);
8856
8857 if (rs->buf[0] == '\0')
8858 {
8859 remote_debug_printf ("binary downloading NOT supported by target");
8860 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8861 }
8862 else
8863 {
8864 remote_debug_printf ("binary downloading supported by target");
8865 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8866 }
8867 break;
8868 }
8869 }
8870 }
8871
8872 /* Helper function to resize the payload in order to try to get a good
8873 alignment. We try to write an amount of data such that the next write will
8874 start on an address aligned on REMOTE_ALIGN_WRITES. */
8875
8876 static int
8877 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8878 {
8879 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8880 }
8881
8882 /* Write memory data directly to the remote machine.
8883 This does not inform the data cache; the data cache uses this.
8884 HEADER is the starting part of the packet.
8885 MEMADDR is the address in the remote memory space.
8886 MYADDR is the address of the buffer in our space.
8887 LEN_UNITS is the number of addressable units to write.
8888 UNIT_SIZE is the length in bytes of an addressable unit.
8889 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8890 should send data as binary ('X'), or hex-encoded ('M').
8891
8892 The function creates packet of the form
8893 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8894
8895 where encoding of <DATA> is terminated by PACKET_FORMAT.
8896
8897 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8898 are omitted.
8899
8900 Return the transferred status, error or OK (an
8901 'enum target_xfer_status' value). Save the number of addressable units
8902 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8903
8904 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8905 exchange between gdb and the stub could look like (?? in place of the
8906 checksum):
8907
8908 -> $m1000,4#??
8909 <- aaaabbbbccccdddd
8910
8911 -> $M1000,3:eeeeffffeeee#??
8912 <- OK
8913
8914 -> $m1000,4#??
8915 <- eeeeffffeeeedddd */
8916
8917 target_xfer_status
8918 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8919 const gdb_byte *myaddr,
8920 ULONGEST len_units,
8921 int unit_size,
8922 ULONGEST *xfered_len_units,
8923 char packet_format, int use_length)
8924 {
8925 struct remote_state *rs = get_remote_state ();
8926 char *p;
8927 char *plen = NULL;
8928 int plenlen = 0;
8929 int todo_units;
8930 int units_written;
8931 int payload_capacity_bytes;
8932 int payload_length_bytes;
8933
8934 if (packet_format != 'X' && packet_format != 'M')
8935 internal_error (__FILE__, __LINE__,
8936 _("remote_write_bytes_aux: bad packet format"));
8937
8938 if (len_units == 0)
8939 return TARGET_XFER_EOF;
8940
8941 payload_capacity_bytes = get_memory_write_packet_size ();
8942
8943 /* The packet buffer will be large enough for the payload;
8944 get_memory_packet_size ensures this. */
8945 rs->buf[0] = '\0';
8946
8947 /* Compute the size of the actual payload by subtracting out the
8948 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8949
8950 payload_capacity_bytes -= strlen ("$,:#NN");
8951 if (!use_length)
8952 /* The comma won't be used. */
8953 payload_capacity_bytes += 1;
8954 payload_capacity_bytes -= strlen (header);
8955 payload_capacity_bytes -= hexnumlen (memaddr);
8956
8957 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8958
8959 strcat (rs->buf.data (), header);
8960 p = rs->buf.data () + strlen (header);
8961
8962 /* Compute a best guess of the number of bytes actually transfered. */
8963 if (packet_format == 'X')
8964 {
8965 /* Best guess at number of bytes that will fit. */
8966 todo_units = std::min (len_units,
8967 (ULONGEST) payload_capacity_bytes / unit_size);
8968 if (use_length)
8969 payload_capacity_bytes -= hexnumlen (todo_units);
8970 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8971 }
8972 else
8973 {
8974 /* Number of bytes that will fit. */
8975 todo_units
8976 = std::min (len_units,
8977 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8978 if (use_length)
8979 payload_capacity_bytes -= hexnumlen (todo_units);
8980 todo_units = std::min (todo_units,
8981 (payload_capacity_bytes / unit_size) / 2);
8982 }
8983
8984 if (todo_units <= 0)
8985 internal_error (__FILE__, __LINE__,
8986 _("minimum packet size too small to write data"));
8987
8988 /* If we already need another packet, then try to align the end
8989 of this packet to a useful boundary. */
8990 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8991 todo_units = align_for_efficient_write (todo_units, memaddr);
8992
8993 /* Append "<memaddr>". */
8994 memaddr = remote_address_masked (memaddr);
8995 p += hexnumstr (p, (ULONGEST) memaddr);
8996
8997 if (use_length)
8998 {
8999 /* Append ",". */
9000 *p++ = ',';
9001
9002 /* Append the length and retain its location and size. It may need to be
9003 adjusted once the packet body has been created. */
9004 plen = p;
9005 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9006 p += plenlen;
9007 }
9008
9009 /* Append ":". */
9010 *p++ = ':';
9011 *p = '\0';
9012
9013 /* Append the packet body. */
9014 if (packet_format == 'X')
9015 {
9016 /* Binary mode. Send target system values byte by byte, in
9017 increasing byte addresses. Only escape certain critical
9018 characters. */
9019 payload_length_bytes =
9020 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9021 &units_written, payload_capacity_bytes);
9022
9023 /* If not all TODO units fit, then we'll need another packet. Make
9024 a second try to keep the end of the packet aligned. Don't do
9025 this if the packet is tiny. */
9026 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9027 {
9028 int new_todo_units;
9029
9030 new_todo_units = align_for_efficient_write (units_written, memaddr);
9031
9032 if (new_todo_units != units_written)
9033 payload_length_bytes =
9034 remote_escape_output (myaddr, new_todo_units, unit_size,
9035 (gdb_byte *) p, &units_written,
9036 payload_capacity_bytes);
9037 }
9038
9039 p += payload_length_bytes;
9040 if (use_length && units_written < todo_units)
9041 {
9042 /* Escape chars have filled up the buffer prematurely,
9043 and we have actually sent fewer units than planned.
9044 Fix-up the length field of the packet. Use the same
9045 number of characters as before. */
9046 plen += hexnumnstr (plen, (ULONGEST) units_written,
9047 plenlen);
9048 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9049 }
9050 }
9051 else
9052 {
9053 /* Normal mode: Send target system values byte by byte, in
9054 increasing byte addresses. Each byte is encoded as a two hex
9055 value. */
9056 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9057 units_written = todo_units;
9058 }
9059
9060 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9061 getpkt (&rs->buf, 0);
9062
9063 if (rs->buf[0] == 'E')
9064 return TARGET_XFER_E_IO;
9065
9066 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9067 send fewer units than we'd planned. */
9068 *xfered_len_units = (ULONGEST) units_written;
9069 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9070 }
9071
9072 /* Write memory data directly to the remote machine.
9073 This does not inform the data cache; the data cache uses this.
9074 MEMADDR is the address in the remote memory space.
9075 MYADDR is the address of the buffer in our space.
9076 LEN is the number of bytes.
9077
9078 Return the transferred status, error or OK (an
9079 'enum target_xfer_status' value). Save the number of bytes
9080 transferred in *XFERED_LEN. Only transfer a single packet. */
9081
9082 target_xfer_status
9083 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9084 ULONGEST len, int unit_size,
9085 ULONGEST *xfered_len)
9086 {
9087 const char *packet_format = NULL;
9088
9089 /* Check whether the target supports binary download. */
9090 check_binary_download (memaddr);
9091
9092 switch (packet_support (PACKET_X))
9093 {
9094 case PACKET_ENABLE:
9095 packet_format = "X";
9096 break;
9097 case PACKET_DISABLE:
9098 packet_format = "M";
9099 break;
9100 case PACKET_SUPPORT_UNKNOWN:
9101 internal_error (__FILE__, __LINE__,
9102 _("remote_write_bytes: bad internal state"));
9103 default:
9104 internal_error (__FILE__, __LINE__, _("bad switch"));
9105 }
9106
9107 return remote_write_bytes_aux (packet_format,
9108 memaddr, myaddr, len, unit_size, xfered_len,
9109 packet_format[0], 1);
9110 }
9111
9112 /* Read memory data directly from the remote machine.
9113 This does not use the data cache; the data cache uses this.
9114 MEMADDR is the address in the remote memory space.
9115 MYADDR is the address of the buffer in our space.
9116 LEN_UNITS is the number of addressable memory units to read..
9117 UNIT_SIZE is the length in bytes of an addressable unit.
9118
9119 Return the transferred status, error or OK (an
9120 'enum target_xfer_status' value). Save the number of bytes
9121 transferred in *XFERED_LEN_UNITS.
9122
9123 See the comment of remote_write_bytes_aux for an example of
9124 memory read/write exchange between gdb and the stub. */
9125
9126 target_xfer_status
9127 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9128 ULONGEST len_units,
9129 int unit_size, ULONGEST *xfered_len_units)
9130 {
9131 struct remote_state *rs = get_remote_state ();
9132 int buf_size_bytes; /* Max size of packet output buffer. */
9133 char *p;
9134 int todo_units;
9135 int decoded_bytes;
9136
9137 buf_size_bytes = get_memory_read_packet_size ();
9138 /* The packet buffer will be large enough for the payload;
9139 get_memory_packet_size ensures this. */
9140
9141 /* Number of units that will fit. */
9142 todo_units = std::min (len_units,
9143 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9144
9145 /* Construct "m"<memaddr>","<len>". */
9146 memaddr = remote_address_masked (memaddr);
9147 p = rs->buf.data ();
9148 *p++ = 'm';
9149 p += hexnumstr (p, (ULONGEST) memaddr);
9150 *p++ = ',';
9151 p += hexnumstr (p, (ULONGEST) todo_units);
9152 *p = '\0';
9153 putpkt (rs->buf);
9154 getpkt (&rs->buf, 0);
9155 if (rs->buf[0] == 'E'
9156 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9157 && rs->buf[3] == '\0')
9158 return TARGET_XFER_E_IO;
9159 /* Reply describes memory byte by byte, each byte encoded as two hex
9160 characters. */
9161 p = rs->buf.data ();
9162 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9163 /* Return what we have. Let higher layers handle partial reads. */
9164 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9165 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9166 }
9167
9168 /* Using the set of read-only target sections of remote, read live
9169 read-only memory.
9170
9171 For interface/parameters/return description see target.h,
9172 to_xfer_partial. */
9173
9174 target_xfer_status
9175 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9176 ULONGEST memaddr,
9177 ULONGEST len,
9178 int unit_size,
9179 ULONGEST *xfered_len)
9180 {
9181 const struct target_section *secp;
9182
9183 secp = target_section_by_addr (this, memaddr);
9184 if (secp != NULL
9185 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9186 {
9187 ULONGEST memend = memaddr + len;
9188
9189 const target_section_table *table = target_get_section_table (this);
9190 for (const target_section &p : *table)
9191 {
9192 if (memaddr >= p.addr)
9193 {
9194 if (memend <= p.endaddr)
9195 {
9196 /* Entire transfer is within this section. */
9197 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9198 xfered_len);
9199 }
9200 else if (memaddr >= p.endaddr)
9201 {
9202 /* This section ends before the transfer starts. */
9203 continue;
9204 }
9205 else
9206 {
9207 /* This section overlaps the transfer. Just do half. */
9208 len = p.endaddr - memaddr;
9209 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9210 xfered_len);
9211 }
9212 }
9213 }
9214 }
9215
9216 return TARGET_XFER_EOF;
9217 }
9218
9219 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9220 first if the requested memory is unavailable in traceframe.
9221 Otherwise, fall back to remote_read_bytes_1. */
9222
9223 target_xfer_status
9224 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9225 gdb_byte *myaddr, ULONGEST len, int unit_size,
9226 ULONGEST *xfered_len)
9227 {
9228 if (len == 0)
9229 return TARGET_XFER_EOF;
9230
9231 if (get_traceframe_number () != -1)
9232 {
9233 std::vector<mem_range> available;
9234
9235 /* If we fail to get the set of available memory, then the
9236 target does not support querying traceframe info, and so we
9237 attempt reading from the traceframe anyway (assuming the
9238 target implements the old QTro packet then). */
9239 if (traceframe_available_memory (&available, memaddr, len))
9240 {
9241 if (available.empty () || available[0].start != memaddr)
9242 {
9243 enum target_xfer_status res;
9244
9245 /* Don't read into the traceframe's available
9246 memory. */
9247 if (!available.empty ())
9248 {
9249 LONGEST oldlen = len;
9250
9251 len = available[0].start - memaddr;
9252 gdb_assert (len <= oldlen);
9253 }
9254
9255 /* This goes through the topmost target again. */
9256 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9257 len, unit_size, xfered_len);
9258 if (res == TARGET_XFER_OK)
9259 return TARGET_XFER_OK;
9260 else
9261 {
9262 /* No use trying further, we know some memory starting
9263 at MEMADDR isn't available. */
9264 *xfered_len = len;
9265 return (*xfered_len != 0) ?
9266 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9267 }
9268 }
9269
9270 /* Don't try to read more than how much is available, in
9271 case the target implements the deprecated QTro packet to
9272 cater for older GDBs (the target's knowledge of read-only
9273 sections may be outdated by now). */
9274 len = available[0].length;
9275 }
9276 }
9277
9278 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9279 }
9280
9281 \f
9282
9283 /* Sends a packet with content determined by the printf format string
9284 FORMAT and the remaining arguments, then gets the reply. Returns
9285 whether the packet was a success, a failure, or unknown. */
9286
9287 packet_result
9288 remote_target::remote_send_printf (const char *format, ...)
9289 {
9290 struct remote_state *rs = get_remote_state ();
9291 int max_size = get_remote_packet_size ();
9292 va_list ap;
9293
9294 va_start (ap, format);
9295
9296 rs->buf[0] = '\0';
9297 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9298
9299 va_end (ap);
9300
9301 if (size >= max_size)
9302 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9303
9304 if (putpkt (rs->buf) < 0)
9305 error (_("Communication problem with target."));
9306
9307 rs->buf[0] = '\0';
9308 getpkt (&rs->buf, 0);
9309
9310 return packet_check_result (rs->buf);
9311 }
9312
9313 /* Flash writing can take quite some time. We'll set
9314 effectively infinite timeout for flash operations.
9315 In future, we'll need to decide on a better approach. */
9316 static const int remote_flash_timeout = 1000;
9317
9318 void
9319 remote_target::flash_erase (ULONGEST address, LONGEST length)
9320 {
9321 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9322 enum packet_result ret;
9323 scoped_restore restore_timeout
9324 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9325
9326 ret = remote_send_printf ("vFlashErase:%s,%s",
9327 phex (address, addr_size),
9328 phex (length, 4));
9329 switch (ret)
9330 {
9331 case PACKET_UNKNOWN:
9332 error (_("Remote target does not support flash erase"));
9333 case PACKET_ERROR:
9334 error (_("Error erasing flash with vFlashErase packet"));
9335 default:
9336 break;
9337 }
9338 }
9339
9340 target_xfer_status
9341 remote_target::remote_flash_write (ULONGEST address,
9342 ULONGEST length, ULONGEST *xfered_len,
9343 const gdb_byte *data)
9344 {
9345 scoped_restore restore_timeout
9346 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9347 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9348 xfered_len,'X', 0);
9349 }
9350
9351 void
9352 remote_target::flash_done ()
9353 {
9354 int ret;
9355
9356 scoped_restore restore_timeout
9357 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9358
9359 ret = remote_send_printf ("vFlashDone");
9360
9361 switch (ret)
9362 {
9363 case PACKET_UNKNOWN:
9364 error (_("Remote target does not support vFlashDone"));
9365 case PACKET_ERROR:
9366 error (_("Error finishing flash operation"));
9367 default:
9368 break;
9369 }
9370 }
9371
9372 void
9373 remote_target::files_info ()
9374 {
9375 puts_filtered ("Debugging a target over a serial line.\n");
9376 }
9377 \f
9378 /* Stuff for dealing with the packets which are part of this protocol.
9379 See comment at top of file for details. */
9380
9381 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9382 error to higher layers. Called when a serial error is detected.
9383 The exception message is STRING, followed by a colon and a blank,
9384 the system error message for errno at function entry and final dot
9385 for output compatibility with throw_perror_with_name. */
9386
9387 static void
9388 unpush_and_perror (remote_target *target, const char *string)
9389 {
9390 int saved_errno = errno;
9391
9392 remote_unpush_target (target);
9393 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9394 safe_strerror (saved_errno));
9395 }
9396
9397 /* Read a single character from the remote end. The current quit
9398 handler is overridden to avoid quitting in the middle of packet
9399 sequence, as that would break communication with the remote server.
9400 See remote_serial_quit_handler for more detail. */
9401
9402 int
9403 remote_target::readchar (int timeout)
9404 {
9405 int ch;
9406 struct remote_state *rs = get_remote_state ();
9407
9408 {
9409 scoped_restore restore_quit_target
9410 = make_scoped_restore (&curr_quit_handler_target, this);
9411 scoped_restore restore_quit
9412 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9413
9414 rs->got_ctrlc_during_io = 0;
9415
9416 ch = serial_readchar (rs->remote_desc, timeout);
9417
9418 if (rs->got_ctrlc_during_io)
9419 set_quit_flag ();
9420 }
9421
9422 if (ch >= 0)
9423 return ch;
9424
9425 switch ((enum serial_rc) ch)
9426 {
9427 case SERIAL_EOF:
9428 remote_unpush_target (this);
9429 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9430 /* no return */
9431 case SERIAL_ERROR:
9432 unpush_and_perror (this, _("Remote communication error. "
9433 "Target disconnected."));
9434 /* no return */
9435 case SERIAL_TIMEOUT:
9436 break;
9437 }
9438 return ch;
9439 }
9440
9441 /* Wrapper for serial_write that closes the target and throws if
9442 writing fails. The current quit handler is overridden to avoid
9443 quitting in the middle of packet sequence, as that would break
9444 communication with the remote server. See
9445 remote_serial_quit_handler for more detail. */
9446
9447 void
9448 remote_target::remote_serial_write (const char *str, int len)
9449 {
9450 struct remote_state *rs = get_remote_state ();
9451
9452 scoped_restore restore_quit_target
9453 = make_scoped_restore (&curr_quit_handler_target, this);
9454 scoped_restore restore_quit
9455 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9456
9457 rs->got_ctrlc_during_io = 0;
9458
9459 if (serial_write (rs->remote_desc, str, len))
9460 {
9461 unpush_and_perror (this, _("Remote communication error. "
9462 "Target disconnected."));
9463 }
9464
9465 if (rs->got_ctrlc_during_io)
9466 set_quit_flag ();
9467 }
9468
9469 /* Return a string representing an escaped version of BUF, of len N.
9470 E.g. \n is converted to \\n, \t to \\t, etc. */
9471
9472 static std::string
9473 escape_buffer (const char *buf, int n)
9474 {
9475 string_file stb;
9476
9477 stb.putstrn (buf, n, '\\');
9478 return std::move (stb.string ());
9479 }
9480
9481 /* Display a null-terminated packet on stdout, for debugging, using C
9482 string notation. */
9483
9484 static void
9485 print_packet (const char *buf)
9486 {
9487 puts_filtered ("\"");
9488 fputstr_filtered (buf, '"', gdb_stdout);
9489 puts_filtered ("\"");
9490 }
9491
9492 int
9493 remote_target::putpkt (const char *buf)
9494 {
9495 return putpkt_binary (buf, strlen (buf));
9496 }
9497
9498 /* Wrapper around remote_target::putpkt to avoid exporting
9499 remote_target. */
9500
9501 int
9502 putpkt (remote_target *remote, const char *buf)
9503 {
9504 return remote->putpkt (buf);
9505 }
9506
9507 /* Send a packet to the remote machine, with error checking. The data
9508 of the packet is in BUF. The string in BUF can be at most
9509 get_remote_packet_size () - 5 to account for the $, # and checksum,
9510 and for a possible /0 if we are debugging (remote_debug) and want
9511 to print the sent packet as a string. */
9512
9513 int
9514 remote_target::putpkt_binary (const char *buf, int cnt)
9515 {
9516 struct remote_state *rs = get_remote_state ();
9517 int i;
9518 unsigned char csum = 0;
9519 gdb::def_vector<char> data (cnt + 6);
9520 char *buf2 = data.data ();
9521
9522 int ch;
9523 int tcount = 0;
9524 char *p;
9525
9526 /* Catch cases like trying to read memory or listing threads while
9527 we're waiting for a stop reply. The remote server wouldn't be
9528 ready to handle this request, so we'd hang and timeout. We don't
9529 have to worry about this in synchronous mode, because in that
9530 case it's not possible to issue a command while the target is
9531 running. This is not a problem in non-stop mode, because in that
9532 case, the stub is always ready to process serial input. */
9533 if (!target_is_non_stop_p ()
9534 && target_is_async_p ()
9535 && rs->waiting_for_stop_reply)
9536 {
9537 error (_("Cannot execute this command while the target is running.\n"
9538 "Use the \"interrupt\" command to stop the target\n"
9539 "and then try again."));
9540 }
9541
9542 /* We're sending out a new packet. Make sure we don't look at a
9543 stale cached response. */
9544 rs->cached_wait_status = 0;
9545
9546 /* Copy the packet into buffer BUF2, encapsulating it
9547 and giving it a checksum. */
9548
9549 p = buf2;
9550 *p++ = '$';
9551
9552 for (i = 0; i < cnt; i++)
9553 {
9554 csum += buf[i];
9555 *p++ = buf[i];
9556 }
9557 *p++ = '#';
9558 *p++ = tohex ((csum >> 4) & 0xf);
9559 *p++ = tohex (csum & 0xf);
9560
9561 /* Send it over and over until we get a positive ack. */
9562
9563 while (1)
9564 {
9565 if (remote_debug)
9566 {
9567 *p = '\0';
9568
9569 int len = (int) (p - buf2);
9570 int max_chars;
9571
9572 if (remote_packet_max_chars < 0)
9573 max_chars = len;
9574 else
9575 max_chars = remote_packet_max_chars;
9576
9577 std::string str
9578 = escape_buffer (buf2, std::min (len, max_chars));
9579
9580 if (len > max_chars)
9581 remote_debug_printf_nofunc
9582 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9583 len - max_chars);
9584 else
9585 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9586 }
9587 remote_serial_write (buf2, p - buf2);
9588
9589 /* If this is a no acks version of the remote protocol, send the
9590 packet and move on. */
9591 if (rs->noack_mode)
9592 break;
9593
9594 /* Read until either a timeout occurs (-2) or '+' is read.
9595 Handle any notification that arrives in the mean time. */
9596 while (1)
9597 {
9598 ch = readchar (remote_timeout);
9599
9600 switch (ch)
9601 {
9602 case '+':
9603 remote_debug_printf_nofunc ("Received Ack");
9604 return 1;
9605 case '-':
9606 remote_debug_printf_nofunc ("Received Nak");
9607 /* FALLTHROUGH */
9608 case SERIAL_TIMEOUT:
9609 tcount++;
9610 if (tcount > 3)
9611 return 0;
9612 break; /* Retransmit buffer. */
9613 case '$':
9614 {
9615 remote_debug_printf ("Packet instead of Ack, ignoring it");
9616 /* It's probably an old response sent because an ACK
9617 was lost. Gobble up the packet and ack it so it
9618 doesn't get retransmitted when we resend this
9619 packet. */
9620 skip_frame ();
9621 remote_serial_write ("+", 1);
9622 continue; /* Now, go look for +. */
9623 }
9624
9625 case '%':
9626 {
9627 int val;
9628
9629 /* If we got a notification, handle it, and go back to looking
9630 for an ack. */
9631 /* We've found the start of a notification. Now
9632 collect the data. */
9633 val = read_frame (&rs->buf);
9634 if (val >= 0)
9635 {
9636 remote_debug_printf_nofunc
9637 (" Notification received: %s",
9638 escape_buffer (rs->buf.data (), val).c_str ());
9639
9640 handle_notification (rs->notif_state, rs->buf.data ());
9641 /* We're in sync now, rewait for the ack. */
9642 tcount = 0;
9643 }
9644 else
9645 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9646 rs->buf.data ());
9647 continue;
9648 }
9649 /* fall-through */
9650 default:
9651 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9652 rs->buf.data ());
9653 continue;
9654 }
9655 break; /* Here to retransmit. */
9656 }
9657
9658 #if 0
9659 /* This is wrong. If doing a long backtrace, the user should be
9660 able to get out next time we call QUIT, without anything as
9661 violent as interrupt_query. If we want to provide a way out of
9662 here without getting to the next QUIT, it should be based on
9663 hitting ^C twice as in remote_wait. */
9664 if (quit_flag)
9665 {
9666 quit_flag = 0;
9667 interrupt_query ();
9668 }
9669 #endif
9670 }
9671
9672 return 0;
9673 }
9674
9675 /* Come here after finding the start of a frame when we expected an
9676 ack. Do our best to discard the rest of this packet. */
9677
9678 void
9679 remote_target::skip_frame ()
9680 {
9681 int c;
9682
9683 while (1)
9684 {
9685 c = readchar (remote_timeout);
9686 switch (c)
9687 {
9688 case SERIAL_TIMEOUT:
9689 /* Nothing we can do. */
9690 return;
9691 case '#':
9692 /* Discard the two bytes of checksum and stop. */
9693 c = readchar (remote_timeout);
9694 if (c >= 0)
9695 c = readchar (remote_timeout);
9696
9697 return;
9698 case '*': /* Run length encoding. */
9699 /* Discard the repeat count. */
9700 c = readchar (remote_timeout);
9701 if (c < 0)
9702 return;
9703 break;
9704 default:
9705 /* A regular character. */
9706 break;
9707 }
9708 }
9709 }
9710
9711 /* Come here after finding the start of the frame. Collect the rest
9712 into *BUF, verifying the checksum, length, and handling run-length
9713 compression. NUL terminate the buffer. If there is not enough room,
9714 expand *BUF.
9715
9716 Returns -1 on error, number of characters in buffer (ignoring the
9717 trailing NULL) on success. (could be extended to return one of the
9718 SERIAL status indications). */
9719
9720 long
9721 remote_target::read_frame (gdb::char_vector *buf_p)
9722 {
9723 unsigned char csum;
9724 long bc;
9725 int c;
9726 char *buf = buf_p->data ();
9727 struct remote_state *rs = get_remote_state ();
9728
9729 csum = 0;
9730 bc = 0;
9731
9732 while (1)
9733 {
9734 c = readchar (remote_timeout);
9735 switch (c)
9736 {
9737 case SERIAL_TIMEOUT:
9738 remote_debug_printf ("Timeout in mid-packet, retrying");
9739 return -1;
9740
9741 case '$':
9742 remote_debug_printf ("Saw new packet start in middle of old one");
9743 return -1; /* Start a new packet, count retries. */
9744
9745 case '#':
9746 {
9747 unsigned char pktcsum;
9748 int check_0 = 0;
9749 int check_1 = 0;
9750
9751 buf[bc] = '\0';
9752
9753 check_0 = readchar (remote_timeout);
9754 if (check_0 >= 0)
9755 check_1 = readchar (remote_timeout);
9756
9757 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9758 {
9759 remote_debug_printf ("Timeout in checksum, retrying");
9760 return -1;
9761 }
9762 else if (check_0 < 0 || check_1 < 0)
9763 {
9764 remote_debug_printf ("Communication error in checksum");
9765 return -1;
9766 }
9767
9768 /* Don't recompute the checksum; with no ack packets we
9769 don't have any way to indicate a packet retransmission
9770 is necessary. */
9771 if (rs->noack_mode)
9772 return bc;
9773
9774 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9775 if (csum == pktcsum)
9776 return bc;
9777
9778 remote_debug_printf
9779 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9780 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9781
9782 /* Number of characters in buffer ignoring trailing
9783 NULL. */
9784 return -1;
9785 }
9786 case '*': /* Run length encoding. */
9787 {
9788 int repeat;
9789
9790 csum += c;
9791 c = readchar (remote_timeout);
9792 csum += c;
9793 repeat = c - ' ' + 3; /* Compute repeat count. */
9794
9795 /* The character before ``*'' is repeated. */
9796
9797 if (repeat > 0 && repeat <= 255 && bc > 0)
9798 {
9799 if (bc + repeat - 1 >= buf_p->size () - 1)
9800 {
9801 /* Make some more room in the buffer. */
9802 buf_p->resize (buf_p->size () + repeat);
9803 buf = buf_p->data ();
9804 }
9805
9806 memset (&buf[bc], buf[bc - 1], repeat);
9807 bc += repeat;
9808 continue;
9809 }
9810
9811 buf[bc] = '\0';
9812 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9813 return -1;
9814 }
9815 default:
9816 if (bc >= buf_p->size () - 1)
9817 {
9818 /* Make some more room in the buffer. */
9819 buf_p->resize (buf_p->size () * 2);
9820 buf = buf_p->data ();
9821 }
9822
9823 buf[bc++] = c;
9824 csum += c;
9825 continue;
9826 }
9827 }
9828 }
9829
9830 /* Set this to the maximum number of seconds to wait instead of waiting forever
9831 in target_wait(). If this timer times out, then it generates an error and
9832 the command is aborted. This replaces most of the need for timeouts in the
9833 GDB test suite, and makes it possible to distinguish between a hung target
9834 and one with slow communications. */
9835
9836 static int watchdog = 0;
9837 static void
9838 show_watchdog (struct ui_file *file, int from_tty,
9839 struct cmd_list_element *c, const char *value)
9840 {
9841 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9842 }
9843
9844 /* Read a packet from the remote machine, with error checking, and
9845 store it in *BUF. Resize *BUF if necessary to hold the result. If
9846 FOREVER, wait forever rather than timing out; this is used (in
9847 synchronous mode) to wait for a target that is is executing user
9848 code to stop. */
9849 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9850 don't have to change all the calls to getpkt to deal with the
9851 return value, because at the moment I don't know what the right
9852 thing to do it for those. */
9853
9854 void
9855 remote_target::getpkt (gdb::char_vector *buf, int forever)
9856 {
9857 getpkt_sane (buf, forever);
9858 }
9859
9860
9861 /* Read a packet from the remote machine, with error checking, and
9862 store it in *BUF. Resize *BUF if necessary to hold the result. If
9863 FOREVER, wait forever rather than timing out; this is used (in
9864 synchronous mode) to wait for a target that is is executing user
9865 code to stop. If FOREVER == 0, this function is allowed to time
9866 out gracefully and return an indication of this to the caller.
9867 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9868 consider receiving a notification enough reason to return to the
9869 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9870 holds a notification or not (a regular packet). */
9871
9872 int
9873 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9874 int forever, int expecting_notif,
9875 int *is_notif)
9876 {
9877 struct remote_state *rs = get_remote_state ();
9878 int c;
9879 int tries;
9880 int timeout;
9881 int val = -1;
9882
9883 /* We're reading a new response. Make sure we don't look at a
9884 previously cached response. */
9885 rs->cached_wait_status = 0;
9886
9887 strcpy (buf->data (), "timeout");
9888
9889 if (forever)
9890 timeout = watchdog > 0 ? watchdog : -1;
9891 else if (expecting_notif)
9892 timeout = 0; /* There should already be a char in the buffer. If
9893 not, bail out. */
9894 else
9895 timeout = remote_timeout;
9896
9897 #define MAX_TRIES 3
9898
9899 /* Process any number of notifications, and then return when
9900 we get a packet. */
9901 for (;;)
9902 {
9903 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9904 times. */
9905 for (tries = 1; tries <= MAX_TRIES; tries++)
9906 {
9907 /* This can loop forever if the remote side sends us
9908 characters continuously, but if it pauses, we'll get
9909 SERIAL_TIMEOUT from readchar because of timeout. Then
9910 we'll count that as a retry.
9911
9912 Note that even when forever is set, we will only wait
9913 forever prior to the start of a packet. After that, we
9914 expect characters to arrive at a brisk pace. They should
9915 show up within remote_timeout intervals. */
9916 do
9917 c = readchar (timeout);
9918 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9919
9920 if (c == SERIAL_TIMEOUT)
9921 {
9922 if (expecting_notif)
9923 return -1; /* Don't complain, it's normal to not get
9924 anything in this case. */
9925
9926 if (forever) /* Watchdog went off? Kill the target. */
9927 {
9928 remote_unpush_target (this);
9929 throw_error (TARGET_CLOSE_ERROR,
9930 _("Watchdog timeout has expired. "
9931 "Target detached."));
9932 }
9933
9934 remote_debug_printf ("Timed out.");
9935 }
9936 else
9937 {
9938 /* We've found the start of a packet or notification.
9939 Now collect the data. */
9940 val = read_frame (buf);
9941 if (val >= 0)
9942 break;
9943 }
9944
9945 remote_serial_write ("-", 1);
9946 }
9947
9948 if (tries > MAX_TRIES)
9949 {
9950 /* We have tried hard enough, and just can't receive the
9951 packet/notification. Give up. */
9952 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9953
9954 /* Skip the ack char if we're in no-ack mode. */
9955 if (!rs->noack_mode)
9956 remote_serial_write ("+", 1);
9957 return -1;
9958 }
9959
9960 /* If we got an ordinary packet, return that to our caller. */
9961 if (c == '$')
9962 {
9963 if (remote_debug)
9964 {
9965 int max_chars;
9966
9967 if (remote_packet_max_chars < 0)
9968 max_chars = val;
9969 else
9970 max_chars = remote_packet_max_chars;
9971
9972 std::string str
9973 = escape_buffer (buf->data (),
9974 std::min (val, max_chars));
9975
9976 if (val > max_chars)
9977 remote_debug_printf_nofunc
9978 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9979 val - max_chars);
9980 else
9981 remote_debug_printf_nofunc ("Packet received: %s",
9982 str.c_str ());
9983 }
9984
9985 /* Skip the ack char if we're in no-ack mode. */
9986 if (!rs->noack_mode)
9987 remote_serial_write ("+", 1);
9988 if (is_notif != NULL)
9989 *is_notif = 0;
9990 return val;
9991 }
9992
9993 /* If we got a notification, handle it, and go back to looking
9994 for a packet. */
9995 else
9996 {
9997 gdb_assert (c == '%');
9998
9999 remote_debug_printf_nofunc
10000 (" Notification received: %s",
10001 escape_buffer (buf->data (), val).c_str ());
10002
10003 if (is_notif != NULL)
10004 *is_notif = 1;
10005
10006 handle_notification (rs->notif_state, buf->data ());
10007
10008 /* Notifications require no acknowledgement. */
10009
10010 if (expecting_notif)
10011 return val;
10012 }
10013 }
10014 }
10015
10016 int
10017 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10018 {
10019 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10020 }
10021
10022 int
10023 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10024 int *is_notif)
10025 {
10026 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10027 }
10028
10029 /* Kill any new fork children of process PID that haven't been
10030 processed by follow_fork. */
10031
10032 void
10033 remote_target::kill_new_fork_children (int pid)
10034 {
10035 remote_state *rs = get_remote_state ();
10036 struct notif_client *notif = &notif_client_stop;
10037
10038 /* Kill the fork child threads of any threads in process PID
10039 that are stopped at a fork event. */
10040 for (thread_info *thread : all_non_exited_threads (this))
10041 {
10042 struct target_waitstatus *ws = &thread->pending_follow;
10043
10044 if (is_pending_fork_parent (ws, pid, thread->ptid))
10045 {
10046 int child_pid = ws->value.related_pid.pid ();
10047 int res;
10048
10049 res = remote_vkill (child_pid);
10050 if (res != 0)
10051 error (_("Can't kill fork child process %d"), child_pid);
10052 }
10053 }
10054
10055 /* Check for any pending fork events (not reported or processed yet)
10056 in process PID and kill those fork child threads as well. */
10057 remote_notif_get_pending_events (notif);
10058 for (auto &event : rs->stop_reply_queue)
10059 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10060 {
10061 int child_pid = event->ws.value.related_pid.pid ();
10062 int res;
10063
10064 res = remote_vkill (child_pid);
10065 if (res != 0)
10066 error (_("Can't kill fork child process %d"), child_pid);
10067 }
10068 }
10069
10070 \f
10071 /* Target hook to kill the current inferior. */
10072
10073 void
10074 remote_target::kill ()
10075 {
10076 int res = -1;
10077 int pid = inferior_ptid.pid ();
10078 struct remote_state *rs = get_remote_state ();
10079
10080 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10081 {
10082 /* If we're stopped while forking and we haven't followed yet,
10083 kill the child task. We need to do this before killing the
10084 parent task because if this is a vfork then the parent will
10085 be sleeping. */
10086 kill_new_fork_children (pid);
10087
10088 res = remote_vkill (pid);
10089 if (res == 0)
10090 {
10091 target_mourn_inferior (inferior_ptid);
10092 return;
10093 }
10094 }
10095
10096 /* If we are in 'target remote' mode and we are killing the only
10097 inferior, then we will tell gdbserver to exit and unpush the
10098 target. */
10099 if (res == -1 && !remote_multi_process_p (rs)
10100 && number_of_live_inferiors (this) == 1)
10101 {
10102 remote_kill_k ();
10103
10104 /* We've killed the remote end, we get to mourn it. If we are
10105 not in extended mode, mourning the inferior also unpushes
10106 remote_ops from the target stack, which closes the remote
10107 connection. */
10108 target_mourn_inferior (inferior_ptid);
10109
10110 return;
10111 }
10112
10113 error (_("Can't kill process"));
10114 }
10115
10116 /* Send a kill request to the target using the 'vKill' packet. */
10117
10118 int
10119 remote_target::remote_vkill (int pid)
10120 {
10121 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10122 return -1;
10123
10124 remote_state *rs = get_remote_state ();
10125
10126 /* Tell the remote target to detach. */
10127 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10128 putpkt (rs->buf);
10129 getpkt (&rs->buf, 0);
10130
10131 switch (packet_ok (rs->buf,
10132 &remote_protocol_packets[PACKET_vKill]))
10133 {
10134 case PACKET_OK:
10135 return 0;
10136 case PACKET_ERROR:
10137 return 1;
10138 case PACKET_UNKNOWN:
10139 return -1;
10140 default:
10141 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10142 }
10143 }
10144
10145 /* Send a kill request to the target using the 'k' packet. */
10146
10147 void
10148 remote_target::remote_kill_k ()
10149 {
10150 /* Catch errors so the user can quit from gdb even when we
10151 aren't on speaking terms with the remote system. */
10152 try
10153 {
10154 putpkt ("k");
10155 }
10156 catch (const gdb_exception_error &ex)
10157 {
10158 if (ex.error == TARGET_CLOSE_ERROR)
10159 {
10160 /* If we got an (EOF) error that caused the target
10161 to go away, then we're done, that's what we wanted.
10162 "k" is susceptible to cause a premature EOF, given
10163 that the remote server isn't actually required to
10164 reply to "k", and it can happen that it doesn't
10165 even get to reply ACK to the "k". */
10166 return;
10167 }
10168
10169 /* Otherwise, something went wrong. We didn't actually kill
10170 the target. Just propagate the exception, and let the
10171 user or higher layers decide what to do. */
10172 throw;
10173 }
10174 }
10175
10176 void
10177 remote_target::mourn_inferior ()
10178 {
10179 struct remote_state *rs = get_remote_state ();
10180
10181 /* We're no longer interested in notification events of an inferior
10182 that exited or was killed/detached. */
10183 discard_pending_stop_replies (current_inferior ());
10184
10185 /* In 'target remote' mode with one inferior, we close the connection. */
10186 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10187 {
10188 remote_unpush_target (this);
10189 return;
10190 }
10191
10192 /* In case we got here due to an error, but we're going to stay
10193 connected. */
10194 rs->waiting_for_stop_reply = 0;
10195
10196 /* If the current general thread belonged to the process we just
10197 detached from or has exited, the remote side current general
10198 thread becomes undefined. Considering a case like this:
10199
10200 - We just got here due to a detach.
10201 - The process that we're detaching from happens to immediately
10202 report a global breakpoint being hit in non-stop mode, in the
10203 same thread we had selected before.
10204 - GDB attaches to this process again.
10205 - This event happens to be the next event we handle.
10206
10207 GDB would consider that the current general thread didn't need to
10208 be set on the stub side (with Hg), since for all it knew,
10209 GENERAL_THREAD hadn't changed.
10210
10211 Notice that although in all-stop mode, the remote server always
10212 sets the current thread to the thread reporting the stop event,
10213 that doesn't happen in non-stop mode; in non-stop, the stub *must
10214 not* change the current thread when reporting a breakpoint hit,
10215 due to the decoupling of event reporting and event handling.
10216
10217 To keep things simple, we always invalidate our notion of the
10218 current thread. */
10219 record_currthread (rs, minus_one_ptid);
10220
10221 /* Call common code to mark the inferior as not running. */
10222 generic_mourn_inferior ();
10223 }
10224
10225 bool
10226 extended_remote_target::supports_disable_randomization ()
10227 {
10228 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10229 }
10230
10231 void
10232 remote_target::extended_remote_disable_randomization (int val)
10233 {
10234 struct remote_state *rs = get_remote_state ();
10235 char *reply;
10236
10237 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10238 "QDisableRandomization:%x", val);
10239 putpkt (rs->buf);
10240 reply = remote_get_noisy_reply ();
10241 if (*reply == '\0')
10242 error (_("Target does not support QDisableRandomization."));
10243 if (strcmp (reply, "OK") != 0)
10244 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10245 }
10246
10247 int
10248 remote_target::extended_remote_run (const std::string &args)
10249 {
10250 struct remote_state *rs = get_remote_state ();
10251 int len;
10252 const char *remote_exec_file = get_remote_exec_file ();
10253
10254 /* If the user has disabled vRun support, or we have detected that
10255 support is not available, do not try it. */
10256 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10257 return -1;
10258
10259 strcpy (rs->buf.data (), "vRun;");
10260 len = strlen (rs->buf.data ());
10261
10262 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10263 error (_("Remote file name too long for run packet"));
10264 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10265 strlen (remote_exec_file));
10266
10267 if (!args.empty ())
10268 {
10269 int i;
10270
10271 gdb_argv argv (args.c_str ());
10272 for (i = 0; argv[i] != NULL; i++)
10273 {
10274 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10275 error (_("Argument list too long for run packet"));
10276 rs->buf[len++] = ';';
10277 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10278 strlen (argv[i]));
10279 }
10280 }
10281
10282 rs->buf[len++] = '\0';
10283
10284 putpkt (rs->buf);
10285 getpkt (&rs->buf, 0);
10286
10287 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10288 {
10289 case PACKET_OK:
10290 /* We have a wait response. All is well. */
10291 return 0;
10292 case PACKET_UNKNOWN:
10293 return -1;
10294 case PACKET_ERROR:
10295 if (remote_exec_file[0] == '\0')
10296 error (_("Running the default executable on the remote target failed; "
10297 "try \"set remote exec-file\"?"));
10298 else
10299 error (_("Running \"%s\" on the remote target failed"),
10300 remote_exec_file);
10301 default:
10302 gdb_assert_not_reached (_("bad switch"));
10303 }
10304 }
10305
10306 /* Helper function to send set/unset environment packets. ACTION is
10307 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10308 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10309 sent. */
10310
10311 void
10312 remote_target::send_environment_packet (const char *action,
10313 const char *packet,
10314 const char *value)
10315 {
10316 remote_state *rs = get_remote_state ();
10317
10318 /* Convert the environment variable to an hex string, which
10319 is the best format to be transmitted over the wire. */
10320 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10321 strlen (value));
10322
10323 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10324 "%s:%s", packet, encoded_value.c_str ());
10325
10326 putpkt (rs->buf);
10327 getpkt (&rs->buf, 0);
10328 if (strcmp (rs->buf.data (), "OK") != 0)
10329 warning (_("Unable to %s environment variable '%s' on remote."),
10330 action, value);
10331 }
10332
10333 /* Helper function to handle the QEnvironment* packets. */
10334
10335 void
10336 remote_target::extended_remote_environment_support ()
10337 {
10338 remote_state *rs = get_remote_state ();
10339
10340 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10341 {
10342 putpkt ("QEnvironmentReset");
10343 getpkt (&rs->buf, 0);
10344 if (strcmp (rs->buf.data (), "OK") != 0)
10345 warning (_("Unable to reset environment on remote."));
10346 }
10347
10348 gdb_environ *e = &current_inferior ()->environment;
10349
10350 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10351 for (const std::string &el : e->user_set_env ())
10352 send_environment_packet ("set", "QEnvironmentHexEncoded",
10353 el.c_str ());
10354
10355 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10356 for (const std::string &el : e->user_unset_env ())
10357 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10358 }
10359
10360 /* Helper function to set the current working directory for the
10361 inferior in the remote target. */
10362
10363 void
10364 remote_target::extended_remote_set_inferior_cwd ()
10365 {
10366 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10367 {
10368 const char *inferior_cwd = get_inferior_cwd ();
10369 remote_state *rs = get_remote_state ();
10370
10371 if (inferior_cwd != NULL)
10372 {
10373 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10374 strlen (inferior_cwd));
10375
10376 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10377 "QSetWorkingDir:%s", hexpath.c_str ());
10378 }
10379 else
10380 {
10381 /* An empty inferior_cwd means that the user wants us to
10382 reset the remote server's inferior's cwd. */
10383 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10384 "QSetWorkingDir:");
10385 }
10386
10387 putpkt (rs->buf);
10388 getpkt (&rs->buf, 0);
10389 if (packet_ok (rs->buf,
10390 &remote_protocol_packets[PACKET_QSetWorkingDir])
10391 != PACKET_OK)
10392 error (_("\
10393 Remote replied unexpectedly while setting the inferior's working\n\
10394 directory: %s"),
10395 rs->buf.data ());
10396
10397 }
10398 }
10399
10400 /* In the extended protocol we want to be able to do things like
10401 "run" and have them basically work as expected. So we need
10402 a special create_inferior function. We support changing the
10403 executable file and the command line arguments, but not the
10404 environment. */
10405
10406 void
10407 extended_remote_target::create_inferior (const char *exec_file,
10408 const std::string &args,
10409 char **env, int from_tty)
10410 {
10411 int run_worked;
10412 char *stop_reply;
10413 struct remote_state *rs = get_remote_state ();
10414 const char *remote_exec_file = get_remote_exec_file ();
10415
10416 /* If running asynchronously, register the target file descriptor
10417 with the event loop. */
10418 if (target_can_async_p ())
10419 target_async (1);
10420
10421 /* Disable address space randomization if requested (and supported). */
10422 if (supports_disable_randomization ())
10423 extended_remote_disable_randomization (disable_randomization);
10424
10425 /* If startup-with-shell is on, we inform gdbserver to start the
10426 remote inferior using a shell. */
10427 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10428 {
10429 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10430 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10431 putpkt (rs->buf);
10432 getpkt (&rs->buf, 0);
10433 if (strcmp (rs->buf.data (), "OK") != 0)
10434 error (_("\
10435 Remote replied unexpectedly while setting startup-with-shell: %s"),
10436 rs->buf.data ());
10437 }
10438
10439 extended_remote_environment_support ();
10440
10441 extended_remote_set_inferior_cwd ();
10442
10443 /* Now restart the remote server. */
10444 run_worked = extended_remote_run (args) != -1;
10445 if (!run_worked)
10446 {
10447 /* vRun was not supported. Fail if we need it to do what the
10448 user requested. */
10449 if (remote_exec_file[0])
10450 error (_("Remote target does not support \"set remote exec-file\""));
10451 if (!args.empty ())
10452 error (_("Remote target does not support \"set args\" or run ARGS"));
10453
10454 /* Fall back to "R". */
10455 extended_remote_restart ();
10456 }
10457
10458 /* vRun's success return is a stop reply. */
10459 stop_reply = run_worked ? rs->buf.data () : NULL;
10460 add_current_inferior_and_thread (stop_reply);
10461
10462 /* Get updated offsets, if the stub uses qOffsets. */
10463 get_offsets ();
10464 }
10465 \f
10466
10467 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10468 the list of conditions (in agent expression bytecode format), if any, the
10469 target needs to evaluate. The output is placed into the packet buffer
10470 started from BUF and ended at BUF_END. */
10471
10472 static int
10473 remote_add_target_side_condition (struct gdbarch *gdbarch,
10474 struct bp_target_info *bp_tgt, char *buf,
10475 char *buf_end)
10476 {
10477 if (bp_tgt->conditions.empty ())
10478 return 0;
10479
10480 buf += strlen (buf);
10481 xsnprintf (buf, buf_end - buf, "%s", ";");
10482 buf++;
10483
10484 /* Send conditions to the target. */
10485 for (agent_expr *aexpr : bp_tgt->conditions)
10486 {
10487 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10488 buf += strlen (buf);
10489 for (int i = 0; i < aexpr->len; ++i)
10490 buf = pack_hex_byte (buf, aexpr->buf[i]);
10491 *buf = '\0';
10492 }
10493 return 0;
10494 }
10495
10496 static void
10497 remote_add_target_side_commands (struct gdbarch *gdbarch,
10498 struct bp_target_info *bp_tgt, char *buf)
10499 {
10500 if (bp_tgt->tcommands.empty ())
10501 return;
10502
10503 buf += strlen (buf);
10504
10505 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10506 buf += strlen (buf);
10507
10508 /* Concatenate all the agent expressions that are commands into the
10509 cmds parameter. */
10510 for (agent_expr *aexpr : bp_tgt->tcommands)
10511 {
10512 sprintf (buf, "X%x,", aexpr->len);
10513 buf += strlen (buf);
10514 for (int i = 0; i < aexpr->len; ++i)
10515 buf = pack_hex_byte (buf, aexpr->buf[i]);
10516 *buf = '\0';
10517 }
10518 }
10519
10520 /* Insert a breakpoint. On targets that have software breakpoint
10521 support, we ask the remote target to do the work; on targets
10522 which don't, we insert a traditional memory breakpoint. */
10523
10524 int
10525 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10526 struct bp_target_info *bp_tgt)
10527 {
10528 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10529 If it succeeds, then set the support to PACKET_ENABLE. If it
10530 fails, and the user has explicitly requested the Z support then
10531 report an error, otherwise, mark it disabled and go on. */
10532
10533 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10534 {
10535 CORE_ADDR addr = bp_tgt->reqstd_address;
10536 struct remote_state *rs;
10537 char *p, *endbuf;
10538
10539 /* Make sure the remote is pointing at the right process, if
10540 necessary. */
10541 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10542 set_general_process ();
10543
10544 rs = get_remote_state ();
10545 p = rs->buf.data ();
10546 endbuf = p + get_remote_packet_size ();
10547
10548 *(p++) = 'Z';
10549 *(p++) = '0';
10550 *(p++) = ',';
10551 addr = (ULONGEST) remote_address_masked (addr);
10552 p += hexnumstr (p, addr);
10553 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10554
10555 if (supports_evaluation_of_breakpoint_conditions ())
10556 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10557
10558 if (can_run_breakpoint_commands ())
10559 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10560
10561 putpkt (rs->buf);
10562 getpkt (&rs->buf, 0);
10563
10564 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10565 {
10566 case PACKET_ERROR:
10567 return -1;
10568 case PACKET_OK:
10569 return 0;
10570 case PACKET_UNKNOWN:
10571 break;
10572 }
10573 }
10574
10575 /* If this breakpoint has target-side commands but this stub doesn't
10576 support Z0 packets, throw error. */
10577 if (!bp_tgt->tcommands.empty ())
10578 throw_error (NOT_SUPPORTED_ERROR, _("\
10579 Target doesn't support breakpoints that have target side commands."));
10580
10581 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10582 }
10583
10584 int
10585 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10586 struct bp_target_info *bp_tgt,
10587 enum remove_bp_reason reason)
10588 {
10589 CORE_ADDR addr = bp_tgt->placed_address;
10590 struct remote_state *rs = get_remote_state ();
10591
10592 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10593 {
10594 char *p = rs->buf.data ();
10595 char *endbuf = p + get_remote_packet_size ();
10596
10597 /* Make sure the remote is pointing at the right process, if
10598 necessary. */
10599 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10600 set_general_process ();
10601
10602 *(p++) = 'z';
10603 *(p++) = '0';
10604 *(p++) = ',';
10605
10606 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10607 p += hexnumstr (p, addr);
10608 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10609
10610 putpkt (rs->buf);
10611 getpkt (&rs->buf, 0);
10612
10613 return (rs->buf[0] == 'E');
10614 }
10615
10616 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10617 }
10618
10619 static enum Z_packet_type
10620 watchpoint_to_Z_packet (int type)
10621 {
10622 switch (type)
10623 {
10624 case hw_write:
10625 return Z_PACKET_WRITE_WP;
10626 break;
10627 case hw_read:
10628 return Z_PACKET_READ_WP;
10629 break;
10630 case hw_access:
10631 return Z_PACKET_ACCESS_WP;
10632 break;
10633 default:
10634 internal_error (__FILE__, __LINE__,
10635 _("hw_bp_to_z: bad watchpoint type %d"), type);
10636 }
10637 }
10638
10639 int
10640 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10641 enum target_hw_bp_type type, struct expression *cond)
10642 {
10643 struct remote_state *rs = get_remote_state ();
10644 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10645 char *p;
10646 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10647
10648 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10649 return 1;
10650
10651 /* Make sure the remote is pointing at the right process, if
10652 necessary. */
10653 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10654 set_general_process ();
10655
10656 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10657 p = strchr (rs->buf.data (), '\0');
10658 addr = remote_address_masked (addr);
10659 p += hexnumstr (p, (ULONGEST) addr);
10660 xsnprintf (p, endbuf - p, ",%x", len);
10661
10662 putpkt (rs->buf);
10663 getpkt (&rs->buf, 0);
10664
10665 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10666 {
10667 case PACKET_ERROR:
10668 return -1;
10669 case PACKET_UNKNOWN:
10670 return 1;
10671 case PACKET_OK:
10672 return 0;
10673 }
10674 internal_error (__FILE__, __LINE__,
10675 _("remote_insert_watchpoint: reached end of function"));
10676 }
10677
10678 bool
10679 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10680 CORE_ADDR start, int length)
10681 {
10682 CORE_ADDR diff = remote_address_masked (addr - start);
10683
10684 return diff < length;
10685 }
10686
10687
10688 int
10689 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10690 enum target_hw_bp_type type, struct expression *cond)
10691 {
10692 struct remote_state *rs = get_remote_state ();
10693 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10694 char *p;
10695 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10696
10697 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10698 return -1;
10699
10700 /* Make sure the remote is pointing at the right process, if
10701 necessary. */
10702 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10703 set_general_process ();
10704
10705 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10706 p = strchr (rs->buf.data (), '\0');
10707 addr = remote_address_masked (addr);
10708 p += hexnumstr (p, (ULONGEST) addr);
10709 xsnprintf (p, endbuf - p, ",%x", len);
10710 putpkt (rs->buf);
10711 getpkt (&rs->buf, 0);
10712
10713 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10714 {
10715 case PACKET_ERROR:
10716 case PACKET_UNKNOWN:
10717 return -1;
10718 case PACKET_OK:
10719 return 0;
10720 }
10721 internal_error (__FILE__, __LINE__,
10722 _("remote_remove_watchpoint: reached end of function"));
10723 }
10724
10725
10726 static int remote_hw_watchpoint_limit = -1;
10727 static int remote_hw_watchpoint_length_limit = -1;
10728 static int remote_hw_breakpoint_limit = -1;
10729
10730 int
10731 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10732 {
10733 if (remote_hw_watchpoint_length_limit == 0)
10734 return 0;
10735 else if (remote_hw_watchpoint_length_limit < 0)
10736 return 1;
10737 else if (len <= remote_hw_watchpoint_length_limit)
10738 return 1;
10739 else
10740 return 0;
10741 }
10742
10743 int
10744 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10745 {
10746 if (type == bp_hardware_breakpoint)
10747 {
10748 if (remote_hw_breakpoint_limit == 0)
10749 return 0;
10750 else if (remote_hw_breakpoint_limit < 0)
10751 return 1;
10752 else if (cnt <= remote_hw_breakpoint_limit)
10753 return 1;
10754 }
10755 else
10756 {
10757 if (remote_hw_watchpoint_limit == 0)
10758 return 0;
10759 else if (remote_hw_watchpoint_limit < 0)
10760 return 1;
10761 else if (ot)
10762 return -1;
10763 else if (cnt <= remote_hw_watchpoint_limit)
10764 return 1;
10765 }
10766 return -1;
10767 }
10768
10769 /* The to_stopped_by_sw_breakpoint method of target remote. */
10770
10771 bool
10772 remote_target::stopped_by_sw_breakpoint ()
10773 {
10774 struct thread_info *thread = inferior_thread ();
10775
10776 return (thread->priv != NULL
10777 && (get_remote_thread_info (thread)->stop_reason
10778 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10779 }
10780
10781 /* The to_supports_stopped_by_sw_breakpoint method of target
10782 remote. */
10783
10784 bool
10785 remote_target::supports_stopped_by_sw_breakpoint ()
10786 {
10787 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10788 }
10789
10790 /* The to_stopped_by_hw_breakpoint method of target remote. */
10791
10792 bool
10793 remote_target::stopped_by_hw_breakpoint ()
10794 {
10795 struct thread_info *thread = inferior_thread ();
10796
10797 return (thread->priv != NULL
10798 && (get_remote_thread_info (thread)->stop_reason
10799 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10800 }
10801
10802 /* The to_supports_stopped_by_hw_breakpoint method of target
10803 remote. */
10804
10805 bool
10806 remote_target::supports_stopped_by_hw_breakpoint ()
10807 {
10808 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10809 }
10810
10811 bool
10812 remote_target::stopped_by_watchpoint ()
10813 {
10814 struct thread_info *thread = inferior_thread ();
10815
10816 return (thread->priv != NULL
10817 && (get_remote_thread_info (thread)->stop_reason
10818 == TARGET_STOPPED_BY_WATCHPOINT));
10819 }
10820
10821 bool
10822 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10823 {
10824 struct thread_info *thread = inferior_thread ();
10825
10826 if (thread->priv != NULL
10827 && (get_remote_thread_info (thread)->stop_reason
10828 == TARGET_STOPPED_BY_WATCHPOINT))
10829 {
10830 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10831 return true;
10832 }
10833
10834 return false;
10835 }
10836
10837
10838 int
10839 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10840 struct bp_target_info *bp_tgt)
10841 {
10842 CORE_ADDR addr = bp_tgt->reqstd_address;
10843 struct remote_state *rs;
10844 char *p, *endbuf;
10845 char *message;
10846
10847 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10848 return -1;
10849
10850 /* Make sure the remote is pointing at the right process, if
10851 necessary. */
10852 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10853 set_general_process ();
10854
10855 rs = get_remote_state ();
10856 p = rs->buf.data ();
10857 endbuf = p + get_remote_packet_size ();
10858
10859 *(p++) = 'Z';
10860 *(p++) = '1';
10861 *(p++) = ',';
10862
10863 addr = remote_address_masked (addr);
10864 p += hexnumstr (p, (ULONGEST) addr);
10865 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10866
10867 if (supports_evaluation_of_breakpoint_conditions ())
10868 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10869
10870 if (can_run_breakpoint_commands ())
10871 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10872
10873 putpkt (rs->buf);
10874 getpkt (&rs->buf, 0);
10875
10876 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10877 {
10878 case PACKET_ERROR:
10879 if (rs->buf[1] == '.')
10880 {
10881 message = strchr (&rs->buf[2], '.');
10882 if (message)
10883 error (_("Remote failure reply: %s"), message + 1);
10884 }
10885 return -1;
10886 case PACKET_UNKNOWN:
10887 return -1;
10888 case PACKET_OK:
10889 return 0;
10890 }
10891 internal_error (__FILE__, __LINE__,
10892 _("remote_insert_hw_breakpoint: reached end of function"));
10893 }
10894
10895
10896 int
10897 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10898 struct bp_target_info *bp_tgt)
10899 {
10900 CORE_ADDR addr;
10901 struct remote_state *rs = get_remote_state ();
10902 char *p = rs->buf.data ();
10903 char *endbuf = p + get_remote_packet_size ();
10904
10905 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10906 return -1;
10907
10908 /* Make sure the remote is pointing at the right process, if
10909 necessary. */
10910 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10911 set_general_process ();
10912
10913 *(p++) = 'z';
10914 *(p++) = '1';
10915 *(p++) = ',';
10916
10917 addr = remote_address_masked (bp_tgt->placed_address);
10918 p += hexnumstr (p, (ULONGEST) addr);
10919 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10920
10921 putpkt (rs->buf);
10922 getpkt (&rs->buf, 0);
10923
10924 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10925 {
10926 case PACKET_ERROR:
10927 case PACKET_UNKNOWN:
10928 return -1;
10929 case PACKET_OK:
10930 return 0;
10931 }
10932 internal_error (__FILE__, __LINE__,
10933 _("remote_remove_hw_breakpoint: reached end of function"));
10934 }
10935
10936 /* Verify memory using the "qCRC:" request. */
10937
10938 int
10939 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10940 {
10941 struct remote_state *rs = get_remote_state ();
10942 unsigned long host_crc, target_crc;
10943 char *tmp;
10944
10945 /* It doesn't make sense to use qCRC if the remote target is
10946 connected but not running. */
10947 if (target_has_execution ()
10948 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10949 {
10950 enum packet_result result;
10951
10952 /* Make sure the remote is pointing at the right process. */
10953 set_general_process ();
10954
10955 /* FIXME: assumes lma can fit into long. */
10956 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10957 (long) lma, (long) size);
10958 putpkt (rs->buf);
10959
10960 /* Be clever; compute the host_crc before waiting for target
10961 reply. */
10962 host_crc = xcrc32 (data, size, 0xffffffff);
10963
10964 getpkt (&rs->buf, 0);
10965
10966 result = packet_ok (rs->buf,
10967 &remote_protocol_packets[PACKET_qCRC]);
10968 if (result == PACKET_ERROR)
10969 return -1;
10970 else if (result == PACKET_OK)
10971 {
10972 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10973 target_crc = target_crc * 16 + fromhex (*tmp);
10974
10975 return (host_crc == target_crc);
10976 }
10977 }
10978
10979 return simple_verify_memory (this, data, lma, size);
10980 }
10981
10982 /* compare-sections command
10983
10984 With no arguments, compares each loadable section in the exec bfd
10985 with the same memory range on the target, and reports mismatches.
10986 Useful for verifying the image on the target against the exec file. */
10987
10988 static void
10989 compare_sections_command (const char *args, int from_tty)
10990 {
10991 asection *s;
10992 const char *sectname;
10993 bfd_size_type size;
10994 bfd_vma lma;
10995 int matched = 0;
10996 int mismatched = 0;
10997 int res;
10998 int read_only = 0;
10999
11000 if (!current_program_space->exec_bfd ())
11001 error (_("command cannot be used without an exec file"));
11002
11003 if (args != NULL && strcmp (args, "-r") == 0)
11004 {
11005 read_only = 1;
11006 args = NULL;
11007 }
11008
11009 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11010 {
11011 if (!(s->flags & SEC_LOAD))
11012 continue; /* Skip non-loadable section. */
11013
11014 if (read_only && (s->flags & SEC_READONLY) == 0)
11015 continue; /* Skip writeable sections */
11016
11017 size = bfd_section_size (s);
11018 if (size == 0)
11019 continue; /* Skip zero-length section. */
11020
11021 sectname = bfd_section_name (s);
11022 if (args && strcmp (args, sectname) != 0)
11023 continue; /* Not the section selected by user. */
11024
11025 matched = 1; /* Do this section. */
11026 lma = s->lma;
11027
11028 gdb::byte_vector sectdata (size);
11029 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11030 sectdata.data (), 0, size);
11031
11032 res = target_verify_memory (sectdata.data (), lma, size);
11033
11034 if (res == -1)
11035 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11036 paddress (target_gdbarch (), lma),
11037 paddress (target_gdbarch (), lma + size));
11038
11039 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11040 paddress (target_gdbarch (), lma),
11041 paddress (target_gdbarch (), lma + size));
11042 if (res)
11043 printf_filtered ("matched.\n");
11044 else
11045 {
11046 printf_filtered ("MIS-MATCHED!\n");
11047 mismatched++;
11048 }
11049 }
11050 if (mismatched > 0)
11051 warning (_("One or more sections of the target image does not match\n\
11052 the loaded file\n"));
11053 if (args && !matched)
11054 printf_filtered (_("No loaded section named '%s'.\n"), args);
11055 }
11056
11057 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11058 into remote target. The number of bytes written to the remote
11059 target is returned, or -1 for error. */
11060
11061 target_xfer_status
11062 remote_target::remote_write_qxfer (const char *object_name,
11063 const char *annex, const gdb_byte *writebuf,
11064 ULONGEST offset, LONGEST len,
11065 ULONGEST *xfered_len,
11066 struct packet_config *packet)
11067 {
11068 int i, buf_len;
11069 ULONGEST n;
11070 struct remote_state *rs = get_remote_state ();
11071 int max_size = get_memory_write_packet_size ();
11072
11073 if (packet_config_support (packet) == PACKET_DISABLE)
11074 return TARGET_XFER_E_IO;
11075
11076 /* Insert header. */
11077 i = snprintf (rs->buf.data (), max_size,
11078 "qXfer:%s:write:%s:%s:",
11079 object_name, annex ? annex : "",
11080 phex_nz (offset, sizeof offset));
11081 max_size -= (i + 1);
11082
11083 /* Escape as much data as fits into rs->buf. */
11084 buf_len = remote_escape_output
11085 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11086
11087 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11088 || getpkt_sane (&rs->buf, 0) < 0
11089 || packet_ok (rs->buf, packet) != PACKET_OK)
11090 return TARGET_XFER_E_IO;
11091
11092 unpack_varlen_hex (rs->buf.data (), &n);
11093
11094 *xfered_len = n;
11095 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11096 }
11097
11098 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11099 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11100 number of bytes read is returned, or 0 for EOF, or -1 for error.
11101 The number of bytes read may be less than LEN without indicating an
11102 EOF. PACKET is checked and updated to indicate whether the remote
11103 target supports this object. */
11104
11105 target_xfer_status
11106 remote_target::remote_read_qxfer (const char *object_name,
11107 const char *annex,
11108 gdb_byte *readbuf, ULONGEST offset,
11109 LONGEST len,
11110 ULONGEST *xfered_len,
11111 struct packet_config *packet)
11112 {
11113 struct remote_state *rs = get_remote_state ();
11114 LONGEST i, n, packet_len;
11115
11116 if (packet_config_support (packet) == PACKET_DISABLE)
11117 return TARGET_XFER_E_IO;
11118
11119 /* Check whether we've cached an end-of-object packet that matches
11120 this request. */
11121 if (rs->finished_object)
11122 {
11123 if (strcmp (object_name, rs->finished_object) == 0
11124 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11125 && offset == rs->finished_offset)
11126 return TARGET_XFER_EOF;
11127
11128
11129 /* Otherwise, we're now reading something different. Discard
11130 the cache. */
11131 xfree (rs->finished_object);
11132 xfree (rs->finished_annex);
11133 rs->finished_object = NULL;
11134 rs->finished_annex = NULL;
11135 }
11136
11137 /* Request only enough to fit in a single packet. The actual data
11138 may not, since we don't know how much of it will need to be escaped;
11139 the target is free to respond with slightly less data. We subtract
11140 five to account for the response type and the protocol frame. */
11141 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11142 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11143 "qXfer:%s:read:%s:%s,%s",
11144 object_name, annex ? annex : "",
11145 phex_nz (offset, sizeof offset),
11146 phex_nz (n, sizeof n));
11147 i = putpkt (rs->buf);
11148 if (i < 0)
11149 return TARGET_XFER_E_IO;
11150
11151 rs->buf[0] = '\0';
11152 packet_len = getpkt_sane (&rs->buf, 0);
11153 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11154 return TARGET_XFER_E_IO;
11155
11156 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11157 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11158
11159 /* 'm' means there is (or at least might be) more data after this
11160 batch. That does not make sense unless there's at least one byte
11161 of data in this reply. */
11162 if (rs->buf[0] == 'm' && packet_len == 1)
11163 error (_("Remote qXfer reply contained no data."));
11164
11165 /* Got some data. */
11166 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11167 packet_len - 1, readbuf, n);
11168
11169 /* 'l' is an EOF marker, possibly including a final block of data,
11170 or possibly empty. If we have the final block of a non-empty
11171 object, record this fact to bypass a subsequent partial read. */
11172 if (rs->buf[0] == 'l' && offset + i > 0)
11173 {
11174 rs->finished_object = xstrdup (object_name);
11175 rs->finished_annex = xstrdup (annex ? annex : "");
11176 rs->finished_offset = offset + i;
11177 }
11178
11179 if (i == 0)
11180 return TARGET_XFER_EOF;
11181 else
11182 {
11183 *xfered_len = i;
11184 return TARGET_XFER_OK;
11185 }
11186 }
11187
11188 enum target_xfer_status
11189 remote_target::xfer_partial (enum target_object object,
11190 const char *annex, gdb_byte *readbuf,
11191 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11192 ULONGEST *xfered_len)
11193 {
11194 struct remote_state *rs;
11195 int i;
11196 char *p2;
11197 char query_type;
11198 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11199
11200 set_remote_traceframe ();
11201 set_general_thread (inferior_ptid);
11202
11203 rs = get_remote_state ();
11204
11205 /* Handle memory using the standard memory routines. */
11206 if (object == TARGET_OBJECT_MEMORY)
11207 {
11208 /* If the remote target is connected but not running, we should
11209 pass this request down to a lower stratum (e.g. the executable
11210 file). */
11211 if (!target_has_execution ())
11212 return TARGET_XFER_EOF;
11213
11214 if (writebuf != NULL)
11215 return remote_write_bytes (offset, writebuf, len, unit_size,
11216 xfered_len);
11217 else
11218 return remote_read_bytes (offset, readbuf, len, unit_size,
11219 xfered_len);
11220 }
11221
11222 /* Handle extra signal info using qxfer packets. */
11223 if (object == TARGET_OBJECT_SIGNAL_INFO)
11224 {
11225 if (readbuf)
11226 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11227 xfered_len, &remote_protocol_packets
11228 [PACKET_qXfer_siginfo_read]);
11229 else
11230 return remote_write_qxfer ("siginfo", annex,
11231 writebuf, offset, len, xfered_len,
11232 &remote_protocol_packets
11233 [PACKET_qXfer_siginfo_write]);
11234 }
11235
11236 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11237 {
11238 if (readbuf)
11239 return remote_read_qxfer ("statictrace", annex,
11240 readbuf, offset, len, xfered_len,
11241 &remote_protocol_packets
11242 [PACKET_qXfer_statictrace_read]);
11243 else
11244 return TARGET_XFER_E_IO;
11245 }
11246
11247 /* Only handle flash writes. */
11248 if (writebuf != NULL)
11249 {
11250 switch (object)
11251 {
11252 case TARGET_OBJECT_FLASH:
11253 return remote_flash_write (offset, len, xfered_len,
11254 writebuf);
11255
11256 default:
11257 return TARGET_XFER_E_IO;
11258 }
11259 }
11260
11261 /* Map pre-existing objects onto letters. DO NOT do this for new
11262 objects!!! Instead specify new query packets. */
11263 switch (object)
11264 {
11265 case TARGET_OBJECT_AVR:
11266 query_type = 'R';
11267 break;
11268
11269 case TARGET_OBJECT_AUXV:
11270 gdb_assert (annex == NULL);
11271 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11272 xfered_len,
11273 &remote_protocol_packets[PACKET_qXfer_auxv]);
11274
11275 case TARGET_OBJECT_AVAILABLE_FEATURES:
11276 return remote_read_qxfer
11277 ("features", annex, readbuf, offset, len, xfered_len,
11278 &remote_protocol_packets[PACKET_qXfer_features]);
11279
11280 case TARGET_OBJECT_LIBRARIES:
11281 return remote_read_qxfer
11282 ("libraries", annex, readbuf, offset, len, xfered_len,
11283 &remote_protocol_packets[PACKET_qXfer_libraries]);
11284
11285 case TARGET_OBJECT_LIBRARIES_SVR4:
11286 return remote_read_qxfer
11287 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11288 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11289
11290 case TARGET_OBJECT_MEMORY_MAP:
11291 gdb_assert (annex == NULL);
11292 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11293 xfered_len,
11294 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11295
11296 case TARGET_OBJECT_OSDATA:
11297 /* Should only get here if we're connected. */
11298 gdb_assert (rs->remote_desc);
11299 return remote_read_qxfer
11300 ("osdata", annex, readbuf, offset, len, xfered_len,
11301 &remote_protocol_packets[PACKET_qXfer_osdata]);
11302
11303 case TARGET_OBJECT_THREADS:
11304 gdb_assert (annex == NULL);
11305 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11306 xfered_len,
11307 &remote_protocol_packets[PACKET_qXfer_threads]);
11308
11309 case TARGET_OBJECT_TRACEFRAME_INFO:
11310 gdb_assert (annex == NULL);
11311 return remote_read_qxfer
11312 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11313 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11314
11315 case TARGET_OBJECT_FDPIC:
11316 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11317 xfered_len,
11318 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11319
11320 case TARGET_OBJECT_OPENVMS_UIB:
11321 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11322 xfered_len,
11323 &remote_protocol_packets[PACKET_qXfer_uib]);
11324
11325 case TARGET_OBJECT_BTRACE:
11326 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11327 xfered_len,
11328 &remote_protocol_packets[PACKET_qXfer_btrace]);
11329
11330 case TARGET_OBJECT_BTRACE_CONF:
11331 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11332 len, xfered_len,
11333 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11334
11335 case TARGET_OBJECT_EXEC_FILE:
11336 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11337 len, xfered_len,
11338 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11339
11340 default:
11341 return TARGET_XFER_E_IO;
11342 }
11343
11344 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11345 large enough let the caller deal with it. */
11346 if (len < get_remote_packet_size ())
11347 return TARGET_XFER_E_IO;
11348 len = get_remote_packet_size ();
11349
11350 /* Except for querying the minimum buffer size, target must be open. */
11351 if (!rs->remote_desc)
11352 error (_("remote query is only available after target open"));
11353
11354 gdb_assert (annex != NULL);
11355 gdb_assert (readbuf != NULL);
11356
11357 p2 = rs->buf.data ();
11358 *p2++ = 'q';
11359 *p2++ = query_type;
11360
11361 /* We used one buffer char for the remote protocol q command and
11362 another for the query type. As the remote protocol encapsulation
11363 uses 4 chars plus one extra in case we are debugging
11364 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11365 string. */
11366 i = 0;
11367 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11368 {
11369 /* Bad caller may have sent forbidden characters. */
11370 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11371 *p2++ = annex[i];
11372 i++;
11373 }
11374 *p2 = '\0';
11375 gdb_assert (annex[i] == '\0');
11376
11377 i = putpkt (rs->buf);
11378 if (i < 0)
11379 return TARGET_XFER_E_IO;
11380
11381 getpkt (&rs->buf, 0);
11382 strcpy ((char *) readbuf, rs->buf.data ());
11383
11384 *xfered_len = strlen ((char *) readbuf);
11385 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11386 }
11387
11388 /* Implementation of to_get_memory_xfer_limit. */
11389
11390 ULONGEST
11391 remote_target::get_memory_xfer_limit ()
11392 {
11393 return get_memory_write_packet_size ();
11394 }
11395
11396 int
11397 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11398 const gdb_byte *pattern, ULONGEST pattern_len,
11399 CORE_ADDR *found_addrp)
11400 {
11401 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11402 struct remote_state *rs = get_remote_state ();
11403 int max_size = get_memory_write_packet_size ();
11404 struct packet_config *packet =
11405 &remote_protocol_packets[PACKET_qSearch_memory];
11406 /* Number of packet bytes used to encode the pattern;
11407 this could be more than PATTERN_LEN due to escape characters. */
11408 int escaped_pattern_len;
11409 /* Amount of pattern that was encodable in the packet. */
11410 int used_pattern_len;
11411 int i;
11412 int found;
11413 ULONGEST found_addr;
11414
11415 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11416 {
11417 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11418 == len);
11419 };
11420
11421 /* Don't go to the target if we don't have to. This is done before
11422 checking packet_config_support to avoid the possibility that a
11423 success for this edge case means the facility works in
11424 general. */
11425 if (pattern_len > search_space_len)
11426 return 0;
11427 if (pattern_len == 0)
11428 {
11429 *found_addrp = start_addr;
11430 return 1;
11431 }
11432
11433 /* If we already know the packet isn't supported, fall back to the simple
11434 way of searching memory. */
11435
11436 if (packet_config_support (packet) == PACKET_DISABLE)
11437 {
11438 /* Target doesn't provided special support, fall back and use the
11439 standard support (copy memory and do the search here). */
11440 return simple_search_memory (read_memory, start_addr, search_space_len,
11441 pattern, pattern_len, found_addrp);
11442 }
11443
11444 /* Make sure the remote is pointing at the right process. */
11445 set_general_process ();
11446
11447 /* Insert header. */
11448 i = snprintf (rs->buf.data (), max_size,
11449 "qSearch:memory:%s;%s;",
11450 phex_nz (start_addr, addr_size),
11451 phex_nz (search_space_len, sizeof (search_space_len)));
11452 max_size -= (i + 1);
11453
11454 /* Escape as much data as fits into rs->buf. */
11455 escaped_pattern_len =
11456 remote_escape_output (pattern, pattern_len, 1,
11457 (gdb_byte *) rs->buf.data () + i,
11458 &used_pattern_len, max_size);
11459
11460 /* Bail if the pattern is too large. */
11461 if (used_pattern_len != pattern_len)
11462 error (_("Pattern is too large to transmit to remote target."));
11463
11464 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11465 || getpkt_sane (&rs->buf, 0) < 0
11466 || packet_ok (rs->buf, packet) != PACKET_OK)
11467 {
11468 /* The request may not have worked because the command is not
11469 supported. If so, fall back to the simple way. */
11470 if (packet_config_support (packet) == PACKET_DISABLE)
11471 {
11472 return simple_search_memory (read_memory, start_addr, search_space_len,
11473 pattern, pattern_len, found_addrp);
11474 }
11475 return -1;
11476 }
11477
11478 if (rs->buf[0] == '0')
11479 found = 0;
11480 else if (rs->buf[0] == '1')
11481 {
11482 found = 1;
11483 if (rs->buf[1] != ',')
11484 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11485 unpack_varlen_hex (&rs->buf[2], &found_addr);
11486 *found_addrp = found_addr;
11487 }
11488 else
11489 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11490
11491 return found;
11492 }
11493
11494 void
11495 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11496 {
11497 struct remote_state *rs = get_remote_state ();
11498 char *p = rs->buf.data ();
11499
11500 if (!rs->remote_desc)
11501 error (_("remote rcmd is only available after target open"));
11502
11503 /* Send a NULL command across as an empty command. */
11504 if (command == NULL)
11505 command = "";
11506
11507 /* The query prefix. */
11508 strcpy (rs->buf.data (), "qRcmd,");
11509 p = strchr (rs->buf.data (), '\0');
11510
11511 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11512 > get_remote_packet_size ())
11513 error (_("\"monitor\" command ``%s'' is too long."), command);
11514
11515 /* Encode the actual command. */
11516 bin2hex ((const gdb_byte *) command, p, strlen (command));
11517
11518 if (putpkt (rs->buf) < 0)
11519 error (_("Communication problem with target."));
11520
11521 /* get/display the response */
11522 while (1)
11523 {
11524 char *buf;
11525
11526 /* XXX - see also remote_get_noisy_reply(). */
11527 QUIT; /* Allow user to bail out with ^C. */
11528 rs->buf[0] = '\0';
11529 if (getpkt_sane (&rs->buf, 0) == -1)
11530 {
11531 /* Timeout. Continue to (try to) read responses.
11532 This is better than stopping with an error, assuming the stub
11533 is still executing the (long) monitor command.
11534 If needed, the user can interrupt gdb using C-c, obtaining
11535 an effect similar to stop on timeout. */
11536 continue;
11537 }
11538 buf = rs->buf.data ();
11539 if (buf[0] == '\0')
11540 error (_("Target does not support this command."));
11541 if (buf[0] == 'O' && buf[1] != 'K')
11542 {
11543 remote_console_output (buf + 1); /* 'O' message from stub. */
11544 continue;
11545 }
11546 if (strcmp (buf, "OK") == 0)
11547 break;
11548 if (strlen (buf) == 3 && buf[0] == 'E'
11549 && isdigit (buf[1]) && isdigit (buf[2]))
11550 {
11551 error (_("Protocol error with Rcmd"));
11552 }
11553 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11554 {
11555 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11556
11557 fputc_unfiltered (c, outbuf);
11558 }
11559 break;
11560 }
11561 }
11562
11563 std::vector<mem_region>
11564 remote_target::memory_map ()
11565 {
11566 std::vector<mem_region> result;
11567 gdb::optional<gdb::char_vector> text
11568 = target_read_stralloc (current_inferior ()->top_target (),
11569 TARGET_OBJECT_MEMORY_MAP, NULL);
11570
11571 if (text)
11572 result = parse_memory_map (text->data ());
11573
11574 return result;
11575 }
11576
11577 static void
11578 packet_command (const char *args, int from_tty)
11579 {
11580 remote_target *remote = get_current_remote_target ();
11581
11582 if (remote == nullptr)
11583 error (_("command can only be used with remote target"));
11584
11585 remote->packet_command (args, from_tty);
11586 }
11587
11588 void
11589 remote_target::packet_command (const char *args, int from_tty)
11590 {
11591 if (!args)
11592 error (_("remote-packet command requires packet text as argument"));
11593
11594 puts_filtered ("sending: ");
11595 print_packet (args);
11596 puts_filtered ("\n");
11597 putpkt (args);
11598
11599 remote_state *rs = get_remote_state ();
11600
11601 getpkt (&rs->buf, 0);
11602 puts_filtered ("received: ");
11603 print_packet (rs->buf.data ());
11604 puts_filtered ("\n");
11605 }
11606
11607 #if 0
11608 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11609
11610 static void display_thread_info (struct gdb_ext_thread_info *info);
11611
11612 static void threadset_test_cmd (char *cmd, int tty);
11613
11614 static void threadalive_test (char *cmd, int tty);
11615
11616 static void threadlist_test_cmd (char *cmd, int tty);
11617
11618 int get_and_display_threadinfo (threadref *ref);
11619
11620 static void threadinfo_test_cmd (char *cmd, int tty);
11621
11622 static int thread_display_step (threadref *ref, void *context);
11623
11624 static void threadlist_update_test_cmd (char *cmd, int tty);
11625
11626 static void init_remote_threadtests (void);
11627
11628 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11629
11630 static void
11631 threadset_test_cmd (const char *cmd, int tty)
11632 {
11633 int sample_thread = SAMPLE_THREAD;
11634
11635 printf_filtered (_("Remote threadset test\n"));
11636 set_general_thread (sample_thread);
11637 }
11638
11639
11640 static void
11641 threadalive_test (const char *cmd, int tty)
11642 {
11643 int sample_thread = SAMPLE_THREAD;
11644 int pid = inferior_ptid.pid ();
11645 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11646
11647 if (remote_thread_alive (ptid))
11648 printf_filtered ("PASS: Thread alive test\n");
11649 else
11650 printf_filtered ("FAIL: Thread alive test\n");
11651 }
11652
11653 void output_threadid (char *title, threadref *ref);
11654
11655 void
11656 output_threadid (char *title, threadref *ref)
11657 {
11658 char hexid[20];
11659
11660 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11661 hexid[16] = 0;
11662 printf_filtered ("%s %s\n", title, (&hexid[0]));
11663 }
11664
11665 static void
11666 threadlist_test_cmd (const char *cmd, int tty)
11667 {
11668 int startflag = 1;
11669 threadref nextthread;
11670 int done, result_count;
11671 threadref threadlist[3];
11672
11673 printf_filtered ("Remote Threadlist test\n");
11674 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11675 &result_count, &threadlist[0]))
11676 printf_filtered ("FAIL: threadlist test\n");
11677 else
11678 {
11679 threadref *scan = threadlist;
11680 threadref *limit = scan + result_count;
11681
11682 while (scan < limit)
11683 output_threadid (" thread ", scan++);
11684 }
11685 }
11686
11687 void
11688 display_thread_info (struct gdb_ext_thread_info *info)
11689 {
11690 output_threadid ("Threadid: ", &info->threadid);
11691 printf_filtered ("Name: %s\n ", info->shortname);
11692 printf_filtered ("State: %s\n", info->display);
11693 printf_filtered ("other: %s\n\n", info->more_display);
11694 }
11695
11696 int
11697 get_and_display_threadinfo (threadref *ref)
11698 {
11699 int result;
11700 int set;
11701 struct gdb_ext_thread_info threadinfo;
11702
11703 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11704 | TAG_MOREDISPLAY | TAG_DISPLAY;
11705 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11706 display_thread_info (&threadinfo);
11707 return result;
11708 }
11709
11710 static void
11711 threadinfo_test_cmd (const char *cmd, int tty)
11712 {
11713 int athread = SAMPLE_THREAD;
11714 threadref thread;
11715 int set;
11716
11717 int_to_threadref (&thread, athread);
11718 printf_filtered ("Remote Threadinfo test\n");
11719 if (!get_and_display_threadinfo (&thread))
11720 printf_filtered ("FAIL cannot get thread info\n");
11721 }
11722
11723 static int
11724 thread_display_step (threadref *ref, void *context)
11725 {
11726 /* output_threadid(" threadstep ",ref); *//* simple test */
11727 return get_and_display_threadinfo (ref);
11728 }
11729
11730 static void
11731 threadlist_update_test_cmd (const char *cmd, int tty)
11732 {
11733 printf_filtered ("Remote Threadlist update test\n");
11734 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11735 }
11736
11737 static void
11738 init_remote_threadtests (void)
11739 {
11740 add_com ("tlist", class_obscure, threadlist_test_cmd,
11741 _("Fetch and print the remote list of "
11742 "thread identifiers, one pkt only."));
11743 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11744 _("Fetch and display info about one thread."));
11745 add_com ("tset", class_obscure, threadset_test_cmd,
11746 _("Test setting to a different thread."));
11747 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11748 _("Iterate through updating all remote thread info."));
11749 add_com ("talive", class_obscure, threadalive_test,
11750 _("Remote thread alive test."));
11751 }
11752
11753 #endif /* 0 */
11754
11755 /* Convert a thread ID to a string. */
11756
11757 std::string
11758 remote_target::pid_to_str (ptid_t ptid)
11759 {
11760 struct remote_state *rs = get_remote_state ();
11761
11762 if (ptid == null_ptid)
11763 return normal_pid_to_str (ptid);
11764 else if (ptid.is_pid ())
11765 {
11766 /* Printing an inferior target id. */
11767
11768 /* When multi-process extensions are off, there's no way in the
11769 remote protocol to know the remote process id, if there's any
11770 at all. There's one exception --- when we're connected with
11771 target extended-remote, and we manually attached to a process
11772 with "attach PID". We don't record anywhere a flag that
11773 allows us to distinguish that case from the case of
11774 connecting with extended-remote and the stub already being
11775 attached to a process, and reporting yes to qAttached, hence
11776 no smart special casing here. */
11777 if (!remote_multi_process_p (rs))
11778 return "Remote target";
11779
11780 return normal_pid_to_str (ptid);
11781 }
11782 else
11783 {
11784 if (magic_null_ptid == ptid)
11785 return "Thread <main>";
11786 else if (remote_multi_process_p (rs))
11787 if (ptid.lwp () == 0)
11788 return normal_pid_to_str (ptid);
11789 else
11790 return string_printf ("Thread %d.%ld",
11791 ptid.pid (), ptid.lwp ());
11792 else
11793 return string_printf ("Thread %ld", ptid.lwp ());
11794 }
11795 }
11796
11797 /* Get the address of the thread local variable in OBJFILE which is
11798 stored at OFFSET within the thread local storage for thread PTID. */
11799
11800 CORE_ADDR
11801 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11802 CORE_ADDR offset)
11803 {
11804 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11805 {
11806 struct remote_state *rs = get_remote_state ();
11807 char *p = rs->buf.data ();
11808 char *endp = p + get_remote_packet_size ();
11809 enum packet_result result;
11810
11811 strcpy (p, "qGetTLSAddr:");
11812 p += strlen (p);
11813 p = write_ptid (p, endp, ptid);
11814 *p++ = ',';
11815 p += hexnumstr (p, offset);
11816 *p++ = ',';
11817 p += hexnumstr (p, lm);
11818 *p++ = '\0';
11819
11820 putpkt (rs->buf);
11821 getpkt (&rs->buf, 0);
11822 result = packet_ok (rs->buf,
11823 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11824 if (result == PACKET_OK)
11825 {
11826 ULONGEST addr;
11827
11828 unpack_varlen_hex (rs->buf.data (), &addr);
11829 return addr;
11830 }
11831 else if (result == PACKET_UNKNOWN)
11832 throw_error (TLS_GENERIC_ERROR,
11833 _("Remote target doesn't support qGetTLSAddr packet"));
11834 else
11835 throw_error (TLS_GENERIC_ERROR,
11836 _("Remote target failed to process qGetTLSAddr request"));
11837 }
11838 else
11839 throw_error (TLS_GENERIC_ERROR,
11840 _("TLS not supported or disabled on this target"));
11841 /* Not reached. */
11842 return 0;
11843 }
11844
11845 /* Provide thread local base, i.e. Thread Information Block address.
11846 Returns 1 if ptid is found and thread_local_base is non zero. */
11847
11848 bool
11849 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11850 {
11851 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11852 {
11853 struct remote_state *rs = get_remote_state ();
11854 char *p = rs->buf.data ();
11855 char *endp = p + get_remote_packet_size ();
11856 enum packet_result result;
11857
11858 strcpy (p, "qGetTIBAddr:");
11859 p += strlen (p);
11860 p = write_ptid (p, endp, ptid);
11861 *p++ = '\0';
11862
11863 putpkt (rs->buf);
11864 getpkt (&rs->buf, 0);
11865 result = packet_ok (rs->buf,
11866 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11867 if (result == PACKET_OK)
11868 {
11869 ULONGEST val;
11870 unpack_varlen_hex (rs->buf.data (), &val);
11871 if (addr)
11872 *addr = (CORE_ADDR) val;
11873 return true;
11874 }
11875 else if (result == PACKET_UNKNOWN)
11876 error (_("Remote target doesn't support qGetTIBAddr packet"));
11877 else
11878 error (_("Remote target failed to process qGetTIBAddr request"));
11879 }
11880 else
11881 error (_("qGetTIBAddr not supported or disabled on this target"));
11882 /* Not reached. */
11883 return false;
11884 }
11885
11886 /* Support for inferring a target description based on the current
11887 architecture and the size of a 'g' packet. While the 'g' packet
11888 can have any size (since optional registers can be left off the
11889 end), some sizes are easily recognizable given knowledge of the
11890 approximate architecture. */
11891
11892 struct remote_g_packet_guess
11893 {
11894 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11895 : bytes (bytes_),
11896 tdesc (tdesc_)
11897 {
11898 }
11899
11900 int bytes;
11901 const struct target_desc *tdesc;
11902 };
11903
11904 struct remote_g_packet_data : public allocate_on_obstack
11905 {
11906 std::vector<remote_g_packet_guess> guesses;
11907 };
11908
11909 static struct gdbarch_data *remote_g_packet_data_handle;
11910
11911 static void *
11912 remote_g_packet_data_init (struct obstack *obstack)
11913 {
11914 return new (obstack) remote_g_packet_data;
11915 }
11916
11917 void
11918 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11919 const struct target_desc *tdesc)
11920 {
11921 struct remote_g_packet_data *data
11922 = ((struct remote_g_packet_data *)
11923 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11924
11925 gdb_assert (tdesc != NULL);
11926
11927 for (const remote_g_packet_guess &guess : data->guesses)
11928 if (guess.bytes == bytes)
11929 internal_error (__FILE__, __LINE__,
11930 _("Duplicate g packet description added for size %d"),
11931 bytes);
11932
11933 data->guesses.emplace_back (bytes, tdesc);
11934 }
11935
11936 /* Return true if remote_read_description would do anything on this target
11937 and architecture, false otherwise. */
11938
11939 static bool
11940 remote_read_description_p (struct target_ops *target)
11941 {
11942 struct remote_g_packet_data *data
11943 = ((struct remote_g_packet_data *)
11944 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11945
11946 return !data->guesses.empty ();
11947 }
11948
11949 const struct target_desc *
11950 remote_target::read_description ()
11951 {
11952 struct remote_g_packet_data *data
11953 = ((struct remote_g_packet_data *)
11954 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11955
11956 /* Do not try this during initial connection, when we do not know
11957 whether there is a running but stopped thread. */
11958 if (!target_has_execution () || inferior_ptid == null_ptid)
11959 return beneath ()->read_description ();
11960
11961 if (!data->guesses.empty ())
11962 {
11963 int bytes = send_g_packet ();
11964
11965 for (const remote_g_packet_guess &guess : data->guesses)
11966 if (guess.bytes == bytes)
11967 return guess.tdesc;
11968
11969 /* We discard the g packet. A minor optimization would be to
11970 hold on to it, and fill the register cache once we have selected
11971 an architecture, but it's too tricky to do safely. */
11972 }
11973
11974 return beneath ()->read_description ();
11975 }
11976
11977 /* Remote file transfer support. This is host-initiated I/O, not
11978 target-initiated; for target-initiated, see remote-fileio.c. */
11979
11980 /* If *LEFT is at least the length of STRING, copy STRING to
11981 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11982 decrease *LEFT. Otherwise raise an error. */
11983
11984 static void
11985 remote_buffer_add_string (char **buffer, int *left, const char *string)
11986 {
11987 int len = strlen (string);
11988
11989 if (len > *left)
11990 error (_("Packet too long for target."));
11991
11992 memcpy (*buffer, string, len);
11993 *buffer += len;
11994 *left -= len;
11995
11996 /* NUL-terminate the buffer as a convenience, if there is
11997 room. */
11998 if (*left)
11999 **buffer = '\0';
12000 }
12001
12002 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12003 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12004 decrease *LEFT. Otherwise raise an error. */
12005
12006 static void
12007 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12008 int len)
12009 {
12010 if (2 * len > *left)
12011 error (_("Packet too long for target."));
12012
12013 bin2hex (bytes, *buffer, len);
12014 *buffer += 2 * len;
12015 *left -= 2 * len;
12016
12017 /* NUL-terminate the buffer as a convenience, if there is
12018 room. */
12019 if (*left)
12020 **buffer = '\0';
12021 }
12022
12023 /* If *LEFT is large enough, convert VALUE to hex and add it to
12024 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12025 decrease *LEFT. Otherwise raise an error. */
12026
12027 static void
12028 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12029 {
12030 int len = hexnumlen (value);
12031
12032 if (len > *left)
12033 error (_("Packet too long for target."));
12034
12035 hexnumstr (*buffer, value);
12036 *buffer += len;
12037 *left -= len;
12038
12039 /* NUL-terminate the buffer as a convenience, if there is
12040 room. */
12041 if (*left)
12042 **buffer = '\0';
12043 }
12044
12045 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12046 value, *REMOTE_ERRNO to the remote error number or zero if none
12047 was included, and *ATTACHMENT to point to the start of the annex
12048 if any. The length of the packet isn't needed here; there may
12049 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12050
12051 Return 0 if the packet could be parsed, -1 if it could not. If
12052 -1 is returned, the other variables may not be initialized. */
12053
12054 static int
12055 remote_hostio_parse_result (const char *buffer, int *retcode,
12056 int *remote_errno, const char **attachment)
12057 {
12058 char *p, *p2;
12059
12060 *remote_errno = 0;
12061 *attachment = NULL;
12062
12063 if (buffer[0] != 'F')
12064 return -1;
12065
12066 errno = 0;
12067 *retcode = strtol (&buffer[1], &p, 16);
12068 if (errno != 0 || p == &buffer[1])
12069 return -1;
12070
12071 /* Check for ",errno". */
12072 if (*p == ',')
12073 {
12074 errno = 0;
12075 *remote_errno = strtol (p + 1, &p2, 16);
12076 if (errno != 0 || p + 1 == p2)
12077 return -1;
12078 p = p2;
12079 }
12080
12081 /* Check for ";attachment". If there is no attachment, the
12082 packet should end here. */
12083 if (*p == ';')
12084 {
12085 *attachment = p + 1;
12086 return 0;
12087 }
12088 else if (*p == '\0')
12089 return 0;
12090 else
12091 return -1;
12092 }
12093
12094 /* Send a prepared I/O packet to the target and read its response.
12095 The prepared packet is in the global RS->BUF before this function
12096 is called, and the answer is there when we return.
12097
12098 COMMAND_BYTES is the length of the request to send, which may include
12099 binary data. WHICH_PACKET is the packet configuration to check
12100 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12101 is set to the error number and -1 is returned. Otherwise the value
12102 returned by the function is returned.
12103
12104 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12105 attachment is expected; an error will be reported if there's a
12106 mismatch. If one is found, *ATTACHMENT will be set to point into
12107 the packet buffer and *ATTACHMENT_LEN will be set to the
12108 attachment's length. */
12109
12110 int
12111 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12112 int *remote_errno, const char **attachment,
12113 int *attachment_len)
12114 {
12115 struct remote_state *rs = get_remote_state ();
12116 int ret, bytes_read;
12117 const char *attachment_tmp;
12118
12119 if (packet_support (which_packet) == PACKET_DISABLE)
12120 {
12121 *remote_errno = FILEIO_ENOSYS;
12122 return -1;
12123 }
12124
12125 putpkt_binary (rs->buf.data (), command_bytes);
12126 bytes_read = getpkt_sane (&rs->buf, 0);
12127
12128 /* If it timed out, something is wrong. Don't try to parse the
12129 buffer. */
12130 if (bytes_read < 0)
12131 {
12132 *remote_errno = FILEIO_EINVAL;
12133 return -1;
12134 }
12135
12136 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12137 {
12138 case PACKET_ERROR:
12139 *remote_errno = FILEIO_EINVAL;
12140 return -1;
12141 case PACKET_UNKNOWN:
12142 *remote_errno = FILEIO_ENOSYS;
12143 return -1;
12144 case PACKET_OK:
12145 break;
12146 }
12147
12148 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12149 &attachment_tmp))
12150 {
12151 *remote_errno = FILEIO_EINVAL;
12152 return -1;
12153 }
12154
12155 /* Make sure we saw an attachment if and only if we expected one. */
12156 if ((attachment_tmp == NULL && attachment != NULL)
12157 || (attachment_tmp != NULL && attachment == NULL))
12158 {
12159 *remote_errno = FILEIO_EINVAL;
12160 return -1;
12161 }
12162
12163 /* If an attachment was found, it must point into the packet buffer;
12164 work out how many bytes there were. */
12165 if (attachment_tmp != NULL)
12166 {
12167 *attachment = attachment_tmp;
12168 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12169 }
12170
12171 return ret;
12172 }
12173
12174 /* See declaration.h. */
12175
12176 void
12177 readahead_cache::invalidate ()
12178 {
12179 this->fd = -1;
12180 }
12181
12182 /* See declaration.h. */
12183
12184 void
12185 readahead_cache::invalidate_fd (int fd)
12186 {
12187 if (this->fd == fd)
12188 this->fd = -1;
12189 }
12190
12191 /* Set the filesystem remote_hostio functions that take FILENAME
12192 arguments will use. Return 0 on success, or -1 if an error
12193 occurs (and set *REMOTE_ERRNO). */
12194
12195 int
12196 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12197 int *remote_errno)
12198 {
12199 struct remote_state *rs = get_remote_state ();
12200 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12201 char *p = rs->buf.data ();
12202 int left = get_remote_packet_size () - 1;
12203 char arg[9];
12204 int ret;
12205
12206 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12207 return 0;
12208
12209 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12210 return 0;
12211
12212 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12213
12214 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12215 remote_buffer_add_string (&p, &left, arg);
12216
12217 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12218 remote_errno, NULL, NULL);
12219
12220 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12221 return 0;
12222
12223 if (ret == 0)
12224 rs->fs_pid = required_pid;
12225
12226 return ret;
12227 }
12228
12229 /* Implementation of to_fileio_open. */
12230
12231 int
12232 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12233 int flags, int mode, int warn_if_slow,
12234 int *remote_errno)
12235 {
12236 struct remote_state *rs = get_remote_state ();
12237 char *p = rs->buf.data ();
12238 int left = get_remote_packet_size () - 1;
12239
12240 if (warn_if_slow)
12241 {
12242 static int warning_issued = 0;
12243
12244 printf_unfiltered (_("Reading %s from remote target...\n"),
12245 filename);
12246
12247 if (!warning_issued)
12248 {
12249 warning (_("File transfers from remote targets can be slow."
12250 " Use \"set sysroot\" to access files locally"
12251 " instead."));
12252 warning_issued = 1;
12253 }
12254 }
12255
12256 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12257 return -1;
12258
12259 remote_buffer_add_string (&p, &left, "vFile:open:");
12260
12261 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12262 strlen (filename));
12263 remote_buffer_add_string (&p, &left, ",");
12264
12265 remote_buffer_add_int (&p, &left, flags);
12266 remote_buffer_add_string (&p, &left, ",");
12267
12268 remote_buffer_add_int (&p, &left, mode);
12269
12270 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12271 remote_errno, NULL, NULL);
12272 }
12273
12274 int
12275 remote_target::fileio_open (struct inferior *inf, const char *filename,
12276 int flags, int mode, int warn_if_slow,
12277 int *remote_errno)
12278 {
12279 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12280 remote_errno);
12281 }
12282
12283 /* Implementation of to_fileio_pwrite. */
12284
12285 int
12286 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12287 ULONGEST offset, int *remote_errno)
12288 {
12289 struct remote_state *rs = get_remote_state ();
12290 char *p = rs->buf.data ();
12291 int left = get_remote_packet_size ();
12292 int out_len;
12293
12294 rs->readahead_cache.invalidate_fd (fd);
12295
12296 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12297
12298 remote_buffer_add_int (&p, &left, fd);
12299 remote_buffer_add_string (&p, &left, ",");
12300
12301 remote_buffer_add_int (&p, &left, offset);
12302 remote_buffer_add_string (&p, &left, ",");
12303
12304 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12305 (get_remote_packet_size ()
12306 - (p - rs->buf.data ())));
12307
12308 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12309 remote_errno, NULL, NULL);
12310 }
12311
12312 int
12313 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12314 ULONGEST offset, int *remote_errno)
12315 {
12316 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12317 }
12318
12319 /* Helper for the implementation of to_fileio_pread. Read the file
12320 from the remote side with vFile:pread. */
12321
12322 int
12323 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12324 ULONGEST offset, int *remote_errno)
12325 {
12326 struct remote_state *rs = get_remote_state ();
12327 char *p = rs->buf.data ();
12328 const char *attachment;
12329 int left = get_remote_packet_size ();
12330 int ret, attachment_len;
12331 int read_len;
12332
12333 remote_buffer_add_string (&p, &left, "vFile:pread:");
12334
12335 remote_buffer_add_int (&p, &left, fd);
12336 remote_buffer_add_string (&p, &left, ",");
12337
12338 remote_buffer_add_int (&p, &left, len);
12339 remote_buffer_add_string (&p, &left, ",");
12340
12341 remote_buffer_add_int (&p, &left, offset);
12342
12343 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12344 remote_errno, &attachment,
12345 &attachment_len);
12346
12347 if (ret < 0)
12348 return ret;
12349
12350 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12351 read_buf, len);
12352 if (read_len != ret)
12353 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12354
12355 return ret;
12356 }
12357
12358 /* See declaration.h. */
12359
12360 int
12361 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12362 ULONGEST offset)
12363 {
12364 if (this->fd == fd
12365 && this->offset <= offset
12366 && offset < this->offset + this->bufsize)
12367 {
12368 ULONGEST max = this->offset + this->bufsize;
12369
12370 if (offset + len > max)
12371 len = max - offset;
12372
12373 memcpy (read_buf, this->buf + offset - this->offset, len);
12374 return len;
12375 }
12376
12377 return 0;
12378 }
12379
12380 /* Implementation of to_fileio_pread. */
12381
12382 int
12383 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12384 ULONGEST offset, int *remote_errno)
12385 {
12386 int ret;
12387 struct remote_state *rs = get_remote_state ();
12388 readahead_cache *cache = &rs->readahead_cache;
12389
12390 ret = cache->pread (fd, read_buf, len, offset);
12391 if (ret > 0)
12392 {
12393 cache->hit_count++;
12394
12395 remote_debug_printf ("readahead cache hit %s",
12396 pulongest (cache->hit_count));
12397 return ret;
12398 }
12399
12400 cache->miss_count++;
12401
12402 remote_debug_printf ("readahead cache miss %s",
12403 pulongest (cache->miss_count));
12404
12405 cache->fd = fd;
12406 cache->offset = offset;
12407 cache->bufsize = get_remote_packet_size ();
12408 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12409
12410 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12411 cache->offset, remote_errno);
12412 if (ret <= 0)
12413 {
12414 cache->invalidate_fd (fd);
12415 return ret;
12416 }
12417
12418 cache->bufsize = ret;
12419 return cache->pread (fd, read_buf, len, offset);
12420 }
12421
12422 int
12423 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12424 ULONGEST offset, int *remote_errno)
12425 {
12426 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12427 }
12428
12429 /* Implementation of to_fileio_close. */
12430
12431 int
12432 remote_target::remote_hostio_close (int fd, int *remote_errno)
12433 {
12434 struct remote_state *rs = get_remote_state ();
12435 char *p = rs->buf.data ();
12436 int left = get_remote_packet_size () - 1;
12437
12438 rs->readahead_cache.invalidate_fd (fd);
12439
12440 remote_buffer_add_string (&p, &left, "vFile:close:");
12441
12442 remote_buffer_add_int (&p, &left, fd);
12443
12444 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12445 remote_errno, NULL, NULL);
12446 }
12447
12448 int
12449 remote_target::fileio_close (int fd, int *remote_errno)
12450 {
12451 return remote_hostio_close (fd, remote_errno);
12452 }
12453
12454 /* Implementation of to_fileio_unlink. */
12455
12456 int
12457 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12458 int *remote_errno)
12459 {
12460 struct remote_state *rs = get_remote_state ();
12461 char *p = rs->buf.data ();
12462 int left = get_remote_packet_size () - 1;
12463
12464 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12465 return -1;
12466
12467 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12468
12469 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12470 strlen (filename));
12471
12472 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12473 remote_errno, NULL, NULL);
12474 }
12475
12476 int
12477 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12478 int *remote_errno)
12479 {
12480 return remote_hostio_unlink (inf, filename, remote_errno);
12481 }
12482
12483 /* Implementation of to_fileio_readlink. */
12484
12485 gdb::optional<std::string>
12486 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12487 int *remote_errno)
12488 {
12489 struct remote_state *rs = get_remote_state ();
12490 char *p = rs->buf.data ();
12491 const char *attachment;
12492 int left = get_remote_packet_size ();
12493 int len, attachment_len;
12494 int read_len;
12495
12496 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12497 return {};
12498
12499 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12500
12501 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12502 strlen (filename));
12503
12504 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12505 remote_errno, &attachment,
12506 &attachment_len);
12507
12508 if (len < 0)
12509 return {};
12510
12511 std::string ret (len, '\0');
12512
12513 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12514 (gdb_byte *) &ret[0], len);
12515 if (read_len != len)
12516 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12517
12518 return ret;
12519 }
12520
12521 /* Implementation of to_fileio_fstat. */
12522
12523 int
12524 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12525 {
12526 struct remote_state *rs = get_remote_state ();
12527 char *p = rs->buf.data ();
12528 int left = get_remote_packet_size ();
12529 int attachment_len, ret;
12530 const char *attachment;
12531 struct fio_stat fst;
12532 int read_len;
12533
12534 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12535
12536 remote_buffer_add_int (&p, &left, fd);
12537
12538 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12539 remote_errno, &attachment,
12540 &attachment_len);
12541 if (ret < 0)
12542 {
12543 if (*remote_errno != FILEIO_ENOSYS)
12544 return ret;
12545
12546 /* Strictly we should return -1, ENOSYS here, but when
12547 "set sysroot remote:" was implemented in August 2008
12548 BFD's need for a stat function was sidestepped with
12549 this hack. This was not remedied until March 2015
12550 so we retain the previous behavior to avoid breaking
12551 compatibility.
12552
12553 Note that the memset is a March 2015 addition; older
12554 GDBs set st_size *and nothing else* so the structure
12555 would have garbage in all other fields. This might
12556 break something but retaining the previous behavior
12557 here would be just too wrong. */
12558
12559 memset (st, 0, sizeof (struct stat));
12560 st->st_size = INT_MAX;
12561 return 0;
12562 }
12563
12564 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12565 (gdb_byte *) &fst, sizeof (fst));
12566
12567 if (read_len != ret)
12568 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12569
12570 if (read_len != sizeof (fst))
12571 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12572 read_len, (int) sizeof (fst));
12573
12574 remote_fileio_to_host_stat (&fst, st);
12575
12576 return 0;
12577 }
12578
12579 /* Implementation of to_filesystem_is_local. */
12580
12581 bool
12582 remote_target::filesystem_is_local ()
12583 {
12584 /* Valgrind GDB presents itself as a remote target but works
12585 on the local filesystem: it does not implement remote get
12586 and users are not expected to set a sysroot. To handle
12587 this case we treat the remote filesystem as local if the
12588 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12589 does not support vFile:open. */
12590 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12591 {
12592 enum packet_support ps = packet_support (PACKET_vFile_open);
12593
12594 if (ps == PACKET_SUPPORT_UNKNOWN)
12595 {
12596 int fd, remote_errno;
12597
12598 /* Try opening a file to probe support. The supplied
12599 filename is irrelevant, we only care about whether
12600 the stub recognizes the packet or not. */
12601 fd = remote_hostio_open (NULL, "just probing",
12602 FILEIO_O_RDONLY, 0700, 0,
12603 &remote_errno);
12604
12605 if (fd >= 0)
12606 remote_hostio_close (fd, &remote_errno);
12607
12608 ps = packet_support (PACKET_vFile_open);
12609 }
12610
12611 if (ps == PACKET_DISABLE)
12612 {
12613 static int warning_issued = 0;
12614
12615 if (!warning_issued)
12616 {
12617 warning (_("remote target does not support file"
12618 " transfer, attempting to access files"
12619 " from local filesystem."));
12620 warning_issued = 1;
12621 }
12622
12623 return true;
12624 }
12625 }
12626
12627 return false;
12628 }
12629
12630 static int
12631 remote_fileio_errno_to_host (int errnum)
12632 {
12633 switch (errnum)
12634 {
12635 case FILEIO_EPERM:
12636 return EPERM;
12637 case FILEIO_ENOENT:
12638 return ENOENT;
12639 case FILEIO_EINTR:
12640 return EINTR;
12641 case FILEIO_EIO:
12642 return EIO;
12643 case FILEIO_EBADF:
12644 return EBADF;
12645 case FILEIO_EACCES:
12646 return EACCES;
12647 case FILEIO_EFAULT:
12648 return EFAULT;
12649 case FILEIO_EBUSY:
12650 return EBUSY;
12651 case FILEIO_EEXIST:
12652 return EEXIST;
12653 case FILEIO_ENODEV:
12654 return ENODEV;
12655 case FILEIO_ENOTDIR:
12656 return ENOTDIR;
12657 case FILEIO_EISDIR:
12658 return EISDIR;
12659 case FILEIO_EINVAL:
12660 return EINVAL;
12661 case FILEIO_ENFILE:
12662 return ENFILE;
12663 case FILEIO_EMFILE:
12664 return EMFILE;
12665 case FILEIO_EFBIG:
12666 return EFBIG;
12667 case FILEIO_ENOSPC:
12668 return ENOSPC;
12669 case FILEIO_ESPIPE:
12670 return ESPIPE;
12671 case FILEIO_EROFS:
12672 return EROFS;
12673 case FILEIO_ENOSYS:
12674 return ENOSYS;
12675 case FILEIO_ENAMETOOLONG:
12676 return ENAMETOOLONG;
12677 }
12678 return -1;
12679 }
12680
12681 static char *
12682 remote_hostio_error (int errnum)
12683 {
12684 int host_error = remote_fileio_errno_to_host (errnum);
12685
12686 if (host_error == -1)
12687 error (_("Unknown remote I/O error %d"), errnum);
12688 else
12689 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12690 }
12691
12692 /* A RAII wrapper around a remote file descriptor. */
12693
12694 class scoped_remote_fd
12695 {
12696 public:
12697 scoped_remote_fd (remote_target *remote, int fd)
12698 : m_remote (remote), m_fd (fd)
12699 {
12700 }
12701
12702 ~scoped_remote_fd ()
12703 {
12704 if (m_fd != -1)
12705 {
12706 try
12707 {
12708 int remote_errno;
12709 m_remote->remote_hostio_close (m_fd, &remote_errno);
12710 }
12711 catch (...)
12712 {
12713 /* Swallow exception before it escapes the dtor. If
12714 something goes wrong, likely the connection is gone,
12715 and there's nothing else that can be done. */
12716 }
12717 }
12718 }
12719
12720 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12721
12722 /* Release ownership of the file descriptor, and return it. */
12723 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12724 {
12725 int fd = m_fd;
12726 m_fd = -1;
12727 return fd;
12728 }
12729
12730 /* Return the owned file descriptor. */
12731 int get () const noexcept
12732 {
12733 return m_fd;
12734 }
12735
12736 private:
12737 /* The remote target. */
12738 remote_target *m_remote;
12739
12740 /* The owned remote I/O file descriptor. */
12741 int m_fd;
12742 };
12743
12744 void
12745 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12746 {
12747 remote_target *remote = get_current_remote_target ();
12748
12749 if (remote == nullptr)
12750 error (_("command can only be used with remote target"));
12751
12752 remote->remote_file_put (local_file, remote_file, from_tty);
12753 }
12754
12755 void
12756 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12757 int from_tty)
12758 {
12759 int retcode, remote_errno, bytes, io_size;
12760 int bytes_in_buffer;
12761 int saw_eof;
12762 ULONGEST offset;
12763
12764 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12765 if (file == NULL)
12766 perror_with_name (local_file);
12767
12768 scoped_remote_fd fd
12769 (this, remote_hostio_open (NULL,
12770 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12771 | FILEIO_O_TRUNC),
12772 0700, 0, &remote_errno));
12773 if (fd.get () == -1)
12774 remote_hostio_error (remote_errno);
12775
12776 /* Send up to this many bytes at once. They won't all fit in the
12777 remote packet limit, so we'll transfer slightly fewer. */
12778 io_size = get_remote_packet_size ();
12779 gdb::byte_vector buffer (io_size);
12780
12781 bytes_in_buffer = 0;
12782 saw_eof = 0;
12783 offset = 0;
12784 while (bytes_in_buffer || !saw_eof)
12785 {
12786 if (!saw_eof)
12787 {
12788 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12789 io_size - bytes_in_buffer,
12790 file.get ());
12791 if (bytes == 0)
12792 {
12793 if (ferror (file.get ()))
12794 error (_("Error reading %s."), local_file);
12795 else
12796 {
12797 /* EOF. Unless there is something still in the
12798 buffer from the last iteration, we are done. */
12799 saw_eof = 1;
12800 if (bytes_in_buffer == 0)
12801 break;
12802 }
12803 }
12804 }
12805 else
12806 bytes = 0;
12807
12808 bytes += bytes_in_buffer;
12809 bytes_in_buffer = 0;
12810
12811 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12812 offset, &remote_errno);
12813
12814 if (retcode < 0)
12815 remote_hostio_error (remote_errno);
12816 else if (retcode == 0)
12817 error (_("Remote write of %d bytes returned 0!"), bytes);
12818 else if (retcode < bytes)
12819 {
12820 /* Short write. Save the rest of the read data for the next
12821 write. */
12822 bytes_in_buffer = bytes - retcode;
12823 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12824 }
12825
12826 offset += retcode;
12827 }
12828
12829 if (remote_hostio_close (fd.release (), &remote_errno))
12830 remote_hostio_error (remote_errno);
12831
12832 if (from_tty)
12833 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12834 }
12835
12836 void
12837 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12838 {
12839 remote_target *remote = get_current_remote_target ();
12840
12841 if (remote == nullptr)
12842 error (_("command can only be used with remote target"));
12843
12844 remote->remote_file_get (remote_file, local_file, from_tty);
12845 }
12846
12847 void
12848 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12849 int from_tty)
12850 {
12851 int remote_errno, bytes, io_size;
12852 ULONGEST offset;
12853
12854 scoped_remote_fd fd
12855 (this, remote_hostio_open (NULL,
12856 remote_file, FILEIO_O_RDONLY, 0, 0,
12857 &remote_errno));
12858 if (fd.get () == -1)
12859 remote_hostio_error (remote_errno);
12860
12861 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12862 if (file == NULL)
12863 perror_with_name (local_file);
12864
12865 /* Send up to this many bytes at once. They won't all fit in the
12866 remote packet limit, so we'll transfer slightly fewer. */
12867 io_size = get_remote_packet_size ();
12868 gdb::byte_vector buffer (io_size);
12869
12870 offset = 0;
12871 while (1)
12872 {
12873 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12874 &remote_errno);
12875 if (bytes == 0)
12876 /* Success, but no bytes, means end-of-file. */
12877 break;
12878 if (bytes == -1)
12879 remote_hostio_error (remote_errno);
12880
12881 offset += bytes;
12882
12883 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12884 if (bytes == 0)
12885 perror_with_name (local_file);
12886 }
12887
12888 if (remote_hostio_close (fd.release (), &remote_errno))
12889 remote_hostio_error (remote_errno);
12890
12891 if (from_tty)
12892 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12893 }
12894
12895 void
12896 remote_file_delete (const char *remote_file, int from_tty)
12897 {
12898 remote_target *remote = get_current_remote_target ();
12899
12900 if (remote == nullptr)
12901 error (_("command can only be used with remote target"));
12902
12903 remote->remote_file_delete (remote_file, from_tty);
12904 }
12905
12906 void
12907 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12908 {
12909 int retcode, remote_errno;
12910
12911 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12912 if (retcode == -1)
12913 remote_hostio_error (remote_errno);
12914
12915 if (from_tty)
12916 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12917 }
12918
12919 static void
12920 remote_put_command (const char *args, int from_tty)
12921 {
12922 if (args == NULL)
12923 error_no_arg (_("file to put"));
12924
12925 gdb_argv argv (args);
12926 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12927 error (_("Invalid parameters to remote put"));
12928
12929 remote_file_put (argv[0], argv[1], from_tty);
12930 }
12931
12932 static void
12933 remote_get_command (const char *args, int from_tty)
12934 {
12935 if (args == NULL)
12936 error_no_arg (_("file to get"));
12937
12938 gdb_argv argv (args);
12939 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12940 error (_("Invalid parameters to remote get"));
12941
12942 remote_file_get (argv[0], argv[1], from_tty);
12943 }
12944
12945 static void
12946 remote_delete_command (const char *args, int from_tty)
12947 {
12948 if (args == NULL)
12949 error_no_arg (_("file to delete"));
12950
12951 gdb_argv argv (args);
12952 if (argv[0] == NULL || argv[1] != NULL)
12953 error (_("Invalid parameters to remote delete"));
12954
12955 remote_file_delete (argv[0], from_tty);
12956 }
12957
12958 bool
12959 remote_target::can_execute_reverse ()
12960 {
12961 if (packet_support (PACKET_bs) == PACKET_ENABLE
12962 || packet_support (PACKET_bc) == PACKET_ENABLE)
12963 return true;
12964 else
12965 return false;
12966 }
12967
12968 bool
12969 remote_target::supports_non_stop ()
12970 {
12971 return true;
12972 }
12973
12974 bool
12975 remote_target::supports_disable_randomization ()
12976 {
12977 /* Only supported in extended mode. */
12978 return false;
12979 }
12980
12981 bool
12982 remote_target::supports_multi_process ()
12983 {
12984 struct remote_state *rs = get_remote_state ();
12985
12986 return remote_multi_process_p (rs);
12987 }
12988
12989 static int
12990 remote_supports_cond_tracepoints ()
12991 {
12992 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12993 }
12994
12995 bool
12996 remote_target::supports_evaluation_of_breakpoint_conditions ()
12997 {
12998 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12999 }
13000
13001 static int
13002 remote_supports_fast_tracepoints ()
13003 {
13004 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13005 }
13006
13007 static int
13008 remote_supports_static_tracepoints ()
13009 {
13010 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13011 }
13012
13013 static int
13014 remote_supports_install_in_trace ()
13015 {
13016 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13017 }
13018
13019 bool
13020 remote_target::supports_enable_disable_tracepoint ()
13021 {
13022 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13023 == PACKET_ENABLE);
13024 }
13025
13026 bool
13027 remote_target::supports_string_tracing ()
13028 {
13029 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13030 }
13031
13032 bool
13033 remote_target::can_run_breakpoint_commands ()
13034 {
13035 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13036 }
13037
13038 void
13039 remote_target::trace_init ()
13040 {
13041 struct remote_state *rs = get_remote_state ();
13042
13043 putpkt ("QTinit");
13044 remote_get_noisy_reply ();
13045 if (strcmp (rs->buf.data (), "OK") != 0)
13046 error (_("Target does not support this command."));
13047 }
13048
13049 /* Recursive routine to walk through command list including loops, and
13050 download packets for each command. */
13051
13052 void
13053 remote_target::remote_download_command_source (int num, ULONGEST addr,
13054 struct command_line *cmds)
13055 {
13056 struct remote_state *rs = get_remote_state ();
13057 struct command_line *cmd;
13058
13059 for (cmd = cmds; cmd; cmd = cmd->next)
13060 {
13061 QUIT; /* Allow user to bail out with ^C. */
13062 strcpy (rs->buf.data (), "QTDPsrc:");
13063 encode_source_string (num, addr, "cmd", cmd->line,
13064 rs->buf.data () + strlen (rs->buf.data ()),
13065 rs->buf.size () - strlen (rs->buf.data ()));
13066 putpkt (rs->buf);
13067 remote_get_noisy_reply ();
13068 if (strcmp (rs->buf.data (), "OK"))
13069 warning (_("Target does not support source download."));
13070
13071 if (cmd->control_type == while_control
13072 || cmd->control_type == while_stepping_control)
13073 {
13074 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13075
13076 QUIT; /* Allow user to bail out with ^C. */
13077 strcpy (rs->buf.data (), "QTDPsrc:");
13078 encode_source_string (num, addr, "cmd", "end",
13079 rs->buf.data () + strlen (rs->buf.data ()),
13080 rs->buf.size () - strlen (rs->buf.data ()));
13081 putpkt (rs->buf);
13082 remote_get_noisy_reply ();
13083 if (strcmp (rs->buf.data (), "OK"))
13084 warning (_("Target does not support source download."));
13085 }
13086 }
13087 }
13088
13089 void
13090 remote_target::download_tracepoint (struct bp_location *loc)
13091 {
13092 CORE_ADDR tpaddr;
13093 char addrbuf[40];
13094 std::vector<std::string> tdp_actions;
13095 std::vector<std::string> stepping_actions;
13096 char *pkt;
13097 struct breakpoint *b = loc->owner;
13098 struct tracepoint *t = (struct tracepoint *) b;
13099 struct remote_state *rs = get_remote_state ();
13100 int ret;
13101 const char *err_msg = _("Tracepoint packet too large for target.");
13102 size_t size_left;
13103
13104 /* We use a buffer other than rs->buf because we'll build strings
13105 across multiple statements, and other statements in between could
13106 modify rs->buf. */
13107 gdb::char_vector buf (get_remote_packet_size ());
13108
13109 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13110
13111 tpaddr = loc->address;
13112 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13113 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13114 b->number, addrbuf, /* address */
13115 (b->enable_state == bp_enabled ? 'E' : 'D'),
13116 t->step_count, t->pass_count);
13117
13118 if (ret < 0 || ret >= buf.size ())
13119 error ("%s", err_msg);
13120
13121 /* Fast tracepoints are mostly handled by the target, but we can
13122 tell the target how big of an instruction block should be moved
13123 around. */
13124 if (b->type == bp_fast_tracepoint)
13125 {
13126 /* Only test for support at download time; we may not know
13127 target capabilities at definition time. */
13128 if (remote_supports_fast_tracepoints ())
13129 {
13130 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13131 NULL))
13132 {
13133 size_left = buf.size () - strlen (buf.data ());
13134 ret = snprintf (buf.data () + strlen (buf.data ()),
13135 size_left, ":F%x",
13136 gdb_insn_length (loc->gdbarch, tpaddr));
13137
13138 if (ret < 0 || ret >= size_left)
13139 error ("%s", err_msg);
13140 }
13141 else
13142 /* If it passed validation at definition but fails now,
13143 something is very wrong. */
13144 internal_error (__FILE__, __LINE__,
13145 _("Fast tracepoint not "
13146 "valid during download"));
13147 }
13148 else
13149 /* Fast tracepoints are functionally identical to regular
13150 tracepoints, so don't take lack of support as a reason to
13151 give up on the trace run. */
13152 warning (_("Target does not support fast tracepoints, "
13153 "downloading %d as regular tracepoint"), b->number);
13154 }
13155 else if (b->type == bp_static_tracepoint)
13156 {
13157 /* Only test for support at download time; we may not know
13158 target capabilities at definition time. */
13159 if (remote_supports_static_tracepoints ())
13160 {
13161 struct static_tracepoint_marker marker;
13162
13163 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13164 {
13165 size_left = buf.size () - strlen (buf.data ());
13166 ret = snprintf (buf.data () + strlen (buf.data ()),
13167 size_left, ":S");
13168
13169 if (ret < 0 || ret >= size_left)
13170 error ("%s", err_msg);
13171 }
13172 else
13173 error (_("Static tracepoint not valid during download"));
13174 }
13175 else
13176 /* Fast tracepoints are functionally identical to regular
13177 tracepoints, so don't take lack of support as a reason
13178 to give up on the trace run. */
13179 error (_("Target does not support static tracepoints"));
13180 }
13181 /* If the tracepoint has a conditional, make it into an agent
13182 expression and append to the definition. */
13183 if (loc->cond)
13184 {
13185 /* Only test support at download time, we may not know target
13186 capabilities at definition time. */
13187 if (remote_supports_cond_tracepoints ())
13188 {
13189 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13190 loc->cond.get ());
13191
13192 size_left = buf.size () - strlen (buf.data ());
13193
13194 ret = snprintf (buf.data () + strlen (buf.data ()),
13195 size_left, ":X%x,", aexpr->len);
13196
13197 if (ret < 0 || ret >= size_left)
13198 error ("%s", err_msg);
13199
13200 size_left = buf.size () - strlen (buf.data ());
13201
13202 /* Two bytes to encode each aexpr byte, plus the terminating
13203 null byte. */
13204 if (aexpr->len * 2 + 1 > size_left)
13205 error ("%s", err_msg);
13206
13207 pkt = buf.data () + strlen (buf.data ());
13208
13209 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13210 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13211 *pkt = '\0';
13212 }
13213 else
13214 warning (_("Target does not support conditional tracepoints, "
13215 "ignoring tp %d cond"), b->number);
13216 }
13217
13218 if (b->commands || *default_collect)
13219 {
13220 size_left = buf.size () - strlen (buf.data ());
13221
13222 ret = snprintf (buf.data () + strlen (buf.data ()),
13223 size_left, "-");
13224
13225 if (ret < 0 || ret >= size_left)
13226 error ("%s", err_msg);
13227 }
13228
13229 putpkt (buf.data ());
13230 remote_get_noisy_reply ();
13231 if (strcmp (rs->buf.data (), "OK"))
13232 error (_("Target does not support tracepoints."));
13233
13234 /* do_single_steps (t); */
13235 for (auto action_it = tdp_actions.begin ();
13236 action_it != tdp_actions.end (); action_it++)
13237 {
13238 QUIT; /* Allow user to bail out with ^C. */
13239
13240 bool has_more = ((action_it + 1) != tdp_actions.end ()
13241 || !stepping_actions.empty ());
13242
13243 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13244 b->number, addrbuf, /* address */
13245 action_it->c_str (),
13246 has_more ? '-' : 0);
13247
13248 if (ret < 0 || ret >= buf.size ())
13249 error ("%s", err_msg);
13250
13251 putpkt (buf.data ());
13252 remote_get_noisy_reply ();
13253 if (strcmp (rs->buf.data (), "OK"))
13254 error (_("Error on target while setting tracepoints."));
13255 }
13256
13257 for (auto action_it = stepping_actions.begin ();
13258 action_it != stepping_actions.end (); action_it++)
13259 {
13260 QUIT; /* Allow user to bail out with ^C. */
13261
13262 bool is_first = action_it == stepping_actions.begin ();
13263 bool has_more = (action_it + 1) != stepping_actions.end ();
13264
13265 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13266 b->number, addrbuf, /* address */
13267 is_first ? "S" : "",
13268 action_it->c_str (),
13269 has_more ? "-" : "");
13270
13271 if (ret < 0 || ret >= buf.size ())
13272 error ("%s", err_msg);
13273
13274 putpkt (buf.data ());
13275 remote_get_noisy_reply ();
13276 if (strcmp (rs->buf.data (), "OK"))
13277 error (_("Error on target while setting tracepoints."));
13278 }
13279
13280 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13281 {
13282 if (b->location != NULL)
13283 {
13284 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13285
13286 if (ret < 0 || ret >= buf.size ())
13287 error ("%s", err_msg);
13288
13289 encode_source_string (b->number, loc->address, "at",
13290 event_location_to_string (b->location.get ()),
13291 buf.data () + strlen (buf.data ()),
13292 buf.size () - strlen (buf.data ()));
13293 putpkt (buf.data ());
13294 remote_get_noisy_reply ();
13295 if (strcmp (rs->buf.data (), "OK"))
13296 warning (_("Target does not support source download."));
13297 }
13298 if (b->cond_string)
13299 {
13300 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13301
13302 if (ret < 0 || ret >= buf.size ())
13303 error ("%s", err_msg);
13304
13305 encode_source_string (b->number, loc->address,
13306 "cond", b->cond_string,
13307 buf.data () + strlen (buf.data ()),
13308 buf.size () - strlen (buf.data ()));
13309 putpkt (buf.data ());
13310 remote_get_noisy_reply ();
13311 if (strcmp (rs->buf.data (), "OK"))
13312 warning (_("Target does not support source download."));
13313 }
13314 remote_download_command_source (b->number, loc->address,
13315 breakpoint_commands (b));
13316 }
13317 }
13318
13319 bool
13320 remote_target::can_download_tracepoint ()
13321 {
13322 struct remote_state *rs = get_remote_state ();
13323 struct trace_status *ts;
13324 int status;
13325
13326 /* Don't try to install tracepoints until we've relocated our
13327 symbols, and fetched and merged the target's tracepoint list with
13328 ours. */
13329 if (rs->starting_up)
13330 return false;
13331
13332 ts = current_trace_status ();
13333 status = get_trace_status (ts);
13334
13335 if (status == -1 || !ts->running_known || !ts->running)
13336 return false;
13337
13338 /* If we are in a tracing experiment, but remote stub doesn't support
13339 installing tracepoint in trace, we have to return. */
13340 if (!remote_supports_install_in_trace ())
13341 return false;
13342
13343 return true;
13344 }
13345
13346
13347 void
13348 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13349 {
13350 struct remote_state *rs = get_remote_state ();
13351 char *p;
13352
13353 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13354 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13355 tsv.builtin);
13356 p = rs->buf.data () + strlen (rs->buf.data ());
13357 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13358 >= get_remote_packet_size ())
13359 error (_("Trace state variable name too long for tsv definition packet"));
13360 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13361 *p++ = '\0';
13362 putpkt (rs->buf);
13363 remote_get_noisy_reply ();
13364 if (rs->buf[0] == '\0')
13365 error (_("Target does not support this command."));
13366 if (strcmp (rs->buf.data (), "OK") != 0)
13367 error (_("Error on target while downloading trace state variable."));
13368 }
13369
13370 void
13371 remote_target::enable_tracepoint (struct bp_location *location)
13372 {
13373 struct remote_state *rs = get_remote_state ();
13374
13375 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13376 location->owner->number,
13377 phex (location->address, sizeof (CORE_ADDR)));
13378 putpkt (rs->buf);
13379 remote_get_noisy_reply ();
13380 if (rs->buf[0] == '\0')
13381 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13382 if (strcmp (rs->buf.data (), "OK") != 0)
13383 error (_("Error on target while enabling tracepoint."));
13384 }
13385
13386 void
13387 remote_target::disable_tracepoint (struct bp_location *location)
13388 {
13389 struct remote_state *rs = get_remote_state ();
13390
13391 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13392 location->owner->number,
13393 phex (location->address, sizeof (CORE_ADDR)));
13394 putpkt (rs->buf);
13395 remote_get_noisy_reply ();
13396 if (rs->buf[0] == '\0')
13397 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13398 if (strcmp (rs->buf.data (), "OK") != 0)
13399 error (_("Error on target while disabling tracepoint."));
13400 }
13401
13402 void
13403 remote_target::trace_set_readonly_regions ()
13404 {
13405 asection *s;
13406 bfd_size_type size;
13407 bfd_vma vma;
13408 int anysecs = 0;
13409 int offset = 0;
13410
13411 if (!current_program_space->exec_bfd ())
13412 return; /* No information to give. */
13413
13414 struct remote_state *rs = get_remote_state ();
13415
13416 strcpy (rs->buf.data (), "QTro");
13417 offset = strlen (rs->buf.data ());
13418 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13419 {
13420 char tmp1[40], tmp2[40];
13421 int sec_length;
13422
13423 if ((s->flags & SEC_LOAD) == 0 ||
13424 /* (s->flags & SEC_CODE) == 0 || */
13425 (s->flags & SEC_READONLY) == 0)
13426 continue;
13427
13428 anysecs = 1;
13429 vma = bfd_section_vma (s);
13430 size = bfd_section_size (s);
13431 sprintf_vma (tmp1, vma);
13432 sprintf_vma (tmp2, vma + size);
13433 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13434 if (offset + sec_length + 1 > rs->buf.size ())
13435 {
13436 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13437 warning (_("\
13438 Too many sections for read-only sections definition packet."));
13439 break;
13440 }
13441 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13442 tmp1, tmp2);
13443 offset += sec_length;
13444 }
13445 if (anysecs)
13446 {
13447 putpkt (rs->buf);
13448 getpkt (&rs->buf, 0);
13449 }
13450 }
13451
13452 void
13453 remote_target::trace_start ()
13454 {
13455 struct remote_state *rs = get_remote_state ();
13456
13457 putpkt ("QTStart");
13458 remote_get_noisy_reply ();
13459 if (rs->buf[0] == '\0')
13460 error (_("Target does not support this command."));
13461 if (strcmp (rs->buf.data (), "OK") != 0)
13462 error (_("Bogus reply from target: %s"), rs->buf.data ());
13463 }
13464
13465 int
13466 remote_target::get_trace_status (struct trace_status *ts)
13467 {
13468 /* Initialize it just to avoid a GCC false warning. */
13469 char *p = NULL;
13470 enum packet_result result;
13471 struct remote_state *rs = get_remote_state ();
13472
13473 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13474 return -1;
13475
13476 /* FIXME we need to get register block size some other way. */
13477 trace_regblock_size
13478 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13479
13480 putpkt ("qTStatus");
13481
13482 try
13483 {
13484 p = remote_get_noisy_reply ();
13485 }
13486 catch (const gdb_exception_error &ex)
13487 {
13488 if (ex.error != TARGET_CLOSE_ERROR)
13489 {
13490 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13491 return -1;
13492 }
13493 throw;
13494 }
13495
13496 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13497
13498 /* If the remote target doesn't do tracing, flag it. */
13499 if (result == PACKET_UNKNOWN)
13500 return -1;
13501
13502 /* We're working with a live target. */
13503 ts->filename = NULL;
13504
13505 if (*p++ != 'T')
13506 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13507
13508 /* Function 'parse_trace_status' sets default value of each field of
13509 'ts' at first, so we don't have to do it here. */
13510 parse_trace_status (p, ts);
13511
13512 return ts->running;
13513 }
13514
13515 void
13516 remote_target::get_tracepoint_status (struct breakpoint *bp,
13517 struct uploaded_tp *utp)
13518 {
13519 struct remote_state *rs = get_remote_state ();
13520 char *reply;
13521 struct bp_location *loc;
13522 struct tracepoint *tp = (struct tracepoint *) bp;
13523 size_t size = get_remote_packet_size ();
13524
13525 if (tp)
13526 {
13527 tp->hit_count = 0;
13528 tp->traceframe_usage = 0;
13529 for (loc = tp->loc; loc; loc = loc->next)
13530 {
13531 /* If the tracepoint was never downloaded, don't go asking for
13532 any status. */
13533 if (tp->number_on_target == 0)
13534 continue;
13535 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13536 phex_nz (loc->address, 0));
13537 putpkt (rs->buf);
13538 reply = remote_get_noisy_reply ();
13539 if (reply && *reply)
13540 {
13541 if (*reply == 'V')
13542 parse_tracepoint_status (reply + 1, bp, utp);
13543 }
13544 }
13545 }
13546 else if (utp)
13547 {
13548 utp->hit_count = 0;
13549 utp->traceframe_usage = 0;
13550 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13551 phex_nz (utp->addr, 0));
13552 putpkt (rs->buf);
13553 reply = remote_get_noisy_reply ();
13554 if (reply && *reply)
13555 {
13556 if (*reply == 'V')
13557 parse_tracepoint_status (reply + 1, bp, utp);
13558 }
13559 }
13560 }
13561
13562 void
13563 remote_target::trace_stop ()
13564 {
13565 struct remote_state *rs = get_remote_state ();
13566
13567 putpkt ("QTStop");
13568 remote_get_noisy_reply ();
13569 if (rs->buf[0] == '\0')
13570 error (_("Target does not support this command."));
13571 if (strcmp (rs->buf.data (), "OK") != 0)
13572 error (_("Bogus reply from target: %s"), rs->buf.data ());
13573 }
13574
13575 int
13576 remote_target::trace_find (enum trace_find_type type, int num,
13577 CORE_ADDR addr1, CORE_ADDR addr2,
13578 int *tpp)
13579 {
13580 struct remote_state *rs = get_remote_state ();
13581 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13582 char *p, *reply;
13583 int target_frameno = -1, target_tracept = -1;
13584
13585 /* Lookups other than by absolute frame number depend on the current
13586 trace selected, so make sure it is correct on the remote end
13587 first. */
13588 if (type != tfind_number)
13589 set_remote_traceframe ();
13590
13591 p = rs->buf.data ();
13592 strcpy (p, "QTFrame:");
13593 p = strchr (p, '\0');
13594 switch (type)
13595 {
13596 case tfind_number:
13597 xsnprintf (p, endbuf - p, "%x", num);
13598 break;
13599 case tfind_pc:
13600 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13601 break;
13602 case tfind_tp:
13603 xsnprintf (p, endbuf - p, "tdp:%x", num);
13604 break;
13605 case tfind_range:
13606 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13607 phex_nz (addr2, 0));
13608 break;
13609 case tfind_outside:
13610 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13611 phex_nz (addr2, 0));
13612 break;
13613 default:
13614 error (_("Unknown trace find type %d"), type);
13615 }
13616
13617 putpkt (rs->buf);
13618 reply = remote_get_noisy_reply ();
13619 if (*reply == '\0')
13620 error (_("Target does not support this command."));
13621
13622 while (reply && *reply)
13623 switch (*reply)
13624 {
13625 case 'F':
13626 p = ++reply;
13627 target_frameno = (int) strtol (p, &reply, 16);
13628 if (reply == p)
13629 error (_("Unable to parse trace frame number"));
13630 /* Don't update our remote traceframe number cache on failure
13631 to select a remote traceframe. */
13632 if (target_frameno == -1)
13633 return -1;
13634 break;
13635 case 'T':
13636 p = ++reply;
13637 target_tracept = (int) strtol (p, &reply, 16);
13638 if (reply == p)
13639 error (_("Unable to parse tracepoint number"));
13640 break;
13641 case 'O': /* "OK"? */
13642 if (reply[1] == 'K' && reply[2] == '\0')
13643 reply += 2;
13644 else
13645 error (_("Bogus reply from target: %s"), reply);
13646 break;
13647 default:
13648 error (_("Bogus reply from target: %s"), reply);
13649 }
13650 if (tpp)
13651 *tpp = target_tracept;
13652
13653 rs->remote_traceframe_number = target_frameno;
13654 return target_frameno;
13655 }
13656
13657 bool
13658 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13659 {
13660 struct remote_state *rs = get_remote_state ();
13661 char *reply;
13662 ULONGEST uval;
13663
13664 set_remote_traceframe ();
13665
13666 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13667 putpkt (rs->buf);
13668 reply = remote_get_noisy_reply ();
13669 if (reply && *reply)
13670 {
13671 if (*reply == 'V')
13672 {
13673 unpack_varlen_hex (reply + 1, &uval);
13674 *val = (LONGEST) uval;
13675 return true;
13676 }
13677 }
13678 return false;
13679 }
13680
13681 int
13682 remote_target::save_trace_data (const char *filename)
13683 {
13684 struct remote_state *rs = get_remote_state ();
13685 char *p, *reply;
13686
13687 p = rs->buf.data ();
13688 strcpy (p, "QTSave:");
13689 p += strlen (p);
13690 if ((p - rs->buf.data ()) + strlen (filename) * 2
13691 >= get_remote_packet_size ())
13692 error (_("Remote file name too long for trace save packet"));
13693 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13694 *p++ = '\0';
13695 putpkt (rs->buf);
13696 reply = remote_get_noisy_reply ();
13697 if (*reply == '\0')
13698 error (_("Target does not support this command."));
13699 if (strcmp (reply, "OK") != 0)
13700 error (_("Bogus reply from target: %s"), reply);
13701 return 0;
13702 }
13703
13704 /* This is basically a memory transfer, but needs to be its own packet
13705 because we don't know how the target actually organizes its trace
13706 memory, plus we want to be able to ask for as much as possible, but
13707 not be unhappy if we don't get as much as we ask for. */
13708
13709 LONGEST
13710 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13711 {
13712 struct remote_state *rs = get_remote_state ();
13713 char *reply;
13714 char *p;
13715 int rslt;
13716
13717 p = rs->buf.data ();
13718 strcpy (p, "qTBuffer:");
13719 p += strlen (p);
13720 p += hexnumstr (p, offset);
13721 *p++ = ',';
13722 p += hexnumstr (p, len);
13723 *p++ = '\0';
13724
13725 putpkt (rs->buf);
13726 reply = remote_get_noisy_reply ();
13727 if (reply && *reply)
13728 {
13729 /* 'l' by itself means we're at the end of the buffer and
13730 there is nothing more to get. */
13731 if (*reply == 'l')
13732 return 0;
13733
13734 /* Convert the reply into binary. Limit the number of bytes to
13735 convert according to our passed-in buffer size, rather than
13736 what was returned in the packet; if the target is
13737 unexpectedly generous and gives us a bigger reply than we
13738 asked for, we don't want to crash. */
13739 rslt = hex2bin (reply, buf, len);
13740 return rslt;
13741 }
13742
13743 /* Something went wrong, flag as an error. */
13744 return -1;
13745 }
13746
13747 void
13748 remote_target::set_disconnected_tracing (int val)
13749 {
13750 struct remote_state *rs = get_remote_state ();
13751
13752 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13753 {
13754 char *reply;
13755
13756 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13757 "QTDisconnected:%x", val);
13758 putpkt (rs->buf);
13759 reply = remote_get_noisy_reply ();
13760 if (*reply == '\0')
13761 error (_("Target does not support this command."));
13762 if (strcmp (reply, "OK") != 0)
13763 error (_("Bogus reply from target: %s"), reply);
13764 }
13765 else if (val)
13766 warning (_("Target does not support disconnected tracing."));
13767 }
13768
13769 int
13770 remote_target::core_of_thread (ptid_t ptid)
13771 {
13772 thread_info *info = find_thread_ptid (this, ptid);
13773
13774 if (info != NULL && info->priv != NULL)
13775 return get_remote_thread_info (info)->core;
13776
13777 return -1;
13778 }
13779
13780 void
13781 remote_target::set_circular_trace_buffer (int val)
13782 {
13783 struct remote_state *rs = get_remote_state ();
13784 char *reply;
13785
13786 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13787 "QTBuffer:circular:%x", val);
13788 putpkt (rs->buf);
13789 reply = remote_get_noisy_reply ();
13790 if (*reply == '\0')
13791 error (_("Target does not support this command."));
13792 if (strcmp (reply, "OK") != 0)
13793 error (_("Bogus reply from target: %s"), reply);
13794 }
13795
13796 traceframe_info_up
13797 remote_target::traceframe_info ()
13798 {
13799 gdb::optional<gdb::char_vector> text
13800 = target_read_stralloc (current_inferior ()->top_target (),
13801 TARGET_OBJECT_TRACEFRAME_INFO,
13802 NULL);
13803 if (text)
13804 return parse_traceframe_info (text->data ());
13805
13806 return NULL;
13807 }
13808
13809 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13810 instruction on which a fast tracepoint may be placed. Returns -1
13811 if the packet is not supported, and 0 if the minimum instruction
13812 length is unknown. */
13813
13814 int
13815 remote_target::get_min_fast_tracepoint_insn_len ()
13816 {
13817 struct remote_state *rs = get_remote_state ();
13818 char *reply;
13819
13820 /* If we're not debugging a process yet, the IPA can't be
13821 loaded. */
13822 if (!target_has_execution ())
13823 return 0;
13824
13825 /* Make sure the remote is pointing at the right process. */
13826 set_general_process ();
13827
13828 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13829 putpkt (rs->buf);
13830 reply = remote_get_noisy_reply ();
13831 if (*reply == '\0')
13832 return -1;
13833 else
13834 {
13835 ULONGEST min_insn_len;
13836
13837 unpack_varlen_hex (reply, &min_insn_len);
13838
13839 return (int) min_insn_len;
13840 }
13841 }
13842
13843 void
13844 remote_target::set_trace_buffer_size (LONGEST val)
13845 {
13846 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13847 {
13848 struct remote_state *rs = get_remote_state ();
13849 char *buf = rs->buf.data ();
13850 char *endbuf = buf + get_remote_packet_size ();
13851 enum packet_result result;
13852
13853 gdb_assert (val >= 0 || val == -1);
13854 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13855 /* Send -1 as literal "-1" to avoid host size dependency. */
13856 if (val < 0)
13857 {
13858 *buf++ = '-';
13859 buf += hexnumstr (buf, (ULONGEST) -val);
13860 }
13861 else
13862 buf += hexnumstr (buf, (ULONGEST) val);
13863
13864 putpkt (rs->buf);
13865 remote_get_noisy_reply ();
13866 result = packet_ok (rs->buf,
13867 &remote_protocol_packets[PACKET_QTBuffer_size]);
13868
13869 if (result != PACKET_OK)
13870 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13871 }
13872 }
13873
13874 bool
13875 remote_target::set_trace_notes (const char *user, const char *notes,
13876 const char *stop_notes)
13877 {
13878 struct remote_state *rs = get_remote_state ();
13879 char *reply;
13880 char *buf = rs->buf.data ();
13881 char *endbuf = buf + get_remote_packet_size ();
13882 int nbytes;
13883
13884 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13885 if (user)
13886 {
13887 buf += xsnprintf (buf, endbuf - buf, "user:");
13888 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13889 buf += 2 * nbytes;
13890 *buf++ = ';';
13891 }
13892 if (notes)
13893 {
13894 buf += xsnprintf (buf, endbuf - buf, "notes:");
13895 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13896 buf += 2 * nbytes;
13897 *buf++ = ';';
13898 }
13899 if (stop_notes)
13900 {
13901 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13902 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13903 buf += 2 * nbytes;
13904 *buf++ = ';';
13905 }
13906 /* Ensure the buffer is terminated. */
13907 *buf = '\0';
13908
13909 putpkt (rs->buf);
13910 reply = remote_get_noisy_reply ();
13911 if (*reply == '\0')
13912 return false;
13913
13914 if (strcmp (reply, "OK") != 0)
13915 error (_("Bogus reply from target: %s"), reply);
13916
13917 return true;
13918 }
13919
13920 bool
13921 remote_target::use_agent (bool use)
13922 {
13923 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13924 {
13925 struct remote_state *rs = get_remote_state ();
13926
13927 /* If the stub supports QAgent. */
13928 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13929 putpkt (rs->buf);
13930 getpkt (&rs->buf, 0);
13931
13932 if (strcmp (rs->buf.data (), "OK") == 0)
13933 {
13934 ::use_agent = use;
13935 return true;
13936 }
13937 }
13938
13939 return false;
13940 }
13941
13942 bool
13943 remote_target::can_use_agent ()
13944 {
13945 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13946 }
13947
13948 struct btrace_target_info
13949 {
13950 /* The ptid of the traced thread. */
13951 ptid_t ptid;
13952
13953 /* The obtained branch trace configuration. */
13954 struct btrace_config conf;
13955 };
13956
13957 /* Reset our idea of our target's btrace configuration. */
13958
13959 static void
13960 remote_btrace_reset (remote_state *rs)
13961 {
13962 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13963 }
13964
13965 /* Synchronize the configuration with the target. */
13966
13967 void
13968 remote_target::btrace_sync_conf (const btrace_config *conf)
13969 {
13970 struct packet_config *packet;
13971 struct remote_state *rs;
13972 char *buf, *pos, *endbuf;
13973
13974 rs = get_remote_state ();
13975 buf = rs->buf.data ();
13976 endbuf = buf + get_remote_packet_size ();
13977
13978 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13979 if (packet_config_support (packet) == PACKET_ENABLE
13980 && conf->bts.size != rs->btrace_config.bts.size)
13981 {
13982 pos = buf;
13983 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13984 conf->bts.size);
13985
13986 putpkt (buf);
13987 getpkt (&rs->buf, 0);
13988
13989 if (packet_ok (buf, packet) == PACKET_ERROR)
13990 {
13991 if (buf[0] == 'E' && buf[1] == '.')
13992 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13993 else
13994 error (_("Failed to configure the BTS buffer size."));
13995 }
13996
13997 rs->btrace_config.bts.size = conf->bts.size;
13998 }
13999
14000 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14001 if (packet_config_support (packet) == PACKET_ENABLE
14002 && conf->pt.size != rs->btrace_config.pt.size)
14003 {
14004 pos = buf;
14005 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14006 conf->pt.size);
14007
14008 putpkt (buf);
14009 getpkt (&rs->buf, 0);
14010
14011 if (packet_ok (buf, packet) == PACKET_ERROR)
14012 {
14013 if (buf[0] == 'E' && buf[1] == '.')
14014 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14015 else
14016 error (_("Failed to configure the trace buffer size."));
14017 }
14018
14019 rs->btrace_config.pt.size = conf->pt.size;
14020 }
14021 }
14022
14023 /* Read the current thread's btrace configuration from the target and
14024 store it into CONF. */
14025
14026 static void
14027 btrace_read_config (struct btrace_config *conf)
14028 {
14029 gdb::optional<gdb::char_vector> xml
14030 = target_read_stralloc (current_inferior ()->top_target (),
14031 TARGET_OBJECT_BTRACE_CONF, "");
14032 if (xml)
14033 parse_xml_btrace_conf (conf, xml->data ());
14034 }
14035
14036 /* Maybe reopen target btrace. */
14037
14038 void
14039 remote_target::remote_btrace_maybe_reopen ()
14040 {
14041 struct remote_state *rs = get_remote_state ();
14042 int btrace_target_pushed = 0;
14043 #if !defined (HAVE_LIBIPT)
14044 int warned = 0;
14045 #endif
14046
14047 /* Don't bother walking the entirety of the remote thread list when
14048 we know the feature isn't supported by the remote. */
14049 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14050 return;
14051
14052 scoped_restore_current_thread restore_thread;
14053
14054 for (thread_info *tp : all_non_exited_threads (this))
14055 {
14056 set_general_thread (tp->ptid);
14057
14058 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14059 btrace_read_config (&rs->btrace_config);
14060
14061 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14062 continue;
14063
14064 #if !defined (HAVE_LIBIPT)
14065 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14066 {
14067 if (!warned)
14068 {
14069 warned = 1;
14070 warning (_("Target is recording using Intel Processor Trace "
14071 "but support was disabled at compile time."));
14072 }
14073
14074 continue;
14075 }
14076 #endif /* !defined (HAVE_LIBIPT) */
14077
14078 /* Push target, once, but before anything else happens. This way our
14079 changes to the threads will be cleaned up by unpushing the target
14080 in case btrace_read_config () throws. */
14081 if (!btrace_target_pushed)
14082 {
14083 btrace_target_pushed = 1;
14084 record_btrace_push_target ();
14085 printf_filtered (_("Target is recording using %s.\n"),
14086 btrace_format_string (rs->btrace_config.format));
14087 }
14088
14089 tp->btrace.target = XCNEW (struct btrace_target_info);
14090 tp->btrace.target->ptid = tp->ptid;
14091 tp->btrace.target->conf = rs->btrace_config;
14092 }
14093 }
14094
14095 /* Enable branch tracing. */
14096
14097 struct btrace_target_info *
14098 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14099 {
14100 struct btrace_target_info *tinfo = NULL;
14101 struct packet_config *packet = NULL;
14102 struct remote_state *rs = get_remote_state ();
14103 char *buf = rs->buf.data ();
14104 char *endbuf = buf + get_remote_packet_size ();
14105
14106 switch (conf->format)
14107 {
14108 case BTRACE_FORMAT_BTS:
14109 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14110 break;
14111
14112 case BTRACE_FORMAT_PT:
14113 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14114 break;
14115 }
14116
14117 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14118 error (_("Target does not support branch tracing."));
14119
14120 btrace_sync_conf (conf);
14121
14122 set_general_thread (ptid);
14123
14124 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14125 putpkt (rs->buf);
14126 getpkt (&rs->buf, 0);
14127
14128 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14129 {
14130 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14131 error (_("Could not enable branch tracing for %s: %s"),
14132 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14133 else
14134 error (_("Could not enable branch tracing for %s."),
14135 target_pid_to_str (ptid).c_str ());
14136 }
14137
14138 tinfo = XCNEW (struct btrace_target_info);
14139 tinfo->ptid = ptid;
14140
14141 /* If we fail to read the configuration, we lose some information, but the
14142 tracing itself is not impacted. */
14143 try
14144 {
14145 btrace_read_config (&tinfo->conf);
14146 }
14147 catch (const gdb_exception_error &err)
14148 {
14149 if (err.message != NULL)
14150 warning ("%s", err.what ());
14151 }
14152
14153 return tinfo;
14154 }
14155
14156 /* Disable branch tracing. */
14157
14158 void
14159 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14160 {
14161 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14162 struct remote_state *rs = get_remote_state ();
14163 char *buf = rs->buf.data ();
14164 char *endbuf = buf + get_remote_packet_size ();
14165
14166 if (packet_config_support (packet) != PACKET_ENABLE)
14167 error (_("Target does not support branch tracing."));
14168
14169 set_general_thread (tinfo->ptid);
14170
14171 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14172 putpkt (rs->buf);
14173 getpkt (&rs->buf, 0);
14174
14175 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14176 {
14177 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14178 error (_("Could not disable branch tracing for %s: %s"),
14179 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14180 else
14181 error (_("Could not disable branch tracing for %s."),
14182 target_pid_to_str (tinfo->ptid).c_str ());
14183 }
14184
14185 xfree (tinfo);
14186 }
14187
14188 /* Teardown branch tracing. */
14189
14190 void
14191 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14192 {
14193 /* We must not talk to the target during teardown. */
14194 xfree (tinfo);
14195 }
14196
14197 /* Read the branch trace. */
14198
14199 enum btrace_error
14200 remote_target::read_btrace (struct btrace_data *btrace,
14201 struct btrace_target_info *tinfo,
14202 enum btrace_read_type type)
14203 {
14204 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14205 const char *annex;
14206
14207 if (packet_config_support (packet) != PACKET_ENABLE)
14208 error (_("Target does not support branch tracing."));
14209
14210 #if !defined(HAVE_LIBEXPAT)
14211 error (_("Cannot process branch tracing result. XML parsing not supported."));
14212 #endif
14213
14214 switch (type)
14215 {
14216 case BTRACE_READ_ALL:
14217 annex = "all";
14218 break;
14219 case BTRACE_READ_NEW:
14220 annex = "new";
14221 break;
14222 case BTRACE_READ_DELTA:
14223 annex = "delta";
14224 break;
14225 default:
14226 internal_error (__FILE__, __LINE__,
14227 _("Bad branch tracing read type: %u."),
14228 (unsigned int) type);
14229 }
14230
14231 gdb::optional<gdb::char_vector> xml
14232 = target_read_stralloc (current_inferior ()->top_target (),
14233 TARGET_OBJECT_BTRACE, annex);
14234 if (!xml)
14235 return BTRACE_ERR_UNKNOWN;
14236
14237 parse_xml_btrace (btrace, xml->data ());
14238
14239 return BTRACE_ERR_NONE;
14240 }
14241
14242 const struct btrace_config *
14243 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14244 {
14245 return &tinfo->conf;
14246 }
14247
14248 bool
14249 remote_target::augmented_libraries_svr4_read ()
14250 {
14251 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14252 == PACKET_ENABLE);
14253 }
14254
14255 /* Implementation of to_load. */
14256
14257 void
14258 remote_target::load (const char *name, int from_tty)
14259 {
14260 generic_load (name, from_tty);
14261 }
14262
14263 /* Accepts an integer PID; returns a string representing a file that
14264 can be opened on the remote side to get the symbols for the child
14265 process. Returns NULL if the operation is not supported. */
14266
14267 char *
14268 remote_target::pid_to_exec_file (int pid)
14269 {
14270 static gdb::optional<gdb::char_vector> filename;
14271 char *annex = NULL;
14272
14273 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14274 return NULL;
14275
14276 inferior *inf = find_inferior_pid (this, pid);
14277 if (inf == NULL)
14278 internal_error (__FILE__, __LINE__,
14279 _("not currently attached to process %d"), pid);
14280
14281 if (!inf->fake_pid_p)
14282 {
14283 const int annex_size = 9;
14284
14285 annex = (char *) alloca (annex_size);
14286 xsnprintf (annex, annex_size, "%x", pid);
14287 }
14288
14289 filename = target_read_stralloc (current_inferior ()->top_target (),
14290 TARGET_OBJECT_EXEC_FILE, annex);
14291
14292 return filename ? filename->data () : nullptr;
14293 }
14294
14295 /* Implement the to_can_do_single_step target_ops method. */
14296
14297 int
14298 remote_target::can_do_single_step ()
14299 {
14300 /* We can only tell whether target supports single step or not by
14301 supported s and S vCont actions if the stub supports vContSupported
14302 feature. If the stub doesn't support vContSupported feature,
14303 we have conservatively to think target doesn't supports single
14304 step. */
14305 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14306 {
14307 struct remote_state *rs = get_remote_state ();
14308
14309 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14310 remote_vcont_probe ();
14311
14312 return rs->supports_vCont.s && rs->supports_vCont.S;
14313 }
14314 else
14315 return 0;
14316 }
14317
14318 /* Implementation of the to_execution_direction method for the remote
14319 target. */
14320
14321 enum exec_direction_kind
14322 remote_target::execution_direction ()
14323 {
14324 struct remote_state *rs = get_remote_state ();
14325
14326 return rs->last_resume_exec_dir;
14327 }
14328
14329 /* Return pointer to the thread_info struct which corresponds to
14330 THREAD_HANDLE (having length HANDLE_LEN). */
14331
14332 thread_info *
14333 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14334 int handle_len,
14335 inferior *inf)
14336 {
14337 for (thread_info *tp : all_non_exited_threads (this))
14338 {
14339 remote_thread_info *priv = get_remote_thread_info (tp);
14340
14341 if (tp->inf == inf && priv != NULL)
14342 {
14343 if (handle_len != priv->thread_handle.size ())
14344 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14345 handle_len, priv->thread_handle.size ());
14346 if (memcmp (thread_handle, priv->thread_handle.data (),
14347 handle_len) == 0)
14348 return tp;
14349 }
14350 }
14351
14352 return NULL;
14353 }
14354
14355 gdb::byte_vector
14356 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14357 {
14358 remote_thread_info *priv = get_remote_thread_info (tp);
14359 return priv->thread_handle;
14360 }
14361
14362 bool
14363 remote_target::can_async_p ()
14364 {
14365 struct remote_state *rs = get_remote_state ();
14366
14367 /* We don't go async if the user has explicitly prevented it with the
14368 "maint set target-async" command. */
14369 if (!target_async_permitted)
14370 return false;
14371
14372 /* We're async whenever the serial device is. */
14373 return serial_can_async_p (rs->remote_desc);
14374 }
14375
14376 bool
14377 remote_target::is_async_p ()
14378 {
14379 struct remote_state *rs = get_remote_state ();
14380
14381 if (!target_async_permitted)
14382 /* We only enable async when the user specifically asks for it. */
14383 return false;
14384
14385 /* We're async whenever the serial device is. */
14386 return serial_is_async_p (rs->remote_desc);
14387 }
14388
14389 /* Pass the SERIAL event on and up to the client. One day this code
14390 will be able to delay notifying the client of an event until the
14391 point where an entire packet has been received. */
14392
14393 static serial_event_ftype remote_async_serial_handler;
14394
14395 static void
14396 remote_async_serial_handler (struct serial *scb, void *context)
14397 {
14398 /* Don't propogate error information up to the client. Instead let
14399 the client find out about the error by querying the target. */
14400 inferior_event_handler (INF_REG_EVENT);
14401 }
14402
14403 static void
14404 remote_async_inferior_event_handler (gdb_client_data data)
14405 {
14406 inferior_event_handler (INF_REG_EVENT);
14407 }
14408
14409 int
14410 remote_target::async_wait_fd ()
14411 {
14412 struct remote_state *rs = get_remote_state ();
14413 return rs->remote_desc->fd;
14414 }
14415
14416 void
14417 remote_target::async (int enable)
14418 {
14419 struct remote_state *rs = get_remote_state ();
14420
14421 if (enable)
14422 {
14423 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14424
14425 /* If there are pending events in the stop reply queue tell the
14426 event loop to process them. */
14427 if (!rs->stop_reply_queue.empty ())
14428 mark_async_event_handler (rs->remote_async_inferior_event_token);
14429 /* For simplicity, below we clear the pending events token
14430 without remembering whether it is marked, so here we always
14431 mark it. If there's actually no pending notification to
14432 process, this ends up being a no-op (other than a spurious
14433 event-loop wakeup). */
14434 if (target_is_non_stop_p ())
14435 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14436 }
14437 else
14438 {
14439 serial_async (rs->remote_desc, NULL, NULL);
14440 /* If the core is disabling async, it doesn't want to be
14441 disturbed with target events. Clear all async event sources
14442 too. */
14443 clear_async_event_handler (rs->remote_async_inferior_event_token);
14444 if (target_is_non_stop_p ())
14445 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14446 }
14447 }
14448
14449 /* Implementation of the to_thread_events method. */
14450
14451 void
14452 remote_target::thread_events (int enable)
14453 {
14454 struct remote_state *rs = get_remote_state ();
14455 size_t size = get_remote_packet_size ();
14456
14457 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14458 return;
14459
14460 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14461 putpkt (rs->buf);
14462 getpkt (&rs->buf, 0);
14463
14464 switch (packet_ok (rs->buf,
14465 &remote_protocol_packets[PACKET_QThreadEvents]))
14466 {
14467 case PACKET_OK:
14468 if (strcmp (rs->buf.data (), "OK") != 0)
14469 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14470 break;
14471 case PACKET_ERROR:
14472 warning (_("Remote failure reply: %s"), rs->buf.data ());
14473 break;
14474 case PACKET_UNKNOWN:
14475 break;
14476 }
14477 }
14478
14479 static void
14480 show_remote_cmd (const char *args, int from_tty)
14481 {
14482 /* We can't just use cmd_show_list here, because we want to skip
14483 the redundant "show remote Z-packet" and the legacy aliases. */
14484 struct cmd_list_element *list = remote_show_cmdlist;
14485 struct ui_out *uiout = current_uiout;
14486
14487 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14488 for (; list != NULL; list = list->next)
14489 if (strcmp (list->name, "Z-packet") == 0)
14490 continue;
14491 else if (list->type == not_set_cmd)
14492 /* Alias commands are exactly like the original, except they
14493 don't have the normal type. */
14494 continue;
14495 else
14496 {
14497 ui_out_emit_tuple option_emitter (uiout, "option");
14498
14499 uiout->field_string ("name", list->name);
14500 uiout->text (": ");
14501 if (list->type == show_cmd)
14502 do_show_command (NULL, from_tty, list);
14503 else
14504 cmd_func (list, NULL, from_tty);
14505 }
14506 }
14507
14508
14509 /* Function to be called whenever a new objfile (shlib) is detected. */
14510 static void
14511 remote_new_objfile (struct objfile *objfile)
14512 {
14513 remote_target *remote = get_current_remote_target ();
14514
14515 if (remote != NULL) /* Have a remote connection. */
14516 remote->remote_check_symbols ();
14517 }
14518
14519 /* Pull all the tracepoints defined on the target and create local
14520 data structures representing them. We don't want to create real
14521 tracepoints yet, we don't want to mess up the user's existing
14522 collection. */
14523
14524 int
14525 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14526 {
14527 struct remote_state *rs = get_remote_state ();
14528 char *p;
14529
14530 /* Ask for a first packet of tracepoint definition. */
14531 putpkt ("qTfP");
14532 getpkt (&rs->buf, 0);
14533 p = rs->buf.data ();
14534 while (*p && *p != 'l')
14535 {
14536 parse_tracepoint_definition (p, utpp);
14537 /* Ask for another packet of tracepoint definition. */
14538 putpkt ("qTsP");
14539 getpkt (&rs->buf, 0);
14540 p = rs->buf.data ();
14541 }
14542 return 0;
14543 }
14544
14545 int
14546 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14547 {
14548 struct remote_state *rs = get_remote_state ();
14549 char *p;
14550
14551 /* Ask for a first packet of variable definition. */
14552 putpkt ("qTfV");
14553 getpkt (&rs->buf, 0);
14554 p = rs->buf.data ();
14555 while (*p && *p != 'l')
14556 {
14557 parse_tsv_definition (p, utsvp);
14558 /* Ask for another packet of variable definition. */
14559 putpkt ("qTsV");
14560 getpkt (&rs->buf, 0);
14561 p = rs->buf.data ();
14562 }
14563 return 0;
14564 }
14565
14566 /* The "set/show range-stepping" show hook. */
14567
14568 static void
14569 show_range_stepping (struct ui_file *file, int from_tty,
14570 struct cmd_list_element *c,
14571 const char *value)
14572 {
14573 fprintf_filtered (file,
14574 _("Debugger's willingness to use range stepping "
14575 "is %s.\n"), value);
14576 }
14577
14578 /* Return true if the vCont;r action is supported by the remote
14579 stub. */
14580
14581 bool
14582 remote_target::vcont_r_supported ()
14583 {
14584 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14585 remote_vcont_probe ();
14586
14587 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14588 && get_remote_state ()->supports_vCont.r);
14589 }
14590
14591 /* The "set/show range-stepping" set hook. */
14592
14593 static void
14594 set_range_stepping (const char *ignore_args, int from_tty,
14595 struct cmd_list_element *c)
14596 {
14597 /* When enabling, check whether range stepping is actually supported
14598 by the target, and warn if not. */
14599 if (use_range_stepping)
14600 {
14601 remote_target *remote = get_current_remote_target ();
14602 if (remote == NULL
14603 || !remote->vcont_r_supported ())
14604 warning (_("Range stepping is not supported by the current target"));
14605 }
14606 }
14607
14608 static void
14609 show_remote_debug (struct ui_file *file, int from_tty,
14610 struct cmd_list_element *c, const char *value)
14611 {
14612 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14613 value);
14614 }
14615
14616 static void
14617 show_remote_timeout (struct ui_file *file, int from_tty,
14618 struct cmd_list_element *c, const char *value)
14619 {
14620 fprintf_filtered (file,
14621 _("Timeout limit to wait for target to respond is %s.\n"),
14622 value);
14623 }
14624
14625 /* Implement the "supports_memory_tagging" target_ops method. */
14626
14627 bool
14628 remote_target::supports_memory_tagging ()
14629 {
14630 return remote_memory_tagging_p ();
14631 }
14632
14633 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14634
14635 static void
14636 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14637 size_t len, int type)
14638 {
14639 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14640
14641 std::string request = string_printf ("qMemTags:%s,%s:%s",
14642 phex_nz (address, addr_size),
14643 phex_nz (len, sizeof (len)),
14644 phex_nz (type, sizeof (type)));
14645
14646 strcpy (packet.data (), request.c_str ());
14647 }
14648
14649 /* Parse the qMemTags packet reply into TAGS.
14650
14651 Return true if successful, false otherwise. */
14652
14653 static bool
14654 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14655 gdb::byte_vector &tags)
14656 {
14657 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14658 return false;
14659
14660 /* Copy the tag data. */
14661 tags = hex2bin (reply.data () + 1);
14662
14663 return true;
14664 }
14665
14666 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14667
14668 static void
14669 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14670 size_t len, int type,
14671 const gdb::byte_vector &tags)
14672 {
14673 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14674
14675 /* Put together the main packet, address and length. */
14676 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14677 phex_nz (address, addr_size),
14678 phex_nz (len, sizeof (len)),
14679 phex_nz (type, sizeof (type)));
14680 request += bin2hex (tags.data (), tags.size ());
14681
14682 /* Check if we have exceeded the maximum packet size. */
14683 if (packet.size () < request.length ())
14684 error (_("Contents too big for packet QMemTags."));
14685
14686 strcpy (packet.data (), request.c_str ());
14687 }
14688
14689 /* Implement the "fetch_memtags" target_ops method. */
14690
14691 bool
14692 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14693 gdb::byte_vector &tags, int type)
14694 {
14695 /* Make sure the qMemTags packet is supported. */
14696 if (!remote_memory_tagging_p ())
14697 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14698
14699 struct remote_state *rs = get_remote_state ();
14700
14701 create_fetch_memtags_request (rs->buf, address, len, type);
14702
14703 putpkt (rs->buf);
14704 getpkt (&rs->buf, 0);
14705
14706 return parse_fetch_memtags_reply (rs->buf, tags);
14707 }
14708
14709 /* Implement the "store_memtags" target_ops method. */
14710
14711 bool
14712 remote_target::store_memtags (CORE_ADDR address, size_t len,
14713 const gdb::byte_vector &tags, int type)
14714 {
14715 /* Make sure the QMemTags packet is supported. */
14716 if (!remote_memory_tagging_p ())
14717 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14718
14719 struct remote_state *rs = get_remote_state ();
14720
14721 create_store_memtags_request (rs->buf, address, len, type, tags);
14722
14723 putpkt (rs->buf);
14724 getpkt (&rs->buf, 0);
14725
14726 /* Verify if the request was successful. */
14727 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14728 }
14729
14730 /* Return true if remote target T is non-stop. */
14731
14732 bool
14733 remote_target_is_non_stop_p (remote_target *t)
14734 {
14735 scoped_restore_current_thread restore_thread;
14736 switch_to_target_no_thread (t);
14737
14738 return target_is_non_stop_p ();
14739 }
14740
14741 #if GDB_SELF_TEST
14742
14743 namespace selftests {
14744
14745 static void
14746 test_memory_tagging_functions ()
14747 {
14748 remote_target remote;
14749
14750 struct packet_config *config
14751 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14752
14753 scoped_restore restore_memtag_support_
14754 = make_scoped_restore (&config->support);
14755
14756 /* Test memory tagging packet support. */
14757 config->support = PACKET_SUPPORT_UNKNOWN;
14758 SELF_CHECK (remote.supports_memory_tagging () == false);
14759 config->support = PACKET_DISABLE;
14760 SELF_CHECK (remote.supports_memory_tagging () == false);
14761 config->support = PACKET_ENABLE;
14762 SELF_CHECK (remote.supports_memory_tagging () == true);
14763
14764 /* Setup testing. */
14765 gdb::char_vector packet;
14766 gdb::byte_vector tags, bv;
14767 std::string expected, reply;
14768 packet.resize (32000);
14769
14770 /* Test creating a qMemTags request. */
14771
14772 expected = "qMemTags:0,0:0";
14773 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14774 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14775
14776 expected = "qMemTags:deadbeef,10:1";
14777 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14778 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14779
14780 /* Test parsing a qMemTags reply. */
14781
14782 /* Error reply, tags vector unmodified. */
14783 reply = "E00";
14784 strcpy (packet.data (), reply.c_str ());
14785 tags.resize (0);
14786 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14787 SELF_CHECK (tags.size () == 0);
14788
14789 /* Valid reply, tags vector updated. */
14790 tags.resize (0);
14791 bv.resize (0);
14792
14793 for (int i = 0; i < 5; i++)
14794 bv.push_back (i);
14795
14796 reply = "m" + bin2hex (bv.data (), bv.size ());
14797 strcpy (packet.data (), reply.c_str ());
14798
14799 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14800 SELF_CHECK (tags.size () == 5);
14801
14802 for (int i = 0; i < 5; i++)
14803 SELF_CHECK (tags[i] == i);
14804
14805 /* Test creating a QMemTags request. */
14806
14807 /* Empty tag data. */
14808 tags.resize (0);
14809 expected = "QMemTags:0,0:0:";
14810 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14811 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14812 expected.length ()) == 0);
14813
14814 /* Non-empty tag data. */
14815 tags.resize (0);
14816 for (int i = 0; i < 5; i++)
14817 tags.push_back (i);
14818 expected = "QMemTags:deadbeef,ff:1:0001020304";
14819 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14820 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14821 expected.length ()) == 0);
14822 }
14823
14824 } // namespace selftests
14825 #endif /* GDB_SELF_TEST */
14826
14827 void _initialize_remote ();
14828 void
14829 _initialize_remote ()
14830 {
14831 struct cmd_list_element *cmd;
14832 const char *cmd_name;
14833
14834 /* architecture specific data */
14835 remote_g_packet_data_handle =
14836 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14837
14838 add_target (remote_target_info, remote_target::open);
14839 add_target (extended_remote_target_info, extended_remote_target::open);
14840
14841 /* Hook into new objfile notification. */
14842 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14843
14844 #if 0
14845 init_remote_threadtests ();
14846 #endif
14847
14848 /* set/show remote ... */
14849
14850 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14851 Remote protocol specific variables.\n\
14852 Configure various remote-protocol specific variables such as\n\
14853 the packets being used."),
14854 &remote_set_cmdlist,
14855 0 /* allow-unknown */, &setlist);
14856 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14857 Remote protocol specific variables.\n\
14858 Configure various remote-protocol specific variables such as\n\
14859 the packets being used."),
14860 &remote_show_cmdlist,
14861 0 /* allow-unknown */, &showlist);
14862
14863 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14864 Compare section data on target to the exec file.\n\
14865 Argument is a single section name (default: all loaded sections).\n\
14866 To compare only read-only loaded sections, specify the -r option."),
14867 &cmdlist);
14868
14869 add_cmd ("packet", class_maintenance, packet_command, _("\
14870 Send an arbitrary packet to a remote target.\n\
14871 maintenance packet TEXT\n\
14872 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14873 this command sends the string TEXT to the inferior, and displays the\n\
14874 response packet. GDB supplies the initial `$' character, and the\n\
14875 terminating `#' character and checksum."),
14876 &maintenancelist);
14877
14878 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14879 Set whether to send break if interrupted."), _("\
14880 Show whether to send break if interrupted."), _("\
14881 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14882 set_remotebreak, show_remotebreak,
14883 &setlist, &showlist);
14884 cmd_name = "remotebreak";
14885 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14886 deprecate_cmd (cmd, "set remote interrupt-sequence");
14887 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14888 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14889 deprecate_cmd (cmd, "show remote interrupt-sequence");
14890
14891 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14892 interrupt_sequence_modes, &interrupt_sequence_mode,
14893 _("\
14894 Set interrupt sequence to remote target."), _("\
14895 Show interrupt sequence to remote target."), _("\
14896 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14897 NULL, show_interrupt_sequence,
14898 &remote_set_cmdlist,
14899 &remote_show_cmdlist);
14900
14901 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14902 &interrupt_on_connect, _("\
14903 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14904 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14905 If set, interrupt sequence is sent to remote target."),
14906 NULL, NULL,
14907 &remote_set_cmdlist, &remote_show_cmdlist);
14908
14909 /* Install commands for configuring memory read/write packets. */
14910
14911 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14912 Set the maximum number of bytes per memory write packet (deprecated)."),
14913 &setlist);
14914 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14915 Show the maximum number of bytes per memory write packet (deprecated)."),
14916 &showlist);
14917 add_cmd ("memory-write-packet-size", no_class,
14918 set_memory_write_packet_size, _("\
14919 Set the maximum number of bytes per memory-write packet.\n\
14920 Specify the number of bytes in a packet or 0 (zero) for the\n\
14921 default packet size. The actual limit is further reduced\n\
14922 dependent on the target. Specify ``fixed'' to disable the\n\
14923 further restriction and ``limit'' to enable that restriction."),
14924 &remote_set_cmdlist);
14925 add_cmd ("memory-read-packet-size", no_class,
14926 set_memory_read_packet_size, _("\
14927 Set the maximum number of bytes per memory-read packet.\n\
14928 Specify the number of bytes in a packet or 0 (zero) for the\n\
14929 default packet size. The actual limit is further reduced\n\
14930 dependent on the target. Specify ``fixed'' to disable the\n\
14931 further restriction and ``limit'' to enable that restriction."),
14932 &remote_set_cmdlist);
14933 add_cmd ("memory-write-packet-size", no_class,
14934 show_memory_write_packet_size,
14935 _("Show the maximum number of bytes per memory-write packet."),
14936 &remote_show_cmdlist);
14937 add_cmd ("memory-read-packet-size", no_class,
14938 show_memory_read_packet_size,
14939 _("Show the maximum number of bytes per memory-read packet."),
14940 &remote_show_cmdlist);
14941
14942 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14943 &remote_hw_watchpoint_limit, _("\
14944 Set the maximum number of target hardware watchpoints."), _("\
14945 Show the maximum number of target hardware watchpoints."), _("\
14946 Specify \"unlimited\" for unlimited hardware watchpoints."),
14947 NULL, show_hardware_watchpoint_limit,
14948 &remote_set_cmdlist,
14949 &remote_show_cmdlist);
14950 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14951 no_class,
14952 &remote_hw_watchpoint_length_limit, _("\
14953 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14954 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14955 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14956 NULL, show_hardware_watchpoint_length_limit,
14957 &remote_set_cmdlist, &remote_show_cmdlist);
14958 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14959 &remote_hw_breakpoint_limit, _("\
14960 Set the maximum number of target hardware breakpoints."), _("\
14961 Show the maximum number of target hardware breakpoints."), _("\
14962 Specify \"unlimited\" for unlimited hardware breakpoints."),
14963 NULL, show_hardware_breakpoint_limit,
14964 &remote_set_cmdlist, &remote_show_cmdlist);
14965
14966 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14967 &remote_address_size, _("\
14968 Set the maximum size of the address (in bits) in a memory packet."), _("\
14969 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14970 NULL,
14971 NULL, /* FIXME: i18n: */
14972 &setlist, &showlist);
14973
14974 init_all_packet_configs ();
14975
14976 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14977 "X", "binary-download", 1);
14978
14979 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14980 "vCont", "verbose-resume", 0);
14981
14982 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14983 "QPassSignals", "pass-signals", 0);
14984
14985 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14986 "QCatchSyscalls", "catch-syscalls", 0);
14987
14988 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14989 "QProgramSignals", "program-signals", 0);
14990
14991 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14992 "QSetWorkingDir", "set-working-dir", 0);
14993
14994 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14995 "QStartupWithShell", "startup-with-shell", 0);
14996
14997 add_packet_config_cmd (&remote_protocol_packets
14998 [PACKET_QEnvironmentHexEncoded],
14999 "QEnvironmentHexEncoded", "environment-hex-encoded",
15000 0);
15001
15002 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15003 "QEnvironmentReset", "environment-reset",
15004 0);
15005
15006 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15007 "QEnvironmentUnset", "environment-unset",
15008 0);
15009
15010 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15011 "qSymbol", "symbol-lookup", 0);
15012
15013 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15014 "P", "set-register", 1);
15015
15016 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15017 "p", "fetch-register", 1);
15018
15019 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15020 "Z0", "software-breakpoint", 0);
15021
15022 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15023 "Z1", "hardware-breakpoint", 0);
15024
15025 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15026 "Z2", "write-watchpoint", 0);
15027
15028 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15029 "Z3", "read-watchpoint", 0);
15030
15031 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15032 "Z4", "access-watchpoint", 0);
15033
15034 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15035 "qXfer:auxv:read", "read-aux-vector", 0);
15036
15037 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15038 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15039
15040 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15041 "qXfer:features:read", "target-features", 0);
15042
15043 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15044 "qXfer:libraries:read", "library-info", 0);
15045
15046 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15047 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15048
15049 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15050 "qXfer:memory-map:read", "memory-map", 0);
15051
15052 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15053 "qXfer:osdata:read", "osdata", 0);
15054
15055 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15056 "qXfer:threads:read", "threads", 0);
15057
15058 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15059 "qXfer:siginfo:read", "read-siginfo-object", 0);
15060
15061 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15062 "qXfer:siginfo:write", "write-siginfo-object", 0);
15063
15064 add_packet_config_cmd
15065 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15066 "qXfer:traceframe-info:read", "traceframe-info", 0);
15067
15068 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15069 "qXfer:uib:read", "unwind-info-block", 0);
15070
15071 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15072 "qGetTLSAddr", "get-thread-local-storage-address",
15073 0);
15074
15075 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15076 "qGetTIBAddr", "get-thread-information-block-address",
15077 0);
15078
15079 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15080 "bc", "reverse-continue", 0);
15081
15082 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15083 "bs", "reverse-step", 0);
15084
15085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15086 "qSupported", "supported-packets", 0);
15087
15088 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15089 "qSearch:memory", "search-memory", 0);
15090
15091 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15092 "qTStatus", "trace-status", 0);
15093
15094 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15095 "vFile:setfs", "hostio-setfs", 0);
15096
15097 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15098 "vFile:open", "hostio-open", 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15101 "vFile:pread", "hostio-pread", 0);
15102
15103 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15104 "vFile:pwrite", "hostio-pwrite", 0);
15105
15106 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15107 "vFile:close", "hostio-close", 0);
15108
15109 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15110 "vFile:unlink", "hostio-unlink", 0);
15111
15112 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15113 "vFile:readlink", "hostio-readlink", 0);
15114
15115 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15116 "vFile:fstat", "hostio-fstat", 0);
15117
15118 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15119 "vAttach", "attach", 0);
15120
15121 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15122 "vRun", "run", 0);
15123
15124 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15125 "QStartNoAckMode", "noack", 0);
15126
15127 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15128 "vKill", "kill", 0);
15129
15130 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15131 "qAttached", "query-attached", 0);
15132
15133 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15134 "ConditionalTracepoints",
15135 "conditional-tracepoints", 0);
15136
15137 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15138 "ConditionalBreakpoints",
15139 "conditional-breakpoints", 0);
15140
15141 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15142 "BreakpointCommands",
15143 "breakpoint-commands", 0);
15144
15145 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15146 "FastTracepoints", "fast-tracepoints", 0);
15147
15148 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15149 "TracepointSource", "TracepointSource", 0);
15150
15151 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15152 "QAllow", "allow", 0);
15153
15154 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15155 "StaticTracepoints", "static-tracepoints", 0);
15156
15157 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15158 "InstallInTrace", "install-in-trace", 0);
15159
15160 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15161 "qXfer:statictrace:read", "read-sdata-object", 0);
15162
15163 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15164 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15165
15166 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15167 "QDisableRandomization", "disable-randomization", 0);
15168
15169 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15170 "QAgent", "agent", 0);
15171
15172 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15173 "QTBuffer:size", "trace-buffer-size", 0);
15174
15175 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15176 "Qbtrace:off", "disable-btrace", 0);
15177
15178 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15179 "Qbtrace:bts", "enable-btrace-bts", 0);
15180
15181 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15182 "Qbtrace:pt", "enable-btrace-pt", 0);
15183
15184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15185 "qXfer:btrace", "read-btrace", 0);
15186
15187 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15188 "qXfer:btrace-conf", "read-btrace-conf", 0);
15189
15190 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15191 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15192
15193 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15194 "multiprocess-feature", "multiprocess-feature", 0);
15195
15196 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15197 "swbreak-feature", "swbreak-feature", 0);
15198
15199 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15200 "hwbreak-feature", "hwbreak-feature", 0);
15201
15202 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15203 "fork-event-feature", "fork-event-feature", 0);
15204
15205 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15206 "vfork-event-feature", "vfork-event-feature", 0);
15207
15208 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15209 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15210
15211 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15212 "vContSupported", "verbose-resume-supported", 0);
15213
15214 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15215 "exec-event-feature", "exec-event-feature", 0);
15216
15217 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15218 "vCtrlC", "ctrl-c", 0);
15219
15220 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15221 "QThreadEvents", "thread-events", 0);
15222
15223 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15224 "N stop reply", "no-resumed-stop-reply", 0);
15225
15226 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15227 "memory-tagging-feature", "memory-tagging-feature", 0);
15228
15229 /* Assert that we've registered "set remote foo-packet" commands
15230 for all packet configs. */
15231 {
15232 int i;
15233
15234 for (i = 0; i < PACKET_MAX; i++)
15235 {
15236 /* Ideally all configs would have a command associated. Some
15237 still don't though. */
15238 int excepted;
15239
15240 switch (i)
15241 {
15242 case PACKET_QNonStop:
15243 case PACKET_EnableDisableTracepoints_feature:
15244 case PACKET_tracenz_feature:
15245 case PACKET_DisconnectedTracing_feature:
15246 case PACKET_augmented_libraries_svr4_read_feature:
15247 case PACKET_qCRC:
15248 /* Additions to this list need to be well justified:
15249 pre-existing packets are OK; new packets are not. */
15250 excepted = 1;
15251 break;
15252 default:
15253 excepted = 0;
15254 break;
15255 }
15256
15257 /* This catches both forgetting to add a config command, and
15258 forgetting to remove a packet from the exception list. */
15259 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15260 }
15261 }
15262
15263 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15264 Z sub-packet has its own set and show commands, but users may
15265 have sets to this variable in their .gdbinit files (or in their
15266 documentation). */
15267 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15268 &remote_Z_packet_detect, _("\
15269 Set use of remote protocol `Z' packets."), _("\
15270 Show use of remote protocol `Z' packets."), _("\
15271 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15272 packets."),
15273 set_remote_protocol_Z_packet_cmd,
15274 show_remote_protocol_Z_packet_cmd,
15275 /* FIXME: i18n: Use of remote protocol
15276 `Z' packets is %s. */
15277 &remote_set_cmdlist, &remote_show_cmdlist);
15278
15279 add_basic_prefix_cmd ("remote", class_files, _("\
15280 Manipulate files on the remote system.\n\
15281 Transfer files to and from the remote target system."),
15282 &remote_cmdlist,
15283 0 /* allow-unknown */, &cmdlist);
15284
15285 add_cmd ("put", class_files, remote_put_command,
15286 _("Copy a local file to the remote system."),
15287 &remote_cmdlist);
15288
15289 add_cmd ("get", class_files, remote_get_command,
15290 _("Copy a remote file to the local system."),
15291 &remote_cmdlist);
15292
15293 add_cmd ("delete", class_files, remote_delete_command,
15294 _("Delete a remote file."),
15295 &remote_cmdlist);
15296
15297 add_setshow_string_noescape_cmd ("exec-file", class_files,
15298 &remote_exec_file_var, _("\
15299 Set the remote pathname for \"run\"."), _("\
15300 Show the remote pathname for \"run\"."), NULL,
15301 set_remote_exec_file,
15302 show_remote_exec_file,
15303 &remote_set_cmdlist,
15304 &remote_show_cmdlist);
15305
15306 add_setshow_boolean_cmd ("range-stepping", class_run,
15307 &use_range_stepping, _("\
15308 Enable or disable range stepping."), _("\
15309 Show whether target-assisted range stepping is enabled."), _("\
15310 If on, and the target supports it, when stepping a source line, GDB\n\
15311 tells the target to step the corresponding range of addresses itself instead\n\
15312 of issuing multiple single-steps. This speeds up source level\n\
15313 stepping. If off, GDB always issues single-steps, even if range\n\
15314 stepping is supported by the target. The default is on."),
15315 set_range_stepping,
15316 show_range_stepping,
15317 &setlist,
15318 &showlist);
15319
15320 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15321 Set watchdog timer."), _("\
15322 Show watchdog timer."), _("\
15323 When non-zero, this timeout is used instead of waiting forever for a target\n\
15324 to finish a low-level step or continue operation. If the specified amount\n\
15325 of time passes without a response from the target, an error occurs."),
15326 NULL,
15327 show_watchdog,
15328 &setlist, &showlist);
15329
15330 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15331 &remote_packet_max_chars, _("\
15332 Set the maximum number of characters to display for each remote packet."), _("\
15333 Show the maximum number of characters to display for each remote packet."), _("\
15334 Specify \"unlimited\" to display all the characters."),
15335 NULL, show_remote_packet_max_chars,
15336 &setdebuglist, &showdebuglist);
15337
15338 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15339 _("Set debugging of remote protocol."),
15340 _("Show debugging of remote protocol."),
15341 _("\
15342 When enabled, each packet sent or received with the remote target\n\
15343 is displayed."),
15344 NULL,
15345 show_remote_debug,
15346 &setdebuglist, &showdebuglist);
15347
15348 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15349 &remote_timeout, _("\
15350 Set timeout limit to wait for target to respond."), _("\
15351 Show timeout limit to wait for target to respond."), _("\
15352 This value is used to set the time limit for gdb to wait for a response\n\
15353 from the target."),
15354 NULL,
15355 show_remote_timeout,
15356 &setlist, &showlist);
15357
15358 /* Eventually initialize fileio. See fileio.c */
15359 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15360
15361 #if GDB_SELF_TEST
15362 selftests::register_test ("remote_memory_tagging",
15363 selftests::test_memory_tagging_functions);
15364 #endif
15365 }
This page took 0.341798 seconds and 5 git commands to generate.