2012-02-24 Luis Machado <lgustavo@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "observer.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59 #include "gdb/fileio.h"
60 #include "gdb_stat.h"
61 #include "xml-support.h"
62
63 #include "memory-map.h"
64
65 #include "tracepoint.h"
66 #include "ax.h"
67 #include "ax-gdb.h"
68
69 /* Temp hacks for tracepoint encoding migration. */
70 static char *target_buf;
71 static long target_buf_size;
72 /*static*/ void
73 encode_actions (struct breakpoint *t, struct bp_location *tloc,
74 char ***tdp_actions, char ***stepping_actions);
75
76 /* The size to align memory write packets, when practical. The protocol
77 does not guarantee any alignment, and gdb will generate short
78 writes and unaligned writes, but even as a best-effort attempt this
79 can improve bulk transfers. For instance, if a write is misaligned
80 relative to the target's data bus, the stub may need to make an extra
81 round trip fetching data from the target. This doesn't make a
82 huge difference, but it's easy to do, so we try to be helpful.
83
84 The alignment chosen is arbitrary; usually data bus width is
85 important here, not the possibly larger cache line size. */
86 enum { REMOTE_ALIGN_WRITES = 16 };
87
88 /* Prototypes for local functions. */
89 static void cleanup_sigint_signal_handler (void *dummy);
90 static void initialize_sigint_signal_handler (void);
91 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
92 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
93 int forever);
94
95 static void handle_remote_sigint (int);
96 static void handle_remote_sigint_twice (int);
97 static void async_remote_interrupt (gdb_client_data);
98 void async_remote_interrupt_twice (gdb_client_data);
99
100 static void remote_files_info (struct target_ops *ignore);
101
102 static void remote_prepare_to_store (struct regcache *regcache);
103
104 static void remote_open (char *name, int from_tty);
105
106 static void extended_remote_open (char *name, int from_tty);
107
108 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
109
110 static void remote_close (int quitting);
111
112 static void remote_mourn (struct target_ops *ops);
113
114 static void extended_remote_restart (void);
115
116 static void extended_remote_mourn (struct target_ops *);
117
118 static void remote_mourn_1 (struct target_ops *);
119
120 static void remote_send (char **buf, long *sizeof_buf_p);
121
122 static int readchar (int timeout);
123
124 static void remote_kill (struct target_ops *ops);
125
126 static int tohex (int nib);
127
128 static int remote_can_async_p (void);
129
130 static int remote_is_async_p (void);
131
132 static void remote_async (void (*callback) (enum inferior_event_type event_type,
133 void *context), void *context);
134
135 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
136
137 static void remote_interrupt (int signo);
138
139 static void remote_interrupt_twice (int signo);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (struct ptid ptid);
144 static void set_continue_thread (struct ptid ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (ptid_t);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static void compare_sections_command (char *, int);
173
174 static void packet_command (char *, int);
175
176 static int stub_unpack_int (char *buff, int fieldlength);
177
178 static ptid_t remote_current_thread (ptid_t oldptid);
179
180 static void remote_find_new_threads (void);
181
182 static void record_currthread (ptid_t currthread);
183
184 static int fromhex (int a);
185
186 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
187
188 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
189
190 static int putpkt_binary (char *buf, int cnt);
191
192 static void check_binary_download (CORE_ADDR addr);
193
194 struct packet_config;
195
196 static void show_packet_config_cmd (struct packet_config *config);
197
198 static void update_packet_config (struct packet_config *config);
199
200 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
201 struct cmd_list_element *c);
202
203 static void show_remote_protocol_packet_cmd (struct ui_file *file,
204 int from_tty,
205 struct cmd_list_element *c,
206 const char *value);
207
208 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
209 static ptid_t read_ptid (char *buf, char **obuf);
210
211 static void remote_set_permissions (void);
212
213 struct remote_state;
214 static int remote_get_trace_status (struct trace_status *ts);
215
216 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
217
218 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
219
220 static void remote_query_supported (void);
221
222 static void remote_check_symbols (struct objfile *objfile);
223
224 void _initialize_remote (void);
225
226 struct stop_reply;
227 static struct stop_reply *stop_reply_xmalloc (void);
228 static void stop_reply_xfree (struct stop_reply *);
229 static void do_stop_reply_xfree (void *arg);
230 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
231 static void push_stop_reply (struct stop_reply *);
232 static void remote_get_pending_stop_replies (void);
233 static void discard_pending_stop_replies (int pid);
234 static int peek_stop_reply (ptid_t ptid);
235
236 static void remote_async_inferior_event_handler (gdb_client_data);
237 static void remote_async_get_pending_events_handler (gdb_client_data);
238
239 static void remote_terminal_ours (void);
240
241 static int remote_read_description_p (struct target_ops *target);
242
243 static void remote_console_output (char *msg);
244
245 /* The non-stop remote protocol provisions for one pending stop reply.
246 This is where we keep it until it is acknowledged. */
247
248 static struct stop_reply *pending_stop_reply = NULL;
249
250 /* For "remote". */
251
252 static struct cmd_list_element *remote_cmdlist;
253
254 /* For "set remote" and "show remote". */
255
256 static struct cmd_list_element *remote_set_cmdlist;
257 static struct cmd_list_element *remote_show_cmdlist;
258
259 /* Description of the remote protocol state for the currently
260 connected target. This is per-target state, and independent of the
261 selected architecture. */
262
263 struct remote_state
264 {
265 /* A buffer to use for incoming packets, and its current size. The
266 buffer is grown dynamically for larger incoming packets.
267 Outgoing packets may also be constructed in this buffer.
268 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
269 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
270 packets. */
271 char *buf;
272 long buf_size;
273
274 /* If we negotiated packet size explicitly (and thus can bypass
275 heuristics for the largest packet size that will not overflow
276 a buffer in the stub), this will be set to that packet size.
277 Otherwise zero, meaning to use the guessed size. */
278 long explicit_packet_size;
279
280 /* remote_wait is normally called when the target is running and
281 waits for a stop reply packet. But sometimes we need to call it
282 when the target is already stopped. We can send a "?" packet
283 and have remote_wait read the response. Or, if we already have
284 the response, we can stash it in BUF and tell remote_wait to
285 skip calling getpkt. This flag is set when BUF contains a
286 stop reply packet and the target is not waiting. */
287 int cached_wait_status;
288
289 /* True, if in no ack mode. That is, neither GDB nor the stub will
290 expect acks from each other. The connection is assumed to be
291 reliable. */
292 int noack_mode;
293
294 /* True if we're connected in extended remote mode. */
295 int extended;
296
297 /* True if the stub reported support for multi-process
298 extensions. */
299 int multi_process_aware;
300
301 /* True if we resumed the target and we're waiting for the target to
302 stop. In the mean time, we can't start another command/query.
303 The remote server wouldn't be ready to process it, so we'd
304 timeout waiting for a reply that would never come and eventually
305 we'd close the connection. This can happen in asynchronous mode
306 because we allow GDB commands while the target is running. */
307 int waiting_for_stop_reply;
308
309 /* True if the stub reports support for non-stop mode. */
310 int non_stop_aware;
311
312 /* True if the stub reports support for vCont;t. */
313 int support_vCont_t;
314
315 /* True if the stub reports support for conditional tracepoints. */
316 int cond_tracepoints;
317
318 /* True if the stub reports support for target-side breakpoint
319 conditions. */
320 int cond_breakpoints;
321
322 /* True if the stub reports support for fast tracepoints. */
323 int fast_tracepoints;
324
325 /* True if the stub reports support for static tracepoints. */
326 int static_tracepoints;
327
328 /* True if the stub reports support for installing tracepoint while
329 tracing. */
330 int install_in_trace;
331
332 /* True if the stub can continue running a trace while GDB is
333 disconnected. */
334 int disconnected_tracing;
335
336 /* True if the stub reports support for enabling and disabling
337 tracepoints while a trace experiment is running. */
338 int enable_disable_tracepoints;
339
340 /* True if the stub can collect strings using tracenz bytecode. */
341 int string_tracing;
342
343 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
344 responded to that. */
345 int ctrlc_pending_p;
346 };
347
348 /* Private data that we'll store in (struct thread_info)->private. */
349 struct private_thread_info
350 {
351 char *extra;
352 int core;
353 };
354
355 static void
356 free_private_thread_info (struct private_thread_info *info)
357 {
358 xfree (info->extra);
359 xfree (info);
360 }
361
362 /* Returns true if the multi-process extensions are in effect. */
363 static int
364 remote_multi_process_p (struct remote_state *rs)
365 {
366 return rs->multi_process_aware;
367 }
368
369 /* This data could be associated with a target, but we do not always
370 have access to the current target when we need it, so for now it is
371 static. This will be fine for as long as only one target is in use
372 at a time. */
373 static struct remote_state remote_state;
374
375 static struct remote_state *
376 get_remote_state_raw (void)
377 {
378 return &remote_state;
379 }
380
381 /* Description of the remote protocol for a given architecture. */
382
383 struct packet_reg
384 {
385 long offset; /* Offset into G packet. */
386 long regnum; /* GDB's internal register number. */
387 LONGEST pnum; /* Remote protocol register number. */
388 int in_g_packet; /* Always part of G packet. */
389 /* long size in bytes; == register_size (target_gdbarch, regnum);
390 at present. */
391 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
392 at present. */
393 };
394
395 struct remote_arch_state
396 {
397 /* Description of the remote protocol registers. */
398 long sizeof_g_packet;
399
400 /* Description of the remote protocol registers indexed by REGNUM
401 (making an array gdbarch_num_regs in size). */
402 struct packet_reg *regs;
403
404 /* This is the size (in chars) of the first response to the ``g''
405 packet. It is used as a heuristic when determining the maximum
406 size of memory-read and memory-write packets. A target will
407 typically only reserve a buffer large enough to hold the ``g''
408 packet. The size does not include packet overhead (headers and
409 trailers). */
410 long actual_register_packet_size;
411
412 /* This is the maximum size (in chars) of a non read/write packet.
413 It is also used as a cap on the size of read/write packets. */
414 long remote_packet_size;
415 };
416
417 long sizeof_pkt = 2000;
418
419 /* Utility: generate error from an incoming stub packet. */
420 static void
421 trace_error (char *buf)
422 {
423 if (*buf++ != 'E')
424 return; /* not an error msg */
425 switch (*buf)
426 {
427 case '1': /* malformed packet error */
428 if (*++buf == '0') /* general case: */
429 error (_("remote.c: error in outgoing packet."));
430 else
431 error (_("remote.c: error in outgoing packet at field #%ld."),
432 strtol (buf, NULL, 16));
433 case '2':
434 error (_("trace API error 0x%s."), ++buf);
435 default:
436 error (_("Target returns error code '%s'."), buf);
437 }
438 }
439
440 /* Utility: wait for reply from stub, while accepting "O" packets. */
441 static char *
442 remote_get_noisy_reply (char **buf_p,
443 long *sizeof_buf)
444 {
445 do /* Loop on reply from remote stub. */
446 {
447 char *buf;
448
449 QUIT; /* Allow user to bail out with ^C. */
450 getpkt (buf_p, sizeof_buf, 0);
451 buf = *buf_p;
452 if (buf[0] == 'E')
453 trace_error (buf);
454 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
455 {
456 ULONGEST ul;
457 CORE_ADDR from, to, org_to;
458 char *p, *pp;
459 int adjusted_size = 0;
460 volatile struct gdb_exception ex;
461
462 p = buf + strlen ("qRelocInsn:");
463 pp = unpack_varlen_hex (p, &ul);
464 if (*pp != ';')
465 error (_("invalid qRelocInsn packet: %s"), buf);
466 from = ul;
467
468 p = pp + 1;
469 unpack_varlen_hex (p, &ul);
470 to = ul;
471
472 org_to = to;
473
474 TRY_CATCH (ex, RETURN_MASK_ALL)
475 {
476 gdbarch_relocate_instruction (target_gdbarch, &to, from);
477 }
478 if (ex.reason >= 0)
479 {
480 adjusted_size = to - org_to;
481
482 sprintf (buf, "qRelocInsn:%x", adjusted_size);
483 putpkt (buf);
484 }
485 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
486 {
487 /* Propagate memory errors silently back to the target.
488 The stub may have limited the range of addresses we
489 can write to, for example. */
490 putpkt ("E01");
491 }
492 else
493 {
494 /* Something unexpectedly bad happened. Be verbose so
495 we can tell what, and propagate the error back to the
496 stub, so it doesn't get stuck waiting for a
497 response. */
498 exception_fprintf (gdb_stderr, ex,
499 _("warning: relocating instruction: "));
500 putpkt ("E01");
501 }
502 }
503 else if (buf[0] == 'O' && buf[1] != 'K')
504 remote_console_output (buf + 1); /* 'O' message from stub */
505 else
506 return buf; /* Here's the actual reply. */
507 }
508 while (1);
509 }
510
511 /* Handle for retreving the remote protocol data from gdbarch. */
512 static struct gdbarch_data *remote_gdbarch_data_handle;
513
514 static struct remote_arch_state *
515 get_remote_arch_state (void)
516 {
517 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
518 }
519
520 /* Fetch the global remote target state. */
521
522 static struct remote_state *
523 get_remote_state (void)
524 {
525 /* Make sure that the remote architecture state has been
526 initialized, because doing so might reallocate rs->buf. Any
527 function which calls getpkt also needs to be mindful of changes
528 to rs->buf, but this call limits the number of places which run
529 into trouble. */
530 get_remote_arch_state ();
531
532 return get_remote_state_raw ();
533 }
534
535 static int
536 compare_pnums (const void *lhs_, const void *rhs_)
537 {
538 const struct packet_reg * const *lhs = lhs_;
539 const struct packet_reg * const *rhs = rhs_;
540
541 if ((*lhs)->pnum < (*rhs)->pnum)
542 return -1;
543 else if ((*lhs)->pnum == (*rhs)->pnum)
544 return 0;
545 else
546 return 1;
547 }
548
549 static int
550 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
551 {
552 int regnum, num_remote_regs, offset;
553 struct packet_reg **remote_regs;
554
555 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
556 {
557 struct packet_reg *r = &regs[regnum];
558
559 if (register_size (gdbarch, regnum) == 0)
560 /* Do not try to fetch zero-sized (placeholder) registers. */
561 r->pnum = -1;
562 else
563 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
564
565 r->regnum = regnum;
566 }
567
568 /* Define the g/G packet format as the contents of each register
569 with a remote protocol number, in order of ascending protocol
570 number. */
571
572 remote_regs = alloca (gdbarch_num_regs (gdbarch)
573 * sizeof (struct packet_reg *));
574 for (num_remote_regs = 0, regnum = 0;
575 regnum < gdbarch_num_regs (gdbarch);
576 regnum++)
577 if (regs[regnum].pnum != -1)
578 remote_regs[num_remote_regs++] = &regs[regnum];
579
580 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
581 compare_pnums);
582
583 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
584 {
585 remote_regs[regnum]->in_g_packet = 1;
586 remote_regs[regnum]->offset = offset;
587 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
588 }
589
590 return offset;
591 }
592
593 /* Given the architecture described by GDBARCH, return the remote
594 protocol register's number and the register's offset in the g/G
595 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
596 If the target does not have a mapping for REGNUM, return false,
597 otherwise, return true. */
598
599 int
600 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
601 int *pnum, int *poffset)
602 {
603 int sizeof_g_packet;
604 struct packet_reg *regs;
605 struct cleanup *old_chain;
606
607 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
608
609 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
610 old_chain = make_cleanup (xfree, regs);
611
612 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
613
614 *pnum = regs[regnum].pnum;
615 *poffset = regs[regnum].offset;
616
617 do_cleanups (old_chain);
618
619 return *pnum != -1;
620 }
621
622 static void *
623 init_remote_state (struct gdbarch *gdbarch)
624 {
625 struct remote_state *rs = get_remote_state_raw ();
626 struct remote_arch_state *rsa;
627
628 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
629
630 /* Use the architecture to build a regnum<->pnum table, which will be
631 1:1 unless a feature set specifies otherwise. */
632 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
633 gdbarch_num_regs (gdbarch),
634 struct packet_reg);
635
636 /* Record the maximum possible size of the g packet - it may turn out
637 to be smaller. */
638 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
639
640 /* Default maximum number of characters in a packet body. Many
641 remote stubs have a hardwired buffer size of 400 bytes
642 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
643 as the maximum packet-size to ensure that the packet and an extra
644 NUL character can always fit in the buffer. This stops GDB
645 trashing stubs that try to squeeze an extra NUL into what is
646 already a full buffer (As of 1999-12-04 that was most stubs). */
647 rsa->remote_packet_size = 400 - 1;
648
649 /* This one is filled in when a ``g'' packet is received. */
650 rsa->actual_register_packet_size = 0;
651
652 /* Should rsa->sizeof_g_packet needs more space than the
653 default, adjust the size accordingly. Remember that each byte is
654 encoded as two characters. 32 is the overhead for the packet
655 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
656 (``$NN:G...#NN'') is a better guess, the below has been padded a
657 little. */
658 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
659 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
660
661 /* Make sure that the packet buffer is plenty big enough for
662 this architecture. */
663 if (rs->buf_size < rsa->remote_packet_size)
664 {
665 rs->buf_size = 2 * rsa->remote_packet_size;
666 rs->buf = xrealloc (rs->buf, rs->buf_size);
667 }
668
669 return rsa;
670 }
671
672 /* Return the current allowed size of a remote packet. This is
673 inferred from the current architecture, and should be used to
674 limit the length of outgoing packets. */
675 static long
676 get_remote_packet_size (void)
677 {
678 struct remote_state *rs = get_remote_state ();
679 struct remote_arch_state *rsa = get_remote_arch_state ();
680
681 if (rs->explicit_packet_size)
682 return rs->explicit_packet_size;
683
684 return rsa->remote_packet_size;
685 }
686
687 static struct packet_reg *
688 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
689 {
690 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
691 return NULL;
692 else
693 {
694 struct packet_reg *r = &rsa->regs[regnum];
695
696 gdb_assert (r->regnum == regnum);
697 return r;
698 }
699 }
700
701 static struct packet_reg *
702 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
703 {
704 int i;
705
706 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
707 {
708 struct packet_reg *r = &rsa->regs[i];
709
710 if (r->pnum == pnum)
711 return r;
712 }
713 return NULL;
714 }
715
716 /* FIXME: graces/2002-08-08: These variables should eventually be
717 bound to an instance of the target object (as in gdbarch-tdep()),
718 when such a thing exists. */
719
720 /* This is set to the data address of the access causing the target
721 to stop for a watchpoint. */
722 static CORE_ADDR remote_watch_data_address;
723
724 /* This is non-zero if target stopped for a watchpoint. */
725 static int remote_stopped_by_watchpoint_p;
726
727 static struct target_ops remote_ops;
728
729 static struct target_ops extended_remote_ops;
730
731 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
732 ``forever'' still use the normal timeout mechanism. This is
733 currently used by the ASYNC code to guarentee that target reads
734 during the initial connect always time-out. Once getpkt has been
735 modified to return a timeout indication and, in turn
736 remote_wait()/wait_for_inferior() have gained a timeout parameter
737 this can go away. */
738 static int wait_forever_enabled_p = 1;
739
740 /* Allow the user to specify what sequence to send to the remote
741 when he requests a program interruption: Although ^C is usually
742 what remote systems expect (this is the default, here), it is
743 sometimes preferable to send a break. On other systems such
744 as the Linux kernel, a break followed by g, which is Magic SysRq g
745 is required in order to interrupt the execution. */
746 const char interrupt_sequence_control_c[] = "Ctrl-C";
747 const char interrupt_sequence_break[] = "BREAK";
748 const char interrupt_sequence_break_g[] = "BREAK-g";
749 static const char *const interrupt_sequence_modes[] =
750 {
751 interrupt_sequence_control_c,
752 interrupt_sequence_break,
753 interrupt_sequence_break_g,
754 NULL
755 };
756 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
757
758 static void
759 show_interrupt_sequence (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c,
761 const char *value)
762 {
763 if (interrupt_sequence_mode == interrupt_sequence_control_c)
764 fprintf_filtered (file,
765 _("Send the ASCII ETX character (Ctrl-c) "
766 "to the remote target to interrupt the "
767 "execution of the program.\n"));
768 else if (interrupt_sequence_mode == interrupt_sequence_break)
769 fprintf_filtered (file,
770 _("send a break signal to the remote target "
771 "to interrupt the execution of the program.\n"));
772 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
773 fprintf_filtered (file,
774 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
775 "the remote target to interrupt the execution "
776 "of Linux kernel.\n"));
777 else
778 internal_error (__FILE__, __LINE__,
779 _("Invalid value for interrupt_sequence_mode: %s."),
780 interrupt_sequence_mode);
781 }
782
783 /* This boolean variable specifies whether interrupt_sequence is sent
784 to the remote target when gdb connects to it.
785 This is mostly needed when you debug the Linux kernel: The Linux kernel
786 expects BREAK g which is Magic SysRq g for connecting gdb. */
787 static int interrupt_on_connect = 0;
788
789 /* This variable is used to implement the "set/show remotebreak" commands.
790 Since these commands are now deprecated in favor of "set/show remote
791 interrupt-sequence", it no longer has any effect on the code. */
792 static int remote_break;
793
794 static void
795 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
796 {
797 if (remote_break)
798 interrupt_sequence_mode = interrupt_sequence_break;
799 else
800 interrupt_sequence_mode = interrupt_sequence_control_c;
801 }
802
803 static void
804 show_remotebreak (struct ui_file *file, int from_tty,
805 struct cmd_list_element *c,
806 const char *value)
807 {
808 }
809
810 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
811 remote_open knows that we don't have a file open when the program
812 starts. */
813 static struct serial *remote_desc = NULL;
814
815 /* This variable sets the number of bits in an address that are to be
816 sent in a memory ("M" or "m") packet. Normally, after stripping
817 leading zeros, the entire address would be sent. This variable
818 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
819 initial implementation of remote.c restricted the address sent in
820 memory packets to ``host::sizeof long'' bytes - (typically 32
821 bits). Consequently, for 64 bit targets, the upper 32 bits of an
822 address was never sent. Since fixing this bug may cause a break in
823 some remote targets this variable is principly provided to
824 facilitate backward compatibility. */
825
826 static int remote_address_size;
827
828 /* Temporary to track who currently owns the terminal. See
829 remote_terminal_* for more details. */
830
831 static int remote_async_terminal_ours_p;
832
833 /* The executable file to use for "run" on the remote side. */
834
835 static char *remote_exec_file = "";
836
837 \f
838 /* User configurable variables for the number of characters in a
839 memory read/write packet. MIN (rsa->remote_packet_size,
840 rsa->sizeof_g_packet) is the default. Some targets need smaller
841 values (fifo overruns, et.al.) and some users need larger values
842 (speed up transfers). The variables ``preferred_*'' (the user
843 request), ``current_*'' (what was actually set) and ``forced_*''
844 (Positive - a soft limit, negative - a hard limit). */
845
846 struct memory_packet_config
847 {
848 char *name;
849 long size;
850 int fixed_p;
851 };
852
853 /* Compute the current size of a read/write packet. Since this makes
854 use of ``actual_register_packet_size'' the computation is dynamic. */
855
856 static long
857 get_memory_packet_size (struct memory_packet_config *config)
858 {
859 struct remote_state *rs = get_remote_state ();
860 struct remote_arch_state *rsa = get_remote_arch_state ();
861
862 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
863 law?) that some hosts don't cope very well with large alloca()
864 calls. Eventually the alloca() code will be replaced by calls to
865 xmalloc() and make_cleanups() allowing this restriction to either
866 be lifted or removed. */
867 #ifndef MAX_REMOTE_PACKET_SIZE
868 #define MAX_REMOTE_PACKET_SIZE 16384
869 #endif
870 /* NOTE: 20 ensures we can write at least one byte. */
871 #ifndef MIN_REMOTE_PACKET_SIZE
872 #define MIN_REMOTE_PACKET_SIZE 20
873 #endif
874 long what_they_get;
875 if (config->fixed_p)
876 {
877 if (config->size <= 0)
878 what_they_get = MAX_REMOTE_PACKET_SIZE;
879 else
880 what_they_get = config->size;
881 }
882 else
883 {
884 what_they_get = get_remote_packet_size ();
885 /* Limit the packet to the size specified by the user. */
886 if (config->size > 0
887 && what_they_get > config->size)
888 what_they_get = config->size;
889
890 /* Limit it to the size of the targets ``g'' response unless we have
891 permission from the stub to use a larger packet size. */
892 if (rs->explicit_packet_size == 0
893 && rsa->actual_register_packet_size > 0
894 && what_they_get > rsa->actual_register_packet_size)
895 what_they_get = rsa->actual_register_packet_size;
896 }
897 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
898 what_they_get = MAX_REMOTE_PACKET_SIZE;
899 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
900 what_they_get = MIN_REMOTE_PACKET_SIZE;
901
902 /* Make sure there is room in the global buffer for this packet
903 (including its trailing NUL byte). */
904 if (rs->buf_size < what_they_get + 1)
905 {
906 rs->buf_size = 2 * what_they_get;
907 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
908 }
909
910 return what_they_get;
911 }
912
913 /* Update the size of a read/write packet. If they user wants
914 something really big then do a sanity check. */
915
916 static void
917 set_memory_packet_size (char *args, struct memory_packet_config *config)
918 {
919 int fixed_p = config->fixed_p;
920 long size = config->size;
921
922 if (args == NULL)
923 error (_("Argument required (integer, `fixed' or `limited')."));
924 else if (strcmp (args, "hard") == 0
925 || strcmp (args, "fixed") == 0)
926 fixed_p = 1;
927 else if (strcmp (args, "soft") == 0
928 || strcmp (args, "limit") == 0)
929 fixed_p = 0;
930 else
931 {
932 char *end;
933
934 size = strtoul (args, &end, 0);
935 if (args == end)
936 error (_("Invalid %s (bad syntax)."), config->name);
937 #if 0
938 /* Instead of explicitly capping the size of a packet to
939 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
940 instead allowed to set the size to something arbitrarily
941 large. */
942 if (size > MAX_REMOTE_PACKET_SIZE)
943 error (_("Invalid %s (too large)."), config->name);
944 #endif
945 }
946 /* Extra checks? */
947 if (fixed_p && !config->fixed_p)
948 {
949 if (! query (_("The target may not be able to correctly handle a %s\n"
950 "of %ld bytes. Change the packet size? "),
951 config->name, size))
952 error (_("Packet size not changed."));
953 }
954 /* Update the config. */
955 config->fixed_p = fixed_p;
956 config->size = size;
957 }
958
959 static void
960 show_memory_packet_size (struct memory_packet_config *config)
961 {
962 printf_filtered (_("The %s is %ld. "), config->name, config->size);
963 if (config->fixed_p)
964 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
965 get_memory_packet_size (config));
966 else
967 printf_filtered (_("Packets are limited to %ld bytes.\n"),
968 get_memory_packet_size (config));
969 }
970
971 static struct memory_packet_config memory_write_packet_config =
972 {
973 "memory-write-packet-size",
974 };
975
976 static void
977 set_memory_write_packet_size (char *args, int from_tty)
978 {
979 set_memory_packet_size (args, &memory_write_packet_config);
980 }
981
982 static void
983 show_memory_write_packet_size (char *args, int from_tty)
984 {
985 show_memory_packet_size (&memory_write_packet_config);
986 }
987
988 static long
989 get_memory_write_packet_size (void)
990 {
991 return get_memory_packet_size (&memory_write_packet_config);
992 }
993
994 static struct memory_packet_config memory_read_packet_config =
995 {
996 "memory-read-packet-size",
997 };
998
999 static void
1000 set_memory_read_packet_size (char *args, int from_tty)
1001 {
1002 set_memory_packet_size (args, &memory_read_packet_config);
1003 }
1004
1005 static void
1006 show_memory_read_packet_size (char *args, int from_tty)
1007 {
1008 show_memory_packet_size (&memory_read_packet_config);
1009 }
1010
1011 static long
1012 get_memory_read_packet_size (void)
1013 {
1014 long size = get_memory_packet_size (&memory_read_packet_config);
1015
1016 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1017 extra buffer size argument before the memory read size can be
1018 increased beyond this. */
1019 if (size > get_remote_packet_size ())
1020 size = get_remote_packet_size ();
1021 return size;
1022 }
1023
1024 \f
1025 /* Generic configuration support for packets the stub optionally
1026 supports. Allows the user to specify the use of the packet as well
1027 as allowing GDB to auto-detect support in the remote stub. */
1028
1029 enum packet_support
1030 {
1031 PACKET_SUPPORT_UNKNOWN = 0,
1032 PACKET_ENABLE,
1033 PACKET_DISABLE
1034 };
1035
1036 struct packet_config
1037 {
1038 const char *name;
1039 const char *title;
1040 enum auto_boolean detect;
1041 enum packet_support support;
1042 };
1043
1044 /* Analyze a packet's return value and update the packet config
1045 accordingly. */
1046
1047 enum packet_result
1048 {
1049 PACKET_ERROR,
1050 PACKET_OK,
1051 PACKET_UNKNOWN
1052 };
1053
1054 static void
1055 update_packet_config (struct packet_config *config)
1056 {
1057 switch (config->detect)
1058 {
1059 case AUTO_BOOLEAN_TRUE:
1060 config->support = PACKET_ENABLE;
1061 break;
1062 case AUTO_BOOLEAN_FALSE:
1063 config->support = PACKET_DISABLE;
1064 break;
1065 case AUTO_BOOLEAN_AUTO:
1066 config->support = PACKET_SUPPORT_UNKNOWN;
1067 break;
1068 }
1069 }
1070
1071 static void
1072 show_packet_config_cmd (struct packet_config *config)
1073 {
1074 char *support = "internal-error";
1075
1076 switch (config->support)
1077 {
1078 case PACKET_ENABLE:
1079 support = "enabled";
1080 break;
1081 case PACKET_DISABLE:
1082 support = "disabled";
1083 break;
1084 case PACKET_SUPPORT_UNKNOWN:
1085 support = "unknown";
1086 break;
1087 }
1088 switch (config->detect)
1089 {
1090 case AUTO_BOOLEAN_AUTO:
1091 printf_filtered (_("Support for the `%s' packet "
1092 "is auto-detected, currently %s.\n"),
1093 config->name, support);
1094 break;
1095 case AUTO_BOOLEAN_TRUE:
1096 case AUTO_BOOLEAN_FALSE:
1097 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1098 config->name, support);
1099 break;
1100 }
1101 }
1102
1103 static void
1104 add_packet_config_cmd (struct packet_config *config, const char *name,
1105 const char *title, int legacy)
1106 {
1107 char *set_doc;
1108 char *show_doc;
1109 char *cmd_name;
1110
1111 config->name = name;
1112 config->title = title;
1113 config->detect = AUTO_BOOLEAN_AUTO;
1114 config->support = PACKET_SUPPORT_UNKNOWN;
1115 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1116 name, title);
1117 show_doc = xstrprintf ("Show current use of remote "
1118 "protocol `%s' (%s) packet",
1119 name, title);
1120 /* set/show TITLE-packet {auto,on,off} */
1121 cmd_name = xstrprintf ("%s-packet", title);
1122 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1123 &config->detect, set_doc,
1124 show_doc, NULL, /* help_doc */
1125 set_remote_protocol_packet_cmd,
1126 show_remote_protocol_packet_cmd,
1127 &remote_set_cmdlist, &remote_show_cmdlist);
1128 /* The command code copies the documentation strings. */
1129 xfree (set_doc);
1130 xfree (show_doc);
1131 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1132 if (legacy)
1133 {
1134 char *legacy_name;
1135
1136 legacy_name = xstrprintf ("%s-packet", name);
1137 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1138 &remote_set_cmdlist);
1139 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1140 &remote_show_cmdlist);
1141 }
1142 }
1143
1144 static enum packet_result
1145 packet_check_result (const char *buf)
1146 {
1147 if (buf[0] != '\0')
1148 {
1149 /* The stub recognized the packet request. Check that the
1150 operation succeeded. */
1151 if (buf[0] == 'E'
1152 && isxdigit (buf[1]) && isxdigit (buf[2])
1153 && buf[3] == '\0')
1154 /* "Enn" - definitly an error. */
1155 return PACKET_ERROR;
1156
1157 /* Always treat "E." as an error. This will be used for
1158 more verbose error messages, such as E.memtypes. */
1159 if (buf[0] == 'E' && buf[1] == '.')
1160 return PACKET_ERROR;
1161
1162 /* The packet may or may not be OK. Just assume it is. */
1163 return PACKET_OK;
1164 }
1165 else
1166 /* The stub does not support the packet. */
1167 return PACKET_UNKNOWN;
1168 }
1169
1170 static enum packet_result
1171 packet_ok (const char *buf, struct packet_config *config)
1172 {
1173 enum packet_result result;
1174
1175 result = packet_check_result (buf);
1176 switch (result)
1177 {
1178 case PACKET_OK:
1179 case PACKET_ERROR:
1180 /* The stub recognized the packet request. */
1181 switch (config->support)
1182 {
1183 case PACKET_SUPPORT_UNKNOWN:
1184 if (remote_debug)
1185 fprintf_unfiltered (gdb_stdlog,
1186 "Packet %s (%s) is supported\n",
1187 config->name, config->title);
1188 config->support = PACKET_ENABLE;
1189 break;
1190 case PACKET_DISABLE:
1191 internal_error (__FILE__, __LINE__,
1192 _("packet_ok: attempt to use a disabled packet"));
1193 break;
1194 case PACKET_ENABLE:
1195 break;
1196 }
1197 break;
1198 case PACKET_UNKNOWN:
1199 /* The stub does not support the packet. */
1200 switch (config->support)
1201 {
1202 case PACKET_ENABLE:
1203 if (config->detect == AUTO_BOOLEAN_AUTO)
1204 /* If the stub previously indicated that the packet was
1205 supported then there is a protocol error.. */
1206 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1207 config->name, config->title);
1208 else
1209 /* The user set it wrong. */
1210 error (_("Enabled packet %s (%s) not recognized by stub"),
1211 config->name, config->title);
1212 break;
1213 case PACKET_SUPPORT_UNKNOWN:
1214 if (remote_debug)
1215 fprintf_unfiltered (gdb_stdlog,
1216 "Packet %s (%s) is NOT supported\n",
1217 config->name, config->title);
1218 config->support = PACKET_DISABLE;
1219 break;
1220 case PACKET_DISABLE:
1221 break;
1222 }
1223 break;
1224 }
1225
1226 return result;
1227 }
1228
1229 enum {
1230 PACKET_vCont = 0,
1231 PACKET_X,
1232 PACKET_qSymbol,
1233 PACKET_P,
1234 PACKET_p,
1235 PACKET_Z0,
1236 PACKET_Z1,
1237 PACKET_Z2,
1238 PACKET_Z3,
1239 PACKET_Z4,
1240 PACKET_vFile_open,
1241 PACKET_vFile_pread,
1242 PACKET_vFile_pwrite,
1243 PACKET_vFile_close,
1244 PACKET_vFile_unlink,
1245 PACKET_vFile_readlink,
1246 PACKET_qXfer_auxv,
1247 PACKET_qXfer_features,
1248 PACKET_qXfer_libraries,
1249 PACKET_qXfer_libraries_svr4,
1250 PACKET_qXfer_memory_map,
1251 PACKET_qXfer_spu_read,
1252 PACKET_qXfer_spu_write,
1253 PACKET_qXfer_osdata,
1254 PACKET_qXfer_threads,
1255 PACKET_qXfer_statictrace_read,
1256 PACKET_qXfer_traceframe_info,
1257 PACKET_qGetTIBAddr,
1258 PACKET_qGetTLSAddr,
1259 PACKET_qSupported,
1260 PACKET_QPassSignals,
1261 PACKET_qSearch_memory,
1262 PACKET_vAttach,
1263 PACKET_vRun,
1264 PACKET_QStartNoAckMode,
1265 PACKET_vKill,
1266 PACKET_qXfer_siginfo_read,
1267 PACKET_qXfer_siginfo_write,
1268 PACKET_qAttached,
1269 PACKET_ConditionalTracepoints,
1270 PACKET_ConditionalBreakpoints,
1271 PACKET_FastTracepoints,
1272 PACKET_StaticTracepoints,
1273 PACKET_InstallInTrace,
1274 PACKET_bc,
1275 PACKET_bs,
1276 PACKET_TracepointSource,
1277 PACKET_QAllow,
1278 PACKET_qXfer_fdpic,
1279 PACKET_QDisableRandomization,
1280 PACKET_MAX
1281 };
1282
1283 static struct packet_config remote_protocol_packets[PACKET_MAX];
1284
1285 static void
1286 set_remote_protocol_packet_cmd (char *args, int from_tty,
1287 struct cmd_list_element *c)
1288 {
1289 struct packet_config *packet;
1290
1291 for (packet = remote_protocol_packets;
1292 packet < &remote_protocol_packets[PACKET_MAX];
1293 packet++)
1294 {
1295 if (&packet->detect == c->var)
1296 {
1297 update_packet_config (packet);
1298 return;
1299 }
1300 }
1301 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1302 c->name);
1303 }
1304
1305 static void
1306 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1307 struct cmd_list_element *c,
1308 const char *value)
1309 {
1310 struct packet_config *packet;
1311
1312 for (packet = remote_protocol_packets;
1313 packet < &remote_protocol_packets[PACKET_MAX];
1314 packet++)
1315 {
1316 if (&packet->detect == c->var)
1317 {
1318 show_packet_config_cmd (packet);
1319 return;
1320 }
1321 }
1322 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1323 c->name);
1324 }
1325
1326 /* Should we try one of the 'Z' requests? */
1327
1328 enum Z_packet_type
1329 {
1330 Z_PACKET_SOFTWARE_BP,
1331 Z_PACKET_HARDWARE_BP,
1332 Z_PACKET_WRITE_WP,
1333 Z_PACKET_READ_WP,
1334 Z_PACKET_ACCESS_WP,
1335 NR_Z_PACKET_TYPES
1336 };
1337
1338 /* For compatibility with older distributions. Provide a ``set remote
1339 Z-packet ...'' command that updates all the Z packet types. */
1340
1341 static enum auto_boolean remote_Z_packet_detect;
1342
1343 static void
1344 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1345 struct cmd_list_element *c)
1346 {
1347 int i;
1348
1349 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1350 {
1351 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1352 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1353 }
1354 }
1355
1356 static void
1357 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c,
1359 const char *value)
1360 {
1361 int i;
1362
1363 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1364 {
1365 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1366 }
1367 }
1368
1369 /* Should we try the 'ThreadInfo' query packet?
1370
1371 This variable (NOT available to the user: auto-detect only!)
1372 determines whether GDB will use the new, simpler "ThreadInfo"
1373 query or the older, more complex syntax for thread queries.
1374 This is an auto-detect variable (set to true at each connect,
1375 and set to false when the target fails to recognize it). */
1376
1377 static int use_threadinfo_query;
1378 static int use_threadextra_query;
1379
1380 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1381 static struct async_signal_handler *sigint_remote_twice_token;
1382 static struct async_signal_handler *sigint_remote_token;
1383
1384 \f
1385 /* Asynchronous signal handle registered as event loop source for
1386 when we have pending events ready to be passed to the core. */
1387
1388 static struct async_event_handler *remote_async_inferior_event_token;
1389
1390 /* Asynchronous signal handle registered as event loop source for when
1391 the remote sent us a %Stop notification. The registered callback
1392 will do a vStopped sequence to pull the rest of the events out of
1393 the remote side into our event queue. */
1394
1395 static struct async_event_handler *remote_async_get_pending_events_token;
1396 \f
1397
1398 static ptid_t magic_null_ptid;
1399 static ptid_t not_sent_ptid;
1400 static ptid_t any_thread_ptid;
1401
1402 /* These are the threads which we last sent to the remote system. The
1403 TID member will be -1 for all or -2 for not sent yet. */
1404
1405 static ptid_t general_thread;
1406 static ptid_t continue_thread;
1407
1408 /* This the traceframe which we last selected on the remote system.
1409 It will be -1 if no traceframe is selected. */
1410 static int remote_traceframe_number = -1;
1411
1412 /* Find out if the stub attached to PID (and hence GDB should offer to
1413 detach instead of killing it when bailing out). */
1414
1415 static int
1416 remote_query_attached (int pid)
1417 {
1418 struct remote_state *rs = get_remote_state ();
1419
1420 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1421 return 0;
1422
1423 if (remote_multi_process_p (rs))
1424 sprintf (rs->buf, "qAttached:%x", pid);
1425 else
1426 sprintf (rs->buf, "qAttached");
1427
1428 putpkt (rs->buf);
1429 getpkt (&rs->buf, &rs->buf_size, 0);
1430
1431 switch (packet_ok (rs->buf,
1432 &remote_protocol_packets[PACKET_qAttached]))
1433 {
1434 case PACKET_OK:
1435 if (strcmp (rs->buf, "1") == 0)
1436 return 1;
1437 break;
1438 case PACKET_ERROR:
1439 warning (_("Remote failure reply: %s"), rs->buf);
1440 break;
1441 case PACKET_UNKNOWN:
1442 break;
1443 }
1444
1445 return 0;
1446 }
1447
1448 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1449 has been invented by GDB, instead of reported by the target. Since
1450 we can be connected to a remote system before before knowing about
1451 any inferior, mark the target with execution when we find the first
1452 inferior. If ATTACHED is 1, then we had just attached to this
1453 inferior. If it is 0, then we just created this inferior. If it
1454 is -1, then try querying the remote stub to find out if it had
1455 attached to the inferior or not. */
1456
1457 static struct inferior *
1458 remote_add_inferior (int fake_pid_p, int pid, int attached)
1459 {
1460 struct inferior *inf;
1461
1462 /* Check whether this process we're learning about is to be
1463 considered attached, or if is to be considered to have been
1464 spawned by the stub. */
1465 if (attached == -1)
1466 attached = remote_query_attached (pid);
1467
1468 if (gdbarch_has_global_solist (target_gdbarch))
1469 {
1470 /* If the target shares code across all inferiors, then every
1471 attach adds a new inferior. */
1472 inf = add_inferior (pid);
1473
1474 /* ... and every inferior is bound to the same program space.
1475 However, each inferior may still have its own address
1476 space. */
1477 inf->aspace = maybe_new_address_space ();
1478 inf->pspace = current_program_space;
1479 }
1480 else
1481 {
1482 /* In the traditional debugging scenario, there's a 1-1 match
1483 between program/address spaces. We simply bind the inferior
1484 to the program space's address space. */
1485 inf = current_inferior ();
1486 inferior_appeared (inf, pid);
1487 }
1488
1489 inf->attach_flag = attached;
1490 inf->fake_pid_p = fake_pid_p;
1491
1492 return inf;
1493 }
1494
1495 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1496 according to RUNNING. */
1497
1498 static void
1499 remote_add_thread (ptid_t ptid, int running)
1500 {
1501 add_thread (ptid);
1502
1503 set_executing (ptid, running);
1504 set_running (ptid, running);
1505 }
1506
1507 /* Come here when we learn about a thread id from the remote target.
1508 It may be the first time we hear about such thread, so take the
1509 opportunity to add it to GDB's thread list. In case this is the
1510 first time we're noticing its corresponding inferior, add it to
1511 GDB's inferior list as well. */
1512
1513 static void
1514 remote_notice_new_inferior (ptid_t currthread, int running)
1515 {
1516 /* If this is a new thread, add it to GDB's thread list.
1517 If we leave it up to WFI to do this, bad things will happen. */
1518
1519 if (in_thread_list (currthread) && is_exited (currthread))
1520 {
1521 /* We're seeing an event on a thread id we knew had exited.
1522 This has to be a new thread reusing the old id. Add it. */
1523 remote_add_thread (currthread, running);
1524 return;
1525 }
1526
1527 if (!in_thread_list (currthread))
1528 {
1529 struct inferior *inf = NULL;
1530 int pid = ptid_get_pid (currthread);
1531
1532 if (ptid_is_pid (inferior_ptid)
1533 && pid == ptid_get_pid (inferior_ptid))
1534 {
1535 /* inferior_ptid has no thread member yet. This can happen
1536 with the vAttach -> remote_wait,"TAAthread:" path if the
1537 stub doesn't support qC. This is the first stop reported
1538 after an attach, so this is the main thread. Update the
1539 ptid in the thread list. */
1540 if (in_thread_list (pid_to_ptid (pid)))
1541 thread_change_ptid (inferior_ptid, currthread);
1542 else
1543 {
1544 remote_add_thread (currthread, running);
1545 inferior_ptid = currthread;
1546 }
1547 return;
1548 }
1549
1550 if (ptid_equal (magic_null_ptid, inferior_ptid))
1551 {
1552 /* inferior_ptid is not set yet. This can happen with the
1553 vRun -> remote_wait,"TAAthread:" path if the stub
1554 doesn't support qC. This is the first stop reported
1555 after an attach, so this is the main thread. Update the
1556 ptid in the thread list. */
1557 thread_change_ptid (inferior_ptid, currthread);
1558 return;
1559 }
1560
1561 /* When connecting to a target remote, or to a target
1562 extended-remote which already was debugging an inferior, we
1563 may not know about it yet. Add it before adding its child
1564 thread, so notifications are emitted in a sensible order. */
1565 if (!in_inferior_list (ptid_get_pid (currthread)))
1566 {
1567 struct remote_state *rs = get_remote_state ();
1568 int fake_pid_p = !remote_multi_process_p (rs);
1569
1570 inf = remote_add_inferior (fake_pid_p,
1571 ptid_get_pid (currthread), -1);
1572 }
1573
1574 /* This is really a new thread. Add it. */
1575 remote_add_thread (currthread, running);
1576
1577 /* If we found a new inferior, let the common code do whatever
1578 it needs to with it (e.g., read shared libraries, insert
1579 breakpoints). */
1580 if (inf != NULL)
1581 notice_new_inferior (currthread, running, 0);
1582 }
1583 }
1584
1585 /* Return the private thread data, creating it if necessary. */
1586
1587 struct private_thread_info *
1588 demand_private_info (ptid_t ptid)
1589 {
1590 struct thread_info *info = find_thread_ptid (ptid);
1591
1592 gdb_assert (info);
1593
1594 if (!info->private)
1595 {
1596 info->private = xmalloc (sizeof (*(info->private)));
1597 info->private_dtor = free_private_thread_info;
1598 info->private->core = -1;
1599 info->private->extra = 0;
1600 }
1601
1602 return info->private;
1603 }
1604
1605 /* Call this function as a result of
1606 1) A halt indication (T packet) containing a thread id
1607 2) A direct query of currthread
1608 3) Successful execution of set thread */
1609
1610 static void
1611 record_currthread (ptid_t currthread)
1612 {
1613 general_thread = currthread;
1614 }
1615
1616 static char *last_pass_packet;
1617
1618 /* If 'QPassSignals' is supported, tell the remote stub what signals
1619 it can simply pass through to the inferior without reporting. */
1620
1621 static void
1622 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1623 {
1624 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1625 {
1626 char *pass_packet, *p;
1627 int count = 0, i;
1628
1629 gdb_assert (numsigs < 256);
1630 for (i = 0; i < numsigs; i++)
1631 {
1632 if (pass_signals[i])
1633 count++;
1634 }
1635 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1636 strcpy (pass_packet, "QPassSignals:");
1637 p = pass_packet + strlen (pass_packet);
1638 for (i = 0; i < numsigs; i++)
1639 {
1640 if (pass_signals[i])
1641 {
1642 if (i >= 16)
1643 *p++ = tohex (i >> 4);
1644 *p++ = tohex (i & 15);
1645 if (count)
1646 *p++ = ';';
1647 else
1648 break;
1649 count--;
1650 }
1651 }
1652 *p = 0;
1653 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1654 {
1655 struct remote_state *rs = get_remote_state ();
1656 char *buf = rs->buf;
1657
1658 putpkt (pass_packet);
1659 getpkt (&rs->buf, &rs->buf_size, 0);
1660 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1661 if (last_pass_packet)
1662 xfree (last_pass_packet);
1663 last_pass_packet = pass_packet;
1664 }
1665 else
1666 xfree (pass_packet);
1667 }
1668 }
1669
1670 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1671 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1672 thread. If GEN is set, set the general thread, if not, then set
1673 the step/continue thread. */
1674 static void
1675 set_thread (struct ptid ptid, int gen)
1676 {
1677 struct remote_state *rs = get_remote_state ();
1678 ptid_t state = gen ? general_thread : continue_thread;
1679 char *buf = rs->buf;
1680 char *endbuf = rs->buf + get_remote_packet_size ();
1681
1682 if (ptid_equal (state, ptid))
1683 return;
1684
1685 *buf++ = 'H';
1686 *buf++ = gen ? 'g' : 'c';
1687 if (ptid_equal (ptid, magic_null_ptid))
1688 xsnprintf (buf, endbuf - buf, "0");
1689 else if (ptid_equal (ptid, any_thread_ptid))
1690 xsnprintf (buf, endbuf - buf, "0");
1691 else if (ptid_equal (ptid, minus_one_ptid))
1692 xsnprintf (buf, endbuf - buf, "-1");
1693 else
1694 write_ptid (buf, endbuf, ptid);
1695 putpkt (rs->buf);
1696 getpkt (&rs->buf, &rs->buf_size, 0);
1697 if (gen)
1698 general_thread = ptid;
1699 else
1700 continue_thread = ptid;
1701 }
1702
1703 static void
1704 set_general_thread (struct ptid ptid)
1705 {
1706 set_thread (ptid, 1);
1707 }
1708
1709 static void
1710 set_continue_thread (struct ptid ptid)
1711 {
1712 set_thread (ptid, 0);
1713 }
1714
1715 /* Change the remote current process. Which thread within the process
1716 ends up selected isn't important, as long as it is the same process
1717 as what INFERIOR_PTID points to.
1718
1719 This comes from that fact that there is no explicit notion of
1720 "selected process" in the protocol. The selected process for
1721 general operations is the process the selected general thread
1722 belongs to. */
1723
1724 static void
1725 set_general_process (void)
1726 {
1727 struct remote_state *rs = get_remote_state ();
1728
1729 /* If the remote can't handle multiple processes, don't bother. */
1730 if (!rs->extended || !remote_multi_process_p (rs))
1731 return;
1732
1733 /* We only need to change the remote current thread if it's pointing
1734 at some other process. */
1735 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1736 set_general_thread (inferior_ptid);
1737 }
1738
1739 \f
1740 /* Return nonzero if the thread PTID is still alive on the remote
1741 system. */
1742
1743 static int
1744 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1745 {
1746 struct remote_state *rs = get_remote_state ();
1747 char *p, *endp;
1748
1749 if (ptid_equal (ptid, magic_null_ptid))
1750 /* The main thread is always alive. */
1751 return 1;
1752
1753 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1754 /* The main thread is always alive. This can happen after a
1755 vAttach, if the remote side doesn't support
1756 multi-threading. */
1757 return 1;
1758
1759 p = rs->buf;
1760 endp = rs->buf + get_remote_packet_size ();
1761
1762 *p++ = 'T';
1763 write_ptid (p, endp, ptid);
1764
1765 putpkt (rs->buf);
1766 getpkt (&rs->buf, &rs->buf_size, 0);
1767 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1768 }
1769
1770 /* About these extended threadlist and threadinfo packets. They are
1771 variable length packets but, the fields within them are often fixed
1772 length. They are redundent enough to send over UDP as is the
1773 remote protocol in general. There is a matching unit test module
1774 in libstub. */
1775
1776 #define OPAQUETHREADBYTES 8
1777
1778 /* a 64 bit opaque identifier */
1779 typedef unsigned char threadref[OPAQUETHREADBYTES];
1780
1781 /* WARNING: This threadref data structure comes from the remote O.S.,
1782 libstub protocol encoding, and remote.c. It is not particularly
1783 changable. */
1784
1785 /* Right now, the internal structure is int. We want it to be bigger.
1786 Plan to fix this. */
1787
1788 typedef int gdb_threadref; /* Internal GDB thread reference. */
1789
1790 /* gdb_ext_thread_info is an internal GDB data structure which is
1791 equivalent to the reply of the remote threadinfo packet. */
1792
1793 struct gdb_ext_thread_info
1794 {
1795 threadref threadid; /* External form of thread reference. */
1796 int active; /* Has state interesting to GDB?
1797 regs, stack. */
1798 char display[256]; /* Brief state display, name,
1799 blocked/suspended. */
1800 char shortname[32]; /* To be used to name threads. */
1801 char more_display[256]; /* Long info, statistics, queue depth,
1802 whatever. */
1803 };
1804
1805 /* The volume of remote transfers can be limited by submitting
1806 a mask containing bits specifying the desired information.
1807 Use a union of these values as the 'selection' parameter to
1808 get_thread_info. FIXME: Make these TAG names more thread specific. */
1809
1810 #define TAG_THREADID 1
1811 #define TAG_EXISTS 2
1812 #define TAG_DISPLAY 4
1813 #define TAG_THREADNAME 8
1814 #define TAG_MOREDISPLAY 16
1815
1816 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1817
1818 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1819
1820 static char *unpack_nibble (char *buf, int *val);
1821
1822 static char *pack_nibble (char *buf, int nibble);
1823
1824 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1825
1826 static char *unpack_byte (char *buf, int *value);
1827
1828 static char *pack_int (char *buf, int value);
1829
1830 static char *unpack_int (char *buf, int *value);
1831
1832 static char *unpack_string (char *src, char *dest, int length);
1833
1834 static char *pack_threadid (char *pkt, threadref *id);
1835
1836 static char *unpack_threadid (char *inbuf, threadref *id);
1837
1838 void int_to_threadref (threadref *id, int value);
1839
1840 static int threadref_to_int (threadref *ref);
1841
1842 static void copy_threadref (threadref *dest, threadref *src);
1843
1844 static int threadmatch (threadref *dest, threadref *src);
1845
1846 static char *pack_threadinfo_request (char *pkt, int mode,
1847 threadref *id);
1848
1849 static int remote_unpack_thread_info_response (char *pkt,
1850 threadref *expectedref,
1851 struct gdb_ext_thread_info
1852 *info);
1853
1854
1855 static int remote_get_threadinfo (threadref *threadid,
1856 int fieldset, /*TAG mask */
1857 struct gdb_ext_thread_info *info);
1858
1859 static char *pack_threadlist_request (char *pkt, int startflag,
1860 int threadcount,
1861 threadref *nextthread);
1862
1863 static int parse_threadlist_response (char *pkt,
1864 int result_limit,
1865 threadref *original_echo,
1866 threadref *resultlist,
1867 int *doneflag);
1868
1869 static int remote_get_threadlist (int startflag,
1870 threadref *nextthread,
1871 int result_limit,
1872 int *done,
1873 int *result_count,
1874 threadref *threadlist);
1875
1876 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1877
1878 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1879 void *context, int looplimit);
1880
1881 static int remote_newthread_step (threadref *ref, void *context);
1882
1883
1884 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1885 buffer we're allowed to write to. Returns
1886 BUF+CHARACTERS_WRITTEN. */
1887
1888 static char *
1889 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1890 {
1891 int pid, tid;
1892 struct remote_state *rs = get_remote_state ();
1893
1894 if (remote_multi_process_p (rs))
1895 {
1896 pid = ptid_get_pid (ptid);
1897 if (pid < 0)
1898 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1899 else
1900 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1901 }
1902 tid = ptid_get_tid (ptid);
1903 if (tid < 0)
1904 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1905 else
1906 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1907
1908 return buf;
1909 }
1910
1911 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1912 passed the last parsed char. Returns null_ptid on error. */
1913
1914 static ptid_t
1915 read_ptid (char *buf, char **obuf)
1916 {
1917 char *p = buf;
1918 char *pp;
1919 ULONGEST pid = 0, tid = 0;
1920
1921 if (*p == 'p')
1922 {
1923 /* Multi-process ptid. */
1924 pp = unpack_varlen_hex (p + 1, &pid);
1925 if (*pp != '.')
1926 error (_("invalid remote ptid: %s"), p);
1927
1928 p = pp;
1929 pp = unpack_varlen_hex (p + 1, &tid);
1930 if (obuf)
1931 *obuf = pp;
1932 return ptid_build (pid, 0, tid);
1933 }
1934
1935 /* No multi-process. Just a tid. */
1936 pp = unpack_varlen_hex (p, &tid);
1937
1938 /* Since the stub is not sending a process id, then default to
1939 what's in inferior_ptid, unless it's null at this point. If so,
1940 then since there's no way to know the pid of the reported
1941 threads, use the magic number. */
1942 if (ptid_equal (inferior_ptid, null_ptid))
1943 pid = ptid_get_pid (magic_null_ptid);
1944 else
1945 pid = ptid_get_pid (inferior_ptid);
1946
1947 if (obuf)
1948 *obuf = pp;
1949 return ptid_build (pid, 0, tid);
1950 }
1951
1952 /* Encode 64 bits in 16 chars of hex. */
1953
1954 static const char hexchars[] = "0123456789abcdef";
1955
1956 static int
1957 ishex (int ch, int *val)
1958 {
1959 if ((ch >= 'a') && (ch <= 'f'))
1960 {
1961 *val = ch - 'a' + 10;
1962 return 1;
1963 }
1964 if ((ch >= 'A') && (ch <= 'F'))
1965 {
1966 *val = ch - 'A' + 10;
1967 return 1;
1968 }
1969 if ((ch >= '0') && (ch <= '9'))
1970 {
1971 *val = ch - '0';
1972 return 1;
1973 }
1974 return 0;
1975 }
1976
1977 static int
1978 stubhex (int ch)
1979 {
1980 if (ch >= 'a' && ch <= 'f')
1981 return ch - 'a' + 10;
1982 if (ch >= '0' && ch <= '9')
1983 return ch - '0';
1984 if (ch >= 'A' && ch <= 'F')
1985 return ch - 'A' + 10;
1986 return -1;
1987 }
1988
1989 static int
1990 stub_unpack_int (char *buff, int fieldlength)
1991 {
1992 int nibble;
1993 int retval = 0;
1994
1995 while (fieldlength)
1996 {
1997 nibble = stubhex (*buff++);
1998 retval |= nibble;
1999 fieldlength--;
2000 if (fieldlength)
2001 retval = retval << 4;
2002 }
2003 return retval;
2004 }
2005
2006 char *
2007 unpack_varlen_hex (char *buff, /* packet to parse */
2008 ULONGEST *result)
2009 {
2010 int nibble;
2011 ULONGEST retval = 0;
2012
2013 while (ishex (*buff, &nibble))
2014 {
2015 buff++;
2016 retval = retval << 4;
2017 retval |= nibble & 0x0f;
2018 }
2019 *result = retval;
2020 return buff;
2021 }
2022
2023 static char *
2024 unpack_nibble (char *buf, int *val)
2025 {
2026 *val = fromhex (*buf++);
2027 return buf;
2028 }
2029
2030 static char *
2031 pack_nibble (char *buf, int nibble)
2032 {
2033 *buf++ = hexchars[(nibble & 0x0f)];
2034 return buf;
2035 }
2036
2037 static char *
2038 pack_hex_byte (char *pkt, int byte)
2039 {
2040 *pkt++ = hexchars[(byte >> 4) & 0xf];
2041 *pkt++ = hexchars[(byte & 0xf)];
2042 return pkt;
2043 }
2044
2045 static char *
2046 unpack_byte (char *buf, int *value)
2047 {
2048 *value = stub_unpack_int (buf, 2);
2049 return buf + 2;
2050 }
2051
2052 static char *
2053 pack_int (char *buf, int value)
2054 {
2055 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2056 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2057 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2058 buf = pack_hex_byte (buf, (value & 0xff));
2059 return buf;
2060 }
2061
2062 static char *
2063 unpack_int (char *buf, int *value)
2064 {
2065 *value = stub_unpack_int (buf, 8);
2066 return buf + 8;
2067 }
2068
2069 #if 0 /* Currently unused, uncomment when needed. */
2070 static char *pack_string (char *pkt, char *string);
2071
2072 static char *
2073 pack_string (char *pkt, char *string)
2074 {
2075 char ch;
2076 int len;
2077
2078 len = strlen (string);
2079 if (len > 200)
2080 len = 200; /* Bigger than most GDB packets, junk??? */
2081 pkt = pack_hex_byte (pkt, len);
2082 while (len-- > 0)
2083 {
2084 ch = *string++;
2085 if ((ch == '\0') || (ch == '#'))
2086 ch = '*'; /* Protect encapsulation. */
2087 *pkt++ = ch;
2088 }
2089 return pkt;
2090 }
2091 #endif /* 0 (unused) */
2092
2093 static char *
2094 unpack_string (char *src, char *dest, int length)
2095 {
2096 while (length--)
2097 *dest++ = *src++;
2098 *dest = '\0';
2099 return src;
2100 }
2101
2102 static char *
2103 pack_threadid (char *pkt, threadref *id)
2104 {
2105 char *limit;
2106 unsigned char *altid;
2107
2108 altid = (unsigned char *) id;
2109 limit = pkt + BUF_THREAD_ID_SIZE;
2110 while (pkt < limit)
2111 pkt = pack_hex_byte (pkt, *altid++);
2112 return pkt;
2113 }
2114
2115
2116 static char *
2117 unpack_threadid (char *inbuf, threadref *id)
2118 {
2119 char *altref;
2120 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2121 int x, y;
2122
2123 altref = (char *) id;
2124
2125 while (inbuf < limit)
2126 {
2127 x = stubhex (*inbuf++);
2128 y = stubhex (*inbuf++);
2129 *altref++ = (x << 4) | y;
2130 }
2131 return inbuf;
2132 }
2133
2134 /* Externally, threadrefs are 64 bits but internally, they are still
2135 ints. This is due to a mismatch of specifications. We would like
2136 to use 64bit thread references internally. This is an adapter
2137 function. */
2138
2139 void
2140 int_to_threadref (threadref *id, int value)
2141 {
2142 unsigned char *scan;
2143
2144 scan = (unsigned char *) id;
2145 {
2146 int i = 4;
2147 while (i--)
2148 *scan++ = 0;
2149 }
2150 *scan++ = (value >> 24) & 0xff;
2151 *scan++ = (value >> 16) & 0xff;
2152 *scan++ = (value >> 8) & 0xff;
2153 *scan++ = (value & 0xff);
2154 }
2155
2156 static int
2157 threadref_to_int (threadref *ref)
2158 {
2159 int i, value = 0;
2160 unsigned char *scan;
2161
2162 scan = *ref;
2163 scan += 4;
2164 i = 4;
2165 while (i-- > 0)
2166 value = (value << 8) | ((*scan++) & 0xff);
2167 return value;
2168 }
2169
2170 static void
2171 copy_threadref (threadref *dest, threadref *src)
2172 {
2173 int i;
2174 unsigned char *csrc, *cdest;
2175
2176 csrc = (unsigned char *) src;
2177 cdest = (unsigned char *) dest;
2178 i = 8;
2179 while (i--)
2180 *cdest++ = *csrc++;
2181 }
2182
2183 static int
2184 threadmatch (threadref *dest, threadref *src)
2185 {
2186 /* Things are broken right now, so just assume we got a match. */
2187 #if 0
2188 unsigned char *srcp, *destp;
2189 int i, result;
2190 srcp = (char *) src;
2191 destp = (char *) dest;
2192
2193 result = 1;
2194 while (i-- > 0)
2195 result &= (*srcp++ == *destp++) ? 1 : 0;
2196 return result;
2197 #endif
2198 return 1;
2199 }
2200
2201 /*
2202 threadid:1, # always request threadid
2203 context_exists:2,
2204 display:4,
2205 unique_name:8,
2206 more_display:16
2207 */
2208
2209 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2210
2211 static char *
2212 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2213 {
2214 *pkt++ = 'q'; /* Info Query */
2215 *pkt++ = 'P'; /* process or thread info */
2216 pkt = pack_int (pkt, mode); /* mode */
2217 pkt = pack_threadid (pkt, id); /* threadid */
2218 *pkt = '\0'; /* terminate */
2219 return pkt;
2220 }
2221
2222 /* These values tag the fields in a thread info response packet. */
2223 /* Tagging the fields allows us to request specific fields and to
2224 add more fields as time goes by. */
2225
2226 #define TAG_THREADID 1 /* Echo the thread identifier. */
2227 #define TAG_EXISTS 2 /* Is this process defined enough to
2228 fetch registers and its stack? */
2229 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2230 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2231 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2232 the process. */
2233
2234 static int
2235 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2236 struct gdb_ext_thread_info *info)
2237 {
2238 struct remote_state *rs = get_remote_state ();
2239 int mask, length;
2240 int tag;
2241 threadref ref;
2242 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2243 int retval = 1;
2244
2245 /* info->threadid = 0; FIXME: implement zero_threadref. */
2246 info->active = 0;
2247 info->display[0] = '\0';
2248 info->shortname[0] = '\0';
2249 info->more_display[0] = '\0';
2250
2251 /* Assume the characters indicating the packet type have been
2252 stripped. */
2253 pkt = unpack_int (pkt, &mask); /* arg mask */
2254 pkt = unpack_threadid (pkt, &ref);
2255
2256 if (mask == 0)
2257 warning (_("Incomplete response to threadinfo request."));
2258 if (!threadmatch (&ref, expectedref))
2259 { /* This is an answer to a different request. */
2260 warning (_("ERROR RMT Thread info mismatch."));
2261 return 0;
2262 }
2263 copy_threadref (&info->threadid, &ref);
2264
2265 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2266
2267 /* Packets are terminated with nulls. */
2268 while ((pkt < limit) && mask && *pkt)
2269 {
2270 pkt = unpack_int (pkt, &tag); /* tag */
2271 pkt = unpack_byte (pkt, &length); /* length */
2272 if (!(tag & mask)) /* Tags out of synch with mask. */
2273 {
2274 warning (_("ERROR RMT: threadinfo tag mismatch."));
2275 retval = 0;
2276 break;
2277 }
2278 if (tag == TAG_THREADID)
2279 {
2280 if (length != 16)
2281 {
2282 warning (_("ERROR RMT: length of threadid is not 16."));
2283 retval = 0;
2284 break;
2285 }
2286 pkt = unpack_threadid (pkt, &ref);
2287 mask = mask & ~TAG_THREADID;
2288 continue;
2289 }
2290 if (tag == TAG_EXISTS)
2291 {
2292 info->active = stub_unpack_int (pkt, length);
2293 pkt += length;
2294 mask = mask & ~(TAG_EXISTS);
2295 if (length > 8)
2296 {
2297 warning (_("ERROR RMT: 'exists' length too long."));
2298 retval = 0;
2299 break;
2300 }
2301 continue;
2302 }
2303 if (tag == TAG_THREADNAME)
2304 {
2305 pkt = unpack_string (pkt, &info->shortname[0], length);
2306 mask = mask & ~TAG_THREADNAME;
2307 continue;
2308 }
2309 if (tag == TAG_DISPLAY)
2310 {
2311 pkt = unpack_string (pkt, &info->display[0], length);
2312 mask = mask & ~TAG_DISPLAY;
2313 continue;
2314 }
2315 if (tag == TAG_MOREDISPLAY)
2316 {
2317 pkt = unpack_string (pkt, &info->more_display[0], length);
2318 mask = mask & ~TAG_MOREDISPLAY;
2319 continue;
2320 }
2321 warning (_("ERROR RMT: unknown thread info tag."));
2322 break; /* Not a tag we know about. */
2323 }
2324 return retval;
2325 }
2326
2327 static int
2328 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2329 struct gdb_ext_thread_info *info)
2330 {
2331 struct remote_state *rs = get_remote_state ();
2332 int result;
2333
2334 pack_threadinfo_request (rs->buf, fieldset, threadid);
2335 putpkt (rs->buf);
2336 getpkt (&rs->buf, &rs->buf_size, 0);
2337
2338 if (rs->buf[0] == '\0')
2339 return 0;
2340
2341 result = remote_unpack_thread_info_response (rs->buf + 2,
2342 threadid, info);
2343 return result;
2344 }
2345
2346 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2347
2348 static char *
2349 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2350 threadref *nextthread)
2351 {
2352 *pkt++ = 'q'; /* info query packet */
2353 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2354 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2355 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2356 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2357 *pkt = '\0';
2358 return pkt;
2359 }
2360
2361 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2362
2363 static int
2364 parse_threadlist_response (char *pkt, int result_limit,
2365 threadref *original_echo, threadref *resultlist,
2366 int *doneflag)
2367 {
2368 struct remote_state *rs = get_remote_state ();
2369 char *limit;
2370 int count, resultcount, done;
2371
2372 resultcount = 0;
2373 /* Assume the 'q' and 'M chars have been stripped. */
2374 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2375 /* done parse past here */
2376 pkt = unpack_byte (pkt, &count); /* count field */
2377 pkt = unpack_nibble (pkt, &done);
2378 /* The first threadid is the argument threadid. */
2379 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2380 while ((count-- > 0) && (pkt < limit))
2381 {
2382 pkt = unpack_threadid (pkt, resultlist++);
2383 if (resultcount++ >= result_limit)
2384 break;
2385 }
2386 if (doneflag)
2387 *doneflag = done;
2388 return resultcount;
2389 }
2390
2391 static int
2392 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2393 int *done, int *result_count, threadref *threadlist)
2394 {
2395 struct remote_state *rs = get_remote_state ();
2396 static threadref echo_nextthread;
2397 int result = 1;
2398
2399 /* Trancate result limit to be smaller than the packet size. */
2400 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2401 >= get_remote_packet_size ())
2402 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2403
2404 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2405 putpkt (rs->buf);
2406 getpkt (&rs->buf, &rs->buf_size, 0);
2407
2408 if (*rs->buf == '\0')
2409 return 0;
2410 else
2411 *result_count =
2412 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2413 threadlist, done);
2414
2415 if (!threadmatch (&echo_nextthread, nextthread))
2416 {
2417 /* FIXME: This is a good reason to drop the packet. */
2418 /* Possably, there is a duplicate response. */
2419 /* Possabilities :
2420 retransmit immediatly - race conditions
2421 retransmit after timeout - yes
2422 exit
2423 wait for packet, then exit
2424 */
2425 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2426 return 0; /* I choose simply exiting. */
2427 }
2428 if (*result_count <= 0)
2429 {
2430 if (*done != 1)
2431 {
2432 warning (_("RMT ERROR : failed to get remote thread list."));
2433 result = 0;
2434 }
2435 return result; /* break; */
2436 }
2437 if (*result_count > result_limit)
2438 {
2439 *result_count = 0;
2440 warning (_("RMT ERROR: threadlist response longer than requested."));
2441 return 0;
2442 }
2443 return result;
2444 }
2445
2446 /* This is the interface between remote and threads, remotes upper
2447 interface. */
2448
2449 /* remote_find_new_threads retrieves the thread list and for each
2450 thread in the list, looks up the thread in GDB's internal list,
2451 adding the thread if it does not already exist. This involves
2452 getting partial thread lists from the remote target so, polling the
2453 quit_flag is required. */
2454
2455
2456 /* About this many threadisds fit in a packet. */
2457
2458 #define MAXTHREADLISTRESULTS 32
2459
2460 static int
2461 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2462 int looplimit)
2463 {
2464 int done, i, result_count;
2465 int startflag = 1;
2466 int result = 1;
2467 int loopcount = 0;
2468 static threadref nextthread;
2469 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2470
2471 done = 0;
2472 while (!done)
2473 {
2474 if (loopcount++ > looplimit)
2475 {
2476 result = 0;
2477 warning (_("Remote fetch threadlist -infinite loop-."));
2478 break;
2479 }
2480 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2481 &done, &result_count, resultthreadlist))
2482 {
2483 result = 0;
2484 break;
2485 }
2486 /* Clear for later iterations. */
2487 startflag = 0;
2488 /* Setup to resume next batch of thread references, set nextthread. */
2489 if (result_count >= 1)
2490 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2491 i = 0;
2492 while (result_count--)
2493 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2494 break;
2495 }
2496 return result;
2497 }
2498
2499 static int
2500 remote_newthread_step (threadref *ref, void *context)
2501 {
2502 int pid = ptid_get_pid (inferior_ptid);
2503 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2504
2505 if (!in_thread_list (ptid))
2506 add_thread (ptid);
2507 return 1; /* continue iterator */
2508 }
2509
2510 #define CRAZY_MAX_THREADS 1000
2511
2512 static ptid_t
2513 remote_current_thread (ptid_t oldpid)
2514 {
2515 struct remote_state *rs = get_remote_state ();
2516
2517 putpkt ("qC");
2518 getpkt (&rs->buf, &rs->buf_size, 0);
2519 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2520 return read_ptid (&rs->buf[2], NULL);
2521 else
2522 return oldpid;
2523 }
2524
2525 /* Find new threads for info threads command.
2526 * Original version, using John Metzler's thread protocol.
2527 */
2528
2529 static void
2530 remote_find_new_threads (void)
2531 {
2532 remote_threadlist_iterator (remote_newthread_step, 0,
2533 CRAZY_MAX_THREADS);
2534 }
2535
2536 #if defined(HAVE_LIBEXPAT)
2537
2538 typedef struct thread_item
2539 {
2540 ptid_t ptid;
2541 char *extra;
2542 int core;
2543 } thread_item_t;
2544 DEF_VEC_O(thread_item_t);
2545
2546 struct threads_parsing_context
2547 {
2548 VEC (thread_item_t) *items;
2549 };
2550
2551 static void
2552 start_thread (struct gdb_xml_parser *parser,
2553 const struct gdb_xml_element *element,
2554 void *user_data, VEC(gdb_xml_value_s) *attributes)
2555 {
2556 struct threads_parsing_context *data = user_data;
2557
2558 struct thread_item item;
2559 char *id;
2560 struct gdb_xml_value *attr;
2561
2562 id = xml_find_attribute (attributes, "id")->value;
2563 item.ptid = read_ptid (id, NULL);
2564
2565 attr = xml_find_attribute (attributes, "core");
2566 if (attr != NULL)
2567 item.core = *(ULONGEST *) attr->value;
2568 else
2569 item.core = -1;
2570
2571 item.extra = 0;
2572
2573 VEC_safe_push (thread_item_t, data->items, &item);
2574 }
2575
2576 static void
2577 end_thread (struct gdb_xml_parser *parser,
2578 const struct gdb_xml_element *element,
2579 void *user_data, const char *body_text)
2580 {
2581 struct threads_parsing_context *data = user_data;
2582
2583 if (body_text && *body_text)
2584 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2585 }
2586
2587 const struct gdb_xml_attribute thread_attributes[] = {
2588 { "id", GDB_XML_AF_NONE, NULL, NULL },
2589 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2590 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2591 };
2592
2593 const struct gdb_xml_element thread_children[] = {
2594 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2595 };
2596
2597 const struct gdb_xml_element threads_children[] = {
2598 { "thread", thread_attributes, thread_children,
2599 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2600 start_thread, end_thread },
2601 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2602 };
2603
2604 const struct gdb_xml_element threads_elements[] = {
2605 { "threads", NULL, threads_children,
2606 GDB_XML_EF_NONE, NULL, NULL },
2607 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2608 };
2609
2610 /* Discard the contents of the constructed thread info context. */
2611
2612 static void
2613 clear_threads_parsing_context (void *p)
2614 {
2615 struct threads_parsing_context *context = p;
2616 int i;
2617 struct thread_item *item;
2618
2619 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2620 xfree (item->extra);
2621
2622 VEC_free (thread_item_t, context->items);
2623 }
2624
2625 #endif
2626
2627 /*
2628 * Find all threads for info threads command.
2629 * Uses new thread protocol contributed by Cisco.
2630 * Falls back and attempts to use the older method (above)
2631 * if the target doesn't respond to the new method.
2632 */
2633
2634 static void
2635 remote_threads_info (struct target_ops *ops)
2636 {
2637 struct remote_state *rs = get_remote_state ();
2638 char *bufp;
2639 ptid_t new_thread;
2640
2641 if (remote_desc == 0) /* paranoia */
2642 error (_("Command can only be used when connected to the remote target."));
2643
2644 #if defined(HAVE_LIBEXPAT)
2645 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2646 {
2647 char *xml = target_read_stralloc (&current_target,
2648 TARGET_OBJECT_THREADS, NULL);
2649
2650 struct cleanup *back_to = make_cleanup (xfree, xml);
2651
2652 if (xml && *xml)
2653 {
2654 struct threads_parsing_context context;
2655
2656 context.items = NULL;
2657 make_cleanup (clear_threads_parsing_context, &context);
2658
2659 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2660 threads_elements, xml, &context) == 0)
2661 {
2662 int i;
2663 struct thread_item *item;
2664
2665 for (i = 0;
2666 VEC_iterate (thread_item_t, context.items, i, item);
2667 ++i)
2668 {
2669 if (!ptid_equal (item->ptid, null_ptid))
2670 {
2671 struct private_thread_info *info;
2672 /* In non-stop mode, we assume new found threads
2673 are running until proven otherwise with a
2674 stop reply. In all-stop, we can only get
2675 here if all threads are stopped. */
2676 int running = non_stop ? 1 : 0;
2677
2678 remote_notice_new_inferior (item->ptid, running);
2679
2680 info = demand_private_info (item->ptid);
2681 info->core = item->core;
2682 info->extra = item->extra;
2683 item->extra = NULL;
2684 }
2685 }
2686 }
2687 }
2688
2689 do_cleanups (back_to);
2690 return;
2691 }
2692 #endif
2693
2694 if (use_threadinfo_query)
2695 {
2696 putpkt ("qfThreadInfo");
2697 getpkt (&rs->buf, &rs->buf_size, 0);
2698 bufp = rs->buf;
2699 if (bufp[0] != '\0') /* q packet recognized */
2700 {
2701 while (*bufp++ == 'm') /* reply contains one or more TID */
2702 {
2703 do
2704 {
2705 new_thread = read_ptid (bufp, &bufp);
2706 if (!ptid_equal (new_thread, null_ptid))
2707 {
2708 /* In non-stop mode, we assume new found threads
2709 are running until proven otherwise with a
2710 stop reply. In all-stop, we can only get
2711 here if all threads are stopped. */
2712 int running = non_stop ? 1 : 0;
2713
2714 remote_notice_new_inferior (new_thread, running);
2715 }
2716 }
2717 while (*bufp++ == ','); /* comma-separated list */
2718 putpkt ("qsThreadInfo");
2719 getpkt (&rs->buf, &rs->buf_size, 0);
2720 bufp = rs->buf;
2721 }
2722 return; /* done */
2723 }
2724 }
2725
2726 /* Only qfThreadInfo is supported in non-stop mode. */
2727 if (non_stop)
2728 return;
2729
2730 /* Else fall back to old method based on jmetzler protocol. */
2731 use_threadinfo_query = 0;
2732 remote_find_new_threads ();
2733 return;
2734 }
2735
2736 /*
2737 * Collect a descriptive string about the given thread.
2738 * The target may say anything it wants to about the thread
2739 * (typically info about its blocked / runnable state, name, etc.).
2740 * This string will appear in the info threads display.
2741 *
2742 * Optional: targets are not required to implement this function.
2743 */
2744
2745 static char *
2746 remote_threads_extra_info (struct thread_info *tp)
2747 {
2748 struct remote_state *rs = get_remote_state ();
2749 int result;
2750 int set;
2751 threadref id;
2752 struct gdb_ext_thread_info threadinfo;
2753 static char display_buf[100]; /* arbitrary... */
2754 int n = 0; /* position in display_buf */
2755
2756 if (remote_desc == 0) /* paranoia */
2757 internal_error (__FILE__, __LINE__,
2758 _("remote_threads_extra_info"));
2759
2760 if (ptid_equal (tp->ptid, magic_null_ptid)
2761 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2762 /* This is the main thread which was added by GDB. The remote
2763 server doesn't know about it. */
2764 return NULL;
2765
2766 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2767 {
2768 struct thread_info *info = find_thread_ptid (tp->ptid);
2769
2770 if (info && info->private)
2771 return info->private->extra;
2772 else
2773 return NULL;
2774 }
2775
2776 if (use_threadextra_query)
2777 {
2778 char *b = rs->buf;
2779 char *endb = rs->buf + get_remote_packet_size ();
2780
2781 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2782 b += strlen (b);
2783 write_ptid (b, endb, tp->ptid);
2784
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787 if (rs->buf[0] != 0)
2788 {
2789 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2790 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2791 display_buf [result] = '\0';
2792 return display_buf;
2793 }
2794 }
2795
2796 /* If the above query fails, fall back to the old method. */
2797 use_threadextra_query = 0;
2798 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2799 | TAG_MOREDISPLAY | TAG_DISPLAY;
2800 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2801 if (remote_get_threadinfo (&id, set, &threadinfo))
2802 if (threadinfo.active)
2803 {
2804 if (*threadinfo.shortname)
2805 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2806 " Name: %s,", threadinfo.shortname);
2807 if (*threadinfo.display)
2808 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2809 " State: %s,", threadinfo.display);
2810 if (*threadinfo.more_display)
2811 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2812 " Priority: %s", threadinfo.more_display);
2813
2814 if (n > 0)
2815 {
2816 /* For purely cosmetic reasons, clear up trailing commas. */
2817 if (',' == display_buf[n-1])
2818 display_buf[n-1] = ' ';
2819 return display_buf;
2820 }
2821 }
2822 return NULL;
2823 }
2824 \f
2825
2826 static int
2827 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2828 struct static_tracepoint_marker *marker)
2829 {
2830 struct remote_state *rs = get_remote_state ();
2831 char *p = rs->buf;
2832
2833 sprintf (p, "qTSTMat:");
2834 p += strlen (p);
2835 p += hexnumstr (p, addr);
2836 putpkt (rs->buf);
2837 getpkt (&rs->buf, &rs->buf_size, 0);
2838 p = rs->buf;
2839
2840 if (*p == 'E')
2841 error (_("Remote failure reply: %s"), p);
2842
2843 if (*p++ == 'm')
2844 {
2845 parse_static_tracepoint_marker_definition (p, &p, marker);
2846 return 1;
2847 }
2848
2849 return 0;
2850 }
2851
2852 static void
2853 free_current_marker (void *arg)
2854 {
2855 struct static_tracepoint_marker **marker_p = arg;
2856
2857 if (*marker_p != NULL)
2858 {
2859 release_static_tracepoint_marker (*marker_p);
2860 xfree (*marker_p);
2861 }
2862 else
2863 *marker_p = NULL;
2864 }
2865
2866 static VEC(static_tracepoint_marker_p) *
2867 remote_static_tracepoint_markers_by_strid (const char *strid)
2868 {
2869 struct remote_state *rs = get_remote_state ();
2870 VEC(static_tracepoint_marker_p) *markers = NULL;
2871 struct static_tracepoint_marker *marker = NULL;
2872 struct cleanup *old_chain;
2873 char *p;
2874
2875 /* Ask for a first packet of static tracepoint marker
2876 definition. */
2877 putpkt ("qTfSTM");
2878 getpkt (&rs->buf, &rs->buf_size, 0);
2879 p = rs->buf;
2880 if (*p == 'E')
2881 error (_("Remote failure reply: %s"), p);
2882
2883 old_chain = make_cleanup (free_current_marker, &marker);
2884
2885 while (*p++ == 'm')
2886 {
2887 if (marker == NULL)
2888 marker = XCNEW (struct static_tracepoint_marker);
2889
2890 do
2891 {
2892 parse_static_tracepoint_marker_definition (p, &p, marker);
2893
2894 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2895 {
2896 VEC_safe_push (static_tracepoint_marker_p,
2897 markers, marker);
2898 marker = NULL;
2899 }
2900 else
2901 {
2902 release_static_tracepoint_marker (marker);
2903 memset (marker, 0, sizeof (*marker));
2904 }
2905 }
2906 while (*p++ == ','); /* comma-separated list */
2907 /* Ask for another packet of static tracepoint definition. */
2908 putpkt ("qTsSTM");
2909 getpkt (&rs->buf, &rs->buf_size, 0);
2910 p = rs->buf;
2911 }
2912
2913 do_cleanups (old_chain);
2914 return markers;
2915 }
2916
2917 \f
2918 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2919
2920 static ptid_t
2921 remote_get_ada_task_ptid (long lwp, long thread)
2922 {
2923 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2924 }
2925 \f
2926
2927 /* Restart the remote side; this is an extended protocol operation. */
2928
2929 static void
2930 extended_remote_restart (void)
2931 {
2932 struct remote_state *rs = get_remote_state ();
2933
2934 /* Send the restart command; for reasons I don't understand the
2935 remote side really expects a number after the "R". */
2936 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2937 putpkt (rs->buf);
2938
2939 remote_fileio_reset ();
2940 }
2941 \f
2942 /* Clean up connection to a remote debugger. */
2943
2944 static void
2945 remote_close (int quitting)
2946 {
2947 if (remote_desc == NULL)
2948 return; /* already closed */
2949
2950 /* Make sure we leave stdin registered in the event loop, and we
2951 don't leave the async SIGINT signal handler installed. */
2952 remote_terminal_ours ();
2953
2954 serial_close (remote_desc);
2955 remote_desc = NULL;
2956
2957 /* We don't have a connection to the remote stub anymore. Get rid
2958 of all the inferiors and their threads we were controlling.
2959 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2960 will be unable to find the thread corresponding to (pid, 0, 0). */
2961 inferior_ptid = null_ptid;
2962 discard_all_inferiors ();
2963
2964 /* We're no longer interested in any of these events. */
2965 discard_pending_stop_replies (-1);
2966
2967 if (remote_async_inferior_event_token)
2968 delete_async_event_handler (&remote_async_inferior_event_token);
2969 if (remote_async_get_pending_events_token)
2970 delete_async_event_handler (&remote_async_get_pending_events_token);
2971 }
2972
2973 /* Query the remote side for the text, data and bss offsets. */
2974
2975 static void
2976 get_offsets (void)
2977 {
2978 struct remote_state *rs = get_remote_state ();
2979 char *buf;
2980 char *ptr;
2981 int lose, num_segments = 0, do_sections, do_segments;
2982 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2983 struct section_offsets *offs;
2984 struct symfile_segment_data *data;
2985
2986 if (symfile_objfile == NULL)
2987 return;
2988
2989 putpkt ("qOffsets");
2990 getpkt (&rs->buf, &rs->buf_size, 0);
2991 buf = rs->buf;
2992
2993 if (buf[0] == '\000')
2994 return; /* Return silently. Stub doesn't support
2995 this command. */
2996 if (buf[0] == 'E')
2997 {
2998 warning (_("Remote failure reply: %s"), buf);
2999 return;
3000 }
3001
3002 /* Pick up each field in turn. This used to be done with scanf, but
3003 scanf will make trouble if CORE_ADDR size doesn't match
3004 conversion directives correctly. The following code will work
3005 with any size of CORE_ADDR. */
3006 text_addr = data_addr = bss_addr = 0;
3007 ptr = buf;
3008 lose = 0;
3009
3010 if (strncmp (ptr, "Text=", 5) == 0)
3011 {
3012 ptr += 5;
3013 /* Don't use strtol, could lose on big values. */
3014 while (*ptr && *ptr != ';')
3015 text_addr = (text_addr << 4) + fromhex (*ptr++);
3016
3017 if (strncmp (ptr, ";Data=", 6) == 0)
3018 {
3019 ptr += 6;
3020 while (*ptr && *ptr != ';')
3021 data_addr = (data_addr << 4) + fromhex (*ptr++);
3022 }
3023 else
3024 lose = 1;
3025
3026 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3027 {
3028 ptr += 5;
3029 while (*ptr && *ptr != ';')
3030 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3031
3032 if (bss_addr != data_addr)
3033 warning (_("Target reported unsupported offsets: %s"), buf);
3034 }
3035 else
3036 lose = 1;
3037 }
3038 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3039 {
3040 ptr += 8;
3041 /* Don't use strtol, could lose on big values. */
3042 while (*ptr && *ptr != ';')
3043 text_addr = (text_addr << 4) + fromhex (*ptr++);
3044 num_segments = 1;
3045
3046 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3047 {
3048 ptr += 9;
3049 while (*ptr && *ptr != ';')
3050 data_addr = (data_addr << 4) + fromhex (*ptr++);
3051 num_segments++;
3052 }
3053 }
3054 else
3055 lose = 1;
3056
3057 if (lose)
3058 error (_("Malformed response to offset query, %s"), buf);
3059 else if (*ptr != '\0')
3060 warning (_("Target reported unsupported offsets: %s"), buf);
3061
3062 offs = ((struct section_offsets *)
3063 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3064 memcpy (offs, symfile_objfile->section_offsets,
3065 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3066
3067 data = get_symfile_segment_data (symfile_objfile->obfd);
3068 do_segments = (data != NULL);
3069 do_sections = num_segments == 0;
3070
3071 if (num_segments > 0)
3072 {
3073 segments[0] = text_addr;
3074 segments[1] = data_addr;
3075 }
3076 /* If we have two segments, we can still try to relocate everything
3077 by assuming that the .text and .data offsets apply to the whole
3078 text and data segments. Convert the offsets given in the packet
3079 to base addresses for symfile_map_offsets_to_segments. */
3080 else if (data && data->num_segments == 2)
3081 {
3082 segments[0] = data->segment_bases[0] + text_addr;
3083 segments[1] = data->segment_bases[1] + data_addr;
3084 num_segments = 2;
3085 }
3086 /* If the object file has only one segment, assume that it is text
3087 rather than data; main programs with no writable data are rare,
3088 but programs with no code are useless. Of course the code might
3089 have ended up in the data segment... to detect that we would need
3090 the permissions here. */
3091 else if (data && data->num_segments == 1)
3092 {
3093 segments[0] = data->segment_bases[0] + text_addr;
3094 num_segments = 1;
3095 }
3096 /* There's no way to relocate by segment. */
3097 else
3098 do_segments = 0;
3099
3100 if (do_segments)
3101 {
3102 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3103 offs, num_segments, segments);
3104
3105 if (ret == 0 && !do_sections)
3106 error (_("Can not handle qOffsets TextSeg "
3107 "response with this symbol file"));
3108
3109 if (ret > 0)
3110 do_sections = 0;
3111 }
3112
3113 if (data)
3114 free_symfile_segment_data (data);
3115
3116 if (do_sections)
3117 {
3118 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3119
3120 /* This is a temporary kludge to force data and bss to use the
3121 same offsets because that's what nlmconv does now. The real
3122 solution requires changes to the stub and remote.c that I
3123 don't have time to do right now. */
3124
3125 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3126 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3127 }
3128
3129 objfile_relocate (symfile_objfile, offs);
3130 }
3131
3132 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3133 threads we know are stopped already. This is used during the
3134 initial remote connection in non-stop mode --- threads that are
3135 reported as already being stopped are left stopped. */
3136
3137 static int
3138 set_stop_requested_callback (struct thread_info *thread, void *data)
3139 {
3140 /* If we have a stop reply for this thread, it must be stopped. */
3141 if (peek_stop_reply (thread->ptid))
3142 set_stop_requested (thread->ptid, 1);
3143
3144 return 0;
3145 }
3146
3147 /* Send interrupt_sequence to remote target. */
3148 static void
3149 send_interrupt_sequence (void)
3150 {
3151 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3152 serial_write (remote_desc, "\x03", 1);
3153 else if (interrupt_sequence_mode == interrupt_sequence_break)
3154 serial_send_break (remote_desc);
3155 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3156 {
3157 serial_send_break (remote_desc);
3158 serial_write (remote_desc, "g", 1);
3159 }
3160 else
3161 internal_error (__FILE__, __LINE__,
3162 _("Invalid value for interrupt_sequence_mode: %s."),
3163 interrupt_sequence_mode);
3164 }
3165
3166 /* Query the remote target for which is the current thread/process,
3167 add it to our tables, and update INFERIOR_PTID. The caller is
3168 responsible for setting the state such that the remote end is ready
3169 to return the current thread. */
3170
3171 static void
3172 add_current_inferior_and_thread (void)
3173 {
3174 struct remote_state *rs = get_remote_state ();
3175 int fake_pid_p = 0;
3176 ptid_t ptid;
3177
3178 inferior_ptid = null_ptid;
3179
3180 /* Now, if we have thread information, update inferior_ptid. */
3181 ptid = remote_current_thread (inferior_ptid);
3182 if (!ptid_equal (ptid, null_ptid))
3183 {
3184 if (!remote_multi_process_p (rs))
3185 fake_pid_p = 1;
3186
3187 inferior_ptid = ptid;
3188 }
3189 else
3190 {
3191 /* Without this, some commands which require an active target
3192 (such as kill) won't work. This variable serves (at least)
3193 double duty as both the pid of the target process (if it has
3194 such), and as a flag indicating that a target is active. */
3195 inferior_ptid = magic_null_ptid;
3196 fake_pid_p = 1;
3197 }
3198
3199 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3200
3201 /* Add the main thread. */
3202 add_thread_silent (inferior_ptid);
3203 }
3204
3205 static void
3206 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3207 {
3208 struct remote_state *rs = get_remote_state ();
3209 struct packet_config *noack_config;
3210 char *wait_status = NULL;
3211
3212 immediate_quit++; /* Allow user to interrupt it. */
3213
3214 if (interrupt_on_connect)
3215 send_interrupt_sequence ();
3216
3217 /* Ack any packet which the remote side has already sent. */
3218 serial_write (remote_desc, "+", 1);
3219
3220 /* The first packet we send to the target is the optional "supported
3221 packets" request. If the target can answer this, it will tell us
3222 which later probes to skip. */
3223 remote_query_supported ();
3224
3225 /* If the stub wants to get a QAllow, compose one and send it. */
3226 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3227 remote_set_permissions ();
3228
3229 /* Next, we possibly activate noack mode.
3230
3231 If the QStartNoAckMode packet configuration is set to AUTO,
3232 enable noack mode if the stub reported a wish for it with
3233 qSupported.
3234
3235 If set to TRUE, then enable noack mode even if the stub didn't
3236 report it in qSupported. If the stub doesn't reply OK, the
3237 session ends with an error.
3238
3239 If FALSE, then don't activate noack mode, regardless of what the
3240 stub claimed should be the default with qSupported. */
3241
3242 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3243
3244 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3245 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3246 && noack_config->support == PACKET_ENABLE))
3247 {
3248 putpkt ("QStartNoAckMode");
3249 getpkt (&rs->buf, &rs->buf_size, 0);
3250 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3251 rs->noack_mode = 1;
3252 }
3253
3254 if (extended_p)
3255 {
3256 /* Tell the remote that we are using the extended protocol. */
3257 putpkt ("!");
3258 getpkt (&rs->buf, &rs->buf_size, 0);
3259 }
3260
3261 /* Next, if the target can specify a description, read it. We do
3262 this before anything involving memory or registers. */
3263 target_find_description ();
3264
3265 /* Next, now that we know something about the target, update the
3266 address spaces in the program spaces. */
3267 update_address_spaces ();
3268
3269 /* On OSs where the list of libraries is global to all
3270 processes, we fetch them early. */
3271 if (gdbarch_has_global_solist (target_gdbarch))
3272 solib_add (NULL, from_tty, target, auto_solib_add);
3273
3274 if (non_stop)
3275 {
3276 if (!rs->non_stop_aware)
3277 error (_("Non-stop mode requested, but remote "
3278 "does not support non-stop"));
3279
3280 putpkt ("QNonStop:1");
3281 getpkt (&rs->buf, &rs->buf_size, 0);
3282
3283 if (strcmp (rs->buf, "OK") != 0)
3284 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3285
3286 /* Find about threads and processes the stub is already
3287 controlling. We default to adding them in the running state.
3288 The '?' query below will then tell us about which threads are
3289 stopped. */
3290 remote_threads_info (target);
3291 }
3292 else if (rs->non_stop_aware)
3293 {
3294 /* Don't assume that the stub can operate in all-stop mode.
3295 Request it explicitely. */
3296 putpkt ("QNonStop:0");
3297 getpkt (&rs->buf, &rs->buf_size, 0);
3298
3299 if (strcmp (rs->buf, "OK") != 0)
3300 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3301 }
3302
3303 /* Check whether the target is running now. */
3304 putpkt ("?");
3305 getpkt (&rs->buf, &rs->buf_size, 0);
3306
3307 if (!non_stop)
3308 {
3309 ptid_t ptid;
3310 int fake_pid_p = 0;
3311 struct inferior *inf;
3312
3313 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3314 {
3315 if (!extended_p)
3316 error (_("The target is not running (try extended-remote?)"));
3317
3318 /* We're connected, but not running. Drop out before we
3319 call start_remote. */
3320 return;
3321 }
3322 else
3323 {
3324 /* Save the reply for later. */
3325 wait_status = alloca (strlen (rs->buf) + 1);
3326 strcpy (wait_status, rs->buf);
3327 }
3328
3329 /* Let the stub know that we want it to return the thread. */
3330 set_continue_thread (minus_one_ptid);
3331
3332 add_current_inferior_and_thread ();
3333
3334 /* init_wait_for_inferior should be called before get_offsets in order
3335 to manage `inserted' flag in bp loc in a correct state.
3336 breakpoint_init_inferior, called from init_wait_for_inferior, set
3337 `inserted' flag to 0, while before breakpoint_re_set, called from
3338 start_remote, set `inserted' flag to 1. In the initialization of
3339 inferior, breakpoint_init_inferior should be called first, and then
3340 breakpoint_re_set can be called. If this order is broken, state of
3341 `inserted' flag is wrong, and cause some problems on breakpoint
3342 manipulation. */
3343 init_wait_for_inferior ();
3344
3345 get_offsets (); /* Get text, data & bss offsets. */
3346
3347 /* If we could not find a description using qXfer, and we know
3348 how to do it some other way, try again. This is not
3349 supported for non-stop; it could be, but it is tricky if
3350 there are no stopped threads when we connect. */
3351 if (remote_read_description_p (target)
3352 && gdbarch_target_desc (target_gdbarch) == NULL)
3353 {
3354 target_clear_description ();
3355 target_find_description ();
3356 }
3357
3358 /* Use the previously fetched status. */
3359 gdb_assert (wait_status != NULL);
3360 strcpy (rs->buf, wait_status);
3361 rs->cached_wait_status = 1;
3362
3363 immediate_quit--;
3364 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3365 }
3366 else
3367 {
3368 /* Clear WFI global state. Do this before finding about new
3369 threads and inferiors, and setting the current inferior.
3370 Otherwise we would clear the proceed status of the current
3371 inferior when we want its stop_soon state to be preserved
3372 (see notice_new_inferior). */
3373 init_wait_for_inferior ();
3374
3375 /* In non-stop, we will either get an "OK", meaning that there
3376 are no stopped threads at this time; or, a regular stop
3377 reply. In the latter case, there may be more than one thread
3378 stopped --- we pull them all out using the vStopped
3379 mechanism. */
3380 if (strcmp (rs->buf, "OK") != 0)
3381 {
3382 struct stop_reply *stop_reply;
3383 struct cleanup *old_chain;
3384
3385 stop_reply = stop_reply_xmalloc ();
3386 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3387
3388 remote_parse_stop_reply (rs->buf, stop_reply);
3389 discard_cleanups (old_chain);
3390
3391 /* get_pending_stop_replies acks this one, and gets the rest
3392 out. */
3393 pending_stop_reply = stop_reply;
3394 remote_get_pending_stop_replies ();
3395
3396 /* Make sure that threads that were stopped remain
3397 stopped. */
3398 iterate_over_threads (set_stop_requested_callback, NULL);
3399 }
3400
3401 if (target_can_async_p ())
3402 target_async (inferior_event_handler, 0);
3403
3404 if (thread_count () == 0)
3405 {
3406 if (!extended_p)
3407 error (_("The target is not running (try extended-remote?)"));
3408
3409 /* We're connected, but not running. Drop out before we
3410 call start_remote. */
3411 return;
3412 }
3413
3414 /* Let the stub know that we want it to return the thread. */
3415
3416 /* Force the stub to choose a thread. */
3417 set_general_thread (null_ptid);
3418
3419 /* Query it. */
3420 inferior_ptid = remote_current_thread (minus_one_ptid);
3421 if (ptid_equal (inferior_ptid, minus_one_ptid))
3422 error (_("remote didn't report the current thread in non-stop mode"));
3423
3424 get_offsets (); /* Get text, data & bss offsets. */
3425
3426 /* In non-stop mode, any cached wait status will be stored in
3427 the stop reply queue. */
3428 gdb_assert (wait_status == NULL);
3429
3430 /* Report all signals during attach/startup. */
3431 remote_pass_signals (0, NULL);
3432 }
3433
3434 /* If we connected to a live target, do some additional setup. */
3435 if (target_has_execution)
3436 {
3437 if (exec_bfd) /* No use without an exec file. */
3438 remote_check_symbols (symfile_objfile);
3439 }
3440
3441 /* Possibly the target has been engaged in a trace run started
3442 previously; find out where things are at. */
3443 if (remote_get_trace_status (current_trace_status ()) != -1)
3444 {
3445 struct uploaded_tp *uploaded_tps = NULL;
3446 struct uploaded_tsv *uploaded_tsvs = NULL;
3447
3448 if (current_trace_status ()->running)
3449 printf_filtered (_("Trace is already running on the target.\n"));
3450
3451 /* Get trace state variables first, they may be checked when
3452 parsing uploaded commands. */
3453
3454 remote_upload_trace_state_variables (&uploaded_tsvs);
3455
3456 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3457
3458 remote_upload_tracepoints (&uploaded_tps);
3459
3460 merge_uploaded_tracepoints (&uploaded_tps);
3461 }
3462
3463 /* If breakpoints are global, insert them now. */
3464 if (gdbarch_has_global_breakpoints (target_gdbarch)
3465 && breakpoints_always_inserted_mode ())
3466 insert_breakpoints ();
3467 }
3468
3469 /* Open a connection to a remote debugger.
3470 NAME is the filename used for communication. */
3471
3472 static void
3473 remote_open (char *name, int from_tty)
3474 {
3475 remote_open_1 (name, from_tty, &remote_ops, 0);
3476 }
3477
3478 /* Open a connection to a remote debugger using the extended
3479 remote gdb protocol. NAME is the filename used for communication. */
3480
3481 static void
3482 extended_remote_open (char *name, int from_tty)
3483 {
3484 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3485 }
3486
3487 /* Generic code for opening a connection to a remote target. */
3488
3489 static void
3490 init_all_packet_configs (void)
3491 {
3492 int i;
3493
3494 for (i = 0; i < PACKET_MAX; i++)
3495 update_packet_config (&remote_protocol_packets[i]);
3496 }
3497
3498 /* Symbol look-up. */
3499
3500 static void
3501 remote_check_symbols (struct objfile *objfile)
3502 {
3503 struct remote_state *rs = get_remote_state ();
3504 char *msg, *reply, *tmp;
3505 struct minimal_symbol *sym;
3506 int end;
3507
3508 /* The remote side has no concept of inferiors that aren't running
3509 yet, it only knows about running processes. If we're connected
3510 but our current inferior is not running, we should not invite the
3511 remote target to request symbol lookups related to its
3512 (unrelated) current process. */
3513 if (!target_has_execution)
3514 return;
3515
3516 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3517 return;
3518
3519 /* Make sure the remote is pointing at the right process. Note
3520 there's no way to select "no process". */
3521 set_general_process ();
3522
3523 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3524 because we need both at the same time. */
3525 msg = alloca (get_remote_packet_size ());
3526
3527 /* Invite target to request symbol lookups. */
3528
3529 putpkt ("qSymbol::");
3530 getpkt (&rs->buf, &rs->buf_size, 0);
3531 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3532 reply = rs->buf;
3533
3534 while (strncmp (reply, "qSymbol:", 8) == 0)
3535 {
3536 tmp = &reply[8];
3537 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3538 msg[end] = '\0';
3539 sym = lookup_minimal_symbol (msg, NULL, NULL);
3540 if (sym == NULL)
3541 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3542 else
3543 {
3544 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3545 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3546
3547 /* If this is a function address, return the start of code
3548 instead of any data function descriptor. */
3549 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3550 sym_addr,
3551 &current_target);
3552
3553 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3554 phex_nz (sym_addr, addr_size), &reply[8]);
3555 }
3556
3557 putpkt (msg);
3558 getpkt (&rs->buf, &rs->buf_size, 0);
3559 reply = rs->buf;
3560 }
3561 }
3562
3563 static struct serial *
3564 remote_serial_open (char *name)
3565 {
3566 static int udp_warning = 0;
3567
3568 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3569 of in ser-tcp.c, because it is the remote protocol assuming that the
3570 serial connection is reliable and not the serial connection promising
3571 to be. */
3572 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3573 {
3574 warning (_("The remote protocol may be unreliable over UDP.\n"
3575 "Some events may be lost, rendering further debugging "
3576 "impossible."));
3577 udp_warning = 1;
3578 }
3579
3580 return serial_open (name);
3581 }
3582
3583 /* Inform the target of our permission settings. The permission flags
3584 work without this, but if the target knows the settings, it can do
3585 a couple things. First, it can add its own check, to catch cases
3586 that somehow manage to get by the permissions checks in target
3587 methods. Second, if the target is wired to disallow particular
3588 settings (for instance, a system in the field that is not set up to
3589 be able to stop at a breakpoint), it can object to any unavailable
3590 permissions. */
3591
3592 void
3593 remote_set_permissions (void)
3594 {
3595 struct remote_state *rs = get_remote_state ();
3596
3597 sprintf (rs->buf, "QAllow:"
3598 "WriteReg:%x;WriteMem:%x;"
3599 "InsertBreak:%x;InsertTrace:%x;"
3600 "InsertFastTrace:%x;Stop:%x",
3601 may_write_registers, may_write_memory,
3602 may_insert_breakpoints, may_insert_tracepoints,
3603 may_insert_fast_tracepoints, may_stop);
3604 putpkt (rs->buf);
3605 getpkt (&rs->buf, &rs->buf_size, 0);
3606
3607 /* If the target didn't like the packet, warn the user. Do not try
3608 to undo the user's settings, that would just be maddening. */
3609 if (strcmp (rs->buf, "OK") != 0)
3610 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3611 }
3612
3613 /* This type describes each known response to the qSupported
3614 packet. */
3615 struct protocol_feature
3616 {
3617 /* The name of this protocol feature. */
3618 const char *name;
3619
3620 /* The default for this protocol feature. */
3621 enum packet_support default_support;
3622
3623 /* The function to call when this feature is reported, or after
3624 qSupported processing if the feature is not supported.
3625 The first argument points to this structure. The second
3626 argument indicates whether the packet requested support be
3627 enabled, disabled, or probed (or the default, if this function
3628 is being called at the end of processing and this feature was
3629 not reported). The third argument may be NULL; if not NULL, it
3630 is a NUL-terminated string taken from the packet following
3631 this feature's name and an equals sign. */
3632 void (*func) (const struct protocol_feature *, enum packet_support,
3633 const char *);
3634
3635 /* The corresponding packet for this feature. Only used if
3636 FUNC is remote_supported_packet. */
3637 int packet;
3638 };
3639
3640 static void
3641 remote_supported_packet (const struct protocol_feature *feature,
3642 enum packet_support support,
3643 const char *argument)
3644 {
3645 if (argument)
3646 {
3647 warning (_("Remote qSupported response supplied an unexpected value for"
3648 " \"%s\"."), feature->name);
3649 return;
3650 }
3651
3652 if (remote_protocol_packets[feature->packet].support
3653 == PACKET_SUPPORT_UNKNOWN)
3654 remote_protocol_packets[feature->packet].support = support;
3655 }
3656
3657 static void
3658 remote_packet_size (const struct protocol_feature *feature,
3659 enum packet_support support, const char *value)
3660 {
3661 struct remote_state *rs = get_remote_state ();
3662
3663 int packet_size;
3664 char *value_end;
3665
3666 if (support != PACKET_ENABLE)
3667 return;
3668
3669 if (value == NULL || *value == '\0')
3670 {
3671 warning (_("Remote target reported \"%s\" without a size."),
3672 feature->name);
3673 return;
3674 }
3675
3676 errno = 0;
3677 packet_size = strtol (value, &value_end, 16);
3678 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3679 {
3680 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3681 feature->name, value);
3682 return;
3683 }
3684
3685 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3686 {
3687 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3688 packet_size, MAX_REMOTE_PACKET_SIZE);
3689 packet_size = MAX_REMOTE_PACKET_SIZE;
3690 }
3691
3692 /* Record the new maximum packet size. */
3693 rs->explicit_packet_size = packet_size;
3694 }
3695
3696 static void
3697 remote_multi_process_feature (const struct protocol_feature *feature,
3698 enum packet_support support, const char *value)
3699 {
3700 struct remote_state *rs = get_remote_state ();
3701
3702 rs->multi_process_aware = (support == PACKET_ENABLE);
3703 }
3704
3705 static void
3706 remote_non_stop_feature (const struct protocol_feature *feature,
3707 enum packet_support support, const char *value)
3708 {
3709 struct remote_state *rs = get_remote_state ();
3710
3711 rs->non_stop_aware = (support == PACKET_ENABLE);
3712 }
3713
3714 static void
3715 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3716 enum packet_support support,
3717 const char *value)
3718 {
3719 struct remote_state *rs = get_remote_state ();
3720
3721 rs->cond_tracepoints = (support == PACKET_ENABLE);
3722 }
3723
3724 static void
3725 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3726 enum packet_support support,
3727 const char *value)
3728 {
3729 struct remote_state *rs = get_remote_state ();
3730
3731 rs->cond_breakpoints = (support == PACKET_ENABLE);
3732 }
3733
3734 static void
3735 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3736 enum packet_support support,
3737 const char *value)
3738 {
3739 struct remote_state *rs = get_remote_state ();
3740
3741 rs->fast_tracepoints = (support == PACKET_ENABLE);
3742 }
3743
3744 static void
3745 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3746 enum packet_support support,
3747 const char *value)
3748 {
3749 struct remote_state *rs = get_remote_state ();
3750
3751 rs->static_tracepoints = (support == PACKET_ENABLE);
3752 }
3753
3754 static void
3755 remote_install_in_trace_feature (const struct protocol_feature *feature,
3756 enum packet_support support,
3757 const char *value)
3758 {
3759 struct remote_state *rs = get_remote_state ();
3760
3761 rs->install_in_trace = (support == PACKET_ENABLE);
3762 }
3763
3764 static void
3765 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3766 enum packet_support support,
3767 const char *value)
3768 {
3769 struct remote_state *rs = get_remote_state ();
3770
3771 rs->disconnected_tracing = (support == PACKET_ENABLE);
3772 }
3773
3774 static void
3775 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3776 enum packet_support support,
3777 const char *value)
3778 {
3779 struct remote_state *rs = get_remote_state ();
3780
3781 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3782 }
3783
3784 static void
3785 remote_string_tracing_feature (const struct protocol_feature *feature,
3786 enum packet_support support,
3787 const char *value)
3788 {
3789 struct remote_state *rs = get_remote_state ();
3790
3791 rs->string_tracing = (support == PACKET_ENABLE);
3792 }
3793
3794 static struct protocol_feature remote_protocol_features[] = {
3795 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3796 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3797 PACKET_qXfer_auxv },
3798 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3799 PACKET_qXfer_features },
3800 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3801 PACKET_qXfer_libraries },
3802 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3803 PACKET_qXfer_libraries_svr4 },
3804 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3805 PACKET_qXfer_memory_map },
3806 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3807 PACKET_qXfer_spu_read },
3808 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3809 PACKET_qXfer_spu_write },
3810 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3811 PACKET_qXfer_osdata },
3812 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3813 PACKET_qXfer_threads },
3814 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3815 PACKET_qXfer_traceframe_info },
3816 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3817 PACKET_QPassSignals },
3818 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3819 PACKET_QStartNoAckMode },
3820 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3821 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3822 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3823 PACKET_qXfer_siginfo_read },
3824 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3825 PACKET_qXfer_siginfo_write },
3826 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3827 PACKET_ConditionalTracepoints },
3828 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3829 PACKET_ConditionalBreakpoints },
3830 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3831 PACKET_FastTracepoints },
3832 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3833 PACKET_StaticTracepoints },
3834 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3835 PACKET_InstallInTrace},
3836 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3837 -1 },
3838 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3839 PACKET_bc },
3840 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3841 PACKET_bs },
3842 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3843 PACKET_TracepointSource },
3844 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3845 PACKET_QAllow },
3846 { "EnableDisableTracepoints", PACKET_DISABLE,
3847 remote_enable_disable_tracepoint_feature, -1 },
3848 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3849 PACKET_qXfer_fdpic },
3850 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3851 PACKET_QDisableRandomization },
3852 { "tracenz", PACKET_DISABLE,
3853 remote_string_tracing_feature, -1 },
3854 };
3855
3856 static char *remote_support_xml;
3857
3858 /* Register string appended to "xmlRegisters=" in qSupported query. */
3859
3860 void
3861 register_remote_support_xml (const char *xml)
3862 {
3863 #if defined(HAVE_LIBEXPAT)
3864 if (remote_support_xml == NULL)
3865 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3866 else
3867 {
3868 char *copy = xstrdup (remote_support_xml + 13);
3869 char *p = strtok (copy, ",");
3870
3871 do
3872 {
3873 if (strcmp (p, xml) == 0)
3874 {
3875 /* already there */
3876 xfree (copy);
3877 return;
3878 }
3879 }
3880 while ((p = strtok (NULL, ",")) != NULL);
3881 xfree (copy);
3882
3883 remote_support_xml = reconcat (remote_support_xml,
3884 remote_support_xml, ",", xml,
3885 (char *) NULL);
3886 }
3887 #endif
3888 }
3889
3890 static char *
3891 remote_query_supported_append (char *msg, const char *append)
3892 {
3893 if (msg)
3894 return reconcat (msg, msg, ";", append, (char *) NULL);
3895 else
3896 return xstrdup (append);
3897 }
3898
3899 static void
3900 remote_query_supported (void)
3901 {
3902 struct remote_state *rs = get_remote_state ();
3903 char *next;
3904 int i;
3905 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3906
3907 /* The packet support flags are handled differently for this packet
3908 than for most others. We treat an error, a disabled packet, and
3909 an empty response identically: any features which must be reported
3910 to be used will be automatically disabled. An empty buffer
3911 accomplishes this, since that is also the representation for a list
3912 containing no features. */
3913
3914 rs->buf[0] = 0;
3915 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3916 {
3917 char *q = NULL;
3918 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3919
3920 q = remote_query_supported_append (q, "multiprocess+");
3921
3922 if (remote_support_xml)
3923 q = remote_query_supported_append (q, remote_support_xml);
3924
3925 q = remote_query_supported_append (q, "qRelocInsn+");
3926
3927 q = reconcat (q, "qSupported:", q, (char *) NULL);
3928 putpkt (q);
3929
3930 do_cleanups (old_chain);
3931
3932 getpkt (&rs->buf, &rs->buf_size, 0);
3933
3934 /* If an error occured, warn, but do not return - just reset the
3935 buffer to empty and go on to disable features. */
3936 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3937 == PACKET_ERROR)
3938 {
3939 warning (_("Remote failure reply: %s"), rs->buf);
3940 rs->buf[0] = 0;
3941 }
3942 }
3943
3944 memset (seen, 0, sizeof (seen));
3945
3946 next = rs->buf;
3947 while (*next)
3948 {
3949 enum packet_support is_supported;
3950 char *p, *end, *name_end, *value;
3951
3952 /* First separate out this item from the rest of the packet. If
3953 there's another item after this, we overwrite the separator
3954 (terminated strings are much easier to work with). */
3955 p = next;
3956 end = strchr (p, ';');
3957 if (end == NULL)
3958 {
3959 end = p + strlen (p);
3960 next = end;
3961 }
3962 else
3963 {
3964 *end = '\0';
3965 next = end + 1;
3966
3967 if (end == p)
3968 {
3969 warning (_("empty item in \"qSupported\" response"));
3970 continue;
3971 }
3972 }
3973
3974 name_end = strchr (p, '=');
3975 if (name_end)
3976 {
3977 /* This is a name=value entry. */
3978 is_supported = PACKET_ENABLE;
3979 value = name_end + 1;
3980 *name_end = '\0';
3981 }
3982 else
3983 {
3984 value = NULL;
3985 switch (end[-1])
3986 {
3987 case '+':
3988 is_supported = PACKET_ENABLE;
3989 break;
3990
3991 case '-':
3992 is_supported = PACKET_DISABLE;
3993 break;
3994
3995 case '?':
3996 is_supported = PACKET_SUPPORT_UNKNOWN;
3997 break;
3998
3999 default:
4000 warning (_("unrecognized item \"%s\" "
4001 "in \"qSupported\" response"), p);
4002 continue;
4003 }
4004 end[-1] = '\0';
4005 }
4006
4007 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4008 if (strcmp (remote_protocol_features[i].name, p) == 0)
4009 {
4010 const struct protocol_feature *feature;
4011
4012 seen[i] = 1;
4013 feature = &remote_protocol_features[i];
4014 feature->func (feature, is_supported, value);
4015 break;
4016 }
4017 }
4018
4019 /* If we increased the packet size, make sure to increase the global
4020 buffer size also. We delay this until after parsing the entire
4021 qSupported packet, because this is the same buffer we were
4022 parsing. */
4023 if (rs->buf_size < rs->explicit_packet_size)
4024 {
4025 rs->buf_size = rs->explicit_packet_size;
4026 rs->buf = xrealloc (rs->buf, rs->buf_size);
4027 }
4028
4029 /* Handle the defaults for unmentioned features. */
4030 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4031 if (!seen[i])
4032 {
4033 const struct protocol_feature *feature;
4034
4035 feature = &remote_protocol_features[i];
4036 feature->func (feature, feature->default_support, NULL);
4037 }
4038 }
4039
4040
4041 static void
4042 remote_open_1 (char *name, int from_tty,
4043 struct target_ops *target, int extended_p)
4044 {
4045 struct remote_state *rs = get_remote_state ();
4046
4047 if (name == 0)
4048 error (_("To open a remote debug connection, you need to specify what\n"
4049 "serial device is attached to the remote system\n"
4050 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4051
4052 /* See FIXME above. */
4053 if (!target_async_permitted)
4054 wait_forever_enabled_p = 1;
4055
4056 /* If we're connected to a running target, target_preopen will kill it.
4057 But if we're connected to a target system with no running process,
4058 then we will still be connected when it returns. Ask this question
4059 first, before target_preopen has a chance to kill anything. */
4060 if (remote_desc != NULL && !have_inferiors ())
4061 {
4062 if (!from_tty
4063 || query (_("Already connected to a remote target. Disconnect? ")))
4064 pop_target ();
4065 else
4066 error (_("Still connected."));
4067 }
4068
4069 target_preopen (from_tty);
4070
4071 unpush_target (target);
4072
4073 /* This time without a query. If we were connected to an
4074 extended-remote target and target_preopen killed the running
4075 process, we may still be connected. If we are starting "target
4076 remote" now, the extended-remote target will not have been
4077 removed by unpush_target. */
4078 if (remote_desc != NULL && !have_inferiors ())
4079 pop_target ();
4080
4081 /* Make sure we send the passed signals list the next time we resume. */
4082 xfree (last_pass_packet);
4083 last_pass_packet = NULL;
4084
4085 remote_fileio_reset ();
4086 reopen_exec_file ();
4087 reread_symbols ();
4088
4089 remote_desc = remote_serial_open (name);
4090 if (!remote_desc)
4091 perror_with_name (name);
4092
4093 if (baud_rate != -1)
4094 {
4095 if (serial_setbaudrate (remote_desc, baud_rate))
4096 {
4097 /* The requested speed could not be set. Error out to
4098 top level after closing remote_desc. Take care to
4099 set remote_desc to NULL to avoid closing remote_desc
4100 more than once. */
4101 serial_close (remote_desc);
4102 remote_desc = NULL;
4103 perror_with_name (name);
4104 }
4105 }
4106
4107 serial_raw (remote_desc);
4108
4109 /* If there is something sitting in the buffer we might take it as a
4110 response to a command, which would be bad. */
4111 serial_flush_input (remote_desc);
4112
4113 if (from_tty)
4114 {
4115 puts_filtered ("Remote debugging using ");
4116 puts_filtered (name);
4117 puts_filtered ("\n");
4118 }
4119 push_target (target); /* Switch to using remote target now. */
4120
4121 /* Register extra event sources in the event loop. */
4122 remote_async_inferior_event_token
4123 = create_async_event_handler (remote_async_inferior_event_handler,
4124 NULL);
4125 remote_async_get_pending_events_token
4126 = create_async_event_handler (remote_async_get_pending_events_handler,
4127 NULL);
4128
4129 /* Reset the target state; these things will be queried either by
4130 remote_query_supported or as they are needed. */
4131 init_all_packet_configs ();
4132 rs->cached_wait_status = 0;
4133 rs->explicit_packet_size = 0;
4134 rs->noack_mode = 0;
4135 rs->multi_process_aware = 0;
4136 rs->extended = extended_p;
4137 rs->non_stop_aware = 0;
4138 rs->waiting_for_stop_reply = 0;
4139 rs->ctrlc_pending_p = 0;
4140
4141 general_thread = not_sent_ptid;
4142 continue_thread = not_sent_ptid;
4143 remote_traceframe_number = -1;
4144
4145 /* Probe for ability to use "ThreadInfo" query, as required. */
4146 use_threadinfo_query = 1;
4147 use_threadextra_query = 1;
4148
4149 if (target_async_permitted)
4150 {
4151 /* With this target we start out by owning the terminal. */
4152 remote_async_terminal_ours_p = 1;
4153
4154 /* FIXME: cagney/1999-09-23: During the initial connection it is
4155 assumed that the target is already ready and able to respond to
4156 requests. Unfortunately remote_start_remote() eventually calls
4157 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4158 around this. Eventually a mechanism that allows
4159 wait_for_inferior() to expect/get timeouts will be
4160 implemented. */
4161 wait_forever_enabled_p = 0;
4162 }
4163
4164 /* First delete any symbols previously loaded from shared libraries. */
4165 no_shared_libraries (NULL, 0);
4166
4167 /* Start afresh. */
4168 init_thread_list ();
4169
4170 /* Start the remote connection. If error() or QUIT, discard this
4171 target (we'd otherwise be in an inconsistent state) and then
4172 propogate the error on up the exception chain. This ensures that
4173 the caller doesn't stumble along blindly assuming that the
4174 function succeeded. The CLI doesn't have this problem but other
4175 UI's, such as MI do.
4176
4177 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4178 this function should return an error indication letting the
4179 caller restore the previous state. Unfortunately the command
4180 ``target remote'' is directly wired to this function making that
4181 impossible. On a positive note, the CLI side of this problem has
4182 been fixed - the function set_cmd_context() makes it possible for
4183 all the ``target ....'' commands to share a common callback
4184 function. See cli-dump.c. */
4185 {
4186 volatile struct gdb_exception ex;
4187
4188 TRY_CATCH (ex, RETURN_MASK_ALL)
4189 {
4190 remote_start_remote (from_tty, target, extended_p);
4191 }
4192 if (ex.reason < 0)
4193 {
4194 /* Pop the partially set up target - unless something else did
4195 already before throwing the exception. */
4196 if (remote_desc != NULL)
4197 pop_target ();
4198 if (target_async_permitted)
4199 wait_forever_enabled_p = 1;
4200 throw_exception (ex);
4201 }
4202 }
4203
4204 if (target_async_permitted)
4205 wait_forever_enabled_p = 1;
4206 }
4207
4208 /* This takes a program previously attached to and detaches it. After
4209 this is done, GDB can be used to debug some other program. We
4210 better not have left any breakpoints in the target program or it'll
4211 die when it hits one. */
4212
4213 static void
4214 remote_detach_1 (char *args, int from_tty, int extended)
4215 {
4216 int pid = ptid_get_pid (inferior_ptid);
4217 struct remote_state *rs = get_remote_state ();
4218
4219 if (args)
4220 error (_("Argument given to \"detach\" when remotely debugging."));
4221
4222 if (!target_has_execution)
4223 error (_("No process to detach from."));
4224
4225 if (from_tty)
4226 {
4227 char *exec_file = get_exec_file (0);
4228 if (exec_file == NULL)
4229 exec_file = "";
4230 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4231 target_pid_to_str (pid_to_ptid (pid)));
4232 gdb_flush (gdb_stdout);
4233 }
4234
4235 /* Tell the remote target to detach. */
4236 if (remote_multi_process_p (rs))
4237 sprintf (rs->buf, "D;%x", pid);
4238 else
4239 strcpy (rs->buf, "D");
4240
4241 putpkt (rs->buf);
4242 getpkt (&rs->buf, &rs->buf_size, 0);
4243
4244 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4245 ;
4246 else if (rs->buf[0] == '\0')
4247 error (_("Remote doesn't know how to detach"));
4248 else
4249 error (_("Can't detach process."));
4250
4251 if (from_tty && !extended)
4252 puts_filtered (_("Ending remote debugging.\n"));
4253
4254 discard_pending_stop_replies (pid);
4255 target_mourn_inferior ();
4256 }
4257
4258 static void
4259 remote_detach (struct target_ops *ops, char *args, int from_tty)
4260 {
4261 remote_detach_1 (args, from_tty, 0);
4262 }
4263
4264 static void
4265 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4266 {
4267 remote_detach_1 (args, from_tty, 1);
4268 }
4269
4270 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4271
4272 static void
4273 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4274 {
4275 if (args)
4276 error (_("Argument given to \"disconnect\" when remotely debugging."));
4277
4278 /* Make sure we unpush even the extended remote targets; mourn
4279 won't do it. So call remote_mourn_1 directly instead of
4280 target_mourn_inferior. */
4281 remote_mourn_1 (target);
4282
4283 if (from_tty)
4284 puts_filtered ("Ending remote debugging.\n");
4285 }
4286
4287 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4288 be chatty about it. */
4289
4290 static void
4291 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4292 {
4293 struct remote_state *rs = get_remote_state ();
4294 int pid;
4295 char *wait_status = NULL;
4296
4297 pid = parse_pid_to_attach (args);
4298
4299 /* Remote PID can be freely equal to getpid, do not check it here the same
4300 way as in other targets. */
4301
4302 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4303 error (_("This target does not support attaching to a process"));
4304
4305 if (from_tty)
4306 {
4307 char *exec_file = get_exec_file (0);
4308
4309 if (exec_file)
4310 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4311 target_pid_to_str (pid_to_ptid (pid)));
4312 else
4313 printf_unfiltered (_("Attaching to %s\n"),
4314 target_pid_to_str (pid_to_ptid (pid)));
4315
4316 gdb_flush (gdb_stdout);
4317 }
4318
4319 sprintf (rs->buf, "vAttach;%x", pid);
4320 putpkt (rs->buf);
4321 getpkt (&rs->buf, &rs->buf_size, 0);
4322
4323 if (packet_ok (rs->buf,
4324 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4325 {
4326 if (!non_stop)
4327 {
4328 /* Save the reply for later. */
4329 wait_status = alloca (strlen (rs->buf) + 1);
4330 strcpy (wait_status, rs->buf);
4331 }
4332 else if (strcmp (rs->buf, "OK") != 0)
4333 error (_("Attaching to %s failed with: %s"),
4334 target_pid_to_str (pid_to_ptid (pid)),
4335 rs->buf);
4336 }
4337 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4338 error (_("This target does not support attaching to a process"));
4339 else
4340 error (_("Attaching to %s failed"),
4341 target_pid_to_str (pid_to_ptid (pid)));
4342
4343 set_current_inferior (remote_add_inferior (0, pid, 1));
4344
4345 inferior_ptid = pid_to_ptid (pid);
4346
4347 if (non_stop)
4348 {
4349 struct thread_info *thread;
4350
4351 /* Get list of threads. */
4352 remote_threads_info (target);
4353
4354 thread = first_thread_of_process (pid);
4355 if (thread)
4356 inferior_ptid = thread->ptid;
4357 else
4358 inferior_ptid = pid_to_ptid (pid);
4359
4360 /* Invalidate our notion of the remote current thread. */
4361 record_currthread (minus_one_ptid);
4362 }
4363 else
4364 {
4365 /* Now, if we have thread information, update inferior_ptid. */
4366 inferior_ptid = remote_current_thread (inferior_ptid);
4367
4368 /* Add the main thread to the thread list. */
4369 add_thread_silent (inferior_ptid);
4370 }
4371
4372 /* Next, if the target can specify a description, read it. We do
4373 this before anything involving memory or registers. */
4374 target_find_description ();
4375
4376 if (!non_stop)
4377 {
4378 /* Use the previously fetched status. */
4379 gdb_assert (wait_status != NULL);
4380
4381 if (target_can_async_p ())
4382 {
4383 struct stop_reply *stop_reply;
4384 struct cleanup *old_chain;
4385
4386 stop_reply = stop_reply_xmalloc ();
4387 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4388 remote_parse_stop_reply (wait_status, stop_reply);
4389 discard_cleanups (old_chain);
4390 push_stop_reply (stop_reply);
4391
4392 target_async (inferior_event_handler, 0);
4393 }
4394 else
4395 {
4396 gdb_assert (wait_status != NULL);
4397 strcpy (rs->buf, wait_status);
4398 rs->cached_wait_status = 1;
4399 }
4400 }
4401 else
4402 gdb_assert (wait_status == NULL);
4403 }
4404
4405 static void
4406 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4407 {
4408 extended_remote_attach_1 (ops, args, from_tty);
4409 }
4410
4411 /* Convert hex digit A to a number. */
4412
4413 static int
4414 fromhex (int a)
4415 {
4416 if (a >= '0' && a <= '9')
4417 return a - '0';
4418 else if (a >= 'a' && a <= 'f')
4419 return a - 'a' + 10;
4420 else if (a >= 'A' && a <= 'F')
4421 return a - 'A' + 10;
4422 else
4423 error (_("Reply contains invalid hex digit %d"), a);
4424 }
4425
4426 int
4427 hex2bin (const char *hex, gdb_byte *bin, int count)
4428 {
4429 int i;
4430
4431 for (i = 0; i < count; i++)
4432 {
4433 if (hex[0] == 0 || hex[1] == 0)
4434 {
4435 /* Hex string is short, or of uneven length.
4436 Return the count that has been converted so far. */
4437 return i;
4438 }
4439 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4440 hex += 2;
4441 }
4442 return i;
4443 }
4444
4445 /* Convert number NIB to a hex digit. */
4446
4447 static int
4448 tohex (int nib)
4449 {
4450 if (nib < 10)
4451 return '0' + nib;
4452 else
4453 return 'a' + nib - 10;
4454 }
4455
4456 int
4457 bin2hex (const gdb_byte *bin, char *hex, int count)
4458 {
4459 int i;
4460
4461 /* May use a length, or a nul-terminated string as input. */
4462 if (count == 0)
4463 count = strlen ((char *) bin);
4464
4465 for (i = 0; i < count; i++)
4466 {
4467 *hex++ = tohex ((*bin >> 4) & 0xf);
4468 *hex++ = tohex (*bin++ & 0xf);
4469 }
4470 *hex = 0;
4471 return i;
4472 }
4473 \f
4474 /* Check for the availability of vCont. This function should also check
4475 the response. */
4476
4477 static void
4478 remote_vcont_probe (struct remote_state *rs)
4479 {
4480 char *buf;
4481
4482 strcpy (rs->buf, "vCont?");
4483 putpkt (rs->buf);
4484 getpkt (&rs->buf, &rs->buf_size, 0);
4485 buf = rs->buf;
4486
4487 /* Make sure that the features we assume are supported. */
4488 if (strncmp (buf, "vCont", 5) == 0)
4489 {
4490 char *p = &buf[5];
4491 int support_s, support_S, support_c, support_C;
4492
4493 support_s = 0;
4494 support_S = 0;
4495 support_c = 0;
4496 support_C = 0;
4497 rs->support_vCont_t = 0;
4498 while (p && *p == ';')
4499 {
4500 p++;
4501 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4502 support_s = 1;
4503 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4504 support_S = 1;
4505 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4506 support_c = 1;
4507 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4508 support_C = 1;
4509 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4510 rs->support_vCont_t = 1;
4511
4512 p = strchr (p, ';');
4513 }
4514
4515 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4516 BUF will make packet_ok disable the packet. */
4517 if (!support_s || !support_S || !support_c || !support_C)
4518 buf[0] = 0;
4519 }
4520
4521 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4522 }
4523
4524 /* Helper function for building "vCont" resumptions. Write a
4525 resumption to P. ENDP points to one-passed-the-end of the buffer
4526 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4527 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4528 resumed thread should be single-stepped and/or signalled. If PTID
4529 equals minus_one_ptid, then all threads are resumed; if PTID
4530 represents a process, then all threads of the process are resumed;
4531 the thread to be stepped and/or signalled is given in the global
4532 INFERIOR_PTID. */
4533
4534 static char *
4535 append_resumption (char *p, char *endp,
4536 ptid_t ptid, int step, enum target_signal siggnal)
4537 {
4538 struct remote_state *rs = get_remote_state ();
4539
4540 if (step && siggnal != TARGET_SIGNAL_0)
4541 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4542 else if (step)
4543 p += xsnprintf (p, endp - p, ";s");
4544 else if (siggnal != TARGET_SIGNAL_0)
4545 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4546 else
4547 p += xsnprintf (p, endp - p, ";c");
4548
4549 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4550 {
4551 ptid_t nptid;
4552
4553 /* All (-1) threads of process. */
4554 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4555
4556 p += xsnprintf (p, endp - p, ":");
4557 p = write_ptid (p, endp, nptid);
4558 }
4559 else if (!ptid_equal (ptid, minus_one_ptid))
4560 {
4561 p += xsnprintf (p, endp - p, ":");
4562 p = write_ptid (p, endp, ptid);
4563 }
4564
4565 return p;
4566 }
4567
4568 /* Resume the remote inferior by using a "vCont" packet. The thread
4569 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4570 resumed thread should be single-stepped and/or signalled. If PTID
4571 equals minus_one_ptid, then all threads are resumed; the thread to
4572 be stepped and/or signalled is given in the global INFERIOR_PTID.
4573 This function returns non-zero iff it resumes the inferior.
4574
4575 This function issues a strict subset of all possible vCont commands at the
4576 moment. */
4577
4578 static int
4579 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4580 {
4581 struct remote_state *rs = get_remote_state ();
4582 char *p;
4583 char *endp;
4584
4585 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4586 remote_vcont_probe (rs);
4587
4588 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4589 return 0;
4590
4591 p = rs->buf;
4592 endp = rs->buf + get_remote_packet_size ();
4593
4594 /* If we could generate a wider range of packets, we'd have to worry
4595 about overflowing BUF. Should there be a generic
4596 "multi-part-packet" packet? */
4597
4598 p += xsnprintf (p, endp - p, "vCont");
4599
4600 if (ptid_equal (ptid, magic_null_ptid))
4601 {
4602 /* MAGIC_NULL_PTID means that we don't have any active threads,
4603 so we don't have any TID numbers the inferior will
4604 understand. Make sure to only send forms that do not specify
4605 a TID. */
4606 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4607 }
4608 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4609 {
4610 /* Resume all threads (of all processes, or of a single
4611 process), with preference for INFERIOR_PTID. This assumes
4612 inferior_ptid belongs to the set of all threads we are about
4613 to resume. */
4614 if (step || siggnal != TARGET_SIGNAL_0)
4615 {
4616 /* Step inferior_ptid, with or without signal. */
4617 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4618 }
4619
4620 /* And continue others without a signal. */
4621 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4622 }
4623 else
4624 {
4625 /* Scheduler locking; resume only PTID. */
4626 append_resumption (p, endp, ptid, step, siggnal);
4627 }
4628
4629 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4630 putpkt (rs->buf);
4631
4632 if (non_stop)
4633 {
4634 /* In non-stop, the stub replies to vCont with "OK". The stop
4635 reply will be reported asynchronously by means of a `%Stop'
4636 notification. */
4637 getpkt (&rs->buf, &rs->buf_size, 0);
4638 if (strcmp (rs->buf, "OK") != 0)
4639 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4640 }
4641
4642 return 1;
4643 }
4644
4645 /* Tell the remote machine to resume. */
4646
4647 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4648
4649 static int last_sent_step;
4650
4651 static void
4652 remote_resume (struct target_ops *ops,
4653 ptid_t ptid, int step, enum target_signal siggnal)
4654 {
4655 struct remote_state *rs = get_remote_state ();
4656 char *buf;
4657
4658 last_sent_signal = siggnal;
4659 last_sent_step = step;
4660
4661 /* The vCont packet doesn't need to specify threads via Hc. */
4662 /* No reverse support (yet) for vCont. */
4663 if (execution_direction != EXEC_REVERSE)
4664 if (remote_vcont_resume (ptid, step, siggnal))
4665 goto done;
4666
4667 /* All other supported resume packets do use Hc, so set the continue
4668 thread. */
4669 if (ptid_equal (ptid, minus_one_ptid))
4670 set_continue_thread (any_thread_ptid);
4671 else
4672 set_continue_thread (ptid);
4673
4674 buf = rs->buf;
4675 if (execution_direction == EXEC_REVERSE)
4676 {
4677 /* We don't pass signals to the target in reverse exec mode. */
4678 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4679 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4680 siggnal);
4681
4682 if (step
4683 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4684 error (_("Remote reverse-step not supported."));
4685 if (!step
4686 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4687 error (_("Remote reverse-continue not supported."));
4688
4689 strcpy (buf, step ? "bs" : "bc");
4690 }
4691 else if (siggnal != TARGET_SIGNAL_0)
4692 {
4693 buf[0] = step ? 'S' : 'C';
4694 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4695 buf[2] = tohex (((int) siggnal) & 0xf);
4696 buf[3] = '\0';
4697 }
4698 else
4699 strcpy (buf, step ? "s" : "c");
4700
4701 putpkt (buf);
4702
4703 done:
4704 /* We are about to start executing the inferior, let's register it
4705 with the event loop. NOTE: this is the one place where all the
4706 execution commands end up. We could alternatively do this in each
4707 of the execution commands in infcmd.c. */
4708 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4709 into infcmd.c in order to allow inferior function calls to work
4710 NOT asynchronously. */
4711 if (target_can_async_p ())
4712 target_async (inferior_event_handler, 0);
4713
4714 /* We've just told the target to resume. The remote server will
4715 wait for the inferior to stop, and then send a stop reply. In
4716 the mean time, we can't start another command/query ourselves
4717 because the stub wouldn't be ready to process it. This applies
4718 only to the base all-stop protocol, however. In non-stop (which
4719 only supports vCont), the stub replies with an "OK", and is
4720 immediate able to process further serial input. */
4721 if (!non_stop)
4722 rs->waiting_for_stop_reply = 1;
4723 }
4724 \f
4725
4726 /* Set up the signal handler for SIGINT, while the target is
4727 executing, ovewriting the 'regular' SIGINT signal handler. */
4728 static void
4729 initialize_sigint_signal_handler (void)
4730 {
4731 signal (SIGINT, handle_remote_sigint);
4732 }
4733
4734 /* Signal handler for SIGINT, while the target is executing. */
4735 static void
4736 handle_remote_sigint (int sig)
4737 {
4738 signal (sig, handle_remote_sigint_twice);
4739 mark_async_signal_handler_wrapper (sigint_remote_token);
4740 }
4741
4742 /* Signal handler for SIGINT, installed after SIGINT has already been
4743 sent once. It will take effect the second time that the user sends
4744 a ^C. */
4745 static void
4746 handle_remote_sigint_twice (int sig)
4747 {
4748 signal (sig, handle_remote_sigint);
4749 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4750 }
4751
4752 /* Perform the real interruption of the target execution, in response
4753 to a ^C. */
4754 static void
4755 async_remote_interrupt (gdb_client_data arg)
4756 {
4757 if (remote_debug)
4758 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4759
4760 target_stop (inferior_ptid);
4761 }
4762
4763 /* Perform interrupt, if the first attempt did not succeed. Just give
4764 up on the target alltogether. */
4765 void
4766 async_remote_interrupt_twice (gdb_client_data arg)
4767 {
4768 if (remote_debug)
4769 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4770
4771 interrupt_query ();
4772 }
4773
4774 /* Reinstall the usual SIGINT handlers, after the target has
4775 stopped. */
4776 static void
4777 cleanup_sigint_signal_handler (void *dummy)
4778 {
4779 signal (SIGINT, handle_sigint);
4780 }
4781
4782 /* Send ^C to target to halt it. Target will respond, and send us a
4783 packet. */
4784 static void (*ofunc) (int);
4785
4786 /* The command line interface's stop routine. This function is installed
4787 as a signal handler for SIGINT. The first time a user requests a
4788 stop, we call remote_stop to send a break or ^C. If there is no
4789 response from the target (it didn't stop when the user requested it),
4790 we ask the user if he'd like to detach from the target. */
4791 static void
4792 remote_interrupt (int signo)
4793 {
4794 /* If this doesn't work, try more severe steps. */
4795 signal (signo, remote_interrupt_twice);
4796
4797 gdb_call_async_signal_handler (sigint_remote_token, 1);
4798 }
4799
4800 /* The user typed ^C twice. */
4801
4802 static void
4803 remote_interrupt_twice (int signo)
4804 {
4805 signal (signo, ofunc);
4806 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4807 signal (signo, remote_interrupt);
4808 }
4809
4810 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4811 thread, all threads of a remote process, or all threads of all
4812 processes. */
4813
4814 static void
4815 remote_stop_ns (ptid_t ptid)
4816 {
4817 struct remote_state *rs = get_remote_state ();
4818 char *p = rs->buf;
4819 char *endp = rs->buf + get_remote_packet_size ();
4820
4821 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4822 remote_vcont_probe (rs);
4823
4824 if (!rs->support_vCont_t)
4825 error (_("Remote server does not support stopping threads"));
4826
4827 if (ptid_equal (ptid, minus_one_ptid)
4828 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4829 p += xsnprintf (p, endp - p, "vCont;t");
4830 else
4831 {
4832 ptid_t nptid;
4833
4834 p += xsnprintf (p, endp - p, "vCont;t:");
4835
4836 if (ptid_is_pid (ptid))
4837 /* All (-1) threads of process. */
4838 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4839 else
4840 {
4841 /* Small optimization: if we already have a stop reply for
4842 this thread, no use in telling the stub we want this
4843 stopped. */
4844 if (peek_stop_reply (ptid))
4845 return;
4846
4847 nptid = ptid;
4848 }
4849
4850 write_ptid (p, endp, nptid);
4851 }
4852
4853 /* In non-stop, we get an immediate OK reply. The stop reply will
4854 come in asynchronously by notification. */
4855 putpkt (rs->buf);
4856 getpkt (&rs->buf, &rs->buf_size, 0);
4857 if (strcmp (rs->buf, "OK") != 0)
4858 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4859 }
4860
4861 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4862 remote target. It is undefined which thread of which process
4863 reports the stop. */
4864
4865 static void
4866 remote_stop_as (ptid_t ptid)
4867 {
4868 struct remote_state *rs = get_remote_state ();
4869
4870 rs->ctrlc_pending_p = 1;
4871
4872 /* If the inferior is stopped already, but the core didn't know
4873 about it yet, just ignore the request. The cached wait status
4874 will be collected in remote_wait. */
4875 if (rs->cached_wait_status)
4876 return;
4877
4878 /* Send interrupt_sequence to remote target. */
4879 send_interrupt_sequence ();
4880 }
4881
4882 /* This is the generic stop called via the target vector. When a target
4883 interrupt is requested, either by the command line or the GUI, we
4884 will eventually end up here. */
4885
4886 static void
4887 remote_stop (ptid_t ptid)
4888 {
4889 if (remote_debug)
4890 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4891
4892 if (non_stop)
4893 remote_stop_ns (ptid);
4894 else
4895 remote_stop_as (ptid);
4896 }
4897
4898 /* Ask the user what to do when an interrupt is received. */
4899
4900 static void
4901 interrupt_query (void)
4902 {
4903 target_terminal_ours ();
4904
4905 if (target_can_async_p ())
4906 {
4907 signal (SIGINT, handle_sigint);
4908 deprecated_throw_reason (RETURN_QUIT);
4909 }
4910 else
4911 {
4912 if (query (_("Interrupted while waiting for the program.\n\
4913 Give up (and stop debugging it)? ")))
4914 {
4915 pop_target ();
4916 deprecated_throw_reason (RETURN_QUIT);
4917 }
4918 }
4919
4920 target_terminal_inferior ();
4921 }
4922
4923 /* Enable/disable target terminal ownership. Most targets can use
4924 terminal groups to control terminal ownership. Remote targets are
4925 different in that explicit transfer of ownership to/from GDB/target
4926 is required. */
4927
4928 static void
4929 remote_terminal_inferior (void)
4930 {
4931 if (!target_async_permitted)
4932 /* Nothing to do. */
4933 return;
4934
4935 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4936 idempotent. The event-loop GDB talking to an asynchronous target
4937 with a synchronous command calls this function from both
4938 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4939 transfer the terminal to the target when it shouldn't this guard
4940 can go away. */
4941 if (!remote_async_terminal_ours_p)
4942 return;
4943 delete_file_handler (input_fd);
4944 remote_async_terminal_ours_p = 0;
4945 initialize_sigint_signal_handler ();
4946 /* NOTE: At this point we could also register our selves as the
4947 recipient of all input. Any characters typed could then be
4948 passed on down to the target. */
4949 }
4950
4951 static void
4952 remote_terminal_ours (void)
4953 {
4954 if (!target_async_permitted)
4955 /* Nothing to do. */
4956 return;
4957
4958 /* See FIXME in remote_terminal_inferior. */
4959 if (remote_async_terminal_ours_p)
4960 return;
4961 cleanup_sigint_signal_handler (NULL);
4962 add_file_handler (input_fd, stdin_event_handler, 0);
4963 remote_async_terminal_ours_p = 1;
4964 }
4965
4966 static void
4967 remote_console_output (char *msg)
4968 {
4969 char *p;
4970
4971 for (p = msg; p[0] && p[1]; p += 2)
4972 {
4973 char tb[2];
4974 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4975
4976 tb[0] = c;
4977 tb[1] = 0;
4978 fputs_unfiltered (tb, gdb_stdtarg);
4979 }
4980 gdb_flush (gdb_stdtarg);
4981 }
4982
4983 typedef struct cached_reg
4984 {
4985 int num;
4986 gdb_byte data[MAX_REGISTER_SIZE];
4987 } cached_reg_t;
4988
4989 DEF_VEC_O(cached_reg_t);
4990
4991 struct stop_reply
4992 {
4993 struct stop_reply *next;
4994
4995 ptid_t ptid;
4996
4997 struct target_waitstatus ws;
4998
4999 /* Expedited registers. This makes remote debugging a bit more
5000 efficient for those targets that provide critical registers as
5001 part of their normal status mechanism (as another roundtrip to
5002 fetch them is avoided). */
5003 VEC(cached_reg_t) *regcache;
5004
5005 int stopped_by_watchpoint_p;
5006 CORE_ADDR watch_data_address;
5007
5008 int solibs_changed;
5009 int replay_event;
5010
5011 int core;
5012 };
5013
5014 /* The list of already fetched and acknowledged stop events. */
5015 static struct stop_reply *stop_reply_queue;
5016
5017 static struct stop_reply *
5018 stop_reply_xmalloc (void)
5019 {
5020 struct stop_reply *r = XMALLOC (struct stop_reply);
5021
5022 r->next = NULL;
5023 return r;
5024 }
5025
5026 static void
5027 stop_reply_xfree (struct stop_reply *r)
5028 {
5029 if (r != NULL)
5030 {
5031 VEC_free (cached_reg_t, r->regcache);
5032 xfree (r);
5033 }
5034 }
5035
5036 /* Discard all pending stop replies of inferior PID. If PID is -1,
5037 discard everything. */
5038
5039 static void
5040 discard_pending_stop_replies (int pid)
5041 {
5042 struct stop_reply *prev = NULL, *reply, *next;
5043
5044 /* Discard the in-flight notification. */
5045 if (pending_stop_reply != NULL
5046 && (pid == -1
5047 || ptid_get_pid (pending_stop_reply->ptid) == pid))
5048 {
5049 stop_reply_xfree (pending_stop_reply);
5050 pending_stop_reply = NULL;
5051 }
5052
5053 /* Discard the stop replies we have already pulled with
5054 vStopped. */
5055 for (reply = stop_reply_queue; reply; reply = next)
5056 {
5057 next = reply->next;
5058 if (pid == -1
5059 || ptid_get_pid (reply->ptid) == pid)
5060 {
5061 if (reply == stop_reply_queue)
5062 stop_reply_queue = reply->next;
5063 else
5064 prev->next = reply->next;
5065
5066 stop_reply_xfree (reply);
5067 }
5068 else
5069 prev = reply;
5070 }
5071 }
5072
5073 /* Cleanup wrapper. */
5074
5075 static void
5076 do_stop_reply_xfree (void *arg)
5077 {
5078 struct stop_reply *r = arg;
5079
5080 stop_reply_xfree (r);
5081 }
5082
5083 /* Look for a queued stop reply belonging to PTID. If one is found,
5084 remove it from the queue, and return it. Returns NULL if none is
5085 found. If there are still queued events left to process, tell the
5086 event loop to get back to target_wait soon. */
5087
5088 static struct stop_reply *
5089 queued_stop_reply (ptid_t ptid)
5090 {
5091 struct stop_reply *it;
5092 struct stop_reply **it_link;
5093
5094 it = stop_reply_queue;
5095 it_link = &stop_reply_queue;
5096 while (it)
5097 {
5098 if (ptid_match (it->ptid, ptid))
5099 {
5100 *it_link = it->next;
5101 it->next = NULL;
5102 break;
5103 }
5104
5105 it_link = &it->next;
5106 it = *it_link;
5107 }
5108
5109 if (stop_reply_queue)
5110 /* There's still at least an event left. */
5111 mark_async_event_handler (remote_async_inferior_event_token);
5112
5113 return it;
5114 }
5115
5116 /* Push a fully parsed stop reply in the stop reply queue. Since we
5117 know that we now have at least one queued event left to pass to the
5118 core side, tell the event loop to get back to target_wait soon. */
5119
5120 static void
5121 push_stop_reply (struct stop_reply *new_event)
5122 {
5123 struct stop_reply *event;
5124
5125 if (stop_reply_queue)
5126 {
5127 for (event = stop_reply_queue;
5128 event && event->next;
5129 event = event->next)
5130 ;
5131
5132 event->next = new_event;
5133 }
5134 else
5135 stop_reply_queue = new_event;
5136
5137 mark_async_event_handler (remote_async_inferior_event_token);
5138 }
5139
5140 /* Returns true if we have a stop reply for PTID. */
5141
5142 static int
5143 peek_stop_reply (ptid_t ptid)
5144 {
5145 struct stop_reply *it;
5146
5147 for (it = stop_reply_queue; it; it = it->next)
5148 if (ptid_equal (ptid, it->ptid))
5149 {
5150 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5151 return 1;
5152 }
5153
5154 return 0;
5155 }
5156
5157 /* Parse the stop reply in BUF. Either the function succeeds, and the
5158 result is stored in EVENT, or throws an error. */
5159
5160 static void
5161 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5162 {
5163 struct remote_arch_state *rsa = get_remote_arch_state ();
5164 ULONGEST addr;
5165 char *p;
5166
5167 event->ptid = null_ptid;
5168 event->ws.kind = TARGET_WAITKIND_IGNORE;
5169 event->ws.value.integer = 0;
5170 event->solibs_changed = 0;
5171 event->replay_event = 0;
5172 event->stopped_by_watchpoint_p = 0;
5173 event->regcache = NULL;
5174 event->core = -1;
5175
5176 switch (buf[0])
5177 {
5178 case 'T': /* Status with PC, SP, FP, ... */
5179 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5180 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5181 ss = signal number
5182 n... = register number
5183 r... = register contents
5184 */
5185
5186 p = &buf[3]; /* after Txx */
5187 while (*p)
5188 {
5189 char *p1;
5190 char *p_temp;
5191 int fieldsize;
5192 LONGEST pnum = 0;
5193
5194 /* If the packet contains a register number, save it in
5195 pnum and set p1 to point to the character following it.
5196 Otherwise p1 points to p. */
5197
5198 /* If this packet is an awatch packet, don't parse the 'a'
5199 as a register number. */
5200
5201 if (strncmp (p, "awatch", strlen("awatch")) != 0
5202 && strncmp (p, "core", strlen ("core") != 0))
5203 {
5204 /* Read the ``P'' register number. */
5205 pnum = strtol (p, &p_temp, 16);
5206 p1 = p_temp;
5207 }
5208 else
5209 p1 = p;
5210
5211 if (p1 == p) /* No register number present here. */
5212 {
5213 p1 = strchr (p, ':');
5214 if (p1 == NULL)
5215 error (_("Malformed packet(a) (missing colon): %s\n\
5216 Packet: '%s'\n"),
5217 p, buf);
5218 if (strncmp (p, "thread", p1 - p) == 0)
5219 event->ptid = read_ptid (++p1, &p);
5220 else if ((strncmp (p, "watch", p1 - p) == 0)
5221 || (strncmp (p, "rwatch", p1 - p) == 0)
5222 || (strncmp (p, "awatch", p1 - p) == 0))
5223 {
5224 event->stopped_by_watchpoint_p = 1;
5225 p = unpack_varlen_hex (++p1, &addr);
5226 event->watch_data_address = (CORE_ADDR) addr;
5227 }
5228 else if (strncmp (p, "library", p1 - p) == 0)
5229 {
5230 p1++;
5231 p_temp = p1;
5232 while (*p_temp && *p_temp != ';')
5233 p_temp++;
5234
5235 event->solibs_changed = 1;
5236 p = p_temp;
5237 }
5238 else if (strncmp (p, "replaylog", p1 - p) == 0)
5239 {
5240 /* NO_HISTORY event.
5241 p1 will indicate "begin" or "end", but
5242 it makes no difference for now, so ignore it. */
5243 event->replay_event = 1;
5244 p_temp = strchr (p1 + 1, ';');
5245 if (p_temp)
5246 p = p_temp;
5247 }
5248 else if (strncmp (p, "core", p1 - p) == 0)
5249 {
5250 ULONGEST c;
5251
5252 p = unpack_varlen_hex (++p1, &c);
5253 event->core = c;
5254 }
5255 else
5256 {
5257 /* Silently skip unknown optional info. */
5258 p_temp = strchr (p1 + 1, ';');
5259 if (p_temp)
5260 p = p_temp;
5261 }
5262 }
5263 else
5264 {
5265 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5266 cached_reg_t cached_reg;
5267
5268 p = p1;
5269
5270 if (*p != ':')
5271 error (_("Malformed packet(b) (missing colon): %s\n\
5272 Packet: '%s'\n"),
5273 p, buf);
5274 ++p;
5275
5276 if (reg == NULL)
5277 error (_("Remote sent bad register number %s: %s\n\
5278 Packet: '%s'\n"),
5279 hex_string (pnum), p, buf);
5280
5281 cached_reg.num = reg->regnum;
5282
5283 fieldsize = hex2bin (p, cached_reg.data,
5284 register_size (target_gdbarch,
5285 reg->regnum));
5286 p += 2 * fieldsize;
5287 if (fieldsize < register_size (target_gdbarch,
5288 reg->regnum))
5289 warning (_("Remote reply is too short: %s"), buf);
5290
5291 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5292 }
5293
5294 if (*p != ';')
5295 error (_("Remote register badly formatted: %s\nhere: %s"),
5296 buf, p);
5297 ++p;
5298 }
5299 /* fall through */
5300 case 'S': /* Old style status, just signal only. */
5301 if (event->solibs_changed)
5302 event->ws.kind = TARGET_WAITKIND_LOADED;
5303 else if (event->replay_event)
5304 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5305 else
5306 {
5307 event->ws.kind = TARGET_WAITKIND_STOPPED;
5308 event->ws.value.sig = (enum target_signal)
5309 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5310 }
5311 break;
5312 case 'W': /* Target exited. */
5313 case 'X':
5314 {
5315 char *p;
5316 int pid;
5317 ULONGEST value;
5318
5319 /* GDB used to accept only 2 hex chars here. Stubs should
5320 only send more if they detect GDB supports multi-process
5321 support. */
5322 p = unpack_varlen_hex (&buf[1], &value);
5323
5324 if (buf[0] == 'W')
5325 {
5326 /* The remote process exited. */
5327 event->ws.kind = TARGET_WAITKIND_EXITED;
5328 event->ws.value.integer = value;
5329 }
5330 else
5331 {
5332 /* The remote process exited with a signal. */
5333 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5334 event->ws.value.sig = (enum target_signal) value;
5335 }
5336
5337 /* If no process is specified, assume inferior_ptid. */
5338 pid = ptid_get_pid (inferior_ptid);
5339 if (*p == '\0')
5340 ;
5341 else if (*p == ';')
5342 {
5343 p++;
5344
5345 if (p == '\0')
5346 ;
5347 else if (strncmp (p,
5348 "process:", sizeof ("process:") - 1) == 0)
5349 {
5350 ULONGEST upid;
5351
5352 p += sizeof ("process:") - 1;
5353 unpack_varlen_hex (p, &upid);
5354 pid = upid;
5355 }
5356 else
5357 error (_("unknown stop reply packet: %s"), buf);
5358 }
5359 else
5360 error (_("unknown stop reply packet: %s"), buf);
5361 event->ptid = pid_to_ptid (pid);
5362 }
5363 break;
5364 }
5365
5366 if (non_stop && ptid_equal (event->ptid, null_ptid))
5367 error (_("No process or thread specified in stop reply: %s"), buf);
5368 }
5369
5370 /* When the stub wants to tell GDB about a new stop reply, it sends a
5371 stop notification (%Stop). Those can come it at any time, hence,
5372 we have to make sure that any pending putpkt/getpkt sequence we're
5373 making is finished, before querying the stub for more events with
5374 vStopped. E.g., if we started a vStopped sequence immediatelly
5375 upon receiving the %Stop notification, something like this could
5376 happen:
5377
5378 1.1) --> Hg 1
5379 1.2) <-- OK
5380 1.3) --> g
5381 1.4) <-- %Stop
5382 1.5) --> vStopped
5383 1.6) <-- (registers reply to step #1.3)
5384
5385 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5386 query.
5387
5388 To solve this, whenever we parse a %Stop notification sucessfully,
5389 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5390 doing whatever we were doing:
5391
5392 2.1) --> Hg 1
5393 2.2) <-- OK
5394 2.3) --> g
5395 2.4) <-- %Stop
5396 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5397 2.5) <-- (registers reply to step #2.3)
5398
5399 Eventualy after step #2.5, we return to the event loop, which
5400 notices there's an event on the
5401 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5402 associated callback --- the function below. At this point, we're
5403 always safe to start a vStopped sequence. :
5404
5405 2.6) --> vStopped
5406 2.7) <-- T05 thread:2
5407 2.8) --> vStopped
5408 2.9) --> OK
5409 */
5410
5411 static void
5412 remote_get_pending_stop_replies (void)
5413 {
5414 struct remote_state *rs = get_remote_state ();
5415
5416 if (pending_stop_reply)
5417 {
5418 /* acknowledge */
5419 putpkt ("vStopped");
5420
5421 /* Now we can rely on it. */
5422 push_stop_reply (pending_stop_reply);
5423 pending_stop_reply = NULL;
5424
5425 while (1)
5426 {
5427 getpkt (&rs->buf, &rs->buf_size, 0);
5428 if (strcmp (rs->buf, "OK") == 0)
5429 break;
5430 else
5431 {
5432 struct cleanup *old_chain;
5433 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5434
5435 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5436 remote_parse_stop_reply (rs->buf, stop_reply);
5437
5438 /* acknowledge */
5439 putpkt ("vStopped");
5440
5441 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5442 {
5443 /* Now we can rely on it. */
5444 discard_cleanups (old_chain);
5445 push_stop_reply (stop_reply);
5446 }
5447 else
5448 /* We got an unknown stop reply. */
5449 do_cleanups (old_chain);
5450 }
5451 }
5452 }
5453 }
5454
5455
5456 /* Called when it is decided that STOP_REPLY holds the info of the
5457 event that is to be returned to the core. This function always
5458 destroys STOP_REPLY. */
5459
5460 static ptid_t
5461 process_stop_reply (struct stop_reply *stop_reply,
5462 struct target_waitstatus *status)
5463 {
5464 ptid_t ptid;
5465
5466 *status = stop_reply->ws;
5467 ptid = stop_reply->ptid;
5468
5469 /* If no thread/process was reported by the stub, assume the current
5470 inferior. */
5471 if (ptid_equal (ptid, null_ptid))
5472 ptid = inferior_ptid;
5473
5474 if (status->kind != TARGET_WAITKIND_EXITED
5475 && status->kind != TARGET_WAITKIND_SIGNALLED)
5476 {
5477 /* Expedited registers. */
5478 if (stop_reply->regcache)
5479 {
5480 struct regcache *regcache
5481 = get_thread_arch_regcache (ptid, target_gdbarch);
5482 cached_reg_t *reg;
5483 int ix;
5484
5485 for (ix = 0;
5486 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5487 ix++)
5488 regcache_raw_supply (regcache, reg->num, reg->data);
5489 VEC_free (cached_reg_t, stop_reply->regcache);
5490 }
5491
5492 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5493 remote_watch_data_address = stop_reply->watch_data_address;
5494
5495 remote_notice_new_inferior (ptid, 0);
5496 demand_private_info (ptid)->core = stop_reply->core;
5497 }
5498
5499 stop_reply_xfree (stop_reply);
5500 return ptid;
5501 }
5502
5503 /* The non-stop mode version of target_wait. */
5504
5505 static ptid_t
5506 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5507 {
5508 struct remote_state *rs = get_remote_state ();
5509 struct stop_reply *stop_reply;
5510 int ret;
5511
5512 /* If in non-stop mode, get out of getpkt even if a
5513 notification is received. */
5514
5515 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5516 0 /* forever */);
5517 while (1)
5518 {
5519 if (ret != -1)
5520 switch (rs->buf[0])
5521 {
5522 case 'E': /* Error of some sort. */
5523 /* We're out of sync with the target now. Did it continue
5524 or not? We can't tell which thread it was in non-stop,
5525 so just ignore this. */
5526 warning (_("Remote failure reply: %s"), rs->buf);
5527 break;
5528 case 'O': /* Console output. */
5529 remote_console_output (rs->buf + 1);
5530 break;
5531 default:
5532 warning (_("Invalid remote reply: %s"), rs->buf);
5533 break;
5534 }
5535
5536 /* Acknowledge a pending stop reply that may have arrived in the
5537 mean time. */
5538 if (pending_stop_reply != NULL)
5539 remote_get_pending_stop_replies ();
5540
5541 /* If indeed we noticed a stop reply, we're done. */
5542 stop_reply = queued_stop_reply (ptid);
5543 if (stop_reply != NULL)
5544 return process_stop_reply (stop_reply, status);
5545
5546 /* Still no event. If we're just polling for an event, then
5547 return to the event loop. */
5548 if (options & TARGET_WNOHANG)
5549 {
5550 status->kind = TARGET_WAITKIND_IGNORE;
5551 return minus_one_ptid;
5552 }
5553
5554 /* Otherwise do a blocking wait. */
5555 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5556 1 /* forever */);
5557 }
5558 }
5559
5560 /* Wait until the remote machine stops, then return, storing status in
5561 STATUS just as `wait' would. */
5562
5563 static ptid_t
5564 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5565 {
5566 struct remote_state *rs = get_remote_state ();
5567 ptid_t event_ptid = null_ptid;
5568 char *buf;
5569 struct stop_reply *stop_reply;
5570
5571 again:
5572
5573 status->kind = TARGET_WAITKIND_IGNORE;
5574 status->value.integer = 0;
5575
5576 stop_reply = queued_stop_reply (ptid);
5577 if (stop_reply != NULL)
5578 return process_stop_reply (stop_reply, status);
5579
5580 if (rs->cached_wait_status)
5581 /* Use the cached wait status, but only once. */
5582 rs->cached_wait_status = 0;
5583 else
5584 {
5585 int ret;
5586
5587 if (!target_is_async_p ())
5588 {
5589 ofunc = signal (SIGINT, remote_interrupt);
5590 /* If the user hit C-c before this packet, or between packets,
5591 pretend that it was hit right here. */
5592 if (quit_flag)
5593 {
5594 quit_flag = 0;
5595 remote_interrupt (SIGINT);
5596 }
5597 }
5598
5599 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5600 _never_ wait for ever -> test on target_is_async_p().
5601 However, before we do that we need to ensure that the caller
5602 knows how to take the target into/out of async mode. */
5603 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5604 if (!target_is_async_p ())
5605 signal (SIGINT, ofunc);
5606 }
5607
5608 buf = rs->buf;
5609
5610 remote_stopped_by_watchpoint_p = 0;
5611
5612 /* We got something. */
5613 rs->waiting_for_stop_reply = 0;
5614
5615 /* Assume that the target has acknowledged Ctrl-C unless we receive
5616 an 'F' or 'O' packet. */
5617 if (buf[0] != 'F' && buf[0] != 'O')
5618 rs->ctrlc_pending_p = 0;
5619
5620 switch (buf[0])
5621 {
5622 case 'E': /* Error of some sort. */
5623 /* We're out of sync with the target now. Did it continue or
5624 not? Not is more likely, so report a stop. */
5625 warning (_("Remote failure reply: %s"), buf);
5626 status->kind = TARGET_WAITKIND_STOPPED;
5627 status->value.sig = TARGET_SIGNAL_0;
5628 break;
5629 case 'F': /* File-I/O request. */
5630 remote_fileio_request (buf, rs->ctrlc_pending_p);
5631 rs->ctrlc_pending_p = 0;
5632 break;
5633 case 'T': case 'S': case 'X': case 'W':
5634 {
5635 struct stop_reply *stop_reply;
5636 struct cleanup *old_chain;
5637
5638 stop_reply = stop_reply_xmalloc ();
5639 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5640 remote_parse_stop_reply (buf, stop_reply);
5641 discard_cleanups (old_chain);
5642 event_ptid = process_stop_reply (stop_reply, status);
5643 break;
5644 }
5645 case 'O': /* Console output. */
5646 remote_console_output (buf + 1);
5647
5648 /* The target didn't really stop; keep waiting. */
5649 rs->waiting_for_stop_reply = 1;
5650
5651 break;
5652 case '\0':
5653 if (last_sent_signal != TARGET_SIGNAL_0)
5654 {
5655 /* Zero length reply means that we tried 'S' or 'C' and the
5656 remote system doesn't support it. */
5657 target_terminal_ours_for_output ();
5658 printf_filtered
5659 ("Can't send signals to this remote system. %s not sent.\n",
5660 target_signal_to_name (last_sent_signal));
5661 last_sent_signal = TARGET_SIGNAL_0;
5662 target_terminal_inferior ();
5663
5664 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5665 putpkt ((char *) buf);
5666
5667 /* We just told the target to resume, so a stop reply is in
5668 order. */
5669 rs->waiting_for_stop_reply = 1;
5670 break;
5671 }
5672 /* else fallthrough */
5673 default:
5674 warning (_("Invalid remote reply: %s"), buf);
5675 /* Keep waiting. */
5676 rs->waiting_for_stop_reply = 1;
5677 break;
5678 }
5679
5680 if (status->kind == TARGET_WAITKIND_IGNORE)
5681 {
5682 /* Nothing interesting happened. If we're doing a non-blocking
5683 poll, we're done. Otherwise, go back to waiting. */
5684 if (options & TARGET_WNOHANG)
5685 return minus_one_ptid;
5686 else
5687 goto again;
5688 }
5689 else if (status->kind != TARGET_WAITKIND_EXITED
5690 && status->kind != TARGET_WAITKIND_SIGNALLED)
5691 {
5692 if (!ptid_equal (event_ptid, null_ptid))
5693 record_currthread (event_ptid);
5694 else
5695 event_ptid = inferior_ptid;
5696 }
5697 else
5698 /* A process exit. Invalidate our notion of current thread. */
5699 record_currthread (minus_one_ptid);
5700
5701 return event_ptid;
5702 }
5703
5704 /* Wait until the remote machine stops, then return, storing status in
5705 STATUS just as `wait' would. */
5706
5707 static ptid_t
5708 remote_wait (struct target_ops *ops,
5709 ptid_t ptid, struct target_waitstatus *status, int options)
5710 {
5711 ptid_t event_ptid;
5712
5713 if (non_stop)
5714 event_ptid = remote_wait_ns (ptid, status, options);
5715 else
5716 event_ptid = remote_wait_as (ptid, status, options);
5717
5718 if (target_can_async_p ())
5719 {
5720 /* If there are are events left in the queue tell the event loop
5721 to return here. */
5722 if (stop_reply_queue)
5723 mark_async_event_handler (remote_async_inferior_event_token);
5724 }
5725
5726 return event_ptid;
5727 }
5728
5729 /* Fetch a single register using a 'p' packet. */
5730
5731 static int
5732 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5733 {
5734 struct remote_state *rs = get_remote_state ();
5735 char *buf, *p;
5736 char regp[MAX_REGISTER_SIZE];
5737 int i;
5738
5739 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5740 return 0;
5741
5742 if (reg->pnum == -1)
5743 return 0;
5744
5745 p = rs->buf;
5746 *p++ = 'p';
5747 p += hexnumstr (p, reg->pnum);
5748 *p++ = '\0';
5749 putpkt (rs->buf);
5750 getpkt (&rs->buf, &rs->buf_size, 0);
5751
5752 buf = rs->buf;
5753
5754 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5755 {
5756 case PACKET_OK:
5757 break;
5758 case PACKET_UNKNOWN:
5759 return 0;
5760 case PACKET_ERROR:
5761 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5762 gdbarch_register_name (get_regcache_arch (regcache),
5763 reg->regnum),
5764 buf);
5765 }
5766
5767 /* If this register is unfetchable, tell the regcache. */
5768 if (buf[0] == 'x')
5769 {
5770 regcache_raw_supply (regcache, reg->regnum, NULL);
5771 return 1;
5772 }
5773
5774 /* Otherwise, parse and supply the value. */
5775 p = buf;
5776 i = 0;
5777 while (p[0] != 0)
5778 {
5779 if (p[1] == 0)
5780 error (_("fetch_register_using_p: early buf termination"));
5781
5782 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5783 p += 2;
5784 }
5785 regcache_raw_supply (regcache, reg->regnum, regp);
5786 return 1;
5787 }
5788
5789 /* Fetch the registers included in the target's 'g' packet. */
5790
5791 static int
5792 send_g_packet (void)
5793 {
5794 struct remote_state *rs = get_remote_state ();
5795 int buf_len;
5796
5797 sprintf (rs->buf, "g");
5798 remote_send (&rs->buf, &rs->buf_size);
5799
5800 /* We can get out of synch in various cases. If the first character
5801 in the buffer is not a hex character, assume that has happened
5802 and try to fetch another packet to read. */
5803 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5804 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5805 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5806 && rs->buf[0] != 'x') /* New: unavailable register value. */
5807 {
5808 if (remote_debug)
5809 fprintf_unfiltered (gdb_stdlog,
5810 "Bad register packet; fetching a new packet\n");
5811 getpkt (&rs->buf, &rs->buf_size, 0);
5812 }
5813
5814 buf_len = strlen (rs->buf);
5815
5816 /* Sanity check the received packet. */
5817 if (buf_len % 2 != 0)
5818 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5819
5820 return buf_len / 2;
5821 }
5822
5823 static void
5824 process_g_packet (struct regcache *regcache)
5825 {
5826 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5827 struct remote_state *rs = get_remote_state ();
5828 struct remote_arch_state *rsa = get_remote_arch_state ();
5829 int i, buf_len;
5830 char *p;
5831 char *regs;
5832
5833 buf_len = strlen (rs->buf);
5834
5835 /* Further sanity checks, with knowledge of the architecture. */
5836 if (buf_len > 2 * rsa->sizeof_g_packet)
5837 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5838
5839 /* Save the size of the packet sent to us by the target. It is used
5840 as a heuristic when determining the max size of packets that the
5841 target can safely receive. */
5842 if (rsa->actual_register_packet_size == 0)
5843 rsa->actual_register_packet_size = buf_len;
5844
5845 /* If this is smaller than we guessed the 'g' packet would be,
5846 update our records. A 'g' reply that doesn't include a register's
5847 value implies either that the register is not available, or that
5848 the 'p' packet must be used. */
5849 if (buf_len < 2 * rsa->sizeof_g_packet)
5850 {
5851 rsa->sizeof_g_packet = buf_len / 2;
5852
5853 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5854 {
5855 if (rsa->regs[i].pnum == -1)
5856 continue;
5857
5858 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5859 rsa->regs[i].in_g_packet = 0;
5860 else
5861 rsa->regs[i].in_g_packet = 1;
5862 }
5863 }
5864
5865 regs = alloca (rsa->sizeof_g_packet);
5866
5867 /* Unimplemented registers read as all bits zero. */
5868 memset (regs, 0, rsa->sizeof_g_packet);
5869
5870 /* Reply describes registers byte by byte, each byte encoded as two
5871 hex characters. Suck them all up, then supply them to the
5872 register cacheing/storage mechanism. */
5873
5874 p = rs->buf;
5875 for (i = 0; i < rsa->sizeof_g_packet; i++)
5876 {
5877 if (p[0] == 0 || p[1] == 0)
5878 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5879 internal_error (__FILE__, __LINE__,
5880 _("unexpected end of 'g' packet reply"));
5881
5882 if (p[0] == 'x' && p[1] == 'x')
5883 regs[i] = 0; /* 'x' */
5884 else
5885 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5886 p += 2;
5887 }
5888
5889 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5890 {
5891 struct packet_reg *r = &rsa->regs[i];
5892
5893 if (r->in_g_packet)
5894 {
5895 if (r->offset * 2 >= strlen (rs->buf))
5896 /* This shouldn't happen - we adjusted in_g_packet above. */
5897 internal_error (__FILE__, __LINE__,
5898 _("unexpected end of 'g' packet reply"));
5899 else if (rs->buf[r->offset * 2] == 'x')
5900 {
5901 gdb_assert (r->offset * 2 < strlen (rs->buf));
5902 /* The register isn't available, mark it as such (at
5903 the same time setting the value to zero). */
5904 regcache_raw_supply (regcache, r->regnum, NULL);
5905 }
5906 else
5907 regcache_raw_supply (regcache, r->regnum,
5908 regs + r->offset);
5909 }
5910 }
5911 }
5912
5913 static void
5914 fetch_registers_using_g (struct regcache *regcache)
5915 {
5916 send_g_packet ();
5917 process_g_packet (regcache);
5918 }
5919
5920 /* Make the remote selected traceframe match GDB's selected
5921 traceframe. */
5922
5923 static void
5924 set_remote_traceframe (void)
5925 {
5926 int newnum;
5927
5928 if (remote_traceframe_number == get_traceframe_number ())
5929 return;
5930
5931 /* Avoid recursion, remote_trace_find calls us again. */
5932 remote_traceframe_number = get_traceframe_number ();
5933
5934 newnum = target_trace_find (tfind_number,
5935 get_traceframe_number (), 0, 0, NULL);
5936
5937 /* Should not happen. If it does, all bets are off. */
5938 if (newnum != get_traceframe_number ())
5939 warning (_("could not set remote traceframe"));
5940 }
5941
5942 static void
5943 remote_fetch_registers (struct target_ops *ops,
5944 struct regcache *regcache, int regnum)
5945 {
5946 struct remote_arch_state *rsa = get_remote_arch_state ();
5947 int i;
5948
5949 set_remote_traceframe ();
5950 set_general_thread (inferior_ptid);
5951
5952 if (regnum >= 0)
5953 {
5954 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5955
5956 gdb_assert (reg != NULL);
5957
5958 /* If this register might be in the 'g' packet, try that first -
5959 we are likely to read more than one register. If this is the
5960 first 'g' packet, we might be overly optimistic about its
5961 contents, so fall back to 'p'. */
5962 if (reg->in_g_packet)
5963 {
5964 fetch_registers_using_g (regcache);
5965 if (reg->in_g_packet)
5966 return;
5967 }
5968
5969 if (fetch_register_using_p (regcache, reg))
5970 return;
5971
5972 /* This register is not available. */
5973 regcache_raw_supply (regcache, reg->regnum, NULL);
5974
5975 return;
5976 }
5977
5978 fetch_registers_using_g (regcache);
5979
5980 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5981 if (!rsa->regs[i].in_g_packet)
5982 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5983 {
5984 /* This register is not available. */
5985 regcache_raw_supply (regcache, i, NULL);
5986 }
5987 }
5988
5989 /* Prepare to store registers. Since we may send them all (using a
5990 'G' request), we have to read out the ones we don't want to change
5991 first. */
5992
5993 static void
5994 remote_prepare_to_store (struct regcache *regcache)
5995 {
5996 struct remote_arch_state *rsa = get_remote_arch_state ();
5997 int i;
5998 gdb_byte buf[MAX_REGISTER_SIZE];
5999
6000 /* Make sure the entire registers array is valid. */
6001 switch (remote_protocol_packets[PACKET_P].support)
6002 {
6003 case PACKET_DISABLE:
6004 case PACKET_SUPPORT_UNKNOWN:
6005 /* Make sure all the necessary registers are cached. */
6006 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6007 if (rsa->regs[i].in_g_packet)
6008 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6009 break;
6010 case PACKET_ENABLE:
6011 break;
6012 }
6013 }
6014
6015 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6016 packet was not recognized. */
6017
6018 static int
6019 store_register_using_P (const struct regcache *regcache,
6020 struct packet_reg *reg)
6021 {
6022 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6023 struct remote_state *rs = get_remote_state ();
6024 /* Try storing a single register. */
6025 char *buf = rs->buf;
6026 gdb_byte regp[MAX_REGISTER_SIZE];
6027 char *p;
6028
6029 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6030 return 0;
6031
6032 if (reg->pnum == -1)
6033 return 0;
6034
6035 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6036 p = buf + strlen (buf);
6037 regcache_raw_collect (regcache, reg->regnum, regp);
6038 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6039 putpkt (rs->buf);
6040 getpkt (&rs->buf, &rs->buf_size, 0);
6041
6042 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6043 {
6044 case PACKET_OK:
6045 return 1;
6046 case PACKET_ERROR:
6047 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6048 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6049 case PACKET_UNKNOWN:
6050 return 0;
6051 default:
6052 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6053 }
6054 }
6055
6056 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6057 contents of the register cache buffer. FIXME: ignores errors. */
6058
6059 static void
6060 store_registers_using_G (const struct regcache *regcache)
6061 {
6062 struct remote_state *rs = get_remote_state ();
6063 struct remote_arch_state *rsa = get_remote_arch_state ();
6064 gdb_byte *regs;
6065 char *p;
6066
6067 /* Extract all the registers in the regcache copying them into a
6068 local buffer. */
6069 {
6070 int i;
6071
6072 regs = alloca (rsa->sizeof_g_packet);
6073 memset (regs, 0, rsa->sizeof_g_packet);
6074 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6075 {
6076 struct packet_reg *r = &rsa->regs[i];
6077
6078 if (r->in_g_packet)
6079 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6080 }
6081 }
6082
6083 /* Command describes registers byte by byte,
6084 each byte encoded as two hex characters. */
6085 p = rs->buf;
6086 *p++ = 'G';
6087 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6088 updated. */
6089 bin2hex (regs, p, rsa->sizeof_g_packet);
6090 putpkt (rs->buf);
6091 getpkt (&rs->buf, &rs->buf_size, 0);
6092 if (packet_check_result (rs->buf) == PACKET_ERROR)
6093 error (_("Could not write registers; remote failure reply '%s'"),
6094 rs->buf);
6095 }
6096
6097 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6098 of the register cache buffer. FIXME: ignores errors. */
6099
6100 static void
6101 remote_store_registers (struct target_ops *ops,
6102 struct regcache *regcache, int regnum)
6103 {
6104 struct remote_arch_state *rsa = get_remote_arch_state ();
6105 int i;
6106
6107 set_remote_traceframe ();
6108 set_general_thread (inferior_ptid);
6109
6110 if (regnum >= 0)
6111 {
6112 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6113
6114 gdb_assert (reg != NULL);
6115
6116 /* Always prefer to store registers using the 'P' packet if
6117 possible; we often change only a small number of registers.
6118 Sometimes we change a larger number; we'd need help from a
6119 higher layer to know to use 'G'. */
6120 if (store_register_using_P (regcache, reg))
6121 return;
6122
6123 /* For now, don't complain if we have no way to write the
6124 register. GDB loses track of unavailable registers too
6125 easily. Some day, this may be an error. We don't have
6126 any way to read the register, either... */
6127 if (!reg->in_g_packet)
6128 return;
6129
6130 store_registers_using_G (regcache);
6131 return;
6132 }
6133
6134 store_registers_using_G (regcache);
6135
6136 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6137 if (!rsa->regs[i].in_g_packet)
6138 if (!store_register_using_P (regcache, &rsa->regs[i]))
6139 /* See above for why we do not issue an error here. */
6140 continue;
6141 }
6142 \f
6143
6144 /* Return the number of hex digits in num. */
6145
6146 static int
6147 hexnumlen (ULONGEST num)
6148 {
6149 int i;
6150
6151 for (i = 0; num != 0; i++)
6152 num >>= 4;
6153
6154 return max (i, 1);
6155 }
6156
6157 /* Set BUF to the minimum number of hex digits representing NUM. */
6158
6159 static int
6160 hexnumstr (char *buf, ULONGEST num)
6161 {
6162 int len = hexnumlen (num);
6163
6164 return hexnumnstr (buf, num, len);
6165 }
6166
6167
6168 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6169
6170 static int
6171 hexnumnstr (char *buf, ULONGEST num, int width)
6172 {
6173 int i;
6174
6175 buf[width] = '\0';
6176
6177 for (i = width - 1; i >= 0; i--)
6178 {
6179 buf[i] = "0123456789abcdef"[(num & 0xf)];
6180 num >>= 4;
6181 }
6182
6183 return width;
6184 }
6185
6186 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6187
6188 static CORE_ADDR
6189 remote_address_masked (CORE_ADDR addr)
6190 {
6191 int address_size = remote_address_size;
6192
6193 /* If "remoteaddresssize" was not set, default to target address size. */
6194 if (!address_size)
6195 address_size = gdbarch_addr_bit (target_gdbarch);
6196
6197 if (address_size > 0
6198 && address_size < (sizeof (ULONGEST) * 8))
6199 {
6200 /* Only create a mask when that mask can safely be constructed
6201 in a ULONGEST variable. */
6202 ULONGEST mask = 1;
6203
6204 mask = (mask << address_size) - 1;
6205 addr &= mask;
6206 }
6207 return addr;
6208 }
6209
6210 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6211 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6212 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6213 (which may be more than *OUT_LEN due to escape characters). The
6214 total number of bytes in the output buffer will be at most
6215 OUT_MAXLEN. */
6216
6217 static int
6218 remote_escape_output (const gdb_byte *buffer, int len,
6219 gdb_byte *out_buf, int *out_len,
6220 int out_maxlen)
6221 {
6222 int input_index, output_index;
6223
6224 output_index = 0;
6225 for (input_index = 0; input_index < len; input_index++)
6226 {
6227 gdb_byte b = buffer[input_index];
6228
6229 if (b == '$' || b == '#' || b == '}')
6230 {
6231 /* These must be escaped. */
6232 if (output_index + 2 > out_maxlen)
6233 break;
6234 out_buf[output_index++] = '}';
6235 out_buf[output_index++] = b ^ 0x20;
6236 }
6237 else
6238 {
6239 if (output_index + 1 > out_maxlen)
6240 break;
6241 out_buf[output_index++] = b;
6242 }
6243 }
6244
6245 *out_len = input_index;
6246 return output_index;
6247 }
6248
6249 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6250 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6251 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6252
6253 This function reverses remote_escape_output. It allows more
6254 escaped characters than that function does, in particular because
6255 '*' must be escaped to avoid the run-length encoding processing
6256 in reading packets. */
6257
6258 static int
6259 remote_unescape_input (const gdb_byte *buffer, int len,
6260 gdb_byte *out_buf, int out_maxlen)
6261 {
6262 int input_index, output_index;
6263 int escaped;
6264
6265 output_index = 0;
6266 escaped = 0;
6267 for (input_index = 0; input_index < len; input_index++)
6268 {
6269 gdb_byte b = buffer[input_index];
6270
6271 if (output_index + 1 > out_maxlen)
6272 {
6273 warning (_("Received too much data from remote target;"
6274 " ignoring overflow."));
6275 return output_index;
6276 }
6277
6278 if (escaped)
6279 {
6280 out_buf[output_index++] = b ^ 0x20;
6281 escaped = 0;
6282 }
6283 else if (b == '}')
6284 escaped = 1;
6285 else
6286 out_buf[output_index++] = b;
6287 }
6288
6289 if (escaped)
6290 error (_("Unmatched escape character in target response."));
6291
6292 return output_index;
6293 }
6294
6295 /* Determine whether the remote target supports binary downloading.
6296 This is accomplished by sending a no-op memory write of zero length
6297 to the target at the specified address. It does not suffice to send
6298 the whole packet, since many stubs strip the eighth bit and
6299 subsequently compute a wrong checksum, which causes real havoc with
6300 remote_write_bytes.
6301
6302 NOTE: This can still lose if the serial line is not eight-bit
6303 clean. In cases like this, the user should clear "remote
6304 X-packet". */
6305
6306 static void
6307 check_binary_download (CORE_ADDR addr)
6308 {
6309 struct remote_state *rs = get_remote_state ();
6310
6311 switch (remote_protocol_packets[PACKET_X].support)
6312 {
6313 case PACKET_DISABLE:
6314 break;
6315 case PACKET_ENABLE:
6316 break;
6317 case PACKET_SUPPORT_UNKNOWN:
6318 {
6319 char *p;
6320
6321 p = rs->buf;
6322 *p++ = 'X';
6323 p += hexnumstr (p, (ULONGEST) addr);
6324 *p++ = ',';
6325 p += hexnumstr (p, (ULONGEST) 0);
6326 *p++ = ':';
6327 *p = '\0';
6328
6329 putpkt_binary (rs->buf, (int) (p - rs->buf));
6330 getpkt (&rs->buf, &rs->buf_size, 0);
6331
6332 if (rs->buf[0] == '\0')
6333 {
6334 if (remote_debug)
6335 fprintf_unfiltered (gdb_stdlog,
6336 "binary downloading NOT "
6337 "supported by target\n");
6338 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6339 }
6340 else
6341 {
6342 if (remote_debug)
6343 fprintf_unfiltered (gdb_stdlog,
6344 "binary downloading supported by target\n");
6345 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6346 }
6347 break;
6348 }
6349 }
6350 }
6351
6352 /* Write memory data directly to the remote machine.
6353 This does not inform the data cache; the data cache uses this.
6354 HEADER is the starting part of the packet.
6355 MEMADDR is the address in the remote memory space.
6356 MYADDR is the address of the buffer in our space.
6357 LEN is the number of bytes.
6358 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6359 should send data as binary ('X'), or hex-encoded ('M').
6360
6361 The function creates packet of the form
6362 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6363
6364 where encoding of <DATA> is termined by PACKET_FORMAT.
6365
6366 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6367 are omitted.
6368
6369 Returns the number of bytes transferred, or 0 (setting errno) for
6370 error. Only transfer a single packet. */
6371
6372 static int
6373 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6374 const gdb_byte *myaddr, int len,
6375 char packet_format, int use_length)
6376 {
6377 struct remote_state *rs = get_remote_state ();
6378 char *p;
6379 char *plen = NULL;
6380 int plenlen = 0;
6381 int todo;
6382 int nr_bytes;
6383 int payload_size;
6384 int payload_length;
6385 int header_length;
6386
6387 if (packet_format != 'X' && packet_format != 'M')
6388 internal_error (__FILE__, __LINE__,
6389 _("remote_write_bytes_aux: bad packet format"));
6390
6391 if (len <= 0)
6392 return 0;
6393
6394 payload_size = get_memory_write_packet_size ();
6395
6396 /* The packet buffer will be large enough for the payload;
6397 get_memory_packet_size ensures this. */
6398 rs->buf[0] = '\0';
6399
6400 /* Compute the size of the actual payload by subtracting out the
6401 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6402
6403 payload_size -= strlen ("$,:#NN");
6404 if (!use_length)
6405 /* The comma won't be used. */
6406 payload_size += 1;
6407 header_length = strlen (header);
6408 payload_size -= header_length;
6409 payload_size -= hexnumlen (memaddr);
6410
6411 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6412
6413 strcat (rs->buf, header);
6414 p = rs->buf + strlen (header);
6415
6416 /* Compute a best guess of the number of bytes actually transfered. */
6417 if (packet_format == 'X')
6418 {
6419 /* Best guess at number of bytes that will fit. */
6420 todo = min (len, payload_size);
6421 if (use_length)
6422 payload_size -= hexnumlen (todo);
6423 todo = min (todo, payload_size);
6424 }
6425 else
6426 {
6427 /* Num bytes that will fit. */
6428 todo = min (len, payload_size / 2);
6429 if (use_length)
6430 payload_size -= hexnumlen (todo);
6431 todo = min (todo, payload_size / 2);
6432 }
6433
6434 if (todo <= 0)
6435 internal_error (__FILE__, __LINE__,
6436 _("minimum packet size too small to write data"));
6437
6438 /* If we already need another packet, then try to align the end
6439 of this packet to a useful boundary. */
6440 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6441 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6442
6443 /* Append "<memaddr>". */
6444 memaddr = remote_address_masked (memaddr);
6445 p += hexnumstr (p, (ULONGEST) memaddr);
6446
6447 if (use_length)
6448 {
6449 /* Append ",". */
6450 *p++ = ',';
6451
6452 /* Append <len>. Retain the location/size of <len>. It may need to
6453 be adjusted once the packet body has been created. */
6454 plen = p;
6455 plenlen = hexnumstr (p, (ULONGEST) todo);
6456 p += plenlen;
6457 }
6458
6459 /* Append ":". */
6460 *p++ = ':';
6461 *p = '\0';
6462
6463 /* Append the packet body. */
6464 if (packet_format == 'X')
6465 {
6466 /* Binary mode. Send target system values byte by byte, in
6467 increasing byte addresses. Only escape certain critical
6468 characters. */
6469 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6470 payload_size);
6471
6472 /* If not all TODO bytes fit, then we'll need another packet. Make
6473 a second try to keep the end of the packet aligned. Don't do
6474 this if the packet is tiny. */
6475 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6476 {
6477 int new_nr_bytes;
6478
6479 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6480 - memaddr);
6481 if (new_nr_bytes != nr_bytes)
6482 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6483 p, &nr_bytes,
6484 payload_size);
6485 }
6486
6487 p += payload_length;
6488 if (use_length && nr_bytes < todo)
6489 {
6490 /* Escape chars have filled up the buffer prematurely,
6491 and we have actually sent fewer bytes than planned.
6492 Fix-up the length field of the packet. Use the same
6493 number of characters as before. */
6494 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6495 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6496 }
6497 }
6498 else
6499 {
6500 /* Normal mode: Send target system values byte by byte, in
6501 increasing byte addresses. Each byte is encoded as a two hex
6502 value. */
6503 nr_bytes = bin2hex (myaddr, p, todo);
6504 p += 2 * nr_bytes;
6505 }
6506
6507 putpkt_binary (rs->buf, (int) (p - rs->buf));
6508 getpkt (&rs->buf, &rs->buf_size, 0);
6509
6510 if (rs->buf[0] == 'E')
6511 {
6512 /* There is no correspondance between what the remote protocol
6513 uses for errors and errno codes. We would like a cleaner way
6514 of representing errors (big enough to include errno codes,
6515 bfd_error codes, and others). But for now just return EIO. */
6516 errno = EIO;
6517 return 0;
6518 }
6519
6520 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6521 fewer bytes than we'd planned. */
6522 return nr_bytes;
6523 }
6524
6525 /* Write memory data directly to the remote machine.
6526 This does not inform the data cache; the data cache uses this.
6527 MEMADDR is the address in the remote memory space.
6528 MYADDR is the address of the buffer in our space.
6529 LEN is the number of bytes.
6530
6531 Returns number of bytes transferred, or 0 (setting errno) for
6532 error. Only transfer a single packet. */
6533
6534 static int
6535 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6536 {
6537 char *packet_format = 0;
6538
6539 /* Check whether the target supports binary download. */
6540 check_binary_download (memaddr);
6541
6542 switch (remote_protocol_packets[PACKET_X].support)
6543 {
6544 case PACKET_ENABLE:
6545 packet_format = "X";
6546 break;
6547 case PACKET_DISABLE:
6548 packet_format = "M";
6549 break;
6550 case PACKET_SUPPORT_UNKNOWN:
6551 internal_error (__FILE__, __LINE__,
6552 _("remote_write_bytes: bad internal state"));
6553 default:
6554 internal_error (__FILE__, __LINE__, _("bad switch"));
6555 }
6556
6557 return remote_write_bytes_aux (packet_format,
6558 memaddr, myaddr, len, packet_format[0], 1);
6559 }
6560
6561 /* Read memory data directly from the remote machine.
6562 This does not use the data cache; the data cache uses this.
6563 MEMADDR is the address in the remote memory space.
6564 MYADDR is the address of the buffer in our space.
6565 LEN is the number of bytes.
6566
6567 Returns number of bytes transferred, or 0 for error. */
6568
6569 static int
6570 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6571 {
6572 struct remote_state *rs = get_remote_state ();
6573 int max_buf_size; /* Max size of packet output buffer. */
6574 char *p;
6575 int todo;
6576 int i;
6577
6578 if (len <= 0)
6579 return 0;
6580
6581 max_buf_size = get_memory_read_packet_size ();
6582 /* The packet buffer will be large enough for the payload;
6583 get_memory_packet_size ensures this. */
6584
6585 /* Number if bytes that will fit. */
6586 todo = min (len, max_buf_size / 2);
6587
6588 /* Construct "m"<memaddr>","<len>". */
6589 memaddr = remote_address_masked (memaddr);
6590 p = rs->buf;
6591 *p++ = 'm';
6592 p += hexnumstr (p, (ULONGEST) memaddr);
6593 *p++ = ',';
6594 p += hexnumstr (p, (ULONGEST) todo);
6595 *p = '\0';
6596 putpkt (rs->buf);
6597 getpkt (&rs->buf, &rs->buf_size, 0);
6598 if (rs->buf[0] == 'E'
6599 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6600 && rs->buf[3] == '\0')
6601 {
6602 /* There is no correspondance between what the remote protocol
6603 uses for errors and errno codes. We would like a cleaner way
6604 of representing errors (big enough to include errno codes,
6605 bfd_error codes, and others). But for now just return
6606 EIO. */
6607 errno = EIO;
6608 return 0;
6609 }
6610 /* Reply describes memory byte by byte, each byte encoded as two hex
6611 characters. */
6612 p = rs->buf;
6613 i = hex2bin (p, myaddr, todo);
6614 /* Return what we have. Let higher layers handle partial reads. */
6615 return i;
6616 }
6617 \f
6618
6619 /* Remote notification handler. */
6620
6621 static void
6622 handle_notification (char *buf, size_t length)
6623 {
6624 if (strncmp (buf, "Stop:", 5) == 0)
6625 {
6626 if (pending_stop_reply)
6627 {
6628 /* We've already parsed the in-flight stop-reply, but the
6629 stub for some reason thought we didn't, possibly due to
6630 timeout on its side. Just ignore it. */
6631 if (remote_debug)
6632 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6633 }
6634 else
6635 {
6636 struct cleanup *old_chain;
6637 struct stop_reply *reply = stop_reply_xmalloc ();
6638
6639 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6640
6641 remote_parse_stop_reply (buf + 5, reply);
6642
6643 discard_cleanups (old_chain);
6644
6645 /* Be careful to only set it after parsing, since an error
6646 may be thrown then. */
6647 pending_stop_reply = reply;
6648
6649 /* Notify the event loop there's a stop reply to acknowledge
6650 and that there may be more events to fetch. */
6651 mark_async_event_handler (remote_async_get_pending_events_token);
6652
6653 if (remote_debug)
6654 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6655 }
6656 }
6657 else
6658 /* We ignore notifications we don't recognize, for compatibility
6659 with newer stubs. */
6660 ;
6661 }
6662
6663 \f
6664 /* Read or write LEN bytes from inferior memory at MEMADDR,
6665 transferring to or from debugger address BUFFER. Write to inferior
6666 if SHOULD_WRITE is nonzero. Returns length of data written or
6667 read; 0 for error. TARGET is unused. */
6668
6669 static int
6670 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6671 int should_write, struct mem_attrib *attrib,
6672 struct target_ops *target)
6673 {
6674 int res;
6675
6676 set_remote_traceframe ();
6677 set_general_thread (inferior_ptid);
6678
6679 if (should_write)
6680 res = remote_write_bytes (mem_addr, buffer, mem_len);
6681 else
6682 res = remote_read_bytes (mem_addr, buffer, mem_len);
6683
6684 return res;
6685 }
6686
6687 /* Sends a packet with content determined by the printf format string
6688 FORMAT and the remaining arguments, then gets the reply. Returns
6689 whether the packet was a success, a failure, or unknown. */
6690
6691 static enum packet_result
6692 remote_send_printf (const char *format, ...)
6693 {
6694 struct remote_state *rs = get_remote_state ();
6695 int max_size = get_remote_packet_size ();
6696 va_list ap;
6697
6698 va_start (ap, format);
6699
6700 rs->buf[0] = '\0';
6701 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6702 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6703
6704 if (putpkt (rs->buf) < 0)
6705 error (_("Communication problem with target."));
6706
6707 rs->buf[0] = '\0';
6708 getpkt (&rs->buf, &rs->buf_size, 0);
6709
6710 return packet_check_result (rs->buf);
6711 }
6712
6713 static void
6714 restore_remote_timeout (void *p)
6715 {
6716 int value = *(int *)p;
6717
6718 remote_timeout = value;
6719 }
6720
6721 /* Flash writing can take quite some time. We'll set
6722 effectively infinite timeout for flash operations.
6723 In future, we'll need to decide on a better approach. */
6724 static const int remote_flash_timeout = 1000;
6725
6726 static void
6727 remote_flash_erase (struct target_ops *ops,
6728 ULONGEST address, LONGEST length)
6729 {
6730 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6731 int saved_remote_timeout = remote_timeout;
6732 enum packet_result ret;
6733 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6734 &saved_remote_timeout);
6735
6736 remote_timeout = remote_flash_timeout;
6737
6738 ret = remote_send_printf ("vFlashErase:%s,%s",
6739 phex (address, addr_size),
6740 phex (length, 4));
6741 switch (ret)
6742 {
6743 case PACKET_UNKNOWN:
6744 error (_("Remote target does not support flash erase"));
6745 case PACKET_ERROR:
6746 error (_("Error erasing flash with vFlashErase packet"));
6747 default:
6748 break;
6749 }
6750
6751 do_cleanups (back_to);
6752 }
6753
6754 static LONGEST
6755 remote_flash_write (struct target_ops *ops,
6756 ULONGEST address, LONGEST length,
6757 const gdb_byte *data)
6758 {
6759 int saved_remote_timeout = remote_timeout;
6760 int ret;
6761 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6762 &saved_remote_timeout);
6763
6764 remote_timeout = remote_flash_timeout;
6765 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6766 do_cleanups (back_to);
6767
6768 return ret;
6769 }
6770
6771 static void
6772 remote_flash_done (struct target_ops *ops)
6773 {
6774 int saved_remote_timeout = remote_timeout;
6775 int ret;
6776 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6777 &saved_remote_timeout);
6778
6779 remote_timeout = remote_flash_timeout;
6780 ret = remote_send_printf ("vFlashDone");
6781 do_cleanups (back_to);
6782
6783 switch (ret)
6784 {
6785 case PACKET_UNKNOWN:
6786 error (_("Remote target does not support vFlashDone"));
6787 case PACKET_ERROR:
6788 error (_("Error finishing flash operation"));
6789 default:
6790 break;
6791 }
6792 }
6793
6794 static void
6795 remote_files_info (struct target_ops *ignore)
6796 {
6797 puts_filtered ("Debugging a target over a serial line.\n");
6798 }
6799 \f
6800 /* Stuff for dealing with the packets which are part of this protocol.
6801 See comment at top of file for details. */
6802
6803 /* Read a single character from the remote end. */
6804
6805 static int
6806 readchar (int timeout)
6807 {
6808 int ch;
6809
6810 ch = serial_readchar (remote_desc, timeout);
6811
6812 if (ch >= 0)
6813 return ch;
6814
6815 switch ((enum serial_rc) ch)
6816 {
6817 case SERIAL_EOF:
6818 pop_target ();
6819 error (_("Remote connection closed"));
6820 /* no return */
6821 case SERIAL_ERROR:
6822 pop_target ();
6823 perror_with_name (_("Remote communication error. "
6824 "Target disconnected."));
6825 /* no return */
6826 case SERIAL_TIMEOUT:
6827 break;
6828 }
6829 return ch;
6830 }
6831
6832 /* Send the command in *BUF to the remote machine, and read the reply
6833 into *BUF. Report an error if we get an error reply. Resize
6834 *BUF using xrealloc if necessary to hold the result, and update
6835 *SIZEOF_BUF. */
6836
6837 static void
6838 remote_send (char **buf,
6839 long *sizeof_buf)
6840 {
6841 putpkt (*buf);
6842 getpkt (buf, sizeof_buf, 0);
6843
6844 if ((*buf)[0] == 'E')
6845 error (_("Remote failure reply: %s"), *buf);
6846 }
6847
6848 /* Return a pointer to an xmalloc'ed string representing an escaped
6849 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6850 etc. The caller is responsible for releasing the returned
6851 memory. */
6852
6853 static char *
6854 escape_buffer (const char *buf, int n)
6855 {
6856 struct cleanup *old_chain;
6857 struct ui_file *stb;
6858 char *str;
6859
6860 stb = mem_fileopen ();
6861 old_chain = make_cleanup_ui_file_delete (stb);
6862
6863 fputstrn_unfiltered (buf, n, 0, stb);
6864 str = ui_file_xstrdup (stb, NULL);
6865 do_cleanups (old_chain);
6866 return str;
6867 }
6868
6869 /* Display a null-terminated packet on stdout, for debugging, using C
6870 string notation. */
6871
6872 static void
6873 print_packet (char *buf)
6874 {
6875 puts_filtered ("\"");
6876 fputstr_filtered (buf, '"', gdb_stdout);
6877 puts_filtered ("\"");
6878 }
6879
6880 int
6881 putpkt (char *buf)
6882 {
6883 return putpkt_binary (buf, strlen (buf));
6884 }
6885
6886 /* Send a packet to the remote machine, with error checking. The data
6887 of the packet is in BUF. The string in BUF can be at most
6888 get_remote_packet_size () - 5 to account for the $, # and checksum,
6889 and for a possible /0 if we are debugging (remote_debug) and want
6890 to print the sent packet as a string. */
6891
6892 static int
6893 putpkt_binary (char *buf, int cnt)
6894 {
6895 struct remote_state *rs = get_remote_state ();
6896 int i;
6897 unsigned char csum = 0;
6898 char *buf2 = alloca (cnt + 6);
6899
6900 int ch;
6901 int tcount = 0;
6902 char *p;
6903
6904 /* Catch cases like trying to read memory or listing threads while
6905 we're waiting for a stop reply. The remote server wouldn't be
6906 ready to handle this request, so we'd hang and timeout. We don't
6907 have to worry about this in synchronous mode, because in that
6908 case it's not possible to issue a command while the target is
6909 running. This is not a problem in non-stop mode, because in that
6910 case, the stub is always ready to process serial input. */
6911 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6912 error (_("Cannot execute this command while the target is running."));
6913
6914 /* We're sending out a new packet. Make sure we don't look at a
6915 stale cached response. */
6916 rs->cached_wait_status = 0;
6917
6918 /* Copy the packet into buffer BUF2, encapsulating it
6919 and giving it a checksum. */
6920
6921 p = buf2;
6922 *p++ = '$';
6923
6924 for (i = 0; i < cnt; i++)
6925 {
6926 csum += buf[i];
6927 *p++ = buf[i];
6928 }
6929 *p++ = '#';
6930 *p++ = tohex ((csum >> 4) & 0xf);
6931 *p++ = tohex (csum & 0xf);
6932
6933 /* Send it over and over until we get a positive ack. */
6934
6935 while (1)
6936 {
6937 int started_error_output = 0;
6938
6939 if (remote_debug)
6940 {
6941 struct cleanup *old_chain;
6942 char *str;
6943
6944 *p = '\0';
6945 str = escape_buffer (buf2, p - buf2);
6946 old_chain = make_cleanup (xfree, str);
6947 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6948 gdb_flush (gdb_stdlog);
6949 do_cleanups (old_chain);
6950 }
6951 if (serial_write (remote_desc, buf2, p - buf2))
6952 perror_with_name (_("putpkt: write failed"));
6953
6954 /* If this is a no acks version of the remote protocol, send the
6955 packet and move on. */
6956 if (rs->noack_mode)
6957 break;
6958
6959 /* Read until either a timeout occurs (-2) or '+' is read.
6960 Handle any notification that arrives in the mean time. */
6961 while (1)
6962 {
6963 ch = readchar (remote_timeout);
6964
6965 if (remote_debug)
6966 {
6967 switch (ch)
6968 {
6969 case '+':
6970 case '-':
6971 case SERIAL_TIMEOUT:
6972 case '$':
6973 case '%':
6974 if (started_error_output)
6975 {
6976 putchar_unfiltered ('\n');
6977 started_error_output = 0;
6978 }
6979 }
6980 }
6981
6982 switch (ch)
6983 {
6984 case '+':
6985 if (remote_debug)
6986 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6987 return 1;
6988 case '-':
6989 if (remote_debug)
6990 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6991 /* FALLTHROUGH */
6992 case SERIAL_TIMEOUT:
6993 tcount++;
6994 if (tcount > 3)
6995 return 0;
6996 break; /* Retransmit buffer. */
6997 case '$':
6998 {
6999 if (remote_debug)
7000 fprintf_unfiltered (gdb_stdlog,
7001 "Packet instead of Ack, ignoring it\n");
7002 /* It's probably an old response sent because an ACK
7003 was lost. Gobble up the packet and ack it so it
7004 doesn't get retransmitted when we resend this
7005 packet. */
7006 skip_frame ();
7007 serial_write (remote_desc, "+", 1);
7008 continue; /* Now, go look for +. */
7009 }
7010
7011 case '%':
7012 {
7013 int val;
7014
7015 /* If we got a notification, handle it, and go back to looking
7016 for an ack. */
7017 /* We've found the start of a notification. Now
7018 collect the data. */
7019 val = read_frame (&rs->buf, &rs->buf_size);
7020 if (val >= 0)
7021 {
7022 if (remote_debug)
7023 {
7024 struct cleanup *old_chain;
7025 char *str;
7026
7027 str = escape_buffer (rs->buf, val);
7028 old_chain = make_cleanup (xfree, str);
7029 fprintf_unfiltered (gdb_stdlog,
7030 " Notification received: %s\n",
7031 str);
7032 do_cleanups (old_chain);
7033 }
7034 handle_notification (rs->buf, val);
7035 /* We're in sync now, rewait for the ack. */
7036 tcount = 0;
7037 }
7038 else
7039 {
7040 if (remote_debug)
7041 {
7042 if (!started_error_output)
7043 {
7044 started_error_output = 1;
7045 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7046 }
7047 fputc_unfiltered (ch & 0177, gdb_stdlog);
7048 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7049 }
7050 }
7051 continue;
7052 }
7053 /* fall-through */
7054 default:
7055 if (remote_debug)
7056 {
7057 if (!started_error_output)
7058 {
7059 started_error_output = 1;
7060 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7061 }
7062 fputc_unfiltered (ch & 0177, gdb_stdlog);
7063 }
7064 continue;
7065 }
7066 break; /* Here to retransmit. */
7067 }
7068
7069 #if 0
7070 /* This is wrong. If doing a long backtrace, the user should be
7071 able to get out next time we call QUIT, without anything as
7072 violent as interrupt_query. If we want to provide a way out of
7073 here without getting to the next QUIT, it should be based on
7074 hitting ^C twice as in remote_wait. */
7075 if (quit_flag)
7076 {
7077 quit_flag = 0;
7078 interrupt_query ();
7079 }
7080 #endif
7081 }
7082 return 0;
7083 }
7084
7085 /* Come here after finding the start of a frame when we expected an
7086 ack. Do our best to discard the rest of this packet. */
7087
7088 static void
7089 skip_frame (void)
7090 {
7091 int c;
7092
7093 while (1)
7094 {
7095 c = readchar (remote_timeout);
7096 switch (c)
7097 {
7098 case SERIAL_TIMEOUT:
7099 /* Nothing we can do. */
7100 return;
7101 case '#':
7102 /* Discard the two bytes of checksum and stop. */
7103 c = readchar (remote_timeout);
7104 if (c >= 0)
7105 c = readchar (remote_timeout);
7106
7107 return;
7108 case '*': /* Run length encoding. */
7109 /* Discard the repeat count. */
7110 c = readchar (remote_timeout);
7111 if (c < 0)
7112 return;
7113 break;
7114 default:
7115 /* A regular character. */
7116 break;
7117 }
7118 }
7119 }
7120
7121 /* Come here after finding the start of the frame. Collect the rest
7122 into *BUF, verifying the checksum, length, and handling run-length
7123 compression. NUL terminate the buffer. If there is not enough room,
7124 expand *BUF using xrealloc.
7125
7126 Returns -1 on error, number of characters in buffer (ignoring the
7127 trailing NULL) on success. (could be extended to return one of the
7128 SERIAL status indications). */
7129
7130 static long
7131 read_frame (char **buf_p,
7132 long *sizeof_buf)
7133 {
7134 unsigned char csum;
7135 long bc;
7136 int c;
7137 char *buf = *buf_p;
7138 struct remote_state *rs = get_remote_state ();
7139
7140 csum = 0;
7141 bc = 0;
7142
7143 while (1)
7144 {
7145 c = readchar (remote_timeout);
7146 switch (c)
7147 {
7148 case SERIAL_TIMEOUT:
7149 if (remote_debug)
7150 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7151 return -1;
7152 case '$':
7153 if (remote_debug)
7154 fputs_filtered ("Saw new packet start in middle of old one\n",
7155 gdb_stdlog);
7156 return -1; /* Start a new packet, count retries. */
7157 case '#':
7158 {
7159 unsigned char pktcsum;
7160 int check_0 = 0;
7161 int check_1 = 0;
7162
7163 buf[bc] = '\0';
7164
7165 check_0 = readchar (remote_timeout);
7166 if (check_0 >= 0)
7167 check_1 = readchar (remote_timeout);
7168
7169 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7170 {
7171 if (remote_debug)
7172 fputs_filtered ("Timeout in checksum, retrying\n",
7173 gdb_stdlog);
7174 return -1;
7175 }
7176 else if (check_0 < 0 || check_1 < 0)
7177 {
7178 if (remote_debug)
7179 fputs_filtered ("Communication error in checksum\n",
7180 gdb_stdlog);
7181 return -1;
7182 }
7183
7184 /* Don't recompute the checksum; with no ack packets we
7185 don't have any way to indicate a packet retransmission
7186 is necessary. */
7187 if (rs->noack_mode)
7188 return bc;
7189
7190 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7191 if (csum == pktcsum)
7192 return bc;
7193
7194 if (remote_debug)
7195 {
7196 struct cleanup *old_chain;
7197 char *str;
7198
7199 str = escape_buffer (buf, bc);
7200 old_chain = make_cleanup (xfree, str);
7201 fprintf_unfiltered (gdb_stdlog,
7202 "Bad checksum, sentsum=0x%x, "
7203 "csum=0x%x, buf=%s\n",
7204 pktcsum, csum, str);
7205 do_cleanups (old_chain);
7206 }
7207 /* Number of characters in buffer ignoring trailing
7208 NULL. */
7209 return -1;
7210 }
7211 case '*': /* Run length encoding. */
7212 {
7213 int repeat;
7214
7215 csum += c;
7216 c = readchar (remote_timeout);
7217 csum += c;
7218 repeat = c - ' ' + 3; /* Compute repeat count. */
7219
7220 /* The character before ``*'' is repeated. */
7221
7222 if (repeat > 0 && repeat <= 255 && bc > 0)
7223 {
7224 if (bc + repeat - 1 >= *sizeof_buf - 1)
7225 {
7226 /* Make some more room in the buffer. */
7227 *sizeof_buf += repeat;
7228 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7229 buf = *buf_p;
7230 }
7231
7232 memset (&buf[bc], buf[bc - 1], repeat);
7233 bc += repeat;
7234 continue;
7235 }
7236
7237 buf[bc] = '\0';
7238 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7239 return -1;
7240 }
7241 default:
7242 if (bc >= *sizeof_buf - 1)
7243 {
7244 /* Make some more room in the buffer. */
7245 *sizeof_buf *= 2;
7246 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7247 buf = *buf_p;
7248 }
7249
7250 buf[bc++] = c;
7251 csum += c;
7252 continue;
7253 }
7254 }
7255 }
7256
7257 /* Read a packet from the remote machine, with error checking, and
7258 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7259 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7260 rather than timing out; this is used (in synchronous mode) to wait
7261 for a target that is is executing user code to stop. */
7262 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7263 don't have to change all the calls to getpkt to deal with the
7264 return value, because at the moment I don't know what the right
7265 thing to do it for those. */
7266 void
7267 getpkt (char **buf,
7268 long *sizeof_buf,
7269 int forever)
7270 {
7271 int timed_out;
7272
7273 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7274 }
7275
7276
7277 /* Read a packet from the remote machine, with error checking, and
7278 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7279 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7280 rather than timing out; this is used (in synchronous mode) to wait
7281 for a target that is is executing user code to stop. If FOREVER ==
7282 0, this function is allowed to time out gracefully and return an
7283 indication of this to the caller. Otherwise return the number of
7284 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7285 enough reason to return to the caller. */
7286
7287 static int
7288 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7289 int expecting_notif)
7290 {
7291 struct remote_state *rs = get_remote_state ();
7292 int c;
7293 int tries;
7294 int timeout;
7295 int val = -1;
7296
7297 /* We're reading a new response. Make sure we don't look at a
7298 previously cached response. */
7299 rs->cached_wait_status = 0;
7300
7301 strcpy (*buf, "timeout");
7302
7303 if (forever)
7304 timeout = watchdog > 0 ? watchdog : -1;
7305 else if (expecting_notif)
7306 timeout = 0; /* There should already be a char in the buffer. If
7307 not, bail out. */
7308 else
7309 timeout = remote_timeout;
7310
7311 #define MAX_TRIES 3
7312
7313 /* Process any number of notifications, and then return when
7314 we get a packet. */
7315 for (;;)
7316 {
7317 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7318 times. */
7319 for (tries = 1; tries <= MAX_TRIES; tries++)
7320 {
7321 /* This can loop forever if the remote side sends us
7322 characters continuously, but if it pauses, we'll get
7323 SERIAL_TIMEOUT from readchar because of timeout. Then
7324 we'll count that as a retry.
7325
7326 Note that even when forever is set, we will only wait
7327 forever prior to the start of a packet. After that, we
7328 expect characters to arrive at a brisk pace. They should
7329 show up within remote_timeout intervals. */
7330 do
7331 c = readchar (timeout);
7332 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7333
7334 if (c == SERIAL_TIMEOUT)
7335 {
7336 if (expecting_notif)
7337 return -1; /* Don't complain, it's normal to not get
7338 anything in this case. */
7339
7340 if (forever) /* Watchdog went off? Kill the target. */
7341 {
7342 QUIT;
7343 pop_target ();
7344 error (_("Watchdog timeout has expired. Target detached."));
7345 }
7346 if (remote_debug)
7347 fputs_filtered ("Timed out.\n", gdb_stdlog);
7348 }
7349 else
7350 {
7351 /* We've found the start of a packet or notification.
7352 Now collect the data. */
7353 val = read_frame (buf, sizeof_buf);
7354 if (val >= 0)
7355 break;
7356 }
7357
7358 serial_write (remote_desc, "-", 1);
7359 }
7360
7361 if (tries > MAX_TRIES)
7362 {
7363 /* We have tried hard enough, and just can't receive the
7364 packet/notification. Give up. */
7365 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7366
7367 /* Skip the ack char if we're in no-ack mode. */
7368 if (!rs->noack_mode)
7369 serial_write (remote_desc, "+", 1);
7370 return -1;
7371 }
7372
7373 /* If we got an ordinary packet, return that to our caller. */
7374 if (c == '$')
7375 {
7376 if (remote_debug)
7377 {
7378 struct cleanup *old_chain;
7379 char *str;
7380
7381 str = escape_buffer (*buf, val);
7382 old_chain = make_cleanup (xfree, str);
7383 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7384 do_cleanups (old_chain);
7385 }
7386
7387 /* Skip the ack char if we're in no-ack mode. */
7388 if (!rs->noack_mode)
7389 serial_write (remote_desc, "+", 1);
7390 return val;
7391 }
7392
7393 /* If we got a notification, handle it, and go back to looking
7394 for a packet. */
7395 else
7396 {
7397 gdb_assert (c == '%');
7398
7399 if (remote_debug)
7400 {
7401 struct cleanup *old_chain;
7402 char *str;
7403
7404 str = escape_buffer (*buf, val);
7405 old_chain = make_cleanup (xfree, str);
7406 fprintf_unfiltered (gdb_stdlog,
7407 " Notification received: %s\n",
7408 str);
7409 do_cleanups (old_chain);
7410 }
7411
7412 handle_notification (*buf, val);
7413
7414 /* Notifications require no acknowledgement. */
7415
7416 if (expecting_notif)
7417 return -1;
7418 }
7419 }
7420 }
7421
7422 static int
7423 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7424 {
7425 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7426 }
7427
7428 static int
7429 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7430 {
7431 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7432 }
7433
7434 \f
7435 /* A helper function that just calls putpkt; for type correctness. */
7436
7437 static int
7438 putpkt_for_catch_errors (void *arg)
7439 {
7440 return putpkt (arg);
7441 }
7442
7443 static void
7444 remote_kill (struct target_ops *ops)
7445 {
7446 /* Use catch_errors so the user can quit from gdb even when we
7447 aren't on speaking terms with the remote system. */
7448 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7449
7450 /* Don't wait for it to die. I'm not really sure it matters whether
7451 we do or not. For the existing stubs, kill is a noop. */
7452 target_mourn_inferior ();
7453 }
7454
7455 static int
7456 remote_vkill (int pid, struct remote_state *rs)
7457 {
7458 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7459 return -1;
7460
7461 /* Tell the remote target to detach. */
7462 sprintf (rs->buf, "vKill;%x", pid);
7463 putpkt (rs->buf);
7464 getpkt (&rs->buf, &rs->buf_size, 0);
7465
7466 if (packet_ok (rs->buf,
7467 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7468 return 0;
7469 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7470 return -1;
7471 else
7472 return 1;
7473 }
7474
7475 static void
7476 extended_remote_kill (struct target_ops *ops)
7477 {
7478 int res;
7479 int pid = ptid_get_pid (inferior_ptid);
7480 struct remote_state *rs = get_remote_state ();
7481
7482 res = remote_vkill (pid, rs);
7483 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7484 {
7485 /* Don't try 'k' on a multi-process aware stub -- it has no way
7486 to specify the pid. */
7487
7488 putpkt ("k");
7489 #if 0
7490 getpkt (&rs->buf, &rs->buf_size, 0);
7491 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7492 res = 1;
7493 #else
7494 /* Don't wait for it to die. I'm not really sure it matters whether
7495 we do or not. For the existing stubs, kill is a noop. */
7496 res = 0;
7497 #endif
7498 }
7499
7500 if (res != 0)
7501 error (_("Can't kill process"));
7502
7503 target_mourn_inferior ();
7504 }
7505
7506 static void
7507 remote_mourn (struct target_ops *ops)
7508 {
7509 remote_mourn_1 (ops);
7510 }
7511
7512 /* Worker function for remote_mourn. */
7513 static void
7514 remote_mourn_1 (struct target_ops *target)
7515 {
7516 unpush_target (target);
7517
7518 /* remote_close takes care of doing most of the clean up. */
7519 generic_mourn_inferior ();
7520 }
7521
7522 static void
7523 extended_remote_mourn_1 (struct target_ops *target)
7524 {
7525 struct remote_state *rs = get_remote_state ();
7526
7527 /* In case we got here due to an error, but we're going to stay
7528 connected. */
7529 rs->waiting_for_stop_reply = 0;
7530
7531 /* We're no longer interested in these events. */
7532 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7533
7534 /* If the current general thread belonged to the process we just
7535 detached from or has exited, the remote side current general
7536 thread becomes undefined. Considering a case like this:
7537
7538 - We just got here due to a detach.
7539 - The process that we're detaching from happens to immediately
7540 report a global breakpoint being hit in non-stop mode, in the
7541 same thread we had selected before.
7542 - GDB attaches to this process again.
7543 - This event happens to be the next event we handle.
7544
7545 GDB would consider that the current general thread didn't need to
7546 be set on the stub side (with Hg), since for all it knew,
7547 GENERAL_THREAD hadn't changed.
7548
7549 Notice that although in all-stop mode, the remote server always
7550 sets the current thread to the thread reporting the stop event,
7551 that doesn't happen in non-stop mode; in non-stop, the stub *must
7552 not* change the current thread when reporting a breakpoint hit,
7553 due to the decoupling of event reporting and event handling.
7554
7555 To keep things simple, we always invalidate our notion of the
7556 current thread. */
7557 record_currthread (minus_one_ptid);
7558
7559 /* Unlike "target remote", we do not want to unpush the target; then
7560 the next time the user says "run", we won't be connected. */
7561
7562 /* Call common code to mark the inferior as not running. */
7563 generic_mourn_inferior ();
7564
7565 if (!have_inferiors ())
7566 {
7567 if (!remote_multi_process_p (rs))
7568 {
7569 /* Check whether the target is running now - some remote stubs
7570 automatically restart after kill. */
7571 putpkt ("?");
7572 getpkt (&rs->buf, &rs->buf_size, 0);
7573
7574 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7575 {
7576 /* Assume that the target has been restarted. Set
7577 inferior_ptid so that bits of core GDB realizes
7578 there's something here, e.g., so that the user can
7579 say "kill" again. */
7580 inferior_ptid = magic_null_ptid;
7581 }
7582 }
7583 }
7584 }
7585
7586 static void
7587 extended_remote_mourn (struct target_ops *ops)
7588 {
7589 extended_remote_mourn_1 (ops);
7590 }
7591
7592 static int
7593 extended_remote_supports_disable_randomization (void)
7594 {
7595 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7596 == PACKET_ENABLE);
7597 }
7598
7599 static void
7600 extended_remote_disable_randomization (int val)
7601 {
7602 struct remote_state *rs = get_remote_state ();
7603 char *reply;
7604
7605 sprintf (rs->buf, "QDisableRandomization:%x", val);
7606 putpkt (rs->buf);
7607 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7608 if (*reply == '\0')
7609 error (_("Target does not support QDisableRandomization."));
7610 if (strcmp (reply, "OK") != 0)
7611 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7612 }
7613
7614 static int
7615 extended_remote_run (char *args)
7616 {
7617 struct remote_state *rs = get_remote_state ();
7618 int len;
7619
7620 /* If the user has disabled vRun support, or we have detected that
7621 support is not available, do not try it. */
7622 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7623 return -1;
7624
7625 strcpy (rs->buf, "vRun;");
7626 len = strlen (rs->buf);
7627
7628 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7629 error (_("Remote file name too long for run packet"));
7630 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7631
7632 gdb_assert (args != NULL);
7633 if (*args)
7634 {
7635 struct cleanup *back_to;
7636 int i;
7637 char **argv;
7638
7639 argv = gdb_buildargv (args);
7640 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7641 for (i = 0; argv[i] != NULL; i++)
7642 {
7643 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7644 error (_("Argument list too long for run packet"));
7645 rs->buf[len++] = ';';
7646 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7647 }
7648 do_cleanups (back_to);
7649 }
7650
7651 rs->buf[len++] = '\0';
7652
7653 putpkt (rs->buf);
7654 getpkt (&rs->buf, &rs->buf_size, 0);
7655
7656 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7657 {
7658 /* We have a wait response; we don't need it, though. All is well. */
7659 return 0;
7660 }
7661 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7662 /* It wasn't disabled before, but it is now. */
7663 return -1;
7664 else
7665 {
7666 if (remote_exec_file[0] == '\0')
7667 error (_("Running the default executable on the remote target failed; "
7668 "try \"set remote exec-file\"?"));
7669 else
7670 error (_("Running \"%s\" on the remote target failed"),
7671 remote_exec_file);
7672 }
7673 }
7674
7675 /* In the extended protocol we want to be able to do things like
7676 "run" and have them basically work as expected. So we need
7677 a special create_inferior function. We support changing the
7678 executable file and the command line arguments, but not the
7679 environment. */
7680
7681 static void
7682 extended_remote_create_inferior_1 (char *exec_file, char *args,
7683 char **env, int from_tty)
7684 {
7685 /* If running asynchronously, register the target file descriptor
7686 with the event loop. */
7687 if (target_can_async_p ())
7688 target_async (inferior_event_handler, 0);
7689
7690 /* Disable address space randomization if requested (and supported). */
7691 if (extended_remote_supports_disable_randomization ())
7692 extended_remote_disable_randomization (disable_randomization);
7693
7694 /* Now restart the remote server. */
7695 if (extended_remote_run (args) == -1)
7696 {
7697 /* vRun was not supported. Fail if we need it to do what the
7698 user requested. */
7699 if (remote_exec_file[0])
7700 error (_("Remote target does not support \"set remote exec-file\""));
7701 if (args[0])
7702 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7703
7704 /* Fall back to "R". */
7705 extended_remote_restart ();
7706 }
7707
7708 if (!have_inferiors ())
7709 {
7710 /* Clean up from the last time we ran, before we mark the target
7711 running again. This will mark breakpoints uninserted, and
7712 get_offsets may insert breakpoints. */
7713 init_thread_list ();
7714 init_wait_for_inferior ();
7715 }
7716
7717 add_current_inferior_and_thread ();
7718
7719 /* Get updated offsets, if the stub uses qOffsets. */
7720 get_offsets ();
7721 }
7722
7723 static void
7724 extended_remote_create_inferior (struct target_ops *ops,
7725 char *exec_file, char *args,
7726 char **env, int from_tty)
7727 {
7728 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7729 }
7730 \f
7731
7732 /* Insert a breakpoint. On targets that have software breakpoint
7733 support, we ask the remote target to do the work; on targets
7734 which don't, we insert a traditional memory breakpoint. */
7735
7736 static int
7737 remote_insert_breakpoint (struct gdbarch *gdbarch,
7738 struct bp_target_info *bp_tgt)
7739 {
7740 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7741 If it succeeds, then set the support to PACKET_ENABLE. If it
7742 fails, and the user has explicitly requested the Z support then
7743 report an error, otherwise, mark it disabled and go on. */
7744
7745 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7746 {
7747 CORE_ADDR addr = bp_tgt->placed_address;
7748 struct remote_state *rs;
7749 char *p;
7750 int bpsize;
7751
7752 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7753
7754 rs = get_remote_state ();
7755 p = rs->buf;
7756
7757 *(p++) = 'Z';
7758 *(p++) = '0';
7759 *(p++) = ',';
7760 addr = (ULONGEST) remote_address_masked (addr);
7761 p += hexnumstr (p, addr);
7762 sprintf (p, ",%d", bpsize);
7763
7764 putpkt (rs->buf);
7765 getpkt (&rs->buf, &rs->buf_size, 0);
7766
7767 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7768 {
7769 case PACKET_ERROR:
7770 return -1;
7771 case PACKET_OK:
7772 bp_tgt->placed_address = addr;
7773 bp_tgt->placed_size = bpsize;
7774 return 0;
7775 case PACKET_UNKNOWN:
7776 break;
7777 }
7778 }
7779
7780 return memory_insert_breakpoint (gdbarch, bp_tgt);
7781 }
7782
7783 static int
7784 remote_remove_breakpoint (struct gdbarch *gdbarch,
7785 struct bp_target_info *bp_tgt)
7786 {
7787 CORE_ADDR addr = bp_tgt->placed_address;
7788 struct remote_state *rs = get_remote_state ();
7789
7790 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7791 {
7792 char *p = rs->buf;
7793
7794 *(p++) = 'z';
7795 *(p++) = '0';
7796 *(p++) = ',';
7797
7798 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7799 p += hexnumstr (p, addr);
7800 sprintf (p, ",%d", bp_tgt->placed_size);
7801
7802 putpkt (rs->buf);
7803 getpkt (&rs->buf, &rs->buf_size, 0);
7804
7805 return (rs->buf[0] == 'E');
7806 }
7807
7808 return memory_remove_breakpoint (gdbarch, bp_tgt);
7809 }
7810
7811 static int
7812 watchpoint_to_Z_packet (int type)
7813 {
7814 switch (type)
7815 {
7816 case hw_write:
7817 return Z_PACKET_WRITE_WP;
7818 break;
7819 case hw_read:
7820 return Z_PACKET_READ_WP;
7821 break;
7822 case hw_access:
7823 return Z_PACKET_ACCESS_WP;
7824 break;
7825 default:
7826 internal_error (__FILE__, __LINE__,
7827 _("hw_bp_to_z: bad watchpoint type %d"), type);
7828 }
7829 }
7830
7831 static int
7832 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7833 struct expression *cond)
7834 {
7835 struct remote_state *rs = get_remote_state ();
7836 char *p;
7837 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7838
7839 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7840 return 1;
7841
7842 sprintf (rs->buf, "Z%x,", packet);
7843 p = strchr (rs->buf, '\0');
7844 addr = remote_address_masked (addr);
7845 p += hexnumstr (p, (ULONGEST) addr);
7846 sprintf (p, ",%x", len);
7847
7848 putpkt (rs->buf);
7849 getpkt (&rs->buf, &rs->buf_size, 0);
7850
7851 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7852 {
7853 case PACKET_ERROR:
7854 return -1;
7855 case PACKET_UNKNOWN:
7856 return 1;
7857 case PACKET_OK:
7858 return 0;
7859 }
7860 internal_error (__FILE__, __LINE__,
7861 _("remote_insert_watchpoint: reached end of function"));
7862 }
7863
7864
7865 static int
7866 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7867 struct expression *cond)
7868 {
7869 struct remote_state *rs = get_remote_state ();
7870 char *p;
7871 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7872
7873 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7874 return -1;
7875
7876 sprintf (rs->buf, "z%x,", packet);
7877 p = strchr (rs->buf, '\0');
7878 addr = remote_address_masked (addr);
7879 p += hexnumstr (p, (ULONGEST) addr);
7880 sprintf (p, ",%x", len);
7881 putpkt (rs->buf);
7882 getpkt (&rs->buf, &rs->buf_size, 0);
7883
7884 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7885 {
7886 case PACKET_ERROR:
7887 case PACKET_UNKNOWN:
7888 return -1;
7889 case PACKET_OK:
7890 return 0;
7891 }
7892 internal_error (__FILE__, __LINE__,
7893 _("remote_remove_watchpoint: reached end of function"));
7894 }
7895
7896
7897 int remote_hw_watchpoint_limit = -1;
7898 int remote_hw_watchpoint_length_limit = -1;
7899 int remote_hw_breakpoint_limit = -1;
7900
7901 static int
7902 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
7903 {
7904 if (remote_hw_watchpoint_length_limit == 0)
7905 return 0;
7906 else if (remote_hw_watchpoint_length_limit < 0)
7907 return 1;
7908 else if (len <= remote_hw_watchpoint_length_limit)
7909 return 1;
7910 else
7911 return 0;
7912 }
7913
7914 static int
7915 remote_check_watch_resources (int type, int cnt, int ot)
7916 {
7917 if (type == bp_hardware_breakpoint)
7918 {
7919 if (remote_hw_breakpoint_limit == 0)
7920 return 0;
7921 else if (remote_hw_breakpoint_limit < 0)
7922 return 1;
7923 else if (cnt <= remote_hw_breakpoint_limit)
7924 return 1;
7925 }
7926 else
7927 {
7928 if (remote_hw_watchpoint_limit == 0)
7929 return 0;
7930 else if (remote_hw_watchpoint_limit < 0)
7931 return 1;
7932 else if (ot)
7933 return -1;
7934 else if (cnt <= remote_hw_watchpoint_limit)
7935 return 1;
7936 }
7937 return -1;
7938 }
7939
7940 static int
7941 remote_stopped_by_watchpoint (void)
7942 {
7943 return remote_stopped_by_watchpoint_p;
7944 }
7945
7946 static int
7947 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7948 {
7949 int rc = 0;
7950
7951 if (remote_stopped_by_watchpoint ())
7952 {
7953 *addr_p = remote_watch_data_address;
7954 rc = 1;
7955 }
7956
7957 return rc;
7958 }
7959
7960
7961 static int
7962 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7963 struct bp_target_info *bp_tgt)
7964 {
7965 CORE_ADDR addr;
7966 struct remote_state *rs;
7967 char *p;
7968
7969 /* The length field should be set to the size of a breakpoint
7970 instruction, even though we aren't inserting one ourselves. */
7971
7972 gdbarch_remote_breakpoint_from_pc
7973 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7974
7975 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7976 return -1;
7977
7978 rs = get_remote_state ();
7979 p = rs->buf;
7980
7981 *(p++) = 'Z';
7982 *(p++) = '1';
7983 *(p++) = ',';
7984
7985 addr = remote_address_masked (bp_tgt->placed_address);
7986 p += hexnumstr (p, (ULONGEST) addr);
7987 sprintf (p, ",%x", bp_tgt->placed_size);
7988
7989 putpkt (rs->buf);
7990 getpkt (&rs->buf, &rs->buf_size, 0);
7991
7992 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7993 {
7994 case PACKET_ERROR:
7995 case PACKET_UNKNOWN:
7996 return -1;
7997 case PACKET_OK:
7998 return 0;
7999 }
8000 internal_error (__FILE__, __LINE__,
8001 _("remote_insert_hw_breakpoint: reached end of function"));
8002 }
8003
8004
8005 static int
8006 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8007 struct bp_target_info *bp_tgt)
8008 {
8009 CORE_ADDR addr;
8010 struct remote_state *rs = get_remote_state ();
8011 char *p = rs->buf;
8012
8013 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8014 return -1;
8015
8016 *(p++) = 'z';
8017 *(p++) = '1';
8018 *(p++) = ',';
8019
8020 addr = remote_address_masked (bp_tgt->placed_address);
8021 p += hexnumstr (p, (ULONGEST) addr);
8022 sprintf (p, ",%x", bp_tgt->placed_size);
8023
8024 putpkt (rs->buf);
8025 getpkt (&rs->buf, &rs->buf_size, 0);
8026
8027 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8028 {
8029 case PACKET_ERROR:
8030 case PACKET_UNKNOWN:
8031 return -1;
8032 case PACKET_OK:
8033 return 0;
8034 }
8035 internal_error (__FILE__, __LINE__,
8036 _("remote_remove_hw_breakpoint: reached end of function"));
8037 }
8038
8039 /* Table used by the crc32 function to calcuate the checksum. */
8040
8041 static unsigned long crc32_table[256] =
8042 {0, 0};
8043
8044 static unsigned long
8045 crc32 (const unsigned char *buf, int len, unsigned int crc)
8046 {
8047 if (!crc32_table[1])
8048 {
8049 /* Initialize the CRC table and the decoding table. */
8050 int i, j;
8051 unsigned int c;
8052
8053 for (i = 0; i < 256; i++)
8054 {
8055 for (c = i << 24, j = 8; j > 0; --j)
8056 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8057 crc32_table[i] = c;
8058 }
8059 }
8060
8061 while (len--)
8062 {
8063 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8064 buf++;
8065 }
8066 return crc;
8067 }
8068
8069 /* Verify memory using the "qCRC:" request. */
8070
8071 static int
8072 remote_verify_memory (struct target_ops *ops,
8073 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8074 {
8075 struct remote_state *rs = get_remote_state ();
8076 unsigned long host_crc, target_crc;
8077 char *tmp;
8078
8079 /* FIXME: assumes lma can fit into long. */
8080 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8081 (long) lma, (long) size);
8082 putpkt (rs->buf);
8083
8084 /* Be clever; compute the host_crc before waiting for target
8085 reply. */
8086 host_crc = crc32 (data, size, 0xffffffff);
8087
8088 getpkt (&rs->buf, &rs->buf_size, 0);
8089 if (rs->buf[0] == 'E')
8090 return -1;
8091
8092 if (rs->buf[0] != 'C')
8093 error (_("remote target does not support this operation"));
8094
8095 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8096 target_crc = target_crc * 16 + fromhex (*tmp);
8097
8098 return (host_crc == target_crc);
8099 }
8100
8101 /* compare-sections command
8102
8103 With no arguments, compares each loadable section in the exec bfd
8104 with the same memory range on the target, and reports mismatches.
8105 Useful for verifying the image on the target against the exec file. */
8106
8107 static void
8108 compare_sections_command (char *args, int from_tty)
8109 {
8110 asection *s;
8111 struct cleanup *old_chain;
8112 char *sectdata;
8113 const char *sectname;
8114 bfd_size_type size;
8115 bfd_vma lma;
8116 int matched = 0;
8117 int mismatched = 0;
8118 int res;
8119
8120 if (!exec_bfd)
8121 error (_("command cannot be used without an exec file"));
8122
8123 for (s = exec_bfd->sections; s; s = s->next)
8124 {
8125 if (!(s->flags & SEC_LOAD))
8126 continue; /* Skip non-loadable section. */
8127
8128 size = bfd_get_section_size (s);
8129 if (size == 0)
8130 continue; /* Skip zero-length section. */
8131
8132 sectname = bfd_get_section_name (exec_bfd, s);
8133 if (args && strcmp (args, sectname) != 0)
8134 continue; /* Not the section selected by user. */
8135
8136 matched = 1; /* Do this section. */
8137 lma = s->lma;
8138
8139 sectdata = xmalloc (size);
8140 old_chain = make_cleanup (xfree, sectdata);
8141 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8142
8143 res = target_verify_memory (sectdata, lma, size);
8144
8145 if (res == -1)
8146 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8147 paddress (target_gdbarch, lma),
8148 paddress (target_gdbarch, lma + size));
8149
8150 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8151 paddress (target_gdbarch, lma),
8152 paddress (target_gdbarch, lma + size));
8153 if (res)
8154 printf_filtered ("matched.\n");
8155 else
8156 {
8157 printf_filtered ("MIS-MATCHED!\n");
8158 mismatched++;
8159 }
8160
8161 do_cleanups (old_chain);
8162 }
8163 if (mismatched > 0)
8164 warning (_("One or more sections of the remote executable does not match\n\
8165 the loaded file\n"));
8166 if (args && !matched)
8167 printf_filtered (_("No loaded section named '%s'.\n"), args);
8168 }
8169
8170 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8171 into remote target. The number of bytes written to the remote
8172 target is returned, or -1 for error. */
8173
8174 static LONGEST
8175 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8176 const char *annex, const gdb_byte *writebuf,
8177 ULONGEST offset, LONGEST len,
8178 struct packet_config *packet)
8179 {
8180 int i, buf_len;
8181 ULONGEST n;
8182 struct remote_state *rs = get_remote_state ();
8183 int max_size = get_memory_write_packet_size ();
8184
8185 if (packet->support == PACKET_DISABLE)
8186 return -1;
8187
8188 /* Insert header. */
8189 i = snprintf (rs->buf, max_size,
8190 "qXfer:%s:write:%s:%s:",
8191 object_name, annex ? annex : "",
8192 phex_nz (offset, sizeof offset));
8193 max_size -= (i + 1);
8194
8195 /* Escape as much data as fits into rs->buf. */
8196 buf_len = remote_escape_output
8197 (writebuf, len, (rs->buf + i), &max_size, max_size);
8198
8199 if (putpkt_binary (rs->buf, i + buf_len) < 0
8200 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8201 || packet_ok (rs->buf, packet) != PACKET_OK)
8202 return -1;
8203
8204 unpack_varlen_hex (rs->buf, &n);
8205 return n;
8206 }
8207
8208 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8209 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8210 number of bytes read is returned, or 0 for EOF, or -1 for error.
8211 The number of bytes read may be less than LEN without indicating an
8212 EOF. PACKET is checked and updated to indicate whether the remote
8213 target supports this object. */
8214
8215 static LONGEST
8216 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8217 const char *annex,
8218 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8219 struct packet_config *packet)
8220 {
8221 static char *finished_object;
8222 static char *finished_annex;
8223 static ULONGEST finished_offset;
8224
8225 struct remote_state *rs = get_remote_state ();
8226 LONGEST i, n, packet_len;
8227
8228 if (packet->support == PACKET_DISABLE)
8229 return -1;
8230
8231 /* Check whether we've cached an end-of-object packet that matches
8232 this request. */
8233 if (finished_object)
8234 {
8235 if (strcmp (object_name, finished_object) == 0
8236 && strcmp (annex ? annex : "", finished_annex) == 0
8237 && offset == finished_offset)
8238 return 0;
8239
8240 /* Otherwise, we're now reading something different. Discard
8241 the cache. */
8242 xfree (finished_object);
8243 xfree (finished_annex);
8244 finished_object = NULL;
8245 finished_annex = NULL;
8246 }
8247
8248 /* Request only enough to fit in a single packet. The actual data
8249 may not, since we don't know how much of it will need to be escaped;
8250 the target is free to respond with slightly less data. We subtract
8251 five to account for the response type and the protocol frame. */
8252 n = min (get_remote_packet_size () - 5, len);
8253 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8254 object_name, annex ? annex : "",
8255 phex_nz (offset, sizeof offset),
8256 phex_nz (n, sizeof n));
8257 i = putpkt (rs->buf);
8258 if (i < 0)
8259 return -1;
8260
8261 rs->buf[0] = '\0';
8262 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8263 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8264 return -1;
8265
8266 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8267 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8268
8269 /* 'm' means there is (or at least might be) more data after this
8270 batch. That does not make sense unless there's at least one byte
8271 of data in this reply. */
8272 if (rs->buf[0] == 'm' && packet_len == 1)
8273 error (_("Remote qXfer reply contained no data."));
8274
8275 /* Got some data. */
8276 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8277
8278 /* 'l' is an EOF marker, possibly including a final block of data,
8279 or possibly empty. If we have the final block of a non-empty
8280 object, record this fact to bypass a subsequent partial read. */
8281 if (rs->buf[0] == 'l' && offset + i > 0)
8282 {
8283 finished_object = xstrdup (object_name);
8284 finished_annex = xstrdup (annex ? annex : "");
8285 finished_offset = offset + i;
8286 }
8287
8288 return i;
8289 }
8290
8291 static LONGEST
8292 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8293 const char *annex, gdb_byte *readbuf,
8294 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8295 {
8296 struct remote_state *rs;
8297 int i;
8298 char *p2;
8299 char query_type;
8300
8301 set_remote_traceframe ();
8302 set_general_thread (inferior_ptid);
8303
8304 rs = get_remote_state ();
8305
8306 /* Handle memory using the standard memory routines. */
8307 if (object == TARGET_OBJECT_MEMORY)
8308 {
8309 int xfered;
8310
8311 errno = 0;
8312
8313 /* If the remote target is connected but not running, we should
8314 pass this request down to a lower stratum (e.g. the executable
8315 file). */
8316 if (!target_has_execution)
8317 return 0;
8318
8319 if (writebuf != NULL)
8320 xfered = remote_write_bytes (offset, writebuf, len);
8321 else
8322 xfered = remote_read_bytes (offset, readbuf, len);
8323
8324 if (xfered > 0)
8325 return xfered;
8326 else if (xfered == 0 && errno == 0)
8327 return 0;
8328 else
8329 return -1;
8330 }
8331
8332 /* Handle SPU memory using qxfer packets. */
8333 if (object == TARGET_OBJECT_SPU)
8334 {
8335 if (readbuf)
8336 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8337 &remote_protocol_packets
8338 [PACKET_qXfer_spu_read]);
8339 else
8340 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8341 &remote_protocol_packets
8342 [PACKET_qXfer_spu_write]);
8343 }
8344
8345 /* Handle extra signal info using qxfer packets. */
8346 if (object == TARGET_OBJECT_SIGNAL_INFO)
8347 {
8348 if (readbuf)
8349 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8350 &remote_protocol_packets
8351 [PACKET_qXfer_siginfo_read]);
8352 else
8353 return remote_write_qxfer (ops, "siginfo", annex,
8354 writebuf, offset, len,
8355 &remote_protocol_packets
8356 [PACKET_qXfer_siginfo_write]);
8357 }
8358
8359 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8360 {
8361 if (readbuf)
8362 return remote_read_qxfer (ops, "statictrace", annex,
8363 readbuf, offset, len,
8364 &remote_protocol_packets
8365 [PACKET_qXfer_statictrace_read]);
8366 else
8367 return -1;
8368 }
8369
8370 /* Only handle flash writes. */
8371 if (writebuf != NULL)
8372 {
8373 LONGEST xfered;
8374
8375 switch (object)
8376 {
8377 case TARGET_OBJECT_FLASH:
8378 xfered = remote_flash_write (ops, offset, len, writebuf);
8379
8380 if (xfered > 0)
8381 return xfered;
8382 else if (xfered == 0 && errno == 0)
8383 return 0;
8384 else
8385 return -1;
8386
8387 default:
8388 return -1;
8389 }
8390 }
8391
8392 /* Map pre-existing objects onto letters. DO NOT do this for new
8393 objects!!! Instead specify new query packets. */
8394 switch (object)
8395 {
8396 case TARGET_OBJECT_AVR:
8397 query_type = 'R';
8398 break;
8399
8400 case TARGET_OBJECT_AUXV:
8401 gdb_assert (annex == NULL);
8402 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8403 &remote_protocol_packets[PACKET_qXfer_auxv]);
8404
8405 case TARGET_OBJECT_AVAILABLE_FEATURES:
8406 return remote_read_qxfer
8407 (ops, "features", annex, readbuf, offset, len,
8408 &remote_protocol_packets[PACKET_qXfer_features]);
8409
8410 case TARGET_OBJECT_LIBRARIES:
8411 return remote_read_qxfer
8412 (ops, "libraries", annex, readbuf, offset, len,
8413 &remote_protocol_packets[PACKET_qXfer_libraries]);
8414
8415 case TARGET_OBJECT_LIBRARIES_SVR4:
8416 return remote_read_qxfer
8417 (ops, "libraries-svr4", annex, readbuf, offset, len,
8418 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8419
8420 case TARGET_OBJECT_MEMORY_MAP:
8421 gdb_assert (annex == NULL);
8422 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8423 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8424
8425 case TARGET_OBJECT_OSDATA:
8426 /* Should only get here if we're connected. */
8427 gdb_assert (remote_desc);
8428 return remote_read_qxfer
8429 (ops, "osdata", annex, readbuf, offset, len,
8430 &remote_protocol_packets[PACKET_qXfer_osdata]);
8431
8432 case TARGET_OBJECT_THREADS:
8433 gdb_assert (annex == NULL);
8434 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8435 &remote_protocol_packets[PACKET_qXfer_threads]);
8436
8437 case TARGET_OBJECT_TRACEFRAME_INFO:
8438 gdb_assert (annex == NULL);
8439 return remote_read_qxfer
8440 (ops, "traceframe-info", annex, readbuf, offset, len,
8441 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8442
8443 case TARGET_OBJECT_FDPIC:
8444 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8445 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8446 default:
8447 return -1;
8448 }
8449
8450 /* Note: a zero OFFSET and LEN can be used to query the minimum
8451 buffer size. */
8452 if (offset == 0 && len == 0)
8453 return (get_remote_packet_size ());
8454 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8455 large enough let the caller deal with it. */
8456 if (len < get_remote_packet_size ())
8457 return -1;
8458 len = get_remote_packet_size ();
8459
8460 /* Except for querying the minimum buffer size, target must be open. */
8461 if (!remote_desc)
8462 error (_("remote query is only available after target open"));
8463
8464 gdb_assert (annex != NULL);
8465 gdb_assert (readbuf != NULL);
8466
8467 p2 = rs->buf;
8468 *p2++ = 'q';
8469 *p2++ = query_type;
8470
8471 /* We used one buffer char for the remote protocol q command and
8472 another for the query type. As the remote protocol encapsulation
8473 uses 4 chars plus one extra in case we are debugging
8474 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8475 string. */
8476 i = 0;
8477 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8478 {
8479 /* Bad caller may have sent forbidden characters. */
8480 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8481 *p2++ = annex[i];
8482 i++;
8483 }
8484 *p2 = '\0';
8485 gdb_assert (annex[i] == '\0');
8486
8487 i = putpkt (rs->buf);
8488 if (i < 0)
8489 return i;
8490
8491 getpkt (&rs->buf, &rs->buf_size, 0);
8492 strcpy ((char *) readbuf, rs->buf);
8493
8494 return strlen ((char *) readbuf);
8495 }
8496
8497 static int
8498 remote_search_memory (struct target_ops* ops,
8499 CORE_ADDR start_addr, ULONGEST search_space_len,
8500 const gdb_byte *pattern, ULONGEST pattern_len,
8501 CORE_ADDR *found_addrp)
8502 {
8503 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8504 struct remote_state *rs = get_remote_state ();
8505 int max_size = get_memory_write_packet_size ();
8506 struct packet_config *packet =
8507 &remote_protocol_packets[PACKET_qSearch_memory];
8508 /* Number of packet bytes used to encode the pattern;
8509 this could be more than PATTERN_LEN due to escape characters. */
8510 int escaped_pattern_len;
8511 /* Amount of pattern that was encodable in the packet. */
8512 int used_pattern_len;
8513 int i;
8514 int found;
8515 ULONGEST found_addr;
8516
8517 /* Don't go to the target if we don't have to.
8518 This is done before checking packet->support to avoid the possibility that
8519 a success for this edge case means the facility works in general. */
8520 if (pattern_len > search_space_len)
8521 return 0;
8522 if (pattern_len == 0)
8523 {
8524 *found_addrp = start_addr;
8525 return 1;
8526 }
8527
8528 /* If we already know the packet isn't supported, fall back to the simple
8529 way of searching memory. */
8530
8531 if (packet->support == PACKET_DISABLE)
8532 {
8533 /* Target doesn't provided special support, fall back and use the
8534 standard support (copy memory and do the search here). */
8535 return simple_search_memory (ops, start_addr, search_space_len,
8536 pattern, pattern_len, found_addrp);
8537 }
8538
8539 /* Insert header. */
8540 i = snprintf (rs->buf, max_size,
8541 "qSearch:memory:%s;%s;",
8542 phex_nz (start_addr, addr_size),
8543 phex_nz (search_space_len, sizeof (search_space_len)));
8544 max_size -= (i + 1);
8545
8546 /* Escape as much data as fits into rs->buf. */
8547 escaped_pattern_len =
8548 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8549 &used_pattern_len, max_size);
8550
8551 /* Bail if the pattern is too large. */
8552 if (used_pattern_len != pattern_len)
8553 error (_("Pattern is too large to transmit to remote target."));
8554
8555 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8556 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8557 || packet_ok (rs->buf, packet) != PACKET_OK)
8558 {
8559 /* The request may not have worked because the command is not
8560 supported. If so, fall back to the simple way. */
8561 if (packet->support == PACKET_DISABLE)
8562 {
8563 return simple_search_memory (ops, start_addr, search_space_len,
8564 pattern, pattern_len, found_addrp);
8565 }
8566 return -1;
8567 }
8568
8569 if (rs->buf[0] == '0')
8570 found = 0;
8571 else if (rs->buf[0] == '1')
8572 {
8573 found = 1;
8574 if (rs->buf[1] != ',')
8575 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8576 unpack_varlen_hex (rs->buf + 2, &found_addr);
8577 *found_addrp = found_addr;
8578 }
8579 else
8580 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8581
8582 return found;
8583 }
8584
8585 static void
8586 remote_rcmd (char *command,
8587 struct ui_file *outbuf)
8588 {
8589 struct remote_state *rs = get_remote_state ();
8590 char *p = rs->buf;
8591
8592 if (!remote_desc)
8593 error (_("remote rcmd is only available after target open"));
8594
8595 /* Send a NULL command across as an empty command. */
8596 if (command == NULL)
8597 command = "";
8598
8599 /* The query prefix. */
8600 strcpy (rs->buf, "qRcmd,");
8601 p = strchr (rs->buf, '\0');
8602
8603 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8604 > get_remote_packet_size ())
8605 error (_("\"monitor\" command ``%s'' is too long."), command);
8606
8607 /* Encode the actual command. */
8608 bin2hex ((gdb_byte *) command, p, 0);
8609
8610 if (putpkt (rs->buf) < 0)
8611 error (_("Communication problem with target."));
8612
8613 /* get/display the response */
8614 while (1)
8615 {
8616 char *buf;
8617
8618 /* XXX - see also remote_get_noisy_reply(). */
8619 QUIT; /* Allow user to bail out with ^C. */
8620 rs->buf[0] = '\0';
8621 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8622 {
8623 /* Timeout. Continue to (try to) read responses.
8624 This is better than stopping with an error, assuming the stub
8625 is still executing the (long) monitor command.
8626 If needed, the user can interrupt gdb using C-c, obtaining
8627 an effect similar to stop on timeout. */
8628 continue;
8629 }
8630 buf = rs->buf;
8631 if (buf[0] == '\0')
8632 error (_("Target does not support this command."));
8633 if (buf[0] == 'O' && buf[1] != 'K')
8634 {
8635 remote_console_output (buf + 1); /* 'O' message from stub. */
8636 continue;
8637 }
8638 if (strcmp (buf, "OK") == 0)
8639 break;
8640 if (strlen (buf) == 3 && buf[0] == 'E'
8641 && isdigit (buf[1]) && isdigit (buf[2]))
8642 {
8643 error (_("Protocol error with Rcmd"));
8644 }
8645 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8646 {
8647 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8648
8649 fputc_unfiltered (c, outbuf);
8650 }
8651 break;
8652 }
8653 }
8654
8655 static VEC(mem_region_s) *
8656 remote_memory_map (struct target_ops *ops)
8657 {
8658 VEC(mem_region_s) *result = NULL;
8659 char *text = target_read_stralloc (&current_target,
8660 TARGET_OBJECT_MEMORY_MAP, NULL);
8661
8662 if (text)
8663 {
8664 struct cleanup *back_to = make_cleanup (xfree, text);
8665
8666 result = parse_memory_map (text);
8667 do_cleanups (back_to);
8668 }
8669
8670 return result;
8671 }
8672
8673 static void
8674 packet_command (char *args, int from_tty)
8675 {
8676 struct remote_state *rs = get_remote_state ();
8677
8678 if (!remote_desc)
8679 error (_("command can only be used with remote target"));
8680
8681 if (!args)
8682 error (_("remote-packet command requires packet text as argument"));
8683
8684 puts_filtered ("sending: ");
8685 print_packet (args);
8686 puts_filtered ("\n");
8687 putpkt (args);
8688
8689 getpkt (&rs->buf, &rs->buf_size, 0);
8690 puts_filtered ("received: ");
8691 print_packet (rs->buf);
8692 puts_filtered ("\n");
8693 }
8694
8695 #if 0
8696 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8697
8698 static void display_thread_info (struct gdb_ext_thread_info *info);
8699
8700 static void threadset_test_cmd (char *cmd, int tty);
8701
8702 static void threadalive_test (char *cmd, int tty);
8703
8704 static void threadlist_test_cmd (char *cmd, int tty);
8705
8706 int get_and_display_threadinfo (threadref *ref);
8707
8708 static void threadinfo_test_cmd (char *cmd, int tty);
8709
8710 static int thread_display_step (threadref *ref, void *context);
8711
8712 static void threadlist_update_test_cmd (char *cmd, int tty);
8713
8714 static void init_remote_threadtests (void);
8715
8716 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8717
8718 static void
8719 threadset_test_cmd (char *cmd, int tty)
8720 {
8721 int sample_thread = SAMPLE_THREAD;
8722
8723 printf_filtered (_("Remote threadset test\n"));
8724 set_general_thread (sample_thread);
8725 }
8726
8727
8728 static void
8729 threadalive_test (char *cmd, int tty)
8730 {
8731 int sample_thread = SAMPLE_THREAD;
8732 int pid = ptid_get_pid (inferior_ptid);
8733 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8734
8735 if (remote_thread_alive (ptid))
8736 printf_filtered ("PASS: Thread alive test\n");
8737 else
8738 printf_filtered ("FAIL: Thread alive test\n");
8739 }
8740
8741 void output_threadid (char *title, threadref *ref);
8742
8743 void
8744 output_threadid (char *title, threadref *ref)
8745 {
8746 char hexid[20];
8747
8748 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8749 hexid[16] = 0;
8750 printf_filtered ("%s %s\n", title, (&hexid[0]));
8751 }
8752
8753 static void
8754 threadlist_test_cmd (char *cmd, int tty)
8755 {
8756 int startflag = 1;
8757 threadref nextthread;
8758 int done, result_count;
8759 threadref threadlist[3];
8760
8761 printf_filtered ("Remote Threadlist test\n");
8762 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8763 &result_count, &threadlist[0]))
8764 printf_filtered ("FAIL: threadlist test\n");
8765 else
8766 {
8767 threadref *scan = threadlist;
8768 threadref *limit = scan + result_count;
8769
8770 while (scan < limit)
8771 output_threadid (" thread ", scan++);
8772 }
8773 }
8774
8775 void
8776 display_thread_info (struct gdb_ext_thread_info *info)
8777 {
8778 output_threadid ("Threadid: ", &info->threadid);
8779 printf_filtered ("Name: %s\n ", info->shortname);
8780 printf_filtered ("State: %s\n", info->display);
8781 printf_filtered ("other: %s\n\n", info->more_display);
8782 }
8783
8784 int
8785 get_and_display_threadinfo (threadref *ref)
8786 {
8787 int result;
8788 int set;
8789 struct gdb_ext_thread_info threadinfo;
8790
8791 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8792 | TAG_MOREDISPLAY | TAG_DISPLAY;
8793 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8794 display_thread_info (&threadinfo);
8795 return result;
8796 }
8797
8798 static void
8799 threadinfo_test_cmd (char *cmd, int tty)
8800 {
8801 int athread = SAMPLE_THREAD;
8802 threadref thread;
8803 int set;
8804
8805 int_to_threadref (&thread, athread);
8806 printf_filtered ("Remote Threadinfo test\n");
8807 if (!get_and_display_threadinfo (&thread))
8808 printf_filtered ("FAIL cannot get thread info\n");
8809 }
8810
8811 static int
8812 thread_display_step (threadref *ref, void *context)
8813 {
8814 /* output_threadid(" threadstep ",ref); *//* simple test */
8815 return get_and_display_threadinfo (ref);
8816 }
8817
8818 static void
8819 threadlist_update_test_cmd (char *cmd, int tty)
8820 {
8821 printf_filtered ("Remote Threadlist update test\n");
8822 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8823 }
8824
8825 static void
8826 init_remote_threadtests (void)
8827 {
8828 add_com ("tlist", class_obscure, threadlist_test_cmd,
8829 _("Fetch and print the remote list of "
8830 "thread identifiers, one pkt only"));
8831 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8832 _("Fetch and display info about one thread"));
8833 add_com ("tset", class_obscure, threadset_test_cmd,
8834 _("Test setting to a different thread"));
8835 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8836 _("Iterate through updating all remote thread info"));
8837 add_com ("talive", class_obscure, threadalive_test,
8838 _(" Remote thread alive test "));
8839 }
8840
8841 #endif /* 0 */
8842
8843 /* Convert a thread ID to a string. Returns the string in a static
8844 buffer. */
8845
8846 static char *
8847 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8848 {
8849 static char buf[64];
8850 struct remote_state *rs = get_remote_state ();
8851
8852 if (ptid_equal (ptid, null_ptid))
8853 return normal_pid_to_str (ptid);
8854 else if (ptid_is_pid (ptid))
8855 {
8856 /* Printing an inferior target id. */
8857
8858 /* When multi-process extensions are off, there's no way in the
8859 remote protocol to know the remote process id, if there's any
8860 at all. There's one exception --- when we're connected with
8861 target extended-remote, and we manually attached to a process
8862 with "attach PID". We don't record anywhere a flag that
8863 allows us to distinguish that case from the case of
8864 connecting with extended-remote and the stub already being
8865 attached to a process, and reporting yes to qAttached, hence
8866 no smart special casing here. */
8867 if (!remote_multi_process_p (rs))
8868 {
8869 xsnprintf (buf, sizeof buf, "Remote target");
8870 return buf;
8871 }
8872
8873 return normal_pid_to_str (ptid);
8874 }
8875 else
8876 {
8877 if (ptid_equal (magic_null_ptid, ptid))
8878 xsnprintf (buf, sizeof buf, "Thread <main>");
8879 else if (rs->extended && remote_multi_process_p (rs))
8880 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8881 ptid_get_pid (ptid), ptid_get_tid (ptid));
8882 else
8883 xsnprintf (buf, sizeof buf, "Thread %ld",
8884 ptid_get_tid (ptid));
8885 return buf;
8886 }
8887 }
8888
8889 /* Get the address of the thread local variable in OBJFILE which is
8890 stored at OFFSET within the thread local storage for thread PTID. */
8891
8892 static CORE_ADDR
8893 remote_get_thread_local_address (struct target_ops *ops,
8894 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8895 {
8896 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8897 {
8898 struct remote_state *rs = get_remote_state ();
8899 char *p = rs->buf;
8900 char *endp = rs->buf + get_remote_packet_size ();
8901 enum packet_result result;
8902
8903 strcpy (p, "qGetTLSAddr:");
8904 p += strlen (p);
8905 p = write_ptid (p, endp, ptid);
8906 *p++ = ',';
8907 p += hexnumstr (p, offset);
8908 *p++ = ',';
8909 p += hexnumstr (p, lm);
8910 *p++ = '\0';
8911
8912 putpkt (rs->buf);
8913 getpkt (&rs->buf, &rs->buf_size, 0);
8914 result = packet_ok (rs->buf,
8915 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8916 if (result == PACKET_OK)
8917 {
8918 ULONGEST result;
8919
8920 unpack_varlen_hex (rs->buf, &result);
8921 return result;
8922 }
8923 else if (result == PACKET_UNKNOWN)
8924 throw_error (TLS_GENERIC_ERROR,
8925 _("Remote target doesn't support qGetTLSAddr packet"));
8926 else
8927 throw_error (TLS_GENERIC_ERROR,
8928 _("Remote target failed to process qGetTLSAddr request"));
8929 }
8930 else
8931 throw_error (TLS_GENERIC_ERROR,
8932 _("TLS not supported or disabled on this target"));
8933 /* Not reached. */
8934 return 0;
8935 }
8936
8937 /* Provide thread local base, i.e. Thread Information Block address.
8938 Returns 1 if ptid is found and thread_local_base is non zero. */
8939
8940 int
8941 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8942 {
8943 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8944 {
8945 struct remote_state *rs = get_remote_state ();
8946 char *p = rs->buf;
8947 char *endp = rs->buf + get_remote_packet_size ();
8948 enum packet_result result;
8949
8950 strcpy (p, "qGetTIBAddr:");
8951 p += strlen (p);
8952 p = write_ptid (p, endp, ptid);
8953 *p++ = '\0';
8954
8955 putpkt (rs->buf);
8956 getpkt (&rs->buf, &rs->buf_size, 0);
8957 result = packet_ok (rs->buf,
8958 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8959 if (result == PACKET_OK)
8960 {
8961 ULONGEST result;
8962
8963 unpack_varlen_hex (rs->buf, &result);
8964 if (addr)
8965 *addr = (CORE_ADDR) result;
8966 return 1;
8967 }
8968 else if (result == PACKET_UNKNOWN)
8969 error (_("Remote target doesn't support qGetTIBAddr packet"));
8970 else
8971 error (_("Remote target failed to process qGetTIBAddr request"));
8972 }
8973 else
8974 error (_("qGetTIBAddr not supported or disabled on this target"));
8975 /* Not reached. */
8976 return 0;
8977 }
8978
8979 /* Support for inferring a target description based on the current
8980 architecture and the size of a 'g' packet. While the 'g' packet
8981 can have any size (since optional registers can be left off the
8982 end), some sizes are easily recognizable given knowledge of the
8983 approximate architecture. */
8984
8985 struct remote_g_packet_guess
8986 {
8987 int bytes;
8988 const struct target_desc *tdesc;
8989 };
8990 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8991 DEF_VEC_O(remote_g_packet_guess_s);
8992
8993 struct remote_g_packet_data
8994 {
8995 VEC(remote_g_packet_guess_s) *guesses;
8996 };
8997
8998 static struct gdbarch_data *remote_g_packet_data_handle;
8999
9000 static void *
9001 remote_g_packet_data_init (struct obstack *obstack)
9002 {
9003 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9004 }
9005
9006 void
9007 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9008 const struct target_desc *tdesc)
9009 {
9010 struct remote_g_packet_data *data
9011 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9012 struct remote_g_packet_guess new_guess, *guess;
9013 int ix;
9014
9015 gdb_assert (tdesc != NULL);
9016
9017 for (ix = 0;
9018 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9019 ix++)
9020 if (guess->bytes == bytes)
9021 internal_error (__FILE__, __LINE__,
9022 _("Duplicate g packet description added for size %d"),
9023 bytes);
9024
9025 new_guess.bytes = bytes;
9026 new_guess.tdesc = tdesc;
9027 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9028 }
9029
9030 /* Return 1 if remote_read_description would do anything on this target
9031 and architecture, 0 otherwise. */
9032
9033 static int
9034 remote_read_description_p (struct target_ops *target)
9035 {
9036 struct remote_g_packet_data *data
9037 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9038
9039 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9040 return 1;
9041
9042 return 0;
9043 }
9044
9045 static const struct target_desc *
9046 remote_read_description (struct target_ops *target)
9047 {
9048 struct remote_g_packet_data *data
9049 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9050
9051 /* Do not try this during initial connection, when we do not know
9052 whether there is a running but stopped thread. */
9053 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9054 return NULL;
9055
9056 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9057 {
9058 struct remote_g_packet_guess *guess;
9059 int ix;
9060 int bytes = send_g_packet ();
9061
9062 for (ix = 0;
9063 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9064 ix++)
9065 if (guess->bytes == bytes)
9066 return guess->tdesc;
9067
9068 /* We discard the g packet. A minor optimization would be to
9069 hold on to it, and fill the register cache once we have selected
9070 an architecture, but it's too tricky to do safely. */
9071 }
9072
9073 return NULL;
9074 }
9075
9076 /* Remote file transfer support. This is host-initiated I/O, not
9077 target-initiated; for target-initiated, see remote-fileio.c. */
9078
9079 /* If *LEFT is at least the length of STRING, copy STRING to
9080 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9081 decrease *LEFT. Otherwise raise an error. */
9082
9083 static void
9084 remote_buffer_add_string (char **buffer, int *left, char *string)
9085 {
9086 int len = strlen (string);
9087
9088 if (len > *left)
9089 error (_("Packet too long for target."));
9090
9091 memcpy (*buffer, string, len);
9092 *buffer += len;
9093 *left -= len;
9094
9095 /* NUL-terminate the buffer as a convenience, if there is
9096 room. */
9097 if (*left)
9098 **buffer = '\0';
9099 }
9100
9101 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9102 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9103 decrease *LEFT. Otherwise raise an error. */
9104
9105 static void
9106 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9107 int len)
9108 {
9109 if (2 * len > *left)
9110 error (_("Packet too long for target."));
9111
9112 bin2hex (bytes, *buffer, len);
9113 *buffer += 2 * len;
9114 *left -= 2 * len;
9115
9116 /* NUL-terminate the buffer as a convenience, if there is
9117 room. */
9118 if (*left)
9119 **buffer = '\0';
9120 }
9121
9122 /* If *LEFT is large enough, convert VALUE to hex and add it to
9123 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9124 decrease *LEFT. Otherwise raise an error. */
9125
9126 static void
9127 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9128 {
9129 int len = hexnumlen (value);
9130
9131 if (len > *left)
9132 error (_("Packet too long for target."));
9133
9134 hexnumstr (*buffer, value);
9135 *buffer += len;
9136 *left -= len;
9137
9138 /* NUL-terminate the buffer as a convenience, if there is
9139 room. */
9140 if (*left)
9141 **buffer = '\0';
9142 }
9143
9144 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9145 value, *REMOTE_ERRNO to the remote error number or zero if none
9146 was included, and *ATTACHMENT to point to the start of the annex
9147 if any. The length of the packet isn't needed here; there may
9148 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9149
9150 Return 0 if the packet could be parsed, -1 if it could not. If
9151 -1 is returned, the other variables may not be initialized. */
9152
9153 static int
9154 remote_hostio_parse_result (char *buffer, int *retcode,
9155 int *remote_errno, char **attachment)
9156 {
9157 char *p, *p2;
9158
9159 *remote_errno = 0;
9160 *attachment = NULL;
9161
9162 if (buffer[0] != 'F')
9163 return -1;
9164
9165 errno = 0;
9166 *retcode = strtol (&buffer[1], &p, 16);
9167 if (errno != 0 || p == &buffer[1])
9168 return -1;
9169
9170 /* Check for ",errno". */
9171 if (*p == ',')
9172 {
9173 errno = 0;
9174 *remote_errno = strtol (p + 1, &p2, 16);
9175 if (errno != 0 || p + 1 == p2)
9176 return -1;
9177 p = p2;
9178 }
9179
9180 /* Check for ";attachment". If there is no attachment, the
9181 packet should end here. */
9182 if (*p == ';')
9183 {
9184 *attachment = p + 1;
9185 return 0;
9186 }
9187 else if (*p == '\0')
9188 return 0;
9189 else
9190 return -1;
9191 }
9192
9193 /* Send a prepared I/O packet to the target and read its response.
9194 The prepared packet is in the global RS->BUF before this function
9195 is called, and the answer is there when we return.
9196
9197 COMMAND_BYTES is the length of the request to send, which may include
9198 binary data. WHICH_PACKET is the packet configuration to check
9199 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9200 is set to the error number and -1 is returned. Otherwise the value
9201 returned by the function is returned.
9202
9203 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9204 attachment is expected; an error will be reported if there's a
9205 mismatch. If one is found, *ATTACHMENT will be set to point into
9206 the packet buffer and *ATTACHMENT_LEN will be set to the
9207 attachment's length. */
9208
9209 static int
9210 remote_hostio_send_command (int command_bytes, int which_packet,
9211 int *remote_errno, char **attachment,
9212 int *attachment_len)
9213 {
9214 struct remote_state *rs = get_remote_state ();
9215 int ret, bytes_read;
9216 char *attachment_tmp;
9217
9218 if (!remote_desc
9219 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9220 {
9221 *remote_errno = FILEIO_ENOSYS;
9222 return -1;
9223 }
9224
9225 putpkt_binary (rs->buf, command_bytes);
9226 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9227
9228 /* If it timed out, something is wrong. Don't try to parse the
9229 buffer. */
9230 if (bytes_read < 0)
9231 {
9232 *remote_errno = FILEIO_EINVAL;
9233 return -1;
9234 }
9235
9236 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9237 {
9238 case PACKET_ERROR:
9239 *remote_errno = FILEIO_EINVAL;
9240 return -1;
9241 case PACKET_UNKNOWN:
9242 *remote_errno = FILEIO_ENOSYS;
9243 return -1;
9244 case PACKET_OK:
9245 break;
9246 }
9247
9248 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9249 &attachment_tmp))
9250 {
9251 *remote_errno = FILEIO_EINVAL;
9252 return -1;
9253 }
9254
9255 /* Make sure we saw an attachment if and only if we expected one. */
9256 if ((attachment_tmp == NULL && attachment != NULL)
9257 || (attachment_tmp != NULL && attachment == NULL))
9258 {
9259 *remote_errno = FILEIO_EINVAL;
9260 return -1;
9261 }
9262
9263 /* If an attachment was found, it must point into the packet buffer;
9264 work out how many bytes there were. */
9265 if (attachment_tmp != NULL)
9266 {
9267 *attachment = attachment_tmp;
9268 *attachment_len = bytes_read - (*attachment - rs->buf);
9269 }
9270
9271 return ret;
9272 }
9273
9274 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9275 remote file descriptor, or -1 if an error occurs (and set
9276 *REMOTE_ERRNO). */
9277
9278 static int
9279 remote_hostio_open (const char *filename, int flags, int mode,
9280 int *remote_errno)
9281 {
9282 struct remote_state *rs = get_remote_state ();
9283 char *p = rs->buf;
9284 int left = get_remote_packet_size () - 1;
9285
9286 remote_buffer_add_string (&p, &left, "vFile:open:");
9287
9288 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9289 strlen (filename));
9290 remote_buffer_add_string (&p, &left, ",");
9291
9292 remote_buffer_add_int (&p, &left, flags);
9293 remote_buffer_add_string (&p, &left, ",");
9294
9295 remote_buffer_add_int (&p, &left, mode);
9296
9297 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9298 remote_errno, NULL, NULL);
9299 }
9300
9301 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9302 Return the number of bytes written, or -1 if an error occurs (and
9303 set *REMOTE_ERRNO). */
9304
9305 static int
9306 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9307 ULONGEST offset, int *remote_errno)
9308 {
9309 struct remote_state *rs = get_remote_state ();
9310 char *p = rs->buf;
9311 int left = get_remote_packet_size ();
9312 int out_len;
9313
9314 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9315
9316 remote_buffer_add_int (&p, &left, fd);
9317 remote_buffer_add_string (&p, &left, ",");
9318
9319 remote_buffer_add_int (&p, &left, offset);
9320 remote_buffer_add_string (&p, &left, ",");
9321
9322 p += remote_escape_output (write_buf, len, p, &out_len,
9323 get_remote_packet_size () - (p - rs->buf));
9324
9325 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9326 remote_errno, NULL, NULL);
9327 }
9328
9329 /* Read up to LEN bytes FD on the remote target into READ_BUF
9330 Return the number of bytes read, or -1 if an error occurs (and
9331 set *REMOTE_ERRNO). */
9332
9333 static int
9334 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9335 ULONGEST offset, int *remote_errno)
9336 {
9337 struct remote_state *rs = get_remote_state ();
9338 char *p = rs->buf;
9339 char *attachment;
9340 int left = get_remote_packet_size ();
9341 int ret, attachment_len;
9342 int read_len;
9343
9344 remote_buffer_add_string (&p, &left, "vFile:pread:");
9345
9346 remote_buffer_add_int (&p, &left, fd);
9347 remote_buffer_add_string (&p, &left, ",");
9348
9349 remote_buffer_add_int (&p, &left, len);
9350 remote_buffer_add_string (&p, &left, ",");
9351
9352 remote_buffer_add_int (&p, &left, offset);
9353
9354 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9355 remote_errno, &attachment,
9356 &attachment_len);
9357
9358 if (ret < 0)
9359 return ret;
9360
9361 read_len = remote_unescape_input (attachment, attachment_len,
9362 read_buf, len);
9363 if (read_len != ret)
9364 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9365
9366 return ret;
9367 }
9368
9369 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9370 (and set *REMOTE_ERRNO). */
9371
9372 static int
9373 remote_hostio_close (int fd, int *remote_errno)
9374 {
9375 struct remote_state *rs = get_remote_state ();
9376 char *p = rs->buf;
9377 int left = get_remote_packet_size () - 1;
9378
9379 remote_buffer_add_string (&p, &left, "vFile:close:");
9380
9381 remote_buffer_add_int (&p, &left, fd);
9382
9383 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9384 remote_errno, NULL, NULL);
9385 }
9386
9387 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9388 occurs (and set *REMOTE_ERRNO). */
9389
9390 static int
9391 remote_hostio_unlink (const char *filename, int *remote_errno)
9392 {
9393 struct remote_state *rs = get_remote_state ();
9394 char *p = rs->buf;
9395 int left = get_remote_packet_size () - 1;
9396
9397 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9398
9399 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9400 strlen (filename));
9401
9402 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9403 remote_errno, NULL, NULL);
9404 }
9405
9406 /* Read value of symbolic link FILENAME on the remote target. Return
9407 a null-terminated string allocated via xmalloc, or NULL if an error
9408 occurs (and set *REMOTE_ERRNO). */
9409
9410 static char *
9411 remote_hostio_readlink (const char *filename, int *remote_errno)
9412 {
9413 struct remote_state *rs = get_remote_state ();
9414 char *p = rs->buf;
9415 char *attachment;
9416 int left = get_remote_packet_size ();
9417 int len, attachment_len;
9418 int read_len;
9419 char *ret;
9420
9421 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9422
9423 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9424 strlen (filename));
9425
9426 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9427 remote_errno, &attachment,
9428 &attachment_len);
9429
9430 if (len < 0)
9431 return NULL;
9432
9433 ret = xmalloc (len + 1);
9434
9435 read_len = remote_unescape_input (attachment, attachment_len,
9436 ret, len);
9437 if (read_len != len)
9438 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9439
9440 ret[len] = '\0';
9441 return ret;
9442 }
9443
9444 static int
9445 remote_fileio_errno_to_host (int errnum)
9446 {
9447 switch (errnum)
9448 {
9449 case FILEIO_EPERM:
9450 return EPERM;
9451 case FILEIO_ENOENT:
9452 return ENOENT;
9453 case FILEIO_EINTR:
9454 return EINTR;
9455 case FILEIO_EIO:
9456 return EIO;
9457 case FILEIO_EBADF:
9458 return EBADF;
9459 case FILEIO_EACCES:
9460 return EACCES;
9461 case FILEIO_EFAULT:
9462 return EFAULT;
9463 case FILEIO_EBUSY:
9464 return EBUSY;
9465 case FILEIO_EEXIST:
9466 return EEXIST;
9467 case FILEIO_ENODEV:
9468 return ENODEV;
9469 case FILEIO_ENOTDIR:
9470 return ENOTDIR;
9471 case FILEIO_EISDIR:
9472 return EISDIR;
9473 case FILEIO_EINVAL:
9474 return EINVAL;
9475 case FILEIO_ENFILE:
9476 return ENFILE;
9477 case FILEIO_EMFILE:
9478 return EMFILE;
9479 case FILEIO_EFBIG:
9480 return EFBIG;
9481 case FILEIO_ENOSPC:
9482 return ENOSPC;
9483 case FILEIO_ESPIPE:
9484 return ESPIPE;
9485 case FILEIO_EROFS:
9486 return EROFS;
9487 case FILEIO_ENOSYS:
9488 return ENOSYS;
9489 case FILEIO_ENAMETOOLONG:
9490 return ENAMETOOLONG;
9491 }
9492 return -1;
9493 }
9494
9495 static char *
9496 remote_hostio_error (int errnum)
9497 {
9498 int host_error = remote_fileio_errno_to_host (errnum);
9499
9500 if (host_error == -1)
9501 error (_("Unknown remote I/O error %d"), errnum);
9502 else
9503 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9504 }
9505
9506 static void
9507 remote_hostio_close_cleanup (void *opaque)
9508 {
9509 int fd = *(int *) opaque;
9510 int remote_errno;
9511
9512 remote_hostio_close (fd, &remote_errno);
9513 }
9514
9515
9516 static void *
9517 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9518 {
9519 const char *filename = bfd_get_filename (abfd);
9520 int fd, remote_errno;
9521 int *stream;
9522
9523 gdb_assert (remote_filename_p (filename));
9524
9525 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9526 if (fd == -1)
9527 {
9528 errno = remote_fileio_errno_to_host (remote_errno);
9529 bfd_set_error (bfd_error_system_call);
9530 return NULL;
9531 }
9532
9533 stream = xmalloc (sizeof (int));
9534 *stream = fd;
9535 return stream;
9536 }
9537
9538 static int
9539 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9540 {
9541 int fd = *(int *)stream;
9542 int remote_errno;
9543
9544 xfree (stream);
9545
9546 /* Ignore errors on close; these may happen if the remote
9547 connection was already torn down. */
9548 remote_hostio_close (fd, &remote_errno);
9549
9550 return 1;
9551 }
9552
9553 static file_ptr
9554 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9555 file_ptr nbytes, file_ptr offset)
9556 {
9557 int fd = *(int *)stream;
9558 int remote_errno;
9559 file_ptr pos, bytes;
9560
9561 pos = 0;
9562 while (nbytes > pos)
9563 {
9564 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9565 offset + pos, &remote_errno);
9566 if (bytes == 0)
9567 /* Success, but no bytes, means end-of-file. */
9568 break;
9569 if (bytes == -1)
9570 {
9571 errno = remote_fileio_errno_to_host (remote_errno);
9572 bfd_set_error (bfd_error_system_call);
9573 return -1;
9574 }
9575
9576 pos += bytes;
9577 }
9578
9579 return pos;
9580 }
9581
9582 static int
9583 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9584 {
9585 /* FIXME: We should probably implement remote_hostio_stat. */
9586 sb->st_size = INT_MAX;
9587 return 0;
9588 }
9589
9590 int
9591 remote_filename_p (const char *filename)
9592 {
9593 return strncmp (filename, "remote:", 7) == 0;
9594 }
9595
9596 bfd *
9597 remote_bfd_open (const char *remote_file, const char *target)
9598 {
9599 return bfd_openr_iovec (remote_file, target,
9600 remote_bfd_iovec_open, NULL,
9601 remote_bfd_iovec_pread,
9602 remote_bfd_iovec_close,
9603 remote_bfd_iovec_stat);
9604 }
9605
9606 void
9607 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9608 {
9609 struct cleanup *back_to, *close_cleanup;
9610 int retcode, fd, remote_errno, bytes, io_size;
9611 FILE *file;
9612 gdb_byte *buffer;
9613 int bytes_in_buffer;
9614 int saw_eof;
9615 ULONGEST offset;
9616
9617 if (!remote_desc)
9618 error (_("command can only be used with remote target"));
9619
9620 file = fopen (local_file, "rb");
9621 if (file == NULL)
9622 perror_with_name (local_file);
9623 back_to = make_cleanup_fclose (file);
9624
9625 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9626 | FILEIO_O_TRUNC),
9627 0700, &remote_errno);
9628 if (fd == -1)
9629 remote_hostio_error (remote_errno);
9630
9631 /* Send up to this many bytes at once. They won't all fit in the
9632 remote packet limit, so we'll transfer slightly fewer. */
9633 io_size = get_remote_packet_size ();
9634 buffer = xmalloc (io_size);
9635 make_cleanup (xfree, buffer);
9636
9637 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9638
9639 bytes_in_buffer = 0;
9640 saw_eof = 0;
9641 offset = 0;
9642 while (bytes_in_buffer || !saw_eof)
9643 {
9644 if (!saw_eof)
9645 {
9646 bytes = fread (buffer + bytes_in_buffer, 1,
9647 io_size - bytes_in_buffer,
9648 file);
9649 if (bytes == 0)
9650 {
9651 if (ferror (file))
9652 error (_("Error reading %s."), local_file);
9653 else
9654 {
9655 /* EOF. Unless there is something still in the
9656 buffer from the last iteration, we are done. */
9657 saw_eof = 1;
9658 if (bytes_in_buffer == 0)
9659 break;
9660 }
9661 }
9662 }
9663 else
9664 bytes = 0;
9665
9666 bytes += bytes_in_buffer;
9667 bytes_in_buffer = 0;
9668
9669 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9670 offset, &remote_errno);
9671
9672 if (retcode < 0)
9673 remote_hostio_error (remote_errno);
9674 else if (retcode == 0)
9675 error (_("Remote write of %d bytes returned 0!"), bytes);
9676 else if (retcode < bytes)
9677 {
9678 /* Short write. Save the rest of the read data for the next
9679 write. */
9680 bytes_in_buffer = bytes - retcode;
9681 memmove (buffer, buffer + retcode, bytes_in_buffer);
9682 }
9683
9684 offset += retcode;
9685 }
9686
9687 discard_cleanups (close_cleanup);
9688 if (remote_hostio_close (fd, &remote_errno))
9689 remote_hostio_error (remote_errno);
9690
9691 if (from_tty)
9692 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9693 do_cleanups (back_to);
9694 }
9695
9696 void
9697 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9698 {
9699 struct cleanup *back_to, *close_cleanup;
9700 int fd, remote_errno, bytes, io_size;
9701 FILE *file;
9702 gdb_byte *buffer;
9703 ULONGEST offset;
9704
9705 if (!remote_desc)
9706 error (_("command can only be used with remote target"));
9707
9708 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9709 if (fd == -1)
9710 remote_hostio_error (remote_errno);
9711
9712 file = fopen (local_file, "wb");
9713 if (file == NULL)
9714 perror_with_name (local_file);
9715 back_to = make_cleanup_fclose (file);
9716
9717 /* Send up to this many bytes at once. They won't all fit in the
9718 remote packet limit, so we'll transfer slightly fewer. */
9719 io_size = get_remote_packet_size ();
9720 buffer = xmalloc (io_size);
9721 make_cleanup (xfree, buffer);
9722
9723 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9724
9725 offset = 0;
9726 while (1)
9727 {
9728 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9729 if (bytes == 0)
9730 /* Success, but no bytes, means end-of-file. */
9731 break;
9732 if (bytes == -1)
9733 remote_hostio_error (remote_errno);
9734
9735 offset += bytes;
9736
9737 bytes = fwrite (buffer, 1, bytes, file);
9738 if (bytes == 0)
9739 perror_with_name (local_file);
9740 }
9741
9742 discard_cleanups (close_cleanup);
9743 if (remote_hostio_close (fd, &remote_errno))
9744 remote_hostio_error (remote_errno);
9745
9746 if (from_tty)
9747 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9748 do_cleanups (back_to);
9749 }
9750
9751 void
9752 remote_file_delete (const char *remote_file, int from_tty)
9753 {
9754 int retcode, remote_errno;
9755
9756 if (!remote_desc)
9757 error (_("command can only be used with remote target"));
9758
9759 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9760 if (retcode == -1)
9761 remote_hostio_error (remote_errno);
9762
9763 if (from_tty)
9764 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9765 }
9766
9767 static void
9768 remote_put_command (char *args, int from_tty)
9769 {
9770 struct cleanup *back_to;
9771 char **argv;
9772
9773 if (args == NULL)
9774 error_no_arg (_("file to put"));
9775
9776 argv = gdb_buildargv (args);
9777 back_to = make_cleanup_freeargv (argv);
9778 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9779 error (_("Invalid parameters to remote put"));
9780
9781 remote_file_put (argv[0], argv[1], from_tty);
9782
9783 do_cleanups (back_to);
9784 }
9785
9786 static void
9787 remote_get_command (char *args, int from_tty)
9788 {
9789 struct cleanup *back_to;
9790 char **argv;
9791
9792 if (args == NULL)
9793 error_no_arg (_("file to get"));
9794
9795 argv = gdb_buildargv (args);
9796 back_to = make_cleanup_freeargv (argv);
9797 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9798 error (_("Invalid parameters to remote get"));
9799
9800 remote_file_get (argv[0], argv[1], from_tty);
9801
9802 do_cleanups (back_to);
9803 }
9804
9805 static void
9806 remote_delete_command (char *args, int from_tty)
9807 {
9808 struct cleanup *back_to;
9809 char **argv;
9810
9811 if (args == NULL)
9812 error_no_arg (_("file to delete"));
9813
9814 argv = gdb_buildargv (args);
9815 back_to = make_cleanup_freeargv (argv);
9816 if (argv[0] == NULL || argv[1] != NULL)
9817 error (_("Invalid parameters to remote delete"));
9818
9819 remote_file_delete (argv[0], from_tty);
9820
9821 do_cleanups (back_to);
9822 }
9823
9824 static void
9825 remote_command (char *args, int from_tty)
9826 {
9827 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9828 }
9829
9830 static int
9831 remote_can_execute_reverse (void)
9832 {
9833 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9834 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9835 return 1;
9836 else
9837 return 0;
9838 }
9839
9840 static int
9841 remote_supports_non_stop (void)
9842 {
9843 return 1;
9844 }
9845
9846 static int
9847 remote_supports_disable_randomization (void)
9848 {
9849 /* Only supported in extended mode. */
9850 return 0;
9851 }
9852
9853 static int
9854 remote_supports_multi_process (void)
9855 {
9856 struct remote_state *rs = get_remote_state ();
9857
9858 /* Only extended-remote handles being attached to multiple
9859 processes, even though plain remote can use the multi-process
9860 thread id extensions, so that GDB knows the target process's
9861 PID. */
9862 return rs->extended && remote_multi_process_p (rs);
9863 }
9864
9865 int
9866 remote_supports_cond_tracepoints (void)
9867 {
9868 struct remote_state *rs = get_remote_state ();
9869
9870 return rs->cond_tracepoints;
9871 }
9872
9873 static int
9874 remote_supports_cond_breakpoints (void)
9875 {
9876 struct remote_state *rs = get_remote_state ();
9877
9878 return rs->cond_breakpoints;
9879 }
9880
9881 int
9882 remote_supports_fast_tracepoints (void)
9883 {
9884 struct remote_state *rs = get_remote_state ();
9885
9886 return rs->fast_tracepoints;
9887 }
9888
9889 static int
9890 remote_supports_static_tracepoints (void)
9891 {
9892 struct remote_state *rs = get_remote_state ();
9893
9894 return rs->static_tracepoints;
9895 }
9896
9897 static int
9898 remote_supports_install_in_trace (void)
9899 {
9900 struct remote_state *rs = get_remote_state ();
9901
9902 return rs->install_in_trace;
9903 }
9904
9905 static int
9906 remote_supports_enable_disable_tracepoint (void)
9907 {
9908 struct remote_state *rs = get_remote_state ();
9909
9910 return rs->enable_disable_tracepoints;
9911 }
9912
9913 static int
9914 remote_supports_string_tracing (void)
9915 {
9916 struct remote_state *rs = get_remote_state ();
9917
9918 return rs->string_tracing;
9919 }
9920
9921 static void
9922 remote_trace_init (void)
9923 {
9924 putpkt ("QTinit");
9925 remote_get_noisy_reply (&target_buf, &target_buf_size);
9926 if (strcmp (target_buf, "OK") != 0)
9927 error (_("Target does not support this command."));
9928 }
9929
9930 static void free_actions_list (char **actions_list);
9931 static void free_actions_list_cleanup_wrapper (void *);
9932 static void
9933 free_actions_list_cleanup_wrapper (void *al)
9934 {
9935 free_actions_list (al);
9936 }
9937
9938 static void
9939 free_actions_list (char **actions_list)
9940 {
9941 int ndx;
9942
9943 if (actions_list == 0)
9944 return;
9945
9946 for (ndx = 0; actions_list[ndx]; ndx++)
9947 xfree (actions_list[ndx]);
9948
9949 xfree (actions_list);
9950 }
9951
9952 /* Recursive routine to walk through command list including loops, and
9953 download packets for each command. */
9954
9955 static void
9956 remote_download_command_source (int num, ULONGEST addr,
9957 struct command_line *cmds)
9958 {
9959 struct remote_state *rs = get_remote_state ();
9960 struct command_line *cmd;
9961
9962 for (cmd = cmds; cmd; cmd = cmd->next)
9963 {
9964 QUIT; /* Allow user to bail out with ^C. */
9965 strcpy (rs->buf, "QTDPsrc:");
9966 encode_source_string (num, addr, "cmd", cmd->line,
9967 rs->buf + strlen (rs->buf),
9968 rs->buf_size - strlen (rs->buf));
9969 putpkt (rs->buf);
9970 remote_get_noisy_reply (&target_buf, &target_buf_size);
9971 if (strcmp (target_buf, "OK"))
9972 warning (_("Target does not support source download."));
9973
9974 if (cmd->control_type == while_control
9975 || cmd->control_type == while_stepping_control)
9976 {
9977 remote_download_command_source (num, addr, *cmd->body_list);
9978
9979 QUIT; /* Allow user to bail out with ^C. */
9980 strcpy (rs->buf, "QTDPsrc:");
9981 encode_source_string (num, addr, "cmd", "end",
9982 rs->buf + strlen (rs->buf),
9983 rs->buf_size - strlen (rs->buf));
9984 putpkt (rs->buf);
9985 remote_get_noisy_reply (&target_buf, &target_buf_size);
9986 if (strcmp (target_buf, "OK"))
9987 warning (_("Target does not support source download."));
9988 }
9989 }
9990 }
9991
9992 static void
9993 remote_download_tracepoint (struct bp_location *loc)
9994 {
9995
9996 CORE_ADDR tpaddr;
9997 char addrbuf[40];
9998 char buf[2048];
9999 char **tdp_actions;
10000 char **stepping_actions;
10001 int ndx;
10002 struct cleanup *old_chain = NULL;
10003 struct agent_expr *aexpr;
10004 struct cleanup *aexpr_chain = NULL;
10005 char *pkt;
10006 struct breakpoint *b = loc->owner;
10007 struct tracepoint *t = (struct tracepoint *) b;
10008
10009 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10010 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10011 tdp_actions);
10012 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10013 stepping_actions);
10014
10015 tpaddr = loc->address;
10016 sprintf_vma (addrbuf, tpaddr);
10017 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", b->number,
10018 addrbuf, /* address */
10019 (b->enable_state == bp_enabled ? 'E' : 'D'),
10020 t->step_count, t->pass_count);
10021 /* Fast tracepoints are mostly handled by the target, but we can
10022 tell the target how big of an instruction block should be moved
10023 around. */
10024 if (b->type == bp_fast_tracepoint)
10025 {
10026 /* Only test for support at download time; we may not know
10027 target capabilities at definition time. */
10028 if (remote_supports_fast_tracepoints ())
10029 {
10030 int isize;
10031
10032 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
10033 tpaddr, &isize, NULL))
10034 sprintf (buf + strlen (buf), ":F%x", isize);
10035 else
10036 /* If it passed validation at definition but fails now,
10037 something is very wrong. */
10038 internal_error (__FILE__, __LINE__,
10039 _("Fast tracepoint not "
10040 "valid during download"));
10041 }
10042 else
10043 /* Fast tracepoints are functionally identical to regular
10044 tracepoints, so don't take lack of support as a reason to
10045 give up on the trace run. */
10046 warning (_("Target does not support fast tracepoints, "
10047 "downloading %d as regular tracepoint"), b->number);
10048 }
10049 else if (b->type == bp_static_tracepoint)
10050 {
10051 /* Only test for support at download time; we may not know
10052 target capabilities at definition time. */
10053 if (remote_supports_static_tracepoints ())
10054 {
10055 struct static_tracepoint_marker marker;
10056
10057 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10058 strcat (buf, ":S");
10059 else
10060 error (_("Static tracepoint not valid during download"));
10061 }
10062 else
10063 /* Fast tracepoints are functionally identical to regular
10064 tracepoints, so don't take lack of support as a reason
10065 to give up on the trace run. */
10066 error (_("Target does not support static tracepoints"));
10067 }
10068 /* If the tracepoint has a conditional, make it into an agent
10069 expression and append to the definition. */
10070 if (loc->cond)
10071 {
10072 /* Only test support at download time, we may not know target
10073 capabilities at definition time. */
10074 if (remote_supports_cond_tracepoints ())
10075 {
10076 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10077 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10078 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
10079 pkt = buf + strlen (buf);
10080 for (ndx = 0; ndx < aexpr->len; ++ndx)
10081 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10082 *pkt = '\0';
10083 do_cleanups (aexpr_chain);
10084 }
10085 else
10086 warning (_("Target does not support conditional tracepoints, "
10087 "ignoring tp %d cond"), b->number);
10088 }
10089
10090 if (b->commands || *default_collect)
10091 strcat (buf, "-");
10092 putpkt (buf);
10093 remote_get_noisy_reply (&target_buf, &target_buf_size);
10094 if (strcmp (target_buf, "OK"))
10095 error (_("Target does not support tracepoints."));
10096
10097 /* do_single_steps (t); */
10098 if (tdp_actions)
10099 {
10100 for (ndx = 0; tdp_actions[ndx]; ndx++)
10101 {
10102 QUIT; /* Allow user to bail out with ^C. */
10103 sprintf (buf, "QTDP:-%x:%s:%s%c",
10104 b->number, addrbuf, /* address */
10105 tdp_actions[ndx],
10106 ((tdp_actions[ndx + 1] || stepping_actions)
10107 ? '-' : 0));
10108 putpkt (buf);
10109 remote_get_noisy_reply (&target_buf,
10110 &target_buf_size);
10111 if (strcmp (target_buf, "OK"))
10112 error (_("Error on target while setting tracepoints."));
10113 }
10114 }
10115 if (stepping_actions)
10116 {
10117 for (ndx = 0; stepping_actions[ndx]; ndx++)
10118 {
10119 QUIT; /* Allow user to bail out with ^C. */
10120 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
10121 b->number, addrbuf, /* address */
10122 ((ndx == 0) ? "S" : ""),
10123 stepping_actions[ndx],
10124 (stepping_actions[ndx + 1] ? "-" : ""));
10125 putpkt (buf);
10126 remote_get_noisy_reply (&target_buf,
10127 &target_buf_size);
10128 if (strcmp (target_buf, "OK"))
10129 error (_("Error on target while setting tracepoints."));
10130 }
10131 }
10132
10133 if (remote_protocol_packets[PACKET_TracepointSource].support
10134 == PACKET_ENABLE)
10135 {
10136 if (b->addr_string)
10137 {
10138 strcpy (buf, "QTDPsrc:");
10139 encode_source_string (b->number, loc->address,
10140 "at", b->addr_string, buf + strlen (buf),
10141 2048 - strlen (buf));
10142
10143 putpkt (buf);
10144 remote_get_noisy_reply (&target_buf, &target_buf_size);
10145 if (strcmp (target_buf, "OK"))
10146 warning (_("Target does not support source download."));
10147 }
10148 if (b->cond_string)
10149 {
10150 strcpy (buf, "QTDPsrc:");
10151 encode_source_string (b->number, loc->address,
10152 "cond", b->cond_string, buf + strlen (buf),
10153 2048 - strlen (buf));
10154 putpkt (buf);
10155 remote_get_noisy_reply (&target_buf, &target_buf_size);
10156 if (strcmp (target_buf, "OK"))
10157 warning (_("Target does not support source download."));
10158 }
10159 remote_download_command_source (b->number, loc->address,
10160 breakpoint_commands (b));
10161 }
10162
10163 do_cleanups (old_chain);
10164 }
10165
10166 static int
10167 remote_can_download_tracepoint (void)
10168 {
10169 struct trace_status *ts = current_trace_status ();
10170 int status = remote_get_trace_status (ts);
10171
10172 if (status == -1 || !ts->running_known || !ts->running)
10173 return 0;
10174
10175 /* If we are in a tracing experiment, but remote stub doesn't support
10176 installing tracepoint in trace, we have to return. */
10177 if (!remote_supports_install_in_trace ())
10178 return 0;
10179
10180 return 1;
10181 }
10182
10183
10184 static void
10185 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10186 {
10187 struct remote_state *rs = get_remote_state ();
10188 char *p;
10189
10190 sprintf (rs->buf, "QTDV:%x:%s:%x:",
10191 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
10192 p = rs->buf + strlen (rs->buf);
10193 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10194 error (_("Trace state variable name too long for tsv definition packet"));
10195 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10196 *p++ = '\0';
10197 putpkt (rs->buf);
10198 remote_get_noisy_reply (&target_buf, &target_buf_size);
10199 if (*target_buf == '\0')
10200 error (_("Target does not support this command."));
10201 if (strcmp (target_buf, "OK") != 0)
10202 error (_("Error on target while downloading trace state variable."));
10203 }
10204
10205 static void
10206 remote_enable_tracepoint (struct bp_location *location)
10207 {
10208 struct remote_state *rs = get_remote_state ();
10209 char addr_buf[40];
10210
10211 sprintf_vma (addr_buf, location->address);
10212 sprintf (rs->buf, "QTEnable:%x:%s", location->owner->number, addr_buf);
10213 putpkt (rs->buf);
10214 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10215 if (*rs->buf == '\0')
10216 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10217 if (strcmp (rs->buf, "OK") != 0)
10218 error (_("Error on target while enabling tracepoint."));
10219 }
10220
10221 static void
10222 remote_disable_tracepoint (struct bp_location *location)
10223 {
10224 struct remote_state *rs = get_remote_state ();
10225 char addr_buf[40];
10226
10227 sprintf_vma (addr_buf, location->address);
10228 sprintf (rs->buf, "QTDisable:%x:%s", location->owner->number, addr_buf);
10229 putpkt (rs->buf);
10230 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10231 if (*rs->buf == '\0')
10232 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10233 if (strcmp (rs->buf, "OK") != 0)
10234 error (_("Error on target while disabling tracepoint."));
10235 }
10236
10237 static void
10238 remote_trace_set_readonly_regions (void)
10239 {
10240 asection *s;
10241 bfd_size_type size;
10242 bfd_vma vma;
10243 int anysecs = 0;
10244 int offset = 0;
10245
10246 if (!exec_bfd)
10247 return; /* No information to give. */
10248
10249 strcpy (target_buf, "QTro");
10250 for (s = exec_bfd->sections; s; s = s->next)
10251 {
10252 char tmp1[40], tmp2[40];
10253 int sec_length;
10254
10255 if ((s->flags & SEC_LOAD) == 0 ||
10256 /* (s->flags & SEC_CODE) == 0 || */
10257 (s->flags & SEC_READONLY) == 0)
10258 continue;
10259
10260 anysecs = 1;
10261 vma = bfd_get_section_vma (,s);
10262 size = bfd_get_section_size (s);
10263 sprintf_vma (tmp1, vma);
10264 sprintf_vma (tmp2, vma + size);
10265 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10266 if (offset + sec_length + 1 > target_buf_size)
10267 {
10268 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10269 != PACKET_ENABLE)
10270 warning (_("\
10271 Too many sections for read-only sections definition packet."));
10272 break;
10273 }
10274 sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
10275 offset += sec_length;
10276 }
10277 if (anysecs)
10278 {
10279 putpkt (target_buf);
10280 getpkt (&target_buf, &target_buf_size, 0);
10281 }
10282 }
10283
10284 static void
10285 remote_trace_start (void)
10286 {
10287 putpkt ("QTStart");
10288 remote_get_noisy_reply (&target_buf, &target_buf_size);
10289 if (*target_buf == '\0')
10290 error (_("Target does not support this command."));
10291 if (strcmp (target_buf, "OK") != 0)
10292 error (_("Bogus reply from target: %s"), target_buf);
10293 }
10294
10295 static int
10296 remote_get_trace_status (struct trace_status *ts)
10297 {
10298 /* Initialize it just to avoid a GCC false warning. */
10299 char *p = NULL;
10300 /* FIXME we need to get register block size some other way. */
10301 extern int trace_regblock_size;
10302 volatile struct gdb_exception ex;
10303
10304 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10305
10306 putpkt ("qTStatus");
10307
10308 TRY_CATCH (ex, RETURN_MASK_ERROR)
10309 {
10310 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10311 }
10312 if (ex.reason < 0)
10313 {
10314 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10315 return -1;
10316 }
10317
10318 /* If the remote target doesn't do tracing, flag it. */
10319 if (*p == '\0')
10320 return -1;
10321
10322 /* We're working with a live target. */
10323 ts->from_file = 0;
10324
10325 /* Set some defaults. */
10326 ts->running_known = 0;
10327 ts->stop_reason = trace_stop_reason_unknown;
10328 ts->traceframe_count = -1;
10329 ts->buffer_free = 0;
10330
10331 if (*p++ != 'T')
10332 error (_("Bogus trace status reply from target: %s"), target_buf);
10333
10334 parse_trace_status (p, ts);
10335
10336 return ts->running;
10337 }
10338
10339 void
10340 remote_get_tracepoint_status (struct breakpoint *bp,
10341 struct uploaded_tp *utp)
10342 {
10343 struct remote_state *rs = get_remote_state ();
10344 char *reply;
10345 struct bp_location *loc;
10346 struct tracepoint *tp = (struct tracepoint *) bp;
10347
10348 if (tp)
10349 {
10350 tp->base.hit_count = 0;
10351 tp->traceframe_usage = 0;
10352 for (loc = tp->base.loc; loc; loc = loc->next)
10353 {
10354 /* If the tracepoint was never downloaded, don't go asking for
10355 any status. */
10356 if (tp->number_on_target == 0)
10357 continue;
10358 sprintf (rs->buf, "qTP:%x:%s", tp->number_on_target,
10359 phex_nz (loc->address, 0));
10360 putpkt (rs->buf);
10361 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10362 if (reply && *reply)
10363 {
10364 if (*reply == 'V')
10365 parse_tracepoint_status (reply + 1, bp, utp);
10366 }
10367 }
10368 }
10369 else if (utp)
10370 {
10371 utp->hit_count = 0;
10372 utp->traceframe_usage = 0;
10373 sprintf (rs->buf, "qTP:%x:%s", utp->number, phex_nz (utp->addr, 0));
10374 putpkt (rs->buf);
10375 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10376 if (reply && *reply)
10377 {
10378 if (*reply == 'V')
10379 parse_tracepoint_status (reply + 1, bp, utp);
10380 }
10381 }
10382 }
10383
10384 static void
10385 remote_trace_stop (void)
10386 {
10387 putpkt ("QTStop");
10388 remote_get_noisy_reply (&target_buf, &target_buf_size);
10389 if (*target_buf == '\0')
10390 error (_("Target does not support this command."));
10391 if (strcmp (target_buf, "OK") != 0)
10392 error (_("Bogus reply from target: %s"), target_buf);
10393 }
10394
10395 static int
10396 remote_trace_find (enum trace_find_type type, int num,
10397 ULONGEST addr1, ULONGEST addr2,
10398 int *tpp)
10399 {
10400 struct remote_state *rs = get_remote_state ();
10401 char *p, *reply;
10402 int target_frameno = -1, target_tracept = -1;
10403
10404 /* Lookups other than by absolute frame number depend on the current
10405 trace selected, so make sure it is correct on the remote end
10406 first. */
10407 if (type != tfind_number)
10408 set_remote_traceframe ();
10409
10410 p = rs->buf;
10411 strcpy (p, "QTFrame:");
10412 p = strchr (p, '\0');
10413 switch (type)
10414 {
10415 case tfind_number:
10416 sprintf (p, "%x", num);
10417 break;
10418 case tfind_pc:
10419 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10420 break;
10421 case tfind_tp:
10422 sprintf (p, "tdp:%x", num);
10423 break;
10424 case tfind_range:
10425 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10426 break;
10427 case tfind_outside:
10428 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10429 break;
10430 default:
10431 error (_("Unknown trace find type %d"), type);
10432 }
10433
10434 putpkt (rs->buf);
10435 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10436 if (*reply == '\0')
10437 error (_("Target does not support this command."));
10438
10439 while (reply && *reply)
10440 switch (*reply)
10441 {
10442 case 'F':
10443 p = ++reply;
10444 target_frameno = (int) strtol (p, &reply, 16);
10445 if (reply == p)
10446 error (_("Unable to parse trace frame number"));
10447 /* Don't update our remote traceframe number cache on failure
10448 to select a remote traceframe. */
10449 if (target_frameno == -1)
10450 return -1;
10451 break;
10452 case 'T':
10453 p = ++reply;
10454 target_tracept = (int) strtol (p, &reply, 16);
10455 if (reply == p)
10456 error (_("Unable to parse tracepoint number"));
10457 break;
10458 case 'O': /* "OK"? */
10459 if (reply[1] == 'K' && reply[2] == '\0')
10460 reply += 2;
10461 else
10462 error (_("Bogus reply from target: %s"), reply);
10463 break;
10464 default:
10465 error (_("Bogus reply from target: %s"), reply);
10466 }
10467 if (tpp)
10468 *tpp = target_tracept;
10469
10470 remote_traceframe_number = target_frameno;
10471 return target_frameno;
10472 }
10473
10474 static int
10475 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10476 {
10477 struct remote_state *rs = get_remote_state ();
10478 char *reply;
10479 ULONGEST uval;
10480
10481 set_remote_traceframe ();
10482
10483 sprintf (rs->buf, "qTV:%x", tsvnum);
10484 putpkt (rs->buf);
10485 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10486 if (reply && *reply)
10487 {
10488 if (*reply == 'V')
10489 {
10490 unpack_varlen_hex (reply + 1, &uval);
10491 *val = (LONGEST) uval;
10492 return 1;
10493 }
10494 }
10495 return 0;
10496 }
10497
10498 static int
10499 remote_save_trace_data (const char *filename)
10500 {
10501 struct remote_state *rs = get_remote_state ();
10502 char *p, *reply;
10503
10504 p = rs->buf;
10505 strcpy (p, "QTSave:");
10506 p += strlen (p);
10507 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10508 error (_("Remote file name too long for trace save packet"));
10509 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10510 *p++ = '\0';
10511 putpkt (rs->buf);
10512 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10513 if (*reply == '\0')
10514 error (_("Target does not support this command."));
10515 if (strcmp (reply, "OK") != 0)
10516 error (_("Bogus reply from target: %s"), reply);
10517 return 0;
10518 }
10519
10520 /* This is basically a memory transfer, but needs to be its own packet
10521 because we don't know how the target actually organizes its trace
10522 memory, plus we want to be able to ask for as much as possible, but
10523 not be unhappy if we don't get as much as we ask for. */
10524
10525 static LONGEST
10526 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10527 {
10528 struct remote_state *rs = get_remote_state ();
10529 char *reply;
10530 char *p;
10531 int rslt;
10532
10533 p = rs->buf;
10534 strcpy (p, "qTBuffer:");
10535 p += strlen (p);
10536 p += hexnumstr (p, offset);
10537 *p++ = ',';
10538 p += hexnumstr (p, len);
10539 *p++ = '\0';
10540
10541 putpkt (rs->buf);
10542 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10543 if (reply && *reply)
10544 {
10545 /* 'l' by itself means we're at the end of the buffer and
10546 there is nothing more to get. */
10547 if (*reply == 'l')
10548 return 0;
10549
10550 /* Convert the reply into binary. Limit the number of bytes to
10551 convert according to our passed-in buffer size, rather than
10552 what was returned in the packet; if the target is
10553 unexpectedly generous and gives us a bigger reply than we
10554 asked for, we don't want to crash. */
10555 rslt = hex2bin (target_buf, buf, len);
10556 return rslt;
10557 }
10558
10559 /* Something went wrong, flag as an error. */
10560 return -1;
10561 }
10562
10563 static void
10564 remote_set_disconnected_tracing (int val)
10565 {
10566 struct remote_state *rs = get_remote_state ();
10567
10568 if (rs->disconnected_tracing)
10569 {
10570 char *reply;
10571
10572 sprintf (rs->buf, "QTDisconnected:%x", val);
10573 putpkt (rs->buf);
10574 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10575 if (*reply == '\0')
10576 error (_("Target does not support this command."));
10577 if (strcmp (reply, "OK") != 0)
10578 error (_("Bogus reply from target: %s"), reply);
10579 }
10580 else if (val)
10581 warning (_("Target does not support disconnected tracing."));
10582 }
10583
10584 static int
10585 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10586 {
10587 struct thread_info *info = find_thread_ptid (ptid);
10588
10589 if (info && info->private)
10590 return info->private->core;
10591 return -1;
10592 }
10593
10594 static void
10595 remote_set_circular_trace_buffer (int val)
10596 {
10597 struct remote_state *rs = get_remote_state ();
10598 char *reply;
10599
10600 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10601 putpkt (rs->buf);
10602 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10603 if (*reply == '\0')
10604 error (_("Target does not support this command."));
10605 if (strcmp (reply, "OK") != 0)
10606 error (_("Bogus reply from target: %s"), reply);
10607 }
10608
10609 static struct traceframe_info *
10610 remote_traceframe_info (void)
10611 {
10612 char *text;
10613
10614 text = target_read_stralloc (&current_target,
10615 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10616 if (text != NULL)
10617 {
10618 struct traceframe_info *info;
10619 struct cleanup *back_to = make_cleanup (xfree, text);
10620
10621 info = parse_traceframe_info (text);
10622 do_cleanups (back_to);
10623 return info;
10624 }
10625
10626 return NULL;
10627 }
10628
10629 /* Handle the qTMinFTPILen packet. Returns the minimum length of
10630 instruction on which a fast tracepoint may be placed. Returns -1
10631 if the packet is not supported, and 0 if the minimum instruction
10632 length is unknown. */
10633
10634 static int
10635 remote_get_min_fast_tracepoint_insn_len (void)
10636 {
10637 struct remote_state *rs = get_remote_state ();
10638 char *reply;
10639
10640 /* If we're not debugging a process yet, the IPA can't be
10641 loaded. */
10642 if (!target_has_execution)
10643 return 0;
10644
10645 /* Make sure the remote is pointing at the right process. */
10646 set_general_process ();
10647
10648 sprintf (rs->buf, "qTMinFTPILen");
10649 putpkt (rs->buf);
10650 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10651 if (*reply == '\0')
10652 return -1;
10653 else
10654 {
10655 ULONGEST min_insn_len;
10656
10657 unpack_varlen_hex (reply, &min_insn_len);
10658
10659 return (int) min_insn_len;
10660 }
10661 }
10662
10663 static int
10664 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
10665 {
10666 struct remote_state *rs = get_remote_state ();
10667 char *reply;
10668 char *buf = rs->buf;
10669 char *endbuf = rs->buf + get_remote_packet_size ();
10670 int nbytes;
10671
10672 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
10673 if (user)
10674 {
10675 buf += xsnprintf (buf, endbuf - buf, "user:");
10676 nbytes = bin2hex (user, buf, 0);
10677 buf += 2 * nbytes;
10678 *buf++ = ';';
10679 }
10680 if (notes)
10681 {
10682 buf += xsnprintf (buf, endbuf - buf, "notes:");
10683 nbytes = bin2hex (notes, buf, 0);
10684 buf += 2 * nbytes;
10685 *buf++ = ';';
10686 }
10687 if (stop_notes)
10688 {
10689 buf += xsnprintf (buf, endbuf - buf, "tstop:");
10690 nbytes = bin2hex (stop_notes, buf, 0);
10691 buf += 2 * nbytes;
10692 *buf++ = ';';
10693 }
10694 /* Ensure the buffer is terminated. */
10695 *buf = '\0';
10696
10697 putpkt (rs->buf);
10698 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10699 if (*reply == '\0')
10700 return 0;
10701
10702 if (strcmp (reply, "OK") != 0)
10703 error (_("Bogus reply from target: %s"), reply);
10704
10705 return 1;
10706 }
10707
10708 static void
10709 init_remote_ops (void)
10710 {
10711 remote_ops.to_shortname = "remote";
10712 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10713 remote_ops.to_doc =
10714 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10715 Specify the serial device it is connected to\n\
10716 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10717 remote_ops.to_open = remote_open;
10718 remote_ops.to_close = remote_close;
10719 remote_ops.to_detach = remote_detach;
10720 remote_ops.to_disconnect = remote_disconnect;
10721 remote_ops.to_resume = remote_resume;
10722 remote_ops.to_wait = remote_wait;
10723 remote_ops.to_fetch_registers = remote_fetch_registers;
10724 remote_ops.to_store_registers = remote_store_registers;
10725 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10726 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10727 remote_ops.to_files_info = remote_files_info;
10728 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10729 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10730 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10731 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10732 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10733 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10734 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10735 remote_ops.to_region_ok_for_hw_watchpoint
10736 = remote_region_ok_for_hw_watchpoint;
10737 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10738 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10739 remote_ops.to_kill = remote_kill;
10740 remote_ops.to_load = generic_load;
10741 remote_ops.to_mourn_inferior = remote_mourn;
10742 remote_ops.to_pass_signals = remote_pass_signals;
10743 remote_ops.to_thread_alive = remote_thread_alive;
10744 remote_ops.to_find_new_threads = remote_threads_info;
10745 remote_ops.to_pid_to_str = remote_pid_to_str;
10746 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10747 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10748 remote_ops.to_stop = remote_stop;
10749 remote_ops.to_xfer_partial = remote_xfer_partial;
10750 remote_ops.to_rcmd = remote_rcmd;
10751 remote_ops.to_log_command = serial_log_command;
10752 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10753 remote_ops.to_stratum = process_stratum;
10754 remote_ops.to_has_all_memory = default_child_has_all_memory;
10755 remote_ops.to_has_memory = default_child_has_memory;
10756 remote_ops.to_has_stack = default_child_has_stack;
10757 remote_ops.to_has_registers = default_child_has_registers;
10758 remote_ops.to_has_execution = default_child_has_execution;
10759 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10760 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10761 remote_ops.to_magic = OPS_MAGIC;
10762 remote_ops.to_memory_map = remote_memory_map;
10763 remote_ops.to_flash_erase = remote_flash_erase;
10764 remote_ops.to_flash_done = remote_flash_done;
10765 remote_ops.to_read_description = remote_read_description;
10766 remote_ops.to_search_memory = remote_search_memory;
10767 remote_ops.to_can_async_p = remote_can_async_p;
10768 remote_ops.to_is_async_p = remote_is_async_p;
10769 remote_ops.to_async = remote_async;
10770 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10771 remote_ops.to_terminal_ours = remote_terminal_ours;
10772 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10773 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10774 remote_ops.to_supports_disable_randomization
10775 = remote_supports_disable_randomization;
10776 remote_ops.to_fileio_open = remote_hostio_open;
10777 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
10778 remote_ops.to_fileio_pread = remote_hostio_pread;
10779 remote_ops.to_fileio_close = remote_hostio_close;
10780 remote_ops.to_fileio_unlink = remote_hostio_unlink;
10781 remote_ops.to_fileio_readlink = remote_hostio_readlink;
10782 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
10783 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
10784 remote_ops.to_trace_init = remote_trace_init;
10785 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10786 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
10787 remote_ops.to_download_trace_state_variable
10788 = remote_download_trace_state_variable;
10789 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
10790 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
10791 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10792 remote_ops.to_trace_start = remote_trace_start;
10793 remote_ops.to_get_trace_status = remote_get_trace_status;
10794 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
10795 remote_ops.to_trace_stop = remote_trace_stop;
10796 remote_ops.to_trace_find = remote_trace_find;
10797 remote_ops.to_get_trace_state_variable_value
10798 = remote_get_trace_state_variable_value;
10799 remote_ops.to_save_trace_data = remote_save_trace_data;
10800 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10801 remote_ops.to_upload_trace_state_variables
10802 = remote_upload_trace_state_variables;
10803 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10804 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
10805 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10806 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10807 remote_ops.to_set_trace_notes = remote_set_trace_notes;
10808 remote_ops.to_core_of_thread = remote_core_of_thread;
10809 remote_ops.to_verify_memory = remote_verify_memory;
10810 remote_ops.to_get_tib_address = remote_get_tib_address;
10811 remote_ops.to_set_permissions = remote_set_permissions;
10812 remote_ops.to_static_tracepoint_marker_at
10813 = remote_static_tracepoint_marker_at;
10814 remote_ops.to_static_tracepoint_markers_by_strid
10815 = remote_static_tracepoint_markers_by_strid;
10816 remote_ops.to_traceframe_info = remote_traceframe_info;
10817 }
10818
10819 /* Set up the extended remote vector by making a copy of the standard
10820 remote vector and adding to it. */
10821
10822 static void
10823 init_extended_remote_ops (void)
10824 {
10825 extended_remote_ops = remote_ops;
10826
10827 extended_remote_ops.to_shortname = "extended-remote";
10828 extended_remote_ops.to_longname =
10829 "Extended remote serial target in gdb-specific protocol";
10830 extended_remote_ops.to_doc =
10831 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10832 Specify the serial device it is connected to (e.g. /dev/ttya).";
10833 extended_remote_ops.to_open = extended_remote_open;
10834 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10835 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10836 extended_remote_ops.to_detach = extended_remote_detach;
10837 extended_remote_ops.to_attach = extended_remote_attach;
10838 extended_remote_ops.to_kill = extended_remote_kill;
10839 extended_remote_ops.to_supports_disable_randomization
10840 = extended_remote_supports_disable_randomization;
10841 }
10842
10843 static int
10844 remote_can_async_p (void)
10845 {
10846 if (!target_async_permitted)
10847 /* We only enable async when the user specifically asks for it. */
10848 return 0;
10849
10850 /* We're async whenever the serial device is. */
10851 return serial_can_async_p (remote_desc);
10852 }
10853
10854 static int
10855 remote_is_async_p (void)
10856 {
10857 if (!target_async_permitted)
10858 /* We only enable async when the user specifically asks for it. */
10859 return 0;
10860
10861 /* We're async whenever the serial device is. */
10862 return serial_is_async_p (remote_desc);
10863 }
10864
10865 /* Pass the SERIAL event on and up to the client. One day this code
10866 will be able to delay notifying the client of an event until the
10867 point where an entire packet has been received. */
10868
10869 static void (*async_client_callback) (enum inferior_event_type event_type,
10870 void *context);
10871 static void *async_client_context;
10872 static serial_event_ftype remote_async_serial_handler;
10873
10874 static void
10875 remote_async_serial_handler (struct serial *scb, void *context)
10876 {
10877 /* Don't propogate error information up to the client. Instead let
10878 the client find out about the error by querying the target. */
10879 async_client_callback (INF_REG_EVENT, async_client_context);
10880 }
10881
10882 static void
10883 remote_async_inferior_event_handler (gdb_client_data data)
10884 {
10885 inferior_event_handler (INF_REG_EVENT, NULL);
10886 }
10887
10888 static void
10889 remote_async_get_pending_events_handler (gdb_client_data data)
10890 {
10891 remote_get_pending_stop_replies ();
10892 }
10893
10894 static void
10895 remote_async (void (*callback) (enum inferior_event_type event_type,
10896 void *context), void *context)
10897 {
10898 if (callback != NULL)
10899 {
10900 serial_async (remote_desc, remote_async_serial_handler, NULL);
10901 async_client_callback = callback;
10902 async_client_context = context;
10903 }
10904 else
10905 serial_async (remote_desc, NULL, NULL);
10906 }
10907
10908 static void
10909 set_remote_cmd (char *args, int from_tty)
10910 {
10911 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10912 }
10913
10914 static void
10915 show_remote_cmd (char *args, int from_tty)
10916 {
10917 /* We can't just use cmd_show_list here, because we want to skip
10918 the redundant "show remote Z-packet" and the legacy aliases. */
10919 struct cleanup *showlist_chain;
10920 struct cmd_list_element *list = remote_show_cmdlist;
10921 struct ui_out *uiout = current_uiout;
10922
10923 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10924 for (; list != NULL; list = list->next)
10925 if (strcmp (list->name, "Z-packet") == 0)
10926 continue;
10927 else if (list->type == not_set_cmd)
10928 /* Alias commands are exactly like the original, except they
10929 don't have the normal type. */
10930 continue;
10931 else
10932 {
10933 struct cleanup *option_chain
10934 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10935
10936 ui_out_field_string (uiout, "name", list->name);
10937 ui_out_text (uiout, ": ");
10938 if (list->type == show_cmd)
10939 do_setshow_command ((char *) NULL, from_tty, list);
10940 else
10941 cmd_func (list, NULL, from_tty);
10942 /* Close the tuple. */
10943 do_cleanups (option_chain);
10944 }
10945
10946 /* Close the tuple. */
10947 do_cleanups (showlist_chain);
10948 }
10949
10950
10951 /* Function to be called whenever a new objfile (shlib) is detected. */
10952 static void
10953 remote_new_objfile (struct objfile *objfile)
10954 {
10955 if (remote_desc != 0) /* Have a remote connection. */
10956 remote_check_symbols (objfile);
10957 }
10958
10959 /* Pull all the tracepoints defined on the target and create local
10960 data structures representing them. We don't want to create real
10961 tracepoints yet, we don't want to mess up the user's existing
10962 collection. */
10963
10964 static int
10965 remote_upload_tracepoints (struct uploaded_tp **utpp)
10966 {
10967 struct remote_state *rs = get_remote_state ();
10968 char *p;
10969
10970 /* Ask for a first packet of tracepoint definition. */
10971 putpkt ("qTfP");
10972 getpkt (&rs->buf, &rs->buf_size, 0);
10973 p = rs->buf;
10974 while (*p && *p != 'l')
10975 {
10976 parse_tracepoint_definition (p, utpp);
10977 /* Ask for another packet of tracepoint definition. */
10978 putpkt ("qTsP");
10979 getpkt (&rs->buf, &rs->buf_size, 0);
10980 p = rs->buf;
10981 }
10982 return 0;
10983 }
10984
10985 static int
10986 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10987 {
10988 struct remote_state *rs = get_remote_state ();
10989 char *p;
10990
10991 /* Ask for a first packet of variable definition. */
10992 putpkt ("qTfV");
10993 getpkt (&rs->buf, &rs->buf_size, 0);
10994 p = rs->buf;
10995 while (*p && *p != 'l')
10996 {
10997 parse_tsv_definition (p, utsvp);
10998 /* Ask for another packet of variable definition. */
10999 putpkt ("qTsV");
11000 getpkt (&rs->buf, &rs->buf_size, 0);
11001 p = rs->buf;
11002 }
11003 return 0;
11004 }
11005
11006 void
11007 _initialize_remote (void)
11008 {
11009 struct remote_state *rs;
11010 struct cmd_list_element *cmd;
11011 char *cmd_name;
11012
11013 /* architecture specific data */
11014 remote_gdbarch_data_handle =
11015 gdbarch_data_register_post_init (init_remote_state);
11016 remote_g_packet_data_handle =
11017 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11018
11019 /* Initialize the per-target state. At the moment there is only one
11020 of these, not one per target. Only one target is active at a
11021 time. The default buffer size is unimportant; it will be expanded
11022 whenever a larger buffer is needed. */
11023 rs = get_remote_state_raw ();
11024 rs->buf_size = 400;
11025 rs->buf = xmalloc (rs->buf_size);
11026
11027 init_remote_ops ();
11028 add_target (&remote_ops);
11029
11030 init_extended_remote_ops ();
11031 add_target (&extended_remote_ops);
11032
11033 /* Hook into new objfile notification. */
11034 observer_attach_new_objfile (remote_new_objfile);
11035
11036 /* Set up signal handlers. */
11037 sigint_remote_token =
11038 create_async_signal_handler (async_remote_interrupt, NULL);
11039 sigint_remote_twice_token =
11040 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11041
11042 #if 0
11043 init_remote_threadtests ();
11044 #endif
11045
11046 /* set/show remote ... */
11047
11048 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11049 Remote protocol specific variables\n\
11050 Configure various remote-protocol specific variables such as\n\
11051 the packets being used"),
11052 &remote_set_cmdlist, "set remote ",
11053 0 /* allow-unknown */, &setlist);
11054 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11055 Remote protocol specific variables\n\
11056 Configure various remote-protocol specific variables such as\n\
11057 the packets being used"),
11058 &remote_show_cmdlist, "show remote ",
11059 0 /* allow-unknown */, &showlist);
11060
11061 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11062 Compare section data on target to the exec file.\n\
11063 Argument is a single section name (default: all loaded sections)."),
11064 &cmdlist);
11065
11066 add_cmd ("packet", class_maintenance, packet_command, _("\
11067 Send an arbitrary packet to a remote target.\n\
11068 maintenance packet TEXT\n\
11069 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11070 this command sends the string TEXT to the inferior, and displays the\n\
11071 response packet. GDB supplies the initial `$' character, and the\n\
11072 terminating `#' character and checksum."),
11073 &maintenancelist);
11074
11075 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11076 Set whether to send break if interrupted."), _("\
11077 Show whether to send break if interrupted."), _("\
11078 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11079 set_remotebreak, show_remotebreak,
11080 &setlist, &showlist);
11081 cmd_name = "remotebreak";
11082 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11083 deprecate_cmd (cmd, "set remote interrupt-sequence");
11084 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11085 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11086 deprecate_cmd (cmd, "show remote interrupt-sequence");
11087
11088 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11089 interrupt_sequence_modes, &interrupt_sequence_mode,
11090 _("\
11091 Set interrupt sequence to remote target."), _("\
11092 Show interrupt sequence to remote target."), _("\
11093 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11094 NULL, show_interrupt_sequence,
11095 &remote_set_cmdlist,
11096 &remote_show_cmdlist);
11097
11098 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11099 &interrupt_on_connect, _("\
11100 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11101 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11102 If set, interrupt sequence is sent to remote target."),
11103 NULL, NULL,
11104 &remote_set_cmdlist, &remote_show_cmdlist);
11105
11106 /* Install commands for configuring memory read/write packets. */
11107
11108 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11109 Set the maximum number of bytes per memory write packet (deprecated)."),
11110 &setlist);
11111 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11112 Show the maximum number of bytes per memory write packet (deprecated)."),
11113 &showlist);
11114 add_cmd ("memory-write-packet-size", no_class,
11115 set_memory_write_packet_size, _("\
11116 Set the maximum number of bytes per memory-write packet.\n\
11117 Specify the number of bytes in a packet or 0 (zero) for the\n\
11118 default packet size. The actual limit is further reduced\n\
11119 dependent on the target. Specify ``fixed'' to disable the\n\
11120 further restriction and ``limit'' to enable that restriction."),
11121 &remote_set_cmdlist);
11122 add_cmd ("memory-read-packet-size", no_class,
11123 set_memory_read_packet_size, _("\
11124 Set the maximum number of bytes per memory-read packet.\n\
11125 Specify the number of bytes in a packet or 0 (zero) for the\n\
11126 default packet size. The actual limit is further reduced\n\
11127 dependent on the target. Specify ``fixed'' to disable the\n\
11128 further restriction and ``limit'' to enable that restriction."),
11129 &remote_set_cmdlist);
11130 add_cmd ("memory-write-packet-size", no_class,
11131 show_memory_write_packet_size,
11132 _("Show the maximum number of bytes per memory-write packet."),
11133 &remote_show_cmdlist);
11134 add_cmd ("memory-read-packet-size", no_class,
11135 show_memory_read_packet_size,
11136 _("Show the maximum number of bytes per memory-read packet."),
11137 &remote_show_cmdlist);
11138
11139 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11140 &remote_hw_watchpoint_limit, _("\
11141 Set the maximum number of target hardware watchpoints."), _("\
11142 Show the maximum number of target hardware watchpoints."), _("\
11143 Specify a negative limit for unlimited."),
11144 NULL, NULL, /* FIXME: i18n: The maximum
11145 number of target hardware
11146 watchpoints is %s. */
11147 &remote_set_cmdlist, &remote_show_cmdlist);
11148 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11149 &remote_hw_watchpoint_length_limit, _("\
11150 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11151 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11152 Specify a negative limit for unlimited."),
11153 NULL, NULL, /* FIXME: i18n: The maximum
11154 length (in bytes) of a target
11155 hardware watchpoint is %s. */
11156 &remote_set_cmdlist, &remote_show_cmdlist);
11157 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11158 &remote_hw_breakpoint_limit, _("\
11159 Set the maximum number of target hardware breakpoints."), _("\
11160 Show the maximum number of target hardware breakpoints."), _("\
11161 Specify a negative limit for unlimited."),
11162 NULL, NULL, /* FIXME: i18n: The maximum
11163 number of target hardware
11164 breakpoints is %s. */
11165 &remote_set_cmdlist, &remote_show_cmdlist);
11166
11167 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
11168 &remote_address_size, _("\
11169 Set the maximum size of the address (in bits) in a memory packet."), _("\
11170 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11171 NULL,
11172 NULL, /* FIXME: i18n: */
11173 &setlist, &showlist);
11174
11175 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11176 "X", "binary-download", 1);
11177
11178 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11179 "vCont", "verbose-resume", 0);
11180
11181 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11182 "QPassSignals", "pass-signals", 0);
11183
11184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11185 "qSymbol", "symbol-lookup", 0);
11186
11187 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11188 "P", "set-register", 1);
11189
11190 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11191 "p", "fetch-register", 1);
11192
11193 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11194 "Z0", "software-breakpoint", 0);
11195
11196 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11197 "Z1", "hardware-breakpoint", 0);
11198
11199 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11200 "Z2", "write-watchpoint", 0);
11201
11202 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11203 "Z3", "read-watchpoint", 0);
11204
11205 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11206 "Z4", "access-watchpoint", 0);
11207
11208 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11209 "qXfer:auxv:read", "read-aux-vector", 0);
11210
11211 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11212 "qXfer:features:read", "target-features", 0);
11213
11214 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11215 "qXfer:libraries:read", "library-info", 0);
11216
11217 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11218 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11219
11220 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11221 "qXfer:memory-map:read", "memory-map", 0);
11222
11223 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11224 "qXfer:spu:read", "read-spu-object", 0);
11225
11226 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11227 "qXfer:spu:write", "write-spu-object", 0);
11228
11229 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11230 "qXfer:osdata:read", "osdata", 0);
11231
11232 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11233 "qXfer:threads:read", "threads", 0);
11234
11235 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11236 "qXfer:siginfo:read", "read-siginfo-object", 0);
11237
11238 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11239 "qXfer:siginfo:write", "write-siginfo-object", 0);
11240
11241 add_packet_config_cmd
11242 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11243 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11244
11245 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11246 "qGetTLSAddr", "get-thread-local-storage-address",
11247 0);
11248
11249 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11250 "qGetTIBAddr", "get-thread-information-block-address",
11251 0);
11252
11253 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11254 "bc", "reverse-continue", 0);
11255
11256 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11257 "bs", "reverse-step", 0);
11258
11259 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11260 "qSupported", "supported-packets", 0);
11261
11262 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11263 "qSearch:memory", "search-memory", 0);
11264
11265 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11266 "vFile:open", "hostio-open", 0);
11267
11268 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11269 "vFile:pread", "hostio-pread", 0);
11270
11271 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11272 "vFile:pwrite", "hostio-pwrite", 0);
11273
11274 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11275 "vFile:close", "hostio-close", 0);
11276
11277 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11278 "vFile:unlink", "hostio-unlink", 0);
11279
11280 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11281 "vFile:readlink", "hostio-readlink", 0);
11282
11283 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11284 "vAttach", "attach", 0);
11285
11286 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11287 "vRun", "run", 0);
11288
11289 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11290 "QStartNoAckMode", "noack", 0);
11291
11292 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11293 "vKill", "kill", 0);
11294
11295 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11296 "qAttached", "query-attached", 0);
11297
11298 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11299 "ConditionalTracepoints",
11300 "conditional-tracepoints", 0);
11301
11302 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11303 "ConditionalBreakpoints",
11304 "conditional-breakpoints", 0);
11305
11306 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11307 "FastTracepoints", "fast-tracepoints", 0);
11308
11309 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11310 "TracepointSource", "TracepointSource", 0);
11311
11312 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11313 "QAllow", "allow", 0);
11314
11315 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11316 "StaticTracepoints", "static-tracepoints", 0);
11317
11318 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11319 "InstallInTrace", "install-in-trace", 0);
11320
11321 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11322 "qXfer:statictrace:read", "read-sdata-object", 0);
11323
11324 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11325 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11326
11327 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11328 "QDisableRandomization", "disable-randomization", 0);
11329
11330 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11331 Z sub-packet has its own set and show commands, but users may
11332 have sets to this variable in their .gdbinit files (or in their
11333 documentation). */
11334 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11335 &remote_Z_packet_detect, _("\
11336 Set use of remote protocol `Z' packets"), _("\
11337 Show use of remote protocol `Z' packets "), _("\
11338 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11339 packets."),
11340 set_remote_protocol_Z_packet_cmd,
11341 show_remote_protocol_Z_packet_cmd,
11342 /* FIXME: i18n: Use of remote protocol
11343 `Z' packets is %s. */
11344 &remote_set_cmdlist, &remote_show_cmdlist);
11345
11346 add_prefix_cmd ("remote", class_files, remote_command, _("\
11347 Manipulate files on the remote system\n\
11348 Transfer files to and from the remote target system."),
11349 &remote_cmdlist, "remote ",
11350 0 /* allow-unknown */, &cmdlist);
11351
11352 add_cmd ("put", class_files, remote_put_command,
11353 _("Copy a local file to the remote system."),
11354 &remote_cmdlist);
11355
11356 add_cmd ("get", class_files, remote_get_command,
11357 _("Copy a remote file to the local system."),
11358 &remote_cmdlist);
11359
11360 add_cmd ("delete", class_files, remote_delete_command,
11361 _("Delete a remote file."),
11362 &remote_cmdlist);
11363
11364 remote_exec_file = xstrdup ("");
11365 add_setshow_string_noescape_cmd ("exec-file", class_files,
11366 &remote_exec_file, _("\
11367 Set the remote pathname for \"run\""), _("\
11368 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11369 &remote_set_cmdlist, &remote_show_cmdlist);
11370
11371 /* Eventually initialize fileio. See fileio.c */
11372 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11373
11374 /* Take advantage of the fact that the LWP field is not used, to tag
11375 special ptids with it set to != 0. */
11376 magic_null_ptid = ptid_build (42000, 1, -1);
11377 not_sent_ptid = ptid_build (42000, 1, -2);
11378 any_thread_ptid = ptid_build (42000, 1, 0);
11379
11380 target_buf_size = 2048;
11381 target_buf = xmalloc (target_buf_size);
11382 }
11383
This page took 0.345814 seconds and 5 git commands to generate.