gdb/
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <ctype.h>
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include "gdb_stat.h"
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73
74 /* Temp hacks for tracepoint encoding migration. */
75 static char *target_buf;
76 static long target_buf_size;
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void async_cleanup_sigint_signal_handler (void *dummy);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void async_handle_remote_sigint (int);
97 static void async_handle_remote_sigint_twice (int);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (void);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_serial_write (const char *str, int len);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void sync_remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (ptid_t);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static int fromhex (int a);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
194 struct cmd_list_element *c);
195
196 static void show_remote_protocol_packet_cmd (struct ui_file *file,
197 int from_tty,
198 struct cmd_list_element *c,
199 const char *value);
200
201 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
202 static ptid_t read_ptid (char *buf, char **obuf);
203
204 static void remote_set_permissions (void);
205
206 struct remote_state;
207 static int remote_get_trace_status (struct trace_status *ts);
208
209 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
210
211 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
212
213 static void remote_query_supported (void);
214
215 static void remote_check_symbols (void);
216
217 void _initialize_remote (void);
218
219 struct stop_reply;
220 static void stop_reply_xfree (struct stop_reply *);
221 static void remote_parse_stop_reply (char *, struct stop_reply *);
222 static void push_stop_reply (struct stop_reply *);
223 static void discard_pending_stop_replies_in_queue (struct remote_state *);
224 static int peek_stop_reply (ptid_t ptid);
225
226 static void remote_async_inferior_event_handler (gdb_client_data);
227
228 static void remote_terminal_ours (void);
229
230 static int remote_read_description_p (struct target_ops *target);
231
232 static void remote_console_output (char *msg);
233
234 static int remote_supports_cond_breakpoints (void);
235
236 static int remote_can_run_breakpoint_commands (void);
237
238 /* For "remote". */
239
240 static struct cmd_list_element *remote_cmdlist;
241
242 /* For "set remote" and "show remote". */
243
244 static struct cmd_list_element *remote_set_cmdlist;
245 static struct cmd_list_element *remote_show_cmdlist;
246
247 /* Stub vCont actions support.
248
249 Each field is a boolean flag indicating whether the stub reports
250 support for the corresponding action. */
251
252 struct vCont_action_support
253 {
254 /* vCont;t */
255 int t;
256
257 /* vCont;r */
258 int r;
259 };
260
261 /* Controls whether GDB is willing to use range stepping. */
262
263 static int use_range_stepping = 1;
264
265 #define OPAQUETHREADBYTES 8
266
267 /* a 64 bit opaque identifier */
268 typedef unsigned char threadref[OPAQUETHREADBYTES];
269
270 /* About this many threadisds fit in a packet. */
271
272 #define MAXTHREADLISTRESULTS 32
273
274 /* Description of the remote protocol state for the currently
275 connected target. This is per-target state, and independent of the
276 selected architecture. */
277
278 struct remote_state
279 {
280 /* A buffer to use for incoming packets, and its current size. The
281 buffer is grown dynamically for larger incoming packets.
282 Outgoing packets may also be constructed in this buffer.
283 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
284 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
285 packets. */
286 char *buf;
287 long buf_size;
288
289 /* True if we're going through initial connection setup (finding out
290 about the remote side's threads, relocating symbols, etc.). */
291 int starting_up;
292
293 /* If we negotiated packet size explicitly (and thus can bypass
294 heuristics for the largest packet size that will not overflow
295 a buffer in the stub), this will be set to that packet size.
296 Otherwise zero, meaning to use the guessed size. */
297 long explicit_packet_size;
298
299 /* remote_wait is normally called when the target is running and
300 waits for a stop reply packet. But sometimes we need to call it
301 when the target is already stopped. We can send a "?" packet
302 and have remote_wait read the response. Or, if we already have
303 the response, we can stash it in BUF and tell remote_wait to
304 skip calling getpkt. This flag is set when BUF contains a
305 stop reply packet and the target is not waiting. */
306 int cached_wait_status;
307
308 /* True, if in no ack mode. That is, neither GDB nor the stub will
309 expect acks from each other. The connection is assumed to be
310 reliable. */
311 int noack_mode;
312
313 /* True if we're connected in extended remote mode. */
314 int extended;
315
316 /* True if the stub reported support for multi-process
317 extensions. */
318 int multi_process_aware;
319
320 /* True if we resumed the target and we're waiting for the target to
321 stop. In the mean time, we can't start another command/query.
322 The remote server wouldn't be ready to process it, so we'd
323 timeout waiting for a reply that would never come and eventually
324 we'd close the connection. This can happen in asynchronous mode
325 because we allow GDB commands while the target is running. */
326 int waiting_for_stop_reply;
327
328 /* True if the stub reports support for non-stop mode. */
329 int non_stop_aware;
330
331 /* The status of the stub support for the various vCont actions. */
332 struct vCont_action_support supports_vCont;
333
334 /* True if the stub reports support for conditional tracepoints. */
335 int cond_tracepoints;
336
337 /* True if the stub reports support for target-side breakpoint
338 conditions. */
339 int cond_breakpoints;
340
341 /* True if the stub reports support for target-side breakpoint
342 commands. */
343 int breakpoint_commands;
344
345 /* True if the stub reports support for fast tracepoints. */
346 int fast_tracepoints;
347
348 /* True if the stub reports support for static tracepoints. */
349 int static_tracepoints;
350
351 /* True if the stub reports support for installing tracepoint while
352 tracing. */
353 int install_in_trace;
354
355 /* True if the stub can continue running a trace while GDB is
356 disconnected. */
357 int disconnected_tracing;
358
359 /* True if the stub reports support for enabling and disabling
360 tracepoints while a trace experiment is running. */
361 int enable_disable_tracepoints;
362
363 /* True if the stub can collect strings using tracenz bytecode. */
364 int string_tracing;
365
366 /* True if the stub supports qXfer:libraries-svr4:read with a
367 non-empty annex. */
368 int augmented_libraries_svr4_read;
369
370 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
371 responded to that. */
372 int ctrlc_pending_p;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 char *finished_object;
401 char *finished_annex;
402 ULONGEST finished_offset;
403
404 /* Should we try the 'ThreadInfo' query packet?
405
406 This variable (NOT available to the user: auto-detect only!)
407 determines whether GDB will use the new, simpler "ThreadInfo"
408 query or the older, more complex syntax for thread queries.
409 This is an auto-detect variable (set to true at each connect,
410 and set to false when the target fails to recognize it). */
411 int use_threadinfo_query;
412 int use_threadextra_query;
413
414 void (*async_client_callback) (enum inferior_event_type event_type,
415 void *context);
416 void *async_client_context;
417
418 /* This is set to the data address of the access causing the target
419 to stop for a watchpoint. */
420 CORE_ADDR remote_watch_data_address;
421
422 /* This is non-zero if target stopped for a watchpoint. */
423 int remote_stopped_by_watchpoint_p;
424
425 threadref echo_nextthread;
426 threadref nextthread;
427 threadref resultthreadlist[MAXTHREADLISTRESULTS];
428
429 /* The state of remote notification. */
430 struct remote_notif_state *notif_state;
431 };
432
433 /* Private data that we'll store in (struct thread_info)->private. */
434 struct private_thread_info
435 {
436 char *extra;
437 int core;
438 };
439
440 static void
441 free_private_thread_info (struct private_thread_info *info)
442 {
443 xfree (info->extra);
444 xfree (info);
445 }
446
447 /* Returns true if the multi-process extensions are in effect. */
448 static int
449 remote_multi_process_p (struct remote_state *rs)
450 {
451 return rs->multi_process_aware;
452 }
453
454 /* This data could be associated with a target, but we do not always
455 have access to the current target when we need it, so for now it is
456 static. This will be fine for as long as only one target is in use
457 at a time. */
458 static struct remote_state *remote_state;
459
460 static struct remote_state *
461 get_remote_state_raw (void)
462 {
463 return remote_state;
464 }
465
466 /* Allocate a new struct remote_state with xmalloc, initialize it, and
467 return it. */
468
469 static struct remote_state *
470 new_remote_state (void)
471 {
472 struct remote_state *result = XCNEW (struct remote_state);
473
474 /* The default buffer size is unimportant; it will be expanded
475 whenever a larger buffer is needed. */
476 result->buf_size = 400;
477 result->buf = xmalloc (result->buf_size);
478 result->remote_traceframe_number = -1;
479 result->last_sent_signal = GDB_SIGNAL_0;
480
481 return result;
482 }
483
484 /* Description of the remote protocol for a given architecture. */
485
486 struct packet_reg
487 {
488 long offset; /* Offset into G packet. */
489 long regnum; /* GDB's internal register number. */
490 LONGEST pnum; /* Remote protocol register number. */
491 int in_g_packet; /* Always part of G packet. */
492 /* long size in bytes; == register_size (target_gdbarch (), regnum);
493 at present. */
494 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
495 at present. */
496 };
497
498 struct remote_arch_state
499 {
500 /* Description of the remote protocol registers. */
501 long sizeof_g_packet;
502
503 /* Description of the remote protocol registers indexed by REGNUM
504 (making an array gdbarch_num_regs in size). */
505 struct packet_reg *regs;
506
507 /* This is the size (in chars) of the first response to the ``g''
508 packet. It is used as a heuristic when determining the maximum
509 size of memory-read and memory-write packets. A target will
510 typically only reserve a buffer large enough to hold the ``g''
511 packet. The size does not include packet overhead (headers and
512 trailers). */
513 long actual_register_packet_size;
514
515 /* This is the maximum size (in chars) of a non read/write packet.
516 It is also used as a cap on the size of read/write packets. */
517 long remote_packet_size;
518 };
519
520 /* Utility: generate error from an incoming stub packet. */
521 static void
522 trace_error (char *buf)
523 {
524 if (*buf++ != 'E')
525 return; /* not an error msg */
526 switch (*buf)
527 {
528 case '1': /* malformed packet error */
529 if (*++buf == '0') /* general case: */
530 error (_("remote.c: error in outgoing packet."));
531 else
532 error (_("remote.c: error in outgoing packet at field #%ld."),
533 strtol (buf, NULL, 16));
534 default:
535 error (_("Target returns error code '%s'."), buf);
536 }
537 }
538
539 /* Utility: wait for reply from stub, while accepting "O" packets. */
540 static char *
541 remote_get_noisy_reply (char **buf_p,
542 long *sizeof_buf)
543 {
544 do /* Loop on reply from remote stub. */
545 {
546 char *buf;
547
548 QUIT; /* Allow user to bail out with ^C. */
549 getpkt (buf_p, sizeof_buf, 0);
550 buf = *buf_p;
551 if (buf[0] == 'E')
552 trace_error (buf);
553 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
554 {
555 ULONGEST ul;
556 CORE_ADDR from, to, org_to;
557 char *p, *pp;
558 int adjusted_size = 0;
559 volatile struct gdb_exception ex;
560
561 p = buf + strlen ("qRelocInsn:");
562 pp = unpack_varlen_hex (p, &ul);
563 if (*pp != ';')
564 error (_("invalid qRelocInsn packet: %s"), buf);
565 from = ul;
566
567 p = pp + 1;
568 unpack_varlen_hex (p, &ul);
569 to = ul;
570
571 org_to = to;
572
573 TRY_CATCH (ex, RETURN_MASK_ALL)
574 {
575 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
576 }
577 if (ex.reason >= 0)
578 {
579 adjusted_size = to - org_to;
580
581 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
582 putpkt (buf);
583 }
584 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
585 {
586 /* Propagate memory errors silently back to the target.
587 The stub may have limited the range of addresses we
588 can write to, for example. */
589 putpkt ("E01");
590 }
591 else
592 {
593 /* Something unexpectedly bad happened. Be verbose so
594 we can tell what, and propagate the error back to the
595 stub, so it doesn't get stuck waiting for a
596 response. */
597 exception_fprintf (gdb_stderr, ex,
598 _("warning: relocating instruction: "));
599 putpkt ("E01");
600 }
601 }
602 else if (buf[0] == 'O' && buf[1] != 'K')
603 remote_console_output (buf + 1); /* 'O' message from stub */
604 else
605 return buf; /* Here's the actual reply. */
606 }
607 while (1);
608 }
609
610 /* Handle for retreving the remote protocol data from gdbarch. */
611 static struct gdbarch_data *remote_gdbarch_data_handle;
612
613 static struct remote_arch_state *
614 get_remote_arch_state (void)
615 {
616 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
617 }
618
619 /* Fetch the global remote target state. */
620
621 static struct remote_state *
622 get_remote_state (void)
623 {
624 /* Make sure that the remote architecture state has been
625 initialized, because doing so might reallocate rs->buf. Any
626 function which calls getpkt also needs to be mindful of changes
627 to rs->buf, but this call limits the number of places which run
628 into trouble. */
629 get_remote_arch_state ();
630
631 return get_remote_state_raw ();
632 }
633
634 static int
635 compare_pnums (const void *lhs_, const void *rhs_)
636 {
637 const struct packet_reg * const *lhs = lhs_;
638 const struct packet_reg * const *rhs = rhs_;
639
640 if ((*lhs)->pnum < (*rhs)->pnum)
641 return -1;
642 else if ((*lhs)->pnum == (*rhs)->pnum)
643 return 0;
644 else
645 return 1;
646 }
647
648 static int
649 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
650 {
651 int regnum, num_remote_regs, offset;
652 struct packet_reg **remote_regs;
653
654 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
655 {
656 struct packet_reg *r = &regs[regnum];
657
658 if (register_size (gdbarch, regnum) == 0)
659 /* Do not try to fetch zero-sized (placeholder) registers. */
660 r->pnum = -1;
661 else
662 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
663
664 r->regnum = regnum;
665 }
666
667 /* Define the g/G packet format as the contents of each register
668 with a remote protocol number, in order of ascending protocol
669 number. */
670
671 remote_regs = alloca (gdbarch_num_regs (gdbarch)
672 * sizeof (struct packet_reg *));
673 for (num_remote_regs = 0, regnum = 0;
674 regnum < gdbarch_num_regs (gdbarch);
675 regnum++)
676 if (regs[regnum].pnum != -1)
677 remote_regs[num_remote_regs++] = &regs[regnum];
678
679 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
680 compare_pnums);
681
682 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
683 {
684 remote_regs[regnum]->in_g_packet = 1;
685 remote_regs[regnum]->offset = offset;
686 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
687 }
688
689 return offset;
690 }
691
692 /* Given the architecture described by GDBARCH, return the remote
693 protocol register's number and the register's offset in the g/G
694 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
695 If the target does not have a mapping for REGNUM, return false,
696 otherwise, return true. */
697
698 int
699 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
700 int *pnum, int *poffset)
701 {
702 int sizeof_g_packet;
703 struct packet_reg *regs;
704 struct cleanup *old_chain;
705
706 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
707
708 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
709 old_chain = make_cleanup (xfree, regs);
710
711 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
712
713 *pnum = regs[regnum].pnum;
714 *poffset = regs[regnum].offset;
715
716 do_cleanups (old_chain);
717
718 return *pnum != -1;
719 }
720
721 static void *
722 init_remote_state (struct gdbarch *gdbarch)
723 {
724 struct remote_state *rs = get_remote_state_raw ();
725 struct remote_arch_state *rsa;
726
727 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
728
729 /* Use the architecture to build a regnum<->pnum table, which will be
730 1:1 unless a feature set specifies otherwise. */
731 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
732 gdbarch_num_regs (gdbarch),
733 struct packet_reg);
734
735 /* Record the maximum possible size of the g packet - it may turn out
736 to be smaller. */
737 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
738
739 /* Default maximum number of characters in a packet body. Many
740 remote stubs have a hardwired buffer size of 400 bytes
741 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
742 as the maximum packet-size to ensure that the packet and an extra
743 NUL character can always fit in the buffer. This stops GDB
744 trashing stubs that try to squeeze an extra NUL into what is
745 already a full buffer (As of 1999-12-04 that was most stubs). */
746 rsa->remote_packet_size = 400 - 1;
747
748 /* This one is filled in when a ``g'' packet is received. */
749 rsa->actual_register_packet_size = 0;
750
751 /* Should rsa->sizeof_g_packet needs more space than the
752 default, adjust the size accordingly. Remember that each byte is
753 encoded as two characters. 32 is the overhead for the packet
754 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
755 (``$NN:G...#NN'') is a better guess, the below has been padded a
756 little. */
757 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
758 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
759
760 /* Make sure that the packet buffer is plenty big enough for
761 this architecture. */
762 if (rs->buf_size < rsa->remote_packet_size)
763 {
764 rs->buf_size = 2 * rsa->remote_packet_size;
765 rs->buf = xrealloc (rs->buf, rs->buf_size);
766 }
767
768 return rsa;
769 }
770
771 /* Return the current allowed size of a remote packet. This is
772 inferred from the current architecture, and should be used to
773 limit the length of outgoing packets. */
774 static long
775 get_remote_packet_size (void)
776 {
777 struct remote_state *rs = get_remote_state ();
778 struct remote_arch_state *rsa = get_remote_arch_state ();
779
780 if (rs->explicit_packet_size)
781 return rs->explicit_packet_size;
782
783 return rsa->remote_packet_size;
784 }
785
786 static struct packet_reg *
787 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
788 {
789 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
790 return NULL;
791 else
792 {
793 struct packet_reg *r = &rsa->regs[regnum];
794
795 gdb_assert (r->regnum == regnum);
796 return r;
797 }
798 }
799
800 static struct packet_reg *
801 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
802 {
803 int i;
804
805 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
806 {
807 struct packet_reg *r = &rsa->regs[i];
808
809 if (r->pnum == pnum)
810 return r;
811 }
812 return NULL;
813 }
814
815 static struct target_ops remote_ops;
816
817 static struct target_ops extended_remote_ops;
818
819 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
820 ``forever'' still use the normal timeout mechanism. This is
821 currently used by the ASYNC code to guarentee that target reads
822 during the initial connect always time-out. Once getpkt has been
823 modified to return a timeout indication and, in turn
824 remote_wait()/wait_for_inferior() have gained a timeout parameter
825 this can go away. */
826 static int wait_forever_enabled_p = 1;
827
828 /* Allow the user to specify what sequence to send to the remote
829 when he requests a program interruption: Although ^C is usually
830 what remote systems expect (this is the default, here), it is
831 sometimes preferable to send a break. On other systems such
832 as the Linux kernel, a break followed by g, which is Magic SysRq g
833 is required in order to interrupt the execution. */
834 const char interrupt_sequence_control_c[] = "Ctrl-C";
835 const char interrupt_sequence_break[] = "BREAK";
836 const char interrupt_sequence_break_g[] = "BREAK-g";
837 static const char *const interrupt_sequence_modes[] =
838 {
839 interrupt_sequence_control_c,
840 interrupt_sequence_break,
841 interrupt_sequence_break_g,
842 NULL
843 };
844 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
845
846 static void
847 show_interrupt_sequence (struct ui_file *file, int from_tty,
848 struct cmd_list_element *c,
849 const char *value)
850 {
851 if (interrupt_sequence_mode == interrupt_sequence_control_c)
852 fprintf_filtered (file,
853 _("Send the ASCII ETX character (Ctrl-c) "
854 "to the remote target to interrupt the "
855 "execution of the program.\n"));
856 else if (interrupt_sequence_mode == interrupt_sequence_break)
857 fprintf_filtered (file,
858 _("send a break signal to the remote target "
859 "to interrupt the execution of the program.\n"));
860 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
861 fprintf_filtered (file,
862 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
863 "the remote target to interrupt the execution "
864 "of Linux kernel.\n"));
865 else
866 internal_error (__FILE__, __LINE__,
867 _("Invalid value for interrupt_sequence_mode: %s."),
868 interrupt_sequence_mode);
869 }
870
871 /* This boolean variable specifies whether interrupt_sequence is sent
872 to the remote target when gdb connects to it.
873 This is mostly needed when you debug the Linux kernel: The Linux kernel
874 expects BREAK g which is Magic SysRq g for connecting gdb. */
875 static int interrupt_on_connect = 0;
876
877 /* This variable is used to implement the "set/show remotebreak" commands.
878 Since these commands are now deprecated in favor of "set/show remote
879 interrupt-sequence", it no longer has any effect on the code. */
880 static int remote_break;
881
882 static void
883 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
884 {
885 if (remote_break)
886 interrupt_sequence_mode = interrupt_sequence_break;
887 else
888 interrupt_sequence_mode = interrupt_sequence_control_c;
889 }
890
891 static void
892 show_remotebreak (struct ui_file *file, int from_tty,
893 struct cmd_list_element *c,
894 const char *value)
895 {
896 }
897
898 /* This variable sets the number of bits in an address that are to be
899 sent in a memory ("M" or "m") packet. Normally, after stripping
900 leading zeros, the entire address would be sent. This variable
901 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
902 initial implementation of remote.c restricted the address sent in
903 memory packets to ``host::sizeof long'' bytes - (typically 32
904 bits). Consequently, for 64 bit targets, the upper 32 bits of an
905 address was never sent. Since fixing this bug may cause a break in
906 some remote targets this variable is principly provided to
907 facilitate backward compatibility. */
908
909 static unsigned int remote_address_size;
910
911 /* Temporary to track who currently owns the terminal. See
912 remote_terminal_* for more details. */
913
914 static int remote_async_terminal_ours_p;
915
916 /* The executable file to use for "run" on the remote side. */
917
918 static char *remote_exec_file = "";
919
920 \f
921 /* User configurable variables for the number of characters in a
922 memory read/write packet. MIN (rsa->remote_packet_size,
923 rsa->sizeof_g_packet) is the default. Some targets need smaller
924 values (fifo overruns, et.al.) and some users need larger values
925 (speed up transfers). The variables ``preferred_*'' (the user
926 request), ``current_*'' (what was actually set) and ``forced_*''
927 (Positive - a soft limit, negative - a hard limit). */
928
929 struct memory_packet_config
930 {
931 char *name;
932 long size;
933 int fixed_p;
934 };
935
936 /* Compute the current size of a read/write packet. Since this makes
937 use of ``actual_register_packet_size'' the computation is dynamic. */
938
939 static long
940 get_memory_packet_size (struct memory_packet_config *config)
941 {
942 struct remote_state *rs = get_remote_state ();
943 struct remote_arch_state *rsa = get_remote_arch_state ();
944
945 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
946 law?) that some hosts don't cope very well with large alloca()
947 calls. Eventually the alloca() code will be replaced by calls to
948 xmalloc() and make_cleanups() allowing this restriction to either
949 be lifted or removed. */
950 #ifndef MAX_REMOTE_PACKET_SIZE
951 #define MAX_REMOTE_PACKET_SIZE 16384
952 #endif
953 /* NOTE: 20 ensures we can write at least one byte. */
954 #ifndef MIN_REMOTE_PACKET_SIZE
955 #define MIN_REMOTE_PACKET_SIZE 20
956 #endif
957 long what_they_get;
958 if (config->fixed_p)
959 {
960 if (config->size <= 0)
961 what_they_get = MAX_REMOTE_PACKET_SIZE;
962 else
963 what_they_get = config->size;
964 }
965 else
966 {
967 what_they_get = get_remote_packet_size ();
968 /* Limit the packet to the size specified by the user. */
969 if (config->size > 0
970 && what_they_get > config->size)
971 what_they_get = config->size;
972
973 /* Limit it to the size of the targets ``g'' response unless we have
974 permission from the stub to use a larger packet size. */
975 if (rs->explicit_packet_size == 0
976 && rsa->actual_register_packet_size > 0
977 && what_they_get > rsa->actual_register_packet_size)
978 what_they_get = rsa->actual_register_packet_size;
979 }
980 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
981 what_they_get = MAX_REMOTE_PACKET_SIZE;
982 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
983 what_they_get = MIN_REMOTE_PACKET_SIZE;
984
985 /* Make sure there is room in the global buffer for this packet
986 (including its trailing NUL byte). */
987 if (rs->buf_size < what_they_get + 1)
988 {
989 rs->buf_size = 2 * what_they_get;
990 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
991 }
992
993 return what_they_get;
994 }
995
996 /* Update the size of a read/write packet. If they user wants
997 something really big then do a sanity check. */
998
999 static void
1000 set_memory_packet_size (char *args, struct memory_packet_config *config)
1001 {
1002 int fixed_p = config->fixed_p;
1003 long size = config->size;
1004
1005 if (args == NULL)
1006 error (_("Argument required (integer, `fixed' or `limited')."));
1007 else if (strcmp (args, "hard") == 0
1008 || strcmp (args, "fixed") == 0)
1009 fixed_p = 1;
1010 else if (strcmp (args, "soft") == 0
1011 || strcmp (args, "limit") == 0)
1012 fixed_p = 0;
1013 else
1014 {
1015 char *end;
1016
1017 size = strtoul (args, &end, 0);
1018 if (args == end)
1019 error (_("Invalid %s (bad syntax)."), config->name);
1020 #if 0
1021 /* Instead of explicitly capping the size of a packet to
1022 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1023 instead allowed to set the size to something arbitrarily
1024 large. */
1025 if (size > MAX_REMOTE_PACKET_SIZE)
1026 error (_("Invalid %s (too large)."), config->name);
1027 #endif
1028 }
1029 /* Extra checks? */
1030 if (fixed_p && !config->fixed_p)
1031 {
1032 if (! query (_("The target may not be able to correctly handle a %s\n"
1033 "of %ld bytes. Change the packet size? "),
1034 config->name, size))
1035 error (_("Packet size not changed."));
1036 }
1037 /* Update the config. */
1038 config->fixed_p = fixed_p;
1039 config->size = size;
1040 }
1041
1042 static void
1043 show_memory_packet_size (struct memory_packet_config *config)
1044 {
1045 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1046 if (config->fixed_p)
1047 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1048 get_memory_packet_size (config));
1049 else
1050 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1051 get_memory_packet_size (config));
1052 }
1053
1054 static struct memory_packet_config memory_write_packet_config =
1055 {
1056 "memory-write-packet-size",
1057 };
1058
1059 static void
1060 set_memory_write_packet_size (char *args, int from_tty)
1061 {
1062 set_memory_packet_size (args, &memory_write_packet_config);
1063 }
1064
1065 static void
1066 show_memory_write_packet_size (char *args, int from_tty)
1067 {
1068 show_memory_packet_size (&memory_write_packet_config);
1069 }
1070
1071 static long
1072 get_memory_write_packet_size (void)
1073 {
1074 return get_memory_packet_size (&memory_write_packet_config);
1075 }
1076
1077 static struct memory_packet_config memory_read_packet_config =
1078 {
1079 "memory-read-packet-size",
1080 };
1081
1082 static void
1083 set_memory_read_packet_size (char *args, int from_tty)
1084 {
1085 set_memory_packet_size (args, &memory_read_packet_config);
1086 }
1087
1088 static void
1089 show_memory_read_packet_size (char *args, int from_tty)
1090 {
1091 show_memory_packet_size (&memory_read_packet_config);
1092 }
1093
1094 static long
1095 get_memory_read_packet_size (void)
1096 {
1097 long size = get_memory_packet_size (&memory_read_packet_config);
1098
1099 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1100 extra buffer size argument before the memory read size can be
1101 increased beyond this. */
1102 if (size > get_remote_packet_size ())
1103 size = get_remote_packet_size ();
1104 return size;
1105 }
1106
1107 \f
1108 /* Generic configuration support for packets the stub optionally
1109 supports. Allows the user to specify the use of the packet as well
1110 as allowing GDB to auto-detect support in the remote stub. */
1111
1112 enum packet_support
1113 {
1114 PACKET_SUPPORT_UNKNOWN = 0,
1115 PACKET_ENABLE,
1116 PACKET_DISABLE
1117 };
1118
1119 struct packet_config
1120 {
1121 const char *name;
1122 const char *title;
1123 enum auto_boolean detect;
1124 enum packet_support support;
1125 };
1126
1127 /* Analyze a packet's return value and update the packet config
1128 accordingly. */
1129
1130 enum packet_result
1131 {
1132 PACKET_ERROR,
1133 PACKET_OK,
1134 PACKET_UNKNOWN
1135 };
1136
1137 static void
1138 update_packet_config (struct packet_config *config)
1139 {
1140 switch (config->detect)
1141 {
1142 case AUTO_BOOLEAN_TRUE:
1143 config->support = PACKET_ENABLE;
1144 break;
1145 case AUTO_BOOLEAN_FALSE:
1146 config->support = PACKET_DISABLE;
1147 break;
1148 case AUTO_BOOLEAN_AUTO:
1149 config->support = PACKET_SUPPORT_UNKNOWN;
1150 break;
1151 }
1152 }
1153
1154 static void
1155 show_packet_config_cmd (struct packet_config *config)
1156 {
1157 char *support = "internal-error";
1158
1159 switch (config->support)
1160 {
1161 case PACKET_ENABLE:
1162 support = "enabled";
1163 break;
1164 case PACKET_DISABLE:
1165 support = "disabled";
1166 break;
1167 case PACKET_SUPPORT_UNKNOWN:
1168 support = "unknown";
1169 break;
1170 }
1171 switch (config->detect)
1172 {
1173 case AUTO_BOOLEAN_AUTO:
1174 printf_filtered (_("Support for the `%s' packet "
1175 "is auto-detected, currently %s.\n"),
1176 config->name, support);
1177 break;
1178 case AUTO_BOOLEAN_TRUE:
1179 case AUTO_BOOLEAN_FALSE:
1180 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1181 config->name, support);
1182 break;
1183 }
1184 }
1185
1186 static void
1187 add_packet_config_cmd (struct packet_config *config, const char *name,
1188 const char *title, int legacy)
1189 {
1190 char *set_doc;
1191 char *show_doc;
1192 char *cmd_name;
1193
1194 config->name = name;
1195 config->title = title;
1196 config->detect = AUTO_BOOLEAN_AUTO;
1197 config->support = PACKET_SUPPORT_UNKNOWN;
1198 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1199 name, title);
1200 show_doc = xstrprintf ("Show current use of remote "
1201 "protocol `%s' (%s) packet",
1202 name, title);
1203 /* set/show TITLE-packet {auto,on,off} */
1204 cmd_name = xstrprintf ("%s-packet", title);
1205 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1206 &config->detect, set_doc,
1207 show_doc, NULL, /* help_doc */
1208 set_remote_protocol_packet_cmd,
1209 show_remote_protocol_packet_cmd,
1210 &remote_set_cmdlist, &remote_show_cmdlist);
1211 /* The command code copies the documentation strings. */
1212 xfree (set_doc);
1213 xfree (show_doc);
1214 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1215 if (legacy)
1216 {
1217 char *legacy_name;
1218
1219 legacy_name = xstrprintf ("%s-packet", name);
1220 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1221 &remote_set_cmdlist);
1222 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1223 &remote_show_cmdlist);
1224 }
1225 }
1226
1227 static enum packet_result
1228 packet_check_result (const char *buf)
1229 {
1230 if (buf[0] != '\0')
1231 {
1232 /* The stub recognized the packet request. Check that the
1233 operation succeeded. */
1234 if (buf[0] == 'E'
1235 && isxdigit (buf[1]) && isxdigit (buf[2])
1236 && buf[3] == '\0')
1237 /* "Enn" - definitly an error. */
1238 return PACKET_ERROR;
1239
1240 /* Always treat "E." as an error. This will be used for
1241 more verbose error messages, such as E.memtypes. */
1242 if (buf[0] == 'E' && buf[1] == '.')
1243 return PACKET_ERROR;
1244
1245 /* The packet may or may not be OK. Just assume it is. */
1246 return PACKET_OK;
1247 }
1248 else
1249 /* The stub does not support the packet. */
1250 return PACKET_UNKNOWN;
1251 }
1252
1253 static enum packet_result
1254 packet_ok (const char *buf, struct packet_config *config)
1255 {
1256 enum packet_result result;
1257
1258 result = packet_check_result (buf);
1259 switch (result)
1260 {
1261 case PACKET_OK:
1262 case PACKET_ERROR:
1263 /* The stub recognized the packet request. */
1264 switch (config->support)
1265 {
1266 case PACKET_SUPPORT_UNKNOWN:
1267 if (remote_debug)
1268 fprintf_unfiltered (gdb_stdlog,
1269 "Packet %s (%s) is supported\n",
1270 config->name, config->title);
1271 config->support = PACKET_ENABLE;
1272 break;
1273 case PACKET_DISABLE:
1274 internal_error (__FILE__, __LINE__,
1275 _("packet_ok: attempt to use a disabled packet"));
1276 break;
1277 case PACKET_ENABLE:
1278 break;
1279 }
1280 break;
1281 case PACKET_UNKNOWN:
1282 /* The stub does not support the packet. */
1283 switch (config->support)
1284 {
1285 case PACKET_ENABLE:
1286 if (config->detect == AUTO_BOOLEAN_AUTO)
1287 /* If the stub previously indicated that the packet was
1288 supported then there is a protocol error.. */
1289 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1290 config->name, config->title);
1291 else
1292 /* The user set it wrong. */
1293 error (_("Enabled packet %s (%s) not recognized by stub"),
1294 config->name, config->title);
1295 break;
1296 case PACKET_SUPPORT_UNKNOWN:
1297 if (remote_debug)
1298 fprintf_unfiltered (gdb_stdlog,
1299 "Packet %s (%s) is NOT supported\n",
1300 config->name, config->title);
1301 config->support = PACKET_DISABLE;
1302 break;
1303 case PACKET_DISABLE:
1304 break;
1305 }
1306 break;
1307 }
1308
1309 return result;
1310 }
1311
1312 enum {
1313 PACKET_vCont = 0,
1314 PACKET_X,
1315 PACKET_qSymbol,
1316 PACKET_P,
1317 PACKET_p,
1318 PACKET_Z0,
1319 PACKET_Z1,
1320 PACKET_Z2,
1321 PACKET_Z3,
1322 PACKET_Z4,
1323 PACKET_vFile_open,
1324 PACKET_vFile_pread,
1325 PACKET_vFile_pwrite,
1326 PACKET_vFile_close,
1327 PACKET_vFile_unlink,
1328 PACKET_vFile_readlink,
1329 PACKET_qXfer_auxv,
1330 PACKET_qXfer_features,
1331 PACKET_qXfer_libraries,
1332 PACKET_qXfer_libraries_svr4,
1333 PACKET_qXfer_memory_map,
1334 PACKET_qXfer_spu_read,
1335 PACKET_qXfer_spu_write,
1336 PACKET_qXfer_osdata,
1337 PACKET_qXfer_threads,
1338 PACKET_qXfer_statictrace_read,
1339 PACKET_qXfer_traceframe_info,
1340 PACKET_qXfer_uib,
1341 PACKET_qGetTIBAddr,
1342 PACKET_qGetTLSAddr,
1343 PACKET_qSupported,
1344 PACKET_qTStatus,
1345 PACKET_QPassSignals,
1346 PACKET_QProgramSignals,
1347 PACKET_qSearch_memory,
1348 PACKET_vAttach,
1349 PACKET_vRun,
1350 PACKET_QStartNoAckMode,
1351 PACKET_vKill,
1352 PACKET_qXfer_siginfo_read,
1353 PACKET_qXfer_siginfo_write,
1354 PACKET_qAttached,
1355 PACKET_ConditionalTracepoints,
1356 PACKET_ConditionalBreakpoints,
1357 PACKET_BreakpointCommands,
1358 PACKET_FastTracepoints,
1359 PACKET_StaticTracepoints,
1360 PACKET_InstallInTrace,
1361 PACKET_bc,
1362 PACKET_bs,
1363 PACKET_TracepointSource,
1364 PACKET_QAllow,
1365 PACKET_qXfer_fdpic,
1366 PACKET_QDisableRandomization,
1367 PACKET_QAgent,
1368 PACKET_QTBuffer_size,
1369 PACKET_Qbtrace_off,
1370 PACKET_Qbtrace_bts,
1371 PACKET_qXfer_btrace,
1372 PACKET_MAX
1373 };
1374
1375 static struct packet_config remote_protocol_packets[PACKET_MAX];
1376
1377 static void
1378 set_remote_protocol_packet_cmd (char *args, int from_tty,
1379 struct cmd_list_element *c)
1380 {
1381 struct packet_config *packet;
1382
1383 for (packet = remote_protocol_packets;
1384 packet < &remote_protocol_packets[PACKET_MAX];
1385 packet++)
1386 {
1387 if (&packet->detect == c->var)
1388 {
1389 update_packet_config (packet);
1390 return;
1391 }
1392 }
1393 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1394 c->name);
1395 }
1396
1397 static void
1398 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1399 struct cmd_list_element *c,
1400 const char *value)
1401 {
1402 struct packet_config *packet;
1403
1404 for (packet = remote_protocol_packets;
1405 packet < &remote_protocol_packets[PACKET_MAX];
1406 packet++)
1407 {
1408 if (&packet->detect == c->var)
1409 {
1410 show_packet_config_cmd (packet);
1411 return;
1412 }
1413 }
1414 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1415 c->name);
1416 }
1417
1418 /* Should we try one of the 'Z' requests? */
1419
1420 enum Z_packet_type
1421 {
1422 Z_PACKET_SOFTWARE_BP,
1423 Z_PACKET_HARDWARE_BP,
1424 Z_PACKET_WRITE_WP,
1425 Z_PACKET_READ_WP,
1426 Z_PACKET_ACCESS_WP,
1427 NR_Z_PACKET_TYPES
1428 };
1429
1430 /* For compatibility with older distributions. Provide a ``set remote
1431 Z-packet ...'' command that updates all the Z packet types. */
1432
1433 static enum auto_boolean remote_Z_packet_detect;
1434
1435 static void
1436 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1437 struct cmd_list_element *c)
1438 {
1439 int i;
1440
1441 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1442 {
1443 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1444 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1445 }
1446 }
1447
1448 static void
1449 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1450 struct cmd_list_element *c,
1451 const char *value)
1452 {
1453 int i;
1454
1455 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1456 {
1457 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1458 }
1459 }
1460
1461 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1462 static struct async_signal_handler *async_sigint_remote_twice_token;
1463 static struct async_signal_handler *async_sigint_remote_token;
1464
1465 \f
1466 /* Asynchronous signal handle registered as event loop source for
1467 when we have pending events ready to be passed to the core. */
1468
1469 static struct async_event_handler *remote_async_inferior_event_token;
1470
1471 \f
1472
1473 static ptid_t magic_null_ptid;
1474 static ptid_t not_sent_ptid;
1475 static ptid_t any_thread_ptid;
1476
1477 /* Find out if the stub attached to PID (and hence GDB should offer to
1478 detach instead of killing it when bailing out). */
1479
1480 static int
1481 remote_query_attached (int pid)
1482 {
1483 struct remote_state *rs = get_remote_state ();
1484 size_t size = get_remote_packet_size ();
1485
1486 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1487 return 0;
1488
1489 if (remote_multi_process_p (rs))
1490 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1491 else
1492 xsnprintf (rs->buf, size, "qAttached");
1493
1494 putpkt (rs->buf);
1495 getpkt (&rs->buf, &rs->buf_size, 0);
1496
1497 switch (packet_ok (rs->buf,
1498 &remote_protocol_packets[PACKET_qAttached]))
1499 {
1500 case PACKET_OK:
1501 if (strcmp (rs->buf, "1") == 0)
1502 return 1;
1503 break;
1504 case PACKET_ERROR:
1505 warning (_("Remote failure reply: %s"), rs->buf);
1506 break;
1507 case PACKET_UNKNOWN:
1508 break;
1509 }
1510
1511 return 0;
1512 }
1513
1514 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1515 has been invented by GDB, instead of reported by the target. Since
1516 we can be connected to a remote system before before knowing about
1517 any inferior, mark the target with execution when we find the first
1518 inferior. If ATTACHED is 1, then we had just attached to this
1519 inferior. If it is 0, then we just created this inferior. If it
1520 is -1, then try querying the remote stub to find out if it had
1521 attached to the inferior or not. */
1522
1523 static struct inferior *
1524 remote_add_inferior (int fake_pid_p, int pid, int attached)
1525 {
1526 struct inferior *inf;
1527
1528 /* Check whether this process we're learning about is to be
1529 considered attached, or if is to be considered to have been
1530 spawned by the stub. */
1531 if (attached == -1)
1532 attached = remote_query_attached (pid);
1533
1534 if (gdbarch_has_global_solist (target_gdbarch ()))
1535 {
1536 /* If the target shares code across all inferiors, then every
1537 attach adds a new inferior. */
1538 inf = add_inferior (pid);
1539
1540 /* ... and every inferior is bound to the same program space.
1541 However, each inferior may still have its own address
1542 space. */
1543 inf->aspace = maybe_new_address_space ();
1544 inf->pspace = current_program_space;
1545 }
1546 else
1547 {
1548 /* In the traditional debugging scenario, there's a 1-1 match
1549 between program/address spaces. We simply bind the inferior
1550 to the program space's address space. */
1551 inf = current_inferior ();
1552 inferior_appeared (inf, pid);
1553 }
1554
1555 inf->attach_flag = attached;
1556 inf->fake_pid_p = fake_pid_p;
1557
1558 return inf;
1559 }
1560
1561 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1562 according to RUNNING. */
1563
1564 static void
1565 remote_add_thread (ptid_t ptid, int running)
1566 {
1567 add_thread (ptid);
1568
1569 set_executing (ptid, running);
1570 set_running (ptid, running);
1571 }
1572
1573 /* Come here when we learn about a thread id from the remote target.
1574 It may be the first time we hear about such thread, so take the
1575 opportunity to add it to GDB's thread list. In case this is the
1576 first time we're noticing its corresponding inferior, add it to
1577 GDB's inferior list as well. */
1578
1579 static void
1580 remote_notice_new_inferior (ptid_t currthread, int running)
1581 {
1582 /* If this is a new thread, add it to GDB's thread list.
1583 If we leave it up to WFI to do this, bad things will happen. */
1584
1585 if (in_thread_list (currthread) && is_exited (currthread))
1586 {
1587 /* We're seeing an event on a thread id we knew had exited.
1588 This has to be a new thread reusing the old id. Add it. */
1589 remote_add_thread (currthread, running);
1590 return;
1591 }
1592
1593 if (!in_thread_list (currthread))
1594 {
1595 struct inferior *inf = NULL;
1596 int pid = ptid_get_pid (currthread);
1597
1598 if (ptid_is_pid (inferior_ptid)
1599 && pid == ptid_get_pid (inferior_ptid))
1600 {
1601 /* inferior_ptid has no thread member yet. This can happen
1602 with the vAttach -> remote_wait,"TAAthread:" path if the
1603 stub doesn't support qC. This is the first stop reported
1604 after an attach, so this is the main thread. Update the
1605 ptid in the thread list. */
1606 if (in_thread_list (pid_to_ptid (pid)))
1607 thread_change_ptid (inferior_ptid, currthread);
1608 else
1609 {
1610 remote_add_thread (currthread, running);
1611 inferior_ptid = currthread;
1612 }
1613 return;
1614 }
1615
1616 if (ptid_equal (magic_null_ptid, inferior_ptid))
1617 {
1618 /* inferior_ptid is not set yet. This can happen with the
1619 vRun -> remote_wait,"TAAthread:" path if the stub
1620 doesn't support qC. This is the first stop reported
1621 after an attach, so this is the main thread. Update the
1622 ptid in the thread list. */
1623 thread_change_ptid (inferior_ptid, currthread);
1624 return;
1625 }
1626
1627 /* When connecting to a target remote, or to a target
1628 extended-remote which already was debugging an inferior, we
1629 may not know about it yet. Add it before adding its child
1630 thread, so notifications are emitted in a sensible order. */
1631 if (!in_inferior_list (ptid_get_pid (currthread)))
1632 {
1633 struct remote_state *rs = get_remote_state ();
1634 int fake_pid_p = !remote_multi_process_p (rs);
1635
1636 inf = remote_add_inferior (fake_pid_p,
1637 ptid_get_pid (currthread), -1);
1638 }
1639
1640 /* This is really a new thread. Add it. */
1641 remote_add_thread (currthread, running);
1642
1643 /* If we found a new inferior, let the common code do whatever
1644 it needs to with it (e.g., read shared libraries, insert
1645 breakpoints). */
1646 if (inf != NULL)
1647 notice_new_inferior (currthread, running, 0);
1648 }
1649 }
1650
1651 /* Return the private thread data, creating it if necessary. */
1652
1653 static struct private_thread_info *
1654 demand_private_info (ptid_t ptid)
1655 {
1656 struct thread_info *info = find_thread_ptid (ptid);
1657
1658 gdb_assert (info);
1659
1660 if (!info->private)
1661 {
1662 info->private = xmalloc (sizeof (*(info->private)));
1663 info->private_dtor = free_private_thread_info;
1664 info->private->core = -1;
1665 info->private->extra = 0;
1666 }
1667
1668 return info->private;
1669 }
1670
1671 /* Call this function as a result of
1672 1) A halt indication (T packet) containing a thread id
1673 2) A direct query of currthread
1674 3) Successful execution of set thread */
1675
1676 static void
1677 record_currthread (struct remote_state *rs, ptid_t currthread)
1678 {
1679 rs->general_thread = currthread;
1680 }
1681
1682 /* If 'QPassSignals' is supported, tell the remote stub what signals
1683 it can simply pass through to the inferior without reporting. */
1684
1685 static void
1686 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1687 {
1688 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1689 {
1690 char *pass_packet, *p;
1691 int count = 0, i;
1692 struct remote_state *rs = get_remote_state ();
1693
1694 gdb_assert (numsigs < 256);
1695 for (i = 0; i < numsigs; i++)
1696 {
1697 if (pass_signals[i])
1698 count++;
1699 }
1700 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1701 strcpy (pass_packet, "QPassSignals:");
1702 p = pass_packet + strlen (pass_packet);
1703 for (i = 0; i < numsigs; i++)
1704 {
1705 if (pass_signals[i])
1706 {
1707 if (i >= 16)
1708 *p++ = tohex (i >> 4);
1709 *p++ = tohex (i & 15);
1710 if (count)
1711 *p++ = ';';
1712 else
1713 break;
1714 count--;
1715 }
1716 }
1717 *p = 0;
1718 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1719 {
1720 char *buf = rs->buf;
1721
1722 putpkt (pass_packet);
1723 getpkt (&rs->buf, &rs->buf_size, 0);
1724 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1725 if (rs->last_pass_packet)
1726 xfree (rs->last_pass_packet);
1727 rs->last_pass_packet = pass_packet;
1728 }
1729 else
1730 xfree (pass_packet);
1731 }
1732 }
1733
1734 /* If 'QProgramSignals' is supported, tell the remote stub what
1735 signals it should pass through to the inferior when detaching. */
1736
1737 static void
1738 remote_program_signals (int numsigs, unsigned char *signals)
1739 {
1740 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1741 {
1742 char *packet, *p;
1743 int count = 0, i;
1744 struct remote_state *rs = get_remote_state ();
1745
1746 gdb_assert (numsigs < 256);
1747 for (i = 0; i < numsigs; i++)
1748 {
1749 if (signals[i])
1750 count++;
1751 }
1752 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1753 strcpy (packet, "QProgramSignals:");
1754 p = packet + strlen (packet);
1755 for (i = 0; i < numsigs; i++)
1756 {
1757 if (signal_pass_state (i))
1758 {
1759 if (i >= 16)
1760 *p++ = tohex (i >> 4);
1761 *p++ = tohex (i & 15);
1762 if (count)
1763 *p++ = ';';
1764 else
1765 break;
1766 count--;
1767 }
1768 }
1769 *p = 0;
1770 if (!rs->last_program_signals_packet
1771 || strcmp (rs->last_program_signals_packet, packet) != 0)
1772 {
1773 char *buf = rs->buf;
1774
1775 putpkt (packet);
1776 getpkt (&rs->buf, &rs->buf_size, 0);
1777 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1778 xfree (rs->last_program_signals_packet);
1779 rs->last_program_signals_packet = packet;
1780 }
1781 else
1782 xfree (packet);
1783 }
1784 }
1785
1786 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1787 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1788 thread. If GEN is set, set the general thread, if not, then set
1789 the step/continue thread. */
1790 static void
1791 set_thread (struct ptid ptid, int gen)
1792 {
1793 struct remote_state *rs = get_remote_state ();
1794 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1795 char *buf = rs->buf;
1796 char *endbuf = rs->buf + get_remote_packet_size ();
1797
1798 if (ptid_equal (state, ptid))
1799 return;
1800
1801 *buf++ = 'H';
1802 *buf++ = gen ? 'g' : 'c';
1803 if (ptid_equal (ptid, magic_null_ptid))
1804 xsnprintf (buf, endbuf - buf, "0");
1805 else if (ptid_equal (ptid, any_thread_ptid))
1806 xsnprintf (buf, endbuf - buf, "0");
1807 else if (ptid_equal (ptid, minus_one_ptid))
1808 xsnprintf (buf, endbuf - buf, "-1");
1809 else
1810 write_ptid (buf, endbuf, ptid);
1811 putpkt (rs->buf);
1812 getpkt (&rs->buf, &rs->buf_size, 0);
1813 if (gen)
1814 rs->general_thread = ptid;
1815 else
1816 rs->continue_thread = ptid;
1817 }
1818
1819 static void
1820 set_general_thread (struct ptid ptid)
1821 {
1822 set_thread (ptid, 1);
1823 }
1824
1825 static void
1826 set_continue_thread (struct ptid ptid)
1827 {
1828 set_thread (ptid, 0);
1829 }
1830
1831 /* Change the remote current process. Which thread within the process
1832 ends up selected isn't important, as long as it is the same process
1833 as what INFERIOR_PTID points to.
1834
1835 This comes from that fact that there is no explicit notion of
1836 "selected process" in the protocol. The selected process for
1837 general operations is the process the selected general thread
1838 belongs to. */
1839
1840 static void
1841 set_general_process (void)
1842 {
1843 struct remote_state *rs = get_remote_state ();
1844
1845 /* If the remote can't handle multiple processes, don't bother. */
1846 if (!rs->extended || !remote_multi_process_p (rs))
1847 return;
1848
1849 /* We only need to change the remote current thread if it's pointing
1850 at some other process. */
1851 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1852 set_general_thread (inferior_ptid);
1853 }
1854
1855 \f
1856 /* Return nonzero if the thread PTID is still alive on the remote
1857 system. */
1858
1859 static int
1860 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1861 {
1862 struct remote_state *rs = get_remote_state ();
1863 char *p, *endp;
1864
1865 if (ptid_equal (ptid, magic_null_ptid))
1866 /* The main thread is always alive. */
1867 return 1;
1868
1869 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1870 /* The main thread is always alive. This can happen after a
1871 vAttach, if the remote side doesn't support
1872 multi-threading. */
1873 return 1;
1874
1875 p = rs->buf;
1876 endp = rs->buf + get_remote_packet_size ();
1877
1878 *p++ = 'T';
1879 write_ptid (p, endp, ptid);
1880
1881 putpkt (rs->buf);
1882 getpkt (&rs->buf, &rs->buf_size, 0);
1883 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1884 }
1885
1886 /* About these extended threadlist and threadinfo packets. They are
1887 variable length packets but, the fields within them are often fixed
1888 length. They are redundent enough to send over UDP as is the
1889 remote protocol in general. There is a matching unit test module
1890 in libstub. */
1891
1892 /* WARNING: This threadref data structure comes from the remote O.S.,
1893 libstub protocol encoding, and remote.c. It is not particularly
1894 changable. */
1895
1896 /* Right now, the internal structure is int. We want it to be bigger.
1897 Plan to fix this. */
1898
1899 typedef int gdb_threadref; /* Internal GDB thread reference. */
1900
1901 /* gdb_ext_thread_info is an internal GDB data structure which is
1902 equivalent to the reply of the remote threadinfo packet. */
1903
1904 struct gdb_ext_thread_info
1905 {
1906 threadref threadid; /* External form of thread reference. */
1907 int active; /* Has state interesting to GDB?
1908 regs, stack. */
1909 char display[256]; /* Brief state display, name,
1910 blocked/suspended. */
1911 char shortname[32]; /* To be used to name threads. */
1912 char more_display[256]; /* Long info, statistics, queue depth,
1913 whatever. */
1914 };
1915
1916 /* The volume of remote transfers can be limited by submitting
1917 a mask containing bits specifying the desired information.
1918 Use a union of these values as the 'selection' parameter to
1919 get_thread_info. FIXME: Make these TAG names more thread specific. */
1920
1921 #define TAG_THREADID 1
1922 #define TAG_EXISTS 2
1923 #define TAG_DISPLAY 4
1924 #define TAG_THREADNAME 8
1925 #define TAG_MOREDISPLAY 16
1926
1927 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1928
1929 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1930
1931 static char *unpack_nibble (char *buf, int *val);
1932
1933 static char *pack_nibble (char *buf, int nibble);
1934
1935 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1936
1937 static char *unpack_byte (char *buf, int *value);
1938
1939 static char *pack_int (char *buf, int value);
1940
1941 static char *unpack_int (char *buf, int *value);
1942
1943 static char *unpack_string (char *src, char *dest, int length);
1944
1945 static char *pack_threadid (char *pkt, threadref *id);
1946
1947 static char *unpack_threadid (char *inbuf, threadref *id);
1948
1949 void int_to_threadref (threadref *id, int value);
1950
1951 static int threadref_to_int (threadref *ref);
1952
1953 static void copy_threadref (threadref *dest, threadref *src);
1954
1955 static int threadmatch (threadref *dest, threadref *src);
1956
1957 static char *pack_threadinfo_request (char *pkt, int mode,
1958 threadref *id);
1959
1960 static int remote_unpack_thread_info_response (char *pkt,
1961 threadref *expectedref,
1962 struct gdb_ext_thread_info
1963 *info);
1964
1965
1966 static int remote_get_threadinfo (threadref *threadid,
1967 int fieldset, /*TAG mask */
1968 struct gdb_ext_thread_info *info);
1969
1970 static char *pack_threadlist_request (char *pkt, int startflag,
1971 int threadcount,
1972 threadref *nextthread);
1973
1974 static int parse_threadlist_response (char *pkt,
1975 int result_limit,
1976 threadref *original_echo,
1977 threadref *resultlist,
1978 int *doneflag);
1979
1980 static int remote_get_threadlist (int startflag,
1981 threadref *nextthread,
1982 int result_limit,
1983 int *done,
1984 int *result_count,
1985 threadref *threadlist);
1986
1987 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1988
1989 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1990 void *context, int looplimit);
1991
1992 static int remote_newthread_step (threadref *ref, void *context);
1993
1994
1995 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1996 buffer we're allowed to write to. Returns
1997 BUF+CHARACTERS_WRITTEN. */
1998
1999 static char *
2000 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2001 {
2002 int pid, tid;
2003 struct remote_state *rs = get_remote_state ();
2004
2005 if (remote_multi_process_p (rs))
2006 {
2007 pid = ptid_get_pid (ptid);
2008 if (pid < 0)
2009 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2010 else
2011 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2012 }
2013 tid = ptid_get_tid (ptid);
2014 if (tid < 0)
2015 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2016 else
2017 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2018
2019 return buf;
2020 }
2021
2022 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2023 passed the last parsed char. Returns null_ptid on error. */
2024
2025 static ptid_t
2026 read_ptid (char *buf, char **obuf)
2027 {
2028 char *p = buf;
2029 char *pp;
2030 ULONGEST pid = 0, tid = 0;
2031
2032 if (*p == 'p')
2033 {
2034 /* Multi-process ptid. */
2035 pp = unpack_varlen_hex (p + 1, &pid);
2036 if (*pp != '.')
2037 error (_("invalid remote ptid: %s"), p);
2038
2039 p = pp;
2040 pp = unpack_varlen_hex (p + 1, &tid);
2041 if (obuf)
2042 *obuf = pp;
2043 return ptid_build (pid, 0, tid);
2044 }
2045
2046 /* No multi-process. Just a tid. */
2047 pp = unpack_varlen_hex (p, &tid);
2048
2049 /* Since the stub is not sending a process id, then default to
2050 what's in inferior_ptid, unless it's null at this point. If so,
2051 then since there's no way to know the pid of the reported
2052 threads, use the magic number. */
2053 if (ptid_equal (inferior_ptid, null_ptid))
2054 pid = ptid_get_pid (magic_null_ptid);
2055 else
2056 pid = ptid_get_pid (inferior_ptid);
2057
2058 if (obuf)
2059 *obuf = pp;
2060 return ptid_build (pid, 0, tid);
2061 }
2062
2063 /* Encode 64 bits in 16 chars of hex. */
2064
2065 static const char hexchars[] = "0123456789abcdef";
2066
2067 static int
2068 ishex (int ch, int *val)
2069 {
2070 if ((ch >= 'a') && (ch <= 'f'))
2071 {
2072 *val = ch - 'a' + 10;
2073 return 1;
2074 }
2075 if ((ch >= 'A') && (ch <= 'F'))
2076 {
2077 *val = ch - 'A' + 10;
2078 return 1;
2079 }
2080 if ((ch >= '0') && (ch <= '9'))
2081 {
2082 *val = ch - '0';
2083 return 1;
2084 }
2085 return 0;
2086 }
2087
2088 static int
2089 stubhex (int ch)
2090 {
2091 if (ch >= 'a' && ch <= 'f')
2092 return ch - 'a' + 10;
2093 if (ch >= '0' && ch <= '9')
2094 return ch - '0';
2095 if (ch >= 'A' && ch <= 'F')
2096 return ch - 'A' + 10;
2097 return -1;
2098 }
2099
2100 static int
2101 stub_unpack_int (char *buff, int fieldlength)
2102 {
2103 int nibble;
2104 int retval = 0;
2105
2106 while (fieldlength)
2107 {
2108 nibble = stubhex (*buff++);
2109 retval |= nibble;
2110 fieldlength--;
2111 if (fieldlength)
2112 retval = retval << 4;
2113 }
2114 return retval;
2115 }
2116
2117 char *
2118 unpack_varlen_hex (char *buff, /* packet to parse */
2119 ULONGEST *result)
2120 {
2121 int nibble;
2122 ULONGEST retval = 0;
2123
2124 while (ishex (*buff, &nibble))
2125 {
2126 buff++;
2127 retval = retval << 4;
2128 retval |= nibble & 0x0f;
2129 }
2130 *result = retval;
2131 return buff;
2132 }
2133
2134 static char *
2135 unpack_nibble (char *buf, int *val)
2136 {
2137 *val = fromhex (*buf++);
2138 return buf;
2139 }
2140
2141 static char *
2142 pack_nibble (char *buf, int nibble)
2143 {
2144 *buf++ = hexchars[(nibble & 0x0f)];
2145 return buf;
2146 }
2147
2148 static char *
2149 pack_hex_byte (char *pkt, int byte)
2150 {
2151 *pkt++ = hexchars[(byte >> 4) & 0xf];
2152 *pkt++ = hexchars[(byte & 0xf)];
2153 return pkt;
2154 }
2155
2156 static char *
2157 unpack_byte (char *buf, int *value)
2158 {
2159 *value = stub_unpack_int (buf, 2);
2160 return buf + 2;
2161 }
2162
2163 static char *
2164 pack_int (char *buf, int value)
2165 {
2166 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2167 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2168 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2169 buf = pack_hex_byte (buf, (value & 0xff));
2170 return buf;
2171 }
2172
2173 static char *
2174 unpack_int (char *buf, int *value)
2175 {
2176 *value = stub_unpack_int (buf, 8);
2177 return buf + 8;
2178 }
2179
2180 #if 0 /* Currently unused, uncomment when needed. */
2181 static char *pack_string (char *pkt, char *string);
2182
2183 static char *
2184 pack_string (char *pkt, char *string)
2185 {
2186 char ch;
2187 int len;
2188
2189 len = strlen (string);
2190 if (len > 200)
2191 len = 200; /* Bigger than most GDB packets, junk??? */
2192 pkt = pack_hex_byte (pkt, len);
2193 while (len-- > 0)
2194 {
2195 ch = *string++;
2196 if ((ch == '\0') || (ch == '#'))
2197 ch = '*'; /* Protect encapsulation. */
2198 *pkt++ = ch;
2199 }
2200 return pkt;
2201 }
2202 #endif /* 0 (unused) */
2203
2204 static char *
2205 unpack_string (char *src, char *dest, int length)
2206 {
2207 while (length--)
2208 *dest++ = *src++;
2209 *dest = '\0';
2210 return src;
2211 }
2212
2213 static char *
2214 pack_threadid (char *pkt, threadref *id)
2215 {
2216 char *limit;
2217 unsigned char *altid;
2218
2219 altid = (unsigned char *) id;
2220 limit = pkt + BUF_THREAD_ID_SIZE;
2221 while (pkt < limit)
2222 pkt = pack_hex_byte (pkt, *altid++);
2223 return pkt;
2224 }
2225
2226
2227 static char *
2228 unpack_threadid (char *inbuf, threadref *id)
2229 {
2230 char *altref;
2231 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2232 int x, y;
2233
2234 altref = (char *) id;
2235
2236 while (inbuf < limit)
2237 {
2238 x = stubhex (*inbuf++);
2239 y = stubhex (*inbuf++);
2240 *altref++ = (x << 4) | y;
2241 }
2242 return inbuf;
2243 }
2244
2245 /* Externally, threadrefs are 64 bits but internally, they are still
2246 ints. This is due to a mismatch of specifications. We would like
2247 to use 64bit thread references internally. This is an adapter
2248 function. */
2249
2250 void
2251 int_to_threadref (threadref *id, int value)
2252 {
2253 unsigned char *scan;
2254
2255 scan = (unsigned char *) id;
2256 {
2257 int i = 4;
2258 while (i--)
2259 *scan++ = 0;
2260 }
2261 *scan++ = (value >> 24) & 0xff;
2262 *scan++ = (value >> 16) & 0xff;
2263 *scan++ = (value >> 8) & 0xff;
2264 *scan++ = (value & 0xff);
2265 }
2266
2267 static int
2268 threadref_to_int (threadref *ref)
2269 {
2270 int i, value = 0;
2271 unsigned char *scan;
2272
2273 scan = *ref;
2274 scan += 4;
2275 i = 4;
2276 while (i-- > 0)
2277 value = (value << 8) | ((*scan++) & 0xff);
2278 return value;
2279 }
2280
2281 static void
2282 copy_threadref (threadref *dest, threadref *src)
2283 {
2284 int i;
2285 unsigned char *csrc, *cdest;
2286
2287 csrc = (unsigned char *) src;
2288 cdest = (unsigned char *) dest;
2289 i = 8;
2290 while (i--)
2291 *cdest++ = *csrc++;
2292 }
2293
2294 static int
2295 threadmatch (threadref *dest, threadref *src)
2296 {
2297 /* Things are broken right now, so just assume we got a match. */
2298 #if 0
2299 unsigned char *srcp, *destp;
2300 int i, result;
2301 srcp = (char *) src;
2302 destp = (char *) dest;
2303
2304 result = 1;
2305 while (i-- > 0)
2306 result &= (*srcp++ == *destp++) ? 1 : 0;
2307 return result;
2308 #endif
2309 return 1;
2310 }
2311
2312 /*
2313 threadid:1, # always request threadid
2314 context_exists:2,
2315 display:4,
2316 unique_name:8,
2317 more_display:16
2318 */
2319
2320 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2321
2322 static char *
2323 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2324 {
2325 *pkt++ = 'q'; /* Info Query */
2326 *pkt++ = 'P'; /* process or thread info */
2327 pkt = pack_int (pkt, mode); /* mode */
2328 pkt = pack_threadid (pkt, id); /* threadid */
2329 *pkt = '\0'; /* terminate */
2330 return pkt;
2331 }
2332
2333 /* These values tag the fields in a thread info response packet. */
2334 /* Tagging the fields allows us to request specific fields and to
2335 add more fields as time goes by. */
2336
2337 #define TAG_THREADID 1 /* Echo the thread identifier. */
2338 #define TAG_EXISTS 2 /* Is this process defined enough to
2339 fetch registers and its stack? */
2340 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2341 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2342 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2343 the process. */
2344
2345 static int
2346 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2347 struct gdb_ext_thread_info *info)
2348 {
2349 struct remote_state *rs = get_remote_state ();
2350 int mask, length;
2351 int tag;
2352 threadref ref;
2353 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2354 int retval = 1;
2355
2356 /* info->threadid = 0; FIXME: implement zero_threadref. */
2357 info->active = 0;
2358 info->display[0] = '\0';
2359 info->shortname[0] = '\0';
2360 info->more_display[0] = '\0';
2361
2362 /* Assume the characters indicating the packet type have been
2363 stripped. */
2364 pkt = unpack_int (pkt, &mask); /* arg mask */
2365 pkt = unpack_threadid (pkt, &ref);
2366
2367 if (mask == 0)
2368 warning (_("Incomplete response to threadinfo request."));
2369 if (!threadmatch (&ref, expectedref))
2370 { /* This is an answer to a different request. */
2371 warning (_("ERROR RMT Thread info mismatch."));
2372 return 0;
2373 }
2374 copy_threadref (&info->threadid, &ref);
2375
2376 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2377
2378 /* Packets are terminated with nulls. */
2379 while ((pkt < limit) && mask && *pkt)
2380 {
2381 pkt = unpack_int (pkt, &tag); /* tag */
2382 pkt = unpack_byte (pkt, &length); /* length */
2383 if (!(tag & mask)) /* Tags out of synch with mask. */
2384 {
2385 warning (_("ERROR RMT: threadinfo tag mismatch."));
2386 retval = 0;
2387 break;
2388 }
2389 if (tag == TAG_THREADID)
2390 {
2391 if (length != 16)
2392 {
2393 warning (_("ERROR RMT: length of threadid is not 16."));
2394 retval = 0;
2395 break;
2396 }
2397 pkt = unpack_threadid (pkt, &ref);
2398 mask = mask & ~TAG_THREADID;
2399 continue;
2400 }
2401 if (tag == TAG_EXISTS)
2402 {
2403 info->active = stub_unpack_int (pkt, length);
2404 pkt += length;
2405 mask = mask & ~(TAG_EXISTS);
2406 if (length > 8)
2407 {
2408 warning (_("ERROR RMT: 'exists' length too long."));
2409 retval = 0;
2410 break;
2411 }
2412 continue;
2413 }
2414 if (tag == TAG_THREADNAME)
2415 {
2416 pkt = unpack_string (pkt, &info->shortname[0], length);
2417 mask = mask & ~TAG_THREADNAME;
2418 continue;
2419 }
2420 if (tag == TAG_DISPLAY)
2421 {
2422 pkt = unpack_string (pkt, &info->display[0], length);
2423 mask = mask & ~TAG_DISPLAY;
2424 continue;
2425 }
2426 if (tag == TAG_MOREDISPLAY)
2427 {
2428 pkt = unpack_string (pkt, &info->more_display[0], length);
2429 mask = mask & ~TAG_MOREDISPLAY;
2430 continue;
2431 }
2432 warning (_("ERROR RMT: unknown thread info tag."));
2433 break; /* Not a tag we know about. */
2434 }
2435 return retval;
2436 }
2437
2438 static int
2439 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2440 struct gdb_ext_thread_info *info)
2441 {
2442 struct remote_state *rs = get_remote_state ();
2443 int result;
2444
2445 pack_threadinfo_request (rs->buf, fieldset, threadid);
2446 putpkt (rs->buf);
2447 getpkt (&rs->buf, &rs->buf_size, 0);
2448
2449 if (rs->buf[0] == '\0')
2450 return 0;
2451
2452 result = remote_unpack_thread_info_response (rs->buf + 2,
2453 threadid, info);
2454 return result;
2455 }
2456
2457 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2458
2459 static char *
2460 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2461 threadref *nextthread)
2462 {
2463 *pkt++ = 'q'; /* info query packet */
2464 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2465 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2466 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2467 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2468 *pkt = '\0';
2469 return pkt;
2470 }
2471
2472 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2473
2474 static int
2475 parse_threadlist_response (char *pkt, int result_limit,
2476 threadref *original_echo, threadref *resultlist,
2477 int *doneflag)
2478 {
2479 struct remote_state *rs = get_remote_state ();
2480 char *limit;
2481 int count, resultcount, done;
2482
2483 resultcount = 0;
2484 /* Assume the 'q' and 'M chars have been stripped. */
2485 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2486 /* done parse past here */
2487 pkt = unpack_byte (pkt, &count); /* count field */
2488 pkt = unpack_nibble (pkt, &done);
2489 /* The first threadid is the argument threadid. */
2490 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2491 while ((count-- > 0) && (pkt < limit))
2492 {
2493 pkt = unpack_threadid (pkt, resultlist++);
2494 if (resultcount++ >= result_limit)
2495 break;
2496 }
2497 if (doneflag)
2498 *doneflag = done;
2499 return resultcount;
2500 }
2501
2502 static int
2503 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2504 int *done, int *result_count, threadref *threadlist)
2505 {
2506 struct remote_state *rs = get_remote_state ();
2507 int result = 1;
2508
2509 /* Trancate result limit to be smaller than the packet size. */
2510 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2511 >= get_remote_packet_size ())
2512 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2513
2514 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2515 putpkt (rs->buf);
2516 getpkt (&rs->buf, &rs->buf_size, 0);
2517
2518 if (*rs->buf == '\0')
2519 return 0;
2520 else
2521 *result_count =
2522 parse_threadlist_response (rs->buf + 2, result_limit,
2523 &rs->echo_nextthread, threadlist, done);
2524
2525 if (!threadmatch (&rs->echo_nextthread, nextthread))
2526 {
2527 /* FIXME: This is a good reason to drop the packet. */
2528 /* Possably, there is a duplicate response. */
2529 /* Possabilities :
2530 retransmit immediatly - race conditions
2531 retransmit after timeout - yes
2532 exit
2533 wait for packet, then exit
2534 */
2535 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2536 return 0; /* I choose simply exiting. */
2537 }
2538 if (*result_count <= 0)
2539 {
2540 if (*done != 1)
2541 {
2542 warning (_("RMT ERROR : failed to get remote thread list."));
2543 result = 0;
2544 }
2545 return result; /* break; */
2546 }
2547 if (*result_count > result_limit)
2548 {
2549 *result_count = 0;
2550 warning (_("RMT ERROR: threadlist response longer than requested."));
2551 return 0;
2552 }
2553 return result;
2554 }
2555
2556 /* This is the interface between remote and threads, remotes upper
2557 interface. */
2558
2559 /* remote_find_new_threads retrieves the thread list and for each
2560 thread in the list, looks up the thread in GDB's internal list,
2561 adding the thread if it does not already exist. This involves
2562 getting partial thread lists from the remote target so, polling the
2563 quit_flag is required. */
2564
2565
2566 static int
2567 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2568 int looplimit)
2569 {
2570 struct remote_state *rs = get_remote_state ();
2571 int done, i, result_count;
2572 int startflag = 1;
2573 int result = 1;
2574 int loopcount = 0;
2575
2576 done = 0;
2577 while (!done)
2578 {
2579 if (loopcount++ > looplimit)
2580 {
2581 result = 0;
2582 warning (_("Remote fetch threadlist -infinite loop-."));
2583 break;
2584 }
2585 if (!remote_get_threadlist (startflag, &rs->nextthread,
2586 MAXTHREADLISTRESULTS,
2587 &done, &result_count, rs->resultthreadlist))
2588 {
2589 result = 0;
2590 break;
2591 }
2592 /* Clear for later iterations. */
2593 startflag = 0;
2594 /* Setup to resume next batch of thread references, set nextthread. */
2595 if (result_count >= 1)
2596 copy_threadref (&rs->nextthread,
2597 &rs->resultthreadlist[result_count - 1]);
2598 i = 0;
2599 while (result_count--)
2600 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2601 break;
2602 }
2603 return result;
2604 }
2605
2606 static int
2607 remote_newthread_step (threadref *ref, void *context)
2608 {
2609 int pid = ptid_get_pid (inferior_ptid);
2610 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2611
2612 if (!in_thread_list (ptid))
2613 add_thread (ptid);
2614 return 1; /* continue iterator */
2615 }
2616
2617 #define CRAZY_MAX_THREADS 1000
2618
2619 static ptid_t
2620 remote_current_thread (ptid_t oldpid)
2621 {
2622 struct remote_state *rs = get_remote_state ();
2623
2624 putpkt ("qC");
2625 getpkt (&rs->buf, &rs->buf_size, 0);
2626 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2627 return read_ptid (&rs->buf[2], NULL);
2628 else
2629 return oldpid;
2630 }
2631
2632 /* Find new threads for info threads command.
2633 * Original version, using John Metzler's thread protocol.
2634 */
2635
2636 static void
2637 remote_find_new_threads (void)
2638 {
2639 remote_threadlist_iterator (remote_newthread_step, 0,
2640 CRAZY_MAX_THREADS);
2641 }
2642
2643 #if defined(HAVE_LIBEXPAT)
2644
2645 typedef struct thread_item
2646 {
2647 ptid_t ptid;
2648 char *extra;
2649 int core;
2650 } thread_item_t;
2651 DEF_VEC_O(thread_item_t);
2652
2653 struct threads_parsing_context
2654 {
2655 VEC (thread_item_t) *items;
2656 };
2657
2658 static void
2659 start_thread (struct gdb_xml_parser *parser,
2660 const struct gdb_xml_element *element,
2661 void *user_data, VEC(gdb_xml_value_s) *attributes)
2662 {
2663 struct threads_parsing_context *data = user_data;
2664
2665 struct thread_item item;
2666 char *id;
2667 struct gdb_xml_value *attr;
2668
2669 id = xml_find_attribute (attributes, "id")->value;
2670 item.ptid = read_ptid (id, NULL);
2671
2672 attr = xml_find_attribute (attributes, "core");
2673 if (attr != NULL)
2674 item.core = *(ULONGEST *) attr->value;
2675 else
2676 item.core = -1;
2677
2678 item.extra = 0;
2679
2680 VEC_safe_push (thread_item_t, data->items, &item);
2681 }
2682
2683 static void
2684 end_thread (struct gdb_xml_parser *parser,
2685 const struct gdb_xml_element *element,
2686 void *user_data, const char *body_text)
2687 {
2688 struct threads_parsing_context *data = user_data;
2689
2690 if (body_text && *body_text)
2691 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2692 }
2693
2694 const struct gdb_xml_attribute thread_attributes[] = {
2695 { "id", GDB_XML_AF_NONE, NULL, NULL },
2696 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2697 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2698 };
2699
2700 const struct gdb_xml_element thread_children[] = {
2701 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2702 };
2703
2704 const struct gdb_xml_element threads_children[] = {
2705 { "thread", thread_attributes, thread_children,
2706 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2707 start_thread, end_thread },
2708 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2709 };
2710
2711 const struct gdb_xml_element threads_elements[] = {
2712 { "threads", NULL, threads_children,
2713 GDB_XML_EF_NONE, NULL, NULL },
2714 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2715 };
2716
2717 /* Discard the contents of the constructed thread info context. */
2718
2719 static void
2720 clear_threads_parsing_context (void *p)
2721 {
2722 struct threads_parsing_context *context = p;
2723 int i;
2724 struct thread_item *item;
2725
2726 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2727 xfree (item->extra);
2728
2729 VEC_free (thread_item_t, context->items);
2730 }
2731
2732 #endif
2733
2734 /*
2735 * Find all threads for info threads command.
2736 * Uses new thread protocol contributed by Cisco.
2737 * Falls back and attempts to use the older method (above)
2738 * if the target doesn't respond to the new method.
2739 */
2740
2741 static void
2742 remote_threads_info (struct target_ops *ops)
2743 {
2744 struct remote_state *rs = get_remote_state ();
2745 char *bufp;
2746 ptid_t new_thread;
2747
2748 if (rs->remote_desc == 0) /* paranoia */
2749 error (_("Command can only be used when connected to the remote target."));
2750
2751 #if defined(HAVE_LIBEXPAT)
2752 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2753 {
2754 char *xml = target_read_stralloc (&current_target,
2755 TARGET_OBJECT_THREADS, NULL);
2756
2757 struct cleanup *back_to = make_cleanup (xfree, xml);
2758
2759 if (xml && *xml)
2760 {
2761 struct threads_parsing_context context;
2762
2763 context.items = NULL;
2764 make_cleanup (clear_threads_parsing_context, &context);
2765
2766 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2767 threads_elements, xml, &context) == 0)
2768 {
2769 int i;
2770 struct thread_item *item;
2771
2772 for (i = 0;
2773 VEC_iterate (thread_item_t, context.items, i, item);
2774 ++i)
2775 {
2776 if (!ptid_equal (item->ptid, null_ptid))
2777 {
2778 struct private_thread_info *info;
2779 /* In non-stop mode, we assume new found threads
2780 are running until proven otherwise with a
2781 stop reply. In all-stop, we can only get
2782 here if all threads are stopped. */
2783 int running = non_stop ? 1 : 0;
2784
2785 remote_notice_new_inferior (item->ptid, running);
2786
2787 info = demand_private_info (item->ptid);
2788 info->core = item->core;
2789 info->extra = item->extra;
2790 item->extra = NULL;
2791 }
2792 }
2793 }
2794 }
2795
2796 do_cleanups (back_to);
2797 return;
2798 }
2799 #endif
2800
2801 if (rs->use_threadinfo_query)
2802 {
2803 putpkt ("qfThreadInfo");
2804 getpkt (&rs->buf, &rs->buf_size, 0);
2805 bufp = rs->buf;
2806 if (bufp[0] != '\0') /* q packet recognized */
2807 {
2808 struct cleanup *old_chain;
2809 char *saved_reply;
2810
2811 /* remote_notice_new_inferior (in the loop below) may make
2812 new RSP calls, which clobber rs->buf. Work with a
2813 copy. */
2814 bufp = saved_reply = xstrdup (rs->buf);
2815 old_chain = make_cleanup (free_current_contents, &saved_reply);
2816
2817 while (*bufp++ == 'm') /* reply contains one or more TID */
2818 {
2819 do
2820 {
2821 new_thread = read_ptid (bufp, &bufp);
2822 if (!ptid_equal (new_thread, null_ptid))
2823 {
2824 /* In non-stop mode, we assume new found threads
2825 are running until proven otherwise with a
2826 stop reply. In all-stop, we can only get
2827 here if all threads are stopped. */
2828 int running = non_stop ? 1 : 0;
2829
2830 remote_notice_new_inferior (new_thread, running);
2831 }
2832 }
2833 while (*bufp++ == ','); /* comma-separated list */
2834 free_current_contents (&saved_reply);
2835 putpkt ("qsThreadInfo");
2836 getpkt (&rs->buf, &rs->buf_size, 0);
2837 bufp = saved_reply = xstrdup (rs->buf);
2838 }
2839 do_cleanups (old_chain);
2840 return; /* done */
2841 }
2842 }
2843
2844 /* Only qfThreadInfo is supported in non-stop mode. */
2845 if (non_stop)
2846 return;
2847
2848 /* Else fall back to old method based on jmetzler protocol. */
2849 rs->use_threadinfo_query = 0;
2850 remote_find_new_threads ();
2851 return;
2852 }
2853
2854 /*
2855 * Collect a descriptive string about the given thread.
2856 * The target may say anything it wants to about the thread
2857 * (typically info about its blocked / runnable state, name, etc.).
2858 * This string will appear in the info threads display.
2859 *
2860 * Optional: targets are not required to implement this function.
2861 */
2862
2863 static char *
2864 remote_threads_extra_info (struct thread_info *tp)
2865 {
2866 struct remote_state *rs = get_remote_state ();
2867 int result;
2868 int set;
2869 threadref id;
2870 struct gdb_ext_thread_info threadinfo;
2871 static char display_buf[100]; /* arbitrary... */
2872 int n = 0; /* position in display_buf */
2873
2874 if (rs->remote_desc == 0) /* paranoia */
2875 internal_error (__FILE__, __LINE__,
2876 _("remote_threads_extra_info"));
2877
2878 if (ptid_equal (tp->ptid, magic_null_ptid)
2879 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2880 /* This is the main thread which was added by GDB. The remote
2881 server doesn't know about it. */
2882 return NULL;
2883
2884 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2885 {
2886 struct thread_info *info = find_thread_ptid (tp->ptid);
2887
2888 if (info && info->private)
2889 return info->private->extra;
2890 else
2891 return NULL;
2892 }
2893
2894 if (rs->use_threadextra_query)
2895 {
2896 char *b = rs->buf;
2897 char *endb = rs->buf + get_remote_packet_size ();
2898
2899 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2900 b += strlen (b);
2901 write_ptid (b, endb, tp->ptid);
2902
2903 putpkt (rs->buf);
2904 getpkt (&rs->buf, &rs->buf_size, 0);
2905 if (rs->buf[0] != 0)
2906 {
2907 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2908 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2909 display_buf [result] = '\0';
2910 return display_buf;
2911 }
2912 }
2913
2914 /* If the above query fails, fall back to the old method. */
2915 rs->use_threadextra_query = 0;
2916 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2917 | TAG_MOREDISPLAY | TAG_DISPLAY;
2918 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2919 if (remote_get_threadinfo (&id, set, &threadinfo))
2920 if (threadinfo.active)
2921 {
2922 if (*threadinfo.shortname)
2923 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2924 " Name: %s,", threadinfo.shortname);
2925 if (*threadinfo.display)
2926 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2927 " State: %s,", threadinfo.display);
2928 if (*threadinfo.more_display)
2929 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2930 " Priority: %s", threadinfo.more_display);
2931
2932 if (n > 0)
2933 {
2934 /* For purely cosmetic reasons, clear up trailing commas. */
2935 if (',' == display_buf[n-1])
2936 display_buf[n-1] = ' ';
2937 return display_buf;
2938 }
2939 }
2940 return NULL;
2941 }
2942 \f
2943
2944 static int
2945 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2946 struct static_tracepoint_marker *marker)
2947 {
2948 struct remote_state *rs = get_remote_state ();
2949 char *p = rs->buf;
2950
2951 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2952 p += strlen (p);
2953 p += hexnumstr (p, addr);
2954 putpkt (rs->buf);
2955 getpkt (&rs->buf, &rs->buf_size, 0);
2956 p = rs->buf;
2957
2958 if (*p == 'E')
2959 error (_("Remote failure reply: %s"), p);
2960
2961 if (*p++ == 'm')
2962 {
2963 parse_static_tracepoint_marker_definition (p, &p, marker);
2964 return 1;
2965 }
2966
2967 return 0;
2968 }
2969
2970 static VEC(static_tracepoint_marker_p) *
2971 remote_static_tracepoint_markers_by_strid (const char *strid)
2972 {
2973 struct remote_state *rs = get_remote_state ();
2974 VEC(static_tracepoint_marker_p) *markers = NULL;
2975 struct static_tracepoint_marker *marker = NULL;
2976 struct cleanup *old_chain;
2977 char *p;
2978
2979 /* Ask for a first packet of static tracepoint marker
2980 definition. */
2981 putpkt ("qTfSTM");
2982 getpkt (&rs->buf, &rs->buf_size, 0);
2983 p = rs->buf;
2984 if (*p == 'E')
2985 error (_("Remote failure reply: %s"), p);
2986
2987 old_chain = make_cleanup (free_current_marker, &marker);
2988
2989 while (*p++ == 'm')
2990 {
2991 if (marker == NULL)
2992 marker = XCNEW (struct static_tracepoint_marker);
2993
2994 do
2995 {
2996 parse_static_tracepoint_marker_definition (p, &p, marker);
2997
2998 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2999 {
3000 VEC_safe_push (static_tracepoint_marker_p,
3001 markers, marker);
3002 marker = NULL;
3003 }
3004 else
3005 {
3006 release_static_tracepoint_marker (marker);
3007 memset (marker, 0, sizeof (*marker));
3008 }
3009 }
3010 while (*p++ == ','); /* comma-separated list */
3011 /* Ask for another packet of static tracepoint definition. */
3012 putpkt ("qTsSTM");
3013 getpkt (&rs->buf, &rs->buf_size, 0);
3014 p = rs->buf;
3015 }
3016
3017 do_cleanups (old_chain);
3018 return markers;
3019 }
3020
3021 \f
3022 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3023
3024 static ptid_t
3025 remote_get_ada_task_ptid (long lwp, long thread)
3026 {
3027 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3028 }
3029 \f
3030
3031 /* Restart the remote side; this is an extended protocol operation. */
3032
3033 static void
3034 extended_remote_restart (void)
3035 {
3036 struct remote_state *rs = get_remote_state ();
3037
3038 /* Send the restart command; for reasons I don't understand the
3039 remote side really expects a number after the "R". */
3040 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3041 putpkt (rs->buf);
3042
3043 remote_fileio_reset ();
3044 }
3045 \f
3046 /* Clean up connection to a remote debugger. */
3047
3048 static void
3049 remote_close (void)
3050 {
3051 struct remote_state *rs = get_remote_state ();
3052
3053 if (rs->remote_desc == NULL)
3054 return; /* already closed */
3055
3056 /* Make sure we leave stdin registered in the event loop, and we
3057 don't leave the async SIGINT signal handler installed. */
3058 remote_terminal_ours ();
3059
3060 serial_close (rs->remote_desc);
3061 rs->remote_desc = NULL;
3062
3063 /* We don't have a connection to the remote stub anymore. Get rid
3064 of all the inferiors and their threads we were controlling.
3065 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3066 will be unable to find the thread corresponding to (pid, 0, 0). */
3067 inferior_ptid = null_ptid;
3068 discard_all_inferiors ();
3069
3070 /* We are closing the remote target, so we should discard
3071 everything of this target. */
3072 discard_pending_stop_replies_in_queue (rs);
3073
3074 if (remote_async_inferior_event_token)
3075 delete_async_event_handler (&remote_async_inferior_event_token);
3076
3077 remote_notif_state_xfree (rs->notif_state);
3078
3079 trace_reset_local_state ();
3080 }
3081
3082 /* Query the remote side for the text, data and bss offsets. */
3083
3084 static void
3085 get_offsets (void)
3086 {
3087 struct remote_state *rs = get_remote_state ();
3088 char *buf;
3089 char *ptr;
3090 int lose, num_segments = 0, do_sections, do_segments;
3091 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3092 struct section_offsets *offs;
3093 struct symfile_segment_data *data;
3094
3095 if (symfile_objfile == NULL)
3096 return;
3097
3098 putpkt ("qOffsets");
3099 getpkt (&rs->buf, &rs->buf_size, 0);
3100 buf = rs->buf;
3101
3102 if (buf[0] == '\000')
3103 return; /* Return silently. Stub doesn't support
3104 this command. */
3105 if (buf[0] == 'E')
3106 {
3107 warning (_("Remote failure reply: %s"), buf);
3108 return;
3109 }
3110
3111 /* Pick up each field in turn. This used to be done with scanf, but
3112 scanf will make trouble if CORE_ADDR size doesn't match
3113 conversion directives correctly. The following code will work
3114 with any size of CORE_ADDR. */
3115 text_addr = data_addr = bss_addr = 0;
3116 ptr = buf;
3117 lose = 0;
3118
3119 if (strncmp (ptr, "Text=", 5) == 0)
3120 {
3121 ptr += 5;
3122 /* Don't use strtol, could lose on big values. */
3123 while (*ptr && *ptr != ';')
3124 text_addr = (text_addr << 4) + fromhex (*ptr++);
3125
3126 if (strncmp (ptr, ";Data=", 6) == 0)
3127 {
3128 ptr += 6;
3129 while (*ptr && *ptr != ';')
3130 data_addr = (data_addr << 4) + fromhex (*ptr++);
3131 }
3132 else
3133 lose = 1;
3134
3135 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3136 {
3137 ptr += 5;
3138 while (*ptr && *ptr != ';')
3139 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3140
3141 if (bss_addr != data_addr)
3142 warning (_("Target reported unsupported offsets: %s"), buf);
3143 }
3144 else
3145 lose = 1;
3146 }
3147 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3148 {
3149 ptr += 8;
3150 /* Don't use strtol, could lose on big values. */
3151 while (*ptr && *ptr != ';')
3152 text_addr = (text_addr << 4) + fromhex (*ptr++);
3153 num_segments = 1;
3154
3155 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3156 {
3157 ptr += 9;
3158 while (*ptr && *ptr != ';')
3159 data_addr = (data_addr << 4) + fromhex (*ptr++);
3160 num_segments++;
3161 }
3162 }
3163 else
3164 lose = 1;
3165
3166 if (lose)
3167 error (_("Malformed response to offset query, %s"), buf);
3168 else if (*ptr != '\0')
3169 warning (_("Target reported unsupported offsets: %s"), buf);
3170
3171 offs = ((struct section_offsets *)
3172 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3173 memcpy (offs, symfile_objfile->section_offsets,
3174 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3175
3176 data = get_symfile_segment_data (symfile_objfile->obfd);
3177 do_segments = (data != NULL);
3178 do_sections = num_segments == 0;
3179
3180 if (num_segments > 0)
3181 {
3182 segments[0] = text_addr;
3183 segments[1] = data_addr;
3184 }
3185 /* If we have two segments, we can still try to relocate everything
3186 by assuming that the .text and .data offsets apply to the whole
3187 text and data segments. Convert the offsets given in the packet
3188 to base addresses for symfile_map_offsets_to_segments. */
3189 else if (data && data->num_segments == 2)
3190 {
3191 segments[0] = data->segment_bases[0] + text_addr;
3192 segments[1] = data->segment_bases[1] + data_addr;
3193 num_segments = 2;
3194 }
3195 /* If the object file has only one segment, assume that it is text
3196 rather than data; main programs with no writable data are rare,
3197 but programs with no code are useless. Of course the code might
3198 have ended up in the data segment... to detect that we would need
3199 the permissions here. */
3200 else if (data && data->num_segments == 1)
3201 {
3202 segments[0] = data->segment_bases[0] + text_addr;
3203 num_segments = 1;
3204 }
3205 /* There's no way to relocate by segment. */
3206 else
3207 do_segments = 0;
3208
3209 if (do_segments)
3210 {
3211 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3212 offs, num_segments, segments);
3213
3214 if (ret == 0 && !do_sections)
3215 error (_("Can not handle qOffsets TextSeg "
3216 "response with this symbol file"));
3217
3218 if (ret > 0)
3219 do_sections = 0;
3220 }
3221
3222 if (data)
3223 free_symfile_segment_data (data);
3224
3225 if (do_sections)
3226 {
3227 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3228
3229 /* This is a temporary kludge to force data and bss to use the
3230 same offsets because that's what nlmconv does now. The real
3231 solution requires changes to the stub and remote.c that I
3232 don't have time to do right now. */
3233
3234 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3235 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3236 }
3237
3238 objfile_relocate (symfile_objfile, offs);
3239 }
3240
3241 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3242 threads we know are stopped already. This is used during the
3243 initial remote connection in non-stop mode --- threads that are
3244 reported as already being stopped are left stopped. */
3245
3246 static int
3247 set_stop_requested_callback (struct thread_info *thread, void *data)
3248 {
3249 /* If we have a stop reply for this thread, it must be stopped. */
3250 if (peek_stop_reply (thread->ptid))
3251 set_stop_requested (thread->ptid, 1);
3252
3253 return 0;
3254 }
3255
3256 /* Send interrupt_sequence to remote target. */
3257 static void
3258 send_interrupt_sequence (void)
3259 {
3260 struct remote_state *rs = get_remote_state ();
3261
3262 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3263 remote_serial_write ("\x03", 1);
3264 else if (interrupt_sequence_mode == interrupt_sequence_break)
3265 serial_send_break (rs->remote_desc);
3266 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3267 {
3268 serial_send_break (rs->remote_desc);
3269 remote_serial_write ("g", 1);
3270 }
3271 else
3272 internal_error (__FILE__, __LINE__,
3273 _("Invalid value for interrupt_sequence_mode: %s."),
3274 interrupt_sequence_mode);
3275 }
3276
3277
3278 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3279 and extract the PTID. Returns NULL_PTID if not found. */
3280
3281 static ptid_t
3282 stop_reply_extract_thread (char *stop_reply)
3283 {
3284 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3285 {
3286 char *p;
3287
3288 /* Txx r:val ; r:val (...) */
3289 p = &stop_reply[3];
3290
3291 /* Look for "register" named "thread". */
3292 while (*p != '\0')
3293 {
3294 char *p1;
3295
3296 p1 = strchr (p, ':');
3297 if (p1 == NULL)
3298 return null_ptid;
3299
3300 if (strncmp (p, "thread", p1 - p) == 0)
3301 return read_ptid (++p1, &p);
3302
3303 p1 = strchr (p, ';');
3304 if (p1 == NULL)
3305 return null_ptid;
3306 p1++;
3307
3308 p = p1;
3309 }
3310 }
3311
3312 return null_ptid;
3313 }
3314
3315 /* Query the remote target for which is the current thread/process,
3316 add it to our tables, and update INFERIOR_PTID. The caller is
3317 responsible for setting the state such that the remote end is ready
3318 to return the current thread.
3319
3320 This function is called after handling the '?' or 'vRun' packets,
3321 whose response is a stop reply from which we can also try
3322 extracting the thread. If the target doesn't support the explicit
3323 qC query, we infer the current thread from that stop reply, passed
3324 in in WAIT_STATUS, which may be NULL. */
3325
3326 static void
3327 add_current_inferior_and_thread (char *wait_status)
3328 {
3329 struct remote_state *rs = get_remote_state ();
3330 int fake_pid_p = 0;
3331 ptid_t ptid = null_ptid;
3332
3333 inferior_ptid = null_ptid;
3334
3335 /* Now, if we have thread information, update inferior_ptid. First
3336 if we have a stop reply handy, maybe it's a T stop reply with a
3337 "thread" register we can extract the current thread from. If
3338 not, ask the remote which is the current thread, with qC. The
3339 former method avoids a roundtrip. Note we don't use
3340 remote_parse_stop_reply as that makes use of the target
3341 architecture, which we haven't yet fully determined at this
3342 point. */
3343 if (wait_status != NULL)
3344 ptid = stop_reply_extract_thread (wait_status);
3345 if (ptid_equal (ptid, null_ptid))
3346 ptid = remote_current_thread (inferior_ptid);
3347
3348 if (!ptid_equal (ptid, null_ptid))
3349 {
3350 if (!remote_multi_process_p (rs))
3351 fake_pid_p = 1;
3352
3353 inferior_ptid = ptid;
3354 }
3355 else
3356 {
3357 /* Without this, some commands which require an active target
3358 (such as kill) won't work. This variable serves (at least)
3359 double duty as both the pid of the target process (if it has
3360 such), and as a flag indicating that a target is active. */
3361 inferior_ptid = magic_null_ptid;
3362 fake_pid_p = 1;
3363 }
3364
3365 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3366
3367 /* Add the main thread. */
3368 add_thread_silent (inferior_ptid);
3369 }
3370
3371 static void
3372 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3373 {
3374 struct remote_state *rs = get_remote_state ();
3375 struct packet_config *noack_config;
3376 char *wait_status = NULL;
3377
3378 immediate_quit++; /* Allow user to interrupt it. */
3379 QUIT;
3380
3381 if (interrupt_on_connect)
3382 send_interrupt_sequence ();
3383
3384 /* Ack any packet which the remote side has already sent. */
3385 serial_write (rs->remote_desc, "+", 1);
3386
3387 /* Signal other parts that we're going through the initial setup,
3388 and so things may not be stable yet. */
3389 rs->starting_up = 1;
3390
3391 /* The first packet we send to the target is the optional "supported
3392 packets" request. If the target can answer this, it will tell us
3393 which later probes to skip. */
3394 remote_query_supported ();
3395
3396 /* If the stub wants to get a QAllow, compose one and send it. */
3397 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3398 remote_set_permissions ();
3399
3400 /* Next, we possibly activate noack mode.
3401
3402 If the QStartNoAckMode packet configuration is set to AUTO,
3403 enable noack mode if the stub reported a wish for it with
3404 qSupported.
3405
3406 If set to TRUE, then enable noack mode even if the stub didn't
3407 report it in qSupported. If the stub doesn't reply OK, the
3408 session ends with an error.
3409
3410 If FALSE, then don't activate noack mode, regardless of what the
3411 stub claimed should be the default with qSupported. */
3412
3413 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3414
3415 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3416 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3417 && noack_config->support == PACKET_ENABLE))
3418 {
3419 putpkt ("QStartNoAckMode");
3420 getpkt (&rs->buf, &rs->buf_size, 0);
3421 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3422 rs->noack_mode = 1;
3423 }
3424
3425 if (extended_p)
3426 {
3427 /* Tell the remote that we are using the extended protocol. */
3428 putpkt ("!");
3429 getpkt (&rs->buf, &rs->buf_size, 0);
3430 }
3431
3432 /* Let the target know which signals it is allowed to pass down to
3433 the program. */
3434 update_signals_program_target ();
3435
3436 /* Next, if the target can specify a description, read it. We do
3437 this before anything involving memory or registers. */
3438 target_find_description ();
3439
3440 /* Next, now that we know something about the target, update the
3441 address spaces in the program spaces. */
3442 update_address_spaces ();
3443
3444 /* On OSs where the list of libraries is global to all
3445 processes, we fetch them early. */
3446 if (gdbarch_has_global_solist (target_gdbarch ()))
3447 solib_add (NULL, from_tty, target, auto_solib_add);
3448
3449 if (non_stop)
3450 {
3451 if (!rs->non_stop_aware)
3452 error (_("Non-stop mode requested, but remote "
3453 "does not support non-stop"));
3454
3455 putpkt ("QNonStop:1");
3456 getpkt (&rs->buf, &rs->buf_size, 0);
3457
3458 if (strcmp (rs->buf, "OK") != 0)
3459 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3460
3461 /* Find about threads and processes the stub is already
3462 controlling. We default to adding them in the running state.
3463 The '?' query below will then tell us about which threads are
3464 stopped. */
3465 remote_threads_info (target);
3466 }
3467 else if (rs->non_stop_aware)
3468 {
3469 /* Don't assume that the stub can operate in all-stop mode.
3470 Request it explicitly. */
3471 putpkt ("QNonStop:0");
3472 getpkt (&rs->buf, &rs->buf_size, 0);
3473
3474 if (strcmp (rs->buf, "OK") != 0)
3475 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3476 }
3477
3478 /* Upload TSVs regardless of whether the target is running or not. The
3479 remote stub, such as GDBserver, may have some predefined or builtin
3480 TSVs, even if the target is not running. */
3481 if (remote_get_trace_status (current_trace_status ()) != -1)
3482 {
3483 struct uploaded_tsv *uploaded_tsvs = NULL;
3484
3485 remote_upload_trace_state_variables (&uploaded_tsvs);
3486 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3487 }
3488
3489 /* Check whether the target is running now. */
3490 putpkt ("?");
3491 getpkt (&rs->buf, &rs->buf_size, 0);
3492
3493 if (!non_stop)
3494 {
3495 ptid_t ptid;
3496 int fake_pid_p = 0;
3497 struct inferior *inf;
3498
3499 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3500 {
3501 if (!extended_p)
3502 error (_("The target is not running (try extended-remote?)"));
3503
3504 /* We're connected, but not running. Drop out before we
3505 call start_remote. */
3506 rs->starting_up = 0;
3507 return;
3508 }
3509 else
3510 {
3511 /* Save the reply for later. */
3512 wait_status = alloca (strlen (rs->buf) + 1);
3513 strcpy (wait_status, rs->buf);
3514 }
3515
3516 /* Let the stub know that we want it to return the thread. */
3517 set_continue_thread (minus_one_ptid);
3518
3519 add_current_inferior_and_thread (wait_status);
3520
3521 /* init_wait_for_inferior should be called before get_offsets in order
3522 to manage `inserted' flag in bp loc in a correct state.
3523 breakpoint_init_inferior, called from init_wait_for_inferior, set
3524 `inserted' flag to 0, while before breakpoint_re_set, called from
3525 start_remote, set `inserted' flag to 1. In the initialization of
3526 inferior, breakpoint_init_inferior should be called first, and then
3527 breakpoint_re_set can be called. If this order is broken, state of
3528 `inserted' flag is wrong, and cause some problems on breakpoint
3529 manipulation. */
3530 init_wait_for_inferior ();
3531
3532 get_offsets (); /* Get text, data & bss offsets. */
3533
3534 /* If we could not find a description using qXfer, and we know
3535 how to do it some other way, try again. This is not
3536 supported for non-stop; it could be, but it is tricky if
3537 there are no stopped threads when we connect. */
3538 if (remote_read_description_p (target)
3539 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3540 {
3541 target_clear_description ();
3542 target_find_description ();
3543 }
3544
3545 /* Use the previously fetched status. */
3546 gdb_assert (wait_status != NULL);
3547 strcpy (rs->buf, wait_status);
3548 rs->cached_wait_status = 1;
3549
3550 immediate_quit--;
3551 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3552 }
3553 else
3554 {
3555 /* Clear WFI global state. Do this before finding about new
3556 threads and inferiors, and setting the current inferior.
3557 Otherwise we would clear the proceed status of the current
3558 inferior when we want its stop_soon state to be preserved
3559 (see notice_new_inferior). */
3560 init_wait_for_inferior ();
3561
3562 /* In non-stop, we will either get an "OK", meaning that there
3563 are no stopped threads at this time; or, a regular stop
3564 reply. In the latter case, there may be more than one thread
3565 stopped --- we pull them all out using the vStopped
3566 mechanism. */
3567 if (strcmp (rs->buf, "OK") != 0)
3568 {
3569 struct notif_client *notif = &notif_client_stop;
3570
3571 /* remote_notif_get_pending_replies acks this one, and gets
3572 the rest out. */
3573 rs->notif_state->pending_event[notif_client_stop.id]
3574 = remote_notif_parse (notif, rs->buf);
3575 remote_notif_get_pending_events (notif);
3576
3577 /* Make sure that threads that were stopped remain
3578 stopped. */
3579 iterate_over_threads (set_stop_requested_callback, NULL);
3580 }
3581
3582 if (target_can_async_p ())
3583 target_async (inferior_event_handler, 0);
3584
3585 if (thread_count () == 0)
3586 {
3587 if (!extended_p)
3588 error (_("The target is not running (try extended-remote?)"));
3589
3590 /* We're connected, but not running. Drop out before we
3591 call start_remote. */
3592 rs->starting_up = 0;
3593 return;
3594 }
3595
3596 /* Let the stub know that we want it to return the thread. */
3597
3598 /* Force the stub to choose a thread. */
3599 set_general_thread (null_ptid);
3600
3601 /* Query it. */
3602 inferior_ptid = remote_current_thread (minus_one_ptid);
3603 if (ptid_equal (inferior_ptid, minus_one_ptid))
3604 error (_("remote didn't report the current thread in non-stop mode"));
3605
3606 get_offsets (); /* Get text, data & bss offsets. */
3607
3608 /* In non-stop mode, any cached wait status will be stored in
3609 the stop reply queue. */
3610 gdb_assert (wait_status == NULL);
3611
3612 /* Report all signals during attach/startup. */
3613 remote_pass_signals (0, NULL);
3614 }
3615
3616 /* If we connected to a live target, do some additional setup. */
3617 if (target_has_execution)
3618 {
3619 if (exec_bfd) /* No use without an exec file. */
3620 remote_check_symbols ();
3621 }
3622
3623 /* Possibly the target has been engaged in a trace run started
3624 previously; find out where things are at. */
3625 if (remote_get_trace_status (current_trace_status ()) != -1)
3626 {
3627 struct uploaded_tp *uploaded_tps = NULL;
3628
3629 if (current_trace_status ()->running)
3630 printf_filtered (_("Trace is already running on the target.\n"));
3631
3632 remote_upload_tracepoints (&uploaded_tps);
3633
3634 merge_uploaded_tracepoints (&uploaded_tps);
3635 }
3636
3637 /* The thread and inferior lists are now synchronized with the
3638 target, our symbols have been relocated, and we're merged the
3639 target's tracepoints with ours. We're done with basic start
3640 up. */
3641 rs->starting_up = 0;
3642
3643 /* If breakpoints are global, insert them now. */
3644 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3645 && breakpoints_always_inserted_mode ())
3646 insert_breakpoints ();
3647 }
3648
3649 /* Open a connection to a remote debugger.
3650 NAME is the filename used for communication. */
3651
3652 static void
3653 remote_open (char *name, int from_tty)
3654 {
3655 remote_open_1 (name, from_tty, &remote_ops, 0);
3656 }
3657
3658 /* Open a connection to a remote debugger using the extended
3659 remote gdb protocol. NAME is the filename used for communication. */
3660
3661 static void
3662 extended_remote_open (char *name, int from_tty)
3663 {
3664 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3665 }
3666
3667 /* Generic code for opening a connection to a remote target. */
3668
3669 static void
3670 init_all_packet_configs (void)
3671 {
3672 int i;
3673
3674 for (i = 0; i < PACKET_MAX; i++)
3675 update_packet_config (&remote_protocol_packets[i]);
3676 }
3677
3678 /* Symbol look-up. */
3679
3680 static void
3681 remote_check_symbols (void)
3682 {
3683 struct remote_state *rs = get_remote_state ();
3684 char *msg, *reply, *tmp;
3685 struct minimal_symbol *sym;
3686 int end;
3687
3688 /* The remote side has no concept of inferiors that aren't running
3689 yet, it only knows about running processes. If we're connected
3690 but our current inferior is not running, we should not invite the
3691 remote target to request symbol lookups related to its
3692 (unrelated) current process. */
3693 if (!target_has_execution)
3694 return;
3695
3696 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3697 return;
3698
3699 /* Make sure the remote is pointing at the right process. Note
3700 there's no way to select "no process". */
3701 set_general_process ();
3702
3703 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3704 because we need both at the same time. */
3705 msg = alloca (get_remote_packet_size ());
3706
3707 /* Invite target to request symbol lookups. */
3708
3709 putpkt ("qSymbol::");
3710 getpkt (&rs->buf, &rs->buf_size, 0);
3711 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3712 reply = rs->buf;
3713
3714 while (strncmp (reply, "qSymbol:", 8) == 0)
3715 {
3716 tmp = &reply[8];
3717 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3718 msg[end] = '\0';
3719 sym = lookup_minimal_symbol (msg, NULL, NULL);
3720 if (sym == NULL)
3721 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3722 else
3723 {
3724 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3725 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3726
3727 /* If this is a function address, return the start of code
3728 instead of any data function descriptor. */
3729 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3730 sym_addr,
3731 &current_target);
3732
3733 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3734 phex_nz (sym_addr, addr_size), &reply[8]);
3735 }
3736
3737 putpkt (msg);
3738 getpkt (&rs->buf, &rs->buf_size, 0);
3739 reply = rs->buf;
3740 }
3741 }
3742
3743 static struct serial *
3744 remote_serial_open (char *name)
3745 {
3746 static int udp_warning = 0;
3747
3748 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3749 of in ser-tcp.c, because it is the remote protocol assuming that the
3750 serial connection is reliable and not the serial connection promising
3751 to be. */
3752 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3753 {
3754 warning (_("The remote protocol may be unreliable over UDP.\n"
3755 "Some events may be lost, rendering further debugging "
3756 "impossible."));
3757 udp_warning = 1;
3758 }
3759
3760 return serial_open (name);
3761 }
3762
3763 /* Inform the target of our permission settings. The permission flags
3764 work without this, but if the target knows the settings, it can do
3765 a couple things. First, it can add its own check, to catch cases
3766 that somehow manage to get by the permissions checks in target
3767 methods. Second, if the target is wired to disallow particular
3768 settings (for instance, a system in the field that is not set up to
3769 be able to stop at a breakpoint), it can object to any unavailable
3770 permissions. */
3771
3772 void
3773 remote_set_permissions (void)
3774 {
3775 struct remote_state *rs = get_remote_state ();
3776
3777 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3778 "WriteReg:%x;WriteMem:%x;"
3779 "InsertBreak:%x;InsertTrace:%x;"
3780 "InsertFastTrace:%x;Stop:%x",
3781 may_write_registers, may_write_memory,
3782 may_insert_breakpoints, may_insert_tracepoints,
3783 may_insert_fast_tracepoints, may_stop);
3784 putpkt (rs->buf);
3785 getpkt (&rs->buf, &rs->buf_size, 0);
3786
3787 /* If the target didn't like the packet, warn the user. Do not try
3788 to undo the user's settings, that would just be maddening. */
3789 if (strcmp (rs->buf, "OK") != 0)
3790 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3791 }
3792
3793 /* This type describes each known response to the qSupported
3794 packet. */
3795 struct protocol_feature
3796 {
3797 /* The name of this protocol feature. */
3798 const char *name;
3799
3800 /* The default for this protocol feature. */
3801 enum packet_support default_support;
3802
3803 /* The function to call when this feature is reported, or after
3804 qSupported processing if the feature is not supported.
3805 The first argument points to this structure. The second
3806 argument indicates whether the packet requested support be
3807 enabled, disabled, or probed (or the default, if this function
3808 is being called at the end of processing and this feature was
3809 not reported). The third argument may be NULL; if not NULL, it
3810 is a NUL-terminated string taken from the packet following
3811 this feature's name and an equals sign. */
3812 void (*func) (const struct protocol_feature *, enum packet_support,
3813 const char *);
3814
3815 /* The corresponding packet for this feature. Only used if
3816 FUNC is remote_supported_packet. */
3817 int packet;
3818 };
3819
3820 static void
3821 remote_supported_packet (const struct protocol_feature *feature,
3822 enum packet_support support,
3823 const char *argument)
3824 {
3825 if (argument)
3826 {
3827 warning (_("Remote qSupported response supplied an unexpected value for"
3828 " \"%s\"."), feature->name);
3829 return;
3830 }
3831
3832 if (remote_protocol_packets[feature->packet].support
3833 == PACKET_SUPPORT_UNKNOWN)
3834 remote_protocol_packets[feature->packet].support = support;
3835 }
3836
3837 static void
3838 remote_packet_size (const struct protocol_feature *feature,
3839 enum packet_support support, const char *value)
3840 {
3841 struct remote_state *rs = get_remote_state ();
3842
3843 int packet_size;
3844 char *value_end;
3845
3846 if (support != PACKET_ENABLE)
3847 return;
3848
3849 if (value == NULL || *value == '\0')
3850 {
3851 warning (_("Remote target reported \"%s\" without a size."),
3852 feature->name);
3853 return;
3854 }
3855
3856 errno = 0;
3857 packet_size = strtol (value, &value_end, 16);
3858 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3859 {
3860 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3861 feature->name, value);
3862 return;
3863 }
3864
3865 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3866 {
3867 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3868 packet_size, MAX_REMOTE_PACKET_SIZE);
3869 packet_size = MAX_REMOTE_PACKET_SIZE;
3870 }
3871
3872 /* Record the new maximum packet size. */
3873 rs->explicit_packet_size = packet_size;
3874 }
3875
3876 static void
3877 remote_multi_process_feature (const struct protocol_feature *feature,
3878 enum packet_support support, const char *value)
3879 {
3880 struct remote_state *rs = get_remote_state ();
3881
3882 rs->multi_process_aware = (support == PACKET_ENABLE);
3883 }
3884
3885 static void
3886 remote_non_stop_feature (const struct protocol_feature *feature,
3887 enum packet_support support, const char *value)
3888 {
3889 struct remote_state *rs = get_remote_state ();
3890
3891 rs->non_stop_aware = (support == PACKET_ENABLE);
3892 }
3893
3894 static void
3895 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3896 enum packet_support support,
3897 const char *value)
3898 {
3899 struct remote_state *rs = get_remote_state ();
3900
3901 rs->cond_tracepoints = (support == PACKET_ENABLE);
3902 }
3903
3904 static void
3905 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3906 enum packet_support support,
3907 const char *value)
3908 {
3909 struct remote_state *rs = get_remote_state ();
3910
3911 rs->cond_breakpoints = (support == PACKET_ENABLE);
3912 }
3913
3914 static void
3915 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3916 enum packet_support support,
3917 const char *value)
3918 {
3919 struct remote_state *rs = get_remote_state ();
3920
3921 rs->breakpoint_commands = (support == PACKET_ENABLE);
3922 }
3923
3924 static void
3925 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3926 enum packet_support support,
3927 const char *value)
3928 {
3929 struct remote_state *rs = get_remote_state ();
3930
3931 rs->fast_tracepoints = (support == PACKET_ENABLE);
3932 }
3933
3934 static void
3935 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3936 enum packet_support support,
3937 const char *value)
3938 {
3939 struct remote_state *rs = get_remote_state ();
3940
3941 rs->static_tracepoints = (support == PACKET_ENABLE);
3942 }
3943
3944 static void
3945 remote_install_in_trace_feature (const struct protocol_feature *feature,
3946 enum packet_support support,
3947 const char *value)
3948 {
3949 struct remote_state *rs = get_remote_state ();
3950
3951 rs->install_in_trace = (support == PACKET_ENABLE);
3952 }
3953
3954 static void
3955 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3956 enum packet_support support,
3957 const char *value)
3958 {
3959 struct remote_state *rs = get_remote_state ();
3960
3961 rs->disconnected_tracing = (support == PACKET_ENABLE);
3962 }
3963
3964 static void
3965 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3966 enum packet_support support,
3967 const char *value)
3968 {
3969 struct remote_state *rs = get_remote_state ();
3970
3971 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3972 }
3973
3974 static void
3975 remote_string_tracing_feature (const struct protocol_feature *feature,
3976 enum packet_support support,
3977 const char *value)
3978 {
3979 struct remote_state *rs = get_remote_state ();
3980
3981 rs->string_tracing = (support == PACKET_ENABLE);
3982 }
3983
3984 static void
3985 remote_augmented_libraries_svr4_read_feature
3986 (const struct protocol_feature *feature,
3987 enum packet_support support, const char *value)
3988 {
3989 struct remote_state *rs = get_remote_state ();
3990
3991 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
3992 }
3993
3994 static const struct protocol_feature remote_protocol_features[] = {
3995 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3996 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3997 PACKET_qXfer_auxv },
3998 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3999 PACKET_qXfer_features },
4000 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4001 PACKET_qXfer_libraries },
4002 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4003 PACKET_qXfer_libraries_svr4 },
4004 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4005 remote_augmented_libraries_svr4_read_feature, -1 },
4006 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4007 PACKET_qXfer_memory_map },
4008 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4009 PACKET_qXfer_spu_read },
4010 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4011 PACKET_qXfer_spu_write },
4012 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4013 PACKET_qXfer_osdata },
4014 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4015 PACKET_qXfer_threads },
4016 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4017 PACKET_qXfer_traceframe_info },
4018 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4019 PACKET_QPassSignals },
4020 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4021 PACKET_QProgramSignals },
4022 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4023 PACKET_QStartNoAckMode },
4024 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4025 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4026 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4027 PACKET_qXfer_siginfo_read },
4028 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4029 PACKET_qXfer_siginfo_write },
4030 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4031 PACKET_ConditionalTracepoints },
4032 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4033 PACKET_ConditionalBreakpoints },
4034 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4035 PACKET_BreakpointCommands },
4036 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4037 PACKET_FastTracepoints },
4038 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4039 PACKET_StaticTracepoints },
4040 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4041 PACKET_InstallInTrace},
4042 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4043 -1 },
4044 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4045 PACKET_bc },
4046 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4047 PACKET_bs },
4048 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4049 PACKET_TracepointSource },
4050 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4051 PACKET_QAllow },
4052 { "EnableDisableTracepoints", PACKET_DISABLE,
4053 remote_enable_disable_tracepoint_feature, -1 },
4054 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4055 PACKET_qXfer_fdpic },
4056 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4057 PACKET_qXfer_uib },
4058 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4059 PACKET_QDisableRandomization },
4060 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4061 { "QTBuffer:size", PACKET_DISABLE,
4062 remote_supported_packet, PACKET_QTBuffer_size},
4063 { "tracenz", PACKET_DISABLE,
4064 remote_string_tracing_feature, -1 },
4065 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4066 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4067 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4068 PACKET_qXfer_btrace }
4069 };
4070
4071 static char *remote_support_xml;
4072
4073 /* Register string appended to "xmlRegisters=" in qSupported query. */
4074
4075 void
4076 register_remote_support_xml (const char *xml)
4077 {
4078 #if defined(HAVE_LIBEXPAT)
4079 if (remote_support_xml == NULL)
4080 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4081 else
4082 {
4083 char *copy = xstrdup (remote_support_xml + 13);
4084 char *p = strtok (copy, ",");
4085
4086 do
4087 {
4088 if (strcmp (p, xml) == 0)
4089 {
4090 /* already there */
4091 xfree (copy);
4092 return;
4093 }
4094 }
4095 while ((p = strtok (NULL, ",")) != NULL);
4096 xfree (copy);
4097
4098 remote_support_xml = reconcat (remote_support_xml,
4099 remote_support_xml, ",", xml,
4100 (char *) NULL);
4101 }
4102 #endif
4103 }
4104
4105 static char *
4106 remote_query_supported_append (char *msg, const char *append)
4107 {
4108 if (msg)
4109 return reconcat (msg, msg, ";", append, (char *) NULL);
4110 else
4111 return xstrdup (append);
4112 }
4113
4114 static void
4115 remote_query_supported (void)
4116 {
4117 struct remote_state *rs = get_remote_state ();
4118 char *next;
4119 int i;
4120 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4121
4122 /* The packet support flags are handled differently for this packet
4123 than for most others. We treat an error, a disabled packet, and
4124 an empty response identically: any features which must be reported
4125 to be used will be automatically disabled. An empty buffer
4126 accomplishes this, since that is also the representation for a list
4127 containing no features. */
4128
4129 rs->buf[0] = 0;
4130 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4131 {
4132 char *q = NULL;
4133 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4134
4135 q = remote_query_supported_append (q, "multiprocess+");
4136
4137 if (remote_support_xml)
4138 q = remote_query_supported_append (q, remote_support_xml);
4139
4140 q = remote_query_supported_append (q, "qRelocInsn+");
4141
4142 q = reconcat (q, "qSupported:", q, (char *) NULL);
4143 putpkt (q);
4144
4145 do_cleanups (old_chain);
4146
4147 getpkt (&rs->buf, &rs->buf_size, 0);
4148
4149 /* If an error occured, warn, but do not return - just reset the
4150 buffer to empty and go on to disable features. */
4151 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4152 == PACKET_ERROR)
4153 {
4154 warning (_("Remote failure reply: %s"), rs->buf);
4155 rs->buf[0] = 0;
4156 }
4157 }
4158
4159 memset (seen, 0, sizeof (seen));
4160
4161 next = rs->buf;
4162 while (*next)
4163 {
4164 enum packet_support is_supported;
4165 char *p, *end, *name_end, *value;
4166
4167 /* First separate out this item from the rest of the packet. If
4168 there's another item after this, we overwrite the separator
4169 (terminated strings are much easier to work with). */
4170 p = next;
4171 end = strchr (p, ';');
4172 if (end == NULL)
4173 {
4174 end = p + strlen (p);
4175 next = end;
4176 }
4177 else
4178 {
4179 *end = '\0';
4180 next = end + 1;
4181
4182 if (end == p)
4183 {
4184 warning (_("empty item in \"qSupported\" response"));
4185 continue;
4186 }
4187 }
4188
4189 name_end = strchr (p, '=');
4190 if (name_end)
4191 {
4192 /* This is a name=value entry. */
4193 is_supported = PACKET_ENABLE;
4194 value = name_end + 1;
4195 *name_end = '\0';
4196 }
4197 else
4198 {
4199 value = NULL;
4200 switch (end[-1])
4201 {
4202 case '+':
4203 is_supported = PACKET_ENABLE;
4204 break;
4205
4206 case '-':
4207 is_supported = PACKET_DISABLE;
4208 break;
4209
4210 case '?':
4211 is_supported = PACKET_SUPPORT_UNKNOWN;
4212 break;
4213
4214 default:
4215 warning (_("unrecognized item \"%s\" "
4216 "in \"qSupported\" response"), p);
4217 continue;
4218 }
4219 end[-1] = '\0';
4220 }
4221
4222 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4223 if (strcmp (remote_protocol_features[i].name, p) == 0)
4224 {
4225 const struct protocol_feature *feature;
4226
4227 seen[i] = 1;
4228 feature = &remote_protocol_features[i];
4229 feature->func (feature, is_supported, value);
4230 break;
4231 }
4232 }
4233
4234 /* If we increased the packet size, make sure to increase the global
4235 buffer size also. We delay this until after parsing the entire
4236 qSupported packet, because this is the same buffer we were
4237 parsing. */
4238 if (rs->buf_size < rs->explicit_packet_size)
4239 {
4240 rs->buf_size = rs->explicit_packet_size;
4241 rs->buf = xrealloc (rs->buf, rs->buf_size);
4242 }
4243
4244 /* Handle the defaults for unmentioned features. */
4245 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4246 if (!seen[i])
4247 {
4248 const struct protocol_feature *feature;
4249
4250 feature = &remote_protocol_features[i];
4251 feature->func (feature, feature->default_support, NULL);
4252 }
4253 }
4254
4255 /* Remove any of the remote.c targets from target stack. Upper targets depend
4256 on it so remove them first. */
4257
4258 static void
4259 remote_unpush_target (void)
4260 {
4261 pop_all_targets_above (process_stratum - 1);
4262 }
4263
4264 static void
4265 remote_open_1 (char *name, int from_tty,
4266 struct target_ops *target, int extended_p)
4267 {
4268 struct remote_state *rs = get_remote_state ();
4269
4270 if (name == 0)
4271 error (_("To open a remote debug connection, you need to specify what\n"
4272 "serial device is attached to the remote system\n"
4273 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4274
4275 /* See FIXME above. */
4276 if (!target_async_permitted)
4277 wait_forever_enabled_p = 1;
4278
4279 /* If we're connected to a running target, target_preopen will kill it.
4280 Ask this question first, before target_preopen has a chance to kill
4281 anything. */
4282 if (rs->remote_desc != NULL && !have_inferiors ())
4283 {
4284 if (from_tty
4285 && !query (_("Already connected to a remote target. Disconnect? ")))
4286 error (_("Still connected."));
4287 }
4288
4289 /* Here the possibly existing remote target gets unpushed. */
4290 target_preopen (from_tty);
4291
4292 /* Make sure we send the passed signals list the next time we resume. */
4293 xfree (rs->last_pass_packet);
4294 rs->last_pass_packet = NULL;
4295
4296 /* Make sure we send the program signals list the next time we
4297 resume. */
4298 xfree (rs->last_program_signals_packet);
4299 rs->last_program_signals_packet = NULL;
4300
4301 remote_fileio_reset ();
4302 reopen_exec_file ();
4303 reread_symbols ();
4304
4305 rs->remote_desc = remote_serial_open (name);
4306 if (!rs->remote_desc)
4307 perror_with_name (name);
4308
4309 if (baud_rate != -1)
4310 {
4311 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4312 {
4313 /* The requested speed could not be set. Error out to
4314 top level after closing remote_desc. Take care to
4315 set remote_desc to NULL to avoid closing remote_desc
4316 more than once. */
4317 serial_close (rs->remote_desc);
4318 rs->remote_desc = NULL;
4319 perror_with_name (name);
4320 }
4321 }
4322
4323 serial_raw (rs->remote_desc);
4324
4325 /* If there is something sitting in the buffer we might take it as a
4326 response to a command, which would be bad. */
4327 serial_flush_input (rs->remote_desc);
4328
4329 if (from_tty)
4330 {
4331 puts_filtered ("Remote debugging using ");
4332 puts_filtered (name);
4333 puts_filtered ("\n");
4334 }
4335 push_target (target); /* Switch to using remote target now. */
4336
4337 /* Register extra event sources in the event loop. */
4338 remote_async_inferior_event_token
4339 = create_async_event_handler (remote_async_inferior_event_handler,
4340 NULL);
4341 rs->notif_state = remote_notif_state_allocate ();
4342
4343 /* Reset the target state; these things will be queried either by
4344 remote_query_supported or as they are needed. */
4345 init_all_packet_configs ();
4346 rs->cached_wait_status = 0;
4347 rs->explicit_packet_size = 0;
4348 rs->noack_mode = 0;
4349 rs->multi_process_aware = 0;
4350 rs->extended = extended_p;
4351 rs->non_stop_aware = 0;
4352 rs->waiting_for_stop_reply = 0;
4353 rs->ctrlc_pending_p = 0;
4354
4355 rs->general_thread = not_sent_ptid;
4356 rs->continue_thread = not_sent_ptid;
4357 rs->remote_traceframe_number = -1;
4358
4359 /* Probe for ability to use "ThreadInfo" query, as required. */
4360 rs->use_threadinfo_query = 1;
4361 rs->use_threadextra_query = 1;
4362
4363 if (target_async_permitted)
4364 {
4365 /* With this target we start out by owning the terminal. */
4366 remote_async_terminal_ours_p = 1;
4367
4368 /* FIXME: cagney/1999-09-23: During the initial connection it is
4369 assumed that the target is already ready and able to respond to
4370 requests. Unfortunately remote_start_remote() eventually calls
4371 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4372 around this. Eventually a mechanism that allows
4373 wait_for_inferior() to expect/get timeouts will be
4374 implemented. */
4375 wait_forever_enabled_p = 0;
4376 }
4377
4378 /* First delete any symbols previously loaded from shared libraries. */
4379 no_shared_libraries (NULL, 0);
4380
4381 /* Start afresh. */
4382 init_thread_list ();
4383
4384 /* Start the remote connection. If error() or QUIT, discard this
4385 target (we'd otherwise be in an inconsistent state) and then
4386 propogate the error on up the exception chain. This ensures that
4387 the caller doesn't stumble along blindly assuming that the
4388 function succeeded. The CLI doesn't have this problem but other
4389 UI's, such as MI do.
4390
4391 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4392 this function should return an error indication letting the
4393 caller restore the previous state. Unfortunately the command
4394 ``target remote'' is directly wired to this function making that
4395 impossible. On a positive note, the CLI side of this problem has
4396 been fixed - the function set_cmd_context() makes it possible for
4397 all the ``target ....'' commands to share a common callback
4398 function. See cli-dump.c. */
4399 {
4400 volatile struct gdb_exception ex;
4401
4402 TRY_CATCH (ex, RETURN_MASK_ALL)
4403 {
4404 remote_start_remote (from_tty, target, extended_p);
4405 }
4406 if (ex.reason < 0)
4407 {
4408 /* Pop the partially set up target - unless something else did
4409 already before throwing the exception. */
4410 if (rs->remote_desc != NULL)
4411 remote_unpush_target ();
4412 if (target_async_permitted)
4413 wait_forever_enabled_p = 1;
4414 throw_exception (ex);
4415 }
4416 }
4417
4418 if (target_async_permitted)
4419 wait_forever_enabled_p = 1;
4420 }
4421
4422 /* This takes a program previously attached to and detaches it. After
4423 this is done, GDB can be used to debug some other program. We
4424 better not have left any breakpoints in the target program or it'll
4425 die when it hits one. */
4426
4427 static void
4428 remote_detach_1 (char *args, int from_tty, int extended)
4429 {
4430 int pid = ptid_get_pid (inferior_ptid);
4431 struct remote_state *rs = get_remote_state ();
4432
4433 if (args)
4434 error (_("Argument given to \"detach\" when remotely debugging."));
4435
4436 if (!target_has_execution)
4437 error (_("No process to detach from."));
4438
4439 if (from_tty)
4440 {
4441 char *exec_file = get_exec_file (0);
4442 if (exec_file == NULL)
4443 exec_file = "";
4444 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4445 target_pid_to_str (pid_to_ptid (pid)));
4446 gdb_flush (gdb_stdout);
4447 }
4448
4449 /* Tell the remote target to detach. */
4450 if (remote_multi_process_p (rs))
4451 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4452 else
4453 strcpy (rs->buf, "D");
4454
4455 putpkt (rs->buf);
4456 getpkt (&rs->buf, &rs->buf_size, 0);
4457
4458 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4459 ;
4460 else if (rs->buf[0] == '\0')
4461 error (_("Remote doesn't know how to detach"));
4462 else
4463 error (_("Can't detach process."));
4464
4465 if (from_tty && !extended)
4466 puts_filtered (_("Ending remote debugging.\n"));
4467
4468 target_mourn_inferior ();
4469 }
4470
4471 static void
4472 remote_detach (struct target_ops *ops, char *args, int from_tty)
4473 {
4474 remote_detach_1 (args, from_tty, 0);
4475 }
4476
4477 static void
4478 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4479 {
4480 remote_detach_1 (args, from_tty, 1);
4481 }
4482
4483 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4484
4485 static void
4486 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4487 {
4488 if (args)
4489 error (_("Argument given to \"disconnect\" when remotely debugging."));
4490
4491 /* Make sure we unpush even the extended remote targets; mourn
4492 won't do it. So call remote_mourn_1 directly instead of
4493 target_mourn_inferior. */
4494 remote_mourn_1 (target);
4495
4496 if (from_tty)
4497 puts_filtered ("Ending remote debugging.\n");
4498 }
4499
4500 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4501 be chatty about it. */
4502
4503 static void
4504 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4505 {
4506 struct remote_state *rs = get_remote_state ();
4507 int pid;
4508 char *wait_status = NULL;
4509
4510 pid = parse_pid_to_attach (args);
4511
4512 /* Remote PID can be freely equal to getpid, do not check it here the same
4513 way as in other targets. */
4514
4515 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4516 error (_("This target does not support attaching to a process"));
4517
4518 if (from_tty)
4519 {
4520 char *exec_file = get_exec_file (0);
4521
4522 if (exec_file)
4523 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4524 target_pid_to_str (pid_to_ptid (pid)));
4525 else
4526 printf_unfiltered (_("Attaching to %s\n"),
4527 target_pid_to_str (pid_to_ptid (pid)));
4528
4529 gdb_flush (gdb_stdout);
4530 }
4531
4532 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4533 putpkt (rs->buf);
4534 getpkt (&rs->buf, &rs->buf_size, 0);
4535
4536 if (packet_ok (rs->buf,
4537 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4538 {
4539 if (!non_stop)
4540 {
4541 /* Save the reply for later. */
4542 wait_status = alloca (strlen (rs->buf) + 1);
4543 strcpy (wait_status, rs->buf);
4544 }
4545 else if (strcmp (rs->buf, "OK") != 0)
4546 error (_("Attaching to %s failed with: %s"),
4547 target_pid_to_str (pid_to_ptid (pid)),
4548 rs->buf);
4549 }
4550 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4551 error (_("This target does not support attaching to a process"));
4552 else
4553 error (_("Attaching to %s failed"),
4554 target_pid_to_str (pid_to_ptid (pid)));
4555
4556 set_current_inferior (remote_add_inferior (0, pid, 1));
4557
4558 inferior_ptid = pid_to_ptid (pid);
4559
4560 if (non_stop)
4561 {
4562 struct thread_info *thread;
4563
4564 /* Get list of threads. */
4565 remote_threads_info (target);
4566
4567 thread = first_thread_of_process (pid);
4568 if (thread)
4569 inferior_ptid = thread->ptid;
4570 else
4571 inferior_ptid = pid_to_ptid (pid);
4572
4573 /* Invalidate our notion of the remote current thread. */
4574 record_currthread (rs, minus_one_ptid);
4575 }
4576 else
4577 {
4578 /* Now, if we have thread information, update inferior_ptid. */
4579 inferior_ptid = remote_current_thread (inferior_ptid);
4580
4581 /* Add the main thread to the thread list. */
4582 add_thread_silent (inferior_ptid);
4583 }
4584
4585 /* Next, if the target can specify a description, read it. We do
4586 this before anything involving memory or registers. */
4587 target_find_description ();
4588
4589 if (!non_stop)
4590 {
4591 /* Use the previously fetched status. */
4592 gdb_assert (wait_status != NULL);
4593
4594 if (target_can_async_p ())
4595 {
4596 struct notif_event *reply
4597 = remote_notif_parse (&notif_client_stop, wait_status);
4598
4599 push_stop_reply ((struct stop_reply *) reply);
4600
4601 target_async (inferior_event_handler, 0);
4602 }
4603 else
4604 {
4605 gdb_assert (wait_status != NULL);
4606 strcpy (rs->buf, wait_status);
4607 rs->cached_wait_status = 1;
4608 }
4609 }
4610 else
4611 gdb_assert (wait_status == NULL);
4612 }
4613
4614 static void
4615 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4616 {
4617 extended_remote_attach_1 (ops, args, from_tty);
4618 }
4619
4620 /* Convert hex digit A to a number. */
4621
4622 static int
4623 fromhex (int a)
4624 {
4625 if (a >= '0' && a <= '9')
4626 return a - '0';
4627 else if (a >= 'a' && a <= 'f')
4628 return a - 'a' + 10;
4629 else if (a >= 'A' && a <= 'F')
4630 return a - 'A' + 10;
4631 else
4632 error (_("Reply contains invalid hex digit %d"), a);
4633 }
4634
4635 int
4636 hex2bin (const char *hex, gdb_byte *bin, int count)
4637 {
4638 int i;
4639
4640 for (i = 0; i < count; i++)
4641 {
4642 if (hex[0] == 0 || hex[1] == 0)
4643 {
4644 /* Hex string is short, or of uneven length.
4645 Return the count that has been converted so far. */
4646 return i;
4647 }
4648 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4649 hex += 2;
4650 }
4651 return i;
4652 }
4653
4654 /* Convert number NIB to a hex digit. */
4655
4656 static int
4657 tohex (int nib)
4658 {
4659 if (nib < 10)
4660 return '0' + nib;
4661 else
4662 return 'a' + nib - 10;
4663 }
4664
4665 int
4666 bin2hex (const gdb_byte *bin, char *hex, int count)
4667 {
4668 int i;
4669
4670 /* May use a length, or a nul-terminated string as input. */
4671 if (count == 0)
4672 count = strlen ((char *) bin);
4673
4674 for (i = 0; i < count; i++)
4675 {
4676 *hex++ = tohex ((*bin >> 4) & 0xf);
4677 *hex++ = tohex (*bin++ & 0xf);
4678 }
4679 *hex = 0;
4680 return i;
4681 }
4682 \f
4683 /* Check for the availability of vCont. This function should also check
4684 the response. */
4685
4686 static void
4687 remote_vcont_probe (struct remote_state *rs)
4688 {
4689 char *buf;
4690
4691 strcpy (rs->buf, "vCont?");
4692 putpkt (rs->buf);
4693 getpkt (&rs->buf, &rs->buf_size, 0);
4694 buf = rs->buf;
4695
4696 /* Make sure that the features we assume are supported. */
4697 if (strncmp (buf, "vCont", 5) == 0)
4698 {
4699 char *p = &buf[5];
4700 int support_s, support_S, support_c, support_C;
4701
4702 support_s = 0;
4703 support_S = 0;
4704 support_c = 0;
4705 support_C = 0;
4706 rs->supports_vCont.t = 0;
4707 rs->supports_vCont.r = 0;
4708 while (p && *p == ';')
4709 {
4710 p++;
4711 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4712 support_s = 1;
4713 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4714 support_S = 1;
4715 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4716 support_c = 1;
4717 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4718 support_C = 1;
4719 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4720 rs->supports_vCont.t = 1;
4721 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4722 rs->supports_vCont.r = 1;
4723
4724 p = strchr (p, ';');
4725 }
4726
4727 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4728 BUF will make packet_ok disable the packet. */
4729 if (!support_s || !support_S || !support_c || !support_C)
4730 buf[0] = 0;
4731 }
4732
4733 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4734 }
4735
4736 /* Helper function for building "vCont" resumptions. Write a
4737 resumption to P. ENDP points to one-passed-the-end of the buffer
4738 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4739 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4740 resumed thread should be single-stepped and/or signalled. If PTID
4741 equals minus_one_ptid, then all threads are resumed; if PTID
4742 represents a process, then all threads of the process are resumed;
4743 the thread to be stepped and/or signalled is given in the global
4744 INFERIOR_PTID. */
4745
4746 static char *
4747 append_resumption (char *p, char *endp,
4748 ptid_t ptid, int step, enum gdb_signal siggnal)
4749 {
4750 struct remote_state *rs = get_remote_state ();
4751
4752 if (step && siggnal != GDB_SIGNAL_0)
4753 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4754 else if (step
4755 /* GDB is willing to range step. */
4756 && use_range_stepping
4757 /* Target supports range stepping. */
4758 && rs->supports_vCont.r
4759 /* We don't currently support range stepping multiple
4760 threads with a wildcard (though the protocol allows it,
4761 so stubs shouldn't make an active effort to forbid
4762 it). */
4763 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4764 {
4765 struct thread_info *tp;
4766
4767 if (ptid_equal (ptid, minus_one_ptid))
4768 {
4769 /* If we don't know about the target thread's tid, then
4770 we're resuming magic_null_ptid (see caller). */
4771 tp = find_thread_ptid (magic_null_ptid);
4772 }
4773 else
4774 tp = find_thread_ptid (ptid);
4775 gdb_assert (tp != NULL);
4776
4777 if (tp->control.may_range_step)
4778 {
4779 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4780
4781 p += xsnprintf (p, endp - p, ";r%s,%s",
4782 phex_nz (tp->control.step_range_start,
4783 addr_size),
4784 phex_nz (tp->control.step_range_end,
4785 addr_size));
4786 }
4787 else
4788 p += xsnprintf (p, endp - p, ";s");
4789 }
4790 else if (step)
4791 p += xsnprintf (p, endp - p, ";s");
4792 else if (siggnal != GDB_SIGNAL_0)
4793 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4794 else
4795 p += xsnprintf (p, endp - p, ";c");
4796
4797 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4798 {
4799 ptid_t nptid;
4800
4801 /* All (-1) threads of process. */
4802 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4803
4804 p += xsnprintf (p, endp - p, ":");
4805 p = write_ptid (p, endp, nptid);
4806 }
4807 else if (!ptid_equal (ptid, minus_one_ptid))
4808 {
4809 p += xsnprintf (p, endp - p, ":");
4810 p = write_ptid (p, endp, ptid);
4811 }
4812
4813 return p;
4814 }
4815
4816 /* Append a vCont continue-with-signal action for threads that have a
4817 non-zero stop signal. */
4818
4819 static char *
4820 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4821 {
4822 struct thread_info *thread;
4823
4824 ALL_THREADS (thread)
4825 if (ptid_match (thread->ptid, ptid)
4826 && !ptid_equal (inferior_ptid, thread->ptid)
4827 && thread->suspend.stop_signal != GDB_SIGNAL_0
4828 && signal_pass_state (thread->suspend.stop_signal))
4829 {
4830 p = append_resumption (p, endp, thread->ptid,
4831 0, thread->suspend.stop_signal);
4832 thread->suspend.stop_signal = GDB_SIGNAL_0;
4833 }
4834
4835 return p;
4836 }
4837
4838 /* Resume the remote inferior by using a "vCont" packet. The thread
4839 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4840 resumed thread should be single-stepped and/or signalled. If PTID
4841 equals minus_one_ptid, then all threads are resumed; the thread to
4842 be stepped and/or signalled is given in the global INFERIOR_PTID.
4843 This function returns non-zero iff it resumes the inferior.
4844
4845 This function issues a strict subset of all possible vCont commands at the
4846 moment. */
4847
4848 static int
4849 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4850 {
4851 struct remote_state *rs = get_remote_state ();
4852 char *p;
4853 char *endp;
4854
4855 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4856 remote_vcont_probe (rs);
4857
4858 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4859 return 0;
4860
4861 p = rs->buf;
4862 endp = rs->buf + get_remote_packet_size ();
4863
4864 /* If we could generate a wider range of packets, we'd have to worry
4865 about overflowing BUF. Should there be a generic
4866 "multi-part-packet" packet? */
4867
4868 p += xsnprintf (p, endp - p, "vCont");
4869
4870 if (ptid_equal (ptid, magic_null_ptid))
4871 {
4872 /* MAGIC_NULL_PTID means that we don't have any active threads,
4873 so we don't have any TID numbers the inferior will
4874 understand. Make sure to only send forms that do not specify
4875 a TID. */
4876 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4877 }
4878 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4879 {
4880 /* Resume all threads (of all processes, or of a single
4881 process), with preference for INFERIOR_PTID. This assumes
4882 inferior_ptid belongs to the set of all threads we are about
4883 to resume. */
4884 if (step || siggnal != GDB_SIGNAL_0)
4885 {
4886 /* Step inferior_ptid, with or without signal. */
4887 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4888 }
4889
4890 /* Also pass down any pending signaled resumption for other
4891 threads not the current. */
4892 p = append_pending_thread_resumptions (p, endp, ptid);
4893
4894 /* And continue others without a signal. */
4895 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4896 }
4897 else
4898 {
4899 /* Scheduler locking; resume only PTID. */
4900 append_resumption (p, endp, ptid, step, siggnal);
4901 }
4902
4903 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4904 putpkt (rs->buf);
4905
4906 if (non_stop)
4907 {
4908 /* In non-stop, the stub replies to vCont with "OK". The stop
4909 reply will be reported asynchronously by means of a `%Stop'
4910 notification. */
4911 getpkt (&rs->buf, &rs->buf_size, 0);
4912 if (strcmp (rs->buf, "OK") != 0)
4913 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4914 }
4915
4916 return 1;
4917 }
4918
4919 /* Tell the remote machine to resume. */
4920
4921 static void
4922 remote_resume (struct target_ops *ops,
4923 ptid_t ptid, int step, enum gdb_signal siggnal)
4924 {
4925 struct remote_state *rs = get_remote_state ();
4926 char *buf;
4927
4928 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4929 (explained in remote-notif.c:handle_notification) so
4930 remote_notif_process is not called. We need find a place where
4931 it is safe to start a 'vNotif' sequence. It is good to do it
4932 before resuming inferior, because inferior was stopped and no RSP
4933 traffic at that moment. */
4934 if (!non_stop)
4935 remote_notif_process (rs->notif_state, &notif_client_stop);
4936
4937 rs->last_sent_signal = siggnal;
4938 rs->last_sent_step = step;
4939
4940 /* The vCont packet doesn't need to specify threads via Hc. */
4941 /* No reverse support (yet) for vCont. */
4942 if (execution_direction != EXEC_REVERSE)
4943 if (remote_vcont_resume (ptid, step, siggnal))
4944 goto done;
4945
4946 /* All other supported resume packets do use Hc, so set the continue
4947 thread. */
4948 if (ptid_equal (ptid, minus_one_ptid))
4949 set_continue_thread (any_thread_ptid);
4950 else
4951 set_continue_thread (ptid);
4952
4953 buf = rs->buf;
4954 if (execution_direction == EXEC_REVERSE)
4955 {
4956 /* We don't pass signals to the target in reverse exec mode. */
4957 if (info_verbose && siggnal != GDB_SIGNAL_0)
4958 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4959 siggnal);
4960
4961 if (step
4962 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4963 error (_("Remote reverse-step not supported."));
4964 if (!step
4965 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4966 error (_("Remote reverse-continue not supported."));
4967
4968 strcpy (buf, step ? "bs" : "bc");
4969 }
4970 else if (siggnal != GDB_SIGNAL_0)
4971 {
4972 buf[0] = step ? 'S' : 'C';
4973 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4974 buf[2] = tohex (((int) siggnal) & 0xf);
4975 buf[3] = '\0';
4976 }
4977 else
4978 strcpy (buf, step ? "s" : "c");
4979
4980 putpkt (buf);
4981
4982 done:
4983 /* We are about to start executing the inferior, let's register it
4984 with the event loop. NOTE: this is the one place where all the
4985 execution commands end up. We could alternatively do this in each
4986 of the execution commands in infcmd.c. */
4987 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4988 into infcmd.c in order to allow inferior function calls to work
4989 NOT asynchronously. */
4990 if (target_can_async_p ())
4991 target_async (inferior_event_handler, 0);
4992
4993 /* We've just told the target to resume. The remote server will
4994 wait for the inferior to stop, and then send a stop reply. In
4995 the mean time, we can't start another command/query ourselves
4996 because the stub wouldn't be ready to process it. This applies
4997 only to the base all-stop protocol, however. In non-stop (which
4998 only supports vCont), the stub replies with an "OK", and is
4999 immediate able to process further serial input. */
5000 if (!non_stop)
5001 rs->waiting_for_stop_reply = 1;
5002 }
5003 \f
5004
5005 /* Set up the signal handler for SIGINT, while the target is
5006 executing, ovewriting the 'regular' SIGINT signal handler. */
5007 static void
5008 async_initialize_sigint_signal_handler (void)
5009 {
5010 signal (SIGINT, async_handle_remote_sigint);
5011 }
5012
5013 /* Signal handler for SIGINT, while the target is executing. */
5014 static void
5015 async_handle_remote_sigint (int sig)
5016 {
5017 signal (sig, async_handle_remote_sigint_twice);
5018 mark_async_signal_handler (async_sigint_remote_token);
5019 }
5020
5021 /* Signal handler for SIGINT, installed after SIGINT has already been
5022 sent once. It will take effect the second time that the user sends
5023 a ^C. */
5024 static void
5025 async_handle_remote_sigint_twice (int sig)
5026 {
5027 signal (sig, async_handle_remote_sigint);
5028 mark_async_signal_handler (async_sigint_remote_twice_token);
5029 }
5030
5031 /* Perform the real interruption of the target execution, in response
5032 to a ^C. */
5033 static void
5034 async_remote_interrupt (gdb_client_data arg)
5035 {
5036 if (remote_debug)
5037 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5038
5039 target_stop (inferior_ptid);
5040 }
5041
5042 /* Perform interrupt, if the first attempt did not succeed. Just give
5043 up on the target alltogether. */
5044 static void
5045 async_remote_interrupt_twice (gdb_client_data arg)
5046 {
5047 if (remote_debug)
5048 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5049
5050 interrupt_query ();
5051 }
5052
5053 /* Reinstall the usual SIGINT handlers, after the target has
5054 stopped. */
5055 static void
5056 async_cleanup_sigint_signal_handler (void *dummy)
5057 {
5058 signal (SIGINT, handle_sigint);
5059 }
5060
5061 /* Send ^C to target to halt it. Target will respond, and send us a
5062 packet. */
5063 static void (*ofunc) (int);
5064
5065 /* The command line interface's stop routine. This function is installed
5066 as a signal handler for SIGINT. The first time a user requests a
5067 stop, we call remote_stop to send a break or ^C. If there is no
5068 response from the target (it didn't stop when the user requested it),
5069 we ask the user if he'd like to detach from the target. */
5070 static void
5071 sync_remote_interrupt (int signo)
5072 {
5073 /* If this doesn't work, try more severe steps. */
5074 signal (signo, sync_remote_interrupt_twice);
5075
5076 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5077 }
5078
5079 /* The user typed ^C twice. */
5080
5081 static void
5082 sync_remote_interrupt_twice (int signo)
5083 {
5084 signal (signo, ofunc);
5085 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5086 signal (signo, sync_remote_interrupt);
5087 }
5088
5089 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5090 thread, all threads of a remote process, or all threads of all
5091 processes. */
5092
5093 static void
5094 remote_stop_ns (ptid_t ptid)
5095 {
5096 struct remote_state *rs = get_remote_state ();
5097 char *p = rs->buf;
5098 char *endp = rs->buf + get_remote_packet_size ();
5099
5100 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5101 remote_vcont_probe (rs);
5102
5103 if (!rs->supports_vCont.t)
5104 error (_("Remote server does not support stopping threads"));
5105
5106 if (ptid_equal (ptid, minus_one_ptid)
5107 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5108 p += xsnprintf (p, endp - p, "vCont;t");
5109 else
5110 {
5111 ptid_t nptid;
5112
5113 p += xsnprintf (p, endp - p, "vCont;t:");
5114
5115 if (ptid_is_pid (ptid))
5116 /* All (-1) threads of process. */
5117 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5118 else
5119 {
5120 /* Small optimization: if we already have a stop reply for
5121 this thread, no use in telling the stub we want this
5122 stopped. */
5123 if (peek_stop_reply (ptid))
5124 return;
5125
5126 nptid = ptid;
5127 }
5128
5129 write_ptid (p, endp, nptid);
5130 }
5131
5132 /* In non-stop, we get an immediate OK reply. The stop reply will
5133 come in asynchronously by notification. */
5134 putpkt (rs->buf);
5135 getpkt (&rs->buf, &rs->buf_size, 0);
5136 if (strcmp (rs->buf, "OK") != 0)
5137 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5138 }
5139
5140 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5141 remote target. It is undefined which thread of which process
5142 reports the stop. */
5143
5144 static void
5145 remote_stop_as (ptid_t ptid)
5146 {
5147 struct remote_state *rs = get_remote_state ();
5148
5149 rs->ctrlc_pending_p = 1;
5150
5151 /* If the inferior is stopped already, but the core didn't know
5152 about it yet, just ignore the request. The cached wait status
5153 will be collected in remote_wait. */
5154 if (rs->cached_wait_status)
5155 return;
5156
5157 /* Send interrupt_sequence to remote target. */
5158 send_interrupt_sequence ();
5159 }
5160
5161 /* This is the generic stop called via the target vector. When a target
5162 interrupt is requested, either by the command line or the GUI, we
5163 will eventually end up here. */
5164
5165 static void
5166 remote_stop (ptid_t ptid)
5167 {
5168 if (remote_debug)
5169 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5170
5171 if (non_stop)
5172 remote_stop_ns (ptid);
5173 else
5174 remote_stop_as (ptid);
5175 }
5176
5177 /* Ask the user what to do when an interrupt is received. */
5178
5179 static void
5180 interrupt_query (void)
5181 {
5182 target_terminal_ours ();
5183
5184 if (target_can_async_p ())
5185 {
5186 signal (SIGINT, handle_sigint);
5187 quit ();
5188 }
5189 else
5190 {
5191 if (query (_("Interrupted while waiting for the program.\n\
5192 Give up (and stop debugging it)? ")))
5193 {
5194 remote_unpush_target ();
5195 quit ();
5196 }
5197 }
5198
5199 target_terminal_inferior ();
5200 }
5201
5202 /* Enable/disable target terminal ownership. Most targets can use
5203 terminal groups to control terminal ownership. Remote targets are
5204 different in that explicit transfer of ownership to/from GDB/target
5205 is required. */
5206
5207 static void
5208 remote_terminal_inferior (void)
5209 {
5210 if (!target_async_permitted)
5211 /* Nothing to do. */
5212 return;
5213
5214 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5215 idempotent. The event-loop GDB talking to an asynchronous target
5216 with a synchronous command calls this function from both
5217 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5218 transfer the terminal to the target when it shouldn't this guard
5219 can go away. */
5220 if (!remote_async_terminal_ours_p)
5221 return;
5222 delete_file_handler (input_fd);
5223 remote_async_terminal_ours_p = 0;
5224 async_initialize_sigint_signal_handler ();
5225 /* NOTE: At this point we could also register our selves as the
5226 recipient of all input. Any characters typed could then be
5227 passed on down to the target. */
5228 }
5229
5230 static void
5231 remote_terminal_ours (void)
5232 {
5233 if (!target_async_permitted)
5234 /* Nothing to do. */
5235 return;
5236
5237 /* See FIXME in remote_terminal_inferior. */
5238 if (remote_async_terminal_ours_p)
5239 return;
5240 async_cleanup_sigint_signal_handler (NULL);
5241 add_file_handler (input_fd, stdin_event_handler, 0);
5242 remote_async_terminal_ours_p = 1;
5243 }
5244
5245 static void
5246 remote_console_output (char *msg)
5247 {
5248 char *p;
5249
5250 for (p = msg; p[0] && p[1]; p += 2)
5251 {
5252 char tb[2];
5253 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5254
5255 tb[0] = c;
5256 tb[1] = 0;
5257 fputs_unfiltered (tb, gdb_stdtarg);
5258 }
5259 gdb_flush (gdb_stdtarg);
5260 }
5261
5262 typedef struct cached_reg
5263 {
5264 int num;
5265 gdb_byte data[MAX_REGISTER_SIZE];
5266 } cached_reg_t;
5267
5268 DEF_VEC_O(cached_reg_t);
5269
5270 typedef struct stop_reply
5271 {
5272 struct notif_event base;
5273
5274 /* The identifier of the thread about this event */
5275 ptid_t ptid;
5276
5277 /* The remote state this event is associated with. When the remote
5278 connection, represented by a remote_state object, is closed,
5279 all the associated stop_reply events should be released. */
5280 struct remote_state *rs;
5281
5282 struct target_waitstatus ws;
5283
5284 /* Expedited registers. This makes remote debugging a bit more
5285 efficient for those targets that provide critical registers as
5286 part of their normal status mechanism (as another roundtrip to
5287 fetch them is avoided). */
5288 VEC(cached_reg_t) *regcache;
5289
5290 int stopped_by_watchpoint_p;
5291 CORE_ADDR watch_data_address;
5292
5293 int core;
5294 } *stop_reply_p;
5295
5296 DECLARE_QUEUE_P (stop_reply_p);
5297 DEFINE_QUEUE_P (stop_reply_p);
5298 /* The list of already fetched and acknowledged stop events. This
5299 queue is used for notification Stop, and other notifications
5300 don't need queue for their events, because the notification events
5301 of Stop can't be consumed immediately, so that events should be
5302 queued first, and be consumed by remote_wait_{ns,as} one per
5303 time. Other notifications can consume their events immediately,
5304 so queue is not needed for them. */
5305 static QUEUE (stop_reply_p) *stop_reply_queue;
5306
5307 static void
5308 stop_reply_xfree (struct stop_reply *r)
5309 {
5310 notif_event_xfree ((struct notif_event *) r);
5311 }
5312
5313 static void
5314 remote_notif_stop_parse (struct notif_client *self, char *buf,
5315 struct notif_event *event)
5316 {
5317 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5318 }
5319
5320 static void
5321 remote_notif_stop_ack (struct notif_client *self, char *buf,
5322 struct notif_event *event)
5323 {
5324 struct stop_reply *stop_reply = (struct stop_reply *) event;
5325
5326 /* acknowledge */
5327 putpkt ((char *) self->ack_command);
5328
5329 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5330 /* We got an unknown stop reply. */
5331 error (_("Unknown stop reply"));
5332
5333 push_stop_reply (stop_reply);
5334 }
5335
5336 static int
5337 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5338 {
5339 /* We can't get pending events in remote_notif_process for
5340 notification stop, and we have to do this in remote_wait_ns
5341 instead. If we fetch all queued events from stub, remote stub
5342 may exit and we have no chance to process them back in
5343 remote_wait_ns. */
5344 mark_async_event_handler (remote_async_inferior_event_token);
5345 return 0;
5346 }
5347
5348 static void
5349 stop_reply_dtr (struct notif_event *event)
5350 {
5351 struct stop_reply *r = (struct stop_reply *) event;
5352
5353 VEC_free (cached_reg_t, r->regcache);
5354 }
5355
5356 static struct notif_event *
5357 remote_notif_stop_alloc_reply (void)
5358 {
5359 struct notif_event *r
5360 = (struct notif_event *) XMALLOC (struct stop_reply);
5361
5362 r->dtr = stop_reply_dtr;
5363
5364 return r;
5365 }
5366
5367 /* A client of notification Stop. */
5368
5369 struct notif_client notif_client_stop =
5370 {
5371 "Stop",
5372 "vStopped",
5373 remote_notif_stop_parse,
5374 remote_notif_stop_ack,
5375 remote_notif_stop_can_get_pending_events,
5376 remote_notif_stop_alloc_reply,
5377 REMOTE_NOTIF_STOP,
5378 };
5379
5380 /* A parameter to pass data in and out. */
5381
5382 struct queue_iter_param
5383 {
5384 void *input;
5385 struct stop_reply *output;
5386 };
5387
5388 /* Remove stop replies in the queue if its pid is equal to the given
5389 inferior's pid. */
5390
5391 static int
5392 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
5393 QUEUE_ITER (stop_reply_p) *iter,
5394 stop_reply_p event,
5395 void *data)
5396 {
5397 struct queue_iter_param *param = data;
5398 struct inferior *inf = param->input;
5399
5400 if (ptid_get_pid (event->ptid) == inf->pid)
5401 {
5402 stop_reply_xfree (event);
5403 QUEUE_remove_elem (stop_reply_p, q, iter);
5404 }
5405
5406 return 1;
5407 }
5408
5409 /* Discard all pending stop replies of inferior INF. */
5410
5411 static void
5412 discard_pending_stop_replies (struct inferior *inf)
5413 {
5414 int i;
5415 struct queue_iter_param param;
5416 struct stop_reply *reply;
5417 struct remote_state *rs = get_remote_state ();
5418 struct remote_notif_state *rns = rs->notif_state;
5419
5420 /* This function can be notified when an inferior exists. When the
5421 target is not remote, the notification state is NULL. */
5422 if (rs->remote_desc == NULL)
5423 return;
5424
5425 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
5426
5427 /* Discard the in-flight notification. */
5428 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
5429 {
5430 stop_reply_xfree (reply);
5431 rns->pending_event[notif_client_stop.id] = NULL;
5432 }
5433
5434 param.input = inf;
5435 param.output = NULL;
5436 /* Discard the stop replies we have already pulled with
5437 vStopped. */
5438 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5439 remove_stop_reply_for_inferior, &param);
5440 }
5441
5442 /* If its remote state is equal to the given remote state,
5443 remove EVENT from the stop reply queue. */
5444
5445 static int
5446 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
5447 QUEUE_ITER (stop_reply_p) *iter,
5448 stop_reply_p event,
5449 void *data)
5450 {
5451 struct queue_iter_param *param = data;
5452 struct remote_state *rs = param->input;
5453
5454 if (event->rs == rs)
5455 {
5456 stop_reply_xfree (event);
5457 QUEUE_remove_elem (stop_reply_p, q, iter);
5458 }
5459
5460 return 1;
5461 }
5462
5463 /* Discard the stop replies for RS in stop_reply_queue. */
5464
5465 static void
5466 discard_pending_stop_replies_in_queue (struct remote_state *rs)
5467 {
5468 struct queue_iter_param param;
5469
5470 param.input = rs;
5471 param.output = NULL;
5472 /* Discard the stop replies we have already pulled with
5473 vStopped. */
5474 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5475 remove_stop_reply_of_remote_state, &param);
5476 }
5477
5478 /* A parameter to pass data in and out. */
5479
5480 static int
5481 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5482 QUEUE_ITER (stop_reply_p) *iter,
5483 stop_reply_p event,
5484 void *data)
5485 {
5486 struct queue_iter_param *param = data;
5487 ptid_t *ptid = param->input;
5488
5489 if (ptid_match (event->ptid, *ptid))
5490 {
5491 param->output = event;
5492 QUEUE_remove_elem (stop_reply_p, q, iter);
5493 return 0;
5494 }
5495
5496 return 1;
5497 }
5498
5499 /* Remove the first reply in 'stop_reply_queue' which matches
5500 PTID. */
5501
5502 static struct stop_reply *
5503 remote_notif_remove_queued_reply (ptid_t ptid)
5504 {
5505 struct queue_iter_param param;
5506
5507 param.input = &ptid;
5508 param.output = NULL;
5509
5510 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5511 remote_notif_remove_once_on_match, &param);
5512 if (notif_debug)
5513 fprintf_unfiltered (gdb_stdlog,
5514 "notif: discard queued event: 'Stop' in %s\n",
5515 target_pid_to_str (ptid));
5516
5517 return param.output;
5518 }
5519
5520 /* Look for a queued stop reply belonging to PTID. If one is found,
5521 remove it from the queue, and return it. Returns NULL if none is
5522 found. If there are still queued events left to process, tell the
5523 event loop to get back to target_wait soon. */
5524
5525 static struct stop_reply *
5526 queued_stop_reply (ptid_t ptid)
5527 {
5528 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5529
5530 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5531 /* There's still at least an event left. */
5532 mark_async_event_handler (remote_async_inferior_event_token);
5533
5534 return r;
5535 }
5536
5537 /* Push a fully parsed stop reply in the stop reply queue. Since we
5538 know that we now have at least one queued event left to pass to the
5539 core side, tell the event loop to get back to target_wait soon. */
5540
5541 static void
5542 push_stop_reply (struct stop_reply *new_event)
5543 {
5544 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5545
5546 if (notif_debug)
5547 fprintf_unfiltered (gdb_stdlog,
5548 "notif: push 'Stop' %s to queue %d\n",
5549 target_pid_to_str (new_event->ptid),
5550 QUEUE_length (stop_reply_p,
5551 stop_reply_queue));
5552
5553 mark_async_event_handler (remote_async_inferior_event_token);
5554 }
5555
5556 static int
5557 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5558 QUEUE_ITER (stop_reply_p) *iter,
5559 struct stop_reply *event,
5560 void *data)
5561 {
5562 ptid_t *ptid = data;
5563
5564 return !(ptid_equal (*ptid, event->ptid)
5565 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5566 }
5567
5568 /* Returns true if we have a stop reply for PTID. */
5569
5570 static int
5571 peek_stop_reply (ptid_t ptid)
5572 {
5573 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5574 stop_reply_match_ptid_and_ws, &ptid);
5575 }
5576
5577 /* Parse the stop reply in BUF. Either the function succeeds, and the
5578 result is stored in EVENT, or throws an error. */
5579
5580 static void
5581 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5582 {
5583 struct remote_arch_state *rsa = get_remote_arch_state ();
5584 ULONGEST addr;
5585 char *p;
5586
5587 event->ptid = null_ptid;
5588 event->rs = get_remote_state ();
5589 event->ws.kind = TARGET_WAITKIND_IGNORE;
5590 event->ws.value.integer = 0;
5591 event->stopped_by_watchpoint_p = 0;
5592 event->regcache = NULL;
5593 event->core = -1;
5594
5595 switch (buf[0])
5596 {
5597 case 'T': /* Status with PC, SP, FP, ... */
5598 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5599 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5600 ss = signal number
5601 n... = register number
5602 r... = register contents
5603 */
5604
5605 p = &buf[3]; /* after Txx */
5606 while (*p)
5607 {
5608 char *p1;
5609 char *p_temp;
5610 int fieldsize;
5611 LONGEST pnum = 0;
5612
5613 /* If the packet contains a register number, save it in
5614 pnum and set p1 to point to the character following it.
5615 Otherwise p1 points to p. */
5616
5617 /* If this packet is an awatch packet, don't parse the 'a'
5618 as a register number. */
5619
5620 if (strncmp (p, "awatch", strlen("awatch")) != 0
5621 && strncmp (p, "core", strlen ("core") != 0))
5622 {
5623 /* Read the ``P'' register number. */
5624 pnum = strtol (p, &p_temp, 16);
5625 p1 = p_temp;
5626 }
5627 else
5628 p1 = p;
5629
5630 if (p1 == p) /* No register number present here. */
5631 {
5632 p1 = strchr (p, ':');
5633 if (p1 == NULL)
5634 error (_("Malformed packet(a) (missing colon): %s\n\
5635 Packet: '%s'\n"),
5636 p, buf);
5637 if (strncmp (p, "thread", p1 - p) == 0)
5638 event->ptid = read_ptid (++p1, &p);
5639 else if ((strncmp (p, "watch", p1 - p) == 0)
5640 || (strncmp (p, "rwatch", p1 - p) == 0)
5641 || (strncmp (p, "awatch", p1 - p) == 0))
5642 {
5643 event->stopped_by_watchpoint_p = 1;
5644 p = unpack_varlen_hex (++p1, &addr);
5645 event->watch_data_address = (CORE_ADDR) addr;
5646 }
5647 else if (strncmp (p, "library", p1 - p) == 0)
5648 {
5649 p1++;
5650 p_temp = p1;
5651 while (*p_temp && *p_temp != ';')
5652 p_temp++;
5653
5654 event->ws.kind = TARGET_WAITKIND_LOADED;
5655 p = p_temp;
5656 }
5657 else if (strncmp (p, "replaylog", p1 - p) == 0)
5658 {
5659 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5660 /* p1 will indicate "begin" or "end", but it makes
5661 no difference for now, so ignore it. */
5662 p_temp = strchr (p1 + 1, ';');
5663 if (p_temp)
5664 p = p_temp;
5665 }
5666 else if (strncmp (p, "core", p1 - p) == 0)
5667 {
5668 ULONGEST c;
5669
5670 p = unpack_varlen_hex (++p1, &c);
5671 event->core = c;
5672 }
5673 else
5674 {
5675 /* Silently skip unknown optional info. */
5676 p_temp = strchr (p1 + 1, ';');
5677 if (p_temp)
5678 p = p_temp;
5679 }
5680 }
5681 else
5682 {
5683 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5684 cached_reg_t cached_reg;
5685
5686 p = p1;
5687
5688 if (*p != ':')
5689 error (_("Malformed packet(b) (missing colon): %s\n\
5690 Packet: '%s'\n"),
5691 p, buf);
5692 ++p;
5693
5694 if (reg == NULL)
5695 error (_("Remote sent bad register number %s: %s\n\
5696 Packet: '%s'\n"),
5697 hex_string (pnum), p, buf);
5698
5699 cached_reg.num = reg->regnum;
5700
5701 fieldsize = hex2bin (p, cached_reg.data,
5702 register_size (target_gdbarch (),
5703 reg->regnum));
5704 p += 2 * fieldsize;
5705 if (fieldsize < register_size (target_gdbarch (),
5706 reg->regnum))
5707 warning (_("Remote reply is too short: %s"), buf);
5708
5709 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5710 }
5711
5712 if (*p != ';')
5713 error (_("Remote register badly formatted: %s\nhere: %s"),
5714 buf, p);
5715 ++p;
5716 }
5717
5718 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5719 break;
5720
5721 /* fall through */
5722 case 'S': /* Old style status, just signal only. */
5723 event->ws.kind = TARGET_WAITKIND_STOPPED;
5724 event->ws.value.sig = (enum gdb_signal)
5725 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5726 break;
5727 case 'W': /* Target exited. */
5728 case 'X':
5729 {
5730 char *p;
5731 int pid;
5732 ULONGEST value;
5733
5734 /* GDB used to accept only 2 hex chars here. Stubs should
5735 only send more if they detect GDB supports multi-process
5736 support. */
5737 p = unpack_varlen_hex (&buf[1], &value);
5738
5739 if (buf[0] == 'W')
5740 {
5741 /* The remote process exited. */
5742 event->ws.kind = TARGET_WAITKIND_EXITED;
5743 event->ws.value.integer = value;
5744 }
5745 else
5746 {
5747 /* The remote process exited with a signal. */
5748 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5749 event->ws.value.sig = (enum gdb_signal) value;
5750 }
5751
5752 /* If no process is specified, assume inferior_ptid. */
5753 pid = ptid_get_pid (inferior_ptid);
5754 if (*p == '\0')
5755 ;
5756 else if (*p == ';')
5757 {
5758 p++;
5759
5760 if (p == '\0')
5761 ;
5762 else if (strncmp (p,
5763 "process:", sizeof ("process:") - 1) == 0)
5764 {
5765 ULONGEST upid;
5766
5767 p += sizeof ("process:") - 1;
5768 unpack_varlen_hex (p, &upid);
5769 pid = upid;
5770 }
5771 else
5772 error (_("unknown stop reply packet: %s"), buf);
5773 }
5774 else
5775 error (_("unknown stop reply packet: %s"), buf);
5776 event->ptid = pid_to_ptid (pid);
5777 }
5778 break;
5779 }
5780
5781 if (non_stop && ptid_equal (event->ptid, null_ptid))
5782 error (_("No process or thread specified in stop reply: %s"), buf);
5783 }
5784
5785 /* When the stub wants to tell GDB about a new notification reply, it
5786 sends a notification (%Stop, for example). Those can come it at
5787 any time, hence, we have to make sure that any pending
5788 putpkt/getpkt sequence we're making is finished, before querying
5789 the stub for more events with the corresponding ack command
5790 (vStopped, for example). E.g., if we started a vStopped sequence
5791 immediately upon receiving the notification, something like this
5792 could happen:
5793
5794 1.1) --> Hg 1
5795 1.2) <-- OK
5796 1.3) --> g
5797 1.4) <-- %Stop
5798 1.5) --> vStopped
5799 1.6) <-- (registers reply to step #1.3)
5800
5801 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5802 query.
5803
5804 To solve this, whenever we parse a %Stop notification successfully,
5805 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5806 doing whatever we were doing:
5807
5808 2.1) --> Hg 1
5809 2.2) <-- OK
5810 2.3) --> g
5811 2.4) <-- %Stop
5812 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5813 2.5) <-- (registers reply to step #2.3)
5814
5815 Eventualy after step #2.5, we return to the event loop, which
5816 notices there's an event on the
5817 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5818 associated callback --- the function below. At this point, we're
5819 always safe to start a vStopped sequence. :
5820
5821 2.6) --> vStopped
5822 2.7) <-- T05 thread:2
5823 2.8) --> vStopped
5824 2.9) --> OK
5825 */
5826
5827 void
5828 remote_notif_get_pending_events (struct notif_client *nc)
5829 {
5830 struct remote_state *rs = get_remote_state ();
5831
5832 if (rs->notif_state->pending_event[nc->id] != NULL)
5833 {
5834 if (notif_debug)
5835 fprintf_unfiltered (gdb_stdlog,
5836 "notif: process: '%s' ack pending event\n",
5837 nc->name);
5838
5839 /* acknowledge */
5840 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
5841 rs->notif_state->pending_event[nc->id] = NULL;
5842
5843 while (1)
5844 {
5845 getpkt (&rs->buf, &rs->buf_size, 0);
5846 if (strcmp (rs->buf, "OK") == 0)
5847 break;
5848 else
5849 remote_notif_ack (nc, rs->buf);
5850 }
5851 }
5852 else
5853 {
5854 if (notif_debug)
5855 fprintf_unfiltered (gdb_stdlog,
5856 "notif: process: '%s' no pending reply\n",
5857 nc->name);
5858 }
5859 }
5860
5861 /* Called when it is decided that STOP_REPLY holds the info of the
5862 event that is to be returned to the core. This function always
5863 destroys STOP_REPLY. */
5864
5865 static ptid_t
5866 process_stop_reply (struct stop_reply *stop_reply,
5867 struct target_waitstatus *status)
5868 {
5869 ptid_t ptid;
5870
5871 *status = stop_reply->ws;
5872 ptid = stop_reply->ptid;
5873
5874 /* If no thread/process was reported by the stub, assume the current
5875 inferior. */
5876 if (ptid_equal (ptid, null_ptid))
5877 ptid = inferior_ptid;
5878
5879 if (status->kind != TARGET_WAITKIND_EXITED
5880 && status->kind != TARGET_WAITKIND_SIGNALLED)
5881 {
5882 struct remote_state *rs = get_remote_state ();
5883
5884 /* Expedited registers. */
5885 if (stop_reply->regcache)
5886 {
5887 struct regcache *regcache
5888 = get_thread_arch_regcache (ptid, target_gdbarch ());
5889 cached_reg_t *reg;
5890 int ix;
5891
5892 for (ix = 0;
5893 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5894 ix++)
5895 regcache_raw_supply (regcache, reg->num, reg->data);
5896 VEC_free (cached_reg_t, stop_reply->regcache);
5897 }
5898
5899 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5900 rs->remote_watch_data_address = stop_reply->watch_data_address;
5901
5902 remote_notice_new_inferior (ptid, 0);
5903 demand_private_info (ptid)->core = stop_reply->core;
5904 }
5905
5906 stop_reply_xfree (stop_reply);
5907 return ptid;
5908 }
5909
5910 /* The non-stop mode version of target_wait. */
5911
5912 static ptid_t
5913 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5914 {
5915 struct remote_state *rs = get_remote_state ();
5916 struct stop_reply *stop_reply;
5917 int ret;
5918 int is_notif = 0;
5919
5920 /* If in non-stop mode, get out of getpkt even if a
5921 notification is received. */
5922
5923 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5924 0 /* forever */, &is_notif);
5925 while (1)
5926 {
5927 if (ret != -1 && !is_notif)
5928 switch (rs->buf[0])
5929 {
5930 case 'E': /* Error of some sort. */
5931 /* We're out of sync with the target now. Did it continue
5932 or not? We can't tell which thread it was in non-stop,
5933 so just ignore this. */
5934 warning (_("Remote failure reply: %s"), rs->buf);
5935 break;
5936 case 'O': /* Console output. */
5937 remote_console_output (rs->buf + 1);
5938 break;
5939 default:
5940 warning (_("Invalid remote reply: %s"), rs->buf);
5941 break;
5942 }
5943
5944 /* Acknowledge a pending stop reply that may have arrived in the
5945 mean time. */
5946 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
5947 remote_notif_get_pending_events (&notif_client_stop);
5948
5949 /* If indeed we noticed a stop reply, we're done. */
5950 stop_reply = queued_stop_reply (ptid);
5951 if (stop_reply != NULL)
5952 return process_stop_reply (stop_reply, status);
5953
5954 /* Still no event. If we're just polling for an event, then
5955 return to the event loop. */
5956 if (options & TARGET_WNOHANG)
5957 {
5958 status->kind = TARGET_WAITKIND_IGNORE;
5959 return minus_one_ptid;
5960 }
5961
5962 /* Otherwise do a blocking wait. */
5963 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5964 1 /* forever */, &is_notif);
5965 }
5966 }
5967
5968 /* Wait until the remote machine stops, then return, storing status in
5969 STATUS just as `wait' would. */
5970
5971 static ptid_t
5972 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5973 {
5974 struct remote_state *rs = get_remote_state ();
5975 ptid_t event_ptid = null_ptid;
5976 char *buf;
5977 struct stop_reply *stop_reply;
5978
5979 again:
5980
5981 status->kind = TARGET_WAITKIND_IGNORE;
5982 status->value.integer = 0;
5983
5984 stop_reply = queued_stop_reply (ptid);
5985 if (stop_reply != NULL)
5986 return process_stop_reply (stop_reply, status);
5987
5988 if (rs->cached_wait_status)
5989 /* Use the cached wait status, but only once. */
5990 rs->cached_wait_status = 0;
5991 else
5992 {
5993 int ret;
5994 int is_notif;
5995
5996 if (!target_is_async_p ())
5997 {
5998 ofunc = signal (SIGINT, sync_remote_interrupt);
5999 /* If the user hit C-c before this packet, or between packets,
6000 pretend that it was hit right here. */
6001 if (check_quit_flag ())
6002 {
6003 clear_quit_flag ();
6004 sync_remote_interrupt (SIGINT);
6005 }
6006 }
6007
6008 /* FIXME: cagney/1999-09-27: If we're in async mode we should
6009 _never_ wait for ever -> test on target_is_async_p().
6010 However, before we do that we need to ensure that the caller
6011 knows how to take the target into/out of async mode. */
6012 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6013 wait_forever_enabled_p, &is_notif);
6014
6015 if (!target_is_async_p ())
6016 signal (SIGINT, ofunc);
6017
6018 /* GDB gets a notification. Return to core as this event is
6019 not interesting. */
6020 if (ret != -1 && is_notif)
6021 return minus_one_ptid;
6022 }
6023
6024 buf = rs->buf;
6025
6026 rs->remote_stopped_by_watchpoint_p = 0;
6027
6028 /* We got something. */
6029 rs->waiting_for_stop_reply = 0;
6030
6031 /* Assume that the target has acknowledged Ctrl-C unless we receive
6032 an 'F' or 'O' packet. */
6033 if (buf[0] != 'F' && buf[0] != 'O')
6034 rs->ctrlc_pending_p = 0;
6035
6036 switch (buf[0])
6037 {
6038 case 'E': /* Error of some sort. */
6039 /* We're out of sync with the target now. Did it continue or
6040 not? Not is more likely, so report a stop. */
6041 warning (_("Remote failure reply: %s"), buf);
6042 status->kind = TARGET_WAITKIND_STOPPED;
6043 status->value.sig = GDB_SIGNAL_0;
6044 break;
6045 case 'F': /* File-I/O request. */
6046 remote_fileio_request (buf, rs->ctrlc_pending_p);
6047 rs->ctrlc_pending_p = 0;
6048 break;
6049 case 'T': case 'S': case 'X': case 'W':
6050 {
6051 struct stop_reply *stop_reply
6052 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6053 rs->buf);
6054
6055 event_ptid = process_stop_reply (stop_reply, status);
6056 break;
6057 }
6058 case 'O': /* Console output. */
6059 remote_console_output (buf + 1);
6060
6061 /* The target didn't really stop; keep waiting. */
6062 rs->waiting_for_stop_reply = 1;
6063
6064 break;
6065 case '\0':
6066 if (rs->last_sent_signal != GDB_SIGNAL_0)
6067 {
6068 /* Zero length reply means that we tried 'S' or 'C' and the
6069 remote system doesn't support it. */
6070 target_terminal_ours_for_output ();
6071 printf_filtered
6072 ("Can't send signals to this remote system. %s not sent.\n",
6073 gdb_signal_to_name (rs->last_sent_signal));
6074 rs->last_sent_signal = GDB_SIGNAL_0;
6075 target_terminal_inferior ();
6076
6077 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6078 putpkt ((char *) buf);
6079
6080 /* We just told the target to resume, so a stop reply is in
6081 order. */
6082 rs->waiting_for_stop_reply = 1;
6083 break;
6084 }
6085 /* else fallthrough */
6086 default:
6087 warning (_("Invalid remote reply: %s"), buf);
6088 /* Keep waiting. */
6089 rs->waiting_for_stop_reply = 1;
6090 break;
6091 }
6092
6093 if (status->kind == TARGET_WAITKIND_IGNORE)
6094 {
6095 /* Nothing interesting happened. If we're doing a non-blocking
6096 poll, we're done. Otherwise, go back to waiting. */
6097 if (options & TARGET_WNOHANG)
6098 return minus_one_ptid;
6099 else
6100 goto again;
6101 }
6102 else if (status->kind != TARGET_WAITKIND_EXITED
6103 && status->kind != TARGET_WAITKIND_SIGNALLED)
6104 {
6105 if (!ptid_equal (event_ptid, null_ptid))
6106 record_currthread (rs, event_ptid);
6107 else
6108 event_ptid = inferior_ptid;
6109 }
6110 else
6111 /* A process exit. Invalidate our notion of current thread. */
6112 record_currthread (rs, minus_one_ptid);
6113
6114 return event_ptid;
6115 }
6116
6117 /* Wait until the remote machine stops, then return, storing status in
6118 STATUS just as `wait' would. */
6119
6120 static ptid_t
6121 remote_wait (struct target_ops *ops,
6122 ptid_t ptid, struct target_waitstatus *status, int options)
6123 {
6124 ptid_t event_ptid;
6125
6126 if (non_stop)
6127 event_ptid = remote_wait_ns (ptid, status, options);
6128 else
6129 event_ptid = remote_wait_as (ptid, status, options);
6130
6131 if (target_can_async_p ())
6132 {
6133 /* If there are are events left in the queue tell the event loop
6134 to return here. */
6135 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6136 mark_async_event_handler (remote_async_inferior_event_token);
6137 }
6138
6139 return event_ptid;
6140 }
6141
6142 /* Fetch a single register using a 'p' packet. */
6143
6144 static int
6145 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6146 {
6147 struct remote_state *rs = get_remote_state ();
6148 char *buf, *p;
6149 char regp[MAX_REGISTER_SIZE];
6150 int i;
6151
6152 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6153 return 0;
6154
6155 if (reg->pnum == -1)
6156 return 0;
6157
6158 p = rs->buf;
6159 *p++ = 'p';
6160 p += hexnumstr (p, reg->pnum);
6161 *p++ = '\0';
6162 putpkt (rs->buf);
6163 getpkt (&rs->buf, &rs->buf_size, 0);
6164
6165 buf = rs->buf;
6166
6167 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6168 {
6169 case PACKET_OK:
6170 break;
6171 case PACKET_UNKNOWN:
6172 return 0;
6173 case PACKET_ERROR:
6174 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6175 gdbarch_register_name (get_regcache_arch (regcache),
6176 reg->regnum),
6177 buf);
6178 }
6179
6180 /* If this register is unfetchable, tell the regcache. */
6181 if (buf[0] == 'x')
6182 {
6183 regcache_raw_supply (regcache, reg->regnum, NULL);
6184 return 1;
6185 }
6186
6187 /* Otherwise, parse and supply the value. */
6188 p = buf;
6189 i = 0;
6190 while (p[0] != 0)
6191 {
6192 if (p[1] == 0)
6193 error (_("fetch_register_using_p: early buf termination"));
6194
6195 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6196 p += 2;
6197 }
6198 regcache_raw_supply (regcache, reg->regnum, regp);
6199 return 1;
6200 }
6201
6202 /* Fetch the registers included in the target's 'g' packet. */
6203
6204 static int
6205 send_g_packet (void)
6206 {
6207 struct remote_state *rs = get_remote_state ();
6208 int buf_len;
6209
6210 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6211 remote_send (&rs->buf, &rs->buf_size);
6212
6213 /* We can get out of synch in various cases. If the first character
6214 in the buffer is not a hex character, assume that has happened
6215 and try to fetch another packet to read. */
6216 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6217 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6218 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6219 && rs->buf[0] != 'x') /* New: unavailable register value. */
6220 {
6221 if (remote_debug)
6222 fprintf_unfiltered (gdb_stdlog,
6223 "Bad register packet; fetching a new packet\n");
6224 getpkt (&rs->buf, &rs->buf_size, 0);
6225 }
6226
6227 buf_len = strlen (rs->buf);
6228
6229 /* Sanity check the received packet. */
6230 if (buf_len % 2 != 0)
6231 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6232
6233 return buf_len / 2;
6234 }
6235
6236 static void
6237 process_g_packet (struct regcache *regcache)
6238 {
6239 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6240 struct remote_state *rs = get_remote_state ();
6241 struct remote_arch_state *rsa = get_remote_arch_state ();
6242 int i, buf_len;
6243 char *p;
6244 char *regs;
6245
6246 buf_len = strlen (rs->buf);
6247
6248 /* Further sanity checks, with knowledge of the architecture. */
6249 if (buf_len > 2 * rsa->sizeof_g_packet)
6250 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6251
6252 /* Save the size of the packet sent to us by the target. It is used
6253 as a heuristic when determining the max size of packets that the
6254 target can safely receive. */
6255 if (rsa->actual_register_packet_size == 0)
6256 rsa->actual_register_packet_size = buf_len;
6257
6258 /* If this is smaller than we guessed the 'g' packet would be,
6259 update our records. A 'g' reply that doesn't include a register's
6260 value implies either that the register is not available, or that
6261 the 'p' packet must be used. */
6262 if (buf_len < 2 * rsa->sizeof_g_packet)
6263 {
6264 rsa->sizeof_g_packet = buf_len / 2;
6265
6266 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6267 {
6268 if (rsa->regs[i].pnum == -1)
6269 continue;
6270
6271 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6272 rsa->regs[i].in_g_packet = 0;
6273 else
6274 rsa->regs[i].in_g_packet = 1;
6275 }
6276 }
6277
6278 regs = alloca (rsa->sizeof_g_packet);
6279
6280 /* Unimplemented registers read as all bits zero. */
6281 memset (regs, 0, rsa->sizeof_g_packet);
6282
6283 /* Reply describes registers byte by byte, each byte encoded as two
6284 hex characters. Suck them all up, then supply them to the
6285 register cacheing/storage mechanism. */
6286
6287 p = rs->buf;
6288 for (i = 0; i < rsa->sizeof_g_packet; i++)
6289 {
6290 if (p[0] == 0 || p[1] == 0)
6291 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6292 internal_error (__FILE__, __LINE__,
6293 _("unexpected end of 'g' packet reply"));
6294
6295 if (p[0] == 'x' && p[1] == 'x')
6296 regs[i] = 0; /* 'x' */
6297 else
6298 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6299 p += 2;
6300 }
6301
6302 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6303 {
6304 struct packet_reg *r = &rsa->regs[i];
6305
6306 if (r->in_g_packet)
6307 {
6308 if (r->offset * 2 >= strlen (rs->buf))
6309 /* This shouldn't happen - we adjusted in_g_packet above. */
6310 internal_error (__FILE__, __LINE__,
6311 _("unexpected end of 'g' packet reply"));
6312 else if (rs->buf[r->offset * 2] == 'x')
6313 {
6314 gdb_assert (r->offset * 2 < strlen (rs->buf));
6315 /* The register isn't available, mark it as such (at
6316 the same time setting the value to zero). */
6317 regcache_raw_supply (regcache, r->regnum, NULL);
6318 }
6319 else
6320 regcache_raw_supply (regcache, r->regnum,
6321 regs + r->offset);
6322 }
6323 }
6324 }
6325
6326 static void
6327 fetch_registers_using_g (struct regcache *regcache)
6328 {
6329 send_g_packet ();
6330 process_g_packet (regcache);
6331 }
6332
6333 /* Make the remote selected traceframe match GDB's selected
6334 traceframe. */
6335
6336 static void
6337 set_remote_traceframe (void)
6338 {
6339 int newnum;
6340 struct remote_state *rs = get_remote_state ();
6341
6342 if (rs->remote_traceframe_number == get_traceframe_number ())
6343 return;
6344
6345 /* Avoid recursion, remote_trace_find calls us again. */
6346 rs->remote_traceframe_number = get_traceframe_number ();
6347
6348 newnum = target_trace_find (tfind_number,
6349 get_traceframe_number (), 0, 0, NULL);
6350
6351 /* Should not happen. If it does, all bets are off. */
6352 if (newnum != get_traceframe_number ())
6353 warning (_("could not set remote traceframe"));
6354 }
6355
6356 static void
6357 remote_fetch_registers (struct target_ops *ops,
6358 struct regcache *regcache, int regnum)
6359 {
6360 struct remote_arch_state *rsa = get_remote_arch_state ();
6361 int i;
6362
6363 set_remote_traceframe ();
6364 set_general_thread (inferior_ptid);
6365
6366 if (regnum >= 0)
6367 {
6368 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6369
6370 gdb_assert (reg != NULL);
6371
6372 /* If this register might be in the 'g' packet, try that first -
6373 we are likely to read more than one register. If this is the
6374 first 'g' packet, we might be overly optimistic about its
6375 contents, so fall back to 'p'. */
6376 if (reg->in_g_packet)
6377 {
6378 fetch_registers_using_g (regcache);
6379 if (reg->in_g_packet)
6380 return;
6381 }
6382
6383 if (fetch_register_using_p (regcache, reg))
6384 return;
6385
6386 /* This register is not available. */
6387 regcache_raw_supply (regcache, reg->regnum, NULL);
6388
6389 return;
6390 }
6391
6392 fetch_registers_using_g (regcache);
6393
6394 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6395 if (!rsa->regs[i].in_g_packet)
6396 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6397 {
6398 /* This register is not available. */
6399 regcache_raw_supply (regcache, i, NULL);
6400 }
6401 }
6402
6403 /* Prepare to store registers. Since we may send them all (using a
6404 'G' request), we have to read out the ones we don't want to change
6405 first. */
6406
6407 static void
6408 remote_prepare_to_store (struct regcache *regcache)
6409 {
6410 struct remote_arch_state *rsa = get_remote_arch_state ();
6411 int i;
6412 gdb_byte buf[MAX_REGISTER_SIZE];
6413
6414 /* Make sure the entire registers array is valid. */
6415 switch (remote_protocol_packets[PACKET_P].support)
6416 {
6417 case PACKET_DISABLE:
6418 case PACKET_SUPPORT_UNKNOWN:
6419 /* Make sure all the necessary registers are cached. */
6420 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6421 if (rsa->regs[i].in_g_packet)
6422 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6423 break;
6424 case PACKET_ENABLE:
6425 break;
6426 }
6427 }
6428
6429 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6430 packet was not recognized. */
6431
6432 static int
6433 store_register_using_P (const struct regcache *regcache,
6434 struct packet_reg *reg)
6435 {
6436 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6437 struct remote_state *rs = get_remote_state ();
6438 /* Try storing a single register. */
6439 char *buf = rs->buf;
6440 gdb_byte regp[MAX_REGISTER_SIZE];
6441 char *p;
6442
6443 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6444 return 0;
6445
6446 if (reg->pnum == -1)
6447 return 0;
6448
6449 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6450 p = buf + strlen (buf);
6451 regcache_raw_collect (regcache, reg->regnum, regp);
6452 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6453 putpkt (rs->buf);
6454 getpkt (&rs->buf, &rs->buf_size, 0);
6455
6456 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6457 {
6458 case PACKET_OK:
6459 return 1;
6460 case PACKET_ERROR:
6461 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6462 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6463 case PACKET_UNKNOWN:
6464 return 0;
6465 default:
6466 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6467 }
6468 }
6469
6470 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6471 contents of the register cache buffer. FIXME: ignores errors. */
6472
6473 static void
6474 store_registers_using_G (const struct regcache *regcache)
6475 {
6476 struct remote_state *rs = get_remote_state ();
6477 struct remote_arch_state *rsa = get_remote_arch_state ();
6478 gdb_byte *regs;
6479 char *p;
6480
6481 /* Extract all the registers in the regcache copying them into a
6482 local buffer. */
6483 {
6484 int i;
6485
6486 regs = alloca (rsa->sizeof_g_packet);
6487 memset (regs, 0, rsa->sizeof_g_packet);
6488 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6489 {
6490 struct packet_reg *r = &rsa->regs[i];
6491
6492 if (r->in_g_packet)
6493 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6494 }
6495 }
6496
6497 /* Command describes registers byte by byte,
6498 each byte encoded as two hex characters. */
6499 p = rs->buf;
6500 *p++ = 'G';
6501 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6502 updated. */
6503 bin2hex (regs, p, rsa->sizeof_g_packet);
6504 putpkt (rs->buf);
6505 getpkt (&rs->buf, &rs->buf_size, 0);
6506 if (packet_check_result (rs->buf) == PACKET_ERROR)
6507 error (_("Could not write registers; remote failure reply '%s'"),
6508 rs->buf);
6509 }
6510
6511 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6512 of the register cache buffer. FIXME: ignores errors. */
6513
6514 static void
6515 remote_store_registers (struct target_ops *ops,
6516 struct regcache *regcache, int regnum)
6517 {
6518 struct remote_arch_state *rsa = get_remote_arch_state ();
6519 int i;
6520
6521 set_remote_traceframe ();
6522 set_general_thread (inferior_ptid);
6523
6524 if (regnum >= 0)
6525 {
6526 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6527
6528 gdb_assert (reg != NULL);
6529
6530 /* Always prefer to store registers using the 'P' packet if
6531 possible; we often change only a small number of registers.
6532 Sometimes we change a larger number; we'd need help from a
6533 higher layer to know to use 'G'. */
6534 if (store_register_using_P (regcache, reg))
6535 return;
6536
6537 /* For now, don't complain if we have no way to write the
6538 register. GDB loses track of unavailable registers too
6539 easily. Some day, this may be an error. We don't have
6540 any way to read the register, either... */
6541 if (!reg->in_g_packet)
6542 return;
6543
6544 store_registers_using_G (regcache);
6545 return;
6546 }
6547
6548 store_registers_using_G (regcache);
6549
6550 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6551 if (!rsa->regs[i].in_g_packet)
6552 if (!store_register_using_P (regcache, &rsa->regs[i]))
6553 /* See above for why we do not issue an error here. */
6554 continue;
6555 }
6556 \f
6557
6558 /* Return the number of hex digits in num. */
6559
6560 static int
6561 hexnumlen (ULONGEST num)
6562 {
6563 int i;
6564
6565 for (i = 0; num != 0; i++)
6566 num >>= 4;
6567
6568 return max (i, 1);
6569 }
6570
6571 /* Set BUF to the minimum number of hex digits representing NUM. */
6572
6573 static int
6574 hexnumstr (char *buf, ULONGEST num)
6575 {
6576 int len = hexnumlen (num);
6577
6578 return hexnumnstr (buf, num, len);
6579 }
6580
6581
6582 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6583
6584 static int
6585 hexnumnstr (char *buf, ULONGEST num, int width)
6586 {
6587 int i;
6588
6589 buf[width] = '\0';
6590
6591 for (i = width - 1; i >= 0; i--)
6592 {
6593 buf[i] = "0123456789abcdef"[(num & 0xf)];
6594 num >>= 4;
6595 }
6596
6597 return width;
6598 }
6599
6600 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6601
6602 static CORE_ADDR
6603 remote_address_masked (CORE_ADDR addr)
6604 {
6605 unsigned int address_size = remote_address_size;
6606
6607 /* If "remoteaddresssize" was not set, default to target address size. */
6608 if (!address_size)
6609 address_size = gdbarch_addr_bit (target_gdbarch ());
6610
6611 if (address_size > 0
6612 && address_size < (sizeof (ULONGEST) * 8))
6613 {
6614 /* Only create a mask when that mask can safely be constructed
6615 in a ULONGEST variable. */
6616 ULONGEST mask = 1;
6617
6618 mask = (mask << address_size) - 1;
6619 addr &= mask;
6620 }
6621 return addr;
6622 }
6623
6624 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6625 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6626 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6627 (which may be more than *OUT_LEN due to escape characters). The
6628 total number of bytes in the output buffer will be at most
6629 OUT_MAXLEN. */
6630
6631 static int
6632 remote_escape_output (const gdb_byte *buffer, int len,
6633 gdb_byte *out_buf, int *out_len,
6634 int out_maxlen)
6635 {
6636 int input_index, output_index;
6637
6638 output_index = 0;
6639 for (input_index = 0; input_index < len; input_index++)
6640 {
6641 gdb_byte b = buffer[input_index];
6642
6643 if (b == '$' || b == '#' || b == '}')
6644 {
6645 /* These must be escaped. */
6646 if (output_index + 2 > out_maxlen)
6647 break;
6648 out_buf[output_index++] = '}';
6649 out_buf[output_index++] = b ^ 0x20;
6650 }
6651 else
6652 {
6653 if (output_index + 1 > out_maxlen)
6654 break;
6655 out_buf[output_index++] = b;
6656 }
6657 }
6658
6659 *out_len = input_index;
6660 return output_index;
6661 }
6662
6663 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6664 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6665 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6666
6667 This function reverses remote_escape_output. It allows more
6668 escaped characters than that function does, in particular because
6669 '*' must be escaped to avoid the run-length encoding processing
6670 in reading packets. */
6671
6672 static int
6673 remote_unescape_input (const gdb_byte *buffer, int len,
6674 gdb_byte *out_buf, int out_maxlen)
6675 {
6676 int input_index, output_index;
6677 int escaped;
6678
6679 output_index = 0;
6680 escaped = 0;
6681 for (input_index = 0; input_index < len; input_index++)
6682 {
6683 gdb_byte b = buffer[input_index];
6684
6685 if (output_index + 1 > out_maxlen)
6686 {
6687 warning (_("Received too much data from remote target;"
6688 " ignoring overflow."));
6689 return output_index;
6690 }
6691
6692 if (escaped)
6693 {
6694 out_buf[output_index++] = b ^ 0x20;
6695 escaped = 0;
6696 }
6697 else if (b == '}')
6698 escaped = 1;
6699 else
6700 out_buf[output_index++] = b;
6701 }
6702
6703 if (escaped)
6704 error (_("Unmatched escape character in target response."));
6705
6706 return output_index;
6707 }
6708
6709 /* Determine whether the remote target supports binary downloading.
6710 This is accomplished by sending a no-op memory write of zero length
6711 to the target at the specified address. It does not suffice to send
6712 the whole packet, since many stubs strip the eighth bit and
6713 subsequently compute a wrong checksum, which causes real havoc with
6714 remote_write_bytes.
6715
6716 NOTE: This can still lose if the serial line is not eight-bit
6717 clean. In cases like this, the user should clear "remote
6718 X-packet". */
6719
6720 static void
6721 check_binary_download (CORE_ADDR addr)
6722 {
6723 struct remote_state *rs = get_remote_state ();
6724
6725 switch (remote_protocol_packets[PACKET_X].support)
6726 {
6727 case PACKET_DISABLE:
6728 break;
6729 case PACKET_ENABLE:
6730 break;
6731 case PACKET_SUPPORT_UNKNOWN:
6732 {
6733 char *p;
6734
6735 p = rs->buf;
6736 *p++ = 'X';
6737 p += hexnumstr (p, (ULONGEST) addr);
6738 *p++ = ',';
6739 p += hexnumstr (p, (ULONGEST) 0);
6740 *p++ = ':';
6741 *p = '\0';
6742
6743 putpkt_binary (rs->buf, (int) (p - rs->buf));
6744 getpkt (&rs->buf, &rs->buf_size, 0);
6745
6746 if (rs->buf[0] == '\0')
6747 {
6748 if (remote_debug)
6749 fprintf_unfiltered (gdb_stdlog,
6750 "binary downloading NOT "
6751 "supported by target\n");
6752 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6753 }
6754 else
6755 {
6756 if (remote_debug)
6757 fprintf_unfiltered (gdb_stdlog,
6758 "binary downloading supported by target\n");
6759 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6760 }
6761 break;
6762 }
6763 }
6764 }
6765
6766 /* Write memory data directly to the remote machine.
6767 This does not inform the data cache; the data cache uses this.
6768 HEADER is the starting part of the packet.
6769 MEMADDR is the address in the remote memory space.
6770 MYADDR is the address of the buffer in our space.
6771 LEN is the number of bytes.
6772 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6773 should send data as binary ('X'), or hex-encoded ('M').
6774
6775 The function creates packet of the form
6776 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6777
6778 where encoding of <DATA> is termined by PACKET_FORMAT.
6779
6780 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6781 are omitted.
6782
6783 Returns the number of bytes transferred, or a negative value (an
6784 'enum target_xfer_error' value) for error. Only transfer a single
6785 packet. */
6786
6787 static LONGEST
6788 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6789 const gdb_byte *myaddr, ssize_t len,
6790 char packet_format, int use_length)
6791 {
6792 struct remote_state *rs = get_remote_state ();
6793 char *p;
6794 char *plen = NULL;
6795 int plenlen = 0;
6796 int todo;
6797 int nr_bytes;
6798 int payload_size;
6799 int payload_length;
6800 int header_length;
6801
6802 if (packet_format != 'X' && packet_format != 'M')
6803 internal_error (__FILE__, __LINE__,
6804 _("remote_write_bytes_aux: bad packet format"));
6805
6806 if (len <= 0)
6807 return 0;
6808
6809 payload_size = get_memory_write_packet_size ();
6810
6811 /* The packet buffer will be large enough for the payload;
6812 get_memory_packet_size ensures this. */
6813 rs->buf[0] = '\0';
6814
6815 /* Compute the size of the actual payload by subtracting out the
6816 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6817
6818 payload_size -= strlen ("$,:#NN");
6819 if (!use_length)
6820 /* The comma won't be used. */
6821 payload_size += 1;
6822 header_length = strlen (header);
6823 payload_size -= header_length;
6824 payload_size -= hexnumlen (memaddr);
6825
6826 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6827
6828 strcat (rs->buf, header);
6829 p = rs->buf + strlen (header);
6830
6831 /* Compute a best guess of the number of bytes actually transfered. */
6832 if (packet_format == 'X')
6833 {
6834 /* Best guess at number of bytes that will fit. */
6835 todo = min (len, payload_size);
6836 if (use_length)
6837 payload_size -= hexnumlen (todo);
6838 todo = min (todo, payload_size);
6839 }
6840 else
6841 {
6842 /* Num bytes that will fit. */
6843 todo = min (len, payload_size / 2);
6844 if (use_length)
6845 payload_size -= hexnumlen (todo);
6846 todo = min (todo, payload_size / 2);
6847 }
6848
6849 if (todo <= 0)
6850 internal_error (__FILE__, __LINE__,
6851 _("minimum packet size too small to write data"));
6852
6853 /* If we already need another packet, then try to align the end
6854 of this packet to a useful boundary. */
6855 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6856 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6857
6858 /* Append "<memaddr>". */
6859 memaddr = remote_address_masked (memaddr);
6860 p += hexnumstr (p, (ULONGEST) memaddr);
6861
6862 if (use_length)
6863 {
6864 /* Append ",". */
6865 *p++ = ',';
6866
6867 /* Append <len>. Retain the location/size of <len>. It may need to
6868 be adjusted once the packet body has been created. */
6869 plen = p;
6870 plenlen = hexnumstr (p, (ULONGEST) todo);
6871 p += plenlen;
6872 }
6873
6874 /* Append ":". */
6875 *p++ = ':';
6876 *p = '\0';
6877
6878 /* Append the packet body. */
6879 if (packet_format == 'X')
6880 {
6881 /* Binary mode. Send target system values byte by byte, in
6882 increasing byte addresses. Only escape certain critical
6883 characters. */
6884 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6885 &nr_bytes, payload_size);
6886
6887 /* If not all TODO bytes fit, then we'll need another packet. Make
6888 a second try to keep the end of the packet aligned. Don't do
6889 this if the packet is tiny. */
6890 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6891 {
6892 int new_nr_bytes;
6893
6894 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6895 - memaddr);
6896 if (new_nr_bytes != nr_bytes)
6897 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6898 (gdb_byte *) p, &nr_bytes,
6899 payload_size);
6900 }
6901
6902 p += payload_length;
6903 if (use_length && nr_bytes < todo)
6904 {
6905 /* Escape chars have filled up the buffer prematurely,
6906 and we have actually sent fewer bytes than planned.
6907 Fix-up the length field of the packet. Use the same
6908 number of characters as before. */
6909 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6910 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6911 }
6912 }
6913 else
6914 {
6915 /* Normal mode: Send target system values byte by byte, in
6916 increasing byte addresses. Each byte is encoded as a two hex
6917 value. */
6918 nr_bytes = bin2hex (myaddr, p, todo);
6919 p += 2 * nr_bytes;
6920 }
6921
6922 putpkt_binary (rs->buf, (int) (p - rs->buf));
6923 getpkt (&rs->buf, &rs->buf_size, 0);
6924
6925 if (rs->buf[0] == 'E')
6926 return TARGET_XFER_E_IO;
6927
6928 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6929 fewer bytes than we'd planned. */
6930 return nr_bytes;
6931 }
6932
6933 /* Write memory data directly to the remote machine.
6934 This does not inform the data cache; the data cache uses this.
6935 MEMADDR is the address in the remote memory space.
6936 MYADDR is the address of the buffer in our space.
6937 LEN is the number of bytes.
6938
6939 Returns number of bytes transferred, or a negative value (an 'enum
6940 target_xfer_error' value) for error. Only transfer a single
6941 packet. */
6942
6943 static LONGEST
6944 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6945 {
6946 char *packet_format = 0;
6947
6948 /* Check whether the target supports binary download. */
6949 check_binary_download (memaddr);
6950
6951 switch (remote_protocol_packets[PACKET_X].support)
6952 {
6953 case PACKET_ENABLE:
6954 packet_format = "X";
6955 break;
6956 case PACKET_DISABLE:
6957 packet_format = "M";
6958 break;
6959 case PACKET_SUPPORT_UNKNOWN:
6960 internal_error (__FILE__, __LINE__,
6961 _("remote_write_bytes: bad internal state"));
6962 default:
6963 internal_error (__FILE__, __LINE__, _("bad switch"));
6964 }
6965
6966 return remote_write_bytes_aux (packet_format,
6967 memaddr, myaddr, len, packet_format[0], 1);
6968 }
6969
6970 /* Read memory data directly from the remote machine.
6971 This does not use the data cache; the data cache uses this.
6972 MEMADDR is the address in the remote memory space.
6973 MYADDR is the address of the buffer in our space.
6974 LEN is the number of bytes.
6975
6976 Returns number of bytes transferred, or a negative value (an 'enum
6977 target_xfer_error' value) for error. */
6978
6979 static LONGEST
6980 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6981 {
6982 struct remote_state *rs = get_remote_state ();
6983 int max_buf_size; /* Max size of packet output buffer. */
6984 char *p;
6985 int todo;
6986 int i;
6987
6988 if (len <= 0)
6989 return 0;
6990
6991 max_buf_size = get_memory_read_packet_size ();
6992 /* The packet buffer will be large enough for the payload;
6993 get_memory_packet_size ensures this. */
6994
6995 /* Number if bytes that will fit. */
6996 todo = min (len, max_buf_size / 2);
6997
6998 /* Construct "m"<memaddr>","<len>". */
6999 memaddr = remote_address_masked (memaddr);
7000 p = rs->buf;
7001 *p++ = 'm';
7002 p += hexnumstr (p, (ULONGEST) memaddr);
7003 *p++ = ',';
7004 p += hexnumstr (p, (ULONGEST) todo);
7005 *p = '\0';
7006 putpkt (rs->buf);
7007 getpkt (&rs->buf, &rs->buf_size, 0);
7008 if (rs->buf[0] == 'E'
7009 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
7010 && rs->buf[3] == '\0')
7011 return TARGET_XFER_E_IO;
7012 /* Reply describes memory byte by byte, each byte encoded as two hex
7013 characters. */
7014 p = rs->buf;
7015 i = hex2bin (p, myaddr, todo);
7016 /* Return what we have. Let higher layers handle partial reads. */
7017 return i;
7018 }
7019
7020 \f
7021
7022 /* Sends a packet with content determined by the printf format string
7023 FORMAT and the remaining arguments, then gets the reply. Returns
7024 whether the packet was a success, a failure, or unknown. */
7025
7026 static enum packet_result
7027 remote_send_printf (const char *format, ...)
7028 {
7029 struct remote_state *rs = get_remote_state ();
7030 int max_size = get_remote_packet_size ();
7031 va_list ap;
7032
7033 va_start (ap, format);
7034
7035 rs->buf[0] = '\0';
7036 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7037 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7038
7039 if (putpkt (rs->buf) < 0)
7040 error (_("Communication problem with target."));
7041
7042 rs->buf[0] = '\0';
7043 getpkt (&rs->buf, &rs->buf_size, 0);
7044
7045 return packet_check_result (rs->buf);
7046 }
7047
7048 static void
7049 restore_remote_timeout (void *p)
7050 {
7051 int value = *(int *)p;
7052
7053 remote_timeout = value;
7054 }
7055
7056 /* Flash writing can take quite some time. We'll set
7057 effectively infinite timeout for flash operations.
7058 In future, we'll need to decide on a better approach. */
7059 static const int remote_flash_timeout = 1000;
7060
7061 static void
7062 remote_flash_erase (struct target_ops *ops,
7063 ULONGEST address, LONGEST length)
7064 {
7065 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7066 int saved_remote_timeout = remote_timeout;
7067 enum packet_result ret;
7068 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7069 &saved_remote_timeout);
7070
7071 remote_timeout = remote_flash_timeout;
7072
7073 ret = remote_send_printf ("vFlashErase:%s,%s",
7074 phex (address, addr_size),
7075 phex (length, 4));
7076 switch (ret)
7077 {
7078 case PACKET_UNKNOWN:
7079 error (_("Remote target does not support flash erase"));
7080 case PACKET_ERROR:
7081 error (_("Error erasing flash with vFlashErase packet"));
7082 default:
7083 break;
7084 }
7085
7086 do_cleanups (back_to);
7087 }
7088
7089 static LONGEST
7090 remote_flash_write (struct target_ops *ops,
7091 ULONGEST address, LONGEST length,
7092 const gdb_byte *data)
7093 {
7094 int saved_remote_timeout = remote_timeout;
7095 LONGEST ret;
7096 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7097 &saved_remote_timeout);
7098
7099 remote_timeout = remote_flash_timeout;
7100 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7101 do_cleanups (back_to);
7102
7103 return ret;
7104 }
7105
7106 static void
7107 remote_flash_done (struct target_ops *ops)
7108 {
7109 int saved_remote_timeout = remote_timeout;
7110 int ret;
7111 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7112 &saved_remote_timeout);
7113
7114 remote_timeout = remote_flash_timeout;
7115 ret = remote_send_printf ("vFlashDone");
7116 do_cleanups (back_to);
7117
7118 switch (ret)
7119 {
7120 case PACKET_UNKNOWN:
7121 error (_("Remote target does not support vFlashDone"));
7122 case PACKET_ERROR:
7123 error (_("Error finishing flash operation"));
7124 default:
7125 break;
7126 }
7127 }
7128
7129 static void
7130 remote_files_info (struct target_ops *ignore)
7131 {
7132 puts_filtered ("Debugging a target over a serial line.\n");
7133 }
7134 \f
7135 /* Stuff for dealing with the packets which are part of this protocol.
7136 See comment at top of file for details. */
7137
7138 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7139 error to higher layers. Called when a serial error is detected.
7140 The exception message is STRING, followed by a colon and a blank,
7141 the system error message for errno at function entry and final dot
7142 for output compatibility with throw_perror_with_name. */
7143
7144 static void
7145 unpush_and_perror (const char *string)
7146 {
7147 int saved_errno = errno;
7148
7149 remote_unpush_target ();
7150 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7151 safe_strerror (saved_errno));
7152 }
7153
7154 /* Read a single character from the remote end. */
7155
7156 static int
7157 readchar (int timeout)
7158 {
7159 int ch;
7160 struct remote_state *rs = get_remote_state ();
7161
7162 ch = serial_readchar (rs->remote_desc, timeout);
7163
7164 if (ch >= 0)
7165 return ch;
7166
7167 switch ((enum serial_rc) ch)
7168 {
7169 case SERIAL_EOF:
7170 remote_unpush_target ();
7171 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7172 /* no return */
7173 case SERIAL_ERROR:
7174 unpush_and_perror (_("Remote communication error. "
7175 "Target disconnected."));
7176 /* no return */
7177 case SERIAL_TIMEOUT:
7178 break;
7179 }
7180 return ch;
7181 }
7182
7183 /* Wrapper for serial_write that closes the target and throws if
7184 writing fails. */
7185
7186 static void
7187 remote_serial_write (const char *str, int len)
7188 {
7189 struct remote_state *rs = get_remote_state ();
7190
7191 if (serial_write (rs->remote_desc, str, len))
7192 {
7193 unpush_and_perror (_("Remote communication error. "
7194 "Target disconnected."));
7195 }
7196 }
7197
7198 /* Send the command in *BUF to the remote machine, and read the reply
7199 into *BUF. Report an error if we get an error reply. Resize
7200 *BUF using xrealloc if necessary to hold the result, and update
7201 *SIZEOF_BUF. */
7202
7203 static void
7204 remote_send (char **buf,
7205 long *sizeof_buf)
7206 {
7207 putpkt (*buf);
7208 getpkt (buf, sizeof_buf, 0);
7209
7210 if ((*buf)[0] == 'E')
7211 error (_("Remote failure reply: %s"), *buf);
7212 }
7213
7214 /* Return a pointer to an xmalloc'ed string representing an escaped
7215 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7216 etc. The caller is responsible for releasing the returned
7217 memory. */
7218
7219 static char *
7220 escape_buffer (const char *buf, int n)
7221 {
7222 struct cleanup *old_chain;
7223 struct ui_file *stb;
7224 char *str;
7225
7226 stb = mem_fileopen ();
7227 old_chain = make_cleanup_ui_file_delete (stb);
7228
7229 fputstrn_unfiltered (buf, n, 0, stb);
7230 str = ui_file_xstrdup (stb, NULL);
7231 do_cleanups (old_chain);
7232 return str;
7233 }
7234
7235 /* Display a null-terminated packet on stdout, for debugging, using C
7236 string notation. */
7237
7238 static void
7239 print_packet (char *buf)
7240 {
7241 puts_filtered ("\"");
7242 fputstr_filtered (buf, '"', gdb_stdout);
7243 puts_filtered ("\"");
7244 }
7245
7246 int
7247 putpkt (char *buf)
7248 {
7249 return putpkt_binary (buf, strlen (buf));
7250 }
7251
7252 /* Send a packet to the remote machine, with error checking. The data
7253 of the packet is in BUF. The string in BUF can be at most
7254 get_remote_packet_size () - 5 to account for the $, # and checksum,
7255 and for a possible /0 if we are debugging (remote_debug) and want
7256 to print the sent packet as a string. */
7257
7258 static int
7259 putpkt_binary (char *buf, int cnt)
7260 {
7261 struct remote_state *rs = get_remote_state ();
7262 int i;
7263 unsigned char csum = 0;
7264 char *buf2 = alloca (cnt + 6);
7265
7266 int ch;
7267 int tcount = 0;
7268 char *p;
7269 char *message;
7270
7271 /* Catch cases like trying to read memory or listing threads while
7272 we're waiting for a stop reply. The remote server wouldn't be
7273 ready to handle this request, so we'd hang and timeout. We don't
7274 have to worry about this in synchronous mode, because in that
7275 case it's not possible to issue a command while the target is
7276 running. This is not a problem in non-stop mode, because in that
7277 case, the stub is always ready to process serial input. */
7278 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7279 error (_("Cannot execute this command while the target is running."));
7280
7281 /* We're sending out a new packet. Make sure we don't look at a
7282 stale cached response. */
7283 rs->cached_wait_status = 0;
7284
7285 /* Copy the packet into buffer BUF2, encapsulating it
7286 and giving it a checksum. */
7287
7288 p = buf2;
7289 *p++ = '$';
7290
7291 for (i = 0; i < cnt; i++)
7292 {
7293 csum += buf[i];
7294 *p++ = buf[i];
7295 }
7296 *p++ = '#';
7297 *p++ = tohex ((csum >> 4) & 0xf);
7298 *p++ = tohex (csum & 0xf);
7299
7300 /* Send it over and over until we get a positive ack. */
7301
7302 while (1)
7303 {
7304 int started_error_output = 0;
7305
7306 if (remote_debug)
7307 {
7308 struct cleanup *old_chain;
7309 char *str;
7310
7311 *p = '\0';
7312 str = escape_buffer (buf2, p - buf2);
7313 old_chain = make_cleanup (xfree, str);
7314 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7315 gdb_flush (gdb_stdlog);
7316 do_cleanups (old_chain);
7317 }
7318 remote_serial_write (buf2, p - buf2);
7319
7320 /* If this is a no acks version of the remote protocol, send the
7321 packet and move on. */
7322 if (rs->noack_mode)
7323 break;
7324
7325 /* Read until either a timeout occurs (-2) or '+' is read.
7326 Handle any notification that arrives in the mean time. */
7327 while (1)
7328 {
7329 ch = readchar (remote_timeout);
7330
7331 if (remote_debug)
7332 {
7333 switch (ch)
7334 {
7335 case '+':
7336 case '-':
7337 case SERIAL_TIMEOUT:
7338 case '$':
7339 case '%':
7340 if (started_error_output)
7341 {
7342 putchar_unfiltered ('\n');
7343 started_error_output = 0;
7344 }
7345 }
7346 }
7347
7348 switch (ch)
7349 {
7350 case '+':
7351 if (remote_debug)
7352 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7353 return 1;
7354 case '-':
7355 if (remote_debug)
7356 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7357 /* FALLTHROUGH */
7358 case SERIAL_TIMEOUT:
7359 tcount++;
7360 if (tcount > 3)
7361 return 0;
7362 break; /* Retransmit buffer. */
7363 case '$':
7364 {
7365 if (remote_debug)
7366 fprintf_unfiltered (gdb_stdlog,
7367 "Packet instead of Ack, ignoring it\n");
7368 /* It's probably an old response sent because an ACK
7369 was lost. Gobble up the packet and ack it so it
7370 doesn't get retransmitted when we resend this
7371 packet. */
7372 skip_frame ();
7373 remote_serial_write ("+", 1);
7374 continue; /* Now, go look for +. */
7375 }
7376
7377 case '%':
7378 {
7379 int val;
7380
7381 /* If we got a notification, handle it, and go back to looking
7382 for an ack. */
7383 /* We've found the start of a notification. Now
7384 collect the data. */
7385 val = read_frame (&rs->buf, &rs->buf_size);
7386 if (val >= 0)
7387 {
7388 if (remote_debug)
7389 {
7390 struct cleanup *old_chain;
7391 char *str;
7392
7393 str = escape_buffer (rs->buf, val);
7394 old_chain = make_cleanup (xfree, str);
7395 fprintf_unfiltered (gdb_stdlog,
7396 " Notification received: %s\n",
7397 str);
7398 do_cleanups (old_chain);
7399 }
7400 handle_notification (rs->notif_state, rs->buf);
7401 /* We're in sync now, rewait for the ack. */
7402 tcount = 0;
7403 }
7404 else
7405 {
7406 if (remote_debug)
7407 {
7408 if (!started_error_output)
7409 {
7410 started_error_output = 1;
7411 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7412 }
7413 fputc_unfiltered (ch & 0177, gdb_stdlog);
7414 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7415 }
7416 }
7417 continue;
7418 }
7419 /* fall-through */
7420 default:
7421 if (remote_debug)
7422 {
7423 if (!started_error_output)
7424 {
7425 started_error_output = 1;
7426 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7427 }
7428 fputc_unfiltered (ch & 0177, gdb_stdlog);
7429 }
7430 continue;
7431 }
7432 break; /* Here to retransmit. */
7433 }
7434
7435 #if 0
7436 /* This is wrong. If doing a long backtrace, the user should be
7437 able to get out next time we call QUIT, without anything as
7438 violent as interrupt_query. If we want to provide a way out of
7439 here without getting to the next QUIT, it should be based on
7440 hitting ^C twice as in remote_wait. */
7441 if (quit_flag)
7442 {
7443 quit_flag = 0;
7444 interrupt_query ();
7445 }
7446 #endif
7447 }
7448 return 0;
7449 }
7450
7451 /* Come here after finding the start of a frame when we expected an
7452 ack. Do our best to discard the rest of this packet. */
7453
7454 static void
7455 skip_frame (void)
7456 {
7457 int c;
7458
7459 while (1)
7460 {
7461 c = readchar (remote_timeout);
7462 switch (c)
7463 {
7464 case SERIAL_TIMEOUT:
7465 /* Nothing we can do. */
7466 return;
7467 case '#':
7468 /* Discard the two bytes of checksum and stop. */
7469 c = readchar (remote_timeout);
7470 if (c >= 0)
7471 c = readchar (remote_timeout);
7472
7473 return;
7474 case '*': /* Run length encoding. */
7475 /* Discard the repeat count. */
7476 c = readchar (remote_timeout);
7477 if (c < 0)
7478 return;
7479 break;
7480 default:
7481 /* A regular character. */
7482 break;
7483 }
7484 }
7485 }
7486
7487 /* Come here after finding the start of the frame. Collect the rest
7488 into *BUF, verifying the checksum, length, and handling run-length
7489 compression. NUL terminate the buffer. If there is not enough room,
7490 expand *BUF using xrealloc.
7491
7492 Returns -1 on error, number of characters in buffer (ignoring the
7493 trailing NULL) on success. (could be extended to return one of the
7494 SERIAL status indications). */
7495
7496 static long
7497 read_frame (char **buf_p,
7498 long *sizeof_buf)
7499 {
7500 unsigned char csum;
7501 long bc;
7502 int c;
7503 char *buf = *buf_p;
7504 struct remote_state *rs = get_remote_state ();
7505
7506 csum = 0;
7507 bc = 0;
7508
7509 while (1)
7510 {
7511 c = readchar (remote_timeout);
7512 switch (c)
7513 {
7514 case SERIAL_TIMEOUT:
7515 if (remote_debug)
7516 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7517 return -1;
7518 case '$':
7519 if (remote_debug)
7520 fputs_filtered ("Saw new packet start in middle of old one\n",
7521 gdb_stdlog);
7522 return -1; /* Start a new packet, count retries. */
7523 case '#':
7524 {
7525 unsigned char pktcsum;
7526 int check_0 = 0;
7527 int check_1 = 0;
7528
7529 buf[bc] = '\0';
7530
7531 check_0 = readchar (remote_timeout);
7532 if (check_0 >= 0)
7533 check_1 = readchar (remote_timeout);
7534
7535 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7536 {
7537 if (remote_debug)
7538 fputs_filtered ("Timeout in checksum, retrying\n",
7539 gdb_stdlog);
7540 return -1;
7541 }
7542 else if (check_0 < 0 || check_1 < 0)
7543 {
7544 if (remote_debug)
7545 fputs_filtered ("Communication error in checksum\n",
7546 gdb_stdlog);
7547 return -1;
7548 }
7549
7550 /* Don't recompute the checksum; with no ack packets we
7551 don't have any way to indicate a packet retransmission
7552 is necessary. */
7553 if (rs->noack_mode)
7554 return bc;
7555
7556 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7557 if (csum == pktcsum)
7558 return bc;
7559
7560 if (remote_debug)
7561 {
7562 struct cleanup *old_chain;
7563 char *str;
7564
7565 str = escape_buffer (buf, bc);
7566 old_chain = make_cleanup (xfree, str);
7567 fprintf_unfiltered (gdb_stdlog,
7568 "Bad checksum, sentsum=0x%x, "
7569 "csum=0x%x, buf=%s\n",
7570 pktcsum, csum, str);
7571 do_cleanups (old_chain);
7572 }
7573 /* Number of characters in buffer ignoring trailing
7574 NULL. */
7575 return -1;
7576 }
7577 case '*': /* Run length encoding. */
7578 {
7579 int repeat;
7580
7581 csum += c;
7582 c = readchar (remote_timeout);
7583 csum += c;
7584 repeat = c - ' ' + 3; /* Compute repeat count. */
7585
7586 /* The character before ``*'' is repeated. */
7587
7588 if (repeat > 0 && repeat <= 255 && bc > 0)
7589 {
7590 if (bc + repeat - 1 >= *sizeof_buf - 1)
7591 {
7592 /* Make some more room in the buffer. */
7593 *sizeof_buf += repeat;
7594 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7595 buf = *buf_p;
7596 }
7597
7598 memset (&buf[bc], buf[bc - 1], repeat);
7599 bc += repeat;
7600 continue;
7601 }
7602
7603 buf[bc] = '\0';
7604 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7605 return -1;
7606 }
7607 default:
7608 if (bc >= *sizeof_buf - 1)
7609 {
7610 /* Make some more room in the buffer. */
7611 *sizeof_buf *= 2;
7612 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7613 buf = *buf_p;
7614 }
7615
7616 buf[bc++] = c;
7617 csum += c;
7618 continue;
7619 }
7620 }
7621 }
7622
7623 /* Read a packet from the remote machine, with error checking, and
7624 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7625 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7626 rather than timing out; this is used (in synchronous mode) to wait
7627 for a target that is is executing user code to stop. */
7628 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7629 don't have to change all the calls to getpkt to deal with the
7630 return value, because at the moment I don't know what the right
7631 thing to do it for those. */
7632 void
7633 getpkt (char **buf,
7634 long *sizeof_buf,
7635 int forever)
7636 {
7637 int timed_out;
7638
7639 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7640 }
7641
7642
7643 /* Read a packet from the remote machine, with error checking, and
7644 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7645 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7646 rather than timing out; this is used (in synchronous mode) to wait
7647 for a target that is is executing user code to stop. If FOREVER ==
7648 0, this function is allowed to time out gracefully and return an
7649 indication of this to the caller. Otherwise return the number of
7650 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7651 enough reason to return to the caller. *IS_NOTIF is an output
7652 boolean that indicates whether *BUF holds a notification or not
7653 (a regular packet). */
7654
7655 static int
7656 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7657 int expecting_notif, int *is_notif)
7658 {
7659 struct remote_state *rs = get_remote_state ();
7660 int c;
7661 int tries;
7662 int timeout;
7663 int val = -1;
7664
7665 /* We're reading a new response. Make sure we don't look at a
7666 previously cached response. */
7667 rs->cached_wait_status = 0;
7668
7669 strcpy (*buf, "timeout");
7670
7671 if (forever)
7672 timeout = watchdog > 0 ? watchdog : -1;
7673 else if (expecting_notif)
7674 timeout = 0; /* There should already be a char in the buffer. If
7675 not, bail out. */
7676 else
7677 timeout = remote_timeout;
7678
7679 #define MAX_TRIES 3
7680
7681 /* Process any number of notifications, and then return when
7682 we get a packet. */
7683 for (;;)
7684 {
7685 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7686 times. */
7687 for (tries = 1; tries <= MAX_TRIES; tries++)
7688 {
7689 /* This can loop forever if the remote side sends us
7690 characters continuously, but if it pauses, we'll get
7691 SERIAL_TIMEOUT from readchar because of timeout. Then
7692 we'll count that as a retry.
7693
7694 Note that even when forever is set, we will only wait
7695 forever prior to the start of a packet. After that, we
7696 expect characters to arrive at a brisk pace. They should
7697 show up within remote_timeout intervals. */
7698 do
7699 c = readchar (timeout);
7700 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7701
7702 if (c == SERIAL_TIMEOUT)
7703 {
7704 if (expecting_notif)
7705 return -1; /* Don't complain, it's normal to not get
7706 anything in this case. */
7707
7708 if (forever) /* Watchdog went off? Kill the target. */
7709 {
7710 QUIT;
7711 remote_unpush_target ();
7712 throw_error (TARGET_CLOSE_ERROR,
7713 _("Watchdog timeout has expired. "
7714 "Target detached."));
7715 }
7716 if (remote_debug)
7717 fputs_filtered ("Timed out.\n", gdb_stdlog);
7718 }
7719 else
7720 {
7721 /* We've found the start of a packet or notification.
7722 Now collect the data. */
7723 val = read_frame (buf, sizeof_buf);
7724 if (val >= 0)
7725 break;
7726 }
7727
7728 remote_serial_write ("-", 1);
7729 }
7730
7731 if (tries > MAX_TRIES)
7732 {
7733 /* We have tried hard enough, and just can't receive the
7734 packet/notification. Give up. */
7735 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7736
7737 /* Skip the ack char if we're in no-ack mode. */
7738 if (!rs->noack_mode)
7739 remote_serial_write ("+", 1);
7740 return -1;
7741 }
7742
7743 /* If we got an ordinary packet, return that to our caller. */
7744 if (c == '$')
7745 {
7746 if (remote_debug)
7747 {
7748 struct cleanup *old_chain;
7749 char *str;
7750
7751 str = escape_buffer (*buf, val);
7752 old_chain = make_cleanup (xfree, str);
7753 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7754 do_cleanups (old_chain);
7755 }
7756
7757 /* Skip the ack char if we're in no-ack mode. */
7758 if (!rs->noack_mode)
7759 remote_serial_write ("+", 1);
7760 if (is_notif != NULL)
7761 *is_notif = 0;
7762 return val;
7763 }
7764
7765 /* If we got a notification, handle it, and go back to looking
7766 for a packet. */
7767 else
7768 {
7769 gdb_assert (c == '%');
7770
7771 if (remote_debug)
7772 {
7773 struct cleanup *old_chain;
7774 char *str;
7775
7776 str = escape_buffer (*buf, val);
7777 old_chain = make_cleanup (xfree, str);
7778 fprintf_unfiltered (gdb_stdlog,
7779 " Notification received: %s\n",
7780 str);
7781 do_cleanups (old_chain);
7782 }
7783 if (is_notif != NULL)
7784 *is_notif = 1;
7785
7786 handle_notification (rs->notif_state, *buf);
7787
7788 /* Notifications require no acknowledgement. */
7789
7790 if (expecting_notif)
7791 return val;
7792 }
7793 }
7794 }
7795
7796 static int
7797 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7798 {
7799 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7800 }
7801
7802 static int
7803 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7804 int *is_notif)
7805 {
7806 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7807 is_notif);
7808 }
7809
7810 \f
7811 /* A helper function that just calls putpkt; for type correctness. */
7812
7813 static int
7814 putpkt_for_catch_errors (void *arg)
7815 {
7816 return putpkt (arg);
7817 }
7818
7819 static void
7820 remote_kill (struct target_ops *ops)
7821 {
7822 /* Use catch_errors so the user can quit from gdb even when we
7823 aren't on speaking terms with the remote system. */
7824 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7825
7826 /* Don't wait for it to die. I'm not really sure it matters whether
7827 we do or not. For the existing stubs, kill is a noop. */
7828 target_mourn_inferior ();
7829 }
7830
7831 static int
7832 remote_vkill (int pid, struct remote_state *rs)
7833 {
7834 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7835 return -1;
7836
7837 /* Tell the remote target to detach. */
7838 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7839 putpkt (rs->buf);
7840 getpkt (&rs->buf, &rs->buf_size, 0);
7841
7842 if (packet_ok (rs->buf,
7843 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7844 return 0;
7845 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7846 return -1;
7847 else
7848 return 1;
7849 }
7850
7851 static void
7852 extended_remote_kill (struct target_ops *ops)
7853 {
7854 int res;
7855 int pid = ptid_get_pid (inferior_ptid);
7856 struct remote_state *rs = get_remote_state ();
7857
7858 res = remote_vkill (pid, rs);
7859 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7860 {
7861 /* Don't try 'k' on a multi-process aware stub -- it has no way
7862 to specify the pid. */
7863
7864 putpkt ("k");
7865 #if 0
7866 getpkt (&rs->buf, &rs->buf_size, 0);
7867 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7868 res = 1;
7869 #else
7870 /* Don't wait for it to die. I'm not really sure it matters whether
7871 we do or not. For the existing stubs, kill is a noop. */
7872 res = 0;
7873 #endif
7874 }
7875
7876 if (res != 0)
7877 error (_("Can't kill process"));
7878
7879 target_mourn_inferior ();
7880 }
7881
7882 static void
7883 remote_mourn (struct target_ops *ops)
7884 {
7885 remote_mourn_1 (ops);
7886 }
7887
7888 /* Worker function for remote_mourn. */
7889 static void
7890 remote_mourn_1 (struct target_ops *target)
7891 {
7892 unpush_target (target);
7893
7894 /* remote_close takes care of doing most of the clean up. */
7895 generic_mourn_inferior ();
7896 }
7897
7898 static void
7899 extended_remote_mourn_1 (struct target_ops *target)
7900 {
7901 struct remote_state *rs = get_remote_state ();
7902
7903 /* In case we got here due to an error, but we're going to stay
7904 connected. */
7905 rs->waiting_for_stop_reply = 0;
7906
7907 /* If the current general thread belonged to the process we just
7908 detached from or has exited, the remote side current general
7909 thread becomes undefined. Considering a case like this:
7910
7911 - We just got here due to a detach.
7912 - The process that we're detaching from happens to immediately
7913 report a global breakpoint being hit in non-stop mode, in the
7914 same thread we had selected before.
7915 - GDB attaches to this process again.
7916 - This event happens to be the next event we handle.
7917
7918 GDB would consider that the current general thread didn't need to
7919 be set on the stub side (with Hg), since for all it knew,
7920 GENERAL_THREAD hadn't changed.
7921
7922 Notice that although in all-stop mode, the remote server always
7923 sets the current thread to the thread reporting the stop event,
7924 that doesn't happen in non-stop mode; in non-stop, the stub *must
7925 not* change the current thread when reporting a breakpoint hit,
7926 due to the decoupling of event reporting and event handling.
7927
7928 To keep things simple, we always invalidate our notion of the
7929 current thread. */
7930 record_currthread (rs, minus_one_ptid);
7931
7932 /* Unlike "target remote", we do not want to unpush the target; then
7933 the next time the user says "run", we won't be connected. */
7934
7935 /* Call common code to mark the inferior as not running. */
7936 generic_mourn_inferior ();
7937
7938 if (!have_inferiors ())
7939 {
7940 if (!remote_multi_process_p (rs))
7941 {
7942 /* Check whether the target is running now - some remote stubs
7943 automatically restart after kill. */
7944 putpkt ("?");
7945 getpkt (&rs->buf, &rs->buf_size, 0);
7946
7947 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7948 {
7949 /* Assume that the target has been restarted. Set
7950 inferior_ptid so that bits of core GDB realizes
7951 there's something here, e.g., so that the user can
7952 say "kill" again. */
7953 inferior_ptid = magic_null_ptid;
7954 }
7955 }
7956 }
7957 }
7958
7959 static void
7960 extended_remote_mourn (struct target_ops *ops)
7961 {
7962 extended_remote_mourn_1 (ops);
7963 }
7964
7965 static int
7966 extended_remote_supports_disable_randomization (void)
7967 {
7968 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7969 == PACKET_ENABLE);
7970 }
7971
7972 static void
7973 extended_remote_disable_randomization (int val)
7974 {
7975 struct remote_state *rs = get_remote_state ();
7976 char *reply;
7977
7978 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7979 val);
7980 putpkt (rs->buf);
7981 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7982 if (*reply == '\0')
7983 error (_("Target does not support QDisableRandomization."));
7984 if (strcmp (reply, "OK") != 0)
7985 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7986 }
7987
7988 static int
7989 extended_remote_run (char *args)
7990 {
7991 struct remote_state *rs = get_remote_state ();
7992 int len;
7993
7994 /* If the user has disabled vRun support, or we have detected that
7995 support is not available, do not try it. */
7996 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7997 return -1;
7998
7999 strcpy (rs->buf, "vRun;");
8000 len = strlen (rs->buf);
8001
8002 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8003 error (_("Remote file name too long for run packet"));
8004 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
8005
8006 gdb_assert (args != NULL);
8007 if (*args)
8008 {
8009 struct cleanup *back_to;
8010 int i;
8011 char **argv;
8012
8013 argv = gdb_buildargv (args);
8014 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8015 for (i = 0; argv[i] != NULL; i++)
8016 {
8017 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8018 error (_("Argument list too long for run packet"));
8019 rs->buf[len++] = ';';
8020 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8021 }
8022 do_cleanups (back_to);
8023 }
8024
8025 rs->buf[len++] = '\0';
8026
8027 putpkt (rs->buf);
8028 getpkt (&rs->buf, &rs->buf_size, 0);
8029
8030 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8031 {
8032 /* We have a wait response. All is well. */
8033 return 0;
8034 }
8035 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8036 /* It wasn't disabled before, but it is now. */
8037 return -1;
8038 else
8039 {
8040 if (remote_exec_file[0] == '\0')
8041 error (_("Running the default executable on the remote target failed; "
8042 "try \"set remote exec-file\"?"));
8043 else
8044 error (_("Running \"%s\" on the remote target failed"),
8045 remote_exec_file);
8046 }
8047 }
8048
8049 /* In the extended protocol we want to be able to do things like
8050 "run" and have them basically work as expected. So we need
8051 a special create_inferior function. We support changing the
8052 executable file and the command line arguments, but not the
8053 environment. */
8054
8055 static void
8056 extended_remote_create_inferior_1 (char *exec_file, char *args,
8057 char **env, int from_tty)
8058 {
8059 int run_worked;
8060 char *stop_reply;
8061 struct remote_state *rs = get_remote_state ();
8062
8063 /* If running asynchronously, register the target file descriptor
8064 with the event loop. */
8065 if (target_can_async_p ())
8066 target_async (inferior_event_handler, 0);
8067
8068 /* Disable address space randomization if requested (and supported). */
8069 if (extended_remote_supports_disable_randomization ())
8070 extended_remote_disable_randomization (disable_randomization);
8071
8072 /* Now restart the remote server. */
8073 run_worked = extended_remote_run (args) != -1;
8074 if (!run_worked)
8075 {
8076 /* vRun was not supported. Fail if we need it to do what the
8077 user requested. */
8078 if (remote_exec_file[0])
8079 error (_("Remote target does not support \"set remote exec-file\""));
8080 if (args[0])
8081 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8082
8083 /* Fall back to "R". */
8084 extended_remote_restart ();
8085 }
8086
8087 if (!have_inferiors ())
8088 {
8089 /* Clean up from the last time we ran, before we mark the target
8090 running again. This will mark breakpoints uninserted, and
8091 get_offsets may insert breakpoints. */
8092 init_thread_list ();
8093 init_wait_for_inferior ();
8094 }
8095
8096 /* vRun's success return is a stop reply. */
8097 stop_reply = run_worked ? rs->buf : NULL;
8098 add_current_inferior_and_thread (stop_reply);
8099
8100 /* Get updated offsets, if the stub uses qOffsets. */
8101 get_offsets ();
8102 }
8103
8104 static void
8105 extended_remote_create_inferior (struct target_ops *ops,
8106 char *exec_file, char *args,
8107 char **env, int from_tty)
8108 {
8109 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8110 }
8111 \f
8112
8113 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8114 the list of conditions (in agent expression bytecode format), if any, the
8115 target needs to evaluate. The output is placed into the packet buffer
8116 started from BUF and ended at BUF_END. */
8117
8118 static int
8119 remote_add_target_side_condition (struct gdbarch *gdbarch,
8120 struct bp_target_info *bp_tgt, char *buf,
8121 char *buf_end)
8122 {
8123 struct agent_expr *aexpr = NULL;
8124 int i, ix;
8125 char *pkt;
8126 char *buf_start = buf;
8127
8128 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8129 return 0;
8130
8131 buf += strlen (buf);
8132 xsnprintf (buf, buf_end - buf, "%s", ";");
8133 buf++;
8134
8135 /* Send conditions to the target and free the vector. */
8136 for (ix = 0;
8137 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8138 ix++)
8139 {
8140 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8141 buf += strlen (buf);
8142 for (i = 0; i < aexpr->len; ++i)
8143 buf = pack_hex_byte (buf, aexpr->buf[i]);
8144 *buf = '\0';
8145 }
8146
8147 VEC_free (agent_expr_p, bp_tgt->conditions);
8148 return 0;
8149 }
8150
8151 static void
8152 remote_add_target_side_commands (struct gdbarch *gdbarch,
8153 struct bp_target_info *bp_tgt, char *buf)
8154 {
8155 struct agent_expr *aexpr = NULL;
8156 int i, ix;
8157
8158 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8159 return;
8160
8161 buf += strlen (buf);
8162
8163 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8164 buf += strlen (buf);
8165
8166 /* Concatenate all the agent expressions that are commands into the
8167 cmds parameter. */
8168 for (ix = 0;
8169 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8170 ix++)
8171 {
8172 sprintf (buf, "X%x,", aexpr->len);
8173 buf += strlen (buf);
8174 for (i = 0; i < aexpr->len; ++i)
8175 buf = pack_hex_byte (buf, aexpr->buf[i]);
8176 *buf = '\0';
8177 }
8178
8179 VEC_free (agent_expr_p, bp_tgt->tcommands);
8180 }
8181
8182 /* Insert a breakpoint. On targets that have software breakpoint
8183 support, we ask the remote target to do the work; on targets
8184 which don't, we insert a traditional memory breakpoint. */
8185
8186 static int
8187 remote_insert_breakpoint (struct gdbarch *gdbarch,
8188 struct bp_target_info *bp_tgt)
8189 {
8190 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8191 If it succeeds, then set the support to PACKET_ENABLE. If it
8192 fails, and the user has explicitly requested the Z support then
8193 report an error, otherwise, mark it disabled and go on. */
8194
8195 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8196 {
8197 CORE_ADDR addr = bp_tgt->placed_address;
8198 struct remote_state *rs;
8199 char *p, *endbuf;
8200 int bpsize;
8201 struct condition_list *cond = NULL;
8202
8203 /* Make sure the remote is pointing at the right process, if
8204 necessary. */
8205 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8206 set_general_process ();
8207
8208 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8209
8210 rs = get_remote_state ();
8211 p = rs->buf;
8212 endbuf = rs->buf + get_remote_packet_size ();
8213
8214 *(p++) = 'Z';
8215 *(p++) = '0';
8216 *(p++) = ',';
8217 addr = (ULONGEST) remote_address_masked (addr);
8218 p += hexnumstr (p, addr);
8219 xsnprintf (p, endbuf - p, ",%d", bpsize);
8220
8221 if (remote_supports_cond_breakpoints ())
8222 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8223
8224 if (remote_can_run_breakpoint_commands ())
8225 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8226
8227 putpkt (rs->buf);
8228 getpkt (&rs->buf, &rs->buf_size, 0);
8229
8230 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8231 {
8232 case PACKET_ERROR:
8233 return -1;
8234 case PACKET_OK:
8235 bp_tgt->placed_address = addr;
8236 bp_tgt->placed_size = bpsize;
8237 return 0;
8238 case PACKET_UNKNOWN:
8239 break;
8240 }
8241 }
8242
8243 return memory_insert_breakpoint (gdbarch, bp_tgt);
8244 }
8245
8246 static int
8247 remote_remove_breakpoint (struct gdbarch *gdbarch,
8248 struct bp_target_info *bp_tgt)
8249 {
8250 CORE_ADDR addr = bp_tgt->placed_address;
8251 struct remote_state *rs = get_remote_state ();
8252
8253 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8254 {
8255 char *p = rs->buf;
8256 char *endbuf = rs->buf + get_remote_packet_size ();
8257
8258 /* Make sure the remote is pointing at the right process, if
8259 necessary. */
8260 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8261 set_general_process ();
8262
8263 *(p++) = 'z';
8264 *(p++) = '0';
8265 *(p++) = ',';
8266
8267 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8268 p += hexnumstr (p, addr);
8269 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8270
8271 putpkt (rs->buf);
8272 getpkt (&rs->buf, &rs->buf_size, 0);
8273
8274 return (rs->buf[0] == 'E');
8275 }
8276
8277 return memory_remove_breakpoint (gdbarch, bp_tgt);
8278 }
8279
8280 static int
8281 watchpoint_to_Z_packet (int type)
8282 {
8283 switch (type)
8284 {
8285 case hw_write:
8286 return Z_PACKET_WRITE_WP;
8287 break;
8288 case hw_read:
8289 return Z_PACKET_READ_WP;
8290 break;
8291 case hw_access:
8292 return Z_PACKET_ACCESS_WP;
8293 break;
8294 default:
8295 internal_error (__FILE__, __LINE__,
8296 _("hw_bp_to_z: bad watchpoint type %d"), type);
8297 }
8298 }
8299
8300 static int
8301 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8302 struct expression *cond)
8303 {
8304 struct remote_state *rs = get_remote_state ();
8305 char *endbuf = rs->buf + get_remote_packet_size ();
8306 char *p;
8307 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8308
8309 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8310 return 1;
8311
8312 /* Make sure the remote is pointing at the right process, if
8313 necessary. */
8314 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8315 set_general_process ();
8316
8317 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8318 p = strchr (rs->buf, '\0');
8319 addr = remote_address_masked (addr);
8320 p += hexnumstr (p, (ULONGEST) addr);
8321 xsnprintf (p, endbuf - p, ",%x", len);
8322
8323 putpkt (rs->buf);
8324 getpkt (&rs->buf, &rs->buf_size, 0);
8325
8326 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8327 {
8328 case PACKET_ERROR:
8329 return -1;
8330 case PACKET_UNKNOWN:
8331 return 1;
8332 case PACKET_OK:
8333 return 0;
8334 }
8335 internal_error (__FILE__, __LINE__,
8336 _("remote_insert_watchpoint: reached end of function"));
8337 }
8338
8339 static int
8340 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8341 CORE_ADDR start, int length)
8342 {
8343 CORE_ADDR diff = remote_address_masked (addr - start);
8344
8345 return diff < length;
8346 }
8347
8348
8349 static int
8350 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8351 struct expression *cond)
8352 {
8353 struct remote_state *rs = get_remote_state ();
8354 char *endbuf = rs->buf + get_remote_packet_size ();
8355 char *p;
8356 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8357
8358 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8359 return -1;
8360
8361 /* Make sure the remote is pointing at the right process, if
8362 necessary. */
8363 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8364 set_general_process ();
8365
8366 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8367 p = strchr (rs->buf, '\0');
8368 addr = remote_address_masked (addr);
8369 p += hexnumstr (p, (ULONGEST) addr);
8370 xsnprintf (p, endbuf - p, ",%x", len);
8371 putpkt (rs->buf);
8372 getpkt (&rs->buf, &rs->buf_size, 0);
8373
8374 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8375 {
8376 case PACKET_ERROR:
8377 case PACKET_UNKNOWN:
8378 return -1;
8379 case PACKET_OK:
8380 return 0;
8381 }
8382 internal_error (__FILE__, __LINE__,
8383 _("remote_remove_watchpoint: reached end of function"));
8384 }
8385
8386
8387 int remote_hw_watchpoint_limit = -1;
8388 int remote_hw_watchpoint_length_limit = -1;
8389 int remote_hw_breakpoint_limit = -1;
8390
8391 static int
8392 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8393 {
8394 if (remote_hw_watchpoint_length_limit == 0)
8395 return 0;
8396 else if (remote_hw_watchpoint_length_limit < 0)
8397 return 1;
8398 else if (len <= remote_hw_watchpoint_length_limit)
8399 return 1;
8400 else
8401 return 0;
8402 }
8403
8404 static int
8405 remote_check_watch_resources (int type, int cnt, int ot)
8406 {
8407 if (type == bp_hardware_breakpoint)
8408 {
8409 if (remote_hw_breakpoint_limit == 0)
8410 return 0;
8411 else if (remote_hw_breakpoint_limit < 0)
8412 return 1;
8413 else if (cnt <= remote_hw_breakpoint_limit)
8414 return 1;
8415 }
8416 else
8417 {
8418 if (remote_hw_watchpoint_limit == 0)
8419 return 0;
8420 else if (remote_hw_watchpoint_limit < 0)
8421 return 1;
8422 else if (ot)
8423 return -1;
8424 else if (cnt <= remote_hw_watchpoint_limit)
8425 return 1;
8426 }
8427 return -1;
8428 }
8429
8430 static int
8431 remote_stopped_by_watchpoint (void)
8432 {
8433 struct remote_state *rs = get_remote_state ();
8434
8435 return rs->remote_stopped_by_watchpoint_p;
8436 }
8437
8438 static int
8439 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8440 {
8441 struct remote_state *rs = get_remote_state ();
8442 int rc = 0;
8443
8444 if (remote_stopped_by_watchpoint ())
8445 {
8446 *addr_p = rs->remote_watch_data_address;
8447 rc = 1;
8448 }
8449
8450 return rc;
8451 }
8452
8453
8454 static int
8455 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8456 struct bp_target_info *bp_tgt)
8457 {
8458 CORE_ADDR addr;
8459 struct remote_state *rs;
8460 char *p, *endbuf;
8461 char *message;
8462
8463 /* The length field should be set to the size of a breakpoint
8464 instruction, even though we aren't inserting one ourselves. */
8465
8466 gdbarch_remote_breakpoint_from_pc
8467 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8468
8469 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8470 return -1;
8471
8472 /* Make sure the remote is pointing at the right process, if
8473 necessary. */
8474 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8475 set_general_process ();
8476
8477 rs = get_remote_state ();
8478 p = rs->buf;
8479 endbuf = rs->buf + get_remote_packet_size ();
8480
8481 *(p++) = 'Z';
8482 *(p++) = '1';
8483 *(p++) = ',';
8484
8485 addr = remote_address_masked (bp_tgt->placed_address);
8486 p += hexnumstr (p, (ULONGEST) addr);
8487 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8488
8489 if (remote_supports_cond_breakpoints ())
8490 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8491
8492 if (remote_can_run_breakpoint_commands ())
8493 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8494
8495 putpkt (rs->buf);
8496 getpkt (&rs->buf, &rs->buf_size, 0);
8497
8498 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8499 {
8500 case PACKET_ERROR:
8501 if (rs->buf[1] == '.')
8502 {
8503 message = strchr (rs->buf + 2, '.');
8504 if (message)
8505 error (_("Remote failure reply: %s"), message + 1);
8506 }
8507 return -1;
8508 case PACKET_UNKNOWN:
8509 return -1;
8510 case PACKET_OK:
8511 return 0;
8512 }
8513 internal_error (__FILE__, __LINE__,
8514 _("remote_insert_hw_breakpoint: reached end of function"));
8515 }
8516
8517
8518 static int
8519 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8520 struct bp_target_info *bp_tgt)
8521 {
8522 CORE_ADDR addr;
8523 struct remote_state *rs = get_remote_state ();
8524 char *p = rs->buf;
8525 char *endbuf = rs->buf + get_remote_packet_size ();
8526
8527 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8528 return -1;
8529
8530 /* Make sure the remote is pointing at the right process, if
8531 necessary. */
8532 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8533 set_general_process ();
8534
8535 *(p++) = 'z';
8536 *(p++) = '1';
8537 *(p++) = ',';
8538
8539 addr = remote_address_masked (bp_tgt->placed_address);
8540 p += hexnumstr (p, (ULONGEST) addr);
8541 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8542
8543 putpkt (rs->buf);
8544 getpkt (&rs->buf, &rs->buf_size, 0);
8545
8546 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8547 {
8548 case PACKET_ERROR:
8549 case PACKET_UNKNOWN:
8550 return -1;
8551 case PACKET_OK:
8552 return 0;
8553 }
8554 internal_error (__FILE__, __LINE__,
8555 _("remote_remove_hw_breakpoint: reached end of function"));
8556 }
8557
8558 /* Verify memory using the "qCRC:" request. */
8559
8560 static int
8561 remote_verify_memory (struct target_ops *ops,
8562 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8563 {
8564 struct remote_state *rs = get_remote_state ();
8565 unsigned long host_crc, target_crc;
8566 char *tmp;
8567
8568 /* Make sure the remote is pointing at the right process. */
8569 set_general_process ();
8570
8571 /* FIXME: assumes lma can fit into long. */
8572 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8573 (long) lma, (long) size);
8574 putpkt (rs->buf);
8575
8576 /* Be clever; compute the host_crc before waiting for target
8577 reply. */
8578 host_crc = xcrc32 (data, size, 0xffffffff);
8579
8580 getpkt (&rs->buf, &rs->buf_size, 0);
8581 if (rs->buf[0] == 'E')
8582 return -1;
8583
8584 if (rs->buf[0] != 'C')
8585 error (_("remote target does not support this operation"));
8586
8587 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8588 target_crc = target_crc * 16 + fromhex (*tmp);
8589
8590 return (host_crc == target_crc);
8591 }
8592
8593 /* compare-sections command
8594
8595 With no arguments, compares each loadable section in the exec bfd
8596 with the same memory range on the target, and reports mismatches.
8597 Useful for verifying the image on the target against the exec file. */
8598
8599 static void
8600 compare_sections_command (char *args, int from_tty)
8601 {
8602 asection *s;
8603 struct cleanup *old_chain;
8604 gdb_byte *sectdata;
8605 const char *sectname;
8606 bfd_size_type size;
8607 bfd_vma lma;
8608 int matched = 0;
8609 int mismatched = 0;
8610 int res;
8611
8612 if (!exec_bfd)
8613 error (_("command cannot be used without an exec file"));
8614
8615 /* Make sure the remote is pointing at the right process. */
8616 set_general_process ();
8617
8618 for (s = exec_bfd->sections; s; s = s->next)
8619 {
8620 if (!(s->flags & SEC_LOAD))
8621 continue; /* Skip non-loadable section. */
8622
8623 size = bfd_get_section_size (s);
8624 if (size == 0)
8625 continue; /* Skip zero-length section. */
8626
8627 sectname = bfd_get_section_name (exec_bfd, s);
8628 if (args && strcmp (args, sectname) != 0)
8629 continue; /* Not the section selected by user. */
8630
8631 matched = 1; /* Do this section. */
8632 lma = s->lma;
8633
8634 sectdata = xmalloc (size);
8635 old_chain = make_cleanup (xfree, sectdata);
8636 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8637
8638 res = target_verify_memory (sectdata, lma, size);
8639
8640 if (res == -1)
8641 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8642 paddress (target_gdbarch (), lma),
8643 paddress (target_gdbarch (), lma + size));
8644
8645 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8646 paddress (target_gdbarch (), lma),
8647 paddress (target_gdbarch (), lma + size));
8648 if (res)
8649 printf_filtered ("matched.\n");
8650 else
8651 {
8652 printf_filtered ("MIS-MATCHED!\n");
8653 mismatched++;
8654 }
8655
8656 do_cleanups (old_chain);
8657 }
8658 if (mismatched > 0)
8659 warning (_("One or more sections of the remote executable does not match\n\
8660 the loaded file\n"));
8661 if (args && !matched)
8662 printf_filtered (_("No loaded section named '%s'.\n"), args);
8663 }
8664
8665 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8666 into remote target. The number of bytes written to the remote
8667 target is returned, or -1 for error. */
8668
8669 static LONGEST
8670 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8671 const char *annex, const gdb_byte *writebuf,
8672 ULONGEST offset, LONGEST len,
8673 struct packet_config *packet)
8674 {
8675 int i, buf_len;
8676 ULONGEST n;
8677 struct remote_state *rs = get_remote_state ();
8678 int max_size = get_memory_write_packet_size ();
8679
8680 if (packet->support == PACKET_DISABLE)
8681 return -1;
8682
8683 /* Insert header. */
8684 i = snprintf (rs->buf, max_size,
8685 "qXfer:%s:write:%s:%s:",
8686 object_name, annex ? annex : "",
8687 phex_nz (offset, sizeof offset));
8688 max_size -= (i + 1);
8689
8690 /* Escape as much data as fits into rs->buf. */
8691 buf_len = remote_escape_output
8692 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8693
8694 if (putpkt_binary (rs->buf, i + buf_len) < 0
8695 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8696 || packet_ok (rs->buf, packet) != PACKET_OK)
8697 return -1;
8698
8699 unpack_varlen_hex (rs->buf, &n);
8700 return n;
8701 }
8702
8703 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8704 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8705 number of bytes read is returned, or 0 for EOF, or -1 for error.
8706 The number of bytes read may be less than LEN without indicating an
8707 EOF. PACKET is checked and updated to indicate whether the remote
8708 target supports this object. */
8709
8710 static LONGEST
8711 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8712 const char *annex,
8713 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8714 struct packet_config *packet)
8715 {
8716 struct remote_state *rs = get_remote_state ();
8717 LONGEST i, n, packet_len;
8718
8719 if (packet->support == PACKET_DISABLE)
8720 return -1;
8721
8722 /* Check whether we've cached an end-of-object packet that matches
8723 this request. */
8724 if (rs->finished_object)
8725 {
8726 if (strcmp (object_name, rs->finished_object) == 0
8727 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8728 && offset == rs->finished_offset)
8729 return 0;
8730
8731 /* Otherwise, we're now reading something different. Discard
8732 the cache. */
8733 xfree (rs->finished_object);
8734 xfree (rs->finished_annex);
8735 rs->finished_object = NULL;
8736 rs->finished_annex = NULL;
8737 }
8738
8739 /* Request only enough to fit in a single packet. The actual data
8740 may not, since we don't know how much of it will need to be escaped;
8741 the target is free to respond with slightly less data. We subtract
8742 five to account for the response type and the protocol frame. */
8743 n = min (get_remote_packet_size () - 5, len);
8744 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8745 object_name, annex ? annex : "",
8746 phex_nz (offset, sizeof offset),
8747 phex_nz (n, sizeof n));
8748 i = putpkt (rs->buf);
8749 if (i < 0)
8750 return -1;
8751
8752 rs->buf[0] = '\0';
8753 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8754 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8755 return -1;
8756
8757 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8758 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8759
8760 /* 'm' means there is (or at least might be) more data after this
8761 batch. That does not make sense unless there's at least one byte
8762 of data in this reply. */
8763 if (rs->buf[0] == 'm' && packet_len == 1)
8764 error (_("Remote qXfer reply contained no data."));
8765
8766 /* Got some data. */
8767 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8768 packet_len - 1, readbuf, n);
8769
8770 /* 'l' is an EOF marker, possibly including a final block of data,
8771 or possibly empty. If we have the final block of a non-empty
8772 object, record this fact to bypass a subsequent partial read. */
8773 if (rs->buf[0] == 'l' && offset + i > 0)
8774 {
8775 rs->finished_object = xstrdup (object_name);
8776 rs->finished_annex = xstrdup (annex ? annex : "");
8777 rs->finished_offset = offset + i;
8778 }
8779
8780 return i;
8781 }
8782
8783 static LONGEST
8784 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8785 const char *annex, gdb_byte *readbuf,
8786 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8787 {
8788 struct remote_state *rs;
8789 int i;
8790 char *p2;
8791 char query_type;
8792
8793 set_remote_traceframe ();
8794 set_general_thread (inferior_ptid);
8795
8796 rs = get_remote_state ();
8797
8798 /* Handle memory using the standard memory routines. */
8799 if (object == TARGET_OBJECT_MEMORY)
8800 {
8801 LONGEST xfered;
8802
8803 /* If the remote target is connected but not running, we should
8804 pass this request down to a lower stratum (e.g. the executable
8805 file). */
8806 if (!target_has_execution)
8807 return 0;
8808
8809 if (writebuf != NULL)
8810 xfered = remote_write_bytes (offset, writebuf, len);
8811 else
8812 xfered = remote_read_bytes (offset, readbuf, len);
8813
8814 return xfered;
8815 }
8816
8817 /* Handle SPU memory using qxfer packets. */
8818 if (object == TARGET_OBJECT_SPU)
8819 {
8820 if (readbuf)
8821 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8822 &remote_protocol_packets
8823 [PACKET_qXfer_spu_read]);
8824 else
8825 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8826 &remote_protocol_packets
8827 [PACKET_qXfer_spu_write]);
8828 }
8829
8830 /* Handle extra signal info using qxfer packets. */
8831 if (object == TARGET_OBJECT_SIGNAL_INFO)
8832 {
8833 if (readbuf)
8834 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8835 &remote_protocol_packets
8836 [PACKET_qXfer_siginfo_read]);
8837 else
8838 return remote_write_qxfer (ops, "siginfo", annex,
8839 writebuf, offset, len,
8840 &remote_protocol_packets
8841 [PACKET_qXfer_siginfo_write]);
8842 }
8843
8844 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8845 {
8846 if (readbuf)
8847 return remote_read_qxfer (ops, "statictrace", annex,
8848 readbuf, offset, len,
8849 &remote_protocol_packets
8850 [PACKET_qXfer_statictrace_read]);
8851 else
8852 return -1;
8853 }
8854
8855 /* Only handle flash writes. */
8856 if (writebuf != NULL)
8857 {
8858 LONGEST xfered;
8859
8860 switch (object)
8861 {
8862 case TARGET_OBJECT_FLASH:
8863 return remote_flash_write (ops, offset, len, writebuf);
8864
8865 default:
8866 return -1;
8867 }
8868 }
8869
8870 /* Map pre-existing objects onto letters. DO NOT do this for new
8871 objects!!! Instead specify new query packets. */
8872 switch (object)
8873 {
8874 case TARGET_OBJECT_AVR:
8875 query_type = 'R';
8876 break;
8877
8878 case TARGET_OBJECT_AUXV:
8879 gdb_assert (annex == NULL);
8880 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8881 &remote_protocol_packets[PACKET_qXfer_auxv]);
8882
8883 case TARGET_OBJECT_AVAILABLE_FEATURES:
8884 return remote_read_qxfer
8885 (ops, "features", annex, readbuf, offset, len,
8886 &remote_protocol_packets[PACKET_qXfer_features]);
8887
8888 case TARGET_OBJECT_LIBRARIES:
8889 return remote_read_qxfer
8890 (ops, "libraries", annex, readbuf, offset, len,
8891 &remote_protocol_packets[PACKET_qXfer_libraries]);
8892
8893 case TARGET_OBJECT_LIBRARIES_SVR4:
8894 return remote_read_qxfer
8895 (ops, "libraries-svr4", annex, readbuf, offset, len,
8896 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8897
8898 case TARGET_OBJECT_MEMORY_MAP:
8899 gdb_assert (annex == NULL);
8900 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8901 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8902
8903 case TARGET_OBJECT_OSDATA:
8904 /* Should only get here if we're connected. */
8905 gdb_assert (rs->remote_desc);
8906 return remote_read_qxfer
8907 (ops, "osdata", annex, readbuf, offset, len,
8908 &remote_protocol_packets[PACKET_qXfer_osdata]);
8909
8910 case TARGET_OBJECT_THREADS:
8911 gdb_assert (annex == NULL);
8912 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8913 &remote_protocol_packets[PACKET_qXfer_threads]);
8914
8915 case TARGET_OBJECT_TRACEFRAME_INFO:
8916 gdb_assert (annex == NULL);
8917 return remote_read_qxfer
8918 (ops, "traceframe-info", annex, readbuf, offset, len,
8919 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8920
8921 case TARGET_OBJECT_FDPIC:
8922 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8923 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8924
8925 case TARGET_OBJECT_OPENVMS_UIB:
8926 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8927 &remote_protocol_packets[PACKET_qXfer_uib]);
8928
8929 case TARGET_OBJECT_BTRACE:
8930 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8931 &remote_protocol_packets[PACKET_qXfer_btrace]);
8932
8933 default:
8934 return -1;
8935 }
8936
8937 /* Note: a zero OFFSET and LEN can be used to query the minimum
8938 buffer size. */
8939 if (offset == 0 && len == 0)
8940 return (get_remote_packet_size ());
8941 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8942 large enough let the caller deal with it. */
8943 if (len < get_remote_packet_size ())
8944 return -1;
8945 len = get_remote_packet_size ();
8946
8947 /* Except for querying the minimum buffer size, target must be open. */
8948 if (!rs->remote_desc)
8949 error (_("remote query is only available after target open"));
8950
8951 gdb_assert (annex != NULL);
8952 gdb_assert (readbuf != NULL);
8953
8954 p2 = rs->buf;
8955 *p2++ = 'q';
8956 *p2++ = query_type;
8957
8958 /* We used one buffer char for the remote protocol q command and
8959 another for the query type. As the remote protocol encapsulation
8960 uses 4 chars plus one extra in case we are debugging
8961 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8962 string. */
8963 i = 0;
8964 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8965 {
8966 /* Bad caller may have sent forbidden characters. */
8967 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8968 *p2++ = annex[i];
8969 i++;
8970 }
8971 *p2 = '\0';
8972 gdb_assert (annex[i] == '\0');
8973
8974 i = putpkt (rs->buf);
8975 if (i < 0)
8976 return i;
8977
8978 getpkt (&rs->buf, &rs->buf_size, 0);
8979 strcpy ((char *) readbuf, rs->buf);
8980
8981 return strlen ((char *) readbuf);
8982 }
8983
8984 static int
8985 remote_search_memory (struct target_ops* ops,
8986 CORE_ADDR start_addr, ULONGEST search_space_len,
8987 const gdb_byte *pattern, ULONGEST pattern_len,
8988 CORE_ADDR *found_addrp)
8989 {
8990 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8991 struct remote_state *rs = get_remote_state ();
8992 int max_size = get_memory_write_packet_size ();
8993 struct packet_config *packet =
8994 &remote_protocol_packets[PACKET_qSearch_memory];
8995 /* Number of packet bytes used to encode the pattern;
8996 this could be more than PATTERN_LEN due to escape characters. */
8997 int escaped_pattern_len;
8998 /* Amount of pattern that was encodable in the packet. */
8999 int used_pattern_len;
9000 int i;
9001 int found;
9002 ULONGEST found_addr;
9003
9004 /* Don't go to the target if we don't have to.
9005 This is done before checking packet->support to avoid the possibility that
9006 a success for this edge case means the facility works in general. */
9007 if (pattern_len > search_space_len)
9008 return 0;
9009 if (pattern_len == 0)
9010 {
9011 *found_addrp = start_addr;
9012 return 1;
9013 }
9014
9015 /* If we already know the packet isn't supported, fall back to the simple
9016 way of searching memory. */
9017
9018 if (packet->support == PACKET_DISABLE)
9019 {
9020 /* Target doesn't provided special support, fall back and use the
9021 standard support (copy memory and do the search here). */
9022 return simple_search_memory (ops, start_addr, search_space_len,
9023 pattern, pattern_len, found_addrp);
9024 }
9025
9026 /* Make sure the remote is pointing at the right process. */
9027 set_general_process ();
9028
9029 /* Insert header. */
9030 i = snprintf (rs->buf, max_size,
9031 "qSearch:memory:%s;%s;",
9032 phex_nz (start_addr, addr_size),
9033 phex_nz (search_space_len, sizeof (search_space_len)));
9034 max_size -= (i + 1);
9035
9036 /* Escape as much data as fits into rs->buf. */
9037 escaped_pattern_len =
9038 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9039 &used_pattern_len, max_size);
9040
9041 /* Bail if the pattern is too large. */
9042 if (used_pattern_len != pattern_len)
9043 error (_("Pattern is too large to transmit to remote target."));
9044
9045 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9046 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9047 || packet_ok (rs->buf, packet) != PACKET_OK)
9048 {
9049 /* The request may not have worked because the command is not
9050 supported. If so, fall back to the simple way. */
9051 if (packet->support == PACKET_DISABLE)
9052 {
9053 return simple_search_memory (ops, start_addr, search_space_len,
9054 pattern, pattern_len, found_addrp);
9055 }
9056 return -1;
9057 }
9058
9059 if (rs->buf[0] == '0')
9060 found = 0;
9061 else if (rs->buf[0] == '1')
9062 {
9063 found = 1;
9064 if (rs->buf[1] != ',')
9065 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9066 unpack_varlen_hex (rs->buf + 2, &found_addr);
9067 *found_addrp = found_addr;
9068 }
9069 else
9070 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9071
9072 return found;
9073 }
9074
9075 static void
9076 remote_rcmd (char *command,
9077 struct ui_file *outbuf)
9078 {
9079 struct remote_state *rs = get_remote_state ();
9080 char *p = rs->buf;
9081
9082 if (!rs->remote_desc)
9083 error (_("remote rcmd is only available after target open"));
9084
9085 /* Send a NULL command across as an empty command. */
9086 if (command == NULL)
9087 command = "";
9088
9089 /* The query prefix. */
9090 strcpy (rs->buf, "qRcmd,");
9091 p = strchr (rs->buf, '\0');
9092
9093 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9094 > get_remote_packet_size ())
9095 error (_("\"monitor\" command ``%s'' is too long."), command);
9096
9097 /* Encode the actual command. */
9098 bin2hex ((gdb_byte *) command, p, 0);
9099
9100 if (putpkt (rs->buf) < 0)
9101 error (_("Communication problem with target."));
9102
9103 /* get/display the response */
9104 while (1)
9105 {
9106 char *buf;
9107
9108 /* XXX - see also remote_get_noisy_reply(). */
9109 QUIT; /* Allow user to bail out with ^C. */
9110 rs->buf[0] = '\0';
9111 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9112 {
9113 /* Timeout. Continue to (try to) read responses.
9114 This is better than stopping with an error, assuming the stub
9115 is still executing the (long) monitor command.
9116 If needed, the user can interrupt gdb using C-c, obtaining
9117 an effect similar to stop on timeout. */
9118 continue;
9119 }
9120 buf = rs->buf;
9121 if (buf[0] == '\0')
9122 error (_("Target does not support this command."));
9123 if (buf[0] == 'O' && buf[1] != 'K')
9124 {
9125 remote_console_output (buf + 1); /* 'O' message from stub. */
9126 continue;
9127 }
9128 if (strcmp (buf, "OK") == 0)
9129 break;
9130 if (strlen (buf) == 3 && buf[0] == 'E'
9131 && isdigit (buf[1]) && isdigit (buf[2]))
9132 {
9133 error (_("Protocol error with Rcmd"));
9134 }
9135 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9136 {
9137 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9138
9139 fputc_unfiltered (c, outbuf);
9140 }
9141 break;
9142 }
9143 }
9144
9145 static VEC(mem_region_s) *
9146 remote_memory_map (struct target_ops *ops)
9147 {
9148 VEC(mem_region_s) *result = NULL;
9149 char *text = target_read_stralloc (&current_target,
9150 TARGET_OBJECT_MEMORY_MAP, NULL);
9151
9152 if (text)
9153 {
9154 struct cleanup *back_to = make_cleanup (xfree, text);
9155
9156 result = parse_memory_map (text);
9157 do_cleanups (back_to);
9158 }
9159
9160 return result;
9161 }
9162
9163 static void
9164 packet_command (char *args, int from_tty)
9165 {
9166 struct remote_state *rs = get_remote_state ();
9167
9168 if (!rs->remote_desc)
9169 error (_("command can only be used with remote target"));
9170
9171 if (!args)
9172 error (_("remote-packet command requires packet text as argument"));
9173
9174 puts_filtered ("sending: ");
9175 print_packet (args);
9176 puts_filtered ("\n");
9177 putpkt (args);
9178
9179 getpkt (&rs->buf, &rs->buf_size, 0);
9180 puts_filtered ("received: ");
9181 print_packet (rs->buf);
9182 puts_filtered ("\n");
9183 }
9184
9185 #if 0
9186 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9187
9188 static void display_thread_info (struct gdb_ext_thread_info *info);
9189
9190 static void threadset_test_cmd (char *cmd, int tty);
9191
9192 static void threadalive_test (char *cmd, int tty);
9193
9194 static void threadlist_test_cmd (char *cmd, int tty);
9195
9196 int get_and_display_threadinfo (threadref *ref);
9197
9198 static void threadinfo_test_cmd (char *cmd, int tty);
9199
9200 static int thread_display_step (threadref *ref, void *context);
9201
9202 static void threadlist_update_test_cmd (char *cmd, int tty);
9203
9204 static void init_remote_threadtests (void);
9205
9206 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9207
9208 static void
9209 threadset_test_cmd (char *cmd, int tty)
9210 {
9211 int sample_thread = SAMPLE_THREAD;
9212
9213 printf_filtered (_("Remote threadset test\n"));
9214 set_general_thread (sample_thread);
9215 }
9216
9217
9218 static void
9219 threadalive_test (char *cmd, int tty)
9220 {
9221 int sample_thread = SAMPLE_THREAD;
9222 int pid = ptid_get_pid (inferior_ptid);
9223 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9224
9225 if (remote_thread_alive (ptid))
9226 printf_filtered ("PASS: Thread alive test\n");
9227 else
9228 printf_filtered ("FAIL: Thread alive test\n");
9229 }
9230
9231 void output_threadid (char *title, threadref *ref);
9232
9233 void
9234 output_threadid (char *title, threadref *ref)
9235 {
9236 char hexid[20];
9237
9238 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9239 hexid[16] = 0;
9240 printf_filtered ("%s %s\n", title, (&hexid[0]));
9241 }
9242
9243 static void
9244 threadlist_test_cmd (char *cmd, int tty)
9245 {
9246 int startflag = 1;
9247 threadref nextthread;
9248 int done, result_count;
9249 threadref threadlist[3];
9250
9251 printf_filtered ("Remote Threadlist test\n");
9252 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9253 &result_count, &threadlist[0]))
9254 printf_filtered ("FAIL: threadlist test\n");
9255 else
9256 {
9257 threadref *scan = threadlist;
9258 threadref *limit = scan + result_count;
9259
9260 while (scan < limit)
9261 output_threadid (" thread ", scan++);
9262 }
9263 }
9264
9265 void
9266 display_thread_info (struct gdb_ext_thread_info *info)
9267 {
9268 output_threadid ("Threadid: ", &info->threadid);
9269 printf_filtered ("Name: %s\n ", info->shortname);
9270 printf_filtered ("State: %s\n", info->display);
9271 printf_filtered ("other: %s\n\n", info->more_display);
9272 }
9273
9274 int
9275 get_and_display_threadinfo (threadref *ref)
9276 {
9277 int result;
9278 int set;
9279 struct gdb_ext_thread_info threadinfo;
9280
9281 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9282 | TAG_MOREDISPLAY | TAG_DISPLAY;
9283 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9284 display_thread_info (&threadinfo);
9285 return result;
9286 }
9287
9288 static void
9289 threadinfo_test_cmd (char *cmd, int tty)
9290 {
9291 int athread = SAMPLE_THREAD;
9292 threadref thread;
9293 int set;
9294
9295 int_to_threadref (&thread, athread);
9296 printf_filtered ("Remote Threadinfo test\n");
9297 if (!get_and_display_threadinfo (&thread))
9298 printf_filtered ("FAIL cannot get thread info\n");
9299 }
9300
9301 static int
9302 thread_display_step (threadref *ref, void *context)
9303 {
9304 /* output_threadid(" threadstep ",ref); *//* simple test */
9305 return get_and_display_threadinfo (ref);
9306 }
9307
9308 static void
9309 threadlist_update_test_cmd (char *cmd, int tty)
9310 {
9311 printf_filtered ("Remote Threadlist update test\n");
9312 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9313 }
9314
9315 static void
9316 init_remote_threadtests (void)
9317 {
9318 add_com ("tlist", class_obscure, threadlist_test_cmd,
9319 _("Fetch and print the remote list of "
9320 "thread identifiers, one pkt only"));
9321 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9322 _("Fetch and display info about one thread"));
9323 add_com ("tset", class_obscure, threadset_test_cmd,
9324 _("Test setting to a different thread"));
9325 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9326 _("Iterate through updating all remote thread info"));
9327 add_com ("talive", class_obscure, threadalive_test,
9328 _(" Remote thread alive test "));
9329 }
9330
9331 #endif /* 0 */
9332
9333 /* Convert a thread ID to a string. Returns the string in a static
9334 buffer. */
9335
9336 static char *
9337 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9338 {
9339 static char buf[64];
9340 struct remote_state *rs = get_remote_state ();
9341
9342 if (ptid_equal (ptid, null_ptid))
9343 return normal_pid_to_str (ptid);
9344 else if (ptid_is_pid (ptid))
9345 {
9346 /* Printing an inferior target id. */
9347
9348 /* When multi-process extensions are off, there's no way in the
9349 remote protocol to know the remote process id, if there's any
9350 at all. There's one exception --- when we're connected with
9351 target extended-remote, and we manually attached to a process
9352 with "attach PID". We don't record anywhere a flag that
9353 allows us to distinguish that case from the case of
9354 connecting with extended-remote and the stub already being
9355 attached to a process, and reporting yes to qAttached, hence
9356 no smart special casing here. */
9357 if (!remote_multi_process_p (rs))
9358 {
9359 xsnprintf (buf, sizeof buf, "Remote target");
9360 return buf;
9361 }
9362
9363 return normal_pid_to_str (ptid);
9364 }
9365 else
9366 {
9367 if (ptid_equal (magic_null_ptid, ptid))
9368 xsnprintf (buf, sizeof buf, "Thread <main>");
9369 else if (rs->extended && remote_multi_process_p (rs))
9370 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9371 ptid_get_pid (ptid), ptid_get_tid (ptid));
9372 else
9373 xsnprintf (buf, sizeof buf, "Thread %ld",
9374 ptid_get_tid (ptid));
9375 return buf;
9376 }
9377 }
9378
9379 /* Get the address of the thread local variable in OBJFILE which is
9380 stored at OFFSET within the thread local storage for thread PTID. */
9381
9382 static CORE_ADDR
9383 remote_get_thread_local_address (struct target_ops *ops,
9384 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9385 {
9386 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9387 {
9388 struct remote_state *rs = get_remote_state ();
9389 char *p = rs->buf;
9390 char *endp = rs->buf + get_remote_packet_size ();
9391 enum packet_result result;
9392
9393 strcpy (p, "qGetTLSAddr:");
9394 p += strlen (p);
9395 p = write_ptid (p, endp, ptid);
9396 *p++ = ',';
9397 p += hexnumstr (p, offset);
9398 *p++ = ',';
9399 p += hexnumstr (p, lm);
9400 *p++ = '\0';
9401
9402 putpkt (rs->buf);
9403 getpkt (&rs->buf, &rs->buf_size, 0);
9404 result = packet_ok (rs->buf,
9405 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9406 if (result == PACKET_OK)
9407 {
9408 ULONGEST result;
9409
9410 unpack_varlen_hex (rs->buf, &result);
9411 return result;
9412 }
9413 else if (result == PACKET_UNKNOWN)
9414 throw_error (TLS_GENERIC_ERROR,
9415 _("Remote target doesn't support qGetTLSAddr packet"));
9416 else
9417 throw_error (TLS_GENERIC_ERROR,
9418 _("Remote target failed to process qGetTLSAddr request"));
9419 }
9420 else
9421 throw_error (TLS_GENERIC_ERROR,
9422 _("TLS not supported or disabled on this target"));
9423 /* Not reached. */
9424 return 0;
9425 }
9426
9427 /* Provide thread local base, i.e. Thread Information Block address.
9428 Returns 1 if ptid is found and thread_local_base is non zero. */
9429
9430 static int
9431 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9432 {
9433 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9434 {
9435 struct remote_state *rs = get_remote_state ();
9436 char *p = rs->buf;
9437 char *endp = rs->buf + get_remote_packet_size ();
9438 enum packet_result result;
9439
9440 strcpy (p, "qGetTIBAddr:");
9441 p += strlen (p);
9442 p = write_ptid (p, endp, ptid);
9443 *p++ = '\0';
9444
9445 putpkt (rs->buf);
9446 getpkt (&rs->buf, &rs->buf_size, 0);
9447 result = packet_ok (rs->buf,
9448 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9449 if (result == PACKET_OK)
9450 {
9451 ULONGEST result;
9452
9453 unpack_varlen_hex (rs->buf, &result);
9454 if (addr)
9455 *addr = (CORE_ADDR) result;
9456 return 1;
9457 }
9458 else if (result == PACKET_UNKNOWN)
9459 error (_("Remote target doesn't support qGetTIBAddr packet"));
9460 else
9461 error (_("Remote target failed to process qGetTIBAddr request"));
9462 }
9463 else
9464 error (_("qGetTIBAddr not supported or disabled on this target"));
9465 /* Not reached. */
9466 return 0;
9467 }
9468
9469 /* Support for inferring a target description based on the current
9470 architecture and the size of a 'g' packet. While the 'g' packet
9471 can have any size (since optional registers can be left off the
9472 end), some sizes are easily recognizable given knowledge of the
9473 approximate architecture. */
9474
9475 struct remote_g_packet_guess
9476 {
9477 int bytes;
9478 const struct target_desc *tdesc;
9479 };
9480 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9481 DEF_VEC_O(remote_g_packet_guess_s);
9482
9483 struct remote_g_packet_data
9484 {
9485 VEC(remote_g_packet_guess_s) *guesses;
9486 };
9487
9488 static struct gdbarch_data *remote_g_packet_data_handle;
9489
9490 static void *
9491 remote_g_packet_data_init (struct obstack *obstack)
9492 {
9493 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9494 }
9495
9496 void
9497 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9498 const struct target_desc *tdesc)
9499 {
9500 struct remote_g_packet_data *data
9501 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9502 struct remote_g_packet_guess new_guess, *guess;
9503 int ix;
9504
9505 gdb_assert (tdesc != NULL);
9506
9507 for (ix = 0;
9508 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9509 ix++)
9510 if (guess->bytes == bytes)
9511 internal_error (__FILE__, __LINE__,
9512 _("Duplicate g packet description added for size %d"),
9513 bytes);
9514
9515 new_guess.bytes = bytes;
9516 new_guess.tdesc = tdesc;
9517 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9518 }
9519
9520 /* Return 1 if remote_read_description would do anything on this target
9521 and architecture, 0 otherwise. */
9522
9523 static int
9524 remote_read_description_p (struct target_ops *target)
9525 {
9526 struct remote_g_packet_data *data
9527 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9528
9529 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9530 return 1;
9531
9532 return 0;
9533 }
9534
9535 static const struct target_desc *
9536 remote_read_description (struct target_ops *target)
9537 {
9538 struct remote_g_packet_data *data
9539 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9540
9541 /* Do not try this during initial connection, when we do not know
9542 whether there is a running but stopped thread. */
9543 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9544 return NULL;
9545
9546 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9547 {
9548 struct remote_g_packet_guess *guess;
9549 int ix;
9550 int bytes = send_g_packet ();
9551
9552 for (ix = 0;
9553 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9554 ix++)
9555 if (guess->bytes == bytes)
9556 return guess->tdesc;
9557
9558 /* We discard the g packet. A minor optimization would be to
9559 hold on to it, and fill the register cache once we have selected
9560 an architecture, but it's too tricky to do safely. */
9561 }
9562
9563 return NULL;
9564 }
9565
9566 /* Remote file transfer support. This is host-initiated I/O, not
9567 target-initiated; for target-initiated, see remote-fileio.c. */
9568
9569 /* If *LEFT is at least the length of STRING, copy STRING to
9570 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9571 decrease *LEFT. Otherwise raise an error. */
9572
9573 static void
9574 remote_buffer_add_string (char **buffer, int *left, char *string)
9575 {
9576 int len = strlen (string);
9577
9578 if (len > *left)
9579 error (_("Packet too long for target."));
9580
9581 memcpy (*buffer, string, len);
9582 *buffer += len;
9583 *left -= len;
9584
9585 /* NUL-terminate the buffer as a convenience, if there is
9586 room. */
9587 if (*left)
9588 **buffer = '\0';
9589 }
9590
9591 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9592 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9593 decrease *LEFT. Otherwise raise an error. */
9594
9595 static void
9596 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9597 int len)
9598 {
9599 if (2 * len > *left)
9600 error (_("Packet too long for target."));
9601
9602 bin2hex (bytes, *buffer, len);
9603 *buffer += 2 * len;
9604 *left -= 2 * len;
9605
9606 /* NUL-terminate the buffer as a convenience, if there is
9607 room. */
9608 if (*left)
9609 **buffer = '\0';
9610 }
9611
9612 /* If *LEFT is large enough, convert VALUE to hex and add it to
9613 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9614 decrease *LEFT. Otherwise raise an error. */
9615
9616 static void
9617 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9618 {
9619 int len = hexnumlen (value);
9620
9621 if (len > *left)
9622 error (_("Packet too long for target."));
9623
9624 hexnumstr (*buffer, value);
9625 *buffer += len;
9626 *left -= len;
9627
9628 /* NUL-terminate the buffer as a convenience, if there is
9629 room. */
9630 if (*left)
9631 **buffer = '\0';
9632 }
9633
9634 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9635 value, *REMOTE_ERRNO to the remote error number or zero if none
9636 was included, and *ATTACHMENT to point to the start of the annex
9637 if any. The length of the packet isn't needed here; there may
9638 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9639
9640 Return 0 if the packet could be parsed, -1 if it could not. If
9641 -1 is returned, the other variables may not be initialized. */
9642
9643 static int
9644 remote_hostio_parse_result (char *buffer, int *retcode,
9645 int *remote_errno, char **attachment)
9646 {
9647 char *p, *p2;
9648
9649 *remote_errno = 0;
9650 *attachment = NULL;
9651
9652 if (buffer[0] != 'F')
9653 return -1;
9654
9655 errno = 0;
9656 *retcode = strtol (&buffer[1], &p, 16);
9657 if (errno != 0 || p == &buffer[1])
9658 return -1;
9659
9660 /* Check for ",errno". */
9661 if (*p == ',')
9662 {
9663 errno = 0;
9664 *remote_errno = strtol (p + 1, &p2, 16);
9665 if (errno != 0 || p + 1 == p2)
9666 return -1;
9667 p = p2;
9668 }
9669
9670 /* Check for ";attachment". If there is no attachment, the
9671 packet should end here. */
9672 if (*p == ';')
9673 {
9674 *attachment = p + 1;
9675 return 0;
9676 }
9677 else if (*p == '\0')
9678 return 0;
9679 else
9680 return -1;
9681 }
9682
9683 /* Send a prepared I/O packet to the target and read its response.
9684 The prepared packet is in the global RS->BUF before this function
9685 is called, and the answer is there when we return.
9686
9687 COMMAND_BYTES is the length of the request to send, which may include
9688 binary data. WHICH_PACKET is the packet configuration to check
9689 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9690 is set to the error number and -1 is returned. Otherwise the value
9691 returned by the function is returned.
9692
9693 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9694 attachment is expected; an error will be reported if there's a
9695 mismatch. If one is found, *ATTACHMENT will be set to point into
9696 the packet buffer and *ATTACHMENT_LEN will be set to the
9697 attachment's length. */
9698
9699 static int
9700 remote_hostio_send_command (int command_bytes, int which_packet,
9701 int *remote_errno, char **attachment,
9702 int *attachment_len)
9703 {
9704 struct remote_state *rs = get_remote_state ();
9705 int ret, bytes_read;
9706 char *attachment_tmp;
9707
9708 if (!rs->remote_desc
9709 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9710 {
9711 *remote_errno = FILEIO_ENOSYS;
9712 return -1;
9713 }
9714
9715 putpkt_binary (rs->buf, command_bytes);
9716 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9717
9718 /* If it timed out, something is wrong. Don't try to parse the
9719 buffer. */
9720 if (bytes_read < 0)
9721 {
9722 *remote_errno = FILEIO_EINVAL;
9723 return -1;
9724 }
9725
9726 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9727 {
9728 case PACKET_ERROR:
9729 *remote_errno = FILEIO_EINVAL;
9730 return -1;
9731 case PACKET_UNKNOWN:
9732 *remote_errno = FILEIO_ENOSYS;
9733 return -1;
9734 case PACKET_OK:
9735 break;
9736 }
9737
9738 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9739 &attachment_tmp))
9740 {
9741 *remote_errno = FILEIO_EINVAL;
9742 return -1;
9743 }
9744
9745 /* Make sure we saw an attachment if and only if we expected one. */
9746 if ((attachment_tmp == NULL && attachment != NULL)
9747 || (attachment_tmp != NULL && attachment == NULL))
9748 {
9749 *remote_errno = FILEIO_EINVAL;
9750 return -1;
9751 }
9752
9753 /* If an attachment was found, it must point into the packet buffer;
9754 work out how many bytes there were. */
9755 if (attachment_tmp != NULL)
9756 {
9757 *attachment = attachment_tmp;
9758 *attachment_len = bytes_read - (*attachment - rs->buf);
9759 }
9760
9761 return ret;
9762 }
9763
9764 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9765 remote file descriptor, or -1 if an error occurs (and set
9766 *REMOTE_ERRNO). */
9767
9768 static int
9769 remote_hostio_open (const char *filename, int flags, int mode,
9770 int *remote_errno)
9771 {
9772 struct remote_state *rs = get_remote_state ();
9773 char *p = rs->buf;
9774 int left = get_remote_packet_size () - 1;
9775
9776 remote_buffer_add_string (&p, &left, "vFile:open:");
9777
9778 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9779 strlen (filename));
9780 remote_buffer_add_string (&p, &left, ",");
9781
9782 remote_buffer_add_int (&p, &left, flags);
9783 remote_buffer_add_string (&p, &left, ",");
9784
9785 remote_buffer_add_int (&p, &left, mode);
9786
9787 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9788 remote_errno, NULL, NULL);
9789 }
9790
9791 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9792 Return the number of bytes written, or -1 if an error occurs (and
9793 set *REMOTE_ERRNO). */
9794
9795 static int
9796 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9797 ULONGEST offset, int *remote_errno)
9798 {
9799 struct remote_state *rs = get_remote_state ();
9800 char *p = rs->buf;
9801 int left = get_remote_packet_size ();
9802 int out_len;
9803
9804 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9805
9806 remote_buffer_add_int (&p, &left, fd);
9807 remote_buffer_add_string (&p, &left, ",");
9808
9809 remote_buffer_add_int (&p, &left, offset);
9810 remote_buffer_add_string (&p, &left, ",");
9811
9812 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9813 get_remote_packet_size () - (p - rs->buf));
9814
9815 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9816 remote_errno, NULL, NULL);
9817 }
9818
9819 /* Read up to LEN bytes FD on the remote target into READ_BUF
9820 Return the number of bytes read, or -1 if an error occurs (and
9821 set *REMOTE_ERRNO). */
9822
9823 static int
9824 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9825 ULONGEST offset, int *remote_errno)
9826 {
9827 struct remote_state *rs = get_remote_state ();
9828 char *p = rs->buf;
9829 char *attachment;
9830 int left = get_remote_packet_size ();
9831 int ret, attachment_len;
9832 int read_len;
9833
9834 remote_buffer_add_string (&p, &left, "vFile:pread:");
9835
9836 remote_buffer_add_int (&p, &left, fd);
9837 remote_buffer_add_string (&p, &left, ",");
9838
9839 remote_buffer_add_int (&p, &left, len);
9840 remote_buffer_add_string (&p, &left, ",");
9841
9842 remote_buffer_add_int (&p, &left, offset);
9843
9844 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9845 remote_errno, &attachment,
9846 &attachment_len);
9847
9848 if (ret < 0)
9849 return ret;
9850
9851 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9852 read_buf, len);
9853 if (read_len != ret)
9854 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9855
9856 return ret;
9857 }
9858
9859 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9860 (and set *REMOTE_ERRNO). */
9861
9862 static int
9863 remote_hostio_close (int fd, int *remote_errno)
9864 {
9865 struct remote_state *rs = get_remote_state ();
9866 char *p = rs->buf;
9867 int left = get_remote_packet_size () - 1;
9868
9869 remote_buffer_add_string (&p, &left, "vFile:close:");
9870
9871 remote_buffer_add_int (&p, &left, fd);
9872
9873 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9874 remote_errno, NULL, NULL);
9875 }
9876
9877 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9878 occurs (and set *REMOTE_ERRNO). */
9879
9880 static int
9881 remote_hostio_unlink (const char *filename, int *remote_errno)
9882 {
9883 struct remote_state *rs = get_remote_state ();
9884 char *p = rs->buf;
9885 int left = get_remote_packet_size () - 1;
9886
9887 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9888
9889 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9890 strlen (filename));
9891
9892 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9893 remote_errno, NULL, NULL);
9894 }
9895
9896 /* Read value of symbolic link FILENAME on the remote target. Return
9897 a null-terminated string allocated via xmalloc, or NULL if an error
9898 occurs (and set *REMOTE_ERRNO). */
9899
9900 static char *
9901 remote_hostio_readlink (const char *filename, int *remote_errno)
9902 {
9903 struct remote_state *rs = get_remote_state ();
9904 char *p = rs->buf;
9905 char *attachment;
9906 int left = get_remote_packet_size ();
9907 int len, attachment_len;
9908 int read_len;
9909 char *ret;
9910
9911 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9912
9913 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9914 strlen (filename));
9915
9916 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9917 remote_errno, &attachment,
9918 &attachment_len);
9919
9920 if (len < 0)
9921 return NULL;
9922
9923 ret = xmalloc (len + 1);
9924
9925 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9926 (gdb_byte *) ret, len);
9927 if (read_len != len)
9928 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9929
9930 ret[len] = '\0';
9931 return ret;
9932 }
9933
9934 static int
9935 remote_fileio_errno_to_host (int errnum)
9936 {
9937 switch (errnum)
9938 {
9939 case FILEIO_EPERM:
9940 return EPERM;
9941 case FILEIO_ENOENT:
9942 return ENOENT;
9943 case FILEIO_EINTR:
9944 return EINTR;
9945 case FILEIO_EIO:
9946 return EIO;
9947 case FILEIO_EBADF:
9948 return EBADF;
9949 case FILEIO_EACCES:
9950 return EACCES;
9951 case FILEIO_EFAULT:
9952 return EFAULT;
9953 case FILEIO_EBUSY:
9954 return EBUSY;
9955 case FILEIO_EEXIST:
9956 return EEXIST;
9957 case FILEIO_ENODEV:
9958 return ENODEV;
9959 case FILEIO_ENOTDIR:
9960 return ENOTDIR;
9961 case FILEIO_EISDIR:
9962 return EISDIR;
9963 case FILEIO_EINVAL:
9964 return EINVAL;
9965 case FILEIO_ENFILE:
9966 return ENFILE;
9967 case FILEIO_EMFILE:
9968 return EMFILE;
9969 case FILEIO_EFBIG:
9970 return EFBIG;
9971 case FILEIO_ENOSPC:
9972 return ENOSPC;
9973 case FILEIO_ESPIPE:
9974 return ESPIPE;
9975 case FILEIO_EROFS:
9976 return EROFS;
9977 case FILEIO_ENOSYS:
9978 return ENOSYS;
9979 case FILEIO_ENAMETOOLONG:
9980 return ENAMETOOLONG;
9981 }
9982 return -1;
9983 }
9984
9985 static char *
9986 remote_hostio_error (int errnum)
9987 {
9988 int host_error = remote_fileio_errno_to_host (errnum);
9989
9990 if (host_error == -1)
9991 error (_("Unknown remote I/O error %d"), errnum);
9992 else
9993 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9994 }
9995
9996 static void
9997 remote_hostio_close_cleanup (void *opaque)
9998 {
9999 int fd = *(int *) opaque;
10000 int remote_errno;
10001
10002 remote_hostio_close (fd, &remote_errno);
10003 }
10004
10005
10006 static void *
10007 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10008 {
10009 const char *filename = bfd_get_filename (abfd);
10010 int fd, remote_errno;
10011 int *stream;
10012
10013 gdb_assert (remote_filename_p (filename));
10014
10015 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10016 if (fd == -1)
10017 {
10018 errno = remote_fileio_errno_to_host (remote_errno);
10019 bfd_set_error (bfd_error_system_call);
10020 return NULL;
10021 }
10022
10023 stream = xmalloc (sizeof (int));
10024 *stream = fd;
10025 return stream;
10026 }
10027
10028 static int
10029 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10030 {
10031 int fd = *(int *)stream;
10032 int remote_errno;
10033
10034 xfree (stream);
10035
10036 /* Ignore errors on close; these may happen if the remote
10037 connection was already torn down. */
10038 remote_hostio_close (fd, &remote_errno);
10039
10040 /* Zero means success. */
10041 return 0;
10042 }
10043
10044 static file_ptr
10045 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10046 file_ptr nbytes, file_ptr offset)
10047 {
10048 int fd = *(int *)stream;
10049 int remote_errno;
10050 file_ptr pos, bytes;
10051
10052 pos = 0;
10053 while (nbytes > pos)
10054 {
10055 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10056 offset + pos, &remote_errno);
10057 if (bytes == 0)
10058 /* Success, but no bytes, means end-of-file. */
10059 break;
10060 if (bytes == -1)
10061 {
10062 errno = remote_fileio_errno_to_host (remote_errno);
10063 bfd_set_error (bfd_error_system_call);
10064 return -1;
10065 }
10066
10067 pos += bytes;
10068 }
10069
10070 return pos;
10071 }
10072
10073 static int
10074 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10075 {
10076 /* FIXME: We should probably implement remote_hostio_stat. */
10077 sb->st_size = INT_MAX;
10078 return 0;
10079 }
10080
10081 int
10082 remote_filename_p (const char *filename)
10083 {
10084 return strncmp (filename,
10085 REMOTE_SYSROOT_PREFIX,
10086 sizeof (REMOTE_SYSROOT_PREFIX) - 1) == 0;
10087 }
10088
10089 bfd *
10090 remote_bfd_open (const char *remote_file, const char *target)
10091 {
10092 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10093 remote_bfd_iovec_open, NULL,
10094 remote_bfd_iovec_pread,
10095 remote_bfd_iovec_close,
10096 remote_bfd_iovec_stat);
10097
10098 return abfd;
10099 }
10100
10101 void
10102 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10103 {
10104 struct cleanup *back_to, *close_cleanup;
10105 int retcode, fd, remote_errno, bytes, io_size;
10106 FILE *file;
10107 gdb_byte *buffer;
10108 int bytes_in_buffer;
10109 int saw_eof;
10110 ULONGEST offset;
10111 struct remote_state *rs = get_remote_state ();
10112
10113 if (!rs->remote_desc)
10114 error (_("command can only be used with remote target"));
10115
10116 file = gdb_fopen_cloexec (local_file, "rb");
10117 if (file == NULL)
10118 perror_with_name (local_file);
10119 back_to = make_cleanup_fclose (file);
10120
10121 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10122 | FILEIO_O_TRUNC),
10123 0700, &remote_errno);
10124 if (fd == -1)
10125 remote_hostio_error (remote_errno);
10126
10127 /* Send up to this many bytes at once. They won't all fit in the
10128 remote packet limit, so we'll transfer slightly fewer. */
10129 io_size = get_remote_packet_size ();
10130 buffer = xmalloc (io_size);
10131 make_cleanup (xfree, buffer);
10132
10133 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10134
10135 bytes_in_buffer = 0;
10136 saw_eof = 0;
10137 offset = 0;
10138 while (bytes_in_buffer || !saw_eof)
10139 {
10140 if (!saw_eof)
10141 {
10142 bytes = fread (buffer + bytes_in_buffer, 1,
10143 io_size - bytes_in_buffer,
10144 file);
10145 if (bytes == 0)
10146 {
10147 if (ferror (file))
10148 error (_("Error reading %s."), local_file);
10149 else
10150 {
10151 /* EOF. Unless there is something still in the
10152 buffer from the last iteration, we are done. */
10153 saw_eof = 1;
10154 if (bytes_in_buffer == 0)
10155 break;
10156 }
10157 }
10158 }
10159 else
10160 bytes = 0;
10161
10162 bytes += bytes_in_buffer;
10163 bytes_in_buffer = 0;
10164
10165 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10166 offset, &remote_errno);
10167
10168 if (retcode < 0)
10169 remote_hostio_error (remote_errno);
10170 else if (retcode == 0)
10171 error (_("Remote write of %d bytes returned 0!"), bytes);
10172 else if (retcode < bytes)
10173 {
10174 /* Short write. Save the rest of the read data for the next
10175 write. */
10176 bytes_in_buffer = bytes - retcode;
10177 memmove (buffer, buffer + retcode, bytes_in_buffer);
10178 }
10179
10180 offset += retcode;
10181 }
10182
10183 discard_cleanups (close_cleanup);
10184 if (remote_hostio_close (fd, &remote_errno))
10185 remote_hostio_error (remote_errno);
10186
10187 if (from_tty)
10188 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10189 do_cleanups (back_to);
10190 }
10191
10192 void
10193 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10194 {
10195 struct cleanup *back_to, *close_cleanup;
10196 int fd, remote_errno, bytes, io_size;
10197 FILE *file;
10198 gdb_byte *buffer;
10199 ULONGEST offset;
10200 struct remote_state *rs = get_remote_state ();
10201
10202 if (!rs->remote_desc)
10203 error (_("command can only be used with remote target"));
10204
10205 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10206 if (fd == -1)
10207 remote_hostio_error (remote_errno);
10208
10209 file = gdb_fopen_cloexec (local_file, "wb");
10210 if (file == NULL)
10211 perror_with_name (local_file);
10212 back_to = make_cleanup_fclose (file);
10213
10214 /* Send up to this many bytes at once. They won't all fit in the
10215 remote packet limit, so we'll transfer slightly fewer. */
10216 io_size = get_remote_packet_size ();
10217 buffer = xmalloc (io_size);
10218 make_cleanup (xfree, buffer);
10219
10220 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10221
10222 offset = 0;
10223 while (1)
10224 {
10225 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10226 if (bytes == 0)
10227 /* Success, but no bytes, means end-of-file. */
10228 break;
10229 if (bytes == -1)
10230 remote_hostio_error (remote_errno);
10231
10232 offset += bytes;
10233
10234 bytes = fwrite (buffer, 1, bytes, file);
10235 if (bytes == 0)
10236 perror_with_name (local_file);
10237 }
10238
10239 discard_cleanups (close_cleanup);
10240 if (remote_hostio_close (fd, &remote_errno))
10241 remote_hostio_error (remote_errno);
10242
10243 if (from_tty)
10244 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10245 do_cleanups (back_to);
10246 }
10247
10248 void
10249 remote_file_delete (const char *remote_file, int from_tty)
10250 {
10251 int retcode, remote_errno;
10252 struct remote_state *rs = get_remote_state ();
10253
10254 if (!rs->remote_desc)
10255 error (_("command can only be used with remote target"));
10256
10257 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10258 if (retcode == -1)
10259 remote_hostio_error (remote_errno);
10260
10261 if (from_tty)
10262 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10263 }
10264
10265 static void
10266 remote_put_command (char *args, int from_tty)
10267 {
10268 struct cleanup *back_to;
10269 char **argv;
10270
10271 if (args == NULL)
10272 error_no_arg (_("file to put"));
10273
10274 argv = gdb_buildargv (args);
10275 back_to = make_cleanup_freeargv (argv);
10276 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10277 error (_("Invalid parameters to remote put"));
10278
10279 remote_file_put (argv[0], argv[1], from_tty);
10280
10281 do_cleanups (back_to);
10282 }
10283
10284 static void
10285 remote_get_command (char *args, int from_tty)
10286 {
10287 struct cleanup *back_to;
10288 char **argv;
10289
10290 if (args == NULL)
10291 error_no_arg (_("file to get"));
10292
10293 argv = gdb_buildargv (args);
10294 back_to = make_cleanup_freeargv (argv);
10295 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10296 error (_("Invalid parameters to remote get"));
10297
10298 remote_file_get (argv[0], argv[1], from_tty);
10299
10300 do_cleanups (back_to);
10301 }
10302
10303 static void
10304 remote_delete_command (char *args, int from_tty)
10305 {
10306 struct cleanup *back_to;
10307 char **argv;
10308
10309 if (args == NULL)
10310 error_no_arg (_("file to delete"));
10311
10312 argv = gdb_buildargv (args);
10313 back_to = make_cleanup_freeargv (argv);
10314 if (argv[0] == NULL || argv[1] != NULL)
10315 error (_("Invalid parameters to remote delete"));
10316
10317 remote_file_delete (argv[0], from_tty);
10318
10319 do_cleanups (back_to);
10320 }
10321
10322 static void
10323 remote_command (char *args, int from_tty)
10324 {
10325 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10326 }
10327
10328 static int
10329 remote_can_execute_reverse (void)
10330 {
10331 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10332 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10333 return 1;
10334 else
10335 return 0;
10336 }
10337
10338 static int
10339 remote_supports_non_stop (void)
10340 {
10341 return 1;
10342 }
10343
10344 static int
10345 remote_supports_disable_randomization (void)
10346 {
10347 /* Only supported in extended mode. */
10348 return 0;
10349 }
10350
10351 static int
10352 remote_supports_multi_process (void)
10353 {
10354 struct remote_state *rs = get_remote_state ();
10355
10356 /* Only extended-remote handles being attached to multiple
10357 processes, even though plain remote can use the multi-process
10358 thread id extensions, so that GDB knows the target process's
10359 PID. */
10360 return rs->extended && remote_multi_process_p (rs);
10361 }
10362
10363 static int
10364 remote_supports_cond_tracepoints (void)
10365 {
10366 struct remote_state *rs = get_remote_state ();
10367
10368 return rs->cond_tracepoints;
10369 }
10370
10371 static int
10372 remote_supports_cond_breakpoints (void)
10373 {
10374 struct remote_state *rs = get_remote_state ();
10375
10376 return rs->cond_breakpoints;
10377 }
10378
10379 static int
10380 remote_supports_fast_tracepoints (void)
10381 {
10382 struct remote_state *rs = get_remote_state ();
10383
10384 return rs->fast_tracepoints;
10385 }
10386
10387 static int
10388 remote_supports_static_tracepoints (void)
10389 {
10390 struct remote_state *rs = get_remote_state ();
10391
10392 return rs->static_tracepoints;
10393 }
10394
10395 static int
10396 remote_supports_install_in_trace (void)
10397 {
10398 struct remote_state *rs = get_remote_state ();
10399
10400 return rs->install_in_trace;
10401 }
10402
10403 static int
10404 remote_supports_enable_disable_tracepoint (void)
10405 {
10406 struct remote_state *rs = get_remote_state ();
10407
10408 return rs->enable_disable_tracepoints;
10409 }
10410
10411 static int
10412 remote_supports_string_tracing (void)
10413 {
10414 struct remote_state *rs = get_remote_state ();
10415
10416 return rs->string_tracing;
10417 }
10418
10419 static int
10420 remote_can_run_breakpoint_commands (void)
10421 {
10422 struct remote_state *rs = get_remote_state ();
10423
10424 return rs->breakpoint_commands;
10425 }
10426
10427 static void
10428 remote_trace_init (void)
10429 {
10430 putpkt ("QTinit");
10431 remote_get_noisy_reply (&target_buf, &target_buf_size);
10432 if (strcmp (target_buf, "OK") != 0)
10433 error (_("Target does not support this command."));
10434 }
10435
10436 static void free_actions_list (char **actions_list);
10437 static void free_actions_list_cleanup_wrapper (void *);
10438 static void
10439 free_actions_list_cleanup_wrapper (void *al)
10440 {
10441 free_actions_list (al);
10442 }
10443
10444 static void
10445 free_actions_list (char **actions_list)
10446 {
10447 int ndx;
10448
10449 if (actions_list == 0)
10450 return;
10451
10452 for (ndx = 0; actions_list[ndx]; ndx++)
10453 xfree (actions_list[ndx]);
10454
10455 xfree (actions_list);
10456 }
10457
10458 /* Recursive routine to walk through command list including loops, and
10459 download packets for each command. */
10460
10461 static void
10462 remote_download_command_source (int num, ULONGEST addr,
10463 struct command_line *cmds)
10464 {
10465 struct remote_state *rs = get_remote_state ();
10466 struct command_line *cmd;
10467
10468 for (cmd = cmds; cmd; cmd = cmd->next)
10469 {
10470 QUIT; /* Allow user to bail out with ^C. */
10471 strcpy (rs->buf, "QTDPsrc:");
10472 encode_source_string (num, addr, "cmd", cmd->line,
10473 rs->buf + strlen (rs->buf),
10474 rs->buf_size - strlen (rs->buf));
10475 putpkt (rs->buf);
10476 remote_get_noisy_reply (&target_buf, &target_buf_size);
10477 if (strcmp (target_buf, "OK"))
10478 warning (_("Target does not support source download."));
10479
10480 if (cmd->control_type == while_control
10481 || cmd->control_type == while_stepping_control)
10482 {
10483 remote_download_command_source (num, addr, *cmd->body_list);
10484
10485 QUIT; /* Allow user to bail out with ^C. */
10486 strcpy (rs->buf, "QTDPsrc:");
10487 encode_source_string (num, addr, "cmd", "end",
10488 rs->buf + strlen (rs->buf),
10489 rs->buf_size - strlen (rs->buf));
10490 putpkt (rs->buf);
10491 remote_get_noisy_reply (&target_buf, &target_buf_size);
10492 if (strcmp (target_buf, "OK"))
10493 warning (_("Target does not support source download."));
10494 }
10495 }
10496 }
10497
10498 static void
10499 remote_download_tracepoint (struct bp_location *loc)
10500 {
10501 #define BUF_SIZE 2048
10502
10503 CORE_ADDR tpaddr;
10504 char addrbuf[40];
10505 char buf[BUF_SIZE];
10506 char **tdp_actions;
10507 char **stepping_actions;
10508 int ndx;
10509 struct cleanup *old_chain = NULL;
10510 struct agent_expr *aexpr;
10511 struct cleanup *aexpr_chain = NULL;
10512 char *pkt;
10513 struct breakpoint *b = loc->owner;
10514 struct tracepoint *t = (struct tracepoint *) b;
10515
10516 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10517 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10518 tdp_actions);
10519 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10520 stepping_actions);
10521
10522 tpaddr = loc->address;
10523 sprintf_vma (addrbuf, tpaddr);
10524 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10525 addrbuf, /* address */
10526 (b->enable_state == bp_enabled ? 'E' : 'D'),
10527 t->step_count, t->pass_count);
10528 /* Fast tracepoints are mostly handled by the target, but we can
10529 tell the target how big of an instruction block should be moved
10530 around. */
10531 if (b->type == bp_fast_tracepoint)
10532 {
10533 /* Only test for support at download time; we may not know
10534 target capabilities at definition time. */
10535 if (remote_supports_fast_tracepoints ())
10536 {
10537 int isize;
10538
10539 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10540 tpaddr, &isize, NULL))
10541 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10542 isize);
10543 else
10544 /* If it passed validation at definition but fails now,
10545 something is very wrong. */
10546 internal_error (__FILE__, __LINE__,
10547 _("Fast tracepoint not "
10548 "valid during download"));
10549 }
10550 else
10551 /* Fast tracepoints are functionally identical to regular
10552 tracepoints, so don't take lack of support as a reason to
10553 give up on the trace run. */
10554 warning (_("Target does not support fast tracepoints, "
10555 "downloading %d as regular tracepoint"), b->number);
10556 }
10557 else if (b->type == bp_static_tracepoint)
10558 {
10559 /* Only test for support at download time; we may not know
10560 target capabilities at definition time. */
10561 if (remote_supports_static_tracepoints ())
10562 {
10563 struct static_tracepoint_marker marker;
10564
10565 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10566 strcat (buf, ":S");
10567 else
10568 error (_("Static tracepoint not valid during download"));
10569 }
10570 else
10571 /* Fast tracepoints are functionally identical to regular
10572 tracepoints, so don't take lack of support as a reason
10573 to give up on the trace run. */
10574 error (_("Target does not support static tracepoints"));
10575 }
10576 /* If the tracepoint has a conditional, make it into an agent
10577 expression and append to the definition. */
10578 if (loc->cond)
10579 {
10580 /* Only test support at download time, we may not know target
10581 capabilities at definition time. */
10582 if (remote_supports_cond_tracepoints ())
10583 {
10584 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10585 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10586 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10587 aexpr->len);
10588 pkt = buf + strlen (buf);
10589 for (ndx = 0; ndx < aexpr->len; ++ndx)
10590 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10591 *pkt = '\0';
10592 do_cleanups (aexpr_chain);
10593 }
10594 else
10595 warning (_("Target does not support conditional tracepoints, "
10596 "ignoring tp %d cond"), b->number);
10597 }
10598
10599 if (b->commands || *default_collect)
10600 strcat (buf, "-");
10601 putpkt (buf);
10602 remote_get_noisy_reply (&target_buf, &target_buf_size);
10603 if (strcmp (target_buf, "OK"))
10604 error (_("Target does not support tracepoints."));
10605
10606 /* do_single_steps (t); */
10607 if (tdp_actions)
10608 {
10609 for (ndx = 0; tdp_actions[ndx]; ndx++)
10610 {
10611 QUIT; /* Allow user to bail out with ^C. */
10612 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10613 b->number, addrbuf, /* address */
10614 tdp_actions[ndx],
10615 ((tdp_actions[ndx + 1] || stepping_actions)
10616 ? '-' : 0));
10617 putpkt (buf);
10618 remote_get_noisy_reply (&target_buf,
10619 &target_buf_size);
10620 if (strcmp (target_buf, "OK"))
10621 error (_("Error on target while setting tracepoints."));
10622 }
10623 }
10624 if (stepping_actions)
10625 {
10626 for (ndx = 0; stepping_actions[ndx]; ndx++)
10627 {
10628 QUIT; /* Allow user to bail out with ^C. */
10629 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10630 b->number, addrbuf, /* address */
10631 ((ndx == 0) ? "S" : ""),
10632 stepping_actions[ndx],
10633 (stepping_actions[ndx + 1] ? "-" : ""));
10634 putpkt (buf);
10635 remote_get_noisy_reply (&target_buf,
10636 &target_buf_size);
10637 if (strcmp (target_buf, "OK"))
10638 error (_("Error on target while setting tracepoints."));
10639 }
10640 }
10641
10642 if (remote_protocol_packets[PACKET_TracepointSource].support
10643 == PACKET_ENABLE)
10644 {
10645 if (b->addr_string)
10646 {
10647 strcpy (buf, "QTDPsrc:");
10648 encode_source_string (b->number, loc->address,
10649 "at", b->addr_string, buf + strlen (buf),
10650 2048 - strlen (buf));
10651
10652 putpkt (buf);
10653 remote_get_noisy_reply (&target_buf, &target_buf_size);
10654 if (strcmp (target_buf, "OK"))
10655 warning (_("Target does not support source download."));
10656 }
10657 if (b->cond_string)
10658 {
10659 strcpy (buf, "QTDPsrc:");
10660 encode_source_string (b->number, loc->address,
10661 "cond", b->cond_string, buf + strlen (buf),
10662 2048 - strlen (buf));
10663 putpkt (buf);
10664 remote_get_noisy_reply (&target_buf, &target_buf_size);
10665 if (strcmp (target_buf, "OK"))
10666 warning (_("Target does not support source download."));
10667 }
10668 remote_download_command_source (b->number, loc->address,
10669 breakpoint_commands (b));
10670 }
10671
10672 do_cleanups (old_chain);
10673 }
10674
10675 static int
10676 remote_can_download_tracepoint (void)
10677 {
10678 struct remote_state *rs = get_remote_state ();
10679 struct trace_status *ts;
10680 int status;
10681
10682 /* Don't try to install tracepoints until we've relocated our
10683 symbols, and fetched and merged the target's tracepoint list with
10684 ours. */
10685 if (rs->starting_up)
10686 return 0;
10687
10688 ts = current_trace_status ();
10689 status = remote_get_trace_status (ts);
10690
10691 if (status == -1 || !ts->running_known || !ts->running)
10692 return 0;
10693
10694 /* If we are in a tracing experiment, but remote stub doesn't support
10695 installing tracepoint in trace, we have to return. */
10696 if (!remote_supports_install_in_trace ())
10697 return 0;
10698
10699 return 1;
10700 }
10701
10702
10703 static void
10704 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10705 {
10706 struct remote_state *rs = get_remote_state ();
10707 char *p;
10708
10709 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10710 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10711 tsv->builtin);
10712 p = rs->buf + strlen (rs->buf);
10713 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10714 error (_("Trace state variable name too long for tsv definition packet"));
10715 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10716 *p++ = '\0';
10717 putpkt (rs->buf);
10718 remote_get_noisy_reply (&target_buf, &target_buf_size);
10719 if (*target_buf == '\0')
10720 error (_("Target does not support this command."));
10721 if (strcmp (target_buf, "OK") != 0)
10722 error (_("Error on target while downloading trace state variable."));
10723 }
10724
10725 static void
10726 remote_enable_tracepoint (struct bp_location *location)
10727 {
10728 struct remote_state *rs = get_remote_state ();
10729 char addr_buf[40];
10730
10731 sprintf_vma (addr_buf, location->address);
10732 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10733 location->owner->number, addr_buf);
10734 putpkt (rs->buf);
10735 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10736 if (*rs->buf == '\0')
10737 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10738 if (strcmp (rs->buf, "OK") != 0)
10739 error (_("Error on target while enabling tracepoint."));
10740 }
10741
10742 static void
10743 remote_disable_tracepoint (struct bp_location *location)
10744 {
10745 struct remote_state *rs = get_remote_state ();
10746 char addr_buf[40];
10747
10748 sprintf_vma (addr_buf, location->address);
10749 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10750 location->owner->number, addr_buf);
10751 putpkt (rs->buf);
10752 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10753 if (*rs->buf == '\0')
10754 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10755 if (strcmp (rs->buf, "OK") != 0)
10756 error (_("Error on target while disabling tracepoint."));
10757 }
10758
10759 static void
10760 remote_trace_set_readonly_regions (void)
10761 {
10762 asection *s;
10763 bfd *abfd = NULL;
10764 bfd_size_type size;
10765 bfd_vma vma;
10766 int anysecs = 0;
10767 int offset = 0;
10768
10769 if (!exec_bfd)
10770 return; /* No information to give. */
10771
10772 strcpy (target_buf, "QTro");
10773 offset = strlen (target_buf);
10774 for (s = exec_bfd->sections; s; s = s->next)
10775 {
10776 char tmp1[40], tmp2[40];
10777 int sec_length;
10778
10779 if ((s->flags & SEC_LOAD) == 0 ||
10780 /* (s->flags & SEC_CODE) == 0 || */
10781 (s->flags & SEC_READONLY) == 0)
10782 continue;
10783
10784 anysecs = 1;
10785 vma = bfd_get_section_vma (abfd, s);
10786 size = bfd_get_section_size (s);
10787 sprintf_vma (tmp1, vma);
10788 sprintf_vma (tmp2, vma + size);
10789 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10790 if (offset + sec_length + 1 > target_buf_size)
10791 {
10792 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10793 != PACKET_ENABLE)
10794 warning (_("\
10795 Too many sections for read-only sections definition packet."));
10796 break;
10797 }
10798 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10799 tmp1, tmp2);
10800 offset += sec_length;
10801 }
10802 if (anysecs)
10803 {
10804 putpkt (target_buf);
10805 getpkt (&target_buf, &target_buf_size, 0);
10806 }
10807 }
10808
10809 static void
10810 remote_trace_start (void)
10811 {
10812 putpkt ("QTStart");
10813 remote_get_noisy_reply (&target_buf, &target_buf_size);
10814 if (*target_buf == '\0')
10815 error (_("Target does not support this command."));
10816 if (strcmp (target_buf, "OK") != 0)
10817 error (_("Bogus reply from target: %s"), target_buf);
10818 }
10819
10820 static int
10821 remote_get_trace_status (struct trace_status *ts)
10822 {
10823 /* Initialize it just to avoid a GCC false warning. */
10824 char *p = NULL;
10825 /* FIXME we need to get register block size some other way. */
10826 extern int trace_regblock_size;
10827 volatile struct gdb_exception ex;
10828 enum packet_result result;
10829
10830 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10831 return -1;
10832
10833 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10834
10835 putpkt ("qTStatus");
10836
10837 TRY_CATCH (ex, RETURN_MASK_ERROR)
10838 {
10839 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10840 }
10841 if (ex.reason < 0)
10842 {
10843 if (ex.error != TARGET_CLOSE_ERROR)
10844 {
10845 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10846 return -1;
10847 }
10848 throw_exception (ex);
10849 }
10850
10851 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10852
10853 /* If the remote target doesn't do tracing, flag it. */
10854 if (result == PACKET_UNKNOWN)
10855 return -1;
10856
10857 /* We're working with a live target. */
10858 ts->filename = NULL;
10859
10860 if (*p++ != 'T')
10861 error (_("Bogus trace status reply from target: %s"), target_buf);
10862
10863 /* Function 'parse_trace_status' sets default value of each field of
10864 'ts' at first, so we don't have to do it here. */
10865 parse_trace_status (p, ts);
10866
10867 return ts->running;
10868 }
10869
10870 static void
10871 remote_get_tracepoint_status (struct breakpoint *bp,
10872 struct uploaded_tp *utp)
10873 {
10874 struct remote_state *rs = get_remote_state ();
10875 char *reply;
10876 struct bp_location *loc;
10877 struct tracepoint *tp = (struct tracepoint *) bp;
10878 size_t size = get_remote_packet_size ();
10879
10880 if (tp)
10881 {
10882 tp->base.hit_count = 0;
10883 tp->traceframe_usage = 0;
10884 for (loc = tp->base.loc; loc; loc = loc->next)
10885 {
10886 /* If the tracepoint was never downloaded, don't go asking for
10887 any status. */
10888 if (tp->number_on_target == 0)
10889 continue;
10890 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10891 phex_nz (loc->address, 0));
10892 putpkt (rs->buf);
10893 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10894 if (reply && *reply)
10895 {
10896 if (*reply == 'V')
10897 parse_tracepoint_status (reply + 1, bp, utp);
10898 }
10899 }
10900 }
10901 else if (utp)
10902 {
10903 utp->hit_count = 0;
10904 utp->traceframe_usage = 0;
10905 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10906 phex_nz (utp->addr, 0));
10907 putpkt (rs->buf);
10908 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10909 if (reply && *reply)
10910 {
10911 if (*reply == 'V')
10912 parse_tracepoint_status (reply + 1, bp, utp);
10913 }
10914 }
10915 }
10916
10917 static void
10918 remote_trace_stop (void)
10919 {
10920 putpkt ("QTStop");
10921 remote_get_noisy_reply (&target_buf, &target_buf_size);
10922 if (*target_buf == '\0')
10923 error (_("Target does not support this command."));
10924 if (strcmp (target_buf, "OK") != 0)
10925 error (_("Bogus reply from target: %s"), target_buf);
10926 }
10927
10928 static int
10929 remote_trace_find (enum trace_find_type type, int num,
10930 CORE_ADDR addr1, CORE_ADDR addr2,
10931 int *tpp)
10932 {
10933 struct remote_state *rs = get_remote_state ();
10934 char *endbuf = rs->buf + get_remote_packet_size ();
10935 char *p, *reply;
10936 int target_frameno = -1, target_tracept = -1;
10937
10938 /* Lookups other than by absolute frame number depend on the current
10939 trace selected, so make sure it is correct on the remote end
10940 first. */
10941 if (type != tfind_number)
10942 set_remote_traceframe ();
10943
10944 p = rs->buf;
10945 strcpy (p, "QTFrame:");
10946 p = strchr (p, '\0');
10947 switch (type)
10948 {
10949 case tfind_number:
10950 xsnprintf (p, endbuf - p, "%x", num);
10951 break;
10952 case tfind_pc:
10953 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10954 break;
10955 case tfind_tp:
10956 xsnprintf (p, endbuf - p, "tdp:%x", num);
10957 break;
10958 case tfind_range:
10959 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10960 phex_nz (addr2, 0));
10961 break;
10962 case tfind_outside:
10963 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10964 phex_nz (addr2, 0));
10965 break;
10966 default:
10967 error (_("Unknown trace find type %d"), type);
10968 }
10969
10970 putpkt (rs->buf);
10971 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
10972 if (*reply == '\0')
10973 error (_("Target does not support this command."));
10974
10975 while (reply && *reply)
10976 switch (*reply)
10977 {
10978 case 'F':
10979 p = ++reply;
10980 target_frameno = (int) strtol (p, &reply, 16);
10981 if (reply == p)
10982 error (_("Unable to parse trace frame number"));
10983 /* Don't update our remote traceframe number cache on failure
10984 to select a remote traceframe. */
10985 if (target_frameno == -1)
10986 return -1;
10987 break;
10988 case 'T':
10989 p = ++reply;
10990 target_tracept = (int) strtol (p, &reply, 16);
10991 if (reply == p)
10992 error (_("Unable to parse tracepoint number"));
10993 break;
10994 case 'O': /* "OK"? */
10995 if (reply[1] == 'K' && reply[2] == '\0')
10996 reply += 2;
10997 else
10998 error (_("Bogus reply from target: %s"), reply);
10999 break;
11000 default:
11001 error (_("Bogus reply from target: %s"), reply);
11002 }
11003 if (tpp)
11004 *tpp = target_tracept;
11005
11006 rs->remote_traceframe_number = target_frameno;
11007 return target_frameno;
11008 }
11009
11010 static int
11011 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11012 {
11013 struct remote_state *rs = get_remote_state ();
11014 char *reply;
11015 ULONGEST uval;
11016
11017 set_remote_traceframe ();
11018
11019 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11020 putpkt (rs->buf);
11021 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11022 if (reply && *reply)
11023 {
11024 if (*reply == 'V')
11025 {
11026 unpack_varlen_hex (reply + 1, &uval);
11027 *val = (LONGEST) uval;
11028 return 1;
11029 }
11030 }
11031 return 0;
11032 }
11033
11034 static int
11035 remote_save_trace_data (const char *filename)
11036 {
11037 struct remote_state *rs = get_remote_state ();
11038 char *p, *reply;
11039
11040 p = rs->buf;
11041 strcpy (p, "QTSave:");
11042 p += strlen (p);
11043 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11044 error (_("Remote file name too long for trace save packet"));
11045 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11046 *p++ = '\0';
11047 putpkt (rs->buf);
11048 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11049 if (*reply == '\0')
11050 error (_("Target does not support this command."));
11051 if (strcmp (reply, "OK") != 0)
11052 error (_("Bogus reply from target: %s"), reply);
11053 return 0;
11054 }
11055
11056 /* This is basically a memory transfer, but needs to be its own packet
11057 because we don't know how the target actually organizes its trace
11058 memory, plus we want to be able to ask for as much as possible, but
11059 not be unhappy if we don't get as much as we ask for. */
11060
11061 static LONGEST
11062 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11063 {
11064 struct remote_state *rs = get_remote_state ();
11065 char *reply;
11066 char *p;
11067 int rslt;
11068
11069 p = rs->buf;
11070 strcpy (p, "qTBuffer:");
11071 p += strlen (p);
11072 p += hexnumstr (p, offset);
11073 *p++ = ',';
11074 p += hexnumstr (p, len);
11075 *p++ = '\0';
11076
11077 putpkt (rs->buf);
11078 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11079 if (reply && *reply)
11080 {
11081 /* 'l' by itself means we're at the end of the buffer and
11082 there is nothing more to get. */
11083 if (*reply == 'l')
11084 return 0;
11085
11086 /* Convert the reply into binary. Limit the number of bytes to
11087 convert according to our passed-in buffer size, rather than
11088 what was returned in the packet; if the target is
11089 unexpectedly generous and gives us a bigger reply than we
11090 asked for, we don't want to crash. */
11091 rslt = hex2bin (target_buf, buf, len);
11092 return rslt;
11093 }
11094
11095 /* Something went wrong, flag as an error. */
11096 return -1;
11097 }
11098
11099 static void
11100 remote_set_disconnected_tracing (int val)
11101 {
11102 struct remote_state *rs = get_remote_state ();
11103
11104 if (rs->disconnected_tracing)
11105 {
11106 char *reply;
11107
11108 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11109 putpkt (rs->buf);
11110 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11111 if (*reply == '\0')
11112 error (_("Target does not support this command."));
11113 if (strcmp (reply, "OK") != 0)
11114 error (_("Bogus reply from target: %s"), reply);
11115 }
11116 else if (val)
11117 warning (_("Target does not support disconnected tracing."));
11118 }
11119
11120 static int
11121 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11122 {
11123 struct thread_info *info = find_thread_ptid (ptid);
11124
11125 if (info && info->private)
11126 return info->private->core;
11127 return -1;
11128 }
11129
11130 static void
11131 remote_set_circular_trace_buffer (int val)
11132 {
11133 struct remote_state *rs = get_remote_state ();
11134 char *reply;
11135
11136 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11137 putpkt (rs->buf);
11138 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11139 if (*reply == '\0')
11140 error (_("Target does not support this command."));
11141 if (strcmp (reply, "OK") != 0)
11142 error (_("Bogus reply from target: %s"), reply);
11143 }
11144
11145 static struct traceframe_info *
11146 remote_traceframe_info (void)
11147 {
11148 char *text;
11149
11150 text = target_read_stralloc (&current_target,
11151 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11152 if (text != NULL)
11153 {
11154 struct traceframe_info *info;
11155 struct cleanup *back_to = make_cleanup (xfree, text);
11156
11157 info = parse_traceframe_info (text);
11158 do_cleanups (back_to);
11159 return info;
11160 }
11161
11162 return NULL;
11163 }
11164
11165 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11166 instruction on which a fast tracepoint may be placed. Returns -1
11167 if the packet is not supported, and 0 if the minimum instruction
11168 length is unknown. */
11169
11170 static int
11171 remote_get_min_fast_tracepoint_insn_len (void)
11172 {
11173 struct remote_state *rs = get_remote_state ();
11174 char *reply;
11175
11176 /* If we're not debugging a process yet, the IPA can't be
11177 loaded. */
11178 if (!target_has_execution)
11179 return 0;
11180
11181 /* Make sure the remote is pointing at the right process. */
11182 set_general_process ();
11183
11184 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11185 putpkt (rs->buf);
11186 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11187 if (*reply == '\0')
11188 return -1;
11189 else
11190 {
11191 ULONGEST min_insn_len;
11192
11193 unpack_varlen_hex (reply, &min_insn_len);
11194
11195 return (int) min_insn_len;
11196 }
11197 }
11198
11199 static void
11200 remote_set_trace_buffer_size (LONGEST val)
11201 {
11202 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11203 != PACKET_DISABLE)
11204 {
11205 struct remote_state *rs = get_remote_state ();
11206 char *buf = rs->buf;
11207 char *endbuf = rs->buf + get_remote_packet_size ();
11208 enum packet_result result;
11209
11210 gdb_assert (val >= 0 || val == -1);
11211 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11212 /* Send -1 as literal "-1" to avoid host size dependency. */
11213 if (val < 0)
11214 {
11215 *buf++ = '-';
11216 buf += hexnumstr (buf, (ULONGEST) -val);
11217 }
11218 else
11219 buf += hexnumstr (buf, (ULONGEST) val);
11220
11221 putpkt (rs->buf);
11222 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11223 result = packet_ok (rs->buf,
11224 &remote_protocol_packets[PACKET_QTBuffer_size]);
11225
11226 if (result != PACKET_OK)
11227 warning (_("Bogus reply from target: %s"), rs->buf);
11228 }
11229 }
11230
11231 static int
11232 remote_set_trace_notes (const char *user, const char *notes,
11233 const char *stop_notes)
11234 {
11235 struct remote_state *rs = get_remote_state ();
11236 char *reply;
11237 char *buf = rs->buf;
11238 char *endbuf = rs->buf + get_remote_packet_size ();
11239 int nbytes;
11240
11241 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11242 if (user)
11243 {
11244 buf += xsnprintf (buf, endbuf - buf, "user:");
11245 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11246 buf += 2 * nbytes;
11247 *buf++ = ';';
11248 }
11249 if (notes)
11250 {
11251 buf += xsnprintf (buf, endbuf - buf, "notes:");
11252 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11253 buf += 2 * nbytes;
11254 *buf++ = ';';
11255 }
11256 if (stop_notes)
11257 {
11258 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11259 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11260 buf += 2 * nbytes;
11261 *buf++ = ';';
11262 }
11263 /* Ensure the buffer is terminated. */
11264 *buf = '\0';
11265
11266 putpkt (rs->buf);
11267 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11268 if (*reply == '\0')
11269 return 0;
11270
11271 if (strcmp (reply, "OK") != 0)
11272 error (_("Bogus reply from target: %s"), reply);
11273
11274 return 1;
11275 }
11276
11277 static int
11278 remote_use_agent (int use)
11279 {
11280 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11281 {
11282 struct remote_state *rs = get_remote_state ();
11283
11284 /* If the stub supports QAgent. */
11285 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11286 putpkt (rs->buf);
11287 getpkt (&rs->buf, &rs->buf_size, 0);
11288
11289 if (strcmp (rs->buf, "OK") == 0)
11290 {
11291 use_agent = use;
11292 return 1;
11293 }
11294 }
11295
11296 return 0;
11297 }
11298
11299 static int
11300 remote_can_use_agent (void)
11301 {
11302 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11303 }
11304
11305 struct btrace_target_info
11306 {
11307 /* The ptid of the traced thread. */
11308 ptid_t ptid;
11309 };
11310
11311 /* Check whether the target supports branch tracing. */
11312
11313 static int
11314 remote_supports_btrace (void)
11315 {
11316 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11317 return 0;
11318 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11319 return 0;
11320 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11321 return 0;
11322
11323 return 1;
11324 }
11325
11326 /* Enable branch tracing. */
11327
11328 static struct btrace_target_info *
11329 remote_enable_btrace (ptid_t ptid)
11330 {
11331 struct btrace_target_info *tinfo = NULL;
11332 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11333 struct remote_state *rs = get_remote_state ();
11334 char *buf = rs->buf;
11335 char *endbuf = rs->buf + get_remote_packet_size ();
11336
11337 if (packet->support != PACKET_ENABLE)
11338 error (_("Target does not support branch tracing."));
11339
11340 set_general_thread (ptid);
11341
11342 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11343 putpkt (rs->buf);
11344 getpkt (&rs->buf, &rs->buf_size, 0);
11345
11346 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11347 {
11348 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11349 error (_("Could not enable branch tracing for %s: %s"),
11350 target_pid_to_str (ptid), rs->buf + 2);
11351 else
11352 error (_("Could not enable branch tracing for %s."),
11353 target_pid_to_str (ptid));
11354 }
11355
11356 tinfo = xzalloc (sizeof (*tinfo));
11357 tinfo->ptid = ptid;
11358
11359 return tinfo;
11360 }
11361
11362 /* Disable branch tracing. */
11363
11364 static void
11365 remote_disable_btrace (struct btrace_target_info *tinfo)
11366 {
11367 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11368 struct remote_state *rs = get_remote_state ();
11369 char *buf = rs->buf;
11370 char *endbuf = rs->buf + get_remote_packet_size ();
11371
11372 if (packet->support != PACKET_ENABLE)
11373 error (_("Target does not support branch tracing."));
11374
11375 set_general_thread (tinfo->ptid);
11376
11377 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11378 putpkt (rs->buf);
11379 getpkt (&rs->buf, &rs->buf_size, 0);
11380
11381 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11382 {
11383 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11384 error (_("Could not disable branch tracing for %s: %s"),
11385 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11386 else
11387 error (_("Could not disable branch tracing for %s."),
11388 target_pid_to_str (tinfo->ptid));
11389 }
11390
11391 xfree (tinfo);
11392 }
11393
11394 /* Teardown branch tracing. */
11395
11396 static void
11397 remote_teardown_btrace (struct btrace_target_info *tinfo)
11398 {
11399 /* We must not talk to the target during teardown. */
11400 xfree (tinfo);
11401 }
11402
11403 /* Read the branch trace. */
11404
11405 static VEC (btrace_block_s) *
11406 remote_read_btrace (struct btrace_target_info *tinfo,
11407 enum btrace_read_type type)
11408 {
11409 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11410 struct remote_state *rs = get_remote_state ();
11411 VEC (btrace_block_s) *btrace = NULL;
11412 const char *annex;
11413 char *xml;
11414
11415 if (packet->support != PACKET_ENABLE)
11416 error (_("Target does not support branch tracing."));
11417
11418 #if !defined(HAVE_LIBEXPAT)
11419 error (_("Cannot process branch tracing result. XML parsing not supported."));
11420 #endif
11421
11422 switch (type)
11423 {
11424 case btrace_read_all:
11425 annex = "all";
11426 break;
11427 case btrace_read_new:
11428 annex = "new";
11429 break;
11430 default:
11431 internal_error (__FILE__, __LINE__,
11432 _("Bad branch tracing read type: %u."),
11433 (unsigned int) type);
11434 }
11435
11436 xml = target_read_stralloc (&current_target,
11437 TARGET_OBJECT_BTRACE, annex);
11438 if (xml != NULL)
11439 {
11440 struct cleanup *cleanup = make_cleanup (xfree, xml);
11441
11442 btrace = parse_xml_btrace (xml);
11443 do_cleanups (cleanup);
11444 }
11445
11446 return btrace;
11447 }
11448
11449 static int
11450 remote_augmented_libraries_svr4_read (void)
11451 {
11452 struct remote_state *rs = get_remote_state ();
11453
11454 return rs->augmented_libraries_svr4_read;
11455 }
11456
11457 static void
11458 init_remote_ops (void)
11459 {
11460 remote_ops.to_shortname = "remote";
11461 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11462 remote_ops.to_doc =
11463 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11464 Specify the serial device it is connected to\n\
11465 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11466 remote_ops.to_open = remote_open;
11467 remote_ops.to_close = remote_close;
11468 remote_ops.to_detach = remote_detach;
11469 remote_ops.to_disconnect = remote_disconnect;
11470 remote_ops.to_resume = remote_resume;
11471 remote_ops.to_wait = remote_wait;
11472 remote_ops.to_fetch_registers = remote_fetch_registers;
11473 remote_ops.to_store_registers = remote_store_registers;
11474 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11475 remote_ops.to_files_info = remote_files_info;
11476 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11477 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11478 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11479 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11480 remote_ops.to_watchpoint_addr_within_range =
11481 remote_watchpoint_addr_within_range;
11482 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11483 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11484 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11485 remote_ops.to_region_ok_for_hw_watchpoint
11486 = remote_region_ok_for_hw_watchpoint;
11487 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11488 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11489 remote_ops.to_kill = remote_kill;
11490 remote_ops.to_load = generic_load;
11491 remote_ops.to_mourn_inferior = remote_mourn;
11492 remote_ops.to_pass_signals = remote_pass_signals;
11493 remote_ops.to_program_signals = remote_program_signals;
11494 remote_ops.to_thread_alive = remote_thread_alive;
11495 remote_ops.to_find_new_threads = remote_threads_info;
11496 remote_ops.to_pid_to_str = remote_pid_to_str;
11497 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11498 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11499 remote_ops.to_stop = remote_stop;
11500 remote_ops.to_xfer_partial = remote_xfer_partial;
11501 remote_ops.to_rcmd = remote_rcmd;
11502 remote_ops.to_log_command = serial_log_command;
11503 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11504 remote_ops.to_stratum = process_stratum;
11505 remote_ops.to_has_all_memory = default_child_has_all_memory;
11506 remote_ops.to_has_memory = default_child_has_memory;
11507 remote_ops.to_has_stack = default_child_has_stack;
11508 remote_ops.to_has_registers = default_child_has_registers;
11509 remote_ops.to_has_execution = default_child_has_execution;
11510 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11511 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11512 remote_ops.to_magic = OPS_MAGIC;
11513 remote_ops.to_memory_map = remote_memory_map;
11514 remote_ops.to_flash_erase = remote_flash_erase;
11515 remote_ops.to_flash_done = remote_flash_done;
11516 remote_ops.to_read_description = remote_read_description;
11517 remote_ops.to_search_memory = remote_search_memory;
11518 remote_ops.to_can_async_p = remote_can_async_p;
11519 remote_ops.to_is_async_p = remote_is_async_p;
11520 remote_ops.to_async = remote_async;
11521 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11522 remote_ops.to_terminal_ours = remote_terminal_ours;
11523 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11524 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11525 remote_ops.to_supports_disable_randomization
11526 = remote_supports_disable_randomization;
11527 remote_ops.to_fileio_open = remote_hostio_open;
11528 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11529 remote_ops.to_fileio_pread = remote_hostio_pread;
11530 remote_ops.to_fileio_close = remote_hostio_close;
11531 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11532 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11533 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11534 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11535 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11536 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11537 remote_ops.to_trace_init = remote_trace_init;
11538 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11539 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11540 remote_ops.to_download_trace_state_variable
11541 = remote_download_trace_state_variable;
11542 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11543 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11544 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11545 remote_ops.to_trace_start = remote_trace_start;
11546 remote_ops.to_get_trace_status = remote_get_trace_status;
11547 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11548 remote_ops.to_trace_stop = remote_trace_stop;
11549 remote_ops.to_trace_find = remote_trace_find;
11550 remote_ops.to_get_trace_state_variable_value
11551 = remote_get_trace_state_variable_value;
11552 remote_ops.to_save_trace_data = remote_save_trace_data;
11553 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11554 remote_ops.to_upload_trace_state_variables
11555 = remote_upload_trace_state_variables;
11556 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11557 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11558 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11559 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11560 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11561 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11562 remote_ops.to_core_of_thread = remote_core_of_thread;
11563 remote_ops.to_verify_memory = remote_verify_memory;
11564 remote_ops.to_get_tib_address = remote_get_tib_address;
11565 remote_ops.to_set_permissions = remote_set_permissions;
11566 remote_ops.to_static_tracepoint_marker_at
11567 = remote_static_tracepoint_marker_at;
11568 remote_ops.to_static_tracepoint_markers_by_strid
11569 = remote_static_tracepoint_markers_by_strid;
11570 remote_ops.to_traceframe_info = remote_traceframe_info;
11571 remote_ops.to_use_agent = remote_use_agent;
11572 remote_ops.to_can_use_agent = remote_can_use_agent;
11573 remote_ops.to_supports_btrace = remote_supports_btrace;
11574 remote_ops.to_enable_btrace = remote_enable_btrace;
11575 remote_ops.to_disable_btrace = remote_disable_btrace;
11576 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11577 remote_ops.to_read_btrace = remote_read_btrace;
11578 remote_ops.to_augmented_libraries_svr4_read =
11579 remote_augmented_libraries_svr4_read;
11580 }
11581
11582 /* Set up the extended remote vector by making a copy of the standard
11583 remote vector and adding to it. */
11584
11585 static void
11586 init_extended_remote_ops (void)
11587 {
11588 extended_remote_ops = remote_ops;
11589
11590 extended_remote_ops.to_shortname = "extended-remote";
11591 extended_remote_ops.to_longname =
11592 "Extended remote serial target in gdb-specific protocol";
11593 extended_remote_ops.to_doc =
11594 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11595 Specify the serial device it is connected to (e.g. /dev/ttya).";
11596 extended_remote_ops.to_open = extended_remote_open;
11597 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11598 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11599 extended_remote_ops.to_detach = extended_remote_detach;
11600 extended_remote_ops.to_attach = extended_remote_attach;
11601 extended_remote_ops.to_kill = extended_remote_kill;
11602 extended_remote_ops.to_supports_disable_randomization
11603 = extended_remote_supports_disable_randomization;
11604 }
11605
11606 static int
11607 remote_can_async_p (void)
11608 {
11609 struct remote_state *rs = get_remote_state ();
11610
11611 if (!target_async_permitted)
11612 /* We only enable async when the user specifically asks for it. */
11613 return 0;
11614
11615 /* We're async whenever the serial device is. */
11616 return serial_can_async_p (rs->remote_desc);
11617 }
11618
11619 static int
11620 remote_is_async_p (void)
11621 {
11622 struct remote_state *rs = get_remote_state ();
11623
11624 if (!target_async_permitted)
11625 /* We only enable async when the user specifically asks for it. */
11626 return 0;
11627
11628 /* We're async whenever the serial device is. */
11629 return serial_is_async_p (rs->remote_desc);
11630 }
11631
11632 /* Pass the SERIAL event on and up to the client. One day this code
11633 will be able to delay notifying the client of an event until the
11634 point where an entire packet has been received. */
11635
11636 static serial_event_ftype remote_async_serial_handler;
11637
11638 static void
11639 remote_async_serial_handler (struct serial *scb, void *context)
11640 {
11641 struct remote_state *rs = context;
11642
11643 /* Don't propogate error information up to the client. Instead let
11644 the client find out about the error by querying the target. */
11645 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11646 }
11647
11648 static void
11649 remote_async_inferior_event_handler (gdb_client_data data)
11650 {
11651 inferior_event_handler (INF_REG_EVENT, NULL);
11652 }
11653
11654 static void
11655 remote_async (void (*callback) (enum inferior_event_type event_type,
11656 void *context), void *context)
11657 {
11658 struct remote_state *rs = get_remote_state ();
11659
11660 if (callback != NULL)
11661 {
11662 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11663 rs->async_client_callback = callback;
11664 rs->async_client_context = context;
11665 }
11666 else
11667 serial_async (rs->remote_desc, NULL, NULL);
11668 }
11669
11670 static void
11671 set_remote_cmd (char *args, int from_tty)
11672 {
11673 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11674 }
11675
11676 static void
11677 show_remote_cmd (char *args, int from_tty)
11678 {
11679 /* We can't just use cmd_show_list here, because we want to skip
11680 the redundant "show remote Z-packet" and the legacy aliases. */
11681 struct cleanup *showlist_chain;
11682 struct cmd_list_element *list = remote_show_cmdlist;
11683 struct ui_out *uiout = current_uiout;
11684
11685 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11686 for (; list != NULL; list = list->next)
11687 if (strcmp (list->name, "Z-packet") == 0)
11688 continue;
11689 else if (list->type == not_set_cmd)
11690 /* Alias commands are exactly like the original, except they
11691 don't have the normal type. */
11692 continue;
11693 else
11694 {
11695 struct cleanup *option_chain
11696 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11697
11698 ui_out_field_string (uiout, "name", list->name);
11699 ui_out_text (uiout, ": ");
11700 if (list->type == show_cmd)
11701 do_show_command ((char *) NULL, from_tty, list);
11702 else
11703 cmd_func (list, NULL, from_tty);
11704 /* Close the tuple. */
11705 do_cleanups (option_chain);
11706 }
11707
11708 /* Close the tuple. */
11709 do_cleanups (showlist_chain);
11710 }
11711
11712
11713 /* Function to be called whenever a new objfile (shlib) is detected. */
11714 static void
11715 remote_new_objfile (struct objfile *objfile)
11716 {
11717 struct remote_state *rs = get_remote_state ();
11718
11719 if (rs->remote_desc != 0) /* Have a remote connection. */
11720 remote_check_symbols ();
11721 }
11722
11723 /* Pull all the tracepoints defined on the target and create local
11724 data structures representing them. We don't want to create real
11725 tracepoints yet, we don't want to mess up the user's existing
11726 collection. */
11727
11728 static int
11729 remote_upload_tracepoints (struct uploaded_tp **utpp)
11730 {
11731 struct remote_state *rs = get_remote_state ();
11732 char *p;
11733
11734 /* Ask for a first packet of tracepoint definition. */
11735 putpkt ("qTfP");
11736 getpkt (&rs->buf, &rs->buf_size, 0);
11737 p = rs->buf;
11738 while (*p && *p != 'l')
11739 {
11740 parse_tracepoint_definition (p, utpp);
11741 /* Ask for another packet of tracepoint definition. */
11742 putpkt ("qTsP");
11743 getpkt (&rs->buf, &rs->buf_size, 0);
11744 p = rs->buf;
11745 }
11746 return 0;
11747 }
11748
11749 static int
11750 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11751 {
11752 struct remote_state *rs = get_remote_state ();
11753 char *p;
11754
11755 /* Ask for a first packet of variable definition. */
11756 putpkt ("qTfV");
11757 getpkt (&rs->buf, &rs->buf_size, 0);
11758 p = rs->buf;
11759 while (*p && *p != 'l')
11760 {
11761 parse_tsv_definition (p, utsvp);
11762 /* Ask for another packet of variable definition. */
11763 putpkt ("qTsV");
11764 getpkt (&rs->buf, &rs->buf_size, 0);
11765 p = rs->buf;
11766 }
11767 return 0;
11768 }
11769
11770 /* The "set/show range-stepping" show hook. */
11771
11772 static void
11773 show_range_stepping (struct ui_file *file, int from_tty,
11774 struct cmd_list_element *c,
11775 const char *value)
11776 {
11777 fprintf_filtered (file,
11778 _("Debugger's willingness to use range stepping "
11779 "is %s.\n"), value);
11780 }
11781
11782 /* The "set/show range-stepping" set hook. */
11783
11784 static void
11785 set_range_stepping (char *ignore_args, int from_tty,
11786 struct cmd_list_element *c)
11787 {
11788 struct remote_state *rs = get_remote_state ();
11789
11790 /* Whene enabling, check whether range stepping is actually
11791 supported by the target, and warn if not. */
11792 if (use_range_stepping)
11793 {
11794 if (rs->remote_desc != NULL)
11795 {
11796 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11797 remote_vcont_probe (rs);
11798
11799 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11800 && rs->supports_vCont.r)
11801 return;
11802 }
11803
11804 warning (_("Range stepping is not supported by the current target"));
11805 }
11806 }
11807
11808 void
11809 _initialize_remote (void)
11810 {
11811 struct remote_state *rs;
11812 struct cmd_list_element *cmd;
11813 const char *cmd_name;
11814
11815 /* architecture specific data */
11816 remote_gdbarch_data_handle =
11817 gdbarch_data_register_post_init (init_remote_state);
11818 remote_g_packet_data_handle =
11819 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11820
11821 /* Initialize the per-target state. At the moment there is only one
11822 of these, not one per target. Only one target is active at a
11823 time. */
11824 remote_state = new_remote_state ();
11825
11826 init_remote_ops ();
11827 add_target (&remote_ops);
11828
11829 init_extended_remote_ops ();
11830 add_target (&extended_remote_ops);
11831
11832 /* Hook into new objfile notification. */
11833 observer_attach_new_objfile (remote_new_objfile);
11834 /* We're no longer interested in notification events of an inferior
11835 when it exits. */
11836 observer_attach_inferior_exit (discard_pending_stop_replies);
11837
11838 /* Set up signal handlers. */
11839 async_sigint_remote_token =
11840 create_async_signal_handler (async_remote_interrupt, NULL);
11841 async_sigint_remote_twice_token =
11842 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11843
11844 #if 0
11845 init_remote_threadtests ();
11846 #endif
11847
11848 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11849 /* set/show remote ... */
11850
11851 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11852 Remote protocol specific variables\n\
11853 Configure various remote-protocol specific variables such as\n\
11854 the packets being used"),
11855 &remote_set_cmdlist, "set remote ",
11856 0 /* allow-unknown */, &setlist);
11857 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11858 Remote protocol specific variables\n\
11859 Configure various remote-protocol specific variables such as\n\
11860 the packets being used"),
11861 &remote_show_cmdlist, "show remote ",
11862 0 /* allow-unknown */, &showlist);
11863
11864 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11865 Compare section data on target to the exec file.\n\
11866 Argument is a single section name (default: all loaded sections)."),
11867 &cmdlist);
11868
11869 add_cmd ("packet", class_maintenance, packet_command, _("\
11870 Send an arbitrary packet to a remote target.\n\
11871 maintenance packet TEXT\n\
11872 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11873 this command sends the string TEXT to the inferior, and displays the\n\
11874 response packet. GDB supplies the initial `$' character, and the\n\
11875 terminating `#' character and checksum."),
11876 &maintenancelist);
11877
11878 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11879 Set whether to send break if interrupted."), _("\
11880 Show whether to send break if interrupted."), _("\
11881 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11882 set_remotebreak, show_remotebreak,
11883 &setlist, &showlist);
11884 cmd_name = "remotebreak";
11885 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11886 deprecate_cmd (cmd, "set remote interrupt-sequence");
11887 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11888 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11889 deprecate_cmd (cmd, "show remote interrupt-sequence");
11890
11891 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11892 interrupt_sequence_modes, &interrupt_sequence_mode,
11893 _("\
11894 Set interrupt sequence to remote target."), _("\
11895 Show interrupt sequence to remote target."), _("\
11896 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11897 NULL, show_interrupt_sequence,
11898 &remote_set_cmdlist,
11899 &remote_show_cmdlist);
11900
11901 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11902 &interrupt_on_connect, _("\
11903 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11904 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11905 If set, interrupt sequence is sent to remote target."),
11906 NULL, NULL,
11907 &remote_set_cmdlist, &remote_show_cmdlist);
11908
11909 /* Install commands for configuring memory read/write packets. */
11910
11911 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11912 Set the maximum number of bytes per memory write packet (deprecated)."),
11913 &setlist);
11914 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11915 Show the maximum number of bytes per memory write packet (deprecated)."),
11916 &showlist);
11917 add_cmd ("memory-write-packet-size", no_class,
11918 set_memory_write_packet_size, _("\
11919 Set the maximum number of bytes per memory-write packet.\n\
11920 Specify the number of bytes in a packet or 0 (zero) for the\n\
11921 default packet size. The actual limit is further reduced\n\
11922 dependent on the target. Specify ``fixed'' to disable the\n\
11923 further restriction and ``limit'' to enable that restriction."),
11924 &remote_set_cmdlist);
11925 add_cmd ("memory-read-packet-size", no_class,
11926 set_memory_read_packet_size, _("\
11927 Set the maximum number of bytes per memory-read packet.\n\
11928 Specify the number of bytes in a packet or 0 (zero) for the\n\
11929 default packet size. The actual limit is further reduced\n\
11930 dependent on the target. Specify ``fixed'' to disable the\n\
11931 further restriction and ``limit'' to enable that restriction."),
11932 &remote_set_cmdlist);
11933 add_cmd ("memory-write-packet-size", no_class,
11934 show_memory_write_packet_size,
11935 _("Show the maximum number of bytes per memory-write packet."),
11936 &remote_show_cmdlist);
11937 add_cmd ("memory-read-packet-size", no_class,
11938 show_memory_read_packet_size,
11939 _("Show the maximum number of bytes per memory-read packet."),
11940 &remote_show_cmdlist);
11941
11942 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11943 &remote_hw_watchpoint_limit, _("\
11944 Set the maximum number of target hardware watchpoints."), _("\
11945 Show the maximum number of target hardware watchpoints."), _("\
11946 Specify a negative limit for unlimited."),
11947 NULL, NULL, /* FIXME: i18n: The maximum
11948 number of target hardware
11949 watchpoints is %s. */
11950 &remote_set_cmdlist, &remote_show_cmdlist);
11951 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11952 &remote_hw_watchpoint_length_limit, _("\
11953 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11954 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11955 Specify a negative limit for unlimited."),
11956 NULL, NULL, /* FIXME: i18n: The maximum
11957 length (in bytes) of a target
11958 hardware watchpoint is %s. */
11959 &remote_set_cmdlist, &remote_show_cmdlist);
11960 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11961 &remote_hw_breakpoint_limit, _("\
11962 Set the maximum number of target hardware breakpoints."), _("\
11963 Show the maximum number of target hardware breakpoints."), _("\
11964 Specify a negative limit for unlimited."),
11965 NULL, NULL, /* FIXME: i18n: The maximum
11966 number of target hardware
11967 breakpoints is %s. */
11968 &remote_set_cmdlist, &remote_show_cmdlist);
11969
11970 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
11971 &remote_address_size, _("\
11972 Set the maximum size of the address (in bits) in a memory packet."), _("\
11973 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11974 NULL,
11975 NULL, /* FIXME: i18n: */
11976 &setlist, &showlist);
11977
11978 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11979 "X", "binary-download", 1);
11980
11981 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11982 "vCont", "verbose-resume", 0);
11983
11984 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11985 "QPassSignals", "pass-signals", 0);
11986
11987 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11988 "QProgramSignals", "program-signals", 0);
11989
11990 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11991 "qSymbol", "symbol-lookup", 0);
11992
11993 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11994 "P", "set-register", 1);
11995
11996 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11997 "p", "fetch-register", 1);
11998
11999 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12000 "Z0", "software-breakpoint", 0);
12001
12002 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12003 "Z1", "hardware-breakpoint", 0);
12004
12005 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12006 "Z2", "write-watchpoint", 0);
12007
12008 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12009 "Z3", "read-watchpoint", 0);
12010
12011 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12012 "Z4", "access-watchpoint", 0);
12013
12014 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12015 "qXfer:auxv:read", "read-aux-vector", 0);
12016
12017 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12018 "qXfer:features:read", "target-features", 0);
12019
12020 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12021 "qXfer:libraries:read", "library-info", 0);
12022
12023 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12024 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12025
12026 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12027 "qXfer:memory-map:read", "memory-map", 0);
12028
12029 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12030 "qXfer:spu:read", "read-spu-object", 0);
12031
12032 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12033 "qXfer:spu:write", "write-spu-object", 0);
12034
12035 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12036 "qXfer:osdata:read", "osdata", 0);
12037
12038 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12039 "qXfer:threads:read", "threads", 0);
12040
12041 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12042 "qXfer:siginfo:read", "read-siginfo-object", 0);
12043
12044 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12045 "qXfer:siginfo:write", "write-siginfo-object", 0);
12046
12047 add_packet_config_cmd
12048 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12049 "qXfer:traceframe-info:read", "traceframe-info", 0);
12050
12051 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12052 "qXfer:uib:read", "unwind-info-block", 0);
12053
12054 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12055 "qGetTLSAddr", "get-thread-local-storage-address",
12056 0);
12057
12058 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12059 "qGetTIBAddr", "get-thread-information-block-address",
12060 0);
12061
12062 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12063 "bc", "reverse-continue", 0);
12064
12065 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12066 "bs", "reverse-step", 0);
12067
12068 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12069 "qSupported", "supported-packets", 0);
12070
12071 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12072 "qSearch:memory", "search-memory", 0);
12073
12074 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12075 "qTStatus", "trace-status", 0);
12076
12077 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12078 "vFile:open", "hostio-open", 0);
12079
12080 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12081 "vFile:pread", "hostio-pread", 0);
12082
12083 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12084 "vFile:pwrite", "hostio-pwrite", 0);
12085
12086 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12087 "vFile:close", "hostio-close", 0);
12088
12089 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12090 "vFile:unlink", "hostio-unlink", 0);
12091
12092 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12093 "vFile:readlink", "hostio-readlink", 0);
12094
12095 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12096 "vAttach", "attach", 0);
12097
12098 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12099 "vRun", "run", 0);
12100
12101 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12102 "QStartNoAckMode", "noack", 0);
12103
12104 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12105 "vKill", "kill", 0);
12106
12107 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12108 "qAttached", "query-attached", 0);
12109
12110 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12111 "ConditionalTracepoints",
12112 "conditional-tracepoints", 0);
12113
12114 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12115 "ConditionalBreakpoints",
12116 "conditional-breakpoints", 0);
12117
12118 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12119 "BreakpointCommands",
12120 "breakpoint-commands", 0);
12121
12122 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12123 "FastTracepoints", "fast-tracepoints", 0);
12124
12125 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12126 "TracepointSource", "TracepointSource", 0);
12127
12128 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12129 "QAllow", "allow", 0);
12130
12131 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12132 "StaticTracepoints", "static-tracepoints", 0);
12133
12134 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12135 "InstallInTrace", "install-in-trace", 0);
12136
12137 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12138 "qXfer:statictrace:read", "read-sdata-object", 0);
12139
12140 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12141 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12142
12143 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12144 "QDisableRandomization", "disable-randomization", 0);
12145
12146 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12147 "QAgent", "agent", 0);
12148
12149 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12150 "QTBuffer:size", "trace-buffer-size", 0);
12151
12152 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12153 "Qbtrace:off", "disable-btrace", 0);
12154
12155 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12156 "Qbtrace:bts", "enable-btrace", 0);
12157
12158 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12159 "qXfer:btrace", "read-btrace", 0);
12160
12161 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12162 Z sub-packet has its own set and show commands, but users may
12163 have sets to this variable in their .gdbinit files (or in their
12164 documentation). */
12165 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12166 &remote_Z_packet_detect, _("\
12167 Set use of remote protocol `Z' packets"), _("\
12168 Show use of remote protocol `Z' packets "), _("\
12169 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12170 packets."),
12171 set_remote_protocol_Z_packet_cmd,
12172 show_remote_protocol_Z_packet_cmd,
12173 /* FIXME: i18n: Use of remote protocol
12174 `Z' packets is %s. */
12175 &remote_set_cmdlist, &remote_show_cmdlist);
12176
12177 add_prefix_cmd ("remote", class_files, remote_command, _("\
12178 Manipulate files on the remote system\n\
12179 Transfer files to and from the remote target system."),
12180 &remote_cmdlist, "remote ",
12181 0 /* allow-unknown */, &cmdlist);
12182
12183 add_cmd ("put", class_files, remote_put_command,
12184 _("Copy a local file to the remote system."),
12185 &remote_cmdlist);
12186
12187 add_cmd ("get", class_files, remote_get_command,
12188 _("Copy a remote file to the local system."),
12189 &remote_cmdlist);
12190
12191 add_cmd ("delete", class_files, remote_delete_command,
12192 _("Delete a remote file."),
12193 &remote_cmdlist);
12194
12195 remote_exec_file = xstrdup ("");
12196 add_setshow_string_noescape_cmd ("exec-file", class_files,
12197 &remote_exec_file, _("\
12198 Set the remote pathname for \"run\""), _("\
12199 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12200 &remote_set_cmdlist, &remote_show_cmdlist);
12201
12202 add_setshow_boolean_cmd ("range-stepping", class_run,
12203 &use_range_stepping, _("\
12204 Enable or disable range stepping."), _("\
12205 Show whether target-assisted range stepping is enabled."), _("\
12206 If on, and the target supports it, when stepping a source line, GDB\n\
12207 tells the target to step the corresponding range of addresses itself instead\n\
12208 of issuing multiple single-steps. This speeds up source level\n\
12209 stepping. If off, GDB always issues single-steps, even if range\n\
12210 stepping is supported by the target. The default is on."),
12211 set_range_stepping,
12212 show_range_stepping,
12213 &setlist,
12214 &showlist);
12215
12216 /* Eventually initialize fileio. See fileio.c */
12217 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12218
12219 /* Take advantage of the fact that the LWP field is not used, to tag
12220 special ptids with it set to != 0. */
12221 magic_null_ptid = ptid_build (42000, 1, -1);
12222 not_sent_ptid = ptid_build (42000, 1, -2);
12223 any_thread_ptid = ptid_build (42000, 1, 0);
12224
12225 target_buf_size = 2048;
12226 target_buf = xmalloc (target_buf_size);
12227 }
12228
This page took 0.473375 seconds and 5 git commands to generate.